CANADA'S OWN ELECTRONICS MAGAZINE
'Tools in Canada' Survey

Acoustic Feedback

 EliminatorAdd-On FM Tuner
Two Free
Catalogues

White Line
Follower

Now from Sprague...

Low-cost Verti-Film» epoxy-coated polyester-film capacitors help you beat the cost/space squeeze when servicing CB radios and other entertainment electronic equipment, letting you make exact replacements on crowded PWBs quickly and easily. Their single-ended design permits vertical installation in
far less space than required by conventional axial- or radial-lead film capacitors.
Rated at 100 WVDC, Verti-Film Capacitors range in capacitance values from 0.001 to $0.47 \mu \mathrm{~F}$ with a tolerance of $\pm 10 \%$. Get Verti-Film Capacitors from your Sprague distributor.

For the name of the Sprague distributor nearest you, write or call:

JOHN R. TILTON, LTD.

1900A Eglinton Ave. East Scarborough, Ont. M1L 2M1 Tel. (416) 757-4171
P.O. Box 117, Dollard Des Ormeaux, Que. H9G 2H5 Tel. (514) 747-4266

SMITH-PATTERSON \& ASSOCIATES

1120 Hamilton St.
 30 Midland St.

Vancouver, B.C. R3E 2T1
Tel. (604) 681-0743

Winnipeg, Manitoba R3E 2 Y6
Tel. (204) 774-1855

Editor
STEVE BRAIDWOOD BSc
Assistant Editor
GRAHAM WIDEMAN BASc
Marketing Manager and Advertising
PETER E. PRIEST
Advertising Services
SHARON WILSON
Advertising Representatives JIM O'BRIEN
Eastern Canada JEAN SEGUIN \& ASSOCIATES INC., 601 Cote Vertu. St. Laurent, Quebec H4L 1 X8.

Telephone (514) 748-6561.
Subscriptions Department BEBE LALL
Accounts Department SENGA HARRISON Layout and Assembly GAIL ARMBRUST

Contributing Audio Editor WALLACE J. PARSONS

Published by Electronics Today International (Canada) Ltd. EDITORIAL AND ADVERTISING OFFICES
Unit 6, 25 Overlea Boulevard, Toronto, Ontario, M4H 1B1 Telephone (416) 423-3262
Printed by Livingstone Printing Ltd. News Stand Distribution Gordon \& Gotch, Toronto.

Subscription Rates $\$ 12.00$ per year, $\$ 20.00$ for two years. Send to Subscription Dept., ETI Magazine, Unit 6. 25 Overlea Blva.. Toronto, Ontario. M4H 1B1.
ALL ETI PCB PATTERNS ARE COPYRIGHT. NO COMPANY MAY SELL BOARDS TO OUR DESIGNS WITHOUT OUR PERMISSION.

INTERNATIONAL EDITIONS
Electronics Today International 25-27 Oxford St., London W1R 1RF, UK. Editor Halvor Moorshead.

Electronics Today International, Ryrie House, 15 Boundary St., Rushcutters Bay, Sydney, Australia. Editor Collyn Rivers.

Electronica Top Internationaal, Postbus 260. Emmen, Holland. Editor Anton Kriegsman
-Elrad,
Kommanditgesellschaft. Bissendorfer Strasse 8, 3000 Hannover 61. Germany. Editor Udo Wittig.

CANADA'S OWN ELECTRONICS MAGAZINE

PROJECTS

WHITE LINE FOLLOWER 24
Electronic control for a model car
ADD-ON FM TUNER 29Can be fitted inside your hifi amplifier or put in its own cabinet
AUDIO FEEDBACK ELIMINATOR 38A useful unit in any PA system
FEATURES
AUDIO TODAY 10Issues in audio today, as Wally Parsons sees them
AUDIO TODAY LETTERS 13
Questions and answers on audio and hi-fi
ETI TOOLS CATALOGUE 16
Look here for the hard-to-find tools
FEEDBACK 35
Readers' Letters
THE FUN OF ELECTRONICS 36
Cartoons by Geiger
CLUB CALL 37
Canadian radio, computer, and electronics clubs
DATASHEET SPECIAL 44
A look at common memory chips
MICROBIOGRAPHY 52
A microprocessor overview
ETI SOFTSPOT 56
Things to do with your calculator
NEWS \& INFORMATION
News Digest 4
Microfile 5
Next Month's ETI 14
Canadian Projects Book 49
ETI Binders 51
ETI Subscriptions 55
ETI Circuits 64
ETI Publications 66
Classified Advertising 67
ETI Project File 68
Information 70
ETI Marketplace 70

Second Class Mail registration number 3955. Return postage guaranteed. Post Office returns to Unit 6, 25 Overlea Boulevard, Toronto. Ontario, M4H 1 B1.

Copyright: All material is subject to world-wide Copyright protection. All reasonable care is taker to ensure the accuracy of the information.

Japanese Explorers Use Canadian Radios

Early in March, two separate attempts were made by Japanese nationals to reach the North Pole foliowing Admiral Peary's historic route from Cape Columbia. During their eight to ten week outward and return journey over the treacherous polar ice cap, they will be in regular communication with their respective base camps, charter aircraft support and the outside world by means of com-
pact portable signal sideband radio transceivers manufactured in Vancouver by the specialized communications equipment firm of Spilsbury \& Tindall Lid
The 4 -channel battery-operated units weigh eight pounds and have an effec tive two-way voice range in excess of 600 miles. Spilsbury \& Tindall Ltd., 120 East Cordova St., Vancouver, B.C

Computer Video Game Chips

Signetic Corp has announced a set of new ICs for video games based on its 2650 microprocessor. The ICs are the 2636 PVI (Programmable Video Interface), the 2622 TV sync unit, the NE549 colour generator, a cartridge ROM and the 2650 . The projected price for highvolume buyers is under $\$ 30$
The PVI chip can generate up to 80 mages in up to 16 colours. It has built-in scoring facility, eight-colour background choice, and 255-frequency (over 3 octaves) programmable music output The PVI displays 200 lines of video with 280 ns resolution

Straight-Line Communication Across the Globe!

magine telecommunications from Canada to India in a straight-line through the solid mass of the earth. Such a system is under study at the US Naval Research Lab in Washington. The technique is to use a collimated beam of neutrinos directed at a receiver anywhere on earth. The neutrinos can pass through our planet without significant attenuation and the techniques of detection, collimation and generation of the beams have already been demonstrated in various research labs.

Affordable DC - 10MHZ

This small trigger oscilloscope with 7 cm screen is designed for electronic service and advanced amateurs. Despite its simplicity it has many qualities of bigger oscilloscopes. The sensitivity of the measuring amplifier is sufficient to display signals of a few mV without problems. The time deflection works with the new LPS trigger technique, developed by HAMEG. Signals of high repetition frequency trigger jitter-free. All supply voltages are stabilized

The technical side of the HM 307 is based on a mixed application of integrated circuits and semiconductors. A flat design was chosen for the case, which is more suitable for portable operation than the upright size. The usable screen size is approx. $6 \times 7 \mathrm{~cm}$, divided into cm . For the display of very slow processes the HM 307 can also be delivered with a tube with long persistence time.

The measuring amplifier of the HM 307 has a diode-protected FET input. The measuring amplitude can be determined by means of the 12 -position frequencycompensated input attenuator.

Triggering and time deflection of the HM 307 both work with the LPS technique. The essential feature is logic control of charging circuit. CRT unblanking and the trigger unblocking. In position "AT" of the level control (automatic triggering), a timebase line is always displayed even when there is no signal. The
unblanking of the cathode-ray tube is controlled via an opto-coupler.

A square-wave generator of 1 kHz is built-in for probe adjustment and calibration of the Y-amplifier. When using a $10: 1$ probe, the displayed signal will be 4 cm high at a sensitivity of $5 \mathrm{mVpp} / \mathrm{cm}$. This and other Hameg scopes are available from BCS Electronics Ltd 980 Alness St., Unit 35, Downsview. Ont. M3J 2S2 They also supply Coline scope probes and coax connectors

Multi-Plane Matrix Boards

Available with up to 10 planes of diversification, "Controlox" multi-plane matrix plug boards feature a current rating of 5 amps. For further information contact GEC (Canada) Ltd., 766 King Street West, Toronto, Ontario M5V 1N7.

micrafile

Printer for Radio Shack TRS 80

The Series 1100 Rotary Printer prints 2,200 characters per second. The SCI Systems Inc. unit can print the King James Version of the Bible in 22 minutes

One of the major advantages of the SCI Rotary Printer is its economy. The Rotary Printer will not normally require the service contract expense associated with conventional printers. The reliability of the Rotary Printer is largely due to its simplicity. Estimated life of the drive unit is in excess of 8 billion characters. (It is limited only by the life of the motor's brushes.) Low power consumption further enhances its reliability

The Rotary Printer is "almost" maintenance free. The replaceable element is the print head. It will print at least 25 million characters. When replacement is required a new head can be snapped into place in 10 seconds.

The printer which is 4 by 5 by 9 inches weighs only 3 pounds.

The rotary printer has only three primary elements; the drive unit, the print head, and the paper itself.

A central shaft supports a code wheel at the rear of the drive unit and the print head at the front. The shaft is belt driven by a small D.C. motor. A single paper feed roller is driven from the central shaft through a worm gear arrangement. Thus, a single motor directly drives all elements of the
printer and synchronization is inherent.
The print head contains three multiwire stylus assemblies. These are mounted 120° apart on a plastic rotor and are protected by a molded cover. A slip ring dis is the rear structure of the print head and is connected through flexible etched cables to the styli themselves. The cover photograph shows the contact bruches which connect the print head to the drive electronics.
Paper is inserted through the writing platen and formed into a 120° arc by a snap down top cover. In operation the drive roller pushes the paper through the unit continuously. Centrifugal force extends the stylus wires through slots in the print head cover and into contact with the platen and paper as the head rotates.
The Roiary Printer uses moderately priced electrosensitive paper. The base paper is coated with a black pigment. A micro-thin layer of aluminum is then vacuum deposited on the surface. As the print styli move across the paper, electrical pulses are applied through them to the paper. Each pulse removes the surface layer and exposes the undercoating - thus forming a black dot on the paper. Characters are formed by closely spaced combinations of dots. This printing process is a non-impact one which requires no chemicals inks, or toners. The printed record is permanent and does not deteriorate with time.

Dot-Matrix Printers

Motorola Microsystems has announced four new dot-matrix printers to complement its microcomputer development systems. The line offers 80 and 132 column formats and 60, 120 and 180 characters per second, using bidirectional and logic-seeking print heads. The printers are mechanically identical to Centronix products with the same model numbers: 779, 781, 702, 703.

Personal Computing Festival

The 1978 National Computer Conference, which will be held in the Anaheim Convention Center, June 5-8, will include a full-scale, three-day Personal Computing Festival in the nearby Disneyland Hotel. The Festival will include paper, panel and tutorial sessions; a contest for microprocessor systems and applications; and a commercial exhibit of personal computing products and services. For information write, National Computer Conference, c/o AFIPS, 210 Summit Avenue, Montvale, NJ 07465; 201/3919810.

Array Processor

The first Array Processor offered by a minicomputer manufacturer was recently announced by Data General (Canada) Limited. The Eclipse AP/130 combines a powerful central processor and a float-ing-point array processor
Array processing, digital signal processing and transform processing all involve rigorous, highly computational mathematical operations on structured data. The AP/130's array processor is an integral high speed special-purpose floating-point computing unit that can perform the Fast Fourier Transform (FFT) of a 1024-element complex number array 200 times faster than a modern scientific minicomputer. Data Gereral (Canada) Limited, 415 Horner Avenue, Toronto, Ontario M8W 4W3.

First 12-Bit Monolithic CMOS DAC

Claimed to be the industru's first true 12bit monolithic CMOS digital/analog converter, the AD7541 has been introduced by Analog Devices. In Canada contact Tracan Electronics Corporation, 558 Champagne Drive, Downsview, Ontario, M3J 2 T9.

Amateur Experimenter Certificate

Here, in full, is a notice sent out by the DoC inviting comment on the plans for introducing an Amateur Experimenter Certificate. This will be of interest to many of ETI's readers - anyone who is interested in computers or radio. Note you have send off your comments before the end of May

SCHEDULE

1. Section 46 of the General Radio Regulations, Part II, is amended by adding immediately after subsection (4) the ollowing subsection
"(4.1) The frequency bands and types of emission set forth in Schedule VII may be used by a licensee
who is the holder of an Experimenter Amateur Radio Operator's Certificate:
2. Section 49 of the said Regulations is amended by deleting "or" at the end of paragraph (e) thereof by adding the word "or" at the end of paragraph (f) thereof and by adding thereto the following paragraph
"(9) an Experimenter Amateur Radio Operator's Certificate"
3. The said Regulations are amended by adding immediately after section 97 the following heading and section.
"Experimenter Amateur Radio Operator's Certificate 97.1 The holder of an Experimenter Amateur Radio Operator's Certificate may operate the radio apparatus installed in a station performing an Amateur Experimental Service in accordance with the privileges specified in section 46 :"
4. The said Regulations are amended by adding immediately after subsection $111(2)$ the following heading and section:
"Experimenter Amateur Radio Operator's Certificate 111.1 Candidates for examination for an Experimenter Amateur Radio Operator's Certificate shall be required
(a) to answer, in a written examination, questions on (i) theory of communications, computing analog and digital transmissions, queuing theory, packet radio, micro-processors error detection schemes and reliability:
(ii) the installation, operation and main tenance of transmitters, receivers and computing equipment, and
(iii) regulations under the Radio Act applicable to the establishment and operation of stations performing an Amateur Experimental Service.
5. (1) Schedule II of the said Regulations is revoked and the following surstituted therefor
"SCHEDULE I
Column I
Item
Item

1	1.8000	2.000	MHz
2	3.500	3.725	MHz
3	3.725	4.000	MHz
4	7.000	7.150	MHz
5	7.150	7300	MHz
6	14.000	14.100	MHz
7	14.100	14.350	MHz
8	21.000	21.100	MHz
9	21.000	21.450	MHz
10	28.000	28.100	MHz
$1:$	28.100	29.700	MHz
12	50.000	50.050	MHz
13	50.050	51.000	MHz
14	51.000	54.000	MHz
15	144.000	144.100	MHz
16	144.100	148000	MHz
17	220.000	225.000	MHz
18	* 420,000	450.000	MHz
19	${ }^{\text {1 } 1215.000}$	1300.000	MHz
20	-2300.000	2450.000	MHz
21	-3 300.000	3500.000	MHz
22	'5650.000	5925000	MHz
23	'10000.000	10500.000	MHz
24	24000.000	24050.000	MHz
25	-24050.000	24250.000	MHz

Column II
Types of Emission

A1, F1
A1, A3, F3
A1, A3, F3
A1. F1
A1, A3, F3
$A 1, F 1$
$A 1, A 3, F 3$
A1. F1
A1. A3. F3
$A 1$.
$A 1, F 1$
A1, A3, F3
A1.
A1. A2, A3, F1, F2, F3
A0, A1, A2, A3, A4, F1, F2, F3, F4
A1.
A0, A1, A2, A3, A4, F1, F2, F3, F4,
-Packet radio transmissions
A0, A1, A2, A3, A4, A5, F1, F2, F3, F4,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$.
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
$A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4$,
A0, A1, A2, A3, A4, A5, F1, F2, F3, F4
(3) The following Schedule is added immediately after Schedule VI

SCHEDULE VII
Column 1
requency Bands
144.100 MHz 148.000 MHz 225.000 MHz 450.000 MHz 1300.000 MHz

A1.

Column II
Types of Emission

A0, A1, A2, A3, A4, F1, F2, F3, F4, P0, P1, P5, P9
Packet radio transmissions
A0, A1, A2, A3, A4, A5, F1, F2, F3, F4, F5, P0, P1, P2, P3, P4, P5, P9 $A 0, A 1, A 2, A 3, A 4, A 5, F 1, F 2, F 3, F 4, F 5, P 0, P 1, P 2, P 3, P 4, P 5, P 9$

Column I
Item 1

Frequency Bands
"SCHEDULE IV

1.800	2.000	MHz
3.500	4.000	MHz
7.000	7.300	MHz
14.000	14.350	MHz
21.000	21.450	MHz
28.000	29.700	MHz
50.000	50.050	MHz
50.050	51.000	MHz
51.000	54.000	MHz
144.000	144.100	MHz
144.100	148.000	MHz
220.000	225.000	MHz
420.000	450.000	MHz
- 1215.000	1300.000	MHz
'2300.000	2450.000	MHz
-3 300.000	3500.000	MHz
-5650.000	5925.000	MHz
10 000,000	10500.000	MHz
000.000	24050.000	MHz
050.000	24250.000	MH

Column II
Types of Emission

- Packet Radio Transmission in the 220 MHz to 225 MHz Band

This band should be used for any packet radio transmission up to the maximum data rate that this band can support, provided that individual packets of data do not exceed 500 characters in length and the effective radiated power does not exceed 15 watts. Any transmission in this band should not produce out-of-band interference.

1. Packet Radio Transmission: refers to a communications technique where packets of data are 'broadcast over a communications channel which is shared by a number of users.
2. Packet of Data: consists of a header and a header parity check word, followed by up to 400 characters (bytes) of data and a data parity check word. A full packet of data including overhead shall not exceed 500 characters (bytes).
3. Packet length: refers to the amount of data and overhead characters (bytes) that make up a given packet

Department of Communications

Radio Act

Notice No. DGTR -001-78

The Department of Communications wishes to encourage Canadians to become proficient in communications and computing technologies and, in particular, in the organization of radio and computing equipment for accomplishing resource sharing in man to machine and machine to machine networks.

The Department therefore plans to introduce a new class of amateur licence, called the Amateur Experimenter Certificate to further the above-mentioned objective. The attached schedule delineates the proposed terms and conditions of this certificate

Comments on this proposal are invited from all interested parties. All communications should be addressed to the Director, Operations Branch, 300 Slater Street, Ottawa, KlA OC8, and should be postmarked not later than 90 days from the date of this notice.

Comments recefved in response to this Notice will be made available for public inspection, unless confidentiallity is specifically requested, at the Department of Comunications Library, 300 Slater Street, Ottawa, KlA OC8, and at Regional Offices of the Department in Vancouver, Winnipeg, Toronto, Montreal and Moncton. Those wishing to respond to such comments may do so in writing within a further 30-day period.

Dated at Ottawa this

day of / zuncó1978.

Drrector General,
Telecommunication Regulatory Service.

Multiplier Application Guide

This guide shows many ideas on using multipliers, dividers, squarers and square rooters to solve analog problems with simplicity and low cost. In addition to over 30 applications, the book includes a section on theory and bibliography. Examples of applications are: increased accuracy with multiplying DACS; audio
power booster; bridge linearization; automatic level control; flowmeter; acoustic thermometer; and high-performance rms-to-dc conversion circuit. The book is authored by the Analog Devices' engineering staff and edited by Daniel H . Sheingold. For a free copy of the 40 -page Multiplierf Application Guide, please contact Analog Devices, Inc., PO Box 280, Norwood, MA 02062. USA

New Capacitors

CGE "TE" series epoxy-dipped solid tantalum capacitors offer a wide range of features and options. Such as: Operating temperative of $-55^{\circ} \mathrm{C}$ to $-85^{\circ} \mathrm{C}$, working voltage of 3 VDC to 50 VDC ; capacitance range from 0.10 uF to 680 uF ; case sizes from 1 through 11; and tolerances from -20% to -10%
Available from: Canadian General Electric Co. Limited, Electronic Components, 189 Dufferin Street, Toronto, Ontario M6K 1 Y9

JFET-Input Op-Amps

The internally compensated LF155 series from Motorola incorporates matched junction FET devices on the same substrate as bipolar IC elements, producing input characteristic enhancement of more than an order of magnitude over conventional amplifiers.
Extremely low input bias and offset currents combine with very high input impedance, and characteristic low FET noise levels, making the series especially useful in sample and hold circuits, high impedance buffers, fast D / A and A / D converters, precision high speed integrators, and wideband, low-noise, low-drift applications

The Longest LargeCapacity Digital Radio Route in the World

The first major contracts for large capacity digital radio in Canada have been awarded to Norhtern Telecom Canada Limited by three western Canadian telephone companies. The contracts cover a 1100 -mile system running from the Man-itoba-Ontario border to Calgary, Alberta.
When completed and in service in late 1979 the system will link up with another in Ontario to form part of the longest large capacity digital radio route in the world, stretching 2,300 miles from Toronto to Calgary and Edmonton. This route in turn will be linked to the LD-4 high capacity coaxial cable digital system that runs between Toronto, Ottawa and Montreal.

The DRS-8 system, developed and designed in Canada will use existing microwave route facilities that include buildings, towers and antennas. There are 40 such locations over the route in the prairies.

The system, being digital, can handle voice or data traffic up to the equivalent of 1,344 telephone conversations simultaneously per radio channel. There are 11 operating radio channels in the frequency band.

NEWS DIGEST

LCD Digital Panel Meter

Texmate's new liquid crystal display DPM, model PM-35X, provides a $31 / 2$ digit display with $1 / 2^{\prime \prime}$ character height. The voltage range is from 3.5 to 7.5 VDC and 8.5 to 15 VDC , unregulated. There is also a model to operate from 120 VAC. Input voltage ranges are $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200$ V and 1200 VDC . It offers 8 programmable function descriptors, providing multimeter capability. The price of the PM-35X is $\$ 79.00$ (Canadian) in single unit quantities with delivery from stock. For a free technical data sheet contact Metermaster, 214 Dolomite Drive, Downsview, Ontario, M3J 2P8.

Errata/Project File

Project errata, addenda and notes will in future appear in our new reference section, Project File. This new item starts this issue, on pages 68 and 69.

Project File is intended to provide project support to readers building projects published in the last year's issues of ETI-Canada.

It includes a chart cross-referencing all information published with respect to each project.

UW Datapac

The University of Waterloo's Honeywell computer, on the third floor of the mathematics and computer building, is now hooked up to Bell Canada's Datajac computer network. This makes it possible for anyone who knows how, to make use of the Honeywell from any of seventy-two Datapac-served cities in Canada. And about as easily and cheaply as one could work with it from a terminal in an office anywhere else in the math building. "I am sure it is going to have a very g'eat impact," predicts Dr. Morven Gentleman, computer science professor anc a member of UW's computer communications network group. "What it will mean is that people who aren't even connected with the university . . . people who may live perhaps thousands of miles away will use our computer when it is to their advantage to do so. Say for instance when there is some program or data in our file system that would be helpful to them; they now have easy and inexpensive access to it. " Another important fea-
ture of the Datapac system, he feels, is that it will be possible to use it as a form of electronic mail.
"It won't be at all like the post office, the telephone or even Telex," he says. "As a user you'll have to work out a system for exchanging messages with the other party or parties but once you have established a system you will be able to send messages to others, or just call in and ask if there are any messages for you. The communication is almost instantaneous and it won't be costly. This is something I am personally very enthusiastic about.

Miniature Matrix

The AMX-1010 matrix selector is a 100 station cross-bar programming pin board. This miniature assembly is 1.4 inches square and has a 0.34 inch profile. The pin sockets and the shouting pins (ten supplied) are gold plated. The precision machined four-leaf pin sockets assure positive retention of pins even at high levels of shock and vibration. For further information contact: Canadian General Electric Company Limited, Electronic Components, 189 Duffering Street, Toronto, Ont., M6K 1 Y9.

-MMMEIE

 OSCILLOSCOPE HM 307 Special offer 14 day money back guarantee

Specifications

Vertical Amplifier Y
Frequency range $0.10 \mathrm{MH} /(.3 \mathrm{~dB})$
Risetime approx 35 ns
Overshoot maximum $1^{\circ} 0$
Sensitivity $5 \mathrm{mVpp} / \mathrm{cm} \cdot 20 \mathrm{Vpp} / \mathrm{cm}$
Input attenuator with 12 positions
(1-2-5 sequence)
Deflection factor accuracy $\pm 5 \%$
Input impedance $1 \mathrm{MOhm} / / 25 \mathrm{pF}$ Input switchable. DC - AC GD
Max admissible input voltage 500 V DC Linearity error max 2\%

Timebase

Sweep range $0,2 \mathrm{~s} / \mathrm{cm} \cdot 0,5 \mu \mathrm{~s} / \mathrm{cm}$,
with fine control $1.2,5$ down to $0,2 \mu \mathrm{~s} / \mathrm{cm}$ (18 positions with $1 \cdot 2 \cdot 5$ sequence) Sweep accuracy $\pm 5 \%$
Triggering: int or ext, pos or neg automatic or with adjustable level
Trigger frequency range $1 \mathrm{~Hz} \cdot 25 \mathrm{MHz}$
Trigger threshold max. 3 mm

Horizontal Amplifier X

Frequency range $3 \mathrm{~Hz} \cdot 1 \mathrm{MH}=1-3 \mathrm{~dB})$
Sensitivity approx. $0,75 \mathrm{Vpp}{ }^{\prime} \mathrm{cm}$
Input impedance approx $1 \mathrm{NOhm}: 25 \mathrm{pF}$
Semiconductor Component Parts
6 IC, 30 transistors, 21 diodes.
5 silicon rectifiers
Cathode-ray tube 3RP1A with $7 \mathrm{~cm} \varnothing$
Built-in square -wave generator 1 kHz for probe adjustment ($0,2 \mathrm{Vpp}$) Electronic stabilization
for all supply voltages incl high voltage Mains supply: $110,127,220,237 \mathrm{~V}$ AC
Admissible mains fluctuations
$\pm 10 \%, 50-60 \mathrm{~Hz}$
Power consumption approx 24 W
Weight approx. $4,5 \mathrm{~kg}$
Case $212 \times 114 \times 265 \mathrm{~mm}$, anthracite, with handle and tilt stirrup
INCLUDES XI PROBE

10MHz

$(-3 d B)$ We offer facts ... NOT promises....
Purchase the modal HM 307 ora 14 day money back guaranty If fou any reason yow are deasatiafied os the enatiument does not meet specifications Return at with proof of purchase. you money will be thew refuerded in mediately
The HM 307 is characterized by modern semiconductor circuitry. The new generation design from HAMEG is also representative of high performance standards in spite moderate technical expenses. It is ideally suited to the technician or the service engineer as its light weight and small size allows it to be taken anywhere.

ONLY
 \$449.95

FOB
TORONTO

Hame Oscilloscopes, dual trace and storage up to 50 MHz bandwidths are available. Write for details.

Oscilloscope Probe 100 mhz вwо PASSIVE MOL. SP 100 DUAL X1-X10 \$41.95

MaI. No. P100
2P150
3P100
2 P250
DP300
WV 40
$x 10$ Bud. 100 MHz $x 10$ Bod. 150 MHz $x 10$ Bad. 100 MHz $x 10$ Bud. 250 MHz
Detector probe up to 300 MHz
1.5 mtr . long 2.0 mtr . long 3.0 mtr . long 1.5 mtr . long \$30.85 36.50 42.10 56.15 30.90
92.65

Prices shown are subject to Ontario Provincial Sales Taxes.

HAME DEALERSHIP INQUIRIES INVITED

Represented in Canada by:

$\square \square \begin{aligned} & \text { ELECTRONICS } \\ & \text { LIMITED }\end{aligned}$

980 ALNESS STREET, UNIT 35 DOWNSVIEW M3J 2S2, ONTARIO (416) 661-5586

Developments in audio reviewed by Wally Parsons

IN ANY FIELD of endeavour based on sophisticated technology it's very easy to become so wrapped up in the technology itself as to lose sight of one's purpose, the end to which this technology is directed. This is especially true in a field such as audio which is not only in a state of rapid evolution but is also heavily consumer oriented. Thus we find hardware promoted for applications which are, at best, questionable, and at worst, quite impossible. Thus, persons may want to use graphic equalizers to correct frequency response irregularities caused by improper component mating (e.g. impedance mismatch), or simply bad design of a particular component, such as a speaker, or failure to deal with strong standing waves in the listening room.
Or perhaps we attempt to add "ambience" or equalization in a misguided effort to restore proper balance, without having the slightest idea of what the "proper" balance is. We want to obtain a reproduction which is "accurate", whatever that's supposed to mean, and faithful to the original, even though the original may never have existed, that is, the performance was created on the recording.

Now it is not my intention to knock progress. On the contrary; so many advances over the years have produced the capability of recording and broadcasting with a degree of fidelity inconceiveable not too many years ago. But much of this technology is wasted if we forget basics and lose sight of our aims. This may be why it's taken 70 years for American and Canadian pressers to figure out how to put the centre hole in the centre of the record, and London has forgotten how.

LISTENING

In these pages "Audio" is presumed to refer to those areas of sound reproduction which aim at a high level of performance quality. In establishing performance criteria attention must first be paid to the type of programme material to be reproduced most of the time. The classical music concert goer is especially likely to be a purist. His reference standard is live music, heard with some frequency. This might give the impression of being a pretty tough act to follow, yet this is the audiophile most likely to be fooled into accepting reproduction which deviates grossly from his intended ideal. The reason is quite simple; human memory seems to be quite unreliable where sensory information is involved. If you go to a concert it's usually in the evening. Chances are you won't be operating your sound system before the next day, at least at concert hall levels. By that time your memory of last night's performance will have become less clear and unless your system has some gross obvious faults, it will sound pretty good. If the low bass is missing, your mind fills it in, or if a voice is projected a little too forward, your mind pushes it back. And then, if you can only get Gallery seats and a recording was made with an up front perspective you no longer have a reasonable reference. This points to a need for considerable listening experience and helps explain the difficulty of becoming a first rate sound man at an early age.
Then too, it's so easy to be impressed by the extremely wide stage reproduced by two speakers and forget that at the live performance the stage angle was so much narrower that
if you closed your eyes you really wouldn't know the exact location of the oboe and the trumpet. As for front to back depth, there really isn't much of that either.

Remember that speaker which reproduced such silky smooth string tones? Surprise: massed strings often have an edge to them which verges on the wiry. And why not; sound is produced by drawing a bow across stretched wire. And many a great speaker has been criticized because cellos and basses have a resonant and woody quality often attributed to cabinet resonance. Well, it's resonance all right, the resonance of the belly of the instrument. Tympani really do sound hollow and a concert bass drum really is boomy. A good speaker does not reproduce its sound as a "Wump".

PRODUCTION

The collector of predominantly rock music is in a different position. The technical key to such production is the multi-channel recording chain, which, when used creatively, permits sonic effects which are quite impossible to produce by any other means, but which all too often makes possible the production of tracks by musically illiterate dullards who wouldn't be able to play the same tune together using conventional means. Unfortunately they are often put together by producers and engineers of similar mentality, who frequently exercise their toys on real music. With good material, engineered with taste, imagination, and good judgement, the result can often be magnificent. Obviously, the legitimate aim in reproduction is to realize the sonic image heard by the producer. In other words, to achieve what he wanted the
listener to hear. The catch is, that you don't know what he wanted you to hear. So you may not be able to achieve it without duplicating the exact conditions which existed during the final mixdown. However, taste and judgement often prove to be a good guide here.

Where it becomes a little sticky is in the realm of more traditional popular music and some jazz forms in which these techniques have been used. Here we have at least the possibility of finding a live performance for comparison. With multi-track what we usually end up with is two channel monophonic sound which has been highly processed to produce an artificial stereo image. How successful these efforts are may be judged by the increasing number of equalizers, noise-reduction units, time delay devices and other signal processors commercially marketed and the demand for construction articles by readers of ETI.

AN ART

I've long felt that most of the art produced in any time to be worthless and is generally forgotten with time. Perhaps in the area of music recording we must view software engineering from the same point of view. Like the discriminating music lover, then, we must establish clear values in our own minds as to what we are trying to accomplish, and evaluate new developments, equipment and concepts from this point of view.
I expect to get back to more specific aspects of this theme from time to time, but in the meantime, consider the virtue of the word "why".

PRODUCTS AND DEVELOPMENTS

Basically there is little difference between the shape of the groove cut on the early Berliner disc and that of a modern stereo LP. Both are cut with a modified V-groove with some rounding at the bottom, and with each modulation occurs on both groove walls. The only real differences have been in dimensions, included angle, and modulation angles.

Playback styli, too, have evolved from steel ploughs to precision instruments as more was learned about the dynamic relationship between stylus and groove wall. Generally, though, styli have been conically shaped with the tip ground to a spherical arc, and later an elliptical
cross-section with bi-radial tip. This latter was developed mainly to improve the stylus' ability to trace high frequency modulations in the stereo groove. But even this proved inadequate to handle the very high frequencies (up to 45 kHz) involved in CD-4 recordings. Consequently other shapes were developed most notably the complex Shibata and other types. With luck, most of the various fourchannel systems will hibernate for awhile, while we figure out what we really want to do with all these channels, but in the meantime some of the things learned have spun off and been applied to conventional twochannel stereo recording and playback.

QUADRAHEDRAL

One of these was Stanton's "Quadrahedral ${ }^{\text {th }}$, stylus configuration, basically a stylus of elliptical crosssection with a very wide ratio of lateral to transverse dimension. Now, ordinarily this would result in a very small contact area and a consequently high unit contact pressure when used at any realistic tracking force. However, by forming the stylus into a hyperbolic shape, when viewed from the front, a larger area is placed in contact with the groove walls. The result is low unit pressure, and because this extended contact is along the vertical reduced tip mass developed for CD-4 means smoother more extended high
frequency response, with better tracing at high frequencies, aided by the improved groove wall contact.

In optimizing for CD-4 performance some sacrifice was made in tracing ability and transient response when playing stereo discs, with the result that Stanton's 780/4 DQ pickup lacked the presence and impact which characterized the 681 series. Even so, the new stylus shape combined with a redesigned pole structure in the pickup body did produce a certain smoothness and cleanness.

An outgrowth of this experience is the "Stereohedron" ${ }^{\text {Tw" }}$ stylus similar to the CD-4 unit but optimized for stereo use and available in the 681 EEE/S and the new Calibration Standard 881S. l've had the opportunity to use the $E E E / S$ version for several months, and it seems to be an effective and worthwhile development which, if not in its present form, at least in some other variant, is likely to become as commonplace as the eiliptical tip is now. So far I haven't found anything which it will not trace including some pretty heavily equalized sibilants. Probably because of the different mating surface involved, recordings which showed signs of damage due to mistracking on previous plays either were cleaned up, or the noise component seemed to dissociate itself from the signal, thus reducing its obtrusiveness. The same is true of surface imperfections which appear as separate signals. The effect is

Audio Today

something like noises which may come from an audience, one is aware of them, but they can be tuned out. Bright instruments like brasses and cymbals sound bright, yet there is no artificial effect added. Stereo imaging is wide, and solid, with a lovely but not exaggerated presence on voices and solo instruments, and a clean separation of individual voices on choral music.

Now for the kicker. Stanton advises that the assembly be used only in the 681 EEE body. Well, I've got news; I'm using it in both the older 681 EE and the 780 Bodies. In the latter it performs to spec, although it requires a load of 27 k and 100 pF capacitance, while with the former it provided a significant upgrading in performance, and in both cases at considerably less cost than a complete 681 EEES. The different loading requirements are due to the different inductances used in each body. Now, Stanton has always designed their pickups for operation into a much lower capacitive load than most other manufacturers, using higher inductance coils to achieve reasonable output. This may account for the variable reports on perform-
ance. They tend to be a little tricky to install, and one would be well advised to use very low capacitance cables even if it means adding lump capacitance to bring it up to the specified value.
On the other hand, none of the products exhibit the excessive compliance which has become a fashionable design characteristic in recent years, so they can be used in arms of moderate mass.

MOVING MAGNET

The 881 S represents a return to the moving magnet system, unlike Stanton's other products which use a moving iron principle. Therefore, its stylus cannot be used in the other bodies. They claim to have achieved a lower effective tip mass by using a very high energy magnet material and reducing its mass.

If you're using one of the earlier Stanton models this is a good way to upgrade. If not, but have considered using a professional pickup, the 681 EEE/S or the 881S would be worth considering. And incidentally, because of the close relationship between the
companies many of the Stanton and Pickering styli and bodies are interchangeable. Thus, the Pickering 4500Q appears similar to the Stanton 780/4DQ, while XSV/3000 claims the same magnet system and stylus as the Stanton 881S. I'm not suggesting that you purposely mix and match bodies and styli, but if you already ilave the body, you might want to give it a new pointy head.
Stanton is distributed by Tri-Tel Associates, 105 Sparks Ave., Willowdale, Ont. M2H-2S5.

NOTED IN PASSING

PRO SOUND, 13717 S. Normandie Ave., Gardena CA., USA has a LOUDSPEAKER PHASE AND IMPEDANCE TESTER, which is said to allow experimentation with varied amplifierspeaker combinations without risk of amplifier damage.
NATIONAL SEMICONDUCTOR has introduced the LM391 audio power drive IC for use in 10 to 75 watt amplifiers. Distortion claims are 10 times lower than earlier drivers and slew rate is said to be $20 \mathrm{~V} / \mathrm{us}$. As soon as I get the data sheets I'll have more to say about this device.

Audio Today Letters

Audio developments reviewed by ETI's Contributing Audio Editor Wally

 ParsonsAudio Today is ETI's new regular section dealing with news and views on topics ranging from loudspeaker design to audio circuits, from auditory perception to concerthall acoustics, from microphone techniques to designing domestic listening rooms.

If you want to express your views or report on news write to Audio Today, ETI Magazine, Unit Six, 25 Overlea Blva, Toronto, Ont. M4H 1 B1.

Parts Problems

I am a monthly reader of your magazine and find great interest in them being an electronics technician. Recently I have been seriously considering building one of your many fine projects found in your magazine but I have found a problem. I am not able to locate one of your parts needed to complete this project. I was hoping you might be able to assist me.
A.J., Yarmouth Co., N.S.

This might be a good point to mention the subject of distributors' catalogues. In general, they provide an excellent source of information as to availability of parts and in many cases are extensive enough to include fairly comprehensive technical data. Frequently I refer to Electrosonic and I realize that Electrosonic needs a free plug from me about as much as Eaton's does but as it happens their catalogue is one of the most comprehensive available both in terms of the variety and quantity of components shown and in the amount of technical data included. Electrosonic charges $\$ 10$ for their catalogue; in my opinion it is $\$ 10$ well spent if only for the technical information. Other suppliers may or may not charge for their catalogue. ETI published a comprehensive survey of distributors' catalogues last summer and we're in the process of assembling
material for another such article in the near future. Readers seriously interested in constructing ETI projects are urged to try to obtain such catalogues an even if money has to be spent for them, it will be money well spent.
I suggest also contacting other suppliers who have advertised availability of parts for several of ETI projects. And if any other suppliers wish to make available parts for ETI projects just drop us a line on your letterhead and we'll be quite glad to offer whatever co-operation we can.

Light Organs

Please send to me all the information you have on 5 channel colour organs.

B.F.H., Britt, Ontario

A complete answer to such a question would really require volumes and volumes of information. This, coupled with the brevity of your letter and a lack of knowledge as to your degree of expertise makes it very difficult to determine just how much information and explanation to supply, but we'll give it a try anyway.

Basically, a colour organ is an elaborate light dimmer. Now, light dimmers ordinarily use thyristors in appropriate circuits to control the portion of the AC cycle which is used to power a lamp. In colour organ application the thyristor is controlled
by the audio signal in one or more of several ways. In general, the signal is usually divided up into a variety of band-passes, three is the usual minimum, sometimes five, even more. The signal is then rectified and the rectified signal becomes the control voltage for the thyristor. Of course, band-pass need not be the only means of differentiating the characteristics of each channel. For example, we could base the control voltage on a phase relationship between two stereo channels. We could have a circuit which would respond logarithmically or in some other non-linear fashion, but in general the principle remains the same: The audio signal is rectified with the appropriate characteristics and this is used to control the light intensity from several channels. Ordinarily, each channel has a light of a different colour or it may even be used to operate a strobe.
At this point perhaps it would be best to recommend several books to you. At the beginning level, I might suggest Sams Publication THE ABC'S OF SILICON CONTROLLED RECTIFIERS, Sam's number 20124. Also, from RCA. THE THYRISTOR AND RECTIFIER MANUAL No. TRM445; the RCA SILICON CONTROLLED RECTIFIER EXPERIMENTERS' MANUAL NO. KM71. On a more advanced level, RCA has a SOLID STATE POWER CIRCUIT DESIGNERS' MANUAL No. SP52. Now these generally will not cover colour organs as such but they will give some information of thyristors and you can take it from there.

Watts

In your December issue of ETI you described the construction of a 50W per side amplifier.
I am interested in building this amplifier, however, I would like to clear up a few points. What is 1) input sensitivity, 2) frequency response, 3) signal to noise ratio, 4) output impedance.
G.V., Toronto, Ontario

Input sensitivity will depend on the impedance of the speaker being used but as indicated in the text the voltage gain is 30 . The output voltage for 50 W to the speakers, across 8 ohms will be 20 volts, and across 4 ohms 14 volts. The input voltage then for 50 W into 8 ohm speakers will be 0.66 V and for 4 ohm about 0.5 V .

Frequency response at the top end is
limited primarily by the compensating capacitor and would limit response to about 40 kHz . At the bottom end it is limited by the coupling capacitor to the speaker. The smaller the capacitor the higher the cutoff frequency and the cutoff frequency may be calculated by means of the formula: $X_{C}+2$ FC, where Xc is the capacitor's reactance in ohms, F is frequency in Hz , and C is capacitance in farads. Response will be down 3dB at the frequency at which $X_{c}+$ the impedance of the loudspeaker.

Similarly, output impedance willalso be largely dependent on the capacitor. 1 presume that you are concerned largely with the damping factors at low frequencies and with this type of circuit then the output impedance is essentially the reactance of the capacitor at the frequency in question.

The signal to noise ratio is largely dependant on component quality. On an amplifier of this type the signal to
noise ratio should be at least $80 d B$ below full output, more than adequate for most applications.

More Watts

I am writing to find out if you would have a diagram on how to build a (100150W) power amp for a guitar amp to be hooked up between the preamp and the cabinet or if you have any knowledge of where I could get one. This would be much appreciated.
D.S., Gananoque, Ontario

An excellent amplifier in the 100 W range appears in Canadian Projects No. 1, which is available from ETI. (See also the note on this project last issue.) If you're using it as a power amp for a guitar you might also look into the possibility of using power modules such as the RCA HC2000 or perhaps one of the very high power ILP types
which have been advertised in earlier issues of ETI. They are capable of power outputs in excess of 100W and in the case of one of the ILP's, 240 W into a 4 ohm load. Also the RCA POWER CIRCUIT DESIGNERS'MANUAL referred to earlier has fairly comprehensive notes on the applications of the HC2000 and HC2500. In addition, Motorola has an application note AN485 for a series of amplifiers of various power ratings up to 100 W . This design is not the most recent but has demonstrated a high degree of reliability over the years and is particularly notable for effective load fault protection circuitry. It's available from Motorola Semiconductor products, 490 Norfinch Drive, Toronto.

If you're not planning to use this for a. bass guitar I think that 100 W should be plenty of power, especially in view of the fact that most speakers used in such applications are pretty efficient anyway.

What to Look for in June's ETl:

Real-Time Audio Analyser

Use your scope to display the content of an audio waveform as a bar-graph, amplitude vs. frequency. Use for setting up room equalization, etc.

Ultrasonic Switch

This two-board project (transmitter and receiver) can be used in a wide range of applications from doorbells to data transmission.

Phone Bell Extender

Place a pick-up coil near your telephone (or other bell) and this project will sense the electromagnetic disturbance when the bell rings and sound an alarm in a remote place.

HiFi Super-M Magneto-Dynamic Pick-Up Cartridges

HI-FI MAGNETO-DYNAMIC PICK-UP

CARTRIDGES SUPER-M MARK II - FEATURES
Super-M magneto-dynamic pick-up cartridges with diamond stylus, for brilliant high-fidelity reproduction. Remarkable characteristics due to application of a very small magnet of high energy Super-M magnet steel. High compliance, low dynamic mass, perfect resonance damping, and extremely low frequency intermodulation distortion. High sensitivity and excellent, smooth response over a wide frequency range. $1 / 2^{\prime \prime}$ Retma mounting distance for use with pick-up arms provided with universal shell. Convenient transparent hinged needle protector

ADDITIONAL FEATURES FOR GP 422

Special shaped "S.S.T." (Super Sonic Tracking- tri-radial stylus, suitable for all types of quadraphonic records
Extended frequency spectrum, well over 50 kHz , for discrete quadraphonic systems such as CD-4
"S.S.T." stylus, finlshed to high precision and positioned with high accuracy, for perfect tracking of record grooves with high trequencies such as CD-4 system
Application of special shaped "S.S.T. stylus substantlally reduces tracking distortion al low stylus forces and record wear Important improvement in reproduction of stereo records

TECHNICAL DATA Frequency response (Hz)	$\begin{aligned} & \text { GP400 II } \\ & 20-20,000 \\ & \pm 2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { GP401 I } \\ & 20-20,000 \\ & \pm 2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { GP412II } \\ & 20-25,000 \\ & \pm 2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { GP422 II } \\ & 20-50,000 \\ & 20-20,000 \\ & \pm 2 \mathrm{~dB} \end{aligned}$
Sensitivity ($\mathrm{mV} / \mathrm{cm} / \mathrm{sec}$) at				
1 kHz	1.3	1.3	1.5	1.1
Output asymmetry at 1 kHz	$<2 \mathrm{~dB}$	$<2 \mathrm{~dB}$	$<1 \mathrm{~dB}$	$<1 \mathrm{~dB}$
Channel separation at 1 kHz	$z>29 \mathrm{~dB}$	$>29 \mathrm{~dB}$	$>30 \mathrm{~dB}$	$>30 \mathrm{~dB}$
Frequency intermodulation distortion (at recommended				
stylus force)	<0.9\%	<0.8\%	<0.7\%	<0.6\%
Stylus tip (diamond)	spher. $15 \mu \mathrm{~m}$	ell. $7 \times 18 \mu \mathrm{~m}$	ell. $7 \times 18 \mu \mathrm{~m}$	$\begin{aligned} & \text { S.S.T. } 7 \times 18 \times 25 \\ & \mu \mathrm{~m} \end{aligned}$
Stylus shaft material	stainless steel	stainless steel	titanium	(no shaft)
Stylus mass (mg)	0.2	0.2	0.1	0.035
Stylus force (gf)	1.5-3	1.5-2.5	0.75-1.5	0.75-1.5
Recommended stylus force (g)	2	1.7	1.2	1.2
Compliance (mm / N)				
static - lateral	>32	>32	>40	>40
- vertical	>17	>17	>30	>30
dynamic - lateral	>20	>20	>30	>30
- vertical	>16	>16	>20	>20
Recomm. load impedance ($k \Omega$)	$\geqslant 47$	$\geqslant 47$	$\geqslant 47$	$\geqslant 47$ (stereo)

Service Branches from coast to coast: Halifax: 902-429-0260 - Quebec City: 418-681-4639 - Montreal: 514-342-2043 -
Ottawa: 613-829-9295 - Toronto, West: 416-781-5201 - Toronto, Central: 416-489-2022 - Toronto, East: 416-438-9822 -
Hamilton: 416-547-4914 - London: 519-686-9671 - Sudbury: 705-560-4866 - Winnipeg: 204-774-1931 -Regina: 306-543-0446 -
Saskatoon: 306-244-2299 - Calgary: 403-243-7737 - Edmonton: 403-452-8491 - Vancouver: 604-434-6647.

ETI Tools Catalogue

SUPPLIERS/DISTRIBUTERS/MANUFACTURERS
1300 Carring Ave., Ottawa.
EFSTOLLINE, 3500 Bathurst St., Toronto, Ont. M6A 2C6.
ELDON, 50 Prince Andrew Place, Don Mills. Ont. M3C 2 Y7.
ELECTRO SONIC, 1100 Gordon Baker Ra., Willowdale, Ont. M2H 3B3.
LEN FINKLER, 25 Toro Rd., Downsview, Ont. M3J 2A6.
GEIRVING, PO Box 311, Clarkson PO, Mississauga, Ont. L5J 3Y2.
RADIO SHACK, 214 Bayview Drive, Barrie, Ont. L4M 4W5.
SAYNOR, 99 Scarsdale Rd., Don Mills, Ont. M3B 2R4.
Plus your local electronics shop. See also next month's ETI for the survey of
mail-order catalogues.

WHERE TO FIND THE TOOL YOU WANT Everyone has a local Canadian Tire, hardware shop, Woolco, etc, where they can buy the usual screwdrivers, socket sets, pliers, etc. But there are special tools for the electronics technician that you can't buy locally. Here we list the Canadian companies that supply tools for the electronics industry, and we show you the tools in General, Special: 1304, 2201, 2402, 3001, 3806
The numbers here are ETI's reference numbers screwdrivers \qquad
Robertson; 1303, 3805

Kits - drivers \& wrenches; 0201, 0204, 0602, 0604, 2204, 3809, 3810, 3102 Nut drivers Fractional; 2203, 2402, 2601, 3807, 3811
Metric; 2203, 3807, 3811 Wire strippers; 38/3, 0307, 0401, 1001, 2004, 2208, 2401, 2501
Cutters Wire strippers; 3813, 0307, 0401, 1001, 2004, 2208, 2401, 2501
Shears; 0306, 2208
Diagonal cutters; 0310, 0801, 1401, 1901, 2302, 2303 Diagonal cutters; 0310, 0801, 1401, 1901, 2302, 2303
Head cutters; 0311, 0803, 1403, 1902, 2304 Pliers
0312, 0601, 0802, 0804, 1404, 1903, 2305, 2306, 2307, 2308, 3101.
3814
Lead Bending Tool; 0305
Wire bending jigs; 2403
Tweezers \& Forceps; 0605, 1904, 1905, 2210, 2701
Adjustable wrenches; $1405,2308,2701$
Scribers 1702, 2602
Drills
Power drills; 1601, 3201, 3601, 3704, 3103 Power drills; 1601, 3201, 3601, 3704, 3103
Taps \& Dies; 0208, 1306, 1503, 1703, 2207
Chassis punches; 2101,2403 Chassis punches; 2101, 2403
Vises \& PCB holders 1603, 2207, 2901, 2403 Miscellaneous
Files; 1703, 1906, 2206, 2701
Saws; 1701, 2309, 3201
Tool boxes; 0901, 1306, 2701, 2403
Allgnment tools; 2001, 2002, 3103

[^0]501, 3401, 3402, 3403, 3404, 3405, 3702
Lead cleaner; 1103
Soldering
Irons; 0302, 0303, 0304, 0501, 3401, 3402. 3403, 3404, 3405, 3702,
2701
Cordl
Temp. controlled irons; 0301, 1804. 3406
Guns: 3701
Stations: 0503, 3703
Aids; 0308, 1101, 1102, 2209, 3103
Stands/Cleaners; 0502, 3407, 3704
Desoldering tools; 0309, 1801, 1802

Avalabie from Saynor T8136-7/T8136-8 IC insertion tool
pin) $\mathbf{\$ 1 5 . 1 6 / \$ 2 3 . 1 3}$ pin) $\$ 15.16 / \$ 23.13$ 08 BAHCO

 12 W sodiderng staulon with ip lemperaules varable
ARMACO 06 ARMACO

 Automatr nu divet - fits five sires 53.75
Two prulips drvers. three box keys. plus nand-

 $\$ 1.04$
Screwtriver whit four liades (Inc awis screw) $\$.56$
Seven Allon Reys 51.23
WRENCHES

Also Key and Di punches
Chassis Punch set, seven sizes from $1 / 2$ to $11 / 4 \quad \mathbf{S 5 1 . 7 7}$
Bigger range in ElectroSonic catalogue also includes metric size round punches. relay socket punches. etc
Available from Len Finkler. Saynor and Etstonine Catalogue
2201 SCREWDRIVERS

 Four slot blades, one handle. miniature sizes
Six jewellers screwdrivers
 ne klt. Five nut driver shatts and one handle in one kt
3054 to
30001 to 33055 Nut drivers in eleven sizes trom $5 / 32$ to

Snort' simple two-piece desoldering pump
'Snort Ini desoldering pump for miniature compoSOLDERING EQUIPMENT
 EREM
 Avellable thumi Leri froktr. ain Say ivi

 16 DREMEL
Avalabit trom Estsonine
1601 DRILLS
G6540 Varabie speed Moto Toal 5000 Inur 25000 rpm

 1602 BITS S1502 12 grnang pann: biss 516.95 $\begin{array}{ll}\mathbf{S} \\ \$ 1501 & 12 \text { abrasive (emery wheel) bils } \$ 16.95 \\ \mathbf{S} 1252 & \text { high-speed touter buts } \$ 30.95\end{array}$ V2845 Adjustable-angle vise, opens to $2^{\prime 2} \quad \mathbf{5 3 8 . 5 0}$ 17 ECLIPSE Avarlable from ElectroSonic 1701 SAWS

 1702 PUNCHES \& SCRIBERS

$$
\begin{aligned}
& \text { Automatic. adjustable centre punch } \$ 6.40 \\
& 4 \text { centre punch } \$ 1.15 \\
& \text { Pocket-chp scriter } \$ 2.50 \\
& \text { Hook scriber-double ended } \$ 1.60 \\
& \text { Marhinist Scuher tinale ended) } \$ 0.95
\end{aligned}
$$

$$
\begin{aligned}
& \text { E141/142 Chuck-type tap wrench (SLzes } 4 \& 6 \text {)/(4.6.8 \& } \\
& 10) \$ 3.00 / \$ 3.60
\end{aligned}
$$

 126 Slip-pint pliers with cutter $\mathbf{\$ 2 . 6 8}$
$2050-9 \mathrm{C}$
High leverage with cutter $\mathbf{\$ 8 . 1 6}$ 257-9C Stranght jaws, multhple slip joint $\$ 4.05$
 R410-10C Curved jaws, multiple slip jont $\$ 5.16$
AC1-4/6/8/10/12 Ad,ustable wrenches from $\$ 4.44$ to
$\$ 9.41$ 15 DORMER

Available from ElectroSonic
1501 HIGH SPEED DRILLS
1501 HIGH SPEED DRILLS
fractional sizes (32) from $1 / 64^{\prime \prime}$ to $1 / 2^{\prime \prime}$. $\$ 071$ to $\$ 5.15$
Number sizes (80) from No 1 to No 50 to No. $80, \$ 1.15$ to
$\$ 0.40$ to $\$ 0.71$ to $\$ 0.40$ to $\$ 5.15$.
1502 DRILL KITS

1503 TAPS

If youthink you can't learn
 TV and audio servicing at home, I say, "BALONEY!"

Maybe you don't believe that we can actually teach you to service TV and audio equipment by mail. Yet here at NRI, we're doing it every day. Helping people to bigger and brighter futures. Let me tell you why the NRI way works so well... and challenge you to put us to the test. One of the secrets of the success of this school is the fact that its founder, J.E. Smith, was a teacher. So, when he originated his first course in radio over 60 years ago, it was carefully designed with training in mind. And that principle has guided us ever since. In every technical course we offer. Today, every aspect of our courses in TV and audio servicing are student-oriented to make learning as fast and as easy as possible.

Exclusive Training Methods

Right off, that means that you get far more than book learning. NRI gives you practical, hands-on experience as you progress. In our Master Course in TV and audio servicing, you actually construct a 25 -inch diagonal solid state color TV. You start right with the basic parts and as you build it, you introduce and correct typical servicing problems, ending up with a complete unit, ready to use. That way, you get the actual bench time and intimate knowledge you need to handle real servicing problems. And before that, you even assemble some of your own electronic test instruments so you not only know how to use them, but how they work. That kind of training sticks with you...gives you extra confidence.

And Mr. Smith taught us something else, too. Not to go too fast. So, our courses have what we call "bite-size" lessons. That's another way of saying that they're easy to digest. Big enough to cover a specific subject thoroughly, but not so much that it'll overwhelm you. Written clearly, without a lot of gobbledygook. And we keep in mind that you're learning at home, so you take our lessons at your own pace. That way, you can learn in your spare time without interfering with your present job or eating up too much of your family life. of course, if you want to move ahead faster, we're behind you all the way. The point is, it's your choice.

Professional Instructor/Engineers

One of the ways we back you up is with a fully-qualified staff of professional instructor/engineers. They're there to help you when you have a problem with any aspect of your studies. . . lessons, theory, bench training. And because most of them

John E. Thompson, NRI President actually helped plan your lessons and designed your equipment, you'll get answers right from the horse's mouth, answers that are clear and to the point.

1 might add that these are not a bunch of ivory-tower professor types. In between checking your lessons and giving you personal help, they're busy keeping up with the state of the art, designing new equipment and revising lessons to get you ready to handle even the latest equipment. As a case in point, take the audio equipment we added to our course recently. Not just stereo, but fourchannel. Maybe a little exotic, but when a servicing problem like this hits your bench, you're ready for it. It's the kind of thinking and planning ahead our founder would have liked.

I Dare You To Do It

Now you might think I'm bragging a little too much on how good NRI is, and maybe I am. I'm mighty proud of our accomplishments. But the proof of the pudding is in the eating... how our training works in preparing people for actual. jobs. So I'm inviting you to ask the only people who can give you a totally objective answer, professional TV and audio technicians. And here's my bet. Just look in your yellow pages for a couple of TV repair shops, ask to speak with anyone who actually does the repair work, and ask him what he thinks of NRI. I'll bet he says, "Do it!"

I'm not really sticking my neck out, because I know something you may not. Almost half the TV servicemen working out there have taken homestudy courses. And among them, it's NRI more than three to one! Ask the pros on the firing line and three to one they'll recommend NRI to you as their first choice. I'll be happy to send you a copy of the national survey that proves it.

Why do the pros like us? Because NRI works. You take it at home so you don't have to go to classes. You take it in your spare time, so you can hold down your job while you get ready for your step forward. And you take it easy, because our
bite-size lessons make it easier, let you set your own pace.

Equipment Designed for Learning

And to top it off, NRI's equipment is exclusive. We design most of our own, so it's not somebody else's hobby kit or a stripped-down and mostly assembled commercial unit. It's designed so you really learn as you build, designed to give you lots of honest bench time, designed to give you the satisfaction of finishing up with a fully operable, top-quality unit that's comparable to any commercial set on the market. But you built it . . you learned something on it! That's J.E. Smith's philosophy again.
It all boils down to the fact that we've aimed our training at a very practical goal...giving you the skills you need to move ahead in a rewarding career. Or even to have your own full- or part-time business.

Send for Free Catalog, No Salesman Will Call

There's lots more to tell about NRI training in TV and audio servicing and other courses, but not much space left to do it. So I'm inviting you to send for our free catalog of electronics courses. It contains a complete description of every course, including each lesson, training kits, and experiments. Full color photos show you exactly what your course will include in the way of test instruments, electronic components, and major kits like the 4 -channel audio center and color TV.

No salesman will call on you, either. We don't work that way, never have. Our catalog shows you what we have to offer you, what we can do for you. Look it over, then think about it and make your own decision without outside pressure. J.E. Smith always felt that his best students were the self-motivated ones.

I can only add this. With over 60 successful years and more than a million students behind us, we must be doing something right. Just ask anybody we've helped along the way. So get started on your future. Send the postage-paid card and check the course that interests you. If it has already been removed, write me and I'll personally see that your catalog gets rushed to you. And thanks for listening to me.

John F Thompson, President

NRI Schools

McGraw-Hill Center for
Continuing Education
330 Progress Avenue
Scarborough, Ontario MIP 225

ETI Tools Catalogue

 39 MINOR ITEMS Here's sa couple of tems toos small io waranant Istungnn ine main
section: 2901 MISCELLANEOUS

 Road. Trans Canada Highmay, Ooval. Quebec. H9P 2 NA .
is Prined circuit solder trom. Kestar in 288 GDOX .

 sion case) $\$ 221.26$
Xi R Ratchel 3813 CUTTERS
 PS7 3 3/2" overall drivers. 2 nut drivers. 2 slot tip. 2 Phillips S7 $31 / 2$ overall lrivers. 2 nut drivers. 2 stol tip. 2 Phillips $544 \quad 3^{1 / 2}$ " "scrullox" drivers - live sizes and plggina Se8 38/2." screwdrivers. 5 slot and 3 Phullips typees plus piggyback" handile 88.63
S89
$31 / 2$ nut drivers, ten sizes plus "prggyback" handle
 pliggyack handie $\$ 11.42$
M60 Eight Allen type drivers and "piggyback" hatidete
$\$ 4.16$. ヨZIS LN11 Roll-up case with eleven Allen drivers 005 " to

 4ay si16.58 Ten nut drvers 4 mm turn 8 mm . $10 \mathrm{~mm}, 11 \mathrm{~mm}$.
13 mm in cardboard box $\mathbf{\$ 2 0 . 0 4}$ 3812 MISCELLANEOUS DRIVERS 25

 3806 SCREWDRIVERS - REED \& PRINCE (FREARSON) RP101/102 $3 / 16$ "/ 14 " blade $\$ 1.69 / 52.16$ 3807 NUT DRIVERS P3-p $123 / 32$ to $3 / 8^{\prime \prime}$ by $1 / 32^{\prime \prime}$ steps. pocket clipp
style $\$ 1.05{ }^{6-12}$ Regular sized (3" shatt) nut drivers (sizes as ${ }^{14 / 16} 7 / 16^{\prime \prime} / 1 /{ }^{2}$ nut drivers $\$ 2.21$,

 $12 \mathrm{MML} / 13 \mathrm{MMM}$
$\$ 2.79$ 3808 HANDLES \& BLADES - INTER-
CHANGEABLE

 $\mathbf{5 9 - 7 1 M M}$ to 99.77 MM Metric size Allen shatts $\$ 1.56$
$99-8-\mathrm{M} / 99-10-\mathrm{M}$
Magnetic nut divers $\$ 1.72 / \mathrm{s} 2.14$ 3809 HANDLE \& BLADE KITS

38 XCELITE

Avalable from Cesco, Saynor, Electro Sonic
3801 SCREWDRIVERS - SLOTTED.

 51.94 to 52.37
R514.-45168 $5 / 16 "$ screwdrivers with $4 " / 66^{\prime \prime} / 8^{\prime \prime}$ blades
S2 R388 $3 / 8^{3 \prime}$ screwdrvers with 8 " blade $\$ 3.44$ 3803 SCREWDRIVERS - PHILLIPS

 overall $\$ 1.47 / 51.63$
$\mathbf{x} 100$
$\$ 3.53 \times 1020$
Sizes 0 0 to 4. blades $2 " 1010$ " $\$ 1.04$ to

 3804 SCREWDRIVERS - ALLEN HEX

 a variety of exciting new kits for spring kitbuilding fun. Nearly 400 kits in all to help you get the most from your electronic dollar!

Low-Cost Straight Line/ White Line Chart Recording Depth Sounder

Learn about the fascinating and rewarding hobby of electronic kitbuilding. Experience the satisfaction of owning a top-performing, high-quality electronic product that you built with your own hands.
Our easy-to-understand assembly manuals are your kitbuilding "partner" from start to finish. Large, clear illustrations and step-by-step instructions lead you to successful completion and the thrill of "turn-on". It's easy, it's fun, and it's personally satisfying.
Send for your FREE catalog today! \sim

FREE CATALOC SEND

HEATH Heath Company, Dept. EU 578
Schlumberger
Mlislssauga, Ont. L4X 2R7
Please send me my FREE Heathkit Catalog.
I am not on your mailing list.

Name
Address
City

CL-654

The world's
largest selection of quality electronic kits. Plus dozens of Heathrecommended name-brand products too!

Professional-Quality Auto Engine Analyzer Budget-Priced Digital Alarm Clock

Personal Computing Systems
Professional-Quality Deluxe Coin-Tracking Metal Locator

White Line Follower

This toy car will follow a track around - but there's always the danger of spinning off!

THE IDEA OF A SLOT CAR that doesn't need a slot is not new - in fact, sophisticated systems based on inductive loops have been used in large factories for some years. This project is at the other end of the complexity scale, and uses a simple light/photocell combination to follow a white line. The electronics involved make up a simple feedback control system - as soon as one photocell sees more light than the other, the differential amplifier applies a correcting voltage to the steering servomotor and so the model steers itself back on to the line.

We are not sure whether to class this project as a toy or as a serious experimental project. Certainly, the basic project makes a great toy, but there is tremendous scope for experimenting and 'tuning' the control circuitry. Like all control systems, this one displays a characteristic called 'damping' - if the system is overdamped, the car will steer sluggishly and will have difficulty following anything except the smoothest curves. If the control circuitry is underdamped, the car will oscillate from side to side on curves - this may also be set off by small deviations on the straights.

The ideal situation is to have a 'critically damped' system, which has just the right combination of characteristics to respond quickly on curves without oversteering. This can be

achieved by theoretical analysis, using techniques like Nyquist's Criterion, but it's more fun to tune by trial and error. The damping is a factor of the photocell spacing, the amplifier gain and the servomotor characteristics.

You can have a lot of fun racing these cars, especially since there is quite a bit of scope for tinkering and tuning them. The layout of your race track should include both smooth and tight curves - you may have problems with figure-8 s that cross at anything but right angles.

CONSTRUCTION

Construction of the mechanical side we must leave to the individual reader. The car we used was purchased from Woolworth's and already had steerable front wheels, which saved a lot of work in designing and building, although for the enthusiast a plastic kit would be a good start.

The motor for the steering should operate on 1.5 V reliably and has to be geared down. The motor we used had an internal 15:1 gearbox and the steering

arms were driven by a piece of fishing line wrapped around the shaft (see photo). This is only one possible method - we leave the final choice to you.

The sensors should be mounted in front of the wheels and should move with them so that when the wheels turn to the right, the sensor also moves to the right and vice versa.

The LDRs were housed in short lengths (about 10 mm) of cardboard tube to act as a shield and were spaced about 15 mm apart (we used a 12 mm wide line) with the bulb mounted between them.

Electrically the components can be built onto the PC board described which can be mounted somewhere in the car. We used separate batteries for the electronics and ran the bulb off the main batteries, to keep the electronics supply more constant.

EXPERIMENTING

Using different motors/gear ratios some changes to the electronics will probably be found necessary. These would mainly involve C1, R1 and R10. Increasing R10 or reducing R1 increases the DC gain, while increasing C1 increases the dynamic damping to reduce overshoot. Track width may also be experimented with as well as LDR spacing.

Underneath view of the photo resistors and the light bulb.

ETI Project

Fig. 1. The circuit diagram of the electronics.

PARTS LIST

RESISTORS all $1 / 2 \mathrm{~W}, 5 \%$
SEMICONDIJCTORS
Q1,2....MPS6515
Q3 2N3905
Q4 MPS6515
Q5 2N3905
Q6 TIP30C
Q7 TIP29C
MISCELLANEDUS
PC Board ETI 245
3 V bulb
*servo motor and gears
toy car
2 pole toggle switch
*see text
*C1. 330n polyester

C2,3 . . . 10μ 10V electrolytic

HOW IT WORKS
The sensor used to look for the white line is a pair of light dependent resistors (LDRs) which are aimed at either side of the line so that each sees half white half dark. The line is illuminated by a bulb to ensure that the LDRs have a relatively low resistance. If the car is moved off the centre line one LDR will see more 'white' and its resistance will fall. The two LDRs are connected in series across the supply voltage and so the voltage at the junction will vary as the car moves in relation to the line.

This voltage is compared with that set on RV1 by Q1 and Q2, the error signal driving the servo motor in the correct direction to try to eliminate the error Negative feedback is provided by R10 to reduce the 'open loop gain', and dynamic feedback is provided by Cl which is used to reduce overshoot.

When designing the mechanical side of the car's steering mechanism, provision should be made to somehow move the sensors with the front wheels to provide additional negative feedback.

The motor used in the prototype was an expensive one (about $\$ 40$) with an internal 15:1 gearbox. While a motor of this quality is probably not justified a reasonably good motor and reduction gear is necessary, as the cheap (50 c) motor we tried didn't seem to like starting on 1.5 V .

Printed Circuit Board materials for the Hobbyist and Technician

INJECTORALL - from Fingers to Doughnuts a very complete line of quality circuit board materials.
omnitronix Itd.

ETI KITS
 FREQUENCY SHIFTER

ETI 486 IS THE IDEAL SOLUTION TO FEEDBACK PROBLEMS IN PA SYSTEMS WHETHER IT'S FOR MUSIC OR SPEECH COMPLETE KIT................ $\$ 55.00$ CASE, SWITCH, JACKS + HDWRE. $\$ 15.00$ ETI 581 POWER SUPPLY...... $\$ 18.00$

ADD ON F.M. TUNER
ETI 713 F.M. TUNER BOARD FEATURES AFC,MUTE DEFEAT, MONO/STEREO WITH STEREO LED. IT HAS PROVISIONS TO ADD A CARRIER STRENGTH,TUNING AND FREQUENCY METER AS WELL AS ROTARY POTENTIOMETER TUNING-NOT INCLUDED COMPLETE KIT................ $\$ 75.00$

ivingstone, Electronics

SUITE 201-801 YORK MILLS RD DON MILLS, ONTARIO M3B 1×7 NO COD'S. ONT. RES. ADD 4\% PST. MAIL ORDER ONLY. PRICES POSTPAID. SEND \$1.00 FOR COMPONENT CATALOG.

REFUNDABLE WITH FIRST ORDER.

Music for all seasons

System

Reg. separate 799^{80} item price 199

Songs of spring... warm music for cold winter nights... romantic music for warm summer evenings... thrilling music for dramatic autumn days. It can all be yours, with larger than life realism, when you own this superb stereo system.
The STA-78 AM/FM stereo receiver witt. 22 watts RMS per channel and handsome black face panel, brings you FM stereo broadcasts with all the drama of a live performance.
The LAB-50 2 -speed changer will play your favorite records with exquisite clarity.
Comes complete with 26.95 value, Realistic/Shure magnetic cartridge.
Two Optinus ${ }^{@}-10$ speakers with 75 watts continuous program power will deliver the sound with glorious realism.
Get your own beautiful stereo music for all seasons, at your nearby Radio Shack Store... and SAVE $\$ 200$... NOW!

Price shown is in effect at Radio Shack Stores and is the maximum at Authorized Sales Centres (DEA_ERS), through tize month of May, 1978.

Radre Shack
 ER33 A DIVISION OF TANDY ELECTRONISS LIMITTED

Add-On FM Tuner

This 'add-on' FM tuner may be incorporated into an existing AM radio or hi-fi system. The case and power supply are left to the individual constructor.

THIS TUNER has a minimum of initial adjustments and few operating controls, it can draw its power from any widely varying available dc voltage source (for example, a power amplifier supply rail). Thus it is not intended primarily to compete with the 'free standing' designs, but it is nevertheless capable of equally excellent performance.
Distortion of 0.1% and signal to noise of 70 dB (unweighted mono) was exhibited by the prototype using an HP spectrum analyzer.

Many options are available, - in one extreme case the tuning could be preset by a trimpot, with no meters or switches at all: the board being built into an existing amplifier as an extra program source using no additional panel space. In another extreme case a line operated power supply could be provided, a 10 turn helipot used as a tuning control, tuning, carrier strength and frequency meters provided, AFC, mute defeat and mono/stereo switches provided, with the whole unit built into a wooden box whose front panel could be graced by the above controls plus a stereo indicator LED.

PRACTICAL CONSIDERATIONS

The tuner is constructed on a small, single sided printed circuit board, the pattern for which is shown in Fig. 4. The components layout is shown in Fig. 2.
Filter frequency determining capacitors should be mica, polystyrene or
polyester for the larger values surrounding IC3. The external components shown in Fig. 2 are all optional except the tuning potentiometer RV6. No special constructional difficulties should be encountered.

ADJUSTMENTS

Connect an antenna as shown in Fig. 2. Tune into the local stereo station by monitoring the stereo outputs with headphones or amplifier, ensuring that the mute defeat switch is on (closed) and that the AFC switch is off (connected to R36). Adjust RV4 until the oscillator signal at the test point (TP) reads 19.00 kHz or set RV4 halfway between the points at which the stereo LED comes on (anticlockwise and clockwise). Adjust RV5 until pins 6 of IC4,5 read about 6 V as read by a multimeter.

Observe pin 1 of IC2 with a high frequency oscilloscope and tune across the station, observing the rise and fall of the 10.7 MHz IF signal. Set the tuning so that this signal is maximized, thus ensuring that we are sitting centrally in the ceramic filter bandpass range. (If an oscilloscope is not available M2 may be used as an indicator of IF signal strength). Leave the tuning set and remove the secondary slug from L1. Adjust the primary slug so that the tuning meter is centred. Insert the secondary slug and adjust until maximum swing away from centre is observed on M3. Readjust the primary slug so that M3 is centred again. L1 is now adjusted.

Now detune the station slightly and turn the AFC on via SW3. Note that M3 swings towards centre from either side, confirming that tuning errors and thus distortion are decreased due to the action of the AFC.

Tune off the station, open SW1, and adjust the mute level control RV3, for reasonably quiet interstation noise. Verify that the station output is not muted on this setting.

The following section applies only if the frequency readout capability is required. Connect the output of a VHF signal generator into the antenna termirals and set to 98 MHz (assumed accurate). Adjust RV1 until M1 is centred. Set the generator to 88 MHz and adjust RV2 to give maximum negative deflection on M1. Set the generator to 108 MHz and verify maximum positive deflection on M1. (Some interaction occurs here and successive adjustments are necessary). The exact frequency scale can now be calibrated on to the meter. If no instruments are available the following may be used as a rough guide:
Frequency $(\mathrm{MHz}) \quad$ Tuning Voltage

88	2
98	6
108	18

The tuner is now fully adjusted and operation of all the controls may be rechecked.

FM stations of known frequency may of course be used to provide calibration points.

The full circuit for the tuner is shown in
Fig. 1. The front end consists of the
well known Philips LP 1186 varicap
well known Philips LP 1186 varicap
tuned FM tuner module. At the time
of writing this is readily available.
This module requires an $8 \mathrm{~V}, 6 \mathrm{~mA}$ power supply (pin 5) and covers the
frequency range $87.4-108 \mathrm{MHz}$ with
a diode tuning voltage range of 2.17 V .
Antenna (pins 3,4) and output (pin 6)
impedances are 75Ω unbalanced and

MORE FILTERS

The demodulated left and right Sヘכ＾suid le leadde sindino jauuey
 IC4，5．These provide a basic gain of 3.2 flat to 12 kHz and rolls off at 12 dB ／ octave thereafter．This adds to the
 frequencies．All frequency determining components surrounding IC4，5 should廿ецł parou aq pinous 71 K 1 ！！！qeis $46!4$ the gain of these output filter／amplifiers can of course be changed to suit individual purposes by changing R21，25
 ？

 erial．RV5 sets the dc operating con－ ditions of IC4， 5 to ensure that their voltage．
Most of the tuner runs from a 12 V supply obtained from the raw supply （Vs）via
 ing an input voltage substantially greater than 12 V is largely dissipated
 chosen according to the table on Fig． 1.
IC8 does not require a heatsink．
some such technique．At present of personal taste and it is fascinating to lower the value of R32 and watch the tuning control have virtually no effect
 The AFC output current is measured
by the centre－zero meter M3 which acts as a tuning meter．The AFC may be

 meter action．Note that R35 is not strictly necessary but is used instead of a jumper for aesthètic reasons．

The detected output appears at pin 6 of IC2 and passes through the two network around Q2．This network has a response which is optimally flat
 to sloatfo alqex！səpun әut bu！eu！̣！！ wideband noise．Since the wanted
 by the filter． DEMUX

 ase sıolonpu！ON S」ə」nloetnueu required for this phase locked loop chip

 IC3 may be obtained from the
 from pin 10 to a test point to allow
 network C25，R16，RV4，and these components should be selected high
 in 7），sufficient for city use，but if a high e sapniou！osje iJl peatsu！（S u！d）
indino u！e6 day6！u aul ayel ol ksea （ 9 u！d）$\wedge 8^{\circ} \angle$ to 人lddns дәмоd pareןnбәд
 the LP1186 module．

FILTERING

เכ। moı indłno pe！t！！due a $2!$ passes through the passband matched samectly loaded by R4，to the detector correctly loaded by R4，to the detector
chip IC2，an RCA CA 3089 which performs the functions of FM amplifica－ tion and detection，interchannel
controlled muting，AFC output and carrier strength output．

MUTE OPTION

 takes the form of a dc volume control，
 normal mute output（pin 12），the AGC muting as a more sensible characteristic
 desired station strongly while largely ałnul aبı｀as！ou uO！＋ełsıału！bu！teu！u！｜ə defeat switch SW1 is self explanatory． DETECTOR

The external components involved
 FM signal are the RFC L2 and the Constructional details for L1 are given in Fig． 3 and adjustment procedures follow later．Note that the can of L1
forms an integral part of the circuit forms an integral part of the circuit board layout is adopted，and that the circuit will not work without it． \qquad The AFC output（pin 7）of IC2，
relative to the reference bias（pin 10）
the IF output centre frequency is
$10.70 \pm .05 \mathrm{MHz}$ ．Provision is made for
an AFC input voltage，but in this circuit Alddns of quə！uanuos əıou punot SEM I！ AFC as an additive correction on the tuning voltage（pin 2）．The module
 RF stage，giving good image and IF rejection，a separate oscillator stage for

 4L！M paradmet aq plnous 981 l d7 ayl TUNING
 e！̣（ ${ }^{s} \Lambda$ ）a6etjon Kiddns ybnos ayt
 Aq pat！m！luarano＇ε u！d te へして－OZ †o
 across the tuning potentiometer（RV6）

 pod！ unmulum iof abetjon bu！unt ayt jano

 ment on the varicap voltage is satisfied
 and a high quality helipot，but the dation．Other tuning potentiometer 10」 pasn aq asınos to plnoo swałsis ןołuos butunt uołnq－ysnd e＇əןduexa using a set of voltage dividers and narrow range trimpots is quite feasible． READOUT
－ад paunt to әэuәpuədәр әч7 әэu！S quency on the varicap supply voltage follows a pseudo－logarithmic law，some produce a linearly scaled frequency readout．Q1 and associated components form a crude logarithmic converter， and it happens that the out of balance current passing through the centre zero

Fig. 2. Components layout of FM Tuner printed circuit board.

PERFORMANCE

The antenna sensitivity of the tuner has not been extensively studied, but is quite adequate for the normal metropolitan situation. IC1 has a choice of two gain options and wideband preamplification could be provided before the front end if fringe area reception were desired.

An HP spectrum analyzer was used to measure noise and distortion. Ultimate unweighted mono signal to noise ratio was found to be 70 dB while a distortion figure of 0.1% at 3 V peak to peak output (mainly second harmonic) was obtainable if L1 was finely adjusted while observing the spectrum analyzer. For adjustment of L1 using the technique described earlier distortions of $0.2-0.3 \%$ (second and third harmonic) were obtained. These figures of course
assume accurate tuning. Typical maximum output voltage was about 3 V peak to peak as stated earlier.

Specifications relating to RF performance are obtainable from the LP1186 data sheet.

REFERENCES

1. "Novel Stereo F.M. Tuner" (part 2)
J.A. Skingley and N.C. Thompson,
Wireless World, p. 124, May 1974.
2. "Operational Amplifiers - Design
and Applications" J. Graeme, G.
Tobey, L. Huelsman McGraw-Hill
p. 297, 1971. (The well known
Burr-Brown handbook)
3. Motorola Semiconductor Data
Library. Vol 6, Series A "Linear
Integrated Circuits" p. 8-19, 1975.

Fig. 4. Printed circuit pattern for FM Tuner.
Full size $142 \times 118 \mathrm{~mm}$

Kits and parts available from Livingston Electronics. Some parts from Northern Bear Electronics. See their ads in this issue.

RESISTORS	1/4W 5\% unless stated	R40	22k	C32	$10 \mu 16 \mathrm{~V}$ tantalum
R1	39 k otherwise	R41	12k	C33,34	1nO*
R2	10 k	- R42	see text	C35,36	100 n disc ceramic
R3	270	POTENTIOMETERS		C37	$10 \mu 16 \mathrm{~V}$ tantalum
R4	330	$R \vee 1$	25k trim	C38	$220 n$ polyester
R5	33 k	RV2	2k "	C39	100p ceramic
R6	470	RV3	500k ",	C40	100 n disc ceramic
R7	120k	RV4	5k	C41	$10 \mu 16 \mathrm{~V}$ tantalum
R8	8 k 2 1/aw	RV5	2k " ${ }^{\text {2k }}$,	C42	100 n disc ceramic
$R 9$	3 k 3 \% H	RV6	10k-100k 10 turn	C43	$100 \mu 16 \mathrm{~V}$ electro
R10	2k2	CAPACITORS rotary		C44	100 n disc ceramic
R11	12k	CAPACITOR	$1 \mu 025 \mathrm{~V}$ tantalum	* low tolerance mica or polystyrene	
R12	2k2	C2	$10 \mu 16 \mathrm{~V}$."	INDUCTORS	
R13	470	C3	100 n disc ceramic	L1	see text
R14	1 k	C4,5	10 n polyester	L2	$22 \mu \mathrm{HRFC}$
R15	3 k 3	C6	100n disc ceramic	SEMICONDUCTORS	
R16	15k	C7	$10 \mu 16 \mathrm{~V}$ tantalum	IC1	$\mu \mathrm{A} 753$
R17.18	4 k 7	C8	100 n disc ceramic	IC2	CA 3089
R19	8 k 2	C9,10	22 n polyester	IC3	MC 1310P
R20	10k	C11	10 n ,	IC4-IC6	LM741
R21,22	22k	C12	$1 \mu 025 \mathrm{~V}$ tantalum	IC7	LM723
R23	100k	C13,14	1000 ceramic mini	1 C 8	LM340T12
R24	10k	C15,16	100 n disc ceramic	Q1	2N3904
R25	22k	C17	680p *	Q2	2N3904
R26	8 k 2	C18	10y 16 V tantalum	D1-D4	1 N914
R27	22k	C19	150p *	D5	LED
R28	100k	C20	820p ceramic	MISCELLANEOUS	
R29,30	1k	C21	47 n polyester	PC board ETI 713	
R31	100k	C 22	$220 n$ "	SW1	SPDT toggle
R32	330k	C23	$470 n$	SW2	DPDT toggle
R33	18k	C 24	220 n "	SW3	SPDT toggle
R34	18k	C25	470p ceramic	M1	
R35 R36,37	270	C26	$10 \mu 16 \mathrm{~V}$ tantalum	M2	$\pm 100 \mu$ A centre zero
R38	8k2	C27,28	$1 \mathrm{nO}{ }^{*}$	M3	$\pm 100 \mu \mathrm{~A}$ centre zero
R39	10	C29	$10 \mu 16 \mathrm{~V}$ tantalum	F1,2 Tuner m	10.7 MHz filter SFC10.7MA
	10	C30,31	10 n polyester	Tuner m	e LP1186

SHOP and SAVE

at ACA
 A new concept in electronic equipment sales

The new ACA Electronic Centres carry inventory of popular models of digital multimeters,oscilloscopes, power supplies, and other electronic test equipment.

Visit the Showroom

nearest you
Toronto:
6503 Northam Drive. Mississauga 416/678-1500
Calgary:
2280-39th Ave N.E. Caigary 403/276-9658
Vancouver:
116 East 3ra Street, Sute 203. North Vancouver 604/980-4831 Montreal:
1330 Marie Victorin Blva, Longueuil 514/670-1212

Shop in person or by mail. For

 your free catalog writeACA Electronic Centres, 6503 Northam Drive, Mississauga, Ontario L4V 1J2.

5\% \%

INTRODUCTORY OFFER

This coupon is good for a 5% discount off the regular price of any one order
of equipment purchas

Limited to one discount per customer

- Li
- Valid unced for either a mail order or in-person purchase
- Not applicable to special sale-priced items
- Minimum order \$100
- Purchaser's name and address must be completed on this cou
- Valid on cash, certified cheque, or credit card purchase only
N.me
\qquad
Auspes,
\qquad

PC of Mind

I just wanted to drop you a line to tell you how much I appreciate the PCB negatives found in the January issue of ETI. I have found them very useful since I had no other means of using the photo method to produce my PCBs for my ETI projects.

Please continue to print these negs since I sunk some 20 odd dollars into a photo method PCB making kit. If you cannot afford to print these neg's (since it uses glossy paper) consider printing just the top projects every 3 to 5 months.

WMK, Sydney Mines, N.S.

For those interested in direct transfer p.c.b. neg. and positives techniques. You can order the transfer film from the U.S. at $\$ 7.95$ for $3,9^{\prime \prime} \times 12^{\prime \prime}$ sheets, plus the 27% duty of $\$ 2.15$, making your cost over \$3.36 per sheet.

For myself and a few other unfortunates who didn't win their million, last lottery draw, you might consider using an equally efficient product.
"Seal-Rite" sheets are available in packages of $2,10^{\prime \prime} \times 12^{\prime \prime}$ sheets for \$1.50, postage included from. . . SealRite Plastics Ltd., Mail Order Dept., P.O. Box 400, Snowdon Postal Station, MONTREAL, Quebec, H3X 3 T6.

SGM, Hamilton, Ontario

LETTERS to the editorial staff for ETI should be addressed to the appropriate department, Project File, Audio Today, or ETI Query for questions on other articles, and ETI Feedback for letters of general interest. If you wish a personal reply you must enclose a self addressed stamped envelope. Letters without will probably end up in our round file. Write to: Appropriate Department, Electronics Today International, Unit 6, 25 Overlea Blvd., TORONTO, Ontario, M4H 181

No Reply

Where's the reply to that letter I sent you six months ago?

LEM., Moonbeam Ont.
Did you enclose a self addressed stamped envelope?

SPRING SPECIAL!
FROMOTION ENDS MAY 30, 1978
8K
(STATIC)
'220
c.o.D.

INDUSTRIAL MICROASSEMBLED AND TESTED REGULARLY PRICED AT $\$ 250.00$

COMPACCOUNT COMPUTER SALES 43 EGLINTON AVE. E. SUITE 1002- TORONTO
WRITE FOR OUR FREE CATALOGUE CANADA

COMPUTER MART

Your number one source for Mlcrocomputer Systems and Peripherals. Spring Features. . .

- Flexible Diskettes -

Quality - Brand Name diskettes. Single unit quantities available: IBM Format compatible . . $\$ 5.95$ Hard Sectored 7.00 Micro-Diskettes 5.95

- Volker-Craig VC303A Data Terminal. $12^{\prime \prime}$ non-glare CRT, all standard features plus a wide range of options are available 5.95
options are available ... $\$ 1,540.00$
- 16 K Microcomputer System includes 9" TV Monitor, ASC11 Keyboard, Cassette Interface and Recorder, 8080 CPU, Video Interface with full graphics capability. 11 K BASIC and 8 K Assembler included................. $\$ 2,895,00$

Call or visit our store for information on our complete product line
1543 BAYVIEW AVENUE TORONTO, ONTARIO M4G 3B5
(416) 484-9708

PARTS BARCANS

ELNA

ELECTROLYTIC AND TANTALUM CAPACITORS

$\frac{A X I A L}{\angle E A D}$	1			. 20	
	2.2			. 20	
	3.3			. 20	
	4.7			. 20	
	10	. 20	. 20	. 25	. 30
	22	. 25	. 25	. 30	. 35
	33	. 25	. 30	. 30	. 35
	47	. 30	. 30	. 30	. 35
	100	. 30	. 35	. 45	. 50
	220	. 30	. 35	. 50	. 60
	330	. 35	. 45	. 60	
	470	. 40	. 50	. 70	. 90
	1000	. 50	. 60	. 90	1.10
	2200	. 65	. 90		
	3300	. 90	1.20		
	4700	1.40	1.60		

RADIAL

 LEAD

uf C $^{\text {wv (sv) }}$	$16(20)$	$25(32)$	$50(63)$	$80(100)$
1			.20	
2.2			.20	
3.3			.20	
4.7		.20	.20	
10	.20	.20	.20	.25
22	.20	.20	.20	.25
33	.20	.20	.25	.30
47	.20	.25	.30	.35
100	.25	.25	.30	.35
220	.25	.30	.40	.50
330	.30	.35	.50	
470	.35	.45	.75	
1000	.50	.65		
2200	.80			

POWER	${ }_{u f} \mathrm{C}^{\mathrm{wv}(\mathrm{sv})}$	16 (20)	25 (32)	50 (63)	100 (125)
TYPE	2200		2.10	2.80	4.90
	3300	2.10	2.70	3.50	6.50
	4700	2.30	2.90	4.10	8.00
	6800	2.90	3.50	5.20	12.00
	10000	3.70	4.00	7.50	
	15000	4.20	5.50	12.00	
(2)	22000	5.10	7.50		
$1-$	33000	7.50			
12	47000	8.50			
	PRICE INCLUDES MOUNTING CLAMPS				

리||

Audiom 12P
 12"
 WOOFER

 150.95

WOOFER
 15"

 \$89.。Impedance:
Nominal power handling:

Sensitivity:
Depth Dverall:
Baffle hole:
Fixing hole diam:

FOR COMPLETE CATALOGUE AND PRICE SHEET ON THE FULL RANGE OF GOODMANS SPEAKERS PLEASE MAKE NOTE ON THE ORDER FORM
HORN MID RANGE \$79.95
For use with systems rated at 8 or 150 hms
systems rated at 50 Watts
(96 dB at 1 m) 0.11 Watts 250 mm $163 \times 81 \mathrm{~mm}$ 6 off 5 mm
ypically 2,000$22,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ for use in systems rated not inore than Watts

112 mm
70 mm rear mounted

Hifax 50HX

Nominal impedance: Nominal power handling: Fundamental resonance: Sensitivity (96 dB at 1 m): Recommended enclosure volume for single unit: Depth, overall: Diameter, overall: Baffle hole diameter: Fixing hole diameter: Fixing hole centres:

8 or 15 Ohms 50 Watts 56 Herz 0.9 Wasts

80 Litres
163 mm
383 mm
330 mm
8 off 7 mm
370 mm (PCD)

Audiom 15P

\square ■ ELECTRONICS LTD.

HY 30 Power Amplifier
HY 50 Power Amplifier
HY 120 Power Amplifier
HY 200 Power Amplifier
HY 400
Power Amplifier
21.99
21.99
28.57
61.95
89.67
122.94
75.78

C15/15 Sterco Amplifier 12VDC

LOUDSPEAKERS

			size	RMS POWER	PRICE
$1 \times$		WOOFER	8'	10W	\$11.95
		WOOFER	$10^{\prime \prime}$	10W	\$13.95
		WOOFER	12"	10W	\$15.95

STEREO
 SPECIALS

STEREO AMPLIFIER WITH FREQUENCY CONTROL PANEL \$ 99.95

50 WATTS $\times 2$ RMS SOLID STATE FM-AM RECEIVER \$ 269.95

STEREO AM-FM RECEIVER WITH RECORD-PLAYBACK CASSETTE
 \$ 239.95

Front panel plate kit included with all models

MK63 JIL CAR STEREO CASSETTE PLAYER WITH AM/FM-MPX RADIO
In-dash mounting with 6 position adjustable shaft.
12V DC Negative ground.
$5 W+5 W$ Output.
Widerange Tone \& Volume controls. Tuning \& Balance
FF/Eject/Rew Button
Speakers Extra

CRV3 - Deck Mount. 5W.5'. 2 oz . magnet. 4-8 ohms.

CR737 - Flush Mount. 51/4'. 8 oz. magnet. 10 Watts. 4-8 ohms.

PROFESSIONAL
 TAPE SPLICERS

SOIID SAIII TIMERS
 Mors Byucs

PLEASE NOTE: MINIMUM ORDER
Inester cienge the inteabain caño

Houston Secondary

School Computer Club

PO Box 760, Houston, BC, VOJ 120 .
OK so now we have a computer club! One of the guys has an "ELF" 1802 that he built from components and a PC board. He is adding a hex keyboard and a TV inteface. A few kids in our school and a couple of staff members are interested and would like to be more involved in all this.

As club sponsor, I need some ideas - things that we could do together as a club. Programs for games, instructions for writing our own programs. Flow charts to convert into programs, etc. Anything that we can do involving "our" one computer that is not too expensive or difficult, but still difficult enough to be interesting to the group would be appreciated.

Sure hope you can help us!
Richard L. Rose
If anyone has any suggestions please write to Club Call. We'd be interested in seeing any short machine-code programs for software games or smallscale microprocessor-based systems.

West Island Amateur Radio Club

Box 2188, Dorval, Quebec.
We received a newsletter from this club detailing activities in March \& April. It

Club Call

looks like they meet on the second Tuesday of the month at 7.45 pm at Stewart Hall, Pointe Claire, Quebec. But check first. The newsletter was issued by VE2GA

The Ontario Short Wave Correspondence Club

P.O. Box 524, Prescott, Ont. K0E 1 T0. Two of my friends, and I have a short wave club, and we would appreciate your help. The club has not really started yet so your help advertising the club would be great. We are going to publish a 5 page newsletter, containing short-wave DX tips for members, and interesting articles. Our name is The Ontario Short Wave Correspondence Club, and we are operational to all people, but prefer those who livea long the St. Lawrence Valley. All inquiries can be sent to the address above. Meetings will be held every month at a supervisor's house. A newsletter of 1
page will be printed shortly, containing all details.

Martin Bordt

Previously Listed Clubs

TRACE: Computer Club, Toronto. See p7 Jan 78 ETI.
CSWLI: SWL Club, Thunder Bay. See p7 Mar 78 ETI.
TRAC: Amateur Radio Club, Thornhill. See p7 Mar 78 ETI.
ODXA: SWL Club, Don Mills. See p61 Apr 78 ETI.
CCCC: Computer Club, Montreal. See p61 Apr 78 ETI.
ECEC: Electronics Club, Elphinsone. See p61 Apr 78 ETI.

Club Call

Send information about any clubs not mentioned on this page to ETI Club Call, ETI Magazine, Unit 6, 25 Overlea Blvd., Toronto, Ontario, M4H 1B1.

BEEN MISSING
have available, but for some months we are
selling out fast so you'd
better hurry and get your copies now. Just send us $\$ 2$ (not cash) for each issue you require, to ETI BACK NUMBERS,
Unit 6, 25 Overlea Blvd., Ontario M4H 1B1. Toronto,

The chart shows just the main features and projects in the various issues we

features

BASIC CONSTRUCTION METHOOS ... 8 MICROBIOGRAPHY
LASERS AT PLAY
UFETS FOR EVERYONE Part ? 24
CHARGE COUPLEO OEVICES
GTS BYTES AND BAUDS
THE FIRST CENTURY $\begin{array}{cc} & 41 \\ . . . & 50\end{array}$
THE FIRSI CENTURY 52

Projects

OIGITAL THERMOMETER
SHORT CIRCUITS
THREE-CHANNEL TOME COMTROL . 22
WATCHOOG
NOV.

Audio Feedback Eliminator

Feedback problem in halls can be corrected by the use of this clever gadget.

ANYONE WHO HAS USED a microphone in public address work has come across problems with feedback. These are caused by the level of sound reaching the microphone from the speaker approaching or exceeding that from the person originating the sound. As the reflected sound approaches the level of the original signal, the sound becomes distorted or 'coloured', then audible ringing occurs and finally complete oscillation or howl-round occurs as the reflected sound exceeds the level of the original signal.

The most effective method of eliminating this problem in many cases is to use the correct location for the speakers and the correct choice of microphone. Also the use of the microphone is important so if you are in charge of a sound system don't be afraid to tell the singer or speaker how to use the microphone as a good performer will take advice.

However in certain environments the most effective use and selection of microphone/speakers does not help the problem of feedback. These are the halls and rooms which have little soundabsorbing material on the walls and are very 'live'. If a frequency response curve is drawn for such a room it will be found that there are many peaks and troughs, normally only 4 or 5 Hz apart, along with perhaps major resonances.

SOLUTIONS

There are various electronic devices which have been developed to deal with this problem, the main ones being the graphic equalizer, the variable notch filter and the frequency shifter. The first two (especially the notch filter) are ideal for eliminating major resonances. These however also alter the frequency response of the original sound. They can also help if the offending 'echo' is actually a direct path and not dependent on the room (i.e. if the speakers are behind the microphone). The other method, frequency shifting, is described here.

As its name implies, the frequency shifter takes an input signal, such as that from a microphone, and shifts the entire audio spectrum up or down by a small amount. Thus, the signals coming from the speakers are, for example, very slightly (but to most people undetectably) raised in pitch. The shift is great enough to prevent the sound from the speakers reinforcing itself at the microphone to nearly such a great extent. With a frequency shifter the echo signal is of slightly different frequency on each path round the loop and cannot directly reinforce itself so that while on the first echo it may strike a room resonance the second time it will probably be in a null. This tends to even out the frequency response of the room and allows 5 to 8 dB higher levels to be used in the average room. Also the onset of oscillation is not as dramatic as with the conventional system and the distortion which normally occurs below the feedback level is not as noticeable. The system does not however do a great deal for oscillations not associated with room resonances.

Only a small shift is normally required and it does not matter if it is an increase or a decrease. We chose to increase the frequency by about 5 Hz as it is more noticeable if a vocalist is flat rather than sharp. As the frequency response of the unit is good it is suitable for vocal work as well as general public address use. The frequency shift and the slight amplitude modulation cannot be detected by most people.

ALIGNMENT

Equipment needed - a sensitive $A C$ voltmeter (100 mV or less) or preferably an oscilloscope and an audio oscillator.

1. Check the output of the 5 Hz oscillator and adjust RV1 until it stops. If it cannot be completely stopped, try a link across C9.
2. Apply a signal of about $1-2 \mathrm{~V}$ amplitude at about 1 kHz to the input

and measure the output of IC3 at pin 2. (If your meter does not reject DC, measure at the junction of C17 and R36). Adjust RV3 to give the minimum output.
3. Measure the output of IC4, pin 2 (or the junction of C18 and R37) and adjust RV5 for minimum output.
4. Measure the output of the 5 Hz oscillator on pin 6 of IC1 and adjust RV1 until it starts, then adjust to give about 1.25 V RMS.
5. With no input signal, measure the output of IC3 (or the junction...) and adjust RV2 for minimum output.
6. Measure the output of IC4 (or...) and adjust RV4 for minimum output.
7. If an oscilloscope is available, monitor the output with a $1-2 \mathrm{~V}$ input signal and adjust RV6 to give the minimum amplitude modulation. Alternatively, by using an amplifier and speaker, RV5 can be adjusted by ear. The unit is now set up.

ETI Project

Fig. 1. Circuit diagram of the frequency shifter.

Fig. 2. The output of IC3 (top) and IC4 (lower) with a
100 Hz input signal. Note the phase difference.

Fig. 5. The component overlay.

Fig. 6. The phase difference between the two filter networks.

Memory Data Special

The information you need to know about the most popular memory chips, and the principles involved.

2107 Dynamic RAM

WHEREAS STATIC RAMS basically consist of flip-flops and will retain data for as long as power is applied, with dynamic RAMs, life wasn't meant to be easy. The basic storage element in a dynamic RAM is a capacitor which is subject to leakage and requires data to be read from a cell, amplifjed and written back again in order to avoid total decay of the data.

Because the memory cell in a dynamic RAM is one transistor and a capacitor as against the six transistors of the static type, the density of dynamic RAMs is around four times higher. Thus, we now have 16 K dynamics, and 64 K types are rumoured to exist in research labs around the world! Anyway, enough of this contemplation of the wonders of LSI, let's get down to brass tacks.

The innards of dynamic RAMs, like statics, are organised into rows and columns, 64 rows $\times 64$ columns for a 4 K RAM, to be precise. All the cells in a single row are refreshed at the same time, and so to fully refresh a 4 K RAM, one need only cycle through all combinations of the low-order six address bits within 2 ms .

The discussion here will be limited to 4 K dynamic RAMs. Although 16 K types are available, they are still fairly expensive and 4 K types are a much more viable proposition for the amateur user. In particular, we shall address our remarks to the 2107B type of RAM, as its cousin the 2104A is slightly more awkward to use. The 2104 is a 16 pin (!) 4 K RAM, and to get all the address lines into the package, the 12 bits are split into two groups of six and then mutiplexed over six pins using the

- Ratresn Addresses A_{0} - A_{5}.

A.C. Characteristics $T_{A}=$

READ. WRITE, AND READ MODIFY/WRITE CYCLE $V_{S S}=O V$, unless otherwise noted.

Symbol	Parameter	21078		21078-4		2107B-5		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tref	Time Berween Refresh		2		2		1	ms
$t_{A C}$	Address to CE Set Up Time	0		0		10		ns
$t_{\text {AH }}$	Address Hold Time	100		100		100		ns
:cc	CE Off Time	130		130		200		ns

Symbol	Parameter	21078		21078-4		21078.5		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {t }} \mathrm{C}$ Y	Cycle Time	400		470		590		ns
${ }^{\text {c }} \mathrm{CE}$	CE On Time	230	4000	300	4000	350	3000	ns
${ }^{\text {c }} \mathrm{CO}$	CE Output Delay		180		250		280	ns
$\mathrm{t}_{\text {ACC }}$	Address to Output Access		200		270		300	ns

WRITE CVCLE

Symbol	Parameter	2107B		2107B-4		21078-5		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{1} \mathrm{Cr}$	Cycle Time	400		470		590		ns
${ }^{\text {C Ce }}$	CE On Time	230	4000	300	4000	350	3000	ns
Iwp	$\bar{W} E$ Pulse Width	50		50		75		ns
'ww	W̄E Delay	75		75		75		ns

RAS (Row Address Strobe) and CAS (Column Address Strobe) pins to tell the chip whats coming in. This makes fairly critical demands on timing, and so poses a few problems for the hobbyist. Whilst single chip refresh controllers are available, which take on the job of multiplexing the address bits, and also include an on-chip refresh counter which cycles through the addresses to be refreshed, these still do not do all the work. There are some tricky design problems associated with using dynamic RAMs, and if you're doing it as a hobby there's no need to make your life difficult.

For these reasons, most hobbyists (and not a few professional designers) will concentrate on the 2107B. This chip is in a 22 pin package, so you can't get so many of them into the same space compared with the 2104A, but because it uses less interface and control circuitry, the real estate difference is not that great, and the timing problems aren't so critical.

The first problem with these chips is that they are not fully TTL-compatible as is the 2102, for example. The chip enable input of the 2107 B requires a high-level signal of at least 11 V to operate, but this can easily be got from a special driver chip, the Intel 3245 , which also provides some selection logic.

Given a 3245 and a handful of external logic, it looks as though the 2107B would be a good choice for hobbyists using the Z-80. The 2107 does not require address strobing, and consequen tly could run directly off the data bus, with the Z-80 supplying the refresh logic (the $\mathrm{Z}-80$ has an internal refresh counter which is output while the processor decodes instructions).

If you are designing your own memory system, and your processor is not a Z-80, you will have to decide on one of three refresh schemes: Asynchronous, which insists on refresh occurring, even if this interrupts the processor; Synchronous, which runs 'in phase' with the processor, supplying refresh at times when the processor is not accessing memory; and Semisynchronous, which is a combination of these schemes. Your decision will be dependent upon the circuit complexity, processor speed and overhead, and a number of other considerations.

The second problem you will face in using dynamic RAMs is getting your memory system to work. It is a good idea to have some static RAM in the

D.C. and Operating Characteristics

Symbol	Parametar	Limits			Unit	Conditions
		Min.	Typ. 121	Max.		
v_{12}	Input Lon Voltage	-1.0		06	v	$\mathrm{t}_{\mathrm{t}}=20 \mathrm{~ns}, \mathrm{~V}_{\text {ILC }}{ }^{2+10} \mathrm{O}$
$\mathrm{V}_{\text {IH }}$	input High Voilage	24		$\mathrm{v}_{\mathrm{cc}}+1$	V	$t{ }_{t}=20 \mathrm{~ns}$
$V_{\text {LLC }}$	CE Input Low voltage	-10		+1.0	v	
$v_{\text {inc }}$	CE Input tigh Voliage	V_{00-1}		$V_{00}+1$	v	
V_{OL}	Output Low Voltage	0.0		0.45	\checkmark	$\mathrm{l}^{2} \mathrm{~L}=20 \mathrm{~mA}$
Vom	Uutput High Voltage	2.4		v_{cc}	\checkmark	$\mathrm{IOM}_{\mathrm{H}}=-2.0 \mathrm{~mA}$

Absolute Maximum Ratings*

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Starage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All input or Output Voltages with Respect to the most Negative Supply Voltage, $V_{\text {B }}$	+25 V 10-0.3V
Supply Voltages $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$, and $\mathrm{V}_{\text {SS }}$ with Respect to $V_{\text {B }}$	+20 V to -0.3V
Power Dissipation	125 w

Read and Refresh Cycle ${ }^{(1)}$

system so that the processor can be checked out without having to worry too much about the memory. Once this is done, attention can be turned to the dynamic memories. In general, dynamic memory is a good choice for expanding your memory size, but not for starting a system.

There is obviously much more we could say about dynamic RAMs that we just haven't got the space to cover here. If you are in the market for large amounts of memory, then check out some of the manufacturers' data books for further information.

Bit Storage

NORMALLY, LOGIC GATE outputs have two states, 1 and 0 , (in TTL, +5 V and 0 V). Three-state logic devices, such as some memories and buffers, have an input which can be used to force the output to a high impedance condition, effectively disconnecting the device so that it does not interfere with the operation of other devices connected to that point.

The idea of three-state control (TSC) is central to systems which use a single data bus to connect the processor to several memory chips. When the processor reads from a memory location, only the memory concerned is enabled and outputs data onto the bus; all other memories and devices on the bus should be in the high-impedance state.

Care should be taken to avoid situations where two or more chip. outputs are enabled at the same time; this could happen in worst-case system timing errors or just plain wrongly-

Speed

OFTEN IN ADVERTISEMENTS, memories are described as 'prime, high speed, low power'. The advantages of low power consumption are obvious less expensive and bulky power supplies, cooler on-card regulators, etc. But the advantages of using high speed memories are not quite so evident - bear in mind that most hobby computers operate at speeds far in excess of human reaction times, making increases in speed of only marginal, indeed dubious, value.

Let's look at what happens when an 8080-type microprocessor reads a memory location. First, the processor issues the memory address on the address bus. This settles down, and around 100 ns later the memory read strobe (MEMR) goes active, requesting the selected memory location to place its contents on the data bus. Roughly 350 ns after that, the processor accepts the data that is on the bus.
designed logic. The output buffers of a typical MOS memory chip are shown in Fig. 1. Should device 1 and device 2 both be enabled at the same time and be outputting different data (e.g. Q1 and

Q4 both on) it can be seen that this virtually puts a short across the supply. At best this is likely to cause an incorrect read, and may possibly destroy one or both devices.

If the memory cannot respond in that time, the processor can be forced to enter a WAIT state by pulling its READY input. As long as READY is false, the processor will wait.

It can be seen that the time between the address lines stabilizing and the processor accepting data is the maximum time the memory system (including external decoding and buffering) has to
respond. The important parameter of a memory from this point of view is the access time, t_{A}, which is the time between a stable address being presented to the memory and data being available at the output. This time, plus any delays due to decoding/buffering, should be less than the processor required read access time taca.

2102 1K Static RAM

THE ELECTRONICS PRESS is full of articles high-lighting the latest advances in memory technology, and we must plead guilty to this ourselves; it's quite fascinating. But we discovered that a lot of hobbyists who are using memories don't have access to good information on the devices available, and are consequently running into problems while trying to get their systems up and running.

Here we attempt to give some real nitty-gritty down-to-earth useful information on memories. The data sheets are not complete by any means, but we hope they contain the most important information. If you require more specs, then check with a distributor. Bear in mind that distributors deal (in the main) with commercial organisations, and cannot possibly afford to supply hobbyists with heaps of expensive books, brochures and data sheets. If you request information from a manufacturer or distributor, please make life easy for them by enclosing a payment, if any is required.

The 2102 is, without doubt, the commonest RAM in use today. It is a static 1024 -bit ($1 \mathrm{~K} \times 1$) memory and is exceptionally easy to use, as many hobbyists will testify.

BLOCK DIAGRAM

P/N	Standby Pwr. (mW)	Operating Pwr. (mW)	Access (ns)
$2102 A L-4$	35	174	450
$2102 A L$	35	174	350
$2102 A L-2$	42	342	250
$2102 A-2$	-	342	250
$2102 A$	-	289	350
$2102 A-4$	-	289	450
$2102 A-6$	--	289	650

D. C. and Operating Characteristics
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ uriless other wise specified.

Symbol	Pramater	$\begin{gathered} \text { 2102A, 2102A-4 } \\ \text { 2102AL. 2102AL-4 } \\ \text { Limits } \end{gathered}$			$2102 A-2,2102 A \operatorname{ll}-2$ Limits			Min.2102A. 6 Limits Typ. 11$]$		Max.	Unit	Test Conditions
14	Input Lad Current		1	10		1	10		1	10	$\mu \mathrm{A}$	$V_{1 N}=0105.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current		1	5		1	5		1	5	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C E}=2.0 \mathrm{~V} . \\ & V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OH}} \end{aligned}$
ILOL	Output Leakage Current		-1	-10		-1	-10		-1	-10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C E}=2.0 \mathrm{~V}, \\ & V_{\text {OUT }}=0.4 \mathrm{~V} \end{aligned}$
'cc	Power Supply Current	,	33	Note 2		45	65		33	55	mA	All inputs $=5.25 \mathrm{~V}$, Data Out Open. $T_{A}=0^{\circ} \mathrm{C}$
$V_{I L}$	Input Low Voltage	-0.5		0.8	-0.5		0.8	-0.5		0.65	V	
$V_{1 H}$	Input High Voltage	2.0		$\mathrm{v}_{\text {cc }}$	2.0		$V_{C C}$	2.2		$V_{\text {cc }}$	V	
VOL	Output Low Voltage			0.4			0.4			0.45	\checkmark	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VOH	Output High Voltage	2.4			2.4			2.2			V	$\mathrm{IOH}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

ies 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. The raximum ' CC value is 55 mA for the 2102 A and 2102A.4. and 33mA for the 2102AL and 2102AL.4.
A. C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise spectied afad cycle

	Parameter	$2102 \mathrm{~A} \cdot 2,2102 \mathrm{AL} \cdot 2$ Limits (ns)		2102A, 2102AL Limits (ns)		2102A.4, 2102AL-4 Limits (n s)		2102A-6 Limits (n)	
Symbol		Min.	Mex.	Min.	Max.	Min.	Max.	Min.	Max.
$t_{\text {AC }}$	Reac Cycle	250		350		450		650	
t_{A}	Access Time		250		350		450		650
${ }^{\text {t }} \mathrm{CO}$	Chip Ensble to Output Time		130		180		230		400
${ }^{2} \mathrm{OHi}$	Previous Read Data Valid with Respect to Address	40		40		40		50	
${ }^{1} \mathrm{OH} 2$	Prevbus Read Oata Valid with Respect to Chip Enable	0		0		0		0	

White crcle

twC	Write Cycle	250	350	450	650
$t_{\text {AW }}$	Address to Write Setup Time	20	20	20	200
twp W	Write Pullse Width	180	250	300	400
$t_{\text {WR }}$	Write Recovery Time	0	0	0	50
$t_{0 W}$	Data Setup Time	180	250	300	450
$t_{0 H}$	Data Hold Time	0	0	0	20
$t_{\text {CW }}$	Chip Enable to Write Setup Time	180	250	300	550

read crcle
WRITE CYCLE

NOTES. 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supoly voltage
2. This parameter is periodically sampled and is not 100% cested.

2708 EPROM

The 2708 is a static $1 \mathrm{~K} \times 8$ EPROM (Erasable Programmable Read Only Memory), which has a quartz window on top to allow erasure under ultraviolet light. The 2708 requires three supplies, $+5 \mathrm{~V},-5 \mathrm{~V}$ and +12 V in normal operation, and a 26 V pulse on the Program pin is required during programming.

The Data I/O pins ($01-\mathrm{O}$) are three-state; when pin 20, the CSNE pin is at $V_{I L}(0 \mathrm{~V})$, the chip is selected for normal read operation but when pin 20 is at $V_{1 H}(3 \mathrm{Vmin})$ the data outputs are in the high impedance state. The CSNE pin has a third function when it is at $V_{1 H w}$ the device is Write Enabled and ready for programming.

As this is a 1 Kbyte device it has 10 address pins (A0 - A9). For full address decoding, this leaves six bits to be utilised for the CS input, a requirement that is easily met by the use of (say) a 74LS154.

Programming the 2708 is straightforward, but not easy. Commercial users get round this by buying a sophisticated PROM programmer (such as those made by Data I/O) or by having their distributor supply the EPROMs pre-programmed - many distributors now offer this service. This doesn't help most hobbyists, who are unable to supply paper tape in the correct format to enable an EPROM to be blown.

To program a 2708 , a circuit is required to do the following: put +12 V on CSNE (pin 20), apply data and address to the 2708 and then, once the address and data lines have stabilized, pulse the PROGRAM pin to 26 V for between 0.1 ms and 1.0 ms . The address input can then be incremented, the data associated with that location presented and the PROGRAM pin pulsed. The sequence is repeated for all 1024 addresses; this is defined as one program loop.

This entire sequence is then repeated at least one hundred times. The number of program loops, N , is a function of the program pulse width $T_{p w}$, such that:

$$
N \times T_{p w} \geqslant 100 \mathrm{~ms}
$$

It is not permitted to apply N program pulses to an address and then change to the next address and apply N program pulses. There must be N successive loops through all 1024 addresses.

Fig. 3 illustrates a circuit recommended by Intel for a typical program

Fig. 1. Pinouts for 2708/2704.

Absolute Maximum Ratings

Temperature Under Bias	$-25^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
'Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {DU }}$ With Respect to $V_{B B}$	+20V to-0.3V
$V_{C C}$ and $V_{S S}$ With Respect to $V_{B B}$	$+15 \mathrm{~V} 10-0.3 \mathrm{~V}$
All Inpur or Output Voltages With Respect	
to $V_{B 8}$ During Read	$+15 \mathrm{~V} 10-0.3 \mathrm{~V}$
$\overline{\mathrm{C}} / \mathrm{S} / \mathrm{WE}$ Input With Respect to V_{BB}	
During Programming	$+20 \mathrm{~V} 10-0.3 \mathrm{~V}$
Program Input With Respect $10 \mathrm{~V}_{88}$	+35V 10-0 3V
Power Dissipation	1.5 W

READ OPERATION

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{D O}=+12 \mathrm{~V} \pm 5 \%, V_{B B}^{[1]}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$. unless otherwise noted.

Symbol	Parameter	Min.	Tyo. ${ }^{[2]}$	Max.	Unit	Conditions
I_{6} I	Address and Chip Select Input Sink Current		1	10	$\mu \mathrm{A}$	$V_{\text {IN }}=5.25 V$ or $V_{\text {IN }}=V_{\text {IL }}$
160	Output Leakage Current		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} . \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$
$100^{[3]}$	VOD Supply Current		50	65	mA	Worst Case Supply Currents: All Inputs High $\overline{C S} / W E=5 V: T_{A}=0^{\circ} \mathrm{C}$
${ }^{1} \mathrm{cc}^{[3]}$	$V_{\text {CC }}$ Supply Current		6	10	mA	
$1_{88}{ }^{[3]}$	V_{Bb} Supply Current		30	45	mA	
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.65	\checkmark	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	3.0		$\mathrm{V}_{\mathrm{Cc}}{ }^{+1}$	V	
V_{OL}	Output Low Voltage			0.45	V	${ }^{1} \mathrm{OL}-16 \mathrm{~mA}$
$\mathrm{VOH1}$	Output High Voltage	3.7			\checkmark	$1 \mathrm{Om}-100 \mu \mathrm{~A}$
VOH	Output High Voltage	2.4			\checkmark	$\mathrm{IOM}^{-}-1: \mathrm{TH} A$
P_{0}	Power Dissipation			800	mW	$T_{A}=70^{\circ} \mathrm{C}$

A. C. Characteristics

$T_{A}=0^{\circ} C 1070^{\circ} \mathrm{C}, V_{C C}=+5 V \pm 5 \%, V_{D D}=+12 V \pm 5 \%, V_{B B}=-5 V \pm 5 \%, V_{S S}=0 V$. unless otherwise noted.

Symbol	Parameter	2708-1 Limits			2708 Limits			Units
Symbol		Min.	Typ.	Max.	Min.	Typ.	Max.	
$t_{\text {ACC }}$	Address to Output Delay		280	350		280	450	ns
${ }^{1} \mathrm{Co}$	Chip Select to Output Delay		60	120		60	120	ns
t_{DF}	Chip Deselect to Output Float	0		120	0		120	ns
${ }^{1} \mathrm{OH}$	Address to Output Hold	0			0			ns

I know where to find 6 projects never published in ETICanada!

They're in our "Canadian Projects Book No. 1", now available for \$3 a copy.

If you want to checkout the other projects in this book see the early issues of ETI Canada:

5W Stereo: Feb. 77
Overled: July 77
Bass Enhancer: Aug. 77
Disco Modules: Mar. 77 \& Apr. 77
Metal Locater: March 77
GSR Monitor: June 77
Fuzz Box: May 77
Mastermind: July 77
Reaction Tester: Feb. 77
Burglar Alarm: May 77
Injector-Tracer: June 77
Digital Voltmeter: July 77

HEART-RATE MONITOR

By clipping an illuminated bulb to one side of your ear-lobe and clipping an LDR to the other site, you can monitor the changing translucency of the tissue as blood spurts through the blood vesseis. The signal from the ear-lobe detector is cleaned up and squared of f and then fed to a frequency-to-voltage convertor which, after buffering, drives an analogue meter. this project is not meant for use as a serious diagnostic instrument. It can be used by those experımenting in biofeedback or by sportsmen in training.

DOUBLE DICE

A propect to get you started in CMOS digital electronics. A decade counter is made to divide the output from an oscillator by six. The dice rolls while a button is pressed and continues to rolt (now slowly) for a short while after release. Consumption from the battery is so low that we use no on-off switch. The results are truly random.

TOUCH ORGAN

What's so neat about this project is that it is al on one PCB. Twenty-seven touch-switches are laid out on the copper side of the board to give a ull two-octave keyboard and tremolo switch. There ae two voices available, and a volume control. The project is easy to build, uses 12 ICs and runs from a 9 V battery.

PHASER

The effect of the phaser or phlanger will be wellknown to readers who are interested in popular music. The ETI phaser achieves the desired effect by splitting an audio signal into two paths and remixing the components after one has undergone a phase change. This change takes place in six AC networks, each capable of 180° shift at high frequencies. This gives a comb-shaped response 3 minima) for the unit as a whole. The characteristic whooshing sound occurs when we change the resistive elements of each RC section (using a 4049 as six sets of complementary FETs) under voltage control from a truangle-wave oscillator.

AUDIO LIMITER

This stereo device uses a 4049 CMOS hexinverter IC to provide enhancement-mode FETs for use in a voltage-controlled attenuator circuit. The project can be used to limit audio peaks to prevent amplifier clipping, to reduce the dynamic range of a signal for recording, or as a voltagecontrolled volume control for remote or antomatic operation.

SOUND-LIGHT FLASH

This project senses a change in light or sound and, after a predetermined delay, operates a photographic tlash unit. You can photograph glass shattering, any violent impact, splash, clap. explosion, etc.

Please clip the coupon below and send to: ETI Magazine Unit 6, 25 Overlea Blvd., Toronto, Ontario, M4H 1B1

CANADIAN PROJECTS BOOK NO 1 PLEASE PRINT	
NAME	
ADDRESS	
TOWN/CITY	PROVINCE/STATE
CODE	DATE
- Please send me one book, I enclose \$3.00.	- Please send me two books. I enclose \$6.00.
\square Cheque enclosed. DO NOT send cash.	A/C No.
	Signature ___
\square Bill Mastercharge. \square Bitl Chargex.	Expiry Date

pulse driver. Beware! A single transistor from the +26 V line with an emitter pulldown resistor will not work, as it cannot get the output down to within 1 V of $V_{s s}$.

To erase the 2708 , it should be exposed to ultra-violet light of a wavelength shorter than approximately 4000 Angstroms. Warning: sunlight and certain types of fluorescent lighting have wavelengths in the range $3000-4000$ Angstroms. Intel's data shows that continuous exposure to room level fluorescent lighting could erase a typical 2708 in approximately 3 years, while direct sunlight will take approximately 1 week to do the job. While this may be one way of erasing your 2708s, you generally don't want it to happen, and so an opaque label should be stuck over the quartz window.

The best, and recommended, way of erasing a 2708 is to expose it to shortwave ultra-violet light which has a wavelength of 2537 Angstroms. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W} \cdot \mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultra-violet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The 2708 should be placed within 1 inch of the lamp during erasure.

Waveforms

PROGRAM CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Noted.

D.C. Programming Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
ILI	Address and $\overline{\mathrm{CS}}$ W WE Input Sink Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$
IIPL	Program Pulse Source Current			3	mA	
IIPH	Program Pulse Sink Current			20	mA	
lod	$V_{\text {DD }}$ Supply Current		50	65	mA	Worst Case Supply Currents: All Inputs High $\overline{C S} / W E=5 V ; T_{A}=0^{\circ} \mathrm{C}$
Icc	$\mathrm{V}_{\text {CC }}$ Supply Current		6	10	mA	
$\mathrm{I}_{\text {BB }}$	$V_{B B}$ Supply Current		30	45	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Level (except Program)	$\mathrm{V}_{\text {Ss }}$		0.65	V	
$V_{1 H}$	Input High Level for all Addresses and Data	3.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
$\mathrm{V}_{\text {IHW }}$	$\overline{\mathrm{CS}}$ WE Input High Level	11.4		12.6	\checkmark	Referenced to $V_{\text {SS }}$
$V_{\text {IHP }}$	Program Pulse High Level	25		27	V	Referenced to $V_{\text {SS }}$
$V_{\text {ILP }}$	Program Pulse Low Level	V_{ss}		1	\checkmark	$V_{\text {IHP }}-V_{\text {ILP }}=25 V_{\text {min }}$.

A.C. Programming Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {AS }}$	Address Setup Time	10			$\mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{CSS}}$	$\overline{\mathrm{S}}$ NE Setup Time	10			$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	10			μ_{s}
$\mathrm{t}_{\text {AH }}$	Address Hold Time	1			μ_{s}
t_{CH}	$\overline{\mathrm{CS}}$ WE Hold Time	.5			$\mu \mathrm{~s}$
I_{DH}	Data Hold Time	1			$\mu \mathrm{~s}$

Programming Waveforms

note 1 . The CSme transicion must occua af:eh the program pulse transition
NOTE? NUMBEAS IN II INDICATE MJNIMUMAMMINE IN US UNLESS OTHERWISE SPECIFIED

Fig. 3. PROM blowing circuit.

Decoding

PROBABLY THE COMMONEST size of memory chip in use today is $1 \mathrm{~K} \times 1$, or in ROM, $1 \mathrm{~K} \times 8$. The 2102, for example, is exceptionally easy to use from the point of view of address decoding. Ten bits of the address bus are decoded by the chip itself, leaving only six bits from which to derive the CE signal.

If full address decoding is not required, for example, in small dedicated systems, then it is possible to invert the individual high order bits of the address bus and use them directly as chip selects. This will allow the use of up to 6 K of 2102 s or a combination of RAM/ROM (less if you use memory-mapped I/O).

Beware! This method can lead to bus contentions. For example, when a 6800 restarts, it looks for its restart vector in locations FFFE and FFFF, thus setting all those high-order address bits high simultaneously. This will enable all of your RAM simultaneously, leading to all kinds of nasties; see the section on three-state control.

From the hobbyist's point of view, and in any general-purpose or large system, it is better to fully decode the address bus. As we have said, the 2102 and the 2708 decode 10 bits, leaving six to be decoded by external circuitry. The most common, and probably the easiest way of doing this is to use the 74154 (or 74 LS154) 4-line-to-16-line decoder

Fig. 1. The 74(LS) 154 pinout.

Fig. 3. This circuit can be used to decode two bits to one of four.

The 74154 will decode a 4 -bit input to one of 16 mutually exclusive outputs. The outputs are normally high and go low when selected, thus matching the CE and CS inputs of most memories. For example, if the input code is 1010 , output 10 will go low.

We have said that the ' 154 decodes 4 bits; how do you cope with the re-

Fig. 2. The internal circuit of the ' 154.
maining two! Well, the '154 has two enable inputs, G1 and G2, which can be used, in conjunction with a couple of NAND gates, to decode A14 and A15. By slightly increasing the complexity of this bit of circuitry, it is possible to decode the read and write strobe signals of your computer to ensure correct timing in operation.

BINDERS

In response to many requests from our readers we have arranged for binders to be made so that you can keep EII's first Canadian volume together and protected from damage The binders are covered in attractive leather-look black plastic and are designed to hold twelve issues. The ETI design is printed in gold letters on the spine

The binders cost $\$ 5.00$ each. which includes postage and packaging. Do not send cash - you can pay by cheque. Mastercharge. of Chargex
Credit card orders must include your account number the expiry date and your signature Credit card orders must include your account number, the expiry date. and your signature. In all cases allow six weeks for delivery Send your order to ET/ Binders. Unit 6. 25 Overlea Blvd.. Toronto. Ontario M4H 1B1. Don't forget to include your name and address Ontario residents add 7% PST.

microbiodraphy पロロロロロロロロロロロロロ

MPU－spotter＇s guide to what was，is and will be．

SINCE LAST OCTOBER Microbio－ graphy has been looking at some of the more popular processors individually． This month we are deviating from that theme a bit（？）to make a quick survey of the overall micro scene．

PAST TRENDS

Early microprocessors were rather tricky to deal with in that they needed a lot of hardware support．That is to say you had to provide typically three supply voltages，a complicated clock driver circuit（probably two phase）and heaps of TTL to perform various functions for the main chip．Since then the typical mpu has become much ＂cleaner＂and nicer to work with，one power supply voltage，on chip clock， and many other work saving features．

Of course at the same time the trend has been to faster and lower power ICs， while increasing the computation power of the mpu and the intelligence of peripheral chips，1／O ports and so on，to allow the mpu to concentrate on its own job．

THE FUTURE

Developments have been and will continue to occur in two distinct areas， namely at the top and bottom of the market．At the top we＇ll be getting more computational power，more speed， and probably more intelligent peri－ pheral chips．This will tie in to the increasing trend toward 16 bit machines，and the addition of features such as hardware multiply and divide． In fact today＇s minicomputers are already receiving competition from microprocessor systems．

At the other end of the scale there is a huge market for better＂controller＂ oriented systems．Here we are talking about controllers for household appliances，elevators，and a wide assortment of other machines．（Our own review of the microprocessor controlled Heathkit－Bally pinball
machine will appear next month）．After the manufacturer of such a system has initially debugged the program he will typically require one or two kilobytes of ROM to store it in，and only a small amount of RAM to operate with．thus ＂one chip＂systems are becoming popular，where the mpu chip itself includes the ROM and RAM，and possibly even a few I／O lines to boot． This results in an extremely compact system．

These＂one chippers＂are probably of less direct interest to the micro－ computer hobbyist who is generally looking at a larger system，and probably needs the flexibility of being able to switch ROMs occasionally． However at least one hobbyist system has appeared recently using an 8048， Intel＇s one chip unit which can be expanded to the size of any typical system．

GENERAL INSTRUMENTS

1600：General Instruments＇ 16 bit processor which features eight general purpose registers and a 64 K word address space．Four addressing modes are provided．Some interesting peripheral chips are available in－ cluding a dual 10 bit digital to analog convertor．

RCA

1802：RCA again show off their expertise in the CMOS field with this CMOS processor，the heart of the COSMAC family．This mpu provides the convenience of loose voltage requirements and low power，but achieves instruction times as low as 2.5 us with a 6.4 MHz crystal attached to its on chip－clock generator．The somewhat novel internal architecture of the 1802 is designed around a 16 by 16 bit register array，with three other registers to keep track of which registers are being used as the
program counter，data pointer，and other functions such as＂accum－ ulator＂．The instruction set reflects this with an emphasis on the heavy use of these internal registers as the source of addresses for operands，and auto－ increment type instructions for convenient use of tables．The use of a stack in main memory is quite familiar， as is the interrupt scheme with limited priority which causes a call to a predetermined Icoation．Direct mem－ ory access is built right into the 1802 for data transfers up to 80 K bytes per second．In addition this DMA cap－ ability can be used in＂load＂mode to load in a program upon power－up．

The popularity of CMOS in low power battery applications is widely shared and is no doubt carrying over to this product．We have seen several battery operated development and training kits based on the 1802，but no large systems as yet．ROM，RAM，serial and parallel I／O units are available，and of course the extensive selection of readily available CMOS parts make good companions for the 1802．See ETI－Canada January 78.

SIGNETICS

2650：Philips＇entry into the micro－ processor market is through their Signetics wing．The 2650 is strong in the area of interfacing，and in fact was originally introduced by itself for use with standard components．Since then however several support chips have been brought out and now the 2650 along with the 2656 memory interface is considered to be a two－chip set．

Only 32 K of address space is provided on this 8 bit machine，but that will rarely limit the user．The architecture is unusual with no specific accumulator，but 7 general purpose registers configured in a clever manner．the stack is on chip and provides for 15 levels of return
addresses. The $1 / O$ possibilities are quite varied, with four levels of sophistication to match the need, the simplest being to use the serial $1 / O$ lines provided on the 2650 itself.

The instruction set, which is fairly standard for an mpu, is made especially powerful by the inclusion of indirect and indexed modes along with auto-increment features.

As yet not too much has been seen of this processor in the hobbyist field, its uses having been mostly confined to the industrial controller market. See ETI-Canada March 78.

FAIRCHILD
3850, 3859, 3870: See F8 family.

DATA GENERAL

mN601: This 16 bit microprocessor comes from Data General Corporation and forms the heart of their MICRONOVA system.

INTERSIL

6100: A 12 bit machine from Intersil (and second source Harris) which emulates the popular DEC PDP-8 minicomputer. Its other big plus is the fact that it uses lower power CMOS technology, and several CMOS support chips are available.

MOS TECHNOLOGY

6502: Although this mpu from MOS Technology has been around for some time, it is only recently that it has started to catch on. The 6502 is actually the biggest and best of the 6500 series, which included the 6501 , a version hardware compatible with the 6800 but with 6500 instruction set, and a number of versions identical to the 6502 except for smaller package size (28 pins) necessitating the elimination of some lines such as address, and different clock configurations. A 6502 system can use many of the peripheral interface chips of the 6800 family and vice versa.
The 6502 has several advantages over the 6800 . One of the most useful for hobbyists is the fact that it uses only static logic and thus may be stopped in any state, allowing the direct observation of address and data lines. It also has an on board clock generator. MOS Technology amply demonstrated the advantages of these features in their very popular KIM demonstrator kits. The 6502 also has surprising power in the software department with the inclusion of indirect indexed and
indexed indirect addressing modes. These software advantages are probably in no small measure responsible for the fast verions of BASIC available on the Commodore PET, Ohio Scientific Challenger, and Apple 2, all 6502 based home systems.

With Commodore now backing MOS Technology, the 6502 also available from Rockwell, and versions up to 4 MHz , we expect to hear more about this chip. See ETI-Canada December 77.

motorola

6800: Motorola's mpu (also supplied by Fairchild and American Microsystems) is probably the closest thing to big competition to the 8080. It requires only a single 5 V supply, but does need a special clock driver. The address bus is 16 bits wide, and the data bus is 8 , with a simple control bus. Two accumulators are provided along with the program counter, index and stack registers. The software includes implied, immediate, absolute (and zero page), relative and indexed addressing modes, which in some situations can lead to programming advantages over the 8080, and even the Z80. Interrupts are generatly handled by polling.

The 6800 is available in options upto 4 MHz , and its fairly wide acceptance has brought a variety of peripheral chips onto the market. See ETICanada December 77.

MOTOROLA

6801, 6802/6846: These are the one and two chip versions of the 6800 from Motorola. Starting with the two chip version, the 6802 contains the processing power of the 6800, clock generator, and 128 byte RAM, of which 32 bytes can be backed up by battery power in case of power failure, or simply for the saving of needed system variables between uses of the machine. The 6846 contains 2 K ROM, 10 I/O lines and a timer.

The 6801 might better be described as a "one-chip $68041 / 2$ " since it shares with the 6809 such features as a number of 16 bit operations and the eight bit unsigned multiply, which incidentally takes only 10 us to reach the 16 bit result. 128 bytes of RAM, 2 K ROM, a timer, two serial and 31 parallel I/O lines are included.

MOTOROLA

6809: Motorola views this processor as
an easy way to get into the 16 bit field by making this mpu very similar to the 6800. It almost functions as a dual 8 bit processor, or as a full 16 bit machine. In addition to more instructions and registers than the 6800 it has such sophisticated features as auto increment and decrement addressing modes, relative branches over the entire address space, and hardware multiply.

Delivery of the 6809 is not expected until around September.

Looking into the future, Motorola is working on a more powerful processor family they call MACS, designed around a 16 bit data bus and 24 bit (16 Megabyte) address space.

INTEL

8008: This is the chip that started it all. Now obsolete and very little used, the 8008 required many TTL chips for support, a separate clock driver, and two supply voltages. By today's standards very slow (12.5us per instruction cycle, with 1 to 3 cycles per instruction) and difficult to use. Intel must have learned a lot from this mpu, their second attempt has proved quite an improvement . . . the 8080.
The 8008 uses 8 bit data bytes, and 14 bit addresses, these being multiplexed onto an 8 bit bus. Forty-eight instructions are provided; and in addition to the accumulator and program counter there are 6 general purpose registers, and a 7 level stack. Vector interrupts may be used. See ETI-Canada October 77.

INTEL

8048: A one chip mpu from Intel which includes 1 K ROM, 64 bytes of RAM, 27 I/O lines, a timer/event counter and one level of interrupt. It uses 90 instructions, most of which are single byte, and is expandable with 8000 family ROM and RAM components and peripheral devices. There is also an 8748 with EPROM instead of ROM, and an 8035 with no ROM. Coming up are an 8049 with 2 K ROM, and a "half-chip" design, the 8021 with a minimum of memory and I/O capability running a subset of the 8048 instruction set.

INTEL

8080: This processor is considered to be the closest thing that the industry has to a standard. Intel was the originator, and it is now also supplied by Advanced Micro Devices, National

Microbiography

Semiconductor, NEC Microcomputer and Texas Instruments.
The 8080 has been improved and enhanced many times over, and what was originally a 1 MHz device is now available in 3 or 4 MHz versions. It has a 16 bit address bus, 8 bit data bus and the typical system will include an 8224 clock driver and 8228 system controller. With these the user can employ standard memory chips and because of the wide acceptance of the 8080 has available a wide choice of peripheral ICs from a variety of sources. Three supply voltages are needed, $+12,+5$, and -5 V .
Seventy-eight instructions are available, with immediate, direct (absolute), register (implied) and indirect addressing modes available. Registers include program counter, accumulator, three pairs of general purpose registers and a stack pointer (the stack located in main memory keeps track of subroutine calls and interrupts). Vector interrupts are used. See ETI-Canada October 77.

INTEL

8085: A descendant of the 8080 this mpu features only one supply voltage (+5 V), on board clock, multi level interrupts and serial I/O on the chip. Tos achieve this some of the address and data lines had to be multiplexed together to save pins. Thus one must use MCS-85 system components (memory, peripheral controllers) which unmultiplex internally, or use some external ICs to do the demultiplexing. Versions of this mpu are available for upto 5 MHz , and it is interesting to note that for an 8080 and an 8085 running at the same speed the actual access time specs required of the memory chips can be 50% slower in the 8085 system.

The 8085 software is identical to that for the 8080, except for two added instructions used for serial 1/O. Because of the built in serial 1/O feature and small number of "extra" chips required in an 8085 system, it lends itself readily to controller applications, communication with a teletype etc., but retains compatibility with the 8080 and may be expanded to the same size as an 8080 system.

The 8085 is available from Intel. See ETI-Canada November 77.

INTEL

8086: This is the 8080 grown into a 16
bit machine. 20 bit address provides 1 megabyte memory space. Additions to the 8080's powers are block move and searhc capabilities, and hardware multiply and divide. The initially available part will be a 5 MHz version (June 78) with 8 MHz unit to follow.

FAIRCHILD

9440: Fairchild's one chip 16 bit mpu is part of their new "Microflame" family.

9900: A very powerful 16 bit mpu, this chip from Texas Instruments is capable of minicomputer tasks. Among its outstanding features are memory-to-memory architecture, and hardware multiply and divide. At 3 MHz speed these operations are possible in approximately 20 and 40 usec each! Many interesting hardware features, and a full complement of addressing modes including indirect, indexed and auto-increment.

There is also a one chip version of the 9900 , the 9940 which contains 2 K ROM and 128 bytes of RAM (8 bit bytes) and $321 / \mathrm{O}$ lines. On top of this an IIL technology version of the 9900 is expected.

NATIONAL

COPS: This family of Calculator Oriented Processor Systems is really a set of special purpose microprocessors, including typically some ROM, RAM and direct interfaces for keyboard and seven segment numeric displays. The Sinclair Cambridge Programmable calculator employs one of these chips.

FAIRCHILD

F8 Family: When the F8 system was originally introduced by Fairchild it was envisioned as having a two chip heart sharing the processing functions. The 3850 mpu contains clock and interrupt logic, accumulator and arithmetic logic, 64 bytes RAM and two bit I/O ports. The system bus uses only 5 lines for all data, address, and control information. This requires that each device hanging onto the bus must contain a register for the program counter, stack register, and possibly a data counter. The 3851 "Program Storage Unit" in particular, the usual sister chip to the 3850 , contains all these registers and 1 K ROM plus two 8 bit I/O ports and additional interrupt logic. The family includes a chip which
interfaces between this strange bus and standard dynamic memories, including refreshing them. Another IC interfaces to standard RAMs and has a timer in addition. Considering most microprocessor systems use buffers between the mpu and memory, the F8 configuration looks no less efficient. In fact, it appears to be quite effective in small to medium size applications, and the software also can be quite effective with use of the internal sratchpad RAM.

The 3850+3851 functions have been embodied in one chip models, the 3859 1 K ROM and 32 I/O lines, and the 3870 with 2 K ROM and 32 I/O lines.

Not many hobbyist systems have appeared using this family, although recently the "Video Brain" was introduced by Umtech Inc. which, designed by the ex-director of Fairchild's F 8 group naturally uses an F8 system. Mostek are also in the F8 business.

NATIONAL

PACE: National's 16 bit microprocessor family has been around for quite a while and uses a fairly standard architecture. Four general purpose accumulators have been included and the software addressing modes include base page, absolute, program relative, indexed and indirect modes.
A new version of the PACE has been introduced, known as the 8900, and it purportedly has numerous improvements.

An interesting feature of National's development systems for PACE, 8080, 8900, and SC/MP is their MOCROBUS which allows the interfacing of components of each system with the others.

NATIONAL

SC/MP: Standing for Simple Costeffective MicroProcessor, the SC/MP is National's low end control system. The ISP-8A/600 is the SC/MP-II version and includes single supply requirement, on-chip clock, fairly standard architecture, serial I/O lines and fairly simple bus arrangement.
Addressing modes include relative, indexed and auto-increment. Main popularity of the SC/MP system has been in the basic controller-evaluation kit area.

ZILOG

Z8: Here's a one chip unit from Zilog
expected this year. Said to be on this chip are 2 K ROM, 128 bytes of RAM, four 8 bit parallel I/O ports, serial 1/O lines, seven level interrupt scheme, and two timers! It is to run a subset of the $Z 80$ instruction set, will be quite fast, and expandable upto 64 K of external RAM or ROM.

ZILOG

Z80: This mpu from Zilog appears to be the one which has caused the most excitement recently, probably because it has a snappy sounding name. It too evolved from the 8080, but is a tremendous improvement, able to win over supporters of both 8080 and 6800 . Starting with the hardware, the Z80 features single supply voltage, simple single phase clock, (4 MHz standard), automatic dynamic memory refresh transparent to the programmer, and about twice as many registers inside. On the software side the $Z 80$
incorporates a large number of additional instructions, with increased versatility coming from the extra registers, and the ability to handle data in one, 4,8 , and 16 bit units. The addressing modes added in the $\mathbf{Z 8 0}$ are: relative, and bit. The very useful abilities to do block moves, searches, and I/O are also included, along with three different kinds of interrupt.

All 8080 software will run on a $Z 80$ system, although the instruction mnemonics are different for op-codes which do the same thing.

Mostek is the second source for the Z80. See ETI-Canada November 77.

ZILOG

Z8000: We expect this one to be the chip of the year award winner, it's really excitıng! Zilog claims that it is comparable to the DEC PDP11-45 in architecture, and computational
power and speed. The 23 bit address bus handles 8 Megabytes of memory directly. The $Z 8000$ includes all the software features of the $\mathbf{Z 8 0}$, in a total of 418 instructions. The internal 16 by 16 bit register array also allows some 32 bit manipulations, and some integresting string manipulation functions are reportedly included.

First available samples of this chip are expected in July with production quantities in September.

Oh yes, it also has hardware multiply and divide.

As you can see from this listing, some amazing things are happening in the fast moving microprocessor industry. What is even more amazing is the vast number of applications that are going to use mpus, and the increase in the intelligence possible in so many of the machines that are a part of our everyday lives. We sure hope this will be an improvement.
2.4 issues of ETI - FREE* or 8 issues of ETI

- FREE**

If you're looking to save a buck o. wo then here's the figures showing you what you save. But that's not the reason most people subscribe to ETI. It's so that they get a reserved copy of the magazine delivered to their door - no hassles with remembering when to go to the newstand, finding they've sold out, etc. Either way there's no excuse for not subscribing.
"you get twelve issues of ETI on a 1 year subscription for the price of 8.6 issues at your newstand.
" "you get twenty-four issues of ETI on a 2 year subscription for the price of 16 issues at your newsstand (bigger savings if ETI's cover price increases!)

Tic-Tac-Toe

This sophisticated program for the HP67 calculator was written by François Roy of Hull, P.Q.

THIS PROGRAM designed to operate on an HP-67, plays TIC-
TAC-TOE against the user. Unlike similar programs which have appeared before, including one in HP's "Game Pac", no restrictions are placed upon the user: he may start the game in any one of the nine squares, or he may let the Calculator play first.

The program is even more enjoyable due to the fact that it CAN be beaten, although it plays a very good game. The only "catch" is that the Calculator "thinks" for about 35 seconds before replying to a move (except the first move).

EXECUTION

Operation of the program is also very simple (it is recommended that the game be played with pencil and paper): you simply press the key that corresponds to the position of your move on the HP-67 keyboard (or enter a zero to have Calculator start) and you press "A". The reply is in the form: $n . r$ where n indicates whether this is the first, second, etc. move and r is the reply itself (integer showing position of move on HP's keyboard). If the display switches to format: n.r00000000, you just LOST a game. A flashing decimal indicates a tie game. To reset (start a new game)
depress " B " and then proceed as above.

Theory of operation: First, the three rows, the three columns and the two diagonals are examined for "two of a kind" with 3rd square free. If two of "Machine's" kind are found, coordinate of empty square is stored in R11 (Secondary register 1). Same goes for two of "Player's" kind and R10. Then if R11 is nonzero, the indicated square is played and flag 1 is set (machine wins). Else, if R10 is nonzero, the square it contains is played (to BLOCK Player's win). If both R10 and R11 are zero, Calculator will briefly "examine" the board to see if you have any
"sneaky" plans in mind, and will play a "semi-random" move based on this "study". Play continues until 8 (9 if Calculator starts) moves have been played or until Machine wins (it won't admit a loss!).

The board's status may be examined at any time by recalling register 1 thru 9 . The 4's represent the Machine's moves; the 1's denote the Player's moves and zeros denote empty squares. The board is "mapped" onto the Calculator's keyboard such that keys 1 to 9 represent the 9 squares of the tic-tactoe grid.

If an attempt is made to play a nonempty square, the program will
halt shortly after you have pressed " A " in which case you should reenter a correct move and press " A " again. The user is expected to be "fair" enough to avoid cheating by manually storing moves in the Calculator's registers. The program can be beaten without cheating.

SOFTSPOT is ETI's programmable calculator software department. We know there are many of you who have gone to a lot of effort to write routines for your machines - how about sharing the fun. Send us a copy of your pet program, preferably with flow chart. To make things interesting we will restrict our choices to only those programs making use of loops or conditionals.

All programs we publish will be paid for.

Mail to: ETI Softspot Unit 6, 25 Overlea Blvd., TORONTO, Ontario M4H 1B1

Don't forget to mention what kind of calculator you use - and we'd also be interested to know where you bought it.

All in ETI's 741 Cookbook:

Differential voltage comparator
Open-loop inverting DC amplifier
Closed-loop inverting DC amplifier
Non-inverting DC amplifier
Unity-gain DC voltage follower
X100 inverting DC amplifier
Variable gain inverting DC amplifier
High impedance $\times 100$ inverting DC amplifier
X100 inverting AC amplifier
Non-inverting $\times 100 \mathrm{DC}$ amplifier
Non-inverting variable-gain DC amplifier
High input impedance, non-inv, $\times 100 \mathrm{AC}$ amplifier
Non-inverting $\times 100 \mathrm{AC}$ amplifier
DC voltage follower
AC voltage follower
Very high input impedance voltage follower
Unidirectional DC v-follower, boosted output
Bidirectional DC v-follower
boosted output
Unity-gain inverting DC adder (audio mixer)
Unity-gain balanced DC phase splitter
Unity-gain differential DC amplifier (subtractor) Semi-log AC voltage amplifier Constant-volume amplifier 1 kHz tuned amplifier
(twin-T, acceptor)
1 kHz notch filter
Variable low-pass filter Variable high-pass filter Variable-voltage supply Stabilised power supply Stabilised power supply with overload protection Precision half-wave rectifier Precision half-wave AC/DC

convertor

DC voltmeter converter DC voltage or current meter Precision DC millivoltmeter Precision AC millivoltmeter Linear-scale ohmmeter Audio Wien-bridge osciliator Square-wave generator Precision temperature switch

Available from ETI for $\$ 2$ (includes postage). Just order our May 1977 issue from ETI Back Issues Dept, Unit Six, 25 Overlea Blvd, Toronto. M4H 1 B1.

Rapitupe 康 HI PANEL

A really high quality system sheets (a full-sized one cut in for finishing oft your projects. The sheets include a mass of lettering and control scales for both rotary and linear pots.

The lettering is transferred simply by laying on to the panel and rubbing down - it's strong and permanent.

The markings are on two

MAGNUM DOES IT AGAIN

Introducing the Impossible (Until Now)
Two Canadian made component sets that beat the imports for value and quality.
These attractive top quality player/receiver are made possible by Canadian know-how and totally automated assembly techniques. All parts are superior quality and fully guaranteed.

Model

M400

Steres Music Center AM/FM
Radie, Phono and 8 track
complete with Speakers.

Plus $\$ 4.50$
Shipping and handling

A set you will be proud to own and to show your friends Model ANM/FM Radio Stereo Player
M100
 anywhere in the hame.
Now available Clock Kits with transistorized movements and solid wood cabinet, Digital Tachometer, Power Supplies and Radar Detectors.
If you are not already on our mailing list, send for our new Free Catalogue. It's just off the press and contains many neve items.
MAGNUM'S new 5\% Discount Coupons apply to all items in this advertisement and all merchandise listed in our new Catalogue.
Ontario residents add 4\% Provincial Sales Tax - Toronto area residents are invited to visit our showroom for a demonstration of these units.

MAGNUM electronics
72 Statford St., Toronto M6J 2R8
Please send me the items listed below and include my MAGNUM Discount Coupons

Quantity	Item	Price	Total
		\$.	\$.
		\$.	\$.
	$\begin{aligned} & \mathrm{O} \text { NOT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \mathrm{CASH} \\ & \mathrm{~S} \end{aligned}$	

FLOW CHART
("Reply")

A BURNING NEED!

Protect Your Family by Installing an Early Warning
 DICON SMOKE DETECTOR

Over 80% of fire victims are not burned to death. They are ASPHYXIATED. The major killer is smoke, especially when you are asleep.

LOUD 85 DECIBEL ALARM

Our DUAL IONIZATION CHAMBER senses invisible combustion particles, even before there is visible smoke at the beginning of a fire. This provides valuable, often crucial TIME TO ESCAPE.

each

Uses inexpensive, easy to obtain,
DURACELL Battery

SATTERY OPERATED:
k.eeps working even if house power faits.

Uses INEXPENSIVE, easy to obtain, Mallory 9 volt MN. 1604 Duracell battery.
OUAL IOMIZATION CHAMBER:
Responds to fires in their earliest stages of development Compensatess for changes in humidity and temperature to VIRTUALLY ELIMINATE "NUISANCE ALARMS" caused by normal atmospheric changes in the home

- Low battery warning

Unit gives audible "click" every sixty seconds for a minimum of sewn days when battery needs replacing. TEST BUTTON.
fressing the bution vi, tually duplicates the effect of smoke to the sensing chamber Alarm sounds when button is pressed to test unit.
CIPERATING LIGHT
This Light Emitting Diode (LED) flashes once every minute it confirm that the unit is receiving power from the battery SUPERVISED SENSING SEMICONDUCTOR:
Continually on .. should electrical continuity to this vital componem break, the alarm will sound immediately EASY INSTALLATION:
Two screws and anchors (supplied) provide mounting simplicity. fothing eise to connect.
ALARM:
85 DECIBEL ALARM to alert sleeping occupants AUTO. MATICALLY RESETS when the hazardous condition has passed.

Suggested retail price \$49.95
RKG Hospitality Services direct mail price only $\$ 33.95$ plus $\$ 1.95$ shipping and handling.

15 DAY
MONEY BACK GUARANTEE

TWO YEAR Warranty against defects in workmanship and materials

PROGRAM

001	g LBLf a	322511	Subroutine to examine asquare
	h STI	3533	
	h R ${ }_{\text {¢ }}$	3553	
	STO A	3311	
	0	00	
	STO 0	3300	
	STO B	3312	
	$f \mathrm{~b}$	322212	
	$f \mathrm{~b}$	322212	
10	f b	322212	
	RCL B	3412	
	f $\mathrm{x}=0$	3151	
	h RTN	3522	
	0	00	
	h STI	3533	
	RCL 0	3400	
	4	04	
	+	81	
	f INT	3183	
20	h LST \times	3582	
	g FRAC	3283	
	4	04	
	\times	71	
	$f \mathrm{P} \sim \mathrm{S}$	3142	
	2	02	
	$\mathrm{g} \mathrm{x}=\mathrm{y}$	3251	
	GTO 9	2209	
	f ISZ	3134	
	$\mathrm{h} x=y$	3552	
30	h R !	3553	
	$\mathrm{g} \times \neq \mathrm{y}$	3261	
	f ISZ	3134	
	f LBL 9	312509	
	RCL B	3412	
	STO (1)	3324	
	$f \mathrm{P}=\mathrm{S}$	3142	
	h RTN	3522	
	g LBLf b	322512	Subroutine to
	RCL (I)	3424	check a square
40	STO + 0	336100	
	f $\mathrm{x} \neq 0$	3161	
	GTO fb	223112	
	$h \mathrm{RCl}$	3534	
	STO B	3312	
	g LBLf b	322512	
	$\bigcirc \mathrm{RCl}$	3534	
	RCL A	3411	
	+	61	
	h STI	3533	
50	h RTN	3522	
	g LBLic	322513	Subroutine to
	1	01	generate reply
	ENTER 1	41	generate reply
	fa	322211	1st row
	1	01	
	ENTER ${ }^{\dagger}$	41	
	4	04	
	fa	322211	2nd row
	1	01	
60	ENTER ${ }^{\dagger}$	41	
	7	07	
	f a	322211	3rd row
	3	03	
	ENTER ${ }^{1}$	41	-
	1	01	
	$f \mathrm{a}$	322211	1st column
	3	03	
	ENTER ${ }^{1}$	41	
	2	02	
70	$f \mathrm{a}$	322211	2nd column
	3	03	
	ENTER	41	
	$f \mathrm{a}$	322211	3rd column
	4	04	

Digital Equipment
LA 36 DECwriter II

- 30 cps impact printing
- up to six part forms
- variable tractor width - up to 132 columns
- full 128 ASCII keyboard

- extensive option list
- field upgradeable

LA 180 DECprinter I

- 180 cps impact printing
- 60-400LPM
- parailel or serial interface
- prints full ASCII character set
- 11 top of form settings
- adjustable tractor feed
- self test

LS 120 DECwriter III

- 180 cps keyboard send receive printer
- E.I.A. Interface
- 1 K character print buffer
- communication rates to 4800 baud
- smart "look ahead" printing
- paper out sensor
- optional forms handling package, APL and more.

Interdata

1100
bright crisp 9×12 dot matrix

- full cursor control
- horizontal tabs
- upper and lower case

200
optional numeric pad.

- all features of 1100
- editing controls
- protected fields
- 16 function keys
- blinking fields
- optional line drawing capability

SOROC

10120

- cursor control keys
- numeric key pad
- line and page erase
- addressable cursor
- switch selectable transmission from 75 to 19,200 bps
- communication mode: HDX/FDX/Block
- interfaces: printer interface/RS232 extension
- RS232C interface
- protect mode
- tab

Hazeltine Corporation

Hazeltine 1500 Series
A new Definition
in low cost
terminals. No
options, all features standard.

1500

- numeric pad, upper/lower case
- cursor addressing. 24 lines/ 80 characters
- switchable reverse video
- line insert and delete
- programmable brightness levels
- horizontal tabs
- clear to end of line/screen
- auxilliary serial output port

1510

- all features of 1500 plus
- format mode
- protected unprotected data
- transmit line/page/partial/all
- 128 function codes

1520

- all features of 1500 and 1510 plus
- independent microprocessor controlled printer port
- printer can be addressed independently of screen
- 2 K printer buffer

Tri-Data Corporation

FlexiFile 21

- random access mini floppy disk storage system
- front panel flexibility
- microprocessor controlled
- user programmable
- versatile interface capability
- dual drive capability

Techtran

8400 Series
turns any E.I. A terminal intoan ASR device

- stores up to 145,000 characters per cassette
- manual or remote operation
- standard teletype (X- on, X - oft) protocol
- search and edit features
- speeds to 2400 baud

Texas Instruments

745
-5×7 dot matrix with print contrast * control

- quiet thermal printing
- built in acoustic coupler
- light portable 13 lbs. with carrying case
- built in numeric pad

765

- true A S R capability
- non volatile bubble memory to 80 k
- built in acoustic coupler
- powerfulediting functions such asindex, find, insert, delete
- truly portable - only 16 lbs. with carrying case

810

- 64 - 440 lines per minute impact printer
- bidirectional printing
- full ASCII character set
- baud rate to 9600 baud
- E. I. A. interface
- table top operation
- adjustable tractor feed

Teletype Corp.

43

- upper and lower case characters
- unique ribbon cartridge
- weighs only 30 pounds
- 30 cps impact printer
- 132 column printing
-7×9 dot matrix

Miscoe

Manufacturing Ltd.

- data cable
- E.I.A. switches
- special assemblies
- null modem cables

Data Terminal Mart the edp appliance chain

Concourse of the Toronto Skyline Hotel, 655 Dixon Road, Rexdale, Ontario M9W' 1J4/Phone (416) 241-5213
Concourse of the Montreal Four Seasons Hotel, 1010 Sherbrooke St. W., Montreal , P.Q. H3A 2R7/(514) 844-1079
21004th Street S.W., Calgary, Alberta T2S IW7 (403) 269-7705

Contents

ALARMS

Basir Alarm Photo Impuder Alarm Intruder Alarrn Photo Electric Relay Low Temperature/Lights out Temperature Sensor Coolant level Water Level Electronic Lock Car Battery Watchdog Simple Car Alarm Simple Lock

AMPLIFIERS 8

 PREAMPLIFIERSHign Input impedance High Impedance Butler Low Outout Impedance High input Impedance Low Frequency Extender Virtual Earth Preamp IC Tape Head Preamp Simple Stereo Tape Player 2.5 Wat

10 watt
10 Wat
都 Loudspeaker Microphone Voitage Controlled Amp Wide Band Amplifie Video Power Amp
Broadband Amp

SIGNAL PROCESSORS
Fuzz Box
Guitar Fuzz
Fuzz Box
Waa Waa
Disco Autotade
Simple Autofade
Information Transter
Optical Pulse Conditioner
TV Sound Pickolf
Cracklefree Potentiometer
Voltage to Frequency
Sine to Square Wave
Precision AC to DC
Voltage Processor
Universal Meter
Double Precision
Fast Half Wave
Simple Chopper
Norse Rejecting SCR Trigger
Phase Shifter

SIGNAL GENERATORS

Simole

Variable Duty cycle
 Fast Edge

FET
improved Multivibrator
Variable Duty cycle
Stable R C
Cheap (CMOS)
Simple TTL XTAL
Uncritical XTAL
Puise
Zero Crussing
Simple Pulse
Needle Pulse
Stable Linear Sawtooth
Zener
Noise
Pink

Simple Relaxation
Triangle with independent slope
Exponential
Widerange Multivibrator
Multiple Wavelorm
inear Sweep
Step Frequency
Beeper
7400 Siren
Simple Siren
Ship Siren
Two Tone
Toy Siren
Kojak. Startrek. Z Cars
Sound Effects
Sound Effects

FILTERS

Bandoass

Low \& High Pass
Rejection Notch
Band pass
Cartidge EO \& Rumble
Hum Stopper
Tape Hiss Reduction
Simple Crossover

DIGITAL
Themometer
Heads or Tails
Binary Calculator
Voltmeter
Seven Segment to Decima
Die
Pandom Binary
CMOS Die
Multiplexer Hints
Learning Memory
CMOS Clock
POWER SUPPLIES

Constant
Temperature Stable
Constant
Voltage Controlled
Precision Voltage Divider
Dual Polarity
Simple Balanced
Voltage Divider
Low Regulated
Short Circuit Protected
Simple TTL Supoly
ZN414 Supply
Stable Reference
Transformerless invertor
DC to DC AC
Voltage Multiplier
Automobile Convertor
Shaver Adaptor
DC-DC
High Voltage From Battery
Variable + ve or -ve output
Simple
12V from Batiery Charger
Bucket Regulator
Adjusting Zener Voltage
Variable Zener
Zener Boosting of Regulaiors
High Power
Electronic Fus
Electronic
Regulator \& Fuse
Regulator 8
Fast Acting
Fast Acting
Voltage Polarity
Noltage Polarity
NI CAD Discharge
Cuirent Limiling

- lasher

Ultra Simple

POWER CONTROL

LDR Mains Control
Floodlamp Control
Zero Crossing Sync
Train Controller
Low Differential Thermostat Simple Temperature Control Full Wave SCR Control

AUTOMOBILE

Brake Lamp Failure Courtesy Light Delay Simple Hazard Light Light Extender \& Reminder Four Way Flasher Headlamp Dipper Wiper Delay
Suppressed Zero Voltmeter Rev Counter/Tachometes Auxiliary Battery

DETECTORS \& COMPARATORS

Peak Detect \& Hold
Window Detector
Peak Program
Positive Peak
Peaction Comparator

RADIO FREQUENCY
Crystal Marke
00 kHz Marker
AF Voltmeter
RF Detector
LED AF Indicator
AF Amplifier Protection
FET-Radio
Op-Amp Radio

MISCELLANEA

Phase Locked Loop
Touch Doorbell
Phase Lock Control
Audio Mixer
Virtual Earth Mixe
Plop Eliminator
Loudspeaker Proteclion
Digital Capacitance Probe
Digita! Tape Recorder Adaptor Breakdown Diode Substitution Dual Function Charger
Dual Mode Amp

Projects Books 3 \& 4 now sold out.

Canadian Projects Book No. 1

Top projects from the early issues of ETI's Canadian edition, plus some of the projects from the UK edition'sissues which were distributed in Canada in 1976. All projects use parts available in Canada. Those projects from UK edition have been completely re-worked in Canada for Canadian constructors. Includes a series of modular disco projects, plus games, biofeedback, metal locator, etc.

Circuits No. 1

A brand new concept from the house of ETI. More than 100 pages packed with a wide range of experimenters circuits. Based on the 'Tech Tips' section carried in the overseas editions of ETI, Circuits 1 is the first of a series of specials produced for the enthusiasts who know what they want, but not where to get it! Circuits 1 will also act as a catalyst for further development of ideas, ideal for the experimenter. The collection of more than 200 circuits is complemented by a comprehensive index, making searches for a particular circuit quick and simple. Also, similar circuits can be compared easily, due to the logical layout and grouping used throughout. Last and by no means least, Circuits 1 has no distracting advertisements in the main section!

Electronics - it's easy Volume 1

The best introductory series to electronics ever published in a magazine. Volume three completing the series, will be available in a few months. Volume One introduces electronics to the beginner by going through the systems approach, basic concepts, meters and measurements, frequency and wavelengths, electronics and communication, capacitance and inductance, capacitive and inductive reactance, resistance, capacitance and inductance in combination, detection and amplification, elements of transistor amplifiers, emitter followers and DC amplifiers, and basic operational amplifiers.

Electronics - it's easy Volume 2

Volume Two introduces the sources of power, simple power supplies, how regulated power supplies work, general purpose supplies, generating signal waveforms, generating non-sinusoidal waveforms, all about electronic filters, more about filters, introducing digital systems, the algebra of logic, integrated circuit forms of logic functions, digital sub-systems, counters and shift registers.
\$6.00 For Both*

Send your order, with payment (not cash), to

Please specify which publications you require, and print your name and address clearly.

Qakirons

Meet a whole
new concept
in CB sound
and convenience.

1. Powerful $3^{\prime \prime} \times 5^{\prime \prime}$ voice communication speaker aims clear, crisp sound directly at you.
2. Puts your CB radio controls within easy reach.
3. Custom-fits completely secure on most any transmission hump. 4. Permanent or portable installation.

0 ASOMED

Classified advertisers wishing to use a Box Number in their advertisements MUST supply their permanent address and telephone number. Advertising will not be accepted if this information is not supplied.

AMPLIFIER KITS, ELECTRONIC PARTS

New, expanded FREE '78 catalog, new lower competitive prices.

50W/50W complete stereo kits $\$ 155.00$ 60W Iow TID pow module $\$ 38.00$ 100W Iow TID pow module $\$ 70.00$ Class-A 60W pow module $\$ 130.00$ Stereo low TID pre-amp $\$ 95.00$ Stereo Active tone-control $\$ 40.00$ MJ802/MJ4502 5MHz 200W \$8.50/Pr. 2N3055/MJ2955 2MHz 100W \$3.00/Pr. 1N4148.05, 1N4003.10, 2N5088. 25 LM-741 .30, LM-1310 1.50, LM-555 . 55 $7400 \mathrm{~N} .22,7404 \mathrm{~N} .22,7490.60$ Resistor .05, capacitor .10, etc. Post. \& pack. add 10%, Que.Res. add 8% S.T.

COMPUTRONICS

P.O. BOX 531, STAT. "H" MONTREAL, QUEBEC H3G 1RO

J \& J ELECTRONICS LTD.,

P.O. Box 1437 E.

Winnipeg, Manitoba R3C $2 Z 4$
Semiconductor Specialists
Do you get our bargain flyers? Send $\$ 1.00$ to receive the current literature and specials and to be placed on the mailing list for the future publications.
P.C. BOARDS FOR ETI PROJECTS All boards in stock Feb. 77 on Write for full price list.

134 RMS V/M 4.00 Hise Alarm A 9.40 | $10-4 \mathrm{CB}$ Sup | 3.25 | "se Alarm A |
| :--- | :--- | :--- | Revs $\quad 4.25$ Digi. Therm $\quad 5.70$ $\begin{array}{llll}\text { Compander } & 7.35 & \text { 3ch. Tone Con } & 2.85\end{array}$ $\begin{array}{llll}\text { Compander } & 7.35 & \text { 3ch. Tone Con } & 2.85 \\ \text { Clock A } & 5.40 & 50 \mathrm{D} 50 \text { Amp } & 5.32\end{array}$ B\&R Electronics.

Box 6326 F. Hamilton, Ontario L9C 6L9

AUDIO KITS

BUILD YOUR OWN AND SAVE
20W OTL Amp. + Tone Control Unit $\$ 13.00$ 30W +30 W Stereo Amplifier $\$ 35.00$ $30 W+30 W$ Stereo Amplifier
$40 \mathrm{~W}+40 \mathrm{CL}$..... $\$ 35.00$
$\$ 49.00$ $50 \mathrm{~W}+50 \mathrm{~W}$ Stereo Power Amplifier. \$34.00 $60 \mathrm{~W}+60 \mathrm{~W}$ OCL Stereo Amplifier . . $\$ 63.00$

Free Catalogue
AUDIOVISION SERVICE
P.O. Box 955, Stn. B, Willowdale, Ont. M2K 2 T6

ATWATER ELECTRONICS

We carry: Eico Kits - Sylvania Products Semi-Conducrors - TV Towers - Marsland Speakers - And Hundreds More Electronic Components To Choose From. 886 Dundas Hwy. E., Mississauga Tel. 277-3361
Store hrs: Mon-Thu 9-6 Fri 9-9 Sat 9-5

TELEPHONE SOFTWARE

Custom Jack Panels

Phone Line Patch Panels
Audio Compressors/Expanders
Audio Amplifiers
FREE Literature on request
VROLET INSTRUMENT COMPANY
P.O. Box 499, Streetsville

MISSISSAUGA, Ontario L5M 2C1

hamthapens nc. 45 BRISBANE ROAD, UNIT 18 DOWNSVIEW, ONTARIO M3J 2K1 "CANADA'S FRIENDLIEST AMATEUR RADIO STORE" Write for FREE literature Tel (416) 661-8800

NORTHERN BEAR ELECTRONICS

 Box 7260, Saskatoon, Sask. S7K 4J2 Audio Feedback Elim. (May ETI): Kit of all parts \& PCB \$29.95 Parts onlv 24.9 . PCB (All PCB's etched/drilled) . . . 8.50 Add-On FM Tuner (May ETI) PCB . 10.95 10.7 Mhz cer. filter5.95, 2/10.95 $5 \mathrm{~V}, 1 \mathrm{~A}$ reg. pwr. supply kit 10.95 $\pm 15 \mathrm{~V}, 100 \mathrm{~mA}$ kit, ideal for op amps \& ETI's Audio Feedback Elim. 19.95 Kits are less cabinets. Add $\$ 1.00$ post./ hand.; Sask. orders add 5\% tax.Money Order or Certified Cheque ensures faster service. Thank you!

ETI Project File

Updates, news, information, ETI gives you project support

PROJECT FILE is our department dealing with information regarding ETI Projects. Each month we will publish the Project Chart, any Project Notes which arise, general Project Constructor's Information, and some Reader's Letters and Questions relating to projects.

PROJECT CHART

This chart is an index to all information available relating to each project we have published in the preceding year. It guides you to where you will find the article itself, and keeps you informed on any notes that come up on a particular project you are interested in. It also gives you an idea of the importance of the notes, in case you do not have the issue refered to on hand.

Every few months we print a pull out section in the magazine which may be used as a photographic negative for making printed circuit boards (as described in our January 78 issue). Each edition of this sheet contains projects from the preceding few issues. Information on where to find which negative is included in the chart.

PROJECT NOTES

Since this magazine is largely put together by humans, the occasional error manages to slip by us into print. In addition variations in
component characteristics and availability occur, and many readers write to us about their experiences in building our projects. This gives us information which could be helpful to other readers. Such information will be published in Project File under Project Notes. (Prior to May 78 it was to be found at the end of News Digest.)

Should you find that there are notes you wish to read for which you do not have the issue, you may obtain them in one of two ways. You can buy the back issue from us (refer to Project Chart for date of issue and see also Reader Service Information on ordering). Alternatively you may obtain a photocopy of the note free of charge, so long as your request includes a self addressed stamped envelope for us to mail it back to you. Requests without SASE will not be answered.

PROJECT CONSTRUCTOR'S INFORMATION

Useful information on the terminology and notation will be published each month in Project File.

READER'S LETTERS AND QUESTIONS

Many readers write to us concerning their projects, bringing to
our attention ambiguities in articles and difficulties which might be faced by many in some phase of obtaining pars in construction or troubleshooting. Where a letter is of such general interest we may publish it, along with solutions or suggestions.

We like to see any comments from readers on projects they've built, modifications or success stories, and pictures too.

We obviously cannot troubleshoot the individual reader's projects, by letter or in person, so if you have a query we can only answer it to the extent of clearing up ambiguities, and providing Project Notes where appropriate. If you desire a reply to your letter it must be accompanied by a self addressed stamped envelope.

Write to:
 Project File
 Electronics Today International
 Unit 6, 25 Overlea Blvd., TORONTO, Ontario M4H 1B1
 Component Notations and Units

We normally specify components using an international standard. Many readers will be unfamiliar with

this but it's simple, less likely to lead to error and will be widely used sooner or later. ETI has opted for sooner!

Firstly decimal points are dropped and substituted with the multiplier, thus 4.7 uF is written 4 u . Capacitors also use the multiplier nano (one nanofarad is 1000 pF). Thus 0.1 uF is $100 \mathrm{n}, 5600 \mathrm{pF}$ is 5 n 6 . Other examples are $5.6 p F=5 p 6,0.5 p F=0 p 5$.

Resistors are treated similarly:
1.8 M ohms is $1 \mathrm{M} 8,56 \mathrm{k}$ ohms is 56 k , 4.7 k ohms is $4 \mathrm{k} 7,100 \mathrm{ohms}$ is 100 F , 5.6 ohms is $5 R 6$.

Kits, PCBs, and Parts

We do not supply parts for our projects, these must be obtained from component suppliers. However, in order to make things easier we cooperate with various companies to enable them to promptly supply kits, printed circuit boards and unusual or
hard-to-find parts. Prospective builders should consult the advertisements in ETI for suppliers for current and past projects.

Any company interested in participating in the supply of kits, pcbs or parts should write to us on their letterhead for complete information.

Reader's Project

Mr. B. Wilkinson of Sydney sent us extensive detalls of the ETI Graphic Equaliser he built. He says that it works very well, and points out some "better ideas" he incorporated. These include putting the signal switches at the opposite end of the front panel from the power switch to reduce hum, and putting the two level controls in the middle so they may be operated together. He has enclosed a photo of his model - nice lettering job and cabinet, eh?

Project Notes

LED PENDANT

Jan. 78
The circuit diagram is correct but there are a few discrepancies between the schematic and component layout. The only important change required is that in the component layout $\mathrm{C} 2(+)$ should be shown connected to IC pin 5 rather than to pin 6.

CB PSU

Feb. 78
Q2 is the transistor which needs heatsinking, which should be obvious from the component layout. In addition Q2 and Q3 are interchanged in the How It Works description. Q3 is specified as a 2 N 3905 , but in some situations, especially with a low-beta Q2, may not be heavy-duty enough, a TIP 30A would be better and should be used instead.

ISSUE .

DATE
May 77
May 77
May 77
May 77
May 77
May 77
June 77
Aug 77
June 77
June 77 Tape Slide Sync
Injector Tracer
June 77 Metronome
June 77 Drill Controller
July 77 Mastermind
Oct 77 Note: O
July 77 Digital Voltmeter
Sept 77
or CPB1
July 77
Overled
July 77 Turn Indicator Canceller
Aug 77 Skeet
Nov 77 Notes: C, D,
Aug 77 Dig. Freq. Meter
Aug 77 Bass Enhancer
Aug 77 Tachometer
Sept 77 Audio Sweep Osc.
Sept 77 Microamp
Sept 77 Bongos
Sept 77 Alarm Alarm
Oct 77 Graphic Equaliser
Feb 78 Note: D
Oct 77 Loud Hailer
Oct 77 Continuity Tester
Oct 77 Stereo Simulator

ETI Project Chart May 77 to May 78
 ISSUE

DATE
Nov 77
Jan 78
Jan 78
Feb 78
Nov 77
Jan 78
Nov 77 Waichdog
Jan 78 Neg.
Dec 77 50050 Amplifier
Jan 78 Neg.
Feb 78 Note: T
Dec 77 Spirit Level
Jan 78 Neg.
Dec 77 Egg Timer
Jan 78 Neg.
Jan 78 Option Clock \& Neg.
Jan 78 LED Pendant
May 78 Note: C
Jan 78 Compander \& Neg.
Feb 78 Tachomonitor
Apr: 78 Neg
Feb 78 LCD Panel Meter
Apr 78 Note: C
Apr 78 Neg.
Feb 78 CB Power Supply
Apr 78 Neg
May 78 Note: N
Feb 78 Freezer Alarm
Apr 78 Neg
Mar 78 Hammer Throw
Mar 78 True RMS Meter
Apr 78 Neg
Mar 78 Home Burglar Alarm

ISSUE
DATE
Apr 78
Apr 78 Neg
mputer PSU \& Neg.
Apr 78 Audio Delay Line \& Neg
Gas Alarm \& Neg.
May 78 White Line Follower
May 78 Add-on FM Tuner
May 78 Acoustic Feedback Eliminator

Canadian Projects Book

Audio Limiter	Metal Locator
5U Stereo	Heart-Rate Monitor
Overled	GSR Monitor
Bass Enhancer	Phaser
Modur Disco	Fuzz Box
G P Preamp	Touch Organ
Bai. Mic. Preamp	Mastermind
Ceramic Cartridge Preamp	Double Dice
Mizer \& PSU	Reaction Tester
VUMeter Circuit	Sound-Light Flash
Headphone Amp	Burglar Alarm
50W-100W Amp	Injector-Tracer
Note: N Apr. 78	Digital Voltmeter

Key to Project Notes
C:- PCB or component layout
D:- Circuit diagram
$\mathrm{N}:-$ Parts Numbers, Specs
Neg:- Negative of PCB pattern printed
O:- Other
S:- Parts Supply
T :- Text
U:- Update, Improvement, Mods
\cdots - Notes for this project of complicated
nature, write for details (enclose S.A.S.E., see text)

Reader Service Information

Editorial Queries

Written queries can only be answered when accompanied by a self-addressed, stamped enveloped, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI Query.

Projects, Components, Notation

For information on these subjects please see our Project File section.

Sell ETI

ETI is available for resale by component stores. We can offer a good discount and quite a big bonus, the chances are customers buying the magazine will come back to you to buy their components. Readers having trouble getting their copy of ETI could suggest to their component store manager that he should stock the magazine.

Back Issues and Photocopies

Previous issues of ETI-Canada are available direct from our office for $\$ 2.00$ each. Please specify issue by the month, not by the features you require. The following back issues are still available for sale.

1977	1978
February	January
May	February
June	March
July	April
September	
October	
November	
December	

We can supply photocopies of any article published in ETI-Canada, for which the charge is $\$ 1.00$ per article, regardless of length. Please specify issue and article. (A special consideration applies to errata for projects, see Project File.)

ETI MARKET PLACE

We will allow you up to twenty-five words to advertise items you want to buy or sell, or to publicise meetings of clubs, etc. Advertising will be accepted at our discretion - we will not accept commercial or any form of company advertising. For more insertions mail in again.

WANTED BARLOW-WADLEY OR SIMILAR PORTABLE SHORT WAVE RECEIVER. STATION VO1HH, BOX 500, CARBONEAR, NFLD. AOA 1 TO
FOR SALE OR TRADE TEST EQUIPMENT \& NEW TUBES. WANTED G.R. 1606 R.F. BRIDGE OR EQUIVALENT. M. POWELL, JR., BOX 500, CARBONEAR, NFLD. AOA 1 T0.

FOR SALE: TRANSISTORISED MULTI-METER WITH 5 POPULAR SCALES. ALSO, 5" OSCILLOSCOPE - NEVER BEEN USED. DETAILS - OFFERS, OTTO A. WEINKAUF, BOX 400, MACKLIN. SASK. SOL $2 C 0$
for sale: realistic sct-11C Cassette deck (stereo). like new. ORIGINAL PRICE - $\$ 280.00$; SELLING PRICE - $\$ 225.00$ OTTO A. WEINKAUF, BOX 400, MACKLIN, SASK. SOL $2 C 0$.

DESPERATELY SEEKING A QUAD TUBE TYPE F.M. TUNER IN GOOD ORDER OR REPAIRABLE. PIERRE OLIVIER. 790 DE ROUSSILLON \#2, LONGUEUIL, QUEBEC. J4H 3R7

FOR SALE: BEERCAT 210 RADIO SCANNER. NO EXPENSIVE CRYSTALS, SCANS 36.000 FREQUENCIES $32-50$, $146-174$ \& $416-512 \mathrm{MHZ}$. BRAND NEW. PHONE OR WRITE. M P. YADAV, 1221, ALGONOUIN AVE., NORTH BAY. ONT. P2B 4Y3. PRICE $\$ 32500$

FOR SALE: HEWLETT PACKARD VOLTMETER MODEL427A, BATTERY OPERATED. C/W CASE $\$ 350.00$. BRUCE WINTER, 6528 BUTLER ST., VANCOUVER, V5S 3 K 9 (60.4) 435-6215.

FOR SALE: HAMMARLUND MODEL SP-600 RECEIVER, 0.54 MHZ TO 54 MHZ , 6 BANDS, RECONDITIONED, $\$ 250.00$. WRITE: K. PAON, BOX 139. CHARLO, N.B. EOB 1 MO.

WANTED:TRIGGERED SCOPEDC TO5MHZ + USED, CHEAP.NON-WORKING OKIF SCHEMATICS AVAILABLE. M. PUPEZA (416) 599-6089 OR (416) 535-4127 HOME. (TORONTO)

WANTED DUAL TRACE SCOPE PLUS OTHER USED TEST GEAR. SEND DETAILS/ PRICE. RAY ALEXAVDER, FREDERICTON JUNCTION, N.B. EOG 1 TO.

WANTED: POWER TRANSFORMER FOR EICO MODEL 460 OSCILLOSCOPE (USED OR NEW). ALSO WANTED: MANUAL (OR COPY OF SAME) FOR EICO MODEL 666 tUBE/TRANSISTOR TESTER. RON AITKEN, 10840 AINTREE CRES., RICHMOND, B.C. V7A 3V1.

INFORMATION EXCHANGE: WILLING TO TRADE DIAGRAMS AND/OR IDEAS IN AUDIO SYNTHESIS. KEITH DANIEL, 6230 BANNANTYNE, VERDUN QUE. H4H 1J3.

TC-112
STUDENTS TOOL KIT
Student technicians kit includes 12 of the most needed basic tools for electronic work. 30 watt Soldering Iron (CSA), Soldering Aid, Chain Nose Pliers, Side Cutters, Wire Stripper, Adjustable Wrench, 3 Nut Drivers, 3 Screwdrivers and a Jeflin Moulded Plastic Tool Box with Lift-Out Tray

PLIKE ${ }^{\circledR} 4$ IN 1
WIRE STRIPPER
The original 4 in 1 tool by
Hunter. Combines Plier,
Diagonal Cutter, Crimper and Stripper.

PRECISION PLIERS \& CUTTERS

Made from German Tool Steel, wotble free box joints for positive jaw alignment with leaf springs for self opening operation.

27B-5-1/2

5-1/2' long-nose plier with side cutter. Box joint, no spring. Blue cushion handles.

48C-5
$5^{\prime \prime}$ flush cutter for soft wire. Box joint, leaf spring. General purpose. Blue cushion handles.

47

COMBI CUTTER

A universal cutter for cardboard, textiles, sheet metal, plastic, etc. Extra sharp teeth of stainless, refined steel with strong spring opening handles made of impact resisting plastic.

70 PVC

JEWELLERS SNIPS
For cutting light metal, wires, insulation. Made of good cutlery steel with PVC enamelled handles. $7^{\prime \prime}$ overall length.

270-F
THIN PROFILE SAFETY WIRE CUTTER
$5^{\prime \prime}$ angled flush cutters with patented shearing action for soft wire to 20 gauge. Built-in lead catcher retains cut off wire. High carbon steel fabrication, double-coil spring return and unique vinyl foam non-slip handles for lower stress and operator fatigue. through.

MILLER STRIPPERS

 101-SAn excellent stripper and cutter for all commonly used stranded and solid wire. Features adjustable stop on handles for various wire sizes, and self opening spring.

105
Similar to 101-S but with cable slitter for heavy duty loomex. Sharp adjustable blade mounted in a channel for drawing the wire
oval

56A

WIRE SHEARS
Snub nosed, nickel plated cuttingshears with a smooth edge. Tips are rounded. Has many uses where splicing, wiring, etc. is done.

SCREWDRIVERS

HUNTER "MAGIC TIP"

SCREWHOLDING SCREWDRIVER

Drives and removes steel, nonferrous or nylon screws in areas where other screwholders will not work. No rings to push, no bulky clips. Blades are alloy steel, heat treated and hardened. Handles are job matched with Hunter's comfort grip. A genuine precision tool.

HUNTER NUT DRIVER

The most popular series of nut drivers. Precision sized socket with solid shaft for strength and durability with colour coded job matched comfort grip handles to take the fatigue out of the job.

JEWELLERS SCREWDRIVER SET

CDVSP

Screwdriver sizes 1 to 6 for work on watches, clocks, instruments, optical products, etc. Handles and swivel heads sclid, non-rust ing brass, nickel plated. Tempered tool steel blades. Straight nurled for good grip. Packed in attractive plastic box.

70-107
NEEDLENOSE
PLIERS \& CUTTERS
German made $8^{\prime \prime}$ tool with polished head and red PVC covered handles (5000 v insulation).

70-166
SLIP JOINT PLIERS
6 inch adjustable pliers, cadmium plated.

5WR
5" VISE-GRIP
U.S. made, rugged, curved jaw Vise-Grip locking pliers combine clamp, super pliers, locking wrench, hand vise and wire cutters all in one tool

Set of 3 small, strongly made general purpose clamps. Accurately machined of carbon steel, practically unbreakable Enamelled frame and plated clamp screw.

1512 TWEEZERS

These are extra long $8^{\prime \prime}$ tweezers, bright nickel plated. The tips are serrated. Available with straight or curved tips. For electronic assembly or repair.

EYE MAGNIFIERS
Jewellers and tool makers series of magnifiers. Loupes for close up examination of all sorts of P.C.B. assemblies, components, machine work, etc

70-162

ADJUSTABLE WRENCHES
One of a series of convenient and useful wrenches, especially for the tool case or box. Made of molybdenum steel, fully drop forged and polished chrome finish on the head and dull finished handles

'SMITTY'" HEX WRENCHES
The original and most popular folding Hex Key set from Hunter. Blades of cold alloy steel heat treated and hardened with special attention to the tips. Cases are deburred and heavily nickel plated for comfort and durability.

TP/2A
CUTTING \& BENDING TOOL
Rugged but light tool evenly cuts and bends, at the same time, the leads on various components to be inserted into the P.C.B. Does leads from .3 to 1.5 mm with no adjustment. Made of blue poliamide and glass fibre.

PR/1

COMPONENTS LEAD

 BENDING TOOLFor bending the legs or leads of resistors, capacitors, transistors, etc. Made of pressed iron with baked enamel finish. The bending clamps are of tempered steel. Bend distance adjustable from 12 mm to 50 mm . Guides on tool can be set to precise spacing required.

PD801

SPEEDY BEND
This affordable tool bends 1 component or 100 in less time than it takes to set up and run any automatic bender. 1 tool forms jumper, $1 / 4$ and $1 / 2$ watt resistor, and diode leads. Made of high impact cycolac plastic.

'IC’ INSERTERS \& EXTRACTORS

4990 SERIES

DIP INSERTER
Fastest manual inserter available. Compensating screw allows you to adjust for package tolerances and make corrections for lead spacing. Inserts with no stress on package body and is safe for M.O.S. and CMOS devices. Anodized aluminum and stainless steel construction.

565

IC EXTRACTOR
For use on up to 16 way D.I.L. integrated circuits. Made of plastic, small clip type opens over IC. Jaws grip IC under leads.

4916

IC EXTRACTOR
Unique plier type construction. Withdraws IC straight up out of the board without bending leads of the IC. Removes all 14-16-24 lead dual inline packages. Insulated, made of A.B.S. plastic.

WIRE WRAPPING TOOLS

HOBBY WRAP TOOL
Wire-wrapping, stripping, unwrapping sool for AWG 30 on . 025 $(0,63 \mathrm{~mm})$ Square Post.

W. WIRE-WRAPPING TOOL

Battery operated wire-wrapping tool. For .025" $\{0,63 \mathrm{~mm}\}$ square post "MODIFIED" wrap, positive indexing, anti-overwrapping device.

SK-33
MULTIMETER
10,000 ohms per volt DC, 4,000 ohms per volt AC. Unit has unbreakable plastic meter front and single selector range switch. Size $3-3 / 8^{\prime \prime}$ wide $\times 5-1 / 8^{\prime \prime}$ long $\times 1-3 / 8^{\prime \prime}$ deep.

SOLDERING IRONS

7700
QUICK CHARGE "ISO-TIP" CORDLESS

SOLDERING IRON

Solder anywhere, anytime, indoors or outdoors. Kit consists of cordless soldering iron, recharging stand, one fine tip and one heavy duty tip. Premium long-life nickel cadmium batteries.

6500

"ISO-TIP" PC

DRILL ATTACHMENT
This high speed drill attachment fits over the "ISO-TIP" Iron after tip has been removed. Ideal for drilling PC boards and removing components

03

HEAVY DUTY HAND NIBBLER
Cuts sheet metal up to 18 gauge, or plastic material up to 14 gauge quickly and cleanly without bending or distortion. Nickel plated, PVC coated handles and self or spring opening.

CIRCUIT BOARD

 HOLDERS AND VISES

ST-10 CIRCUIT BOARD HOLDER
Freely rotatable with printed circuits clamped on it. Heavy base, clamp tilts for preferred working position. Useable as a soldering iron holder and solder reel keeper.

DESOLDERING TOOLS
MAIL TO: len finkler Itd.
25 Toro Rd., Downsview, Ont. M3J 2A6
Please send catalogues and brochures describing your complete line of products.
Company Name: \qquadI
Address: \qquad1
 I 1
Name:
len finkler Itd. 25 Toro Road, Downsview, Ontario M3J 2A6 (416) 630-9103 Telex 065-24010

[^0]: 403
 C Insertion \& Extraction Tools; 0101, 0701, 2207, 3407, 3704, 2403
 Power tools; 1201, 2801, 3501
 Hand Tools; 2801, 3502

