Canaila's Magazine for Electronics \& Computing Enthusiasts
Computer
Aidel Drafting
Schematieds and illustrations


Madein canmata, HBM-PC, KT aKAT Compatible
Monitor not included. 18 M, IBM PC, IBM XT and IBM AT are registered trademarks of IBM Canada Lid.

## Features common to BEST MK II, MK III \& MK IV

- Superb IBM PC \& XT Compatibility
- Canadian Made
- 256K RAM Standard minimum (uses 41256 K RAM chips)
- Expandable on board to 640K RAM
- Parallel Port (for printer)
- Serial Port (for communications)
- Real Time Clock/Calendar
(with Battery Backup)
- Presocketed for optional co-processor such as 8087 Math Proces sor
- IBM Compatible Keyboard
- Reset Switch
- Phoenix BIOS as used in many major brand IBM compatible systems.
- 150 Watt Power Supply which will handle a Hard Drive without upgrade.
- 7 Slots
- Flip top case
- 2 Slimline DS, DD $51 / 4 ", 360 \mathrm{~K}$ Disk Drives
- Colour Video (RGB \& Composite) Board or Hi-Res Monochrome Card (customer choice)
- Disk Controller Board
- CSA Approved


## BEST MK II.

Two 350K DS,DD disk. drives, Serlal and Parallel Ports, Real Time Clock, Phoenix BIOS, uses 8088 processor - full specifications given above.

## ONE YEAR WARRANTY

4. 7718 MHZ The FAST BEST MK III

As BEST MK II plus speed selectable 4.77 and 8 MHz (most software will run on the higher speed), uses 8088-2 pro cessor.

ONE YEAR WARRANTY

## SUPER.FAST BEST MK IV

 As best mk ill plus true 16-Bit machine, 8086-2 processor, IBM compatible 8 -Bit $1 / 0$ channel bus, even faster than MK III due to 16 -Bit architecture. With 640 K standard.
# $\$ 2195^{00}$ 

ONE YEAR WARRANTY

## Warranty

We have such confidence in the reliability of the BEST that we offer a full One Year Warranty. This far exceeds the 90 day industry standard. On-site service plan is avallable across Canada at extra cost through 3M of Canada Ltd.

Other Configurations:
With 640 K RAM
$\$ 1795$
With 20 Meg Hard Drive/1 Floppy/256K ... \$2495 With 20 Meg Hard Drive/1 Floppy/640K ... $\mathbf{\$ 2 5 9 5}$

Other Configurations:
With 640 K RAM.
$\$ 1995$
Whih 20 Meg Hard Drive/1 Floppy/256K .$\$ 2695$ With 20 Meg Hard Drive/1 Floppy/640K .. $\$ 2795$ With 80 Meg Hard Drlve/1 Floppy/640K ... $\$ 4495$

Other Configurations:
With 20 Meg Hard Drive/1 Floppy/640K . . . 52995 The BEST MK IV Main board processes data approx. 2.1 times faster than the IBM PCIXT or BEST Mk II.

## AVT- 286

Superb IBM AT compatibility, 640K RAM, Two 5.25 in disk drives fone high density 1.2 Megabyte, one standcompatlble ard 360K), serial and parallel ports high quality-keyboard, keyboard lock and status monitor. 16 MHz clock ( 8 MHz CPU )


ONE YEAR WARRANTY
A Basic Configuration with fast stepping
Hard Drives:

| 20 Meg Hard Drives | \$4795 |
| :---: | :---: |
| 30 Meg Hard Drive | \$4995 |
| 40 Meg Hard Drive | \$5495 |
| 80 Meg Hard Drive | . 55995 |
| Built-In Tape Backup Systems from | \$ 799 |
| BEST 1200/300 Plug-in-Modem |  |


| Lightening Fast |
| :--- |
| New, IBM AT com. |
| patible. |
| 10 MHz CPU |
| - 2Meg RAM |
| - Up to 4 Meg RAM |
| on Board |


| AVT10.286 |
| :---: |
| Superb IBM AT compat ibsity plus more - Slandard 2 Meg RAM and optionally ud |
|  |
|  |
| \% |
| Se one stand |
| tal and parallel poris, |
|  |
| \% |



As Basic Configuration whth fast stepping Hard Drives:
20 Meg Hard Drive
30 Meg Hard Drive
$\$ 6495$
30 Meg Hard Drive
80 Meg Hard Drive
80 Meg Hard Drive ............
Additional 2 Megabytes RAM
(lo bring system to full 4 Megabytes) ..... $\$ 995$
$\$ 6995$

Buill-in Tape Backup Systems from ..... . \$ 799


Selling MICRO COMPUTERS to small and medium size businesses can turn your skills and local knowledge into LARGE GAINS.
EXCELTRONIX, one of Canada's leading PC/XT/AT compatible makers invites those who qualify to share in the UNLIMITED REWARDS of successful selling by becoming part of its network of Independent Agents. A total investment of $\$ 7,500$ secured by inventory opens an OUTSTANDING OPPORTUNITY for self starters. Our Independent Agents have NO CEILINGS ON INCOME; HAVE GUARANTEED TERRITORIES AND ENJOY EXCELLENT SUPPORT directly from the people who designed and manufactured the product line - no offshore clones here.
Choice territories for Independent Agents are still available in all urban centres in Canada. INTERESTED PERSONS can receive more information in confidence from:
Director of Special Projects Exceltronix Components \& Computing Inc. 6315 Kestrel Road, Mississauga, Ontario L5T 1S4 (416) 673-5111

Applies to most BEST and Multiflex products.


What you've been waiting and asking for is now here! New Compact Portable 8088-2 Dual Speed PCIXT Compatible From S499


- 8088-2 Motherboard
- 8 MHz and 4.77 MHz operation
- Compact case and power supply
- 256K RAM on board expandable to 640K
- 90 Day Warranty

Basic UnIt as listed $\$ 499.00$

Basic Unit with Video Board (Colour or Hercules Compatible), Floppy Controller, Keyboard
$\$ 699.00$
Basic Unit with Video Board (Colour or Hercules Compatible),
Floppy Controller, Keyboard and Built-in 3.5" 750K Disk Drive . $\$ 849.00$
Second 3.5" 750K Disk Drive (Built-in) ............ $\$ 159.00$ extra
Basic Unit with Video Board (Colour or Hercules Compatible), Floppy Controller, Keyboard and External plug-in 360K Disk Drive. . 5849.00
Basic Unit with Video Board (Colour or Hercules Compatible), Floppy Controller, Keyboard and external plug-in Dual 360 K Disk Drive package. .5995 .00

External 20 Meg Hard Drive package with controller and power supply available.

## NEW: MInT-286 <br> At Last! A 80286 AT Compatible From Only \$1495!



- 16 MHz clock ( 8 MHz CPU )
- 80286 Motherboard
- 512K RAM On-Board Expandable to 640K
- Case and 150W Power Supply
- AT Compatible Keyboard
- 7 Expansion Slots
- 90 Day Warranty

Basic Configuration as listed . . . . . . . . . . . . . . . . . . . . . $\$ 1495.00$
As Basic unit plus Video Board, Floppy Controller, and one 5.25" 360 K drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 1995.00$

As Basic unit plus Video Board, Floppy Controller, and one 5.25" 360 K drive and 20 Meg Hard Drive . . . . . . . . . . . . $\$ 2995.00$

Optional 1.2 Megabyte Drive for any configuration ...s 199.00


# Computing Centre Inc. 

# Come and visit our new expanded premises, nearly 2,000 square feet of computer and electronics hobbyists paradise and discover our great bargains. 


#### Abstract

IBM Compatible Peripheral Boards Colour Graphics, RGB and composite. . . \$ 99.95 Monochrome Boards (Hercules compatible) $\$ 129.00$ Floppy Disk Controller (up to 4 drives) . . . $\$ 44.95$ Floppy Controller w. Real time clock, serial port and parallel port $\$ 159.00$ Parallel Printer Card ................. . $\$ 35.00$ Clock Card ............................. . . 36.95 Game Card . . . . . . . . . . . . . . . . . . . . . . \$ 34.95 I/O Card, $2 \times$ serial ports, parallel printer port, game port, real time clock/calendar ....\$149.00 512 K Memory Card, socketed for 512 K with 64 K RAM on board . . . . . . . . . . . . . . . . . . . . $\$ 139.00$ 256K Multifunction Board w. serial port, parallel port, game port, with real time clock calendar with 256K RAM . . . . . . . . . . . . . . . . . . . . . . $\$ 199.00$


IBM XT Compatible 8-slot

## Switching Power Supplies

150W IBM compatible for our motherboards. 5 V $15 \mathrm{~A}, 12 \mathrm{~V} 5.5 \mathrm{~A}, 5 \mathrm{~V}$ and $\cdot 12 \mathrm{~V}$ at 0.5 A CSA
Approved ........................... $\$ 134.95$
200W. CSA Approved . . . . . . . . . . . . . . . $\$ 159.95$
Complete Systems
4.77 MHz, 8088 based ( 8087 optional) Phoenix Bios, reset switch, 8 IBM compatible I/O slots, 256K RAM (expandable to 640K), colour card, 135W CSA Approved power supply, 5150 style keyboard, flip top case, one Panasonic disk drive
$\$ 799.00$
As above but Turbo version - 8 MHz . . . . . $\$ 899.00$ Cables
IBM type parallel printer cable, 6ft . . . . . . $\$ 13.95$
8ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 15.95$

10ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 17.50$
1BM type serial cable RS232C 6 ft ....... \$13.95
8ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 15.95$
Of
. $\$ 17.50$
DB Connectors
Memory Special
4164 150ns ..... \$ 1.99
41256, 150nS ..... - 4.99
$8087,4.77 \mathrm{MHz}$ ..... $\$ 245.00$
$3087,8 \mathrm{MHz}$ ..... 8284, 8253A-5, 8259A ..... 69.95
Disk Drives
Panasonic JU455 Disk Drives, 5.25in DS-DD$\$ 147.00$
20 Meg Seagate Hard Drive, Half Height withcontrolier and cable.\$699.00Huge Selection of AppleCompatible Boards, Power

# For Your Information 

## The Editor's Corner

By Bill Markwick
A POTPOURRI, a commentary, a grab bag of musings: one night last week I noticed that my clothes dryer had been running for an unusual length of time. I checked it and found that the timer had jammed and really cooked the old socks.

I took the timer apart and discovered that the gears appeared to have been stamped out of a tin can, like the motors in flywheeldrive toys before they got crazy in to batteries. The thin, tiny gears had stripped the teeth off the pinion gear on the timer motor after ten years of use.

Now, if I had phoned the
manufacturers and complained, I'm sure they would have said "Ten years? You're complaining after ten years of use?"

Well, yes, I'm complaining after ten years of use. After all, I'm still using some appliances that belonged to my parents and were purchased in the 50 s , back when makers weren't just concerned about getting the product past the warranty date. I have woodworking and metalworking tools from my father and grandfather. For heaven's sake, I own and use planes and chisels from the nineteenth century.

This present attitude of throwaway products and it's-goodenough manufacturing is a crying shame. The manufacturers tell us that cost factors and production
rates prevent building things the old way, and the advertising agencies convince us that hi-tech and computer control is giving us the very best of everything. Don't believe it. Our grandparents got by, and they had some fine possessions to leave us.

I'm not saying that there weren't some turkeys from the past; it's just that we're ignoring too much of the good stuff.

Did you ever send in a Reader Service Card and get no reply from some companies? Occasionally I write to various large corporations to see if their product would be suitable for a project in $E T$, and nothing happens. You can only blame so much on the mail, and I think that some outfits forget
about us because we're not huge multinationals ready to order a million units.

Their attitude to the small purchaser belies their advertising with its message of "We Solve All Problems!".

Of course, in all fairness, some companies have gone to no end of trouble just to get us a five-cent part.

Software: the desktop micro is now a standard feature in offices, common enough that you'd expect software writers to have got the hang of it by now. Yet there are still programs with cumbersome structures and far too much typing. l've never quite come to terms with DBase II or DBase III, the popular database. Its commands seem to be trying to emulate some sort of conversational style: "Set Default to B:', for instance, instead of plain old "B:".

Micros aren't big enough or intelligent enough to emulate a conversational tone, as you've probably discovered if you've played those adventure games where you answer questions:
"What do you want me to do?"
"Go out the door."
"I don't understand."
"Go to the left."
"You can't go that way."
"What way can I go?"'

Lithium／Thionyl Chloride Batteries


Battery Engineering Inc．has in－ troduced Lithium／Thionyl Chlo－ ride cells featuring hermetically sealed，all－welded 304 stainless steel construction．

Available in sizes from 25 mm dia．$\times 2 \mathrm{~mm}$ high up to 33 mm dia．$x$ 120 mm high，case designs，special connectors，and lead assemblies can all be built to customer speci－ fication．Capacities range from ． 14 to 28 Amp －hrs and higher，depen－
ding on size，and the cells provid constant voltage discharge and op tional end of discharge signals． Operating at $-60 \mathrm{deg} \mathbf{C}$ to +200 $\operatorname{deg} C$ ，these cells experience less than $1 \%$ per loss of capacity at 25 $\operatorname{deg} C$ ．

For more information contact： Battery Engineering Inc．，Philip Kane，Technical Sales， 1636 Hyde Park Ave．，Hyde Park，MA 02136. （617）361－7555．
Circle No． 5 on Reader Service Card

Oops！The circuit diagram of the Precision Power Supply from our October 1986 issue（page 34） neglects to show the values and locations of R3 and RV2．They are as follows：

R3 is located just to the right of R2 and has a value of 15 k ohms． RV2 is located directly below R3 and has a value of 5 k ohms．

Our sincere apologies for any in－ convenience this may have caused．

## ECS－8088 Computer

 Special $\$ 795.00$－ 8088 processor
－optional Intel 8087
－numeric coprocessor
－ 256 K memory expandable to 640 K －double sided double density disk drive
－detachable keyboard
－ 150 watt power supply


AT＊Compatible
－512K memory $\$ 1995.00$
－ 1.2 M drive
Keyboard
－ 200 watt power supply
IBM is a registered trademark of International Business Machines．


ELECTRONIC CONTROL SYSTEMS
1590 Mathesan Boulevard．Suite 1 \＆ 2 Mississauga．Ontario Law 1／1 （416） 625.8036 Hours－Mon．to Fri．10－6．Sat．10－2

## MODEMS <br> Exclusive Distributor of：日風回 Heatex

EMP
Auto $2400 \mathrm{HC}-2400$ baud， （CCITT \＆BELL）
Auto 1200 HC － 1200 baud，auto
Auto 1200A
－ 1200 baud，auto
Auto 1200B
－ 1200 baud，auto
MM101
MM101A
－ 300 baud，manual
－ 300 baud，auto answer
AVATEX
1200 and 1200 HC

## MARK GEE ENTERPRISES LTD．

2250 Midland Avenue，Unit 26
Scarborough，Ont．M1P 4R9
（416）298－9388
Circle No． 29 on Reader Service Card

## WANT TO MAKE PROFESSIONAL P．C．BOARDS？

Send $\$ 2.00$（ ncl ．postoge \＆handling） for this extensive Handbook （Instruction Book）\＆Catalogue． Includes P．C．B．material and kits．


Thank you for visiting us at the Canadian Computer Show. It was a pleasure to meet you and we are looking forward to next year.

## AT STARTER KIT

512K MEMORY (IMB)
8 SLOTS
1.2 Mb FLOPPY / HO CARD COLOR GRAPHIC CARD KEYBOARD BATTERY BACKED CLOCK $\$ 2495.00$

IBM PC/XT COMPATIBLE
256K MEMORY ( $640 \mathrm{M} / \mathrm{B}$ ) 8 SLOTS
1 DRIVE (360K) COLOR GRAPHIC CARD KEYBOARD $\$ 695.00$

## FULLY HAYES COMPATIBLE

300/1200 SMART MODEM AUTO DIAL/AUTO ANSWER AUTO SPEED SELECTION SPEAKERNOLUME CONTROL RS232 CABLE
$\$ 189.00$


## XT ${ }^{\text {TM }}$ PORTABLE CASE

 PRICE INCLUDES CASE, FULL SIZE KEYBOARD, 9" MONITOR, 135 WATT P.S.$\$ 575.00$



## KB ELECTRONICS

355 Iroquois Shore Road, Oakville, Ont. L6H 1M3 (416) 842.6888 Telex: 06.982396 (KBEL OKVL)

## H.E.m.

Specialist of Computer controlled Stepping motor applications


Our products:

- Intelligent stepping motor controllers
- Stepping motor drivers
- Many types of stepping motors
- Rotary encoders
- Custom design of computer control systems

[^0]Computers can do a lot more than just manage data bases and play video games. Specialized microprocessor boards can be used as programmable frequency counters, intelligent temperature controllers, timers, monitors... dedicated microcomputers are at the heart of most of the sophisticated high tech toys that make our lives exciting and our bank balances so easily managed with just a few fingers.

Unfortunately, most individual humans don't get to work with small, board level micros. These things usually have to be custom designed, which is generally beyond the abilities and the means of most of us. This is unfortunate, as working with computer hardware at this level is fascinating... and can give one the power to create unspeakably sophisticated projects.

This is why we created the Sloth. The Sloth is a small Z80 based computer which is designed to be turned into things. It has no screen, keyboard, floppy disks or printer port... but it's easy to get parts for, quick to assemble and painless to program. It has powerful I/O facilities to allow you to interface
it to anything you want to make it work with, from the remote control of a video recorder to the ignition of your car.

The Sloth isn't a traine-... it's designed to be built up into working projects. It's programmed with inexpensive 2716 EPROMs. It has twenty-four lines of I/O and three programmable counter timers to talk to the rest of the world with. Included on the main Sloth board are a speaker driver, two kilobytes of static RAM, a pulse source and jumpers to allow you to configure the system to do what you want it to do.

The basic Sloth also comes with a peripheral board to let one's program control a six digit LED display.

If you have a rudimentary knowledge of assembly language programming, a working soldering iron and a burning desire to get into the fast lane of computer technology, you should try the Sloth. The October 1986 edition of Computing Now! features an extensive look at the construction of the Sloth board and a sample program for it. Future issues will carry some basic Sloth applications... timers, controliers and other things that can be made with the Sloth. However, the low cost and flexibility of the Sloth will unquestionably give you countless ideas for projects of your own.

The Sloth package available from us includes a bare Sloth board... both the main processor board and the LED display board... a parts list, a complete schematic and parts overlay, a source listing for an exercise program and a set of article reprints to explain the system in painstaking detail. In addition to this you'll need the parts to stuff the board... which are widely available... and a computer capable of running an 8080 or Z80 assembler and burning the resultant code into 2716 EPROMs. We recommend an Apple compatible system running CP/M with a Multiflex PROM burner or a PC running Z80MU and a PC compatible EPROM programmer. Z80MU, a CP/M emulator for the PC, is available separately from our Almost Free Software service for $\$ 19.95$.

The Sloth can be whatever you want it to be... it's the most interesting electronics project on the planet. The complete Sloth package is available for

## \$37.95

plus 7\% Ontario sales tax

## Moorshead Publications <br> 1300 Don Mills Road Toronto, Ontario M3B 3M8

Or you can order by phone. Please have your Visa, MasterCard and or American Express card ready and call
(416) 445-5600

Please allow four to six weeks for delivery.
Our latest software catalogue lists a variety of Interesting, Iow cost programs. Circle reader service card number 100 for a Free copy.

# INDEX OF FEATURI IN 19 

| Features | Month | Pag |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Index to 1985 | Jan | 16 |  |  |  |
| Heatsinks | Jan | 30 | Satellite Reception | Nov | 58 |
| Des. Transistor Stages | Jan | 49 | Pirate Commercial Radio | Dec | 23 |
| MOSFETs | Feb | 7 | Headphone Isolator | Dec | 26 |
| Des. Transistor Stages | Feb | 15 | Satellite TV Supplement | Dec | Insert |
| More On Transformers | Mar | 14 | Reviews | Month | Page |
| Soldering \& Desoldering | Mar | 17 | Reviews | Month | Page |
| Cabinets for Electronics | Mar | 30 | Aptron Bugbuster | Jan | 56 |
| Automatic Test Equipment | Apr9 |  | Daetron Cap. Meter | Feb | 21 |
| Des. Transistor Stages | Apr | 18 | Microlab 1 Trainer | May | 34 |
| Professional Audio | Apr | 30 | Hitachi V-680 Scope | Jun | 31 |
| PCB Layout Guide | Apr | 53 | Atari 520ST | Jun | 47 |
| Display Technology | May | 14 | Laser 128 Computer | Aug | 9 |
| Troubleshooting | May | 30 | Tracer Troubleshooter | Sep | 12 |
| RS232/Centronics Conv. | Jun | 10 | MultiLink Network Soft. | Oct | 30 |
| Automotive Alternators | Jun | 26 | Cambridge L/C Meter | Dec | 28 |
| Automotive Electronics | Jun | 33 |  |  |  |
| Laminated RF Shielding | Jul | 10 | Projects | Month | Page Errata |
| Test Eqipment Special | Jul | 27 | Logical Lock | Jan | 9 |
| Stereo TV | Jul | 49 | Millifaradometer | Jan | 32 |
| EEMAC | Jul | 63 | Vibration Amplifier | Jan | 47 |
| Home Computer Control | Aug | 28 | Pulse Generator | Feb | 8 |
| The Multimeter | Aug | 41 | Cymbal Synth | Feb | 29 |
| Radio Shadows | Aug | 57 | Heartbeat Monitor | Feb | 52 |
| Circuit Special | Sep | 20 | Oscilloscope Mem. Disp. | Feb | 56 |
| Perpendicular Mag. Rec. | Sep | 22 | Automatic Volume Control | Mar | 9 |
| Futures Training Program | Oct | 9 | Comp. Controlled Filter | Mar | 26 |
| Semiconductor Processing | Oct | 38 | Audible Continuity Test. | Mar | 34 |
| A Guide to IC Numbering | Oct | 43 | Appliance Controller | Mar | 58 |
| RF Oscillators | Nov | 20 | Analog Thermometer | Apr | 26 |
| CBC 50th Anniversary | Nov | 33 | Protoboard | Apr | 38 |



| Autowiper | Apr | 49 |
| :--- | :--- | :--- |
| Periph. Speech Synth | May | 9 |
| Light Meter | May | 21 |
| Courtesy Light Extender | May | 47 |
| Programmable Logic Board | Jun | 12 |
| Multi-Use PCB | Jun | 41 |
| Rotation Sensor | Jul | 14 |
| Bit Detector | Jul | 20 |
| Audio Signal Tracer | Aug | 12 |
| Versatile Power Supply | Aug | 18 |
| Digital Freq. Doubler | Aug | 35 |
| Interval Timer | Aug | 44 |
| Auto Light Reminder | Sep | 10 |
| Versatile Multimeter | Sep | 14 |
| Marine Sec. Alarm Part | Sep | 38 |
| Electrostatic Detector | Oct | 12 |
| Apple Ile Kbrd. Modif. | Oct | 28 |
| Precision Power Supply | Oct | 32 |
| Low-cost Trans. Checker | Oct | 53 |
| Marine Sec. Alarm Part 2 | Nov | 11 |
| Digital Panel Meter | Nov | 28 |
| Vacuum Tube Preamp | Nov | 49 |
| Solar Panel Controller | Nov | 54 |
| Percussion Synthesizer | Dec | 10 |
| Moving Magnet Preamp | Dec | 14 |
| Four Watt Amplifier | Dec | 63 |
| Tilt Alarm | Dec | 65 |




## ORION 5XT

$100 \%$ IBM ${ }^{\text {TM }}$ Compatlble with 640K mother board Includes:
$\$ 799.00$

- 256 K Memory - 8 Expansion Slots
- One 360K DSIDD Disk Drive . 160W Power Supply - Disc Control. ler Card - Choice of Colour or Monochrome Card - WIII run 1-2.3 Flight Simulator Base II TM Super Calc,
Vis Calc and others.


## Options:

2nd drive $\$ 149.00$
Hires Monitors $\$ 149.00$
Call us for pricing on our huge selection of computer parts and peripherals, and electronic and audio supplies.
Looking for a special Computer or Electronic book - call us - we probably have it in stock. ONE STOP SHOPPING AT ORION

ORION Electronics Supplies Inc.
Cheque, Mone Kitchener, Ontarlo N2H 459 Cheque, Monev Orders accepted. (519) 576.9902 Write for our FREE FLYER Prices subject to change without notice

## ORION 5AT

$100 \%$ IBM $^{\text {TM }}$ Compatible
$\$ 1995.00$
1.2 Meg Disk Drive 512K Memory AT Key Board Dual Speed 200W Power Supply Options:
2nd drive $\$ 175.00$ Hires Monitors $\$ 149.00$


> PATRON COMPONENTS INC.
> 4002 Sheppard Ave. E., Suite 506 Agincourt, Ontario, M1S 1S6

> Tel. (416) 299.7731
> Dealer Inquiries Welcome

## RS-232C Intelligent Stepping Motor controller for all of Computers


K.E.M. Electronics Ltd.

Mail: Box 69216 Station (K), Vancouver, B.C. V5K 4W4 Office: 879E. Hastings St. Vancouver Tel: (604) 251-1514

## New Model KEM-805

- Communicate with host computer via RS-232C port
- A customized single chip micro computer LSI built-in
- Controllable by using simple BASIC languages. Only two
registers in the custom LSI and only ten bytes of data are
required to control all the stepping motor functions.
- A totally software control unit,
- Photo isolator for input and output signals.
- Max. speed 40000 pps . Single power supply +5 V only.

Price $\$ 298.00$ with demo soft.
New Model KEM-801SP

- Heavy duty stepping motor driver
- Designed for large size motors. Max. 6A/phase
- Automatic Power down circuit builtin.
- Max. pulse rate 10000 pps.

Price $\mathbf{\$ 1 4 5 . 0 0}$

## MARKET PLACE

## FERRITE CLAMP-ON-CHOKE

They are the most widely applicable interference filters.

- Useful on antenna, digital data, audio, telephone and power cables
- Fits onto small, large and ribbon cabies
- Effective 0.5 MHz to 200 MHz

They are easy to use.

- Don't need rewiring of connection
- Don't affect safety, function or product guarantee
- Can be removed and reused easily

Function is different to ordinary mains filters.

- "Common mode" not "Differential mode"
- Filter ground (earth) connection also
- Reduce interference picked up/radiated on cable as a whole

Reduce trouble from "electrostatic discharge" from people to equipment in dry climate.

## THEORY

In a multicore cable, "common mode" currents are those that are not balanced by an equal flow in the opposite direction within other cores of the same cable - that is, they return by some external route. It can be said that they are "outside" currents rather than "inside". Cables act as aerials to transmit or receive "outside" interference currents - and outside currents are easily coupled to the "inside" currents of electronic equipment. The common-mode choke works by providing a high impedance to these "outside" currents. The performance of the recommended arrangements is shown.


## SPECIAL BUSINESS SYSTEM PACKAGE: SMC TURBO PCIXT COMPLETE

## - 640 RAM expandable to 1 Mb RAM on board

- $4.77 \mathrm{mhz}-8 \mathrm{mhz}$. V20-8
- soft switch selectable clock speed
- 150 watt power supply
- (1) disk drive
- Disk drive controller card
- (1) 20 Mb hard disk w/controlle
- Color graphic or mono/graphic card
- Serial/paralle//clock/calendar/game port
- High-quality AT style detachable keyboard
- High-quallty composite or TTL monochrome monitor
- Roland PR. 1011 dot matrix printer with parallel cable
**ONE FULL YEAR WARRANTY (PARTS \& LABOUR) " * TO ORDER: TOLL FREE 1-800-387-5335
RETURN COUPON FOR PRICE LIST
OF OTHER PERIPHERALS \& ACCESSORIES
Business Hours: OF OTHER PERIPHERALS \& ACCESSORIES $\quad 9: 00 \mathrm{am}-9: 00 \mathrm{pm}$
I WHOLESALE PRICES AVAILABLE
| REPAIR SERVICE \& TECHNICAL UP-GRADE AVAILABLE

Comparison to other products is not possible. Nearest equivalent product is the simple toroidal core which is difficult to fix and has unspecified performance.

##  <br> 533 Galway Dr., Burlington, Ont. L7L 2S6 Tel: 1-416-333-1344 <br> (Dealer \& Distributor inquiries are welcome)

Ontario residents please add $7 \%$ sales tax.


## MacTrix

All sorts of tricks and tips to help you find your way around the Mac.

## Mac Hardware Survey

A look at the various bits and pieces of hardware available for the Mac, such as: hard-disks, joysticks etc.

## Color Printers

We venture into the world of color printers with a look at four different models.

## Yamaha CX5M II Update

More secrets from this musical wonderbox are unlocked.

## This Month in



For subscriptions or advertising information call (416) 445-5600


By Joe Pritchard

THE DIFFERENTIAL AMPLIFIER, the name is very descriptive; it is an amplifier that amplifies the difference in the voltage applied to its two inputs as shown in Fig. 1.

The circuit is therefore useful for detecting small changes in voltage that may be superimposed on a larger voltage that is common to both input terminals. Well, what's in this black box? In the past, it would have been a fairly messy arrangement involving several transistors. But today, with operational amplifiers, we can put a difference amplifier together with one chip and four resistors. Fig. 2 shows the basic configuration for a differential amplifier.

The output voltage would ideally be related to the two input voltages by the relationship:

$$
V_{\text {out }}=\frac{-\mathrm{R} 3}{\mathrm{R} 1} *\left(V_{1}-V_{2}\right)
$$

(where R1 = R2 and R3=R4).

Note that I said ideally. However, reality takes over and there is a further parameter that describes the behaviour of a differential amplifier. This is called the common mode rejection ratio, or CMRR for short.

## CMRR

From the above equation, it follows that


Fig. I Basis of the differential amplifier.


Fig. 2 Basic configuration.


Fig. 3 Practical circuit.
$\mathrm{V} 1=0 \mathrm{~V}$ and $\mathrm{V} 2=0.001$, and $\mathrm{V} 1=10.0 \mathrm{~V}$ and $\mathrm{V} 2=10.001 \mathrm{~V}$ should both give the same output voltage. After all, the differences between each pair of voltages are the same, 0.001 V . In a real amplifier, this isn't so. The two "common mode" voltages, 0 V and 10 V , are never totally ignored in difference amplifiers. The common mode voltage affects the output by different amounts for different amplifiers. This is partly caused by mismatches in the values of R1 and R2, and R3 and R4, but other causes include the manufacturing tolerances of the amplifier.

The better the amplifier, of course, the less effect the common mode voltages will have on the output. A measure of this is the CMRR, which measures how much the circuit "ignores" the common mode voltages. This is quoted in dB , the higher the figure the better the CMRR. CMRR varies with both the size of the common mode voltage and its frequency.

## Practical Demonstration

For a practical demonstration, try the circuit in Fig. 3. This allows us to measure the output voltage from a difference amplifier whose input terminals are at the same voltage. You will see that the effect on the output voltage is not very high, but it can be annoying in some situations. The gain of the circuit shown is 47. I measured output voltages of between 0.2 and 0.4 for different 741 op-amps in the same circuit.


Fig. 4 Inverting amplifier with variable gain.


Fig. 5 Simple sound operated switch.


Fig. 6 Measuring photodiode voltage.


Fig. 7(a) Instrumentation amplifier.

The output voltage also increased with increasing input voltage.

A circuit such as this is useful in that it allows you to choose values of R1, R2, R3, and R4 that are accurately matched. The experiments that I carried out were done with five per cent tolerance resistors; for accurate work, 0.1 per cent devices are often used. The aim, of course, is for as low an output voltage as possible.

In some circuits, R 4 often has a trimmer in series with it so that a fine adjustment of the CMRR of the amplifier as a whole can be made. The fact that good CMRR from such a circuit relies on R4 and R3 being closely matched in value means that the usual method of varying the gain of the op-amp based amplifier, altering the value of the feedback resistor between inverting input and output, cannot be used here. If it were, varying the gain would vary the CMRR of the circuit unless we also varied the value of R4. Not exactly convenient, so the usual trick is to make the differential amplifier with a fixed gain, and follow it with a conventional inverting amplifier with variable gain.


Fig. 7(b) Instrumentation amplifier with variable gain.


Fig. 8 Arrangement to replace R4 in Figs. 7(a) and (b).

Such a circuit is shown in Fig. 4. Here, the following relationship exists between input and output voltages.

$$
V_{\text {out }}=-V_{\text {in }} * \frac{(\mathrm{VR} 1+\mathrm{R} 2)}{\mathrm{R} 1}
$$

In fact, in some situations, where a high CMRR is more important than gain, the differential amplifier is made with four resistors of the same value. This gives a gain of one, but is easier to match all the resistors from a single large batch. In this situation, an amplifier such as that in Fig. 4 might well provide all the gain.

As for actually selecting values for the resistors, select R1 and R2 so that they are higher than the impedance of the voltage sources providing the inputs. Once this has been done, R3 can be selected to set the gain, and R4 $=$ R3. Having said that, though, R1 and R2 can be chosen to be as high as possible so as to provide a high input impedance for the amplifier. If you do this, then the chances are that the gain of the differential amplifier will not be all that high, as you will then have to find a correspondingly large pair of resistors for R3 and R4. However, further gain can be easily provided, as we've already seen.

As for a choice of operational amplifier, the 741 is as good as any for starting your experiments. One reason for this is that it's "well behaved"; high gain amplifiers of any type will occasionally "take off" into spontaneous oscillation. This is still possible with the 741 but less likely. If I get this problem, I often limit the gain of that particular amplifier to a level at which stability can be maintained. If you want to try other op-amps, the TL072 and the LM324 will do the job quite nicely.

## Sound Operated Switch

A simple sound operated switch circuit is shown in Fig. 5. This will respond to claps, telephone ringing, etc. It is especially sensitive in the range of 3.4 kHz . The input device is a piezoelectric insert from Radio Shack, 273-069, which was originally intended to be an output "bleeper" driven by a $3-4 \mathrm{kHz}$ square wave. However, when sound impinges on it a voltage is developed across its terminals, which we can then amplify. The input voltage is fairly large, so I haven't bothered with accurately matching the input impedance of the amplifier to that of the insert. Any sound will cause the LED to flicker, and the addition of a Schmitt Trigger device will allow a logic signal suitable for TTL or CMOS logic circuitry to be obtained.

The insert could be mounted at the end of a long run of cable, any AC hum being rejected by the CMRR of the amplifier.

One subtle point to note here is that the voltage must be identical in both input leads for it to be rejected. If you run the leads to the insert by different routes, then each lead will be subject to different amounts of AC interference which will cause different amounts of voltage to be induced in each lead. This will lead to some AC interference getting through. Therefore, the cables to the insert should follow the same route.

## Photodiode Amplifier

There are a variety of devices, such as the photodiode, that are capable of producing a very small current. Fig. 6 shows a circuit with a gain of 1 that allows the voltage produced by the photodiode to be measured on a meter. The voltage output depends upon the incident light, but will be in the 0 to 0.25 V range.

## Instrumentation Amplifier

We've already said that the input impedance of the differential amplifier should be higher than the impedance of the voltage source that is driving the inputs. So, if we want a general purpose differential amplifier, we should try and get as high an input impedance as possible. Such a circuit is often used in scientific instruments, and is often referred to as an instrumentation amplifier. Fig. 7 shows two possible arrangements of this circuit.

Of these two circuits, 7(b) is the best, offering variable gain and requiring no great matching of Ra and Rb . In these circuits, the CMRR of the amplifier is provided by IC1 and IC2. These two amplifiers also provide a very high input impedance, making the circuit useful with a variety of voltage sources. In each of these circuits, R4 can be replaced with an arrangement like that in Fig. 8. Assume that R4 is to be a 1 M resistor. The trimmer allows the value of R 4 to be varied between 995 k and 1005 k , thus allowing adjustment of the CMRR of the circuit.

The measurements made with instrumentation amplifiers are often in the low frequency part of the spectrum. For this reason, capacitors are often use to provide what is called "high frequency roll-off', which is a reduction in the gain of an amplifier with increasing frequency. Fig. 9 shows a typical arrangement of capacitors to limit the high frequency response of the circuit. The values of $\mathbf{C 1}$, C2, C3 and C4 are chosen to suit the maximum frequency that the amplifier is designed to be used with. The value of these capacitors are especially valuable in limiting the response of instrumentation amplifiers to low frequency radio signals.

If you want an instrumentation amplifier with a very high input impedance,
then FET operational amplifiers such as the TL072 can be used.

## AC Differential Amplifier

It's possible that the signal of interest might be superimposed on a fixed difference of 100 mV on top of which there is a $2-3 \mathrm{mV}$ AC signal that we're interested in. The simple way around this is to "block" the DC signal with capacitors; the circuit is given in Fig. 10.

The gain of such a circuit is now dependant upon the values of the input capacitor, input resistor and feedback resistor R3. At a given frequency, the input capacitor will have a certain impedance, or "AC resistance". Therefore the output of the circuit is related to the input voltage by the expression:

$$
V_{\text {out }}=-V_{\text {in }} * \frac{\mathrm{R} 3}{\mathrm{R} 1+\left(1 / 2^{*} \pi^{*} \mathrm{f}^{*} \mathrm{C} 1\right)}
$$

where $f$ is the frequency of operation. The gain of the amplifier will thus fluctuate with frequency, and the input capacitors can also be used to limit the frequency response of the amplifier.

If you experiment with these circuits, whether differential amplifiers or instrumentation amplifiers, then the following points may be useful to you.

## Pointers

1. Choose a "well behaved" amplifier, such as the 741 when you start experimenting.
2. For accurate work, matched resistors are needed.
3. For high gain amplifiers, clean circuit boards are next to godliness! Don't leave soldering flux, pencil lines or finger prints around the wiring side of the PCB or Veroboard. Also, ensure good soldered connections. Any of these problems could lead to radical alterations in the gain of the amplifier.
4. There is no point in introducing hum into the circuit via the power lines if you've gone to the trouble of producing a circuit that has low CMRR. Batteries are thus preferable in situations with noisy AC supplies.
5. If batteries are used, take care when they run down. Low batteries can lead to rather mysterious problems, such as violent oscillation.
6. For AC differential amplifiers, the input capacitors should have matched values of capacitance, but remember that the tolerance of capacitors is often quite large.
7. Fig. 11 shows the pinouts of some suitable op-amps for experimenting.


Fig. 9 Circuit with high frequency roll off.


Fig. 10 D.C. blocking circuit.


Fig. II Pin outs of some amplifiers suitable for experimenting.

# MicroTracer Unit 



## A useful piece of test gear for the constructor with a computer.

THE MICRO TRACER shows an interesting way in which a computer and two integrated circuits can be used as a signal injector and tracer. The software has been written for the C64 and PET series of computers.

It has been designed for the constructor who occasionally assembles a project, but does not have access to an oscilloscope for tracing the course of signals through it if it malfunctions. From the block diagram (Fig. 1) it will be seen that in addition to the computer there are four very simple stages. The first allows the computer to send an audio tone out to the unit under test. The second amplifies the probed signal from the circuit under examination, to a level suitable for sending the to the computer. The third controls the amplifier gain and is under computer control. Simple analytical data about the probed circuit is displayed on the screen.

The computer also puts out a second audio signal which can be fed to an ordinary amplifier. This signal consists of a series of bleeps, the frequency and rate of which depend on the strength of the probed signal. Rudimentary information on the frequency probed is also shown on the screen as a bar graph.

## Injection Signal

The computers mentioned above have internal timers that can produce a program

By John Becker

controlled frequency output as a 5 V peak to peak square wave. Here this is set for approximately 440 Hz , though the value can be changed if preferred. It is put out onto one of the handshake lines of the output port. Since this line is often used for calling the attention of external equipment, it is referred to here as the ATN (Fig. 2) or attention line. In the unit C7


Photographs of the screen display of two tests using the Micro Tracer.
gives AC coupling, and VR2 enables the desired signal strength to be set, to suit the circuit under test. Switch S1 then selects for AC or DC coupling of the injection output.

By means of a probe, the signal can be sent to any part of the circuit under test. This can be at the usual audio input, or somewhere along the rest of the circuit signal path. If preferred an alternative signal source can be used instead. Switch S2 enables the injection signal to be switched back to the computer as a self-check facility.

## Tracer

With the second probe (Test In), the passage of the injection signal can be followed. The signal is brought back into the Tracer input at C1 via VR3. The next stage is a voltage controlled amplifier around ICl and IClb . The amplification of this stage can be adjusted by the computer in accordance with the strength of the traced signal.

The computer adjusts the gain until the output is sufficiently high for the computer to detect it. The screen readout then displays the detected signal strength as falling into one of four categories, Poor, Low, Medium or High. These represent ranges commencing at about 50 mV , $150 \mathrm{mV}, 400 \mathrm{mV}$ and 1 V respectively. If no signal is detected, this condition is displayed instead. All the time that the
computer is acquiring data, an asterisk flashes at the sampling rate.

## Amplification Control

The characteristics of the VCA around ICla and IClb , allow the gain to be adjusted by the amount of current flowing into its control node. This can be set by a resistor in series with the node. Four gain ranges are controllable through resistors R13 to R16 as selected by the multiplexer IC2. The multiplexer is a gate that will allow a voltage through to a particular output. This is routed by a binary code applied via data lines DA0 and DA1 to its control inputs at pins 9 and 10 . Since there are two control inputs, there are four binary codes that can be used.

With a low level expressed as " 0 " " and a high level as " 1 "', the codes are $00,01,10$, 11. Any of these codes will open the respective gate to one of the resistors. The gate is connected so that a +5 V level goes to the selected resistor, while the others remain in a high impedance state. The resulting current through the resistor then sets the VCA gain.

Initially the software program opens the gate to the highest resistor value so that minimum gain is given. The output of IClb is returned to the computer via the data line DA2. The computer examines the state of this line to see if it is going up and down, as it will if a sufficiently high signal is present from the test probe. If within a preset time, no signal is detected, the computer switches to the next lowest resistor, so increasing the gain. Once more DA2 is examined.

If necessary the computer will continue to select increasing gain factors. If a signal is still not detected, this condition will be displayed on the screen as a series of asterisks in the relevant areas, and the computer will continue to search indefinitely until a response is found.

When a signal has been detected, from the knowledge of the gain factor used, the screen displays the range into which the signal strength falls. This is indicated by an asterisk in the relevant screen box. Having done so it again examines the state of DA2. Since it is necessary to know the minimum amount of gain required to bring the probed signal up to strength, the computer selects the previous higher resistance range each time round the sampling loop. Then, as before, it will continue to increase the gain until a signal is acquired, or the time out factor reached.

## Pulse Count

When signals are present on the DA2 line, they are squarewave pulses, and so can be counted, irrespective of the injection source. Indeed in some instances it may be
an internal clock signal that is under examination. Once a signal has been detected on DA2, the computer counts the number of times the line goes up and down within a set period. The count is then displayed both as a number, and as a bar graph.

This is not a true frequency conversion,
but can be used as a rough guide. For example on the PET, a count of two pulses represents a frequency of about 150 Hz , 100 pulses about 9 kHz , and 255 pulses about 16 kHz . For the software though, this is about the maximum rate at which it can distinguish individual pulses. It will be aware of frequencies above this rate, but


Fig. 1 Block diagram of the Micro Tracer Unit.


Fig. 2 Complete circuit diagram of the Micro Tracer.
several pulses may pass while it is processing just one of them. So the pulse count will effectively represent the subharmonics of high frequency signals, and intelligent interpretation to the bar graph must be given. The VCA will in fact allow frequencies of at least 1 MHz to be detected.

## Audio Monitoring

In addition to monitoring the screen for data on the probe condition, audio monitoring is also available. After each batch of pulses has been counted, the computer sends a pulsed squarewave frequency onto data line DA3. This frequen-
cy, and its duration, is varied in accordance with the gain range detected. Thus a series of bleeps varying in pitch and spacing is generated. If a signal is not detected the bleeps cease. DA3 feeds them to the low pass filter stage IClc and ICld. This smooths off the edges of the pulses, which in themselves are a bit harsh to listen to. The somewhat smoother output can be fed to an audio amplifier via the level control VR1. The amplitude is around IV peak to peak at maximum.

## Power Supply

The circuit requires a 5 V power supply, and draws only about 3 mA . This can be
readily supplied by the computer. The BBC has up to 100 mA available on its user port, whilst the PET and C64 have cassette ports that can deliver up to 250 mA and 100 mA respectively. Alternatively a 5 V p.s.u. can be used.

## Assembly

The unit is housed in a box $15 \mathrm{~cm} \times 13 \mathrm{~cm} x$ 4.5 cm . The potentiometers are mounted 21 mm above the base, 30 mm apart starting in the centre. Switches are at the same height, 20 mm from the sides. The computer socket and its wiring can be selected to suit the computer lead used. The wiring shown for this socket should be regarded


Fig. 3 PCB layout and wiring.



Fig. 4 Layout and wiring of the components mounted on the case
just as a guide. Fig. 3 shows the PCB layout as. $d$ wiring and Fig. 4 shows the interconnection of all other components. Connection details for the two types of computers are shown in Fig. 5.

## Software Program

The C64 and PET all have BASIC and machine code monitors that are practically identical. The program has been written in PET BASIC, and the machine code is compatible with the 6502 and 6510 microprocessors. The main differences between the three machines are essentially only variations in memory locations and cursor control codes. The software listing gives all the information needed for entering the program into any of these computers.

Other computers can control the unit if they have normal 8 -bit parallel data sockets with an ATN handshake line. User Ports and IEEE 488 ports are suitable. The BASIC should be straightforward to translate for other machines. An assembly language code dump can be supplied if required, so experienced programmers can translate the machine code for other processors. The program requires just over 3 K of memory. The machine code subroutine will automa-
tically place itself at the highest memory location available.

## Use

The unit will be of assistance in the checking of audio or digital circuits, and for frequencies between about 50 Hz and at least 1 MHz . Normally VR3 should be at maximum input level for signals below 5 V . For signals greater than this, it should be reduced accordingly. The test probes and sockets used are a matter of personal choice. For average signal strength examination, the leads of a multimeter will be adequate. For low level signals though, the probe lead should be screened to avoid mains hum pick up. Oscilloscope probes are ideal, and can be purchased separately from many suppliers. The probes are well screened and available with interchangeable clip or probe tips.

The tracer can be used for checking equipment that has ceased to function after previously working satisfactorily. It can also be used for trouble shooting on a newly assembled project. However, the need to use a trouble tracer can be minimized if the assembly has been carried out correctly and checked carefully in the first place.

| Parts List |  |
| :---: | :---: |
| Resistors (All 1/4W $\pm \%$ ) |  |
| R1,8,12,16,17..................... . 100 k |  |
| R2,3,11,15 ...................... 10 k |  |
| R4,13 . . . . . . . . . . . . . . . . . . . . . . . . 200k |  |
| R5,9,10 . . . . . . . . . . . . . . . . . . . . . . . $k$ |  |
| R6,7 . . . . . . . . . . . . . . . . . . . . . . . . . . 4k7 |  |
| R14 . . . . . . . . . . . . . . . . . . . . . . . . 33k |  |
| Capacitors |  |
| C1,3,7,8 . . . . . . . . . . . . . . 1 uF 63V elect. |  |
| C2 .................... 33uF 6V elect. |  |
| C4 . . . . . . . . . . . . . . . . . in in polystyrene |  |
| C5 ...................6.6n8 polystyrene |  |
| C6 . . . . . . . . . . . . . . . . . . 100n polyester |  |
| Potentiometers |  |
| VR1,2 ............ . 10k log. mono rotary |  |
| VR3 . . . . . . . . . . . . 100k log. mono rotary |  |
| Semiconductors |  |
| IC1 . . . . . . . . . . . . . . . . . . . . . . . . M13600 |  |
| IC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 4052 |  |
| Switches |  |
| S1,2 . . . . . . . . . . . . . . miniature SPDT |  |
| Miscellaneous |  |
| PCB and mounting clips; knobs(3); 16-pin |  |
| IC sockets(2); 3.5 mm jack socket; mono |  |
| jack socket(3); interconnection lead and plug to suit computer. |  |

## MICRO TRACER SOFTWARE


IA REM BRC CEA MNTI PET CONFUTERS. BEC LLEERS SEE END NOTES BEFORE TYPIMG IN. 30 REM C64 AND PET USERS TYPE IN AS PER THIS LISTIMG.


G0 PRINTDH:TAK (13), "SIGHAL LEVEL"

10 PRINT"
230 PRINTTREK 52 , "PUKSE

50 STUP READAS AMVAL (AS) ONAOOSLI $490,530,570$





Computers in Education is from the publishers of Electronics Today and Computing Now! and offers full coverage of what's happening in Canadian Computer Education.
Practical Features:
Lesson plans, educational software surveys, and projects.

## Reviews:

The newest software, book reviews and relevant hardware.

## Price is Only:

$\$ 25.00$ for one year ( 10 issues).
Moorshead Publications:
1300 Don Mills Road, North York, Toronto. Ontario M3B 3M8 Telephone (416) 445-5600

Sic SY=HIMEMTS MESY-1






450 STOP
460 SIGP


510 SEL =4
SZQ POKECTL, PEEKCTLPAFDEZTOF 16 POREOSC, O POMESFL 15 RETLFH

 550 IRT=565"9 1 N $=56$
560 SKL 42 SCR $=1024$
570 REM BRC USEF


 629 DATA197. $20,208,16,133,20,232,208,242,260,192,4,14,227,160,0,132,20,88,96$





 760 A SFACE BE TLEEN SOME STATEMENTS SHOULD BE OBSERYED, IF NECESSFRY SPLITTIMG TTO LINES INTO THO PARTS, GIYIHG THE ZMD PPRT A LINE HUMZER INCREMENTED DV 5.

## BABANI BOOK OFFER

## Imported from England and exclusively available in Canada from Moorshead Publications. <br> BP131: MICRO INTERFACING CIRCUITS -

bP53: Practical electronics calculations and FORMULAE A book that bridges the gap between complicated iechnical theory and the cut and method A cood reference book

## BP136: 25 SIMPLE INDOOR AND WINDOW

AERIAIS
$\$ 7.00$
People living in apartments who would like to iniprove shortwave listening can benefit from these instructions on optimising the indoor aerial

BP147: AN INTRODUCTION TO 6502 MACHINE CODE
$\$ 10.00$
The popular 6502 microprocessor is used in many home computers: this is a guide to beginning assembly language
8P150: AN INTRO. TO PROGRAMMING THE SINCLAIR QU
$\$ 7.80$
Helps the reader make the best use of the Sinclair QL's almost unlimited range of features Complements the manufacturer's handbook

## BP225: A PRACTICAL INTRODUCTION TO

DIGITALICs
$\$ 7.00$
This book deals mainly with TTL type chips such as the 7400 series. Simple projects and a complete practical construction of a Logic Test Circuit Set are included as well as details for a more complicated Digital Counter Timer project

## BP130: MICRO INTERFACING CIRUITS -

BOOK 1
$\$ 9.00$
Aimed at those who have some previous knowledge of electronics, but not necessarily an extensive one, the basis of the book is to help the individual understand the principles of interfacing circuits to microprocessor equipment.


## BOOK 2

59.00

Intended to carry on from Book 1, this book deals with practical applications bevond the parallel and serial interface "Real world" interfacing such as sound and speech generators, temperature and optical sensors, and motor controls are discussed using practical circuit descriptions.

8P111'A AUDIO
$\$ 14.00$
This one is ideal for readers who want to really get into sound. A wide range of material is covered from analysis of the sound wave, mechanisms of hearing, room acoustics, microphones and loudspeakers, amplifiers. and magnetic disc recording.
BP141: LINEAR IC EQUIVALENTS AND PIN CONNECTIONS
ADRIAN MICHAELS $\$ 23.80$
Find equivalents and cross-references for both popular and unusual integrated circuits shows details of functions, manufacturer, country of origin, pinouts, etc : includes National, Motorola, Fairchild, Harris, Motorola, Intersil, Philips, American, and Japanese brands.

BP156: AN INTRODUCTION TO QL MACHINE CODE
$\$ 10.00$
The powerful Sinclair QL microcomputer has some outstanding capabilities in terms of its internal structure. With a 32 -bit architecture. the QL has a large address range, advanced instructions which include nultiplication and division. These features give the budding machine code programmer a good start at advanced programming methods. This book as sumes no previous knowledge of either the 68008 or machine code programming

BP47: MOBILE DISCOTHEQUE HANDBOOK
$\$ 7.80$
Divided into six parts, this book covers such areas of mobile "disco" as Basic Electricity. Audio, Ancillary Equipment, Cables and Plugs, Loudspeakers, and Lighting. All the information has been considerably sub-divided for quick and easy reference.

BP59: SECOND BOOK OF CMOS IC PROJECTS $\quad \$ 7.80$
This book carries on from its predecessor and provides a furThis book carries on from its predecessor and provides a further selection of useful circuits, mainly of a simple nature the book will be well within the capabilities of the beginner and more advanced constructor.

BP32: HOW TO BUILD YOUR OWN METAL \& TREASURE LOCATORS
$\$ 7.80$
Several fascinating applications with complete electronic and practical details on the simple, and inexpensive construction of Heterodyne Metal Locators

## ELECTRONIC THEORY

## ELEMENTS OF ELECTRONICS - AN ON-GOING SERIES

F.A. WILSON, C.G.I.A., C.Eng.

BP62: BOOK 1. The Simple Electronic Circuit

## "xiemp

$\begin{array}{cc}\text { BP77: BOOK 4. Microprocessing Systems } & \$ 14.00 \\ \text { And Circuits } & \$ 11.80\end{array}$
BP89: BOOK 5. Communication $\quad \$ 11.80$
The aim of this series of books can be stated quite simply it is to provide an inexpensive introduction to modern elec. tonics so that the reader will start on the right road by
thoroughly understanding the fundamental pfincipies involv.
Although written especially for readers with no more not avoided and all the mathematics required is taught as not avoided and all t
the reader progressen

Each book is a complete treatise of a particular branch of the subject and therefore, can be used on its own with one proviso. that the later books do not duplicate material from therr predecessors. thus a working knowledge of the subjects covered by the earlier books is assumed

BOOK 1 This book contains all the fundamental theory necessary to lead to a full understanding of the simple elec vonic circutt and its main components

BOOK 2 This book continues with alternating current theory without which there can be no comprehension of speech, music, radio television or even the electricity utilities

BOOK ${ }^{3}$ Follows on semiconductor technology
leading up to transistors and integrated circuits
BOOK 4 A complete description of the internal work
ings of microprocessor
BOOK 5
scene

## PROJECTS

## BP48: ELECTRONIC PROJECTS FOR BEGINNERS

57.80

## F.G. RAYER, T.Eng.(CEI). Assoc.IERE

Another book wrillen by the very experienced author - Mr F G Rayer - and in it the newcomer to electronics, will find a wide range of easily made projects Also, there are a considerable number of actual component and wiring layouts, to
aid the beginner
furthermore, a number of projects have been arranged so that they can he constructed without any need for soldering and, thus avoid the need for a soldering iron

Also. many of the later projects can be built along the tines as those in the No Soldering section so this may considerably increase the scope of projects which the newcomer can build and use
BP37: 50 PROJECIS USING RELAYS,
S.G.RAYER, T.Eng.(CEI), Assoc.IERE
F.G.RArER, T.Eng(CEI), Assoc.iERE
Relays silicon controlled rectifers (SCR's) and bi-directional Relays silicon controled rectifiers (SCR s) and bi-difectional
triodes (iRIACs) have a wide ranger of applications in elec. tronics today this book gives tried and practical working cir. cuits which should present the minimum of difficuley for the "Uits which should present the minimum of difficuliy for the latitudes in component values and types, allowing easy modification of circuits or ready adapiation of them 10 in . dividual needs
BP221: 28 TESTED TRANSISTOR PROJECTS
R.TORRENS

Mr Richard Torrens is a well fle 8 en electisi.80 development engineer and ha oft eened developed buit and tested the magy th nothteresting circuits included in this book. P) atis themselves can be split down into in hin in forks which are shown separated by boxes eader why o realise ideas of his own

## BP71: ELECTRONIC HOUSEHOLD PROJECTS

57.00

## R. A. PENFOLD

Some of the most useful and popular electronic construction projects are those that can be used in or around the home The circuits range from such things as ' 2 Tone Door Buzzer Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms

## BP73: REMOTE CONTROL PROIECTS

$\$ 10.00$
OWEN BISHOP
This book is ainaed primarily at the plectronics enthusiast who wishev to tuperineent with remoter control full explata whons have been given so that the reader can fully underitand how the rif utits work and san more easily see how to modify them for other purposes, depending on personal re cquireneents Not only are radio control syotems considered but alio infrated, visible light and ultrasonic systems as are the use of Losit ics and Pulse position modulation elt

## BP90: AUDIO PROJECTS

## F.G. RAYER

Covers in detall the construction of a wide range of audio propects The text has been divided into preamphifiers and maxers, power amphitiers, tone controls word matching and miscellaneous proyects

## BP 174: MORE ADVANCED ELECTRONIC MUSIC

 PROJECTS$\$ 11.80$
PROJECTS
Complementing Book BP74, "Electronic Music Projects", BP174 provides more advanced projects, such as a flanger, a phaser, mini-chorus and ring modulators, percussion synths, etc. Each project has an introduction, circuit diagram and constructional notes.
BP74: ELECTRONIC MUSIC PROJECTS
$\$ 10.00$ R.A. PENFOLD

Although one of the more recent branches of amateur elec tonics electronic music has now become extremely populat and there are many profects which fall into this category The purpose of this book ts to provide the constructor with a number of praclical circuis for the less complex nems of Box Wad.Waa Pedal Sustain Unit, Revarberation and Phaser-Units. Tremelo Generator etc

BP44: IC 555 PROJECTS
., M.I.E.E
$\$ 10.00$
E.A. PARR, B.SC.C.Eng., M.I.E.E.

Every so often a device appears that is so useful that one onders how ife went on befoie without it The 555 imer is circuits. Motor Car and Model Rallway Circuits, Alarms and Noise Makers as well as a section on the 556, 558 and 559 imers
BP82: ELECTRONIC PROJECTS USING SOLAR CELLS $\$ 7.80$ A collection of simple circuits which have applications in and around the home using the energy of the sun to power them. The book deals with practical solar power supplies ircluding voltage doubler and tripler circuits, as well as a number of projects.

## BABANI BOOKS

## BP49: POPULAR ELECIRONIC PROJICTS

 R.A. PENFOLDincludes a collection of the most pop ilar types of circuits and projects which, we feel sure, will rovide a number of designs to interest most electronics cunstructors. The projects selected cover a very wide range and are divided into our basic types: Radio Projects, Audio Projects, Household Projects and Test Equipment
BP94: ELECTRONICPROJECTS FOR CARS AND BOATS R.A. PENFOLD
R.A. PENFOLD Projects, fifteen in all, which use a 12 V supply are the Dasts
of this book. Included are projects on Windscreen Wioer of this book. Included are projects on Windscreen Wiper Control. Courtesy Light Delay, Battery Monitor. Cassette Oower Supply, Lights Timer, Vehicle Immobiliser, Cas and smoke Alarm, Depth Warning and Shaver Inverter

## BP95: MODEL RAILWAY PROIECTS

lectronic projects for model railways are fairly recent an have made possible an amazing degree of realism. The pro ects covered include controllers, signals and sound effects. striboard layouts are provided for each project

## BP93: ELECTRONIC TIMER PROJECTS

## .C. RAYER

\$7.80
Windscreen wiper delay. darkroom timer and metronome projects are included Some of the more complex circuits are made up from simpler sub-circuits which are dealt with individually

## BP113: 30 Solderless Breadboard Projects-Book 2

 R.A. Penfold$\$ 9.00$
A companion to BP107. Describes a variety of projects tha can be built on plug-in breadboards using CMOS logic IC's. Each project contains a schematic, parts list and operationa notes.

## BP104: Electronic Science Projects

## Owen Bishop

$\$ 9.00$
Contains 12 electronic projects with a strong scientific flavour. Includes Simple Colour Temperature Meter, InfraRed Laser, Electronic clock regulated by a resonating spring 'Scope with a solid state display, pH meter and electro cardiograph.

## AP110: HOW TO GEI YOUR ELECTRONIC PROIECTS

 WORKINGR.A. PENFOLD

We have all built circuits from magazines and books only to find that they did not work correctly, or at all, when first swit ched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start ooking for many of the common faults that can occur when building up projects.

## BP84: DIGITALIC PROJECTS

$\$ 7.80$
E.G. RAYER, T.Eng.(CEI),Assoc.IERE

This book contains both simple and more advanced projects and it is hoped that these will be found of helo to the reade and it is hoped that these will be found of help to the readet developing a knowledge of the workings of digital circuits number of board layouts and wiring diagrams. Also the number of board lavouts and wiring diagrams. Also the more ambitious projects can be built and tested section by could otherwise be troublesome. An ideal book for both beginner and more advanced enthusiast alike

## BP67: COUNTER DRIVER AND NUMERAL DISPLAY

 ROJECTSF.C. RAYER, T.Eng.(CEI), Assoc. IERE
 orefront in recent yearin w w (1) Trubledly, Yind increas orpathe, it is easy to count, divide and display unerically the electrical pulses obtained from a great range $f$ driver circuits.

In this book many applications and projects using various types of numeral displays. popular counter and driver IC's etc are considered

## BP99: MINI-MATRIX BOARD PROIECTS

RA. PENFOLD
Twenty useful projects which can all be built on a $24 \times 10$ hole matrix board with copper strips Includes Doorbuzzer Low-voltage Alarm, AM Radio, Signal Cenerator, Projector Timer, Cuitar Headphone Amp. Transistor Checker and more
BP103: MULTI-CIRCUIT BOARD PROJECTS
$\$ 7.80$
R.A. PENFOLD

This book allows the reader to build 21 fairly simple electronic projects, all of which may be constructed on the same printed circuit board. Wherever possible, the same components have been used in each design so that with a lat pely, it is possible to make any one of the projects
the components and P.C.B all of the projects.

## BP107: 30 SOLDERLESS BREADBOARD PROJECTS -

## BOOK 1

R.A. PENFOLD
$\$ 9.00$
A "Solderless Breadboard" is simpiy a special board on which electronic circuits can be built and tested. The com ponents used are just plugged in and unplugged as desired The 30 projects featured in this book have been specially designed to be built on a "Verobloc" breadboard. Wherever possible the components used are common to several pro jects, hence with only a modest number of reasonably inexpensive components it is possible to build, in turn, every project shown

## BP106: MODERN OP-AMP PROJECTS

 R.A. PENFOLDFeatures a wide range of constructional projects which make use of op-amps including low-noise, low distortion, ultra-high input impedance. high slew-rate and high output current types.

## CIRCUITS

## How to Design Electronic Projects

BP127
$\$ 9.00$
Although information on standard circuit blocks is available. there is less information on combing these circuit parts together. This title does just that. Practical examples are used and each is analysed to show what each does and how to ap ply this to other designs.
Audio Amplifier Construction

## BP122

$\$ 2.25$
A wide circuits is given, from low noise microphone and tape head preamps to a 100 W MOSFET type. There is also the cir cuit for 12 V bridge amp giving 18W. Circuit board or strip board layout are included. Most of the circuits are well within the capabilities for even those with limited ex perience.
BP80: POPULAR ELECTRONIC CIRCUITS -

## BOOK 1

$\$ 11.80$

## R.A. PENFOLD

Another book by the very popular author, Mr. R A. Penfold, who has designed and developed a large number of various circuits. These are grouped under the following general headings. Audio Circuits, Radio Circuits. Test Cear Circuits Music Project Circuits, Household Project Circuits and Miscellaneous Circuits.

BP98: POPULAR ELECTRONIC CIRCUITS, BOOK $2 \quad \$ 9.00$ R.A. PENFOLD

70 plus circuits based on modern components aimed at those with some experience.

## BP39: 50 (FET) FIELD EFFECT TRANSISTOR

## PROJECTS

$\$ 7.00$
F.G. RAYER, T.Eng(CEI), Assoc.IERE Field effect transistors (FETs), find application in a wide variety of circuits. The projects described here include radio frequency amplifiers and converters, test equipment and receiver aids, tuners, receivers, mixers and tone controls, as well as various miscellaneous devices which are useful in the home.

This book contains something of particular interest for every class of enthusiast - short wave listener. radio amateur, experimenter or audio devotee.

BP162: COUNTING ON QL ABACUS
$\$ 10.00$ This book is designed to introduce the beginner to the use of spreadsheets in general and Abacus on the Sinclair QL in particular. It assumes no previous experience in computing or spreadsheets. Practical examples show the calculations for domestic, small business and technical applications.

## BP87: SIMPLE L.E.D. CIRCUITS

$\$ 5.40$

## R.N. SOAR

Since it first appeared in 1977. Mr. R. N. Soar's book has prov ed very popular. The author has developed a further range of circuits and these are included in Book 2. Projects include a Transistor Tester, Various Voltage Regulators. Testers and so on

## BP88: HOW TO USE OP AMPS <br> \section*{E.A. PARR}

$\$ 11.80$
1 designer's guide covering several op amps, serving as a source book of circuits and a reference book for design calculations. The approach has bee mathematical as possible.

## BP65: SINGLEIC PROIECTS

$\$ 6.00$
R.A.PENFOLD
There is now a vast range of ICs available to the amateur market, the majority of which are not necessarily designed market, the majority of which are not necessarily designed possibilities. All the projects contained in this book are simple to construct and are based on a single IC. A few projects employ one or two transistors in addition to an IC but in most cases the IC is the only active device used.

## 223: 50 PROIECTS USING IC CA3130

$\$ 5.00$
R.A.PENFOLD

In this book, the author has designed and developed a number of interesting and useful projects which are divided into five general categories: I-Audio Projects II-RF Projects III - Test Equipment IV - Household Projects V - Miscellaneous Projects

## BP117: PRACTICAL ELECTRONIC BUILDINC BLOCKS $\$ 7.80$

 BOOK 1Virtually any electronic circuit will be found to consist of a number of distinct siages when analysed. Some circuits inevitably have unusual stages using specialised circuitry, but in most cases circuits wre built up from building blocks of tandard types

This book is designed to aid electronics enthusiasts who like to experiment with circuits and produce their own projects rather than simply follow published project designs The circuits for a number of useful building blocks are ncluded in this book. Where relevant, details of how to change the parameters of each circuit are given so that

8P102: THE 6809 COMPANION
Written for machine language programmers who want to ex pand their knowledge of microprocessors. Outlines history. architecture, addressing modes, and the instruction set of the 6809 microprocessor. The book also covers such topics as converting programs from the 6800 , program style, and specifics of 6809 hardware and soltware availability

8P118: PRACTICAL ELECTRONIC BUILDING BLOCKS.
Book 2
R.A.PENFOLD $\quad \$ 7.60$

This sequel to BP117 is written to help the reader create and experiment with his own circuits by combining standard type circuit building blocks. Circuits concerned with generating ignals were covered in Book 1, this one deals with process ing signals. Amplifiers and filters account for most of the book but comparators. Schmitt triggers and other circuits are covered.

## BP24: 50 PROIECTS USING IC741 <br> RUDI \& UWE REDMER

$\$ 6.75$
This book, originally published in Germany by TOPP, has chieved phenomenal sales on the Continent and Baban decided, in view of the fact that the integrated circuit used in his book is inexpensive to buy, to make this unique book vanable to the English speaking reader Translated from the "must" for everyone whatever their interest in electronics

BP83: VMOS PROIECTS
$\$ 7.80$
R.A. PENFOLD

Although modern bipolar power transistors give excellent results in a wide range of applications, they are not withou heir drawbacks or limitations. This book will primarily be concerned with VMOS power FETs although power MOSFETs will be dealt with in the chapter on audio circuits A number of varied and interesting projects are covered under the main headings of Audio Circuits, Sound Cenerator Circuits. DC Control Circuits and Signal Control Circuits

## RADIO AND COMMUNICATIONS

BP96: CB PROJECTS
$\$ 7.60$
R.A. PENFOLD

Projects include speech processor, aerial booster, cordless mike, aerial and harmonic filters, field strength meter, power supply. CB receiver and more

BP222: SOUD STATE SHORT WAVE RECEIVER FOR BEGINNERS
$\$ 7.80$
R.A. PENFOLD
eloped
In this book, R.A. Penfold has designed and developed will give a fairly high level of performance despite the fac that they use only relatively few and inexpensive com ponents

## BP117: AN INTRODUCTION TO COMPUTER

## COMMUNICATIONS

Connecting up an ordinary home computer to the telephone system via a modem opens up a new world of possibilities: talking to other computers, databases, networks, radio links, etc. An explanation of basic principles and practicalities in simple terms.

## BP91: AN INTRODUCTION TO RADIO DXINg

This book is divided into two main sections one to amateur band reception, the other to broadcast bands Advice is given to suitable equipment and techniques A number of related constructional projects are described
BP105: AERIAL PROJECTS
$\$ 7.80$
R.A. PENFOLD
The subject of aerials is vast but in this book the author has considered practical designs including active, loop and ferrite aerials, which give good performances and are reasonably simple and inexpensive to build The complex
theory and math of aerial design are avoided.

## OTHER PUBLISHERS

## PH121: HARDWARE INTERFACING WITH THE TRS-80

 1. UFFENBECK (1983) IRS. Wa ) Model T and M hatbs them to monitor (crmputer ai $\qquad$ OUT eip now have a book to eir personal computers interfaces betweun theS822026 POLISHING YOUR APPLE*
** $\$ 7.4$
Clearly written, highyy practical, concise assembly of all pro cedures needed for writing disk-fling, and printing programs with an Apple II Postively ends your searchs through endless manuals to find the routine vou need! Should be in the hand ot every new Apple user, regardless of experience level Ideal
for Apple classrooms too'

A BEGINNER'S GUIDE TO COMPUTERS AND MICROPROCESSORS - WITH PROJECIS.
TAB No. 1015
$\$ 14.45$
Here's plain English introduction to the world of microcomputers - it's capabilities, parts and functions and how you Can use one Numerous projects demonstrate operating computer capable of periorming many useful functions

TAB 1370: A MASTER MANDBOOK OF IC CIRCUITS $\$ 21.95$ A circuit for every occasion Yorlit 3 the circuits you're looking for in this 537.
broken down broken down
categories It designs that yu build now

## TAB1544: ELICTRONIC PROJECTS FOR

PHOIOGRAPHERS this book gives you needed lips on in principles of elec-
tronics and building technie.
$\$ 21.95$ tronics and building technies
work area. and muirh n how to set up a work area, and mirh
cessories for ve
helpful guide

## SB22361: INTRODUCING THE APPLE

MACINTOSH
A wealth of information on hardware, softwape etc for the A wealth of information on hardware, sof tware etc for the Mar Included are such topics as: making your desktop more the nosi from your mouse how the b800 microprocessor works and much, much more

PH131: ZAP! POW! BOOM
ARCADE CAMES FOR THE VIC 20
T. HARTNELL \& M. RAMSHAW (1983)

Alose through the maze eating dots with MAZEMAN \$all through space zapping the ASIROIDS Outshoot the fastest draw in town CUNFIGHI Owners of the VIC 20 can now play these games - and more - simply by following the programs outhined in this handy guide

## IHE BASIC COOKBOOK.

1AB No. 1055:
$\$ 10.45$
BASIC is a surprisingly poweriul language... if you understand it completely this book, picks up where most mater owner can develoo programs to make the most out of puter owner can de
his or her machine

## HANDBOOK OF MICROPROCESSOR APPLICATIONS

IAB No. 1203
Highly recommended reading frin 'se who are interestin. $\$ 15$ nire roprocessors as a 2. 'se who are interested in tash The auth the 1802 ano ey can be put to use in real world applic
MICROPROCESSOR INTERFACING HANDBOOK: AID \& D/A
1AB No. 1271
A useful handbook for computar $\$ 16.45$ machine in linear annt. asted in using their voltage referencc s itiching and mut 5 vata conversion, analogue

HOW TO BUILD YOUR OWN WORKING MICROCOMPUTER
YAB No. 1200 IT $\$ 16.45$ An excellent reference of
own microcompute
are developed as $m$

PH180: 19B4 CANADIAN BUSINESS GUIDE TO MICRO. COMPUTERS
$\$ 11.95$
Writlen by the managing director of Deloitte. Haskins \& Sells, a Canadian partnership of public accountants and other brofessional advisors to management, this book is one of the most complete comprehensive guides to microcomputers avallable Starting with a general overview of hurror omputers and their business applications, the author helps you assess vour computer needs, compares and giver youtips on "doing it right" A must for anyone thinking of purchasing a microcomputer for business

## COM AB01

AB01 $\quad \$ 15.45$ grams with applications in Busifiess, Math, Cames and more I: And how to adapt it to vour machine

PH217: BASIC COMPUTER PROGRAMMING FOR KIDS P. CASSIDY \& J. CLOSE Fully illustrated with and gentlv. theory:
tional ic
$\qquad$ as and drawings thes book computers and computing athematics and the basic

PHS1: PASCAL FOR THE APPLE
IAIN MacCALLUM
$\$ 34.20$
A step-by-step introduction to Pascal for Apple II and Apple II Plus users. The package of lext and software diskette provides readers with wortithwile and interesting programs which can be pun imindtately and the results studied Includes over 200 exercises with full solutions Book Disk Package
PHS2: APPLE GRAPHICS GAMES
PAUL COLLETTA
$\$ 40.95$
Contains 10 arcade-style games written especially for Apple II. including Spider, Pano. Pairs and Poker, as well as educa con. math and designing games Book Disk Package

PHS7: STAR
D. MONRO
IC 20 really is to create programs ustng the full capacity of the really is to create programs using the full capacity of the tuons to put the full power of the VIC 20 at the user's finger tips. Book/Cassette Package.

SB21822: ENHANCINC YOUR APPLE ${ }^{*}$ II - VOLUME 1 D. LANCASTER

Who but Mother Nature or DOn Lancaster could successfully enhance an Applè YOU can, with help from Volume 1 in Don's newest seftes for Sams Amony other things, you'll earn (1) to mix text. LORES, and HIRES together anywhere on the screen in any combination, (2) how tomake a new wire nodification that will open up whole new worlds of 3-D graphics and other special effects plus (3) at ant and easy way to tear apart and understand somebody else's machine. language program Other goodies abound'
PH106: PROGRAMMING TIPS AND TECHNIQUES FOR THE APPLE II
I. CAMP BELL(1983) $\$ 23.45$ An advanced exploration of the intricaciev of structures pro gramming Further develops the skills necessary to solve pro which discusses both high and low resolution graphiss for th Apple II

HB131: THE BEGINNER'S GUIDE TO BUYING A PERSONAL COMPUTER
written for the potentially interested computer buyer in on-technical language, this affordable book explains th erminology of personal computers, the probiems and ariables to be discussed and discovered while making that hitial buving decision. The book does not make reconimen dations, but does present a great deal of information about the range of hardware avaialble from the largest personal computing manufacturers Readers discovep the meaning and impact of screen displays. tape cassette storage and disk storage, wraphics and resolution. and much more Comparison charts clearly define standard and optional feature all the current mass market personal computers

## DESIGNING MICROCOMPUTER SYSTEMS

HB18:
$\$ 18.95$
POOCH AND CHATTERGY
This book provides both hobbyists and electronic engineers with the background intormation necessary to build microcomputer systems it discusses the hardware aspects of microcomputer systems liming devices are provided to ex plain sequences of operations in detall then, the book yop on to describe three of the most popular nucrocomputer overed are designs of interitaces for peripheral devices and information of building microconiputer systems from kits

## 5100 BUS HANDBOOK

H819:
$\$ 26.00$
Here is a comprehensive book that exclusively discusie \$-100 bus computer systems and how they are organized The book covers computer fundamentals, basic electronics, and the parts of the computer Individual chapters discuss the CPU. memory. inputoutput. bulk memory devices. and specialized peripheral controllers it explains all the operating detals of commonly avarlable $\$ 100$ wistems Schematic drawings

## 110 THYRISTOR PROIECTS USINC SCRS AND TRIACS

## MARS HB22

$\$ 13.45$
A grab bag of challenging and us eful semiconductor propects for the hobbvist, expermenter, and student The propect range from simple burglar. fire, and water level alarms to trains Integrated circuits are incorporated wherever their use reduces projert costs

PH104: ACCOUNTANT'S BASIC PROGRAMMING FOR THE PH104: A

## APARKER \& I. STEWART (1983)

$\$ 20.45$
Shows the reader how to program the Apple II to perform a vafiety of accounting functions. such as payroll, accounts statements, and more

HOW TO PROFIT FROM YOUR PERSONAL COMPUTER PROFESSIONAL, BUSINESS, AND HOME APPLICATIONS LEWIS
H801
Describes the uses of rersonal computers in common business applications, such as accounting managing, inven tory sorting mating lists and many others The discussion includes terms notations, and techniques commonly used by programmer, A full glossary of terms.
AN INTRODUCTION 10 MICROPROCESSORS

## EXPERIMENTS IN DIGITAL TECHNOLOGY

## HB07 SMITH

A"learn by doing guide the useof integrated circuits vides a foundation for the underlying hardware actions of programining statements Emphasis is placed on how digital circuitry compares with analog circuitry Begins with the smplest gates and timers, then introduces the fundamental parts of ICs, detailing the benefits and pitfalls of major IC farmilies, and continues with coverage of the ultimate in integrated complexity - the microprocersor

## MICROCOMPUTERS AND THE 3 R'S

## DOERR

H809
$\$ 16.45$
This brok educates educators, on the various ways computers especially microcomputers, can be used in the classroom it describes nicroc omputers. how to organize a computer based prograin, the five instruttional apolication types iwith examples from subjec ts such as the hard sciences, life sciences. English, history, and government), and resources listings of todays products The book includes preprogrammed examples to start up a microcomputer pro gram, while chapters on resources and products direct the
reader to usuful additional information All programa are redder io useful additional in the BAsic language

H8 107: GRAPHICS COOKBOOK FOR THE APPLE

## H8 107: GRAPH WADSWORTH

$\$ 15.95$ tearn how to use vour Apple II to "paint" shapes, obiects. and letters in low-resolution graphics the author provides a library of nilcfoconipuler giaphics meluding such
multicoloured illustiations as robots and flying sauceps. multicoloured iliustiations as robots and flying sauceps,
trees, salboats and colourful picture backgrounds Contains complete annotated Applesoft BASIC programs to draw all the pictures described in the book as well as suggestions for improving programming techniques

## HB116: THE BASIC CONVERSIONS HANDBOOK FOR

APPLETM, TRS-8nTM, and PETTM USERS
BRAIN BANK
$\$ 14.50$
A complete guide to converting Apple II and PET programs to TRS-80 TRS 80 and PE Tprograms to Apple 11, and TRS-80 and Apple 11 noograms to PE F Equivalent commands are inted for TRS.80 BASIC (Modeli. Terel Mi, Applesoot BASIC and PET BASIC. as well as variations for TRS 80 Model III and Apple Integer BASIC Also describes variations in kraphics sapabilities

SARGON: A COMPUTER CHESS PROGRAM
SPRACK
HB 12
$\$ 27.50$
I must rate this ches, program on excellent huv for anvone who loves the ganse " Kilobaud

Here is the computer chess program that won first place in the furst chess tournament at the 1978 West Coast Convputer fare tis written in Z-80 assembly anglaage, using the diagrain and sample printouts

BASIC COMPUTER PROGRAMS FOR BUSINESS:
STERNBERG (Vol. 1)
H813
$\$ 21.50$
A must for amall businesses utilizing micros as well as for enttrepreneurs solume provides a wealth of pracical business applications fach programis documented with a description of ths tunctions and operation. a listing in BA

## GUDIO AND VIDEO INTERFERENCE CURES

KAHANER
HB21
A practical work about interfer e causes and cures $\$ 8.95$ fect TV, radio, hi.fi, CB
formation needed
diagrams of $f$
are includ
 e causes and cures that afrference Schematic wiring eliminate, $S^{2}$ iv iv intesference caused by noisy home appliances, son lights, motors, etc

## PH 107: APPLE LOGO PRIMER

C. BITTER \& N. WATSON (1983) $\$ 19.95$

A pictorial starter book that will make LOCO easy for anvone Includes easy to follow examples and relerence
lables Also included is a workshop outline for teachers and leaders who want to train others

SB22047: 26 BASIC PROGRAMS FOR YOUR
MICRO $\$ 17.4 \mathbf{S}$
Features 26 previously unpublished, simple-to-complex games you can run on almost any brand of microcomputer as 500 and 5000 bytes, with the highest taking 13 K . Conversion charts that let you key them into vour Radio Shack. TRS-60, Apple II. TimexiSinclair 1000 (ZX81). Spectrum, Atari, or PE T are included Also features notes on program techniques and structures
 and February is the 10th Anniversary Issue.
Here are just 10 of the happenings that are now planned and we invite you to join us in our celebration.


GET INTO IT!
6. 5,000 BONUS CIRCULATION

A guaranteed circulation increase of 5,000 copies to help deliver a special issue with special advertising and editorial to more readers than ever before. That again means more product sales for you!
7. INCREASED READERSHIP

A special subscription offer tied to $\$ 10,000$ in prizes and a 10 year old subscription rate. Cover mention will increase readership and deliver increased sales on newsstands... and that delivers you a brand new group of readers for your products!
8. AND A 10 YEAR OLD ADVERTISING RATE
This offer is a way of saying thank you and allows advertisers to capitalize on a very special issue.
9. A LOOK AT THE HUMOUROUS SIDE
A selection of our best cartoons from the first 10 years and much more. An editorial touch to again increase reader interest.
10. OTHER HAPPENINGS

Plans are still underway. The editoiral team of Markwick/Zapletal are going to make this issue a special issue indeed. If you have a suggestion we want to hear it!

CALL MARLENE DEMPSTER (416) 445-5600 ABOUT SPECIAL OPPORTUNITIES AND POSITIONS. REACH A \$200 MILLION MARKET NOW!


## Train for the Fastest Growing Job Skill in North America

## Only NRI teaches you to service all computers as you build your own fully IBM-N

 compatible microcomputerWith computers firmly established in offices-and more and more new applications being developed for every facet of business-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than for any other occupation.

## Total systems training

No computer stands alone. . it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM-compatible Sanyo 880 Series computer.

As part of your training, you'll build this highly rated, 16 -bit IBMcompatible computer system. You'll assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive and interface the highresolution monitor. The 880 Computer has two operating speeds: Standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz . It's confidence-building, real-world experience that includes training in programming, circuit design and peripheral maintenance.

## No experience necessary NRI builds it in

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab ${ }^{\text {® }}$, professional digital multimeter, and logic probe. Like your computer, they're all yours to keep as part of your training. You even get some

of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

## Send for 100-page free catalog

 Send the post-paid reply card today for NRI's 100-page, full-color catalog, with all the facts about at-home computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.If the card is missing, write to NRI at the address on the right.


NRI is the only technical school that trains you as you assemble a top.brand microcomputer. After building your own logic probe, you'll assemble the "intelligent" keyboard.
then install the computer power supply, checking all the circuits and connections with NRI's Digital Multimeter. From there, you'll move on to install the disk drive and monitor.


McGraw-Hill Continuing Education Center 330 Progress Avenue 330 Progress Avenue M1P 225 Scarborough, Ontario M1P
or telephone 416-293-8787 or telephone 416-293-8787

## Designing amplifier circuits? This article shows how to design programs to take the sweat and guesswork out of the operation.

By Lance Wilson and Jon Fairall

SOONER OR LATER you'll find yourself in a position where you have to design basic amplifier circuits. This need not be a tedious and time-consuming task if you develop some of the ideas presented in this article. We have included a demonstration program for the sake of interest, but the object of this exercise is to show you how to go about the problem of designing with a computer. You can write your own program to suit your own computer and your own design.

The fundamental circuit for a Class A amplifier is given in Figure 1. The first step in analysing a transistor circuit is to establish the biasing, since it is this that sets up the effective gain of the amplifier. For the circuit in Figure 1 the first step is to establish the base voltage, Vb. A standard but simplified equation which allows a quick solution is:

$$
\mathrm{Vb}=\frac{\mathrm{Rb} 2 \times \mathrm{Vcc}}{\mathrm{RbI}+\mathrm{Rb} 2}
$$

From this we can determine Ve very quickly if we assume that there will be a drop of about 0.6 V across the baseemitter junction of the transistor:

$$
\mathrm{Ve}=\mathrm{Vb}-0.6
$$

We now have access to the current flowing


Fig. I General form of the Class A voltage amplifier.
in the emitter resistor from Ohm's law, since we know the voltage across the resistor and its value:

$$
\begin{aligned}
\mathrm{Ie} & =\frac{\mathrm{Ve}}{\mathrm{Re}} \\
\text { where } \mathrm{Re} & =\operatorname{Re} 1+\mathrm{Re} 2 .
\end{aligned}
$$

Since we also know that the emitter current must be more or less the same as the
collector current we can also work out the collector voltage:

$$
\mathrm{Vc}=\mathrm{Vcc}-\mathrm{Rclc}
$$

## AC response

With this serics of simple steps we have worked out all the voltages around the transistor plus the current flowing between the collector and the emitter. We are now in a position to begin an examination of the circuit's response to an input signal, ie: its AC response.

The gain of an amplifier is given by:

$$
\mathrm{Av}=\frac{\text { collector load }}{\text { emitter load }}
$$

Bear in mind that these values apply to AC conditions only. The collector load includes all the resistances that tie the collector to either the ground or supply rails. (Supply is ac-shorted to ground through the power supply). It includes at least the collector resistor Rc, the load resistance R1 and the collector-emitter leakage resistance. This latter is usually so high that it can be ignored in low frequency, small signal applications.

The emitter load, likewise, includes all the resistances between the emitter of the transistor and either rail. In practice this will mean the unbypassed, emitter resistor Re1, but not Re2. Remember we are talk-
ing about AC and assuming that all the capacitors are short circuits, so Re2 is effectively shorted. It also includes the baseemitter resistance, re, which is given by 30/lc.

The result of this is that we can establish a gain equation for the circuit of Fig. 1:

$$
A v=\frac{R c}{r_{v}+R e l}
$$

Obviously, different configurations will have different equations, but the principle remains the same, so you can work out the relevant equation for your particular application.

So far, we have sufficient information to generate a program that will predict certain elements of the performance of an amplifier given the circuit. If you input the values of the resistors the program should come back at you with the gain. If you go to a textbook you should be able to extract equations to give you input and output resistance as well.

The question not answered, and the one we would like to know, is whether the combination of resistors we have chosen is an optimum. The classic method of doing this is with the load line.

## Load Lines

Load line analysis involves drawing a pair of straight lines corresponding to the AC and DC loads on the transistor. It is actually a graph of Ic and against Vce. The load line is therefore all the possible combinations of Ic and Vce that can exist at the collector of the particular amplifier under consideration.

We can determine the DC line quite easily (see Fig. 2). When no current flows i.e: $\operatorname{Ic}=0$, then $V c e=V c c$. This defines the bottom point of the line: ie: the intersection with the horizontal axis. At the other end of the line, when Vce is at a minimum, Ic is determined by the value of the resistors through which it flows (Vce is assumed to be zero). The DC load line is


Fig. 2 Plotting the $A C$ and $D C$ load lines.

2 REM*TRANS PROGRAM PLOTS A SET OF13 REM*CERTAIN PARAMETERS ARE ENTERED.*
4 REM*THEN LOAD LINES ARE PLOTTED FOR*
5 REMHTHEN LOAD LINES ARE PLOTTED FOR*

- こ与 PAPER 1: INK 7

(39 PRINT "*
40 PRINT "* * * * ** * * * * * * * * 4 "


PRINT * * * * * * * ** * * * * * * **
43 PRINT "* * * *
44 PRINT "* **
45 PRINT "
46 PRINT *
47 PRINT "*

49 PAUSE 2000
50 CLS
55 REM**WRITTEN FOR THE MEMOTECH*****
56 REM*
**
57 REM**GRAPHICS DUMP
65 REMHTHESE LINES SET VIRTUAL SCREENS
66 REMHIST FOR TEXT, THEN GRAPHICS.
70 CRVS 2,0,3,0,36,5,40
30 2: CLS : PAPER 6: INK 7
81 LET PMAX $=200$
82 LET USF=2: LET ICMAX=20
83 LET BVCEO=30: LET HFE $=100$
84 IF $A S=* N "$ THEN GOTO 100
3 CLS : CSR 4,0: INPUT "HFE:?";HFE
86 CSR 4,1: INPUT "MAX PC:?"; PMAX
88 CSR 4,2: INPUT "ICmax:?mA"; ICMAX
$90 \operatorname{CSR} 4,3:$ INPUT "BUCEO:?"; BUCEO
92 LET USF=INT (ICMAX/IO)
100 CLS
102 CSR 4,0: INPUT - ENTER STEP"; STP
104 CLS : CSR 4,0: INPUT "ENTER VCC";VCC
106 CSR 4, 0: INPUT " EMITTER\&COLLECTOR R";RE,RC
106 CSR 4,3: INFUT "RB1,RB2= ?";RBI,RB2
107 LET ID=VCC/(RB1+RB2)
108 US 4: CLS : COLOUR 2,11: COLOUR 3, a
109 COLOUR 0,1: COLOUR 1,15: COLOUR 4,6
110 REM**SETS UP AXES AND SCALES******
111 LINE 20,12,255,12: LINE 20,12,20,190
112 CSR 5, 22: PRINT "O5 10 15 113 CSR 20 25 30 35 "
13 CSR 22,21: PRINT "volts Vce"
114 FOR I=O TO 11 STEP 1
115 CSR O, (11-I)*2: PRINT I*USF
117 NEXT I
18 REM**DRAWS CHAR, CURVES
119 LET $X=20$ : LET $Y=10$
120 LET NEWX=X+STP/10: LET NEWY $=Y+S T P$
122 LINE $X, Y$, NEWX, NEWY
125 LINE NEWX, NEWY, 250-. 8*Y, NEWY*1. 11
125 CSR 30-Y/12,21-Y/7: PRINT Y + 10
120́ LET $X=$ NEW $X$ : LET $Y=N E W Y$
12 IF $Y>150$ THEN GOTO 130
128 GOTO 120
120 REM\#AFTER TOP CURVE, PLOT PCMAX
130 FOR $I=1$ TO 230
135 LET YF=FIMAX*100/\{USF*I)
140 IF YP> 175 THEN GOTO 150
142 COLOUR 3,6
145 PLOT $20+1, Y P+12$
150 NEXT I
15: CSR 16, 10: PRINT "Pc = ";PMAX
53 REN*****UPPER IPMAX
153 REM******UPPER IC \& VCE LIMITS*****
154 LET ILIM=ICMAX*IGIUSF+12: IF ILIM>190 THEN GOTO 990
155 LINE 2O, ILIM, 80, ILIM
156 CSR 10,22-ILIM/9: PRINT "Imax=";ICMAX
157 LET ULIM=BVCEOH6. 2+20. IF ULIM 2 IICMAX
58 LINE ULIM 2 GIM 990
159 REM*H*HNEXT CALCS. FOR QPT. AND**** 18 : PRINT "BUCEO="; BUCEO
10 REM****** DC LOAD LINE ************
161 LET ICQ=( (RBZ*VCC)/(RB1*RB2) -.6)/RE

# over $\$ 10,000$ in the latest com and save up to 58\% c 

YOUR CHANCE TO WIN THE LATEST IN COMPUTER TECHNOLOGY FROM TOSHIBA. AND ALL YOU HAVE TO DO IS ENTER!
Celebrate MOORSHEAD PUBLICATIONS 10th Anniversary as Canada's No. 1 publisher of computer and electronics magazines by entering our 10TH ANNIVERSARY SWEEPSTAKES! You could become the lucky winner of the Toshiba products shown here worth over $\$ 10,000 \ldots$ no purchase nec. essary... ALL YOU HAVE TO DO IS ENTER!

## HOW THE SWEEPSTAKES WORK

There are two ways of entering: take out a new subscription, or renew one, to any of the participating magazines, before April 10th, 1987 and your name will be entered for the draw if you use an official entry form OR if you write (boldly and clearly) the word "SWEEPSTAKES" on other cards or forms.

If you wish to enter without subscribing you may use the Official Entry Form on this page; photocopies are NOT acceptable. Only one entry per envelope is acceptable. On April 15th, 1987, a random draw will be made from qualifying entrants. The first entrant drawn to answer a time limited skill testing question correctly will be declared the winner.*


## THESE GREAT PRODUCTS FROM TOSHIBA COULD BE YOURS!

If you're the lucky winner of our 10TH ANNIVERSARY SWEEPSTAKES, we'll arrange for you to receive at your home or office the products shown; a total value of over $\$ 10,000$ ! Simply by subscribing to (these publications) you have the chance to win the very latest in computer technology with the quality and reliability you've come to expect from Toshiba. You'll be able to conduct professional business transactions and computerize your business or home as never before!

## TOSHIBA

WE MEAN BUSINESS
INFOFMATION SYSTENS DIVISION

## ITH ANNIVERSARY SWEEPSTAKES JWand Win! juter technology from Toshiba in your subscription!

## THE INCREDIBLE T3100...

All the power of the top of the line desktop in a package only $3^{\prime \prime}$ high when closed and only 14 pounds. Small enough to take anywhere!
Featuring a Gas Plasma screen, the T3100 provides outstanding resolution. At 640 by 400 pixels, it's ideally suited for graphics. A memory capability of 640 KB , expandable to 2.6 MB with the addition of a single memory card. And it's fast. With an $80286-2$ microprocessor it's more powerful than a full-sized IBM PC-AT Desktop**:
Full IBM compatibility; a 10MB internal hard disk; a 720 KB floppy disk; and an 81 key full-sized keyboard.

## MAKE THE MOST OUT OF YOUR TOSHIBA SYSTEM WITH THE MAGAZINES OF THE MOORSHEAD GROUP... COMPUTING NOW! ELECTRONICS TODAY, COMPUTERS IN EDUCATION.

Enter your subscription(s) and receive indepth evaluations of computers, peripherals, and software plus the latest happenings in electronics. Expand the use of your microcomputer with probing articles on programming breakthroughs and important news that will increase your "computer consciousness"! You will find applications and innovations you can use directly on any computer and keep abreast of the newest developments in microcomputing! Closing dates for entries April 10th, 1987.

## OFFICIAL ENTRY FORM MOORSHEAD PUBLICATIONS 10TH ANNIVERSARY SWEEPSTAKES

$\square$ YES, enter my name in the 10TH ANNIVERSARY SWEEPSTAKES for $\$ 10,000$ in TOSHIBA products, start my subscription to $\square$ Computing Now!, $\square$ Electronics Today, $\square$ Computers in Education for the term checked below at a saving of up to $58 \%$ on the newsstand rates.
$\square$ One Year for $\$ 19.97 \quad \square$ Two Years for $\$ 36.97$
$\square$ NO, I don't wish to subscribe now, but tell me if I've won
MOORSHEAD PUBLICATIONS 10TH ANNIVERSARY SWEEPSTAKES
Name
Address
City $\quad$ Company__ Province $\quad$ Postal Code $\quad \square$
Check one:
$\square$ Payment enclosed $\quad$ Charge my: $\square$ American Express $\square$ Visa $\square$ MasterCard.
Card No.

Special subscription rates are for 10TH ANNIVERSARY SWEEPSTAXES onty. [Savings are up to $21 \%$ off regular subscription rates)

# Computer Aided Drafting 

> Schematics and illustrations are a snap with the various CAD programs for the PC.

By Bill Markwick and Frank Lenk

CAD programs have made enormous changes to the way we do electronic design from the breadboard to the final product. Because the field of design software is so wide, this article will have to be limited to computer-aided drafting. The many circuit and PCB design and analysis programs will be covered in a future issue. Because there are so many programs available, this is far from a comprehensive listing; we just chose the programs with which we are most familiar.

It's also important to note that the software and techniques described are relatively inexpensive versions for desktop microcomputers. While they can't match the giant mainframe versions of CAD/CAM, the increasing power of the micro makes them tremendously flexible for anyone doing technical drafting or illustrations.

## Basic Types

The software falls into two groups, each with its own advantages and limitations. The first is the pixel-oriented type, unfairly known as the "paintbox" program (they've come a long way recently). With this method, the pattern drawn on the screen is captured by the computer by recording each screen pixel as a bit. Eight pixels make up a byte, and another byte may be assigned for controlling colour, brightness, etc.

The pixel-oriented type has the advantage that it's very easy to edit. If you set the cursor to the Erase mode, for instance, you can then cut a swath through your drawing, blanking pixels wherever you want, or even changing them to another colour. If you want to make very tiny corrections, most programs have a "fat bit" edit mode in which a small area is magnified on the screen and individual pixels erased or added.

One disadvantage is the difficulty in changing size, or scaling. While it can be done, the software can only make a good guess at how to enlarge a drawing, and fills the space between the gaps the best it can. This is no problem with rectangles, but may cause circles to become polygons 30
and angled lines to become staircases. Another problem is that printouts tend to be no better than the screen resolution; thus the "jaggies", a series of steps as the screen or printer attempts to construct an angled line or curve.

The second type is the object-oriented program. With this system, each line, circle, box, etc., is considered an integral object. For instance, a line may be specified in terms of the coordinates for the beginning and end, plus a short piece of code to tell the program what sort of object is referred to. When the program draws a screen from a disk file, for instance, it will take the two coordinates and the code and look up its line-drawing facility.

The great advantages of the object system are the ease in manipulating the image size and angles and the higher quality of the printout. Drawings can be scaled or distorted to your heart's content, and since the objects are not concerned with the screen resolution, smoothing routines are employed to permit printouts limited in resolution only by the quality of the printhead or plotter.

A serious disadvantage is the lack of a simple eraser. If you should make a line a little too long, you have to delete the entire line and redraw it unless the program has the capability of "splitting', which will make two objects out of one. Another drawback is that the Paint or (Fill) function takes a very long time to complete; redrawing the screen many times with lots of painting can put you right to sleep unless you have fast hardware.

## Hardware

The minimum requirement for small CAD systems is an IBM PC or compatible with at least 256 K of memory and two drives; most of the larger programs prefer 512 K . This will get you going, but you're going
to be rather frustrated. Cursor keys are a cumbersome way to do complex drawings, and the regular 4.7 MHz PC is a bit slow for anything but the most straightforward artwork.

If you're going shopping, put a mouse on your list for sure. All the software tested would support most popular brands of mice (mouses? meeses?), and most of

ASSEMBLY

A mechanical drawing done with In*a*Vision.
the lesser known mouse-clones include software that emulates their famous cousins like the MicroSoft mouse or Summa mouse. These device drivers must be run before running your CAD software; a batch file or Autoexec file will do this for you. You'll also need a serial port for connecting the mouse, and you might even need two if you use a serial-input plotting device. There are also graphics tablets and digitizers available if you need better resolution than a mouse can give you.

One last word on mouses: there are two basic types, the trackball and the photocell/pad types. The trackball mouse can run on any surface, but tends to be a bit jumpy and is seriously affected by dust accumulation. The other type uses LEDs and photocells to track a grid below it for very good precision, but it must run on the supplied pad, which takes up more desk space.

On the problem of slowness: each time you do a full-screen function like zooming, the computer completely redraws

everything. If it's a complex piece with lots of painting, you can spend more time waiting than drawing. There are a number of cures. One is to buy a computer with an 8 MHz clock, speeding everything up by 60 percent or so. If you already have a 4.7 MHz computer, the Turbo facility can be plugged in via a PC board in one of the card slots (if your dealer can't find such a thing, there's the Turboswitch 9 MHz accelerator from Hi-Line Sales and Service, 546 Heritage Road North, Box 206, Barnwell, Alberta TOK 0B0, (403) 223-6628).

Another accelerator gadget is the 8087 numeric co-processor, a sort of extra CPU which plugs into the provided socket beside the regular 8088 and takes care of the number-crunching. They're available in either 4.7 MHz or 8 MHz versions, both of them expensive (typically $\$ 200$ to $\$ 500$ ). Also, be sure to check that your software can make use of the 8087; if it isn't activated by the software, an 8087 won't do you any good.

Another add-on for speed would be one of the plug-in accelerator cards which adds an 80286 processor, effectively turning your PC into an AT. Or, you could get an AT and put an accelerator card in that and really blister the bytes.

There are lots and lots of gadgets to part you from your money and make drafting faster and easier, so we'll just have to refer you to your friendly neighborhood CAD dealer. One last recommendation: if you do a lot of CAD, your eyes will thank you if you get a video controller and monitor capable of higher resolution than the one that's adequate for word processing (typically 640 by 200 pixels). An example is the Hercules card, capable of 720 by 348 pixels and requiring a TTL monitor. Be sure that your software supports whatever graphics card you're interest ed in; most of them have drivers for the Herc.

To sum up the hardware: the bare minimum for satisfactory but slow CAD would be a 512 K computer and a mouse. The next and most desirable step up would be an accelerator of some sort.

## Dr. Halo

The Dr. Halo graphics software is a very popular program. It's a pixel-oriented type, and one of the most versatile at the price; it's published by Media Cybernetics, Inc., 7050 Carroll Avenue, Takoma Park, MD 20912, (301) 270-0240. It has been reissued as Dr. Halo II, correcting many of the deficiencies in the earlier release. It now has a much larger workspace called a virtual screen; what
you see on your monitor is only a window into a much larger area. There's also a much-needed Undo function that can erase such booboos as painting the entire screen when you only wanted a square inch. The quality of the printouts seem to be much improved over the past versions, which tended to suffer from the jaggies something fierce.

The version we have is the latest one, called the Desktop Publishing Version (DPE). While it isn't suitable for typesetquality desktop publishing, it's probably the best you can get without spending a lot of money. The only major difference between this and Halo II seems to be the improved virtual-page handling; you can call up a miniaturized version of the whole page onto the screen and then use almost all the functions to draw, paint, letter, etc. With Halo II these functions had to be done one window at a time. You still have to change screens by moving the cursor to an icon of the page instead of just cursoring around as you can do with ProDesign.

Programs like Dr. Halo are not really CAD programs, but they're wonderful for illustrations. If you do artwork for manuals or newsletters as well as your drafting, it's highly recommended.

On booting it up, you'll notice that everything is displayed in icon form; not a word or control code appears. In fact, if you're using a mouse, the keyboard is disabled for anything but entering text for lettering. This, I find, is a disadvantage; the mouse is unmatched for speedy cursoring, but the cursor keys are handy to have when you need precision. You'll also notice that the screen is set to white, oddly, meaning a bit of fiddling to reset everything to white-on-black.

If you put the cursor on any icon and click the right button, a submenu pops up with even more choices. The number of choices really is amazing. You can even click onto the full virtual screen, inhale a word-processor file, convert it to one of Halo's two dozen fonts and move it around on the page until you get the size and location you like. Impressive. The printout of text is far from typeset, but it's adequate for most purposes.

Once you get the hang of the icon system, and they're very well thought out, Halo plus a mouse allows for very rapid drawing indeed. Text entry is a delight; the letters can be ballooned to any size you want, and after each Return, the cursor drops down to the beginning of the next "line", giving you a very neatappearing block of text, something tricky to do with most CAD systems. Schematics are possible but not recommended; it's just too difficult to store and recall symbols and have them join up with any precision.

Other features include a comprehensive paint palette, curve fitting to a set of points, easy moving and duplicating facilities and an airbrush function for which you can create your own patterns. There's also an included program called Grab. This is a tiny ( 2 K ) utility which hides away in memory; you can then run any other type of graphics program, and when you see a screen you like, a press of Alt-PrtSc will store the contents of screen RAM as a Halo file. The you can load Halo, call up the newly-made file, enhance or change it, and print it out. This feature allows compatibility of sorts between Halo and any other CAD files.

When it comes to printing, a disappointment is that the entire virtual screen is printed, even if you've only used one tiny corner of it. This makes it difficult to fill a page without going back and forth between screens. The quality of the print, however, seems a lot better than in previous versions.

Because we do lots of illustrations, memos, page planning and what have you, I couldn't be without my Dr. Halo. It's probably the most comprehensive package you can get at the price, and it only takes up a bit less than one disk.

## ProDesign II

ProDesign II is from American Small Business Computers, 118 South Mill St., Pryor, OK 74361, (918) 825-4844, and is one of the new generation of low-cost (\$299US), comprehensive one-disk CAD systems. It's object-oriented, packed with features and easy to learn and use. Mind you, not everyone takes immediately to the object-oriented system of placing points and then activating a command. For instance, if you want to draw a line, you set the beginning, the end and then press V (for Vector). The line will then ap-


Fig. 1. The Dr. Halo II screen showing the main icons, text submenu and the virtual page icon (at lower right).
pear, unless you've selected the Rubber Band feature; this draws the line as you go. It gets trickier with more complex objects; circles are drawn by specifying the centre and the radius, and ellipses require three points. These points are not easy to find if you want precise alignment with other lines on the drawing. The object system also makes it more difficult to move things around as you can with Halo; you have to specify a new location and the symbol moves to it in one jump; if you don't like it, you have to keep trying until it looks right.

It's all the other features of ProDesign that make up for the awkward features of the object-oriented method. You can have three different kinds of cursor, three choices of grids, a snap feature that moves the cursor on a visible or invisible grid to speed up precise alignment, rotation, infinite text sizing, zooming, and an overlay function for recalling another drawing
non-destructively on top of yours.
Marking, storing and recalling symbols from a disk is a breeze, but you'll have to do a bit of planning if you're making a library of electronic symbols. The trick is to be able to recall symbols such as transistors and have all the leads line up with existing lines. I couldn't find any facility included for this as there is in AutoCAD, so I worked out a library of commonly used electronic symbols, printed them out, and labelled the printout with how many cursor strokes it takes to align the leads to a specific point (ProDesign allows both cursor keys and the mouse).

Another handy feature is the ability to redraw or recall drawings with any size or angularity. Four points are specified and the drawing will appear within this shape. If you put the points down in the wrong order, ProDesign will literally turn your drawing inside out. Aside from accurate scaling, the feature is great for perspective


Fig. 2. Dr. Halo can enhance drawings done with other CAD programs. The logic circuit was done with ProDesign as shown on the left and enhanced, right, with some loss of definition.

## Dear Customer,

This is our latest list of discounted new and premium pre-owned test equipment for sale. As in our other Equipment Clearance Catalogs we're selling equipment fast and we're offering great deals to those of you who are ready to buy, now.

This equipment has warranties extending from 30 to 90 days. If you are looking for financing, we may be able to help with that, too. Best of all, we'll get it to you within one or two days of your order.

Remember, equipment is selling fast and it's first come, first serve. The sooner you call us, the better chance you'll have to get what you want.

Call the sales specialist at your local Instrument Rentals office for more details about our clearance. It's the best bargain in test.

By the way, if you'd like to sell off some older - under utilized equipment, we may be able to help you. Call Bryan Webb at 1-800-268-4928 and tell him what you've got. If he can use it, he'll make you an offer.

## Headquarters Office Inventory Center

6815 Rexwood Road Mississauga, Ontario LAV 1R2 Telephone 416/678-7831

## Instrument Rentals Canada Sales/Inventory Center

4026 Steinberg<br>Vill St-Laurent, Quebec H4R 267 Telephone 514/336-1625

Z
H
品
品


INSTRUMENT RENTALS CANADA
NOVEMBER 1986 EXPERIENCED EQUIPMENT SALES LIST
86 EXPERIENCED EQUIPMENT SALES LIST
brUEL and KJAEf

| LIST | SALE |
| :--- | :--- |
| PRICE | PRICE |


～～N゚N N N


8̊\％ ๕ั －－－－

 $\begin{array}{r}\infty \\ \underset{\sim}{n} \\ \\ \\ \hline\end{array}$
1.371
1.579
7.546$N$
ô
Sin
Sin N
 Min PRODUCT dESCRIPTION BRUEL AND KJAEK
STRAIN INDICATOR STRAIN INDICATOR
B／P FILTER SOUND LEVEL MTK SOUND LEVEL MTR CHARGE AMP 3NOHdOYOIW
ATddns H3MOd ACCESSORY KIT TAPE RECORDER COAXIAL Cable
CONTROL Cable CONTROL CABL
RAIN COVER
FM CHANNEL BRUSH／GOULD
 2 CHANNEL RECORDER Cybernex
CRT TERMINAL CRT TERMINAL
TERMINAL DATA I／O
PROM PROGKAMEK VERIFIER
PROM PROGRAMMER采 DESIGN ADAPTER
UNIV．GANGPAK UNIPAK DATA SOUTH
RO PRINTER
PRINTER datum
TIME Code generator
TIME CODE GENERATOR all assets subject TO Pr
$\mathrm{BRU} / 13-4615-30$
$\mathrm{BRU} / 13-4618-20$ DIO／121A
DIO／1310A
 DIO／121A 뭉 DIO／GANGPAK
DIO／UNIPAK dIo／UNIPAK II DAT／9100－210
$z=1$
zo
号品
INSTRUMENT RENTALS CANADA
NOVEMBER 1986 EXPERIENCED EQUIPMENT SALES LIST PRODUCT
DESCRIPTION


$$
\begin{array}{r}
17.245 \\
816
\end{array}
$$ 2.148 2.079

4.574 Calibrator terminal
2
NOV
PAGE
MODEL
NUMBER
------1
 BRU／222品 $\mathrm{DS} / 180$
$\mathrm{DS} / 220$ call now．

$$
\mathrm{m}_{\mathrm{m}}^{0} \mathrm{O}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \therefore \\
& \therefore
\end{aligned}
$$

$$
\stackrel{\text { ® }}{\sim}
$$

$$
\tilde{N}
$$ MODEL

NUFBER
PRICE 9.748
7.438

4.920
33,698
1.199
9.856

$$
4.496
$$

or rental:

| $\circ$ |
| :--- |
|  |

419

$$
2,478
$$ 37vs yo

がッペ
$\underset{\sim}{\sim}$
$\stackrel{\oplus}{\wedge}$



3.287
2.313 3.139 or RENTAL：

DIE／101

## DCA／IRMA CARD

 DIGITAL EQUIPMENT CORP$\qquad$

 0
0
0
0
0
$m$
$m$
$m$ 10.926
530
1.900



!





No


-
©


 LCR METER
 MILLIOHMMETER
POWER METEK
STEP ATTENUATOR に空 ANALYZEK
UNIVERSAL COUNTER COUNTEK RELAY ACTUATOR CONVERTER
PROGKAMMER POWER SUPPLY 1
0
0
0
2
3
3
3




| INSTRUMENT EENTALS CANADA <br> NOVEMBER 1986 EXPERIENCED EOUIPMENT SALES LIS |  |  |  |
| :---: | :---: | :---: | :---: |
| HEWLETT PACKARD |  |  |  |
| MODEL | PRODUCT | LIST |  |
| NUMBER | DESCRIPTION | PrICE | Hhice |
| HP/86250D | SWEEPER PLUG-IN | 8.124 | 4.749 |
| HP/8640B | GENERATOR | 17.724 | 10.923 |
| HP/8656A | GENERATOR | 12.503 | 8.600 |
| HP/86603A | RF SECTION | 14.630 | 8.810 |
| HP/86632B | PLUG-IN | 4.620 | 3.131 |
| HP/8663A | SYNTHESIZER | 91.160 | 48.187 |
| HP/8684 | SIGNAL GENEKATM | 26.649 | 15.008 |
| HP/8901A | ANALYZER | 17.234 | 10,781 |
| HP/8903A | ANALYCEK | 11.832 | 7.256 |
| HP/9133D | DISK DRIVE | 5.151 | 3.006 |
| HP/98036A | INTERFACE | 1.140 | 462 |
| HP/98046B | INTERFACE | 1.555 | 171 |
| HP/98217A | hum | 798 | 88 |
| HP/98254A | ADD-ON MEMORY | 1.540 | 337 |
| HP/98256A | 256K RAM | 1.278 | 553 |
| HP/98261A/004 | LANG ROM | 2.179 | 290 |
| HP/98261A/011 | LANGUAGE KUM | 2.179 | 347 |
| HP/98261A/715 | LANGUAGE SYS. | 2.333 | 870 |
| HP/9826a | Calculatuk | 14.684 | 5.806 |
| HP/9836A | COMPUTER | 19.204 | 7.964 |
| HP/98413A | ROM | 809 | 88 |
| HP/9845T | Calculator | 43.713 | 4.808 |
| HP/98601A/653 | LANGUAGE SYS. | 2.179 | 1.091 |
| HP/98615A/655 | LANGUAGE SYS. | 2.333 | 1.042 |
| HP/98627A | INTERFACE | 1.555 | 6.646 |
| HP/9872C | digital plotter | 8.932 | 3.038 |
| HP/9885M | dlsk bkive | 5.390 | 5. 59 |
| HP/9895A | disk drive | 9.101 | 1.423 |
| HITACH1 DENSHI |  |  |  |
| HIT/V-1100A | 100MHZ SCOPE-DISTRIB | 4.535 | 2.467 |
| HIT/V-209 | SCOPE-DISTKIBUTOK | 1.155 | 689 |
| HONEYWELL |  |  |  |
| HON/122-KACK | AMPLIFIEK RACK | 1.363 | 149 |
| HON/1858 | VISICORDER | 17.495 | 10.719 |
| HON/1882LGD | AMPLIFIEF | 1.571 | 172 |
| HON/1883MPD | AMPLIFIER | 631 | 294 |
| HON/188SSGC | MODULE | 1.579 | 173 |
| HON/1887TCD | DIFF AMP MODULE | 1.609 | 571 |
| HON/612 | HYGROMETEK | 935 | 505 |
| HUGHES |  |  |  |
| HUG/1177HOZ | TWT AMPLIFIER | 12.590 | 2.014 |
|  | I.B.M. |  |  |
| 18M/DOS 2.0 | SOFTWARE | 92 | 10 |
| IBM/DOS 2.1 | OPERATING SYS | 100 | 10 |
| IBM/DOS 3.0 | SOFTWAKE | 100 | 10 |










 G8000 EMULATOR 8048 EMULATOR EMUL. CONTROL
COMPILER COMPPUT CARD MULTIPROGRAMMER
INPUT CARD INPUT CARD
 PULSE GENERATOR
 PRINTER定 128 K RAM ROM DRAWER
SERIAL INTERFACE SWEEPER MAINFRAME
RF PLUG-IN NETWORK ANALYZER CONVERTER CRT DISPLAY
TRACKING GENERATOR TRACKING GENERATOR THERMISTOR MOUNT
POWER SENSOR
 YOLUNNBLLV RF BRIDGE
RF BRIDGE RF BRIDGE
TRANS/REFL SET ANALYZER ANALYZER ANALYZER
COMPUTER
HP/6206B
HP/6209B
HP/6236B
HP/6237B
HP/6269B
HP/6274B
HP/64100
HP/64110A
HP/64242S























 HP/85F
HP/86230B

Sales list
宸宸:

 $\stackrel{\circ}{\circ} \stackrel{n}{n}$
 ${ }_{\text {PRICE }}$
1NSTRUMENT RENTALS CANADA EXPERIENCED EQUIPMENT nICOLET

$\stackrel{\underset{\sim}{N}}{\stackrel{\sim}{N}}$
 $\stackrel{\circ}{\circ}$
 17 IVANGe do PRODUCT
DESCRIPTION
$-9-$
NICOLET
OSCILLOSCOPE northeast electkonics NORTHEAST ELEGTKONICS
TEST SET
ANALYZER OKIDATA
FRINTER
RO PRINTER
RO PRINTER
PRINTER
PRINTER
P-CAD
CAD PCD \& SCH DESIGN CAD PCD \& SCH DESIGN
POWER DESIGNS DC LAB POWER SUPPLY PROLOG
CONFIGURATGR
CONFIGRATOR
CONFIGURATOR
GANG CONFIG
PROGRAMMER
ADAPTER
ADAPTER
MODULE
MODULE
PERSONALITY MOD personality mod Quadram amole RAYTEK
THERMOMETER RIXON

 도문







NOVEMBER 1 INSTR EXPERT RENTALS CANADA TEKTRUNIX

$\begin{array}{ll}0 & 0 \\ 0 & n \\ m & \\ & \end{array}$
 $\stackrel{\oplus}{\underset{\sim}{*}}$品示

悀
 CALL NOW．ALL ASSETS SUBJECT TO PRIOK SALE OR RENTAL：

N

 $\rightarrow \quad \rightarrow$
 $\square$

PRODUC

| PRUDUCT |
| :---: |
| DESCRIPTION |


 Lata module CAMERA CURRENT PROBE
 PKOBE
PLUG－IN
PROBE ORCILLATUK
MAINFRAME
GENERATOK


a
in
in
$\cdots$
 $\stackrel{0}{n}$ TELECOMMUNICATIONS TECH TELEVIDEO TELEVIDEO
CRT TERMINAL
CRT TERMINAL
 PRINTER
MICROCOMPUTER MICROCOMPUTER
MICROCOMPUTER TEXAS INSTRUMENTS
KSR TERMINAL KSR TERMINAL
KSR TERMINAL
KSR PRINTEK TEXSCAN
ANTENNA
VELONEX
GENERATOR
TRANSIENT
ISOLATION
ISOLATION
 MODEL
NUMBER
 TEK／9109


 TEK／CT－S TEK／J16


 TEK／P6046
TEK／P6063B
TEK／PG202 TEK／PG202
TEK／P6462

Z6E／0002／01」
 TI／743－2
TI／745－239
TI／820－613－PKG TEX／AFS－1


INSTRUHENT RENTALS CANADA
NOVEMBER 1986 EXPERIENCED EQUIPMENT SALES LIST $\square$





 $\circ$
No
S
MN
$\underset{\sim}{\circ}$

 LIST



○．${ }^{\mathbf{7}}{ }^{-1}$

| M |
| :---: |
| $\underset{\sim}{N}$ |

924
8.901
42.244 N N
$0-1$
0
0
0
0

0 | $n$ |
| :--- |
| $\underset{\sim}{0}$ |
|  |
|  |









vENTEL

| MODEL | PRODUCT | L1ST | SALE | Qty In |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | DESCRIPTION | PRICE | PRICE | STOCK |
|  | VENTEL |  |  |  |
| VEN/502-1 | TELEPHONE | 185 | 20 | 1 |
| VEN/MD212-1-00 | MODEM | 926 | 103 | 1 |
| VEN/MD212-3 | MODEM | 906 | 270 | 11 |
|  | WANDEL \& GOLTERMANN |  |  |  |
| WG/PJM-1 | METER | 8.393 | 1.804 | 1 |
|  | WANG LABORATORIES |  |  |  |
| WANG/WOA-20/55 | COMPUTER | 7.846 | 4.533 | 1 |
|  | wavetek |  |  |  |
| WAV/148 | GENERATOR | 3.100 | 1.800 | 1 |
| WAV/171 | GENERATOR | 2.302 | 891 | 1 |
| WAV/178 | SYNTHESISER | 8.462 | 4.805 | 1 |
| WAV/180 | GENERATOR | 1.532 | 168 | 1 |
| WAV/1801B | GENERATOR | 5.044 | 2.619 | 2 |
| WAV/2001 | SWEEPER | 5.692 | 2.320 | 1 |
| WAV/2002A | SWEEPER | 9.879 | 6.919 | 1 |
| WAV/3002 | GENERATOR | 8.462 | 4.929 | 2 |
| WAV/3006 | GENERATOR | 7.700 | 5.005 | 2 |
|  | WESTERN GRAPHTEC |  |  |  |
| WAT/4301 | X-Y RECORDEK | 3.819 | 2.632 | 1 |
| WAT/WTAB1O1-J | THERMOCOUPLE PREAMP | 275 | 30 | 3 |
|  | WILCOM |  |  |  |
| WLC/T207 | TEST SET | 5.395 | 1.035 | 1 |
|  | WILTRON |  |  |  |
| WIL/9361B | TEST SET | 7.523 | 4.045 | 3 |
|  | $z-$ OdDS AND ENDS |  |  |  |
| EIA/RS232-25 | CABLE | 75 | 15 | 8 |
| MIC/MICE8086-8 | MICE 8086-88 POD | 5.999 | 4.175 | 2 |
| MIC/PWR SPLY | MICE POWER SUPFLY | 395 | 261 | 2 |

CALL NOW, ALL ASSETS SUBJECT TO PRIOR SALE OR RENTAL: NOVEMBER ' 86

views.
The virtual screen in ProDesign is the best I've seen. The page is four times the size of the screen and is divided into overlapping windows; a tiny icon at the top shows you what section you're in. To change window locations you just cursor over to the edge and pop into a new screen.

Disadvantages include: only one paint function and not a very good one at that, and only two fonts. I discovered that the file deletion section could cause a reboot if you used the extension "PDI" on the filename. Since ProDesign puts the extension on automatically, I guess it didn't know what to do when it saw the extension already there. It's the only fatal error I've ever come across with ProDesign; it's actually very well designed and userfriendly.

The printout feature is when you'll see ProDesign really shine. Using only an Epson Homewriter dof matrix printer, I can turn out drawings worthy of a plotter, with perfect curves and no jaggies. When you select the third and highest of the three available print resolutions, ProDesign employs smoothing routines that use the maximum possibilities of the dot matrix printhead. It's a bit slow, of course, because of multiple passes and the necessary calculating time, but the quality is second to none. You can also specify any page size you like and the drawing will be scaled to suit. Also, it prints out only the area you've actually drawn in, unlike Halo, which prints the entire virtual page, empty or not.

Because it's compact, fast and inexpensive, ProDesign II is my favourite drafting program, and since getting it I've retired the Letraset and technical pens.

## Compatibility

Since Dr. Halo stores its files as binary and ProDesign uses ASCII coordinates, it would appear that the two systems are utterly incompatible. Actually, there's a way around this: the Grab file utility that comes with Halo. In the accompanying illustration, I've used the Grab memoryresident program to store a ProDesign schematic as a Halo file. I then called this file into Halo and embellished it a bit with painting and different text. A drawback to this convenience is that you lose the ProDesign high-res smoothing routines when the file is printed back out again with Halo. You can't have everything.

## The Cover

This month's cover was done with Dr. Halo, ProDesign and some studio trickery. The schematics were drawn normally using ProDesign, stored on the disk and recalled using the four-point method Electronics Today January 1987
to get the extreme perspective. Then the starburst and stars were drawn with Halo, using the airbrush icon. After printing out, the drawings were contact-printed onto 8 by 10 sheets of Kodalith highcontrast film. Colored gels were taped behind the schematic negatives and the three placed on a light box and photographed onto $4 \times 5$ Ektachrome five stops above the meter reading (Zone 10 to fanatics). The schematics were replaced with the starburst and double exposures made.

It's interesting to note that drafting programs have trouble with circles when they try adjusting the perspective. Note the weird ellipse on the leftmost of the two inverter gates at the bottom right of the cover. That ellipse used to be a tiny circle before I twisted things around. I assume the distortion of the ellipse has to do with where you specify the two required points; if they're off-centre it skews the ellipse on the wrong axis.

## Cruise Control

Here's a nifty RAM-resident program we came across by way of a review copy. It was originally designed to prevent cursor overshoot in software like word processors and spreadsheets, and turns out to be just the ticket for drafting programs. ProDesign in particular suffers from an overenthusiastic cursor; if you hold down the auto-repeat too long, the cursor hits one of the margins and the display just sits there redrawing itself over and over until the buffer empties. Cruise Control shuts off the auto-repeat the instant your finger leaves the key. In addition, you get an timer that dims the screen if the keyboard is unused for a preselected number of minutes. Even the large programs that demand 512 K usually leave you enough room to load small RAM programs like Cruise or mouse drivers. Originally released at \$29.95US, Cruise Control is from Revolution Software Inc., 715 Route 10 East, Randolph, NJ 07869, (201) 366-4445.

## AutoCAD

If you're doing complicated drafting and you need every possible facility in one program, AutoCAD is for you. It's the most comprehensive program going; it's certainly the largest and most expensive. You'll need 512 K and two drives, and from the number of disk accesses the program makes, a hard drive will eliminate a lot of disk swaps.

The program consists of four disks: the main file, the overlays, the shape tables and the driver files. Unless you have a hard disk, the overlays remain in B drive and the disk for storing your files goes in A. Occasionally the program will want to look something up from one of the other
disks and a swap is necessary. The drivers are used only when configuring the system, and the disk contains device drivers for almost all popular mice, digitizers, plotters, graphics cards, etc.

The latest version, 2.5 , also has device drivers for dot-matrix printers as well as plotters, though only four are listed (Datacopy 90, Epson, HP Laserjet and Okidata). The dot-matrix method isn't up to the quality of a plotter with a felt-tip pen, but it's just fine for most uses. It's also cheaper and more convenient than fiddling with pens.

The number of functions in AutoCAD boggles the cortex, as you'd expect from a program with a 247 K EXE file and two disks worth of overlays. Fortunately, the menus and directories are first rate, giving you the ability to cursor from one menu to the next with a click of the mouse, plus comprehensive Help files that pop up an explanation of any command if you type a question mark.

It's the most time-consuming to learn, as you'd expect with so many available functions, but it's all worth it when you need to do a complex drawing with lots of features. The cursoring (mousing?) is fast and accurate; it's helped no end by a feature that assists the crosshairs in locking onto the nearest point - you don't have to jiggle the mouse hither and yon to join one line to another. Another nice touch, and an unusual one for an object-oriented system, is the ability to "drag"' an object around the screen until its location suits you.

Another function that's ideal for schematics is the ability to specify how a recalled symbol will be attached to existing lines, eliminating the need to calculate the number of cursor keystrokes and so on.

The paint function ('Hatch') has to be seen to be believed. There are pages of different textures, most of them corresponding to ANSI architectural standards. Here's where you'll really want an accelerated computer; the Hatch takes forever on a regular PC, especially if the screen redraws itself much.

The new version has also increased the operating speed of the Pan and Zoom functions over the previous editions, and colour and line type can be attached to individual entities rather than whole layers.

Another great advantage of AutoCAD is the support offered by the publishers and by third-party companies. All sorts of utilities, expansions, interfaces and hardware is available. AutoCAD 2.5 is published for $\$ 2750$ US by Autodesk Inc., 2320 Marinship Way, Sausalito, CA (415) 332-2344, with a network of local distributors and dealers worldwide.

Bill Markwick

## GENERIC CADD

On first sight, Generic CADD from Generic Software, represented in Canada by Saraguay Software Distributors, P.O. Box 117, Station P, Toronto, Ontario M5S 2S6, (416) 924-7218, looks like the bargain buy in CAD packages. For a very moderate price, only about a hundred dollars, US, you get something that looks and acts like the megabuck design systems.

Upon closer examination a few serious flaws do appear, marring this idealized view. Nevertheless, Generic CADD is a potent choice among drafting packages, and well worth a serious look.

One thing's for sure: Generic CADD is the clear winner in the AutoCAD lookalike contest. As you might expect, this borrowed user interface brings a certain sophistication to the system. The screen layout certainly looks familiar: a vertical menu down the right side, coordinate display tucked into the upper left corner, and prompt lines appearing along the bottom.

Despite their illustrious antecedents, Generic CADD menus end up being structured much the same as your average pulldown system -- they just happen to run vertically rather than horizontally. However, the main, or 'root", menu contains an relatively large number of options. These include: draw, components, text, zooms, edit, windows, layers, drawing, controls, grids, display, units, utility and measure. The mildly experienced CAD user will realize that these headings summarize a fairly powerful set of features. Selecting an option from the root menu places the user in a subsidiary menu that contains the actual drawing functions.

As with more expensive systems the Generic CADD user is not restricted to merely picking options off of a menu. All functions are fundamentally represented by mnemonic two-key commands. For instance, $q u$ means 'quit", and $d s$ means "drawing save". Each of the menus tends to group commands with a common first letter, much the way WordStar commands are grouped into five menus according to the first of their two control key codes. In CADD, drawing commands start with D , component library commands with C , and window commands with W. Some of the other groups are less coherent, but it's amazing how quickly you can pick up a basic vocabulary.

The program is always ready to scize your first two letter keystrokes, and attempt to execute them as a command.If you enter numbers rather than letters, preferably in two groups, separated by a comma, they will be used to reposition the cursor to an absolute coordinate location.

As an added convenience, Generic CADD even allows you to assign your own favorite commands to the function keys.

This command driven structure permits Generic CADD to implement two more advanced features -- batch programming and custom menus. As in DOS,


Fig. 3. Part of the cover schematics done with ProDesign, without computer-aided perspective and with added labelling.

CADD batch files are simply ASCII text files containing a string of valid commands. The software has an option that allows any drawing to be saved in this format, as a long string of commands that will recreate the image. Menu files are similar, each line of the file giving a menu word followed by the commands to be executed should that word be selected by the user.

While it sports this sort of advanced bells and whistles, Generic CADD does not forget to include all the fundamental drawing operations that one could imagine. You can create circles, rectangles, arcs, spline curves or lines. You can edit the drawing using either specific object references, or use the "window" commands to select objects for editing using the familiar "rubber band" box method. You can erase, copy, move, stretch, rotate or re-scale objects.

The CADD virtual working surface is laid out as a Cartesian coordinate map, dimensioned in either metric or British units. You start out at zero zero, and move freely off into the distance. The constant onscreen coordinate display normally shows your position in the chosen units. You can also reset it to display arbitrary absolute distances, or relative distances from your last plotted point.

Zooming and panning are both tied to this coordinate system. You can shift the viewing window either by specifying a new center point, or by pointing with the cursor. The handy "zoom all" and "zoom limits" commands can be used to either fill the screen with your drawing or give you a bird's eye view of the entire drawing surface.

Images in Generic CADD are both object oriented and layered. The layering is extremely flexible. Up to two hundred
and fifty-six layers may be defined, and each layer can be either displayed or hidden at any time. Editing is always restricted to the "current" layer. Objects can be moved from one layer to another. Entire layers can be erased at one swoop. Also, the properties of a layer -- color, line type and layer number -- can all be reset.

Object libraries can easily be created using CADD, although none are available as prefab accessories. To create a "component'", one simply draws the component, defines a reference point and then saves using a special command.

When recalling components, one has the option of scaling, rotating, and stretching them. Once positioned, a component is treated as a single drawing object, unless it is specifically "exploded" for more detailed editing. The "component list" command presents a list of all components available in the current drawing, and lets the user pick any of them just as he would a stock drawing primitive like a circle or rectangle. Furthermore, the "component dump" command allows one to save all available components en masse -- handy for creating a comprehensive collection of all the components used in a particular design.

For output, Generic CADD supports various plotters. If you want to use your dot matrix printer, you'll have to spring for the accessory module, DotPlot. This lets you dump any CADD file to your


Fig. 4. The schematic of Fig. 4 after perspective distortion was added with ProDesign.
printer, at low, medium or high resolution. The process is time consuming; it took almost twenty minutes to get a relatively simple drawing at low resolution. However, if you want to avoid the expense of plotting equipment, DotPlot is a bargain. It even offers a preview of the

## Two schools of thought on the subject of AutoCAD ${ }^{\text {mm }}$

The sky is the limit. When professors at the UC-Berkeley Space Science Laboratory had a satellite-bound telescope to design, a budget to meet, and a variety of options available, they chose AutoCAD. The results are evident, the reasons are many. AutoCAD offered the flexibility, features, and accuracy that a project of this magnitude required.

## Power to the pupil.

 To students at the University of Nebraska-Lincoln, dodging the draft means minimizing the tedium of repetitious design tasks, while maximizing the time available to master the future tools of their trade. Their answer is straight-forward, easy-to-learn, PC-based CAD software called AutoCAD. Their question, why have we waited so long?


Whatever the school of thought, educators agree that the simplicity of teaching AutoCAD to future engineers, designers, architects, and technical illustrators will help to ensure a workforce that is ready for whatever challenge and change technology brings.
Educators also appreciate the fact that the role of AutoCAD does not stop in the classroom. Autodesk, Inc., the developers of AutoCAD, work closely with educational administrators to evaluate specific CAD curriculum needs, provide training and assist in implementation.

## World class CAD

Written in plain English by world class programmers, AutoCAD is also available in French, German, Italian, Swedish and Japanese.
For complete details on how AutoCAD is making a world of difference in the way educators think about design, contact Ray Roy, Manager of Education Programs, Autodesk, Inc., 2320 Marinship Way, Sausalito, CA 94965, (415) 332-2344.

## Autodesk, Inc.

2320 MARINSHIP WAY
SAUSALITO, CA 94965
(415) 332-2344

TELEX: 275946

## Almost Free CP/M Hacker Software

CPM is anything but a dead language . . . if you are into hacking code on this powertul operating system you'll know that it's one of the most flexible en. vironments there is to develop software in. Beyond all this, of course, it's enormous fun.

We haven't lost touch with CP/M. Because there is still so much interest in developing assembly language programs for it we have brought together a collection of the latest releases of CP/M based programmer's tools from the public domain. Included here are debuggers, disk utilities and a number of other extremely powerful programs which have evolved into packages which far excel commercial programs in many cases.

Included on this disk are:


SUPERZAP This is a disk utility similar to the DU programs . . . the latest one of these is also included. Superzap lets to modify your disks at the track and sector level, patching code and fixing BDOS errors. However, unlike DU it's all menu driven, with a full screen editor.
DU-V88 The DU programs have been the universally accepted disk utilites for $\mathrm{CP} / \mathrm{M}$ since prehistoric times. While not overly friendly they offer every conceivable feature. Included here too is the long sought DU DOC file.
MEMDSK32 is the best memory disk program we've ever seen for CP/M. Far from needing a week of hacking to get it going, it runs on any 64 K system without patches or parameters to create a 32 K RAM disk labeled drive D . The source is included should you want to alter its parameters. This makes things like ASM and MAC work like they had wings on their feet.

ZDEBUG is a $Z 80$ debugger. Its function is analogous to that of DDT, but it works in Zilog mnemonics rather than those of the Intel 8080. As such, itll handle $\mathrm{Z80}$ code and not give you lines of question marks when you're trying to patch your BIOS or other commercial software.

COPY is a handy program for users of systems that don't have a way to copy entire disks. This will take everything . . . files and system tracks . . . and pop'em over to another floppy. The source file is provided.

PROBE digs through your version of CP/M and tells you everything there is to know about it, including things like the locations of its various components, where things jump to, how the disk allocation is set up and so forth. It's a splendid asset to low level programming.
ZESOURCE and REZ are the most fiendish disassemblers in creation. They will allow you to create pretty good assembler code from a COM file . . . with a bit of ingenuity you'll be able to recreate most existing software to enable you to learn its secrets and patch it for your own applications. It's especially useful for patching CP/M. Both are supplied to allow you to use either simple assemblers or M80 and L80.
ASM65 is a 6502 cross assembler. It runs under CP/M but it assembles 6502 source code. It's extremely useful for developing sophisticated Apple software, of course, and for doing EPROMs for 6502 based systems. In fact, it supports the entire range of 6500 series processors.
MLOAD24 is a replacement for the LOAD command . . . with considerably more power behind it. It is ideal for doing loads that call for merging in overlays, multiple hex files and so on.

All of the above software is supplied with appropriate documentation in the form of DOC files. It is the software we use to create and modify CP/M pro. grams. All of it is in the public domain.

This collection is available for

## \$22.95

plus 7\% Ontario provincial sales tax
(this is two single sided disks or one double sided disk, as needed. It is available for Apple CP/M, elght inch SSSD format and all of the five and a quarter inch formats listed in the Almost Free software section elsewhere in this magazine.)

> Moorshead Software Service 1300 Don Mills, North York, Toronto, Ontario M3B 3MM1
> or achieve instant graticiaton over the phone. Call
> 1 (416) 445-5600
during business hours: Have your VISA, Mastercard or American Express card ready.
Fine Print: All of this software was obtained from public bulletin boards and is believed to be in the public domain. Our charge defers the cost of collecting. testing and assembling this collection, plus the cost of the media and its shipping and handling. We are not charging for the soft ware itself.

We have done our best to ascertain that this software does what it says it does. We are not, however, able to assist you in adapting it for your application.

# COMPUTER RRRTS IIMLIRE Inc 316 College St． Toronto，Ontarlo M5T 1 S3 <br> Toll Free Orders Only 1－800－387－1385 <br> （416） $928-2161$ 

MAIL ORDERS：We accept VISA；MC；AMEX credit cards．Money orders，cheques（2 week wait）are also OK．Minimum packing and handling fee $\$ 5.00$ or $5 \%$ ，whichever is larger．The only COD we use is via CANPAR （Add $\$ 4.00$ COD fee）or motor freight．We do not use postal COD at all．All Ont．res．add $7 \%$ ．All prices are subject to change without notice．Returns are subject to a $20 \%$ restock ing charge．

## KEYBOARDS

（A） 5150 ，The standard IBM 83 key layout，with super good CHERRY key switches．．．．．．．．$\$ 95.00$ （B）5151，The enhanced 105 key layout，with cursor and numeric padiCH keyswitches $\$ 105.00$ （C） 5160 ，ATIXT AUTOSWITCH，dever U processor knows when it is on an XT or AT and switches by itself．Also has LED status panel id tell you whars up，std 83 key layout．．．．．．$\$ 139.00$ （D）5161，AT／XT AUTOSWITCH， 105 key enhanced layout，LED status panel．．．．．．$\$ 159.00$ （E）AES DATA，ASCIl keyboard for all exper－ imentor use，cost over \＄100．，NEW．．．．．\＄24．95 （F）II C CLONE MACRO KEYBOARD，for the ever popular II + and ir＇s clones，fits the real and clone thing，option numeric pad．．．．\＄69．95 （G）DETACHED It plug in keyboard with numeric pad and macros．．．．．．．．．．．．．．．．．．．．．．$\$ 129.00$ JH）lie CLONE MATRIX KEYBOARD，fits real and clone，same functions．．．．．．．．．．．\＄69．00 （I）Ile DETACHED MATRIX KEYBOARD， A stand alone keyboard for real and clone，has same functions and some extras．．．．．．．．．$\$ 99.95$


#### Abstract

IBM／APPLE MID INTERFACE CARDS A）APPLE 6850 UF，The standard card for the + or lie，input \＆output for control of all new synthesizers．has programming capabiil－ ty Wired with full data．．．．．．$\$ 69.95$ BARE PCB \＆DATA （B）ADVANCED APPLE MIDI UF，with tape and drum synchronization，for all old and new syn． drum synchronization．or all old and new syn－ thesizers，wired with all data ．．．．．．．．．．．．． $\mathbf{\$ 8 9 . 9 5}$ BARE PCB \＆DATA ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． C）APPLE SAMPLEIPLAY CARD．A DIA Card of advanced design allowing input sound to be sampled at a high rate and played back， und can be manipulated in sotware for solfware．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 16.00$ BARE PCB DATA SOFTWARE \＆MANUAL （D）FB M 6850 VF ．A full fealure IBM MiO $\mathbf{\$ 1 8 . 9 5}$保 3 outputs for full versatility comes with full dala，wired tested．．．．．．．．．．．．．．．．．．．．． $\mathbf{\$ 1 1 9 . 9 5}$ BARE PCB \＆Data ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 18.95$ QUAD BOARD，Small PCB with 4 DIN conmec． lors on it for external mounting（free with wlred board）allows easy use of MIDI cards．． （E）MIDI DATA SOURCE BOOKJDISK，A com pilation of MIOI data and relerences for AP． PLE Or IBM MIDI useflell us which one you want）Complete with programming hints and demo disk very useful book． sottware．


## ATTAK－286 MODEL I

## MODEL 1，FOR 8，10，12 MHZ OPERATION

The great new ATTAK－286 board using the CHIPS and TECHNOLOGY 5 chip AT LSI chipset．All the complex TIL functions have been placed on 5 LSI chips．This eliminates all the timing errors that plague the ones still using discrete TLL．This board was worth waiting for，and it is now in stock ready to ship．The board is the same size as the real AT， and has 4 layers for noise free operation．It has all the features of the AT，and some more of it＇s own，like 1 MB on board， $8,10,12 \mathrm{Mhz}$ operation， PHOENIX BIOS，and it runs like a deer．
（A）Fully wired and tested，zero RAM，with all IC＇s，less the 80287．．．\＄849．95
（B）Socketed board，pretested，but no IC＇s at all，．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 269.95$
（C）Bare pretested PCB with parts list．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 169.95$
（D）Detailed technical manual with full CHIPS \＆TECHNOLOGY dat and full schematics，with users hints． $\$ 39.95$
（E）PHOENIX BIOS，for B，C above only，very fast BIOS．．．．．．．．．．．．．．．．．．．．．$\$ 99.95$
（F）Keyboard BIOS，in EPROMCPU chip．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 39.95$
（G）Power supply， 200 Watt，FCC／UL OK．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 229.95$
（H）HINGED TOP AT CASE，Easy access with this flip top box．．．．．．．．$\$ 189.95$
（1）AT Keyboard，see AT／XT keyboards elsewhere on this page．
（J）CHIPS \＆TECH 5 Chip set
$\$ 169.95$
（K）OTHER PARTS ARE AVAILABLE，ASK FOR LIST

## XT SYSTEMS

What a deal，the best price for fully burnea in ana working $x_{t}$ compalible systems in 4 configurations．All have a legal BIOS and are fully wired and tested for 24 hours of auto－test in our burn in room followed by a hands．on step by step functional test before shipping in our fully cushioned carton．Alt turbo boards are hard switchable trom low to high speed and back without data loss．

XT 4．77 MHZ STD．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 749.00$
XT 8．00 MHZ TURBO．．．．．．．．．．．．．．．．．．．．．．．．$\$ 895.00$
XT 8．00 MHZ 4 LAYER TURBO．．．．．．．．$\$ 1049.95$
XT 10.00 MHZ TURBO．．．．．．．．．．．．．．．．．．．．．．．$\$ 1049.95$
＊ 640 K MOTHERBOARD，FULLY TESTED
＊1 DSDD HALF HEIGHIT DRIVE
－DISC CONTROLLER，1－4 DRIVES
＊KEYBOARD
＊GRAPHICS CARD，COLOR OR MONO
＊FREE SOFTWARE
＊256K RAM ON BOARD
＊8 XT SLOTS
＊FLIP TOP CASE
＊150W POWER SUPPLY
clock／CAL／SER／PAR／GAME．．．．．．．．．$\$ 125.00$
＊PRINTER CARD．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 29.00$
＊SERIAL CARD．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 35.00$
＊GAME CARD．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 290.00$
＊KRAM CARD，OK．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 179.95$
＊RAM BANK II．OK．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 189.95$

STYSTEMS
What a deal，now you can get AT systems based on the US made ATTAK－286 board．This is a robot assembled board， fully tested on a bed of nails， of 4 layer construction etc，etc．

## BASIC SYSTEM

Entry level system with 2 drives，one each $350 \mathrm{~K}, 1.2 \mathrm{MB}$ ，both are high speed PANASONIC drives， 512 K high speed RAM， disc controller for above drives，and video card（choice of monochrome or color graphics），with 200Watt power supply
and the 5160 Autoswitch AT／ and the 5160 Autoswitch AT／XT keyboard
BASIC AT
$\$ 2149.00$
PLEASE SELECT FROM THESE OPTIONS，ADDS\＄ （A） 21.2 M drives only．．．．．．．．．．．．．．．．．．．．．．$\$ 89.95$
B）1M BYTE high speed RAM．．．．．．．．．．．．．．．$\$ 139.95$ C 20 M HS hard drive with controller．．．$\$ 1449.00$ E 2．5MB Lotus／Intel AT RAM board，0K．．\＄299．00 F） $30-70 \mathrm{Mb}$ Hard Drives，ask． We have just started with the AT compatibles and will have a lot more products next month．

TTL AMBER MONITOR
The nicest TII monitor you can buy，from GOLD STAR，12＂，AMBER，HI－RES．．．．．．．．．．．．．．．．．$\$ 149.95$

## RGB HI－RES COLOUR

Another great deal from PARTS GALORE，made by HITACHI with $600 \times 240$ screen on $12^{\prime \prime}$ format at a really good price．

## CASES

（A）The sid flip－top for the XT type boards $\$ 79.95$ （B）AT look，XT size lactor，flip top ．．．．．．．．．．．．．．$\$ 89.95$ （C）AT look，full AT size with Rip－top ．．．．．．．．．．$\$ 179.95$ （D）ABS case for II,$+ \theta$ ，clones，specity．．．．．．．．．$\$ 49.95$

## DRIVES

PANASONIC JU－455－5，DS－DD XT drive，the industry standard at a great price．．．．．．．．．．$\$ 149.9$ PANASONIC SA475，DS－HD，the AT drive that everyone likes，al a very good price．．．．．．．$\$ 229.00$ QUME 142，DS－DD std IBM type．．．．．．．．．．．．$\$ 129.95$

## HARD DRIVES



## SWITCHING <br> POWER <br> SUPPLIES

（A） 150 W CSA APPROVED．$+5-15 A_{+}+12$ 5．5A，－5，－12＠0，5A．Std Side Sw．．．．．$\$ 134.50$ （B）200W CSA APPROVED $+5-20 A_{1}+12$ 7．2A，－5，－12＠0．5A，Std Side Sw．．．．．．$\$ 159.50$ （C）200W CSA APPROVED AT STYLE $+5-20 \mathrm{~A},+12-7.2 \mathrm{~A},-5 \cdot 12 @ .5 \mathrm{~A} . . . . . . \$ 199.00$ （D） 180 W MINI AT POWER SUPPLY $+5 \cdot 16 \mathrm{~A},+12-6.6 \mathrm{~A},-5-12 @ 0.5 \mathrm{~A}$ ．，fits the mini AT case and board listed here．．．．．．．．$\$ 199.00$ （E）APPLE CLONE Supply，for the $\mathrm{II}+$ and the lle clones，$+5-4 A+12-2 A-5,12 \ldots .$. \＄49．95 （F）NORTHERN TELECOM ，A great open frame power supply for hobby use，$+5 \mathrm{~V}-4 \mathrm{~A}$ ， ＋12，－5：－12＠1A each．．．．．．．．．．．．．．．．．．．．．$\$ 24.95$ （G）NCR PC CLONE，another open frame unit with $+5 \cdot 7 \mathrm{~A},+12-3.5 \mathrm{~A},-5 .-12 @ 0.5 \mathrm{~A}$ ，a very good unit，runs an XT no problem．．．$\$ 49.95$ （H）POWER CORDS，CSA，．．．．$\$ 4.95$

## CASES，XT／AT

（A）XT FLIP TOP，The standard XT style w／ hardware，nuts bolts， 8 slots．．．．．．．．．．．．．．$\$ 64.95$ （B）XT FLIP TOP，WITH AT ASPECT fits XT＇s but looks like an AT，great．．．$\$ 89.95$ （C）XT SLIDE TOP，A good strong case， very good for schools and others who want to keep sticky fingers out of the innards of their systems，good shielding too，and much more rigid than flip tops，．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{\$ 7 4 . 9 5}$ （D）AT，FULL SIZE For the std boards the same size as the real thing．．．．．．．．．．．．．．$\$ 159.95$ （E）AT，FLIP－TOP FULL SIZED，AS above but with a flip top $\qquad$ $\$ 179.95$ （F）AT，MINI，FLIP－TOP，Made for the new mini－AT boards that are the same size as the XT mother boards，for mini P．S．．．．．．$\$ 159.95$ （G）I I ，lle ABS CASE，Final sale as we are discontinuing this item m．．．．． ．．$\$ 29.95$

| UPS－250W UNINTERRUPTIBLE POWER SUPPLY $\$ 469.95$ |  |
| :---: | :---: |
|  | ， |
|  | 边 |
|  | Nome |
| \％olveravere |  |
| MOTHERBOARDS $100 \%$ WIRED AND TESTED WITH BIOS，BASED ON OK RAM ALL BOARDS ARE 640 K MAX |  |
|  | Cicime |
|  | 㑑 |
|  |  |
|  |  |
|  |  |
|  |  |
| Bare PCB 8 dite．．．．．．．．．．．．．．．．．．$\$ 39.95$（C） 10 MHR． 2 layer hardswich．．．$\$ 279.00$ | \％emme |
|  |  |
| （D）B MHZ． 4 layer，hard switch．．．$\$ 289.00$ | 边 |
|  |  |
|  |  |
|  |  |




## Optimize your stage or studio sound with a Direct Input.

By Bill Mark wick

IF you play on stage or in studios with a fair amount of equipment, or if you're the recording engineer, you'll have met the DI. The Direct Input, or Direct Insertion, or Direct Injection, is one of several number of methods of sending an instrument's signal straight to a mixing console via input cables. In some cases, such as electronic keyboards, it can't be avoided. In others, such as instrument amps or acoustic instruments, it's a way of avoiding microphones with their attendant problems of level, feedback, etc. Here's a rundown of the various ways the DI is used, plus a few operating hints.

## Keyboards

The electronic keyboard is very popular these days, what with its light weight and enormous versatility. While the musician might like to have a small instrument amplifier near the keyboard for checking on the sound, miking these amps introduces problems for the sound people: placing the mike properly, using up another stand, getting feedback howl and so forth.

On the back of the keyboard there will be one or more output connectors. The most popular type and the most inexpensive is the unbalanced line. This is a single conductor with a shield, and generally terminates in a $1 / 4^{\prime \prime}$ phone plug and jack
system. It's sometimes incorrectly called "single-phase" - all sound lines are singlephase; they're either balanced (two wires plus shield) or unbalanced (single wire plus shield).

The output impedance of the unbalanced line might be just about anything, but the majority of equipment these days uses an emitter-follower or an opamp, giving a very low impedance that suits any load at the other end.

Most mixing consoles designed for stage use have a $1 / 4$ 'jack for an unbalanced input in addition to the usual 3 -pin microphone inputs. They may be marked "high impedance", which just means that the console won't load down the keyboard's amp. It's safe to drive a high-impedance input from any source.

The DI couldn't be simpler here. Just run a shielded cable with suitable connectors over to the PA console. There's one disadvantage: the unbalanced line has no noise rejection as does the balanced type, meaning that it's susceptible to hum pickup from crossing power cables or RF interference. If this happens, try relocating the cable away from other wiees
(if that's even possible on today's hitech stage) or try replacing the cable. Various brands of cable have varying effectiveness when it comes to shielding; try different makes if you can.

If the keyboard has a 3-pin $\operatorname{XLR}$ output labelled "mic level" or similar, it's even easier. One of the regularmicrophone cables can be plugged into this. It's likely that the mixing console has a gain control on the microphone input, allowing it to adapt to whatever level comes out of the keyboard (probably 10 mV to 500 mV ). In the unlikely event that the output signal is too high for the console to handle, I've drawn a handy attenuator in Fig. 1. It gives a choice of -6 dB for mild overload, -10 dB for medium and -20 dB for curing heavy-duty distortion problems. I've assumed that the console input impedance is somewhere between 600 and 1200 ohms (typical values); the input impedance of the attenuator is a bit low at about 1000 ohms, but shouldn't bother most solidstate equipment. The pepinforge+witi+1)

# Product Mart Where Buyers Find Sellers 

BUGGED? WIRETAPPED? Find out fast! Countermeasures equipment catalog \$1. OCTE, Dept. ET, Box 173, Montreal. H3X 3 T4.
"RELIABLE SatTV Positioner Program for IBMPC \& Clones. Write to: MIKRODATOR, Box 96, Lasalle Quebec H8R 3T7."

COMPUTER and Electronics parts. Priced to sell. Send for free catalogue and get on mailing list for frequent. "Sale Flyers." M.O. ENTERPRISES, Box 2066, Bramalea, Ontario, L6T 3 S3.

EXCITING Surprise pack of Electronic Parts $\$ 6.00$, plus $\$ 1.50$ shipping. New catalogue 2.34 c stamps. Our surprise pack wouuld make an excellent Christmas Gift. MP2 SCIENTIFIC, 33255 S. Fraserway, Suite 472, P.O. Box 8000, Abbotsford, B.C. V2S 6 H 1 . BC residents please add $7 \%$ Sales Tax.

J\&J ELECTRONICS LTD., P.O. Box 1437E, Winnipeg, Manitoba R3C 224. Surplus Semiconductor Specialists. Do you get our bargain flyer? Send $\$ 1.00$ to receive the current literature and specials and to be placed on the mailing list for future pulications.

## PRODUCT MART WHERE BUYERS FIND SELLERS For more information Call: (416) 445-5600

## ANSI VIDEO TERMINAL BOARD! <br> * FROM LINGER ENTERPRISES *

A second generation, low cost, high performance, mini sized, single board for making your own RS232 Video Terminal. Use as a computer console or with a MODEM for hook up to any of the telephone-line computer services.

## FEATURES:

MICRO SIZE!

* Uses the new SMC 9028 Video Controller Chip coupled with a 6502A CPU.
* RS-232 at 16 Baud Rates from 50 to 19,200
* On board printer port!
* $24 \times 80$ format ( $50 / 60 \mathrm{~Hz}$ ).
* For $15,750 \mathrm{~Hz}$ (Horiz.) monitors.
* 3 Terminal Modes: H-19, ADM3A, and ANSI X 3.64-1979
* Wide and thin-line graphics.
* White characters on black background or reversed.
* Character Attributes: De-Inten, Inverse, Underline and Blank.
* Low Power: 5VDC @ .7A, $\pm 12 \mathrm{VDC}$ @ 20MA.
* Mini size: $6.5 \times 5$ inches.
* Composite or split video.
* $5 \times 8$ Dot Matrix characters (U/L case) with descenders.
* Answer back capability.
* Battery backed up status memory.
* For ASCII parallel keyboard.


ADD \$40 FOR A\&T
OPTIONAL EPROM FOR PCKT STYLE SERIAL KEYBOARD: $\$ 15$

SOURCE DISKETTE: PC $X T$ FORMAT $51 / 4$ IN. $\$ 15$

## Digital Research Computers <br> (OF TEXAS)

P.O. BOX 381450 • DUNCANVILLE TX 75138 • (214) 225-2309

Call or write for a free catalog on Z .80 or 6809 Single Board Computers, SS. 50 Boards, and other $\$ .100$ products. All prices quoted are in US funds.

TERMS: Add 53.00 postage. We pay balance. Orders under 515 add 75 c handling. No
C. O. W. We accept Visa and MasterCard The C.O.D. We accept Visa and MasterCard. Texas Res add $5.1 / 8 \%$ Tax. Foreign orders
(except Canada) add $20 \% \mathrm{~F}$ \& $H$. Orders over 550 add $85 e$ lor insurance (except Canada) add $20 \%$ P \& H. Orders over 550 add 85 C for insurance.

## ASSEMBLE YOUR

OWN PC \& SAVE SSS


## XT SYSTEMS:

COMPLETE STARTER KIT:
4.77MHz, 8088 MPU ( 8087 Optional), Phoenlx BlOS, Hardware Reset, 8 IBM comp. I/O SIots, 256 K RAM Expandable to 640k, Panasonic or Mitsubishi Disk Drive, Printer Port, Color Graphics Adapter, 135-watt CSA Approved Power Supply, 5150 Keyboard, Flip-top Steel Case . . . . . $\$ 899.00$ COMPLETE PRO XT KIT:
4.77MHZ, 8088 MPU (8087 Optional), Phoenix BIOS, Hardware Reset, 8 Expansion Slots, 640 K RAM, Color Graphics Adapter, 2 Panasonic or Mitsubishi Disk Drives, Printer, Serial \& Joystick Ports, Clock/Calendar, 135-watt CSA Approved Power Supply, 5150 Keyboard, Flip-top Case
. 51199.00
COMPLETE TURBO XT KIT:
Dual Speed (4.77/8MHz), 8088.2 MPU (8087 Optional), 640 K RAM, Phoenix BIOS, Hardware Reset, 8 Slots, Printer, Serial \& Joystick Ports, Clock, Color Graphics Adapter, 2 Panasonic or Mitsubishi Disk Drives, 135 -watt CSA Approved Power Supply, 5150 Keyboard, Fliptiop Case . . . ........................................ $\$ 1249.00$

## XT COMPONENTS

| MOTHERBOARDS: |  |
| :---: | :---: |
| XT: 640K Board, Phoenix BIOS, Hardware Rest, OK TURBO: $4.77 / \mathrm{BMHz}$, Phocnix BIOS, Reset, OK | $\begin{array}{r} \$ 259.00 \\ \$ 325.00 \end{array}$ |
| VIDEO ADAPTERS: |  |
| MONOCHROME GRAPHICS ADAPTER Hercules Comp., Printer Port, Runs Lotus | \$139.00 |
| COLOR GRAPHIS ADAPTER <br> IBM-Comp., Composite (Mono \& Colour) \& RGE Outputs | \$115.00 |
| DUAL MODE GRAPHICS ADAPTER |  |
| Genoa Spectrum-Comp., Monochrome/Colour Graphics | \$329.00 |
| ENHANCED GRAPHICS ADAPTER |  |
| 100\% EGA Compatlble, 256K Video RA | 3549.0 |
| EXPANSION CARDS: <br> DISK DRIVE CONTROLLER wiCable. $\square$ \$ 59.00 |  |
| 384k MULTIFINCTION CARD - OK 384k RAM Expansion, Printer, Serial \& Game Ports, Clock, Ram Disk \& Print Spooler Software, OK |  |
| MULTI-FUNCTION DISK I/O Dlak Controlier, Printer, Serial (2nd Optional) \& Game Ports, Clock, Ramdisk \& Printer Spooler ...... 159.00 |  |
| PaRALLEL PRINTER ADAPTER SERIAL COMMUNICATION ADAPTER | $\begin{array}{r} 39.00 \\ \$ 55.00 \end{array}$ |
| KEY8OARDS: 5150 Enhanced 84-key IBM-type 5151 Keyboard w/Cursor Pad | $\begin{array}{r} \$ 99.00 \\ . \$ 138.00 \end{array}$ |
| POWERSUPPLY; CSA Approved 135-watt | \$148.00 |
| CASES: Flip-top Steel Case, Side Switch | . $\$ 59.00$ |
| DRIVES: <br> Pansonic or Mitsubishi 360K, DSIDD 51/4" Disk Drive . 20Mb SEAGATE Hard Disk w/WDC Controller ........ | $\begin{array}{r} . \$ 169.00 \\ . \$ 799.00 \end{array}$ |
| MODEM: External 1200 Baud, Hayes-Compatible. | . $\$ 299.00$ |
| MONITORS: <br> 12" DUAL MODE SMART MONOCHROME TTURGB compatible <br> 14" RGE MONITOR. 0.39 Dot Pltch, Green/Amber Modes | $\begin{aligned} & \$ 185.00 \\ & \$ 529.00 \end{aligned}$ |

## CompuKits

4320 Fraser St.
VANCOUVER B.C. V5V 4G3 (604) 879-9288
into an XLR. By the way, label it with something durable or you'll puzzle some poor soul later if they think it's a regular mike cord. If you're not into soldering at all, the Shure company makes a similar gadget with XLR terminations that fits into any mike cable. Ask a Shure microphone dealer for information on the A15 series of attenuators.

## Unbalanced to Balanced

Suppose the keyboard or other instrument amp has only an unbalanced output jack, putting out a large signal (line level, about $1 / 2$ to 2 or 3 volts), and you need to feed this into a console which has no unbalanced line inputs, as is possible with lots of studio consoles. Fear not. This part is easy, if expensive.

In Fig. 2 I've shown a Hammond professional audio transformer wired to (a) reduce the signal from line level to a voltage suitable for a console microphone input and (b) convert the unbalanced output to an isolated, balanced line. The microphone should be mounted in a utility case ("handy box") to protect the wiring. I'm sorry to have to break the news that the Hammond pro audio transformers will set you back about $\$ 30$ to $\$ 50$ each depending on the model. On the other hand, they're beautifully made and probably have better specs than the equipment they're used with. If you have severe hum problems, try opening the wiring at the dotted line to break the ground loop.

This business of isolation is a great thing from the point of view of safety. I'm not saying you should run out and isolate all your line feeds, but the following story makes the point of keep your equipment in good shape:

A bass player I knew popped the ground pin off the power plug of his amp so it wasn't such a hassle plugging into 2 -pin outlets. One night during a gig the mixing console literally exploded, with a
cloud of smoke pouring out of the input section. It turned out that sloppy assembly of the bass amp chassis had allowed a mounting screw to eventually poke its way through the line cord insulation, electrifying the chassis. The power line current went down the unisolated cable shield and into the console; cable shielding is for noise suppression, not for safety grounding, and things began erupting.

They brought the console to me for repairs. The first six inches of the bass input channel were blackened and completely stripped of copper PC tracks. In addition, the majority of the opamps in the board had failed from the transient voltages.

An isolation transformer would have prevented this damage. Now, I'm not saying that you have to isolate everything, but you remove ground pins at your own risk. If they had been playing outdoors in the damp, there might be a few less musicians around today.

## Guitars

Acoustic, electric and bass guitars can all benefit from the DI, though there are other problems introduced. You can't have everything, as I'm fond of saying.

With bass and electric guitars, the DI gets you away from microphone problems, but eliminates the amp's speaker as an effect. The sound of an electric guitar is very much dependent on the response of the speaker, particularly with basses where the player may like the percussive effect of overloading (or "bottoming") the speaker cone.

Nonetheless, the DI is widely used in this application. If the amp has outputs similar to those described under "Keyboards", follow the same methods. But what if the amp has no outputs (and they often don't)? In that case, you can tap offthe signal conveniently right at the
speaker terminals; most amps have open backs with accessible speakers. The problems are (a) the speaker level is very high, perhaps 25 volts or more, and (b) isolation is a good idea. Fig. 3 shows a combination attenuator and balancing transformer that will convert the speaker signal to a balanced mike level signal ready to go straight into a console mike input. The leads to the speaker can be terminated in alligator clips; polarity is not important. Again, a utility box should be used to protect the wiring. The unit gives 35 dB of attenuation; if this isn't enough you can get another 6 dB by wiring the console side of the transformer to 150 ohms instead of 600.

Another widely used method is bridging the guitar's output. With this method, the amplifier is eliminated entirely. This is acceptable for bass guitars played in a studio, where the musician can hear the output through headphones, but may not be very satisfactory on stage. A common way of implementing this method is to use a ready-made high-impedance to lowimpedance adapter such as the Shure A95 adapter. This looks like a long XLR mike connector and has an internal transformer for impedance conversion. Electric guitars can produce several volts of output, and the matching transformer generally divides this by about ten ( -20 dB ) to suit the console mike input. The low impedance of the console input, generally 150 to 1200 ohms, is boosted by a factor of 100 (as seen by the guitar). Incidentally, magnetic pickups don't like to see much less than 50 k ohms. Lower than this and you can hear the treble frequencies tapering off, just as if you'd turned down a tone control.

But what if the musician insists on having an amp nearby as a reference sound? You can still get the best of both with the circuit of Fig. 4. This circuit bridges across the guitar's output, sending a low-


Fig. 1. An low-impedance attenuator cable for reducing the output of microphones or other sources. Quarter-watt resistors will fit in an XLR connector.


Fig. 2. A Hammond 812 or 850 N used to convert a high-level unbalanced source to a low-level balanced microphone line. Transformer circuits shown should be in a metal utility box.


Fig. 3. A Hammond 804 or 850 G used to convert speaker level signals to a balanced microphone line. The uttenuation is $56(-35 \mathrm{~dB})$ and will handle power amps up to about 150 watts.
impedance balanced signal to the console input and an unbalanced output to the instrument amp. The term "bridging", incidentally, means that the load (the transformer) is much higher in impedance than the source (the guitar's pickups) and doesn't cause any loss of signal. With the Hammond 844 , a 600 -ohm console input will be transformed to a 48 k load on the guitar, just high enough to avoid treble loss. The guitar's output voltage is divided by about $10(-20 \mathrm{~dB})$ if you include a 1 dB loss in the transformer.

This bridging transformer can be used for a multitude of purposes; it's a very flexible and useful gadget to have around a sound system. Note that the ground line for the $1 / 4^{\prime \prime}$ jacks is isolated from the box; grounding of the instrument comes from the amp, keeping everything separate to prevent ground loops.

## Acoustic Guitars, etc.

Few instruments cause as much trouble as acoustic guitars. The sound output isn't very high, and guitarists tend to be very fussy ("Can you give me that Doc Watson flatpick sound?" "Oh, sure, we have a control just for that."'. Also, the box of the guitar makes a great collector for room noise when you use a microphone, complicating the problem of feedback.

Now, on one hand you're going to get a more faithful sound by taking the trouble to use a guitar microphone. On the other, you may not want the above-mentioned hassles.

One answer is a magnetic pickup mounted in the soundhole; follow the advice in the electric guitar section above. These pickups sound terrible, unless you're trying to imitate old danceband records.

A good compromise is the piezoelectric pickup (Barcus-Berry, Ibanez, etc.). These are tiny crystal or ceramic elements that are fastened to the bridge or internal
bridge plate (or violin bridges). Their output is closer to a natural acoustic sound, though they're very bright and have excessive midrange. A good recording engineer can work wonders with the console equalizer. My favorite EQ for these pickups is to put a wide notch in the mids at about 2 to 3 kHz and tweak up the bass and treble. One-note bass can be calmed down if you have a tunable bass control.

Disadvantages of these pickups include a high impedance and a low output voltage. I've seen setups where a Barcus-Berry has been run straight into a highimpedance unbalanced PA console input, but the input channel had to be run at full gain and the sound was dull and lifeless, requiring excessive EQ to make it cut above the other instruments. Piezo pickups like to see a megohm or more as a load; a 100 k line input muffles them too much.

The cure is to use one of the multitude of little battery-powered boxes that are available to clutter the stage underfoot. You can get boxes with straight gain, boxes with phasers, boxes with compressors, and lots of other effects. These usually have unbalanced outputs, making them suitable for either direct input to a console or for the transformer methods described above. I know that more equipment is just one more bother and expense, but they sure do improve the sound. One caution: not all of these little boxes are well-designed. Some of them are a real Niagara Falls of noise. It's worth spending some time with a tryout at your friendly neighborhood music store making sure you're not getting a turkey.

I haven't had much experience fitting these pickups to anything but guitars or violins, but there's no reason you can't fit them onto anything that makes noise. Experimentation seems to be the key; tiny changes in location or mounting method will have a great effect on the sound.


Fig. 4. A Hammond 812 or 850 N used as a bridging unit, allowing use of both amp and balanced microphone input. The attenuation is about $10(-20 d B)$ and the ground circuits are isolated.

## Troubleshooting

The DI is fairly straightforward, although I know that not everyone is comfortable with the bugaboo of impedance matching. If there's no sound at all, the problem will always be improper wiring. Check for shorts or opens or miswired terminals.

If the problem is inadequate level, you may have a matching transformer turned around. Remember that low-to-high impedance conversion steps up the signal voltage, and high-to-low steps it down. Both electric and piezoelectric pickups are high-impedance devices and don't like being loaded down.

Hum is just part of the general scheme of things. It's everywhere. Try moving or swapping cables, and make sure everything possible is shielded. If you've used the Hammond professional transformers, make sure the interwinding shield pin (usually the pin in the centre) is grounded and that they're in a grounded metal box.

Radio pickup is another real problem, though most modern equipment is equipped with very good RF suppression. Good shielding is essential. I've found that some electric instruments make great radio antennas and there's nothing you can do about it except use something else. Ground loops will often accentuate RF problems; if the console and the instrument amps are all grounded via their power cord third pin, you've created a huge network that can pick up large RF signals and feed them into everything. One cure is to use the isolation transformers as described above, breaking the coutinuity of the ground circuit without compromising safety.

## Editor's note: some sound-system people

 who read drafts of this article wanted to see more on the problems of safely and quietly grounding pro audio systems. So, an article is in the works.final page layout, which saves both time and paper.

Another accessory program, AutoConvert, lets you exchange files with Autocad.

Generic CADD claims to support various pointing devices, but steadfastly refused to recognize my own Mouse Systems compatible SummaMouse. It did work, briefly, with another Mouse Systems compatible, the Z-Nix mouse --but made up for this concession by crashing completely after only a few minutes operation. I'm not sure what the problem is here, but potential buyers should make sure their dealer can do something to smooth out this kind of trouble. The keyboard works well enough, although you'll have to fritz around with the grid snap feature a bit in order to stop your cursor skipping over lines in the menu.

I did get CADD to crash on at least one other occasion, by using control break in a vain attempt to escape some long and unwanted operation. On yet another occasion I got the cryptic and unsettling message "Null pointer assignment" upon quitting the CADD system. I never did discover what this was all about.

Learning to use CADD is mostly a matter of trial and error. There are no tutorials, printed or otherwise, no online help, and no sample drawings. On the plus side, the menus are quite clear to anyone who has the barest CAD experience.

The manual is a lucid affair, in a convenient foldback coil binding. All the information is organized in reference fashion, conforming in sequence to the CADD menu system. Tutorial information... such as it is... is embedded in the various command entries. Amazingly, there are no diagrams to illustrate command operation. On the other hand, the index and table of contents are top notch.

As with most CAD systems, speed is a major hangup in Generic CADD. If you really can't get by on a pixel oriented drawing program, you should probably include the cost of a math coprocessor chip in the price of your CAD software. Screen redraws in Generic took several minutes at a time, and that was for a more or less trivial test drawing. Unfortunately, there's no way to interrupt any of the many time-consuming operations in Generic CADD. Frequently I found myself locked into a five minute wait while the program performed a redraw I didn't really want.

Two facts emerge from this examination. Generic CADD is clearly a powerful system. Equally clearly, it is a young product, still in a state of flux. As it now
stands, Generic CADD is a bargain for the "amateur" user, who can afford to risk the program's foibles in order to take advantage of its many professional features. If reliability is cleaned up a bit, Generic CADD could readily go head to head with the big guns.

## Autosketch

If you happen to be hunting around for a quick and easy drafting system, chances are that your expectations have been influenced by exposure to, or glowing reports of, a program called AutoCAD, from Autodesk (reviewed elsewhere in this issue). You might, therefore, be excited to learn that Autodesk has come up with a low-cost, entry-level product, called AutoSketch, introduced for $\$ 79.95 \mathrm{US}$.

Before you get too excited, however, you should realize that AutoSketch is really a very distinct creation, with a whole new set of virtues and vices of its own. The best approach is to forget all about any other products, and view AutoSketch purely for what it is -- an attractive, if somewhat quirky package, that combines a large number of powerful CAD features with low price and an attractive user interface.

AutoSketch is specifically intended to be a painless introduction to CAD for the novice. Although all the usual CAD functions are available, they are shrouded within an unusually friendly interface. The AutoSketch display looks much like what you'd see in a paintbox program such as MacPaint. The screen is lit up to
display black text and lines on a black background -- unless, of course, you happen to be blessed with an EGA card, in which case you can have your choice of colors.

Drawing functions are accessed using a series of pull-down menus, arranged across the top of the screen. The headings include: draw, change, view, assist, settings, measure and file. Note the use of "user friendly" terminology, such as "change" instead of "edit". The menu structure is quite logical, and you'll be able to work most of it out with no recourse to the manual.

When you do bog down, by the way, you'll find that the AutoSketch manual is extremely well designed. A thin, paperbound booklet, it includes tutorial and reference sections, plus very complete table of contents and index.

Installing AutoSketch is no problem. Just copy *.* to wherever you wish. The program fits on a single floppy disk, although there's no room left over for accessories... like command.com, which you'll need later on, when departing the AutoSketch environment.

On your first boot up, you'll automatically be asked to specify your choice of pointing device, display and printer or plotter. You can get by with just cursor keys and a drab old graphics adapter, but AutoSketch is quite capable of supporting fancy hardware -- up to and including PostScript compatible printers, such as Apple's formidable LaserWriter. To reconfigure later on, just delete the $c f g$ file


Fig. 5. A logic circuit drawn with AutoCAD and produced with an HP plotter (courtesy of Steve Rimmer).
from your disk, or start AutoSketch using the /R command line option.

All the normal CAD type drawing functions are available in AutoSketch. You can draw points, lines, rectangles, circles, arcs, spline curves and polygons. You can erase, move, copy, stretch, scale, mirror, or rotate screen objects. As with all CAD systems, each drawing element... from the lowliest point, to the fanciest polygon... is considered an object, or collection of vectors.

Many operations can also be invoked by function key, although the key choices are not subject to change, and are not easy to remember at first.

When editing your drawing, objects are selected by pulling a "rubber band" box over them with the mouse. Selecting one corner and then pulling this box to the right will affect only objects entirely surrounded by the box. Stretching the selector box to the left will catch objects that are even partially enclosed. The group function -- on the "change" menu -- lets you collect groups of screen objects together, so that editing operations can be performed on all of them at once.

AutoSketch includes the usual drawing aids... grid display, point snap, coordinate display and so on. Coordinate usage is particularly nice. You can enter points simply be specifying their coordinates, rather than by mousing. Continuous coordinate display can be accessed using a selection from the measure pulldown menu.

Naturally, AutoSketch lets you zoom and pan around a large virtual page. There are several zoom options, including the elegant zoom box, that lets you fill the screen with any specified portion of the picture.

From the circuit design point of view, several AutoSketch features should prove particularly useful. For instance, there's the ortho, or orthogonal, mode -- selected from the assist menu. This limits drawing entirely to horizontal and vertical lines perfect for laying out schematics or PCB traces.

AutoSketch also includes a simplified equivalent of the true CAD "part library". Any AutoSketch drawing file can be merged into your current work, simply by selecting the part function from the draw menu. The saved drawing will be inserted with its "base" point at the cursor. This base can be specified for any drawing before it is saved, using an option on the settings menu. The part functions would allow a user to accumulate a library of stock symbols -- for instance, electronic components -- that could be easily pasted together into complex designs. However, unlike AutoCAD, AutoSketch at this point lacks the availability of vast libraries
of predefined symbols, so you'd have to start building your own library from scratch.

A powerful CAD feature that is well supported in AutoSketch is the concept of drawing "layers". An obvious use for layering might be to represent the various layers in a printed circuit. However, layering need not be restricted to such literal interpretation. One could place all components on one layer, traces on a second, text annotations on a third. Each layer can then be manipulated individually, hidden from view, or plotted in a distinct color. AutoSketch allows up to ten layers, quite a respectable number for any CAD system.

The dimensioning powers of AutoSketch, although less relevant in electronics applications, are one of the program's nicest features. The measure menu lets you simply pick any two screen points, then specify the line to be used for displaying the standard two headed dimension arrow. AutoSketch instantly calculates the measurement, draws in the arrow and types the value in the appropriate position. Dimensions can be taken horizontally, vertically, and aligned to any arbitrary angle.

The AutoSketch undo and redo options utilize an established CAD trick... a command summary, stored in a special disk file. Using this file, the entire drawing process can be torn down or reconstructed, one move at a time. This gives the user virtually infinite undo control.

Text is handled quite well in AutoSketch. Although there's only one basic font, it can be scaled, italicized, underlined or overlined.

AutoSketch does not directly support the AutoCAD file format. However, files can be saved to $d x f$ format using a separate option on the file menu, so the connection is there if you need it.

However, AutoSketch is not without its drawbacks. To begin with, AutoSketch positively demands advanced hardware -at least a matching coprocessor, and preferably an AT type computer as well. Although it purports to be an easy-to-use, entry-level system, AutoSketch seemed more hardware hungry than the other low priced CAD systems. Part of the problem is that the program interface does not let you work around its processing demands. For instance, there's no way to interrupt a redraw. Thus, if you pan incorrectly you have to wait while the program recreates the entire screen before you can try again. Even a simple drawing will take several minutes to redraw, a long time to wait.

The other major drawback I found in AutoSketch is both serious and inexplicable. I could not get it to print. Although I triple checked all the pro-
cedures, installation, and hardware, I simply could not get any output at all on my Panasonic dot matrix printer. I suppose that there is some simple solution, but I never did find it.

Even had the process worked, I believe the AutoSketch printing functions to be rather complicated for what is intended as a beginner's system. The extra help included in a "read me" file on the program disk is both confusing and unenlightening.

Overall, I liked AutoSketch well enough, and would have felt even more warmly toward it had I had sufficiently powerful hardware at my command. The printing problem is not necessarily a fatal flaw, provided that it does have some sort of solution. If you make sure you have a proper guarantee when you buy the software, I think AutoSketch should prove to be quite a workable drafting tool.

## In*a*Vision

Probably the most unusual product we looked at, and certainly not the least powerful, was In*a*Vision, from Micrografx, available from Alton Computerware of Thornhill, Ontario, for \$495US. Rivalling any of the other, more traditional CAD systems on features, In*a*Vision nevertheless manages to present an extra dimension of slickness, and quite a bit more speed as well.

How is it done? Well, on the user interface side, the answer was to crib. All of the interfacing is handled using Microsoft Windows protocols and drivers. In*a*Vision does work independently of Windows. In this mode, it benefits from the elegant Microsoft display layout and efficient device handling. Under a Windowsbased system, however, In*a*Vision would certainly take on an entirely new dimension. For instance, it could coexist in an onscreen window alongside any other Windows compatible applications. Even without full Windows system support, $\operatorname{In}^{*} \mathrm{a}^{*}$ Vision is capable of running multiple windows, with full cut and paste available among them.

The $\mathrm{In}^{*} \mathrm{a}^{*}$ Vision/Windows screen resembles the well-established Macintosh layout. Using the mouse one pulls down menus, points to objects or paints freehand. The only novelty is that the second mouse button is left for the user to define. Also, unlike the usual Mac type programs, In*a*Vision allows you to reset the screen colors, so you are free to work in white on black. Beware printing from this vantage, however, since the black will really come out black -- rendering your printer ribbon a smoking ruin.

All the usual CAD features are present. You can draw shapes, lines or whatever. Unlike most other products,


## Electronics Order Form fodiy

## Subscriptions:

Please complete reverse side to start or renew a subscription.
Back Issues: $\$ 4.00$ each; Ontario residents add $7 \%$ sales tax. Please circle issues desired

| 1977 | 1978 | 1979 | 1980 | 1881 |
| :--- | :--- | :--- | :--- | :--- |
| Feb. | May | Feb. | Jan. | Jan. |
| July | Sept. | April | May | Feb. |
|  | Nov. | May | June | March |
|  | Dec. | July | Nov. | April |
|  |  | Aug. | Dec. | June |
|  |  | Sept. |  | July |
|  |  | Oct. |  | Aug. |
|  |  | Nov. |  | Sept. |
|  |  |  |  | Oct. |
|  |  |  |  | Nov. |
|  |  |  |  | Dec. |
| 1982 | 1983 | 1984 | 1985 | 1986 |
| Jan. | Jan. | Jan. | Jan. | Jan. |
| March | Feb. | Feb. | Feb. | Feb. |
| April | March | March | March | March |
| May | April | April | April | April |
| June | Aug. | May | May | May |
| July | Sept. | June | June | June |
| Aug. | Oct. | July | July | July |
| Oct. | Nov. | Aug. | Sept. | Aug. |
|  | Dec. | Sept. | Oct. | Sept. |
|  |  | Oct. | Dec. | Oct. |
|  |  | Nov. |  |  |
|  |  | Dec. |  |  |

Binders: $\square$ Moorshead Publications $\$ 9.75$ each plus 7\% P.S.T.

SPECIAL PUBLICATIONS

ITEM
Book of Computer Music $\$ 4.95$ Project Book No. 3 \$3.95


BOOKSHELF - Order Form

|  |  | Title |
| :--- | :--- | :--- |
|  |  |  |
| Code |  |  |
| (e.g. BP12) | (Short-form is O.K.) | Price |

(e.g. BP12)
(Short-form is O.K.)
...............................................................
$\qquad$
$\qquad$
$\qquad$
$\qquad$
SOFTWARE - Order Form
$\qquad$
Orders from the Bookshelf are tax exempt. Please add $\$ 1.00$ for postage. Remember to put your name and address on reverse side. See over for mailing detalls. Specials and Software add 7\% PST.


## BE SURE OF YOUR ISSUE EACH MONTH. SUBSCRIBE TODAY.



## Moorshead Publications

1300 Don Mills Rd., Don Mills, Toronto, Ont. M3B 3M8

## MERCHANDISE ORDER $\square$ Please fill out form overleaf SUBSCRIPTIONS: $\square$ NEW SUBSCRIPTION $\square$ RENEWAL Electronics Today <br> $\square$ One year (12 Issues) \$22.95 $\square \quad$ Two years (24 issues) $\$ 37.95$ Computing Now! <br> $\square$ One year (12 issues) \$22.95 $\square$ Two years (24 issues) \$37.95 <br> Computers in Education <br> $\square$ One year (10 issues) $\$ 25.00 \square$ Two years (20 issues) $\$ 45.00$ <br> Outside Caneda (US Dollars) <br> For U.S. please add $\$ 3.00$ per year $\square$ other countries add $\$ 5$ per year $\square$

NAME
ADDRESS
TOWN/CITY $\qquad$ PROVINCE/STATE

CODE $\qquad$ DATE

POSTAL CODE
$\square$ Cheque enclosed DO NOT send cash
$\square$ Mastercard Account No.
$\square$ Visa Account No.
$\square$ American Express Account No.
Expiry Date
Signature


## A computerized aid for musical instrument tuning.

## By John Becker

THIS IS a simple little tuning aid for the average solo instrumentalist. Both electronic and acoustic instruments can be used with it. It has been designed for control by the C64 or PET series of computers, but can readily be used with other computers having an 8 -bit parallel socket such as a User Port or IEEE 488 port, with only minor modifications to the program. The computer performs most of the controlling analysis, and gives a screen readout showing the frequency received, the nearest note to it, and the ideal frequency for the note. A scale shows the deviation from the ideal.

## Tuning Precision

Instrument tuning is not the precision science that some may believe it to be, and strangely instruments tuned to exact mathematical frequencies do not always sound correct to the ear. The main criteria can be summed by saying that a note which sounds right is right!

The making of music is a very subjective activity and throughout history different racial groups have had different ideas about the ideal notes to be played. Despite this, the basic relationships of notes played in succession have certain common factors. Essentially these result in frequency relationships of one to two and two to three producing the most satisfying sounds. From these ratios, other frequency ratios can be established to pro-
duce a scale within an octave.
By definition of course, an octave implies eight notes to the scale, the first and last notes having the frequency ratio of two to one. The ideal frequency of these eight notes depends on the starting point. Starting with one note, the next seven can be tuned so that when played consecutively they will sound correct. But if the star-


Photographs of the screen display for the Micro Mini Tuner
ting note is one of the other notes just played, it is quite probable that when playing the rest of the notes the tuning will sound incorrect. Some of the notes may sound right, but others need to have a different pitch.

## Well Pitched

In 1885, a Mr. Helmholtz remarked on an extreme instrument designed to produce all possible pitch variations in true scales. This resulted in 53 notes to each octave! Insanity must have been the end product for any musician attempting to play such a monster. More realistically, if instruments are tuned close to the standard one to two and two to three ratios, a range of 18 notes to the octave can be accepted as an ideal. For many stringed and wind instruments this ideal is not hard to achieve, but for keyboard instruments a requirement of 18 notes is a problem for the designer, the tuner, and the player. Fortunately some of these notes are so close in frequency that we have now adopted the less than ideal standard of 12 notes to an octave, resulting in some sharps and flats being treated as interchangeable.

Also by way of standardization, a convention in 1939 pronounced that note $A$ in the treble clef should have a precise frequency of 440 Hz . Literature shows that prior to 1939 the frequency of treble A had varied amongst instruments in different countries between 373 Hz and 567

Hz . The table shown later gives the calculated note frequencies for the modern tempered scale.

## Uniformity

However, scientific definition of a note does not ensure ideal uniformity. A note correctly produced under laboratory conditions may sound totally wrong under concert conditions. Indeed if all instruments were identically tuned to precise frequencies the music produced could sound extremely dull and uninteresting. The fullness of an orchestral sound is partly due to instruments not playing at precisely the same frequency and degree of synchronization. In fact professional musicians will often vary the frequency of a particular note by introducing vibrato. This generally can vary the frequency to either side of the ideal by as much as half a tone, and at a rate of about 6.5 times per second. The exact deviation and rate of modulation is highly personalized and will vary from musician to musician, and in regard to the mood of the music.

In electronic music production, frequency modulation is often introduced by using chorus or vibrato units inserted between the instrument and the amplifier. They can add considerable richness to a sound when used in moderation.

## Stability

Stability of a tuned note is also a common problem for musicians. Any instrument player will be aware that a note produced at the start of a session will probably have changed in pitch a short time later. One of the reasons for this is changes in temperature. As a concert hall becomes warmer, so the instruments will be subjected to expansion, whether they are metal, wood, stringed or membraned.

Electronic instruments suffer from a similar problem due to the characteristics of resistors, capacitors, and semiconductors, etc. changing slightly the warmer they get. Expansion with a rise in temperature is a fundamental fact of nature, and although sophisticated design techniques can counteract this to a certain extent, the tendency to drift still remains.

## Pitch Perception

Atmospheric temperature and moisture content also play a significant role in pitch determination. A frequency counter can be used when setting an instrument to an exact frequency, yet the ear may not regard this as correct, even though the meter says it is. Again, it is another factor of nature, this time related to the speed of sound. The speed of sound is not a constant, and should be expressed in relation

to the conditions of the medium through which it travels. The density of the medium is a fundamental controlling factor. This will change with temperature, pressure and in the case of air, with the moisture content.

The usual speed of sound is taken to be 1120 feet per second at 0 degrees $C$ at sea level. Through fresh water at 20 degrees $C$ the figure is 4756 feet per second, five times as fast. Although concert halls are not usually flooded, just the addition of
water molecules breathed out by the audience can alter the speed of sound to an extent. This means that the perceived pitch of an instrument may be different from the frequency shown on a meter alongside the player.

Increased intensity of a sound can also raise the perceived pitch. This is especially true of instruments producing purer tones that are close to sine shaped. Complex tones though, may appear to be more stable with amplitude variations. This is probably due to complex tones containing harmonics less likely to cause perceived pitch changes.

## Objectives

From the above, the uninitiated may well query the need to tune at all, since it is all so variable. Initially musical satisfaction can only come from playing notes that sound right. Precise frequency control, though, is less important than consistency. If a whole group decide to tune for $A$ at 435 Hz instead of 440 Hz , it really makes little difference since it is expected that everyone will still be playing subsequent notes that are harmonically related. If they do not have their notes equivalently tuned the sound can be appalling.

So in tuning the objective is to take a standard starting point, and tune other notes so that they are harmonically related to the first. This is where the problem arises for those who are not fortunate enough to have perfect pitch perception.

## Tuning Aids

Amongst any group of musicians there will usually be at least one who can establish the starting note from which the others can tune their instruments. The amateur soloist though, sitting alone in a room somewhere, may have to rely on a tuning aid of some sort. There are several types available, ranging from tuning forks, pitch pipes, frequency meters, to electronic frequency comparators. All have their advantages and disadvantages.

## Tuning Forks

The tuning fork is arguably the simplest to use for setting the initial note. The commonest one is probably the one tuned to 440 Hz , as this is the international frequency standard for treble A. If a tuning fork is hit on a hard surface and held to the ear at the same time as an instrument note is played, the two frequencies produced will interact, resulting in a third or beat fre-
quency. The closer the first two frequencies are to each other, the slower will be the beat frequency. By adjusting the instrument note until the beat is no longer apparent, precise tuning can be achieved. It is very easy, and perfect pitch perception is not necessary.

Having set the first note, subsequent notes can be tuned in a series of rising and descending steps, usually in octaves and musical fourths or fifths. The notes are adjusted until a certain number of beats can be counted and related to predetermined beat tables, enabling precise matching to be achieved.

Experience is needed though, since if each note is tuned just fractionally out, the errors can accumulate across the full range, and inharmonious discords result. This is especially true with a keyboard instrument like a piano. Guitars are perhaps more easily tuned against a fork since the fretting enables the same string to produce different notes. So, for example, if $E$ is tuned on one string, A can be readily tuned on another by fretting the first string at a point where it should produce note $A$, in this instance the fifth fret. By playing both strings simultaneously the tension of the second string can be adjusted until the beat frequency disappears. Other notes

In*a*Vision boasts pattern fill functions rivalling those of many pixel paint programs. Text options are similarly bountiful, resembling those to be found on the Macintosh in terms of both the number of fonts and the special effects that can be applied to them. Any fonts available for the Windows system can be used.

Editing functions are totally standard: just grab a block with the mouse, then delete, move, copy, mirror, rotate or whatever you like.

Drawing aids such as grids and layering are available as well. Dimensioning is available, although auto-dimensioning --such as the marvellous function built into AutoSketch -- is not present. seem to "Overlay" layers can be enabled or disabled, and individual objects can be shuffled between layers. Coordinates can be displayed, and are measured on a grid from that extends 32,767 units horizontally and vertically. Screen units translate at the rate of 480 to the printed inch, giving a totally unprintable maximum resolution of two thousandths of an inch.

The drawing area is subdivided into "pages", which correspond to standard fanfold printer pages. You can view your entire drawing surface with page boundaries laid out gridwise across it, or zero
in on any individual page. Of course, you can also zoom in until each coordinate unit corresponds to a single pixel on the screen. The "view actual size" option can show you how big things are going to turn out on paper, while "view used pages" will nicely frame your current drawing on the screen.

The Windows interface includes an ideal solution to the problem of panning the image: Macintosh type scroll bars. Just grab the little scroll box and drag it over to where you want to be.

Unlike the other CAD systems I tried, which wouldn't allow me to interrupt a redraw or print no matter how hard I tried, In*a*Vision actually multitasks, or at least time-shares, these tedious operations. Thus you can freely cursor around the screen even while a redraw is in progress. If you select a menu option, the redraw politely takes a back seat. Ditto for printing out. Ah, heaven!

Templates are roughly equivalent to the "part libraries" found in most CAD systems. In*a*Vision is unusual in that it can pull up a separate template window, on which you can display available templates or even create new ones without leaving your drawing in progress.

In*a*Vision supports a large variety of output devices. Print quality on my dot matrix was excellent, more like what might come out of GEM Draw than from the average CAD package. Printing speed is not exactly blinding, although a spooler program is included in the package.

Unfortunately, In*a*Vision was the last of the reviewed packages to arrive, so we had less time with it than with the others. Even so, the potential of the program seemed quite remarkable.

There is, of course, a price. Although In*a*Vision is amazingly fast, it is also strikingly bulky. Running the program from floppy disks is a bit of an ordeal, as one is forced to not only juggle four or more floppy disks, but also move critical overlay files among them in order to ensure that files are available when called for. Running $\operatorname{In} \mathrm{a}^{*}$ *Vision under Windows would simply be impossible without a hard disk.

Pending a more intensive experience with the package, I'd have to rate In*a*Vision very highly indeed. Unless there's some sort of hidden bug in there somewhere, this one might well be the champion in its class.
Frank Lenk
can be tuned in a like fashion, providing of course the player is sufficiently experienced to know which fretting should produce which note.

## Pitch Pipes

Pitch pipes take the tuning fork principle a little further since they normally have six notes of E, A, D, G, B, E octave. Oddly they only appear to be available with $A$ at 220 Hz rather than 440 Hz . Using pitch pipes, tuning can again be done while listening for beat frequencies. There is the danger though that if they are blown too hard, a false pitch somewhat higher than the ideal is produced.

Pipes are also rather harsh and inexperienced ears may have difficulty in recognizing the difference between a note and one of its harmonics since the tonal qualities of the pipe and the instrument are likely to be different. It is also very easy to become out of breath while using them!

Electronic frequency comparators extend the pitch pipe principle to a much wider range of musical notes, often to a full eight octaves, covering 96 notes. For several years special tone generator chips usable in this way were produced, but they appear to have vanished from semiconductor catalogues.

## Frequency Counters

Frequency Counters can be used as tuning aids, though in this case the frequency needs to be related to a chart giving the equivalent musical notes and octaves. Frequency determination can be either by measuring the duration of one cycle, or by
counting the number of cycles or pulses received during a predetermined time. The unit presented here employs the latter method, using the computer to set the sampling rate and translate the pulse count into notes and octaves.

With a frequency counter of this nature, the timing period across which the pulses are counted will depend upon the degree of accuracy required. For musical purposes, the accuracy of the pulse count will be relative to the octave in question. For example, note A of the 3rd octave has a frequency of 1760 Hz . Since $A^{\prime}$ is 1864 Hz and $\mathrm{G}^{\prime}$ is 1661 Hz , a deviation of several cycles in the count can be tolerated. It is unlikely that the ear will readily detect the difference between 1760 Hz and say 1750 Hz . However, for A at 220 Hz a difference of 10 Hz in the count is the equivalent of a semitone, which the ear will certainly notice.

The length of time for which a stringed note will vibrate will depend on the string length and tension. Higher notes cannot be sustained for as long as lower ones. Consequently timing ranges must be changed for different octaves. This could be done manually, but since the computer is being used to calculate notes from frequency, it is just as easy to also make it automatically control the sampling rate in accordance with the frequency that it detects. Which leads us to the block diagram.

## Block Diagram

Most of the work is carried out by the computer, and so the electronics of this project is extremely simple. It consists
basically of a preamplifier and a sample period gating stage, Fig. 1. A reference frequency output stage is also included, not as an essential part of the unit but as an extra facility that can be plugged into an audio amplifier.

## Input Stage

Acoustic instruments can be coupled in via a microphone, preferably of the high output type. This should be placed as close as possible to the sound output. Electronic instruments or signal generators can be plugged straight in. Those producing a 5 V squarewave output can be switched directly to the computer via S2 (Fig. 2). Other signal sources need


Fig. 1 Block diagram of the Micro Mini Tuner.


Fig. 2 Complete circuit diagram of the Mini Tuner.
to be pre-amplified and shaped so that the voltage swing can be detected by the computer.

Potentiometer VR1 sets the initial input level, and enables signals greater than 5 V to be processed. The gain of the pre-amp

IC2a is set by both VR2 and S1. With S1 open, VR2 can vary the gain from around unity to x 10 . With S1 closed, VR2 varies the range between about $\times 10$ and $\times 100$. The precise amount of gain is determined by the ratio of the input resistance of R1


Fig. 3 Layout and wiring of the PCB.


Fig. 4 Interwiring of the controls and connec-
plus R2, to the total feedback resistance of R3 plus VR2.

IC2a is coupled to the comparator stage IC2b. The reference level here is 2.5 V as set by R8 and R9. R7, R10 and R12 set the comparator trip point. In the absence of an input signal, the output of the comparator will be static. As the input signal level increases, the output of IC2a will swing in sympathy by an amount dependent upon the gain set. When the output rises above the reference level, so the output of IC2b will change from low to high.

Once the waveform falls below the threshold the comparator will again change state. As it is being tripped by opposing cycles of the signal waveform, irrespective of its shape, so the output will be a squarewave of the same frequency. This is switched via S2 and S3 to the first data line DA0 of the computer. The software program for the computer is written so that the number of times the squarewave goes high and low can be counted.

## Computer Control

One of the handshake lines of the computer can be used for calling the attention of external equipment. For this reason it is referred to here as the ATN (attention) line. The computer has an internal timer that can be program controlled to cause the ATN line to put out a constant frequency. Here the program sets this output as close as possible to 440 Hz , and it is used as the clock input to the counter IC1. This is a 12 -stage binary counter, each output of which divides the frequency by two.

Output one, therefore, is half the input frequency, output two is one quarter, output three is one eighth, etc. Since each output is at half the rate of the previous one, the rates are, in musical terms, one octave apart. The computer data lines DA1 to DA6 are connected to IC 1 outputs seven to 12 respectively.

The program detects which of these lines is high at any particular moment.


Fig. 5 Connection details for the PET and C64.

When a selected line goes high, the computer stores the pulse count so far received, calculates the equivalent frequency, finds its note and octave values, and displays them on the screen. It then checks the figures against an internal table, and decides whether the counting period should be changed. In this case, on the next counting round it chooses a different data input as its trigger line.

After processing the count, the computer sends data line DA7 up and down, which resets IC1 back to zero. The count restarts and once more the computer counts the signal input pulses until the relevant trigger line goes high. In this way the optimum sampling period for particular octave ranges is constantly updated.

Since there are six lines available, six octaves of input frequency can be assessed with their relative sampling rates standardized. Taking the treble clef octave containing $\mathrm{A}-4 \mathrm{H}^{0} \mathrm{~Hz}$ as octave 1 , octaves between -1 and +4 have standardized counting periods. Octaves above and below these points can be sampled, though the relative accuracy will deteriorate. The duration of each sampling count is thus controlled between $0-11 \mathrm{~Hz}$ and $3-5 \mathrm{~Hz}$.

The number of times that samples are made in a given number of seconds is also displayed on the screen. It is calculated by adding the sampling rate to the length of time that the computer takes to process each answer. This range varies from $0-64 \mathrm{~Hz}$ for octave 4 to $5-15$ seconds for octave -1 . Do not be confused by sampling rates and sampling periods. The sampling period is the time during which the count is collected. The sampling rate is the total of the sampling period plus the time taken to process the answer.

## Override

If only an approximate idea of frequency is needed, sampling consistency can be dispensed with. Consequently switch S4 is included to tell the computer to sample at the highest rate irrespective of the musical octave. In this mode the computer's second handshake line is used. This is termed here as the DAV, or Data Valid Line. It is connected in the computer to a register that detects the arrival of a leading or trailing edge of an input pulse. The state of the register can be read and appropriate action taken.

In this unit, S4 can switch the constant stream of 440 Hz pulses onto the DAV line, so that the register can be kept constantly set by the leading edges of the ATN signal. If the DAV register is found to be set, the computer will only respond to the setting on the first trigger line from IC1, line DA1. It will then perform all its sampling at the highest rate. As less pro-
cessing work is required, the sampling rate goes up to 0.24 Hz .

## 440 Hz Reference

As the computer is putting out a known frequency on the ATN line, this can be used as an audio reference signal. It is fed to IC2c, which acts as a buffer stage, and also gives a bit of filtering due to $\mathbf{C} 6$ and C9 in order to smooth off the edges of the squarewave signal. Squarewaves are a bit harsh to listen to for any length of time. Smoother ones are less tiring to the ear. VR3 controls the output level. The signal may be fed to any normal amplifier system and at a maximum is about 1.5 V peak to peak. As a self check facility, the 440 Hz reference can be switched direct back to the computer by S3.

## Power Supply

The unit requires a power supply of 5 V at about 1 mA . This can be supplied direct by the computer or from a separate PSU. The PET can deliver 250 mA from its cassette port. The C64 cassette port can deliver 100 mA , and the cartridge port 450 mA .

## Assembly

Assembly of the unit is straightforward and needs no special comment. Just ensure that all joins are checked and the wiring is kept neat. Fig. 3 shows the PCB layout and Fig. 4 interwiring of the controls and connectors. The computer socket and its connections can be varied to suit the lead available. The case used in the prototype measures $15 \mathrm{~cm} \times 11.3 \mathrm{~cm} \times$ 4.5 cm . Holes for the potentiometers are drilled 21 mm above the base, 30 mm apart starting 45 mm from the left. Switch holes are 20 mm from the sides, at 15 mm and 30 mm above the base. Connections to the PET and C64 are shown in Fig. 5.

## Program

The pulse counting of audio frequencies must be performed as efficiently as possible. Consequently the sampling part of the program is carried out by a machine code routine. The rest of the processing is in BASIC. The screen presentation is shown in the photograph. The program is written for the Commodore PET, with additional information given for use with the C64. The differences between these machines are very minor, and largely consist of memory location and cursor control code variations. Notes in the software listing give all the necessary information for using the unit with any of these computers.

The program can be readily altered for use with other computers possessing similar facilities. The requirements are
that an eight-bit parallel data socket with two handshake lines is available. This can be of the User Port or IEEE 488 variety. Most computers have a BASIC that is only a dialect variation on Microsoft BASIC, and translations should be quite simple. The machine code, though, is for computers having 6502 and 6510 microprocessors, often found in conjunction with a Microsoft interpreter. Manuals should be consulted if it is intended to use the unit with other processors. The program requires a little over 3 K of memory.

## Use

It should be remembered that the signal being sent to the unit should be as free from noise and extra harmonics as is possible. If either are present, the tuning interpretation may erroneously also calculate on the unwanted input portions.

As stated earlier, tuning is in many ways a matter of personal interpretation. Any tuning unit should therefore be used with discretion and treated as a guiding source rather than a definitive analyzer. Professional tuning, through centuries old practise of setting relative fourths, fifths and octaves, is still superior if you have the ear and the patience. Nonetheless, for the average musician, this tuning aid should remove the question marks from the tuning of many instruments by guesswork and bring about a little more harmony.


as possible while distorting it as little as possible.

## Non-linearities

Non-linearities will occur whenever the output gets close to either end of the load line. Clipping will occur if you try to push the output past it. The idea then is to arrange your gain for a given input such that it can drive the output close to, and not right to, the end of the line. You also want to arrange things such that both positive and negative voltage excursions begin to slip at the same time. There is no point building something that will leave the positive side of the wave unclipped while distorting the negative wave badly. This state of affairs will come about when the $Q$ point, ie: the quiescent voltage of the transistor collector is midway between the maximum voltage excursions.

## Departures

To get this far in the analysis we have made certain assumptions about the circuit which are not strictly true. Whether they are significant or not depends on the individual case. It is important to realize they are there, however, so that if you start getting results that are not as predicted you know where to look.

The first problem is that the transistor has a saturation voltage that depends primarily on the current. Saturation voltage is drawn on a load line diagram as part of the transistor collector characteristics. Usually these are drawn as a family of curves indicating the relationship between collector current and voltage for a given base current. These curves will be more or less flat in the linear operating region of the transistor, falling off on the left-hand side as the transistor goes into saturation.

In order to achieve a really accurate determination of the transistor characteristic you ideally need to make a plot for each individual transistor. Failing that, manufacturers' data is a good source for typical figures. However, for our purposes it is probably just as useful if you think of the transistor characteristic as a line passing through the origin. The slope is set by at least one typical combination of current and voltage supplied from manufacturers data. If you don't have access to this information then a value of 0.3 V at 2 mA is typical for small signal transistors.

A second source of errors is likely to be the assumption that all the capacitors are short circuits and that stray capacitances around the circuit are negligible. As frequency goes up this will become more and more of a problem.

So far, we have thought through this problem as a simple linear process, a not


The plot thickens. Screen dumps of load lines plotted by the program given in the listing. The beauty of the technique is its ability to show the results of any variation quite quickly.
very difficult programming exercise involving a few calculations and the ability to draw some lines. This doesn't really explore the potential of the computer in this regard, though. Its biggest advantage is the fact that you can very quickly see what happens to a host of different parameters of the amplifier if you change values of any of the biasing resistors, or indeed if you change resistor configurations.

We have included a flow chart that should give you some idea of how to go
about writing the program. It includes a menu for making individual changes to resistors and then re-running to see the effect. We have also included a listing of a BASIC program that draws a load line diagram complete with transistor characteristics and both load lines. This is written for the Memotech computer and so will need to be rewritten by anyone using a different type of machine, but close study of how it works will be instructive.


## One of assembly language's less attractive features is code repetition. Save lots of typing with macros.

By Ellery Henn

PROGRAMMERS have long been offering plaudits to macro assembler authors. For good reason, too. Macro assemblers can save the most methodical programmer scads of time in getting his program finished. Macros make source code listings shorter, though the working code produced will be longer. Macros make debugging source code listings easier as well. A large macro library can make writing assembly programs as easy as writing in a high-level language, without the attendant dearth of program speed high-level languages offer. There's one catch to all this, though ... it takes time to produce a macro library that'll be the envy of your assembly programming peers.

Before I get too carried away, I should explain just what a macro is.
Electronics Today January 1987

## Macro Polo

Most PC owners either have purchased or have a general idea of what keyboard macro programs do. A string of whatever characters the user defines is assigned to a key, and, when the appropriate key sequence is struck, the requested characters fly to the screen, usually accomplishing things in other programs that would otherwise wear your fingers down to nubbins.

A macro assembler operates in a relatively similar fashion. The programmer first defines a section of code as being a macro, then gives that section a name. Whenever the assembler chances upon a macro name in its journey down your source code, it will insert the defined code into the macro name's place. For exam-
ple, the code to push the four 16 -bit registers normally goes like this:

PUSH AX<br>PUSH BX<br>PUSH CX<br>PUSH DX

If your program does a lot of registerbashing, you'll be typing those four instructions a number of times in the average program. Hopefully you'll also be POPping the registers back off the stack when necessary.

Code defined as a macro is preceded by a header, which includes the name you've given the macro (we'll use SHOVE here, as PUSH is an actual op-code), the word

MACRO for the assembler to chew on, and optional parameters which we'll get into shortly. After the code, the macro-to-be is completed with a terminator (no funny movie jokes, please). The above code would look like this when defined as a macro:

## FPUSH MACRO <br> PUSH AX <br> PUSH BX <br> PUSH CX <br> PUSH DX ENDM

The header "MACRO" and the terminator "ENDM" are pseudo-operation codes which have no basis in 8088 assembler, but are recognized as macro terms by MASM. Other, more universal pseudo-ops include EQU (equate) and DB (define byte). MASM supports 59 pseudo-ops, which is why 8088 aficionados do double-takes when first reading MASM source code.

Macros are usually inserted at the very beginning of your source code. MASM then sets them up in memory, then begins assembling your regular code. When MASM comes upon a label in your code previously defined as a macro, the code within that macro is inserted into the spot where the macro label was typed. To illustrate, SHOVE is now a four instruction macro. This means anytime you need to rUSH all four 16 -bit registers, all you have to type is SHOVE, as below:

```
MOV DL,0E4H
MOV AH,2
INT 21H
SHOVE
JMP SOMEWHER
```

In the above source code, the first three instructions print the greek letter sigma, the registers are PUSHed, then the code jumps to a routine called SOMEWHER. When MASM assembles this code, it will, after checking its internal library of pseudo-ops, check to see if SHOVE was temporarily defined as a macro. If it was, the four instructions from SHOVE will be inserted at that location into the .OBJ file resulting from the assembly.

If you still enjoy BASIC as a programming language, you can make your assemblies resemble BASIC by defining macros to do what various BASIC instructions do. For instance, if these macros were defined at the beginning of your assembly program ...


## Learn PC Servicing By Building Your Own Desk-Top Computer!

NTS Intronic Home training gets you right down into the heart of computer circuitry. Learn how microprocessors function, how they operate and are used to solve problems. Your program includes a wide variety of tests and projects you perform as you build your own PC, circuit board by circuit board unit by unit.


SEND FOR "FREE COLOUR CATALOGUE" Electronics Today January 1987

Hand-On Training With
Your (IBM Compatible) PC-XT Puts You At The

## Leading Edge Of

## Technology!

This remarkable desk-top PC is the must powerful and versatile ever offered in any home study course. Advanced features of this PC-XT include:

- 16 Bit 8088 microprocessor for IBM compatibility
- 640 K RAM for high speed performance
- 8 expansion slots
- 135 watt power supply
- Dual 720K double density floppy disks drives
- Color graphics/printer adapter card
- Operating system included: MS-DOS with GW Basic

BU in : Aaghalerad hademart of internalional

NTS Offers Many Additional Courses in Electronic and Other

## Fields:

Robotics
Video Technology
TV \& Radio Servicing
Industrial Technology \&
Microprocessor
$\square$ Basic Electronics
$\square$ Transportation Technology (Auto and Diesel)
$\square$ Climate Control Technology (HVAC)


National Technical Schools
Canadian Ollice
517 Bohemia Crescent
Oakville, Ontario L6J 2K7
(416) $842-8383$


## CALL SUBRT

ENDM
... then this code would be accepted by MASM:

AMAZING
SCIENTIFIC and ELECTRONICS DEVICES

PLANS - All Parts Avaliable in Stock.

- LCS BURNING CUTTING CO2 LASER . . . . . $\$ 20.00$ - RUB3 RUBY LASER RAY PISTOL
- BTC5 1.5 MILLION VOLT TESLA COIL
- GRAI -GRAVITY GENERATOR 20.00
15.00
o...
- MAGNETIC CANNON/PROJECTOR

Krrs - Includes Plans and Parts

- LHC2K SImulated redigrnivel

LIGHT LASER . . . . . . ................

- BTC3K 250 000 VO T TESLA COIL ........... 34.50

IOG1KIONRAY GUN

- PSP3K PHASOR SHOCK WAVE PISTO
- PSP3K PHASOR SHOCK WAVE PIS
- STGIK - STUNIPARALYZING GUN
- MFT1K 2.3 MILE RANGE FM VOICE XMTR
150.50
.39 .50
assembled and tested products
- LGU30 RED 1MW PORTABLE HENE LASER 315.00 - TCl30 SOlID STATE TESLA COIL 35KV. - IPG50 POCKET PAIN FIELO GENERATOR
- BLST0 BLASTER DEFENSE WEAPON
- ITM10-100KV SHOCK ANDSTUN GUN
- PPF 10 PHASOR PAIN FIELD PORTABLE
- SNPZOSECURITY PHONE LISTNER.
- cataloo containing descriptions of ABOVE PLUS HUNDREDS MORE AVAILABLE FOR \$1.00 OR INCLUDED FREE WITH ALL ABOVE ORDERS.
PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS ANO PRODUCTS PLANS ARE POSTAGE PAID. SEND CHECK. MO, VISA, MC IN US FUNDS.

INFORMATION UNLIMITED
P.O. EOX 715, DEPT ET, AMHERST, NH 03031

## PUSH DI GOSUB CHKDSK GOTO DOCLEAR

... where, after the DI register is PUSHed, the routine CHKDSK is CALLed, and then the program JuMPs to an area of the program
signified by the label DOCLEAR.

## Variations

Both GOTO and GOSUB introduced us to macro variables, which give macros their greatest appeal. Often a choice code routine could be referenced to over and over by the program if that routine didn't have specific values within it.

Consider this routine to place the cursor at the upper left corner of the screen:

| MOV | DH,0 |
| :--- | :---: |
| MOV | DL,0 |
| MOV | BH,0 |
| MOV | AH,2 |
| INT | 10 H |

Register DH holds the row, DL the column and BL the page number you want the cursor to be placed. If you're doing screen animation, though, you'll need to type those five instructions (with different values in the registers) every time you want to place the cursor before printing a character on the screen. If the thought doesn't make you shudder, you're made of stronger stuff than you may think. A macro allowing you to specify a row, column and page number would be in order:

## COORD

MACRO
ROW,COLUMN,PAGE
MOV DH,ROW
MOV DL,COLUMN
MOV BH,PAGE
MOV AH,2
INT 10H
ENDM

When this macro is defined, MASM will take the following instruction in your source code ...

## COORD 12,39,0

... and place the value 12 into $\mathrm{DH}, 39$ into DL and 0 into BH when it inserts the five instructions your program's object code. The code itself just places the cursor in the middle of an 80 column screen.

Macros are defined either by your typing them into an assembly source before the program itself, or by INCLUDEing a macro library from disk into your source. This is accomplished by inserting the line

INCLUDE MACRO.LIB [or whatever the filename is]
into your source after your title and before the code starts. MASM will haul the entire library file into memory, but only use those macros which you specify throughout your code. As you may not have a macro library at present, a modest offering is supplied in listing one. Type it up with an editor or word processor (in ASCII text mode) and save it as MACRO.LIB. Add your own macros to it as it becomes convenient. As a macro library isn't a program, I'd feel bad not leaving you with something more substantial to type in. Listing two, SKULL.ASM, becomes a 330 -byte .COM file when assembled. It's a short program; the only macro in it is PRINT. We'll dust off John Rudzinski next month to lay on the macros with a trowel in a PC-DOS textfile encryption/decryption program.

SKULL.ASM does little but print a skull onto your HiRes screen. If you have an IBM or Hercules monochrome card, spare your fingers. Only colour graphics cards need apply. Give the code a peer ... the entire deed is accomplished in six subroutines and one macro.

Macros aren't the perfect solution to your assembly problems, but they can certainly save you a lot of typing and debugging time. Where they're least welcomed is in programs where available memory is a factor, or if a critical, diehard hacker is likely to be browsing through your code. While your source code will be compact, your .COM or .EXE file will be somewhat meatier than a macroless offering.

Skinny code looks horrible in bathing suits, y'know.

Electronics Today January 1987


## Recloseable Static Shielding Bag



The new model 2110 recloseable static shielding bag, from 3M Canada, provides protection from static charge for electronics components, sub-assemblies, and PC boards.

All 3M static shielding bags feature an antistatic inner layer to prevent frictional static charging caused by movement of the contents, a middle layer of polyester for strength and an outer layer of nickel for continuous surface conductivity to provide static shielding.

For further information about the new 3M 2110 recloseable static shielding bag, contact: 3M Canada Inc., Static Control Systems, P.O Box 5757, London, Ontario N6A 4 T 1.

Circle No. 21 on Reader Service Card


The new Model 4750 digital multimeter introduced by Triplett Corporation provides one of the most advanced digital testers presently offered.

The compact multimeter's functions include: DC/AC voltage, DC/AC current, resistance, frequency, dBm, diode check, continuity check and temperature. In addition, data hold, peak hold, relative display, $31 / 2$ digit optional display and autoranging are provided with a $0.04 \%$ basic DCV accuracy.

For more information on the Triplett 4750 contact: BCS Electronics, 980 Alness St., Unit 7, Downsview, Ontario M3J 2 S2. (416) 661-5585.

Circle No. 22 on Reader Service Card

## Can you figure out how many years you get from 20,000 hours?

(assume a 40 hour week)


## Who can vouch for Hitachi? - You can!

Just about everybody has experienced the quality of Hitachi products. The Hitachi scopes are of exceptional quality and with a MTBF (mean time before failure) in excess of 20,000 hours, it's not just a matter of opinion. If you're in the market for a scope, you don't have to be a math genius to figure the winner Hitachi.

The V680 pictured above is one In a series of new readout scopes from Hitachi. This triple channel 60 MHz scope, complete with delayed sweep, cursor measurements and CRT readout, make wave form observation faster and more accurate than ever before. All in a compact $12.2(W) \times 5.1(H) \times 14.6(D)$ inch package.

Remember - when you buy Hitachi you're buying a lot of Scope. An Electronics
385 The West Mall, Suite 261 - Etobicoke, Ont., Canada M9C 1E7 (416) 621-9120 TIx: 065-27426 Fax: (416) 856-0980

[^1]

Low-Cost Vibration Sensor
Got a shake in your fan, pump, or other such device? Is eccentricity getting the better of you? IRD Mechanalysis Ltd. announces the new Model 940 Vibration Sensor. This solid-state seismic accelerometer permanently installs with adhesive, eliminating costly, time-consuming stud mounting procedures.


With a frequency range of 600 to 240000 CPM the model 940 can be used on virtually anything that rotates. Only 1.3 inches in diameter and 1.7 inches high, the sensor easily installs in hard-to-reach areas. The device is watertight, dusttight, and is housed in a corrosion resistant case permitting use in hostile environments. (Not suitable for use on eccentric relatives.)

For more information contact: IRD Mechanalysis Ltd., 333 Barton Street E., Stoney Creek, Ontario L8E 2L1. (416) 662-7577.

Circle No. 23 on Reader Service Card
Advertisers' Index
Allan Crawford Associates ..... 63
Autodesk Inc ..... 35
BCS Electronics Ltd. ..... 64
Compukits ..... 40
Computer Parts Galore ..... 37
Daetron ..... 6
Digital Research Computers ..... 40
Electronic Control Systems ..... 7
Exceltronix ..... 2,3
Hobbilt ..... 12
Information Unlimited ..... 58
Instrument Rentals Canada ..... Insert
Inverter Technology .....  . 7
Kaientai Electronic Merchants Ltd. ..... 8, 12
KB Electronics ..... 8
Mark Gee Enterprises ..... 7
Masuko Electronics. ..... 60
McGraw Hill ..... 25
National Technical Schools ..... 57
Orion Electronics ..... 12
Patron Components ..... 12
Raitronics Ltd. ..... 8
Seagrams ..... 61
Sound \& Vision ..... 62
Super-Micro Computers ..... 13
Texpro Sales Canada Inc. ..... 13
Toronto Computing Centre Inc ..... 4
Toshiba Information Services ..... 28, 29
For Advertising Information Call 445-5600


## "Dad, you've got to help me."

"Sandy, what's wrong? Are you hurt?" "No, Dad, I'm fine."
"Where are you?"
"At Pat's. We all came over here to celebrate after the game."
"It's almost 12:30. Isn't it time you called it a night?"
"That's just it. Remember you always told me if I was out never to drive with anyone who's had too much to drink? And not to be afraid to call you if I had no other way of getting home? Well, tonight I'm taking you at your word.'
"Stay right there. I'm coming to pick you up."
"Thanks, Dad. Oh, and something else."
"Shoot."
"Are you angry with me?"
"Angry? No, Sandy. Not on your life."

## Seagram



12 oz . regular beer, 5 oz . table wine and $11 / 2 \mathrm{oz}$. spirits are equal in alcohol content. Be equally careful with each.

# FREEDOUBLEBONUS <br> <br> The BEATLES Rock\&Roll Music Volumes 1 <br> <br> The BEATLES Rock\&Roll Music Volumes 1 and 2 FREE with paid subscriptions and and 2 FREE with paid subscriptions and renewals to Sound\&Vision magazine. 

 renewals to Sound\&Vision magazine.}


The music that changed the world. The Beatles Rock ' $N$ ' Roll music volume 1 and 2 is a rare collection of the fab four's finest moments.

## HOME AUDIO. CAR AUDIO. CELLULAR PHONES . VIDEO. PERSONAL COMPUTERS .

Sound \& Vision Magazine brings up-to-date information on our electronic world to your doorstep. Read about what's available now, and what's coming. Internationally recognized writers demystify the latest consumer products in features, test reports, and "HOW TO" articles. In each issue, read reviews of the latest CD, LP, and VCR releases. And, every year, subscribers get the Audio/Video Preview, Canada's most comprehensive consumer electronics catalogue with pictures, spec's, and prices of the thousands of audio and video products available in Canada.

TO ORDER FAST CALL: (416) 365-9366.

With classics like Helter Skelter or Back in The U.S.S.R. combined with gems such as Twist And Shout and Roll Over Beethoven, Rock 'N' Roll Music Volume 1 and Volume 2 is a required addition to the library of any music lover.

## Save 27 \% Off Newsstand

## Sound\&\ision

A CHIMO MEDIALTD. PUBLICATION
BERKELEY CASTLE 250 THE ESPLANADE 5TH FLOOR. TORONTO ONTARIO M5A $9 Z 9$

Please send me 12 issues of Sound \& Vision to my home address, below. I also want my bonus albums for subscribing now!

$\square$MY CHEQUE IS ENCLOSED FOR \$23.97. A 27\% saving off the newsstand price. Send my albums immediately and begin my subscription as soon as possible.
$\square$ PLEASE BILL ME $\$ 23.97$ for the next twelve issues of Sound $\&$ Vision, and send my albums when you receive my payment in full.
Name
Address $\qquad$ Apt. No.

| City $\qquad$ Province $\qquad$ Postal Code $\qquad$ <br> Visano. $\qquad$ Expiry date $\qquad$ w $6-8$ weeks for delivery. This offer may change without notice. Offer donly in Canada. <br> EET 126 |
| :---: |
|  |  |
|  |  |




## HM203-6

- SIMPLE
- FUNCTIONABLE
- RELIABLE
- COMPLETE
- 2 YR. WARRANTY
- COMPONENT TESTER

The HM203-6 was designed for general purpose applications in industry and service. Its many operating modes, front panel layout, and ease of operation makes it an ideal oscilloscope for training, engineers and technicians.

And to introduce the NEW digital meters from Triplett BCS Electronics Limited will give absolutely FREE a Model 2030 pocket Autoranging 31/2 Digit Triplett Meter with each HAMEG HM203-6 purchased until

January 31, 1987.

Everything is complete and all warranties will apply.

- ACTIVE TV-SYNC
- 20MHz @ 3Db
- SENSITIVITY 2 mV
- 40 MHz

TRIGGERING

- 2 DUAL x1-x10 PROBES


## $\$ 770^{00}$

F.O.B. DOWNSVIEW PRICES SUBJECT TO CHANGE



[^0]:    K.E.M. Electronics Ltd. Mail: Box 69216 Station (K) Vancouver, B.C. V5K 4W4 Office: 879E Hastings St., Vancouver Tel: (604) 251-1514

[^1]:    Let us send you more detalls on the V680 or any
    of the other Hitachi models. Please specify your
    requirements and/or applications.

