CANADA'S OWN ELECTRONICS MAGAZINE

Electronics in Model Railways
 Camera Shutter Timer

Digital-Display Audio Oscillator

Electronic
Rain Alarm

Modes of operation

Channel I, channell and II
Channel switching alt. or chop. (chopper frequency approx. 1 MHz)
Summation channel I + II.
Difference with channel I inverted
X-Y operation, ratio 1:1
(X signal via channel II)

Vertical Amplifier Y

Frequency range of both channels
$0.15 \mathrm{MHz}(-3 d B), 0-20 \mathrm{MHz}(-6 d B)$
Risetime: approx. 23 ns
Overshoot maximum 1\%
Deflection coefficients: 12 calibr. pos.
$5 \mathrm{mVpp} / \mathrm{cm}-20 \mathrm{Vpp} / \mathrm{cm}$ (sequence $1-2-5$)
with fine control uncal. $2 \mathrm{mVpp} / \mathrm{cm}$
Accuracy of calibr. positions $\pm 3 \%$
Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$
Input selectable. DC-AC-GD
Max. admissible input voltage 500 V DC
Error of linearity: maximum 2\%

Timebase

Deflection coefficients: 21 calibr. pos. $2 \mathrm{~s} / \mathrm{cm}-0.5 \mathrm{\mu s} / \mathrm{cm}$ (sequence $1-2.5$) with expansion $\times 5$ down to $100 \mathrm{~ns} / \mathrm{cm}$ with fine control uncalibr. $40 \mathrm{~ns} / \mathrm{cm}$ Calibrated time accuracy $\pm 3 \%$
Sweep delay time: 7 positions
from 100 ns to 1 s , with fine control 1:10 Modes: normal, search, delayed
Triggering autom. or with adjustable level of channel I, II, I/II, line or ext., pos. or neg.
Trigger coupling AC, DC and TV
Trigger sensitivity: 3 mm
in the frequence range $\mathrm{DC} \cdot 30 \mathrm{MHz}$
Output for sweep voltage approx. 5 Vpp

Horizontal Amplifier \mathbf{X}

Frequency range $0-2 \mathrm{MHz}(-3 \mathrm{~dB})$
Deflection coefficients: 12 calibr. pos.
$5 \mathrm{mVpp} / \mathrm{cm}-20 \mathrm{Vpp} / \mathrm{cm}$ (sequence $1-2-5$
with fine control uncal to $2 \mathrm{mVpp} / \mathrm{cm}$ Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$ (input via channel II)

Miscellaneous

Cathode-ray tube $131 \mathrm{~B} \times$ B $31,13 \mathrm{~cm} \varnothing$ Built-in square-wave generator 1 kHz for probe adjustment ($0,2 \mathrm{Vpp} \pm 1 \%$) Input for Z modulation (5 Vpp TTL level) Electronic stabilization incl. high voltage Power supply for $110,127,220,237 \mathrm{~V}$ Permissible line voltage fluctuatıons $\pm 10 \%$ Mains frequence range $50 \cdot 60 \mathrm{~Hz}$
Power consumption approx. 34 W
Weight approx. $8,1 \mathrm{~kg}$
Case $212 \times 237 \times 380 \mathrm{~mm}$, anthracite, with handle and tilt stirrup.

Bandwidth $0-15 \mathrm{MHz}$
Screen $8 \times 10 \mathrm{~cm}$
Delayed Sweep
Triggering 0.30 MHz

The HM 412 particulary illustrates which standard of performance HAMEG oscilloscopes have reached today in this price class. In spite of its large-scale equipment it comes up to the requirements for simple operations The engineering of the HM 412 is mainly based on integrated circuits and module technology. All supply voitages are electronically stabilized. Therefore the operation is very stable even under higher mains fluctuations. The timebase operates with the new LPS triggering technique developed by HAMEG, by which even signals up to 30 MHz are stably triggered. By the installed Sweep Delay - such as with oscilloscopes with second timebase - even smallest details can be well displayed and made visible by cut.out magnification.
Because of the relatively large bandwidth and numerous modes of operation the HM 412 mav be used in all technical fields.

Available Accessories

10: 1 probe, demodulating probe, various test leads, viewing hood, dual-trace unit, registration camera, instrument cart, carrying case, components tester.

ELECTRONICS
LIMITED

Specifications

HM 312

Modes of operation

Channel I, channel I and II
Channel switching alt. or chop.
(chopper frequency approx. 120 kHz)
$\mathrm{X}-\mathrm{Y}$ operation, ratio $1: 1$
(X signal via channel II)

Vertical Amplifier Y

Frequency range of both channels $0.10 \mathrm{MHz}(.3 \mathrm{~dB}), 0.15 \mathrm{MHz}(-6 \mathrm{~dB})$
Risetime: approx. 35 ns
Overshoot maximum 1\%
Deflection coefficients: 12 calibr. pos.
$5 \mathrm{mVpp} / \mathrm{cm} \cdot 20 \mathrm{Vpp} / \mathrm{cm}$ (sequence $1-2-5$)
Accuracy of calibr. positions $\pm 3 \%$
Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$
Input selectable DC.AC-GD
Max. admissible input voltage 500 V DC
Error of linearity maximum 2%

Timebase

Deflection coefficients: 18 positıons
$0.2 \mathrm{~s} / \mathrm{cm}-0.5 \mu \mathrm{~s} / \mathrm{cm}$ (sequence $1-2-5$) with fine control 1.3 down to $0,15 \mu \mathrm{~s} / \mathrm{cm}$ Accuracy of calibr. positions $\pm 5 \%$
Triggering autom, or with adjustable level pos or neg of channell, Il or external Trigger sensitivity: 3 mm
in the frequency range $3 \mathrm{~Hz}-30 \mathrm{MHz}$ TV push button for frame frequency Output for sweep voltage approx. 5 Vpp

Horizontal Amplifier X

Frequency range $0.9 \mathrm{MHz}(-3 \mathrm{~dB})$
Deflection coefficients: 12 calibr. pos
$5 \mathrm{mVpp} / \mathrm{cm}, 20 \mathrm{Vpp}, \mathrm{cm}$ (sequence 1-2-5)
Input impedance 1 MOhm //25pF
(input via channel If)

Miscellaneous

Cathode-ray tube $131 \mathrm{~B} \times \mathrm{B} 31,13 \mathrm{~cm} \emptyset$ Bullt-in square wave generator 1 kHz for probe adjustment $(0,2 \mathrm{Vpp} \pm 1 \%)$ Electronic stabilization of all important voltages incl high voltage (2 kV) Power supply for $110,127,220,237 \mathrm{~V}$ Permissible line voltage fluctuations $\pm 10 \%$ Mains frequency range $50 \cdot 60 \mathrm{~Hz}$
Power consumption approx. 26 W
Weight approx. 7.5 kg
Case $212 \times 237 \times 380 \mathrm{~mm}$, anthracite, with handle and tilt stirrup.

Bandwidth $0-10 \mathrm{MHz} \square$ Triggering up to 30 MHz Dual-channel device \square Screen $8 \times 10 \mathrm{~cm}$

The latest model of the HM312 Universal Oscilloscope is the result of many years experience in this field. Thousands of its predecessors have already been distributed throughout the world. The measuring amplifier now has two channels with electronic switching. In addition, XY-display in the ratio 1:1 is possible. The controls and connectors on front panel have been given a clearly and neatly arranged layout. Particularly impressive are the stable triggering and the relatively good measuring accuracy. The effective screen area within the square frame measures 8×10 cm . All main supply voltages are electronically stabilized. For the display of low-speed phenomena, the HM 312 can also be supplied with a tube with long persistence characteristic. The instrument is applicable in all areas of technology, but more particularly in electronics including television.

Available Accessories

10: 1 probe, demodulating probe, various test leads, viewing hood, dual-trace unit, registration camera, instrument cart, carrying case, components tester.

Distributed by

SP 100 Oscilloscope Probe Kit

Part No. 900-95-522

This passive probe incorporates a three-position slide switch in the head and has a cable length of 1.5 metres. The specification is as follows.

Position $\times 1$
Bandwidth Input Resistance: Input Capacity:
Working Voltage:
Cable Length:

$$
\text { D.C. to } 10 \mathrm{MHz}
$$

1MS? (oscilloscope input)
40pF. Plus oscilloscope capacity
600 Volts D.C. (including Peak A.C.)
1.5 Metres

Position Ref.
Probe tip grounded via 9M? ? resistor, oscilloscope input grounded
Position $\times 10$
Bandwidth:
Risetime:
Input Resistance:
D.C. to 100 MHz
3.5 nanaseconds

10M I when used with oscilloscopes which have 1MS? input.
(Probe resistance 9MS2 $\pm 1 \%$)
Input Capacity: $\quad 11.5 \mathrm{pF}$ when used with oscilloscopes which have a 30 pF input capacity.
For other values see graph.
Compensation Range:
10 60pF
Working Voltage: $\quad 600$ Volts D.C. (including Peak A.C.)

Accessories Supplied
Insulating Tip Pt. No. 113016
Sprung Hook Pt. No. 120079
Trimmer Tool Pt. No. 113012
BNC Adaptor Pt. No. 100017
I.C. Tip Pt. No. 113091

SP250 Oscilloscope Probe Kit

Part No. 900-91-546

Probe Specification

Bandwidth $\times 10$
Rise Time $\times 10$
Greater than 250 MHZ
Input Resistance
Input Capacity
Less than 1.4 n . S
10M when connected to a C.R.O.
Having 1M input resistance
12.5 PF when connected and
compensated to C.R.O. with
15PF input.
Compensation Range 10-61 PF
Working Voltage
660 V D.C. (including peak A.C.)

Accessories Supplied

Trimmer Tool	Pt. No. 113012
Insulating Tip	Pt. No. 113016
Sprung Hook	Pt. No. 120079
I.C. Tip	Pt. No. 120091
BNC Adaptor	Pt. No. 100017
Bandwidth $\times 10$	Greater than 250 MHZ

Distributed by

ELECTRONICS

Contributing Audio Editor WALLACE J. PARSONS

EDITORIAL AND ADVERTISING

 OFFICESUnit 6, 25 Overlea Boulevard,
Toronto, Ontario, M4H 1B1
Telephone (416) 423-3262
Second Class Mail registration number 3955. Return postage guaranteed. Post Office returns to Unit 6, 25 Overlea Boulevard, Toronto. Ontario, M4H 181.

Published by Electronics Today International (Canada) Ltd.
Printed by Livingstone Printing Ltd News Stand Distribution Gordon \& Gotch, Toronto.

Subscription Rates $\$ 12.00$ per year, $\$ 20.00$ for two years.
Copyright: All material is subject to world-wide Copyright protection. All reasonable care is taken to ensure the accuracy of the information.

ALL ETI PCB PATTERNS ARE COPYRIGHT. no COmpany may sell boards to our DESIGNS WITHOUT OUR PERMISSION.

INTERNATIONAL EDITIONS
Electronics Today International 25-27 Oxford St., London W1R 1RF, UK. Editor Halvor Moorshead.

Electronics Today International, Ryrie House. 15 Boundary St., Rushcutters Bay, Sydney, Australia. Editor Collyn Rivers.

Electronica Top Internationaal, Postbus 260. Emmen, Holland. Editor Anton Kriegsman

Elrad, Kommanditgesellschaft, Bissendorier Strasse 8, 3000 Hannover 61, Germany. Editor Udo Wittig.
electronics toda
international
incorporating electronic workshop
CANADA'S ELECTRONICS MAGAZINE
PROJECTS
ELECTRONIC SHUTTER TIMER 35
Digital timing of optical pulses.
RAIN ALARM 50
This portable unit tells you when to pack up your picnic.
DIGITAL-DISPLAY AUDIO OSCILLATOR 41
Turn the knob and watch the numbers change
PROJECT IDEA: ROULETTE WHEEL 48
A beginners' project and the first of our 'Project Ideas'
FEATURES
ELECTRONICS IN MODEL RAILWAYS 14
Peter Thorne shows us some circuits.
ETI's SCOPE SURVEY 20
Over one hundred scopes to choose from.
ETI DATA SHEET 58
ULN 2232A: Motion detector \& sound generator IC.
ETI SOFTSPOT 64
Calculate when your mortgage will bankrupt you.
TECH TIPS 68
Ideas for experimenters.
NEWS \& COLUMNS
NEWS DIGEST 6
MICROFILE 9
AUDIO TODAY 10
NEW: SERVICE NEWS 55
SHORT WAVE WORLD 62
THE FUN OF ELECTRONICS 72
INFO \& MISCELLANEOUS
ETI Subscriptions 7
ETI T-Shirts 49
Audio Today Letters 13
ETI Binders 56 56
ETI Canadian Projects Book 18
ETI Panel Transfers 27
Next Month's ET 33
ETI Feedback 34
Classified Ads 59
Four Circuits Books 63
The Fun of Electronics 72
ETI Back Issues 34
ETI Publications 74
Calculator Users Handbook. . 47 Reader Service Information 7674
Transistor Equivalents Book . 47 ETI Marketplace
This month's cover shows a detail of a model railroader's dream, kindly lent to us by George's Trains of Toronto.

NEWS DIGEST

Sweep Function Generator

A new $A C$ or battery Lin Log sweep function generator has been introduced by Exact Electronics and is available in Canada from Webster Instruments Ltd. The model 117 offers sine, square, triangle, ramp and pulse outputs with the main output variable up to 15 V p-p open circuit or 7.5 V p-p into 600 ohms. Independent auxiliary triangle, pulse, ramp and low sine outputs are also available simultaneously with an independent amplitude control on the low sine. The 117 can be
swept internally or externally with battery as well as AC operation.

Three frequency ranges cover 2 Hz to 200 KHz . Frequency control may be internal, with a frequency dial, or automatically swept over a thousand to one range either linearly or logarithmically.

For more information contact Mr. Roger Webster, Webster Instruments Ltd. PO Box 427 Port Credit PS, Mississauga, Ontario L5G 4M1. (416) 275-2270.

The Latest Craze: Home Sphygmamanometry

The consumer is saved. Christmas was coming and it looked like there wouldn't be a new electronic necessity invented in time for the fall season of consumer manipulation. We were worrying that we'd just get revamps of previous years' products - video games, smoke detectors, computers, or even video recorders.

But electronic fashion-followers have been rescued by a company called Lumiscope. And Marketron in Toronto (the centre of the New Wave in electronic fashion) is specially importing a couple of the new products: the Lumi-Tronic II and the Ultima IV.
The deluxe modelis the Lumi-Tronic,
which sells for $\$ 89.95$. Featuring 'No Stethoscope Required', 'Electronic Gauge', 'Auto Valve', 'Easy-On Gabardine Cuff' and 'Colored Leatherette Case', this unit has synchronised flashing lights and "audible beep", it is self-bleeding and preset to assure exact deflation rate.

The Ultima is only $\$ 42$ and features 'The Lumi-Gauge', 'The Lumi-Valve', 'The Lumi-Cuff', and free 'Nurse's Stethoscope'. There's no mention of it glowing in the dark, but the LumiGauge has a 'beautiful color-hued dial face, color coordinated with the rest of the unit'
All you could want in a bloodpressure meter.

Another Great Catalogue Surfaces

Funny how things happen. You announce you are going to do Catalogue Survey and you get maybe one or two companies responding. But print the survey and out they come the catalogues you've managed without (amazingly) for years. This month we have one from Edmonton:
The Cardinal Industrial Electronics Catalogue is another one in the Electro Sonic class. It has 868 pages (pages about 80% ETI-size) covering the whole "industrial" range with generous data. The catalogue also relates to products stocked by Cardinal's affiated company in Vancouver, RAE Industrial Electronics. There are some prices in the catalogue but they're likely to be out of date. We don't know when the catalogue was published. The price of the book is $\$ 5$.
From RAE Industrial Electronics Ltd., 1629 Main, Street, Vancouver, BC, V6A 2W5; (604) 687-2621.

Or from Cardinal Industrial Electronics Ltd., 11619145 St. Edmonton, Alberta, T5M 1V9; (403) 455-4122.

Data On Wedgebase Lamps And LEDs

Chicago Miniature Lamp Works has recently published a new data sheet on the company's miniature and subminiature all-glass wedge-base lamps.

Designed principally for avionic electronic, appliance and automotive applications these lamps are easily loaded into their sockets by a simple push.

A new 20-page catalog (\#7900) featuring their complete line of solid state LED lamps has also been published by Chicago Miniature Lamp Works.

The catalog includes standard and high-brightness LEDs as well as wideangle, short and tapered lens, low current and rectangular devices. Each product category is accompanied by tables and charts of optical, electrical and dimensional characteristics.

For more information on either publication, contact Doug Pettifer, Lenbrook Industries Limited, 1145 Bellamy Road N, Scarborough, Ontario M1H 1H5; telephone (416) 438-4610.

NEWS DIGESTI

Multimeter Survey Update

Here are the correct prices for Philips Multimeters: PM2522A \$760, PM2523 \$610, PM2524 \$1245, PM2527 \$2590, PM2517 \$431. The prices include duty and FST. We do not have details on the PM2526 and PM2513

Canadian Phone System For Jeddah

One of the largest private digital telecommunications systems in the world has been shipped from Canada to Jeddah, Saudi Arabia. A 3,000 -line SL-1 digital EPABX (electronic private automatic branch exchangel manufactured for export by Northern Telecom will replace three existing telecommunications systems and serve all administrative and shipping facilities in Jeddah harbour. It is the largest SL-1 system so far produced by Northern Telecom and will eventually be expanded to 5,000 lines. Jeddah is the major port on the Red Sea for outbound Arab oil.

One-Inch Video On Location

CFTO-TV Limited (Toronto) recently purchased one-inch video equipment from Sony of Canada. Sony say this is the first time a major Canadian broadcaster will use one inch VTR equipment for on-location shooting and editing of major tele vision productions

Scope Theft

The following items were stolen on June 30, 1978 from the premises of BCS Electronics Ltd. 980 Alness St., Unit 35, Downsview, Ontario. Loss has been reported to the Police of No. 32 Division, Downsview, Ont

Items stolen are as follows:
a) 2 Models HM307 Oscilloscopes, serial numbers 2552 and 2558
b) 1 Model HM812 Storage Oscilloscope, serial number 43327

Anti-Static Desoldering

Silverstat Soldapullt anti-static desoldering tool protects sensitive FET and MOSFET semiconductor devices from failure due to static electricity. Its conductive plastic tip and barrel housing allows any built-up static
charge to drain off harmlessly through the hand to ground. There are no conductive straps attached to the tool.

For further information contact Len Finkler Limited, 25 Toro Road, Downsview, Ontario, M3J 2A6

Some people have problems buying ETI at the newsstand. But no matter who you are or where you live you can have your personal copy of ETI delivered every month - by taking out a subscription.

To: ELECTRONICS TODAY INTERNATIONAL, Unit 6, 25 Overlea Blvd., Toronto, Ont. M4H 1B1
\square Send me ETI for one year (12 issues) for $\$ 12.00 \square$ Send me ETI for two years (24 issues) for $\$ 20.00$ For U.S. add $\$ 3.00$ per year for postage, outside North America add $\$ 5.00$ per year.
START?
March ETI is mailed to subscribers in February and we have to tell our computar to make up labels in late January. So if you want your subscripilon fo start with the March issue wo have to receive your order by mid-January. For the September issue we have to know by mid-July: you typically have to wait six weoks between sending in your order and recelving your first subscription copy

9/78 NAME \qquad
PLEASE ADDRESS \qquad PRINT TOWN/CITY \qquad PROVINCE/STATE CLEARLY

CODE DATE \qquad
\square Cheque enclosed. DO NOT send cash.
\square Bill Mastercharge A/C No. \qquad Signature

- Bill Chargex

A/C No. Expiry Date

Power Supply With
 Circuit Testing

A new line of power supplies from VIZ Test Instruments incorporates circuittesting capabilities into fully regulated laboratory-type power supplies. In addition to providing power regulated at better than 0.075%, VIZ "Supplysts" will indicate two independent external dc voltages from 0-99.9V on twin 3-digit LED displays. The LEDs also indicate supply output voltage and current at the flip of a switch.

The VIZ Dual Supplyst, Model WP707, provides two outputs independently adjustable to 0.1 V in five ranges from 0-25 V . The full-load output current is $0-2 \mathrm{~A}$ over the entire voltage range. Load regulation is better than 0.075% over the full operating range; line regulation is better than 0.05% at full output voltage and current when the input voltage is $105-130 \mathrm{Vac}$. Ripple is 5 mV max. peak-to-peak, and there is no overshoot on turn-on, turn-off, or reset. Output impedance is 1 ohm , dc to 10 kHz , and output-vs-temperature derating is $0.01 \% /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

The unit has current-limiting overload and short-circuit protection; each output has its own LED to indicate an overload, and its own reset button.

Single-output voltage and current can be monitored simultaneously on the two digital displays, or the displays can show voltage and/or current of either or both outputs. The two outputs can be connected in series for 0.50 V at up to 2 A .
Separate input terminals on the front
panel permit independent external voltage measurements, with two sets of test leads supplied. Input impedance for the voltmeters is 5 megohms.

The press release sent to ETI from the US quotes a "dealer-optional" price of $\$ 299$. If you want to know what that means to an ETI reader in Canada, contact Robert Liska, VIZ Test Instruments Group, VIZ Mfg Co, 335 E Price Street, Philadelphia, PA 19124, USA; telephone (215) 844-2626.

Power Engineering Scope

The BWD 880 Powerscope, produced in Australia, is claimed to be the first instrument of its kind dedicated to measurement of voltage, current, phase angles and time in the field of power engineering. World patent rights have been lodged for this innovative instrument, which should have an immediate appeal to power engineers needing a safe means of measuring high voltages and displaying them for visual evaluation.

Industries, utilities and educational establishments using thyristors, triacs, ignitrons, magnetic amplifiers, etc. to control 1,2 or 3 phase power for motors, lights, heaters or welders can employ Powerscope for design, monitoring, field service and teaching.

Operator safety is provided by a fully insulated panel, controls and probes, fitted with shrouded high voltage connectors and closed conformity to IEC 348 safety requirements.

The high CMR of each amplifier enables signals down to $100 \mathrm{mV} p-\mathrm{p}$ to be measured across components operating in 600 V RMS 3 phase or 350 V RMS single phase supplies.

Phase measurement is by a 10 wide
intensifed marker pulse with digital readout, selectable by an up/down counter from 0° to 359°. Zero reference is also selectable in 60° steps from 0° to 300°. Phase circuit operates automatically over the range 25 Hz to 2 KHz and may also be used to provide digital trigger delay in 10 steps for the time base.

More information in this issue's Oscilloscope Survey.

Micronta DMM

In compiling our DMM survey we checked the Radio Shack catalogue for possible equipment and found none. However Radio Shack do have a DMM, as explained below by Dave Walton of Radio Shack 5257:

1 just finished reading your article on digital multimeters in the July issue. You mention that the Micronta meter is being marketed by Radio Shack in England and may be available in Canada shortly. The Micronta DMM is available for over the counterdelivery at most of the over 600 Radio Shack stores and dealers in Canada. Dealers in smaller centres maynot stock the meter but can obtain them for their customers. The current retail price of the meter is $\$ 79.95$ and its stocknumber is 22-199.

Analog Device Literature

The latest 20-page issue of Analog Dialogue (Vol. 12, No. 1) includes application riotes and new product descriptions, including applications for multiplying DACs, a semiconductor temperature sensor, a complete monolithic 10-bit A/D converter, offset voltage effects with glassencapsulated diodes, a low-drift superbeta op-amp, fast 6-decade logarithmic amplifiers, analog I/O boards, a low-cost 12 -bit multiplying D/A converter, and five new product descriptions.
The new 600-page Data Acquisition Products Catalog contains tutorial sections and full data sheet information on Analog Devices' complete product line of precision data acquisition components, data converters, signal conditioning components, temperature transducers, digital panel meters and instruments, computer interface products, and microcomputercompatible analog I/O subsystems. Pricing for several different quantities is included for the products.

For a free copy of either publication, write: Analog Devices, Inc, PO Box280, Route 1 Industrial Park, Norwood, Massachusetts 02062, USA; telephone: (617) 329-4700.

Canadian Inventor's Video Ideas

Donald L. Orr, of Edmonton, has sent us details of his inventions. He invites approaches from interested manufacturers. Mr. Orr doesn't say whether he has working prototypes of his inventions, or whether his inventions are just theoretical.

The inventions are a 'flying hole' video camera, a 'flying hole' display (flatscreen or projected), and a 'holographic' TV display.

The 3D TV combines storage CRT, LCD, and laser technology.

The 'flying hole' devices are based on

Single Chip Micro with On-Board NMOS A/D

Intel Corporation's first low-cost, general-purpose single-chip microcomputer ever to contain a full analog-to-digital converter has been announced. Aimed at high-volume control applications, the microcomputer is ideal for applications in home appliances, test and measurement instruments, automotive, process control, environmental control, sensing/recording instruments and other control applications. The 8022 is software compatible with other singlechip microcomputers in the MCS-48 family.

Features are: - 2-channel, - 8-bit NMOS A/D converter three input ports, one of which can detect digital states. This, in conjunction with the A/D converter, permits the 8022 to interface up to 8 analog signals. © zerocross detection capability (which facilitates creating a real-time clock or timing synchronized with AC). interrupt capability to permit the 8022 to react and handle randomly occurring events. - the ability to operate on a broad range of power supply voltage.
Intel Corporation, 3065 Bowers Avenue, Santa Udna, California 95051

Imsaider

The Imsaider, a customer newletter from Imsai Manufacturing Corporation, is now a bimonthly publicationina glossy magazine format. Its purpose is
"To establish communication with all the people who purchased Imsai equipment, and as the capabilities, the usefulness and the performance of our products are improved or expanded, to make that information available." To customers it is available by subscription at $\$ 4.00$ per year. Dealers
a matrix of addressable ECOTS (electrically-controlled optical transmission switches). Mr. Orr has details of the addressing method and of the construction of the individual ECOTS cells (which utilise polarizers and electrical sandwiches of a nematic liquid).

Contact D. L. Orr, Box 1632, Edmonton, Alberta, T5J 2N9. Business: (403) 478-6784.

are encouraged to have copies for sale at $\$ 1.00$ a copy.

Featured in the June issue (Vol. 1 No. 2) are articles about the new Fortran IV software, a description of what's in the MPU-B Board, and an explanation of a few of the enhancements available in Imdos, Imsai's multi floppy disk operating system. In future issues, look for articles on new products, such as the Imsai VDP-40 (Video Data Processing System), software applications programs, and other articles.

IMSAI Manufacturing Corporation, 14860 Wicks Blvd., San Leandro, Ca. 94577. (415) 483-2093.

Cheaper VIP

The US price on the RCA VIP (Video Interface Processor) home computer has been reduced to $\$ 249.00$ from $\$ 299.95$. The reduction is possible because of increasing production volume and declining costs of 4 K static RAMs.

The VIP is a microcomputer based on the RCA Cosmac (CDP1802) microprocessor, and is designed to interface directly with a video monitor or modified TV set. Itcontains a sixteenkey keypad for entering programs and has a built-in audio cassette interface.

Digital Output Boards

Plug-compatible 16 or 32 channel isolated digital output systems are now available for Intel SBC 80 anc Intellec MDS microcomputers. The new units, Burr-Brown models MP801 and MP802, are available in Canada from Allan Crawford Associates Ltd. The isolation provided by these units eliminates ground loop problems and protects the microcomputer from real world transients and malfunctions.

Memory mapped MP801 (16 channel) or MP802 (32 channel)

Semiconductors For Fiber Optics

A specially characterized series of photodetectors and photoemitters signifies Motorola's entry into the growing market for fiber optic interface devices.

Offered in selected glass lensed metal packages compatible with AMP fiber optic connectors, the initial devices are suited to low frequency transmission of digital pulse signals through the insulating fiber medium for applications in medical electronics, industrial controls, microprocessor systems and security systems.
systems are contained on a single PCB and provide all control and timing circuitry. Channels are implemented by dry reed relays protected by metaloxide varistors and can handle up to 10 watts. Relays, with a life of 10^{6} operations, provide low "on impedance", high output current and isolate output channels from the computer bus (to 600 VDC) and from channel-to-channel (300 VDC).

MP801 and MP802 are mechanically and electrically compatible with the Intel units and operate from their +5 VDC supply. They are treated as memory by the CPU - eight output channels occupying one memory location. A logic 1 will close an output; a logic 0 will open the output. Outputs can switch inductive loads.

For more information contact Mr. Malcolm Mercer Allan Crawford Associates Ltd., 6503 Northam Drive, Mississauga, Ontario L4V 1J2 (416) 678-1500.

Cesco Microcomputer Catalogue

A 32-page catalogue from Cesco contains 7 pages of Motorola products, 2 of RCA products, 2 on Signetics, 2 on AMI, and one each on TI and Intersil. There's a two-page cross-reference guide, an eleven-page availability guide, plus an introtomicrocomputers, a page on Hammond Power Supplies and details of Cesco's PROM programming service. In the words of Cesco's Arnold Goodman: "You will note that this deals with the more sophisticated equipment from major electronics manufacturers, rather than the rock-bottom 'Toys' that are on the market".
Cesco Electronics Ltd., 4050 Jean Talon St. W., Montreal, H4P 1W1 Phone (514) 735-5511.

Developments in audio reviewed by Wally Parsons

ONCE UPON A TIME there was a phenomenon known as "High Fidelity". This had nothing to do with grounds for divorce, (although many wives at the time wished it could be cited as grounds for same) but was a development of what happened when professional workers in audio took their superpowered (all of ten watts, some of those brutes) amplifiers and theatre speakers home to listen to records and break leases. Quickly, a rather small, specialized industry developed, with a pretty high level of fraternity and of engineering. Pretty soon we had highfidelity lingerie, high-fidelity desklamps, even high-fidelity lipstick. Manufacturers often made optimistic claims for their own products, but, on the whole, equipment advertising tended to be a "just the facts, ma'am" approach, and most of the better stuff delivered what it promised.

Then, as the '50's drew to a close, and music seemed destined for oblivion, stereo was introduced, and at the same time, a lot of marketing people, ever on the alert for a way to make a buck, realized that they had struck oil. Suddenly, stereo became a "consumer" (whatever a consumer is) commodity, ready to be exploitèd with all the hype, exaggeration, half-tiruths, and lies that the advertising man is so good at, using tools honed to a fine edge in Detroit.

Consequently, last year's "breakthrough" is suddenly obsolete, eclipsed by this year's "dramatic new developments". Many of Japan's wunderkinden have only recently discovered how to build an OFL amplifier and hailit as a second coming. Mitsubishi proudly proclaims its "DM Factor". This great achievement stands
for "Dual Monaural" - which, presumably, refers to two persons, each with one ear). Just imagine: two, count 'em, two separate amplifiers in one chassis, for the ultimate in stereo separations, indeed "more. than stereo". And it's exclusive with Matsubishi, theysay, a revelation which would undoubtedly be of interest to all its competitors, were it not for the fact that they too indulge in the same kind of nonsense.

Like Sansui's revolutionary new "rear driven tweeter", which bears a suspicious resemblance to one of $\mathrm{J} B$ Lansing's trustworthy work-horses.

A few years ago Phase Linear introduced a rather complex expander circuit which they dubbed a "Downward Expander" and "Peak Unlimiter", which performed a function previously available only on professional studio equipment. And a useful device it is, too. Above a certain level it provides expansion, intended to counteract the effects of limiting in the programme source, and below another level adds additional expansion to counter the compression often introduced in the programme. We are now asked to believe that this circuit actually reads the mind of some recording engineer who, months, or even years, ago decided that the recording level was too low, and nudged the pot up a little. The implication is that it knows when the musicians were simply playing softer and so makes no changes.

But such is the advertising mentality and the functional illiteracy which it nurtures. And such is public apathy and mental laziness that we swallow more and more of this garbage and even reward the pointy-headed fraternity by
buying their products rather than those of more substantial minds.

But now, it seems, even the last bastion of honesty is beginning to crack, namely the learned magazine paper. There used to be a time when audio magazine articles were written by serious workers, working either independently, or with a research team of a manufacturer and, to be sure, a paper might describe the results of a research. project which would shortly produce some product or other for the audio market-place. This is a perfectly proper and respectable practice.

HYPE '78

However, two examples from one of the most prestigious of U.S. publications show an alarming trend in the direction of hype. One was entitled "Phone Reproduction 1978" and was by-lined by six different authors, all described as having one official capacity or another with some unnamed manufacturer. Asitturned out, it proved to be an excellent article, informative, well organized, and quite detailed. But it certainly did not deal with phonograph reoroduction in 1978 - unless you believe that phonograph reproduction begins and ends with the Shure Model V-15, Type IV. Because that was the real subject of the article. Now, don't misunderstand; I, and surely many others, am very interested in the research and design philosophy which went inot this product, even though I have not yet had the opportunity to sample this alleged marvel. But I don't have to be enticed, and I resent being conned. But then, Shure claims to have "invented" the moving magnet pickup, so maybe one shouldn't be surprised.

RECORDING REVOLUTION

The second example, from the same publication, was entitled "A New Recording System". Wow! This I gotta see. The reader should understand that your old professor has a certain wideeyed streak in his make-up. That means that l'll look at almost any proposition, eagerly. But that's about as far as the wide-eyed streak goes.

Now, this fantastic revolutionary development was described by a senior engineer of Tandbergs Radiofabrikk, of Norway, manufacturers of tape recorders of that name, and can be summed up in Fig. 1. This is the "new recording system" - a push-pull amplifier with current feedback, which, because of it's high output impedance they have chosen to call a "transconductance amplifier", mainly because a voltage change at the input produces a current change in the output. That's reaching a bit, but it's close enough, Iguess, for the consumer hi-fi.

Fig. 1. Tape head driver circuit.

One of the criticisms of "convential" old fashioned "systems" made was that they use passive summing of signal and bias current, and this circuit eliminates the resulting problems. How? Well, it looks to these eyes like a very simple summing circuit, and the only reason that bias current is isolated from the signal amplifier is that L2 and C8 form a trap, and it still requires C 5 to remove residual bias. C'mon,guys.

The pity of this is that it really is an excellent circuit, even if it isn't very sophisticated. The prime virtue is the large amount of headroom, due in part to the push-pull circuitry, and in part to the fact tha current feed back raises the output impedance without affecting the
power output (What's that, you say, you didn't know recording amplifiers were power amplifiers?). More common systems use a series resistance in the output, but since this is considerably higher than the record head impedance, most of the power is dissipated in it, reducing the headroom. However, it does provide greater isolation of the bias signal.

Readers who are interested in another sophisticated recording amplifier circuit should dig out the November ETI and read part 2 of "VFets for Everyone". Still, I like the circuit. In fact, some aspects of it might even be worth stealing. Serves them right!

Audio Today Products

Audio developments reviewed by ETI's Contributing Audio Editor Wally Parsons

REVOX B790 TURNTABLE

Available from Studer Revox Canada Ltd., 14 Banigan Dr., Toronto, Ont. M4H 1E9, this is surely one of the sexiest looking tables on the market. Revox' first turntable, it features a magnetic suspension of the tangential arm, controlled by the push-buttons, so that the pickup is never touched.

The turntable itself is a quartz crystal controlled direct drive machine with digital LED readout of actual speed. Initially the B790 will come with a factory installed Ortofon VMS20E pickup (although other pickups can be installed) at a list price of $\$ 899.00$. That's not a bad price, really.

ACCU PULSE SPEAKERS

ACCU12 and ACCU10 loudspeakers are two-way units manufactured by ACCU Pulse Loudspeaker Co., 150 Cathcart St., Hamilton, Ont., L8L 5A4.

Both models are described by the manufacturers as possessing high efficiency, but no specifications are actually given. Both are said to use 4 lb woofer magnets which could give a combination of high sensitivity and high damping, even with 1.5 inch voice coils. They are described as being phase inversion types, which implies bass reflex, but the literature description reads more like either a short labyrinth or acoustical resistance. Basically, though, the designs seem fairly conventional except for the claimed extensive internal bracing, the absence of which is a common cause of resonance colourations in many speakers, the use of a $6 \mathrm{~dB} /$ oct crossover, which, if properly designed is inherently phase coherent, and the butyl surround of the woofer, a more expensive, but superior material to the more common plastic foam. Although, why anyone would use an electrolytic capacitor in the crossover, with the resulting distortion, and cross-over inaccuracies, is beyond me. As yet, l've had no opportunity to audition this unit, but I will try. Price unknown.

WATSON MODEL 10

From Watson Laboratories, 2711 Rena Rd., Mississauga, Ont. L4T 3K1, this is a product of the fertile mind of William Dayton-Wright, of Electrostatic fame, and represents the more exotic extreme of Canadian Loudspeaker manufacturing. The woofer system (the

large box on the bottom) is described as a "Gas Linearised Compliance System", and one might be tempted to dub it, irreverently, as "the Gas Bag", however, anyone who has heard the Dayton-Wright Electrostatics would be well advised to restrain his wit. Actually, the enclosure is filled with little bags containing SF_{6}, an inert gas whose thermal characteristics and sound

propagation rate is said to lower system resonance and distortion.

Similarily, the rather strange looking arrangement for the rest of the system is based on theories developed by Mr. Wright as a result of his own research. Again, I have yet to hear them. Anyway, write to Watson Labs for a brochure with some meat in it. No hype, honest. But expensive.

Audio Today Letters

If you want to express your views or report on news write to Audio Today, ETI Magazine, Unit Six, 25 Overlea Blvd, Toronto. Ont. M4H 1 B1.

OLD RECORDER \& NEW TAPE

I have an open reel tape machine, and wish to use some of the recent high performance tapes with it. Most attempts have been unsatisfactory, and I understand that I must adjust the recorder to suit the tape. Any dealers I've spoken to advise me to get a new machine. Although mine is about ten years old, it was quite expensive in its day, and l'd like to get several more years use out of it. Any suggestions?
D. W. Calgary

I sure do. First of all, dealers make money by selling equipment, not modifying it, and a dealer has to be pretty dedicated to his customer's happiness to advise this route. From the dealer's standpoint there is some justification in that it isn't always easy to predict the effectiveness of such a procedure. He may have learned the hard way that sometimes customers have ethics which are even lower than those they attribute to dealers, and that all he'll get for his pains is a lot of abuse.
But if it really is a good machine, there should be some provision for adjusting bias, equalization, and record meter calibration.

These three are essential, and if they do not have the range required, the circuits will have to bemodified. Idon't want to throw any wet blankets around, but this is not a simple little job, and without adequate test equipment you could end up creating a lot of trouble for yourself.

In many large cities it is possible to find a few service persons who specialize in quality custom work, but it will take some looking. Remember too, that before undertaking such a project the machine will have to be put in top condition to provide a reasonable point of departure. This may include head replacement. At this point l'm sure you can see the dollar sign sprouting, and you may be wondering what the local pawn broker will give you for the family jewels. Unfortunately, I can't tell you whether it's worth it or not.

While we're on the subject, and realizing that a high percentage of ETI's readers are employed in service, this is as good a time as any to invite anyone who is involved in such specialty services to drop me a line, so I can add your name to my files. That would make it easier to add a referral to my reply to the above letter.

Electronics In Model Railways

A profile of how electronics is applied to a hobby which is essentially scale modelling. By Peter J. Thorne.
"PLAYING WITH TRAINS" is probably how most readers would describe Model Railroading, the latter being the much preferred expression for something over 200,000 hobbyists in North America alone. Of course, there's a heck of a lot more who do just "play with trains". Names such as Hornby Dublo, Triang or Wrenn bring back memories of bygone youth to many an expatriate Briton, and likewise with American Flyer, Lionel or Mantua for many Canadians.

However, the hobby is not just one of running a train around a circle of track under the Christmas tree; the mature model railroader invests a great deal of effort into scale realism of operating models, structures, scenery and track. And if you tie that need for realism into the extensive growth of electronics as a hobby in the last ten years or so, you'll see why the expert on precision scale operation is keenly interested in how electronics can help this hobby.

Or, to look at it another way, there are so many variables possible in controlling several trains on a model railroad - as indeed there is in a real one - that it's not surprising that several companies have used model railroads at trade shows to demonstrate microprocessor versatility. A recent example was discussed in Byte magazine for July 1977.

Apart from computer control, which is really outside the scope of this short article, there are several uses for bcth digital and analog electronics in the model train empire. Let's discuss them in stages - control, signalling, lighting and sound.

CONTROL

Most model locomotives use 3,5 or 7 pole D C permanent magnet motors. A few use brushless, ironless rotor motors and a very few A C motors. Power is picked updirectly from the two rails, and reversal of track polarity reverses the locomotive direction except in the case of the AC motors, where an extra "kick" of A C triggers a reversing contact in the locomotive.

The Christmas train set power pack is nothing but a full wave rectifier delivering pulsating unfiltered D C to the track via a 100 ohm variable resistor as speed control. This gives very poor control at low speeds for the simple reason that stall current on a permag motor is much higher than its low speed current. Consequently there's a tendency for jackrabbit starts. Now the dyed-in-the wool hobbyists wants precise control of low speeds because nearly all layouts have miniature freight yards: box-cars and cabooses have couplers operated by magnet remote control so the operator can make up

ETI CANADA - SEPTEMBER 1978

Electronics In Model Railways

and break down his trains. The more or less ideal speed control - or one approach thereto anyway - looks like the circuit of Fig. 1. A simpler version shows on the lead photo. This type of control has several features; the variable D C output has a pulse ripple added at lower speeds to vibrate the motor armature and reduce motor
cogging and "stiction", secondly it has a low source impedance for the motor, thirdly a delayed action can be switched in and out so that the controlled inertia of a heavy train can be simulated together with brake levers; and lastly it's short-circuit proof by virtue of heavy duty transistors and an overload trip. The last is indeed
essential because short-circuits abound on the model railroad!
Though the circuit l've shown uses two darlington transistors, commercial versions are available, particularly from the U.S.A., using op amps, SCR control or pulse width modulation. Even the renowned Heathkit has introduced a version. The

Fig. 1. An electronic speed control for model trains.

most important feature is probably that superimposed pulse, for if it's too small in amplitude or too high in frequency, it is noteffective; butifit goes toofar in the opposite direction, the resulting buzz or rattle from the motor becomes objectionable. Anyway, you electronic fans with a dusty train set in your attic, dig it out, build a momentum-pulsethrottle and you just might pick-up an extra hobby!

In terms of current rating, the power pack shown should be capable of about 2.5 A at 12 V . This is adequate for any HO scale models, which scale $1: 87$, even with doubleheading locomotives. As you'd anticipate, the current requirements decrease with scale size - the second most popular scale is 1:160 (n for Nine mm, which is the track width) scale. Going up a size to 0 scale $(1: 48)$ many motors will need the full 2.5 A. By the way, in case you home computer builders are thinking "why waste money on electronics for toys", some of these "toy" locomotives retail for over $\$ 1,000$ apiece and lately have been appreciating in value at well over 20\% yearly

SIGNALS

A natural for digital IC application is signaling. Model signals in two (red and green) or three aspect (red, yellow, green) with operating miniature 12 V 60
mA lamps are available. Until recently, relays were widely used by modelers to operate these lamps in controlled sequence and often automatically disconnected a section of track ahead of a red signal for automatic train control. The relays used were typically low resistance coils in series with the power supply to the track. When the locomotive entered a particular track section, the relay contacts closed. All model railroads use track sections from 2 to 20 feet long insulated from each other and switchable to alternate power packs. This facilitates the operation of multiple trains.

Complete model railroads still exist using these series relays for automatic control and signaling; but they're a maintenance nightmare for their intermittently proud owners. Up todate techniques use TTL gates driving red, yellow and green LED's for signals.

Relay driver ICs can be added to drive the small 12 V signal lamps if preferred and also to operate good solid 12 V relays for automatic stops and starts.

The interface between train and TTL is a little more tricky: you've noticed, of course, that the track has only two rails which are required to conduct power (in either direction) to the locomotive. The requirement to detect locomotive presence led a few years back to a widely used detector circuit known as a "Twin-T". This was introduced by Lynn Westcott, editor emeritus of Kalmbach Publications "Model Railroader" magazine. The simple circuit is shown in Fig. 2. The circuit detects resistance between the rails as high as 50 k , but is insensitive to the connection of the power supply in the circuit, so it will respond only to the presence of a locomotive motor or any rolling stock with a 10 k to 47 k resistor wired between its wheels. Other less subtle interfaces are magnetic reed switches between the track, triggered by disc magnets under rolling stock - ideal for JK flipflop operations, or opto-electronics, where ambient light can be interrupted by the movement of rolling stock to trigger or detrigger a light activated SCR., for example.

With a light activated system, the light source and the opto detector must be angled to the track to avoid gaps between moving rolling stock causing light modulation.

All three track detection systems are, of course, suitable input interface for microprocessor control of signals . . . and track voltage, polarity, etc.

Fig. 2. Widely used "Twin T" track detector circuit. Q3's load de-energises whenever a resistance appears across track in the section being detected, regardless of whether power is connected to that track section. Consequently presence of any train or item ot rolling stock can be sensed remotely.

Fig. 3. Capacitor discharge system enables salenoids to be thrown with small average energy. System also prevents solenoid burnup if accidentally left powered-up. SCR switch control enables small current push buttons to switch heavy current. The SCR's automatically switch off when capacitor stored charge zeroes.

TURNOUT CONTROL

Turnouts, (switches, or points) control train routing. Remotecontrol of these, on the models as on the prototype has nearly always been electric. The usual method is the use of
a solenoid motor (Fig. 3). A soft iron armature can be moved into either of two high flux copper wound coils, depending on which is energised using 16 volt AC or DC. The armature is linked mechanically to the movable track section to control the train's
alternate paths. These coils, of necessity are about 2 to 4 ohms resistance and hence can draw a 4 A : if left connected to the supply for more than a second or so, the 50 W of heat show - rapidly! So recently the electronically minded modeller adopted capacitor discharge.

Typically a 220 uF capacitor charged to 25 V stores enough energy to operate a couple of the low resistance coils and as you can see from the Fig. 3 circuit, there's no fire hazard if the power is left on. Also a small transformer can be used. Also shown is a method of discharging the capacitor into the coil via an SCR, which permits the controlling push button to carry only the low SCR gate current, instead of a contact-blowing multi-ampere current.
Again, this basic control circuit is adoptable to TTL control.

SOUND

Now you hi-fi fans. know it's impossible to reproduce the sound of a gigantic steam locomotive without a 100 W amp and a 4 cubic foot bass reflex enclosure. Except those model railroad nuts don't believe you! Quite expensive, at about US $\$ 350$, is a Pacific Fast Mail sound unit that transmits sound and motor power through just those two rails. The sound is syrichronized to the piston position, that is for a two cylinder steam engine there are four "chuffs" per driver wheel revolution. Plus bell sound and the required wailing steam chime can also be sent from the trackside to be nicely reproduced in a miniature speaker located in the locomotive tender.

The P.F.M. unit synchronizes the "chuff" sounds by transmitting a 2V 38 kHz (approx.) signal superimposed on the DC motor voltage going to the track. The DCvoltage source (atransistorized circuit, which is a simplified version of the circuit shown in Fig. 1) has a low resistance choke in series with its output: this prevents the 38 kHz and the audio tones from disappearing into the speed circuitry. When the 38 kHz reaches the locomotive, it is intermittently shorted out in a capacitor (see Fig. 4). The capacitor is grounded four times perdrive wheel revolution via a phospor - bronze contact, which rubs on the inside of a drive wheel equipped with insulated quarter sections. As the 38 kHz signal shorts out, a relay operates in the track-side unit, sending out transistorized hiss to the locomotive-borne speaker. Being highly inductive, the locomotive motor bypasses neither the 38 kHz nor hiss -

Fig. 4. These components, mounted in locomotive tender reproduces audio signa/s superimposed on d.c. motor voltage. Cam switch signals synchronization of "chuff" sound to trackside audio generator.
nor bell nor steam chime sounds, all of which are solid-state generated in the P.F.M. box with full operator control. And even though the speaker is less than 2 inches in diameter, the sound is very effective.

Another electronic gimmick in the P.F.M. system is the bridge rectifier of Fig. 4. There's a constant voltage drop of 1.4 V across the bridge, since it's in series with the motor - regardless of the motor voltage polarity. Connect a miniature 1.5 V headlamp across the bridge and presto - constant brightness, regardless of motor speed.

A California based firm Modeltronics, produces sound systems that are completely contained in the model - also synchronized for "chuff". The supply voltage for the noise generator and miniature amplifier is derived from the track voltage much as the P.F.M. "constant lighting section". Of course, the Modeltronics system does not offerbell or chime - yet.
The P.F.M. unit is also available with built-in reverberation for that illusion of sound through the model mountains. Apart from the relatively complex systems above, many modellers rig a cassette deck to the track and play either a pre-recorded run through the locomotive speaker, or use an 8-track in endless loop fashion, with four dilferent sounds available for keying into the speaker.

Miscellaneous Effects

LED HAZARD FLASHERS

Pop a 3 m red or yellow LED into the cabin roof of a model diesel, drive it from an internal LM3909 flasher integrated circuit, oscillating at 0.3 Hz , powered up from 1.5-3 V , and you've duplicated real life on the "Atcheson Topeka and the Santa Fe".
Grade crossing flashers in model form are available ready made, with miniature 12 V lamps, just like signals. To flash, take one 555 IC timer, put one pair ol lamps from I C output to + rail, another pair from output to - rail, apply 12 V , time at $20 /$ minute and grade flashers are in business.

Fig. 5. Model railroad signals. Normally supplied with 12 v lamps, LED's can beifitted.

HEART-RATE MONITOR

By clipping an illuminated bulb to one side of your ear-lobe and clipping an LDR to the other side, you can monitor the changing translucency of the tissue as blood spurts through the blood vessels. The signal from the ear-lobe detector is cleaned up and squared off and then fed to a requency-to-voltage convertor which, after buffering, drives an analogue meter, this project is not meant for use as a serious diagnostic strument. It can be used by those
ack or by sportsmen in training

DOUBLE DICE

A project to get you started in CMOS digital electronics. A decade counter is made to divide the output from an oscillator by six. The dice rolls while a button is pressed and continues to Coll (now slowly) for a short while after release. Consumption from the battery is so low that we random.

TOUCH ORGAN

What's so neat about this project is that it is all on one PCB. Twenty-seven touch-switches are laid out on the copper side of the board to give a full two-octave keyboard and tremolo switch There ae two voices avaitable, and a volume control. The project is easy to build, uses 12 IC and runs from a 9 V battery

Now Available

LENLINE
ELECTRONIC COMPONENTS CATALOGUE.
60 pages contain ing more than 400 items, all fully illustrated and described.
SEND FOR
SEND FOR
YOUR FREE
YOUR FREE
COPY TODAY!
COPY TODAY!

Please send me your LENLINE Electronic Components Catalogue and the name of my nearest LENLINE Dealer.

NAME \qquad
ADDRESS \qquad I
\qquad
PROV \qquad CODE \qquad
len finkler Itd
25 Toro Road, Downsview, Ontario M3J 2A6 • 630-9103

All in ETl's 741 Cookbook:

Differential voltage
comparator
Open-loop inverting DC amplifier
Closed-loop inverting DC amplifier
Non-inverting DC amplifier Unity-gain DC voltage follower
X100 inverting DC amplifier Variable gain inverting DC amplifier
High impedance $\times 100$ inverting DC amplifier X100 inverting AC amplifier Non-inverting $\times 100 \mathrm{DC}$ amplifier
Non-inverting variable-gain DC amplifier
High input impedance,
non-inv, $\times 100 \mathrm{AC}$ amplifier
Non-inverting $\times 100$ AC amplifier
DC voltage follower
AC voltage follower
Very high input impedance
voltage follower
Unidirectional DC v-follower,
boosted output
Bidirectional DC v-follower,
Available from ETI for \$2 (includes postage). Just order our May 1977 issue from ETI Back Issues Dept, Unit Six, 25 Overlea Blvd, Toronto. M4H 1B1.

LIGHTING

Whole passenger trains can be lit up using a supersonic generator at around $25-40 \mathrm{kHz}$. This can be fairly easily contructed using a 10 W audio power amplifier with the conventional negative feedback rephased to positive. Connected in parallel with the train motor power, with a blocking choke between the two, constant lighting can give a superb visual effect with artificial twilight on a layout. Switch off the generator - and the lights go out. Each train group of lights uses a 0.22 uF capacitor in series to block the otherwise additive lighting power from the DC motor voltage.

RADIO CONTROL AND CARRIER CONTROL

Coming back to the mystery of operating several trains simultaneously on one ribbon of track, and at different speeds and directions brings me to the surprising revelation that mighty General Electric was once (1963-64) in the model train electronic business with their "Astrac" carrier control system. "Astrac" used separate little frequency-gated SCR receivers in each of up to five locomotives. Twenty volts $A C$ was on the track at all times, and depending which part of the AC cycle was switched on in each high frequency selective receiver, gave varying speed and direction, by either gating on only the negative or only the positive half cycles. An analogsystem if ever there was one! The control frequencies used were spaced 5 kHz apart around 250 kHz . December 1963 prices are shown in the advertisement reproduction in Fig. 5.
Much more recently a "Digitronic 1600" system appeared, also in the USA, using digital proportional control of up to 16 trains simultaneously, also from a continuous AC track voltage. The system is too costly for most individuals; but a few clubs would opt for it. Incidentally there are at least three large model railroad clubs with very large permanent layouts in the Toronto area alone. One of the several train hobby shops can always direct you to a club.
As a purely personal observation, I feel the next and imminent step in electronics with model railroads is radio control. At least one experimental, but practical circuit has already been published. Taken to the ultimate, needed are very low current motors powered by rechargeable Ni Cd
batteries together with the radio receiver, variable speed and direction controls, and sound generator circuit plus amplifier. Of necessity theconcept requires extreme miniaturization because for HO scale, (the most widely used size), the space available for everything is hardly more than 5 or 6 cubic inches. The entire receiver and motor drive circuit can easily be derived from model aircraft R. C. designs, particularly if the new Signetics NE544 motor/servo driver chip is employed. On-board sound - for example a diesel horn sound, can use a 556 IC in the selfoscillating mode generating two tones, each around 250 Hz , amplified by an LM380 audio chip.

Individual function control is practical using 555 tone generators in
the transmitter with phase lock loop decoders in the receiver. The advantage of this type of control is that the modeller has become free of the power-to-the-rails restriction.

In summary, I hope this overview shows how another hobby can adapt techniques of electronics in order to add to the fun. Maybe l've tempted you to pop round to your nearest Model Railroad emporium. Take money!

Peter J. Thorne has authored audio books for Philips Technical Library, and is also the author of "Practical Electronic Projects for Model Railroads", published by Kalmbach Publications, Milwaukee.

Fig. 5. Example of frequency multiplexed control system, available in the early '60s. Note the use of rubber rectifiers in the receiver. From an advertisement for General Electric.

$$
\text { Model No. K. } 2 \text { (Chonnels } 1 \text { and 5) }
$$

Model No. K. 4 (Chonnels 2 and 4)
DUAL CONTROL UNIT
Controts two traims on the same frack both independently and simulraneously. Model K-2 preset for chomels 1 and 5 . Model K-4 presel for channels 2 and 4 . Separate sperd conrrols and separote forword/reverse swithes provided tor eoch moin All electronic. controt unit contoins 4 rronsistors. 6 diodes, and printed eircuit board Indicotor light rells when system is on. Heavy gouge olf metol housing Brushed oluminum finish. Not affected by tracll shats Complete with two presel micra.receivers, pawer card, con necting wire, and instatlotion instiuction 90 day worranty on ol patts ond lobor. Socket, on back for future equipment

Model No. K. 5

5.CHANNEL CONTROL UNIT

```
Complataly assambled and ready to mount in your contral pane.
Contrals one tran ot a time. Select any train an the track with the
channel selecior swith. All electranic, completely tronsistorized,
with printed circuil boord. Complete with mounting hordware, wire.
hole vemplote, power cord, ond instoilation instructions. Warronty.
Socker in bock lor furute equigment. Operates from 110.125 vols
AC. 50-00 <ycles, 4 woms. Tronsmitter size 8':3" * 3'z" x 3"
```


Corton size: $10^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Packed one per carton. Approx. Ship. Wit 2 lbs. Retail price aboul $\$ 34.95$

Mode's K.10, 20, 30, 40, 50

MICRO-RECEIVERS

Encased in clear General Electric vilicane rubber, G.E Mierio. Receivers ore shock-proof, moisture proat, and heot resistont. Nat affected by rock shoris. All electronic, no mechamical contack Unes two G-E Silicone Controlled Rectitiess. Adoptable to mat gouges. Each receiver can honde up to 1.6 amperies, 15 amperess
one cycle surge, and a 48 watl load at 30 vols. They aperate from of to 30 volts AC, 25.60 cycles Only three connections need be made to instoll the receivers. One wire to the motot, one wire to earh pickup whel. Rubber can be trimmed to custom fit your eqwipment. Two receivers con be paralleled for double heoding Complete instrustions insluded. Warranly

models and channels ore as fallows
K-10 Channel 1 looke
$\begin{array}{lll}\mathrm{K}-20 & \text { Channel } 2 & \text { 140KC } \\ \text { K.30 } & \text { Channel } 3 & 180 K C\end{array}$
$\begin{array}{ccc}\mathrm{K} .30 & \text { Channel } 3 & 180 \mathrm{KC} \\ \mathrm{K} .40 & \text { Chanel } \\ \text { K }\end{array}$
$\begin{array}{lll}\text { K-10 } & \text { Channel } 4 & 220 \mathrm{KC} \\ \text { K-50 } & \text { Channel } 5 & 255 \mathrm{KC}\end{array}$
Cotion size $3^{\prime \prime} \times \mathbf{2 "}^{\prime \prime} \times \mathbf{1 h "}^{\prime \prime}$. Packed 5 per carton (K - 10 thru K. 50) Afprox Ship w: $1^{\prime \prime}$, tbs. Retail price about $\$ 9.95$ per receiver Also ovailable in single uniss.

Oscilloscope Survey

A huge selection of scopes is available . . . if you know where to look.

LITTLE DID WE REALISE the immensity of the task of surveying oscilloscopes available in Canada. There are obviously less scopes for sale than meters, right? Forget it! A formidable (to the world-be reviewer) battery of oscilloscopes greets the eye(s) upon opening most of the brochures procured for this task.

CHOOSING

Last month we looked at the features of a couple of typical general purpose scopes, and their importance to the user. With this survey we hope to be completing the picture by providing basic information on all oscilloscopes that are offered.

The most useful specifications have been listed in our survey, but of necessity they have been kept brief. They should be enough however to get you started on looking for the instruments that fit your needs. For some of the more sophisticated scopes from Hewlett-Packard, Philips and Tektronix we felt our basic analysis didn't do full justice, so we settled for a more descriptive approach.

In any event, you will need more information, so contact the appropriate manufacturers or representatives for their literature, and if nothing more you'll have hours of fascinating reading in store.

PRICES

The prices in our survey are (unless otherwise mentioned) in Canadian dollars and include duty and federal sales tax where applicable.

WHO'S INCLUDED

We have tried to include every scope company we could, but there are probably one or two who we've missed. If this is the case we will try to find a space in News Digest
in future issues for information we receive after the survey deadline.
ADDRESSES
The addresses below are those to contact to find out where to get the scopes listed. In some cases these are the addresses where the scopes themselves may be obtained, in other cases you may be advised where to get their scopes in your area. In any case literature should be obtainable from these sources.
Allan Crawiord Assoclates, 6503 Northam Drive, Mississauga, Ontario L4V 1J2.

Assoclated Test Equipment, 3530 Pharmacy Avenue, Scarborough, Ontario.
Atlas Electronics, 50 Wingold Ave., Toronto, Ontario M6B 1P7
Baytronix Ltee., 4006 Cote Vertu, Montreal H4R 1V4

BCS Electronics Ltd., 980 Alness St., Unit 31 , Downsview, Ontario.
L. G. Biunf Limited, 33 Heritage Rd., Markham, Ontario L3P 1M3.
Duncan Instruments, 122 Milwick Dr., Weston, Ontario M9L 1 Y6.

EICO Canada Limiled, P.O. Box 268, Richmond Hill, Ontario, L4C 4 Y6.

Heathkit, 1480 Dundas St. E., Mississauga, Ontario L4X 2R7.

Hewlett-Packard (Canada) Lid., 6877 Goreway Dr., Mississauga, Ontario L4V 1 L9.
Metermaster Dlv. of R. H. Nichols Co. Ltd., 214 Dolomite Dr., Downsview, Ontario M3J 2P8.

Nicolet Instruments Canada Limited, 1616 Matheson Blvd., Mississauga, Ontario L4W 1R9.
Omnitronix Lid., 2056 South Service Road, Trans Canada Hwy., Dorval, Quebec H9P 2N4.
Philips Test and Measuring Instruments Inc., 6 Leswyn Road, Toronto, Ontario M6A 1 K2.
H. Rogers Electronic Instruments, Lid., P.O. Box 310, Ajax, Ontario L1S 3C5.

Superior Electronics, 1330 Trans Canada Hwy. S., Montreal, Quebec H9P 1 H8.

Tektronlx Canada Lid., P.O. Box 6500, Barrie, Ontario L4M 4V3.
VIZ, 335 E Price Street, Philadelphia, PA 19144.

B\&K PRECISION

B \& K 1403A
Features: Single trace,
DC to $5 \mathrm{MHz}, 12$ by 12 div graticule.
Horizontal Ranges:
10 Hz to 100 kHz
continuously adjustable, also $X-Y$ mode.

Vertical Ranges: $10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{TV} / \mathrm{div}$ continuously adjustable.
Synchronization: Internal or separate input. Price: \$240. Contact: Atlas

B \& K 1432P
Features: Dual trace,
DC to $15 \mathrm{MHz}, 8$ by 10 div graticule. Horizontal Ranges: $.5 \mathrm{~s} / \mathrm{div}$ to $.5 \mathrm{us} / \mathrm{div}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.

Vertical Ranges:
$2 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, TV setting.
Price: $\$ 825$.
Contact: Atlas

25 million reasons why you should look into NRI training in CB and Communications Servicing.

The CB boom means big opportunities for qualified technicians... learn at home in your spare time

There are more than 25 million CB radios out there, millions more two-way radios, walkie-talkies, scanners, and other communications apparatus in use by business and industry, government, police and fire departments. And all of this equipment demands qualified technicians to install, maintain, and repair it. The man with the right skills can practically pick his job, even start a business of his own.

Learn on your own 2-meter, digitally synthesized VHF transceiver or 40-channel CB

With NRI, you learn by doing, right in your own home in your free time. You use the NRI Discovery Lab ${ }^{\text {TM }}$ to build and test a whole series of typical communications circuits, even assemble your own professional transistorized voltohm meter and a CMOS digital frequency counter. You erect and test various types

of antennas to gain a firm understanding of broadcasting principles. And finally, you assemble your own 2-meter trarsceiver for experiments in troubleshooting and servicing. As an alternate choice, you may elect to receive and experiment with a 40-channel CB to get more experience in this booming area.
You learn in your own home, in your spare time, at your convenience
NRI's bite-size lessons and carefully matched prastical experiments combine theory and bench work to give you the most effective training for your money. No need to quit your job or take night classes, you move ahead at the pace that suits you best. And NRI's professional instructor/ engineers are always ready to help you with advice, explanations, and pointers as you progress toward your goal.

63 years and a million students worth of experience

Since our founding in 1914, over a million students have chosen NRI
technical training as the way to get ahead, the way to increased income and big opportunities. You owe it to yourself to see if this new and exciting field holds your future.

Send for free catalog... No salesman will call

Find out all the facts about NRI's Communications or CB course. Or look into other areas of opportunity like TV and audio servicing, digital computer electronics, mobile communications, and more. Mail the postage-paid card for your free catalog showing courses, lessons, and equipment. There are more than 25 million good reasons whr. If card has been removed, write to:

NRI Schools

McGraw Hill Center for
Continuims Education 330 Progress Avenue Scarborough, Ontario MIP 225

B \& K 1461P
Features: Single trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges: $.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.

B \& K 1471 BP
Similar to model 1461P but has dual trace display and controls. Price: $\$ 660$.

Vertical Ranges:
$10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, TV setting.
Price: $\$ 560$
Contact: Atlas
B \& K 1472C
Similar to model 1471 BP but has 15 MHz bandwidth.
Price: $\$ 870$.

Trigger: Automatic, adjustable, with separate input, TV selting

BWD 530A
Features: Dual trace, DC to $30 \mathrm{MHz}, 6$ by 10 cm graticule.
Horlzontal Ranges: $2 \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also X-Y mode.
Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus .4 to 5 times expansion Trigger: Automatic adjustable, with separate input, TV setting, incorporates delay circuitry' Price: $\$ 1500$ Contact: Duncan

BWD 540
Features: Dual trace, continuously adjustDC to $100 \mathrm{MHz}, 8$ by 10 able, plus 5 times cm graticule expansion.
Horizontal Ranges: Trigger: Automatic
$1 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$, dual adjustable, with time base continuously separate input, TV adjustable, plus 10 setting, incorporates times expansion also X - adjustable delay Y mode. circuitry.
Vertical Ranges: Price: $\$ 3125$
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$
Contact: Duncan

BWD 525 Plug-in scope and Series 6 modules The 525 mainframe enables the use of a choice of input and timebase modules such as sweep speeds to $10 \mathrm{~ns} /$ div and sensitivity to $10 \mathrm{uV} / \mathrm{div}$, and up to 4 trace operation.
Price: $\$ 1480$ for mainframe only.

BWD 845
Features: Dual trace, DC to $30 \mathrm{MHz}, 8$ by 10 cm graticule. Variable persistence storage scope.
Horizontal Ranges: $2 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm}$, dual time base. continuously adjustable, plus 4 to 5 times
expansion, also $X-Y$ mode.
Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion.
Trigger: Automatic, adjustable, with separate input, incor porates adjustable
delay circuitry.
Price: $\$ 4310$

BWD 880 POWER-
SCOPE
Features: 4 trace, DC to $7.5 \mathrm{MHz}, 10$ by 10 cm graticule. Intended for power applications. Horizontal Ranges: 2s/cmto .5us/cm continuously adjustable, plus 2 to 5 times expansion, also $X-Y$ mode.

Verical Ranges: $200 \mathrm{~V} / \mathrm{cm}$ to $100 \mathrm{mV} / \mathrm{cm}$. Trigger:Automatic, adjustable, with separate input, incorporates adjustable delay circuitry for measuring phase angles, and positionable marker
Price: \$5265
Conlact: Duncan

DARTRON

DARTRON D12
Features: Dual trace, DC to $17 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
$.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.

DEFOREST

DEFOREST 6010
Features: Single trace, DC to $10 \mathrm{MHz}, 3.6$ by 6 cm graticule.
Horlzontal Ranges:
$1 \mathrm{~ms} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$
plus 2.5 times
expansion.
Vertical Ranges:

Vertical Ranges:
$50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, 1 mV by cascading amps.
Trigger: Adjustable, with separate input, TV setting. Price: $\$ 900$. approx. Contact: Baytronix

BAYTRONIX also have a line of monitor oscilloscopes in 5,9 and 16 inch CRT sizes with facilities to display up to 10 channels.

LBO 508 20MHz DUAL TRACE OSCILLOSCOPE

A brand new addition to a growing family of Leader oscilloscopes This 20 MHz dual trace oscilloscope is small in size and light in weight. Front panel controls are logically grouped and located for fast and easy operation. The LBO 508 is a 20 MHz oscilloscope with a $10 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$ sensitivity in 11 calibrated steps. The high intensity CRT delivers excellent contrast while the regulated high voltage supply provides stable brightness.
The applications for this new outstanding oscilloscope are limitless. The LBO 508 is ideally suited for research and development, production, quality control, education and servicing. - Compact, lightweight, horizontal package• Add and subtract mode

- Front panel x-y one touch operation - Automatic and T.V. sync. triggering

LBO 520 30MHz DUAL TRACE OSCILLOSCOPE with signal delay line and post deflection acceleration C.R.T. The newest addition to a growing family of Leader Oscilloscopes. This 30 MHz dual trace oscilloscope has good bandwidth without sacrificing the high sensitivity $-5 \mathrm{mV} / \mathrm{cm}$. It is specially suited for display of wave forms generated in "high speed" digital circuits such as those used in computer equipment. The cathode ray tube is the high brilliancy type using the post deflection acceleration voltage. The vertical amplifier includes a delay line - a convenience in observation of the pulse leading edge. Other features are provided for a wide range of applications.
 - Wide band-High Sensitivity - Possible to observe the high speed pulse
 - Large clear display with high brightness - Equipped with various functions
 - Portable compact type and improved facility

LBO 507 20MHz SINGLE CHANNEL OSCILLOSCOPE

Yet another brand new addition to the growing family of Leader oscilloscopes. This singlechannel 20 MHz is small in size and light in weight. Front panel controls are logically grouped and located for fast and easy operation. The LBO 507 is a 20 MHzoscilloscope with a $10 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$ sensitivity in 11 calibrated steps. A $200 \mathrm{mV} / \mathrm{cm}$ horizontal amplifier is incorporated to permit front panel $x-y$ operation. The high intensity CRT delivers excellent contrast while the regulated high voltage supply provides stable brightness.
This generat purpose oscilloscope is ideally suited for research and development, production, quality control, education and general service applications.

- Compact, lightweight, horizontal package DC to 20 MHz bandwidth
- Front panel x-y operation - Automatic and T.V. Sync.

Sold and Serviced throughout Canada by

LEADER TEST INSTRUMENTS "PUT US TO THE TEST."

Di omnitronix Ird.

WRITE FOR OUR DETAILED CATALOG.

DUMONT

 DUMONT 1050Features: Dual trace, DC to $50 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: 1
s / cm to $.1 \mathrm{us} / \mathrm{cm}$ plus 10 times expansion, also $X-Y$ mode.
Vertical Ranges: $20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion.
Trigger: Automatic, adjustable, with separate input, incorporates adjustable delay circuitry.
Price: Not received

DUMONT 1064 Similar to model 1050 but 60 MHz band width DUMONT 1075
SImilar to model 1050 but 75 MHz bandwidth.

Contact: Baytronix

DUMONT R1950
SImilar to model 1050 "ruggedized" construcbut rack mounting, and tion.

DUMONT 1100P
Features: Dual trace, DC to $100 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: $1 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also X-Y mode.

Vertical Ranges:

$10 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, incorporates adjustable delay circuitry. Price: US \$2000. Contact: Baytronix

EICO 462
Features: Single trace, DC to $10 \mathrm{MHz}, 6$ by 10 cm graticule. Horlzontal Ranges: 10 Hz to 1 MHz continuously adjustable, also X-Y mode.

Vertical Ranges: $1 \mathrm{~V} / \mathrm{cm}$ to $1 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, Synchronizatlon: Adjustable, with separate input, TV setting
Prlce: Not received. Kit or Assembled
Contact: EICO

EICO 480
Features: Single trace
DC to $10 \mathrm{MHz}, 6$ by 10 cm graticule.
Horizontal Ranges: $.5 \mathrm{~s} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also X-Y mode Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable
Trigger: Automatic adjustable, with separate input, TV setting,
Price: $\$ 680$ Assembled Contact: EICO

EICO482
Similar to model 480 but dual trace
Price: Not received. Assembled only.

EICO 435
Features: Single trace, DC to $10 \mathrm{MHz}, 4$ by 6 cm graticule.
Horizontal Ranges: 10 Hz to 100 kHz continuously adjustable, also X-Y mode, TV settings.
Vertical Ranges:
continuously adjustable.
Synchronlzation: Automatic, with separate input.
Price: $\$ 415$ Ass./\$330 kit. Contact: EICO

EICO 460

Features: Single trace, DC to $4.5 \mathrm{MHz}, 4$ by 4 in graticule.
Horizontal Ranges: 10 Hz to 100 kHz continuously adjustable, also $\mathrm{X}-\mathrm{Y}$ mode, TV settings
Vertical Ranges: 80V/in to $80 \mathrm{mV} / \mathrm{in}$ approx., continuously adjustable.
Synchronization: Automatic, with separate input.
Price: $\$ 415$ Ass. $/ \$ 300$ kit.

EICO 465

Features: Single trace, DC to $8 \mathrm{MHz}, 6$ by 10 cm graticule. Vectorscope features Horizontal Ranges: 10 Hz to 100 kHz continuously adjustable, also X-Y mode. (Has identical horizontal amplifier for $X-Y$) Vertical Ranges: $50 \mathrm{~V} / \mathrm{cm}$ to $.05 \mathrm{~V} / \mathrm{cm}$ continuously adjustable
Synchronization: Automatic, with separate input

EICO 427
Features: Single trace, DC to 500 kHz 12 by 12 cm graticule.
Horlzontal Ranges: 10 Hz to 100 kHz continuously adjustable, up to 3 times expansion approx. also $X-Y$ mode.
Vertical Ranges:
$10 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable
Synchronization: Automatic, with separate input

Contact: EICO

Price: $\$ 540$ Ass $/ \$ 420 \mathrm{ki}$ Contact: EICO

Price: $\$ 370$ Ass. $/ \$ 250$ kit
Cantact: EICO

GOULD - ADVANCE

GOULD ADVANCE OS245A
Features: Dual trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges: . 5 s / cm to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5, 10 times
expansion, also $X-Y$ mode.
Vertical Ranges:
$5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
Trigger: Adjustable, with separate input, TV setting.
Price: $\$ 500$
Contact:A.C.A.

GOULD ADVANCE OS250B
Features: Dual trace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: . 5 s/cm to 1 us/cm continuously adjustable, plus 10 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.

GOULD ADVANCE OS1000B
Features: Dual trace, DC to $20 \mathrm{MHz}, 8$ by 10 cm graticule
Horizontal Ranges: 1 s / cm to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

Vertical Ranges: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable, $1 \mathrm{mV} / \mathrm{cm}$ with amps cascaded. Trigger: Automatic, adjustable, with separate input, TV setting, incorporates delay circuitry.
Price: \$1175.

Vertical Ranges:
$5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable, plus 2.5 times expansion.
Trigger: Adjustable, with separate input, TV setting.
Price: $\$ 700$.
Contact: A.C.A.

GOULD ADVANCE OS260
Features: Dual beam, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule.

Horizontal Ranges: . 2 s / cm to $.5^{\circ} \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

Now for only $\$ 535$ you can get a portable, 10 MHz dual-trace service oscilloscope. The 18 lb . TELEQUIPMENT D61a has frontpanel controls that are easy to understand, easy to use. Full-sensitivity X-Y gives you vector displays that are in true phase relationship-displays that you can rely on. And automatic selection of alternate or chopped mode and automatic selection of tv line or frame triggering make this os-
cilloscope ideal for classroom use as well as the service shop.

D61a features a bright $8 \times 10 \mathrm{~cm}$ display, and 10 mV sensitivity in dual-trace and $X-Y$ operation. It is fully backed by a standard Tektronix one-year warranty and may be serviced at any of 3 Tektronix Service Centres nationwide. Call your nearest field representative for specifications and ordering information on the
new D61a and other low cost TELEQUIPMENT Oscilloscopes or contact Tektronix Canada Ltd.

CDN Sales Price FOB Destination. FST extra.

TELEQUIPMENT

Tektronix Canada Ltd.
P.O. Box 6500 ,

Barrie, Ontario L4M 4V3

Vertical Ranges: 10 $\mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable, plus 2.5 times expansion.

GOULD ADVANCE OS1100
Features: Dual trace, DC to $30 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: 2 s / cm to $.2 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

Trigger: Adjustable, with separate input. Price: \$1235. Contact: A.C.A.

Vertical Ranges: $2 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ continuously adjustable, plus $1 / 2$ to 2 times expansion.
Trigger: Automatic, adjustable, with separate input, incorporates adjustable delay circuitry. Contact: A.C.A.

GOULD ADVANCE OS3000A
Features: Dual trace, DC to $40 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: 2 s / cm to $.2 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode. Individual time base for each channel.

GOULD ADVANCE

 OS3300BFeatures: Dual trace, DC to 50 MHz , 8 by 10 cm graticule.
Horizontal Ranges: 1
s / cm to $100 \mathrm{~ns} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

GOULD ADVANCE OS4000
Features: Dual trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule. Digital storage in 1 K byte memory gives resolu-

Vertical Ranges: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion. . Trigger: Automatic adjustable, with separate input, TV setting, incorporates adjustable delay circuitry.
Contact: A.C.A.

mode.
Vertical Ranges: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable.

GRUNDIG

GRUNDIG GO15 Features: Single trace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: $100 \mathrm{~ms} / \mathrm{cm}$ to $0.3 \mathrm{us} / \mathrm{cm}$ plus 3 times expansion. Vertical Ranges: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ Trigger: Adjustable, with separate input, TV setting.
Contact: L. G. Blunt Limited

GRUNDIG GO10 Features: Dual trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
$0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mathrm{us} / \mathrm{cm}$ plus 5 times expansion. Vertical Ranges: $2 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Trigger: Adjustable, with separate input, TV setting.
Contact: L. G. Blunt Limited

Trlgger: Automatic,
adjustable, with separate input. Contact: A.C.A.

GRUNDIG G10/13Z Features: Dual trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule Horizontal Ranges: $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mathrm{us} / \mathrm{cm}$ Vertical Ranges: $2 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ Trigger: Automatic, adjustable, with separate input, TV setting.
Contact: L. G. Blunt Limited

GRUNDIG MO50 Fealures: Dual trace, DC to $50 \mathrm{MHz}, 8$ by 10 cm graticule. Horlzontal Ranges: $1 \mathrm{~s} / \mathrm{cm}$ to $20 \mathrm{~ns} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion.

GRUNDIG MO52 Features: Dual trace, DC to $50 \mathrm{MHz}, 8$ by 10 cm graticule. Horizontal Ranges: $1 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion.

Vertical Ranges: $5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input. Contact: L. G. Blunt Limited

Vertical Ranges: to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable. Trigger: Automatic, adjustable, with separate input, incor'porates adjustable delay circuitry. Contact: L. G. Blunt Limited

HAMEG

HAMEG HM307
Features: Single trace, DC to 10 MHz .
Horizontal Ranges: $.2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also $X-Y$ mode. Vertical Ranges:
HAMEG HM312
Features: Dual trace,
DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges:
$.2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 3 times expansion, also $X-Y$ mode.
Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ (p p)

Trigger: Automatic, adjustable, with

HAMEG HM412
Features: Dual trace, DC to $20 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges:
$2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 to 12 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.
Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ (pp) continuously adjustable, plus 2.5 times expansion.
Trigger: Automatic, adjustable, with
HAMEG HM512
Features: Dual trace, DC to 50 MHz , 8 by 10 cm graticule.
Horizontal Ranges: $2 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm}$ continuously adjustable, plus 5 to 15 times expansion, also X-Y mode.

Vertical Ranges:

$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ (pp) continuously adjustable.
Trigger: Automatic, adjustable, with
$20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ (pp) continuously adjust able.
Trlgger: Automatic, adjustable, with separate input.
Price: $\$ 450$.
Contact: BCS

separate input, TV setting.
Price: $\$ 825$.
Contact: BCS

separate input, TV setting, incorporates adjustable delay circuitry.
Price: \$1225
Contact: BCS

separate input, incorporates adjustable delay circuitry. Price: \$1880.
Contact: BCS

HEATHKIT

HEATHKIT 104560
Features: Single trace, Vertical Ranges:
DC to 5 MHz , 8 by 10 cm graticule.
Horizontal Ranges:
$20 \mathrm{~ms} / \mathrm{cm}$ to $20 \mathrm{us} / \mathrm{cm}$
(uncalibrated), contin-
uously adjustable, also $X-Y$ mode.

HEATHKIT I0/S04541
Features: Single trace,
DC to $5 \mathrm{MHz}, 8$ by 10
cm graticule.
$10 \mathrm{~V} / \mathrm{cm}$ to $100 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, with separate input Price: \$200
Contact: Heathkit

Horizontal Ranges:

$200 \mathrm{~ms} / \mathrm{cm}$ to $.2 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also $X-Y$ mode.

Accuracy made easy Push Button Triggered Scopes from

HICKOK
Model 517
Dual-Trace
15 MHz
Triggered
Oscilloscope

A value loaded medium bandwidth scope useable to 27 MHz
The Hickok Model 517 Dual Trace Oscilloscope.is the perfect signal tracing instrument for all servicing jobs. The Model 517 has all the necessary features for professional analysis and results.
Dual trace lets you simultaneously view two waveforms that are frequency or phase related or that have a common sync voltage.

This unit is also available in single trace Model 515 and Model 53230 MHz Dual trace.

EAROAERS electionic indtruments Itd.

P.O. Box 310, 595 Mackenzie Avenue Units 1 \& 2. Ajax, Ontario L1S 3C5. Tel. (416) 683-4211

A really high quality system for finishing off your projects. The sheets include a mass of lettering and control scales for both rotary and linear pots.

The lettering is transferred simply by laying on to the panel and rubbing down - it's strong and permanent.

The markings are on two sheets (a full-sized one cut in half for easy postage) and contain sufficient lettering for dozens of projects.

Send $\$ 3.50$ (including postage) to ETI PANEL TRANSFERS. Unit Six, 25 Overlea Blvd., Toronto, Ontario, M4H 1B1. Ontario Residents add 4\% PST.

7 Audio

A SCOPE FOR

and hobby uses - Professional and amateur radio measurements - Education - Production line testing.

A CALIBRATED TRIGGERED OSCILLOSCOPE
Vertical bandwidth DC to $6 \mathrm{MHz}(3 \mathrm{~dB})$, sensitivity
10 mV to $50 \mathrm{~V} / \mathrm{cm}$. Frequency response to bevond 40 MHz - Time base $0.5 \mu \mathrm{Sec}$ to $1 \mathrm{Sec} / \mathrm{cm}$, with auto lock - Isolated ground - DC-coupled X-Y amplifiers with low $X \cdot Y$ phase shift - Input protected to 400 V $A C / D C-8 \times 10 \mathrm{~cm}$ graticule -12 months warranty.

BWD Model 504 including 1:1 probes
$\$ 395$
-- Or even more versatile

Where signal comparisons are essential to ensure correct operation, e.g., check the phase shift of stereo outputs; measure pulse delays in digital circuits; separate line and frame lock in TV servicing.
Vertical DC to $25 \mathrm{MHz}(3 \mathrm{~dB}), 5 \mathrm{mV}$ to $20 \mathrm{~V} / \mathrm{cm}-$ Time base $0.1 \mu \mathrm{Sec}$ to $10 \mathrm{Sec} / \mathrm{cm}$, 3 Hz to 30 MHz trigger plus line and frame video - Built-in calibrator $8 \times 10 \mathrm{~cm}$ graticule - 12 months warranty.
Probes (two required):
Model 88100, 1:1 and 10:1 switched, \$36 Model 88000, 10:1, \$26
Above probes also usable with Model 504 scope
All prices are Sales Taxes Extra, FOB Weston, and subject to change without notice.
electrical measuring instrument specialists 122 MILL WICK DRIVE, WESTON, ONTARIO. M9L IY6 TELEPHONE (416) 742-4448 - TELEX 06-969636

Verlical Ranges:
$10 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{mV} / \mathrm{cm}$ continuously adjustable,
Trigger: Automatic, adjustable, with

HEATHKIT 104555
Fealures: Single trace DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
.2s/cm to .2us/cm continuously adjustable, plus 5 times expansion, also $X-Y$ mode.
Vertical Ranges:
HEATHKIT IO/S0 4550
Similar to model 4555 but dual trace.
$20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable. (Identical channel. for X , except 1 MHz responsë)
Trigger: Automatic, adjustable, with separate input, TV setting
Price: \$530
Contact: Heatnkit
Price: $\$ 590$ kit/ $\$ 800$ assembled.

HEATHKIT IO/S0 4510 Fealures: Dual trace, DC to $15 \mathrm{MHz}, 6$ by 10 cm graticule.
Horlzontal Ranges: . $2 \mathrm{~s} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.

Vertical Ranges: 5V/cm to $1 \mathrm{mV} / \mathrm{cm}$ continuously adjustable Trigger: Automatic, adjustable, with separate input, incorporates delay circuitry. Price: $\$ 1000$ kit/ $\$ 1330$ Assembled Contact: Heathkit

HEWLETT-PACKARD

HEWLETT-PACKARD 1715A \& 1725A
Features: Frequency response up to 275 MHz down to $5 \mathrm{mV} / \mathrm{div}$ sensitivity, sweep speeds to $1 \mathrm{~ns} /$ div, dual trace. Calibrated delay and marker, or "Delta Time" system.using two markers for making various time measurements, useful in high speed digital applications.
Optional $31 / 2$ digit auto-ranging DMM may be included, which also allows direct display of delta time value. Also available is the "state display option" giving binary readout (1 s and 0 s) of digital data on the scope screen

HEWLETT-PACKARD 1720A, 1722A, 1722B Features: 275 MHz response, sweep rates to $1 \mathrm{~ns} / \mathrm{div}$, dual trace. The 1722A\&B incorporate a microprocessor system and numeric readout for direct display of time interval, calċulated frequency, and voltage measurements.

HEWLETT-PACKARD 1740,41,42,43,44 This series of 100 MHz scopes based on the same mechanical chassis afford a selection of sophisticated features. All are dual channel with sweep speeds to $10 \mathrm{~ns} /$ div, sweep delay and mixed time bases, with vertical sensitivity to $1 \mathrm{mV} / \mathrm{div}$
Of the individual models, 1741 provides variable persistence storage and has optional binary logic state readout feature, 1742 allows easy delta time measurements and may be ordered with DMM/time readout option. 1743 has a built in 100 MHz crystal time reference, and digital time interval readout. Finally, 1744 is again a storage scope, but incorporates a new CRT design allowing up to $1800 \mathrm{~cm} / \mathrm{sec}$ writing speed, as compared to $100 \mathrm{~cm} / \mathrm{sec}$ for the 1741 . As an example the 1744 is priced at approximately $\$ 8500$.

HICKOK

HICKOK 511
Features: Single trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges:
$.2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$
continuously adjustable.
Vertical Ranges:
$50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic adjustable, with separate input. Price: $\$ 570$ Contact: H. Rogers

HICKOK 512
Similar to model 511 but dual trace. Price: $\$ 860$

HICKOK 515
Fealures: Single trace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule. Horizontal Ranges: $.2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.

HICKOK 517
Similar to model 515

Vertical Ranges
$50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, TV setting.
Price: \$710
Contact: H. Rogers
but dual trace.
Price: \$995

HICHOK 532
Features: Dual trace, DC to $30 \mathrm{MHz}, 6$ by 10 cm graticule. Horlzontal Ranges: $2 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$ continously adjustable, also $X-Y$ mode.
Vertical Ranges:
IWATSU

WATSU SS-5212

Fealures: Dual trace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule.

Horizontal Ranges:

$5 \mathrm{~s} / \mathrm{cm}$ to: $5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also X-Y mode.
Vertical Ranges:
Verlical Ranges.
$20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, incorporates delay circuitry Price: $\$ 1425$ Contact: H. Rogers

IWATSU SS-5410 Features: Dual trace, DC to $35 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion.
Trigger: Automatic, adjustable, with separate input, TV setting. Price: $\$ 920$. Contact: A.T.E.

$2 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$, dual (delayed) timebase, continuously adjustable, also X-Y mode. Vertical Ranges:

How much are payeng by building you own 'scope?

Some people still believe that it is less expensive to buy an oscilloscope in kit form and assemble it themselves. Spec for spec we believe that Gould/Advance scopes offer more performance at lower cost than any other scopes available in Canada, including kits. If you are one of those who still thinks that kits are cheaper then take a few minutes to compare prices and specifications. Then buy Gould/Advance and save

Allan Crawford Associates Ltd.

ACA Electronic Centres. Stocking Showronms Toronto: 6503 Northam Drive, Mississauga 416/678-1500 Montreal: 1330 Marie Victorin Blva., Longueuil 514/670-1212 Calgary: 2280-39th Ave., N.E Calgary 403/276-9658 Vancouver: 3795 William St., Burnaby 604/294-1326

We challenge you to compare specifications, warranty and price!

We challenge you to compare Gould/Advance dual-trace general purpose oscilloscopes against any other makes offering similar performance specifications. You will be amazed at just how economical Gould/Advance scopes are. Plus with Gould/Advance you get an exclusive two-year warranty on parts and labour; a wide choice of models; ACA service facilities across Canada; and immediate availability from stock at ACA Electronic Centres in Toronto, Montreal, Calgary, and Vancouver. Shop in person or by mail. Write for free catalog. Master Charge and ChargexVisa accepted.
$10 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with
separate input, incorporates delay circuitry. Price: $\$ 2660$.
Contact: A.T.E.

IWATSU SS-4511 SImilar to model SS5410 but 50 MHz bandwidth and 5 times
expansion in vertical, and 10 times in the horizontal directions. Prlce: $\$ 2785$.

IWATSU SS-4121A
Features: Dual trace DC to $100 \mathrm{MHz}, 6.4$ by 8 cm graticule.
Horlzontal Ranges: to 5 ns/div, delayed sweep, continuously adjustable, also $X-Y$ mode.

Vertical Ranges: to 1
$\mathrm{mV} / \mathrm{div}$. continuously adjustable.
Trigger: Automatic, adjustable, with separate input, incorporates delay circuitry. Price: $\$ 3750$.
Contact: A.T.E.

WATSU SS-5321
Features: Dual trace
"Ch3" displays trigger, DC to $250 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges: $50 \mathrm{~ms} / \mathrm{cm}$ to $10 \mathrm{~ns} / \mathrm{cm}$, delayed sweep, continuously adjustable, plus 10 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.

Vertical Ranges: $5 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, $1 \mathrm{mV} / \mathrm{cm}$ if amps cascaded. Trigger: Automatic,
adjustable, with separate input, incorporates delay circuitry. Price: $\$ 6555$.
Contact: A.T.E

LEADER

HAM
Features: Single trace, $D C$ to $4 \mathrm{MHz},(450 \mathrm{MHz}$ by direct conection to plates)
Horlzontal Ranges:
10 Hz to 100 kHz continuously adjustable, also $X-Y$ mode. Vertical Ranges:
$20 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}$
continuously adjustable.
Synchronizatlon: Automatic
Notes: The 310 is
avaliable in a HAM model which includes circuitry for monitoring

LEADER LBO-510 Similar to model 310 but larger CRT, allows external synch signal. Price: \$430

LEADER LBO-552 "STEREOSCOPE" Feafures: Single trace split into left and right halves, $D C$ to 1.5 MHz , 8 by 10 cm graticule. Intended for stereo servicing.

LEADER LBO/512A Features: Single trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule. Horlzontal Ranges: $1 \mathrm{~ms} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also $X-Y$ mode. Vertical Ranges: $10 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable
Trigger: Automatic, adjustable, with separate input Price: $\$ 580$

LEADER LBO/506A Features: Dual trace, DC to $10 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
$2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.
Vertical Ranges: $20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable,
Trigger Synchronizatlon: Automatic, adjustable, with separate input,

Horlzontal Ranges:
10 Hz to 100 kHz continuously adjustable, also X-Y mode. Vertical Ranges: $20 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{mV} / \mathrm{cm}$ continuously adjustable
Synchronization: Automatic with separate input.
Noles: Has two input channels, displays signals side by side. Price: $\$ 615$
Contact: Omnitronix

Contact: Omnitronix

Price: $\$ 765$.
Confact:Omnitronix

LEADER LBO-507 Features: Single trace, DC to $20 \mathrm{MHz}, 8$ by 10 cm graticule.

Horlzontal Ranges:

 $.2 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $\mathrm{X}-\mathrm{Y}$ mode.Vertical Ranges:
$20 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable
Trigger: Automatic,
adjustable, with separate input, TV setting
Price: $\$ 805$
Contact: Omnitronix

LEADER LBO-508
507 but dual trace.

EADER LBO-520
Features: Dual trace, DC to $30 \mathrm{MHz}, 8$ by 10 cm graticule.
Horlzontal Ranges: $.5 \mathrm{~s} / \mathrm{cm}$ to $.2 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

Vertical Ranges: $5 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic,
adjustable, with separate input, TV setting
Price: $\$ 1400$
Contact: Omnitronix

LEADER LBO-515
Similar to model LBO520 but includes variable delayed sweep
and mixed time bases, response is only 25 MHz . Price: $\$ 2370$

METERMASTER

METERMASTER 66303
Feafures: Dual trace,
DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule
Horizontal Ranges:
$.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.

Vertical Ranges: $10 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable Trigger Automatic, adjustable, with separate input, TV setting
Prlce: \$770
Confact: R.H. Nichols

NICOLET INSTRUMENTS

NICOLET INSTRUMENTS Explorer II and III These are series' of digital storage oscilloscopes, providing comprehensive control over data acquisition and display. Long term storage of traces may be accomplished using the model III's floppy disk unit. The screen provides for digital readout of information

Oscilloscope Survey

NON-LINEAR SYSTEMS INC.

NON LINEAR SYSTEMS MS 15 Features: Single trace, DC to $15 \mathrm{MHz}, 4$ by 5 cm graticule. Horizontal Ranges: $.5 \mathrm{~s} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also X - Y mode. Vertical Ranges:
NON LINEAR SYSTEMS MS 215
Similar to model MS 15
$50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input, Noles: Includes rechargeable batteries. Price: \$410 Contact: R. H. Nichols
but dual trace. Includes rechargeable batteries. Price: $\$ 590$

PHILIPS

PHILIPS PM3211/ 3225/3226
Features: Single (3225)/ Dual trace, DC to $15 \mathrm{MHz}, 8$ by 10 div graticule.
Horizontal Ranges: .2s/div to $.5 u s / d i v$ continuously adjustable, plus 5 times expansion on 25 and

Trigger: Automatic, adjustable, with separate input.

PHILIPS 3234 Similar to model 3232
but has storage facility.
Price: $\$ 3880$
PHILIPS has an extensive line of oscilloscopes with bandwidths over 25 MHz . The following list covers the most important specifications. Most operate from AC line or battery supply. PM3213/14: 25 MHz dual trace, $2 \mathrm{mV} / \mathrm{div}_{\text {, }}$ $20 \mathrm{~ns} /$ div, delay line. 3214 also has delayed timebase. \$1755/\$2110.

PM3240 (X)/44/43: 50MHz dual trace (4 on 44), $5 \mathrm{mV} / \mathrm{div}, 5 \mathrm{~ns} / \mathrm{c}$ iv, delay line. All have delayed timebase. 3240X is especially suited to TV studio work. 3243 is a storage scope with capability to multiply the two input channels.
PM3260E/3261: 120 MHz dual trace $5 \mathrm{mV} /$ div, 5ns/div, delay line and delayed timebase. 3261 provides digital delay, and readout of same. $\$ 4930$ for 3261.

PM3265(E): 150 MHz dual trace, 5 mV /div, $2 \mathrm{~ns} /$ div, delay line and delayed timebase. 3265 model has multiplier. $\$ 6485 / \$ 4815$.
PM3262: 100MHz dual trace, $5 \mathrm{mV} /$ div ($2 \mathrm{mV} /$ div to 35 MHz), $5 \mathrm{~ns} / \mathrm{div}$, delay line and delayed timebase. Trigger input displayed on 3rd channel. $\$ 3470$.

SENCORE

SENCORE 163
Features: Dual trace, DC to $8 \mathrm{MHz}, 10$ by 10 cm graticule.
Horlzontal Ranges: $.1 \mathrm{~s} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also $\mathrm{X}-\mathrm{Y}$ mode. Vertical Ranges: $50 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input. TV setting
SENCORE PS29
Features: Single trace, DC to $8 \mathrm{MHz}, 10$ by 10 cm graticule.
Horizontal Ranges:
$.1 \mathrm{~s} / \mathrm{cm}$ to $.2 \mathrm{us} / \mathrm{cm}$

Notes: 5000V AC protection
Price: $\$ 1385$
Contact: Superior
continuously adjustable. also $X-Y$ mode. Vertical Ranges: $50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable.

Trlgcer: Automatic, adjustable, with separate input, TV settings
Noles: 5000 V AC
protection. Push button display set-up for colour TV and video signals.
Price: $\$ 910$
Contact:Superior

TEKTRONIX

TEKTRONIX makes a very large range of oscilloscopes, so only a brief description can be given. Tektronix also owns TELEQUIPMENT, whose scopes are listed separately.
The Tektronix line may basically be considered as comprised of the following lines or series: 200 Miniscopes, T900 Series portables, 300 Series portables (Sony/Tektronix), 400 Series portables, and 5000 and 7000 series no-quite-so-portables. We will take a look at each series separately.

TEKTRONIX 200 Series Miniscopes
There are four models in this range, all in very compact cases around $7.6 \times 13.3 \times 24.1 \mathrm{~cm}$. They are the: 221 single trace $5 \mathrm{MHz}, 5 \mathrm{mV}$ to $100 \mathrm{~V} /$ div; the 213 combination $1 \mathrm{MHz}, 5 \mathrm{mV}$ to $100 \mathrm{~V} / \mathrm{div}$ and digital multimeter with on-screen readout of AC and DC voltage and current, and resistance. The 212 and 214 offer dual trace and 500 kHz response, 1 mV to $50 \mathrm{~V} / \mathrm{div}$, with the 214 also providing storage facility. Prices are (in numerical order of models) $\$ 1570, \$ 2210, \$ 2210$, $\$ 1490$

TEKTRONIX T900 Series
All similar in appearance, size about $25 \times 18 \times 48$ cm.

T921: DC to 15 MHz , maximum $20 \mathrm{~ns} / \mathrm{cm}$ (including expansion), $2 \mathrm{mV} / \mathrm{cm}$. $\$ 990$
T922: Similar but dual trace. \$1210
T932A: Similar to T922 but $35 \mathrm{MHz}, 10 \mathrm{~ns} / \mathrm{cm}$ \$1640
T935A: Similar to T932A but has delayed
timebase feature $\$ 2040$
T912: Storage scope, similar to T922 but 10 MHz , $50 \mathrm{~ns} / \mathrm{cm}, \$ 1920$

TEKTRONIX/SONY 300 Series

Size about $11 \times 22 \times 30 \mathrm{~cm}$
$323: 4 \mathrm{MHz}$, single trace, 1 mV to $20 \mathrm{~V} /$ div, sweep to 5us/div. \$1575
326: 10 MHz , dual trace, 1 mV to $10 \mathrm{~V} /$ div, sweep to 100ns/div. \$2520
314: Storage scope, otherwise similar to 326 , $\$ 2610$
335: 35 MHz dual trace, 1 mV to $10 \mathrm{~V} /$ div, sweep to 20ns/div, delayed sweep \$2340

TEKTRONIX Series 400
All models in this series have dual trace, and all but the 434 also have delayed sweep. Size is typically about $18 \times 35 \times 55 \mathrm{~cm}$, weight 10 to 12 kg.
434: Storage scope 25 MHz , at $5 \mathrm{mV} /$ div, sweep speed to 20ns/div. \$4485
455: 50 MHz at $5 \mathrm{mV} /$ div, $5 \mathrm{~ns} /$ div. $\$ 2560$
464: Storage scope 100 MHz at $5 \mathrm{mV} /$ div, $5 \mathrm{~ns} /$ div. \$5690
465: 100 MHz at $5 \mathrm{mV} /$ div, $5 \mathrm{~ms} /$ div. $\$ 3170$ 465M: Military version. \$3240
466: Storage scope 100 MHz at $5 \mathrm{mV} / \mathrm{div}$, $5 \mathrm{~ns} / \mathrm{div}$ 3000div/us writing speed. $\$ 6760$
 475A: 250 MHz at $5 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ns} /$ div. $\$ 4910$ 485: 350 MHz at $5 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ns} / \mathrm{div}$. $\$ 7215$

TEKTRONIX 5000 Series
Seven oscilloscope models are offered, with various combinations of storage, multiple trace, wide bandwidth, high sensitivity, delayed sweep etc. A large number of plug-ins may be used in these frames, having such exotic functions as curve tracer, spectrum analyzer, dual trace sampler along with the various horizontal and vertical systems available. Units may be rack mounted or self standing.

TEKTRONIX 7000 Series
This is Tektronix' most exotic line of oscilloscope products. The series is made up of individual subseries' of mainframes, which may employ any of a wide variety of plug in modules.
The series' are: 730025 MHz storage, 7600 100 MHz storage and non-storage, 7700250 MHz non-storage, 7800400 MHz storage and nonstorage and finally the 7900 non-storage 500 MHz
series. Needless to say prices are into 4 and 5 figures. (Not counting the cents!) Some of the more exciting plug-ins enable digital measurements of trace characteristics, delta time measurements, data sampling, and logic analysis with screen display of binary information.
TELEQUIPMENT

TELEQUIPMENT S22
Features: Single trace, DC to $5 \mathrm{MHz}, 3.6$ by 6 cm graticule
Horizontal Ranges:
$.3 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$ mode.

TELEQUIPMENT D32
Simliar to model S22
but 10 MHz response, dual trace, sweep to

TELEQUIPMENT D34 Similar to model D32

TELEQUIPMENTS61 Features: Single trace, DC to $5 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges:
$.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, also $\mathrm{X}-\mathrm{Y}$ mode. Vertical Ranges: $20 \mathrm{~V} / \mathrm{cm}$ to $5 \mathrm{mV} / \mathrm{cm}$ Trigger: Automatic adjustable, with separate input. Price: Not Received. Contact: Tektronix

TELEQUIPMENT D61a SImilar to model S61 but 10 MHz response, maximum sensitivity $10 \mathrm{mV} / \mathrm{cm}$, continuous-

TELEQUIPMENT D65/66
Features: Dual trace, DC to $15 / 25 \mathrm{MHz}, 8$ by 10 cm graticule. Horlzontal Ranges: $2 \mathrm{~s} / \mathrm{cm}$ to $.1 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 5 times expansion, also $X-Y$ mode.
Vertical Ranges:
$50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion.
Trigger: Automatic,
TELEQUIPMENT DM64
Similar to model D65

TELEQUIPMENT

D67A
Similar to model D66
but max sweep speed is
but 10 MHz , provides storage facility.
Vertical Ranges: $5 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion. Trigger: Automatic, adjustable, with separate input, TV setting.
Price: $\$ 800$.
Contact: Tektronix
.5us/div plus times 5 expansion.
Price: $\$ 1165$
but 15 MHz .
Price: $\$ 1470$.

y variable, sweep rate to .5us/cm.
Price: $\$ 600$

adjustable, with separate input, TV setting.
Price: $\$ 1065 / \$ 1180$ Contact: Tektronix
.2us/div (plus 5 times). Dual timebase with delay facility.

TELEQUIPMENT D63/DM63
Features: Múltitrace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule. Storage facility on DM63. Horizontal Ranges: $1 \mathrm{~s} / \mathrm{cm}$ to $.2 \mathrm{u} / \mathrm{cm}$ continuousiy adjustable, plus 5 times expansion, also $X-Y$ mode.
Vertical Ranges:
Various vertical amplifier modules available.
Trigger: Automatic,
adjustable, with

TELEQUIPMENT D75
Portable 50 MHz mainframe, plug-in horizontal and vertical systems.
TELEQUIPMENT D83
Similar to D75 but vertical panel format.

VIZ

VIZ WO-527A
'Features: Single trace, DC to $15 \mathrm{MHz}, 8$ by 10 cm graticule.
Horizontal Ranges: $.5 \mathrm{~s} / \mathrm{cm}$ to $.5 \mathrm{us} / \mathrm{cm}$ continuously adjustable, plus 10 times expansion, also $X-Y$

Vertical Range: 20V/cm to $10 \mathrm{mV} / \mathrm{cm}$ continuously adjustable. Trigger: Automatic, adjustable, with separate input, TV setting Price: US $\$ 525$
Contact: VIZ mode.

VIZ WO-555
SImilar to model Prlce: US $\$ 750$.
WO527 but dual trace. Contact: VIZ
VU-DATA CORP

VU-DATA PS935
Features: Dual trace,
DC to $35 \mathrm{MHz}, 2$ by 2.5
inch graticule. Horizontal Ranges: 1us/div to $.5 \mathrm{~s} / \mathrm{div}$
continuously adjustable, plus 10 ,
times expansion, also
$\mathrm{X}-\mathrm{Y}$ mode.
Vertical Ranges: $5 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ continuously adjustable, plus 5 times expansion.

Trigger: Automatic, adjustable, with separate input. Notes: Also available with built in DMM and Counter \#975 Price: \$2330/\$2935 with DMM-Counter \#975 Contact: ACA

VU-DATA PS915A Features: Single trace, DC to $20 \mathrm{MHz}, 1.5$ by 2.5 inch graticule. Horizontal Ranges: tus/div to $10 \mathrm{~ms} /$ div continuously adjustable, plus 5 times expansion, also $X-Y$ mode.
Vertical Ranges: $10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$

VU-DATA PS941B Features: Dual trace, DC to $20 \mathrm{MHz}, 2$ by 2.5 inch graticule. Horizontal Ranges: $1 \mathrm{us} / \mathrm{cm}$ to $.5 \mathrm{~s} / \mathrm{cm}$ continuously adjustable, also $X-Y$ mode.

VU-DATA PS943B Simllar to model PS941B but different

Vertical Ranges:
$10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ continuously adjustable.
Trigger: Automatic, adjustable, with separate input. Price: $\$ 1880$. Contact: ACA
sweep speeds.
Price: \$1968.

VU-DATA PSS10B Fealures: Single trace, DC to $20 \mathrm{MHz}, 1$ by 2.5 inch graticule. Horizontal Ranges: $1 \mathrm{us} / \mathrm{cm}$ to $100 \mathrm{~ms} / \mathrm{cm}$ continuously adjustable, plus 1000 times expansion, also X-Y mode.

DATA SERIES MS70U Noles: The senes MS700 is a line of monitor oscilloscopes having dual DC to 10 MHz oscilloscope
displays with + internal, and external, trigger and are only $13 / 4$ inches high. Contact: ACA

DATA SERIES 1200 Notes: The series 1200 monitor oscilloscopes are very versitile allowing for up to seven
plug-in DC to 5 MHz oscilloscopes on one chassis.
Contact: ACA

WAVETEK 1901C
Features: Single trace.
DC to $15 \mathrm{KHz}, 18$ by 24 cm graticule.
Horizontal Ranges:
$.1 \mathrm{~V} /$ div to $10 \mathrm{~V} / \mathrm{div}$ continuously adjust-

WAVETEK 1910
Similar to model 1901C
WAVETEK 1951
Features: Single Dual
trace, $D C$ to $1.5 \mathrm{KHz}, 18$ by 24 cm graticule. Notes: Standard
able, also $X-Y$ mode. Vertical Ranges: $1 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div continuously adjustable.
Price: $\$ 980$.
Contact: ACA
but with dual trace. Price: $\$ 1210$.
display scope but with extra large CRT useful for medical electronics. Price: $\$ 815$. Contact: ACA

ETI has a project that might help you solve the UFO riddle and win fame and fortune. For instance, National Enquirer are offering a million dollars (US\$, too) for proof that UFOs are an unnatural phenomena emanating from outer space. But even if you prove they're something else you're bound to find a buyer for your story.

To help you with your research we have the design for a magnetic-disturbance detector; that there is a coincidence between UFO sightings and these disturbances is accepted by most ufologists.

The design of the ETI UFO-detector will appear in next month's magazine. Also in that issue will be an exciting project for audio experimenters and musicians: a phaser based on a CCD delay line. Other projects are designed and scheduled, but we can't tell you anything definite until we sort out some component-supply problems.

In addition to these projects there will be the usual assortment of features, columns, news, ...

Notch Above

While l'm writing please let me say how much I enjoy your magazine. l've been collecting electronic magazines since my teens, and sol have many hundreds now. Your magazine is, however, a notch above most of the American editions and I've found them far more useful in terms of current phases of the art and simple-to-complex projects. You have contributed greatly to the field in Canada and I hope youkeep it up and grow prosperous
R. Burkett, London

No Need For Any Other

I would just like to say that I have been subscribing to from the States for many years now. The subscription runs out in September and I'm not renewing it. Since being a subscriber to Electronics Today for the past year I have no need for any other magazine in electronics. I have renewed my subscription to ETI. Keep the good work up. - Hooray for a Canadian magazine!
A. J. Bundy, New Westminster

State Of Emergency

Help! I haven't received the February issue of ETI. Quickly, alert the Armed Forces and the RCMP. Declare a state of emergency. In a civilized country (more orless) this just can't happen. I've been subscribing since you started publishing your magazine in Canada and so haven't missed an issue. And I don't feel this is any time tastart.

Enclosed is a cheque for $\$ 2.00$ (and a prayer, which I bet you can't find in the envelope, that you still have some leftover Feb. $/ 78$ issues) and a copy of my subscription label. Please send me my missing copy as soon as possible. PS: Do you suppose that ETI has been elevated to the ranks of PLAYBOY as a prime rip-off target by Postal employees?
L. H. Higgins Jr. Cocagne, NB.

LOOK

ETI Rescue Service is fully operational. Many back issues are available and important information can be supplied from those which are not. So if you lose a copy send us details and $\$ 2$ (not cash) for each issue you require, to ETI BACKNUMBERS, Unit 6, 25 Overlea Blvd., Toronto, Ontario M4H 1B1.

1977
February
May
June
July
September
November
December

1978
January
February
March
April
May
June
July
August

Shutter Speed Timer

A project from the amateur photographer from ETI's project team to enable accurate checking of the mechanical bits!

THE NUCLEUS of good photography is correct exposure. This is a combination of shutter speed and lens aperture as determined by an exposure meter. If either speed or aperture is not as indicated on the camera the results will be less than perfect.

While the lens aperture is a simple mechanical operation and unlikely to be in error the same cannot be said about the shutter with its springs and things. (Typical electronic engineer's attitude!Ed.) Not only may the speed not be exactly as indicated on the dial, it may (probably) change as the camera gets older. Therefore it is desirable that a simple method of determining the actual speed should be available.

This project describes the design and construction of a unit which is capable of measuring times from $1 / 10000 \mathrm{sec}$. to 10 sec . This allows the actual speed to be measured and then used to calculate the correct aperture when taking those important photos.

- SPECIFICATIONS
 Timing range 0.1 ms to 9.99 sec .
 Sensor Photo transistor
 Display 3 digit LED
 Power supply
 9 volt batteries $65-160 \mathrm{~mA}$ LEDs on 20 mA LEDs off
 Battery life
 ≈ 6 hours - normal ≈ 20 hours - alkaline

It is suitablle for checking cameras with a hinged or removable back so that the senisor can be placed in the film plane. For cameras where the film fits into a slot this unit cannot be used.

CONSTRUCTION

Commence construction with the PCB adding initially the nine links
required. Next add the resistors and capacitors in the appropriate locations as shown in the component overlay. Note that capacitor C5 is polarised and must be inserted the correct way round.

The transistors and the displays can now be soldered in place taking care with orientation of the transistors.

Fig. 1. Circuit diagram of the timer.

The ICs are the last components to be installed and these must be in the correct location and orientation. When soldering them in, solder the corner pins (the power supplies), pins 7 and 14 or 8 and 16 first as this allows the internal protection diodes to work while you solder the other pins.
The front panel can now be drilled and cut. A piece of polarised plastic helps as a display window. The switches, pushbutton and phone jack can now be fitted and connected to the PCB as shown in the component overlay. The only point which could cause problems here is that the phone jack connections sometimes vary, and you should check yours before connection.

The PCB can now be mounted onto the support bracket with 6 mm spacers and the bracket into the box with two screws. When positioned correctly, the display will be visible through the window and the battery holders will be held in position at the other end.

HOW IT WORKS

To measure the time the shutter is open we use a phototransistor, Q 1 , positioned in the film plane in the camera. When the shutter is operated and if the camera is focusing a bright light on to the transistor, the voltage across R4 will rise to about 7 V for the duration of the shutter being open. The transistor used is a Darlington type and is normally too slow for measuring times shorter than 1 ms . The addition of R1 increases the speed at the expense of sensitivity hence the need for a bright light.

The output across R4 is squared up by the Schmitt trigger formed by IC1/1,2. The output of this controls the input to the 10 kHz oscillator IC2. This is an ordinary 555 oscillator where the frequency is set by C1, R2, R3 and RV1. The output of IC2 is divided by 10 in IC3/1 and again by 10 in IC3/2. We use the enable inputs of IC3 as they give clocking on the negative edges, which is what we need. We now have three outputs of $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz . One of these outputs is selected by SW $2 / 1$ which is a centre off toggle switch. When it is in the off position, 1 kHz is selected via R 8 , while in the other positions the 1 kHz signal is swamped by the low output impedance of the other dividers.

Whichever frequency is selected clocks IC4 which is a 3 decade counter-latch-multiplexer. We are not using the latch in this application. This IC simply counts the number of pulses it receives and with the help of IC5 (7 segment decoder-driver) and Q2 - Q4 displays the result on the LED displays. During the counting period the display is blanked to prevent ripple on the supply rail upsetting the 555 timer. The ripple would occur as the current changes with different digits displayed. The decimal point is controlled by SW2/2.

Two modes, single-shot and add, are provided. In the single-shot mode when light hits Q1 operating the Schmitt trigger the monostable formed by IC1/3 gives a pulse about $50 \mu \mathrm{~s}$ long which resets the main counter IC4 and the / 10 dividers, IC3. Pins 1 and 9 on IC3 which have to be low to allow clocking are taken high during the reset pulse only because it made the PCB easier and does not affect the operation. In the 'add' mode the reset pulse does not occur and unless the reset button is pressed the second and successive counts will simply add on to the previous count. This allows say ten tests to be made and the total divided by ten to find the average.

Fig. 2. Component overlay and wiring diagram.

Fig. 3. Connection of the transistor on the sensor plate.

SENSORTIVE

The sensor plate which contains Q1 and R1 can now be made. We used a piece of PCB material, although any non-conductive material which is opaque or translucent may be used. Start by cutting the plate to size and drilling a 6 mm hole in the centre. The phototransistor Q1 should be mounted with the curved surface (which is the active side) into the hole and R1 soldered to the leads, the whole assembly then being glued onto the plate with quick dry epoxy. Ensure that all conductive parts are covered with epoxy to prevent touching when in use.

CALIBRATION

The unit can be calibrated accurately enough with the aid of a stopwatch with a second hand. Set the camera up as detailed in the operational notes and using the single-shot mode, open the lens for five seconds. By adjusting RV1 get the reading close to 5 s .
Now use a longer time, sav 20 s, noting that the first digit will be missing. (i.e. a reading of 8.52 represents 18.52 s while 2.31 would be 22.31 s) and finally adjust RV1.

To aid setting up a push button can be substituted for the phototransistor but the 'add' position should be used and the timer manually reset as contact bounce can cause the display to reset on release of the button.

OPERATION

While the camera can be hand-held it is recommended that a tripod be used. Mount the camera on the tripod pointing at a light of $100-500$ Watts about 2-3 feet away. Open the back of the camera and position the sensor plate so that the light is focused on the sensor. Initially, have the lens wide open; if enough light is hitting the sensor, the display will be blanked. Stop the lens down until the display comes on then go back one stop.

This sets the sensitivity and by selecting the appropriate range the shutter speed can be checked.

Fig. 4. Graph showing the relationship between time and shutter speed. Each of the small divisions on the right hand side corresponds with a $1 / 4$ stop.
 parts, one replacement guide is not always encugh. That's why we've got a library.

We've got the book, our "ECG Semiconductor Master Replacement Guide," the most complete handbook available.

And then there's our specialized manuals: The "CB Replacement Guide" that cross-references more than 5,500 parts for 73 different brands of CB equipment; our "Industrial MRO Replacement Guide" that lists ICs and
power devices used in machine applications; our "Module \& IC Replacement Guide" cross-referencing 3,000 non-repairable urits used in 139 brands of consumer electronics equipment; and the "Linear Modules \& IC Tech Manual" that gives 992 pages of design data for linear circuit applications.

You can get them at your local Sylvania distributor.

8750, Cóte de Llesse, Montréal, Québec. H4T 1H3 (514) 735-4201

Fig. 5. Waveform on the input (point 2) with the camera on $1 / 500$ sec. The actual time was 2.1 ms .

Fig. 7. Expanded viaw of the start the above waveform.
 complete series of Thin Profile Wire Cutters, Air Powered Wire Cutters, Precision Pliers and Lead Formers. These are U.S. made, quality tools of high carbon steel fabrication for light weight and significantly longer life. Unique vinyl foam non-slip handles allow you a comfortable cushion grip. Their double coil spring return and thin profile give you smooth, easy action with lower stress and operator fatigue.

象领 - OUR TOOL OF THE MONTH CAT!
Write us for Free Lenline Electrical Catalogue
len finkler limited
25 Toro Road, Downsview, Ontario M3J 2 A6 Telephone (416) 630-9103 Telex 065-24010

Fig. 6. Voltage across C1 during operation.

Fig. 8. The output of the 555 showing the first four pulses.

The first to offer Prime Products to the Hobbyist at fair prices now lowers prices even further!

S 100 Products

8080 CPU Board
S 100 Compatible with
Vectored Interrupt Fully Socketed
Assembled \& Tested \$209.95
8 K Static Ram Board Assembled \& Tested (450 NS)
\$243.95
16K Static Ram Board (450 NS)
"Memory Mapping
*Phantom
Address 1 K Boundaries
*Power 1.8 Amps Typ.
-Uses 2114
$\$ 743.95$
(S-100) Cabinet
19 inch Retma Mounting
*16 Slot Terminated Motherboara
*25 Amp Power Supply
Assembled \& Tested \$945.95

Microprocessors
8080 A $\$ 28.95$ 8008-1 $\$ 18.50$

Statlc Rams

21 LO2 (250 NS) \$2.25
and/or Equivalents
2114 (450 NS)
\$12.50

Connectors

$\begin{array}{ll}\text { 50/100 (S-100) } & \$ 7.50 \\ \text { 22/44 Dual } & \$ 5.95\end{array}$
Proms
$2708 \quad \$ 23.95$
1702A \$14.95
Orders with cashiers cheque, money order/charge card shipped day of receipt.

> 2 channel serial board
> (S-100) - TTL, RS-232, cur. loop
> Assembled and tested $\$ 264.95$

All shipments under $\$ 100.00$ add 5% handling \& postage. Orders over $\$ 100.00$ add $21 / 2 \%$ handling \& postage. Ontario residents add 4\% P.S.T Mastercharge/Chargex/COD accepted with $\mathbf{2 5} \%$ cash deposit.

68 Shorting Road, Agincourt Ontario, M1S 3S3. Tel. (416) 291-6860

 DOMINON RADIO \& ELECTRONICS COMPANY

TELEPHONE INDUCTION BOX $\$ 4.95$

COMPLETE WITH SOLONOID

2-way 50W
1600 HZ 6db $\$ 11.95$

5004.5 KHz 6 db

3-way 100 W 24.95 7004 KHz 12 db

SOLDERLESS QUICK CLIP BANANA PLUG
 . 49 ¢ pr.

1 red - 1 black

AUTOMOTIVE CLOCK MODULE
FEATURES

- Ideal for automotive apolications : ± 0.5 second/day accuracy
- Operates from 12 VDC supply - Complete-just add switches
- Internal crystal timebase - Lowstandbv pomer consumption

SET
SWITCH

AIR INDUCTOR \$1.95

INDUCTION PICK UP COIL
\$1.39
$\frac{\text { YOUR CHOICE }}{2 \text { inch dia. }}$
3 inch dia.
4 inch dia.
CRYSTAL CONTROLLED

TV ANTENNA
BOOSTER AMP

COMPLETE WITH
AC POWER SUPPLY

DYMAX 100 AUDIO POWER AMPLIFIER MODULE SPECIFICATIONS

Power Output Frequency Response
Power Bandwidth
Total Harmonic Distortion Intermodulation Distortion Hum and Noise
Damping Factor Input Sensitivity
Input Impedance
Power Requirements
Protection
Dimensions
Guarantee

At least 100 W RMS at 8 ohms $+0 \mathrm{db}-1 \mathrm{db} 8 \mathrm{Kz}-40 \mathrm{KHz}$
$+0 \mathrm{db}-1 \mathrm{db} \quad 8 \mathrm{~Hz}-25 \mathrm{KHz}$
<0.04\% (100 W, 1Khz)
<0.03\% (SMPTE at 100 W)
-85 db (Power Input Shorted)
>240 at $1 \mathrm{Khz}, 8$ ohms
$0 \mathrm{db}(0.775 \mathrm{v})$ for Full Output 47K

$+I-48$ Volts at 1.7A
Short and Open circuit, mismatch and thermal
(with External 3A fuses)
$3.5^{\prime \prime} \times 4.75^{\prime \prime} \times 3.0^{\prime \prime}$
1 year against defects in parts and manufacturing
$\$ 74^{95}$

This Power Amplifier Module, rated at a minimum of 100 watts RMS into 8 ohms, combines high performance and durability with truly low distortion levels to make it a premier choice for high power audio applications. This amplifier is suited for PA systems, Hi-Fi, monitor amplifiers, high quality Disco systems, etc. and with 5 easily accessible connecting pins and its own heat sink the unit is ready for mounting.

AUDIOCRAFT

AUDIOCRAFT POWER AMPLIFIER MODULES ARE CONSTRUCTED FROM THE HIGHEST QUALITY COMPONENTS TO PROVIDE "ULTRA LINEAR" RESPONSE. THE MODULES ARE TESTED AND INSPECTED TO THE HIGHEST POSSIBLE STANDARDS TO ENSURE MAXIMUN PERFORMANCE AND RELIABILITY.
AUDIOCRAFT AC65 IS SUITABLE FOR MANY AUDIO APPLICATIONS INCLUDING HI-FIDELITY, GUITAR, PUBLIC ADDRESS AND TEST AMPLIFIER.

AC65

$\$ 5750$

POWER OUTPUT - 65 watts RMS into 8 ohms FREQUENCY RESPONSE $-20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{db}$ HARMONIC DISTORTION $-.05 \%$ at 1 KHz at 65 watts IM DISTORTION - Less than . 1%
HUM AND NOISE - 90 db Below full output
INPUT IMPEDANCE - 100 K ohms
SENSITIVITY - 500 mv for 65 watts
MODULE DIMENSIONS $-110 \mathrm{~mm} \times 115 \mathrm{~mm} \times 50 \mathrm{~mm}$ WEIGHT -.6 Kg (1.3 lbs.$)$
POWER SUPPLY $- \pm 35$ V.D.C. at 2 amps

AC100
 s 7900

POWER OUTPUT - 100 watts RMS into 8 ohms
FREQUENCY RESPONSE $-20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{db}$ HARMONIC DISTORTION $-.05 \%$ at 1 kHz at 100 watts IM DISTORTION - Less than . 1%
HUM AND NOISE - 90 db Below full output
INPUT IMPEDANCE - 100 K ohms
SENSITIVITY - 500 mv for 100 watts
MODULE DIMENSIONS $-110 \mathrm{~mm} \times 115 \mathrm{~mm} \times 50 \mathrm{~mm}$ WEIGHT -.6 Kg (1.3 lbs.$)$
POWER SUPPLY $- \pm 45$ V.D.C. at 2.5 amps

AC200

\$ 9950
POWER OUTPUT - 200 watts RMS into 4 ohms
FREQUENCY RESPONSE $-20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{db}$
HARMONIC DISTORTION $-.05 \%$ at 1 kHz at 200 watts
IM DISTORTION - Less than . 1%
HUM AND NOISE - 90 db Below full output
INPUT IMPEDANCE - 100 K ohms
SENSITIVITY - 500 mv for 200 watts
MODULE DIMENSIONS $-110 \mathrm{~mm} \times 115 \mathrm{~mm} \times 100 \mathrm{~mm}$ WEIGHT $-1.15 \mathrm{Kg}(2.5 \mathrm{lbs}$)
POWER SUPPLY $- \pm 45$ V.D.C. at 5 amps

AC1

PRE AMPLIFIER MODULE

SPECIFICATIONS:

$\$ 28.50$
Input Sensitivity and Impedance
Mag Phone
Tuner
Microphone
Auxiliary
Distortion
Frequency Response
Phono Overload
Tone Controls

> | Bass | $- \pm 12 \mathrm{db}$ at 100 Hz |
| :--- | :--- |
| Treble | - |
| 12 db at 10 KHz | |

Output Voltage
Tape Output Voltage
Signal to Noise Ratio
Input Voltage
Input Current
Controls Required:
Balance - 5 K ohms Linear
Bass - 100K ohms Linear
Treble
Volume
Selector

- $1 \mathrm{mv}, 50 \mathrm{~K}$ ohms
- $120 \mathrm{mv}, 50 \mathrm{~K}$ ohms
- $8 \mathrm{mv}, 50 \mathrm{~K}$ ohms
- $3-120 \mathrm{mv}, 50 \mathrm{~K}$ ohms
- . 05% at 1 KHz
- 20 Hz to $20 \mathrm{KHz} \pm 3 \mathrm{db}$
- 40 db
- 1.2 volts
- 100 mv
- 70db on phono input
- ± 16 to ± 30 volts
- 15MA
- 100 K ohms Linear
- 100 K ohms logaritamic
- 4 position, Double pole

Page 4

PHILIPS
 +
 PHILIPS DeForest QUALITY LOUDSPEAKERS

4" WOOFER

$\begin{gathered} \text { Type } \\ \text { Number } \\ \text { AD7066/W } \end{gathered}$	Impedance Availability (Ω) 4/8	Resonant Frequency (Hz) 45	Voice Dia. (mm) 25	Coil System Material Type	Magn Weight ($0 \mathrm{z} / \mathrm{kg}$)	System Material Type	$\begin{aligned} & \text { Max. } \\ & \text { PHC } \end{aligned}$	Cone Rim	White Cone Avail	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$)	\$15.75
8't WOOFERS											
$\begin{aligned} & \text { Type } \\ & \text { Number } \\ & \text { AD081020/W } \end{aligned}$	Impedance Availability (Ω) 8	Resonant Frequency (Hz) 45	$\begin{aligned} & \text { Voice } \\ & \text { Dia. } \\ & (\mathrm{mm}) \\ & 25 \end{aligned}$	Coil System Material Type Copper	Magne Weight ($\mathrm{Oz} / \mathrm{kg}$) 10/. 25	System Material Type FXD 300	Max PHC 20	Cone Rim Treated	White Cone Avail	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$)	\$9.75
$8^{\prime \prime}$ WOOFERS		45	25	Copper	10/. 25	FXD 300		Treated Fabric	Yes		

$\begin{aligned} & \text { Type } \\ & \text { Number } \\ & \text { AD8067/W } \end{aligned}$	$\begin{aligned} & \text { Impedance } \\ & \text { Availability } \\ & (\Omega) \\ & 4 / 8 \end{aligned}$	Resonant Frequency (Hz) 32	Voice Dia. (nm) 35	Coil System Material Type Alum.	Magnet Weight ($0 \mathrm{z} / \mathrm{kg}$) $16 / .42$	System Material Type FXD 300	Max. PHC 40	Cone Rim Buyt Rubber	White Cone Avail NA	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$) 2.9/1.3	$\$ 31.50$
$\begin{aligned} & \text { Type } \\ & \text { Number } \\ & \text { AD80100/W } \end{aligned}$	Impedance Availability (Ω) 8	Resonant Frequency (Hz) 30	Voice Dia. (mm) 37.9	Coil System Material Type Alum/Copper	Magnet Weight $(0 z / \mathrm{kg})$$20 / .566$	System Material Type FXD 300	Max. PHC 40	Cone Rim Foam	White Cone Avail. Yes	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$) 5/2.25	$\$ 28.35$

10" WOOFERS

Type Number AD10100/W	impedance Availability (Ω) $4 / 8$	$\begin{aligned} & \text { Resonant } \\ & \text { Frequency } \\ & \text { (Hz) } \\ & 25 \end{aligned}$	Voice Dia. (mm) 50	Coil System Material Type Copper	Magnet Weight ($0 \mathrm{z} / \mathrm{kg}$) 37/1.05	t System Material Type FXD 300	$\begin{gathered} \text { Max. } \\ \text { PHC } \\ 40 \end{gathered}$	Cone Rim Buytl Rubber	White Cone Avail NA	Overall Weight (lbs/kg) 6.6/3.0	95250
$\begin{aligned} & \text { Type } \\ & \text { Number } \\ & \text { AD102050/W } \end{aligned}$		Resonant Frequency (Hz) 25	Voice Dia. (mm) 35	Coil System Material Type Copper	Magne Weight ($0 \mathrm{z} / \mathrm{kg}$) 20/. 566	$\begin{aligned} & \text { System } \\ & \text { Material } \\ & \text { Type } \\ & \text { FXD } 300 \end{aligned}$	Max. PHC 50	Cone Aim Foam	White Cone Avail Yes	Overall Weight (lbs/kg) 5/2 3	$\$ 33.60$
Type Number AD10240/W 12" WOO	Impedance Availability (Ω) 8	Resonant Frequency (Hz) 25	Voice Dia. (mm) 50	Coil System Material Type Alum/Copper	Magnet Weight $(0 \mathrm{z} / \mathrm{kg})$ $40 / 1.13$	System Material Type FXD 300	Max. PHC 70	Cone Rim Foam	White Cone Avail. Yes	Overall Weight (lbs/kg) $7.9 / 3.6$	$\$ 5250$
$\begin{gathered} \text { Type } \\ \text { Number } \\ \text { AD } 12100 / \mathrm{W} \\ \hline \end{gathered}$	Impedance Availability (Ω) 4/8	Resonant Frequency (Hz) 19	Voice C Dia. (mm) 50	Coil System Material Type Copper	$\begin{aligned} & \text { Magnet } \\ & \text { Weight } \\ & \text { (oz/kg) } \\ & 37 / 1.05 \end{aligned}$	System Material Type FXD 300	Max PHC 40	Cone Rim Buytl Rubber	White Cone Avail. NA	Overall Weight (lbs/kg) 7.0/3.2	$\$ 54.60$
Type Number AD $122050 / W$	Impedance Availability (Ω) 8	Resonant Frequency (Hz) 19	Voice C Dia. (mm) 35	Coil System Material Type Copper	Magnet Weight (oz/kg)$20 / .566$	System Material Type FXD 300	$\begin{aligned} & \text { Max. } \\ & \text { PHC } \\ & 50 \end{aligned}$	Cone Rim Foam	White Cone Avail. Yes	Overall Weight (lbs/kg) 4.0/1.8	$\$ 38.85$

PHILIPS DeForest QUALITY LOUDSPEAKERS

Type Number	Impedance Availability (Ω)	Resonant Frequency (Hz)	Voice Dia. (mm)	Coil System Material Type	Mag Weight (oz/kg)	ystem Material Type	Max. PHC	Cone Rim	White Cone Avail.	Overall Weight (lbs/kg)	152400
AD12240/W	8	20	50	Alum/Copper	40/1.13	FXD 300	70	Foam	Yes	8/3.62	
$15^{\prime \prime} \mathrm{WOOFER}$ [
Type Number	Impedance Availability (Ω)	Resonant Frequency (Hz)	Voice Dia. (mm)	Coil System Material Type	Mag Weight (oz/kg)	ystem Material Type	Max. PHC	Cone Rim	White Cone Avail.	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$) 90/4.08	
AD15240/W	(8	19	50	Alum/Copper	40/1.13	FXD 300	80	Foam	Yes	90/4.08	

DOME TWEETERS

Type Number	Impedance Availability (Ω)	Resonant Frequency (Hz)	Voice Dia. (mm)	Coil System Material Type	Mag Weight ($\mathrm{Oz} / \mathrm{kg}$)	ystem Material Type	Max. PHC	Dome Material	Overall Weight (lbs/kg)	
Number AD0140/T	$\begin{gathered} (\Omega) \\ 4 / 8 \end{gathered}$	1200	25	Alum/Copper	5/.1	FXD 300	$\begin{aligned} & 10 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 40 \mathrm{~W} \dagger \end{aligned}$	Polycarbonate	.6/.25	

DOME TWEETER

Type Number	Impedance Availability	Resonant Frequency (Hz)	Voice Coil SystemDia. \quad Material(mm) \quad Type		Magnet System		Max. PHC	Dome Material Textile	Overall Weight (lbs/kg)$1.1 / 5$	$\phi 1300$
					Weight ($02 / \mathrm{kg}$)	Material Type				
AD0163/T	8/15	1000	(\%)	Alum/Copper	10/.25	FXD 300	$\begin{aligned} & 10 \\ & 20 \\ & 50 \dagger \end{aligned}$			

DOME MID RANGE

Type Number	Impedance Availability (Ω)	Resonant Frequency (Hz)	Voice Dia. (mm)	Coil System . Material Type	Magn Weight ($\mathrm{Oz} / \mathrm{kg}$)	System Material Type	Max. PHC	Cone Rim	White Cone Avail	Overall Weight ($\mathrm{lbs} / \mathrm{kg}$)	43103
AD0211SQ	$4 / 8$	370	35	Alum/Copper Vented Form	16/42	FXD 300	$60{ }^{*}$	Textule Rim Textile Dome	NA	2 2/10	
Type Number	Impedance Availability (Ω)	Resonant Frequency (Hz)	Voice Dia. (mm)	Coil System Material Type	Mag Weight ($\mathrm{Oz} / \mathrm{kg}$)	System Material Type	Max. PHC	Cone Rim Textile	White Cone Avail.	Overall Weight (lbs/kg) $1.8 / .8$	
AD5060/SQ		210 Hz	25	Copper	101.25	FXD 300	40^{*}	Textile	NA	1.8/.8	

CROSSOVER FILTERS

Type Number	Crossover Frequencies	Impedance (Ohms)	LoSlope/Octave Med.	High

AD2WXA also ADF2400/8	2400 Hz	8	6 dB	6 dB	$\$ 7.50$
AD2WXB also ADF1600/8	1600 Hz	8	6 dB	12 dB	$\$ 9.75$

THREE WAY

Page 6
Goodmans ||IT||ITIITIT||I|||

POWER RANGE LOUDSPEAKERS

Audiom 12P
Nominal impedance: Nominal power handling: Fundamental resonance: Sensitivity (96 dB at 1 m): Recommended enclosure volume for single unit: Depth, overall: Diameter, overall: Baffle hole diameter: Fixing hole diameter: Fixing nole centres:

8 or 15 Ohms 50 Watts 85 Herz 1.6 Watts

50 Litres 152 mm 311 mm 278 mm 4 off 8 mm 298 mm (PCD)

Nominal impedance:	
Nominal Power handling:	8 or 15 Ohms
Fundamental resonance:	60 Watts
Sensitivity (96dB at 1m):	55 Herz
Recommended enclosure	0.6 Watts
volume for single unit:	40 Litres
Depth, overall:	142 mm
Diameter, overall:	311 mm
Baffle hole diameter:	278 mm
Fixing hole diameter:	4 off 8 mm
Fixing hole centres:	$298 \mathrm{~mm}($ PCD $)$

Nominal impedance: Nominal Power handling: Fundamental resonance: Sensitivity (96 dB at 1 m): Recommended enclosure volume for single unit: Diameter, overall: Baffle hole diameter: Fixing hole centres:

8 or 15 Ohms
60 Watts
55 Herz

40 Litres
311 mm
278 mm
4 off 8 mm
298 mm (PCD)

Audiom 12P-D

Frequency range:
Maximum RMS input: Recommended amplifier music power:

Impedance Maximum dimensions across corners:
Baffle hole diameter:

12"
WOOFER $\cdots 5 \geq .95$

Axent 100

typically $2,000-$ $22,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ 3 Watts
for use in systems rated not inore than 40 Watts 8 ohms

112 mm
70 mm rear inounted

FOR COMPLETE CÁTALOGUE AND PRICE SHEET ON THE FULL RANGE OF GOODMANS SPEAKERS PLEASE MAKE NOTE ON THE ORDER FORM
HORN MID RANGE
WOOFER

Nominal power handling:

Sensitivity:
Depth Overall:
Baffle hole: Fixing hole diam: - 7005 WOOFER

For use with systems rated at 8 or 15 Ohms
systems rated at 50 Watts
(96 dB at 1 m) 0.11 Watts 250 mm $163 \times 81 \mathrm{~mm}$ 6 off 5 mm

Hifax 50HX

Nominal impedance: Nominal power handling: Fundamental resonance: Sensitivity (96 dB at 1 m): Recommended enclosure volume for single unit: Depth, overall: Diameter, overall: Baffle hole diameter: Fixing hole diameter: Fixing hole centres:

8 or 15 Ohms 50 Watts 56 Herz 0.9 Wafts

80 Litres
163 mm
383 mm
330 mm
8 off 7 mm
370 mm (PCD)

Nominal impedance: Nominal power handling: Fundamental resonance: Sensitivity (96 dB at 1 m): Recommended enclosure volume for single unit: Depth, overall: Diameter, overall: Baffle hole diameter: Fixing hole diameter: Fixing hole centres:

8 or 15 Ohms 100 Watts 45 Herz 0.6 Watts

120 Litres
222 mm 459 mm 413 mm
8 off 8 mm
438 mm (PCD)

MID RANGE

DOME TWEETER

$400-7000 \mathrm{~Hz}$
40 Watts

$3000-20000 \mathrm{~Hz}$

 40 Watts

FULL RANGE
These driver units by RSC have been designed for use in reflex enclosures for optimum response end power handling. Specrications should not be changed. Your cabinet must have no air leaks other than the vent ...caulk all seams and speaker frames. Speakers are to be mounted from the front and flush with the face of the baffle. The grille cloth should be an jpen weave material that you can breathe through easily... make sure the grille clears the speaker by at least $3 / \mathrm{s}^{\prime \prime}$. We suggest you line the cabinet with two inches of damping material making sure the front and vent are clear. Follow these specifications and you'll have speakers delivering you acoustical exellence:

20
WATTS RMS

DRE DC8

STEREO

SPECIALS
STEREO TUNER FEATURING LOW DISTORTION AND HIGH SENSITIVITY \$ 79.95

STEREO AMPLIFIER
 WITH FREQUENCY CONTROL PANEL \$ 99.95

50 WATTS $\times 2$ RMS SOLID STATE FM-AM RECEIVER \$ 269.95

STEREO AM-FM RECEIVER WITH RECORD-PLAYBACK
 CASSETTE

$$
\text { \$ } 239.95
$$

O DYNATRONIC.

MODEL NO
MODELE NO.

BS-503	DESCRIPTION
BS 506	Pin Cushion Replacement Epingle de coussin
Remplacement	

```
SG 69S metal
\$2.79
```


> BS 503 BS 506 BS 506 BS 512

M

BS 6912CX
BS 6920CX BS 6930CX

NEW
NRS 6903A NRS 6908
$6^{\prime \prime} \times 9 "$ THREE WAY SUPER DELUXE speoker (wooter, midaronge, meeter) with 20 oz: ceramic magnet: Flooting AR SUSPENSION mulli-colour cone with urethane foam rolled adge. Separate $3^{\prime \prime}$ midrange and 2" weeter Available in bulk pack and in multi-colour display package kilt with super deluxe gnile, wire and mounting harchare. Display package kit Model No. RSP-o9T1XX

	SPEAKER HAUT-PARLEURS
	5 " with dustcover / avec couve
	5 "
	5"
	5" AIR SUSPENSION / SUSPEN
	$6^{\prime \prime} \times 9^{\prime \prime}$
	6" $\times 9^{\prime \prime}$ AIR SUSPENSION SUSPENSION ACCOUSTIOUE
	$6^{\prime \prime} \times 9^{\prime \prime}$ CO-AXIAL AIR SUSPENSION SUSPENSION ACCOUSTIOUE 2 way / deux manières ($6^{\prime \prime} \times 9^{\prime \prime}$ woofer \& $3^{\prime \prime}$ tweeter)

DOMINION RADIO \& ELECTRONICS COMPANY

THE HOME OF RADIO \& ELECTRONIC SUPPLIES

SG 69P plastic
$\$ 2.29$

SORTIE
MAXIMUM OUTPUT (WATTS)
5
:---
(OHMS

AUTOMOTIVE SOUND FEATURING RELIABLE 100\% SOLID STATE

MK63 JIL CAR STEREO CASSETTE PLAYER WITH AM/FM-MPX RADIO
In-dash mounting with 6 position adjustable shaft.
12 V DC Negative ground.
$5 W+5 W$ Output.
Widerange Tone \& Volume controls. Tuning \& Balance FF/Eject/Rew Button

Speakers Extra

CRV3 - Deck Mount. 5W.5". 2 oz . magnet. 4-8 ohms.

CR737 - Flush Mount. $51 / 4^{\prime \prime \prime} .8$ oz. magnet. 10 Watts. 4-8
ohms.

Page 12

Homologation ACNOR

* SUPPLIES 2 AMPS @ 12 VDC - 4 AMP SURGE
* AUTOMATIC CIRCUIT BREAKER
* CSA APPROVED

Converts home 115 VAC to 12 VDC . Now you can enjoy car tape players in you home by using this, our most popular power supply. The unit is overload protected, includes automatic circuit breaker, neon indocator liaht. on/off switch. Size: $3 \%^{\prime \prime} H \times 5^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{D}$. CSA approved.

* 3 AMP REGULATED POWER SUPPLY
* FULL POWER OUTPUT FOR CB
* SOLID State overload protection

Integrated circuit regulated.
Converts 115 VAC to 13.8 VDC $\pm .5$ volts.
This power supply is 13.8 VDC 1.5 volus.
This power supply is regulated and will deliver maximum power from your CB rig, with a surge of 5 amps. Also can be used to trickle-charge 12 volt batteries.
Special features: Neon indicator light, on/off switch
circuit breakers. Canadian made, CSA approved. Size: $31 /{ }^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{D}$.
can be

VISTA CB-IIIR

\qquad

```
\(\$ 44^{95}\)
```

FULL CB POWER!
VISTA CB-IVR
\$7995

FULL CB POWER!
PO.

CSA approved Homologation ACNOR

CSA approved
Homologation ACNOR

* 4 AMP REGULATED POWER SUPPLY 6 AMP SURGE
* SQLID STATE DUAL OVERLOAD PROTECTION
* CROWBAR overvoltage protected

Converts 115 VAC to $13.8 \mathrm{VDC} \pm .5$ volts.
A heary duty power supply for use with all types of transistor equipment requiring 4 amps or less. Will operate radios, intercoms, recorders, car stereo tape players, CB transceivers, etc. Features neon indicator light, on/off switch. Size: $4^{\prime \prime} \mathrm{H} \times 6^{1 / 2}{ }^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{D}$. CSA approved.

* 10 AMP REGULATED POWER SUPPLY 12 AMP CPR*
* DUAL OVERLOAD PROTECTED
* CROWBAR oVERVOLTAGE PROTECTED

Converts 115 VAC to 13.8 VDC +.5 V .
A heavy duty regulated power supply designed for use with Ham, CB and marine mobile radio stations. Also for linear amplifiers up to 200 watts P.E.P. Size: $41_{4}{ }^{\prime \prime} \mathrm{H} \times 6^{1 / 2^{\prime \prime} W} \times 8^{\prime \prime} \mathrm{D}$

VISTA X-R

- CPR: Continuous Periodic RatingDuty Cycle 3 min. on, 1 min off.

$5^{\prime \prime}$
Indoor-Outdoor Paging Speaker
$\$ 1195$

Frequency Response	400.7 .0 CO Hz
Power Rating:	5 Wotls
Air Column Length:	$31 / 2$
Boll Diometer:	5 .
Mornlength:	5-3/8*
Driver:	Permanent M
Weight:	1 lb .

-8 -Ohm

DOMINION RADIO \& ELECTRONICS COMPANY

FERROCHROM MULTI-LAYER CASSETTE - HIGHEST QUALITY CASSETTE

DESCRIPTION	TYPE	RECORDING time	STANDARD CARTON	SUGGESTED LIST PRICE	OUR PRICE	SAVE
$\mathrm{Fe} / \mathrm{CrO}_{2} \mathrm{SP}$ SM $\mathrm{Fe} / \mathrm{CrO}_{2} \mathrm{SP}$ SM	$\begin{aligned} & C 60 \\ & \text { C } 90 \end{aligned}$	30 minutes each side/chaque cósé 45 minutes each side/chaque cotée	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{array}{r} \$ 5.99 \\ 7.49 \end{array}$	$\begin{aligned} & 5.39 \\ & 5.07 \end{aligned}$	$100 / 0$

CrO_{2} - CHROMDIOXID FORMULATION - FOR THE DISCRIMINATING AUDIOPHELE						
DESCRIPTION	TYPE	RECORDING TIME	STANDARD CARTON	SUGGESTED LIST PAICE	OUR PRICE	SAVE
$\begin{aligned} & \mathrm{CrO}_{2} \mathrm{SP} \mathrm{SM} \\ & \mathrm{CrO}_{2} \mathrm{SP} \text { SM } \end{aligned}$	$\begin{aligned} & C 60 \\ & \text { C } 90 \\ & \text { C } 120 \end{aligned}$	30 minutes each side/chaque cotié 45 minutes each side/chaque coté 60 minutes each side/chaque coté	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{array}{r} \$ 5.49 \\ 6.49 \\ 7.49 \end{array}$	$\begin{aligned} & 4.95 \\ & 5.84 \\ & 6.75 \end{aligned}$	

LH super - LOW NOISE/HIGH OUTPUT - SUPER EFFECT CASSETTE WITH

DESCRIPTION	TYPE	RECORDING TIME	STANDARD CARTON	SUGGESTED LIST PAICE	OUR PRICE	SAVE
LHS SP SM LHS SP SM LHS SP SM	$\begin{aligned} & C 60 \\ & \text { C } 90 \\ & \text { C } 120 \end{aligned}$	30 minutes each side/chaque coté 45 minutes each side/chaque cote 60 minutes each side/chaque coté	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{array}{r} \$ 4.49 \\ 5.49 \\ 6.49 \end{array}$	$\begin{aligned} & 3.95 \\ & 4.84 \\ & 5.70 \end{aligned}$	

BASF REEL-TO-REEL TAPES - POLYESTER BACKED

LP 35 LH SUPER - HIGH DENSITY OXIDE - "MAGHEMITE" - 1.0 MIL			OUR PRICE	SAVE
$5^{\prime \prime} 900{ }^{\prime}$	20	8.97	6.72	
7" 1800'	20	14.99	11.24	1
$5{ }^{\prime \prime} 1200$	20	11.99	8.99	$0 / 0$
$7{ }^{\prime \prime} 2400$	20	18.49	13.88	

Jana projects have been developed and refined over the past few years with the help and assistance of teachers in the school system. Many of our projects are part of the electronics teaching programs in many provinces. Each of the projects illustrate a principle of electronics. These principles may be covered in depth or they may be just accepted as is.

DOMINION RADIO \& ELECTRONICS COMPANY

THE HOME OF RADIO \& ELECTRONIC SUPPLIES

Canada's Most Popular Audio and General Purpose Connectors

Here are the latest additions to our line of Hi-Fi and P.A. cable assemblies :

RCA plug - Bare Wires $\begin{array}{lrr}\text { W1 } & 36^{\prime \prime} & \$ \quad .89 \\ W 2 & 72^{\prime \prime} & 1.20 \\ W_{3} & 120^{\prime \prime} & 1.49\end{array}$ RCA nlua - Spade luos W4 $36^{\prime \prime}$ Spade luos W5 72 $\quad 1.20$ RCA olum -Aliator clios
W7
$72^{\prime \prime} \quad 1.20$ RCA plug - RCA plug $\begin{array}{llr}\text { W8 } & 36^{\prime \prime} & .89 \\ \text { W9 } & 72^{\prime \prime} & 1.20\end{array}$ W10 120" 1.49 RCA aluo - 90 RCA plug $\begin{array}{lcl}\text { W11 } & 72^{\prime \prime} & 1.20 \\ \text { W12 } & 120^{\prime \prime} & 1.49\end{array}$ RCA oluq - RCA jack $\begin{array}{llr}\text { W15 } & 36^{\prime \prime} & .89 \\ \text { W16 } & 72^{\prime \prime} & 1.20\end{array}$ 2 RCA olugs- 2 RCA olug̣s $\begin{array}{lll} \\ W & \text { 17 } & \text { 72 }\end{array}$ RCA olug - $\mathbf{1}^{\prime \prime}$ Dhone olug $\begin{array}{lll}\text { W18 } & 36^{\prime \prime} & .89 \\ & 72^{\prime \prime} & 1.20\end{array}$ RCA olun t" ahone jack
 MINI pluq - Bare wires W23 72" 1.20
MINI nlug - Aliqator clios W24 72" 1.20 MINI plug - RCA nlug W25 72" 1.20 MINI nlug - RCA jack W26 72" 1.20 MINI Flug - Mini olug
W27 W27 72" 1.20 MINI plua - Mini jack W28 72" 1.20 MINI plug - $\frac{1}{4}$ " Phone plug W29 72" 1.20 MINI pluo - Phone jack W30 72" 1.20 4" Phone plug-RCA Jack W31 72" 1.20 \&

ALLIGATOR CLIPS

spade lucg

rCa phong flug

fica fhono jack

MINI PLUG

MINI JACK

*" Phone pluc

- " PHONE JACK

Complete Cable Assemblies for Hi-Fi

with European connectors

NO.		CONNE	CTOR	CABLE			CONNECTORS		PRICE
WAO	3	PIN	DIN PLUG	$6{ }^{\prime}$	2 COND	\& SHIELD	2	PHONO PLUGS	3.25
W41	3	PIN	din plug	61	2 COND	\& SHIELD	2	PHONO JACKS	3.25
W42	3	PIN	DIN PlUG	$6{ }^{\prime}$	2 COND	\& SHIELD	2	MINI PLUCS	3.25
W43	3	PIN	DIN PLUG	6^{\prime}	2 COND	\& SHIELD	3	PIN DIN PLUG	3.25
W44	3	PIN	DIN PLUG	6^{\prime}	2 COND	\& SHIELD	3	PIN DIN JACK	3.25
W45	5	PIN	DIN PLUG	$6{ }^{\prime}$	2 COND	\& SHIELD	2	Phono plucs	3.25
W46	5	PIN	DIN PLUG	$6!$	4 COND	\& SHIELD	4	PHONO PLUCS	3.95
W4?	5	PIN	DIN PLUG	$6{ }^{\prime}$	4 COND	\& SHIELD	4	MINI PLUCS	3.95
W48	5	PIN	DIN PLUG	6^{\prime}	4 COND	\& SHIELD	5	PIN DIN PLUC	3.95
W49	5	PIN	din plug	$6{ }^{\prime}$	4 COND	\& SHIELD	5	PIN DIN JACK	3.95
W50	4	RCA	PLUGS	61	4 CDND	\& SHIELD	4	RCA PLUCS	3.95

	FLEXIBLE "Y" CONNECTORS			
W51	1 RCA PLUG	-	2 RCA JACKS	$\$ 1.10$
W52	1 RCA JACK	-	2 RCA PLUCS	1.10
W53	1 RCA PLUG	-	2 RCA PLUCS	1.10
W54	1 MINI PLUG	-	2 RCA PLUCS	1.10
W55	1 MINI PLUG	-	2 MINI JACKS	1.10

3 WAY "Y' ADAPTERS

- shielded "Y" adaptor

2 RCA jacke parallel connected to one RCA plug.

CONTINETTAL

CONNECTORS

$\frac{\text { Wire \& Cable }}{\text { RIBBONWIRE }}$		UNIVERSAL CASSETTE 8-TRACK DRIVE BELTS	
	10 COND. $.20 / \mathrm{ft}$ 20 COND. $.40 / \mathrm{ft}$ 30 COND. $.60 / \mathrm{ft}$ 40 COND. $.80 / \mathrm{ft}$ 50 COND. $1.00 / \mathrm{ft}$ 60 COND. $1.20 / \mathrm{ft}$ COLOR CODED	SOURE CASSETE DRVE BELT	
ANTENNA ROTOR CABLE	TV LEAD-IN WIRE \qquad		
standard speaker wire $22^{1 / \mathrm{cem}} \mathrm{m}$ \qquad SPECIAL SALE (12) 500 foot roll $\$ 195$	HOOK UP WIRE $65^{\circ} 100^{\prime}$		
RG 58			
-	Panel Mount Fuse Holder Bayonet type Knob $1 / 2^{\prime \prime} \quad(12.7 \mathrm{~mm})$ panel hole. Ac. commodates all $1 / 4^{\prime \prime}$ $(6.3 \mathrm{~mm}) \times 11 / 4$ $(31.7 \mathrm{~mm})$ Fuses.		

dominion radio \& electronics company
THE HOME OF RADIO \& ELECTRONIC SUPPLIES

Page 20

	FIVE ASSORTED VOLUME CONTROLS	TEN ASSORTED INTEGRATED CIRCUITS III 1	2 - 300 WATT BULBS Standard base) $2-5 \stackrel{\text { or }}{0}$ WATT BULBS (Standard base) $2-\stackrel{\text { or }}{1000 \text { WATT BULBS }}$
	TWENTY ASSORTED ELECTROLYTICS ymy \qquad	FIFTEEN ASSORTED MINIATURE BULBS 	ONE POUND ASSORTED HARDWARE $\text { (3) } 18,10$
	PACKAGE		THREE ASSORTED FILTER CHOKES
$\begin{aligned} & \text { ORS } \\ & \text { ORARDS } \\ & \text { iOE } \end{aligned}$		TWENTY ASSORTED SEMICONDUCTGRS	TWO NE 555 TIMERS
	FOUR SN7402 IC's	$\xrightarrow{\substack{\text { TEN ZENER } \\ \text { DIODES }}}$	TWO LM 741 OP AMP
	ONE HUNDRED ASSORTED RESISTORS	thirty assorted spade lugs $E \subset=C$	TEN RESISTOR CHIPS Syxyyy
DOMINION RADIO \& ELECTRONICS COMPANY THE HOME OF RADIO \& ELECTRONIC SUPPLIES			

C ERESIST

 3-WAY TRANSFERSCERESIST is the sensational new 3-way material which takes the frustrations out of making PCB layouts.
1 - only PCBs. Apply CERESIST directly to the PCB, buffing smoothly with ballpoint pen where you desire the pattern to be transferred. Lift the CERESIST sheet gently, and firm down work with fingerpad. Lines etc. can be broken, butted, overlaid to meet your requirements. The PCB can now be etched diractly in ferric chloride bath.
Applied to paper, CERESIST renders excellent "artwork" originals for negative making. CERESIST also transfers well to clear films for positive transparancies \& overlays.
There is no problem combining CERESIST with other media (tapes ink, lacquer etc.) if desired.

Per Package

QUANTITY DISCOUNT:
FOR EVERY 10 CERESIST PACKACES
YOU BUY, YOU GET 1 FREE
88480808
dacerad $94 / 1$ IC PADS (dip)

74/1 IC PADS 8-pin
76/1 IC PADS 10-pin
41
lines, fine
lines, med

- 45 lines, thick

50/1
angles, thin
$50 / 2$ angles, med

$76 / 2$
medium pads
(in circles)

$75 / 2$
large pads
(in circles)

	02/1	edge conn's
$\bullet \bullet \bullet$	64/1	transistor pads (small)

DOMINION RADIO \& ELECTRONICS COMPANY
THE HOME OF RADIO \& ELECTRONIC SUPPLIES

60/1
transistor pads (medium)

61/1 transistor pads (large)

the finest lubricant
known for t.v. tunens.
tuners, controts,
SWITCHES, RELA
COMTACTS
EECTRIC MOTORS,
EIC.

PACK

DOMINION RADIO \& ELECTRONICS COMPANY

ETCHANT

For Printed Circuit Boards
Injectorall's ETCHANT is a ferric ctiloride solution to remove excess copper from printed circuit boards. It is an electronic-grade solvent from which solvent impurities have been carefully removed to meet the most stringent requirements of the electronic industry. It is packaged in a plastic bottle.

ETCHANT -

No. 199.6 - 6 oz. plastic bottle	2.20
No. 199P - 1 pint plastic bottle	3.50
No. 199Q 1 quart plastic bottle	5.40
No. 199G - 1 gallon plastic'bottle	18.50

RESIST INK PEN
For Prínted Circuít Boards

RESIST INK PEN -

No. 195 - Black-fine tip, blister-packed	2.25
No. 196 - Black-medium tip,	2.25

2.25
2.25

RESIST INK SOLVENT

For Printed Circuit Boards

RESIST INK SOLVENT is an excellent solvent for removing inks, markings and surplus flux. It is nonflammable, non-toxic and evaporates quickly after use.
resist ink solvent
No. 198 - 2 OZ. glass bottle
PHOTO

For Photo-Sensitized Boards

PHOTO RESIST DEVELOPER is a
specially prepared solvent for developing photo resist images. It can be used for printed circuits, semiconductor parts and electroplating stopoff.
resists.

PHOTO RESIST DEVELOPER

$\begin{array}{ll}\text { No. D2-8 } & 8 \mathrm{oz} . \text { can } \\ \text { No. O2G } & 1 \text { gallon can }\end{array}$

PHOTO RESIST SPRAY

For Sensitizing Boards

For coating printed circuit boards. Photo Resist is a high quality resist which will cause less pin-holing and has less sensitivity to white light exposure than other resists.

No. PE194-3	- 3 oz. spray can	5.85
No. PC194-16	16 oz. spray can	16.30
No. PS194G	1 gallon	244.20

PERFORATED PLASTIC BOARDS				
Made of $1,16^{\prime \prime}$ polyester glass with holes either regularly spaced or staggered for transistors				
HOLE ŞIZE				
No. 8653	. 062	alternate	$3 \times 4 *$	2.15
No. $\mathbf{6} 655$. 062	alternate	3×6 "	2.98
No. 8656	. 062	alternate	$4 \times 8{ }^{\prime \prime}$	4.85
No. 8657	. 093	stralght	$3 \times 4 "$	2.05
No. 6658	. 093	stralght	$3 \times 6{ }^{\prime \prime}$	2.80
No. 8659	. 093	straight	4×8 "	4.50
No. 8663	. 038	IC Breadboard	3×4 "	2.05
No. B664.	. 038	IC Breadboard	3×6 "	2.45
No. 13665	. 038	IC Breadboard	4×6"	2.98
No. 3666	. 038	IC Breadboard	4×8 "	3.80

Central
 Semiconductor

SCR's

TYPE NO	$V_{\text {DRM }}$ (VOLTS)	$I_{\text {F (RMS) }}$ (AMPS)	IGT (1 A)	$\begin{aligned} & V_{G T} \\ & \text { (VOLTS) } \end{aligned}$	package	Price
2N5062	100	0.8	200	0.8	TO-92	. 75
2N5064	200	0.8	200	0.8	TO-92	. 85
C103B	200	0.8	200	0.8	TO-92	. 69
C106B	200	4	200	0.8	TO-202	1.29
C100 D	400	4	200	0.8	TO-202	1.39

SOLID STATE SCIENTIFIC INC.
RF POWER TRANSISTORS

$14.30 \mathrm{MHz}, \mathrm{CB} /$ AMATEUR TRANSISTORS

DEVICE TYPE	Pout OUTPUT POWER WATTS	Gpe POWER GAIN dB MIN	Vec SUPPLY VOLTAGE VOLTS	Package	PRICE EACH
RF2146	1.0	10.0	6.0	TO202	\$ 3.50
RF2147	5.0	8.5	6.0	TO202	3.75
SD1289	50.0	10.0	12.5	500-4LFL	31.75

130-175 MHz, HIGH BAND VHF FM TRANSISTORS

SD1156	1.5			12.5	TO117SL
SD1256	3.0	10.0	12.5	11.95	
SD1143	10.0	8.5	12.5	13.95	
RF1004	30.0	10.0	12.5	MT72	$380-4 \mathrm{LFL}$

$156-162 \mathrm{MHz}$. VHF MARINE RADIO FM TRANSISTORS

SD1012	6.0			12.5	MT72
SD1133	12.0	10.0	12.5	13.75	
SO1229	30.0	0.0	12.5	MT72	

SEMICONDUCTOR PRODUCTS

HIGH SPEED SWITCHING TRANSISTORS

	Maximum Ratings		Electrical Characteristics＠TA $=25^{\circ} \mathrm{C}$					TYPE NO． PNP	Maximum Ratings		Electrical Characteristics＠TA＝25 ${ }^{\circ} \mathrm{C}$				
NO． NPN	$\begin{aligned} & \text { PD @ } \\ & T A+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	IC		hFE mm／max	ton toff max	CASE	$\begin{aligned} & \text { PRICE } \\ & \text { EA. } \end{aligned}$		$\begin{aligned} & \text { PO @ } \\ & T A+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	IC		hFE min／max	\qquad	CASE	PRICE EA．
2N2221A	500 mW	500 mA	40 V	40／720	35ns 285ns	TO－18	\＄． 29	2N3905	310 mW	200mA	40 V	50／150	$70 \mathrm{~ns} \mathrm{260ns}$	T0－92A	\＄．33
2N2222A	500 mW	500 mA	40 V	100／300	35ns 285ns	TO－18	． 32	2N3906	310 mW	200 mA	40 V	100／300	$70 \mathrm{~ns} \mathrm{300ns}$	TO－92A	． 36
2N3904	310 mW	200 mA	40 V	100／300	70ns 250ns	TO－92A	． 25	$\begin{aligned} & \text { 2N3136 } \\ & \text { 2N4403 } \end{aligned}$	400 mW 310 mW	600 mA 60 mA	$\begin{aligned} & 35 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 / 300 \\ & 100 / 300 \end{aligned}$	75ns 100ns 35ns 255ns	$\begin{array}{\|l} \text { TO-18 } \\ \text { TO-92A } \end{array}$	$.29$

SMALL SIGNAL TRANSISTORS

	MaxImum Ratings			Electrical Characteristic：＠ $\mathrm{TA}=25^{\circ} \mathrm{C}$					TYPE NO． PNP	Maximum Ratings：		Electrical Characteristics＠TA $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$					
TYPE NO． NPN	$\begin{array}{\|l\|} \hline P D \\ @ 25^{\circ} \mathrm{C} \end{array}$	${ }^{1} \mathrm{C}$	$\begin{array}{\|c\|} \hline \text { LV } \\ \hline \end{array}$	$\mathrm{H}_{\text {FE }}$ $\min /$ max	${ }_{\mathrm{t}}^{\mathrm{t}} \mathrm{~T}^{2}$	NF max	CASE	$\begin{aligned} & \text { PRICE } \\ & \text { EA } \end{aligned}$		$\begin{aligned} & \hline \text { PD } \\ & \text { @ } \end{aligned}$	${ }^{1} \mathrm{C}$	$\begin{array}{\|c\|} \hline \text { LV } \\ \text { CEO } \end{array}$	$h_{\text {FE }}$ min／max	$\begin{aligned} & { }^{{ }_{\mathrm{T}}} \mathrm{~T} \\ & \mathrm{~min} \end{aligned}$	max	CASE	EA．
2N2482	360 mW	50mA	60 V	100／150	60 MHz	3 d 3	TO－18	\＄．38	BC557B	500 mW	200mA	45 V	220／475	150 MHz	4dB	TO－92F	\＄． 25
2N3565	200 mW	－	25 V	150／600	40 MHz	－	TO－106	． 25	MA0462	－	40 V		100／300	500 MHz	－	TO－18	． 32
2N3707	250 mW	30 mA	30 V	100／400	－	－	TO－92B	． 25		300 ma	200mA	50 V	200／400	200 MHz	10dB	TO－92B	． 32
2N3825	250 mW	100 mA	15 V	20／－	800 MHz	－	TO－92B	． 28	BC251	300 mW	100 mA	45 V	125／900	130 MHz	1008	TO－92F	． 25
2N5172	200 mW	－	25 V	100／500	－	－	TO－106	． 25									
BC107	300 mW	200 mA	45 V	125／500	300 MHz	10 dB	TO－18	． 29									
BC182LB	375 mW	200 mA	50 V	200／450	150 MHz	10 dB	TO－928	． 32									

GENERAL PURPOSE TRANSISTOR8

2N3019	800 mW	1 A	80 V	100／300	100 MHz	－	TO－39	\＄． 59	2N3703	300 mW	500 mA	30 V	30／150	100 MHz	－	TO－92B	\＄． 24
2N3706	350 mW	800mA	20 V	30／600	100 MHz	－	TO－928	． 29	2N4033	800 mW	1A	80 V	100／300	150 MHz	－	TO－39	． 59
BC337－25	500mw	500 mA	45 V	160／400	70 MHz	－	T0－92F	． 29	BC327－25	625 mW	500 mA	45 V	160／400	100 MHz	－	TO－92F	． 29
BC547B	500 mW	100 mA	45V	200／450	300 MHz	10dB	TO－92F	． 25									
BC548	500 mW	100 mA	20 V	110／800	300 MHz	10dB	TO－92F	． 25									
MH8213	2．5W	2A	80 V	100／240	50 MHz	－	TO－2208	75									

DARLINGTON AMPLIFIERS

2N5308	600 mW	300 mA	30 V	30000／－	60 MHz	－	TO－92F	． 50	BC516	500 mW	300 mA	30 V	30000／－	－	15dB	TO－92F	.46
MPSA13	500 mW	300 mA	30 V	10000／－	125 MHz	2 dB	TO－92A	． 33									
BC517	500 mW	300 mA	30 V	30000／－	－	15dB	TO－92F	45									

GENERAL PURPOSE FIELD EFFECT TRANSIBTORS

SWITCH AND CHOPPER

TYPE NO．	$B V_{\mathrm{GS}}$ \min	＇DSS min／max	Y fs $\min /$ max	VGS （off） max	PRICE EA．	TYPE NO．	BV GSS min	$\begin{aligned} & I_{\text {DSS }} \\ & \min / \text { max } \end{aligned}$	rds （ON） max	ID （OFF） max	ton	t off	PRICE EA．
MEF 3819	25 V	2．0／20．0mA	2000／6500	8.0 V	\＄．45	MEF 4391	40 V 40 V	$50 / 150 \mathrm{~mA}$	30 ohms 100 ohms	$\begin{aligned} & 0.10 \mathrm{n} A \\ & 0.1 \mathrm{~A} A \end{aligned}$	$\begin{aligned} & \hline 20 \mathrm{~ns} \\ & 20 \mathrm{~ns} \end{aligned}$	$\begin{array}{\|l} 35 \mathrm{~ns} \\ 80 \mathrm{~ns} \end{array}$	$\begin{array}{r} \$.65 \\ .60 \\ \hline \end{array}$
HEF 4341	50 V	3．0／9．0mA	2000／4000	6.0 V	52	HEF 4393	40 V		100 ohms				

PROGRAMMABLE UNIJUNCTIONAL TRANSISTORS

PACKAGES

TO－39

TO－106
RECTIFIERS
1．0 AMP SILICON RECTIFIER DIODE

TYPE NO．	VRRM Volts	IFSM Amps	10 Amps	PACKAGE	PRICE EA．	TYPE NO．	VRRM Volts	IFSM Amps	10 Amps	PaCKAGE	$\begin{aligned} & \text { PRICE } \\ & \text { EA. } \end{aligned}$
TN4002	100	35	$1.0 @ 75^{\circ} \mathrm{C}$		\＄．15	IN5401	100	200	$3.0 \bigcirc 30^{\circ} \mathrm{C}$		\＄． 29
IN 4003	200	35	$1.0 @ 75^{\circ} \mathrm{C}$	\％	． 16	IN5402	200	200	$3.0 @ 50^{\circ} \mathrm{C}$	$\cdots-7 口 0$	． 31
IN4004	400	35	$1.0 @ 75^{\circ} \mathrm{C}$		20	IN5404	400	200	$3.0 @ 50^{\circ} \mathrm{C}$		36

BRIDGE RECTIFIERS

TYPE NO．	RRM Volts	V rms volts	FRM Amps	10 r Load Amps	PRICE EA	OUTLINE	
WO 02	200	140	15	1.5	\＄．82	wo	云而 K
WO 04	400	140	15	1.5	． 95	A－ampros	－\quad ！
F 01	100	70.	40	5.0	\＄1．95		－ 0 －\because animi
F 02	200	140	40	${ }_{25}{ }^{\text {．}}$	2.15 $\$ 7.50$		
K 01 K 02	100 200	70 140	60 60	25 25	$\$ 7.50$ 8.95		$\cdots 1$

Audio amplifiers

Voltage regulators

| POWER TRANSISTORS | |
| :--- | :--- | :--- |
| Epitaxial-base | |
| | Plastic |

$\begin{aligned} & \stackrel{u}{2} \\ & \stackrel{a}{2} \\ & \frac{z}{2} \end{aligned}$	$\frac{a}{2}$	$\begin{aligned} & \geq \\ & 0 \\ & \text { 0 } \\ & > \end{aligned}$		\mid		$P_{D}(W) \stackrel{(\omega)}{ } T_{C}=25^{\circ} \mathrm{C}$	4 0 0 \vdots \vdots \vdots 			$\begin{aligned} & \text { w } \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\frac{a}{2}$	$\begin{aligned} & \sum \\ & 0 \\ & w \\ & y \\ & > \end{aligned}$		$\underset{y}{\sum}$	$\begin{aligned} & \overline{\mathbb{S}} \\ & \underline{x} \\ & E \\ & U \end{aligned}$	4 0 0 11 0 -6 0 0 0		¢
80437 MUE 223 TIP31A BD709	BO438 MJE 233 TIP 324 BO710	45 60 60 80	$\begin{array}{\|l\|} \hline 40 \\ 20 \\ 25 \\ 15-150 \\ \hline \end{array}$	0.6 2.5 1.2 1	4 4 3 12	$\begin{aligned} & 36 \\ & 13 \\ & 40 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 10-126 \\ & 10-126 \\ & 70-220 \\ & 10-220 \\ & \hline \end{aligned}$		$\begin{gathered} 1.30 \\ 1.30 \\ .95 \\ 1.50 \\ \hline \end{gathered}$	$\begin{aligned} & 2 N 3055 \\ & 2 N 305 S U \\ & 2 \dot{N} 3442 \\ & \text { LDW51C } \\ & \hline \end{aligned}$	BDW32C	$\begin{aligned} & 60 \\ & 70 \\ & 140 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 20-70 \\ & 20-70 \\ & 20-70 \\ & 20-150 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \\ & 0.5 \\ & 1 \\ & 3 \end{aligned}\right.$	$\begin{aligned} & 15 \\ & 15 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \\ & 150 \\ & 117 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 10-3 \\ & 10-3 \\ & 10-3 \\ & 10-3 \\ & \hline \end{aligned}$	$\begin{array}{r} .95 \\ 1.95 \\ 2.30 \\ 2.75 \\ \hline \end{array}$

Metal can

High voltage - Plastic

$\underset{\substack{u \\ \stackrel{\rightharpoonup}{2}}}{ }$	$\begin{array}{\|l} \frac{2}{x} \\ \frac{1}{x} \\ \hline 0 \end{array}$	3 0 0 0			$\begin{gathered} \overline{\underline{x}} \\ \underline{x} \\ \underline{E} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ i \\ 0 \\ \vdots \\ \stackrel{-3}{3} \\ \vdots \\ 0 \\ 0 \\ 0 \end{gathered}$			$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{2}}$		$\begin{aligned} & \sum \\ & 0 \\ & 0 \\ & \nu \\ & > \end{aligned}$						
Qu407	NPN	330	10	1	7	$\bigcirc 0$	10-220	\$3.00	suxpy	NPN	350	10	3	6	90	T0-3	84.95

ELNA

ELECTROLYTIC AND TANTALUM CAPACITORS

uf C $^{\text {wv (sv) }}$	$16(20)$	$25 / 32)$	$50(63)$	$80(100)$
1			.20	
2.2			.20	
3.3			.20	
4.7			.20	
10	.20	.20	.25	.30
22	.25	.25	.30	.35
33	.25	.30	.30	.35
47	.30	.30	.30	.35
100	.30	.35	.45	.50
220	.30	.35	.50	.60
330	.35	.45	.60	
470	.40	.50	.70	.90
1000	.50	.60	.90	1.10
2200	.65	.90		
3300	.90	1.20		
4700	1.40	-1.60		

$\frac{R A D I A L}{L E A D}$	$\text { uf } \mathrm{C}{ }^{\mathrm{wv}(\mathrm{sv})}$	16 (20)	25 (32)	50 (63)	80 (100)
	1			. 20	
	2.2			. 20	
	3.3			. 20	
	4.7		. 20	. 20	
	10	. 20	. 20	. 20	. 25
	22	. 20	. 20	. 20	. 25
	33	. 20	. 20	. 25	. 30
	47	. 20	. 25	. 30	. 35
	100	. 25	. 25	. 30	. 35
	220	. 25	. 30	. 40	. 50
	330	. 30	. 35	. 50	
	470	. 35	. 45	. 75	
	1000	. 50	. 65		
	2200	. 80			

POWER	$\mathrm{uf} \mathrm{C}^{\text {wv (sv) }}$	16 (20)	25 (32)	50 (63)	100 (125)
SUPPLY	2200		2.10	2.80	4.90
TYPE	3300	2.10	2.70	3.50	6.50
	4700	2.30	2.90	4.10	8.00
	6800	2.90	3.50	5.20	12.00
	10000	3.70	4.00	7.50	
	15000	4.20	5.50	12.00	
17	22000	5.10	7.50		
	33000	7.50			
	47000	8.50			
	PRICE INCL	UDES M	TING C		

ATTENTION:

SAVE MONEY ON VOLUME BUYS
RADIAL \& AXIAL LEAD ELECTROLYTIC CAPACITORS

100 of each value-LESS 10% 1000 mixed values-LESS. 15% 1000 of each value-LESS 20%

POWER SUPPLY CAPACITORS
25 of each value-LESS 10%
100 mixed values-LESS 15%
100 of each value-LESS 20%
TANTALUM CAPACITORS
50 of each value-LESS 10%
100 mixed values -LESS 15% 100 of each value - LESS 20%
ALL ABOVE ARE PER UNIT PRICES

res AMS

Epoxy dipped (GREEN)

Features

CAP Uf	PRICE EA.	CAP Uf	PRICE EA.	CAP Uf	PRICE EA.
.0010	$\$.15$.0068	$\$.15$.047	$\$.25$
.0012	.15	.0082	.15	.056	.25
.0015	.15	.010	.15	.068	.25
.0018	.15	.012	.15	.082	.25
.0022	.15	.015	.15	.10	.25

Characteristics:

Operating tempersture range	$-40^{\circ}-+85^{\circ} \mathrm{C}$
Rated voltage	$\cdot 100 \mathrm{~V} . \mathrm{DC}$
Standard capacitance value	$0.001 \mu \mathrm{~F} \sim .22 \mu \mathrm{~F}$
Standard capacitance tolerance	$\pm 10 \%$
Insulation resistance	$20.000 \mathrm{M} \Omega \mathrm{Min}$
Dissipation factor	$1.0 \% \mathrm{Max}$.

* Lead wire being electrically welded to the electrode, steady equal dissipation factor can be obtained.
* Completely protected against moisture by thorough coating of epoxy resin, done by fully automatic vacuum dipping machine.
* Highly reliable capacitors, produced by our special way and technique.
\star Very light miniature type.

NON-POLARIZED CAPACITORS

$\frac{R A D I A L}{L E A D}$			
	1 uf	63 V	\$. 39
	2. 2 uf	63 V	. 49
	3.3 uf	63 V	. 49
\cdots	4.7 uf	63 V	. 59
? 18	6.8uf	63 V	. 59
	10 uf	63 V	. 69
	15 uf	63 V	. 79
$\frac{15}{7}$	22 uf	63 V	. 89

1uf	$50 V$	$\$.39$
2.2 uf	$50 V$.49
3.3 uf	$50 V$.49
4.7 uf	$50 V$.59
6uf	$50 V$.59
8uf	$50 V$.69
10 uf	$50 V$.69
$12 u f$	$50 V$.79
$16 u f$	$50 V$.79
$22 u f$	$50 V$.89
$25 u f$	$50 V$.89
33 uf	$50 V$.99

dominion radio \& electronics company

plugs Jacks
 8
 ADAPTERS

${ }^{\text {TCa phowo plug }}$				
$\text { es } \quad 15^{4}$				
15	25^{4} $\text { Al } 2$		$\varlimsup^{\text {MII I ATURE PLLIG }}$	
 10^{c}	UL TRA MINIATURE INLINE LONG BARREL JACK $25^{\text {f }}$			Chrome min IATURE IKLINE JACK
		$\text { (8-20 } 99$	59	
$\stackrel{\text { INLIEE Prone Jack }}{\rightleftharpoons} 45^{\circ}$	SHI ELDED INLINE TWI			
${ }_{43}^{69}$	109		 C 5 45^{4}	$\frac{\$ 19}{\$ 21}$
M MLME stere PHONE jack\square 69 c	$\text { Cxith } 45^{4}$	\qquad		$\overbrace{29}^{\text {STERE Y AOAPTOR }}$
 79				
		\qquad	$\leftrightharpoons \quad 79^{4}$	
			-79°	

*ALL MERCHANDISE SUBJECT TO PRIOR SALE
*ALL ORDERS OVER $\$ 50,00$ SHIPPED PREPAID

POSTAGE AND HANOLING CHARGES

Consult with your local postmaster for prevailing postage rates. If you 10% extro to cover postage the charges will be, please include about payment.

DOMINION RADIO \& ELECTRONICS COMPANY

Audio Oscillator

Audio oscillator utilises new design in frequency meters, giving good accuracy and fast reading rates.

THE AUDIO OSCILLATOR is an almost essential piece of test equipment in any test lab be it professional or only the home workshop. Only the multimeter would rate more highly.

DESIGN FEATURES

This oscillator began as a redesign, mainly mechanical, of an earlier design. It then started to evolve as a voltage controlled sweep oscillator but when it became too complex we reverted to a simple Wein bridge oscillator.

One major problem with all home made oscillators is that of scaling the frequency dial. This is not just a problem of positioning the knob but since normally available potentiometers have a tolerance of $+/-20 \%$, the scale length will also vary. In commercial units the use of an expensive wire wound potentiometer solves most of the problems giving reasonably accurate scaling.

We then decided to build in a frequency meter, basing it on an LED display module. However the high power consumption (we wanted to allow battery operation) and the poor resolution, especially at low frequency, prompted the design of a completely new frequency meter.

This uses what is literally an analogue computer to convert a period measurement into frequency with some digital electronics controlling it and displaying the results. We based this on the Intersil ICL7106 module which, due to its liquid

Front view of the audio oscillator. Note that this is an early prototype and the $3 V$ range has been deleted.
crystal display, features low power consumption. Due to the method of conversion from period to frequency the range is limited from about 50 to 1999 counts and therefore automatic range selection is used. As the oscillator itself has less range than this, this limitation is no problem.

To simplify wiring we initially used CMOS analogue switches to select the range changing capacitors in the oscillator but this unfortunately increased the second harmonic distortion when the supply voltage dropped below 12 volts. This is due to the non-linearity of the "on" resistance when the input voltage changes. We therefore reverted to the good old mechanical switch!

CONSTRUCTION

Assemble the frequency counter board first, following the overlay provided. As this board is mounted very close to the front panel (only the height of the LCD) the capacitors should have leads long enough to allow them to be laid on their side on top of the resistors, etc. Also the CA3130 and the transistor will have to be mounted close to the board. While it is not essential that a socket be used (we didn't) for the LCD, one is recommended and although the Molex pins provided in the evaluation kit are not the best, they are available. Be very careful with the display as it is glass and therefore fairly fragile.

The oscillator board can now be assembled following its overlay diagram. The thermistor should be tied down using a loop of tinned copper wire and pc pins should be used on all external wire terminating points. Cut all leads short on the back of the pc boards as the two are mounted back-back with only 6 mm spacing.

We built the units into a large plastic box with all the components mounted on the front panel. The pc boards are secured by four 6BA c/s screws through the aluminium but hidden by the Scotchcal front panel used. The frequency meter board is spaced using 6BA nuts to give just enough clearance for the display and is held in place using 6.4 mm long tapped spacers. Check that the spacers do not touch any tracks on the pe board and if so add pieces of insulation material under them.

The switches and potentiometers can now be mounted on the front panel and the wiring from the frequency counter board to the range switch done. Add wires from the two power connections and the input for later connection to the oscillator board.

SPECIFICATIONS

Oscillator section

Ranges | | $10.0-100.0 \mathrm{~Hz}$ |
| :--- | :--- |
| | $100-1000 \mathrm{~Hz}$ |
| | $1.00-10.00 \mathrm{kHz}$ |
| | $10.0-100.0 \mathrm{kHz}$ |

Outputs available
Output level

Output impedance
Sine wave distortion
Square wave risetime
sine or square
1 V maximium continuously variable plus 10 dB steps down to 1 mV nominally 600 ohms
<0.1\%
200ns
Frequency meter section
Number of digits 31/2
Display
Reading rate
Resolution
Mode
General
Power consumpion
LCD
5 per second
0.1 Hz on lowest range

Period measurment computed to read frequency

Battery life
Ni Cads
Pencells (red)
$26 \mathrm{~mA} @ 12 \mathrm{~V}$ dc

Pencells (red)
20 hours
Pencells (alkaline)
50 hours

Fig. 3. Component overlay of the frequency meter board. Insert the LCD such that the +1 digit is on the left.

Fig. 1. The circuit diagram of the frequency meter section.
The oscillator is the conventional Wein bridge type with a differenial amplifier done by the thermistor TH1. This type of circuit oscillates at the frequency where the impedance of the capacitors equals the resistors in the Wein bridge arms. With this feedback network the attenuation does not vary greatly like that of a twin tee but the phase shift does. The result is a sine wave oscillator with low distortion. For frequency variation a two gang
potentiometer is used to give a $20 / 1$ conpotentiometer is used to give a $20 / 1$ con-
tinuous variation with switched capacitors giving four ranges each a decade apart.

The oscillator board can now be mounted onto the back of the frequency meter board ensuring that no leads short between the two boards. Also check that the spacers do not touch any tracks on the oscillator board. The wiring of the front panel can now be completed.

CHECKING AND ADJUSTMENT

Switch on and check that the frequency meter and oscillator are working. Monitor the output of the oscillator with an accurate frequency counter and adjust the oscillator to the top end of one range. The frequency meter can now be calibrated by means of the 10 turn potentiometer on that board.

Check that the display range changes correctly and that the decimal point also moves. Each range while nominally having a $10-100$ variation will be adjustable from about 7 to 150 . Check the attenuator has 10 dB between steps.

THERMISTOR NOTES

In the oscillator circuit we have what is basically an RC filter with feedback from output to input. In order to obtain an output of stable amplitude and low distortion the

feedback must not be too great (amplitude would increase to infinity ... or the power supply voltage, whichever comes first) nor too little (output would decrease to zero). To adjust the feedback to exactly the right level by means of a trimpot would be impossible, and besides, the setting would vary at different room temperatures and with age.

Thus in this oscillator positive feedback is applied from the collectors of Q4, 5 through C1-4 etc., while negative feedback is applied through TH1 to Q3. It is this negative feedback that brings the overall amount of feedback to the right value. This is "adjusted" automatically by TH 1 , since if the amplitude of the output is too large, more current will flow through TH1.
heating it up, lowering its resistance, applying thereby more negative feedback, reducing, the amplitude of the sine wave and so on.

Of particular note is the special design of the ITT RA53. The heat sensitive resistive element is a tiny bead mounted on thin wires, enclosed in an evacuated glass envelope looking much like an NE2 neon bulb. This design means that the thermistor is sensitive almost solely to heat generated electrically, and almost not at all to the outside environment. In fact this gives the device the characteristic that the element itself rises in temperature by 1 C degree per 12.5 uW ! The device is thus very sensitive and able to keep close control over the oscillator amplitude. Other thermistors could be used, but will be less sensitive to oscillator amplitude, moreso to surrounding temperature. The RA53 has a resistance value of 5 k at 20 degrees C , and negative temperature curve.
The RA53 may be obtained direct from: ITT Components, 4001 Chesswood Dr., Downsview, Ontario. Price is $\$ 4.65$, Ontario residents add sales tax, postage included in price.

We would like to acknowledge the assistance of Mr. Al Campbell at ITT in making this device available.

Calculator Users Handbook

The Electronic Calculator Users Handbook by M. H. Babani presents formulae, conversion factors, etc, to aid users of electronic calculators. Using the book you can
calculate trigonometric (and hyperbolic) functions, logs and square roots using only a single four-function machine.

Transistor Equivalents \& Substitutes

The Second Book of Transistor Equivalents \& Substitutes lists over two hundred pages of transistors and their equivalents from Britain, USA, Holland, Japan, Germany, Czechoslovakia and Poland. Bernard Babani compiled this book to update the information in his first book of Transistors Equivalents and Substitutes published in 1971. The book is a valuable guide to many recent transistors.

$$
\$ 3.25
$$

RouletteWheel

Whip up this quick project contributed by Jana.

This project provides some fun experience with digital electronics using economical TTL integrated circuits. The circuit is an electronic version of the roulette wheel. When S2 is pushed, C1 charges. As long as C1 remains charged IC1 provides a train of clock pulses at it's output. These clock pulses are fedinto IC2 which is a decade counter. It counts to ten then
repeats, providing a binary coded output. This binary 1 to 10 output is decoded by IC3 which provides 10 outputs, each of which is connected to an LED. These 10 LED's repeatedly light in sequence as the clock pulses are counted, until C1 discharges and the counting sequence stops, leaving only one LED in the 'ON' state.

Printed circuit board pattern for roulette.

Component overlay.

PARTS LIST

INTEGRATED CIRCUITS

IC1	7400 Quad Nand Gate
IC2	7490 Decade Counter
IC3	7442 (or 7445) BCD
	to Decimal Decoder

DIODES
D1 IN4001 (1A 50 PIV)
CAPACITORS
C1 $\quad 500$ uF $15 V$ Capacitor
C2, C3 10uF 15 V Capacitor
RESISTORS

R1, R2	3k9
R3	180R
R4	18R
R5	47R

SWITCHES
S1 S.P.S.T. Slide Switch
S2 N.O. Push Button Switch
LED 1-10 Light Emitting Diode
MISC. Battery Clip, 9 Volt

Circuit diagram of roulette game.

They're here! ETI's quality Canadian-made polyester-cotton T-shirts are now in our office awaiting your order. These are really top quality - not cheap foreign shirts that fade and shrink when you wash them. They're nice and long to stop draughts around your midriff and they're trimmed on the collar and sleeves. Colour scheme is light blue with dark blue trim and design.

Fill out this coupon and send to ETIT-Shirts, UnitSix, 25 Overlea Blvd., Toronto, Ontario, M4H 1B1.

LARGE (40") Number required

\square

Please send me \qquad ETI T-Shirts.sizes as indicated. I enclose \$ \qquad

MEDIUM (37")
\square Number required

Number of Shirts 1
Price

SMALL (34")
\square Number required
\qquad
DO NOT SEND CASHCheque enclosed.Bill Mastercharge.Bill Chargex.

A/C No. \qquad
Signature \qquad Expiry Date \qquad

Rain Alarm

Don't get washed away with this useful gadget.

THERE ARE MANY TIMES when you want to know whether (?) it's raining outside, without having to sit looking outside the window for hours on end. It may be the plants you're trying to shelter, or perhaps the washing that's supposed to be drying, but whatever the purpose this unit will alert you as soon as it gets wet.

IT MAY RAIN!

It's here that the good guys of the ETI project team come to the rescue with their Rain Alarm. This little fellow might well upstage any canine companion as a housewife's best friend, at least on washday, by giving a warning at the first sign of rain, giving plenty of time to get the washing in before it gets too wet.

The rain alarm should be placed out in the open and a length of two conductor wire run between it and an eight ohm speaker. We used an old intercom sub-station to provide a home for our speaker but a car
extension speaker or indeed any suitably boxed eight ohm device would be fine.

Any rain falling on the sensor track, formed as part of the PCB, will set off the alarm and produce a distinctive, intermittent bleep-bleep.

CONSTRUCTION

Construction is straightforward if the PCB layout shown is used and in the case of this project we would recommend that the PCB is used, as this adds to the attractiveness of the project.

Assemble the components according to the overlay, ensuring that the tantalum capacitor is connected the right way round. If you do not use a socket for IC 1 , solder pins seven and fourteen before the others (this allows the device's internal protection circuitry to function).

In our prototype we used a value of $4 M 7$ for R1 which acts as a
sensitivity adjustment. This value leads to a 'hair trigger' alarm and the value could well be reduced according to the level of sensitivity required.

When construction is complete and the alarm has been tested the area of the PCB that holds the components should be covered with some suitable non-conducting potting compound - epoxy resin should do - to render it waterproof.

POWER TO YOUR

Power consumption of the unit is so low when the alarm is not triggered that it was not thought necessary to provide an on / off switch.

While this unit is not as effective as a device to control the weather still working on that one - it should at least prevent some of those washday blues.

Fig. 1. Circuit diagram of Rain Alarm

HOW IT WORKS

THE rain alarm is formed by two gated CMOS oscillators and an audio output stage.

The basic CMOS oscillator is shown in Fig. 2. Upon switch on, with C discharged, the output of inverter B will be low, the input to A low and its output high. Capacitor C will now commence to charge towards supply, the voltage level at A's output, via resistor R

Fig. 2. Basic oscillator circuit

We can consider a CMOS gate to be a comparator that will change output state when the level of voltage at its input reaches a specified value, the transfer voltage (Vtr). usually about half supply. Thus as the voltage on C increases due to the charge current being supplied by R there will come a point when the voltage on the input of A will pass its transfer voltage and the output of B to go high.

At this point the charge on C corresponds to a voltage level of approximately half supply.
As the inverters A and B change states the end of C that was held at 0 volts is now at
supply and the end of C that was connected to supply via R is now returned to 0 volts via the same resistor.

These changes together with the charge stored on C mean that the potential across C is now supply plus the transfer voltage of gate A. This is shown in Fig. 3.

Fig. 3. Waveforms

Capacitor C will now discharge via R until once again the transfer voltage of A is reached whereupon the outputs of the inverters will assume their original states.

The conditions are not quite the same as at
switch on because, as can be seen in Fig. 3, the Potential across C is now a negative value equal to A's transfer voltage.

The final circuit diagram (Fig. 1) of the Rain Alarm shows that the inverters are in fact formed from the four NAND gates of a 4011 package. In each oscillator, while one gate is configured as a straightforward inverter, the other has one input that can act as a control input, oscillator action being inhibited if this input is held low.
From this point C charges via R again to repeat the cycle.

The output is shown in Fig. 3 where $t_{1}=t_{2}=1.1 R C$ (the time taken for C to charge (discharge) via R to two-thirds of the maximum value of voltage across it).

In practice, due to the protection networks associated with modern CMOS devices, it is necessary to include a resistor in series with the input of A in order to ensure that the voltages across C are allowed to reach the values shown in Fig. 3.
The first oscillator (ICla and IClb) has this input tied low via a high value resistor (R1) that acts as a sensitivity control. Thus this oscillator will be disabled until the control input is taken high. Any moisture bridging the sensor track will so enable the output which is a square wave at about 10 Hz . This in turn will gate on and off the 500 Hz oscillator formed by IClc and ICld.

This latter oscillator drives the loudspeaker via R6, the Darlington pair formed by Q1 and Q2 and resistor R7.

PARTS LIST

Fig. 4. Overlay of the section of the Rain Alarm PCB that holds the components.

RESISTORS (all $1 / 2 \mathrm{~W} 5 \%$)

R1	See text
R2	$100 k$
R3	$47 k$
R4	$820 k$
R5	$390 k$
R6	$33 k$
R7	$10 R$

CAPACITORS

$c 1$	1u0 16 V tantalum
c2	1n0 polyester

SEMICONDUCTORS
IC1 4011
Q1 2N3904
Q2 2N2222A

MISCELLANEOUS
PCB as pattern, 3.5 mm jack socket, 8 ohm speaker, battery.

cesco MICROCOMPUTER CATALOGUE

FREE

on request

A catalogue presenting the latest in microcomputers a fast growing field in electronics with a potential capability undreamed of a few years ago. Featuring products from such key manufacturers as Motorola, Texas Instruments, RCA, Signetics, AMI, Intersil. Complete microcomputer systems from a single functional unit for data entry and retrieval to an intelligent stand alone Microcomputer Development Centre with CRT Terminal, keyboard, printer, floppy disk system and a wide range of microprocessor circuits. Write or drop in and ask for our MICROCOMPUTER CATALOGUE available FREE on request.

ELECTRONIC BOOKS

CESCO has a wide ranging stock of books dealing with electronics from basic to advanced. Below is a short listing of popular books in our stock. You are invited todrop in and browse or write for our book listing.
NO:
TITLE
RESALE

LCC4112
6001
111
546
546
20943
21398
21045
20675

TTL Data Book
Introduction to Microcomputer Vol. 0
Basic Transistor Course
\$ 8.25
10.45
7.95
7.95
7.95
12.95
13.25
5.50
44.00

MONTREAL 4050 JEAN TALON ST.W. (514) 735.5511 QUEBEC
OTTAWA
TORONTO 909 O, BLVD.CHAREST
(418) 687.4231 1300 CARLING AVE. 24 MARTIN ROSS AVE. (613) 729.5118 (416)661.0220

Now from \sim NHTH
 One numbering system of exact and selected semiconductor replacements

It's the closest yet to an all-purpose line of semiconductor replacements with one numbering system.

Covers not only Zenith exact replacement devices, but also the most popular types in the industry.

A great money-maker, too!
Eliminates the need for duplicates. Reduces your inventory. Reduces your total investment. And many of Zenith's high-quality devices are priced lower than those from other sources.

Switch now, if you haven't already, to Zenith Universal Semiconductors and see how well your shop shapes up. Your bottom line, too.
Your Zenith distributor is standing by to help you with the latest Zenith Universal Semiconductor

cross-reference guide containing over 130,000 cross-references.
Write to Zenith for YOUR FREE copy of this new cross-reference guide.

The quality goes in before the name goes on.

Service News

The introduction to our monthly service column - a Canadian service information centre. By R.C.

THIS NEW SECTION is intended to be of interest to the practising electronics technician. It is hoped that it will bring to you news items and information of special interest to the serviceman. A letter has been sent to the leading manufacturers explaining the purpose of this column and requesting any information on upcoming seminars, new developments, and in fact any items they feel would be beneficial to our readers. In view of the fact that the letter was only mailed in early July, it should be very apparent that they, the manufacturers, had little or no time to respond by press time. Any companies who have not been contacted are of course encouraged to contribute material they feel will be useful. However the Zenith Radio Corporation have done a pretty good job with their Fall agenda. (Fig. 1).

ZENITH

I have been invited to see the new computerized electronic games in approximately two weeks' time, and am in fact looking forward very much to pitting myself against their chess game. I should beat it. After all I have been
playing for nearly 45 years and this electronic wizard is very much a beginner. In any case I will let youknow the result.

Zenith are also in the process of setting up a video cassette library, and by September they hope to be selling cassettes featuring children's, sports, educational and first-run movies. The cost will probably be in the $\$ 40-\$ 90$ range (per cassette) and advertising material and a cassette catalogue will be available to selected dealers. This seems to be a very convenient and economical way to service the consumer as no capital outlay is involved. The dealer can simply order from the catalogue and expect delivery within 24 hours.

This first column is not very technical, it is primarily a news release from the Zenith Corporation. However the conversations I have had with their technical reps have made it abundantly clear to me that to survive the TV technician must diversify. If we have not already reached, we are certainly very close to saturation in the colour TV market, and with the complexities of
solid state circuitry it has become more and more difficult to do other than the most rudimentary service in the home. The technical reps of several of the leading manufacturers have all expressed their opinion that unless the electronics technician is prepared to study and seek new fields he will not survive. Discussing the future of the domestic electronic technician, the general consensus of opinion was that he must be prepared to service not only colour TV, but burglar alarms, electronic door openers, electronic games, and even computers. This will require intensive study. We have for many years enjoyed a reasonably lucrative profession doing very little other than TV and stereo service, but with the reliability figures quoted to me by various manufacturers it would appear that this particular branch of domestic electronics is going to require considerably less maintenance than hitherto. When m anufacturers quote an incidence of service of one service call in 3 years excluding nuis ance calls, one must begin to wonder "What will I be doing in 5 years' time?" There will obviously be large numbers of tube'sets

Fig. 1. ZENITH RADIO CORPORATIONAGENDA - 1978

Date	Place	Subject
Sept 11-22	B.C. (Major Appliances, Vancouver)	The new chassis. (System 3)
Sept 25-29	Toronto	VCR (video cassette recorder)
Oct 1-6	Toronto	System 3
Oct 11	Sudbury	System 3
Oct 15-28	Saskatchewan and Manitoba	System 3
Oct 29-Nov 4	Alberta	System 3
Nov 6-10	Kitchener	System 3
Nov 13-14	Windsor	System 3
Nov 16-17	St. Catharines	System 3
Nov 20-21	Halifax	System 3
Nov 23-24	Moncton, N.B.	System 3
Nov 26-Dec 1	Toronto	System 3

Service News

and hybrid sets still in the field, but they will gradually phase themselves out, leaving the field service technician with no house calls to make. Prominent service technicians and owner/operators have expressed the opinion to me that the days of home service are numbered, stating that in the very near future the consumer will be expected to bring 20" and smaller colour TVs to the service centre for repair, and where a larger set is involved the companies are already planning to use relatively unskilled labour just to pick up the set for service by a bench technician.

The local Zenith office will be pleased to advice exact time and place.

These seminars will be presented by Mr. George Hess, well known to technicians across the country for his technical knowhow, his patience, and most important of all, his teaching ability.

In passing I would like to inform you that a 5-day seminar was held in Toronto in June on video cassette recorders. Eighteen selected technicians attended this course and Zenith report that it was one of the most
successful seminars ever presented by them. The technicians were most enthusiastic and I have been informed that by the end of the week the group was diagnosing the most elusive faults with ease, and in fact clamouring for more complex problems.

A further piece of late news: Zenith, in conjunction with Humber Collegiate, is setting up a VCR course. The date of commencement is indefinite at the time of writing, but providing suitable instruction is available it will commence in September. Failing that it will commence in January.

Note: Price will be \$6 each for orders

In response to many requests from our readers we hove arranged for binders to be made so that you can keep Elt's first Canadian volume together and protected from damage. The binders are covered in attractive leather-look black plastic and are designed to hold twelve issues. The EII design is printed in gold letters on the
> received after 31 August.

> Ontario residents add 4\% PST.
spine.

1

Itsfastereasier and lass expensive. That's why

 we callit Super-Strip:This versatile mini breadboard features the same superior contacts, materials and construction we use in our full-scale ACE All Circuit Evaluators. Any solid hookup wire up to \#20 plugs right in to connect DIPs, discretes and almost any components you have on hand. Super-Strip gives you 128 separate five-point terminals in the circuit building matrix and 8 power and signal distribution lines-enough capacity to build circuits with as many as nine 14 -pin DIPS. And when you're done with your hookup, just pull it apart-everything's as good as new. SuperStrips come with your choice of nickel-silver or goldplated terminals. Plus an instant-mount backing and quick-removal screws for fast and easy stacking or racking. Heard enough? Then stop looking and start cooking with A P Products Super-Strips.

CANADIAN DESTRIBUTORS
Vancouver, B.C. 604-324-0505
Vancouver, B.C. 604-324-6831
Winnipeg, Manitoba 204-786-1471
Winnipeg, Manitoba 204-632-1260
Armdale, Nova Scotia 902-876-2920
London, Ontario 416-434-3204
Toronto, Ontario 416-484-9708
Brantford, Ontario 519-756-2468
Downsview, Ontario 416-638-1322
Send for our complete A P catalog, The Faster and Easier Book
Faster and Easier is what we're all about.

"Please believe me dearest, I'm not having an affair at work.'

ETI Data Sheet

Sprague ULN2232A Conversation Piece

Just becoming available from Sprague, this chip provides great entertainment value.

THE ULN2232A MOTION DETECTOR combines Integrated Injection Logic and more familiar biopolar technology in this part digital, part analog circuit designed for the advancement of toys, which will probably find use also in burglar alarms etc.
At the time of going to press, no proper data sheet was available so the information here is not absolutely complete. However, here's what we know.

NEAT LOOKING

Referring to the block diagram Fig. 1, we can see that there are two main sections of interest in the IC. First there's the "input" stage, the actual motion detector. This is composed of a photo diode actually on the chip, able to sense light due to a rather unique
transparent epoxy package. The photo diode only "looks" at a very small area directly facing the top of the IC (actually a narrow cone if you visualize it in three dimensions). A signal representing the amount of light from this area is amplified by A 1 , and if coupled through C1, then it is further amplified by A2 and A3.

DON'T MOVE

The detector senses changes in level, and outputs a digital trigger signalif the light level changes by more than 5% in the "cone of surveillance".

Since almost any movement in a room will affect the light falling elsewhere, this circuit will thus detect and signal the movement. Various optics options are planned including special lens and infrared filter. This
ability obviously is useful in burglar alarm applications, and makes the basis of a novel toy.

VOCAL CHIP

The second half of the IC complements this with a noise maker circuit. The digital generator and VCO are configured either to produce aburst of siren like output, or a pseudo (very) random sequence of 12 notes repeated in a burst reminiscent (if one can say that so soon afterwards) of Star Wars' R2D2. A4 and a transistor deliver an audio signal capable of directly driving a speaker, while a signal directly from the digital generator drives another transistor for powering flashing light bulbs of LEDs.

OPTIONS

Obviously a wide variety of

possibilities exist. Amicrophone can be used instead of the photo sensor. The gain of A2 and A3 may be varied (pin 14) and the triggerline may be permanently forced on through pin 11. Pin 14 also selects the sound options. The various capacitors adjust the frequency response or outputs. See Fig. 3 for details.

OTHER FEATURES

Of technical interest are a number of details about this device. High gain (40dB) linear amplifiers were fabricated for operation off power supplies as low as 2.5 V . A logarithmic amplifier and linear detector are combined in order to detect a constant percentage light change. In addition, our "Applications Information" sheet says that the chip uses a "Class D"

Fig. 2. Photograph of the ULN2232A with transparent body. At last you can actually see how little there is in a DIP! Note the small black square in the centre of the chip itself - this is the photo diode.

amplifier for high efficiency. We suspect this means that the audio signal is a rectangular (Digital) wave rather than sine or triangle. This is not quite what Class D means, but it is the obvious way to dissipate less heat on the chip.

CONCLUSIONS

The 2232A is fascinating to play with and has many useful applications, other than toys. Speaking of which, here's a free tip. You can guess how many 2232A robots, R2D2's, animals, paper weights, Barbie dolls, cigarette

Fig. 3. Connections and componenrs options.
Supply voltage should be between 3 V and 4.5 V , current drain 1825 mA .
Maximum current sinkable by pin 1 ls 80 mA , and 500 mA for pin 3.
Pin 11 No connection: triggering from photo detector High: Sound on.
PIn 14 High: Gain of A1 and A2 at maximum, trigger will cause a short burst of siren sound from speaker.
Open: Reduced gain of A1 and A2, with silghtly different frequency response. Normal output is the pseudorandom sequence with light flashing slowly. Trigger changes this to siren sound and lincreases flashing rate.
C1 \& 3: Set amplifler low end cut off, 47 u gives 0.7 Hz .
C2: \quad Sets high cut off, 4 u 7 gives 9 Hz
C4: Sets length of sound burst (4 secs \%, the siren "yelp rate", the lamp flash rate
C5: \quad (2.5 Hz in "Search" mode. (with 4u7)
C5: Sets ouput frequency
dispensers, hood ornaments etc there are going to be by Christmas time. If you want to keep your sanity make sure you don't buy any batteries.

Seriously though, it must say something about us if such amazing technology in this rather incredible little chip can so quickly receive a blasé reaction, but it's sure to happen. Familiarity breeds contempt. Better get yours now before the novelty wears off. Should be less than $\$ 10.00$ per piece at Sprague distributors.
Many thanks to Eric Hartwell for the material in this article.

CLASSIFIED

 DOWNSVIEW, ONTARIO M3J 2K1 "CANADA'S FRIENDLIEST AMATEUR RADIO STORE"Write for FREE iterature Tel (416) 661-8800

NORTHERN BEAR ELECTRONICS

Box 7260, Saskatoon, Sask. S7K 4J2
Having problems locating parts? Special requests are welcome at NBE, enclose stamp \& we'll do our best. Designers, experimenters. ETI projects builders, computer freaks. technicians. Request FREE flyer TODAY!

J \& J ELECTRONICS LTD.,
 P.O. Box 1437 E,
 Winnipeg, Manitoba R3C 224

Semiconductor Specialists Do you get our bargain flyers? Send $\$ 1.00$ to receive the current literature and specials and to be placed on the mailing list for the future publications.

SOFTWARE TECHNOLOGY

P.O. Box 11358, Station H Ottawa, Ont., K2H 7V1
We stock all Osborne Books.
Intro. to u - Computers
Vol. 0, Beginners Book \$8.50
Vol. 1, Basic Concepts $\$ 8.50$
Vol. 2, Some Real Products $\$ 16.50$
Programming for Logic Design for:
8080.
... $\$ 8.50$
6800 $\$ 8.50$
Zome Common Basic Programmes . $\$ 8.50$
Some Common Basic Programmes . . $\$ 8.50$
Payroll with Cost Accounting Add $50 ¢$ for postage and handling.
Send money order or certified cheque for faster service.

AUDIO KITS AND MODULES

$60 \mathrm{~W} \times 2$ Pre-Amp., Power Amp., Power $\$ 78.00$ Supply
$30 W \times 2$ Pre-Amp., Power Amp $\quad \$ 49.00$ low $\times 2$ Pre-Amp., IC power Amp. $\quad \$ 39.00$ $\begin{array}{lll}\text { 6ow Low supply. } & \\ \text { 60W T.I.D. Power Amp. } & \$ 31.00\end{array}$
15W Tone Control Unit, IC Power Amp.,
Power Supply, Transformer $\quad \$ 32.00$
Free Catalogue: AUDIOVISION SERVICE P.O. Box 955, Stn. B, Willowdale, Ont. M2K 2 TE

Advanced Electronic Career

ANNOUNCING ...A New CREI Program:

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New
 Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC. assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice
 of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREl offers this unique Lab Program.

Practical

Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

Qualifications

You may be eligible to take a CREI college/university-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college/universitylevel programs in electronics

chet Home Study Pregrams in

Mail card or write describing qualifications to

McGraw-Hill Continuing Education Center 330 Progress Avenue, Scarborough, Ontario
M1P $2 Z 5$ (416) 293-1911
Accredited Member National Home Study Council

criei Introduces Program 680: MIHICOMPUTER 8 MICROPROCESSOR

TECHHOLOEY

GABOMAYOHY HRovat Ast

路

John Garner's regular look at what's happening on short wave radio.

GENERALLY THE SHORT wave spectrum is considered to be the range of frequencies from $3,000 \mathrm{kHz}$ up to $30,000 \mathrm{kHz}(30,000,000$ cycles per second). Below this, we have the long wave band and medium wave band, and above are the very high frequency and ultra high frequencies (which are not covered by most short wave receivers).

In the short wave range there are three main types of stations: (a) broadcast stations, (b) amateur radio operators, (c) utility stations.

Broadcast Stations. These are the stations which send their programs out over theairwaves to a general audience. These programs include news, music, commentaries, etc.

Amateur Radio Operators (Hams). These are radio hobbyists licensed for operating two-way communication with other amateurs around the world.

Utility Stations. These stations cover many aspects of radio and cover such stations as military, ship-to-shore, aero-nautical communications, standard time and frequency stations and much more.

All of the above stations, with few exceptions, operate within certain portions of the short wave spectrum as defined by the International Telecommunications Union (ITU). This is an international organization to which most countries belong and they are responsible for controlling international broadcasting. In 1979 a meeting will be held to discuss the various allocations of frequencies - so many of the bands now in use may be altered. This will likely relieve some of the crowded conditions around the SW bands.

Now for a breakdown of the various broadcast sections of the short wave bands. These are listed by metre bands. To convert from wavelength (in metres)
to frequency (in kHz) divide 300,000 by the wavelength. For example, 25.60 metres would be $300,000=11720 \mathrm{kHz}$ (in round figures). 25.60

Usually the bands are referred to the wavelengths in round figures such as the 25 metre band in this example:
120 metre band - 2300 to 2500 kHz : Very few stations operate in this band, and because they all use low power you rarely hear them. Nightime reception only is possible in this band.
90 metre -3200 to 3400 kHz : This is the first of the three tropical bands, so called because these bands are used mainly in the tropical areas of the world for domestic broadcasting. Since many of these countries have widely scattered populations this is usually the only form of radio available to them. Powers used by these stations are low, making reception difficult, but not impossible. Very little English is heard on these bands. Spanish and French are common as well as many lesserknown languages. Reception is only possible during darkness hours.
75 metre band - 3900 to 4000 kHz : Another tropical band, shared with amateur radio operators. A few major broadcasters operate in this band but like the 90 and 60 metre band, most of the stations are operated in domestic service for listeners in the station's country. Again night-time reception only.
60 metre band -4750 to 5060 kHz : This is the last of the tropical bands with reception about the same as noted for the 75 and 90 metre bands. Many stations from the tropical areas operate this band for their home audiences. This is also a night-time band.
49 metre band -5950 to 6200 kHz : A very crowded band, with major international broadcasters as well as local broadcasting stations from Asia, Africa and South America. Reception in this band is possible from late afternoon until quite late at night. Also from shortly before sunrise until shortly after sunrise, stations from Asia and the Pacific area may be heard.
41 metre band -7100 to 7300 kHz : This is a segment of one of the exclusive North American amateur bands and therefore no broadcasters in the Americas use this band. However many broadcasters from Europe, Asia and Africa use the band direct programs our way. Reception on this band is possiblefrom several hours before sunset until several hours after sunrise. There is usually interference from the amateurs. 31 metre band - 9500 to 9775 kHz : This is probably the best spot for listeners in Canada to hear English-language broadcasts from international
broadcasters. Many European stations, especially direct programs to North America in the evening hours, use this band. Reception on this band is best during the evening hours before your local midnight.
25 metre band $\mathbf{- 1 1 7 0 0}$ to 11975 kHz : The higher short wave frequencies provide reception in daylight hours while the lower frequencies are better during darkness. The 25 metre band is a transitional band with good reception over long distances during the daylight hours, but fading away late at night. This band is also well used by the major broadcasters. There is also some domestic programming especially from Latin America.
19 metre band - 15100 to 15450 kHz : This is a daytime band with stations from Europe in the morning, Africa in the afternoon, and very often stations from the Pacific are heard well into the late evening and even into the wee hours of the morning. Since most of the path from the Pacific is in daylight lat at night here in Canada reception of stations in Australia, New Zealand, Tahiti, etc are heard at this time.
16 metre band - 17700 to 17900 kHz : There are not so many stations operating in this band since reception is not too good during the low point in the eleven-year sunspot cycle. As conditions improve, this band will become more active. This is a daylight listening band.
13 metre band - 21450 to 21750 kHz : Even fewer stations operate in this band at the present time. Like the 16 metre band more stations will be moving to this band in the next year or so as conditons improve. Once again reception is only in daylight hours.
11 metre band - 25600 to $\mathbf{2 6 1 0 0} \mathbf{k H z}$: I don't know of any broadcaster using this band at the present time because of the low sunspot count. Look for stations in this band next year or the following year as conditions improve. Daylight listening only.

I have mentioned the sunspot conditions a few times in the last few paragraphs. There will be more information on this and other propagations conditions in future issues of this column so that you will be able to know when and where to look for stations you wish to hear.
These bands listed above are the shortwave bands. However many stations operate outside these bands so don't be surprised to hear international broadcasters on frequencies other than these.

Next month I will continue with a look at the amateur band frequencies and utility stations. Until then 73 and good listening.

NEW STORE

ELECTRONIC PARTS
\& EQUIPMENT SERVING

- HOBBYIST - AUDIOPHILE - EXPERIMENTER - KIT BUILDER - HAM - CBer SPECALI

DIGITAL CLOCK KIT
6 Digit. Very Bright Orange Gas Display. Seconds counting . 12 or 24 hour programmable. Complete with case.

Only

SERVING CANADIANS FOR OVER 25 YEARS

UHF. VHF.FM VARACTOR TUNERS Solid State our Speciality We service more TV Tuners than all other tuner companies combined.
We also service all makes of TV cable convertors.

CASTLE TUNER SERVICE 24 Cranfield Road. East York. Toronto M4B 3H1 Tel: 752-7330 1

Kits for ETI Projects

Now Available ETI Project No. 134 True RMS Voltmeter $\$ 89.95$
ETI Project No. 450 Bucket Brigade Audio Delay Line $\$ 48.50$
ETI Project No. 486
Frequency Shifter \$69.95
ETI Project No. 585 Ultrasonic Switch \$29.95
DO NOT SEND CASH
Cheque, Money Order or Master Charge include card expiry date and number
Allow 3 weeks for delivery
DOMINION RADIO \& ELECTRONICS
535 Yonge St. Toronto Ontarlo M4Y 1Y5

[^0](a) 10\% discount on this four-book set
or (b) 50% discount on buying "Second Book of Transistor Equivalents \& Substitutes" (See p.13)
All prices include post \& packing. Send Order with cheque or Mastercharge/Chargex number (with expiry date and signature) to ETI Books, Unit 6, 250 Overlea Blvd., Toronto, M4H 1 B1.

Easy Mortgage Math

Mortgage management program lets you think you have more control over your money than the bank does. Contributed by Dick Wink of Peterborough, Ont.

Anyone who has attempted to use a regular annuities program to calculate house mortgages, may well have been disappointed to discover errors in the results. An error of even a few cents in the monthly payment can make a large difference over the time period of a normal mortgage. The normal annuity program assumes that the compounding period and payment period are the same, whereas a mortgage is usually compounded semi-annually, but paid monthly. Another difference that can occur arises because the "professional" computer print-out rounds all dollar and cent figures to two decimal places. The program outlined here, takes account of both factors and produces correctly the total interest, monthly payment and outstanding debt after n paymen's. It does not, of course, include + roperty tax and insurance which are cften included in the monthly payment. After using such a program you may well decide to renegotiate your mortgage. Idid! Tables 1 and 2 show the status for the first four months of a $\$ 23,000$ mortgage at 10.5% per annum. By just over doubling the monthly payment, the time is reduced to one quarter and there is a saving of \$25,000 in interest.

The program was written for a Texas Instrument S R 52, and should easily "fit" into the more recent T.I. models as well as the Hewlett-Packard programmables. It can be split into two parts for calculators with smaller program memories. The formula for the true monthly interest rate (i^{*}) in decimal rather than percentage form is:

$$
i^{*}=(1+i / c)^{c / 12}-1
$$

where i is the annual interest rate in decimal form and c is the number of compoundings per year. The installment payment that the homeowner makes each month (PMT) is given by the equation

$$
\text { PMT }=P \cdot i^{*} /\left(1-\left(1+i^{*}\right)-12 t\right)
$$

where P is the initial dollar value of the mortgage, or principal, and t is the number of years over which the mortgage is amortised. The total interest that the home-owner pays over the full period of the mortgage (a truly horrifying sum) is given by:

$$
\text { TOT INT = PMT . (12.t) }-\mathrm{P}
$$

These calculations are all performed in the first portion of the program. The second portion uses an iterative technique to generate the lines of the amortisation table so that the outstanding balance after the nth monthly payment can be calculated.

It is quite simple to derive an expression for outstanding balance but the results will disagree with those produced "professionally" because the calculator will perform the computation to a much greater degree of accuracy than the two decimal places appropriate to financial calculations. The iterative technique conforms to standard practice in mortgage computation. If $\mathrm{OP}(\mathrm{n}-1)$ denotes the outstanding principal just prior to the nth payment, then the interest payable at this time is:

$$
I(n)=O P(n-1) \cdot i^{*}
$$

The part of the payment which can be applied to reducing the debt (decrement of principal) is:

$$
D P(n)=P M T-I(n)
$$

The new principal - or debt after the nth payment has been made - is given by:

$$
O P(n)=O P(n-1)-D P(n)
$$

These three expressions are all calculated in the loop illustrated in the flowchart. Referring to the flowchart, it will be seen that the principal (P), annual interest rate per cent (i\%), number of compoundings (c) (Usually $\mathrm{c}=2$, semi-annual compounding) and time (t) years over which the mortgage is amortised are entered and stored. The number of payments made, (n), is then entered and the program is run. If $n=0$, only part A is run and the monthly payment and total interest are displayed. If n is non-zero the program enters the loop, initialising the counter and generating succesive lines of the amortisation table until the nth payment is reached and the program halts. Outstanding principal, decrement of principal and interest portion of the payment are in memory and can be displayed. If a printer is available, a very minor modification can effect a printout of the entire amortisation table and not just the nth line. The total program uses 12 memories, 3 levels of parenthesis and one single level subroutine for rounding of the dollars and cents figures.

Table 1. For Principal $P=\$ 23000$, Rate $i \%=10.5 \%$ compounded semi-annually over 20 years. Monthly payment (PMT) $=\$ 226.20$

Payment \#	Outstanding Principal Before Payment OP(n-1)	Interest $I(n)$	Reduction in Principal	Outsianding Principal
AP(n)		After Payment		
0	23000.00	196.98	29.22	OP(n)
1	22970.78	196.73	29.47	23000.00
2	22941.31	196.48	29.72	22970.78
3	22911.59	196.23	29.97	22941.31
4				22881.62

Total interest paid $=\mathbf{\$ 3 1 2 8 8 . 0 0}$

Table 2. For $P=\$ 23000, i \%=10.5 \%$ compounded semi-annually over 5 years. Monthly payment (PMT) $=\$ 491.83$

Payment \#	Outstanding Principal Before Payment OP(n-1)	Interest I(n)	Reduction in Principal DP(n)	Outstanding Principal After Payment $\mathrm{OP}(\mathrm{n})$
0				23000.00
1	23000.00	196.98	294.85	22705.15
2	22705.15	194.46	297.37	22107.86
3	22107.86	191.91	299.92	21805.37
4	21805.37	189.34	302.49	21502.88
total interest paid $=\$ 6509.80$				

FLOW CHART SYMBOLS

FLOW CHART

"(Brmífest’78"

AN ELECTRONIC TECHNICIANS PREMIUM AWARD OFFER

It's Easy

Simply save your CGE Semiconductor Bags, to be redeemed for valuable FREE GIFTS. (Gifts will be awarded for as few as 10 Bags)

Premium Award Brochures are available from participating CGE Electronic Distributors or fill in the coupon below and send to

"Semifest '78"
Canadian General Electric Co. Limited Electronic Components 189 Dufferin Street Toronto, Ontario M6K 1Y9

CROSS REFERENCE GUIDE

For your FREE Copy of the 369 Page, CGE Cross Reference Guide, contact your nearest CGE Electronic Distributor

Please rush complete information on "Semifest '78" COMPANY NAME \qquad
name -

ADDRESS

CITY/TOWN \qquad PROV.

POSTAL CODE

Canadian
 General Electric
 Company Limited

 ELECTRONIC COMPONENTS 189 DUFFERIN STREET, TORONTO (416) 537-4481 MONTREAL (514) 733-9911
- omnitronix Itd. FREE LITERATURE Visit your local distributor or drop us a line on your letterhead.

Injectoral Electronics
From fingers to donuts a very complete line of circuit boards, drafting aids, chemicals everything you need.

Jersey Speclalty Co.
Specializing in wire and cable for T.V., Hifi and communcations applications.

Leader Test Instruments

Test instruments for the hobbyist, industry, education and the serviceman. Oscilloscopes, audio equipment, D.V.M., multimeter, video patterns and generators. A diversified line. "put us to the Test".

Magna Sound

An established company with sound ideas. Mobile and portable sound systems, for trucks, vans, boats and cars, hand held units also available.

Oaktron Industries

Your blueprint to better sound speakers for most applications, all with aluminum voice coils, most with heavy magnet assemblies.

Tele Matlc Corp

The professional line for T.V. servicemen. Brightness, service accessories, tuner subbers and high voltage probes.

Waldon Electronics

The electromechanical house single stop shopping for solderiess terminals and connectors, nylon connectors, printed circuit hardware, cable ties spacers and electronic hardware.

WInegard Company

There is no substitute for quality Amplifiers, indoor outdoor and R.V. antenna associated electronics and accessories for excellent T.V. reception.

Winegard Industries
Manufacturers of very high quality base mid and top loaded mobile C.B antenna. Base station antenna also available.

Magma Sound
 7211

"We're on Your Wavelength"

2056 South Service Rd., Trans Canada Hwy, Dorval, Québec H9P 2N4 Tél. 683-6993 - Télex. 05-822692

PROGRAM

LOC	CODE	KEY															
000	46	LBL	035	09	9	070	75	-	105	02	2	140	01	1	175	81	HLT
	11	A		42	STD		01	1	,	65	2	1	00	0	175	46	LBL
	42	STO		01	1		54)		43	RCL		65	\times		17	B'
	00	0		00	0		42	STO		00	0		43	RCL		43	RCL
	01	1		43	RCL		01	1		04	4		01	1		00	${ }_{0}$
005	81	HLT	040	00	0	075	01	1	110	95	$=$	145	01	1	180	07	7
	46	LBL		01	. 1		55	\vdots		75	-		95	=		81	HLT
	12	B		65	\times		53	1		43	RCL		51	SBR		46	LBL
	42	STO		53	(53	(00	0		87	$1 *$		18	C^{\prime}
	00	0		53	(01	1		01	1		42	STO		43	RCL
010	02	2	045	53	(080	75	,		95	=	150	00	0		01	1
	81	HLT		01	1		53	(42	STO		08	8		00	0
	46	LBL		85	$+$		01	1		00	0		75	-	187	81	HLT
	13	C		43	RCL		85	+		07	7		43	RCL .	,	46	LBL
	42	STO		00	0		43	RCL		43	RCL		00	0		19	D ${ }^{1}$
015	00	0	050	02	2	085	01	1	120	00	0	155	06	6	190	43	RCL
	03	3		55	\div		01	1		05	5	S	95	$=$	190	00	0
	81	HLT		01	1		54)		22	INV		42	STO		08	8
	46	LBL		00	0		45	y^{x}		90	if zro		00	0		81	HLT
	14	D		00	0		53	Y		01	1		09	9		46	LBL
020	42	STO	055	55	\div	090	43	RCL	125	03	3	160	44	SUM	195	10	E^{1}
	00	0		43	RCL		00	0		00	0		01	1		43	RCL
	04	4		00	0		04	4		57	FIX		00	0		00	0
	81	HLT		03	3		65	\times		02	2		58	dsz		09	9
	46	LBL		54)		01	1		81	HLT		01	1		81	HLT
025	15	E	060	45	$y^{\mathbf{x}}$	095	02	2	130	42	STO	165	03	3	200	46	LBL
	42	STO		53	1		94	+/-		00	0		09	9		87	$1{ }^{*}$
	00	0		43	RCL		95	=		00	0		57	FIX		57	FIX
	05	5		00	0		51	SBR		43	RCL		02	2		02	2
	00	0		03	3		87	$1 *$		00	0		81	HLT		52	EE
030	42	STO	065	55	\div	100	42	STO	135	01	1	170 .	46	LBL	205	22	INV
	00	0		01	1		00	0		42	STO		16	A^{\prime}		52	EE
	08	8		02	2		06	6		01	1		43	RCL		22	INV
	42	STO		54)		65	\times		00	0		00	0		57	FIX
	00	0		54)		01	1		43	RCL		06	6		56	RTN

EXECUTION

Procedure		Enter	Press	Display
1	Enter mortgage details	Principal	A	P
		Rate \% P.A.	B	i\%
		Compundings/Year	C	i
		Time-Years	D	t
		Number of payments	E	0.00
2	Recover results	2nd	A	PMT
	2nd	2nd	B	TOTINT
		2nd	C	OP. (n)
		2nd	D	$1(n)$
		2nd	E	DP (n)

3 For arbitary payment*, time Arbitary Payment: not specified follow step 1 entering P, i\%, c. Enter 30 for t and 0 for n.

STOO 6

STOO 5
GTO 130 RUN

Then return to step 2

"Unusual - but it can happen in some older private mortgages.
SOFTSPOT is ETI's programmable calculator software department. We know there are many of you who have gone to a lot of effort to write routines for your machines - how about sharing the fun. Send us a copy of your pet program, preferably with flow chart. To make things interesting we will restrict our choices to only those programs making use of loops or conditionals.
All programs we publish will be paid for.

Mail to: ETI Softspot
Unit 6, 25 Overlea Blvd., TORONTO. Ontario M4H 1B1

Don't forget to mention what kind of calculator you use - and we'd also be interested to know where you bought it.

Tech Tips

Tech-Tips is an ideas forum and is not aimed at the beginner. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Elactronics Today International, Unit 6, 25 Overlea Blvd. Toronto, Ontario, M4H 1 B1.

FUSE TESTER

R. Heggie.

This circuit can be used for testing fuses, and has the advantage of being much smaller and easier to use than an ohm meter. The circuit is built into a 35 mm aluminium film can, and is powered by two small mercury cells. An old penny glued to the plastic lid of the can forms one of the touch contacts, and the case forms another.

IMPORTANT: All unused inputs on ICI should be grounded.

CONSTANT CURRENT

 SOURCES. Callaghan

This circuit ușes a standard panel mounting LED to provide a constant reference voltage for a transistor in a constaht current generator.

The output current 1 , is given by

To test a fuse, the case is held on one hand and the fuse in the other, the end being touched onto the copper disc, if the fuse is OK a small current will flow through to the first gate of ICla taking the input high and the output low. This is inverted by ICIb, which turns Q1 on, lighting the LED. As current consumption with the LED extinguished is almost negligible, a battery switch is not required.

the equation $I=\frac{V_{L E D}-V_{\mathrm{BE}}}{R_{E}}$
When the circuit is not connected to a load, the LED is extinguished, giving a visible indication of when the circuit is operating.

Kingston Electronic Supply Co. KINGSTON
Kromer Radio
TORONTO
L. R. C. Music Centre Ltd

WINDSOR
Joe's Car Radio \& T.V.
OTTAWA
Lamp Land Lid.
PETERBOROUGH
Larry's Auto Radio
SCARBOROUGH
L. W. Electronics

STRATHROY
Lighthouse Electronics WINDSOR
London Car Stereo
LONDON
Long \& McQuade Musical
TORONTO
Luctor Canada 1-td.
HAMILTON
Lyons Auto Radio
BRAMPTON
M. I. Supply Co. Lid BELLEVILLE
Mac's Elect.
PORT PERRY
MacFarland T.V. Regd. BATTERSEA

Mann's T.V. \& Stereo Ltd. DOWNSVIEW
Merrifield's Custom Audio WINDSOR
Milton Auto Stereo
MILTON
Muntz Store
OTTAWA
Muntz-368501 Ontario Lid.
HAMILTON
Muntz
STONEY CREEK
Muntz Scarborough
SCARBOROUGH
Muntz Centre
PETERBOROUGH
Neutron Electronics GUELPH
Niagara T.V. Supply
NIAGARA FALLS
Nordak Custom Car Stereo
GUELPH
Norm's Radio \& T.V.
KINGSTON
Northwestern Electronics Supply
OWEN SOUND
Oakville Auto Service
OAKVILLE
P\& B Electronics Supply Co. Lid
HAMILTON
Poole Electronic Supplies
LONDON
Provincial Elect. Dist. Ltd LONDON
Radio Trades Supply Ltd
TORONTO
Reid Path Electronics
TORONTO
Regent Comm
BRANTFORD
Rolly Sound Ltd
SCARBOROUGH
Rutledge Music Co. Ltd. GUELPH
SES Division of Walsten Ltd
KINMOUNT
Samco Radio Electronics WINDSOR
Carl Sattler \& Assoc. Ltd. WATERLOO

See Vac Dist. Ltd.
HAWKESBURY
Sonic Northern
SUDBURY
The Stereo Store
BURLINGTON
Tape Carousel Inc.
KITCHENER
Henry Taub
BURLINGTON

It's especially important when building projects like the "Roulette Wheel" in this issue, to make sure the components are properly matched. There's nothing more frustrating than after hours of searching for the exact IC or transis.tor specified, having to substitute and then discover the kit doesn't work exactly the way it's supposed to

You can avoid the parts runaround by going straight to your Jana Dealer and picking up the Roulette wheel parts kit. Jana kits are both economical and versatile. They come complete with a heavy duty mounting chassis and all the critical Components. Jana packages PC boards separately so if you decide to do the layout and etching yourself you can buy the raw board. Or if you prefer a commercial PC board, Jana has that too.

at your Jana dealer today and see some of their other fine quality Jana Electronic Projects.

1. Automatic Headlight Reminder
2. Battery Operated Fluorescent Light
3. Bug Shoo
4. Code Oscillator
5. Crystal Radio
6. Curiosity Box II
7. Dally Lighter
8. Decision Maker
9. Fish Caller
10. Hi Power 12V DC Flasher
11. Photo Electric Night Light
12. 6V Power Supply
13. 9V Power Supply
14. 0-20V Power Supply
15. Single Channel Color Organ
16. Electronic Siren
17. Shimmer Strobe Light
18. Tone Generator

For institutional inquiry contact:

Mr. D. Mann
Jana Electronics Limited
P.O. Box 489

Winnipeg, Manitoba R3C 2B3
Jana Electronic Projects are available through Cam Gard Supply Vancouver•Kamloops • Calgary•Edmonton•Red Deer
Regina•Saskatoon•Winnipeg
20. 5 Transistor 1 Watt Amplifier
21. Tube Continuity Checker
22. Xenon Strobe
23. LJ 12016A Color Organ
24. Loudmouth Siren
25. Roulette Wheel
26. Electronic Sheet Game
27. Electronic Dice
28. Super Roulette
29. FM Mini Broadcaster

Tech Tips

DIGITAL KEYBOARD CONTROLLER
P. Williams

This circuit was designed to overcome all the problems associated with resistor ladders and analogue memories normally found in synthesisers. The key depressions cause a diode matrix to set up binary patterns which are memorised on a bank of flip-flops.

The main advantages of this method are infinite memory hold; more accurate output since there are only six main tuning resistors (it is economical to make them variable). If more than one key is depressed at a time, no "out of tune" notes will be produced because of a multiple key depression detector. Only one set of single make contacts is required for the keyboard. Octave transpose and portamento is included.

When a key is depressed, the binary code set up by the diodes is
clocked into the flip-flop (IC2-IC4) by the monostable (IC6). IC7 along with its associated resistors forms a D/A converter. The 33 K resistors along with Q1 form the circuit which inhibits further data being clocked into the flip-flops if more than one key edge to trigger envelope shapers.

Up to 63 semitones (over five octaves) can be catered for using six data bits as shown, although more bits can be added.

RV1 to RV6 should be adjusted so that each successive bit causes twice as much change in the output voltage. RV7 adjusts the voltage/frequency relationship. RV8-10 adjust the starting voltage; they should be set to give the required octave shifts on the transpose control.

Bestway toreplace adipped solid-tantalum capacitor

Use a Sprague Type SD Tantalex ${ }^{\text { }}$ Replacement Capacitor. You can count on its matching or exceeding the original quality of the capacitor it replaces. Quality features include
(1) High stability with very little capacitance change even at outer limits of operating temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $+185^{\circ} \mathrm{F}$). 2 Low dissipation factor permits higher ripple currents. (3) Capacitance tolerances of $\pm 10 \%$ 4 Hard epoxy coating that's highly resistant to moisture and mechanical damage.

Sprague makes it easy

Cabinet assortment KT-10 contains 70 Type SD Dipped Tantalex Solid-Tantalum Capacitors in 16 most-frequently-used ratings. They're prefiled for easy finding in six compartmentalized and labeled drawers. You pay for the capacitors only ... the cabinet is yours at no extra cost!

For the name of the Sprague distributor nearest you, write ar call:

TRANS CANADA ELECTRONICS LTD.
P.O. Box 117, Dollard Des Ormeaux, Que. H9G 2H5 Tel. (514) 747-4266

SMITH-PATTERSON \& ASSOCIATES

[^1]30 Midland St.
Winnipeg, Manitoba R3E 2Y6
Tel. (204) 774-1855

The Fun

IF THE BOSS CALLS, TELL HIM I WON'T BE IN TODAY TO WORK ON THE COMPUTERS; TELL HIMI'MSTAYING HOME TO ...ER... CHECK OUT A NEW PROGRAM.

THAT CORRESPONDENCE COURSE ON HOW TO BECOME AN ELECTRONICS REPAIRMAN SURE IS COMPREHENSIVE; CHAPTER 14 IS TITLED, "HOW TO PAD A BILL, AND HOW MUCH TOCHARGEFOR FIXING SOMETHING THAT YOU BROKE YOURSELF."

LET'S GET ONE THING StRAIGHT: THERE'S NO WAY I CAN CONCENTRATE ON FIXING YOU IF YOU'RE GONNA GIGGLE EVERYTIME I TOUCH YOU WITH THE TEST PROBE.

ETI Project File

Updates, news, information, ETI gives you project support

PARTS PARTS PARTS

We are continually beseiged with letters from readers asking where they can get parts in their area. Since we can't take a country-wide tour to check where all the elctronics partsplaces are, how about sending us a note on any stores you have found useful, what they are good for (if you own the place you can contribute too!) and so on. At some time in the future we would like to help out the "lost" readers by publishing a rundown of where to get what.

PROJECT FILE is our department dealing with information regarding ETI Projects. Each month we will publish the Project Chart, any Project Notes which arise, general Project Constructor's Information, and some Reader's Letters and Questions relating to projects.

PROJECT NOTES

Since this magazine is largely put together by humans, the occasional error manages toslip by us into print. In addition variations in component characteristics and availability occur, and many readers write to us about their experiences in building our projects. This gives us information which could be helpful to other readers. Such information will be published in Project File under Project Notes. (Prior to May 78 it was to befound at the end of News Digest.)

Should you find that there are notes you wish to read for which you do not have the issue, you may obtain them in one of two ways. You can buy the back issuefrom us (refer to Project Chart fordate of issue and see also Reader Service Information on ordering). Alternatively you may obtain a photocopy of the note free of charge, so long as your request includes a self addressed stamped envelope for us to mail it back to you. Requests without SASE will not be answered.

PROJECT CONSTRUCTOR'S INFORMATION

Useful information on the terminology and notation will be published each month in Project File.

Canadian Projects Book No. 1
Top projects from the early issues of ETI's Canadian edition, plus someof the projects from the UK edition's issues which were distributed in Canada in 1976. All projects use parts available in Canada. Those projects from UK editionhavebeen completely re-worked in Canada for Canadian constructors. Includes a series of modular disco projects, plus games, bioteedback, metal locator, etc.

Circuits No. 1

A brand new concept from the house of ETI. More than 100 pages packed with a wide range of experimenters circuits Based on the 'Tech Tips' section carried in the overseas editions of ETI. Circuits 1 is the first of a series of soecials produced for the enthusiasts who know what they want, but not where to get it' Circuits 1 will also act as a catalyst for further development of ideas, ideal for the experimenter. The collection of more than 200 circuits is complemented by a comprehensive index, making searches for a particular circuit quick and simple. Also, sımilar circuits can be compared easily. due to the logical layout and grouping used throughout. Last and by no means least. Circuits 1 has no distracting advertisements in the main section'
Electronics - it's easy Volume 1
\$3.50*
The best introductory series to electronics ever published in a magazine. Volume three completing the series, will be available in a few months. Volume One introduces electronics to the beginner by going through the systems approach basic concepts, meters and measurements, frequency and wavelengths, electronics and communication. capacitance and inductance, capacitive and inductive reactance. resistance, capacitance and inductance in combination, detection and amplification, elements of transistor amplifiers. emitter followers and DC amplifiers, and basic operational amplıfiers

Electronics - it's easy Volume 2

Volume Two introduces the sources of power, simple power supplies. how regulated power supplies work, general purpose supplies, generatıng signal waveforms, generating non-sinusoidal waveforms, all about electronic filters, more about filters, introducing digital systems, the algebra of logic, integrated circuit forms of logic functions. digital sub-systems, counters and shift registers

ETI Project Chart Sept. 77 to Sept. 78

ISSUE
DATE

Sept 77
Sept 77
Sept 77
Sept 77
Oct 77
Feb 78
Oct 77
Oct 77
Oct 77
Nov 77
Jan 78
Feb 78

Jan 78 Neg.
Nov 77 Watchdog
Jan 78 Neg.
Aug 78 Note: D
Jan 78 Neg.
Feb 78 Note: T
Dec 77 Spirit Level
Jan 78 Neg.
Dec 77 Egg Timer
Jan 78 Neg.
July 78 Note: S
Jan 78 LEED Pendant
May 78 Note: C
Feb 78 Tachomonitor
Apr 78
Feb 78
Apr 78
Apr 78
Feb 78
ote: C, T, S,

Nov 77 3-Channel Tone Control

Dec 77.50 D 50 Amplifier

Jan 78 Option Clock \& Neg.

Jan 78 Compander \& Neg.
ARTICLE

Audio Sweep Osc.
Microamp
Bongos
Alarm Alarm
Graphic Equaliser
Note: D
Loud Hailer
Continuity Tester
Stereo Simulator
Digital Thermometer
te: S
chdog

Neg.
LCD Panel Meter
Note: C
Neg.
CB Power Supply

ISSUE
DATE

Apr 78
May 78
Apr 78 Neg.
Mar 78 Hammer Throw
June 78
Apr 78
Apr 78
Mar 78
Apr 78
Mar 78 Home Burglar Alarm
Apr 78 Gas Alarm \& Neg.
May 78 White Line Follower
June 78
May 78
Acoustic Feedback Eliminator
May 78 Add-on FM Tuner
June 78 Neg.
June 78 Audio Analyser
June 78 Ultrasonic Switch \& Neg.
June 78 Phone Bell Extender \& Neg.
July 78 Proximity Switch
Aug 78 Neg.
July 78 Real Time Analyser MK II (LED)
Aug 78 Neg
July 78 Acc. Beat Metronome.
Aug 78 Neg
July 78 Race Track
Aug 78 Neg.
Aug 78 Sound Meter \& Neg.
Aug 78 Porch Light \& Neg.
Aug $78 \quad$ IB Metal Locater \& Neg.
Aug 78 Two Chip Siren \& Neg.
Sept 78 Audio Oscillator
Sept 78 Shutter Timer
Sept 78 Rain Alarm

PROJECT CHART

This chart is an index to allinformation available relating to each project we have published in the preceding year. It guides you to where you will find the article itself, and keeps you informed on any notes that come up on a particular project you are interested in. It also gives you an idea of the importance of the notes, in case you do not have the issue refered to on hand.

Every few months we print a pull out section in the magazine which may be used as a photographic negative for making printed circuit boards (as described in our January 78 issue). Each edition of this sheet contains projects from the preceding few issues. Information on where to find which negative is included in the chart.

Write to:
Project File
Electronics Today International
Unit 6, 25 Overlea Blvd.,
TORONTO, Ontario
M4H 1B1

Component Notations and Units

We normally specify components using an international standard. Many readers will be unfamiliar with this but it's simple, less likely tolead to error and will be widely used sooner or later. ETI has opted for sooner!

Firstly decimal points are dropped and substituted with the multiplier, thus 4.7 uF is written 4u7. Capacitors also use the multiplier nano (one nanofarad is 1000 pF). Thus 0.1 uF is $100 \mathrm{n}, 5600 \mathrm{pF}$ is 5 n 6 . Other examples are $5.6 \mathrm{pF}=5 \mathrm{p} 6,0.5 \mathrm{pF}=0 \mathrm{p} 5$.
Resistors are treated similarly: 1.8 M ohms is $1 \mathrm{M} 8,56 \mathrm{k}$ ohms is $56 \mathrm{k}, 4.7 \mathrm{k}$ ohms is $4 \mathrm{k} 7,100 \mathrm{ohms}$ is 100F, 5.6 ohms is 5R6.

Kits, PCBs, and Parts

We do not supply parts for our projects, these must be obtained from component suppliers. However, in order to make things easier we cooperate with various companies to enable them to promptly supply kits, printed circuit boards and unusual or hard-to-find parts. Prospective builders should consult the advertisements in ETI for suppliers for current and past projects.

Any company interested in participating in the supply of kits, pcbs or parts should write to us on their letterhead for complete information.

READER'S LETTERS AND QUESTIONS

We obviously cannot troubleshoot the individual reader's projects, by letter or in person, so if you have a query we can only answer it to the extent of clearing up ambiguities, and providing Project Notes where appropriate. If you desire a reply to your letter it must be accompanied by a self addressed stamped envelope.

Canadian Projects Book

Audio Limiter	Metal Locator Heart-Rate Monitor
5W Stereo	GSR Monitor
Overled	Phaser
Eass Enhancer	Fuzz Box
Modular Disco	Touch Organ
G P Preamp	Mastermind
Bal. Mic. Preamp	Double Dice
Ceramic Cartridge Preamp	Reaction Tester
Mixer \& PSU	Sound-Light Flash
VU Meter Circuit	Surglar Alarm
Headphone Amp	Injector-Tracer
50W-100W Amp	Digital Voltmeter
Note: N Apr. 78	

Key to Project Notes

C:- PCB or component layout
D:- Circuit diagram
N:- Parts Numbers, Specs
Neg:- Negative of PCB pattern printed
O:- Other
S:- Parts Supply
T:- Text
U:- Update, Improvement, Mods
". :- Notes for this project of complicated nature, write for details (enclose S.A.S.E., see text)

SEMICONDUCTORS PROCUREMENT PROBLEMS? LOOKING FOR SPECIAL SOLID STATE DEVICES?

Hard to Find Replacements

 for Unknown Custom Parts NumberStandard Electronics has the answer
World's Largest Supplier of Original Japanese Semiconductors Outside of Japan.
One source for more than 50 semiconductors brands including; Motorola, National, ITT, Sprague, G.E., Litronix, Siemes, AGS/ATES, Mfg. of the new "MES" line of semiconductors replacements, (exact equivalent to Sylvania's ECG) but at lower prices.
For complete Catalogue and Price List send a Money Order of \$2.25 (includes postage).
C.O.D. Orders are Welcomed (Minimum $\$ 10.00$)
You can obtain a free catalogue with your name \& address printed on your own letter head.

STANDARD ELECTRONICS

8927 boul. Pie IX. Montréal, Que
tél.. 327-3578
327.5958 Telex 05828838

Reader Service Information

Editorial Queries

Written queries can only be answered when accompanied by a self-addressed, stamped enveloped, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI Query.

Projects, Components, Notation

For information on these subjects please see our Project File section.

Sell ETI

ETI is available for resale by component stores. We can offer a good discount and quite a big bonus, the chances are customers buying the magazine will come back to you to buy their components. Readers having trouble getting their copy of ETI could suggest to their component store manager that he should stock the magazine.

Back Issues and Photocopies

Previous issues of ETI-Canada are available direct from our office for $\$ 2.00$ each. Please specify issue by the month, not by the features you require. The following back issues are still available for sale.

1977	1978
February	January
May	February
Mune	March
July	April
September	May
November	July
Necember	August

We can supply photocopies of any article published in ETI-Canada, for which the charge is $\$ 1.00$ per article, regardless of length. Please specify issue and article. (A special consideration applies to errata for projects, see Project File.)

ETI MARKET PLACE FREE ADVERTISING

We will allow you up to twenty-five words to advertise items you want to buy or sell, or to publicise meetings of clubs, etc. Advertising will be accepted at our discretion - we will not accept commercial or any form of company advertising. For more insertions mail in again.

FOR SALE OR TRADE: 日ELL \& HOWELL MODEL 34 OSCILLOSCOPE \& MANUALS TRADE FOR $\$ 50.00$ OR BELL \& HOWELLTRANSISTORIZED METER.R.G.BRYANT, BOX 3291 , REGINA, SASK. S4P 3H1.

WANTED: MARCH, APRIL OR AUGUST 1977 ISSUES OF ELECTRONICS TODAY INTERNATIONAL. WILL PAY TO $\$ 3.00$. JOHN BLACK, R.R. \#1, WATERDOWN, ONT., LOR 2 HO .

CLEARING UP hobby Shop SEND NAME \& ADDRESS fOR FREE LIST. A. BOISVERT, 4830 OES PERVENCHES, ORSAINVILLE, QUEBEC 7, CANADA.

FOR SALE: FISHER MULTIPLEX GEN. MOD. 300 BOONTON FM SIG. GEN. MOO. 188 JOHN FLUKE VOLT, AMPS WATTMETER MOD. 102. OPENTO OFFERS. PH. 545-6177 HAMILTON.

FOR SALE: D-II KIT. WANT EXPERIENCE WITH MICROPROCESSORS? M6800.5K J. BUGMONITORASSEMBLEO \& FULLYOPERATIONAL. ONLY \$249. (416) 245-6893. S. MOODLE 301 DIXON APT. 1610, WESTON, ONT. M9R 1 S2.

WHO WILL MAKE MEA LEO CLOCK CONTINUOUSLYDISPLAYING, INTHISORDER, YEAR, MONTH, DATE, HOUR, MINUTE, SECOND, IN 24-HR SYSTEM? LEO NASAGER, 60 SOMERSET ST., SAINT JOHN, N.B. E2K 2×4.

Sweep docuracy ± 50
Triggering: int or ext Dus or ney dutomath of with adjustathe lever
Trigger fequency ranap 1 H : 25 MH :
Trigger threshold max 3 mm

Horizontal Amplifier X

Frequency range 3 Hz i N 1 Hz ($3 \mathrm{r}+\mathrm{B}$) Sensitivity approx $0.75 \mathrm{~V} p \mathrm{O}$ (1) Indut amperdarle appion I MOhn! 26 f

Semiconductor Component Parts 6 IC. 30 iransisturs. 21 thudes 5 silicon recutrets

Miscellaneous

 Bult in square wave generator 1 hH for probe adjustment (0.2 Vpp)
Electronic stabilization
for all supply voltages inel high voltage Mains supply $110,127,220.237 \mathrm{VAC}$ Admissible mains fluctudtions $\pm 10 \% .5060 \mathrm{~Hz}$
Power consumption approx 24 W
Weight approx $4,5 \mathrm{~kg}$
Case $212 \times 114 \times 265 \mathrm{~mm}$, anthras ite
with hande and tult stirnep

Purchase the model *HM 307*

14Day money back guarantee

 on a 14 day full money back guaranty. If for any reason you are disatisfied or that it does rot meet specifications; then return the unit along with proof of purchase and receive your full refund or credit. (offer not valid where unit has been damaged or misused.)
449.

Available Accessories

10:1 and 100:1 probe, demodulating probe, various test leads, pre-amplifier, dual-trace adapter, viewing hood, carry ing case, recording camera and instrument cart.

IN CANADA DISTRIBUTED BY

Instruments For Industry and Service
980 ALNESS ST. UNIT 35
DOWNSVIEW, ONTARIO M3J 2S2
TEL:(416) 661-5586

DEALER INQUIRIES INVITED

Now available at the following:

IORONTO

Arkon Electronics Ltd.
Computer Mart Ltd.
Duncan Instruments Ltd. General Electronics
Westown Electronics Lid. RICHMOND HILL

McEowan Instruments WINNIPEG, MANITOBA
Fortin Electronics Corp. 660 King Edward St. 774-6286 ST. JOHN, NEW BRUNSWICK
FMP Enterprises
26 Sears St.
$652-7287$

Modes of operation

Channel I, channel I and II
Channel switching alt. or chop.
(chopper frequency approx. 1 MHz)
Summation channel $1+1$.
Difference with channel I inverted
X-Y operation, ratio 1:1
(X signal via channel 11)

Vertical Amplifier Y

Frequency range of both channels
$0.50 \mathrm{MHz}(3 \mathrm{~dB}), 0-65 \mathrm{MHz}(-6 \mathrm{~dB})$
Risetime: approx. 7 ns
Overshoot maximum 1\%
Deflection coefficients: 12 calibr. pos.
$5 \mathrm{mVpp} / \mathrm{cm}-20 \mathrm{Vpp} / \mathrm{cm}$ (sequence $1-2-5$)
with fine control uncal. up to $50 \mathrm{Vss} / \mathrm{cm}$
Accuracy of calibr. positions $\pm 3 \%$
Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$
Input selectable: DC-AC-GD
Max. admissible input voltage 500 V DC
Error of linearity: maximum 2%
Delay line (approx. 95 ns)

Timebase

Deflection coefficients: 23 calibr pos.
$2 \mathrm{~s} / \mathrm{cm}-100 \mathrm{~ns} / \mathrm{cm}$ (sequence $1-2-5$) with expansion $\times 5$ down to $20 \mathrm{~ns} / \mathrm{cm}$ with fine control $3: 1$ uncal. up to $6 \mathrm{~s} / \mathrm{cm}$ Accuracy of calibr. positions $\pm 3 \%$
Sweep delay time: 7 positions
from 100ns to 1 s , with fine control 1:10
Modes: normal, search, delayed
Triggering autom. or with adjustable level of channel I, II, I/II and ext.: pos. and neg.
Trigger coupling AC, DC, HF or LF
Single sweep (with reset and LED)
Variable Holdoff time min. 10:1
Trigger sensitivity: $<5 \mathrm{~mm}$
in the frequence range $D C-70 \mathrm{MHz}$

Horizontal Amplifier X

Frequency range $0.4 \mathrm{MHz}(-3 \mathrm{~dB})$
Deflection coefficients: 12 calibr. pos.
$5 \mathrm{mVpp} / \mathrm{cm}-20 \mathrm{Vpp} / \mathrm{cm}$ (sequence $1-2.5$) with fine control uncal. up to $50 \mathrm{Vpp} / \mathrm{cm}$ Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$ (input via channel II)

Miscellaneous

Cathode-ray tube D $13.650,13 \mathrm{~cm} \emptyset$ with total acceleration of 12 kV continuousiy adjustable raster illumination Built - in square -wave generator 1 kHz for probe adjustment ($0,2 \mathrm{Vpp} \pm 1 \%$) Input for \mathbf{Z} modulation (5 Vpp TTL level) Electronic stabilization incl. high voltage Power supply for $110,127,220,237 \mathrm{~V}$ Permissible line voltage fluctuations $\pm 10 \%$ Mains frequence range $50 \cdot 60 \mathrm{~Hz}$
Power consumption approx. 43 W
Weight approx. 9.5 kg
Case $212 \times 237 \times 380 \mathrm{~mm}$, anthracite. with handle and tilt stirrup.

Bandwidth DC-40MHz \square Delayed Sweep
Delay Line
Single Sweep

The HM 512 is an universal oscilloscope with high accuracy. The max. error in both deflection directions is $\pm 3 \%$. With the built-in delay line the trigger edge of the signal to be displayed is made visible, too. The new trigger technique developed by HAMEG permits jitter-free triggering up to at min. of 70 MHz . Signals which are very hard to trigger can be represented always stable by suppression of unwished trigger signal parts by means of increased sweep holdoff time. The delayed sweep operates in a large range of time, it allows a magnification more than thousandfold of a small cut-out from the sweep period. The cathode-ray tube works with an acceleration of 12 kV . The display is therefore especially bright and sharp.

Distributed by

Available Accessories

10: 1 probe, demodulating probe, various test leads, viewing
10: 1 probe, demodulating probe, various test leads, viewing
hood, dual-trace unit, registration camera, instrument cart, carrying case, components tester.

Specifications

HM812

Modes of Operation

Normal or storage operation for: Channel I, channel I and II. Channel switching alt./chop. (chopper frequency approx. 800 kHz)
Summation channel $1+11$.
Difference with channel I inverted
XY-display, ratio 1:1
(X-signal via channel II)
Single-sweep display
Vertical Amplifier Y
Frequency range of both channels
$0.40 \mathrm{MHz}(-3 \mathrm{~dB}) .0-55 \mathrm{MHz}(-6 \mathrm{~dB})$
Risetime approx. 9 ns
Overshoot max. 1\%
Sensitivity max. $5 \mathrm{mVpp} / \mathrm{div}$. Input at tenuator with 12 positions down to $20 \mathrm{Vpp} / \mathrm{div}$. (sequence $1-2-5$),
with fine control $\uparrow: 2,5$ down to $50 \mathrm{Vpp} / \mathrm{div}$.
Calibrated Amplitude accuracy $\pm 3 \%$
Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$
Input switchable: DC.AC-GD
Max. admissible input voltage 500 V DC
Max. vertical display 80 mm
Delay line (approx. 75 ns)

Timebase

Sweep range $0.5 \mathrm{~s} / \mathrm{div}$. $0.1 \mu \mathrm{~s} / \mathrm{div}$.
$(21$ positions with sequence $1-2-5$), with expansion $\times 5$ down to $20 \mathrm{~ns} / \mathrm{div}$. with fine control $1: 3$ up to $1,5 \mathrm{~s} / \mathrm{div}$.
Calibrated Time accuracy $\pm 3 \%$
Normal length of time trace 10 div.
Triggering automatical or with manually adjustable level of channel I. Il or external: pos. or neg. Trigger coupling AC, DC or LF Individual display trigger action by Single and Reset push button with LED-indication Trigger frequency range: DC up to 70 MHz Trigger threshold max. 0.5 div .

Horizontal Amplifier X

Frequency range $0-4 \mathrm{MHz}(-3 d B)$
Sensitivity max. $5 \mathrm{mVpp} / \mathrm{div}$.
Input impedance 1 MOhm // 25 pF
(input via channel II)

Storage Operation

Automatic erasing at switching Normal/Write Adjustable persistence $10 \mathrm{~ms}-5 \mathrm{~min}$. Erase push button, erasing time abt. Is
Adjustable storage time approx. 30s - in Writing speed max. abt. $1 \mathrm{~cm} / \mu \mathrm{s}$

Miscellaneous

Cathode ray tube L 14 - $110 \mathrm{GH} / 55$, intern. graticule, total acceleration 8.5 kV Built - in square-wave generator of 1 kHz for probe adjustment (output 0.2Vpp) DC inp. for Z-modulation (5 Vpp ; TTL compat.)
18 integrated circuits, 83 transistors Electronic stabilization
Power supply for 110 V and 220 V Admissible mains voltage fluctuations $94 \mathrm{~V}-121 \mathrm{~V}$ and $187 \mathrm{~V}-242 \mathrm{~V}$, resp.
Power consumption approx. 53 W
Weight approx. 11 kg
Case $212 \times 237 \times 500 \mathrm{~mm}$, anthracite.
with handle and tilt stirrup.

Analog Storage
Dual Trace

Bandwidth DC -40 MHz
Display Area $7,2 \times 9 \mathrm{~cm}$

The HM 812 is equipped with a cathode-ray tube with an electronically controlled storage system, which makes possible any reproducible display of an electrical process. If the storage control is switched off, the instrument can be operated just as any other normal oscilloscope. With the change-over to writing mode all signals stored before are automaticaliy erased. By means of the variable persistence, signals with slow repetition rate can be displayed flickerless. Storage of non-recurring processes is limited to some 100 kHz by the writing speed. In case of recurring processes, signals up to the limit frequency of the measuring amplifier can also be stored because of the integration ability of the storage tube. The maximum storage time depends on the adjusted trace brightness.

Available Accessories
 10: 1 probe, demodulating probe, various test leads, viewing hood, dual-trace unit, registration camera, instrument cart, carrying case, components tester.

Distributed by

IP20 Oscilloscope Probe Kit x1

Part No. 900-90-505

Specification x1

 Bandwidth: Input Resistance: Input Capacity: Working Voltage: Cable Length:D.C. to 20 MHz $1 \mathrm{M} \Omega$ (oscilloscope input) 47pF. Plus oscilloscope input 600 Volts D.C. (including Peak A.C.) 1.5 Metres

Accessories Supplied

Insulating Tip Sprung Hook BNC Adaptor I.C. Tip

Pt. No. 113016
Pt. No. 120079
Pt. No. 100017
Pt. No. 120091

Distributed by

ELECTRONICS
LIMITED 980 Alness St. Unit 35, Downsview, Ontario M3J 2S2, Tel: (416) 661-5586.

HAMEG OSCILLOSCOPES

Model

HM 307
HM 312
HM 412-6 Dual trace 20 MHz 5 inch Delay trig sweep
HM 512-6 Dual trace 50 MHz 5 inch Delaytrig sweep
HM 812 Dual trace 50 MHz 5 inch storeage
PROBES AND ACCESSORIES

Model	Attenuation	Frequency	List Price
LP20	$1 \times$	30 MHz	$\$ 23.15$
P100	$10 x$	100 MHz	31.00
$3 P 100$	$10 x$	100 MHz	41.45
2LCP100	$100 x$	100 MHz	46.65
2P150	$10 x$	150 MHz	36.20
2P250	$10 x$	250 MHz	54.50
SP100	$1 \times \& 10 x$	100 MHz	41.45
25P150	$1 \times \& 10 x$	150 MHz	46.65
HV40	$1000 x$	$\mathrm{HI}-\mathrm{VOLTAGE}$	127.70
DP300	Detector	$300 \mathrm{MHz} \mathrm{40V}$	(3 Positions)
DP750	Detector	750 MHz	(3 Po
		49.30	

BCS ELECTRONICS LIMITED

In addition to the instruments and accessories shown in the following pages we have increased our repair and recalibration facilities to handle your recalibration needs even better. As in the past, if you have a HAMEG, TEKTRONIX OR HEWLETT PACKARD, or any other make of oscilloscope, we at BCS are more than willing to serve you with sales and service in the old traditional friendly way.

Our Service Guarantee

If any repair work that we do should fail within 60 days, we'll repair the unit for only the cost of any parts used, and recalibrate at no charge to you.

SPECIAL BARGAIN OFFER!

Universal Oscilloscope Probe Switchable X1 and X10 Attentiation Factor.

Ask your Dealer for your Special Introductory Offer Card or write:

[^0]: SPECIALLY IMPORTED FOR CANADIAN HOBBYISTS: FOUR CIRCUITS BOOKS:

 50 Fleld Effect Transisior Projects
 By F. G. Rayer
 104 pages
 Published August '77

 - Introduction
 - RF Amps \& Convertors
 - Test Equipment and
 - Receiver Aids
 - Tuners, Receivers \& Audio
 - Miscellaneous Circuits
 \$3.55

 50 CMOS IC projects
 By R. A. Penfold
 102 pages
 Published February 77

 - Introduction
 - Multivibrators
 - Amplifiers \& Oscillators
 - Schmitt Trigger Circuits
 - Special Devices
 \$2.80
 '741’
 52 Projects Using IC741
 By R. \& L. Redmer
 80 pages
 Published Sept. 75

 52 projects
 using this versatile IC.
 Preamplifiers, oscillators, power supplies, etc.
 ‘555’
 IC 555 Projects
 By G. A. Parr
 141 pages
 Published February '78

 - Basic Circuits
 - Automobile Circuits
 - Model Railway Circuits
 - General Circuits
 - Alarms and Audio Circuits
 - 556, 558, \& 559

[^1]: 1120 Hamilton St.
 Vancouver, B.C. R3E $2 T 1$
 Tel. (604) 681-0743

