

Essential Characteristics

PRINCIPAL RATINGS. ELECTRICAL AND PHYSICAL CHARACTERISTICS

TUBE PRODUCTS DEPARTMENT

ESSENTIAL CHARACTERISTICS

- Receiving Tubes
- Five-Star Tubes
- Special-Purpose Tubes
- Planar and Ceramic Tubes
- Thyratrons
- Ignitrons
- Vidicons
- Picture Tubes
- Entertainment Semiconductor Components
- Reed Switches
- Radio & TV Pilot Lamps

Fourteenth Edition

Prepared by

C. E. Albrecht

W. O. Shelton

H. E. Schrecker

R. G. Kempton

Tube Products Department

General Electric Company

Owensboro, Kentucky 42301

Printed in United States of America

FOREWORD

ESSENTIAL CHARACTERISTICS is especially prepared to provide the Service Technician with a single source of reference containing data on every tube likely to be found in any home receiver—AM, FM, Hi-Fi, or television—as well as special purposes, Planar and ceramic tubes, Thyratrons, Ignitrons, Vidicons, Reed Switches, Radio & TV Pilot Lamps and Entertainment Semiconductors.

Data presented include those characteristics and ratings essential to fast, efficient trouble-shooting. Basing diagrams for all tubes, including picture tubes, are in the back of the book with an index by tube type.

The electronics engineer, amateur, and experimenter will also find this a valuable quick-reference for tubes currently in use.

Included in the present edition of this hand book is a section listing the essential physical and electrical characteristics of television picture tubes both monochrome and color. For reference purposes and the convenience of the user, five-star, special purpose, planar, ceramic, thyratron, and ignition tubes have been included with receiving tubes.

A section entitled "Explanation of Terms and Data Used in This Book" is included to aid in the proper evaluation of the information presented. Following this section are tube classification charts arranged to provide a quick and convenient reference to the tubes that are available for specific classes of service in which the reader may be interested. The tube listings follow this section.

TABLE OF CONTENTS

Explanation of Terms and Data Used in this book	5
Classification Charts	
Five-Star Types	10
Receiving Types	
	11
Triodes	12
Triple or Three-Section Triodes	12
Triodes with Diodes	13
Triode-Pentodes	13
Pentode Voltage Amplifiers	
	14
Beam Triodes	
Pentodes with Diodes	
Dual-Control Pentodes	
Heptodes	
Miscellaneous Types	19
Special-Purpose Types	16
Thyratrons	16
Planar and Ceramic Types	17
Ignitrons	18
Vidicons	19
M.B. F. C. Brand B	
X-Radiation Rated Recommended Replacements for High-Voltage Rectifier and Shunt Regulator Tubes	20
X-Radiation Symbol Definition	21
Characteristics and Ratings	22
General Electric Multiple/Brand Receiving Tube Replacement Guide2	276
Receiving Tube - Interchangeability Guide Foreign Types vs. American Types2	279
Industrial, Military, and Special-Purpose Tubes and Their Prototypes2	290
Typical Receiving Tube Characteristic Curves	293
Radio and Television Pilot Lamps	305
Picture Tubes - Characteristics and Ratings	
Color	
Vidicons - Condensed Data	346
Outline Drawings	
Standard Configurations	
Reed Switch Condensed Data	

Table of Contents (Continued)

Entertainment Semiconductors — Condensed Data	
Description	387
Universal Transistors	388
Outline Drawings	394
Silicon and Germanium Rectifiers	401
Field Effect Transistors	402
Selenium Rectifiers for Color TV	403
GE Quartz Crystals	403
Variable Capacitance Diodes	404
GE Entertainment Transistors Registered JEDEC Types	404
Germanium and Silicon Diodes	405
Selenium Dual-Diode Rectifiers	405
Zener Diodes	406
Maintenance Industrial Replacement Semiconductors Outline Drawings	
Integrated Circuits	410
Index of Basing Diagrams by Tube Type	
Receiving, Five-Star, Special-Purpose, Planar and Ceramic Tubes,	
Thyratrons and Ignitrons	414
Color Picture Tubes	
Monochrome Picture Tubes	424
Vidicons	427
Basing Diagrams	428
Receiving, Five-Star, Special-Purpose, Planar and Ceramic Tubes,	
Thyratrons and Ignitrons	
Color Picture Tubes	
Monochrome Picture Tubes	
Vidicons	473

The components and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of components by General Electric Company conveys any license under patent claims covering combinations of components with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the components with other devices or elements by any purchaser of components or others.

X-RADIATION WARNING

The voltages employed in some television receivers and other high-voltage equipment are sufficiently high that high-voltage rectifier and shunt regulator tubes, television picture tubes and certain other high-voltage electron tubes may produce soft X-rays which can constitute a health hazard on prolonged exposure at close range, unless such tubes are adequately shielded. The need for this precaution must always be considered in equipment design.

Precautions must be exercised during the serving of equipment employing any of the above high-voltage tubes to assure that all shielding components are replaced to their intended positions before the equipment is operated.

Before operating any electron tube at 10,000 volts or higher, the tube manufacturer's detailed rating sheet for that particular tube should be reviewed.

EXPLANATION OF TERMS AND DATA USED IN THIS BOOK

RATING-A limiting value of voltage, current, frequency, etc., beyond which tube life may be seriously impaired.

CHARACTERISTIC—A property of a tube, inherent in its design, such as its ability to deliver a certain power output with specific electrode voltages applied.

BOGEY—An average characteristic value; a tube exhibiting these average values is termed a bodey tube.

RATING SYSTEMS

Maximum ratings given in this book are based on one of the three rating systems in common use: the design-center system, the design-maximum system, or the absolute-maximum system. Ratings based on the two latter systems are indicated by a footnote reference, and if the rating is not followed by a footnote symbol the design-center rating system is applicable. To determine whether or not a tube is used within ratings in a specific application, the rating system specified must be taken into account since each rating system requires a different procedure for determining conformance to ratings.

Design-Center Reting System To establish conformance to ratings in the design-center rating system, the ratings should not be exceeded with a bogey tube operating in the equipment under average conditions with respect to supply voltage, signal, temperature, component values, adjustment of controls, and other variables.

Design-Maximum Rating System To establish conformance to ratings in the design-maximum rating system, the ratings should not be exceeded with a bogey tube operating in the equipment under the worst probable combination of conditions with respect to supply voltage, signal, temperature, component values, adjustment of controls, and other variables.

Absolute-Maximum Rating System To establish conformance to ratings in the absolute-maximum rating system, the ratings should not be exceeded with any tube of the specified type operating in the equipment under the worst probable combination of conditions with respect to supply voltage, signal, temperature, component values, adjustment of controls, and other variables.

The term "worst probable combination of conditions" used above is not intended to include conditions under which useful performance of the equipment could not be obtained, since the equipment is not likely to be operated for long under such conditions.

ELECTRODE VOLTAGES

Electrode voltages indicated as "Max" in the tables are maximum ratings, and are measured with respect to the following reference points:

- 1. For cathode types, the reference point is the cathode terminal.
- 2. For filamentary types operated on direct current, the reference point is the negative terminal of the filament.
- 3. For filamentary types operated on alternating current, the reference point is the electrical center of the filament, usually located at the center-tap of the heater-supply transformer, rather than at the physical center of the filament.

POWER DISSIPATION

Plate Dissipation For Class A amplifiers, the maximum plate dissipation occurs at the zero-signal condition. The maximum peak input signal voltage should not exceed the bias voltage.

For Class B amplifiers, the maximum plate dissipation theoretically occurs at approximately 63 percent of the maximum-signal conditions, but practically may occur at any signal-voltage value.

For converters, the maximum plate dissipation occurs at the zero-signal condition and at the frequency at which the oscillator-developed bias is a minimum.

Screen Dissipation When a maximum screen voltage is shown in the data, the full rated screen dissipation is allowable at any screen voltage within the screen-voltage rating. When a maximum screen-supply voltage is shown, the allowable screen dissipation must be decreased, according to the accompanying screen-rating chart, if the screen voltage is greater than 50 percent of the rated screen-supply voltage.

SCREEN RATING CHART

EXPRESSED AS PERCENT OF MAXIMUM SCREEN SUPPLY VOLTAGE RATING

SYMBOLS AND ABBREVIATIONS

The following symbols and abbreviations are used throughout the tube characteristics data:

E _b Plate Voltage	I _b —Plate current
E _e —Grid Voltage	I.—Grid current
E _{cl} —Grid-number 1 voltage	I Grid-number 1 current
E _{c2} —Grid-number 2 voltage	I _{c2} —Grid-number 2 current
E _{cs} —Grid-number 3 voltage	I.—Cathode current
E _{cc} —Grid supply voltage	K—Cathode
E _{cel} —Grid-number 1 supply voltage	u—Amplification factor
E _{cc2} —Grid-number 2 supply voltage	P—Plate
E _{ccs} —Grid-number 3 supply voltage	R.—Grid resistor
G—Grid	
G ₁ —Grid number 1	R _{e1} —Grid-number 1 resistor
G ₂ —Grid number 2	R _{s2} —Grid-number 2 resistor
G _s —Grid number 3	R _{ss} —Grid-number 3 resistor
G₄—Grid number 4	R _k —Cathode resistor
G _m -Transconductance	R _p —Plate resistor

ARRANGEMENT OF DATA

The essential characteristics listed for each receiving tube are presented in columns described as follows from left to right:

TUBE TYPE

Tubes are arranged in numerical-alphabetical order. Those having the same basic designation but differing in suffix (e.g., 6BG6-G and 6BG6-GA) are grouped together when the types have equivalent electrical characteristics. All of the information presented applies to each type in the group, with the possible exception of the information in the "Outline Drawing," "Capacitance in Picofarads," "Filament Volts," or "Filament Amp." columns. When this information differs, the values are horizontally aligned with the type designations to which they apply.

Type designations printed in boldface indicate metal tubes, and designations in italics indicate miniature tubes. The symbol
is used for subminiature tubes, and the symbol is used for compactrons. All other types listed are larger glass tubes or special shapes, with the exception of planar tubes and nuvistors, which are so identified in the "Classification by Construction" column

The following suffix letters are in common use in tube designations and have the indicated significance:

G signifies a glass bulb and an octal base.

GT signifies a T-9, straight-sided glass bulb and an octal base.

A, B, C, D, E, and F assigned in that order signify a later and modified version which can be substituted for any previous version but not vice-versa. The assignment of a suffix in this series does not convey any information as to the nature of the modification incorporated.

X signifies a base composed of special low-loss material.

Y signifies a base composed of special intermediate-loss material.

The symbol ¶ indicates a type having heater warm-up time controlled for series-string service.

CLASSIFICATION BY CONSTRUCTION

This column presents a descriptive title for each tube. When the tube represents an improved or modified version of an older type, the basic prototype is given in parenthesis following the descriptive title. The inclusion of the prototype is done to give aid in identifying the general characteristics of the tube under consideration and does not necessarily imply direct interchangeability between this version and the prototype. Whether or not the tubes can be used interchangeably depends on the particular characteristics and requirements of each individual application.

X-RADIATION RATING

This column is applicable to High Voltage Rectifier, Shunt Regulator, and Cathode-Ray Tubes.

High Voltage Rectifier and Shunt Regulator Tubes — Information is presented on the maximum X-radiation rating a in milliroentgens per hour (mR/hr) extracted from the latest available EIA published product information. The mR/hr maximum shown is based on known attenuation factors of tube construction materials and accumulated sample test data taken initially and during life test on the particular tube type, and the tubes do not exceed the maximum rating limit at any time throughout their useful life, when operated within the maximum ratings, including filament voltage, specified on the individual published product information sheets. This X-radiation maximum rating is based on the use of the Victoreen 440 RF/C Survey Meter as the standard instrument for X-radiation measurement with its plastic spacers four (4) inches from the external surface of the tube under test. Tube types having no X-radiation rating are identified. For X-radiation rated replacement tubes, see chart § on page 20.

Cathode-Ray Tubes—Reference is made to available JEDEC X-radiation isodose and limit curves. \square Tube types having no X-radiation reference to isodose or limit curves are identified. \triangle

BASE CONNECTIONS

The basing diagrams are arranged in numerical-alphabetical order in the back of this book with an index by tube type. These diagrams are schematic representations of the terminal connections and do not necessarily indicate internal tube construction.

As an additional feature, each basing diagram has listed all tube types having that particular basing arrangement; this listing is useful in a prelimi-

nary search for interchangeable tube types.

In tubes having more than one grid, the grids are numbered consecutively in accordance with their location proceeding from the cathode to the plate. Thus, grid number 1 is the grid which is physically located nearest the cathode. In pentodes, grid number 2 is generally referred to as the screen grid, and grid number 3 is generally referred to as the suppressor grid.

In multisection tubes that contain two or more structurally similar sections, the similar sections are designated as section 1, section 2, etc., depending upon the connection of the electrodes to the terminal pins. The highest section number is assigned to that section having an electrode connected to the lowest-numbered base pin, and successively lower numbers are assigned to additional sections according to the sequence in which the connections of the same type of electrode in all sections are made to successively higher-numbered base pins. When similar sections have one or more electrodes in common, the assignment of section designations is determined by whichever independent electrode is connected to the lowest-numbered base pin.

OUTLINE DRAWINGS

This column presents information on the physical characteristics of each tube. When the physical characteristics of a tube conform to standard or commonly used configurations, an outline drawing number is shown which refers to tube drawings presented in the section "Outline Drawings." If the physical characteristics of a tube do not conform to any of the standard outline drawings, the designation "T-X" is shown. In this case, reference should be made to the T-X Table at the end of the Outline Drawing Section which presents data relative to the physical characteristics of these special tubes.

FILAMENT VOLTS

Unless otherwise stated in this column, the filament or heater may be operated with either alternating or direct current. If two values of filament voltage are given, the tube has a center-tapped filament or heater and may be operated with the halves in series or parallel.

FILAMENT AMP

This column lists the filament or heater currents. These current values are for a bogey tube operated at the filament voltage specified in the "Filament Volts" column. If the filament or heater is center-tapped, the currents are aligned with the corresponding voltages for series and parallel operation.

MAX PLATE WATTS

The plate dissipation listed is a maximum rating. For interpretation of maximum ratings, see the section "Rating Systems."

MAX PLATE VOLTS

The plate voltage listed is a maximum rating. For interpretation of maximum ratings, see the section "Rating Systems."

MAX SCREEN VOLTS AND WATTS

The screen voltage and dissipation listed are maximum ratings. When the symbol z is used, the screen voltage is a supply voltage. For interpretation of screen ratings, see the section "Rating Systems."

CAPACITANCE IN PICOFARADS

Unless otherwise noted, all capacitance values are average values, and those for glass tubes are measured with an external close-fitting metal shield connected to the cathode terminal. The symbol indicates a maximum value of capacitance, and the symbol indicates a value measured without external shield. All values are measured with the filament or heater cold and with no direct-current electrode voltages applied.

In measuring the capacitances, all metal parts except the input and output electrodes are connected to the cathode. These metal parts include internal and external shields, base sleeves, and unused pins. In multisection tubes, the electrodes of the sections not common to the section under test are connected to ground.

Input capacitance is measured from the input grid to all other electrodes except the plate, which is connected to ground.

Output capacitance is measured from the plate to all other electrodes except the input grid, which is connected to ground.

Grid-to-plate capacitance is measured from the input grid to the plate, with all other electrodes connected to ground.

The capacitance values for twin-section or triple-section tubes refer to each section unless subscript numbers are used to designate the values for each section. Subscript designations are also used with the capacitance values of dissimilar double-section and three-section tubes.

SERVICE

This column indicates a potential application of the type. The class of service listed is not necessarily the only one for which the tube is suitable.

Class A Amplifier is an amplifier in which the grid bias and applied alternating grid voltage are such that plate current in a specific tube flows at all times.

Class AB Amplifier is an amplifier in which the grid bias and applied alternating grid voltage are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.

Class C Amplifier is an amplifier in which the grid bias is appreciably greater than the cutoff value so that the plate current in each tube is zero when no alternating grid voltage is applied and so that plate current in a specific tube flows for appreciably less than one-half of each cycle when an alternating grid voltage is applied.

To denote that grid current does not flow during any part of the input cycle; the suffix "1" may be added to the letter or letters of the class identification. The suffix "2" may be used to denote that grid current flows during some part of the cycle.

OTHER COLUMNS-GENERAL

The columns to the right of the "Service" column show typical electrode voltages applied and the characteristics obtained with these voltages when a bogey tube is used. The electrode voltages shown are not the only ones at which the tube may be operated; they are selected to show concisely some guiding information as to the characteristics of each tube type.

The electrode voltages listed are measured with respect to the following reference points:

For cathode types, the reference point is the cathode terminal; except that when cathode bias is used, the reference point is the negative terminal of the cathode-bias resistor.

For filamentary types operated on direct current, the reference point is the negative terminal of the filament.

For filamentary types operated on alternating current, the reference point is the electrical center of the filament, usually located at the center-tap of the heater-supply transformer, rather than at the physical center of the filament.

Filament or heater voltages are measured between the filament or heater terminals.

The column headings used are not always applicable for tubes designed to serve as television deflection-amplifiers, television dampers, signal rectifiers, power rectifiers, and regulators. In these cases the data reads across the space normally occupied by the columns. In addition, some of the data given may be ratings rather than characteristics.

PLATE VOLTS

Other values of plate voltage may be used, provided that they do not exceed the maximum rated plate voltage.

SCREEN VOLTS

Other values of screen voltage may be used, provided that the maximum rated screen voltage is not exceeded or, if maximum supply voltage is specified, the limitations of the Screen Rating Chart are observed.

NEG GRID VOLTS

The values of grid voltage or cathode bias are chosen to adjust the plate and screen currents to levels that give satisfactory tube operation and hold the plate and screen dissipations within the maximum ratings.

PLATE MILLIAMPERES

These values are for bogey tubes under the conditions given in the adjacent columns. The symbol †, used with audio-output tubes, indicates that the current listed was measured without a signal input to the control grid of the tube; maximum-input-signal plate currents are usually higher.

SCREEN MILLIAMPERES

These values are for bogey tubes under the conditions given in the adjacent columns. The symbol †, used with audio-output tubes, indicates that the current listed was measured without a signal input to the control grid of the tubes; maximum-input-signal screen currents are usually higher.

Rp, OHMS

The plate resistance (Rp) of an electronic tube is the ratio of a small change in plate voltage to the corresponding change in plate current, with all other electrode voltages maintained constant.

Gm, µMHOS

The transconductance (Gm) of an electronic tube is the ratio of a small change in plate current to the small change in grid voltage that produces it, with all other electrode voltages maintained constant. Unless otherwise noted all transconductance values in this handbook are grid-number 1-to-plate transconductances.

μ FACTOR

The amplification factor (μ) of an electronic tube is the ratio of a small change in plate voltage to the small change in grid voltage when the plate current and all other electrode voltages are maintained constant.

LOAD FOR RATED OUTPUT, OHMS

When operating conditions are given for two tubes in push-pull, the symbol ‡ indicates that the load resistance given is the plate-to-plate value.

POWER OUTPUT, WATTS

For power-output tubes, the value given refers to the average tube power output (plate-input power minus plate dissipation) for the indicated operating conditions. The useful power output is the tube output less the circuit losses. In Class-A operation, the rated tube power output is measured with an audio-frequency sinusoidal input signal whose peak value is equal to or less than the d-c grid-number 1 bias voltage applied to the tube.

CLASSIFICATION CHARTS

FIVE-STAR TYPES Special-Quality Tubes for Critical Applications

	Classification		7-Pin Miniature	9-Pin Miniature	Octal
Diodes	Low-Curi	ent Rectifiers	5726 6919		
	Full-Wave	Power Rectifiers	6202	6203	6087
	Single	μ<40	6135		
Triodes		μ <40	5844	5670 5687 5814-A 6189 6211-A 6386 7861	
	Twin	μ>40		5751 5965-A 6072-A 6201 6414 6829	
	Voltage Amplifiers	Sharp Cutoff	5654 6136 6265 8425-A 8426-A	6688	
		Remote Cutoff	5749		
Pentodes		Dual Control	5725		
	Power Amplifi	ers	6005	5686 6216	
	High-Voltage	Regulators		7239	
leptodes	Later to the second		5750 7036		
Thyratrons			5727		I

Receiving Types

DIODES

	Max Output Current		Single		Tw	/in	Triple
Service	in Ma	Filament	Cath	ode	Filament	Cathode	Cathode
TV High- Voltage Rectifier	0.5	1AD2-A 1AY2-A 1BC2-A 1BC2-B 1BH2-A 1BY2-A 1DG3-A 1DG3-A 1G3-GTA 1K3-A 1K3-C					
	0.6 to 1.9	2A V 2	2AS2-A 2BU2	3AT2-B 3BN2-A			
	2.0 to 3.0	3CU3-A 3DC3	2CN3-B 3A3-C 3AW2-A 3BS2-B 3BT2-A 3BW2 3CN3-B 3DA3	3DB3 3DF3 3DF3-A 3DH3 3DJ3 3DR3 3DR3 3DS3			
Low-	1.0 per plate						6BJ7
Current Rectifier	9.0 to 12 per plate					6AL5 12AL5	6BC7
_	50 to 99					6X4	
Power Rectifier	100 to 149		35W4	50DC4	5Y3-GT		
	150 to 199					6CA4	
	200 to 299				5U4:GB		ļ
TV Damping Diode	120 to 175		6AX3 6AX4-GTB 6AY3-B 6BJ3 6BW3 12AX3 12AY3-A 12BT3	17AX3 17AY3-A 17BW3 22BW3 1/32HQ7 1/33GT7 1/33GY7 1/33GY7-A			
	180 to 350		6BE3 6BS3-A 6BZ3 6CG3 6CJ3 6CL3 6DE4 6DN3 12BE3 12BE3-A 12CL3 ½12HE7	17BE3 17BS3-A 17BS3-A 17BZ3 17DE4 19CG3 19DE3 22DE4 25CG3 34CE3 ½38HE7 ½38HK7			
	400 to 450		6DK3 6DQ3 6DQ3-A	19DK3 19DQ3 25DK3			

Type designations of miniature tubes are shown in italics.

	lification		Sin					Twin or l		
Fac	tor	Heater	Current	in Mil	liamperes		Heat	er Current is		
μ	600	450	300	150	Other	600	450	300	150	Other
2.0 to 9.0	12B4-A		12B4-A			⅓10GF7-A	1/411CY7 1/413GF7-A 1/415EA7 1/415FY7			1/46CY7 1/46EA7 1/46EM7 1/46FM7 1/46GF7- 1/46GL7
to	&AF4-B &DZ4 6S4-A	3AF4-B 8DZ4		6C4	6AF4-A` 6DZ4	1/44HA7 1/66BA11 1/6CM7 6GU7 12BH7-A	1∕25HA7 1∕38BA11	12A U7-A 12BH7-A ½7247	12A U7-A ½7247	⅓6FJ7
20 to 29	½13JZ8	⅓17JZ8	½25JZ8		⅓6JZ8 ⅓24JZ8	6CG7 1/26CM7 6FQ7 6SN7-GTF 1/216AK9	8CG7 8FQ7 ⅓23Z9	12FQ7 12SN7-GTA		⅓6AK9 ⅓6FJ7 ⅓31AL1
30 to 39							6J6-A			6BQ7-A 6BZ7
40 to 59	½15MF8 ½16LU8 ½16LU8- ½16LU8-	1/21LR 1/21LU	8		1/26LR8 1/26LU8 1/26MF8	%8BU11 %11BT11 %11CA11 %11CF11 %11CH11 %16AK9	6BK7-B 12AV7 1414BL11 1414BR11 1415AF11 1415BD11 1423Z9	12A Y 7	12A Y7	1/36AK9 1/36AS11 1/36CA1 1/36BH1 1/26M11 1/2AV7 1/316BX 1/31AL
60 to 69				6AB4		½10GF7-/	12427-4 12427-4 1213GF7-4 1215EA7 1215FM7 1215FY7	ł	12AT7 12DT8	146AS11 146CA1 146CY7 146EA7 146EM7 146FY7 146GF7 146GL7 18AZ7-
70 to 79	2GK5	3GK5 3HA5 3HM5	4GK5		6GK5 6HA5 6HM5			6SL7-GT	12SL7-G7	Γ
80 to 89 100					6AM4	⅓4HA7	⅓5HA 7	6EU7 12AX7 12AX7-A 7025 147247	12A X7 12A X7-A 7025 }47247	

TRIPLE OR THREE-SECTION TRIODES

Amplification			Heater Current i	n Milliamperes	
Factor µ	600	450	300	150	Other
Medium-μ 10 to 49	6AV11 ½6K11 ½6U10 9MN8		12AC10-A		6MD8 6MJ8 6MN8
High-μ 50 to 100	6AC10 6C10 ½6K11 ½6U10 9AK10 9AM10	6D10 6EZ8 6GY8 8AC10		19EZ8	6AK10

TRIODES WITH DIODES

Amplification		Heater Current in Milliampers									
Factor µ	· ·	600	450	300	150	Other					
10 to 49	with 2 diodes	6B10	8B10								
50 to 100	with 2 diodes		6FM8	6AV6	12AV6 14GT8 14JG8 30AG11	6AG11 6AY11					
	with 3 diodes		6T8-A		19T8	-					

TRIODE-PENTODES

Transconductance,	Amplification Factor	Н	eater Current is	Milliamperes	
Pentode Section	Triode Section	600	450	300	Other
5500	40	5CG8	6CG8-A	T	<u> </u>
5500	70	5JW8	6LX8		6JW8
6000	43	δFG7	6FG7		
6400	40	5EA8	6EA8 6HB7	***************************************	19EA8
6500	45		6FV8-A		
6500	95				6T9
6500	70	· · · · · · · · · · · · · · · · · · ·			19HV8
7500	46	5GH8-A 5KZ8	6GH8-A 6JN8 6KZ8	9GH8-A 9KZ8	12JN8 19JN8 19KG8
8000	43	6AU8-A	***************************************		
9000	100	6MV8			1
9500	70	6AW8-A	8AW8-A		
9500	110		10LZ8		†
10000	40	8CX8	<u> </u>		6CX8
10000	100	6KT8			
10700	70	6JV8	8JV8		1
11000	46		10JY8		
11500	100	8GN8	10GN8		6GN8
12000	70		11JE8		6JE8
12500	100	8EB8			6EB8
13000	40				6LJ8
19000	75		10LW8		
20000	46	10KR8			6KR8-A
20000	100				6LY8
21000	20	9AH9			6AH9
30000	39				6AG9
30000	. 59	8AL9			6AL9

Type designations of miniature tubes are shown in italics.

	i	Sh	arp-Cutoff				Remot	e-Cutos	Ŧ	
	E	leater Curi	rent in Mil	lliampere	es	He	ater Currer	ıt in M	illiampe	res
Gm µmhos	600	450	300	150	Other	600	450	300	150	Other
3,000 to 4,900				6BH6				6BA6	12BA6	12DZ6
5,000 to 7,900		4 <i>A∙U6</i> 1∕29BJ11	6A U6-A	12AU6	1∕46BH11		1∕29BJ11			
8,000 to 8,900	3CB6	4 <i>CB6</i> 4 <i>DE6</i> ⅓8BM11	6CB6-A		⅓6BW11	3BZ6 4LU6	4 <i>BZ6</i> 4 <i>JH6</i> ½8BM11	6BZ6		
9,000 to 9,900	3DK6	4DK6	6DK6							
10,000 to 11,000	12DQ7	1414BR11 1415AF11 1415BD11	12DQ7		16AF11 16AS11 16BD11	<i>&FS5</i> 8AR11 ½8BQ11	<i>3FS5</i> 11AR11 ⅓11BQ11			6AR11 6FS5 1/216BQ11
11,100 to 13,000	8BN11 1/8BQ11 8CB11 18BY7-A	⅓11BQ11	.12BY7-A		6J11 6JG5 16M11 16BQ11 16BX11		4EH7 5GM6	6EH7		6BN11 ½6BW11 6GM6
14,000 to 14,900		4JD6 6EW6	6JD6	15EW6	6EW6					
15,000 to 22,000	2GU5 3JC6 1411BT11 1411CA11 1411CF11 1411CH11	.	6EJ7 6JC6 6JC6-A		6GU 5					⅓6CA11
30,000 to 40,000	12GN7-A	7KY6		1		1				12HG7

PENTODE POWER AMPLIFIERS

	Power Output		Heat	er Current	in Milliam	peres	
Service	in watts	600	450	300	150	Oti	ner
	1.0 to 1.9	12CA5	1⁄412AE10 1∕413V10	25EH5	6AK6 35C5 50EH5 50HK6	1/218AJ10	
	2.0 to 2.9	12C5 12CU5	17CU6	25C5	50C5	1/26G11 6CU5	
Output Amplifier	4.0 to 6.0	5AQ5 8BQ5 ½10AL10 ½10T10 ½10Z10 ½12BF11	6AQ5-A 6V6-GTA 10GK6 ½12AL11 ½12T10 ½13Z10 ½17AB10 ½17BF11 ½17BF11-A 7408			146AD10 146AD10-A 146AL11 146BF11 6BQ6 146BY11	6GK6 146T10 146Z10 1424BF11 7189-A
	9.0 to 12.5					6L6-GC 6550-A	7355 7581-A
9.0 to 12.5 Horizontal-Deflection Amplifier		12DQ6-B 12GE5 12JF5 12JN6 16GY5 16KA6 21JS6-A 21LG6-A 24LQ6 26HU5 26LW6	17GE5 17GV5 17JB6-A 17JB6 17JB6 21GY5 21HB5-A 21JV6 21JZ6 21JZ6 31JS8-A 133GT7 1433GY7 1433GY7-A 36KD6 1438HE7 1438HE7 1438HE7	30JZ6 .33JV6		6DQ6-B 6GE5 6GF5 6GV5 6GV5 6HB5 6HE5 6HF5 6JE6-A 6JE6-B 6JE6-C	6JM6 6JN6-B 6JS6-B 6JS6-C 6JZ6- 6LB6 6LB6 6LW6- 6LX4- 5412HE7 542HQ7
	Deflection olifier	10JA5 16AK9 1216LU8 1216LU8-A	1/21LR8 1/21LU8 1/23Z9			6EZ5 6HB6 6HE5 1/6LR8 1/6LU8 61A5	6JB5 16AK9 1631AL10

BEAM TRIODES

	Heater Current in Milliamperes								
Classification	600	450	300	150	Other				
Shunt HV Regulators					6BK4-C 6EH4-A 6EJ4-A 6EL4-A 6EN4 6LH6-A 6LJ6-A 6MA6				
Pulse Regulators					6HS5 6HV5-A 6JD5 6JH5 6JK5				

PENTODES WITH DIODES

Heater Current in Milliamperes									
Classifi	cation	600	Other						
Sharp-Cutoff Pentode	with 1 diode with 2 diodes		6AM8-A 8LT8			11LT8			

DUAL-CONTROL PENTODES

	Heater Current in Milliamperes								
Classification	600	450	300	150	Other				
Dual-Control Amplifier	\$DT6 1/410AL11 1/410T10 1/412BF11	4DT6 6GX6 6GY6 6HZ6 3412AE10 3412A11 3412T10 3413V10 3417BF11 3417BF11-A	6DT6 6DT6-A		1/6AD10 1/6AD10-A 1/6BAL11 1/6BF11 1/6BF11 1/6G11 1/6G10 1/18AJ10 1/24BF11				

HEPTODES

	Conversion Transconductance	Heater Current in Milliamperes						
Service	in Micromhos	600	450	300	150	Other		
Converter	450 to 500			6BE6	12BE6			
Dual-Control		3CS6	4CS6	6CS6				

MISCELLANEOUS TYPES

	Heater Current in Milliamperes									
Classification	600	450	300	150	Othe					
Quadruple Diodes	6JU8 6JU8-A									
Triode-Tetrodes		6CL8-A								
Tetrodes	2CY5				6CY5					
Twin Pentodes	3BU8 3HS8 3≰6BA11	4BU8 4HS8 4MK8 3\$BA11 10LE8 12BV11	6BU8 6HS8 6MK8-A		6BV11 6LE8					
Gated-Beam Tube	½10Z10	½13Z10 ½17AB10	6KS6		½6Z10					
Sheet-Beam Tube			6AR8 6HW8 6JH8 6ME8							

SPECIAL-PURPOSE TYPES

	Dio	des	<u> </u>	Triode	es	T	Tetrod	es	Pe	ntodes			
Classifi- cation	Single	Twin	Single	Twin	Double	With Diod		Sharp Cutofi	Re- mote Cut- off	Power Amplifier	Regu- lator	Hep- todes Dual Control	Triode- Pen- todes
Com- puter Types				5844 5963 6211-A 6350 6463 7044						6197			
Low- Micro- phonic Types	l			12A Y7									
Mobile- Com- munica- tions Types		6663	6664	6679 6680 6681		7724	7167 7717	6661 6676	6660 6662	6669 6677 7701			6678 7716 810 2
Miscel- laneous		5R4- GYA		6AS7-GA 6DJ8 5998-A 6080 7025 7370	7247			6485 8136		6A K6 5824 6046 7189-A 7355 7408 7581 7581-A 8068	7239		
Low- Power Trans- mitting										2DF4 807 6146-A 6146-B 6550-A 6883-A 6883-B 7984 8106 8156 8908			

Type designations of miniature tubes are shown in italics.

THYRATRONS

INIKAIRONS											
Classification	DC Cathode Current in	Peak Inverse	Filament Voltage in	or Heater Current in	Types						
V	Amperes	Anode Voltage	Volts	Amperes							
Triodes	Amperes 0.025 0.075 0.5 0.5 1.0 1.5 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Anode Voltage 350 350 5000 5000 1250 1250 1250 1250 1250 12	Volts 6.3 6.3 2.5 2.5 2.5 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5	Amperes 0.25 0.6 5.0 6.3 7.0 10.0 7.5 9.0 4.5 9.0 4.5 9.0 9.0 12.0 12.0	*6D4 884 FG-81A 5557 6014/C1K 3C23 393A 5563A 578 710/6011 710L/7518 5559 5632/C3J 5720 5728 7725 7726 5544 414 6807						
	6.4 6.4 6.4 6.4 12.5 16.0 18.0	1500 1500 1500 1500 1500 10000 1250 1500	2.5 2.5 2.5 2.5 5.0 2.5 2.5 2.5	21.0 21.0 21.0 21.0 20.0 31.0 34.0	6808 6809 6858/760 6859/760P 5830 5665/C16J 5855						
Tetrodes	0.2 0.028 0.1 0.1 0.1 0.5 0.5 2.5 3.2 6.4	500 500 1300 1300 1300 1300 1300 500 500 1300 500 2500 2500 2000	6.3 6.3 6.3 6.3 6.3 2.5 2.5 6.3 5.0 5.0 5.0	0.15 0.15 0.6 0.6 0.6 0.6 5.0 2.5 7.0 4.5 5.0 10.0	*5663 *5696A *2D21 502A 2050A **5727 FG-97 FG-98A 6012 FG-154 5560 672A FG-105 FG-172						

PLANAR AND CERAMIC TYPES

				<u>-</u>					
Classifi- cation	Туре	Approx. Enve- lope Diam- eter	Type of Termi- nal	Maximu Plate Dissi- pation (Watts)	Current (Milli- amperes)	Gm	μ	Typical Operation	Useful Fre- quen- cies Extend to *
	2C40A	1.3"	Octal	6.5 ▲	ib = 25	5100	35	UHF Amp.	3370 MHz
	6299	0.5"	Coax.	2.0	ib = 12	15000	110	Low Noise UHF Amp.	3000 MHz
	6771	0.5"	Coax.	6.25 ▲	ib = 25	23000	90	UHF Amp.	4000 MH2
Triode Class A	7077 7296	0.3" 0.5"	Coax.	1.0 5.5	lik = 10 lik = 30	10000 16500	90 90	Low Noise UHF Amp. VHF Amp.	7500 MH ₂ 500 MH ₂
Operation		0.37	Lug(T) Lug	1.0	ik = 10	10500	94	Low Noise VHF Amn	500 MHz
Operation	7644	0.5"	Coax.	2.0	ib = 12	15000	110	Low Noise VHF Amp. Low Noise VHF Amp.	3000 MHz
	7768		Coax.	5.5	ik =30	50000	225	Low Noise RF Amp.	3000 MHz
	7784	0.5"	Coax.	2.0	ib = 12	15000	110	Low Noise VHF Amp.	3000 MHz
	8083	0.3"	Lug(T)	1.0	ik = 10	10500	94	Low Noise VHF Amp.	500 MHz
	2C39A	1.2"	Coax.	100 ▲	ik = 125	22000	100	UHF Power Amp.,	0500 3511
	2C39B	1.3"	Coax.	100	ik = 125	24800	95	Osc., or Freq. Mult. UHF Power Amp	2500 MH ₂
	2000	1.0	Coan.	100	1K - 120	24000	83	l Osc. or Frea Mult.	2500 MHz
	2C39WA	1.3"	Coax.	100	ik = 125	24800	95	UHF Power Amp.,	
					l.,			t Osc. or Fred Mult.	2500 MHz
	2C40A	1.3"	Octal	6.5 ▲	ib = 25	5100	35	UHF Power Amp., or	3370 MHz
	2C43	1.3"	Octal	12.0 ▲	ib =40	8100	50	Osc. UHF Power Amp., or	3370 MH2
	2049	1.0	Octas	12.0	10 - 10	3100	1 00	Osc.	3000 MH2
	3CX100A5	1.3"	Coax.	100 🛦	ik = 125	25000	100	UHF Power Amp.,	l .
			_					Osc., or Freq. Mult. UHF Power Amp.,	3000 MHz
	6442	0.5"	Coax.	8.0 ▲	ib = 35	16500	50	Osc., or Freq. Mult.	5000 MHz
	6771	0.5"	Coax.	6.25 ▲	ib = 25	23000	90	UHF Power Amp.,	3000 W1112
		!		1				Osc., or Freq. Mult. UHF Power Amp.,	6000 MHz
Triode	6897	1.3"	Coax.	100 ▲	ik = 125	24800	95	UHF Power Amp.,	
Class B	7289	1.0"	Coax.	100 🛦	ik = 125	25000	100	Osc., or Freq. Mult. UHF Power Amp.,	2500 MHz
Class D	1209	1.0	Coax.	100	IK = 125	20000	100	Osc., or Freq. Mult.	3000 MHz
or C	7296	0.5"	Lug(T)	5.5	ik =30	16500	90	VHF Power Amp.,	JOSO MILL
				İ			i	Osc., or Freq. Mult. UHF Power Amp.,	500 MHz
Operation	7391	0.5"	Coax.	2.25 ▲	ib = 15	11000	62	UHF Power Amp.,	*****
	7486	0.3"	Coax.	1.0	ik = 10	10500	90	Osc., or Freq. Mult. UHF Power Amp.,	6000 MHz
	7400	0.0	Coax.	1.0	14 - 10	10000	30	Osc., or Freq. Mult.	7500 MHz
	7588	0.5"	Lug(T)	5.5	ik =30	45000	175	Osc., or Freq. Mult. Low Noise VHF Amp.	500 MHz
	7720	0.3"	Lug	1.0	ik = 10	10500	90	VHF Power Amp.,	1
	7012	0.5%	C			40000		Osc., or Freq. Mult. VHF Power Amp.,	500 MHz
	7913	0.5"	Coax.	5.5	ik = 30	40000	100	Orc or Free Mult	3000 MHz
	8082	0.3"	Lug(T)	1.0	ik == 11	10500	90	Osc., or Freq. Mult. VHF Power Amp.,	0000 Miliz
					1			Usc., or rreq. Muit.	500 MHz
	GE12661	0.3"	Coax.	4.0	ik = 40	8500	40	Power Osc.	3000 MHz
	GE14501	0.3" 0.3"	Coax.	2.0	ik = 80 ik = 40	12500 12500	90	Power Amp. or Osc.	7500 MHz
	GE16411 GE16841	0.3"	Coax. Coax.	1.0	ik = 20	17000	75 78	Power Amp. or Osc. CW Amp. or Osc.	7500 MHz 7500 MHz
	2C40A	1.3"	Octal	4.0 ▲	ib = 2000	5100	35		3000 MHz
	2C42 2C43	1.3"	Octal	12.0	ik =4000	8000	48	Pulsed Osc. or Amp. UHF Oscillator	3370 MHz
		13"	Octal	12.0	ik = 4000	8100	50	Pulsed Osc. or Amp.	3370 MHz
	2C46	1.3"	Octal	12.0	ib = 40	3500	60	UHF Osc.	3370 MHz
Triode	6442 6771	0.5" 0.5"	Coax.	7.5 ▲ 5.0 ▲	ik =3750 ik =1950	16500 23000	50 90	Pulsed Osc. or Amp. Pulsed Osc. or Amp.	5000 MHz 5000 MHz
Pulse	7815	1.2"	Coax.	10.0	ip = 3000	23000		Pulsed Osc. or Amp.	3000 MHz
Operation		i]	lg = 5.0		1	l under oper or ramp.	1
	7815R	1.3"	Coax.	100 🔺	ip = 3000			Pulsed Osc. or Amp.	3000 MHz
	7910	0.3"	Coon		lg = 5.0	10000	75	But and One an Amer	7500 3/11-
	7911	0.5"	Coax. Coax.	1.5 6.5	ik = 800 ik = 3500	16000 25000	58	Pulsed Osc. or Amp. Pulsed Osc. or Amp.	7500 MHz 6000 MHz
Triode	GE13971	0.6"	Coax.	6.5	ik = 1810	25000	58	Pulsed Osc. or Amp.	6000 MHz
Pulse	GE14811	0.6*	Coax.	6.5	ik = 1200	29000	60	l Pulsed Osc.	6000 MHz
Operation	GE15371	0.5"	Coax.	10.0	ik = 2000	22000	85	Pulsed Osc. and Amp.	6000 MHz
(contd)	GE16231	0.6"	Coax.	6.5	ik =600	50000	225	Pulsed Amp.	3000 MHz
	GE17241 GE17701	0.7" 0.7"	Coax.	10.0	ik =3000	13500 26000	95	Pulsed Osc. and Amp. Pulsed Osc. or Amp.	3000 MHz
	GE18651	0.6"	Coax. Coax.	30.0 6.5	ik = 6000 ik = 1860	22000	58 58	Pulsed Osc. or Amp. Pulsed Osc. or Amp.	3000 MHz 6000MHz
	GL51025	1.2"	Coax.	110	ik = 15000	1		Pulsed Osc. of Amp.	1300 MHz
	GL51074		Coax.	iio		l		High Voltage Version	l
					L	<u> </u>	<u> </u>	of GL51025	1300 MHz
	2B22	1.3"	Octal	Tube V	oltage Dro	p;		Power Detector or	1500 MHz
	7266	0.3"	Octal		Milliampe			Mon.	7500 3412-
Diodes	1200	0.5	Octai	l 1 Volt	/oltage Dro @ =1.0 Mi	lliamne	res	Instrument Detector	7500 MHz
2	7841	0.3"	Octal	Tube Voltage Drop: Sign				Signal Detector	7500 MHz
	1			2.6 Volts @ 5.0 Milliamperes					
	CLEGE	r 0#	C	b=5	Milliamper	es maxi	mum	B A Oc-	000 1411-
	GL6251	5.0"	Coax.	25KW	1K = 8000	<u> </u>	20	Power Amp. or Osc.	220 MHz

PLANAR AND CERAMIC TYPES (Cont'd)

Classifi- cation	Туре	Approx. Enve- lope Diam- eter	Type of Termi- nal	Piate Dissi-	m Ratings Current (Milli- amperes)	Gm	μ	Typical Operation	Useful Fre- quen- cies Extend to *
Tetrodes	GL6283 GL6848 GL6942 GL7399 GL7399 GL8513 GL8513 GL8513 GL51038 GL51038 GL51064 GL51065 GL51070	2.3" 4.0" 3.5" 2.3" 2.7" 2.0" 1.7" 2.0" 4.0"	Coax.	500 2.0KW 1.5KW 500 3.5KW 500 4.0KW 150 600 600 2.75KW 600 600	ib = 700 ib = 10000		14 20 17 10.5 20 14 20 	Mil. Comm. System Power Amp. or Osc. UHF Amp. or Osc. Pulsed Amp. or Osc. Power Amp. or Osc. Power Amp. or Osc. Power Amp. or Osc. Pulsed Amp. or Osc. Pulsed Amp. UHF-UHF Mil. Comm. Detector Equip. CW Version of GL51065	1250 MHz 800 MHz 1000 MHz 1500 MHz 800 MHz 1500 MHz 1500 MHz 1500 MHz 1500 MHz 1500 MHz 1500 MHz 1500 MHz

^{*}The frequency listed is one at which significant application data are available or expected, and does not necessarily represent an absolute frequency limit.

(T) Provision is made for mounting with T-bolt.

At this dissipation level, anode cooling is usually necessary to prevent exceeding maximum permissible seal temperature.

IGNITRONS

		Maximu	n Electrical	Ratings		*
Classification	Supply Volts RMS	Maximum Demand KVA	Corresponding Average Anode Current Amperes	Maximum Average Anode Current Amperes	Corre- sponding Demand KVA	Туреѕ
	250-600	300	12.1	22.4	100	GL-5550
	250-600	600	30.2	56	200	GL-5551A/GL-5551A-PC
	250-600	1200	75.6	140	400	GL-5552A/GL-5552A-PC
	250-600	2400	192	355	800 600	GL-5553B/GL-5553B-PC GL-5554
	2400	1200	75	113	1105	GL-5555
	2400	2400	135	207	2210	GL-5564
	2400	4800	270	414		GL-5504
		Thermostat V	ersion of Gi	-5554. Same	Katings	GL-6512
	Apply.	i Chermostat V	02-0012			
Resistance		i nermostat v	GL-6513			
Welding	Apply.	Thermostat V				
Control Service	Apply.	i nei mostat v	GL-6515			
Service	250-600	4800(1)	486	900	1600	GL-7151
	250-600	600	30.2	56	200	GL-7669/GL-7669-PC
	250-600	1200	75.6	140	400	GL-7671/GL-7671-PC
	250-600	2400	192	355	800	GL-7673/GL-7673-PC
	250-600	1800	135	220	600	GL-7681/GL-7681-PC
	250-600	1800	135	220	600	GL-7998/GL-7998-PC
	250-600	4800(1)	486	900	1600	GL-8205
	250-600	1000	43.2	75	200	GL-37250/GL-37250-PC
	250-600	1000	43.2	75	200	GL-37251/GL-37251-PC GL-37252/GL-37252-PC
	250-600	2000	108	150	380	GL-37252/GL-37252-FC GL-37253/GL-37253-PC
	250-600	2000	108	150	380	GL-37254/GL-37254-PC
	250-600	3000	224	400	1000 1000	GL-37254/GL-37254-FC
	250-600	3000	224	400	1000	GL-01200/GL-01200-1 C

IGNITRONS (Cont'd)

Classification	Peak Inverse Voltage Volts	Maximum Peak Anode Current Amperes	Corresponding Average Anode Current Amperes	Maximum Average Anode Current Amperes	Corresponding Peak Anode Current Amperes	Types
Frequency Changer Welding Control Service	1200 1500 1200 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500	600 480 3000 2400 1500 1200 600 480 1500 1200 3000 2400 2400 2250 1800 2250 1800	5 4 40 32 20 16 5 4 20 16 40 32 30 24 30	22.5 18 140 112 70 56 22.5 18 70 56 140 112 105 84 105	135 108 840 672 420 336 135 108 420 336 840 672 630 502	GL-5551A GL-5551A GL-5553B GL-5553B-PC GL-5822A GL-5822A-PC GL-7669-PC GL-7672 GL-7672-PC GL-7673-PC GL-7673-PC GL-7681 GL-7681 GL-7681-PC GL-7998-PC
	Peak Anode Voltage Volts Forward Inverse		Peak Anode Current Amperes	Typical Discharge Rate Pulse Per Minute	Time-	-
Capacitor Discharge Service	35,000 50,000 15,000 20,000 25,000 50,000	35,000 50,000 15,000 20,000 25,000 50,000	20,000 30,000 35,000 100,000 300,000 25,000	2 2 2 2 500 2	0.8 0.8 0.5 0.5 0.5 0.7	GL-5630 GL-6228 GL-7171 GL-7703** GL-37207 GL-37248**

⁽¹⁾ Maximum deruand current below 500 volts should not exceed 9600 amperes RMS. PC indicates plastic coated version.
**All ratings based on use of liquid cooling except GL-7171 (air cooled), GL-7703 & GL-37248 (liquid or air)

VIDICONS

Classification	Туре
Monochrome Film & CC TV Cameras	7038 8572 8604
Broadcast Color Television Cameras	7038V Z7929R,B,G 8134V 8572V
General use in CC TV and Educational TV Cameras	7262A 7735A 8573A 8134
Ruggedized use in Military and CC TV Cameras	7263A Z7912
High Quality CC TV, Broadacast and Educational TV Cameras	7735B 8507A 8541A
Low Cost CC TV and Educational TV Cameras	Z7911 Z7919
Low Light Level for CC TV and Educational Cameras	8484H
High Quality Medical X-Ray TV Cameras	7735BX 8541X 8573X
Extremely Low Light Level for CC TV and Educational Cameras	Z7975B Z7975HRB Z7996B Z7996HRB Z7927B Z7927HRB

X-RADIATION RATED RECOMMENDED REPLACEMENTS FOR HIGH VOLTAGE RECTIFIER AND SHUNT REGULATOR TUBES

HIGH VOLTA	GE RECTIFIE	RS			
Tube Type	Replacement X-Radiation Rated Version	Current GE Renewal Branding	Tube Type	Replacement X-Radiation Rated Version	Current GE Renewal Branding
1AD2	1AD2A	1BY2A/1AD2A	2V2		_
1AD2A	1AD2A	1BY2A/1AD2A	2V3G		
1AJ2			2X2		_
1AU2			2X2A	-	
1AU3			2Y2		-
1AX2			3A2	3A2A	
1AY2	1AY2A	1AY2A	3A2A	3A2A	
1AY2A	1AY2A	1AY2A	3A3	3A3C	3A3C/3AW3/3B2
1B3GT	1G3GTA	1G3GTA/1B3GT	3A3A	3A3C	3A3C/3AW3/3B2
1BC2 1BC2A	1BC2A 1BC2A	1BC2A 1BC2A	3A3B 3A3C	3A3C 3A3C	3A3C/3AW3/3B2
1BC2B	1BC2B	1BC2B	3AT2	3AT2B	3A3C/3AW3/3B2 3AT2B
1BH2	1BH2A	IBH2A	3AT2A	3AT2B	3AT2B
1BH2A	1BH2A	1BH2A	3AT2B	3AT2B	3AT2B
1BK2			3AW2	3AW2A	3AW2A
1BL2		**************************************	3AW2A	3AW2A	3AW2A
1BV2	-		3AW3	3A3C	3A3C/3AW3/3B2
1BX2	1X2C	1X2C/1BX2	3B2	3A3C	3A3C/3AW3/3B2
1BY2	1BY2A	1BY2A/1AD2A	3BF2		
1BY2A	1BY2A	1BY2A/1AD2A	3BL2	3BL2A	3BL2A
1DG3	1DG3	1DG3	3BL2A	3BL2A	3BL2A
1DG3A 1G3GT	1DG3A 1G3GTA	1DG3A	3BM2	3BM2A	3BM2A
1G3GTA	1G3GTA 1G3GTA	1G3GTA/1B3GT	3BM2A 3BN2	3BM2A	3BM2A
1H2	10301A	1G3GTA/1B3GT	3BN2A	-3BN2A 3BN2A	3BN2A 3BN2A
113	1K3A	1K3A/1J3	3BS2	3BS2B	3BW2/3BS2B/3BT2A
1J3A	1K3A	1K3A/1J3	3BS2A	3B\$2B	3BW2/3BS2B/3BT2A
1K3	1K3A	1K3A/1J3	3BS2B	3BS2B	3BW2/3BS2B/3BT2A
1K3A	1K3A	1K3A/1J3	3BT2	3BT2A	3BW2/3BS2B/3BT2A
1N2		-	3BT2A	3BT2A	3BW2/3BS2B/3BT2A
1N2A	_		3BW2	3BW2	3BW2/3BS2B/3BT2A
1S2		1004 (01/07	3C2		
1S2A		1S2A/DY87	3CA3	3CA3A	3CA3A
1T2 1V2		1V2	3CA3A 3CN3	3CA3A 3CN3B	3CA3A 3CN3B
1X2	1X2C	1X2C/1BX2	3CN3A	3CN3B	3CN3B
1X2A	1X2C	1X2C/1BX2	3CN3B	3CN3B	3CN3B
1X2B	1X2C	1X2C/1BX2	3CU3	3CU3A	3CU3A
1X2C	1X2C	1X2C/1BX2	3CU3A	3CU3A	3CU3A
1Y2		mann	3CV3	3CV3A	
1Z2			3CV3A	3CV3A	
2AH2	2BU2	2BU2/2AS2A/2AH2	3CX3	3DA3	3DA3/3CX3
2AS2	2AS2A	2BU2/2AS2A/2AH2	3CY3	3DB3	3DB3/3CY3
2AS2A	2AS2A	2BU2/2AS2A/2AH2	3CZ3	3CZ3A	3CZ3A
2 AV 2 2 AZ 2		2AV2	3CZ3A 3DA3	3CZ3A 3DA3	30Z3A
2B3	_		3DB3	3DB3	3DA3/3CX3 3DB3/3CY3
2BA2	_		3DC3	3DC3	3DC3
2BJ2	2BJ2A		3DF3	3DF3	3DF3
2BJ2A	2BJ2A		3DF3A	3DF3A	3DF3A
2BU2	2BU2	2BU2/2AS2A/2AH2	3DH3	3DH3	3DH3
2CN3A	2CN3B	2CN3B	3D13	3DJ3	3DJ3
2CN3B	2CN3B	2CN3B	3DR3	3DR3	3DR3
2J2	_		3DS3	3DS3	3DS3
_2L2			5642		-

HUNT REG	ULATORS				
Tube Type	Replacement X-Radiation Rated Version	Current GE Renewal Branding	Tube Type	Replacement X-Radiation Rated Version	Current GE Renewal Brandin
6BD4	6BK4C	6BK4C/6EL4A	6EJ4	6EJ4A	6EJ4A
6BD4A	6BK4C	6BK4C/6EL4A	6EJ4A	6EJ4A	6EJ4A
6BK4	6BK4C	6BK4C/6EL4A	6EL4	6EL4A	6EL4A
6BK4A	6BK4C	6BK4C/6EL4A	6EL4A	6EL4A	6EL4A
6BK4B	6BK4C	6BK4C/6EL4A	6EN4	6EN4	6EN4
6BK4C	6BK4C	6BK4C/6EL4A	6LC6	6LJ6A	6LJ6A/6LH6A
6BU4	_		6LH6	6LH6A	6LJ6A/6LH6A
6BU5	_	Name of the last o	6LH6A	6LH6A	6LJ6A/6LH6A
6EA4	6EH4A	6EH4A	6LJ6	6LJ6A	6LJ6A/6LH6A
6EF4	6EJ4A	6EJ4A	6LJ6A	6LJ6A	6LJ6A/6LH6A
6EH4	6EH4A	6EH4A	6MA6	6MA6	6MA6
6EH4A	6EH4A	6EH4A			

X-RADIATION SYMBOL DEFINITION

- ▲ The EIA Published Product Information, as of March 1, 1972, contains an X-radiation rating, as shown herein, for this tube type. Adequate shielding must be in place to limit X-radiation to a level consistent with Public Law 90-602 "Radiation Control for Health and Safety Act of 1968." For X-Radiation Characteristics, Controls, Measurements and Warning see JEDEC Publications 67A and 73A and the latest EIA Published Product Information for this type.
- ♠ The EIA Published Product Information, as of March 1, 1972, does not contain an X-radiation rating for this type. Replace only with the latest X-radiation rated version of the same type or an X-radiation rated equivalent as shown in the High Voltage Rectifier and Shunt Regulator Interchangeability chart. Adequate shielding must be in place to limit X-radiation to a level consistent with Public Law 90-602 "Radiation Control for Health and Safety Act of 1968."

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca J	pacitano Picofara	e in ds
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- pul	Grid- plate
OUA	Triode Detector	4D	14-1	5.0 DC	0.25	-	45	=	3.2	2.0	8.5
O1-A	Low-Mu Triode	4D	14-1	5.0 DC	0.25		135		3.1	2.2	8.1
OA2	Glow-Discharge Diode Voltage Regulator	5BO	5–3	-			Anode	supply	=185 v	olts d-c	min
OA3	Glow-Discharge Diode Voltage Regulator	4AJ	12-7	_			Anode	supply	=105 v	olts d-c	min
OA3A	Glow-Discharge Diode Voltage Regulator	4AJ	9-7	_		_	Anode	supply	=105 v	olts d-c	min
OA4-G	Gas Triode	4V	12-7	_			_	-		-	<u> </u>
OA5	Gas Pentode	6CB	T-X	-		_	_	T			_
OB2	Glow-Discharge Diode Voltage Regulator	5BO	5-3				Anode	supply	=133 v	olts d-c	min
ОВЗ	Glow-Discharge Diode Voltage Regulator	4AJ	12-7		-	_	Anode	supply	=125 v	olts d-c	min
ОВЗА	Glow-Discharge Diode Voltage Regulator	4AJ	9–7				Anode	supply	=130 v	olts d-c	min
OC2	Glow-Discharge Diode Voltage Regulator	5BO	5–3	_	_		Anode	supply	=115 v	olts d-c	min
OC3	Glow-Discharge Diode Voltage Regulator	4AJ	12-7			_	Anode	supply	=133 v	olts d-c	min
OC3A	Glow-Discharge Diode Voltage Regulator	4AJ	9-7		_	_	Anode	supply	=133 v	olts d-c	min
OD3	Glow-Discharge Diode Voltage Regulator	4AJ	12-7				Anode	supply	=185 v	olts d-c	min
OD3A	Glow-Discharge Diode Voltage Regulator	4AJ	9–7		_		Anode	supply	=185 v	olts d-c	min
OY4 OY4-G	Half-Wave Gas Rectifier	4BU	8-3 T-X				Pins 7	and 8 r	nust be	connec	ted
OZ4 OZ4-G	Full-Wave Gas Rectifier	4R	8-3 T-X	=			_	=	=	=	=
OZ4-A	Full-Wave Gas Rectifier	4R	8-1								_
1 A 3	High-Frequency Diode	5AP	5-2	1.4	0.15			-			=
l A4-p l A4-t	Remote-Cutoff RF Pentode	4M 4K	12-6	2.0 DC	0.06		180	67.5	5.0 ▲	11.0▲	0.007
A5-GT	Power Amplifier Pentode	6X	9-11	1.4 DC	0.05		110	110			_
l A 6	Pentagrid Converter	6L♦	12-6	2.0 DC	0.06		180	67.5	Osc I _{c1} R _{g1} = 5	=0.2 m 0,000 ol	a ims

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Detector	45	<u> </u>	0	1.5	-	30,000	666	20	T-	T - 1	OOA
Class A Amplifier	135	-	9.0	3.0	i –	10,000	800	8	<u> </u>	<u> </u>	O1-A
d-c operating				∫ Opera	ating vo	oltage = 155 oltage = 150 5 to 30 mil	volts d	-c) volts		OA 2
d-c operating	curren	t = 5 m t = 40 m	a min a max	Opera	ating vo	oltage = 100 oltage = 75 5 to 40 mil	volts d-	c) volts		OA3
d-c operating	curren curren	t = 5 m t = 40 m	a min a max	∫Oper	ating vo	oltage = 108 oltage = 75 5 to 40 mil	volts d-	c	5 volts		OA3A
Peak cathode c Starter anode d						rent = 25 n	na max;	***************************************	****		OA4-G
Peak Cathode 15 volts min	current	=10 m	a min;	Махр	ower in	put = 1.0 w	atts; A	node fi	ring vo	ltage =	OA5
d-c operating				∫ Opera	ating vo	oltage = 115 oltage = 105 5 to 30 mil	volts d	-c) volt		OB2
d-c operating	curren curren	t = 5 m t = 40 m	a min a max	∫ Oper	ating vo	oltage = 110 oltage = 90 5 to 40 mil	volts d-	С) volts		OB3
d-c operating				∫ Oper	ating vo	oltage = 125 oltage = 90 5 to 30 mil	volts d-	c ¯) volts		OB3A
d-c operating	current current	● = 5 ● =30	ma mir ma ma	I) Ioni	zation v		5 volts volts d	d-c -c			OC2
d-c operating				Oper	ating vo	oltage = 115 oltage = 105 5 to 40 mil	volts d	-c) volts		OC3
d-c operating d-c operating	curren	t = 5 m $t = 40 m$	a min a max	∫ Oper	ating vo	oltage = 127 oltage = 105 5 to 40 mil	volts d	-c) volts		OC3A
d-c operating	curren	t = 5 m $t = 40 m$	a min a max	Ioniz	ation vo	oltage = 160 oltage = 150 5 to 40 mil	volts d	-c -c			OD3
d-c operating	curren	t = 5 m $t = 40 m$	a min a max	∫ Oper	ating vo	oltage = 180 oltage = 150 5 to 40 mil	volts d	-c	5 volts		OD3A
Peak current = 95 volts d-c; pe	500 ma ak inve	max; d-erse volt	output age = 30	curren	t = 75 m					oltage =	OY4 OY4-G
Starter supply max d-c output voltage =880 v	= 90 m	per pla illiampe	te � = 3 res; pea	00 peal k curre	t volts i nt per p	nin; min d late = 270 r	-c outpo nilliamp	ıt ⊗ = 3 eres; m	0 millia ax peak	mperes; inverse	OZ4 OZ4-G
Full-Wave Rectifier	max p	eak inv	erse vol	tage =	880 volt	minimum s; minimu rrent per 1	m starte	er supp	rrent = ly volt	30 ma; age per	OZ4-A
Half-Wave Rectifier	Max o	i-c outp	ut curre e = 117	ent = 0 volts; r	5 ma; m nax pea	ax peak in k current =	verse ve 5.0 ma	oltage =	330 vo	lts; rms	1A5
Class A Amplifier	180	67.5	3	2.3	0.8	1,000,000	750			<u> </u>	1A4-p 1A4-t
Class A Amplifier	90 85	90 85	4.5 4.5	4.0† 3.5†	0.8† 0.7†	300,000 300,000	850 800		25,000 25,000		1A5-GT
Converter	180	67.5	3.0	1.3	2.4	500,000	300 #		sc Plate 0,000 ol .3 ma		1A6

Tube	Classification	X-Řa-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen	Caj P	acitano icofara	e in ds
Туре	by Construction	diation Rating	nec-	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and	Input	Out- put	Grid- Plate
1A7-G 1A7-GT	Pentagrid Converter		7Z 4	9-28 9-18	1.4 DC	0.05		110	Watts 60	Osc I _{cl} R _{gl} = 20	=0.035 00.000 c	ma hms
1AB5	Remote-Cutoff RF Pentode		5BF	9-32	1.2 DC	0.130	1.0	150	150 2 0.3	2.8	4.2	0.25
1AC5 ●	Power Amplifier Pentode		8CP	3-5	1.25 DC	0.04		67.5	67.5			
1AD2 ■	Half-Wave High- Voltage Recti- fier	(A)	12GV	9-98	1.25	0.2		Tube \ 225 vo	oltage lts at 7.	Drop: 0 ma d-	c	*
1AD2-A 1	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	12GV	9-144	1.25	0.2		Tube \ 225 vo	oltage its at 7.	Drop: 0 ma d-	с	
1AD4 ●	Sharp-Cutoff RF/AF Pentode		1AD4	2-1	1.25 DC	0.1		45	45	4.5	4.5	0.01 ♣
1AD5 ●	Sharp-Cutoff RF Pentode		8CP	3-5	1.25 DC	0.04		67.5	67.5	1.9	3.0	0.009
1AE4	Sharp-Cutoff RF Pentode		6AR	5-2	1.25 DC	0.1		90	90	3.6	4.4	0.008
1AE5 ●	Heptode Mixer		1AE5	T-X	1.25 DC	0.06		45	45	Ici (Inj.	ection) 00,000	=15 µa
1AF4	Sharp-Cutoff Pentode		6AR	5-2	1.4 DC	0.025		110	90	3.8	7.6	0.009
1AF6	Diode Sharp- Cutoff Pentode		6AU	52	1.4 DC	0.025		110	110	2.5	4.8	0.17
1AG4 ●	Power Amplifier Pentode		512AX	2-1	1.25 DC	0.04		90	90			-=-
1AG5 🏟	Diode-Pentode		1AG5	2-1	1.25	0,03		50 ₪	50 €			
1AH4 •	RF Pentode		IAD4	2-1	1.25 DC	0.04		90	90	3.5 ▲	4.5 ▲	0.01 💠
1AJ2 ■	Half-Wave High- Voltage Recti- fier	(A)	12EL	9-98	1.25	0.2		Tube V 140 vol	oltage l ts at 7.0	Drop:) ma d-	С	
1AJ5⊕	Diode Sharp- Cutoff Pentode		1AG5	2-1	1.25 DC	0.04		90	90	1.7	2.4	0.10
1AK4 @	Sharp-Cutoff RF Pentode		1 A D4	2-1	1.25 DC	0.02		90	90	3.5 ▲	4.5 ▲	0.01
1AK5 ●	Diode Sharp- Cutoff Pentode		1AG5	2-1	1.25 DC	0.02		90	90	2.0	2.7	0.10 ♣
1AM4	Remote-Cutoff RF Pentode		6AR	5-2	1.4 DC	0.025		90	67.5	3.6 ▲	7.5 ▲	0.01 💠
1AQ5	Pentagrid Converter		7AT ♥	5–2	1.4 DC	0.025		90	67.5	Osc Ici Rgi = 10	=0.14 00,000	ma ohnis
1 A R 6	Diode Sharp- Cutoff Pentode		6AU	52	1.4 DC	0.025		90	90			<u> </u>
1AS6	Diode Sharp- Cutoff Pentode		6BW	5-2	1.4 DC	0.025		90	90	_		_
1ÀU2	Half-Wave High- Voltage Recti- fier		9U	6–2	1.1	0.19	_	Tube 100 vo	Voltage olts at 4	Drop: .5 ma d	-c	
IAU3	Half-Wave High- Voltage Recti- fier	(A)	3 C	12–18	1.25	0.2		Tube 225 vo	Voltage olts at 7	Drop: .0 ma d	-c	
1AX2	Half-Wave High- Voltage Recti- fier	•	9Y	6-7	1.4	0.65		Tube 200 vo	Voltage olts at 7	Drop: 0 ma d	-c	

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— $\boxed{\triangle}$ —X-Radiation Rated, and $\boxed{\triangle}$ —No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

† Plate-to-plate. Maximum. \$ Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Converter	90	45	0	0.6	0.7	600,000	250 #	E _{ct} (O	sc Plate) =90	1A7-G 1A7-GT
Class A Amplifier	150 90	150 90	1.5 Rg ₁ = 1 meg	6.8 3.5	2.0 0.8	125,000 275,000	1350 1100	=			1AB5
Class A Amplifier	67.5 45 30	67.5 45 30	4.5 3.0 2.0	2.0 1.0 0.5	0.4 0.2 0.1	150,000 170,000 200,000	750 600 450	ΙΞ	25,000 40,000 50,000	0.015	1AC5 ●
TV Flyback Rectifier	22,000 50 ma.	verse ve volts); Termina t potent	max d-c als 4 an	Outnu	CHEPAN	$\begin{array}{ccc} & = & 26,00 \\ \text{ot} & & = & 0.5 \\ \text{sed as tie po} \end{array}$. ma. m		le ássaucs	الشنا	1AD2 ■
TV Flyback Rectifier	Max in 22,000 50 ma.	Verse V	oltage (max d-cals 4 and	d-c and c output d 10 ma	peak) t curren ay be us	■ = 26,00 at ♦ = 0.8 ed as tie po	00 volts 5 ma; m 5 ints for	(d-c conax pea compo	omponer k currer nents at	nt ∰ = nt ⊕ = or near	1AD2-A
Class A Amplifier	45	45	R _{g1} = 2 meg	3.0	0.8	500,000	2000		_	-	1AD4 🌒
Class A Amplifier	67.5 30	67.5 30	0	1.85 0.45	0.75 0.16	700,000	735 430	=			1AD5 ●
Class A Amplifier	90	90	0	3.5	1.2	500,000	1550		=		1A E4
Mixer	45	45	0	0.9	2.0	200,000	200 #	_		<u> </u>	1AE5 ●
Class A Amplifier	90 67.5	90 67.5	0	1.8 1.2	0.55 0.32	1,800,000 2,200,000	1050 925	=	E		1AF4
Class A Amplifier	90 67.5	90 67.5	0	1.1	0.4 0.25	2,000,000 2,800,000	600 550				1AF5
Class A Amplifier	41.4	41.4	3.6	2.4†	0.6†	180,000	1,000		12,000	0.035	1AG4 ⊕
Class A Amplifier	45 22.5	45 22.5	2.0	0.28 0.17	0.12 0.043	2,500,000 700,000	250 235	=	=		1AG5 ●
Class A Amplifier	45	45	R _{g1} = 5 meg	0.75	0.2	1,500,000	750				1AH4 🌑
TV Flyback Rectifier	22,000 50 ma.	verse ve volts); Termina t potent	max d-c als 2 an	d-c and outpu d 10 ma	peak) t curren ay be us	 	00 volts 5 ma; m pints for	(d-c co ax pea compo	omponer k currer nents at	nt 🔷 = nt 🗣 = or near	1AJ2 ■
Class A Amplifier	45	45	$\hat{R}_{g1} = 5 \text{ meg}$	1.0	0.3	300,000	425	_	I =	<u> </u>	1 AJ5 ⊚
Class A Amplifier	45	45	R _{g1} = 5 meg	0.75	0.2	1,500,000	750				IAK4 🏽
Class A Amplifier	45	45	$R_{g1} = 5 \text{ meg}$	0.5	0.2	400,000	280		=		1 A K5 ●
Class A Amplifier	90	67.5	0	2.4	0.9	500,000	350			_	1AM4
Converter	90	45	0	0.64		800,000	250 #		_		1AQ5
Class A Amplifier	67.5	67.5	0	0.9	0.25	800,000	500		_		1AR5
Class A Amplifier	67.5	67.5	0	0.9	0.25	800,000	500				1AS5
TV Focus Rectifier	volts);	max d-c	output	t currer	ու 🏵 🖚	= 8,250 v 0.6 ma; m not be use	ax peal	currer	nent 🏶 nt 🚸 =	= 7,000 11 ma.	1AU2
TV Flyback Rectifier	Max in 26,000 50 ma.	verse ve volts); Socket	oltage (max d-c terminal	d-c and output is 4 and	peak) t curren 6 may	 	00 volts ma; m tie poin	(d-c co ax pea ts for co	k currer omponer	ıt 🏶 =	1AU3
TV Flyback Rectifier	Max in 20,000 Socket	verse v	oltage nax d-c ls 3 and	(d-c an	d peak curren) (20) = 25 t = 0.5 ma d as tie po	.000 vo	lts (d-c beak cu	compo	45 ma.	1AX2

Tube	Classification by	X-Ra-	Base Con-	Out-	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen		acitance icofarad	
Туре	Construction	diation Rating	nec- tions	Dwg.	Volts	Amps		Volts	Volts and Watts	Input	Out- put	Grid- Plate
1AY2	Half-Wave High- Voltage Recti- fier	(A)	1AY2	9-128	1.25	0.2	_	Tube V 75 volt	oltage s at 7.0	Drop:		
IAY2-A	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	1AY2	9-128	1.25	0.2		Tube V 100 vo	/oltage lts at 7.	Drop: 0 ma d-	c	***************************************
B3-GT	Half-Wave High- Voltage Recti- fier	(A)	3C	9-51 or 9-52	1.25	0.2	_	Tube V 100 vo	/oltage lts at 7.	Drop: 0 ma d-	c	
1B4-p	Sharp-Cutoff RF Pentode		4 M	12-6	2.0 DC	0.06	=	180	67.5	5.0 ▲	11 🛦	0.007
1B5/25-S	Duplex-Diode Medium-Mu Diode		6M	12-5, 9-26	2.0 DC	0.06		135	_	1.6▲	1.9▲	3.6 ▲
1B7-G 1B7-GT	Pentagrid Converter		72♦	9-28 9-18	1.4 DC	0.1		110	65	Osc Ici Rgi = 2	= 0.035 00,000 c	ma hms
IB8-GT	Diode-Triode Power Ampli- fier Pentode		8AW	9-17	1.4 DC	0.1	_	110 110	110	Pentod	e Section	n
1 BC2	Half-Wave High- Voltage Recti- fier	•	9RG	6–18	1.25	0.2	_	Tube V 80 volt	oltage s at 7.0	Drop: ma d-c		
1 BC2-A	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	9RG	6-18	1.25	0.2		Tube V 80 volt	oltage s at 7.0	Drop: ma d-c		
1 BC2- B ●	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	9RG	6-18	1.25	0.2	_	Tube '80 vol	Voltage ts at 7.0	Drop: mad-c		
BH2	Half-Wave High- Voltage Recti- fier	(A)	9RG	T-X	1.25	0.2	_	Tube 80 vol	Voltage is at 7.0	Drop: ma d-c		
BH2-A	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	9RG	T-X	1.25	0.2		Tube \ 80 vol	Voltage is at 7.0	Drop: ma d-c		
BK2	Half-Wave High- Voltage Recti- fier	(A)	9Y	6-7	1.4	0.55	_	Tube 100 vo	Voltage Its at 11	Drop: l ma d-o		
BL2	Half-Wave High- Voltage Recti- fier	(A)	1A¥2	6-19	1.25	0.2	_	Tube 1 130 vo	Voltage lts at 7.	Drop: 0 ma d-	e	
BV2	Half-Wave High- Voltage Recti- fier	(A)	1BV2	T-X	1.25	0.2	_	Tube 1	oltage las at 7.0	Drop: ma d-c		
BX2	Half-Wave High- Voltage Recti- fier	0,5 mR/hr	9Y	6–7	1.25	0.2		Tube 1	Voltage lts at 7.	Drop: 0 ma d-	c	
BY2 ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12HZ	9-98	1.25	0.2	_	Tube ' 225 vo	Voltage lts at 7.	Drop: 0 ma d-	c	
BY2-A ■	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	12HZ	9-144	1.25	0.2	_	Tube \ 225 vo	Voltage Its at 7.	Drop: 0 ma d-	c	

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A - X-Radiation Rated, and A - No X-Radiation Rating.

Compactron.
† Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. ⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Voits	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Flyback Rectifier	Max in 22,000 50 ma.	verse vo volts); i	oltage (e nax d-c	d-c and output	peak) curren		00 volts ma; m	(d-c co ax peal	mnone	nt · =	1AY2
TV Flyback Rectifier	Max in	verse vo volts); i	oltage (c nax d-c	d-c and output	peak) curren	● = 26,00 t ◆ = 0.5	00 volts ma; m	(d-c co ax peal	mpone: k curre	nt 🖲 =	1AY2-A
TV Flyback Rectifier	22,000 50 ma.	volts); 1 Socket t	nax d-c erminal	output s 4 and	6 may		ma; m	ax peal	k curre		1B3-GT ●
Class A Amplifier	180 90	67.5 67.5	3.0 3.0	1.7 1.6	0.6	1,500,000	650	I —	I	7-1	Í B4-p
Class A Amplifier	135	-	3.0	0.8	0,7	1,000,000 35,000	575	20			1B5/25-5
Converter	90	45	0	1.5	1.3	350,000		$E_{c2} = 0.$ $I_{c2} = 1.$) =90	1B7-G 1B7-GT
Class A Amplifier Class A	90 90	90	6.0	6.3† 0.15	1.4†	240,000	1,150 275	_	14,00	0 0.210	1B8-GT
Amplifier TV Flyback Rectifier	15,000 45 ma.	volts);	max d- termin	c outpu	it currei	 ■ = 18.0 nt ◆ = 0. ed as tie p 	5 ma:r	nax nea	k curre	ent 🕸 =	1 BC?
TV Flyback Rectifier	Max ii 15,000 45 ma.	verse v	oltage max d- termin	c outpu	t currer		5 ma: r	nax nea	k curre	>ntona ≔	1BC2-A
TV Flyback Rectifier	1 *** ********************************	nverse v volts); Socket it poten	termin	(d-c and c outpu al 7 ma	d peak) it currei iy be us		00 volt: 5 ma; r oint for	s (d-c c nax pea compo	ompone k curre nents a	ent 🖲 = ent 🚸 = t or near	1 BC2-B
TV Flyback Rectifier	45 ma.	volts);	max d- termin	c outou	it currei	 = 18.0 nt	ã ma:r	nav nes	k curre	•nt a6∞ = 1	1BH2 ●
TV Flyback Rectifier	15,000 45 ma.	volts):	max d- termin	c outnu	it currer		5 ma: r	nax nea	k curre	ent 🖦 =	1 BH2-A
TV Flyback Rectifier	20,000 Socket filamer	volts); i termina it poten	max d-c ils 3 an tial.	output d 7 ma	current y be use	 ♦ = 24,0 ♦ = 0.88 ed as tie po 	ma; max oints for	compo	urrent nents a	♦ 44 ma. t or near	1BK2 ●
TV Flyback Rectifier	Max ii 18,000 45 ma.	nverse v volts);	oltage max d-	d-c and c outpu	d peak) it currei		00 volt: 5 ma; r	s (d-c c nax pea	ompone k curre	ent 🗣 =	1 BL2
TV Flyback Rectifier	15,000 45 ma.	volts):	max d- termin	couton	f currer		5 mar r	may 000	de correr	- & -I	1BV2
TV Flyback Rectifier	Max ii 18,000 45 ma.	IVerse V	oltage max d- termina	c outpu Is 3 and	i peak) it currer i 7 may		00 volts 5 ma; r tie poir	d-c c nax pea ts for c	ompone k curre ompone	ent 🌢 = ent 🚸 = ents at or	1BX2
TV Flyback Rectifier	Max in 22,000 50 ma.	nverse v	oltage max d- termina	(d-c and c outpu ls 3, 4,	t currer	■ = 26,0 nt = 0.) may be us	5 mar r	nav nea	k corre	nt 🖎 🕳	1BY2 =
TV Flyback Rectifier	Max in 22,000	volts):	oltage (d-c and	t currer	= 26.0 at $ = 0.0 $ may be us	5 mar r	nav nas	b corre	m + 🙈 — i	1BY2-A ■

Tube	Classification	X-Ra-	Base Con-	Out		Fila-	Max. Plate	Max.	Max. Screen	Input Out- Gr		
Туре	by Construction	diation Rating	nec- tions	Dane		ment Amps	Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
163	Medium-Mu Triode		5CF	5-2	DC	0.05	_	110		0.9	4.2	1.8
1C5-GT	Power Amplifier Pentode		6X	9-11	1.4 DC	0.1		110	110			=
1C6	Pentagrid Converter		6L♦	12-6	2.0 DC	0.12	0,3	180	67.5 0.2	Osc I _{el} R _{gl} = 50	=0.2 m 0,000 of	a ims
1C7-G	Pentagrid Converter		7 Z ♦	12-8	2.0 DC	0.12	0.3	180	67.5 0.2	Osc I_{ci} $R_{gi} = 56$	=0.2 m 0,000 of	a ims
1C8 ●	Pentagrid Converter		8CN	3-2	1.25 DC	0.04		67.5	45	Osc I _{cl} R _{g1} = 10	=0.070 00,000 c	
1D3 ●	Low-Mu High Frequency Triode		8DN	3–2	1.25 AC/DC	0.3		110 ছ		1.0	1.0	2.6
1 D5-Gp	Remote-Cutoff RF Pentode		5Y	12-8	2.0 DC	0.06		180	67.5	5.0 ▲	11.0 🛦	0.00
l D5-Gt	Remote-Cutoff RF Tetrode		5R	12-8	2.0 DC	0.06		180	67.5		_	_
1 D7-G	Pentagrid Converter		72♦	12-8	2.0 DC	0.06		180	67.5	Osc I _{cl} R _{gl} = 5	=0.2 m 0,000 o	na hms
1D8-GT	Diode-Triode		8AJ	9-17	1.4 DC	0.1		110	110		e Section	
	Power Ampli- fier Pentode							110		Triode	Section	
1DG3	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	8ND	9–168	1,25	0.2	_	Tube 1 225 vo	Voltage lts at 7.	Drop: 0 ma d-c	:	
1DG3-A	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	8ND	9-168	1.25	0.2	_	Tube 225 vo	Voltage Its at 7	Drop: .0 ma d	-c	
1DN5	Diode-Pentode		6BW	5-2	1.4 DC	0.05		90	90	_	=	-
1DY4¶	UHF Triode Oscillator		7DK	5-2	1.6	0.6	1.5 ◈	135 ◈		3.5	1.15	2.0
1DY4-A	UHF Triode Oscillator		7DK	5-1	1.6	0.6	1.5 🏶	135 ◈		3.5	1.15	2.0
1E4-G	Medium-Mu Triode		5S	9-25	1.4 DC	0.05	_	110		2.4	6.0	2.4
1E5-Gp	Sharp-Cutoff RF Pentode		5Y	12-8	2.0 DC	0.06		180	67.5	5.0 ▲	11.0 ▲	0.00
1 E7-G 1 E7-GT	Twin-Pentode Power Amplifier		8C	12-7 9-11, 9-4 1	2.0 DC	0.24	1.5♠	135	135 0.5	Each S Both S in Push	ections	
1 E8 ⊚	Pentagrid Converter		8CN	3-5	1.25 DC	0.04	_	67.5	45	Osc Ici	=0.070 00,000	ma
1F4	Power Amplifier Pentode		5K	14-1	2.0 DC	0.12	1.75	180	180 0.75		-	
1 F5-G	Power Amplifier Pentode		6X	12-7	2.0 DC	0.12	1.75	180	180			=
1 F6	Duplex-Diode Sharp-Cutoff Pentode		6W	12-6	2.0 DC	0.06	0.	180	67.5 0.05	4.0 ▲	9.0 ▲	0.00
1F7-GH 1F7-GV	Duplex-Diode Sharp-Cutoff Pentode		7AF	12-8	2.0 DC	0.06	_	180	67.5	3.8	9.5	0.01
IG3-GT ●	Half-Wave High- Voltage Recti- fier	(A)	3C	9-53 or 9-54	1.25	0.2	_		oltage its at 7.	Drop: 0 ma d-	c	
IG3-GTA	Half-Wave High-	0.5	3C	T-X	1.25	0.2	+	Table 1	oltage	T)		

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions-

A-X-Radiation Rated, and A-No X-Radiation Rating.

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. #Maximum. Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Voits	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhor	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	90 90		3.0	1.4 4.5		19,000 11,200	760 1,300	14.5 14.5		_	1C8
Class A Amplifier	90 83	90 83	7.5 7.0	7.5† 7.0†	1.6†	115,000 110,000	1.550 1.500	=	8,000 9,000		1C5-GT
Converter	180	67.5	3.0	1.5	2.0	700,000		E _{c2} (O: thru 20 I _{c2} =4.0	c Plate)	=180	1C6
Converter	180	67.5	3.0	1.5	2.0	700,000	325 #	Ect (Os	c Plate)	=180 ms	1C7-G
Converter	67.5	67.5	0	1.0	1.5	400,000	150 #		0,000 oh	ms	1C8 •
Class A Amplifier	90		5.0	12.5			3,400	8.7			1D3 •
Class A Amplifier	180	67.5	3.0	2.3	0.8	1,000,000	750		-	-	1 D5-Gp
Class A Amplifier	180	67.5	3.0	2.2	0.7	600,000	650	-	- 1		1 D5-Gt
Converter	180	67.5	3.0	1.3	2.4	500,000	300 #	Ecs (Osthru 20 Ics = 2.3	c Plate) ,000 oh:	=180 ns	1D7-G
Class A Amplifier	90	90	9.0	5.0	1.0	200,000	925		12,000	0.20	1 D8-GT
Class A Amplifier	90	-	0	1.1	_	43,500	575	25	-	-	
TV Flyback Rectifier	22,000 50 ma.	verse ve volts); Socket i ament p	max d-e termina	c output is 1 and	peak) curren 7 may	■ = 26,00 it = 0.5 be used as	00 volts i ma; п tie poin	(d-c conax pea ts for co	mponen k curren omponer	t ® ≔ it ŵ ≖ its at or	1DG3
TV Flyback Rectifier	Max in 22,000 50 ma.	verse ve volts); Socket i	oltage (max d-o ermina	d-c and output	peak) curren 7 may	18 = 26,00 at ♦ = 0.5 be used as	00 volts ma; n tie poin	(d-c co nax peal ts for co	mponen k curren omponen	it ® = it ⊗ = its at or	1DG3-A ●
Class A Amplifier	67.5	67.5	0	2.1	0.55	600,000	630	_			1DN5
Class A Amplifier	90	_	R _k == 180	10.4	_	-	11,000	28	_	-	1DY4¶
Class A Amplifier	90		R _k == 180	10.4		_	11,000	28	_		1DY 4-A¶
Class A Amplifier	90 90		0 3.0	4.5 1.4		11,200 19,000	1,300 760	14.5 14.5		=	1E4-G
Class A Amplifier	180 90	67.5 67.5	3.0 3.0	1.7 1.6	0.6 0.7	1,500,000 1,000,000	650 600		=	$\equiv \downarrow$	1E5-Gp
Class A Amplifier Class A Amplifier	135 90 135	135 90 135	4.5 3.0 7.5	7.5† 3.8† 7.0†	2.2† 1.1† 2.0†	260,000 340,000	1,425 1,150	=	16,000 20,000 24,000 1	0.29 0.11 0.575	1È7-G 1E7-GT
Converter	67.5	67.5	0	1.0	1.5	400,000	150 #	R _{g2} = 2	0,000 ol	hms	1E8 ●
Class A Amplifier	135 90	135 90	4.5 3.0	8† 4	2.4† 1.1	200,000 240,000	1,700 1,400		16,000		1F4
Class A Amplifier	135 90	135 90	4.5 3.0	8†	2.4†	200,000 240,000	1,700 1,400	=	16,000	0.31	1F5-G
Class A Amplifier	180	67.5	1.5	2.2	0.7	1,000,000	650	_	_		1 F6
Class A Amplifier	180	67.5	1.5	2.2	0.7	1,000,000	650	T -	-	-	1F7-GH 1F7-GV
TV Flyback Rectifier	21,000 Socket	volts) ; : termina	max d-o	d 6 may	curren	t = 0.5 ma d as tie po be connecte	a; max ints for	peak cu compos	rrent == nents at	50 ma	1G3-GT
TV Flyback Rectifier	Mar in		oltomo /	d a and	neak)	 (a) = 26,00 (b) = 0.5 (c) be used as may be con 	00 male	(d.c.c	ampanar	nt 🖲 = nt 🏟 = nts at or	1G3-GTA

Tube	Classification	X-Řa-	Base Con-	Out-	Fila-	Fila-	Max. Plate	Max. Plate	Max. Screen	Cap P	acitance icofarad	e in Is
Туре		diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
1G4-GT	Medium-Mu Triode		5 S	9-11	1.4 DC	0.05		110		2.2 ▲	3.4 ▲	2.8 ▲
1G5-G	Power Amplifier Pentode		6X	12-7	2.0 DC	0.12	1.25	135	135 0.6			
1Ģ6-GT	Twin-Triode Power Amplifier		7AB	9-11 or 9-41	1.4 DC	0.1		110	-	_	_	
1H2 •	Half-Wave High- Voltage Recti- fier	(A)	9LX	6-9	1.4	0.55	_	Tube V 100 vol	oltage l ts at 7.6	Drop:) ma d-	2	
1H4-G 1H4-GT	Medium-Mu Triode		5S	12-7 9-11.	2.0 DC	0.06	_	180	-	Single	Tube	
	_	<u> </u>		9-41							s Push-	
1H5-G 1H5-GT	Diode High-Mu Triode		5Z	9-28 9-18	1.4 DC	0.05		110		0.75	4.6	1.1
1H6-G 1H6-GT	Duplex-Diode Medium-Mu Triode		7AA	12-7 9-11, 9-41	2.0 DC	0.06	-	135	_	-	-	-
1J3 •	Half-Wave High Voltage Recti- fier	(A)	3C	9–51 or 9–52	1.25	0.2	_	Tube V 225 vol	oltage ts at 7.0	Drop: ma d-c	,	
1 J3-A	Half-Wave High Voltage Recti- fier		3C	9-51 or 9-52	1.25	0.2	_	Tube V 225 vo	/oltage lts at 7.0	Drop:) ma d-c		
1J5-G	Power Amplifier Pentode		6X	14-3	2.0 DC	0.12	1=-	135	135	ī —	-	-
1J6-G 1J6-GT	Twin-Triode Po Amplifier	wer	7AB	12-7 9-16	2.0 DC	0.24		135		Во	th Sect in Push	ions n-pull
1 K3	Half-Wave High Voltage Recti- fier	•	3C	9-53 or 9-54	1.25	0.2	_	Tube 225 vo	Voltage lts at 7.0	Drop:) ma d-c		
1K3-A	Half-Wave High Voltage Recti- fier	- 0.5 mR/hr	3C	T-X	1.25	0.2	_	Tube 225 vo	Voltage olts at 7	Drop: 0 ma d-	·c	
1L4	Sharp-Cutoff RI Pentode	,	6AR	5-2	1.4 DC	0.05	=	110	90	3.6 ▲	7.5 ▲	0.008
1 L6	Pentagrid Converter		7DC♦	5-2	1.4 DC	0.05	_	110	65	Osc Ict Ret = 2	=0.035 00,000	ma ohms
1LA4	Power Amplifier Pentode		5AD	9-30	1.4 DC	0.05		110	110	=	_	-
1LA6	Pentagrid Converter		7AK♦	9-30	1.4 DC	0.05	_	110	65	Osc Iel Re1 = 2	=0.035 00,000	ma ohms
iLB4	Power Amplifier Pentode	· [5AD	9–30	1.4 DC	0.05	_	110	110	_	<u> </u>	-
1LB6	Pentagrid Mixe		8AX	9-30	1.4 DC	0.05		90	67.5	E _{cs} (In	jection) ak	=10
1LC5	Sharp-Cutoff R. Pentode	F	7AO	9-30	1.4 DC	0.05	_	110	45	3.2	7.0	0.007
1LC6	Pentagrid Converter	1	7AK♦	9-30		0.05		110	45	Osc Icl R _{g1} = 2	=0.035 00,000	ma ohms
1LD5	Diode Sharp-Cu Pentode	toff	6AX	9-30	1.4 DC	0.05	_	90	45	3.2	6.0	0.18
īLE3	Medium-Mu Triode		4AA	9-30	1.4 DC	0.05		110		1.7	3.0	1.7
îL F 3	Medium-Mu Triode	† –	4AA	9-30	1.4 DC	0.05		110		1.7	3.0	1.7
1LG5	Semi-Remote- Cutoff RF Pentode		7A0	9-30		0.05	_	110	110	3.2	7.0	0.007
1LH4	Diode High-Mu Triode		5AG	9-30	1.4 DC	0.05	-	110	 	2.0	2.4	1.2
1LN5	Sharp-Cutoff R. Pentode	F	7A0	930		0.05	_	110	110	3.0	8.0	0.007

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions-

Compactron.
Zero signal.
Per section.

^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating.

[†] Plate-to-plate.

Maximum.

Supply voltage.

[●]Subminiature type.

▲Without external shield.

•Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Piate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	90	<u> </u>	6	2.3	-	10,700	825	8.8	<u> </u>		1G4-G1
Class A Amplifier	135 90	135 90	13.5 6.0	8.7† 8.5†	2.5† 2.5†	160,000 133,000	1,550 1,500	=	9,000 8,500	0.55 0.25	1G5-G
Class A Amplifier ♠ Class B Amplifier ⊕	90 90	_	0	1.0 2.0†	_	40,000	825	33	12,000	0.675	1G6-G7
TV Flyback Rectifier	24,000 50 ma.	verse vo volts); i Socket t ament p	nax d-c ermina	output ls 3 and	peak) curren 7 may	 = 30,00 t = 0.5 be used as 	00 volts ma; m tie poin	(d-c co ax peal ts for co	mponen curren mponen	t • = t • = ts at or	1H2
Class A Amplifier Class B Amp.	180 90 157.5	ΙΞ	13.5 4.5 15.0	3.1 2.5 1.0†	ΙΞ	10,300 11,000 Input Sign	900 850 al = .26	9.3 9.3 0 watt	8,000‡	2.1	1H4-G 1H4-G1
Class A Amplifier	90		0	0.15	_	240,000	275	65	=	_	1H5-G 1H5-G1
Class A Amplifier	135		3.0	0.8	*****	35,000	575	20			1H6-G 1H6-G1
TV Flyback Rectifier	22,000 50 ma. near fil:	volts); Socket:ament p	max d-e termina otentia	outpu ls 4 and l: 1. 3. 3	t current 6 may 5 and 8	$\hat{\bullet}$ = 26,00 $\hat{\bullet}$ $\hat{\bullet}$ = 0.3 be used as may be con	ma; n tie poin nected	nax peal ts for co to termi	k curren omponer inal 7.	it ♦ = its at or	1J3.
TV Flyback Rectifier	Max in 24,000 50 ma. near fil	verse ve volts); Socket (ament p	oltage (max d- termina otentia	d-c and output ls 4 and l; 1, 3, 8	peak) t curren 6 may and 8	\Rightarrow = 28,00 t \Rightarrow = 0.5 be used as may be con	00 volts 5 ma; m tie poin nected	d-c co ax peal ts for co	mponen k curren omponen	t 🏶 = t 🕏 = its at or	1 J3-A
Class A Amplifier	135	135	16.5	7.0	2.0	105,300	950	-	135, 000	0.45	1J5-G
Class B Amplifier	135	<u> </u>	0	5.0†	_	Input Sign		-	10, 000‡	2.1	1J6-G 1J6-GT
TV Flyback Rectifier	50 ma.	Socket (ermina	ls 4 and	6 may	 = 26,00 t	tie: poin	ts for co	mponen	t 🏶 = it 🏶 = its at or	1K3
TV Flyback Rectifier	Max in 22,000		oltage (d-c and	peak)	1 = 26,00 t 1 1 2 1 1 1 1 1 1 1 1 1 1	00 volts	(d-c co	mponen	t 🖲 =	1 K3-A
Class A Amplifier	90	90	0			mav be con	nected t	o termi	nal 7.	its at or	
Converter		100	U	4.5	2.0	350,000	nected (to termi	nal 7.	ts at or	1L4
	90	45	-0	0.5	0.6	350,000 650,000	1,025 300 #	E _{c2} (Os	C Plate)	_	1L4 1L6
Class A Amplifier	90		0 4.5 4.5	4.5	2.0	350,000	1.025	E _{c2} (Os I _{c2} = 1.	C Plate) 2 ma 25,000 25,000	 -90 0.115 0.100	
	90	45	4.5	4.5 0.5 4.0†	0.6	350,000 650,000 300,000 300,000	1,025 300 #	E _{c2} (Os I _{c2} = 1.	C Plate) 2 ma 25,000 25,000 C Plate)	 -90 0.115 0.100	1 L.6
Amplifier	90 85	45 90 85	4.5 4.5	4.5 0.5 4.0† 3.5†	0.6 0.8† 0.7†	350,000 650,000 300,000 300,000	300 # 850 800	$ \begin{array}{c c} E_{c2} & \text{Os} \\ I_{c2} = 1. \\ \hline E_{c2} & \text{Os} \end{array} $	C Plate) 2 ma 25,000 25,000 C Plate)	 -90 0.115 0.100	1L6 1LA4
Amplifier Converter	90 85 90	90 85 45	4.5 4.5 0	4.5 0.5 4.0† 3.5† 0.55	0.6 0.8† 0.7† 0.6	350,000 650,000 300,000 300,000 750,000	1,025 300 # 850 800 250 #	E _{c2} (Os I _{c2} = 1. — E _{c2} (Os I _{c2} = 1.2	c Plate) 2 ma 25,000 25,000 2 ma 12,000 are screen	0.115 0.100 =90 0.20	1L6 1LA4 1LA6
Amplifier Converter Class A Amplifier Mixer Class A	90 85 90 90	45 90 85 45 90	4.5 4.5 0 9.0	4.5 0.5 4.0† 3.5† 0.55 5.0†	2.0 0.6 0.8† 0.7† 0.6 1.0†	350,000 650,000 300,000 300,000 750,000	1,025 300 # 850 800 250 # 925 100 #	E _{c2} (Os I _{c2} = 1. E _{c2} (Os I _{c2} = 1.2 G ₂ & 4	c Plate) 2 ma 25,000 25,000 2 ma 12,000 are screen	0.115 0.100 =90 0.20	1L6 1LA4 1LA6 1LB4
Amplifier Converter Class A Amplifier Mixer	90 85 90 90	45 90 85 45 90 67.5	4.5 4.5 0 9.0 0	4.5 0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75	0.6 0.8† 0.7† 0.6 1.0† 2.2	350,000 650,000 300,000 300,000 750,000 250,000 2,000,000 1,000,000	1,025 300 # 850 800 250 # 925 100 #	Ect (Os Ict = 1 Ect.(Os Ict = 1 Ect.(Os Ict = 1 Gr & 4: is signa	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L8 1LA4 1LA6 1LB4 1LB6
Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier	90 85 90 90 90 90 90 90	45 90 85 45 90 67.5 45	4.5 4.5 0 9.0 0	4.5 0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75 0.6	2.0 0.6 0.8† 0.7† 0.6 1.0† 2.2 0.30	350,000 650,000 300,000 300,000 750,000 250,000 1,000,000 650,000 750,000	1,025 300 # 850 800 250 # 925 100 # 775 275 #	Ect (Os Ict = 1 Ect (Os Ict = 1 G2 & 4 is is signa	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC5
Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Converter Class A Amplifier Class A Amplifier	90 85 90 90 90 90 90 90 90	45 90 85 45 90 67.5 45 35	4.5 0 9.0 0 0 0 0 0 0 0 0	0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75 0.6 4.5 1.4	2.0 0.6 0.8† 0.7† 0.6 1.0† 2.2 0.30 0.7	350,000 650,000 300,000 300,000 750,000 250,000 1,000,000 650,000 750,000 11,200 19,000	1,025 300 # 850 800 250 # 925 100 # 775 275 # 575 1,300 760	Ect.(Os Ica = 1.2 Cr. & 4 is signal Ect.(Os Ica = 1.4 Cr. & 4 is s	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5
Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	90 85 90 90 90 90 90 90 90 90 90 90	45 90 85 45 90 67.5 45 35 45 —————————————————————————————————	4.5 4.5 0 9.0 0 0	4.5 0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75 0.6 4.5	2.0 0.6 0.8† 0.7† 0.6 1.0† 2.2 0.30 0.7 0.1	350,000 650,000 300,000 300,000 750,000 250,000 1,000,000 650,000 750,000 11,200 19,000 11,200 19,000	1.025 300 # 850 800 250 # 925 100 # 775 275 # 575 1.300 760 760	Ect (Os Ict = 1 Ect (Os Ict = 1 Gr & 4 is signa Ect (Os Ict = 1.4	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5 1LE3
Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Class A Class A	90 85 90 90 90 90 90 90 90 90	45 90 85 45 90 67.5 45 35	4.5 4.5 0 9.0 0 0 0 0 0 0	4.5 0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75 0.6 4.5 1.4 4.5	2.0 0.6 0.8† 0.7† 0.6 1.0† 2.2 0.30 0.7	350,000 650,000 300,000 750,000 250,000 1,000,000 650,000 11,200 11,200 11,200	1,025 300 # 850 800 250 # 925 100 # 775 275 # 575 1,300 760	Ect (Os Ict = 1.2 Gr & 4 is signa Ect (Os Ict = 1.4 Ect (Os Ict = 1.4 14.5 14.5	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L6 1LA4 1LB4 1LB6 1LC5 1LC6 1LD5
Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	90 85 90 90 90 90 90 90 90 90 90 90	45 90 67.5 45 35 45 —————————————————————————————————	4.5 4.5 0 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.5 0.5 4.0† 3.5† 0.55 5.0† 0.4 1.15 0.75 0.6 4.5 1.4 4.5 1.4 1.7	2.0 0.6 0.8† 0.7† 0.6 1.0† 2.2 0.30 0.7 0.1	350,000 650,000 300,000 300,000 750,000 2,000,000 1,000,000 650,000 750,000 11,200 19,000 11,200 19,000 1,000,000	1.025 300 # 850 850 250 # 925 100 # 775 275 # 575 1.300 760 1.300 780 800	Ect (Os Ict = 1.2 Gr & 4 is signa Ect (Os Ict = 1.4 Ect (Os Ict = 1.4 14.5 14.5	c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate)	=90 0.115 0.100 =90 	1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5 1LE3

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	X-Ra-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen	Ca _I	acitano icofara	e in ds
Туре	by Construction	diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
1N2	Half-Wave High-Voltage Rectifier	(A)	3C	12-18	1.25	0.2	-	Tube V 100 vol	oltage l ts at 7.0	Drop:) ma d-	c	<u>, </u>
1N2-A	Half-Wave High-Voltage Rectifier	(A)	3C	T-X	1.25	0.2	_	Tube V 100 vol	oltage l ts at 7.0	Drop:) ma d-	c	
1N5-G 1N5-GT	Sharp-Cutoff RF Pentode		5Y	9-28 9-18	1.4 DC	0.05		110	110	3.0 2.8	10.0 9.0	0.007
1N6-G 1N6-GT	Diode Power- Amplifier Pentode		7AM	T-X 9-11	1.4 DC	0.05	_	110	110	_	_	-
1P5-G 1P5-GT	Remote-Cutoff RF Pentode		5Y	9-28 9-18	1.4 DC	0.05		110	110	3.0	10.0	0.007
1Q5-GT	Beam Power Amplifier		6AF	9-11, 9-41	1.4 DC	0.1	_	110	110		_	-
1Q6 ●	Diode Pentode		8CO	3-2	1.25 DC	0.04		100	100	1.8	4.2	0.085
1R4	High-Frequency Diode	<u> </u>	4AH	9-30	1.4	0.15	_	Tube '8 v at	Voltage 2 ma d-	Drop:		
1 R 5	Pentagrid Converter		7AT ♥	5-2	1.4 DC	0.05	_	90	67.5	Ose Icl	=0.25 00,000 =0.15 100,000	ma.
1S2 •	Half-Wave High-Voltage Rectifier	•	9DT	6-7	1.4	0.550	_	_	_	_	_	_
1S2-A	Half-Wave High-Voltage Rectifier	•	9DT	6–7	1.4	0.550		_	_	_		_
154	Power Amplifier Pentode		7AV	5–2	1.4 DC	0.1		90	67.5	_		-
156	Diode Sharp- Cutoff Pentode		6AU	5-2	1.4 DC	0.05		90	90		_	_
1S6 ●	Diode-Pentode		8DA	3–2	1.25 DC	0.04		100	100		_	-
1SA6-GT	RF Pentode		6BD	9-12	1.4 DC	0.05		90	67.5	5.2	8.6	0.01
1SB6-GT	Diode Pentode		6BE	9–11	1.4 DC	0.05		90	67.5	3.2	3.0	0.25
1 T 2	Half-Wave High-Voltage Rectifier	(a)	1AY2	T-X	1.4	0.14	-	Tube V 4.0 ma	oltage at 46 v	Drop: olts d-c	:	
1T4	Remote-Cutoff Pentode		6AR	5-2	1.4 DC	0.05	-	90	90	3.6	7.5	0.01
1 T5-G T	Beam Power Amplifier		6X	9-11	1.4 DC	0.05		110	110	4.8	8.0	0.5
1T6 ●	Diode-Pentode		8DA	3-5	1.25 DC	0.04		67.5	67.5	=	-	-
1U4	Sharp-Cutoff RF Pentode		6AR	5-2	1.4 DC	0.05		120 🏶	120 🏶	3.6	7.5	0.01
1 U 6	Diode Sharp- Cutoff Pentoc	le	6BW	5-2	1.4 DC	0.05		100 🏶				
1 U 6	Pentagrid Converter		7DC♦	5-2	I.4 DC	0.025		110	65	$ \mathbf{K}_{\mathbf{g}1} = \mathbf{k}$	=0.028 200,000	3 ma ohms
1-V	Half-Wave High-Vacuum Rectifier		4G	12-5	6.3	0.3	_	Tube 20 v a	Voltage t 90 ma	Drop: d-c		
1V2	Half-Wave High Voltage Recti- fier	1-	9U	6–2	0.625	0.3	_	Tube 1 135 vo	Voltage Its at 7.	Drop: 0 ma d	-с	

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

Compactron.

Zero signal.

Per section.

◆Subminiature type. ▲Without external shield. ◆Design maximum rating.

^{▲-}X-Radiation Rated, and ▲-No X-Radiation Rating.

[⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p ,	G _m , μmhοι	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Flyback Rectifier	24,000 50 ma. near fi	volts); Socket ament 1	max d- termina otentia	c outpu als 4 and al; 1, 3,	it curre d 6 may 5 and 8	 	.5 ma; is tie pois nnected	max pea nts for o to term	ompone k curre compone inal 7.	nt 🏶 = nt 🕸 = nts at or	1N2 1N2-A
TV Flyback Rectifier	Max ii 24,000 50 ma.	Max inverse voltage (d-c and peak)									
Class A Amplifier	90	90	0	1.2	0.3	1,500,000	750	-	_	<u> </u>	IN5-G 1N5-GT
Class A Amplifier	90	90	4.5	3.4†	0.7†	300,000	800		25,000	0.100	1N6-G 1N6-GT
Class A Amplifier	90	90	0	2.3	0.7	800,000	750	_	_	-	1P5-G 1P5-GT
Class A Amplifier	90 85	90 85	4.5 5.0	9.5† 7.0†	1.3† 0.8†	90,000 70,000	2,200 1.950		8,000 9,000	0.27 0.25	1Q5-GT
Class A Amplifier	67.5 30	67.5 30	0	1.6 0.33	0.40 0.09	400,000 500,000	600 330				1Q6 ●
Half-Wave Rectifier	Max d	-c outp	ut curre	ent = 1.0	ma; m	ax rms sup	ply vol	tage = 1	17 volts	-	1R4
Converter	90	67.5	0	1.5	3.5	400,000	280 #		-		1 R5
Converter	45	45	0	0.7	2.1	500,000	210#	_		-	
TV Flyback Rectifier	Max inverse voltage (d-c and peak) = 27,000 volts (d-c component = 22,000 volts); max d-c output current = 0.8 ma; max peak current = 40 ma. Socket terminals 3 and 7 may be used as tie points for components at or near heater potential.									152	
TV Flyback Rectifier	Max inverse voltage (d-c and peak) = 27.000 volts (d-c component = 22.000 volts); max d-c output current = 08 ma; max peak current = 40 ma. Socket terminals 3 and 7 may be used as tie points for components at or near heater potential.									152-A	
Class A Amplifier	90 67.5 45	67.5 67.5 45.0	7.0 7.0 4.5	7.4† 7.2† 3.8†	1.4† 1.5† 0.8†	100,000 100,000 100,000	1,575 1,550 1,250	ΙΞ	8,000 5,000 8,000	0.180	154
Class A Amplifier	67.5	67.5	0	1.6	0.4	600,000	625	_			155
Class A Amplifier	67.5 30	67.5 30	0	1.6 0.33	0.4 0.10	400,000 500,000	600 330	_			1S6 ●
Class A Amplifier	90	67.5	0	2.45	0.68	800,000	970	_			1SA6-G
Class A Amplifier	90	67.5	0	1.45	0.38	700,000	665	_			1SB6-G
TV Flyback Rectifier	Max in 20 ma;	verse vo max pe	oltage (e ak curre	d-c and ent = 1	peak) 2 ma.	= 15,000 v	olts; ma	x d-c ou	itput cu	rrent =	1T2
Class A Amplifier	90 90 67.5 45	67.5 45 67.5 45	0 0 0	3.5 1.8 3.4 1.7	1.4 0.67 1.5 0.7	500,000 800,000 250,000 350,000	900 750 875 700				1T4
Class A Amplifier	90	90	6.0	6.5†	0.8 †	250,000	1,150		14,000	0.170	1T5-GT
Class A Amplifier	67.5 30	67.5 30	0	1.6 0.33	0.4 0.10	400,000 500,000	600 330			= -	176 €
	90	90	0	1.6	0.5	1,000,000	900		_	-	1U4
Class A Amplifier	67.5	67.5	0	1.6	0.4	600,000	625				1U5
	07.0	- 1								1	
Amplifier Class A	90	45	0	0.6	0.6	500,000	300 #		Plate)	=90	1Ū6
Amplifier Class A Amplifier	90 Max d	-c outpu	it curre	nt = 45	ma: ma	500,000 x peak invent k current =	erse volt	$I_{c2} = 1.1$	ma		1 <i>U6</i>

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$\display \text{G3}\$ and G5 are screen. G4 is signal-input grid.

\$\display \text{G2}\$ and G4 are screen. G3 is signal-input grid.

\$\display \text{indicate}\$ tube sections.

\$\display \text{Maximum screen}\$ dissipation appears immediately below the screen voltage.

\$\display \text{Heater warm-up time controlled.}\$

Tube Type	Classification by	X-Ra-	Base Con- nec- tions	line	Fila- ment Volts	Fila- ment Amps		Plate	Screen	Picorarads		
	Construction	diation Rating								Input	Out- put	Grid Plat
1V5 ●	Power Amplifier Pentode		8CP	3-2	1.25 DC	0.04	_	100	100	_		=
1V6 ●	Triode-Pentode Converter		1V6	2-3	1.25 DC	0.04		90	90	Osc Ici Rgi = 1	=12 µs	1
1W 4	Power Amplifier Pentode		5BZ	5-2	1.4 DC	0.05		110	110	3.6	7.0	0.1
1 W5 ⊕	Sharp-Cutoff RF Pentode		8CP	3-2	1.25 DC	0.04	=	100	100	2.3	3.0	0.00
1 X 2	Half-Wave High- Voltage Recti- fier	(a)	9Y	6-7	1.25	0.2		Tube Voltage Drop: 100 volts at 7.0 ma d-c				
1 X 2- A	Half-Wave High- Voltage Recti- fier	(A)	9Y	6–7	1.25	0.2	_	Tube V 100 voi	oltage ts at 7.	Drop: 0 ma d-	с	
1X2-B	Half-Wave High- Voltage Recti- fier	(A)	9Y	6–7	1.25	0.2	_	Tube V 100 vol	oltage ts at 7.0	Drop: 0 ma d-	c	
1 X2-C	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	9Y	6–7	1.25	0.2		Tube V 80 volt	oltage s s at 7.0	Drop: ma d-c		-
1Y2	Half-Wave High- Voltage Recti- fier	(A)	4P	т-х	1.5	0.29		Tube V 100 vol	oltage l ts at 8.0	Drop: 0 ma d-	c	
122	Half-Wave High- Voltage Recti- fier	(A)	7CB	T-X	1.5	0.3			oltage l s at 5.0			
CIK	Thyratron same as 6014											
2A3	Power Amplifier Triode		4D	16-1	2.5	2.5	15	300	_	7.5 ▲ 2 tubes		16.5 4 pull
2A4-G	Thyratron		-5S	12-7	2.5	2.5		Anode	Voltage	Drop =	15 volt	s
2A5	Power Amplifier Pentode		6B	14-1	2.5	1.75	11	375 350	285 3.75	Pentod Triode	Connec	
2A6	Duplex-Diode High-Mu Triode		6G	12-6	2.5	0.8	_	250		1.7	P tied)	1.7
2A7	Pentagrid Converter		7C♦	12-6	2.5	0.8	1.0	300	100 0.3	$ \begin{array}{c} \text{Osc } I_{ei} = 50 \\ R_{gi} = 50 \end{array} $	=0.4 ma	a ims
2AF4¶ 2AF4-A¶	UHF Triode Oscillator		7DK	5-2 5-1	2.35	0.6	2.5 🏶	150 ♦		2.2	1.4	1.9
2A F 4-B¶	UHF Triode Oscillator		7DK	5-1	2.35	0.6	2.5 ♦	150 ♦		2.2	1.4	1.9
2AH2 ■	Half-Wave High- Voltage Recti- fier	(A)	12DG	9–99	2.5	0.3	_	Tube V 100 vol	oltage l ts at 7.0	Drop:) ma d-	c	
2AS2	Half-Wave High- Voltage Recti- fier	•	12EW	9-146	2.5	0.33	_	Tube V 100 vol	oltage l ts at 7.0	Drop:) ma d-	<u> </u>	
2AS2-A ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12EW	9-100	2.5	0.33	_	Tube V 75 volt	oltage s at 7.0	Drop: ma d-c		

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A -X-Radiation Rated, and A - No X-Radiation Rating.

Compactron.
† Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohma	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	67.5 45 30	67.5 45 30	4.5 3.0 2.0	2.0 1.0 0.5	0.4 0.2 0.1	150,000 175,000 200,000	750 600 450		25,000 40,000 50,000	0.050 0.015 0.005	1V5 ●
Converter	45 45 R _g = 0.4 0.15 1,000,000 200 # E _b (Triode Osc) = 45 I _b (Triode) = 0.4 ma										
Class A Amplifier	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1W4
Class A Amplifier	67.5 30.0	67.5 30.0	0	1.85 0.45	0.75 0.16	700,000	735 430	=	= 7	=	1W5 ●
rectines	Max inverse voltage (d-c component = 15,000 volts); max d-c output current = 1.0 ma; max peak current = 10 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential.										1X2
TV Flyback Rectifier	Max inverse voltage (d-c and peak) \blacksquare = 20,000 volts (d-c component \circledast = 16,000 volts); max d-c output current \circledast = 0.5 ma; max peak current \circledast = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential.										1X2-A
	Max inverse voltage (d-c and peak) ♦ = 20,000 volts (d-c component ♦ = 18,000 volts); max d-c output current ♦ = 0.5 ma; max peak current ♦ = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential.										1X2-B
Rectiner	Max inverse voltage (d-c and peak) ● = 22,000 volts (d-c component ● = 18,000 volts); max d-c output current ● = 0.5 ma; max peak current ● = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential.										1 X 2-C
Rectifier	Max inverse voltage (d-c and peak) = $50,000$ volts; max d-c output current = 2.0 ma; max peak current = 10 ma. Socket terminals 2 and 3 may be used as tie points for components at or near filament potential.										1 Y 2
Half-Wave Rectifier	Max in 2.0 ma;	verse vo max pe	ltage (d ak curre	l-c and ent = 1	peak) = 0 ma.	20,000 vo	lts; max	d-c ou	tput cui	rent =	1Z2 •
					<u> </u>		ļ				
Class A Amplifier Class AB ₁ Amplifier	250 300	_	45 62	60† 80†	_	800	5,250	4.2	2,500 3,000‡	3.5 15	2A3
Relay Control	Max	volts;	2A4-G								
Class A Amplifier	285	285		38†	7.0t		2,500	T =	7,000	4.8	2A5
Class A Amplifier	250	-	20.0	31	_	2.600	2,600	6.8	4,000	0.85	
Class A Amplifier	250	-	2.0	0.9	_	91,000	1,100	100			2A6
Converter	250	100	3.0	3.5	2.7	360,000	550 #		c Plate 0,000 oh 0 ma	2A7	
Class A Amplifier	80		R _k = 150	17.5		2,100	6,500	13.5			8AF4¶ 8AF4-A¶
Class A Amplifier	80		R _k =	17.5	-	2,100	6,500	13.5			2AF4-B
TV Flyback Rectifier	Max inverse voltage (d-c and peak) ■ 30,000 volts (d-c component = 24,000 volts); max d-c output current = 1.5 ma; max peak current ■ = 80 ma Socket terminals 4 and 10 may be used as tie points for components at or nea heater potential.										2AH2
TV Flyback Rectifier										nt 💩 😑	2AS2
TV Flyback Rectifier	90 ma	inverse) volts); . Socket leater pe	termina	als 4, 7 a	d peak) ut curre and 10 m)	000 voli .7 ma; as tie po	ts (d-c o max per pints for	compone ak curre compon	ent 🚱 = ent 💸 = ents at o	2AS2-A

Tube	Classification by	X-Řa-	Base Con-	Out- line	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen	Ca	pacitano Picofara	e in ds
Туре	Construction	diation Rating	nec- tions	Dwg.	Volts	Amps		Volts	Volts and Watts	Input	Out- put	Grid- Plate
2A V 2	Half-Wave High- Voltage Recti- fier		9U	6–2	1.8	0.225	_	Tube V 20 voits	oltage s at 1.0	Drop: ma d-c		
2A Z2	Half-Wave High- Voltage Recti- fier	•	9Υ	6–7	2.1	0.275		Tube V 70 volt	oltage s at 7.0	Drop: ma d-c		
2B3	Half-Wave High- Voltage Recti- fier	•	8HC	T-X	1.75	0.25		Tube V 100 vol	oltage I ts at 7.0	Orop:) ma d-	c	
2B7	Duplex-Diode Semi-Remote Cutoff Pentode		7D	12-6	2.5	0.8	2.25	300	125 0.3	3.5▲	9.5▲	0.007 •
2B22	High-Frequency Diode (Planar)		2B22	T-X	6.3	0.75			Tube V 6.0 volt	oltage s at 20	Drop: mad-c	
2BA2	Half-Wave High- Voltage Recti- fier		9U	6–2	1.8	0.3		Tube V 55 volts	oltage l at 6.5			
2BJ2 ●	Half-Wave High- Voltage Recti- fier	(A)	9RT	6–7	2.3	0.3		Tube V 80 volts	oltage l at 7.0	Drop: ma d-c		-
2BJ2-A ●	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	9RT	6–7	2.3	0.3		Tube V 80 volts	oltage l at 7.0	Drop: ma d-c		
2BN4¶	High Frequency Triode		7EG	52	2.3	0.6	2.2 🏶	275 🏶	- 1	3.2	1.4	1.2
2BN 4-A¶	High-Frequency Triode		7EG	5-2	2.35	0,6	2.2	275		3.2	1.4	1.2
2BU2 ■	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	12JB	9-146	2.5	0.33		Tube V 100 vol	oltage is at 7.0	Drop:) ma d-	c	
2C21/1642	Medium-Mu Twin Triode		7BH	12-6	6.3	0.6	2.1 🌩	250				
2C22	Medium-Mu Triode		4AM	T-X	6.3	0.3	3.3	300		2.2	0.7	3.6
2C39	Hi Mu Triode Planar		2C39	TX	6.3	1.1		1000		6.5	0.035	1.95
2C39-A	Hi Mu Triode Planar		2C39A	TX	6.3	1.03	100	1000		6.5	0.035	1.95
2C39WA	Hi Mu Triode Planar		2C39 WA	TX	6.3	1.03	100	1000	_	6.5	0.035	2.01
2C39B	High-Mu Triode (Planar)		2C39B	T-X	6.3	1.03	100 🖻	1,000	_	6.5 ▲	0.023	2.01
2C40	Medium-Mu Triode (Planar)		2C40	T-X	6.3	0.75	6.5 ₪	500 ₪	-	2.15▲	0.03 🛦	1.3 ▲
2C40-A	Medium-Mu Triode (Planar)		2C40	T-X	6.3	0.75	6.5 ₪	500 €	-	2.15 ▲	0.03 🛦	1.3 ▲
2C42	Plate Pulsed UHF Oscil- lator (Planar)		2C40	T-X	6.3	0.9	12 📵	3,000 peak	_	2.9 ▲	0.05	1.7 ▲
2C43	High-Mu Triode (Planar)		2C43	T-X	6.3	0.9	12 🖲	500 €	_	3.0 🛦	0.04 ▲	1.8 ▲
2C46	UHF Triode Oscillator (Planar)		2C40	T-X	6.3	0.75	12 🖷	500 ₪		2.2 🛦	0.025	1.7▲
2C50	Medium-Mu Twin Triode		8BD	T-X	12.6	0.3	3.85 ♠					_
2C51	High-Frequency Twin Triode		8CJ	6-1	6.3	0.3	1.5♠	300		2.3	0.75	2.7

[—]X-Radiation Rated, and —No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.

Supply voltage.

Subminiature type.
 ▲ Without external shield.
 Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
#Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Focus Rectifier	Max inv 7,000 vo	rerse vo lts); ma	oltage (x d-c ou	d-c and itput cu	peak) rrent 🏶	= 8,250 = 0.6 ma;	0 volts max pe	(d-c co ak curre		t 🏶 =	8AV2
Rectifier	Max inv 18,000 v 45 ma. S near fila	rolts); r Socket t	nax d-c erminal	output s 3 and	peak) < current 7 may b	 = 22,00 ♦ = 0.5 oe used as t 	0 volts ma; m ie point	(d-c co ax peak s for co	mponen curren mponen	t ♦ = t ♦ = its at or	2AZ2
TV Flyback Rectifier	22,000 50 ma.	volts); Socket	max d- termina	c outpu ls 3 and	t curren l 5 may	 	5 ma; n tie poin	ax pea	k curre	nt 🛞 🖚	2 B3 •
Class A Amplifier	250 250	125 100	3.0 3.0	9.0 6.0	2.3 1.5	600,000 800,000	1,125 1,000		_	=	2B7
Detector	Max o	-c outp	ut curre rent	ent 🖲 = =700 m	20 ma; 1 a	nax peak i	iverse v	oltage	= 300	volts;	2B22
TV Focus Rectifier	ł									f	2BA2
TV Flyback Rectifier	Max in	verse	oltage (max pea	d-c and ak curre	peak) ∢ nt ◈ =	• = 20,000 80 ma.) volts;	max d-	c outpu	t current	2BJ2 ●
TV Flyback Rectifier	Max in 20,000 80 ma.	verse v volts);	oltage max d-	(d-c and c outpu	i peak) t curren		00 volts 0 ma; n	(d-e e nax pea	ompone k curre	nt 磨 = nt 🏶 =	2BJ2-A ●
Class A Amplifier	150		R _k = 220	9.0	-	6,300		43			2BN4¶
Class A Amplifier	150		R _k = 220	9,0		5,400	8,000	43			2BN4-A¶
TV Flyback Rectifier	24,000 80 ma.	volts):	max d- termina	c outpu ls 4, 10	t curren		ma; m	iax pea	k curre	nt 🏶 =	2BU2 ■ ●
Class A Amplifier •	250		16.5	8.3		7,600	1,375	10.4		-	2C21/1642
Class A Amplifier	300	_	10.5	11		6,600	3,000	20			2C22
CW Oscillator	800	_	48	58			17000	100	_	25	2C39
Oscillator at			l				1				
500Mc	900	_	22	90	_	_	_	_		27	2C39-A
		_	22 40	90	_	<u> </u>	-			40	2C39-A 2C39WA
500Mc Oscillator at	900	_			-	— —	-			40	2C39-A 2C39WA 2C39B
Oscillator at 500Mc Oscillator at	900		40	90	-					40	2C39-A 2C39WA
Oscillator at 500Mc Oscillator at 500 Mc Oscillator at 500 Mc	900 900 250 250 1,400 Peak		40 40 5.0	90 90 20 1,000 Peak						40 40 0.075 300 Peak	2C39-A 2C39WA 2C39B
Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at	900 900 250 250 1,400 Peak	plate v	40 40 5.0	90 90 20 1,000 Peak		RF = 1,000		1.0 mid	Prosecon	40 40 0.075 300 Peak	2C39-A 2C39WA 2C39B 2C40
500Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3.370 Mc Plate-Pulsed Oscillator at 3.000 Mc Plate-Pulsed Oscillator at 1.050 Mc Plate-Pulsed Oscillator at 1.050 Mc	900 900 250 1,400 Peak Peak Peak 3,000 Peak	plate v	40 40 5.0	90 90 20 1,000 Peak	volts; P	RF =1,000	; PD =	1.0 mid	crosecor	40 40 0.075 300 Peak	2C39-A 2C39WA 2C39B 2C40
Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 3,370 Mc UHF Oscillator Oscillator	900 900 250 250 1,400 Peak Peak 13,000 Peak 150	plate v	40 40 5.0	90 90 20 1,000 Peak =3,000 =1,750	volts; P	RF=1,000); PD =	1.0 mid	Prosecor	40 40 0.075 300 Peak	2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42
Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 1,050 Mc UHF Oscillator at 3,370 Mc UHF Oscillator at 1,100 Mc	900 900 250 250 1,400 Peak Peak 13,000 Peak 150	plate v	40 40 5.0	90 20 1,000 Peak =3,000 =1,750 2,500 Peak	volts; P	RF = 1,000	; PD =	1.0 mid	crosecor	40 40 0.075 300 Peak ds;	2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42 2C43
Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 3,370 Mc UHF Oscillator Oscillator	900 250 250 1,400 Peak Peak Peak 3,000 Peak 150	plate v	40 40 5.0 Coltage :	90 90 20 1,000 Peak =3,000 =1,750 Peak 8.0	volts; P				Prosecon	40 40 0.075 300 Peak ds;	2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42 2C43

Tube Type	Classification X-R		- Uut-	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen	Ca	pacitan Picofara	ce in
	Construction diation Ratio		There	Volts	Amps		Volts	Volts and Watts	Input	Out- put	Grid- Plate
2CN3-A	Half-Wave High- Voltage Recti- fier	8MU	T-X	1.8	0.9	_	Tube V 60 volt	oltage s at 7.0	Drop:	-1	
2CN3-B	Half-Wave High- Voltage Recti- fier	hr	9-153	1.8	0.9		Tube V 60 volt	oltage s at 7.0	Drop: ma d-c		7,
2CW4¶	High-Mu Triode (Nuvistor)	12AQ	4-4	2.1	0.45	1.5 🔷	135 🏟	- 1	4.3 ▲	1.8 🛦	0.92 ▲
2CY5¶	Sharp-Cutoff RF Tetrode	7EW	5-2	2.4	0.6	2.0 🏟	180 🏟	180 \$	4.5	3.0	0.03
2D21	Thyratron	7BN	5-2	6.3	0.6		An	ode vol	tage dr	op =8 v	olts
2DF4	Pentode	9JL	6-2	2.5	0.345 0.69	4.5	250 €	125 🖼	7.5 🛦	5.5 ▲	0.25
2DS4¶	High-Mu Triode (Nuvistor)	12AQ	4-4	2.1	0.45	1.5	135 ◈	-	4.3 ▲	1.8▲	0.92
2DV4¶	Medium-Mu Triode (Nuvistor)	12EA	4-4	2.1	0.45	1.0	125 🏟		4.4 ▲	1.9 ▲	1.8▲
2DX4¶	UHF Triode Oscillator	7DK	5-1	2.4	0.6	2.2 🏶	150 ♦		3.9	1.5	1.6
2DY4¶	UHF Triode Oscillator	7DK	5–2	2.05	0.45	1.5 🏶	135 ♦		3.5	1.15	2.0
2DY4-A¶	UHF Triode Oscillator	7DK	5-1	2.05	0.45	1.5 🏶	135 ◈		3.5	1.15	2.0
\$DZ4¶	UHF Triode Oscillator	7DK	5-1	2.35	0.6	2.3	135 🏶		2.2	1.3	1.8
2E5	Electron-Ray Indicato	r 6R	9-26 or 12-5	2.5	0.8		250\$	Max Min	target v	voltage voltage :	=250 =125
2E24	Beam Pentode	7CL	T-X	6.3	0.65	10 🗷	300 ₪	200 @	9.5 🛦	7.0 ▲	0.12
2E26	Beam Pentode	7CK	T-X	6.3	j	10 📵 10 📵	600 € 400 €	250 © 2.5 © 200 ©	Two T Pentod	e Conn	ich Piil
2E30	Beam Power Amplifie	7CQ	5–3	{6.0 3.0	0.65	10	250	250 5.2	9,6	14	0.18
2E31 ●	Sharp-Cutoff RF Pentode	2E31	T-X	1.25 DC	0.05	=	45	45	4.2	4.0	0.018
2E32 ●	Sharp-Cutoff RF Pentode	2E31	T-X	1.25 DC	0.05		45	45	4.2	4.0	0.018
2E35 ●	Power Amplifier Pente	de 2E31	T-X	1.25 DC	0.03		45	45	2.7	5.7	0.2
2E36 🌑	Power Amplifier Pente	de 2E31	T-X	1.25 DC	0.03		45	45	2.7	5.7	0.2
2E41 💿	Diode Pentode	2E41	T-X	1.25 DC	0.03		45	45	2.7	4.3	0.10
2E42 🌑	Diode Pentode	2E41	T-X	1.25 DC	0.03		45	45	2.7	4.3	0.10
2EA5¶	Sharp-Cutoff RF Tetrode	7EW	5-2	2.4	0.6	3.25 �	250 �	150 (a)	4.5	3.0	0.05
2EG4	High-Mu Triode (Nuvistor)	12AQ	4-4	1.7	0.6	1.5 🏶	135 ◈		4.3 ▲	1.8 ▲	0.92 ▲
2EN 5¶	Twin Diode	7FL	5-2	2.1	0.45		Tube V 5.0 volt	oltage I s at 20	Orop: •		
žER5	High-Frequency Triod		5–2	2.3	0.6	2.2	250		4,4		0.36
2ES6¶	High-Frequency Triod	e 7FP	5-2	2.35	0.6	2.2 🏶	250 🏟		3.2	4.0	0.5
2EV5¶	Sharp-Cutoff RF Tetrode	7EW	5-2	2.4	0.6	3.25 ◈		180 ♦ \$ 0.2 ♦	4.5	2.9	0.035
2FH6¶	High-Frequency Triod	e 7FP	5–2	2.35	0.6	2.2 🏶	150 ◈		3.2	4.0	0.52

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

X-Radiation Rated, and N-No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

‡ Plate-to-plate.

♣Maximum.

\$ Supply voltage.

Subminiature type.
▲Without external shield.
Design maximum rating.

⊕Total for all similar sections ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Flyback Rectifier	at or ne	ar heat	er poter	ıtial.			cu as tie	points	ior com	ponents	2CN3-A
TV Flyback Rectifier	110 ma.	Socket		als 4. 10		■ = 38,00 t ◆ = 2.2 may be us					2CN3-B
Class A Amplifier	110		R _k = 130	7.2	-	6,600	9,800	65	T	<u> </u>	2CW4¶
Class A Amplifier	125	80	1.0	10	1.5	100,000	i '	-			2CY5¶
Controlled Rectifier	Max d- volts; n	c catho	de cur k catho	rent 🖲 =	=100 m ent 🕸 =	a; max pe 500 ma	ak inve	rse vo	ltage 🖲	=1,300	2D21
Class A Amplifier	120	120	3.6	40	3.5		7,500	I =	T -	-	2DF4
Class A Amplifier	110	_	R _k =	6.5	_	7,000	9,000	63	-		2DS4¶
Class A Amplifier	75	_	R _k == 100	10.5	_	3,100	11,500	35	=	-	2DV4¶
Class A Amplifier	85		R _k = 150	10	_	2,700	11,000	30	_		2DX4¶
Class A Amplifier	90		R _k = 180	10.4			11,000	28			2DY49
Class A Amplifier	90		$R_k = 180$	10.4	_		11,000	28	-	-	2DY4-A¶
Class A Amplifier	With 2	.700 oh	m resist	15 tor in pl	ate circ	2,000 uit	6,700				2DZ4¶
Tuning Indicator	Plate v =0°) (ma)	oltage : E _c = 0	=250 th volt, sha	ru 1 me adow = 9	g, targe 90°, pla	t voltage = te current =	250 (Ee =0.24 m	= -8 a, targ	volts, s et curre	nadow nt =4	2E5
Class A Amplifier	250	160	8.0	35†	2.6†	<u> </u>	 -	_	6,000	3.9	2E24
Class AB1 Amplifier	500	250	40	13†	_	_			8,650	40	2E26
Class AB2 Amplifier	400	125	15	20†			-		6,200‡	42	
Class A Amplifier	250	250	20	40†	3.3†	63,000	3,700	_	4,500	4.5	2E30
Class A Amplifier	22.5	22.5	R _g ≈ 5 meg	0.4	0.3	350,000	500	_	=		2E31 ●
Class A Amplifier	22.5	22.5	R _g = 5 meg	0.4	0.3	350,000	500				2E32 ●
Class A Amplifier	45	45	1.25	0.45	0.11	250,000	500	_	100, 000	0.006	2E35 ●
Class A Amplifier	45	45	1.25	0.45	0.11	250,000	500		100, 000	0.006	2E36 ⊚
Class A Amplifier	22.5	22.5	R _g = 5 meg	0.35	0.12	250,000	375		_	_	2E41 ●
Class A Amplifier	22.5	22.5	R _g = 5 meg	0.35	0.12	250,000	375			-	2E42 ●
Class A Amplifier	250	140	1.0	10	0.95	150,000	8,000	_			2EA 5¶
Class A Amplifier	110		R _k = 130	6.5		7,000	9,000	63			2EG4
Half-Wave Rectifier		c outpu		nt per p	late 🏶 =	5.0 ma					2EN5¶
Class A Amplifier	200		1.2	10			10,500	80			2ER5
Class A Amplifier	200		1.0	10		8,000	9,000	75	_		\$ES6¶
Class A Amplifier	250	80	1.0	11.5	0,9	150,000	8,800	_			2EV5¶
Class A Amplifier	135		1.0	11		5,600	9,000	50	_	=	2FH6¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tubo	Classification	X-Řa-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen	Cap P	acitance icofarad	e in
Tube Type	Construction	a-Ra- liation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
2FQ5¶	High-Frequency Triode		7FP	5-2	2.3	0.6	2.5 🏶	200 🏶	- WALLS	4.8	4.0	0.4
2FQ5-A¶	High-Frequency Triode		7FP	5-2	2.3	0.6	2.5 🏶	200 ◈	=	5.0	3.5	0.52
2FS5¶	"Shadow-Grid" Beam Pentod	e	7GA	5-2	2.4	0,6	3.25 ◈	300 �	150 ♦ 0.15 ♦	4.8	2.8	0.016
2FV6¶	Sharp-Cutoff RI Tetrode	1	7FQ	5-2	2.4	0,6	2.0 🏶	275 🏶	180 ♦ \$ 0.5 ♦	4.5	3.0	0.03 💠
2FY5	High-Mu Triode		7FP	5~2	2.4	0.6	2.2	200 🖲	=	4.75	4.3	0.48
2G21 ●	Triode-Heptode Converter		2G21	T-X	1.25 DC	0.05		45	45	Osc Icl Rel = 5	=0.030 0,000 ol	ma ims
2G22 €	Triode-Heptode Converter		2G21	T-X	1.25 DC	0.05		45	45	Osc In	=0.030 0,000 ol	ma
2GK6¶	High-Frequency Triode		7FP	5-2	2.3	0.6	2.5 🏶	200 🏶	=	5.0	3,5	0.52
2GU5¶	"Shadow-Grid" Beam Pentode		7GA	5-2	2.4	0.6	3.0♦	300 �	150 (a) 0.15 (b)	0.7 ▲	3.2 ▲	0.018
eGW6¶	High-Mu Triode		7GK	5-2	2.45	0.6	2.5 🏶	200 🏶		5.5	4.0	0.6
2H A 5	High-Mu Triode		7GM	5-1	2.2	0.6	2.6 🏶	220 🏶	-	4.3	2.9	0.36
2HK5¶	High-Frequency Triode		7GM	5–2	2.3	0.6	2.3 🏶	200 🏶		4.4	2.6	0.29
2HM5¶	High-Mu Triode		7GM	5-2	2.0	0.6	2.6 🏶	200 🏶		4.5	3.0	0.34 🌲
2HQ5¶	Triode		7GM	5–2	2.4	0.6	2.5 🏶	200 🏶	=	5.0	3.5	0.52
2H R8	Pentode		9BJ	6-2	2.5	0.6	1.0	300	300 0.2	3.5 ▲	5.0 ▲	0.05
2J2	Half-Wave High- Voltage Recti- fier	(A)	9DT	T-X	2.0	0.35			_		_	
2 L2	Miniature High- Voltage Recti- fier	(4)		T-X	2.0	0.2	_	_	_	_	_	_
2T4¶	UHF Triode Oscillator		7DK	5-1	2.35	0.6	3.5	200	-	2.6 ▲	0.4 ▲	1.7 ▲
2V2	Half-Wave High- Voltage Recti- fier	(A)	8FV	T-X	2.5 1.25	0.2 0.4	_	Tube V 150 vol	oltage ts at 7.	Drop: 0 ma d-	С	
2V3-G	Half-Wave High- Voltage Recti- fier	(4)	4Y	12-8	2.5	5.0		_		_	_	_
2W3 2W3-GT	Half-Wave High-Vacuum Rectifier		4X	8-6 9-12	2.5	1.5	_	_	_	_		_
2X2	Half-Wave High- Voltage Rectifier	(A)	4AB	12-6	2.5	1.75	_ '	Tube v 98 volts	oltage d			
2X2A	Half-Wave High- Voltage Rectifier	(A)	4AB	12-6	2.5	1.75				_		T -
2Y2	Half-Wave High- Voltage Rectifier		4P	12-6	2.5	1.75	_	_	_		-	-
3A2	Half-Wave High- Voltage Recti- fier		9RT	6–7	3.15	0.22	_	Tube Voltage Drop: 70 volts at 7.0 ma d-c				
3A2-A	Half-Wave High- Voltage Recti- fier		9RT	6-7	3.15	0.22	_	Tube Voltage Drop: 70 volts at 7.0 ma d-c				
3A3	Half-Wave High- Voltage Recti- fier	(A)	8EZ	9-52	3.15	0.22	_		_			_
3A3-A	Half-Wave High- Voltage Recti- fier	(a)	8EZ	T-X	3.15	0.22	_	Tube V 100 voi	oltage ts at 7.	Drop: 0 ma d-	c	

▲ -X-Radiation Rated, and ▲ - No X-Radiation Rating. Compactron.
† Zero signal.
• Per section.

† Plate-to-plate.

Maximum.
Supply voltage.

⊗Subminiature type.▲Without external shield.⊗Design maximum rating.

⊕Total for all similar sections.

®Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type		
Class A Amplifier	135	<u> </u>	1.2	11.5	<u> </u>	5,500	11,000	60	<u> </u>	<u> </u>	2FQ5¶		
Class A	135		1.2	8.9	-	6,300	12,000	74	===		2FQ5-A¶		
Amplifier Class A Amplifier	275	135	0.2	9,0	0.17	240,000	10,000	_	-		2FS5¶		
Class A Amplifier	125	80	1,0	10	1.5	100,000	8,000	İ	_		2FV6¶		
Class A Amplifier	135	_	1.0	11		_	13,000	70	_		2F Y 5		
Converter	22.5	22.5	0	0.2	0.3	500,000	60 #	Eb(Tri	ode Osc ode) =1.	c) =22.5 0 ma	2G21 ●		
Converter	22.5	22.5	0	0.2	0.3	500,000	60 #	Eb(Tri	ode Osc ode) =1.	e) = 22.5 0 ma	2G22 ●		
Class A Amplifier	135		1.0	11.5		5,400	15,000	78			2GK5¶		
Class A Amplifier	275	135	0.4	10	0.17	165,000	15,500	_	_		2GU5¶		
Class A Amplifier	135	_	1.0	12.5	_	5,800	15,000	70			2GW5¶		
Class A Amplifier	135		1.0	11.5		_	14,500	72	_		2HA5		
Class A Amplifier	135	_	1.0	12.5		5,000	15,000	75			2HK5¶		
Class A Amplifier	135		1.0	12.5			14,500	78		-	2HM 6¶		
Class A Amplifier	135		1.0	11.5		5,400	15,000	78			2HQ5¶		
Class A Amplifier	250	140	2.0	3.0	0.6	2,500,000	2,000	_	_		2H R8		
Flyback Rectifier	(desigr	eak inve) 🏶 🗯	age (ab 23,500	solute) volts; m		volts; i	nax pea	k invers .2 ma; i	se voltage max peak	2J2 ●		
Flyback Rectifier	Max p (on loa = 25 i	eak inv d) = 1 nA.	erse vol 9,000 v	tage (n olts; ma	o load) ix d-c oi	= 22,000 vitput curre	volts; m nt = 0.	ax peal 5 mA m	k invers ax. pea	e voltage k current	2L2		
Class A Amplifier	80	-	R _k = 150	18		1,860	7,000	13	T =	$\overline{1} - \overline{1}$	2T4¶		
TV Flyback Rectifier	1.0 ma	; max p	eak curi	rent = :	80 ma. S	= 21,000 v Socket term nent potent	inals 1 a	x d-c o	utput ci ay be u	urrent = sed as tie	2V2		
Half-Wave Rectifier	Max in 2.0 ma	verse v	oltage (eak cur	d-c and rent =	peak) 12 ma.	= 16,500 v Socket ter or near filar	olts; ma minals	1, 3, 4,	utput ci 5 and 6	urrent =	2V3-G		
Half-Wave Rectifier	Max	d-c out	put cur	rent = 5	55 ma; n	nax rms su	pply vo	tage = :	350 volt	s	2W3 2W3-GT		
Half-Wave Rectifier	max. p	eak cur	rent =	100 m/	4.	2500 Voits;					2X2		
Half-Wave Rectifier	Max.	peak inv urrent	verse vo	oltage =	= 12500	volts; d-c	output	current	= 7.5	mA; max.	2X2A		
Half-Wave Rectifier TV Flyback	Max.	peak in	verse vo	oltage =	= 12000	volts; max	r. d-c o	stput ci	urrent :	= 5.0 mA	2Y2		
TV Flyback Rectifier	Max in 1.7 ma;	verse vo max pe	itage (c ak curr	i-c and ent = 8	peak) = 30 ma.	* 18,000 vo	lts; ma	d-c ou	tput cu	rrent =	3A2		
TV Flyback Rectifier	Max in 18,000 80 ma.	verse vo volts); i	oltage (nax d-c	d-c and output	peak) t curren	(a) = 20,000 t (a) = 1.5	0 volts ma; m	(d-c co ax peal	mponer k currer	nt	3A2-A		
TV Flyback Rectifier	Max inverse voltage (d-c and peak) ⊕ = 30,000 volts; max d-c output current ⊕ = 1.5 ma; max peak current ⊕ = 88 ma. Socket terminals 4 and 6 may be used as tie points for components at or near heater potential.												
TV Flyback Rectifier	Max in	verse vo	ltage (c	l-c and	peak) (= 30,000 100 ma. So r near heat	volte:	max d-c	output 4 and 6	current may be	3A3-A		

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥G2 and G4 are screen. G3 is signal-input grid.

1, x, y, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	X-Řa-	Base Con-	Out- line	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen		acitano icofara	
Type	by Construction	diation Rating	nec- tions	Dwg.	Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
3A3-B ●	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8EZ	T-X	3.15	0.22		Tube V 100 volt	oltage I s at 7.0	Prop: ma d-c		f
3A3-C	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8EZ	9-169	3,15	0.22		Tube Vo 60 volts	oltage I at 7.0	Этор: ma d-c		
3A 4	Power Amplifier Pentode		7BB	5–2	(2.8 (1.4 DC	$\left. egin{array}{c} 0.1 \\ 0.2 \end{array} ight\}$	2.3	150	90 0.4	4.8	4.2	0.20 •
3A 5	High-Frequency Twin Triode		7BC	5-2	(2.8 1.4 DC	0.11 }	0.5 🏚	135		0.9	1.0	3.2
3A8-GT	Diode-Triode Sharp-Cutoff RF Pentode		8AS	9-17	{2.8 1.4 DC	0.05		110 110	110	Triode Pentode		
SAF4-A¶ SAF4-B¶	UHF Triode Oscillator		7DK	5-1	3.2	0.45	2.5 🏟	150 ◈		2.2	1.4	1.9
3A L 6 ¶	Twin Diode		6BT	5-1	3.15	0.6		Tube Voltage Drop: 4 10 v at 60 ma d-c				
3AT2	Half-Wave High- Voltage Recti- fier	(A)	12FV	9–100	3.15	0.22		Tube Voltage Drop: 77 volts at 7.0 ma d-c				*****
3AT2-A ■	Half-Wave High- Voltage Recti- fier	25,0 mR/hr	12FV	9-100	3.15	0,22		Tube Voltage Drop: 77 volts at 7.0 ma d-c				
3AT2-B	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12FV	9-146	3.15	0.22		Tube Voltage Drop: 60 volts at 7.0 ma d-c				
3AU6¶	Sharp-Cutoff RI Pentode		7BK	5–2	3.15	0.6	3.5 ◈	330 ◈	330 ●\$ 0.75 ●	Pentod	e Conn	ection
							3.5 ◈	275 🏶	_		Connec	
3A V 6¶	Duplex-Diode High-Mu Triode		7BT	5-2	3.15	0.6	0.5	300	_	2.2	1.2	2.0
3AW2	Half-Wave High Voltage Recti- fier	(A)	12HA	9-100	3.15	0.35		Tube \ 60 volt	oltage s at 7.0	Drop: ma d-c		
3AW2-A	Half-Wave High Voltage Recti- fier	25.0 mR/hr	12HA	9-146	3.15	0.35	_	Tube \ 60 volt	oltage s at 7.0	Drop: ma d-c	:	
3AW3	Half-Wave High Voltage Recti- fier	(a)	8EZ	9-53	3.15	0.22		Tube \ 110 vo	/oitage lts at 7.	Drop: 0 ma d-	c	
3B2	Half-Wave High Voltage Recti- fier	(a)	8GH	T-X	3.15	0.22		Tube V 135 vo	Voltage lts at 7.	Drop: 0 ma d-	·c	
\$B4	Beam Power Amplifier		7CY	5-2	1.25 2.50 DC	0.33 0.165	3.0 🖻	150	135 @	4.6 ▲	7.6 ▲	0.16
3B5-GT	Beam Power Amplifier		7AQ	9-12	1.4	0.1	_	67.5 67.5 Parallel Filaments 67.5 67.5 Series Filaments				
3B7	High-Frequency Twin Triode		7BE	9-30	1.4 2.8 DC	0.22 0.11	2.7 🏚	180		Both S Push-p	ections ull	in

Compactron.
Zero signal.
Per section.

Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Total for all similar sections.
Absolute maximum rating.
#Conversion transconductance.

^{▲-}X-Radiation Rated, and ▲-No X-Radiation Rating.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Flyback Rectifier	24,000 100 ma	volts):	max d t termin	c outpu	it curre	19 = 30,0 nt ♦ = 2. y be used as	0 ma: 1	nax nea	k curre	ent 🚳 💳	3A3-B
TV Flyback Rectifier	100 ma	nverse v volts); a. Socke eater po	t termi	nais 4 ar	d peak) it curre id 6 may		000 volt 0 ma; i s tie poi	s (d-c o max pea nts for o	ompone ak curre compon	ent 🗷 = ent 🚸 = ents at or	3A3-C
Class A Amplifier	150	90	8.4	13.3†	2.2†	100,000	1,900	_	8,000	0.7	5A4
Class A Amplifier •	90		2.5	3.7		8,300	1,800	15			3A5
Class A	90		0	0.2		200,000	275				3A8-GT
Amplifier Class A Amplifier	90	90	0	1.5	0.5	800,000	750	_	-	-	
Class A Amplifier	80		R _k = 150	17.5			6.500	13.5			3AF4-A¶ 3AF4-B¶
Half-Wave Rectifier	volts plate	; max ri =54 m	ns supp a	oly volta	ige per p	=9 ma; ma; olate = 117	volts; m	ах реа	k curre	nt per	3A L 6 ¶
TV Flyback Rectifier	= 1	.7 ma; 1	nax pea	ık curre	nt 🐵 =	= 30,000 88 ma. So at or near h	cket ter	minals 4	4, 7 and	current 10 may	3AT2 ■ ●
TV Flyback Rectifier	Max in 24,000 88 ma.	verse v	oltage max d- termina	(d-c and c outpu ds 4, 7 a	l peak) t currer		00 volts 7 ma; n	(d-c co	ompone k curre	nt 🏶 🖚	3AT2-A
TV Flyback Rectifier	Max in 30,000 88 ma.	verse v volts); Socket heater	oltage max d- termina	(d-c and c outpu ds 4, 7 a	l peak) t currer nd 10 m		00 volts 7 ma; n as tie p	d-c conax pea oints fo	ompone k curre r comp	nt 🖲 = nt 🚸 = onents at	3AT2-B
Class A Amplifier	250 100	150 100	$R_k =$	10.6 5.0	4.3 2.1	1,000,000 500,000	5,200 3,900	_			<i>3AU6</i> ¶
Class A Amplifier	250		$150 \\ R_k = 330$	12.2	_	_	4,800	36	_		
Class A Amplifier	250 100	_	2.0 1.0	1.2 0.5		62,500 80,000	1,600 1,250	100 100	=		3A V6¶
TV Flyback Rectifier	110 ma	verse v volts); . Socket heater	termin	als 4, 7a	l peak) t currer ind 10 m		00 volts 2 ma; n l as tie p	d-c conax pea	ompone k curre r compo	nt 🏶 = nt 🌢 = onents at	3AW2 ■
TV Flyback Rectifier	or near	. Socket heater	termin potenti	ais 4, 7 : al.	and IU r		i as tie p	oints 10	r comp	onents at	3AW2-A I
TV Flyback	Max in	verse v	oltage (d-c and ak curre	peak) « ent ♦ = ents at c	 = 30,000 = 88 ma. Soor near hear 	0 volts; ocket te ter pote	max d-o rminals ntial.	outpu 4 and (t current 3 may be	3AW3
Rectifier	used as										
TV Flyback Rectifier	Max ii 25.000	nverse volts); termin	voltage max d-	(d-c an	d peak) t curren sed as ti	■ = 35 it = 1.1 m ie point for	,000 vol a; max compo	ts (d-c peak cu nents a	compo irrent = t or ne	nent = = 80 ma. ar heater	3B2
TV Flyback	Max ii 25,000 Socket	nverse volts); termin	voltage max d- al 4 ma	(d-c an	d peak) t curren sed as t	E = 35 it = 1.1 m ie point for Input Sign	compo	nents a	compourrent : t or ne	nent = = 80 ma. ar heater	3B2 ● 3B4
TV Flyback Rectifier Class C Amplifier Class A Amplifier	Max is 25,000 Socket potenti 150 67.5	volts); terminial. 135	voltage max d- al 4 ma 38	(d-c an c outpu y be us 25	6.2 0.6†	Input Sign	1,650	nents a	5,000	1.25 0.2	•
TV Flyback Rectifier Class C Amplifier Class A	Max ii 25,000 Socket potenti 150	verse volts); terminial.	voltage max d- al 4 ma	(d-c and c outputy be us	6.2	Input Sign	compo	7 watt	t or ne	1.25 0.2 0.18	● 3B4

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tuba	Classification	X-Ra-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen	l 1	pacitano Picofara	e in ds
Tube Type	by Construction	diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
3B28	Half-Wave Gas Rectifier		4P	T-X	2.5	5.0		Tube V			10 Volts	3
5BA6¶	Remote-Cutoff RF Pentode		7BK	5-2	3.15	0.6	3.4 🏶	330 ◈	330 ♦8 0.7 ♦	5.5	5.5	0.0035 •
3BC5¶	Sharp-Cutoff RF Pentode		7BD	5-2	3.15	0.6	2.3 🏶	330 �	330 ◆\$ 0.55 ◆	Pentod	e Conne	ection
							2.9 🏶	330 �		Triode (G ₂ &	Connec P tied)	tion
3BE6¶	Pentagrid Converter		7CH ♥	5-2	3.15	0.6	1.0	300	100 1.0		=0.5 m 0,000 ol	a ims
3BF2	Half-Wave High- Voltage Recti- fier	(A)	12GQ	9-100	3.6	0.225	_	_			_	_
3BL2 ■	Half-Wave High- Voltage Recti- fier	(A)	12HK	9-100	3.3	0.285		Tube V 50 volt	oltage is at 7.0	Drop: ma d-c		-
3BL2-A ■	Half-Wave High- Voltage Recti- fier		12HK	9-100	3.3	0.285		Tube V 50 volt	oltage s at 7.0	Drop: ma d-c		
3BM2 1	Half-Wave High- Voltage Recti- fier	(A)	12HK	9-100	3.0	0.3	_	Tube V 50 volt	oltage s at 7.0	Drop: ma d-c		
3BM2-A ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12HK	9–100	3.0	0.3	_	Tube V 50 volts	oltage l at 7.0	Drop: ma d-c		
3BN2 ■	Half-Wave High- Voltage Recti- fier	•	12FV	9–100	3.15	0.3	_	Tube V 150 vol	oltage l ts at 7.0	Drop: 0 ma d-	c	
3BN2-A ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12FV	9-146	3.15	0.3		Tube V 150 vol	oltage l ts at 7.0	Drop: 0 ma d-	e	
3BN 4¶	High-Frequency Triode		7EG	5-2	3.0	0.45	2.2 🄷	275 ◈		3.2	1.4	1.2
3BN 4-A¶	High-Frequency Triode		7EG	5–2	3.0	0.45	2.2	275		3.2	1.4	1.2
3BN6¶	Gated-Beam Discriminator		7DF	5-3	3.15	0.6		330 ◈ \$	110 🏶	$\overline{E_{c1}} = 1$.25 volts	RMS
3BS2	Half-Wave High- Voltage Recti- fier	(A)	12HY	9-100	3.15	0.48		Tube V 60 volt	oltage s at 7.0	Drop: ma d-c		
3BS2-A ■	Half-Wave High- Voltage Recti- fier	(A)	12HY	9-100	3.15	0.48		Tube V 60 volt	oltage s at 7.0	Drop: ma d-c		
3BS2-B ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12HY	9-100	3.15	0.48	_	Tube V 60 volt	oltage s at 7.0	Drop: ma d-c		
3BT2 ■	Half-Wave High- Voltage Recti- fier	•	12HY	9-100	3.15	0.48	-	Tube V 70 volt	oltage s at 7.0	Drop: ma d-c		
3BT2-A	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12HV	9-100	3,15	0.48	—	Tube V 70 volt	oltage s s at 7.0	Drop: ma d-c		

Compactron.
† Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage. Subminiature type.
▲Without external shield.
Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating.

See X-Radiation Warning, page 4.

Service	Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Half-Wave Rectifier	Max o	l-c outr	ut curr	ent 📵	=0.5 am	peres; ma: 2.0 amperes	x peak i	nverse			3B28
Class A	250	100	Rk=	11		1,000,000	4,400		_		3BA6¶
Amplifier	100	100	68 R _k = 68	10.8	4.4	250,000	4,300				
[250	150	R _k = 180	7.5	2.1	800,000	5,700	_		_	3 BC 5 ¶
Class A Amplifier	125	125	R _k = 100	8.0	2.4	500,000	6,100	_	-		
in pine.	100	100	Ř _k = 180	4.7	1.4	600,000	4,900		_	-	
Class A	250	_	R _k == 820	6.0	-	9,000	4,400	40	-	-	
Amplifier	180	_	R _k = 330	8.0	-	6,000	6,000	42	-	-	
Converter	250 100	100 100	1.5 1.5	2.9 2.6	6.8 7.0	1,000,000 400,000	475 # 455 #				3BE6¶
TV Flyback Rectifier	Max ir	iverse v 2.2 ma;	t current	3BF2 ■							
TV Flyback Rectifier	Max ii 27,500 100 ma or near	nverse v volts); i. Socket filamet	nt 🆫 = nt 🖫 = onents at	3BL2 ■							
TV Flyback Rectifier	27,500 100 ma	volts);	max d- t termin	c outpuals 4, 7	it curre		0 ma; r	nax pea	k curre	nt 🏶 🖚	3BL2-A ■
TV Flyback Rectifier	100 ma	verse v volts); a. Socker filamer	t termin	als 4, 7	d peak) it curre and 10	 	00 volts 0 ma; r 1 as tie p	s (d-c c nax pea points fo	ompone k curre or compo	nt ◈ = nt ◈ = onents at	3M B2 ■
TV Flyback Rectifier	27,500 100 ma or near	volts); i. Socke f filamei	max d- t termin nt poten	c outpu als 4, 7 itial.	and 10		0 ma; r i as tie p	nax pea points fo	k curre or compo	nt 🏶 = onents at	3BM2-A ■
TV Flyback Rectifier	88 ma.	verse v volts); Socket heater	termina	us 4. <i>(</i> a	d peak) it curre and 10 n	\Rightarrow = 30.0 nt \Rightarrow = 1. nay be used	00 volts 7 ma; r as tie p	s (d-c c nax pea ooints fo	ompone k curre r compo	nt ◈ = nt ◈ = onents at	3BN2 ■ ●
TV Flyback Rectifier	Max in 27,500 88 ma.	nverse 1	oltage max d- termina	(d-c and c outpu ds 4, 7 a	d peak) it curren and 10 n		00 volt: 7 ma; n l as tie p	s (d-c c nax pea ooints fo	ompone k curre r compo	nt 🐌 = nt ◈ = onents at	3BN2-A
Class A Amplifier	150	1 -	R _k =	9.0	-	6,300	6,800	43	T -	1-1	3BN 4¶
Class A Amplifier	150		R _k == 220	9.0		5,400	8,000	43	-		3BN4-A¶
FM Limiter- Discrimi- nator	285	100	R _k = 200 to 400	0.49	9.8	=	_		330, 000		3BN6¶
TV Flyback Rectifier	110 ma	a. Socke r heater	t termir potenti	ıals 4 a: al.	nd 10 m	$\hat{\otimes}$ = 38,0 at $\hat{\otimes}$ = 2. The contract $\hat{\otimes}$ = 2. The contract $\hat{\otimes}$ is a second	as tie p	oints fo	r compo	nents at	3BS2 ■
TV Flyback Rectifier	near h	eater po	tential.			$\hat{\otimes} = 38,0$ ant $\hat{\otimes} = 2$ by be used a					3 BS2-A ■
TV Flyback Rectifier	30,000 110 ma	nverse v volts); a. Socke eater po	max d- t termin	(d-c an c outpu als 4 an	d peak) it curre id 10 ma	■ = 38,0 nt	00 volts 2 ma; r s tie poi	s (d-c c nax pea nts for c	ompone k curre compone	nt ∰ = nt ◈ = ents at or	3 BS2- B
TV Flyback Rectifier	1110 ma	nverse volts); a. Socke eater po	t termin	(d-c an c outpu als 4 an	d peak) it curre id 10 ma		000 volt: 2 ma; r s tie poi	s (d-c c nax pea nts for c	ompone k curre compone	nt 📵 = nt 🦫 = ents at or	3BT2 ■
TV Flyback Rectifier	Max i 30,000 110 ma	nverse v volts; a. Socke	oltage max d- t termin	(d-c an c outpu als 4 an	d peak) t currer id 10 ma		000 volt: 2 ma; n s tie poi	s (d-c c nax pea nts for c	ompone k curre ompone	nt 侧 = nt ◈ = ents at or	3BT2-A ■

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

§ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	X-Řa-	Base Con-	Out-		Fila- ment			Max. Screen	1 1	pacitan Picofara	ce in
Туре	Construction	diation Rating	nec- tions	Dwg.						Input	Out- put	Grid Plate
3BU8¶	Twin Pentode		9FG	6-3	3.15	0.6	1.1 €	300 €	150 (0.75	-	-	1-
3BU8-A¶	Twin Pentode		9FG	6-3	3.15	0.6	1.1 ♦	300 ♦	150 ♦ 0.75 ♦	<u> </u>		
3BW2 ■	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	12HY	9-146	3.15	0.48		Tube V 70 volt	oltage I s at 7.0	Orop: ma d-c	The second second	
SBY6¶	Dual Control Heptode		7CH	5-2	3.15	0.6	2.3 🏈	330 ◈	330 ♦ \$	******		
3B26¶	Semi-Remote- Cutoff RF Pentode		7CM	5-2	3.15	0.6	2.3 🏶	330 �		7.0	3.0	.0015
3C2	Half-Wave High Voltage Recti- fier		8FV	12-19	3.15 1.58	0.21 0.42		Tube V 62 volt	oltage las at 7.0	Drop: ma d-c	-	
3C5-GT	Power-Amplifier Pentode		7AQ	9-12	1.4 2.8 DC	0.1 0.05	_	110 110	1		l Filamen	
3C6	Medium-Mu Twin Triode		7BW	9-30	1.4 2.8 DC	0.1 0.05	_	110 110	[8	ection	1 Para 2 Filar 1 Serie	es }
3C23	Thyratron		3G	T-X	2.5	7.0		Anode	Voltage		2 Fila: 15 Vol	
3CA3	Half-Wave High- Voltage Recti- fier	(A)	8MH	9-51	3.6	0.225		Tube V 100 vol	oltage D	rop: ma d-c		
3CA3-A	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8EZ	T-X	3.6	0.225	_	Tube V 60 volts	oltage D at 7.0 n	rop: na d-c		
3CB6¶	Sharp-Cutoff RP Pentode		7CM	5-2	3.15	0.6	2.3๋�	330 ◈	330 2 � 0.55 �	6.5	3.0	0.015
3CE5¶	Sharp-Cutoff RF Pentode		7BD	5-2	3.15	0.6	2.0	300	150	6.5 ▲	1.9 ▲	0.03
SCF6¶	Sharp-Cutoff RF Pentode		7CM	5–2	3.15	0.6	2.3 🏶	330 ◈	330 2 🆠 0.55 🏶	6.5	3.0	0.015
3CN3	Half-Wave High- Voltage Recti- fier	(A)	8MU	Ť-X	3.15	0.48	_	Tube Vo	oltage D at 7.0 n	rop: na d-c		I
3CN3-A	Half-Wave High- Voltage Recti- fier	(A)	8MU	T-X	3.15	0.48	_	Tube Vo 60 volts	oltage D at 7.0 n	rop: 1a d-c		
3CN3-B	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8MU	9-153	3.15	0.48	-	Tube Vo 60 volts	oltage D at 7.0 n	rop: 1a d-c		

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A—X-Radiation Rated, and A—No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage. Subminiature type.
 ▲Without external shield.
 Design maximum rating.

⊕Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance.

Service		Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Sync Sepa- rator and AGC Keyer		67.5 acteristi	cs give		5.0 — or each ground	section sep	1,500 parately		$E_{c3} = 0$ $E_{c3} = 0$ late and	volts	<i>3BU8</i> ¶
Sync Sepa- rator and AGC Keyer	numb	67.5 acterist er 3 of	ics give opposite	n are f	n groun				E _{cs} =		3BU8-A¶
TV Flyback Rectifier	Max in 30,000 110 ma near he	3BW2 ■									
Gated Amplifier	250 10	100 25	$\begin{array}{c} 2.5 \\ 0 \end{array}$	6.5 1.4	9 3.5			$ \begin{array}{c} E_{c3} = -\\ E_{c3} = 0 \end{array} $	-2.5 vol volts	lts	3BY6¶
Class A Amplifier	125 125	125 125	R _k = 56 4.5	14	3.6	260,000	8,000 700	_	-		\$BZ6¶
TV Flyback Rectifier	28,000 80 ma.	volts); Socket	max d-	c outpu Is I and	t currer 13 may	\Rightarrow = 33,0 at \Rightarrow = 1. be used as act to any of	l ma; n tie poin	nax pea	k curre	nt 🏟 😑	3C2
Class A Amplifier Class A Amplifier	90 90	90	9.0	6.0† 6.0†	1.4† 1.4†	_	1,550 1,450	_	8,000 10.000		3C5-GT
Class A Amplifier Class A Amplifier	90 90 90 90	=	0 0	4.5 4.5 4.5 3.2		11,200 11,200 11,200 12,800	1,300 1,300 1,300 1,100	14.5 14.5 14.5 14.1	=		3C6
Controlled Rectifier	Max 6	i-c cath volts; n	ode cur	rent 🖭 k catho	=1.5 a de curre	mperes; main ent = 6.0	ax peak	inverse	voltag	e 🖲 =	3C23
TV Flyback Rectifier	j 🄷 = 1	00 ma;	max pea	ık curre	nt 🔷 =	 = 30,000 100 ma. Sor near heat 	ocket te	rminals	output 4 and 6	current may be	3CA3
TV Flyback Rectifier	30,000 100 ma	volts);	max d-c	outpu	t currer		0 ma; n	nax pea	k curre	nt 🐵 🛥	3CA3-A
Class A Amplifier	125 125	125 125	Rk = 56 3.0	13 2.8	3.7	280,000	8,000				<i>\$CB6</i> ¶
Class A Amplifier	125	125	1.0	11	2.8	300,000	7,600	<u> </u>			3CE5¶
Class A Amplifier	125 125	125 125	$\begin{array}{c} R_k = \\ 56 \\ 3.0 \end{array}$	12.5 2.2	3.7	300,000	7,800		_		3CF6¶
TV Flyback Rectifier	30,000 110 ma	volts);	max d-d	outpu	t currer	 	2 ma; π	iax pea	k curre	nt 🐵 😑	3CN3
TV Flyback Rectifier	Max in 30,000 110 ma near he	verse v volts); . Socket	ompone	nt 🔷 = nt 🗞 = nts at or	3CN3-A ●						
TV Flyback Rectifier	Max in 30,000 110 ma	verse v volts); . Socket ater po	oltage (max d- termin	d-c and c outpu als 4 an	l peak) t currer d 6 may	■ = 38,0 nt = 2.5 be used as	00 volts 2 ma; n tie poir	(d-c conax pea its for c	mpone k curre ompone	nt 📵 = nt 🚸 = nts at or	3CN3-B ●

Tube	Classification	X-Ra-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen		pacitano Picofara	
Type		diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
3CS6¶	Dual Control Heptode		7CH ♥	5-2	3.15	0.6	1.0	300	300 2 1.0	5.5	7.5	0.07
BCU3	Half-Wave High- Voltage Recti- fier	•	8МК	T-X	3.15	0.28		Tube V 50 volt	oltage s at 7.0	Drop: ma d-c	:	
BCU3-A	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8M K	9-153	3.15	0.28			oltage s s at 7.0			
3CV3	Half-Wave High- Voltage Recti- fier		8EZ	9-51	3.15	0.25		Tube V 100 vo	Voltage Its at 9.	Drop: 5 ma d	-c	
3CV3-A	Half-Wave High- Voltage Recti- fier		8EZ	9–153	3.15	0.27		Tube \ 100 vo	Voltage lts at 9.	Drop: 5 ma d	-c	
3CX3	Half-Wave High- Voltage Recti- fier	•	8MT	T-X	3.15	0.48		Tube V 60 volt	Voltage s at 7.0	Drop: ma d-o	2	
BCY3	Half-Wave High- Voltage Recti- fier		8M X	9-161	3.15	0.22	***	Tube V 60 volt	Voltage s at 7.0	Drop: ma d-o	2	
SCY5¶	Sharp-Cutoff RF Tetrode		7EW	5-2	2.9	0.45	2.0 🆠	180 ◈	180 ♦ \$	4.5	3.0	0.03
3CZ3	Half-Wave High- Voltage Recti- fier		8EZ	T-X	3.15	0.48		Tube V 60 volt	oltage s at 7.0	Drop: ma d-	-l <i></i>	-[,
3CZ3-A ●	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8EZ	T-X	3.15	0.48		Tube V 60 volt	Voltage is at 7.0	Drop: ma d-	2	
3D6	Beam Power Amplifier		6BA	9-30	1.4 DC	0.22	4.5	180	135	7.5	6.5	0.30
BDA3	Half-Wave High- Voltage Recti- fier		8MY	9-161	3.15	0.48			Voltage s at 7.0			-
3DB3	Half-Wave High- Voltage Recti- fier		8MX	9-161	3.15	0.245	****		Voltage s at 7.0		2	
3DC3	Half-Wave High- Voltage Recti- fier		8MZ	9–153	3.15	0.280		Tube V 50 volt	Voltage s at 7.0	Drop: ma d-o	2	
3DF3	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8MT	9–161	3.15	0.48	_	Tube V 60 volt	Voltage ts at 7.0	Drop: ma d-	e	
3DF3-A	Half-Wave High- Voltage Recti- fier		8MT	T-X	3.15	0.48	_	Tube V 60 volt	Voltage ts at 7.0	Drop: ma d-	c	
3DG4	Full-Wave High- Vacuum Rectifier		5DE	12-16	3.3	3.8			Tube V 32 volt	oltage s at 35	Drop: 4 0 ma d-	c

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

[A]—X-Radiation Rated, and (A)—No X-Radiation Rating.

Compactron.
† Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage.

⊕Subminiature type.▲Without external shield.⊕Design maximum rating.

⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	put, Watts	Tube Type
Gated Amplifier	100 100 10	30 30 30	1.0 0 0	1.0 0.8 2.0	1.3 5.5 4.5	1,000,000 700,000	1,100	$ \begin{aligned} \mathbf{E}_{\mathbf{c3}} &= 0 \\ \mathbf{E}_{\mathbf{c3}} &= 0 \\ \mathbf{E}_{\mathbf{c3}} &= 0 \end{aligned} $	-1.0 vol	ts	3CS6¶
TVFlyback Rectifier	27,500 100 ma	volts);	max d-d termin	c outpu als 4 an	t currer	 	0 ma: n	lax nea	k curre	nt 🏟 🖚	3CU3
TV Flyback Rectifier	30,000 100 ma	volts):	max d-d termin	c outpu als 4 an	t currer	■ = 38,0 at � = 2. be used as	0 ma· n	nav nes	k curre	nt 🙈 🛥	
TV Flyback Rectifier	27,500 100 ma	volts);	max d-: termin	: outpu	t currer	1 = 35,0 it	9 ma: n	nax pra	k curre	nt 🏇 🛥	
TV Flyback Rectifier	27,500 100 ma near he	volts); Socket ater pot	max d-e termin ential.	c outpu als 4 ai	t currer nd 6 ma	■ = 35,0 it * = 1. y be used	9 ma; n as tie po	nax pea	k curre compo	nt 🦫 = nents at	3CV3-A
TV Flyback Rectifier	110 ma	voits):	max d-(termin	: outpu	t curren	 	2 ma: n	lax rea	k curre	nt 🌤 😑	3CX3
TV Flyback Rectifier	30,000 110 ma	volts):	max d-o termin	coutou	t currer	■ = 38,0 it	0 ma: n	nax nea	k curre	nt 🗆 🖚	3CY3
Class A Amplifier	125	80	1.0	10	1.5	100,000	8,000				3CY5¶
TV Flyback Rectifier	30,000 110 ma	volts):	max d-e termin	CONTRACT	t currer	 = 38,0 at *= 2. be used as 	2 mar n	ax nea	k curren	nt 🌥. =	3CZ3
TV Flyback Rectifier	30,000 110 ma	volts);	max d-o termin	coutou	t currer	 ■ = 38,0 at * = 2. be used as 	2 ma: n	ax nea	k currer	nt 🌤 =	
Class A Amplifier	150	90	4.5	9.8†	1.0†		2,400	-	14,000	0.60	3D6
TV Flyback Rectifier	30,000 110 ma	volts);	max d- termin	c outpu	it curre	■ = 38,0 nt	.2 ma: 1	nax pea	ik curre	nt 🌤 =	3DA3
TV Flyback Rectifier	30,000 100 ma near he	volts); i. Socket eater po	max d- termin tential.	c outpu als 4 ar	it currei id 6 maj	■ = 38,0 nt * = 2, 7 be used a	.0 ma; r s tie poi	nax pea nts for o	k curre compone	nt 🍫 =	
TV Flyback Rectifier	30,000 110 ma	volts);	max d- t termir	c outpu ials 4, (it currei	■ = 38,0 nt ◆ = 2 may be us	.2 ma: r	nax pea	ık curre	nt 🌤 =	
TV Flyback Rectifier	30,000 110 ma	verse v volts); . Socket eater po	max d- : termin	(d-c and c outpu als 1 an	d peak) it currei id 7 may	■ = 38,0 nt	000 volt. 2 ma; i s tie poi	s (d-c c nax pea nts for c	ompone k curre compone	nt 🖲 = nt 🍫 = nts at o	3DF3
TV Flyback Rectifier	30,000 110 ma near he	volts); i. Socket eater po	max d- termin tential.	c outpu als I an	t currend 7 may	■ = 38,0 nt	.2 ma; r s tie poi	nax pea nts for o	k curre compone	nt 🍫 =	3DF3-A
Full-Wave Rectifier	Max	d-c out; 050 vol nt per p	out cur s; max late 🏶	rent pe RMS s =1200	r plate upply v ma	♦ =400 m oltage per j	ia; max olate 🏶	peak i =325 v	nverse olts; ma	voltage x peak	3DG4

Tube	Classification	X-Řa-	Base Con-	Out-	Fila-	Fila-	Max.	Max.	Max. Screen	Cap	acitano icofara	e in ds
Туре	Construction	diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps	Plate Watts	Plate Volts	Volts and Watts	Input	Out- put	Grid- Plate
3DH3	Half-Wave High- Voltage Recti- fier	25.0 mR/hr	8NM	9–161	3.15	0.48	_	Tube V 70 volt	oltage l s at 7.0	Drop: ma d-c	1	
3DJ	Half-Wave High- Voltage Recti- fier	25,0 mR/hr	8MX	9-169	3.15	0.3	_	Tube V 70 volt	oltage l at 7.0	Drop: ma d-c	,	
3DK6¶	Sharp-Cutoff Pentode		7CM	5-2	3.15	0.6	2.3 🏶	330 €	330 ♦ \$ 0.55 ♦	6.3 ▲	1.9▲	0.025
3DR3	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	8NL	12-141	3.15	0.3	_	Tube V 70 volt	oltage l s at 7.0	Drop: ma d-c	1	
3DS3	Half-Wave High- Voltage Recti- fier	0.5 mR/hr	8NL	T-X	3.15	0.48		Tube V 70 volt	oltage l s at 7.0	Drop: ma d-c	•	
3DT6¶	Sharp-Cutoff Pentode		7EN	5-2	3.15	0.6	1.7 ◈	330 ◈	330 ♦ \$ 1.1 ♦	 I _{e1} = 0.0	5 ma	1
3DT6-A¶	Sharp-Cutoff Pentode		7EN	5-2	3.15	0.6	1.7 ◈	330 �	330 ♦ \$			 -
3DX4¶	UHF Triode Oscillator		7DK	5-1	3.0	0.45	2.2 🄷	150 ◈		3.9	1.5	1.6
3DY4¶	UHF Triode Oscillator		7DK	5-2	2.9	0.3	1.5�	135 🏶		3.5	1.15	2.0
3DY4-A¶	UHF Triode Oscillator		7DK	5-1	2.9	0.3	1.5 🏶	135 �		3.5	1.15	2.0
3DZ4¶	UHF Triode Oscillator		7DK	5-1	3.2	0.45	2.3 🏶	135 €	1 -	2.2	1.3	1.8
3E5	Beam Power Amplifier		6BX	5-2	1.4	0.05		135	90	Paralle	l Filam	ients
	-				2.8 DC	0.025	-	135	90	Series 1	Filame	nts
3E6	Sharp-Cutoff RF Pentode	ì	7CJ	930	2.8	0.05	_	110	110	Series 1		
					1.4 DC	0.1		110	110	Paralle	l Filan	ents
3EA5¶	Sharp-Cutoff RF Tetrode		7EW	5-2	2.9	0.45	3.25	250 €	150 (a)	4.5	3.0	0.05 🌩
3EH7	Remote-Cutoff Pentode		9AQ	T-X	3.4	0.6	2.5	250	250 0.65	9.5	3.0	0.005
3EJ7	Sharp-Cutoff Pentode		9AQ	T-X	3.4	0.6	2.5	250	250 0.9	10	3.0	0.005
3ER5	High-Frequency Triode		7FP	5-2	2.8	0.45	2,2	250		4.4	4.0	0.36
3ES5¶	High-Frequency Triode		7FP	5-2	3.0	0.45	2.2 🏟	250 €	=	3.2	4.0	0.5
3EV 6¶	Sharp-Cutoff RF	·	7EW	5-2	2.9	0.45	3.25 ◈	275 ◈	180 \$	4.5	2.9	0.035
3FH5¶	High-Frequency Triode		7FP	5–2	3.0	0.45	2.2 🏶	150 ◈		3.2	4.0	0.52
3FQ5¶	High-Frequency Triode	+	7FP	5–2	2.8	0.45	2.5 🏟	200 ◈		4.8	4.0	0.4
3FQ5-A¶	High-Frequency Triode		7FP	5-2	2.8	0.45	2.5 🌑	200 🏶	=	5.0	3.5	0.52
8FS5¶	"Shadow Grid" Beam Pentode		7GA	5-2	2.9	0.45	3.25 ◈	300 ◈	150 ③ 0.15 ④	4.8	2.8	0.016

\$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A—X-Radiation Rated, and A—No X-Radiation Rating.

Compactron.
† Zero signal.

Per section.

† Plate-to-plate. †Maximum. †Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Volts	Plate Milli- am- peres	Screen Milli- am- peres	Ohms	G _m , μmhos	tor	Load for Rated Out- put, Ohms	watts	Tube Type
TV Flyback Rectifier	30,000 110 ma at or n	volts); a. Socke ear hea	max det termi ter pote	c outpu nals 1, 2 ntial.	t currer 2 and 7	■ = 38,0 nt ● = 2, may be us	2 ma; n ed as tie	nax pea points	k curre for con	nt 🐞 = nponents	3DH3
TV Flyback Rectifier	30,000 100 ma	volts);	-max d t termir	c outpu	t curre		0 ma; n	nax pea	ık curre	nt 伦 😑	3DJ3
Class A Amplifier	125	125	R _k = 56	12	3.8	350,000	9,800				3DK6¶
TV Flyback Rectifier	30,000 Socket heater	volts); termina potentia	max d-c als 4 and al.	output d 7 may	current be use	= 38,0= 2.0 mad as tie po	; max p ints for	eak cur compoi	rent = nents at	or near	3DR3
TV Flyback Rectifier	30,000 Socket near he	volts); n termina ater po	nax d-c o als 4 an tential.	output c	urrent 🤄	 = 38,0 = 2.2 ma d as tie po 	max pe	ak curre	nt 🙈 =	110 ma	3DS3
Class A Amplifier	150	100	R _k = 560	1.1	2.1	150,000	800	_	$E_{c3} = 0$	volts	<i>3DT6</i> ¶
FM Limiter- Discrimina- tor	250\$	100	R _k = 560	0.22	5.5	$\mathbf{E_{c3}} = -6$.0 völts		270,- 000	-	
Class A Amplifier	150	100	R _k = 560	1.55	1.8	150,000	1,350	E _{c3} =	0 volts		3DT6-A¶
Class A Amplifier	85		Rk = 150	10	_	2,700	11,000	30	_		3DX4¶
Class A Amplifier	90		Rk = 180	10.4	_		11,000	28			3DY4¶
Class A Amplifier	90	_	Rk = 180	10.4	_		11,000	28			3DY4-A¶
Class A Amplifier	80 With	2,700 o	hm resi	15 stor in 1	late cir	2,000 cuit	6,700	14	I —	- i	3DZ4¶
Class A Amplifier	90 67.5	90 67.5	7.0 5.0	8.0 5.5	1.6	100,000 120,000	1,550 1,400	_	8,000 8,000	0.250	3E5
Class A Amplifier	90 67.5	90 67.5	7.0 5.0	6.8	1.4	120,000	1,450	_	9,000	0.225	
Class A	90	90	Re =	2.9	1.2	325,000	1.300	-=-	11,000	0.115	3E6
Amplifier Class A Amplifier	90	90	2 meg Rg = 2 meg	4.2	1.7	250,000	2,000	_	_	-	
Class A Amplifier	250	140	1.0	10	0.95	150,000	8,000			<u> </u>	3EA5¶
Class A Amplifier	200	90	2.0	12	4.5	500,000	12,500				3EH7
Class A Amplifier	200	200	2.5	10	4.1	350,000	15,000		_		3EJ7
Class A Amplifier	200	_	1.2	10	_		10,500	80	_		3ER5
Class A Amplifier	200	_	1.0	10		8,000	9,000	75			3ES5¶
Class A Amplifier	250	80	1.0	11.5	0.9	150,000	8,800				3EV5¶
Class A Amplifier	135		1.0	11		5,600	9,000	50			3FH5¶
Class A Amplifier	135		1.2	11.5		5,500	11,000	60			3FQ5¶
Class A Amplifier	135		1.2	8.9		6,300	12,000	74	_		3FQ5-A¶
Class A Amplifier	275	135	0.2	9.0	0.17	240,000	10,000			_	3FS5¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitano cofarad	e in Is
Туре	Construction	nec- tions	Dwg	Voits	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
3FW7¶ ⊚	Double Triode	8LM	T-X	3.5	0.6	i — i	150 ◈		Section	1 (Pir	s ö,
							150 ◈	_	7, 8) Sectio 2, 3)	n 2 (Pi	ns 1,
3FX7¶ ⊚	Twin Triode	8LK	T-X	3.5	0.6	1.7 ⊕ ♠ 3.2 Total	100◈				=
3GK5¶	High-Frequency Triode	7FP	5–2	2.8	0.45	2.5♦	200 ◈		5.0	3,5	0.52
3GS8¶	Twin Pentode	9LW	6–3	3.15	0.6	1.1 🆠	300 ◈	150 ♦ 0.75 ♦			
\$GU6¶	"Shadow-Grid" Beam Pentode	7GA	5-2	3.1	0.45	3.0 ◈	300 ◈	150 ()	7.0 ▲	3.2 ▲	0.018
3GW 5¶	High-Mu Triode	7GK	5-2	3.0	0.45	2.5 🏶	200 🏶		5.5	4.0	0.6
3HA5	High-Mu Triode	7GM	5-1	2.7	0.45	2.6 🏶	220 ◈		4.3	2.9	0.36
3H K 5¶	High-Frequency Triode	7GM	5–2	2.9	0.45	2.3 🏟	200 ◈		4.4	2.6	0.29
<i>3HM 5</i> ¶	High-Mu Triode	7GM	5–2	2.9	0.45	2.6 🏶	200 ◈		4.5	3.0	0.34 💠
3HM6¶	Sharp-Cutoff RF Pentode	9PM	6–2	3.15	0.6	2.5 🏶	250 �	250 8 🆠 0.6 🏶	8.7	3.0	0.024
3HQ5¶	Triode	7GM	5–2	3.0	0.45	2.5 🏶	200 🏟	-	5.0	3.5	0.52
3HS8¶	Twin Pentode	9FG	6–3	3,15	0.6	1.1	300 ◈	0.75 (a)	-		-
3HT6¶	Semi-Remote-Cutoff RF Pentode	9PM	6-2	3.15	0.6	2.5 ◈	250 ♦	250 \$ @ 0.6	8.7	3.0	0.024
3JC6¶	Sharp-Cutoff Pentode	9PM	6-2	3.5	0.6	2.5♦	330 ♦		8.2 ▲	3.0 ▲	0.019
3JC6-A	Sharp Cutoff Pentode	9PM	6-2	3.5	0.6	3.1 🏶	330 ◈		8.5 ▲	3.0 ▲	0.019
3JD6¶	Sharp-Cutoff Pentode	9PM	6-2	3.5	0.6	2.5 🏶	330 ◈		8.2 ▲	3.0 ▲	0.019
3KF8¶	Twin Pentode	9FG	6-3	3.15	0.6	1.1 🌢	300 �			-	
3KT6	Semi-Remote-Cutoff Pentode	9PM	6–2	3.5	0.6	3.1 🏶	330 ◈	330\$ ♦	9.5 ▲	3.0 ▲	0.019
3LE4	Power Amplifier Pentode	6BA	9-30		0.1		110	110		l Filan	•
				2.8 DC	0.05		110	110		Filame	
3LF4	Beam Power Amplifier	6BB	9-30		0.05		110	110		Filame I Filam	
3Q4	Power Amplifier Pentode	7BA	5-2	1.4 DC	0.1	.	90	90		l Filan	
3(/4	Fower Amplifier Fentode	1 DA	3-2		0.1		90	90		Filame	
305-GT	Beam Power Amplifier	7AP	9-11	2.8 DC 1.4	0.1	l	110	110	Paralle	l Filan	ents
			or 9-41	2.8	0.05	_	110	110		Filame	
3 S4	Power Amplifier Pentode	7BA	5-2	DC 1.4	0.1	-	90	67.5	Paralle	l Filan	nents
				2.8 DC	0.05	-	90	67.5	Series	Filame	nts
3V4	Power Amplifier Pentode	6BX	5-2	1.4	0.1	1-	100⊛	100�	Paralle	l Filan	nents
	1			2.8 DC	0.05	-	100�	100�	Series	Filame	nts

Compactron.

† Zero signal.

† Per section.

Plate-to-plate.
Maximum.
Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections. ■Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	Rp, Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	90		1.0	7.0	<u> </u>	6,000	6,000	36		- 1	3FW7¶ ●
Amplifier Class A Amplifier	90		1.0	9.0	-	3,800	9,500	36		-	
Class A Amplifier	90		1.0	9.0	_	3,800	9,500	36			3FX7¶ ⊚
Class A Amplifier	135		1,0	11.5		5,400	15.000	78			3GK5¶
Sync Sepa-	100	67.5	I _{c1} =	2.0 •	3.6	(Both sec	tions		Ec3 = 0	volts	3GS8¶
rator and AGC Keyer	100	67.5	0,1 ma 0	_	-	operatir	1,200	_	E es =0	0 volts	
	(Plate	and gri	d numb	er 3 of o	pposite	section grou	inded)				0077-5
Class A Amplifier	275	135	0.4	10	0.17	165,000	15,500	_			3GU5¶
Class A Amp	135		1.0	12.5		5,800	15,000	70			3GW5¶
Class A Amplifier	135		1.0	11.5	_	_	14,500	72			3HA5
Class A Amplifier	135		1.0	12.5		5,000	15,000	75			3HK5¶
Class A Amplifier Class A	135	125	1.0 R _k =	12.5	3.2	156,000	14,500	78			3HM5¶ 8HM6¶
Amplifier Class A	135		56	11.5		5,400	15,000	78			3HQ5¶
Amplifier							<u> </u>		\ <u></u>	0 14-1	
Sync Sepa- rator and AGC Keyer	100	67.5	I _{c1} = 0.1 ma	2.0	4.4	(Both Sec	1,100	_	T.	0 volts	3HS8¶
						te section g		1)			
Class A Amplifier	125	125	$R_{k} = \frac{56}{Rk} = \frac{1}{R}$	15	3.2	143,000	14,000				3HT6¶ 3JC6¶
Class A Amplifier Class A	125	125	$\frac{RR}{56} = \frac{56}{R_k} = \frac{1}{2}$	14	3.4	180,000	16,000	(93	connect	ed to	3JC6-A
Amplifier			56	Ĺ	l		l	kats	connect socket)		3JD6¶
Class A Amplifier	125	125	Rk = 56	15	4.0	160,000	14,000				
Sync Sepa- rator and AGC Keyer	100	67.5	$I_{e1} = 0.1 \text{ ma}$	2.8	-	-	270	-	i	0 volts	SKF8¶
AGC Keyer	100 (Char	67.5	0	n are f	or each	section se	1,750	with	Ecs≔ nlate an	0 volts	
	numb	er 3 of	opposite	section	a ground	led)					
Class A Amplifier	125	125	R _k = 56	17	4.2	160,000	18,000			0 volts	3KT6
Class A Amplifier	90	90	9.0	10†	2.0†	100,000	1,700	_		0.325	3LE4
Amplifier Class A Amplifier	90	90	9.0	8.81	1.8†	110,000	1,600			0.300	
Class A Amplifier	110 90	110 90	6.6 4.5	8.5 8.0	1.1	110,000 80,000	2,000		8,000 8,000	0.23	3LF4
Class A	110	110	6.6	10 9.5	1.4 1.3	100,000	2,200 2,200	-	8,000 8,000	0.40	
Amplifier Class A	90	90	4.5	9.5	2.1†	100,000	2,150		10,000		3Q4
Amplifier Class A Amplifier	90	90	4.5	7.7†	1.7†	120,000	2,000	-	10,000	0.24	
Class A	110	110	6.6	101_	1.41	100,000	2,200	_	8,000	0.40	3Q5-GT
Amplifier Class A Amplifier	90 110 90	90 110 90	4.5 6.6 4.5	9.5† 8.5† 8.0†	1.3† 1.1† 1.0†	90,000 110,000 80,000	2,200 2,000 2,000	=	8,000 8,000 8,000	0.33	
Class A	90	67.5	7.0	7.4†	1.4†	100,000	1,575	T -	8,000	0.270	3 S4
Amplifier Class A Amplifier	67.5 90 67.5	67.5	7.0 7.0 7.0	7.2† 6.1† 6.0†	1.5† 1.1† 1.2†	100,000 100,000 100,000	1,550 1,425 1,400	=		0.180 0.235 0.160	
Class A	90	90	4.5	9.5t	2.1†	100,000	2,150	_	10,000	0.27	SV4
Amplifier { Class A Amplifier	85 90	85 90	5.0 4.5	6.9† 7.7†	1.5† 1.7†	120,000 120,000	1,975 2,000		10,000 10,000	$0.25 \\ 0.24$	

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		oacitano icofara	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
3W4	Power Amplifier Pentode	7BA	5-2	1.4 2.8 DC	0.05 0.025		90	90			
C3J	Thyratron same as 5632										
4A6-G	Twin Triode Power Amplifier	8L	12-7	(4.0 (2.0 DC	0.06 }	_	90	_	_	_	-
4A U6¶	Sharp-Cutoff RF Pentode	7BK	5-2	4.2	0.45	3.0	300	150 0.65	Pentod	e Conn	ection
						3.2	250	_	Triode	Conne	ction P tied)
4A V 6	Duplex-Diode High-Mu Triode	7BT	5-2	4.2	0.45	0.55 ♦	330 ♦	=	2,2	1.2	2.0
4BA6¶	Remote-Cutoff RF Pentode	7BK	5-2	4.2	0.45	3.0	300	3002	5.5	5.5	0.003
4BC6¶	Sharp-Cutoff RF Pentode	7BD	5-2	4.2	0.45	2.0	300	300	Pentod	le Conn	ection
						2.5	300		Triode (G ₁ an	Conne	ction 1)
4 <i>BC8</i> ¶	High-Frequency Twin Triode	9AJ	6-2	4.2	0.6	2.2	250 ◈		5.52	2.41	1.2
4BE6¶	Pentagrid Converter	7CH	5-2	4.2	0.45	1.1	330 🏶	110 (Osc. I	1 = 0.5 0,000 o	ma
4BL8	Triode-Pentode	9AE	6-2	4.6	0.6	1.7	250	200	Pentod	e Section	on
						1.5	250	- 0.13	Triode	Section	1
4BN 4	High-Frequency Triode	7EG	5-2	4.2	0.3	2.2	275 ♦		3.2	1.4	1.2
4BN6¶	Gated-Beam Discriminator	7DF	5-3	4.2	0.45	_	330 ◈\$	110 🏶	E _{c1} = 1 RMS	.25 volt	s
4BQ7-A¶	High-Frequency Twin Triode	9AJ	6-2	4.2	0.6	2.0 🏚	250		2.61	1.21	1.2
4BS8¶	Medium-mu Twin Triode	9AJ	6-2	4.5	0.6	2.0 ♠	150		2.61	1.21	1.15
4BU8¶	Twin Pentode	9FG	6-3	4.2	0.45	1.1 🆠	300 ◈	150 ♦ 0.75 ♦			-
4 <i>BX8</i> ¶	High-Frequency Twin Triode	9AJ	6-2	4.5	0.6	2.0 🏽	150 ◈		2.42	1,252	1.4
4 <i>BZ6</i> ¶	Semi-Remote-Cutoff RF Pentode	7CM	5-2	4.2	0.45	2.3 🏶	330 ♠	330 ♦ \$ 0.55 ♦		3.0	0.01
4 <i>BZ</i> 7¶	High-Frequency Twin Triode	9AJ	6-2	4.2	0.6	2.0 ♠	250	-	2.61	1.21	1.2
4BZ8¶	High-Frequency Twin Triode	9AJ	6-2	4.2	0.6	2.2 ♠	250	=			=
4 <i>CB6</i> ¶	Sharp-Cutoff RF Pentode	7CM	5-2	4.2	0.45	2.3 🏶	330 ◈	330 ♦ \$	6.5	3.0	0.01
4CEδ¶	Sharp-Cutoff RF Pentode	7BD	5-2	4.2	0.45	2.0	300	3008	6.5 ▲	1.9 ▲	0.03
4CS6¶	Dual-Control Heptode	7CH	5-2	4.2	0.45	1.0	300	100	5.5	7.5	0.07
4CX7¶	Medium-mu Twin Triode	9FC	6-2	4.2	0.6	2.0 ♠	250		2.41	1.31	1.21
4CY5¶	Sharp-Cutoff RF Tetrode	7EW	5-2	4.5	0.3	2.0 🏶	180 ◈	180 ♦ \$ 0.5 ♦	4.5	3.0	0.03
4DE6¶	Sharp-Cutoff RF Pentode	7CM	5-2	4.2	0.45	2.3 🏶	330 ◈	330 ♦ \$ 0.55 ♦		3.0	0.01
4DK6¶	Sharp-Cutoff Pentode	7CM	5-2	4.2	0.45	2.3	330 €			1.9 ▲	0.025

Compactron.
† Zero signal.
†Per section.

Plate-to-plate.
Maximum.
Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Plate Screen		, ,				
Service Plate Volts Screen Grid William-peres Plate	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	150,000	1,700	_	11,000	0.25	\$W4
Class A Amplifier ♠ 90 — 1.5 1.2 —	28,000	900	25		-	4A6-G
Class A 250 150 R _k = 10.6 4.3	1,000,000	5,200	_	_	-	4A U6¶
Amplifier 100 100 $R_k = 5.0 2.1 $ Class A 250 $R_k = 12.2 $	500,000	3,900		-	-	
Amplifier 330	40 500	4,800	36			/ A 1/ OF
Amplifier 100 1.0 0.5	62,500 80,000	1,600 1,250	100 100	三	_=_	4A V6¶
Class A 250 100 R _k = 11 4.2 Amplifier 100 100 R _k = 11 4.2	1,000,000	4,400	_	_	-	4BA6¶
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250,000	4,300	_			, D.C#
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	800,000	5,700		-	_	4BC5¶
Amplifier 100	500,000 600,000	6,100 4,900	_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,000	4,400	40			
Class A	6,000	6,000	42	_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,300	6,200	35			4BC8¶
Amplifier ◆ 250 100 1.5 2.9 6.8	1,000,000	475#				4BE6¶
Class A 100 170 170 170 2.0 10 2.8	400,000	455# 6,200				4BL8
Amplifier Class A 100 — 2.0 14 —	4,000	5,000	20	_	-	,
Class A Amplifier 150 — R _k = 9.0 —	6,300	6,800	43			4BN 4
FM Limiter- Discrimina- tor 285\$ 100 R _k = 0.49 9.8 100 to 400		_		330,- 000		4BN6¶
Class A Amplifier ♠ 150	5,900	6,400	38			4BQ7-A¶
Class A Amplifier \spadesuit 150 - $R_k = 10$ -	5,000	7,200	36		-	4BS8¶
Sync Sepa- rator and 100 67.5 I _{c1} = 2.2 5.0				Ec3 = 0		4BU8¶
AGC Keyer 100 67.5 0 — — (Characteristics given are for each section separa opposite section grounded)	tely with	1,500 plate a		E _{c3} = 0 numbe	r 3 of	
Class A 65 — 1.0 9.0 —	3,750	6,700	25			4BX8¶
Class A 125 125 R _k =56 14 3.6 Amplifier 125 125 4.5 —	260,000	8,000 700	=	_		<i>4BZ6</i> ¶
Class A Amplifier Φ 150 $R_k = 10$ $R_k = 10$	5,300	6,800	36	_	_	4BZ7¶
Class A Amplifier ♠ 125	5,600	8,000	45	_		4BZ8¶
Class A 125 125 R _k =56 13 3.7 Amplifier 125 125 3.0 2.8 —	280,000	8,000	=			4CB6¶
Class A Amplifier 125 125 1.0 11 2.8	300,000	7,600			-	4CE5¶
Gated 100 30 1.0 1.0 1.3 100 30 0 0.8 5.5 10 30 0 2.0 4.5	1,000,000 700,000	1,100	E _{c3} =	0 volts -1.0 vo 0 volts	olts	4CS6¶
Class A Amplifier ♠ 150 - R _k = 9.0 -	6,100	6,400	39	<u> </u>		4CX7¶
Class A 125 80 1.0 10 1.5	100,000	8,000				4CY5¶
Class A 125 125 R _k =56 15.5 4.2 Amplifier 125 125 5.5 — —	250,000	8,000 700		=		4DE6¶
Class A Amplifier 125 125 R _k = 12 3.8	350,000	9,800	-			4DK6¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

▼G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3. etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Voits	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
4DT6¶	Sharp-Cutoff Pentode	7EN	5-2	4.2	0.45	1.7◆	330 ◈	330 ♦ \$	I _{c1} =0.	6 ma	<u> </u>
<i>4DT6-A</i> ¶	Sharp-Cutoff Pentode	7EN	5-2	4.2	0.45	1.7 🏶	330 🏶	330 🖜	 	ı —	
4EH7	Remote-Cutoff Pentode	9AQ	T-X	4.4	0.45	2.5	250	1.1 ♦ 250 0.65	9.5	3.0	0.005
4EJ7	Sharp-Cutoff Pentode	9AQ	T-X	4.4	0.45	2.5	250	250	10	3.0	0.005
4ES8¶	High-Frequency Twin Triode	9DE	6-2	4.0	0.6	1.8 ♠	130	0.9	-		7
4EW6¶	Sharp-Cutoff RF Pentode	7CM	5–2	4.2	0.6	3.1 🏶	330 🏶	330 ♦ 8 0.65 ♦	10	3.4	0.03
4FS7	Triode-Pentode	9MP	6-2	4.6	0.6	2.0	250	150	Pentod	e Secti	on
						1.5	125	0.5	Triode	Section	ı
4GJ7	Triode-Pentode	9QA	T-X	4.1	0.6	2.4 🏶	275 🏶	275 � 0.55 �	Pentod	e Secti	on
						1.8 🏶	140 🏶	0.50	Triode	Section	1
4GK5¶	High-Frequency Triode	7FP	5–2	4.0	0.3	2.5 🏶	200 🏶		5.0	3.5	0.52
4GM6¶	Semi-Remote- Cutoff Pentode	7CM	5–2	4.2	0.6	3.1 🏶	330 🏶	330 ♦ \$ 0.65 ♦	10.0 ▲	2.4 ▲	0.036
4GS7	Triode-Pentode	9GF	6-2	4.0	0.6	2.0	250	150 0.5	Pentod	e Secti	on
						1.5	125	=	Triođe	Section	1
4GS8¶	Twin Pentode	9LW	6-3	4.2	0.45	1.1 🏶	300 ◈	150 * 0.75 *			-
4GW5¶	High-Mu Triode	7GK	5–2	4.2	0.3	2.5 🌢	200 🌢	-	5.5	4.0	0.6
4GX7¶	Triode-Pentode	9QA	6–2	4.2	0.6	2.2 🏶	275 🏶	275 \$ � 0.45 �		e Secti	
.02.5						1.5 🏶	275 🏶			Section	
4GZ5¶	Power Amplifier Pentode	7CV	5–2	4.0	0.6	4.8 🌢	300 ◈	300 ♦ 1.1 ♦	8.5 ▲		0.24
4HA5	High-Mu Triode	7GM	5–1	3.9	0.3	2.6 🏶	220 🏶	_	4.3	2.9	0.36
4HA7¶	Dissimilar Double Triode	12FQ	9-56	4.2	0.6	2.75 ♦	330 ◈		Section 9, 10 Section	1 (Pin) 2 (Pin	s 4,
4HC7¶	Dissimilar Double	12FR	9-57	4.2	0.6	3.0�	330 ◈		Section) 1 (Pin	
	Triode					1.2 🏶	330 �	_	7, 9, Section	2 (Pin	s 2,
4HG8¶	Triode-Pentode	9MP	6-2	4.5	0.6	2.0	250	150	3, 11 Pentod	e Secti	on
						1.5	125	0.5	Triode	Section	1
4HK5	High-Frequency Triode	7GM	5–2	4.0	0.3	2.3 🏶	200 🏶		4.4	2.6	0.29
4HM5¶	High-Mu Triode	7GM	5–2	4.0	0.3	2.6	200 🏶		4.5	3.0	0.34
4HM6¶	Sharp-Cutoff RF Pentode	9PM	6-2	4.2	0.45	2.5 🏶	250 ◈	250 8 🏟	8.7	3.0	0.024
4HQ5¶	Triode	7GM	5–2	4.2	0.3	2.5 🏶	200 🏟	-	5.0	3.5	0.52
4HR8	Pentode	9BJ	6-2	4.5	0.3	1.0	300	200 0.2	3.5▲	5.0 ▲	0.05
4HS8¶	Twin Pentode	9FG	6–3	4.2	0.45	1.1 🌸	300 ◈	150 ③ 0.75 ﴿			
4HT6¶	Semi-Remote-Cutoff RF Pentode	9PM	6–2	4.2	0.45	2.5 🏶	250 🏶	250 3 ⊕ 0.6 ♠	8.7	3.0	0.024
4JC6¶	Sharp-Cutoff Pentode	9PM	6–2	4.5	0.45	2.5 🏶	330 ◈	330 2 ⊕ 0.6 ⊕	8.2 ▲	3.0 ▲	0.019

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	Rp, Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	150	100	R _k = 560	1.1	2.1	150,000	800	E _{c3} =(volts	<u> </u>	4DT6¶
Amplifier FM Limiter- Disc.	250	100	R _k = 560	0.22	5.5	$E_{c3} = -6.0$	volts	_	270,- 000	-	
Class A Amplifier	150	100	R _k = 560	1.55	1.8	150,000	1,350	Ec. = 0	volts	<u> </u>	4DT6-A
Class A Amplifier	200	90	2.0	12	4.5	500,000	12,500				4EH7
Class A Amplifier	200	200	2.5	10	4.1	350,000	15,000				4EJ7
Class A Amplifier	90		1.2	15			12,500				4ES8¶
Class A Amplifier	125	125	R _k = 56	11	3.2	200,000	14,000	=	-		4EW6¶
Class A	170	150	1.2	10	3.3	350,000	12,000				4FS7
Amplifier Class A Amplifier	100		3.0	14		3,100	5,500	17		-	·
Class A	170	120	1.2	10	3.0	350,000	11,000				4GJ7
Amplifier Class A Amplifier	100		3.0	15	_		9,000	20	-		•
Class A Amplifier	135		1.0	11.5		5,400	15,000	78			4GK5¶
Class A Amplifier	125	125	R _k = 56	14	3.4	200,000	13,000	-			4GM6¶
Class A	170	150	1.2	10	3.3	350,000	12,000	<u> </u>			4GS7
Amplifier Class A Amplifier	100	_	3.0	14			5,500	17	-	-	
Sync	100	67.5	Icl =	2.0	3.6	(Both sec	tions O	peratin	g) Ec3 :	<u>-</u>	4GS8¶
Separator and AGC Keyer	100 (Plate	67.5	0.1 ma 0 id numl		opposit	0 Volts	1,200 rounded	<u>, </u>	Ec3 =0	Volts	
Class A Amp	135		1.0	12.5		5,800	15,000	70			4GW5¶
Class A Amplifier	125	125	1.0	8.0	2.5	200,000	11,000	-	I —	-	4GX7¶
Class A Amplifier	125		1.0	13		4,700	8,500	40	-	-	
Class A Amplifier	250	250	R _k = 270	16†	2.7†	150,000	8,400		15,000	1.1	4 <i>GZ5</i> ¶
Class A Amplifier	135		1.0	11.5			14,500	72	_		4HA5
Class A Amplifier	250		8.5	10.5	-	7,700	2,200	17			4HA7¶
Class A Amplifier	250	-	2.0	1.2	_	62,000	1,600	100	-	-	
Class A Amplifier	150		1.0	18		5,200	4,400	23	-		4HC7¶
Class A Amplifier	150	-	1.0	1.0		53,000	1,900	100	-	-	
Class A Amplifier	170	150	1,2	10	3.3	350,000	12,000		-		4HG8¶
Class A Amplifier	100	-	3.0	14	_	3,100	5,500	17	-	-	
Class A Amplifier	135		1.0	12.5		5,000	15,000	75	-		4HK5
Class A Amplifier	135		1.0	12.5			14,500	78	_		4H M 5¶
Class A Amplifier	125	125	R _k = 56	13	3.2	156,000	15,000	-			4HM6¶
Class A Amplifier	135	_	1.0	11.5		5,400	15,000	78	-		<i>4HQ5</i> ¶
Class A Amplifier	250	140	2.0		0.6	2,500,000	2,000	-	-	1 - 1	4HR8
Sync Sepa- rator and AGC Keyer	100	67.5 67.5	$I_{c1} = 0.1 \text{ ms}$	_		(Both Se	ctions O		1	0 Volts	4HS8¶
		e and gr	id num			te section e	grounde	d)	, –es –	- , 0,10	
Class A Amplifier	125	125	R _k =	15	4.0	143,000	.j	.[4HT6¶
Class A Amplifier	125	125	R _k =	13	3.2	180,000	15,000	-	_	_	4JC6¶

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca ₁	pacitano icofara	e in ds
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volta	and Watts	Input	Out- put	Grid- plate
4JC6-A¶	Sharp-Cutoff Pentode	9PM	6-2	4.5	0.45	3.1 🏶	330 🧇	330 \$ ♦ 0.7 ♦	8.5 ▲	3.0 ▲	0.019
4J D6¶	Sharp-Cutoff Pentode	9PM	6-2	4.5	0.45	2.5 🍫	330 ◈	330 8 🆠 0.6 🍣	8.2 ▲	3.0 ▲	0.019
4J H6 ₹	Semi-Remote- Cutoff Pentode	7CM	5–2	4.2	0.45	2.3 🍲	-	300 \$ � 0.55 �	7.0	3.0	0.015
4JK6*	Sharp-Cutoff RF Pentode	7CM	5–2	3.7	0.6	2.5 🏇		275 8 🆫	9.5▲	2.7 ▲	0.02
4J 1.6₹	Semi-Remote-Cut-off RF Pentode	7CM	5-2	3.7	0.6	2.5 🏶	275 🏶	275 8 ◈ 0.6 ◈	9.3 ▲	2.7 ▲	0.02
4J11'8¶	Triode- Pentode	9DC	6-2	4.3	0.6	1.2	250 250	250 0.8 —		de Sect e Sectio	
4KE8¶	Triode-Pentode	9DC	6-2	4.5	0.6	2.0 ♦ 2.0 ♦	280 ③	280 \$ � 0.5 �	i	le Section	
4KF8¶	Twin Pentode	9FG	6-3	4.2	0.45	1.1	300 ◈	150 ♦ 0.75 ♦			-
4KN8¶	Twin Triode	9AJ	6-2	4.2	0.6	2.2	220 €				-
4KT6	Semi-Remote-Cutoff Pentode	9PM	6–2	4.5	0.45	3.1 ◈	330 ◈	3308 ◈	9.5▲	3.0 ▲	0.019
4LJ8¶	Triode-Pentode	9GF	6–2	4.3	0.6	2.0 🆠	280 ◈		Pentoc	le Secti	on
						2.0 🏶	280 ◈	-	Triode	Section	n
4LU6¶	Semi-Remote- Cutoff RF Pentode	7CM	5-2	4.2	0.6	4.0 🆠	300 ◈	300 2 ⊕ 1.5 ⊕	7.3 ▲	2.2	0.058
4MK8¶	Twin Pentode	9FG	6-3	4.2	0.45	1.1 ♦	300 ◈	150 ♦ 0.75 ♦	-	_	_
ōAF4-A	UHF Triode Oscillator	7DK	5–1	4.7	0.3	2.5 🏶	150 €	-	2.2 ▲	1.4▲	1.9 🛦
5AM8¶	Diode Sharp-Cutoff RF Pentode	9CY	6-2	4.7	0.6	3.2 🌢	330 ◈	330 ♦ 8 0.55 ♦		2.6 Section	0.015
5AN8¶	Triode-Pentode	9DA	6-2	4.7	0.6	2.3 🏶	330 ◈	330 \$ ♦ 0.55 ♦		le Secti	
					<u></u>	2.8 🏶	330 ⊛		i	Section	
5AQ5¶	Beam Power Amplifier	782	5-3	4.7	0.6	12 ③ 10 ④	275 ③ 275 ③	275 * 2.0 *	}	ie Conne Conne P tied)	
5AR4	Full-Wave High-	5DA	T-X	5.0	1.9				-	T =	1-
5AS4-A	Vacuum Rectifier Full-Wave High-Vacuum Rectifier	5T	12-15	5.0	3.0		Tube 50 vol	Voltage ts at 275	Drop: 6 ma d-	e e	-
5AS8¶	Diode Sharp-Cutoff RF Pentode	9DS	6-2	4.7	0.6	2.5	300	3008		de Secti	
5AT4	Full-Wave High- Vacuum Rectifier	5L	T-X	5.0	5.5		Tube 30 vol	Voltage ts at 50	Drop:	Section -c	n
5AT8¶	Triode-Pentode	9DW	6-2	4.7	0.6	2.3 ③ 1.7 ④		275 ♦ 1 0.45 ♦		de Section	
5AU4	Full-Wave High-Vacuum Rectifier	5T	T-X	5.0	3.75		Tube	Voltage t 350 ma	Drop:	•	
5A V8¶	Triode-Pentode	9DZ	6-2	4.7	0.6	2.0	300	300 N 0,5	Pento	de Section	
						2.5	300	1	1.100	- Decile	***

Compactron.

Zero signal.

Per section.

Plate-to-plate.
Maximum.
Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

®Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	125	125	R _k =	14	3.4	180,000	16,000	(g ₃ cor	nected	to	4JC6-A
Amplifier Class A	125	125	$\frac{56}{R_k} =$	15	4.0	160,000	14,000	k at so		_=-1	4JD6¶
Amplifier Class A	125	125	$\frac{56}{R_k} =$	14	3.6	260,000	8,000				4JH6 ₹
Amplifier Class A Amplifier	125	125	$\frac{56}{R_k} = 68$	11.5	3.9	150,000	18,000				4JK6¶
Class A Amplifier	125	60	R _k =	12.5	4.0	120,000	15,500				4JL6¶
Class A	100	100	1.0	6.0	1.7	-	5,500	_		_	4J W8¶
Amplifier Class A Amplifier	200	_	2.0	3.5	-		3,500	70		-	
Class A	125	125	R _k =	10	2.8	125,000	12,000				4KE8¶
Amplifier Class A Amplifier	125	_	33 R _k = 68	13	-	5,000	8.000	40		-	
Sync Sepa-	100	67.5	I _{c1} = 0.1 ma	2.8			270		Ec3 =(Volts	4KF8¶
rator and AGC Keyer	100 (Char	67.5	0 ics give	n are f	or. each n ground	section se	1,750 parately	with p	E _{c3} = (Volts d grid	-
Class A	110	i —	1.0	16			16,000	45			4KN8¶
Amplifier ♠ Class A	125	125	R _k =	17	4.2	160,000	18,000		Ec3 = () volts	4KT6
Amplifier Class A	125	125	56 R _k =	12	3.5	125,000	13,000			 -	4LJ8¶
Amplifier Class A Amplifier	125	-	33 R _k = 68	13	_	5,000	8,000	40		-	
Class A Amplifier	250	250	R _k = 820	9.0	2.3	280,000	3,900	-	-		<i>4LU6</i> ¶
Color Demodu- lator •	100 (Grid o	67.5 current	adjusted	2.0 i for 10		(Both sectamperes d-		erating)	=	=	4.MK8¶
Class A	80	-	R _k =	17.5	<u> </u>	2,100	6,500	13.5		I 1	5AF4-A
Amplifier Class A Amplifier	125	125	R _k = 56	12.5	3.2	300,000	7,800		-		5AM8
Video Det. Class A	Max d	c outpu	R _k =	t = 5 m	a; voltas	ze drop: 10	v at 50 i	mad-c	1	 	5AN8¶
Amplifier Class A	150	-	56 3.0	15	-	4,700	4,500	21		-	,
Amplifier Class A Amplifier	180 250	180 250	8.5 12.5	29† 45†	3.0† 4.5†	58,000 52,000	3,700 4,100	=	5,500 5,000	2.0 4.5	5AQ5¶
Vertical Amplifier	watts:	max d-	12.5 pulse p c cathoo	49.5 late vo le curre	ltage ◈ :nt ◈ =4	1,970 =1,100 v 0 ma	; max p	late dis	sipation	i	
Full-Wave Rectifier	Maxd	c outpu	t currer	it = 250	ma: ma	x peak inv max peak	erse volt	age = 1,	500 vol	ts; rms	5AR4
Full-Wave Rectifier	Max d	-c outp	ut curre	nt = 27	5 ma: n	nax peak i 50 volts; r	nverse	voltage	=1,550	volts:	5AS4-A
Class A	200	ma 150	R _k =	9.5	3.0	300,000	6,200	Τ-	T	r=1	5AS8¶
Amplifier Detector	marn	nak cur	ut curr	Որո		max peak				- 1	
Full-Wave Rectifier	Max I	d-c out	put cur pply vo	rent =8	00 ma; er plate	max peak =550 volt	inverse s; max p	voltage peak cu	=1,550 rrent pe	volts; r plate	5AT4
Class A	125	125	1.0	9.0	2.2	300,000	5,500	T			5AT8¶
Amplifier Class A Amplifier	125	-	1	12		6,000		40	-	_	
Full-Wave Rectifier	Max d	l-c outpi	it curre	nt = 325	ma; ma	x peak invelts; max pe	erse volt	age = 14	00 volt	s; 075 ma	5AU4
Class A Amplifier	200	150	Rk =	9.5	2.8	300,000	6,200		<u> </u>	T -	5AV8
Class A Amplifier	200		6.0	13		5,750	3,300	19			

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$ G3 and G5 are screen. G4 is signal-input grid.

\$ G2 and G4 are screen. G3 is signal-input grid.

\$ inmediately below the screen voltage.

\$ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitano icofara	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
5AW4	Full-Wave High-Vacuum Rectifier	5T	T-X	5.0	3.7	<u> </u>	46 v at	250 ma			
5AX4-GT	Full-Wave, High- Vacuum Rectifier	5T	9-13	5.0	2.5	-	oo v at	1/5 m	Drop:		
5AZ3	Full-Wave High- Vacuum Rectifier	12BR	12-62	5.0	3.0	_	Tube V 44 Vol	Voltage ts at 22	Drop:♠ 5 ma d-	3	
5AZ4	Full-Wave High- Vacuum Rectifier	5T	9-31	5.0	2.0	-	Tube V	Voltage t 125 m	Drop: 4)	···
5B8¶	Triode-Pentode	9EC	6-2	4.7	0.6	2.0	300 300	300	Pentod Triode		
5BC3	Full-Wave High- Vacuum Rectifier	9 Q J	12-66	5.0	3.0		Tube V	Voltage	Drop: •) ma d-c		
5BC3-A	Full-Wave High- Vacuum Rectifier	9QJ	12-99	5.0	3.0	_	Tube V 53 volt	Voltage s at 300	Drop: •	1	
5BE8¶	Triode-Pentode	9EG	6-2	4.7	0.6	2.8	300 300	300	Pentod Triode		
5BK7-A¶	High-Frequency Twin Triode	9AJ	6-2	4.7	0.6	2.7 ♠	300		3.0 ▲	1.0 ₁ ▲ 0.9 ₂ ▲	1.8
δBQ7-A¶	High-Frequency Twin Triode	9AJ	6-2	5.6	0.45	2.0 ♠	250	==	2.61	1.21	1.2
5BR8¶	Triode-Pentode	9FA	6-2	4.7	0.6	3.0	330 330	330:	Pentod Triode		
5BS8¶	Medium-mu Twin Triode	9AJ	6-2	5.6	0.45	2.0 ♠	150		2.61	1.21	1.15
5BT8¶	Duplex-Diode Pentode	9FE	6-2	4.7	0.6	2.0	300	300 8	7.0 A		0.04 4
5BW8¶	Duplex-Diode Pentode	9HK	6–2	4.7	0.6	3.0 ◈	330 ◈	330 ◈ \$ 0.55 ◈	4.8 Diode S	2.6 ections	0.02 4
6BZ?¶	High-Frequency Twin Triode	9AJ	6-2	5.6	0.45	2.5♠	250		2.61	1.21	1.2
5CG4	Full-Wave High-Vacuum Rectifier	5L	9-13	5.0	2.0						
5CG8¶	Triode-Pentode	9GF	6-2	4.7	0.6	2.3 🏶	į	275 * * 0.45 *	Pentod	Section	on
5CL8¶	Triode-Tetrode	9FX	6-2	4.7	0.6	1.7 ♦ 2.8 2.7	275 ♦ 300 300	300 \$ 0.5	Triode Tetrode Triode	Section	n
5CL8-A¶	Triode-Tetrode	9FX	6–2	4.7	0.6	2.8	300 300	300\$	Tetrode Triode		
6C.M6¶	Beam Power Amplifier	9CK	6–3	4.7	0.6	9.0 8.0	315 315 315	285 2.0 — 285	Pentode Triode or Pen	G ₂ and	P tied)
6CM8¶	Triode-Pentode	9FZ	6-2	4.7	0.6	2.0 1.0	300 300	1.75 300 \$ 0.5	tion Pentode Triode	Section	n
ōCQ8¶	Triode-Tetrode	9GE	6–2	4.7	0.6	3.2 ♦ 3.1 ♦	330 ♦	330 ♦ \$ 0.7 ♦	Tetrode Triode		
6CR8¶	Triode-Pentode	9GJ	6-2	4.7	0.6	2.3 ③ 2.75 ④	330 ♦	330 ⊕ \$ 0.55 ⊕	Pentode Triode		

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.Absolute maximum rating.Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Full-Wave Rectifier	Max derms su	c outpu	t currer	nt = 250 r plate =	ma; ma = 450 vol	x peak inve ts; max pea	erse volt	age = 1	550 volts	50 ma	5AW4
Full-Wave Rectifier	rms su	-c outpu pplv vo	t currer ltage pe	nt = 175 er plate :	ma; ma = 350 vo	x peak inve lts: max ne	erse volt	age = 14	100 vol t:	s; max	5AX4-GT
Full-Wave Rectifier	Max d	-c outp rolts; R t per pla	ut curr MS sup ite ⊕=	ent � = ply volt :1.000 n	275 ma tage per na.	; Max pea plate ◈ =	k invers 600 vol	se volta ts; Mar	ige � = c peak		5AZ3 ■
Full-Wave Rectifier	Max d-	c outpu	t current	nt = 125	ma; ma	x peak inve lts; max pe	erse volt	age = 1	400 volt	s; max	5AZ4
Class A	200	150	K _k =	9.5	2.8	300,000	6,200				5B8¶
Amplifier Class A Amplifier	200	_	180 6.0		-	5,750	3,300	19	_	_	
Full-Wave Rectifier	Max d RMSs	c outpu	ut curre	ent 🏶 =	=300 ma	; max pea); max peak	k inver	se volta	ige 🌢 =	1,700; 000ma	5BC3
Full-Wave Rectifier	Max d RMS s 1000 m	l-c outp supply	ut cur voltage	rent 🏶 = per pl	=300 m ate 🏶 =	a; max pe 500; max 1	ak inve peak cu	rse vo	ltage 🌢 : er plate	=1,700;	5BC3-A
Class A	250	110	R _k =	10	3.5	400,000	5,200		ī —		5BE8¶
Amplifier Class A Amplifier	150		68 R _k = 56	18	-	5,000	8,500	40	-	_	
Class A Amplifier •	150	_	R _k = 56	18		4,600	9,300	43	_		5BK7-A¶
Class A Amplifier •	150	_	R _k = 220	9.0		5,900	6,400	38			5BQ7-A¶
Class A Amplifier	125	110	1.0	9.5	3.5	200,000	5,000		-		<i>5BR8</i> ¶
Class A Amplifier	125	_	1.0	13.5	_	_		40		-	
Class A Amplifier •	150		R _k = 220	10		5,000	7,200	36			5BS8¶
Class A Amplifier Horizontal Phase Detector	200 Max d	c outpu	R _k = 180 t curre	9.5 nt \Phi = 1	2.8 .0 ma;	300,000 voltage dro	6,200 p ♠ : 10	volts a	t 8.0 ma	ı d-c	5BT8¶
Class A Amplifier Horizontal Phase Detector		110 -c outpu	68 it curre		3.5 =5.0 m	250,000 a; voltage	5,200 drop ♠ ;	— 5 volts	at 20 n	na d-c	5BW8¶
Class A Amplifier •	150	_	220	10		5,300	6,800	36	- 1	_	5BZ7¶
Full-Wave Rectifier	Max d- max pe	c outpu ak curre	t curre ent per	nt = 125 plate =	ma; n 400 ma	ax peak i	nverse v	oltage	=1,400	volts;	5CG4
Class A Amp	125	125	1.0	9.0	2.2	300,000	5,500	_			5CG8¶
Class A Amp	$\frac{125}{125}$	125	$\frac{1.0}{1.0}$	$\frac{12}{12}$	4.0	6,000 100,000	6,500 5,800	40			5CL8¶
Amplifier Class A Amplifier	125	_	R _k =	15	_	5,000	8,000	40	_	_	
Class A	125	125	$\frac{-56}{1.0}$	12	4.0	100,000	6,400				5CL8-A¶
Amplifier Class A Amplifier	125	_	$R_k = 56$	15	-	5,000	8,000	40		_	
Class A Amplifier	250	250	12.5	45†	4.5†	50,000	4,100		5,000	4.5	5CM6¶
Vertical Amplifier	Max p =40 r	ositive na	pulse p	late vo	ltage 🖳	=2,000 vo	lts; max	d-c ca	thode c	urrent	
Class A Amplifier	200	150	R _k = 180	9.5	2.8	600,000	6,200		 -1		5CM8¶
Class A Amplifier	250		2.0	1.8		50,000	2,000	100	-	-	
Class A Amplifier	125	125	1.0	12	4.2	140,000	5,800				5CQ8¶
Class A Amplifier	125		$\begin{array}{c} R_k = \\ 56 \end{array}$	15		5,000	8,000	40	-	-	
Class A Amplifier	125	125	R _k = 56	13	3.0	300,000	7,700				5CR8¶
Class A Amplifier	125		2.0	12		5,500	4,000	22		_	

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$\$ \ G3\$ and G5 are screen. G4 is signal-input grid.

\$\$ \ G2\$ and G4 are screen. G3 is signal-input grid.

\$\$ 1, 2, 3, etc. indicate tube sections.

\$\$ Maximum screen dissipation appears immediately below the screen voltage.

\$\$ Heater warm-up time controlled.

<u>T</u> ube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		pacitan Picofara	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
5CU4	Full-Wave High- Vacuum Rectifier	8KD	12-16	5.0	3.5	-	Tube V 27 volt	Voltage s at 425	Drop: 4	c	•
5CZ5¶	Beam Power Amplifier	9HN	6-4	4.7	0.6	10 €	350 ◈		9.0 ▲	6.0 ▲	0.04
<i>5DH8</i> ¶	Triode-Pentode	9EG	6-2	5.2	0.6	2.2 🆠	300 ◈	300 ♦ 8 0.55 ♦	Pentod		
						2.0 🏶	300 ◈		ļ [*]	Section	n.
5DJ4	Full-Wave High- Vacuum Rectifier	8 K S	12-16	5.0	3.0		Tube V 44 volt	Voltage s at 225	Drop: 4 mad-	3	
5EA8¶	Triode-Pentode	9AE	6-2	4.7	0.6	3.1 ◈	330 ◈	330 ♦ \$ 0.55 ♦	Pentod	e Secti	on
			İ			2.5 🏟	330 ◈	0.55	Triode	Section	n
5EH8¶	Triode-Pentode	9JG	6-2	4.7	0.6	2.8♦	300 ◈	300 * * 0.5 *	Pentod	le Secti	on
						2.5 ◈	300 ◈	0.5	Triode	Section	n
5EU8¶	Triode-Pentode	9JF	6-2	4.7	0.6	3.1 🏟	330 ◈	330 ♦\$	Pentod	e Secti	on
						3.0 �	330 🏶	0.55	Triode	Section	n
5EW6¶	Sharp-Cutoff RF Pentode	7CM	5-2	5.6	0.45	3.1◈	330◈	330 : ③ 0.65 ③	10	[3.4	0.03
5FG7¶	Triode-Pentode	9GF	6-2	4.7	0.6	3.0 ◈	330 ◈	330 🍑 🖁	Pentod	e Section	on
						2.5 🏶	330 ◈	0.55	Triode	Section	ı
5FV8¶	Triode-Pentode	9FA	6-2	4.7	0.6	2.3 🏽	330 ◈		Pentod	e Section	on
						2.0 🏟	330 ◈	0.55	Triode	Section	n
5GH8¶	Triode-Pentode	9AE	6–2	4.7	0.6	2.5 🏶	350 ◈	330 ♦\$	Pentod	e Section	on
						2.5 🏶	330 ◈	0.55 🏶	Triode	Section	ı
ōGH8-A ♥	Triode-Pentode	9AE	6-2	4.7	0.6	2.5◈	350◈	330:♦	Pentod	e Sectio	'n
						2.5�	330◈	0.55	Triode	Section	
5GJ7	Triode-Pentode	9QA	T-X	5.6	0.45	2.4 🔷	275 🏶	275 🏟	Pentod	e Section	on
						1.8 🌒	140 ◈	0.55	Triode	Section	1
5GM6¶	Semi-Remote- Cutoff-Pentode	7CM	5-2	5.6	0.45	3.1 🏽	330 ◈	330 ♦ 8 0.65 ♦	10.0 ▲	2.4 ▲	0.036
5GS7	Triode-Pentode	9GF	6-2	5.4	0.45	2.0	250		Pentod	e Sectio	on
						1.5	125	- 0.5	Triode	Section	1
5GX6¶	Dual-Control Pentode	7EN	5-2	4.7	0.6	1.7 🏶	300 ◈	3008			i –
5GX7¶	Triode-Pentode	9QA	6-2	5.6	0.45	2.2 🏈	275 🏟	1.0 ♦ 275 8 ♦	Pentod	e Section	on
						1.5 ◈	275 🏶	0.45	Triode	Section	ı
5HA7¶ ■	Dissimilar Double Triode	12FQ	9-56	5.6	0.45	2.75 ◈	330 ◈		Section		s 4,
	Double Irlode					0.3 🏶	330 ◈		9, 10 Section	2 (Pin	s 2,
5HB7¶	Triode-Pentode	9QA	6-2	4.7	0.6	3.1 🏟	330 ◈	330\$ ◈	3, 11 Pentod		on
						2.5 🏟	330 ◈	0.55	Triode		
5HC7¶ ■	Dissimilar Double	12FR	9-57	5.6	0.45	3.0 ◈	330 ◈		Section	1 (Pin	s 4,
	Triode					1.2 🏶	330 �		7, 9, Section	10) 2 (Pin	
δHG8¶	Triode-Pentode	9MP	6-2	5.3	0.45	2.2 🌢	250 ◈	2508 ◈	3, 11) Pentod		on
						1.9 🏟	125 ◈	0.55	Triode		

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos		Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Full-Wave Rectifier	Max o	d-c outp RMS su • =1.3	ut curr pply v	ent 🏶 = oltage 1	425 ma; per plat	max peak e	inverse volts; m	voltag ax pea	e ♦ =80 k curre	0 volts; nt per	5CU4
Vertical Amplifier	250 75 Max 1	250 250 positive i-c cath	14 0 pulse p	46 130 late vol	4.6 16 tage ◈	73,000 	4,800	=			5CZ5¶
Class A Amplifier Class A Amplifier	125 250	125	R _k = 56 R _k = 390	13.5 7.3	3.8	150,000 12,000	8,600 4,400	53	_		5DH8¶
Pull-Wave Rectifier	Max volts;	d-c out max R ate ⊛ ==	put cur	rent *	=300 m tage per	a; max pe plate 🏶 =	ak inve 600 vol	rse vol ts; mar	tage 🌢 :	=1,700 current	5DJ4
Class A Amplifier Class A	125	ate ♦ =	1.0 R _k =	12	4.0	200,000 5.000	6,400 8,500	40			5EA8¶
Amplifier Class A { Amplifier }	125 100	125 70	56 1.0 0	12	4.0	170,000	6,000		<u> </u>		δΕΗ8¶
Class A Amplifier Class A	125		1.0	13.5	4.0	80,000	7,500	40			5EU8¶
Amplifier Class A Amplifier	150	_	R _k = 56	18		5,000	8,500	40	_	_	o EU o T
Class A Amplifier	125	125	$R_k = 56$	11	3.2	200,000	14,000				5EW6¶
Class A Amplifier { Class A Amplifier	125 100 125	125 100 —	1.0 0 1.0	11 13	4.0	180,000 5,700	6,000 7,400 7,500	43	=	=	5FG7¶
Class A Amplifier Class A	125 125	125	1.0 1.0	12 14	4.0	200,000 5,000	6,500 8,000	40			5FV8¶
Amplifier Class A	125	125	1.0	12	4.0	200,000	7,500				5GH8¶
Amplifier Class A Amplifier	125	_	1.0	13.5		5,400	8,500	46	_	_	
Class A Amplifier Class A	125 125	125	1.0	12 13,5	4.0	200,000 5,400	7,500 8,500	46			5GH8-A
Amplifier Class A Amplifier	170	120	1.2	10	3.0	350,000	11,000		_		5GJ7
Class A Amplifier	100		3.0	15			9,000	20			
Class A Amplifier Class A	125	125	$\frac{R_k = 56}{1.2}$	14	3.4	200,000	13,000				5GM6¶ 5GS7
Amplifier Class A Amplifier	100	_	3.0	14	_		5,500	17	_	_	9037
Class A Amplifier	150	100	R _k = 180	3.7	3.0	140,000	3,700	E _{c3} =	0 volts		5GX6¶
Class A Amplifier Class A	125 125	125	1.0	8.0	2.5	200,000 4,700	11,000 8,500	40			5GX7¶
Amplifier Class A	250		8.5	10.5		7,700	2,200	17			5HA7¶
Amplifier Class A Amplifier	250	_	2.0	1.2	_	62,500	1,600	100	-		
Class A Amplifier Class A	125 150	125	1.0 R _k =	12 18	4.0	200,000 5,000	6,400 8,500	40	_		5HB7¶
Amplifier Class A	150		$\frac{56}{1.0}$	18		5,200	4,400	23			5HC7¶■
Amplifier Class A Amplifier	150	_	1.0	1.0	_	53,000	1,900	100	-		
Class A Amplifier Class A Amp	170 100	150	1.2	10	3.3	350,000	12,000				δHG8¶
Class A Amp	100		3.0	14		3,100	5,500	17			

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

• Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca _j	acitanc icofara	e in ds
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
5HZ6¶	Dual-Control Pentode	7EN	5–2	4.75	0.6	1.7 🏶	300 ◈	300 8 ◈	_	_	<u> </u>
<i>5J6</i> ¶	Medium-Mu Twin Triode	7BF	5-2	4.7	0.6	1.5 ♠	300			1.6 ₁ 1.0 ₂	1.5
s v v off	0 0	7CM	5–2	4.9	0.45	1.5 •	300 275 �	-	Push-I		
5JK6¶ 5JL6¶	Sharp-Cutoff RF Pentode	7CM	5-2 5-2	4.9	0.45	2.5 🏶	274	275 8 ③ 0.6 ③	9.5	2.7 ▲	
	Semi-Remote-Cut-off RF Pentode					2.5 ◈		275 \$ 🏵	9.3 ▲	2.7 ▲	0.02
5 <i>JW8</i> ¶	Triode- Pentode	9DC	6–2	4.7	0.6	1.2	250 250	250 0.8 —		de Sect e Sectio	
5KD8¶	Triode-Pentode	9AE	6–2	5.6	0.45	3.0◈	1	3308 ♦ 0.55 ♦	Pentod	e Sectio)Tı
5KE8¶	Triode-Pentode	9DC	6-2	5.6	0.45	2.5 🏵	330 ◈	<u> </u>	Pentod	Section e Section	on
						2.0 🏶	280 🏶			Section	
5KZ8¶	Triode-Pentode	9FZ	6-2	4.7	0.6	2.5 ③	330 ◈	330 \$ ♠ 0.55 ♠	ì	e Section	
5LJS¶	Triode-Pentode	9GF	6-2	5.6	0.45	2.0 🏈	280 ◈	280\$ ◈		e Section	
						2.0 🏶	280 🏶	0.5	Triode	Section	1
5M B8¶	Triode-Pentode	9FA	6–2	5.6	0.45	2.0 🏽	280 🏶	280 \$ � 0.5 �	Pentoc	le Secti	on
						2.0 🏶	280 🏶	0.5	Triode	Section	n
5MQ8¶	Triode-Pentode	9AE	6-2	5.6	0.6	2.5 ③ 2.7 ④	330 ◈ 330 ◈	330 \$ ♦ 0.55 ♦		e Section	
5R4-G 5R4-GY	Full-Wave High-Vacuum Rectifier	5T	16-3 16-3	5.0	2.0	=	Tube V 67 v at	oltage 1 250 ma	L Drop: 4 d-c	•	
5R4-GYA	Full-Wave High-Vacuum Rectifier	5T	T-X	5.0	2.0	_	Tube V	Voltage t 250 m	Drop:		
5R4-GYB	Full-Wave High- Vacuum Rectifier	5T	12-15	5.0	2.0	-	Tube 63 vol	Voltage ts at 250	Drop: 4	c	
5T4	Full-Wave High-Vacuum Rectifier	5T	10-1	5.0	2.0		Tube V	Voltage t 225 ma	Drop:	•	-
5T8¶	Triple Diode High-Mu Triode	9E	6-2	4.7	0.6	1.1 🏶	330 ◈		1.7	2.4	1.7
5U4-G	Full-Wave High-Vacuum Rectifier	5T	16-3	5.0	3.0		Tube V	Voltage 225 ma	Drop:	•	
5U4-GA	Full-Wave High-Vacuum Rectifier	5T	T-X	5.0	3.0		Tube V 44 v at	oltage 225 ma	Drop: 4 d-c		
5U4-GB	Full-Wave High-Vacuum Rectifier	5T	12-16	5.0	3.0	-		oltage 275 ma)	
5U8¶	Triode-Pentode	9AE	6-2	4.7	0.6	3.0 ♦ 2.5 ♦		330 \$ 0.55 \$		e Section	
5U9	Triode-Pentode	10K	6-2	5.9	0.45	2.1	250 250	250 0.7 —		e Section	
5V3	Full-Wave High-Vacuum	5T	12-16	5.0	3.8	-	Tube	Voltage	 Drop:		
5V3-A	Rectifier Full-Wave High- Vacuum Rectifier	5T	12–16	5.0	3.0		47 v at	Voltage s at 350	a d-c Drop: ◀		
5V4-G 5V4-GA	Full-Wave High-Vacuum Rectifier	5L	14-3 12-14	5.0	2.0		Tube 1 25 v a	Voltage t 175 m	Drop: 4 a d-c	•	

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	150	100	R _k == 180	3.2	3.2	110,000	3,400	Ec; =	0 volts	·	5HZ6¶
Class A Amplifier •	100	_	R _k =	8.5	_	7,100	5,300	38			5J6¶
Class C Amplifier	150	_	50 ⊕ 10.0	30	_	Input Sign	i nal = 0.3; i d-c	5 watt		3.5	
Class A Amplifier	125	125	R _k = 68	11.5	3.9	150,000	18,000				5J K6¶
Class A Amplifier	125	60	R _k = 68	12.5	4.0	120,000	15,500				5JL6¶
Class A Amplifier	100	100	1.0	6.0	1.7		5,500	_	_	-	<i>5JW8</i> ¶
Class A Amplifier	200		2.0	3.5	-		3,500	70	_	-	
Class A Amplifier	125	110	1.0	9.5	3.5	200,000	5,000				5KD8¶
Class A Amp	125		1.0	13.5			7,500	40			
Class A Amplifier	125	125	R _k = 33	10	2.8	125,000	12,000	_	-	_	5KE8¶
Class A Amplifier	125	_	R _k =	13	-	5,000	8,000	40	_	-	
Class A Amplifier	125	110	1.0	9.5	3.5	200,000	5,000				5KZ8¶
Class A Amplifier	125	-	1.0	13.5	-		7,500	40	_	-	
Class A Amplifier	125	125	R _k = 33	12	3.5	125,000	13,000				5LJ8¶
Class A Amplifier	125	-	8 = 68	13	-	5,000	8,000	40		-	
Class A	125	125	R _k =	10	2.8	125,000	12,000	<u> </u>	'	 	5M B8¶
Amplifier Class A Amplifier	125	-	33 R _k == 68	13	-	5,000	8,000	40	_	-	-
Class A	125	125	R _k ==	12	4.5	150,000	10,000	_	<u> </u>	i 1	5MQ8¶
Amplifier Class A Amplifier	150	_	62 R _k = 56	18	-	5,000	8,500	40	-	-	
Full-Wave Rectifier	Max of rms st 650 m	upply v	ut curre	nt = 25 er plat	0 ma; m e = 750	ax peak inv volts; max	verse voi peak cu	tage = :	2800 vol er plate	ts;	эк4-6 5R4-GY
Full-Wave Rectifier	Max	d-c out	put cur	rent =2	50 ma;	max peak olts; max p	inverse	voltag	e = 2800	0 volts;	5R4-GYA
Full-Wave Rectifier	Max volts;	d-c out max R	put cur MS sup	rent 🖲 :	=250 m	a; max pe r plate • =	ak inve 900 vol	rse vol ts; max	tage 🖲 =	=3,100 urrent	5R4-GYB
Full-Wave Rectifier	Max o	i-c outp	ut curre	nt = 22. er plate	5 ma; m =450 v	ax peak inv olts; max p	erse vol	tage = 1	550 vol	ts; max	5T4
Class A Amplifier	250 100	=	3.0	1.0	=	58,000 54,000	1,200	70 70			5T8¶
Full-Wave Rectifier	aubbt.	y vortag	e her bu	4vc - 40	O VOICE,	ax peak in max peak o	mircur f	er plau	: OUU I	na i	5U4-G
Full-Wave Rectifier	Max o	i-c outp	ut curre	ent = 25 er plate	0 ma; m =450 v	ax peak in olts; max pe	verse vo	itage =	1550 vol	lts;	5U4-GA
Full-Wave Rectifier	Maxo	l-c outp	ut curre	nt = 27	5 ma; m:	ax peak inv lts; max pe	erse vol	tage = 1	550 vol	ts;	5U4-GB
Class A	125	110	1.0	9.5	3.5	200,000	5,000		-	-	5U8¶
Amplifier Class A Amplifier	125	-	1.0	13.5	-	*****	7,500	40		-	
Class A	160	110	1.4	13	5.0		12,000	(E _{c3} :	= 0 volts	i) 	5U9
Amplifier Class A Amplifier	100	_	2.0	14	-		5,000	1,7		-	
Full-Wave Rectifier	supply	y voltag	e per p	late =4	25 volts	ax peak in ; max peal	c curren	t per p	late = 1.	200 ma	5V3
Full-Wave Rectifier	Max volts;	d-c out max R ate 🏶 =	put cur MS sup	rent 🐵	=415 m tage pe	a; max pe r plate 🏶 =	ak inve 550 vol	rse vol ts; max	tage 🏶 =	=1,550 urrent	5V3-A
Full-Wave Rectifier	Max	l-c outp	ut curre	nt = 17	5 ma; m 5 volts;	ax peak inv max peak c	verse vo	ltage = er plate	1400 vo = 525 r	lts; rms	5V4-G 5V4-GA

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts ¥	Input	Out- put	Grid- plate
5V6-GT¶	Beam Power Amplifier	7AC	9-11 or	4.7	0.6	12	315	285	Single	Tube	
			9-41				_	_	2 Tube	s, Push-	Pull
						9,0	315	_	Triode (G2 &	Connec P tied)	ction
5W4 5W4-GT	Full-Wave High-Vacuum	5T	8-6 9-13	5.0	1.5	-	Tube V	oltage 100 m	Drop: 4	•	
5X4-G	Rectifier Full-Wave High-Vacuum Rectifier	5Q	16-3	5.0	3.0		Tube V		Drop:	•	
5X4-GA	Full-Wave High-Vacuum	5Q	12-16	5.0	3.0		Tube V		Огор: ♠		
5X8¶	Rectifier Triode-Pentode	9AK	6-2	4.7	0.6	2.3 🏵	275 ♦	275 8 0.45 8	Pentod	e Section	on
	Converter					1.7 ◈	275 🏶	0.45	Triode	Section	1
5X9	Triode-Pentode	10K	6-2	5.9	0.45	2.1	250	250 0.7	Pentod	e Secti	on
						1.5	250	0.7	Triode	Section	1
5¥3-G	Full-Wave High-Vacuum Rectifier	5T	14-3	5.0	2.0		Tube V	oltage 125 ma	Drop: 4	•	
5¥3-GA	Full-Wave High-Vacuum Rectifier	5T	12-16 9-13	5.0	2.0		Tube V		Drop:)	
5Y3-GT	Full-Wave High- Vacuum Rectifier	5T	9-13 or 9-42	5.0	2.0	_	Tube V	oltage	Drop:	:	
5Y4-G	Full-Wave High-Vacuum Rectifier	5Q	14-3	5.0	2.0		Tube V		Drop:		
5Y4-GA 5Y4-GT	Full-Wave High-Vacuum Rectifier	5Q	12-16 9-13 9-42	5.0	2.0		Tube V		Drop: 4	•	
5Z3	Full-Wave High-Vacuum Rectifier	4C	16-1	5.0	3.0		Tube V	Voltage t 225 m	Drop:	•	
5Z4	Full-Wave High-Vacuum Rectifier	5L	8-6	5.0	2.0		Tube V		Drop:		
5Z4-GT		5L 4D	$\frac{9-11}{16-1}$	5.0	1.0		325		Single	+u ba	
6A3	Power Amplifier Triode	41)	10-1	0.3	1.0		323			tube s, push-	pull
6A4/LA	Power Amplifier Pentode	5B	14-1	6.3	0.3		180	180		<u> </u>	ΓΞ
6A5-G	Power Amplifier Triode	6T	16-3	6.3	1.25	_	250		Single 2 tube	Tube s, push-	pull
6A6	Twin Triode Power Amplifier	7B	14-1	6.3	0.8	1.0 ♠	300		Push Both S	ections pull sections arallel	
6A7	Pentagrid Converter	7C♦	12-6	6.3	0.3	1.0	300	100 0.3		=0.4 n 0,000 o	na hms
6A8 6A8-G 6A8-GT	Pentagrid Converter	8A ♦	8-4 12-8 9-18	6.3	0.3	1.0	300	100	Osc Ici Rgi = 5	=0.4 n 0,000 o	na hms
6A B4	High-Frequency Triode	5CE	5-2	6.3	0.15	2.5	300		2.2	1.4	1.5
6AB5/6N5	Electron-Ray Indicator	6R	9-26	6.3	0.15	_	1802	Max ta Min ta	rget vo	laa '	180 125
6AB7/1853	Remote-Cutoff RF Pentode	8N	8-1	6.3	0.45	3.75	300	200 0.65		5.0	0.015
6A B9	Twin Tetrode	10N	T-X	6.3	0.365	2.0 🌢	250 ◈	180 \$ @	5.7	2.7	0.055
6AC5-GT	Triode Power Amplifier	6Q	9-11	6.3	0.4	10	250		2 tube	s, Push	-pull
6AC6-GT	Dynamic-Coupled Power Amplifier	7W	9-11	6.3	1.1	8.5 1.3	180	_		T -	T
6AC7	RF Pentode	8N	8-1	6.3	0.45	3.0	300	3008	11	5	0.018

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate.

†Maximum.

* Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	315 250 180	225 250 180	13 12.5 8.5	34† 45† 29† 70†	2.2† 4.5† 3.0†	80,000 50,000 50,000	3,750 4,100 3,700	=	8,500 5,000 5,500	5.5 4.5 2.0	5V6-GT¶
Class AB ₁ Amplifier Vertical Amplifier	285 250 250 Max	285 250 — positive	19 15 12.5 pulse p	70† 49.5 late vo	4.0† 5.0† 	=1200 v; n	5,000 nax plat	9.8	8,000‡ 10,000‡ — pation =	10	
Full-Wave Rectifier	Maxo	l-c'outp	it curre	nt = 10	0 ma: m	ax peak inv lts; max pe	erse vol	tage = 1	400 vol	ts; max 00 ma	5W4 5W4-GT
Full-Wave Rectifier	Max o	i-c outp ipply vo	ut curre ltage pe	ent = 22 er plate	5 ma; m =450 vc	ax peak inv lts; max pe	erse vol	tage = 1 ent per p	550 vol plate = 6	ts; max 75 ma	5X4-G
Full-Wave Rectifier						ax peak inv lts; max pe	erse vol	tage = 1 ent per	550 volt plate = 9	s; 000 ma	5X4-GA
Class A Amplifier Class A	125 125	125	1.0	9.0	2.2	300,000 6,000	5,500 6,500	 40	_	_	<i>5</i>
Amplifier Class A Amplifier	160	135	1.7	13	5.0		14,000				5X9
Class A Amplifier	170		1.0	8.5	-		4,800	55		_	
Full-Wave Rectifier	Max rms su	d-c outp ipply vo	ut curr ltage p	ent = 12 er plate	= 350 v	ax peak inv olts; max p	erse vo	ltage = rent per	1400 vo plate =	ts; max 375 ma	5Y3-G
Full-Wave Rectifier	suppl	y voltag	e per pi	ate = 35	U volts;	ax peak in max peak c	urrent p	er plate	2 == 44U r	na.	5Y3-GA
Full-Wave Rectifier	suppl	y voltag	e per p	late ⇒3:	50 volts:	ax peak in max peak	current	per pla	te = 440	ma	5Y3-GT
Full-Wave Rectifier	suppl	y voltag	e per pl	ate = 35	0 volts;	ax peak in max peak o	urrent p	er plate	= 375 m	na	5Y4-G
Full-Wave Rectifier	Max suppl	d-c outp y voltag	ut curr e per pl	$\begin{array}{l} \text{ent} = 12 \\ \text{ate} = 35 \end{array}$	5 ma; m 0 volts;	ax peak in max peak o	verse vo urrent p	er plate	=400 vo	na	5Y4-GA 5Y4-GT
Full-Wave Rectifier	Max	d-c outp	ut curre	ent = 22 er plate	5 ma; m = 450 vc	ax peak inv	verse vol	tage = 1 ent per	1550 vol plate = 6	ts; max 375 ma	5Z3
Full-Wave Rectifier	Max	d-c outp	ut curr	ent = 12	5 ma: m	ax peak involts; max pe	verse vo	tage =	1400 vol	ts; max	5Z4 5Z4-GT
Class A Amplifier	250		45	60†	Ι =	800	5,250	4.2	2,500	3.2	6A3
Class AB ₁ Amplifier	325		68	80†					3,000‡		
Class A Amplifier	180	180	12	22†	3.9†	45,400	2,200		8,000	1.4	6A4/LA
Class A Amplifier Class A	250 325		45 68	60† 80†	_	800	5,250	4.2	2,500 3,000	3.75	6A5-G
Amplifier Class B	300		00	35†					8,000		6A6
Amplifier Class A	294	_	6.0	7.0	_	11,000	3,200	35	#	-	5110
Amplifier Converter	250	100	3.0	3.5	2.7	360,000	550 #	E_{c2} (Os thru 20 $I_{c3} = 4$.	c Plate) 0,000 oh	=250 ims	6A7
Converter	250	100	3.0	3.5	2.7	360,000	550 #	Ec2 (Os	c Plate)	=250 ms	6A8 6A8-G 6A8-GT
Clara A	250		R _k =	10		10,900	5,500	60	<u> </u>	T=	6A B4
Class A Amplifier	100	-	R _k = 270	3.7	-	15,000	4,000	60			
Tuning Indicator			t, shado	$w = 90^{\circ}$, plate c	rget voltage urrent = 0.5	ma, tar	E _c = -	10, sharent $= 2$	dow = ma)	6AB5/6N5
Class A Amplifier	300	200	3.0	12.5	3.2	700,000	1				6AB7/1853
Class A Amplifier ♠ Class B	125 250	80	1.0	8.0 5.0†	2.0	110,000 Input sign	1	0 watt	10,000	8.0	6AB9 6AC5-GT
Amplifier Class A Amplifier	180	180	0	45.0	7.0	18,000	3,000	Γ-	3,500	3.6	6AC6-GT
Amplifier Class A	300	150	R _k =	10	1 2.5	11,000,000	19.000	1	ī —	T	6AC7

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

• Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila-	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofara	e in ls
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6AC9¶	Duplex-Diode Pentode	12GN	9-57	6.3	0.6	2.5 🏽	1	10.55	Pentod Drop:		on
					ł		10 volt	s at 50	Drop: ma d-c	•	
6AC10¶	Triple Triode	12FE	9-58	6.3	0.6	2.0 ◈	330 ◈	-	2.4₁ ▲ 2.6₂ ▲	0.22 ₁ 0.30 ₂ 0.44 ₃	1.3 ₁ A 1.2• A
6AD4 ●	High-Mu Triode	8DK	3-1	6.3	0.15	0.3	150	<u> </u>	1.9	2.2	0.7
6AD6-G	Twin Electron-Ray Indicator	7AG	9-3	6.3	0.15		Max ta Min ta	rget vo	ltage = ltage =	150 00	
6AD7-G	Triode-Power Amplifier Pentode	8AY	14-3	6.3	0.85	1.0 8.5	285 375	285 2.7		section le section	
6AD10	Dissimilar Double Pentode	12EZ	9-59	6.3	1.05	10 ♦ 1.7 ♦	275 ♦ 300 ♦	275 3 2.0 3 300 3	Section 9, 10 Section 3, 5,), 11) (F	Pins 8, Pins 2,
6AD10-A	Dissimilar	12EZ	9-59	6.3	1.05	12 🏶	300 ◈	300 ◈	Section		. 8
on pro-n	Double Pentode	1262	9-09	0.3	1.00	1.7 🏶	300 ◈	2.5 ♦	9, 10 Section 3, 5,	, 11) 2 (Pin 6, 7)	s o, s 2,
6AE5-GT	Low-Mu Triode	6Q	9-11	6.3	0.3	2.5	300	-		-	<u> </u>
6AE6-G	Single-Grid Twin-Plate Control Tube	7AH	12-7	6.3	0.15		250	Remot Sharp-	e-cut-of cut-off	f plate plate (F	(Pin 3) in 4)
6AE7-GT	Twin-Input Triode	7AX	9-11	6.3	0.5	5.0	300	_	_	-	
6 A F 3	Half-Wave High- Vacuum Rectifier	9CB	6-8	6.3	1.2	6.0 🏶	Tube \	oltage	Drop: ma d-		
6AF4 6AF4-A	UHF Triode Oscillator	7DK	5-2 5-1	6.3	0.225	2.5 🏶	150 ◈		2.2 ▲	1.4 ▲	1.9▲
6AF5-G	Low-Mu Triode	6Q	12-7	6.3	0.3	=	180				-
6AF6-G	Twin Electron-Ray Indicator	7AG	9-1 9-36	6.3	0.15		_	Min ta	arget vo	ltage =	125
6AF10	Dissimilar Double Pentode	12GX	9-58	6.3	1.2	3.0 ♦ 5.0 ♦		0.8	Section 8, 9, Section 3, 4,	10. 11	ins 6, ins 2,
6AF11	Dissimilar-Double- Triode Pentode	12DP	9-58	6.3	1.05	5.0�	330 �	330	Pentod	5, 6) e Secti	on
	Thode rentode					1.1 🏶	330 ◈	1.25	1	Section	
	0: 0 : 0 0 0	-55				2.0	330�		Triode (Pins 3	Section (4, 7)	
6A G5	Sharp-Cutoff RF Pentode	7BD	5–2	6.3	0.3	2.0	300	300 8 0.5	1	e Conr Conne	
6AG7	Power Amplifier	8Y	8-6	6.3	0.65	9.0	300	300	(G ₁ &	Conne P tied) 7.5	0.06
6AG9	Pentode Triode-Pentode	12HE	9-59	6.3	0.82	10 🕸	330 ◈		Pentod	le Secti	on.
						1.1 🏶	330 ◈	1.5	Triode	Section	n
6AG10	Gated Twin Hexode	12GT	9-60	6.3	0.75	2.0 •	330 €	1.0 \$\left\ \times \text{g4} \\ 300 \times \text{g3} \\ 2.0 \times \text{g3} \\ \times \text{g3} \\ \times \text{g2} \\ 0.25 \end{array}			
	Duplex-Diode Twin	12DA	9-56	6.3	0.75	2.0	330�	<u>-</u> •g2	Triode	Section	ns .
6AG11	Triode	1	i	i	1						
6AG11 6AH4-GT	Triode	1 SEL	J 9-41	6.3	0.75	7.5	500	<u> </u>	Diode	Section	s

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. \$ Supply voltage.

[●]Subminiature type. ▲Without external shield. •Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	125	125	1.0	12	4.5	150,000	10,000		i	— i	6AC9¶
rimpinie:	Max d	c outpu	t curre	nt 🔷 💠	= 5.0 ma	1	1	!	ı	'	
Class A Amplifier ♠	200	_	R _k == 150	9.0	 - -	10,700	5,800	62	-		6AC10¶
Class A Amplifier	100		R _k = 820	1.4	-	,	2,000	70	-	-	6AD4 @
Tuning Indicator 🏟	Target (Ray c	voltage = ontrol	= 150 (= +8 vo	Ray co	ntrol = -1 low = 90	+75 volts.	shadow	=0°)			6A D6-C
Class A Amplifier	250		25	3.7		19,000	325	6.0	<u> </u>	-	6AD7-0
Class A Amplifier	250	250	16.5	34†	6.5†	80,000	2,500		7,000	3.2	
Class A Amplifier	250	250	8.0	35†	2.5†	100,000	6,500		5,000	4.2	6AD10
Class A Amplifier	150	100	R _k = 180	2.8	3.4	110,000	2,500	(E _{c3} :	=0 volts	i)	
Amplifier	250	250	8.0	35	2.5	100,000	6,500		5,000	4.2	6AD10
Class A Amplifier	150	100	R _k = 180	2.8	3.4	110,000	2,500		0 volts		
Class A Amplifier	95	_	15	7.0	-	3,500	1,200	4.2	-		6AE5-G
Class A Amplifier	250 250		1.5 1.5	6.5 4.5		25,000 35,000	1,000	25 33			6AE6-G
Class A Amplifier ♠	250		13.5	5		9,300	1,500	14			6AE7-G
TV Damper	Max volts;	max pe	ak curr	rent 🏶 =	=185 m :750 ma	a; max pe	ak inve	rse vol	tage 🏶 =	-4 ,500	6AF3
Class A Amplifier	80		$R_k = 150$	17.5	-	2,100	6,500	13.5	-	 	6AF4
Class A Amplifier	180		18	7.0		4,900	1,500	7.4			6AF4-A 6AF5-G
Tuning Indicator 🌩	(Ray c	voltage = ontrol	=250 (0 v, sh	Kay co: adow =	ntrol = - 100°, ta:	+155 volts	, shadow $= 3.75$	ma)		- 1	6AF6-G
Class A Amplifier	200	150	2.0	10	2.5	_	10,000	_			6AF10
Class A Amplifier	200	125	R _k =	22	4.0	75,000	23,000				
Class A Amplifier	200	150	R _k = 100	24	4.8	68,000	11,000	_	_	_	6AF11
Class A Amp	200	_	2.0	7.0	-	12,400	5,500	68	-		
Class A Amplifier	200		R _k = 220	9.2		9,400	4,400	41	_		
Class A Amplifier Class A	250 250	150	R _k == 180 R _k ==	6.5 5.5	2.0	800,000 10,000	5,000 3,800	42			6AG6
Amplifier Class A	300	150	820 3.0						10.005		
Amplifier Class A	250	150	3.0 R _k ==	30† 28	7.0† 5.6	130,000	11,000		10,000	3.0	6AG7
Amplifier	55	125	0	56	21	40,000	30,0 0 0	_	_	_	6AG9
Class A Amplifier	150	-	R _k = 350	6.2	-	8,500	4,600	39	<u> </u>		
Color Demodu-	Section 40	10g4	R =	less oth	0.4g4	ndicated —	10,000	_	'	, _	6AG10
lator Avg. Char.		100g3 25g2	120	•	2.2g3 0.5g2						
<u>.</u>	250	-26g4 100g3	R _k = 120	0.1		_	-	_	-	-	
	100	25g2 10g4 100g3 25g2	0	37	2.5g4 6.0g3 1.5g2	_	_	_	_	-	
Class A	125		1.0	7.5		8,500	7,800	66		<u> </u>	6AG11
Amplifier ♠ Detector ♠	Max d	-c outpu	it curre	nt 🔷 🖚	5.0 ma		•			ŀ	
Vertical Amplifier	250	I 1	23	30		1,780 =2000 v;	4,500 max d-c	8.0 catho	de curre	- ent =	6AH4-0

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$\delta\$ G3 and G5 are screen. G4 is signal-input grid.

\$\delta\$ G2 and G4 are screen. G3 is signal-input grid.

\$\delta\$ Maximum acreen dissipation appears immediately below the screen voltage.

\$\delta\$ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitano icofara	e in
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6AH6	Sharp-Cutoff RF Pentode	7BK	5–2	6.3	0.45	3.2	300	300		e Conn	
64) I 7 C W	Medium-Mu	-005						İ	Triode (G ₂ , G ₂	Conne	ction ed)
6AH7-GT	Twin-Triode	8BE	9-7	6.3	0.3	1.5♠	180				
6AH9	Triode-Pentode	12HJ	9–58	6.3	0.9	10◈	400◈	330 : ♦ 1.0♦		e Sectio	n
						2.0◈	330◈		Triode	Section	
3AJ4	UHF Medium-Mu Triode	9BX	6-1	6.3	0.225	2.0	150			_	_
SA J 6	Sharp-Cutoff RF Pentode	7BD	5-1	6.3	0.175	1.7	180	180 8 0.5	4.0	2.8	0.02
SAJ7	RF Pentode	8N	8-1	6.3	0.45	3.0	300	300 8 0.38	11	5	0.015
5AK4 ⊜	Medium-Mu Triode	8DK	3-1	6.3	0.15	3.0	250	_	2.2	2.2	1.3
SA K5	Sharp-Cutoff RF Pentode	7BD	5-1	6.3	0.175	1.7	180	180 2 0.5	4.0	2.8	0.02
AK6	Power Amplifier	7BK	5-2	6.3	0.15	2.75	300	250	3.6 ▲	4.2 ▲	0.12
SAK7	Pentode Power Amplifier Pentode	8Y	8-6	6.3	0.65	9.0	300	300	13	7.5	0.06
6АК9■	Dissimilar-Double-	12GZ	12-56	6.3	1.6	10�	350◈	1.5 250 ◈	Pentode	Section	1 क
	Triode Pentode					1.25�	330�	2.0	Triode	Section	1
						1.0◈	330⊛	_	(Pins 7, Triode (Pins 2,	Section	2
6AK10 =	Triple Triode	12FE	9-59	6.3	0.9	2.0 ♠	330 ♠	_	4.2 ₁ ▲ 4.2 ₂ ▲	0.3 ₁ \triangle 0.4 ₂ \triangle 0.54 ₃ \triangle	3.2 ₁ 3.0 ₂ 3.0 ₃
6A L3	Half-Wave High- Vacuum Rectifier	9CB	T-X	6.3	1.55	5.0	Tube V	oltage : s at 440	Drop:	0.01.2	4 0.00
SALS	Twin Diode	6BT	5-1	6.3	0.3		Tube V	oltage 60 ma	Dгор: ф		
6AL6-G	Beam Power Amplifier	6AM	T-X	6.3	0.9	18.5	350	300 2.7	_	_	=
SAL7-GT	Electron-Ray Indicator	8CH	9-7 or 9-39	6.3	0.15			Max ta	rget vol		
6AL9	Triode-Pentode	12HE	9-59	6.3	0.82	10 🏶	330 ◈	200 🌒	Pento	de Sect	ion
						1.5 ◈	330 ◈	1.5 🏶	Triode	e Sectio	n
6AL11	Dissimilar Double Pentode	12BU	9-59	6.3	0.9	10 ♦ 1.7 ♦	275 ♦ 330 ♦	2.0 ③ 330 8 ⑥	Section 9, 10 Section 3, 4, 6,	, 11) 2 (Pin:	-
SAM 4	UHF High-Mu Triode	9BX	6-1	6.3	0.225	2.0	200		-	'	
SA M8	Diode Sharp-Cutoff RF Pentode	9CY	6-2	6.3	0.45	3.2 🏈	330 ♦	330 ♦ \$ 0.55 ♦	6.5	2.6	0.015
SA M8-A¶ SA N4	UHF High-Mu Triode	7DK		6.2	0.005		- 200	J.55 🐠	Diode S	Section	•
				6.3	0.225	4.0	300			_	
AN6	Beam Power Amplifier	7BD	5-2	6.3	0.45	4.2	120	120 1.4	9.0	4.8	0.075
AN6	Quadruple Diode	7BJ	5-2	6.3	0.2		Tube V 9.0 v at	oltage l 6.6 ma	Drop:♠		
AN8	Triode-Pentode	9DA	6-2	6.3	0.45	2.3 🏶		330 ♦ 8		e Sectio	n
AN8-A¶						2.8 🏶	330 ◈	0.50	Triode	Section	
AQ5	Beam Power Amplifier	7BZ	5-3	6.3	0.45	12 🔷	275 🏶	275 ♦ 2.0 ♦	Pentod	e Conne	ection
A Q 5-A ¶						10 🔷	275 🏶	2.5	Triode (G ₂ & F	Connec	tion

Compactron.

† Zero signal.

• Per section.

[†] Plate-to-plate. †Maximum. *Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	300	150	Rk =	10	2.5	500,000	9.000	_	<u> </u>		6AH6
Amplifier Class A Amplifier	150	-	160 R _k == 160	12.5	-	3,600	11,000	40	-	-	
Class A Amplifier •	180		6.5	7.6		8,400	1,900	16			6AH7-GT
Avg. Char.	250 50	150	R _k =	25 76	6.0	55,000	21,000	_	_	-	6AH9
Avg. Char.	250	123	9.0	8.0	32	7,300	2,750	20	=		
Class A Amplifier	125	-	$R_k = 68$	16		4,200	10,000	42	-	_ 1	6AJ4
Class A Amplifier	28	28	1.0	2.7	1.0	100,000	2,500				6AJ8
Class A Amplifier	300	150	R _k = 160	10	2.5	1,000,000	9,000		_		6AJ7
Class A Amplifier	200		R _k = 680	9.5		5,300	3,800	20			6AK4 ●
Class A	180	120	R _k = 180	7.7	2.4	500,000	5,100				6AK5
Amplifier	120	120	R _k = 180	7.5	2.5	300,000	5,000	-	_		
Class A Amplifier	180	180	9.0	1 5 †	2.5†	200,000	2,300		10,000	1.1	6A K6
Class A Amplifier	300	150	3.0	30†	7.0†	130,000	11,000		10,000	3.0	6AK7
Avg. Char.	150 60	150 125	14 0	49 140	3.5 18	16,400	6,200	_	=		6A K9
Avg. Char.	150	-	2.0	5.4	- 1	11,000	3,900	43	=	_	
Avg. Char.	150	-	5.0	5.5	_	8,500	2,350	20	_	-	
Color Dif- ference Am-	200		R _k = 230	10	j – j	7,500	7,000	53	 		6AK10
		1	1200	l	1 1						
plifier ∲ TV Damper			t currer		ma; ma	x peak inve	erse volt	age 🗐 =	-7,500 v	olts;	6AL5
plifier 🌩	Max d 330 vo	ak curr -c outp lts; max	t currer ent = 55 ut curre rms su	0 ma	•	x peak inve = 9 ma; n er plate 🏶 =			•	·	6AL3
plifier • TV Damper Half-Wave	max pe Max d 330 vol per pla 250	eak curr- -c outp lts; max lte - 5 250	t currer ent = 55 ut curre rms su 4 ma	0 ma ent per pply vo	plate & ltage pe	=9 ma; n er plate ⊕ = 22,500	ax peal =117 vo	k invers	se volta k peak o	ge	
plifier • TV Damper Half-Wave Rectifier Class A	max pe Max d 330 vol per pla 250 Target volts; trode c trols b	eak curre-c outpoints; maxite = 50 250 t voltage pin 6 electron bettom bettom bettom bettom controls	t currer ent = 55 ut curre rms su 4 ma 14 e = 315 ectrode top rig nalf of f	0 ma ent per pply vo 72† volts; control ht quar luoresce	plate oltage per 5.0† cathode s top lefter of flent area	=9 ma; n er plate	6,000 6,000 3,300 oh of fluore area, and	k inversits; mai	2,500 id volta rea, pin electroid	ge - 0 4 electer con-	6AL6-G
plifier TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video	max per Max d 330 vol per pla 250 Target volts; trode c trols b with a 250	eak curr-c outputs; maxite ⊕ =5 250 t voltage pin 6 elecontrols octom leplane pin 150	t current = 55 ut current = 55 ut current rms su id ma 14 e = 315 ectrode top riguals of sessing the session that sessing the session that session the sessio	0 ma ent per pply vo 72† volts; control ht quar luoresce hrough	plate oltage per 5.0† 5.0† cathode s top lefter of flent area pins 4 ar	=9 ma; ner plate •= 22,500 resistor = 3 it quarter cuorescent a when the	6,000 6,000 3,300 oh of fluore area, and tube is l and wi	k inversits; mai	2,500 id volta rea, pin electroid	ge - 0 4 electer con-	6AL6-G
plifier • TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose	max pe Max d 330 vol per pla 250 Target volts; trode of trols b with a	eak curre-c outpoints; maxite \$\infty = 50 250 t voltage pin 6 el controls outtom leplane p	t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode top rig nalf of f assing t	0 ma ent per pply vo 72† volts; control ht quar luoresce	plate tage per 5.0† cathode s top lefter of flent area pins 4 ar	22,500 resistor = 3 t quarter of when the ad 8 vertica	6,000 6,000 3,300 oh of fluore area, and tube is l and wi	k inversits; mai	2,500 id volta rea, pin electroid	ge - 0 4 electer con-	6AL6 6AL6-G 6AL7-GT
plifier A TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A	max per Max d 330 volper pla 250 Target volts; trode of trols by with a 250 55	eak curr-c outputs; maxite ⊕ =5 250 t voltage pin 6 elecontrols octom leplane pin 150	t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode top rig nalf of f assing t R _k = 56 0 R _k = 270	0 ma ent per pply vo 72† volts; of control ht quar luoresce hrough	plate oltage per 5.0† 5.0† cathode s top lefter of flent area pins 4 ar	resistor = 22,500 resistor = 22,500 resistor = 3 t quarter quorescent a when the ad 8 vertica 40,000	6,000 6,000 6,000 6,300 oh of fluore trea, and tube is 1 and wi	k inversits; maxims; griscent aid pin 5 mounte th pin 4	2,500 id volta rea, pin electroid	ge - 0 4 electer con-	6AL6 6AL6-G 6AL7-GT
plifier A TV Damper Half-Wave Rectifier Class A Amplifier RM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A	max pe Max d 330 voltes 250 Target volts; trode e trols b with a 250 55 200	eak curr- c outp lts; max tte \$\infty = 5\$ 250 t voltag pin 6 el controls controls plane p 150 125	t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode etop rig alf of f assing t Rk = 56 0 Rk = 270 8.0 Rk =	0 ma ent per pply vo 72† volts; control ht quar luoresce hrough; 28 56 7.6	plate lange per stop left ter of first area pins 4 ar	22,500 resistor = 22,500 resistor = 3 t quarter correscent s when the d 8 vertica 40,000 9,200	6,000 6,000 3,300 oh f fluore trea, and tube is 1 and wi 30,000 6,300	inversits; mains; griscent and pin 5 mounte th pin 4	2,500 2,500 d volta rea, pin electrod norize on top.	ge 🏶 = urrent 6.5 ge = 0 4 election contaily	6AL6-G 6AL7-GT 6AL9 ■
plifier TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A	max pe Max d 330 vol per pla 250 Target volts; trode of trols be with a 250 55 200	eak curr- c outp lts; max tte \$\left(= 50 \) t voltag pin 6 el controls outom l plane p 150 125 250	t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode top rig nalf of f assing t R _k = 56 0 R _k = 270 R _k = 560 R _k =	0 ma ent per pply vo 72† volts; control ht quar duoresce hrough 56 7.6	plate politage per 5.0† cathode s top lefter of firmt area pins 4 ar 5.6 21	22,500 resistor = 2 t quarter correscent swhen the d8 vertica 40,000 9,200	6,000 6,300 oh f fluores rea, and tube is l and wi 30,000 6,300 6,500	inversits; mains; griscent and pin 5 mounte th pin 4	2,500 2,500 d volta ea, pin electrod d horize on top.	ge 🏶 = urrent 6.5 ge = 0 4 election contaily	6AL6-G 6AL7-GT 6AL9 ■
plifier A TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A	max pe Max d 330 vol per pla 250 Target volts; trode c trols b with a 250 250 250	eak curr- c outp lts; max tte \$\left(= 50 \) t voltag pin 6 el controls outom l plane p 150 125 250	t currer ent = 15 to true to true to true to true true true true true true true true	0 ma ent per pply vo 72† volts; e control ht quar hrough 28 56 7.6 1.3	plate politage per 5.0† cathode s top lefter of firmt area pins 4 ar 5.6 21	22,500 22,500 22,500 resistor = 1 t quarter currescent 2 when the 40,000 9,200 100,000 150,000	6,000 6,000 3,300 oh of fluore trea, and tube is 1 and wi 30,000 6,300 1,000	inversits; manual strains and	2,500 2,500 d volta ea, pin electrod d horize on top.	ge 🏶 = urrent 6.5 ge = 0 4 election contaily	6AL6-G 6AL7-GT 6AL9
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class D Class A Amplifier Class D	max pe Max d 330 vol per pla 250 Target volts; trode e trols b with a 250 55 200 150 200	eak curre-c outputs; max. tee	t currer ent = 55 to ture rms su 4 ma 14 e = 315 e top rig alf of fassing t Rk = 56 0 Rk = 270 Rk = 100 Rk = 560 top rig fast results for the results	0 ma ent per pply vo 72t volts; (control ht quar luoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms	plate states plate to the plate state of the plate term of first area pins 4 are states and states plate term of the pla	22,500 resistor = 3 t quarter cuorescent swhen the d8 vertica 40,000 9,200 100,000 150,000 8,700 300,000 te drop: 10	6,000 6,300 6,300 6,300 6,300 7,800 vat 50 r	k inversits; ma:	2,500 2,500 d volta ea, pin electrod d horize on top.	ge 🏶 = urrent 6.5 ge = 0 4 election contaily	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	max pe Max d 330 vol per pla 250 Target volts; trode e trols b with a 250 250 150 200 125 Max d- 200	ak curre-c outputs; max. tte \$\insertex = 5 \\ 250 \text{tvoltage} t voltage	t currer ent = 15 to true true true true true true true true	0 ma ent per pply vo 72t volts; control ht quar luoresce hrough; 28 56 7.6 1.3 10 12.5 t = 5 ms	plate states plate to the plate state plate to the plate	22,500 resistor = 22,500 resis	1000 page 1000 p	k inversits; ma:	se voltas peak c 2,500 id volta rea, pin electror d horizot on top. 5,000 0 volts	ge 🏶 = uurrent 6.5 ge = 0 4 electie contrally	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A	max pe Max dd 330 vol per pla 250 Target volts; trode c trols b with a 250 250 150 200 125 Max d- 200	250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250	t currer ent = 15 to ture rms su 4 ma 14	0 ma ent per pply vo 72† volts; c control ht quar duoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35	plate state of the plate of the	22,500 resistor = 22,500 resistor = 22,500 resistor = 32,500 resistor = 32,500 100,000 100,000 100,000 100,000 8,700 300,000 2,500 12,500	10,000 10,000	k inverse k inve	se voltas peak c 2,500 id volta rea, pin electrod dhorizza on top. 5,000 0 volts	ge - urrent 6.5 ge - 0 4 electe contally 4.2	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A	max pe Max d 330 vol per pla 250 Target volts; trode e trols b with a 250 250 150 200 125 Max d 200 120 Max d	ak currc outputs; max 250 250 100 125 250 25	t currer ent = 15 to true turrer trms su 4 ma 14 e = 315 ectrode top rig assing t Rk = 56 to Rk = 100	0 ma ent per pply vo 72t volts; control trough; 28 56 7.6 135t 1.3 10 12.5 t = 5 ms 13 35 ent per	Distance Distance	22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 10,000 100,000	1000 a to 0 to 0 to 0 to 0 to 0 to 0 to 0	k inverse k inve	ze voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj za voltaj ze voltaj za voltaj	ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210;	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A	max pe Max d 330 vol per pla 250 Target volts; trode e trols b with a 250 250 150 200 125 Max d 200 120 Max d	ak currc outputs; max 250 250 100 125 250 25	t currer ent = 55 tut currer rms su 4 ma 14 e = 315 ectrode top rig assing t R _k = 56 0 R _k = 270 R _k = 100 R _k = 100 R _k = 100 R _k = 120 ut curren R _k = 120 ut curren	0 ma ent per pply vo 72t volts; control trough; 28 56 7.6 135t 1.3 10 12.5 t = 5 ms 13 35 ent per	Distance Distance	22,500 resistor = 22,500 resistor = 22,500 resistor = 32,500 resistor = 32,500 100,000 100,000 100,000 100,000 8,700 300,000 2,500 12,500	1000 a to 0 to 0 to 0 to 0 to 0 to 0 to 0	k inverse k inve	ze voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj za voltaj ze voltaj za voltaj	ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210;	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A	max pe Max d 330 volo per pla 250 Target volts; trode e trols b with a 250 250 150 200 125 Max d 200 120 Max d 7ms su	ak curre-c outputs; max. te \$\infty\$=\frac{5}{250} t voltag pin 6 el controls output list 250	t currer ent = 55 to turer rms su 4 ma 14 e = 315 e top rig alf of fassing t	0 ma ent per pply vo 72t volts; (control ht quar luoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35 ent per er plate	Description Description	22,500 resistor = 2 t quarter cuorescent swhen the d8 vertica 40,000 9,200 100,000 150,000 8,700 300,000 edrop:10 7,000 12,500 8.0 ma; ma ax peak cu	6,000 6,000 6,000 6,300 6,300 6,300 1,000 7,800 vat 50 r 10,000 8,000 x peak irrent pe	k inverse k inve	ze voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj za voltaj ze voltaj za voltaj	ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210;	6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5
plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	max pe Max d 330 vol per pla 250 Target volts; trode e trols b with a 250 250 150 200 125 Max d 200 120 Max d rms su 125	ak curre-c outputs; max. te \$\infty\$=\frac{5}{250} t voltag pin 6 el controls output list 250	t currer ent = 55 tut currer erms su 4 ma 14 e = 315 ectrode top rig assing t R _k = 56 0 R _k = 270 8.0 R _k = 100	0 ma ent per pply vo 72t volts; (control ht quar duoresce hrough; 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35 ent per plate 12	Description Description	22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 10,000 100,000	6,000 6,000 6,000 6,300 oh of fluore rea, an tube is l and wi 30,000 6,300 1,000 7,800 v at 50 r 10,000 x peak r rrent pe 7,800	k inverse this; many many many many many many many many	ze voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj ze peak ce voltaj za voltaj ze voltaj za voltaj	ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210;	6AL6-G 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5 6AN6

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca _j	acitanc icofarac	e in is
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6AQ6	Duplex-Diode High-Mu Triode	7BT	5-2	6.3	0.15	<u> </u>	300		1.7	1.5	1.8
6AQ7-GT	Duplex-Diode High-Mu Triode	8CK	911 941	6.3	0.3	1.0	250	=			
6AQ8	Twin Triode	9AJ	6-2	6.3	0.435	2.5♠ 4.5⊕	300		3.0 ▲	1.2 ▲	1.5▲
6AR5	Power Amplifier Pentode	6CC	5-3	6.3	0.4	8.5	250	250 2.5			=
6AR6	Beam Power Amplifier	6BQ	T-X	6.3	1.2	21 🖷	630 🖲		11.0 🛦	7.0 ▲	0.8
6A R8	Double Plate Sheet-Beam Tube	9DP	6–3	6.3	0.3	2.0 ♠	300	300			=
6AR11	Twin Pentode	12DM	9–58	6.3	0.8	3.1 ♠	330 ◈	330 3 ⊕ 0.65 �	10	2.8 ₁ 3.0 ₂	0,026
6AS5	Beam Power Amplifier	7CV	5-3	6.3	0.8	5,5	150	117	12▲	9.0▲	0.6 ▲
6AS6	Dual-Control RF Pentode	7CM	5-1	6.3	0.175	1.7	180	140	4.0	3.0	0.02 💠
6AS7-G	Low-Mu Twin Triode	8BD	16-3	6.3	2.5	13 ♠	250				
6AS7-GA	Low-Mu Twin Triode	8BD	12-16	6.3	2.5	13 ♠	250	 			
6AS7-GYB	Low-Mu Twin Triode	8BD	12-16	6.3	2.5	13 ♠	250			=	
6AS8	Diode Sharp-Cutoff RF Pentode	9DS	6-2	6.3	0.45	2.5	300	300 2 0.5		e Section Section	n
6AS11	Dissimilar-Double- Triode Pentode	12DP	9–58	6.3	1.05	5.0�	330�	3308 👁	Pentod	e Section	on.
	Inode Pentode					1.5�	330 �	1.1	Triode (Pins 5	Section	1
						2.0 🏶	330�	-	Triode (Pins 3	Section	2
6AT6	Duplex-Diode High-Mu Triode	7BT	5-2	6.3	0.3	0.5	300	-	2.2 ▲		2.0 ▲
6AT8	Triode-Pentode Converter	9DW	6-2	6.3	0.45	2.3 🏟	275 🏶	275 🔷 🖁	Pentod	e Section)t.
6A T8-A¶	Converter					1.7 🏶	275 ◈	0.45	Triode	Section	ı
6AU4-GT	Half-Wave High- Vacuum Rectifier	4CG	9-44	6.3	1.8	6.0	Tube V	oltage	Drop:		
6AU4-GTA	Half-Wave High- Vaouum Rectifier	4CG	9-44	6.3	1.8	6.5	Tube \	350 ma Joltage 350 ma	Drop:		
6AU5-GT	Beam Power Amplifier	6CK	9-11 or 9-41	6.3	1.25	10	550\$	200	11.3▲	7.0 ▲	0.5▲
6AU6 6AU6-A¶	Sharp-Cutoff RF Pentode	7BK	5-2	6.3	0.3	3.5♠	300 ◈	330 ⊕\$ 0.75 ⊕	Pentod	e Conn	ection
						3.5 ♦	275 🏶	_		Connec	

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. •Maximum. § Supply voltage.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube
Class A Amplifier	250 100		3.0 1.0	1.0 0.8	_	58,000 61,000	1,200	70 70			6AQ6
Class A Amplifier	250 100	=	2.0 1.0	2.3 1.1		44,000 64,000	1,600 1,250	70 79			6AQ7-GT
Class A Amplifier •	250		2.3	10		9,700	5,900	57			6AQ8
Class A Amplifier	250 250	250 250	18 16.5	32† 34†	5.5† 5.7†	68,000 65,000	2,300 2,400		7,600 7,000	3.4 3.2	6AR5
Class A Amplifier	300	300	36.0	58	4.0	22,000	4,300		_		6AR6
Color TV Synchronous	250	250	R _k = 300	10	0.4		4,000				6A R8
Detector Class A Amplifier	Total v	oltage c	hange o	n either uired to	r deflect	ors (pins 1 a or with an the plate c	equal an	d oppos	site cha:	nge on to the	6AR11
Class A Amplifier	150	110	8.5	35†	2.0†		5,600		4,500	2.2	6AS6
Class A Amplifier	120 120	120 120	2.0 2.0	5.2 3.6	3.5 4.8	110,000	3,200 1.850	E _{c3} = (volts	-	6AS6
DC Amplifier •	135		R _k = 250	125		280	7,000	2.0	-	T =	6AS7-G
DC Amplifier •	135		R _k = 250	125		280	7,000	2.0	_		6AS7-GA
DC Amplifier •	135		R _k = 250	125		280	7,000	2.0			6AS7-GYB
Class A Amplifier	200	150	R _k =	9.5	3.0	300,000	6,200		_		6AS8
Detector	Max d	-c outpu	t curre	nt =5 n	ia; max	peak inve	rse volt	age = 3	30 voits	; max	
Class A Amplifier	200	125	R _k =	24	5.2	70,000	10,500	_	Γ-	T —	6AS11
Class A Amp	200	-	68 2.0	7.0	_	12,400	5,500	68	-	-	
Class A Amplifier	200	-	R _k = 220	9.2		9,400	4,400	41	-	-	
Class A Amplifier	250 100	=	3.0 1.0	1.0		58,000 54,000	1,200	70 70		=	6AT6
Class A Amplifier	125	125	1.0	9.0	2.2	300,000	5,500			_	6AT8
Class A Amplifier	125	-	1.0	12	-	6,000	6,500	40	-	-	6AT8-A¶
TV Damper	Max d	-c outp	ut curre	nt = 17 50 ma	5 ma; n	nax peak in	iverse v	oltage [=4,50	0 volts;	6AU4-GT
TV Damper	Max d	l-c outp max pea	ut curre	ent 🔷 = nt 🏶 = 1	=210 m .,300 ms	a; max po	eak inv	erse vo	ltage 🏶	=4,500	6AU4-GTA
Horizontal Amplifier	115 60 Max po watts;	175 175 175 psitive p max d-c	ulse pla	60 210 te volta le curre	6.8 25 ge 🖭 = nt = 110	5,500 v; m	5,600 ax scree	_ n dissip	ation =	2.5	6AU5-GT
Class A Amplifier	250 100	150	R _k =		4.3	1,000,000	5,200	_	<u> </u>	T =	6AU6-A¶
Class A Amplifier	250	_	R _k = 150 R _k = 330	12.2			3,900 4,800	36	=		

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca I	pacitano Picofara	e in
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volis	and Watts	Input	Out- put	Grid- plate
6A U7¶	Medium-Mu Twin Triode	9A	6-2	6.3 3.15	0.3 0.6	2.75♠	300	-	1.8	2.0	1.5
6A U8¶	Triode-Pentode	9DX	6-3	6.3	0.6	3.0	300	300\$	Pentod	e Section	on
	****					2.5	300	_	Triode	Section	ı
6AU8-A¶	Triode-Pentode	9DX	6–3	6.3	0.6	3.3 ◈	330 ◈	330	Pentod	e Sectio	n
						2.8 🏶	330 🏶	-	Triode	Section	1
6AV5-GA	Beam Power Amplifier	6CK	T-X	6.3	1.2	11	550\$	175 2.5	14 ▲	7.0 ▲	0,5▲
6AV5-GT	Beam Power Amplifier	6CK	9-11 or 9-41	6.3	1.2	11	550\$	175 2.5	14 ▲	7.0 ▲	0.7 ▲
6AV6	Duplex-Diode High- Mu Triode	7BT	5-2	6.3	0.3	0.5	300		2.2	1.2	2.0
6AV11	Triple Triode	12BY	9–56	6.3	0.6	2.75 ♦ 6.0 ♦	330 ◈	_	1.9▲	1.8₁ ▲ 0.7₂ ▲ 2.0₃ ▲	1.2▲
6AW7-GT	Duplex-Diode, High-Mu Triode	8CQ	9-16	6.3	0.3	-	300				_
6A W8¶	Triode-Pentode	9DX	6-3	6.3	0.6	3.25	300 300	3008		e Section	
6AW8-A¶	Triode-Pentode	9DX	6–3	6.3	0.6	3.75 ◈ 1.1 ◈	330 ♦	330 ♦ \$ 1.1 ♦		e Section	
6AX3	Half-Wave High- Vacuum Rectifier	12BL	9-59	6.3	1.2	5.3 🏶	Tube	Voltage ts at 25	Drop:	c	
6AX4-GT	Half-Wave High- Vacuum Rectifier	4CG	9-11 9-41	6.3	1.2	5.0 ◈	Tube V	oltage 250 ma	Drop:		
6AX4- GTA	Half-Wave High- Vacuum Rectifier	4CG	9-11	6.3	1.2	5.3 🏶	Tube V	oltage s at 250	Drop:		
6AX4- GTB	Half-Wave High- Vacuum Rectifier	4CG	9-11	6.3	1.2	5.3 🆠	Tube V	oltage s at 250	Drop:		· · · · · · · · · · · · · · · · · · ·
6AX5-GT	Full-Wave High- Vacuum Rectifier	6S	9-41	6.3	1.2		Tube V	oltage 125 ma	Drop:	•	
6AX6-G	Full-Wave High-Vacuum Rectifier	70	14–3	6.3	2.5	_	Tube V 21 v at	oltage 250 ma	Drop: 4 i d-c		
6A X 7¶	High-Mu Twin Triode	9A	6-2	$\{ \begin{array}{c} 6.3 \\ 3.15 \end{array} \}$	$\begin{bmatrix} 0.3 \\ 0.6 \end{bmatrix}$	1.0♠	300	_	1.8	1.9	1.7
6A X8	Triode-Pentode	9AE	6-2	6.3	0.45	2.8	300	300 \$ 0.5		e Section	
						2.7	300	_		Section	l
6AY3	Half-Wave High- Vacuum Rectifier	9HP	9-86	6.3	1.2	6.5�	Tube V 32 volt	oltage s at 350	Drop: ma d-o	-	

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate.
Maximum.
Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier • Vertical Amplifier	250 100 Max 1 =20 1		8.5 0 pulse p	10.5 11.8 late vol	tage 🗉	7,700 6,500 =1,200 vo	2,200 3,100 lts; max	17 20 d-c ca	thode c	urrent	6A U7¶
Class A Amplifier Class A	200 150	125	$\begin{array}{c} R_{k} = \\ 82 \\ R_{k} = \end{array}$	15 9.0	3.4	150,000 8,200	7,000 4,900	40	_		6A:U8¶
Amplifier Class A Amplifier	200	125	$\frac{150}{R_k = 82}$	17	3.4	100,000	8,000		-		6A U8-A¶
Class A Amplifier	40 150	125	0 R _k = 150	28 9.5	10_	8,100	5,300	43	=	=	
Horizontal Amplifier	250 60 Max 1	150 150 positive	22.5 0 pulse p	57 260 late vol	2.1 26 tage •	14,500 = 5,500 vol	5,900 ts;	=	=		6AV5-GA
	250	creen di			· · · · · · · · · · · · · · · · · · ·	nax d-c cat		rrent =	=110 ma		CAVE OF
Horizontal Amplifier	60 Max	150 positive	pulse	plate v	2.1 25 oltage ent = 110	= 5,500 v	5,500 ; max	screen d	lissipati	on =2.5	6AV5-GT
Class A Amplifier	250 100	=	2.0 1.0	$\frac{1.2}{0.5}$		62,500 80,000	1,600 1,250	100 100	ΙΞ		6AV6
Class A Amplifier •	250		8.5	10.5		7,700	2,200	17	-		6AV11
Class A Amplifier	100		0	1.4			1,200	80		-	6AW7-GT
Class A Amplifier Class A	200	150	R _k = 180 2.0	13 4.0	3.5	400,000 17,500	9,000 4,000	70	_		6A W8¶
Amplifier Class A	150	150	R _k =	15	3.5	200,000	9,500		_		6A W8-A¶
Amplifier Class A	65 200	150	2.0	46 4.0	15	 17,500	4,000	— 70		_	
Amplifier \ TV Damper	Max	d-c out	put cur	rent 🌒 :	= 165 m = 1,000	a; max pe			! tage � =	=5,000	6AX3
TV Damper	Max	d-c out	tput cu	rrent 🏵		ma; max p	eak inv	erse vo	ltage 🆠	=4,400	6AX4-GT
TV Damper	Max volts;	d-c out; max pe	put cur ak curr	rent 🌢 = ent 🗞 =	=165 m 1,000 m	a; max pe ia					6AX4-GTA
TV Damper	Max volts;	d-c out; max pe	put cur ak curr	rent 🏶 = ent 🕸 =	=165 m 1,000 n	a; max pe ia					6AX4-GTB
Full-Wave Rectifier	supply	voltage	e per pla	te = 35	0 volts;	ax peak in max peak c	urrent p	er plate	e = 375 r	na	6AX5-GT
Full-Wave Rectifier TV Damper	supply voltage per plate = 350 volts; max peak current per plate = 600 ma Max d-c output current per plate = 125 ma; max peak inverse voltage = 2000 volts; max peak current per plate = 600 ma										
Class A Amplifier •	100 250		1.0 2.0	$0.5 \\ 1.2$		80,000 62,500	1,250 1,600	100 100			6AX7¶
Class A Amplifier	250	110	R _k = 120	10	3.5	400,000	4,800	-	=		6AX8
Class A Amplifier	150	1	R _k = 56	18	175	5,000	8,500	40	-	5000	6AY3
TV Damper	wolts;	max pe	ak curr	ent 🆠	=175 n =1,100 i	na; max pe na	ak inve	rse vol	tage 🏶	= 5000	OAY3

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

↓ Maximum screen dissipation appears immediately below the screen voltage.

↓ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Caj P	acitanc icofarac	e in Is
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts		and Watts	Input	Out- put	Grid- plate
6AY3-A	Half-Wave High- Vacuum Rectifier	9HP	9-85	6.3	1.2	6.5 🏶	Tube V 32 volt	oltage at 350	Drop: ma d-o	3	
6AY3-B	Half-Wave High- Vacuum Rectifier	9HP	T-X	6.3	1.2	6.5 ◈	Tube V 32 volts	oltage s at 350	Drop: mad-o	:	
6AY11	Duplex-Diode Twin Triode	12DA	956	6.3	0.69	1.0◈	330 ◈	_		Section Sections	
6AZ5 ●	Twin Diode	8DF	3-1	6.3	0.15	=	Tube V 10 v at	oltage 15 ma	Drop: 4		
6AZ6 ⊕	Twin Diode	8EH	3-11	6.3	0.15		Tube V 3.5 v at	oltage 8 ma c		•	
6AZ8	Triode-Pentode	9ED	6-2	6.3	0.45	2.0	300	300		e Sectio	n
						2.6	300	0.5	Triode	Section	ı
6B4-G	Power Amplifier Triode	5S	16–3	6.3	1.0	15	325		Single	tube	
									2 tub	es, Push	-pull
6B5	Direct-Coupled Power Amplifier Triode	6AS	14-1	6.3	0.8	13.5	300	300	_		=
6B6-G	Duplex Diode High-Mu Triode	7V	12-8	6.3	0.3		250				
6B7	Duplex-Diode Remote- Cutoff Pentode	7D	12-6	6.3	0.3	2.25	300	125 0.3	3.5 ▲	9.5 ▲	.007
6B8 6B8-G 6B8-GT	Duplex-Diode Remote- Cutoff Pentode	8E	8-4 12-8 9-20	6.3	0.3	3.0 2.25 3.0	300	125 0.3	6.0 3.6 4.5	7.5 9.5 10.0	.005 4 .01 4
6B10¶ ■	Duplex-Diode Medium-Mu Twin Triode	12BF	9–56	6.3	0.6	2.5 ◈	330 ◈	_	1.7 ₁ ▲ 1.8 ₂ ▲ Diode	1.6₁ ▲ 0.6₂ ▲ Section:	
6BA3	Half-Wave High- Vacuum Rectifier	9HP	T-X	6.3	1.2	5.3 🏶	Tube V	oltage s at 250	Drop:		
6BA4	High-Mu Planar Triode (Planar)	6BA4	T-X	6.3	0.4	2.0 €	200				-
6BA5 ⑤	Sharp-Cutoff Pentode	8DY	3-1	6.3	0.15	0.7	150	140	3.4	3.6	0.065
6BA6	Remote-Cutoff RF Pentode	7BK	5-2	6.3	0.3	3.4 🏶	330	330 ◈\$	5.5	5.5	0.003
6BA7	Pentagrid Converter	8CT	6-3	6.3	0.3	2.0	300	100	Osc Icl	=0.35 0,000 o	ma hms
6BA8¶	Triode-Pentode	9DX	6-3	6.3	0.6	3.25	300	300\$	Pentod	le Section	on
						2.0	300	-	Triode	Section	ı
6BA8-A¶	Triode-Pentode	9DX	6-3	6.3	0.6	3.25	300	300\$	Pentod	le Section	on
						2.0	300	-	Triode	Section	1
6BA11¶	Triode-Twin Pentode	12ER	9-58	6.3	0.6	1.1	300 ◈	150 ♦ 0.75 ♦	Pento	le Secti	ons
						1.5�	300 ◈	_	Triode	Section	ı

Zero signal.

Per section.

Service	Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μπhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Damper	Max o	d-c outp	ut curr	ent 🔷 :	=175 m =1,100 r	a; max pea	k inver	se volta	age 🔷 =	5,000	6 A Y3-A
TV Damper		l-c outp				max peak i a	nverse v	roltage ·		ю	6AY3-B
Class A Amplifier • Detector •	250 Max e	d-c outp	2.0 ut curre	1,2 ent 🔷 =	-5.0 ma	52,700	1,900	100	-	-	6AY11
Half-Wave Rectifier	plate	=24 ma				=4 ma; ma plate =150				1	6AZ5 ⊕
Full-Wave Rectifier	Max o	d-c outp apply vo	ut curre	ent = 20 er plate	ma; ma; ma	ax peak inv lts; max pe	erse vo ak curre	ltage = ent per p	450 vol $plate = 6$	ts; max 0 ma	6AZ6 ●
Class A Amplifier	200	150	R _k = 180	9.5	3.0	300,000	6,000				6AZ8
Class A Amplifier	200	_	6.0	13		5,750	3,300	19			
Class A Amplifier Class AB ₁	250 325	_	45 68	60† 80†		800	5,250	4.2	2,500 3,000	3.2 15.0	6B4-G
Amplifier Class A Amplifier	300	300	0	45	8.0 Plate	24,000	2,400		7,000	4.0	6B5
Class A Amplifier	250	-	2.0	0.9		91,000	1,100	100	T -	Γ=	6B6-G
Class A Amplifier	250	125	3.0	9.0	2.3	600,000	1,125		-		6B7
Class A Amplifier	250	125	3.0	10	2.3	600,000	1,325	=			6B8-G 6B8-GT
Class A Amplifier	250	-	9.5	7.0		9,750	1.850	18	=	-	6B10¶
Horizontal Phase Det.	1	_				a; voltage	-				
TV Damper	volts;	d-c out; max pe	ak curr	ent 🐵 :	=165 m =1,000 s	a; max pe ma			age 🐠 :	=5,000	6BA3
Class A Amplifier	150		R _k =	10		8,700	8,000	70			6BA4
Class A Amplifier	100	100	R _k = 270	5.5	2.0	175,000	2,150				6BA5 ●
Class A Amplifier	250 100	100	R _k = 68 R _k =	10.8	4.4	1,000,000 250,000	4,400 4,300	_	_		6BA6
Converter	250	100	68	3.8	10.0	1,000,000	950 #		 		6BA7
Class A	200	150	R _k =	13	3.5	400,000	9.000				6BA8¶
Amplifier Class A	200	_	180 8.0		_	6,700	2,700	18	-	_	
Amplifier Class A Amplifier	200	150	R _k = 180	13	3.5	400,000	9,000				6BA8-A¶
Class A Amplifier	65 200	150	0 8.0	42 8.0	12.5	6,700	2,700	18	=	=	
Sync Sepa- rator and AGC Keyer	100	67.5	I _{c1} = 0.1 ma	2.5	4.4	(Both sect	ions ope	rating)	$E_{c3}=0$	volts	6BA11¶
	100 250	67.5 (F	late and	d grid r 5.0	umber	of opposi	1,700 te sectio 1,800	n grou	E _{c3} =	0 volts	
Class A Amplifier	250		11	3.0			1,000	1 10			<u> </u>

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

#Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	X-Ra-	Base Con-	Out-	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen	l t	pacitanc icofara	e in ds
Туре	Construction	diation Rating	nec-	Dwg.	Volts	Amps		Volts	Volts and Watts	Input	Out- put	Grid- Plate
6BC4	UHF Triode		9DR	6-1	6.3	0.225	2.5	250		2.9 ▲	0.26	1.6
<i>6ВС</i> δ	Sharp-Cutoff RF Pentode		7BD	5-2	6.3	0.3	2.3 ♦	330 ◈	330 ♦ \$ 0.55 ♦	Pentod	e Conn	ection
							2.9 🏶	330 ◈	_	Triode (G ₂ &	Connec P tied)	tion
6BC7	Triple Diode		9AX	6-2	6.3	0.45		Avg 35 n	Diode (urrent 5 v d-c	(Diode	1 or 3
6BC8	High-Frequency Twin Triode		9AJ	6-2	6.3	0.4	2.2 🕸	250 ◈		2.6 ₁ 5.52	$\begin{vmatrix} 1.3_1 \\ 2.42 \end{vmatrix}$	1.2
6BD4	Sharp-Cutoff Beam Triode	(A)	8FU	T-X	6.3	0.6	20	20,000	=	3.8 ▲	0.04	1.0
6BD4-A	Sharp-Cutoff Beam Triode	(A)	8FU	T-X	6.3	0.6	25	27,000	_	3.8▲	0.04	1.0 ▲
6BD5-GT	Beam Power Amplifier		6CK	T-X	6.3	0.9	10	325	325 3.0			-
6BD6	Remote-Cutoff RF Pentode		7BK	5-2	6.3	0.3	3.0	300	125 0.65	4,3	5.0	0.005
6BD11	Dissimilar Double		12DP	9–58	6.3	1.05	4.0�	330 ◈		Pentod	e Sectio	n T
	Triode Pentode						1.5 🏶	330 ◈			Section 5, 6, 8	
							2.0 ◈	330 ◈	_	Triode	Section 3, 4, 7	. 2
6BE3■	Half-Wave High-Vacuum Rectifier		12GA	9-60	6.3	1.2	6.5�	Tube V 25 volt	oltage s at 350	Drop.		
6BE3-A	Half-Wave High-Vacuun Rectifier	1	12GA	9–60	6.3	1,2	6.5♦	Tube V 22.5 vc	oltage olts at 3	Drop: 50 ma c	1-c	
6BE6	Pentagrid Converter		7CH	5-2	6.3	0.3	1.1 ◈	330 ◈	110 (Osc Ici	= 0.5 m 0.000 ol	a ams
6BE8	Triode-Pentode	1	9EG	6-2	6.3	0.45	2.8	300	300 8 0.5	Pentod	e Section	on .
							2.5	300	=	Triode	Section	l
6BE8-A¶	Triode-Pentode		9EG	6-2	6.3	0.45	2.8	300	300 2 0.5	Pentod	e Sectio	on
							2.5	300	-	Triode	Section	1
6BF6	Beam Power Amplifier		7BZ	5-3	6.3	1.2	5,5	250	117 1.25	Pentod	e Conn	ection
	,						5.0	250	-	Triode (G ₂ &	Connec P tied)	tion
6BF6	Duplex-Diode Medium-Mu Triode		7BT	5-2	6.3	0.3	2.5	300		1.8	0.7	1.9
6BF7 ●	Medium-Mu Twin Triode	1	8DG	3-2	6.3	0.3	1.0♠	110	_	2.0	1.6 ₁ 2.0 ₂	1.5
6BF7-A ⊚	Medium-Mu Twin Triode	1	8DG	3-2	6.3	0.3	1.1 •	120 🗑		2.0	1.6 ₁ 2.0 ₂	1.5
6BF8	Sextuple Diode		9NX	6–2	6.3	0.45	=		Tube V	oltage	Drop:	d-c
6BF11	Dissimilar Double	T	12EZ	9-59	6 .3	1.2	6.5 🏶	165 ◈			1 (Pin	
	Pentode						1.7 ◈	330 ◈	330 2 🌢	Section 3, 5.	2 (Pin: 6, 7)	s 2,

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A—X-Radiation Rated, and A—No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

[●]Subminiature type. ▲Without external shield. ♦Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watte	Tube Type
Class A Amplifier	150	Ī —	R _k = 100	14.5	i -	4,800	10,000	48		- 1	6BC4
	250	150	R _k = 180	7.5	2.1	800,000	5,700				6BC6
Class A Amplifier	125	125	R _k =	8.0	2.4	500,000	6.100		-		
	100	100	R _k =	4.7	1.4	600,000	4,900		-	-	
Class A.	250	-	R _k = 820	6.0	-	9,000	4,400	40	-	_	
Amplifier	180	-	R _k =	8.0	_	6,000	6,000	42			
Half-Wave Rectifier	Max	d-c out		rent pe	r plate =	=12 ma	<u>'</u>		1		6BC 7
Class A	150	_	R _k =	10	T —	5,300	6,200	35		$\Gamma = -$	6BC8
Amplifier ◆ HV Shunt Regulator	Max u	nregulat	ed d-c	supply	voltage	= 40,000	volts; n	ıax d-c	plate c	urrent =	6BD4
HV Shunt	Max u	nregulat	ed d-c	supply	voltage	= 55,000	volts; n	ax d-c	plate c	urrent =	6BD4-A
Regulator Horizontal	1.5 ma Max	positive	pulse	plate v	oltage =	=4,000 vol	ts; max	screen	dissipa	tion =	6BD5-GT
Amplifier Class A	3.0 w	atts; ma	3.0	0	current:	=100 ma 800,000	2 000		1		6BD6
Amplifier	100	100	1.0	13	5	150,000	2,000 2,550				
Class A Amplifier	135	135	R _k =	17	4.0	45,000	10,400	_	_		6BD11
Class A Amplifier	200	_	2.0	7.0	-	12,400	5,500	6 8	_		
Class A Amplifier	200	_	R _k = 220	9.2	-	9,400	4,400	41	-	_	
TV Damper	Max	d-c out	out cur	rent 🆫	=200 m	a; max pe	ak inve	se volt	age 🚸 :	5,000	6BE3
	voits;	max pe	ak curr	ent 🐡 :	= 1,200 r	na				1	
TV Damper		i-c outp max pe				max peak i ia.	inverse v	oltage	= 5,00	00	6BE3-A
Converter	250 100	100	1.5	2.9 2.6	6.8	1,000,000	475 # 455 #				6BE 6
Class A	250	110	$R_k =$	10	3.5	400,000	5,200				6BE8
Amplifier Class A	150		68 R _k =	18	_	5,000	8,500	40	_	_	
Amplifier Class A	250	110		10	3.5	400,000	5,200				6BE8-A
Amplifier Class A	150	-	68 R _k =	18	_	5,000	8,500	40	_	_	
Amplifier Class A	110	110	7.5	36†	4†	12,000	7,500		2,500	1.9	6BF5
Amplifier (005		00	10		0.700	0.700				
Vertical Amplifier	225 Max 1 40 ma	positive		l10 late vol	tage 🖲 :	=900 volts	2,700 ; max d	c cath	ode curi	rent =	
Class A Amplifier	250		9.0	9.5	-	8,500	1,900	16	10,000	0.3	6BF6
Class A Amplifier •	100		R _k =	8.0		7.000	4,800	35			6BF7 ●
Class A Amplifier •	100		$\frac{R_k}{100}$	8.0		7,300	4,800	35			6BF7-A ●
Detector •	Max	l-c outp	ut curre	nt 🔷 =:	2.2 ma;	max peak i	nverse v	oltage		volts;	6BF8
Class A	145	eak cur		=11 ma 36†	3.0+	30,000	8,600		3,000	2.4	6BF11
Amplifier Class A	150	100	$R_k =$	1.3	2.0	150,000	1,000	$E_{c3} = 0$, ,		ODETE
Amplifier			560		l <u>.</u>				!	· · · · · · · · · · · · · · · · · · ·	

Tube	Classification	X-Ra-	Base Con-	Out-	Fila-	Fila-	Max. Plate	Max. Plate	Max. Screen	Car P	acitano icofara	e in Is
Туре	by Construction	diation Rating	nec-	line Dwg.	ment Voits	ment Amps		Velts	Volts and Watts	Input	Out- put	Grid- Plate
6BG6-G 6BG6-GA	Beam Power Amplifier		5ВТ	16-5 12-21	6.3	0.9	20	700\$	350 3.2	12▲	6.5 ▲	0.34 ▲
6BG7 ⊕	Medium-Mu Twin Triode		8DG	3-5	6.3	0.3	1.0 💠	110	=	2.0	$\begin{array}{c} 1.6_1 \\ 2.0_2 \end{array}$	1.5
6BH3	Half-Wave High-Vacuum Rectifier		9HP	9-86	6.3	1.6	6.5�	Tube V 33 volt	oltage s at 360	Drop:) ma d-c		
6BH3-A	Half-Wave High-Vacuum Rectifier		9 H P	T-X	6.3	1.6	6.5 🏶	Tube V 33 volt	oltage s at 360	Drop: ma d-c		
6BH6	Sharp-Cutoff RF Pentode		7CM	5-2	6.3	0.15	3.0	300	300 \$ 0.5	5.4	4.4	0.0035
6BH8¶	Triode-Pentode		9DX	6-3	6.3	0.6	3.0	300	300 \$ 0.6	i	e Sectio	
							2.5	300			Section	
6BH11	Twin-Triode Pentode		12FP	9-58	6.3	0.8	2.5 ③	350 ◈	330 \$ ③ 0.55 ③	1	e Section	
	1		12BL	9-59	6.3	1.2	_ +		7-14			
6BJ3 Ⅲ	Half-Wave High-Vacuum Rectifier				0.3		4.0 🏶	Į.		Drop: 0 ma d-	c	
6BJ6	Remote-Cutoff RF Pentode		7CM	5–2	6.3	0.15	3.0	l	300 \$ 0.6	4.5	5.5	0.003
6BJ6-A	Remote-Cutoff RF Pentode		7CM	5–2	6.3	0.15	3.0	300	300 \$ 0.6	4.5	5.5	0.003
6BJ?	Triple Diode		9AX	6-2	6.3	0.45	_		oltage 10 ma	Drop: ♠ d-c		
6BJ8¶	Duplex-Diode Triode		9ER	6–3	6.3	0.6	4.0 🏶	330 ◈		2.8 🛦	0.31	2.6 ▲
ВВК4	Character Control		8GC	12-21	6.3	0.2	25	25,000		Diode :	Section	0.03
● ●	Sharp-Cutoff Beam Triode	(4)	800	or 12-36	0,0	0.2	20	23,000		2.0	1.0	0.00
ввк4-А	Sharp-Cutoff Beam Triode	(A)	8GC	12-36	6.3	0.2	30 ◈	27,000	-	2.6▲	1.0▲	0.03
6BK4-B	Sharp-Cutoff Beam Triode	<u> </u>	8GC	12-36	6.3	0.2	40 🏶	27,000		2.6 ▲	1.0 ▲	0.03
6BK4-C	Sharp-Cutoff Beam Triode	1.5	8GC	12-36	6.3	0.2	40 ◈	27.000		2.6 ▲	1.0	0.03
6BK5	Beam Power Amplifier		9BQ	6–3	6.3	1.2	9.0	250	250 2.5	13 ▲	5.0 ▲	0.6 ▲
6BK6	Duplex-Diode High-Mu Triode		7BT	5–3	6.3	0.3	=	300		=		=
6BK?	High-Frequency Twin Triode		9AJ	6-2	6.3	0.45	2.7 •	300	_	3.0 ▲	1.1 ₁ A	1.9 ▲
6BK7-A 6BK7-B	High-Frequency Twin Triode	/	9AJ	6-2	6.3	0.45	2.7 ♠	300		3.0 ▲	1.0 ₁ ▲ 0.9 ₂ ▲	1.8 🛦
6BK11¶	Three Section Triode		12BY	9-56	6.3	0.6	0.4 🏶	330 ◈	i	9, 10 Section	is 2 and	3 (Pir
6BL4	Half-Wave High-Vacuun	n	8GB	12-26	6.3	3.0	8.0		Voltage t 400 m	Drop:	7 and	2, 3, 1
6BL7-G	Rectifier Medium-Mu Twin Triode	-	8BD	9-41	6.3	1.5	10 ♠ 12 ⊕	500		4.2 ₁ ▲ 4.6 ₂ ▲	0.9	6.0 ▲

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions-

Compactron.

Zero signal.

Per section.

Plate-to-plate.
 Maximum.
 Supply voltage.

- Subminiature type.
 ▲Without external shield.
 Design maximum rating.
- Total for all similar sections.Absolute maximum rating.Conversion transconductance.

A -X-Radiation Rated, and A - No X-Radiation Rating.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type			
Horizontal Amplifier	250 60 Max p 3.2 wat	250 250 ositive p tts; max	15 0 oulse pl d-c cat	75 180 ate vol	4.0 18 tage • =	25,000 =6600 volts 110 ma	6,000 max	screen		ion =	6BG6-G 6BG6-GA			
Class A Amplifier ♠	100		R _k = 100	8.0		7,000	4,800	35			6BG7 ⊚			
TV Damper	Max d- max pe	-c outpu eak curr	t currer ent 🏶 =	nt	80 ma; i a	nax peak is	iverse v	oltage () volts;	6BH3			
TV Damper	Max d- volts;	c outpu max pea	t curren k curren	nt 🏶 = 18 nt 🕸 = 1	80 ma; r ,100 ma	nax peak in	verse v	oltage 🌢	⇒ = 5,500)	6BH3-A			
Class A Amplifier	100 250	100 150	1,0 1.0	3.6 7.4	1.4	700,000 1,400,000	3,400 4,600	_			6 <i>BH6</i>			
Class A Amplifier	200	125	R _k = 82	15	3.4	150,000	7,000				6BH8¶			
Class A Amplifier	150	105	5.0	9.5		5,150	3,300	17			entri i em			
Class A Amplifier Class A	125 120	125	1.0	12 13.5	4.0	200,000 5,400	7,500 8,500	46	_	_	6BH11			
Amplifier TV Damper	Max d 3,300;	-c outp max pea	ut curr ik curre	ent 🌢 = nt 🕏 = 8	140 ma 340 ma	; max pea	k inver	se volt	age ◈ =		6BJ3			
Class A Amplifier	250 100	100	1.0 1.0	9.2 9.0	3.3	1,300,000 250,000	3,600		Π		6BJ6			
Class A Amplifier	250 100	100	1.0	9.2	3.3	1,300,000 250,000	3,650 3,600 3,650	=		=	6BJ6-A			
DC Restorer Service	Max d		t curre	nt per p	plate = 1	.0 ma; max		nverse	voltage	= 330	6BJ7			
Class A Amplifier Vertical Amplifier Horizontal Phase Det.	=22 m	ıa "	-			7,150 4,700 1,200 volts ; voltage dr	; max d			. 1	6BJ8¶			
HV Shunt Regulator		lated d- cation fa			ge = 36.	000 volts; i	nax d-c	plate ci	urrent =	1.5 ma;	6BK4			
HV Shunt Regulator	Unregu		-c supp	ly volta	ige = 3	6,000 volt:	s; max	d-c pla	te curre	nt= *	6BK4-A			
HV Shunt Regulator	Unregu 1.6 ma	ılated d	-c supp	ly volta	ige = 3	6,000 volt:	s; max	d-c pla	te curre	nt = 🔹	6BK4-B			
HV Shunt Regulator	Unregu 1.5 ma		c suppl	ly volta	ige = 3	6,000 volts	; max	d-c plat	te curre	nt = 🏶	6BK4-C ●			
Class A Amplifier	250	250	5.0	35†	3.5†	100,000	8,500	_	6,500	3.5	6BK5			
Class A Amplifier	250 100	=	2.0 1.0	0.5	=	62,500 80,000	1,600 1,250	100 100			6BK6			
Class A	150	-	Rk = 56	18	-	4,700	8,500	1	-		6BK7			
Amplifier •	100		R _k = 120	9.0		6,100	6,100	37			0.0000			
Class A Amplifier • Class A	250	l	$\frac{R_k = 56}{2.5}$	18		4,600	9,300	70	 		6BK7-A 6BK7-B¶ 6BK11¶			
Amplifier Class A Amplifier	250	_	2.0	1.2		62,500	1,600	1	-	-	0~111 j			
	Max d	250 — 2.0 1.2 — 62,500 1,600 100 — — Max d-c output current = 200 ma; max peak inverse voltage • = 4500 vol nax peak current = 1200												
TV Damper	max p	eak curi	ent = 12	200										

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car	acitanc icofara	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6BL7-GTA	Medium-mu Twin Triode	8BD	9-41	6.3	1.5	10 ♦ 12 ⊕	500		4.2 ₁ ▲ 4.6 ₂ ▲	0,9 🛦	6.0▲
SBL8	Triode-Pentode	9AE	6-2	6.3	0.45	1.7	250	200 0.75	1	e Section	
		1				1.5	250	-	Triode	Section	1
BM8	Triode-Pentode	9EX	6-4	6.3	0.78	5.0	600 300	300		e Section	
BN4	High-Frequency	7EG	5-2	6.3	0.2	2.2 🍑	275 🏶		3.2	1.4	1.2
BN4-A	Triode High-Frequency Triode	7EG	5-2	6.3	0.2	2.2	275		3.2	1.4	1.2
BBN6	Gated-Beam Discriminator	7DF	5–3	6.3	0.3		330 ◈	110 🏶	Ec1 = 1	.25 volt	s R M S
6BN7	Double Triode	9BT	6-3	6.3	0.75	7.5	400		Section		
						1,5	400		Section	6, 7, 9 2 1, 2, 3	•
BN8¶	Duplex-Diode High-mu Triode	9ER	6-3	6.3	0.6	1.7 ◈	330 ◈			0.25 ▲ Section	
6BN11	Twin Pentode	12GF	9-58	6.3	0.8	3.1 ♦	330 ◈	330\$ ◈	12	2.8	0.041
SBQ5	Beam Power Amplifier	9CV	6-4	6.3	0.76	12	300	300		_	_
BO6-G BO6-GTA	Beam Power Amplifier	6A M	12-8 9-49, 9-50	6.3	1.2	11	600\$	175 2.5			
6BQ6-GA 6BQ6-GTB	Beam Power Amplifier	6AM	T-X 9-49, 9-50	6.3	1.2	11	600\$	200 2.5	15 ▲	7.0 ▲	0.6 ▲
6BQ6-GT	Beam Power Amplifier	6AM	9-49. 9-50	6.3	1.2	11	550\$	175 2.5	15▲	7.5 ▲	0.0
6BQ7	High-Frequency Twin	9AJ	6-2	6.3	0.4	2.0 ♠	250		2.851	1.351	1.15
BQ7-A	High-Frequency Twin Triode	9AJ	6-2	6.3	0.4	2.0 ♠	250		2.61	1.21	1.2
6BR3	Half-Wave High- Vacuum Rectifier	9CB	T-X	6.3	1.2	6.5 ◈		oltage s at 250	Drop: mad-c	:	
BR8	Triode-Pentode	9FA	6-2	6.3	0.45	2.8	300 300	300 2 0.5	Pentod Triode	e Section	
BR8-A¶	Triode-Pentode	9FA	6-2	6.3	0.45	3.0 ♦	330 ◈	330 ♦ 8 0.55 ♦	Pentod		
6BS3	Half-Wave High-	9HP	9-86	6.3	1.2	2.5 ♦	330 ◈	/oltage		Section	
	Vacuum Rectifier		- 34			1 *	12 volt	s at 140	ma d-c	:	

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m . μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Vertical Amplifier ♠	250 250 150 Max no		9.0 17 0	40 4.0 65		2,150 — 2,000; max	7,000 —	15 			6BL7-GTA
Class A	170	170	2.0	10	2.8	400.000	1 6.200	-		-	6BL8
Amplifier Class A Amplifier	100		2.0	14		4,000	5,000	20	-	_	
Class A Amplifier Class A Amplifier	200 100 100	200 100	16 6.0 0	35 26 3.5	7.0 5.0	20,000 15,000	6,400 6,800 2,500	70	5,600 3,900	3.5 1.05	6BM8
Class A Amplifier	150		R _k = 220	9.0	_	6,300	6,800	43			6BN4
Class A Amplifier	150		R _k = 220	9.0		5,400	7,700	43			6BN4-A
FM Limiter- Discriminator	285	100	R _k = 200 to 400	0.49	9.8		_	_	330000	_	6BN6
Vertical Amplifier Class A Amplifier	250 Max p 120	ositive	15.0 pulse pl	24 ate volt	age = 1,	2,200 500 volts 14,000	2,000	12			6BN7
Class A Amplifier Horizontal	250 100 Max d	-c outpu	3.0 1.0	1.6 1.5	9.0 ma	28,000 21,000 ; voltage d	2,500 3,500 rop: •2	70 75 3.6 volts	at 9.0 :	ma d-c	6BN8¶
Phase Det. Class A	125	125	R _k =	11	3.8	200,000	13,000	(g3 cc	nnected		6BN11 ■
Amplifier • Class A	250	250	$\frac{56}{R_k} =$	48†	5.5t	38.000	$\frac{11,300}{11,300}$	at soc	ket) 5.200	6.0	6B05
Amplifier Horizontal	250	150	$\frac{135}{22.5}$	55	2.1	20,000	5,500		<u> </u>	<u> </u>	6BO6-G
Amplifier	60 Max p	150 ositive	0 pulse p	225 late vol	25 ltage	=6000 vol		screen	dissipa	tion =	6BÕ6-ĞTA
Horizontal Amplifier	250 60 Max powatts;	150 150 sitive p max d-	ulse pla	57 260 te volta le curre	2.1 26 age 🖲 = nt = 110	14,500 6,000 volts	5,900 ; max so	reen di	ssipation	n = 2.5	6BQ6-GA 6BQ6-GTB
Horizontal Amplifier	250 60 Max pe	150 150 ositive p	22.5 0 oulse pla	55 225 ite volt	2.1 25	20,000 5500 volts	5,550 — ; max so	reen di	ssipation	n = 2.5	6BQ6-GT
Class A Amplifier •	150	-	R _k == 220	9	1 -	5,800	6,000	35	_		6BQ7
Class A Amplifier 🌩	150		R _k = 220	9.0		5,900	6,400	38			6BQ7-A
TV Damper	Max d	-c outp	ut curre	ent 🏶 == 1,200 n	200 ma	; max peal	k invers	e volta	ge 🏶 == 5	5,500;	6BR3
Class A Amplifier	250	110	R _k = 68	10	3.5	400,000	5,200	 	-		6BR8
Class A Amplifier	150		$R_k = 56$	18		5,000	8,500	40			
Class A Amplifier Class A Amplifier	125 125	110	1.0	9.5 13.5	3.5	5,300	5,000 7,500	40	_	_	6BR8-A¶
TV Damper	Max d max pe	c outp	ut curr	ent 🏶 = 1,100 n	200 ma	; max pea	k invers	se volta	ge ♦ = 5	,000;	6BS3

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	X-Ra-	Base Con-	Out-	Fila-	Fila- ment	Max. Plate	Max. Plate	Max. Screen	Caj	pacitano icofara	e in is
Туре	by Construction	diation Rating	nec- tions	Dwg.	ment Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
6BS3-A	Half-Wave High-Vacuum Rectifier		9HP	T-X	6.3	1.2	6.0 🌢	Tube V	Voltage s at 140	Drop:) ma d-	c	
6BS8	Medium-mu Twin Triode		9AJ	6-2	6.3	0.4	2.0 ♠	150	_	2.61	1.21	1.15
6BT6	Duplex-Diode High-Mu Triode		7BT	5-3	6.3	0.3	-	300	_	-	_	_
6BT8	Duplex-Diode Pentode		9FE	6-2	6.3	0.45	2.0	300	300 \$ 0.5	7.0 A	2.3 ▲ Sections	0.04
6BU4	Sharp-Cutoff Beam Triode	(A)	8GC	T-X	6.3	0.45	25	25,000		Diode	-	<u> </u>
6BU5	Sharp-Cutoff Beam Pentode	<u> </u>	6BU5	T-X	6.3	0.15	20	20,000	100 0.1	3.0 ▲	0.9 ▲	0.024
6BU6	Duplex-Diode Medium-Mu Triode		7BT	5-3	6.3	0.3		300		_	_	=
6BU8	Twin Pentode		9FG	6-3	6.3	0.3	1.1 🆠	300 �	150 ♦ 0.75 ♦			
6BU8-A*	Twin Pentode		9FG	6-3	6.3	0.3	1.1 🏟	300 ◈	150 ♦ 0.75 ♦			
6BV8¶	Duplex-Diode Triode		9FJ	6-2	6.3	0.6	2.7 🏶	330 ◈		3.6 Diode	0.4 Section	2.0
6BV11	Twin Pentode		12HB	9-59	6.3	0.9	1.7	300 �	300 \$ ♦		 	-
6BW3	Half-Wave High- Vacuum		12FX	9-60	6.3	1.6	6.5 🏟	Tube V 32 volts	oltage I	Drop: ma d-c		1,
6BW4	Rectifier Full-Wave High- Vacuum Rectifier		9DJ	6-3	6.3	0.9		Tube V 40 v at	oltage 100 ma	Drop: 4	•	•••
6BW6	Beam Power Amplifier		9AM	6-3	6.3	0.45	12	315	285 2.0	_	<u> </u>	_
6BW8	Duplex-Diode Pentode		9HK	6-2	6.3	0.45	3.0 ♦	330 ◈	330 ♦ 8 0.55 ♦		2.6 ▲	0.02
6BW11	Dissimilar Double Pentode		12HD	9~58	6.3	0.8	4.0 ◈ 3.1 ◈	330 ⊗ 330 ⊗	330:♦ 0.8♦ 330:♦ 0.65♦	Section	Sections 1 (Pins 1, 11) 2 (Pins 6)	7.
6BX7-GT	Medium-Mu Twin Triode		8BD	9-41	6.3	1.5	10 ♠ 12 ⊕	500		4.4₁ ▲ 4.8₂ ▲	1.1₁ ▲ 1.2• ▲	4.2₁ ▲ 4.0₃ ▲
6BX8	High-Frequency Twin Triode		9AJ	6-2	6.3	0.4	2.0	150 🏶		2.42	1.251	1.4
6BY4	High-mu Triode (Planar)		6BY4	T-X	6.3	0.2	1.1 🏶	300 ◈				_
6BY5-G	Full-Wave High- Vacuum Rectifier		6CN	14-3	6.3	1.6	_	Tube V 32 volt	oltage s at 175	Drop: 4	c	<u> </u>
6BY5-GA	Full-Wave High- Vacuum Rectifier		6CN	12-14	6.3	1.6		Tube \ 32 volt	Voltage s at 175	Drop:	•	

\$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

[A]—X-Radiation Rated, and (A)—No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

† Plate-to-plate. Maximum. Supply voltage. Subminiature type.
 ▲Without external shield.
 Design maximum rating.

⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4

Service	Plate Volts	Screen Volts	eg rid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Damper	Max o	i-c out	put cur ent 🏶 =	rent 🏶 = 1,100 m	= 200 m	a; max pe	ak inve	erse vo	ltage 🏶	=5,000;	6BS3-A
Class A Amplifier •	150	_	R _k = 220	10		5,000	7,200	36			6BS8
Class A Amplifier	250 100	=	3.0 1.0	1.0 0.8	=	58,000 54,000	1,200 1,300	70 70	=	=	6BT6
Class A Amplifier Horizontal Phase Det.	200 Max d	1	R _k = 180 t currer	9.5 at \Phi = 1	2.8 0 ma; v	300,000 roltage dro	6,200 • • : 10	volts at	8,0 ma	d-c	6BT8
HV Shunt Regulator	Max u 10 ma.	nregulat	ed d-c s	supply v	oltage	= 55,000 v	olts; ma	x d-c ca	athode c	urrent=	6BU4
HV Shunt	20000	70 creen di	2.4	1.0	0.4			- 25	Ec3 =	· 0 volts	6BU5
Regulator Class A Amplifier	250	- di	9.0	9.5	watt; c	l-c cathode 8,500	1,900	16	10,000	0.30	6BU6
Sync Sepa-	100	67.5	I _{e1} = 0.1 ma	2.2	5.0				Ecs =0	volts	6BU8
rator and AGC Keyer	100 (Chara	67.5 cteristic r 3 of o	0 s given	are fo	r each	section sep	1,500 parately	with	E _{cs} = 0	volts nd grid	
Sync Sepa-	100		I _{c1} =	2.2	3.3		<u> </u>	_	Ec. = 0	voits	6BU8-A
rator and AGC Keyer	100 (Chara	67.5	s given	are fo	r each	section sep	1,500 arately		E _{cs} = 0		
	200	r 3 of o	R _k =	section 11	grounde	5,900	5,600	33	ī —		6BV8¶
Class A Amplifier Synchronous	75	-c outpu	330	14	 ma; v	oltage drop	_		23 ma	d-c	
Detector Avg. Char.	150	100	R _k =	3.6	2.0	200,000	3,700		=0 volts		6BV11
TV Damper	Max d	-c outpi max pea	180 ut curre k curre	nt 🍪 =	= 175 n = 1,100 r	na; max pe na.	ak inve	rse vol	tage 🏶 =	= 5,000	6BW3 ■
Full-Wave Rectifier	Max d	-c outpopply vol	ut curre	ent = 100 r plate =	0 ma; r =325 vol	nax peak i its; max pe	nverse v ak curre	voltage nt per	=1,275 plate =3	volts; 350 ma	6BW4
Class A Amplifier	315 250 180	225 250 180	13.0 12.5 8.5	34† 45† 29†	2.2† 4.5† 3†	77,000 52,000 58,000	3,750 4,100 3,700		8,500 5,000 5,500	5.5 4.5 2.0	6BW6
Class A	250	110	R _k = 68	10	3.5	250,000	5,200		-		6BW8
Amplifier Horizontal Phase Det.	Max	d-c outr	ut curr	ent 🏶 💠	ˈ≖5.0 m l	a; voltage	dгор 🍁	5 volt	s at 20	ma d-c	
Avg. Char.	125	125	R _k = 56	22	4.8	120,000	8,500		-		6BW11
Avg. Char.	125	125	R _k = 56	11	3.8	200,000	13,000		_		
Vertical Amplifier ◆	250 100	_	R _k = 390	42 80		1,300	7,600	· 10	_	_	6BX7-GT
	Maxp	ositive p			age 🖲 🖚	2000; max	d-c cat	hode cı	irrent =	60 ma	
Class A Amplifier 🍁	65		1.0	9.0		3,750	6,700	25			6BX8
Class A Amplifier	200	-	R _k = 200	5.0		16,700	6,000	100	_		6BY4
Pull-Wave Rectifier TV Damper	Max d	voitage	e per pi ut curre	ate = 37 $ent = 17$	5 volts; 5 ma; n	x peak inverse max peak in max	curren	трегр	late $= 0$	so ma;	6BY5-G
Full-Wave { Rectifier TV Damper	Max d max pe Max d	-c outp	ut curre ent per it curre	nt = 175 plate = 5 at = 175	ma; m 525 ma ma; m	ax peak in				- 1	6BY5-GA

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

1, 1, 1, etc. indicate tube sections.

• Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
GBY6	Dual-Control Heptode	7CH	5-2	6.3	0.3	2.3 🕸	330 🏶	330 ♦2 1.1 ♦		_	<u> </u>
SBY8♥	Diode-Pentode	9FN	6-3	6.3	0.6	3.0	300	300 8 0.65	5.5	5.0	0.003
									Diode :		
6BY11	Dissimilar Double Pentode	12EZ	9-59	6.3	1.2	10 ◈ 1.7 ◈	200 ◈ 300 ◈	1.8 ◈ 300 : ◈	Section 10, 11) Section 3, 5, 6,	1 (Pins 2 (Pins 7)	8, 9, 2,
6BZ3	Half-Wave, High- Vacuum Rectifier	12FX	9-60	6.3	1.2	6.5 ◈	Tube V	oltage olts at 3	Drop:		brus
6BZ6	Semi-Remote-Cutoff RF Pentode	7CM	5-2	6.3	0.3	2.3 🏶	330 ◈	330 ♦\$ 0.55 ♦	7.0	3.0	0.015 •
6BZ7	High-Frequency Twin Triode	9AJ	6-2	6.3	0.4	2.0 ♠	250		2.6 _i	1.21	1.2
6 BZ8	High-Frequency Twin Triode	9AJ	6-2	6.3	0.4	2.2♠	250				=
6C4	Medium-Mu Triode	6BG	5–2	6.3	0.15	3.5 5.0	300 300		1.8▲	1.3 ▲	1.6 ▲
6C5 6C5-GT	Medium-Mu Triode	6Q	8-1 9-12	6.3	0.3	2.5	300		3.0 4.4	11.0 12.0	$\frac{2.0}{2.2}$
6C6	Sharp-Cutoff Pentode	6F	12-2	6.3	0.3	0.75	300	125 0.75	5.0 ▲	6.5 ▲	0.007
6C7	Duplex-Diode Medium-Mu Triode	7G	12-2	6.3	0.3		250				
6C8-G	Medium-Mu Twin Triode	8G	12-8	6.3	0.3	1.0 ♠	250				
6C9	Twin Tetrode	10F	6-13	6.3	0.4	1.5 ♦ 2.5 ♦	250 ◈	180 ♦ \$	4.41	2.2	.0551
6C10¶	Triple-Triode	12BQ	9-56	6.3	0.6	1.0 ◈	330 ◈		1.8 ▲	0.24 ₁ ▲ 0.34 ₂ ▲ 0.48 ₂ ▲	1.4▲
6CA4	Full-Wave High- Vacuum Rectifier	9 M	6-4	6.3	1.0	-		_			-
6CA5	Beam Power Amplifier	7CV	5-3	6.3	1.2	5.0	130	130	15 ▲	9▲	0.5 ▲
6CA7	Power Amplifier Pentode	8EP	T-X	6.3	1.5	25	800	425 8.0	_		
6CA11	Dissimilar-Double- Triode Pentode	12HN	9-58	6.3	1.02	5.0◈	330◈	330 : ♦ 1.0♦		e Section	
						1.5◈	330 ◈ 330 ◈		(Pins 4	Section	
6CB5	Beam Power Amplifier	8GD	T-X	6.3	2.5	23	700\$	200 3.6	24 ▲	10 🛦	0.8▲
6CB5-A	Beam Power Amplifier	8GD	12-36	6.3	2.5	26 ◈	880 🕸 🛭	220 * 4.0 *	22 🛦	10 🛦	0.4 ▲
6CB6	Sharp-Cutoff	7CM	5-2	6.3	0.3	2.3 🏶	330 ◈	330 ⊕ 1 0.55 ⊕	6.5	3.0	0.015
6CB6-A¶ 6CD3■	RF Pentode Half-Wave High-	12FX	9-62	6.3	2.5	12 🏵	Tube V	/oltage	Drop:	l	
	Vacuum Rectifier						18 volt	s at 350) ma d-		0.6.
6CD6-G	Beam Power Amplifier	5BT	16-5	6.3	2.5	15	700\$	175 3.0	24 ▲	9.5 ▲	0.8 🛦

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. § Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

®Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Gated Amplifier	250 10	100 25	2.5	6.5	9 3.5		1,900	$E_{c3} = -$	-2.5 vol volts	ts	6BY6
Class A	250	150	$\overline{R_k} =$	10.6	4.3	1,000,000	5,200	G ₃ tied			6BY8¶
Amplifier Video Detector	100	100	08 R _k = 150	5.0	2.1	500,000	1	G₃ tied			
		1			,	age drop:	10 volts	at 60 n	na d-c		***************************************
Class A Amplifier Avg. Char.	170	140	Rk = 82 Rk =	74†	3.9†	33,000 110,000	4,900 2,500		2,500 =0 volt	4.0	6BY11
TV Damper	l		180	<u> </u>		nax peak ir		<u> </u>			6BZ3■
	max pe	ak curr	ent 🏶 =	1,200 n	ıa,			o.u.ge &	, 1,000	, , , , ,	0220
Class A Amplifier	125	125	R _k = 56	14	3.6	260,000	8,000	i -			6BZ6
Class A Amplifier •	125 150	125	$\frac{4.5}{R_k = 220}$	10	=	5,300	6,800	36			6BZ7
Class A Amplifier •	125		R _k = 100	10		5,600	8,000	45			6BZ8
Class A	250 100		8.5	10.5		7,700	2,200	17			6C4
Amplifier \ Class C Amplifier	300	=	0 27	11.8 25	_	6,250 Input sign	3,100 al = 0.35			5.5	
Class A Amplifier	250		8.0	8.0		10,000	2,000	20			6C5 6C5-GT
Class A Amplifier	250	100	3.0	2.0	0.5	1,000,000	1,225				6C6
Class A Amplifier	250		9.0	5.5		16,000	1,250	20			6C7
Class A Amplifier •	250	_	4.5	3.2	_	22,500	1,600	36			6C8-G.
Class A Amplifier •	125	80	1.0	10	1.5	100,000	8,000	_	_		6C9
Class A Amplifier •	250 100		2.0	1.2 0.5		62,500 80,000	1,600 1,250	100 100		=	6C10¶■
Full-Wave Rectifier	Max d- max pe	c outpu ak curre	t curre	nt = 150 plate =	ma; m 450 ma	ax peak in	verse vo	oltage =	1,000 v	olts;	6CA4
Class A Amplifier	125 110	125 110	4.5 4.0	37† 32†	4.0† 3.5†	15,000 16,000	9,200 8,100	_	4.500 3.500	1.5	6CA5
Class A Amplifier	250	250	13.5	100†	15†	15,000	11,000	=	2,000	11	6CA7
Avg. Char.	200	120	R _k = 65	27.5	4,9	490,000	21,200	_	_		6CA11
Avg. Char,	200	-	R _k = 270	7.1	-	10,000	6,300	63		_	
Avg. Char.	200	-	R _k = 270	7.1		12,400	5,500	69		-	
Horizontal	175	175	30	90	6.0	5,000					6CB5
Amplifier	max po watts;	max d-c	plate o	te voita	ige	3,800 volts a	; max so	reen di	ssipatio	n = 3.6	
Horizontal Amplifier	175 75	175 150	30 0	90 460	$\begin{array}{c c} 6.0 \\ 42 \end{array}$	5,000	8,800	=			6CB5-A
rimpilie.	Max po	sitive p	ılse pla		ge � = 6	,800 volts; 40 ma	max scr	een diss	pation	♦ = 4.0	
Class A Amplifier	125	125	R _k = 56	13	3.7	280,000	8,000			-	6CB6
P*****	125	125	3.0	2.8				l —		<u> </u>	6CB6-A
TV Damper	Max d- volts; r	c outpu nax pea	t currer k curre	$ \begin{array}{c} \text{nt } \circledast = 35 \\ \text{nt } \circledast = 1 \end{array} $	50 ma; n ,500 ma	nax peak ir	iverse v	oltage 🏶	» = 6,000)	6CD3■
Horizontal Amplifier	175 60	175 100	30 0	75 230	5.5 21	7,200	7,700				6CD6-G
=	Max p	ositive	pulse p	late vol	tage 🖭	=6600 volt 200 ma	s; max	screen	dissipa	tion =	

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max Plate	Max	Max Screen Volts	Car P	acitance icofarad	e in
Type	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
6CD6-GA	Beam Power Amplifier	5BT	12-21	6.3	2.5	20	700	175 3.0	22 ▲	8.5 🛦	1.1 ▲
6CE3	Half-Wave, High- Vacuum Rectifier	12GK	9-62	6.3	2.5		Tube V	oltage s at 680	Drop:	<u> </u>	
6CE6¶	Sharp-Cutoff RF Pentode	7BD	5-2	6.3	0.3	2.0		150	6.5 ▲	1.9 ▲	0.03 4
6CF6	Sharp-Cutoff RF Pentode	7CM	5-2	6.3	0.3	2.3 🏶	330 🏶	330 ♦ 8 0.55 ♦	6.5	3.0	0.015 •
6CG3	Half-Wave, High- Vacuum Rectifier	12HF	9–62	6.3	1.8	6.5 🏶	Tube V	oltage s at 700	Drop:	:	<u>. </u>
BCG6	Remote-Cutoff Pentode	7BK	5-2	6.3	0.3	4.0	300	150 0.75	5.0	5.0	0.008
6CG7¶	Medium-mu Twin Triode	9A.J	6-3	6.3	0.6	4.0�♠ 5.7�⊕	330 ◈		2.3 ▲	2.2▲	4.0 ▲
6CG8 6CG8-A¶	Triode-Pentode	9GF	6-2	6.3	0.45	2.3 🏟	275 🏶	275 ♦ 8 0.45 ♦	Pentod	e Section	on.
0000 11						1.7 ◈	275 ◈		Triode	Section	
6СН3	Half-Wave, High- Vacuum Rectifier	9HP	9-86	6.3	2.5	11 🕸	Tube V 20 volt	Voltage s at 680	Drop: mad-	C	
6CH7	High-Frequency Twin Triode	9FC	6-2	6.3	0.4	2.0 ♠	250	T =	2.41	0.8	1.11
6CH8	Triode Pentode	9FT	6-2	6.3	0.45	2.0	300 300	300 \$ 0.5		le Section	
6CJ3	Half-Wave High- Vacuum Rectifier	9SD	9-111 or 9-87	6.3	1.8	6.5		Voltage ts at 70		c	
6CK3	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	6.3	1.2	6.5 ◈	Tube V	Voltage	Drop:	c	
6CK4	Low-mu Triode	8JB	9-43		1.25	12 🆠	550 ◈		8.0 ▲	1.8▲	6.5 ▲
6CL3	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	6.3	1.2	8.5 🏶	Tube V	Voltage ts at 350	Drop:	c	
6CL5	Beam Power Amplifier	8GD	12-21	6.3	2.5	25	700\$		20 ▲	11.5▲	0.7
6CL6	Power Amplifier Pentode	9BV	6-3	6.3	0.65	7.5	300	150	11 🛦	5.5 ▲	0.12
6CL8¶	Triode-Tetrode	9FX	6-2	6.3	0.45	3.0 ♦ 2.5 ♦	330 ◈	0.55		e Section	
6CL8-A¶	Triode-Tetrode	9FX	6-2	6.3	0.45	3.0 ◈	330 🏶	330 €	Tetrod	le Section	n
						2.5 ◈	330 €	0.55	Triode	Section	1
6CM3	Half-Wave, High- Vacuum Rectifier	9HP	T-X	6.3	2.4	12®	Tube V	Voltage s at 350	Drop:	:	
6CM6	Beam Power Amplifier	9CK	6-3	6.3	0.45	12	315	285 2.0	Pento	le Conn	ection
						9.0	315		P ti		
						8.0	315	285 2.0		entode nection	

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. * Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	175 60 Max po watts;	175 100 ositive p	ulse pla	75 230 ite volt e curre	5.5 21 age • = nt = 200	7,200 7,000 volts ma	7,700 — ; max so	reen di	ssipatio	n =3.0	6CD6-GA
TV Damper	Max d- max pe	c outpu	t curren	$t \circledast = 35$ 1,500 n	50 ma; n	ax peak in	verse vo	ltage 🎕	= 6,000	volts;	6CE3
Class A Amplifier	125	125	1.0	11	2.8	300,000	7,600		-		6CE5¶
Class A Amplifier	125 125	125 125	R _k = 56 3.0	12.5 2.2	3.7	300,000	7,800	-			6CF6
TV Damper	Max d-		t curren	t ♦ = 3		ax peak in	verse ve	ltage 🍕	>=5,000	volts;	6CG3
Class A Amplifier	250	150	8.0	9.0	2.3	720,000	2,000		 - 	<u> </u>	6CG6
Class A Amplifier •	250 250		8.0 12.5	9.0	三	7,700	2,600	20	=		8CG7¶
	90		0	10		6,700	3,000	20			
Class A Amplifier Class A	125 125	125	1.0	9.0 12	2.2	6,000	5,500 6,500	40	_	_	6CG8 6CG8-A¶
Amplifier TV Damper	Max d-	c outpu ak curr	t curren	t ♦ = 3.	50 ma; n	nax peak in	verse vo	ltage 🍕	= 6,000	volts;	6СН3
Class A Amplifier •	150	- Curr	R _k =	10		5,300	6,800	36	 -	T =	6СН7
Class A Amplifier Class A	200	150	R _k = 180 6.0	9.5 13	2.8	300,000 5,750	6,200 3,300	19	=		6CH8
Amplifier TV Damper	Max d	l-c outp max pea	ut curre	ent 🍪	= 350 1 = 2,100	na; max p ma.	eak inv	erse vo	ltage 🌸	= 5,500	6CJ3
TV Damper		c outpu				nax peak ir	verse v	oltage 🤇	» = 5 ,200) volts;	6CK3
Vertical Amplifier	250 100	ositive	28.0	40 125		1,200 =2,000 vol	5,500 s; max	6.6 d-c catl		rent =	6CK4
TV Damper	Max demax pe		t currer ent 🏶 =	1,300 r	na	nax peak in	verse ve	oltage 🍕	= 5,500	volts;	6CL3
Horizontal Amplifier	175 80	175 100	40 0	90 280	7.0 20	6,000 =7,000 vol	6,500		=		6CL5
	4.0 wa	tts; mar	d-c ca	thode c	urrent =	240 ma		aci celi			
Class A Amplifier	250	150	3.0	30†	7.0†	150,000	İ		7,500	2.8	6CL6
Class A Amplifier Class A	125 125	125	1.0	12 14	4.0	120,000 5,000	6,000 8,000	40			6CL8¶
Amplifier Class A	125	125	1.0	12	4.0	200,000	6.500		\- <u>-</u> -		6CL8-A¶
Amplifier Class A Amplifier	100 125	100	1.0	14	=	5,000	8,200 8,000	40	=	=	
TV Damper	Max	d-c ou	tput cu	rrent •	=400 m =1,700 m	a; max pe a	ak inve	se volt	age⊗ =	5,500	6CM3
Class A { Amplifier } Vertical Amplifier }	250 Max 1	250 positive	12.5 pulse	45†	4.5†	~	4,100 olts; m -c catho	ax scre	5,000 en diss rent = 40	ipation	6CM6

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitance cofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts ₩	Input	Out- put	Grid- plate
BCM7¶	Double Triode	9ES	6–3	6.3	0.6	1.45 🏶	550 ◈		Section	1 (Pins	3, 6, 7
						6.0�	550 ◈	-	Section	2 (Pins	1, 8, 9
SCM8¶	Triode-Pentode	9FZ	6–2	6.3	0.45	2.0	300	3008	Pentod	e Sectio	n
						1.0	300	0.5	Triode	Section	
6CN7¶	Duplex-Diode Triode	9EN	6–2	6.3 3.15	0.3 }	1.1 🏶	330 ◈		1.5 ▲ Diode	0.5 ▲ Sections	1.8
6CQ4	Half-Wave High- Vacuum Rectifier	4CG	9-44	6.3	1.6	6.5 🏶			Tube V	oltage s at 250	Drop:
6CQ8¶	Triode-Tetrode	9GE	6-2	6.3	0.45	3.2 ♦	330 �	330 ♦\$	Tetrod	e Sectio	ma d-
						3.1 🏶	330 🏶	0.7 🏵	Triode	Section	
6CR6	Diode Remote-Cutoff Pentode	7EA	5-2	6.3	0.3	2.5	300	150 0.3			
6CR8¶	Triode-Pentode	9GJ	6–2	6.3	0.45	2.3 🆠	330 ◈	330 * * 0.55 *	Pentod	e Sectio	n
					ĺ	2.75 🏶	330 ◈	0.55	Triode	Section	L
6CS5	Beam Power Amplifier	9GR	6-3	6.3	1.2	10	300	300 \$ 1.25	15▲	9.0 ▲	0.5
6CS6	Dual-Control Heptode	7CH ▼	5-2	6.3	0.3	1.0	300	100	5.5	7.5	0.07
6CS7¶	Double Triode	9EF	6-3	6.3	0.6	1.25	500		Section	1 (Pins	6, 7, 8
						6.5	500	—	Section	2 (Pins	s 1, 3, 9
6CS8¶	Triode-Pentode	9FZ	6-2	6.3	0.45	2.3 🏟	330 ◈	330 ♦\$	Pentod	e Sectio	on
						2.75 🏶	330 🏶	0.55	Triode	Section	1
6CT3	Half-Wave, High- Vacuum Rectifier	9RX	T-X	6,3	1.2	4.75�		oltage I s at 350			
6CU5	Beam Power Amplifier	7CV	5-3	6.3	1.2	7.0 🏶	150 🏶	130 (a)	13 ▲	8.5 ▲	0.64
6CU6	Beam Power Amplifier	6AM	T-X	6.3	1.2	11	600\$	200	15 ▲	7.0 ▲	0.64
6CU8¶	Triode-Pentode	9G M	6-2	6.3	0.45	2,3 🏟	330 €	330 🏵	Pentod	e Section	on .
						2.8 🌢	330 🏶	0.55 🏶	Triode	Section	ı
6CW4	High-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.135	1.5 🏽	135 �	-	4.3 ▲	1.8▲	0.92
6CW5	Power Amplifier Pentode	9CV	6-4	6.3	0.76	14 🏶	275 🏶	220 ③ 2.1 ⑤		Tube ubes, P	ush-
6CX7	Medium-mu Twin Triode	9FC	6-2	6.3	0.4	2.0 ♠	250		Pull 2.41	1.3	1.21
6CX8	Triode-Pentode	9DX	6-3	6.3	0.75	5.0 🏟	330 ◈	330 ♠\$	Pentod	e Section	on .
						2.0 🏟	330 �	1.1 🏶	Triode	Section	1

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. †Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

⊕Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Vertical	200		7.0	5.0		10,500	2,000	21	I —	1 - T	6CM7¶
()	Max d- 250	c catho		nt ⊕ =	17 ma	4.100	4,400	18		_	
Ampliner	Max po = 22 m	sitive p a	ulse pla	te volt		2,200 volts	; max d		ode cur	rent 🕸	
Class A Amplifier	200	150	R _k = 180	9.5	2.8	600,000	6,200	_	_	-	6CM8¶
Class A Amplifier	250		2.0	1.8	-	50,000	2,000	100	-	-	
Class A Amplifier { Horizontal	250 100 Max d-	c outpu	3.0 1.0 t curren	1.0 0.8	=5.5 ma	58,000 54,000 ; voltage d	1,200 1,300 rop • : 5	70 70 volts a		d-c	6CN7¶
Phase Det.		-									****
TV Damper	Max d	-c outp ax peak	ut curre	ent � = t � = 1.	190 ma 200 ma	; max pea	ik inve	rse voi	tage 🏶 =	= 5,500	6CQ4
Class A	125	125	1.0	12	4.2	140,000	5,800	T =	T =		6CQ8¶
Amplifier Class A Amplifier	125	_	R _k = 56	15		5,000	8,000	40	-	-	
Class A Amplifier	250	100	2.0	9.6	2.6	800,000	2,200				6CR6
Class A Amplifier	125	125	R _k =	13	3.0	300,000	7,700	_			6CR8¶
Class A Amplifier	125	_	56 2.0	12	-	5,500	4,000	22	-		
Class A Amplifier	200	125	R _k = 180	46†	2.2†	28,000	8,000	= -	4,000	3.8	6CS5
	110	110	7.5	49†	4.0†	13,000	8,000		2,000	2.1	
Gated Amplifier	100 100 10	30 30 30	1.0 0 0	1.0 0.8 2.0	1.3 5.5 4.5	1,000,000 700,000	1,100	$E_{ci} = 0$ $E_{ci} = 0$ $E_{ci} = 0$	-1.0 vc	olts	6CS6
Vertical	250		8.5	10.5		7,700	2,200	17	1 -	T=-	6CS7¶
Oscillator Vertical	250	c catho	10.5	19	I —	3,450	4,500	15.5		- 20	
Amplifier Class A	<u>Мах р</u> 125	125		13	age 🖭 ==	2,200; max	7.700	node ci	I	30 ma	6CS8¶
Amplifier Class A Amplifier	125	-	R _k = 56 2.0	12	-	5,500	4,000	22			va-s- "
TV Damper	Max	d-c outp	out curre	ent == = = = = = = = = = = = = = = = = =	250 ma;	max peak i	iverse v	oltage®	=5,000	volts;	6CT3
Class A	120	110	8.0	49†	4.0†	10,000	7,500	ī —	2,500	2.3	6CU5
Amplifier Horizontal Amplifier	250 60	150 150	22.5	57 260	2.1	14,500	5,900				6CU6
	Max p	ositive r	oulse pla	ate volt	age 🖲 =	6000 volts	; max s	creen di	ssipatio	n = 2.5	
Class A	watts;	max d-0	$R_k =$	12	$\frac{\text{nt} = 110}{3.8}$	170,000	7,800		1 ==	r=1	6CU8¶
Amplifier Class A	125	_	56 1.0	17	_	4,100	5,800	24	_	-	
Amplifier Class A	110		R _k =	7.6		6,300	9,800	62	-		6CW4
Amplifier Class A	170	170	12.5	70†	3.5†	26,000	11,000	=	2,400	5.6	6CW5
Amplifier Class AB ₁ Amplifier	250	200	18.5	91†	4.0†	-	_	-	3,000‡	25	
Class A Amplifier	150		R _k = 220	9.0	-	6,100	6,400	1			6CX7
Class A	200	125	R _k = 68	24	5.2	70,000	10,000		_	-	6CX8
Amplifier Class A	40 150	125	0 R _k = 150	40 9.2	15.5	8,700	4,600	40	=	=	

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6C Y 5	Sharp-Cutoff RF Tetrode	7EW	5-2	6.3	0,2	2.0 🏶	180 🏶	180 ♦ 8 0.5 ♦	4.5	3.0	0.03
SCY7	Double Triode	9LG	6-3	6.3	0.75	1.0	-350◆		Section 8)	1 (Pin	s 6, 7,
						5.5�	350 ◈	_	Section 9)	2 (Pin	s 1, 3,
6CZ5¶	Beam Power Amplifier	9HN	6-4	6.3	0.45	10 🕸	350 ◈	315 ♦ 2.2 ♦	9.0▲	6.0 ▲	0.04
6D4	Thyratron	5AY	5-2	6.3	0.25	_		Tube V 16 v at	oltage 25 ma	Drop:	
6D6	Remote-Cutoff RF Pentode	6F	12-2	6.3	0.3	2.25		300 \$ 0.25	4.7 ▲	6.5 ▲	0.007
6D7	Sharp-Cutoff Pentode	7H	12-2	6.3	0.3		300	125	5.2 ▲	6.8▲	0.01
6D8-G	Pentagrid Converter	8A♦	12-8	6.3	0.15	1.0	300	100 0.3	$\begin{array}{c} \text{Osc } I_{cl} \\ R_{gl} = 5 \end{array}$	=0.4 m 0,000 o	na hms
6D10	Triple-Triode	12BY	9-56	6.3	0.45	2.0 ♦	330 ◈		2.8 ▲	1.4 ▲	1.5 ▲
6DA4	Half-Wave High- Vacuum Rectifier	4CG	9-11 or 9-41	6.3	1.2	5.5 ◈			-	=	=
6DA4-A	Half-Wave High- Vacuum Rectifier	4CG	9-41	6.3	1.2	8.0⊛		_	30 volt	oltage s at 340	ma d
6DA6	Electron-Ray Indicator	9DB	6-3	6.3	0.3	0.2	300		Max T age Min T	arget V = 300 arget V = 165	olt- olt-
6DA7	Double Triode	9EF	6-3	6.3	1.0	2.0	300			1 (Pir	ıs 6, 7,
						6.0	500			ı 2 (Pir	ıs 1, 3,
6DB6	Beam Power Amplifier	9GR	T-X	6.3	1.2	10	300	150 1.25	13 ▲	8.0 🛦	0.2 🛦
6DB6	Dual-Control Pentode	7CM	5-2	6.3	0.3	3.0	300	3008	6.0 ▲	5.0 ▲	0.003
8DC6	Semi-Remote-Cutoff Pentode	7CM	5-2	6.3	0.3	2.0	300	300\$	6.5 ▲	2.0 ▲	0.02
6DC8	Duplex-Diode-Pentode	9HE	6-3	6.3	0.3	2.25	300	125 0.45	5.0 ▲	5.2 ▲	0.002
									Diode	Section	s
6DE4	Half-Wave High- Vacuum Rectifier	4CG	9-44	6.3	1.6	6.5♦	32 volt	Voltage is at 35	0 ma d-		
6DE6	Sharp-Cutoff RF Pentode	7CM	5-2	6.3	0.3	2.3 🏶	330 ◈	330 ⊕1 0.55 ⊕		3.0	0.015
6DE7	Double Triode	9HF	6-3	6.3	0.90	1.5 🏶	330 ◈		Section 8)	n 1 (Pi	ns 6, 7
						7.0 ◈	275 🎕	_	Section 3, 9	n 2 (Pi	ns 1, 2

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	125	80	1,0	10	1.5	100,000	8,000		-		6CY5
Vertical {	250	I	3.0	1.2	-	52,000	1,300	68			6CY7
Oscillator \	Max p 150	eak neg	ative gr R _k =620	rid volt	age 🏶 🛥	400 920	5.400	5.0			
Amplifier	60		0	80		920	3,400	5.0	=	=	
- {			ulse pla	te volta		1800; max o	i-c cath	ode cur	rent 🏶 =	35 ma	
Vertical Amplifier	250 75	250 250			4.6 16	73,000 2,200; max	4,800				6CZ5¶
Relay						x voltage					6D4
Control		ak cath				an volvinge	000,,001			, , , , ,	
Class A Amplifier	250	100	3.0	8.2	2.0	800,000	1,600		<u> </u>		6D6
Class A Amplifier	250	100	3.0	2.0	0.5	1,000,000	1,225				6D7
Converter	250	100	3.0	3.5	2.6	400,000	550 #	E_{c2} (Os thru 20 $I_{c2} = 4$.	c Plate)),000 oh 3 ma	=250 ims	6D8-G
Class A Amplifier •	125		1.0	4.2	_	13,600	4,200	57	[-		6D10
TV Damper		-c outpomax pea				; max pea	k inver	se volt	age 🏶 =	4,400	6DA4
TV Damper	tralte r	MAT 000	le curre	m+ A C	300 ma	; max pe				1	6DA4-A
Tuning Indicator	Plate	voltage v angle : arget cu	=250 tl =5°) (E	$ \begin{array}{ll} \text{hru} & 0.5 \\ \text{c} & = -1 \end{array} $	meg;	Target vo	ltage = : le = 65°.	250; (E Plate	current	volts, =0,37	6DA5
Vertical Oscillator	250		8.0	9.0	Γ-	7,700	2,600	20	T =	T – I	6DA7
Vertical	150 60		17.5	40 80	l =,	1,100	5,700	6.3] =		
Amplifier	Max p	ositive p	puise pi	ate voit	age = 1,	800 volts;	max q-c	catnoc	ie curre	nt =	
Class A Amplifier	200	125	R _k = 180	46†	2.2†	28,000	8,000		4,000	1 1	6DB5
Vertical Amplifier	Max p	110 ositive 1 -c catho	pulse pl	49† ate volt	4.0† age	13,000 2,000 volts	8,000 s;		2,000	2.1	
Class A Amplifier	150	150	1.0	5.8	6.6	50,000	2,050	Ees =	-3,0 v	olts	6DB6
Class A Amplifier	200	150	R _k =	9.0	3.0	500,000	5,500		-	=	6DC6
Class A Amplifier	250	100	E _{c3} =	19.0	2.7	1,000,000	3,800	-		-	6DC8
÷			$E_{ci} = 2.0$								
AM Det.		-c outp				a: max pea	Jr. im-se-		0.00	5 500	6DE4
TV Damper		n-c outp max pea					rw illvel	se voit:	a R 6. 📤 🛥	0,000	01114
Class A Amplifier	125	125	R _k = 56		4.2	250,000	8,000		T-	T =	6DE6
- TV	125	125	5.5		.	0.750	$\frac{700}{2,000}$			-[gn Ev
Vertical Oscillator	250 Max d	-c cath	11 de curi	5.5 ent 🏶 =	22 ma	8,750	, 2,000	17.5	·	. –	6DE7
(150	- Carl	17.5	35	Ī —	925	6,500	6.0	-	I - I	
Vertical Amplifier		ositive p	0 pulse pla	80 ate volt	 age � =	1,500 volts	; max d	-c catho	de curr	ent 🌑	

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts	Car P	acitanc icofara	e in Is
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6DG6-GT	Beam Power Amplifier	75	9-11 or 9-41	6.3	1.2	10	200	125 1.25		 -	_
6DJ8	Twin Triode	9DE	6-2	6.3	0.365	1.8	130	=	_		=
6DK3	Half-Wave High- Vacuum Rectifier	9SG	9-117	6.3	1.8	9.0 🏇	16 volt	Voltage s at 400 s at 800) ma d-c	:	<u> </u>
6DK6	Sharp-Cutoff Pentode	7CM	5–2	6.3	0.3	2.3 🏶	330 🏶	330 ♦ 8 0.55 ♦	6.3 ▲	1.9 ▲	0.025
6DL3	Half-Wave High- Vacuum Rectifier	9GD	9-135	6.3	2.3	11 🏇		oltage s at 800	Drop:	:	
6DL4	Triode	9NY	T-X	6.3	0.165	2.0	230		3.8	0.055	1.7
6DM4	Half-Wave High- Vacuum Rectifier	4CG	9-44	6.3	1.2	6.5 🏶	Tube V	Voltage	Drop:	<u>'</u>	
6DM4A	Half-Wave High- Vacuum Rectifier	4CG	9-44	6.3	1.2	6.5 🏶	Tube V	Voltage s at 400	Drop:		
6DN3	Half-Wave High- Vacuum Rectifier	9НР	9-111	6.3	2.4	9.0 🌑	Tube V	oltage s at 350	Drop:		
6DN6	Beam Power Amplifier	5BT	12-21	6.3	2.5	15	7008	175 3.0	22 🛦	11.5 ▲	0.8 🛦
6DN7	Double Triode	8BD	9-5	6.3	0.9	1.0 🌑	350 ◈		Section	l 1 (Pin	s 4, 5,
						10 🏶	550 ◈	-	6)	2 (Pin	
6DQ3 ■	Half-Wave High- Vacuum Rectifier	12HF	9-62	6.3	1.8	9.0 🏶	16 volt	oltage s at 400 s at 800	ma d-c	:	
6DQ3-A ■	Half-Wave High- Vacuum Rectifier	12HF	9-62	6.3	1.8	10 ◈	Tube \ 17 volt 27 volt	oltage s at 450 s at 900	Drop: mad-o mad-o		
6DQ4	Half-Wave High- Vacuum Rectifier	4CG	9-43	6.3	1.2	6.0◈	Tube V	Voltage is at 250	Drop:	,	
6DQ5	Beam Power Amplifier	8JC	12-21	6.3	2.5	24 🕸	990 🔷	190 ♦ 3.2 ♦	23 ▲	11 ▲	0.5 🛦
6DQ6	Beam Power Amplifier	6AM	T-X	6.3	1.2	15	550\$	175 2.5	15▲	7.0 ▲	0.55 ▲
6DQ6-A	Beam Power Amplifier	6AM	12-51	6.3	1.2	18 🏶	770 �\$	220 ♦ 3.6 ♦	15▲	7.0 ▲	0.5 ▲
6DQ6-B	Beam Power Amplifier	6AM	12–51	6.3	1.2	18 🏶	770 🔷 🖁	220 ♦ 3.6 ♦	15 ▲	7.0 ▲	0.5 ▲
6DR4	High-Mu Triode	6BG	5-2	6.3	0.15	1.2 🏶	330 ◈	-	1.6▲	0.46 ▲	1.7▲
6DR7	Double Triode	9HF	6–3	6.3	0.9	1.0 🏶	330 ◈	=	Section 8)	1 (Pin	s 6, 7,
						7.0 ◈	275 ◈		Section 3, 9)	2 (Pin	s 1, 2,
6DS4	High-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.135	1.5 ◈	135 ◈	-	4.3 ▲		0.92
6DS5	Beam Power Amplifier	7BZ	53	6.3	0.8	9.0 🏶	275 🏶	275 ♦	9.5 ▲	6.3 ▲	0.19 🛦
6DT3	Half-Wave High- Vacuum Rectifier	12HF	9-62	6.3	2.4	9.0 🏶	Tube V 14 volt	oltage l s at 350	Drop: mad-c		•
6DT4	Half-Wave High- Vacuum Rectifier	4CG	9-33	6.3	1.2	7.5♦	Tube V	Voltage is at 350	Drop:	•	
6DT5	Beam Power Pentode	9HN	6–3	6.3	1.2	9.0 🏶		285 3			0.57 🛦

Compactron.
Zero signal.
Per section.

[●]Subminiature type. ▲Without external shield. ♦Design maximum rating.

[⊕]Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance.

Service	Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	200	125	Rk=	46†	2.2†	28,000	8,000	_	4,000	3.8	6DG6-GT
Amplifier	110	110	180 7.5	49†	4.0†	13,000	8,000	_	2,000	2.1	
Class A	90		1.3	15			12,500	33	-		6DJ8
Amplifier ◆ TV Damper	Max d	-c outp	ut curre	ent 🏶 nt 🗣 =	= 400 r = 1,200 r	na; max p ma.	eak inve	erse vol	tage 🌞	= 6,500	6DK3
Class A Amplifier	125	125	R _k = 56	12	3.8	350,000	9,800	_			6DK6
TV Damper	Max d	-c outpomax pea	ut curre	nt 🏶 =	= 400 r = 1,800 r	na; max p ma.	eak inve	erse vol	tage 🏶 :	= 6,500	6DL3
Class A Amplifier TV Damper	160		R _k =	12.5			13,500	65			6DL4
	Max volts;	d-c out max pe	put cur ak curr	rent 🏶 = ent 🕸 =	=175 m: 1,100 m	a; max pe a	ak inve	rse volt	age 🄷 =	5,000	6DM4
TV Damper	Max volts;	d-c out; max pe	put cur ak curr	rent 🏶 = ent 🕸 =	=200 m: :1,200 m	a; max pea a	k inver	se volta	age ◈ =:	5,000	6DM4A
TV Damper	Max d volts;	-c outpo max pea	ut curre ik curre	nt 🏶 =	= 350 n = 2,100 n	na; max pe na.	ak inve	rse vol	tage 🏶 =	= 5,500	6DN3
Horizontal Amplifier	125 50	125 100	18 0	70 240	6.3	4,000	9,000				6DN6
Kilipililei	Max po	sitive p	ulse pla	te volta	age 📵 == (6,600 volts	max sc	reen dis	sipation	1 = 3.0	
Vertical	250		8.0	80	nt = 200	9 000	2,500	22.5	T =		6DN7
Oscillator	Max p	eak neg	ative gr	id volt: 41	age � = ⁴	100 volts 2,000	7,700	15.4	_	_]	
Vertical Amplifier	150	ositive n	0	68 te volt:	—- age ⊗ ==:	 2,500; max	d-c cath	l — iode cu	rrent 🏵	=50 ma	
TV Damper	Max d		it curre	nt 🏶 =	= 400 m	ia; max pe				= 6,500	6DQ3 ■
TV Damper	Max d- volts; r	-c outpu nax pea	ıt curre k currer	nt 🏶 =	= 450 m 1,200 m	ia; max pe ia.	ak inve	rse volt	age 💠	= 6,500	6DQ3-A ■
TV Damper				ıt � = 1 1,000 n		nax peak i		oltage (0 volts;	6DQ4
Horizontal Amplifier	175 70 Max po	125 125 sitive p	0	110 550 te volta	5.0 42 ge ♠ = 6	5,500 ,500; max	10,500	de cur		315 ma	6DQ5
Horizontal	250	150	22.5	75	1 2.4	20,000	6,000	_	T		6DQ6
Amplifier	60 Max po watts:	150 sitive p max d-c	ulse pla	300 te volta	27 age 🗐 = ant = 120	6,000 volts	; max so	reen di	ssipatio	n = 2.5	
Horizontal	250	150	22.5	55	1 1.5	20,000	6,600		T	r=1	6DQ6-A
Amplifier	60 Max po 3.6 wat	150 psitive p tts: max	ulse pla	315 te volt	25 age ◈ =: urrent ◈	6,000 volts = 155 ma	max so	reen d	issipatio	on 🏶 =	
Horizontal	250	150	22.5	65	1 1.8	18,000	7,300	_	I		6DQ6-B
Amplifier	60 Max • = 1	l 150 positive 75 ma	pulse p	345 plate vo	27 oltage 🏶	=6,500 vo	ts; max	d-c ca	thode c	urrent	
Class A Amplifier	250 100		2.0	1.2	ΙΞ	62,500 80,000	1,600 1,250	100	Ī =		6DR4
Vertical Oscillator	250	-c catho	3.0	1.4			1,600		=-		6DR7
Vertical Amplifier	150 60	=	17.5	35 80		925 1,500; max	6,500	6.0 —	rrent @	=50 ma	
Class A Amplifier	110		R _k = 130	6.5		7,000	9,000	63	-	-	6DS4
Class A Amplifier	250 200	200 200	8.5 7.5	29† 35†	3.0† 3.0†	28,000 28,000	5,800 6,000	\equiv	8,000 6,000	3.8	6DS6
TV Damper	Max d- volts; r	c outpu nax pea	t curre k currer	nt 🏶 = nt 🗞 =		a; max pe	ak inver	se volt	age 🔸	= 6,500	6DT3 ■
TV Damper	Max d	-c outpu	t curren	nt 🏶 = 2	35 ma;	max peak i	nverse v	oltage		0 volts;	6DT4
					-		6,200				6DT5

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	X-Řa-	Base Con-	Out-	Fila-	Fila-	Max. Plate	Max. Plate	Max. Screen	Car	pacitanc icofara	e in ds
Type	by Construction	diation Rating	nec- tions	line Dwg.	ment Volts	ment Amps		Volts	Volts and Watts	Input	Out- put	Grid- Plate
6DT6	Sharp-Cutoff Pentode		7EN	5-2	6.3	0.3	1.7 🏶	330 ◈	330 ◈\$	I _{c1} = 0.	6 ma	
6DT6-A	Sharp-Cutoff Pentode		7EN	5–2	6,3	0.3	1.7 🏶	330 ◈	330 ♦▮	=		 -
6DT8	High-Mu Twin Triode		9DE	6–2	6.3	0.3	2.5♠	300		2.7	1.6	1.6
6DV4	Medium-Mu Triode (Nuvistor)		12EA	4-4	6.3	0.135	1.0�	125 ◈		4.4 ▲	1.9 ▲	1.8▲
6DW4	Half-Wave High-Vacuum Rectifier		9HP	986	6.3	1.2	8.5�	Tube V 25 volt	oltage s at 350	Drop:) ma d-o	3	
6DW4-A	Half-Wave High-Vacuum Rectifier		9HP	T-X	6.3	1.2	8.5 🏶	Tube V 25 volt	oltage s at 350	Drop:) ma d-o	E	
6DW4-B	Half-Wave High-Vacuum Rectifier		9HP	T-X	6.3	1.2	8.5 🏶	Tube V 25 volt	oltage s at 350	Drop:) ma d-c	:	
6DW5	Beam Power Amplifier		9CK	6-4	6.3	1.2	11 🏶	330 ◈	220 ③ 2.5 ④	14 ▲	9.0▲	0.5 ▲
6DX4	UHF Triode Oscillator		7DK	5-1	6.3	0.2	2.2 🏶	150 ◈		3.9	1.5	1.6
6DX8	Triode-Pentode		9HX	6-3	6.3	0.72	4.0 1.0	300 300	300 1.7	1	e Section	
6DY4	UHF Triode Oscillator		7DK	5-2	6.3	0.125	1.5 ♦	135 ◈	=	3.5	Section 1.15	2.0
6DY4-A	UHF Triode Oscillator		7DK	5-1	6.3	0.125	1.5♦	135 ◈		3.5	1.15	2.0
6DY7	Twin Pentode		8JP	12-14	6.3	1.2	15 � ♠	400 ◈	300 ♦ 4.0 ♦ ⊕		ections, -Pull	İ —
6DZ4	UHF Triode Oscillator		7DK	5–1	6.3	0.225	2.3 🆠	135 ◈		2.2	1.3	1.8
6DZ7	Twin Pentode		8JP	12-14	6.3	1.52	13.2 ❖	440 ◈	300 ♦ 4.0 ♦ ⊕	Two Se Push	ections, -Pull	
6DZ8	Triode-Pentode		9JE	T-X	6.3	0.9	6.5	150	135	Pentod	e Section	on
							0.75	150	1.5	Triode	Section	1
6E5	Electron-Ray Indicator		6R	9-26	6.3	0.3		250\$		rget vo		
6E6	Twin-Triode Power Amplifier		7B	14-1	6.3	0.6		250		Both S Push-p	Sections ull	in
6E7	Remote-Cutoff RF Pentode		7H	12-2	6.3	0.3		300	100	5.2 ▲	6.8 ▲	0.01
6EA4	Beam Triode	(A)	12FA	12-90	6.3	0.2	30 ◈	27,000 **		1.9▲	0.63 ▲	0.036
6EA5	Sharp-Cutoff RF Tetrode	<u> </u>	7EW	5–2	6.3	0.2	3.25 ◈	250 🏶	150 ♦ 0.5 ♦	4.5	3.0	0.05 4
6EA7	Double Triode		8BD	9–5	6.3	1.05	1.0 ③	350 ⊕ 550 ⊕	_	Section 5, 6) Section 2, 3)	-	Pins 4

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A - X-Radiation Rated, and A - No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

† Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.
▲Without external shield.
Design maximum rating.

⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	150	100	Rk=	1.1	2.1	150,000	800	Ec2 = 0			6DT6
Amplifier FM Limiter Discrimina- tor	250\$	100	560 R _k = 560	0.22	5.5	$E_{c3} = -6.0$	volts	.—	270,- 000	-	
Class A Amplifier	150	100	R _k = 560	1.55	1.8	150,000	1,350	Ee3 =	0 volts	1-1	6DT6-
Class A Amplifier •	250		R _k = 200	10		10,900	5,500	60			6DT8
· · · · · · · · · · · · · · · · · · ·	100		R _k = 270	3.7		15,000	4,000	60	-	-	
Class A Amplifier	75	_	R _k = 100	10.5	_	3,100	11,500	35	=		6DV4
TV Damper	Max d max p	c outpueak curr	t curre ent -=	$ \begin{array}{c} \text{nt} \circledast = 2 \\ \text{= 1,300 n} \end{array} $	50 ma;	max peak i	nverse v	roltage (0 volts;	6DW4
TV Damper	Max o	l-c outp nax pea	ut curre	rent 🏶 = nt 🗞 = 1	=250 m ,300 m	a; max pe	ak inv	erse vo	oltage 🏶	=5,500	6DW4-
TV Damper	Max d- max pe	c outpu	t currer ent 🔷 =	nt 🏶 = 2 1,300 n	50 ma; 1 na	max peak ir	iverse v	oltage 《	» = 5,500	volts;	6DW4
Vertical	200	150	22.5	55 260	2.0	15,000	5,500	-	—		6DW5
Amplifier	Max p	150 ositive p				2,200; max	d-c cath	i — lode cur	rent 🏶 :	=65 ma	
Class A Amplifier	85	-	R _k =	10	_	2,700	11,000	30	-		6DX4
Class A Amplifier	220	220	3.4	18	3.0	150,000	10,000				6DX8
Class A Amp Class A	200		$\frac{1.7}{R_k} =$	$\frac{3.0}{10.4}$			4,000 11,000	65 28		-=- -	CDVI
Amplifier			180	Ì			<u> </u>				6DY4
Class A Amplifier	90		R _k = 180	10.4	_	-	11,000	28	_	_	6DY4-
Character- istics • Class AB;	250	250	12.5	50	3.0	28,000	6,000	_			6DY7
Class AB ₁ Amplifier	400	250	20	58†	1.7†	_		-	14,000	20	
Class A	250	250	16	77†	3.5+				9,000‡	11	
Amplifier	With	2,700 ol		stor in 1			6,700	14	ı —		6DZ4
Character- istics • Class AB:	250	250	7.3	48	5.5	38,000	11,300				6DZ7
Class AB ₁ Amplifier	400 300	250 250	11 R _k = 120	40† 66†	4.0† 7.0†	_	=	=	9,000‡	18 12	
Class A Amplifier	145	120	R _k = 180	45†	6.0†		7,500		2,500	2.0	6DZ8
Class A Amplifier	120	-	$R_k = 1500$	0.8	_	_	1,400	100			
Tuning Indicator	Plate (Ec =	voltage 0 v, Sha	=250 tl	nru 1 me 90°, Pla	g, Targ te curre	et voltage = ent =0.24 m	=250 (E. na, Targ	e = -8 v	, Shado ent = 4 r	w = 0°)	6E5
Class A Amplifier	250	_	27.5	18† ♠	-	3,500 ♠	1,700		14,000		6E6
Class A Amplifier	250	100	3.0	8.2	2.0	800,000	1,600				6E7
HV Shunt Regulator	Unregu 1,6 ma.	lated d-	c suppl	y volta	ge = 36	6,000 volts:	max d	-c plate	curren	t 🐐 =	6EA4
Class A Amplifier	250	140	1.0	10	0.95	150,000	8,000	_			6EA5
Vertical Oscillator	250 Max 1	eak ne	3.0 gative g	2.0 rid volt	age 🏶 =	30,000 400 volts	2,200	66			6EA7
Vertical Amplifier	60 175 Max	=	$\frac{0}{25}$	100 40	_	920 =1,500 vol	6,000 ts; max	5.5 d-c ca	thode c	urrent	

Tube	Classification by	X-Řa-	Base Con-	Out-	Fila- ment	Fila- ment	Max. Plate	Max. Piate	Max. Screen	Car P	acitanco icofarad	e in
Туре	Construction	diation Rating	nec- tions	Dwg.	Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
6EA8¶	Triode-Pentode		9AE	6–2	6.3	0.45	3.1 ♦ 2.5 ♦	330 ♦ 330 ♦		Į.	e Section	
6EB5	Twin Diode		6BT	5–2	6.3	0.3			Tube V	ol tage	Drop: 4	
6EB8	Triode-Pentode		9DX	6-3	6.3	0.75	5.0 ◈	330 ◈	330 ♦\$	s at 11 Pentod	ma a-c e Sectio	n
							1.0 ◈	330 ◈	1.1	Triode	Section	
BEF4 ■	Beam Triode	(A)	12HC	12-90	6.3	0.2	40 ◈	27,000 •	_	2.0▲	0.8▲	0.03
6EF6	Beam Power Amplifier		7S	9–13 or 9–42	6.3	0.9	10	250	250 2.0	11.5 ▲	9.0▲	0.8 ▲
6EH4 ■ ●	Beam Triode	0.5 mR/hr	12FA	12-90	6.3	0.2	30 ◈	27,000 •	_	1.9▲	0.63 ▲	0.036
EH4-A ■	Beam Triode	0,5 mR/hr	12FA	12135	6.3	0.2	40 🖲	27,000	_	1.9▲	0.63 ▲	0.036
6EH5	Power Amplifier Pentode		7CV	5–3	6.3	1.2	5.5 ◈	150 🏶	130 ♦ 2.0 ♦	17 ▲	9.0 ▲	0.65 ▲
6EH7	Remote-Cutoff Pentode		9AQ	T-X	6.3	0.3	2,5	250	250 0.65	9.5	3.0	0.005
<i>6EH8</i> ¶	Triode-Pentode		9JG	6-2	6.3	0.45	2.8 ③ 2.5 ④	300 ◈	300 ♦\$ 0.5 ♦		E Section	
SEJ4 ■	Beam Triode	0.5 mR/hr	12HC	12-90	6.3	0.2	40 ◈	27,000 •	_	2.0 ▲	0.8 🛦	0.03
6EJ4-A ■	Beam Triode	0.5 mR/hr ▲	t2HC	12-135	6.3	0.2	40 €	27,000 •	-	2.0 ▲	0.8▲	0.03
6EJ7	Sharp-Cutoff Pentode		9AQ	T-X	6.3	0.3	2.5	250	250 0.9	10	3.0	0.005
SEL4	Beam Triode	1.5 mR/hr	8MW	12-36	6.3	0.2	40 ●	27,000 ●		2.6 ▲	1.0▲	1.0 ▲
BEL4-A	Beam Triode	0.5 mR/hr	8MW	12-21	6.3	0.2	40 ●	27,000	-	2.6 ▲	1.0▲	1.0 ▲
6EM5	Beam Power Amplifier		9HN	6-4	6.3	0.8	10	315	285 1.5	10▲	5.1 ▲	0.7
6EM7	Double Triode		8BD	9-37	6.3	0.925	1.5 ◈	330 ◈	_	6)	1 (Pin	
							10 ◈	330 ◈		Section 3)	2 (Pin	s 1, 2,
EN4 ●	Beam Triode	0.5 mR/hr	8NJ	12-21	6.3	0.2	40 ◈	30,000	_	2.6 ▲	1.0 ▲	1.0 ▲
6EQ7	Diode-Pentode		9LQ	6~3	6.3	0.3	3.0 🏶	300 🏶	300 ♦ \$ 0.6 ♦	5.5 ▲	5,0 ▲	0.002
6ER5	High-Frequency Triode		7FP	5–2	6.3	0.18	2.2	250		4.4	4.0	0.36
6ES5	High-Frequency Triode		7FP	5-2	6.3	0.2	2.2 🏶	250 ◈		3.2	4.0	0.5
6ES8	Twin Triode		9DE	6-2	6.3	0.365	1.8♠	130	_			
6ET7	Duplex-Diode Pentode		9LT	6-3	6.3	0.75	5.0 ◈	330 ◈	330 § \$		4.2 ▲	0.1
	20 and 21 for Y-V	1 Va. 4 1 - 4 1		1	1	<u> </u>	1	!	1		Section	15

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions

^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating.

[■]Compactron. † Zero signal. † Plate-to-plate. ●Subminiature type. ⊕Total for all similar sections. ◆Per section. ◆Maximum. ◆Without external shield. ●Absolute maximum rating. ◆See X-Radiation Warning, page 4. \$ Supply voltage. ◆Design maximum rating. # Conversion transconductance.

			-								
Service	Plate Voits	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A Amplifier	125 150	125	$R_k = 56$	12 18	4.0	200,000 5,000	6,400 8,500	40	_	_	6EA8¶
Voltage Doubler	Max o	i-c outp	ut curre	ent per	plate 🏶	=5.5 ma; n te •> =40 m	nax peal	k inver	se volta	ge (=	6EB5
Class A Amplifier Class A	200	125	R _k = 68 2.0	25 2.0	7.0		12,500	100	-	- 	6EB8
Amplifier HV Shunt				L			2,700	L			CEU4
Regulator	1.6 ma.					6,000 volts		i-c plat	e currei	nt • =	6EF4 ■
Vertical Amplifier	250 75	250 250	18 0	50 170	2.0		5,000	 	_	60 mg	6EF6
HV Shunt Regulator		lated d-				6,000 volts					6EH4 ■ ●
HV Shunt Regulator	Unregu 1.5 ma.		c suppl	y volta	ge = 30	6,000 volts	; max o	l-c plat	e currei	nt 🖲 =	6EH4-A ■
Class A Amplifier	110	115	R _k = 62	42†	11.5†	11,000	14,600	_	8,000	1.4	6EH5
Class A Amplifier	200	90	2.0	12	4.5	500,000	12,500		_		6EH7
Class A Amplifier { Class A Amplifier {	125 100 125	125 70 —	1.0 0 1.0	12 13.5	4.0	170,000	6,000 6,500 7,500	<u>-</u>			6EH8¶
HV Shunt Regulator	Unregu 1.6 ma.		c suppl	y volta	ge = 30	6,000 volts	; max c	i-c plat	e currei	nt 🔖 =	6EJ4 ■
HV Shunt Regulator	Unregu 1.5 ma.		c suppl	y volta	ge = 30	6,000 volts	; max d	i-c plat	e currei	nt 🖲 =	6EJ4-A ■
Class A Amplifier	200	200	2.5	10	4.1	350,000	15,000	_	-	[6EJ7
HV Shunt Regulator	Unregu 1.6 ma.		c supp	ly volta	ge = 30	6,000 volts	; max c	i-c plat	e curre	nt ● ≖	6El.4
HV Shunt Regulator	Unregu 1.5 ma.		c suppl	y volta	ge = 30	6,000 volts	; max o	i-c plat	e curre	nt 🖲 =	6EL4-A
Vertical Amplifier	250 60 Max p	250 250 ositive n	18 0 ulse pl	40 180 ate volt	3.0 30 age 🖲 =	50,000 2,200; max	5,100 d-c cat	hode c	rrent =	 =60 ma	6EM5
Vertical Oscillator	250 Max o	l-c catho	3.0	1.4		40,000		64		T —	6EM7
Vertical Amplifier	Max	positive 0 ma	pulse	plate vo	ltage 🖲	=1,500 vo	lts, max	d-c ca	thode c	urrent	
HV Shunt Regulator	Unregu 1,6 ma	ılated d.	-c supp	ly volta	ige = 3	6,000 volts	s; max (d-c plat	e curre	nt 🖲 =	6EN4
Class A Amplifier	100	100	E _{ce1} =	9.0	3.5	250,000	3,800	$R_{g1} = 2$ $E_{e3} = 0$	2.2 Meg	1 _	6EQ7
Class A Amplifier	200		1.2	10	_		10,500	80	_		6ER5
Class A Amplifier	200		1.0	10		8,000	9,000	75			6ES5
Class A Amplifier •	90		1.2	15			12,500	-	_		6ES8
Class A Amplifier	200 60	150	R _k = 100	25 55	5.5	60,000	11,500	_			6ET7
						=1.5 ma		. –			

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6EU7	High-Mu Twin Triode	9LS	6–2	6.3	0.3	1.2 🏶	330 ◈		1.6 ▲	0.2 🛦	1.5 ▲
6EU8¶	Triode-Pentode	9JF	6–2	6.3	0.45	3.1 🆠	330 ◈	330 ♦ 8 0.55 ♦	Pento	de Secti	ion
		!				3.0 ◈	330 ◈	0.55	Triode	e Sectio	n
6EV5	Sharp-Cutoff RF Tetrode	7EW	5-2	6.3	0.2	3.25 ◈	275 🌢	180 ♦ \$ 0.2 ♦	4.5	2.9	0.035
6EV7	High-Mu Twin Triode	9LP	6-3	6.3	0.6	2.5 🆠	300 ◈		3.0 ▲	0.33 ₁ ▲ 0.23 ₂ ▲	3.4 ▲
6EW6	Sharp-Cutoff RF Pentode	7CM	5–2	6.3	0.4	3.1 🆠	330 🏶	330 ♦ \$ 0.65 ♦	10	3.4	0.03
6EW7	Double Triode	9HF	9-70	6.3	0.9	1.5 ◈	330 ◈		Sectio 7, 8)	n 1 (P	ins 6,
						10 ◈	330 ◈		Section 2, 3, 9	n 2 (P	ins 1,
6EX6	Beam-Power Amplifier	5BT	12-21	6.3	2.25	22 🆠	770 ◈\$	195 ♦ 3.5 ♦	22 ▲	8.5 ▲	1.1 🛦
6EY6	Beam-Pentode	7AC	9–15	6.3	0.68	11 🔷	350 ◈	300 ♦ 2.75 ♦	8.5 ▲	7.0 ▲	0.7 ▲
6EZ5	Beam-Pentode	7AC	9-15	6.3	0.8	12 🏶	350 ◈	300 ♦ 2.75 ♦	9.0▲	7.0 ▲	0.6 ▲
6EZ8	Triple-Triode	9KA	6-2	6.3	0.45	2.0 ♦ 5.0 ♦	330 🏶		2.6	1.4 ₁ 1.2 ₂ 1.2 ₃	1.5
6F4	High-Frequency Triode (Acorn)	7BR	4-2	6.3	0.225	2.0	150	=	1.9 ▲	0.6 ▲	1.8▲
6 F5 6F5-G 6F5-GT	High-Mu Triode	5M	8-4 12-8 9-17 or 9-47	6.3	0.3		300			_	_
6 F6 6F6-G 6F6-GT	Power Amplifier Pentode	78	8-6 14-3 9-15	6.3	0.7	11	375	285 3.75	Single 2 Tube	Tube es, Push	-pull
6F7	Triode-Remote-Cutoff Pentode	7E	12-6	6.3	0.3	1.7 0.4	250 100	0.2		le section	
6F8-G	Medium-Mu Twin Triode	8G	12-8	6.3	0.6	2.5♠	300	-		1 -	Γ
6FA7	Diode Twin- Plate Tetrode	9MR	6-3	6.3	0.3	1.5 ◈	330 ◈	330 ♦ 8			
6FD6	RF Pentode	7B K	5-2	6.3	0.33	_	30 ◈	30 �	5.5	4.8	0.006
6FD7	Double Triode	9HF	9-77	6.3	0.925	1.5 🏶	330 ◈		Section 7, 8)	on 1 (I	Pins 6,
						10.0 🏶	330 🏶	-	Section 2, 3, 9	on 2 (I 9)	
6FE5	Beam-Power Amplifier	8KB	9-33	6.3	1.2	14.5 ◈	175 €	175 ③ 2.4 ④	15 ▲ Single	9.0 ▲ Tube bes, Pus	0.44
6FG8	"Shadow-Grid" Beam Pentode	7GA	5-2	6.3	0.2	2.75 €	275 🏶	275 � 0.15 �	4.2 ▲	2.8 ▲	0.02
6FG6	Electron-Ray Indicator	9GA	T-X	6.3	0.27	0.5	-	-	Min	Target) volts Target) volts	Voltag Voltag
6FG7¶	Triode-Pentode	9GF	6-2	6.3	0.45	3.0 ♦	330 ♦	0.55	Pento	le Section	
6FH5	High-Prequency Triode	7FP	5-2	6.3	0.2	2.2 🏟	150 €		3.2	1 4.0	10.52

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	250 100		2.0 1.0	1.2 0.5		62,500 80,000	1,600 1,250	100 100	_=		6EU7
Class A Amplifier	125	125	1.0	12	4.0	80,000	6,400		_		6EU8¶
Class A Amplifier	150		R _k = 56	18		5,000	8,500	40			
Class A Amplifier	250	80	1.0	11.5	0.9	150,000	8,800				6EV5
Relay Control Class A	250 125	125	2.0	9.2	3.2	11,500	5,200	60			6EV7
Amplifier Vertical	250	123	R _k = 56	5.5	3.2		2,000	17.5			6EW7
Oscillator Vertical Amplifier	150 Max p	ositive p	le curre 17.5	$1t \stackrel{\textcircled{•}}{=} 2$	2 ma — tage � =	•	7.500	6.0		rrent	
Horizontal Amplifier	175 60 60 Max po	175 150 125 sitive p		67 460 360 te volta	3.3 45 30 ge 🗐 = 7	8,500 — .000; max o	7,700	de curr	ent 🏶 =	220 ma	6EX6
Vertical Amplifier	250 50 Max pe	250 250 sitive p	17.5 0 ulse pla	44 153 te volta	3.0 21 age ♦ =:	60,000 2,500; max	4,400 d-c cath	=	ΙΞ	= 60 ma	6EY6
Vertical Amplifier	250 60 Max pe	250 250 sitive p	20 0 oulse pla	43 180 te volta	3.5 26 age ♦ =	50,000 	4,100 — d-c cath	ode cur	rent 🏵	=75 ma	6EZ5
Class A Amplifier	125		1.0	4.2		13,600	4,200	57	-		6EZ8
Class A Amplifier	80		R _k = 105	13		2,900	5.800	17			6F4
Class A Amplifier	250 100		2.0 1.0	0.9 0.4		66,000 85,000	1,500 1,150	100 100	=		6 F5 6F5-G 6F5-GT
Class A Amplifier { Class A Amplifier	285 250 315	285 250 285	20 16.5 24	38† 34† 62†	7.0† 6.5† 12†	78,000 80,000 —	2,550 2,500		7,000 7,000 10,000 ‡	4.8 3.2 11	6 F6 6F6-G 6F6-GT
Class A Amplifier Class A Amplifier	250 100	100	3.0	6.5 3.5	1.5	850,000 16,000	1,100 500	8.0			6F7
Class A Amplifier •	250		8.0	9.0		7,700	2,600	20			6F8-G
Class A Amplifier	For on	100	E _{ccl} =	2.2	3.0 e ground	130,000	1,900	R _{g1} = Meg	2.2	-	6FA7
Class A Amplifier	12.6	12.6	E _{cci} =	1.4	0.5	500,000	1,450	Rgi =	2.2	T=-	6FD6
Vertical Oscillator Vertical Amplifier	150	c catho	17.5	1 40	0 ma	40,000 800 1,500; max	7,500	6.0	— —	— — = 50 ma	6FD7
Class A Amplifier	130	130	R _k =	88†	5.0†	8,000	9,500	l —	1,000	3.5	6FE5
Class A Amplifier	130	130	R _k = 75	150†	7.2†		_		1,600‡	7.0	
Class A Amplifier	250	250	0.2	9.0	0.42	250,000	9,500				6FG5
Tuning Indicator	Plate length ma) (1.6 m	voltage 1. dark E _c = -2 a; Plate	=250 t portion 22 volts curren	hru 0.4 =0.8"; ; Patte t =0.06	7 Meg; Target rn lengt ma)	Target vo	oltage =: 1.1 ma; rtion =0	250; (E Plate .0"; Ta	c=0; F current rget cur	Pattern = 0.45 rent =	6FG6
Class A Amplifier { Class A Amplifier	125 100 125	125 100	1.0 0 1.0	11 13	4.0	180,000 5,700	6,000 7,400 7,500	43	=		6FG7¶
Class A Amplifier	135	-	1.0	11		5,600	9,000	50	-		6FH5

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Voits		acitanc icofarac	
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6FH6	Beam Power Amplifier	6AM	12–19	6.3	1.2	17 🏶	770 ◈\$	220 ♦ 3.6 ♦	33 ▲	8.0 ▲	0.4 🛦
6F H 8	Triode-Three Plate Tetrode	9KP	6-2	6,3	0.45	2.3 (Main Plate) 0.3 (Other Plates) 1.7 (Plates)	275 (Main Plate) 200 (Other Plates) 275 (275 ◆\$ 0.45 ◆	(Plate catho	de Secti es 2, 3 (de)	tied to
6FJ7	Double Triode	12BM	9-58	6.3	0.9	1.0 ③ 10 ⑤	350 ♦ 550 ♦		10, 11	n 1 (F) n 2 (F	
6FM7	Dissimilar Double	12EJ	9-58	6.3	1.05	1.0	350 ◈			n 1 (Pi	ns 9,
	Triode					10 🏶	550 ◈		10, 11 Section 5, 7, 8	n 2 (Pi	ns 3,
6FM8	Duplex-Diode Triode	9KR	6-2	6.3	0.45	1.1 🏽	330 ◈		1.5 ▲ Diode	0.16 ▲ Section	1.8 A
6FQ5	High-Frequency Triode	7FP	5–2	6.3	0.18	2.5 🆠	200 ◈		4.8	4.0	0.4
6FQ5-A	High-Frequency Triode	7FP	5–2	6.3	0.18	2.5♦	200 🏶	=	5.0	3.5	0.52
6FQ7¶	Medium-Mu Twin Triode	9LP	6-3	6.3	0.6	4.0 ♦ 5.7 ♦	330 ◈		2.4 ▲	0.341 ▲ 0.26 ₂ ▲	1
6FR7	Double-Triode	9HF	9-70	6.3	0.925		330 ◈		7, 8) Section	n 1 (I n 2 (I	
6FS5	"Shadow Grid" Beam Pentode	7GA	5-2	6.3	0.2	3.25 ◈	300 ◈	150 (a) 0.15 (b)	2, 3, 9 4.8	2.8	0.016
6FV6	Sharp-Cutoff RF Tetrode	7FQ	5–2	6.3	0.2	2.0 🏶	275 🏶	180 \$		3.0	0.03
BFV8¶	Triode-Pentode	9FA	6-2	6.3	0.45	2.3 🏶	330 🏶		Pento	de Sect	ion
						2.0 🏶	330 ◈	-	Triod	e Sectio	on
6FV8-A¶	Triode-Pentode	9FA	6–2	6.3	0.45	2.3 🏶	330 �	330 ♦ \$	Pento	de Sect	ion
						2.0 🏶	330 ◈	-	Triod	e Sectio	on
6FW5	Beam-Power Amplifier	6CK	12-14	6.3	1.2	18 🏶	770 ◈1	220 ♦ 3.6 ♦	17▲	7.0▲	0.5
6FW7 ●	Double Triode	8LM	T-X	6.3	0.3	_	150 ♦		7, 8) Section	1 2 (Pir	
6FW8	High-Frequency Twin Triode	9AJ	6-2	6.3	0.4	2.2 🆠	250 ◈	1	$\frac{2, 3}{3.4_1}$	2.41	1.9
6FX7 ●	Twin Triode	8LK	T-X	6.3	0.3	1.7 ♦	100 ◈	=	_	-	
	1			<u>l</u>	<u> </u>	Total		<u> </u>	1		

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	250 60 Max po	150 150 sitive p	22.5 0 ulse pla	75 300 te volta	1.7 15 ge � = 6	12,000 ,000; max o	6,000 	de curr	ent 🏶 =	155 ma	6FH6
Class A Amplifier	100	50	1.0	1.6 (Main Plate) 0.04 4 (Other Plates)	0.3	-	2,500 (Main Plate) 70 • (Other Plates)	- -		_	6FH8
Class A Amplifier	100		1.0	7.9		7,400	5,400	40			
Vertical Oscillator Vertical	250	ak nega	9.5	41	ge ♦ = 4	9,000 00 volts 2,000	2,500 7,700	22.5 15.4	— —	-	6FJ7 ■
Amplifier	150 Max po	sitive p	0 ulse pla	68 te volta	 ge � ≕	 2,500; max	d-c cath	ode cur	rent 🏵	=50 ma	
Vertical Oscillator	250 Max 2	l — i	3.0	2.0	go 🙈 =	30,000 100 volts	2,200	66	_		6FM7 ■
Vertical Amplifier	175 ⁻ 60	=	25	40 95	_	920	6,000	5.5	=	_	
Class A Amplifier FM Detector	250	_	3.0	1.0	-	1,500; max 58,000	1,200	70	_	-	6FM8
Class A	Max d- 135	c outpu	t curren	t ♦ • =	5.0 ma;	voltage dr 5,500	op: \$ 5. 11,000		at 20 ma	a d-c	6FQ5
Amplifier Class A	135		1.2	8.9		6,300	12,000	74	<u> </u>		6FQ5-A
Amplifier Class A Amplifier •	250		8.0	9.0		7,700	2,600	20		-	6FQ7¶
Vertical	90		3.0	10		6,700	3,000	<u>20</u> 68			6FR7
Oscillator Vertical Amplifier	Max pe 150	1 - 1	tive gri 20.0	d voltar		00; max d-	c cathod	e currer	ı -		1340
Class A Amplifier	275	135	0.2	9.0	0.17	240,000			-	- JO III -	6FS5
Class A Amplifier	125	80	1.0	10	1.5	100,000	8,000		-		6FV6
Class A Amplifier	125	125	1.0	12	4.0	200,000	6,500				6FV8¶
Class A Amplifier	125	_	1.0	14	-	5,000	8,000	40	_	-	
Class A Amplifier	125	125	1.0	12	4.0	200,000	6,500				6FV8-A¶
Class A Amplifier	125	_	1.0	12		5,600	8,000	45	_		
Horizontal Amplifier	250 60	150 150	22.5	65 345	1.8 27	18,000	7,300		=		6FW5
Class A	90 Max po	sitive p	ulse pla	te volta	ge ⊚ = 0	500; max 6	6,000	36	ent 🌑 =	= 1/0 ma	6FW7 ●
Amplifier Class A Amplifier	90	-	1.0	9.0	_	3,800	9,500	36	_	-	01 .
Class A Amplifier •	100		1.2	15		2,500	13,000	33			6FW8
Class A Amplifier	90	-	1.0	9.0		3,800	9,500	36			6FX7 ●

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Ca I	pacitan Picofara	ce in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6FY5	High-Mu Triode	7FP	5-2	6.3	0.2	2.2	200 📵	<u> </u>	4.75	4.3	0.48
6FY7	Dissimilar Double Triode	12EO	9-60	6.3	1.05	1.0 ◈ 7.0 ◈	330 ◈ 275 ◈	_	10, 11	on 1 (P l) on 2 (P	
6FY8	Triode-Pentode	9EX	6-4	6.3	1.2	8.0 🌸	150.	150 🏟		de Sec	lion
01 10	Those Tomose	02.1		0.0	112	1.0 🏶	150 ◈	2.0		e Secti	
6G6-GT	Power Amplifier Pentode	7S	12-7 9-11 or	6.3	0.15	2.75	300 300	300 0.75	Triod	de con	ection
6G11	Dissimilar Double Pentode	12BU	9-41 9-58	6.3	1,2	6.5 🏶	150 🏶	1.8	Section 9, 10,	P tied on 1 (P 11)	ins 8,
6GA7■	Diode-Pentode	12EB	12-58	6.3	2.26	1.7 ♦	7702 €	330 \$ ♦ 1.1 ♦ 220 ♦	3, 4,	on 2 (P 6, 7) ode Sec	
oGA/ ■	Liode-rentode	1266	12-38	0.3	2.20	19.	1108	3.6 €		e Section	
						5.0 ◈	Tube	Voltage	Drop:	l-e	·*•
6GB5	Beam Power Amplifier	9NH	T-X	6.3	1.38	17 ◈	275 🏶	275 ♦ 6.0 ♦	_	T =	T =
6GC5	Beam-Power Amplifier	9EU	9-71	6.3	1.2	12 🏶	220 🌢	140 ③ 1.4 ③	18▲	7.0	0.9
6GC6	Beam Power Amplifier	8JX	12-51	6.3	1.2	17.5 ◈	770 ◈\$	220 ③ 4.5 ⑤	15▲	7.0 ▲	0.55
6GD7	Triode-Pentode	9GF	6-2	6.3	0.38	2.2 ③	250 ③ 125 ③	250 8 🏵		de Sec le Secti	
6GE5■	Beam Power Amplifier	12BJ	12-56	6.3	1.2	17.5 ♦	770 \$ ⊕	220 * 3.5 *			0.34
6GE8	Triode-Pentode	9LC	6-3	6.3	0.9	1.0 🏶	330 ◈	275 ③	Pento	de Sect	ion
	Thousand the second sec					7.0 ◈	275 🏶	0.5	Triod	e Sectio	n
6GF5	Beam Power Amplifier	12BJ	9-60	6.3	1.2	9.0 🏶	770\$ ◈	220 ③ 2.5 ⑤	16▲	7.5 ▲	0.2 🛦
6GF7	Dissimilar Double Triode	9QD	T-X	6.3	0.985	1.5 🏶	330 ◈	=	Section 8, 9)	on 1 (P	ins 1.
						11 🏶	330 ◈	-	Section 3, 6)	on 2 (P	ins 2,
6GF7-A	Dissimilar Double Triode	9QD	9-107	6.3	0.985	1.5 🏶	330 �	=	Section 8, 9)	on 1 (P	ins 1.
						11 🏶	330 ◈	_		on 2 (P	ins 2,
6GH8¶	Triode-Pentode	9AE	6-2	6.3	0.45	2.5 🏶	350 ◈	330 ♦ 8 0.55 ♦	Pento	ode Sec	tion
			1	1	1	2.5 🏶	330 ◈		Triod	e Secti	on

Compactron.
† Zero signal.
• Per section.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	135	_	1.0	11	-		13,000	70	-		6F Y 5
Vertical Oscillator	250 Max d	c catho	3.0 de curre	1.4 ent � =	20 ma	•	1,600		1		6FY7
Vertical Amplifier	150 60	 	17.5	35 95	=	920 2,000; max	6,500	6.0	=		
Class A	125	125	13.5	50†	10†		7,500	—	2,000		6FY8
Amplifier Class A Amplifier	125	_	1.5	2.5	-		2,000	_	_	-	
Class A Amplifier	180	180	9.0	15†	2.5†	175,000	2,300		10,000	1.1	6G6-GT
Class A Amplifier	180	_	12	11†	-	4,750	2,000	9.5	12,000	0.25	000-01
Class A	120	110	8.0	49†	4.0†	10,000	7,500	_	2,500	2.3	6G11
Amplifier Class A Amplifier	150	100	R _k = 560	1.3	2.0	150,000	1,000	Ec3 =	0 Volts	1	
Horizontal	250 60	150	22.5	75 345	2.4	20,000	6,600	Ξ		TEI	6GA7
Amplifier (Max po Max d max po	ositive p -c outpu eak curr	ulse pla t currer ent =	te volta nt	ge ♦ = 6 40 ma;	i,500; max max peak i	nverse v	oltage (150 ma 00 volts;	
Horizontal Amplifier	75 Max n		10 e plate	440	37 = 7 700:	Max d-c	istantan			ıa.	6GB5
Class A	200	125	R _k =	46†	2.2†	28,000	8,000		4,000		6GC5
Amplifier	110	110	180 7.5	49†	4.0†	13.000	8.000	_	2.000	2.1	
Horizontal	250	150	22.5	75	2.4	20,000	6,600	-	=	-	6GC6
Amplifier	60 Max p (*) =17	150 ositive p 5 ma	0 pulse pla	345 ate volt	30 age 🏶 :	=6,500 vol	ts; max	d-c cat	hode cu	rrent	
Class A	170	150	R _k =	10	3.3	350,000	12,000	T	-	T	6GD7
Amplifier Class A Amp	125	_	82 1.0	15	l —	4,700	10,000	47	-		
Horizontal Amplifier	250 60	150 150	22.5	65 345	1.8 27	18,000	7,300				6GE5
Ampliner		os, pulse	e plate v			0; max d-c	cathod	e curren	ıt ♦ = 1	75 ma	
Class A Amp	150	150	2.0	5.5	1.7	340,000	3,200	-	-		6GE8
Series Regulator	150		21	35		1,080	5,000	5.4			
Horizontal Amplifier	250 60	150 150	26.5	.34 345	1.6	260,000	4,700	=			6GF5
Ampinei						,000; max			rent 🏶 =	=160 ma	
Vertical Oscillator	250 Mar d	-c catho	3.0	1.4	22 ma	40,000	1,600	64	I —		6GF7
Vertical	150		20	50	1 -	750	7,200	5.4	-	1 -	
Amplifier	Max p	ositive r	0 pulse pla	95 te volt	age � =	1,500; max	d-c catl	i — hode cu	rrent ◈	=50 ma	
Vertical Oscillator	250 Max d	-c catho	3.0	1.4 ent 🏶 =	T	40,000	1,600	64	1 —	T —	6GF7-A
Vertical Amplifier	150 60 Max 1 50 ma	oositive	20 0 pulse	50 95 plate v	oltage @	750	<u> </u>		-	ent 🏶 =	
Class A	125	125	1.0	12	4.0	200,000	7,500	1 -	1 —	i — l	6GH8¶
Amplifier	125	1	1.0	13.5	1	5,400	8,500	46	1	1 1	

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitance icofarad	
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6GH8-A¶	Triode-Pentode	9AE	6-2	6.3	0.45	2.5 🏶	350 ♦	330	Pento	de Sect	ion
						2.5 🏶	330 �	0.55 🏶	Triod	e Sectio	n
6GJ5	Beam Power Amplifier	9QK	T-X	6.3	1.2	17.5 ◈	7708◆	220 ③ 3.5 ⑤	15▲	6.5 ▲	0.26 ▲
6GJ5-A	Beam Power Amplifier	9QK	T-X	6.3	1.2	17.5 🏶	770\$ 🏶	220 ♦ 3.5 ♦	15 ▲	6.5 ▲	0.26 ▲
6GJ7	Triode-Pentode	9QA	T-X	6,3	0.41	2.4 🏶	275 🏶	275 🏶	Pento	de Sect	ion
						1.8 🏶	140 ◈	0.55	Triod	e Sectio	n
6GJ8¶	Triode-Pentode	9AE	6-2	6.3	0.6	2.5 🏶	330 ◈	330 \$ 0.55 \$	Pento	de Secti	on
·					0.10	2.5	330 ♦			e Sectio	
6GK5 6GK6	High-Frequency Triode Beam-Power Amplifier	7FP 9GK	6-4	6.3	0.18	2.5 ♦	330 ◈	330 ◈	5.0 Single	3.5 Tube	0.52
OORO	Beam-1 over 1 impinior		-					2.0	-	es, Pusi	n-Pull
									2 Tut	es, Pusi	h-Pull
€GK7	RF Pentode	9AQ	T-X	6.3	0.3	2.8 🏶	330 ◈	330 8 ♦	8.5 ▲	3.3 ▲	0.005
6GL7	Dissimilar Double	8BD	9-5	6.3	1.05	1.0	350�	_		n 1 (Pi	ns 4,
	Triode					10◆	550 ♦	-	5, 6) Section 2, 3)	on 2 (Pi	ns 1,
6GM5	Beam Power Amplifier	9MQ	9-71	6.3	0.8	19 ◈	550 ◈	440 ♦ 3.3 ♦	1	Tube	n-Pull
6GM6	Semi-Remote-Cutoff Pentode	7CM	5-2	6.3	0.4	3.1 ◈	330 ◈	330 1	10.0 ▲	2.4 ▲	0.0364
6GM8	Twin Triode	9DE	6-2	6.3	0.33	0.6	30		3.0▲		1.3▲
6GN8	Triode-Pentode	9DX	6-3	6.3	0.75	5.0 ③	330 ◈	330 ♦ 1 1.1 ♦	1	de Sect e Sectio	
<i>6G</i> Q7	Triple Diode	9QM	6-2	6.3	0.45	-	Tube 10 vol	Voltage ts at 60	Drop: ma d-c	+	year.
6GS8	Twin Pentode	9LW	6-3	6.3	0.3	1.1 ◈	300 ♦	150 ♦ 0.75 ♦	· -		-
6GT5	Beam Power Amplifier	9NZ	12-64	6.3	1.2	17.5	770 🆠	220 ♦ 3.5 ♦	15▲	6.5 ▲	0.26 ▲
6GT5-A	Beam Power Amplifier	9NZ	12-95	6.3	1.2	17.5 🏶	7708 ⊛	220 ③ 3.5 ③	15 ▲	6.5 ▲	0.26 🛦

Service	Plate Volts	Screent Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A	125 125	125	1.0	12 13.5	4.0	200,000 5,400	7,500 8,500		<u> </u>		6GH8-A
Amplifier								40			
Horizontal Amplifier	250 60 Max po	150 150 sitive p	22.5 0 ulse pla	70 390 te volta	2.1 32 ge ♦ =6	15,000 ,500; max o	7,100 L-c catho	de curr	ent 🏶 =	175 ma	6GJ5
Horizontal Amplifier	175 ma			70 390 late vo	2.1 32 ltage 🏶	15,000 	7,100 ax d-c	 cathode	curren	nt 🔷 =	6GJ5-A
Class A Amplifier	170	120	1.2	10	3.0	350,000	11,000	_	-	— I	6GJ7
Class A Amplifier	100		3.0	15			9,000	20			
Class A Amplifier	125	125	1.0	12	4.5	150,000	7,500		_		6GJ8¶
Class A Amp	125		$\frac{1.0}{1.0}$	$\frac{13.5}{11.5}$		5,000	8,500 15,000	$\frac{40}{78}$			8GK5
Class A	250	250	7.3	48†	5.5†	38,000	11,300		5.200	5.7	6GK6
Amplifier (300	300	R _k =	72†	8.0†	_			8,000‡	17	
Class AB Amplifier	250	250	130 R _k = 130	62†	7.0†	_	_	_	8,000‡	11	
Class B Amplifier	300 250	300 250	14.7 11.6	15† 20†	1.6† 2.2†	=	=	_	8,000± 8,000±	17 11	
Class A Amplifier	135	135	R _k = 82	7.0	3.5	275,000	9,500	Ec	s = 15 v	olts	6GK7
Vertical Oscillator		eak neg	3.0 stive gr		ge 🏶 = 4	30,000 00 volts	2,200 6,400	66	-		6GL7
Vertical Amplifier	175 60 Max po	sitive p	25 0 ulse pla	46 100 te volta		780 .500; max	1.	5.0 ode cur	j _ rent 🏶 =	-50 ma	
Class A Amp	300	300	10	60†	8.0†	29,000	10,200		3,000	11	6GM5
Class AB ₁ Amp.	450	400	21	66†	9.4†	-	_	_	6,600‡	45	
Class A Amplifier	125	125	R _k = 56	14	3.4	200,000	13,000	_			8GM6
Class A Amp	6.3		0.4	0.9		5,400	2,600	14			6GM8
Class A Amplifier Class A	200 250	150	R _k = 100 2.0	25 2.0	5.5	60,000 37,000	11,500 2,700	100	_	_	6GN8
Amplifier Half-Wave Rectifier	volts;	i-c outp max R ate 🏶 =	MS sup	ent per p ply vol	plate 🔷 = tage per	=9 ma; ma; plate 🏶 =	peakir 117 volt	verse v	oltage @	=330 urrent	6GQ7
Sync Sepa- rator and AGC Keyer	100 100	67.5		2.0	3.6 	(Both Se oper — site section	ating) 1,200		E _{c3} = 0	volts volts	6GS8
Horizontal Amplifier	250 60	150 150	22.5 0	70 390	2.1 32	15,000 5,500; max	7,100		rent 🏶 =	175 ma	6GT5
Horizontal Amplifier	250 60	150 150 ositive	22.5 0	70 390	2.1 32	15,000 =6,500; n	7,100			$\Gamma \equiv 1$	6GT5-A

Tube	Classification	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Voits	Capa Pi	acitance cofarad	in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Voits	and Watts	Input	Out- put	Grid- plate
6GU5	"Shadow-Grid" Beam Pentode	7GA	5–2	6.3	0.22	3.0�	300�	150 ♦ 0.15 ♦	70▲	3.2 ▲	0.018
<i>6GU</i> 7¶	Medium-Mu Twin Triode	9LP	6-3	6.3	0.6	3.0 ◈	330 ◈		3.4 ₁ 3.6 ₂	0.44 ₁ 0.34 ₂	3.0 ▲
6GV5	Beam Power Amplifier	12DR	12-79	6.3	1.2	17.5♦	7708	220 ♦ 3.5 ♦	16 🛦	7.0▲	0.6 ▲
6GV7	Triode-Pentode	9KN	T-X	6.3	0.35	2.0	250	230 0.5		de Sect	
						2.0	250		Triod	e Sectio	n
6GV8	Triode-Pentode	9LY	6-4	6.3	0.9	7.0 🗨		250 ● 2.0 ●		de Sect	
8GW5	High-Mu Triode	7GK	5-2	6.3	0.19	2.5 ◈	250 €		5.5	e Section	n 0.6
6GW6	Beam-Power Amplifier	6AM	12-51	6.3	1.2	17.5 ♦	770 🏶	220 ③ 3.5 ④	17 ▲	7.0 ▲	0.5 ▲
6GW8	Triode-Pentode	9LZ	6-4	6.3	0.7	9.0	300	300		de Sect	
-0710		-			0.45	0.5	300	200.00	Triod	e Sectio	n
6GX6¶	Dual-Control Pentode	7EN	5-2	6,3	0.45	1.7 🌑	300 ◆	300 ♦\$	_	-	
6GX7	Triode-Pentode	9QA	6–2	6.3	0.4	2,2 ③	275 🏶	0.45		de Section	
		ĺ				1.5	215		11100	e Sectio	n
6GY5■	Beam Power Amplifier	12DR	12-79	6.3	1.5	18 ◈	7708 🏵	220 ♦ 3.5 ♦	22 ▲	9.0▲	0.7▲
6GY6¶	Dual-Control Pentode	7EN	5–2	6.3	0.45	1.7 🏽	300 ◈	300 \$			=
6GY8	Triple-Triode	9MB	6-2	6.3	0.45	2.0 ♦ 5.0 ♦	330 ◈		6, 7) Section 8, 9)	on 1 (F on 2 (F on 3 (F	Pins 3,
6GZ5	Power Amplifier Pentode	7CV	5-2	6.3	0.38	4.8 ◈	300 ◈	300 ③	8.5 ▲	3.8▲	0.24 🛦
6H4-GT	Diode	5AF	9-11	6.3	0.15	_	_	-		=	-
6H6 6H6-GT	Twin Diode	70	8-5 9-11	6.3	0.3	-	Tube V	oltage t 16 ma	Drop: ◀ d-c		
6HA5	High-Mu Triode	7GM	5-1	6.3	0.18	2.6 ◈	220 ◈	1	4.3	2.9	0.36
6HA6	Pentode	9NW	6-4	6.3	0.71	8.0 🏶	300 ◈	250 ♦ 1.5 ♦	13 ▲	8.0 ▲	0.18
6HB5	Beam Power Amplifier	12BJ	12-58	6.3	1.5	18♦	7708 🏶	220 ♦ 3.5 ♦	22 ▲	9.0▲	0.4 ▲
6HB6	Power Amplifier Pentode	9NW	6-4	6.3	0.76	10 🏶	350 ◈	300 ♦ 2.0 ♦	13 ▲	8.0▲	0.18

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	275	135	0.4	10	0.17	165,000	15,500				6GU5
Class A Amplifier 🌩	250	_	10.5	11.5		5,500	3,100	17			6GU7¶
Horizontal Amplifier	250 60	150 150	22.5	65 345	27	18,000	7,300	=		<u> </u>	6GV5
<u> </u>						,500; max		ode curi	ent 🏶 =	175 ma	
Class A Amplifier Class A	125 100	125	1.5 3.0	10 14	3.1	_	5,500	17			6GV7
Amplifier								11			
Class A Amplifier	170	170	15	41	2.7	25,000	7,500		-	-	6GV8
Class A Amp	100		0.8	5.0	<u> </u>	7,600	6,500	50	!		
Class A Amp	135		1.0	12.5		5,800	15,000	70			6GW5
Horizontal Amplifier	250 60	150 150	22.5 0	70 390	2.1 32	15,000 	7,100	de cur	ant &	175 ma	6GW6
Class A	250	1 250	7.0	36+	5.5t		110.000	Jae Curi	7.000	4.2	6GW8
Amplifier Class A Amp	250	250	1.7	1,2	J.51	62,500	1,600	100	1,000	4.2	oons
Class A Amplifier	150	100	R _k = 180	3.7	3.0	140,000	3,700		3 =0 vo	lts	6GX6¶
Class A Amplifier	125	125	1.0	8.0	2.5	200,000	11,000	-	<u> </u>	<u> </u>	6GX7
Class A Amplifier	125		1.0	13	_	4,700	8,500	40		-	
Horizontal Amplifier	130 60	130 130	20 0	50 410	1.75 24	11,000	9,100	=			6GY5
	230 ma	1				=6,500; m					
Class A Amplifier	150	100	R _k = 180	3.7	3.0	140,000	3,700	E	=0 vo	lts	6GY6¶
Class A	125	eak posi		se plat	e voitag	e 🔷 = 600 ·	4,500	63	·		6GY8
Amplifier Class A Amplifier (Sections 2	125	_	R _k = 220 1.0	4.5	_	14,000	4,500	63	_	-	0018
and 3) Class A	250	250	R _k = 270	16†	2.7†	150,000	8,400		15,000	1.1	6GZ5
Amplifier Half-Wave	Maxd	c outpu	t curren	t = 4 m	a; max r	ms supply	voltage	= 100 v	olts; ma	x peak	6H4-G
Rectifier Half-Wave	Max d	t = 18 m -c outp	ut curre	ent per	plate =	8 ma; ma	x peak	inverse	voltag	e = 420	6H6
Rectifier	plate =	max rm 48 ma	• -			olate = 150		-	k curre	nt per	6H6-G
Class A Amplifier	135		1.0		 		14,500	72			6HA6
Class A Amplifier	150 60	100	R _k = 33	28 45	3.5 9.0	20,000	20,000	_	-		6HA6
Wasisants'	130	130	20	50	1 1.75	11.000	9,100		 	 	6HB5
Horizontal Amplifier	60	130	Ō	410	24	11,000 ,000; max		ode cur	rent 🏶 =	230 ma	Cano
Class A	250	250	R _k =	40	6.2	24.000	120.000	1			6HB6
Amplifier	200	200	100	***	J	27,000	120,000		_		011 100

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6HB7¶	Triode-Pentode	9QA	6-2	6.3	0.45	3.1 🔷	330 ◈	330 8 ♦ 0.55 ♦	Pento	de Sect	ion
						2.5 🏶	330 ◈	0.33	Triod	e Sectio	n
6HC8	Triode-Pentode	9EX	9–70	6.3	1.2	11 🕸	350 ◈	315 ♦ 1.5 ♦	Pento	de Sect	ion
						1.0♦	330 �		Triod	e Sectio	n
6HD5	Beam Power Amplifier	12ES	12-59	6.3	2.25	24 🏶	770 8 🏶	220 ③ 6.0 ⑤	=	-	
6HD7¶	Triode-Pentode	9QA	6-2	6.3	0.45	2.2 🏶	275 🏶	275	Pento	de Sect	ion
						1.5◆	275 ◈	0.45	Triod	e Section	on
6HE5	Beam Power Amplifier	- 12EY	9-60	6.3	0.8	12 🏶	350 ◈	300 ♦ 2.75 ♦	9.5 ▲	7.0 ▲	0.50 🛦
6HE7	Diode-Pentode	12FS	12-57	6.3	2.7	10 🏶	500 🖁 🏶	150 ♦ 3.5 ♦	Pento	de Sect	ion
							Tube V	oltage s at 350	Drop:	e Sectio	n
6HF5	Beam Power Amplifier	12FB	12-89	6.3	2.25	28 🏶			24 ▲	10▲	0.56
6HF8	Triode-Pentode	9DX	6-3	6.3	0.75	5.0 ◈	330 ◈	330 ♦ \$ 1.1 ♦	Pento	de Sect	ion
				6.3		1.0	330 €			e Section	
6HG5	Beam Power Amplifier	7BZ	5–3		0.45	12 🏶	275 🏶	2.0	8.0 ▲	8.5▲	0.4
6HG8	Triode-Pentode	9MP	6-2	6.3	0.34	2.0	250	150	Pento	de Sect	ion
	- 	- 12FL	12-59	6.3	2.25	1.5	125	_	Triod	e Section	on
6HJ5	Beam Power Amplifier	IZFL	12-59	0.3	2.25	24 🏶	7708	220 ♦ 6.0 ♦	-	_	
6HJ7¶	Triode-Pentode	9QA	6-2	6.3	0.45	2.2 🏶	275 🏶	275		de Sec	tion
						1.5 ◈	275 🏶	0.45	Triod	e Secti	on
6HJ8¶	Diode-Pentode	9CY	6-2	6.3	0.45	3.2 �	330 ◈	330 ♦1 0.55 ♦		3.2 Section	0.015 n
6HK5	High-Frequency Triode	7GM	5-2	6.3	0.19	2.3 🆠	200 €		4.4	2.6	0.29
6HL5	Beam Power Amplifier	9QW	6-4	6.3	0.95	12 🕸	330 ◈	250 ♦ 2.5 ♦	-	=	-
6HL8¶	Triode-Pentode	9AE	6-2	6.3	0.6	2.5	330 ◈	3308 3		ode Sec	tion
		1			1	2.5 🏶	330 €) V		le Secti	on

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A	125	125	1.0	12	4.0	200,000	6,400	_		1-1	6HB7¶
Amplifier	150		$\begin{array}{c} R_k = \\ 56 \end{array}$	18		5,000	8,500	40			
Vertical Amplifier	250 60 Max 1 ⊕ =6	250 250 positive	18 0 pulse p	38 180 late vol	3.0 30 tage 🏶 :	55,000 	5,100 ts; max	d-c cat	_ hode cu	rrent	6HC8
Vertical Oscillator	250 Max.		3 node cu	1.4 rrent �	=20 ma	34,000 ; max pea	j 2,000 k negati	68 ve puls	e grid v	oltage	
Horizontal Amplifier	135 60	135 135	22 0 ouise pla	65 540 ete volta	4.0 48	5,000 7,000; max	10,000	ode cur	=	280 ma	6HD5
Class A Amplifier	125	125	1.0	12	3.5	,,000, max	7,000			-200 ma	6HD7¶
Class A Amplifier	100	—	R _g = 0.1 meg	14		4,880	8,200	40	_	_	
Vertical Amplifier	250 60 Max r	250 250 ositive	20 0	43 180 ate volt	3.5 20	50,000 2,500; max	4,100	hode cu	Frent	=75 ma	6HE5
Horizontal	130	130	22	60	2.8	6,200	8,800		I —	70100	6HE7
Amplifier	50 Max 1 230 m		0 pulse	450 plate v	40 oltage 🏶	=5,000; r	nax d-c	cathod	e curre	nt ♦ =	, —
TV Damper	Max d peak c	-c outpu urrent (= 1.20	0 ma		nax peak ir		oltage @	» = 4,200); max	
Horizontal Amplifier	175 70 Max 1 315 m	125 120 positive a	25 0 pulse 1	125 570 olate vo	4.5 34 oltage 🏶	5,600 =7,500; n	11,300 nax d-c	cathod	e currer		6HF5
Class A Amplifier	200	125 125	R _k = 68	25 40	7.0 15	75,000	12,500	-	_		6HF8
Class A Amp	45 200	123	2.0	4.0	15	17,500	4,000	70	_	_	
Class A Amplifier	250	250	12.5	45†	4.5†	52,000	4,100		5,000	4.5	6HG5
Class A Amplifier	170 100	150	1.2	10	3.3	350,000	12,000	17			6HG8
Class A Amp Horizontal Amplifier	135 60	135	$\frac{3.0}{22}$	$\frac{14}{80}$	5.5	5,000	5,500		onnecte	d to k	6HJ5
rimpinier .		positive				=7.000; n	nax d-c			nt ♦ =	
Class A Amplifier	125	125	1.0	9.5	2.3		12,300		_		6HJ7¶
Class A Amplifier	100		R _g = 0.1 meg	14	-	4,880	8,200	40		_	
Class A Amplifier Video De- tector	125 Max	125 -c outp	R _k = 56	11.5	3.6 5.0 ma	200,000 voltage d	9,300 rop: 10	volts at	50 ma		6HJ8¶
Class A Amplifier	135		1.0	12.5	_	5,000	15,000	75			6HK5
Class A Amplifier	130	130	$R_k = 56$	70†	5.0†	7,500	17,000		2,000	3.0	6HL5
Class A Amplifier	125	125	1.0	12	4.5	150,000	7,000				6HL8¶
Class A Amp	125		1.0	12.5	1	5,000	7,000	40			

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca I	pacitanc Picofara	e in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6HM 5	High-Mu Triode	7GM	5–2	6.3	0.185	2.6 🏶	200 🏶	-	4.5	3.0	0.34
6HM6	Sharp-Cutoff RF Pentode	9PM	6-2	6.3	0.3	2.5 🏶	250 ◈	250 8 ♦ 0.6 ♦	8.7	3.0	0.024
6HQ5	Triode	7GM	5-2	6.3	0.2	2.5 🏶	200 🏶	=	5.0	3.5	0.52
6HQ6	Semi-Remote-Cutoff RF Pentode	7CM	5-2	6.3	0.3	2.4 🌑	330 ◈	330 8 � 0.65 �	7.8	3.0	0.016
6HR5¶	Beam Pentode	7BZ	5-3	6.3	0.45	8.0 🏶	260 🏶	270 ③ 2.0 ⑤	8.3 ▲	8.2 ▲	0.35 🛦
6HR6¶	Semi-Remote-Cutoff RF Pentode	7BK	52	6.3	0.45	3.0♦	300 ◈		8.8 ▲	5.2 ▲	0.006
6HS5■	Beam Triode	12GY	12-60	6.3	1.5	30 🏶	5500 🏶 Peak		24 ▲	6.5 ▲	1.6▲
6HS6¶	Sharp-Cutoff RF Pentode	7BK	5-2	6.3	0.45	3.0�	300 ◈	3008 ♦	8.8 🛦	5.2 ▲	0.006
6HS8	Twin Pentode	9FG	6–3	6.3	0.3	1.1 🆠	300 ◈	150 ♦ 0.75 ♦		_	_
6HT6	Semi-Remote-Cutoff RF Pentode	9PM	6-2	6.3	0.3	2.5 🏶	250 �	250 3 🏟 0.6 🏟	8.7	3.0	0.024
6HU6	Electron-Ray Indicator	9GA	T-X	6.3	0.3	0.6	_	_	Max T = 300 Min T = 170	arget V Volts arget V Volts	oltage
6HV5 ■	Beam Triode	12GY	T-X	6.3	1.8	30 ◈	5,500 peak @	_	19 🛦	7.0 ▲	1.5
6HV5-A ■	Beam Triode	12GY	T-X	6.3	1.8	35 ◈	5,500 peak 🏶	-	22 ▲	11 🛦	1.84
6HW8	Double-Plate Sheet- Beam Tube	9NQ	6-3	6.3	0.3	2.0♦	330 ◈	330 ◈			_
6HZ5	Beam Triode	12GY	12-62	6.3	2.4	30 ◈	6,000	_	22 🛦	10▲	2.2 4
6HZ6¶	Dual-Control Pentode	7EN	5-2	6.3	0.45	1.7 🏶	300 ◈	3008 ◈		=	_
6HZ8	Triode-Pentode	9DX	9-77	6.3	1.125	8.0 🏟	330 🏶			e Sectio	
6J4	High-Frequency Triode	7BQ	5-2	6.3	0.4	1.0 ③ 2.25	300 ♦	<u> </u>	Triode	Section	
6]8	Medium-Mu	6Q	8-1	6.3	0.3	2.5	300		3.4	3.6	3.4
6]5-GT 6]6	Triode Medium-Mu	7BF	9-12 5-2	6.3	0.45	1.5 •	300		2.6	5.0 1.6 ₁	3.8
6J6-A¶	Twin Triode	7.51	<i>J-2</i>	0.3	0.43	1.04	300	_	1	1.0 ₂ ections	1
6J7-G 6J7-GT	Sharp-Cutoff Pentode	7R	8-4 12-8 9-18	6.3	0.3	0.75 1.75	300 250	300 \$ 0.1	Pentod Triode	le connec	tion
6J8-G	Triode-Heptode Converter	8H	12-8	6.3	0.3	0.4	300	100 0,3	Osc Iel Rgl = 5	G ₁ & P = 0.4 m 0.000 of	a hms
6J9¶	Triple Triode	10G	6-13	6.3	0.45	0.75 2.0 ♦ 5.0 ♦ Total	330 ◈		iriode	Section	-

Compactron.

Zero signal.

Per section.

Subminiature type.

▲Without external shield.

Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	135	-	1.0	12.5			14,500	78	-	<u> </u>	6HM5
Class A Amplifier	125	125	R _k = 56	13	3.2	156,000	15,000				6HM6
Class A Amplifier	135		1.0	11.5	=	5,400	15,000	78			6HQ5
Class A Amplifier	125	125	R _k =	15	3.8	220,000	10,500				6HQ6
Class A Amplifier	260	270	19	30	2.3		3,600		=	=- -	6HR5¶
Class A Amplifier	200	115	R _k = 68	13.2	4.3	500,000	8,500		=		6HR6¶
Avg. Char.	3500		4.4	300 Peak		4,600	65,000	300	(b.p. conected at sock	to k	6HS5
Class A Amplifier	150	75	R _k =	8.8	2.8	500,000	9,500	=		<u> </u>	6HS6¶
Sync Sep- arator and AGC Keyer	100	67.5 67.5	I _{et} = 0.1 ma	2.0	4.4	(Both Sec	tions C ing) 1,100	perat-	$E_{ci} = 0$ $E_{ci} = 0$	1	6HS8
Class A	125	(Plate a	and grid	number 15	er 3 of c	opposite sec	tion gre	ounded)	<u> </u>		6HT6
Amplifier Level			56	-				250- /1	<u> </u>	Pottorn	6HU6
Indicator	length, 20 ma) 1.8 ma	dark p $E_c = -$; Plate of	ortion = 10 volts current	=0.83"; s; Patte =0.5 m	Target ern lengt	Target vo current = 1 th, dark po	1.0 ma; ortion =	Plate 0.0"; T	current arget cu	rrent =	91100
Pulse Regulator	3,500	_	4.4	300 peak		4,600	65,000	300	(b.p. o nected k at s		6HV5 ■
Pulse Regulator	3,500	_	4.4	300 peak	-	4,600	65,000	300	(b.p. o nected k at so	i to	6HV5-A
Synchronous Detector	(With Total other	voltage deflector	Rk = 270 ed toge on eith requir s maxin	er defte ed to s	1.4 d deflector with witch t	tors ground th an equa he plate c	4,000 led) land ourrent	pposite rom or	change ne plate	on the	6HW8
									1		
Pulse Regulator	500	40 Voit	-1.25	5.4	-	_	11,500	235	(b.p. nected k at s	d to	6HZ5 ■
		100		3.2	3.2	110,000	3,400		necte	d to ocket)	6HZ5 ■ 6HZ6¶
Class A Amplifier Class A	150 250		-1.25 R _k = 180 R _k = 100	3.2	3.2	140,000		E.	nected k at s	d to ocket)	
Class A Amplifier Class A Amplifier Class A Amp	150 250	100	-1.25 $R_{k} = 180$ $R_{k} = 100$ 2.0	3.2	.		3,400		nected k at s	d to ocket)	6HZ6¶
Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A	150 250 200 150 250	100	-1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0	3.2 29 3.5 15	.	140,000 17,500 4,500	3,400 12,600 4,000 12,000	70 55	nected k at s	d to ocket)	6HZ6¶ 6HZ8
Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	150 250 200 150	100	-1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0 0	3.2 29 3.5 15 9.0 10	.	140,000 17,500 4,500 7,700 6,700	3,400 12,600 4,000 12,000 2,600 3,000	E. 70	nected k at s	d to ocket)	6HZ6¶ 6HZ8 6J4 6J6 6J5-GT
Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A	150 250 200 150 250 90	100	-1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0	3.2 29 3.5 15 9.0 10 8.5	.	140,000 17,500 4,500	3,400 12,600 4,000 12,000 2,600 3,000 5,300	70 55 20 20 38	nected k at s	d to ocket)	6HZ6¶ 6HZ8 6J4 6J5 6J5-GT 6J6-A¶
Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Amplifier	150 250 200 150 250 90 100 150	100	$ \begin{array}{c} -1.25 \\ \hline \\ R_k = \\ 180 \\ \hline \\ R_k = \\ 100 \\ 2.0 \\ \hline \\ R_k = \\ 100 \\ \hline \\ R_k = \\ 50 \\ \oplus \end{array} $	3.2 29 3.5 15 9.0 10 8.5	.	140,000 17,500 4,500 7,700 6,700 7,100 Input Si	3,400 12,600 4,000 12,000 2,600 3,000 5,300	70 55 20 20 38	nected k at s	its	6HZ6¶ 6HZ8 6J4 6J5-GT 6J6
Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A	150 250 200 150 250 90 100 150	100 170 ————————————————————————————————		3.2 29 3.5 15 9.0 10 8.5 30 2.0 2.0	6.0 — — — — — — —	140,000 17,500 4,500 7,700 6,700 7,100 Input Si Ict = 16 1,000,000 1,000,000	3,400 12,600 4,000 12,000 2,600 3,000 5,300 gnal =0 ma d-c 1,225 1,185	70 55 20 20 38 .35 wat	nectee k at s	1 to oocket)	6HZ6¶ 6HZ8 6J4 6J6 6J5-GT 6J6-A¶ 6J7-G

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piste	Max Screen Volts	Ca I	pacitane Picofara	e in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6J10	Pentode-Gated- Beam Discriminator	12BT	9-58	6.3	0.95	10 🏶	275 🏶	275	Pentod	e Sections 2, 3, 9	n 11)
	Beam Discriminator						330 ◈	110%	Gated- Disc	Beam riminates 4, 5, 6,	or.
6J11	Twin Pentode	12BW	9-58	6.3	0.8	3.1.♦	330 ◈	330 8 ♦	11	2.8 ₁ 3.2 ₁	0.04 💠
6JA5 =	Beam Power Amplifier	12EY	12-57	6.3	1.0	19 🏶	400	300 ♦ 275 ♦	14 ▲	7.5 ▲	0.66 ▲
		1									
6JA8	Triode-Pentode	9DX	6–3	6.3	0.75	5.0 ③	330 ◈	330 \$ ⊕ 1.5 ⊕	1	le Section	
6ЈВ5 ■	Beam Power Amplifier	12EY	12-57	6.3	0.8	15 %	350 ◈	300 ♦ 2.75 ♦	9.5 ▲	6.5 ▲	
6JB6	Beam Power Amplifier	9QL	12-70	6.3	1.2	17.5 ◈	7708 🏶	220 � 3.5 �	15 ▲	6.0▲	0.2 ▲
6JB6-A	Beam Power Amplifier	9QL	T-X	6.3	1.2	17.5 ◈	770\$♦	220 ♦ 3.5 ♦	15 🛦	6.0▲	0.2 🛦
6JC5 =	Beam Power Amplifier	12EY	12-57	6.3	0.8	19 🏶	350 ◈	300 ♦ 2.75 ♦	9.5 ▲	7.0▲	0.54 ▲
6JC6	Sharp-Cutoff Pentode	9PM	6-2	6.3	0.3	2.5 🏶	330 🏶	330 8 ◆	8.2 ▲	3.0 ▲	0.019
6JC6-A	Sharp-Cutoff Pentode	9PM	6–2	6.3	0.3	3.1 🏶	330 🏶	330 1 	8.5 ▲	3.0 ▲	0.019
6JC8¶	Triode-Pentode	9PA	6-2	6.3	0.45	2.3 🏽	275 🏶	275 🔷 🖁 0.45 🏶	1	le Section	on
6JD5 ■	Beam Triode	12GY	T-X	6.3	2.4	1.7 ♦ 35 ♦	275 ⊕ 5,500 ⊕ peal	=	23 ▲	Section 12 ▲	1.7 ▲
		9PM	6-2	6.3	0.3	2.5 🏵	330 ♦		8.2 ▲	201	0.019
6JD6	Sharp-Cutoff Pentode						i .	0.6		İ	**
6JE6	Beam Power Amplifier	9QL	T-X	6.3	2.5	24 🏶	9908 ◈	190 ♦ 3.2 ♦	21 🛦	11 🛦	0.44 ▲
6JE6-A	Beam Power Amplifier	9QL	12-116	6.3	2.5	30 ◈	990\$ ◈	220 ③ 5.0 ⑤	22, 🛦	11 🛦	0.56 ▲
6JE6-B	Beam Power Amplifier	9QL	12-116	6.3	2.5	30�	990:0	220 ♦ 5.0 ♦	22 🛦	11 🛦	0.56 🛦
6JE6-C	Beam Power Amplifier	9QL	12-116	6.3	2.5	30�	990:⊛	220 ♦ 5.0 ♦	22 🛦	11 🛦	0.56 ▲
6JE8	Triode-Pentode	9DX	6-3	6.3	0.78	5.0 *	330 €	330 🌖	1	le Section	
6JF6	Beam Power Amplifier	9QL	T-X or 12-70	6.3	1.6	17 🏶		220 ③ 3.5 ③	22 🛦		1.2▲
6JG5	Sharp-Cutoff Pentode	9SF	6-3	6.3	0.52	5 5.0 €	330 ◈	330 2 €	11 🛦	4.5	0.10
6JG6	Beam Power Amplifier	900	12-64	6.3	1.6	17 🆠	7708	≥ 220 4 3.5 €	22 🛦	9.04	0.7 🛦

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

[⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance.

								-			
Service	Plate Volts	Screen Volts	Voits	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	250	250	8.0	35†	2.5†	100,000	6,500		5,000	4.2	6J10
Amplifier FM Limiter- Discrimina- tor	285	100	R _k = 200 to 400	0.49	9.8	_		_	330,- 000	-	
	Ecl =	1.25 Vo	ts RMS	5					İ	1	
Class A Amplifier •	125	125	R _k = 56	11	3.8	200,000	13,000	-	_	_	6J11
Vertical- Deflection Amplifier	135 45 Max p	125 125 ositive p ma.	10 0 oulse pla	95 210 te volta	4.2 20 age ◈ =	12,000 2,500 voit		_ l-c cath	 ode cur	ent 🏶	6JA5 ■
Class A Amplifier Class A Amp	200 30 200	135 135	1.5 0 2.0	18 32 3.5	4.0 14	70,000	3,700	70	Ξ	E	6JA8
Vertical Amplifier	250 60 Max p	250 250 ositive j	20 0	43 180	3.5 20 age 🏶 =	50,000 = 2,500 volt	4.100	=	ode cur	rent 🏶	6JB5 ■
Horizontal Amplifier	= 75 250 60 Max 175 m	150 150 positive		70 390 plate vo	2.1 32 oltage 🏶	15,000 =6,500; m	7,100 	at soc	nnected ket) e curren		6JB6
Horizontal Amplifier	250 60	150 150 positive	22.5 0 pulse p	70 390 olate vo	2.1 32 oltage 🏶	15,000 	7,100 ax d-c	at soc	nnected ket) currer		6JB6-A
Vertical Amplifier		250 250 ositive j ma.	20 0 oulse pla	43 180 ate volt:	3.5 20 age 🏶 =	50,000 2,500 volt	4,100 ts; max	 1-c cath	ode cur	rent 🏶	6JC5 ■
Class A Amplifier	125	125	R _k = 56	13	3.2	180,000	15,000	_	-	T —	6JC6
Class A Amplifier	125	125	R _k = 56	14	3.4	180,000	16,000	(gs co	nnected	i to k	6JC6-A
Class A Amp	125	125	1.0	9.0	2.2	300,000	5,500		-	T-	6JC8¶
Class A Amp	125	-	1.0	12		6,000	6.500	40	_		
Pulse Regulator	3,500	_	4.4	300 peak	_	4,600	55,000	300	(b.p. necte k at s	con- d to socket)	6JD5 🖷
Class A Amplifier	125	125	R _k ≈ 56	15	4.0	160,000	14,000		=		6JD6
Horizontal Amplifier	175 70 Max 315 m	125 125 positive	25 0	115 580 plate v	5.0 40 oltage ◈	5,500 =7,000; n	10,500 ax d-c	at soc	nnecte ket) e curre		6JE6
Horizontal Amplifier	175 55 Max 350 m	125 125 positive a			-	5,800 = 7,500; n		cathod		nt 🏶 =	6JE6-A
Horizontal Amplifier	350 1	125 125 positive ma	25 0 pulse p	130 600 olate vol	2.8 36 tage⊕ =	5,500 =7,500 volts	10,500 ; max d	to k	connect at socke de curr	t)	6JE6-B
Horizontal Amplifier	350	125 125 positive ma	25 0 pulse p	130 600 olate vol	2.8 30 tage 🗷 =	5,500 =7,500 volts	10,500 s; max d	l to k	connect at socke de curr	t)	6JE6-C
Class A Amplifier Class A Amp	250	170	R _k = 82 2.0	22 4.5	4.0	140,000	12,000	70			6JE8
Horizontal Amplifier	130 55 Max 275 m	125 125 positive	20	80 525	2.5 32 oltage @	12,000 	10,000	(Ec3:	= +25 v		6J F 6
Class A Amplifier	200 60	150 150	R _k = 100	25 55	5.5 18	60,000	11,500	_	T		6JGs
Horizontal Amplifier	130 50	125 125 positive	20 0	80 525	$\frac{2.5}{32}$	12,000 	10,000 nax d-c	at soc	nnected ket) e curre		6JG6

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max	Max Plate	Max Screen Volts	Ca _j	acitanc icofarac	e in Is
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Plate Watts	Volts	and Watts	Input	Out- put	Grid- plate
6JG6-A	Beam Power Amplifier	9 Q U	12–96	6.3	1.6	17 🏶	770\$ ◈		22 🛦	9.0 🛦	0.7 ▲
6JH5 =	Beam Triode	12JE	T-X	6.3	2.4	35 🏶	5,500 ∳peak	-	23 ▲	12▲	1.7 ▲
6JH6	Semi-Remote- Cutoff Pentode	7CM	5–2	6.3	0.3	2.3 🏽	300 ◈	300 8 ③ 0.55 ③	7.0	3.0	0.015
6J H 8	Double Plate Sheet- Beam Tube	9DP	6-3	6.3	0.3	3.0♠	330�	330 � 1.0 �			
8JK5 ■	Beam Trìode	12JE	T-X	6.3	1.8	35 ◈	5,500 • peak	 –	22 ▲	11 🛦	1.8 ▲
6JK6	Sharp-Cutoff RF Pentode	7CM	5-2	6.3	0.35	2.5 🏶	275 🏶	275	9.5 ▲	2.7 ▲	0.02
6JK8	Double Triode	9AJ	6-2	6.3	0.4	1.0 ③ 2.0 ③	165 ♦	-	Section 7, 8) Section 2, 3)	1 (Pir	is 6, ns 1,
6JL6	Semi-Remote-Cut-off RF Pentode	7CM	5–2	6.3	0.35	2.5 🏶	275 ◈	275 8 • 0.6 •		2.7▲	0.024
6JL8	Triode-Pentode	9DX	6–3	6.3	0.75	5.0 ③ 2.0 ③	330 ♦	175 ③		le Section	
6JM6 ■	Beam Power Amplifier	12FJ	12-79	6.3	1.2	17.5 🏶	7702 🏶	220 * 3.5 *	16 ▲	7.0 🛦	0.6 🛦
6J M6-A	Beam Power Amplifier	12FJ	12-79	6.3	1.2	17.5 🆠	7702 *	220 * 3.5 *	16 ▲	7.0 ▲	0.6 ▲
6JN6	Beam Power Amplifier	12FK	12-56	6.3	1.2	17.5 🏶	7708 🏶	220 * 3.5 *	16 ▲	7.0 ▲	0.34
6JN6-A∎	Beam Power Amplifier	12FK	12-56	6.3	1.2	17.5 🌞	770\$ €	220 è 3.5 è	16▲	7.0▲	0.34 4
6JN8¶	Triode-Pentode	9FA	6-2	6.3	0.45	2.5 🏶	300 €		Pento	le Secti	on
		_				2.5 🏟	300 ◈	0.55 🏶	Triode	Section	3
6JQ6	Beam Pentode with Integral Diode	9RA	6-4	6.3	1.2	10�	425◈	330 ◈ 2.0 ◈	13 🛦	6.0▲	0.32 🛦
6JR6	Beam Power Amplifier	9QU	12-96	6.3	1.6	17�	770:◈	220 ◈ 3.5 ◈	22 🛦	9.0▲	0.7 4
6JS6	Beam Pentode	 12FY	12-89	6.3	2.25	28 🆠	990\$ €	190 (5.5 (24 🛦	10 🛦	0.7
6JS6-A∎	Beam Power Amplifier	12FY	12-89	6.3	2.25	28 🏶	990\$ ◈	190 � 5.5 �	24 ▲	10▲	0.7 ▲
6JS6-B	Beam Power Amplifier	12FY	12-89	6,3	2.25	28�	990:0	190 ⊗ 5.5 ⊗	24 ▲	10 🛦	0.7

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. \$ Supply voltage.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _{p,} Ohms	G _{m,} μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	130 55 Max 275 m	125 125 positive	20 0 pulse	80 525 plate v	2.5 32 oltage @	12,000 = 6,500; n	10,000 nax d-c	1	= +25 vo	1	6JG6-A
Pulse Regulator	3,500	-	4.4	300 peak	_	4,600	55,000	300	(b.p.	con- d to socket)	6JH5 ■
Class A Amplifier	125	125	R _k = 56	14	3.6	260,000	8,000	_			6JH6
Color TV Synchronous Detector	age cha	ange on	either of red to s	leflector	r with a:	ors (pins 1 n equal and current fr	i opposi	te chan	ge on th	e other	6JH8
Pulse Regulator	3,500	-	4.4	300 peak	_	4,600	65,000	300	(b.p. necte k at :	con- d to socket)	6JK5 ■
Class A Amplifier	125	125	R _k == 68	11.5	3.9	150,000	18,000			_	6JK6
Class A Amplifier	100 135		1.0	5.3	=	8,000 5,400	6,800	55 70	-		6JK8
Class A Amplifier Class A	125	60	R _k =	12.5	4.0	120,000	15,500		-		6JL6
Amplifier Class A	300	150	3.5	25†	5.0†	60,000	11,500		5,000	1.8	6JL8
Amplifier Class A Amplifier	150	-	R _k = 150	10	-	7,500	4,700	35	_	_	
Horizontal Amplifier	250 60 Max 275 m	150 150 positive	22.5	65 345 plate v	1.8 27 oltage *	18,000 =6,500; n	7,300 nax d-c	at so	connecte cket) le curres		6JM6
Horizontal Amplifier	250 55	150 150 positiv	22.5 0 e pulse	70 345 plate	2.4 30 voltage	15,000 	7,300 max d	kats	connect socket) ode cur	- 1	6J M6-A
Horizontal Amplifier	250 60 Max 175 n	150 150 positive	22.5 0 pulse	65 345 plate v	1.8 27 oltage @	18,000 =6,500; n	7,300 	at so	connect cket) le curre	1	6JN6 ■
Horizontal Amplifier	250 55 Max = 175	150 150 positive	22.5 0 pulse	70 345 plate	2.4 30 voltage	15,000 → = 6,500;	7,300 max d	kat:	connect socket ode cur	1	6JN6-A
Class A Amplifier Class A Amp	125 125	125	1.0	12	4.0	200,000 5,400	7,500 8,500	46			6JN8¶
Vertical Amplifier	140 40 Max 70 m Insta	ia. intaneoi	18 0 e pulse	35 150 plate vo	o-catho	10,500 =2,000 volt le voltage	4,200 s; max o	-c cath			6JQ6
Horizontal Amplifier	130 50 Max		20 0	45 470	1.5	18,000 — 6,500 volts	7,000 — ; max d-	c catho	de curre	 nt	6JR6
Horizontal Amplifier	275 1 175 70 Max 315 n	125 120 positive	25 0 pulse	125 570 plate v	4.5 34 oltage *	5,600 =7,500; r	11,300 nax d-c	at so	connecte cket) le curre	- 1	6JS6∎
Horizontal Amplifier	175 62	125 125 positive	25 0 pulse	125 570 plate	4.5 34 voltage [5,600 -7,500;	11,300 max d	k at	connect socket) ode cur	1	6JS6-A
Horizontal Amplifier	175 62 Max	125 125 positive	25 0 pulse p	125 570 sam-plat	4.5 34 tage ⊡ =	5,600 	; max d-	to k	connect at socke de currer	t) [6JS6-B

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screén Voits	Car P	acitanc icofarac	e in Is
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
6J\$6-C ■	Beam Power Amplifier	12FY	12-89	6.3	2.25	30 🏶	990 🏶	220 8 🆠 5.5 🏶	24 ▲	10 ▲	0.7 ▲
6JT6	Beam Pentode	9QU	T-X	6.3	1.2	17.5 🏟	770\$ ◈	220 ♦ 3.5 ♦	15▲	6.5▲	0.26 ▲
6JT6-A	Beam Power Amplifier	9 Q U	12-95	6.3	1.2	17.5 🏶	7708 🍣	220 🏟 3.5 🏟	15 ▲	6.5 ▲	0.26 ▲
6JT8	Triode-Pentode	9DX	9-69	6.3	0.725	4.0 🏶	330 ◈	330 8 ⊕	Pentod	le Section	on.
6JU6	Beam Power Amplifier	9QL	T-X	6.3	1.6	1.0 ♦ 17 ♦	330 ◈ 770\$ ◈	220 🏟 3.5 🏟	Triode 22 ▲	Section 9.0 ▲	
6J U8	Quadruple Diode	9PQ	6-3	6.3	0.6	_		Tube V	Voltage is at 60	Drop: ma d-c	<u> </u>
6JU8-A	Quadruple Diode	9PQ	6-2	6.3	0.6		Tube	Voltage			
6JV8¶	Triode-Pentode	9DX	6–3	6.3	0.6	4.0 ♦	330 ♦	330 ◈	Pentod	le Section	
6JW6¶	Pentode	9PU	6-3	6.3	0.6	11.5 🏶	400 🏟		16 ▲	5.0 ▲	0.13
6JW8	Triode-Pentode	9DC	6-2	6.3	0.43	1.2	250 250	1.0 ♦ 250 0.8 —		le Section	
6JZ6	Beam Power Amplifier	12GD	12-79	6.3	1.5	18 🏶	770\$♦	220 ♦ 3.5 ♦	24 ▲	8.5 ▲	0.34
6JZ8	Triode-Pentode	12DZ	9-58	6.3	1.2	7.0		200 * 1.8 *		le Secti	
						1.0◈	250 ◈			Section	
6K4 ⊛	Medium-Mu Triode	6K4	3–2	6.3	0.15	3.0	250		2.4 ▲	0.8 🛦	2.4 ▲
6K5-G 6K5-GT 6K6-GT	High-Mu Triode Power Amplifier Pentode	5U 7S	12-8 9-17 9-11 or	6.3	0.3	8.5	250 315	285 2.8	2.4 ▲ Single	3.6 ▲ Tube	2.0
	remode		9-41	The state of the s		7.0	315		Triode	es, Push Conne P tied)	
6K7 6K7-G 6K7-GT	Remote-Cutoff RF Pentode	7R	8-4 12-8 9-18	6.3	0.3	2.75	300	300 \$ 0.35	7.0 5.0 4.6	12.0 12.0 12.0	0.005 0.007 0.005
6K8 6K8-G 6K8-GT	Triode-Hexode Converter	8K♥	8-2 12-8 9-24	6.3	0.3	0.75	300	150 0.7	Osc Ici Rgi = 5	=0.15 0,000 o	ma hms
6K11¶	Three-Section Triode	12BY	9-56	6.3	0.6	2.75 ③ 0.3 ⑤	330 ♦ 330 ♦	=	Section Section 5. 6. 7	n 1 (Pins n 2 and ', and 2	3 (Pin 2, 3, 11
6KA8¶	Triode-Pentode	9PV	6-3	6.3	0.6	2.0	300 ◈	300\$ €	Pento	le Secti	
						1.1 🏶	300 ◈		Triode	Section	n

Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	175 60	125 125	25 0	130 600	2.8 32	_	11,500	<u>-</u>	(b.p. o nected k at s	i to ocket)	6JS6-C ■
	= 350	ma.	ouise pia	ite voita	ige ◆ =	= 7,500 volt	s; max	a-c cath	ode curi	rent 😻	
Horizontal Amplifier	250 60 Max 175 m	150 150 positive	22.5 0 pulse	70 390 plate v	2.1 32 oltage *	15,000 =6,500; n	7,100 nax d-c	at soc	onnecte ket) e curre		6ЈТ6
Horizontal Amplifier	250 60 Max = 175	150 150 positive ma	22.5 0 pulse	70 390 plate v	2.1 32 voltage	15,000 = 6,500;	7.100 max d-	at soc	onnected ket) ode cur		6JT6-A
Class A Amplifier Class A Amp	200 35 250	100	R _k = 82 0 2.0	17 50 1.5	3.5	50,000 - 37,000	20,000	100			6JT8
Horizontal Amplifier	130 50 Max = 275	125 125 positive ma	20 0 pulse	45 470 plate	1.5 32 voltage	18,000 • = 6,500;	7,000 max d	kats	connect ocket) ode cur	1	6JU6
Detector	Maxo	d-c outp	ut curre	nt per p	olate 🏶 =	=9.0 ma; m >=54 ma	ax peak	inverse	voltage	♦ =300	6JU8
Detector	Max o	d-c outp	ut curr	ent per	plate 🏶	=9.0 ma; r te • = 54 n	nax pea	k inver	se volta	ge ♦ =	6JU8-A
Class A Amplifier Class A	125 40 200	125 125 —	1.0 0 2.0	22 28 4.0	9.0	100,000 17,500	11,500	70	=		6JV8¶
Amplifier Class A	250	150	R _k =	28	6.5	50,000	36,000			<u> </u>	6JW6¶
Amplifier Class A	100	100	$\frac{56}{1.0}$	6.0	1.7	l	5,500			l- <u>-</u> -1-	6JW8
Amplifier Class A Amplifier	200	-	2.0	3.5		_	3,500	70		_	03 # 8
Horizontal Amplifier	130 50 Max p 230 ma	130 130 ositive	20 0 pulse p	46 450 late vo	1.8 29 Itage �	9,900 = 6,500; m	9,000 ax d-c	athode	curren	t -	6JZ6
Vertical Amplifier	120 45	110 110	8.0 0	46 122 te volts	3.5	11,700 	7,100	- ode cu		70 ma	6JZ8
Vertical Oscillator	150 May d	c catho	5.0	5.5	20 ma	2,000; max 8,500	2,350	20		T -	
Class A Amplifier	200	-	R _k = 680	11.5	-	4,650	3,450	16	<u> </u>	-	6K4 ⊚
Class A Amplifier	250		3.0	1.1		50,000	1,400	70		-	6K5-G 6K5-GT
Class A Amplifier	315 250 100 285	250 250 100 285	21 18 7.0 R _b =	25.5† 32† 9.0† 55†	4.0† 5.5† 1.6† 9.0†	110,000 90,000 104,000	2,100 2,300 1,500		9,000 7,600 12,000 12,000	4.5 3.4 0.35 9.8	6K6-GT
Class A Amplifier	285	285	R _k = 400 25.5	55†	9.01	-		_	12,000	10.5	
Vertical Amplifier	250 Max po	sitive p	18 ulse pla	37.5 te volta	ge 🗐 = 1	2,500 200 volts; n	nax d-c c	6.8 athode	t current	=25 ma	
Class A Amplifier	250 250 100	125 100 100	3.0 3.0 1.0	10.5 7.0 9.5	2.6 1.7 2.7	600,000 800,000 150,000	1,650 1,450 1,650	=	=		6 K7 6K7-G 6K7-GT
Converter	250	100	3.0	2.5	6.0	600,000	350 #	Eb (Tri	ode Osc ode) =3.) = - 8 ma	6K8 6K8-G 6K8-GT
Class A Amp Class A Amplifier •	250 250	=	8.5 2.0	10.5 1.2		7,700 62,500	2,200 1,600	17	—————————————————————————————————————		6K11¶
Class A Amplifier Class A Amp	150 200	100	R _k = 180 2.0	4.0	2.8	100,000 17,500	4,400	70	_		6KA8¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum screen dissipation appears

■ Maximum sc

Tube	Classification	Base Con-	Qut-	Fila-	Fila-	Max	Max	Max Screen Volts	Ca J	pacitano Picofara	e in ds
Type	by Construction	nec- tions	line Dwg	ment Voits	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
KD6	Beam Power Amplifier	12GW	12-118	6.3	2.85	33 🖲	9908 🍫	200 ♠ 5.0 ♠	40 ▲	16 ▲	0.8
SKD8	Triode-Pentode	9AE	6-2	6.3	0.4	3.0 ♦		330 \$ ♦ 0.55 ♦	Pentoc	l le Sectio	on
KE6	Beam Power Amplifier	12G M	12-79	6.3	1.5	2.5 ③	330 ⊕ 770 \$ ⊕		Triode 22 ▲	Section 9.0 ▲	0.7
6KE8	Triode-Pentode	9DC	6-2	6.3	0.4	2.0 ♦	280 ♦	280 8 🏶 0.5 🏶		le Section	
SKF8	Twin Pentode	9FG	6–3	6.3	0.3	1.1	1	150 ♦ 0.75 ♦		-	-
6KG6	Beam Power Amplifier	9RJ	T-X	6.3	2.0	34 ♦	700\$ ♦	250 ♦ 7.0 ♦			
SKL8	Diode-Pentode	9LQ	6-3	6.3	0.3	3.0�	300 �	300\$ ◈	Pento	le Section	on
5KM6	Beam Power Amplifier	9QL	T-X or 12-70	6.3	1.6	20 🏟	770 8 🏽	0.6 ③ 220 ⑤ 3.5 ⑥	Diode 22 ▲	Section 9.0 ▲	1.24
KM8	Diode Triple-Plate Tetrode	9QG	6-3	6.3	0.3	1.0	330 ♦	330 2 ◆ 0.65 ◆		_	
6KN6	Beam Power Amplifier	12GU	12-82	6.3	3.0	30 ◈	7708 ◈	220 ③ 5.0 ⑤	44 ▲	18 ▲	1.04
6KN8	Twin Triode	9AJ	6-2	6.3	0.4	2.2	220 🗉		-	-	
SKR8	Triode-Pentode	9DX	6–3	6.3	0.75	5.0 ③ 2.0 ③	330 ◈	330\$ ♦		de Section	
SKR8-A	Triode-Pentode	9DX	6-3	6.3	0.75	5.0 🏶	330 ◈	330 ♦ 1.5 ♦		de Sectio	
						2.0 🏶	330 ◈		Triode	Section	1
3KS6	Gated-Beam Discriminator	7DF	5–3	6.3	0.3	_	330\$ ◈	330\$ ◈		-	-
8KS8¶	Triode-Pentode	9DX	6–3	6.3	0.6	3.75 ♦		1.1 🏶		le Section	
6KT6	Semi-Remote-Cutoff Pentode	9PM	6-2	6.3	0.3	3.1 ◈	330 ◈			Section 3.0 ▲	0.019
SKT8	Triode-Pentode	9QP	6-2	6.3	0.6	2.5 ③	330 ♦			de Section	
6KU8	Duplex-Diode Pentode	9LT	9-69	6.3	0.725	4.0 🏶		330 2 ⊕ 1,1 ⊕	1	3.0 ▲	0.1
6KV6	Beam Power Pentode	9QU	12-97	6.3	1.6	20 🏶	7708 🏵	220 ♦ 2.0 ♦	Diode 22 ▲	Section 9.0 A	0.64
SKV6-A	Beam Power Pentode	9Qt'	12-97	6.3	1.6	28 🏶	900 🏶	220 ③ 2.0 ⑤	22 ▲	9.0 ▲	0.6

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Voits	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal	150	110	22.5	100	2.0	6,000	14,000	(b.p.	connect	ed to	6KD6
Amplifier	45 Max p 400 ma	160 ositive	0 pulse p	1,100 late vo	110 ltage 🏶 :	=7,000; m	ax d-c	k at s athode	ocket) curren	t 🏶 =	
Class A	125	110	1.0	9.5	3.5	200,000	5,000		T —		6KD8
Amplifier Class A Amp	125	 	1.0	13.5			7,500	40	l —		
Horizontal Amplifier	130 60	130 130	20	50 410	1.75 24	11,000	9,100				6KE6
-	Max p 230 ma	ositive	pulse p	late vo	ltage 🏶 =	=6,500; m		athode	current	t 🏶 =	
Class A Amplifier	125	125	R _k = 33	10	2.8	125,000	12,000	_	-	-	6KE8
Class A Amplifier	125	-	R _k = 68	13	-	5,000	8,000	40	-	-	
Sync Separator	100	67.5	$I_{c1} = 0.1 \text{ ma}$	2.8	-		270	-	$E_{c3}=0$	volts	6KF8
and AGC	100	67.5	0	l —			1,750	<u> </u>	Ec3 = 0	volts	
Keyer	(Chara ber 3 o	cteristic f apposi	s given ite secti	are for	each sec	tion separ	ately wit	th plate	and gri	id num-	
Horizontal	160	160	0	1,400	45		1 1	(E _{c3} =	0 volts) -	6KG6
Amplifier	45 Max n	160	nulse n	1.000			— nax d-c	,	de cur	İ	
			Purse D	- VO	ltage 🔷		.a. u-c	Catilo	LE CUI	TOTAL ST	
Class A Amplifier Detector	100 Max d	100 conton	Ecci =0	5.5	.0 ma	550,000	4,300	R _{g1} ==	2.2 Meg	gohms	6KL8
Horizontal	140	140	24.5	80	2.4	6,000	9,500	(Ee3 =	=30 volt	(s)	6KM6
Amplifier	Max p = 275 r	140 ositive na		560 plate v	31 voltage @	= 6,500;	max d-	c cathe	ode cur	rent 🔷	
Class A Amplifier	100	100	E _{cci} =0 ed toge	4.2	1.7	30,000	3,400	$R_{g1} = 2$.2 mego	hms	6KM8
Horizontal	130	130	20	100	4.0	4.000	16,000	(h.n.	connect	ed to	6KN6
Amplifier	60	125		800	50		max d-c	kats	ocket)	rent 🏶	022110
Class A Amplifier •	110	-	1.0	16			16,000	45			6KN8
Class A Amplifier	200	100	R _k = 82	19.5	3.0	60,000	20,000	_	-	-	6KR8
Class A Amplifier	125		R _k == 68	15		4,400	10,400	46			
Avg. Char.	200 35	100	R _k = 82	19.5 54	3.0 13.5	60,000	20,000	_	_		6KR8-
Avg. Char.	125	_	R _k =	15	_	4,400	10,400	46	=		
FM Limiter- Discrimi- nator	135	280	_	5.0	(R _{g2} =	33,000 oh:	ms) (E _c	= +4.0) volts)		6KS6
Class A	150	150	R _k = 150	20	4.5	150,000	9,500			-	6KS8¶
Amplifier	65	150	0	60	20						
Class A Amp Class A	200 125	125	2.0	4.0 17	4.2	17,500 160,000	4,000 18,000	70	76 -	<u> </u>	OFTE
Amplifier		1	R _k = 56						Ec3 = 1	0 volts)	6KT6
Class A Amplifier	125	125	1.0	12	4.5	150,000	10,000	_		-	6KT8
Class A Amplifier	250	_	2.0	1.8		31,500	3,200	100			
Class A Amplifier	200	100	R _k = 82	17	3.5	50,000	20,000		-		6KU8
	50 Averag	100 e diode	0 current	55 at 10	18 volts = 2	.0 ma		_	_	<u> </u>	
HV Pulse Shunt	140 100	140 140	24.5	40 440	2.4 30	10,000	6,000	(E _{c1} =	·0 volts)	6KV6
Regulator	Max p	ositive	pulse i	plate v	oltage 🏶	=6,500;	max d-c	catho	de cur	rent 🔷	
Pulse	$= 275^{\circ}$	140	24.5	40	2.4	10.000	6,000	(Ecz	= 0 vol	ts)	6KV6
Regulator	100	[140 ositive [0	440	30	6,500 vol	I —	l			

Tube	Classification by	X-Řa-	Base Con-	Out- line	Fila- ment	Fila- ment	Max. Plate	Max. Plate	₩ Max. Screen	Caj P	acitanc icofarac	e in Is
Туре	Construction	diation Rating	nec- tions	Dwg.	Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
6KV8	Triode-Pentode		9DX	6-3	6.3	0.775	5.0◆	300 ◈	300 \$ ♦ 1.0 ♦	Pentod	e Secti	on
							1,0♦	300 �	_	Triode	Section	n
GKY6	Sharp-Cutoff Pentode		9GK	6-3	6.3	0.52	9.0�	330◈	330 : ⊛ 1.0⊛	14 ▲	6.0 ▲	0.16 ▲
6 KY 8	Triode-Pentode		9QT	T-X	6.3	1.1	12 🄷	300 ◈	150 ♦ 1.9 ♦	Pentod	e Secti	on
							1.5 ◈	330 🏶		i	Section	
6KY8-A	Triode-Pentode		9QT	9-107	6.3	1.1	12 🔷	300 ◈	150 ♦ 1.9 ♦	Pentod	le Secti	on
		İ					1.5 ◈	330 🏶	_	1	Section	n
6KZ8¶	Triode-Pentode		9FZ	6-2	6.3	0.45	2.5 🏶	330 ◈	330 \$ ③ 0.55 ③	1	le Secti	
							2.5 🏶	330 🏶		İ	Section	
6L4	Medium-Mu Triode (Acorn)		7BR	4-2	6.3	0.225	1.7	500		0.5	1.8 ▲	1.6 ▲
6L5-G	Medium-Mu Triode		6Q	12-7	6.3	0.15	_	250	_	3.0	5.0	2.7
6L6-G 6L6-GA 6L6-GB	Beam Power Amplifier		7AC	10-1 16-3 14-3 12-15	6.3	0.9	19	360	270 2.5	Single Single		
0L0-GD				12-15						2 Tub	es, Pusl	n-pull
										1	es, Pusl es, Pusl	-
							19	275	_	1	Conne P tied)	_
6L6-GC	Beam-Power Amplifier		7AC	12-15	6.3	0.9	30 ◈ 30 ◈	500 ♦	5.0	Two T	Conne P tied)	ush-
6L7	Pentagrid Mixer	 	7T	8-4 12-8	6.3	0.3	1.5	300	100	-	-	T
6L7-G				12-8			1.0	300	150 1.0	E _{c2} (v peak	Injectio	n) =18
6LB6	Beam-Power Amplifier		12GJ	12-90	6.3	2.25	30 🖲	990\$ 🏶	200 ♦ 5.0 ♦	33 ▲	18▲	0.44 🛦
6LB8	Triode-Pentode		9DX	9–69	6.3	0.725	4.0 🏶	330 ◈	330 \$ ③	Pento	ie Secti	on
							2.0 🏶	330 ◈	-	Triode	Sectio	n
6LC6	Beam Triode	(A)	8ML	12-36	6.3	0.2	40 🏶	27,000	_	2.6 🛦	1.0 ▲	1.04
6LC8¶	Triode-Pentode		9QY	6–3	6.3	0.6	2.0 ③ 1.1 ③	300 €	3008 €	·	de Sectio	
6LE8	Twin Pentode	 	9QZ	6-4	6.3	0.76	2.0 ◈	300 €	150 * 2.0 *	-	T	T
6LF6	Beam Power Amplifier		12GW	T-X	6.3	2.0	40◈	990:0		37 ▲	18.5	2.5 🛦
6LF8¶	Triode-Pentode	1	9DX	6-3	6.3	0.6	3.75	330 🎕	3301 €	Pento	de Sect	ion
							1.1	330 €	· ···	Triode	e Sectio	n

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

A - X-Radiation Rated, and A - No X-Radiation Rating.

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.

Supply voltage.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	200	125	R _k =	20	3.5	75,000	23,000	_	_		6KV8
Amplifier \	125	125	R _k = 82	16.5	3.1	55,000	21,000	_	_	-	
Class A Amplifier	200		2.0	4.0		17,500	4,000	70	_		
Class A Amplifier	200	135	R _k = 47	30	5.2	40,000	30,000	(g3 c k at	onnecte socket)	d to	6KY6
Vertical Amplifier	135 50	120 120	10 0	39 170	3.0 20	18,000	8,400	_	=	=	6KY8
rampinio:	Max p	ositive j	pulse pl	ate vol	tage 🔷 =	=2,000; ma	x d-c	athode	current	- ♦	
Vertical Oscillator		c catho		ent 🏶 =	22 ma	40,000	1,600	64	_		
Vertical Amplifier	135 50	120 120	10	39 170	3.0	18,000	8,400	_	=	=	6KY8-A
**************************************	Max p	ositive a	pulse	plate v		=2,000;	max d-	c catho	de cur	rent 🕸	
Vertical	250		1 3.0 1	1.4		40,000	1,600	64		ı —	
Oscillator Class A	Max d- 125	c catho	de curre	ent ⊕ =	22 ma 4.0	200,000	7,500	1			6KZ8¶
Amplifier		120	ļ	<u> </u>	1.0		1	40			0.7.200
Class A Amplifier	125		1.0	13.5		5,400	8,500	46	-		
Class A Amplifier	80		R _k = 150	9.5		4,400	6400	28	_		6L4
Class A Amp	250		9.0	8.0	_	9.000	1.900	17			6L5-G
Class A Amplifier	250	250	14	72†	5.0†	22,500	6,000	_	2,500	6.5	6L6 6L6-G
Class A	350	250	18	54†	2.5†	33,000	5,200	_	4,200	10.8	6L6-GA
Amplifier Class A	270	270	17.5	134†	11†	23,500	5,700		5,000	17.5	6L6-GB
Class A Amplifier Class AB ₁	360	270	22.5	88†	5.0†				3,800	18	
Amplifier	360	270	22.5	88†	5.0†				3.800	47	
Class AB ₂ Amplifier Class A Amplifier	250		20	40†	-	1,700	4,700	8,0	5,000	1.4	
Class AB ₁	450	400	37	116+	5.61				5,6001	55	6L6-GC
Amplifier	(Chara	ctarietic	s civer	above	for BLB	6L6G, 6L	6GA an	 d=61.60	i Pi		
	apply a	also.)									
Class A Amplifier	250	100	3.0	5.3	6.5	600,000	1,100	E _{c8} = -	3.0 vol	ts	6L7 6L7-G
Mixer	250	150	6.0	3.3	9.2	1,000,000	350 #	E _{c3} = -	-15 volt	s	-
Horizontal	150	110	20	105	2.0	6,600	13,400	(b.p.	connect	ed to	6LB6
Amplifier	45 Max pe	160 ositive p	0 oulse pla	900 ite volta	110 age ⊕ =	7,000; max	d-c cat	kats hode cu	ocket) rrent 🏽		
Class A	200	100	Rk =	17	3.5	50,000	20,000			 1	6LB8
Class A Amplifier	50	100	82 0	55	18	_			_		
Class A Amplifier	125	-	Rk = 68	13	-	6,000	5,000	30	-	-	
HV Shunt Regulator	Unregu = 1.6		l-c supp	oly voit	age =	36,000 volt	s; max	d-c pla	te curr	ent 🏶	6LC6
Class A Amplifier	150	100	Rk = 180	4.0	2.8	100,000	4,400	_	-	-	6LC8¶
Class A Amplifier	200	_	2.0	4.0	-	17,500	4,000	70	-		
Color De- modulator	100	100	2.5	8.0	15	50,000	5,800		Ec3 =	0 volts	6LE8
Horizontal Amplifier	160 75	160 160	30	175 1350	2.5	9 0001-	=	(Ec.	3 =0 vol	6LF6	
Class A	100	150	puise p	20	tage ⊗ ==	8,000 volts	11,000	1	T-		6LF8¶
Amplifier {	75 200	150	0 2.0	50 4.0	12	17,500	4,000	70	_	-	92.0

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	X-Ra-	Base Con-	Out-	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen	Ca _j	pacitanc Picofarac	e in Is
Туре	Construction	diation Rating	nec- tions	Dwg.	Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
6LG6■	Beam Power Amplifier		12HL	12-89	6.3	2.0	28◈	990:⊛	200 ◈ 5.0 ◈	25 ▲	13 ▲	0.8 🛦
6LH6	Beam Triode	0.5 mR/hr	8ML	12-36	6.3	0.2	40 ◈	27,000 •	-	2.6 ▲	1.0 ▲	1.0 ▲
6LH6-A	Beam Triode	0.5 mR/hr	8ML	12-36	6.3	0.2	40 🗃	27,000 D	-	2.6 ▲	1.0▲	1.0 🛦
6LJ6	Beam Triode	(A)	8MQ	12-36	6.3	0.2	40 ◈	27,000 •	-	2.6 ▲	1.0▲	1.0 ▲
6LJ6-A	Beam Triode	0.5 mR/hr	8MQ	12-21	6.3	0.2	40 🖲	27,000 •	-	2.6 ▲	1.0▲	1.0 🛦
6I.J8	Triode-Pentode		9GF	6–2	6.3	0.4	2.0 ③ 2.0 ④	280 ③ 280 ④	280 \$ � 0.5 � —		e Section	
6LM8	Triode-Pentode		9AE	6-2	6.3	0.45	2.5 🆠	350 �	330 8 🏶	Pentod	le Sectio	n
							2.5 🏶	330 🏶		-	Section	
6LM8-A¶	Triode-Pentode		9AE	6-2	6.3	0.45	3.75 ♦ 2.5 ♦	350 ◈	330 8 🏵		le Section Section	
6LN8¶	Triode-Pentode		9AE	6–2	6.0	0.45	1.7	250 250	200 0.75 —		e Section	
6LQ6	Beam Power Amplifier		9QL	12-117	6.3	2.5	30◈	990:⊛	220 ◈ 5.0 ◈	22 ▲	11 🛦	0.56
6LQ8	Triode-Pentode		9DX	6–3	6.3	0.775	5.0 ③ 2.0 ③	300 ♦	300\$	l .	le Section	
6LR6	Beam Power Amplifier		12FY	12-90	6.3	2.5	30◈	990:⊛	220 ◈ 5.0 ◈	33 ▲	12 ▲	0.47
6LR8	Triode-Pentode		9QT	12-65	6.3	1.5	14 ③ 2.5 ④	400 ③	300 (a) 2.75 (b)	1	le Section	
6LT8¶	Duplex-Diode Pentode		9RL	6–2	6.3	0.6	3.1 🏟	330 ◈	330 8 ♠ 0.65 ♠	1	le Section	
6LU6	Semi-Remote- Cutoff RF Pentode		7CM	5–2	6.3	0.4	4.0 🏶	300 ◈	300 8 ♦		2.2▲	0.058
6LU8■	Triode-Pentode		12 DZ	12–57	6.3	1.5	14 ③ 2.5 ③	400 •	300 3 2.75 3	l	le Section	
6LV6 =	Beam Power Amplifier		12GW	T-X	6.3	2.0	40 ◈	9908 @	275 ③ 9.0 ⑤	37 ▲	18.5 ▲	2.5
6LW6	Beam Power Amplifier		8NC	14-7	6.3	2.65	40 🏶	990\$@	280 ♦ 7.0 ♦	40▲	14.5	1.04
6LX6■	Beam Power Amplifier		12JA	12-136	6.3	2.55	33 🏶	9908 @	250 * 5.0 *	40▲	17 ▲	1.04
61.X8¶	Triode-Pentode		9DC	6–2	6.0	0.45	1.2	250 250	250 0.8	1	le Section	
		<u> </u>	<u></u>		l							-

See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions—

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

■Absolute maximum rating.

#Conversion transconductance.

See X-Radiation Warning, page 4.

											123
Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	175 60 Max = 31	125 125 positiv 5 ma.	23 0 e pulse	90 600 plate ve	1.7 42 oltage 🗷	$\frac{7,500}{-7,500}$ vol	11,500 ts; max	d-c cat	ΤΞ	rrent 🏽	6LG6
HV Shunt Regulator	Unreg 1.6 ma		i-c supp	oly volta	ige = 3	6,000 volts	; d-c pla	ite curr	ent 🔷 :	=	6LH6
HV Shunt Regulator	Unreg 1.6 ma	ulated o	i-c supp	oly volta	ige = 3	6,000 volts	; d-c pla	ite curr	ent =	•	6LH6-A ●
HV Shunt Regulator	Unregi		l-c supp	ly volta	ige = 3	6,000 volts	; d-c pla	te curre	ent 🚸 :	- 1	6LJ6
HV Shunt Regulator	Unreg		d-c supp	ply volt	age ==	36,000 volt	ts; max	d-c pla	ite curre	ent 🖲	6LJ6-A
Class A	125	125	R _k =	12	3.5	125,000	13,000			ı — I	6LJ8
Amplifier Class A Amplifier	125		33 R _k = 68	13	_	5,000	8,000	40	-	-	
Class A	125	125	2.0	12	4.0	150,000	6,000				6LM8
Amplifier Class A Amplifier	125		1.0	13.5	_	5,400	8,500	46		_	
Class A Amplifier	125	125	2.0	12	4.0	150,000	6,000	_			6LM8-A
Class A Amplifier	125		1.0	13.5	_	5,400	8,500	46			
Class A	170	170	2.0	10	2.8	400,000	6,200	_	_	- 1	6LN8¶
Amplifier Class A Amplifier	100	_	2.0	14	_	4,000	5,000	20			
Horizontal Amplifier			35 0 pulse	95 710 plate vo	2.4 55 Itage⊛	7,000 =7,500; ma	7,500 x d-c ca	<u> </u>	=30 vo urrent €	- 1	6LQ6
Class A	350 r 125	na. 125	R _k =	16.5	3.1	55,000	21,000	T ==	T == -		6LQ8
Amplifier Class A Amplifier	125		82 R _k = 68	15		4,400	10,400	46	_	-	
Horizontal Amplifier	175 60 Mar	110 110	20 0	140 700	2.4 35	5,300 7,500; max	16,000	i tok	connect at socke	t) [6LR6
Class A	135	120	10	56	3.0	12,000	9,300	—	-	373 IIIa.	6LR8
Amplifier Class A Amplifier	250	-	4.0	2.3	_	16,000	3,600	58	_	-	
Class A Amplifier	125	125	R _k = 56	10	3.4	200,000	13,000		4 20	-	6LT8¶
Class A	250	-c outp	ut curre	9.0	2.3	280,000	3,900	Voits :	at 20 ma	1 a-c -	6LU6
Amplifier			820								6LU8
Class A Amplifier Class A Amplifier	135 250	120	10 4.0	56 2.3	3.0	12,000 16,000	9,300 3,600	58	_	_	0200
Amplifier Horizontal Amplifier	160 75	160 160	30	175 1350	${2.5}$			(E _{r3}	= 0 vol	ts)	6LV6
11mpiner	Max	ositive	pulse p	late vol		= 8,000 vc	olts.				
Horizontal Amplifier	250 60 Max	250 110 positive	56 0	125 650 plate vo	4.2 37	<u> </u>	12,000 volts; d	-c cathe	ode cur	ent 🏟	6LW6
Ampimei		1	, ,						,		
	= 400						144000		1		6LX6
Horizontal Amplifier	= 400 175 60	110 110	21 0 pulse pl	125 750 ate volt	3.3 4.2 age 🇆	= 7,000 vol	14,000 ts; max	d-c cath	ode cur	rent 🌢	OLAU =
Horizontal	= 400 175 60 Max p	110 110	1 0	750	4.2	· —	, ,	d-c catl	ode cur	rent 🌢	6LX8¶

Metal tubes are shown in bold-face type, miniature tubes in italics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.
1, s, s, etc. indicate tube sections.

■ Maximum screen dissipation appears mediately below the screen voltage.
¶ Heater warm-up time controlled.

Tube	Classification	X-Řa-	Base Con-	Out-	Fila- ment	Fila- ment	Max. Plate	Max. Plate	Max. Screen	Car P	acitanco icofarad	e in Is
Type	by Construction	diation Rating	nec- tions	line Dwg.	Volts	Amps	Watts	Volts	Volts and Watts	Input	Out- put	Grid- Plate
6LY8	Triode-Pentode		9DX	6–3	6.3	0.75	5.0 🏟	330 �		Pentod	e Section	on.
							1.0 ◈	330 🏶		Triode	Section	i
6LZ6	Beam Power Amplifier		9QL	12-117	6.3	2.3	30 🏶	9902	220 ③ 5.0 ⑤	22 🛦	11 🛦	0.6
6M3	Half-Wave High-Vacuum Rectifier	,	8GV	T-X	6.3	3.0	8.0		l /oltage : 640 ma			l
6M11	Twin-Triode Pentode		12CA	9-58	6.3	0.75	3.1 🏶	1	330 2 � 0.65 �	Pento	le Section	on
							2.25	330 €		Triode	Section	ıs
6MA6	Beam Triode	0.5 mR/hr	8NP	12-21	6.3	0.2	40 €	30,000 (E)	_	2.4 🛦	0.88 ▲	0.03
6M B6	Beam Power Amplifier		12FY	T-X	6.3	2,25	35 ◈	9908 🏶	225 ♦ 7.0 €	35 ▲	17▲	0.5
6MB8	Triode-Pentode	 -	9FA	6-2	6.3	0.4	2.0 🏶	280 €		Pento	le Section	on
							2.0 🏶	280 🏶	0.5	Triode	Section	ı
6MC6	Beam Power Amplifier		9QL	T-X	6.3	2.85	33 🏶	9908 🏶	250 ③ 5.0 ④	40▲	16 ▲	1.0▲
6MD8	Triple Triode	-	9RQ	T-X	6.3	0.9	3.0 ◈	330 ◈	-	=	<u> </u>	-
6ME6	Beam Power Amplifier		9QL	12-117	6.3	2,3	30 ◈	9908 🏶	220 ♦ 5.0 ♦	22 ▲	11 🛦	0.6 ▲
6ME8	Double Plate Sheet Beam Tube		9RU	6-3	6.3	0.3	2.0 ♦	400 🏶	400 * 2.0 *	_		_
6MF8	Triode-Pentode		12DZ	12-57	6.3	1.4	12.	400€	300◈	Pentoc	le Section	n
							2.5�	400�	2.75	Triode	Section	ı
6MG8	Triode-Pentode		9DC	6-2	6.3	0.45	2.0 ③ 2.5 ④	330 3	300 \$!	ie Section	
6MJ8	Triple Triode		12HG	9-60	6.3	0.9	3.0♦	330⊛	_	2.9 ₁ ▲ 2.9 ₂ ▲ 3.0 ₃ ▲	0.361 A 0.62 A 0.73 A	2.8 ₁ A 2.8 ₂ A 2.8 ₃ A
6MK8	Twin Pentode	 	9FG	6-3	6.3	0.3	1.10	300◈	150 ◈ 0.75 ◈	5.0.	=	-
6MK8-A	Twin Pentode	†	9FG	6-3	6.3	0.3	1.1	300 ◈			[=	1-
6ML8	Triple Triode	 	9RQ	6-2	6.3	0.675	2.0♦	330⊛	1 -	1-	† -	F
6MN8	Triple Triode		12HU	9-60	6.3	0.9	3.0◈			4.6 ▲	0.331 0.572 0.651	
6MQ8	Triode- Pentode		9AE	6.2	6.3	0.535	2.5 3	1 '	0.55		ode Secti	
6MU8¶	Triode-	 	9AE	6-3	6.3	0.6	3.75	330 €		Pent	ode Sec	tion
	Pentode	1					2.5	330 €	1.1	Trio	ie Secti	on

\$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A - X-Radiation Rated, and A - No X-Radiation Rating.

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate.

Maximum.

Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Class A Amplifier TV Damper TV Damper Ma Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Final Part Amplifier Class A Amplifier Horizontal Amplifier Final Part Amplifier Elass A Amplifier Final Part Amplifier Amplifier Final Part A	15 100 — 125 125 125 125 125 125 125 125 125 125	ut currer rent = 1. R_k = 56 R_k = 120 d-c supple 20 0 0 pulse pla	11 8.0 oly volt	3.4	= 7,500 v x peak inv 200,000 7,250 36,000 volt	13,000 8,000	tage •	=6,000	volts;	6LY8 6LZ6 6M3 6M11
Amplifier Class A Amplifier Horizontal Amplifier TV Damper Ma Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Total To	125 125	25 0 e pulse p ut currer rrent = 1. R _k = 56 R _k = 120 d-c supp	1.0 140 1800 slate volume 100 ma 11 8.0 110 660	2.0 56 tage	6,000 = 7,500 v x peak inv 200,000 7,250 36,000 volt	11,000 volts; d- verse vol 13,000 8,000	c catho	=6,000	volts;	6M3
Amplifier TV Damper Ma ma: Class A Amplifier Class A Amplifier HV Shunt Regulator Horizontal Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Total State Sta	125	0 e pulse p ut currer rent = 1, R_k =	800	56 tage ◆ ma; ma 3.4 	= 7,500 v x peak inv 200,000 7,250 36,000 volt	volts; d- verse vol 13,000 8,000	tage •	=6,000	volts;	6M3
Class A Amplifier Class A Amp HV Shunt Regulator Horizontal Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Horizontal Amplifier Horizontal Amplifier Figure 6 Horizontal Amplifier Horizontal Amplifier	x peak cure 25 125	$R_{k} = 56$ $R_{k} = 120$ $d-c \text{ supp}$ 20 0 pulse pla	1100 ma 11 8.0 0ly volt 110 660	3.4 — age = 3	200,000 7,250 36,000 volt	13,000	 58			6M11
Amplifier Class A Amp Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Elass A Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier	25 — aregulated 1.5 ma. 110 110 ax positive 400 ma. 125	$ \begin{array}{c} 56 \\ R_k = \\ 120 \end{array} $ d-c supp $ \begin{array}{c} 20 \\ 0 \end{array} $ pulse pla	8.0 oly volt	age = :	7,250 36,000 volt	8,000		te curre	ent 📵	_
HV Shunt Regulator Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Horizontal Amplifier Horizontal Amplifier	regulated 1.5 ma. 110 110 ax positive 400 ma. 5 125	d-c supp	oly volt	2.0	36,000 volt			ite curre	ent 🖲	6MA6
Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier The state of the state	110 ax positive 400 ma. 5 125	0 pulse pla	660	2.0					i	•
Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Amplifier	5 125	(D	acc voite	42	5,000 = 8,000 volt	14,000 s; max o	_ l-c cath	ode cur	- rei.c 🏈	6M B6 ■
Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier		181 =	10	2.8	125,000	12.000		Г	 +	6M B8
Horizontal Amplifier 66 Max = Class A Amplifier 4 Horizontal Amplifier 55	5	R _k = 33 R _k = 68	13		5,000	8,000	40	_	_ [0 M B8
Class A Amplifier Horizontal Amplifier 55	5 110 0 110 ax positive 400 ma	21 0	125 750 ate volt	3.3 42 age 🏶 =	6,000 = 8,000 vol	14,000 ts; max	d-c cati	ode cur	rent 🏶	6MC6
Horizontal 175 Amplifier 55		10.5	11.5	T	5,500	3,100	17	T —	r=+	6MD8
Me		25	130 580	2.8	5,800	9,600	=	三		6ME6
1 ==	ax positíve 350 ma.	pulse pl	ate volt	age 🚸 =	≈ 8,000 voli	ts; max	i-c cath	ode cur	rent 🔷	
Color TV 25 Synchronous Detector (Windows) Tot	ith plates	e chang ie other	e on e deflect	ither de or requi	eflectors (eflector wired to switimum.	4,400 pins l th an itch the	and 2 equal plate	grou and or current	nded.) posite from	6ME8
Class A 250 Amplifier	250	20	50	3.5	5,000	4,100		_	-	6MF8
Class A 250 Amplifier Class A 17		4.0	2.6	2.8	14,000	4,100	58		-	
Amplifier Class A Amplifier	1	R _k = 56	18	2.8	400,000 5,000	6,200 8,500	40	_	_	6MG8
Class A Amplifier ♠) -	10.5	10	-	5,600	3,000	17		-	6MJ8
	Grid curre	nt adjuste			(Both see	c)		<u> </u>		6MK8
Color De- modulator ♠ (G		t adjuste	2.0 d for 10	4.4 00 micro	(Both Sec amperes d-	tions Or c)	erating	:)		6MK8-A
Class A Amplifier ♠ 125	-	1.0	111		6,400	6,700	43			6ML8
Class A Amplifier •		1.0	11	_	5,500	9,000	50	_	_	6MN8
Class A 125 Amplifier Class A 150		R _k = 62 R _k =	12 18	4.5	150,000 5,000	10,000 5,000	40	_		6MQ8
Amplifier		56			<u> </u>		20			
Class A 150 Amplifier Class A 125 Amplifier	1	R _k = 150 1.0	19 115	4.2	165,000 5,800	9,000	— 35	_		6MU8¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts	Cap P	acitance cofarad	s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
3MV8*	Triode-Pentode	9DX	6-2	6.3	0.6	2.5 🏶	330 ŵ	330 8 🏵	Pentoc	le Section	on
						1.0 🏶	330 ◈		Triode	Section	1
6MY8 ■	Triode-Pentode	12DZ	12-57	6.3	1.45	16 🏶	400 🏶	300 ♦ 2.75 ♦	Pentoc	le Section	on
						2.5 🏶	400 🏶	2.10 ·	Triode	Section	1
6N4	Medium-Mu Triode	7CA	5-1	6.3	0.2	3.0	180		3.0	1.6	1.1
6N5	Electron Ray Indicator same as 6AB5										
6N6-G	Direct-Coupled Power Amplifier Triode	7AU	14-3	6.3	0.8	13.5 2.5	300	300		_	_
6N7 6N7-G 6N7-GT	Twin-Triode Power Amplifier	8B	8-6 14-3 9-11	6.3	0.8	1.0 ♠	300	_	Push	ections -pull ections llel	
6P5-GT	Medium-Mu Triode	6Q	9-11	6.3	0.3	1.25	250		3.4	5.5	6.2
6P7-G	Triode-Pentode	7U	12-8	6.3	0.3	1.7 0.4	250 100	100	Pentod Triode	e Section Section	on L
6 07 6 07 -G 6 07 -GT	Duplex-Diode High-Mu Triode	7V	8-4 12-8 9-18	6.3	0.3	_	300		_	_	-
6Q11¶	Three-Section Triode	12BY	9-56	6.3	0.6	3.0 *	330 ◈		10) Section	1 (Pin s 2 and 5, 6, 7,	3
6R3	Half-Wave, High- Vacuum Rectifier	9CB	6-8	6.3	0.81	-	Tube V 16.3 V	oltage			
6R7 6R7-G 6R7-GT	Duplex-Diode Medium-Mu Triode	7 V	8-4 12-8 9-17	6.3	0.3	2.5	250	Ī —	4.8	3.8	2.4
6R8	Triple-Diode, Low-Mu Triode	9E	6-2	6.3	0.45	2.5	250				T =
6.54	Medium-Mu Triode	9AC	6-3	6.3	0.6	8.5�	550 ◈	_	4.2 ▲	0.6 ▲	2.4 ▲
654-A¶	Medium-Mu Triode	9AC	6-3	6.3	0.6	8.5 🏈	550 ◈	_	4.2 ▲	0.6 ▲	2.4 ▲
6S7 6S7-G	Remote-Cutoff RF Pentode	7R	8-2 12-8	6.3	0.15	2.25	300	300 \$ 0.25	6.5	10.5 8.0	0.005
6S8-GT	Triple-Diode High-Mu Triode	8CB	9-23. 9-48	6.3	0.3	0.5	300			_	=
6SA7-GT	Pentagrid Converter	8R♥ 8AD♥	8-1 9-11, 9-41	6.3	0.3	1.0	300	1.0	$R_{gi} = 3$	=0.5 n 20,000 c	hms
6SB7-Y	Pentagrid Converter	8R ♥	8-1	6.3	0.3	2.0	300	100	Osc Ic Rg1 = 2	=0.35 0,000 o	ma hms
6SC7-GT	High-Mu Twin-Triode	88	8-1 9-11	6.3	0.3		250		_		-
6SD7-GT	Semi-Remote-Cutoff Pentode	8N	9-12	6.3	0.3	4.0	300	125 0.4	9.0	7.5	0.003
6SE7-GT	Sharp-Cutoff Pentode	8.N	9-12	6.3	0.3	4.0	300	125 0.4	8.0	7.5	0.005
6SF5 6SF5-GT	High-Mu Triode	6AB	8-1 9-11	6.3	0.3		300	-	1 =	=	-
6SF7	Diode Remote-Cutoff Pentode	7AZ	8-1	6.3	0.3	3.5	300	300 1 0.5	5.5	6.0	0.004
6SG7-GT	Semi-Remote-Cutoff RF Pentode	8BK	8-1 9-12	6.3	0.3	3.0	300	300 \$ 0.6	8.5 8.5	7.0 7.0	0.003
6SH7 6SH7-GT	Sharp-Cutoff RF Pentode	8BK	8-1 9-12	6.3	0.3	3.0	300	300 8 0.7	8.5	7.0	0.003

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. *Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
	125	125	1.0	13	4.0	150,000	9,000				6MV8*
Amplifier Class A Amplifier	250	-	2.0	2,5	-	25,000	4,000	100	-	-	
Class A Amplifier	135	120	10	56	3.0	12.000	9.300		_		6MY8
Amplifier Class A Amplifier	45 250	125	0 4.0	200 2.3	20	16,000	3,600	- 58	=	=	
Class A Amplifier	180		3.5	12		5,400	6,000	32			6N4
Class A Amplifier	300 Input	300 Plate	0	45	8.0	24,000	2,400	_	7,000	4.0	6N6-G
Class B	300	-	0	35t	† <u>-</u> -				8,000‡	10	6N7
Amplifier Class A Amplifier	294	_	6.0	7.0	_	11,000	3,200	35	-	_	6N7 6N7-G 6N7-GT
Class A Amplifier	250		13.5	5.0		9,500	1,450	13.8		_	6P5-GT
Class A Amp Class A Amp	250 100	100	3.0 3.0	6.5 3.5	1.5	850,000 16,000	1,100 500	8.0			6P7-G
Class A Amplifier	250 100	=	3.0 1.0	1.0 0.8	=	58,000 58,000	1.200 1,200	70 70	_	=	6Q7 6Q7-G 6Q7-GT
Class A Amplifier	150		0	22		7,000	2,500	18	_		6Q11¶
Class A Amplifier •	100 250	=	1.0 2.0	0.5 1.2		80,000 62,500	1,250 1,600	100 100	=	=	
TV Damper	Max d	-c outp	ut curr	ent = 15	0 ma;	nax peak i	nverse	voltage	= 4,500	volts;	6R3
Class A Amplifier	250	_	9.0	9.5	_	8,500	1,900	16	_		6R7 6R7-G 6R7-GT
Class A Amplifier	250		9.0	9.5		8,500	1,900	16	10,000	0.30	6R8
Vertical Amplifier	250 Max p 30 ma	ositive 1	8.0 pulse pl	26 ate volt	— tage 🖲 =	3,600 2,200 volts	4,500 ; max d-	16 c catho	de curre	nt 🔷 =	654
Vertical	250	1	8.0	24	T —	3,700	4,500	16.5	I	T-	6S4-A¶
Amplifier	30 ma					2,200 volts;		c catho	ie curre	ent ⊕ =	
Class A Amplifier	250	100	3.0	8.5	2.0	1,000,000	1,750	_			6S7 6S7-G
Class A Amplifier	250		2.0	0.9	-	91,000	1,100	100	_		6S8-GT
Converter	250	100	2.0	3.5	8.5	1,000,000	450#	_			6SA7
Converter	100 250	100	2.0	3.3	8.5	500,000	425# 950#	<u> </u>		<u> </u>	6SA7-GT
Class A	250	-	2.0	2.0	-	53,000	1,325	70			6SC7
Amplifier • Class A	250	125	2.0	9.5	3.0	700,000	4,250	_			6SC7-GT 6SD7-GT
Amplifier Class A Amplifier	250	100	1.5	4.5	1.5	1,000,000	3,400	-	-		6SE7-GT
Class A Amplifier	250 100	1=	2.0	0.9	T	66,000 85,000	1,500 1,150	100 100			6SF5-GT
Class A Amplifier	250	100	1.0	12.4	3.3	700,000	2,050	=	-	-	6SF7
Class A Amplifier	250 250 100	150 125 100	2.5 1.0 1.0	9.2 11.8 8.2	3.4 4.4 3.2	1,000,000 900,000 250,000	4,000 4,700 4,100	=	=		6SG7-GT
Class A	250	150	1.0	10.8	4.1	900,000	4,900	-			6SH7 6SH7-GT

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitance icofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6SJ7-GT	Sharp-Cutoff Pentode	8.	8-1 9-12	6.3	0.3	2.5	300	300 \$	Pentod	e Conne	ection
00),-01						2.5	250			Connec G ₂ & P	
6SK7 6SK7-GT	Remote-Cutoff RF Pentode	8N	8-1	6.3	0.3	4.0	300	300	6.0	7.0	0.003
03111-01			9-11						6.5	7.5	0.005
6SL7-GT	High-Mu Twin-Triode	8BD	9-11, 9-41	6.3	0.3	1.0♠	300	_	_		
6SN7-GT	Medium-Mu Twin Triode	8BD	9-11, 9-14	6.3	0.6	3.5 ♦ 5.0 ⊕	300		2.8 ₁ ▲ 3.0 ₂ ▲	0.8 ₁ A	3.8₁ ▲ 4.0₃ ▲
6SN7-GTA 6SN7-	Medium-Mu Twin Triode	8BD	9-11 or	6.3	0.6	5.0 ♠	450		2.2 ₁ ▲ 2.6 ₂ ▲	0.7 ▲	4.0 ₁ ▲ 3.8 ₁ ▲
GTB¶	TWIN THOUSE		9-41			7.5⊕			2.01		3.03
6SQ7-GT	Duplex-Diode, High- Mu Triode	8Q	8-1 9-12	6.3	0.3	0.5	300		3.2 4.2 ▲	3.0 3.4 ▲	1.6 1.8 A
6SR7 6SR7-GT	Duplex-Diode Medium-Mu Triode	8Q	8-1 9-11	6.3	0.3	2.5	250		3.6	2.8	2.4
6SS7	Remote-Cutoff RF Pentode	8N	8-1	6.3	0.15	2.25	300	100 0.35	5.5	7.0	0.004
6ST7	Duplex-Diode Medium-Mu Triode	8Q	8-1	6.3	0.15	2,5	250		2.8	3.0	1.5
6SU7- GTY	High-Mu Twin-Triode	8BD	9-11	6.3	0.3	1.0 ♠	250		_		_
6SV7	Diode Sharp-Cutoff RF Pentode	7AZ	8-1	6.3	0.3	2.3	300	300 \$ 0.6	6.5	6.0	0.004
6SZ7	Duplex-Diode High-Mu Triode	8Q	8-1	6.3	0.15	_	300	=	2.6	2.8	1.1
6T4	UHF Triode Oscillator	7DK	5-1	6.3	0.225	3.5	200		2.6 ▲	0.4 ▲	1.7▲
6T5	Electron-Ray Indicator	6R	9-26	6.3	0.3	_	250\$				
6T7-G	Duplex-Diode High-Mu Triode	7V	12-8	6.3	0.15	_	250	_	1.8	3.1	1.7
6T8 6T8-A¶	Triple-Diode High-Mu Triode	9E	6-2	6.3	0.45	1.1 🏶	330 ◈	_	1.7	2.4	1.7
6T9	Triode-Pentode	12FM	9-58	6.3	0.93	12 🕸	275 ◈	275 ♦	Pentod	e Section	on
						1.5 ◈	300 ◈		Triode	Section	1
6T10	Dissimilar Double Pentode	12EZ	9-59	6.3	0.95	10 🆠	275 🏶	275 ③ 2.0 ③	Section 10, 1		s 8, 9,
	Double Tensore					1.7 ◈	330 ◈	330 2 🏵	Section	ı 2 (Pin	s 2, 3,
6U4-GT	Half-Wave High- Vacuum Rectifier	4CG	9-13	6.3	1.2		Tube V 21 v at	oltage 250 m	Drop:		
6U5	Electron-Ray Indicator	6R	9-26	6.3	0.3		285	58 Max target voltage = 285 Min target voltage = 125			
6U6-GT	Beam Power Amplifier	7AC	9-11	6.3	0.75	11	200	135	-	 	Γ
6U7-G	Remote-Cutoff RF Pentode	7R	12-4	6.3	0.3	2.25	300	100 0.25	5.0	9.0	0.007

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕] Total for all similar sections.

■ Absolute maximum rating.

Conversion transconductance.

Service	Plate Volts	Screen Volts	Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A	250 100 250	100 100	3.0 3.0 8.5	3.0 2.9 9.2	0.8 0.9	1,000,000 700,000 7,600	1,650 1,575 2,500		=	=	6SJ7 6SJ7-GT
Amplifier (250 180		6.0	6.0		8,200	2,300	19		_=_	
Class A Amplifier	250 100	100 100	3.0 1.0	9.2 13	2.6 4.0	800,000 120,000	2,000 2,350	_	=	=	6SK7 6SK7-GT
Class A Amplifier •	250		2.0	2.3		44,000	1,600	70			6SL7-GT
Class A Amplifier •	250 90		8.0 0	9.0 10	=		2,600 3,000	20 20		=	6SN7-GT
Class A Amplifier •	250 90	=	8.0 0	9.0 10	=	7,700 6,700	2,600 3,000	20 20	=		6SN7-GTA 6SN7-GTB¶
Vertical Amplifier ♠	Max p 7.5 wat	ositive tts; max	pulse pi	ate vol	tage 🖲 =	=1500 volt =20 ma	s; max	plate d	ssipatio	n 🕀 =	
Class A Amplifier	250 100	=	2.0 1.0	1.1 0.5		85,000 110,000	1,175 925	100 100			6SQ7 6SQ7-GT
Class A Amplifier	250		9.0	9.5			1,900	16			6SR7 6SR7-GT
Class A Amplifier	250	100	3.0	9.0	2.0	1,000,000	1,850	_			6887
Class A Amplifier	250		9.0	9.5		8,500	1,900	16			6ST7
Class A Amplifier •	250		2.0	2.3		44,000	1,600	70			6SU7-GTY
Class A Amplifier	250 100	150 100	1.0 1.0	7.5 3.7	2.8 1.4	1,500,000 700,000	3,600 2,600	=			6SV7
Class A Amplifier	250		3.0	1.0		58.000	1,200	70			6S27
Class A Amplifier	80		R _k == 150	18	_	1,860	7,000	13			6T4
Tuning Indicator	illumin	roltage = (ation) ($E_c = 0$	volts for	g, targe r min il	et voltage : lumination)	_	2 volts	for max	6T5
Class A Amplifier	250		3.0	1.2		62,000		65			6T7-G
Class A Amplifier	250 100	<u> </u>	3.0 1.0	1.0 0.8		58,000 54,000		70 70			6T8 6T8-A¶
Class A Amplifier Class A	250 250	250	8,0 2.0	35† 1.5	2.5†	100,000	6,500 2,100	95	5,000	4.2	6T9
Amplifier Class A	250	250	8.0	35†	2.5†	100.000	6,500	95	5,000		
Amplifier Class A	150	100	R _k ==	1,3	2.1	150,000	1,000	E _{c3} =	0 volts	4,2	6T10
Amplifier Half-Wave	Max d-	c outou	t curren	t = 125	ma: ma	x peak inv	zerse vo	tage =	1250 vo	lts: rms	6U4-GT
Rectifier TV Damper	supply Max d max pe	voltage -c outpu eak curr	=350 v it curre ent =60	olts; ma nt = 125 0 ma	x peak of ma; m	current = 60 nax peak ir	00 ma iverse v	oltage (3850) volts;	
Tuning Indicator	Plate v =0°) (4 ma)	oltage = (E _c = 0	=250 th volt, sh	ru 1 me; adow =	g, targe 90°, pl	t voltage = ate curren	:250 (E, t = 0.24	= -22 ma, ta	volts, rget cu	shadow rrent =	6U5
Class A Amplifier	200	135	14.0	55†	3.0†	20,000	6,200	_	3,000	5.5	6U6-GT
Class A Amplifier	250	100	3.0	8.2	2.0	800,000	1,600				6U7-G

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Volts	Capa Pi	cofarac	e in Is
Туре	by Construction	nec- tions	Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
U8	Triode-Pentode	9AE	6-2	6.3	0.45	3.0 🌢	330 🏽	330 ♦\$	Pentode	e Section	on
SU8-A¶						2.5 🏶	330 ◈	0.55	Triode	Section	1
3U9	Triode-Pentode	10K	6-2	6.3	0.41	2.1	250	250 0.7	Pentode	Section	on
						1.5	250	==	Triode	Section	1
3U10¶ 📰 .	Three-Section Triode	12FE	9-56	6.3	0.6	2.0 🏶	330 ◈	_	Section: (Pins	4, 9, 1	
						1.0 🏶	330 ◈	-	2, 3, (Section 6, 7)	11) 12 (F	ins 5,
3V3 3V3-A	High-Wave, High- Vacuum Rectifier	9BD	6-7 T-X	6.3	1.75	2.7	Tube V	oltage 250 ma	Drop:		
6V4	Full-Wave, High- Vacuum Rectifier	9 M	6-3	6.3	0.6		Tube V		Drop: •		
6V5-GT	Beam Power Amplifier	6AO	9-11	6.3	0.45	12	315	$\frac{285}{2.0}$			T-
SV6	Beam Power Amplifier	7AC	86	6.3	0.45	14 ◈	350 ◈	315 ♦ 2.2 ♦	Single 7	l'ube	
:									2 Tubes	s, Push	-pull
5V6-GT 5V6-GTA¶	Beam Power Amplifier	7AC	9-11 or	6.3	0.45	14 🕸	350 ◈	315 * 2.2 *	Single ?	Γube	
			9-41				_	_	2 Tube:	s, Push	-Pull
						10	315 ◈	_	Triode (G ₂ & I	Conne	ction
6V7-G	Duplex-Diode Medium-Mu Triode	7V	12-8	6.3	0.3		250		2.0	3.5	1.7
6V8	Triple-Diode, High-Mu Triode	9AH	6-2	6.3	0.45	1.0	300				-
6W4-GT	Half-Wave High- Vacuum Rectifier	4CG	9-11, 9-41	6.3	1.2	3.5	21 v at	oltage 250 ma	ı d-c		
6W4-GTA	Half-Wave High- Vacuum Rectifier	4CG	9-11	6.3	1.2	4.0 🌑	Tube V	oltage s at 250	Drop:) ma d-c		
6W5-G	Full-Wave High-Vacuum Rectifier	6S	12-7	6.3	0.9		Tube V 24 v at	oltage 90 ma	Drop:♠ d-c	,	411
6W6-GT	Beam Power Amplifier	7AC	9-11 or 9-41	6.3	1.2	12 🏶	330 🏶	165 * 1.35 *	Pentod	e Conr	ection
			9-41			8.5 🏶	330 ◈	-	Triode	Conne tied)	ction
6W7-G	Sharp-Cutoff Pentode	7R	12-8	6.3	0.15	0.5	300	300 0.1	5.0	8.5	0.007
6X4	Full-Wave High-Vacuum Rectifier		5-3	6.3	0.6		22 v at	70 ma			
6X5 6X5-GT	Full-Wave High-Vacuum Rectifier	6S	8-6 9-11	6.3	0.6	-	22 v at	oltage 70 ma	Drop: ♠ d-c	•	
6X8	Triode-Pentode Converter	9AK	6-2	6.3	0.45	2.3 🆠	275		Pentod		
6X8-A¶						1.7 ◈	275 ◈		Triode		
6X9	Triode-Pentode	10K	6-2	6.3	0.41	2.1	250	250 0.7	Pentod		
				1	1	1.5	250	-	Triode	Section	n

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	125	110	1.0	9.5	3.5	200,000	5,000		_	<u> </u>	6U8 6U8-A¶
Class A Amplifier	125	-	1.0	13.5	_		7.500	40	_	-	000-A (
Class A Amplifier	160	110	1.4	13	5.0		12,000	(E _{e3} =	0 volts)	6U9
Class A Amplifier	100		2.0	14	_		5,000	17	_	-	
Class A Amplifier	200	_	6,0	9,6	_	7,700	2,300	17.5			6U10¶
Class A Amplifier	200	-	1.5	1.2	_	61,000	1,600	98	-	-	
TV Damper		d-c outp			5 ma; 1	max peak i	nverse v	voltage	= 600	0 volts;	6V3 6V3-A
Full-Wave Rectifier	Max 6) ma; m	ax RMS su	pply vo	ltage pe	r plate		6V4
Class A Amplifier	315 250	225 250	13 12.5	34† 45†	2.2† 4.5†	77,000 52,000	3,750 4,100		8,500 5.000	5.5 4.5	6V5-GT
Class A	315 250	225 250	13 12.5	34† 45†	2.2† 4.5†	80,000 50,000	3.750 4.100	_	8,500 5,000	5.5	6V6
Amplifier Class AB:	180	180 285	8.5 19	29† 70†	3† 4†	50.000 70.000	3,700	l —	5,500 80001	2.0	
Amplifier	$\frac{285}{250}$	250	15	70t	5†	60,000	3,750		10000	10	
Class A	315 250	225 250	13 12.5	34† 45†	2.2† 4.5†	80,000 50,000	3,750 4,100		8,500 5,000		6V6-GT 6V6-
Amplifier	180	180	8.5 19	29† 70†	3.01	50,000	3,700	-	5,500 8,0001	2.0	GTAT
Class AB ₁ { Amplifier	285 250 250	285 250	15 12.5	70†	5.0†	1.960	5,000	9.8	100001	10	
Vertical Amplifier	Max =40	positive ma	pulse 1	plate vo	ltage 🕏	= 1200 vol	ts; max	d-c cat	hode cu	irrent 🏵	
Class A Amplifier	250	-	20	8.0		7,500	1,100		20,000	0.350	6 V 7-G
Class A Amplifier	250 100		3.0 1.0	1.0		58,000 54,000	1,200 1,300		=	_	6V8
TV Damper	Max	d-c out	out curr	ent = 1	25 ma;	max peak	inverse	voltage	= 385	0 volts;	6W4-GT
TV Damper	Max	d-c outp	ut curre	ent 🏶 =	140 ma t =	; max peak 840 ma	inverse	voltage	· • =		6W4-GTA
Full-Wave Rectifier	Max	d-c outp	ut curre	ent = 90	ma; m:	ax peak inv olts; max p	erse vol	ltage = :	1250 vo	lts; max =270 ma	6W5-G
Class A	200	125	R _k =	46†	2.21	28,000	8,000	-	4,000	3.8	6W6-GT
Amplifier Vertical	110 225	110	7.5	49† 22	4.0†	13,000 1,600	8,000 3,800		2,000	2.1	
Amplifier (positive		ate vol		=1200; max	d-c cat	hode cu		=65 ma	
Class A Amplifier	250	100	3.0	2.0	0.5	1,500,000		_	_		6W7-G
Full-Wave Rectifier	suppl	v voltag	e per pl	ate 🏟 =	360 vol	ax peak inv ts; max pea	k currer	at per p	late 🏶 =	=245 ma	
Full-Wave Rectifier	Maxe	d-coutp	e per ni	nt ⊚ = 8 ate ⊛ =	360 vol	ax peak inv ts; max pea	erse vol	tage 🍥	= 1250 v late 🏶 =	olts;rms 245 ma	6X5 6X5-GT
Class A	125	125	1.0		2.2	300,000	5,500		T	T =	6X8
Amplifier Class A Amplifier	125	-	1.0	12	-	6,000	6.500	40	-	-	6X8-A¶
Class A	160	135	1.7	13	5.0		14,000	-	-	_	6X9
Amplifier Class A Amplifier	170	-	1.0	8.5	_		4,800	55	<u> </u>		

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max Plate	Max Screen Volts	Cap P	acitance icofarad	in s
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Volts	and Watts	Input	Out- put	Grid- plate
6Y3-G	Half-Wave High- Voltage Rectifier	4AC	12-8	6.3	0.7	_		-		_	
6Y6-G 6Y6-GA 6Y6-GT	Beam Power Amplifier	7AC	14-3 12-14 9-11	6.3	1.25	12.5	200	200 \$ 1.75	12.0 🛦	7.5▲	0.7▲
6Y7-G	Twin-Triode Power Amplifier	8B	12-7	6.3	0.6	11.5⊕	250		Both S Push-p	ections ull	in
6Y9	Dissimilar Double Pentode	10L	6–3	6.3	0.8	5.0 1.5	250 250	250 2.5 250	Section 8, 9, 10 Section	1 (Pin:)) 2 (Pin:	•
6Y10	Dissimilar Double Pentode	12EZ	9-58	6.3	0.83	4.8 🏶	300 ◈		2, 3, 4) Section 10, 11)	1 (Pin	s 8, 9,
	rentode					1.7 🏶	300 ◈	300 8 🌢	Section 5, 6, 7)		s 2, 3,
6Z5	Full-Wave High-Vacuum Rectifier	6K	12-5	${6.3 \atop 12.6}$	0.8)				_		
627-G	Twin-Triode Power Amplifier	8B	12-7	6.3	0.3	4.0 ♠	180		Push-p		
6Z10	Pentode—Gated-Beam Discriminator	12 BT	9–58	6.3	0.95	10 🏶	,	275 ♦ 2.0 ♦ 330 \$ ♦	Discrin	e Section 3, 9, 1 Beam ninator 5, 6, 7	
6ZY5-G	Full-Wave High-Vacuum Rectifier	6 S	12-7	6.3	0.3		Tube V	oltage 40 ma	Drop:		,
7A4	Medium-Mu Triode	5AC	9-30	6.3	0.3	2.5	300	T =	3.4	3.0	4.0
7A5	Beam Power Amplifier	6AA	9-31	6.3	0.75	5.5	125	125 1.2			_
7A6	Twin Diode	7AJ	9-30	6.3	0.15	_		oltage 16 ma		•	
7A7	Remote-Cutoff RF Pentode	8V	9-30	6.3	0.3	4.0	250	100 0.4	6.0	7.0.	0.005
7A8	Octode Converter	8U ♦	9-30	6.3	0.15	1.0	300	100 0.3	Osc Ici Rg1 = 5	=0.4 m 0,000 o	a nms
7AB7	Sharp-Cutoff RF Pentode	8BO	9-32	6.3	0.15	1.2	300	300 \$ 0.15	3,5	4.0	0,06
7AD7	Power Amplifier Pentode	87	9-31	6.3	0.6	10	300	300 \$	11.5	7.5	0.03
7AF7	Medium-Mu Twin Triode	8AC	9-30	6.3	0.3	2.5 🍁	300	_	2.2	1.6	2.3
7AG7	Sharp-Cutoff RF Pentode	8V	9–30	6.3	0.15	2.0	300	300 0.75	7.0	6.0	0.005
7AH7	Remote-Cutoff RF Pentode	8V	9–30	6.3	0.15	2.0	300	300 \$ 0.7	7.0	6.5	0.0 08
7AJ7	Sharp-Cutoff RF Pentode	8V	9-30	6.3	0.3	1.0	300	100 0.1	6.0	6.5	0.007
7AK7	Sharp-Cutoff Dual-Control Pentode	8V	9-31	6.3	0.8	8.5	200	100 2.5	12.0	9.5	0.7
7AU7¶	Medium-Mu Twin Triode	9A	6-2	{7.0 {3.5	0.3	2.75 ♦	330 ◈	-	1.8	2.0	1.5
7B4	High-Mu Triode	5AC	9-30	6.3	0.3	-	300	-	3.6	3.4	1.6

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Half-Wave Rectifier	Max o	d-c outp ms supp	ut currely volt	ent = 7. $age = 5.0$	5 ma; r 000 volt	nax peak i s; max pea	nverse	voltage nt = 100	=14,000 ma	volts;	6Y3-G
Class A Amplifier	200	135	14	61†	2.2†	18,300	7,100	-	2,600	6.0	6Y6-G 6Y6-GA 6Y6-GT
Class B Amplifier	250		0	5.3†					14,000‡	8.0	6Y7-G
Class A Amplifier Class A	170 150	170 150	2.6 2.3	30 10	6.5 3.0	40,000 160,000	21,000 8,500	_	-	_	6Y9
Amplifier Class A Amplifier	250	250	R _k = 270	16†	2.7†	150,000	8,400		15,000	1.1	6 Y 10
Class A Amplifier	150	100	R _k = 180	3.7	3.0	140,000	3,700		 	-	
Full-Wave Rectifier	Maxo	i-c outp	ut curre	ent =60	ma; ma	x peak inv	erse vol	tage =]	500 vol	ts	6Z5
Class B Amplifier	180		0	4.2†		Input sign	al =0.32	20 watts			6Z7-G
Class A Amplifier FM Limiter- Discrimi- nator	250 135	250 280 \$	8.0	35† 5.0	3.0† (Rg ₂ = 3	100,000 33,000 ohm	6,500 (E _{C3} :	- +4.0	5,000 volts)	4.2	6Z10
Full-Wave Rectifier	Maxo	l-c outp	it curre	nt = 40	ma; ma = 325 vc	x peak inv	erse vol	tage = 1	250 vol	ts; max 20 ma	6ZY5-G
Class A Amplifier	250 90	_	8.0	9.0		7,700 6,700	2,600 3,000		=	E	7A4
Class A Amplifier	110	110	7.5	40†	3.0†	16,000	5,800		2,500	1.5	7A5
Half-Wave Rectifier	Max o	i-c outpolits; max	ut curre	ent per p	olate = 8 per plate	ma; max r = 45 ma	ms supp	ly volt	age per	plate =	7A6
Class A Amplifier	250	100	3.0	9.2	2.6	800,000	2,000		-		7A7
Converter	250	100	3.0	3.0	3.2	700,000	550 #	E_{c2} (Osthru 20 $I_{c2} = 4$.	c Plate) ,000 oh 2 ma	=250 ms	7A8
Class A Amplifier	250	100	2.0	4.0	1.3	500,000	1,800		_		7AB7
Class A Amplifier	300	150	R _k = 68	28	7.0	300,000	9,500				7AD7
Class A Amplifier •	250		10	9.0		7,600	2,100	16			7AF7
Class A Amplifier	250	250.	R _k = 250	6.0	2.0	1,000,000	4,200			- '	7AG7
Class A Amplifier	250	250	R _k = 250	6.8	1.9	1,000,000	3,300	_			7AH7
Class A Amplifier	100 250	100 100	1.0 3.0	5.7 2.2	1.8 0.7	400,000 1,000,000	2,275 1,575				7AJ7
Class A Amplifier	150 150 150	90 90 90	0 11 0	40 2.5 ♠ 2.0 ♠	21 0.45 60♣	11,500	6,000	$E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = 9$	volts volts .5 volts		7AK7
Class A Amplifier Vertical	250 100 Max p	ositive p	8.5 0 ulse pla	10.5 11.8	=	7,700 6,500 1,200; max	2,200 3,100 d-c cath	17 20 lode cu	rrent 🏶		7A U7¶
Amplifier Class A Amplifier	250	-	2.0	0.9		66,000	1,500	100	-		7B4

Tube	Classification by	Base Con- nec- tions	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitano icofarac	
Type	Construction		Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7B5	Power Amplifier Pentode	6AE	9-31	6.3	0.4	8.5	315	285 2.8			_
B6	Duplex-Diode High-Mu Triode	8W	9-30	6.3	0.3	0.5	300				_
В7	Remote-Cutoff RF Pentode	8V	9-30	6.3	0.15	2.25	300	100 0.25	5.0	6.0	0.00
B8	Pentagrid Converter	8X♦	9-30	6.3	0.3	1.0	300	100 0.3	Osc I _{c1} R _{g1} = 5	=0.4 m 0,000 ol	a nms
7C4	High-Frequency Diode	4AH	9-30	6.3	0.15			Tube V			
7C5	Beam Power Amplifier	6AA	9-31	6.3	0.45	12	315	285 2.0			
7C6	Duplex-Diode High-Mu Triode	8W	9-30	6.3	0.15	0.6	300			=	=
7C7	Sharp-Cutoff Pentode	8V	9-30	6.3	0.15	1.0	300	100	5.5	6.5	0.00
7E5	High-Frequency Triode	8BN	9-30	6.3	0.15	4,0	250		3.6	2.8	1.5
7E6	Duplex-Diode Medium-Mu Triode	8W	9-30	6.3	0.3	2.5	250	=		_	=
E7	Duplex-Diode Remote-Cutoff Pentode	8AE	9-30	6.3	0.3	2.0	250	100	4.6	4.6	0.00
EY6¶	Beam Pentode	7AC	9-15	7.2	0.6	11 🏟	350 ◈	300 ♦ 2.75 ♦	8.5 ▲	7.0▲	0.7 ▲
7F7	High-Mu Twin Triode	8AC	9-30	6.3	0.3	1.0♠	250				=
7F8	High-Frequency Twin Triode	8BW	9-32	6.3	0.3	3.5 ♠ 3.5 ⊕	300	-	2.8	1.4	1.6
7 G 7	Sharp-Cutoff Pentode	8V	9-30	6.3	0.45	1.5	250	100	9.0	7.0	0.00
7G8	Sharp-Cutoff Twin Tetrode	8BV	9-32	6.3	0.3	1.5♠	300	300\$	3.4	2.6	0.15
7GS7	Triode-Pentode	9GF	6-2	7.6	0.3	2.0	250	150	Pentod	e Section	n
						1.5	125	=	Triode	Section	1
7GV 7	Triode-Pentode	9KN	T-X	7.4	0.3	2.0	250	230	Pentoc	le Section	on
						2.0	250	_	Triode	Section	1
7H7	Semi-Remote-Cutoff RF Pentode	8V	9-30	6.3	0.3	2,5	300	300 \$ 0.5	8.0	7.0	0.00
7 <i>HG8</i>	Triode-Pentode	9MP	6–2	7.2	0.3	2.0	250	150	Pentod	e Section	on
						1.5	125	-	Triode	Section	ı
737	Triode Heptode Converter	8BL	9-30	6.3	0.3	0.5 1.25	300 150	100 0.4	$R_{g_1} = 5$	=0.4 m 0,000 of Section	hms
7 K 7	Duplex-Diode High-Mu Triode	8BF	9-30	6.3	0.3	_	250		_	_	Γ-
7KY6¶	Sharp-Cutoff Pentode	9GK	6-3	7.3	0.45	9.0�	330◈	330 : ③	14 🛦	6.0 ▲	0.16
7KZ6¶	Sharp-Cutoff Pentode	9GK	6-3	7.3	0.45	9.0◈	330◈	330:♦	13 ▲	6.0▲	0.16
7L7	Sharp-Cutoff Pentode	8V	9-30	6.3	0.3	4.0	300	125	8.0	6.5	0.01
7N7	Medium-Mu Twin Triode	8AC	9-31	6.3	0.6	2.5♠	300	1=	_	_	

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	315 250	250 250	21 18	25.5† 32†	4.0† 5.5†	68,000	2,100 2,300		9,000 7,600	4.5 3.4	7B5
Class A Amplifier	250 100		2.0 1.0	0.9 0.4		91,000 110,000	1,100 900	100 100	=		7B6
Class A Amplifier	250 100	100 100	3.0 3.0	8.5 8.2	1.7	750,000 300,000	1,750 1,675		=		7B7
Converter	250	100	3.0	3.5	2.7	360,000	550 #	E_{c2} (Os thru 20 $I_{c2} = 4.0$	c Plate) ,000 oh 0 ma	=250 ms	7B8
Half-Wave Rectifier	Max d-	c outpu	t currer	t = 5.0	ma; ma:	x rms suppl	y volta				7C4
Class A Amplifier	315 250	225 250	13.0 12.5	34† 45†	2.2† 4.5†	77,000 52,000	3,750 4,100	=	8,500 5,000	5.5 4.5	7C5
Class A Amplifier	250 100	_	1.0 0	1.3	=	100,000 100,000	1,000 850	100 85			7C6
Class A Amplifier	250	100	3.0	2.0	0.5	2,000,000	1,300	_			7C7
Class A Amplifier	180	_	3.0	5.5	_	12,000	3,000	36			7E5
Class A Amplifier	250		9.0	9.5	_	8,500	1,900	16		-	7E6
Class A Amplifier	250	100	3.0	7.5	1.6	700,000	1,300	=			7E7
Vertical Amplifier	250 50	250 250	17.5 0	44 153	3.0	60,000 2,500; max	4,400	=	=	=	7EY6¶
Class A Amplifier •	250	—	2.0	2.3			1,600	70	-		7F7
Class A Amplifier •	250		R _k = 500	6.0			3,300	48			7F8
Class A Amplifier	250	100	2.0	6.0	2.0	800,000	4,500				7G7
Class A Amplifier •	250	100	2.5	4.5	0.8	225,000	2,100				7G8
Class A Amplifier	170	150	1.2	10	3.3	350,000	12,000	_	-		7GS7
Class A Amplifier	100		3.0	14		_	5,500	17			
Class A Amplifier	125	125	1.5	10	3.1	_	11,000	_	_		7GV7
Class A Amplifier	100		3.0	14			5,500	17			
Class A Amplifier	250 100	150 100	R _k = 180	10	3.2	800,000	4,000	-	_	-	7H7
Class A	170	150	$\frac{1.5}{1.2}$	7.5	3.3	350,000	12,000	-		 -	7HG8
Amplifier Class A Amplifier	100	-	3.0	14	_	3,100	5,500	17	-	-	
Converter	250	100	3.0	1.4	2.8	1,500,000	290 #	250 thr	ode Osc u 20,000 ode) = 5	ohms	7J7
Class A Amplifier	250	=	2.0	2.3	 - 	44,000	1,600			<u> </u>	7K7
Class A Amplifier	200	135	Rk = 47	30	5.2	40,000	30,000	(g3 c k at	onnecte socket)	d to	7KY6¶
Class A Amplifier	250	115	R _k =	25	3.6	45,000	24,000	(g3 c	onnecte socket)	d to	7 <i>KZ6</i> ¶
Class A Amplifier	250	100	1.5	4.5	1.5	1,000,000	3,100		<u> </u>	Γ=-	7L7
Class A Amplifier •	250	T=	8.9	9.0	1=	7,700	2,600	20			7N7

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca _j	acitan icofara	e in ds
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
707	Pentagrid Converter	8AL	9-30	6.3	0.3	1.0	300	1.0	Osc Ici Rgi = 2	=0.5 r	na hms
7R7	Duplex-Diode Remote-Cutoff Pentode	8AE	9-30	6.3	0.3	2.0	250	250 8 0.25	5.6	5.3	0.004
787	Triode-Heptode Converter	8BL	930	6.3	0.3	0.6	300	100 0.4	Osc Ici Rei = 5		
7T7	Sharp-Cutoff RF Pentode	8V	9-30	6.3	0.3	3.0	300	3008	7.5	5.5	0.005
7V7	Sharp-Cutoff RF Pentode	8V	9-30	6.3	0.45	4.0	300	3001			-
7W7	Sharp-Cutoff RF Pen- tode	8BJ	9-30	6.3	0.45	4.0	300	3008	-	_	
7X6	High-Vacuum Rectifier- Doubler	7AJ	9-31	6.3	1.2		22 v at	oltage 150 ma	Drop: 4	•	······
7X7/- XXFM	Duplex-Diode High-Mu Triode	8BZ	9-31	6.3	0.3		300	=		=	_
7¥4	Full-Wave High-Vacuum Rectifier	5AB	9-30	6.3	0.5		22 v at	oltage 70 ma	d-c		
724	Full-Wave High-Vacuum Rectifier	5AB	9-31	6.3	0.9		Tube \	oltage 100 ma	Drop: 4	•	
8A8	Triode-Pentode	9DC	6-2	8.4	0.3	1.7	250 250	200 0.75	Pentod Triode		
8AC9¶	Duplex-Diode	12GN	9-57	8.4	0.45	2.5 🏶	330 ◈	330 2 ♠ 0.55 ♠	Pentod	e Sect	on
	Pentode				İ		Tube V	Voltage s at 50	Drop:	•	
8AC10¶	Triple Triode	12FE	9-58	8.4	0.45	2.0◈	330◈	-	2.41 ▲ 2.62 ▲	0.221	1.3 ₁ A 1.2 ₂ A 1.2 ₃ A
8AC10-AT	Friple Triode	12FE	9-56	8.4	0.45	2.0	330 ◈	-	2.41	0.2214	1.31
8AL9¶ ■	Triode-Pentode	12HE .	9~59	8.6	0.6	10 ♦ 1.5 ♦	330 ♦ 330 ♦	200 �	Pento	de Secti e Secti	ion
8AR11¶	Twin Pentode	12DM	9-58	∴8.4	0.6	3.1	330 ◈	330 8 ③ 0,65 ③	10	2.8 ₁ 3.0 ₂	0.026
8AU8¶	Triode-Pentode	9DX	6-3	8.4	0.45	3.0	300	300	Pentor	e Sect	ion.
anco (111000 1 011000			"		2.5	300	1.0	i	Sectio	
8AU8-A¶	Triode-Pentode	9DX	6-3	8.4	0.45	3.0	300	3002	Pentoc	e Sect	ion
						2.5	300	_	Triode	Sectio	n
8AW8-A¶	Triode-Pentode	9DX	6-3	8.4	0.45	3.75 ◈	330 ◈	330 ♦ \$ 1.1 ♦	Pentod	le Sect	on
						1.1 🏶	330 ◈		Triode	Sectio	n
8B10¶	Duplex-Diode Medium-Mu Twin Triode	12BF	9-56	8.5	0.45	2.5 ♦	330 €	}	1.7 ₁ A 1.8 ₂ A Diode	1.6 ₁ 0.6 ₂ Section	1.5 A
8BA8-A¶	Triode-Pentode	9DX	6-3	8:4	0.45	3.25	300	3001	Pentoc	le Sect	ion
						2.0	300		Triode	Sectio	n
8BA11¶-	Triode-Twin Pentode	12ER	9-58	8.4	0.45	1.1 🏶	300 €	150 ③ 0.75 ④	Pentoc	le Sect	ions
						1.5 🏶	300 €		Triode	Sectio	n

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Converter	250	100	2.0	3.5	8.5	1,000,000	550 #		_	- 1	707
Class A Amplifier	250 100	100 100	1.0	5.7 5.5	2.1 2.2	1,000,000 350,000	3,200 3,000				7R7
Converter	250	100	2.0	1.8	3.0	1,250,000	525 #	thru 20	ode Osc 0,000 oh ode) = 5	ms .	787
Class A Amplifier	250	150	1.0	10.8	4.1	900,000	4,900		<u> </u>		7T7
Class A Amplifier	300	150	R _k = 160	10	3.9	300,000	5,800				7V7
Class A Amplifier	300	150	R _k = 160	10	3.9	300,000	5,800		_		7W7
Rectifier or Doubler	Max	d-c out	out curr	ent per	plate =	=75 ma; m	ax peak	inverse	voltag	e = 700; 450 ma	7X6
Class A Amplifier	250	_	1.0	1.9	_	67,000	1,500	100	-	T	7X7/- XXFM
Full-Wave Rectifier	Max	d-c outp	ut curre	ent = 70	ma; ma	ax peak inv olts; max p	erse vol	tage == 1	250 vol	ts; max	7Y4
Full-Wave	Max	d-c outp	ut curre	nt = 10) ma; m	ax peak inv olts; max p	erse vol	tage = 1	,250 vo	ts; max	7 Z 4
Rectifier Class A	170	upply vo	2.0	er plate	= 325 V	400,000	6,200	ent per	plate =	300 ma	8A8
Amplifier Class A	100	-	2.0	14	-	_	5,000	20	-		
Amplifier Class A	125	125	1.0	12	4.5	150,000	10,000		-		8AC9¶
Amplifier	Max	d-c outp	out curr	ent 🕸 🛊	= 5.0 n	i na	1	1	1	'	
Class A Amplifier •	200	-	R _k =	9.0	T =	10,700	5,800	62	T =	T=	8AC10¶
Class A Amplifier •	200	-	R _k = 150	9.0	T=	10,700	5,800	62	_		8AC10-A
Video Amplifier	250	150	R _k =	28	5.6	40,000	во,000	<u> </u>	† –	-	8AL9¶ ■
General Purpose	55 200	125	0 R _k = 270	56 7.6	21_	9,200	6,300	59	=		
Amplifier Class A Amplifier	125	125	R _k = 56	11	3.5	200,000	10,500	_		-	8AR11¶
Class A	200	125	R _k = 82	15	3.4	150,000	7,000				8AU8¶
Amplifier Class A Amplifier	150	-	R _k == 150	9.0	-	8,200	4,900	40	-		
Class A	200	125	R _k == 82	17	3.4	100,000	8,000				8AU8-A
Amplifier Class A	40	125	0	28	10			_	-	-	
Class A Amplifier	150	150	R _k = 150 R _k =	9.5	3.5	8,100	5,300 9,500	43			8AW8-A
Class A Amplifier		1	150	46		200,000	3,000				0A W 0-A
Class A Amplifier	200 200	150	2.0	4.0	15	17,500	4,000	70	=	=	
Class A Amplifier	250	-	9.5	7.0		9,750	1,850	18		-	8B10¶
Horizontal Phase Det.	Max	d-c out	put curr	ent 🕸 🖣	=5.0 n	na; voltage	drop:	♣ 5 vo	ts at 20	ma d-c	
Class A	200	150	R _k =	13	3.5	400,000	9,000		T -	T=	8BA8-A
Amplifier \ Class A	65 200	150	8.0	42 8.0	12.5	6,700	2,700	18	-	=	
Amplifier Sync Sepa- (100	67.5		2.5	4.4	(Both Se	ctions	(Ec8;	=0 volts	<u> </u> s)	8BA11¶
rator and AGC Keyer Class A Amplifier	100 250	67.5	0.1 ma	5.0	=	Operatin	g) 1,700 1,800		0 volts	i)	.

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca _j	acitano icofara	e in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid plate
8BH8¶	Triode-Pentode	9DX	6-3	8.4	0.45	3.0	300	300 \$ 0.6	Pentod	e Section	on
						2.5	300	-	Triode	Section	1
3BM11¶	Dissimilar Double Pentode	12FU	9-58	8.4	0.45	2.2 🏟	160 ◈		Section	1 (Pin	s 7,
	rentode					2.2 🏶	160 🏶	0.55 * 160 * 0.55 *	8, 9, 10 Section 3, 4, 5,	2 (Pin 6)	s 2,
BN8¶	Duplex-Diode	9ER	6-3	8.4	0.45	1.5	300	-	3.6 ▲	0.32 ▲	2.5
	High-mu Triode			İ					Diode	Section	j S
8BN11¶	Twin Pentode	12GF	9-58	8.4	0.6	3.1 ◈	330�	330 : ⊕ 0.65 ⊕	12	2.8	0.041
8BQ5¶	Beam Power Amplifier	9CV	6-4	8.0	0.6	12	300	300 2.0	=		-
BQ11¶ ■	Dissimilar Double Pentode	12DM	9-58	8.4	0.6	3.1 🏶	330 ◈	3309	Section	1 (Pin	s 7,
	rentoge		ĺ			3.1 🏶	330 ◈	0.65 3	Section 3, 4, 5,	2 (Pin	ıs 2,
BU11¶	Twin-Triode	12FP	9-59	7.8	0.6	2.5 🏶	330 ♦	3308			on
	Pentode					1.8	330 �	0.55	Triode	Section	ıs
BCB11¶ ■	Twin Pentode	12DM	958	8.4	0.6	3.1 🏶	330�	330 ♦ 0.65 ♦	12₁ ▲ 12₂ ▲	2.6₁ ▲ 2.8₂ ▲	0.028 0.02
CG7¶	Medium-mu Twin Triode	9AJ	6–3	8,4	0.45	3.5 ♠ 5.0 ⊕	300	_	2.3 ▲	2.2 ▲	4.0
BCM7¶	Medium-mu	9ES	6-3	3.4	0.45	1.25	500		Section	1 (Pins	3, 6,
	Double Triode					5.0	500	_	Section	2 (Pins	1, 8,
SCN7¶	Duplex-Diode Triode	9EN	6-2	8.4 4.2	$0.225 \\ 0.45$	1.0	300		1.5▲	0.5 🛦	1.8
				1 4.2	0.10				Diode	Section	S
CS7¶	Double Triode	9EF	6-3	8.4	0.45	1.25	500		Section	1 (Pins	6, 7,
						6.5	500	-	Section	2 (Pins	s 1, 3,
8CW5 8CW5-A¶	Power Amplifier Pentode	9CV	6-4	8.0	0.6	14 🏟	275 ♦	220 ♦ 2.1 ♦	Single	Tube	
SCW 8-A T	rentode							2.1	Two T	ubes, P	ush-
CX8¶	Triode-Pentode	9DX	6-3	8.0	0.6	5.0 🏶	330 ◈	330 ♦\$		e Sectio	on
						2.0 🏟	330 �	_	Triode	Section	1
BCY7¶	Double Triode	9LG	6-3	7.9	0.6	1.0 🏶	350 ◈	-		1 (Pin	ns 6,
						5.5 ◈	350 ◈	-	8) Section 9)	2 (Pi	ns 1,
EB8¶	Triode-Pentode	9DX	6-3	8.0	0.6	5.0 ◈	330 €	330 ♠ \$	Pentod	e Section	on
						1.0 🏶	330 ◈	1.1	ł	Section	
8EM5¶	Beam Power Amplifier	9HN	6-4	8.4	0,6	10	315	285 1.5	10 🛦	5.1 ▲	0.7

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watta	Tube Type
Class A	200	125	R _k =	15	3.4	150,000	7,000			i — i	8BH8¶
Amplifier Class A Amplifier	150	_	82 5.0	9.5	_	5,150	3,300	17	_	_	-
Class A	125	125	R _k =	14	3.6	220,000	8,800				8BM11¶
Amplifier Class A Amplifier	125	125	56 R _k = 120	9.0	2.5	300,000	. 8,500		_		
Class A Amplifier	250 100	_	3.0 1.0	1.6 1.5		28,000 21,000	2,500 3,500	70 75	_	= 1	8BN8¶
Horizontal Phase Det.	Max d		it curre	nt 💠 =		voltage dr	ор ♠: 2	6 volts		ma d-c	
Class A Amplifier •	125	125	R _k = 56	11	3.8	200,000	13,000	(g3 c	onnecte socket)	d to	8BN11¶
Class A Amplifier	250	250	R _k == 135	48†	5.5†	40,000	11,300		4,500	5.7	8BQ5¶
Class A	125	125	Rk=	11	3.5	200,000	10,500	-	=		8BQ11¶
Amplifier Class A Amplifier	125	125	56 R _k = 56	11	3.8	200,000	13,000	_	_		
Class A	125	125	1.0	12	4.0	200,000	7,500		_		8BU11¶
Amplifier Class A Amplifier •	125	-	R _k =	13.5	_	5,000	8,600	43	_		
IF, Band- pass Burst, Video Amplifier ♠	125	125	R _k = 56	11	3.8	200,000	13,000	_	_	_	8CB11¶
Class A	250		8.0	9.0	T — "	7,700	2,600	20	I —		8CG7¶
Amplifier 🌩	250 90	=	12.5 0	1.3		6,700	3,000	20		=	
Vertical	200	l =	7.0	5.0		10,500	2,000	21		(=-	8CM7¶
Oscillator Vertical	250	-c catho —	1 8.0	20	ı —	4,100	4,400	18	l —	<u></u>	
Amplifier (250	ositive r	oulse pla	te volt	age 🖲 🛥	2,200; max 58,000	1.200	hode cu	rrent =	20 ma	8CN7¶
Amplifier	100	=	1.0	0.8		54,000	1,300	70		l, =	001111
Horizontal Phase Det.		-c outpu			5.0 ma;	voltage dro			20 ma	a-c	
Vertical Oscillator	250 Max d	— -c catho	8.5	10.5	ma	7,700	2,200	17	· —	ı —	8CS7¶
Vertical	250		10.5	10		3,450 2,200; max	4,500	15.5	—	30 ma	
Amplifier \\ Class A	170	170	12.5	1 70†	3.5†	26,000	11,000	—	2,400	5.6	8CW5
Amplifier Class AB ₁ Amplifier	250	200	18.5	91†	4.0†	_			3,000‡	25	8CW5-A
Class A	200	125	R _k ==	24	5.2	70,000	10,000				8CX8¶
Amplifier	40	125	68	40	15.5	_	_	l —	I —		
Class A Amplifier	150	_	R _k = 150	9.2		8,700	4,600	40			
Vertical { Oscillator	250 Max p	eak neg	3 ative gr	1.2	— age	52,000 400	1,300		—	١ —	8CY7¶
Vertical	150	-	R _k = 620	30 80	<u> </u>	920	5,400	5.0	-		
Amplifier	60 Max p	ositive 1		i ou ste volt	age 🏶 =	1,800; max	d-c cat	hode cu	rrent 🏶	=35 ma	
Class A	200	125	R _k = 68	25	7.0	75,000	12,500	ī —	1 -	T -	8EB8¶
Amplifier Class A Amplifier	250	-	2.0	2.0		37,000	2,700	100	_		
Vertical	250 60	250 250	18	35 180	3.0		5,100	_			8EM6¶
Amplifier	Max p	ositive	pulse pl	ate vol	tage 🖭	= 2,200 vol	ts; max	d-c cat	hode cu	rrent =	

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max	Max Screen Volts		acitano icofara	
Type	by Construction	nec- tion	line Dwg	Volts	Amp	Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
8ET7¶	Duplex-Diode Pentode	9LT	6–3	8.0	0.6	5.0 🏶	330 �	330 ♦ \$ 1.1 ♦	10▲	4.2 ▲	0.1 ▲
		_			-					Section	
8FQ7¶	Medium-Mu Twin Triode	9LP	6–3	8.4	0.45	4.0 ♦ 5.7 ♦ ⊕	330 ◈		2.4	0.34 ₁ ▲ 0.26 ₂ ▲	1
8GJ7	Triode-Pentode	9QA	T-X	8.0	0.3	2.4 🌑	275 ♦	275 🏶	Pentod	e Section	on
						1.8 ♦	140 ◈	0.55 🏶		Section	
8GN8¶	Triode-Pentode	9DX	6-3	8.0	0.6	5.0 ③	330 �	330 ♦ \$ 1.1 ♦	i	e Section	
<i>8GU</i> 7¶	Medium-Mu Twin Triode	9LP	6–3	8.4	0.45	3.0 ♦	330 ◈			0.441	3.0 ▲
8GX7¶	Triode-Pentode	9QA	6–2	7.7	0.3	2.2 🏟	275	2758 ◈	Pentod	e Secti	on
						1.5�	275 🏶	0.45	Triode	Section	1
8HA6	Pentode	9NW	6-4	8.0	0.6	8.0 🏶	300 ◈	250 ♦ 1.5 ♦	13 ▲	8.0 ▲	0.18
8HG8	Triode-Pentode	9MP	6-2	8.0	0.3	2.0	250	150 0.5	1	le Secti	
8JE8¶	Triode-Pentode	9DX	6-3	8.2	0.6	1.5 5.0 €	125 330 ♦	330.	Pentod	Section Section	
os me il	1110de-1 entode	JUA		5.2	0.0	1.0 🏟	300 ◈	2.0	ľ	Section	
8JK8	Double Triode	9AJ	6-2	8.4	0.3	1.0 🏶	165 🏶	=	Section 8)	1 (Pi	ns 6, 7,
						2.0 🏶	200 🏶		3)		ns 1, 2,
8JL8	Triode-Pentode	9DX	6-3	8.0	0.6	5.0 ③ 2.0 ④	330 ◈	175 (a)	l	le Secti Section	
8 JT8¶	Triode-Pentode	9DX	9-69	7.7	0.6	4.0 🏶	330 ◈	330 \$ ⊕ 1,1 ⊕	Pentoc	le Secti	on
8JU8-A¶	Quadruple Diode	9PQ	6-2	8.4	0.45	1.0 🌢	330 € Tube \	Voltage s at 60	Triode Drop:	Section	<u>n</u>
8JV8¶	Triode-Pentode	9DX	6-3	8.5	0.45	4.0 🏟	10 volt	s at 60 330 �	Pentoc	le Secti	on
00 7 0 %	111046 1 6110046	1211				1.1 🏶	330 ◈	1.7	ı	Section	
8KA8¶	Triode-Pentode	9PV	6-3	8.4	0.45	2.0 🏶		300 3 ③	·I	le Section	-
8KR8¶	Triode-Pentode	9DX	6-3	8.0	0.6	1.1 ♦ 5.0 ♦	300 €			de Sec	
onno i	a riout-a carout	J. J. J. J. J. J. J. J. J. J. J. J. J. J		0.0	""	2.0 🏶	330 ♦	1.5	1	e Section	
8KS8¶	Triode-Pentode	9DX	6–3	8.4	0,45	3.75 ♦	330 ◈	330 3 🍨	Pentod	le Secti	on
						1.1 🏶	330 ◈		Trioda	Section	
8LC8¶	Triode-Pentode	9QY	6-3	8.4	0.45	2.0 🏶	300 ◈	1.1	Pentod	le Secti	on
				<u> </u>		1.1 🏶	300 ◈	l .	ruode	Section	п
8LE8¶	Twin Pentode	902	6-4	8.0	0.6	2.0 ◈	300 ◈	2.0		_	
8LS6¶	Sharp-Cutoff Pentode	9GK	6-3	7.7	0.45	5.0 ◈	180 �	180 ♦ 1.2 ♦	7.2 ▲	4.2 ▲	0.075

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. § Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	200	150	$R_k = $	25	5.5	60,000	11,500			i — i	8ET7¶
Amplifier	60 Avera	150 ge Diod	100 0 e curren	55 it at 10	18 volts =	1.5 ma		-			
Class A	250		8.0	9.0	I	7,700 6,700	2,600	20		i =	8FQ7¶
Amplifier	90	_	0	10	-	6,700	3,000	20			- 7
Class A	170	120	1.2	10	3.0	350,000	11,000				8GJ7
Amplifier Class A Amplifier	100		3.0	15			9,000	20	_	-	
Class A	200	150	R _k =	25	5.5	60,000	11,500				8GN8¶
Amplifier Class A Amp	250		$\frac{100}{2.0}$	2.0		37,000	2,700	100	l —		
Class A Amplifier •	250		10.5	11.5		5,500	3,100	17		-	8GU7¶
Class A	125	125	1.0	8,0	2.5	200,000	11,000	_			8GX7¶
Amplifier Class A Amplifier	125		1.0	13		4,700	8,500	40			
Class A Amplifier	150	100	R _k = 33	28	3.5	20,000	20,000	_	-	-	8HA6
	60	100	0	45	9.0						OTT CO
Class A Amplifier	170	150	1.2	10	3.3	350,000	12,000		-	_	8HG8
Class A Amp	100 250	170	3.0	$\frac{14}{22}$	4.0	3,100	$\frac{5,500}{12,000}$				8JE8¶
Class A Amplifier		170	R _k = 82		4.0	-	1		-	-	0.7 2.0 1
Class A Amp Class A	100	=	1.0	4.5 5.3	<u> </u>	16,600 8,000	4,200 6,800	70 55	 		81K8
Amplifier Class A Amplifier	135	_	1,2	10		5,400	13,000	70	-	_	0,110
Class A	300	150	3.5	25†	5.0†	60,000	11,500		5,000	1.8	8JL8
Amplifier Class A Amplifier	150		R _k = 150	10		7,500	4,700	35	-	-	
Class A Amplifier	200	100	R _k = 82	17	3.5	50,000	20,000		_	-	8JT8¶
Class A Amp	35 250	100	90	50 1.5	17	37,000	2,700	100			
Detector	Max	d-c out	put curi	ent pe	r plate	>=9.0 ma; plate ♦=5	max pe	ak inv	erse vo	tage 🗇	8JU8-A¶
Class A	$\frac{=300}{125}$	volts;	max per	1 22	1 4.0	100.000	111,500	1 —	Т—	ī —	8JV8¶
Amplifier Class A	40 200	125	0 2.0	28 4.0	9.0	17,500	4,000	70	=	=	
Amplifier Class A Amplifier	150	100	R _k = 180	4.0	2.8	100,000	4,400	-	-		8KA8¶
Class A Amp			2.0	4.0		17,500	4,000	70	.		
Video Amplifier	200 35	100	R _k = 82	19.5 54	13.5	60,000	20,000	_	_	_	8KR8¶
General Purpose Amplifier	125	100	R _k = 68	15	10.0	4,400	10,400	46	-	-	
Class A	150	150	R _k = 150	20	4.5	150,000	9,500	-	T -	-	8KS8¶
Amplifier Class A Amp	65 200	150	0 2.0	60 4.0	20	17,500	4,000	70			
Class A	150	100	$R_k =$	4.0	2.8	100,000	4,400	-	 -		8LC8¶
Amplifier Class A Amplifier	200	_	180 2.0	4.0	-	17,500	4,000	70	-		
Color De- modulator	100	100	2.5	8.0	15	50,000	5,800		Ee3 =	0 volts	8LE8¶
Video Amplifier	110	110	R _k = 65	14	3.2	54,000	11,000	(E ₀₃	= 0 vo	olts)	8LS6¶

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Volts	Cap P	acitano icofara	e in ds
Type	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Voits	and Watts	Input	Out- put	Grid- plate
8LT8¶	Duplex-Diode Pentode	9RL	6–2	8,1	0.45	3.1 ◈	330 ◈	330 8 ♦ 0.65 ♦	Pentod	e Section	
8MU8¶	Triode-Pentode	9AE	6-3	8.4	0.45	3.75 ◈	330 ◈	3308 🏶		de Sect	
						2.5 🏶	330 �	1.1 🏶	Triod	e Sectio	on
8SN7- GTB¶	Medium-mu Twin Triode	8BD	9-11 or 9-41	8.4	0.45	5.0 ♠ 7.5 ⊕	450		2.2₁ ▲ 2.6₂ ▲	0.7 ▲	4.0 ₁ 4 3.8 ₂ 4
8U9	Triode-Pentode	10K	6-2	8.0	0.3	2.1	250	250 0.7		e Section	
						1.5	250			Section	
8X9	Triode-Pentode	10K	6–2	8.0	0.3	2.1	250	250 0.7	Pentod	e Sectio	on
						1.5	250	-	Triode	Section	1
948	Triode-Pentode	9DC	6-2	9.0	0.3	1.7	250	200	Pentod	e Section	on
						1.5	250	0.75	Triode	Section	1 .
9AH9¶ ■	Trìode-Pentode	12HJ	9-59	8.8	0.6	10 🕸	400 ◈	3308 €	Pento	de Sect	ion
						2.0�	330 ◈	1.0	Triode	e Sectio	n
9AK10¶ ■	Triple Triode	12FE	9–59	9.5	0.6	2.0 🏟	330 ◈	=	4.2₁ ▲ 4.2₁ ▲ 4.2₁ ▲	0.31 A 0.41 A 0.541 A	3.2 ₁ 3.0 ₂ 3.0 ₃
9AU7¶	Medium-mu Twin Triode	9A	6-2	{9.4 {4.7	0.225 0.45	2.75 ◈	330 ◈	-	1.8	2.0	1.5
9BJ11¶	Dissimilar Double	12FU	9-58	9.6	0.45	2.8 🏶	160 🌒	160 🌢	Section	1 1 (Pi	ns 7, 1
	Pentode					2.2 🏶	160 ◈	1.25 * 160 * 0.55 *	9, 10 Section 4, 5,), 11) 1 2 (Pi 6)	ns 2,
9BR7¶	Duplex-Diode Triode	9CF	6-2	{9.4 4.7	0.3	2,5	300		2.8 Diode	1.0	1.9
9CG8-A¶	Triode-Pentode	9GF	6-2	9.5	0.3	2.3 🏟	275 🎕	275	1	le Secti	
3CO8-A [Triode-rentode	agr	0-2	5.0	0.3	1.7 🏶	275 🏶	0.45	1	Section	
9CL8¶	Triode-Tetrode	9FX	6-2	9.5	0.3	2.8	300	300\$	Tetrod	e Secti	on
						2.7	300	0.5	Triode	Section	n
9DZ8	Triode-Pentode	9JE	T-X	9.0	0.6	6.5	150	135	Pentoc	le Secti	on
						0.75	150	1.5	Triode	Section	n
9EA8¶	Triode-Pentode	9AE	6-2	9.5	0.3	3.1 ◈	330 €	330 8 	Pentoc	le Secti	on
						2.5 🏶	330 €) — ·	Triode	Section	n
9EF6¶	Beam Power Amplifier	78	9-13 or 9-42		0.6	10	250	250 2.0	11.5▲	9.0 ▲	0.8
9GH8-A¶	Triode-Pentode	9AE	6-2	9.45	0.3	2.5	350 €		Pentoc	le Secti	ion
						2.5 ◈	330 €	0.55	Triode	Sectio	n
9GV8	Triode-Pentode	9LY	6-4	9.5	0.6	7.0	250 €		Pento	de Secti	ion
						0.5	250	2.0	Triode	Section	n

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. # Conversion transconductance.

Service	Piate Volts	Screen Voits	Neg Grid Volts	Piate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	125 Max d	125 c outpu	R _k = 56	10	3.4 = 5.0 ma	200,000 ; voltage d	13,000 rop: 5.0	volts a		d-c. ♠	8LT8¶
Class A	150	150	Rk=	19	4.2	165.000	9,000		l —	 	8MU8¶
Amplifier Class A Amplifier	125	_	150 1.0	11.5		5,800	6,000	35	_	_	om co ,
Class A Amplifier Vertical	250 90 Mar 2	- citiva	8.0 0	9.0 10		7,700 6,700 1,500 volts	2,600 3,000	20 20	=	=	8SN7- GTB¶
Amplifier •	max d-	sitive p	de curre	nt 🏶 =	22 ma	1,500 VOIES	•				
Class A	160	110	1.4	13	5.0		12,000	(E _c =	0 volts	, I	8U9
Amplifier Class A Amplifier	100	_	2.0	14	-	_	5,000	17	-	-	
Class A	160	135	1.7	13	5.0		14,000				8X9
Amplifier Class A Amplifier	170	-	1.0	8.5	-	_	4,800	55	-	_	
Class A	170	170	2.0	10	2.8	400,000	6,200				9A8
Amplifier Class A Amplifier	100	_	2.0	14	-	_	5,000	20	_	_	
Video	250	150	R _k =	25	6.0	55,000	21,000		<u> </u>		9AH9¶ ■
Amplifier	50	125	122 0	76	32						
General Purpose Amplifier	250	-	R _k == 68	8.0	³² —	7,300	2,750	20	=	=	
Color Dif- ference Amplifier	200	_	R _k == 230	10	_	7,500	7,000	53	-	-	9AK10¶ ■
Class A Amplifier Vertical Amplifier	250 100 Max po max d-	ositive p	8.5 0 oulse pla	10.5 11.8 ate volt	age � =	7,700 6,500 1,200 volts	2,200 3,100	17 20	=	=	9AU7¶
Class A	110		E _{cc1} =	5.8	6.8	40,000	7,500	Ret=	0.1 meg		9B J11¶
Amplifier Class A Amplifier	125	125	0 R _k = 120	8.5	2.5	400,000	9,600	Ecci =	0 volts	-	
	250		R _k = 200	10		10.900	5,500	60			9BR7¶
Class A Amplifier	100	-	200 R _k = 270	3.7	-	15,000	4,000	60		-	
Horizontal `	Max pe	ak outp	ut curre	ent 💠 =	60 ma; v	roltage dro	p 💠 : 5 v	olts at 1	7 ma	`	
Phase Det. Class A	125	125	1.0	9.0	1 2.2	300,000	5,500				9CG8-A¶
Amplifier Class A Amplifier	125		1.0	12	_	6,000	6,500	40	_	_	BOOD-IX (
Class A	125	125	1.0	12	4.0	100,000	5,800				9CL8¶
Amplifier Class A Amplifier	125	–	R _k = 56	15	_	5,000	8,000	40	-	-	•
Class A	145	120	Rk =	45†	6.01		7,500		2,500	2.0	9DZ8
Amplifier Class A Amplifier	120	-	180 R _k = 1500	0.8	-	_	1,400	100	_	-	
Class A	125	125	1.0	12	4.0	200,000	6,400				9EA8¶
Amplifier Class A Amplifier	150	-	R _k = 56	18	-	5,000	8,500	40	-	-	
Vertical	250	250	18	50	2.0		5,000				9EF6¶
Amplifier	75 Max n	250	0	170	17	 2,000; max	d-0.004	hode a		60	
Class A	125	125	1.0	12	age 🖭 =	2,000; max 200,000	7.500			l —	9GH8-A¶
Amplifier Class A Amplifier	125	_	1.0	13.5	_	5,400	8,500	46	-	-	vono-a 1
Class A	170	170	15	41	2.7	25,000	7,500				9GV8
Amplifier Class A Amp	100	<u> </u>	0.8	5.0	<u> </u>	7,600	6,500	50			

Metal tubes are shown in bold-face type, miniature tubes in italics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.
1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears
■ mmediately below the screen voltage.
■ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts		acitance icofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volis	and Watts	Input	Out- put	Grid- plate
9JW8¶	Triode-Pentode	9DC	6-2	9.0	0.3	1.2	250	250 0.8	Pento	de Sect	ion
						1.4	250	V.8	Triod	e Sectio	n
9KC6¶	Dual-Control Pentode	9RF	6-3	8.7	0.45	7.0 🏶	400 ◈	330 \$ ♦ 1.5 ♦			-
9K X6¶	Sharp-Cutoff Pentode	9GK	6-3	8.7	0.45	11.5◈	400◈	330:♦	17.5▲	4.0▲	0.12 ▲
9KZ8¶	Triode-Pentode	9FZ	6–2	9.45	0.3	2.5 🏶	330 ◈	330 8 ◈ 0.55 ◈	Pentod	& Section	n
						2.5 🏶	330 ◈	-	Triode	Section	
9LA6¶	Sharp-Cutoff Pentode	9GK	6-3	8.7	0.45	10⊛	400◈	330 : � 1.0�	15▲	6.0▲	0.15
9ML8¶	Triple Triode	9RQ	6–2	9.6	0.45	2.0 ♦ €	330 ♦	_	_	<u> </u>	T-
9MN8¶ =	Triple Triode	12HU	960	9.5	0.6	3.0 ◈	330 ◈	_	4.6 ▲	0.3 ₁ 0.57 ₂ 0.65 ₃	2.6 ▲
9U8-A¶	Triode-Pentode	9AE	6-2	9.45	0.3	3.0 ◈	330 ◈	330 ♦ \$ 0.55 ♦	Pentod		n
						2.5	330 ◈			Section	
9X8¶	Triode-Pentode Converter	9AK	6–2	9.5	0.3	2.0	250	250 \$ 0.4	ĺ	e Sectio	
	-					1.5	250	-	Triode	Section	
10	Power Amplifier Triode	4D	T-X	7.5	1.25	12	425	=	4.0	3.0	7.0
10AL11¶	Dissimilar Double Pentode	12BU	9-59	9.8	0.6	10 🏶	275 ♦	275 ♦ 2.0 ♦	Section 9, 10	1.1 (P	ns 8,
-	rentode					1.7 ◈	330 ◈	330 1 🍑	Section 3, 4,	6, 7)	ins 2,
10BQ5¶	Beam Power Amplifier	9CV	6-4	10.6	0.45	12	300	300 2.0		<u> </u>	
10C8¶	Triode-Pentode	9DA	6-2	10.5	0.3	2.2 🏶	300 ◈	300 ♦8 0.55 ♦	Pentod	e Section	on
	1					2.0 🏶	300 ◈	0.50	Triode	Section	L
						2.5 🏶	300 ◈		e Section	on—Tri	ođe
						1.0 🌢	300 ◈	-		Section	ı
10CW5¶	Power Amplifier	9CV	6-4	10.6	0.45	12	250	200	Single	Tube	
	Pentode							1.75	Two T	ubes, P	ush-
10DA7¶	Double Triode	9EF	6–3	10.5	0.6	2.0	300		Section 8)	ı 1 (Pin	s 6, 7,
						6.0	500	_		2 (Pin	s 1, 3,
10DE7¶	Double Triode	9HF	6-3	9.7	0.6	1.5 🏶	330 �	_		1 (Pin	s 6, 7,
						7.0 ♦	275 ◈	-	8) Section 3, 9)	ı 2 (Pin	s 1, 2,
10DR7¶	Double Triode	9HF	6-3	9.7	0.6	1.0 🏟	330 ◈			ı 1 (Pin	s 6,
						7.0 ♦	275�		7, 8) Section 2, 3,	1 2 (Pin	s 1,
					l	.					-
10DX8	Triode-Pentode	9HX	6–3	10.2	0.45	4.0	300	300 1.7	1	le Section	
10EB8¶	Triode-Pentode	9DX	6-3	10,5	0.45	1.0 5.0 ♦	330 €	330 ◈\$		Section le Section	
10000	1110de-1 entode	JUA		10.0	0.10	1.0 🏶	330 €	1.1	4	Section	
10EG7¶	Double Triode	8BD	9-38	9.7	0,6	1.5	330 ♦	-	Section	1 (Pin	
-					1	10 🅸	330 ◈	_		1 2 (Pin	s 1,
	-	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	2, 3)		

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. †Maximum. *Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

®Absolute maximum rating.

#Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
	100	100	1.0	6.0	1.7		5,500		i	i — i	9JW8¶
Amplifier Class A Amplifier	200	_	2.0	3.5	-	_	3,500	70		-	
Class A Amplifier	250 50	150 100	R _k = 56	18 25	9.0 25	55,000	24,000	E _{c2} =	0 volts		9KC6¶
Avg. Char.	250	150	R _k = 56	28	6.5	50,000	36,000	=		-	9KX6
Class A Amplifier	125	125	1.0	12	4.0	200,000	7,500				9KZ8¶
Class A Amplifier	125	-	1.0	13.5	6.0	5,400 55,000	8,500	46			9LA6¶
Avg. Char.	250	150	R _k = 122		6.0						
Class A Amplifier ♠	125		1.0	11		6,400	6,700	43			9ML8¶
Class A Amplifier ♠	125	-	1.0	11	_	5,500	9,000	50	-	_	9MN8¶
Class A Amplifier	125	110	1.0	9.5	3.5	200,000	5,000			-	9U8-A¶
Class A Amp	125 250	150	$\frac{1.0}{R_k =}$	7.7	1.6	750,000	7,500	40			O V OF
Amplifier Class A Amplifier	100	-	200 R _k = 100	8.5	-	6,900	5,800	40	_		9X8¶
Class A Amplifier	425		40	18†		5,000	1,600	8.0	10,200	1.6	10
Class A	250	250	8.0	35†	2.5†	100,000	6,500		5,000	4.2	10AL11¶
Amplifier Class A Amplifier	150	100	R _k = 560	1.3	2.1	150,000	1,000	E _{c3} =	0 volts	-	
Class A Amplifier	250	250	R _k = 135	48†	5.5†	38,000	11,300	-	5,200	6.0	10BQ5¶
Class A Amplifier	135	135	R _k = 100	11,5	3.2	190,000	8,000				10C8¶
Class A Amplifier	250	-	R _k = 390	7.3	-	12,000	4,400	53		-	
Vertical Amplifier Vertical Oscillator	-	ositive p -c catho	_			1,000; max	d-c cath	ode cu	rrent 🔷	=18 ma	
Class A	170	170	12.5	70†	5.0†	23,000	10,000	_	2,400	5.6	10CW5¶
Amplifier Class AB ₁ Amplifier	250	200	18.5	91†	4.0†		_		3,000‡	25	
Vertical Oscillator	250	_	8.0	9,0		7,700	2,600	20	-		10DA7¶
Vertical Amplifier	150 60	=	17.5	40 80	=	1,100	5,700	6.3	=	=	
Vertical /	250		uise pia	5.5	.ge = 1,8	00 volts; m	2,000		urrent	=40 ma	10DE7¶
Oscillator \		c catho	de curr	ent 🏶 ==	22 ma	925	6.500	6.0	1 -	_	10027
Vertical Amplifier	60	— ositive p	0	80 te volta	age � = 1	,000; max			rent 🌑	-50 ma	
Vertical Oscillator	250 Max (i-c cath	3,0	1.4	— =20 ma	40,000	1,600	64		r=1	10DR7¶
Vertical Amplifier	150 60	_	17.5 0	35 80	=	925	6,500		=	=	
	220	ositive p	_			1,500; d-c		curren	t ♦ = 50	ma	
Class A Amplifier Class A Amp	200	220	3.4	3.0	3.0	150,000	10,000	 65		_	10DX8
Class A Amplifier	200	125	Rk ==	25	7.0	75,000	12,500	_	=		10EB8¶
Vertical /	250 250	 -	$\frac{2.0}{11}$	5.5		37,000 8,750	2,700				10EG7¶
Oscillator \	∣ Max o	d-c cath	ode cur	rent 🔷	=22 ma		7,500		-	·	•

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Caj P	acitano icofara	e in ds
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
10EM7¶	Double Triode	8BD	9-38	9.7	0.6	1.5 🏶	330 🏶		Section 5, 6)	1 (Pin	s 4,
						10 🔷	330 ◈		Section 2, 3)	2 (Pin	•
10EW7¶	Double Triode	9HF	9-70	9.7	0.6	1.5 🏶	330 🏶		78)	1 (Pin	•
AND						10 🏶	330 ◈		Section 2, 3,	2 (Pin 9)	s 1,
10FD7¶	Double Triode	9HF	9-77	9.7	0.6	1.5 🏶	330 🏶	_	1 7.8)	1 (Pin	-
						10.0 🏶	330 ◈		Section 2, 3,		
10FR7¶	Double Triode	9HF	9–70	9.7	0.6	1.5♦	330 🏶	_	Section 7, 8)	1 (Pin	s 6,
						10 🏶	330 ◈		Section 2, 3,		
10GF7¶	Dissimilar Double Triode	9QD	T-X	9.7	0,6	1.5	330 ◈	_	Section 9)	1 (Pin	s 1, 8,
	Bousie Thoug					11 🔷	330 �	-	Section 6)	2 (Pin	s 2, 3,
10GF7-A¶	Dissimilar Double Triode	9QD	9-107	9.7	0.6	1.5 🏶	330 ◈	 -	Section 9)	1 (Pin	ns 1, 8,
	Triode					11 🏶	330 🏶	-	Section	2 (Pi	is 2, 3,
									6)		
10GK6¶	Beam Power	9GK	6-4	10.6	0.45	13.2 🏶	330 ◈	330	Single	Tube	
	Amplifier							2.0 🏶	Two T Pull	ubes, F	ush-
									Pull	ubes, P	
10GN8¶	Triode-Pentode	9DX	6–3	10.5	0.45	5.0 ③	330 ◈	330 ♦ \$		le Secti Section	
10HA6	Pentode	9NW	6-4	10.4	0.45	8.0	300 ♦	250 (a)	13 A	8.0 ▲	
10HF8¶	Triode-Pentode	9DX	6-3	10.5	0.45	5.0♦	330 ◈	330 (*)	Pentod	le Secti	on
	-					1.0	330 🌢	_	Triode	Section	1
10JA5¶ ■	Beam Power Amplifier	12FY	12-57	10.5	0.6	19 🏟	400 ◈	300 ♦ 2.75 ♦	14▲		0.66
10JA8¶	Triode-Pentode	9DX	6-3	10.5	0.45	5.0 🏶	330 �		Pentod	le Secti	on
						1.0 🏶	300 ♦	1.5		Section	3
10JT8¶	Triode-Pentode	9DX	9-69	10.2	0.45	4.0 🏶	330 ◈	330 2 🎕	Pentod	le Secti	on
					0.45	1.0 ♦	330 ♦		Triode	Section	1
10JY8¶	Triode-Pentode	9DX	6-3	10.5	0.45	5.0 ♦ 2.0 ♦	330 ◈	330 \$ 🌢	•	le Section	
10V DOS	Triode-Pentode	9DX	6-3	10.5	0.45	5.0 ◈	330 €	3308 ◈		le Section	-
10KR8¶	I node-Pentode	any	0-3	10.5	0.45	2.0 🏶	330 €	1.1	1	Section	
10KU8¶	Duplex-Diode	9LT	9-69	10.2	0.45	4.0	1	 330 8	ļ	3.0 ▲	
	Pentode							1.1	Diode	Section	•
10LB8¶	Triode-Pentode	9DX	9-69	10.2	0.45	4.0 ♦	330 ♦	330 2 🎕		le Secti	
						2.0 🏶	330 €	1.1	Triode	0	_

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. * Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

		1							Tand	1	
Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _{m,} µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Vertical (250	<u> </u>	3.0	1.4		40,000	1,600	64	ı —	I —	10EM7¶
Oscillator Vertical	150	i-c cath	20	50	=22 ma	750	7,200	5.4	I —		
Amplifier	250					1,500; max	2.000			= 50 ma	10EW7¶
Vertical Oscillator	Max	i-c cath	ode cur	5.5 rent 🏶 :	=22 ma				•	1 —	TOE W/A
Vertical { Amplifier {	150 May 1	ositive	17.5 nuise pl	45 ate volt	age 🕸 =	800 1,500; max	7,500 d-c cath	6.0	rrent 🕏	= 50 ma	
Vertical	250		3.0	1.4	_		1,600		-		10FD7¶
Oscillator Vertical	Max 6	-c cath	ode curr 17.5	ent 🏶 =	20 ma	! 800	7,500	6.0	ı	l	-
Amplifier \	Maxı	ositive	pulse pl	ate volt	age 🧇 💳	1,500; max	d-c catl	ode cu	rrent 🏶	=50 ma	
Vertical Oscillator	250 Max	— peak ne	3.0	1.4	— tage @b =	4000 max	1,600 d-c cath	68 ode cui	rent 🏟	22 ma	10FR7¶
Vertical	l 150		20.0	50	! —	750%	7.200	5.4	_		
Amplifier \ Vertical	250		puise pi	1.4	age 🏶 =	1,500; max			rrent 🍲	= 50 ma	10GF7¶
Oscillator	Max	-c cath	ode cur	rent 🏶 :	22 ma			•	. —		10011
Vertical	150 60	=	20	50 95	=	750	7,200	5.4		=	
Amplifier	Max	ositive		ate volt		1,500; max				=50 ma	
Vertical Oscillator	250 Max	i-c cath	3.0	1.4	— =22 ma	40,000	1,600	64	I —		10GF7-A¶
ſ	150	—	20	50		750	7,200	5.4	· —		
Vertical Amplifier	60 Max	positive	Dulse	95 plate ve	 oltage ⊛	=1,500; n	lax d-c	— cathod	e curre	nt 🏶 =	
	50 ma			-						-	
Class A Amplifier	250	250	7.3	48†	5.5†	38,000	11,300	_	5,200	5.7	10GK6¶
Class AB	300	300	R _k == 130	72†	8.0†				8,000‡	17	
Amplifier	250	250	R _k =	62 †	7.0†	_			\$,000;	11	
Class B Amplifier	300 250	300 250	14.6 11.6	15† 20†	1.6† 2.2†	=	=	_	1000,8 1000,8	17 11	
Class A	200	150	Rk=	25	5.5	60,000	11,500				10GN8¶
Amplifier Class A Amp	250		100 2.0	2.0	l —_	37,000	2,700	100			
Class A Amplifier	150	100	R _k =	28	3.5	20,000	20,000				10HA6
	60	100	-0-	45	9.0	75.000	10.500				1011505
Class A Amplifier	200	125	R _k = 68	25	7.0	75,000	12,500	_	_	_	10HF8¶
Class A Amp	45 200	125	2.0	40 4.0	15	17,500	4,000	70			
Vertical-	135	125	10	95	4.2	12,000	10,300		T-		10JA5¶ ■
Deflection Amplifier	45 Max	125 positive	Dulse p	l 210 late vol	1 20 tage ♠	= 2,500 vo	ts: max	d-c cat	l — hode cu	rrent 🏵	
	= 110 200	<u>ma.</u>			,	70,000			ı——		107405
Class A Amplifier	30	135 135	1.5 0	18 32	4.0 14		14,000	=			10JA8¶
Class A Amp	200		2.0	3.5	<u> </u>	19,000	3,700	70			
Class A	200	100	R _k = 82	17	3.5	50,000	20,000		_		10JT8¶
Amplifier Class A Amp	35 250	100	0 2.0	50 1.5	17	37,000	2,700	100			
Class A	200	150	R _k ==	24	4.8	55,000	11,000				10JY8¶
Amplifier Class A	125	_	R _k =	15	_	4,400	10,400	46	-		
Amplifier Class A	200	100	68 R _k = 82	19.5	3.0	60,000	20,000				10KR8¶
Amplifier Class A	125		R _k ==	15	_	4,400	10,400	46	l –		
Amplifier Class A	200	100	68 R _k ==	17	3.5	50,000	20,000		<u> </u>		10KU8¶
Amplifier	50	100	82 0	55	18	_		_	_		
	Avera	ge diod	curren	t at 10	volts =	2.0 ma		_	r		
Class A	200	100	R _k = 82	17	3.5	50,000	20,000		-		10LB8¶
Amplifier Class A	50 125	100	0 R _k =	55 13	18	6,000	5,000	30			
Amplifier			68			0,000	0,000				

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$ G3 and G5 are screen. G4 is signal-input grid.

\$ G2 and G4 are screen. G3 is signal-input grid.

\$ 1, 2, 3, etc. indicate tube sections.

\$ Maximum screen dissipation appears immediately below the screen voltage.

\$ Heater warm-up time controlled.

	Classification	Base	Out-	Fila-	Fila-	Max	Max	Max Screen	Capacitance in Picofarads
Tube Type	by Construction	Con- nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	Volts and Watts	Input Out- Grid- put plate
10LE8¶	Twin Pentode	9QZ	6–4	10	0.45	2.0 ♦	300 ◈	150 ③ 2.0 ⑤	
10LW8¶	Triode-Pentode	9DX	6–3	10.5	0.45	4.0 🏶	330 ◈	330 \$ �	Pentode Section
						1.5 🏶	330 ◈		Triode Section
10LY8¶	Triode-Pentode	9DX	6–3	10.5	0.45	5.0 ◈	330 ◈ 330 ◈	330 \$ � 1.1 � —	Pentode Section Triode Section
10LZ8¶	Triode-Pentode	9DX	6-3	10.5	0.45	4.5 ③ 1.0 ③	225 ♦ 300 ♦	160 ③ 2.0 ⑤	Pentode Section Triode Section
10T10¶ ■	Dissimilar Double Triode- Pentode	12EZ	959	9.8	0.6	10 ③	275 ♦ 330 ♦	275 ③ 2.0 ⑤ 330 3 ⑥ 1.1 ⑥	Section 1 (pins 8, 9, 10 and 11) Section 2 (pins 2, 3, 5, 6 and 7)
10210¶	Pentode-Gated Beam Discrim- inator	12BT	9–58	10	0.6	10 🔷	275 ♦ 330 ♦	275 ♦ 2.0 ♦ 330 \$ ●	Pentode Section (Pins 2, 3, 9, 11) Gated-Beam Discriminator (Pins 4, 5, 6, 7, 8)
11AR11¶	Twin Pentode	12DM	9-58	11.2	0.45	3.1 🌢	330 ◈	330 3 ♦ 0.65 ♦ ♦	
11BM8	Triode-Pentode	9EX	6–4	10.7	0.45	5.0 1.0	250 250	250 1.8	Pentode Section Triode Section
11BQ11¶	Dissimilar Double Pentode	12DM	9-58	11.2	0.45	3.1 ♦ 3.1 ♦	330 ♦	0.65	9, 10, 11)
11BT11¶	Dissimilar-Double- Triode Pentode	12GS	9-58	10.7	0.6	3.5 ◈	165 🏶		Pentode Section
				- Contraction		1.5 ③ 2.0 ③	330 ◈		Triode Section 1 (Pins 5, 6, 7) Triode Section 2 (Pins 3, 4, 9)
11C5¶	Beam Power Amplifier	7CV	5-3	11.6	0.45	4.5	135	117 1.0	12▲ 9.0▲ 0.6▲
11CA11 5	Dissimilar-Double- Triode Pentode	12HN	9-58	10.7	0.6	5.0◈	330⊛	330 : ③	Pentode Section
						1.5 ⊗ 1.5 ⊗	330 ◈ 330 ◈	_	Triode Section 1 (Pins 4, 5, 6) Triode Section 2 (Pins 2, 3, 7)
11CF11¶	Dissimilar-	12HW	9-58	10.7	0.6	5.0 ◈	330 ◈	330 8 🌢	
	Double- Triode- Pentode					2.0 🏶	330 ◈		Triode Section 1
	Temode					1.5 ◈	330 ◈	-	Triode Section 2
11CH11¶	Dissimilar- Double-	12GS	9-58	10.7	0.6	6.0 ◈	330 ◈	"	Pentode Section
	Triode- Pentode					2.0 ③ 1.0 ④	330 ♦ 330 ♦		Triode Section 1 Triode Section 2
11CY7¶	Double Triode	9LG	6-3	11.0	0.45	1.0 ◈	350 ◈	-	Section 1 (Pins 6, 7, 8)
						5.5 ◈	350 ◈		Section 2 (Pins 1, 3, 9)

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. †Maximum. * Supply voltage.

[⊕]Subminiature type.
▲Without external shield.
⊕Design maximum rating.

[⊕]Total for all similar sections.

⊕Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohm	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Color De- modulator	100	100	2.5	8.0	15	50,000	5,800		E _{c3} =	0 volts	10LE8¶
Class A Amplifier	200 35	100 100	R _k = 82 0 2.0	16.5 48 2.6	2.8 12.5	60,000	19,000	75	_		10LW8¶
Class A Amplifier	200						4;000	13			
Class A Amplifier	200	100	R _k = 82	19.5	3.0	60,000	20,000		_		10LY8¶
Class A Amplifier	35 250	100	2.0	54 1;0	13.5	59,000	1,700	100			
Class A Amplifier Class A Amplifier	200 30 250	140 140 —	2.0 0 2.0	12 30 1.1	2.5 13.5	150,000 52,000	9,500 2,100	110	=	=	10LZ8¶
Class A Amplifier	250	250	8,0	35+	2.5+	100,000	6,500		5,000	4.2	10T10¶ 🗰
Class A Amplifier	150	100	R _k = 560	1.3	2.1	150,000	1,000	(Eca	= 0 volt	s)	
Class A Amplifier	250	250	8.0	35+	3.0+	100,000	6,500		5,000	4.2	10Z10¶ =
FM Limiter- Discriminator	135	280	_	5.0	(Rg2 -	33,000 oh	ms)	(Ee3 :	= +4.0 1	volts)	
Class A Amplifier	125	125	R _k = 56	11	3.5	200,000	10,500	Value	_		11AR11¶
Class A	200	200	16	35	7.0	20,000	6,400				11BM8
Amplifier Class A Amplifier	100		0	3.5			2,500	70			
Class A Amplifier	125	125	R _k =	11	3.5	200,000	10,500		_		11BQ11¶
Class A Amplifier	125	125	R _k = 56	11	3.8	200,000	13,000		-	-	
Avg. Char.	150	100	R _k =	17.4	3.2	51,000	19,000				11BT11¶
Class A	35 200	100	0 R _k =	54 7.1	13.5	12,300	5,500	69	=		
Amplifier Class A Amplifier	200	_	270 R _k = 470	.7.2	-	7,600	5,300	40	_	-	
Class A Amplifier	110	110	7.5	40†	3.0†		5,800		2,500	1.5	11C5¶
Class A Amplifier	200	120	R _k = 65	27.5	4.9	490,000	21,200				11CA11¶
Class A Amplifier	200	-	R _k = 270	7.1	-	.10,000	6,300	63	_		
Class A Amplifier	200	-	R _k = 270	7.1	-	12,400	5,500	69		-	
Class A Amplifier	200	120	R _k = 65	27,5	4.9	490,000	21,200	I	_		11CF1f¶1
Class A Amplifier	200	-	R _k = 270	7.1	-	12,400	5,500	69	_		
Class A Amplifier	200	_	R _k = 270	7.6	-	9,200	6,300	59	-		
Video Amplifier	200	120	R _k = 65	27.5	4.9	49,000	20,000	_	T -	_	11CH11¶
General Purpose	50 200	120	0 R _k = 270	71 7.1	18	12,500	5,500	69	=	_	
Amplifier General Purpose Amplifier	200	_	R _k = 470	7.2	_	7,600	5,300	40	-	_	
Vertical	250	T —	3.0	1.2	1=	52,000	1,300	68	_		11CY7¶
Oscillator Vertical	150	-	R _k = 620	30	-	920	5,400	5.0	_		
Amplifier	60 Max	positive	0 pulse pl	80 ate volt	age � =	1,800; max	d-c cat	hode cu	rrent 🏶	=35 ma	

Metal tubes are shown in bold-face type, miniature tubes in itatics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.
1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitano icofara	
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
1DS5¶	Beam Power Amplifier	7BZ	5–3	11.2	0.45	9.0�	275 🏶	275 ♦ 2.2 ♦	9.5 ▲	6.3 ▲	0.19
11FY7¶	Dissimilar Double Triode	12EO	9–60	11	0.6	1.0 🏶	330 🇇		Section 10, 1		ins 9,
	11000					7.0 ◈	275 ◈		Section 7)	Ź (Pin	s 3, 5,
11HM7	Sharp-Cutoff Pentode	9BF	6–3	11	0.3	7.0 🏶	330 ◈	330 8 ♦ 1.0 ♦	14 ▲	5.0 ▲	0.15
11JE8¶	Triode-Pentode	9DX	6-3	10.9	0.45	5.0 ③	330 ♦	330 ♦ \$	Pentod Triode	e Section	
11KV8¶	Triode-Pentode	9DX	6–3	10.9	0.45	5.0 ◈		300 \$ ♦ 1.0 ♦	Pentod		
						1.0 ◈	300 �	_	Triode	Section	1
11LQ8¶	Triode-Pentode	9DX	6-3	10.9	0.45	5.0 🏶	300 🏶	3008 ◈		e Section	
						2.0 🏶	300 ◈	_	Triode	Section	1
11LT8	Duplex-Diode Pentode	9RL	6-2	11.4	0.315	3.1 ◈	330◈	330 : ③ 0.65 ③		e Sections	
11LY6¶	Sharp-Cutoff Pentode	9GK	6-3	11.0	0.3	6.5 🏶	330 ◈	190 *	9.5 ▲	3.8 ▲	0.07
11MS8¶	Triode-Pentode	9LY	6-4	11.6	0.45	6.0�	250 ◈		Pento	de Sect	ion
	1					0.5 🏶	250 �	1.5	Triod	e Sectio	on
1 Y 9	Dissimilar Double	10L	6-3	11	0.45	5.0	250	250 2.5	Section 9, 10	1 (Pin	s 7, 8,
	Pentode					1.5	250	250 0.5	Section 3, 4)	2 (Pir	ıs 1, 2,
2A	Detector Amplifier Triode	4D	14-1	5.0 DC	0.25		180		4.0 ▲	2.0 ▲	8.5 ▲
2A4	Medium-Mu Triode	9AG	6–3	${12.6} \atop 6.3$	0.3	5.9	450	_	4.9	0.9	5.6
2A5	Power Amplifier Pentode	7F	12-5	12.6	0.3	8.25	180	180 2.5		=	
12A6 12A6-GT	Beam Power Amplifier	7AC	8-6 9-9	12.6	0.15	7.5	250	250 1.5			
2A7	Half-Wave Rectifier Power Amplifier Pentode	7K	12-6	12.6	0.3		135	135		=	
12A8-G 12A8-GT	Pentagrid Converter	8A ♦	12-8 9-18	12.6	0.15	1.0	300	100 0.3	Osc Ici Rgi = 5	=0.4 m 0,000 o	na hms
12A B5	Beam Power Amplifier	9EU	6-3	12.6	0.2	12	315	285 2.0	8.0 🛦	8.5 ▲	0.7
2AC6	Remote-Cutoff RF Pentode	7BK	5-2	12.6	0.15		30	30	4.3	5.0	0.004
12AC10-A¶		12FE	9-56	12.6	0.3	2.0 🏶	330 ◈		2.62	0.22 ₁ 0.30 ₂ 0.44 ₃	1.22,
2A D6	Pentagrid Converter	7CH	5-2	12.6	0.15	_	16	16	Osc. L	1 = 0.06 3,000 o	0 ma
12AD7	High-mu Twin Triode	9A	6-2	${12.6} \atop 6.3$	$0.225 \\ 0.45$	1.0♠	300		1.6 ▲	0.5 ₁ A 0.45 ₂	1.8▲
12AE6	Duplex-Diode Triode	7BT	5-2	12.6	0.15		30		1.8 ▲ Diode	1.1 A Section	
12A E6-A	Duplex-Diode Triode	7BT	5-2	12.6	0.15		30	-	1.8 ▲ Diode	1.1 ▲ Section	2.0 A

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	250 200	200 200	8.5 7.5	29+ 35+	3.0+ 3.0+	28,000 28,000	5,800 6,000		8,000 6,000	3.8 3.0	11DS6¶
Vertical	250	<u> </u>	3.0	1.4	I I	40,500	1,600	65			11FY7¶
Oscillator Vertical	150	d-c cath	ode cur	rent ◆ :	20 ma	920	6.500	6.0			
Amplifier	60	 positive	0	95	— voltage∢				de cur	rent 🏶	
				1 00	1		1				
Class A Amplifier	200	135	R _k = 47	30	5.2	40,000	30,000	(E _{c3} =	0 volts)	11HM7
Class A Amplifier Class A Amp	250 200	170	R _k = 82 2.0	22 4.5	4.0	140,000 16,600	12,000	70	_		11JE8¶
Class A Amp		105		+	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 				4475750#
Class A	200	125	Rk.==	22	4.0	75,000	23,000	·	-	-	11KV8¶
Amplifier	125	125	R _k == 82	19	3.8	55,000	21,000	-	-	-	
Class A Amplifier	200	<u> </u>	2.0	4.0	_	17,500	4,000	70			
Class A	125	125	Rk=	16.5	3.1	55,000	21,000		-		11LQ8¶
Amplifier Class A Amplifier	125	-	82 R _k =	15	_	4,400	10,400	46	-		
Class A Amplifier	125	125	R _k =	10	3.4	200,000	13,000	-	_		11LT8
		d-c out				a; voltage		0 volts	at 20 m	ad-c 🌢	
Class A Amplifier	250	180	R _k =	26	5.75	89,000	11,000	-		_	11LY6¶
Vertical Deflection Amplifier	120 Max p = 70	110 ositive	10 pulse pl	50 ate volt	3.0 age 🏶 =	13,000 = 2,000 vol	0i 8,500 ts; max	d-c cath	ode cur	rent 🏶	11MS8¶
Class A Amplifier	100 100	1 =	0.85	5.0 10	1 =	11,000 9,000	5,500 7,000	60		1 =	
Class A	170	170	2.6	30	6.5	40,000	21,000	_		Ι=	11 Y 9
Amplifier Class A Amplifier	150	150	2.3	10	3.0	160,000	8,500	-	-	_	
Class A Amplifier	180		13.5	7.7†	_	4,700	1,800	8.5	10,650	0.285	12A
Vertical	250	<u> </u>	9.0	23		2,500 =1,000; ma	8,000	20			12A4
Amplifier Class A	180	180	puise p	45t		35,000 ma	1 2 400	trioge c	3,300	3 4	12A5
Amplifier	100	100	15	45† 17†	8† 3†	50,000	2,400 1,700		4,500	3.4 0.8	
Class A Amplifier	250	250	12.5	30†	3.5†	70,000	3,000		7,500	3.4	12A6 12A6-GT
Class A Amp Half-Wave	135		13.5			102,000		-	13,500	0.55	12A7
Rectifier	i					ax rms sup		_			
Converter	250	100	3.0	3.5	2.7	360,000	550 #	$E_{c2}(Osc thru 20)$ $I_{c2} = 4.0$	Plate) ,000 oh) ma	=250 ms	12A8-G 12A8-GT
Class A Amplifier	250 250	250 200	12.5 R _k = 270	45† 33.5†	4.5† 1.6†	50,000	4,100 4,000	=	5,000 6,000	4.5 3.3	12A B5
Class A Amplifier	12.6	12.6	E _{cel} =0	0.6	0.2	600,000	750	R _{g1} = 2.	2 meg		12AC6
Class A Amplifier •	200	_	R _k == 150	9.0	-	10,700	5,800	62	_		12AC10-A¶
Converter	12.6	12.6	E _{ces} =0	0.34	1.19	400,000	320#	$R_{e^2} = 2$	2.2 meg		12AD6
Class A Amplifier •	250		2.0	1.25		62,500	1,600	100	-		12AD7
Class A Amplifier AM Detect.	12.6		0	0.75	-	15,000	1,000	15	-		12AE6
Class A Amplifier		d-c outr			1	voltage dr	ì	16.7	at 2.0 n		12A E6-A
AM Detect.	Max	1-c outp	out curr	ent 🕈 =	1.0 ma;	voltage di	гор Ф: 1	U VOITS	at 2.0 f	na d-c	

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		pacitano icofara	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts ₩	Input	Out- put	Grid- plate
12A E7	Double Triode	9A	6–2	12.6	0.45	1.0 🏶	16 ◈		Section	1 (Pir	ns 6, 7,
						1.0◈	16 ◈		8) Section 3)	2 (Pir	ns 1, 2,
12AE10¶	Dissimilar Double Pentode	12EZ	9-59	12.6	0.45	6.0 ◈	165 ◈	150 ♦ 1.25 ♦	Section 10, 1	1 (Pin:	s 8, 9,
						1.7 🏶	1	330 \$ ◈	Section 5, 6,	i 2 (Pin 7)	s 2, 3,
12AF3¶	Half-Wave High- Vacuum Rectifier	9CB	6–8	12.6	0.6	6.0 ◈	Tube V 30 volt	oltage s at 340	Drop:	:	
12AF6	RF Pentode	7BK	5-2	12.6	0.15		16 ◈		5.5 ▲	4.8 ▲	0,006
12AG6	Heptode	7CH	5-2	12.6	0.15		16	16	Osc. Ic	0.05	ma hms
12AH7-GT	Medium-Mu Twin Triode	8BE	9-7	12.6	0.15	1.5 ♠	180		-	-	-
12AJ6	Duplex-Diode-Triode	7BT	5-2	12.6	0.15		30	_		Section	2.0 ▲ s
12AL5	Twin Diode	6BT	5–1	12.6	0.15	-	Tube V	foltage 60 ma	Drop: 4		
12A L8	Triode Space-Charge- Grid Tetrode	9GS	6-3	12.6	0.55		30	_		e Sectio	n
							30			Section	
12AL11¶	Dissimilar-Double Pentode	12BU	9-59	12.6	0.45	10 🏶	275 🏶	275 ③ 2.0 ⑤	Section 9, 10	ı 1 (Pin), 11)	s 8,
	Tentode					1.7 🏶	330 ◈	330 8 🆠	Section 3, 4,), 11) 1 2 (Pin 6, 7)	
12AQ5	Beam Power Amplifier	7BZ	5–3	12.6	0.225	12	250	250 2.0		8.2 🛦	0.35 ▲
19AS5	Beam Power Amplifier	7CV	5–3	12.6	0.4	5.5	150	150 2 1.0	12▲	6.2 ▲	0.6 ▲
12AT6 12AT6-A¶	Duplex-Diode High-Mu Triode	7BT	5–2	12.6	0.15	0.5	300		2.2	1.2	2.0
12AT7	High-Frequency Twin Triode	9A	6-2	{12.6 6.3	0.15	2.5♠	300	_	2,2	1.2 ₁ 1.5 ₂	1.5
12AU6 12AU6-A¶	Sharp-Cutoff RF Pentode	7BK	5-2	12.6	0.15	3.5 ◈	330 ◈	330 \$ ⊗ 0.75 ⊗	Pentod	le Conn	ection
						3.5 ◈	275 �	-	Triode	Conne	ction ied)
12AU7 12AU7-A	Medium-Mu Twin Triode	9A	6-2	${12.6 \atop 6.3}$	0.15	2.75	330 ◈	-	1.8	2.0	1.5
12A U8	Triode-Pentode	9DX	6-3	12.6	0.3	3.0	300	3008	Pentoc	le Secti	on
						2.5	300	1.0	Triode	Section	1
12AV5- GA¶	Beam Power Amplifier	6CK	T-X	12.6	0.6	11	550\$	175 2.5	14▲	7.0.	0.5 ▲
12AV6 12AV6-A¶	Duplex-Diode High-Mu Triode	7BT	5-2	12.6	0.15	0.55	330 ◈	-	2.2	1.2	2.0
12AV7	Twin Triode	9A	6-2	$\overline{\left\{ \begin{smallmatrix} 6.3\\12.6\end{smallmatrix} \right.}$	0.45 0.225	2.7 ♠	300		3.2	1.3 ₁ 1.6 ₂	1.9
12A W6	Sharp-Cutoff RF	7CM	5-2	12.6	0.15	2.0	300	3008		le Conn	ection
··· ·· •	Pentode					2.5	300	0.5	Triode	Conne	
12AX3¶	Half-Wave High-	12BL	9-59	12.6	0.6	5.3 🏶	Tube	Voltage	Orop: O ma d-	P tied)	
12AX4-GT	Vacuum Rectifier Half-Wave High-	4CG	9-11	12.6	0.6	4.8	Tube	Voltage	Drop:	c	
12AX4- GTA¶	Vacuum Rectifier		9-41				32 v a	t 250 m	a d-c		

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	12.6		$E_{cc} = 0$	1.9	<u>i — </u>	3,150	4,000	13	$R_{\mathbf{g}} = 1$.	5 meg	12AE7
Amplifier Class A Amplifier	12.6	-	$E_{ec} = 0$	7.5	_	985	6,500	6.4	$R_g = 1$.	1	
Class A	145	110	7.0	34†	6.5†	33,000	5,600		2,500	1.45	12AE10¶
Amplifier Avg. Char.	150	100	R _k == 560	1.3	2.0	150,000	1,000	(Ec3 =	0 volts)		
TV Damper	Max volts;	d-c out max pe	put cur ak curr	rent 🏶 ent 🕸 =	= 185 n 750 ma	na; max p				=4,500	12AF3¶
Class A Amplifier	12.6	12.6	E _{cc1} =0	1.1	0.45	350,000	1,500	$R_{g1} = 2$.2 meg	-	12AF6
Converter	12.6	12.6		0.55	1.4		300#	$\overline{E_{ces}} = 0$ $R_{gs} = 2$	volts 2 meg	\equiv	12AG6
Class A Amplifier ♠	180	=	6.5	7.6		8,400	1,900	16		=	12AH7-GT
Class A Amp AM Detector	12.6 Max c	 i-c outp	0 ut curr	0.75 ent ф ==	1.0 ma;	45,000 voltage di	1,200 op ♠: I	55 0 volts	at 2.0 r	na	12AJ6
Half-Wave Rectifier	Max	t-c outr	nit curr	ent ner	niate =	9 ma; ma: 117; max p	neak	nverse	voltage	=330 :	12A L5
Class A Amplifier	12,6		$E_{ccz}=0$ ts; $I_{c1}=$	40 75 ma	i —	480 grid 1 is spa	15,000 ce-cha		l —	I — I	12AL8
Class A Amp			$E_{ccl}=0$		9.54	13,000		13	= 000	4.2	12AL11¶
Class A Amplifier Class A	250 150	250 100	8.0 R _k =	35† 1.3	2.5†	100,000	6,500 1,000	E _{c1} =	5,000 0 volts	4.2	12ALII
Amplifier Class A	180	180	8.5	29†	3.0+	58,000	3,700	<u> </u>	5,500	2.0	12AQ5
Amplifier Class A	250 150	250 110	12.5 8.5	45† 35†	4.5† 2.0†	52,000	4,100 5,600	<u> </u>	5,000 4,500	2.2	12AS5
Amplifier					2.01	FO 000		70	2,000		12AT6
Class A Amplifier	250 100	<u> </u>	3.0	1.0 0.8 10		58,000 54,000 10,900	1,200 1,300 5,500	70 70 60	<u> </u>		12A T6-A¶ 12A T7
Class A Amplifier •	250 100	_	R _k = 200 R _k = 270	3.7	_	15,000	4,000	60	_	_	IRAII
	250	150	R _k =	10.6	4.3	1,000,000	5,200		<u> </u>		12AU6
Class A Amplifier	100	100	R _k ==	5.0	2.1	500,000	3,900	_	_	-	12AU6-A¶
Class A Amplifier	250	-	150 R _k = 330	12.2	-	-	4,800	36	-	-	
Class A Amplifier • Vertical	250 100	=	8.5 0	10.5 11.8		7,700 6,500	2,200 3,100	17 20			12AU7 12AU7-A
Vertical Amplifier	Max p	ositive p	pulse pla	ate volt	age 🏶 🛥	1,200; max	d-c cat	hode cu	rrent 🔷	=22 ma	
Class A	200	125	R _k = 82	15	3.4	150,000	7,000	T -			12A U8
Amplifier Class A Amplifier	150	_	R _k = 150	9.0	_	8,200	4,900	40	-	-	
Horizontal Amplifier	250 60	150 150	22.5 0	57 260	2.1 26	14,500	5,900				12AV5-GA¶
	Max 2.5 w	positive atts: m	pulse par d-c c	plate vo	oltage 🖲 current	=5,500 vo =110 ma	its; ma	x screen	dissipa	tion =	
Class A	250	-	2.0	1.2	T —	62,500	1,600	100	$\Gamma =$	\Box	12AV6 12AV6-A¶
Amplifier Class A	100	-	1.0 R _b =	0.5	-	4,800	1,250 8,500	100	 =		12AV7
Amplifier •	100	_	R _k = 56 R _k = 120	9.0	-	6,100	6,100	37		_	
Class A Amplifier	250	150	R _k =	7.0	2.0	800,000	5,000	1=	 -		18AW6
Amplifier Class A Amplifier	250	-	200 R _k == 825	5.5	-	11,000	3,800	42	_	-	
TV Damper	Max	d-c out	put cu	rrent 🏶	=165 n =1,000 n	na; max p	eak inv	erse vo	tage 🔷	=5,000	12AX3¶
TV Damper	Max	d-c out peak cu	put cur	rent = 1	25 ma;	max peak	inverse	voltage	= 44 0	0 volts;	12AX4-GT
	1										12AX4- GTA¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
12AX4- GTB¶	Half-Wave High- Vacuum Rectifier	4CG	9-11	12.6	0.6	5.3 🏶	Tube V 32 volts	oltage at 250	Drop: mad-	:	
12AX7	High-Mu Twin Triode	9A	6-2	${12.6 \atop 6.3}$	0.15	1.2 ◈	330 🅸	_	1.8	1.9	1.7
12A X7-A	High-Mu Twin Triode	9A	6-2	$\{12.6 \\ 6.3 \}$	$\left[egin{array}{c} 0.15 \\ 0.3 \end{array} ight\}$	1.2 ◈	330 �	_	1.6▲	0.46 ₁ A 0.34 ₂ A	1.7 ▲
12AY3¶	Half-Wave High- Vacuum Rectifier	9HP	9–86	12.6	0.6	6.5 ◈	Tube V 32 volt	oltage s at 350	Drop:		·
12AY3-A¶	Half-Wave High- Vacuum Rectifier	9HP	T-X	12.6	0.6	6.5 ◈	Tube V 32 volt	oltage at 350	Drop:	2	
12A Y 7	Twin Triode	9A	6-2	$\{\begin{array}{c} 6.3 \\ 12.6 \end{array}$	$\{ \begin{array}{c} 0.3 \\ 0.15 \end{array} \}$	1.5 ♠	300	-	1.3 ▲	0.6 ▲	1.3 ▲
12AZ7	Twin Triode	9A	6-2	${12.6 \atop 6.3}$	0.225 0.45	2.5♠	330		2.8	1.4 ₁ 1.6 ₂	1.9
18A Z7-A¶	Twin Triode	9A	6-2	12.6 6.3	0.225 0.45	2.5 ♦	300 ◈		2.8	1.41	1.9
12B4 12B4-A¶	Low-Mu Triode	9AG	6-3	${12.6} \atop 6.3$	0.3	5.5	550		5.0 ▲	1.5▲	4.8 ▲
12B7	Remote Cutoff Pentode same as 14A7										
12B8-GT	Triode Remote-Cutoff Pentode	8T	9-24	12.6	0.3	_	90	90	Pentode Triode	le Section Section) 1
12BA6 12BA6-A¶	Remote-Cutoff RF Pentode	78K	5-2	12.6	0.15	3.4 🆠	330 🏶	330 ◈\$	5.5	5.0	0.003
12BA7	Pentagrid Converter	8CT ▼	6-3	12.6	0.15	2.0	300	100 1.5	Osc Ici Rg1 = 2	=0.35 0,000 o	
12BD6	Remote-Cutoff RF Pentode	7BK	5-2	12.6	0.15	3.0	300	125 0.65	4.3 ▲		0.005
12BE3¶	Half-Wave High- Vacuum Rectifier	12GA	9–60	12.6	0.6	6.5 ◈	Tube V 25 volt	oltage s at 350	Drop:) ma d-	c	
12BE3-A ¶■	Half-Wave High- Vacuum Rectifier	12GA	9-60	12.6	0.6	6.5 ◈		oltage lts at 3		d-c	
12BE6 12BE6-A¶	Pentagrid Converter	7CH	5-2	12.6	0.15	1.1 🏶	330 ◈	110 ③ 1.1 ④	Osc Ici Rgi = 2	=0.5 m 0.000 o	ia hms
12BF6	Duplex-Diode Medium-Mu Triode	7BT	5-2	12.6	0.15	2.5	300	_	1.8	0.7	1.9
12BF11¶	Dissimilar Double Pentode	12EZ	9-59	12.6	0.6	6.5 	165 ♦	150 ♦ 1.8 ♦ 330 \$	0 16	n 1 (Pin 0, 11) n 2 (Pin . 6, 7)	
12BH7 12BH7-	Medium-Mu Twin Triode	9A	6-3		0.3 }	3.5♠	300 450	1.1 🏶	3, 5, 3.2 ▲	0.5 ₁ \triangle	2.6 ▲
A¶ 12BK5¶	Beam Power Amplifier	9BQ	6-3	12.6	0.6	9.0	250	250 2.5	13 ▲	5.0 ▲	0.6 ▲
12BK6	Duplex-Diode, High-Mu Triode	7BT	5-3	12.6	0.15	-	300	-		_	_
12BL6	Sharp-Cutoff Pentode	7BK	5-2	12.6	0.15	_	30	30	5.5	4.8	0.006
12BN6 12BN6-A	Gated-Beam Discriminator	7DF	5–3	12.6	0.15	_	300 ◈	110 🏶	Eci =	1.25 vo	lts
12BQ6- GTA¶	Beam Power Amplifier	6AM	9-49 or 9-50	1	0.6	11	600\$	175 2.5			-

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. • Maximum. • Supply voltage.

[●]Subminiature type. ▲Without external shield. ◆Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Damper	Max	l-c outp	ut curre	nt 🏶 =	65 ma;	max peak	nverse	voltage		0 volts	12AX4
Class A	100	eak cur	1.0	0.5	ma —	80,000	1,250	100	 	r==	GTB¶ 12AX7
Amplifier •	250		2.0	1.2	<u>!</u>	62,500		100	!		
Class A Amplifier •	100 250	=	1.0 2.0	0.5 1.2	=	80,000 62,500	1,250 1,600	100 100	=	=	18A X7-Å
TV Damper	Max o	l-c outp eak cur	ut curre	ent 🔷 = =1100 i	175 ma; na	maz peak	inverse	roltage ·	♦=5,00	0 volts:	12AY3¶
TV Damper	Max volts;	d-c out	put cur	rent 🔷 :	= 175 m 1,100 m	ia; max pe	ak inve	rse vol	tage 🏶 =	= 5,000	12AY3-A¶
Class A Amplifier •	250	_	4.0	3.0		25,000	1,750	44			18AY7
Class A Amplifier	250	-	R _k == 200	10	-	10,900	5,500	60	-		12AZ7
	100	_	R _k == 270	3.7	_	15,000	4,000	60	-	_	
Class A Amplifier	250	_	R _k = 200	10		10,900	5,500	60			12AZ7-A¶
Ampaner	100	-	R _k = 270	3.7	_	15,000	4,000	60	_	_	
Vertical	150			34		1,030	6,300	6.5			12B4
Amplifier	Max 1	positive	puise p	late voi	tage 🖭	=1000; ma	x a-c ca	thode c	urrent =	= 30 ma	12B4¶-A
					<u> </u>				<u> </u>		
Class A Amp Class A Amp	90 90	90	3.0 0	7.0 2.8	2.0	200,000 37,000	1,800 2,400	96	=		12B8-GT
Class A	250	100	R _k =	11	4.2	1,000,000	4,400				12BA6
Amplifier	100	100	68 R _k = 68	10.8	4.4	250,000	4,300		-	-	12BA6-A¶
Converter	250	100	1.0	3.8	10	1,000,000	950 #				12BA7
Class A Amplifier	250	100	3.0	9.0	3.5	700,000	2,000				12BD6
TV Damper	Max volts;	d-c out max pe	put cur ak curr	rent 🏶 =	=200 m 1,200 n	a; max pe	ak inve	rse vol	tage 🏶 =	=5,000	12BE3¶
TV Damper	Max volts;	d-c out; max pe	put cur ak curr	rent 🔷 =	=200 m 1,200 m	a; max pe	ak inve	rse vol	tage 🏶 =	=5,000	12BE3-A¶
Converter	250 100	100 100	1.5 1.5	2.9 2.6	6.8 7.0	1,000,000	475 # 455 #		=		12BE6 12BE6-A¶
Class A Amplifier	250		9.0	9.5			1,900	16	10,000	0.3	12BF6
Class A	145	110	6.0	36†	3.0†	30,000	8,600		3,000	2.4	12BF11¶
Amplifier Class A Amplifier	150	100	$R_k = 560$	1.3	2.0	150,000	1,000	(E _{c3} =	0 volts		
Class A	250		10.5	11.5		5,300	3,100	16.5			12BH7
Amplifier ♠ Vertical Amplifier ♠	Max 1	oositive	pulse p	late vol	 tage 🖲 =	=1.500; ma	x d-c ca	thode c	 urrent =	20 ma	12BH7-A¶
Class A Amplifier	250	250	5.0	35†	3.5†	100,000	8,500	_	6,500	3.5	12BK6¶
Class A Amplifier	250 100	=	2.0 1.0	1.2 0.5		62,500 80,000	1,600 1,250	100 100		_	12BK6
Class A Amplifier	12.6		E _{cc1} =0	1.35	0.5	500,000	1,350	$R_{g1}=2$.2 meg		12BL6
FM Limiter- Discrimina- tor	285	100	R _k = 200 to 400	0.49	9.8	_	=		33,0000		12BN6 12BN6-A¶
Horizontal Amplifier	250 60 Max 1	150 150 positive	22.5 0	55 225 plate vo	2.1 25 Itage	20,000 =6,000 vo	5,500 olts; ma	x screen	dissip	tion =	12BQ6- GTA¶

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarad	e in
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
12BQ6- GA¶ 12BQ6- GTB¶	Beam Power Amplifier	6AM	T-X 9-49, 9-50	12.6	0.6	11	600\$	200 2.5	15▲	7.0▲	0.6 ▲
12BR3¶	Half-Wave High- Vacuum Rectifier	9CB	T-X	12.6	0.6	6.5♦	Tube V	oltage s at 250	Drop:	·	
12BR7	Duplex-Diode Triode	9CF	6-2	${12.6} \ 6.3$	$0.225 \\ 0.45$	2.5	300	-	2.8	1.0	1.9
									Diode	 Sections	ļ i
12BR7-A¶	Duplex-Diode Triode	9CF	6-2	${12.6} \ 6.3$	$0.225 \\ 0.45$	2.5	300		2.8	1.0	1.9
									Diode	 Sections	i 5
12BS3¶	Half-Wave High- Vacuum Rectifier	9HP	9-86	12.6	0.6	6.0 🏶	Tube V	oltage s at 140	Drop:	c	
12BS3-A¶	Half-Wave High- Vacuum Rectifier	9HP	T-X	12.6	0.6	6.0 🏶	Tube \	oltage s at 140	Drop:		
12BT3	Half-Wave High- Vacuum Rectifier	12BL	9-59	12.6	0.45	5.3 🏶	Tube \	oltge I	rop:		
12BT6	Duplex-Diode High-Mu Triode	7BT	5-3	12.6	0.15		300	Ī	_	T = -	
1 2 BU6	Duplex-Diode Medium-Mu Triode	7BT	5–3	12.6	0.15		300				=
12BV7	Sharp-Cutoff Pentode	9BF	6-3	12.6 6.3	0.3	6.25	300	175 1.0	11 ▲	3.0 ▲	0.055
12BV11¶	Twin Pentode	12HB	9-59	12.6	0.45	1.7◈	300 ◈	300 8 ♠ 0.1 ♠			
12BW4	Full-Wave High- Vacuum Rectifier	9DJ	6-3	12.6	0.45			oltage 100 ma		•	
12BY3¶	Half-Wave, High- Vacuum Rectifier	9CB	6–8	12,6	0.45	4.0 🆠	Tube \	oltage s at 250	Drop:	······	
12BY7 12BY7-A¶	Sharp-Cutoff Pentode	9BF	6-3	{12.6 6.3	0.3	6.5 🏶	330 �		10.2 ▲	3.5 ▲	0.063
12BZ6	Semi-Remote- Cutoff RF Pentode	7CM	5-2	12.6	0.15	2.3 🏶	330 ◈	330 ♦ 8 0,55 ♦	7.0	3.0	0.015
12BZ?	High-Mu Twin Triode	9A	6-3	12.6 6.3	0.3	1.5♠	300		6.5 ▲	0.7 ₁ A 0.55 ₂ A	2.5 ▲
12C5¶	Beam Power Amplifier	7CV	5-3	12.6	0.6	6.0	135	117 1.25	13▲	8.5▲	0.6 ▲
12C8	Duplex-Diode Semi-Remote-Cutoff Pentode	8E	8-4	12.6	0.15	2.25	300	125 0.3	6.0	9.0	0.005
12CA5¶	Beam Power Amplifier	7CV	5-3	12.6	0.6	5.0	130	130	15 ▲	9▲	0.5 ▲
12CK3¶	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	12.6	0,6	6.5 🏶	Tube	Voltage	Drop:	c	
12CL3¶	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	12.6	0.6	8.5 🏶	Tube '	Voltage ts at 350	Drop:		
12CM6	Beam Power Amplifier	9CK	6-3	12.6	0.225	12 9.0	315	285	Pentod	le Conn	ection
						8.0	315 315	285 1.75	Triode or Pen Conne		' tied)

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. § Supply voltage.

Subminiature type.

▲Without external shield.

Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal	250	150	22.5	57	2.1	14,500	5,900		i —	<u> </u>	12BQ6-GA¶
Amplifier	Max 1	150 positive	pulse p	260 late vo	26 ltage 🖲	=6,000 vo =110 ma	lts; max	screen	dissipa	tion =	12BO6- GTB¶
TV Damper	Max	d-c outp	out cur	rent 🏶 =	=200 ma	a; max per	k inver	se volt	age 🄷 =	5,500;	12BR3¶
Class A	250	$\lceil - \rceil$	Rk=	10	T —	10,900	5.500	60	I		12BR7
Amplifier	100	-	$\frac{200}{R_k} = \frac{270}{100}$	3.7		15,000	4,000	60	-	-	
Horizontal Phase Det.	Max	peak out	put cu	rent 💠	=60 ma	; voltage d	rop 💠 :	5 volts	at 17 m	ad-c	
Class A Amplifier	250		R _k = 200	10	T -	10,900	5,500	60	_		12BR7-A¶
Ampliner	100	-	R _k = 270	3.7	-	15,000	4,000	60			
Horizontal Phase Det.	-	-	ut curre	_		oltage dro	-				
TV Damper	Max max r	d-c out beak cur	out cur	rent 🏶 = = 1,100	=200 m ma	a; max pe	k inver	se volt	age ◈ =	5,000;	12BS3¶
TV Damper	Max max p	d-c outpoeak cur	out cur rent 🏶 =	rent 🏶 : = 1,100	≈200 m: ma	a; max pea					12BS3-A¶
TV Damper	volts;	d-c out max pe	ak curr	ent 🏈 =	≈165 m :1,000 m	a; max pe na			tage 🏶 =	=3,300	12BT3
Class A Amplifier	250 100	-	3.0 1.0	1.0 0.8	-	58,000 54,000	1,200	70 70	-		12BT6
Class A Amplifier	250	=	9.0	9.5	=	8,500	1.900	16	10,000	0.30	12BU6
Class A Amplifier	250	150	R _k = 68	27	6.0	85,000	13,000				12BV7
Avg. Char.	150	100	R _k = 180	3.6	2.0	200,000	3,700	(E _{c3} =	0 volts)	12BV11¶
Full-Wave Rectifier	suppl	y voltag	e per p	ate = 3	25 volts	ax peak inv ; max peak	current	t per pi	ate $=35$	0 ma	12BW4
TV Damper	volts;	max pe	ak curr	ent 🏶 =	840 ma			rse vol	tage 🏶 =	= 4,500	12BY3¶
Class A Amplifier	250	180	$R_k = 100$	26	5.75	93,000	11,000		_		12BY7 12BY7-A¶
Class A Amplifier	125	125	R _k = 56	14	3.6	260,000	8,000	-			12BZ6
Clara A	125	125	4.5	<u> </u>		21 000	700	100			10077
Class A Amplifier •	250		2	2.5	-	31.800	3,200	100	0.500	-	12BZ7
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500		2,500	2.3	12C5¶
Class A Amplifier	250	125	3.0	10	2.3	600,000	1,325	_		_	12C8
Class A Amplifier	125 110	125 110	4.5 4.0	37† 32†	4.0† 3.5†	15,000 16,000	9,200 8,100	=	4,500 3,500	1.5	12CA5¶
TV Damper		d-c out		rent 🏈	=250 m	a; max pe			tage 🖫 :	= 5,200	12CK3¶
TV Damper	Max		out cur	rent 🏵	=250 m	a; max pe	ak inve	erse vol	tage 🏶 =	= 5,500	12CL3¶
Class A Amplifier Vertical Amplifier	250 Max	250 positive	12.5 pulse	45† plate v	4.5†	50,000 = 2000 v	4,100 olts; ma	ax scree	5,000 en dissir rent = 40	4.5 pation ma	12CM6

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Volts		acitance icofarad	
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
12CN5	RF Pentode	7CV	5-3	12.6	0.45	_	16	16			_
12CR6	Diode Remote-Cutoff Pentode	7EA	5-2	12.6	0.15	2.5	300	150 0.3			=
12CS5¶	Beam Power Amplifier	9GR	6-3	12.6	0.6	10	300	150 1.25	15 ▲	9.0 ▲	0.5 ▲
12CS6	Dual-Control Heptode	7CH ▼	5–2	12.6	0.15	1.0	300	100			
12CT3¶	Half-Wave High- Voltage Recti- fier	9RX	T-X	12.6	0.6	4.75 🏶	Tube 16 vol	Voltage Its at 35	Drop: 0 ma d	-с	
12CT8¶	Triode-Pentode	9DA	6-2	12.6	0.3	2.75 🏶	300 ◈	300 ♦ \$	Pentod	e Sectio	n
						2.5 🏶	300 🇇	-	Triode	Section	
12CU5¶	Beam Power Amplifier	7CV	5-3	12.6	0.6	7.0 🏶	150 ◈	130 (s)	13 ▲	8.5 ▲	0.6
12CU6	Beam Power Amplifier	6AM	T-X	12.6	0.6	11	600\$	200 2.5	15 ▲	7.0 ▲	0.6
12CX6	Sharp-Cutoff RF Pentode	7BK	5-2	12.6	0.15	_	33 ◈	33 ◈		6.2▲	0.05 🛦
12CY6	Sharp-Cutoff RF Pentode	7BK	5-2	12.6	0.2		33 ◈	33 🏶	8.5 ▲	4.0 ▲	0.18
12D4¶	Half-Wave High- Vacuum Rectifier	4CG	9-11 9-41	12.6	0.6	5.5 🏶					+
12D4-A¶	Half-Wave High- Vacuum Rectifier	4CG	9-41	12.6	0.6	8.0 🏶			Voltage	Drop:	-с
12DB6¶	Beam Power Amplifier	9GR	T-X	12.6	0.6	10	300	150 1.25	13 🛦	8.0▲	0.2
12DE8	Diode-Pentode	9HG	6–2	12.6	0.2		30	30	5.5 ▲		0.006
12DF5	Full-Wave High-	9BS	6-3	∫12.6	0.45		Tube 1	Voltage	Drop:	Section	<u>s</u>
	Vacuum Rectifier			16.3	0.9		40 volt	ts at 10	ma d-	С	
12DF7	High-mu Twin Triode	9A	6-2	${12.6} \\ 6.3$	0.15	1.0 💠	300	1	1.6 ▲	0.41 ▲ 0.32 ▲	1.4 ▲
12DJ8	Twin Triode	9DE	6-2	12.6	0.18	1.8	130		_		-
12DK5	RF Pentode	9GT	6-2	12.6	0.3		16 🏶	16 🏶	9.5	2.65	0.045
12DK6	Sharp-Cutoff Pentode	7CM	5-2	12.6	0.15	2.3 🏶	330 �	3308 €		1.9 ▲	0.025
12DK7	Duplex-Diode-Tetrode	9HZ	6-3	12.6	0.5	0.5	30	30	Diode	Section	s
12DL8	Duplex-Diode Space- Charge-Grid Tetrode	9HR	6-3	12.6	0.55	_	30	-	12▲	1.3 ▲	14▲
									Diode	Section	s
12DM4¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	12.6	0.6	6.5�	35 volts at 400 ma d-c				
12DM4A¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	12.6	0.6	6.5�	Tube 35 vol	Voltage ts at 40	Drop: 0 ma d-	c	

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	12.6	12.6	$\mathbf{E_{eci}} = 0$	4.5	0.35	40,000	3,800	$R_{g1} = 2$.2 meg		12CN 5
Class A Amplifier	250	100	2.0	9.6	2.6	800,000	2,200				12CR6
Class A Amplifier	200	125	R _k == 180	46†	2.2†	28,000	8,000		4,000	3.8	12CS5¶
Gated	100	$\frac{110}{30}$	$\frac{75}{1.0}$	49t 1.0	1.3 5.5	13,000 1,000,000	8,000 1,100	$E_{c3} = 0$	volts	2.1	12CS6
Amplifier	100 10	30 30	0	0.8 2.0	5.5 4.5	700,000	=	$E_{c3} = -$ $E_{c3} = 0$	-1.0 vol	ts	
TV Damper	Max d- 5,000 v	c outpu	it curre ix peak	nt 🔷 : current	= 250 n	na; max pe ,200 ma.	ak inve			×	12CT3¶
Class A Amplifier	200	125	R _k =	15	3.4	150,000	7,000			_	12CT8¶
Class A Amplifier	150	_	R _k = 150	9.0	_	8,200	4,900	40	<u> </u>	-	
Class A Amplifier	120	110	8.0	49†	4.0f	10,000	7,500		2,500	2.3	12CU5¶
Horizontal Amplifier	250 60	150 150	$\frac{22.5}{0}$	57 260	2.1 26	14,500	5,900	=			12CU6
•	Max 1 2.5 wa	positive itts; ma	pulse p x d-c ca	olate vo	oltage 🖲 current	=6,000 vo =110 ma	lts; ma:	screen	dissipa	ation =	
Class A Amplifier	12.6		$E_{ccl} = 0$	3.0	1.4	40,000	3,100	$R_{g1} = 2$.2 meg		12CX6
Class A Amplifier	12.6	12.6	$E_{cel} =$	1.6	0.4	140,000	3,250	$R_{g1} = 2$,2 meg		12CY6
TV Damper		l-c outp				max peak i	nverse v	oltage		0 volts;	12D4¶
TV Damper	Max volts;	d-c out	put cur	rent 🚸	=185 r =900 ma	na; max p	eak inv	erse vo	ltage 🆠	=5,000	12D4-A¶
Class A	200	125	R _k = 180	46†	2.2†	28,000	8,000	_	4,000	3.8	12DB5¶
Amplifier Vertical	110 Mar.	110	180 7.5	49†	4.0†	13,000 =2,000; ma		'	2,000	,	
Amplifier \\ Class A	12.6		E _{cc1} =	1.3	1 0.5	300.000		$R_{g,1}=2$		-55 ma	12DE8
Amplifier AM Detector		1	0		ŀ	ltage drop	1	-	_	1	120230
Full-Wave Rectifier		i-c outp ms supp				ax peak inv 325 volts; n				lts; ate	12DF5
Class A Amplifier •	250 100	1 =	2.0 1.0	1.2 0.5	1 =	55,000 70,000	1,600	100 100			12DF7
Class A Amplifier •	90		1.3	15	_		12,500	33			12DJ8
Class A Amplifier	12.6	12.6	$\overline{\mathbf{E}_{cel}} = 0$	2.0	0.65	100,000	3,300	$R_{g1} = 2$.2 meg	-	12DK5
Class A Amplifier	125	125	R _k = 56	12	3.8	350,000	9,800				12DK6
Class A Amplifier	12.6	12.6	$\overline{E_{cc1}} = 0$	6.0	1.0	4,000	5,000	$R_{g1} = 2$.2 meg		12DK7
AM Detector	12.6	l-c outp	ut curre	nt • =	10 ma; v	oltage drop	$\frac{\bullet}{115,000}$	olts at	1 mad-c	<u>:</u>	12DL8
Amplifier		 12.6 vol	0		Note: g	rid 1 is spa	,	ge grid.	grid 2 i	s	12000
AM Detector	contro	ol grid)			-	voltage dro			_		
TV Damper	Max		put cur	rent 🏶 :	=175 m	a; max pe					12DM4¶
TV Damper		d-c out	put cur	rent 🏵		a; max pe	ak inve	rse vol	tage 🚸 :	=5,000	12DM4A¶

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts		pacitanc Picofarac	
2DM7 1	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
2DM5¶	Beam Power Amplifier	7CV	5-3	12.6	0.45	5.5	135	117 1.25	13 ▲	9.0 ▲	0.55
2DM7	High-Mu Twin Triode	9A	6-2	12.6 6.3	0.130 0.260	1.1 🏶	330 ◈	_	1.6 ▲	0.46 ₁ A	1.7▲
2DQ4¶	Half-Wave High- Vacuum Rectifier	4CG	9-43	12.6	0.6	6.0 🏶	Tube V	oltage s at 250	Drop:	c	
2DQ6¶	Beam Power Amplifier	6AM	T-X	12.6	0.6	15	550\$	175 2.5	15▲	7.0 ▲	0.55 4
2DQ6-A¶	Beam Power Amplifier	6AM	12-51	12.6	0.6	18 🏶	770 ◈\$	220 ♦ 3.6 ♦	15▲	7.0 ▲	0.55 4
12DQ6-B¶	Beam-Power Amplifier	6AM	12-51	12.6	0.6	18 🏶	770 ◈	220 ③ 3.6 ④	15▲	7.0▲	0.5 ▲
12DQ7¶	Sharp-Cutoff Pentode	9BF	6-3	${12.6 \atop 6.3}$	0.3	6.5 🏶	330 🏶	330 8	10.0 ▲	3.8 ▲	0.1
12DS7	Duplex-Diode Space- Charge-Grid Tetrode	9]U	6-3	12.6	0.4		16 ◈	_	_	_	_
										Sections	
12DS7-A	Duplex-Diode Space-Charge-Grid Tetrode	910	6–3	12.6	0.4		16 🏟	_	12.7 ▲ Diode	2.2 ▲ Sections	13.8 ▲
12DT6¶	Beam Power Pentode	9HN	6-3	12.6	0.6	9.0	315 ♦	285 ③ 2.0 ⑤	12.5▲	4.9 ▲	0.57
12DT6	Sharp-Cutoff Pentode	7EN	5-2	12.6	0.15	1.7 🏶	330 ◈	330 ♦ \$	I _{c1} = 0	.6 ma	
12DT7	High-Mu Twin Triode	9A	6-2	12.6 6.3	0.15	1.0♠	300		1.6	0.46 ₁ A 0.34 ₂ A	1.7 🛦
12DT8	High-Mu Twin Triode	9DE	6-2	12.6	0.15	2.5 🏚	300		2.7	1.6	1.6
12DU7	Duplex-Diode-Tetrode	9JX	6-2	12.6	0.250		16 🏶	16 ◈	_	3.6 ▲ Section	0.6 ▲
12DV7	Duplex-Diode-Triode	9JY	6-2	12.6	0.15	=	16 🏶		1.3 ▲ Diode	0.38 ▲ Section	-
12DV8	Duplex-Diode Space- Charge-Grid Tetrode	9HR	6-3	12.6	0.375	_	16 🏶	=	9.0▲	1.0▲	
									Diode	Section	s

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	110	110	7.5	49†	4.0†	14,000	7,500	_	2,500	1.9	12DM5¶
Class A Amplifier	100 250	=	1.0	$\frac{0.5}{1.2}$	=	80,000 62,500	1,250 1,600	100 100			12DM7
TV Damper	Max d volts; r	-c outp	ut curre	ent ◈ = nt ◈ = 1	175 ms ,000 ms	; max pe	ak inve	rse vol	tage 🏶 =	=5,500	12DQ4¶
Horizontal Amplifier						20,000 	6,000 s; max	screen	_ dissipati	ion =	12DQ6¶
Horizontal Amplifier	250 60 Max p	150 150 ositive	22.5 0 pulse pl	55 315 ate_vol	1.5 25 tage 🏶 =	20,000 =6,000 vol		screen	dissipa	tion 🏶	12DQ6-A¶
Horizontal Amplifier	250 60	150 150	22.5 0	65 345	1.8	18,000	7,300		_		12DQ6-B¶
Class A Amplifier	200 40	125 125	R _k = 68	26 45	5.6 16	53,000		—	-		12DQ7¶
Class A Amplifier	12.6 E _{c1} = 1	2.6 volts	E _{cc2} =	35	=	500 d 1 is space	16,000 c-charge	grid, gr	$R_{g2} = 2.2$ meg $id 2 is$	=	1 2 DS7
AM Detector	Max d-			t ♦ ♦ =	5.0 ma		op: • •			a d-c	10000
Class A Amplifier	E _{c1} = 12 control	grid)		75 ma		grid 1 is	space-	harge	grid, g		12DS7-A
Vertical Amplifier	250 80 Max p	250 250 ositive	16.5 0 pulse p	44 195	1.5 19	a; voltage =2,200 vol	6,200	=			12DT5¶
Class A	150	= 55 ma 100	R _k =	1.1	2.1	150,000	800	E _{cl} =	0 volts		12DT6
Amplifier FM Limiter Discrimina- tor	250\$	100	560 R _k = 560	0.22	5.5	E _{c3} =6	.0 volts		270,000	-	
Class A Amplifier	250 100		2.0 1.0	1.2 0.5	=	62,500 80,000	1,600 1,250	100 100	=	=	12DT7
Class A Amplifier •	250 100	_	R _k = 200 R _k = 270	10 3.7	_	10,900 15,000	5,500 4,000	60 60	_		12DT8
Class A Amplifier	12.6	12.6	$\frac{E_{cei} =}{0}$	12	1.5	6,000	6,200	R _{g1} = 2.2 meg	2,700	0.025	12DU7
<u> </u>		c outpu			=1 ma;	voltage dr		volts			
Class A Amplifier	Maxim ma d-c		$\mathbf{E_{ecl}} = 0$ output	0.04 current		19,000 ma; voltag	750 ge drop:	14 ♠10 v	$R_{g1} = 2$. olts at 1	~	12DV7
Class A Amplifier Detector AVC	12.6 E _{cl} = 12		E _{ce2} = 0 s; R _k = 1 control t currer	9.0 18 ohms grid) at * • =	s, I _{c1} = 5	900 3 ma (Not ; voltage d	8,500 e: grid 1 rop: • 1	is spac	e-charg	e na	12DV8

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofara	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
12DW4-A	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	12.6	0.6	8.5 ◈	Tube V 25 volt	oltage s at 350	Drop:		
12DW6¶	Beam Power Amplifier	9CK	6–4	12.6	0.6	11 🔷	330 ◈	220 * 2.5 *	14▲	9.0▲	0.5▲
12DW7	Double Triode	9A	6-2	12.6 6.3	0.15 0.3	1.2 ♦	330 ♦ 330 ♦	_	7, 8)	1 (Pin 2 (Pin	
12DW8	Diode Double Triode	9JC	6-2	12.6	0.45	0.5 ♦ 0.5 ♦	16 ◈ 16 ◈		8)	1 (Pin	
12DY8	Triode-Tetrode	9JD	6-2	12.6	0.35		16 ♦	16 🏶		e Section	
12DZ6	Remote-Cutoff RF Pentode	7BK	5-2	12.6	0.190		16 ◈	16 🏶	9.5 ▲		0.05
12DZ8	Triode-Pentode	9JE	T-X	12.0	0.45	6.5 0.75	150 150	135 1.5		e Section	
12E5-GT	Medium-Mu Triode	6Q	9-11	12.6	0.15	1.25	250		3.4	5.5	2.6
12EA6	Remote-Cutoff Pentode	78K	5–2	12.6	0.190		16 ◈		11 🛦	4.0 ▲	0.04
12EC8	Triode-Pentode	9PA	6-2	12.6	0.225	_	16 ()	16 ◈	Pentod Triode	e Section	
12ED5¶	Beam Power Amplifier	7CV	5-3	12.6	0.45	6.25 ◈	150 🏶	150 ③ 1.5 ④	14▲	8.5 ▲	0.26 🛦
12EF6¶	Beam Power Amplifier	7S	9-13 or 9-42	12.6	0.45	10	250	250 2.0	11.5 🛦	9.0▲	0.8 🛦
12EG6	Dual-Control Heptode	7CH ♥	5-2	12.6	0.15	_	30	30		_	-
12EH5¶	Power-Amplifier Pentode	7CV	5-3	12.6	0.6	5.5 🏶	150 🆠	130 (a) 2.0 (b)	17▲	9▲	0.65 ▲
12EK6	Sharp-Cutoff RF Pentode	7BK	5-2	12.6	0.190	_	16 🏶	16 🏶	10▲	5.0 ▲	0.036
12EL6	Duplex-Diode High-Mu Triode	7FB	5-2	12.6	0.15	_	30		2.2 ▲ Diode	1.0 ▲ Section	1.8▲
12EM6	Diode-Tetrode	9HV	6-3	12.6	0.5	0.5	30	30			ı —
12EN6¶	Beam Power Amplifier	7AC	9-11 or 9-41	12.6	0.6	7.0 🏶	300 ◈	150 (a)		Section 8.0 ▲	0.65 ▲
12EQ7	Diode-Pentode	9LQ	6-3	12.6	0.15	3.0 🏶	300 ◈	300 ⊕ 0.6 ⊕	1	5.0 ▲ Section	0.002
12EZ6	Sharp-Cutoff RF Pentode	7BK	5-2	12.6	0.175	_	30	30	7.8 🛦	5.5 ▲	0.008 4
12F5-GT	High-Mu Triode	5M	9-17	12.6	0.15	_	300		1.9	3.4	2.4
12F8	Duplex-Diode-Pentode	9FH	6-2	12.6	0.15		30	30		Section	
12FA6	Pentagrid Converter	7СН ♥	5–2	12.6	0.15	-	30	30		3,000 o	

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.

▲Without external shield.

Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Damper	Max d	-c outp	ut curr	ent 🗞 = nt 🏶 = 1	250 ma	; max pe	ak inve	rse vol	tage 🏶 =	= 5,500	12DW4-A¶
Vertical Amplifier	200 60	150 150	22.5 0	55 260	2.0	15,000 	5,500 — d-c cati	node cu	rrent 🔷		12DW5¶
Class A Amplifier Class A Amplifier	250 100 250 100	=	2.0 1.0 8.5 0	1.2 0.5 10.5 11.8		62,500 80,000 7,700 6,500	1,600 1,250 2,200 3,100	100 100 17 20	=		12DW7
Class A Amplifier Class A Amplifier	12.6		E _{cc} = 0 E _{cc} = 0	7.5		_	2,700 6,500	l	$R_{g} = 1.$ $R_{g} = 1.$		12DW8
Class A	Averag 12.6		E _{ccl} =	14	volts = 2.0	5,000	6 000	$R_{g1} = 2$	2 meg		12DY8
Amplifier Class A Amp	12.6	_	0	1.2	2.0	10,000	2,000	20			12210
Class A Amplifier	12.6	12.6	$\frac{\overline{E_{cc1}}}{0}$	4.5	2.2	25,000		$R_{g3} = 1$	0 megoh 0 megoh	ims ims	12DZ6
Class A Amplifier	145	120	R _k =	45†	6.0†		7,500	_	2,500		12DZ8
Class A Amplifier	120		$\begin{array}{c} R_k = \\ 1500 \end{array}$	0.8			1,400	100			
Class A Amp	250		13	5.0		9,500	1,450	13.8	<u> </u>	<u> </u>	12E5-GT
Class A Amplifier	12.6	12.6	$E_{cc^1} = 0$	3.2	1.4	32,000	3,800	$R_{g1} = 1$	0 megoh 	ims 	12EA6
Class A Amplifier	12.6	12.6	0	0.66	0.28	750,000	2,000	_			12EC8
Class A Amp	12.6		0	2.4		6,000	4,700	25			
Class A Amplifier	125 110	125 110	4.5 4.0	37† 32†	7.0† 4.0†	14,000 14,000	8,500 8,100	=_	4,500 4,500	1.5 1.1	12ED5¶
Vertical Amplifier	250 75	250 250	18 0	50 170	2.0	.000; max c	5,000				12EF6¶
Class A Amplifier	12.6	12.6	$E_{ecl} = 0$	0.4	2.4	150,000 1 through	800		-	- I	12EG6
Class A Amplifier	110	115	R _k = 62	42†	11.5†	11,000		-	8,000	1.4	12EH5¶
Class A Amplifier	12.6	12.6	E _{ccl} =	4.0	1.7	50,000	4,200	$R_{g1} = 2$.2 meg	_	12EK6
Class A Amp Detector	12.6 Max d-	c outpu	0 t curren	0.75 t • = 1.	0 ma: v	45,000 oltage drop	1,200 : •10 v		ma d-c		12EL6
Class A Amplifier	12.6	12.6	$\mathbf{E_{ccl}} = 0$	6.0	1.0	4,000	5,000	$R_{g1} = 2$.2 meg		12EM6
Detector Vertical	200	110	9.5	t = 10 n	1a; voita	ge drop: 10 28,000	8,000	i mac	I-C	 -	12EN6¶
Amplifier	50	110	0	135	18	1,200; max	l —	ode cu	— rrent ⊛	 =50 ma	1221101
Class A Amplifier AM Det.	100 Max d-	100 c outpu	E _{ccl} = 0	$ \begin{array}{c c} 9.0 \\ \mathbf{nt} & = 1 \end{array} $	3.5 ma; vo	250,000 ltage drop:	3,800 : 10 volt	$R_{g_1} = 2$ s at 2.0	.2 meg ma		12EQ7
Class A Amplifier	12.6	12.6	E _{cci} =	1.9	0.7	400,000		$R_{g1} = 2$			12EZ6
Class A Amp	250		2.0	0.9		66,000	1,500	100	Г		12F5-GT
Class A Amp AM Det.	12.6 Max d-	12.6 c outpu	0 it curre	1.0	0.38 .0 ma; v	330,000 roltage dro			t 2.0 m	a d-c	12F8
Converter	12.6	12.6	E _{cc3} =	0.67		_	300#	[- "		=	12FA6

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
2FK6	Duplex-Diode Triode	7BT	5-2	12.6	0.15		16		1.8 ▲	0.7 A	1.6▲
2FM6	Duplex-Diode Triode	7BT	5-2	12.6	0.15		30		2.7 ▲	1.7▲	1.7▲
2FQ7¶	Medium-Mu Twin Triode	9LP	6-3	12.6	0.3	4.0 ♦ 5.7 ♦ ⊕	330 ◈		2.4 ▲	0.34 ₁ 0.26 ₂	3.6 ₁ 4 3.8 ₂ 4
2FQ8	Twin Double-Plate Triode	9KT	6-2	12.6	0.15	2.0	330 ◈				-
2FR8	Diode Triode-Pentode	9KU	6-10	12.6	0.32		16	16	Pentod	e Section	on
							16			Section Section	1
2FT6	Duplex-Diode Triode	7BT	5-2	12.6	0.15		30	-	1.8▲	1.1 ▲ Section	2.0
2F V 7	Medium-Mu Twin Triode	9A	6–3	12.6 6.3	0.45	2.5	330 ◈		0.6 ▲		6.0
2FX5¶	Power Amplifier Pentode	7CV	5-3	12.6	0.45	5.5 🏶	150 ◈	130 ♦ 2.0 ♦	17▲	9.0 ▲	0.65
2FX8	Triode-Heptode	9KV ▼	6–10	12.6	0.27		16 16	16	1 -	le Secti Section	
2F X8-A	Triode-Heptode	9KV	6-10	12.6	0.27		16	16	Hepto	le Secti	on
		\					16		Triode	Section	1
2F Y 8	Triode-Pentode	9EX	6-4	12.6	0.6	8.0 ③	150 ♦	150 * 2.0 *		le Section	
2G4	Medium-Mu Triode	6BG	5-3	12.6	0.15	2.5	300		2.6	3.2	3.4
12G8	Double Triode	9CZ	6-3	12.6	0.4		16 16	Ξ	Section Section	1 (Pin 1 2 (Pin	s 6, 7, 8 s 1, 2, 3
2G11¶	Dissimilar Double Pentode	12BU	9-58	12.6	0.6	6.5 ◈	150 �	135 (a)	Section		ıs 8, 9
	rentode					1.7 🏶	330 �	3308 &		ı 2 (Pir	ıs 2, 3,
2GA6	Heptode	7CH	5-2	12.6	0.15		16 🏶		Osc. I	1 = 0.06 $3,000$	ma
12GC6¶	Beam-Power Amplifier	8JX	12-15	12.6	0.6	17.5 🏶	770 🔷 🖁	220 ③ 4.5 ③	15 ▲	7.0	0.55
2GE5¶	Beam Power Amplifier	12BJ	12-56	12.6	0.6	17.5 ◈	770\$ ◈	220 ♦ 3.5 ♦	16 ▲	7.0 🛕	0.34
2GJ5¶	Beam Power Amplifier	9QK	T-X	12.6	0,6	17.5 ◈	7708 🏶	220 ③ 3.5 ④		6.5 4	0.26
12GN7	Sharp-Cutoff Pentode	9BF	6-3	${12.6 \atop 6.3}$	0.3 \ 0.6	7.5 ◈	400 ◈	3308 ◈	17.5▲	4.0 ▲	0.12
12GN7-A¶	Sharp-Cutoff Pentode	9BF	6-3	12.6 6.3	0.3	11.5 €	400 ◈	330 1 (4.0 ▲	0.12

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	12.6	-	E _{cc} =	1.3		6,200	1,200		$R_{\mathbf{g}} = 2.$	2 meg	12FK6
		c outpu			ma; voli	age drop:					400140
Class A Amplifier Detector	12.6	Coutou	E _{cc} =	1.0	ma: volt	7,700 age drop:	1,300	10	$R_g = 2.5$	2 meg	12FM6
Class A	250	C Outpu	8.0	9.0		7,700	2,600	20			12F07¶
Amplifier •	90	_	0	10		6,700	3,000	20		-	121 (21
Class A Amplifier	250		1.5	1.5 (Valu	es for e	76,000 ach plate)	1,250	95			12FQ8
Class A	12,6	12,6	Eccl =	1.9	0.7	400,000	2,700		$ \mathbf{R}_{\mathbf{g}1} = 2 $.2 meg	12FR8
Amplifier Class A	12.6	_	E _{cc} =	1,0	_	_	1,200	10	$R_{g}=2.$	- 1	141 110
Amplifier AM Det.	Max d-	c outpu	t currer	t = 5.0	ma; vol	tage drop:	10 volts	at 2.0	ma d-c		
Class A Amplifier AM Det.	12.6		E _{cc} =	0.6	Ι –	13,000	1,000	14	$R_g = 2.$	2 meg	12FT6
	100	c outpu	1 2.0	16	ma; voi	tage drop:	9.600	$\frac{\text{s at } 3.0}{21.5}$	ma		12FV7
Class A Amplifier ♠ Class A	110	115	$R_k =$	36+	10+	17,500	13,500	21.5	3.000	1.3	12F X 5 ¶
Amplifier Converter	12.6	12.6	$\frac{62}{E_{ec3}} =$	0.29	1.25	500,000			$R_{g3} = 2$	"	12FX8
Class A	12.6	_	$E_{cc}^{0} =$	1.3	-	_	1,400	10	$R_g = 2.$	۱ .	
Amplifier			U								
Converter Class A	12.6 12.6	12.6	E _{cc3} =	0.29	1.25	500,000	1,400	10	$R_{g3} = 2$ $R_g = 2.$	-	12FX8-A
Amplifier Class A	125	125	$\frac{E_{cc} = 0}{13.5}$	50†	10+		7,500		2,000	2.7	12FY8
Amplifier Class A Amp	125		1.5	2.5			2,000				
Class A Amplifier	90 250		8.0	9.0		6,700 7,700	3,000 2,600	20 20		=	12G4
Direct- Coupled Amplifier	12.6 ₁ 12.6 ₂		O ₁	3.0 ₁ † 7.2 ₂ †	nin 7 co	8,500 nnected di	2,600	22		0.025	12G8
Amplinei	μare n	neasure	l with r	espect 1	to the g	rid voltage	of inp	ut secti	on (sect	tion 1)	
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500	-	2,500	2.3	12G11¶
Class A Amplifier	150	100	R _k = 560	1.3	2.0	150,000	1,000	Ec3 =	0 volts	'	
Converter	12,6		$E_{\text{ccl}} = 0$	0.3	0.8	1,000,000	140 #	$E_{cc3} = 0$ $R_{g3} = 2$	0 volts 2.2 meg		12GA6
Horizontal Amplifier	250 60	150 150	22.5	75 345	30	20,000	6,600	=	Ī	-	12GC6¶
						5,500; max		ode cur	rent 🄷 =	1/0 ma	10000
Horizontal Amplifier	250 60	150 150	22.5	65 345 tayrolta	1.8	18,000 	7,300	de cur	 	175 ma	12GE5¶ ■
	250	1 150	22.5	1 70	2.1		1 7.100	l cae car.	- C110	1.01114	12GJ5¶
Horizontal Amplifier	60	150	0	390	32	15,000 5,500; max		ode cur	rent 🏶 =	175 ma	120301
Class A Amplifier	250	150	R _k =	28	6.5	50,000	36,000	-	-		12GN7
Class A Amplifier	250	150	$R_k = 56$	28	6.5	50,000	36,000	-	—		12GN7-A¶

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Voits	Ca F	pacitanc Picofara	e in ds
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
12GT5¶	Beam Power Amplifier	9NZ	12-64	12.6	0.6	17.5 🏶	770 �\$	220 ♦ 3.5 ♦	15▲	6.5 ▲	0.26 4
12GT5-A¶	Beam Power Amplifier	9NZ	12-95	12.6	0.6	17.5 ◈	770\$ ◈	220 ♦ 3.5 ♦	15▲	6.5 ▲	0.26 ▲
12GW6¶	Beam-Power Amplifier	6AM	12-51	12.6	0.6	17.5 🏵	770 ♦\$	220 ③ 3.5 ⑤	17▲	7.0▲	0.5 ▲
12H4	Medium-Mu Triode	7DW	5-3	12.6 6.3	0.15 0.3	2.5	300		2.6	3.2	3.4
12H6	Twin Diode	7Q	8-5	12.6	0.15			oltage 16 ma		•	
12HE7	Diode-Pentode	12FS	12-57	12.6	1.35	10 🏶	500\$ ◈		WAR-97-	le Sectio	on
						_	Tube V	oltage s at 350	Drop:	Section c	
12HG7	Sharp-Cutoff Pentode	9BF	9-70	${6.3}\atop{12.6}$	0.52)	10 🆠	400 ◈	330\$ ♦	14 ▲	4.4 ▲	0.18
12H L.5	Beam Power Amplifier	9QW	6-4	12.6	0.45	12 🕸	330 🏶	250 ③ 2.5 ③	_		
12J5 12J5-GT	Medium-Mu Triode	6Q	8-1 9-11, 9-41	12.6	0.15	2.5	300	-	3.4 4.2	3.6 5.0	3.4 3.8
12J7-GT	Sharp-Cutoff Pentode	7R	9-18	12.6	0.15	0.75	300	3008	Pentoc	le Conn	ected
						1.75	250	0.1	Triode	Connec	cted
12J8	Duplex-Diode Tetrode	9GC	6-2	12.6	0.325	-	30	30	10.5	G ₃ & P	0.7 ▲
									Diode	Section	s
12JB6¶	Beam Power Amplifier	9QL	12-70	12.6	0.6	17.5 ◈	7708 🏶	220 ♦ 3.5 ♦	15▲	6.0 ▲	0.2 🛦
12JB6-A¶	Beam Power Amplifier	9QL	T-X	12.6	0.6	17.5�	7708 🏵	220 ③ 3.5 ④	15▲	6.0▲	0.2
12JF5¶	Beam Power Amplifier	12JH	12-79	12.6	0.6	17.5 🏶	7708 ◈	220 ♦ 3.5 ♦	15.6 ▲	6.4 ▲	0.55
12JN6¶	Beam Power Amplifier	12FK	12-56	12.6	0.6	17.5�	770\$ ◈	220 ③ 3.5 ④	16 ▲	7.0▲	0.34
12JN6-A¶	Beam Power Amplifier	12FK	12-56	12.6	0.6	17.5 🏶	7708 ◈	220 ③ 3.5 ④	16 ▲	7.0▲	0.34
12JN8	Triode-Pentode	9FA	6-2	12.6	0.225	2.5 ③ 2.5 ③	300 ♦	300 \$ @ 0.55 @	1	le Section	
12JQ6¶	Beam Pentode with Integral Diode	9RA	6-4	12.6	0.6	10�	425�	330 ♦ 2.0 ♦	13 🛦	6.0▲	0.32
12JS6	Beam Power Amplifier	12FY	12-89	12.6	1,125	28 🏶	€ \$066	190 ♦ 5.5 ♦	24 ▲	10 🛦	0.7 ▲

Compactron.
† Zero signal.

• Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	250 60 Max no	150 150	22.5 0	70 390	2.1 32	15,000 ,500; max	7.100	ode cur		175 ma	12GT5¶
Horizontal Amplifier	250 60	150 150 positive	22.5 0	70 390	$\begin{vmatrix} 2.1 \\ 32 \end{vmatrix}$	15,000 •6,500; m	7,100	_			12GT5-A¶
Horizontal Amplifier	250 60 Max po	150 150 sitive p			2.1 32 ge � = 6	15,000 	7,100 d-c cath	ode cur	 rent⊛=	175 ma	12GW6¶
Class A Amplifier	90 250		0 8.0	10 9.0	Ī	6,700 7,700	3,000 2,600	20 20	ĪĒ		12H4
Half-Wave Rectifier	Max d	l-c outp	ut curr	ent per	plate = l	=8 ma; ma 50; max pe	x peak	inverse	voltage	e = 420; 48 ma	12H6
Horizontal Amplifier	130 50 Max 230 m	130 130 positive	22 0 pulse	60 450 plate v	2.8 40 oltage �	6,200 	8,800 nax d-c	cathode	e currer	 nt	12HE7
TV Damper	Max max r	d-c out _l eak cur	put cur rent 🏶 :	rent 🏶 = = 1,200	=200 m ma	a; max pea	ak inver	se volt	age 🏶 =	4,200;	
Class A Amplifier	300	135	R _k = 47	31	4.8		32,000	(g3 cc k at s			12HG7
Class A Amplifier	130	130	R _k = 56	70†	5.0†	7,500	17,000		2,000	3.0	12HL5
Class A Amplifier	90 250		0 8.0	9.0	=	6,700 7,700	3,000 2,600	20 20	_	=	12]5 12]5-GТ
Class A Amplifier Class A Amplifier	250 250	100	3.0 8.0	2.0 6.5	0.5	1,000,000	1,225	20		_	12J7-GT
Class A Amplifier AM Det.	12.6 Max	d-c outp	E _{ccl} = 0 out curr 5.0 vo	12† ent • = lts at 1	1.5† =5.0 ma 2 ma d-	60,000 voltage d	\	$R_{gi} = 2$	_	na d-c;	12J8
Horizontal Amplifier	250 60	150 150 positive	22.5 0	70 390	32.1	15,000 =6,500; n	7,100 nax d-c	at soc		!	12JB6¶
Horizontal Amplifier	250 60 Max 175 m			70 390 ate vo	2.1 32 oltage �	15,000 = 6,500; n	7,100 nax d-c	kats	onnected socket) e currer		12JB6-A¶
Horizontal Amplifier		150 150 ositive p ma.	22.5 0 oulse pla	65 345 ite volta	1.8 27 age 🏶 =	18,000 = 6,500 vol	7,300 Ls; max	d-c cath	ode cur	rent 🕸	12JF5¶
Horizontal Amplifier	250 60 Max 175 m		22.5 0 pulse	65 345 plate v	27 voltage	18,000 = 6,500;	7,300 max d-0	at soc	connecte ket) de curre		12JN6¶
Horizontal Amplifier	250 55 Max 175 m		22.5 0 pulse	70 345 plate v	2.4 30 oltage @	15,000 =6,500; n	7,300 nax d-c	kats	connect ocket) e currer	1	12JN6-A¶
Class A Amplifier Class A Amplifier	125 125	125	1.0	13.5	4.0	200,000 5,400	7,500 8,500	46			12JN8
Vertical Amplifier	Insta	intaneou	s diode	-plate-to	o-cathod	10,500 = 2,000; max e voltage dr	4.200 c d-c cat op for in	hode cu stantan	rrent 🗞 :	= 70 ma. de-plate	12JQ6¶
Horizontal Amplifier	175 70	ent of 2.6 125 120 positive na	25 0	125 570	4.5 34	5,600 =7,500; n	11,300 nax d-c	(b.p. k at s cathod	connecte ocket) e currer	ed to nt	12JS6 -

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Voits		acitanc icofarac	
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
12JT6¶	Beam Power Amplifier	9QU	T-X	12.6	0.6	17.5 🏶	7708 ◈	220 ③ 3.5 ④	15▲	6.5 ▲	0.26
12JT6-A¶	Beam Power Amplifier	<u>9QU</u>	12-95	12.6	0.6	17.5 ◈	7702 	220 ♦ 3.5 ♦	15▲	6.5▲	0.26
12K5	Space-Charge-Grid Tetrode	7FD	5–3	12.6	0.4		30		23.0 ▲	1.8 ▲	11.0
2K7-GT	Remote-Cutoff RF Pentode	7R	9-18	12.6	0.15	2.75	300	300 \$ 0.35	4.6	12.0	0.005
12K8 12K8-GT	Triode Hexode Converter	8K♥	8-2 9-24	12.6	0.15	0.75	300	300 \$ 0.7	Osc Ici Rei = 5	=0.15 0,000 o	ma hms
12KL8¶	Diode-Pentode	9LQ	6–3	12.6	0.15	3.0 🏶	330 ◈	330 \$ 🏵	Pentod	le Section	
12L6-GT¶	Beam Power Amplifier	7AC	9-11 or 9-41	12.6	0.6	10	200	125 1.25	15▲	10▲	0.8 🛦
12L8-GT	Twin-Pentode Power Amplifier	8BU	9-11	12.6	0.15	2.5♠	180	180	5.0 ▲	6.0▲	0.7 🛦
2M D8¶	Triple Triode	9RQ	T-X	12.6	0.45	3.0 ◈	330 ◈	=		=	-
12Q7-GT	Duplex-Diode High-Mu Triode	7 V	9-18	12.6	0.15	=	300		2.2	5.0	1.6
2R5¶	Beam Power Amplifier	7CV	5–3	12.6	0.6	4.5	150	1.0	13▲	9.0 🛦	0.55
12S8-GT	Triple-Diode High-Mu Triode	8CB	9-23	12.6	0.15	0.5	300	=	1.2	5.0	2.0
12SA7 12SA7-GT	Pentagrid Converter	8R ♥ 8AD ♥	8-1 9-11, 9-41	12.6	0.15	1.0	300	1.0	Osc Ici Rgi = 2	=0.5 n 0,000 o	na hms
12SC7	High-Mu Twin Triode	88	8-1	12.6	0.15	_	250		_		
12SF5 12SF5-GT	High-Mu Triode	6AB	8-1 9-11	12.6	0.15	_	300	=	4.0	3.6	2.4
12SF7 12SF7-GT	Diode Remote-Cutoff Pentode	7AZ	8-1 9-18	12.6	0.15	3.5	300	3008	5.5 5.5	6.0	0.004
12SG7	Semi-Remote-Cutoff RF Pentode	8BK	8-1	12.6	0.15	3.0	300	300 \$ 0.6	8.5	7.0	0.003
12SH7	Sharp-Cutoff RF Pentode	8BK	8-1	12.6	0.15	3.0	300	3008	8.5	7.0	0.003
12SJ7	Sharp-Cutoff Pentode	88	8-1 9-12	12.6	0.15	2.5	300	3001	Pentoc	le Conn	ection
12SJ7-GT						2.5	250	-		Connec	
125K7 125K7-GT	Remote-Cutoff RF Pentode	8N	8-1 9-11	12.6	0.15	4.0	300	3008	6.0	7.0	0.003
12SL7-GT	High-Mu Twin Triode	8BD	9-11	12.6	0.15	1.0 ♠	300	-	=	-	-
12SN7-GT	Medium-Mu Twin Triode	8BD	9-11, 9-41	12.6	0.3	3.5 ♠ 5.0 ⊕	300		2.8 ₁ A 3.0 ₂ A	0.8 ₁ A	3.8 ₁ 4.0 ₂

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	250 60 Max 175 m		22.5 0 pulse 1	70 390 plate v	2.1 32 oltage �	$=\frac{15,000}{6,500;}$ n	7,100 — nax d-c	at soc	nnected ket) e currer	i	12JT6¶
Horizontal Amplifier	250 60 Max 175 m			70 390 plate vo	2.1 32 oltage 🏶	15,000 =6,500; m	7,100 nax d-c	kats	nnected ocket) e currer	- 1	12JT6-A¶
Class A Amplifier	12.6 E _{cl} = grid r	12.6 vol	$E_{cct} = 0$ ts; $I_{ct} = 0$ 2 is con	-75 ma	— (Note: d)	de 480 grid numb	15,000 er 1 is		R _{g1} = 2 harge gi		12K5
Class A Amplifier	250	125	3.0	10.5	2.6	600,000	1,650	_	_		12K7-GT
Converter	250	100	3.0	2.5	6.0	600,000	350 #	Eb(Tri	ode Osc)	= 100 3.8 ma	12K8 12K8-GT
Class A Amplifier Detector	100 Max	100 d-c outp	E _{ccl} =	5.5	2,2	550,000	4,300		.2 mego		12KL8¶
Class A	200	125	R _k =	46†	1 2.2†	28,000	8.000	l	4,000	3.8	12L6-GT9
Amplifier	110	110	180	491	4.0†	13,000	8,000	_	2,000	2.1	1220-01
Class A Amplifier	180	180	9.0	13†	2.8†	160,000	2,150	-	10,000	1.0	12L8-GT
Class A Amplifier •	250	_	10.5	11.5		5,500	3,100	17			12MD8¶
Class A Amplifier	250	=	3.0	1.0		58,000	1,200	70			12Q7-GT
Vertical Amplifier	110 45 Max	110 110 positive	8.5 0	40 120 clate vo	3.3 17	13,000 =1,500 vo	7,000 Lts: max	screen	dissipa	tion =	12R5¶
	1.0 w	att; max	d-c ca	thode c	urrent =	=45 ma					
Class A Amplifier	250		2.0	0.9		91,000	1,100	100			12S8-GT
Converter	250 100	100 100	2.0 2.0	3.5 3.3	8.5 8.5	1,000,000	450 # 425 #	=	=	=	12SA7 12SA7-G
Class A Amplifier •	250		2.0	2.0	-	53,000	1,325	70	_		12SC7
Class A Amplifier	250		2.0	0.9	_	66,000	1,500	100			12SF5 12SF5-G7
Class A Amplifier	250 100	100 100	1.0	12.4 12	3.3 3.4	700,000 200,000	2,050 1,975	_	=		12SF7 12SF7-G
Class A Ampliner	250 250	150 125	2.5 1.0	9.2	3.4 4.4	1,000,000	4,000 4,700			$ \equiv $	12SG7
Class A Amplifier	100 250	150	1.0	10.8	3.2 4.1	250,000 900,000	4,100		<u> </u>	 	12SH7
Class A Amplifier	250	100	3.0	3.0	0.8	1,000,000	1,650	<u> </u>	_		12SJ7
Class A Amplifier	250	-	8.5	9.2	-	7,600	2,500	19	-	-	12SJ7-G7
Class A Amplifier	250 100	100	3.0	9.2	2.6 4.0	800,000 120,000	2,000 2,350	三	=	=	12SK7 12SK7-G
Class A Amplifier	250	-	2.0	2.3	-	44,000	1,600	70	-		12SL7-G
Class A Amplifier	250 90	=	8.0	9.0	1=	7,700 6,700	2,600 3,000		=		12SN7-G

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max Piate	Max	Max Screen Voits		acitance icofarad	
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Watts	Piate Volts	and Watts	Input	Out- put	Grid- plate
12SN7- GTA	Medium-Mu Twin Triode	8BD	9-11, 9-41	12.6	0.3	5.0 ♠ 7.5 ⊕	450		2.2₁ ▲ 2.6₂ ▲	0.7 🛦	4.0 ₁ 4 3.8 ₂ 4
12SQ7-GT	Duplex-Diode High-Mu Triode	8Q	8-1 9-12	12.6	0.15	0.5	300		3.2 4.2 ▲	3.0 3.4 ▲	1.6 1.8 A
12SR7 12SR7-GT	Duplex-Diode Medium-Mu Triode	8Q	8-1 9-11	12.6	0.15	2.5	250		3.6 3.5	2.8 3.8	2.4 2.3
12SW7	Duplex-Diode Medium-Mu Triode	8Q	8-1	12.6	0.15	2.5	250	_	3.0	2.8	2.4
12SX7-GT	Medium-Mu Twin Triode	8BD	9-11	12.6	0,3	2.5♠	300		3.0 ₁ 2.8 ₂	0.8 ₁ 1.2 ₁	3.6
12SY7 12SY7-GT	Pentagrid Converter	8R♥ 8AD♥	8-1 9-12	12.6	0.15		300	1.0	R = 1 = 2	=0.5 m 0,000 ol =0.1 m 0,000 ol	hms
12T10¶	Dissimilar Double Pentode	12EZ	9-59	12.6	0.45	10 ③	1	275 ♦ 2.0 ♦ 330 ♣ ♦ 1,1 ♦		1 (Pin	s 8,
12U7	Twin Triode	9A	6-2	12.6	0.15		30	=	1.8	2.0	1.5
12V6-GT	Beam Power Amplifier	7AC	9-11 or 9-41	12.6	0.225	12	315	285 2.0	Single		
									2 Tube	s, Push	-Pull
12W6-GT¶	Beam Power Amplifier	7AC	9-11 or 9-41	12.6	0.6	12 ◈ 8.5 ◈		165 ◈ 1.35 ◈		e Conn	
							330 🏶		(G ₂ & 1	Conne tied)	ction
12X4	Full-Wave High- Vacuum Rectifier	5BS	5-3	12.6	0.3		Tube V 22 v at	oltage 70 ma	Drop: 4 d-c		
12 Z 3	Half-Wave High-Vacuum Rectifier	4G	12-5	12.6	0.3	-	Tube V	oltage 110 ma	Drop: a d-c		
13CW4	High-Mu Triode (Nuvistor)	12AQ	4-4	13.5	0.06	1.5 ◈	135 🏶	_	4.3 ▲	1.8 ▲	0.92 ▲
13DE7¶	Double Triode	9HF	6-3	13.0	0.45	1.5 🏶	330 🏶		Section 8)	1 (Pin	s 6, 7
						7.0 ◈	275 🏶		Section 3, 9)	2 (Pin	s 1, 2,
13DR7¶	Double Triode	9HF	6–3	13.0	0.45	1.0 🏶	330 ◈			1 (Pin	s 6, 7
						7.0 ◈	275 🏶		Section 3, 9)		
13EM7¶	Double Triode	SBD	9–37	13.0	0.45	1.5 *	330 ♦		5, 6) Section	1 (Pins 2 (Pins	
13FD7¶	Double Triode	9HF	9-77	13.0	0.45	1.5 🏶	330 €		2, 3) Section	1 (Pins	s 6.
						10 🏶	330 ◈		7, 8) Section 2, 3,	2 (Pins	•

Compactron.
Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.
 Without external shield.
 Design maximum rating.

[⊕]Total for all similar sections.

BAbsolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier • Vertical Amplifier •	250 90 Max po	sitive p	8.0 0 oulse pla	9.0 10 te volta	 age 🖲 =	7,700 6,700 1,500; max	2,600 3,000 d-c cat	20 20 hode cu	rrent =	 20 ma	12SN7-GTA
Class A Amplifier	250 100	_	2.0 1.0	1.1 0.5	_	85,000 110,000	1,175 925	100 100		=	12SQ7 12SQ7-GT
Class A Amplifier	250	_	9.0	9.5†		8,500	1,900	16	10,000	0.3	12SR7 12SR7-GT
Class A Amplifier	250 26.5	=	9.0 R _g = 2 meg	9.5 1.1	=	8,500 15,500	1,900 1,100	16 17	=		12SW7
Class A Amplifier •	250 26.5	=	8.0 R _g = .05 mcg	9.0 1.8	=	7,700 11,500	2,600 1,800	20 21			12SX7-GT
Converter Converter	250 28	100 28	2.0 1.0	3.5 0.5	8.5 1.8	1,000,000	450 # 250 #	=		=	12SY7 12SY7-GT
Class A Amplifier	250	250	8.0	35†	2.5†	100,000	6,500		5,000	4.2	12T10¶
Class A Amplifier	150	100	R _k = 560	1.3	2.1	150,000	1,000		0 volts)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Class A Amplifier •	12.6		0	1.0		12,500	1,600	20			1207
Class A Amplifier	315 250 180	225 250 180	13 12.5 8.5	34† 45† 29†	2.2† 4.5† 3.0†	80,000 50,000 50,000	3,750 4,100 3,700	=	8,500 5,000 5,500	5.5 4.5 2,0	12V6-GT
Class AB ₁ { Amplifier {	285 250	285 250	19 15	70† 70†	4.0† 5.0†	70,000 60,000	3,600 3,750		8,000± 10,000±	10	
Class A Amplifier	200 110	125 110	R _k = 180 7.5	46† 49†	2.2† 4.0†	28,000 13,000	8,000		4,000 2,000	3.8	12W6-GT¶
Vertical Amplifier	225		30	22		1,600 1,200; max	3,800	6.2 ode cu	_		
Full-Wave Rectifier	Max d- ply vol	c outpu tage per	t currer plate =	nt =90 : -360; m	ma; ma: nax peal	k peak inve current p	erse volt er plate	age = 1. = 245 n	,250; rm na	ns sup-	12X4
Half-Wave Rectifier	Max d- rms sur	c outpu ply vol	t currentage = 2:	35 volts	ma; ma ; max pe	x peak inveak current	erse volt =330 m	age = 7	00 volts	; max	12Z3
Class A Amplifier	110		R _k == 130	7.0		6,600	9,800	65			13CW4
Vertical Oscillator	250 Max d- 150	c catho	11 le curre		22 ma	8,750	2,000			! —	13DE7¶
Vertical Amplifier	60	sitive n	17.5 0 ulse pla	35 80 te volta	 ige	925 4,000; max	6,500 d-c cath	6.0 ode cu	rent ®	=50 ma	
Vertical Oscillator	250 Max d	l —	3.0 de curre	1.4 ent	I I	40,000	1,600	68	-	I —	13DR?¶
Vertical Amplifier	150 60 Max po	sitive p	17.5 0 ulse pla	35 80 te volta	 uge ⑤ =	925 	d-c cath	6.0 ode cu	rent *	= 50 ma	
Vertical Oscillator Vertical	150	-		50		750	7,200	5.4		<u>-</u>	13EM7¶
Amplifier Vertical Oscillator Vertical	250 Max d- 150	c cathod	3.0 le curre 17.5	$ \begin{array}{c} 1.4 \\ \text{nt} \circledast = 2 \\ 40 \end{array} $	0 ma	800	1,600 7,500	64		-	13FD7¶
Amplifier		ositive r	ulse pla	te volt	age 🏶 l ,	500; max d	-e catho	de curr	ent 🏶 =	50 ma	

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max Plate	Max	Max Screen Volts		pacitano icofara	
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
13FM7¶	Dissimilar Double Triode	12 E J	9-58	13	0.45	1.0 ③ 10 ⑤	350 ♦ 550 ♦		Section 10, 1 Section 5, 7,	1)	ins 9, ins 3,
13FR7¶	Double Triode	9HF	9-70	13.0	0.45	1.5 (330 ♦		Section 7, 8) Section		
13GB5	Beam Power	9NH	T-X	13.3	0.6	17 🏶		275 🏶	2, 3,	9) -	s ;.
13GF7¶	Amplifier Dissimilar Double	9QD	T-X	13	0.45	1.5	330 ◈	6.0	Section	1 (Pir	s 1, 8,
	Triode					11 🔷	330�		9) Section 6)	2 (Pir	s 2, 3,
13GF7-A¶	Dissimilar Double Triode	9QD	9-107	13	0.45	1.5 🏶	330 ◈		Section 8, 9)		sl,
	Triode					11 🔷	330 ◈	_	Section 3, 6)	2 (Pin	s 2,
13J10¶	Pentode Gated-Beam Discriminator	12BT	9-58	13.2	0.45	10 🏶	l	275 (a) 2.0 (a) 110 (a)	Pentod (Pin Gated- Disc (Pin	Beam	on 9, 11) for 6, 7, 8)
13JZ8¶	Triode-Pentode	12DZ	9-58	12.7	0.6	7.0◈	250�	200 ⊗ 1.8 ⊗	Pentod	e Section	'n
						1.0�	250�	i –	Triode	Section	
13JZ8-A¶	Triode-Pentode	12DZ	9-98	12.7	0.6	1.0 🏶	250 ♦ 250 ♦	200 (a)		de Sect	
13V10¶	Dissimilar Double Pentode	12EZ	9-59	13.2	0.45	6.5 *	Ì	150 ♦ 1.8 ♦ 330 \$ ♦ 1.1 ♦	Section 9, 10 Section 3, 5,	1 (Pin , 11) 2 (Pin 6, 7)	s 8, s 2,
13210	Pentode—Gated-Beam Discriminator	12BT	9-58	13.2	0.45	10 🏶	275 ♦ 330 \$ ♦	275	Pentod (Pin Gated- Disc	e Secti s 2. 3, 9 Beam riminat	on 9, 11)
14A4	Medium-Mu Triode	5AC	9–30	12.6	0.15	2.5	300	=	3.4	3.0	4.0
14A5	Beam Power Amplifier	6AA	9-30	12.6	0.15	7.5	250	250 1.5			-
14A7/12B7	Remote-Cutoff Pentode	8V	9-30	12.6	0.15	4.0	300	125 0.4	6.0	7.0	0.005
14AF7/- XXD	Medium-Mu Twin Triode	8AC	9-30	12.6	0.15	2.5 💠	300		2.2	1.6	2.3
14B6	Duplex-Diode High-Mu Triode	8W	9-30	12.6	0.15	0.5	300	_	_	_	_
14B8	Pentagrid Converter	8X♦	9-30	12.6	0.15	1.0	300	100 0.3	Osc Iel Rg1 = 5	=0.4 r 0,000 c	na hms
14BL11¶	Dissimilar-Double- Triode Pentode	12GC	9-58	14.2	0.45	2.5 🏶	250 ◈	1.25		le Secti	
						1.5 ♦ 2.0 ♦	330 ♦	1	(Pin	Sections 5, 6, Sections 3, 4,	7) n 2

Compactron.

† Zero signal.

†Per section.

[†] Plate-to-plate. †Maximum. § Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate	Screen	Neg Grid	Plate Milli-	Screen Milli-	R _p ,	G _{m,}	μ Fac-	Load for Rated	Power Out-	Tube
	Volts	Volts	Volts	am- peres	am- peres	Ohms	μmhos	tor	Out- put, Ohms	put, Watts	Туре
Vertical Oscillator	250 Max 1	- l	3.0	2.0	are 🖎 =	30,000 400 volts	2,200	66	i —	-	13FM7¶ ■
Vertical	175	-	25 0	40 95		920	6,000	5.5	-	_	
Amplifier					oltage 🏶	=6,500; n	ax d-c	cathod	e currer	nt ⊕ =	
Vertical Oscillator	250	- I	3.0	1.4	1000	40,000	1,600	68	rent @	=22 ma	13FR7¶
Vertical	150	- I	20	50	lage 🖤 -	400; max 6	7,200	5.4	—		
Amplifier Horizontal	75	200	puise p	440	tage 🍩 :	=1,500; ma	neous \	(alues)	urrent:	= 50 ma	13GB5
Amplifier Vertical	Max po	sitive p				(Instanta ,700; max o			rent 🏶 =	275 ma	13GF7¶
Oscillator	Max	l-c cath	ode cur	rent 🐵 :	22 ma		•	•	. — :	_	13011 1
Vertical Amplifier	150 60		20 0	50 95	=	750 —	7,200	5.4	=		
		sitive p				40,000 i			rent 🏶 :	= 50 ma	100777 4 4
Vertical Oscillator		d-c cath	3.0 lode cu	rrent 🏵	= 22 m	a			. – !	_	13GF7-A¶
Vertical	150 60	=	20	50 95		750	7,200	5.4		_	
Amplifier	Max 50 ma	positive	pulse :	plate v	oltage 🏶	=1,500; m	ax d-c	cathode	e curren	it ⊕ =	
Class A Amplifier	250	250	8.0	35†	2.5†	100,000	6,500		5,000	4.2	13J10¶
FM Limiter- Discrimi-	285	100	R _k = 200	0.49	9.8	_	-	_	330000	-	
nator			to								
	$E_{e1} = 1$	25 volts	400 RMS	1	1	l	1	·	1		
Vertical Amplifier	120 45	110 110	8.0	46 122	3.5 16.5	11,700	7,100	_	=		13JZ8¶
Vertical	Max 150	positive	pulse i		ltage 🕸 :	=2,000; ma: 8,500	, x d-c ca 2,350		irrent®	=70 ma	_
Oscillator	Max	d-c catl		rrent 🅸	=20 ma			1 20	·		
Vertical Amplifier	120 45	110 110		$\frac{46}{122}$	3.5 16.5	11,700	7,100			_	13JZ8-A¶ ■
·	$\begin{array}{l} \text{Max po} \\ = 70 \text{ r} \end{array}$	ositive p na.	ulse pla	te volta	ıge ◈ =	2,000 volt			ode curr	ent 🏶	
Vertical Oscillator	150	1 1	10.0		l — = 20 ma	8,500 i	2,350	20	-		
Class A	145	125	6.0	34†	2.2†	58,000	6,400	_	3,000	1.5	13V10¶
Amplifier Class A	150	100	R _k = 560	1.3	2.0	150,000	1,000	(E _{c3} =	0 volts)		
Amplifier Class A	250	250	8.0	35†	3.0†	100,000	6,500		5,000	4.2	13Z10¶■
Amplifier FM Limiter-	135	280		5.0	(R _{g2} =	33,000 ohr	ns) (Éc	a = +4.0	0 volts)		
Discrimi- nator											
Class A Amplifier	250 90		8.0	9.0		7,700 6,700	2,600 3,000	20 20	_		14A4
Class A	250	250	12.5	30†	3.5†	70,000	3,000	-=	7,500	2.8	14A5
Amplifier Class A	250	100	3.0	9.2	2.6	800,000	2,000	<u> </u>			14A7/12B7
Amplifier Class A	250		10	9.0		7.600	2,100	16	 		14AF7/-
Amplifier • Class A			2.0	0.9		91,000	1,100	100			14B6
Amplifier	250 100	_	1.0	0.4	=	110,000	900	100			14.50
Converter	250	100	3.0	3.5	2.7	360,000	550 #	E_{c2} (Osthru 20 $I_{c2} = 4$.	c Plate) 0,000 oh 0 ma	=250 ms	14B8
Class A	200	100	R _k =	16	3.0	70,000	19,000	-	 -	-	14BL11¶
Amplifier	35	100	82 0	40	13	10.700		-	-	_	
Class A Amplifier	200	_	R _k = 270	7.1	-	12,500	5,500	69	_	_	
Class A Amplifier	200	-	R _k = 470	7.2	-	7,600	5,300	40	_	-	

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		pacitanc Picofarac	
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
14BR11	Dissimilar-Double- Triode Pentode	12GL	9-59	14.2	0.45	4.0 🏶	330 ◈	330 \$ ③ 1,1 ④	Pentod	e Sectio	n
						1.5 🏶	330 ◈	_	Triode (Pins 7	Section , 9, 10) Section	. 1
						2.0 🏶	330 🏟		Triode (Pins 5	Section , 6, 8)	2
14C5	Beam Power Amplifier	6AA	9-31	12.6	0.225	12	315	285 2.0		-	
14C7	Sharp-Cutoff Pentode	8V	9-30	12.6	0.15	1.0	300	100	6.0	6.5	0.007
14E6	Duplex-Diode High-Mu Triode	8W	9-30	12.6	0.15	2.5	250		=		=
14E7	Duplex-Diode Remote- Cutoff Pentode	8AE	9-30	12.6	0.15	2.0	250	100 0.3	4.6	5.3	0.005
14F7	High-Mu Twin Triode	8AC	9-30	12.6	0.15	1.0♠	250		_		
14F8	High-Frequency Twin Triode	8BW	9-32	12.6	0.15	3.5 ♠ 3.5 ⊕	300		2.8	1.4	1.6
14GT8	Duplex-Diode Triode	9KR	6-2	14.0	0.15	1.1 🏶	330 ◈		1.6▲	0.24	1.8▲
14GT8-A ¶							- 800	0005		Section	0.004
14H7	Semi-Remote-Cutoff RF Pentode	8V	9-30	12.6	0.15	2.5	300	300 8 0.5	8.0	7.0	0.004
1 4 J7	Triode-Heptode Converter	8BL	9-30	12.6	0.15	0.5	300	100 0.4	Osc I_{c1} $R_{g1} = 5$	=0.4 m 0,000 ol Section	a nms
14JG8	Duplex-Diode	9KR	6-2	14.0	0.15	1.25	330 €		Triode	Section 0.22 ▲	1.7
143 00	Triode	SKK	0-2	14.0	0.10	1	330 \$		_	Sections	
14N7	Medium-Mu Twin Triode	8AC	9-31	12.6	0.3	2.5♠	300				-
14Q7	Pentagrid Converter	8AL♥	9-30	12.6	0.15	1.0	300	100	$ \begin{array}{c} Osc I_{c1} \\ R_{g1} = 2 \end{array} $	=0.5 m 0,000 o	na hms
14R7	Duplex-Diode Remote-Cutoff Pentode	8AE	9-30	12.6	0.15	2.0	250	250 8 0.25	5.6	5.3	0.004
1487	Triode-Heptode Converter	8BL	9-30	12.6	0.15	0.6	300	100 0.4	$R_{\sigma 1} = 5$	=0.4 m 0,000 o	hms
						1.0	175			Section	1
14W7	Sharp-Cutoff RF Pentode	8BJ	9-30		0.225		300	150 0.8			
14X7	Duplex-Diode High-Mu Triode	8BZ	9-31	12.6	0.15		300				
14Y4	Full-Wave High-Vacuum Rectifier	5AB	9-30		0.3		22 v at	oltage 70 ma	d-c		
15	Sharp-Cutoff RF Pentode	5F	12-6	2.0 DC	0.22		135	67.5	2.35 ▲		0.01
15A8¶	Triode-Pentode	8GS	9-49	15.0	0.6	10 2.5 7.5	300 300	Pentod nection	Triode e Section G and		le Con-
15A B9	Twin Tetrode	10N	T-X	15.0	0.15	2.0 ♦		180 \$ ♦ 0.5 ♦		2.7	0.055
15AF11¶	Dissimilar-Double Triode Pentode	12DP	9-58	14.7	0.45	5.0 🏶	330 ◈	1	1	le Section	
						1.1 🏶	330 �	1,25 🏶	(Pins	Section 5, 6, 8)	
					1	2.0	330 ◈	_		Section 3, 4, 7)	1 Z

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Avg. Char.	135	135	R _k = 100	17	4.0	45,000	10,400				14BR11¶
- 11	35	135	0	34 7.0	13				_		
Class A Amplifier	200	-	2.0	l	_	12,400	5,500	68	_	_	
Class A Amplifier	200	_	R _k = 220	9.2	_	9,400	4,400	41		-	
Class A Amplifier	315	225	13	34†	2.2†	77,000	3,750		8,500	5.5	14C5
Class A Amplifier	250	100	3.0	2.2	0.7	1,0000,00	1,575	_			14C7
Class A Amplifier	250		9.0	9.5		8,500	1,900	16			14E6
Class A Amplifier	250	100	3.0	7.5	1.6	700,000	1,300	_			14E7
Class A Amplifier •	250		2.0	2.3		44,000	1,600	70			14F7
Class A Amplifier •	250		R _k = 500	6.0			3,300	48			14F8
Class A Amplifier	250	_	3.0	0.7		72,000	1,000	72			14GT8
FM Det.	250	1-c outp		ent 🕸 4	=5.0 n 1 3.2	na; voltage	drop ♠ :	5.0 vol	ts at 18	ma	14GT8-A¶
Class A		1	R _k =				1		_	_	14114
Amplifier	100	100	1.5	7.5	2.6	350,000	4,000		<u> </u>	<u> </u>	
Converter	250	100	3.0	1.4	2.8	1,500,000	290 #	250 thr	ode Osc u 20,000 ode) = 5	ohms	14J7
Class A	250	-	2.0	2.0		41,000	2,200	90			14JG8
Amplifier FMDetector	Mar	dec out	l put cur	rent 📤 :	 =50 ma	; voltage d	ron 📤 :	i 5 volts	at 20 n	i na	
Class A	250	1	8.0	9.0	1	7,700		20	<u> </u>	1 -	14N7
Amplifier 🌩	-050					. 000 000					
Converter	250	100	2.0	3.5	8.5	1,000,000	550 #				14Q7 14R7
Class A Amplifier	250 100	100	1.0	5.7 5.5	2.1 2.2	1,000,000 350,000	3,200 3,000	_	_	=	14R7
Converter	250	100	2.0	1.8	3.0	1,250,000	525 #	250 thr	ode Osc u 20,000 ode) = 5	ohms	1487
Class A Amplifier	300	150	R _k = 160	10	3.9	300,000	5,800		—		14W7
Class A Amplifier	250	=	1.0	1.9		67,000	1,500	100		-	14X7
Full-Wave Rectifier	Max	d-c outrupply v	out curr	ent = 70 er plate	=325 v	ax peak inv olts; max p	erse vol	tage = 1 rent per	250 vol plate =	ts; max 210 ma	14Y4
Class A Amplifier	135	67.5	1.5	1.85	0.3	800,000	750	_			15
Class A	110 250	110	7.5 8.0	45 9.0	4.0	13,000 7,700	7,300 2,600	20			15A8¶
Amplifier Vertical	225		30	25		1,600	3.800	6.0		I	
Amplifier \						1,200; ma:			urrent =	40 ma	
Class A Amplifier •	125	80	1.0	8.0	2.0	110,000	10,000				15A B9
Class A	200	150	R _k == 100	24	4.8	68,000	11,000	-	-	-	15AF11¶ ■
Amplifier Class A Amp	200	-	2,0	7.0	-	12,400	5,500	1		-	
Class A Amplifier	200	_	R _k = 220	9.2	-	9,400	4,400	41	-	_	

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanco cofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
15BD11¶	Dissimilar-Double- Triode Pentode	12DP	9-58	14.7	0.45	4.0 🏶	330 🆫	330 \$	Pentode	Sectio	n
-	Trione rentode					1.5 🏶 2.0 🏶	330 ◈ 330 ◈		Triode (Pins 5, Triode (Pins 3,	6, 8) Section	
15BD11-A	Dissimilar-Double-	12DP	9-58	14.7	0.45	4.0	330�	330:◈	Pentode		n
₹ 💻	Triode Pentode					1.5⊛	330◈	1.5	Triode S	Section	1
						2.0�	330⊛	-	(Pins 5, Triode 8 (Pins 3,	Section	2
15CW5	Power Amplifier Pentode	9CV	6-4	15	0.3	14 🏶	275 🏶	220 � 2.1 �	11.8	6.0▲	0.6 ♣
15DQ8	Triode-Pentode	9HX	6-3	15	0.3	4.0	250	250 1.7	Pentode	Section	n
						1.0	250	1.1	Triode	Section	
15EA7¶	Double Triode	8BD	9-5	14.8	0,45	1.0 🏶	350 ◈		Section 5, 6)	1 (Pini	s 4,
						10 🏟	550 ◈		Section 2, 3)	2 (Pins	s 1,
15EW6	Sharp-Cutoff RF Pentode	7CM	5–2	15.0	0.15	3.1 🏶	330 ◈	330 \$ 0.65 \$	10	3.4	0.03
15EW7¶	Dissimilar Double Triode	9HF	9-70	14.8	0.45	1.5	330 🏽		Section 7, 8)	1 (Pin	s 6,
	Triode					10 🆫	330 ◈		Section 2, 3, 9)	2 (Pin	s 1,
15FM7¶	Dissimilar Double Triode	12EJ	958	14.8	0.45	1.0 🏶	350 ◈		Section 10, 1		s 9,
	Triode					10 ◈	550 ◈		Section 7, 8)		s 3, 5,
15FY7¶	Dissimilar Double	12EO	9-60	14.7	0.45	1.0 ◈	330 🏶		Section	1 (Pin	s 9,
	Triode					7.0 🏶	275 �	-	10, 1 Section 5, 7)	2 (Pin	s 3,
15HA6	Pentode	9NW	6–4	15	0.3	8.0 🏶	300 ◈	250 ③ 1.5 ④	13▲	8.0▲	0.184
15HB6¶	Power Amplifier Pentode	9NW	6-4	14.7	0.3	10 ◈	350 ◈	300 ♦ 2.0 ♦	13 ▲	8.0 🛦	0.18
15KY8¶	Triode-Pentode	9QT	T-X	15	0.45	12 🏶	300 �	150 ♦ 1.9 ♦	Pentod	e Section	on
						1,5 🏶	330 ◈	_	Triode	Section	ì
15KY8-A ¶	Triode-Pentode	9QT	9-107	15	0.45	12 🏶	300 ♦	150 ♦ 1.9 ♦	Pentod	e Sectio	on
						1.5 🏶	330 ♦	_	Triode	Section	ı
15LE8¶	Twin Pentode	9QZ	6-4	15	0.3	2.0 ◈	300 ◈	150 ♦ 2.0 ♦	_		_

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Amplifier Class A Amplifier Class A Amplifier	135 200 200	135	R _k =		peres	R _p , Ohms	G _m , µmhos	Fac- tor	Out- put, Ohms	put, Watts	Tube Type
Class A Amplifier Class A Amplifier	1		V.F.	17	4.0	45,000	10,400				15BD11¶
Class A 2 Amplifier 2	200		100 2,0	7.0		12,400	5,500	68		_	
Amplifier				9.2		9.400	4,400	41			
Class A 13	200		R _k = 220	9.2		3,100	1,100	41			
	35	135	R _k =	17	4.0	45,000	10,400			_ [15BD11-A
Amplifier Class A 20	00		100 2.0	7.0	l _	12,400	5,500	68	l _	l _ l	1
Amplifier	1				-	·	1				
Class A 20 Amplifier	00		R _k =	9.2	-	9,400	4,400	41		-	
			l								
Class A Amplifier	170	170	12.5	70†	3.5†	26,000	11,000		2,400	5.6	16CW6
Class A	200	200	2.9	18	3.0	130,000	10,400				15DQ8
Amplifier Class A	200		1.7	3.0		_	4.000	65	_	_	
Amplifier									<u> </u>		
	250 Max t	eak ne	3.0 gative g		tage 🏶 =	30,000 400 volts	2,200	66	I —	1 -	15EA7¶
37in-3	60		0	100	1 -	-	6.000		-	1 - 1	
A tiC 1	175 Iax po	sitive p	25 pulse pla	40 ite volti	age 🏶 =	920 1,500; max				=50 ma	
Class A	125	125	R _k ==	11	3.2	200,000	14,000			Γ	15EW6
Amplifier Vertical	250	l	56	5.5	<u> </u>	8 750	1 2,000	17.5	1		15EW7¶
Oscillator	Max	l-c cath	ode cur	rent 🏶 :	- 22 ma	•		•	•		102,,,,
Amplifier	150 Max : 50 ma	positive	17.5 pulse	l 45 plate v	oltage ®	=1,500; r	7,500 nax d-c	cathod		nt 🕸 =	
Vertical	250	1 —	3.0	2.0	1 -		2,200	66	I —	T —	15FM7¶■
() .	Max 1 175	peak ne	gative g	rid vol	tage ● =	400 volts	6,000	5.5			
Amalican	60	l—	0	95	l —					i	
	250	ositive I			age 🏶 =	1,500; max	1,600		rrent	= 50 ma	15FY7¶
Oscillator	Max	-c cath	iode cur	rent 🔷	-20 ma		•				101.111
vertical	150 60	=	17.5	95	_	920	6,500	6.0			
				te volt		2,000; max		node cu	rrent 🔷	=50 ma	
Class A Amplifier	150	100	R _k == 33	28	3.5	20,000	20,000		-	-	15HA6
	60	100	0	45	9.0						
Class A Amplifier	250	250	R _k = 100	40	6.2	24,000	20,000	_	-	-	16HB6¶
	135	120	10	39	3.0	18,000	8,400		-		15KY8¶
Amplifier	50 Max	120	0	170 plate v	20 oltage	=2,000; r	nax d-c	cathod	e curre	nt 🏶 =	
1 '	70 ma		-	-	_	•			1		
	250 Max e	d-c cath	3.0 node cur	rent 🏶	— =22 ma	1 *0,000	1,600	1 04	1	1 —	
Vertical	135	120	10	39	3.0	18,000	8,400			T -	15KY8-A¶
		120 positive	0 :pulse p	170 slate vo	20 ltage �	=2,000; m	ax d-c c	athode	current	⇒ = 70	
1	ma 250		-	1.4	- '		1,600		ı —	1	
		d-c catl	ode cur				, 1,000	, 0*			
Color Demodul tor	100	100	2.5	8.0	15	50,000	5,800	-	Ec3 =	0 volts	15LE8¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 2, etc. indicate tube sections.

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Maximum screen dissipation appears

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
5MF8¶	Triode-Pentode	12DZ	12-57	14.7	0.6	12 🌸	400 ◈	300 ♦ 2.75 ♦	Pento	de Sect	ion
_						2.5 🏶	400 ◈	2.10 %	Triode	Section	n
5MX8	Triode-Pentode	9QT	9-109	15.0	0.45	14 🏶	300 ◈	150 ♦ 1.9 ♦	Pento	de Sect	ion
						1.5 ◈	330 ◈		Triode	e Sectio	n
16A8	Triode-Pentode	9EX	6-4	16	0.3	5.0	250	25C	Pentod	e Section	on
						1.0	250	1.8	Triode	Section	1
16AK9¶	Dissimilar-Double- Triode Pentode	12GZ	12–56	16.4	0.6	10�	350�	250 ③	Pentode	Section	n
_	Though Tentouc					1.25�	330◈	2.0	Triode	Section	1
						1.0�	330◈	-	(Pins 7, Triode ; (Pins 2,	Section 3, 7)	2
16AQ3	Half-Wave High- Vacuum Rectifier	9CB	T-X	16.4	0.6	5.0	Tube V	oltage	Drop: 40 ma d	l-c	
16BÖ114	Dissimilar- Double	12DM	9-58	16.0	0.315	3.1 🏶	330 🏶	330 8 � 0.65 �	Sectio 9, 10,	n 1 (pi	ns 7, 8
_	Pentode					3.1 🏶	330 ◈	3308 * 0.65 *	Sectio 6)	n 2 (2,	3, 4, 5
16BX11¶	Dissimilar- Double	12CA	9-58	16.0	0.315	3.0 ◈	165 🏶	1	Pento	de Sect	ion
	Triode- Pentode					2.0 🌑	330 ◈	1.0 🏶		e Sectio	
						1.5 ◈	330 ◈	_	Triod	ns 7, 8, e Sections 4, 5,	on 2
16GK6¶	Beam Power Amplifier	9GK	6-4	16.0	0.3	13.2 €	330 €	 330 ♦ 2.0 ♦	Single	Tube	
								•		s, Pusi	h-Pull
									2 Tube	s, Pusl	n-Pull
16GY5¶ ■	Beam Pentode	12DR	12-79	15.8	0.6	18 🕸	7708 ◈	220 ♦ 3.5 ♦	22 ▲	9.0 🛦	0.7
16KA6¶	Beam Pentode	12GH	12-79	15.8	0.6	18 🕸	7708 🏶	220 ♦ 3.5 ♦	23 ▲	8.5 ▲	0.6 ▲
16LU8¶	Triode-Pentode	12DZ	12-57	15.8	0,6	14◈	400�	300�	Pentod	e Section	on
	1			1	ł	2.5◈	400⊛	2.75	Triodo	Section	

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	250	250	20	50	3.5	5,000	4.100		_		15MF8*
Amplifier Class A Amplifier	250	_	4.0	2.6		14.000	4,100	58	_	_	-
Vertical- Deflection Amplifier	Max p		10 0 ulse pla	39 170 te volta	3.0 20 ge 🏶 =	18,000 2,500 volt	8.400 s; max d	-c cath	ode curr	= ent 🊸	15MX8¶
Vertical- Deflection Oscillator	= 200 250	ma.	3.0	1.4		40,000	1,600	64	_	_	
Class A Amplifier	200	200	16	35	7.0	20,000	6,400	_	_	-	16A8
Class A Amplifier	100	-	0	3.5			2,500	70	-	-	
Avg. Char.	150	150 125	14	49 140	3.5	16,400	6,200	_			16AK9 ¶
Avg. Char.	150	123	2.0	5.4	-	11,000	3,900	43	-		-
Avg. Char.	150		5.0	5,5		8,500	2,350	20			
TV Damper		d-c outr			20 ma;	max peak i	nverse	voltage	=6,000	volts;	16AQ3
Class A	125	125	Rk =	11	3.5	200,000	10,500	_	_	_	16BQ11
Amplifier Class A Amplifier	125	125	56 R _k = 56	11	3.8	200,000	13,000	-	-	-	•
Video Amplifier	125	125	R _k = 56	12	3.8	100,000	11,300	_			16BX11
General- Purpose	35 150	125	0 R _k = 150	20 11	9.2	6,800	6,200	=	=	=	
Amplifier General- Purpose Amplifier	150		R _k = 220	7.6		8.400	6,800		-		
Class A Amplifier	250	250	7.3	48†	5.5†	38,000	11,300	_	5,200	5.7	16GK6¶
Class AB	300	300	$R_k = 130$	72†	8.0†	_	-	 	8,000;	1	
Amplifier	250	250	$R_k = 130$	62†	7.0†		-	_	8,000‡	[
Class B Amplifier	300 250	300 250	14.7 11.6	15† 20†	1.6† 2.2†				8,000;		
Horizontal Amplifier	130 60 Max 230 m		20 0 pulse	50 410 plate v	1.75 24 oltage �	11,000 =7,000; r	9,100 max d-c	cathod	e curre	 nt	16GY5¶
Horizontal Amplifier	130 60 Max ma	130 130 positive	20 0 pulse p	50 410 ate vol	1.75 24 tage 🏶 =	11,000 -6,500; ma	9,100 x d-c ca	(b.p. k at s thode c	connect socket) urrent @	ed to >=230	16KA6¶
Class A Amplifier	135	120	10	56	3.0	12,000	9,300	-	_		16LU8¶
Class A Amplifier	250	_	4.0	2.3		16,000	3,600	58	-	_	-

Tube Type	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
16LU8-A¶	Triode-Pentode	12DZ	12-56	16.0	0,6	14 🏶	400 🏶	300 ♦ 2.75 ♦	Pento	de Secti	on
-	ļ					2.5 🏶	400 ◈	2.13	Triode	Section	n
16M Y8"	Triode-Pentode	12DZ	12-57	15.8	0.6	16 🏶	400 ◈	300 ♦ 2.75 ♦	Pento	de Secti	on
•						2.5 🏶	400 ◈		Triode	Sectio	n
16Y9	Dissimilar Double Pentode	10L	6–3	16.5	0.3	5.0	250	250 2.5	Section 8, 9,	1 (P	ins 7,
	Tentode					1.5	250	250 0.5	Section 2, 3,	2 (P	ins 1.
C16J	Thyratron same as 5665										
17A8	Triode-Pentode	9DC	6-2	9.0	0.3	1.7	250	200 0.75	Pentod	e Section	on
						1.5	250		Triode	Section	
17A B9	Twin Tetrode	10N	T-X	16.8	0.15	2.0 ◈	250 ◈	0.5	5.7	2.7	0.055
17AB10¶	Pentode—Gated-Beam Discriminator	12BT	9-58	16.8	0.45	6.5 🏶	165 ◈	150 ③	Pentod (Pin	e Section 2, 3, 9	on), 11)
_						_	330\$ ◈	330\$ ◈	Gated- Disc	Beam riminat s 4, 5, 6	or
17AV5-GA	Beam Power Amplifier	6CK	T-X	16.8	0.45	11	550\$	175 2.5	14 🛦	7.0 ▲	0.5 🛦
17AX3¶	Half-Wave High- Vacuum Rectifier	12BL	9-59	16.8	0.45	5.3 ◈	Tube V	/oltage s at 250	Drop: 0 ma d-	<u>. </u>	1
17AX4-G7		4CG	9-11, 9-41	16.8	0.45	4.8	Tube \	oltage 250 m	Drop:		
17AX4- GTA¶	Half-Wave High- Vacuum Rectifier	4CG	9-11	16.8	0.45	5.3 🏶	Tube V	oltage s at 250	Drop:	•	
17AY3¶	Half-Wave High- Vacuum Rectifier	9HP	9-86	16.8	0.45	6.5	Tube \	Voltage s at 350	Drop:	c	
17AY3-A¶	Half-Wave High- Vacuum Rectifier	9HP	T-X	16.8	0.45	6.5 🏶	Tube V	oltage s at 350	Drop: mad-	C	
17BE3¶	Half-Wave High- Vacuum Rectifier	12GA	960	16.8	0.45	6.5 🕸	Tube V 25 volt	Voltage s at 350	Drop:	c	
17BE3-A¶	Half-Wave High Vacuum Rectifier	12GA	9-60	16.8	0.45	6.5 ◈		Voltage olts at 3	Drop: 50 ma	1-c	
17BF11¶	Dissimilar-Double Pentode	12EZ	9-59	16.8	0.45	6.5 ◈	165 ◈	150 🏶	Section	1 (Pir	ıs 8,
_						1.7 ◈	330 🏶	330 🛊 🏵	Section 3, 5,	3 (Pir 5, 7)	1S Z,
17BF11-A	Dissimilar Double Pentode	12EZ	T-X	16.8	0.45	6.5 ◈	1	150 ③ 1.8 ④	Section 9, 10	1 (Pir), 11)	ıs 8,
" -						1.7 🏶	330 ◈	330 🕻 🏵	9, 10 Section 3, 5,	1 2 (Pin 6, 7)	ıs 2,
17BH3¶	Half-Wave High- Vacuum Rectifier	9HP	9-86	17	0.6	6.5 🏶	Tube 33 volt	Voltage is at 360	Drop: 0 ma d-	c	
17BH3-A¶		9HP	T-X	17	0.6	6.5 🏶	Tube V	Voltage s at 360	Drop:	2	
17BQ6- GTB¶	Beam Power Amplifier	6AM	9-49 or 9-50	16.8	0.45	11	600\$		15 🛦	7.0 ▲	0.6
17BR3¶	Half-Wave High- Vacuum Rectifier	9CB	T-X	16.8	0.45	6.5�	Tube V	Voltage s at 250	Drop:	c	
17BS3 ¶	Half-Wave High- Vacuum Rectifier	9HP	9-86	16.8	0.45	6.0 🏶	Tube V	Voltage s at 140	Drop:	c	
17BS3-A¶	Half-Wave High- Vacuum Rectifier	9HP	T-X	16.8	0.45	6.0 🏶	Tube V	Voltage is at 140	Drop: 0 ma d-	c	
17BW3 *	Half-Wave, High- Vacuum Rectifier	12FX	9-60	16.8	0.6	6.5�	Tube V 32 volt	oltage s at 350	Drop: ma d-c		
17BZ3¶	Half-Wave, High- Vacuum Rectifier	12FX	9-60	16.8	0.45	6.5 🏶	Tube 1	Voltage ts at 350	Drop: 0 ma d-	c	

Compactron.
Zero signal.
Per section.

Plate-to-plate.
Maximum.
Supply voltage. See X-Radiation Warning, page 4.

Subminiature type.▲Without external shield.Design maximum rating.

 [⊕] Total for all similar sections.
 ⊕ Absolute maximum rating.
 # Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	135	120	10	56	3.0	12,000	9,300				16LU8-A
Amplifier Class A Amplifier	250		4.0	2.3	_	16,000	3,600	58	_	_	•
Class A	135 45	120 125	10	56 200	$\frac{3.0}{20}$	12,000	9,300				16MY8¶
Amplifier Class A Amplifier	250	125	4.0	2.3		16,000	3,600	58	=	_	•
Class A Amplifier	170	170	2.6	30	6.5	40,000	21,000		-	_	16Y9
Class A Amplifier	150	150	2.3	10	3.0	160,000	8,500	_	_		
Class A	170	170	2.0	10	2.8	400,000	6,200	_			17A8
Amplifier Class A Amplifier	100	_	2.0	14	-	-	5,000	20	_	_	
Class A	125	80	1.0	8.0	2.0	110,000	10,000				17A B9
Amplifier • Class A Amplifier	145	110	6.0	36†	3.0†	30,000	8,600		3,000	2.4	17AB10¶
FM Limiter- Discrimina- tor	135	280		5.0	(R _{g2} =	33,000 ohr	ns) (E _{c3}	= +4.0	volts)		
Horizontal	250	150	22.5	57	2.1	14,500	5,900	_	-		17AV5-GA¶
Amplifier	2.5 W	ices, ma	pulse p	tnode	current:	=5,500 vol =110 ma					-
TV Damper	Max	d-c out	put cur	rent 🔷 :	=165 m 1,000 m	a; max pe	ak inve	rse vol	tage 🏶 =	5,000	17AX3¶
TV Damper	Max d	l-c outp eak cur	ut curre rent = 7	nt = 12 50 ma	5 ma; m	ax peak in					17AX4-GT¶
TV Damper	Maxd	-c outp	ut curre	nt 🏶 =	165 ma;	max peak i	nverse v	voltage		00 volts	17AX4-
TV Damper	Maxd	-c outp	ut curre	nt 🏵 😑	175 ma;	max peak i	nverse v	oltage	>=5,00	0 volts;	GTA¶ 17AY3¶
TV Damper	Max o	i-c out; max pe	put curre	rent 🏶 = ent 🗞 =	= 175 m 1,100 m	a; max pe				1	17AY3-A¶
TV Damper	Max d max p	-c outpu eak cur	ut curre rent 🏶 =	$ nt \circledast = 2 \\ = 1,200 $	200 ma; i ma	max peak ii	verse v	oltage (>=5,00	volts;	17BE3¶
TV Damper	Max o	i-c out	put cur	rent 🏶 =	=200 m: 1,200 m	a: max pea	ak inve	rse volt	age 🏶 =	5,000	17BE3-A¶■
Class A Amplifier	145	110	6.0	36†	3.01	30,000	8,600	<u> </u>	3,000	2.4	17BF11¶
Class A Amplifier	150	100	R _k = 560	1.3	2.0	150,000	1,000	$E_{c3} = 0$	Volts		
Class A Amplifier	145	110	6.0	36†	3.0†	30,000	8,600		3,000	24	17BF11-A¶
Class A Amplifier	150	ì	R _k =	1.3	2.0	150,000	1,000		0 volts)	1	
TV Damper	Max d	-c outpu	at curre	nt 🏶 = 1	80 ma;	max peak is	verse v	oltage (>=5,50	0 volts;	17BH3¶
TV Damper	Max	l-c out	out cur	rent 🌢 =	= 180 m: 1,100 m	a; max per	ak inve	rse volt	age 🄷 =	5,500	17BH3-A¶
Horizontal Amplifier	250 60	150 150	22.5	57 260	2.1	14,500	5,900	=	=		17BQ6- GTB¶
TV Damper	Max d	-c outpu urrent	it currei	nt 🏶 == 2	age 🖲 = 6	5,000; max nax peak ir	d-c catl	hode cu oltage (rrent = 0 $= 5,500$	110 ma D; max	17BR3¶
TV Damper	Maxd		it curren	nt 🐵 = 2	00 ma; r	nax peak ir	verse v	oltage ﴿	> = 5,000); max	17BS3¶
TV Damper	Max		ut curr	ent 🇆 =	200 ma	; max pea	k inver	se volta	age ♦ = .	5,000;	17BS3-A¶
TV Damper	Max	d-c out	put cur	rent 🏶 =		i; max pea	k invers	se volta	ge ♦ =5	,000,	17BW3¶
						; max pea					17BZ3¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube Type	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Capa Pic	citance ofarads	in
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	pnd Watts	Input	Out- put	Grid plate
17C5¶	Beam Power Amplifier	7CV	5-3	16.8	0.45	6.0	135	117 1.25	13 ▲	8.5 ▲	0.6
17C9 17C9-A¶	Twin Tetrode	10F	6-13	16.8	0.15	1.5	250 ♦	180 ◈\$	4.41	2.2	.0551
17CA5¶	Beam Power Amplifier	7CV	5–3	16.8	0.45	2.5 ⋄ ⊕ 5.0	130	0.5 * 130 1.4	4.2 ₂ 15 ▲	9.0 🛦	.06 ₂ 0.5 ▲
17CK3¶	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	16.8	0.45	6.5 🏶	Tube V	oltage s at 350	Drop:	:	
7CL3¶	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	16.8	0.45	8.5 🏶	Tube V	oltage s at 350	Drop:	:	
17CT3¶	Half-Wave, High- Vacuum Rectifier	9RX	T-X	16.8	0.45	4.75		oltage I at 350			
7CU6¶	Beam Power Amplifier	7CV	5–3	16.8	0.45	7.0 🏽			13 ▲	8.5 ▲	0.6 ▲
17D4¶	Half-Wave High- Vacuum Rectifier	4CG	9-11, 9-41	16.8	0.45	5.5 ◈				=	_
17D4-A¶	Half-wave High- Vacuum Rectifier	4CG	9-41	16.8	0.45	8.0 🏶	Tube V 30 volt	oltage s at 340	Drop: mad-	:	
17DE4¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	17.0	0.6	6.5 🏶	Tube V 32 volt	oltage s at 350	Drop: mad-c	 :	
17DM4¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	16.8	0.45	6.5 🏶	Tube V	oltage s at 400	Drop:	 >	
17DM4A¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	16.8	0.45	6.5 🏶	Tube V	oltage s at 400	Drop:	2	
17DQ4¶	Half-Wave High- Vacuum Rectifier	4CG	9-43	16.8	0.45	6.0 🏶	Tube V	Voltage s at 250	Drop:	C	
7DQ6¶	Beam Power Amplifier	6AM	T-X	16.8	0.45	15		175 2.5	15▲	7.0 ▲	0.55
7DQ6-A¶	Beam Power Amplifier	6AM	12-51	16.8	0.45	18 🏶	770 ◈	 220 � 3.6 �	15 ▲	7.0 🛦	0.5
17DQ6-B¶	Beam Power Amplifier	6AM	12-51	16.8	0.45	18 🏶	770 �\$	220 ③ 3.6 ④	15▲	7.0▲	0.5
17DW4-A	Half-Wave, High- Vacuum Rectifier	9HP	T-X or 9-86	16.8	0.45	8.5 🏶	Tube V	Voltage s at 350	Drop:		
17EW8	Twin Triode	9AJ	6-2	17.5	0.15	2.5	250	S at 350	3.0 ▲	1.2 ▲	1.5
17GE5¶ ■	Beam Power Amplifier	12BJ	12-56	16.8	0.45	4.5 ⊕ 17.5 �	7708 ◈	220 ♦ 3.5 ♦	16▲	7.0	0.34
17GJ5¶	Beam Power Amplifier	9QK	T-X	16.8	0.45	17.5 🏶	7708 🏶	220 3.5	15▲	6.5 ▲	0.26
17GJ5-A¶	Beam Power Amplifier	9QK	T-X	16.8	0.45	17.5 ◈	770\$ 🏶	220 ♦ 3.5 ♦	15 ▲	6.5 ▲	0.26
17GT5¶	Beam Power Amplifier	9NZ	12-64	16.8	0.45	17.5 ◈	770 ♦1	220 ♦ 3.5 ♦	15▲	6.5 ▲	0.26
17GT5-A¶	Beam Power Amplifier	9NZ	12-95	16.8	0.45	17.5 ◈	770\$ ◈	220 ③ 3.5 ④	15 ▲	6.5 ▲	0.26
17GV5¶ ■	Beam Power Amplifier	12DR	12-79	16.8	0.45	17.5 ◈	7708 🏽	220 ♦ 3.5 ♦	16▲	7.0	0.6
17GW6 *	Beam Power Amplifier	6AM	12-51	16.8	0.45	17.5 🏶	770 🌒	220 ♦ 3.5 ♦	17▲	7.0 ▲	0.5 🛦
17H3¶	Half-Wave High- Vacuum Rectifier	9FK	6-3	17.5	0.3	3.0 🏶	Tube	Voltage t 140 m	Drop:	1	1
17HC8*	Triode-Pentode	9EX	9-70	16.8	0.45	11 🕸	350 ⊗	315	Pentoc	le Section	on
	1					1.0 🏶	330 €	1.5		Section	

Compactron.

Zero signal.

Per section.

See X-Radiation Warning, page 4.

Plate-to-plate.
Maximum.
Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections. Absolute maximum rating.
Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500	_	2,500	2.3	17C5¶
Class A Amplifier •	125	80	1.0	10	1.5	100,000	8,000	-	_	_	17C9 17C9-A¶
Class A Amplifier	125 110	125 110	4.5 4.0	37† 32†	4.0†	15,000 16,000	9,200 8,100		4,500 3,500	1.5	17CA5¶
TV Damper	volts;	max pe	ak curi	ent 🏶 =	:1,200 n				-	- 1	17CK3¶
TV Damper	volts;	max pe	ak curr	ent 🏶 =	1.300 i						17CL3¶
TV Damper	volts	; max p	eak curi	rent 🏵 =	1,200 m	ia; max pe ia					17CT3¶
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500		2,500		17CU5¶
TV Damper	volts	max p	eak curi	ent 🏶 =	900 ma						17D4¶
TV Damper	max	peak cu	rrent 🏶	=900 m	a	max peak					17D4-A¶
TV Damper	max	peak cu	rrent 🏵	=1,100	ma	max peak				l	17DE4¶
TV Damper	mar	neak cu	rrent 🏟	=1.100	ma	max peak					17DM4¶
TV Damper	volts	max p	eak curr	ent 🏶 =	= 1,200 m	na; max p	inverse	erse vo	A = 5 5/	= 3,000	17DM4A¶
TV Damper	max 250	peak cu	rent	=1,000	ma 2.4	max peak	6,000	Voltage	-5,5	- Voits,	17DQ4¶
Horizontal Amplifier	60 Max	150	0 pulse 1	300 olate vo	27 ltage ●	= 6,000 vo = 120 ma	I	1	dissipa	ation =	11.0 0 0 k
Horizontal Amplifier	250 60 Max	150 150	22.5	55 315	$\begin{vmatrix} 1.5 \\ 25 \end{vmatrix}$	20,000 = 6,000 vo	6,600 — olts; ma	x d-c ca	athode	current	17DQ6-A¶
Horizontal Amplifier	250 60	150 150	22.5	65 345	1.8	18,000 	· —	I —	Tent &	175 ma	17DQ6-B¶
TV Damper	Max	d-c ou ; max p	tout cu	rrent 🏵	= 250 n	na; max p	eak inv	erse vo	ltage 🏶	= 5,500	17DW4-A¶
Class A Amplifier •	200	1-	2.1	10		1 =	5,800	48		T -	17EW8
Horizontal Amplifier	250 60	150 150	22.5 0	65 345	1.8	18,000 6,500; max	7,300		rent.	=175 ma	17GE5¶ ■
Horizontal Amplifier	250	150 150	22.5	70 390	32	15,000	7,100	1 =	=		17GJ5¶
Horizontal	250 60	150 150	22.5	70 390	2.1 32	6,500; max 15,000			rent 🔷	-175 ma	17GJ5-A¶
Amplifier		positive				=6,500;	max d-c	cathod	le curre	ent 🏶 =	
Horizontal Amplifier	250 60	150 150	22.5	70 390	32.1	15,000	7,100	I —	=		17GT5¶
Horizontal	250	150	22.5	1 70	2.1	6,500; max 15,000	d-c cath 7,100	lode cur	rent 🏵 :	=175 ma	17GT5-A¶
Amplifier	60 Max 1 175 m	150 positive a	0 pulse r	390 late vo	32 ltage �	=6,500; n	nax d-c	cathod	ie curre	ent 🌢 =	
Horizontal Amplifier	250 60 Max D	150 150 ositive	22.5 0	65 345 ate volt	1.8 27	18,000 6,500; max	7,300	l	rent ®	= 175 ma	17GV5¶
Horizontal Amplifier	250 60	150	22.5	70 380	32.1	15,000 6,500; max	7,100	" =	_		17GW6¶
TV Damper	Max	i-c outp eak cur	ut curre	ent 🏶 =	75 ma;	max peak	inverse	voltage	e 🔷 = 2,0	000 volts	17H3¶
Vertical Amplifier	250 60 Max p	250	18 0 pulse pl	38 180 ate volt	3.0	55,000 -2,200; max	i	— hode cu	irrent 🏶	 =65 ma	17HC8¶
Vertical Socillator	Max d	l-c catho	de curr	1.4 ent ♦ =	20 ma;	34,000 max peak	negative	grid vo	ltage 🕏	=400	

Metal tubes are shown in bold-face type, miniature tubes in italics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.
1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.
¶ Heater warm-up time controlled.

<u>T</u> ube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
17JB6¶	Beam Power Amplifier	9QL	12-70	16.8	0.45	17.5 ◈	7708	220 ♦ 3.5 ♦	15▲	6.0 ▲	0.2
17JB6-A¶	Beam Power Amplifier	9QL	T-X	16.8	0.45	17.5 🏈	7708 ◈	220 ♦ 3.5 ♦	15▲	6.0 ▲	0.2 🛦
17JF6*	Beam Power Amplifier	9QL	12-70 or T-X	16.8	0.6	17 %	7708 ﴿	220 3 3.5 4	22 🛦	9.0 ▲	1.2
17JG6¶	Beam Power Amplifier	9QU	12-64	16.8	0.6	17 🏶	7708 ◈	220 ③ 3.5 ⑤	22 🛦	9.0▲	0.7 🛦
17JG6-A¶	Beam Power Amplifier	9QU	12-96	16.8	0.6	17 🏶	7708 ◈	220 ③ 3.5 ⑤	22 🛦	9.0 ▲	0.7 ▲
17JK8¶	Double Triode	9AJ	6–2	16.8	0.15	1.0 🏶	165 🏶		Section 8)	l 1 (Pin	s 6, 7,
						2.0 🏶	200 🏶		Section 3)		
17JM6¶ ■	Beam Power Amplifier	12FJ	12-79	16.8	0.45	17.5 ◈	7708 ◈	220 ③ 3.5 ⑤	16 ▲	7.0▲	0.6 ▲
17JM6-A¶	Beam Power Amplifier	12FJ	12-79	16.8	0.45	17.5 ◈	7708 ◈	220 ♦ 3.5 ♦	16 ▲	7.0▲	0.6 ▲
17JN6¶	Beam Power Amplifier	12FK	12-56	16.8	0.45	17.5 🏈	7708 ◈	220 ♦ 3.5 ♦	16▲	7.0▲	0.34 ▲
17JN6-A¶	Beam Power Amplifier	12FK	12-56	16.8	0.45	17.5 🏶	770\$ 🏶	220 � 3.5 �	16▲	7.0 ▲	0.34 ▲
17 J Q6¶	Beam Pentode with Integral Diode	9RA	6-4	17	0.45	10�	425�	330 ◈ 2.0 ◈	13 ▲	6.0▲	0,32 ▲
17JR6¶	Beam Power Amplifier	9QU	12-96	16.8	0.6	17◈	770 : �	220 ♦ 3.5 ♦	22 ▲	9.0▲	0.7 ▲
17JT6¶	Beam Power Amplifier	9QU	T-X	16.8	0.45	17.5 ◈	770\$ 🏶	220 ♦ 3.5 ♦	15▲	6.5 ▲	0.26 ▲
17JT6-A¶	Beam Power Amplifier	9QU	12-95	16.8	0.45	17.5 ◈	770\$ ◈	220 ③ 3.5 ⑤	15▲	6.5▲	0.26 ▲
17JZ8¶	Triode-Pentode	12DZ	9-58	16.8	0.45	7.0 🏶	250 ◈	200 ♦ 1.8 ♦	Pentod	e Section	n
						1.0 🏶	250 🆠	-	Triode	Section	
17JZ8-A¶	Triode-Pentode	12DZ	9-58	16.8	0.45	10 (250 ③ 250 ④	200 (*) 1.8 (*)		le Section	
17KV6¶	Beam Power Pentode	9 Q U	12-97	16.8	0.6	20 🏶	7708 ◈	220 ③ 2.0 ⑤	22 ▲	9.0▲	0.6 ▲
17KV6-A¶	Beam Power Amplifier	9QU	12-97	16.8	0.6	28 🍎	9008 *	220 4 2.0	22 🛕	9.0▲	0.6 ▲

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

⊕Absolute maximum rating.

#Conversion transconductance.

Compactron.
† Zero signal.

Per section.

See X-Radiation

† Plate-to-plate.

Maximum.

Supply voltage.

Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Piate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	250 60 Max po ma	150 150 ositive p	22.5 0 pulse p	70 390 ate vol	2.1 32 tage 🏶 =	15,000 6,500; ma	I —	(g; consocket) thode co	nected t	1	17JB6¶
Horizontal Amplifier	250 60	150 150 ositive	22.5 0 pulse p	70 390 ate vo	2.1 32 stage �	15,000 = 6,500; m	7,100 ax d-c	(g3 co k at s cathode	onnected ocket) curren	l to	17JB6-A¶
Horizontal Amplifier	130 55 Max 1 = 275	125 125 positive 5 ma.	20 0 pulse p	80 525 late volt	2.5 32 tage �	12,000 = 6,500 vo	10,000 lts; max	l	= +25 v	i	17JF6¶
Horizontal Amplifier	130 50 Max po ma	125 125 ositive	20 0 pulse p	80 525 ate vol	2.5 32 tage 🏶 =	12,000 -6,500; ma	10,000 x d-c ca	socket)			17JG6¶
Horizontal Amplifier	130 55 Max p 275 ma	125 125 ositive	20 0 pulse	80 525 plate v	2.5 32 oltage �	12,000 	10,000 nax d-c	Ī			17JG6-A¶
Class A Amplifier Class A Amplifier	100 135	<u> </u>	1.0	5.3 10	_	8,000 5,400	6,800 13,000	55 70	_	_	17JK8¶
Horizontal Amplifier	250 60 Max po ma	150 150 ositive p	22.5 0 oulse pl	65 345 ate volt	1.8 27 age 🏶 =	18,000 6,500; max		(b.p. co k at so thode o	cket)	ļ	17JM6¶ ■
Horizontal Amplifier	250 55 Max p 175 ma	150 150 ositive	22.5 0 pulse	70 345 plate v	2.4 30 oltage �	15,000 =6,500; n	7,300 nax d-c	k at s	onnecte ocket) curren	- 1	17JM6-A¶
Horizontal Amplifier	250 60 Max p 175 ma	150 150 ositive	22.5 0 pulse	65 345 plate ve	1.8 27 oltage 🏶	18,000 =6,500; n	7,300 ax d-c	k at so	connecte ocket) curren		17JN6¶
Horizontal Amplifier	250 55 Max 1 175 m	150 150 positive a	22.5 0 pulse 1	70 345 plate vo	2.4 30 oltage �	15,000 = 6,500; m	7,300 — ax d-c	k at se	connecte cket) curren	1	17JN6-A¶
Vertical Amplifier	Max Insta	ntaneou	pulse pus diode-	35 150 plate voluments of volts	-cathode	10,500 2,000; max voltage dre	d-c catl	node cur stantane	 rent� = ous dioc	70 ma. le-plate	17JQ6¶
Horizontal Amplifier		125 125 positive	20 0 pluse p	45 470 late vol	1.5 32 tage⊛ =	18,000 6,500; max	7,000 d-c catl		rent 🏶 =	 = 275ma	17JR6¶
Horizontal Amplifier	250 60	150 150	$\frac{22.5}{0}$	70 390	$\begin{vmatrix} 2.1 \\ 32 \end{vmatrix}$	15,000 6,500; max	7,100	(g; conr	ected t	o k	17JT6¶
Horizontal Amplifier	250 60	150 150 positive	22.5 0 pulse 1		2.1 32 oltage 🏶	15,000 = 6,500; m	7,100 — ax d-c	k at so	nected ocket) curren		17JT6-A
Vertical Amplifier	120 45 Max po	110 110 sitive p	ulse pla	46 122 te volta	3.5 16.5 ge � =2	11,700 ,000; max c				70 ma	17JZ8¶
Vertical Oscillator Vertical	120	110	5.0 8.0	5,5 -46	3.5 16.5	8,500	7,100	20	_	_	17JZ8-A*
Amplifier Vertical	45 Max 1 = 70 150	ositive	0 pulse p	late volt	age 🌤 :	= 2,200 vol 8.500	ts; max	d-c cath	iode cur —	rent •	
Oscillator HV Pulse Shunt Regulator	140 100 Max 1 275 m	140 140 positive	24.5 0 pulse	40 440 plate vo	2.4 30 oltage 🏶	10,000 =6,500; m	6,000 ax d-c		0 volts) curren	t • =	17KV6¶
Pulse Regulator	140 100	140 140 positive	24.5 0 pulse pl	440	2.4 30 age 🌢 =	10,000 = 6,500 vol			= 0 vol ode cur		17KV6-A

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥G2 and G4 are screen. G3 is signal-input grid.

1, 2, 2, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

<u>T</u> ube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca I	pacitan Picofara	ce in
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out-	Grid- plate
17L6-GT¶	Beam Power Amplifier	7AC	9-11 or 9-41	16.8	0.45	10	200	125 1.25	15▲	10 🛦	0.8 🛦
17LD8¶	Triode-Pentode	9QT	T-X	16.8	0.45	7.0 🏟	250 ◈	200 (Pentod	e Secti	on
						1.0 🏶	250 ◈	-	Triode	Section	1
17R5¶	Beam Power Amplifier	7CV	5–3	16.8	0.45	4.5	150	150 1.0	13 ▲	9.0 🛦	0.55
17W6-GT¶	Beam Power Amplifier	7AC	9-11 or 9-41	16.8	0.45	7.5	300	1.25		e Conr	
	<u> </u>	1.000							(G ₂ &	Conne P Tied)	LUIDII
17X10¶■	Pentode—Gated-Beam Discriminator	12BT	9-58	16,8	0.45	6.5 🏶	165 ◈	150 ③ 1.8 ⑤ 110 ⑤	Gated-	e Sections 2, 3, 9 Beam 1 s 4, 5, 6), 11) Disc
18A5¶	Beam Power Amplifier	6CK	9-15 or 9-43	18.5	0.3	9.0 🏶	3508 ◈	160 ♦ 2.5 ♦	13 🛦	7.0 🛦	0.7
18AJ10¶	Dissimilar-	12EZ	9-59	18.0	0.315	6.0 🏽	165 ◈	150 🍨	Section	n 1 (pir	ıs 8,
	Double Pentode					1.7 🏶	300 ◈	1.25 ♦ 300 ♦ 1.0 ♦	Section 3, 5	0, 11) n 2 (pir , 6, 7)	ıs 2.
18DZ8	Triode-Pentode	9JE	T-X	18.0	0.3	6.5 0.75	150 150	135 1.5	Pentod Triode		
18FW6	Remote-Cutoff RF Pentode	7CC	5–2	18.0	0.1	2.5 🏶	150 ◈	150 ◆ \$ 0.6 ♦	5.5	5.0	0.0035
18FW6-A¶	Remote-Cutoff RF Pentode	7CC	5–2	18.0	0.1	2.5 🏶	150 ◈	150 \$ 0.6 \$	5.5	5.0	0.0035
18FX6	Pentagrid Converter	7CH ▼	5–2	18.0	0.1	1.0 🏶	150 ◈		Osc. Ici Rg1 = 2	=0.5 r 0.000 ol	na hms
18FX6-A¶	Pentagrid Converter	7CH	5-2	18.0	0.1	1.0 🏶	150 🏶	110	Osc. Ici Rg1 = 20	=0.5 r	na
18FY6	Duplex-Diode High-Mu Triode	7BT	5–2	18.0	0.1	0.5 🏶	150 ◈	_	2.0 Diode S	2.4	1.8
18FY6-A¶	Duplex-Diode High-Mu Triode	7BT	5-2	18.0	0.1	0.5 🏶	150 ◈		2.0 Diode S	2.4	1.8
18GB5	Beam Power Amplifier	9NH	T-X	18.0	0.45	17 🏶	275 🏶	275 ♦ 6.0 ♦	-		
18GD6	Sharp-Cutoff RF Pentode	7BK	5-2	18.0	0.1	2.5♦	150 ◈	150 ♦ 0.6 ♦	6.0	5.0	0.0035
18GD6-A¶	Sharp-Cutoff RF Pentode	7BK	5–2	18.0	0.1	2.5♦	150 ◈	150 ♦ 0.6 ♦	6.0	5.0	0.0035
18GE6	Duplex-Diode High-Mu Triode	7BT	5-2	18.0	0.1	0.5 🏶	150 ◈		2.4 ▲ Diode	0.2 A	1.8
18GE6-A¶	Duplex-Diode High-Mu Triode	7BT	5–2	18.0	1.0	0.5 🏶	150 ◈		2.4 ▲ Diode S	0.2 ▲	1.8
18GV8	Triode-Pentode	9LY	6–4	18	0.3	7.0 •	250 ● 250 ●	250 ⑤ 2.0 ⑥	Pentode Triode	e Section	
18HB8	Triode Pentode	9ME	6-3	18.0	0.3	6.5 🌑	150 🌑	135 ◈	Pentode		
				10.0	3.0	0.75 🏶	150 ◈	1.5	Triode		
19	Twin-Triode Power Amplifier	6C	12-5	2.0 DC	0.26		135		Both S Push-p	ections ill	in

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

											109
Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _{p,} Ohms	G _{m,} µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	200	125	R _k = 180	46†	2.2†	28,000	8,000		4,000	3.8	17L6-GT¶
	110	110	7.5	49†	4.0†	13,000	8,000		2,000	2.1	
Vertical	120	110	8.0	46	4.0	11,700	7,100		-	-	17LD8¶
Amplifier	Max 1	110 positive		122 late vol	17 tage 🔷 :	=2,000; ma	x d-c ca	thode o	urrent	♦ =70	
Vertical Oscillator	150 Max	 d-c cath	5.0 ode cur		— =20 ma			21.5	ı —	ι —	
Vertical	110	110	8.5	40	3.3	13,000	7,000	l —	I —	1 —	17R5¶
Amplifier	45 Mar a	110	0 	120	17	1,500; max	<u> </u>		-	45	
	200	125						noue cu			17 Die O'Tel
Class A	200	125	R _k =	46†	2.2†	28,000	8,000	_	4,000	3.8	17W6-GT¶
Amplifier	110	110	7.5	49†	4.0†	13,000	8,000	_	2.000	2.1	
Vertical `	225		30	22		1.600	3.800	6.2	l —		
Amplifier	Max po	ositive p		te volta		1,200; max	d-c cath	ode cu	rent 🖲	≈60 ma	
Class A	145	110	6.0	36†	3.0†	30,000	8,600		3,000	2.4	17X10¶
Amplifier FM Limiter- Discrimi-	285	100	R _k = 200 to	0.49	9.8		_		330,000		
nator	F	1.25 Vol	400	1	l	l .	1		Į	1	
Horizontal	200	1 125	117	40	1 1 1	27,000	4,800		1		10456
Amplifier	60	125	ő	165	1.1 15	21,000	4,000	_	_		18A5¶
	Maxt	ositive	pulse pl	ate volt	age 🌒 :	-3,000 volt	s; max s	creen d	issipatio	on 🏶 =	
	2.5 wa	atts; ma	îx d-c c	athode	current	♦ = 90 ma				··· v	
Class A Amplifier	145	110	7.0	34-	6.5+	33,000	i l		2,500		18AJ10¶
Class A Amplifier	150	100	$R_k = 180$	2.8	3.5	180,000	2,400	{ E e 3	= 0 vo	lts)	
Class A Amplifier	145	120	R _k = 180	45†	6.0†	_	7,500		2,500	2.0	18DZ8
Class A Amplifier	120		R _k = 1500	0.8			1,400	100			
Class A Amplifier	100	100	$R_k = 68$	11	4.4	250,000	4,400	\equiv			18FW6
Class A Amplifier	100	100	R _k = 68	11	4.4	250,000	4,400		_	_	18FW6-A¶
Converter	100	100	1.5	2.3	6.2	400,000	480#	_	_		18FX6
Converter	100	100	1.5	2.3	6.2	400,000	480 #				18FX6-A¶
Class A Amplifier	100		1.0	0.6	_	77,000	1,300	100	-	-	18FY6
AM Det. • Class A	100	r-c outp	ut curre	nt ⊗ =	ı.∪ ma;	voltage dr	op: 10 v	olts at	2.0 ma	d-c	
Amplifier	100	_	1.0	0.0	_	77,000	1,300	100	-		18FY6-A¶
Amplifier AM Det. •	Max	l-c outp	ut curre	ent 🏶 =	1.0 ma:	voltage dr	່ວຣ: 10 ບ	olts at	2.0 ma	d-c	
Horizontal Amplifier	75 Max r ma	200 oositive	10 pulse pl	440 ate volt	37 age � =	(Instantan =7,700; max	eous Va	lues) hode c	ırrent 🏶	>=275	18GB5
Class A Amplifier	100	100	R _k = 150	5.0	2.0	500,000	4,300		_		18GD6
Class A Amplifier	100	100	R _k =	5.0	2.0	500,000	4,300		_		18GD6-A ¶
Class A Amplifier	100		1.0	1.0		40,000	1,700	70			18GE6
AM Det.	Maxd	-c outp	ut curre	nt 🅸 = İ	.0 ma;	voltage dro	p: 10 vo	lts at 2	0 mad	-c	
Class A Amplifier AM Det. •	100	_	1.0	1.0	- 1	40,000	1,700	70	- 1	_	18GE6-A¶
Class A	170	170	15	41 =	2.7	voltage di 25,000	7.500 i	volts a	2.0 ma	d-c	10000
Amplifier Class A	100	_	0.8	5.0		7,000	6,500	50	_	_	18GV8
Amplifier Class A	115	115	R _k =	33†	7.5†		6,250		3,500	1.0	18HB8
Amplifier Class A	115	_	R _k = 150 R _k =	2.5	_		3,900	74		_	2011 100
Amplifier Class B Amplifier	135		0	5.0†		Input Sign	al = 0.17 watt	0	10,000	2.1	19

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap Pi	cofarad	in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
19AU4¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	18.9	0.6	6.0	Tube V 25 v at	oltage 350 ma oltage	Drop:		
19AU4- GTA¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	18.9	0.6	6.0	25 v at	: 350 ma	ı d-c		
19BG6-G 19BG6-GA	Beam Power Amplifier	5BT'	16-5 12-21	18.9	0.3	20	700\$	350 3.2	¹²	6.5 ▲	0.34 ▲
19C8	Triple-Diode, High-Mu Triode	9E	6-2	18.9	0.15	1.0	250				
19CG3 ¶	Half-Wave, High- Vacuum Rectifier	12HF	9-62	19	0.6	6.5◈	Tube V 25 volt	oltage I s at 700	Drop: ma d-c		
19CL8-A	Triode-Tetrode	9FX	6–2	18.9	0.15	3.0 ◈	330 ◈	330 ♦8 0.55 ♦	Tetrode	e Sectio	n
19CL8-B¶						2.5 🏶	330 ◈			Section	
19DE3¶ ■	Half-Wave High- Vacuum Recti- fier	12HX	9-101	19,0	0.6	9.0*	Tube \ 25 vol	Voltage ts at 700	Drop: 0 ma d-	c	
19DE7¶	Double Triode	9HF	6-3	19.4	0.3	1.5 ◈	330 ◈	_	Section	1 (Pins	6, 7, 8
		l				7.0 🏶	275 🏶		<u>3, 9)</u>	2 (Pin	s 1, 2,
19DK3¶	Half-Wave High- Vacuum Recti- fier	9SG	9-117	19	0.6	9.0 🏶	16 volt	'oltage ! s at 400 s at 800	Drop: mad-c mad-c	: :	
19DQ3¶	Half-Wave High- Vacuum Recti- fier	12HF	9-62	19	0.6	9.0 🏶	Tube \\16 volt \\25 volt	oltage s at 400 s at 800	Drop:) ma d-c) ma d-c		
19DQ3-A¶	Half-Wave High- Vacuum Recti- fier	12HF	9-62	19	0.6	10 🏶	17 volt	oltage s at 450 s at 900	Drop:) ma d-c) ma d-c	:	
19EA8	Triode-Pentode	9AE	6–2	18.9	0.15	3.1 ◈	330 ◈	330 ⊗8 0.55 ⊗	Pentod	e Sectio	n
19EA8-A¶						2.5 🏶	330 🏶			Section	
19EW7¶	Dissimilar Double Triode	9HF	9–70	18.9	0.3	1.5 (330 ◈	_ _	7.8)	1 (Pin 2 (Pin	
19EZ8	Triple-Triode	9KA	6–2	18.9	0.15	2.0 ③ 5.0 ⑤	330 ◈		2.6	1.4_1 1.2_2 1.2_3	1.5
19F X 5¶	Power Ampli- fier Pentode	7CV	53	18.9	0.3	5,5 🏶	150 ◈	130 🏶	17 ▲	9.0▲	0.65
19GQ7	Triple Diode	9Q M	6–2	18.9	0.15	-	Tube \\10 volt	oltage s at 60	Drop: ma d-c	•	
19HR6¶	Semi-Remote- Cutoff RF Pentode	7BK	5-2	18.9	0.15	3.0 🏶	İ	300 8 🌢		5.2 ▲	0.006
19HS6¶	Sharp-Cutoff RF Pentode	7BK	5-2	18.9	0.15	3.0 🏶	300 ◈	300 \$ ♦	8.8 🛦	5.2 ▲	0.006
19HV8	Triode-Pentode	9FA	6-2	18.9	0.15	3.0 ♦	330 ◈	330 ◈ \$	1	e Section	1
19J6	Medium-Mu Twin Triode	7BF	5-2	18.9	0.15	1.5♠	300		2.0 🛦	0.4 🛦	1.5 ▲
19JN8	Triode-Pentode	9FA	6–2	18.9	0.15	2.5 ③ 2.5 ④	1	300 ◈ \$	1	e Section	
19KG8	Triode-Pentode	9LY	6-2	18.9	0.15	2.5 🏶	300 ◈	300 8 🏟	Pentod	e Section	on
19Q9¶	Triode-Pentode	10H	6-13	18.9	0.15	3.0 ♦	330 ◈	330 \$ ⊕ 0.55 ⊕	Pentod	Section le Section	n
19T8 19T8-A¶	Triple-Diode High-Mu Triode	9 E	6-2	18.9	0.15	2.5 ③ 1.1 ⑥		-	Triode 1.7	Section 2.4	1.7
1918-A 1 19V8	Triple-Diode, High-Mu	9AH	6-2	18.9	0.15	1.0	300	I	 		l

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage. See X-Radiation Warning, page 4.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
TV Damper	Max	i-c outp	ut curre	nt = 17	5 ma; m	ax peak in	verse vo	ltage 🗷	=4,500	volts;	19AU4¶
TV Damper	Max o	eak cur	ut curre	nt = 19, 150 m	0 ma; m a	ax peak in		ltage 🗉	=4,500	volts;	19AU4- GTA¶
Horizontal	250	250	15	75	4	25,000	6,000		T		19BG6-G
Amplifier	60 Max 3,2 wa	250 positive atts; ma	pulse p x d-c ca	180 late vo thode	18 tage	=6,600 vo =110 ma			dissipa	tion =	19BG6-GA
Class A Amplifier	100		1.0	0.5		80,000	1,250	100			19C8
TV Damper	volts	; max pe	eak curr	en t 🏵 =	2,100 m			se volt	age◈ =	5,000	19CG3 •
Class A	125	125	1.0	12	4.0	200,000	6,500	-	-	-	19CL8-A
Amplifier (Class A Amp	100 125	70	1.0	14		5,000	7,000 8,000	40			19CL8-B¶
TV Damper		l-c outp volts; m				ma; max 1 1050 ma.	eak inv	erse vo	ltage 4	=	19DE3¶. ■
Vertical	250	! =.	111	5.5	<u></u>	8,750	2,000	17.5	T =	Τ —	19DE7¶
Oscillator Vertical	150 60	d-c cath	ode curr 17.5 0	ent	= 22 ma	925	6,500	6.0	-	-	
Amplifier		ositive t			age 🌢 =	1,500; max	d-c catl	node cu	rrent ®	=50 ma	
TV Damper	Max d 6,500 v	-c outpu	it curre ax peak	nt • curren	= 400 r	na; max pe 1,200 ma.	ak inve	rse vol	tage •	=	19DK3¶
TV Damper	Max d 6,500	-c outpu	it curre ax peak	nt 🌞 curren	= 400 r t • =	na; max pe 1,200 ma.	ak inve	erse vol	tage 🔸	=	19DQ3¶
TV Damper	Max d 6,500 v	-c outpu	it curre ax peak	nt ◆ curren	= 450 r t • =	na; max pe 1,200 ma.	ak inve	rse vol	tage ◆	=	19DQ3-∆¶
Class A	125	125	1.0	12	4.0	200,000	6,400	1 —	<u> </u>	i —	19EA8
Amplifier Class A Amplifier	150	-	R _k = 56	18	_	5,000	8,500	40	_	-	19EA8-A¶
Vertical	250		11	5.5		8,750	2,000	17.5			19EW7¶
Oscillator Vertical	150	d-c cath	ode cur 17.5	rent 🏵 : 45	=22 ma	800	7,500	6.0	1 —	1	
Amplifier	Max 50 ma	positive	pulse	plate v	oltage 🏽	=1,500; n	nax d-c	cathod		nt ◆ =	
Class A Amplifier 4	125	_	1.0	4.2	_	13,600	4,200	57	_	_	19EZ8
Class A Amplifier	110	115	R _k = 62	36+	10-		13,500	_	3,000		19F X 5¶
Half-Wave Rectifier	Max o volts; plate	d-c outp max R l • = 54 r	ut curre MS supp na	nt per poly volt	olate 🏶 = age per 1	=9 ma; ma: plate	peak in 17 volts	nverse v max pe	oltage (eak curr	⇒=330 ent per	19GQ7
Class A Amplifier	200	115	R _k = 68	13.2	4.3	500,000	8,500	_	T		19HR6¶
Class A Amplifier	150	75	R _k = 68	8.8	2.8	500,000	9,500	-			19HS6¶
Class A Amplifier	125	125	1.0	12	4.0	200,000	6,500	_			19HV8
Class A Amp Class A	100	I	$\frac{1.0}{R_k} =$	0.8 8.5		7,100	1,300 5,300	70			19J6
Amplifier 🌩	125	125	150 ⊕	12		200,000	7,500				
Class A Amplifier		125	1.0	13.5	4.0	1	8,500	-	-	_	19JN8
Class A Amp Class A Amplifier	125	125	1.0	12	4.0	200,000	7,500		-	=	19KG8
Class A Amp			1.0	13.5		5,400	8,500	46			
Class A Amplifier	125 100	125 70	1.0	12	4.0	200,000	6,500 7,000	-	=	=	19Q9¶
Class A Amp Class A	250	1=	3.0	1.0		5,000	8,000 1,200	70	-	1=	19T8
Amplifier Class A	100 250	 =	$\frac{1.0}{3.0}$	1.0	-	54,000	1,300	70			19T8-A¶ 19V8
Amplifier	100	.	1.0	0.8	.	54,000	1,300		.		

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
19X8	Triode-Pentode Converter	9AK	6-2	18.9	0.15	2.0	250	250 \$ 0.4	Pentod	e Sectio	n
			- 0.05			1.5	250	:		Section	
20	Power-Amplifier Triode	4D	9-25	3.3 DC	0.132	_	135		2.0	2.3	4.1
POEQ7	Diode-Pentode	9LQ	6–3	20	0.1	3.0	300 ◈	300 ♦ \$	5.5 ▲ Diode	5.0 ▲ Section	0.002
0EW7¶	Dissimilar Double	9HF	9-70	20.5	0.3	1.5	330 🏵		Section	1 (Pin	6,
	Triode					10 🏶	330�		7, 8) Section 2, 3, 9)	2 (Pin	s 1,
0EZ7¶	High-Mu Twin Triode	9PG	6-2	20	0.1	1.2 🏟	330 ◈		1.6▲	0.2 ₁ ▲ 0.3 ₂ ▲	1.5▲
PIEX6¶	Beam-Power Amplifier	5BT	12-21	21.5	0.6	22 🏟	770 �\$	195 ♦ 3.5 ♦	22 ▲	8.5 ▲	1.1 🛦
21GY5¶	Beam Pentode	12DR	12-79	21	0.45	18 🏶	7708 �	220 ♦ 3.5 ♦	22 ▲	9.0 🛦	0.7
21HB5¶	Beam Power Amplifier	12BJ	12-58	21	0.45	18◈	7708 ◈	220 ♦ 3.5 ♦	22 ▲	9.0 🛦	0.4
21HB5-A¶	Beam Power Amplifier	12BJ	1258	21	0.45	18 🏶	770\$ ◈	220 ♦ 3.5 ♦	24 ▲	9.5▲	0.4 🛦
21HD5¶	Beam Power Amplifier	12ES	12-59	21.5	0.6	24 🏶	7708 ◈	220 ♦ 6.0 ♦			
21HJ5	Beam Pentode	12FL	12-59	21.5	0.6	24 🏵	770\$ €	220 🆠		<u> </u> —	
	4							6.0 🏶			
21JS6-A¶	Beam Power Amplifier	12FY	12-89	21.0	0.6	28 %	9908 4	190 ♦ 5.5 ♦	24 🛦	10 ▲	0.7
21 J V6¶	Beam Power Amplifier	12FK	12-58	21	0.45	18 🏶	770\$ ◈	220 ♦ 3.5 ♦	22 ▲	9.0▲	0.4 ▲
21 JZ 6¶ ■	Beam Power Amplifier	12G D	12-79	21	0.45	18 🏶	770\$ *	220 ♦ 3.5 ♦	24 ▲	8.5▲	0.34 ▲
21KA6¶	Beam Power Amplifier	12GH	12-79	21	0.45	18 🏶	770\$ *	220 ③ 3.5 ④	23 ▲	8.5 ▲	0.6 🛦
21KQ6	Beam Power Amplifier	9RJ	T-X	21.5	0.45	17 🏶	275 🆠	275 ♦ 6.0 ♦	27 ▲	11 🛦	1.5▲
21LG6 •	Beam Power Amplifier	12HL	12-89	21	0.6	28⊛	900:0	200 ♦ 5.0 ♦	25 ▲	13 ▲	0.8 🛦
21LG6-A¶	Beam Power Amplifier	12HL	12-89	21.0	0.6	28 🛊	900\$	200 \$ 5.0		13 ▲	0.8 4
21LR8¶	Triode-Pentode	9QT	12-65	21	0.45	14 ③ 2.5 ③	400 🏶	300 ③ 2.75 ③		de Section	
21LU8¶	Triode-Pentode	12DZ	12-57	21	0.45	14 ③ 2.5 ④	400 🏶	300 ③ 2.75 ③		de Secti	

Compactron.
Zero signal.
Per section.

Plate-to-plate.
Maximum.
Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A	250	150	R _k = 200 R _k =	7.7 8.5	1.6	750,000 6,900	4,600 5,800	40	_		19X8
Amplifier			100					<u> </u>			
Class A Amplifier	135		22.5	6.5†		6,300	525	3.3	6,500	0.110	20
Class A Amplifier AM Det.	100 Max	100	E _{ccl} =0	9.0	3.5	voltage dr	3,800	Rg1 = Meg			20EQ7
Vertical Oscillator	250	d-c cath	11	5.5		8,750	2,000	17.5		Τ=-	20EW7¶
Vertical Amplifier	150	1 —	17.5	45	i	800 ==1,500; ma	7,500 ax d-c c	6.0 athode	 current		
Class A	250		2.0	1.2	T	62,500	1,600	100		-	20EZ7¶
Amplifier Horizontal	175	175	30	67	3.3	80,000 8,500	7,700	100	-=-	 -	21EX6¶
Amplifier	60 60	150 125	0	460 360	45 30 30				=	220 ms	
Horizontal Amplifier	130	130 130	20	50 410	1.75	7,000; max	9,100				21GY5¶
	Maxp	sitive p	ulse pla	te volta	ge 🏶 = 6	,500; max		de curr	ent 🏶 =	230 ma	OUTDER
Horizontal Amplifier		130 130 positive	20 0 pulse p	50 410 ate vol	1.75 24 tage � =	11,100 -6,000; ma	9,100 x d-c ca	— thode c	urrent «	=230	21HB5¶
Horizontal Amplifier		130 130 positive	20 0 pulse p	46 450 late vol	1.8 29 tage 🏶 =	9,900 6,000; ma	9,000 x d-c ca	thode c	— urrent∢	=230	21HB5-A¶
Horizontal Amplifier	ma 135 60 Max	135 135 positive	22 0 pulse p	65 540 late vol	4.0 48 tage 🏶 =	5,000 =7,000; ma	10,000 x d-c ca	thode c	Urrent (= 280	21HD5¶
Horizontal Amplifier	135 60	135 135 positive	22 0 pulse p	80 540 ate vol	5.5 48 tage 🏶 =	5,000 =7,000; ma	l	(b.p. c k at so thode c	cket)		2īHJ5¶ ≡
Horizontal Amplifier	175 62		25 0 pulse pl	125 570 ate volt	4.5 34 age ♦ :	5,600 = 7,500 vol	11,300 ts; max	kats	connect socket) sode cur		21JS6-A¶
Horizontal Amplifier	130 60	130 130 positive	20 0 pulse	50 410 plate v	1.75 24 oltage @	$\begin{vmatrix} 11,000 \\ -6,000; r \end{vmatrix}$	9,100 nax d-c	toka	connect at socke e curre	et)	21JV6¶
Horizontal Amplifier	130 50	130 130 positive	20 0 pulse	46 450 plate v	1.8 29 oltage @	9,900 = 6,500; r	9,000 nax d-c	cathod	e curre	 nt	21)Z6¶
Horizontal Amplifier	130 60 Max 230 n	130 130 positive	20 0 pulse	50 410 plate v	1.75 24 oltage @	$\begin{vmatrix} 11,000 \\ $	9,100 nax d-c	kats	connectocket) le curre		21KA6¶
Horizontal Amplifier	50 40 Max 275 n	200 135 positive	12 0 pulse	550 450 plate v	50 35 oltage @	$(E_{c3} = 0 \text{ v})$ $(E_{c3} = 0 \text{ v})$ $(E_{c3} = 0 \text{ v})$	olts)	cathod	e curre	 ent ⊗ =	21 KQ6
Horizontal Amplifier	175 60 Max	125 125 positive	23 0 e pulse	90 600 plate vo	1.7 42 ltage● =	7,500 = 7,500; ma	11,500 x d-c cat	l	 rrent�	 =375 ma	21LG6¶
Horizontal Amplifier	175 50 Max 1 = 315	125 125 positive ma.	23 0 pulse pl	90 600 ate volt	1.7 42 age 🏶		11,500 — lts; max	d-c cath	node cui	rrent 🏈	21LG6-A¶
Class A Amplifier Class A Amplifier	135 250	120	10 4.0	2.3	3.0	12,000 16,000	9,300 3,600		-	_	21LR8¶
Class A Amplifier Class A Amplifier	135 250	120	10 4.0	56 2.3	3.0	12,000 16,000	9,300 3,600			<u> </u>	21LU8¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out-	Grid- plate
21MY8¶ ■	Triode-Pentode	12DZ	1257	21.0	0.45	16 🍫	400 🏇	300 ◈	Pento	de Secti	on
						2.5 🏶	400 ◈	2.75 🆠	Triode	Section	n
22	Sharp-Cutoff RF Tetrode	4K	14-2	3.3 DC	0.132		135	67.5		10.0	0.02
22BH3¶	Half-Wave High- Vacuum Rectifier	9HP	9-86	22.4	0.45	6.5 🏶	Tube V 33 volt	oltage : s at 360	Drop:	;	
22BH3-A¶	Half-Wave High- Vacuum Rectifier	9HP	T-X	22.4	0.45	6.5 🏶	Tube \33 volt	Voltage s at 360	Drop: ma d-c	;	
22BW3	Half-Wave High- Vacuum Rectifier	12FX	9–60		0.45	6.5 ◈	Tube V 32 volt	oltage s at 350	Drop: mad-	:	
22DE4¶	Half-Wave High- Vacuum Rectifier	4CG	9-44	22.4	0.45	6.5 🏶	Tube V 32 volt	oltage s at 350	Drop: ma d-c	:	
22JF6¶	Beam Power Amplifier	9QL	T-X	22	0.45	17 🏶	7708 🏶	220 ♦ 3.5 ♦	22 ▲	9.0	1.2▲
22JG6¶	Beam Power Amplifier	9QU	T-X	22	0.45	17◈	7708 ◈	220 ♦ 3.5 ♦	22 ▲	9.0 ▲	0.7 ▲.
22JG6-A¶	Beam Power Amplifier	9QU	12-96	22	0.45	17 🏶	7708 🏶	220 ♦ 3.5 ♦	22.▲	9.0▲	0.7 ▲
22JR6¶	Beam Power Amplifier	9QU	12-96	22	0.45	17◈	770:0	220 ⊗ 3.5 ⊗	22 🛦	9.0▲	0.7 ▲
22JU6¶	Beam Power Amplifier	9QL	T-X	22	0.45	17 ♦	770\$ ◈	220 ③ 3.5 ④	22 ▲	9.0 ▲	1.2▲
22KM6¶	Beam Power Amplifier	9QL	T-X or 12-70	22	0.45	20 🏶	7708 🏶	220 ③ 3.5 ⑤	22 ▲	9.0 ▲	1.2 ▲
22KV6-A¶	Beam Power Amplifier	9QU	12-97	22.0	0.45	28 🏟	9008	220 ③ 2.0 ④	22 🛦	9.0▲	0.6 ▲
23JS6-A¶	Beam Power Amplifier	12FY	12-89	23.6	0.6	28 🆠	990\$ *	190 ♦ 5.5 ♦	24 ▲	10 ▲	0.7▲
23M B6¶ ■	Beam Power Amplifier	12FY	T-X	23	0.6	35 ◈	9908	225 ♦ 7.0 ♦	25 ▲	17▲	0.5 ▲
23Z9¶■	Dissimilar-Double- Triode Pentode	12GZ	9-58	23	0.45	7.0 ◈	250 ◈	200 ③ 1.8 ④	Pentod	le Secti	on
				İ	-	1.25 🏶	330 🏶		Triode	Section	1 1
						1.0 🏶	250 🏶	_	Triode (Pins 2	7, 10, 11 Section 2, 3, 7)	í 2
24 A	Sharp-Cutoff RF Tetrode	5E	14-2	2.5	1.75		250	90	5.3 ▲	10.5 ▲	0.007
24BF11¶	Dissimilar Double Pentode	12EZ	9-59	24.2	0.315	6.5◈	165�	150 ◈ 1.8 ◈	9, 10, 1	1 (Pin:	
_						1.7◈	330◈	330 : ♦ 1.1♦	Section 3, 5, 6,	2 (Pin	s 2,
24JE6-A¶	Beam Power Amplifier	9QL	12-116	24	0.6	30 ◈	990\$ ◈	220 ③ 5.0 ④	22 ▲	11 🛦	0.56 🛦
24JZ8¶	Triode-Pentode	12DZ	9-58	24.2	0.315	7.0◈	250◈	200 ⊗ 1.8 ⊗	Pentod	le Section)) n
				1		1.0�	250�	-	Triode	Section	

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class A Amplifier	135 45 250	120 125 —	10 0 4.0	56 200 2.3	3.0 20 —	12,000 16,000	9,300 3,600	<u></u>	=		21MY8¶
Class A Amplifier	135	67.5	1.5	3.7	1.3	325,00 0	500	_	 	1 - 1	22
TV Damper	Max	l-c outp	ut curre	nt 🔷 🖚	180 ma;	max peak	inverse	voltage	<u> </u>	00 volts;	22BH3¶
TV Damper	Max	d-c out max pe	put cur	rent 🏶 :	= 180 m	a; max pe	ak inve	rse vol	tage 🗞	=5,500	22BH3-A¶
TV Damper	Max	d-c outp peak cur	ut curre	ent 🏶 =	175 ma;	max peak	inverse v	voltage	♦ = 5,0 0	00 volts;	22BW3
TV Damper	Max		put cu	rrent 🏽	=180 m	na; max p	eak inv	erse vo	ltage 🔷	=5,500	22DE4¶
Horizontal Amplifier	130 55	125 125 positive	20	80 525	2.5 32	12,000 = 6,500; r	10,000 nax d-c	(Ec3 =	+25 vo le curre	lts) nt 🏶 =	22JF6¶
Horizontal Amplifier	130 50	125 125	20 0 pulse p	80 525 ate vol	2.5 32 tage 🏶 =	12,000 -6,500; ma	_	k at so	nected ocket) urrent	1	22JG6¶
Horizontal Amplifier	130 55 Max 275 m	125 125 positive	20 0 pulse	80 525 plate vo	2.5 32 oltage �	12,000 =6,500; n	10,000 nax d-c	(Ec3 =	+25 vo	lts) nt ⊕ =	22JG6-A¶
Horizontal Amplifier	130 50 Max	125 125 positive	20 0 pulse r	45 470 plate vol	1.5 32 tage⊛ =	18,000 -6,500; max	7,000 	-	— rrent�:	 _ = 275ma	22 J R 6 ⁴⁷
Horizontal Amplifier	130 50 Max 275 m	125 125 positive	20 0 pulse	45 470 plate vo	1.5 32 oltage �	18,000 	7,000 nax d-c	k at	connect socket) e curre	ı	22JU6¶
Horizontal Amplifier	140 60 Max ♦=2	140 140 positive 75 ma	24.5 0 pulse p	80 560 clate vo	2.4 31 tage 🏶	6,000 = 6,500 vo	9,500 ts; max		= 0 volts		22KM6¶
Pulse Regulator	140 100 Max 1 = 275	140 140 oositive ma.		40 440 ate volt	2.4 30 age 🗣 =	10,000 = 6,500 vol	6,000 ts; max	1	= 0 vol	i	22KV6-A¶
Horizontal Amplifier	175 62 Max 315 m	125 120 positive	25 0 pulse	125 570 plate v	4.5 34 oltage 🏶	5,600 	11,300 nax d-c	to k	connect at socke le curre	t) l	23JS6-A¶ ■
Horizontal Amplifier	150 60 Max 1 = 400	110 110 ositive ma.	20 0 pulse pl	110 660 ate volt	2.0 42 age 🏶 :	5,000 = 8,000 vol	14,000 ts; max	١	hode cur	rent 🏶	23M B6¶ ■
Vertical Amplifier	120 45 Max • = 7	110 110	8.0 0 pulse p	46 122 ate vol	3.5 16.5 tage � =	11,700 =2,000; tota	7,100 al d-c pl	ate and	screen o	urrent	23Z9¶■
Class A Amplifier Vertical {	150 150	_	2.0 5.0	5.4	_	11,000 8,500	3,900 2,350	43 20	_	-	
Oscillator \	250	d-c plat	e currer	$1t \circledast = 20$	1.7	600,000	1,050	ı —			24A
Class A	145	110	6.0	36†	3.0†	30,000	8,600		3,000	0 2.4	24BF11¶
Amplifier Class A Amplifier	150	100	Rk = 560	1.3	2.0	150,000	1,000	(Ec.	3 = 0 vol		240711
Horizontal Amplifier	175 55 Max 350 n	125 125 positive	25 0 pulse	130 580 plate v	2.8 40 oltage @	5,800 = 7,500; r	9,600 nax d-c		30 volts le curre		24JE6-A¶
Vertical Amplifier	120 45 Max	110 110	8,0 0	46 122	3.5	11,700	7,100	_	T =	T_=	24JZ8¶
Vertical Oscillator	130	d-c cat	3.0	3.3		=2,000; ma: 8,500	2,350	10 20	irrent⊕ —	=70 ma —	

Ga and G5 are screen. G4 is signal-input grid.
G2 and G4 are screen. G3 is signal-input grid.
1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitance icofarad	e in s
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
24LQ6¶	Beam Power Amplifier	9QL	12-117	24	0.6	30◈	990:◈	220 ♦ 5.0 ♦	22 🛦	11 🛦	0.56
24LZ6¶	Beam Power Amplifier	9QL	12-117	24	0.6	30 ◈	8 <u>90\$</u>	220 ⑤ 5.0 ⑥	22 ▲	11.	0.6
25A6 25A6-GT	Power-Amplifier Pentode	7S	8-6 9-11	25.0	0.3	5.3	160	135	8.5	12.5	Ú.2 —
25A7-GT	Half-Wave Rectifier, Power Amplifier Pentode	8F	9-11	25.0	0.3	2.25	117	117 0.8 Tube V 23 v at	oltage 150 ma	Drop:	_
25AC5-GT	Triode Power Amplifier	6Q	9-11	25.0	0.3	10	180	_		oes, Pus	h-pull
25AV5-GA	Beam Power Amplifier	6CK	T-X	25.0	0.3	11	550\$	175 2.5	14 ▲	7.0 ▲	0.5 🛦
25AV5-GT	Beam Power Amplifier	6CK	9-11 or 9-41	25.0	0.3	11	5508	175 2.5	14▲	7.0 ▲	0.7▲
25AX4-GT	Half-Wave High- Vacuum Rectifier	4CG	9-11 9-41	25.0	0.3	4.8	Tube V	oltage 250 ma	Drop:	1	·
25B5	Direct-Coupled Power Amplifier	6D	12-1	25.0	0.3	8.5	180	-	-	 	_
25B6-G	Power Amplifier Pentode	78	14-3	25.0	0.3	12.5	200	135 2.0			
25B8-GT	Triode Remote-Cutoff Pentode	81	9-24	25.0	0.15		100	100	ł	le Section Section	
26 BK 6	Beam Power Amplifier	9BQ	6–3	25.0	0.3	9.0	250	250 2.5	13 A	5.0 ▲	0.6
25BQ6-GA 25BQ6- GTB	Beam Power Amplifier	6AM	T-X 9-49 9-50	25.0	0.3	11	6008	2.5 2.5	15 ▲	7.0 ▲	0.6 ▲
25BQ6-GT	Beam Power Amplifier	6AM	9-49 or 9-50	25.0	0.3	īī	5508	175 2.5	15 ▲	7.5 ▲	0.6 🛦
25BR3¶	Half-Wave High- Vacuum Rectifier	9CB	T-X	25.0	0.3	6.5 🏶	Tube V	Voltage s at 250	Drop:	<u>'</u>	·
26C8	Beam Power Amplifier	7CV	5-3	25.0	0.3	7.0 🏶	150 ♦	130 (a)	13 ▲	8.5▲	0.6
25C6-G 25C6-GA	Beam Power Amplifier	7AC	14-3 12-16	25.0	0.3	12.5	200	135		_	-
25CA5	Beam Power Amplifier	7CV	5-3	25.0	0.3	5.0	130	130	15 ▲	9.0▲	0.5 🛦
25CD6-G 25CD6- GA¶	Beam Power Amplifier	5BT	16-5	25.0	0.6	15	700\$	175 3.0	25 ▲	9.5 ▲	0.6
25CD6- GB¶	Beam Power Amplifier	5BT	12-21	25.0	0.6	20	700\$	175 3.0	22 ▲	8.5 ▲	1.1 🛦
25CG3¶	Half-Wave, High- Vacuum Rectifier	12HF	9-62	25	0.45	6.5 🏶	Tube 25 vol	Voltage ts at 70	Drop: 0 ma d-	·c	<u> </u>
25CK3¶	Half-Wave High- Vacuum Recti- fier	9HP	T-X or 9-86	25.0	0.3	6.5 ◈		Voltag ts at 35			
25CM3 ¶	Half-Wave, High- Vacuum Rectifier	9HP	T-X	25	0.6	12�	Tube V	/oltage is at 350	Drop:	:	
25CT3¶	Half-Wave High- Vacuum Recti- fier	9RX	T-X	25.0	0.3	4.75	Tube	Voltag	ge Drop 150 ma	: d-c	

Compactron, Zero signal.

Per section.

[†] Plate-to-plate. •Maximum. • Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmbos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	175 60 Max	145 145 positive	35 0 pulse r	95 710 plate vol	2.4 55 tage	7,000 -7,500; max	7,500 d-c cat	,	30 volts	i	24LQ6¶
Horizontal Amplifier	175 55	125 125 positive	25 0	140 800	2.0 56	6,000	11,000	I =	=	=	24LZ6¶
Class A Amplifier	160	120	18	33†	6.5†	42,000	2,375	-	5,000	2.2	25A6 25A6-GT
Class A Amplifier Half-Wave { Rectifier	100 Max rms	d-c ou supply	15 tput cu	20.5† rrent = =117 v	4.0† 75 ma; max p	50,000 max peak eak curren	1,800 inverse t = 450	voltag	4,500 e = 350	0.77 v; max	25A7-GT
Class B Amplifier	180	-	0	4.0†	<u> </u>	Peak Inpu 0.810 w	it Signa		4,800	6.0	25AC5-GT
Horizontal Amplifier	250 60 Max	150 150 positive	22.5 0 pulse p	57 260 late vo	2.1 26 ltage •	14,500 = 5.500 vol	5,900	screen	dissipat	ion =	25AV5-GA
Horizontal Amplifier	60 Max	150 positive	0 pulse p	225 late vo	25 ltage ⊕	=110 ma 20,000 -5,500 vo =110 ma	5,500 lts; ma:	_ k screen	dissipa	tion =	25AV5-GT
TV Damper	Max		ut curr	ent = 12		nax peak i	nverse v	oltage [= 4,40	00 volts	25AX4-GT
Class A Amplifier	180	100	0	46	5.8 Inp	ut Plate	2,300	T —	4,000		25B5
Class A Amplifier	200	135	23	62†	1.8†	18,000			2,500	7.1	25B6-G
Class A Amplifier Class A Amp	100	100	3.0 1.0	7.6	2.0	185,000 75,000	2,000 1,500	112	_	_	25B8-GT
Class A Amplifier	250	250	5.0	35†	3.5†	100,000	8,500	-=	6,500	3.5	26BK6
Horizontal Amplifier	250 60 Max 1	150 150 positive	22.5 0 pulse p	57 260 ate vol	2.1 26 tage 🗷 =	14,500 =6,000 volt	5,900 s; max	screen o	 lissipati	on =2.5	25BQ6-GA 25BQ6-GTB
Horizontal	watts 250	max d	22.5	55	ent = 11	0 ma 20,000	5,500	Т —	1 —	1	25BQ6-GT
Amplifier	60 Max 2.5 w	150 positive atts; ma	pulse x d-c c	225 plate ve athode	25 oltage © current	=5,500 vo =110 ma	olts; ma		_		
TV Damper	peak	current «	= 1,20	00 ma		max peak		voltage			25BR3¶
Class A Amplifier	120	110	8.0	491	4.0†	10,000	7,500		2,500		25C5
Class A Amplifier	200	135	4.5	61†	2.2†	18,300	7,100		2,600 4,500	1.5	25C6-GA 25C6-GA \$6CA6
Class A Amplifier Horizontal	125 110 175	110 175	4.0	37† 32† 75	3.5	15,000 16,000 7,200	8,100	느ᆖ	3,500	1.1	25CD6-G
Amplifier	60 Max po	100 sitive p	ulse pla	230 te volta	21	6,600 volts		creen di	ssipatio	n = 3.0	25CD6-GA¶
Horizontal Amplifier	175 60 Max p	175 100 ositive p	30 0 oulse pla	75 230 te volt	5.5 21	7,200 7,000 volt	7,700 s; max	screen d	_ issipati	on =3.0	25CD6-GB¶
TV Damper	Max d	-c out	ut cur	rent 🏶 =		a; max pe	ak inve	erse vol	tage 🔷 =	=5,000	25CG3¶ ■
TV Damper	Max d-	c outpu	t curre	nt 🏶 🌣	= 250 n	na; max pe 1,200 ma.	ak invė	rse volt	age 🔷	=	25CK3¶
TV Damper	volts	; max p	eak curi	rent� =	1,700 m	na; max pe					25CM3¶
TV Damper	May d	Le auto	nt curr	ent 🚳	= 250 s	ma; max p 1,200 ma.	eak inv	erse vo	tage 🏶		25CT3¶

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max	Max Screen Volts	Cap P	acitance cofarad	in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
25CU6	Beam Power Amplifier	6AM	T-X	25.0	0.3	11	600\$	200 2.5	15 ▲	7.0 ▲	0.6 ▲
25D4¶	Half-Wave High- Vacuum Rectifier	4CG	9-11, 9-41	25,0	0.3	5.5 ◈	Tube V 22 volt	oltage s at 250	Drop: ma d-c		<u> </u>
25 D8-GT	Diode-Triode-Pentode	8AF	9-23	25.0	0.15		100	100	Pentod Triode	e Section Section	
25DK3¶	Half-Wave High- Vacuum Recti- fier	9SG	9-117	25.0	0.45	9.0 🏶	16 volt	oltage s at 400 s at 800	ma d-c		
25DK4	Half-Wave High- Vacuum Rectifier	5BQ	5-3	25	0.15		Tube \	oltage s at 200	Drop:	<u> </u>	
25DN6¶	Beam Power Amplifier	5BT	12-21	25.0	0.6	15		175 3.0	22 ▲	11.5 ▲	0.8▲
25DQ6	Beam Power Amplifier	6AM	T-X	25.0	0.3	15	550\$	175 2.5	15 🛦	7.0 ▲	0.55 🛦
25DQ6-A¶	Beam-Power Amplifier	6AM	12-51	25.0	0.3	18 🏶	770 🕸	220 ③ 3.6 ⑤	15▲	7.0▲	0.5 ▲
25DT6¶	Beam-Power Pentode	9HN	6-3	25,0	0.3	9.0 🏶	315 ◈	285 ♦ 2.0 ♦	12.5▲	4.9 ▲	0.57 ▲
25E5	Beam Power Amplifier	8GT	T-X	25	0.3	11	250	250 5.0	17.5 ▲	8.0 ▲	1.1 ▲
25EC6¶	Beam Power Amplifier	5BT	T-X	25	0,6	10 🏶	700 ♦\$		24 ▲	10 ▲	0.6 ▲
25EH5	Power-Amplifier Pentode	7CV	5-3	25	0.3	5.5 🏶	150 ◈	130 ③ 2.0 ⑤	17 ▲	9.0▲	0.65 ▲
25F5	Beam Power Amplifier	7CV	5-3	25.0	0.15	4.5	135	117	12▲	8.0▲	0.44 ▲
25F5A¶	Beam Pentode	7CV	5-3	25	0.15	5.5 🏶	150 €		12▲	8.0 🛦	0.44 ▲
25F Y 8	Triode-Pentode	9EX	6-4	25	0.3	8.0 ◈	150 ③	150 * 2.0 *	·l	e Section	
25H X 5	Beam Power Amplifier	9SB	T-X	25.0	0.3	14 🆠	400 🏶		17.3 ▲	i	1.1 ▲
25JQ6¶	Beam Pentode with Integral Diode	9RA	6-4	25.2	0.3	10 🏶	425◈	330 ♦ 2.0 ♦	13 🛦	6.0 ▲	0.32 ▲
25JZ8¶ ■	Triode-Pentode	12DZ	958	25.2	0.3	7.0 ③	250 *	1.8 🕉	1	de Sectio	
25L6	Beam Power Amplifier	7AC	8-6	25.0	0.3	10	200	117	16.0	13.5	0.3
25L6-GT	Beam Power Amplifier	7AC	9-11 or 9-41	25.0	0.3	10	200	1.25 1.25 1.25	15▲	10 🛦	0.8 ▲
25N6-G	Direct-Coupled Power Amplifier	7W	12-3	25.0	0.3	8.5 1.1	180 180				
25W4-GT	Half-Wave High- Vacuum Rectifier	4CG	9~11, 9~41	25.0	0.3	3.5	Tube 1 21 v at	Voltage t 250 ma	Drop: a d-c		

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load For Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier	watts;	max d-c	cathoo	le curre	nt = 110	14,500 6,000 volts			issipation		25CU6
TV Damper	Max d	-c outp nax pea	ut curre	ent 🔷 = nt 🔷 =	=155 m 900 ma	a; max pe	ak inve	rse volt	age 🚸	=4,400	25D4¶
Class A Amplifier Class A Amp	100	100	3.0	8.5 0.5	2.7	200,000 91,000	1,900	_	_	_	25D8-GT
TV Damper	Max d 6,500	-c outp volts; m	ut curre ax peak	ent 🏽 curren	= 400 r t 🔷 =	na; max po 1,200 ma.	eak inve	erse vol	tage 🚸	=	25DK3¶
Half-Wave Rectifier	Max d- max R	c outpu MS sup	t currer	it ♦ = 1 age ♦ =	00 ma; 129 vol	max peak i ts; max pe	nverse v ak curre	oltage ent 🏶 =		volts;	25DK4
Horizontal Amplifier	125 50 Max po	125 100 sitive p	18 0 oulse pl	70 240 ate volt	6.3 30 tage @ urrent =	4,000 =6,600 vol	9,000 ts; max	screen	dissipa	tion =	25DN6¶
Horizontal Amplifier	250 60 Max po	150 150 sitive p	22.5 0 oulse pl	75 300 ate vol	2.4 27	20,000 =6,000 vol	6,000 ts; max	screen	dissipa	tion =	25DQ6
Horizontal Amplifier	250 60 Max po	150 150 sitive p	22.5 0 ulse pla		1.5 25 ge ⊕ = 6	20,000 ,000; max d	6,600 	de curi	ent 🏶 =	155 ma	25DQ6-A¶
Vertical Amplifier	250 80	250 250	16.5 0	44 195	1.5		6,200		=		25DT 5 ¶
Horizontal Amplifier	100	100	8.2	100	7.0		14,000				25E5
Horizontal Amplifier	135 60 Max po	135 135 sitive p		70 350 te volta	4.5 40 ge ♦ = 7	4,700 	7,500 -c cath	de curr	ent -=	200 ma	25EC6¶
Class A Amplifier	110	115	R _k = 62	42†	11.5†		14,600		8,000	1.4	25EH5
Class A Amplifier	110	110	7.5	36†	3.0†	16,000	5,800		2,500	1.2	25F5
Class A Amplifier Class A	110	110	7.5	43† 50†	3.8† 10†	13,000	7,500		2,500	1.5 	25F5A¶ 25FY8
Amplifier Class A Amp	125	_	1.5	2.5		_	2,000			- L	20116
Vertical Amplifier	100 40 Max p	100 100 ositive r ma.	8.2 0 oulse pla	100 240 ate volta	7.0 19	5,000 = 2,500 volt	14,000 s; max	i-c cath	ode cur	rent 🌸	25H X 5
Vertical Amplifier	140 40	140 120	18 0	35 150	2.5 20	10,500	4,200	_			25JQ6¶
	70 m Insta	a.	s diode-	plate-to		2,000 volts voltage dr					
Vertical Amplifier	120 45 Max 1	110 110 positive	8.0 0 pulse p	46 122 late vol	3.5 16.5 tage ◈	11,700 = 2,000 v	7,100 olts; ma	x d-c c	athode	_ current	25JZ8¶ ■
Vertical Oscillator		-c catho	ode curi		_ = 20 m	8,500] a.	2,350	20	(
Class A Amplifier	200 110	110 110	8.0 7.5	50† 49†	2.0† 4.0†	30,000 13,000	9,500 9,000	_	3,000 2,000	4.3 2.1	25L6
Class A Amplifier	200 110	125 110	$R_k = 180 \\ 7.5$	46† 49†	2.2† 4.0†	28,000 13,000	8,000 8,000		4,000 2,000	3.8	25L6-GT
Class A Amplifier	180	100	0	46	5.8	15,000 15,000 1t Plate	2,300		4,000	3.8	25N6-G
TV Damper	Max d-volts; n	c outpu ax peal	t curre	nt = 125 nt = 750	ma; m	ax peak in	verse v	oltage (=3850)	25W4-GT

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$\delta\$ G3 and G5 are screen. G4 is signal-input grid.

\$\delta\$ G2 and G4 are screen. G3 is signal-input grid.

\$\delta\$ Maximum screen dissipation appears immediately below the screen voltage.

\$\delta\$ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitance icofarad	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
25W6-GT	Beam Power Amplifier	7AC	9-11 or 9-41	25.0	0.3	7.5	300	1.25 1.25	Pentod	e Conn	ection
			9-41				300		Triode	Connec P tied)	tion
25X6-GT	High-Vacuum Rectifier Doubler	7Q	9-11	25.0	0.15	-		oltage 120 ma	Drop: 4		
25Y5	High-Vacuum Rectifier Doubler	6E	12-5	25.0	0.3		-	-	_	-	-
2524	Half-Wave High- Vacuum Rectifier	5AA	8-1	25.0	0.3	_	Tube V 20.5 v	Voltage at 250 r	Drop:	····	
25Z5	High-Vacuum Rectifier Doubler	6E	12-5	25.0	0.3		Tube V	oltage 150 ma	Drop: 4		
25Z6 25Z6-GT	High-Vacuum Rectifier Doubler	7Q	8-6 9-11	25.0	0.3	_	Tube V 22 v at	/oltage : 150 ma	Drop: 4	•	
26	Medium-Mu Triode	4D	14-1	1.5	1.05		180		2.8	2.5	8.1
26A6	Remote-Cutoff RF Pentode	7BK	5–2	26.5	0.07	5.3	250	100 0.4	5.5	5.0	0.004
26A7-GT	Twin-Pentode Power Amplifier	8BU	9-33, 9-44	26.5	0.6	2.0 💠	50	50 0.5	16.0 ▲	13.0 ▲	1.2▲
26C6	Duplex-Diode Medium-Mu Triode	7BT	5-2	26.5	0.07	2.5	250		1.8	1.4	2.0
26CG6	Remote-Cutoff Pentode	7BK	5-2	26.5	0.07	4.0	300	150 0.75	5.0	5.0	0.008
2 6D6	Pentagrid Converter	7CH ♥	5-2	26.5	0.07	1.0	300	1.0	Osc Ici Rgi = 2	=0.5 m 0,000 ol	na hms
26E6-G	Beam Power Amplifier	78	T-X	26.5	0.3	12.5	200	135 1.5	=	=	=
26HU5¶	Beam Power Amplifier	8NB	12-21	26.0	0.6	33 ◈	9908	250 ♦ 5.0 ♦	40 ▲	17▲	1.0 ▲
26LW6¶	Beam Power Amplifier	8NC	14-7	26	0.6	40 ◈	9908	280 ♦ 7.0 ♦	40 ▲	14.5 ▲	1.0▲
26LX6¶ ■	Beam Power Amplifier	12JA	12–136	26.0	0.6	33 ◈	9908 🏶	250 ♦ 5.0 ♦	40 ▲	17▲	1.0▲
26Z5	Full-Wave High- Vacuum Rectifier	9BS	6-2	26.5	0.2		Tube V	/oltage : 100 ma	Drop: 4	•	I
27	Medium-Mu Triode	5A	12-5	2.5	1.75		275	I —	3.1		3.3
FG-27-A	Thyratron	FG- 27-A	T-X	5.0	4.5	_	Anode Peak	Voltage	Drop :	=16 Vol	ts
27GB5	Beam Power Amplifier	9NH	T-X	27	0.3	17 🏶		275 � 6.0 �	_	-	-
27KG6	Beam Power Amplifier	9RJ	T-X	26.7	0.45	34 ◈	7008 ◈		=	=	=
28D7	Twin Beam Power Amplifier	8BS	9-31	28.0	0.4	3.0♠	100	67.5 0.5			
28GB5	Beam Power Amplifier	9NH	T-X	28	0.3	17 🏶	275 🏶	275 ③ 6.0 ⑤			==
28H A 6	Pentode	9NW	6-4	28.6	0.15	8.0 🏶	300 ◈		13 🛦	8.0 ▲	0.18
28HD5¶	Beam Power Amplifier	12ES	12-59	28	0.45	24 🔷	7708 🏶	220 ♦ 6.0 ♦			
28 Z 5	Full-Wave High-Vacuum Rectifier	6BJ	9-31	28.0	0.24		Tube V	oltage 100 ma	Drop:		<u> </u>

Compactron.

Zero signal.

Per section.

See X-Radiation Warning, page 4.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	200	125	R _k =	46†	2.2†	28,000	8,000		4,000	3.8	25W6-GT
Amplifier Vertical	110 225	110	7.5 30	49† 22	4.0†	13,000 1,600	8,000 3,800	6.2		2.1	
Amplifier \ Rectifier						=1200; ma; 30 ma; rm					25X6-GT
or Doubler	125 vol	ts	it curre	nt ber	prace – c	o ma; rm	s suppi	y voita	ge per	plate =	23A6-G1
Rectifier or Doubler	Max d- volts; n	c outpunarms	t curre	nt per voltage	plate = 4 per plat	12 ma; ma e = 250 vol	x peak ts	invers	e volta	ge = 700	25Y5
Half-Wave Rectifier						x peak inv peak curre					25Z4
Rectifier or Doubler	Max d	-c outp	at curre	nt per	plate =	75 ma; ma 35; max pe	x peak	inverse	voltag	e = 700;	25Z5
Rectifier	Max d	-c outp	ut curre	ent per	plate =	75 ma: ma	x peak	inverse	voltag	e = 700:	25Z6
or Doubler	max rn	ns suppl	y volta	ge per 1	olate =2	75 ma; ma 35; max pe				450 ma	25Z6-GT
Class A Amplifier	180		14.5	6.2	_	7,300	1,150	8.3	-	-	26
Class A Amplifier	250	100	$R_k = 125$	10.5	4.0	1,000,000	4,000	_			26 A 6
limpinaci	26.5	26.5	R _{g1} = 2 meg	1.7	0.7	250,000	2,000	_	-	-	
Class A Amplifier •	26.5	26.5	4.5	20†	1.9†		5,700		1,500	0.165	26A7-GT
Class A Amplifier	250 26.5	=	9.0 R _g = 2 meg	9.5 1.1	=	8,500 15,500	1,900 1,100	16 17	=		26 C6
Class A Amplifier	250	150	8.0	9.0	2.3	720,000	2,000			-	26CG6
Converter	250	100	1.5	3.0	7.8	1,000,000	475 #		=		26D6
Class A Amplifier	200	135	14	61†	3.0†	18,000	7,100		2,600	6.0	26E6-G
Horizontal Amplifier	175 60 Max = 40	110 110 positive	21 0 pulse pi	125 750 late vol	3.3 42 tage 🏶	6,000 = 7,000 vo	14,000 lts; max	d-c cat	hode cu	_ rrent ◈	26HU5¶
Horizontal	250	250	56	125	4.2	6,700	12,000]	I -	T = 1	26LW6¶
Amplifier	Max	110 positive	0 pulse	650 plate v	37 oltage ∢	= 7,500	volts;	l — l-c cath	iode cui	rrent 🌸	
- 		0 ma.						,	7		221 1124
Horizontal Amplifier	175 60 Max	110 110 positive	21 0 pulse p	125 750 late vol	3.3 42 tage 🏶	= 7,000 vo	14,000 lts; max	d-c cat	hode cu	rrent 🆠	26LX6¶
Full-Wave Rectifier	Max d-	0 ma. c outpu pply vol	t curre	nt per p	plate = 5 325; ma	0 ma; max ax peak cur	peak in	verse v	oltage = 300 ma	=1250;	26Z5
Class A Amp	250	ı —	21	5.2	I —	9,250	975	9.0	<u> </u>		27
Controlled Rectifier	Max d	c catho	de curre	ent 🖲 =	2.5 amp	eres; max 10 ampere	peak in	verse vo	ltage 🖲	=1,000	FG-27-A
Horizontal	75	200	10	440	37	(Instantar ,700; max	eous V	alues)	rent 🙈 =	275 ma	27GB5
Amplifier Horizontal	160	160	uise pia	1.400	ge ⊕ = /			(Ec+=	0 volts)	27KG6
Amplifier	45	160 ositive	0 pulse	1000	oltage 🏶	=7,000;	max d-	catho	de curr	ent 🏶 =	
Class A Amplifier •	28	28	3.5	12.5†	1	4,200	3,400	i	4,000	1	28D7
Horizontal Amplifier	75 Max D	200 ositive r	10 ulse pla	440 te volta	37 ge � ≕	(Instant 7,700; max	aneous d-c cath	Values) ode cur	rent 🔷 =	=275 ma	28GB5
Class A Amplifier	150	100	$R_k = 33$	28	3.5	20,000	20,000		-	-	28HA6
	60	100	0	45	9.0	<u> </u>	1,000	<u> </u>		<u> — </u>	28HD5¶
Horizontal Amplifier	135 60 Max p	135 135 ositive	22 0 pulse p	65 540 slate vo	4.0 48 ltage 🏶	5,000 =7,000; m	10,000 ax d-c c		current	—	2011 100 11 ■
Full-Wave	Max	d c outr	11 01155	nt = 10	0 ma · m	av neak in	verse vo	ltage =	1250 vo	lts: max	2825
Rectifier	rmss	upply v	oltage p	er plate	= 325 v	olts; max p	eak cur	rent per	plate =	300 ma	

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Volts	Car P	acitano icofara	e in ds
Туре	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
29GK6¶	Beam Power	9GK	6-4	28.6	0.15	13.2 🏶	330 🏶	330 ♦	Single	Tube	
	Amplifier		***************************************			- Little Committee Committ		2.0	Two T Pull	ubes, F	ush-
									Two T	ubes, F	ush-
29KQ6	Beam Power Amplifier	9RJ	T-X	29	0.3	17 🏶	275 ◈	275 ③ 6.0 ④	27 ▲	11 🛦	1.5 ▲
29LE6	Beam Power Amplifier	9RJ	T-X	29.0	0.3	20 🏶	275 🏶	275 ③ 5.0 ④		27 ▲	1.5 ▲
30	Medium-Mu Triode	4D	12-5, 9-26	2.0 DC	0.06		180	-	3.0 ▲	2.2 ▲	6.0 ▲
30AG11	Duplex-Diode Twin Triode	12DA	9-56	30	0.15	2.0	330 �			Section Section	
30CW5	Power Amplifier Pentode	9CV	6-4	30	0.15	14 🕸	275 ◈	220 � 2.1 �	11.8		0.6
30HJ5¶	Beam Pentode	12FL	12-59	30	0.45	24 🏶	770\$�	220 * 6.0 *			=
30KD6¶	Beam Power Amplifier	12GW	12-119	30	0.6	33 €	990 🕻 🏶	200 ♦ 5.0 ♦	40 ▲	16 🛦	0.8 ▲
30JZ6 ■	Beam Power Amplifier	12ĞD	12-79	30.0	0.3	18 🏶	7708 🏶	220 ③ 3.5 ④	24 ▲	8.5 ▲	0.34 ▲
30M B6¶ ■	Beam Power Amplifier	12FY	T-X	30	0.45	35 �	9908 🏶	225 ③ 7.0 ④	35 ▲	17▲	0.5 ▲
31	Power-Amplifier Triode	4D	12-5	2.0 DC	0.13	_	180		3.5	2.7	5.7
31AL10¶	Dissimilar- Double Triode Pentode	12HR	9-59	31.5	0.315	7.0 🏶	250 🏶	200 (de Sect	ion
	Tentode					1.25 *	330 ♦ 250 ♦		(pir	e Sections 9, 10, 2 Sections 2, 3,	, 11) n 2
31JS6-A¶	Beam Power Amplifier	12FÝ	12-89	31.5	0.45	28 🏶	990\$	190 (s) 5.5 (s)	24 ▲	10▲	0.7 🛦

Zero signal.

Per section.

See X-Radiation Warning, page 4.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	250	250	7.3	48†	5.5†	38,000	11,300		5,200	5.7	29GK6¶
Ampaner	300	300	R _k =	72†	8.0†	_		_	8,000‡	17	
Class AB Amplifier	250	250	13C R _k = 130	62†	7.0+	_		-	8,000‡	11	
Class AB Amplifier	300 250	300 250	14.7 11.6	15† 20†	1.6† 2.2†	=	=	=	8,000± 8,000±	17 11	
Horizontal Amplifier	50 40 Max 275 m	200 135 positive	12 0 pulse	550 450 plate v	50 35 oltage �	$(E_{ci} = 0 \text{ V})$ $(E_{ci} = 0 \text{ V})$ = 6,500; n	rolts)	cathod	e curre		29KQ6
Horizontal Amplifier	40 50	135 200	0 12	450 550	35 50				ΙΞ	ΓΞ	29LE6
Class A Amplifier	180	_	13.5	3.1	=	10,300	900	9.3	<u> </u>	-	30
Class A Amplifier • Detector •	125 Max d	-c outpu	1.0	7.5	.0 ma	8,500	7,800	66	_		30AG11
Class A Amplifier	170	170	12.5	70+	3.5†	26,000	11,000	_	2,400	5.6	30CW5
Horizontal Amplifier	135 60 Max 1 ma	135 135 ositive	22 0 pulse pl	80 540 ate volt	5.5 48 age ♦ =	5,000 7,000; max	10,000 d-c cat	k at so	connecte ocket) rrent �	_	30HJ5¶■
Horizontal Amplifier	150 45 Max 400 m		22.5 0 pulse	100 1,100 plate ve	2.0 110 oltage �	6,000 	14,000 	kats	ocket)		30KD6¶
Horizontal Amplifier	130 50 Max pe = 230	130 130 ositive p	20 0 oulse pla	46 450 te volta	1.8 29 age ♦ =	9,900 6,500 volt	9,000 s; max c	_ l-c cath	ođe curi	ent 🌢	30ЈZ6 ■
Horizontal Amplifier	150 60	110 110 ositive p			2.0 42 ige ♦ =	5,000 8,000 volt	14,000 s; max d	 l-c cath	ode curr	ent 🏶	30MB6¶ ■
Class A Amplifier	180	_	30	12.3	<u> </u>	3,600	1,050	3.8	5,700	0.375	31
Vertical Amplifier	120 45 Max = 70	110 110 positive	8.0 0 pulse	46 122 plate vo	3.5 16.5 sltage =	11,700 = 2,000 vo	7,100 lts; max	d-c ca	thode o	urrent	31AL10¶
Sync. Separator Vertical Oscillator	150 150	_	2.0 5.0	5.4 5.5	_ = 20 m	11,000 8,500	3,900 2,350	43 20			
Horizontal Amplifier	175 62	125 120 positive	25 0	125 570	4.5 34		11,300 nax d-c	kats	connect ocket) e curres		31JS6-A¶

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment				n ~	apacitar Picofar	ice in ads
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watt			Inpu	t Out	
31JS6-C¶	Beam Power Amplifier	12FY	12-89	31.5	0.45	30 ◈	9908	220 € 5.5 €		10▲	0.7 ▲
31LQ6¶	Beam Power Amplifier	9QL	12-117	31.0	0.45	30 ◈	9908	220 ⊕ 5.0 €		11 🛦	0.56
31LR8¶	Triode-Pentode	9QT	12-65 or 12-96	31.5	0.3	14 ③	400 ¢	2.75 €	•	ode Sec le Secti	
31LZ6¶	Beam Power Amplifier	9QL	12-117	31	0.45	30 ◈	990\$		22 ▲	11 🛦	0.6 🛦
32	Sharp-Cutoff RF Tetrode	4K	14-2	2.0 DC	0.06	1	180	67.5	5.3 ▲	10.5 ▲	0.015
32ET5	Beam-Power Amplifier	7CV	5-3	32.0	0.1	5.4 🏶	150 ◈	130 ③ 1.2 ③	12 🛦	6.0▲	0.6 ▲
32ET5-A¶	Beam-Power Amplifier	7CV	5-3	32,0	0.1	5.4 🏶	150 🏶		12▲	6.0▲	0.6▲
32HQ7¶ ■	Diode-Pentode	12HT	12-56	32.6	0.315			150 ♦ 3.0 ♦ oltage D at 200	Diode :	e Section	on
32L7-GT	Half-Wave Rectifier Beam Power amplifier	8Z	9-11	32.5	0.3		90	90	-		_
FG-32	Half-Wave Mercury- Vapor Rectifier same as 5558		_								_
33	Power-Aniplifier Pentode	5K	14-1	2.0 DC	0.26		180	180	8.0	12.0	1.0
A33	Photoconductive Cell	-	T-X			0.01	30 ₪				
33GT7¶	Diode-Pentode	12FC	12-56	33.6	0.45	·	400 \$	2.5 🏶	Diode S	e Section	n
33GY7¶	Diode-Pentode	12FN	12–56	33.6	0.45		21 volt	s at 250 150 ♠ 3.0 ♠	ma d-c	e Sectio	'n
7,500						3.8 ◈	Tube V 21 volt	oltage I s at 250	Diode S Drop: ma d-c	Section	

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	For Rated Out- put, Ohm	Power Output, Watts	Tube Type
Horizontal Amplifier	175 60 Max	125 125 positive 50 ma.	25 0 pulse p	130 600 late vol	2.8 32	5,500 - = 7,500 vol	11,500 ts; max	d-c cath	nect k at	con- ed to socket) rrent 🏶	31JS6-C¶
Horizontal Amplifier	175 60 Max	145 145	35 0 pulse p	95 710 late vol	2.4 55 tage �	7,000 = 7,500 vol		_	= 30 v	-	31LQ6¶
Class A Amplifier Class A Amplifier	135 250	120	10 4.0	56 2.3	3.0	12,000 16,000	1	58	-		31LR8¶
Horizontal Amplifier		125 125 positive	25 0 e pulse	140 800 plate v	2.0 56 oltage	6,000 = 7,500	11,000 volts; d	-c cath	ode cui	rent 🄷	31LZ6¶
Class A Amplifier	180	67.5	3.0 7.5	1.7 30t	0.4 2.8+	21,500	5,500		2.800	1.2	32 32ET5
Amplifier Class A Amplifier	110	110	7.5	30†	2.8†	21,500	5,500	-	2,800	1.2	SEET 5-A¶
Horizontal Amplifier TV Damper	★ = Max d	110 110 ositive 125 ma. -c outpu max pes	it curre	nt 🕸 =	120 m	8,400 = 4,000 vo a; max peal	•			1	32HQ7¶ ■
Class A Amplifier Half-Wave Rectifier	90 90	90 90	7.0 5.0	27† 38†	2.0† 3.0†	17,000 15,000 nax rms suj		tage = 1	2,600 2,600 25 v	1.0 0.8	32L7-GT
	_	_	_		-		-	-		-	
Class A Amplifier	180	180	18	22†	5.0†	55,000 units; ma	1,700		6,000	1.4	33 A33
Control Horizontal Amplifier TV Damper	130 60 Max ma Max	130 130 positive	22.5 0 pulse pl ut curre	48 320 ate vol	2.9 22 tage � =	10,000 =3,500; max max peak in	6,500 d-c cat	_ node cu	rrent 🏶	=140	33GT7¶
Horizontal Amplifier	130 60 Max 155 n	130 130 positive	22.5 0 pulse	48 320 plate ve	2.9 22 oltage *	10,000 -5,000; m				- 1	33GY7¶
						a; max pea					

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car	acitanc icofarac	e in Is
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
33GY7-A¶	Diode-Pentode	12FN	12-56	33.6	0.45	9:0 🏶	400\$	150 ♦ 3.0 ♦	Pentod	e Section	on
						3.8 🏶	Tube V 21 volt	oltage s at 250	Drop:		
33HE7¶ 🖜	Diode-Pentode	12FS	12-57	33.6	0.45	10�	Tube V	150 * 3.5 * oltage le at 350	Diode Drop:	de Secti Section	
33JR6¶	Beam Power Amplifier	9QU	12-96	33.0	0.3	17 ◈	7708 ◈	220 ♦ 3.5 ♦	22 ▲	9.0▲	0.7 ▲
33JV6¶	Beam Power Amplifier	12FK	12-58	33	0.3	18 🕸	770\$⊛	220 ♦ 3.5 ♦	22 🛦	9.0▲	0.4▲
34	Remote-Cutoff RF Pentode	4M	14-2	2.0 DC	0.06		180	67.5	6.0 ▲	11.0 ▲	0.015
34CD3¶	Half-Wave, High- Vacuum Rectifier	12FX	9-62	34.5	0.45	12 🏶	Tube V	oltage s at 350	Drop: ma d-c)	
34CE3¶ ■	Half-Wave, High- Vacuum Rectifier	12GK	9-62	34.5	0.45		Tube V 20 volt	oltage s at 680	Drop:		
34CM3 🖺	Half-Wave, High- Vacuum Rectifier	9HP	T-X	33.5	0.45	12�	Tube V	oltage I at 350	Drop: ma d-c		
84GD5 84GD5-A¶	Beam-Power Amplifier	7CV	5-3	34.0	0.1	5.0 ◈	150 ◈	130 ③ 1.1 ⑤	12.0 ▲	9.0▲	0.6▲
34R3	Half-Wave, High- Vacuum Rectifier	9CB	6-8	34	0.15	_		oltage		 l-c	
A35	Photoconductive Cell		T-X			0.05 🗷	50 📵		_	_	1 -
35/51	Remote-Cutoff RF Tetrode	5E	14-2	2.5	1.75		275	90	5.3 ▲	10.5 ▲	0.007
35A5	Beam Power Amplifier	6AA	9-31	35.0	0.15	8.5	200	125 1.0		=	=
86 B5	Beam Power Amplifier	7BZ	5-3	35.0	0.15	4.5	117	117	11 🛦	6.5 ▲	0.4 ▲
85C6 85C6-A¶	Beam Power Amplifier	7CV	5-3	35.0	0.15	5.2 🏶	150 ◈	130 🏟	12 ▲	9.0 ▲	0.6 ▲
35CD6- GA¶	Beam Power Amplifier	5BT	12-21	35.0	0.45	20	7001	175 3.0	22 ▲	8.5 ▲	1.1 🛦
\$5DZ8	Triode-Pentode	9JE	T-X	35.0	0.15	6.5	150	135 1.5	Pentod	e Section	n
						0.75	150	-	Triode	Section	ı
85EH5 85EH5-A ¶	Beam-Power Amplifier	7CV	5-3	35.0	0.15	5.0♦	150 ◈	130 ③ 1.75 ③	17▲	9.0▲	0.65 🛦
85GL6	Beam-Power Amplifier	7FZ	5-3	35.0	0.15	5.5 ♦	150 ◈		14▲	9.5▲	0.5 ▲
86 H B8	Triode-Pentode	9ME	6-3	35.0	0.15	6.5 ♦	150 (135 * 1.5 *		e Section	
35L6-GT	Beam Power Amplifier	7AC	9-11 or 0-41	35.0	0.15	8.5	200	125 1.0	=	-	Γ=
35LR6¶	Beam Power Amplifier	12FY	9-41 12-90	35	0.45	30◈	990:0	220 ♦ 5.0 ♦	33 ▲	12▲	0.47 🛕
35W4 35W4-A¶	Half-Wave High-Vacuum Rectifier	5BQ	5–3	35.0	0.15	-	Tube \\18 v at	oltage 200 m	Drop: a d-c	1	<u> </u>

Compactron. Zero signal. Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

[●]Subminiature type. ▲Without external shield. ◆Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load For Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Horizontal Amplifier				48 320 315 clate v	2.9 22 20 oltage *	=5,000; m	6,500 — — nax d-c	cathode	- currer	 nt -	33GY7-A¶
TV Damper	155 m Max volts;		put cur	rent 🌢	=135 m =810 m	ia; max pe	ak inve	rse volt	tage 🌢 =	4,200	
Horizontal Amplifier	= 230	ma.	-			6,200 = 5,000 vo					33HE7¶
TV Damper	Max o	i-c outp max pe	ut curre ak curre	ent 🌢 ent 🔷	= 200 r = 1,200	na; max pe ma.	ak invei	rse volta	age 🚸 :	= 4,200	
Horizontal Amplifier		125 125 positive 275 ma		45 470 olate vo	1.5 32 oltage •	18,000	·	ax d-c	cathode		33JR6¶
Horizontal Amplifier	130 60	130 130 positive	20 0	50 410 plate v	1.75 24 oltage (11,000 = 6,000; n	9,100 nax d-c	kats	connect socket) e curre		33JV6¶
Class A Amplifier	180	67.5	3.0	2.8	1.0	1,000,000	620		_	Ī —	34 .
TV Damper	Max volts	d-c out	put cur	rrent 🏶	=350 r =1,500 r	na; max pe ma	ak inve	erse vol	tage 🌢 :	=6,000	34CD3¶■
TV Damper	Max volts	d-c out	put cur	rent 🌢	=350 n =1,500 n	na; max pe ma	ak inve	erse vol	tage 🏶 :	=6,000	34CE3¶
TV Damper		d-c ou ; max p				na; max pea	ak inver	se volta	age⊛ =5	5,500	6CM3
Class A Amplifier	110	110	7.5	35†	3.0†	13,000	5,700	-	2,500	1.4	34GD5 34GD5-A¶
TV Damper	Max max	d-c out	put curr	rent = 1 150 ma	50 ma;	max peak	inverse	voltage	=4,500	volts;	34R3
Control	Spectr		onse =	5,500 a	ngstron	units; m	aximum	curre	nt 🖲 =1	0 milli-	A35
Class A Amplifier	250	90	3.0	6.5	2.5	400,000	1,050		T	_	35/51
Class A Amplifier	200	125	R _k = 180	43†	2.0†	34,000	6,100		5,000	3.0	35A5
Class A Amplifier	110	110	7.5	40† 40†	3.0†	14,000	5.800 5,800	=	2,500	$\frac{1.5}{1.5}$	35B5
Class A Amplifier	110	110	7.5	40†	3.01		5.800	==	2,500	1.5	35C5 35C5-A¶
Horizontal Amplifier	175 60 Max p	175 100 ositive	30 0 pulse pl	75 230 ate vol	5.5 21 tage 🖲	7,200 =7,000 volt	7,700 s;	i —		=	35CD6-GA¶
Class A	max so	reen dis	$R_k =$	$\frac{1 = 3.0}{45}$	$\frac{\text{watts; r}}{\mid 6.0 \uparrow}$	nax d-c cat	$\frac{\text{hode cu}}{1.500}$	rrent =	200 ma	2.0	35DZ8
Amplifier Class A Amp	120-	_	180 R _k = 1500	0.8	_		1,400	100	_	_	50020
Class A Amplifier	110	115	R _k = 62	32†	7.2†	14,000	12,000		3,000	1.2	35EH5 35EH5-A¶
Class A Amplifier	110	110	7.5	45†	3.0†	12,000	7,500	_	2,500	1.8	35GL6
Class A Amplifier	115	115	R _k = 150	33†	7.5†		6,250	-	3,500	1.0	35HB8
Class A Amplifier	115	l -	$R_k = 410$	2.5	_	_	3,900	74	_		
Class A Amplifier	200	125	R _k = 180	43†	2.0†	34,000	6,100	_	5,000	3.0	35L6-GT
Horizontal	110 175	110	7.5	140	3.0† 2.4	14,000 5,300	5,800 16,000	(b.p	. connec	ted	35 <u>L</u> R6¶
Amplifier	60	110	1 0	700	35	7,500; max		l to k	at sock	et)	
Half-Wave Rectifier	Max rms s With	d-c out supply v panel l , max d panel l	put curr oltage= amp No	rent *= = 117 vo. 40 or	= 110 m; olts; ma No. 47	a; max peak x peak curr between pi	inverse rent 🏶 = ns 4 and	e voltag =660 ma 1 6 and	e 🏶 = 36 no shur	0 volts; iting re-	36W4 36W4-A¶

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap	acitance icofarad	e in Is
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
35¥4	Half-Wave High-Vacuum Rectifier	5AL	9–31	35.0	0.15	_	Tube V 18 v at	oltage 200 ms	Drop: d-c		
35 Z 3	Half-Wave High-Vacuum Rectifier	42	9-31	35.0	0.15		Tube V	oltage 200 ms	Drop:		
35Z4-GT	Half-Wave High-Vacuum Rectifier	5AA	9-11	35.0	0.15		Tube V	oltage 200 ma	Drop:		
35Z5-GT	Half-Wave High-Vacuum Rectifier	6AD	9-11 or 9-41	35.0	0.15		Tube V	oltage 200 ma	Drop:		
35Z6-G	High-Vacuum Rectifier Doubler	70	14-3	35.0	0.3	-	Tube V	oltage 220 ms	Drop:	•	-
36	Sharp-Cutoff RF Tetrode	5E	12-6	6.3	0.3	0.8	250	90.0	3.8 ▲	9.0 ▲	0.007
36 A M S	Half-Wave High- Vacuum Rectifier	5BQ	5–3	36	0.1		Tube \\20 volt	oltage s at 150	Drop: mad-	c	
36A M 8-A	Half-Wave High- Vacuum Rectifier	5BQ	5–3	36	0.1	-	Tube \\16 volt	oltage s at 150	Drop:		
36A M3-B¶	Half-Wave High- Vacuum Rectifier	5BQ	5–3	36	0.1	=	Tube \	oltage s at 150	Drop:		
36KD6¶	Beam Power Amplifier	12GW	12–118	36	0.45	33 📵	990:0	200 ♦ 5.0 ♦	40 ▲	16▲	0.8 🛦
36MC6¶	Beam Power Amplifier	9QL	T-X	36	0.45	33 ◈	9908 🏶	250 ③ 5.0 ⑤	40▲	16▲	1.04
37	Medium-Mu Triode	5A	12-5	6.3	0.3	-	250	=	3.5	2.9	2.0
38	Power-Amplifier Pentode	5F	12-6	6.3	0.3		250	250	3.5	7.5	0.30
38H E7¶	Diode-Pentode	12 F S	12-57	37.8	0.45	10 🏶	500 8 🏵	150 * 3.5 *	Diode	e Section	
38HK7¶	Diode-Pentode	12 F S	12-57	37.8	0.45	10 🏟			Drop: mad-		on
							Tube V	3.5 ♠ Voltage s at 356	Drop:) ma d-	Section	
39/44	Remote-Cutoff RF Pentode	5F	12-6	6.3	0.3	1.5	250	90 0.15	3.8 ▲	10.0 ▲	
40	Medium-Mu Triode	4D	14-1	5.0 DC	0.25	-	180		2.8	2.2	2.0
40FR5¶	Beam-Power Amplifier	7CV	5–3	40.0	0.1	5.2 🏶	150 ◈	130 (a)	12▲	9.0▲	0.3 🛦
40KD6¶	Beam Power Amplifier	12GW	12-119	40	0.45	33 🖭	990\$ \$	200 ♦ 5.0 ♦	40▲	16 ▲	0.8 ▲
40KG6	Beam Power Amplifier	9RJ	T-X	40	0,3	34 🏶	7008 🏶	250 ♦ 7.0 ♦	-	-	-

Compactron.
† Zero signal.

Per section.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Half-Wave Rectifier	rms su With	ipply vo panel la	ltage = mp No	235 volt . 40 or 1	s; max j No. 47 t	ax peak in peak curren petween pir ma ting resisto	t = 600	ma. 4 and	700 vol	ting re-	35Y4
Half-Wave Rectifier	Max	i-c outp	ut curre e = 235	ent = 10 volts, n	0 ma; n	nax peak in k current =	verse ve	oltage =	700 vo	lts; rms	3523
Half-Wave Rectifier	Max	i-c outp	ut curre	ent = 10	0 ma; n	ax peak in peak curr	verse vo	ltage =	700 vol	ts; max	35Z4-GT
Half-Wave Rectifier	max of rms su	i-c outp ipply vo panel la	ut curre ltage = .mp No	ent = 10 235 volt . 40 or 1	0 ma; m ts; max j No. 47 t	ax peak in peak curren petween pir ma ting resisto	verse vo t = 600 as 2 and	ltage = ma 3 and	no shun	ting re-	35Z5-GT
Rectifier or Doubler	Max d	-c outpu	it curre	nt per	plate = 1	10 ma; ma 35; max pe	x peak	inverse	voltag	e = 700;	35Z6-G
Class A Amplifier	250	90	3.0	3.2		550,000	1,080		-	1 -	36
Half-Wave Rectifier	Max	1-c outp	ut curre	ent 🌒 =:	82 ma; : = 129 v	max peak i olts; max p	nverse v	oltage		volts;	36A M 3
Half-Wave Rectifier						nax peak i					36 A M 3-A
Half-Wave Rectifier	Max	d-c outp RMS su	ut curr	ent 🏟 =	82 ma;	max peak i volts; max	nverse v	oltage	=365	volts;	36 A M 3-B
Horizontal Amplifier		110 160 ositive	22.5 0 pulse pla		2.0 110 age 🖹 = 7	6,000 7,000; max	14,000 d-c cath	to k	connec at sock ent =	et)	36KD6
Horizontal Amplifier	175 55 Max p	125 125 ositive 00 ma.	25 0 pulse p	130 580 late vo	2.8 40 tage	l —	9,600 volts;	d-c ca	_ thode o	urrent	36MC6
Class A Amplifier	250	1 -	18	7.5	T -	8,400	1,100	9.2	-		37
Class A Amplifier	250	250	25	22	3.8	100,000	1,200		10,000	2.5	38
Horizontal Amplifier TV Damper	230 m Max	na	put cur	rent 🏶 :	=200 m	6,200 =5,000; n a; max per				-	38HE7¶
Horizontal Amplifier	130	130	22 0	60 450	2.8	6,200	8,800		Γ-	T	38HK7¶
TV Damper	Max 230 m Max	positive 1a	pulse	plate v	oltage 🏶 = 200 m	=5,000; n a; max per					
Class A Amplifier	250	90	3.0*	5.8	1.4	1,000,000	1.050		 -	T	39/44
Class A Amplifier	180		3.0	0.2		150,000	200	30	250,000		40
Class A Amplifier	110 115	110 115	7.5 R _k = 180	32† 34†	3.0† 3.2†	20,000	6,000		2,800 3,200	1.5	40F R 5 ¶
Horizontal Amplifier	150 45 Max 400 m	110 160 positive	22.5	100 1,100 plate ve	2.0 110 oltage @	6,000 -7,000; n	14,000 nax d-c	kats	connect socket) e curre	1	40KD6¶
Horizontal Amplifier		160 160		1,400	45	=7,000; n	ΙΞ.		=0 volts	· }	40KG6

Metal tubes are shown in bold-face type, miniature tubes in ilalics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

¶ Maximum screen dissipation appears metal minimediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitance icofarad	in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
41	Power-Amplifier Pentode	6B	12-5	6.3	0.4	8.5	315	285	-	<u> </u>	i —
42	Power-Amplifier Pentode	6B	14-1	6.3	0.7	11	375	285 3.75			-
42KN6¶	Beam Power Amplifier	12G U	12-82	42	0.45	30 ◈	7708 🏶		44 ▲	18 ▲	1.0 🛕
43	Power-Amplifier Pentode	6B	14-1	25.0	0.3	5.3	160	135	8.5	12.5	0.2
45	Power-Amplifier Triode	4D	14-1	2.5	1.5	10	275	=	4.0	3.0	7.0
45B5	Power Amplifier Pentode	9CV	6-4	45	0.1	14 🏶	275 ◈	220 ③ 2.1 ④		Tube ubes P	ush-
46Z3	Half-Wave High- Vacuum Rectifier	5AM	5-2	45.0	0.075	=	Tube V 23 v at	oltage 130 ma	Drop:	*******	
45Z5-GT	Half-Wave High- Vacuum Rectifier	6AD	9-11	45.0	0.15		Tube V	oltage 200 ma	Drop:	·	
46	Dual-Grid Power-Amplifier	5C	16-1	2.5	1.75	10	400	_	Single (G ₂ &	tube P tied)	
B46	Photoconductive Cell		T-X			0.12	60 €		_	<u> </u>	
47	Power-Amplifier Pentode	5B	16-1	2.5	1.75	=	250	250	8.6	13.0	1.2
48	Power-Amplifier Tetrode	6A	16-1	30.0 DC	0.4		125	100			
49	Dual-Grid Power-Amplifier	5C	14-1	2.0 DC	0.12		135		Single (G ₂ &	tube P tied)	
50	Power-Amplifier Triode	4D	T-X	7.5	1.25	25	450		4.2	3.4	7.1
50A5	Beam Power Amplifier	6AA	9-31	50.0	0.15	10	200	125 1.25	_		=
50AX6-G	Full-Wave High-Vacuum Rectifier	7Q	14-3	50.0	0.3		Tube V 21 v at	oltage 250 ma	Drop: 4		<u></u>
60B5	Beam Power Amplifier	7BZ	5-3	50.0	0.15	6.0	135	117 1.25	13.0 ▲	8.5 ▲	0.6 ▲
50BK5	Beam Power Amplifier	9BQ	6-3	50.0	0.15	9.0	250	250 2.5	13 ▲	5.0 ▲	0.6 ▲
60BM8	Triode-Pentode	9EX	6-4	50	0.1	7.0 1.0	250 250	250 1,8		e Section	
60C6 60C6-A¶	Beam Power Amplifier	7CV	5–3	50.0	0.15	7.0 ♦	150 ♦	130 (a)	13.0	8.5 ▲	0.6 🛦
50C6-GA	Beam Power Amplifier	7AC	14-3 12-16	50	0.15	12.5	200	2008 1.75			
50CA5	Beam Power Amplifier	7CV	5-3	50.0	0.15	5.0	130	130 1,4	15▲	9.0▲	0.5 🛦
50DC4	Half-Wave High- Vacuum Rectifier	5BQ	5-3	50.0	0.15		Tube V 21 volts	oltage s at 240	Drop: ma d-c	:	
50E5	Beam Power Amplifier	8GT	T-X	50	0.15	111	250	250 5.0	17.5 ▲	8.0 ▲	1.1 🛦
50EH5 50EH5-A¶	Power-Amplifier Pentode	7CV	5-3	50	0.15	5.5 ◈		130 ♦ 2.0 ♦	17▲	9.0 🛦	0,65 ▲
50FA6¶	Beam-Power Amplifier	7CV	5-3	50,0	0.1	5.2 🏶	150 ◈	130 ③ 1.1 ④	11 🛦	8.5 ▲	0.28 ▲

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

⊕Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	250	250	18	32†	5.5†	90,000	2,300	_	7,600	3.4	41
Class A Amplifier	285	285	20	38†	7.0†	78,000	2,550		7 000	4.8	42
Horizontal Amplifier	130 60 Max 400 m	130 125 positive	20 0 pulse	100 800 plate vo	4.0 50 oltage 🏶	4,000 	16,000 nax d-c	kats	connect ocket) e currer		42KN6¶
Class A Amplifier	160	120	18	33†	6.5†	42,000	2,375	_	5,000	2.2	43
Class A Amplifier	275		56	36†		1,700	2,050	3.5	4,600	2.0	45
Class A Amplifier Class AB	200 170	200	17.3 R _k =	60† 113†	4.1† 6.0†	28,000	8,800		2,400 3,5001	5.2	45B5
Amplifier Half-Wave	Max d	-c outp	ut curr	ent = 6	ma; n	nax peak i	nverse	voltage	<u> </u>		45Z3
Rectifier	rms su	pply vol	tage = 1	117 volt	s; max j	peak curre	nt = 390	ma			45Z5-GT
Half-Wave Rectifier	With n	anel lat	nn No.	40 or N	io. 47 be	x peak inveak current etween pin a ing resistor	s 2 and	3 and t	10 shun	ting re-	4023-01
Class A Amplifier	250	-	33	22†	_	2,380	2,350	5.6	6,400	1.25	46
Control	Spectra		onse = 6	,100 ar	ngstrom	units; m	aximum	curren	t 🖲 = 20	0 milli-	B46
Class A Amplifier	250	250	16.5	31†	6.0†	60,000	2,500	_	7,000	2.7	47
Class A Amplifier	125	100	20	56	9.5		3,900		1,500	2.5	48
Class A Amplifier	135		20	6.0		4,175	1,125	4.7	11,000	0.170	49
Class A Amp	450		84	55		1,800	2,100	3.8	4,350	4.6	50
Class A Amplifier	200	125	R _k = 180	46†	2.2†	28,000	8,000	_	4,000	3.8	50A5
Full-Wave Rectifier TV Damper	supply Max d	voltage	per pl	ate = 35	4.0† ma; ma 0 volts; late = 12 ate = 600	13,000 x peak inventage max peak 25 ma; max ma	8,000 erse volt curren k peak i	age = 1: t per p nverse	2,000 250 volt late = 6 voltage	s; rms 00 ma =2000	50AX6-G
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500	_	2,500	l .i.	50B5
Class A Amplifier	250	250	5.0	35†	3.5†	100,000	8,500		6,500	3.5	50BK5
Class A Amplifier	200	200	16	35	7.0	20,000	6,400	70	5,600	3.5	50BM8
Class A Amp Class A Amplifier	120	110	-0 8.0	3.5 49†	4.0†	10,000	7,500	70	2,500	2.3	50Cδ 50Cδ-A¶
Class A Amplifier	135 200	135 135	13.5 14	58† 61†	3.5† 2.2†	9,300 18,300	7,000 7,100		2,000 2,600	3.6 6.0	50C6-G 50C6-GA
Class A Amplifier	125 110	125 110	4.5 4.0	37† 32†	4.0† 3.5†	15,000 16,000	9,200 8,100	=	4,500 3,500	1.5	50CA5
Half-Wave Rectifier	volts; ma. W	max rm	s supply el lamp	voltag No. 40 d	e	; max peal 17 volts; m between p • = 70 ma	nax peak pins l an	e voltag currer d 4 and	ge ◆ = 3 nt ◆ = 7 no shu	330 720 nt-	50DC4
Horizontal Amplifier	100	100	8.2	100	7.0		14.000	ode cur		— 200 ma	50E5
Class A Amplifier	110	115	R _k = 62	42†	11.5†		14,600		8,000		50EH5 50EH5-A¶
Class A Amplifier	110	110	7.5	40†	3.0†	13,000	5,800		2,500	1.5	50FA5¶

Metal tubes are shown in bold-face type, miniature tubes in italics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.
1, 1, 2, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.
¶ Heater warm-up time controlled.

construction cam-Power Amplifier cam-Power Amplifier ciode-Pentode ciode-Pentode cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier cam Power Amplifier	nections 8KB 7CV 9EX 12FN 7FZ 7FZ 9QW 8MG 7AC	5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3	50.0 50.0 50.0 50 50 50 50 50	0.15 0.1 0.15 0.1 0.15 0.3 0.3 0.15 0.15 0.15 0.15	Plate Watts 14.5 ♦ 5.0 ♦ 10 ♦ 1.0 ♦ 9.0 ♦ 3.8 ♦ 5.5 ♦ 12 ♦	150 \$\infty 150 \$\infty 150 \$\infty 400\$ \$\infty 21 volt	1.1	Pentod Pentod Pento Diode Drop: D ma d-c	9.0 A le Section de Section de Section c de Section	0.65 A
Amplifier am-Power Amplifier iode-Pentode iode-Pentode am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier	7CV 9EX 12FN 12FN 7FZ 7FZ 9QW 8MG	5-3 6-4 12-56 12-56 5-3 5-3 6-4 T-X	50.0 50.0 50.0 50 50 50 50 50	0.1 0.15 0.3 0.3 0.15 0.15 0.15	5.0 ◆ 10 ◆ 1.0 ◆ 9.0 ◆ 3.8 ◆ 5.5 ◆	150 \$\infty\$ 150 \$\infty\$ 150 \$\infty\$ 400\$ \$\infty\$ Tube \(\frac{21}{21} \text{ volt} \) 150 \$\infty\$ 150 \$\infty\$	130 ♦ 1.75 ♦ 1.50 ♦ 3.0 ♦ 1.50 ♦ 3.0 ♦ 7oltage s at 250 7oltage s at 250 130 ♦ 2.0 ♦ 130 ♦ 1.1 ♦	2 Tube 17 A Pentod Triode Pento Diode Drop: ma d-c Pento Diode Drop: ma d-c	9.0 A e Section de Section de Section de Section de Section de Section de Section	0.65 don
Amplifier iode-Pentode iode-Pentode iode-Pentode iode-Pentode am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier	9EX 12FN 12FN 7FZ 7FZ 9QW 8MG	6-4 12-56 12-56 5-3 5-3 6-4 T-X	50.0 50 50 50 50 50 50	0.15 0.3 0.15 0.15 0.15 0.15	10 ♦ 1.0 ♦ 9.0 ♦ 3.8 ♦ 9.0 ♦ 3.8 ♦	150 \$\rightarrow\$ 150 \$\limes\$ 400\$ \$\limes\$ Tube \(\frac{21}{21} \text{ volt} 150 \$\limes\$ 150 \$\limes\$	1.75 ♦ 150 ♦ 3.0 ♦ 150 € 3.0 \$ /oltage s at 250 130 ♦ 2.0 ♦ 1.1 ♦	Pentod Triode Pento Diode Drop: Diode Drop: Diode Drop: Diode Drop: Diode Drop: Diode Drop:	Section de Section c de Section de Section de Section general Section general Section	ion i 0.5 4
iode-Pentode am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier	12FN 12FN 7FZ 7FZ 9QW 8MG	12-56 12-56 5-3 5-3 6-4 T-X	50 50 50 50 50	0.3 0.3 0.15 0.15	1.0 ♦ 9.0 ♦ 3.8 ♦ 5.5 ♦ 5.5 ♦	150 \$\rightarrow\$ 400\$ \$\rightarrow\$ Tube \(\frac{21}{21} \) volt 400\$ Tube \(\frac{21}{21} \) volt 150 \$\rightarrow\$	3.0 ♠ 150 ♠ 3.0 ♠	Triode Pento Diode Drop: Diode Pento Diode Drop: Diode Drop: Diode Drop: Diode Drop:	Section de Section de	ion ion i .
am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier	7FZ 7FZ 7FZ 9QW 8MG	5-3 5-3 6-4 T-X	50 50 50 50	0.15 0.15 0.15	9.0 ♦ 3.8 ♦ 9.0 ♦ 3.8 ♦ 5.5 ♦	Tube \\ 21 volt \\ 400\$\\ Tube \\ 21 volt \\ 150 \leftarrow \\ 150 \leftarrow \\	3.0 ♦ /oltage s at 250 150 ♦ 3.0 ♦ /oltage s at 250 130 ♦ 1.1 ♦	Pento Diode Drop: Drop: Drope	de Section de Section de Section Section	ion i i i i i i i i i i i i i i i i i i
am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier	7FZ 7FZ 9QW 8MG	5-3 5-3 6-4 T-X	50 50 50	0.15 0.15 0.15	3.8 ♦ 5.5 ♦	Tube \ 21 vol	3.0 ♦ /oltage is at 250 130 ♦ 2.0 ♦ 1.1 ♦	Diode Drop: ma d-o	Section	0.5
Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier	7FZ 9QW 8MG	5-3 6-4 T-X	50 50	0.15	5.5 🏶	150 🏶	2.0 ♦ 130 ♦ 1.1 ♦			
am Pentode am Power Amplifier am Power Amplifier am Power Amplifier	9QW 8MG	6-4 T-X	50	0.15			130 (a)	14▲	9.0 ▲	0.54
Amplifier am Power Amplifier am Power Amplifier	8MG	T-X	50		12 🏶	330 🏶				
Amplifier am Power Amplifier				0.15		l	250 🏶 2.5 🏶			_
	7AC	9-11		0.10	13 🏶	275 ◈	275 ③ 5.5 ④	17.5▲	8.0 ▲	1.14
		or 9-41	50.0	0.15	10	135	125 1.25			_
gh-Vacuum Rectifier- Doubler	7AJ	9-31	50.0	0.15	_	Tube V 22 v at	oltage 150 ma	Drop: •)	
gh-Vacuum Rectifier- Doubler	7Q	9-11	50.0	0.15	_	Tube V 22 v at	oltage 150 ms	Drop: 4)	
gh-Vacuum Rectifier- Doubler	8AN	9-11 or 9-41	50.0	0.15		Tube V 22 v at	oltage 150 ma	Drop: ¢ a d-c		en dik kengong
gh-Vacuum Rectifier- Doubler	7Q	14-3	50.0	0.3						-
gh-Vacuum Rectifier Doubler	8AN	12-7	50.0	0.15		Tube V 21 v at	oltage 130 ma	Drop: 4		
vin-Triode Power Amplifier	7B	14-1	2.5	2.0	1.0♠	300	_	Push-p Both S	ull ections	in in
iode-Pentode	12FS	12-57	53.2	0.315	10◈	Tube V	3.5⊕ oltage	 Diode Se Drop:	ction	n
iplex-Diode Medium-Mu Triode	6G	12-6	2.5	1.0	-	250		_	-	-
edium-Mu Triode	5A	12-5	2.5	1.0	1.3	250				_
iode-Pentode	12EN	9-58	(Pins 7 12) 14	0.15	6.5 	150 ♦	135 ♦ 1.8 ♦			
I ve	in-Triode Power Amplifier ode-Pentode plex-Diode Medium-Mu Triode dium-Mu Triode	ode-Pentode plex-Diode Medium-Mu Triode ode-Medium-Mu Triode 5A	Doubler in-Triode Power Amplifier ode-Pentode plex-Diode Medium-Mu Triode dium-Mu Triode 5A 12-5	Doubler	Doubler	Doubler	Tube Via Tube Via Section Se	14-1 2.5 2.0 1.0	Triode Power TB 14-1 2.5 2.0 1.0	12FS 12-57 53.2 0.315 10

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections.

BAbsolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	130	130	R _k = 120	88†	5.0†		<u> </u>	<u> </u>	1,000	3.5	50FE5
Amplifier Class A Amplifier	130	130	120 R _k = 75	150†	7.2†		-	<u> </u>	1,600‡	7.0	
Class A Amplifier	100	115	R _k = 62	32†	8.5†	14,000	12,800		3,000	1.2	50F K 5
Class A Amplifier Class A Amp	125 125	125	R _k = 120 1.5	70† 2.5	10†	5,000 17,000	7,500 2,700	46	2,000	3.0	50F Y 8
Horizontal	130	130	22,5	48	2.0	10,000	6,500	1	-		50GY7¶ ■
Amplifier	60 Max r	130	0 pulse pl	320	2.9 22 tage 🏶	= 5,000 v	l	 ix d-c c	athode	current	5001
TV Damper	Maxd	-c outp	ut curre	ent 🚳 :	= 135 m = 810 m	a; max pea a.	k inver	se volta	ıge 🏶 ≖	= 4,200	
Horizontal Amplifier	130 60	130	22.5 0	48 320	2.9	10,000	I —	ΓΞ.	=	=	50GY7-A¶
	l 155 m:	a.		oltage 4		000 volts; n				1	
TV Damper	Max d	l-c outp	ut curre ak curre	nt 🔷 =	= 135 m = 810 m	a; max pea	k inver	se volta	ige 🚸 =	* 4,200	
Class A Amplifier	110	115	R _k = 62	42	11.5		14,600		3,000		50HC6
Class At Amplifier	110	110	7.5	49†	4.0†	10,000	7,500	_	2,500	1.9	50HK6
Class A Amplifier	130	130	R _k = 56	70†	5.0†	7,500	17,000	_	2,000	3.0	50HN5
Horizontal Amplifier	100	100	8.2	100	7.0	5,000	14,000	(b.p.	connect	ed to	50JY6
Class A Amplifier	200 110	125	$R_k = 180 \\ 7.5$	46†	2.2†	28,000	8,000		4,000	i i	50L6-GT
Rectifier or Doubler	Max d	-c outp	ut curre	49†	4.0†	13,000 75 ma; ma	8,000 x peak	inverse	2.000 voltag	-700	50X6
Rectifier or Doubler	Max d	-c outpu	it curre	nt per	=235; n	nax peak c 75 ma; ma 35; max pe	x peak	inverse	e = 450 voltag	ma e = 700;	50Y6-GT
Rectifier or Doubler	volts; plate: With sistor, With plate:	max rn = 450 m panel la max d- panel la = 65 ma.	out curres suppose mp No. c output mp and	ent per ly volta 40 or l it curre l 250 ol	plate = age per No. 47 b nt per p am shun	=75 ma; m plate = 235 petween pin late = 60 m sting resist	ax peak volts; as 6 and a. or (max	invers max pe 7 and), max	e voltag ak curr no shun d-c out	ge = 700 ent per ting re- put per	50Y7-GT
Rectifier or Doubler	Prese -	- 100 III				125 ma; m plate = 235				1	50Z6-G
Rectifier or Doubler	Max ovolts; plate = 6 and	l-c outp max rn =400 ma 7.	out curr ns suppl n. Ratin	ent per ly volta gs also	plate = ige per apply w	65 ma; ma plate = 235 ith panel la	volts; mp 292	inverse max pe or 292	e voltag ak curr A betwe	re = 700 ent per en pins	50Z7-G
Class B Amplifier	300	- 1	0.0	17.5†		_			8,000	10	53
Class A Amplifier	294		6.0	7.0		11,000	3,200	35	-		
Horizontal Amplifier	130 50	130 130	22	60 450	2.8	6,200	8,800		_		53HK7¶
TV Damper	Man.	positive d-c outp peak cur	ut curre	ate volt ent⊕ =:	zoo ma:	5,000; max max peak i	d-c cath nverse v	ode curi oltage (ent⊗ = > =3,70	230 ma. 0 volts;	•
Class A Amplifier	250	_	20	8.0†		7,500	1,100	8.3	20,000	0.350	55
Class A Amplifier	250		13.5	5.0		9,500	1,450	13.8			56
Class A Amplifier	120	110	8.0	49†	4.0†	10,000	7,500	_	2,500	2.3	56R9
Class A Amplifier	100	_	R _k = 1500	0.6	_	55,500	1,800	100			

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

If minimal active below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca ₁	pacitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
57	Sharp-Cutoff Pentode	6F	12-2	2.5	1.0	0.75	300	125	Pentod	le Conne	ection
						1.75	250		Triode	Connec	tion Tied)
FG-57	Thyratron same as 5559										
58	Remote-Cutoff RF Pentode	6F	12-2	2.5	1.0	2.25	300	100	-		-
58HE7¶	Diode-Pentode	12 F S	12-57	58	0.3	10 ◈	500\$ ◈	150 ③ 3.5 ⑤	Pentod	e Section	on
							Tube V 21 volt	oltage s at 350	Diode Drop: 0 ma d-	Section c	
59	Power-Amplifier Pentode	7A	16-1	2.5	2.0	10	250	250			<u> </u>
60F X 5	Beam-Power Amplifier	7CV	5–3	60.0	0.1	5.5 ◈	150 🏶	2.0	17▲	9.0▲	0.65 ▲
60HL5	Beam Power Amplifier	9QW	6-4	60	0.1	12 🏶	330 ◈	250 ③ 2.5 ⑤			_
70A7-GT	Half-Wave Rectifier Beam Power Amplifier	8AB	9-11	70.0	0.15	_	110	110	Tube V	oltage	Drop:
70L7-GT	Half-Wave Rectifier Beam Power Amplifier	8AA	9-15	70.0	0.15		117	117 1.0	Tube V	oltage	Drop:
71-A	Power-Amplifier Triode	4D	14-1	5.0	0.25		180		3.2	2.9	7.5
75	Duplex-Diode High-Mu Triode	6G	12-6	6.3	0.3		250	=	_	=	
76	Medium-Mu Triode	5A	12-5	6.3	0.3		250	_	3.5	2.5	2.8
77	Sharp-Cutoff Pentode	6F	12-6	6.3	0.3	0.75	300	100	4.7 ▲	11.0 ▲	0.007
78	Remote-Cutoff RF Pentode	6F	12-6	6.3	0.3	2.75	300	300 8 0.35	4.5	11.0	0.007
79	Twin-Triode Power Amplifier	6H	12-6	6.3	0.6	11.5⊕	250	=	Both S Push-p	ections ull	in
80	Full-Wave High-Vacuum Rectifier	4C	14-1, 9-26	5.0	2.0		Tube V 60 v at	oltage 125 ma	Drop: 4 a d-c	•	
81	Half-Wave High-Vacuum Rectifier	4B	T-X, 16-1	7.5	1.25			oltage 170 ma			
FG-81-A	Thyratron	3G	T-X	2.5	5.0	_	Anode	voltage	drop =	16 volts	peak
82	Full-Wave Mercury- Vapor Rectifier	4C	14-1	2.5	3.0	-	Tube V	oltage	Drop:		
83	Full-Wave Mercury- Vapor Rectifier	4C	16-1	5.0	3.0	_	Tube V	oltage	Drop:		
83-V	Full-Wave High-Vacuum Rectifier	4AD	14-1	5.0	2.0	-		oltage 175 ma	Drop:	•	
84/6Z4	Full-Wave High-Vacuum Rectifier	5D	12-5	6.3	0.5		Tube V		Drop:	•	*****
85	Duplex Diode Medium-Mu Triode	6G	12-6	6.3	0.3	_	250		1.5	4.3	1.5
89	Power-Amplifier Pentode	6F	12-6	6.3	0.4		250		(G ₂ , (e conne	tied)
	1	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	250	250	Pento	ode cont	nection

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μπλοs	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	250	100	3.0	2.0	0.5	1,000,000	1,225		$\overline{}$	<u> </u>	57
Amplifier Class A Amplifier	250	_	8.0	6.5		10,500	1,900	20	_		
Class A Amplifier	250	100	3.0	8.2	2.0	800,000	1,600	_	T -		58
Horizontal Amplifier	130 50	130 130	$\begin{array}{c} 22 \\ 0 \end{array}$	60 450	2.8 40	6,200	8,800				58HE7
TV Damper	230 m Max	īa.	put cu	- rren t 🏵	=200 n	⇒=6,500; r na; max p				•	
Class A Amplifier	250	250	18	35	9.0	40,000	2,500	<u> </u>	6,000	3.0	59
Class A Amplifier	110	115	R _k = 62	36†	10†	17,500	13,500		3,000	1.3	60FX5
Class A Amplifier	130	130	R _k = 56	70†	5.0†	7,500	17,000		2,000	3.0	60HL5
Class A Amplifier Half-Wave	110	110	7.5	40†	3.0†	_	5,800		2.500	1.5	70A7-GT
Half-Wave { Rectifier	lamp	i-c outp must be	ut curre	ent =60 cted bet	ma; ma ween pi	x rms supr ins 6 and 7	oly volta	ge = 12.	5 volts.	A panel	
Class A Amplifier Half-Wave { Rectifier		d-c outp	ut curr			15,000 ax peak in t peak curr		· oltage ==	2,000 350 vol		70L7-GT
Class A Amplifier	180	-	40.5	20†	-	1,750	1,700	3.0	4,800	0.790	71-A
Class A Amplifier	250		2.0	0.9		91,000	1,100	100	=		75
Class A Amplifier	250		13.5	5.0		9,500	1,450	13.8	-		76
Class A Amplifier	250	100	3.0	2.3	0.5	1,000,000	1,250				77
Class A Amplifier	250	125	3.0	10.5	2.6	600,000	1,650	_	_		78
Class B Amplifier	250		0	10.5†	_	Input sign	al = .386	watt	14,000	8.0	79
Full-Wave Rectifier	supply	y voltag	e per pl	ate = 35	0 volts:	nax peak in max peak (urrent p	er plate	e = 400 r	na	80
Half-Wave Rectifier	Max o	i-c outp upply v	ut curroltage =	ent =85 700 vo	ma; ma lts; max	ax peak inv peak curr	rerse vol ent = 50	tage = 2 0 ma	2000 vol	ts; max	81
Controlled Rectifier	volts;	max pe	ak cath	ode cu	rent 🖲 :	nperes; ma =2.0 ampe	res				FG-81-A
Full-Wave Rectifier	rms st	apply vo	ltage p	er plate	=450 v	ax peak inv olts; max p	eak cur	rent per	plate =	600 ma	82
Full-Wave Rectifier	suppl	y voltag	e per p	late = 4	50; max	nax peak in peak curr	ent per	plate = :	1,000 m	a	83
Full-Wave Rectifier	rmssu	apply vo	oltage p	er plate	=375 v	ax peak in olts; max p	eak cur	rent per	· plate =	525 ma	83-V
Full-Wave Rectifier	Max o	d-c outp	ut curre	ent = 60 er plate	ma; ma = 325 v	x peak inv olts; max p	erse vol eak cur	tage = 1 rent per	,250 vol plate =	ts; max 180 ma	84/6Z4
Class A Amplifier	250]	20	8†	_	7,500	1,100	8.3	20,000	0.350	85
Class A Amplifier	250		31	32†		2,600	1,800	4.7	5,500		89
Class A Amp	250	250	25	32†	5.5†	70,000	1.800		6,750	3.4	

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con- nec-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		citance cofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
FG-97	Thyratron	FG-97	T-X	2.5	5.0	<u> </u>	Anode	voltage	drop =	16 volts	peak
FG-98-A	Thyratron	FG-97	T-X	2.5	5.0	_	Anode	voltage	drop =	16 volts	peak
V99 X99	Low-Mu Triode	4E 4D	T-X 9-25	3.3 DC	0.063	_	90	-	2.5	2.5	3.3
FG-105	Thyratron	FG- 105	T-X	5.0	10		Anode	voltage	drop =	16 volts	peak
117L7/ M7-GT	Half-Wave Rectifier Beam Power Amplifier	8AO	9-15	117	0.09	6.0	117	1.0		oltage	
117N7-GT	Half-Wave Rectifier Beam Power Amplifier	8AV	9-15	117	0.09	5.5	117	117	Tube V	oltage	Drop:
117P7-GT	Half-Wave Rectifier Beam Power Amplifier	8AV	9-15	117	0.09	6.0	117	117 1.0	Tube V	oltage	Drop:
117Z3	Half-Wave High-Vacuum Rectifier	4CB	5-3	117	0.04			oltage at 180 r	Drop:	100 111	
117Z4-GT	Half-Wave High-Vacuum Rectifier	5AA	9-5	117	0.04		Tube V	oltage at 180 r	Drop:		<u></u>
117Z6-GT	High-Vacuum Rectifier Doubler	7Q	9-11	117	0.075		Tube V	oltage at 120 r	Drop: •		
FG-154	Thyratron	FG- 154	T-X	5.0	7.0		Anode	voltage	drop =	16 volt	Š
FG172	Thyratron	FG- 172	T-X	5.0	10	_	Anode	Voltage	Drop :	= 16 Vo	olts
182-B/ 482B	Power-Amplifier Triode	4D	14-1	5.0	1.25	_	250	-	_	-	
183/483	Power-Amplifier Triode	4D	14-1	5.0	1.25		250	_		_	
393-A	Thyratron	5AV	T-X	2.5	7.0		Anode	voltage	drop =	15 volt	3
407A	Medium-Mu Twin Triode	407A	6-1	{40 20	0.05	1.35	330 ₪	-	2.2 ▲	1.0▲	1.1
408A	Sharp-Cutoff Pentode	7BD	51	20	0.05	1.7 🖲	180 €	180 2 ⊕ 0.5 ⊕	3.9	2,85	0.01
414	Thyratron	414	T-X	5.0	19	_	Anode	Voltage	Drop	= 20 V	olts
B425	Photoconductive Cell		T-X	_	_	0.25	250 €	-	I -	-	
482B	Power-Amplifier Triode same as 182B										
485	Medium-Mu Triode	5A	12-5	3.0	1.25	-	180	-	-	-	I
502-A	Thyratron	6BS	8-1	6.3	0.6	_	Anode	voltage	drop =	8 volts	
512AX 📵	AF Pentode	512AX	2-2	0.625	0.02		45	45	2.0 ▲	1.5▲	0.045

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. \$ Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _{m,} μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	<u> </u>	Tube Type
Controlled Rectifier	Max o	l-c cathe max pe	ode curi ak cath	ent = =	rent 🖲 =	peres; max =2.0 amper	peak inv	verse vo	itage 🖲	=1,000	FG-97
Controlled Rectifier	volts;		ak cath	ode cur		peres; max =2.0 amper	es		voltage	● = 500	FG-98-A
Class A Amplifier	90	<u> </u>	4.5	2.5		15,500	425	6.6	_		V99 X99
Controlled Rectifier	volts;	max pe	ak cath	ode cur	rent 🖲	peres; max =40 amper	es	verse vo			FG-105
Class A Amplifier Half-Wave { Rectifier						ax peak in peak curre			4,000 350 vol	}	117L7/ M7-GT
Class A Amplifier Half-Wave { Rectifier	100 Max o	100	6.0	51† ent = 75	5† ma; m	16,000 ax peak inv	7,000 erse vol	tage = 3	3,000 50 volt		117N7-GT
Class A Amplifier Half-Wave Rectifier	105 Max	105 d-c outr	5.2 out curr	43† ent = 75	4† ma; m	17,000 ax peak in	5,300 verse vo	ltage =		0.85 ts; max	117P7-GT
Half-Wave Rectifier	Max	d-c outr	ut curr	ent = 90	ma; m	ax peak in	verse vo	ltage =	330 vol	ts; max	117 Z3
Half-Wave Rectifier	Max	d-c outr	ut curr	ent = 90	ma; m	az peak int	erse vo	ltage =	350 vol	ts; max	117Z4-GT
Rectifier or Doubler	volts;	d-c out; max ri =360 m	ns supp	ent per ly volt	plate = age per	=60 ma; ma plate = 238	ax peak volts;	inverse max pe	voltag	e =700 ent per	117Z6-GT
Controlled Rectifier						peres; max =10 amper		nverse	voltage	● =500	FG-154
Mercury Thyratron						peres; max = 40 ampe		verse v	oltage	= 2000	FG172
Class A Amplifier	250	_	35	18		_	1,500				182-B/482E
Class A Amplifier	250	_	60	30	_	1,750	1,700	3.0	-	_	183/483
Controlled Rectifier						peres; max =6.0 ampe		verse v	oltage 🖲	=1,250	393-A
Class A Amplifier	150	-	R _k = 240	8.2		6,350	5,500	35	-		407A
Class A Amplifier	120	120	R _k = 200	7.0	2.2	340,000	5,000		_	-	408 A
Mercury Thyratron	volts; i	max pea	k catho	de curr	ent 🖲 :	peres; max = 100 ampe	eres.			- 1	414
Control	Spect ampe	rai Res	ponse =	6,100 a	ngstror	n units; m	aximun	curre	nt 🖲 =2	0 milli-	B425
Class A Amplifier	180	-	9.0	5.8		8,900	1,400	12.5	_		485
Controlled Rectifier	voits;	max pe	ak cath	ode cur	rent 🖭 :	na; max p =1.0 amper	eak inv	erse vo	ltage 🖲	=1,300	502-A
Class A Amplifier	22.5	22.5	0.625	0.125	0.040	1,250,000	160		_		512AX ⊕

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca I	pacitano icofara	e in ds
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
575-A	Half-Wave Mercury- Vapor Rectifier	575-A	T-X	5.0	10	-	Tube v	oltage (lrop: 10	volts	
627	Thyratron	4BZ	T-X	2.5	6.0		Anode	voltage	drop =	12 volt	s
672-A	Thyratron	672-A	T-X	5.0	5.0	-	Anode	voltage	drop =	12 volt	s
673	Half-Wave Mercury- Vapor Rectifier	2P	T-X	5.0	10		Tube v	oltage (irop: 10	volts	
678	Thyratron	678	T-X	5.0	7.5		Anode	voltage	drop =	15 volt	s
710	Thyratron same as 6011										
710L	Thyratron same as 7518										
40	Thyratron same as 6856										
60	Thyratron same as 6858								 _		
760P	Thyratron same as 6859	<u> </u>							•		···
807	Beam Power Amplifier	5AW	16-2	6.3	0.9	25 🖲	400 🕞	ı —	Triode	Conne	ction
						25 €	609 ₪	300 ₪ 3.5 ₪	Pentod	ubes, Pu le Conn ubes, Pu	ection
816	Half-Wave Mercury- Vapor Rectifier	4P	T-X	2.5	2.0	_	Tube \	oltage	Drop =	15 Volt	.s
866-A	Half-Wave Mercury- Vapor Rectifier	4P	T-X	2.5	5.0	_	Tube \	oltage	Drop =	15 Volt	s
872-A	Half-Wave Mercury- Vapor Rectifier	4AT	T-X	5.0	7.5		Tube V	oltage	Drop =	10 Volt	s
884	Thyratron	6Q	12-7	6.3	0.6		Anode	voltage	drop =	16 volt	s
950	Power-Amplifier Pentode	-5K	14-1	2.0 DC	0.12	-	135	135		-	
954	Detector Amplifier Pentode (Acorn)	5BB	4-3	6.3	0.15	1.5	250	100	3.4	3.0	0.007
955	Medium-Mu Triode (Acorn)	5BC	4-1	6.3	0.15	1.6	250		1.0▲	0.4 ▲	1.3 🛦
956	Remote-Cutoff RF	5BB	4-3	6.3	0.15	1.7	180 250	100	3.1	2.5	0.009
957	Pentode (Acorn) Medium-Mu	5BD	4-1	1.25	0.05		135	0.3	0.25	0.5	1.1
958-A	Triode (Acorn) Medium-Mu Triode	5BD	4-1	DC 1.25	0.1	0.6	135		0.45	0.6	2.5
	(Acorn)	-	" -	DC		_	135		0.10	0.0	2.0
959	Sharp-Cutoff Pentode (Acorn)	5BE	4-3	1.25 DC	0.05		145	67.5	1.8	2.5	0.015
B1035	Photoconductive Cell	_	T-X			0.3	350 ₪				=
1612	Pentagrid Mixer (Special 6L7)	7T	8-4	6.3	0.3	1.5	250	100 1.0			-
614	Beam Power Amplifier	7AC	10-1	6.3	0.9	21 📵	375 ₪	300 © 3.5 ©	Two tu	bes, Pu	sh-pull
1620	Sharp-Cutoff Pentode (Special 6J7)	7R	8-4	6.3	0.3		250	100	7.0	12.0	0.005
1621	Power-Amplifier Pentode (Special 6F6)	7S	8-6	6.3	0.7	7.9	300	300	2 tubes	, Push-	pull
622	Beam Power Amplifier (Special 6L6)	7AC	10-1	6.3	0.9	13.8	300	250 1.4	2 tubes	, Push-	pull
1625	Beam Power Amplifier	5AZ	16–2	12.6	0.45	25 📵 25 📵	400 ®			Connec ibes, Pu	sh-Pul

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Half-Wave Rectifier	volts;	max pe	ak curr	ent 🚱 🖚	10 amp					1	575-A
Controlled Rectifier	Max d 2,500 v	i-c cath volts; n	ode cu ax peal	rrent 🖲 k cathoo	=0.64 a le curre	amperes; m nt 🖲 == 2.5 :	ax peal amperes	k inver	se volta	ge 🖲 =	627
Controlled Rectifier	2,500	volts; m	ax pear	k cathoo	ie curre	mperes; m nt 🖹 = 40 a	mperes			I	672-A
Half-Wave Rectifier	volts;	max pe	ak curr	ent 🚇 🚥	10 amp					- 1	673
Controlled Rectifier	Max 6 15,000	i-c cath volts;	node cu max per	rrent	=1.6 a	mperes; m ent = 6.0	ax peak ampere	invers	se volta	ge 🖲 =	678
					ļ		<u> </u>	L	L		
											W.O
Class AB ₁ Amplifier	400	-	45	64†	-	_	-	-	3,000‡	1	807
Class AB ₂ Amplifier	600	300	29	481	0.7†		–	-	6,900‡	Į j	
Half-Wave Rectifier	Max 5,000	d-c out volts; r	put cur	rent 🖲 :	=0.125 nt 🖲 =0	amperes; n .5 amperes	nax pea	k inver	se volt	age 🖲 =	816
Half-Wave Rectifier	Max	i-c outp	ut curre		0.25 am	peres; max		verse vo	ltage 🖲	=5,000	866-A
Half-Wave Rectifier	Maxo	1-c outn	ut curr	ent le m	1.25 am	peres: max	peak in	verse vo	ltage 🖲	=5,000	872-A
Controlled { Rectifier { Relaxation Oscillator	wax i	реак са	tnoae c	urrent	8 = 3∪∪ :	peres ; Max peak ma nax peak c					884
Clase A											
Class A Amplifier	135	135	16.5	7.0†	2.0†	105,300	950		13,500	0.450	950
Amplifier Class A Amplifier	135 250 90	135 100 90	3.0 3.0	2.0 1.2	2.0† 0.7 0.5		950 1,400 1,100	_			950
Class A Amplifier Class A	250 90 250	100	3.0 3.0 7.0	2.0 1.2 6.3	0.7	105,300 1,000,000 1,000,000 11,400	950 1,400 1,100 2,200		13,500	0.450	
Class A Amplifier Class A Amplifier	250 90 250 180 90	100	3.0 3.0 7.0 5.0 2.5	2.0 1.2 6.3 4.5† 2.5	0.7	105,300 1,000,000 1,000,000	950 1,400 1,100	_		0.450	954
Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A	250 90 250 180	100	3.0 3.0 7.0 5.0	2.0 1.2 6.3 4.5†	0.7	105,300 1,000,000 1,000,000 11,400 12,500	950 1,400 1,100 2,200 2,000		13,500	0.450	954
Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A Amplifier Class A	250 90 250 180 90 180	100 90	3.0 3.0 7.0 5.0 2.5 35	2.0 1.2 6.3 4.5† 2.5 7.0†	0.7 0.5 — —	1,000,000 1,000,000 11,400 12,500 14,700	950 1,400 1,100 2,200 2,000 1,700		13,500 	0.450	954 955
Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A	250 90 250 180 90 180 250	100 90	3.0 3.0 7.0 5.0 2.5 35 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7	0.7 0.5 — —	1,000,000 1,000,000 11,400 12,500 14,700 700,000	950 1,400 1,100 2,200 2,000 1,700 — 1,800	25 25 25 25 —	13,500 	0.450	954 955 956
Amplifier Class A Amplifier Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp	250 90 250 180 90 180 250 135	100	3.0 7.0 5.0 2.5 35 3.0 5.0 7.5	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0	2.7	105,300 1,000,000 1,000,000 11,400 12,500 14,700 700,000 20,800 Input Sigr	950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.0	25 25 25 25 	20,000	0.450	954 955 956 957 958-A
Amplifier Class A Amplifier Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp	250 90 250 180 90 180 250 135 135	100 90 	3.0 3.0 7.0 5.0 2.5 35 3.0 5.0 7.5 20 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 14,700 700,000 20,800 10,000 Input Sigr 800,000	1,400 1,100 2,200 1,700 1,700 1,800 650 1,200 1,200 1,600	25 25 25 25 13.5 12	20,000	0.450 	954 955 956 957 958-A
Amplifier Class A Amplifier Class A Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Amplifier Class A Class A Class A Amplifier Class A	250 90 250 180 90 180 250 135 135 135	100 90 	3.0 3.0 7.0 5.0 2.5 35 3.0 5.0 7.5 20 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis	950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.0: 600	25 25 25 25 13.5 12	20,000	0.450 	954 955 956 957 958-A
Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class A	250 90 250 180 90 180 250 135 135 135	100 90 	3.0 3.0 7.0 5.0 2.5 35 3.0 5.0 7.5 20 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 14,700 700,000 20,800 10,000 Input Sigr 800,000	950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.00 600 tance at s	25 25 25 25 	20,000	0.450 	954 955 956 957 958-A
Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class C Amp Class C Amp Class C Amp Class A Amplifier Class A	250 90 250 180 90 180 250 135 135 135 Spects ohms:	100 90 	3.0 3.0 7.0 5.0 2.5 3.0 5.0 7.5 20 3.0 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7 6.100 ar 20 footed	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 14,700 700,000 20,800 10,000 Input Sigr 800,000 units; resis	950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.00 600 tance at s	25 25 25 25 	20,000 	0.450 	954 955 956 957 958-A 959 B1035
Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A	250 90 250 180 90 250 135 135 135 135 Spects ohms;	100 90 	3.0 3.0 7.0 5.0 2.5 3.0 5.0 7.5 20 3.0 3.0 7.5 20 3.0 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7 6,100 ar 20 footed	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000	1,400 1,100 2,200 1,700 1,800 650 1,200 1,200 1,200 tance at s	25 25 25 25 	20,000 	0.450 	954 955 956 957 958-A 959 B1035
Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A Class A Class A Class A Amplifier Class C Class A Amplifier Class C Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier	250 90 250 180 90 180 250 135 135 135 135 250 360	100 90 	3.0 3.0 7.0 5.0 2.5 3.0 7.5 20 3.0 3.0 2.5 3.0 2.5 3.0 2.5 3.0	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7 6.100 ar 2.0 foote	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 14,700 700,000 20,800 10,000 Input Sigr 800,000 units; resis 1,200 ohm 600,000	950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 600 600 tance at s	25 25 25 25 	20,000 	0.450 	954 955 956 957 958-A 959 B1035 1612
Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A	250 90 250 180 250 180 250 135 135 135 135 250 360 250	100 90 	3.0 3.0 7.0 5.0 2.5 3.0 7.5 20 3.0 2.5 3.0 2.5 3.0 3.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2.0 1.2 6.3 4.5+ 2.5 7.0+ 6.7 2.0 3.0 7.0 1.7 6.100 ar 20 foote 5.3 88† 2.0 2.0	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000	1,400 1,100 2,200 1,700 1,800 650 1,200 1,200 1,200 tance at s	25 25 25 25 	20,000	0.450	954 955 956 957 958-A 959 B1035 1612 1614 1620
Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A	250 90 180 250 180 250 135 135 135 135 250 360 250 100 300	100 90 	3.0 3.0 7.0 5.0 2.5 3.0 7.5 20 3.0 20 3.0 22.5 3.0 20 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	2.0 1.2 6.3 4.5† 2.5 7.0† 6.7 2.0 3.0 7.0 1.7 5.100 ar 20 foote: 5.3 88† 2.0 2.0 38†	0.7 0.5 	105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000	1,400 1,100 2,200 1,700 1,800 650 1,200 1,200 1,200 tance at s	25 25 25 25 	20,000	0.450	954 955 956 957 958-A 959 B1035 1612 1614 1620 1621

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Caj P	acitano	e ia Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	watts	Input	Out- put	Grid- plate
1629	Electron-Ray Indicator	7AL	T-X	12.6	0.15	_	250	Max ta Min ta	rget vol	tage = : tage = :	250 25
1631	Beam Power Amplifier	7AC	10-1	12.6	0.45	16	360	270 2.5	2 tubes	, Push-	pull
1632	Beam Power Amplifier	7AC	8-6	12.6	0.6	5.5	117	117 1.25			-
1633	Medium-Mu Twin Triode	8BD	9-11	25.0	0.15	2.5 🏚	300	_		_	
1634	High-Mu Twin Triode (Special 12SC7)	85	8-1	12.6	0.15		250	_		_	
1635	Twin-Triode Power Amplifier	8B	9-11	6.3	0.6	3.0♠	300	_	Both s	ections -pull	in
1642	Medium-Mu Twin Triode same as 2C21	_				_		-	_	_	_
1644	Twin-Pentode Power Amplifier (Special 12L8-GT)	8BU	9–11	12.6	0.15	2.5♠	180	180 1.0	5.0 ▲	6.0▲	0.7 ▲
1654	Half-Wave High- Vacuum Rectifier	2Z	T-X	1.4	0.05			=			_
1853	Remote-Cutoff RF Pentode same as 6A B7	_		_	-	-	_	_	_	_	_
2050	Thyratron	6BS	12-7	6.3	0.6	-	Anode	Voltage	Drop :	-8.0 V ∂	olts
2050-A	Thyratron	6BS	9-7	6.3	0.6		Anode	Voltage	Drop =	-8.0 V o	lts
5544	Thyratron	4BZ	T-X	2.5	12		Anode	Voltage	Drop :	=16 Vo	ts
GL5550	Ignitron	GL 5550	ТX	-		_		-		_	_
GL5551A/ GL5551A -PC	Ignitron	GL 5551A	TX	_		_		-	-	_	-
GL5551A	Ignitron	GL 5551A	тx	-		-		-		_	_
GL5551A -PC	Ignitron	GL 5551A	TX		_	_		-		_	_
GL5552A/ GL5552A -PC	Ignitron	GL 5552A	TX	_		_	_	_		_	-
GL5553B/ GL5553B -PC	Ignitron	GL 5553B	ТX	_	_				_	_	
GL5553B	Ignitron	GL 5553B	ТX	-	-	-	-		-	-	_
GL5553B -PC	Ignitron	GL 5553B	TX	-	_				_	_	_
GL5554	Ignitron	GL 5554	TX	T-		_		-	_	—	
GL5555	Ignitron	GL 5555	TX	-	_	_	_	_	-	_	_
5557	Thyratron	3G	T-X	2.5	5.0	_	Anode	Voltage	Drop :	-16 Vo	ts
5558/ FG-32	Half-Wave Mercury- Vapor Rectifier	5558/ FG-32	T-X	5.0	4.5	_	Tube	Voltage	Drop =	15 Volt	s
5559/ FG-57	Thyratron	4BL	T-X	5.0	4.5	$\overline{}$	Anode	Voltage	Drop :	=16 Vo	lts
5560	Thyratron	4CD	T-X	5.0	4.5	_	Anode Voltage Drop =16 Volts				
5561	Half-Wave Mercury- Vapor Rectifier	5561	T-X	5.0	10		Tube Voltage Drop =15 Volts			s	
5563-A	Thyratron	5563-A	T-X	5.0	10	_	Anode	Voltage	Drop :	=15 Vo	lts

Compactron.
Zero signal.
Per section.

Plate-to-plate.

Maximum.
Supply voltage.

[●]Subminiature type. ▲Without external shield. ⊕Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type	
Tuning Indicator	Plate ow =(voltage)°) (E _c	=250 t =0 volt	hru 1 n	neg; Tai low =90	get voltag	e = 250 urrent =	(E _e = 0.24 n	-8 volts	; Shad- et cur-	1629	
Class AB ₁ Amplifier	360	270	22.5	88†	5†		Γ-		6,6001		1631	
Class A Amplifier	110	110	7.5	49†	4†	13,000	9,000		2,000	2.1	1632	
Class A Amplifier •	250	=	8	11.5	=-	6,900	2,600	18	=		1633	
Class A Amplifier •	250		2	2.0		53,000	1.325	70			1634	
Class B Amplifier	300 — 0 6.6t — — — 12,000 10.4 — — — — — — — — — —											
Class A Amplifier •	180	180	9	13†	2.8†	160,000	.2,150	-	10,000	1.0	1644	
Half-Wave Rectifier	Max rms s	d-c out upply v	put cur oltage =	rent = 1 = 1,500	.0 ma; volts; m	max peak ax peak cu	inverse rrent = (voltag o ma	e = 4,30	volts;	1654	
		_	-	-	-		-	-	-	-		
Controlled	Max	d-c catl	node cu	rrent 🗷	=100 n	ia; max pe =1.0 amper	ak inve	erse vo	tage 🖲	=1,300	2050	
Rectifier Controlled Rectifier	Max	d-c catl	ode cu	rrent 🏶	=100 n	=1.0 amper na; max po =1.0 amper	eak inv	erse vo	ltage 🔷	=1,300	2050-A	
Controlled	Max	d-c cath	ode cur	rent @	=3.2 am	peres; max =40 amper	peak in	verse v	oltage 🖲	=1,500	5544	
Rectifier Resistance Welding	Max.	curr. 1	volts R 2.1 A.;	MS 250 max.	-600; m av. ano	ax. demano de curr. 22	KVA 2.4 A;.	300; correst	orrespon	ding av. demand	GL5550	
Resistance Welding	Max.		volts R	MS 250 max. av	-600; m	ax. demand curr. 56 A	KVA	600; co	orrespon g dema	ding av. nd KVA	GL5551. GL5551.	
Frequency Changer	ing av	. anode	curr.	itage 12 5 A.; m	200 V.; r ax. av.	nax. peak a anode curi	node cu r. 22.5	ırr. 600 A.; cor	A.;.cor respondi	respond- ng peak	-PC GL5551.	
Frequency Changer	Max.	ode curr. 185 A. ax. peak inverse voltage 1500 V.; max. peak anode curr. 480 A.; correspond- g av. anode curr. 4 A.; max av. anode curr. 18 A.; corresponding peak anode irr. 108 A.					ik anoue	GL5551. -PC				
Resistance Welding	Max. anode KVA	supply curr. 7	volts R	MS 250 max.	-600; ma	ax. demand de curr. 1	KVA 40 A.;	1200; c correst	orrespon onding	ding av. demand	GL5552 GL5552 -PC	
Resistance Welding	Max. anode 800.	supply curr. 19	volts R	MS 250 nax. av	-600; ma	ax. demand curr. 355 A	KVA :	2400; c spondir	orrespon 1g dema	ding av. nd KVA	GL5553 GL5553 -PC	
Frequency Changer	Max.	. anode	erse vo curr. 4	ltage 12 0 А.; п	00 V.; n	nax. peak a anode cur	node cu r. 140 <i>A</i>	rr. 3000 L.; corr) A.; cor espondir	respond- ig anode	GL5553	
Frequency Changer	Max.	peak in	verse v le curr.	oltage 672 A.	1500 V.	; max. pea	k anod	e curr.	2400 A	; согге-	GL5553 -PC	
Resistance Welding	Max.	supply	volts F	MS 24	00; max node cur	t. demand r. 113 A.: c	KVA 1 orrespor	200; conding d	orrespon emand K	ding av. VA 600.	GL5554	
Resistance Welding	36	ding av. nd KVA	GL5555									
Controlled Rectifier	Max 10,00	age 🗷 =	5557									
Half-Wave Rectifier	Max	8 = 5,000	5558/FG-									
Controlled Rectifier		=1,000	5559/FG-									
Controlled Rectifier		=1,000	5560									
Half-Wave Rectifier	Max	=3,000	5561									
Controlled Rectifier	Max	d-c ca	thode	urrent	1.8	amperes; rrent 🖹 = 1	max pe	ak inve	erse vol	tage 🗑 ==	5563-A	

Metal tubes are shown in bold-face type, miniature tubes in stalics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 1, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

The extra tubes are shown in bold-face type, miniature tubes in stalics.

Maximum screen dissipation appears immediately below the screen voltage.

The extra tubes are shown in bold-face type, miniature tubes in stalics.

Tube	Classification	Base Con-	Out-	Fila-	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitance icofarad	
Туре	by Construction	nec- tions	line Dwg	ment Volts	Amp	Plate Watts	Volts	and Watts	Input	Out- put	Grid- plate
GL5564	Ignitron	GL 5564	TX	-	-	-	-	_	-		_
5590	RF Pentode	7BD	5-1	6.3	0.15	1.7	180	140 0.5	3.40	2.90	0.01
5591	Sharp-Cutoff RF Pen- tode (Special 6AK5)	7BD	5-1	6.3	0.15	1.7	180	180 8 0.5	4.0	2.8	0.02 👍
5608-A	Medium-Mu Twin-Triode	7B	14-1	2.5	2.0	5.5 ♠	350				
5610	Medium-Mu Triode	6CG	5-2	6.3	0.15	3.0	300				
GL5630	Ignitron	GL 5630	TX	-	-		-	-	-		-
5632/C3J	Thyratron	FG- 27-A	T-X	2.5	9.0		Anode	Voltage	Drop :	=10 Vol	ts
5633 ●	Remote-Cutoff RF Pentode	5633	T-X	6.3	0.15	0.8	150	140	4.0 ▲	2.2 ▲	0.015
5634 🌑	Sharp-Cutoff RF Pentode	5633	T-X	6.3	0.15	0.8	150	140	4.4 ▲	2.2 ▲	0.015
5635 ⊛	Medium-Mu Twin Triode	8DB	3-1	6.3	0.45	1.25	150		2.6	1.6	1.2
5636 ●	Dual-Control Pentode	8DC	3-1	6.3	0.15	0.65	165 €	155 ♦ 0.7 ♦			_
5637 ●	High-Mu Triode	5637	3–2	6.3	0.15	0.3	150		2.6 ▲	0.7 ▲	1.4 ▲
5638 👁	Amplifier Pentode	5638	3-2	6.3	0.15	0.6	150 140 0.2		4.0	6.5	0.19
5639 ●	Video Pentode	8DL	3-3	6.3	0.45	3.8♦	165 €	155 © 1.0 ©	9.5	7.5	0.10 4
5640 ●	Beam Power Amplifier	5640	3–4	6.3	0.45	3.5	150	140	9.0	7.0	0.18
5641 ●	Half-Wave Rectifier	6CJ	3-3	6.3	0.45		Tube	Voltage 90 ma	Drop:		
5642 ●	Half-Wave High-Voltage	5642	T-X	1.25	0.2	<u> </u>	Tube	Voltage 4.0 ma	Drop:		
5645 ●	Rectifier Medium-Mu Triode	5645	T-X	6.3	0.15	1.0	150	-	2.2	3.0	1.7
5646 ⊜	High-Mu Triode	5645	T-X	6.3	0.15	0.3	150	1-	2.2 ▲	1.0 ▲	1.3 🛦
5647 ●	High-Frequency Diode	5647	T-X	6.3	0.15			Voltage at 18 ma		<u> </u>	
5651	Glow-Discharge Diode Voltage Reference	5BO	5-2		_	=	-			voltage x	(6) =
5651-A	Glow-Discharge Diode Voltage Reference	5BO	5–2	-		_	Anode Volts	Supply Max	Voltag	e (a) = 1	50
5654 5★	Sharp-Cutoff RF Pen- tode (Special 6AK5)	7BD	5-1	6.3	0.175	1.55	200 ∢	155 0 .55		2.9	0.02
5663	Thyratron	6CE	T-X	6.3	0.15	_	Anode	voltage	e drop =	=11 volt	s
5665/C16J	Thyratron	5665/ C16J	T-X	2.5	31	-	Anode	Voltag	e Drop	=11 Vo	lts
5670 5★	High-Frequency Twin Triode	8CJ	6-1	6.3	0.35	1.4 ◈	330∢	-	2.2 ▲	1.0 ▲	1.1
	(Special 2C51)	01301	2-1	-	0.05	-	90	90	-	-	-
5672 ●	Power Amplifier Pentode	2E31		DC	·		_		<u> </u>	-	
5675	Medium-Mu Triode (Pencil)	5675	T-X	_	0.135	5.0			2.4	•	•
5676 ●	Medium-Mu Triode	5676	T-X	1.25 DC	0.12	-	135	_	1.3	4.0	2.0

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subministure type.

▲Without external shield.

♦Design maximum rating.

[⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance.

	Ī	Ī	Ī	1	l_		Ī		Load		- Comment of the control of the cont
Service	Plate Volts	Screen Volts	Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Resistance Welding	2210.	supply curr. 27	volts R O A.; n	MS 240 nax. av.	00; max anode o	demand	KVA 4	800; co spondin	rrespond g demar	ling av. id KVA	GL5564
Class A Amplifier	90	90	R _k = 820	3.9	1.4	300,000	2,000			- 1	5590
Class A Amplifier	180	120	R _k = 180	7.7	2.4	500,000	5,100		-		5591
14mpiner	120	120	R _k = 180	7.5	2.5	300,000	5,000		-	-	
Class A Amplifier •	300	_	6.0	6.0		13,000	2,450	32			5608-A
Class A Amp	90		1.5	17		3,500	4,000	14			5610
Capacitor Discharge	per mu	nute 2.				5000 volts 20000 A.;				1	GL5630
Controlled Rectifier	Max o	-c cath	ode curr	ent 🗷 =	2.5 amprent 🗑 =	eres; max =30 amper	peak inv	rerse vo	ltage 🗷	=1,250	5632/C3J
Class A Amplifier	100	100	R _k = 150	7.0	2.8	200,000	3,400		_		5633 ●
Class A Amplifier	100	100	R _k =	6.5	2.5	240,000	3,500				5634 ●
Class A Amplifier •	100		R _k = 100 ⊕	4.8		10,000	3,800	38		-	5635 ●
Gated Amplifier	100	100	R _k = 150	5.3	3.6	110,000	3,200	Gs tie	d to cat	hode	5636 ●
	100	100	R _k = 150	4.0	5.8	50,000	1,950	Ees =	-1.0 vo	lt	
Class A Amplifier	100	_	R _k = 820	1.4		26,000	2,700	70		_	5637 🌑
Class A Amplifier	100	100	R _k = 270	4.8	1.25	150,000	3,300	_			5638 ●
Class A Amplifier	150	100	R _k = 100	21	4,0	50,000	9,000		-		5639 🌑
Class A Amplifier	100	100	9.0	31†	2.2†	15,000	5,000		3,000	1.25	5640 ●
Half-Wave Rectifier	Max o	d-c outr	out curre	ent 🖲 =	50 ma; 5; max	max peak peak curre	inverse	voltag 00 ma	e 🖻 = 93	0; rms	5641 ●
TV Flyback Rectifier	Max		out curr	ent = 0		max peak					5642 ●
Class A Amplifier	100		R _k = 560	5.0		7,400	2,700	20	_		5645 ●
Class A Amplifier	100		R _k == 820	1.4		29,000	2,400	70			5646 ●
Half-Wave Rectifier	Max o	d-c outr	out curr	ent 🖲 =	10 ma; 165 vol	max peak ts; max pe	inverse ak curre	voltage	e ● =460 30 ma	volts;	5647 ◉
D-c operatin D-c operatin	g currer	it =1.5	ma min		Ionizat	ion voltage ing voltage tion (1.5 to	= 115 v	olts d-c	, max		5651
D-c operat	ing cur	rent = 1 rent 🖲 =	.5 ma, r =3.5 ma	nin }	Ionizat Operat	ion voltage ing voltage tion (1.5 to	e = 115 = 85.5	volts d-	c, max		5651-A
Class A Amplifier	120	120	R _k = 200	7.5	2.5	340,000	5,000		_		5654 5 ★
Controlled Rectifier	Max o	i-c cathe eak cat	ode curr	ent 🖲 =	20 ma; =60 ma	max peak i	inverse v	voltage	● =500	volts;	5663
Controlled Rectifier	Max	1-c cath	ode cur	rent 🖲 =	=16 amr	eres; max =160 ampe	peak inveres	verse vo	ltage 🖲	=1,250	5665/C16J
Class A Amplifier	150		R _k = 240	8.2		6,400	5,500	35	-		5670 5★
Class AB ₁ Amplifier	300	-	R _k = 800 ⊕	9.8†	-	_	-	_	27,000	1.0	~ *
Class A Amplifier	67.5	67.5	6.5	3.25	1.1	_	650		20,000	0.065	5672 ●
Class A Amplifier	135	_	R _k = 68	24		3,225	6,200	20			5675
Class A Amplifier	135		5.0	4.0		_	1,600	15			5676 ●
	1	1——	1	1 ——	1	l	-1	!	1	1	

Metal tubes are shown in bold-tace type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 5, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max Plate	Max Plate	Max Screen Volts		acitance icofarad	
Type	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
5677 ●	Medium-Mu Triode	5676	T-X	1.25 DC	0.06	-	135	- 1	1.3	3.8	2.0
5678 👁	Pentode Amplifier	1AD4	T-X	1.25 DC	0.05		90	67.5	3.3	3.8	0.01
5679	Twin Diode (Special 7A6)	7CX	9-30	6.3	0.15		Tube V	oltage l	Drop: •	1	
5686 5 ★	Beam Power Amplifier	9G	6-2	6.3	0.35	8.25 •	275 📵 275 📵	275 1 3.0 1 275 1 3.0 1	6.5	8.5	0.08
5687 5★	Medium-Mu Twin Triode	9H	6-2	$\frac{6.3}{12.6}$	0.9 0.45}	4.2 🌩	300	=	4.0 ▲	0.6₁ ▲ 0.5₂ ▲	4.0 ▲
5690	Full-Wave High-Vacuum Rectifier	5690	12-25		1.2 }	_		oltage I 150 ma			
5691	High-Mu Twin Triode (Special 6SL7-GT)	8BD	9-37	6.3	0.6	1.0 • •	275	_	<u> </u>		
5692	Medium-Mu Twin Triode (Special 6SN7-GT)	8BD	9-37	6.3	0.6	1.75	275 E				
5693	Sharp-Cutoff Pentode (Special 6SJ7)	8N	8-1	6.3	0.3	2.0	300 ₪	125 ® 0.3 ®	5.3	6.2	0.005
5694	Medium-Mu Twin Triode	8CS	14-3	6.3	0.8	5.5 ♠	300		Both S Paralle	ections	in
5696	Thyratron	7BN	5-1	6.3	0.15		Anode	voltage		10 volt	5
5696-A	Thyratron	7BN	5-1	6.3	0.15	_	Anode	Voltage	Drop :	=10 vol	ts
5702 🌘	RF Pentode	5702	3-7	6.3	0.2	=	180	140 0.5	4.4	3.5	0.03
5703 ●	Medium-Mu Triode	5703	3-6	6.3	0.2	3.0	250	_	2.6	0.7	1.2
5704 🗑	Diode	5704	T-X	6.3	0.15		Tube V	oltage 9 ma d-	Drop:		
5718 €	Medium-Mu Triode	8DK	3-1	6.3	0.15	1.0 🏶	165 ♦	—	2.4	2.4	1.3
5719 ●	High-Mu Triode	8DK	3-1	6.3	0.15	0.3 🏶	165 🏶		1.9	2.2	0.8
5720	Thyratron	5559	T-X	5.0	4.5	=	Anode	Voltage	Drop:	=16 Vol	ts
67 2 6 5★	Dual-Control RF Pentode (Special 6AS6)	7CM	5-1	6.3	0.175	1.55	200 🏟	155 (a)		3.0	0.01
57 2 6 5★	Twin Diode (Special 6AL5)	6BT	5-1	6.3	0.30			Voltage t 60 ma		•	
5727 5★	Thyratron (Special 2D21)	7BN	5-2	6.3	0.6	_	Anode	Voltage	Drop =	=8 Volts	1
5728	Thyratron	5559	T-X	5.0	4.5	-	Anode	Voltage	е Dгор	=16 Vo	lts
5731	Power Amplifier Triode (Acorn)	5BC	4-1	6.3	0.15	-	250		1.0	0.4	1.3
5744 ◉	High-Mu Triode	5744	3-6	6.3	0.2	=	250	-		-	_
5749 5★	Remote-Cutoff RF Pentode (Special 6BA6)	7BK	5-2	6.3	0.3	3.1 🆠	330 ◈	300 ♦1 0.6 ♦	5.5	5.5	0.003
6750 5★	Pentagrid Converter (Special 6BE6)	7CH	5-2	6.3	0.3	1.1 📵	330 €	110 1	Osc I	$\frac{1}{20,000}$	ma ohms
5751 5★	High-Mu Twin Triode (Special 12AX7)	9A	6-2	${6.3 \atop 12.6}$	0.35 0.175	0.7	330 ◈		1.4	0.46 ₁ 0.36 ₂	1.4
5763	Beam Power Amplifier	9K	6–3	6.0	0.75	8.0	250 a	1.5 D 250 D	- 1		_
5767	UHF Triode (Planar)	5767	T-X	6.3	0.4	6.0	350	2.0 🗷	1.3 ▲	0.025	1.3 ▲

Compactron. † Zero signal. Per section.

[†] Plate-to-plate.

*Maximum.

*Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	135		6.0	1.9	<u> </u>		650	13.5	_	- i	5677 🍅
Class A Amplifier	67.5	67.5	0	1.8	0.48	1,000,000	1,100			-	5678 🏶
Half-Wave	Max	l-c outp	ut curr	ent per	plate =	8 ma; max plate =45 r	rms su	pply vo	ltage p	er plate	5679
Rectifier Class A	250	250	nax pea	27†	3.01	45.000	3 100 l		9.000	2.7	5686
Amplifier Class C Amplifier	250	250	50	40	10.5	Input Sign 0.15 watt		_	-	6.5	5★
Class A Amplifier •	180 250		7.0 12.5	23 12		2,000 3,000	8,500 5,400	17 16	=	<u> = -</u>	5687 5★
Full-Wave	Max	d-c out	out cur	rent = 1	25 ma;	max peak	invers	e voltas	ge = 1,1;	20; rms	5690
Rectifier Class A	suppr 250	y voltag	2.0	$\frac{\text{late} = 3}{1 \cdot 2.3}$	30; max	peak curr	1,600	70	373 ma		5691
Amplifier •	250		9.0	6.5	<u> </u>	9,100	2,200	20			5692
Amplifier • Class A Amplifier	250	100	3.0	3.0	0.85	1,000,000	1,650				5693
Class A Amplifier	294 250	=	6.0 5.0	7.0	三	11,000 11,300	3,200 3,100	35 35	=		5694
Controlled Rectifier	Maxo	l-c cath	ode curi	ent 🗐 =	25 ma; = 100 r	max neak	<u> </u>	voltage	● =500	volts;	5696
Controlled Rectifier	Max	d-c cath	ode cur	rent 🖲		; max peak	inverse	voltage	e 🖲 = 50	0 volts;	5696-A
Class A Amplifier	120	120	R _k = 200	7.5	2.5	340,000	5,000	-	 -	$\lceil - \rceil$	5702 🌑
Class A Amplifier	120	_	R _k = 220	9.0		_	5,000	25			5703 ⊛
Half-Wave Rectifier	Max rms s	d-c outr	out curi	ent = 9 150 vo	ma; ma	x peak inv	erse vol	itage = 4 ma	20 volt	s; max	5704 🌑
Class A Amplifier	100	1 -	R _k = 150	8.5	T =	4,650	5,800	27	-		5718 ●
Class A Amplifier	100		R _k = 1,500	0.73	_	41,000	1,700	70	_		5719 🌒
Controlled Rectifier	Max volts:	d-c cath	ode cur	rent 🗨	=2.5 am rrent 🖫	peres; max =15 amper	peak in	verse vo	oltage 🖲	=1,000	5720
Class A Amplifier	120	120	2.0	5.2	3.5		3,200	Ec3 =	0 volts		5725 5★
Half-Wave Rectifier	Max	d-c outp	ut curre	ent per p	olate	= 10 ma; ma nax peak cu	x peaki	nverse v	oltage (= 360;	5726 5★
Controlled	Max	d-c cat	hode c	urrent @	= 100	ma; max p = 500 ma	eak inv	erse vo	ltage 🖲	= 1,300	5727
Rectifier Controlled	Max	d-c cath	ode cur	rent 🗐 :	=2.5 am	peres; max	peak in				5 ★ 5728
Rectifier Class A	volts:	maxp	ak cati	node cu	rrent 🖲	=15 amper	es 2.200	25		 -	5731
Amplifier Class A	250	-		4.0	<u> </u>	11,400	4,000	70		- - -	5744 @
Amplifier Class A	250	100	$R_{k} = 500$ $R_{k} =$	11	4.2	1,000,000	4,400	-	l	-	5749
Amplifier	100	100	68 R _k =	10.8	4.4	250,000	4,300	_		_	5 ★
Converter	250	100	1.5	2.6	7.5	1,000,000	475 #	-	-	-	5750 5 ±
Class A Amplifier •	250 100	 _	3.0	1.0	<u> </u>	58,000 58,000	1,200	70	<u> </u>	 	5 ★ 5751 5 ★
Class C	250	250	39	40	5.6	(bias obta	ined from	n Rø1 =	1	6.4	5763
Telephony Class C	300	250	28.5	50	6.6	(bias obta				10.3	
Telegraphy UHF Oscil- lator at 3300	200	1=	R _k =	25	=	18,000)	_	T	 -	0.45	5767

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car	acitance icofarad	e in s
Турс	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts ₩	Input	Out- put	Grid- plate
5784 🌒	Dual-Control RF Pentode	5702	3-7	6.3	0.2	1.7	180	140 0.75	3.9	3.0	0.03
5785 🌑	Half-Wave High-Voltage Rectifier	5785	T-X	1.25 DC	0.015		Tube V 17 v at	oltage 0.1 ma	Drop: d-c		
5797 🌑	Semi-Remote-Cutoff RF Pentode	8CY	3-2	26.5	0.045	0.8	50	50 0.25	4.2	3.2	0.02
5798 👁	Medium-Mu Twin Triode	8CZ	3-2	26.5	0.09	0.2 🏚	50		1.9	1.7	1.7
5814 5814-A 5★	Medium-Mu Twin Triode (Special 12AU7)	9A	6-2	$6.3 \\ 12.6$	0.35 0.175	2.7	330 🏶		1.6 ▲	0.5 ₁ A 0.4 ₂ A	1.5
GL5822A	Ignitron	GL 5822A	TX	_	_	-			-	-	<u> </u>
GL5822A -PC	Ignitron	GL 5822A	TX	-	-	_	-	_		-	-
5823	Gas Triode	4CK	5–2	-	_	-	_	_	-	-	_
5824	Beam Power Amplifier (Special 25B6-G)	7AC	14-3 or 9-11 or 9-41	25.0	0.3	12.5	200	135 2.0		-	-
5825	Half-Wave High- Voltage Rectifier	4P	T-X	1.6	1.25		Tube V 1,750 v	oltage at 40 r	Drop: na d-c	`	<u> </u>
5829 ●	Twin Diode	5829	2-5	6.3	0.15		Tube \	oltage 15 ma d	Drop:	•	
5830	Thyratron	5830	T-X	5.0	20	_	Anode	Voltage	e Drop	= 16 V	olts
5838	Full-Wave High- Vacuum Rectifier	6S	т-х	12.0	0.6					_	<u> </u>
5839	Full-Wave High- Vacuum Rectifier	6 S	T-X	26.5	0.285	=				=	
5840 🖜	Sharp-Cutoff RF Pentode	8DE	3-1	6.3	0.15	0.9 🏶	165 ◈	155 ♦ 0.55 ♦	4.2	3.4	0.01
5842	High-Mu Triode	9V	6-1	6.3	0.3	4.0	180	_			
5844 5★	Medium-Mu Twin Triode	7BF	5-2	6.3	0.3	1.0	200 🖲		2.4 🛦	0.5 ₁ A 0.4 ₂ A	2.7
5847	Sharp-Cutoff RF Pentode	9X	6-1	6,3	0.3	3.0	180	150 0.75	7.1	2.9	0.04
5847-A	Sharp-Cutoff RF Pentode	9X	6–1	6.3	0.3	3.0	180	150 0.75	7.1	2.9	0.04
5851 ●	Beam Power Amplifier	6CL	T-X	{1.25 2.50 DC	$0.11 \\ 0.055$	1.5	180	135 0.3	2.5	3.0	0.0
5852	Full-Wave High- Vacuum Rectifier	6S	T-X	6.3	1.2						_
5854 ●	Power Amplifier Pentode	2E31	2-1	1.25	0.03		50 €	50 ₪		=	=
5855	Thyratron	5855	T-X	2.5	34	==	Anode	Voltage	Drop =	=16 Vol	ts
5873 🌑	Medium-Mu Twin Triode	5873	3-2	6.3	0.3	1.6 ♠	300			-	Γ-
5875 🌑	Sharp-Cutoff Pentode	1AD4	2-1	1.25 DC	0.1		90	90	4.0	4.0	0.0
5876	High-Mu Triode (Pencil)	5675	T-X	6.3	0.135	6.25	300 📾		2.5 ▲	0.035	1.4
5876-A	High-Mu Triode (Pencil)	5675	T-X	6.3	0.135	6.25 €	300 €	=	2.4 ▲	0.035	1.4
6879	Sharp-Cutoff AF Pentode	9AD	6-2	6.3	0.15	1.25 �	330 ♦ 275 ♦	330 ♦ \$ 0.25 ♦	1	e Connec	
			 	l			2.0	L	(G ₂ , G	& P T	ied)

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. •Maximum. • Supply voltage.

[●]Subminiature type.

▲Without external shield.

◆Design maximum rating.

[⊕]Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	120 120	120 120	2.0	5.2 3.6	3.5 4.8		3,200	E _{c8} = 0			5784 🌑
Half-Wave Rectifier	Max	l-c outp	ut curre	ent =0.	l ma: m	ax peak cu ply impeda	rrent =	0.45 ma	: max t		5785 ⊜
Class A Amplifier	26.5	26.5	0	2.8	0.9	70,000	3,450		-	-	5797 ●
Class A	26.5		0	2.0		7,100	3,400	24			5798 ◉
Amplifier Class A Amplifier	250 100		8.5	10.5 11.8	=	7,700 6,250	2,200 3,100	17 19.5	=	Ξ	5814 5814-A 5★
Frequency Changer	jpeak ar	node cur	т. 420 А	1 .		max. peal					GL5822A
Frequency Changer	peak ar	node cur	т. 336 А	A .		max. peal x. av. ano				!	GL5822A -PC
Peak cathode drop • = 61 v	e curren olts; an	t 📵 = 10 ode drop	0 ma m 0 © = 62	ax; d-c	cathode	current	=25 ma	max; s	tarter v	roltage	5823
Class A Amplifier	135	135	22	61†	2.5†	15,000	5,000	-	1,700	4.3	5824
Half-Wave Rectifier	Max o	i-c outp	ut curre	nt 🖲 =	2 ma;.m volts; n	ax peak inv nax peak c	verse vo	ltage 🖸	=60,00	0 volts,	5825
Half-Wave Rectifier	Max	l-c outp	ut curre	ent per	plate = 5	ma; max i	oeak inv	erse vo	tage = 3	330; rms	5829 ●
Mercury Thyratron	Max d 10,000	-c catho volts; n	de curr ax peal	ent 🖲 k catho	= 12.5 de curre	amperes; ant 🗗 = 75	max pea 5 amper	k invei es.	se volta	age 🔂 😑	5830
Full-Wave Rectifier	Max of supply	i-c outp y voltag	ut curre e per pla	$\begin{array}{c} \text{ent} = 65 \\ \text{ate} = 30 \end{array}$	ma; ma 0 volts;	nx peak inv max peak c	erse vol urrent p	tage = 1 er plate	375 vol = 270 r	lts; rms na	5838
Full-Wave Rectifier	Max o	i-c outp y voltag	ut curre e per pl	ent = 65 ate = 30	ma; ma 00 volts;	x peak inve ; max peak	erse vol current	tage == 1 per pla	375 vol = 270	lts:rms) ma	5839
Class A Amplifier	100	100	R _k = 150	7.5	2.4	260,000	5,000		-		5840 ⊚
Class A Amplifier	150		R _k = 62	26		1,800	24,000	43			5842
Class A	100		R _k = 470	4.8		7,550	3,700	28			5844 5★
Frequency { Halfer •	1508 1508	_	0 10	4.8 0.1	=	$R_g = 47,00$ $R_g = 47,00$	0 ohms 0 ohms		20,000 20,000		,,
Class A Amplifier	150	150	R _k = 110	13	4.5	_	12,500	-	_		ō847
Class A Amplifier	150	150	R _k =	13	4.5		12,500			-	5847-A
· · · · · · · · · · · · · · · · · · ·	150	150	$R_k = 4,000$	4.4	1.2	_	8,500	E _{cc1} =	+20 v	olts	
Class A Amplifier	125	125	7.5	5.5	0.9	175,000	1,600	_	_		5851 ●
Full-Wave Rectifier	Max	d-c outp	ut curre	ent = 65 ate = 30	ma; ma	ax peak inv max peak c	erse vol	tage = 1	375 vo = 270 r	lts; rms ma	5852
Class A Amplifier	45	45	2.0	0.8	0.25	350,000	550		50,000	0.0095	5854 ⊕
Controlled Rectifier	volts;	-c catho max pea	k catho	ode curi	: 18 amp rent	eres; max 160 amper	es		oltage 🖲	=1,500	5855
Class A Amplifier •	150	-	3.0	9.0	<u> </u>	_	2,900	22			5873 ●
Class A Amplifier	90	90	0	3.5	1.0		2,500		_		5875 ⊚
Class A Amplifier	250	_	R _k = 75	18	_	8,625	6,500	56		_	5876
Class A Amplifier	250		R _k = 75	18	-	8,625	6,500	56	_		5876-A
Class A Amplifier	250	100	3.0	1.8	0.4	2,000,000	1,000				5879
Class A Amplifier	250		8.0	5.5		13,700	1,530	21			

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 1, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con- nec-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts		pacitano icofara	
Туре	Construction	tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid plate
5881	Beam Power Amplifier (Special 6L6-G)	7AC	T-X	6.3	0.9	23	360	270 3.0	Single		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u> </u>			pull	bes, Pu	
5885 ◉	Twin Tetrode	5885	3-2	1.25	0.02		22,5	l		Conne 1 P Tie	
5886 ●	Electrometer Pentode	5886	2,1	1.25	0.01		45	45	Triode (G: an	le Conn Connec d P Tie	ction d)
5890	Remote-Cutoff Pentode Regulator	12J	T-X	6.3	0.6	10 €	30,000	450 ∰	$ \begin{array}{l} E_{e3} = 5 \\ E_{e3} = 5 \\ E_{e8} = 5 \end{array} $,500 vo ,500 vo ,500 vo	lts lts lts
5894-B	Tetrode	5894-B	тx	6.7	2.1	40	600 750	300 300	11.6	3.7	0.08
5896 ⊜	High-Frequency Twin Diode	8DJ	3–1	6.3	0.3		Tube V	oltage t 18 ma	Drop: 4	·	•
5897 ●	Medium-Mu Triode	8DK	3-1	6.3	0.15	3.3	165 €		2.2	0.7	1.40
5898 🗑	High-Mu Triode	8DK	3-1	6.3	0.15	0.55	165 🖷		2.40	0.60	0.70
5899 🌘	Semi-Remote-Cutoff RF Pentode	8DL	3-1	6.3	0.15	0.85 •	165 ◈	155 ♦ 0.55 ♦	4.2	3.4	0.01
5900 💿	Semi-Remote-Cutoff RF Pentode	8DL	3-1	6.3	0.15	1.1	165 ₪	155 ∰ 0.55 €	4.4	3.4	0.018
5901 ⊚	Sharp-Cutoff RF Pentode	8DL	3-1	6.3	0.15	1.1 🕥	165 🗃	155 ● 0.55 ●	4.2	3.4	0.015
5902 📵	Beam Power Amplifier	8DL	3-3	6.3	0.45	4.1 🏶	165 ◈	155 ♦ 0.4 ♦	6.5	7.5	0.11
5903 ⊚	High-Frequency Twin Diode	8DJ	3-1	26.5	0.075	_	Tube V	oltage t 18 ma	Drop: ♠	•	
5904 ●	Medium-Mu Triode	8DK	3-1	26.5	0.045	_	55 ඬ	_	2.4	2.2	1.8
5905 ⊛	Sharp-Cutoff RF Pen- tode	8DL	3-1	26.5	0.045		55 📵	55 €	4.4	3.4	0.015
5906 ⊚	Sharp-Cutoff RF Pen- tode	8DL	3-1	26.5	0.045	1.1	165 €	155 ● 0.55 ●	4.2	3.4	0.015
5907 ⊚	Remote-Cutoff RF Pentode	8DL	3-1	26.5	0.045		55 €	55 €	4.0	3.4	0.015
5908 ⊚	Dual-Control RF Pentode	8DC	3-1	26.5	0.045		55 ₪	55 ๋ €	Ec ₂ =0	volts	
910	Sharp-Cutoff Pentode	6AR	5–2	1.4 DC	0.05		90	90	3.6	7.5	0.008
915 915-A	Pentagrid Amplifier	7CH ▼	5-2	6.3	0.3	1.0	250 ₪	250 ∰ \$ 1.0 ௵	$ E_{c3} = 0 $ $ E_{c3} = - $ $ E_{c3} = 0 $	volts 10 volt volts	s
5916 ●	Dual-Control Pentode	8DC	3-1	26.5	0.045	1.1	165 📵	0.7 🗃	G_3 tied $Ec_3 = -$		de
930	Low-Mu Power- Amplifier Triode (Special 2A3)	4D	T-X	2.5	2.5	15 €	360 ₪		-		_
931	Full-Wave High- Vacuum Rectifier (Special 5U4-G)	5T	T-X	5.0	3.0		Tube V 47 volts	oltage I at 275	Drop: ♠ ma d-c	· · · · · · · · · · · · · · · · · · ·	
932	Beam Power Amplifier (Special 6L6-G)	7AC	T-X	6.3	0.9	21 🖲	400 ₪	300 ■ 2.75 ■	- 1	- 1	-

Compactron.
Zero signal.
Per section.

[†] Pláte-to-plate.

Maximum.
Supply voltage.

<sup>Subminiature type.
Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 # Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier Class AB ₁ Amplifier	350 250 360 360	250 250 270 270	18 14 22.5 22.5	53† 75† 88† 88†	2.5f 4.3† 5.0† 5.0†	48,000 30,000 	5,200 6,100 —		4,200 2,500 3,800 6,600	11.3 6.7 18 26.5	5881
Electrometer	13.5	-	3.0	0.185	-		160	2.4	_		5885 ⊚
Electrometer Electrometer	12 10.5	4.5	2.0 3.0	6.0 200	3.6	18,000,000	14 160	2.0	=		5886 ◉
Shunt Regulator	30,000 30,000 30,000	200 200 200	60 60 60	0 0.06 0.50	0 0 0		Peak C	signa	= 0 vol = 20 vol = 45 vol	olts	5890
Amplifier	450	300	25	200	26	<u> </u>	—	_	-	86	5894-B
Class B Amplifier- Oscillator Telegraphy	500	250	80	200	16		-	8.2		90	
Class C Telegraphy	600	250	80	150	20					71	
Full-Wave Rectifier	460; r	ms supp	oly volta	ent per ige per j	plate el plate = 1	=10 ma; n .50; max pe	nax pea ak curre	k inver nt per i	se volta olate 🖲	= 60 ma	5896 ⊜
Class A { Amplifier {	100		R _k =	8.5	_		5,800	27			5897 ⊜
RFOscillator	150		_	20		Frequen				0.9	·
Class A Amplifier	150		R _k = 680	1.7			2,700	70	_	_	5898 ●
Class A Amplifier	100	100	R _k = 120	7.2	2.0	260,000	4,500				5899 ⊚
Class A Amplifier	100	100	R _k = 120	7.2	2.2	260,000	4,500		_	-	5900 ⊛
Class A Amplifier	100	100	R _k = 150	7.5	2.4	230,000	5,000		_	_	5901 ⊚
Class A Amplifier	110	110	R _k = 270	30	2.2	15,000	4,200		3,000	1.0	5902 ●
Full-Wave Rectifier	Max d- rms su	coutpu pply vo	t curren	t per pl	ate 🖲 = � = 165	10 ma; max ; max peal	peak in	verse v	oltage 🖲 late 🖲 =	=460; =60 ma	5903 ●
Class A Amplifier	26.5		$R_g = 2.2$ meg	3.0		4,250	5,000	20			5904 🔵
Class A Amplifier	26.5	26.5	R _g = 2.2 meg	2.1	0.9	110,000	2,850				5905 ⊚
Class A Amplifier	100	100	R _k == 150	7.5	2.4	260,000	5,000		_		5906 ◉
Class A Amplifier	26.5	26.5	$R_{g1} = 2.2$ meg	2.7	1.1	100,000	3,000				5907 ⊛
Class A Amplifier	26.5	26.5	$R_{g1} = 2.2$ meg	3.3	2.0	31,000	2,200				5908 ⊚
Class A Amplifier	90	90	0	1.6	0.45	1,500,000	900				5910
Gated Amplifier	150 150 150	75 69 71	10 0 0	0 0 5.8	0 14 9.0	$R_{g1} = R_{g3} = R_{g1} = R_{g3} = R_{g1} = R_{g3} = R$	47,000 47,000 47,000	=	20,000 20,000 20,000		5915 5915-A
Class A Amplifier	100 100	100 100	R _k = 150 R _k =	5.3 4.0	3.6 5.8	110,000 50,000	3,200 1,950		_	_	5916 ⊚
Class A Amplifier	250		150 45	60†	_	800	5,250	4.2	2,500	3.5	5930
Full-Wave Rectifier	Max d max ri =110	ms supp	ut curre ly volta	nt	00 ma; olate 🔷	max peak ii =600 volts;	nverse v max pe	oltage (=1,700 ent per	0 volts;	5931
Class A	250	250	14	72†	5.0†	22,500	6,000		2,500	6.5	5932

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts	Cap P	acitance icofarad	in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts ∰	Input	Out- put	Grid- plate
5963	Medium-Mu Twin Triode	9A	6-2	12.6 6.3	0.15	2.5 ♠ ●	250 ₪	-	1.9 ▲	0.5 ₁ ▲ 0.35 ₂ ▲	1.5 ▲
5964	High-Mu Twin Triode	7BF	5-2	6.3	0.45	1.5	250 📵		2.1 ▲	0.4 ▲	1.3 ▲
5965	Twin Triode	9A	6-2	{12.6 6.3	0.225 0.45	2.4 • • • 4.4 • •	300	-	3.8 ▲	0.5₁ ▲ 0.38₂ ▲	3.0 ▲
5965-A 5 ★	Twin Triode	9A	6-2	12.6 6.3	0.225 0.45	2.2 * 4.0 *	330 ◈		4.0 ▲	0.5 ₁ △ 0.36 ₂	3.0 ▲
5967 ●	Medium-Mu Twin Triode	8DQ	3-8	1.25	0.12	- •	50 🖲		0.9 ▲	0.9	1.7▲
5968 ⊚	Twin Triode	8DQ	3-8	1.25	0.12		45 ∰		0.9 ▲	0.9	2.3 ▲
5969 ◉	Twin Tetrode	8DR	3-8	1.25	0.2	0.96	150 🖲	50 €	2.5 ▲	2.5 ▲	0.3 ▲
5970 ●	Twin Pentode	8DS	3-3	1.25	0.16		45 🗐	45 €	3.3 ▲	2.4 ▲	0.1
5971 ●	Medium-Mu Triode	5971	2-1	1,25 DC	0.08	0.7	135		1.6 ▲	1.7▲	2.3 ▲
5972 ◉	Remote-Cutoff RF Pentode	1AD4	2-1	1.25	0.06	=	75 🖲	75 €	4.3 ▲	4.1 ▲	0.01
5975 🐞	Medium-Mu Triode	5975	36	6.3	0.175	3.0	250	=			-
5977 ●	Medium-Mu Triode	8DK	3-1	6.3	0.15	1.2 🏶	180 ◈		2.0	2.2	1.3
5987 ⊚	Low-Mu Triode	8DM	3-4	6.3	0.45	4.0	165	=	3.2	5.0	3.2
5992	Beam Power Amplifier (Special 6V6-GT)	7AC	9-9	6.3	0.6	10	300	275 2.0	_	_	-
5993	Full-Wave High- Vacuum Rectifier	5993	6-3	6.3	0.8						-
5995 ⊚	Half-Wave High- Vacuum Rectifier	5995	T-X	6.3	0.3		Tube V 25 volt	oltage s at 100	Drop:	:	
5998	Low-Mu Twin Triode	8BD	163	6.3	2.4	13 ♠	250		<u> </u>	<u> </u>	
5998A	Low-Mu Twin Triode	8BD	12-15	6.3	2.4	15 🖲 💠	275 📵	-	6.5 ▲	2.0 ▲	14.5 ▲
6000	Beam-Power Amplifier	6CK	T-X	26.5	0.28	25 🗨	600 ₪	300 ● 4.0 ●	15 ▲	7.0▲	0.18 ▲
6004	Full-Wave High- Vacuum Rectifier	2AJ	T-X	5.0	2.0	=	Tube V	oltage s at 14	Drop:		·
6006 5 ★	Beam Power Amplifier (Special 6AQ5)	7BZ	5-3	6.3	0.45	11 🕸	275 ♦		Single		-puil
6011/710	Thyratron	FG- 27-A	T-X	2.5	9.0	-	Anode	Voltage	Drop	=15 Vol	ts
6012	Thyratron	6CO	12-24	6.3	2.6	=	Anode	Voltage	Drop	=10 Vol	ts
6014/C1K	Thyratron	4AX	T-X	2.5	6.3		Anode	Voltage	Drop :	=14 Vol	ts
6021 ●	Medium-Mu Twin Triode	8DG	3-1	6.3	0.3	0.8	165 🏶		2.4 ▲	0.28₁ ▲ 0.32₂ ▲	1.5▲
6028	Sharp-Cutoff RF Pentode	7BD	5-1	20.0	0.05	1.7	180	180 \$ 0.5	4.0	2.8	0.02
6029 ●	Medium-Mu Triode	5676	2-1	1.25 DC	0.2	1.0	135	===	1.3 ▲	1.4▲	1.6 ▲
6045	Medium-Mu Twin Triode	7BF	5-2	6.3	0.35	1.6 ♠ 🖲	330 🖲		2.0 ▲	0.45ı ▲ 0.34₁ ▲	1.3 ▲

[†] Plate-to-plate. †Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.Absolute maximum rating.# Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	put, Watts	Tube Type
Class A Amplifier •	67.5		0	8.5		6,600	3,200	21	-	I — I	5963
Frequency Halfer	150 2 150 2		15 0	0 5.1	_=	$R_{g} = 47,00$ $R_{g} = 47,00$	0	_	20,000 20,000	=	
Class A Amplifier	100		R _k = 50 ⊕	9.5		6,500	6,000	39			5964
Frequency Halfer	150 \$ 150 \$		10	0 5.0		$R_g = 47.00$ $R_g = 47.00$	U i		20,000 20,000	=	
Class A Amplifier •	150		R _k = 220	8.5	_	7,000	6,700	47	1 -	-	5965
Frequency Halfer •	1508 1508		5.5	10.5 0.15			I _c =140	µamp —	7,200 7,200	=	
Class A Amplifier 🌢	150	—	2.0	8.5	-	6,700	7,000	47	—	-	5965-A 5 ★
Frequency Halfer •	100			17.8			I _e = 200	· •	_	-	· ·
Class A Amplifier •	45	-	E _{ec} =	3.0	-	8,500	2,000	17	$R_g = 5.$	0 meg	5967 ●
Class A Amplifier •	45		0	0.7	=	manual ma	1,300	50	_		5968 ●
Class A Amplifier •	135	45	3.0	6.0	0.6	hadrage .	1,700				5969 ●
Class A Amplifier •	45	45	0	3.0	0.9	170,000	1,850		=		5970 ⊛
Class A Amplifier	135		2.5	4.0			2,150	23			5971 ●
Class A Amplifier	67.5 45	67.5 45	0	2.5 1.5	0.8 0.4	1,000,000	1,300	_	=		5972 ●
Class A Amplifier	200	=	R _k = 680	12		4,000	4,000	16	-		5975 ●
Class A Amplifier	100		R _k = 270	10			4,500	16			5977 ◉
Class A Amp	100		18	9.0			1,850	4.1			5987 ⊚
Class A Amplifier	250	250	12.5	45†	4.5†	45,000	4,000	-	5,000	4.0	5992
Full-Wave Rectifier	Max of supply	l-c outp y voltag	ut curre e per pla	ent = 60 ate = 26	ma; ms 0 volts;	ix peak inv max peak c	erse vol urrent p	tage = l er plate	.250 vo = = 230 r	lts; rms na	5993
Half-Wave Rectifier	Max o	i-c outp ipply v	oltage =	300 vo	ma; m lts; max	ax peak in peak curr	verse vo ent = 27.	ltage = 5 ma	850 vol	ts; max	5995 ⊛
Class A Amplifier 🌩	110		R _k = 105	100			15,500				5998
Class A Amplifier •	110		$R_k = 105$	100	_	350	15,500	5.4			5998A
Class C Amplifier	600 400	225 200	60 60	100 125	18 16					35 28	6000
Full-Wave Rectifier	suppl	y voltag	e per pl	ate $=37$	5 volts;	ax peak in max peak c	urrent p	ltage = er plate	e = 375 r	na	6004
Class A Amplifier Class AB ₁ Amplifier	250 180 250	250 180 250	12.5 8.5 15	45† 29† 70†	4.5† 3.0† 5†	52,000 58,000	4,100 3,700	=	5,000 5,500 10,000 ‡	4.5 2.0 10	6005 5★
Controlled Rectifier	Max o	l-c cath max pe	ode cur ak cath	rent 🖲 = iode cui	=2.5 am rent 🖲	peres; max =30 amper	peak in	verse ve	oltage 🖲	=1,500	6011/710
Controlled Rectifier	volts;	max pe	ak cath	ode cur	rent 🖲	peres; max =5.0 ampe	res				
Controlled Rectifier	volts;		ak cath	ode cui		peres; max =8.0 ampe	res		oltage 🖲	=1,250	6014/C1K
Class A Amplifier •	100		R _k = 150_	6.5		6,500	5,400	35			6021 🌒
Class A Amplifier	120	120	R _k = 180	7.5	2.5	300,000	5,000				6028
Class A Amplifier	90		4.0	11		4,250	2,000	8.5			6029 💿
Class A Amplifier •	100		R _k = 50 ⊕	9.0		5,900	6,400	38			6045

Metal tubes are shown in bold-face type, miniature tubes in italics.

• G3 and G5 are screen. G4 is signal-input grid.

• G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max	Max Screen Volts		acitanc icofarac	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid plate
5046	Beam Power Amplifier (Special 25L6-GT)	7AC	9-11	25.0	0.3	10	200	125 1.5	_		_
6049 ⊚	Semi-remote Cutoff RF Pentode	8DL	3-1	6.3	0.15	1.1 🖲	165 🖻	155 © 0.55 ©	3.6	3.8	0.009
5050 ⊕	High-Frequency Medium-Mu Triode	5676	2-1	1.25 DC	0.12		135		1.3	3.4	1.4
5051 ●	Pentode	6051	T-X	1.25	0.1	0.37 🏶	67.5 ◈	67.5 (a) 0.11 (b)		3.0▲	0.25
3072	Twin Triode (Special 12AY7)	9A	6-2	${12.6 \atop 6.3}$	$0.175\ 0.35$	1.5�	330 ◈		1.4	0.5 ₁ ▲ 0.38 ₂ ▲	1.5
3072A 5★	Twin Triode (Special 12AY7)	9A	6-2	12.6 6.3	0.175 0.35	1.5 🏶	330 ◈	-	1.4 ▲	0.5 ₁ A 0.38 ₂ A	1.54
3080	Low-Mu Twin Triode Power Amplifier (Special 6AS7-G)	8BD	12-43		2.5	13 🏚 📵	250 ₪		6.0 ▲	2.2 ▲	8.04
5082	Low-Mu Twin Triode Power Amplifier	8BD	12-43		0.6	13 🏚 🖲	250 ₪		8.0 🛦	2.2 🛦	8.04
6082-A	Low-Mu Twin Triode	8BD	12-25	26.5	0.6	13♠	250	_	-	-	_
5087 5 ★	Full-Wave High-Vacuum Rectifier (Special 5Y3-GT)	5L	9-41	5.0	2.0			oltage l 125 ma		-	
6088 🗑	Power Amplifier Pentode	512- AX	2-1	1.25 DC	0.02		67.5 🖻	67.5 €	_		<u> </u>
6092 ⊜	Power Amplifier Pentode	2E31	2-1	1.25	0.05	_	67.5 📵	67.5 €		=	
3094	Beam Power Amplifier	9DH	T-X	6.3	0.6	12.5	275 🖲	275 ● 2.0 ●		5.3 ▲	1.45
6095	Beam Power Amplifier	7BZ	5–3	6.3	0.45	12 🏶	275 ◈	275 ♦ 2.0 ♦	8.0▲	8.5 ▲	0.4
6096	Sharp-Cutoff RF Pentode	7DB	5-1	6.3		1.55 ◈	200 🌢	155 � 0.55 �	4.0	2.9	0.02 4
3097	Twin Diode	6BT	51	6.3	0.3	_	Tube V	oltage s at 60	Drop: 6 ma d-c	•	
6098	Beam Power Tetrode	6BQ	T-X	6.3	1.2	21 💿	630 ©	315 3 .5 3 .5	11 ▲	7.0▲	0.8
3100	Medium-Mu Triode	6BG	5-2	6.3	0.15	3.5	300		1.8	2.5	1.4
						5.0	300	_			
3101	Medium-Mu Twin Triode (Special 616)	7BF	5-2	6.3	0.45	0.85 ♠ ●	330 ₪		2.0 ▲	0.4 ▲	1.54
6106	Full-Wave High- Vacuum Rectifier (Special 5Y3-GT)	5L	T-X	5.0	1.7	=		oltage 125 ma			·
6110 ⊚	Twin Diode	8DJ	3-1	6.3	0.15	_		oltage l 15 ma d			
6111 🗑	Medium-Mu Twin Triode	8DG	3-1	6.3	0.3	1.0	165 🏶		2.1	1.3 ₁ 1.4 ₂	1.4
5112 ⊚	High-Mu Twin Triode	8DG	3-1	6.3	0.3	0.3 ♠ ♠	165 🏶		1.9	1.5	1.0

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲ Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A { Amplifier {	200	125	R _k = 180	46†	2.2†	28,000	8,000		4,000	3.8	6046
Relay Energizer	110 115 2 115 3	110 115 115	7.5 0 25	49† 105 0.1	4.0† 12.8	$R_{g1} = 2 \text{ me}$ $R_{g2} = 1000$	8,000 g ohms	=	2,000 500 500	2.1	
Class A Amplifier	100	100	R _k = 150	7.5	2.5	400,000	3,550				6049 ●
Class A Amplifier	135		5	4.0		_	1,600	16			6050 ⊜
Class A Amplifier	45	45	4.0	4.0	1.1	35,000	1,350				6051 ●
Class A Amplifier •	250	=	4.0	3.0		25,000	1,750	44			6072
Class A Amplifier	250	==	4.0	3.0		25,000	1,750	44			6072A 5★
DC Amplifier •	135	-	R _k = 250	125		280	7,000	2	=		6080
DC Amplifier •	135	_	R _k = 250	125		280	7,000	2			6082
Class A Amplifier •	135	=	R _k = 250	125		280	7,000	2.0			6082-A
Full-Wave Rectifier	Max o	l-c outp y voltag	ut curre e per pl	ent = 12. ate = 35	5 ma; m 0 volts;	ax peak in max peak o	verse vol	tage = er plate	1400 vo = 375	lts; rms ma	6087 5 ★
Class A Amplifier	45	45	1.25	0.65†	0.15†	700,000	625		80,000	0.0105	6088 ◉
Class A Amplifier	45	45	4.5	1.4	0.4	_	600	******	30,000	0.025	6092 ⊚
Class A Amplifier	250	250	12.5	45	3.5	32,000	4,100	_		4.5	6094
Class A Amplifier	250	250	12.5	45†	4.5†	52,000	4,100		5,000	4.5	6095
Class A Amplifier	120	120	R _k = 200	7.5	2.5	340,000	5,000		_	-	6096
Half-Wave Rectifier						10 ma; ma 117; max p					6097
Class A Amplifier	300	300	36	58	4.0	22,000	4,300	95	-		6098
Class A Amplifier Class C Amplifier	250 100 300		8.5 0 27	10.5 11.8 25		7,700 6,250 Input S	2,200 3,100 signal =	17 19.5 0.35 wa		5.5	6100
Class A Amplifier •	100	_	R _k = 50 ⊕	8.5		6,300	6,000	38			6101
Full-Wave Rectifier	Max d	l-c outp	ut curr ltage pe	ent = 12 r plate	25 ma; =350 vo	max peak olts; max p	inverse eak curr	voltag ent per	e = 1.55 plate =	0 volts; 415 ma	6106
Full-Wave Rectifier	Max d- max rn ma	-c outpu ns suppl	t curren y volta	t per pl ge per p	ate 🖲 == late 🖲 =	4.4 ma; ma =165; max	x peak ir peak cur	rent pe	oltage (r plate (= 460; = 26.5	6110 ●
Class A Amplifier •	100		R _k = 220	8.5	-	4,000	5,000	20	<u> </u>	 	6111 ⊚
Class A Amplifier •	150		R _k = 820	1.75		28,000	2,500	70			6112 👁
	100	-	$R_k = 1,500$	0.8	<u> </u>	39,000	1,800	70			

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6113	High-Mu Twin Triode (Special 6SL7-GT)	8BD	9-11	6.3	0.3	1.0 ♠	250	_	3.0	3.8	2.8
6121 🕲	Medium-Mu Triode	5676	2-1	1.25	0.12	1.1 🖲	185 🗨		1.4 🛦	1.9 ▲	1.4 ▲
6134 5★	Sharp-Cutoff RF Pentode (Special 6AC7)	8N	8-1	6.3	0.45	3.0 🏶	330 ◈	330 ♦ \$ 0.4 ♦	11	5.0	0.015
6135 5★	Medium-Mu Triode (Special 6C4)	6BG	5-2	6.3	0.175	3.4 🏶	330 ◈		1.5 ▲	0.7 ▲	1.4 ▲
6136 5★	Sharp-Cutoff RF Pentode (Special 6AU6)	7BK	5-2	6.3	0.3	3,3 🖲	330 ₪	330 \$ ● 0.7 ●	6.0 ▲	5.0 ▲	0.0035
6137 5★	Remote-Cutoff RF Pentode (Special 6SK7)	8N	8-1	6.3	0.3	3.0 🏟	330 ◈	330 ♦ 8 0.45 ♦	5.0	7.0	0.003
6145	Sharp-Cutoff Pentode	8V	9-31	6.3	0.6	10	300	3002	14	7.5	0.06
6146	Beam Power Amplifier	7CK	T-X	6.3	1.25	20 💿	400 ◉		Triode	Connectibes, Pu	tion
						20 🖲	600 €	250 ● 3.0 ●	Pentod	e Connubes, Pu	ection
6146-A	Beam Power Amplifier	7CK	T-X	6.3	1.25	20 🖲	600 €	250 ◉ 3.0 ◉	Pentod Two T	e Connubes, Pu	ection ish-Pul
6146-B	Beam Power Amplifier	7CK	T-X	6.3	1.125	27 📵	600 ₪	250 ● 3.0 ●	Pentod Two T Pull	e Connubes, P	ection ush-
6147 ●	RF Pentode	6CL	3-8	$\{1.25 \\ 2.5$	0.125	1.5 🖲	180 €	125 ● 0.6 ●	2.6	3.0	0.055
6152 ⊚	Low-mu Triode	5975	3-6	6.3	0.2	1.1	180 €		2.9 ▲	1.28 ▲	1.32 ▲
6159-A	Beam Power Amplifier	7CK	T-X	26.5	0.3	20 🖲	600 ₪	250 ● 3,0 ●	Pentod Two T	le Conn ubes, Pi	ection ish-Pul
6139-B	Beam Power Amplifier	7CK	T-X	26.5	0.3	27 🖲	600 €	250 ● 3.0 ●	Pentod	e Connubes, P	ection
6169 ●	High-Frequency Triode	8EE	31	6.3	0.15	3.0	250		2.5	2.6	1.6
6173	UHF Diode (Pencil)	6173	T-X	6.3	0.135			_			
6184 ⊚	UHF Twin Diode	8EH	T-X	6.3	0.15	_	Tube V	oltage . 8.0 ma	Drop: 💠		***************************************
6186	Sharp-Cutoff RF Pentode	7BD	5-2	6.3	0.3	2.5 🖲		250 • 0.55 •	6.5 ▲	1.8▲	0.03
6187	Sharp-Cutoff RF Pentode	7CM	5-1	6.3	0.175	1.65 🖲	200		4.0	3.0	0.02
6188	High-Mu Twin Triode	8BD	9-11	6.3	0.3	1.1 🖲	275 🗨		_		
6189 5 ★	Medium-Mu Twin Triode	9A	6-2	12.6 6.3	$\left[\begin{array}{c} 0.15 \\ 0.3 \end{array} \right]$	2.75	300		1.8	2.0	1.5
6193 €	High-Frequency Twin Triode	6193	3-3	6.3	0.3	2.0♠	250		2.75	2.20	1.46
6195 ⊚	Beam Power Amplifier	6CL	T-X	(1.25 {2.5 DC	$0.22 \ 0.11$	2.5	180	150 0.6	2.4	1.3	0.045
619ĩ	Sharp-Cutoff Power Amplifier Pentode	9BV	63	6.3	0.65	7.5 🖲	300 €	250 ● 2,5 ●		_	

Compactron.

Zero signal.

Per section.

Plate-to-plate.
Maximum.
Supply voltage.

Subminiature type.
 ▲ Without external shield.
 Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _{p,} Ohms	G _{m,} µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier •	250		2.0	2.3		44,000	1,600	70	-		6113
Class A Amplifier	135		5.0	4.0	_	9,400	1,600	15	_		6121 👁
Class A Amplifier	300	150	R _k = 160	10	2.5	1,000,000	9,000		=		6134 5 ★
Class A Amplifier	250 100	Ξ	8.5 0	10.5 11.8	=	7,700 6,250	2,200 3,100	17 19.5	=		6135 5 ★
Class A Amplifier	250	150	R _k = 68	10.6	4.3	1,000,000	5,200		 - 		6136
Ampiner	100	100	$R_k = 150$	5.0	2.1	500,000	3,900	-	-	-	5★
Class A Amplifier	250 100	100 100	3	9.2 13	2.6 4.0	800,000 120,000	2,000 2,350	_	=		6137 5★
Pulse Amplifier	150 150 60	100 100 100	5.3 0	34 2.0	8	100,000		=	=		6145
Class AB ₁	400	_	100	40†					1000,8	22	6146
Amplifier Class AB ₂ Amplifier	600	165	44	22†	0.6†				6,800‡	90	
Class AB ₁ Amplifier	400 600	190 180	40 45	63† 26†	2.5† 1.0†	_		=	4,000:	55 82	6146-A
Class AB ₁ Amplifier	600	200	47	48†	14.8†		_		5,600	96	6146-B
Class A Amplifier	125	125	7.5	5.5	0.9	175,000	1,600		-		6147 🖜
Class A Amplifier	100	_	R _k = 270	10		3,400	5,100	17.5			6152 ⊚
Class AB ₁ Amplifier	400 600	190 180	40 45	63† 26†	2.5† 1.0†			_	4,000± 7,000±	55 82	6159-A
Class AB ₁ Amplifier	600	200	47	48†	14.8†	_	_	_	5,600‡	96	6159-B
Class A Amplifier	180		1.0	11.5		8,500	6,500	55	=		6169 ⊛
Half-Wave Rectifier		d-c outroeak cur				max peak	inverse	voltage	e 🖲 = 37.	5 volts;	6173
Full-Wave Rectifier	Max	d-c out	put cur	ent =2	0 ma; r	nax peak i x peak cur	nverse v	oltage =	=450; n	nax rms	6184 ●
Class A Amplifier	250	150	R _k =	7.0	2.0		5,000		I -	-	6186
Class A Amplifier	120	120	2.0	5.2	3.5	_	3,200	_			6187
Class A Amplifier •	250	_	2.0	2.3	_	44,000	1,600				6188
Class A Amplifier •	250 100		8.5	10.5 11.8		7,700 6,500	2,200 3,100	17 20			6189 5★
Class A Amplifier •	180		1.0	11.5	=	8,500 9,000	6,500 5,800	55 50	三		6193 ⊛
Class A Amplifier	125	125	7.5	9.0	1.5	120,000	2,100				6195 ◉
Class A Amplifier	250	150	3.0	30	7.0	90,000	11,000		_		6197

<u>T</u> ube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts	Ca 1	pacitan Picofara	ce in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid plate
6201 5★	High-Frequency Twin Triode (Special 12AT7)	9A	6-2	12.6 6.3	$\left \begin{array}{c}0.15\\0.3\end{array}\right\}$	2.5	330 ◈	_	2.5 ▲	0.45ı ▲ 0.38₂ ▲	1.6 ▲
6202 5 ★	Full-Wave High-Vacuum Rectifier (Special 6X4)	5BS	5-3	6.3	0.6	-	Tube V 22 v at	oltage I 50 ma d	Orop: ♠ -c		1
6203 5★	Full-Wave High-Vacuum Rectifier	9CD	6-3	6.3	0.9		Tube V 22 v at	oltage l 70 ma d	Orop: •)	
6205 ⊚	Sharp-Cutoff RF Pentode	8DC	3-1	6.3	0.15	0,9	165∰		4.2	3.4	0.015
6206 €	Semi-Remote-Cutoff RF Pentode	8DC	3-1	6.3	0.15	0.85	165⊚	155@ 0.55@	4.2	3.4	0.015
6211	Medium-Mu Twin Triode	9A	6-2	$\{ \begin{array}{c} 12.6 \\ 6.3 \end{array} \}$	$\begin{bmatrix} 0.15 \\ 0.3 \end{bmatrix}$	1.5	200 ₪	-	2.9 ▲	0.541 A 0.46; A	2.22
6211-A	Medium-Mu Twin Triode	9A	6-2	12.6	0.15	1.3 🏶	200 🌢		2.9 ▲	0.541	2.22 4
5★	Twin Triode			6.3	0.3	-		_		0.462	-
6215	Half-Wave High-Voltage Rectifier	3C	T-X	1.25	0.2			oltage I 2.0 ma o			
6216 5★	Beam Power Amplifier	9CE	6-3	6.3	1.2	10	300	200 2.0	13.2 ▲	6.7 ▲	0.37
6221 ◉	Medium-Mu Triode	8HF	3-1	6.3	0.175	3.3 ₪	165 ◉				=
6222 🌑	High-Mu Triode	8HF	3-1	6.3	0.175	0.55 🗷	165 €				_
6223 ◉	Sharp-Cutoff Pentode	8DL	3-1	6.3	0.175	1.1 🖲	165 ₪	155 © 0.55 ©	4.2	3.4	0.015
6224 ⊚	Beam Power Amplifier	8DL	3–3	6.3	0.45	5.0 €	165 📵	155 @ 0.6 @	6.5	7.5	0.2
6225 ◉	Semi-remote Cutoff Pentode	8DL	3-1	6.3	0.175	1.1 🖲	165 €	155 ® 0.55 ®	4.1	3.4	0.015
GL6228	Ignitron	GL 6228	ТX		_		_	_		_	_
6245 🕲	Sharp-Cutoff Pentode	5702	3-6	6.3	0.2	1.85 🖲	200 🖲	155 @ 0.55 @	4.35	3.15	0.03 4
6247 ⊚	High-Mu Triode	8FO	3-2	6.3	0.2	1.6 🖹	275 €				<u> </u>
GL-6251	Tetrode	GL- 6251	тx	5.5	19.0	25000	7000	700		e-Plate	
6265 5★	Sharp-Cutoff RF Pentode (Special 6BH6)	7CM	5-2	6.3	0.175	2.0	300	300 \$ 0.5	5.2 ▲		0.004 ••
6267	AF Pentode	9CQ	6-2	6.3	0.2	1.0	300	200 0.2			_
6281 ⊚	Sharp-Cutoff AF Pentode	2E31	2-2	0.625	0.02		25 €	25 📵	2.5	3.4	0.01
L-6283	Tetrode	GL- 6283	тx	6.3	3.6	300	2000	320	Cathod Input 1 6.4	e-Plate 8.25; Oi	0.006; itput
6286 ⊛	Medium-Mu Triode	5676	2-1	1.25	0.125	0.45 📵	100 📵		1.3 ▲	2.1 🛦	1.6▲
6287	Beam Power Amplifier	9CT	T-X	6.3	0.6	13.2 📵	275 📵	275 ● 3.2 ●	8.0 🛦	9.0▲	1.1 💠
6299	High-Mu UHP Triode (Planar)	6299	T-X	6.3	0.3	2.0 🖲	200 🖲		3.5 ▲	0.015	1.7 🛦
6320 ◉	High-mu Twin Triode	8DG	T-X	6.3	0.085	0.6 ♠	150		1.0	1.4	0.6

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕] Total for all similar sections.
● Absolute maximum rating.
Conversion transconductance.

See X-Radiation Warning, page 4.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A	250	 	Rk =	10		10,900	5,500	60	i —	<u> </u>	6201
Amplifier 🌩	100		200 R _k = 270	3.3	_	14,300	4,000	57		_	5★
Full-Wave Rectifier	Max d- rms sug	c outpu	t curre	nt 📵 = 5 plate =	5 ma; 1 325 vol	nax peak i ts; max pea	nverse k curre	voltage nt per p	● =137. late ==	5 volts; 220 ma	6202 5 ★
Full-Wave Rectifier	Max d-	c outpu	t curre	nt 🖲 = 7 plate =	7 ma; 1 325 vol	nax peak i ts; max pea	nverse k curre	voltage nt per p	■ = 137. late	5 volts; 300 ma	6203 5 ★
Class A Amplifier	100	100	R _k = 150	7.5	2.4	260,000	5,000				6205 ●
Class A Amplifier	100	100	R _k = 120	7.2	2.2	260,000	4,500				6206 ⊚
Class A Amplifier •	100		R _k = 470	4.6	~~	7,500	3,600	27	_		6211
Frequency Halfer	1508 1508		0 10	4.8 0.1		$R_{g} = 47,00$ $R_{g} = 47,00$	0 ohms 0 ohms		20,000 20,000		
Class A Amplifier •	100		2.0	6.6	_	6,500	4,700	30		_	6211-A 5 ★
Frequency Halfer 🌩	85		_	16			İ).2 ma)			
Half-Wave Rectifier	Max d- peak cu	c outpu irrent =	t curren 8.0 ma			peak inve				ts; max	6215
Class A Amp Filter Reactor	200 100	100 100	6.0 3.0	47† 72	2.0† 3.0	38,000 18,500	8,800 12,500	$R_{g1} = 0$	4,500 1 meg	3.8	6216 5 ★
Class A Amplifier	100	_	R _k = 150	8.5		4,700	5,800	27	_		6221 ◉
Class A Amplifier	100		R _k = 1500	0.7		41,000	1,700	70	_		6222 🗑
Class A Amplifier	100	100	R _k = 150	7.5	2.4	175,000	5,000				6223 ◉
Class A Amplifier	110	110	R _k = 270	30	2.0	10,000	4,200				6224 📵
Class A Amplifier	100	100	R _k = 120	7.2	2.0	175,000	4,500			_	6225 ⊚
Capacitor Discharge	voltage	orward 50000 per mini	volts; n	node v	oltage ak anod	50000 volt le curr. 300	s; max 000 A.;	. invers	se peak dischar	anode ge rate	GL6228
Class A Amplifier	120	120	R _k =	7.5	2.6		5,000	$E_{c3} = 0$	volts		6245 ●
	20	30	0	2.5	1.5		3,275	$E_{c3} = 0$	volts		<u>.</u>
Class A Amplifier	250	_	R _k = 500	4.2	_	22,600	2,650	60			6247 ⊚
VHF Ampli- fier-Oscil- lator	6800	600	20	7500	50	_	_	20	_	25000	GL-6251
Class A Amplifier	250	150	R _k = 100	7.4	2.9	1,000,000	4,600	_	_		<i>6265</i> 5 ★
Class A Amplifier	250	140	2.0	3.0	0.6	2,500,000	2,000	$\overline{E_{c3}} = 0$	volts		6267
Class A Amplifier	15	15	1.0	0.05	0.02	2,000,000	105		-		6281 ◉
Oscillator/ Amplifier Class C	1600	250	40	290		_	_	10		154	GL-6283
Amplifier Class B	1500	250	25	400	7	-	-	-	-	260	
Class A Amplifier	67.5	-	2.0	6.0	1 -	5,500	2,100	11.5	_	_	6286 ⊚
Class A Amplifier	250	250	12.5	46†	5.0†	55,000	4,100		6,000	4.5	6287
Class A Amplifier	175		Adjust for I _b = 10 ma	10		9,600	15,000	115		-	6299
Class A Amplifier •	100	-	$\frac{10 \text{ ma}}{R_k = 680}$		_	33,000	1,800	60			6320 ◉

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca ₁	pacitanc Picofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6321 ◉	Low-Mu Twin Triode	8DG	T-X	6.3	0.085	0.6♠	150		1.0	1.4	0.55
6325	Full-Wave High- Vacuum Rectifier	6325	T-X	6.3	2.7	-	=	=			
6327	Beam Power Amplifier	6327	T-X	6.3	1.8	35 €	1,650	330 ● 6.0 ●	13▲	13 ▲	0.64
6336	Low-Mu Twin Triode	8BD	T-X	6.3	4.75	30 📵 🏚	400 D		13.7 ▲	4.7 ▲	15.2
6336-A	Low-Mu Twin Triode	8BD	T-X	6.3	5.0	30 🖭 💠	400 ◉		16.7 ▲	3.8 ▲	21.8 ▲
6350	Medium-Mu Twin Triode	9CZ	6-3	6.3 12.6	0.6	4.0 ●	330 €		3.6 ▲	0.6	3.2 ▲
6352 ⊚	Temperature-Limited Twin Diode	8EY	3-2	3.0 AC	0.36	-	Max pl	ate volt	age 🖲 =	● =4.0 250 d-c 1.1 ma	
6355	Twin Electron-Ray Indicator	6355	T-X	6.3	0.14		Max ta	rget vo	tage =	275 v	
6360	Twin Tetrode	9PW	6-4	12.6 6.3	0.41 0.82	7.0 €	300 🖲	200 ⑤ 2.0 ⑥	Two S	ections,	Push-
6384	Beam Power Amplifier	6BQ	T-X	6.3	1.2	30 €	750 €	325 ® 3.5 ®		<u> </u>	_
6386	High-Frequency Twin Triode	8CJ	6–2	6.3	0.5	1.5♠	300		2.4 ▲	1.1 🛦	1.7▲
6386 5 ★	Medium-Mu Remote-Cutoff Twin Triode	8CJ	6-1	6.3	0:35	1.5♠	300		2.0 ▲	1.1 🛦	1.2▲
6394	Low-Mu Twin Triode	8BD	T-X	26.5	1.2	30 📵 💠	400		13.7 ▲	4.7 ▲	15.2 ▲
6394-A	Low-Mu Twin Triode	8BD	T-X	26.5	1.3	30 📵 💠	400 🖲	=	16.7 ▲	3.8 ▲	21.8
6397 ●	Power-Amplifier Pentode	6CL	T-X	$\frac{12.5}{1.25}$	0.0625 0.125	1.5 🖲	135 📵	135 © 0.6 ©	2.75	3.0	0.055
6414 5★	Twin Triode	9A	6–3	{12.6 6.3	0.225	2.0 ♦ 3.6 ♦ ⊕	200 🏟		4.0 ▲	0.47 ₁ 0.38 ₂	3.0 ▲
6418	Power-Amplifier Pentode	512- AX	T-X	1.25	0.01	-	30 📵	30 ₪		-	
6419 🏶	Power-Amplifier Pentode	512- AX	T-X	0.625	0.01		25 📵	25 €	 -		<u> </u>
6442	Medium-Mu UHF Triode (Planar)	6442	T-X	6.3	0.9	8.0 📵	350 €		5.5 ▲	0.035	2.3 ▲
6463	Medium-Mu Twin Triode	9CZ	6–3	${12.6} \atop 6.3$	0.3	4.0 ♠ 7.0 ⊕	300		3.0 ▲	0.6 ₁ A 0.5 ₂ A	5.0 ▲
6485	Sharp-Cutoff RF Pentode	7BK	5-2	6.3	0.45	3.2	300	150 0.6	10	3.6	0.02 4
6486	Dual-Control Pentode	9DV	6-2	6.3	0.25	2.0	180	140 0.75	4.5 4	3.3	0.035
6486-A	Dual-Control Pentode	9DV	6-2	6.3	0.25	2.0 ◉	200	155 ® 0.85 ®	4.4 ♣	3.7	0.04
GL6512	Ignitron	GL 6512	Integ	ral ther	mostat	version	of GL-		me rati	ngs app	ly.
GL6513	Ignitron	GL 6513	Integ	ral ther	mostat	version	of GL-	555. Sa	me rati	ngs app	ly.
GL6515	Ignitron	GL 6515	Integ	ral ther	mostat	version	of GL-	564. Sa	me rati	ngs app	ly.
6519 🌑	Power-Amplifier Pentode	512AX	T-X	1.25	0.01		30 📵	30 €	$R_{g1} = 1$	0 meg	
6520	Low-Mu Twin Triode	8BD	16-3	6.3	2.5	14 📵 💠	300 ₪		8.4 ▲	2.2 ▲	9.4 ▲

Class A Amplifier Full-Wave Rectifier Class A Amplifier DC Amplifier DC	Piate Volts 100 Max d-supply 400 250	c outpu	40 22.5	Milli- am- peres	Screen Milli- am- peres 50 ma; 80; ma: 3.5 7.0	R _p , Ohms 9,400 max peak x peak curr 20,000 250	G _m , µmhos 1,700 inverse ent per 5,500 8,000 11,000	Factor 16 voltage plate	Load for Rated Output, Ohms = 220 = 550 r	Power Output, Watts	Tube Type 6321 ● 6325 6327 6336
Amplifier ♠ Class A	150		$\frac{R_k = 200}{5.0}$	11		3,900	4,600	18	_		6336-A 6350
Amplifier Control Service Tuning						te current			P.		6352 ●
Indicator Class AB ₁	trode-	2 volta	e = 250 $ge = 120$ 21.5	to 190	1.2†	Ode-1 Volta	ige = 120		10,000	12	6360
Amplifier Horizontal Amplifier	250 Max po max sc	sitive r	22.5 oulse pla sipation	77 ite volt = 3.5 w	3.5 age = 1, vatts; m	500 volts; ax d-c catl	5,400 node cur		25 ma		6384
Class A Amplifier •	150	_	2.0	8.0	_	7,000	5,000	35			6385
Class A Amplifier •	100		R _k = 200	9.6	_	4,250	4,000	17			6386 5 ★
DC Amplifier •	190		R _k =	185		200	13,500				6394
DC Amplifier •	190		R _k = 200	185		_	13,500	2.7	<u> </u>	_	6394-A
Class A Amplifier	125	125	7.5	7.25	1.2		1,950	_			6397 🌑
Class A Amplifier •	180 150 100	=	2.0 4.8	8.0 0.15 17	=	7,650 —	5,550 I _c = 0.2	42.5 ma	=		6414 5★
Class A Amplifier	22.5	22.5	1.2	0.24†	0.06†	420,000	300		100,000	0.0022	6418 🖜
Class A Amplifier	15	15	0.625	0.055	0.02	2,000,000	100	_	-		6419 ●
Class C Amplifier	250	_	I _c = 6 ma	23	_					2.8	6442
Class A Amplifier	250 100	_	R _k = 620	14.5 29	_	3,850	$I_c = 200$	l			6463
Frequency Halfer • (Class A	300	150	11 P	1.0	2.5	500,000	9.000		-=-	<u> </u>	6485
Amplifier Class A	120	120	$R_k = 160$ -2.0	3.5	3.3	300,000		$\frac{-}{E_{c3}=0}$	volts	<u> </u>	6486
Amplifier			1								
Class A Amplifier	120 120	120 120	2.0	3.5 4.2	3.3 5.1		2,100	Ect = -	volts -3 volts	<u> </u>	6486-A
	_				<u> </u>		_		_		GL6512
			_				=				GL6513
	_	_			_	-		_		_	GL6515
Class A Amplifier	22.5	22.5	E _{cc1} =0	0.4	0.1	300,000	450		100,000	0.0015	6519 🖨
DC Amplifier ♠	135		R _k = 250	112		280	7,000	2.0			6520

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		pacitanc Picofarac	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Voits	and Watts	Input	Out- put	Grid- plate
6525	Thyratron	7BN	5-1	6.3	0.15	-	500 ◈	Anode	voltage	drop =	8 volts
6526 ●	Power-Amplifier Pentode	512- AX	2-1	1.25	0.125	1.1 🖲	135 🖷	135 a	-	-	
6528	Twin Triode	8BD	T-X	6.3	5.0	30 🗩 💠	400 €	=	17.8▲	2.9 ▲	23.8 ▲
6533 ⊛	High-Mu Triode	8FY	3-1	6.3	0.2	0.35 🏶	150 ◈	_	1.75 ▲	0.6▲	1.6▲
6540 ⊚	Sharp-Cutoff Pentode	5702	3-6	6.3	0.2	1.1 ◈	165 ◈	155 ③ 0.4 ③	4.8	3.5	0.03 💠
6550	Beam Power Amplifier	7AC	T-X	6.3	1.8	42 🏶	660 ◈	440 *	15▲	10▲	0.8 🛦
6582	RF Pentode	9EJ	6-2	6.3	0.25	2.0	200	155 0.85	5.0	3.4	0.03 💠
6582-A	Sharp-Cutoff RF Pentode	9EJ	6–2	6.3	0.25	2.0	200 🖲		4.5	3.0	0.03 ♣
6611 ⊕	RP Pentode	512AX	2-1	1.25	0.02	0.1 🖲	50 📵		4.0	4.0	0.008
6612 ⊕	RF Pentode	512AX	2-1	1.25	0.08	0.2 💽	50 ₪	50 ® 0.05 ®	5.5	4.2	0.01
6660	Remote-Cutoff RF Pentode (Special 6BA6)	7BK	5-2	6.3	0.3	3.3 ♦	330 ◈		5.5	5.5	0.0035
6661	Sharp-Cutoff RF Pentode (Special 6BH6)	7CM	5–2	6.3	0.15	3.3 🌑	330 🏟	330 ♦ 8 0.55 ♦	5.4	4.4	0.0035
6662	Remote-Cutoff RF Pentode (Special 6BJ6)	7CM	5-2	6.3	0.15	3.3 ◈	330 ◈	330 ♦ \$ 0,65	4.5	5.5	0.0035
6663	Twin Diode (Special 6AL5)	6BT	5-1	6.3	0.3			oltage 60 ma		•	!
6664	High-Frequency Triode	5CE	5-2	6.3	0.15	2.9 🄷	330 ◈		2.2	1.4	1.5
6669	Beam Power Amplifier (Special 6AQ5)	7BZ	5-3	6.3	0.45	12 🏶	250 ◈	250 ③ 2.0 ④	Single	Tube	
	'								2 Tube	es, Push	Pull
6676	Sharp-Cutoff RF Pentode	7CM	5-2	6.3	0.3	2.3 🏶	330 🏶	330 ♦ 8	6.5	3.0	0.015
6677	Power-Amplifier Pentode (Special 6CL6)	9BV	6–3	6.3	0.65	8.5 🏶	330 �	330 ♦ 8	11 🛦	5.5 ▲	0.12 ♣
6678	Triode-Pentode (Special 6U8)	9AE	6-2	6.3	0.45	3.0 ♦	330 ◈	0.55		le Section	
6679	High-Mu Twin Triode	9A	6-2	12.6	0.15	2.8 🏟	330 ♠		2.2	1 1.21	1.5
	(Special 12AT7)			1 6.3	0.3	•		.i		1.52	
6680	Medium-Mu Twin Triode (Special 12AU7)	9A	6-2	{12.6 6.3	0.15	3.0 ◈	330 ◈		1.8	2.0	1.5
6681	High-Mu Twin Triode (Special 12AX7)	9A	6-2	{12.6 6.3	0.15	1.1 ◈	330 ◈	-	1.8	1.9	1.7

Compactron.
† Zero signal.
• Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

[⊕]Total for all similar sections.

■Absolute maximum rating.

#Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	for for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Relay Energizer	volts d	-c, Eccı	=0 volt	s. RL =	22,000	iode condu ohms, R _{g2}	= 1.0 m	eg R _{g1} =	: 0		6525
Class A Amplifier	110	110	6.0	6.5†	1.15†	140,000	1,900		10,000	0.375	6526 ●
DC Amplifier 4	100		4.0	185		245	37,000	9.0			6528
Class A Amplifier	120		R _k = 1500	0.9		31,000	1,750	54	_		6533 ⊚
Class A Amplifier	120	120	$R_k = 200$	7.5	2.6	150,000	5,000		$E_{c3}=0$	i_	6540 ⊚
Class A Amplifier	400 250	225 250	16.5 14	87 140	$\frac{4.0}{12}$	15,000	11.000	=	3,000 1,500	20 12.5	6550
Class A Amplifier	120	120	2.0	7.5	2.5		4,500	_		_	6582
Class A Amplifier	120	120	R _k = 180	7.5	2.5	500,000	4,500	_	_	_	6582-A
Class A Amplifier	30	30	E _{cci} =0		0.35	400,000		$R_{g1} = 5$			6611 ●
Class A Amplifier	30	30	E _{cci} =0	3.0	1.0	180,000		R _{g1} =2.6			6612 @
Class A Amplifier	250	100	R _k = 68 R _k =	11	4.2	1,000,000		E _{c3} = 0			6660
	100	100	68	10.8	4.4	250,000		$\mathbf{E}_{\mathbf{c}^3} = 0$			
Class A Amplifier	250	150	R _k = 100	7.4	2.6	1,400,000	4,600	$\mathbf{E}_{\mathbf{c}^3} = 0$	volts		6661
Class A Amplifier	250	100	R _k =	9.2	3.3	1,300,000	3,600	$E_{e^3} = 0$	volts	-	6662
	100	100	R _k =	9.0	3.5	250,000	3,650	$E_{c3} = 0$	volts		
Rectifier Service	Max d	-c outp	ut curre	ent per urrent	plate 🏶 per plat	=10 ma; e - 60 ma	max pea	ak inver	se volta	age ◈ =	6663
Class A Amplifier	250	1 -	R _k =	10		10,900	5,500	60			6664
	100	-	R _k = 270	3.7	_	15,000	4,000	60	_	-	
Class A Amplifier	250	250	12.5	45†	4.5†	52,000	4,100	_	5,000	1	6669
Class AB ₁ Amplifier	250	250	15	70†	5.0†				10,000	10	
Class A Amplifier	125	125	R _k = 56	13	3.7	280,000	8,000				6676
- A	125 250	125	3.0	2.8 30†	7.01	150.000	11.000	Ga tied	7.500	2.8	6677
Class A Amplifier	250	150	3.0	307	7.07	150,000	11,000	to K	1,300	4.0	00//
Class A Amplifier	250	110	R _k =	10	3.5	400,000	5,200				6678
	150	-	68 R _k = 56	18		5,000	8,500	40			
Class A Amplifier	250		R _k =	10		10,900	5,500	60	_	_	6679
Class A	1			10.5		7,700	2,200	17			6680
Class A Amplifier Class A	250 100	=	8.5	11.8	-	6,500	3,100	20		-	

Tube	Classification by	Base Con-	Out-	File- ment	File- ment	Max Plate	Max Plate	Max Screen Volts	Car	pacitanc icofara	e in ds
Туре	Construction	nec- tions	Dwg	Voits	Amp	Watte		and Watts	Input	Out- put	Grid plate
6688 5★	RF Pentode	9EQ	6-1	6.3	0.3	3.0 😥	210	175 😥 0.9 📵	7.5	3.0	0.03
6690 ●	Medium-Mu Twin Triode	8GQ	Ť-X	6.3	0.3	1.1 🗷	120 🗃		2.6	1.7 ₁ 2.1 ₂	1.8
6754	Full-Wave High- Vacuum Rectifier	9ET	T-X	6.3	1.0	_	_		_		_
6763	Cold-Cathode Half- Wave Rectifier	6763	T-X			_	Tube V	oltage	Drop: 1	00 volt	s
6771	High-Mu UHF Triode (Planar)	6442	T-X	6.3	0.57	6.25	300 €	-	4.05	0.018	2.0 🛦
6788 ⊚	Sharp-Cutoff Pentode	8DL	3-11	6.3	0.175	0.5 🖲	250 🖼	150 📵 0.15 🚇	2.4	3.3	0.032
6792	High-Vacuum Beam Tetrode	8GL	T-X.	6.3	0.45	25	25,000		2.0 ▲	4.0 ▲	0.03
6807	Thyratron	6807	T-X	2,5	21		Anode	Voltage	Drop :	=16 Vol	ts
6808	Thyratron	6808	T-X	2.5	21		Anode	Voltage	Drop	=16 Vol	its
6809	Thyratron	6807	T-X	2.5	21		Anode	Voltage	Drop :	=16 Vol	ts
6814 🖷	Medium-Mu Triode	8DK	3-1	6.3	0.15	2.0	250	-	2.4	2.4	1.3
6829 5★	Twin Triode	9A	6-3	12.6 6.3	0.225	2.2 ♦	275 ◈		4.0 ▲	0.51 △ 0.38 ₂	3.0 ◢
6832 ●	Medium-Mu Twin Triode	8DG	3-2	6.3	0.4	0.1	165 🕦			_	-
6840	Medium-Mu Twin Triode	9CZ	6–3	12.6 6.3	0.4	4.0 ♦ 7.0 ♦	300 🏟		4.0 ▲	0.70 ₁ ▲ 0.65 ₂ ▲	5.5 4
6842	High-Voltage Regulator	7EQ	T-X	6.3	0.15	8.0	4000	150	3.95 ▲	1.34	0.06
GL6848	Tetrode	GL 6848	ТX	7.0	13.5	2000	4500 7000	500 750		e-Plate 27.8; Ou	
6851	High-Mu Twin	9A	6-2	6.3	0.25	1.0	330 €		1.6▲	0.46₁ ▲	1.4
6853	Triode Full-Wave High- Vacuum Rectifier	8HE	9-42	5.0	1.7	-	Tube V 60 volt	oltage s at 125	Drop: 4 ma d-c	0.36₂ ▲	L
6834	Medium-Mu Twin Triode	8CJ	6-2	6.3	0.5	1.5♠	300	_	2.4 ▲	1.1 ▲	1.7 🛦
6856/740	Thyratron	6856	T-X	2.5	16		Anode	Voltage	Drop =	12 Vol	ts
6858/760	Thyratron	6807	T-X	2.5	21		Anode	Voltage	Drop =	=12 Vol	ts
6859/760-P	Thyratron	6808	T-X	2.5	21		Anode	Voltage	Drop =	=12 Vol	ts
6872 ◉	Pentode	5702	3-7	6.3	0.2	1.1 🏶	165 🏶	155 � 0.4 �	5.0	3.5	0.03
6877	Low-Mu Triode	9GB	6-4	6.3	0.8	12 🖲	200 🖲				=
6883	Beam Power Amplifier	7CK	T-X	12.6	0.625	20 💿 20 🗟	400 ®	250 🗑	Two To	Connectibes, Pure Connection	sh-Prection
6883-A	Beam Power Amplifier	7CK	T-X	12.6	0.625	20 🖲	600 €			bes, Pu	

,										
Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
190	160	R _k =	13	3.3	90,000	16,500	E _{ccl} =	+9.0 vo	lts	6688 5★
100		R _k =	8.0			4,800		<u> </u>	<u> </u>	6690 ●
Max d	-c outp	ut curr	ent = 90	ma; r	max peak	inverse	voltage	e = 1,450	volts	6754
Max	l-c outp	ut curre	nt 🖲 = 1	2 ma; n	nax peak in	verse vo	ltage 🖲	=2,800	volts;	6763
250	1 = 1	1.6	25	-	_	23,000	90	 -	 	6771
100	100	R _k = 1500	0.7	0.1	1,200,000	1,100				6788 ●
Max so	reen dis	18 sipation	$\dot{n} = 1.0 \text{ v}$	vatt; m	ax d-c cath	ode cur	rent = 1	0 ma		6792
Max d- volts; r	c catho	de curre k catho	ent 🖲 =	6.4 amp ent 🖲 =	eres; max ; 80 amperes	peak inv	erse vo	ltage 🖲	=1,500	6807
Max d- volts; r	c catho	de curre k catho	ent 🛎 =	6.4 amp	eres; max ; 80 amperes	peak inv	rerse vo	ltage 🖲	=1,500	6808
Max d- volts; r	c catho	de curre k catho	ent 🖲 =	6.4 amp ent 🖲 =	eres; max ; 80 amperes	peak in	rerse vo	ltage 🖲	=1,500	6809
100		$R_k = 150$	10	_	4,800	6,000	29		<u> </u>	6814 ●
150		R _k = 220	8.5	_	7,000	6,700	47			68 2 9 5★
100			17	_=_			ma.			
				_			26	_		6832 ●
	_	R _k = 620		_	3,400	5,900	20	_	-	6840
80			31				 μa	=		
	100		4.5	0.5	930,000	2,500			-	6842
4000 6500	400 700	100 100	570 800	20 25	-	-	_	_	1250 3200	GL6848
250	_	R _k = 3100	1.0		60,000	1,200	70			6851
Max o max R 415 m	l-c outr MS sur a	out curr	ent = 12 tage per	5 ma; plate =	max peak i 350 volts;	nverse nax pea	voltage k curre	=1550 nt per p	volts; late =	6853
150		R _k ==	8.2		6,500	5,225	35			6854
Max 0	i-c cath volts; n	ode cu	rent 🖲	=2.5 ar	nperes; ms	x peak	inverse	voltag	ge ⑤ =	6856/740
Max 0	i-c cath volts; n	ode cui	rrent 🖲	=6.4 ar le curre	nperes; ma	x peak	inverse	voltag	ge 🖷 =	6858/760
										6859 / 760-P
120	120	R _k =	7.75	2.7	340,000	4,100		- 1	-	6872 ●
150	_	12	75	=	2,000	6,500	3.75		=	6877
400		100	40†					8,000	22	6883
								‡_		
400 600	190 180	40 45	63† 26†	2.5† 1.0†		=	=	4,000‡ 7,000‡	55 82	6883-A
	190 100 Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rms su Max d rolts; I Max d rolts; I Max d rolts; I Max d rolts; I Max d rolts I S 0 100 100 150 150 100 6500 Max c rmax R rms d rms su rms	Volts Volts	Volts Volts Volts Volts Volts Volts Volts Volts Volts Volts Volts Volts 190 160 Rk = 100 Rk = 100 Rk = 100 Rk = 15	Plate Screen Grid Grid Wolts Wolts Wolts Wolts Millimperes	Plate Screen Grid William Milliam Peres Peres	Plate Screen Grid Grid Milliams Rp, Ohms	Plate Screen Grid Wolts Milliment Millime	Plate Volts Volts Volts Am- Am- Am- Ohms Pactor	Plate Volts Volts Volts Amperes Amperes Ohms Amperes Ohms O	Plate Volts Volt

Metal tubes are shown in bold-face type, miniature tubes in italics.

\$\display \text{G3}\$ and G5 are screen. G4 is signal-input grid.

\$\display \text{G2}\$ and G4 are screen. G3 is signal-input grid.

\$1, 2, 2, etc. indicate tube sections.

\$\display \text{Maximum screen dissipation appears immediately below the screen voltage.}\$\$

\$\display \text{Heater warm-up time controlled.}\$\$

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitance icofarad	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
6883-B	Beam Power Amplifier	7CK	T-X	12.6	0.562	27 🖷	600 ₪	250 ₪ 3.0 ₪	Pentod Two T Pull	e Conn ubes, P	ection ush-
3887	Twin Diode	6BT	5-1	6.3	0.2		Tube V	oltage ts at 6.0	Drop:		·····
6888	Dual-Control Pentode	8N	9-12	6.3	0.8	8.0 🖲	250 ₪			6.5 ▲	0.7 ▲
6889	Beam-Power Amplifier	8HG	T-X	6.3	1.2	30 €	3,000	850 3.5 ●			
6897	High-Mu UHF Triode (Planar)	2C39- B	T-X	6.3	1.05	100 🖲	1,000		6.5 ▲	0.023	2.01 ▲
6900	Medium-Mu Twin Triode	9H	6-3	12.6 6.3	0.5	4.25 • •	600 ₪		6.5 ▲	0.8 ₁ A 0.61 ₂ A	4.0 ▲
6913	Medium-Mu Twin Triode	9A	6-3	12.6	0.3	3.5 ♠	300		3.6 ▲	0.5	3.4 ▲
6919 5★	Twin Diode	6BT	5-1	6.3	0.2		Tube V	oltage ts at 6.0	Drop:		<u>. </u>
6922	Twin Triode	9AJ	6–2	6.3	0.3	1.5	220	-		1.75 ₁ 1.65 ₂	1.4▲
GL6942	Tetrode	GL 6942	тx	5.7	24	1500	4000	600	Cathoo	e-Plate 18.5; Ou	0.04;
		0012				1200 1500	3200 4000		5.8	15.0, 01	reput
6943 ⊜	Sharp-Cutoff RF Pentode	8DC	3-11	6.3	0.175	1.0	250 🖹	150 🖲 0.33 🖷	3.0	3.0	0.015
6944 🖷	Semi-Remote Cutoff RF Pentode	8DC	3–11	6.3	0.175	1.0 🗨	250 ◉	150 • 0.36 •	2.9	3.1	0.015
6945 ◉	Beam Power Amplifier	8DL	3-3	6.3	0.35	3.0	250 🖲		5.0	5.5	0.13
6946 ◉	Medium-Mu Triode	8DK	3-11	6.3	0.175	1.5 🖲	250 ₪	=	1.6 ▲	0.75▲	1.0 ▲
6947 ●	Medium-Mu Twin Triode	8DG	3-11	6.3	0.35	0.75	250	=-	1.6▲	0.20 ₁ A 0.25 ₂ A	1.2 ▲
6948 🏶	High-Mu Twin Triode	8DG	3-11	6.3	0.35	0.5	250 €	=	1.6 ▲	0.20 ₁ ▲ 0.25 ₂ ▲	0.75
6954	Dual-Control Sharp- Cutoff Pentode	7CM	5-2	6.3	0,3	3.0	300	300 \$	6,0 ▲		0,003
6955	Medium-Mu Twin Triode	9A	6-2	12.6 6.3	$\{0.175\}$	2.75 💠	300	_	1.5 ▲	0.5₁ ▲ 0.4₂ ▲	1.4
6968	Sharp-Cutoff Pentode	7BD	5-1	6.3		1.65	200	155 @ 0.55	4.0	2.85	0.02
6973	Beam Power Amplifier	9EU	6-4	6.3	0.45	12	400	300 2.0	Single	Tube	3
								2.0	Two T	ubes, Pı	ush-Pu
6999 👁	Power Amplifier Pentode	6999	T-X	2.64	0.05	0.75 🖭	145 🗨	95 🗎 0.12 🖻		-	<u> </u>
7025	High-Mu Twin Triode	9A	6–2	${ 12.6 \atop 6.3 }$	$0.15 \ 0.3$	1.0 💠	300	-	1.8	1.9	1.7
7027	Beam Pentode	8HY	T-X	6.3	0.9	25	450	400 3.5	Two Tubes, Push-P		ush-Pu
						25	450\$	450\$ 3.0	(With	ubes, P Screen asforme	Тар

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class AB ₁ Amplifier	600	200	47	48†	14.8†	_	_		5,600‡	96	6883-B
Gating and Clamping	Max d 360 vc	-c outp	ut curre	ent per current	plate 🖲 per pla	=10 ma; m te = 30 m	ax peal			e 🖲 =	6887
Gated Amplifier	150 150 150 150	90 90 90 90	9.4 13.8 0	37.5 2.5 0.03 2.0	19 — —	I _{e1} =190 μa	=	$E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = -$	volts	ts	6888
Class A Amplifier	250	250	22.5	77	3.5		5,400		_		6889
Class C Amplifier	900	_	40	90		_				40	6897
Class A Amplifier •	120		2.0	36 11		3,900	11,500	18.5			6900
Class A Amplifier • Gating and	150		5.0		plata A	=10 ma; m	4,600			70.6	6913
Clamping	300 vc	lts; ma	x peak	current	per pla	$te \circledast = 30 \text{ m}$	ıa _		e voitag		5★
Class A Amplifier	90		R _k = 120	12		_	11,500	33		_	6922
RF Amplifier Class B	3500	500	40	520	35	_	_		_	1000	GL6942
Class C Telephony	3000		100	250	10	_	_		_	565	
Class C Telegraphy	3800		120	500	22	-	_		-	1200	
Class A Amplifier	100	100	R _k = 150	8.0	2.3	300,000	3,600				6943 ●
Class A Amplifier	100	100	R _k = 150	7.0	2.0	280,000	3,200	_			6944 ●
Class A Amplifier	100	100	R _k = 270	25	1.5	20,000	3,500		_		6945 ●
Class A Amplifier	100		Rk = 270	9.0	_		3,800	16.5			6946 ●
Class A Amplifier •	150		R _k = 270	6.5			4,000	35			6947 ◉
Class A Amplifier •	100	_	R _k = 1500	0.8	_		1,650	70			6948 ●
Class A Amplifier	150	150	1.0	5.8	6.6	50,000	l	E _{ct} = -	-3.0 vol	ts	6954
Class A Amplifier 🌩	250 100	=	8.5 0	11.5 13		7,000 5,800	2,350 3,500	$\frac{16.5}{21.3}$			6955
Class A Amplifier	120	120	2.0	7.5	2.5		5,000				6968
Class A Amplifier	250	250	15	46	3.5	73,000	4,800		_	-	6973
Class AB ₁ Amplifier	400 350 250	290 280 250	25 22 15	50† 58† 92†	2.5† 3.5† 7.0†	=		=	8,000 7,500 8,000	20	
Class A Amplifier	67.5	67.5	4.0	4.0	0.9	_	1,650		12,000	0.135	6999 ●
Class A Amplifier •	100 250		1.0 2.0	0.5 1.2	=	80,000 62,500	1,250 1,600	100 100			7025
Class AB ₁ Amplifier Class AB ₁ Amplifier	450 400 330 410\$	350 300 330 410 3	30 25 24 R _k =	95† 102† 122† 1 _k = 134 ma†	3.4† 6.0† 5.6†				6,0001 6,6001 4,5001 8,0001	50 34 31.5 24	7027

Tube	Classification	Base Con-	Out-	Fila-	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofara	
Туре	by Construction	nec- tions	line Dwg	ment Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7027-A	Beam Pentode	8HY	T-X	6.3	0.9	35 ◈	600 ◈	500 � 5.0 �	Two Tu Pull	ibes, Pi	ish-
									Pull (W	ibes, Priith Scr	een
7036 5★	Pentagrid Amplifier	7CH ♥	5–3	6.3	0.3	0.9	250 🏶	250 ♦ 1.35 ♦	$ E_{ci} = 0 E_{ci} = - E_{ci} = 0 $	-10 Vol	ts
7044	Medium-Mu Twin	9H	6-3	6.3	0.9	4.5	300 €		4.8 ▲		6.0 ▲
	Triode			12.6	0.45	8.0				0.552	
7054	RF Pentode	9GT	6-3	13.5	0,275	5.0	330 🖲	180 (a)	10.2 ▲	3.5 ▲	0.063
7055	Twin Diode	6BT	5-1	13.5	0.155	-		_	_		_
7056	Sharp-Cutoff Pentode	7CM	5-2	13.5	0.15	2.0 🖲	330 🖲	330 8	6.5	3.0	0.015
7057	Medium-Mu Twin	9AJ	6-2	13.5	0.18	2.2	275		_		-
7058	High-Mu Twin Triode	9AJ	6-2	13.5	0.155	1.0	330 🖲	=	1.6 ▲	0.46 ₁ A	1.7▲
7059	Triode-Pentode	9AE	6-2	13.5	0.195	2.8	300 €	300 ⊕ \$	Pentod	e Section	on.
						2.5 🖷	300 ∰	0.5	Triode	Section	ı
7060	Triode-Pentode	9DA	6-2	13.5	0.28	3.0 €	300 €	300 D\$	Pentod	e Section	on
						2.5 🗃	300 📵	1.0	Triode	Section	ì
7061	Beam Power Amplifier	9EU	6-3	13.5	0.21	9.0 🖲	345 🖲	310 a 2.0 a	8.0 ▲	8.5 ▲	0.7
7077	High-Mu UHF Triode (Planar)	7077	3-16	6.3	0.24	1.0 🏶	250 ◈	_	~~~	=	-
7079 🖷	Twin Triode	8DG	3-1	6.3	0.3	1,1 🗨	165 €	-	2.1	1.31	0.01 💠
7083 ●	Sharp-Cutoff RF Pentode	5702	3-6	6.3	0.2	1,1	165 €	155 📵 0.55 🕮	5.0	3.75	0.03 💠
7105	Low-Mu Twin Triode Power Amplifier	8BD	T-X	12.6	1.25	13 🖹 💠	250 €		6.2 ▲	2.2 ▲	8.4 ▲
7187	Medium-Mu Triode	7BQ	5-2	6.3	0.225	2.25 ◈	150 ◈		6.0	4.5	1.7
GL7151	Ignitron	GL 7151	тх	_	-	-	-	-	_	-	-
7167	Tetrode	7EW	5-2	13.5	0.09	2.0 🆠	180 🏶	180 ♦ 1 0.5 ♦		2.74	0.03 💠
GL7171	Ignitron	GL 7171	тх	-	_	_		_	_	_	-
7189	Beam Pentode	9CV	6-4	6,3	0.76	12	400	300 2.0	Single Two T	Tube ubes, P	ush-
						12	375	375	Pull	ubes, P	
								2.0	With S Transf	creen 7	Гар
7189-A	Beam Pentode	9LE	6-4	6.3	0.76	13.2 🏟	440 🏶		Single	Tube	
								2.2 🏽	Two T	ubes, P	ush-

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. *Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class AB ₁ Amplifier	425 8 400 8	425 8 300 8	R _k = 200 R _k = 200	150† 112†	8.0† 7.0†		_	_	3,800 6,600	44 32	7027-A
Class AB ₁ Amplifier	410	4108	R _k = 220	I _k = 134†					8,000	24	
Gated Amplifier	1508 1508 1508	75 69 71	10 0 0	0 0 5.8	0 14 9.0	$R_{g1} = R_{g3} = R_{g1} = R_{g3} = R_{g1} = R_{g3} = R$	= 47,000 = 47,000 = 47,000	=	20,000 20,000 20,000	=	7036 5 ★
Class A Amplifier •	120		2.0	36	_	1,750	12,000	21			7044
Class A Amplifier	250	150	R _k = 120	19	3.5	100,000	11,500		_		7054
Half-Wave Rectifier	Max d- max rn	c outpu is suppl	t currer y voltag	t per pl e per pl	ate 🖲 🛥 ate 📵 😑	10 ma; max 117; max pe	t peak ir eak curr	verse v ent per	oltage @ plate @	= 250; = 60 ma	7055
Class A Amplifier	200	150	R _k = 180	9,5	2.8	600,000	6,200	_		-	7066
Class A Amplifier 🌩	150		Rk = 220	10		5,300	6,800	36			7057
Class A Amplifier •	250		2.0	1.25		61,000	1,650	100			7058
Class A Amplifier Class A	250 150	110	R _k = 68 R _k = 56	10 18	3.5	400,000 4,700	5,200 8,500	40	_	_	7059
Amplifier Class A Amplifier	200	125	R _k =	15	3.4	150,000	7,000				7060
Class A Amplifier	150		R _k = 150	9.0		8,200	4,900	40	_		
Class A Amplifier	200	200	10.0	35.5†	9.0†	9,000	4,200	90	5,000	3.0	7061
Class A Amplifier	250 (With	18,000	R _k = 82 ohm by		resistor	in plate ci		90]	-	7077
Class A Amplifier	100	-	R _k =	8.5	<u> </u>	4,000	5,000	20	<u> </u>		7079 ◉
Class A Amplifier	120	120	R _k = 200	7.5	2.6	340,000	5,000				7083 ⊛
DC Amplifier •	135		R _k = 250	125			7,000	2.0	_		7105
Class A Amplifier	150		R _k = 100	13.5			8,500	40		_	7187
Resistance Welding	1600	curr. 48	6 A.; m	ax. av.	anode o	ax demand curr. 900 A	.; corres	ponding	rrespone g demar	ding av.	GL7151
Class A Amplifier	125	80	1.0	10	1.4	125,000	8,000		_		7167
Capacitor Discharge	voltage pulses 1	15000 per min	volts; t	nax. pe	ak anoo	15000 vol le curr. 35	000 A.;	. inver typical	se peak dischar	anode rge rate	GL7171
Class A Amplifier	250	250	7.3	48	5.5	40,000	11,300	_	_		7189
Class AB: Amplifier Class AB: Amplifier	400 375	300 375	15 R _k = 220	15† I _k = 70†	1.6†	_	_	_	8,000 11,000 ‡	16.5	
Class A	250	250	7.3	48	5.5	40,000	11,300				7189-A
Amplifier Class AB ₁ Amplifier	400	300	15	15†	1.6†	_		_	8,000 ‡	24	

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

§ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Piate	Max Plate	Max Screen Volts	Ca I	pacitano icofara	e in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7199	Triode Pentode	9JT	6-2	6.3	0.45	3.0 🏶	330 ◈	330 ♠ \$ 0.6 ♠	Pentod	e Section	on
						2.4 🆠	330 🏶		Triode	Section	
7211	High-Mu Triode (Planar)	7815R	T-X	6.3	1.3	10 📵	1000 🗷		8.0▲	0.06	2.25 🛦
7212	Beam Power Amplifier	7CK	T-X	6.3	1.25	20 🖲	400 ₪		Triode	Conne	ction
						20 🗟	600 🗉	250 ₪ 3.0 ₪	Pentod	ubes, Pu le Conn ubes, Pu	ection
7216/ C3JL	Control Rectifier	7216/ C3JL	TX	2.5	9		Averag	e Arc D	Prop =	10 Volt	s
7233	Low-Mu Triode	9FR	6-4	6.3	1.0	8.0 €	330 €		7.5 ▲	2.2 ▲	14▲
7234	Pentode	9KD	T-X	6.3	0.15	10	8,000	200 0.5	4.06 ▲	2.23 ▲	0.0159
7235	Triode	9KE	T-X	6.3	0.3	10	10,000		2.24	1.03	1.03 ▲
7236	Low-Mu Twin Triode Power Amplifier	8BD	12-25	6.3	2.4	15 🗃 💠	300 ₪		9,0 🛦	3.3 ▲	10▲
7 25 9	Beam Pentode	9KH	6–6	6.3	0.3	4.0 €	2,000 B	220 🗑 0.5 🕦	7.0 ▲	4.0▲	0.12 A
7244	Medium-mu Twin Triode	7BF	5–2	6.3	0.45	1.1 🆠	300 ◈		3.0 ▲	0.34 ₁ ▲ 0.28 ₂ ▲	1.4
7244-A	Medium-Mu Twin Triode	7BF	5–1	6.3	0.45	1.1 ♦	300 ◈		3.0▲	0.34 ₁ 0.28 ₂	1.4 ▲
7245	High-Mu Triode	7BQ	5-2	6.3	0.4	2.25 🏶	150 ♦			=	
7245-A	High-Mu Triode	7BQ	5–1	6.3	0.4	2.25♦	150 ♦				
7246 ●	Triode	5676	2-1	1.25	0.15	0.7 🏶	150 ♦		1.6▲	1.9 ▲	1.5▲
7247	Double Triode	9A	6–2	12.6 6.3	0.15 0.3	1.2 ③ 3.0 ④	330 ◈		8)	1 (Pins	
									3)		
7258	Triode-Pentode	9DA	6–2	13.5	0.21	2.3 🏶	330 ♦	330 ♦ 8 0.55 ♦	ĺ	e Section	
7266	High-Prequency Diode (Planar)	7266	T-X	6.3	0.215		Tube V	oltage	Drop:		
7289	High-Mu Triode	7289	T-X	6,0	1.0	100 ₺	1,000		6.3	0.035	2.0 ▲
7296	(Planar) High-Mu Triode (Planar)	7296	T-X	6.3	0.4	5.5 €	330 €		5,0 ▲	0.075	2.2 ▲
7310	Half-Wave, High- Voltage Rectifier	4P	T-X	5.0	6.5	-				=	
7311	Beam Power Amplifier	7311	T-X	6.3	0.8	21 🗃	300	300 2.75 €			
7312	Low-Mu Triode	7312	T-X	6.3	1.25	20 🖷	275				
7313	Half-Wave High- Vacuum Rectifier	7313	T-X	6.3	1.55	_			-		
7314	Power Amplifier Pentode	7314	T-X	6.3	0.6	10 🗟	300	300			_
7318	Twin Triode	9A	6–2	12.6 6.3	0.175 0.350	3.0 ₺	330 €		1.5▲	0.5▲	1.4 ▲

[⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance.

				Plate	Screen				Load	Power	***************************************
Service	Plate Volts	Screen Volts	Neg Grid Volts	Milli- am- peres	Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	for Rated Out- put, Ohms	Out- put, Watts	Tube Type
Class A	220	130	Rk == 62	12.5	3.5	400,000	7,000				7199
Amplifier {	100	50	R _k == 1000	1.1	0.35	1,000,000	1,500				
Class A Amp	215		8.5	9.0	<u> </u>	8,100	2,100	_17			
RF Oscillator	900	-	20	140		_	-			25	7211
Class AB ₁	400		100	40†					8,000‡	22	7212
Amplifier Class AB ₂ Amplifier	600	165	44	22†	0.6†	_	-		6,800‡	90	
Grid Control Rectifier	Max p	eak inv I voltag	erse vo	oltage ((max. i	nstantaneou = 1250 vo	us) ==	900 vo	lts; ma	x peak	7216/ C3JL
DC	508	-	Rk =			230	17,500	4.0		===	7233
Amplifier DC	1,500	150	$\frac{22}{1.0}$	5.0	2.0	1,000,000	3,800				7234
Amplifier											,
DC Amp	1,500		1.0	1.5			850				7235
DC Amplifier	150 120	_	24 14	60 100	_	=	12,500	4.8	_	=	7236
DC Amplifier	300 100	100 100	5.0	10.5 43	2.6 13.5	300,000 I _{ct} = 400	4,200 microar	E _{cs} =0	E _{c3} =0		7239
Class A	$\frac{1,500}{100}$	100	12	$\frac{0.2}{9.0}$		6,300	6,000	$\frac{\mathbf{E_{cs}} = 0}{38}$			7011
Amplifier 💠			R _k = 50 ⊕								7244
Class A Amplifier •	100	_	R _k = 50 ⊕	9.0		6,300	6,000	38	-		7244-A
Class A Amplifier	150		R _k =	13.5			11,000	50			7245
Class A Amplifier	150		R _k =	13.5			11,000	50			7245-A
Class A Amp	105		2.5	4.5		8,150	2,700	22			7246 ◉
Class A	250		2.0	1.2		62,500	1,600	100			7247
Amplifier Class A	100 250	_	1.0 8.5	0.5 10.5		80,000 7,700	1,250 2,200	100 17	_	_	
Amplifier \	100		0	11.8		6,500	3,100	20			
Class A Amplifier	125	125	R _k == 56	12	3.8	170,000	7,800	_	_	_	7258
Class A Amplifier	150	-	-3	15		4,700	4,500	21			
Detector	Max o	l-c outp max pe	ut curr	ent 🔷 == ent 🏵 ==	2.0 ma;	max peak	inverse	voltage	♦ = 600)	7266
Class C Amp at 500 Mc	900	_	40	90	=		-	_		40	7289
Class A Amplifier	200		R _k =	17		5,450	16,500	90			7296
Half-Wave Rectifier	Max	d-c outroeak cur	ut curr	ent = 11 50 ma	5 ma; r	nax peak in	nverse v	oltage =	= 20,000	volts;	7310
Class A Amplifier	300	200	12.5	48†	2.5†	35,000	5,300		4,500	6.5	7311
Class A Amplifier	135	_	R _k = 250	125		280	7,000	2	=		7312
Half-Wave Rectifier	Max max	d-c out	out cur	ent = 1	40 ma; 700 volt	max peak s; max pea	inverse	voltage	=2,800 00 ma	volts;	7313
Class A Amplifier	300	150	3.0	30†	7.0t		11,000		10,000	3.0	7314
Class A Amplifier •	250 100		8.5 0	11.5 13		7,000 5,800	2,350 3,500	16.5 21.3			7318

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 1, 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca	pacitano icofara	e in ds
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7327 👁	Twin Triode	8DG	3-1	6.3	0.3	0.95 💠	250 ₺		2.0▲	0.28 ₁ ▲ 0.30 ₂ ▲	1.5 🛦
7355	Beam-Power Amplifier	8KN	9-15	6.3	0.8	18 🕸	500 🏶	400 ♦ 3.5 ♦	Single		L
	•							0.0	Pull	ubes, P	
7357	Beam-Power Amplifier	7CK	T-X	26.5	0.3	20 🖷	400 ₪		Two T	Connecubes, Pu	tion 1sh-
						20 🕮	600 B	250 👰 3.0 🕮	Pull Pentod Two To Pull	e Conne ubes, Pa	ection ash-
7358	Beam Power Amplifier	7CK	T-X	6.3	1.25	10 🗷	3,500	500 ∰\$ 1.75 ₪		8.5 ▲	0.24
7360	Double Plate Sheet-Beam Tube	9KS	6–3	6.3	0.35	1.5 🏶	300 ♦	250 * 0.5 *		=	
7370	Medium-Mu Twin Triode	9H	6-2	20	0.26	4.75	330 €		4.0 ▲	0.61	4.0 ▲
	Twin Triode			40	0.13	8.5 ®				0.5₃ ▲	
7391	High-Mu UHF Triode (Planar)	6299	T-X	6.3	0.385	2.0 🖻	200 ₪		3.25 ▲	0.016	1.58
GL7399	Tetrode	GL 7399	TX	6.3	5,6	500	10000	2000		de-Plate 21.5; O	
7403	Beam-Power Amplifier	8JU	T-X	6.3	1.7	40 📵	4,000	850 ● 3.5 ●			_
7408	Beam-Power Amplifier	7AC	9-41	6.3	0.45	14 🗇	350 ◈		9.0▲	7.5▲	0.7
7427	Photoconductive Cell	9LN	6-3			0.4 🏶	350 ◈		-		-
7430	Sharp-Cutoff RF Pentode	7430	T-X	6.3	0.2	1.7	180	140 0.5	_		
7462	High-Mu Triode (Planar)	7462	T-X	6.3	0.24	1.0	250 🏶		1.8▲	0.032	1.2 4
7486	High-Mu Triode (Planar)	7077	3–16	6.3	0.24	1.0 🏶	250 ◈		1.7▲	0.01 🛦	1.0 4
7518/710L	Thyratron	7518/ 710L	T-X	2.5	9.0		Anode	Voltage	ргор :	=15 Vol	ts
7543	Sharp-Cutoff RF Pentode	7BK	5–2	6.3	0.3	3.0	300	300 \$ 0,65		e Conn d to K	
						3.2	250	_		Conne	
7548	Secondary Emission Hexode	9LJ	6-4	6.3	0.7	3.5 ◈	1,000	300 ♦ 1.5 ♦	8.0 ▲	3.1 ▲	0.027
7550 ◉	Twin Triode	8DG	3–3	6.3	0.500	A	150 🖭		4.0 ▲	0.241	4.0 ▲
				Ì		3.6 ₪		-	_	0.282	-
7881	Beam-Power Amplifier	9LK	6–3	13.5	0.36	10 📵	375 ₪	300 e 2.0 e	Single Two T Pull	Tube ubes, P	ush-

Service	Plate Volts	Screen Volts	Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms		Tube Type
Pulse Applications	Max 1	peak cat iec	hode cu		=1.25	imperes at	0.25% d	luty cy	cle; puls	e width	7327 ●
Class A	250	225	15	62†	3.2†	42,000	7,600		2,500	9.0	7355
Amplifier Class AB ₁	400	300	34	56†	3.5†		l _ l		5,0001	40	
Amplifier	300	250	21	100+	5.5		l		4,000	28.5	
Class AB ₁ Amplifier	400	-	100	40†		_	_		8,000	22	7357
Class AB: Amplifier	600	165	44	22†	0.6†	_	_	-	6,800‡	90	
Pulse Modulator	Max	pulse ca	thode c	urrent (E = 3.0 a	imperes (fo	r duty	cycle u	p to 0.3	%)	7358
Balanced	150	175	R _k = 150	8.5	2.1	l –	5,400		T —		7360
Modulator and Product Detector		tor vol	tage = 2		d-c						
Class A	250	-	12.5	12	<u> </u>	3,000	5,400	16 17			7370
Amplifier 💠	180 120	=	7.0 2.0	23 36	=	2,000 1,560	8,500 11,500	18	=	=	
Class A	175		1.5	10		ļ <u>.</u>	11,000	62			7391
Amplifier		1400		10	470		11,000	02		52000	
RF Amp/Osc Class B	9000		125		470	_			-	52000	GL7399
Class C	4800	1000		1200	100					11000	
DC Ampli- fier	600	300	R _k = 825	32.5	1.5		6,000				7403
Class A Amplifier	250 60	250 250	12.5 0	100	4.5† 22	50,000	4,100		5,000	4.5	7408
Relay	Spect	ral Rest	onse, S	-15; sen	sitivity	, 4,000 mic	roampe	res per	foot-car	ndle	7427
Control Class A	180	polarizi	ng voit	age = 50 7.7	2.4	mum curre	$nt \circledast = 2$	U millia	mperes	I	7430
Amplifier	120	120	2.0	7.5	2.5	300,000	5,000		_		1 200
Class A Amplifier	150		R _k = 910,	7.2		9,000	10,500	94	_		7462
_		_	$\begin{array}{c} E_{c1} = \\ +6.0 \end{array}$		-	_	_		-	-	
Class A Amplifier	150	_	R _k =	7.5			10,500	90			7486
	100	يصا	0	8.0	<u> </u>	<u> </u>	11,500		<u>l — </u>		
Controlled Rectifier	Max 1 500	d-c cati	lode cu	rrent 😥 k catho	=2.5 a da curre	mperes; ment • = 30 a	ax peak	invers	e voltas	ge 🖷 =	7518/ 710L
1	250	150	R _k = 68	10.6	4.3	1,000,000	5,200				7543
Class A	250	125	68 R _k = 100	7.6	3.0	1,500,000	4,500				
Amplifier	100	100	R _k =	5.0	2.1	500,000	3,900		-	_	
Class A Amplifier	250	-	R _k == 330	12.2	_	_	4,800	36	-	-	
Class A Amplifier	300	50	1.5	18.0	2.0	_	26,000	-12	olts de curi ma		7548
Pulse Applications	Max 1 2.5 μs	eak cat ec	hode cu	rrent 🖲	=3.0 ar	nperes at 0.	.25 % du	ty cycl	e; pulse	width	7550 €
Class A	250	250	18	40	3.0		5,300	Ee3 =	Volts		7661
Amplifier Class AB ₁ Amplifier	300	250	21	4 0†	2.0†	Ect = 0 Volts			5,000‡	20.5	

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

[Maximum screen dissipation appears immediately below the screen voltage.

§ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7558	Beam-Power Amplifier	9LK	6–3	6.3	0.8	10 📵	375 ₪		Single Two Ti Pull	Tube ubes, Pu	ısh-
7576 ◉	High-Mu Triode	8KM	3-3	6.3	0.45	4.1 🖲	250 ◉			<u> </u>	
7581	Beam-Power Amplifier	7AC	12-15	6.3	0.9	30 ◈	500 ◈	450 ♦ 5.0 ♦	Single	Tube	
									Pull	ubes, P	
						30 ◈	450 ◈		Pull Triode	ubes, P Connec d P tied	ction
7581-A	Beam Power Amplifier	7AC	12-15	6.3	0.9	35�	500 ◈	450 ♦ 5.0 ♦	Pentod	e Conne	ection
						35 ◈	450 ◈	-	Triode (G ₂ and	Connect 1 P Ties	tion 1)
7586	Medium-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.14	1.0 ●	110	_	4.2 ▲	1.4	2.2 ▲
7587	Sharp-Cutoff Tetrode (Nuvistor)	12AS	4-5	6.3	0.15	2.2 📵	250 ₪	110 0 0.2 0	7.0▲	1.4 ▲	0.015
7588	High-Mu Triode (Planar)	7296	T-X	6.3	0.4	5.5 ◈	300 ◈		6.5 ▲	0.075	2.8 ▲
7591	Beam-Power Amplifier	8KQ	9-41	6.3	0.8	19 🆠	550 ◈	440 ♦ 3.3 ♦	Single Two T Pull	Tube ubes, P	ush-
7591-A	Beam Power Amplifier	8KQ	9-41	6.3	0.8	19 🆠	550 ◈	440 ③ 3.3 ④	Single	Tube ubes, P	ush-
7607	Beam-Power Amplifier	7CK	12-44	6.3	1.6	23 🗨	600 ₪	400 ● 4.0 ●	15 ▲	8.5 ▲	0.28 🛦
7623	Beam Pentode	6AM	T-X	6.3	1.6	37.5 €	1,250	6.0 ●	17 ▲	13.5 ▲	0.25 ▲
7624	Beam Pentode	6AM	T-X	12.6	0.8	37.5 €	1,250	600 ● 6.0 ●	17 ▲	13.5 ▲	0.25 ▲
7625	High-Mu Triode (Planar)	7462	T-X	6.3	0.215	0.8 🏶	275 ◈		1.5 ▲	0.03	1.5 ▲
7626 ◉	Power Amplifier Pentode	7626	2-1	1.25	0.125	1.1 🗨	135 €	135 © 0.4 ©	3.2 ▲	2.9 ▲	0.1 ▲
7644	High-Mu UHF Triode (Planar)	6299	T-X	6.3	0.3	2.0	200 €		3.65 ▲	0.02	1.75 ▲
7645	Twin Tetrode	9HL	6–2	${6.3 \atop 12.6}$	0.6	2.75 ● ♠	250 €	200 © 3.0 ©	Two S Pull	ections,	Push-
GL7669/ GL7669 -PC	Ignitron	GL 7669	ТX	-	-	_	-	-	-	-	-
GL7669	Ignitron	GL 7669	TX	-	_	-	-	-	-	-	-
GL7669 -PC	Ignitron	GL 7669	TX	-	-	-	-	-	_	<u>l -</u>	-
GL7671/ GL7671 -PC	Ignitron	GL 7671	TX	_	_		_	_	_	_	

Compactron.
Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	Load for Rated Out put, Ohms	Power Out- put, Watts	Tube Type
Class A	250	250	18	40	3.0		5,300	E _{c3} =	0 Volts		7558
Amplifier Class AB ₁ Amplifier	300	250	21	40†	2.0†	$E_{c3} = 0$ Volts			5,000‡	20.5	
Class A Amplifier	200	_	R _k = 150	15.5			10,700	46		_	7576 ●
Class A Amplifier Class A Amplifier	350 300 250 270 250	250 200 250 270 250	18 12.5 14 17.5 16	54† 48† 72† 134† 120†	2.5† 2.5† 5.0† 11† 10†	33,000 35,000 22,500 —	5,200 5,300 6,000		4,200 4,500 2,500 5,000‡ 5,000‡	10.8 6.5 6.5 17.5 14.5	7581
Class AB ₁ Amplifier Class AB ₂ Amplifier Class A	450 360 360 360 360 250	400 270 270 270 270 225	37 22.5 22.5 22.5 18 20	116† 88† 88† 88† 78† 40†	5.6† 5.0† 5.0† 5.0† 3.5†		- - - 4,700		5,600 3,800 6,600 3,800 6,000 5,000	55 18 26.5 47 31 1.4	
Amplifier	<u> </u>		<u> </u>	****	1			<u> </u>		<u> </u>	
	Servic	e, opera	iting co	nditions	s, and ch	aracteristi	cs given	above	for 7581	apply	7581-A
Class A Amplifier	758		R _k = 100	10.5		3,000	11,500	35			7586
Class A Amplifier	125	50	R _k = 68	10	2.7	200,000	10,600				7587
Class A Amplifier	200	_	R _k = 270; E _{c1} = +6	24	_	3,900	45,000	175			7588
Class A ₁	300	300	10	60†	8.0†	29,000	10,200		3,000	11	7591
Amplifier Class AB ₁ Amplifier	450	400	21	66†	9.4†		_	_	6,600‡	45	
Class A Amplifier	300	300	10	60†	8.0†	29,000	10,200		3,000	11	7591-A
Class AB ₁ Amplifier	450	400	21	66†	9.4†				6,600‡	45	
Class A Amplifier	300	225	17.0	80	6.0	40,000	8,000				7607
Class C Amplifier	1,250	300	115	160	20		_			162.5	7623
Class C Amplifier	1,250	300	115	160	20					162.5	7624
Class A Amplifier	150		R _k =	0.95		57,000	1,400	80			7625
Class C Amplifier	120	120	20	10	2.0					0.6	7626 ●
Class A Amplifier	175	_	Adjust for I _b = 10 ma	10		_	15,000	110	_		7644
Frequency Tripler	170	150	100	40	10		_		_	1.5	7645
Resistance Welding	anode of 200.		GL7669/ GL7669 -PC								
Frequency Changer		anode	curr. 5			ax, peak a anode curr					GL7669
Frequency Changer	Max. poing av. anode o	eak inve anode urr. 108	erse volt curr. 4 3 A.	A.; m	ax. av.	ax. peak a anode cur	r. 18 A	.; corre	espondir	ig peak	GL7669 -PC
Resistance Welding	Max, si anode KVA 4	ling av. demand	GL7671/ GL7671 -PC								

Metal tubes are shown in bold-face type, miniature tubes in italics.

♦ G3 and G5 are screen. G4 is signal-input grid.

♥ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

■ Maximum screen dissipation appears mediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Cap P	acitance icofarad	e in s
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
GL7672	Ignitron	GL 7672	тx	-	_			-	_		
GL7672 -PC	Ignitron	GL 7672	тх	-	-	_	-	-	_	_	
GL7673/ GL7673 -PC	Ignitron	GL 7673	TX	_	_	-	-	-	-	_	
GL7673	Ignitron	GL 7673	ТX	_	_	_	-	-	_	_	
GL7673 -PC	Ignitron	GL 7673	тx		-		-			_	
GL7681/ GL7681 -PC	Ignitron	GL 7681	TX			_		_	-		
GL7681	Ignitron	GL 7681	тx		_	_	_	_	_	_	
GL7681 -PC	Ignitron	GL 7681	TX		_					–	
7683	High Voltage Pentode	9MN	6-3	6.3	0.15	15 📵	1,000	250 🗑 0.7 🗑	-	-	_
7687	Triode-Pentode	9AE	6-3	6.3	0.5	3.0♦	330 �	330 ♦	Pentod	e Section	n
						2.4 🏶	330 🏶	0.6	Triode	Section	
7688	Medium-Mu Triple Triode	12BA	7-3	6.3	0.45	3.0 ◈	330 ◈	_	-	-	
7689	High-Mu Triple Triode	12BA	7-3	6.3	0.45	1.1 🏶	330 ◈			_	
7690	Medium-Mu Triple Triode	12BA	7-3	6.3	0.45	2.8 ♦	330 ◈				_
7695	Beam-Power Amplifier	9PX	T-X	50	0.15	16 🏶	150 ◈	150 ♦ 2.5 ♦	Single Two T Pull	Tube ubes, F	ush-
7701	Beam-Power Amplifier	9MS	6-3	13.6	0.16	9.0	350 ◈	300 ♦ 3.5 ♦	7.0 ▲	3.6 ▲	0.15
GL7703	Ignitron	GL 7703	тх		_	_			_	_	_
7716	Triode Pentode	9DX	6–3	13.6	0.35	5.0 🏶		330 ♦ \$ 1.1 ♦	l		
7717	Sharp-Cutoff RF Tetrode	7EW	5-2	6.3	0.2	1.0 ♦	330 ◈	180 \$	4.4	Section 2.74	0.3 4
7719	Medium-Mu Triode	9MX	6–3	6.3 12.6	0.45 0.225	6.0♦	330 ◈		6.5 ▲	1.0▲	5.5 ▲
7720	High-Mu Triode (Planar)	7462	T-X	6.3	0.24	1.0 🏶	250 �	_	1.8▲	0.032	1.3 ▲
7721	RF Pentode	9EQ	6–3	6.3	0.32	4.0 €	220 🖲	180 (a)	10 🛦	2.0 ▲	0,035
7722	RF Pentode	9EQ	6–3	6.3	0.32	4.0	220 🖲	180 a 1.1 a	9.3 ▲	2.6 ▲	0.035
7724	Duplex-Diode Triode	9KR	6–2	14.0	0.15	1.1 🏶	330 ◈	-	1.6 Diode	0.24 Section	1.8

Compactron.

Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

				Plate	Screen]		Load	Power	
Service	Volts	Screen Volts	Neg Grid Volts	Milli- am- peres	Milli- am- peres	R _p , Ohms	G _m , μmhos	Fac- tor	for Rated Out- put, Ohms	Out- put, Watts	Tube Type
Frequency Changer	ineak a	node cu	rr. 420 /	۹.		max. pea			1500 A ; corres		GL7672
Frequency Changer	Max. 1 spondi 336 A.	oeak inv ng av. a	verse vo node cu	oltage l irr. 16 .	500 V.; A.; max	max. pea . av. anode	k anode curr. 5	curr. 6 A.; p	1200 A eak ano	; corre- de curr.	GL7672 -PC
Resistance Welding	Max. s	upply v	olts RM	IS 250-	600; ma	x. demand urr. 355 A	KVA 2	400; co	rrespon	ding av.	GL7673/ GL7673 -PC
Frequency Changer	spondii peak a	ng av. a node cu	; corre- ponding	GL7673							
Frequency Changer	Max. 1 spondi: peak a	eak inv ng av. a node cu	; corre- ponding	GL7673 -PC							
Resistance Welding	anode o	curr. 13	5 A.; m	ax. av.	anode c	x. demand urr. 220 A	.; corres	ponding	demar	id KVA	GL7681/ GL7681 -PC
Frequency Changer	spondir peak ar	ng av. a node cui	mode ci r. 630 A	ırr. 30 \.	A.; max	max. pea x. av. anoc	ie curr.	105 A.	; corres	ponding	GL7681
Frequency Changer	spondir peak ar	ng av. a node cur	node c r. 502	urr. 24 \	A.; ma	max. pea x. av. ano	de curr	curr. 84 A.	1800 A.; corres	; corre- ponding	GL7681 -PC
DC Ampli- fier	800 600 300	250 250 250	1.0 1.0 0.5		1.6 1.7 2.2	35,000 34,000 28,000	4,200 4,200 4,200	=	=		7683
Class A Amplifier	220	130	R _k = 62	10	3.4	500,000	5,800				7687
Class A Amplifier	215		8.5	7.5		7,200	2,500	18			- 5000
Class A Amplifier •	250 100		8.5 0	10.5 11.8	_	7,700 6,500	2,200 3,100	17 20	_		7688
Class A Amplifier	250 100		1.0	1.2 0.5		62,500 80,000	1,600 1,250	100 100			7689
Class A Amplifier •	250 100		2.0 1.0	10 3.7		10,900 15,000	5,500 4,000	60 60			7690
Class A Amplifier	130	130 140	11.0 R _k =	100† 210†	5.0† 9.0†	7,000	11,000	_	1,100 1,500‡	10	7695
Class AB ₁ Amplifier	130	130	50	195†	9.0†				1,800‡	10	
Class A Amplifier	250	250	12.5	28	3.1	31,000	3,600				7701
Capacitor Discharge	Max. voltage	forward 20000 per min	peak volts; r ute 2.	anode nax. pe	voltage ak anod	20000 vole curr. 100	lts; ma: 0,000 A.	k, inver ; typica	rse pea il discha	k anode irge rate	GL7703
Class A Amplifier	200	125	R _k =	24	5.2	70,000	10,000	_		_	7716
Class A Amp	$\frac{125}{125}$	80	1.0	1.5	1.4	35,000 125,000	2,900	102		_=_	7717
Class A Amplifier Class A	300		10.5	4.0	1.4	7,100	3,500	25		- <u>-</u> -	7719
Amplifier	150		R _k =	7.5			10,500	90			7720
Class A Amplifier	100		82	9.0		_	11,500			_	1120
450 Mc UHF Oscillator	150		$R_g = 7,500$	4.0	=	=		$I_c = 0$	5 ma	0.1	
Class A Amplifier	190	160	R _k = 400; E _{ci} = +10	22	6.0	120,000	35,000				7721
Class A Amplifier	190	160	R _k = 370; E _{ci} = +8	20	6.0	100,000	26,000	_			7722
Class A	250	=	3.0	0.7	_	72,000	1,000	72	_		7724
Amplifier FM Det.	Max o		ut curre	ent 🏶 💠	=5.0 m	ia; tube vo	ltage dr	op • : 5	.0 volts	at 18	

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

1, 2, 3, etc. indicate tube sections.

¶ Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts		acitanc icofarac	
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7725	Thyratron	FG- 27-A	T-X	2.5	9.0		Anode	Voltage	Drop =	=15 Vol	ts
7726	Thyratron	7518/ 710L	T-X	2.5	9.0		Anode	Voltage	Drop =	=15 Vol	ts
7728	Medium-Mu Twin Triode	9A	6–2	12.6 6.3	0.15 0.3	2.8 ◈	330 ◈	_	2.2 ▲	0.5 ₁ ▲ 0.4 ₂ ▲	1.5 🛦
7729	High-Mu Twin Triode	9A	6-2	12.6 6.3	0.15 0.3	1.1 🏶	330 ◈		1.6 ▲	0.46 ₁ ▲ 0.34 ₂ ▲	1.7▲
7730	Medium-Mu Twin Triode	9A	6–2	12.6 6.3	0.15 0.3	3.0♦	330 ◈		1.8	2.0	1.5
7731	Triode-Pentode	9AE	6–2	6.3	0.45	3.0 ♦	330 ◈	330 ♦ \$ 0.6 ♦	Pentod	e Sectio	n
						3.0 ◈	330 ◈		Triode	Section	
7732	Sharp-Cutoff RF Pentode	7CM	5-2	6.3	0,3	2.3 🆠	330 ◈	330 ♦ \$ 0.55 ♦	6.5	3.0	0.15
7788	Sharp-Cutoff Pentode	9BF	6–3	12.6 6.3	0.3	6.5 ◈	330 🏶	190 ③	10.7 🏶	4.0 ▲	0.063
7734	Triode-Pentode	9LC	6–3	6.3	0.9	1.0♦	330 🏶	275 ③	Pentod	e Section	
						7.0 ◈	275 🏶		Triode	Section	. •
7737	RF Pentode	9MZ	6-1	6.3	0.32	3.0 €	210 🖲	175 ⊕ 0.7 ⊕	7.6 ▲	3.3 ▲	0.03 ♣
7738	High-Frequency Triode	7DK	5–1	6,3	0.225	5.0 ♦	330 🏶		3.0	1.8	1.7
7751	Beam-Power Amplifier	8KB	T-X	6.3	1.2	10	250 ₪	250 € 5.0 €	17.5▲	9.0▲	1.3
7754	Beam-Power Amplifier	9PX	T-X	6.3	1.2	16 🏶	150 ◈	150 ♦ 2.5 ♦	Single	Tube	
									Two T Pull	ubes, P	ush-
7757	Beam Power Amplifier	9NE	T-X	6.3	0,6	14 🖲	3,000	700 € 3.0 €		<u> </u>	-
7759 🌑	Medium-Mu Twin Triode	8DG	3-1	26.5	0.09	1.1 🖹	165 🖲	=	2.2	1.3	1.4
7760 €	Medium-Mu Twin Triode	8DG	3-1	26.5	0.09	<u> </u>	55 ₪	=	2.5	1.3	1.8
7761 👁	Semi-Remote Cutoff Pentode	8DL	3-3	26.5	0.11	4.0 €	165 🖲	155 ⊕ 1.0 ⊕	8.5	8.0	0.18 💠
7762 ®	Power Amplifier Pentode	8DL	3-3	26.5	0.11	4.0	165 🖼		6.5	7.5	0.11
7763	Double-Plate Sheet-Beam Tube	9NF	6-3	6.3	0.3	0.75 📵	330 ₪	330 @ 1.5 @	_		
7768	High-Mu Triode (Ceramic)	7768	T-X	6.3	0.4	5,5 🙉	330 €		6.0▲	0.025	1.7▲
7784	High-Mu UHF Triode (Planar)	7784	T-X	6.3	0.3	2.0	200 🗉		3.65 ▲	0.02 ▲	1.75 ▲
7788	Pentode	9NK	6-2	6.3	0.34	5.0 📵	250 €	200 @ 1.0 @	16	4.1	0.035
7802	Low-Mu Twin Triode	8BD	12-43	6.3	2.5	13 🗨	250 €				
7803	Medium-Mu Twin Triode	9AJ	6-2	6,3	0.365	3.5 ◈	200 @	_	3.3	2.5	1.4
7815	High-Mu Triode (Planar)	7815	T-X	6.0	1.0	10 🖲	3500 @ Peak	i -	6.3 ▲	0.035	2.05 ▲
7815R	High-mu Triode (Planar)	7815R	T-X	6.0	1.0	10 📵	3500 Peak		6.3 ▲	0.035	2.05 ▲
7841	Diode (Planar)	7266	T-X	6.3	0.215	_	Tube	Voltage its at 5.	Drop: 0 ma d-	-	

Compactron.
† Zero signal.
• Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

See X-Radiation Warning, page 4.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Total for all similar sections.
 Absolute maximum rating.
 #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Controlled Rectifier	Max 6	l-c cath volts; n	ode cu	rrent 🖲 k catho	=2.5 ar de curre	nperes; ma nt • = 30 a	ax peak imperes	inverse		e 🖲 =	7725
Controlled Rectifier	3,500	l-c cath volts; n	nax pea	k catho	=2.5 ar de curre	nperes; ma nt 🖲 = 30 a	mperes		voltag	e ● =	7726
Class A Amplifier 4	250 100	=	2.0 1.0	10 3.7		10,900 15,000	5,500 4,000	60 60			7728
Class A Amplifier 🌩	250 100	_	2.0 1.0	$\frac{1.2}{0.5}$		62,500 80,000	1,600 1,250	100 100			7729
Class A Amplifier 🌩	250 100		8.5 0	10.5 11.8		7,700 6,500	2,200 3,100	17 20			7730
Class A Amplifier Class A Amplifier	250 150	110	R _k = 68 R _k = 56	10 18	3.5	400,000 5,000	5,200 8,500	40	_	_	7731
Class A Amplifier	250	150	$\frac{R_{\mathbf{k}} =}{200}$	8.5	2.5	600,000	6,000	G _s cor	nnected de at	to	7732
Class A Amplifier	250	180	$\frac{R_k}{100} =$	24	5.0	90,000	12,000	G ₃ co	nnected de at	to	7733
Class A Amplifier	150	150	2.0	5.5	1.7	340,000	3,200	_	_	- 1	7784
Series Regulator	150	_	21	35		1,080	5,000	5.4	-	-	
Class A Amplifier	180	150	R _k =	11.5	2.9		15,900		=0 vol	ts	7737
Class A Amplifier	200		R _k = 100	12			9,500	80			7738
lass A Amplifier	100	100		100	7.0	5,000	14,000				7751
Class A Amplifier	130	130		100†	5.0†	7,000	11,000		1,100	4.5	7754
Class AB ₁	140 130	140 130	R _k = 50 12.0	210† 195†	9.0† 9.0†				1,500‡ 1,800‡	10 10	
OC Ampli-	250	250	12.5	45	3.5		4,100	=	1,0001		7757
Class A Amplifier •	100	_	R _k =	6.5			5,400	35			7759 ●
Class A Amplifier •	26.5		R _g = 2.2 meg.	3.0			5,000	20			7760 ●
Class A Amplifier	150	100	R _k =	21	4.0	50,000	9,000			_	7761 ●
Class A Amplifier	110	110	Rk = 270	30†	2.2†	15,000	4,200	_	3,000	1.0	7762 ●
F Ampli- ier-Limiter	135 Deflect voltag	300 ctor · Vo ge = 10 ·	0 ltage = volts R	4.2⊕ 135 vo MS	4.0 lts d-c	(each defi	lector);	deflect	or-to-de	flector	7763
Class A Amplifier	200	_	Rk = 270 Ec1 = +6	24	-	4,500	50,000	225		_	7768
Class A Amplifier	175	_	Adjust for Ib = 10 ma	10	_		15,000	110	_		7784
Class A Amplifier	135	165	R _k = 360; E _{e1} = +12.5	35	5.0	_	50,000	_			7788
DC Ampli- fier ♠	100		4	115			20,000	8.5			7802
Class A Amplifier •	90		1.3	15	-	_	12,500	33			7803
Plate-Pulsed Oscillator	3500			9.0		_	 - - 		_	2,000 Peak	7815
Plate-Pulsed Oscillator	3500		-	9.0	-		\ <u> </u>	-		2,000 Peak	7815R
Half-Wave Rectifier			out curr			max peak	inverse	voltage	♦=350		7841

Metal tubes are shown in bold-face type, miniature tubes in italics.

§ G3 and G5 are screen. G4 is signal-input grid.

§ G2 and G4 are screen. G3 is signal-input grid.

§ 3. 2, etc. indicate tube sections.

Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila-	Fila- ment	Max Plate	Max Piate	Max Screen Volts	Ca ₁	pacitanc Picofarac	e in Is
Type	by Construction	nec- tions	Dwg	ment Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
7851	Tetrode	7GE	T-X	2.5	0.2	-	12	12	2.6 ▲	1.8▲	0.19 🛦
7855	High-Mu UHF Triode (Planar)	7815R	T-X	6.0	1.0	20 🗷	2500 ©		6.3 ▲	0.06	2.5 ▲
7861 5★	High-Frequency Twin Triode	8CJ	6-1	12.6	0.175	1.35	330 🏶		2.2 ▲	1.0▲	1.1 ▲
7867	Beam-Power Amplifier	5BT	12-21	6.3	2.5	24 🏶	700 ◈	175 ♦ 3.6 ♦	Single Two T	Tube ubes, P	ush-
7868	Power Amplifier Pentode	9RW	9-85	6.3	0.8	19 🏶	550 ◈	440 ♦ 3.3 ♦	Single 2 Tube	Tube s, Push	Pull
7887 ●	Medium-Mu Twin Triode	8DG	3-1	26.5	0.09	1.1 😥	165 🕥		2.1	1.31	1.4
7888	Medium-Mu Triode	8DK	3–1	26.5	0.045	3.3 👁	165 📵		2.4	2.4	1.3
7889 🌘	Medium-Mu Twin Triode	8DG	3–1	26.5	0.09	0.55 ₪	165 🗷	=	2.2	1.3 ₁ 1.4 ₂	1.0
7892	Twin Triode	9H	6-2	12.6 6.3	0.45 0.9	4.2 ♦ 7.5 ♦	330 ◈	_	4.0 ▲	0.6₁ ▲ 0.5₂ ▲	4.0 🛦
7894 •	Glow-Discharge Diode Voltage Regulator	7894	T-X	-		-	_	_		_	_
7895	High-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.135	1.0 ∰	110 🗟		4.2 ▲	1.7▲	0.9
7898	High-Mu Twin Triode	9EP	6-2	13.5	0.15	2.75	330 €	==	2.5	1.2 _i 1.3 ₂	1.6
7905	Beam Power Amplifier	9PB	6-3	6.3	0.65	10 📵	300 ₪	250 ₪ 1.5 ₪	8.5 ▲	5.5 ▲	0.14
7910	Plate-Pulsed UHF Oscillator (Planar)	7910	T-X	6.3	0.275	1.5	1200 E Peak	_	2.1 ▲	0.02 ▲	1.0▲
7911	Plate-Pulsed UHF Oscillator (Planar)	7911	T-X	6.3	0.55	6.5 🕒	3000 @ Peak		5.0 ▲	0.05 🛦	1.4 ▲
7913	High-Mu Triode (Planar)	7768	T-X	6.3	0.4	5.5 €	330 🖪		6.0▲	0.03 🛦	2.4 ▲
7962 ●	Twin Triode	8DG	3-1	6.3	0.24	1.0 🕞	100 🖲		3.0	1.1	2.4
7963 🖷	Twin Triode	8DG	3-1	6.3	0.35	1.1 🖸	165 📵	-	4.0	1.0 ₁ 1.3 ₂	2.7
7979 🌑	Gas Triode	7979	T-X	1.25	0.25						_
7985	Twin Tetrode	9PS	6-4	3.15	1.65	7.0 (9)	300 ₹	200 B	Two S Push-F	ections, Pull	
7984	Beam Power Amplifier	12EU	12-56	13.5	0.58	35 🗑	750 🖲	250 🗃 3.0 🖻	16▲	6.0▲	0.16
GL7985	Tetrode	GL 7985	TX	6.7	13.5	3500	7000 4500 7000	750 500 750		ie-Plate 28.0; O	
7994 🌑	Triode	8KM	3-1	6.3	0.25	2.0	200	 —]	
7995 🌑	Sharp-Cutoff Pentode	8KZ	3-1	6.3	0.25	1.6	200 📵	165 ● 0.6 ●	8.5	2.75	0.035

See X-Radiation Warning, page 4.

Zero signal.
Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Service	Piate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type	
Class A Amplifier	11.0	11.0	2.2	0.016	_	1,700,000	40	5			7861	
Grid-Pulsed Oscillator	1700		45	1900 peak					-	1,500 peak	7855	
Class A Amplifier •	150		R _k =	8.2		6,400	5,500	35	_		7861 5★	
Class A ₁	250	90	Rk = 120	80 †	1.0†	12,000	10,000		3,000	7.5	7867	
Amplifier Class AB ₁ Amplifier	450	150	35	58†	1.4†		_		5,000‡	65		
Class A Amplifier	300	300	10	60†	8.0†	29,000	10,200	_	3,000	11	7868	
Class AB ₁ { Amplifier	450 450	400 400	21 R _k = 170	40† 86†	5.0† 10†	=	=	=	6,600‡ 10,000 ‡	44 28		
Class A Amplifier •	100		R _k = 220	8.5			5,000	20	_		7887 ●	
Class A Amplifier	150	_	R _k =	13			6,500	27			7888 ●	
i impinio	100	_	R _k =	8.5	-	_	5,800	27	_	-		
Class A Amplifier	150		Rk = 820	1.75			2,500	70			7889 ●	
	100	_	R _k = 1500	0.8	-	_	1,800	70	_	-		
Pulse Amplifier •	Max 1	1500										
{ d-c operati				nin. } Io ax. } O R	nization perating egulation	voltage = voltage = n (0.03 to	3,300 vo 3,000 vo 0.85 mil	olts d-c olts d-c liampe	res =85	volts)	7894 ●	
Class A Amplifier	110		R _k = 150	7.0	_	6,800	9,400	64	<u> </u>		7895	
Class A Amplifier •	250		R _k = 200	10	_	10,900	5,500	60	_	_	7898	
Class C Amplifier	300	160	36	50	2.5			_		5.5	7905	
Plate-Pulsed Oscillator at 5,900 Mc	power	output	=100 w	atts		RF = 1,000;					7910	
Plate-Pulsed Oscillator at 4,100 Mc	Peak power	plate vo output	oltage = = 2.2 k	3,000 v ilowatts	olts; Pl	RF = 1,000;	PD =1	.0 mier	osecond	; peak	7911	
Class A Amplifier	200	<u> </u>	R _k =	25	-	2,500	40,000	100			7913	
Class A Amplifier •	60	_	R _k =	7.8	=	2,100	10,000	21			7962 ●	
Class A Amplifier •	100		R _k = 270	7.5		3,100	13,000	40	_		7963 ●	
Indicator		anode c		8 = 11 r	na max;	d-c anode	current	⊕ =3 :	na max		7979 ●	
Class C Amplifier	250 R _{g2} =	250 8 22,000	ohms	90	8.4		_	_	-	11	7983	
Class A Amplifier	200	125	20	125	4.5		7,300	_			7984	
Class C Amp	450	200	60	180	12				<u> </u>	46	A	
RF Amplifier Class B	7000	600	35	475	10	-	-	_	1 -	1100	GL7985	
Class C Telephony	4000	400	100	570	20	_	_	-	-	1250		
Amp/Osc Telegraphy	6500	700	100	800	25					3200		
Class A Amplifier	100		R _k = 82	13		22,000	18,000	42			7994	
Class A Amplifier	150	150	R _k =	8.0	2.0	85,000	13,000				7995 ●	

Tube Type	Classification by	Base Con-	Out- line	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Cap P	acitance icofarad	e in s
Type	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
GL7998/ GL7998 -PC	Ignitron	GL 7998	ТX	_	_	_	—	_		_	_
GL7998	Ignitron	GL 7998	тx	_	-	-		-			-
GL7998 -PC	Ignitron	GL 7998	тx	_	_	_					
8008	Half-Wave Mercury- Vapor Rectifier	2P	T-X	5.0	7.5	_	Tube \	oltage	Drop =	10 Volt	S
8032	Beam Power Amplifier	7CK	T-X	13.5	0.585	20 🖻 20 🖷	400 🖻	250 ® 3.0 ®	Two T Pull Pentod	Connecubes, Processing Connecution Connecu	ısh- ection
8032-A	Beam Power Amplifier	7CK	T-X	12.6	0.562	27 🖲	600 €	250 ⑤ 3.0 ⑥	Pull Pentod	e Conne ubes, P	ction
8042	Beam Power Amplifier	8LJ	T-X	1.6	3.2	25 ◉	650 €	200 ⑤ 5.0 ⑥	13.5 ▲	8.5 ▲	
8056	Medium-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.135	0.45	50 ₪		4.0	1.7	2.1
8058	High-Mu Triode (Nuvistor)	12CT	4-6	6.3	0.135	1.5 €	150 €		=	_	=
8064 ●	Semi-Remote-Cutoff Pentode	8DL	3-1	26.5	0.045	0.75 🔳	165 €	155 ● 0.35 ●	4.0	3.4	0.015
8068	Beam Pentode	8LC	12-20	6.3	0.9	35 €	3500 €		10▲	5.5 ▲	0.6
8070	High-Mu Triode	8LD	3-1	6.3	0.125	1.0 📵	165 🖲		3.3	2.1	1.7
8071 ⊚	High-Mu Triode	8LE	3–1	6.3	0.125	2.0 €	165 €		4.0	1.8	2.4
8077	Pentode	9GK	6–2	13.5	0.275	5.0 €	330 ₪	180 ®	10.2 ▲	3.5 ▲	0.068
8081	Triode (Ceramic)	8081	T-X	6.3	0,22	0.85 🖲	275 🖲		1.5▲	0.03 🛦	1.0
8082	Triode (Planar)	8081	T-X	6.3	0.24	1.0 €	250 🖲		1.8 ▲	0.032	1.3 ▲
8083	Triode (Planar)	8081	T-X	6.3	0.24	1,1 🖷	250 €	_	1.8▲	0.032	1.2
8084	Sharp-Cutoff RF Pentode	7CM	5-2	13.5	0.16	2.3 €	250 ₪	180 2 🖲	8.0	3.0	0.04
8096 ⊚	Triode	8FY	3-1	6.3	0.2	0.5	150	_	1.75▲	0.6 ▲	2.0
8100	Photoconductive Cell	8100	T-X			0.3	400	_	-		-
8102	Triode-Pentode	9PJ	6-2	13.5	0.23	2.5	330 🖲	330 % ©	Pentod	e Section	on
8103	Medium-Mu Twin	8DG	3-1	26.5	0.075	2.5 📵	330 ⑤ 55 ⑥		Triode 3.8	Section	2.7
8106	Triode Beam Pentode	9PL	6-2	13.5	0.25	6.0 €	330 €	300 ⋑	10▲	2.8 ▲	0.09 🛦
8108	Medium-Mu Triode	8108	T-X	6.3	0.735	12.5 🗨	300 €	1.25 🗨	3.0 ▲	0.035	1.4▲
8113 5 ★	(Planar) Sharp-Cutoff RF Tetrode	7EW	5–2	6.3	0.2	2.0 €	180	180 8 🖲	4.3	2.8	0.035
8116	Tetrode	8116	TX	26.5 13.25	0.433 0.866	2x30 🖲	1000 €		11.8	3.7	0.09
8116A	Tetrode	8116.	TX	13.25	1.0	2x30 🖭	1000 🖭	360 ₺	11.8	3.7	0.09
8117	Tetrode	8117	TX	12.6 6.3	0.9 1.8	2x30 🖭	1000 🖻	360 🖻	11.8	3.7	0.09
8117A	Tetrode	8117/	TX	13.25	1.0	2x30	1000 👳	360 €	11.8	3.7	0.09

Compactron.
† Zero signal.

Per section.

[†] Plate-to-plate. †Maximum. Supply voltage. See X-Radiation Warning, page 4.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

Total for all similar sections.
 Absolute maximum rating.
 Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Resistance Welding	Max. st anode of 600.	upply v curr. 13	olts RM 5 A.; m	IS 250-6 ax. av.	300; ma anode c	x. demand urr. 220 A.	KVA 1.; corres	800; co	rrespond deman	ling av. d KVA	GL7998/ GL7998
Frequency Changer	Max. p	eak inv	verse vo mode cu r. 630 A	ltage 1: irr. 30	200 V.; A.; max	max. peal	k anode le curr.	curr. : 105 A.	2250 A.; corres _i	; corre-	-PC GL7998
Frequency Changer	Max, p spondin	eak inv gav. a	rerse vo mode ci	ltage 1 urr. 24	500 V.; A.; ma	max. peal	k anode de curr.	curr. 84 A.	1800 A. ; corres	; corre- ponding	GL7998 -PC
Half-Wave Rectifier	Max	i-c out	out cur	rent 🖨 =	=1.25 an	nperes; m 0 amperes	ax peak	invers	e voltag	ge 🖲 =	8008
Class AB ₁	400		100	40†					1000,8	22	8032
Amplifier Class AB ₂ Amplifier	600	165	44	22†	0.6†	operations.	_	-	6,000‡	90	
Class AB ₁ Amplifier	600	200	47	48†	14.8†				5,600‡	96	8032-A
Class C Amplifier	600	180	71	150	15					65	8042
Class A Amplifier	24		R _k = 100	8.7		1,530	7,500	11.5			8056
Class A Amplifier	110	_	R _k = 47	10		5,600	12,400	70			8058
Class A Amplifier	100	100	R _k = 120	7.2	2.0	275,000	4,500				8064 🏶
Series Regulator	600 Max c	l 125 l-c cath	7.5 ode cur	36 rent 🖲 ≈	1.0 =100 ma		5,200	_		-	8068
Class A Amplifier	110	_	R _k = 130	7.5	_	5,300	10,500	55	-		8070
Class A Amplifier	150	_	R _k = 100	13	•	4,670	12,750	55		_	8071 🏟
Class A Amplifier	250	150	R _k = 120	19	3.5	100,000	11,500		_		8077
Class A Amplifier	150	_	R _k = 1,000	0.95		57,000	1,400	80			8081
Class A Amplifier	150	_	R _k = 82	7.5	_		10,500	90		_ [8082
Class A Amplifier	150		R _k = 910; E _c = +6.0	7.2	_	9,000	10,500	94		-	8083
Class A Amplifier	125	80	1.0	7.0	1.7		10,500				8084
Class A Amplifier	120	_	R _k == 1,500	0.9			1,750	54	_		8096 ●
TV Bright- ness Control	Wave = 500	length .000 oh:	of maxi ms: cell	mum re	sponse	= 6,100 and	stroms	cell res	sistance	(dark)	8100
Class A Amplifier	125	125	1.0	12	4.0	200,000	7,500	_	l =	- 	8102
Class A Amp	$\frac{125}{26.5}$		1.0	13.5		5,400	8,500	46		.	8103
Amplifier 💠			$R_g = 2.2 \text{meg}$				11,000	20			
Class A Amplifier	300	150	3.5	16	3.2	90,000	9,000				8106
Class A Amplifier Class A	180	100	2.8	30			18,000	43			8108
Amplifier	120	120	2.0	10	2.3	20,000	7,000	_			8113 5★
Amp/Osc Parallel)	800	250	34	50	1.2			7.0			8116
Class AB ₁ Amplifier	1000	265	41	30	_			7.0			8116A
Class AB ₁ Implifier	800	250	34	50	1.2			7.0			8117
Class AB ₁ Amplifier	1000	265	41	30	-		-	7.0	-		8117A

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
3118	Tetrode	8118	тх	1.6	4.25	2x10 @ 2x7 @ 2x10 @	500 ₪	300 ₪	4.5	1.8	
8186	Sharp-Cutoff Pentode	7CM	5-2	6.3	0.3	2.2 💿	330 €	165 ● 0.65 ●	7.0▲	2.2 ▲	0.02 🛦
8142	Photoconductive Cell	8100	T-X			0.3	400 €	0.03			
8143	Photoconductive Cell	8100	T-X			0.3 📵	400 €				
8149	Beam Power Amplifier	12DT	12-57	13 6.5	0.6	35 📵	750 €	250 ⑤ 3.3 ⑥	13 ▲	6.0▲	0.35
8150	Beam Power Amplifier	12DŪ	12-86	13 6.5	0.6 1.2	35 ₪	750 ₪	250 ® 3.3 ®	13▲	6.5▲	0.2 🛦
8156	Beam Pentode	12EU	T-X	13.5	0.3	15 📵	600 €	250 a 2.5 a	11 🛦	5.0 ▲	0.07 🛦
8185 ●	Medium-Mu Triode	8KM	3-8	6.3	0.3	4.25 D	250				_
8186 🖜	Medium-Mu Triode	8KM	3-8	26.5	0.075	4.25 🖲	250 €				
8203	Medium-Mu Triode (Nuvistor)	12AQ	4-4	6.3	0.16	1.5 €	250		4.2 ▲	1.6▲	2.2 ▲
GL8205	Ignitron	GL 8205	тx	_	_		_	_	_	_	_
8210 ●	Sharp-Cutoff RF Pentode	8LS	T-X	6.3	0.125	1.1 📵	165 🖲	155 ● 0.55 ●	5.0	3.8	0.012
8211 👁	Video Pentode	8DL	3-3	6.3	0.36	4.0 €	165 🖲	155 ®	12	8.0	0.164
8212	Medium-Mu Triode	9PY	6–2	$\begin{cases} 6.3 \\ 12.6 \end{cases}$	0.46 }	10 🖲	300 €		10 ▲	1.2▲	2.9 ▲
8213 ●	Medium-Mu Triode	8LT	3-8	₹ 6.3 12.6	0.38 }	5.0 €	300 🖲		7.0	3.2	1.9
8217	Photoconductive Cell	8100	т-х	-	-	0.4 🖲	300 €	-			-
8318-A	Photoconductive Cell	8100	T-X			0.075	300 €				=
8223	Medium-Mu Twin Triode	9AJ	T-X	6.3	0.475	3.0 €	250 €		4.7▲	1.9 ₁ ▲ 1.8 ₂ ▲	1.8 ▲
8228 🖜	Glow-Discharge Diode	7894	T-X				_				
8233	Power Amplifier Pentode	9PZ	T-X	6.3	0.6	10 🕳	200	175 1	18	6.0	0.08
8236	Beam Power Amplifier	8JC	T-X	6.3	2.5	50 🖲	1,000	200 li	23 ▲	11 🛦	0.5 ▲
8254 ●	Triode	8LW	T-X	6.3	0.185	1.5 €	110 🖲	I——	3.5▲	0.5▲	1.9▲
8255	High-Mu Triode	9NY	T-X	6.3	0.16	1.8	175				-
8278	Beam Power Amplifier	9QB	T-X	6.3	1.2	25	300	300 4.0	Single 2 Tube	Tube es, Push	-Pull

Compactron.

† Zero signal.

Per section.

[†] Plate-to-plate. Maximum. Supply voltage.

Subminiature type.▲Without external shield.Design maximum rating.

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , μmhos	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Amp-Class C	400	250	50	2x50	2x3.5	-	2500	9	l —	28	8118
Telegraphy Class C	500	250		2x40	2x4.0	_	_		_	29	
Modulation Class C	300	250	175	2x45	3.5	_	_		_	9	
Freq Tripler Class A Amplifier	125	125	R _k = 56	10.8	2.9		9,800	-			8136
Relay Control	Wave	length o		mum re	sponse =	=6,100 ang candles at a	stroms;	cell res	istance	1,500	8142
Relay	Wave	length a	of maxi	mum r	1 & 100t-	=6 100 and	color t	empera	ture or	2,870 K	8143
Control	ohms	with an	illumin	ation o	f 2 foot-	=6,100 and	a color t	empera	ture of	2,870 K	0110
Class A	200	200		100	T —		7,500		ī —	_	8149
Amplifier Class C Amp	380	E _{cc2} = 380	78	180	12	_	_		_	40	
	Ì	$R_{g2} = 10,000$			1						
Class A Amplifier	200	200		100			7,500		_		8150
Class C Amp	380	$E_{cc2} = 380$ $R_{g2} = 10,000$	78	180	12	_	_		_	40	
Class A	200	125	9.0	75	3.5		7.600	l	<u> </u>		8156
Amplifier Class C Amp	400	170	60	90	10	_	7,000		_	21	8130
Class A Amplifier	200		R _k = 220	17	=		19,000	42			8185 ●
Class A Amplifier	200		R _k = 220	17	_		19,000	42			8186 ●
Class A Amplifier	150		R _k = 560	7.0		5,000	6,000	30			8203
Resistance Welding	Max. s anode o 1600.	supply curr. 48	volts 2	50-600; ax. av.	max. anode c	demand K urr. 900 A.	VA 486 ; corres	00; cor ponding	respond g deman	ing av. d KVA	GL8205
Class A Amplifier	100	100	R _k = 100	8.5	2.8	260,000	9,000	_	-	-	8210 🌑
Class A Amplifier	150	100	R _k = 62	17	4.2	65,000	15,500		_		8211 👁
Class A Amplifier	105		R _k = 75	25		965	29,000	28	_		8212
Class A Amplifier	105	_	R _k = 75	23	-	1,348	23,000	31			8213 ●
Relay	Spect	ral resp	onse, S	-15; mi	nimum	dark resist	ance = 1	.0 meg	ohm; re	sistance	8217
Control	Warra	IU foot-	candles,	averag	ge == 7,00	0 ohms; m:	minim	curren	t e = 20	ma ance =	8318-A
Relay Control		egohms;			h 2 foo	= 6,100 A; t-candles, a			0 ohms	ae –	
Class A Amplifier 4	100	-	$R_k = 350$ $E_{c1} = +9.0$	30	_	1,400	18,000	25	_	_	8 223
Voltage	D-c o	peratin	g curre	nt = 3.0	ma; Io	onization v	oltage =	=115 v	olts d-c	, min;	8228 🖜
Reference Class A	opera 125	ting vol	$\frac{\text{tage} = 8}{3.0}$	1 volts	d-c 5.5	20,000	45,000	-		 - 	8233
Amplifier Class C	700	140	75	200	14			_	 	105	8236
Amplifier Class A	80		2.0	14			14,500	24	ļ- <u>-</u> -		8254 ⊚
Amplifier											
Class A Amplifier	150	_	R _k = 100	12	_		13.500	65			8255
Class A Amplifier	250	250	12.5	100	8.0	7,300	24,000	_			8278
Class AB ₁ Amplifier	265	265	R _k = 56	200†	16†	_	_		2,400‡	40	

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarac	e in Is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
8298	Beam Power Amplifier	7CK	T-X	6.75	1.165	20 🕮	400 ₪	_	Triode Two T Pull	Connectubes, P	tion ush-
						20 😸	400 ₪		Pentod	e Connubes, P	
8298-A	Beam Power Amplifier	7CK	T-X	6.3	1.125	27 🖷	600 B	250 № 3.0 №	Pentod Two T Pull	e Connubes, P	ection ush-
8318	Photoconductive Cell	8100	T-X			0.05 🙉	300 ₪			<u> </u>	Ι =
8319 🖷	High-Mu Triode	8LD	3-1	6.3	0.15	1.0 🗷	165 🖻		4.2	2.2	1.8
8327	Power Amplifier Pentode	9CV	6-4	6.3	0.76	13.2 🏶	450 ♦	400 ♦ 2.2 ♦	10.8 ▲	6.5 ▲	0.5 ▲
8334	High-Mu Triode	7DK	5–1	6.3	0.225	4.4	330 €	=	3.3	1.8	1.7
8345	Photoconductive Cell	8100	T-X		=	0.3 🖲	400 ₺		-		-
8346	Photoconductive Cell	8100	T-X	=		0.3 🖼	400 €				=
8347	Photoconductive Cell	8100	T-X			0.3 🗟	400 ₺				=
8348	Twin Tetrode	9QN	6-4	1.6	2.5	5.0 €	300 €	200 BB 2.0 BB	Two Se	ections,	Push-
8368	Twin Pentode	9QR	6-3	1.9	3.15	7.5 📵	250 ₪	200 🗐 3.5 🗑	Two Se Push-F	ections, ull	
8380	Power Tetrode (Nuvistor)	12AS	4-5	6.0- 8.5		1.6 🖲	250 €	100 🗷	7.0▲	1.4▲	0.015
8382	Triode (Nuvistor)	12AQ	4-4	6.0- 8.5		2.0	250 🖨		4.2 ▲	1.6▲	2.2
8393	Medium-Mu Triode (Nuvistor)	12AQ	4-4	13.5	0.06	1.0 €	110 @		4.4 ▲	1.6 ▲	2.4 ▲
8403	High-Mu UHF Triode (Planar)	7815R	T-X	6.3	1.25	33 🚱	2,500		8.0▲	0.065	3.1 ▲
<i>8</i> 408	Twin Tetrode	9QV	T-X	1.1	3.0	4.0 €	300 ₪	200 ₪ 2.5 ₪	Two S Pull	ections,	Push
8412	High-Mu Triode (Planar)	8412	T-X	6.0	0.8	30 🗑	600 B		2.6 ▲	0.02 🛦	1.7▲
8413	High-Mu Triode (Planar)	8413	T-X	6.0	0.8	25 🖷	600 🖲		2.6 ▲	0.02 ▲	1.7▲
8414 🌑	Sharp-Cutoff RF Pentode	8DC	3-1	26.5	0.045		55 🗟	55 🕮	4.9	3.0	0.02
8417	Beam Power Amplifier	78	T-X	6.3	1.6	35�	660 �	500 ♦ 5.0 ♦	Single 2 Tube	Tube es, Push	ı-Pull
8425	Sharp-Cutoff RF Pentode	7BK	5–2	6.3	0.3	3.5�	330 �	330 8 ♦ 0.75 ♦	Pentod	le Conn	ection
						3.5�	275 🏶			Conne	
8425-A	Sharp-Cutoff RF Pentode	7BK	5–2	6.3	0.3	3.5�	330 ◈	330 \$ ③ 0.75 ⑤	Pento	le Conn	ection
						3.5 ❖	275 🏶			Conne	

											20.
Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohm	G _m , μmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class AB ₁ Amplifier	400	_	100	40†	_	_	_	_	8,000‡	22	8298
Class AB ₂ Amplifier	600	165	44	22†	0.6†	_	_	_	6,000‡	90	
Class AB ₁ Amplifier	600	200	47	48†	14.8†	_			5,600	96	8298-A
Relay Control	Wave I	ength of	f maxim	um res	ponse le	=6,100 A; indles, aver	minimu age 🗐 =	m dark	resistar	nce 🖲 =	8318
Class A Amplifier	100		R _k == 160	7.5	-		14,000	55	-	- 	8319 🌑
Class C Amplifier	250	250	30	20	4.5	Input Sig				3.0	8327
Class A Amplifier	200		R _k == 100	18		-	10,750	55			8334
Relay Control	Wavele =75,00	ength of	maxim	um respesistan	ponse = ce (2 fo	6,100 angs ot-candles)	troms; = 750 c	cell res	istance	(Dark)	8345
Relay Control	Spects 3,000	ral respo	onse = 6	,100 ап	gstrom	units; cell	resistan	ce at 2	foot-ca	ndles =	8346
Relay Control	Spect		onse =6	,100 an	gstrom	units; cell	resistan	ce at 2	foot-ca	ndles =	8347
Class C Amplifier	300	300\$	40	75	2.3	$R_{g2} = 56,00$	00 ohms	_	-	12	8348
Class C Amplifier	180	180	20	50	11.5	_	-			4.5	8358
Class A Amplifier	100	50	R _k = 68	11	2.9		11,000		-		8380
Class A Amplifier	75	_	R _k = 100	15	_	2,200	12,800	28		_	8382
Class A Amplifier	75	_	R _k = 100	10.5	_	3,000	11,500	35			8393
Grid-Pulsed Oscillator	2,000		150	4000 Peak	_	_	_	_	-	1,000 Peak	8403
Class C Amplifier	275	275	25	80	13	$R_{g2} = 8,200$	Oohms	_	_	15	8408
Class A Amplifier	420		R _k = 390	60	-		16,000	60	E _{cc1} =	+20 lts	8412
Class A Amplifier	420		R _k = 390	60			16,000	60	Ecc1 =		8413
Class A Amplifier	26.5	26.5	E _{cc1} =	4.5	1.5	50,000	5,000	$R_{g1} = 2$		 -	8414 🜒
Class A	300	300	12	100	5.5	16,000	23,000	_	-		8417
Amplifier Class AB ₁ Amplifier	560	300	15.5	100	3.4			_	4,200‡	100	
Class A	250	150	R _k = 68	10.5	4.1	1,100,000	6,200	-	-	-	84 25
Amplifier	250	125	R _k == 100	7.4	2.8	1,300,000	5,500		_	-	
Class A Amplifier	250	-	R _k = 330	11.2	-	_	6,000	41	_	_	
Class A	250	150	R _k = 68	10.5	4.1	1,100,000	6,200	_	_	_	8425-A
Amplifier	100	100	R _k = 150	4.8	1.9	600,000	4,500	-	-	-	
Class A Amplifier	250	_	R _k = 330	11.2	-	-	6,000	41	-	-	

Tube	Classification	Base Con-	Out-	Fila-	Fila-	Max	Max	Max Screen Volts		acitano icofara	
Type	by Construction	nec- tions	line Dwg	ment Volts	ment Amp	Plate Watts	Plate Volts	and Watts	Input	Out- put	Grid- plate
8426	Sharp-Cutoff RF Pentode	7BK	5–2	12.6	0.15	3.5�	330 ◈	330 \$ ③ 0.75 ③	Pentod	e Conne	ction
						3.5 ◈	275 ◈		Triode (G2, G3	Connec	tion ied)
8426-A	Sharp-Cutoff RF Pentode	7BK	5–2	12.6	0.15	3.5 ◈	330 ◈	330 8 ③ 0.75 ③	Pentod	e Conn	ection
						3.5 ◈	275 🏶			Connec	
8431	Medium-Mu Twin Triode	9AJ	6–2	12.6	0.18	3.5 ◈	200 🏶		3.3	2.5	1.4
8441	Triode (Nuvistor)	12AQ	4-4	6.0- 8.5	_	1.0 🗨	250 ₪		4.2 ▲	1.7 ▲	0.9 ▲
8444 📵	Sharp-Cutoff RF Pentode	8DC	3–1	6.3	0.125	1.1	165 €	155 ● 0.55 ●	5.2	3.8	0.016
8445	Triode-Pentode	9AE	6–2	6.75	0.44	1.7 ③ 2.0 ④	330 ◈ 330 ◈	200 � 0.5 �		e Section	
8446	Triode-Pentode	9FA	6–2	6.75	0.44	1.7 ♦ 2.0 ♦	330 ♦	200 � 0.5 �		e Section	
8447	Duplex-Diode High- Mu Triode	9CF	6–2		0.38 \ 0.19	2.5 🆠	300 ◈		2.8	1.0	1.9
8448	Sharp-Cutoff Pentode	9BF	6-3		$0.52 \ 0.26 \$	6.5 🏶	330 ◈	190 ③ 1.2 ④	10.2	3.5 ▲	0.063
8456	Triode (Nuvistor)	12AQ	4-4	6.0- 8.5		0.45	50 ₪		4.0▲	1.7▲	2.1 ▲
8457	Twin Tetrode	9PW	6–4	{ 6.75 13.5	0.76 \ 0.38 }	7.0 ◉	300 €	200 © 2.0 ©	Two Se	ections.	Push-
8458	Twin Tetrode	9PW	T-X	{ 6.75 13.5	$0.76 \ 0.38$	7.5 🖲	400 ₪	200 © 2.0 ©		ections,	Push-
8463	Pentode	9QX	6-3	1.1	1.05	5.0 🖲	300 ₪	300 (a)	6.5 ▲	3.8 ▲	0.15
8474	Photoconductive Cell	8100	T-X			0.05	150 €				
8475	Photoconductive Cell	8100	T-X			0.05	200 🖲				
8475-A	Photoconductive Cell	8100	T-X	_		0.075	200 🗨				
8476	Photoconductive Cell	8100	T-X			0.05	300 €			-	
8477	Photoconductive Cell	8100	T-X	-		0.05	300 €				
8477-A	Photoconductive Cell	8100	T-X			0.075	300 ₪		_		
8478	Photoconductive Cell	8100	T-X			0.05	300 ₪			-	_
8489	Triode-Pentode	9DA	6–2	6.3	0.45	2.3 ③ 2.8 ④	330 ◈	330 \$ ♦ 0.55 ♦		e Section	
GL8500	Tetrode	GL 8500	TX	6.3	3.8	500	2000	320		e-Plate 19.5; Ou	
			<u> </u>	<u></u>	<u></u>	<u> </u>	1600	<u> </u>			

Compactron.
† Zero signal.
• Per section.

[†] Plate-to-plate.

Maximum.
Supply voltage.

Subminiature type.
 ▲Without external shield.
 Design maximum rating.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
C) _ A	250	150	Rk =	10.5	4.1	1,100,000	6,200		i —	- 1	8426
Class A Amplifier	250	125	$\begin{array}{c} 68 \\ R_k = \\ 100 \end{array}$	7.4	2.8	1,300,000	5,500	_		-	
Class A Amplifier	250		R _k == 330	11.2			6,000	41			
Class A	250	150	Rk = 68	10.5	4.1	1,100,000	6,200	_	_	-	8426-A
Amplifier	100	100	$R_k = 150$	4.8	1.9	600,000	4,500	_	-	-	
Class A Amplifier	250	-	$R_k = 330$	11.2	-	_	6,000	41	-	-	
Class A Amplifier •	90	-	1.3	15	-	_	12,500	33			8431
Class A Amplifier	110	_	R _k = 150	7.0		6,800	9,400	64		==1	8441
Class A Amplifier	100	100	R _k == 100	8.5	2.8	260,000	9,000		_		8444 @
Class A Amplifier	170	170	2.0	10	2.5	400,000	6,200			-	8445
Class A Amplifier	100	-	1.0	12.5	-	_	7,000	43	_	-	
Class A Amplifier	170	170	2.0	10	2.5	400,000	6.200				8446
Class A Amplifier	100	_	1.0	12.5	_		7,000	43	<u> </u>	-	
Class A Amplifier	250		R _k = 200	10	_	10,900	5,500	60			8447
Class A Amplifier	250	180	R _k = 100	26	5.7	93,000	11,000				8448
Class A Amplifier	24		R _k == 100	8.7	_	1,530	7,500	11.5		=	8456
Class AB ₁ Amplifier	300	200	21.5	30†	1,2†			_	10,000	12	8457
Class C Amplifier	400	155	59	85	2.3	_				20	8458
Class C Amplifier	300	150	35	40	3.5					8.0	8463
Relay Control	Spect 1,500	ral respo	onse = 6	,100 an	gstrom resistan	units; cell ce = 150,00	resistan	ce at 2	foot-ca	ndles =	8474
Relay Control	Spect	ral respo	nse = 6	,100 an	gstrom	units; cell ce = 300,00	resistan	ce at 2	foot-ca	ndles=	8475
Relay Control	Wave	length o	f maxi	mum re	esponse	= 6,100 A; -candles, a	minim	um dar 2,000 d	k resis	tance =	8475-A
Relay Control	Spect 6,000	ral respo	onse = 6	,100 an n dark	gstrom resistan	units; cell ce = 600,00	resistano 0 ohms	ce at 2	foot-ca	ndles=	8476
Relay Control	Spect	ral respo	nse = 6	100 an	gstrom	units; cell :	resistano	e at 2			8477
Relay Control	Wave	length o	f maxir	num res	ponse =	6,100 A; radles, avera	ninimun	dark	resistan s	ce = 0.8	8477-A
Relay Control	Spect	ral respo	onse = 6	.100 an	gstrom	units; cell nce = 2,400	resistan	ce at 2		ndles =	8478
Class A	125	125	1.0	12	3.8	170,000	7,000			<u> </u>	8489
Amplifier Class A Amplifier	150	-	3.0	15	-	4,700	4,500	21		-	
RF Amplifier	1750	250	20	200	5			14		110	GL8500
Class B Felegraphy Class C	2000	225	40	250	10		-	_	_	300	

Tube	Classification by	Base Con-	Out-	Fila- ment	File- ment	Max Plate	Max Plate	Max Screen Voits	Ca _j	acitano icofara	e in is
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volta	and Watts	Input	Out- put	Grid- plate
8506	Triode (Planar)	8506	T-X	6.3	0.4	5.0 🏶	300 🏶	T =	4.8▲	0.025	2.5
GL8513	Tetrode	GL 8513	TX	7.0	13.5	4000	9000	800	Catho Input 6.7	de-Plat 27.8; O	e 0.01; itput
							4500 7000	500 750			
8517 👁	Pentode	8DC	3-1	6.3	0.15	0.8 🖲	165	155 🗷 0.55 🗷	4.3	3.5	0.02 💠
8522 ●	Dual-Control Pentode	8DC	3-1	6.3	0.15	0.7	165 ₪				_
8524	Sharp-Cutoff Pentode	8DC	T-X	6.3	0.15	0.55	165	155 🖭 0.45 💽	-		
8525	Medium-Mu Twin Triode	8DG	T-X	6.3	0.3	0.7	165 🖷		2.1 ▲	1.3₁ ▲ 1.4₂ ▲	1.4 ▲
8526	Medium-Mu Twin Triode	8DG	T-X	6.3	0.3	0.95 🖭	165 🗷		2.1 ▲	1.3 ₁ ▲ 1.4 ₂ ▲	1.4▲
8527	Medium-Mu Triode	8DK	T-X	6.3	0.15	3.3 📵	165 🖭		2.4 ▲	2.4 🛦	1.3 ▲
8528	Beam Power Amplifier	8DE	T-X	6.3	0.45	3.7	165	155 🗑 0.4 🖷	6.5 ▲	7.5 ▲	0.11
8529	Semi-Remote- Cutoff Pentode	8DE	T-X	6.3	0.15	0.85 🏶	165 🖲	155 ● 0.25 ◆	4.2 ▲	3.4 ▲	0.015
8530	Sharp-Cutoff Pentode	8DE	T-X	6.3	0.15	1.1	165 🛎	155 ₪ 0.55 ₪	4.2▲	3.4 ▲	0.015
8532	High-Mu Triode	7BQ	5–2	6.3	0.4	2.5	150 €				_
8533	Triode (Planar)	8533	ТX	6.3	1.3	100 🗐	8000 ®	-	8.0	.06	1.65
8534	Triode (Planar)	8534	TX	6.3	1.3	10 📵	2500 🗩		9.5	.06	2.25
	,					60 🖲	Grid 1 2500 Plate 1 3500		-	_	
8535	Triode (Planar)	8535	TX	6.3	1.3	150 🖸	2500	_	9.5	.06	2.25
	(2 16,161)					60 ₪	2500 ₪ 3500 ₪	_	-	_	
8536	Triode (Planar)	8536	TX	6.0	1.0	10 🕦	2500	-	7.5	0.4	1.65
	(Flanar)						2500 面 3500 面	_	_	_	
8537	Triode	8537	TX	6.0	1.0	150 🖭	2500 🗈		7.5	.04	1.65
	(Planar)		•••	5.8	1.0	35 🛍	_	_	-	_	-
8538	Hi Mu Triode (Planar)	8538	TX	6.3	1.3	10 🗑	8000 ©	-	9.5	.06	1,40
							10000 €		-	-	
8539	Hi Mu Triode (Planar)	8539	ТX	6.3	1.3	100 🖻	8000 ® 10000 ®	-	9.5	.06	1.40
8552	Beam Power Amplifier	7CK	T-X	12.6	0.562	27 🛍	600 (250 @ 3.0 @	Pentode Two Tu Pull	Conne	ction ish-

Compactron, † Zero signal. • Per section.

[‡] Plate-to-plate. Maximum. Supply voltage.

<sup>Subminiature type.
▲Without external shield.
Design maximum rating.</sup>

[⊕]Total for all similar sections. @Absolute maximum rating. #Conversion transconductance.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m , µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Average Characteristics	200	<u> </u>	R _k =	25	<u> </u>	-	29,000	110	_	<u> </u>	8506
RF Amplifier	8000	750	50	600	10		_			1500	GL8513
Class B Telephony	4000	400	100	570	20	_		_	_	1250	
Class C Telegraphy	6500	700	100	800	25					3200	
Class C Average Characteristics	100	100	R _k = 150	6.1	4.2		-				8517 ●
Gated	100	100	Rk=	5.3	3.6	110,000	3,200	(g: tie	d to cal	hode)	8522
Amplifier	100	100	150 R _k = 330	-		_	1,300	(Ec: =	-1.65	volts)	
Class A Amplifier	100	100	R _k == 150	5.3	3.6	110,000	3,200	(g ₃ tie	d to car	thode)	8524
Class A Amplifier •	100		R _k == 150	6.5		6,500	5,400	35			8525
Class A Amplifier •	100		R _k == 220	8.5		4,000	5,000	20	_		8526
Class A Amplifier	150		R _k == 180	13		4,150	6,500	27			8527
Class A Amplifier	110	110	R _k == 270	30	2.2	15,000	4,200	·	3,000	1.0	8528
Class A Amplifier	100	100	R _k == 120	7.2	2.0	260,000	4,500				8529
Class A Amplifier	100	100	R _k == 150	7.5	2.4	260,000	5,000				8530
Class A Amplifier	150		R _k == 100	13.5	_	4,800	11,000	52.5	_		8532
Hi Mu Triode RF Oscillator		_		150	_		38000	90 Cut- off		-	8533
CW RF Osc/Amp	900		30	140	_			_	_	65	8534
Class C Pulsed RF Osc/Amp Class C	2000	_	70	3000	_	—		1	_	2500kw	
CW RF Osc/Amp Class C	900	1	30	140			-	_		65	8535
RF Osc/Amp Grid Pulsed Plate Pulsed	2000	_	70	3000	_	_	_	1	-	2500kw	
CW RF Osc/Amp	900		40	90	_	_			_	40	8536
Class C Grid Pulsed RF Oscillator	-45	_	1700 (Pos)	1900		_		_		2500kw	
Plate Pulsed Oscillator	peak 3500	_		9.0	_			_		2500kw	
CW RF Osc/Amp Oscillator	900 45		40 1700	90 peak	_		_	-	-	40 2000kw	8537
Grid Pulsed Oscillator	peak		(Pos)	1900	_	_	_		_	2000kw	
Plate Pulsed	3500						20000				0520
Pulsed RF Amp/ Modulator Plate Pulsed RF Oscillator					_	1	38000	90 Cut- off		—	8538
Pulsed RF Amp/ Modulator Plate Pulsed RF Oscillator			_	_	_	-	38000	90 Cut- off	_	_	8539
Class AB ₁ Amplifier	600	200	47	48†	14.8†		_		5,600‡	96	8552

Metal tubes are shown in bold-face type, miniature tubes in italics.
♦ G3 and G5 are screen. G4 is signal-input grid.
♥ G2 and G4 are screen. G3 is signal-input grid.

1, 3, 2, etc. indicate tube sections.

■Maximum screen dissipation appears immediately below the screen voltage.

¶ Heater warm-up time controlled.

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Ca ₁	oacitanc Picofarac	e in is
Type	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
8582	Photoconductive Cell	8100	T-X		-	0.05	300 ₪	-			
8582-A	Photoconductive Cell	8100	T-X			0.075	300 €	<u> </u>			
8595	Twin Tetrode	8595	TX	6.3	0.6	2x2 🗐 2x3 🗑	200 ® 250 ®	200	6.4	1.6	0.15
8627	Triode (Nuvistor)	12CT	4-6	6.3	0.15	2.5	250 📵	 		 -	_
8628	Triode (Nuvistor)	12AQ	4-4	6.3	0.1	0.3	250		3.4 ▲	1.7▲	0.7
8632	Hi Mu Triode	8632	TX	6.3	.30	18	 	1 =	5.0	1.9	.75
8639	Beam Power Tetrode	8639	TX	6.3	1.8	40	4000	450	21.0	6.5	.3
8643	Twin Tetrode	8643	TX	13.5 6.7	1.0 2.0	2x38 €	800 ₪	300 ₪	6.7	2.1	_
			-	-	-	_	-	-		_	-
8727	High-Mu Triode (Pencil Tube)	5675	T-X	6.3	0.225	2.5	250 🗃	-	4.4	0.04	2.1
8745	High-Mu Triode (Planar)	7815R	T-X	6.0	1.0	10 🖲	3500 ⊕ Peak	_	6.3 ▲	0.035	2.05 ▲
GL8751	TRIODE	GL 8751	TX	6.3	1.05	2500 Peak 30	_	-			-
8755	Triode (Planar)	8755	TX	6.3	1.3	150	8000	-	9.3	.06	1.25
8755A	Triode (Planar)	8755- A	TX	6.3	1.3	150	8000	-	9.5	.06	1,05
8808	Hi Mu Triode	8808	ТX	6.3	.34	6 €	1000 🖻	_	9.6	.05	2.7
8847	Triode (Planar)	8847	TX	6.3	1.3	150 🖲	2500 €	_	9.5	.06	1.4
	(Fianar)			And the contract of the contra			3000 🖻 peak 🗐 3500 🗑	_	_		-
8847A	Triode	8847-	TX	6.0	0.95	150 €	2500 €		9.5	.06	1.4
	(Planar)	A					3000 @ peak 3500 @	-		_	-
8859	High-Mu Triode (Planar)	8413	T-X	6.3	0.35	15 🖲	450 ®				
GL8866	Tetrode	GL 8866	тx	6.3	3.8	150	3500	750	Cathod Input 2	le-Plate 20; Out	.006; out
8892	Triode (Planar)	8892	TX	6.3	.65	50	2000 🖭		5.0	.06	1.6
8893	Triode (Planar)	8893	TX	6.3	1.3	100	2000 🗑	_	8.0	.10	2.35
8906	Triode (Planar)	8906	ТX	6.0	1.0	10 📵	2500 🖭 3500	_	8.0	.06	1.98
8907	Triode (Planar)	8907	TX	6.0	1.0	100 📵	2500 ₪ 3500 ₪	_	8.0	.06	1.98
8917	Triode (Planar)	8917	TX	6.3	1.2		1600	-	_	-	_
9001	Detector Amplifier Pentode	7BD	5-1	6.3	0.15	-	250	100	3.6	3.0	0.01
9002	Medium-Mu Triode	7BS	5-1	6.3	0.15		250		1.2	1.1	1.4

Compactron.
Zero signal.
Per section.

[●]Subminiature type. ▲Without external shield. ⊕Design maximum rating.

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _{m,} µmhos	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Relay Control	Cell ro	esistanc	e (dark)	= 10 m	egohms;	cell resista	ance (2 f	oot-can		100,000	8582
Relay Control	Wave	length o	of maxir	num re	sponse =	6,100 A; n dles, avera	ninimum	dark i	esistano	ce = 10	8582-A
Amplifier	180	180	20	2x20	9.5	_		_		4.2	8595
Class C(CCS) Frequency Multiplier	180	180	Rg = 82 ohm	2x20	9.7	_		_	_	2.3	
Class A Amplifier	110	-	R _k = 47	11.5	-	5,400	13,000	70		-	8627
Class A Amplifier	120		R _k = 200	1.5	==	41,000	3,100	127			8628
Amplifier	14000	_		0.7							8632
Pass Tube		-		_	-	_	-	8.2	_	-	8639
RF Amp/Osc	750	300	90	266	9.5	_		7		137	8643
	-	-	-	-	-	_	-	-	-	-	
Avg. Char.	125		R _k = 50	14	-	_	16,000	70			8727
Plate-Pulsed Oscillator	3500			9.0						2000 Peak	8745
Plate Pulsed Oscillator	2000 Peak		_	3000 Peak	1200 Peak	_		-	_	PEAK 2500	GL8751
Hi Mu Amp/ Oscillator	5000		100	5000	-				=	7000kw	8755
Hi Mu Amp/ Oscillator Grid Pulsed	1750	_	20	1000 Peak	-	_	_	_		650w	8755A
RF Amp/Osc Freq Mult	200	_	0	15	Rk = 68	6400	18000	100	_	_	8808
Cw RF Amp/ Oscillator Grid Pulsed Plate Pulsed	-	_		_	-		38,000	75	_		8847
Cw RF Amp/Osc Grid Pulsed Plate Pulsed	_						38000	75	_	_	8874A
Avg. Char.	250	_	R _k = 75	25	-	_	17,000	70	-	T - T	8859
RF Amplifier Class C	2500	600	70	1400	50		_	_	-	1600	GL8866
RF Oscillator Class C		_		-	_		30000	60	=	-	8892
RF Oscillator Class C	-	_	_	_	-		30000	60	—	_	
Cw RF Amp/Osc	630		_	_			38	80	_	45	8906
RF Amp/Osc	2200		50	Peak 2500						2500w	
Cw RF Amp/Osc	630	-		Peak			38	80	_	45	8907
RF Amp/Osc	2200		50	2500							
Linear Amplifier	1000	-	_	100	-		65000	210		-	8917
Class A Amplifier	250	100	3.0	2.0	0.7	1,000,000	1,400				9001
Class A Amplifier	250		7.0	6.3		11,400	2,200	25	_		900 2

Tube	Classification	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitanc icofarac	e in Is
Туре	by Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
9003	Remote-Cutoff Pentode	7BD	5–1	6.3	0.15		250	100	3.6	3.0	0.01
9004	High-Frequency Diode (Acorn)	4BJ	4-1	6.3	0.15		_			_	-
9005	High-Frequency Diode (Acorn)	5BG	4-1	3.6	0.165		-	_			
9006	High-Frequency Diode	6BH	5-1	6.3	0.15		ļ—			_	=
GE12661	Triode (Planar)	GE 12661	ТX	6.3	.24	4 🖻	350 ₪	_	1.6	.015	1.35
GE13971	Triode (Planar)	GE 13971	ТX	6.3	.55	6.5	1500		4.8	0.05	1.5
GE14501	Triode (Planar) Hi Mu	GE 14501	ТX	6.3	.24	2.0 🖲	250 ₪		1.75	0.01	1.25
GE14811	Triode (Planar)	GE 14811	ТX	6.3	.36	6.5 🕦	1200 ₺	_	4.4	.036	1.65
GE15371	Triode (Planar)	GE 15371	ТX	6.3	.50	10 🗑	2000 🖸	_	5.0	.035	1.9
GE16231	Triode (Planar)	GE 16231	тx	6.3	.40	6.5	1250 🗷	_	6.0	.018	1.7
GE16411	Triode (Planar) Hi Mu	GE 16411	ТX	6.3	.15	1.0 🗑	250 📵		1.5	.01	1.3
GE16841	Triode (Planar)	GE 16841	ТX	5.7	.27	1.5 🗷	250 🗑	_	2.1	.018	1.05
GE17241	Triode (Planar)	GE 17241	TX	6.0	.97	-	1500 🗷	_	6.3	.035	1.9
		17241				10 👁	1750 🖭 Peak 2500 🗈		_	-	<u> </u>
GE17701	Triode (Planar)	GE 17701	ТX	6.3	1.25	30 €	2500 🖻		9.0	0.1	2.15
GE18651	Triode (Planar)	GE 18651	ТX	6.3	.55	6.5 🖭	1500 ₪	_	4.9	-	1.6
GL37207	Ignitron	GL 32207	тх	_	_			_	_	_	_
GL37248	Ignitron	GL 37248	тх			_		_			_
GL37250/ GL37250 -PC	Ignitron	GL 37250	TX		_	_		_	_	$\lceil \overline{-} \rceil$	_

<sup>Total for all similar sections.
Absolute maximum rating.
Conversion transconductance.</sup>

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Class A Amplifier	250	100	3.0	6.7	2.7	700,000	1,800		_	<u> </u>	9003
Half-Wave Rectifier	Max	d-c outp	ut curre	ent = 5	ma; max	rms supp	ly volta	ge = 11	7 volts	<u>'</u>	9004
Half-Wave Rectifier	Max	d-c outp	ut curre	nt = 1.0	0 ma; m	ax rms suj	oply vol	tage = 1	17 volts	5	9005
Half-Wave Rectifier	Max suppl	d-c outr	out curr e = 270	ent = 5 volts;	ma; ma max peal	x peak in k current:	verse vo	ltage =	750 vo	its; rms	9006
Power Osc. 450MHz	150	I _k = 40mA	0	25 30		_	8500	40	_	6	GE12661
Osc./Amp.	200	_	R _k = 100	23	_		25000	58	_		GE13971
1200MHz	1500 Peak	— I _k = 1.8a	ohms	1.5a	-		_	_	-	900w	
Osc./RF Amp.	150	_	Rk =82 ohms	9.5			12500	90		_	GE14501
450M Hz	250	I _k = 21mA	_	-	-	_	_	_	-	2.3	
C Band Osc.	200		R _k = 100	27			29000	60	_		GE14811
4300MHz	800.	I _k = 1.2a	ohms —	_	-	_	-	-	_	190w	<u> </u>
Osc./Amp.	200	_	R _k = 100	17	_		22000	85	=	_	GE15371
1090MHz	1800	I _k = 2.0A	ohms	-	-	_	-	_	-	700w	
Amplifier	200	-	R _k = 22 ohms	22	-		50000	225	-	20w	GE16231
Osc./RF Amp.	150	_	R _k =82 ohms	12.5	-	-	12500	75		-	GE16411
450 MHz	150	I _k = 10mA	<u> </u>	-	-	_		-	-	450mW	
CW Osc./Amp	150	_	R _k = 82 ohms	14			17000	78	_	— ·	GE16841
4300MHz	100	I _k = 18mA			-		-	-	-	25mW	
Osc./Amp. 1100MHz	600	_	5	25			13500	95	_		GE17241
Grid Pulsed Plate Pulsed	1500	I _k = 3.0a	115	1.4a	_	-	_	_	-	675w	
Osc./Amp.	200	R _k =68	34 ohms	_	_		26000	58		_	GE17701
1200MHz	2500 Peak	i _k =6a	_	_	_	_	_	_		3.5	
Osc./Amp.	200	_	R _k = 100 ohms	21		_	22000	58		_	GE18651
1200MHz	1500 Peak	ik = 1.8a	-	-	-	_	-	-	-	800w	
Capacitor Discharge	Max. voltag pulses		peak a volts; ute 500.	anode max. p	voltage eak ano	25000 vo de curr.	lts; max 500 A.;	typical	se peal discha	k anode rge rate	GL37207
Capacitor Discharge	Max. voltage	forward	peak a volts; r	anode		50000 vo le curr. 25					GL37248
Resistance Welding	Max.	supply v	olts RM	1S 250- lax. av.	600; ma anode o	x. demand urr. 75 A.	KVA 1 ; correst	000; co	rrespon deman	ding av. d KVA	GL37250 GL37250 -PC

Tube	Classification by	Base Con-	Out-	Fila- ment	Fila- ment	Max Plate	Max Plate	Max Screen Volts	Car P	acitano icofara	e in ds
Туре	Construction	nec- tions	Dwg	Volts	Amp	Watts	Volts	and Watts	Input	Out- put	Grid- plate
GL37251/ GL37251 -PC	Ignitron	 GL 37251	ТX								
GL37252/ GL37252 -PC	Ignitron	 GL 37252	ΤX								
GL37253/ GL37253 -PC	Ignitron	 GL 37253	TX								
GL37254/ GL37254 -PC	Ignitron	 GL 37254	ТX							,	
GL37255 GL37255 -PC	Ignitron	 GL 37255	TX								
GL51025	Triode	 GL 51025	TX	6.3	3.8	110	8000 2500		Cathod 0.45; Ir Output	put 15	
GL51038	Tetrode	 GL 51038	тx	6.3	5.6	500		2000 1100	24	9	_
GL51064	Tetrode	 GL 51064	тx	5.7	24	2750 🖲	8000 (650 🖻	Cathod .006 ma 17.0; O	x; Inpu	t
GL51065	Tetrode	 GL 51065	ΤX	6.3	3.8	600	5000	1000	Cathod Input 2 7.5	e-Plate 0; Outp	.006; out
GL51070	Tetrode	 GL 51070	TX		3.8	600					
GL51074	Triode	 GL 51074	TX		3.8	110					

Service	Plate Volts	Screen Volts	Neg Grid Volts	Plate Milli- am- peres	Screen Milli- am- peres	R _p , Ohms	G _m ,	μ Fac- tor	Load for Rated Out- put, Ohms	Power Out- put, Watts	Tube Type
Resistance Welding	Max. si anode o 200.	upply veurr. 43.	olts RM 2 A.; n	IS 250-6 nax. av.	anode o	x. demand curr. 75 A.	KVA 10	000; cor ponding	rrespond deman	ling av. d KVA	GL37251/ GL37251 -PC
Resistance Welding	anode o	curr. 10	8 A.; m	ax. av.	anode c	k. demand urr. 150 A	; corres	ponding	deman	d KVA	GL37252/ GL37252 -PC
Resistance Welding	anode o	curr. 10	8 A.; m	ax. av.	anode c	x. demand urr. 150 A	; corres	ponding	deman	d KVA	GL37253/ GL37253 -PC
Resistance Welding						x. demand urr. 400 A					GL37254/ GL37254 PC-
Resistance Welding	Max. s anode o 1000.	upply vourr. 22	olts RM 4 A.; m	IS 250-0 ax. av.	300; ma: anode c	x. demand urr. 400 A	KVA 30	000; cor ponding	rrespond deman	ling av. d KVA	GL37255 GL37255 -PC
Oscillator Plate Pulsed Grid Pulsed 1100MHz	6000 1950	i _k = 11.3a i _k = 3.8a		7a 2.6a						24000w 2000w	GL51025
Amplifier Class B Amplifier Class C	9000 4800	1400 1000	125 200	9.2A 4.2A	470 100					52000 11000	GL51038
Amplifier/ Oscillator Class C 420 mcs Amplifier Class B 420 mcs	7500 7500	600	100 50	650 330	16 5					4000 750	GL51064
Amplifier	4500	750	115	5.3A	110					11000	GL51065
										260	GL51070
	\dagger	1		†	+	<u> </u>	1	 	t	40KW	GL51074

GENERAL ELECTRIC MULTIPLE/BRAND RECEIVING TUBE REPLACEMENT GUIDE

Tube Type to be Replaced	General Electric Multiple/Brand
0Z4 0Z4A	OZ4/OZ4A
1AD2 1AD2A	1BY2A/1AD2A
1B3GT	1G3GTA/1B3GT
1BX2	1X2C/1BX2
1BY2 1BY2A	1BY2A/1AD2A
1G3GT 1G3GTA	1G3GTA/1B3GT
1K3 1K3A	1K3A/1J3
1R-K23	1S2A/DY87
1S2A	1S2A/DY87
1X2 1X2A 1X2B 1X2C	1X2C/1BX2
2AF4 2AF4A 2AF4B	2DZ4/2AF4B
2AH2	2BU2/2AS2A/ 2AH2
2AS2 2AS2A	2BU2/2AS2A/ 2AH2
2BU2	2BU2/2AS2/ 2AH2
2DZ4	2DZ4/2AF4B
2FQ5 2FQ5A	2GK5/2FQ5A
2GK5	2GK5/2FQ5A
3A3 3A3A 3A3B 3A3C	3A3C/3AW3/3B2
3AF4A 3AF4B	3DZ4/3AF4B
3AW3	3A3C/3AW3/3B2
3B2	3A3C/3AW3/3B2
3BC5	3CE5/3BC5
3BS2 3BS2A	3BW2/3BS2A/ 3BT2A
3BT2 3BT2A	3BW2/3BS2A/ 3BT2A
3BU8	3BU8/3GS8
3BW2	3BW2/3BS2A/ 3BT2A
3CB6	3CB6/3CF6
3CE5	3CE5/3BC5

Tube Type to be Replaced	General Electric Multiple/Brand
3CF6	3CB6/3CF6
зсхз	3DA3/3CX3
3CY3	3DB3/3CY3
3DA3	3DA3/3CX3
3DB3	3DB3/3CY3
3DZ4	3DZ4/3AF4B
3EH7	3EH7/XF183
3EJ7	3EJ7/XF184
3GS8	3BU8/3GS8
ЗНА5	3HM5/3HA5
3HM5	3HM5/3HA5
4BL8	4BL8/XCF80
4BQ7A	4BZ7/4BQ7A
4BU8	4BU8/4GS8
4BZ7	48Z7/4BQ7A
4GS8	4BU8/4GS8
4HA5	4HA5/PC900
4HA7	4HA7/4HC7
4KN8	4KN8/4R-HH8
4R-HH8	4KN8/4R·HH8
5AR4	5AR4/GZ34
5AS4A	5U4GB/5AS4A
5AU4	5V3/5AU4
5BQ7A	5BZ7/5BQ7A
5BR8	5FV8/5BR8
5BZ7	5BZ7/5BQ7A
5FV8	5FV8/5BR8
5HG8	5HG8/LCF86
5KD8	6U8A/6AX8/ 6KD8/5KD8
5U4GA 5U4GB	5U4GB/5AS4A
5U9	5U9/LCF201
5V3	5V3/5AU4
6AF4A	6DZ4/6AF4A
6AK5	6AK5/EF95
6AL3	6AL3/EY88
6AQ5A	6AQ5A/6HG5
6AQ8	6AQ8/ECC85

Tube Type to be Replaced	General Electric Multiple/Brand
6AX8	6U8A/6AX8/ 6KD8/5KD8
6AY3B	6AY3B/6BS3A
6BA6	6BA6/EF93
6BC5	6CE5/6BC5
6BC8	6BC8/6BZ8
6BE3	6BE3/6BZ3
6BK4 6BK4A 6BK4B 6BK4C	6BK4C/6EL4A
6BL8	6BL8/ECF80
6BM8	6BM8/ECL82
6BN6	6KS6/6BN6
6BQ5	6BQ5/EL84
6BQ6GA	6BQ6GTB/6CU6
6BQ6GTB	6BQ6GTB/6CU6
6BQ7A	6BZ7/6BQ7A
6BR3	6BR3/6R-K19
6BR8 6BR8A	6FV8A/6BR8A
6BS3A	6AY3B/6BS3A
6BZ3	6BE3/6BZ3
6BZ7	6BZ7/6BQ7A
6BZ8	6BC8/6BZ8
6CA7	6CA7/EL34
6CB6 6CB6A	6CB6A/6CF6
6CD3	6CG3/6CE3/ 6CD3
ece3	6CG3/6CE3/ 6CD3
6CE5	6CE5/6BC5
6CF6	6CB6A/6CF6
6CG3	6CG3/6CE3/ 6CD3
6CG7	6FQ7/6CG7
ecra ecra	6CJ3/6DW4B/ 6CL3
6CQ4	6DE4/6CQ4
6CU6	6BQ6GTB/6CU6
6CW5	6CW5/EL86
6DA4A	6DA4A/6DM4A

Tube Type		Tube Type	0	Tube Type	
to be Replaced	General Electric Multiple/Brand	to be Replaced	General Electric Multiple/Brand	to be Replaced	General Electric Multiple/Brand
6DE4	6DE4/6CQ4	6HM5	6HM5/6HA5	12AU7A	12AU7A/ECC82
6DG6GT	6W6GT/6DG6GT	6J10	6Z10/6J10	12AX7	12AX7/ECC83
6D18	6DJ8/ECC88	6JB5	6JB6/6HE5	12AX7A	12AX7A/7025
6DL5	6DL5/EL95	6JE6 6JE6A	6JE6C/6LQ6	12AY3A	12AY3A/12BS3A
6DM4A	6DA4A/6DM4A	6JE6A 6JE6B 6JE6C		12BQ6GA	12BQ6GA/ 12CU6
6DQ3A	6DU3/6DQ3A 6D06B/6GW6	6JW8	6JW8/ECF802	12BQ6GTB	12BQ6GTB/
6DQ6 6DQ6A 6DQ6B	OD QOD/OGWO	6K11	6K11/6Q11	12BR3	12CU6
6DT6	6DT6/6DQ6A	6KD8	6U8A/6AX8/ 6KD8/5KD8	12BS3A	12BR3/12R-K19 12AY3A/12BS3A
6DT6A		6KN8	6KN8/6R-HH8	12BV7	12BY7A/12BV7/
6DU3	6DU3/6DQ3A	6KS6	6KS6/6BN6		12DQ7
6DW4B	6CJ3/6DW4B/ 6CL3	6LC6	6LJ6A/6LH6A	12BY7A	12BY7A/12BV7/ 12DQ7
6DX8	6DX8/ECL84	6LH6 6LH6A	6LJ6A/6LH6A	12C5	12CU5/12C5
6DZ4	6DZ4/6AF4A	6LJ6A	6LJ6A/6LH6A	12CU5	12CU5/12C5
6EA7	6EM7/6EA7	6LQ6	6JE6C/6LQ6	12CU6	12BQ6GTB/ 12CU6
6EB8	6GN8/6EB8	6LX8	6LX8/LCF802	12DQ6B	12DQ6B/12GW6
6EC4A	6EC4A/EY500	6Q11	6K11/6Q11	12DQ7	12BY7A/12BV7/
6EH7	6EH7/EF183	6R-HH2	6BC8/6BZ8		12DQ7
6EJ7	6EJ7/EF184	6R-HH8	6KN8/6R-HH8	12DZ6	12EK6/12DZ6/ 12EA6
6EL4A	6BK4C/6EL4A	6R-K19	6BR3/6R-K19	12EA6	12EK6/12DZ6/ 12EA6
6EM7	6EM7/6EA7	A8U6	6U8A/6AX8/ 6KD8/5KD8	12EK6	12EK6/12DZ6/
6ES8	6ES8/ECC189	6V4	6V4/EZ80		12EA6
6FG6	6FG6/EM84	6W6GT	6W6GT/6DG6GT	12G-87	12BQ6B/12GW6
6FQ5 6FQ5A	6GK5/6FQ5A	6X9	6X9/ECF200	12GN7A/ 12HG7	12HG7/12GN7
6FQ7	6FQ7/6CG7	6Z10	6Z10/6J10	12GW6	12DQ6B/12GW6
6FV8A	6FV8A/6BR8A	7HG8	7HG8/PCF86	12HG7	12HG7/12GN7
6GB5	6GB5/EL500	7KY6	7KY6/9KX6	12R-K19	12BR3/12R-K19
6GJ7	6GJ7/ECF801	8A8	9A8/8A8/PCF80	13EM7	15EA7/13EM7
6GK5	6GK5/6FQ5A	8CG7	8FQ7/8CG7	13FM7	15FM7/13FM7
6GM8	6GM8/ECC86	8EB8	8GN8/8EB8	13GB5	13GB5/XL500
6GN8	6GN8/6EB8	8FQ7	8FQ7/8CG7	13J10	13Z10/13J10
6GW6	6DQ6B/6GW6	8GJ7	8GJ7/PCF801	13Z10	13Z10/13J10
6GW8	6GW8/ECL86	8GN8	8GN8/8EB8	15CW5	15CW5/PL84
6GX6	6GY6/6GX6	9A8	9A8/8A8/PCF80	15EA7	15EA7/15EM7
6GY6	6GY6/6GX6	9KX6	7KY6/9KX6	15FM7	15FM7/13FM7
6HA5	6HM5/6HA5	10CW5	10CW5/LL86	16A8	16A8/PCL82
6HA6	6HB6/6HA6	10DX8	10DX8/LCL84	16AQ3	16AQ3/XY88
6HB6	6HB6/6HA6	10JA8	10LZ8/10JA8	17AB10	17AB10/17X10
6HE5	6JB5/6HE5	10LZ8	10LZ8/10JA8	17AY3A	17AY3A/17BS3A
6HG5	6AQ5A/6HG5	11Y9	11Y9/LFL200	17BE3	17BE3/17BZ3
6HG8	6HG8/ECF86	12AT7	12AT7/ECC81	17BR3	17BR3/17R-K19

Tube Type		Tube Type to be	_	Tube Type	_
to be Replaced	General Electric Multiple/Brand	to be Replaced	General Electric Multiple/Brand	to be Replaced	General Electric Multiple/Brand
17BS3A	17AY3A/17BS3A	8425A	8425A/6AU6A	PCF80	9A8/8A8/PCF80
17BZ3	17BE3/17BZ3	8426A	8426A/12AU6	PCF86	7HG8/PCF86
17C5	17CU5/17C5	8552	6883B/8032A/ 8552	PCF801	8GJ7/PCF801
17CU5	17CU5/17C5	DY87	1S2A/DY87	PCL82	16A8/PCL82
17D4	17D4/17DM4A	ECC81	12AT7/ECC81	PL84	15CW5/PL84
17DM4A	17D4/17DM4A	ECC82	12AU7A/ECC82	PL500	27GB5/PL500
17DQ6B	17DQ6B/17GW6	ECC83	12AX7/ECC82	UL84	45B5/UL84
17EW8	17EW8/HCC85	ECC85	6A08/ECC85	XCF80	4BL8/XCF80
17GW6	17DQ6B/17GW6		6GM8/ECC86	XF183	3EH7/XF183
17R-K19	17BR3/17R-K19	ECC86		XF184	3EJ7/XF184
17X10	17AB10/17X10	ECC88	6DJ8/ECC88	XL500	13GB5/XL500
18GV8	18GV8/PCL85	ECC189	6ES8/ECC189	XY88	16AQ3/XY88
19CG3	19DQ3/19CG3	ECF80	6BL8/ECF80		
19CL8A	19JN8/19CL8A	ECF86 ECF200	6HG8/ECF86		
19DQ3	19DQ3/19CG3		6X9/ECF200		
19JN8	19JN8/19CL8A	ECF801	6GJ7/ECF801		
20AQ3	20AQ3/LY88	ECF802	6JW8/ECF802		
21JS6A	21JS6A/23JS6A	ECL82	6BM8/ECL82		
23JS6A	21JS6A/23JS6A	ECL84	6DX8/ECL84		
24JE6A	24LQ6/24JE6C	ECL86	6GW8/ECL86		
24LQ6	24LQ6/24JE6C	EF93	6BA6/EF93		
25BQ5GA	25BQ5GA/ 25CU6	EF95 EF183	6AK5/EF95 6EH7/EF183		
OF DOCOTO		EF184	6EJ7/EF184		
23806618	25BQ6GTB/ 25CU6	EL34	6CA7/EL34		
25CU6	25BQ6GTB/ 25CU6	EL84	6BQ5/EL84		
25L6GT	25L6GT/_	EL86	6CW5/EL86		
231001	25W6GT	EL95	6DL5/EL95		
25W6GT	25L6GT/ 25W6GT	EL500	6GB5/EL500		
27GB5	27GB5/PL500	EM84	6FG6/EM84		
34CE3	34CE3/34CD3	EY88	6AL3/EY88		
36KD6	36KD6/40KD6	EZ80	6V4/EZ80		
40KD6	36KD6/40KD6	GZ34	5AR4/GZ34		
42EC4A	42EC4A/PY500	HCC85	17EW8/HCC85		
45B5	45B5/UL84	KT66	7581A/KT66		
6883B	6883B/8032A/ 8552	LCF86	5HG8/LCF86		
7025	12AX7A/7025	LCF201	5U9/LCF201		
7054	8077/7054	LCL84	10DX8/LCL84		
7581A	7581A/KT66	LFL200	11Y9/LFL200		
8032A	6883B/8032A/	LL86	10CW5/LL86		
0077	8552	LY88	20AQ3/LY88		
8077	8077/7054	PC900	4HA5/PC900	l	

RECEIVING TUBE—INTERCHANGEABILITY GUIDE FOREIGN TYPES vs. AMERICAN TYPES

In most cases the domestic tube types shown below are satisfactory replacements for the corresponding foreign types however, in some circuits a few of the indicated replacements may be unsatisfactory owing to mechanical or electrical differences (which can be more critical in some circuits than others). The domestic types shown are not necessarily all available at present from domestic sources. Tubes set in bold type are presently available from General Electric.

Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
1C1	1R5	6CH40	6AJ8	6Q8	6A8
1C2	1AC6	6D1	6DR4	6R-HH2	6HK8, 6BZ8/6BC8
1C3	1AB6	6D2	6AL5	6R-HH8	6KN8.
1D13	1A3	6D-HH13	6FX7		6KN8/6R-HH8
1F1	1AJ4	6E8	6A8	6R-K19	6BR3/6R-K19
1F2	1L4	6F10	6AC7	6R-R8C	5847/404A
1F3	1T4	6F11	6AM6	6S5G	6E5
1FD1	1AH5	6F12	6AM6	6T1	6AF4, 6DZ4/6AF4
1FD9	1 S 5	6F15	6CJ5	6V4	6CA4
1G50	2050A	-6F16	6CJ5	6Z4	6BX4, 6X4
1H2	1S2,1 S2A/DY87	6F18	6EC7	6Z31	6X4
1H33	1AQ5	6F19	6BY7	7D9	6AM5
1H35	1AB6	6F21	6CQ6	7D10	6CH6
1P1	3C4	6F22	6267	7D11	6550, 6550A
1P10	3S4	6F23	6EL7,	7F16	6CJ5
1P11	3V4		6EH7/EF183	8D3	6AM6
1R5SF	1AQ5	6F24	6EJ7/EF183	8D5	6BR7
1RK23	1S2,1S2A/DY87	6F25	6EH7/EF183	8D6	6BW7
1S5SF	1AR5	6F26	6BY7	8D7	6BS7
1T4SF	1AM4	6F29	6EH7/EF183	8D8	6267
1U5SF	1AS5	6F30	6EJ7/EF184	8R-HP1	8B8
2B/250A	807	6F31	6BA6/EF93	9D6	6CQ6
2D	1P40	6F32	6AK5/EF95	9M-HH3	9J6
2XM600A	866A	6F33	6AS6	9P9	9 BM 5
3D-HH13	3EX7	6F35	6AJ5	9R-AL1	10DE7
3M-R24	3DK6	6F36	6AH6	9R-HH2	9GH8A
3M-V7	3BZ6	6FD12	6DC8	10C14	19D8, 19AJ8
3S4SF	3W4	6FX4	6AV4	10F9	12AC5
4G280K	2D21	6G-B3A	6BQ6GTB/6CU6	10F18	13EC7
4R-HH2	4BC8	6G-B6	6BQ6GTB/6CU6	10FD12	19FL8
4R-HH8	4KN8/4R-HH8	6G-B9	6GW6,	10L14	26AQ8
4Y25	807	l	6DQ6B/6GW6	10LD3	14L7
5A/160H	6AM6	6G-K17	6AU4GTA	10LD12	28AK8
5B/250A	807	6H-31	6BE6	10LD13	14G6
5C/100A	813	6L10	6AG7	10P18	45B5/UL84
5M-HH3	5J6	6L12	6AQ8/ECC85	10PL12	50BM8
5P-29	6CN6	6L13	12AX7A/7025	12B-B14	13GB5/XL500
5R-HP1	4BL8/XCF80	6L16	6CW7	12BC32	12AV6
5S1	807	6L31	6AQ5A/6HG5	12E13	6550, 6550A
5 Z 10	5U4GB/5AS4A	6L34	6AQ4	12F31	12BA6
6/30L2	6GA8	6L43	6CL6	12G-B6	12BQ6GT,
6AT7N	6DT8	6LD3	6CV7	ļ	12BQ6GTB/12CU6
6B32	6AL5	6LD12	6AK8, 6T8-A	12G-B7	12DQ6B/12GW6
6BC32	6AV6	6LD13	6BD7A	12G-K17	12D4A, 12D4
6C10	6CU7	6LP12	6BM8/ECL82	12H31	12 BE 6
6C12	6AJ8	6M1	6U5-G	12R-K19	12BR3/12R-K19
6C15	6CJ5	6M2	6CD7	12R-LL3	12AV7
6C16	6BL8/ECF80	6M-H1	6 J4	12R-LL5	12FQ7
6C18	6GV7	6M-HH3	6J6A	13D2	6SN7GTB
6C31	6K8	6P9	6BM5,	13D3	6158
6CC10	5692	I	6AQ5A/6HG5	16A	6AM5
6CC31	6J6A	6P15	6BQ5/EL84	17N8	17C8
6CC42	5670, 5670W	6P17	6AM5	17R-K19	17BR3/17R-K19
6CC43	6AQ8/ECC85	6P25	6AG6	18AK5	6028, 408A
6CF8	6267	6PL12	6BM8/ECL82	19AJ8	19D8

Foreign Type	American Type	Foreign Type	American Type	Foreign Type	American Type
	For Replacement	*****	For Replacement		For Replacement
19BD	19X3	A677	6C6	CV143	813
19M-R9	18FW6A	A863	6J7	CV144	829B 813
19M-R10 19SU	18GD6 19Y3	A1834 A2252	6AS7GA 5675	CV177 CV216	OD3
1903	19X3	A2521	6CR4	CV281	6K8
19W3	19X3	A2599	6CT4	CV283	6AL5
20A3	2D21	A2900	12AT7.	CV303	7G7
20D3	12AH8	712000	12AT7/ECC81	CV346	7Y4
20D4	6AJ8	A4051	807	CV394	6CD7
25G-B6	25BQ6GA/25CU6	A4051J	807	CV417	6AQ4
25R-K19	25BR3	AA91E	5726	CV424	5894
30C1	9A8/8A8/PCF80	ABC91	12A6	CV426	6X2
30C15	9EN7	AD	6Z3	CV431	0E3
30C18	7GV7	AFX212	6D4	CV449	OG3, 5651
30F5	7ED7	AG	83	CV450	6CN6
30FL1	9GB8	AG866A	866A	CV452	6AT6
30L1	7AN7	AG2509	OG3, 5551	CV453	6BE6 6BA6/EF93
'30L15	7EK7	AG5211	OA2	CV454 CV455	
30P4 30P12	25GF6 12FB5	AH201 AH216	866A 872A/872	CV455 CV466	12AT7/ECC81 6488
30P16	16A5	ARS25	807	CV460 CV467	6487
30P18	15CW5/PL84	ARS25A	807	CV469	6489
30P19	25GF6	ASG512	2D21	CV472	6391
30PL1	13GC8	ASG5023	3C23	CV475	5899
30PL10	13GC8	ATS25	807	CV476	6391
30PL12	16A8/PCL82	ATS225A	807	CV477	5899
30PL13	16GK8	AX224	3B28	CV484	3\$4
30PL14	16GK8	B36	12SN7GTA	CV491	12AU7A/ECC82
40SUA	1D5	B63	6A6	CV492	12AX7A/7025
52 KU	5Z4G, 5V4GA	B65	6SN7GTB	CV493	6X4
53AWB	927	B139	7AN7	CV500	6T7G
54KU 61A3	5AQ4, 5V4GA 930	B152 B309	12AT7/ECC81	CV503 CV509	5W4GT, 5V4GA 6V6G, 6V6GT
61DV3	929	B319	12AT7/ECC81 7AN7	CV510	6V6
62DDT	6CV7	B329	12AU7/ECC82	CV511	6V6GTA
62TH	6CU7	B339	12AX7A/7025	CV512	6W7G
62VP	6CJ5	B349	7EK7	CV515	6Y6G, 6Y6GT
63TP	6AB8	B719	6AQ8/ECC85	CV522	7B7
63T1	6BA8A	B729	6GA8	CV523	12Y4
64ME	6CD7	B739	12AT7/ECC81	CV525	12A6
64SPT	6BX6,	B749	12AU7A/ECC82	CV526	12A6GT
	6EH7/EF183	B759	12AX7A/7025	CV529	12AH7GT
65ME	6BR5	BA2	2050	CV531	1208
66KU	6BT4	BF61	6CK5	CV534	12J5
67PT	6CK5	BF451	45A5	CV535	12J5GT 1 2SA 7
85A1 85A2	OE3 OG3, 5651	BPM04 BVA264	6AQ5/6HG5 6AG6G	CV537 CV538	12SA7GT, 12SA7
85A3	5783	BVA265	6AG6G	CV540	12SC7
108C1	OB2	C143	813	CV543	12SK7
121VP	12AC5	C180	832A	CV544	12SK7GT, 12SK7
141DDT	14L7	C610	737	CV546	12 SQ 7
141TH	14K7	C866	866A	CV547	12SQ7GT, 12SQ7
150B2	6354	CC81E	12AT7WA, 6201 ,	CV549	25A6
150C1	OA2		12AT7WC	CV550	25A6GT
150C2	OA2	CC86E	6GM8/ECC86	CV551	25L6G,
150C3	OD3	CCa	6922/E88CC	l overe	25L6GT/25W6GT
150C4	OA2	CR27	866A	CV552	25L6,
163 PEN	16A5	CV26	813 966 A	CV553	25L6GT/25W6G1
171DDP 213 PEN	17C8, 17N8	CV32 CV124	866A 807	CV555	25L6GT/25W6GT 25Z5
311SU	21A6 31A3	CV124 CV131	6C06	CV561	35L6, 35L6GT
451PT	45A5	CV131	SC4	CV562	35L6GT
866AX	866A	CV136	6AM5	CV568	35Z5GT
3874A	813	CV138	6AM6	CV569	6SL7GT
A61	17Z3	CV140	6AL5	CV571	50L6GT

Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
CV574	6X5GT	CV765	1D7G	CV887	7C6
CV578	6A8G	CV766	1E5GP	CV888	7D7
CV579	6A8	CV767	1F4	CV889	7D8
CV580	6A8GT	CV768	1F5G	CV890	7E5
CV581	6C5G, 6C5	CV769	1F6	CV891	7E6
CV582 CV583	6C5	CV770 CV771	1F7	CV892 CV893	7E7
CV585	6C5GT, 6C5 6C6	CV771 CV772	1G5 1G6	CV894	7F7 7G7
CV586	6L6GC	CV773	1G6GT	CV895	7H7
CV587	6Q7G	CV774	1H4	CV896	7K7
CV588	6Q7	CV775	1LA6	CV897	717
CV589	6Q7GT	CV776	1LB4	CV898	7N7
CV590	6SJ7G, 6SJ7	CV777	1LC5	CV899	7Q7
CV591	6\$J7	CV778	1LC6	CV900	7Ř7
CV592 CV593	6SJ7GT, 6SJ7 5AQ4, 5V4GA	CV779 CV780	1LD5 1LH4	CV901 CV902	7Z4 7W7
CV594	6SH7	CV781	1LN5	CV908	12A5
CV595	6SH7GT, 6SH7	CV782	1R5	CV909	12A7
CV597	2X2A	CV783	154	CV910	12A8GT
CV599	1851	CV784	1\$5	CV911	12B8GT
CV603	10	CV785	1T4	CV916	12 H 6
CV604	30	CV786	1T5	CV917	12J7GT
CV606	37	CV787	2A7	CV918	12K7GT
CV608	41 42	CV797	2D21	CV919	12SF5
CV609 CV610	42 45	CV807 CV808	3A4 3A5	CV920 CV921	12SF5GT, 12SF5 12SF7
CV610	56	CV815	3D6/1299	CV922	12SH7
CV612	57	CV818	304	CV923	12SJ7GT, 12SJ7
CV613	58	CV819	305	CV924	12SL7, 12SL7GT
CV614	75	CV820	3Š4	CV925	12SN7GTA
CV615	76	CV833	89	CV930	14F7
CV616	77	CV837	1208	CV931	15
CV617 CV618	80 83	CV844 CV845	6AC5G 6AC5GT	CV936 CV937	24A 25A7
CV618 CV627	810	CV846	6AC7	CV938	25AC5
CV628	811A	CV847	6AF6G	CV939	25B6, 5824
CV642	872A /872	CV848	6AG5	CV940	25B8
CV660	6AC7	CV849	6AC7	CV942	25Y5
CV661	6AB7, 6AC7	CV850	6AK5/EF95	CV943	26
CV686	OC3	CV851	6B4	CV944	27
CV694 CV698	12SG7	CV852 CV854	6C4 6C7	CV945 CV946	28D7 28D7GT
CV700	12SJ7GT, 12SJ7 12SR7	CV856	6G8G	CV947	31
CV703	12K8	CV858	6J6A	CV948	32L7
CV705	1D5GP	CV859	6J8G	CV949	33
CV706	6U7G, 6K7	CV860	6K5	CV951	32A
CV711	32	CV861	6K5GT	CV953	32G
CV712	38	CV862	6L5G	CV966	6ED8
CV724	816 1050T	CV864	6P5G	CV995	6AJ5
CV728 CV729	1P5GT 5V4GA	CV865 CV866	6SD7GT 6SJ7Y	CV1060 CV1067	807 6J5
CV729	6A3	CV867	6SR7	CV1007 CV1074	6J5
CV731	6V6GTA	CV870	6V7G	CV1075	6L6GC
CV741	6CA7, EL34/6CA7	CV872	6Z7G	CV1100	687
CV747	6AC7	CV873	6ZY5	CV1195	6K7
CV750	01A	CV876	7A6	CV1280	6L7
CV752	OA4G	CV877	7A7	CV1285	6N7
CV753 CV754	1A3 1A4P	CV878 CV779	7A8 7B4	CV1286	6L6
CV755	175	CV880	7B5	CV1287	25L6GT/25W6G1
CV756	1A5	CV881	7B5	CV1301	6H6
CV757	1A6	CV882	7B6	CV1347	6E8
CV758	1B4P	CV883	7B8	CV1352	6BR5
CV759	1B5/25S	CV885	7 C 5	CV1364	807
CV760	1A7GT	CV886	7C5LT, 7C5	CV1375	6BY7

Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type	American Type For Replacement
CV1376	6BX6,	CV1900	6D6	CV1990	6SQ7
0,10,0	6EH7/EF183	CV1901	6AM6	CV1991	6SQ7GT, 6SQ7
CV1377	5AR4/GZ34	CV1902	6D8	CV1992	OA4G
CV1449	872A/872	CV1908	6F5G, 6F5	CV1993	6SS7
CV1535 CV1572	6V4/EZ80 807	CV1909 CV1910	6F5 6F5GT, 6F5	CV1995 CV1996	6ST7G 6ST7
CV1633	3V4	CV1911	6F6G, 6F6	CV2004	6AL5
CV1741	6CA7, EL34/6CA7	CV1912	6F6	CV2005	6AL5
CV1751	34	CV1915	6F7	CV2007	12AU7A/ECC82
CV1752 CV1753	35/51	CV1917	6F8G	CV2009	6AQ4
CV1758	35A5 1L4	CV1918 CV1924	6F8 5866	CV2010 CV2011	6J6A 12AU7A/ECC82
CV1762	6AK6	CV1926	6G6	CV2012	OG3, 5651
CV1763	6J4	CV1928	12BA6	CV2013	6CH6
CV1769	2A6	CV1929	6H6G, 6H6	CV2014	5763
CV1770	7A4	CV1930	6H6	CV2016	12AT7/ECC81
CV1771 CV1772	39/44 47	CV1931 CV1932	6H6GT, 6H6	CV2020 CV2021	6AK5/EF95
CV1772	82	CV1933	6J5G, 6J5 6J5	CV2021	6X4 6BW6
CV1774	112A	CV1934	6J5GT, 6J5	CV2023	6C06
CV1775	36	CV1935	6J7G, 6J7	CV2024	6BE6
CV1776	6D7	CV1936	6J7	CV2026	6BA6/EF93
CV1777	7C7	CV1937	6J7GT, 6J7	CV2105	6973
CV1784 CV1800	6AK7, 6AG7 1A7G, 1A7GT	CV1938 CV1940	6K6G, 6K6GT 6K6GT	CV2127 CV2128	6CH6 6AJ8
CV1802	1A7G, 1A7G1 1A7GT	CV1941	6K7G, 6K7	CV2129	5763
CV1803	1C5G	CV1942	6K7	CV2130	6155
CV1805	1C5GT	CV1943	6K7GT, 6K7	CV2131	6156
CV1806	1D5GT	CV1944	6K8G	CV2135	6BR7
CV1811	1D8GT	CV1945	6K8	CV2136	6BW6
CV1812 CV1815	1E7 6Q5G	CV1946 CV1947	6K8GT 6L6G, 6L6GC	CV2137 CV2180	6ED6 19H4
CV1817	1G4	CV1948	6L6	CV2195	6AM6
CV1818	1H5G	CV1949	6D4	CV2210	5544
CV1819	6P5GT	CV1950	6L7G	CV2215	5545A
CV1820	1H5GT	CV1951	6L7	CV2225	6374
CV1821 CV1823	1N5 1N5GT	CV1953 CV1954	6N6G 6N6	CV2235 CV2237	6374 1AD4
CV1824	1Q5G	CV1956	6N7G, 6N7	CV2238	5672
CV1826	1Q5GT	CV1957	6N7	CV2239	5676
CV1829	1T5GT	CV1958	6N7GT, 6N7	CV2240	3B4
CV1831	2A3	CV1959	50C5	CV2241	5642
CV1832 CV1833	OA2 OB2	CV1960 CV1961	6R6G 12AU6	CV2253 CV2254	6574 5678
CV1834	2A5	CV1962	6R7G	CV2275	6375
CV1837	2B7	CV1963	6R7	CV2300	3A4
CV1838	5895	CV1964	6R7GT	CV2361	3C4
CV1852	OA2	CV1966	6SA7	CV2370	3S4
CV1854 CV1856	5Y3G, 5Y3GT 5Y3GT	CV1967 CV1969	6SA7GT, 6SA7	CV2382	6CH7
CV1862	6AQ5A/6HG5	CV1969 CV1970	6SC7 6SC7GT, 6SC7	CV2390 CV2432	3A4 6205
CV1865	6R4	CV1971	1T4	CV2434	6779
CV1867	6A6	CV1972	6SF5	CV2466	6939
CV1870	6A7	CV1973	6SF5GT, 6SF5	CV2492	6DJ8/ECC88
CV1873 CV1878	6AB7, 6AC7	CV1974	6\$7G	CV2500	35Z4GT
CV1878 CV1882	6AD7 6AG7	CV1975 CV1977	6S7 45A5	CV2501 CV2507	40 1U4
CV1885	6B5	CV1978	6SG7	CV2507 CV2514	43
CV1886	6Q4	CV1981	6SK7	CV2520	6279
CV1887	6B6G	CV1982	6SK7GT, 6SK7	CV2522	6AS6
CV1888	6R4	CV1984	6SL7, 6SL7GT	CV2523	6AS7G, 6AS7GA
CV1891 CV1893	6B7 6B8G	CV1985	6SL7GT	CV2524	6AU6A
CV1893 CV1894	6B8	CV1986 CV1988	6SN7, 6SN7GTB 6SN7GT,	CV2526 CV2527	6AV6 6BA7
CV1896	6C8	3,1300	6SN7GTB	CV2530	45Z5
O V 1030	000	<u> </u>	di Dinco	1045330	4JZJ

Foreign Type To Be Replaced	American Type For Replacement		American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
CV2531	46	CV2810	6ED6B	CV4023	6AU6WA, 6136 ,
CV2532	49	CV2842	6C4W, 6C4WA ,	0111001	6AU6WC
CV2533	50	01/0044	6100	CV4024 CV4025	6201, 12AT7WC
CV2534 CV2535	50L6GT 53	CV2844 CV2854	6X4W, 6202 6AN5	CV4025 CV4026	5726 6R4WGA
CV2536	53A	CV2876	5727	CV4028	OB2WA
CV2537	55	CV2877	5654, 5654W	CV4029	5902
CV2538	59	CV2882	5726	CV4031	6101, 6J6WA
CV2541	71A	CV2883	6005, 6005W	CV4039	5763
CV2542	72	CV2884	5725, 5 725W	CV4044	6443
CV2543	73	CV2901	6267	CV4058	6100, 6C4WA
CV2544	78	CV2903	6073	CV4066	5783WA
CV2545	79 91	CV2940	6CM5	CV4100	OA2WA OB2WA
CV2546 CV2547	81 83V	CV2967 CV2975	8020 6005 /F1 94	CV4101 CV4108	7308
CV2548	84	CV2980	6BQ5/EL84 1M3	CV5008	6080
CV2549	85	CV2983	3V4	CV5021	6V3A
CV2556	117L7/M7GT	CV2984	6080	CV5032	1X2A.
CV2557	117N7GT	CV3508	12AT7WA, 6201,		1X2C/1BX2
CV2558	117Z6GT		12AT7WC	CV5034	6FG6/EM84
CV2565	2050	CV3512	5696, 5696A	CV5036	6AF4,
CV2573	5651	CV3521	5949/1907	01/5007	6DZ4/6AF4A
CV2575	5670, 5670W	CV3522	6079	CV5037	6BA6W, 5749
CV2578	5687, 5687WA, 5687WB	CV3523 CV3526	6146B	CV5040 CV5042	6BQ6GTB/6CU6
CV2638	393A	CV3789	6BN5 417A, 5842/417A	CV5042 CV5055	12BH7A 6DA5
CV2642	417A, 5842/417A	CV3798	OA3	CV5065	6U8A/6AX8/
CV2658	806	CV3799	OB3	0.3003	6KD8/5KD8
CV2660	809	CV3882	6CV7	CV5071	6CA4
CV2661	812A	CV3883	6CT7	CV5072	6CA4
CV2662	5639	CV3886	6CJ5	CV5074	6AN4
CV2663	815	CV3888	6CU7	CV5077	21A6
CV2666	829B	CV3889	6CK5	CV5079	5643
CV2669	849 851	CV3891	6BT4	CV5094	6CW5/EL86
CV2671 CV2680	868	CV3905 CV3908	5847 6BH6	CV5122 CV5126	5823 6AJ4
CV2683	878A	CV3912	1U5	CV5120	6923
CV2685	880	CV3928	5636	CV5156	6DA6
CV2692	918	CV3929	5840	CV5172	1AC6
CV2693	929	CV3930	5718	CV5181	5R4GY, 5R4GYB
CV2694	930	CV3933	5783	CV5186	5681
CV2695	931, 931A	CV3938	5636	CV5188	5651
CV2696	931A	CV3939	6BM6A	CV5189	5726
CV2697	935	CV3960	5783WA	CV5190	6005, 6005W
CV2698 CV2700	5896 957	CV3986 CV3987	6021 5644	CV5192 CV5212	7AN7
CV2700 CV2701	958A	CV3990	2E26	043212	12AT7WB, 6201, 12AT7WC
CV2704	7E5	CV3995	6CB6A/6CF6	CV5214	5920
CV2706	7C4	CV3998	6688	CV5215	6BL8/ECF80
CV2707	1231	CV4003	6189, 6189W	CV5216	5654, 5654W
CV2709	1R4	CV4004	12AX7A/7025	CV5220	6550, 6550A
CV2710	3D6	CV4007	5726	CV5231	7308
CV2714	1614, 6L6	CV4008	5719	CV5242	6CT4
CV2715	1630	CV4009	5749, 5749W	CV5268	7384
CV2716	6SC7	CV4010	5654, 5654W	CV5281	6CW7
CV2721 CV2726	6CJ6 6CK6	CV4011 CV4012	5725, 5725W 6BE6	CV5311 CV5331	6J4WA 6ES8/ECC189
CV2729	6084	CV4014	6084	CV5354	7308
CV2742	1L4	CV4015	6065	CV5358	6DJ8/ECC88
CV2748	5Z4GT, 5V4GA	CV4016	6189. 6189W	CV5365	6BQ7A/6BZ7
CV2769	9006	CV4017	5751	CV5397	8108
CV2795	1L4	CV4018	5727	CV5404	6463
CV2797	5894	CV4019	6005, 6005W	CV5427	1X2B,
CV2798	6360	CV4020	OA2WA		1X2C/1BX2
CV2799	6252	CV4022	6135	CV5434	6FG6/EM84

Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
CV5724	6218	CV8229	6AQ5/6HG5	DH74	12Q7GT
CV5817	6BW7,	CV8231	6J6A	DH76	12Q7GT
CV5831	6EH7/EF183 6EH7/EF183	CV8232 CV8237	6080 6X4	DH77 DH81	6AT6
CV5843	5965A	CV8237	5783	DH118	7B6 14L7
CV5893	5654, 5654W	CV8246	5654, 5654W	DH119	14G6
CV5894	5670, 5670W	CV8247	5670, 5670W	DH142	14L7
CV5895	5750	CV8248	5750	DH149	7C6
CV5896	6136, 6AU6WC	CV8249	6136, 6AU6WC	DH150	6CV7
CV5905 CV5948	6R3 18D3	CV8280	6AX5GT	DH718	6CV7
CV5986	6112	CV8287 CV8297	5686 6GW8/ECL86	DH719 DH817	6T8A 6CV7
CV5989	6085	CV8310	5725, 5725W	DK32	1A7GT
CV7047	OA5	CV8311	5726	DK91	1R5
CV8017	6CQ6	CV8312	5751	DK92	1AC6
CV8020	6AM6	CV8324	5744WB	DK96	1AB6
CV8038 CV8039	6CN6	CV8403	6AU6WB, 6136 ,	DK97	1AB6
CV8041	5840 6489	CV8430	6AU6WC 6BK4B	DL29 DL31	3D6/1299 1A5GT
CV8045	6CH6	CV8431	7062	DL33	305GT
CV8047	6BR7	CV8433	9A8/8A8/PCF80	DL35	1C5GT
CV8048	6BW6	CV8450	0A5	DL36	1Q5GT
CV8065	6922	CV8458	6DL5	DL37	6L6GC
CV8068	6267	CV8469	7554	DL67	6007
CV8069 CV8070	6BQ5/EL84	CV8470	7587 057	DL70	6373
CV8070 CV8071	6059 6CQ6	D1C D2C	957 958 A	DL82 DL91	7B6 1S4
CV8073	6072, 6072A	D2M9	6AL5	DL92	3 S 4
CV8076	6132	D3F	959	DL93	3A4
CV8080	6158	D63	6H6	DL94	3V4
CV8086	OA5	D77	6AL5	DL95	3Q4
CV8154	12AT7/ECC81	D152	6AL5	DL96	3C4
CV8155 CV8156	12AU7A/ECC82	D717 DA90	6AL5 1A3	DL98 DL620	3B4
CV8158	12AX7A/7025 2D21	DAGU DAC21	185 185	DM70	5672 1M3
CV8159	6AK5/EF95	DAC32	1H5GT	DM71	1N3
CV8160	6J6A	DAF90	1A3	DM160	6977
CV8161	OA2	DAF91	1 S 5	DP61	6AK5/EF95
CV8162	OB2	DAF92	105	DY30	1B3GT,
CV8189 CV8190	5R4GY, 5R4GYA 6AH6	DAF96	1AH5	DVE1	1G3GTA/1B3GT
CV8191	6CL6	DAF97 DC70	1AN5 6375	DY51 DY70	1BG2 5642
CV8192	6J4	DC80	1E3	DY80	1X2A,
CV8200	6AL5	DCC90	3A5	- /	1X2C/1BX2
CV8201	6BE6	DCF60	1V6	DY86	1S2, 1S2A/DY87
CV8202	6BA6	DCG4/1000G	866A	DY87	1\$2A/DY87
CV8203	6X4	DD6	6AL5	DY802	1BQ2
CV8204 CV8205	5R4GYA 6D4	DD7 DD77	6AM5 5726	E1F E2F	954 956
CV8206	5763	DD77	6AM5	E55L	8233
CV8208	6AH6	DET17	810	E80CC	6085
CV8209	6AS6	DF26	1\$5	E80CF	7643
CV8210	6AU6A	DF33	1N5GT	E80F	6084
CV8211	6AN5	DF60	5678	E80L	6227
CV8214 CV8215	8020 5656	DF62	1AD4 F011 C000	E80T	6218
CV8216	6080	DF67 DF91	5911, 6008 1T4	E81CC E81L	6201, 12AT7WC 6686
CV8218	6146, 6146B	DF92	1L4	E82CC	6189, 6189W
CV8221	12AU7A/ECC82	DF96	ÎÃJ4	E83CC	6681
CV8222	12AX7A/7025	DF97	1AN5	E83F	6689
CV8223	6X4	DF650	6419	E84L	7320
CV8224	5726	DF652 DF668	1AD4 1AD4	E88C	6DL4, 8255 6922/E88CC
といなううち			IAUA	E88CC	na///PXXICIC
CV8225 CV8226	6AK5/EF95 6AS6	DF904	104	E89F	6DG7

Fareles Torre	A	F T	A	F	
Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
E90CC	5920	EC94	6AF4,	ED2	6AL5
E90F	7693, 6661		6DZ4/6AF4A	ED500	6ED4
E90Z	6X4	EC95	6ER5	EF2	6DA6
E91AA E91H	5726 6687	EC97 EC157	6FY5 8108	EF5 EF13	6DA6 6DA6
E91N	5727	EC157	8436	EF22	7G7
E95F	5654, 5654W	EC900	6HA5/6HM5	EF36	6J7GT, 6J7
E99F	6662	EC903	6BS4	EF41	6CJ5
E108K	OB2	EC1000	8254	EF70	6487
E130L	7534	ECC32	6SN7GTB	EF71	5899
E180CC E180F	7062 6688	ECC70 ECC81	6021, 12AT7WC	EF72 EF73	5840 6488
E180L	7534	ECC82	12AT7/ECC81 12AU7A/ECC82	EF74	6391
E182CC	7119. 7044	ECC83	12AX7A/7025	EF80	6BX6.
E182F	5847/404A	ECC84	6CW7		6EH7/EF183
E186F	7737	ECC85	6AQ8/ECC85	EF81	6BH5
E188CC	7308	ECC86	6GM8/ECC86	EF82	6CH6
E280F E288C	7722 8223	ECC88 ECC89	6DJ8/ECC88 6FC7	EF83 EF85	6BK8 6BY7.
E810F	7788	ECC91	6J6A	L1 03	6EH7/EF183
E902	6X4	ECC180	6BQ7A/6BZ7	EF86	6CF8, 6267
E1485	3A4	ECC186	12AU7Á/ECC82	EF87	6CF8, 6267
E2016	6CQ6	ECC189	6ES8/ECC189	EF89	6DA6
E2157	12AT7/ECC81	ECC230	6080	EF89F	6DG7
E2163 E2164	12AU7A/ECC82 12AX7A/7025	ECC801	12AT7WA, 6201 , 1 2AT7WC	EF91 EF92	6AM6 6C06
EA41	6CT7	ECC801S	12AT7WA, 6201 .	EF93	6BA6/EF93
EA50	2B35		12AT7WC	EF94	6AU6A
EA52	6923	ECC802	6189, 6189W	EF95	6AK5/EF95
EA76	6489	ECC802S	6189, 6189 W	EF96	6AG5
EAA91 EAA901	6AL5 5726	ECC803 ECC 803S	12AX7A/7025	EF97 EF98	6ES6 6ET6
EAA901S	5726 5726	ECC 8033	12AX7A/7025 6GA8	EF183	6EH7/EF183
EABC80	6AK8, 6T8-A	ECC808	6KX8	EF184	6EJ7/EF184
EAF42	6CT7	ECC813	6463	EF190	6CB6A/6CF6
EAM86	6GX8	ECC863	12DT7,	EF730	5636
EB91	6AL5	F00000	12AX7A/7025	EF731	5899
EBC3 EBC41	6BD7A 6CV7	ECC900	6HA5, 6HM5/6HA5	EF732 EF734	5840 6205
EBC80	6BD7	ECC960	5920	EF811	6EH7/EF183
EBC81	6BD7A	ECF80	6BL8/ECF80	EF812	6EL7,
EBC90	6AT6	ECF82	6U8A/6AX8/	l	6EH7/EF183
EBC91	6AV6	FOFOC	6KD8/5KD8	EF861	6688
EBF41 EBF80	6CJ5 6N8	ECF86 ECF200	6HG8/ECF86	EF905 EFL200	5654, 5654 W 6Y9
EBF81	6AD8	ECF200 ECF201	6X9/ECF200 6U9	EH90	6CS6
EBF83	6DR8	ECF202	6AJ9	EK90	6BE6
EBF85	6DC8	ECF801	6GJ7/ECF801	EL33	6AG6
EBF89	6DC8	ECF802	6JW8/ECF802	EL34	6CA7,
EC22	6R4	ECF805	6GV7	EL36	EL34/6CA7
EC51 EC55	5861 5861	ECH42 ECH80	6CU7 6AN7	EL36 EL37	6CM5 6L6GC
EC56	8108	ECH81	6AJ8	EL38	6CN6
EC57	8108	ECH82	6E8	EL41	6CK5
EC70	6778, 5718	ECH83	6DS8	EL71	5902
EC71	5718	ECH84	6JX8	EL80	6M5
EC80 EC81	6Q4 6R4	ECH113 ECH200	6CU7 6V9	EL81 EL82	6CJ6 6DY5
EC84	6AJ4	ECH200	6AB8	EL83	6CK6
EC86	6CM4	ECL82	6BM8/ECL82	EL84	6BQ5/EL84
EC88	6DL4, 8255	ECL84	6DX8/ECL84	EL85	6BN5
EC90	6C4	ECL85	6GV8	EL86	6CW5/EL86
EC91 EC92	6AQ4	ECL86	6GW8/ECL86	EL90	6AQ5A/6HG5
EC92 EC93	6AB4 6BS4	ECL821 ECLL800	6CH6 6KH8	EL91 EL95	6AM5 6DL5
-030	VUUT	I FAFFORD	VALIG	I LLJJ	UDLU

Foreign Type	American Type	Foreign Type	American Type	Foreign Type	American Type
	For Replacement		For Replacement		For Replacement
EL136 EL180	6FV5 12BY7A/12BV7/	H2-10 H52	2X2A	LCF802 LCH200	6LX8/LCF802 5V9
ELION	12DQ7	H63	5U4GB/5AS4A 6F5GT, 6F5	LCH200 LCL82	11BM8
EL300	6FN5	HAA91	12AL5	LCL84	10DX8/LCL84
EL500	6GB5/EL500	HBC80	19T8A	LCL85	10GV8
EL503	8278 CODE 4	HBC90	12AT6	LF183	4EH7
EL504	6GB5A, 6GB5/EL500	HBC91 HCC85	12AV6 17EW8/HCC85	LF184 LFL200	4EJ7 11Y9/LFL200
EL505	6KG6, 6KG6A	HCH81	12AJ7	LL86	10CW5/LL86
EL508	6KW6	HD14	1H5GT	LL500	18GB5
EL509	6KG6A	HD30	3B4	LL505	27KG6
EL802	6LD6	HD51	OA2	LL521	21KQ6
EL821 EL822	6CH6 6CH6	HD52 HD93	OB2 1X2B.	LN119 LN152	50BM8 6AB8
EL861	6686	11033	1X2C/1BX2	LN309	16A8/PCL82
ELF86	6HG8/ECF86	HD94	6BQ6GTB/6CU6	LN319	13GC8
ELL80	6HU8	HD96	25BQ6GTB/	LY81	11 R 3
EM34	6CD7	usei	25CU6	LY88	20AQ3/LY88
EM35 EM80	6U5 6BR5	HF61 HF93	6CJ5 12BA6	LY500 LZ319	28EC4 8A8,
EM81	6DA5/EM81	HF94	12AU6	1,2313	9A8/8A8/PCF80
EM84	6FG6/EM84	HF121	12AC5	LZ329	9A8/8A8/PCF80
EM85	6DG7	HK90	12BE6	LZ339	9EN7
EM87	6HU6	HL86	30CW5	M8063	6AM6
EM840 EN32	6FG6/EM84 2050	HL90 HL92	19AQ5 50C5	M8079 M8081	5726 6101/6J6WA
EN91	2D21	HL94	30A5	M8096	5763
EN92	5696A	HM04	6BE6	M8100	5654, 5654W
EN93	6D4	HP6	6AM6	M8121	5840
EQ80	6BE7	HY51B	829B	M8136	6189, 6189W
ESU866	866A	HY61	807	M8137	12AX7A/7025
EY51 EY80	6X2 6U3	HY90 HY145	35W4 1U4	M8161 M8162	6065 12AT7WA, 6201 ,
EY81	6R3	HZ50	14Z3	1110102	12AT7WC
EY81F	6V3A	HZ90	12X4	M8190	5783WA
EY82	6N3	KD21	OA3	M8196	5725, 5725 W
EY84	6374	KD24	OC3	M8204	5727
EY86 EY87	6S2 6S2A	KD25 KF35	OD3 1E3	M8212 M8223	5726 OA2WA
EY88	6AL3/EY88	KK32	107	M8224	OB2WA
EY500	6EC4A/EY500	KT32	25L6GT/25W6GT	M8232	8532/6J4WA,
EZ3	6V4/EZ80	KT33	25A6		6J4WA
EZ4	6CA4	KT61	6AG6G	M8245	6005, 6005W
EZ11 EZ22	6V4/EZ80 7Y4	KT63 KT66	6F6GT, 6F6	MU14 MV6-5	6BT4 6SA7GT, 6SA7
EZ35	6X5GT	KT71	7581A/KT66 50L6GT	N2ED	6HT5
EZ40	6BT4	KT77	6CA7/EL34	NI4	1C5GT
EZ80	6V4/EZ80	KT88	6550, 6550A	N15	3Q5GT
EZ81	6CA4	KTW63	6J7	N16	3Q5GT
EZ90	6X4	KTZ63	6K7GT, 6K7	N17	3 \$4
EZ91 EZ900	6AV4 6X4	KTZ63M KY50	6J7GT, 6J7 2L2	N18 N19	3Q4 3V4
FA6	5677	KY80	2J2	N22LL	19FK6
FIEL	8278	L63	6C5	N25	3C4
G75/2D	OA3	L63B	6C5	N30EL	6LF6
G77	606	L77	6C4	N47	6AM5
G105/1D	OC3	LC97	3FY5, 3ER5	N63	6K6GT 6l6GT, 6l6GC
G150/3D G150/4K	OD3 OA2	LC900	3HA5, 3HM5/3HA5	N66 N77	6AM5
GU12	866A	LCC189	5ES8	N78	6BJ5
GY501	3BH2	LCF80	6LN8	N119	45B5/UL84
GZ30	5Z4G, 5V4GA	LCF86	5HG8	N142	45A5
GZ31	5U4GB/5AS4A	LCF200	5X9	N144	6AM5
GZ32 GZ34	5V4GA 5AR4/GZ34	LCF201 LCF801	5U9/LCF201 5GJ7	N147 N148	6AG6G 7C5
GLUT	JANT GLOT	I COLOUT	7401	1 11140	100

Foreign Type	American Type	Foreign Type	American Type	Foreign Type	American Type
	For Replacement	To Be Replaced	For Replacement		For Replacement
N150	6CK5	PCL800	16GK8	OM559	5726
N152	21A6	PCL801	13GC8	OOC04/14	5895
N153	15A6	PD500	9ED4	QQE02/5	6939
N154	16A5	PF9	6K7	QQE03/12	6360
N155	6BN5	PF86	4HR8	QQE03/20	6252
N308	25E5	PF818	7ED7	QQE06/40	5894
N309	15A6	PFL200	16Y9	QQV02-6	6939
N329 N359	16A5 21 A 6	PH4 PL21	6A8GT 2D21	QQV03-10 00V03-20	6360 6252
N369	16A8/PCL82	PL36	25E5	QQV07/40	829B
N378	15CW5/PL84	PL81	21A6	0\$83/3	5651
N379	15CW5/PL84	PL82	16A5	OS150/40	OD3
N389	25GF6	PL83	15A6	OS1205	OA3
N709	6BQ5/EL84	PL84	15CW5/PL84	QS1206	OC3
N727	6AQ5A/6HG5	PL86	14GW8	QS1207	SAO
OBC3	12 SQ 7	PL136	35FV5	QS1208	OB2
OF1	6S7	PL300	35FN5	QS1209	5651A, 5651
OF5 OH4	12K7GT 12A8	PL302	25GF6	QS1210	OA2WA
OM6	6K7	PL500 PL505	27GB5/PL500 40KG6A	QS1211 QS2404	OB2WA 5726
OSW2190	6AC7	PL508	17KW6	QS2404 QS2406	12AT7WA.
OSW2192	6AG7	PL509	40GK6A	QUETOU	6201, 12AT7WC
OSW2600	6AC7	PL521	29KQ6	OVO3-12	5763
OSW2601	6AG7	PL800	16KG8	QV05/25	807
OSW3104	6SA7	PL801	12FB5	QV06-20	6146B
OSW3105	6SQ7	PL802	16LD8	QV06-20B	6883
OSW3107	5CG4, 5V4GA	PL820	21A6	QV06-20C	6159
OSW3109	6H6	PL1267	0A4G	QW77	6CQ6
OSW3110 OSW3111	6E5 6SK7	PLL80 PMO4	12HU8 6BA6/EF93	QY2-100 QY2/250	813 813
OSW3112	6J5	PMO5	6AK5/EF95	0777 0777	6AM6
P17A	807	PMO7	6AM6	Ř3	1W4
PA5021	866A	PM84	9FG6	R12	6X2
PABC80	9AK8	PM95	6AK6	R12A	6X2
PC86	4CM4	PY80	19X3	R16	1T2
PC88	4DL4	PY81	17 Z 3	R19	1X2A,
PC92	3AB4	PY82	19Y3	D 00	1X2C/1BX2
PC93	4BS4	PY83	17Z3	R20	2J2
PC95 PC97	4GK5 4FY5	PY88 PY301	30AE3 19CS4	R52 R144	5Z4, 5V4GA 6AM6
PC900	4HA5/PC900	PY500	42EC4A	RG3-250A/866	866A
PCC84	7AN7	PY800	17 Z 3	RK39	807
PCC85	9AQ8	PY801	17 Z 3	RL21	2D21
PCC88	7DJ8	QA2400	6065	RL1267	OA4G
PCC89	7FC7	QA2401	6135	RS2	5Z4, 5V4GA
PCC186	7AU7	QA2404	5726	RS1029	6360
PCC189	7ES8	QA2406	12AT7WB, 6201 ,	S6F12	6AM6
PCC805 PCE800	7EK7 9GB8	OA2407	12AT7WC 6201, 12AT7WC	S856 S860	OA2 OB2
PCF80	9A8/8A8/PCF80	0A2408	5692	S901C	5651
PCF82	9U8A, 9GH8A	QB2/250	813	SM150-30	OA2
PCF86	7HG8/PCF86	ÒB3-5/750	6156	SP6	6AM6
PCF200	8X9	QB5/1750	6079	SR2	OG3
PCF201	8U9	QB65	6SN7GTA	SR3	OB3
PCF800	9EN7	QB309	12AT7	SR55	OB2
PCF801	8GJ7/PCF801	QE03/10	5763	SR56	OA2
PCF802	9JW8	QE05-40	6146B	STR85/10	0G3
PCF805 PCF806	7GV7	QE05-40H QE06/50	6159 907	STR108/30	OB2 OA2
PCH200	8GJ7/PCF801 9V9	0F408	807 1AD4	STR150/30 STV85/10	0G3
PCL82	16A8/PCL82	0L77	6C4	STV108/30	OB2
PCL84	15DQ8	OM328	5686	STV150/30	OA2
PCL85	18GV8/PCL85	QM556	6X4W, 6202	SU61	6X2
PCL86	14GW8 [°]	QM557	5654, 5654W	T2M05	6J6A
PCL88	16GK8	QM558	5725, 5725 W	T77	6C6

Foreign Type To Be Replaced	American Type i For Replacement	Foreign Type To Be Replace	American Type	Foreign Type To Be Replaced	American Type For Replacement
T866A/866	866A	UF89	12AD6	X77	6BE6
TB2.5/300	5866	UL41	45A5	X79	6AE8
TH813	813	UL84	45B5/UL84	X81	7S7
TH5021B TM12	866A	UM80	19BR5	X107	18FX6A, 18FX6
TS229	6J7 5687	UM84 UN954	12FG6 954	X119 X142	19D8 14K7
TT10	813	UN955	955	X147	6E8
TTZ63	6J7	UQ80	12BE7	X148	7S7
TX2/3	5544	บบัร	6BT4	X155	6BZ8, 6BC8/6BZ8
U25	2L2	UU9	6BT4	X319	6351
U26	2J2	UU12	6CA4	X719	6AJ8
U31	25Z4GT	UX866	866A	X727	6BE6
U37 U41	1T4 1B3GT.	UY41 UY42	31A3 31A3	XAA91 XB91	3AL5 3AL5
041	1G3GT/1B3GT	UY82	55N3	XC88	2DL4
U43	6X2	UY85	38A3	XC95	2ER5
U49	6S2A	UY89	31AV3	XC97	2FY5.
U50	5Y3GT	UY807	807		2GK5/2FQ5
U51	5W4GT, 5V4GA	V2M70	6X4	XC900	2HA5
U52	5U4GB/5AS4A	V61	6BT4	XCC82	7AU7
U70 U74	6X5GT	V177	6CQ6	XCC89	4FC7 4ES8
U74 U76	35Z4GT 35Z4GT	V311 V312	31A3 31A3	XCC189 XCF80	4BL8/XCF80
U77	5AR4/GZ34	V741	6C4	XCF82	5U8A
U78	6X4	V884	6CQ6	XCF801	4GJ7
U82	7Y4	V886	6AM5	XCH81	3AJ8
U118	31A3	VH550H	866A	XCL82	8B8
U119	38A3	VP6	6CQ6	XCL84	8DX8
U142	31A3	VP12D	1208	XCL85	9GV8
U145	31A3	VR150	OD3	XCL86	8GW8
U147 U149	6X5G, 6X5GT 7Y4	VT83 W17	83 1T4	XF80 XF85	3BX6 3BY7
U150	6BT4	W25	1AJ4	XF86	2H R 8
Ŭ151	6X2	W63	6K7	XF94	3AU6
U152	19X3	W77	6CQ6	XF183	3EH7/XF183
U153	17Z3	W81	7AŽ	XF184	3EJ7/XF184
U154	19Y3	W110	13EC7	XFR3	5676
U191	19CS4	W118	12AC5	XL36	13CM5
U192 U193	19Y3 17 Z 3	W119 W142	13EC7	XL84 XL86	8BQ5 8CW5
U251	1723	W145	12AC5 12AC5	XL136	17FV5
U309	19X3	W148	7A7	XL500	13GB5/XL500
U319	19Y3	W149	7B7	XXB	3C6
U329	25BR3	W150	6CJ5	XXD	14F7
U339	19CS4	W719	6BY7,	XXFM	7X7
U349	17Z3	14707	6EH7/EF183	XXL	7A4
U381 U707	38A3 6X4	W727 W739	6BA6/EF93 6EC7	XY88 Y25	16AQ3/XY88 1N3
U709	6CA4	WD119	19FL8	Y64	6U5
UABC80	28AK8	WD142	1287	Y119	19BR5
UAF42	1287	WD150	6CT7	YC88	3DL4
UBC41	14L7	WD709	6N8	YC95	3ER5
UBC80	14G6	WT294	OD3	YC97	3FY5, 3ER5
UBC81	14G6	WT301	83	YCC89	5FC7
UBF80 UBF89	17C8 19FL8, 19DC8	X14 X17	1A7GT 1 R5	YCC189 YCF86	5ES8 5HG8/LCF86
UC92	9AB4	X18	1AC6	YCL82	10BM8
UCC85	26AQ8	X20	1AC6	YCL84	10DX8/XCL84
UCH42	14K7	X25	1AB6	YCL86	10GW8
UCH80	14Y7	X61M	6K8	YF183	4EH7
UCH81	19D8, 19AJ8	X63	6A8	YF184	4EJ7
UCL82	50BM8	X64	6L7	YL84	10BQ5
115.41					
UF41 UF80	12AC5 19BX6	X65 X71M	6E8 12K8	YL86 YL1370	10CW5/LL86 6146B/8298A

Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement	Foreign Type To Be Replaced	American Type For Replacement
YL1372	6159B	Z319	6351	Z900T	5823
Z14	1N5G	Z329	7ED7	ZD17	1S 5
Z63	6J7	Z550M	8453	ZD25	1AH5
Z 77	6AM6	Z719	6BX6.	ZD152	6N8
Z150	6CU7		6EH7/EF183	ZM1050	8453
Z152	6BX6.	Z729	6CF8, 6267	ZZ1000	8228
	6EH7/EF183	Z749	6EL7.		
Z300T	OA4G	1	6EH7/EF183	1	

INDUSTRIAL, MILITARY, AND SPECIAL-PURPOSE TUBES AND THEIR PROTOTYPES

Industrial, military, and various special-purpose types are all listed under the heading "Special Type," along with an indication of the general type of service for which the special type was originally intended. Based on an examination of the data, these special types appear to be similar to the types listed opposite them under the heading "Prototype or Similar Receiving Tube Type." Notes are referenced to describe some of the apparent differences between the associated types. Following the basic listing in order of the "Special Type" number, a cross-reference listing in order of the "Prototype or Similar Receiving Tube Type" number is given.

The inclusion of a type number under either heading does not necessarily mean that it is currently available, or that it is the latest modification of the basic type. All of the modifications of types, as represented by the addition of various suffix letters, are not listed. General information on the interpretation of suffix letters is presented near

the front of this book under the heading "Arrangement of Data."

The associated types in these lists are not generally interchangeable in all respects, even where no specific differences are mentioned in the notes. However, the lists may be used as an aid in locating emergency replacements for unavailable tube types. Although reasonable care has been taken in compiling the lists and notes, no tube substitution should be made without a prior independent investigation to make sure that the tube under consideration is basically compatible with the specific circuit.

In Order By Special Types

Special Type	MIL Designation if Other Than EIA	Service	Prototype or Similar Receiving Tube Type
1612* 1620* 1621 1622 1634†		Broadcast—Audio Voltage Amplifier Broadcast—Audio Voltage Amplifier Ind.—Audio Power Output Ind.—Audio Power Output Ind.—Voltage Amplifier	6L7 6J7 6F6 6L6 12SC7
1644 5591‡ 5654 5670§ 5679¶	5654W 5670W	Ind.—Audio Power Output Ind.—Wide-band Amplifier Ind. or Mil.—Wide-band Amplifier (5★) Ind. or Mil.—General Purpose (5★) Ind.—Low-current Rectifier	12L8GT 6AK5 6AK5 2C51 7A6
5691†§△ 5692#△ 5693# 5725 5726†	 5725W	Ind. or Mil.—Voltage Amplifier Ind.—General Purpose Ind. or Mil.—Voltage Amplifier Ind. or Mil.—Gated Amplifier (5★) Ind. or Mil.—Dectector, Low-current Rectifier (5★)	6SL7GT 6SN7GT 6SJ7 6AS6 6AL5
5727 5749 5750 5751†#§ 5814A†§	5749W	Ind. or Mil.—Relay Control (5★) Ind. or Mil—RF or IF Amplifier (5★) Ind. or Mil.—Converter (5★) Ind. or Mil.—Voltage Amplifier (5★) Ind. or Mil.—General Purpose (5★)	2D21 6BA6 6BE6 12AX7 12AU7
5824 5842 5844‡ 5847 5852§	 	Ind.—Audio Power Output Ind. or Mil.—Wide-band Amplifier Ind. or Mil.—Computer (5★) Ind. or Mil.—RF Amplifier Ind. or Mil.—Rectifier	25B6G 417A 6J6 404A 6X5
5871 5881## 5915 5930 5931	_ _ _	Mobile—Audio Power Output Audio—Power Output Ind. or Mil.—Computer—Gated Amplifier Ind.—Audio Power Output Ind. or Mil.—Rectifier	6V6GT 6L6G 6BE6 2A3 5U4G
5932 5965† 5965A† 5992§# 5998		Ind.—Audio Power Output Ind. or Mil.—Computer Computer (5★) Ind.—Audio Power Output Ind. or Mil.—Series Regulator	6L6G 12AV7 12AV7 6V6GT 421A

^{*}Low-microphonic †Balanced Sections †Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings

##Higher Ratings

AShorter Envelope

¶Longer Envelope

△Cathode Type

†Different Basing

5★General Electric Five-Star Tube

Special Type	MIL Designation if Other Than EIA	Service	Prototype or Similar Receiving Tube Type
5998A 6005 6028 6045‡ 6046	6005W	Ind.—Series Regulator Ind. or Mil.—Audio Power Output (5★) Ind. or Mil.—RF Amplifier Ind.—General Purpose Ind.—Relay Energizer	421A 6AQ5 408A 6J6 25L6GT
6057 6058 6060 6061 6063	— — —	Ind.—Voltage Amplifier Ind.—Detector, Low-current Rectifier Ind.—Oscillator-mixer Ind.—Audio Power Output Ind.—Rectifier	12AX7 6AL5 12AT7 6BW6 6X4
6066 6067 6072*§ 6073 6074	6072A —	Ind.—Dectector, Voltage Amplifier Ind.—General Purpose Ind. or Mil.—Audio Voltage Amplifier (5★) Ind.—Voltage Regulator Ind.—Voltage Regulator	6AT6 12AU7 12AY7 0A2 0B2
6080 6087△△ 6095 6096 6097	5 У3 ₩GТВ 	Ind.—Series Regulator Ind. or Mil.—Rectifier (5★) Ind.—Audio Power Output Ind.—Wide-band Amplifier Ind.—Dectector, Low-current Rectifier	6AS7G 5Y3GT 6AQ5 6AK5 6AL5
6100 6101†# 6106△△ 6113* 6134	6C4WA 6AC7WA	Ind. or Mil.—General Purpose (5★) Ind.—General Purpose Ind.—Rectifier Ind.—Audio Voltage Amplifier Ind. or Mil.—RF Amplifier (5★)	6C4 6J6 5Y3GT 6SL7GT 6AC7
6135§ 6136 6137 6180# 6186	6AU6WC 6SK7WA 6186W	Ind. or Mil.—General Purpose (5★) Ind. or Mil.—RF or IF Amplifier (5★) Ind. or Mil—RF or IF Amplifier (5★) Ind.—General Purpose Ind. or Mil.—RF or IF Amplifier	6C4 6AU6 6SK7 6SN7GT 6AG5
6187 6188 6189 6197 6201		Ind.—Gated Amplifier Ind. or Mil.—DC Amplifier Ind. or Mil.—General Purpose (5★) Ind. or Mil.—Gomputer—Frequency-divider Ind. or Mil.—Oscillator-mixer (5★)	6AS6 6SU7WGT 12AU7 6CL6 12AT7
6202# 6203††§ 6265§ 6384 6385¶¶§	6X4WA 	Ind. or Mil.—Rectifier (5★) Ind. or Mil.—Rectifier (5★) Ind.—Wide-band Amplifier (5★) Ind. or Mil.—Pulse Amplifier Ind.—General Purpose	6X4 6X4 6BH6 6AR6 2C51
6386§ 6388 6414 6485 6520†	6414W —	Ind. or Mil.—Cascode Amplifier (5★) Ind.—Cold-cathode Relay Tube Ind. or Mil.—Computer—General Purpose (5★) Ind.—Wide-band Amplifier Ind.—Series Regulator	2C51 443A 12AV7 6AH6 6AS7G
6626 6627 6660 6661 6662	_ _ _ _	Ind.—Voltage Regulator Ind.—Voltage Regulator Mobile—RF or IF Amplifier Mobile—Wide-band Amplifier Mobile—Wide-band Amplifier	0A2 0B2 6BA6 6BH6 6BJ6
6663 6664 6669 6676 6677	=	Mobile—Detector, Low-current Rectifier Mobile—General Purpose Mobile—Audio Power Output Mobile—RF or IF Amplifier Mobile—Audio Power Output	6AL5 6AB4 6AQ5 6CB6 6CL6
6678 6679 6680 6681 6829		Mobile—Oscillator-mixer Mobile—Oscillator-mixer Mobile—General Purpose Mobile—Voltage Amplifier Ind. or Mil.—Computer (5★)	6U8 12AT7 12AU7 12AX7 12AX7
6913 6928‡# 6968 7025 7036		Computer Ind.—Audio Power Output Ind.—Wide-band Amplifier Audio—Voltage Amplifier Computer—Gated Amplifier (5★)	12BH7 6AQ5 6AK5 12AX7 6BE6

^{*}Low-microphonic †Balanced Sections ;Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings

Special Type	MIL Designation if Other Than EIA	Service	Prototype or Similar Receiving Tube Type
7189##		Audio—Power Output	6BQ5
7212		Mobile—RF Power Output	6146
7244		Ind.—General Purpose	6J6
7245A△		Ind.—RF Amplifier	6J4
7318§		Ind.—Pulse Amplifier	12AU7
7320		Mobile—Audio Power Output	6BQ5
7408		Audio—Power Output	6V6GT
7543*		Audio—Voltage Amplifier	6AU6
7581		Audio Power Output	6L6GC
7581A##		Audio—Power Output	6L6GC
7717		Mobile—RF Amplifier	6CY5
7724		Mobile—Detector, Voltage Amplifier	14GT8
7728		Industrial—Instrument Service	12AT7
7729		Industrial—Instrument Service	12AX7
7730		Industrial—Instrument Service	12AU7
7731		Industrial—Instrument Service	6U8
7732		Industrial—Instrument Service	6CB6
7733		Industrial—Instrument Service	12BY7
7734		Ind.—Voltage Regulator	6GE8
7738##		Ind.—Class C Amplifier	6AN4
7803 8113 8425A 8426A 8532	 8532W	Ind.—Class C Amplifier Ind.—RF Amplifier Industrial—Instrument Service Industrial—Instrument Service Ind. or Mil.—RF Amplifier	6FW8 6CY5 6AU6 12AU6 6J4

*Low-microphonic †Balanced Sections ‡Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings

##Higher Ratings

AShorter Envelope

¶¶Longer Envelope

ACathode Type

††Different Basing

★General Electric Five-Star Tube

In Order by Prototype or Similar Receiving Tube Type

			g :
Prototype or Similar Receiving Tube Type	Special Type (Refer to Preceding List for Service and Notes)	Prototype or Similar Receiving Tube Type	Special Type (Refer to Preceding List for Service and Notes)
0A2	6073, 6626	6J7	1620
0B2	6074, 6627	6L6	1622
2A3	5930	6L6G	5881, 5932
2C51	5670, 6385, 6386, 396A	6L6GC	7581, 7581A
2D21	5727	6L7	1612
5U4G	5931	6SJ7	5693
5Y3GT	6087, 6106, 5Y3WGTB	6SK7	6137
6AB4	6664	6SL7GT	5691, 6113
6AC7	6134	6SN7GT	5692, 6180
6AG5	6186	6SU7WGT	6188
6AH6	6485	6U8	6678, 7731
6AK5	5591, 5654, 6096, 6968, 403B	6V6GT	5871, 5992, 7408
6AL5	5726, 6058, 6097, 6663	6X4	6063, 6202, 6203
6AN4	7738	6X5	5852
6AQ5	6005, 6095, 6669, 6928	7A6	5679
6AR6	6384	12AT7	6060, 6201, 6679, 7728
6AS6	5725, 6187	12AU6	8426A
6AS7G	6080, 6520	12AU7	5814A, 6067, 6189, 6680, 7318, 7730
6AT6	6066	12AV7	5965, 5965A, 6829, 6414, 6414W
6AU6	6136, 7543, 8425A	12AX7	5751, 6057, 6681, 7025, 7729
6BA6	5749, 6660	12AY7	6072
6BE6	5750, 5915, 7036	12BH7	6913
6BH6	6265, 6661	12BY7	7733
6BJ6	6662	12L8GT	1644
6BQ5	7189, 7320	12SC7	1634
6BW6	6061	14GT8	7724
6C4	6100, 6135, 6C4WA	25B6G	5824
6CB6	6676, 7732	25L6GT	6046
6CL6	6197, 6677	403B	5591
6CY5	7717, 8113	404A	5847
6F6	1621	408A	6028
6FW8	7803	417A	5842
6GE8	7734	421A	5998, 5998A
6J4	7245A, 8532, 8532W	443A	6388
6J6	5844, 6045, 6101, 7244	6146	7212

5U4-GB

With a capacitor-input filter, the operating point of d-c output current and a-c supply voltage must fall within the curve FAEDG. With a choke input filter, the operating point must fall within the curve FABCDG.

5U4-G

6AU6, 3AU6, 4AU6, 12AU6, 6AU6-A

6BQ6-GA, 128Q6-GA, 25BQ6-GA, 6CU6, 12CU6, 25CU6, 6AV5-GA,

65N7-GTB, 6SN7-GTA, 12SN7-GTA, 6SN7-GT, 12SN7-GT, 6CG7, 8CG7 AVERAGE PLATE CHARACTERISTICS 200 300 PLATE VOLTAGE IN VOLTS 9 28 PLATE CURRENT IN MILLIAMPERES

65N7-GTB, 6SN7-GTA, 12SN7-GTA, 6SN7-GT, 12SN7-GT, 6CG7, 8CG7

6K11 (SECTION 1), 7AU7, 9AU7, 12AU7, 12AU7-A, 7247 (SECTION 2)

6C10, 6EU7, 6K11 (SECTIONS 2 AND 3), **12AX7,** 12AX7-A, 7025, 7247 (SECTION 1)

Radio & TV Pilot Lamps

Lamp Number	Voltage	Amperes	Type of Base	Max. Overall Length Inches	Max. Overall Length Millimeters
12	6.3	0.15	Miniature 2 Pin	0.938	23.825
39	6.3	0.36	Miniature Bayonet	1.188	30.175
40	6.3	0.15	Miniature Screw	1.188	30.175
41	2.5	0.50	Miniature Screw	1.188	30.175
42	3.2	0.35	Miniature Screw	1.188	30.175
44	6.3	0.25	Miniature Bayonet	1.188	30.175
45	3.2	0.35	Miniature Bayonet	1,188	30,175
46	6.3	0.25	Miniature Screw	1.188	30.175
47	6.3	0.15	Miniature Bayonet	1,188	30.175
48	2.0	0.06	Miniature Screw	1.188	30.175
49	2.0	0.06	Miniature Bayonet	1.188	30.175
130	6.3	0.15	Miniature Bayonet	0.938	23.825
137	6.3	0.25	Miniature Bayonet	0.938	23.825
159	6.3	0.15	Wedge	1.063	27.000
239	6.3	0.36	Miniature Bayonet	1.188	30.175
240	6.3	0.36	Miniature Bayonet	1.188	30.175
242	6.3	0.15	Miniature Bayonet	1.188	30.175
259	6.3	0.25	Wedge	1.063	27.000
1490	3.2	0.16	Miniature Bayonet	1.188	30.175
1847	6.3	0.15	Miniature Bayonet	1.188	30.175
1847AF	6.3	0.15	Miniature Bayonet	1.188	30.175
1855	6.3	0.80	Miniature Bayonet	1.375	34.925
1866	6,3	0.25	Miniature Bayonet	1.188	30.175
1891	14.0	0,24	Miniature Bayonet	1.188	30,175
1893	14.0	0.33	Miniature Bayonet	1,188	30.175
2067D	4.0	0.06	Wire Terminal	1.188	30.175

			¥		FACE	E PL			<u>_</u>				HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL, ANGLE Degrees	BLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	LIGHT TRANSMIT- TANCE IN %	Overall Length (inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	FOCUS	٧.	A.
10VABP22 11SP22 11WP22 12DCP22 12VAHP22 13GP22		72 72 72 90 90 90	999999		B B V X E	U U U U U U	72.0 72.0 52.0 65.0 81.5 48.0	15.240 14.915 14.915 13.976 13.870 13.594	7.930 7.605 7.605 6.968 6.693 6.417	600/800 600/800 600/800 500/900 500/1000 500/1000	14BM 14BJ 14BJ 14BH 14BH 14BH	IBPES IUPES IUPES DUPES DUPES DUPES	6.3 13.8 13.8 6.3 6.3 6.3	0.90 0.58 0.58 0.90 0.90 0.90
13JP22 13LP22 13MP22 14BCP22 14VABP22 14VADP22		90 90 90 65 90 90	GGGGG		X E E X	U U U U	52.0 69.0 69.0 - 52.0 52.0	13.861 13.594 13.594 19.281 15.000 15.199	6.693 6.417 6.417 9.562 6.693 6.893	500/1000 500/1000 500/1000 500/1500 500/1000 550/1050	148H 148H 148H 14AU 14BH 14BH	DUPES DUPES DUPES DBPES DUPES DUPES	6.3 6.3 6.3 6.3 6.3 6.3	1.35 0.90 0.90 1.80 0.90 0.90
14VAEP22 14VAFP22 14VAGP22 14VAHP22 14VALP22 15ACP22		90 90 90 90 90	GGGGGG		¥ X Y E		52.0 52.0 60.0 60.5 60.5 52.0	15.199 15.000 15.000 15.199 15.199 15.000	6.893 6.693 6.693 6.893 6.893 6.693	550/1050 700/1200 550/1050 550/1050 550/1050 500/1000	148H 148H 148H 148H 14BH 14BH	DUPES DUPES DUPES DUPES DUPES DUPES	6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
15AEP22 15AFP22 15GP22 15HP22 15KP22 15LP22		90 90 45 45 90	GGGGG		Υ Ε - - P	שט טר	52.0 60.5 — 74.0 44.0	15.000 14.724 26.125 26.125 15.000 15.191	6.693 6.417 10.375 10.375 6.693 6.693	550/1050 700/1300 1500/3000 1500/3000 550/1050 550/1050	14BH 14BH 20A 20A 14BH 14BH	DUPES DUPES H.V.E.S. H.V.E.S. DUPES DUPES	6.3 6.3 6.3 6.3 6.3	0.90 0.90 1.80 1.80 0.90 0.90
15MP22 15NP22 15RP22 15SP22 15WP22 15XP22		90 90 90 90 90 90	999999		P X E P X	UR UUUUUU U	56.0 52.0 48.0 48.0 44.0 52.0	15.838 15.000 14.724 14.724 14.924 15.000	7.332 6.693 6.417 6.417 6.417 6.693	750/1200 550/1050 550/1050 550/1050 550/1050 500/1050	148K 148H 148H 148H 14BH 14BH	DBPES DUPES DUPES DUPES DUPES DUPES	6.3 6.3 6.3 6.3 6.3	1.35 0.90 0.90 0.90 0.90 1.30
15YP22 16CDP22 16CSP22 16CYP22 16DAP22 16VABP22	ZDDDDD	90 90 90 90 90 90	GGGGGG		V V V V V V V V V V	ט טטט ט	52.0 72.0 54.0 65.0 65.0 48.0	15.648 15.125 15.120 15.709 15.120 16.798	7.332 6.420 6.420 7.008 6.420 6.893	750/1200 500/1000 700/1300 700/1300 700/1300 1000/1500	14BK 14BE 14BE 14BH 14BE 14BH	DBPES DBPES DBPES DUPES DBPES DUPES	6.3 6.3 6.3 6.3 6.3	1.35 0.90 0.90 0.90 0.90 0.90
16VACP22 16VAFP22 16VAHP22 16VAKP22 16VASP22 16VATP22		90 90 90 90 90 90	G G G G G G		X E V Y E	U U U U U U U U U	57.0 48.0 57.0 57.0 57.0 86.0	16.598 16.598 16.598 16.798 16.598 16.598	6.693 6.693 6.693 6.693 6.693	1000/1500 1200/1700 1000/1500 1000/1500 1000/1500 1000/1500	14BH 14BH 14BH 14BH 14BE 14BE	DUPES DUPES DUPES DUPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
16VAWP22 16VBDP22 17ETP22 17EVP22 17EXP22 17EXP22		90 90 90 90 90 90	GGGGG		V V P E V	U U U U U	57.0 57.0 44.0 48.0 48.0 48.0	17.247 17.259 16.727 16.598 17.247 16.598	7.332 7.344 6.837 6.693 7.332 6.693	1000/1500 1000/1500 500/1000 1000/1500 1000/1500 1000/1500	14BK 14BK 14BE 14BH 14BK 14BH	IBPES IBPES DUPES IBPES DUPES OUPES	6.3 6.3 6.3 6.3 6.3	1.35 0.90 1.30 0.90 1.35 0.90
17FGP22 17FHP22 17FJP22 17FKP22 17VABP22 17VACP22		90 90 90 90 90 90	GGGGGG		P E V V W	00000	55.0 67.0 48.0 48.0 54.5 56.5	16.790 16.322 17.247 16.598 16.650 17.122	6.693 6.417 7.332 6.693 6.420 6.893	1000/1500 1200/1700 1000/1500 1000/1500 1400/1900 1200/1600	14BH 14BH 14BK 14BH 14BH 14BH	DUPES DUPES IBPES DUPES DUPES DUPES	6.3 6.3 6.3 6.3	0.90 0.90 1.35 0.90 0.90 0.90
17VADP22 18VABP22 18VACP22 18VADP22 18VAFP22 18VAHP22		90 90 90 90 90 90	G G G G G		V V P V W P	UM UR U U UR	72.0 53.5 41.0 43.5 43.5 53.0	17.122 17.876 18.048 17.856 17.856 18.248	6.893 6.703 6.693 6.693 6.693 6.893	1200/1600 1500/2000 1400/1900 1500/2100 1500/2100 1400/1900	14BH 14BE 14BE 14BE 14BH 14BE	DUPES DBPES DBPES DBPES DUPES DBPES	6.3 6.3 6.3 6.3	0.90 1.35 0.90 0.90 0.90 0.90

•	TY	PICAL OPER	ATING CO	NDITIONS	-
Ž.	₹.		SPOT	CUTOFF	,
ANODE KV DESIGN MA	ANODE K	FOCUS ELEC- TRODE VOLTS	GRID- NUMBER 2 VOLTS	GRID- NUMBER 1 VOLTS	TUBE TYPE
22.0	20	3200/4300	355/595	-70	10VABP22
18.0 18.0	15 15	-250/500 -250/500	250/540 250/540	-55 -55	11SP22 11WP22
20.0 22.5	16 20	-75/400 -75/400	260/540 150/420	80 100	12DCP22 12VAHP22
20.0	18	-75/400	150/390	-100	13GP22
22.5 22.5	20 18	-75/400 -75/400	150/390 150/390	-100 -100	13JP22 13LP22
22.5	20	-75/400	150/390	-100	13MP22
22.0 22.5	16 20	2400/3400 -75/400	200 150/380	-50/-105 -100	14BCP22 14VABP22
22.5	20	-75/400	210/508	-125	14VADP22
22.5 22.5	20 20	-75/400 -75/400	210/505 70/220	-125 -60	14VAEP22 14VAFP22
22.5	20	-75/400	150/390	~100	14VAGP22
22.5 22.5	20 20	-75/400 -75/400	210/505 210/505	-125 -125	14VAHP22 14VALP22
22.5	20	-75/400	150/380	-100	15ACP22
22.5 22.5	20 20	-75/400 -75/400	150/390 150/390	-100 -100	15AEP22 15AFP22
22.0	20	2400/3800	_	worken.	15GP22
22.0 ● 22.5	20 20	3100 -75/400	150/390	-100	15HP22 15K P 22
22.5	20	-75/400	150/390	-100	15LP22
24.0 22.5	20 20	3300/4300 -75/400	215/360 150/390	60 100	15MP22 15NP22
22.5 22.5	20 20	-75/400 -75/400	150/390 150/390	-100 -100	15 RP 22 15 SP 22
22.5	20	-75/400	150/390	-100	15WP22
22.5	20	-75/400 3300/4300	150/390 220/370	-100 -60	15XP22 15YP22
20.0	18	3000/3600	200/650	-100	16CDP22
23.0 23.0	18 20	3020/3600 -75/400	110/300 125/370	-70 -70	16CSP22 16CYP22
23.0	20	3360/4000	110/300	-70	16DAP22
22.5	20	-75/400 -75/400	210/505 160/400	-125 -100	16VABP22 16VACP22
22.5	20	-75/400	150/385	-100	16VAFP22
22.5 22.5	20 20	-75/400 -75/400	150/390 210/505	-100 -125	16VAHP22 16VAKP22
22.5 22.5	20 20	3360/4000 3360/4000	140/410 140/410	~100 ~100	16VASP22 16VATP22
24.0	20	3300/4300	355/600	-70	16VAWP22
24.0 22.5	20 20	3300/4300 3200/4000	355/690	-70 -75	16VBDP22 17ETP22
22.5	20	-75/400	135/335 150/380	-100	17EVP22
24.0 22.5	20 20	3300/4300 -75/400	330/550 150/390	-60 -100	17EXP22 17EZP22
22.5	20	-75/400	165/430	-100	17FGP22
22.5 24.0	20 20	-75/400 3300/4300	150/390 330/550	-100 60	17FHP22 17FJP22
22.5	20	-75/400	150/390	-100	17FKP22
22.5 22.5	20 20	-75/400 -75/400	150/370 210/505	~100 ~125	17VABP22 17VACP22
22.5	20	-75/400	210/505	-125	17VADP22
27.5 27.5	25 25	4200/5000 4200/5000	175/460 285/685	-100 -150	18VABP22 18VACP22
27.5	25	4200/5000	285/685	-150	18VADP22
22.5 27.5	20 25	-75/400 4200/5000	150/390 200/535	-100 -125	18VAFP22 18VAHP22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O-Round Tube
- □ —Rectangular Tube
- B-Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- G -- Glass Tube
- MET -- Metal Tube
 - M Matrix Screen
 - P—Sagged glass implosion plate attached to face
 - R-Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V-Rim bands and tension band
 - W—Rim bands and tension band with mounting lugs
 - X -Tension band
 - Y —Tension band and mounting lugs
- DUPES—Uni-potential electrostatic focus, delta
- DBPES -- Bi-potential electrostatic focus,
- IUPES Uni-potential electrostatic focus, inline
- IBPES—Bi-potential electrostatic focus, inline
- L.V.E.S. -- Low voltage electrostatic focus
- H.V.E.S.—High voltage electrostatic focus

			A.		FACE	PL	ATE	-	I				HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	LIGHT TRANSMIT- TANCE IN %	Overall Length (Inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	Focus	v.	A.
18VAJP22 18VAKP22 18VALP22 18VAMP22 18VANP22 18VAQP22		90 90 90 90 110 90	G G G G G		V W P V V	U UR U U U	53.5 53.5 42.5 43.5 53.0 52.0	18.056 18.056 18.248 18.056 13.872 17.856	6.893 6.893 6.893 6.893 5.538 6.693	1500/2100 1500/2100 1500/2100 1500/2100 1350/1750 1500/2100	14BE 14BE 14BH 14BH 13C 14BE	DBPES DBPES DUPES DUPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 1.35
18VASP22 18VATP22 18VAZP22 18VBAP22 18VBDP22 18VBEP22		90 90 90 90 90 90	G G G G G		V V V W	כככככ	53.5 43.5 53.5 52.0 53.5 53.0	17.856 17.856 18.056 18.050 18.056 18.056	6.693 6.693 6.893 6.900 6.893 6.893	1500/2000 1500/2000 1500/2100 1400/1900 1500/2100 1500/2100	14BE 14BE 14BH 14BE 14BH 14BH	DBPES DBPES DUPES DBPES DUPES DUPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 1.30 0.90 0.90
18VBGP22 18VBHP22 18VBJP22 18VBKP22 18VBMP22 19EXP22		90 90 90 90 90 90	G G G G		P V W V	UR U U UM U U	53.5 69.0	18.248 17.876 18.056 18.056 18.056 17.856	6.893 6.703 6.893 6.893 6.893 6.693	1500/2100 1500/2000 1500/2100 1500/2100 1500/2100 1500/2100	14BH 14BE 14BH 14BE 14BE 14BE	DUPES DBPES DUPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 1.35 0.90 0.90 0.90 0.90
19EYP22 19FMP22 19FXP22 19GLP22 19GSP22 19GVP22		90 90 92 90 90 90	GGGGGG		P P P P	UR UR UR UR UR	41.0 50.0 41.0 41.0 41.0 69.0	18.048 18.048 18.062 17.937 18.066 17.856	6.693 6.693 6.687 6.437 6.703 6.693	1500/2100 1500/2100 1500/2000 1500/2000 1500/2000 1400/1900	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 1.35 0.90 1.35 0.90
19GWP22 19GXP22 19GYP22 19HBP22 19HCP22 19HFP22		90 90 90 90 90 90	G G G G G		P P V P	UR U U U UR	41.0 72.0 72.0 41.0 43.5 55.0	18.048 17.520 17.520 18.048 17.856 18.255	6.693 6.417 6.417 6.693 6.693 6.900	1400/1900 1300/1800 1000/2000 1400/1900 1500/2100 1400/1900	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 1.30
19HKP22 19HMP22 19HNP22 19HQP22 19HRP22 19HTP22		90 90 90 90 90 90	G G G G G		V W V P W	U U U UR U	43.5 43.5 43.5 64.0 45.0 43.5	17.856 17.856 17.856 17.579 17.772 17.856	6.693 6.693 6.693 6.417 6.417 6.693	1500/2000 1500/2100 1500/2100 1400/1900 1400/1900 1500/2100	14BE 14BE 14BH 14BE 14BE 14BH	DBPES DBPES DUPES DBPES DBPES DUPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
19HXP22 19HYP22 19JLP22 19JNP22 19JWP22 19JYP22		90 90 90 90 90 90	GGGGGG		V V V P P	U U U UR UR	43.5 43.5 42.0 43.5 42.5 51.5	17.876 17.856 18.050 17.876 18.048 18.048	6.703 6.693 6.900 6.703 6.693 6.693	1500/2000 1500/2100 1400/1900 1500/2000 1500/2100 1400/1900	14BE 14BH 14BE 14BE 14BH 14BE	DBPES DUPES DBPES DBPES DUPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	1.35 0.90 1.30 1.35 0.90 0.90
19JZP22 19KLP22 19TP22 19VABP22 19VAFP22 19VAGP22		90 90 60 70 90	G G G G G		V W P E E	U U UR UM U	53.0 53.0 — 39.0	17.856 17.856 24.375 25.219 18.047 18.047	6.693 6.693 8.843 9.625 6.693 6.693	1500/2100 1500/2100 1500/3000 2000/2500 1750/2250 1750/2250	14BE 14BE 20A 14AU 14BE 14BE	DBPES DBPES H.V.E.S. DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 1.80 1.80 0.90 0.90
19VAMP22 19VANP22 19VAQP22 19VATP22 19VAUP22 19VBDP22		90 90 90 90 90 90	G G G G G		P V V V P	UR U U U UR	52.0 53.0 53.5 53.5 43.5 52.0	18.439 18.247 18.247 18.247 18.047 18.047	6.893 6.893 6.893 6.893 6.693	1400/1900 1800/2300 1800/2300 1800/2300 1500/2000 1500/2000	14BE 14BH 14BE 14BE 14BE 14BE	DBPES DUPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
19VBLP22 19VBQP22 19VBRP22 19VBSP22 19VBWP22 19VCBP22	ZZZZZZ	90 90 90 90 90 90	G G G G		> > > > > > > > > > > > > > > > > > >	U UM U U U UM	70.0 53.5 70.0	14.091 18.247 18.247 18.247 18.065 18.247	5.568 6.893 6.893 6.893 6.703 6.893	1350/1750 1800/2300 1800/2300 1800/2300 1800/2300 1800/2300	13C 14BH 14BE 14BE 14BE 14BE	DBPES DUPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 1.35 0.90

•	TYF	ICAL OPER	ATING CO	NDITIONS	
KV MAX.	٧.		SPOT (UTOFF	
ANODE KV Design M	ANODE KV	FOCUS ELEC- TRODE VOLTS	GRID- NUMBER 2 VOLTS	GRID-	TUBE TYPE
27.5 27.5	25 25	4200 /5000	215/550	125	18VAJP22
22.5	20	4200/5000 -75/400	215/550 210/505	-125 -125	18VAKP22 18VALP22
22.5	20	-75/400	210/505	-125	18VAMP22
22.5 27.5	20 25	3360/4000 4200/5000	210/540 285/685	-125 -150	18VANP22 18VAQP22
27.5	25	4200/5000	250/650	-150	18VASP22
27.5 22.5	25 20	4200/5000 -75/400	250/650 210/505	-150 -125	18VATP22 18VAZP22
27.5	25	4200/5000	340/970	-150	18VBAP22
22.5 22.5	20 20	-75/400 -75/400	210/505 150/390	-125 -100	18VBDP22 18VBEP22
22.5	20	-75/400	210/505	-125	18VBGP22
27.5 22.5	25 20	4200/5000 75/400	220/545 150/390	-125 -100	18VBHP22 18VBJP22
27.5	25	4200/5000	215/550	-125	18VBKP22
27.5 27.5	25 25	4200/5000 4200/5000	205/535 285/685	−125 −150	18VBMP22 19EXP22
27.5	25	4200/5000	285/685	-150	19EYP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	150 150	19FMP22 19FXP22
23.0	22	3700/4400	100/400	-75	19GLP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	-150 -150	19GSP22 19GVP22
27.5	25	4200/5000	285/685	-150	19GWP22
24.0	22	3700/4400	190/460	-100	19GXP22
25.0 27.5	22 25	3530/4200 4200/5000	130/300 285/685	−70 −150	19G Y P22 19HBP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 340/970	~150 ~150	19HCP22 19HFP22
27.5	25	4200/5000	285/685	-150	19HKP22
27.5 22.5	25	4200/5000	285/685	-150	19HMP22
27.5	20 25	-75/400 4200/5000	150/390 285/685	-100 -150	19HNP22 19HQP22
27.5 22.5	25 20	4200/5000	285/685	-150	19HRP22
27.5	25	-75/400 4200/5000	150/390 175/460	-100 -100	19HTP22 19HXP22
22.5	20	-75/400	150/390	-100	19HYP22
27.5 27.5	25 25	4200/5000 4200/5000	340/970 175/460	-150 -100	19JLP22 19JNP22
22.5 27.5	20 25	-75/400	150/390 285/685	-100 -150	19JWP22
27.5	25	4200/5000 4200/5000	285/685	-150	19JYP22 19JZP22
27.5 24.2	25 20	4200/5000	285/685	-150	19KLP22
27.5	25	1950/3250 4200/5000	310/690	-150	19TP22 19VABP22
27.5 27.5	25 25	4200/5000	250/640	-150	19VAFP22
27.5	25	4200/5000 4200/5000		-150 -125	19VAGP22 19VAMP22
22.5	20	-75/400	210/505	-125	19VANP22
27.5 27.5	25 25	4200/5000 4200/5000		-125 -125	19VAQP22 19VATP22
27.5	25	4200/5000	200/540	-125	19VAUP22
27.5 27.5	25 25	4200/5000 4200/5000		-125 -125	19VBDP22 19VBLP22
22.5	20	-75/400	210/505	-125	19VBQP22
27.5 27.5	25 25	4200/5000 4200/5000		-125 -125	19VBRP22 19VBSP22
27.5	25	4200/5000	220/545	~125	19VBWP22
27.5	25	4200/5000	215/550	-125	19VCBP22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O -- Round Tube
- ☐ —Rectangular Tube
- B—Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- G-Glass Tube
- MET-Metal Tube
 - M Matrix Screen
 - P—Sagged glass implosion plate attached to face
 - R-Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V -Rim bands and tension band
 - W—Rim bands and tension band with mounting lugs
 - X —Tension band
 - Y—Tension band and mounting lugs
- DUPES—Uni-potential electrostatic focus, delta
- DBPES -- Bi-potential electrostatic focus, delta
- IUPES—Uni-potential electrostatic focus,
- IBPES —Bi-potential electrostatic focus, inline
- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S. High voltage electrostatic focus

			#	T	FACE	E PLA	TE		T_	T			HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	TRANSMIT- TANCE IN %	Overall Length (Inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	FOCUS	v.	A.
19VCSP22 19VP22 20VABP22 20VADP22 20VAEP22 20VAFP22		90 62 90 90 90	GGGGG		W - V P V W	UM U UR U	69.0 42.0 49.5 51.0 51.0	18.247 26.437 19.012 19.404 19.212 19.212	6.893 10.531 6.693 6.893 6.893	1800/2300 1500/3000 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14W 14BE 14BE 14BE	DBPES H.V.E.S. DBPES DBPES DBPES	6.3 6.3 6.3 6.3	0.90 1.80 0.90 0.90 0.90
20VAPP22 20VAHP22 20VAJP22 20VAMP22 20VANP22 20VASP22		90 90 90 90 90 90	9 9 9 9 9 9		P V P P	UR U UR UR UR	41.0 52.0 52.0 52.0 52.0 52.0 51.0	19.404 19.212 19.032 19.204 19.204 19.032	6.893 6.893 6.703 6.693 6.693 6.703	2000/2500 2000/2500 1800/2300 2000/2500 2000/2500 2000/2500	14BE 14BH 14BE 14BE 14BE 14BE 14BE	DBPES DUPES DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 1.35 1.35 1.35
21AXP22 21AXP22A 21CYP22 21CYP22A 21FBP22 21FBP22A	1999000		MET MET G G G	000000			72.0 72.0 72.0 72.0	25.312 24.937 25.031 25.031 25.031 25.031	9.625 9.625 9.625 9.625 9.625 9.625	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14W 14AH 14AL 14AL 14AU 14AU	DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	1.80 1.60 1.80 1.80 1.80 1.80
21FJP22 21FJP22A 21FKP22 21GFP22 21GRP22 21GUP22		70 70 70 90 90 70	GGGGGG	000000	P P P V	R UR UR U U	39.0 39.0 39.0 41.0 41.0 72.0	25.219 25.219 25.219 19.457 19.300 25.031	9.625 9.625 9.625 6.994 6.875 9.625	2000/2500 2000/2500 2000/2500 1500/2000 1500/2000 2000/2500	14AU 14AU 14AU 14BE 14BE 14AU	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	1.80 1.80 1.80 1.35 1.35 1.90
21GVP22 21GWP22 21GYP22 21HBP22 21VABP22 21VACP22		70 90 70 90 92 92	G G G G G	000000	P P P P	UR UR U UR UR U	39.0 41.0 69.0 52.0 40.5 50.5	25.219 19.457 25.219 19.457 19.228 19.036	9.625 6.994 9.625 6.994 6.893 6.893	2000/5000 1500/2000 2000/2500 1700/2200 1750/2250 1750/2250	14AU 14BE 14AU 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.8	1.90 1.35 1.90 1.35 0.90 0.90
21VADP22 21VAJP22 21VAKP22 21VALP22 21VAQP22 21VARP22		92 92 92 92 92 92 92	GGGGGG		W V P W V	U URM UR UR UM UM	50.5 53.0 66.0 50.5 68.0 68.0	19.036 18.820 19.228 19.036 19.036 19.036	6.893 6.693 6.893 6.893 6.893	1750/2250 1400/1800 1750/2250 1750/2250 1750/2250 1750/2250	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
21 V A U P 22 22 A H P 22 22 A L P 22 22 A N P 22 22 A R P 22 22 A S P 22		92 90 90 90 90 90	G G G G G		V V V P V	UM U U U UR U	84.5 42.0 42.0 52.0 50.5 52.0	19.036 19.012 19.032 19.012 19.204 19.012	6.893 6.693 6.703 6.693 6.693 6.693	1750/2250 1700/2200 1800/2300 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BH 14BE 14BE	DBPES DBPES DBPES DUPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	0.90 1.35 1.35 0.90 0.90 0.90
22ATP22 22EP22 22JP22 22KP22 22LP22 22QP22		90 70 90 90 90 90	GGGGGG		W P P P P P P P P P	U IR UUUUR	52.0 73.0 41.0 69.0 50.0 42.0	19.012 25.375 19.204 19.012 19.204 19.427	6.693 11.688 6.693 6.693 6.693 6.920	2000/2500 1500/2800 2000/2500 2000/2500 2000/2500 1700/2200	14BE 14W 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 1.80 0.90 0.90 0.90 1.35
22RP22 22SP22 22UP22 22WP22 22WP22 22YP22 23EGP22	400004D	90 90 90 90 90 90	GGGGGG		I P V W P P	U R U U U R R	69.0 41.0 42.0 42.0 52.0 41.0	19.239 19.204 19.012 19.012 19.469 19.969	6.920 6.693 6.693 6.693 6.950 7.219		14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3	1.35 1.35 0.90 0.90 1.35 1.35
23EGP22A 23VABP22 23VACP22 23VADP22 23VALP22 23VAMP22		92 90 90 90 90 90	999999		PPVVPV	UR UR U U URM UM	41.0 50.0 52.0 42.0 67.0 69.0	19.969 20.912 20.722 20.702 21.094 20.902	7.219 6.703 6.703 6.693 6.893 6.893	1800/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	1.35 1.35 1.35 0.90 0.90 0.90

•	TYI	PICAL OPER	ATING CO	NDITIONS	
K MAX.	₹.		SPOT	CUTOFF	
빚줎	DEK	FOCUS ELEC-	GRID-	GRID-	TUBE TYPE
ANOI	ANODE	TRODE VOLTS	NUMBER 2 VOLTS	NUMBER 1 VOLTS	
27.5 29.7	25 25	4200/5000 6500/8000	205/535 150/330	-125 -75	19VCSP22 19VP22
27.5	25	4200/5000		-150	20VABP22
27.5	25	4200/5000	215/550	-125 -125	20VADP22 20VAEP22
27.5 27.5	25 25	4200/5000 4200/5000	215/550 215/550	-125	20VAFP22
27.5	25	4200/5000	215/550	-125	20VAGP22
22.5 27.5	20	-75/400 4200/5000	210/505 320/750	-125 -150	20VAHP22 20VAJP22
27.5	25	4200/5000	300/660	-150	20VAMP22
27.5 27.5	25 25	4200/5000 4200/5000	300/660 220/545	-150 -125	20VANP22 20VASP22
27.5	25	3800/5300	140/310	-39/-73	21AXP22
27.5 ● 27.5 ●	25 25	3800/5300 1200/5000	130/370 105/345	-45/-100 -70	21AXP22A 21CYP22
27.5	25	4200/5000			21CYP22A
27.5 27.5	25 25	4200/5000 4200/5000	105/345 310/690	-70 -150	21FBP22 21FBP22A
27.5	25	4200/5000	105/345	-70	21FJP22
27.5 27.5	25 25	4200/5000 4200/5000	310/690 105/345	-150 -70	21FJP22A 21FKP22
27.5	25	4200/5000	225/425	-100	21GFP22
27.5 27.5	25 25	4125/5000 4200/5000	340/970 310/690	-150 -150	21GRP22 21GUP22
27.5	25	4200/5000	310/690	-150	21GVP22
27.5	25	4125/5000	225/425	-100	21GWP22
27.5 27.5	25 25	4200/5000 4200/5000	310/690 225/425	-150 -100	21GYP22 21HBP22
27.5 27.5	25 25	4200/5000	215/550	-125	21VABP22
27.5	25	4200/5000 4200/5000	215/550 215/550	-125 -125	21VACP22 21VADP22
27.5	25	4200/5000	150/410	-100	21VAJP22
27.5 27.5	25 25	4200/5000 4200/5000	215/550 205/535	-125 -125	21VAKP22 21VALP22
27.5	25 25	4200/5000	215/550	-125	21VAQP22
27.5 27.5	25	4200/5000 4200/5000	215/550 215/550	-125 -125	21VARP22 21VAUP22
27.5	25	4200/5000	285/685	-150	22AHP22
27.5 22.5	25 20	4200/5000 -75/400	320/750 150/390	-150 -100	22ALP22 22ANP22
27.5	25	4200/5000	285/685	-150	22ARP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	-150 -150	22ASP22 22ATP22
27.5	25	4000/5100	50/225	-55/-105	22EP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	-150 -150	22JP22 22KP22
27.5	25	4200/5000	285/685	-150	22LP22
27.5 27.5	25 25	4200/5000 4200/5000	280/690 280/690	-150 -150	22QP22 22RP22
27.5	25	4200/5000	300/660	-150	22 SP 22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	-150 -150	22UP22 22WP22
27.5	25	4200/5000	330/665	-150	22YP22
27.5 27.5	25 25	4175/5400 4175/5400	265/565 265/565	-90 -90	23EGP22 23EGP22A
27.5	25	4200/5000	220/545	-125	23VABP22
27.5 27.5	25 25	4200/5000 4200/5000	175/460 285/685	-100 -150	23VACP22 23VADP22
27.5	25	4200/5000	205/535	-125	23VALP22
27.5	25	4200/5000	205/535	-125	23VAMP22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O-Round Tube
- □ -- Rectangular Tube
- B-Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- G-Glass Tube
- MET Metal Tube
 - M -- Matrix Screen
 - P-Sagged glass implosion plate attached to face
 - R-Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V-Rim bands and tension band
 - W-Rim bands and tension band with mounting lugs
 - X -Tension band
 - Y—Tension band and mounting lugs
- DUPES -- Uni-potential electrostatic focus,
- DBPES-Bi-potential electrostatic focus, delta
- IUPES-Uni-potential electrostatic focus,
- IBPES Bi-potential electrostatic focus.
- L.V.E.S. -- Low voltage electrostatic focus
- H.V.E.S. High voltage electrostatic focus

			¥		FACI	PLA	TE		æ				HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	TRANSMIT- TANCE IN %	Overall Length (Inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	FOCUS	v.	A.
23VANP22 23VAQP22 23VARP22 23VASP22 23VATP22 23VAXP22		90 90 90 90 90 90	G G G G		P V P P	UR UR URM URM URM	50.5 52.0 41.0 67.5 78.2 78.2	21.094 20.902 21.094 20.894 20.924 20.924	6.893 6.893 6.693 6.693 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 1.35 0.90 1.35
23VAYP22 23VAZP22 23VBAP22 23VBCP22 23VBDP22 23VBJP22		90 90 90 90 90 90	G G G G G		V V V V V	UM UM U U U	80.0 80.0 80.0 42.0 42.0 53.0	20.732 20.732 20.732 20.702 20.702 20.702	6.693 6.693 6.693 6.693 6.693	2350/2850 2000/2500 2350/2850 2000/2500 2000/2500 1400/1800	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	1.35 0.90 0.90 1.35 0.90 0.90
23VBKP22 23VBNP22 23VBRP22 23VBSP22 23VBTP22 25ABP22		90 90 90 90 90 90	G G G G G		W V P V P	UR U UR U U	52.0 69.0 69.0 67.0 52.0 41.0	20.702 20.722 20.902 20.912 20.722 20.924	6.893 6.703 6.703 6.703 6.703 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 1.35 0.90 1.35 1.35 0.90
25AEP22 25AFP22 25AJP22 25AKP22 25ALP22 25ALP22A	00000	90 90 90 90 90 90	G G G G		P V E E W	U UR U UR UR	69.0 52.0 42.0 42.0 52.0 52.0	20.960 21.160 20.702 20.960 20.732 20.732	6.950 6.950 6.693 6.950 6.693 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	1.35 1.35 0.90 1.35 0.90 0.90
25AMP22 25ANP22 25AP22 25AP22A 25AQP22 25AWP22	444220	90 90 90 90 90 90	G G G G G		W P P P V	U R UR UR U	42.0 41.0 41.0 41.0 41.0 42.0	20.732 20.924 20.924 20.924 20.912 20.722	6.693 6.693 6.693 6.693 6.703 6.703	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 1.35 0.90 0.90 1.35 1.35
25AYP22 25AZP22 25BAP22 25BCP22 25BDP22 25BFP22		90 90 90 90 90	G G G G G		W > P P > V	U URM URM UM U	42.0 42.0 78.2 67.5 69.0 42.0	20.797 20.702 20.924 20.894 20.702 20.722	6.788 6.693 6.693 6.693 6.693 6.703	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	1.35 1.35 1.35 0.90 0.90 1.35
25BGP22 25BHP22 25BKP22 25BMP22 25BP22 25BP22A		90 90 90 90 90	G G G G		P>>P)	UR U UR UR	52.5 52.0 78.2 52.0 69.0 69.0	20.924 20.702 20.702 21.160 20.732 20.732	6.693 6.693 6.693 6.693 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 1.35 1.35 0.90 0.90
25CAP22 25CBP22 25FP22 25FP22A 25GP22 25GP22A	000000	90 90 90 90 90 90	G G G G		W P P P	U UR U R UR	52.0 52.0 69.0 69.0 42.0 42.0	20.827 21.125 20.939 20.736 21.127 20.924	6.788 6.875 6.920 6.693 6.920 6.693	2000/2500 2000/2800 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	1.35 1.30 1.30 1.35 1.35 1.35
25RP22 25SP22 25UP22 25VABP22 25VACP22 25VADP22	444222	90 90 90 90 90 90	G G G G G		P E P > P	U R U URM UM URM	67.5	20.535 21.125 20.512 21.822 21.630 21.822	6.496 6.875 6.500 6.893 6.893 6.893		14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES		0.90 1.30 0.90 0.90 0.90 0.90
25VAEP22 25VAFP22 25VAGP22 25VAJP22 25VAKP22 25VAMP22	DDDDDD	90 90 90 90 90 90	G G G G		P W P P	UR U UR UR URM	48.0 49.5 49.5 48.0 48.0 78.0	21.822 21.630 21.630 21.603 21.632 21.628	6.893 6.893 6.893 6.693 6.703 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3	0.90 0.90 0.90 0.90 1.35 0.90

	TYP	ICAL OPER	ATING CON	IDITIONS	
¥,	>		SPOT C	UTOFF	
ANODE KV DESIGN MA	ANODE KV.	FOCUS ELEC- TRODE VOLTS	GRID- NUMBER 2 VOLTS	GRID- NUMBER 1 VOLTS	TUBE TYPE
27.5 27.5	25 25	4200/5000	200/535	-125 -125	23VANP22
27.5	25	4200/5000 4200/5000	200/535 205/535	-125 -125	23VAQP22 23VARP22
27.5	25	4200/5000	255/655	-150	23VASP22
27.5 27.5	25 25	4200/5000 4200/5000	250/650 250/650	-150 -150	23VATP22 23VAXP22
27.5	25	4200/5000	250/650	-150	23VAYP22
27.5 27.5	25 25	4200/5000 4200/5000	250/650 250/650	-150 -150	23VAZP22 23VBAP22
27.5	25	4200/5000	200/535	-125	23VBCP22
27.5 27.5	25 25	4200/5000 4200/5000	200/535 285/685	-125 -150	23VBDP22 23VBJP22
27.5	25	4200/5000	205/535	-125	23VBKP22
27.5 27.5	25 25	4200/5000 4200/5000	220/545 285/685	-125 -150	23VBNP22 23VBRP22
27.5	25	4200/5000	220/545	-125	23VBSP22
27.5 27.5	25 25	4200/5000 4200/5000	220/545 285/685	-125 -150	23VBTP22 25ABP22
27.5	25	4200/5000	355/685	-150	25AEP22
27.5 27.5	25 25	4200/5000	355/685	-150 -150	25AFP22 25AJP22
27.5	25	4200/5000 4200/5000	285/685 355/685	-150 -150	25AKP22
27.5 27.5	25 25	4200/5000	285/685 285/685	-150 -150	25ALP22 25ALP22A
27.5	25	4200/5000 4200/5000	285/685	-150	25AMP22
27.5	25	4200/5000	300/660	-150	25ANP22
27.5 27.5	25 25	4200/5000 4200/5000	285/685 285/685	-150 -150	25AP22 25AP22A
27.5 27.5	25 25	4200/5000	320/750	-150 -100	25AQP22
27.5	25	4200/5000 4200/5000	· · · · · · · · · · · · · · · · · · ·	-150	25AWP22 25AYP22
27.5	25	4200/5000	285/685	-150	25AZP22
27.5 27.5	25 25	4200/5000 4200/5000	290/650 255/655	-150 -150	25BAP22 25BCP22
27.5	25	4200/5000	255/655	-150	25BDP22
27.5	25 25	4200/5000 4200/5000	4	-100 -150	25BFP22 25BGP22
27.5	25	4200/5000	285/685	-150	25BHP22
27.5 27.5	25 25	4200/5000 4200/5000		-100 -150	25BKP22 25BMP22
27.5	25	4200/5000	285/685	-150	25BP22
27.5	25 25	4200/5000 4200/5000	·	-150 -150	25BP22A 25CAP22
27.5	25	4250/5000	340/990	-150	25CBP22
27.5 27.5	25	3600/4400 4200/5000	360/1000 285/685	-150 -150	25FP22 25FP22A
27.5	25	3600/4400	360/1000	-150	25GP22
27.5 27.5	25	4200/5000	285/685	-150	25GP22A
27.5	25 25	4200/5000 4250/5000		-150 -150	25KP22 25SP22
27.5	25	4200/5000	210/495	-105	25UP22
27.5 27.5	25 25	4200/5000 4200/5000	205/535	-125 -125	25VABP22 25VACP22
27.5	25	4200/5000	205/535	-125	25VADP22
27.5 27.5	25 25	4200/5000 4200/5000		-125 -125	25VAEP22 25VAFP22
27.5	25	4200/5000	205/535	-125	25VAGP22
27.5 27.5	25 25	4200/5000 4200/5000		-100 -125	25VAJP22 25VAKP22
27.5	25	4200/5000		-150	25VAMP22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O-Round Tube
- □ —Rectangular Tube
- B Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- G-Glass Tube
- MET-Metal Tube
 - M -- Matrix Screen
 - P—Sagged glass implosion plate attached to face
 - R -Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V-Rim bands and tension band
 - W-Rim bands and tension band with mounting lugs
 - X -Tension band
 - Y—Tension band and mounting lug:
- DUPES —Uni-potential electrostatic focus, delta
- DBPES—Bi-potential electrostatic focus,
- IUPES—Uni-potential electrostatic focus,
- IBPES—Bi-potential electrostatic focus,
- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S.—High voltage electrostatic focus

			¥		FACI	E PLA	TE		x				HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	LIGHT TRANSMIT- TANCE IN %	Overall Length (Inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	FOCUS	٧.	A.
25VAQP22 25VAWP22 25VAXP22 25VAZP22 25VBAP22 25VBGP22		90 90 90 90 90 90	G G G G G		>>>>P>	UM UM UM UR UR	80.0 67.5 67.5 49.5 66.0 67.5	21.430 21.430 21.630 21.457 21.622 21.457	6.693 6.693 6.893 6.703 6.693 6.703	2300/2800 1400/1800 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 1.35 1.35 1.35
25VBJP22 25VBKP22 25VBLP22 25VBMP22 25WP22 25XP22	DDDDDD	90 90 90 90 90 90	G G G G G		W P P P	U UR URN UR UR	49.5 67.5 65.5 82.5 41.0 41.0	21.630 21.457 21.632 21.822 20.924 20.924	6.893 6.703 6.703 6.893 6.693 6.693	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	14BE 14BE 14BE 14BE 14BE 14BE	DBPES DBPES DBPES DBPES DBPES DBPES	6.3 6.3 6.3 6.3 6.3	0.90 1.35 1.35 1.35 1.35 0.90
25YP22 25ZP22 370AB22 370CB22 490AB22 490ACB22	<u> </u>	90 90 90 90 90 90	G G G G G		P W H	U UR - -	69.0 41.0 — — —	20.732 21.160 14.725 14.725 17.520 17.520	6.693 6.950 — — —	2000/2500 2000/2500 — — — —	14BE 14BE 14BH 14BH 14BE 14BE	DBPES DBPES — — —	6.3 6.3 6.3 6.3 6.3	0.90 1.35 0.90 0.90 0.90 0.90
490ADB22 490AEB22 490AFB22 490AGB22 490AHB22 490AHB22A		90 90 90 90 90	GGGGGG		P P			17.992 17.992 17.792 17.756 17.950 17.954			14BE 14BE 14BE 14BE 14BE 14BE		6.3 6.3 6.3 6.3 6.3	0.80 0.80 0.80 0.90 0.90 0.90
490AJB22 490AJB22A 490AKB22 490ALB22 490AMB22 490ANB22	1 1 1 1	90 90 90 90 90	GGGGGG		P P 			18.147 18.147 17.579 17.520 17.952 17.579		_ _ _ _	14BE 14BE 14BE 14BE 14BE 14BE		6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.80 0.90 0.90 0.90
490ARB22 490ASB22 490BAB22 490BCB22 490BDB22 490BGB22	101110	90 90 90 90 90	GGGGGG		P P W	= = = = = = = = = = = = = = = = = = = =	54.0 — — — 64.0	17.756 17.772 18.228 18.421 18.140 17.601	6.418	1300/1900 1500/2100	14BE 14BE 14BE 14BE 14BE 14BH		6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.80 0.80 0.90 0.90
490BHB22 490BNB22 490BRB22 490BUB22 490BVB22 490BXB22	0 1 00 1 0	90 90 90 90 90 90	GGGGGG		E P V P	U U UR UR	45.0 	17.793 18.151 17.793 17.601 18.540 17.793	6.439 6.439 6.439 6.439	1500/2100 1500/2100 1500/2100 1500/2100 1400/1900	14BE 14BH 14BE 14BE 14BH 14BE		6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
490CB22 490DB22 490EB22 490EB22A 490FB22 490GB22		90 90 90 90 90 90	GGGGGG		W -			17.520 18.110 17.520 17.520 18.110 17.520	0,700		14BE 14BE 14BE 14BE 14BE 14BE		6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.90 0.90
490HB22 490JB22 490JB22A 490KB22 490KB22A 490LB22		90 90 90 90 90 90	999999		-			17.913 18.504 18.110 18.110 17.913		-	14BE 14BE 14BE 14BE 14BE 14BE		6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.80 0.80 0.80
490MB22 490NB22 490RB22 490RB22 490TB22 490TB22	-	90 90 90 90 90 90	GGGGG		W P P P		_ _ _ _	18.150 18.346 17.756 17.795 17.520 17.520		- - - -	148E 14BE 14BE 14BE 14BE 14BE 14BE		6.3 6.3 6.3 6.3 6.3 6.3	0.90 0.90 0.90 0.90 0.80 0.90

•	TYP	ICAL OPER	ATING COI	NDITIONS	<u> </u>
MAX.	· ·		SPOT C	UTOFF	
ANODE KV DESIGN M	ANODE KV	FOCUS ELEC- TRODE VOLTS	GRID- NUMBER 2 VOLTS	GRID-	TUBE TYPE
27.5	25	4200 5000	250/650	-150	25VAQP22
27.5 27.5	25 25	4200/5000 4200/5000	250/650 205/535	-150 -125	25VAWP22 25VAXP22
27.5	25	4200/5000	220/545	-125	25VAZP22
27.5 27.5	25 25	4200/5000 4200/5000	200, 525 220, 545	125 125	25VBAP22 25VBGP22
27.5	25	4200/5000	205/535	-125	25VBJP22
27.5 27.5	25	4200/5000 4200/5000	220/545 220/545	-125 -125	25VBKP22 25VBLP22
27.5	25	4200/5000	205/535	-125	25VBMP22
27.5 27.5	25 25	4200/5000 4200/5000	300/660 285/685	-150 -150	25WP22 25XP22
27.5	25	4200/5000	285/685	-150	25YP22
27.5 22.5	25 20	4200/5000 -75/400	355/685 200	-150 -57/-125	25ZP22 370AB22
22.5	20	-75/400	200	-57/-125	370CB22
23.0 23.0	20	3360/4000 3360/4000	200 200	-50/-105 -50/-105	490AB22 490ACB22
23.0	20	3360/4000	200	-50/-105	490ADB22
23.0	20	3360/4000	200	-50/-105	490AEB22
23.0 23.0	20	3360/4000 3360/4000	200 200	-50/-105 -50/-105	490AFB22 490AGB22
27.5	25	4200/5000	285/684	-150	490AHB22
27.5	25	4200/5000 4030/4800	300/695 150/420	-150 -150	490AHB22A 490AJB22
27.5	25	4200/5000	300/695	-150	490AJB22A
26.0 23.0	24 20	4030/4800 3360/4000	200 200	-50/-105	490AKB22
26.0	24	4030/4800	200	-50/-105 -50/-105	490ALB22 490AMB22
25.5	22	3700/4400	200	-50/-105	490ANB22
23.0 26.0	20	3360/4000 4030/4800	200 200	-50/-105 -50/-105	490ARB22 490ASB22
26.0	24	4030/4800	285/685	-150	490BAB22
26.0 26.0	24	4030/4800 4030/4800		-150 -100	490BCB22 490BDB22
22.5	20	4200/5000	200/375	-100	490BGB22
27.5 22.5	25 20	4200/5000 -75/400	190/380 150/390	-100 -100	490BHB22 490BNB22
27.5	25	4200/5000	340/630	-150	490BRB22
27.5 23.0	25	4200/5000 -75/400	190/380 150/410	-100 -100	490BUB22 490BVB22
22.5	20	-75/400	200/350	-100	490BXB22
23.0	20	3360/4000		-50/-105	490CB22
23.0 23.0	20 20	3360/4000 3360/4000		-50/-105 -50/-105	490DB22 490EB22
23.0 23.0	20	3360/4000	200	-50/-105	490EB22A
23.0	20	3360/4000 3360/4000		-50/-105 -200	490FB22 490GB22
24.0	22	3700/4400	325/800	-150	490HB22
23.0 23.0	20	3360/4000 3360/4000	290/670 200	-150 -50/-105	490JB22 490JB22A
23.0	20	3360/4000	200	-50/-105	490KB22
23.0 23.0	20	3360/4000 3360/4000		-50/-105 -50/-105	490KB22A 490LB22
23.0	20	3360/4000	200	-50/-105	490MB22
23.0	20	3360/4000	200	-50/-105 -50/-105	490NB22
23.0 23.0	20	3360/4000 3360/4000		-50/-105	490RB22 490SB22
23.0	20	3360/4000 3360/4000	200	-50/-105	490TB22
23.0	20	3300/4000	200	_50/-105	490UB22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O-Round Tube
- □ —Rectangular Tube
- B -- Fiberglass wrap implosion protection
- E -- Filled rim type implosion protection
- G -Glass Tube
- MET Metal Tube
 - M Matrix Screen
 - P—Sagged glass implosion plate attached to face
 - R-Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V-Rim bands and tension band
 - W—Rim bands and tension band with mounting lugs
 - X-Tension band
 - Y-Tension band and mounting lugs
- DUPES —Uni-potential electrostatic focus, delta
- DBPES—Bi-potential electrostatic focus, delta
- IUPES—Uni-potential electrostatic focus, inline
- IBPES —Bi-potential electrostatic focus,
- L.V.E.S. --- Low voltage electrostatic focus
- H.V.E.S. -- High voltage electrostatic focus

	 2 144		AL	FACE PLATE			TE	=					HEATER	
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or MET	SHAPE	IMPLOSION PROTECTION	TREATMENT	LIGHT TRANSMIT- TANCE IN %	Overall Length (Inches)	NECK LENGTH (Inches)	EXTERNAL COATING IN pf	BASING	FOCUS	v.	A.
490VB22		90	G	\Box	Р	_		17.756		_	14BE		6.3	0.901
490WB22	1 —	90	G		_			17.520	_		14BE	-	6.3	0.90
490XB22	I —	90	G		Р	_	-	17.756	_	_	14BE		6.3	0.90
490 Y B22		90	G		P	-	_	17.756	_		14BE	_	6.3	0.90
490ZB22	<u> </u>	90	G		Р		_	17.756	_	1	14BE	*	6.3	0.90

♦.	TYP	ICAL OPER	ATING CON	IDITIONS	
KV MAX.	>		SPOT C	UTOFF	
ANODE K DESIGN N	ANODE KV.	FOCUS ELEC- TRODE VOLTS	GRID- NUMBER 2 VOLTS	GRID- NUMBER 1 VOLTS	TUBE TYPE
23.0 23.0 23.0 25.5	20 20 20 20 23	3360/4000 3360/4000 3360/4000 3860/4600	200 200 200 200 200	-50/-105 -50/-105 -50/-105 -50/-105	490VB22 490WB22 490XB22 490YB22
23.0	20	3360/4000		-50/-105	490ZB22

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

- O -- Round Tube
- □ —Rectangular Tube
- B—Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- G-Glass Tube
- MET --- Metal Tube
 - M -- Matrix Screen
 - P Sagged glass implosion plate attached to face
 - R-Anti-reflection faceplate
 - U-Rare earth red phosphor
 - V-Rim bands and tension band
 - W—Rim bands and tension band with mounting lugs
 - X -Tension band
 - Y —Tension band and mounting lugs
- DUPES—Uni-potential electrostatic focus,
- DBPES—Bi-potential electrostatic focus, delta
- IUPES Uni-potential electrostatic focus, inline
- IBPES—Bi-potential electrostatic focus, inline
- L.V.E.S. -- Low voltage electrostatic focus
- H.V.E.S.—High voltage electrostatic focus

	z	ш	¥	F	ACEPL	ATE			ø		Ŧ		HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
2EP4 5AXP4 7DP4 7RP4 8AP4 8AP4A	44444	30 53 50 50 54 54	G G G MET MET	000000	11111	A C C C C F	300/500 None 400/1500 None None None	L.V.E.S. Auto.Es. H.V.E.S. Mag. Mag. Mag.	N N D S S S	8.250 10.625 14.062 14.062 14.250 14.250	5.625 7.375 8.125 8.125 7.000 7.000	8JK 12S 12C 12D 12H 12H	6.3 6.3 6.3 6.3 6.3	0.145 0.60 0.60 0.60 0.60 0.60
8DP4 8JP4 8LP4 8MP4 8XP4 8YP4	000000	90 110 110 90 90 110	000000		11111	F FA FA F F	250/350 None 200/400 250/350 None None	L.V.E.S. Auto.Es. L.V.E.S. L.V.E.S. Auto.Es. Auto.Es.	S N N N N N N	10.438 8.938 8.688 9.938 11.348 8.688	6.500 5.438 5.188 6.000 7.500 5.188	12AB 8JL 7FA 12L 12S 7FG	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.30 0.60 0.60 0.60
9ACP4 9AGP4 9QP4 9QP4A 9SP4 9TP4	00000	90 90 70 70 90 110	000000		X X — — E	FA FA C F A	300/750 300/750 None None 300/500 350/600	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N S S N N	8.265 8.346 12.750 12.750 10.500 8.375	3.698 3.700 6.500 6.500 5.719 4.250	7GR 7GR 12AD 12AD 8HR 8HR	12.0 12.0 4.7 4.7 6.3 6.3	0.065 0.065 0.30 0.30 0.60 0.45
9UP4 9VP4 9WP4 9YP4 10ABP4 10ABP4A	44444	90 90 90 90 90	000000			FA FA FA C CA	300/750 300/750 300/750 300/750 400/850 400/850	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N S S	8.267 7.906 8.270 8.440 11.875 11.875	3.540 3.344 2.920 3.250 6.500 6.500	7GR 7GR 7GR 7GR 12L 12L	12.6 12.6 12.0 12.6 6.3 6.3	0.075 0.075 0.075 0.075 0.60 0.60
10ABP4B 10ABP4C 10ADP4 10AEP4 10ARP4 10ASP4	00000	90 90 90 90 90	000000		- - X X	F FA F FA FA	400/850 400/850 400/850 400/850 300/750 300/750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S S S S N N	11.875 11.875 11.875 11.875 9.425 8.700	6.500 6.500 6.500 6.500 3.875 4.020	12L 12L 12L 12L 7GR 7GR	6.3 6.3 8.4 6.3 6.3	0.60 0.60 0.45 0.45 0.30 0.45
10BP4 10BP4A 10BP4C 10BP4D 10DP4 10FP4	44444	50 50 50 50 50 50	000000	000000		C F CA FA CA	500/2500 500/2500 500/2500 500/2500 None 500/2500	Mag. Mag. Mag. Mag. H.V.E.S. Mag.	DDSSE	17.625 17.625 17.625 17.625 17.625 17.625	8.188 8.188 8.188 8.188 8.188 8.188	12N 12N 12N 12N 12N 12M 12M	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
10FP4A SG-10FP4A 10MP4 10MP4A 10RP4 11AP4	100000	50 50 50 50 50 50	999999	00000	- - - -	FA FA C F CA FA	500/2500 500/2500 500/2500 500/2500 750/1500 500/750	Mag. Mag. Mag. Mag. L.V.E.S. L.V.E.S.	X	17.625 17.625 17.000 17.000 16.500 8.938	8.188 8.188 7.557 7.557 7.062 4.250	12N 12N 12G 12G 12L 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.45
11BP4 11CP4 11DP4 11EP4 11FP4 11GP4	00000	110 110 110 114 114 110	999999		- - - - E	FA FA FA FA FA	400/700 500/750 500/750 300/500 300/500 400/600	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2222	8.938 8.938 8.938 8.460 8.460 8.938	4.250 4.250 4.250 4.130 4.130 4.250	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.60 0.45 0.45
11HP4 11HP4A 11JP4 11KP4 11LP4 11MP4	\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d	110 110 110 110 110 110	000000		X X E X E	FA FA FA FA FA	500/750 500/750 400/600 500/750 400/600 400/600	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2222	8.785 8.938 8.910 9.250 8.938		8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.30 0.45 0.30 0.30
11QP4 11RP4 11TP4 11UP4 12AYP4 12AZP4	00000	90 104 110 104 110 110	000000		- X X -	FA FA FA FA FA	400/800 400/750 400/600 400/750 400/900 400/900	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	9.610 9.000 8.937 9.000 9.312 9.312	4.125	7GR 7GR 8HR 7GR 8HR 8HR	6.3 6.3	0.075 0.45 0.30 0.45 0.45 0.60

	TYPI	CAL	OPER	ATING CON	IDITIONS	
ANODE KV. Design-max. Values 💠	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
11.0 19.8	Grid Grid	9 14	300 300	-50/350	-15/-25 -28/-72	2EP4 5AXP4
8.8	Grid	6	250	1215/1465	-22/-58	7DP4
13.2 ● 9.9 ●	Grid Grid	9	250	_	-22/-58 -22/-58	7RP4 8AP4
9.9 ● 8.8 ●	Grid Grid	9	150		-22/-58 -13/-35	8AP4A 8DP4
22.0●	Grid	16	300		-35/-72	8JP4
20.0 18.0 ⊚	Grid Grid	16 15	300 300	0/400 0/450	-35/-72 -28/-72	8LP4 8 MP 4
22.0 ⊚ 22.0 ⊚	Grid Grid	16 16	300 300	_	-28/-72 -28/-72	8XP4 8YP4
12.0	Cath.	10	100	0/300	30/60	9ACP4
12.0 7.5 ⊚	Cath.	10 5.5 5.5	100 200	0/300 0/400	26/56 28/52	9AGP4 9QP4
7.5 . 18.0	Cath.	5.5 14	200 300	0/400 0/400	28/52 33/77	9QP4A 9SP4
15.0	Cath.	12	50	0/300	37/53	9TP4
12.0 12.0	Cath. Grid	9	100 100	0/300 0/300	35/55 -38/-84	9UP4 9VP4
12.0 12.0	Cath. Grid	9 9 9	100 100	0/300 0/300	32/50 -38/-84	9WP4 9YP4
13.2	Grid	7.5	300	0/500	-38/-62	10ABP4
13.2 1	Grid	7.5 7.5	300 300	0/500 0/500	-38/-62 -38/-62	10ABP4A 10ABP4B
13.2 🔳	Grid	7.5 7.5	300	0/500	-38/-62 -33/-72	10ABP4C
13.2 ● 13.2 ●	Grid Grid	7.5	300 300	0/500 0/500	-38/-62	10ADP4 10AEP4
13.0 12.0	Cath. Cath.	9	140 100	-250/+150 0/300	31/49 33/52	10ARP4 10ASP4
11.0	Grid		250	_	-22/-58	10BP4
-13.2 ● 11.0 ●	Grid Grid	9999	250 250	_	-22/-58 -22/-58	10BP4A 10BP4C
11.0 ● 11.0 ●	Grid Grid	9	250 250	2550/3250	-22/-58 -36/-84	10BP4D 10DP4
11.0●	Grid	9	250		-22/-58	10FP4
13.2 ● 13.2 ●	Grid Grid	11 11	250 250		-22/-58 -22/-58	10FP4A SG-10FP4A
11.0 ⊚ 11.0 ⊚	Grid Grid	9	_	_	-22/-58 -22/-58	10MP4 10MP4A
17.6 ●	Grid	14	300	-55/300	-28/-72	10RP4
15.0 15.0	Cath.	11	150 150	0/400 0/400	31/49 31/49	11AP4 11BP4
15.0 15.0	Grid Cath.	12	400 50	0/400 -100/300	-39/-94 31/49	11CP4 11DP4
14.0	Grid	10	400	0/400	-36/-94 -36/-94	11EP4
14.0 15.0	Grid Cath.	10 11	400 135	0/400 -200/200	27/43	11FP4 11GP4
15.0	Cath.		150	****	31/49 31/49	11HP4
15.0 15.0	Cath.	11	150 50	-200/200	24/75	11HP4A 11JP4
15.0 15.0	Cath. Grid	11 10	150 400	-100/300 0/400	31/49 -36/-94	11KP4 11LP4
15.0 14.0	Cath.	11	135	-200/200	27/43	11MP4
15.0	Cath.	10 11	100 140	0/300	32/50 31/49	11QP4 11RP4
15.0 15.0	Cath. Cath.	10 11	400 140	0/400 —	36/78 31/49	11TP4 11UP4
14.0 14.0	Grid Grid	10 10	400 400	0/400 0/400	-36/-94 -36/-94	12AYP4 12AZP4

- M -- Metal cone tube G-Glass tube
- LWG ... Light weight glass tube
- G°—Glass tube, dimensions different from normal
- MET -- Metal tube
 - O -Round tube
- -Rectangular tube, spherical face
- Rectangular tube, cylindrical face
- B-Fiberglass wrap implosion protection
- E-Filled rim type implosion protection
- T -- Molded glass implosion panel attached to face
- P—Sagged glass implosion plate attached to face
- L -- Plastic implosion barrier attached to face
- K-Banded tube with coated funnel for implosion protection
- H-Tube sealed into steel sheath for implosion protection
- C-Clear glass faceplate
- F-Gray filter glass faceplate
- R --- Anti-reflection facentate
- A -Aluminized screen
- V-Rim bands and tension band
- W-Rim bands and tension band with mounting lugs
- X-Formed with tension band
- Y -- Formed rim with tension band and mounting lugs
- Mag. -- Magnetic focus
- L.V.E.S. -- Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus
- Auto.Es. Self-focusing electrostatic Int.Mag. -- Internal magnetic focus
 - TPF---Tri-potential focus
 - N -- No ion trap
 - S-Single field ion trap
 - D-Double field ion trap
 - I -- Internal ion trap
 - *-18 second heater warm-up time (all others are 11 second)
 - Grid -- Grid drive service (all voltages with respect to cathode)
 - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1)

NOTES

- Design-Maximum Values Unless Otherwise Indicated
- @ Absolute-Maximum Values
- ☐ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	2	LLI	¥	F/	CEPL	ATE			خ خ		_		HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	ν.	Α.
12BAP4 12BEP4 12BFP4 12BGP4 12BJP4 12BKP4	000000	110 110 110 110 110 110	GGGGGG		E E X	FA FA FA FA FA	400/900 500/900 400/1200 550/850 400/900 500/1000	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2 2 2 2 2	9.312 9.312 9.330 9.312 9.300 9.348	4.125 4.375 3.270 4.375 4.130 4.375	8HR 7FA 7GR 8HR 8HR 8HR	6.3 6.3 4.2 6.3 4.2 6.3	0.30 0.45 0.45 0.45 0.45 0.45
12BLP4 12BMP4 12BNP4 12BNP4A 12BQP4 12BSP4	00000	110 104 110 110 110 110	666666		X X X X	FA FA FA FA FA	800/1000 500/750 500/750 500/750 600/900 400/900	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	9.348 9.531 9.348 9.348 9.348 9.300	4.375 3.875 4.375 4.375 4.375 4.130	8HR 7GR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.45 0.30
12BTP4 12BUP4 12BUP4A 12BUP4B 12BUP4C 12BVP4	100000	110 110 110 110 110 110	666666		E V X X	FA FA FA FA	550/850 450/900 450/900 450/900 450/900 450/900	LV.E.S. LV.E.S. LV.E.S. LV.E.S. LV.E.S. LV.E.S.	N N N N N	9.344 9.290 9.290 9.290 9.290 9.350	4.375 4.120 4.130 4.130 4.130 3.900	8HR 8HR 8HR 8HR 8HR 7GR	12.6 6.3 6.3 6.3 6.3 12.6	0.150 0.45 0.45 0.45 0.45 0.45 0.075
12BZP4 12GBP4 12GDP4 12GEP4 12CFP4 12GHP4	00000	104 110 104 110 110 110	GGGGGG		X X E X	FA FA FA FA FA	500/750 500/900 500/750 600/900 450/900 450/900	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	9.531 9.312 9.500 9.021 9.330 9.330	3.875 4.375 3.875 3.867 3.900 3.900	7GR 7FA 7GR 7GR 7GR 7GR	12.0 6.3 6.3	0.157 0.45 0.45 0.15 0.45 0.45
12CNP4 12CNP4A 12CQP4 12CSP4 12CTP4 12CVP4	00000	110 110 110 90 110	GGGGGG		X X E E X	FA FA FA FA FA	600/1200 600/1200 400/900 600/900 700/1000 500/750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	9.530 9.530 9.312 10.814 9.021 10.035	4.090 4.090 4.125 3.750 3.887 3.875	7GR 7GR 8HR 7GR 7GR 7GR	4.2 6.3 12.6 6.3	0.45 0.45 0.45 0.15 0.45 0.157
12CWP4 12CZP4 12DEP4 12DFP4 12DGP4 12DHP4		100 110 110 110 110 110	G G G G G		X X X X	FA FA FA FA FA	500/750 400/1200 600/900 800/1100 600/1000 600/1200	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2	10.031 9.330 9.190 8.810 9.187 9.528	3.875 3.900 4.190 3.810 4.187 4.370	7GR 7GR 7GR 7GR 7GR 8HR	6.3 12.6 6.3 6.3 6.3 6.3	0.45 0.075 0.45 0.45 0.45 0.45
12DKP4 12DMP4 12DQP4 12KP4 12KP4A SG-12KP4A	000000	110 110 110 54 54 54	GGGGG	000	X X X	FA FA CA FA	600/1000 None 800/1000 500/2500 500/2500 500/2500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.187 9.350 9.280 17.625 17.625 17.625	4.187 4.380 4.310 7.125 7.125 7.125	7GR 8HR 8HR 12N 12N 12N	6.3 6.3 6.3 6.3 6.3 6.3	0.45 0.60 0.45 0.60 0.60 0.60
12LP4 12LP4A 12LP4C 12TP4 12UP4 12UP4A	000000	54 54 54 54 54 54 54	G G G M M	000000		C FA C C F	750/3000 750/3000 750/3000 None None None	Mag. Mag. Mag. Mag. Mag. Mag.	D D D S S	18.750 18.750 18.750 18.750 18.750 18.750	8.250 8.250 8.250 8.250 8.000 8.000	12N 12N 12N 12D 12D 12D	6.3 6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
12UP4B 12VABP4 12VP4 12VP4A 12YP4 12XP4	00000	54 110 54 54 54 54 54	M G G G G	00000	x = =	FR FA C F C	None 800/1000 750/3000 750/3000 750/3000 500/2500	Mag. L.V.E.S. Mag. Mag. Auto.Es. Mag.	S N D D S S	18.750 9.350 18.000 18.000 18.750 17.625	8.000 4.380 7.500 7.500 8.250 7.125	12D 8HR 12G 12G 12P 12N	6.3 6.3 6.3 6.3	0.60 0.45 0.60 0.60 0.60 0.60
12ZP4A 13AP4 13DP4 14ACP4 14AEP4 14AJP4	00000	54 110 110 90 90 110	GGGGGG	000000	E E	FA FA FA FA	500/2500 550/800 500/1000 800/1200 800/1200 500/850	Mag. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S N N S N S	17.625 9.266 9.688 14,188 13.188 11.438	7.125 4.250 4.375 6.500 5.500 5.500	12N 8HR 8HR 12L 12L 8HR	6.3 6.3 6.3	0.60 0.45 0.45 0.60 0.60 0.60

	TYPI	CAL	OPER/	TING COM	IDITIONS	
ANODE KV. Design-max. Values 4	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
14.0	Grid	10	400	0/400	-36/-94	12BAP4
16.0 14.0	Cath. Cath.	12 10	30 300	0/500 0/400	25/40 40/77	12BEP4 12BFP4
15.0	Cath.	12	50	0/400	35/55	12BGP4
13.0 15.0	Cath.	10 12	450 50	0/400 0/400	38/73 35/55	12BJP4 12BKP4
16.0	Cath.	12	30	0/400	30/45	12BLP4
15.0 16.0	Cath.	12	140 250	0/400	31/49 35/65	12BMP4 12BNP4
16.0	Cath.	12	250	0/400	35/65	12BNP4A
16.0 14.0	Cath. Grid	12 10	50 500	0/400 0/400	30/50 -50/-93	12BQP4 12BSP4
15.0	Cath.	12	50	-	35/55	12BTP4
14.0	Cath.		50 50	0/400 0/400	37/49 32/52	12BUP4 12BUP4A
14.0 14.0	Cath. Cath.	12	50	0/400	35/55	12BUP4B
14.0 14.0	Cath.	12 12	50 50	0/400 0/400	35/55 37/49	12BUP4C 12BVP4
15.0	Cath.	11	100		31/49	12BZP4
16.0	Cath.	12	50	0/500	30/50	12CBP4
15.0 15.0	Cath.	11	140 100	-200/200	31/49 30/50	12CDP4 12CEP4
14.0	Cath.	10	200	0/300	27/57	12CFP4
14.0	Grid Cath.	10	300 200	0/400 0/400	-30/-72 25/55	12CHP4 12CNP4
14.0	Cath.	10	200	0/400	25/55	12CNP4A
15.4 15.0	Cath.	12 12	40 100	0/400 -200/200	30/50 30/50	12CQP4 12CSP4
15.0	Cath.		100	-200/200	30/50	12CTP4
15.0	Cath.	11	100		31/49	12CVP4
15.0 14.0	Cath.		140 100	0/400	31/49 33/52	12CWP4 12CZP4
15.0	Cath.	12	100	-200/+200	30/50	12DEP4
15.0 16.0	Cath.		200	-200/+200 0/400	30/55 30/50	12DFP4 12DGP4
16.0	Cath.	-	50	0/400	30/50	12DHP4
16.0 22.0	Cath. Grid	12	140 300	0/400 -200/+200	30/50 -35/-72	12DKP4 12DMP4
15.0	Cath.	12	50	-200/+200	35/55	12DQP4
13.2 ● 13.2 ●	Grid	11 12	250 300	_	-22/-58 -28/-72	12KP4 12KP4A
13.2●	Grid	12	300		-28/-72	SG-12KP4A
13.2 ⊚ 13.2 ⊚	Grid Grid	111	250 250	_	-22/-58 -22/-58	12LP4 12LP4A
13.2	Grid	11	250	_	-22/-58	12LP4C
13.2 ● 13.2 ●	Grid Grid	11 12	250 300	_	-22/-58 -28/-72	12TP4 12UP4
13.2	Grid	12	300	_	-28/-72	12UP4A
13.2	Grid	12	300	2007:000	-28/-72	12UP4B
15.0 13.2 ⊚	Cath.	12	50	~200/+200 —	35/55 -28/-72	12VABP4 12VP4
13.2	Grid	11	250	-	-28/-72	12VP4A
13.2 ⊚ 13.2 ⊚	Grid	11	250 250	_	-28/-72 -22/-58	12YP4 12ZP4
13.2	Grid	11	250		-22/-58	12ZP4A
15.0 16.0	Cath.		50 50	0/400	35/55 30/50	13AP4 13DP4
15.4 ●	Cath.	. 10	125	-50/350	40/80	14ACP4
15.4 . 12.1 .	Cath. Grid	10	110 250	-50/350 -100/400	32/50 -24/-64	14AEP4 14AJP4
12.1	uiiu	1 3	1 230	100/400	-27/04	1178017

M -- Metal cone tube G -- Glass tube

LWG-Light weight glass tube

G°-Glass tube, dimensions different from normal

MET - Metal tube

O-Round tube

-Rectangular tube, spherical face

@-Rectangular tube, cylindrical face

B — Fiberglass wrap implosion protection

E — Filled rim type implosion protection

T - Molded glass implosion panel attached to face

P—Sagged glass implosion plate attached to face

L—Plastic implosion barrier

attached to face
K—Banded tube with coated funnel

for implosion protection

H.—Tube sealed into steel sheath

-Tube sealed into steel sheath for implosion protection

C - Clear glass faceplate

F-Gray filter glass faceplate

R -Anti-reflection faceplate

A -Aluminized screen

V-Rim bands and tension band

W—Rim bands and tension band with mounting lugs X—Formed with tension band

X Formed with tension band

Y-Formed rim with tension band and mounting lugs

Mag. -- Magnetic focus

L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus

H.V.E.S. — High Voltage electrostatic focu -Auto:Es. — Self-focusing electrostatic Int.Mag. — Internal magnetic focus

TPF - Tri-potential focus

N-No ion trap

S—Single field ion trap

D-Double field ion trap

1-Internal ion trap

*—18 second heater warm-up time (all others are 11 second)

Grid —Grid drive service (all voltages with respect to cathode)

Cath. —Cathode drive service (all voltages with respect to Grid No. 1)

NOTES

 Design-Maximum Values Unless Otherwise Indicated

Absolute-Maximum Values

- □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, price
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for pusible inaccuracies.

	z	ш	.AL	F	ACEPL	ATE			ڧ	_	I		HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
SG-14AJP4 14ARP4 14ASP4 14ATP4 14AUP4 14AVP4	424444	110 90 110 90 90 110	GGGGGG		11111	FA FA FA FA FA	800/850 800/1200 500/850 500/1000 1000/1500 450/700	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	11.438 13.188 11.375 13.188 13.188 11.375	5.500 5.500 5.438 5.500 5.500 5.438	8HR 12L 8HR 12L 12L 8HR	6.3 6.3 6.3 8.4 6.3 6.3	0.60 0.60 0.60 0.45 0.45 0.60
14AWP4 14BDP4 14BP4 14BP4A 14CP4* 14CP4A	44444	90 70 70 70 70 70	999999		P	FA FA FR FA	800/1200 600/1000 500/2000 500/2000 750/2000 750/2000	L.V.E.S. L.V.E.S. Mag. Mag. Mag. Mag.	ZZSSSS	13.188 17.375 16.812 16.812 16.750 16.750	5.500 7.500 7.531 7.531 7.469 7.469	12L 12L 12N 12N 12N 12N	6.3 6.3 6.3 6.3	0.45 0.60 0.60 0.60 0.60
SG-14CP4A 14CP4B 14DP4 14EP4 14GP4 14HP4	000000	70 70 70 70 70 70	000000		- - - -	FA F F F F	750/2000 750/2000 None 500/2000 750/2000	Mag. Mag. Mag. H.V.E.S. L.V.E.S.	NNDSSS	16.750 16.500 16.750 16.500 16.812 16.781	7.500 7.188 7.469 7.187 7.500 7.500	12N 12N 12D 12N 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60
14NP4 14NP4A 14QP4 14QP4A SG-14QP4A 14QP4B	000000	90 70 70 70 70	999999		1 1 1	F FA FA FA	800/1200 800/1200 600/1000 600/1000 600/1000	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S S S S N N	14.188 14.188 16.156 16.156 16.156	6.500 6.500 6.875 6.875 6.875 6.875	12L 12L 12L 12L 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60
14RP4 14RP4A 14SP4 14UP4 14WP4 SG-14WP4	000000	90 90 90 70 90	000000			F FA FA FA FA	800/1000 800/1000 900/1200 None 800/1200 800/1200	L.V.E.S. L.V.E.S. L.V.E.S. Mag. L.V.E.S. L.V.E.S.	000022	14.562 14.562 14.188 16.781 13.188 13.188	6.875 6.875 6.500 7.500 5.500 5.500	12L 12L 12L 12D 12L 12L	6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
14XP4 14XP4A 14ZP4 15ADP4 15JP4 16ABP4	999999	90 90 90 110 110 70	000000		xe -	F FA FA FA F	1100/1500 1100/1500 800/1200 700/1100 600/1000 750/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Auto.Es.	ののヱヱヱの	14.188 14.188 13.188 10.750 11.000 18.750	6.500 6.500 5.500 4.370 4.375 7.500	12L 12L 12L 8HR 8HR 12P	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.45 0.45 0.60
16ACP4 16AEP4 16ANP4 16AP4 16AP4A 16AQP4	ODDODD	60 70 114 53 53 114	ರ≳≲ರಲ	00000	1 10 1 10	C FA C FAR	750/2000 750/1500 800/1200 None None 800/1200	Auto.Es. L.V.E.S. L.V.E.S. Mag. Mag. L.V.E.S.	SODDE	20.875 18.750 10.438 22.250 22.250 10.438	8.000 7.500 4.125 7.562 7.562 4.125	12P 12L 8HR 12D 12D 8HR	6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60
16ASP4 16ATP4 16AUP4 16AVP4 16AWP4 16AXP4		114 114 114 114 114 114	000000		P	FA FA FA FA FA	1000/1500 1000/1500 800/1500 900/1400 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	10.406 10.125 10.062 10.688 10.125 10.125	4.125 4.000 4.000 4.375 4.000 3.813	8HR 8HR 8HR 7FA 8HR 8HR	6.3 6.3 6.3	0.45 0.45 0.60 0.45 0.30* 0.45
16AYP4 16AZP4 16BAP4 16BDP4 16BEP4 16BFP4		114 114 114 114 114 114	000000		1-6 6	FA FA FA FA FA	800/1300 1000/1500 1000/1500 800/1300 800/1200 800/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	10.250 10.375 10.688 10.250 10.688 10.062	4.125 4.250 4.375 4.125 4.375 4.000	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.30 0.45
16BGP4 16BMP4 16BNP4 16BRP4 16BSP4 16BUP4		114 114 114 114 114 114	GGGGGG		> > > r	FA FA FA FA FA	800/1300 800/1500 1000/1500 1000/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2 2 2 2 2	10.569 10.062 10.500 10.281 10.531 10.375	4.375 4.000 4.375 4.125 4.375 4.250	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.45 0.45

. :	TYPICAL OPERATING CONDITIONS					
ANODE KV. DESIGN-MAX. VALUES ♦	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
15.4	Grid	9	300	-100/400	- 28 /-72	SG-14AJP4
15.4 ● 15.4 ●	Cath. Grid	10 12	50 300	- 50/350 - 50/350	35/50 -28/-72	14ARP4 14ASP4
15.4 ● 16.5 ●	Grid Cath.	10 12	300 50	0/400 0/350	-25/-69 30/50	14ATP4 14AUP4
15.4●	Grid	12	300	-50/350	-28/-72	14AVP4
15.4 ● 24.2 ●	Cath. Grid	12 18	50 300	-50/350 0/400	32/47 -33/-77	14AWP4 14BDP4
13.2 ●	Grid	12	300	— 07400 —	-28/-72	14BP4
13.2 . 15.4 .	Grid Grid	12	300 300	_	-28/-72 -28/-72	14BP4A 14CP4
15.4●	Grid	12	300		-28/-72	14CP4A
15.4. 15.4.	Grid Grid	12	300 300	_	-28/-72 -28/-72	SG-14CP4A 14CP4B
15.4 ●	Grid	11	250	_	-22/-58	14DP4
15.4 ● 15.4 ●	Grid	12	300 300	2170/2950	-28/-72 -28/-72	14EP4 14GP4
15.4	Grid	12	300	-48/264	-28/-72	14HP4
15.4 ● 15.4 ●	Grid Grid	12 12	300 300	-50/350 -50/350	-28/-72 -28/-72	14NP4 14NP4A
12.1 🖲	Grid	9	250	-50/250	-24/-64	14QP4
12.1 ● 15.4 ●	Grid Grid	9	250 300	-50/250 -50/300	-24/-64 -28/-72	14QP4A SG-14QP4A
12.1	Grid	9	250	-50/250	-28/-72 -24/-64	14QP4B
15.4 ● 15.4 ●	Grid Grid	10 10	300 300	-50/350 -50/350	-26/-70 -26/-70	14RP4 14RP4A
15.4 €	Grid	12	300	-48/264	-28/-72	14SP4
15.4 ● 15.4 ●	Grid Grid	12 12	300 300	-50/350	-28/-72 -28/-72	14UP4 14WP4
15.4●	Grid	12	300	-50/350	-28/-72	SG-14WP4
16.5 ⊚ 16.5 ⊚	Grid Grid	12 12	300 300	-50/350 -50/350	-28/-72 -28/-72	14XP4 14XP4A
15.4 ●	Grid	12	300	0/450	-28/-72	14ZP4
20.0 15.0	Cath.	16	50 50	-200/+200 0/400	33/52 35/55	15ADP4 15JP4
17.6●	Grid	14	300		-28/ - 72	16ABP4
15.4 ● 17.6 ●	Grid Grid	12 14	250 300	-64/350	-28/-63 -28/-72	16ACP4 16AEP4
18.0	Grid	14	300	0/400	-33/-70	16ANP4
15.4 ⊚ 15.4 ⊚	Grid Grid	12	300 300	_	-28/-72 -28/-72	16AP4 16AP4A
18.0	Grid	14	300	0/400	-33/-70	16AQP4
20.0 ⊚ 18.0	Grid Cath.	15 15	300 50	-100/300 0/500	-43/-70 31/49	16ASP4 16ATP4
15.4	Grid	12	400	0/400	-36/-94	16AUP4
17.6 18.0	Cath.	15 15	35 150	0/500 0/500	25/50 31/49	16AVP4 16AWP4
18.0	Grid	15	300	0/500	-40/-72	16AXP4
20.0 18.0	Cath.		300 150	-100/300 0/400	28/60 31/49	16AYP4 16AZP4
18.0	Cath.	15	50	0/400	35/55	16BAP4
20.0 18.0	Cath.	14	300 50	-100/300 0/400	28/60 30/48	16BDP4 16BEP4
15.4	Grid	12	400	0/400	-36/-94	16BFP4
20.0 15.4	Cath. Grid	16 12	300 400	-100/+300 0/400	28/60 -36/-94	16BGP4 16BMP4
18.0 18.0	Cath.	15 15	50 400	0/400 0/400	35/35	16BNP4 16BRP4
21.0	Grid Cath.	15	50	0/400	- 46/- 94 35/35	16BSP4
16.0	Cath.	13	100	-250/150	31/49	16BUP4

- M -- Metal cone tube
- G-Glass tube
- LWG -Light weight glass tube
 - G° Glass tube, dimensions different from normal
- MET Metal tube
 - O -Round tube
 - -Rectangular tube, spherical face
 - ©—Rectangular tube, cylindrical face B—Fiberglass wrap implosion
 - protection

 E Filled rim type implosion
 - protection
 - T -- Molded glass implosion panel attached to face
 - P Sagged glass implosion plate attached to face
 - L -- Plastic implosion barrier attached to face
 - K -- Banded tube with coated funnel
 - for implosion protection

 H Tube sealed into steel sheath
 - for implosion protection
 - C Clear glass faceplate
 - F Gray filter glass faceplate R - Anti-reflection faceplate
 - A-Aluminized screen
 - V -- Rim bands and tension band
 - W-Rim bands and tension band with mounting lugs
 - X-Formed with tension band
 - Y —Formed rim with tension band and mounting lugs

Mag. -- Magnetic focus

- L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus
- Auto.Es. Self-focusing electrostatic
- int.Mag. Internal magnetic focus
 - TPF Tri-potential focus
 N No ion trap
 - S-Single field ion trap
 - D Double field ion trap
 - I Internal ion trap
 - *-18 second heater warm-up time (all others are 11 second)
 - Grid -Grid drive service (all voltages with respect to cathode)
 - Cath.—Cathode drive service (all voltages with respect to Grid No. 1)

NOTES

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	Z	mi .	¥	F	ACEPI	ATE			ø		=		HE	ATER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH	BASING	v.	A.
16BVP4 16BWP4 16BXP4 16BYP4 16CAP4 16CEP4		114 114 114 114 114 114	GGGGGG		V E V V	FA FA FA FA FA	1050/1450 800/1300 900/1400 1000/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	10.413 10.563 10.562 10.438 10.531 10.531	4.219 4.375 4.375 4.250 4.375 4.375	8HR 8HR 7FA 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.45 0.45
16CFP4 16CHP4 16CHP4A 16CJP4 16CKP4 16CMP4	442422	104 114 114 114 114 114	G G G G G		V V X V V	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1000/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	11.075 10.569 10.569 10.594 10.281 10.531	3.875 4.375 4.375 4.406 4.125 4.375	7GR 8HR 8HR 8HR 8HR 8HR	6.3	0.45 0.45 0.45 0.45 0.30 0.45
16CNP4 16CP4 16CQP4 16CTP4 16CUP4 16CWP4		104 52 104 114 114 100	G G G G G		v v v v	FA C FA FA FA	1000/1500 None 1000/1500 800/1500 800/1500 1000/1500	L.V.E.S. Mag. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	ZZZZZZ	11.075 21.500 11.075 10.080 10.080 11.675	3.875 6.625 3.875 4.020 4.020 3.875	7GR 12D 7GR 8HR 8HR 7GR	6.3 6.3 6.3 6.3 6.3	0.157 0.60 0.45 0.45 0.45 0.45
16CXP4 16DCP4 16DCP4A 16DP4 16DP4A 16EP4	00000	100 100 100 60 60 60	GGGGGM		V X	FA FA C F C	1000/1500 None None None	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	N N D D S	11.675 11.675 11.610 20.750 20.750 19.625	3.875 3.875 3.810 7.891 7.875 6.875	7GR 7GR 7GR 12D 12D 12D	6.3 6.3 6.3 6.3 6.3	0.157 0.45 0.45 0.60 0.60 0.60
16EP4A 16EP4B 16GP4 16GP4A 16GP4B 16GP4C	44444	60 60 70 70 70 70	2	000000		F FR C FR CR	None None None None	Mag. Mag. Mag. Mag. Mag. Mag. Mag.	S S S S S S	19.625 19.625 17.688 17.688 17.688 17.688	6.875 6.875 7.313 7.313 7.313 7.313	12D 12D 12D 12D 12D 12D	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
16HP4 16HP4A 16JP4 16JP4A 16KP4 16KP4A	\triangle	60 60 60 60 70 70		0000		C F C F FA	750/2000 750/2000 750/2000 750/2000 750/1500	Mag. Mag. Mag. Mag. Mag. Mag. Mag.	D D D S S	21.250 21.250 20.750 20.750 18.750 18.750	8.375 8.375 7.500 7.500 7.500 7.500	12N 12N 12N 12N 12N 12N 12N	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
SG-16KP4A 16LP4 16LP4A 16MP4 16MP4A 16QP4		70 52 52 60 60 70	GGGGGG		_	FA C F C F	750/1500 750/2000 750/2000 750/2000 750/2000	Mag. Mag. Mag. Mag. Mag. Mag. Mag.	D D	18.750 22.250 22.250 21.750 21.750	7.500 7.375 7.375 8.500 8.500 8.079	12N 12N 12N 12N 12N 12N 12D	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
16RP4 16RP4A 16RP4B 16SP4 16SP4A 16TP4	442444	70 70 70 70 70 70 70	G G G G G		=	F F C F F	750/1500 750/1500 750/2000 750/2000	Mag. Mag. Mag. Mag. Mag. Mag. Mag.	N D D	18.750 18.750 18.750 17.312 17.312 18.125	7.500 7.500 7.500 7.000 7.000 6.875	12N 12N 12N 12N 12N 12N	6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
16UP4 16VAGP4 16VBAP4 16VBCP4 16VP4 16WP4	\Box	70 114 114 114 70 70	GGGGGG	00000	V V -	FA :	1300/1700 1300/1700 1000/1400 None None	Mag. L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag.	S N N N S	18.125 11.445 11.312 11.200 17.188	6.875 4.375 4.500 4.380 6.876 7.438	12D 8HR 8HR 8HR 12D 12D	6.3	0.45 0.45 0.45 0.60
16WP4A 16WP4B 16XP4 16YP4 16ZP4 17AP4		70 70 70 70 70 52 70	G G G G G G	000000		FA F F F	750/1500 None 750/2000 750/1500	Mag. Mag. Mag. Mag. Mag. Mag.	D S D	17.750 18.750		12N 12N 12D 12N 12N 12N		0.60 0.60 0.60 0.60 0.60

	TYP	CAL	OPER	NDITIONS		
ANODE KV. Design-max. Values *	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
20.0	Cath.	15	300	-200/300	38/59	16BVP4
20.0 17.6	Grid Cath.	16 15	300 35	-200/300 0/500	-35/-72 25/50	16BWP4 16BXP4
16.0	Cath.	13	100	0/400	31/49	16BYP4
18.0 18.0	Grid Grid	15 15	400 400	0/400	-46/-94 -46/-94	16CAP4 16CEP4
15.0	Cath.	11	140		31/49	16CFP4
20.0 20.0	Cath. Cath.	16 16	30 30	0/400 0/400	30/45 30/45	16CHP4 16CHP4A
23.0	Grid	15	400	0/400	-39/-94	16CJP4
18.0 18.0	Grid Grid	15 15	400 400	0/400 0/400	-46/-94 -46/-94	16CKP4 16CMP4
15.0	Cath.	11	100		31/49	16CNP4
16.5	Grid	12	250		-22/-58	16CP4
15.0 15.4	Cath. Grid	11 12	140 400	0/400	31/49 -36/-94	16CQP4 16CTP4
15.4	Grid	12	400	0/400	-36/-94	16CUP4
15.0 15.0	Cath.	11	140		31/49 31/49	16CWP4 16CXP4
15.0	Cath.	11	140		31/49	16DCP4
15.0	Cath.	11	140 250		31/49 - 22/-58	16DCP4A 16DP4
16.5 ● 16.5 ●	Grid Grid	12 12	250		-22/-58	16DP4A
15.4	Grid	12	300		-28/-72	16EP4
15.4 ● 15.4 ●	Grid Grid	12 12	300 300	*****	-28/-72 -28/-72	16EP4A 16EP4B
15.4.	Grid	12	300		-28/-72	16GP4
15.4 ● 15.4 ●	Grid Grid	12 12	300 300		- 28/-72 -28/ - 72	16GP4A 16GP4B
15.4	Grid	12	300		-28/-72	16GP4C
15.4	Grid	12	300	-	-28/-72	16HP4
15.4. 15.4.	Grid Grid	12 11	300 250		-28/-72 -22/-58	16HP4A 16JP4
15.4	Grid	11	250		-22/-58	16JP4A
17.6 ● 17.6 ●	Grid Grid	12 12	300 300		-28/-72 -28/-72	16KP4 16KP4A
7.6€	Grid	12	300		-28/-72	SG-16KP4A
15.4 ● 15.4 ●	Grid Grid	12 12	300 300		-28/-72 -28/-72	16LP4 16LP4A
15.4	Grid	12	300		-28/-72	16MP4
15.4 ●	Grid	12 12	300 250		-28/-72 -22/-58	16MP4A 16QP4
17.6 ● 17.6 ●	Grid Grid	12	300		-28/-72	16RP4
17.6	Grid	12	300		-28/-72	16RP4A
17.6 ● 15.4 ●	Grid Grid	12 12	300 300	,	-28/-72 -28/-72	16RP4B 16SP4
15.4 ●	Grid	12	300	_	-28/-72	16SP4A
15.4	Grid	12	300		-28/-72	16TP4
16.5 ● 20.0	Grid Cath.	12 16	250 30	-100/+300	-22/-58 22/45	16UP4 16VAGP4
22.0	Cath.	16	50	0/400	33/45	16VBAP4
23.0 16.5 📵	Grid Grid	16 12	300 250	-200/200 	-35/-72 -22/-58	16VBCP4 16VP4
16.5	Grid	12	250		-22/-58	16WP4
17.6 ● 17.6 ●	Grid Grid	12 12	250 250		-22/-58 -22/-58	16WP4A 16WP4B
16.5 ●	Grid	12	250	_	-22/-58	16XP4
15.4 ●	Grid	12 12	300		-28/-72 -28/-72	16YP4 16ZP4
17.6 ● 17.6 ●	Grid Grid	12	300 300		-28/-72	17AP4

- M Metal cone tube
- G -- Glass tube
- LWG-Light weight glass tube
 - G°-Glass tube, dimensions different from normal
- MET Metal tube
- O -Round tube
- ☐—Rectangular tube, spherical face ⓒ—Rectangular tube, cylindrical face
- B-Fiberglass wrap implosion
- B Fiberglass wrap implosion protection
- E Filled rim type implosion protection
- T Molded glass implosion panel attached to face
- P—Sagged glass implosion plate attached to face
- L-Plastic implosion barrier
- attached to face
- K —Banded tube with coated funnel for implosion protection
- H-Tube sealed into steel sheath for implosion protection
- C—Clear glass faceplate
- $F\!-\!Gray$ filter glass faceplate
- R -Anti-reflection faceplate
- A-Aluminized screen
- V -- Rim bands and tension band
- W-Rim bands and tension band with mounting lugs
- X-Formed with tension band
- Y Formed rim with tension band and mounting lugs

Mag. — Magnetic focus

- L.V.E.S. —Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus
 - TPF Tri-potential focus
 - N No ion trap
 - S-Single field ion trap
 - D-Double field ion trap
 - I—Internal ion trap
 —18 second heater warm-up time (all others are 11 second)
 - Grid -- Grid drive service (all voltages with respect to cathode)
 - Cath. —Cathode drive service (all voltages with respect to Grid No. 1)

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	2	ш	AL.	FA	CEPL	ATE					-		HE/	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
17DXP4 17DZP4 17EAP4 17EBP4 17EFP4 17EHP4	44404	110 110 70 110 110 110	99999			FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1100/1700 1000/1500 1000/1500	L.V.E.S.TPF L.V.E.S. Auto.Es. L.V.E.S. L.V.E.S. L.V.E.S.	22222	10.688 10.688 19.188 11.250 11.250 11.500	3.562 3.562 7.500 4.125 4.125 4.375	8JR 8HR 12AT 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.45 0.45 0.60
17EKP4 17ELP4 17EMP4 17EQP4 17ESP4 17FGP4	442424	70 114 114 114 114 114	G G G G G		P.E.>E.>E.	FA FA FA FA	600/1000 1150/1650 1300/1700 900/1500 1000/1400 900/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	19.438 11.188 11.312 11.250 11.200 11.250	7.500 4.375 4.500 4.375 4.380 4.375	12L 8HR 8HR 8HR 8HR	6.333333 6.63633	0.60 0.45 0.45 0.45 0.45
17FDP4 17FP4 17FP4A 17GP4 17HP4 17HP4A	<u> </u>	114 70 70 70 70 70	G G M G		v - -	FA F FR FR	1300/1700 500/1500 750/1500 None 750/1500 750/1500	L.V.E.S. H.V.E.S. H.V.E.S. H.V.E.S. L.V.E.S.	200000	11.180 19.250 19.250 19.312 19.188 19.188	4.370 7.500 7.500 7.500 7.500 7.500	8HR 12L 12L 12M 12L 12L	6.3 6.3 6.3 6.3 6.3	0.45 0.60 0.60 0.60 0.60
17HP4B SG-17HP4B 17HP4C 17JP4 17KP4 17KP4A	00000	70 70 70 70 70 70 70	G G G G G			FA FA F F F	750/1500 750/1500 750/1500 500/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Auto.Es. Auto.Es.	SEESSS	19.188 19.188 19.250 19.250 19.250	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12N 12P 12P	6.3 6.3 6.3 6.3 6.3	0.60 0.60
17LP4 17LP4A SG-17LP4A 17LP4B 17QP4 17QP4A	000000	70 70 70 70 70 70 70	99999	000000		F FA FA FA FA	750/1500 750/1500 750/1500 750/1500 750/1500 750/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag.	SSEESS	19.188 19.188 19.188 19.188 19.188 19.188	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12L 12N 12N	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
SG-17QP4A 17QP4B 17RP4 17RP4C 17SP4 17TP4		70 70 70 70 70 70	G G G G G MET			FA FA FA FR	750/1500 750/1500 750/1500 750/1500 500/750 None	Mag. Mag. L.V.E.S. L.V.E.S. Auto.Es. L.V.E.S.	N N S S S S	19.188 19.188 19.250 19.250 19.188 18.125	7.500 7.500 7.500 7.500 7.500 7.500 6.875	12N 12N 12L 12L 12P 12M	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
17UP4 17VP4 17VP4B 17YP4 18VAUP4 19ABP4		70 70 70 70 70 114 114	G G G G G			F FA FA FA	750/1500 750/1500 750/1500 500/1500 1250/1750 850/1400	Mag. L.V.E.S. L.V.E.S. Mag. L.V.E.S. L.V.E.S.	SSSNN	19.188 19.188 19.188 19.188 11.875 10.938	7.500 7.500 7.500 7.500 7.500 4.375 3.688	12N 12L 12L 12N 8HR 8JK	6.3 6.3 6.3 6.3 6.3 2.68	0.60 0.60 0.60 0.60 0.45 0.45
19ACP4 19AEP4 19AFP4 19AHP4 19AJP4 19ALP4	000000	114 114 114 114 114 114	G G G G		T	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1000/1500 1400/1900 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2222	12.375 11.625 11.625 11.375 11.375 11.375	5.125 4.375 4.125 4.125 4.125 4.125 4.125	8HR 8HR 8HR 8HR 7FA 8HR	6.3 12.6 6.3 6.3 6.3 6.3	
19ANP4 19AP4 19AP4A 19AP4B 19AP4C 19AP4D		114 66 66 66 66 66	G M M M M	<u> </u>		FA C F FR FA CR	None None None None None	L.V.E.S.TPF Mag. Mag. Mag. Mag. Mag.	\$ \$ \$ \$	21.500 21.500 21.500 21.500 21.500	3.562 7.125 7.125 7.125 7.125 7.125 7.125	8JR 12D 12D 12D 12D 12D 12D	6.3 6.3 6.3 6.3 6.3	0.45 0.60 0.60 0.60 0.60 0.60
19AQP4 19ARP4 19ASP4 19ATP4 19AUP4 19AVP4		114 114 114 114 113 114	GGGGGG		T T T T	FA FA FA FAR FAR	1000/1500 1000/1500 1000/1500 1000/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S. L.V.E.S.	7777	11.375 12.625 12.625 11.062 11.625 11.375	4.125 5.125 5.125 3.562 4.125 4.125	8HR 8HR 8HR 8JR 8HR 8HR	6.3 6.3 6.3	0.30 0.60 0.30 0.60 0.60 0.60

	TYPI	CAL	OPER	ATING COM	IDITIONS	
ANODE KV. Design-max. Values *	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
17.6 €	Grid	14	500	0/400	-43/-78	17DXP4
17.6 ● 17.6 ●	Grid Grid	14 12	300 300	0/400	-28/-72 -28/-72	17DZP4 17EAP4
20.0	Grid	14 14	500 400	0/400	-28/-72 -43/-72 -45/-90	17EBP4
19.8 ® 20.0	Grid Cath.	16	50	0/400 0/400	35/55	17EFP4 17EHP4
24.2	Grid	18	300	0/400	-33/-77	17EKP4
15.0 22.0	Cath.	12 16	50 50	0/400 0/400	35/55 33/45	17ELP4 17EMP4
19.8	Cath.	16	400	0/500	35/72	17EQP4
23.0 19.8	Grid Cath.	16 16	300 400	-200/+200 0/500	-35/-72 35/72	17ESP4 17FCP4
22.0	Cath.	14	50	0/400	33/52	17FDP4
19.8 ● 19.8 ●	Grid Grid	12 12	300 300	2300/3100 2170/2970	-28/-72 -28/-72	17FP4 17FP4A
17.6€	Grid	12	300	2290/3100	-28/-72	17GP4
17.6 ● 17.6 ●	Grid Grid	14 14	300 300	-56/310 -56/310	-28/-72 -28/-72	17HP4 17HP4A
17.6	Grid	14	300	-56/310	-28/-72	17HP4B
17.6	Grid	14	300	-56/310	-28/-72	SG-17HP4B 17HP4C
17.6 ● 19.8 ●	Grid Grid	14 12	300 300	-56/310	-28/-72 -28/-72	17JP4
17.6	Grid	12	300	_	-28/-72	17KP4
17.6 T	Grid Grid	12	300 300	-48/260	-28/-72 -28/-72	17KP4A 17LP4
17.6	Grid	14	300	-56/310	-28/-72	17LP4A
17.6 ● 17.6 ●	Grid Grid	14 14	300 300	-56/310 -56/310	-28/-72 -28/-72	SG-17LP4A 17LP4B
17.6	Grid	12	300	-30/010	-28/-72	17QP4
19.8	Grid	14	300	<u> </u>	-28/-72	17QP4A
19.8 ⊚ 19.8 ⊚	Grid Grid	14 14	300 300		-28/-72 -28/-72	SG-17QP4A 17QP4B
17.6€	Grid	14	300	-56/310	-28/-72	17RP4
17.6 ⊚ 15.4 ⊚	Grid Grid	14 12	300 250	-56/310	-28/-72 -28/-72	17RP4C 17SP4
17.6	Grid	14	300	0/350	-28/-72	17 TP4
15.4 ⊚ 17.6 ⊚	Grid Grid	12 14	250 300	-48/260	-28/-72 -28/-72	17UP4 17VP4
17.6	Grid	14	300	-48/260	-28/-72	17VP4B
19.8 ⊚ 23.5	Grid Cath.	16 16	300	0/400	-28/-72 22/45	17Y P4 18VAUP4
20.0	Grid	16	300	100/500	-35/-72	19ABP4
20.0	Cath.	14	50	0/400	35/50	19ACP4
17.6 20.0	Cath. Grid	14 16	100 300	-100/100 0/400	32/47 -35/-72	19AEP4 19AFP4
17.6	Cath.	14	500	0/400	40/63	19AHP4
19.8 22.0	Cath.	14.5 14	500	0/500 0/400	31/49 45/95	19AJP4 19ALP4
20.0	Grid	16	500	0/400	-43/-78	19ANP4
17.6. 17.6.	Grid Grid	12 12	300 300	=	-28/-72 -28/-72	19AP4 19AP4A
17.6	Grid	12	300	_	-28/-72	19AP4B
17.6 ● 17.6 ●	Grid Grid	12 12	300 300	_	-28/-72 -28/-72	19AP4C 19AP4D
20.0	Grid	16	300	0/400	-38/-72	19AQP4
20.0	Grid	16	300	0/400	-35/-72	19ARP4
20.0 20.0	Grid Grid	16 16	300 500	0/400	-35/-72 -43/-78	19ASP4 19ATP4
20.0	Grid	16	300	0/400	-35/-72 -36/-94	19AUP4
23.0	Grid	20	400	0/400	-36/-94	19AV P4

- M -- Metal cone tube
- G-Glass tube
- LWG-Light weight glass tube
 - G°-Glass tube, dimensions different from normal
- MET Metal tube
 - O -Round tube
 - -Rectangular tube, spherical face
 - @-Rectangular tube, cylindrical face
 - B Fiberglass wrap implosion protection
 - E-Filled rim type implosion protection
 - T -- Molded glass implosion panel attached to face
 - P-Sagged glass implosion plate attached to face
 - L—Plastic implosion barrier attached to face
 - K-Banded tube with coated funnel
 - for implosion protection

 H Tube sealed into steel sheath
 - for implosion protection C—Clear glass faceplate
 - F-Gray filter glass faceplate
 - R Anti-reflection Jaceplate
 - A-Aluminized screen
 - V—Rim bands and tension band W—Rim bands and tension band
 - with mounting lugs
 X—Formed with tension band
 - Y —Formed with tension band

 Y —Formed rim with tension band
- and mounting lugs
 - Mag. Magnetic focus
- L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus
- Auto.Es. -- Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus
 - TPF -- Tri-potential focus
 N -- No ion trap
 - S—Single field ion trap
 - D-Double field ion trap
 - I Internal ion trap
 - *-18 second heater warm-up time (all others are 11 second)
 - Grid -Grid drive service (all voltages
 - with respect to cathode)
 Cath.—Cathode drive service (all voltages with respect to Grid No. 1)

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- ∇ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	ž	щ	Z	F	CEPL	ATE			ġ	_	I	Γ	HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inohes)	NECK LENGTH (Inches)	BASING	v.	A.
19AXP4 19AYP4 19BAP4 19BCP4 19BDP4 19BEP4	400004	114 114 114 114 114 92 110	G G G G G		 T T 	FA FA FAR FA FA	1000/1500 1000/1500 1000/1500 1000/1500 1500/2000 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	11.375 11.375 11.625 11.625 15.250 11.812	4.125 4.125 4.125 4.125 5.500 4.250	8HR 8HR 8HR 8HR 12L 8HR		0.45 0.45 0.30 0.30 0.60 0.30
19BFP4 19BHP4 19BLP4 19BMP4 19BNP4 19BQP4		92 114 114 114 114 114	G G G G G		- - T T	FA FA FA FA FAR	1500/2000 1000/1500 1300/1700 1300/1700 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N	15.250 11.750 11.312 11.562 12.625 12.562	5.500 4.500 4.125 4.062 5.125 5.125	12L 8HR 8HR 8HR 8HR 8HR	6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
19BRP4 19BSP4 19BTP4 19BUP4 19BVP4 19BWP4	444 <u>0</u> 44	114 110 114 114 114 114	999999		P	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1300/1700 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S. L.V.E.S. L.V.E.S.	72222	11.812 11.812 10.812 11.625 11.750 11.750	4.374 4.250 3.562 4.375 4.500 4.500	8HR 8HR 8JR 8HR 8HR 8HR	6.3 6.3 6.3 2.2 6.3 6.3	0.60 0.60 0.60 0.102 0.60 0.45
19CAP4 19CDP4 19CEP4 19CFP4 19CGP4 19CHP4		110 114 114 114 92 114	666666		+ + + +	FA FAR FAR FAR	1000/1500 1400/1900 1000/1500 1000/1500 1400/1700 1000/1500	L.V.E.S.TPF L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2222	11.125 11.625 11.625 11.500 15.500 11.750	3.562 4.375 4.125 4.250 5.500 4.500	8JR 7FA 8HR 8HR 12L 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.30* 0.60 0.60 0.60
19CJP4 19CKP4 19CLP4 19CMP4 19CMP4A 19CQP4	000000	114 114 92 114 114	<i>GGGGGG</i>			FA FA FA FA FA	1300/1700 1000/1500 1500/2000 1000/1500 1000/1500 1400/1900	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	X	11.312 11.750 15.250 11.625 11.625 11.625	4.125 4.500 5.500 4.375 4.375 4.375	8HR 8HR 12L 8HR 8HR 7FA	6.3	0.60 0.60 0.60 0.45 0.45 0.60
19CRP4 19CUP4 19CVP4 19CXP4 19CYP4 19CZP4	4 <u>0</u> 00440	92 114 114 114 114 114	GGGGGG		T P	FA FA FA FA FA	1700/2100 1400/1900 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	Z Z Z Z Z	15.250 11.625 11.625 11.625 10.875 11.562	5.500 4.375 4.125 4.375 3.625 4.125	12L 8HR 8HR 7FA 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.60 0.60 0.45
19DAP4 19DBP4 19DCP4 19DEP4 19DFP4 19DHP4		114 114 114 114 114 114	GGGGG		P V 	FAR FA FA FA FA	1000/1500 1400/1900 1000/1500 1000/1500 1300/1700	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N	11.562 11.812 11.625 11.875 11.688 11.625	4.125 4.375 4.375 4.625 4.438 4.375	8HR 7FA 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.60 0.60
19DJP4 19DKP4 19DLP4 19DNP4 19DP4 19DP4A	000000	110 114 114 114 66 66	GGGGGG		P P -	FA FA FA C F	1000/1500 1000/1500 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag.	N N N S S	11.875 11.562 11.625 11.562 21.500 21.500	4.328 4.125 4.375 4.125 7.125 7.125	8HR 8HR 8HR 8HR 12N 12N	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
19DQP4 19DRP4 19DSP4 19DUP4 19DVP4 19DWP4	BBBBBB	114 114 114 114 114 114	GGGGGG		V V V	FA FA FA FA FA	1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	11.375 11.625 11.625 11.750 11.750 11.375		8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.60 0.60 0.45 0.45 0.45
19DYP4 19DZP4 19EAP4 19EBP4 19ECP4 19EDP4		114 114 114 114 114 114	GGGGGG		T V E V V	FAR FA FA FA FA	1700/2100	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	11.625 11.750 11.625 11.625 11.750 11.625	4.125 4.500 4.375 4.375 4.500 4.375	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.60 0.45 0.60

	TYPI	CAL (PERA	TING COM	IDITIONS	
ANODE KV. DESIGN-MAX. VALUES *	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
20.0	Grid	16	400	0/400	-36/-94	19AXP4
23.0 20.0	Grid Grid	20 16	400 300	0/400 0/400	-36/-94 -35/-72	19AYP4 19BAP4
20.0	Grid	16	300	0/400	-35/-72	19BCP4
20.0 20.0	Cath.	14.5 16	50 400	0/500 0/400	31/49 42/78	19BDP4 19BEP4
20.0	Grid	16	400	0/400	-36/-94	19BFP4
22.0	Grid	18.5		0/500	-28/-61	19BHP4
20.0 ⊚ 20.0	Grid Grid	16 16	400 400	0/400 0/400	-36/-94 -36/-94	19BLP4 19BMP4
20.0	Cath.	16	50	0/400	32/50	19BNP4
20.0	Cath.	16	50	0/400	32/50	19BQP4
23.0 20.0	Grid Cath.	16 16	300 400	0/400 0/400	-35/-72 42/78	19BRP4 19BSP4
23.0	Grid	16	500	0/400	-43 /-78	19BTP4
18.75 ⊕ 23.5	Cath.	20	100 500	0/400 0/500	45/60 45/95	19BUP4 19BVP4
23.5	Cath.	20	500	0/500	45/95	19BWP4
20.0	Grid	16	500	0/400	-43/-78	19CAP4
19.8 20.0	Cath. Grid	16 16	300	0/500 0/400	35/50 -35/-72	19CDP4 19CEP4
17.5	Cath.	13	50	0/400	31/49	19CFP4
20.0	Grid	16	300	0/400	-35/-72	19CGP4
20.0	Cath. Grid	16 16	50 400	-50/250 0/400	32/50 -65/-105	19CHP4 19CJP4
22.0	Cath.	18	50	0/500	36/54	19CKP4
19.8	Cath.	14.5		0/500	25/40	19CLP4
20.0 23.5	Cath.	16 16	30	0/400 0/400	30/45 30/45	19CMP4 19CMP4A
19.8	Cath.	16	35	0/500	25/50	19CQP4
22.0	Cath.	16	35	0/500	25/50	19CRP4
22.0 23.0	Cath.		65 50	-100/300 0/400	41/56 32/50	19CUP4 19CVP4
19.8	Cath.	16	45	0/500	35/50	19CXP4
23.0 23.0	Grid	20	400 400	0/400 0/400	-36/-94 -46/-94	19CYP4 19CZP4
23.0	Grid	20	400	0/400	-46/-94	19DAP4
19.8	Cath.		40	0/500	35/50	19DBP4
20.0 22.0	Grid Cath.	16 18	400 300	0/400 0/500	-39/-94 36/54	19DCP4 19DEP4
22.0	Cath.	16	65	-100/300	41/56	19DFP4
20.0	Cath.	_	50	0/400	35/65	19DHP4
20.0 23.0	Cath.	16 20	400	0/400 0/400	42/78 -46/-94	19DJP4 19DKP4
20.0	Cath	16	50	0/400	35/55	19DLP4
18.0 18.7 ⊚	Grid Grid	16	300 250	0/400	-35/-72 -21/-58	19DNP4 19DP4
18.7 €	Grid	13	250		-21/-58	19DP4A
23.0	Cath		300	0/400	28/62	19DQP4
23.0 20.0	Cath Cath		300	0/400 -100/300	28/62 32/50	19DRP4 19DSP4
22.0	Cath	. 16	50	-200/200	33/45	19DUP4
20.0 23.0	Cath	. 16	150 400	-250/150 -200/200	36/54 -50/-98	19DVP4 19DWP4
23.0	Grid	_	50	0/400	32/50	19DYP4
18.0	Cath	. 13	150	-250/150	36/54	19DZP4
20.0 23.0	Cath Grid		50 400	-100/300 0/400	32/50 -39/-94	19EAP4 19EBP4
20.0	Cath		150	-250/150	36/54	19ECP4
23.0	Cath		400	0/400	42/78	19EDP4

FYPI AMATION OF SYMBOLS

- M Metal cone tube
- G -- Glass tube
- LWG -Light weight glass tube
 - G°-Glass tube, dimensions different from normal
- MET-Metal tube
 - O -Round tube
 - — Round tube
 □ Rectangular tube, spherical face
 - @-Rectangular tube, cylindrical face
 - B—Fiberglass wrap implosion protection
 - E Filled rim type implosion protection
 - T Molded glass implosion panel attached to face
 - P Sagged glass implosion plate attached to face
 - attached to face

 L —Plastic implosion barrier
 - attached to face
 - K Banded tube with coated funnel for implosion protection
 - H Tube sealed into steel sheath for implosion protection
 - C Clear glass faceplate
 - F-Gray filter glass faceplate
 - R -Anti-reflection faceplate
 - A -Aluminized screen
 - V-Rim bands and tension band
 - W-Rim bands and tension band with mounting lugs
 - X-Formed with tension band
 - Y Formed rim with tension band and mounting lugs
- Mag. -- Magnetic focus
- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus
- Auto, Es. Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus TPF —Tri-potential focus
 - N No ion trap
 - S-Single field ion trap
 - D-Double field ion trap
 - I —Internal ion trap
 - —18 second heater warm-up time (all others are 11 second)
 - Grid —Grid drive service (all voltages with respect to cathode)
 - Cath. —Cathode drive service (all voltages with respect to Grid No. 1)

HOTES

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

330	7	h.	7	F	ACEP	LATE		1	الدر ا	ī	T_	Γ-	µF.	ATER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION	-	EXTERNA COATING IN pf		ION TRAP MAG	Overall Length (inches)	NECK LENGTH (Inches)	BASING	٧.	A.
19EFP4 19EGP4 19EHP4 19EHP4A 19EJP4 19EKP4		114 114 114 114 114 114	GGGGG		V E V V E	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1250/1750 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	11.625 11.625 11.625 11.625 11.625 11.625		8HR 8HR 8HR 8HR 8HR 7FA	6.3 6.3 6.3 6.3 6.3	0.60 0.45 0.60 0.60 0.45 0.45
19ELP4 19ENP4 19ENP4A 19EP4 19ESP4 19ETP4	44444	114 114 114 70 114 114	GGGGG		V V V W	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 None 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. L.V.E.S. L.V.E.S.	2222	11:375 11:625 11:625 21:125 11:625 11:625	4.125 4.375 4.375 7.500 4.375 4.375	8HR 8HR 8HR 12D 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.60 0.60 0.45
19EUP4 19EZP4 19FBP4 19FCP4 19FDP4 19FEP4	444224	114 114 114 114 114 114	666666		V E E V V	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1000/1500 1000/1500 1250/1750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	11.625 11.625 11.625 11.625 11.375 11.625	4.375 4.375 4.375 4.375 4.125 4.375	8HR 7FA 8HR 8HR 8HR 8HR	6.3	0.60 0.45 0.45 0.45 0.45 0.45
19FEP4A 19FEP4B 19FGP4 19FHP4 19FJP4 19FJP4A	400404	114 114 114 114 114 114	GGGGGG		>>>>>>	FA FA FA FA	1250/1750 1250/1750 1000/1500 1000/1500 1250/1750 1250/1750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	11.625 11.625 10.813 11.625 11.625 11.625	4.375 4.375 3.563 4.375 4.375 4.375	8HR 8HR 8JR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.60 0.45
19FKP4 19FLP4 19FNP4 19FP4 19FRP4 19FTP4	DDDDID	110 114 114 66 114 114	666666		~ < & < =	FA FA FA FA FA	1000/1500 1000/1500 1250/1750 None 1000/1500 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. L.V.E.S. L.V.E.S.	2222	11.812 11.375 11.625 22.000 11.375 11.500	4.250 4.125 4.375 7.625 4.125 4.250	8HR 8HR 8HR 12D 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.30 0.45 0.60 0.60 0.30 0.45
19FWP4 19GAP4 19GBP4 19GEP4 19GFP4 19GHP4		114 114 114 114 114 114	999999		E T W E V	FA FA FA FA FA	1000/1500 1000/1500 1000/1500 1250/1750 1000/1500 1150/1550	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	11.380 11.625 11.625 11.625 11.656 11.750	4.130 4.375 4.125 4.375 4.406 4.500	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	
19GJP4 19GJP4A 19GKP4 19GMP4 19GP4 19HAP4	444040	114 114 114 114 66 114	999999		V V W T E	FA FAR FAR FA F	1000/1500 1000/1500 1250/1750 700/900 None 1000/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag. L.V.E.S.	2222	11.630 11.375 11.625 11.625 21.250 11.625	4.380 4.125 4.375 4.125 6.875 4.375	8HR 8HR 8HR 8HR 12D 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.30 0.45 0.60 0.315
19HGP4 19JP4 19QP4 19VAHP4 19VAJP4		114 70 70 70 114 114	G G G		V - X X	F FA	1000/1700 None 500/750 1400/2000 1400/2000	L.V.E.S. Mag. L.V.E.S. L.V.E.S. L.V.E.S.	N S S N	11.380 20.812 21.125 12.519	4.130 7.188 7.500 4.375	8HR 12D 12L 8HR 8HR	6.3 6.3 6.3	0.45 0.60 0.60 0.45
19VENP4 19XP4 19YP4 19ZP4 20ABP4 20ADP4	44242	114 114 114 114 114 114	G G G G G		- - v	FA FA FA	1000/1500 1000/1500 1000/1500 700/900 1500/2000	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N	11.375 10.812 11.500 12.270		8HR 8HR 8JR 8HR 8HR 8HR	6.3 6.3 6.3	0.45 0.60 0.60 0.60 0.45 0.45
20AEP4 20AHP4 20CP4 20CP4A 20CP4B 20CP4C		114 114 70 70 70 70 70	G G G G G		v 		1500/2200 1400/2000 None 500/1500 None None	L.V.E.S. L.V.E.S. Mag. Mag. Mag. Mag. Mag.	N N S S S S S	12.390 21.438 21.438 21.438	4.500 7.188 7.188 7.188	8HR 8HR 12D 12N 12D 12D	6.3 (6.3 (6.3 (0.60

	TYPI	CAL (OPER/	TING CON	DITIONS	
ANODE KV. Design-max. Values *	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
20.0	Cath.	16	50	0/400	35/55	19EFP4
21.0 18.0	Cath. Cath.	16 16	50 400	0/400 0/400	35/55 40/76	19EGP4 19EHP4
18.0	Cath.	16	400	0/400	40/76	19EHP4A
20.0 19.8	Cath.	16 16	30 45	0/400 0/500	30/45 35/50	19EJP4 19EKP4
18.0	Cath.	14	400	0/400	36/94	19ELP4
21.0	Cath.	16	50	0/400	32/50	19ENP4 19ENP4A
21.0 20.9 ⊚	Cath. Grid	16 13	50 250	0/400	32/50 -21/-58	19EP4
20.0	Cath.	16	50	0/400	32/50	19ESP4
21.0	Cath.	16 16	50 400	0/400 0/400	32/50 -39/-94	19ETP4 19EUP4
19.8	Grid Cath.	16	45	0/500	35/50	19EZP4
15.0	Cath.	12	50	0/400	35/55	19FBP4
23.0 23.0	Grid Grid	20 20	400 400	-200/200 0/400	-50/-98 -36/-78	19FCP4 19FDP4
20.0	Cath.	16	30	0/400	30/45	19FEP4
23.5	Cath.	16	30	0/400	30/45	19FEP4A
23.5 20.0	Cath. Grid	16 16	30 500	0/400 0/400	22/45 43/78	19FEP4B 19FGP4
21.0	Grid	16	400	0/400	-39/-94	19FHP4
18.0 18.0	Cath. Cath.	16 16	400 400	0/400 0/400	40/76 40/76	19FJP4 19FJP4A
20.0	Grid	16	300	0/400	-35/-72	19FKP4
23.0	Cath.	16	300	0/400	28/62	19FLP4
23.0 20.9	Cath. Grid	16 13	300 250	0/400	28/62 -22/-58	19FNP4 19FP4
23.0	Cath.	16	300	0/400	28/62	19FRP4
21.0	Cath.	16	400	0/400	39/94	19FTP4
20.0 19.8	Grid Cath.	16 16	500 400	0/400 0/500	-50/-93 35/72	19FWP4 19GAP4
23.0	Cath.	20	400	0/500	45/70	19GBP4
23.0 23.0	Cath. Grid	18 16	400 400	0/400 0/400	36/78 39/-94	19GEP4 19GFP4
22.0	Cath.	16	50	-200/200	33/45	19GHP4
23.0	Grid	20	400	-200/200	-50/-98	19GJP4
23.0 23.0	Grid Cath.	20 16	400 300	-200/200 0/400	-50/-98 28/62	19GJP4A 19GKP4
23.0	Cath.	16	50	0/400	32/50	19GMP4
20.9 ()	Grid Cath.	13 16	250 50	0/400	-22/-58 35/55	19GP4 19HAP4
20.0	Grid	16	150	0/400	-38/-62	19HGP4
19.8	Grid	12	300		-28/-72	19JP4
19.8	Grid	12	300	-50/350	-28/-72	19QP4
23.0	Cath.	16	30	-100/+300	22/45	19VAHP4
23.0	Cath.	16	30	-100/+300	22/45	19VAJP4
20.0 20.0	Cath. Grid	16 16	150 400	-250/+150 0/400	-36/-54 -36/-94	19VBNP4 19XP4
20.0	Grid	16	500	0/400	-43/-78	19YP4
20.0	Grid Cath.	16.5 16	450 50	0/500 -200/+200	-28/-72 32/52	19ZP4 20ABP4
23.0 23.0	Cath.		35	-200/-200	30/42	20ADP4
23.5	Cath.	16	30	0/400	30/45	20AEP4
20.0	Cath. Grid	16 16	150 300	-250/150	36/54 -28/-72	20AHP4 20CP4
19.8 ● 19.8 ●	Grid	16	300	_	-28/-72	20CP4A
19.8	Grid	16	300		-28/-72	20CP4B 20CP4C
19.8	Grid	16	300		-28/-72	LUUFTU

FYPI AMATION OF SYMBOLS

- M -- Metal cone tube
- G -- Glass tube
- LWG -Light weight glass tube
 - G°-Glass tube, dimensions different from normal

MET - Metal tube

- O -Round tube
- Rectangular tube, spherical face
- Rectangular tube, cylindrical face
 B Fiberglass wrap implosion
- b -- riberglass wrap implosion protection
- E -Filled rim type implosion protection
- T Molded glass implosion panel attached to face
- P Sagged glass implosion plate attached to face
- L -- Plastic implosion barrier
- attached to face
- K -- Banded tube with coated funnel for implosion protection
- H —Tube sealed into steel sheath for implosion protection
- C-Clear glass faceplate
- F -- Gray filter glass faceplate
- R -- Anti-reflection faceplate
- A-Aluminized screen
- V-Rim bands and tension band
- W -- Rim bands and tension band with mounting fugs
- X -- Formed with tension band
- Y-Formed rim with tension band and mounting lugs

Mag. -- Magnetic focus

- L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus
- Auto.Es. -- Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus TPF —Tri-potential focus
 - rr-⊷itt-potentiait N-⊶Noion tran
 - S-Single field ion trap
 - D-Double field ion trap
 - I -Internal ion trap
 - *-18 second heater warm-up time (all others are 11 second)
 - Grid -- Grid drive service (all voltages with respect to cathode)
 - Cath.—Cathode drive service (all voltages with respect to Grid No. 1)

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEBEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccurracies.

334	z	ш	¥	F	CEPL	ATE			MAG.	_			HEA	TER
TUBE TYPE	X-RADIATIO RATING	DEFL. ANGLI DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MA	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
20CP4D SG-20CP4D 20DP4 20DP4A 20DP4B 20DP4C	000000	70 70 70 70 70 70 70	G G G G			FA FA F FA FA	500/1500 500/1500 None 500/1500 None 500/1500	Mag. Mag. Mag. Mag. Mag. Mag.	S N S S S S	21.438 21.438 21.750 21.750 21.750 21.750	7.500 7.500	12N 12N 12D 12N 12D 12D 12N	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
20DP4D 20FP4 20GP4 20HP4 20HP4A 20HP4B	00000	70 70 70 70 70 70	GGGGGG			FA F F F FR	500/1500 None 500/750 None 500/1500 None	Mag. H.V.E.S. H.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N 0 0 0 0 0 0	21.750 21.750 21.750 21.750 21.750 21.750	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12N 12M 12L 12M 12L 12L	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
20HP4C 20HP4D SG-20HP4D 20HP4E 20JP4 20LP4	$\Delta \Delta \Delta \Delta \Delta \Delta \Delta$	70 70 70 70 70 70	GGGGGG		1 1 1 1 1	FA FA FA F F	None 500/1500 500/1500 500/1500 500/750 750/1500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Auto.Es. L.V.E.S.	S N N S S	21.750 21.750 21.750 21.750 21.750 21.750	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12M 12L 12L 12L 12P 12P	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
20MP4 20RP4 20SP4 20TP4 20UP4 20WP4		70 114 114 114 114 114	999999		V X X E W	F FA FA FA	500/1500 160 0 /2000 1400/2000 1400/2000 1200/1700 1600/2200	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S N N N N N	21.750 12.394 12.269 12.269 12.312 12.269	7.500 4.500 4.375 4.375 4.375 4.375	12L 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.45 0.45 0.45
20XP4 20YP4 20ZP4 21ACP4 21ACP4A SG-21ACP4A	PDDDDD	114 114 114 90 90 90	666666		V V V I I I	FA FA FA FA FA	1500/2000 1500/2000 1500/2000 2000/2500 2000/3500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	N N S S N	12.270 12.270 12.270 20.000 20.000 20.000	4.380 4.380 4.380 7.500 7.500 7.500	8HR 8HR 8HR 12N 12N 12N	6.3 6.3 6.3	0.45 0.45 0.45 0.60 0.60 0.60
21AFP4 21ALP4 21ALP4A 21ALP4B 21AMP4 21AMP4A		70 90 90 90 90 90	999999			F FA FA FA	None 500/750 500/750 500/750 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag.	555555	23.000 20.000 20.000 20.000 20.000 20.000	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12M 12L 12L 12L 12L 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21AMP4B 21ANP4 21ANP4A 21AP4 21AQP4 21AQP4A		90 90 90 70 90	G G MET G			FA FA FR FA	2000/2500 None None None None None	Mag. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.000 20.000	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12N 12M 12M 12D 12D 12D	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21ARP4 21ARP4A 21ASP4 21ATP4 21ATP4A 21ATP4B	DDDDDD	70 70 70 90 90 90	G°GGGG			F FA FA FA F	500/750 500/755 None 1200/1500 1200/1500 1200/1500	Int.Mag. Int.Mag. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.		23.031 23.031 22.438 20.000 20.000 20.000	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12N 12N 12M 12L 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21AUP4 21AUP4A 21AUP4B SG-21AUP4E 21AUP4C 21AVP4		72 72 72 72 72 72 72	66666		1 1 1 1	FA FA FA FA F	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S S S N N S	23.031 23.031 23.031 22.031 23.031 23.031	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12L 12L 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21AVP4A 21AVP4B 21AVP4C 21AWP4 21AWP4A SG-21AWP4A		72 72 72 72 72 72 72	666666			FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	S S N S N	23.031 23.031 23.031 23.031 23.031 23.031	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12N 12N 12N 12N	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60

•	TYPI	CAL	OPER/	ATING CON	IDITIONS	
ANODE KV. Design-max. Values *	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
19.8@ 19.8@ 19.8@ 19.8@ 19.8@	Grid Grid Grid Grid Grid Grid	16 16 16 16 16 16	300 300 300 300 300 300	11111	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	20CP4D SG-20CP4D 20DP4 20DP4A 20DP4B 20DP4C
19.8 • 19.8 • 19.8 • 17.6 • 17	Grid Grid Grid Grid Grid Grid	16 12 14 14 14 14	300 300 300 300 300 300 300	2300/3200 2750/3740 -56/310 -56/310 -56/310	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	20DP4D 20FP4 20GP4 20HP4 20HP4A 20HP4B
17.6 • 17	Grid Grid Grid Grid Grid Grid	14 14 14 14 12 14	300 300 300 300 300 300	-56/310 -56/310 -56/310 -56/310 -56/310	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	20HP4C 20HP4D SG-20HP4D 20HP4E 20JP4 20LP4
17.6 22.0 23.0 23.0 23.0 23.0	Grid Cath. Cath. Cath. Cath. Cath.	16 16 16	300 50 30 300 400 400	-55/300 0/400 -100/300 0/400 0/500 0/400	-28/-72 33/50 22/40 28/62 35/72 36/78	20MP4 20RP4 20SP4 20TP4 20UP4 20WP4
23.0 23.0 23.0 22.0 22.0 22.0	Cath. Cath. Cath. Grid Grid Grid	20 16 16 16 16 16	400 50 50 300 300 300	-200/200 -200/200 -200/200 	48/82 32/52 32/52 -28/-72 -28/-72 -28/-72	20XP4 20YP4 20XP4 21ACP4 21ACP4A SG-21ACP4A
19.8 • 19.8 • 22.0 19.8 • 19.8	Grid Grid Grid Grid Grid Grid	16 14 14 14 16 16	300 300 300 300 300 300	-64/350 -55/300 -55/300 -55/300	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21AFP4 21ALP4 21ALP4A 21ALP4B 21AMP4 21AMP4A
19.8 • 19	Grid Grid Grid Grid Grid Grid	17 14 14 14 16 16	300 300 300 300 300 300	-55/300 -55/300 	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21AMP4B 21ANP4 21ANP4A 21AP4 21AQP4 21AQP4A
22.0 @ 22.0 @ 19.8 @ 22.0 @ 19.8 @ 22.0 @ 19.8 @	Grid Grid Grid Grid Grid Grid	16 16 16 16 16 16	300 300 300 300 300 300 300	-64/352 -64/350 -64/350 -64/350	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21ARP4 21ARP4A 21ASP4 21ATP4 21ATP4A 21ATP4B
19.8 • 19.8 • 22.0 • 22.0 • 19.8 • 19.8 •	Grid Grid Grid Grid Grid Grid	14 14 14 14 14 14	300 300 300 300 300 300	-55/300 -55/300 -55/300 -55/300 -55/300 -55/300	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21AUP4 21AUP4A 21AUP4B SG-21AUP4B 21AUP4C 21AUP4C
19.8 • 22.0 • 22.0 • 19.8 • 19.8 • 19.8 •	Grid Grid Grid Grid Grid Grid	14 14 14 16 16 16	300 300 300 300 300 300 300	-55/300 -55/300 -55/300 -55/300 	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21AVP4A 21AVP4B 21AVP4C 21AWP4 21AWP4A SG-21AWP4A

- M -Metal cone tube
- G...Glass tube
- LWG -Light weight glass tube
 - G°-Glass tube, dimensions different from normal

MET - Metal tube

- O -Round tube
- ☐—Rectangular tube, spherical face
- @ -Rectangular tube, cylindrical face
- B Fiberglass wrap implosion protection
- E Filled rim type implosion protection
- T -- Molded glass implosion panel attached to face
- P Sagged glass implosion plate attached to face
- L Plastic implosion barrier
- L Plastic implosion barrier attached to face
- K—Banded tube with coated funnel for implosion protection
- H -- Tube sealed into steel sheath for implosion protection
- C-Clear glass faceplate
- F-Gray filter glass faceplate
- R Anti-reflection faceplate
 A Aluminized screen
- A -Aluminized screen
- V —Rim bands and tension band W —Rim bands and tension band
- W Kim bands and tension band with mounting lugs
- X-Formed with tension band
- Y Formed rim with tension band and mounting lugs

Mag. — Magnetic focus

- $L.V.E.S. Low\ voltage\ electrostatic\ focus \\$
- H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic
- Int. Mag. internal magnetic focus
 - TPF Tri-potential focus
 - N -No ion trap
 - S—Single field ion trap
 - D-Double field ion trap
 - I Internal ion trap
 - *-18 second heater warm-up time (all others are 11 second)
 - Grid —Grid drive service (all voltages with respect to cathode)
 - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1)

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	Z	w	¥	F	ACEPL	ATE			ğ	£	z		HEA	TER
TUBE TYPE	X-RADIATIO RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
21AYP4 21BAP4 21BCP4 21BDP4 21BNP4 21BSP4		70 90 90 72 90 90	G G G G			FA FA FA FA	750/ 2500 2000/ 2500 500/ 750 500/ 750 2000/ 2500 2000/ 2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag.	SNNNNS	22.438 20.000 23.031 23.031 20.000 20.000	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12L 12L 12L 12N	6.3 6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21BTP4 21CBP4 21CBP4A 21CBP4B 21CDP4 21CDP4A		90 90 90 90 90	66666			FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S N N N S S	20.000 18.000 18.000 18.000 20.000 20.000	7.500 5.500 5.500 5.500 7.500 7.500	12L 12L 12L 12L 12L 12L	6.3 6.3	0.60 0.60 0.60 0.60 0.45 0.45
21CEP4 21CEP4A 21CGP4 21CHP4 21CKP4 21CLP4		110 110 90 90 90 90	G G G G		=	FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2000 2000/2500 1250/1750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	NNSNNS	14.438 14.438 20.000 18.000 18.000 19.000	5.438 5.438 7.500 5.500 5.500 6.500	8HR 8HR 12L 12L 12L 12L	6.3 6.3	0.60 0.60 0.60 0.60 0.45 0.30
21CMP4 21CQP4 21CSP4 21CUP4 21CVP4 21CWP4		90 110 110 90 90 90	G LWG LWG G G			FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. Mag. L.V.E.S. L.V.E.S.	SEESES	19.000 14.438 14.438 20.000 20.000 20.000	6.500 5.188 5.188 7.500 7.500 7.500	12L 7FA 7FA 12N 12L 12L	6.3 6.3 6.3	0.60 0.45 0.60 0.60 0.60 0.60
21CXP4 21CZP4 21DP4 21DAP4 21DEP4 21DEP4A	4004004	70 110 110	G LWG M LWG LWG LWG			FA FA FA FA FA	2000/2500 2000/2500 None 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. H.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N S S N N N	18.000 14.688 22,625 14.688 14.688	5.500 5.438 7.500 5.438 5.438 5.438	12L 8HR 12M 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
SG-21DEP4/ 21DFP4 21DHP4 21DJP4 21DKP4 21DKP4	44444	90 110	LWG G LWG G LWG LWG			FA FA FA FA FA	2000/2500 1500/2200 1700/2500 2000/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	14.688 14.438 14.688 18.000 14.688 14.688	5.438 5.438 5.438 5.500 5.438 5,438	8HR 8HR 8HR 12L 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.60 0.45 0.30 0.30 0.30*
21DLP4 21DMP4 21DNP4 21DQP4 21DRP4 21DSP4	00000	90 90	G LWG G G LWG			FA FA FA FA FA	2000/2500 2000/2500 1200/1500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N S N N	17.000 13.750 19.000 17.500 18.250 18.000	4.500 4.500 6.500 5.000 5.500 5.500	12L 8HR 12L 12L 12L 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21DVP4 21DWP4 21EAP4 21ELP4 21EMP4 21ENP4	000000	90 110 110 90 110 90	G G G G G			FA FA FA FA FA	500/750 2000/2500 1500/2000 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S N N N N S	20.000 14.438 12.938 19.000 13.375 19.000	7.500 5.438 3.688 6.500 4.375 6.500	12L 8HR 8JK 12L 8HR 12L	6.3 2.35 6.3 6.3	0.30 0.30 0.60 0.30 0.60 0.30
21EP4 21EP4A 21EP4B SG-21EP4B 21EP4C 21EQP4	000000	70 70 70 70 70 70 110	666666			F FA FA FA FA	None 500/750 500/750 500/750 500/750	Mag. Mag. Mag. Mag. Mag. L.V.E.S.TPF	SSSER	23.000 23.000 23.000 23.000 23.000 12.562	7.500 7.500 7.500 7.500 7.500 7.500 3.562	12D 12N 12N 12N 12N 12N 8JR	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21ERP4 21ESP4 21EVP4 21EXP4 21EXP4 21EZP4 21FAP4	4000444	110 110 110 110 110	G LWG LWG G LWG LWG		P	FAR FA FA FA FA	1500/2000 2000/2500 1500/2000 2000/2500 2000/2500	L.V.E.S.TPF L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S.TPF	22222	12.812 13.312 12.937 12.562 12.812 12.812	3.562 4.062	8JR 8JS 8JK 8JR 8JR 8JR	6.3 6.3 2.68 6.3 6.3	0.60 0.60 0.45

	TYPI	CAL	OPER/	ATING COI	IDITIONS	
ANODE KV. Design-max Values®	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
19.8 • 22.0 • 22.0 • 22.0 • 22.0 • 22.0 •	Grid Grid Grid Grid Grid Grid	16 16 16 16 16 16	300 300 300 300 300 300 300	-64/352 0/500 50/550 50/550 0/500	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21AYP4 21BAP4 21BCP4 21BDP4 21BNP4 21BSP4
22.0 • 19.8 • 22.0 • 22	Grid Grid Grid Grid Grid Grid	16 14 16 16 16 16	300 300 300 300 300 300	- 64/352 - 55/300 0/400 0/450 - 64/352 - 64/352	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21BTP4 21CBP4 21CBP4A 21CBP4B 21CDP4 21CDP4A
19.8 • 22.0 • 22.0 • 22.0 • 19.8 • 22.0 • 22	Grid Grid Cath. Cath. Grid Grid	14 14 14 16 16 14	300 300 110 110 300 300 300	0/400 0/400 -55/300 -50/350 -50/350 -103/203 -64/352	- 28/-72 -28/-72 32/50 32/50 -28/-72 -35/-75	21CEP4 21CEP4A 21CGP4 21CHP4 21CKP4 21CLP4
19.8 • 19.8 • 22.0 • 22	Grid Grid Grid Grid Grid Grid	16 16 16 16 16 16	300 300 300 300 300 300 50	- 64/352 - 50/350 0/400 - 64/352 - 64/352 0/350	-35/-72 -35/-72 -35/-72 -28/-72 -28/-72 -35/50	21CQP4 21CSP4 21CUP4 21CVP4 21CWP4
19.8 • 19.8 • 19.8 • 22.0 • 22.0 •	Grid Grid Grid Grid Grid Grid	17 14 14 17 17	300 300 300 300 300 300	0/500 2750/3740 0/400 0/500 0/500	-28/-72 -28/-72 -28/-72 -28/-72 -28/-72	21CZP4 21DP4 21DAP4 21DEP4 21DEP4A SG-21DEP4A
19.8 • 19.8 • 22.0 • 19.8 • 19.8 •	Grid Grid Grid Grid Grid	14 16 16 16 16	300 300 300 300 300	0/400 0/400 -50/350 0/400 0/400	-28/-72 -35/-72 -25/-72 -35/-72 -35/-72	21 DFP4 21 DHP4 21 DJP4 21 DKP4 21 DKP4
22.0 • 22.0 • 20.0 • 22	Grid Grid Grid Grid Grid Cath.	16 16 16 16 16	300 400 300 300 300 50	0/400 -50/350 -64/352 -50/350 0/450 0/450	-28/-72 -36/-92 -35/-72 -35/-72 -28/-72 32/50	21 DLP4 21 DMP4 21 DNP4 21 DQP4 21 DRP4 21 DSP4
22.0 • 19.8 • 20.0 • 22.0 • 19.8 • 22.0 •	Grid Grid Grid Grid Grid Grid	14 14 16 16 16 16	300 450 300 450 450 300	-50/300 -50/350 100/500 0/400 0/400 -64/352	-28/-72 45/105 -35/-72 -45/-105 -45/-105 -35/-72	21DVP4 21DWP4 21EAP4 21ELP4 21EMP4 21ENP4
19.8 • 19.8 • 19.8 • 19.8 • 20.0 •	Grid Grid Grid Grid Grid Grid	16 16 16 16 16 16	300 300 300 300 300 500	0/400	- 28/-72 -28/-72 -28/-72 -28/-72 -28/-72 -43/-78	21EP4 21EP4A 21EP4B SG-21EP4B 21EP4C 21EQP4
20.0 19.8 20.0 20.0 19.8 22.0	Grid Grid Grid Grid Cath. Grid	16 17 16 16 18 18	500 450 300 500 500 300	0/400 0/500 100/500 0/400 0/400 0/400	- 43/-72 -28/-72 -35/-72 -43/-78 41/69 - 43/-78	21ERP4 21ESP4 21EVP4 21EXP4 21EZP4 21FAP4

- M -- Metal cone tube
- G-Glass tube
- LWG -Light weight glass tube
 - G°-Glass tube, dimensions different from normal
- MET Metal tube
 - O -- Round tube
 - □ -Rectangular tube, spherical face
 ⊙ Rectangular tube, cylindrical face
 - B Fiberglass wrap implosion
 - protection

 E —Filled rim type implosion
 - protection
 - T Molded glass implosion panel attached to face
 - P Sagged glass implosion plate attached to face
 - L Plastic implosion barrier
 - attached to face
 - K Banded tube with coated funnel for implosion protection
 - H Tube sealed into steel sheath for implosion protection
 - C Clear glass faceplate
 - F Gray filter glass faceplate
 - R Anti-reflection faceplate
 - $\mathbf{A}-\mathbf{Aluminized}$ screen
 - V -- Rim bands and tension band
 - W -- Rim bands and tension band with mounting lugs
 - X -- Formed with tension band
 - Y -- Formed rim with tension band and mounting lugs
- Mag. -- Magnetic focus
- L.V.E.S. Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus
- Auto.Es. -- Self-focusing electrostatic Int.Mag. -- Internal magnetic focus
 - TPF Tri-potential focus
 - N ~No ion trap
 - S-Single field ion trap
 - D-Double field ion trap
 - *—18 second heater warm-up time (all others are 11 second)
 - Grid —Grid drive service (all voltages with respect to cathode)
 - Cath. Cathode drive service (all voltages with respect to Grid No. 1)

MOTE

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	Z	uj	Z	F	ACEP	LATE			ø	_	I	Ī	HE	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLI DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN IF	FOCUS	ION TRAP MAG.	Overall Length (Inshes)	NECK LENGTH	BASING	٧.	A.
21FCP4 21FDP4 21FLP4 SG-21FLP4 21FMP4 21FP4	440404	110 110 90 90 110 70	LWG LWG G G LWG G		- - - - -	FA FA FA FA FA	2000/2500 1500/2000 500/2500 500/2500 2000/2500 None	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	13.500 13.125 18.000 18.000 14.375 23.000	4.250 3.875 5.500 5.500 5.125 7.500	8HR 8KW 12L 12L 8HR 12M	6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21FP4A 21FP4C SG-21FP4C 21FP4D 21FUP4 21FVP4	4444□	70 70 70 70 114 114	666666		- E V	F FA FA FA FA	500/750 500/750 500/750 500/750 1700/2500 1500/2300	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	SNNNN	23.000 23.000 22.000 23.031 12.656 12.656	7.500 7.500 6.500 7.500 4.375 4.375	12L 12L 12L 12L 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.45 0.45
21FWP4 21FXP4 21FYP4 21FZP4 21GAP4 21GAP4A		114 114 114 114 114 114	999999		V E W V V V	FA FA FA FA FA	1700/2500 1300/2000 1300/2000	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	12.656 12.660 12.781 12.656 12.656 12.656	4.375 4.375 4.500 4.375 4.375 4.375	8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.45 0.45
21GBP4 21GCP4 21GEP4 21GHP4 21GJP4 21GKP4		114 114 114 114 114 114	999999		V W W V Y	FA FA FA FA FA	1500/2300 1700/2500 1700/2300 1500/2300 1500/2300 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	X	12.781 12.656 12.660 12.656 12.968 12.656	4.500 4.375 4.380 4.375 4.687 4.375	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.60 0.45
21GTP4 21JP4 21JP4A 21KP4 21KP4A 21MP4		70 70 70 70 70 70 70	GGGGGM		Y - - -	FA F F F F FR	500/750 500/750 None 500/750 None	L.V.E.S. Int.Mag. Int.Mag. Auto.Es. Auto.Es. L.V.E.S.	000	12.660 23.031 23.031 22.875 23.000 22.625	4.375 7.500 7.500 7.500 7.500 7.500 7.500	8HR 12N 12N 12S 12P 12M	6.3 6.3 6.3 6.3	0.315 0.60 0.60 0.60 0.60 0.60
21VASP4 21VATP4 21WP4 21WP4A SG-21WP4A 21WP4B		114 114 70 70 70 70 70	ာ့ စွာစွာစူစာစာ		W - - -	FA FA FA FA FA	2000/2500 500/750 500/750 500/750	L.V.E.S. L.V.E.S. Mag. Mag. Mag. Mag. Mag.	N S S N N	13.130 13.130 22.562 22.562 22.562 22.562 22.562	4.380 4.380 7.500 7.500 7.500 7.500	8HR 8HR 12N 12N 12N 12N	6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.60 0.60
21 XP4 21 XP4A SG-21 XP4A 21 XP4B 21 YP4 21 YP4A	00000	70 70 70 70 70 70 70	၁ ၈၈၈၈၈			FA FA FA FA	2000/2500 2000/2500 2000/2500 500/750	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	S N S S	22.438 22.438 21.438 21.438 23.000 23.000	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12L 12L 12L 12L	6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
SG-21YP4A 21YP4B 21ZP4 21ZP4A 21ZP4B SG-21ZP4B	400044	70 70 70 70 70 70 70	GGGGGG			FA FA F FA FA	500/750 None 500/750 500/750	L.V.E.S. L.V.E.S. Mag. Mag. Mag. Mag.	N S S	22.000 23.000 23.031 23.031 23.031 23.031	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12L 12L 12D 12N 12N 12N 12N	6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
21 ZP4C 22 AFP4 22 TP4 22 V ABP4 22 V A CP4 22 V A MP4		70 114 114 110 110 110	6 6 6 6 6		V E X R V	FA FA FA FA	2000/2500 1700/2200 1700/2500 1700/2500 1700/2500	Mag. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N	14.406 14.594 14.870	4.375 4.375 4.375 5.120	12N 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.45
22VANP4 22VARP4 22VASP4 22VATP4 22ZP4 23ACP4		110 110 114 114 114 90	99999		V V W W T	FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N	14.875 14.375 14.875 14.875 13.130 19.394	4.625 5.125 5.125 4.380	8HR 8HR 8HR 8HR 8HR 12L	6.3 6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45

ن	TYP	ICAL	OPER	ATING CO	NDITIONS	
ANODE KV. Design-Max. Values 💠	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
18.0	Cath.	16	300	0/400	34/63	21FCP4
20.0 22.0 ⊚	Grid Grid	16	300 300	100/500 0/450	-35/-72 -28/-72	21FDP4 21FLP4
22.0⊚	Grid	16	300	0/450	-28/-72	SG-21FLP4
22.0 19.8@	Cath. Grid	18 14	50 300	0/500 -56/310	31/49	21FMP4 21FP4
19.8	Grid	14	300	-56/310	-28/-72 -28/-72	21FP4A
19.8	Grid	14	300	-56/310	-28/-72	21FP4C
19.8 ⊚ 19.8 ⊚	Grid	14	300 300	-56/310 -56/310	-28/-72 -28/-72	SG-21FP4C 21FP4D
23.0	Cath.	16	50	0/400	35/55	21FUP4
23.0	Cath.	20	400	-100/300	36/78	21FVP4
23.0 23.0	Cath.	20 16	400 400	-100/300 0/500	36/78 35/72	21FWP4 21FXP4
22.0	Cath.	16	50	0/400	33/45	21FYP4
23.0	Grid Cath.	16	400	0/400	-39/-93	21FZP4 21GAP4
23.5 23.5	Cath.	16 16	30 30	0/400 0/400	30/45 30/45	21GAP4
20.0	Cath.	16	50	_	36/54	21GBP4
23.0 23.0	Cath.	16 16	400	0/400 -200/200	39/93	21GCP4
23.5	Cath.	16	50 30	0/400	32/50 30/45	21GEP4 21GHP4
20.0	Cath.	16	400	0/400	36/78	21GJP4
23.0	Cath.	16	50 50	0/400	35/55 35/55	21GKP4
23.0 22.0⊚	Cath. Grid	16 16	300	0/400	-28/ <i>-</i> 72	21GTP4 21JP4
22.0.	Grid	16	300	_	-28/-72	21JP4A
l9.8 ⊚ l9.8 ⊚	Grid Grid	14 14	300 300	_	-28'/-72 -28/-72	21KP4 21KP4A
7.6.	Grid	14	300	-55/300	-28/-72	21 MP 4
23.0	Cath.	20	400	-200/+200	48/82	21VASP4
23.0 19.8 ⊚	Cath. Grid	20 16	400 300	-200/+200	48/82 -28/-72	21VATP4 21WP4
19.8€	Grid	16	300		-28/-72	21WP4A
19.8 ● 19.8 ●	Grid Grid	16 16	300 300		-28/ - 72 -28/ - 72	SG-21WP4A 21WP4B
9.8	Grid	16	300	-64/352	-28/-72	21 XP4
9.8	Grid	16	300	-64/352	-28/-72	21XP4A
l9.8 ● l9.8 ●	Grid Grid	16 16	300 300	-64/352 -64/352	-28/-72 -28/-72	SG-21 XP4A 21 XP4B
19.8€	Grid	14	300	-55/300	-28/-72	21 YP4
9.8	Grid	16	300	-64/350	-28/-72	21YP4A
.9.8 ● .9.8 ●	Grid Grid	16 16	300 300	-64/350 -64/350	-28/-72 -28/-72	SG-21YP4A 21YP4B
9.8.	Grid	16	300		-28/-72	21ZP4
9.8 ⊚ !9.8 ⊚	Grid Grid	16 16	300 300	_	-28/-72 -28/ - 72	21ZP4A 21ZP4B
19.8 ●	Grid	16	300		-28/-72	SG-21ZP4B
9.8€	Grid	16	300	7	-28/-72	21ZP4C
23.0 23.0	Cath.	20 18	400 400	-200/+200 0/500	48/82 35/72	22AFP4 22TP4
23.5	Cath.	18	30	0/+400	22/45	22 1 P4 22 V ABP4
23.0	Cath.	18	30	0/+400	22/45	22VACP4
2.0 2.0	Grid	16 18	400 300	0/400 0/400	-35/-94 36/54	22VAMP4 22VANP4
22.0	Cath.	18	500 50	50/350	38/34	22VARP4
3.0	Cath.	20	400	-200/200	48/82	22VASP4
23.0 23.0	Cath.	20 20	400 400	-200/200 -200/200	48/82 48/82	22VATP4 22ZP4
8.0	Grid	16	300	0/400	-35/-72	23ACP4

M -- Metal cone tube

G...Glass tube

LWG-Light weight glass tube

G°--Glass tube, dimensions different from normal

MET -- Metal tube

- O-Round tube
- ☐ -- Rectangular tube, spherical face @ -Rectangular tube, cylindrical face
- B-Fiberglass wrap implosion
- protection E-Filled rim type implosion
- protection
- T -- Molded glass implosion panel attached to face
- P Sagged glass implosion plate attached to face
- L Plastic implosion barrier attached to face
- K -- Banded tube with coated funnel for implosion protection
- H-Tube sealed into steel sheath for implosion protection
- C-Clear glass faceplate
- F-Gray filter glass faceplate
- R Anti-reflection faceplate
- A -- Aluminized screen
- V -- Rim bands and tension band
- W -- Rim bands and tension band with mounting lugs
- X-Formed with tension band
- Y ... Formed rim with tension band and mounting lugs

Mag. -- Magnetic focus

- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S. High Voltage electrostatic focus Auto.Es. - Self-focusing electrostatic
- Int.Mag. -- Internal magnetic focus TPF -- Tri-potential focus
 - N -- No ion trap
 - S-Single field ion trap
 - D -- Double field ion trap
 - 1-Internal ion trap
 - *—18 second heater warm-up time (all others are 11 second)
 - Grid -Grid drive service (all voltages with respect to cathode)
 - Cath. —Cathode drive service (all voltages with respect to Grid No. 1)

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

338	z	1.1	4	F/	ACEPL	ATE			G				HEA	TER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	v.	A.
23AFP4 23AHP4 23AKP4 23ALP4 23AMP4 23ANP4		92 92 114 114 114 92	G G G G G		T = = = = = = = = = = = = = = = = = = =	FA FA FA FA FA	2000/2500 1700/2500 2000/2500 1700/2500 1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S. L.V.E.S. L.V.E.S.	X X X X X X X X X X X X X X X X X X X	18.812 18.000 12.812 14.531 14.531 18.438	6.000 5.500 3.562 5.125 5.125 5.625	12L 12L 8JR 8HR 8HR 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.45 0.30 0.60
23AQP4 23ARP4 23ASP4 23ATP4 23AUP4 23AVP4	400444	114 110 92 92 92 110	666666		_ 	FA FA FAR FAR		L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	ZZZZZZ	14.531 14.875 17.000 18.438 18.000 15.188	5.125 5.125 4.500 5.625 5.500 5.125	8HR 8HR 12L 12L 12L 8HR	6.3 6.3 6.3 6.3 6.3 6.3	0.30* 0.60 0.60 0.60 0.60 0.60
23AWP4 23AXP4 23AYP4 23AZP4 23BAP4 23BCP4	442442	92 110 110 92 110 110	000000		T T	FA	1700/2500 2000/2500 2000/2500 1700/2500 2000/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	X X X X X	18.125 14.000 15.187 18.000 14.375 14.875	5.625 4.250 5.125 5.500 4.375 5.125	12L 8HR 8HR 12L 8HR 8HR	6.3 6.3	0.60 0.30 0.30 0.30 0.60 0.30
23BDP4 23BEP4 23BEP4A 23BGP4 23BHP4 23BJP4		92 110 110 110 110 92	000000		T	FA	2000/2500 2000/2500 2000/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N	18.312 15.188 15.188 15.188 15.188 15.188 18.125	5.500 5.125 5.125 5.125 5.125 5.625	12L 8HR 8HR 8HR 8HR 12L	6.3 6.3 6.3	0.60 0.30* 0.30* 0.60 0.60 0.60
23BKP4 23BLP4 23BMP4 23BP4 23BNP4 23BQP4		92 92 92 110 110 110	GGGGGG		T T T T	FA FA FA	1700/2500 1700/2500 1200/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	18.438 18.438 18.312 14.438 15.188 15.188	5.625 5.625 5.500 4.375 5.125 5.125	12L 12L 12L 8HR 8HR 8HR	6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.45
23BRP4 23BSP4 23BTP4 23BVP4 23BXP4 23BYP4 23BZP4		110 110 92 92 92 110 92	GGGGGG		T T P T	FAR FAR FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S.	Z Z Z Z Z Z	13.625 15.188 18.312 18.812 18.250 13.265 18.000	3.562 5.125 5.500 6.000 5.500 3.562 5.500	8JR 8HR 12L 12L 12L 8JR 12L	6.3 6.3 6.3 6.3 6.3	0.30 0.30* 0.60 0.60 0.60 0.30* 0.45
23CAP4 23CBP4 23CDP4 23CEP4 23CGP4 23CMP4	<u> </u>	92 110 92 110 92 110	6 G G G G		T T T	FA FAR FA FA FA	2000/2500 2000/2500 2000/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	18.312 15.188 18.312 14.875 18.000 14.875	5.500 5.125 5.500 5.125 5.500 5.125	12L 8HR 12L 8HR 12L 8HR	8.4 6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.30 0.45 0.45 0.30*
23CP4 23CP4A 23CQP4 23CSP4 23CTP4 23CUP4		110 110 114 110 92 110	999999		T T T T	FA FAR	2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S.TPF	N	15.188 15.188 13.781 13.125 18.312 13.625		8HR 8HR 8HR 8JR 12L 8JR	6.3 6.3 6.3 6.3 6.3	0.60
23CVP4 23CWP4 23CXP4 23CZP4 23DAP4 23DBP4		114 110 110 92 94 110	666666			FA FA FA FA	2000/2500 2000/2500 2000/2500 1700/2500 2000/2500	L.V.E.S.TPF L.V.E.S.TPF L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	13.312 13.312 18.500 16.953 14.875	4.875 5.125	8JR 8JR 8JR 12L 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.30* 0.60 0.60 0.60
23DCP4 23DEP4 23DFP4 23DHP4 23DJP4 23DKP4	0000D	94 110 110 110 110 110 92	G G G G		E T T V	FA FA FAR	2000/2500 1500/2000 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N	14.000 14.000 14.188 14.188	5.000 4.250 4.250 4.125 4.125 5.500	8HR 8HR 8HR 8HR 8HR 12L	6.3	0.30 0.30 0.30

	TYPI	CAL	OPER/	TING COI	NDITIONS	
ANODE KV. Design-max. Values &	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
25.0	Grid	20	300	0/400	-35/-72	23AFP4
22.0 22.0	Grid Grid	18 16	400 500	0/400 0/400	-36/-94 -43/-78	23AHP4 23AKP4
22.0	Grid	18	400	0/400	-36/-94	23ALP4
22.0 25.0	Grid Cath.	18 20	400 50	0/400 0/400	-36/-94 35/50	23AMP4 23ANP4
19.8	Grid	18	400	0/400	-44/-94	23AQP4
22.0	Grid	16	300	0/400	-35/-72	23ARP4
22.0 25.0	Grid Cath.	18 20	400 50	0/400 0/400	-36/-94 35/50	23ASP4 23ATP4
25.0	Grid	18	400	0/400	-36/-94	23AUP4
22.0	Grid	16	300	0/400	-35/-72	23AVP4
22.0 20.0	Cath.	20 16	50 400	0/400 0/400	36/54 42/72	23AWP4 23AXP4
22.0	Grid	16	300	0/400	-35/-72 -36/-94	23AYP4
22.0 22.0	Grid Grid	18 14	400 450	0/400 0/400	-36/-94 -45/-105	23AZP4 23BAP4
22.0	Grid	16	300	0/400	-45/-105 -35/-72	23BCP4
22.0	Cath.	16	500	0/400	45/95	23BDP4
22.0 22.0	Grid Grid	16	300 300	0/400 0/400	-35/-72 -35/-72	23BEP4 23BEP4A
22.0	Cath.	16	50	0/400	32/50	23BGP4
22.0	Cath.	16	50	0/400	32/50	23BHP4
25.0 25.0	Cath.	20	50 50	0/400 0/400	36/54 36/54	23BJP4 23BKP4
25.0	Cath.	20	50	0/400	36/54	23BLP4
22.0	Grid	16	300	0/400	-35/-72	23BMP4
22.0 22.0	Grid Grid	14 18	450 400	0/400 -100/300	-45/-105 -60/-110	23BP4 23BNP4
23.0	Grid	16	300	0/400	-35/-72	23BQP4
22.0	Grid	16	500	0/400	-43/-78 25 / 72	23BRP4
22.0 25.0	Grid Grid	16 16	300 300	0/400 0/400	-35/-72 -35/-72	23BSP4 23BTP4
25.0	Grid	20	300	0/400	-35/-72	23BVP4
22.0 22.0	Grid Grid	16 16	300 500	0/400 0/400	-35/-72 -43/-78	23BXP4 23BYP4
22.0	Grid	18	400	0/400	-36/-94	23BZP4
22.0	Grid	16	300	0/400	-35/~72	23CAP4
23.0 22.0	Grid Grid	16 16	300 300	0/400 0/400	-35 [′] /-72 -35 [′] /-72	23CBP4 23CDP4
22.0	Grid	16	300	0/400	-35/-72 -35/-72	23CEP4
22.0 22.0	Cath. Grid	16 16	500 300	0/400 0/400	45/95 -35/-72	23CGP4 23CMP4
22.0	Grid	16	300	0/400	-35/-72	23CP4
23.5	Grid	16	300	0/400	-35/-72	23CP4A
23.5 22.0	Grid Grid	14 16	450 500	0/400 0/400	-45/-105 -43/-78	23CQP4 23CSP4
22.0	Grid	16	300	0/400	-35/-72	23CTP4
22.0	Grid	16	500	0/400	-43/-78 -43/-78	23CUP4
22.0	Grid Grid	16 16	500 500	0/400 0/400	-43/-78 -43/-78	23CVP4 23CWP4
22.0	Grid	16	500	0/400	-43/-78 -43/-78	23CXP4
25.0 23.5	Grid Cath.	20	300 50	0/400 -50/250	-40/-76 35/55	23CZP4 23DAP4
22.0	Cath.	18	50	0/500	36/54	23DBP4
23.5	Cath.	18	50	0/400	35/55	23DCP4
20.0 20.0	Cath. Cath.	16 16	400 400	0/400 0/400	42/78 42/78	23DEP4 23DFP4
22.0	Cath.	16	400	0/400	36/78	23DHP4
22.0 22.0	Cath. Grid	16 16	400 300	0/400 0/400	36/78 -35/-72	23DJP4 23DKP4
22.0	L 4110	1.0	1 300	0/400	-33/-12	LUDRIT

- M Metal cone tube
- G-Glass tube
- LWG-Light weight glass tube
- G°—Glass tube, dimensions different from normal
- MET -- Metal tube
 - O-Round tube
 - -Rectangular tube, spherical face
 - Rectangular tube, cylindrical face
 B Fiberglass wrap implosion
 - protection
 - E Filled rim type implosion protection
 - T -- Molded glass implosion panel attached to face
 - P—Sagged glass implosion plate attached to face
 - L —Plastic implosion barrier attached to face
 - K Banded tube with coated funnel for implosion protection
 - H Tube sealed into steel sheath for implosion protection
 - C-Clear glass faceplate
 - F-Gray filter glass faceplate
 - R-Anti-reflection faceplate
 - A-Aluminized screen
 - V-Rim bands and tension band
 - W-Rim bands and tension band with mounting lugs
 - X-Formed with tension band
- Y —Formed rim with tension band and mounting lugs

Mag. - Magnetic focus

- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus
 - TPF-Tri-potential focus
 - N No ion trap
 - S-Single field ion trap
 - D-Double field ion trap
 - I Internal ion trap
 - *—18 second heater warm-up time (all others are 11 second)
 - Grid —Grid drive service (all voltages with respect to cathode)
 - Cath. —Cathode drive service (all voltages with respect to Grid No. 1)

MOTES

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

		إما	Z	F/	CEPL	ATE			ڧ	_	=		HE	ATER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	А.
23DLP4 23DLP4A 23DNP4 23DP4 23DQP4 23DRP4		92 92 92 110 92 114	999999		V V T T V	FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.TPF L.V.E.S. L.V.E.S.	N N N N	18.000 18.000 18.418 13.562 18.688 13.688	5.500 5.500 5.625 3.562 5.875 4.375	12L 12L 12L 8JR 8HR 8HR	6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.30*
23DSP4 23DSP4A 23DTP4 23DVP4 23DVP4A 23DWP4		92 92 92 114 114 94	<i>GGGGG</i>		V V V V	FA FA FA	2000/2500 1700/2500 1700/2500 1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N	18.375 18.375 18.500 14.438 14.438 17.188	5.875 5.875 6.000 5.125 5.125 5.125	8HR 8HR 12L 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
23DYP4 23DZP4 23EAP4 23ECP4 23EDP4 23EFP4	000000	110 114 92 92 92 110	999999		V V T P V	FA FA FA	1700/2500 2000/2500 2000/2500 2000/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2222	14.875 14.438 18.312 18.312 18.188 14.875	5.125 5.125 5.500 5.625 5.500 5.125	8HR 8HR 12L 12L 12L 8HR	6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.60 0.60 0.60
23EKP4 23ENP4 23EP4 23EQP4 23ERP4 23ESP4		92 92 110 114 114 110	GGGGGG		V V V V V	FA FA FA FAR	1700/2500 1700/2500 1700/2500 1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	14.531 14.531 14.875	5.550 5.625 5.125 5.125 5.125 5.125 5.125	12L 12L 8KP 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.45 0.60 0.60 0.45 0.60 0.60
23ETP4 23EWP4 23EWP4A 23EYP4 23EZP4 23FAP4		110 114 114 92 94 114	G G G G G		m&m<<<	FA FA FA FA	1700/2500 1700/2500 2000/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S.	2222		5.125 5.125 5.125 5.625 5.625 5.000 5.125	8HR 8HR 8HR 12L 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.60 0.45 0.60
23FBP4 23FCP4 23FDP4 23FHP4 23FKP4 23FLP4		92 110 110 110 110 94 92	GGGGGG		V V V T V	FA FA FA FA	1700/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	2	18.125 14.875 14.875 14.875 17.531 18.000	5.625 5.125 5.125 5.125 5.125 5.500	12L 8HR 8HR 8HR 8HR 12L	6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.45 0.60 0.45
23FMP4 23FNP4 23FP4 23FP4A 23FRP4 23FSP4	0000	110 92 114 114 110 110	GGGGGG		V E - E	FA FA FA FA	2000/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N	14.875 18.000 13.781 13.688 14.250 14.875	5.125 5.500 4.375 4.375 4.500 5.125	8HR 12L 8HR 8HR 8HR 8HR	6.3 6.3 6.3	0.45 0.45 0.60 0.60 0.45 0.60
23FVP4 23FVP4-A 23FWP4 23FWP4A 23GBP4 23GDP4		110 110 92	G G G G G		V V V V	FA FA FA FA	2000/2500 2000/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N	14.875 14.875 18.000 18.000 14.875 14.500	5.125 5.125 5.500 5.500 5.125 5.125	8HR 8HR 12L 12L 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.45 0.45 0.45 0.45 0.60
23GEP4 23GHP4 23GJP4 23GJP4A 23GKP4 23GP4		92 94 110	G G G G G			FAR FA FA FA FA	1700/2500 2000/2500 1700/2500 1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	18.125 16.812 14.250 14.250 18.000	5.625 4.750 4.500 4.500	12L 8HR 8HR 8HR 12L 8HR	6.3 6.3 6.3 6.3	0.60 0.45 0.45 0.45 0.60 0.60
23GRP4 23GSP4 23GTP4 23GVP4 23GWP4 23GXP4	4444Z	92 110 110 114	G G G G G		E V V	FA FA FA FA FA	2000/2500 1700/2500 1700/2500 2000/2500 2000/2500	LV.E.S. LV.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	7 7 7 7 7	18.000 14.875 14.875 14.500 14.375	5.500 5.125 5.125 5.125 4.625 5.125	12L 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.45 0.60 0.60

	TYP	CAL	OPER	ATING CO	NDITIONS	
ANODE KV. Design-max Values *	DRIVE	ANODE KV.	GRID 2 VOLTS	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
22.0	Cath.	20	50	0/500	36/54	23DLP4
22.0 25.0	Cath.	20 20	50 35	0/500 0/500	36/54 25/50	23DLP4A 23DNP4
22.0	Grid	16	500	0/400	-43/-78	23DP4
25.0 22.0	Cath.	20 16	65 400	-100/300 9/300	41/56 33/78	23DQP4 23DRP4
25.0	Cath.	18	65	-100/300	41/56	23DSP4
25.0 25.0	Cath. Grid	18 20	65 300	-100/300 0/400	41/56 -40/76	23DSP4A 23DTP4
22.0	Grid	18	400	0/400	-46/-94	23DVP4
22.0 22.0	Grid Cath.	18 18	400 200	0/400 0/500	-46/-94 31/49	23DVP4A 23DWP4
22.0	Cath.	18	300	0/500	36/54	23DYP4
22.0 22.0	Grid Grid	18 16	400 300	0/400 0/400	-46/-94 -35/-72	23DZP4 23EAP4
25.0	Cath.	20	35	0,7400	25/50	23ECP4
25.0 22.0	Grid Cath.	20 18	300 50	0/400 0/400	-35/-72 34/49	23EDP4 23EFP4
25.0	Cath.	20	400	0/400	36/78	23EKP4
25.0	Cath.	20	50	0/400	36/54	23ENP4
22.0 23.0	Cath. Cath.	16 18	50 300	0/400 0/400	32/50 28/62	23EP4 23EQP4
23.0	Cath.	18	300	0/400	28/62	23ERP4
22.0 23.0	Cath.	18 18	300	0/500 0/400	36/54 28/62	23ESP4 23ETP4
22.0	Grid	18	400	0/400	-46/-94	23EWP4
22.0 25.0	Grid Cath.	18 20	400 30	-200/200 0/500	-48/-96 25/50	23EWP4A 23EYP4
23.5	Cath.	18	50	0/400	35/55	23EZP4
22.0 25.0	Grid Cath.	18 20	400 50	-200/200 0/400	-48/-96 36/54	23FAP4 23FBP4
22.0	Cath.	18	50	0/400	34/49	23FCP4
23.0 23.5	Cath.	18 16	50 50	0/400	34/52	23FDP4
23.5	Cath.	16	500	-200/200 0/500	32/50 45/95	23FHP4 23FKP4
25.0	Grid	18	300	-200/200	-37/-74	23FLP4
23.0 25.0	Cath. Grid	18 20	300 300	0/400 0/500	28/62 -35/-72	23FMP4 23FNP4
22.0	Grid	14	450	0/400	-45/-105	23FP4
23.5 23.0	Grid Cath.	14 16	450 50	0/400 0/400	-45/-105 35/55	23FP4A 23FRP4
23.0	Grid	16	400	0/400	-39/-94	23FSP4
22.0 22.0	Cath. Cath.	18 18	300 300	0/500 0/500	36/54 36/54	23FVP4 23FVP4-A
22.0	Cath.	20	50	0/500	36/54	23FWP4
22.0 23.0	Cath. Grid	20 16	50 400	0/500 0/400	36/54 -39/-94	23FWP4A 23GBP4
22.0	Grid	18	400	0/400	-36/-94	23GDP4
25.0 23.0	Cath. Cath.	20 18	50 200	0/400 0/400	36/54 31/49	23GEP4 23GHP4
22.0	Cath.	18	50	0/400	32/50	23GJP4
22.0 22.0	Cath. Grid	18 16	50 300	0/400 0/400	32/50 -35/-72	23GJP4A 23GKP4
22.0	Grid	16	300	0/400 0/400	-28/-72	23GP4
22.0	Grid	16	300	0/400	-35/-72	23GRP4
23.0 23.0	Cath. Cath.	18 18	300 300	0/400 0/400	28/62 28/62	23GSP4 23GTP4
22.0	Cath.	18	45	0/500	35/50	23GVP4
22.0 23.0	Cath. Grid	18 16	50 300	50/350 0/400	33/45 -35/-72	23GWP4 23GXP4

- M Metal cone tube
- G-Glass tube
- LWG -Light weight glass tube
 - G°-Glass tube, dimensions different from normal

MET - Metal tube

- O-Round tube
- □-Rectangular tube, spherical face
- ©-Rectangular tube, cylindrical face B-Fiberglass wrap implosion
- E-Filled rim type implosion protection
- T Molded glass implosion panel attached to face
- P Sagged glass implosion plate attached to face
- L -- Plastic implosion barrier
- attached to face K -- Banded tube with coated funnel
- for implosion protection
- H-Tube sealed into steel sheath for implosion protection
- C-Clear glass faceplate
- F-Gray filter glass faceplate
- R-Anti-reflection faceplate
- A -- Aluminized screen
- V-Rim bands and tension band W-Rim bands and tension band with mounting lugs
- X Formed with tension band
- Y-Formed rim with tension band and mounting lugs

Mag. - Magnetic focus

- L.V.E.S. -Low voltage electrostatic focus
- H.V.E.S.—High Voltage electrostatic focus Auto, Es. - Self-focusing electrostatic
- Int.Mag. —Internal magnetic focus
 - TPF Tri-potential focus
 - N-No ion trap
 - S-Single field ion trap
 - D-Double field ion trap I - Internal ion trap
 - -18 second heater warm-up time (all others are 11 second)

 - Grid Grid drive service (all voltages with respect to cathode) Cath. - Cathode drive service (all voltages with respect to Grid No. 1)

MOTES

- Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

	z	щ	¥	F	ACEPI	ATE			Ġ	٠,	I		HE	ATER
TUBE TYPE	X-RADIATION RATING	DEFL. ANGLE	GLASS or METAL	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAI COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	v.	A.
23HBP4 23HFP4 23HFP4A 23HGP4 23HKP4 23HLP4		110 110 110 110 110 110	GGGGGG		E V W E W	FA FA FA FA FA	1700/2500 1700/2500 1700/2500 1700/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N N N N N N N N N N N N N N N	14.000 14.875 14.875 14.875 14.875 14.875	4.250 5.125 5.125 5.125 5.125 5.125 5.125	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3	0.30 0.45 0.45 0.45 0.60 0.60
23HMP4 23HP4 23HQP4 23HRP4 23HUP4 23HUP4A	444242	110 110 110 110 110 110	GGGGG		V W W V	FA FA FA FA FA	1700/2500 2000/2500 1700/2500 2000/2500 1700/2500 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	72222	14.875 15.500 14.880 14.375 14.125 14.125	5.125 5.438 5.130 4.625 4:375 4.375	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3	0.60 0.60 0.45 0.45 0.45 0.45
23HWP4 23HWP4A 23HXP4 23HZP4 23JAP4 23JBP4		110 110 110 110 110 110	GGGGG		W W W V E	FA FAR FA FA FA	1700/2500 1300/2100 1700/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	14.875 14.875 14.875 14.875 14.250 14.125	5.125 5.125 5.125 5.125 4.500 4.375	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3	0.45 0.45 0.45 0.30 0.45 0.60
23JEP4 23JFP4 23JGP4 23JLP4 23JP4 23KP4		110 110 110 110 110 114	GGGGG		W E W T	FA FA FA FA FA	1700/2500 1700/2500 1700/2500 1700/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N	14.875 14.250 14.875 14.125 15.438 13.500	5.125 4.500 5.125 4.375 5.375 4.250	8HR 8HR 8HR 8HR 7FA 8HR	6.3 6.3	0.45 0.315 0.45 0.45 0.45 0.60
23KP4A 23MP4 23MP4A 23NP4 23RP4 23SP4	044000	114 114 114 114 110 110	666666			FA FA FA FA FA	2000/2500 1700/2500 1700/2500 1700/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.VE.S.TPF L.V.E.S.	22222	13.500 14.531 14.531 14.531 13.625 15.188	4.250 5.125 5.125 5.125 3.562 5.125	8HR 8HR 8HR 8HR 8JR 8HR	6.3 6.3	0.60 0.60 0.60 0.60 0.30 0.30
23TP4 23UP4 23VP4 23WP4 23XP4 23YP4		90 110 114 114 92 92	666666		T	FA FA FA FA FA	1700/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	19.344 15.188 13.625 14.688 18.312 18.312	5.500 5.125 4.375 5.438 5.500 5.500	12L 8HR 8HR 8HR 12L 12L	6.3 6.3 6.3 6.3	0.60 0.45 0.30* 0.60 0.60 0.60
23ZP4 24ADP4 24AEP4 SG-24AEP4 24AHP4 24AJP4	00000	90 90 90 90 110	000000		T	FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 1700/2500 2000/2500	L.V.E.S. Mag. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	19.469 21.125 19.125 19.125 15.875 19.125	5.625 7.500 5.500 5.500 5.438 5.500	12L 12N 12L 12L 8HR 12L	6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
24ALP4 24AMP4 24ANP4 24AP4 24AP4A 24AP4B		110 110 90 70 70 70	G G MET MET MET			FA FA FA FA FR	2000/2500 2000/2500 1700/2500 None None None	L.V.E.S. L.V.E.S. L.V.E.S. Mag. Mag. Mag.	222222	15.875 15.625 20.125 23.938 23.938 23.938	5.438 5.187 6.500 7.156 7.156	8HR 7FA 12L 12D 12D	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
24AQP4 24ASP4 24ATP4 24AUP4 24AVP4 24AWP4	00000	90 90 90 90 110 110	666666			FA FA FA FA	1700/2500 1700/2500 2000/2500 1700/2500 1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	N N N N N	15.875 19.125 19.125 18.125 14.812		8HR 12L 12L 12L 8JK 8HR	6.3 6.3 6.3 6.3 2.35	0.45 0.30 0.60 0.60
24AXP4 24BAP4 24BCP4 24BEP4 24BP4 24CP4	Δ	110 110 90 110 70 90	G G G MET G		P	FA FA FA	1700/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag.	N N N S S	15.875 19.375 14.812	4.438 5.438 5.500 4.375 7.500 7.500	8HR 8HR 12L 8KW 12M 12N	6.3	0.60

	TYPI	CAL (OPER/	ATING CO	NDITIONS	
ANODE KV. Design-max. Values *	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBE TYPE
22.0 23.0	Grid Grid	16 16	300 400	0/400 0:400	-35/-72 -39/-94	23HBP4 23HFP4
23.0	Cath.	18	300	0 /400	28/62	23HFP4A
23.0 23.0	Cath.	18 16	300 150	0/400 0/400	28/62 36/54	23HGP4 23HKP4
23.0	Cath.	18	300	0/400	28/62	23HLP4
23.0 20.0	Cath. Grid	18 16	300 300	0/400 0/400	28/62 -35/ - 72	23HMP4 23HP4
23.0	Cath.	16	400	0/400	39/94	23HQP4
23.5 23.5	Cath. Cath.	18 18	30 30	0/400 0/400	30/45 22/45	23HRP4 23HUP4
23.5	Cath.	17	30	0/400	22/45	23HUP4A
22.0	Cath.	16	50	0/400	35/55	23HWP4
22.0 23.0	Cath.	16 18	50 300	0/400 0/400	35/55 28/62	23HWP4A 23HXP4
23.0	Cath.	18	300	0/400	28/62	23HZP4
22.0 23.0	Cath. Grid	18 16	50 400	-200/200 0/400	32/50 -39/-94	23JAP4 23JBP4
23.0	Cath.	18	300	0/400	28/62	23JEP4
23.0 23.5	Cath.	16 18	50 30	0/400 0/400	35/55 22/45	23JFP4 23JGP4
23.5	Cath.	18	30	0/400	22/45	23JLP4
22.0 20.0	Cath. Grid	16 16.5	50 450	0/400 0/500	35 /50 -28/-72	23JP4 23KP4
22.0	Grid	16.5	450	0/500	-28/-72	23KP4A
22.0 23.5	Grid Grid	18 18	400 400	0/400 0/400	-36/-94 -36/-94	23MP4 23MP4A
22.0	Cath.	18	50	0/400	34/49	23NP4
22.0 22.0	Grid Grid	16 16	500 300	0/400 0/400	-43/-78 -35/-72	23RP4 23SP4
22.0	Grid	16	300	0/400	-28/-72	23TP4
18.0	Grid	16	300	0/400	-35/-72	23UP4
22.0 20.0	Grid Grid	14 16	450 300	0/400 0/400	-45/-105 -35/-72	23VP4 23WP4
18.0	Grid	16	300	0/400	-35/-72 -35/-72	23XP4
22.0	Grid Grid	16 18	300 50	0/400 0/500	35/50	23YP4 23ZP4
24.2 🗨	Grid	18	300		-28/-72 -28/-72	24ADP4
22.0 ⊚ 22.0 ⊚	Grid Grid	18 18	300 300	-50/350 -50/350	-28/-72	24AEP4 SG-24AEP4
22.0	Grid	16	300	-50/350	-28/-72	24AHP4
22.0	Grid Grid	18 17	50 300	0/350 0/500	35/50 -28/-72	24AJP4 24ALP4
22.0●	Grid	16	300	0/400	-35/-72	24AMP4
22.0 ● 17.6 ●	Grid Grid	18 15	300 300	-72/396 —	-35/-72 -28/-72	24ANP4 24AP4
17.6 €	Grid	15	300		-28/-72	24AP4A
17.6 ⑤ 22.0 ⑥	Grid Grid	15 16	300	0/400	-28/-72 -35/-72	24AP4B 24AOP4
22.0	Grid	18	300	0/400	-35/-72	24ASP4
22:0 ● 22.0 ●	Grid Grid	18 16	50 300	0/400 -75/400	34/52 -35/-72	24ATP4 24AUP4
20.0	Grid	16	300	-100/300	-35/-72	24AVP4
22.0 ● 22.0 ●	Grid	16 16	300 300	0/400 0/400	-28/-72 -35/-72	24AWP4 24AXP4
22.0 •	Grid Cath.	16	50	0/400	32/47	24BAP4
22.0 20.0	Grid	18 16	400 300	0/400	-36 [′] /-94 -35/-72	24BCP4 24BEP4
17.6	Grid Grid	14	300	-100/300 -56/310	-28/-72	24BP4
22.0	Grid	18	300		-28′/-72	24CP4

- M -- Metal cone tube
- G . Glass tube
- LWG -Light weight glass tube
 - G°--Glass tube, dimensions different from normal
- MET -- Metal tube
- O -Round tube
- □ -- Rectangular tube, spherical face @ - Rectangular tube, cylindrical face
- B Fiberglass wrap implosion protection
- E Filled rim type implosion
- protection T - Molded glass implosion panel attached to face
- P Sagged glass implosion plate attached to face
- L Plastic implosion barrier attached to face
- Banded tube with coated funnel for implosion protection
- H Tube sealed into steel sheath for implosion protection
- C Clear glass faceplate
- Gray filter glass faceplate
- Anti-reflection faceplate
- A Aluminized screen
- V Rim bands and tension band
- W Rim bands and tension band with mounting lugs
- X Formed with tension band
- Formed rim with tension band and mounting lugs
- Mag. Magnetic focus
- L.V.E.S. Low voltage electrostatic focus
- H.V.E.S. -- High Voltage electrostatic focus Auto.Es. -- Self-focusing electrostatic
- Int.Mag. -- Internal magnetic focus
 - TPF Tri-potential focus
 - N No ion trap
 - S Single field ion trap
 - D -- Double field ion trap
 - 1-Internal ion trap · -- 18 second heater warm-up time
 - (all others are 11 second) Grid-Grid drive service (all voltages
 - with respect to cathode)
 - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1)

- . Design-Maximum Values Unless Otherwise Indicated
- Absolute-Maximum Values
- □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- △ The EIA Published Product Information as o' March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation-Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics.
- ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies.

TUBE TYPE	z	M	Z.	F	CEPL	ATE			ġ		I		HEA	TER
TYPE	X-RADIATION RATING	DEFL. ANGLE DEGREES	GLA	SHAPE	IMPLOSION PROTECTION	TREATMENT	EXTERNAL COATING IN pf	FOCUS	ION TRAP MAG.	Overall Length (Inches)	NECK LENGTH (Inches)	BASING	٧.	A.
24CP4A SG-24CP4A 24CP4B 24DP4 24DP4A 24QP4		90 90 90 90 90	666666		-	FA FA FA FA F	2000/2500 2000/2500 2000/2500 2000/2500 500/750 500/750	Mag. Mag. Mag. L.V.E.S. L.V.E.S. Mag.	00022000	21.125 21.125 21.125 21.125 21.125 21.125	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12N 12N 12N 12L 12L 12L	6.3 6.3 6.3 6.3	
24TP4 24VP4 24VP4A 24XP4 24YP4 24ZP4	00000	90 90 90 90 90	666666			FA FA FA FA	250/2500 2000/2500 2000/2500 None 2000/2500 2000/2500	Mag. Mag. Mag. Mag. L.V.E.S. L.V.E.S.	00000N	21.125 21.125 21.125 21.125 21.125 21.125	7.500 7.500 7.500 7.500 7.500 7.500 7.500	12N 12N 12N 12D 12L 12L	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60
25DP4 25EP4 25HP4 25JP4 25KP4 25LP4	00000	110 110 110 110 110 110	000000		E E E E E	FA FA FA FAR	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	X X X X X X	15.062 15.812 15.875 15.812 16.000 16.312	4.375 5.125 5.125 5.125 5.125 5.125 5.437	8HR 8HR 8HR 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3 6.3	0.30 0.30 0.45 0.30 0.30 0.60
25TP4 27ABP4 27ACP4 27ADP4 27AEP4 27AFP4	00000	110 110 90 110 110 110	GGGGGG		V P P P	FA FA FA FA FA	2000/2500 2000/2500 2000/2500 2000/2500 2000/2500 2000/2500	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S.	22222	15.813 17.125 21.812 17.562 17.312 17.562	5.125 5.125 6.000 5.375 5.375 5.375	8HR 8HR 12L 8HR 8HR 8HR	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
27AGP4 27AP4 27EP4 27GP4 27LP4 27MP4	00000	90 90 90 90 90 90	G MET G G G° MET		P - - -	FAR FR FA F FAR	2000/2500 None None None 250/400 None	L.V.E.S. L.V.E.S. Mag. Mag. Mag. Mag.	NSSSSS	17.125 21.625 23.062 23.062 24.359 22.812	5.125 7.500 7.500 7.500 9.703 7.500	8HR 12M 12D 12D 12D 12N 12D	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
27NP4 27RP4 27RP4A SG-27RP4 27SP4 27UP4	00000	90 90 90 90 90 90	99999		-	FA FA FA FA F	2000/2500 500/2500 500/2500 500/2500 500/750 500/750	Mag. Mag. Mag. Mag. L.V.E.S. L.V.E.S.	SSNNSS	26.812 23.062 23.062 23.062 23.062 23.062	7.500 7.500 7.500 7.500 7.500 7.500	12N 12N 12N 12N 12N 12L	6.3 6.3 6.3 6.3 6.3	0.60 0.60 0.60 0.60 0.60 0.60
27VP4 27WP4 27XP4 27YP4 27ZP4 30BP4	000000	90 90 90 90 110 90	G G G G MET		 - - -	FA FA FA FA FA	2000/2500 750/2500 1700/2500 2000/2500 2000/2500 None	L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. L.V.E.S. Mag.	N S N N N N S	21.062 22.094 20.062 21.562 17.312 23.562	5.500 6.500 4.500 5.750 5.625 7.187	12L 12AJ 12L 12L 8HR 12D	6.3	0.60 0.60 0.60 0.60 0.60 0.60

	TYPI	CAL	OPER/	NDITIONS		
ANODE KV. Design-max Values *	DRIVE	ANODE KV.	GRID 2 Volts	FOCUS ELEC- TRODE VOLTS	RASTER CUTOFF VOLTS	TUBÉ TYPE
22.0	Grid	16	300		-28/-72	24CP4A
22.0 ● 22.0 ●	Grid Grid	16 16	300 300		-28/-72 -28/-72	SG-24CP4A 24CP4B
22.0	Grid	18	300	-72/400	-28/-72	24DP4
22.0	Grid	16	300	-64/350	-28/-72	24DP4A
19.8●	Grid	16	300		-28/-72	24QP4
22.0◉	Grid	14	300		-28/-72	24TP4
24.2	Grid	20	300		-28/-72	24VP4
24.2	Grid	20	300	-	-28/-72	24VP4A
22.0	Grid	18	300	-64/350	-28/-72	24XP4
22.0 ⊚ 22.0 ⊚	Grid Grid	16 16	300 300	0/500	-28/-72 -28/-72	24YP4 24ZP4
22.0	Cath.	16	300	-200/200	32/60	25DP4
22.0	Cath.	16	300	-200/200	32/60	25EP4
23.0	Cath.	16	50	0/400	35/55	25HP4
22.0	Grid	16	300	-200/200	-35/-72	25JP4
22.0	Grid	16	300	-200/200	-35/-72	25KP4
22.0	Grid	18	400	0/400	-36/-94	25LP4
22.0	Cath.	18	400	0/400	36/78	25TP4
22.0 25.0	Grid Grid	18 18	300 400	0/400 0/400	-35/-72 -48/-96	27ABP4 27ACP4
22.0	Grid	18	300	0/400	-37/-74	27ADP4
22.0	Grid	18	300	0/400	-35/-72	27AEP4
22.0	Grid	18	300	0/400	-37/-74	27AFP4
22.0	Grid	18	300	0/400	-35/-72	27AGP4
19.8€	Grid	15	300	-60/300	-28/-72	27AP4
22.0	Grid	16	300		-28/-72	27EP4
24.8 24.2	Grid Grid	16 20	300 300		-28/-72	27GP4
19.8	Grid	16	300	_	-28/-72 -37/-73	27LP4 27MP4
19.8	Grid	16	300	 	-28/-72	27NP4
22.0	Grid	16	300		-28/-72	27RP4
22.0	Grid	16	300	_	-28/-72	27RP4A
22.0	Grid	16	300		-28/-72	SG-27RP4
22.0	Grid	18	300	-72/396	-28/-72	27SP4
22.0	Grid	16	300	0/396	-28/-72	27UP4
19.8	Grid	16	300	-72/396 60/350	-28/-72	27VP4
22.0 ⊚ 23.0	Grid Grid	18	300 400	-60/350 0/400	-40/-80 -36/-94	27WP4 27XP4
25.0	Grid	18	300	0/450	-28/-72	27YP4
22.0	Grid	18	300	0/450	-35/-72	27 ZP 4
33.0∰	Grid	22	300		-28/-72	30BP4

M — Metal cone tube G —Glass tube

LWG -Light weight glass tube

G°-Glass tube, dimensions

different from normal

MET - Metal tube

O -Round tube

-Rectangular tube, spherical face

Rectangular tube, cylindrical face
 R - Fiberglass wran implesion

B – Fiberglass wrap implosion protection

E – Filled rim type implosion

protection

T — Molded glass implosion panel attached to face

P—Sagged glass implosion plate attached to face

L —Plastic implosion barrier attached to face

K — Banded tube with coated funnel for implosion protection

H - Tube sealed into steel sheath for implosion protection

C -- Clear glass faceplate

F-Gray filter glass faceplate

R --- Anti-reflection faceplate

A-Aluminized screen

V-Rim bands and tension band

W —Rim bands and tension band with mounting lugs

X-Formed with tension band

Y -Formed rim with tension band and mounting lugs

Mag. -- Magnetic focus

L.V.E.S. -Low voltage electrostatic focus

H.V.E.S. — High Voltage electrostatic focus Auto.Es. — Self-focusing electrostatic

Int.Mag. — Internal magnetic focus

TPF -- Tri-potential focus

N-No ion trap

S-Single field ion trap

D-Double field ion trap

i — Internal ion trap

*—18 second heater warm-up time (all others are 11 second)

Grid —Grid drive service (all voltages with respect to cathode)

Cath.—Cathode drive service (all voltages with respect to Grid No. 1)

NOTES

 Design-Maximum Values Unless Otherwise Indicated

■ Absolute-Maximum Values

- S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 644, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page
- ☆ This type summery is based on E1A registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to essure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccurscies.

				,		·			
Tube Type	Typical Application	Focus Method	Deflection Method	Outline	Base	Fil:	ament Current mA	Grid #1 Voltage Range	Grid #2 Voltage
7038	Monochrome film and CCTV cameras	Magnetic	Magnetic	TX	8НМ	6.3	600	0 to -100	300
7038V	Broadcast color television cameras	Magnetic	Magnetic	TX	-8HM	6.3	600	0 to -100	300
7262A	General use CCTV and educational TV cameras	Magnetic	Magnetic	TX	8НМ	6.3	90	0 to -100	300
7263.A	Ruggidized use CCTV and educa- tiona! TV Camera	Magnetic	Magnetic	TX	8НМ	6.3	90	0 to -100	300
7735A	General use CCTV and educational TV cameras	Magnetic	Magnetic	TX	8НМ	6.3	600	0 to -100	300
7735B	High quality CCTV and educa- tional TV cameras	Magnetic	Magnetic	1X	8НМ	6,3	600	0 to -100	300
27911	Low cost CCTV and educational TV cameras	Magnetic	Magnetic	TX	8НМ	6.3	600	0 to -100	300
Z7912	Ruggidized use CCTV and mili- tary TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
Z 7919	Low cost CCTV and educational TV cameras	Magnetic	Magnetic	ТX	8ME	6.3	90	0 to -100	300
Z7929R,B,G,	Chroma channels Broadcast color cameras	Electrostatic	Magnetic	TX	8LN	6.3	95	0 to -100	300
8134	General use CCTV and educational TV cameras	Electrostatic	Magnetic	TX	8LN	6.3	95	0 to -100	300
8134V	Broadcast color television cameras	Electrostatic	Magnetic	TX	8LN	6.3	95	0 to -100	300
8484H	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	8НМ	6.3	600	0 to -100	300
8507A	Broadcast, CCTV and educational TV cameras	Magnetic	Magnetic	TX	8ME	6.3	600	0 to -100	300
8541A	Broadcast, CCTV and educational TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
8572	Monochrome film and CCTV cameras	Magnetic	Magnetic	TX	8ME	6.3	600	0 to -100	300
8572V	Broadcast color television cameras	Magnetic	Magnetic	ΤX	8ME	6.3	600	0 to -100	300
8573A	Military, CCTV and educational TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
8604	Monochrome film and CCTV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
7735BX	High quality medical X-ray TV cameras	Magnetic	Magnetic	TX	8НМ	6.3	600	0 to -100	300
8541X	High quality medical X-ray TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to ~100	300
8573X	High quality medical X-ray TV cameras	Magnetic	Magnetic	ΤX	8ME	6.3	90	0 to -100	300
Z7975B	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
Z7975HRB	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to100	300
Z7996B	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
Z7996HRB	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	8ME	6.3	90	0 to -100	300
Z7927B	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX	1=	6.3	90	0 to -150	290
Z7927HRB	Low light level CCTV and educa- tional TV cameras	Magnetic	Magnetic	TX		6.3	90	0 to -150	290
			<u> </u>				-		

IUDE)									
								Sensitivity-Typ	ical—Res	olution
Grid #3	Volte	Grid	#4 Volts	Grid #5	Target	Blank	ing Volts	.02ua Dark Current		
40~50 G	uss -60		Gauss -60	Voltage	Voltage	When A	Applied To	1.0 Ft. Candle	Televisio	
					Range	Grid #1	Cathode	Faceplate	40-50 Ga	uss -60
300	600	G #3	Conn. to		0 to +60	-75	+20 to +35	.20 micro amps	700	850
300	600	G #3	Conn. to		0 to +60	-75	+20 to +35	.23 micro amps	700	850
300	600	Inter. G#3	Conn. to		0 to +60	-75	+20 to +35	.20 micro amps	700	850
300	600	Inter. G #3	Conn. to		0 to +60	- 7 5	+20 to +35	.20 micro amps	700	850
300	600	Inter. G #3	Conn. to		0 to +60	-75	+20 to +35	.22 micro amps	700	850
300	600	Inter. G #3	Conn. to		0 to +60	-75	+20 to +35	.25 micro amps	700	850
300		Inter. G #3	Conn. to		0 to +60	-75	+20 to +35	.18 micro amps	650	
300	600	420	850		0 to +60	-75	+20 to +35	.23 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.18 micro amps	800	1000
600	_	+50 to +150		300	0 to +60	-75	+20 to +35	.23 micro amps	600	
600		+50 to +150		300	0 to +60	-75	+20 to +35	.23 micro amps	600	_
600	_	+50 to +150		300	0 to +60	-75	+20 to +35	.23 micro amps	600	
300	600		Conn. to	 	0 to +60	-75	+20 to +35	.25 micro amps	700	850
300	600	420	850		0 to +60	-75	+20 to +35	.23 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.18 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.20 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.23 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.18 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.25 micro amps	900	1100
300	600	Inter. G #3	Conn. to		0 to +60	-75	+20 to +35	.25 micro amps	700	850
300	600	420	850		0 to +60	-75	+20 to +35	.25 micro amps	900	1100
300	600	420	850		0 to +60	-75	+20 to +35	.25 micro amps	900	1100
300	600	420		-	+8	-75	+20 to +35	1.15 micro amps	700	_
300	T-	420			+8	-75	+20 to +35	1.15 micro amps	1000	
300		420			+8	-75	+20 to +35	1.15 micro amps	700	<u> </u>
300		420	T-		+8	-75	+20 to +35	1.15 micro amps	1000	-
270		400		-	+8	-75	+20 to +35	.75 micro amps	400	_
270		400			+8	-7ă	+20 to +35	.75 micro amps	700	
			· · · · · · · · · · · · · · · · · · ·							

PHYSICAL DIMENSIONS

OUTLINE				INCH	ES			MILLIMETERS							
DRAWING		++	В		D	Ī	E +	1	**	E	3	D	E	*	
NUMBER	MIN.	MAX	MIN.	MAX	MAX	MIN.	MAX	MIN.	MAX	MIN.	MAX	MAX	MIN.	MAX	
2-1	0.350	0.385	0.245	0.285	1.500	1.200	1.400	8.89	9.77	6.23	7.23	38.10	30.5	35.5	
2–2	0.350	0.385	0.245	0.285	1.250	0.970	1.170	8.89	9.77	6.23	7.23	31.75	24.7	29.7	
2–5	0.350	0.400	0.245	0.285	1.500	1.200	1.400	8.89	10.16	6.23	7.23	38.10	30.5	35.5	
26	0.350	0.400	0.245	0.285	1.250	0.970	1.170	8.89	10.16	6.23	7.23	31.75	24.7	29.	

NOTES

- ** Measured from base seat to bulb-top line as determined by a ring gauge of 0.210" (5.333mm) I.D.
- . Minimum dimension applies in a zone 0.500" (12.70mm) up from lead in to 0.200" (5.08mm) down from bulb top line.

2-1 2-2 2-5 2-6

PHYSICAL DIMENSIONS

		INCHES		MILLIMETERS							
-	1	D		E *	7	4	D	i	*		
MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX		
0.366	0.400	1.375	1.015	1.135	9.30	10.16	34.92	25.8	28.8		
0.366	0.400	1.500	1.140	1.260	9.30	10.16	38.10	29.0	32.0		
0.366	0.400	1.750	1.390	1.510	9.30	10.16	44.45	35.3	38.3		
0.366	0.400	2.000	1.640	1.760	9.30	10.16	50.80	41.7	44.7		
0.366	0.400	1.625	1.265	1.385	9.30	10.16	41.27	32.2	35.1		
0.366	0.400	1.250	0.890	1.010	9.30	10.16	31.75	22.7	25.6		
	0.366 0.366 0.366 0.366 0.366	0.366 0.400 0.366 0.400 0.366 0.400 0.366 0.400 0.366 0.400	N	MIN. MAX. MAX. MIN. 0.366 0.400 1.375 1.015 0.366 0.400 1.500 1.140 0.366 0.400 1.750 1.390 0.366 0.400 2.000 1.640 0.366 0.400 1.625 1.265	Name	Name	Name	Name	Name		

NOTES

* Measured from base seat to bulb top line as determined by ring gauge of minimum 0.209 (5.31 mm) and maximum 0.211 (5.36mm) internal diameter.

3-1 TO 3-4 3-8 3-11

PHYSICAL DIMENSIONS

OUTLINE			INC	CHES					MILLIM	ETERS		
DRAWING	- 1	۹.	С	D		E•		A+	С	D		E•
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.
3-5	0.366	0.400	1.750	1.500	1.140	1.260	9.30	10.16	44.45	38.10	29.0	32.0
3-9	0.366	0.400	1.625	1.375	1.015	1.135	9.30	10.16	41.27	34.92	25.8	28.8
3-10	0.366	0.400	2.000	1.750	1.390	1.510	9.30	10.16	50.80	44.45	35.4	38.3
3-12	0.366	0.400	1.500	1.250	0.890	1.010	9.30	10.16	38.10	47.62	22.7	25.6
3-13	0.366	0.400	1.875	1.625	1.265	1.385	9.30	10.16	47.62	41.27	32.2	35.1
3-14	0.366	0.400	2.125	1.875	1.515	1.635	9.30	10.16	53.97	47.62	38.5	41.5
3-15	0.366	0.400	2.250	2.000	1.640	1.760	9.30	10.16	57.15	50.80	41.7	44.7

NOTES:

- * The minimum applies in zone starting 0.375" (9.52 mm) from base seat.
- Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) 1.D.

3-5 3-9 3-10 3-12 TO 3-15

200		INCHES	,	MILL	IMETER	S
REF.	MIN.	NOM-	MAX.	MIN.	NOM.	MAX.
A			0.335			8.51
В	0.271		0.279	6.88		7.09
C	0.034		0.046	0.86		1.17
D	0.094		0.104	2.39		2.64
E	0.024		0.030	0.61		0.76
F	0.156		0.174	3.96		4.42
G	0.095		0.105	2.41		2.67
Н	0.022		0.028	0.56		0.71
J	0.095		0.105	2.41		2.67
K	0.268		0.292	6.81		7.42
L	0.047		0.063	1.19		1.60
M	0.430		0.460	10.92		11.68
N	0.281		0.289	7.14		7.34
P	0.055		0.081	1.40		2.06
R	0.476		0.484	12.09		12.29
S	0.086		0.094	2.18		2.39
T	0.030			0.76		

Notes: Maximum eccentricity of plate, cathode and grid contact surfaces 0.005" (0.127 mm) from center line.

Maximum eccentricity of insulators 0.010"

(0.25 mm) from center line.

3 - 16

	210 NOM. (5.33 mm)	^ /_ 73	E
1.500° MIN. (38.10 mm)	LEADS .018" MAX. DIA. (.406 mm)	В	

	OUTLINE			IN	CHES		MILLIMETERS							
	DRAWING	A *		В	D	E			4 +	В	D	E		
	NUMBER	MIN.	MAX	MAX	MAX	MIN.	MAX	MEN.	MAX	MAX	MAX.	MIN.	MAX	
	36	.366	.400	.400	1.500	1.150	1.350	9.30	10.16	10.16	38.10	29.3	34.2	
I	3–7	.366	.400	.410	1.500	1.150	1.350	9.30	10.16	10.16	38.10	29.3	34.2	

PHYSICAL DIMENSIONS

. The minimum applies in a zone 0.500" (12.7mm) up from lead in to 0.200" (5.06mm) down from bulb top

3-6 TO 3-7

NOMINAL CAP DIAMETERS MINIATURE OR SKIRTED MINIATURE - 0,250" MEDIUM - 0.566"

OUTLINE			INC	HES			MILLIMETERS						
DRAWING	Α	В	ВС		D	F	Α	В	С		,	F	
NUMBER	MAX.	MAX.	MAX.	MIN.	MAX.	NOM.	MAX.	MAX.	MAX.	MIN.	MAX.	NOM.	
4-5	0.435	0.420	1.050	0.790	0.840	0.190	11.04	10.66	26.67	20.1	21.3	4.83	
4-6	0.435	0.420	0.985	0.735	0.780	0.190	11.04	10.66	25.02	18.7	19.8	4.83	
					<u> </u>	ļ		-					
												-	
										-			
			F								Ī		

Maximum O. D. of 0.440''(11.17mm) is permitted along the 0.190''(4.83mm) lug length.

4-5 to 4-6

	ŀ	→ A →		_
	1			OL DI NL
	C	т 5%	 	
	Ĭ		1 E	
	<u> </u>		7	
-		E 7 – 1 MINIA 7 PIN BASE	\ \TURE-BUT	TON

PHYSICAL	DIM	ENSIONS
INCHES		

OUTLINE				INCHES	· · · · · · · · · · · · · · · · · · ·			MILLIMETERS								
DRAWING	A **		C	D	E*		K	A**		С	D		E*	M		
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.		
5-1	0.695	0.737	1.750	1.500	1.031	1.219	0.750	17.65	18.72	44.45	38.10	26.19	30.96	19.05		
5-2	0.695	0.737	2.125	1.875	1.406	1.594	0.750	17.65	18.72	53.97	47.62	35.71	40.49	19.05		
5-3	0.695	0.737	2.625	2.375	1.906	2.094	0.750	17.65	18.72	66.67	60.32	48.41	53.19	19.05		

NOTES

- ** Measured from base seat to bulb-top line as determined by a gauge of 0.438"i.D. (11.13mm).
- _ Applies in zone starting 0.375" (9.525"mm) from base seat.

5-1 TO 5-3

PHYSICAL	DIMENSIONS

OUTLINE				INCHE	i					MIL	LIMETE	: KZ		
DRAWING	A	**	С	D	1	*	M	A	**	C	D	E	*	М
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.
6-1	0.800	0.845	1.750	1.500	1.031	1.219	0.875	20.32	21.46	44.45	38.10	26.19	30.96	22.22
6-2	0.800	0.845	2.187	1.937	1.469	1.656	0.875	20:32	21.46	55.54	49.20	37.31	42.06	22.22
6-3	0.800	0.845	2.625	2.375	1.906	2.094	0.875	20.32	21:46	66.67	60.32	48.41	53.19	22.22
6-4	0.800	0.845	3.062	2.812	2.344	2.531	0.875	20.32	21.46	77.77	71.42	59.54	64.29	22.22
6-10	0.800	0.845	2.440	2.190	1.720	1.910	0.875	20.32	21.46	61.98	55.63	43.69	48.51	22.22

- * Measured from base seat to bulb-top line as determined by a gauge of 0.438" I.D. (11.13 mm).
- ** Applies in zone starting 0.375" (9.525 mm) from base seat.

E9-1 SMALL-BUTTON 9-PIN BASE

6-1 to 6-4 6-10

PHYSICAL DIMENSIONS

MILL MARTERS

OUTLINE			INC	CHES			1		MILLIM	ETER\$		
DRAWING		A	С		D	М		Α	C		D	M
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.
6-5	0.800	0.845	1.969	1.437	1.687	0.875	20.32	21.46	50.01	36.50	42.85	22.22
6-6	0.800	0.845	2.406	1.875	2.125	0.875	20.32	21.46	61.11	47.52	53.97	22.22
6-7	0.800	0.845	2.844	2.312	2.562	0.875	20.32	21.46	72.24	58.72	65.07	22.22
6-8	0.800	0.845	3.281	2.750	3.000	0.875	20.32	21.46	83.34	69.85	76.20	22.22
6-9+	0.800	0.845	2.844	2.313	2.663	0.875	20.32	21.46	72.24	58.75	67.64	22.22
6-18‡	0.800	0.845	2.531	2.000	2.250	0.875	20.32	21.46	64.29	50.80	57.15	22.22

NOTES:

- + C1-40 Minature Cap t C1-45 Minature Cap

E 9 - 1 SMALL-BUTTON 9-PIN BASE

6-5 to 6-9 6-18

PHYSICAL DIMENSIONS

. '	OUTLINE				INCHE	<u> </u>			<u> </u>		MIL	LIMETE	R\$		
	DRAWING		A **	C	D		E*	M		A**	C	D		E+	M
	NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.
	6-11	0.800	0.845	1.750	1.500	1.020	1.220	0.875	20.32	21.46	44.45	38.10	25.91	30.99	22.22
	6-12	0.800	0.845	1.970	1.720	1.240	1.440	0.875	20.32	21.46	30.04	43.69	31.50	36.58	22.22
-	6-13	0.800	0.845	2.190	1.940	1.460	1.660	0.875	20.32	21.46	55.63	49.28	37.08	42.16	22.22
	6-14	0.800	0.845	2.410	2.160	1.680	1.880	0.875	20.32	21.46	61.21	54.86	42.67	47.75	22.22
	6-15	0.800	0.845	2.630	2.380	1.900	2.100	0.875	20.32	21.46	66.80	59.45	48.66	53.34	22.22
	6-16	0.800	0.845	2.850	2.600	2.220	2.320	0.875	20.32	21.46	72.39	66.04	56.39	58.93	22.22
	6-17	0.800	0.845	3.070	2.820	2.340	2.540	0.875	20.32	21.46	77.98	71.63	59.44	64.52	22.22

NOTES:

- * Measured from base seat to bulb-top line as determined by a gauge of 0.438" 1.D. (11.13 mm).
- ** Applies in zone starting 0.375" (9.525 mm) from base seat.

10 - PIN BASE (CENTER PIN ADDED TO SMALL-BUTTON 9 -- PIN BASE)

6-11 to 6-17

	- A -						PHY:	ŞICAL	DIM	ENSIC	ONS				
1	<u> </u>	-	OUTLINE			INC	HES					MILLIM	ETERS		
1	\nearrow	⊤ 1	DRAWING		A+ .	С	D	1	E•		A+	С	D	F	E•
	/ \	1	NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.
			7-1	0.900	1.030	1.750	1.500	1.000	1.200	22.9	26.1	44.5	38.10	25.4	30.4
	T7.11		7-2	0.900	1.030	2.050	1.800	1.300	1.500	22.9	26.1	52.07	45.72	33.1	38.1
	T7 %	ם ם	7-3	0.900	1.030	2.350	2.100	1.600	1.800	22.9	26.1	59.69	53.34	40.7	45.7
C		E	7-4	0.900	1.030	2.650	2.400	1.900	2.100	22.9	26.1	67.31	60.96	48.3	53.3
			7-5	0.900	1.030	2.950	2.700	2.200	2.400	22.9	26.1	74.93	68.58	55.9	60.9
			7-6	0.900	1.030	3.250	3.000	2.500	2.700	22.9	26.1	82.55	76.20	63.5	68.5
	<u> </u>	1													

NOTES:

E 12 - 66 BASE

- * The minimum applies in zone starting 0.375" (9.52 mm) from base seat.
- Measured from base seat to bulb-top line as determined by a ring gauge of 0.438" L.D. (11.13 mm).

7-1 to 7-6

PHYSICAL DIMENSIONS

		INCHE?]	MI	LLIMETE	RS	
Α	В	C	1)	Α	В	C)
MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.	MAX.	MIN.	MAX.
1.312	1.031	1.750	1.000	1.188	33.33	26.19	44.45	25.4	30.1
1.312	1.031	3.125	2.500	2.688	33.33	26.19	82.55	63.5	68.2
	MAX. 1.312	A B MAX. MAX.	A B C MAX. MAX. 1.312 1.031 1.750	A B C 1 MAX. MAX. MAX. MIN. 1.312 1.031 1.750 1.000	A B C D MAX. MAX. MIN. MAX. 1.312 1.031 1.750 1.000 1.188	A B C D A MAX. MAX. MIN. MAX. MAX. 1.312 1.031 1.750 1.000 1.188 33.33	A B C D A B MAX. MAX. MAX. MIN MAX. MAX. MAX. 1.312 1.031 1.750 1.000 1.188 33.33 26.19	A B C D A B C MAX. MAX. MAX. MIM MAX. MAX. MAX. MAX. 1.312 1.031 1.750 1.000 1.188 33.33 26.19 44.45	A B C D A B C III AAX. MAX. MAX. MAX. MAX. MAX. MAX. MAX.

8-5 to 8-6

В T 9 C INTERMEDIATE-SHELL OCTAL BASE

OUTLINE			INCHES			}	MI	LLIMETI	ERS	
DRAWING	Α		В	C	D	Α		В	С	D
NUMBER	MAX.	MIN.	MAX.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.
9-1	1.281	1.062	1.188	2.312	1.750	32.54	27.0	30.1	58.73	44.45
9-3	1.281	1.062	1.188	2.875	2.312	32.54	27.0	30.1	73.00	58.73
9-5	1.281	1.062	1.188	3.000	2.438	32.54	27.0	30.1	76.20	61.91
9-7	1.281	1.062	1.188	3.062	2.500	32.54	27.0	30.1	77.78	63.50
9-9	1.281	1.062	1.188	3.250	2.688	32.54	27.0	30.1	82.55	68.26
9-11	1.281	1.062	1.188	3.312	2.750	32.54	27.0	30.1	84.13	69.85.
9-13	1.281	1.062	1.188	3.375	2.812	32.54	27.0	30.1	85.72	71.43
9-15	1.281	1.062	1.188	3.438	2.875	32.54	27.0	30.1	87.31	73.02
9-33	1.281	1.062	1.188	3.812	3.250	32.54	27.0	30.1	96.83	82.55

PHYSICAL DIMENSIONS

9-1 TO 9-15 (ODD)

9 - 33

9-2 TO 9-16 (EVEN)

9-17 to 9-23 (OD) 9-50

INTERMEDIATE - SHELL OCTAL BASE

∠æ,	IRTED MINIATUR	E CAP					PHYS	SICAL	DIM	ENSIC	NS				
ì	B -		OUTLINE			INCI	HES					MILLIN	ETER\$		
П	— V ——	$\overline{}$	DRAWING	A		В	С	{)	A	ı	В	С	ı)
1		Ī	NUMBER	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
	ſ		9-18	1.312	1.062	1.188	3.312	2.312	2.750	33.33	27.0	30.1	84.13	58.8	69.8
	тэ		9-20	1.312	1.062	1.188	3.438	2.312	2.875	33.33	27.0	30.1	87.31	58.8	73.0
			9-22	1.312	1.062	1.188	3.500	2.312	2.938	33.33	27.0	30.1	88.90	58.8	74.6
		D	9-24	1.312	1.062	1.188	3.562	2.312	3.000	33.33	27.0	30.1	90.48	58.8	76.2
; إ															
		w	MALL – WAFER ITH METAL S ASE												
						18 T									

9-29 TO 9-32

	L		INCHES				MIL	LIMETE	R\$	
		A+	С		D		A +	C		D
	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
_	1.062	1.188	1.625	1.000	1.250	27.0	30.1	41.27	25.4	31.7
_	1.062	1.188	1.875	1.250	1.500	27.0	30.1	47.62	31.8	38.1
	1.062	1.188	2.125	1.500	1.750	27.0	30.1	53.97	38.1	44.4

9-56 9-57 1.750 2,000 27.0 30.1 60.32 44.5 50.8 1 188 2.375 9...58 1.062 66.67 50.8 9-59 1.062 1.188 2.615 2.000 2,250 27.0 30.1 57.1 2,500 27.0 30.1 73.02 57.2 63.5 9-60 1.062 1.188 2.875 2.250 9-61 1.062 1.188 3.125 2.500 2.750 27.0 30.1 79.37 63.5 69.8 1.062 3,000 9-62 1.188 3.375 2.750 27.0 30.1 85.72 69.9 76.2

PHYSICAL DIMENSIONS

NOTES:

OUTLINE DRAWING NUMBER 9-55

- Applies to minimum diameter except in the area of the seal.

9-55 to 9-62

NOTES:

- . The minimum applies in zone starting 0.375" (9.52 mm) from base seat.
- Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D.

9-67 TO 9-72

				PHYS	SICAL	DIM	ENSIC	ONS	_			
OUTLINE			inc	CHES					MILLIM	ETERS		
DRAWING		A+	С	۵		•		A.	С	Đ		E •
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.
9-73	1.062	1.188	1.990	1.710	1.150	1.400	27.0	30.1	50.54	43.43	29.2	35.5
9-74	1.062	1.188	2.240	1.960	1.400	1.650	27.0	30.1	56.90	49.78	35.6	41.9
9-75	1.062	1.188	2.490	2.210	1.650	1.900	27.0	30.1	63.24	56.13	41.9	48.2
9-76	1.062	1.188	2.740	2.460	1.900	2.150	27.0	30.1	69.59	62.48	48.3	54.6
9-77	1.062	1.188	2.990	2.710	2.150	2.400	27.0	30.1	75.94	68.83	54.6	60.9
9-78	1.062	1.188	3.240	2.960	2.400	2.650	27.0	30.1	82.29	75.18	61.0	67.3
9-79	1.062	1.188	3,490	3.210	2.650	2.900	27.0	30.1	88.64	81.53	67.3	73.6
9-80	1.062	1.188	3.740	3.460	2.900	3.150	27.0	30.1	94.99	87.88	73.7	80.0

- NOTES:
- . The minimum applies in zone starting 0.625" (15.88 mm) from base seat .
 - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D.

9-73 70 9-80

PHYSICAL DIMENSIONS

OUTLINE			INC	HES					MILLI	ETERS		
DRAWING	A	•	C	D	E	•	-	4.	C	D	E	
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.
9-82	1.062	1.188	2.210	1.830	1.310	1.490	27.0	30.1	56.13	46.48	33.3	37.8
9-83	1.062	1.188	2,510	2.130	1.610	1.790	27.0	30.1	63.75	54.10	40.9	45.4
9-84	1.062	1.188	2.810	2.430	1.910	2.090	27.0	30.1	71.37	61.72	48.6	53.0
9-85	1.062	1.188	3.110	2.730	2.210	2.390	27.0	30.1	78.99	69.34	56.2	60.7
9-86	1.062	1.188	3,410	3.030	2.510	2.690	27.0	30.1	86.61	76.96	63.8	68.3
9-87	1.062	1.188	3.710	3,330	2.810	2,990	27.0	30.1	94.23	84.58	71.4	75.9
								1				

NOTES:

- * The minimum applies in zone starting 0.375" (9.52 mm) from base seat.
- Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) 1.D.

9-82 TO 9-87

PHYSICAL DIMENSIONS

OUTLINE !			INCHES			1	MIL	LIMETE	25	
DRAWING	-	l»	С)	1	١.	С	-	D
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-88	1.062	1.188	2.625	2.000	2.250	27.0	30.1	66.67	50.8	57.1
9-89	1.062	1.188	2.875	2.250	2.500	27.0	30.1	73.0	57.2	63.5
9-90	1.062	1.188	3.125	2.500	2.750	27.0	30.1	79.3	63.5	69.8
9-91	1.062	1.188	3.375	2.750	3.000	27.0	30.1	85.7	69.9	76.2
9-92	1.062	1.188	3.625	3.000	3.250	27.0	30.1	92.0	76.2	82.5
9-93	1.062	1.188	3.875	3.250	3.500	27.0	30.1	98.4	82.6	88.9
9-94	1.062	1.188	4.125	3.500	3.750	27.0	30.1	104.77	88.9	95.2
9-95	1.062	1.188	4.375	3.750	4.000	27.0	30.1	111.12	95.3	101.6

NOTES:

- Applies to minimum diameter except in the area of the seal.

9-88 to 9-95

PHYSICAL DIMENSIONS

OUTLINE			INCHES		-	1	MIL	LIMETER	₹\$	
DRAWING	P	١-	С	E)	-		С)
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX,
9-96	1.062	1.188	2.625	2.000	2.250	27.0	30.1	66.67	50.8	57.1
9-97	1.062	1.188	2.875	2.250	2.500	27.0	30.1	73.0	57.2	63.5
9-98	1.062	1.188	3.125	2.500	2.750	27.0	30.1	79.30	63.5	69.8
9-99	1.062	1.188	3.375	2.750	3.000	27.0	30.1	85.70	69.9	76.2
9-100	1.062	1.188	3.625	3.000	3.250	27.0	30.1	92.07	76.2	82.5
9-101	1.062	1.188	3.875	3.250	3.500	27.0	30.1	98.42	82.6	88.9
9-102	1.062	1.188	4.125	3.500	3.750	27.0	30.1	104.77	88.9	95.2
9-103	1.062	1.188	4.375	3.750	4.000	27.0	30.1	111.12	95.3	101.6

NOTES:

. Applies to minimum diameter except in the area of the seal.

9-96 to 9-103

PHYSICAL DIMENSIONS

OUTLINE			INCHES				MIL	LIMETE	RS	
DRAWING		4.	C	1)		A »	С		D
NUMBER	MIN.	MAX.	MAX,	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-104	1.062	1.188	1.630	1.000	1.250	27.0	30.1	41.40	25.4	31.7
9-105	1.062	1.188	1.880	1.250	1.500	27.0	30.1	47.75	31.8	38.1
9-106	1.062	1.188	2.130	1.500	1.750	27.0	30.1	54.10	38.1	44.4
9-107	1.062	1.188	2.380	1.750	2.000	27.0	30.1	60.45	44.5	50.8
9-108	1.062	1.188	2.630	2.000	2.250	27.0	30.1	66.80	50.8	57.1
9-109	1.062	1.188	2.880	2.250	2.500	27.0	30.1	73.15	57.2	63.5
9-110	1.062	1.188	3.130	2.500	2.750	27.0	30.1	79.50	63.5	69.8
9-111	1.062	1.188	3.380	2.750	3.000	27.0	30.1	85.85	69.9	72.6

NOTES:

* Applies to minimum diameter except in the area of the seal.

9-104 to 9-111

PHYSICAL DIMENSIONS

OUTLINE DRAWING NUMBER	INCHES					MILLIMETERS				
	A-		С	D		Α-		С	D	
	MIN.	MAX.	MAX,	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-112	1.062	1.188	2.630	2.000	2.250	27.0	30.1	66.80	50.8	57.1
9-113	1.062	1.188	2.880	2.250	2.500	27.0	30.1	73.15	57.2	63.5
9-114	1.062	1.188	3.130	2.500	2.750	27.0	30.1	79.50	63.5	69.8
9-115	1.062	1.188	3.380	2.750	3.000	27.0	30.1	85.85	69.9	76.2
9-116	1.062	1.188	3.630	3.000	3.250	27.0	30.1	92.20	76.2	82.5
9-117	1.062	1.188	3.880	3.250	3.500	27.0	30.1	98.55	82.6	88.9
9-118	1.062	1.188	4.130	3.500	3.750	27.0	30.1	104.90	88.9	95.2
9-119	1.062	1.188	4.380	3.750	4.000	27.0	30.1	111.25	95.3	101.6

NOTES:

. Applies to minimum diameter except in the area of the seal.

9-112 To 9-119

PHYSICAL DIMENSIONS

OUTLINE	L		INCHES				MIL	LIMETER	32	
DRAWING		A.	C	1	0		1.	C		D
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-120	1.062	1.188	2.630	2.000	2.250	27.0	30.1	66.80	50.8	57.1
9-121	1.062	1.188	2.880	2.250	2.500	27.0	30.1	73.15	57.2	63.5
9-122	1.062	1.188	3.130	2.500	2.750	27.0	30.1	79.50	63.5	69.8
9-123	1.062	1.188	3.380	2.750	3.000	27.0	30.1	85.85	69.9	76.2
9-124	1.062	1.188	3.630	3.000	3.250	27.0	30.1	92.20	76.2	82.5
9-125	1.062	1.188	3.880	3.250	3.500	27.0	30.1	98.55	82.6	88.9
9-126	1.062	1.188	4.130	3.500	3.750	27.0	30.1	104.90	88.9	95.2
9-127	1.062	1.188	4.380	3.750	4.000	27.0	30.1	111.25	95.3	101.6

NOTES:

Applies to minimum diameter except in the area of the seal.

9-120 TO 9-127

9 - 128

PHYSICAL DIMENSIONS

OUTLINE			INCHES				MIL	LIMETE	RS	
DRAWING	- 1	۱.	С		•		١.	C)
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-130	1.062	1.188	2.350	1.710	1.970	27.0	30.1	59.69	43.4	49.9
9-131	1.062	1.188	2.650	2.010	2.270	27.0	30.1	67.31	51.0	57.5
9-132	1.062	1.188	2.950	2.310	2.570	27.0	30.1	74.93	58.7	65.2
9-133	1.062	1.188	3.250	2.610	2.870	27.0	30.1	82.55	66.3	72.8
9-134	1.062	1.188	3.550	2.910	3.170	27.0	30.1	90.17	74.0	80.5
9-135	1.062	1.188	3.850	3.210	3.470	27.0	30.1	97.79	81.6	88.1

NOTES:

« Applies to minimum diameter except in the area of the seal.

9-130 TO 9-135

PHYSICAL DIMENSIONS

OUTLINE			INCHES			MILLIMETERS					
DRAWING	- 1	ł.	С	Ε)	-	١.	C		D	
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	
9-136	1.062	1.188	2.350	1.710	1.970	27.0	30.1	59.69	43.4	49.9	
9-137	1.062	1.188	2.650	2.010	2.270	27.0	30.1	67.31	51.0	57.5	
9-138	1.062	1.188	2.950	2.310	2.570	27.0	30.1	74.93	58.7	65.2	
9-139	1.062	1.188	3.250	2.610	2.870	27.0	30.1	82.55	66.3	72.8	
9-140	1.062	1.188	3.550	2.910	3.170	27.0	30.1	90.17	74.0	80.5	
9-141	1.062	1.188	3.850	3.210	3.470	27.0	30.1	97.79	81.6	88.1	

NOTES:

* Applies to minimum diameter except in the area of the seal.

9-136 to 9-141

PHYSICAL DIMENSIONS

OUTLINE			INC	HES					MILLI	IETERS		
DRAWING	A B+		B *	C)	Α.	4	3 *	C		D
NUMBER	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-142	1.250	1.062	1.188	2.625	2.000	2.250	31.75	27.0	30.1	66.6	50.8	57.1
9-143	1.250	1.062	1.188	2.875	2.250	2.500	31.75	27.0	30.1	73.0	57.2	63.5
9-144	1.250	1.062	1.188	3.125	2.500	2.750	31.75	27.0	30.1	79.3	63.5	69.8
9-145	1.250	1.062	1.188	3.375	2.750	3.000	31.75	27.0	30.1	85.7	69.9	76.2
9-146	1.250	1.062	1.188	3.625	3.000	3.250	31.75	27.0	30.1	92.0	76.2	82.5
9-147	1.250	1.062	1.188	3.875	3.250	3.500	31.75	27.0	30.1	98.4	82.6	88.9
9-148	1.250	1.062	1.188	4.125	3.500	3.750	31.75	27.0	30.1	104.7	88.9	95.2
9-149	1.250	1.062	1.188	4.375	3.750	4.000	31.75	27.0	30.1	111.1	95.3	101.6

MOTES

E 12-103 BASE

. Applies to minimum diameter except in the areas of the seal.

INCHES

9-142 10 9-149

PHYSICAL DIMENSIONS

MILLIMETERS

UUTLINE						- 1						
DRAWING	IMPED		В	С)	A		}	C		D
NUMBER	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-150	1.281	1.062	1.188	3.062	2.250	2.500	32.53	27.0	30.1	77.7	57.2	63.5
9-151	1.281	1.062	1.188	3.312	2.500	2.750	32.53	27.0	30.1	84.1	63.5	69.8
9-152	1.281	1.062	1.188	3.562	2.750	3.000	32.53	27.0	30.1	90.4	69.9	76.2
9-153	1.281	1.062	1.188	3.812	3.000	3.250	32.53	27.0	30.1	96.8	76.2	82.5
9-154	1.281	1.062	1.188	4.062	3.250	3.500	32.53	27.0	30.1	103.1	82.6	88.9
9-155	1.281	1.062	1.188	4.312	3.500	3.750	32.53	27.0	30.1	109.5	88.9	95.2
9-156	1.281	1.062	1.188	4.562	3.750	4.000	32.53	27.0	30.1	115.8	95.3	101.6
9-157	1.281	1.062	1.188	4.812	4.000	4.250	32.53	27.0	30.1	122.2	101.6	107.9

B 6-8 BASE OR ANY DERIVED PIN COMBINATIONS

9-150 to 9-157

1-50 , SMALL		OUTLINE			INC	IES					MILLIN	METERS		
` ←— B•	1	DRAWING	A		В	C)	A	E	3	С)
- }	_	NUMBER	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MA)
H	1	9-158	1.377	1.062	1.188	3.062	2.250	2.500	34.97	27.0	30.1	77.7	57.2	63.5
`	1	9-159	1.377	1.062	1.188	3.312	2.500	2.750	34.97	27.0	30.1	84.1	63.5	69.8
		9-160	1.377	1.062	1.188	3.562	2.750	3.000	34.97	27.0	30.1	90.4	69.9	76.2
T 9	g	9-161	1.377	1.062	1.188	3.812	3.000	3.250	34.97	27.0	30.1	96.8	76.2	82.
. ,	l i	9-162	1.377	1.062	1.188	4.062	3.250	3.500	34.97	27.0	30.1	103.1	82.6	88.9
		9-163	1.377	1.062	1.188	4.312	3.500	3.750	34.97	27.0	30.1	109.5	88.9	95.2
	L I	9-164	1.377	1.062	1.188	4.562	3.750	4.000	34.97	27.0	30.1	115.8	95.3	101.6
	1 1	9-165	1.377	1.062	1.188	4.812	4.000	4.250	34.97	27.0	30.1	122.2	101.6	107.9

9-158 m 9-165

PHYSICAL DIMENSIONS

OUTLINE			INC	HE\$					MILLIN	METERS		
DRAWING	A B		В	C)	A	Ī	3	C		D
NUMBER	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
9-166	1.250	1.062	1.188	3.062	2.250	2.500	31.75	27.0	30.1	77.7	57.2	63.5
9-167	1.250	1.062	1.188	3.312	2.500	2.750	31.75	27.0	30.1	84.1	63.5	69.8
9-168	1.250	1.062	1.188	3.562	2.750	3.000	31.75	27.0	30.1	90.4	69.9	76.2
9-169	1.250	1.062	1.188	3.812	3.000	3.250	31.75	27.0	30.1	96.8	76.2	85.5
9-170	1.250	1.062	1.188	4.062	3.250	3.500	31.75	27.0	30.1	103.1	85.6	88.9
9-171	1.250	1.062	1.188	4.312	3.500	3.750	31.75	27.0	30.1	109.5	88.9	95.2
9-172	1.250	1.062	1.188	4.562	3.750	4.000	31.75	27.0	30.1	115.8	95.3	101.6
9-173	1.250	1.062	1.188	4.812	4.000	4.250	31.75	27.0	30.1	122.2	101.6	107.9

L B 8-251 BASE OR ANY DERIVED PIN COMBINATIONS

9-166 TO 9-173

ישם	ソヒル	A I	DIM	LENIC	IONS

OUTLINE		INC	HES		1 .	MILLIN	IETERS	
DRAWING		Α	С	D		1	С	D
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.
11-2	1.312	1.438	3.500	2.938	33.4	36.5	88.90	74.61
11-3	1.312	1.438	3.875	3.312	33.4	36.5	98.42	84.13
11-4	1.312	1.438	4.250	3.688	33.4	36.5	107.95	93.66
11-5	1.312	1.438	4.625	4.062	33.4	36.5	117.47	103.18

11-2 TO 11-5

PHYSICAL DIMENSIONS

OUTLINE			INCHES			MILLIMETERS						
DRAWING	1050		С	C)	-	<u> </u>	С		D		
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.		
11-6	1.312	1.438	3.875	2.938	3.312	33.4	36.5	98.2	74.7	84.1		
11-7	1.312	1.438	4.250	3.312	3.688	33.4	36.5	107.95	84.2	93.6		
11-8	1.312	1.438	4.625	3.688	4.062	33.4	36.5	117.47	93.7	103.1		
11-9	1.312	1.438	5.000	4.062	4.432	33.4	36.5	127.0	103.2	112.7		
										I		

11-6 TO 11-9

NOMINAL CAP DIAMETERS
MINIATURE OR SKIRTED MINIATURE - 0.250"

SMALL - 0.360" MEDIUM- 0.566"

PHYSICAL DIMENSIONS

OUTLINE		INC	HES			MILLIN	AETERS	
DRAWING		Ą	С	D	,	1	С	D
NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.
12-13	1.438	1.562	3.500	2.938	36.6	39.6	88.90	74.61
12-14	1.438	1.562	3.875	3.312	36.6	39.6	98.42	84.13
12-15	1.438	1.562	4.250	3.688	36.6	39.6	107.95	93.66
12-16	1.438	1.562	4.625	4.062	36.6	39.6	117.47	103.18
12-17	1.438	1.562	5.000	4.438	36.6	39.6	127.0	112.71

12-13 to 12-17

PHYSICAL DIMENSIONS

DRAWING NUMBER MIN 12-18 1.43 12-19 1.43		C MAX. 3.875	MIN.	MAX.	MIN.	MAX.	C MAX.	MIN.	MAX.
12-18 1.43		-			MIN.	MAX.	MAX.	MIN.	MAX
	8 1.562	3.875	2 020						
12-19 1.43			2.938	3.312	36.6	39.6	98.42	74.7	84.1
	8 1.562	4.125	3.312	3.688	36.6	39.6	107.95	84.2	93.0
12-20 1.43	8 1.562	4.625	3.688	4.062	36.6	39.6	117.47	93.7	103.
12-21 1.43	8 1.562	5.000	4.062	4.438	36.6	39.6	127.0	103.2	112.
12-22 1.43	8 1.562	5.375	4.438	4.812	36.6	39.6	136.5	112.8	122.

12-18 TO 12-22

PHYSICAL DIMENSIONS

OUTLINE		INCHES					MI	LLIMET	ERS	
DRAWING	Α		В	С	D	Α		В	С	D
NUMBER	MAX.	MIN.	MAX.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX.
12-23	1.719	1.438	1.562	3.500	2.938	43.65	36.6	39.6	88.90	74.61
12-24	1.719	1.438	1.562	3.875	3.312	43.65	36.6	39.6	98.42	84.13
12-25	1.719	1.438	1.562	4.250	3.688	43.65	36.6	39.6	107.95	93.66
12-26	1.719	1.438	1.562	4.625	4.062	43.65	36.6	39.6	117.47	103.18
12-27	1.719	1.438	1.562	5.000	4.438	43.65	36.6	39.6	127.0	112.71
			•					-		

SHORT JUMBO SHELL OCTAL BASE

12-23 to 12-27

B →	OUTLIN DRAWIN NUMBER
	12-28
TIO	12-29
""	12-30
	D 12-31
	12-32
 	h L
	↓
<u> 0000</u>	SHORT JUMBO SHELL OCTAL BASE
	TI2

OUTLINE			INCHES]		MI	LLIMETI	ERS	
DRAWING	Α		3	С	D	A		В	C	D
NUMBER	MAX.	MIN.	MAX.	MAX.	MAX.	MAX.	MIN.	MAX.	MAX.	MAX
12-28	1.719	1.438	1.562	3.500	2.938	43.65	36.6	39.6	88.90	74.61
12-29	1.719	1.438	1.562	3.875	3.312	43.65	36.6	39.6	98.42	84.13
12-30	1.719	1.438	1.562	4.250	3.688	43.65	36.6	39.6	107.95	93.66
12-31	1.719	1.438	1.562	4.625	4.062	43.65	36.6	39.6	117.47	103.18
12-32	1.719	1.438	1.562	5.000	4.438	43.65	36.6	39.6	127.0	112.71

12-28 to 12-32

} ← Β →	4	OUTLINE			INC	1ES					MILLIN	ETERS		
 	-	DRAWING	A		3	С		1	A	E	3	С	1)
	11	NUMBER	MAX.	MN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	MAX.	MIN.	MA)
7	١ ١	12-33	1.719	1.438	1.562	3.875	2.938	3.312	43.65	36.6	39.6	98.42	74.7	84.
		12-34	1.719	1.438	1.562	4.250	3.312	3.688	43.65	36.6	39.6	107.95	84.2	93.0
TIZ		12-35	1.719	1.438	1.562	4.625	3.688	4.062	43.65	36.6	39.6	117.47	93.7	103.1
	D	12-36	1.719	1.438	1.562	5.000	4.062	4.438	43.65	36.6	39.6	127.0	103.2	112.7
	\mathbf{I}	12-37	1.719	1.438	1.562	5.375	4.438	4.812	43.65	36.6	39.6	136.52	112.8	122.2
	기	,		-	-	·		·						
	1													
UUUU														
		OCTAL	JUMBO S	HBLL										

C1-1 OR C1-34 PHYSICAL DIMENSIONS INCHES MILLIMETERS OUTLINE DRAWING C C ٨ NUMBER MAX. MIN. MAX. MAX. MIN. MAX. MAX. MIN. MAX. MAX. MIN. MAX. 2.938 1.719 1.438 3.875 84.1 12-38 1.562 3.312 43.65 36.6 39.6 98.42 74.7 TIZ 12-39 1.719 1.438 1.562 4.250 3.312 3.688 43.65 36.6 39.6 107.95 84.2 93.6 12-40 1.719 1.438 3.688 4.062 43.65 39.6 117.47 93.7 103.1 1.562 4.625 36.6 12-41 1.719 1.438 1.562 5.000 4.062 4.438 43.65 36.6 39.6 127.0 103.2 112.7 C 12-42 1.719 1.438 1.562 5.375 4.438 4.812 43.65 36.6 39.6 136.5 112.8 122.2 LARGE -- WAFER OCTAL WITH METAL SLEEVE BASF

12-38 to 12-42

					PHYS	ICAL	DIME	NSIC	NS			
L A		OUTLINE			INCHES				MIL	LIMETE	RS	
		DRAWING		A+	C		D		A +	C		D
T		NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
17	7.	12-52	1.437	1.563	1.875	1.250	1.500	36.5	39.7	47.62	31.8	38.1
	- 11	12-53	1.437	1.563	2125	1.500	1.750	36.5	39.7	53.97	38.1	44.4
11		12-54	1.437	1.563	2.375	1.750	2.000	36.5	39.7	60.32	44.5	50.8
C T 12	'	1255	1.437	1.563	2.625	2.000	2.250	36.5	39.7	66.67	50.8	57.1
. 112	D	1256	1.437	1.563	2.875	2.250	2.500	36.5	39.7	73.00	57.2	63.5
	11	12-57	1.437	1.563	3.125	2.500	2,750	36.5	39.7	79.3	63.5	69.8
		1258	1.437	1.563	3.375	2.750	3,000	36.5	39.7	85,7	69.9	76.2
The second	7-1	12-59	1.437	1.563	3.625	3.000	3.250	36.5	39.7	92.0	76.2	82.5
1		1260	1.437	1.563	3.875	3.250	3.500	36.5	39.7	98.4	82.6	88.9
E 12 - 74 BASE	_7	1261	1.437	1.563	4.125	3.500	3.750	36.5	39.7	104.77	88.9	95.2
		1262	1.437	1,563	4.375	3.750	4.000	36.5	39.7	111.12	95.3	101.6
			12-	-52	то 12	2-62	NOT			minimun a of the :	i diamete seal.	r except

E 9--76 BASE

OUTLINE

NOTES:

- * The minimum applies in zone starting 0.375" (9.52 mm) from base seat,
- Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D.

12-63 to 12-68

PHYSICAL DIMENSIONS

OUTLINE			INCHES		ı	l	MIL	LIMETE	RS	
DRAWING	,	l*	С	£)	A+		C	D	
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
12-69	1.438	1.562	3.250	2.610	2.870	36.6	39.6	82.55	63.3	72.8
12-70	1.438	1.562	3.550	2.910	3.170	36.6	39.6	90.17	74.0	80.5
12-71	1.438	1.562	3.850	3.210	3.470	36.6	39.6	97.79	81.6	88.1
12-72	1.438	1.562	4.150	3.510	3.770	36.6	39.6	105.41	89.2	95.7
12-73	1.438	1.562	4.450	3.810	4.070	36.6	39.6	113.03	96.8	103.3
12-74	1.438	1.562	4.750	4.110	4.370	36.6	39.6	120.65	104.4	110.9

NOTES:

* Applies to minimum diameter except in the area of the seal.

12-69 to 12-74

PHYSICAL DIMENSIONS

OUTLINE			INCHES		İ		Mil	LIMETER	tS	
DRAWING		! *	С)	Ţ,	١.	C	D	
NUMBER	MIN,	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
12-75	1.437	1.563	2.625	2.000	2.250	36.5	39.7	66.67	50.8	57.1
12-76	1.437	1.563	2.875	2.250	2.500	36.5	39.7	73.00	57.2	63.5
12-77	1.437	1.563	3.125	2.500	2.750	36.5	39.7	79.3	63.5	69.8
12-78	1.437	1.563	3.375	2.750	3.000	36.5	39.7	85.7	69.9	76.2
12-79	1.437	1.563	3.625	3.000	3.250	36.5	39.7	92.0	76.2	85.5
12-80	1.437	1.563	3.875	3.250	3.500	36.5	39.7	98.4	82.6	89.9
12-81	1.437	1.563	4.125	3.500	3.750	36.5	39.7	104.77	89.9	95.2
12-82	1.437	1.563	4.375	3.750	4.000	36.5	39.7	111.12	95.3	101.6

NOTES:

* Applies to minimum diameter except in the area of the seal.

1	D۴	17	/ر	10	٨	ı	n	A	FI	NC	10	NS
1		11	- 3	ľ	А	Ŀ	u	ľ	LEI	C.F	w	M.S

OUTLINE			INCHES				MIL	LIMETER	25	
DRAWING	,		С	D)	A		С	1	D
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
12-83	1.437	1.563	2.625	2.000	2.250	36.5	39.7	66.67	50.8	57.1
12-84	1.437	1.563	2.875	2.250	2.500	36.5	39.7	73.0	57.2	63.5
12-85	1.437	1.563	3.125	2.500	2.750	36.5	39.7	79.30	63.5	69.8
12-85	1.437	1.563	3.375	2.750	3.000	36.5	39.7	85.70	69.9	76.2
12-87	1.437	1.563	3.625	3.000	3.250	36.5	39.7	92.07	76.2	82.5
12-88	1.437	1.563	3.875	3.250	3.500	36.5	39.7	98.42	82.6	88.9
12-89	1.437	1.563	4.125	3.500	3.750	36.5	39.7	104.77	88.9	95.2
12-90	1.437	1.563	4.375	3.750	4.000	36.5	39.7	111.12	95.3	101.6

NOTES:

- Applies to minimum diameter except in the area of the seal.

12-83 TO 12-90

PHYSICAL DIMENSIONS

OUTLINE			INCHES				MIL	LIMETE	25	
DRAWING	1	4.	C	ı)	1	١.	C		D
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
12-91	1.438	1.562	1.880	1.250	1.500	36.6	39.6	47.75	31.8	38.1
12-92	1.438	1.562	2.130	1.500	1.750	36.6	39.6	54.10	38.1	44.4
12-93	1.438	1.562	2.380	1.750	2.000	36.6	39.6	60.45	44.5	50.8
12-94	1.438	1.562	2.630	2.000	2.250	36.6	39.6	66.80	50.8	57.1
12-95	1.438	1.562	2.880	2.250	2.500	36.6	39.6	73.15	57.2	63.5
12-96	1.438	1.562	3.130	2.500	2.750	36.6	39.6	79.50	63.5	69.8
12-97	1.438	1.562	3.380	2.750	3.000	36.6	39.6	85.5	69.9	76.2
12-98	1.438	1.562	3.630	3.000	3.250	36.6	39.6	92.20	76.2	82.5
12-99	1.438	1.562	3.880	3.250	3.500	36.6	39.6	98.55	82.6	88.9
12-100	1.438	1.562	4.130	3.500	3.750	36.6	39.6	104.90	88.9	95.2
12-101	1.438	1.562	4.380	3.750	4.000	36.6	39.6	111.25	95.3	101.6

* Applies to minimum diameter except in the area of the seat.

12-91 TO 12-101

PHYSICAL DIMENSIONS

OUTLINE			INCHES				MIL	LIMETER	TERS		
DRAWING		A.	С)	-	١.	C	D		
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	
12-102	1.438	1.562	2.630	2.000	2.250	36.6	39.6	66.80	50.8	57.1	
12-103	1.438	1.562	2.880	2.250	2.500	36.6	39.6	73.15	57.2	63.5	
12-104	1.438	1.562	3.130	2.500	2.750	36.6	39.6	79.50	63.5	69.8	
12-105	1.438	1.562	3.380	2.750	3.000	36.6	39.6	85.50	69.9	76.2	
12-106	1.438	1.562	3.630	3.000	3.250	36.6	39.6	92.20	76.2	85.5	
12-107	1.438	1.562	3.880	3.250	3.500	36.6	39.6	98.55	82.6	88.9	
12-108	1.438	1.562	4.130	3.500	3.750	36.6	39.6	104.90	88.9	95.2	
12-109	1.438	1.562	4.380	3.750	4.000	36.6	39.6	111.25	95.3	101.6	

NOTES:

- Applies to minimum diameter except in the area of the seal.

12-102 TO 12-109

PHYSICAL DIMENSIONS INCHES MILLIMETERS D C C MIN. MAX. MAX. MIN. MAX. MIN. MAX. MAX. MIN. MAX. 1.562 1.438 2.000 2.630 2.250 36.6 66.80 39.6 50.8 1.438 1.562 2.880 2.250 2.500 36.6 39.6 73.15 57.2 1.438 1.562 3.130 2.500 2.750 36.6 39.6 79.50 63.5

12 -110 12-111 63.5 12-112 69.8 12-113 1.438 1.562 3.380 2.750 3.000 36.6 39.6 85.85 69.9 76.2 12-114 1.438 1.562 3.630 3.000 3.250 36.6 39.6 92.20 76.2 82.5 12-115 1.438 1.562 3.880 3.250 3.500 36.6 39.6 98.55 82.6 88.9 12-116 1.438 1.562 4.130 3.500 3.750 36.6 39.6 104.90 88.9 95.2 12-117 1.438 1.562 4.380 4.000 3.750 36.6 39.6 111.25 95.3 101.6

NOTES:

OUTLINE

DRAWING-

NUMBER

. Applies to minimum diameter except in the area of the seal.

12-110 to 12-117

PHYSICAL DIMENSIONS

L		INCHES				MIL	LIMETE	RS	
	A+	C		D		A .	C		D
MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.
1.437	1.563	4.625	4.000	4.250	36.5	39.7	117.4	101.6	107.9
1.437	1.563	4.875	4.250	4.500	36.5	39.7	123.8	108.0	114.3
	<u> </u>	ļ							
ļ									
	MIN. 1.437	1.437 1.563	A+ C MIN. MAX. MAX. 1.437 1.563 4.625	MIN. MAX. MAX. MIN. 1.437 1.563 4.625 4.000	A+ C D MIN. MAX. MAX. MIN. MAX. 1.437 1.563 4.625 4.000 4.250	A+ C D IIII MIN. MAX. MAX. MIN. MAX. MIN. 1.437 1.563 4.625 4.000 4.250 36.5	A+ C D A+ MIN. MAX. MAX. MIN. MAX. MIN. MAX. 1.437 1.563 4.625 4.000 4.250 36.5 39.7	A+ C D A+ C MIN. MAX. MAX. MIN. MAX. MIN. MAX. MAX. 1.437 1.563 4.625 4.000 4.250 36.5 39.7 117.4	A+ C D A+ C MIN. MAX. MAX. MIN. MAX. MIN. MAX. MAX. MIN. 1.437 1.563 4.625 4.000 4.250 36.5 39.7 117.4 101.6

NOTES:

* Applies to minimum diameter except in the area of the seal.

12-118 TO 12-119

PHYSICAL DIMENSIONS

OUTLINE			INCHES		f	MILLIMETERS					
DRAWING	A•		C	0		Α+		C	D		
NUMBER	MIN.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MIN.	MAX.	
12-121	1.438	1.562	3.250	2.610	2.870	36.6	39.6	82.55	66.3	72.8	
12-122	1.438	1.562	3.550	2.910	3.170	36.6	39.6	90.17	74.0	80.5	
12-123	1.438	1.562	3.850	3.210	3.470	36.6	39.6	97.79	81.6	88.1	
12-124	1.438	1.562	4.150	3.510	3.770	36.6	39.6	105.41	89.2	95.7	
12-125	1.438	1.562	4.450	3.810	4.070	36.6	39.6	113.03	96.8	103.3	
12-126	1.438	1.562	4.750	4.110	4.370	36.6	39.6	120.65	104.4	110.9	

NOTES:

. Applies to minimum diameter except in the area of the seal.

12-121 TO 12-126

E 12-74 BASE

. Applies to minimum diameter except in the area of the seal.

12-127 TO 12-136

12 - 137 TO 12 - 144

NOMINAL CAP DIAMETERS MINIATURE OR SIGRTED MINIATURE - 0.250"

SMALL - 0.360* MEDIUM - 0.566"

	<u> </u>	OUTLINE		*****	INCH	1E\$					MILLIN	ETERS		
\perp		ORAWING NUMBER 14-5 14-6	- 1	١.	В	C)		A	В	C	Į)
	1	NUMBER	MIN.	MAX.	MAX.	MAX.	MIN.	MAX.	MIN.	MAX.	MAX.	MAX.	MIN.	MAX
	11	14-5	1.687	1.813	1.450	4.812	4.000	4.250	42.9	46.1	36.8	122.2	101.6	107.5
		14-6	1.687	1.813	1.450	5.062	4.250	4.500	42.9	46.1	36.8	128.6	108.0	114.3
T 14		14-7	1.687	1.813	1.450	5.312	4.500	4.750	42.9	46.1	36.8	135.0	114.3	120.6
T 14	a	14-8	1.687	1.813	1.450	5.562	4.750	5.000	42.9	46.1	36.8	141.3	120.7	127.0
	1	14-9	1.687	1.813	1.450	5.812	5.000	5.250	42.9	46.1	36.8	147.6	127.0	133.3
		14-10	1.687	1.813	1.450	6.062	5.250	5.500	42.9	46.1	36.8	154.0	133.4	139.7
(14-11	1.687	1.813	1.450	6.312	5.500	5.750	42.9	46.1	36.8	160.3	139.7	146.0
	1													
		— 98-261 B/	ASE											
- B														

Physical dimensions of tube types not conforming to standard outline drawings appear on the following nine pages.

T-X TABLE

The following footnotes and symbols appear in the T-X Table:

- * FL-Flying Leads SL-Short Leads
- † Small Top Cap
- ‡ Plate terminal extends from top of envelope—dia. 0.031", length $\frac{5}{32}$ "
- § Skirted Miniature Top Cap
- ¶ Medium Top Cap
- # Special Insulated Miniature Top Cap
- || Plate terminal extends from top of envelope—diameter 0.566"
- + C1-5, Medium Top Cap (with Ceramic Collar) or C1-6, Skirted Medium Top Cap
- Large Top Cap
- ♦ Solder lugs on filament pins
- ▲ Flexible Lead with Lug
- ⊕ Plate Pin(s) on Top

OUTLINE DRAWINGS

T-X TABLE — Physical Characteristics of Types Not Conforming to Standard Outline Drawings

			Max D	imensions in In	ches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
OA5	T-5½	7-Pin Miniature	0.750	1.625	1.375
OY4-G	T-7	Octal	1.078	2.625	2.063
OZ4-G	T-7	Octal	1.063	2.625	2.063
1AE5	T-2 x 3	Inline Subm-FL*	0.400 x 0.300		1.500
1BH2	T-6½	9-Pin Miniature ♦†	0.875	2.716	2.250
1BH2A	T-6½	9-Pin Miniature \$\$†	0.875	2.716	2.250
1BV2	T-6½	3-Pin—Solder Lugs ♦§	0.875	2.716	2.250
1G3-GTA	T-9	Glass †	1.377	3.563	3.000
1K3A 1N2A	T-9	Glass †	1.377	3,563	3.000
1N6-G	T-12 T-9	Octal †	1.562 1.188	3.562 4.000	3.438
1T2	1-9	Diode	0.531	1.906	
1Y2	ST-12	4-Pin †	1.563	4.594	3.969
172	T-5½	· 7-Pin Miniature §	0.750	2,700	2.450
2B3	T-9	Octal †	1.281	4.063	3.500
2B22	Special	Glass & Metal	1.313	1.938	3.300
2C22	T-9	Octal §	1.313	3.250	2.688
2C39	Special	Metal & Ceramic	1.260	2.750	1
2C39A	Special	Metal & Ceramic	1.260	2.750	
2C39WA	Special	Metal & Ceramic	1.260	2.750	
2C39B	Special	Ceramic & Metal	1.266	2.750	
2C40	Special	Glass & Metal	1.312	2.563	<u> </u>
2C40-A	Special	Glass & Metal	1.312	2.563	1
2C42	Special	Glass & Metal	1,312	2.688	
2C43	Special	Glass & Metal	1,312	2.688	
2C46	Special	Glass & Metal	1.312	2.688	
2C50	T-9	Octal	1.315	2.750	3.313
2CN3-A	T-9	Octal †	1.281	3.812	3.250
2E24	T-9	Octal †	1.313	3.656	3.094
2E26	T-9	Octal †	1.313	3.656	3.094
2E31	T-2 x 3	Inline Subm-FL *	0.400 x 0.300		1.563
2E32	T-2 x 3	Inline Subm-SL *	0.400 x 0.300		1.563
2E35	T-2 x 3	Inline Subm-FL *	0.390 x 0.290		1.563
2E36	T-2 x 3	Inline Subm-SL *	0.390 x 0.290		1.563
2E41	T-2 x 3	Inline Subm-FL *	0.390 x 0.290		1.563
2E42	T-2 x 3	Inline Subm-SL *	0.390 x 0.290		1.563
2G21	T-2 x 3	Inline Subm-FL *	0.400 x 0.300		1.563
2G22	T-2 x 3	Inline Subm-SL *	0.400 x 0.300		1.563
2J2	T-6 ½	Noval-9 Pin	0.827	3.000	2.710
2L2	Special	Clear—Wire Leads	0.748	2.284	
2V2	T-11	Octal †	1.438	4.500	3.938
3A3-A	T-9	Glass †	1.188	3.812	3.250
3B2	T-12	Octal †	1.719	5.219	4.688
3B28	Special	4-Pin ¶	2.063	6.150	5.530
3C23	ST-16	4-Pin ¶	2.063	6.125	5.500
3CA3A	T-9	Glass—Octal †	1.188	3.812	3.250
3CN3	T-9	Octal †	1.281	3.812	3.250
3CN3-A	T-9	Octal †	1.281	3.812	3.250
3CU3	T-9	Octal †	1.281	3.812	3.250
3CX3	T-9	Octal †	1.281	3.812	3.250
3CZ3	T-9	Glass—Octal †	1.188	4.312	3.750
3CZ3A	T-9	Glass—Octal †	1.188	4.312	3.750
3DA3	T-9	Octal †	1.281	3.812	3.250
3DB3	T-9	Octal †	1.281	3.812	3.250
3DF3A 3DS3	Special Special	Glass—Octal † Glass—Octal with Bonded Shield †	1.205	3.812	3.250
3EH7	T-6 1/2	9-Pin Miniature	0.875	2.406	2.156
3EJ7	T-6½	9-Pin Miniature	0.875	2.406	2.156
3FW7	Special	Metal Subm.	0.512	1.969	2.100
3FX7	T-3	Special Subm.	0.512	1.969	
4EH7	T-61/2	9-Pin Miniature	0.875	2.406	2.156
	· · · / #				****

T-X TABLE — Physical Characteristics of Types

	T		May T	Dimensions in I	nohoo
Tube	l			7"	r
Туре	Envelope	Style	Diameter	Over-all	Seated Weight
4EJ7	T-61/2	9-Pin Miniature	0.875	Length 2.406	Height 2.156
4GJ7	T-6½	9-Pin Miniature	0.875	2.000	1.750
5AR4	Special	Octal	1,500	3.438	2.875
5AT4	ST-16	Octal	2,000	4.750	4.175
5AU4	T-12	Octal	1.688	4.750	4.188
5AW4	T-12	Octal	1.563	5.188	4.625
5GJ7	T-61/2	9-Pin Miniature	0.875	2.000	1.750
5R4-GYA	T-12	Octal	1.563	4.938	4.375
5U4-GA	T-11	Octal	1.438	4.750	4.188
6AB9	T-61/2	10-Pin Miniature	0.875	2,190	1.660
6AL3	T-61/2	9-Pin Miniature §	0.875	3.500	3.250
6AL6-G	ST-16	Octal §	2.063	5.688	5.125
6AR6	T-11	Octal	1.438	3.469	2.906
6AV5-GA	T-11 or	Octal	1.438	4.000	3.438
	T-12		1.563	4.000	3.438
6AY3-B	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6BA3	T-9	Novar	1.188	3.080	2.700
6BA4	Special	Rocket Type	1.005	2.438	
6BD4	T-12	Octal †	1.719	5.125	4.625
6BD4-A	T-12	Octal †	1.719	5.125	4.625
6BD5-GT	T-9	Octal	1.281	3.875	3.313
6BH3-A 6BQ6-GA	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6BQ6-GA	T-11 or T-12	Octal §	1.438 1.563	4.250 4.250	3.688 3.688
6BR3	T-6½	9-Pin Miniature §	0.875	3.500	3.250
6BS3-A	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6BU4	T-12	Octal †	1.719	5.063	4.531
6BU5	T-12	Octal †	1.688	4.875	4.313
6BY4	Special	Ceramic & Metal	0.330	0.438	*.010
6CA7	T-10	Octal	1.500	4.438	3.875
6C B5	ST-16	Octal †	2.063	5.125	4.594
6CK3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6CL3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6CM3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
6СТ3	T-61/2	9-Pin Miniature 0.875		3.125	2.875
6CU6	T-11 or	Octal §	1.438	4.250	3.688
	T-12		1.563	4.250	3.688
6DB5	T-6½	9-Pin Miniature	0.875	2.750	2.500
6DL4	T-6½	9-Pin Miniature	0.875	1.968	1.718
6DQ6	T-12	Octal §	1.563	4.250	3.750
6DW4-A 6DW4-B	T-9 T-9	Novar (Fo. 90) IV	1.188	3.410	3.030
6DZ8		Novar (E9-89) Base	1.188	3.005	2.625
6EH7	T-6½ T-6½	9-Pin Miniature	0.875	3.125	2.875
6EJ7	T-6½	9-Pin Miniature 9-Pin Miniature	0.875	2.406	2.156
6FG6	T-6½	9-Pin Miniature	0.875 0.875	2.406 2.844	2.156
6FW7	Special	Metal Subm.	0.512	1,969	2.594
6FX7	T-3	Special Subm.	0.512	1.969	
6GB5	T-9	Magnoval (E9-23) Base	1.188	4.109	2 766
6GF7	T-9	Novar	1.188		3.766
6GJ5	T-12	Novar (E9-76) Base §	1.563	3.000 3.550	2.620 3.040
6GJ5-A	T-12	Novar (E9-88) Base §	1.563	3.505	3.040
6GJ7	T-61/2	9-Pin Miniature	0.875	2.000	1.750
6GK7	T-61/2	9-Pin Miniature	0.875	2.406	2.156
6GV7	T-6½	9-Pin Miniature	0.875	2.206	1.930
6HU6	T-6½	9-Pin Miniature	0.875	2.844	2.594
6HV5	T-12	Glass	1.563	4.250	3.875
6HV5A	T-12	Glass	1.563	4.250	3.875
6JB6-A	T-12	Novar (E9-88) Base §	1.563	3.505	3.125
6JD5	T-12	Glass	1.563	4.250	3.875
6JE6	T-12	Novar †	1.563	4.600	4.220
6JF6	T-12	Novar (E9-88) Base §	1.563	3.550	3.170
		. ,			

Not Conforming to Standard Outline Drawings

	1		Max I	Dimensions in I	nches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
6JH5	T-12	Glass	1.563	4.250	3.875
6JK5	T-12	Glass	1.563	4.250	3.875
6JT6	T-12 T-12	Novar	1.563	3.180	2.800 3.170
6JU6 6KG6	T-12	Novar (E9-76 or E9-88) Base § Magnoval †	1.563	4.906	4.312
6KM6	T-12	Novar (E9-88) Base §	1.563	3.550	3,170
6LF6	T-12	Compactron	1.563	4.950	4.570
6LV6	T-12	Glass §	1.563	4.950	4.570
6M3	T-12	Octal §	1.563	4.875	4.313
6M B6	T-12	Glass †	1.563	4.750	4.375
6MC6	T-12	Novar †	1.562	4.625	4.250
6MD8	T-9	Novar (E9-75 or E9-89) Base	1.188	2.960	2.580
_6V3-A	T-61/2	9-Pin Miniature §	0.875	3.063	2.750
7GV7	T-6½	9-Pin Miniature	0.875	2.206	1.930
8GJ7	T-61/2	9-Pin Miniature	0.875	2.000	1.750
9DZ8	T-61/2	9-Pin Miniature	0.875 2.063	3.125	2.875 4.750
10 12AV5-GA	ST-16 T-11 or	4-Pin Octal	1.438	5.375 4.000	3.438
IZAVS-GA	T-12	Octai	1.563	4.000	3.438
12AY3-A	T-9	Novar (E9-89) Base	1.188	3.005	2.625
12BQ6-GA	T-11 or T-12	Octal §	1.438 1.563	4.250 4.250	3.688 3.688
12BR3	T-61/2	9-Pin Miniature §	0.875	3,500	3.250
12BS3-A	T-9	Novar (E9-89) Base	1.188	3,005	2.625
12CK3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
12CL3	T-9	Novar (E9-89) Base	1.188	3.005	2,625
12CT3	T-61/2	9-Pin Miniature	0.875	3.125	2.875
12CU6	T-11 or T-12	Octal §	1.438 1.563	4.250 4.250	3.688 3.688
12DB5	T-61/2	9-Pin Miniature	0.875	2.750	2.500
12DQ6	T-12	Octal §	1.563	4.250	3.750
12DZ8	T-61/2	9-Pin Miniature	0.875	3.125	2.875
12GJ5	T-12	Novar (E9-76) Base §	1.563	3.550	3.040
12JB6-A	T-12	Novar (E9-88) Base §	1.563	3.505	3.125
12JT6	T-12	Novar Page 100 P	1.563	3.180	2.800
12MD8 15AB9	T-9 T-61/2	Novar (E9-75 or E9-89) Base 10-Pin Miniature	1.188 0.875	2.960 2.190	2.580 1.660
16AQ3	T-61/2	9-Pin Miniature †	0.875	3.500	3.250
17AB9	T-61/2	10-Pin Miniature	0.875	2.190	1.660
17AV5-GA	T-11 or	Octal	1.438	4.000	3.438
17AY3-A	T-12 T-9	Novar (E9-89) Base	1.563	4.000 3.005	3.438 2.625
17BF11-A	T-9	Compactron	1.188	2,250	1,875
17BH3-A	T-9	Novar (E9-89) Base	1,188	3.005	2.625
17BR3	T-61/2	9-Pin Miniature §	0.875	3.500	3.250
17BS3-A	T-9	Novar (E9-89) Base	1.188	3.005	2.625
17CK3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
17CL3	T-9	Novar (E9-89) Base	1.188	3.005	2.625
17CT3	T-61/2	9-Pin Miniature	0.875	3.125	2.875
17DQ6	T-12	Octal §	1.563	4.250	3.750
17GJ5	T-12	Novar (E9-76) Base §	1.563	3,550	3.040
17GJ5-A 17JB6-A	T-12 T-12	Novar (E9-88) Base § Novar (E9-88) Base §	1.563	3.505 3.505	3.125 3.125
17JT6	T-12	Novar (£9-66) Base §	1.563	3.180	2.800
17LD8	T-9	9T9	1.188	3.110	2.730
18DZ8	T-61/2	9-Pin Miniature	0.875	3.125	2.875
18GB5	T-9	Magnoval (E9-23) Base	1.188	4.109	3.766
21KQ6	T-9	Magnoval (E9-23) Base §	1.188	4.133	3.760
22BH3-A	T-9	Novar (E9-89) Base	1.188	3.005	2.625
22JF6	T-12	Novar (E9-88) Base §	1.563	3.550	3.170
22JU6	T-12	Novar (E9-76 or E9-88) Base §	1.563	3.550	3.170
22KM6	T-12	Novar (E9-88) Base §	1.563	3.550	3.170
23 M B6	T-12	Glass †	1.563	4.750	4.375

T-X TABLE — Physical Characteristics of Types

	1	I was a second of the second o	Max D	imensions in I	nches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
25AV5-GA	T-11 or T-12	Octal	1.438 1.563	4.000 4.000	3.438 3.438
25BQ6-GA	T-11 or T-12	Octal §	1.438 1.563	4.250 4.250	3.688 3.688
25BR3	T-61/2	9-Pin Miniature §	0.875	3,500	3.250
25CM3	T-9	Novar (E9-89) base	1.188	3.005	2.625
25CT3	T-6½	9-Pin Miniature	0.875	3.125	2.875
25CU6	T-11 or T-12	Octal §	1.438 1.563	4.250 4.250	3.688 3.688
25DQ6	T-12	Octal §	1.563	4.250	3.750
25E5	T-9	Octal §	1.281	4.313	3.750
25EC6	T-12	Octal †	1.563	4.750	4.188
25HX5	T-9	Magnoval	1.188	3.511	3.169
26E6-G	T-11	Octal	1.438	3.125	2.563
FG-27-A	Special	4-Pin ¶	3.000	7.250	0.700
27GB5	T-9	Magnoval (E9-23) Base	1.188	4.109	3.766
27KG6	T-12	Magnoval †	1.563	4.906	4.312
28GB5	T-9	Magnoval (E9-23) Base	1.188	4.109	3.766
29KQ6	T-9	Magnoval (E9-23) Base §	1.188	4.133	3.760
29LE6	T-9	Magnoval	1.188	4.133	3.760
30M B6	T-12	Glass †	1.563	4.750	4.375 0.225
A33	Special T-9	2-Lead	0.375 1.188	3.005	2 525
34CM3		Novar (E9-89) base		1	0.225
A35	Special	2-Lead	0.375 0.875	3.125	2.875
35DZ8	T-6½ T-12	9-Pin Miniature	1,562	4.625	4.250
36MC6 40KG6	T-12	Novar † Magnoval †	1.563	4.906	4.312
846		2-Lead	0.650		0.350
50	Special ST-19	4-Pin	2.438	6.250	5.625
50E5	T-9	Octal §	1.281	4.313	3.750
50JY6	T-9	Octal §	1,281	4.331	3.740
FG57	Special	4-Pin ¶	3.000	7.250	0.710
81	ST-19	4-Pin	2.438	6.250	5.625
FG-81-A	Special	4-Pin ¶	2.438	6.625	
FG-97	Special	4-Pin ¶	2,438	6.750	
FG-98-A	Special	4-Pin ¶	2.438	6.750	
V-99	T-8	Special	1.063	3.500	
FG-105	Special	Jumbo 4-Pin \$	3.000	11.250	
FG-154	Special	4-Pin¶	3.000	7.938	
FG-172	Special	Metal	2.250	10.843	
393-A	ST-16	Octal †	2.063	6.625	
GL414	Special	Thyratron	3.125	15.187	
B425	Special	2-Lead	0.650		0.350
575-A	Special	4-Pin +	3.125	11.125	
627	Special	4-Pin ¶	2.438	7.000	6.594
672-A	Special	4-Pin ¶	2.313	8.125	7.375
673	Special	4-Pin ¶	3,125	11.438	11.625
678	Special	4-Pin ¶	2.563	11.063	
816	ST-12	4-Pin †	1.563	4.688	4.063
866-A	ST-19	4-Pin ¶	2.438	6.563	5.938
872-A	Special	4-Pin ¶	2.313	8.500	
B1035	Special	2-Lead	1.260		0.365
1629	T-9	Octal	1,188	4.125	3.438
1654	T-5½	7-Pin Miniature ‡	0.750	2,438	2.188
5544	Special	4-Pin ¶	2.625	7.500	6.813
GL5550	Special	Metal ▲	2.140	9.062	
GL5551A/ 5551A-PC	Special	Metal▲	2.750	13.000	.,
GL5552A/ 5552A-PC	Special	Metal ▲	4.250	14.000	
GL5553B/ GL5553B-PC	Special	Metal ▲	5.625	19.500	
GL5554	Special	Metal ▲	4.125	17.000	

Not Conforming to Standard Outline Drawings

			Max Di	mensions in I	nches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
GL5555	Special	Metal ▲	5.750	17.937	
5557	ST-16	4-Pin ¶	2.063	6.125	5.500
5558	Special	4-Pin ¶	3.000	7.000	
5559	Special Special	4-Pin ¶ 4-Pin ¶	3,000	7.250	
5560 5561	Special Special	4-Pin \$	3.813	7.938 11.250	
5563-A	T-20	4-Pin ¶	2.625	10.531	
GL5564	Special	Metal ▲	9.125	25.937	
GL5630	Special	Metal ▲	5.750	22.187	* * * * * *
5632/C3J	Special	4-Pin ¶	1.578	6.250	
5633	T-3	Special Subm-FL*	0.400	,	1.660
5634	T-3	Special Subm-FL*	0.400	,	1.660
5642	T-3	Special Subm-FL*	0.400		2.655
5645	T-2	Special Subm-FL*	0.310		1.300
5646	T-2	Special Subm-FL*	0.310		1.300
5647	T-1	Special Subm-FL*	0.215		1.250
5663	T-5½	7-Pin Miniature	0.750	1.500	1.250
5665/C16J	Special	Flexible Leads	2.688	11.250	0.042
5675	Special	Pencil Type Inline Subm-FL*	0.817 0.400 x 0.300	2.280	2.043
5676 5677	T-2 x 3 T-2 x 3	Inline Subm-FL*	0.400 x 0.300		1.500
5678	T-2 x 3	Inline Subm-FL*	0.400 x 0.300		1.515
5704	T-2	Inline Subm-FL*	0.315		1.500
5720	Special	4-Pin ¶	3.000	7.500	
5728	Special	4-Pin ¶	3.000	7.000	
5767	Special	Rocket Type	1.005	2.375	
5785	T-2 x 3	Inline Subm-FL*	0.400 x 0.300		1.500
GL5822A	Special	Metal ▲	4.250	14.000	
5825	ST-16	4-Pin ¶	2.063	5.844	5.219
GL5830	Special	4-Pin, Anode Cap C1-8	5.062	17.687	16.468
5838	T-9	Octal	1.313	3.375	2.875
5839	T-9	Octal	1.313	3.375	2.875
5851	T-3 T-9	Button Subm-FL*	0.400	3.375	1.600 2.875
5852 5855	Special	Octal Lug Base	1.313 3.625	11.328	
5876	Special	Pencil Type	0.817	2.252	2.012
5876-A	Special	Pencil Type	0.817	2.252	2.012
5881	T-11	Octal	1,438	3.938	2.906
5890	T-11	Duodecal †	1.500	6.750	6.250
5894B	Special	7-Pin ⊕	1.937	3.650	4.687
5930	T-12	4-Pin	1.700	4.500	3.875
5931	T-12	Octal	1.700	4.906	4.344
5932	T-12	Octal	1.700	3.844	3.281
5995	T-3	Inline Subm-FL*	0.400	2.100	1.750
6000	T-11	Octal	1.438	3.468	2.906
6004	T-9	Octal #	1.313 1.625	4.063 6.250	
6014/C1K	Special Special	4-Pin ¶ 4-Pin	1.5653	4.250	
6051	T-2 x 3	Inline Subm-FL*	0.385 x 0.285	1,500	
6094	T-61/2	9-Pin Miniature	0.875	3.000	2.750
6098	T-11	Octal	1.438	3,469	2.906
6106	T-9	Octal	1,320	3.375	2.880
6146	T-12	Octal †	1.719	3.813	3.250
6146-A	T-12	Octal †	1.719	3.813	3.250
6146-B	T-12	Octal †	1.656	3.813	3.250
6159-A	T-12	Octal †	1.179	3.813	3.250
6159-B	T-12	Octal †	1.656	3.813	3.250
6173	Special	Pencil Type	0.100	1.987	1.050
6184	T-3	Button Subm-FL*	0.400		1.250
6195 6215	T-3 T-9	Button Subm-FL* Octal †	0.400 1.281	4.063	1.600 3.500
GL6228	Special	Metal ▲	9.000	42.000	3.300
Q170550	Special	inicial A	3.000	72.000	*****

T-X TABLE — Physical Characteristics of Types

Tube			Max Di	mensions in In	ches
Туре	Envelope	Style	Diameter	Over-all Length	Seated Height
GL6251	Special	Metal & Ceramic	5.156	13.250	
GL6283	Special	Metal & Ceramic	2.313	4.343	
6287	T-6½	9-Pin Miniature	0.875	2.470	
6299	Special	Ceramic & Metal	0.497	1.040	
6320	T-3 T-3	Button Subm-FL*	0.400		1.125
6321 6325	T-9	Button Subm-FL* Octal	0.400		1,125
6327	T-12	Octal †	1,281	4.500	2.375 3.938
6336	ST-16	Octal	2.070	4.750	4,175
6336-A	ST-16	Octal	2.070	4,750	4.175
6355	T-51/2	7-Pin Miniature	0.750	1.531	1.250
6384	T-11	Octal	1.438	3.469	2.938
6394	T-12	8-Pin Octal	2.070	4.750	4.175
6394-A	T-12	8-Pin Octal	2.070	4.750	4.175
6397	T-3	Button Subm-FL*	0.400	2.100	1.600
6418	T-1½ x 2	Inline Subm-FL*	0.290 x 0.235		1.250
6419	T-1½ x 2	Inline Subm-FL*	0.290 x 0.235		1.000
6442	Special	Ceramic & Metal	0.818	2.610	
GL6512			4.125	17.000	
GL6513	Special	Metal 🛦	17.937	5.750	
GL6515	Special	Metal ▲	9.125	26.687	
6519	T-1½ x 2	Inline Subm-FL*	0.290 x 0.220		1.250
6528	ST-16	Octal	2.070	4.750	4.175
6550	ST-16	Octal	2.063	4.750	4.188
6690	T-3	Button Subm-FL*	0.400		1.000
6754	T-61/2	9-Pin Miniature	0.875	2.750	2.500
6763	T-51/2	7-Pin Miniature	0.875	2.375	2.094
6771	Special	Ceramic & Metal	0.818	2.610	
6792	T-12	Octal †	1.719 5.063		4.531
6807	Special	4-Pin ∥	2.625	9.000	
6808	Special	Flexible Leads	2.625	8.313	
6809	Special	Lug Base	2.625	9.000	
6842	T-51/2	7-Pin Miniature §	0.875	2.250	2.000
6848	Special	Metal & Ceramic	4.000	9.625	
6856/740	Special	4-Pin ¶	2.063	9.500	
6858/760	Special	4-Pin ¶	2.563	9,500	
6859/760P	Special	Flexible Leads ¶	2,563	8.750	
6883	T-12	Octal †	1.719	3.813	3.250
6883-B	T-12	Octal †	1,656	3.813	3.250
6889	T-11	Octal †	1.438	3.906	3.375
6897	Special	Ceramic & Metal	1.266	2.750	
6942	Special	Metal & Ceramic	3,260	8.500	
6999	T-2 x 3	Inline Subm-FL*	0.385 x 0.285	1.750	
7027	T-12	Octal	1.630	4.620	4.060
7027-A	T-12	Octal	1.630	4.620	4.060
7038	T-8	8-Pin	1.135	6,500	
7038V	T-8	8-Pin	1.135	6.500	
7105	T-12	Octal	1.719	4.063	3.563
GL7151	Special	Metal	9.125	23.250	,
GL7171	Special	Metal	2.156	8.750	
7211	Special	Ceramic & Metal	1.264	2.701	
7212	T-12	Octal †	1.656	3.813	3.250
7216/C3JL	Special	Lug Type Rectifier, Anode Cap C1-5	2.187	6.750	
7234	T-6 ½	9-Pin Miniature §	0.875	2.750	2.375
7235	T-61/2	9-Pin Miniature §	0.875	2.750	2,375
7262A	T-8	8-Pin	1.135	5.250	
7263A	T-8	8-Pin	1.135	5.250	
7266	Special	Ceramic & Metal	0.335	0.327	
7289	Special	Ceramic & Metal	1,264	2.701	
7296	Special	Ceramic & Metal	0.510	0.890	
7310	T-12	4-Pin †	1.570	5.250	

Not Conforming to Standard Outline Drawings

			Max D	imensions in I	nches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
7311	Special	Metal Miniature	0.875	2.188	2.094
7312	Special	Metal Miniature	0.875	2.188	2.094
7313	Special	Metal Miniature	0.875	2.938	2.688
7314	Special	Metal Miniature	0.875	2.188	2,094
7357	T-12	Octal †	1.656	3.813	3.250
7358	T-12	Octal †	1.656	3.813	3.250
7391	Special	Ceramic & Metal	0.497	1.040	
7399	Special	Metal & Ceramic	2.291	4.281	
7403	T-12	Octal §	1.719	4.281	3.750
7430	Special	Glass	0.875 x 1.188 x		ive of leads
7462	Special	Ceramic & Metal	0.330	0.490	
7518/710L	Special	Lug Base ¶	1.625	6.625	
7588	Special	Ceramic & Metal	0.565	0.890	
7623	Special	Glass ¶	2.047	5.157	4.567
7624	Special	Glass ¶	2.047	5.157	4.567
7625	Special	Ceramic & Metal	0.330	0.490	
7644	Special	Ceramic & Metal	0.497	1.040	
GL7669/ GL7669-PC	Special	Metal ▲	3.250	9.875	
GL7671/ GL7671-PC	Special	Metal ▲	4.625	11.875	
GL7673/ GL7673-PC	Special	Metal ▲	7.125		
GL7681/ GL7681-PC	Special	Metal ▲	4.125	17.500	
7695	T-9	9-Pin	1.188	3.170	2.920
GL7703	Special	Metal-Threaded Anode Terminal	2.250	7.625	
7720	Special	Ceramic & Metal	0.330	0.490	
7725	Special Special	4-Pin ¶	1.625	6.250	
7726	Special	Lug Base ¶	1.625	6.625	
7735A	T-8	8-Pin	1,135	6.500	
7735B	T-8	8-Pin	1.135	6.500	
7735BX	T-8	8-Pin	1.135	6.500	
7751	Special	Octal	1.300	4.140	3.380
7754	T-9	9-Pin	1.188	3.170	2.920
7757	T-6 ½	9-Pin Miniature §	0.875	3.000	2.750
7768	Special	Ceramic & Metal	0.758	0.959	
7784	Special	Ceramic & Metal	0.497	1.040	
7815	Special	Ceramic & Metal	1.195	2.701	
7815R	Special	Ceramic & Metal	1.264	2.701	
7841	Special	Ceramic & Metal	0.335	0.327	
7851	T-5½	7-Pin Miniature §	0.750	1.880	1.600
7855	Special	Ceramic & Metal	1.264	2.386	
7894	Special	Special Subm-FL*	0.500	2.500	
7910	Special	Ceramic & Metal	0.484	0.677	
7911	Special	Ceramic & Metal	0.758	0.959	
Z7911	T-8	8-Pin	1.135	6.500	
Z7911 Z7912	T-8	8-Pin	1.135	5.250	
7913	Special	Ceramic & Metal	0.758	0.959	
7913 Z7919		8-Pin	1.135	6.500	
	T-8				
Z7927B	T-8	7-Pin	0.767	3.650	
Z7927HRB	T-8	7-Pin	0.767		
Z7929R,B,G	T-8	8-Pin	1.135	6.350	
Z7975HRB	T-8	8-Pin	1.135	6.500	
Z7975B	T-8	8-Pin	1.135	6.500	1.050
7979	T-2	Special Subm-FL*	0.315	<u> </u>	1.250
7985	Special	Metal & Ceramic	2.766	8.562	
Z7996B	T-8	Special	1.135	5,250	
Z7996HRB GL7998/	T-8	Special	1.135	5,250	
GL7998-PC	Special	Metal▲	5.312	26.500	
8008	Special	4-Pin ¶	2.313	8.750	8.000
8032	T-12	Octal †	1.719	3.813	3.250

T-X TABLE — Physical Characteristics of Types

			Max I	imensions in Ir	ches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
8032-A	T-12	Octal †	1.656	3.813	3.250
8042	T-12	Octal †	1.750	3.844	3.281
8100	Special	Glass, 2-Lead	0.500	0.550 2.362	
8108	Special	Glass & Metal Dual Tetrode ⊕	1.740	4.094	3.000
8116 8116A	Special Special	Twin Tetrode &	1.740	4.031	2.938
8117	Special	Dual Tetrode ⊕	1.756	4.031	2.938
8117A	Special	Twin Tetrode ⊕	1.756	4.031	2.938
8118	Special	Double Tetrode ⊕	1.811	3.375	2.894
8134	T-8	8-Pin	1.135	6.350	
8134V	T-8	8-Pin	1.135	6.350	
8142	Special	Glass, 2-Lead	0.500	0.550	
8143	Special	Glass, 2-Lead	0.500	0.550	
8156	T-9	Compactron	1.188	2.313	1.938
GL8205	Special	Metal ▲	9.125	23.000	
8210	T-3	Special Subm-FL*	0.400		1.795
8217	Special	Glass, 2-Lead	0.875	1.500	
8223	T-61/2	9-Pin Miniature	0.875	2.430	2.154
8228	T-2	2-Lead Subminiature	0.240	1.200	
8233	T-9	Magnoval (E9-23) Base	1.094	3.000	2.625
8236	T-12	Octal †	1.719	4.750	4.200
8254	T-3	8-Pin Subminiature (E8-10 base)	0,400		1.730
8255	T-61/2	9-Pin Miniature	0.875	1.970	1.730
8278	T-9	Novar	1.188	3.380	3.000
8298	T-12	Octal †	1.719	3.813	3.250
8298-A	T-12	Octal †	1.656	3.813	2.350
8318	Special	Glass, 2-Lead	0.250		0.550
8318-A	Special	Glass, 2-Lead	0.260		0.545
8345	Special	Glass, 2-Lead	0.500	0.550	
8346	Special	Glass, 2-Lead	0.500	0.550	
8347	Special	Glass, 2-Lead	0.500	0.550	
8403	Special	Ceramic & Metal	1.264	2.386	
8408	T-6½	9-Pin Miniature	0.875	2.875	2.594
8412	Special	Ceramic & Metal	0.921	2.413 1.905 4.500	
8413	Special	Ceramic & Metal	0.553		9.075
8417	T-12	Octal	1.563	3.250	3.875 2.813
8458	T-9	Novar	1.188 0.250		0.550
8474	Special	Glass, 2-Lead Glass, 2-Lead	0.250		0.550
8475 8475-A	Special Special	Glass, 2-Lead Glass, 2-Lead	0.260		0.545
8476	Special	Glass, 2-Lead	0.250		0.550
8477	Special	Glass, 2-Lead	0.250		0.550
8477-A	Special	Glass, 2-Lead	0.260		0.545
8484H	T-8	8-Pin	1.135	6.500	
8500	Special	Metal & Ceramic	2.323	3.453	
8506	Special	Ceramic & Metal	0.756	0.882	
8507A	T-8	8-Pin	1.135	6.500	
8513	Special	Metal & Ceramic	6.031	9.625	
8524	Special	Metal Shell	0.434	1.082	0.867
8525	Special	Metal Shell	0.434	1.082	0.867
8526	Special	Metal Shell	0.434	1.082	0.867
8527	Special	Metal Shell	0.434	1.082	0.867
8528	Special	Metal Shell	0.434	1.436	1.221
8529	Special	Metal Shell	0.434	1.082	0.867
8530	Special	Metal Shell	0.434	1.082	0.867
8533	Special	Metal & Ceramic	1.195	2.701	
8534	Special	Metal & Ceramic	0.950	1.305	
8535	Special	Metal & Ceramic	1.265	2.040	
8536	Special	Metal & Ceramic	0.950	1.305	
8537	Special	Metal & Ceramic	1.265	1.565	
8538	Special	Metal & Ceramic	0.950	1.159	

Not Conforming to Standard Outline Drawings

			Max Di	mensions in Ir	ches
Tube Type	Envelope	Style	Diameter	Over-all Length	Seated Height
8539	Special	Metal & Ceramic	1.265	1.794	
8541A	T-8	8-Pin	1.135	6.500	
8541X	T-8	8-Pin	1.135	6.500	
8552	T-12	Octal †	1.656	3.813	3.250
8572	T-8	8-Pin	1.135	6.500	
8572V	T-8	8-Pin	1.135	6.500	
8573A	T-8	8-Pin	1.135	5.250	
8573X	T-8	8-Pin	1.135	5.250	
8582	Special	Glass, 2-Lead	0.250		0.550
8582-A	Special	Glass, 2-Lead	0.260	,	0.545
8595	T-6½	9-Pin Miniature	0.875	2.625	2.375
8604	T-8	8-Pin	1.135	6.500	
8632	T-9	8-Pin Octal †	1.187	4.000	3.500
8639	Special	8-Pin Octal ⊕	1.811	5.090	4.560
8643	Special	7-Pin Septar⊕	1.785	4.031	3.531
8727	Special	Pencil Type	0.557	1.485	
8745	Special	Ceramic & Metal	1.264	2.701	
8751	Special	Metal & Ceramic	0.758	1.054	
8755	Special	Metal & Ceramic	0.830	1.470	
8755A	Special	Metal & Ceramic	0.785	1.370	
8760	Special	Glass, 2-Lead	0.500	,	0.550
8797	T-5½	Miniature §	0.750	2.750	2,500
8808	Special	Nuvistor	0.435	0.985	0.780
8847	Special	Metal & Ceramic	0.785	1.370	
8847A	Special	Metal & Ceramic	0.785	1.370	
8859	Special	Ceramic & Metal	0.520	1.920	
8866	Special	Metal & Ceramic	1.760	3.125	
8892	Special	Metal & Ceramic	0.758	1.099	
8893	Special	Metal & Ceramic	0.758	0.974	
8906	Special	Metal & Ceramic	1.195	1.701	
8907	Special	Metal & Ceramic	1.264	1.701	
8917	Special	Metal & Ceramic	1.988	3.489	
GE12661	Special	Metal & Ceramic	0.483	0.686	
GE13971	Special	Metal & Ceramic	0.758	0.959	
GE14501	Special	Metal & Ceramic	0.483	0.617	
GE14811	Special	Metal & Ceramic	0.758	0.959	
GE15371	Special	Metal & Ceramic	0.608	1.009	
GE16231	Special	Metal & Ceramic	0.758	0.959	*****
GE16841	Special	Metal & Ceramic	0.484	0.677	
GE17241	Special	Metal & Ceramic	0.800	2.025	
GE17701	Special	Metal & Ceramic	0.758	1.054	
GE17701 GE18651	Special	Metal & Ceramic	0.753	1.084	
GL37207	Special	Metal & Ceramic Metal ▲	5.750	20.000	
GL37207 GL37248	Special	Metal ▲	2,250	7.625	
GL37250/ GL37250-PC	Special	Metal ▲	2.750	13,000	
GL37251/ GL37251-PC	Special	Metal ▲	2.750	13.000	
GL37252/ GL37252-PC	Special	Metal ▲	4.250	14.250	
GL37253/ GL37253-PC	Special	Metal ▲	4.625	14.250	
GL37254/ GL37254-PC	Special	Metal ▲	5.625	19.500	
GL37255/	Cnastat	Motel A	E 60E	10 500	
GL37255-PC	Special	Metal A	5.625	19.500	
GL51025	Special	Metal & Ceramic	1.230	2.338	
GL51038	Special	Metal & Ceramic	2,109 4,096	3.338	
GL51064	Special	Metal & Ceramic		7.500	
GL51065	Special	Metal & Ceramic	3.109	3.198	

REED SWITCH CONDENSED DATA

			Phy	sical C	haracteri	istics				EI	ectrical Par	ameters			
	_	Di	imensio Inches	ns	Con	structi	on		Initial	Charact	eristics	1	Com	tact Rat	ings
Basic Type No. (New)	Previous Type No.	Glass Diameter Maximum	Glass Length Maximum	Over-All Length Nominal	Contact Material	Contact Arrangement	Resonant Frequency of Single Reed Hz - Min	Full Range Available Ampere Turns	Normally Stocked in Ranges of (2)	Contact Resistance Milliohms — Max	Breakdown Voitages DC Voitage Min (3)	Insulation Resistance Megohms — Min	Resistive Load Maximum (4)	Current Amperes, Max	Voltage, Volts Max
SUBM	INIATU	RE			-					•	4				
DR300	DR159	0.090	├	2.000	RH	Form A (5)	3000	10-60	10A.T.	250	100VDC	104	5VA	0.25	56
DR301	DR157	0.090	0.750	2.250	RH AU-AG	<u> </u>	2000	10-60	10A.T.	150	200VDC	104	10VA	0.50	100
DR302	DR162	0.108	0.670	2.010	Alloy	,,	2000	10-60	10A.T.	100	100VDC	104	5VA	0.25	50
DR303	DR164	0.070	0.500	2.010	RH	<u>"</u>	3000	10-50	10A.T.	200	100VDC	104	5VA	0.20	50
MINIAT	URE	·	·	,		,				·				,	
DR401	DR145	0.108	0.840	2.530	RH	Form A (5)	2000	15-55	10A.T.	150	300VDC	104	10VA	0.50	250
NTERN	EDIATE														
DR540	DR163	0.173	1.200	1.750	AU-AG Alloy	Form A (5)	1500	25-70	10A.T.	100	600VDC	104	10VA	0.50	25
DP541	DRP160	0.173	1.200	1.750	RH	"	1500	25-70	10A.T.	150	600VDC	104	15VA	1.00	25
INTERN	MEDIATE	FOR	M C	_									_		
DR570	DR158	0.215	1.600	2.935	RH	Form C (6)	1200	40-130	30A.T.	100	250VDC	104	10VA	0.50	250
BTAND/	ARD 2"														
DR600	DR101	0.215	2.100	3.200	DIF. AU	Form A (5)	800	20-130	20A.T.	50	500VDC	5×10 ⁵	15VA	1.00	250
DR601	DR113	0.215	2.100	3.200	RH	"	750	30-130	20A.T.	50	500VDC	5×10 ⁵	50VA	3.00	250
DR602	DR146	0.215	2.100	3.200	RH	"	750	40-100	20A.T.	50	500VDC	5×10 ⁵	50VA	3.00	250
HIGH V	OLTAGE	2″													
DR680	DRV120	0.215	2.100	3.230	AG-W Alloy	Form A (5)	750	100-250	30A.T.	50	7000VDC	5×10⁵	50VA	3.00	500
DR681	DRV161	0.215	2.100	3.230	AG-W Alloy	Form A (5)	750	150-300	30A.T.	50	10000VDC	-5×10⁵	50VA	3.00	7500

⁽¹⁾ Except for types DR540, DR541, and DR570, leads may be trimmed to a length shorter than that shown, if required. Intermediate and 2" types shown have tin-plated leads. All others shown have gold-plated leads.

- (3) Will vary, depending on sensitivity range chosen (pull-in ampere turns).
- (4) Some degradation or improvement in performance may be expected as operating voltages and currents are varied.
- (5) Form A, single-pole, single-throw, normally open switch.
- (6) Form C, single-pole, double-throw switch in which the reed is maintained against the normally-closed contact by mechanical bias.

⁽²⁾ Types DR300, DR301, DR302 and DR401 are tested in a coil of 10,000 turns of No. 48 wire on a 0.75" long bobbin of 0.17" diameter. Types DR540 and DR541 are tested in a coil of 10,000 turns of No. 41 wire on a 1.00" long bobbin of 0.30" diameter. Types DR570, DR600, DR601 and DR602 are tested in a coil of 10,000 turns of No. 39 wire on a 2.0" long bobbin of 0.25" diameter. Types DR680 and DR681 are tested on a coil of 5700 turns of No. 36 wire on a 2.0" long bobbin having an oval cross-section of approximately 0.5" x 0.28".

^{**} A close-differential design where drop-out is typically 75%-85% of pull-in.

REED SWITCH CONDENSED DATA (Cont'd)

GE REED SWITCHES SHOWN ARE:

- (A) DR-681, 2 in. High Voltage
- (B) DR-600, 2 in. Standard; Diffused Gold Contacts (C) DR-601, 2 in. Standard; Rhodium Contacts
- (D) DR-570, Intermediate Form C (SPDT)
- (E) DR-540, Intermediate

- (F) DR-401, Miniature
- (G) DR-301, Sub-miniature
- (H) DR-300, Sub-miniature
- (I) DR-303, Sub-miniature

DESCRIPTION

The heart of the GE reed switch is a set (two) of flat, metal reeds which are plated with a selected precious metal. These reeds are cantilever supported so that their free ends overlap and are separated by a small gap. The reeds are contained in a glass capsule which supports and holds the reeds in alignment. The capsule is hermetically sealed with dry gas; since the contacts are totally encapsulated, GE reed switches are ideal for environments containing explosive or corrosive gases or liquids.

OPERATION

GE Reed Switches can be actuated by moving a permanent magnet close to the switch or by energizing an electromagnetic coil located near the switch. With either method, the switch actuates when the magnet flux is strong enough to overcome the tension over the blade containing the normally-open "SPST" contacts.

APPLICATIONS

Reed Switches can be used in counters, instruments, key switches, limit switches, position indicators, flow meters, reed relays, toys, appliances, automobiles, cross-point switch systems, alarm devices, or any application where a small, simple, high-speed switching device is required.

FEATURES

- Rugged The compact package is built to withstand mechanical shock, vibration, and other adverse environmental conditions.
- Fast Operation Quicker to respond than "heavier" conventional relays, GE reed switches are ideal for applications which require high-speed switching operation.
- Wide Selection Sizes available range from sub-miniature to standard which are designed to switch dry circuit to 50 watts; breakdown voltages range from 100 volts to 15KV; also available as SPST; SPDT (one form only).
- ▶ Long, Reliable Life The basic GE switch design plus customized plating of reed surfaces for your specification application — assures dependability, millions of trouble-free operations.
- High Quality Assured GE provides 100% in-process quality control to assure that only switches built and designed to the customer's specifications leave the line.

REED SWITCH CONDENSED DATA (Cont'd)

OUTLINE DRAWINGS

Entertainment Semiconductor Components

Meet your repair needs quickly and economically with . . .

GE UNIVERSAL REPLACEMENT TRANSISTORS

APPLICATION: General Electric Universal Replacement Transistors are specifically designed as general replacements for most types of transistors used in radios, TV and other entertainment applications where normal voltages exist. They are not recommended for use in critical high voltage ons. If the application is such that characteristic curves or design ratings

voltages exist. They are not recommended for use in critical high voltage applications. If the application is such that characteristic curves or design ratings are needed on the unit, it is recommended that the exact JEDEC replacement type be used.

TECHNICAL INFORMATION: Remembering a few general rules in the care and handling of solid-state components can very often mean the difference between success and failure in completing a repair job.

1) VOLTAGES: Observe voltage specifications. Watch for stray transient voltages which might come in on the power line, or which could be induced from adjacent circuits such as an automobile ignition system. (Use a thyrector or zener diode to protect semiconductors from these stray transients.) Check power-line voltage to make sure it is neither too high (above 120 volts) nor too low (below 110 volts).

No semiconductor should ever be connected or disconnected from a circuit with the power on. High transient currents may cause permanent damage to the semiconductor.

- 2) CURRENT: Do not overload semiconductors, even momentarily—an "arc-over" destroys them immediately. Double check circuits, polarities, component sizes, and wiring BEFORE closing the switch.
- 3) HEAT SINKS: Carefully observe the recommended heat sinks for stud-mounted devices. If heat can't get out of a semiconductor, damage is likely to result. Be sure air can circulate around lead mounted devices.

The stud end of a stud-mounted unit normally forms part of the electrical circuitry. Therefore, the heat sink to which the stud is mounted is electrically "live." If a "live" heat sink presents any safety hazard or might conceivably create a short circuit, the unit should be electrically insulated from the heat sink by mica and teflon. washers, or the best sink itself must be electrically insulated from the chassis.

Lead-mounted devices may be secured by soldering their leads to a terminal strip. This fastening point of the lead should be no less than $\frac{1}{2}$ inch away from the body of the device. Avoid bending the lead too near the component body. Do not try to bend the top terminals of stud-mounted devices.

4) SOLDERING: Use a small, hot soldering iron and high quality resincore solder. If a wire is tarnished or enameled, clean it with fine emery paper before soldering. Wrap the clean wire around the other wire or terminal once to hold it in place, then apply the tip of the iron and the solder to the joint together.

Solder as quickly as possible, then blow on the joint to cool it quickly. If possible, with lead mounted devices, use pliers to hold the lead between the body and the joint in order to avoid overheating the device. This is particularly important when soldering germanium devices.

Do not use acid flux.

- 5) MODIFICATIONS: Compare the base or lead arrangement of the GE Universal Replacement Transistor (see diagrams below) with the base or lead arrangement of the unit being replaced. If these are different it will be necessary to "bend and trim" to match up to the equipment.
- 6) CIRCUIT CHECKS: Anytime replacement of a transistor is made in equipment (even if it is a so called "exact" replacement), it is always good practice to check out the alignment of the associated tuned circuits to insure proper operation and achieve the required gain without loss of stability. If replacements are made in high power stages, the transistor bias should always be checked and adjusted in order to protect the replacement transistor against excessive dissipation and minimize distortion.
- 7) GERMANIUM OR SILICON? As an aid to determining whether you are working with a germanium or a silicon unit, a good indication is the bias between base and emitter. Germanium normally has less than .5 volts bias, and silicon normally has .5 volts or more bias between base and emitter.

88	,		Drawing	Outline Drawing (on Pages	Configuration (on Fig. 6	Contract Con	Contract 100 Fig. 6 TO-6 TO-6 TO-6 TO-6 TO-6 TO-6 TO-6 TO	Co. 7 Sept. 6 To.5 To.5 To.3 Fig. 8 To.3 Co. 7 Sept. 6 To.5 To.5 To.3 To.3 Co. 7 Sept. 6 To.3 Co. 7 Sept. 7 Se	Continue Doubling Continue Con	Fig. 6 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 70-38 Fig. 1 Fig. 1 Ov-5 Fig. 1	Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 70-5 F
	Topics .	Current Gain			6 MHz Min. 70 T	8 8	2 8 8	2 8 8 8	5 8 8 8 6	55 88 88 88 88 01T	5 8 8 8 6 5 8	5 8 8 8 6 5 5
Emitter (Band to Width			(BVEBO)	20 6 MHz N	-	5 3 MHz	\$	\$	\$	1 2 2	\$	\$
Collector Em Collector Em Collector Em Collector Emitter Be Collector (BVCEO)				12 (CER) Min.		8				a a		
S S			(BVCBO)	8		8						
Max. Collector Current				200 MA		200 MA	200 MA 3 A					
Power Dissipation (Watts)	Dissipation (Watts)			150 MW		AW OO	25*	25 * 50 *	25 * 50 *	20 * 50 * 150 MW	50* 50* 65 MW	50* 50* 150 MW 65 MW
Applications	Applications			Mixer/Oscillator Converter, RF & IF Amplifier (AM Radio)	AF Ampirier		AF Power Amplifier	AF Power Amplitier AF High Power Amplitier	AF Power Amplitier AF High Power Amplitier Mixer/Oscillator Converter, RF & IF Amplitier (AM Redio)	AF Power Amplifier AF High Power Amplifier Mixer/Occillator Converter, RF & IF Amplifier (AM Redio) Mixer/Occillator Converter, RF Amplifier (AM Redio)	AF Power Amplitier AF High Power Amplitier Mixer/Oscillator Converter, RF & IF Amplitier (AM Redio) RF Amplitier (AM Redio) IF Amplitier (AM Redio)	AF Power Amplitier AF High Power Amplitier Mixer/Occillator Converter, Mixer/Occillator Converter, RF Amplitier (AM Redio) IF Amplitier (AM Redio)
-		Description		PNP Bermanium	PNP Germanium /		PNP	+			 	
		₹ Ş		GE-1	GE-2		GE-3	GE-3	GE-3 GE-5	GE-3 GE-5 GE-6	GE-3 GE-5 GE-6 GE-7	GE-3 GE-5 GE-6 GE-8

GE-10	NPN Silicon	Mixer/Oscillator Converter, RF & IF Amplifier (AM Redio), AF Amplifier	200 MW	100 MA	22	25	ĸ	200 MHz Typ.	ž	Fig. 12 To-98	ш
GE-11	NPN Silicon	Mixer/Oscillator Converter, RF & IF Amplifier (FM Radio) VHF Tuner, UHF Oscillator	200 MW	25 MA	30	12	ю	700 MHz Min.	8	Fig. 12 TO-98	w
GE-12	NPN Silicon	AF Power Amplifier for 120V Line Operated Stereo Phonographs, Television, Etc. – High Voltage	10*	400 MA	00Е	300	ĸ	30 MHz Min.	140	Fig. 9	υ
GE-13MP	PNP Germanium	Matched Pairs of GE-3, AF Power Amplifier	25*	3 A	99	đ	15	400 KHz Typ.	8	Fig. 5 TO:3	ပ
GE-14	NPN Silicon	AF Power Amplifier – High Power	115*	15 A	100	8	7	800 KHz Typ.	46	Fig. 5 TO-3	v
GE-15MP	NPN Silicon	Matched Pairs of GE-14 for AF Power Amplifier	115*	15 A	901	8	,	800 KHz Min.	45	Fig. 5 TO-3	v

	Base	Orawing (On Page 391)	S	8	* I	U	I	I	80	ა
	Outline	Orawing (On Paper 394-400)	Fig. 5 To-3	Fig. 2 RO-97A	Fig. 6 T0-5	Fig. 5 TO-3	Fig. 7 TO-18	Fig. 6 TO-5	Fig. 3 RO-110	Fig. 9 To-66
ORS		Typical Current Gain	8	8	86	40	100	65	50	126
TRANSIST		(Band Width Prod.)	500 MHz Min.	250 MHz Min.	50 MHz Min.	800 KHz Min.	300 MHz Min.	200 MHz Min.	200 MHz Min.	50 MHz Min.
ERSAL	5	Emitter to Base (BVEBO)	8	ß	,	S	9	9	4	ω
OR UNIV	Breskdown Voltage	Collector to Emitter (BVCEO)	2	8	8	S	40	80	26	94
HART F	ě	Collector to Bess (BVCBO)	8	09	120	95	75	09	25	9
DATA CH	4	Collector Current (IC)	10 A	100 MA	500 MA	4 A	500 MA	500 MA	500 MA	2 A
NICAL I		Power Dissipation (Watts)	*06	500 MW	900 MW	*06	500 MW	500 MW	500 MW	15*
APPLICATION AND TECHNICAL DATA CHART FOR UNIVERSAL TRANSISTORS		Applications	AF High Power Amplifiers, Switching	FM RF & Oscillator, TV and Other Low Noise Circuits	AF Amplifier, Output or Oscillator	High Power AF Amplifier, Output Oscillator, Medium Current	Medium AF Amplifier, RF & IF Amplifier, Oscillator	AF Amplifier, RF & 1F Amplifier, Oscillator	AF Amplifier, RF & IF Amplifier, Oscillator (AM & FM)	AF Power Amplifier for use in class A and 8 AF Power Amplifiers, Communications, Hi-Fi
		Description	PNP Germanium	NPN Silicon	NPN Silicon	NPN Silicon	NPN Silicon	PNP Silicon	PNP Silicon	NPN Silleon
		Type	GE-16	GE-17	GE-18	GE-19	GE-20	GE-21	GE-22	GE-23

										2	
GE-24MP	NPN Silicon	Matched Pairs of GE-23	15*	2 A	89	04	80	50 MHz Min.	125	TO-86	ပ
GE-25	PNP Germanium	Horizontal and Vertical TV Sweep Circuits & Other High Voltage, High Current Amplifier Application	56*	10 A	320	320	2	1 MHz Min.	99	Fig. 5 TO-3	v
GE-26	PNP Silicon	AF Power Amplifier – Stereo Tape Players, Communications and Hi-Fi	20*	2 A	99	ß	7	10 MHz Mín.	0 5	Fig. 9 To-66	v
GE-27	NPN Silicon	Color/BW video output Amplifier, High Voltage	*	100 MA	300	300 (CER)	LO.	BO MHz	99	Fig. 15 Plastic Pak GE-27	_
GE-28	NPN Silicon	AF Power Amplifier	12*	3 &		60 (CES) 45 (CEO)	ō	50 MHz	8	Fig. 16 Plastic Pak GE-28	7
GE-29	PNP Silicon	AF Power Ampirfier	12* 2	3 A		60 (CES) 45 (CEO)	uo	40 MHz	80	Fig. 16 Plastic Pak GE-29	>
EMITTER	BASE COLLECT	OR EMITTER		14 A ST		BASE COLLECTOR EMITTER	1	COLLECTOR BASE EMITTER	ي ق	1	EMITTER COLLECTOR - BASE
į	ω.	BASE C COLLECTOR	SE CTOR	I						-	
Base ti	**Base tied to case.	*Collector may be tied to case,	to case.				* *	*With heat sink			

		APPLICATION AND TECHNICAL DATA CHART FOR UNIVERSAL	NICAL I	DATA CI	HART F	OR UNIV	ERSAL	TRANSISTORS	ORS		
					å	Breekdown Voltage				o de la companya de l	
302	Description	Applications	Designation	Carrie	Coffector	Coffector	Emitter	į	Current	Drawing	Drawing
!				(<u>)</u>	(8VC8O)	2 S	BASSO)	Proof.)	5	(On Pages 394-400)	(On Page 393)
GE-30	PNP Germanium	Audio Power Output for Stereo Tape Players and Radios, Tape Recorders, CB Transceivers, etc.	*9	۷	8	09	12	1 MHz	110	Fig. 9 TO-86	ပ
GE-31MP	PNP Germanium	Audio Power Output Metched Pair of GE-30's	*9	3.8	8	9	12	1 MHz	110	Fig. 9 TO-86	ပ
GE-32	NPN Silicon	AC Line Operated AF Amplifier	30* 1.5	1 A		500 (CES) 300 (CEO)	ю	40 MH ₂	126	Fig. 17 Power Pac	Ļ
GE-50	PNP Germenium	FM, RF Amplitier TV, IF Amplitier	140 MW	15 MA	8	25 (CER)		250 MHz (Typ.)	76	R-90 (See Page 9)	0
GE-51	PNP Germenium	AM, RF Amplifier AM, FM, 1F Amplifier	60 MW	10 MA	32	32 (CER)		75 MHz (Typ.)	150	Fig. 10 TO-72	0
GE-82	PNP Germenium	Low Noise AF Amplifier	150 MW	150 MA	8	20 (CER)	12	2 MHz (Typ.)	126	Fig. 4 TO:1	æ
GE-53	PNP Germanium	AF Ampifier, Output	1* 220 MW	4 T	æ	B	9	1.4 MH ₂	110	Fig. 4 TO:1	Σ
GE-60	NPN Silicon	RF, IF to 200 MHz; TV 1st or 2nd IF Amplitier	180 MW	26 MA	Q	\$	4	500 MHz	8	Fig. 3 RO-110	60
GE-61	NPN Silicon	TV 3rd IF Amplifier	300 MW	85 MA	99	đ	+	500 MHz	8	Fig. 11 TO-92	٥.

GE-63		Amplifier	360 MW	100 'AA	88	26	ß	150 MH ₂) %	10.98 10.98	ш
	NPN Silicon	AF Ampifier Output	1 * 000 MW	4	8	8	40	160 MH ₂	031	Fig. 13 X-103	z
GE-64 Si	NPN Silicon (DARLINGTON)	Very High Gain, Low Noise Amplifier	360 MW	275 MA	\$	â.	12	2 80 WH	20,000	Fig. 12 TO-98	m
GE-66 S.	NPN Silicon	AF Power Output	28 • 1.5	4		70 (CES) 80 (CEO)	ro.	50 MH ₂	02	Fig. 17 Power Pac	_
GE-67 SI	PNP	AF Amplifier Output	1* 500 MW	4	8	8	ю	160 MH _z	031	Fig. 13 X-103	z
GE-69	PNP Silicon	AF Power Output	28 *	4		70 (CES) 80 (CEO)	ю	40 MH _z	02	Fig. 17 Power Pac	ر
BASE COLLE	T08	EMITTER CASE BASE CAS	(• · · · · · · · · · · · · · · · · · ·		MOUNTING TAB		3 88	EMITTER COLLECTOR BASE			GROUND LEAC COLLECTOR EMITTER BASE

Outline Drawing

GE-504A AND GE-509 Universal replacement types GE-504A and GE-509 with a 80 amp surge rating, are recommended as a replacement for silicon rectifiers used in radio, black and white and color TV receivers, plus many other circuits.

The GE-504A and GE-509 have dual heatsink design. The pellet is securely rugged mechanical support for the pellet and leads. There are no potentially sandwiched between two heavy thermally-matched slugs. These slugs provide roublesome "S" springs or whisker contacts to fail or to increase thermal resistance. The temperature coefficient of the glass is carefully matched to that of discon for stress-free operation over a wide temperature range. Due to the nherent low OHMIC resistance of the GE-504A and GE-509 package, the devices can withstand current surges up to 100 amps.

brward voltage and other characteristics normally associated with germanium rectifiers. The GEBR-600 is a silicon rectifier utilizing GE-504A type units connected in full-wave bridge configuration; the total bridge is encapsulated The 1NB1 is a germanium rectifier in a hermetic sealed package and has low in plestic.

GEBR-600

GE-504A **GE-209** GE-510

1091

Type

FIELD	FIELD EFFECT TRAN	ANSISTORS	Common	1		Zero		Drain	Gate		
GE Type	Description	Applications	Source Forward Transfer Admittance (MNHOS)	Power Dissipation @250C Free Air	Current (IG) (MADC)	Voltage Orain (IDSS)	Drain Gate Voltage	Source Voltage VDS (VDC)	Source Breskdown Voltage V (BR) GSS	Package (on Pages 397-398)	Terminal Drawing
GE-FET-1	N Channel Siticon FET	General Pupose Ampli- fier to 100 MH ₂	6500 Max.	200 MW	10MA	2 to 20 MA* *	25	25	-25	Fig. 11 TO-92	g
GE-FET-2	N. Channel Silicon FET	FM:TV RF Mixer VHF to 400 MH ₂	5500 Typical	350 MW	50 MA	5 to 15 MA**	8		8	Fig. 14 X-55	¥

*** Pulse Test: Pulse Width = 100 MSEC, Duty Cycle < 10% (FET)
*With heat sink

G

¥

GERM	GERMANIUM AND SILICON DIODES	LICON	DIODES	MANICHE: WIDE COLOR BAND ADJACENT CATHODE END	٤	BOTH LEADS GOOT MAX— DIA (TINNED) 1.0' MIN (2 LEADS 44—	8 4 2885	MX. DIA.	THEOD LEADS	## ## ## ## ## ## ## ## ## ## ## ## ##	••
								200	CHARAC	CHARACTERISTICS	
Type	Description	Oct Ese above)	Temp. Range oc	Working Voltage (dc-volts)	Peak Forward Current (ma)	Forward Current (ma)	Current 1 secmax. (ma)	Reverse Voltage (Volts)	Forward Current (ma) at + 1 volt Min Max	Reverse Current (µ a max)	Suggested List Price
N34AS	General Purposes	٧	-50 to +90	8	150	25	200	75	5 25	500 at -50V	\$.55
N60	Video Detector	⋖	-50 to +90	22	150	8	200	8	1	ı	.55
N82A	Silicon UHF Mixer	∢	-50 to +120	က	25	ı	,	သ	5 15 (.5v)	500 at - 3v	1.45
N296	50 MC Detector	4	-59 to +100	\$	125	೫	8	8	1	180 at - 10v	55.
E-300	GE-300 General Purpose	ω	-65 to +150	200	ı	720	2 A	200	200 Min	1 at - 200v	1.36

Vacusal' SELENIUM DUAL-DIODE RECTIFIERS	APLICATION: The principal application for the Dual-Diode is as a discriminator or phase detector in television receivers. They also can be used in other types of low power circuits where maximum dependability is required at minimum cost.

6GC1 Common Cathode \$.90 AC AC AC AC AC AC AC A	Cetalog Ne.	Туре	Suggested List Price	
.90 [4 4 4 4 4 4 4 4 4 4	66C1	Common Cathode	\$:90	ovi ji jov
.90 AC 4 1	6601	Series Connected		+[*[*]-
Forward current (min.) 1.1 ma at 2.5VDC Reverse current (nominal) .4 ma at 20VD(6GX1	Common Anode	96.	AC[*] A JAC
	Forwa	rd current (min.) 1. Reverse current (r	1 ma at 2. nominal)	5VDC 1 ma at 20VDC

ZENER DIODES

ZENER DIODES A Zener diode is a two-layer device that above a certain reverse voltage (the zener value) has a sudden rise in current. If forward-biased, the diode ordinary rectifier. But when reversed-biased, the diode exhibits a typical knee, or sharp break, in its current-voltage graph. The voltage across the device remains essentially constant for any further increase of reverse current up to the allowable dissipation rating. The zener and voltage reference.

Zener diodes may be connected in a series to achieve desired zener voltage plus or minus tolerances. For best zener performance, specified IZT should be maintained during normal circuit conditions.

- Age	Material	Dissipation @ 25°C (Watts)	Voltage VZ @ IZT (Volts)	Current 12T (MA)	Zener Impedence Zz © IZT (OHMS)	DC Zener Current IZM (MA)	Suggested Retail
3E ZD-10-4	Silicon	400 MW	01	20	17	20	\$1.55
GE ZD-3.6	Silicon	1 Watt	3.6	8	: 2	253	
E ZD-5.1	Silicon	1 Watt	5.1	6	_	178	1.99
ш	Silicon	1 Watt	5.6	8	വ	162	1.99
E ZD-6.2	Silicon	1 Watt	6.2	4	7	146	1.99
E ZD-7.5	Silicon	1 Watt	7.5	34	4	121	1.99
E ZD-9.1	Silicon	1 Watt	9.1	28	S.	90	1.99
E ZD-12	Silicon	1 Watt	12	21	თ	92	1.99
E 2D-15	Silicon	1 Watt	5	17	4	19	1.99
E ZD-18	Silicon	1 Watt	82	7	20	20	1.99
E ZD-20	Silicon	1 Watt	20	12.5	22	46	1.99
E 2D-27	Silicon	1 Watt	27	9	ĸ	용	1.99
E ZD-33	Silicon	1 Watt	ဗ္ဗ	7.5	45	27	1.99
E 2D-39	Silicon	1 Watt	8	6.5	8	23	1.99
E 2D-47	Silicon	1 Watt	47	5.5	8	19	1.99

All Zeners +10% tolerance in Voltage.

Junction operating and storage temperature - 650 to 2000C.

MAINTENANCE INDUSTRIAL REPLACEMENT	Catalog No.	Description	Repet- tive PRV	Tran- sient PRV	Mex. IDC Stud Single Phase	Peak 1 Cycle Surge	Max. Rev. Cur. (Full Cycle Av @ Full Load)		Max. Fuli Load Voltage Drop	Max. Oper.	Out. Jine Dwg.	Suggested User Price
SEMICONDUCTORS	GEMR-1	Silicon Rectifier	200	350	12 A	240 A	2.0 mA		0.55 V	2000	4	\$ 4.80
	GEMR-2.	Silicon Rectifier	400	ı	35*A	500 A	10*mAdc		0.65*V	2000	89	6.90
4130			PRV and	_	Max. IDC	2	Max. Temp. oC	٩	Max. Req'd. Gate Signal	q'd.		
			V (BO)	-	Temp. oC	ΙŌ	Oper. Stor.	ايرا	@ 25oCT J	٦,		
	GEMR-3	Silicon Controlled Rectifier	9	35 A @	35 A @ 19°C case		1250 15	1500 3	3 V, 40 mA	∢	ပ	8.60
	GEMR-4	Silicon Controlled Rectifier	6	7.4 A (7.4 A @ 80°C case		1000	1000	3 V, 25 mA	ď	۵	3.80
	GEMR-5	Silicon Controlled Rectifier Economy Flat Pack Design	% 500 700	4 A ®	4 A @ 75°C anode tab 110° 150° 0.8 V, 200 uAdc	tab 1	100 15	9 8	8 V, 200	uAdc	ш	1.40
			hFE VCE = 1V IC = 1A	hFE CE = 1V IC = 1A	VCEO	ď	VCE(sat) IC = 1A IB ^O = 50 mA	eat) 1A 0 mA	ξ.	PT 70º Tab		
*@140ºC	GEMR-6	Silicon Power Tab Transistor	ğ	20 min.	40 \		1.0 V (Max.)	Max.)		8 W	u.	1.42

"INTEGRATED CIRCUITS"

80/1	Description
GEIC-1 Audio Amplifier	Audio amplifier designed to deliver 2 watts of continuous power to a 16-ohm load. This integrated circuit is used in project A2 as described in Electronics Experimenters Circuit Manual ETRM-3960A.
GEIC-2 TV/FM Sound, IF, Detector (Figure No. 1 Below)	Suitable for a wide variety of applications including TV sound channels, line operated and automobile FM radios and mobile communications equipment. Features electronic attenuator. Max. supply voltage: 9V; Zener regulating voltage (V_5): 11.2V typ.; Supply current: 16MA Typ; T _A = 25°C. Replacement for Zenith 221-48; Sears 13-29-6; Sylvania 15-33201-1 and UA3065.
GEIC-3 Color TV Chroma Demodulator (Figure No. 2 Below)	Demodulates the chroma subcarrier information contained in a color television video signal and provides color difference signals at the outputs. Low voltage drift of the DC output insures excellent performance in direct-coupled chrominance output circuitry. Max. supply voltage: 28VDC; minimum load resistance: 3K ohm; peak to peak reference input voltage: 5V; peak to peak chroma input voltage: 5V; internal power dissipation: 450MW; operating temperature range: 0°C to +70°C. Electrical characteristics (TA = 25°C, V ⁺ = 24V) as follows: Supply current ($\epsilon_{\rm c} = 0$, R _L = 1M ohm) 9.0 MA Typ.; ($\epsilon_{\rm c} = 0$) 22 MA typ.; DC Voltage at any output terminal ($\epsilon_{\rm c} = 0$) 14.5V typ.; DC voltage at either reference terminal ($\epsilon_{\rm g} = \epsilon_{\rm b} = \epsilon_{\rm c} = 0$) 5.8V typ.; Replacement for Zenith 221-37 and 221-39; also replaces UA746.
GEIC-4 Color TV Subcarrier Regenerator (Figure No. 3 Below)	Replacement for Zenith 22142 and UA780. Maximum ratings, supply current: $40MA$; gate input current; $5MA$; peak to peak voltage at either APC or ACC detector input terminals; $5V$; internal power dissipation; $600MW$. Electrical characteristics $(T_A = 25^{\circ}C)$, $Gate "ON"$); $Supply current: 26MA \text{ typ.}; voltage at supply terminal: 12V \text{ typ.}; supply regulation (V^+ = 27V): 40MV \text{ typ.}$

"INTEGRATED CIRCUITS"

Description	Demodulates the chroma subcarrier information contained in a color TV video signal and provides color difference signals at the outputs. The low voltage drift of the DC output insures excellent performance in direct coupled chrominance output circuitry. Max. supply voltage: 28VDC; minimum load resistance: 3K ohm; peak to peak reference input voltage: 5V; peak to peak chroma input voltage: 5V; internal power dissipation; 450MW; operating temperature range: 0^{O} C to +70 O C. Electrical characteristics (T _A = 25 O C, V ⁺ = 24V) as follows: Supply current ($e_{\rm c}$ = 0, R _L = 1M ohm) 9.0·MA typ.; ($e_{\rm c}$ = 0) 22MA typ.; DC voltage at any output terminal ($e_{\rm c}$ = 0) 14.5 V Typ.; DC voltage at either reference terminal ($e_{\rm g}$ = $e_{\rm b}$ = $e_{\rm c}$ = 0) 5.8V typ; DC voltage at either chroma terminal ($e_{\rm c}$ = 0) 3.2V typ. Replacement for Zenith 221-46 and UA746 (DIP).	Dual gain controlled IF amplifier designed for use as a color TV chroma IF amplifier. The first section is a gain controlled chroma signal amplifier whose output is used to drive a sub carrier regenerator circuit. The gain of the second section is controlled by means of an external DC voltage to set chroma level. In addition the second stage may be gated off to provide "color killing" action in the absence of a color signal with the trip point of the gate adjusted externally. Maximum ratings, supply voltage: 30V; internal power dissipation: 600MW; storage temperature range: -650C to +150°C. Replacement for Zenith 221-43 and UA 781.	Used to accomplish the demodulation of a stereo multiplex signal into the right and left audio channels while inherently suppressing SCA frequency components. Suitable for all line-operated and automotive FM stereo multiplex applications: Maximum ratings, supply voltage: 15V; voltage at stereo lamp driver terminal: 100MA; internal power dissipation: 400MW. Electrical characteristics (T _A = 25°C, V ⁺ = +12V, 200 mV RMS standard stereo multiplex signal applied to input). Supply current: 10mA typ.; input resistance: 20K ohms typ.; stereo separation (adjusted) f= 100Hz; 45dB typ.; f = 1kHz; 55dB typ.; f = 10kHz; 50dB typ.; total harmonic distortion: 5% typ.; 67kHz storecast rejection: 55dB typ.; 19kHz pilot level required at input for stereo indicator lamp on: 12 mVRMS typ.; stereo indicator lamp off: 8mVRMS typ. Replacement for Heath 442-9 and UA729.
Туре	GEIC-5	GEIC-6	GEIC-7
	Color TV Chroma	Gain Controlled IF	FM Stereo Multiplex
	Demodulator	Amplifier	Decoder
	(Figure No. 4 Below)	(Figure No. 4 Below)	(Figure No. 4 Below)

Tube Type	Basing	Tube Type	Basing	Tube Type 2C39A 2C39B 2C39WA 2C40-A 2C42 2C43 2C40-A 2C42 2C50 2C51 2C52 2CN3-A 2CN3B 2CW4 2DY4 2DY4 2DY4 2DY4 2DY4 2DY4-A 2DY4-A 2D	Basing	Tube Type	Basing
OOA	4D	1G3-GT	3C	2C39A	2C39A	3B28	4P 7BK
01-A	4D	1G3GTA	3C	2C39-B	2C39-B	3BA6	7BK 7BD
OA2	5BU 4A.I	1G5-G	ος X	2C40	2C40	3BE6	7CH
OA3-A	4AJ	ig6-gt	7AB	2C40-A	2C40	3BF2	12GQ
OA4-G	4V	1H2	9LX	2C42	2C40	3BL2	12HK
OR9	6CB	IH4-GT	58 57	2C43	2C43 2C40	3BL2A 3BM2	12HK
OB3	4AJ	iH6-GT	7AA	2C50	8BD	3BM2A	12HK
OB3-A	4AJ	1J3	3C	2C51	8CJ	3BN2	7CH 12GQ 12HK 12HK 12HK 12HK 12FV 12FV 7EG 7EG
OC2	5BO	1J3-A 1J5-C	3C	2C52	8MII	3BNZA 3BNA	12FV 7EG
OC3-A	4AJ	iJ6-GT	7AB	2CN3B	8M Ŭ	3BN4-A	7EG
OD3	4AJ	1K3	3C	2CW4	12AQ	3BN6	7DF 12HY
OD3-A	4AJ	11.4	6AR	2CY5	7EW 7BN	3882	12H Y
OZ4-G	4R	1LA4	5AD	2DF4	9JL	3BS2B	12HY 12HY 12HY 12HY 12HY
1A3	5AP	1LA6	7AK	2DS4	12AQ	3BT2	12HY
1A4-p	4M	ILB4	5AD	2DV4	12EA 7DK	3BT2A 2B119	12H Y
1A5-GT	6X	1LC5	7 A O	2DY4	7DK	3BU8-A	9FG
1A6	6L	iLC6	7AK	2DY4-A	7DK	3BW2	12HY
1A7-GT	7Z	1LD5	6AX	2DZ4	7DK	3BY6	7CH
1AC5	SCP	1LF3	4AA	2E24	7CL	3C2	8FV
1AD2	12GV	iLG5	7AO	2E26	7CK	3C5-GT	7AQ
1AD2A	12GV	1LH4	5AG	2E30	7CQ	3C6	12HY 9FG 9FG 12HY 7CH 7CM 8FV 7AQ 7BW
1AD5	ROP	1N2	7AU 3C	2E32	2E31	3CA3	8MH
1AE4	6AR	1N2A	3C	2E35	2E31	3CA3A	8EZ
1AE5	1AE5	1N5-GT	5Y	2E36	2E31	3CB6	7CM
IAF4	6AR 6AT	1N6-GT	7AM 5V	2E41 2E42	2E41	3CE5	7BD 7CM
1AG4	512-AX	1Q5-GT	6AF	2EA5	7EW	3CN3	8MÜ
1AG5	1AG5	1Q6	8CO	2EG4	12AQ	3CN3-A	8MU
1AH4	1AD4 19E1	1R4 1R5	4AH 7AT	2EN5	7FP	3CN3B	8M U 7CH
1AJ5	1AG5	182	9DT	2ES5	7FP	3CU3	8MK
1AK4	1AD4	1S2-A	9DT	2EV5	7EW	3CU3A	8MK
1AK5	IAG5 SAR	184	6AII	2FO5	7FP	3CV3	3G 8MH 8EZ 7CM 7BD 7CM 8MU 8MU 8MU 8EZ 8EZ 8EZ 8EZ 8EZ 8EZ 8EZ 8EZ
1AQ5	7AT	186	8DA	2FQ5-A	7FP	3CX3	8MT
1AR5	6AU	ISA6-GT	6BD	2FS5	7GA	3CY3	8MX
1AS0 1ATT9	OII OII W	1886-GT	1AV2	2FY5	7FP	3C 73	AEZ
1AU3	3Č	1T4	6AR	2G21	2Ĝ21	3CZ3A	8EZ
1AX2	9Y	1T5-GT	6X	2G22	2G21	3D6	6BA
IAY2	1AY2 1AV2	1114	SDA SAR	2GL3	7GA	3DR3	SM I SM X
1B3-GT	3C	iŭ5	6BW	2GW5	7ĞK	3DC3	8MZ
1B4-p	4M	1U6	7DC	2HA5	7GM	3DF3	8MT
1B5	6M 7Z	1-V 1V2	4G 917	2HM5	7GM	3DF3A	5DE
iB8-GT	8AW	1V5	8CP	2HQ5-	7GM	3DH3	8NM
1BC2	9RG	1V6	1V6	2HR8	9BJ opr	3DJ3	8MX
IBC2B	9RG	1W5	8CP	2L2	2L2	3DR3	8NL
1BH2	9RG	1X2	9Y	2T4	7DK	3DS3	8NL
1BH2A	9RG	1X2-A	9Y	2V2	8FV	3DT6	7EN
1BL2	1AY2	1X2-D	9Y	2W3-GT	4X	3DX4	7DK
1BV2	1BV2	1Y2	4P	2X2	4AB	3DY4	7DK 7DK 7DK
1BX2	9Y	1Z2	7CB	212	4P ODT	3DY4-A	7DK
1BY2A	12HZ	2A4-G	58	3A2A	9RT	3E5	6BX
1C3	5CF	2A5	6B	3A3	8EZ	3E6	7CJ 7EW
IC5-GT	6.X.	2A6	6G 7C	3A3-A 3A3B	8EZ	3EA5	7.E.W
107-G	7Z	2AF4	7DK	3A3C	8EZ	3EJ7	9AQ 9AQ 7FP 7FP
1C8	8CN	2AF4-A	7DK	3A4	7BB	3ER5	7FP
1D3	8DN 5V	2AF4-B	7DK	3A5 3A8_CT	7BU 8AS	3ES5	7FP 7EW
1D5-Gp	5R	2AS2	12EW	3AF4-A	7DK	3FH5	7FP
1D7-G	7Z	2AS2A	12EW	3AF4-B	7DK	3FQ5	7FP
1D8-GT 1DG3	8AJ 8ND	2AV2 2AZ2	9U 9Y	3AL5 3AT2	6BT 12FV	3FQ5-A 3FS5	7FP 7GA
1DN5	6BW	2B7	7D	3AT2B	12FV	3FX7	8LK
1DY4 1DY4-A	7DK 7DK	2B22 2BA2	2B22 9U	3AU6 3AV6	7BK 7BT	3GK5 3GS8	7FP 9LW
1E4-G	5S-	2BJ2	9RT	3AW2	12HA	3GU5	7GA
1E5-Gp	5Y	2BJ2A	9RT	3AW2A	12HA	3GW5	7GK
		2BN4	7EG	3A W3	8EZ	3HA5	7GM
1E7-GT	8C 8CN			3B2	8GH	1 3HK5	
1E7-GT 1E8 1F4	8CN 5K	2BN4-A 2BU2	7EG 12HS	3B2 3B4	8GH 7CY	3HK5 3HM5	7GM 7GM
1E7-GT 1E8		2BN4-A	7EG		8GH 7CY 7AQ 7BE		7GM

Tube	ITIDDA	Tube		Tube		Tube	
Туре	Basing	Туре	Basing	Туре	Basing	Type	Basing
3HT6 3JC6 3JC6-A 3JD6 3KF8 3KT6 3LE4	9PM 9PM 9PM 9PM 9PM 9FG 9PM 6BA 6BB 7BA 7AP 7BA 6BX 7BA 7BA 7BA 7BC 7BC 7BC 7CH 9AE 7DG 9AJ	5AW4 5AX4-GT	5T 5T	6A6 6A7 6A8-G 6A8-G 6AB4 6AB5 6AB7 6AB9 6AC5-GT 6AC6-GT 6AC7 6AC9 6AC10 6AD4 6AD6-G 6AD7-G 6AD10A 6AE5-GT 6AE5-GT	7B 7C	6AV5-GT 6AV6 6AV11 6AW7-GT 6AW8-6 6AW8-A 6AX3-GT 6AX4-GTB 6AX4-GTB 6AX5-GT 6AX5-G 6AX7 6AX3-G 6AX3-6AY3-A 6AY3-B 6AY3-B 6AY3-B 6AZ5-GZ5 6AZ6 6AZ6 6AZ6 6AZ6 6AZ6 6AZ6 6AZ6 6A	6CK 7BT 12BY 8CQ 9DX 9DX 12BL 4CG 4CG 4CG 6S 7Q 9A
3JC6-A	9 PM	5AZ3	12BR	6A8-G	7C 8A 8A 5CE 6R 8N 10N 6Q 7W 8N	6AV11	12BY
3JD6	9PM	5AZ4	5T	6A8-GT	8A	6AW7-GT	8CQ
3KT6	9PM	5BC3	9QJ	6AB5	6R	6AW8-A	9DX
3LE4	6BA	5BC3-A	9QJ	6AB7	8N	6AX3	12BL
	6BB 7RA	5BE8 5BK7-A	9EG GAJ	6AB9 6AC5-GT	10N 6O	6AX4-GTA	4CG 4CG
3Q4 3Q5-GT 3S4	7AP	5BQ7-A	9AJ	6AC6-GT	7W	6AX4-GTB	4ČĞ
3S4	7BA	5BR8	9FA	6AC7	8N 12GN 12FE 8DK 7AG 8AY 12EZ 12EZ	6AX5-GT	6S 7O
3V4 3W4 4A6-G 4AU6 4AV6 4BA6 4BC5 4BC5	7BA	5BT8	9FE	6AC10	12FE	6AX7	9Ã
4A6-G	8L	5BW8	9HK	6AD4	8DK	6AX8	9AE 9HP 9HP
4AU6	78K. 78T	5BZ7 5CG4	9AJ 51.	6AD7-G	7AG 8AY	6A Y3-A	9HP
4BA6	7BK	5CG8	9ĜF	6AD10	12EZ	6AY3-B	OHD.
4BC5	7BD	5CL8	9FX	6AD10A	12EZ	6AY11	12DA 8DF 8EH 9ED
ITDEU	7CH	5CM6	9CK	6AE6-G	7 Å H	6AZ6	8EH
4BL8	9AE	5CM8	9FZ	6AE7-GT	7AX	6AZ8	9ED
4BN4 4BN6	7DF	5CR8	9GJ	6AF3 6AF4	7DK	6B5	58 6AS
4BQ7-A	9ĀĴ	5CU4	8KD	6AF4-A	7AX 9CB 7DK 7DK	6B6-G	7V 7D
4858 4RTP	9AJ 9FG	5CZ5	9HN 9EC	6AF6-G	6Q 7ÅG	6B7 6B8-G	7D 8E
4BX8	9AJ	5DJ4	8KS	6AF10	12GX	6B8-GT	8E
4BQ7-A 4BS8 4BU8 4BX8 4BZ6 4BZ7 4BZ8 4CB6	9ĀJ 7CM 9AJ 9AJ 7BD 7CH 9FC 7EW 7CM 7CM 7EN 9AQ 9DE 7CM 9AQ 9DE	Type 5AW4 5AX4-GT 5AZ3 5AZ4 5B8 5BC3-A 5B88 5BC3-A 5BR8 5BC3-A 5BR8 5BC3-A 5C04 5C04 5C04 5C04 5C04 5C08 5C08 5C08 5C08 5C08 5C08 5C08 5C08	9AE	6AF4-A 6AF5-G 6AF6-G 6AF10 6AF11 6AG5 6AG7 6AG9 6AG10 6AG11 6AH4-GT 6AH9 6AH7-GT 6AH9 6AJ7 6AJ7 6AK4 6AK5 6AK6 6AK7	7AG 7AG 7AG 12GX 12DP 7BD 8Y 12HE 12GT 12DA 8EL 8BE 12HJ 9BX 7BD 8DK 7BD 8DK 7BK	1 6B10	12BF
4BZ8	9AJ	5EU8	9JF	6AG7	8Y	6BA3 6BA4	6BA4
4CB6 4CE5 4CS6 4CX7 4CY5 4DE6 4DK6	7CM	5EW6	7CM	6AG9	12HE	6BA5 6BA6	8DY
4CS6	7BD 7CH	5FV8	9GF 9FA	6AG11	12G1 12DA	6BA7	7BK 8CT
4CX7	9FC	5GH8	9AE	6AH4-GT	8EL	6BA8	9DX
4CY5	7EW		9AE	6AH6	7BK SBE	6BA8-A	9DX
4DK6	7CM	5GM6	7ČM	6AH9	12HJ	6BC4	9DR
TOIV	7EN	5GS7	9GF	6AJ4	9BX	6BC5	7BD
4DT6-A 4EH7	9AQ	5GX7	9QA	6AJ7	8N	6BC8	9AJ
4EJ7	9AQ	5HA7	12FQ	6AK4	8DK	6BD4	8FU
4EH7 4EJ7 4ES8 4EW6	9DE 7CM	5HB7	9QA 12FR	6AK5	7BD 7BK	6BD4-A	8FU 6CK
4EW6 4FS7 4GJ7 4GK5 4GM6 4GS7 4GS8 4GW5 4GX7 4GZ5	9MP	5GJ7 5GM6 5GS7 5GX6 5GX7 5HA7 5HB7 5HC7 5HC8 5JC6 5JK6	9MP	6AK7	QV	6BA7 6BA8 6BA8-A 6BA11 6BC4 6BC5 6BC7 6BC8 6BD4-A 6BD5-GT 6BD6 6BD11 6BE3 6BE3-A 6BE6 6BE8	7BK
4GJ7	9QA 7FP 7CM 9GF 9LW 7GK	5HZ6	7EN 7BF	6AK9	12GZ	6BD11	12DP
4GM6	7CM	5JK6	7CM	6AL3	9CB	6BE3-A	12GA
4G87	9GF	5JL6 5JW8 5KD8 5KE8 5KZ8	7CM	6AL5	6BT	6BE6	7CH
4GW5	7GK	5KD8	9AE	6AL7-GT	8CH	6BE8 6BE8-A 6BF5	9EG
4GX7	9QA	5KE8	9DC	6AL9	12HE	6BF5	7BZ
4GZ5 4HA5	9QA 7ČV 7GM	5KZ8	9FZ 9GF	6ALII 6AM4	12BU 9BX	6BF6	7BT 8DG
4HA7	12FQ	5LJ8 5BM8 5MB8 5MQ8	9FA	6AM8	9CY	6BF7-A	8DG
4HC7	12FR OMP	5MB8	9FA	6AM8-A	9CY 7DK	6BF8	9NX 19EZ
4HK5	7GM	5R4-G	5T	6AN5	7BD	6BG6-G	5BT
4HA7 4HC7 4HG8 4HK5 4HM5	7GM	5RA-4-GY	5T	6AL5 6AL6-G 6AL7-GT 6AL9 6AL11 6AM8 6AM8 6AM8-4 6AN5 6AN8 6AN8 6AN8 6AN8-A	7BJ	6BG6-GA	8E 12BF 9HP 6BA4 8BY 7BK 8CT 9DX 9DX 9DX 9DX 9DR 7BD 9AX 9AI 8FU 8FU 8FU 12GA 7CH 12GA 7CH 9EG 9EG 9EG 9NE 8DG 9NE 8DG 9NE 8DG 9NE 8DG 9HP
4HM6 4HQ5 4HR8	7GM	5R4-GYB	5T	6AN8-A	9DA	6BH3	9HP
4HR8	9BJ	5T4	5T	6AQ5	7BZ	6ВН3-А	9HP
4HS8 4HT6	9PG 9PM	5U4-G	9E 5T	6AQ6	7BT	6BH8	9DX
4H16 4JC6-A 4JD6 4JH6 4JK6 4JL6 4JW8 4KE8	12FQ 12FR 9MP 7GM 9PM 7GM 9PM 9BJ 9FG 9PM 9PM 9PM 7CM 7CM 9DC 9DC	5R4-G 5R4-GYA 5R4-GYA 5R4-GYB 5T4 5T8 5U4-G 5U4-GA 5U4-GB 5U8 5U9 5V3-A 5V4-G 5V4-G 5V4-GA	5T 5TB R 5TE STE STE STE STE STE STE STE STE STE S	6AN8-A 6AQ5 6AQ5-A 6AQ6 6AQ7-GT 6AQ8 6AR5 6AR6 6AR8 6AR11 6AS5	12GZ 12FE 12FE 6BT 6AM 8CH 12HE 12BU 9BX 9CY 7DD 7BJ 9DA 7BJ 9DA 7BZ 7BT 8CK 9AJ 6CC 6BQ 9DP 12DM 7CV 7CV 7CV	6BF6 6BF7-A 6BF7-A 6BF8-6BF11 6BG6-G 6BG7-6BH3-A 6BH3-A 6BH6-6BH8-6BH11 6BJ3-6BJ6-A 6BJ6-A 6BJ6-A 6BJ6-A 6BJ6-A 6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-	7CM 9DX 12FP 12BL 7CM 7CM 9AX 9ER 8GC 8GC
4JU6-A 4JD6	9PM	5U4-GB	51 9AE	6AR5	9AJ 6CC	6BJ3 6BJ6	128L 7CM
4JH6	7CM	5Ŭ9	10K	6AR6	$\widetilde{6}\widetilde{\mathbf{B}}\widetilde{\mathbf{Q}}$	6BJ6-A	7ČM
4JK6	7CM	5V3	5T	6AR8	9DP	6BJ7	9AX of P
4JW8	9DC	5V4-G	5Ĺ		7CV	6BK4	8GC
4KE8		5V4-GA	5L 7AC	6AS6 6AS7-G	7CM	6BK4-A	
4KF8 4KN8	9FG 9AJ	5V6-GT 5W4-GT	7AC 5T	6AS7-GA	8BD	6BK4-B 6BK4C	8GC 8GC
4KT6	9PM	5X4-G	5Q	6AS7-GYB	8BD	6BK5	9BQ 7BT
4LJ8 4LU6	9GF 7CM	5X4-GA 5X8 5X9	5Q 9AK	6AS8 6AS11	9DS 12DP	6BK6 6BK7	7BT 9AJ
4MK8	9GF	5X9	10K	6AT6	7BT	6BK7-A	9AJ
5AF4-A 5AM8	7 DK 9CY	5Y3-G 5Y3-GA	5T 5T	6AT8 6AT8-A	9DW 9DW	6BK7-B 6BK11	9AJ 12BY
5AN8	9DA	5Y3-GT	5T	6AU4-GT	4CG	6BL4	8GB
5AQ5	7BZ	5Y4-G	5Q.	6AU4-GTA	4CG	6BL7-GT	8BD
5AR4 5AS4-A	5DA 5T	5Y4-GA 5Y4-GT	5Q 5Q	6AU5-GT 6AU6	6CK 7BK	6BL7-GTA 6BL8	8BD 9AE
5AS8	9DS	5Z3	5Q 4C	6AU6-A	7BK	6BM8	9EX
5AT4 5AT8	5L 9DW	5Z4-GT 6A3	5L 4D	6AU7 6AU8	9A 9DX	6BN4 6BN4-A	7EG 7EG
5AU4	5T	6A4/LA	5B	6AU8-A	9DX	6BN6	7DF
5AV8	9DZ	6A5-G	6T	6AV5-GA	6CK	6BN7	9BT

10 1		T-1			J -	12:	
Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube Type	Basing
6BN8	9ER	6CS7	9EF	6EL4	8MW	6GV5 6GV7	12DR
6BN11 6BQ5	12GF 9CV	6CS8 6CT3 6CU5	9FZ 9RX	6EL4A 6EM5	8MW 9HN	16GV8	9KN 9LY
16BQ6-G	6AM	6CU5	7CV	SEM7	8BD	6GW5	7GK
6BQ6-GTA 6BQ6-GTB	6AM 6AM	6CU6 6CU8	6AM 9GM	6EN4 6EQ7 6ER5	8NJ 9LQ	6GW6 6GW8	6AM 9LZ
6BQ7	9AJ	6CW4	12AQ 9CV	6ER5	9LQ 7FP	6GX6	7EN
6BQ6-GTB 6BQ7-A 6BQ7-A 6BR3 6BR8	9AJ 9CB	6CW5 6CX7 6CX8	9FC 9DX	6ES8	7FP 9DE	6GW8 6GX6 6GX7 6GY5	9QA 12DR
6BR8 6BR8-A	9FA 9FA	6CX8 6CY5	9DX 7EW	6ES5 6ES8 6ET7 6EU7 6EU8 6EV5	9LT 9LS	6GY6 6GY8	7EN 9MB
6BS3	9HP	6CY7	9LG	6EU8	9JF	6GZ5	7CV
6BS3-A 6BS8	9HP 9AJ	6CZ5 6D4	9HN 5AY	6EV5	7EW 9LP	6H4-GT 6H6-GT	5AF
6BT6	7BT	6D6	6F	6EV7 6EW6	7CM	6HA5	7Q 7GM
6BT8 6BU4	9FE 8GC	6D7 6D8-G	7H 8A	6EW7	9HF 5BT	6HA6 6HB5	9NW 12BJ
6BU5	6BU5	6D10	12 B Y	6EX6 6EY6	7AC	6HB6	9NW
6BU6 6BU8	7BT 9FG	6DA4 6DA4-A	4CG 4CG	6EZ5 6EZ8	7AC 9KA	6HB7 6HC8	9QA 9EX
6BU8-A 6BV8	9FG	6DA5	4CG 9DB	1 6F4	7BR	6HC8 6HD5 6HD7	12ES
6BV11	9FJ 12HB	6DA7 6DB5	9EF 9GR	6F5-G 6F5-GT	5M 5M	6HE5 6HE7	9QA 12EY
6BW3 6BW4	12FX 9DJ	6DB6 6DC6	7CM 7CM	6F6-G 6F6-GT	7S 7S	6HE7 6HF5	12FS
6BW6	9AM	6DC8	9HE	6F7	7E	6HF8	12FS 12FB 9DX
6BW8 6BW11	9HK 12HD	6DE4 6DE6	4CG 7CM	6F8-G	8G 9MR	6HG5 6HG8	7BZ 9MP
6BX7-GT	8BD	6DE7	9HF	6FA7 6FD6 6FD7	7BK 9HF	6HJ5 6HJ7	12FL
6BX8 6BY4	9AJ 6BY4	6DG6-GT 6DJ8	7S 9 DE	6FE5	9HF 8KB	6HJ7	9QA 9CY 7GM
6BY5-G	6CN	6DK3 6DK6	98G 7CM	6FG5 6FG6	7GA 9GA	6HK5 6HL5	7ĞM
6BY5-GA 6BY6	6CN 7CH	16DL3	9GD	6FG7	9GF	6HL8	9QW 9AE
6BY8 6BY11	9FN 12EZ	6DL4 6DM4	9NY 4CG	6FH5	7FP 6AM	6HM5 6HM6	7GM 9PM
6BZ3	12FX	6DM4-A	4CG	6FH6 6FH8	9KP	6HQ5	7GM
6BZ6 6BZ7	7CM 9AJ	6DM4-A 6DN3 6DN6 6DN7	9HP 5BT	6FJ7 6FM7 6FM8	12BM 12EJ	6HQ5 6HQ6 6HR5	7CM 7BZ
6BZ8	9AJ	6DN7	8BD	6FM8	9KR	6HR6	7BK
6C4 6C5-GT	6BG 6O	6DQ3 6DQ3A	12HF 12HF	6FQ5	7FP 7FP	6HS5 6HS6	12GY 7BK
6C6	6Q 6F	6DQ4	4CG	6FQ7 6FR7 6FS5 6FV6	9LP	6HS8	9FG
6C7 6C8-G	7G 8G	6DQ5 6DQ6	8JC 6AM	6FS5	9HF 7GA	6HT6 6HU6	9PM 9GA
6C8-G 6C9 6C10 6CA4 6CA5 6CA7 6CA11 6CB5 6CB5-A 6CB6 6CB6-A 6CD3	10F 12BQ	6DQ6 6DQ6-A 6DQ6-B 6DR4	6AM 6AM 6BG	6FV6 6FV8	7FQ	6HV5 6HV5A	12G Y
6CA4	9M ~	6DR4	6BG	CTOTO A	9FA 9FA	6HW8	12GY 9NQ
6CA5	7CV 8EP	6DK7	9HF 12AQ	6FW5 6FW7 6FW8 6FX7 6FY5 6FY7 6FY8	6CK 8LM	6HZ5 6HZ6	9NQ 12GY 7EN
6CA11	12HN	6DS5 6DT3 6DT4 6DT5 6DT6 6DT6-A 6DT8	7BZ	6FW8	9AJ 8LK	1 6HZ8	9DX
6CB5 6CB5-A	8GD 8GD	6DT3	12HF 4CG	6FX7	8LK 7FP	6J4 6J5-GT	7BQ
6CB6	7CM 7CM	6DT5	4CG 9HN	6FY7	12EO	ATA	6Q 7BF
6CD3	12FX	6DT6-A	7EN 7EN 9DE	6FY8 6G6-G	9EX 78	6J6-A 6J7-G 6J7-GT 6J8-G	7BF 7R
6CD6-G 6CD6-GA	5BT 5BT	6DT8 6DW4	9DE 9HP	6G6-GT 6G6-GT 6G11	78 78 12BU	6J7-GT	7R 8H
6CE3 6CE5	12GK	6DW4-A	9HP	6GA7	12EB	639	10G
6CE5 6CF6	7BD 7CM	6DW4-B 6DW5	9HP	6GB5 6GC5	9NH	6J10 6J11	12BT 12BW
6CG3	12HF	6DX4 6DX8	9CK 7DK 9HX 7DK	6GC6	9EU 8JX	6JA5	12EY
6CG6 6CG7	7BK 9AJ	6DX8 6DY4	9HX 7DK	6GD7 6GE5	9GF 12BJ	6JA8 6JB5	9DX 12EY
6CG8	9GF	6DY4-A	7DK	6GE8	9LC	6JB6	9QL
6CG8-A 6CH3	9GF 9HP	6DY7 6DZ4	8JP 7DK	6GF5 6GF7	12BJ 9QD	6JB6-A 6JC5	9QL 12EY
6CH7 6CH8	9FC 9FT 9SD	6DZ7 6DZ8	8JP 9JE	6GF7-A 6GH8	9QD 9QD 9AE	6JC6	9PM 9PM
6CJ3	9SD	6E5	6R	6GH8-A	9AE	6JC6-A 6JC8	9PA
6CK3	9HP 8JB	6E6 6E7	7B 7 H	6GJ5 6GJ5-A	9QK 9QK	6JD5 6JD6	12GY
6CL3	9HP	6EA4	12FA	6GJ7	9QA 9AE	6JE6	9QL 9QL
6CL5 6CL6	8GD 9BV	6EA5 6EA7	7EW 8BD	6GJ8 6GK5	9AE 7FP	6JE6-A 6JE6-B	9QL
6CL8	9FX 9FX	6EA8	9AE	6GK6	9GK	6JE6-C	9ŎL 9ĎX
6CL8-A 6CM3	9HP	6EB5 6EB8	6BT 9DX	6GK7 6GL7	9AQ 8BD	6JE8 6JF6	9DX 9QL
6CM6 6CM7	9CK 9ES	6EF4 6EF6	12HC 78	6GM5	9MQ	6JG5	98F
6CM8	9FZ	6EH4	12FA	6GM6 6GM8	7CM 9DE	6JG6 6JG6-A	9 Q U 9 Q U
6CN7 6CQ4	9EN 4CG	6EH4A 6EH5	12FA 7CV	6GN8	9DX 9QM	6JH5 6JH6	12JE 7CM
6CQ8	9GE	6EH7	9AQ	6GQ7 6GS8	9LW	6JH8	9DP
6CR6 6CR8	7EA 9GJ	6EH8 6EJ4	9JG 12HC	6GT5 6GT5-A	9NZ 9NZ	6JK5 6JK6	12JE 7CM
6CS5	9GR	6EJ4A	12HC	6GU5	7GA	6JK8	9AJ
6CS6	7CH	6EJ7	9AQ	6GU7	9LP	6JL6	7CM

6JM6	N11 Q5 Q11 U11 B11 G7 M7 N7 S7 S7 W5	Basing 12GF 9CV 12DM 12FP 12DM 9AJ 9ES 9EN
6JM6	Q5 Q11 U11 B11 G7 M7 N7 S7 W5 W5-A	9CV 12DM 12FP 12DM 9AJ 9ES 9EN
6JM6-A 12FJ 6LX6 12JA 6W4-GT 4CG 8B 6JN6-A 12FK 6LX8 9DC 6W4-GTA 4CG 8B 6JN6-A 12FK 6LY8 9DX 6W5-G 6S 8C 6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 6S 8C 8C 6MB-GT 7AC 8C 6JS6 12FY 6MA6 8NP 6X5-GT 6S 8C 6MB-GT 7AC 8C 6MB-GT 7AC 8C 6MB-GT 7AC 8C 7AC 7AC 8C 7AC	Q11 U11 B11 G7 M7 N7 S7 W5 W5-A	12DM 12FP 12DM 9AJ 9ES 9EN
6JN6-A 12FK 6LY8 9DX 6W5-G 6S 8C 6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 68 8C 8C 6JS6 8JS6 6JS6 8JS6 6JS6 8JS6 6JS6	B11 G7 M7 N7 S7 W5 W5-A	12DM 9AJ 9ES 9EN
6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 68 8C	G7 M7 N7 S7 W5 W5-A	9AJ 9ES 9EN
	M7 N7 S7 W5 W5-A	9ES 9EN
6JS6	S7 W5 W5-A	
6JS6-A 12FY 6MB6 12FY 6X8 9AK 8C	W5 W5-A	9EF
	W5-A	9CV
6JS6-B 12FY 6MB8 9FA 6X8-A 9AK 8C		9CV
6JS6C 12FY 6MC6 9QL 6X9 10K 8C 6JT6 9QU 6MD8 9RQ 6Y3-G 4AC 8C	X8 V7	9DX 9LG
6JT6-A 9QU 6ME6 9QL 6Y6-G 7AC 8E	B8	9DX
6JT8	M5	9HN 9LT
16JU8	07	9LP
6JU8-A 9PQ 6MJ8 12HG 6Y9 10L 8G	J7	9QA
6JV8	N8	9DX 9LP
6JW8 9DC 6ML8 9RQ 6Z7-G 8B 8G	X7	9QA
6JZ6	A6	9NW
6JZ8		9MP 9DX
6K5-G 5U 6MV8 9DX 7A5 6AA 8J1	K8	9AJ
16K5-GT 5U 6MY8 12DZ 7A6 7AJ 8B		9DX 9DX
6K6-GT	U8-A	9PQ
6K7-G	V8 (A8	9PQ 9DX
6K8-G	A8 R8	9PV 9DX
6K11	.S8	9DX
6KA8 9PV 6Q7-G 7V 7AH7 8V 8L	C8	9OY
6KD6 12GW 6Q7-GT 7V 7AJ7 8V 8L 6KD8 9AE 6Q11 12BY 7AK7 8V 8L 6KE6 12GM 6R3 9CB 7AU7 9A 8L 6KE6 7AK7 8KE6 7AK7 8KE6 7AK7 7	E8 86	9QZ 9GK
6KE6 12GM 6R3 9CB 7AU7 9A 8L	T8	9RL
16KE8 9DC 6R7-G 7V 7B4 5AC 8M	U8	9AE
6KF8		8BD 10K
6KL8 9LQ 6S4 9AC 7B7 8V 8X	9	10K
6KM6 9QL 6S4-A 9AC 7B8 8X 9A 6KM8 9QG 6S7-G 7R 7C4 4AH 9A		9DC
		12HJ 12FE
6KN8 9AJ 6SA7 8R 7C6 8W 9A	U7	9A
		12FU 9CF
6KS6 7DF 6SC7-GT 8S 7E6 8W 9C	G8-A	9GF
16KS8 9DX 6SD7-GT 8N 7E7 8AE 9C	L8	9FX
6KT6	Z8	9JE 9AE
6KU8 9LT 6SF7 7AZ 7F8 8BW 9E	F6	7S
6KV6	H8-A	9AE
6KV6A		9LY 9DC
6KY6 9GK 6SK7-GT 8N 7GV7 9KN 9K	C6	9RF
		9GK
6KY8-A 9QT 6SN7-GT 8BD 7HG8 9MP 9K 6KZ8 9FZ 6SN7-GTA 8BD 7J7 8BL 9L		9FZ 9GK
6L4 7BR 6SN7-GTB 8BD 7K7 8BF 9M	IL8	9RQ
		12HU 9AE
6L6-GA 7AC 6SS7 8N 7L7 8V 9X	.8	9AK
6L6-GB		4D
6L7-G 7T 6SV7 7AZ 7R7 8AE 10		12BU 9CV
6LB6 12GJ 6SZ7 8Q 7S7 8BL 100	C8 :	9DA
61D8 9DX 674 7DK 7T7 8V 100 6LC6 8ML 6T5 6R 7V7 8V 101 101 6LC6 8ML 6T5 6R 7V7 8V 101 101 6LC6	CW5 DA7	9CV 9EF
6LC8 9QY $ 6T7-G $ 7V $ 7W7 $ 8BJ $ 101 $	DE7	9HF
6LE8	DR7	9HF
6LF6		9HX 9DX
6LG6 12HL 6T10 12EZ 7Z4 5AB 10	EG7	8DB
6LH6 8ML 6U4-GT 4CG 8A8 9DC 101	EM7	8BD
6LH6-A		9HF 9HF
6LJ6-A 8MQ 6U7-G 7R 8AC10A 12FE 101	FR7	9HF
6LJ8 9GF 6U8 9AE 8AL9 12HE 100	GF7	9QD
	GF7-A GK6	9QD 9GK
6LN8 9AE 6U10 12FE 8AU8-A 9DX 100	GN8	9DX
6LQ6 9QL 6V3 9BD 8AW8-A 9DX 10l 6LQ8 9DX 6V3-A 9BD 8B10 12BF 10l	HA6 HF8	9NW 9DX
6LR6 12FY 6V4 9M 8BA8-A 9DX 103		9DX 12EY
6LR8 9QT 6V5-GT 6AO 8BA11 12ER 100	JA8	9DX
6LT8	JT8 JY8	9DX 9DX
6LU8 12DZ 6V6-GTA 7AC 8BN8 9ER	, . 0	V-2/12

	Tube Tube Tube Tube							
Туре	Basing	Туре	Basing	Туре	Basing	Туре	Basing	
10KR8 10KU8	9DX 9LT	12BE6-A 12BF6	7CH 7BT	12EL6 12EM6	7FB 9HV	13FM7 13FR7	12EJ 9HF	
10LB8 10LE8	9LT 9DX	12BF11 12BH7	12EZ 9A	12EM6 12EN6 12EQ7	7AC	13GB5 13GF7	9NH 9QD	
10LW8	9QZ 9DX	12RH7-A	9A	12EZ6	9LQ 7BK	13GF7-A	9QD	
10LY8 10LZ8	9DX 9DX	12BK5 12BK6	9A 9BQ 7BT	12F5-GT 12F8	5M 9FH	13J10 13JZ8	12BT 12DZ	
10T10 10Z10	12EZ	10012	7BK 7DF	12FA6 12FK6	9FH 7CH 7BT	13JZ8A 13V10	12DZ 12EZ	
11AR11	12BJ 12DM	12BN6-A	7DF		7BT	13Z10	12BT	
11BM8 11BQ11	9EX 12DM	12BN6 12BN6-A 12BQ6-GTA 12BQ6-GTB 12BR3 12BR7	7DF 6AM 6AM 9CB 9CF 9CF	12FM6 12FQ7 12FQ8 12FR8 12FT6 12FV7 12FX5	9LP 9KT 9KU	14A4 14A5	5AC 6AA 8V	
11BQ11 11BT11 11C5	12GS	12BR3	9CB	12FR8	9KU 7BT	14A7 14AF7	8V	
11CA11	12GS 7CV 12HN 12HW	12BR7-A	9CF	12FV7	9A 7CV 9KV 9KV 9EX	14B6	8AC 8W 8X	
11CF11 11CH11	12GS 9LG	12BS3-A	9HP	12FX5 12FX8	9KV	14B8 14BL11	12GC	
11CY7 11DS5	9LG 7BZ	12BR7-A 12BS3 12BS3-A 12BT3 12BT6 12BU6 12BV7 12BV11 12BW4 12BY3 12BY7 12BY7-A 12BY7-A 12BY6	12BL 7BT 7BT	12FX5 12FX8 12FX8-A 12FY8 12G4 12G8 12G11 12GC6 12GC6 12GE5 12GJ5 12GJ7	9KV 9EX	14BR11 14C5	12GL	
11FY7 11HM7	7BZ 12EO	12BU6	7BT	12G4		14C5 14C7 14E6	6AA 8V 8W	
11JE8	9BF 9DX	12BV11	9BF 12HB 9DJ	12G8 12G11	9CZ 12BU 7CH	14E7	8AE	
11JE8 11KV8 11LQ8 11LT8	ODX 9DX	12BW4 12BY3	9DJ 9CB	12GA6 12GC6	7CH 8JX	14F7 14F8	8AC 8BW	
11LT8	9RL	12BY7	9CB 9BF 9BF	12GE5	12 P.J	14GT8 14GT8-A	9KR 9KR	
11LY6 11MS8	9RL 9GK 9LY	12BZ6	7CM	12GN7 12GN7-A	9QK 9BF	14H7	8V	
11Y9 12A	10L 4D	12BZ7 12C5	9A 7CV	12GN7-A 12GT5	9BF 9NZ	14J7 14JG8	8BL 9KR	
12A4 12A5	9AG 7F	12C8	8E 7CV	12GT5-A 12GW6	9NZ 6AM	14N7	8AC 8AL	
12A6-GT	7AC	12CK3	9HP	12H4	7DW	14Q7 14R7	8AE	
12A7 12A8-G	7K 8A	12627 12C5 12C8 12CA5 12CK3 12CL3 12CM6	9HP 9CK 7CV	12H6 12HE7	7Q 12FS	14S7 14W7	8BL 8BJ	
12A8-GT 12AB5	8A 9EU	12CN5 12CR6	7CV 7EA	12HG7 12HL5	9BF 9QW	14X7 14Y4	8BJ 8BZ 5AB	
12AC6	7BK	12CS5	9GR	12J5-GT	6Q 7R	l 14	5F 8GS	
12AC10 12AD6	12FE 7CH	12CS6 12CT3	7CH 9RX	12J7-GT 12J8	7R 9GC	15A8 15AB9	8GS 10N	
12AD7 12AE6	9A 7BT	12CT3 12CT8 12CU5	9DA 7CV	12JB6 12JB6-A	9QL 9QL	15A8 15AB9 15AF11 15BD11	12DP 12DP	
12AE6-A	7BT	12CU6	6AM	12JF5	12JH	15BD11-A	12DP 9CV	
12AE7 12AE10	9A 12EZ	12CX6 12CY6	7BK 7BK	12JN6 12JN6-A	12FK 12FK	15CW5 15DQ8	9HX	
12AF3 12AF6	9CB 7BK	12D4 12D4-A 12DB5 12DE8	4CG 4CG	12JN8	9FA 9RA	15DQ8 15EA7 15EW6 15EW7 15FW7 15FY7 15HA6 15HB6	8BD 7CM	
12AG6	7CH	12DB5	9GR	12JQ6 12JS6	12FY	15EW7	9HF	
12AH7-GT 12AJ6	8BE 7BT	12DE8 12DF5	9HG 9BS	12JT6 12JT6-A	9 ର୍ ଧ 9 ର୍ ଧ	15FM7 15FY7	12EJ 12EO	
12AL5 12AL8	6BT 9GS	12DF5 12DF7 12DJ8	9A 9DE	12K5	7FD	15HA6 15HR6	9NW 9NW	
12AL11	12BU	112DK5	9GT 7CM	12K7-GT 12K8-GT 12KL8	7R 8K		9QT 9QT	
12AQ5 12AS5	7BZ 7CV	12DK6 12DK7	9HZ	12KL8 12L6-GT 12L8-GT	9LQ 7AC	15KY8-A 15LE8	9QZ	
12AT6 12AT6-A	7BT 7BT	12DL8 12DM4	9HR 4CG	12L8-GT 12MD8	8BU 9RQ	15MF8 15MX8	12DZ 9OT	
12AT7	9A 7BK	12DM4-A 12DM5	4CG 7CV	12Q7-GT 12Ř5	7V 7CV	16A8 16AK9	9QT 9EX 12GZ	
12AU6 12AU6-A	7BK	12DM7	9A	12S8-GT	8CB	16AQ3	9CB	
12AU7 12AU7-A	9A 9A	12DQ4 12DQ6	4CG 6AM	12SA7 12SA7-GT	8R 8AD	16BQ11 16BX11	12DM 12CA	
12AU8 12AV5-GA	9DX 6CK	12DQ6-A 12DQ6-B	6AM 6AM	12SC7 12SF5-GT	8S 6AB	1 160K8	9GK 12DR	
12AV6	7BT	12DQ7	9BF	12SF7-GT	7AZ	16GY5 16KA6 16LU8	12GH	
12AV6-A 12AV7	7BT 9A	12DS7 12DS7-A	9JU 9JU	12SG7 12SH7	8BK 8BK	16LU8A	12DZ 12DZ	
12AW6 12AX3	7CM 12BL	12DT5 12DT6 12DT7	9HN 7EN	12SJ7-GT 12SK7-GT	8N 8N	16MY8 16Y9	12DZ 10L	
12AX4-GT	4CG	12DT7	9A	12SL7-GT	8BD	17A8	9DC	
12AX4-GTA 12AX4-GTI	A 4CG B 4CG	12DT8 12DU7	9DE 9JX	12SN7-GT 12SN7-GTA	8BD 8BD	17AB9 17AB10	10N 12BT	
12AX7 12AX7-A	9A 9A	12DV7 12DV8	9JY 9HR	12SQ7-GT 12SR7-GT	8Q 8Q	17AV5-GA 17AX3	6CK 12BL	
12AY3	9HP	12DW4-A	9HP	12SW7	8Q	17AX4-GT	4CG	
12AY3-A 12AY7	9HP 9A	12DW5 12DW7	9CK 9A	12SX7-GT 12SY7	8BD 8R	17AX4-GTA 17AY3	9HP	
12AZ7 12AZ7-A	9A 9A	12DW8 12DY8	9JC 9JD	12SY7-GT 12T10	8AD 12EZ	17AY3-A 17BE3	9HP 12GA	
12B4 12B4-A	9AG 9AG	12DZ6 12DZ8	7BK 9JE	12U7 12V6-GT	9A 7AC	17BE3-A 17BF11	12GA 12EZ	
12B8-GT	8T	12E5-GT	6Q	12W6-GT	7AC	17BF11-A	12EZ	
12BA6 12BA6-A	7BK 7BK	12EA6 12EC8	7BK 9FA	12X4 12Z3	5BS 4G	17BH3 17BH3-A	9HP 9HP	
12BA7 12BD6	8CT 7BK	12ED5 12EF6	7CV 7S	13CW4 13DE7	12AQ 9HF	17BQ6-GTB 17BR3	6AM 9CB	
12BE3	12GA	12EG6	7CH	13DR7	9HF	17B83	9HP	
12BE3-A 12BE6	12GA 7CH	12EH5 12EK6	7CV 7BK	13EM7 13FD7	8BD 9HF	17BS3-A 17BW3	9HP 12FX	

Tube	D	Tube	n ·	Tube	n .	Tube	
Type	Basing 12FX	Туре	Basing	Туре	Basing	Туре	
17BZ3 17C5	7CV	19HR6	7BK 7BK	25EH5 25F5	7CV 7CV 7CV 9EX	35Z3 35Z4-GT	4Z 5AA
17C5 17C9	10F	19HS6 19HV8	9FA	25F5-A	7CV	35Z5-GT	6AD
17C9-A	10F	11010	7BF	25F5-A 25FY8 25HX5	9EX	3526-G	7Q 5E
17C9-A 17CA5 17CK3	10F 7CV 9HP	19JN8 19KG8	9FA 9LY	25HA5 25JO6	9SB 9RA	36 36AM3	5E 5BQ
17CL3	9HP	19Q9	10H	25JQ6 25JZ8	12DZ	36AM3-A	5BQ
17CT3 17CU5	9RX	19Q9 19T8 19T8-A	9E 9E		7AC 7AC 7W 4CG 7AC 7Q 6E	36AM3-B	5BQ 12GW
17D4	7CV 4CG 4CG	19V8	9AH	25L6-GT 25N6-G 25W4-GT 25W6-GT 25W6-GT 25X6-GT 25Y5	7W	36KD6 36MC6	9QL
17D4-A	4CG	19X8	9AK	25W4-GT	4CG	37	5A
17DE4 17DM4	4CG 4CG	20 20EO7	4D	25W6-GT	7AC	38	5F 12FS
17DM4-A	4CG	20EQ7 20EW7	9LQ 9HF	25Y5	6Ĕ	38HE7 38HK7	12FS
17DQ4 17DQ6	4CG 6AM	20EZ7	9PG	25Z4	5AA	39/44	5F 4D
17DQ6-A	6AM	21EX6 21GY5	5BT 12DR	25Z5 25Z6-GT	6E 70	40 40FR5	7CV
17DQ6-A 17DQ6-B	6AM	21HB5	12BJ	26	7Q 4D	40FR5 40KD6	12G W
17DW4-A 17EW8	9HP 9AJ	21HB5-A 21HD5	12BJ 12ES	26A6 26A7-GT	7BK 8BU	40KG6 41	9RJ 6B
17GE5	12BJ	21HJ5	12FL	26C6	7BT 7BK	42	6B
17GJ5	90K 90K 9NZ	21JS6A	12FY	26CG6	7BK	42KN6	12GU
17GJ5-A 17GT5	9NZ	21JV6 21JZ6	12FK 12GD	26D6 26E6-G	7CH 7S	43 45	6B 4D
17GT5-A	9NZ	21KA6	12GH	26HU5	8NB	45B5	9CV
17GV5 17GW6	12DR	21KQ6	9RJ 12HL	26LW6	8NC 9BS	4523	5AM
17H3	6AM 9FK	21LG6 21LG6A	12HL 12HL	26Z5 27	9BS 5A	45Z5-GT 46	6AD 5C
17HC8	9FK 9EX	21LR8	9QT	FG-27-A	FG-27-A	47	5B
17JB6 17JB6-A	9QL 9QL	21LU8 21MY8	12DZ 12DZ	27GB5 27KG6	9NH 9RJ	48 49	6A 5C
17JF6	9QL	22	4K 9HP	28D7	8BS	50	4D
17JG6	9QU 9QU	22BH3	9HP	28GB5	9NH	50A5	6AA
17JG6-A 17JK8	9AJ	22BH3-A 22BW3	9HP 12FX	28HA6 28HD5	9NW 12ES	50AX6-G 50B5	7Q 7BZ
17JM6	12FJ	22DE4	4CG	28Z5 29LE6	6BJ	50BK5	9BO
17JM6-A	12FJ 12FK	22JF6 22JG6	9QL 9QU	29LE6 29GK6	9RJ 9GK	50BM8 50C5	9EX 7CV 7CV
17JN6 17JN6-A	12FK	22JG6-A	9QัU	29KQ6	9RJ	50C5-A	7CV
17JQ6 17JR6	9RA	22JR6	9QU	30	4D 12DA	50C6-G	7AC
17JT6	9QU 9QU	22JU6 22KM6	9QL 9QL	30AG11 30CW5	9CV	50C6-GA 50CA5	7AC 7CV
17JT6-A	9QU 12DZ	22KV6A	OOTI	30HJ5	9CV 12FL	50DC4	7AC 7AC 7CV 5BQ 8GT 7CV 7CV 7CV
17JZ8 17JZ8A	12DZ 12DZ	23JS6-A 23MB6	12FY 12FY 12GZ	30JZ6 30KD6	12GD 12GW	50E5 50EH5	8GT 7CV
17KV6	9QU 9QU	2329	12GZ	30MB6	12FY	50EH5-A	7ČV
17KV6A	9QU	24A	5E	31	4D	50FA5 50FE5	7CV
17L6-GT 17LD8	7ÅC 9OT	24BF11 24JE6-A	12EZ 9QL	31AL10 31JS6-A	12HK 12FY	50FK5	7CV
17R5	9QT 7CV	24JZ8	12 D Z	31JS6C	12FY	50FY8	7CV 8KB 7CV 9EX 12FN 12FN
17W6-GT 17X10	7AC 12BT	24LQ6 24LZ6	9QL 9QL	31LQ6	9QL 9OT	50GY7 50GY7A	12FN 12FN
18A5	6CK 12EZ	25A6-GT	7S	31LQ6 31LR8 31LZ6	12HR 12FY 12FY 9QL 9QT 9QL 4R	50HC6	(PL
18AJ10	12EZ	25A7-GT	8F	1 32	4K	50HK6 50HN5	7FZ
18DZ8 18FW6	9JE 7CC	25AC5-GT 25AV5-GA	6Q 6ČK	32ET5 32ET5-A	7ĈV 7CV 12HT	50JY6	9QW 8MG
18FW6-A	7CC	25AV5-GT 25AX4-GT	6CK	32HQ7	12HT	50L8-GT	7AC
18FX6 18FX6-A	7CH 7CH	25AX4-GT 25B5	4CG 6D	32L7-GT	8Z 5K	50X6 50Y6-GT	7AJ 7O
18FY6	7 RT	25B6-G	7S	33 33GT7	12FC	50Y7-GT	7Q 8AN
18FY6-A	7BT 9NH 7BK	25B8-GT 25BK5	8T	33GY7	12FC 12FN 12FN	50Z6-G 50Z7-G	7Q 8AN
18GB5 18GD6	7BK	25BQ6-GA	9BQ 6AM	33GY7-A 33HE7	12FS	53	7B
18GD6-A	7BK	25BQ6-GT	6AM	33JR6	9QU 12FK	53HK7	12FS
18GE6 18GE6-A	7BT 7BT	25BQ6-GA 25BQ6-GT 25BQ6-GTB 25BR3	6AM 9CB	33JV6 34	12FK 4M	55 56	6G 5A
18GV8	9LY	12000	7CV	34CD3	12FX 12GK	56R9	12EN
18HB8	9ME	25C6-G	7CV 7AC 7AC 7AC 7CV	34CE3 34CM3	12GK	57 58	6F 6F 12FS
19 19AU4 19AU4-GTA	4CG	25C6-GA 25CA5	7CV	34GD5	9HP 7CV	58HE7	12FS
19AU4-GTA	A 4CG	25CD6-G	5BT	34GD5-A	7CV 7CV	59	7A 7CV
19BG6-GA 19BG6-GA	5BT 5BT	25CD6-GA 25CD6-GA 25CD6-GB	5BT 5BT	34R3 35/51	9CB 5E	60FX5 60HL5	7CV 9QW
19C8	9E	25CG3	12 HF	35A5	6AA	70A7-GT	8AB
19CG3 19CL8-A	12HF 9FX	25CK3	9HP 9HP	35B5 35C5	7BZ	70L7-GT 71-A	8AA 4D
19CL8-B	9FX	25CM3 25CT3 25CU6	9RX	35C5-A	7CV 7CV	75	6G
19DE3	12HX	25CU6	6AM	35CD6-GA	5BT	76	5A
19DE7 19DK3	9HF 9SG	25D4 25D8-GT	4CG 8AF	35DZ8 35EH5	9JE 7CV	77 78	6F 6F
19DQ3 19DQ3A	12HF	25DK3	9SG	35EH5-A	7CV	79	6H
19DQ3A 19EA8	12HF	25DK4 25DN6	5BQ 5BT	35GL6	7FZ 9ME	80	4C
19EA8-A	9AE 9AE	25DQ6	6AM	35HB8 35L6-GT	7AC	81 FG-81-A	4B 3G
19EW7	9HF	25DQ6-A 25DT5	6AM	35LR6	12FY	82	4C
19EZ8 19FX5	9KA 7CV	25DT5 25E5	9HN 8GT	35W4 35W4-A	5BQ 5BQ	83 83-V	4C 4AD
19GQ7	9QM	25EC6	5BT	35Y4	5AL	84/6Z4	5D

Tube		Tube		Tube	by 101	Tube	
Туре	Basing	Туре	Basing	Туре	Basing	Type	Basing
85 89	6G	5636	8DC 5637	5902 5903 5904	8DL	6197 6201 6202 6203 6205 6206	9BV
FG-97 FG-98-A	6F FG-97 FG-97 4E	5638	5638	5904	8DJ 8DK 8DL 8DL 8DL	6202	9A 5BS 9CD 8DC 8DC
FG-98-A V99	FG-97 4E	5639 5640	8DL 5640	5905 5906	8DL	6203	9CD
X99		5641	6CJ	5907	8DL	6206	8DC
FG-105 117L7-GT	FG-105	5642	5642	5908 5910	8DC	6211 6211-A	9A
117M7-GT	FG-1Q5 8AO 8AO 8AV 8AV	5646	5645	5015	7CH	6215	9A 9A 3C 9CE 8HF
117N7-GT	8AV	5647	5647	i 5015A	7CH	6216	9CE
117L7-GT 117M7-GT 117N7-GT 117P7-GT 117Z3 117Z4-GT 117Z6-GT	4UB	5651-A	5638 8DL 5640 6CJ 5642 5645 5645 5647 5BO 7BD 6CE 5665 8CJ 2E31 5676 5676 5676 5676 5670 9G 9H	5916 5930 5931 5932 5963 5964	8DC 6AR 7CH 7CH 8DC 4D 5T 7AC	6215 6216 6221 6222	SHF
117Z4-GT	5AA	5654	7BD	5931	5T	6223	8HF 8DL 8DL
ru-104	7Q FĞ-154	5665	5665	5963	9A	6224 6225	SDL
FG-172 182-B	FG172 4D	5670	8CJ	5964 5965	9A 7BF 9A	GL6228	GL6228
183	4D	5675	5675	5965-A	9A 8DQ 8DQ 8DR 8DS 5971 1AD4	6245 6247	8FO
393-A 407-A	5AV	5676	5676	5967 5968	8DQ	GL-6251	GL6251
408-A	407-A 7BD	5678	1AD4	LEGRO	8DŘ	6267	9CO
414	414	5679	7CX	5970	8DS	6281	2E31
485 502-A	5A 6BS	5687	9G 9H	5971	5971 1AD4	GL-6283 6286	GL6283 5676
512-AX	512-AX	5690	5690	5975	5975 8DK	6287	9CT
575-A 627	575-A 4BZ	5636 5637 5638 5638 5639 5640 5641 5645 5645 5647 5651-A 5664 5663 5665 5670 5677 5677 5677 5677 5678 5678 5679 5686 5688 5689 5688 5689 5690 5692 5693	5690 8BD 8BD	5970 5971 5972 5975 5977 5987	8DK 8DM	6245 6247 GL-6251 6265 6267 6281 GL-6283 6286 6287 6299 6320 6321 6325 6327 6336	GL6228 5702 8FO GL6251 7CM 9CQ 2E31 GL6283 5676 9CT 6299 8DG
672-A 673	672-A 2P	5693	8N	0994	7AC	6321	8DG 6325 6327 8BD
678	678	5696	8US 7BN	5993 5995	5993 5995	6325	6325 6327
807	678 5AW	5696 5696-A 5702 5703 5704 5718 5718 5720 5725 5726 5727 5728 5727 5728 5731 5744 5749 5750 5750	8CS 7BN 7BN 5702 5703 5704 8DK 8DK 8DK 7CM 6BT 7BN 5559 559 559 5744 7BK	5998	8BD		8BD
816 866-A	4P 4P	5702	5702 5703	5998-A 6000	8BD 6CK	6336-A 6350	8BD 9CZ 8EY
872-A	4AT	5704	5704	6004 6005	2AJ	6352	8EY
884 950	4AT 6Q 5K 5BB	5718 5719	8DK	6011/710	7BZ FG-27-A	6355 6360	6355 9PW
954	5BB	5720	5559		FG-27-A 6CO	6384	6BQ 8CJ
955 956	5BC 5BB 5BD 5BD	5725 5726	7CM 6BT	6014/C1K	4AX 8DG 7BD	6385 6386	8CJ 8CJ
957	5BD	5727	7BN	6028	7BD	6394	8CJ 8BD
958-A 959	5BE	5728 5731	5559 5BC	6029 6045	5676 7BF	6394-A 6397	8BD 6CL
1612	7T	5744	5744	6012 6014/C1K 6021 6028 6029 6045 6046 6049 6050 6051	7AC	6414 6418	9A
1614 1620	7AC 7R	5749 5750	7BK 7CH	6049 6050	8DL 5676 6051	6418 6419	512-AX 512-AX
1621	78	5751	9A 9K	6051	6051	6442 6463	6442
1622 1625	7AC 5AZ	1 5767	9K 5767	6072 6072-A	9A QA	6463 6485	6442 9CZ 7BK 9DV
1629	5AZ 7AL 7AC 7AC	5784 5785	5767 5702	6080	9A 8BD		9DV
1631 1632	7AC	5785 5797	5785 8CY	6082 6082-A	8BD 8BD	6486-A	9DV GL6512
1633	880	5798	8CZ	6087 6088 6092	5L	GL6513	GL6513
1634 1635	8S 8B	5814 5814-A	9A 9A	6088	512-AX 2E31	GL6515	GL6515
1644	8BU	GL5822A	GL5822A	6094	2E31 9DH 7BZ 7DB	6520	8BD
1654 2050	2Z 6BS	GL5822A-PC 5823	GL5822A 4CK	6095 6096	7BZ 7DR	6525 6526	7BN 512-AY
2050-A	6BS	5824	4CK 7AC	6097 6098	6BT	6486-A GL6512 GL6513 GL6515 6519 6520 6525 6526 6528 6528	9DV 9DV GL6512 GL6513 GL6515 512-AX 8BD 7BN 512-AX 8BD 8BY
5544 GL5550	4BZ GL5550	5823 5824 5825 5829	4P 5829	6098 6100	6BQ 6BG	6533 6540	8FY 5702 7AC 9EJ
GL5551A/	OF FEET L	5830	5830	6101	7BF	6550	7AC
GL5551A/ GL5551A-PC GL5551A-PC GL5551A-PC GL5552A/ GL5552A-PC GL5553B/ GL5553B-PC GL5553B-PC	GL5551A	5829 5830 5838 5839 5840 5842 5844 5847 5847-A 5851	6S 6S	6106 6110	5L 8DJ	6582 6582-A	
GL5551A-PC	GL5551A	5840	8DE	6111	8DG 8DG	6611	512-AX 512-AX 7BK 7CM 7CM
GL5552A-PC	GL5552A	5842 5844	9V 7BF	6112 6113	8DG 8BD	6612 6660	512-AX 7RK
GL5553B/	CIERROD	5847	9X 9X 6CL	6121	5676	6661	7CM
GL5553B-PC	GL5553B	5847-A 5851	9X 6CL	6134 6135	8N 6BG	6662 6663	7CM 6BT
GL5553B GL5553B-PC GL5554	GL5553B	5852 5854	68 2E31	6136	7BK	6664	5CE
GL5555	GL5555 GL5555	5854 5855	2E31 5855	6137 6145	8N 8V	6669	7BZ 7CM
5557	3G	5873	5873	6146	7CK	6676 6677	7CM 9BV
5558 5559	5558 4BL	5875 5876	1AD4 5675	6146-A 6146-B	7CK 7CK	6678 6679	9AE 9A
5560	4CD	5876-A	5675	6147	6CL	6680	9A
5561 5563-A	5561 5563-A	5879 5881	9AD 7AC	6152 6159-A	5975 7CK	6681 6688	9A 9EQ
GL5564	GL5564	5885	5885	6159-B	7CK	6690	8GQ
5590 5591	7BD 7BD	5586 5890	5886 12J	6169 6173	8EE 6173	6754 6763	9ET 6763
5608-A	7B	5894B	5894B	6184	8EH	6771	6442
5610 GL5630	6CG GL5630	5896 5897	8DJ 8DK	6186 6187	7BD 7CM	6788 6792	8DL 8GL
5632	FG-27-A	5898	8DK	6188	8BD	6807	6807
5633	5633	5899	8DL	6189	9A	6808	6808
5634	5633	5900	8DL	6193	6193	6809	6807

Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube Type	Basing
6829	9A	7360	9KS	7841	7266	8348	9QN
6832	8DG	7370	9 H	7851	7GE	8358	9QR
6840 6842	9CZ 7EQ	7391 GL-7399	6299 GL7399	7855 7861	7815-R 8CJ	8380 8382	12AS 12AQ
GL-6848	GL6848	7403	8JU	7867	5BT	8393	12AQ
6851	9A	7408	7AC 9LN	7868	5BT 9RW	8403	7815-R
6853 6854	8HE 8CJ	7427 7430	9LN 7430	7887 7888	8DG 8DK	8408 8412	9QV 8412
6856/740	6856	7462	7462	7889	8DG	8413	8413
6856/740 6858/760	6807	7486 7518/710L	7077	7892	9H	8414	8DC
6859/760-P 6872	6808 5702	7543	7518/710L 7BK	7894 7895	7894 12AQ	8417 8425	78 7 BK
6877	9GB	7548	9LJ	7898	9EP	8425-A	7BK
6883 6883-A	7CK 7CK	7550 7551	8DG 9LK	7905 7910	9PB 7910	8426 8426-A	7BK 7BK
6883-B	7CK	7558	9LK	7911	7910 7911	8431	9AJ
6887	6BT	7576	8KM	7913	7768	8441	12AQ
6888 6889	8N 8HG	7581 7581-A	7AC 7AC	7962 7963	8DG 8DG	8444 8445	8DC 9AE
6897	2C39-B	7586	12AQ	7979	7979	8446	9FA
6900	9H	7587	12AS	7983	9PS	8447	9CF
6913 6919	9A 6BT	7588 7591	7296	7984 GL-7985	12EU GL7985	8448 8456	9BF 12AQ
6922	9AJ	7591-A	8KQ 8KQ 7CK	7994	8KM	8457	9PW
GL-6942	GL6942	7607	7CK	7995	8KZ	8458	9PW
6943 6944	8DC 8DC	7623 7624	6AM 6AM	GL7998/ GL7998-PC	GL7998	8463 8474	9QX 8100
6945	SDL	7625	7462	GL7998	GL7998	8475	8100
6946	8DK	7626	7626	GL7998-PC	GL7998	8475-A	8100
6947 6948	8DG 8DG	7644 7645	6299 9HL	8008 8032	2P 7CK	8477 8477-A	8100 8100
6954	7CM	GL7669/	31111	8032-A	7CK 7CK	8478	8100
6955	9A	GL7669-PC	GL7669	8042	8LJ	8489	9DA
6968 6973	7BD 9EU	GL7669 GL7669-PC	GL7669 GL7669	8056 8058	12AQ 12CT	GL-8500 8506	GL8500 8506
6999	6999	GL7671/	GINOGO	8064	8DL	GL-8513	GL8513
7025	9A	GL7671-PC	GL7671	8068	8LC	8517	8DC
7027 7027-A	8HY 8HY	GL7672 GL7672-PC	GL7672 GL7672	8070 8071	8LD 8LE	8522 8524	8DC 8DC
7036	7CH	GL7673/		8077	9GK	8525	8DG
7044	9H	GL7673-PC	GL7673 GL7673	8081	8081	8526	8DG
7054 7055	9GT 6BT	GL7673 GL7673-PC	GL7673 GL7673	8082 8083	8081 8081	8527 8528	8DK 8DE
7056	7CM	GL7681/ GL7681-PC		8084	7CM	8529	8DE
7057 7058	9AJ 9AJ	GL7681-PC GL7681	GL7681 GL7681	8096 8100	8FY 8100	8530 8532	8DE 7BQ
7059	9AE	GL7681-PC	GL7681	8102	9PJ	8533	8533
7060	9DA	7683	GL7681 9MN	8103	8DG	8534	8534
7061 7077 7079	9EU 7077	7687 7688	9AE 12BA	8106 8108	9PL 81 0 8	8535 8536	8535 8536
7079	8DG	7689	12BA	8113	7EW	8537	8537
7083	5702	7690	12BA	8116	8116	8538	8538
7105 7137	8BD 7BO	7695 7701	9PX 9MS	8116A 8117	8116 8116	8539 8552	8539 7CK
GL7151	7BQ GL7151	GL7703	GL7703 9DX	8117A	8116	8582	8100
7167 GL7171	7EW GL7171	7716	9DX 7EW	8118 8136	8118 7CM	8582-A 8595	8100 8595
7189	9CV	7716 7717 7719	9MX	8142	8100	8627	12CT
7189-A	9LE	17720	7462	8143	8100	8628	12AQ
7199 7211	9JT 7815-R	7721 7722	9EQ 9EQ	8149 8150	12DT 12DU	8632 8639	8632 8639
7212	7CK	7724 7725	9KR	8156	12EU	8643	8643
7216/C3JL	7216/C3JL	7725	FG-27-A 7518/710L	8185	8KM	8727	5675
7233 7234	9FR 9KD	7726 7728	9A	8186 8203	8KM 12AQ	8745 GL-8751	7815-R GL8751
7235	9KE	7729	9A	GL8205	GL8205	8755	8755 8755A
7236 7239	8BD 9KH	7730 7731	9A 9AE	8210 8211	8LS 8DL	8755A 8760	8755A
7244	7BF	7732	7CM	8212	9PY	8808	8100 8808
7244-A	7BF	7733	9BF	8213	9PY 8LT	8847	8847
7245 7245-A	7BQ 7BQ	7734	9LC 9MZ	8217 8318-A	8100 8100	8847A 8859	8847A
7246	5676	7737	7DK	8223	9AJ	GL-8866	8413 GL8866
7247	9A	7751	8KB	8228	7894	8892	8892
7258 7266	9DA 7266	7754 7757	9PX 9NE	8233 8236	9PZ 8JC	8893 8906	8893 8906
7289	7289	7759	8DG	8254	8LW	8907	8907
7296 7310	7296 4P	7760	8DG	8255	9NY	8917	8917
7311	7311	7761 7762	8DL 8DL	8278 8298	9QB 7ČK	9001 9002	7BD 7BS
7312	7312	7763	9NF	8298-A	7CK	9003	7BD
7313 7314	7313 7314	7768 7784	7768 7784	8318 8319	8100 8LD	9004 9005	4BJ 5BC
7318	9A	7788	9NK	8327	9CV	9006	5BG 6BH
7327	8DG	7802	8BD	8334	7DK	GE12661	GE12661
7355 7357	8KN 7CK	7803 7815	9AJ 7815	8345 8346	8100 8100	GE13971 GE14501	GE13971 GE14501

INDEX of BASING DIAGRAMS by TUBE TYPE

422

Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube Type	Basing
GE15371 GE16231 GE16411 GE16841	GE15371 GE16231 GE16411 GE16841	GE17241 GE17701 GE18651 GL37207	GE17241 GE17701 GE18651 GL37207	GL37248 GL51025 GL51038 GL51064	GL37248 GL51025 GL51038 GL51064	GL51065 GL51070 GL51074	GL51065 GL51070 GL51074

Tube		INDEX OF BASING DIAGRAMS by TUBE TYPE COLOR PICTURE TUBES 49								
18F222			Туре		Туре			Туре		
1	10VABP22		19GYP22 19GZP22	14BE 14BE						
19VAHP22	11WP22	14BJ	19HBP22	14BE	22ASP22	14BE		25VBMP22	14BE	
13G P22	12DCP22 12VAHP22	14BH 14BH	19HCP22 19HFP22		22ATP22 22EP22			25WP22 25XP22		
SILP22	13GP22	14BH	19HJP22	14BE	22JP22	14BE		25YP22	14BE	
13MP22	13JP22 13LP22	14BH 14RH	19HKP22 19HMP22	14BE 14BE				25ZP22 370AB22		
14VALPP22	13MP22	14BH	19HNP22	14BH	22QP22	14BE		370CB22	14BH	
14VALPP22	14BCP22 14VARP22		19HQP22 19HRP22		22RP22 22SP22			490AB22	14BE	
	14VADP22	14BH	19HTP22	14BH	22UP22	14BE		490ADB22	14BE	
	14VAEP22 14VAFP22		19HXP22 19HYP22		22 W P22 22 Y P22			490AEB22 490AFB22	14BE 14BE	
1474_1722	14VAGP22	14BH	19JAP22	14BH	23EGP22	14BE	i	490AGB22	14BE	
ISAFP22	14VAHP22		19JBP22 19JDP22		1 23VABP22			490AHB22 490AHB22A		
ISAFP22	15ACP22		19JGP22		23VACP22	14BE		490AJB22	14BE	
ISSP22	15AFP22		19JKP22		23VALP22			490AKB22	14BE 14BE	
15MP22	15GP22		19JLP22		23VAMP22			490ALB22	14BE	
15MP22	15KP22		19JQP22		23VAQP22			490AMB22 490ANB22	14BE 14BE	
15NP22	15LP22		19JSP22		23VARP22			490ARB22	14BE	
18BF22	15NP22	14BH	19JYP22	14BE	23VATP22	14BE		490BAB22	14BE	
15WP22	15RP22 15SP22		19JZP22		23VAXP22 23VAVP22			490BCB22	14BE	
15YP22	15WP22	14BH	19KCP22	14BH	23VAZP22	14BE	- 1			
16CDP22	15XP22 15YP22		19KDP22 19KLP22		23VBAP22 23VBCP22			490BHB22	14BE	
160SP22	16CDP22	14BE	19TP22	20A	23VBDP22	14BE		490BRB22		
16DAP22	16CSP22		19VABP22		23VBJP22 23VBKP22			490BUB22		
160AFP22	16DAP22	14BE	19VAGP22	14BE	23VBNP22	14BE		490BXB22	14BE	
16VAHP22	16VABP22 16VACP22		19VAMP22 19VANP22		23VBRP22 23VBSP22			490CB22		
16VAKP22	16VAFP22	14BH	19VAQP22	14BE	23VBTP22	14BE		490EB22	14BE	
16VATP22	16VAHP22 16VAKP22		19VATP22		25ABP22 25AEP22	14BE 14BE				
16VBDP22	16VASP22	14BE	19VBDP22	14BE	25AFP22	14BE		490GB22	14BE	
16VBDP22	16VAWP22		19VBQP22		25AKP22			490HB22 490JB22		
			19VBRP22	14BE			1	490JB22A	14BE	
17EAP22	17EVP22	14BH	19VBWP22	14BE	25AMP22	14BE		490KB22 490KB22A		
17FGP22	17EXP22							490LB22	14BE	
17F1P22	17FGP22	14BH	19VCNP22	14BE	25AP22A	1 4BE	- 1	490MB22 490NB22		
17FKP22	17FHP22 17FJP22		19VP22		25AQP22 25AWP22		- 1	490RB22	14BE	
17VAOP22	17FKP22	14BH	20VABP22	14BE	25AYP22	14BE		490TB22	14BE	
17VADP22	17VACP22		20VAEP22		25AZP22 25BAP22		1	490UB22		
18VAPP22	17VADP22		20VAFP22		25BCP22			490WB22	14BE	
18VAPP22	18VACP22	14BE	20VAHP22		25BFP22	14BE	l	490XB22 490YB22		
18VAHP22	18VADP22		20VAJP22		25BGP22			490ZB22		
18VAKP22	18VAHP22	14BE	20VANP22	14BE	25BKP22	14BE				
18VAMP22	18VAJP22 18VAKP22	14BE 14BE	20VASP22 21 A X P22		25BMP22 25BP22					
18VAMP22	18VALP22	14BH	21AXP22A	14AH	25BP22A	14BE				
18VARP22	18VAMP22 18VANP22		21CYP22 21CYP22A		25CAP22 25CBP22					
18VASP22 14BE 21FJP22 14AU 25GP22 14BE 18VATP22 14BH 21FVP22A 14AU 25GP22A 14BE 18VBAP22 14BH 21FKP22 14BE 25RP22 14BE 18VBCP22 14BE 21GFP22 14BE 25SP22 14BE 18VBDP22 14BH 21GUP22 14AU 25VABP22 14BE 18VBGP22 14BH 21GVP22 14AU 25VABP22 14BE 18VBGP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBGP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBHP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBHP22 14BH 21GWP22 14AU 25VAEP22 14BE 18VBHP22 14BH 21HP22 14BE 25VAP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAF22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAP22 14BE 19EXP22 14BE 21VALP22 14BE </td <td>18VAQP22</td> <td>14BE</td> <td> 21FBP22</td> <td>14AU</td> <td>25FP22</td> <td>14BE</td> <td></td> <td></td> <td></td>	18VAQP22	14BE	21FBP22	14AU	25FP22	14BE				
18VAPP22	18VASP22	14BE	21FJP22	14AU	25GP22	14BE				
18VBAP22	18VATP22	14BE	21FJP22A	14AU	25GP22A	14BE				
18VBDP22	18VBAP22	14BE	21GFP22		25SP22					
18VBEP22	18VBCP22		21GRP22	14BE	25UP22	14BE				
18VBHP22	18VBEP22	14BH	21GVP22	14AU	25VACP22	14BE				
18VBMP22 14BH 21HBP22 14BE 25VAFP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAGP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAP22 14BE 19EXP22 14BE 21VADP22 14BE 25VAMP22 14BE 19FMP22 14BE 21VALP22 14BE 25VAMP22 14BE 19FMP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VAP22 14BE 25VAZP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GWP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 24BP22 14BE 25VBAP22 14BE			21GWP22 21GYP22		25VADP22 25VAEP22					
18VBMP22 14BE 21VACP22 14BE 25VAJP22 14BE 19EXP22 14BE 21VACP22 14BE 25VAKP22 14BE 19EYP22 14BE 21VAVP22 14BE 25VAWP22 14BE 19FXP22 14BE 21VAKP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VALP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GWP22 14BE 21VARP22 14BE 25VBAP22 14BE 19GWP22 14BE 22VABP22 14BE 25VBAP22 14BE	18VBJP22	14BH	21HBP22	14BE	25VAFP22	14BE				
19EXP22	18VBMP22				25VAJP22					
19FMP22 14BE 21VAKP22 14BE 25VAQP22 14BE 19FXP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VAQP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22AHP22 14BE 25VBAP22 14BE	19EXP22	14BE	21VADP22	14BE	25VAKP22	14BE				
19GLP22 14BE 21VAQP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22VBGP22 14BE	19FMP22	14BE	21VAKP22		25 V A WI F 22 25 V A Q P 22					
19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22AHP22 14BE 25VBAP22 14BE	19FXP22	14BE	21VALP22	14BE	25VA WP22					
19GWP22 14BE 22AHP22 14BE 25VBGP22 14BE	19GSP22	14BE	21VARP22	14BE	25VAZP22	14BE	1			
19GXP22 14BE 22ALP22 14BE 25VBJP22 14BE	19GVP22 19GWP22		21VAUP22 22AHP22		25VBAP22 25VBGP22					
	19GXP22		22ALP22		25VBJP22	14BE				

INDEX of BASING DIAGRAMS by TUBE TYPE Monochrome Picture Tubes

Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube	Basing
2EP4	8JK		7GR	16BNP4	8HR	Type 17CP4A	12D
5AXP4	128	12CTP4 12CVP4	7GR	16BRP4	8HR	17CAP4	8HR
7DP4	12C	12CWP4	7GR	16BSP4	8HR	17CBP4	12L
7RP4 8AP4	12D 12 H	12CZP4 12DEP4	7GR 7GR	16BUP4 16BVP4	8HR 8HR	17CDP4 17CEP4	8HR
8AP4A	12H	12DEP4	7GR 7GR	16BWP4	8HR	17CFP4	12L 12L
8DP4	12AB	12DGP4	7GR	16BXP4	7FA	1 17CGP4	12L
8JP4 8LP4	8JL	12DHP4	8HR	16BYP4	8HR	17CKP4	8HR
8MP4	7FA 12L	12DKP4 12DMP4	7GR 8HR	16CP4 16CAP4	12D 8HR	SG-17CKP4 17CLP4	8HR 12L
8XP4	128	12DQP4	8HR	16CEP4	8HR	17CMP4	12L
8YP4 9ACP4	7FG 7GR	12KP4	12N	16CFP4	7GR	17CNP4	12L
9AGP4	7GR	12KP4A SG-12KP4A	12N 12N	16CHP4 16CHP4A	8HR 8HR	17CRP4	12L 7FA
9AGP4 9QP4 9QP4A	12AD	12LP4	12N	16CJP4 16CKP4	8HR	17CSP4 17CTP4	8HR
9QP4A 9SP4	12AD	12LP4A	12N 12N	16CKP4	8HR	17CUP4	12L
9TP4	8HR 8HR	12LP4C 12TP4	12N 12D	16CMP4 16CNP4	8HR 7GR	17CVP4 17CWP4	8HR 8HR
9UP4	7GR	12UP4	12D	16CQP4	7GR	17CXP4	12L
9VP4 9WP4	7GR	12UP4A	12D	16TP4	8HR	17CYP4 17CZP4	12L
9YP4	7GR 7GR	12UP4B 12VABP4	12D 8HR	16CUP4 16CWP4	8HR 7GR	17UZP4 17DAP4	12L 8JK
10ABP4	12L	12VP4	12G	16CXP4	7GR	17DBP4	121.
10ABP4A	12L	12VP4A	12G	16DP4	12D	17DCP4	12L
10ABP4B 10ABP4C	12L 12L	12YP4 12ZP4	12P 12N	16DP4A 16DCP4	12D 7GR	17DEP4 17DHP4	8JN 8HR
10ADP4	12L	12ZP4A	12N 12N	16DCP4A	7GR	17DJP4	12L
10AEP4	12L	13AP4	8HR	16EP4	12D	17DKP4	8JR
10ARP4 10ASP4	7GR 7GR	13DP4 14ACP4	8HR 12L	16EP4A 16EP4B	12D 12D	17DLP4 17DQP4	8HR 7FA
10BP4	12N	14AEP4	12L	16GP4	12D	17DRP4	8JK
10BP4A	12N 12N	14AJP4	8HR	16GP4A	12D	17DSP4	8HR
10BP4C 10BP4D	12N 12N	SG-14AJP4	8HR 12L	16GP4B 16GP4C	12D 12D	17DTP4	8HR 12L
10DP4	12M	14ARP4 14ASP4	8HR	16HP4	12N 12N 12N 12N 12N	17DWP4 17DXP4	8JR
10FP4	12N	14ATP4	12L	16HP4A	12N	17DZP4	8HR
10FP4A SG-10FP4A	12N 12N	14AUP4	12L 8HR	16JP4 16JP4A	12N 12N	17EAP4 17EBP4	12AT 8HR
10MP4	12G	14AVP4 14AWP4	12L	16KP4	12N 12N	17EFP4	8HR
10MP4A 10RP4	12G 12L	14BP4 14BP4A	12N 12N	16KP4A SG-16KP4A	12N 12N	17EHP4 17EKP4	8HR 12L
11AP4	8HR	14BDP4	12IV 12I.	16LP4	12N 12N	17ELP4	8HR
11AP4 11BP4	8HR	14CP4	12L 12N	16LP4A	12N	17EMP4	8HR
11CP4 11DP4	8HR 8HR	14CP4A SG-14CP4A	12N 12N	16MP4 16MP4A	12N 12N 12N 12N 12N	17EQP4 17ESP4	8HR 8HR
11EP4	8HR	14CP4B	12N 12D	16QP4	121)	17FCP4	8HR
11FP4	8HR	14DP4	12D	16RP4	12N 12N	17FDP4	8HR
11GP4 11HP4	8HR 8HR	14EP4 14GP4	12N 12L	16RP4A 16RP4B	12N 12N	17FP4 17FP4A	12L 12L
11HP4A	8HR	14HP4	12L	16SP4	12N 12N 12N 12N	17GP4	12M
11JP4 11KP4	8HR 8HR	14NP4 14NP4A	12L 12L	16SP4A 16TP4	12N 12N	12HP4 17HP4A	12L 12L
11LP4	8HR	140P4	12L 12L	I ISTIPA	12D	17HP4B	12L
11MP4	8HR	14QP4 14QP4A 14QP4B	12L	16VAUP4 16VP4	8HR	SG-17HP4B	12L
11QP4 11RP4	7GR 7GR	SG-14QP4A	12L 12L	16VP4 16WP4	12D 12D	17HP4C 17JP4	12L 12N
11TP4	8HR	14RP4	12L	16WP4A	12N 12N	17KP4	12P
11UP4	7GR	14RP4A	12L	16WP4B	12N	17KP4A	12P
12AYP4 12AZP4	8HR 8HR	14SP4 14UP4	12L 12D	16XP4 16YP4	12D 12N	17LP4 17LP4A	12L 12L
12BAP4	8HR	14WP4	12L	16ZP4	12N 12N	SG-17LP4A	12L
12BEP4	7FA	SG-14WP4	12L	17AP4 17ATP4	12N	17LP4B 17QP4	12L
12BFP4 12BGP4	7GR 8HR	14XP4 14XP4A	12L 12L	17ATP4A	12L 12L	17OP4A	12N 12N
12BJP4	8HR	14ZP4	12L	17AVP4 17AVP4A	12L	SG-17QP4A 17QP4B	12N 12N 12N 12N
12BKP4 12BLP4	8HR 8HR	15ADP4 15JP4	8HR 8HR	17AVP4A 17BP4	12L 12D	17QP4B 17ŘP4	12N 12L
12BMP4	7GR	16AP4	12D	17BP4A	12N	17RP4C	12L
12BNP4 12BNP4A	8HR	16AP4A	12D	17BP4B	12N 12N	17SP4	12 P
12BNP4A	8HR 8HR	16ABP4 16ACP4	12P 12P	SG-17BP4B 17BP4C	12N 12N	17TP4 17UP4	12M 12N
12BQP4 12BSP4	8HR	16AEP4	12L	17BP4D	12N	17VP4	12L
12BTP4	8HR	16ANP4	8HR	17BJP4	12L	17VP4B	12L
12BUP4 12BUP4A	8HR 8HR	16AEP4 16ANP4 16AQP4 16ASP4	8HR 8HR	SG-17BJP4 17BKP4	12L 12L	17YP4 18VAGP4	12N 8HR
12BUP4B	8HR	116A'I'P4	8HR	17BKP4A	12L	18VAGP4 19AP4	12D
12BUP4C 12BVP4	8HR 7GR	16AUP4 16AVP4	8HR 7FA	17BMP4 17BNP4	12L 12L	19AP4A 19AP4B	12D 12D
12BZP4	7GR 7GR	16AWP4	8HR	17BRP4	8HR	119AP4C	12D
12CBP4	7FA	16AXP4 16AYP4	8HR	17BSP4	12L	19AP4D 19ABP4	12D 8JK
12CDP4 12CEP4	7GR 7GR	16AYP4 16AZP4	8HR 8HR	17BTP4 17BUP4	12AJ 12L	119ACP4	8JK 8HR
12CFP4	7GR	16BAP4	8HR	17BVP4	7FA	19AEP4 19AFP4	8HR
12CHP4 12CNP4	7GR	16BDP4	8HR	17BWP4	7FA	19AFP4 19AHP4	8HR 8HR
12CNP4A	7GR 7GR	16BEP4 16BFP4	8HR 8HR	SG-17BWP4 17BYP4	7FA 7FA	19AJP4	7FA
12COP4	8HR	16BGP4	8HR	17BZP4	8HR	19ALP4	8HR
12CSP4	7GR	16BMP4	8HR	17CP4	12D	19ANP4	8JR

Monochrome Picture Tubes

Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube	Basing
10 A O D4	8HR	19FHP4	8HR	SC 91 A TIDAD	12L	Type 91CDD4	8HR
19AQP4 19ARP4	8HR	19FJP4	8HR	SG-21AUP4B 21AUP4C	12L	21GBP4 21GCP4	8HR
19ASP4	8HR	19FJP4A	8HR	21A VP4	12L	21GEP4	8HR
19ATP4	8JR	19FKP4	8HR	21AVP4 21AVP4A	12L	21GHP4	8HR
19ATJP4	8HR	19FLP4	8HR	21AVP4B	12L	21GJP4	8HR
19AVP4 19AXP4 19AYP4	8HR	19FNP4	8HR	21AVP4C	12L	21GKP4	8HR
19AXP4	8HR	19FRP4	8HR	21AWP4	12N	21GTP4	8HR
19AYP4	8HR	19FTP4	8HR	21AWP4A	12N	21JP4	12N
19BAP4 19BCP4	8HR 8HR	19FWP4 19GP4	8HR 12D	SG-21AWP4 SG-21AWP4A	12N 19N	21JP4A 21KP4	12N 12S
19BDP4	12L	12GAP4	8HR	21AYP4	12L	21KP4A	128 12P
19BEP4	8HR	19GBP4	8HR	21BAP4	12L	21MP4	12M
19BFP4	12L	19GEP4	8HR	1 21BCP4	12L	21VASP4	8HR
19BHP4	8HR	19GFP4	8HR	21BDP4 21BNP4	12L	21VATP4	8HR
19BLP4	8HR	19GHP4	8HR	21BNP4	12L	21WP4	12N
19BMP4 19BNP4	8HR 8HR	19GJP4 19GJP4A	8HR 8HR	21BSP4 21BTP4	12N 12L	21WP4A	12N 12N
10ROP4	8HR	19GKP4	8HR	21CBP4	12L	SG-21WP4A 21WP4B	12N 12N
19BQP4 19BRP4	8HR	19GMP4	8HR	21CBP4A	12L	21 X P4	12L
19BSP4	8HR	19HAP4	8HR	21CBP4B	12L	21XP4 21XP4A	12L
19BTP4	8JR	19HGP4	8HR	l 21CDP4	12L	SG-21XP4A	12L
19BUP4	8HR	19JP4	12D	21CDP4A	12L	21XP4B	12L
19BVP4	8HR	19QP4 19VAHP4	12L	21CEP4	8HR	21YP4	12L
19BWP4 19CAP4	8HR 8JR	19VAHP4 19VAJP4	8HR 8HR	21CEP4A 21CGP4	8HR 12L	21YP4A SG_21VP4A	12L 12L
19CDP4	7FA	19VBNP4	8HR	21CHP4	12L 12L	SG-21YP4A 21YP4B	12L 12L
19CEP4	8HR	19XP4	8HR	21CKP4	12L	21ZP4	12D
19CFP4	8HR	19YP4	8JR	21CKP4 21CLP4	12AJ	21ZP4A	12N
19CGP4	12L	19ZP4	8HR	{ 21CM P4	12L	21ZP4B	12N
19CHP4 19CJP4	8HR	20ABP4	8HR	21CQP4 21CSP4	7FA	SG-21ZP4B	12N 12N
19CJP4 19CKP4	8HR 8HR	20ADP4	8HR	21CSP4 21CUP4	7FA	21ZP4C 22AFP4	IZN OUD
19CLP4	12L	20AEP4 20AHP4	8HR 8HR	21CVP4	12N 12L	22AFP4 22TP4	8HR 8HR
19CMP4	8HR	20CP4	12D	21CWP4	12L	22VABP4	8HR
19CMP4A	8HR	20CP4A	12N	21CXP4 21CZP4	12L	22VACP4	8HR
19CQP4 19CRP4	7FA	I 20CP4B	12D	21CZP4	8HR	22VAMP4	8HR
19CRP4	12L 8HR	20CP4C	12D	21DP4 21DAP4	12M 8HR	22VANP4	8HR
19CUP4 19CVP4	8HR	20CP4D SG-20CP4D	12N 12N	21DEP4	8HR	22VARP4 22VASP4	8HR 8HR
19CXP4	7FA	20DP4	12D	21DEP4A	8HR	22VATP4	8HR
19CYP4	8HR	20DP4A	12N	SG-21DEP4A	8HR	22ZP4	8HR
19CZP4	8HR	20DP4B	12D	21DFP4	8HR	23ACP4	12L
19DP4	12N	20DP4C	12N 12N	21DHP4	8HR	23AFP4	12L
19DP4A 19DAP4	12N 8HR	20DP4D 20FP4	12N 12M	21DJP4 21DKP4	12L 8HR	23AHP4 23AKP4	12L 8JR
19DRP4	7FA	20GP4	12L	21DKP4A	8HR	23ALP4	8HR
19DBP4 19DCP4	8HR	20HP4	12M	21DLP4	12L	23AMP4	8HR
19DEP4	8HR	20HP4A	12L	21DMP4	8HR	I 23ANP4	12L
19DFP4	8HR	20HP4B	12M	21DNP4	12L	23AQP4 23ARP4	8HR
19DHP4	8HR	20HP4C 20HP4D	12M 12L	21DQP4 21DRP4	12L 12L	23ARP4	8HR 12L
19DJP4 19DKP4	8HR 8HR	SG-20HP4D	12L 12L	21DSP4	12L	23ASP4 23ATP4	12L 12L
19DLP4	8HR	20HP4E	12L	21DVP4	12L	23AUP4	12L
19DNP4	8HR	20JP4	12P	21DWP4	8HR	23AVP4	8HR
19DQP4 19DRP4	8HR	20LP4	12L	21EP4	12D	23 A W P4	12L
19DKP4	8HR	20MP4	12L	21EP4A	12N 12N	23AXP4	8HR
19DSP4 19DUP4	8HR 8HR	20RP4 20SP4	8HR 8HR	21EP4B SG-21EP4B	19N	23AYP4 23AZP4	8HR 12L
19DVP4	8HR	20TP4	8HR	21EP4C	12N	23BP4	8HR
19DWP4	8HR	! 20UP4	8HR	21EAP4	12N 8JK	23BAP4	8HR
19DYP4	8HR	20WP4	8HR	1 21ELP4	12L	23BCP4	8HR
19DZP4	8HR	20XP4 20YP4	8HR	21EMP4 21ENP4	8HR	23BDP4 23BEP4	12L 8HR
19EP4 19EAP4	12D 8HR	20YP4 20ZP4	8HR 8HR	21EOP4	12L 8JR	23BEP4 23BEP4A	8HR 8HR
19EBP4	8HR	21AP4	12D	21EQP4 21ERP4	8JR	23BGP4	8HR
19ECP4	8HR	21ACP4	12N	21ESP4	8JS	23BHP4	8HR
19EDP4	8HR	21ACP4A	12N	21EVP4	8JK	23RJP4	12L
19EFP4	8HR	SG-21ACP4A	12N	21EXP4	8JR	23BKP4	12L
19EGP4 19EHP4	8HR 8HR	21AFP4 21ALP4	12 M 12 L	21EZP4 21FP4	8JR 12M	23BLP4 23BMP4	12L 12L
19EHP4A	8HR	21ALP4 21ALP4A	12L 12L	21FP4 21FP4A	12M 12L	23BMP4 23BNP4	8HR
19EJP4	8HR	l 21ALP4B	12L	21FP4C	12L	23BQP4	8HR
19EKP4 19ELP4	7FA	21AMP4	12L	SG-21FP4C	12L	23BRP4	8JR
19ELP4	8HR	21AMP4A	12L	21FP4D	12L	23BSP4	8HR
19ENP4 19ENP4A	8HR 8HR	21AMP4B 21ANP4	12N 12M	21FAP4 21FCP4	8JR 8HR	23BTP4 23BVP4	12L 12L
19ESP4	8HR	OTANIDAA	12M 12M	21FOP4	8KW	23BXP4	12L 12L
19ETP4	8HR	21AQP4 21AQP4A 21AQP4A 21ARP4	12D	21FLP4	12L	23BXP4 23BYP4	AJR.
19EUP4	8HR	21AQP4A	12D	SG-21FLP4	12L	23BZP4	12L
19EZP4	7FA	21ARP4	12N	21FMP4	8HR	23CP4	8HR
19FP4 19FBP4	12D 8HR	21ARP4A 21ASP4	12N 12M	21FUP4 21FVP4	8HR 8HR	23CP4A 23CAP4	8HR 12L
19FCP4	8HR	21ATP4	12M 12L	21FWP4	8HR	23CBP4	8HR
19FDP4	8HR	21ATP4A	12L	21FXP4	8HR	23CDP4	12L
19FEP4	8HR	I 21 ATPAR	12L	21FYP4	8HR	23CEP4	8HR
19FEP4A	8HR	21AUP4 21AUP4A	12L	21FZP4	8HR	23CGP4 23CMP4	12L 8HR
19FEP4B 19FGP4	8HR 8JR	21AUP4A 21AUP4B	12L 12L	21GAP4 21GAP4A	8HR 8HR	23CQP4	8HR
101.01.1	WIL	LIAVITO	****	MUNEAU	CALLE	20 CATI	JALLE

INDEX of BASING DIAGRAMS by TUBE TYPE

Monochrome Picture Tubes

Tube		Tube		Tube		Tube	
Туре	Basing	Туре	Basing	Туре	Basing	Туре	Basing
23CSP4	8JR	23FP4A	8HR	23HZP4	8HR	24CP4A	12N
23CTP4	12L	23FAP4	8HR	23JP4		SG-24CP4A	12N
23CUP4	8JR	23FBP4	12L 8HR	23JAP4	7FA 8HR 8HR 8HR 8HR 8HR 8HR 8HR 8HR 8HR 8HR	24CP4B	12N 12N
23CVP4	8JR	23FCP4	8HR	23JBP4	8HR	24DP4	12L 12L 12L 12N 12N 12N 12N
23CWP4	8JR	23FDP4	8HR 8HR 8HR	23JEP4	8HR	24DP4A	12L
23CXP4 23CZP4	SIB	23FHP4	8HR	23JFP4	8HR	24QP4 24TP4	12N
23CZP4	12L 8JR 8HR	23FKP4	8HR	23JGP4	8HR	24TP4	12N
23DP4	8JR	23FLP4	12L 8HR	23JLP4	8HR	24VP4	12N
23DAP4	8HR	23FMP4	8HR	23KP4	8HR	24VP4A	12N
23DBP4	8HR	23FNP4	12L 8HR	23KP4A	8HR	24VP4A 24XP4	12D
23DCP4	8HR	23FRP4	8HR	23MP4	8HR	24YP4	191.
23DEP4	8HR	23FSP4	8HR	23MP4A	8HR	24ZP4	12T.
23DFP4	8HR	23FVP4	8HR	23NP4	8HR	25DP4	8HR
23DHP4	8HR 8HR	23FVP4A	8HR	23RP4	8JR 8HR	25EP4	12L 8HR 8HR 8HR 8HR 8HR 8HR
23DJP4	8HR	23FWP4	12L	23SP4	8HR	25HP4	8HR
23DKP4	12L 12L	23FWP4A	12L 8HR	23SP4 23TP4 23UP4	12L 8HR	25HP4 25JP4 25KP4	SHR
23DLP4	12L	23GP4	8HR	231TP4	8HR	25KP4	SHR
23DLP4A	12T.	23GBP4	8HR	23VP4	8HR	25LP4	SHR
23DNP4 23DQP4 23DRP4	12L 8HR 8HR	23GDP4 23GEP4	8HR 8HR	23WP4	8HR	25TP4	8HR 8HR
23DQP4	8HR	23GEP4	121.	23XP4	12L	27AP4	12M
23DRP4	8HR	23GHP4	12L 8HR	23YP4	12L	27ABP4	SHR
23DSP4	8HR	23GJP4	8HR	23ZP4	12L	27ACP4	121.
23DSP4A	8HR	23GJP4A	8HR	23ZP4 24AP4	12D	27ADP4	12M 8HR 8HR 8HR 8HR 12D 12D 12N 12N 12N 12N 12N 12N 12N
23DTP4	12L	23GKP4	12L	24AP4A	îžĎ	27AEP4	8HR
23DVP4	8HR	23GRP4	12L	23AP4B	12D	27AFP4	8HR
23DVP4A	8HR	23GSP4	8HR	24ADP4	12N	27AGP4	SHR
23DWP4 23DYP4	8HR	23GTP4	8HR	24AEP4	19I.	97F.D4	12D
23DYP4	8HR	23GVP4	8HR	SG-24AEP4	12L 8HR	27GP4 27LP4	12D
23DZP4	8HR	23GWP4	8HR	24 A H P4	8HR	27 LP4	12N
23EP4	8KP	23GXP4	8HR	24AJP4	12L	27MP4	12D
23EAP4	12L	23HP4	8HR	24AJP4 24ALP4	12L 8HR	27NP4	12N
23ECP4	12L	23HBP4	8HR	24AMP4	7FA	27RP4	12N
23EDP4	12L 8HR	23HFP4	8HR	24ANP4	7FA 12L	27RP4A	12N
23EFP4	8HR	23HFP4A	8HR	24AQP4	8HR	SG-27RP4	12N
23EKP4	12I.	23HGP4	8HR	24ASP4	12L	27SP4	12L
23ENP4 23EQP4 23ERP4	12L 8HR	23HKP4	8HR	24ATP4	12L	27UP4	12L
23EQP4	8HR	23HLP4	8HR	24AUP4	12L	27VP4	12L
23ERP4	8HR	23HMP4	8HR	24AVP4	8JK	27WP4	12L 12AJ
23ESP4	8HR	23HQP4	8HR	24AWP4	8HR	27XP4	19T.
23ETP4	8HR	23HRP4	8HR	24AXP4	8HR	27YP4	12L
23EWP4	8HR	23HUP4	8HR	24BP4	12M	27ZP4	12L 8HR 12D
23EWP4A	8HR	23HUP4A	8HR	24BP4 24BAP4	12M 8HR	30BP4	12D
23EYP4	12L	23HWP4	8HR	24BCP4	12L		
23EZP4	8HR	23HW P4A	8HR	24BEP4	12L 8KW		
23FP4	8HR	23HXP4	8HR	24CP4	12N		

Vidicons

Tube Type	Basing	Tube Type	Basing	Tube Type	Basing	Tube Type	Basing
7038	8HM	Z7911	8HM	Z7975HRB	8ME	8541A	8ME
7038V	8HM	Z7912	8ME	27996B	8ME	8541X	8ME
7262A	8HM	Z7919	8ME	Z7996HRB	8ME	8572	8ME
7263A	8HM	Z7927B	Z7927B	8134	8LN	8572V	8ME
7735A	8HM	Z7927HRB	Z7927HRB	8134V	8LN	8573A	8ME
7735B	8HM	Z7929R.B.G	8LN	8484H	8HM	8573X	8ME
7735BX	8HM	Z7975B	8ME	8507A	8ME	8604	8ME

ESSENTIAL CHARACTERISTICS BASING DIAGRAMS

Basing diagrams on the following pages are schematic representations of the terminal connections for tube types shown on pages 22 thru 275 and pages 306 thru 347.

The diagrams are arranged in numerical-alphabetical order with a listing of all tube types having that particular basing arrangement. This listing is useful as a preliminary search for interchangeable tube types.

Basing diagrams for Color Picture Tubes, listed on pages 306 thru 317, appear on page 471. Basing diagrams for Monochrome Picture Tubes, listed on pages 318 thru 345, appear on page 472. Basing diagrams for Vidicons, listed on pages 346, and 347 appear on page 473.

RECEIVING TUBES

4AB

2X2, 2X2-A

4AC

6Y3-G

3G

3C23, FG-81-A, 5557

1 LE3, 1LF3

RECEIVING TUBES

6AR6, 6098, 6384

28**Z**5

502-A, 2050, 2050-A

6F

6C6, 6D6, 57, 58, 77, 78, 89

25Y5, 25Z5

6G

2A6, 55, 75, 85

79

7BE

3B7

5J6, 6J6, 6J6-A, 19J6, 5844, 5964, 6045, 6101, 7244, 7244-A

2C21/1642

6BY6, 6CS6, 12AD6, 12AG6, 12BE6, 12CS6, 12EG6, 12FA6, 12GA6, 18FX6, 18FX6-A, 26D6, 5750, 5915, 5915-A, 7036

2E26, 6146, 6146-A, 6146-B, 6159-A, 6159-B, 6883, 6883-A, 6883-B, 8032-A, 8552 7212, 7357, 7358, 7607, 8032, 8298, 8298-A

3BZ6, 3CB6, 3CF6,

3DK6, 48Z6,

7CV (Cont'd)

4CB6, 4DE6, 4DK6, 4EW6, 4GM6, 4JK6, 4JL6, 4LU6, 15EW6, 5GM6, 5JK6, 5JL6, 6AS6, 68H6, 6BJ6, 6BJ6-A, 6BZ6, 6CB6, oCB6-A, 6CF6 6DB6, 6DC6, 6DE6, 6DK6, 6EW6, 6GM6, 6HQ6, 6JH6, 6JK6, 6JL6, 6LU6 12AW6, 12BZ6 12DK6, 15EW6, 5725, 6187, 6265, 6661, 6662, 6676, 6954, 7056, 7732, 8084, 8136

4GZ5, 6AS5, 6CA5,

6CU5, 6EH5, (Cont'd)

6GZ5, 11C5 6GZ5, 11C5
12AS5, 12C5, 12CA5,
12CN5, 12CU5,
12DM5, 12ED5,
12EH5, 12FS5, 12R5,
17C5, 17CA5, 17CU5,
17R5, 19FX5 2SC5, 25CA5,
25EH5, 25F5, 25F5-A,
32ET5, 32ET5-A,
34GD5, 35C5, 35EH5,
40FR5, 50C5, 50CA5,
50EH5, 50FA5

70 2B7, 6B7

2AF4-B, 2DX4, 2DY4, 2DY4-A, 2DZ4, 2T4, 3AF4-A, 3AF4-B, 3DX4, 3DY4, 3DY4-A, 3DZ4, 5AF4-A, 6AF4, 6AF4-A, 6AN4, 6DX4, 6DY4, 6DY4-A, 6DZ4, 6T4, 7738, 8334

116, 106

3BN6, 4BN6, 6BN6, 6KS6, 12BN6

1DY4, 1DY4-A, 2AF4, 2AF4-A,

7DW 12H4

6F7

7EA 6CR6, 12CR6

7EN

2BN4, 2BN4-A, 3BN4, 3BN4-A, 4BN4, 6BN4, 6BN4-A

3DT6, 3DT6-A, 4DT6, 4DT6-A, 5GX6,

6842

6D7, 6E7

KEY

8BV

7G8

8 BW

7F8, 14F8

8BU

12L8-GT, 26A7-GT,

1644

8**B**S

28D7

1DG3, 1DG3A

6EN4

6LW6, 26LW6

26HU5

12AU8, 7716

118T11 | 11CH11

6AG10

6KN6, 42KN6

1AD2, 1AD2-A

31AL10

32HQ7

11CF 11

7979

7985

RECEIVING TUBES

8100, 8142, 8143, 8217, 8318, 8318-A, 8345,

8081, 8082, 8083

20A

VIDICON TUBES

