Essential Characteristics PRINCIPAL RATINGS. ELECTRICAL AND PHYSICAL CHARACTERISTICS TUBE PRODUCTS DEPARTMENT # **ESSENTIAL CHARACTERISTICS** - Receiving Tubes - Five-Star Tubes - Special-Purpose Tubes - Planar and Ceramic Tubes - Thyratrons - Ignitrons - Vidicons - Picture Tubes - Entertainment Semiconductor Components - Reed Switches - Radio & TV Pilot Lamps #### Fourteenth Edition Prepared by C. E. Albrecht W. O. Shelton H. E. Schrecker R. G. Kempton **Tube Products Department** **General Electric Company** Owensboro, Kentucky 42301 Printed in United States of America #### **FOREWORD** ESSENTIAL CHARACTERISTICS is especially prepared to provide the Service Technician with a single source of reference containing data on every tube likely to be found in any home receiver—AM, FM, Hi-Fi, or television—as well as special purposes, Planar and ceramic tubes, Thyratrons, Ignitrons, Vidicons, Reed Switches, Radio & TV Pilot Lamps and Entertainment Semiconductors. Data presented include those characteristics and ratings essential to fast, efficient trouble-shooting. Basing diagrams for all tubes, including picture tubes, are in the back of the book with an index by tube type. The electronics engineer, amateur, and experimenter will also find this a valuable quick-reference for tubes currently in use. Included in the present edition of this hand book is a section listing the essential physical and electrical characteristics of television picture tubes both monochrome and color. For reference purposes and the convenience of the user, five-star, special purpose, planar, ceramic, thyratron, and ignition tubes have been included with receiving tubes. A section entitled "Explanation of Terms and Data Used in This Book" is included to aid in the proper evaluation of the information presented. Following this section are tube classification charts arranged to provide a quick and convenient reference to the tubes that are available for specific classes of service in which the reader may be interested. The tube listings follow this section. # **TABLE OF CONTENTS** | Explanation of Terms and Data Used in this book | 5 | |--|-----| | Classification Charts | | | Five-Star Types | 10 | | Receiving Types | | | | 11 | | Triodes | 12 | | Triple or Three-Section Triodes | 12 | | Triodes with Diodes | 13 | | Triode-Pentodes | 13 | | Pentode Voltage Amplifiers | | | | 14 | | Beam Triodes | | | Pentodes with Diodes | | | Dual-Control Pentodes | | | Heptodes | | | | | | Miscellaneous Types | 19 | | Special-Purpose Types | 16 | | Thyratrons | 16 | | Planar and Ceramic Types | 17 | | Ignitrons | 18 | | Vidicons | 19 | | M.B. F. C. Brand B | | | X-Radiation Rated Recommended Replacements for High-Voltage Rectifier and Shunt Regulator Tubes | 20 | | X-Radiation Symbol Definition | 21 | | Characteristics and Ratings | 22 | | General Electric Multiple/Brand Receiving Tube Replacement Guide2 | 276 | | Receiving Tube - Interchangeability Guide Foreign Types vs. American Types2 | 279 | | Industrial, Military, and Special-Purpose Tubes and Their Prototypes2 | 290 | | Typical Receiving Tube Characteristic Curves | 293 | | Radio and Television Pilot Lamps | 305 | | Picture Tubes - Characteristics and Ratings | | | Color | | | Vidicons - Condensed Data | 346 | | Outline Drawings | | | Standard Configurations | | | Reed Switch Condensed Data | | #### Table of Contents (Continued) | Entertainment Semiconductors — Condensed Data | | |--|-----| | Description | 387 | | Universal Transistors | 388 | | Outline Drawings | 394 | | Silicon and Germanium Rectifiers | 401 | | Field Effect Transistors | 402 | | Selenium Rectifiers for Color TV | 403 | | GE Quartz Crystals | 403 | | Variable Capacitance Diodes | 404 | | GE Entertainment Transistors Registered JEDEC Types | 404 | | Germanium and Silicon Diodes | 405 | | Selenium Dual-Diode Rectifiers | 405 | | Zener Diodes | 406 | | Maintenance Industrial Replacement Semiconductors Outline Drawings | | | Integrated Circuits | 410 | | Index of Basing Diagrams by Tube Type | | | Receiving, Five-Star, Special-Purpose, Planar and Ceramic Tubes, | | | Thyratrons and Ignitrons | 414 | | Color Picture Tubes | | | Monochrome Picture Tubes | 424 | | Vidicons | 427 | | Basing Diagrams | 428 | | Receiving, Five-Star, Special-Purpose, Planar and Ceramic Tubes, | | | Thyratrons and Ignitrons | | | Color Picture Tubes | | | Monochrome Picture Tubes | | | Vidicons | 473 | The components and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of components by General Electric Company conveys any license under patent claims covering combinations of components with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the components with other devices or elements by any purchaser of components or others. # X-RADIATION WARNING The voltages employed in some television receivers and other high-voltage equipment are sufficiently high that high-voltage rectifier and shunt regulator tubes, television picture tubes and certain other high-voltage electron tubes may produce soft X-rays which can constitute a health hazard on prolonged exposure at close range, unless such tubes are adequately shielded. The need for this precaution must always be considered in equipment design. Precautions must be exercised during the serving of equipment employing any of the above high-voltage tubes to assure that all shielding components are replaced to their intended positions before the equipment is operated. Before operating any electron tube at 10,000 volts or higher, the tube manufacturer's detailed rating sheet for that particular tube should be reviewed. # EXPLANATION OF TERMS AND DATA USED IN THIS BOOK RATING-A limiting value of voltage, current, frequency, etc., beyond which tube life may be seriously impaired. CHARACTERISTIC—A property of a tube, inherent in its design, such as its ability to deliver a certain power output with specific electrode voltages applied. BOGEY—An average characteristic value; a tube exhibiting these average values is termed a bodey tube. #### **RATING SYSTEMS** Maximum ratings given in this book are based on one of the three rating systems in common use: the design-center system, the design-maximum system, or the absolute-maximum system. Ratings based on the two latter systems are indicated by a footnote reference, and if the rating is not followed by a footnote symbol the design-center rating system is applicable. To determine whether or not a tube is used within ratings in a specific application, the rating system specified must be taken into account since each rating system requires a different procedure for determining conformance to ratings. Design-Center Reting System To establish conformance to ratings in the design-center rating system, the ratings should not be exceeded with a bogey tube operating in the equipment under average conditions with respect to supply voltage, signal, temperature, component values, adjustment of controls, and other variables. Design-Maximum Rating System To establish conformance to ratings in the design-maximum rating system, the ratings should not be exceeded with a bogey tube operating in the equipment under the worst probable combination of conditions with respect to supply voltage, signal, temperature, component values, adjustment of controls, and other variables. Absolute-Maximum Rating System To establish conformance to ratings in the absolute-maximum rating system, the ratings should not be exceeded with any tube of the specified type operating in the equipment under the worst probable combination of conditions with respect to supply voltage, signal,
temperature, component values, adjustment of controls, and other variables. The term "worst probable combination of conditions" used above is not intended to include conditions under which useful performance of the equipment could not be obtained, since the equipment is not likely to be operated for long under such conditions. #### **ELECTRODE VOLTAGES** Electrode voltages indicated as "Max" in the tables are maximum ratings, and are measured with respect to the following reference points: - 1. For cathode types, the reference point is the cathode terminal. - 2. For filamentary types operated on direct current, the reference point is the negative terminal of the filament. - 3. For filamentary types operated on alternating current, the reference point is the electrical center of the filament, usually located at the center-tap of the heater-supply transformer, rather than at the physical center of the filament. #### POWER DISSIPATION Plate Dissipation For Class A amplifiers, the maximum plate dissipation occurs at the zero-signal condition. The maximum peak input signal voltage should not exceed the bias voltage. For Class B amplifiers, the maximum plate dissipation theoretically occurs at approximately 63 percent of the maximum-signal conditions, but practically may occur at any signal-voltage value. For converters, the maximum plate dissipation occurs at the zero-signal condition and at the frequency at which the oscillator-developed bias is a minimum. Screen Dissipation When a maximum screen voltage is shown in the data, the full rated screen dissipation is allowable at any screen voltage within the screen-voltage rating. When a maximum screen-supply voltage is shown, the allowable screen dissipation must be decreased, according to the accompanying screen-rating chart, if the screen voltage is greater than 50 percent of the rated screen-supply voltage. #### SCREEN RATING CHART EXPRESSED AS PERCENT OF MAXIMUM SCREEN SUPPLY VOLTAGE RATING #### SYMBOLS AND ABBREVIATIONS The following symbols and abbreviations are used throughout the tube characteristics data: | E _b Plate Voltage | I _b —Plate current | |--|---| | E _e —Grid Voltage | I.—Grid current | | E _{cl} —Grid-number 1 voltage | I Grid-number 1 current | | E _{c2} —Grid-number 2 voltage | I _{c2} —Grid-number 2 current | | E _{cs} —Grid-number 3 voltage | I.—Cathode current | | E _{cc} —Grid supply voltage | K—Cathode | | E _{cel} —Grid-number 1 supply voltage | u—Amplification factor | | E _{cc2} —Grid-number 2 supply voltage | P—Plate | | E _{ccs} —Grid-number 3 supply voltage | R.—Grid resistor | | G—Grid | | | G ₁ —Grid number 1 | R _{e1} —Grid-number 1 resistor | | G ₂ —Grid number 2 | R _{s2} —Grid-number 2 resistor | | G _s —Grid number 3 | R _{ss} —Grid-number 3 resistor | | G₄—Grid number 4 | R _k —Cathode resistor | | G _m -Transconductance | R _p —Plate resistor | | | | #### ARRANGEMENT OF DATA The essential characteristics listed for each receiving tube are presented in columns described as follows from left to right: #### TUBE TYPE Tubes are arranged in numerical-alphabetical order. Those having the same basic designation but differing in suffix (e.g., 6BG6-G and 6BG6-GA) are grouped together when the types have equivalent electrical characteristics. All of the information presented applies to each type in the group, with the possible exception of the information in the "Outline Drawing," "Capacitance in Picofarads," "Filament Volts," or "Filament Amp." columns. When this information differs, the values are horizontally aligned with the type designations to which they apply. Type designations printed in boldface indicate metal tubes, and designations in italics indicate miniature tubes. The symbol is used for subminiature tubes, and the symbol is used for compactrons. All other types listed are larger glass tubes or special shapes, with the exception of planar tubes and nuvistors, which are so identified in the "Classification by Construction" column The following suffix letters are in common use in tube designations and have the indicated significance: G signifies a glass bulb and an octal base. GT signifies a T-9, straight-sided glass bulb and an octal base. A, B, C, D, E, and F assigned in that order signify a later and modified version which can be substituted for any previous version but not vice-versa. The assignment of a suffix in this series does not convey any information as to the nature of the modification incorporated. X signifies a base composed of special low-loss material. Y signifies a base composed of special intermediate-loss material. The symbol ¶ indicates a type having heater warm-up time controlled for series-string service. #### **CLASSIFICATION BY CONSTRUCTION** This column presents a descriptive title for each tube. When the tube represents an improved or modified version of an older type, the basic prototype is given in parenthesis following the descriptive title. The inclusion of the prototype is done to give aid in identifying the general characteristics of the tube under consideration and does not necessarily imply direct interchangeability between this version and the prototype. Whether or not the tubes can be used interchangeably depends on the particular characteristics and requirements of each individual application. #### X-RADIATION RATING This column is applicable to High Voltage Rectifier, Shunt Regulator, and Cathode-Ray Tubes. High Voltage Rectifier and Shunt Regulator Tubes — Information is presented on the maximum X-radiation rating a in milliroentgens per hour (mR/hr) extracted from the latest available EIA published product information. The mR/hr maximum shown is based on known attenuation factors of tube construction materials and accumulated sample test data taken initially and during life test on the particular tube type, and the tubes do not exceed the maximum rating limit at any time throughout their useful life, when operated within the maximum ratings, including filament voltage, specified on the individual published product information sheets. This X-radiation maximum rating is based on the use of the Victoreen 440 RF/C Survey Meter as the standard instrument for X-radiation measurement with its plastic spacers four (4) inches from the external surface of the tube under test. Tube types having no X-radiation rating are identified. For X-radiation rated replacement tubes, see chart § on page 20. Cathode-Ray Tubes—Reference is made to available JEDEC X-radiation isodose and limit curves. \square Tube types having no X-radiation reference to isodose or limit curves are identified. \triangle #### **BASE CONNECTIONS** The basing diagrams are arranged in numerical-alphabetical order in the back of this book with an index by tube type. These diagrams are schematic representations of the terminal connections and do not necessarily indicate internal tube construction. As an additional feature, each basing diagram has listed all tube types having that particular basing arrangement; this listing is useful in a prelimi- nary search for interchangeable tube types. In tubes having more than one grid, the grids are numbered consecutively in accordance with their location proceeding from the cathode to the plate. Thus, grid number 1 is the grid which is physically located nearest the cathode. In pentodes, grid number 2 is generally referred to as the screen grid, and grid number 3 is generally referred to as the suppressor grid. In multisection tubes that contain two or more structurally similar sections, the similar sections are designated as section 1, section 2, etc., depending upon the connection of the electrodes to the terminal pins. The highest section number is assigned to that section having an electrode connected to the lowest-numbered base pin, and successively lower numbers are assigned to additional sections according to the sequence in which the connections of the same type of electrode in all sections are made to successively higher-numbered base pins. When similar sections have one or more electrodes in common, the assignment of section designations is determined by whichever independent electrode is connected to the lowest-numbered base pin. #### **OUTLINE DRAWINGS** This column presents information on the physical characteristics of each tube. When the physical characteristics of a tube conform to standard or commonly used configurations, an outline drawing number is shown which refers to tube drawings presented in the section "Outline Drawings." If the physical characteristics of a tube do not conform to any of the standard outline drawings, the designation "T-X" is shown. In this case, reference should be made to the T-X Table at the end of the Outline Drawing Section which presents data relative to the physical characteristics of these special tubes. #### FILAMENT VOLTS Unless otherwise stated in this column, the filament or heater may be operated with either alternating or direct current. If two values of filament voltage are given, the tube has a center-tapped filament or heater and may be operated with the halves in series or parallel. #### FILAMENT AMP This column lists the filament or heater currents. These current values are for a bogey tube operated at the filament voltage specified in the "Filament Volts" column. If the filament or heater is center-tapped, the currents are aligned with the corresponding voltages for series and parallel operation. #### MAX PLATE WATTS The plate dissipation listed is a maximum rating. For interpretation of maximum ratings, see the section "Rating Systems." #### MAX PLATE VOLTS The plate voltage listed is a maximum rating. For interpretation of maximum ratings, see the section "Rating Systems." #### MAX SCREEN VOLTS AND WATTS The screen voltage and dissipation listed are maximum ratings. When the symbol z is used, the screen voltage is a supply voltage. For
interpretation of screen ratings, see the section "Rating Systems." #### CAPACITANCE IN PICOFARADS Unless otherwise noted, all capacitance values are average values, and those for glass tubes are measured with an external close-fitting metal shield connected to the cathode terminal. The symbol indicates a maximum value of capacitance, and the symbol indicates a value measured without external shield. All values are measured with the filament or heater cold and with no direct-current electrode voltages applied. In measuring the capacitances, all metal parts except the input and output electrodes are connected to the cathode. These metal parts include internal and external shields, base sleeves, and unused pins. In multisection tubes, the electrodes of the sections not common to the section under test are connected to ground. Input capacitance is measured from the input grid to all other electrodes except the plate, which is connected to ground. Output capacitance is measured from the plate to all other electrodes except the input grid, which is connected to ground. Grid-to-plate capacitance is measured from the input grid to the plate, with all other electrodes connected to ground. The capacitance values for twin-section or triple-section tubes refer to each section unless subscript numbers are used to designate the values for each section. Subscript designations are also used with the capacitance values of dissimilar double-section and three-section tubes. #### SERVICE This column indicates a potential application of the type. The class of service listed is not necessarily the only one for which the tube is suitable. Class A Amplifier is an amplifier in which the grid bias and applied alternating grid voltage are such that plate current in a specific tube flows at all times. Class AB Amplifier is an amplifier in which the grid bias and applied alternating grid voltage are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle. Class C Amplifier is an amplifier in which the grid bias is appreciably greater than the cutoff value so that the plate current in each tube is zero when no alternating grid voltage is applied and so that plate current in a specific tube flows for appreciably less than one-half of each cycle when an alternating grid voltage is applied. To denote that grid current does not flow during any part of the input cycle; the suffix "1" may be added to the letter or letters of the class identification. The suffix "2" may be used to denote that grid current flows during some part of the cycle. #### OTHER COLUMNS-GENERAL The columns to the right of the "Service" column show typical electrode voltages applied and the characteristics obtained with these voltages when a bogey tube is used. The electrode voltages shown are not the only ones at which the tube may be operated; they are selected to show concisely some guiding information as to the characteristics of each tube type. The electrode voltages listed are measured with respect to the following reference points: For cathode types, the reference point is the cathode terminal; except that when cathode bias is used, the reference point is the negative terminal of the cathode-bias resistor. For filamentary types operated on direct current, the reference point is the negative terminal of the filament. For filamentary types operated on alternating current, the reference point is the electrical center of the filament, usually located at the center-tap of the heater-supply transformer, rather than at the physical center of the filament. Filament or heater voltages are measured between the filament or heater terminals. The column headings used are not always applicable for tubes designed to serve as television deflection-amplifiers, television dampers, signal rectifiers, power rectifiers, and regulators. In these cases the data reads across the space normally occupied by the columns. In addition, some of the data given may be ratings rather than characteristics. #### **PLATE VOLTS** Other values of plate voltage may be used, provided that they do not exceed the maximum rated plate voltage. #### SCREEN VOLTS Other values of screen voltage may be used, provided that the maximum rated screen voltage is not exceeded or, if maximum supply voltage is specified, the limitations of the Screen Rating Chart are observed. #### **NEG GRID VOLTS** The values of grid voltage or cathode bias are chosen to adjust the plate and screen currents to levels that give satisfactory tube operation and hold the plate and screen dissipations within the maximum ratings. #### PLATE MILLIAMPERES These values are for bogey tubes under the conditions given in the adjacent columns. The symbol †, used with audio-output tubes, indicates that the current listed was measured without a signal input to the control grid of the tube; maximum-input-signal plate currents are usually higher. #### SCREEN MILLIAMPERES These values are for bogey tubes under the conditions given in the adjacent columns. The symbol †, used with audio-output tubes, indicates that the current listed was measured without a signal input to the control grid of the tubes; maximum-input-signal screen currents are usually higher. #### Rp, OHMS The plate resistance (Rp) of an electronic tube is the ratio of a small change in plate voltage to the corresponding change in plate current, with all other electrode voltages maintained constant. #### Gm, µMHOS The transconductance (Gm) of an electronic tube is the ratio of a small change in plate current to the small change in grid voltage that produces it, with all other electrode voltages maintained constant. Unless otherwise noted all transconductance values in this handbook are grid-number 1-to-plate transconductances. #### μ FACTOR The amplification factor (μ) of an electronic tube is the ratio of a small change in plate voltage to the small change in grid voltage when the plate current and all other electrode voltages are maintained constant. #### LOAD FOR RATED OUTPUT, OHMS When operating conditions are given for two tubes in push-pull, the symbol ‡ indicates that the load resistance given is the plate-to-plate value. #### **POWER OUTPUT, WATTS** For power-output tubes, the value given refers to the average tube power output (plate-input power minus plate dissipation) for the indicated operating conditions. The useful power output is the tube output less the circuit losses. In Class-A operation, the rated tube power output is measured with an audio-frequency sinusoidal input signal whose peak value is equal to or less than the d-c grid-number 1 bias voltage applied to the tube. #### CLASSIFICATION CHARTS # FIVE-STAR TYPES Special-Quality Tubes for Critical Applications | | Classification | | 7-Pin
Miniature | 9-Pin
Miniature | Octal | |------------|-----------------------|------------------|--|--|-------| | Diodes | Low-Curi | ent Rectifiers | 5726
6919 | | | | | Full-Wave | Power Rectifiers | 6202 | 6203 | 6087 | | | Single | μ<40 | 6135 | | | | Triodes | | μ <40 | 5844 | 5670
5687
5814-A
6189
6211-A
6386
7861 | | | | Twin | μ>40 | | 5751
5965-A
6072-A
6201
6414
6829 | | | | Voltage
Amplifiers | Sharp
Cutoff | 5654
6136
6265
8425-A
8426-A | 6688 | | | | | Remote Cutoff | 5749 | | | | Pentodes | | Dual Control | 5725 | | | | | Power Amplifi | ers | 6005 | 5686
6216 | | | | High-Voltage | Regulators | | 7239 | | | leptodes | Later to the second | | 5750
7036 | | | | Thyratrons | | | 5727 | | I | # **Receiving Types** # **DIODES** | | Max Output
Current | | Single | | Tw | /in | Triple | |----------------------------------|------------------------|---|---|--|----------|---------------|---------| | Service | in Ma | Filament | Cath | ode | Filament | Cathode | Cathode | | TV High-
Voltage
Rectifier | 0.5 | 1AD2-A
1AY2-A
1BC2-A
1BC2-B
1BH2-A
1BY2-A
1DG3-A
1DG3-A
1G3-GTA
1K3-A
1K3-C | | | | | | | | 0.6 to 1.9 | 2A V 2 | 2AS2-A
2BU2 | 3AT2-B
3BN2-A | | | | | | 2.0 to 3.0 | 3CU3-A
3DC3 | 2CN3-B
3A3-C
3AW2-A
3BS2-B
3BT2-A
3BW2
3CN3-B
3DA3 | 3DB3
3DF3
3DF3-A
3DH3
3DJ3
3DR3
3DR3
3DS3 | | | | | Low- | 1.0 per plate | | | | | | 6BJ7 | | Current
Rectifier | 9.0 to 12
per plate | | | | | 6AL5
12AL5 | 6BC7 | | _ | 50 to 99 | | | | | 6X4 | | | Power
Rectifier | 100 to 149 | | 35W4 | 50DC4 | 5Y3-GT | | | | | 150 to 199 | | | | | 6CA4 | | | | 200 to 299 | | | | 5U4:GB | | ļ | | TV Damping
Diode | 120 to 175 | | 6AX3
6AX4-GTB
6AY3-B
6BJ3
6BW3
12AX3
12AY3-A
12BT3 | 17AX3
17AY3-A
17BW3
22BW3
1/32HQ7
1/33GT7
1/33GY7
1/33GY7-A | | | | | | 180 to 350 | | 6BE3
6BS3-A
6BZ3
6CG3
6CJ3
6CL3
6DE4
6DN3
12BE3
12BE3-A
12CL3
½12HE7 | 17BE3
17BS3-A
17BS3-A
17BZ3
17DE4
19CG3
19DE3
22DE4
25CG3
34CE3
½38HE7
½38HK7 | | | | | | 400 to 450 | | 6DK3
6DQ3
6DQ3-A | 19DK3
19DQ3
25DK3 | | | | Type designations of miniature tubes are shown in italics. | | lification | | Sin | | | | | Twin or l | | | |-----------------------|--|----------------------|---------|--------|-------------------------------|--|---|--|--------------------------------------
---| | Fac | tor | Heater | Current | in Mil | liamperes | | Heat | er Current is | | | | μ | 600 | 450 | 300 | 150 | Other | 600 | 450 | 300 | 150 | Other | | 2.0
to
9.0 | 12B4-A | | 12B4-A | | | ⅓10GF7-A | 1/411CY7
1/413GF7-A
1/415EA7
1/415FY7 | | | 1/46CY7
1/46EA7
1/46EM7
1/46FM7
1/46GF7-
1/46GL7 | | to | &AF4-B
&DZ4
6S4-A | 3AF4-B
8DZ4 | | 6C4 | 6AF4-A`
6DZ4 | 1/44HA7
1/66BA11
1/6CM7
6GU7
12BH7-A | 1∕25HA7
1∕38BA11 | 12A U7-A
12BH7-A
½7247 | 12A U7-A
½7247 | ⅓6FJ7 | | 20
to
29 | ½13JZ8 | ⅓17JZ8 | ½25JZ8 | | ⅓6JZ8
⅓24JZ8 | 6CG7
1/26CM7
6FQ7
6SN7-GTF
1/216AK9 | 8CG7
8FQ7
⅓23Z9 | 12FQ7
12SN7-GTA | | ⅓6AK9
⅓6FJ7
⅓31AL1 | | 30
to
39 | | | | | | | 6J6-A | | | 6BQ7-A
6BZ7 | | 40
to
59 | ½15MF8
½16LU8
½16LU8-
½16LU8- | 1/21LR
1/21LU | 8 | | 1/26LR8
1/26LU8
1/26MF8 | %8BU11
%11BT11
%11CA11
%11CF11
%11CH11
%16AK9 | 6BK7-B
12AV7
1414BL11
1414BR11
1415AF11
1415BD11
1423Z9 | 12A Y 7 | 12A Y7 | 1/36AK9
1/36AS11
1/36CA1
1/36BH1
1/26M11
1/2AV7
1/316BX
1/31AL | | 60
to
69 | | | | 6AB4 | | ½10GF7-/ | 12427-4
12427-4
1213GF7-4
1215EA7
1215FM7
1215FY7 | ł | 12AT7
12DT8 | 146AS11
146CA1
146CY7
146EA7
146EM7
146FY7
146GF7
146GL7
18AZ7- | | 70
to
79 | 2GK5 | 3GK5
3HA5
3HM5 | 4GK5 | | 6GK5
6HA5
6HM5 | | | 6SL7-GT | 12SL7-G7 | Γ | | 80
to
89
100 | | | | | 6AM4 | ⅓4HA7 | ⅓5HA 7 | 6EU7
12AX7
12AX7-A
7025
147247 | 12A X7
12A X7-A
7025
}47247 | | # TRIPLE OR THREE-SECTION TRIODES | Amplification | | | Heater Current i | n Milliamperes | | |----------------------|---|-------------------------------|------------------|----------------|----------------------| | Factor µ | 600 | 450 | 300 | 150 | Other | | Medium-μ
10 to 49 | 6AV11
½6K11
½6U10
9MN8 | | 12AC10-A | | 6MD8
6MJ8
6MN8 | | High-μ
50 to 100 | 6AC10
6C10
½6K11
½6U10
9AK10
9AM10 | 6D10
6EZ8
6GY8
8AC10 | | 19EZ8 | 6AK10 | # TRIODES WITH DIODES | Amplification | | Heater Current in Milliampers | | | | | | | | | | |---------------|---------------|-------------------------------|-------|------|-----------------------------------|----------------|--|--|--|--|--| | Factor µ | · · | 600 | 450 | 300 | 150 | Other | | | | | | | 10 to 49 | with 2 diodes | 6B10 | 8B10 | | | | | | | | | | 50 to 100 | with 2 diodes | | 6FM8 | 6AV6 | 12AV6
14GT8
14JG8
30AG11 | 6AG11
6AY11 | | | | | | | | with 3 diodes | | 6T8-A | | 19T8 | - | | | | | | # TRIODE-PENTODES | Transconductance, | Amplification
Factor | Н | eater Current is | Milliamperes | | |-------------------|-------------------------|---------------------------------------|---|---|-------------------------| | Pentode Section | Triode Section | 600 | 450 | 300 | Other | | 5500 | 40 | 5CG8 | 6CG8-A | T | <u> </u> | | 5500 | 70 | 5JW8 | 6LX8 | | 6JW8 | | 6000 | 43 | δFG7 | 6FG7 | | | | 6400 | 40 | 5EA8 | 6EA8
6HB7 | *************************************** | 19EA8 | | 6500 | 45 | | 6FV8-A | | | | 6500 | 95 | | | | 6T9 | | 6500 | 70 | · · · · · · · · · · · · · · · · · · · | | | 19HV8 | | 7500 | 46 | 5GH8-A
5KZ8 | 6GH8-A
6JN8
6KZ8 | 9GH8-A
9KZ8 | 12JN8
19JN8
19KG8 | | 8000 | 43 | 6AU8-A | *************************************** | | | | 9000 | 100 | 6MV8 | | | 1 | | 9500 | 70 | 6AW8-A | 8AW8-A | | | | 9500 | 110 | | 10LZ8 | | † | | 10000 | 40 | 8CX8 | <u> </u> | | 6CX8 | | 10000 | 100 | 6KT8 | | | | | 10700 | 70 | 6JV8 | 8JV8 | | 1 | | 11000 | 46 | | 10JY8 | | | | 11500 | 100 | 8GN8 | 10GN8 | | 6GN8 | | 12000 | 70 | | 11JE8 | | 6JE8 | | 12500 | 100 | 8EB8 | | | 6EB8 | | 13000 | 40 | | | | 6LJ8 | | 19000 | 75 | | 10LW8 | | | | 20000 | 46 | 10KR8 | | | 6KR8-A | | 20000 | 100 | | | | 6LY8 | | 21000 | 20 | 9AH9 | | | 6AH9 | | 30000 | 39 | | | | 6AG9 | | 30000 | . 59 | 8AL9 | | | 6AL9 | Type designations of miniature tubes are shown in italics. | | i | Sh | arp-Cutoff | | | | Remot | e-Cutos | Ŧ | | |------------------|--|--|------------------------|-----------|---|------------------------------------|--|---------|----------|----------------------------| | | E | leater Curi | rent in Mil | lliampere | es | He | ater Currer | ıt in M | illiampe | res | | Gm µmhos | 600 | 450 | 300 | 150 | Other | 600 | 450 | 300 | 150 | Other | | 3,000 to 4,900 | | | | 6BH6 | | | | 6BA6 | 12BA6 | 12DZ6 | | 5,000 to 7,900 | | 4 <i>A∙U6</i>
1∕29BJ11 | 6A U6-A | 12AU6 | 1∕46BH11 | | 1∕29BJ11 | | | | | 8,000 to 8,900 | 3CB6 | 4 <i>CB6</i>
4 <i>DE6</i>
⅓8BM11 | 6CB6-A | | ⅓6BW11 | 3BZ6
4LU6 | 4 <i>BZ6</i>
4 <i>JH6</i>
½8BM11 | 6BZ6 | | | | 9,000 to 9,900 | 3DK6 | 4DK6 | 6DK6 | | | | | | | | | 10,000 to 11,000 | 12DQ7 | 1414BR11
1415AF11
1415BD11 | 12DQ7 | | 16AF11
16AS11
16BD11 | <i>&FS5</i>
8AR11
½8BQ11 | <i>3FS5</i>
11AR11
⅓11BQ11 | | | 6AR11
6FS5
1/216BQ11 | | 11,100 to 13,000 | 8BN11
1/8BQ11
8CB11
18BY7-A | ⅓11BQ11 | .12BY7-A | | 6J11
6JG5
16M11
16BQ11
16BX11 | | 4EH7
5GM6 | 6EH7 | | 6BN11
½6BW11
6GM6 | | 14,000 to 14,900 | | 4JD6
6EW6 | 6JD6 | 15EW6 | 6EW6 | | | | | | | 15,000 to 22,000 | 2GU5
3JC6
1411BT11
1411CA11
1411CF11
1411CH11 | . | 6EJ7
6JC6
6JC6-A | | 6GU 5 | | | | | ⅓6CA11 | | 30,000 to 40,000 | 12GN7-A | 7KY6 | | 1 | | 1 | | | | 12HG7 | # PENTODE POWER AMPLIFIERS | | Power
Output | | Heat | er Current | in Milliam | peres | | |--|-----------------------|---|---|-----------------|--------------------------------|--|--| | Service | in watts | 600 | 450 | 300 | 150 | Oti | ner | | | 1.0 to 1.9 | 12CA5 | 1⁄412AE10
1∕413V10 | 25EH5 | 6AK6
35C5
50EH5
50HK6 | 1/218AJ10 | | | | 2.0 to 2.9 | 12C5
12CU5 | 17CU6 | 25C5 | 50C5 | 1/26G11
6CU5 | | | Output
Amplifier | 4.0 to 6.0 | 5AQ5
8BQ5
½10AL10
½10T10
½10Z10
½12BF11 | 6AQ5-A
6V6-GTA
10GK6
½12AL11
½12T10
½13Z10
½17AB10
½17BF11
½17BF11-A
7408 | | | 146AD10
146AD10-A
146AL11
146BF11
6BQ6
146BY11 | 6GK6
146T10
146Z10
1424BF11
7189-A | | | 9.0 to 12.5 | | | | | 6L6-GC
6550-A | 7355
7581-A | | 9.0 to 12.5 Horizontal-Deflection Amplifier | | 12DQ6-B
12GE5
12JF5
12JN6
16GY5
16KA6
21JS6-A
21LG6-A
24LQ6
26HU5
26LW6 | 17GE5
17GV5
17JB6-A
17JB6
17JB6
21GY5
21HB5-A
21JV6
21JZ6
21JZ6
31JS8-A
133GT7
1433GY7
1433GY7-A
36KD6
1438HE7
1438HE7
1438HE7 | 30JZ6
.33JV6 | | 6DQ6-B
6GE5
6GF5
6GV5
6GV5
6HB5
6HE5
6HF5
6JE6-A
6JE6-B
6JE6-C | 6JM6
6JN6-B
6JS6-B
6JS6-C
6JZ6-
6LB6
6LB6
6LW6-
6LX4-
5412HE7
542HQ7 | | | Deflection
olifier | 10JA5
16AK9
1216LU8
1216LU8-A | 1/21LR8
1/21LU8
1/23Z9 | | | 6EZ5
6HB6
6HE5
1/6LR8
1/6LU8
61A5 | 6JB5
16AK9
1631AL10 | #### **BEAM TRIODES** | | Heater Current in Milliamperes | | | | | | | | | |------------------------|--------------------------------|-----|-----|-----|--|--|--|--|--| | Classification | 600 | 450 | 300 | 150 | Other | | | | | | Shunt HV
Regulators | | | | | 6BK4-C
6EH4-A
6EJ4-A
6EL4-A
6EN4
6LH6-A
6LJ6-A
6MA6 | | | | | | Pulse
Regulators | | | | | 6HS5
6HV5-A
6JD5
6JH5
6JK5 | | | | | # PENTODES WITH DIODES | Heater Current in Milliamperes | | | | | | | | | | |--------------------------------|-------------------------------|-----|----------------|--|--|-------|--|--|--| | Classifi | cation | 600 | Other | | | | | | | | Sharp-Cutoff
Pentode | with 1 diode
with 2 diodes | | 6AM8-A
8LT8 | | | 11LT8 | | | | # **DUAL-CONTROL PENTODES** | | Heater Current in Milliamperes | | | | | | | | | |---------------------------|---|---|----------------|-----|--|--|--|--|--| | Classification | 600 | 450 | 300 | 150 | Other | | | | | | Dual-Control
Amplifier | \$DT6
1/410AL11
1/410T10
1/412BF11 | 4DT6
6GX6
6GY6
6HZ6
3412AE10
3412A11
3412T10
3413V10
3417BF11
3417BF11-A | 6DT6
6DT6-A | | 1/6AD10
1/6AD10-A
1/6BAL11
1/6BF11
1/6BF11
1/6G11
1/6G10
1/18AJ10
1/24BF11 | | | | | #### **HEPTODES** | | Conversion
Transconductance | Heater Current in Milliamperes | | | | | | | |--------------|--------------------------------|--------------------------------|------|------|-------|-------|--|--| | Service | in Micromhos | 600 | 450 | 300 | 150 | Other | | | | Converter | 450 to 500 | | | 6BE6 | 12BE6 | | | | | Dual-Control | | 3CS6 | 4CS6 | 6CS6 | | | | | # **MISCELLANEOUS TYPES** | | Heater Current in Milliamperes | | | | | | | | | | |------------------
--------------------------------|--|------------------------------|-----|---------------|--|--|--|--|--| | Classification | 600 | 450 | 300 | 150 | Othe | | | | | | | Quadruple Diodes | 6JU8
6JU8-A | | | | | | | | | | | Triode-Tetrodes | | 6CL8-A | | | | | | | | | | Tetrodes | 2CY5 | | | | 6CY5 | | | | | | | Twin Pentodes | 3BU8
3HS8
3≰6BA11 | 4BU8
4HS8
4MK8
3\$BA11
10LE8
12BV11 | 6BU8
6HS8
6MK8-A | | 6BV11
6LE8 | | | | | | | Gated-Beam Tube | ½10Z10 | ½13Z10
½17AB10 | 6KS6 | | ½6Z10 | | | | | | | Sheet-Beam Tube | | | 6AR8
6HW8
6JH8
6ME8 | | | | | | | | # SPECIAL-PURPOSE TYPES | | Dio | des | <u> </u> | Triode | es | T | Tetrod | es | Pe | ntodes | | | | |--|--------|-------------|----------|---|--------|--------------|--------------|-----------------|----------------------------|---|----------------|----------------------------------|------------------------------| | Classifi-
cation | Single | Twin | Single | Twin | Double | With
Diod | | Sharp
Cutofi | Re-
mote
Cut-
off | Power
Amplifier | Regu-
lator | Hep-
todes
Dual
Control | Triode-
Pen-
todes | | Com-
puter
Types | | | | 5844
5963
6211-A
6350
6463
7044 | | | | | | 6197 | | | | | Low-
Micro-
phonic
Types | l | | | 12A Y7 | | | | | | | | | | | Mobile-
Com-
munica-
tions
Types | | 6663 | 6664 | 6679
6680
6681 | | 7724 | 7167
7717 | 6661
6676 | 6660
6662 | 6669
6677
7701 | | | 6678
7716
810 2 | | Miscel-
laneous | | 5R4-
GYA | | 6AS7-GA
6DJ8
5998-A
6080
7025
7370 | 7247 | | | 6485
8136 | | 6A K6
5824
6046
7189-A
7355
7408
7581
7581-A
8068 | 7239 | | | | Low-
Power
Trans-
mitting | | | | | | | | | | 2DF4
807
6146-A
6146-B
6550-A
6883-A
6883-B
7984
8106
8156
8908 | | | | Type designations of miniature tubes are shown in italics. #### **THYRATRONS** | INIKAIRONS | | | | | | | | | | | | |----------------|---|---|---|---|---|--|--|--|--|--|--| | Classification | DC Cathode
Current in | Peak
Inverse | Filament
Voltage in | or Heater
Current in | Types | | | | | | | | V | Amperes | Anode Voltage | Volts | Amperes | | | | | | | | | Triodes | Amperes 0.025 0.075 0.5 0.5 1.0 1.5 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | Anode Voltage 350 350 5000 5000 1250 1250 1250 1250 1250 12 | Volts 6.3 6.3 2.5 2.5 2.5 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 | Amperes 0.25 0.6 5.0 6.3 7.0 10.0 7.5 9.0 4.5 9.0 4.5 9.0 9.0 12.0 12.0 | *6D4
884
FG-81A
5557
6014/C1K
3C23
393A
5563A
578
710/6011
710L/7518
5559
5632/C3J
5720
5728
7725
7726
5544
414
6807 | | | | | | | | | 6.4
6.4
6.4
6.4
12.5
16.0
18.0 | 1500
1500
1500
1500
1500
10000
1250
1500 | 2.5
2.5
2.5
2.5
5.0
2.5
2.5
2.5 | 21.0
21.0
21.0
21.0
20.0
31.0
34.0 | 6808
6809
6858/760
6859/760P
5830
5665/C16J
5855 | | | | | | | | Tetrodes | 0.2
0.028
0.1
0.1
0.1
0.5
0.5
2.5
3.2
6.4 | 500
500
1300
1300
1300
1300
1300
500
500
1300
500
2500
2500
2000 | 6.3
6.3
6.3
6.3
6.3
2.5
2.5
6.3
5.0
5.0
5.0 | 0.15
0.15
0.6
0.6
0.6
0.6
5.0
2.5
7.0
4.5
5.0
10.0 | *5663
*5696A
*2D21
502A
2050A
**5727
FG-97
FG-98A
6012
FG-154
5560
672A
FG-105
FG-172 | | | | | | | # PLANAR AND CERAMIC TYPES | | | | | <u>-</u> | | | | | | |---------------------|--------------------|---|-----------------------------|--|--------------------------------|----------------|----------|---|---| | Classifi-
cation | Туре | Approx.
Enve-
lope
Diam-
eter | Type
of
Termi-
nal | Maximu
Plate
Dissi-
pation
(Watts) | Current
(Milli-
amperes) | Gm | μ | Typical Operation | Useful
Fre-
quen-
cies
Extend
to * | | | 2C40A | 1.3" | Octal | 6.5 ▲ | ib = 25 | 5100 | 35 | UHF Amp. | 3370 MHz | | | 6299 | 0.5" | Coax. | 2.0 | ib = 12 | 15000 | 110 | Low Noise UHF Amp. | 3000 MHz | | | 6771 | 0.5" | Coax. | 6.25 ▲ | ib = 25 | 23000 | 90 | UHF Amp. | 4000 MH2 | | Triode
Class A | 7077
7296 | 0.3"
0.5" | Coax. | 1.0
5.5 | lik = 10
lik = 30 | 10000
16500 | 90
90 | Low Noise UHF Amp.
VHF Amp. | 7500 MH ₂
500 MH ₂ | | Operation | | 0.37 | Lug(T)
Lug | 1.0 | ik = 10 | 10500 | 94 | Low Noise VHF Amn | 500 MHz | | Operation | 7644 | 0.5" | Coax. | 2.0 | ib = 12 | 15000 | 110 | Low Noise VHF Amp.
Low Noise VHF Amp. | 3000 MHz | | | 7768 | | Coax. | 5.5 | ik =30 | 50000 | 225 | Low Noise RF Amp. | 3000 MHz | | | 7784 | 0.5" | Coax. | 2.0 | ib = 12 | 15000 | 110 | Low Noise VHF Amp. | 3000 MHz | | | 8083 | 0.3" | Lug(T) | 1.0 | ik = 10 | 10500 | 94 | Low Noise VHF Amp. | 500 MHz | | | 2C39A | 1.2" | Coax. | 100 ▲ | ik = 125 | 22000 | 100 | UHF Power Amp., | 0500 3511 | | | 2C39B | 1.3" | Coax. | 100 | ik = 125 | 24800 | 95 | Osc., or Freq. Mult.
UHF Power Amp | 2500 MH ₂ | | | 2000 | 1.0 | Coan. | 100 | 1K - 120 | 24000 | 83 | l Osc. or Frea Mult. | 2500 MHz | | | 2C39WA | 1.3" | Coax. | 100 | ik = 125 | 24800 | 95 | UHF Power Amp., | | | | | | | | l., | | | t Osc. or Fred Mult. | 2500 MHz | | | 2C40A | 1.3" | Octal | 6.5 ▲ | ib = 25 | 5100 | 35 | UHF Power Amp., or | 3370 MHz | | | 2C43 | 1.3" | Octal | 12.0 ▲ | ib =40 | 8100 | 50 | Osc.
UHF Power Amp., or | 3370 MH2 | | | 2049 | 1.0 | Octas | 12.0 | 10 - 10 | 3100 | 1 00 | Osc. | 3000 MH2 | | | 3CX100A5 | 1.3" | Coax. | 100 🛦 | ik = 125 | 25000 | 100 | UHF Power Amp., | l . | | | | | _ | | | | | Osc., or Freq. Mult.
UHF Power Amp., | 3000 MHz | | | 6442 | 0.5" | Coax. | 8.0 ▲ | ib = 35 | 16500 | 50 | Osc., or Freq. Mult. | 5000 MHz | | | 6771 | 0.5" | Coax. | 6.25 ▲ | ib = 25 | 23000 | 90 | UHF Power Amp., | 3000 W1112 | | | | ! | | 1 | | | | Osc., or Freq. Mult.
UHF Power Amp., | 6000 MHz | | Triode | 6897 | 1.3" | Coax. | 100 ▲ | ik = 125 | 24800 | 95 | UHF Power Amp., | | | Class B | 7289 | 1.0" | Coax. | 100 🛦 | ik = 125 | 25000 | 100 | Osc., or Freq. Mult.
UHF Power Amp., | 2500 MHz | | Class D | 1209 | 1.0 | Coax. | 100 | IK = 125 | 20000 | 100 | Osc., or Freq. Mult. | 3000 MHz | | or C | 7296 | 0.5" | Lug(T) | 5.5 | ik =30 | 16500 | 90 | VHF Power Amp., | JOSO MILL | | | | | | İ | | | i | Osc., or Freq. Mult.
UHF Power Amp., | 500 MHz | | Operation | 7391 | 0.5" | Coax. | 2.25 ▲ | ib = 15 | 11000 | 62 | UHF Power Amp., | ***** | | | 7486 | 0.3" | Coax. | 1.0 | ik = 10 | 10500 | 90 | Osc., or Freq. Mult.
UHF Power Amp., | 6000 MHz | | | 7400 | 0.0 | Coax. | 1.0 | 14 - 10 | 10000 | 30 | Osc., or Freq. Mult. | 7500 MHz | | | 7588 | 0.5" | Lug(T) | 5.5 | ik =30 | 45000 | 175 | Osc., or Freq. Mult.
Low Noise VHF Amp. | 500 MHz | | | 7720 | 0.3" | Lug | 1.0 | ik = 10 | 10500 | 90 | VHF Power Amp., | 1 | | | 7012 | 0.5% | C | | | 40000 | | Osc., or Freq. Mult.
VHF Power Amp., | 500 MHz | | | 7913 | 0.5" | Coax. | 5.5 | ik = 30 | 40000 | 100 | Orc or Free Mult | 3000 MHz | | | 8082 | 0.3" | Lug(T) | 1.0 | ik == 11 | 10500 | 90 | Osc., or Freq. Mult.
VHF Power Amp., | 0000 Miliz | | | | | | | 1 | | | Usc., or rreq. Muit. | 500 MHz | | | GE12661 | 0.3" | Coax. | 4.0 | ik = 40 | 8500 | 40 | Power Osc. | 3000 MHz | | | GE14501 | 0.3"
0.3" | Coax. | 2.0 | ik = 80
ik = 40 | 12500
12500 | 90 | Power Amp. or Osc. | 7500 MHz | | | GE16411
GE16841 | 0.3" | Coax.
Coax. | 1.0 | ik = 20 | 17000 | 75
78 | Power Amp. or Osc.
CW Amp. or Osc. | 7500 MHz
7500 MHz | | | 2C40A | 1.3" | Octal | 4.0 ▲ | ib = 2000 | 5100 | 35 | | 3000 MHz | | | 2C42
2C43 | 1.3" | Octal | 12.0 | ik =4000 | 8000 | 48 | Pulsed Osc. or Amp.
UHF Oscillator | 3370 MHz | | | | 13" | Octal | 12.0 | ik = 4000 | 8100 | 50 | Pulsed Osc. or Amp. | 3370 MHz | | | 2C46 | 1.3" | Octal | 12.0 | ib = 40 | 3500 | 60 | UHF Osc. | 3370 MHz | | Triode | 6442
6771 | 0.5"
0.5" | Coax. | 7.5 ▲
5.0 ▲ | ik =3750
ik =1950 | 16500
23000 | 50
90 | Pulsed Osc. or Amp.
Pulsed Osc. or Amp. | 5000 MHz
5000 MHz | | Pulse | 7815 | 1.2" | Coax. | 10.0 | ip = 3000 | 23000 | | Pulsed Osc. or Amp. | 3000 MHz | | Operation | | i | |] | lg = 5.0 | | 1 | l under oper or ramp. | 1 | | | 7815R | 1.3" | Coax. | 100 🔺 | ip = 3000 | | | Pulsed Osc. or Amp. | 3000 MHz | | | 7910 | 0.3" | Coon | | lg = 5.0 | 10000 | 75 | But and One an Amer | 7500 3/11- | | | 7911 | 0.5" | Coax.
Coax. | 1.5
6.5 | ik = 800
ik = 3500 | 16000
25000 | 58 | Pulsed Osc. or Amp.
Pulsed Osc. or Amp. | 7500 MHz
6000 MHz | | Triode | GE13971 | 0.6" | Coax. | 6.5 | ik = 1810 | 25000 | 58 | Pulsed Osc. or Amp. | 6000 MHz | | Pulse | GE14811 | 0.6* | Coax. | 6.5 | ik = 1200 | 29000 | 60 | l Pulsed Osc. | 6000 MHz | | Operation | GE15371 | 0.5" | Coax. | 10.0 | ik = 2000 | 22000 | 85 | Pulsed Osc. and Amp. | 6000 MHz | | (contd) |
GE16231 | 0.6" | Coax. | 6.5 | ik =600 | 50000 | 225 | Pulsed Amp. | 3000 MHz | | | GE17241
GE17701 | 0.7"
0.7" | Coax. | 10.0 | ik =3000 | 13500
26000 | 95 | Pulsed Osc. and Amp.
Pulsed Osc. or Amp. | 3000 MHz | | | GE18651 | 0.6" | Coax.
Coax. | 30.0
6.5 | ik = 6000
ik = 1860 | 22000 | 58
58 | Pulsed Osc. or Amp.
Pulsed Osc. or Amp. | 3000 MHz
6000MHz | | | GL51025 | 1.2" | Coax. | 110 | ik = 15000 | 1 | | Pulsed Osc. of Amp. | 1300 MHz | | | GL51074 | | Coax. | iio | | l | | High Voltage Version | l | | | | | | | L | <u> </u> | <u> </u> | of GL51025 | 1300 MHz | | | 2B22 | 1.3" | Octal | Tube V | oltage Dro | p; | | Power Detector or | 1500 MHz | | | 7266 | 0.3" | Octal | | Milliampe | | | Mon. | 7500 3412- | | Diodes | 1200 | 0.5 | Octai | l 1 Volt | /oltage Dro
@ =1.0 Mi | lliamne | res | Instrument Detector | 7500 MHz | | 2 | 7841 | 0.3" | Octal | Tube Voltage Drop: Sign | | | | Signal Detector | 7500 MHz | | | 1 | | | 2.6 Volts @ 5.0 Milliamperes | | | | | | | | CLEGE | r 0# | C | b=5 | Milliamper | es maxi | mum | B A Oc- | 000 1411- | | | GL6251 | 5.0" | Coax. | 25KW | 1K = 8000 | <u> </u> | 20 | Power Amp. or Osc. | 220 MHz | # PLANAR AND CERAMIC TYPES (Cont'd) | Classifi-
cation | Туре | Approx.
Enve-
lope
Diam-
eter | Type
of
Termi-
nal | Piate
Dissi- | m Ratings Current (Milli- amperes) | Gm | μ | Typical Operation | Useful
Fre-
quen-
cies
Extend
to * | |---------------------|---|--|---|--|------------------------------------|----|--|---|--| | Tetrodes | GL6283
GL6848
GL6942
GL7399
GL7399
GL8513
GL8513
GL8513
GL51038
GL51038
GL51064
GL51065
GL51070 | 2.3"
4.0"
3.5"
2.3"
2.7"
2.0"
1.7"
2.0"
4.0" | Coax. | 500
2.0KW
1.5KW
500
3.5KW
500
4.0KW
150
600
600
2.75KW
600
600 | ib = 700
ib = 10000 | | 14
20
17
10.5
20
14
20
 | Mil. Comm. System Power Amp. or Osc. UHF Amp. or Osc. Pulsed Amp. or Osc. Power Amp. or Osc. Power Amp. or Osc. Power Amp. or Osc. Pulsed Amp. or Osc. Pulsed Amp. UHF-UHF Mil. Comm. Detector Equip. CW Version of GL51065 | 1250 MHz
800 MHz
1000 MHz
1500 MHz
800 MHz
1500 MHz
1500 MHz
1500 MHz
1500 MHz
1500 MHz
1500 MHz
1500 MHz | ^{*}The frequency listed is one at which significant application data are available or expected, and does not necessarily represent an absolute frequency limit. (T) Provision is made for mounting with T-bolt. At this dissipation level, anode cooling is usually necessary to prevent exceeding maximum permissible seal temperature. # **IGNITRONS** | | | Maximu | n Electrical | Ratings | | * | |--------------------|------------------------|--------------------------|---|---|-------------------------------------|--| | Classification | Supply
Volts
RMS | Maximum
Demand
KVA | Corresponding Average Anode Current Amperes | Maximum
Average
Anode
Current
Amperes | Corre-
sponding
Demand
KVA | Туреѕ | | | 250-600 | 300 | 12.1 | 22.4 | 100 | GL-5550 | | | 250-600 | 600 | 30.2 | 56 | 200 | GL-5551A/GL-5551A-PC | | | 250-600 | 1200 | 75.6 | 140 | 400 | GL-5552A/GL-5552A-PC | | | 250-600 | 2400 | 192 | 355 | 800
600 | GL-5553B/GL-5553B-PC
GL-5554 | | | 2400 | 1200 | 75 | 113 | 1105 | GL-5555 | | | 2400 | 2400 | 135 | 207 | 2210 | GL-5564 | | | 2400 | 4800 | 270 | 414 | | GL-5504 | | | | Thermostat V | ersion of Gi | -5554. Same | Katings | GL-6512 | | | Apply. | i
Chermostat V | 02-0012 | | | | | Resistance | | i nermostat v | GL-6513 | | | | | Welding | Apply. | Thermostat V | | | | | | Control
Service | Apply. | i nei mostat v | GL-6515 | | | | | Service | 250-600 | 4800(1) | 486 | 900 | 1600 | GL-7151 | | | 250-600 | 600 | 30.2 | 56 | 200 | GL-7669/GL-7669-PC | | | 250-600 | 1200 | 75.6 | 140 | 400 | GL-7671/GL-7671-PC | | | 250-600 | 2400 | 192 | 355 | 800 | GL-7673/GL-7673-PC | | | 250-600 | 1800 | 135 | 220 | 600 | GL-7681/GL-7681-PC | | | 250-600 | 1800 | 135 | 220 | 600 | GL-7998/GL-7998-PC | | | 250-600 | 4800(1) | 486 | 900 | 1600 | GL-8205 | | | 250-600 | 1000 | 43.2 | 75 | 200 | GL-37250/GL-37250-PC | | | 250-600 | 1000 | 43.2 | 75 | 200 | GL-37251/GL-37251-PC
GL-37252/GL-37252-PC | | | 250-600 | 2000 | 108 | 150 | 380 | GL-37252/GL-37252-FC
GL-37253/GL-37253-PC | | | 250-600 | 2000 | 108 | 150 | 380 | GL-37254/GL-37254-PC | | | 250-600 | 3000 | 224 | 400 | 1000
1000 | GL-37254/GL-37254-FC | | | 250-600 | 3000 | 224 | 400 | 1000 | GL-01200/GL-01200-1 C | # **IGNITRONS** (Cont'd) | Classification | Peak
Inverse
Voltage
Volts | Maximum
Peak
Anode
Current
Amperes | Corresponding Average Anode Current Amperes | Maximum
Average
Anode
Current
Amperes | Corresponding Peak Anode Current Amperes | Types | |---|--|--|--|--|--|---| | Frequency
Changer
Welding
Control
Service | 1200
1500
1200
1200
1500
1200
1500
1200
1500
1200
1500
1200
1500
1200
1500
1200
1500 | 600
480
3000
2400
1500
1200
600
480
1500
1200
3000
2400
2400
2250
1800
2250
1800 | 5
4
40
32
20
16
5
4
20
16
40
32
30
24
30 | 22.5
18
140
112
70
56
22.5
18
70
56
140
112
105
84
105 | 135
108
840
672
420
336
135
108
420
336
840
672
630
502 | GL-5551A
GL-5551A
GL-5553B
GL-5553B-PC
GL-5822A
GL-5822A-PC
GL-7669-PC
GL-7672
GL-7672-PC
GL-7673-PC
GL-7673-PC
GL-7681
GL-7681
GL-7681-PC
GL-7998-PC | | | Peak Anode Voltage
Volts
Forward Inverse | | Peak
Anode
Current
Amperes | Typical Discharge Rate Pulse Per Minute | Time- | - | | Capacitor
Discharge
Service | 35,000
50,000
15,000
20,000
25,000
50,000 | 35,000
50,000
15,000
20,000
25,000
50,000 | 20,000
30,000
35,000
100,000
300,000
25,000 | 2
2
2
2
500
2 | 0.8
0.8
0.5
0.5
0.5
0.7 | GL-5630
GL-6228
GL-7171
GL-7703**
GL-37207
GL-37248** | ⁽¹⁾ Maximum deruand current below 500 volts should not exceed 9600 amperes RMS. PC indicates plastic coated version. **All ratings based on use of liquid cooling except GL-7171 (air cooled), GL-7703 & GL-37248 (liquid or air) # **VIDICONS** | Classification | Туре | |---|--| | Monochrome Film & CC TV Cameras | 7038
8572
8604 | | Broadcast Color Television Cameras | 7038V
Z7929R,B,G
8134V
8572V | | General use in CC TV and Educational TV Cameras | 7262A
7735A
8573A
8134 | | Ruggedized use in Military and CC TV Cameras | 7263A
Z7912 | | High Quality CC TV, Broadacast and Educational TV Cameras | 7735B
8507A
8541A | | Low Cost CC TV and Educational TV Cameras | Z7911
Z7919 | | Low Light Level for CC TV and Educational Cameras | 8484H | | High Quality Medical X-Ray TV Cameras | 7735BX
8541X
8573X | | Extremely Low Light Level for CC TV and Educational Cameras | Z7975B
Z7975HRB
Z7996B
Z7996HRB
Z7927B
Z7927HRB | # X-RADIATION RATED RECOMMENDED REPLACEMENTS FOR HIGH VOLTAGE RECTIFIER AND SHUNT REGULATOR TUBES | HIGH VOLTA | GE RECTIFIE | RS | | | | |--------------------------------|---|--|---------------|---|-----------------------------------| | Tube Type | Replacement
X-Radiation
Rated Version | Current
GE
Renewal Branding | Tube Type | Replacement
X-Radiation
Rated Version | Current
GE
Renewal Branding | | 1AD2 | 1AD2A | 1BY2A/1AD2A | 2V2 | | _ | | 1AD2A | 1AD2A | 1BY2A/1AD2A | 2V3G | | | | 1AJ2 | | | 2X2 | | _ | | 1AU2 | | | 2X2A | - | | | 1AU3 | | | 2Y2 | | - | | 1AX2 | | | 3A2 | 3A2A | | | 1AY2 | 1AY2A | 1AY2A | 3A2A | 3A2A | | | 1AY2A | 1AY2A | 1AY2A | 3A3 | 3A3C | 3A3C/3AW3/3B2 | | 1B3GT | 1G3GTA | 1G3GTA/1B3GT | 3A3A | 3A3C | 3A3C/3AW3/3B2 | | 1BC2
1BC2A | 1BC2A
1BC2A | 1BC2A
1BC2A | 3A3B
3A3C | 3A3C
3A3C | 3A3C/3AW3/3B2 | | 1BC2B | 1BC2B | 1BC2B | 3AT2 |
3AT2B | 3A3C/3AW3/3B2
3AT2B | | 1BH2 | 1BH2A | IBH2A | 3AT2A | 3AT2B | 3AT2B | | 1BH2A | 1BH2A | 1BH2A | 3AT2B | 3AT2B | 3AT2B | | 1BK2 | | | 3AW2 | 3AW2A | 3AW2A | | 1BL2 | | ************************************** | 3AW2A | 3AW2A | 3AW2A | | 1BV2 | - | | 3AW3 | 3A3C | 3A3C/3AW3/3B2 | | 1BX2 | 1X2C | 1X2C/1BX2 | 3B2 | 3A3C | 3A3C/3AW3/3B2 | | 1BY2 | 1BY2A | 1BY2A/1AD2A | 3BF2 | | | | 1BY2A | 1BY2A | 1BY2A/1AD2A | 3BL2 | 3BL2A | 3BL2A | | 1DG3 | 1DG3 | 1DG3 | 3BL2A | 3BL2A | 3BL2A | | 1DG3A
1G3GT | 1DG3A
1G3GTA | 1DG3A | 3BM2 | 3BM2A | 3BM2A | | 1G3GTA | 1G3GTA
1G3GTA | 1G3GTA/1B3GT | 3BM2A
3BN2 | 3BM2A | 3BM2A | | 1H2 | 10301A | 1G3GTA/1B3GT | 3BN2A | -3BN2A
3BN2A | 3BN2A
3BN2A | | 113 | 1K3A | 1K3A/1J3 | 3BS2 | 3BS2B | 3BW2/3BS2B/3BT2A | | 1J3A | 1K3A | 1K3A/1J3 | 3BS2A | 3B\$2B | 3BW2/3BS2B/3BT2A | | 1K3 | 1K3A | 1K3A/1J3 | 3BS2B | 3BS2B | 3BW2/3BS2B/3BT2A | | 1K3A | 1K3A | 1K3A/1J3 | 3BT2 | 3BT2A | 3BW2/3BS2B/3BT2A | | 1N2 | | - | 3BT2A | 3BT2A | 3BW2/3BS2B/3BT2A | | 1N2A | _ | | 3BW2 | 3BW2 | 3BW2/3BS2B/3BT2A | | 1S2 | | 1004 (01/07 | 3C2 | | | | 1S2A | | 1S2A/DY87 | 3CA3 | 3CA3A | 3CA3A | | 1T2
1V2 | | 1V2 | 3CA3A
3CN3 | 3CA3A
3CN3B | 3CA3A
3CN3B | | 1X2 | 1X2C | 1X2C/1BX2 | 3CN3A | 3CN3B | 3CN3B | | 1X2A | 1X2C | 1X2C/1BX2 | 3CN3B | 3CN3B | 3CN3B | | 1X2B | 1X2C | 1X2C/1BX2 | 3CU3 | 3CU3A | 3CU3A | | 1X2C | 1X2C | 1X2C/1BX2 | 3CU3A | 3CU3A | 3CU3A | | 1Y2 | | mann | 3CV3 | 3CV3A | | | 1Z2 | | | 3CV3A | 3CV3A | | | 2AH2 | 2BU2 | 2BU2/2AS2A/2AH2 | 3CX3 | 3DA3 | 3DA3/3CX3 | | 2AS2 | 2AS2A | 2BU2/2AS2A/2AH2 | 3CY3 | 3DB3 | 3DB3/3CY3 | | 2AS2A | 2AS2A | 2BU2/2AS2A/2AH2 | 3CZ3 | 3CZ3A | 3CZ3A | | 2 AV 2
2 AZ 2 | | 2AV2 | 3CZ3A
3DA3 | 3CZ3A
3DA3 | 30Z3A | | 2B3 | _ | | 3DB3 | 3DB3 | 3DA3/3CX3
3DB3/3CY3 | | 2BA2 | _ | | 3DC3 | 3DC3 | 3DC3 | | 2BJ2 | 2BJ2A | | 3DF3 | 3DF3 | 3DF3 | | 2BJ2A | 2BJ2A | | 3DF3A | 3DF3A | 3DF3A | | 2BU2 | 2BU2 | 2BU2/2AS2A/2AH2 | 3DH3 | 3DH3 | 3DH3 | | 2CN3A | 2CN3B | 2CN3B | 3D13 | 3DJ3 | 3DJ3 | | 2CN3B | 2CN3B | 2CN3B | 3DR3 | 3DR3 | 3DR3 | | 2J2 | _ | | 3DS3 | 3DS3 | 3DS3 | | _2L2 | | | 5642 | | - | | HUNT REG | ULATORS | | | | | |-----------|---|--|-----------|---|----------------------------------| | Tube Type | Replacement
X-Radiation
Rated Version | Current
GE
Renewal Branding | Tube Type | Replacement
X-Radiation
Rated Version | Current
GE
Renewal Brandin | | 6BD4 | 6BK4C | 6BK4C/6EL4A | 6EJ4 | 6EJ4A | 6EJ4A | | 6BD4A | 6BK4C | 6BK4C/6EL4A | 6EJ4A | 6EJ4A | 6EJ4A | | 6BK4 | 6BK4C | 6BK4C/6EL4A | 6EL4 | 6EL4A | 6EL4A | | 6BK4A | 6BK4C | 6BK4C/6EL4A | 6EL4A | 6EL4A | 6EL4A | | 6BK4B | 6BK4C | 6BK4C/6EL4A | 6EN4 | 6EN4 | 6EN4 | | 6BK4C | 6BK4C | 6BK4C/6EL4A | 6LC6 | 6LJ6A | 6LJ6A/6LH6A | | 6BU4 | _ | | 6LH6 | 6LH6A | 6LJ6A/6LH6A | | 6BU5 | _ | Name of the last o | 6LH6A | 6LH6A | 6LJ6A/6LH6A | | 6EA4 | 6EH4A | 6EH4A | 6LJ6 | 6LJ6A | 6LJ6A/6LH6A | | 6EF4 | 6EJ4A | 6EJ4A | 6LJ6A | 6LJ6A | 6LJ6A/6LH6A | | 6EH4 | 6EH4A | 6EH4A | 6MA6 | 6MA6 | 6MA6 | | 6EH4A | 6EH4A | 6EH4A | | | | # X-RADIATION SYMBOL DEFINITION - ▲ The EIA Published Product Information, as of March 1, 1972, contains an X-radiation rating, as shown herein, for this tube type. Adequate shielding must be in place to limit X-radiation to a level consistent with Public Law 90-602 "Radiation Control for Health and Safety Act of 1968." For X-Radiation Characteristics, Controls, Measurements and Warning see JEDEC Publications 67A and 73A and the latest EIA Published Product Information for this type. - ♠ The EIA Published Product Information, as of March 1, 1972, does not contain an X-radiation rating for this type. Replace only with the latest X-radiation rated version of the same type or an X-radiation rated equivalent as shown in the High Voltage Rectifier and Shunt Regulator Interchangeability chart. Adequate shielding must be in place to limit X-radiation to a level consistent with Public Law 90-602 "Radiation Control for Health and Safety Act of 1968." | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
J | pacitano
Picofara | e in
ds | |---------------------|---|---------------|------------|---------------|---------------|--------------|--------------|------------------------|--|----------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
pul | Grid-
plate | | OUA | Triode Detector | 4D | 14-1 | 5.0
DC | 0.25 | - | 45 | = | 3.2 | 2.0 | 8.5 | | O1-A | Low-Mu Triode | 4D | 14-1 | 5.0
DC | 0.25 | | 135 | | 3.1 | 2.2 | 8.1 | | OA2 | Glow-Discharge Diode
Voltage Regulator | 5BO | 5–3 | - | | | Anode | supply | =185 v | olts d-c | min | | OA3 | Glow-Discharge Diode
Voltage Regulator | 4AJ | 12-7 | _ | | | Anode | supply | =105 v | olts d-c | min | | OA3A | Glow-Discharge Diode
Voltage Regulator | 4AJ | 9-7 | _ | | _ | Anode | supply | =105 v | olts d-c | min | | OA4-G | Gas Triode | 4V | 12-7 | _ | | | _ | - | | - | <u> </u> | | OA5 | Gas Pentode | 6CB | T-X | - | | _ | _ | T | | | _ | | OB2 | Glow-Discharge Diode
Voltage Regulator | 5BO | 5-3 | | | | Anode | supply | =133 v | olts d-c | min | | ОВЗ | Glow-Discharge Diode
Voltage Regulator | 4AJ | 12-7 | | - | _ | Anode | supply | =125 v | olts d-c | min | | ОВЗА | Glow-Discharge Diode
Voltage Regulator | 4AJ | 9–7 | | | | Anode | supply | =130 v | olts d-c | min | | OC2 | Glow-Discharge Diode
Voltage Regulator | 5BO | 5–3 | _ | _ | | Anode | supply | =115 v | olts d-c | min | | OC3 | Glow-Discharge Diode
Voltage Regulator | 4AJ | 12-7 | | | _ | Anode | supply | =133 v | olts d-c | min | | OC3A | Glow-Discharge Diode
Voltage Regulator | 4AJ | 9-7 | | _ | _ | Anode | supply | =133 v | olts d-c | min | | OD3 | Glow-Discharge Diode
Voltage Regulator | 4AJ | 12-7 | | | | Anode | supply | =185 v | olts d-c | min | | OD3A | Glow-Discharge Diode
Voltage Regulator | 4AJ | 9–7 | | _ | | Anode | supply | =185 v | olts d-c | min | | OY4
OY4-G | Half-Wave Gas
Rectifier | 4BU | 8-3
T-X | | | | Pins 7 | and 8 r | nust be | connec | ted | | OZ4
OZ4-G | Full-Wave Gas
Rectifier | 4R | 8-3
T-X | = | | | _ | = | = | = | = | | OZ4-A | Full-Wave Gas
Rectifier | 4R | 8-1 | | | | | | | | _ | | 1 A 3 | High-Frequency Diode | 5AP | 5-2 | 1.4 | 0.15 | | | - | | | = | | l A4-p
l A4-t | Remote-Cutoff RF
Pentode | 4M
4K | 12-6 | 2.0
DC | 0.06 | | 180 | 67.5 | 5.0 ▲ | 11.0▲ | 0.007 | | A5-GT | Power Amplifier
Pentode | 6X | 9-11 | 1.4
DC | 0.05 | | 110 | 110 | | | _ | | l A 6 | Pentagrid Converter | 6L♦ | 12-6 | 2.0
DC | 0.06 | | 180 | 67.5 | Osc I _{c1}
R _{g1} = 5 | =0.2 m
0,000 ol | a
ims | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------|----------------------|----------------------|---------------------------------|----------------------------------|---|---------------------------|---|--|--|----------------| | Detector | 45 | <u> </u> | 0 | 1.5 | - | 30,000 | 666 | 20 | T- | T - 1 | OOA | | Class A
Amplifier | 135 | - | 9.0 | 3.0 | i – | 10,000 | 800 | 8 | <u> </u> | <u> </u> | O1-A | | d-c operating | | | | ∫ Opera | ating vo | oltage = 155
oltage = 150
5 to 30
mil | volts d | -c |) volts | | OA 2 | | d-c operating | curren | t = 5 m
t = 40 m | a min
a max | Opera | ating vo | oltage = 100
oltage = 75
5 to 40 mil | volts d- | c |) volts | | OA3 | | d-c operating | curren
curren | t = 5 m
t = 40 m | a min
a max | ∫Oper | ating vo | oltage = 108
oltage = 75
5 to 40 mil | volts d- | c | 5 volts | | OA3A | | Peak cathode c
Starter anode d | | | | | | rent = 25 n | na max; | *************************************** | **** | | OA4-G | | Peak Cathode
15 volts min | current | =10 m | a min; | Махр | ower in | put = 1.0 w | atts; A | node fi | ring vo | ltage = | OA5 | | d-c operating | | | | ∫ Opera | ating vo | oltage = 115
oltage = 105
5 to 30 mil | volts d | -c |) volt | | OB2 | | d-c operating | curren
curren | t = 5 m
t = 40 m | a min
a max | ∫ Oper | ating vo | oltage = 110
oltage = 90
5 to 40 mil | volts d- | С |) volts | | OB3 | | d-c operating | | | | ∫ Oper | ating vo | oltage = 125
oltage = 90
5 to 30 mil | volts d- | c ¯ |) volts | | OB3A | | d-c operating | current
current | ● = 5
● =30 | ma mir
ma ma | I) Ioni | zation v | | 5 volts
volts d | d-c
-c | | | OC2 | | d-c operating | | | | Oper | ating vo | oltage = 115
oltage = 105
5 to 40 mil | volts d | -c |) volts | | OC3 | | d-c operating
d-c operating | curren | t = 5 m $t = 40 m$ | a min
a max | ∫ Oper | ating vo | oltage = 127
oltage = 105
5 to 40 mil | volts d | -c |) volts | | OC3A | | d-c operating | curren | t = 5 m $t = 40 m$ | a min
a max | Ioniz | ation vo | oltage = 160
oltage = 150
5 to 40 mil | volts d | -c
-c | | | OD3 | | d-c operating | curren | t = 5 m $t = 40 m$ | a min
a max | ∫ Oper | ating vo | oltage = 180
oltage = 150
5 to 40 mil | volts d | -c | 5 volts | | OD3A | | Peak current = 95 volts d-c; pe | 500 ma
ak inve | max; d-erse volt | output
age = 30 | curren | t = 75 m | | | | | oltage = | OY4
OY4-G | | Starter supply
max d-c output
voltage =880 v | = 90 m | per pla
illiampe | te � = 3
res; pea | 00 peal
k curre | t volts i
nt per p | nin; min d
late = 270 r | -c outpo
nilliamp | ıt ⊗ = 3
eres; m | 0 millia
ax peak | mperes;
inverse | OZ4
OZ4-G | | Full-Wave
Rectifier | max p | eak inv | erse vol | tage = | 880 volt | minimum
s; minimu
rrent per 1 | m starte | er supp | rrent =
ly volt | 30 ma;
age per | OZ4-A | | Half-Wave
Rectifier | Max o | i-c outp | ut curre
e = 117 | ent = 0
volts; r | 5 ma; m
nax pea | ax peak in
k current = | verse ve
5.0 ma | oltage = | 330 vo | lts; rms | 1A5 | | Class A
Amplifier | 180 | 67.5 | 3 | 2.3 | 0.8 | 1,000,000 | 750 | | | <u> </u> | 1A4-p
1A4-t | | Class A
Amplifier | 90
85 | 90
85 | 4.5
4.5 | 4.0†
3.5† | 0.8†
0.7† | 300,000
300,000 | 850
800 | | 25,000
25,000 | | 1A5-GT | | Converter | 180 | 67.5 | 3.0 | 1.3 | 2.4 | 500,000 | 300 # | | sc Plate
0,000 ol
.3 ma | | 1A6 | | Tube | Classification | X-Řa- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | Caj
P | acitano
icofara | e in
ds | |-----------------|---|-------------------|--------------|--------------|---------------|--------------|----------------|-------------------|-----------------------|---|--------------------|----------------| | Туре | by
Construction | diation
Rating | nec- | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and | Input | Out-
put | Grid-
Plate | | 1A7-G
1A7-GT | Pentagrid
Converter | | 7Z 4 | 9-28
9-18 | 1.4
DC | 0.05 | | 110 | Watts
60 | Osc I _{cl}
R _{gl} = 20 | =0.035
00.000 c | ma
hms | | 1AB5 | Remote-Cutoff
RF Pentode | | 5BF | 9-32 | 1.2
DC | 0.130 | 1.0 | 150 | 150 2
0.3 | 2.8 | 4.2 | 0.25 | | 1AC5 ● | Power Amplifier
Pentode | | 8CP | 3-5 | 1.25
DC | 0.04 | | 67.5 | 67.5 | | | | | 1AD2 ■ | Half-Wave High-
Voltage Recti-
fier | (A) | 12GV | 9-98 | 1.25 | 0.2 | | Tube \
225 vo | oltage
lts at 7. | Drop:
0 ma d- | c | * | | 1AD2-A 1 | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 12GV | 9-144 | 1.25 | 0.2 | | Tube \
225 vo | oltage
its at 7. | Drop:
0 ma d- | с | | | 1AD4 ● | Sharp-Cutoff
RF/AF
Pentode | | 1AD4 | 2-1 | 1.25
DC | 0.1 | | 45 | 45 | 4.5 | 4.5 | 0.01 ♣ | | 1AD5 ● | Sharp-Cutoff RF
Pentode | | 8CP | 3-5 | 1.25
DC | 0.04 | | 67.5 | 67.5 | 1.9 | 3.0 | 0.009 | | 1AE4 | Sharp-Cutoff RF
Pentode | | 6AR | 5-2 | 1.25
DC | 0.1 | | 90 | 90 | 3.6 | 4.4 | 0.008 | | 1AE5 ● | Heptode Mixer | | 1AE5 | T-X | 1.25
DC | 0.06 | | 45 | 45 | Ici (Inj. | ection)
00,000 | =15 µa | | 1AF4 | Sharp-Cutoff
Pentode | | 6AR | 5-2 | 1.4
DC | 0.025 | | 110 | 90 | 3.8 | 7.6 | 0.009 | | 1AF6 | Diode Sharp-
Cutoff Pentode | | 6AU | 52 | 1.4
DC | 0.025 | | 110 | 110 | 2.5 | 4.8 | 0.17 | | 1AG4 ● | Power Amplifier
Pentode | | 512AX | 2-1 | 1.25
DC | 0.04 | | 90 | 90 | | | -=- | | 1AG5 🏟 | Diode-Pentode | | 1AG5 | 2-1 | 1.25 | 0,03 | | 50 ₪ | 50 € | | | | | 1AH4 • | RF Pentode | | IAD4 | 2-1 | 1.25
DC | 0.04 | | 90 | 90 | 3.5 ▲ | 4.5 ▲ | 0.01 💠 | | 1AJ2 ■ | Half-Wave High-
Voltage Recti-
fier | (A) | 12EL | 9-98 | 1.25 | 0.2 | | Tube V
140 vol | oltage l
ts at 7.0 | Drop:
) ma d- | С | | | 1AJ5⊕ | Diode Sharp-
Cutoff Pentode | | 1AG5 | 2-1 | 1.25
DC | 0.04 | | 90 | 90 | 1.7 | 2.4 | 0.10 | | 1AK4 @ | Sharp-Cutoff
RF Pentode | | 1 A D4 | 2-1 | 1.25
DC | 0.02 | | 90 | 90 | 3.5 ▲ | 4.5 ▲ | 0.01 | | 1AK5 ● | Diode Sharp-
Cutoff Pentode | | 1AG5 | 2-1 | 1.25
DC | 0.02 | | 90 | 90 | 2.0 | 2.7 | 0.10 ♣ | | 1AM4 | Remote-Cutoff
RF Pentode | | 6AR | 5-2 | 1.4
DC | 0.025 | | 90 | 67.5 | 3.6 ▲ | 7.5 ▲ | 0.01 💠 | | 1AQ5 | Pentagrid
Converter | | 7AT
♥ | 5–2 | 1.4
DC | 0.025 | | 90 | 67.5 | Osc Ici
Rgi = 10 | =0.14
00,000 | ma
ohnis | | 1 A R 6 | Diode Sharp-
Cutoff Pentode | | 6AU | 52 | 1.4
DC | 0.025 | | 90 | 90 | | | <u> </u> | | 1AS6 | Diode Sharp-
Cutoff Pentode | | 6BW | 5-2 | 1.4
DC | 0.025 | | 90 | 90 | _ | | _ | | 1ÀU2 | Half-Wave High-
Voltage Recti-
fier | | 9U | 6–2 | 1.1 | 0.19 | _ | Tube
100 vo | Voltage
olts at 4 | Drop:
.5 ma d | -c | | | IAU3 | Half-Wave High-
Voltage Recti-
fier | (A) | 3 C | 12–18 | 1.25 | 0.2 | | Tube
225 vo | Voltage
olts at 7 | Drop:
.0 ma d | -c | | | 1AX2 | Half-Wave High-
Voltage Recti-
fier | • | 9Y | 6-7 | 1.4 | 0.65 | | Tube
200 vo | Voltage
olts at 7 | Drop:
0 ma d | -c | | | | | | | | | | | | | | | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— $\boxed{\triangle}$ —X-Radiation Rated, and $\boxed{\triangle}$ —No X-Radiation Rating. Compactron. Zero signal. Per section. † Plate-to-plate. Maximum. \$ Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------|----------------------------|--|-----------------------------------|---------------------------------|----------------------------------|---|-----------------------------------|--------------------------------|--|--------------------------------|-----------------| | Converter | 90 | 45 | 0 | 0.6 | 0.7 | 600,000 | 250 # | E _{ct} (O | sc Plate |) =90 | 1A7-G
1A7-GT | | Class A
Amplifier | 150
90 | 150
90 | 1.5
Rg ₁ =
1 meg | 6.8
3.5 | 2.0
0.8 | 125,000
275,000 | 1350
1100 | = | | | 1AB5 | | Class A
Amplifier | 67.5
45
30 | 67.5
45
30 | 4.5
3.0
2.0 | 2.0
1.0
0.5 | 0.4
0.2
0.1 | 150,000
170,000
200,000 | 750
600
450 | ΙΞ | 25,000
40,000
50,000 | 0.015 | 1AC5 ● | | TV Flyback
Rectifier | 22,000
50 ma. | verse ve
volts);
Termina
t potent | max d-c
als 4 an | Outnu | CHEPAN | $\begin{array}{ccc} & = & 26,00 \\ \text{ot} & & = & 0.5 \\ \text{sed as tie po} \end{array}$ | . ma. m | | le ássaucs | الشنا | 1AD2 ■ | | TV Flyback
Rectifier | Max in 22,000 50 ma. | Verse V | oltage (max d-cals 4 and | d-c and
c output
d 10 ma | peak)
t curren
ay be us | ■ = 26,00
at ♦ = 0.8
ed as tie po | 00 volts
5 ma; m
5 ints for | (d-c conax pea
compo | omponer
k currer
nents at | nt ∰ =
nt ⊕ =
or near | 1AD2-A | | Class A
Amplifier | 45 | 45 | R _{g1} = 2 meg | 3.0 | 0.8 | 500,000 | 2000 | | _ | - | 1AD4 🌒 | | Class A
Amplifier | 67.5
30 | 67.5
30 | 0 | 1.85
0.45 | 0.75
0.16 | 700,000 | 735
430 | = | | | 1AD5 ● | | Class A
Amplifier | 90 | 90 | 0 | 3.5 | 1.2 | 500,000 | 1550 | | = | | 1A E4 | | Mixer | 45 | 45 | 0 | 0.9 | 2.0 | 200,000 | 200 # | _ | | <u> </u> | 1AE5 ● | | Class A
Amplifier | 90
67.5 | 90
67.5 | 0 | 1.8
1.2 | 0.55
0.32 | 1,800,000
2,200,000 | 1050
925 | = | E | | 1AF4 | | Class A
Amplifier | 90
67.5 | 90
67.5 | 0 | 1.1 | 0.4
0.25 | 2,000,000
2,800,000 | 600
550 | | | | 1AF5 | | Class A
Amplifier | 41.4 | 41.4 | 3.6 | 2.4† | 0.6† | 180,000 | 1,000 | | 12,000 | 0.035 | 1AG4 ⊕ | | Class A
Amplifier | 45
22.5 | 45
22.5 | 2.0 | 0.28
0.17 | 0.12
0.043 | 2,500,000
700,000 | 250
235 | = | = | | 1AG5 ● | | Class A
Amplifier | 45 | 45 | R
_{g1} = 5 meg | 0.75 | 0.2 | 1,500,000 | 750 | | | | 1AH4 🌑 | | TV Flyback
Rectifier | 22,000
50 ma. | verse ve
volts);
Termina
t potent | max d-c
als 2 an | d-c and
outpu
d 10 ma | peak)
t curren
ay be us | | 00 volts
5 ma; m
pints for | (d-c co
ax pea
compo | omponer
k currer
nents at | nt 🔷 =
nt 🗣 =
or near | 1AJ2 ■ | | Class A
Amplifier | 45 | 45 | $\hat{R}_{g1} = 5 \text{ meg}$ | 1.0 | 0.3 | 300,000 | 425 | _ | I = | <u> </u> | 1 AJ5 ⊚ | | Class A
Amplifier | 45 | 45 | R _{g1} = 5 meg | 0.75 | 0.2 | 1,500,000 | 750 | | | | IAK4 🏽 | | Class A
Amplifier | 45 | 45 | $R_{g1} = 5 \text{ meg}$ | 0.5 | 0.2 | 400,000 | 280 | | = | | 1 A K5 ● | | Class A
Amplifier | 90 | 67.5 | 0 | 2.4 | 0.9 | 500,000 | 350 | | | _ | 1AM4 | | Converter | 90 | 45 | 0 | 0.64 | | 800,000 | 250 # | | _ | | 1AQ5 | | Class A
Amplifier | 67.5 | 67.5 | 0 | 0.9 | 0.25 | 800,000 | 500 | | _ | | 1AR5 | | Class A
Amplifier | 67.5 | 67.5 | 0 | 0.9 | 0.25 | 800,000 | 500 | | | | 1AS5 | | TV Focus
Rectifier | volts); | max d-c | output | t currer | ու 🏵 🖚 | = 8,250 v
0.6 ma; m
not be use | ax peal | currer | nent 🏶
nt 🚸 = | = 7,000
11 ma. | 1AU2 | | TV Flyback
Rectifier | Max in
26,000
50 ma. | verse ve
volts);
Socket | oltage (
max d-c
terminal | d-c and
output
is 4 and | peak)
t curren
6 may | | 00 volts
ma; m
tie poin | (d-c co
ax pea
ts for co | k currer
omponer | ıt 🏶 = | 1AU3 | | TV Flyback
Rectifier | Max in
20,000
Socket | verse v | oltage
nax d-c
ls 3 and | (d-c an | d peak
curren |) (20) = 25
t = 0.5 ma
d as tie po | .000 vo | lts (d-c
beak cu | compo | 45 ma. | 1AX2 | | Tube | Classification
by | X-Ra- | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | | acitance
icofarad | | |-----------------|--|-------------------|---------------|--------------------|---------------|---------------|---------------|-------------------|-----------------------|--------------------|----------------------|---| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 1AY2 | Half-Wave High-
Voltage Recti-
fier | (A) | 1AY2 | 9-128 | 1.25 | 0.2 | _ | Tube V
75 volt | oltage
s at 7.0 | Drop: | | | | IAY2-A | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 1AY2 | 9-128 | 1.25 | 0.2 | | Tube V
100 vo | /oltage
lts at 7. | Drop:
0 ma d- | c | *************************************** | | B3-GT | Half-Wave High-
Voltage Recti-
fier | (A) | 3C | 9-51
or
9-52 | 1.25 | 0.2 | _ | Tube V
100 vo | /oltage
lts at 7. | Drop:
0 ma d- | c | | | 1B4-p | Sharp-Cutoff RF
Pentode | | 4 M | 12-6 | 2.0
DC | 0.06 | = | 180 | 67.5 | 5.0 ▲ | 11 🛦 | 0.007 | | 1B5/25-S | Duplex-Diode
Medium-Mu
Diode | | 6M | 12-5,
9-26 | 2.0
DC | 0.06 | | 135 | _ | 1.6▲ | 1.9▲ | 3.6 ▲ | | 1B7-G
1B7-GT | Pentagrid
Converter | | 72♦ | 9-28
9-18 | 1.4
DC | 0.1 | | 110 | 65 | Osc Ici
Rgi = 2 | = 0.035
00,000 c | ma
hms | | IB8-GT | Diode-Triode
Power Ampli-
fier Pentode | | 8AW | 9-17 | 1.4
DC | 0.1 | _ | 110
110 | 110 | Pentod | e Section | n | | 1 BC2 | Half-Wave High-
Voltage Recti-
fier | • | 9RG | 6–18 | 1.25 | 0.2 | _ | Tube V
80 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 1 BC2-A | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 9RG | 6-18 | 1.25 | 0.2 | | Tube V
80 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 1 BC2- B
● | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 9RG | 6-18 | 1.25 | 0.2 | _ | Tube '80 vol | Voltage
ts at 7.0 | Drop:
mad-c | | | | BH2 | Half-Wave High-
Voltage Recti-
fier | (A) | 9RG | T-X | 1.25 | 0.2 | _ | Tube 80 vol | Voltage
is at 7.0 | Drop:
ma d-c | | | | BH2-A | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 9RG | T-X | 1.25 | 0.2 | | Tube \ 80 vol | Voltage
is at 7.0 | Drop:
ma d-c | | | | BK2 | Half-Wave High-
Voltage Recti-
fier | (A) | 9Y | 6-7 | 1.4 | 0.55 | _ | Tube 100 vo | Voltage
Its at 11 | Drop:
l ma d-o | | | | BL2 | Half-Wave High-
Voltage Recti-
fier | (A) | 1A¥2 | 6-19 | 1.25 | 0.2 | _ | Tube 1
130 vo | Voltage
lts at 7. | Drop:
0 ma d- | e | | | BV2 | Half-Wave High-
Voltage Recti-
fier | (A) | 1BV2 | T-X | 1.25 | 0.2 | _ | Tube 1 | oltage las at 7.0 | Drop:
ma d-c | | | | BX2 | Half-Wave High-
Voltage Recti-
fier | 0,5
mR/hr | 9Y | 6–7 | 1.25 | 0.2 | | Tube 1 | Voltage
lts at 7. | Drop:
0 ma d- | c | | | BY2 ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12HZ | 9-98 | 1.25 | 0.2 | _ | Tube '
225 vo | Voltage
lts at 7. | Drop:
0 ma d- | c | | | BY2-A ■ | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 12HZ | 9-144 | 1.25 | 0.2 | _ | Tube \ 225 vo | Voltage
Its at 7. | Drop:
0 ma d- | c | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A - X-Radiation Rated, and A - No X-Radiation Rating. Compactron. † Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. ⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Voits | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------|--|---|------------------------------|---------------------------------|----------------------------------|--|---------------------------------|------------------------------|--|----------------------------------|-----------------| | TV Flyback
Rectifier | Max in
22,000
50 ma. | verse vo
volts); i | oltage (e
nax d-c | d-c and
output | peak)
curren | | 00 volts
ma; m | (d-c co
ax peal | mnone | nt · = | 1AY2 | | TV Flyback
Rectifier | Max in | verse vo
volts); i | oltage (c
nax d-c | d-c and
output | peak)
curren | ● = 26,00
t ◆ = 0.5 | 00 volts
ma; m | (d-c co
ax peal | mpone:
k curre | nt 🖲 = | 1AY2-A | | TV Flyback
Rectifier | 22,000
50 ma. | volts); 1
Socket t | nax d-c
erminal | output
s 4 and | 6 may | | ma; m | ax peal | k curre | | 1B3-GT
● | | Class A
Amplifier | 180
90 | 67.5
67.5 | 3.0
3.0 | 1.7
1.6 | 0.6 | 1,500,000 | 650 | I — | I | 7-1 | Í B4-p | | Class A
Amplifier | 135 | - | 3.0 | 0.8 | 0,7 | 1,000,000
35,000 | 575 | 20 | | | 1B5/25-5 | | Converter | 90 | 45 | 0 | 1.5 | 1.3 | 350,000 | | $E_{c2} = 0.$ $I_{c2} = 1.$ | |) =90 | 1B7-G
1B7-GT | | Class A
Amplifier
Class A | 90
90 | 90 | 6.0 | 6.3†
0.15 | 1.4† | 240,000 | 1,150
275 | _ | 14,00 | 0 0.210 | 1B8-GT | | Amplifier TV Flyback Rectifier | 15,000
45 ma. | volts); | max d-
termin | c outpu | it currei | ■ = 18.0 nt ◆ = 0. ed as tie p | 5 ma:r | nax nea | k curre | ent 🕸 = | 1 BC? | | TV Flyback
Rectifier | Max ii
15,000
45 ma. | verse v | oltage
max d-
termin | c outpu | t currer | | 5 ma: r | nax nea | k curre | >ntona ≔ | 1BC2-A | | TV Flyback
Rectifier | 1 *** ******************************** | nverse v
volts);
Socket
it poten | termin | (d-c and
c outpu
al 7 ma | d peak)
it currei
iy be us | | 00 volt:
5 ma; r
oint for | s (d-c c
nax pea
compo | ompone
k curre
nents a | ent 🖲 =
ent 🚸 =
t or near | 1 BC2-B | | TV Flyback
Rectifier | 45 ma. | volts); | max d-
termin | c outou | it currei | = 18.0 nt | ã ma:r | nav nes | k curre | •nt a6∞ = 1 | 1BH2
● | | TV Flyback
Rectifier | 15,000
45 ma. | volts): | max d-
termin | c outnu | it currer | | 5 ma: r | nax nea | k curre | ent 🖦 = | 1 BH2-A | | TV Flyback
Rectifier | 20,000
Socket
filamer | volts); i
termina
it poten | max d-c
ils 3 an
tial. | output
d 7 ma | current
y be use | ♦ = 24,0 ♦ = 0.88 ed as tie po | ma; max
oints for | compo | urrent
nents a | ♦ 44 ma.
t or near | 1BK2
● | | TV Flyback
Rectifier | Max ii
18,000
45 ma. | nverse v
volts); | oltage
max d- | d-c and
c outpu | d peak)
it currei | | 00 volt:
5 ma; r | s (d-c c
nax pea | ompone
k curre | ent 🗣 = | 1 BL2 | | TV Flyback
Rectifier | 15,000
45 ma. | volts): | max d-
termin | couton | f currer | | 5 mar r | may 000 | de correr | - & -I | 1BV2 | | TV Flyback
Rectifier | Max ii
18,000
45 ma. | IVerse V | oltage
max d-
termina | c outpu
Is 3 and | i peak)
it currer
i 7 may | | 00 volts
5 ma; r
tie poir | d-c c
nax pea
ts for c | ompone
k curre
ompone | ent 🌢 =
ent 🚸 =
ents at or | 1BX2 | | TV Flyback
Rectifier | Max in
22,000
50 ma. | nverse v | oltage
max d-
termina | (d-c and
c outpu
ls 3, 4, | t currer | ■ = 26,0
nt = 0.
) may be us | 5 mar r | nav nea | k corre | nt 🖎 🕳 | 1BY2 = | | TV Flyback
Rectifier | Max in 22,000 | volts): | oltage (| d-c and | t currer | = 26.0 at $ = 0.0 $ may be us | 5 mar r | nav nas | b corre | m + 🙈 — i | 1BY2-A ■ | | Tube | Classification | X-Ra- | Base
Con- | Out | | Fila- | Max.
Plate | Max. | Max.
Screen | Input Out- Gr | | |
-------------------|---|-------------------|---------------|-----------------------------------|---------------|--------------|---------------|------------------|-----------------------|---|--------------------|----------------| | Туре | by
Construction | diation
Rating | nec-
tions | Dane | | ment
Amps | Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 163 | Medium-Mu
Triode | | 5CF | 5-2 | DC | 0.05 | _ | 110 | | 0.9 | 4.2 | 1.8 | | 1C5-GT | Power Amplifier
Pentode | | 6X | 9-11 | 1.4
DC | 0.1 | | 110 | 110 | | | = | | 1C6 | Pentagrid
Converter | | 6L♦ | 12-6 | 2.0
DC | 0.12 | 0,3 | 180 | 67.5
0.2 | Osc I _{el}
R _{gl} = 50 | =0.2 m
0,000 of | a
ims | | 1C7-G | Pentagrid
Converter | | 7 Z ♦ | 12-8 | 2.0
DC | 0.12 | 0.3 | 180 | 67.5
0.2 | Osc I_{ci}
$R_{gi} = 56$ | =0.2 m
0,000 of | a
ims | | 1C8 ● | Pentagrid
Converter | | 8CN | 3-2 | 1.25
DC | 0.04 | | 67.5 | 45 | Osc I _{cl}
R _{g1} = 10 | =0.070
00,000 c | | | 1D3 ● | Low-Mu High
Frequency
Triode | | 8DN | 3–2 | 1.25
AC/DC | 0.3 | | 110 ছ | | 1.0 | 1.0 | 2.6 | | 1 D5-Gp | Remote-Cutoff
RF Pentode | | 5Y | 12-8 | 2.0
DC | 0.06 | | 180 | 67.5 | 5.0 ▲ | 11.0 🛦 | 0.00 | | l D5-Gt | Remote-Cutoff
RF Tetrode | | 5R | 12-8 | 2.0
DC | 0.06 | | 180 | 67.5 | | _ | _ | | 1 D7-G | Pentagrid
Converter | | 72♦ | 12-8 | 2.0
DC | 0.06 | | 180 | 67.5 | Osc I _{cl}
R _{gl} = 5 | =0.2 m
0,000 o | na
hms | | 1D8-GT | Diode-Triode | | 8AJ | 9-17 | 1.4
DC | 0.1 | | 110 | 110 | | e Section | | | | Power Ampli-
fier Pentode | | | | | | | 110 | | Triode | Section | | | 1DG3 | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 8ND | 9–168 | 1,25 | 0.2 | _ | Tube 1
225 vo | Voltage
lts at 7. | Drop:
0 ma d-c | : | | | 1DG3-A | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 8ND | 9-168 | 1.25 | 0.2 | _ | Tube 225 vo | Voltage
Its at 7 | Drop:
.0 ma d | -c | | | 1DN5 | Diode-Pentode | | 6BW | 5-2 | 1.4
DC | 0.05 | | 90 | 90 | _ | = | - | | 1DY4¶ | UHF Triode
Oscillator | | 7DK | 5-2 | 1.6 | 0.6 | 1.5 ◈ | 135 ◈ | | 3.5 | 1.15 | 2.0 | | 1DY4-A | UHF Triode
Oscillator | | 7DK | 5-1 | 1.6 | 0.6 | 1.5 🏶 | 135 ◈ | | 3.5 | 1.15 | 2.0 | | 1E4-G | Medium-Mu
Triode | | 5S | 9-25 | 1.4
DC | 0.05 | _ | 110 | | 2.4 | 6.0 | 2.4 | | 1E5-Gp | Sharp-Cutoff RF
Pentode | | 5Y | 12-8 | 2.0
DC | 0.06 | | 180 | 67.5 | 5.0 ▲ | 11.0 ▲ | 0.00 | | 1 E7-G
1 E7-GT | Twin-Pentode
Power
Amplifier | | 8C | 12-7
9-11,
9-4 1 | 2.0
DC | 0.24 | 1.5♠ | 135 | 135
0.5 | Each S
Both S
in Push | ections | | | 1 E8 ⊚ | Pentagrid
Converter | | 8CN | 3-5 | 1.25
DC | 0.04 | _ | 67.5 | 45 | Osc Ici | =0.070
00,000 | ma | | 1F4 | Power Amplifier
Pentode | | 5K | 14-1 | 2.0
DC | 0.12 | 1.75 | 180 | 180
0.75 | | - | | | 1 F5-G | Power Amplifier
Pentode | | 6X | 12-7 | 2.0
DC | 0.12 | 1.75 | 180 | 180 | | | = | | 1 F6 | Duplex-Diode
Sharp-Cutoff
Pentode | | 6W | 12-6 | 2.0
DC | 0.06 | 0. | 180 | 67.5
0.05 | 4.0 ▲ | 9.0 ▲ | 0.00 | | 1F7-GH
1F7-GV | Duplex-Diode
Sharp-Cutoff
Pentode | | 7AF | 12-8 | 2.0
DC | 0.06 | _ | 180 | 67.5 | 3.8 | 9.5 | 0.01 | | IG3-GT
● | Half-Wave High-
Voltage Recti-
fier | (A) | 3C | 9-53
or
9-54 | 1.25 | 0.2 | _ | | oltage
its at 7. | Drop:
0 ma d- | c | | | IG3-GTA | Half-Wave High- | 0.5 | 3C | T-X | 1.25 | 0.2 | + | Table 1 | oltage | T) | | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions- A-X-Radiation Rated, and A-No X-Radiation Rating. Compactron. † Zero signal. Per section. [†] Plate-to-plate. #Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Voits | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhor | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|----------------------------|--|-------------------------------|---------------------------------|----------------------------------|---|---------------------------------|--|--|--------------------------------|------------------| | Class A
Amplifier | 90
90 | | 3.0 | 1.4
4.5 | | 19,000
11,200 | 760
1,300 | 14.5
14.5 | | _ | 1C8 | | Class A
Amplifier | 90
83 | 90
83 | 7.5
7.0 | 7.5†
7.0† | 1.6† | 115,000
110,000 | 1.550
1.500 | = | 8,000
9,000 | | 1C5-GT | | Converter | 180 | 67.5 | 3.0 | 1.5 | 2.0 | 700,000 | | E _{c2} (O:
thru 20
I _{c2} =4.0 | c Plate) | =180 | 1C6 | | Converter | 180 | 67.5 | 3.0 | 1.5 | 2.0 | 700,000 | 325 # | Ect (Os | c Plate) | =180
ms | 1C7-G | | Converter | 67.5 | 67.5 | 0 | 1.0 | 1.5 | 400,000 | 150 # | | 0,000 oh | ms | 1C8 • | | Class A
Amplifier | 90 | | 5.0 | 12.5 | | | 3,400 | 8.7 | | | 1D3 • | | Class A
Amplifier | 180 | 67.5 | 3.0 | 2.3 | 0.8 | 1,000,000 | 750 | | - | - | 1 D5-Gp | | Class A
Amplifier | 180 | 67.5 | 3.0 | 2.2 | 0.7 | 600,000 | 650 | - | - 1 | | 1 D5-Gt | | Converter | 180 | 67.5 | 3.0 | 1.3 | 2.4 | 500,000 | 300 # | Ecs (Osthru 20
Ics = 2.3 | c Plate)
,000 oh: | =180
ns | 1D7-G | | Class A
Amplifier | 90 | 90 | 9.0 | 5.0 | 1.0 | 200,000 | 925 | | 12,000 | 0.20 | 1 D8-GT | | Class A
Amplifier | 90 | - | 0 | 1.1 | _ | 43,500 | 575 | 25 | - | - | | | TV Flyback
Rectifier | 22,000
50 ma. | verse ve
volts);
Socket i
ament p | max d-e
termina | c output
is 1 and | peak)
curren
7 may | ■ = 26,00
it = 0.5
be used as | 00 volts
i ma; п
tie poin | (d-c conax pea
ts for co | mponen
k curren
omponer | t ® ≔
it ŵ ≖
its at or | 1DG3 | | TV Flyback
Rectifier | Max in
22,000
50 ma. | verse ve
volts);
Socket i | oltage (
max d-o
ermina | d-c and
output | peak)
curren
7 may | 18 = 26,00 at ♦ = 0.5 be used as | 00 volts
ma; n
tie poin | (d-c co
nax peal
ts for co | mponen
k curren
omponen | it ® =
it ⊗ =
its at or | 1DG3-A
● | | Class A
Amplifier | 67.5 | 67.5 | 0 | 2.1 | 0.55 | 600,000 | 630 | _ | | | 1DN5 | | Class A
Amplifier | 90 | _ | R _k == 180 | 10.4 | _ | - | 11,000 | 28 | _ | - | 1DY4¶ | | Class A
Amplifier | 90 | | R _k ==
180 | 10.4 | | _ | 11,000 | 28 | _ | | 1DY 4-A¶ | | Class A
Amplifier | 90
90 | | 0
3.0 | 4.5
1.4 | | 11,200
19,000 | 1,300
760 | 14.5
14.5 | | = | 1E4-G | | Class A
Amplifier | 180
90 | 67.5
67.5 | 3.0
3.0 | 1.7
1.6 | 0.6
0.7 | 1,500,000
1,000,000 | 650
600 | | = | $\equiv \downarrow$ | 1E5-Gp | | Class A
Amplifier
Class A
Amplifier | 135
90
135 | 135
90
135 | 4.5
3.0
7.5 | 7.5†
3.8†
7.0† | 2.2†
1.1†
2.0† | 260,000
340,000 | 1,425
1,150 | = | 16,000
20,000
24,000
1 | 0.29
0.11
0.575 | 1È7-G
1E7-GT | | Converter | 67.5 | 67.5 | 0 | 1.0 | 1.5 | 400,000 | 150 # | R _{g2} = 2 | 0,000 ol | hms | 1E8 ● | | Class A
Amplifier | 135
90 | 135
90 | 4.5
3.0 | 8†
4 | 2.4†
1.1 | 200,000
240,000 | 1,700
1,400 | | 16,000 | | 1F4 | | Class A
Amplifier | 135
90 | 135
90 | 4.5
3.0 | 8† | 2.4† | 200,000
240,000 | 1,700
1,400 | = | 16,000 | 0.31 | 1F5-G | | Class A
Amplifier | 180 | 67.5 | 1.5 | 2.2 | 0.7 | 1,000,000 | 650 | _ | _ | | 1 F6 | | Class A
Amplifier | 180 | 67.5 | 1.5 | 2.2 | 0.7 | 1,000,000 | 650 | T - | - | - | 1F7-GH
1F7-GV | | TV Flyback
Rectifier | 21,000
Socket | volts) ; :
termina | max d-o | d 6 may | curren | t = 0.5 ma
d as tie po
be connecte | a; max
ints for | peak cu
compos | rrent ==
nents at | 50 ma | 1G3-GT | | TV Flyback
Rectifier | Mar in | | oltomo / | d a and | neak) | (a) = 26,00 (b) = 0.5 (c) be used as may be con | 00 male | (d.c.c | ampanar | nt 🖲 =
nt 🏟 =
nts at or | 1G3-GTA | | Tube | Classification | X-Řa- | Base
Con- | Out- | Fila- | Fila- | Max.
Plate | Max.
Plate | Max.
Screen | Cap
P | acitance
icofarad | e in
Is | |-----------------|---|-------------------|---------------|-----------------------|---------------|--------------|---------------|-------------------|-----------------------|--------------------------------|----------------------|----------------| | Туре | | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 1G4-GT | Medium-Mu
Triode | | 5 S | 9-11 | 1.4
DC | 0.05 | | 110 | | 2.2 ▲ | 3.4 ▲ | 2.8 ▲ | | 1G5-G | Power Amplifier
Pentode | | 6X | 12-7 | 2.0
DC | 0.12 | 1.25 | 135 | 135
0.6 | | | | | 1Ģ6-GT | Twin-Triode
Power
Amplifier | | 7AB | 9-11
or
9-41 | 1.4
DC | 0.1 | | 110 | - | _ | _ | | | 1H2
• | Half-Wave High-
Voltage Recti-
fier | (A) | 9LX | 6-9 | 1.4 | 0.55 | _ | Tube V
100 vol | oltage l
ts at 7.6 | Drop:
) ma d- | 2 | | | 1H4-G
1H4-GT | Medium-Mu
Triode | | 5S | 12-7
9-11. | 2.0
DC | 0.06 | _ | 180 | - | Single | Tube | | | | _ | <u> </u> | | 9-41 | | | | | | | s Push- | | | 1H5-G
1H5-GT | Diode High-Mu
Triode | | 5Z | 9-28
9-18 | 1.4
DC | 0.05 | | 110 | | 0.75 | 4.6 | 1.1 | | 1H6-G
1H6-GT | Duplex-Diode
Medium-Mu
Triode | |
7AA | 12-7
9-11,
9-41 | 2.0
DC | 0.06 | - | 135 | _ | - | - | - | | 1J3
• | Half-Wave High
Voltage Recti-
fier | (A) | 3C | 9–51
or
9–52 | 1.25 | 0.2 | _ | Tube V
225 vol | oltage
ts at 7.0 | Drop:
ma d-c | , | | | 1 J3-A | Half-Wave High
Voltage Recti-
fier | | 3C | 9-51
or
9-52 | 1.25 | 0.2 | _ | Tube V
225 vo | /oltage
lts at 7.0 | Drop:
) ma d-c | | | | 1J5-G | Power Amplifier Pentode | | 6X | 14-3 | 2.0
DC | 0.12 | 1=- | 135 | 135 | ī — | - | - | | 1J6-G
1J6-GT | Twin-Triode Po
Amplifier | wer | 7AB | 12-7
9-16 | 2.0
DC | 0.24 | | 135 | | Во | th Sect
in Push | ions
n-pull | | 1 K3 | Half-Wave High
Voltage Recti-
fier | • | 3C | 9-53
or
9-54 | 1.25 | 0.2 | _ | Tube
225 vo | Voltage
lts at 7.0 | Drop:
) ma d-c | | | | 1K3-A | Half-Wave High
Voltage Recti-
fier | - 0.5
mR/hr | 3C | T-X | 1.25 | 0.2 | _ | Tube 225 vo | Voltage
olts at 7 | Drop:
0 ma d- | ·c | | | 1L4 | Sharp-Cutoff RI
Pentode | , | 6AR | 5-2 | 1.4
DC | 0.05 | = | 110 | 90 | 3.6 ▲ | 7.5 ▲ | 0.008 | | 1 L6 | Pentagrid
Converter | | 7DC♦ | 5-2 | 1.4
DC | 0.05 | _ | 110 | 65 | Osc Ict
Ret = 2 | =0.035
00,000 | ma
ohms | | 1LA4 | Power Amplifier
Pentode | | 5AD | 9-30 | 1.4
DC | 0.05 | | 110 | 110 | = | _ | - | | 1LA6 | Pentagrid
Converter | | 7AK♦ | 9-30 | 1.4
DC | 0.05 | _ | 110 | 65 | Osc Iel
Re1 = 2 | =0.035
00,000 | ma
ohms | | iLB4 | Power Amplifier
Pentode | · [| 5AD | 9–30 | 1.4
DC | 0.05 | _ | 110 | 110 | _ | <u> </u> | - | | 1LB6 | Pentagrid Mixe | | 8AX | 9-30 | 1.4
DC | 0.05 | | 90 | 67.5 | E _{cs} (In | jection)
ak | =10 | | 1LC5 | Sharp-Cutoff R. Pentode | F | 7AO | 9-30 | 1.4
DC | 0.05 | _ | 110 | 45 | 3.2 | 7.0 | 0.007 | | 1LC6 | Pentagrid
Converter | 1 | 7AK♦ | 9-30 | | 0.05 | | 110 | 45 | Osc Icl
R _{g1} = 2 | =0.035
00,000 | ma
ohms | | 1LD5 | Diode Sharp-Cu
Pentode | toff | 6AX | 9-30 | 1.4
DC | 0.05 | _ | 90 | 45 | 3.2 | 6.0 | 0.18 | | īLE3 | Medium-Mu
Triode | | 4AA | 9-30 | 1.4
DC | 0.05 | | 110 | | 1.7 | 3.0 | 1.7 | | îL F 3 | Medium-Mu
Triode | † – | 4AA | 9-30 | 1.4
DC | 0.05 | | 110 | | 1.7 | 3.0 | 1.7 | | 1LG5 | Semi-Remote-
Cutoff RF
Pentode | | 7A0 | 9-30 | | 0.05 | _ | 110 | 110 | 3.2 | 7.0 | 0.007 | | 1LH4 | Diode High-Mu
Triode | | 5AG | 9-30 | 1.4
DC | 0.05 | - | 110 | | 2.0 | 2.4 | 1.2 | | 1LN5 | Sharp-Cutoff R.
Pentode | F | 7A0 | 930 | | 0.05 | _ | 110 | 110 | 3.0 | 8.0 | 0.007 | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions- Compactron. Zero signal. Per section. ^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating. [†] Plate-to-plate. Maximum. Supply voltage. [●]Subminiature type. ▲Without external shield. •Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Piate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--|---|---|---|--|--|---|--|--|------------------------------------|---| | Class A
Amplifier | 90 | <u> </u> | 6 | 2.3 | - | 10,700 | 825 | 8.8 | <u> </u> | | 1G4-G1 | | Class A
Amplifier | 135
90 | 135
90 | 13.5
6.0 | 8.7†
8.5† | 2.5†
2.5† | 160,000
133,000 | 1,550
1,500 | = | 9,000
8,500 | 0.55
0.25 | 1G5-G | | Class A
Amplifier ♠
Class B
Amplifier ⊕ | 90
90 | _ | 0 | 1.0
2.0† | _ | 40,000 | 825 | 33 | 12,000 | 0.675 | 1G6-G7 | | TV Flyback
Rectifier | 24,000
50 ma. | verse vo
volts); i
Socket t
ament p | nax d-c
ermina | output
ls 3 and | peak)
curren
7 may | = 30,00 t = 0.5 be used as | 00 volts
ma; m
tie poin | (d-c co
ax peal
ts for co | mponen
curren
mponen | t • =
t • =
ts at or | 1H2 | | Class A Amplifier Class B Amp. | 180
90
157.5 | ΙΞ | 13.5
4.5
15.0 | 3.1
2.5
1.0† | ΙΞ | 10,300
11,000
Input Sign | 900
850
al = .26 | 9.3
9.3
0 watt | 8,000‡ | 2.1 | 1H4-G
1H4-G1 | | Class A
Amplifier | 90 | | 0 | 0.15 | _ | 240,000 | 275 | 65 | = | _ | 1H5-G
1H5-G1 | | Class A
Amplifier | 135 | | 3.0 | 0.8 | ***** | 35,000 | 575 | 20 | | | 1H6-G
1H6-G1 | | TV Flyback
Rectifier | 22,000
50 ma.
 near fil: | volts);
Socket:ament p | max d-e
termina
otentia | outpu
ls 4 and
l: 1. 3. 3 | t current 6 may 5 and 8 | $\hat{\bullet}$ = 26,00
$\hat{\bullet}$ $\hat{\bullet}$ = 0.3
be used as
may be con | ma; n
tie poin
nected | nax peal
ts for co
to termi | k curren
omponer
inal 7. | it ♦ =
its at or | 1J3. | | TV Flyback
Rectifier | Max in
24,000
50 ma.
near fil | verse ve
volts);
Socket (
ament p | oltage (
max d-
termina
otentia | d-c and
output
ls 4 and
l; 1, 3, 8 | peak) t curren 6 may and 8 | \Rightarrow = 28,00
t \Rightarrow = 0.5
be used as
may be con | 00 volts
5 ma; m
tie poin
nected | d-c co
ax peal
ts for co | mponen
k curren
omponen | t 🏶 =
t 🕏 =
its at or | 1 J3-A | | Class A
Amplifier | 135 | 135 | 16.5 | 7.0 | 2.0 | 105,300 | 950 | - | 135,
000 | 0.45 | 1J5-G | | Class B
Amplifier | 135 | <u> </u> | 0 | 5.0† | _ | Input Sign | | - | 10,
000‡ | 2.1 | 1J6-G
1J6-GT | | TV Flyback
Rectifier | 50 ma. | Socket (| ermina | ls 4 and | 6 may | = 26,00 t | tie: poin | ts for co | mponen | t 🏶 =
it 🏶 =
its at or | 1K3 | | TV Flyback
Rectifier | Max in 22,000 | | oltage (| d-c and | peak) | 1 = 26,00 t 1 1 2 1 1 1 1 1 1 1 1 1 1 | 00 volts | (d-c co | mponen | t 🖲 = | 1 K3-A | | Class A
Amplifier | 90 | 90 | 0 | | | mav be con | nected t | o termi | nal 7. | its at or | | | Converter | | 100 | U | 4.5 | 2.0 | 350,000 | nected (| to termi | nal 7. | ts at or | 1L4 | | | 90 | 45 | -0 | 0.5 | 0.6 | 350,000
650,000 | 1,025
300 # | E _{c2} (Os | C Plate) | _ | 1L4
1L6 | | Class A
Amplifier | 90 | | 0
4.5
4.5 | 4.5 | 2.0 | 350,000 | 1.025 | E _{c2} (Os
I _{c2} = 1. | C Plate) 2 ma 25,000 25,000 |
-90
0.115
0.100 | | | | 90 | 45 | 4.5 | 4.5
0.5
4.0† | 0.6 | 350,000
650,000
300,000
300,000 | 1,025
300 # | E _{c2} (Os
I _{c2} = 1. | C Plate) 2 ma 25,000 25,000 C Plate) |
-90
0.115
0.100 | 1 L.6 | | Amplifier | 90
85 | 45
90
85 | 4.5
4.5 | 4.5
0.5
4.0†
3.5† | 0.6
0.8†
0.7† | 350,000
650,000
300,000
300,000 | 300 #
850
800 | $ \begin{array}{c c} E_{c2} & \text{Os} \\ I_{c2} = 1. \\
\hline E_{c2} & \text{Os} \end{array} $ | C Plate) 2 ma 25,000 25,000 C Plate) |
-90
0.115
0.100 | 1L6
1LA4 | | Amplifier
Converter | 90
85
90 | 90
85
45 | 4.5
4.5
0 | 4.5
0.5
4.0†
3.5†
0.55 | 0.6
0.8†
0.7†
0.6 | 350,000
650,000
300,000
300,000
750,000 | 1,025
300 #
850
800
250 # | E _{c2} (Os
I _{c2} = 1.
—
E _{c2} (Os
I _{c2} = 1.2 | c Plate) 2 ma 25,000 25,000 2 ma 12,000 are screen | 0.115
0.100
=90
0.20 | 1L6
1LA4
1LA6 | | Amplifier Converter Class A Amplifier Mixer Class A | 90
85
90
90 | 45
90
85
45
90 | 4.5
4.5
0
9.0 | 4.5
0.5
4.0†
3.5†
0.55
5.0† | 2.0
0.6
0.8†
0.7†
0.6
1.0† | 350,000
650,000
300,000
300,000
750,000 | 1,025
300 #
850
800
250 #
925
100 # | E _{c2} (Os
I _{c2} = 1.
E _{c2} (Os
I _{c2} = 1.2
G ₂ & 4 | c Plate) 2 ma 25,000 25,000 2 ma 12,000 are screen | 0.115
0.100
=90
0.20 | 1L6
1LA4
1LA6
1LB4 | | Amplifier Converter Class A Amplifier Mixer | 90
85
90
90 | 45
90
85
45
90
67.5 | 4.5
4.5
0
9.0
0 | 4.5
0.5
4.0†
3.5†
0.55
5.0†
0.4
1.15
0.75 | 0.6
0.8†
0.7†
0.6
1.0†
2.2 | 350,000
650,000
300,000
300,000
750,000
250,000
2,000,000
1,000,000 | 1,025
300 #
850
800
250 #
925
100 # | Ect (Os Ict = 1 Ect.(Os Ict = 1 Ect.(Os Ict = 1 Gr & 4: is signa | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L8
1LA4
1LA6
1LB4
1LB6 | | Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier | 90
85
90
90
90
90
90
90 | 45
90
85
45
90
67.5
45 | 4.5
4.5
0
9.0
0 | 4.5
 0.5
 4.0†
 3.5†
 0.55
 5.0†
 0.4
 1.15
 0.75
 0.6 | 2.0
0.6
0.8†
0.7†
0.6
1.0†
2.2
0.30 | 350,000
650,000
300,000
300,000
750,000
250,000
1,000,000
650,000
750,000 | 1,025
300 #
850
800
250 #
925
100 #
775
275 # | Ect (Os
Ict = 1
Ect (Os
Ict = 1
G2 & 4 is
is signa | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L6
1LA4
1LA6
1LB4
1LB6
1LC5
1LC5 | | Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Converter Class A Amplifier Class A Amplifier | 90
85
90
90
90
90
90
90
90 | 45
90
85
45
90
67.5
45
35 | 4.5
0
9.0
0
0
0
0
0
0
0
0 | 0.5
4.0†
3.5†
0.55
5.0†
0.4
1.15
0.75
0.6
4.5
1.4 | 2.0
0.6
0.8†
0.7†
0.6
1.0†
2.2
0.30
0.7 | 350,000
650,000
300,000
300,000
750,000
250,000
1,000,000
650,000
750,000
11,200
19,000 | 1,025
300 #
850
800
250 #
925
100 #
775
275 #
575
1,300
760 | Ect.(Os Ica = 1.2 Cr. & 4 is signal Ect.(Os Ica = 1.4 Cr. & 4 is s | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5 | | Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier | 90
85
90
90
90
90
90
90
90
90
90
90 | 45
90
85
45
90
67.5
45
35
45
————————————————————————————————— | 4.5
4.5
0
9.0
0
0 | 4.5
 0.5
 4.0†
 3.5†
 0.55
 5.0†
 0.4
 1.15
 0.75
 0.6
 4.5 | 2.0
 0.6
 0.8†
 0.7†
 0.6
 1.0†
 2.2
 0.30
 0.7
 0.1 | 350,000
650,000
300,000
300,000
750,000
250,000
1,000,000
650,000
750,000
11,200
19,000
11,200
19,000 | 1.025
 300 #
 850
 800
 250 #
 925
 100 #
 775
 275 #
 575
 1.300
 760
 760 | Ect (Os Ict = 1 Ect (Os Ict = 1 Gr & 4 is signa Ect (Os Ict = 1.4 | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5 1LE3 | | Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Class A Class A | 90
85
90
90
90
90
90
90
90
90 | 45
90
85
45
90
67.5
45
35 | 4.5
4.5
0
9.0
0
0
0
0
0
0 | 4.5
0.5
4.0†
3.5†
0.55
5.0†
0.4
1.15
0.75
0.6
4.5
1.4
4.5 | 2.0
0.6
0.8†
0.7†
0.6
1.0†
2.2
0.30
0.7 | 350,000
650,000
300,000
750,000
250,000
1,000,000
650,000
11,200
11,200
11,200 | 1,025
300 #
850
800
250 #
925
100 #
775
275 #
575
1,300
760 | Ect (Os Ict = 1.2 Gr & 4 is signa Ect (Os Ict = 1.4 Ect (Os Ict = 1.4 14.5 14.5 | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L6
1LA4
1LB4
1LB6
1LC5
1LC6
1LD5 | | Amplifier Converter Class A Amplifier Mixer Class A Amplifier Converter Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier | 90
85
90
90
90
90
90
90
90
90
90
90 | 45
90
67.5
45
35
45
————————————————————————————————— | 4.5
4.5
0
9.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4.5
 0.5
 4.0†
 3.5†
 0.55
 5.0†
 0.4
 1.15
 0.75
 0.6
 4.5
 1.4
 4.5
 1.4
 1.7 | 2.0
0.6
0.8†
0.7†
0.6
1.0†
2.2
0.30
0.7
0.1 | 350,000
650,000
300,000
300,000
750,000
2,000,000
1,000,000
650,000
750,000
11,200
19,000
11,200
19,000
1,000,000 | 1.025
 300 #
 850
 850
 250 #
 925
 100 #
 775
 275 #
 575
 1.300
 760
 1.300
 780
 800 | Ect (Os Ict = 1.2 Gr & 4 is signa Ect (Os Ict = 1.4 Ect (Os Ict = 1.4 14.5 14.5 | c Plate) 2 ma 25,000 25,000 c Plate) 2 ma 12,000 are scree 1 grid c Plate) | =90
 0.115
 0.100
=90
 | 1L6 1LA4 1LA6 1LB4 1LB6 1LC5 1LC6 1LD5 1LE3 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | X-Ra- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | Ca _I | acitano
icofara | e in
ds | |-----------------|--|-------------------|---------------|---------------|---------------|--------------|----------------|-------------------|-----------------------|--|-------------------------------------|---| | Туре | by
Construction | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 1N2 | Half-Wave
High-Voltage
Rectifier | (A) | 3C | 12-18 | 1.25 | 0.2 | - | Tube V
100 vol | oltage l
ts at 7.0 | Drop:
) ma d- | c | <u>, </u> | | 1N2-A | Half-Wave
High-Voltage
Rectifier | (A) | 3C | T-X | 1.25 | 0.2 | _ | Tube V
100 vol | oltage l
ts at 7.0 | Drop:
) ma d- | c | | | 1N5-G
1N5-GT | Sharp-Cutoff
RF Pentode | | 5Y | 9-28
9-18 | 1.4
DC | 0.05 | | 110 | 110 | 3.0
2.8 | 10.0
9.0 | 0.007 | | 1N6-G
1N6-GT | Diode Power-
Amplifier
Pentode | | 7AM | T-X
9-11 | 1.4
DC | 0.05 | _ | 110 | 110 | _ | _ | - | | 1P5-G
1P5-GT | Remote-Cutoff
RF Pentode |
| 5Y | 9-28
9-18 | 1.4
DC | 0.05 | | 110 | 110 | 3.0 | 10.0 | 0.007 | | 1Q5-GT | Beam Power
Amplifier | | 6AF | 9-11,
9-41 | 1.4
DC | 0.1 | _ | 110 | 110 | | _ | - | | 1Q6 ● | Diode Pentode | | 8CO | 3-2 | 1.25
DC | 0.04 | | 100 | 100 | 1.8 | 4.2 | 0.085 | | 1R4 | High-Frequency
Diode | <u> </u> | 4AH | 9-30 | 1.4 | 0.15 | _ | Tube '8 v at | Voltage
2 ma d- | Drop: | | | | 1 R 5 | Pentagrid
Converter | | 7AT ♥ | 5-2 | 1.4
DC | 0.05 | _ | 90 | 67.5 | Ose Icl | =0.25
00,000
=0.15
100,000 | ma. | | 1S2
• | Half-Wave
High-Voltage
Rectifier | • | 9DT | 6-7 | 1.4 | 0.550 | _ | _ | _ | _ | _ | _ | | 1S2-A | Half-Wave
High-Voltage
Rectifier | • | 9DT | 6–7 | 1.4 | 0.550 | | _ | _ | _ | | _ | | 154 | Power Amplifier
Pentode | | 7AV | 5–2 | 1.4
DC | 0.1 | | 90 | 67.5 | _ | | - | | 156 | Diode Sharp-
Cutoff Pentode | | 6AU | 5-2 | 1.4
DC | 0.05 | | 90 | 90 | | _ | _ | | 1S6 ● | Diode-Pentode | | 8DA | 3–2 | 1.25
DC | 0.04 | | 100 | 100 | | _ | - | | 1SA6-GT | RF Pentode | | 6BD | 9-12 | 1.4
DC | 0.05 | | 90 | 67.5 | 5.2 | 8.6 | 0.01 | | 1SB6-GT | Diode Pentode | | 6BE | 9–11 | 1.4
DC | 0.05 | | 90 | 67.5 | 3.2 | 3.0 | 0.25 | | 1 T 2 | Half-Wave
High-Voltage
Rectifier | (a) | 1AY2 | T-X | 1.4 | 0.14 | - | Tube V
4.0 ma | oltage
at 46 v | Drop:
olts d-c | : | | | 1T4 | Remote-Cutoff
Pentode | | 6AR | 5-2 | 1.4
DC | 0.05 | - | 90 | 90 | 3.6 | 7.5 | 0.01 | | 1 T5-G T | Beam Power
Amplifier | | 6X | 9-11 | 1.4
DC | 0.05 | | 110 | 110 | 4.8 | 8.0 | 0.5 | | 1T6 ● | Diode-Pentode | | 8DA | 3-5 | 1.25
DC | 0.04 | | 67.5 | 67.5 | = | - | - | | 1U4 | Sharp-Cutoff
RF Pentode | | 6AR | 5-2 | 1.4
DC | 0.05 | | 120 🏶 | 120 🏶 | 3.6 | 7.5 | 0.01 | | 1 U 6 | Diode Sharp-
Cutoff Pentoc | le | 6BW | 5-2 | 1.4
DC | 0.05 | | 100 🏶 | | | | | | 1 U 6 | Pentagrid
Converter | | 7DC♦ | 5-2 | I.4
DC | 0.025 | | 110 | 65 | $ \mathbf{K}_{\mathbf{g}1} = \mathbf{k}$ | =0.028
200,000 | 3 ma
ohms | | 1-V | Half-Wave
High-Vacuum
Rectifier | | 4G | 12-5 | 6.3 | 0.3 | _ | Tube
20 v a | Voltage
t 90 ma | Drop:
d-c | | | | 1V2 | Half-Wave High
Voltage Recti-
fier | 1- | 9U | 6–2 | 0.625 | 0.3 | _ | Tube 1
135 vo | Voltage
Its at 7. | Drop:
0 ma d | -с | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— Compactron. Zero signal. Per section. ◆Subminiature type. ▲Without external shield. ◆Design maximum rating. ^{▲-}X-Radiation Rated, and ▲-No X-Radiation Rating. [⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p , | G _m ,
μmhοι | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|---|------------------------------------|------------------------------|-----------------------------------|----------------------------------|--|-------------------------------|---------------------------------|--|--------------------------------|-----------------| | TV Flyback
Rectifier | 24,000
50 ma.
near fi | volts);
Socket
ament 1 | max d-
termina
otentia | c outpu
als 4 and
al; 1, 3, | it curre
d 6 may
5 and 8 | | .5 ma; is tie pois
nnected | max pea
nts for o
to term | ompone
k curre
compone
inal 7. | nt 🏶 =
nt 🕸 =
nts at or | 1N2
1N2-A | | TV Flyback
Rectifier | Max ii
24,000
50 ma. | Max inverse voltage (d-c and peak) | | | | | | | | | | | Class A
Amplifier | 90 | 90 | 0 | 1.2 | 0.3 | 1,500,000 | 750 | - | _ | <u> </u> | IN5-G
1N5-GT | | Class A
Amplifier | 90 | 90 | 4.5 | 3.4† | 0.7† | 300,000 | 800 | | 25,000 | 0.100 | 1N6-G
1N6-GT | | Class A
Amplifier | 90 | 90 | 0 | 2.3 | 0.7 | 800,000 | 750 | _ | _ | - | 1P5-G
1P5-GT | | Class A
Amplifier | 90
85 | 90
85 | 4.5
5.0 | 9.5†
7.0† | 1.3†
0.8† | 90,000
70,000 | 2,200
1.950 | | 8,000
9,000 | 0.27
0.25 | 1Q5-GT | | Class A
Amplifier | 67.5
30 | 67.5
30 | 0 | 1.6
0.33 | 0.40
0.09 | 400,000
500,000 | 600
330 | | | | 1Q6 ● | | Half-Wave
Rectifier | Max d | -c outp | ut curre | ent = 1.0 | ma; m | ax rms sup | ply vol | tage = 1 | 17 volts | - | 1R4 | | Converter | 90 | 67.5 | 0 | 1.5 | 3.5 | 400,000 | 280 # | | - | | 1 R5 | | Converter | 45 | 45 | 0 | 0.7 | 2.1 | 500,000 | 210# | _ | | - | | | TV Flyback
Rectifier | Max inverse voltage (d-c and peak) = 27,000 volts (d-c component = 22,000 volts); max d-c output current = 0.8 ma; max peak current = 40 ma. Socket terminals 3 and 7 may be used as tie points for components at or near heater potential. | | | | | | | | | 152 | | | TV Flyback
Rectifier | Max inverse voltage (d-c and peak) = 27.000 volts (d-c component = 22.000 volts); max d-c output current = 08 ma; max peak current = 40 ma. Socket terminals 3 and 7 may be used as tie points for components at or near heater potential. | | | | | | | | | 152-A | | | Class A
Amplifier | 90
67.5
45 | 67.5
67.5
45.0 | 7.0
7.0
4.5 | 7.4†
7.2†
3.8† | 1.4†
1.5†
0.8† | 100,000
100,000
100,000 | 1,575
1,550
1,250 | ΙΞ | 8,000
5,000
8,000 | 0.180 | 154 | | Class A
Amplifier | 67.5 | 67.5 | 0 | 1.6 | 0.4 | 600,000 | 625 | _ | | | 155 | | Class A
Amplifier | 67.5
30 | 67.5
30 | 0 | 1.6
0.33 | 0.4
0.10 | 400,000
500,000 | 600
330 | _ | | | 1S6 ● | | Class A
Amplifier | 90 | 67.5 | 0 | 2.45 | 0.68 | 800,000 | 970 | _ | | | 1SA6-G | | Class A
Amplifier | 90 | 67.5 | 0 | 1.45 | 0.38 | 700,000 | 665 | _ | | | 1SB6-G | | TV Flyback
Rectifier | Max in
20 ma; | verse vo
max pe | oltage (e
ak curre | d-c and
ent = 1 | peak)
2 ma. | = 15,000 v | olts; ma | x d-c ou | itput cu | rrent = | 1T2 | | Class A
Amplifier | 90
90
67.5
45 | 67.5
45
67.5
45 | 0
0
0 | 3.5
1.8
3.4
1.7 | 1.4
0.67
1.5
0.7 | 500,000
800,000
250,000
350,000 | 900
750
875
700 | | | | 1T4 | | Class A
Amplifier | 90 | 90 | 6.0 | 6.5† | 0.8 † | 250,000 | 1,150 | | 14,000 | 0.170 | 1T5-GT | | Class A
Amplifier | 67.5
30 | 67.5
30 | 0 | 1.6
0.33 | 0.4
0.10 | 400,000
500,000 | 600
330 | | | = - | 176 € | | | 90 | 90 | 0 | 1.6 | 0.5 | 1,000,000 | 900 | | _ | - | 1U4 | | Class A
Amplifier | 67.5 | 67.5 | 0 | 1.6 | 0.4 | 600,000 | 625 | | | | 1U5 | | | 07.0 | - 1 | | | | | | | | 1 | | | Amplifier
Class A | 90 | 45 | 0 | 0.6 | 0.6 | 500,000 | 300 # | | Plate) | =90 | 1Ū6 | | Amplifier
Class A
Amplifier | 90
Max d | -c outpu | it curre | nt = 45 | ma: ma | 500,000
x peak invent
k current = | erse volt | $I_{c2} = 1.1$ | ma | | 1 <i>U6</i> | Metal tubes are shown in bold-face type, miniature tubes in italics. \$\display \text{G3}\$ and G5 are screen. G4 is signal-input grid. \$\display \text{G2}\$ and G4 are screen. G3 is signal-input grid. \$\display \text{indicate}\$ tube sections. \$\display \text{Maximum screen}\$ dissipation appears immediately below the screen voltage. \$\display \text{Heater warm-up time controlled.}\$ | Tube
Type | Classification
by | X-Ra- | Base
Con-
nec-
tions | line | Fila-
ment
Volts | Fila-
ment
Amps | | Plate | Screen | Picorarads | | | |------------------|---|-------------------|-------------------------------|------------|------------------------|-----------------------|---------------|---|-----------------------|---|-------------|-----------------------| | | Construction | diation
Rating | | | | | | | | Input | Out-
put | Grid
Plat | | 1V5 ● | Power Amplifier
Pentode | | 8CP | 3-2 | 1.25
DC | 0.04 | _ | 100 | 100 | _ | | = | | 1V6 ● | Triode-Pentode
Converter | | 1V6 | 2-3 | 1.25
DC | 0.04 | | 90 | 90 | Osc Ici
Rgi = 1 | =12 µs | 1 | | 1W 4 | Power Amplifier
Pentode | | 5BZ | 5-2 | 1.4
DC | 0.05 | | 110 | 110 | 3.6 | 7.0 | 0.1 | | 1 W5 ⊕ | Sharp-Cutoff RF
Pentode | | 8CP | 3-2 | 1.25
DC | 0.04 | = | 100 | 100 | 2.3 | 3.0 | 0.00 | | 1 X 2 | Half-Wave High-
Voltage Recti-
fier | (a) | 9Y | 6-7 | 1.25 | 0.2 | | Tube Voltage Drop:
100 volts at 7.0 ma d-c | | | | | | 1 X 2- A | Half-Wave High-
Voltage Recti-
fier | (A) | 9Y | 6–7 | 1.25 | 0.2 | _ | Tube V
100 voi | oltage
ts at 7. | Drop:
0 ma d- | с | | | 1X2-B | Half-Wave High-
Voltage Recti-
fier | (A) | 9Y | 6–7 | 1.25 | 0.2 | _ | Tube V
100 vol | oltage
ts at 7.0 | Drop:
0 ma d- | c | | | 1 X2-C | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 9Y | 6–7 | 1.25 | 0.2 | | Tube V
80 volt | oltage s
s at 7.0 | Drop:
ma d-c | | - | | 1Y2 | Half-Wave High-
Voltage Recti-
fier | (A) | 4P | т-х | 1.5 | 0.29 | | Tube V
100 vol | oltage l
ts at 8.0 | Drop:
0 ma d- | c | | | 122 | Half-Wave High-
Voltage Recti-
fier | (A) | 7CB | T-X | 1.5 | 0.3 | | | oltage l
s at 5.0 | | | | | CIK | Thyratron same as 6014 | | | | | | | | | | | | | 2A3 | Power Amplifier
Triode | | 4D | 16-1 | 2.5 | 2.5 | 15 | 300 | _ | 7.5 ▲
2 tubes | | 16.5 4
pull | | 2A4-G | Thyratron | | -5S | 12-7 | 2.5 | 2.5 | | Anode | Voltage | Drop = | 15 volt | s | | 2A5 | Power
Amplifier
Pentode | | 6B | 14-1 | 2.5 | 1.75 | 11 | 375
350 | 285
3.75 | Pentod
Triode | Connec | | | 2A6 | Duplex-Diode
High-Mu
Triode | | 6G | 12-6 | 2.5 | 0.8 | _ | 250 | | 1.7 | P tied) | 1.7 | | 2A7 | Pentagrid
Converter | | 7C♦ | 12-6 | 2.5 | 0.8 | 1.0 | 300 | 100
0.3 | $ \begin{array}{c} \text{Osc } I_{ei} = 50 \\ R_{gi} = 50 \end{array} $ | =0.4 ma | a
ims | | 2AF4¶
2AF4-A¶ | UHF Triode
Oscillator | | 7DK | 5-2
5-1 | 2.35 | 0.6 | 2.5 🏶 | 150 ♦ | | 2.2 | 1.4 | 1.9 | | 2A F 4-B¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 2.35 | 0.6 | 2.5 ♦ | 150 ♦ | | 2.2 | 1.4 | 1.9 | | 2AH2 ■ | Half-Wave High-
Voltage Recti-
fier | (A) | 12DG | 9–99 | 2.5 | 0.3 | _ | Tube V
100 vol | oltage l
ts at 7.0 | Drop:
) ma d- | c | | | 2AS2 | Half-Wave High-
Voltage Recti-
fier | • | 12EW | 9-146 | 2.5 | 0.33 | _ | Tube V
100 vol | oltage l
ts at 7.0 | Drop:
) ma d- | <u> </u> | | | 2AS2-A ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12EW | 9-100 | 2.5 | 0.33 | _ | Tube V
75 volt | oltage
s at 7.0 | Drop:
ma d-c | | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A -X-Radiation Rated, and A - No X-Radiation Rating. Compactron. † Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohma | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--|---|----------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------------|-----------------------------------|--|---------------------------------|------------------| | Class A
Amplifier | 67.5
45
30 | 67.5
45
30 | 4.5
3.0
2.0 | 2.0
1.0
0.5 | 0.4
0.2
0.1 | 150,000
175,000
200,000 | 750
600
450 | | 25,000
40,000
50,000 | 0.050
0.015
0.005 | 1V5 ● | | Converter | 45 45 R _g = 0.4 0.15 1,000,000 200 # E _b (Triode Osc) = 45 I _b (Triode) = 0.4 ma | | | | | | | | | | | | Class A
Amplifier | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | 1W4 | | Class A
Amplifier | 67.5
30.0 | 67.5
30.0 | 0 | 1.85
0.45 | 0.75
0.16 | 700,000 | 735
430 | = | = 7 | = | 1W5 ● | | rectines | Max inverse voltage (d-c component = 15,000 volts); max d-c output current = 1.0 ma; max peak current = 10 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential. | | | | | | | | | | 1X2 | | TV Flyback
Rectifier | Max inverse voltage (d-c and peak) \blacksquare = 20,000 volts (d-c component \circledast = 16,000 volts); max d-c output current \circledast = 0.5 ma; max peak current \circledast = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential. | | | | | | | | | | 1X2-A | | | Max inverse voltage (d-c and peak) ♦ = 20,000 volts (d-c component ♦ = 18,000 volts); max d-c output current ♦ = 0.5 ma; max peak current ♦ = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential. | | | | | | | | | | 1X2-B | | Rectiner | Max inverse voltage (d-c and peak) ● = 22,000 volts (d-c component ● = 18,000 volts); max d-c output current ● = 0.5 ma; max peak current ● = 45 ma. Socket terminals 3 and 7 may be used as tie points for components at or near filament potential. | | | | | | | | | | 1 X 2-C | | Rectifier | Max inverse voltage (d-c and peak) = $50,000$ volts; max d-c output current = 2.0 ma; max peak current = 10 ma. Socket terminals 2 and 3 may be used as tie points for components at or near filament potential. | | | | | | | | | | 1 Y 2 | | Half-Wave
Rectifier | Max in
2.0 ma; | verse vo
max pe | ltage (d
ak curre | l-c and
ent = 1 | peak) =
0 ma. | 20,000 vo | lts; max | d-c ou | tput cui | rent = | 1Z2
• | | | | | | | <u> </u> | | ļ | | | | | | Class A
Amplifier
Class AB ₁
Amplifier | 250
300 | _ | 45
62 | 60†
80† | _ | 800 | 5,250 | 4.2 | 2,500
3,000‡ | 3.5
15 | 2A3 | | Relay
Control | Max | volts; | 2A4-G | | | | | | | | | | Class A
Amplifier | 285 | 285 | | 38† | 7.0t | | 2,500 | T = | 7,000 | 4.8 | 2A5 | | Class A
Amplifier | 250 | - | 20.0 | 31 | _ | 2.600 | 2,600 | 6.8 | 4,000 | 0.85 | | | Class A
Amplifier | 250 | - | 2.0 | 0.9 | _ | 91,000 | 1,100 | 100 | | | 2A6 | | Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | | c Plate
0,000 oh
0 ma | 2A7 | | | Class A
Amplifier | 80 | | R _k = 150 | 17.5 | | 2,100 | 6,500 | 13.5 | | | 8AF4¶
8AF4-A¶ | | Class A
Amplifier | 80 | | R _k = | 17.5 | - | 2,100 | 6,500 | 13.5 | | | 2AF4-B | | TV Flyback
Rectifier | Max inverse voltage (d-c and peak) ■ 30,000 volts (d-c component = 24,000 volts); max d-c output current = 1.5 ma; max peak current ■ = 80 ma Socket terminals 4 and 10 may be used as tie points for components at or nea heater potential. | | | | | | | | | | 2AH2 | | TV Flyback
Rectifier | | | | | | | | | | nt 💩 😑 | 2AS2 | | TV Flyback
Rectifier | 90 ma | inverse
) volts);
. Socket
leater pe | termina | als 4, 7 a | d peak)
ut curre
and 10 m |) | 000 voli
.7 ma;
as tie po | ts (d-c o
max per
pints for | compone
ak curre
compon | ent 🚱 =
ent 💸 =
ents at o | 2AS2-A | | Tube | Classification
by | X-Řa- | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | Ca | pacitano
Picofara | e in
ds | |-------------|---|-------------------|---------------|--------------|---------------|---------------|---------------|--------------------|-----------------------|-------------------|----------------------|-----------------------| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 2A V 2 | Half-Wave High-
Voltage Recti-
fier | | 9U | 6–2 | 1.8 | 0.225 | _ | Tube V
20 voits | oltage
s at 1.0 | Drop:
ma d-c | | | | 2A Z2 | Half-Wave High-
Voltage Recti-
fier | • | 9Υ | 6–7 | 2.1 | 0.275 | | Tube V
70 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 2B3 | Half-Wave High-
Voltage Recti-
fier | • | 8HC | T-X | 1.75 | 0.25 | | Tube V
100 vol | oltage I
ts at 7.0 | Orop:
) ma d- | c | | | 2B7 | Duplex-Diode
Semi-Remote
Cutoff Pentode | | 7D | 12-6 | 2.5 | 0.8 | 2.25 | 300 | 125
0.3 | 3.5▲ | 9.5▲ | 0.007
• | | 2B22 | High-Frequency
Diode
(Planar) | | 2B22 | T-X | 6.3 | 0.75 | | | Tube V
6.0 volt | oltage
s at 20 | Drop:
mad-c | | | 2BA2 | Half-Wave High-
Voltage Recti-
fier | | 9U | 6–2 | 1.8 | 0.3 | | Tube V
55 volts | oltage l
at 6.5 | | | | | 2BJ2
● | Half-Wave High-
Voltage Recti-
fier | (A) | 9RT | 6–7 | 2.3 | 0.3 | | Tube V
80 volts | oltage l
at 7.0 | Drop:
ma d-c | | - | | 2BJ2-A
● | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 9RT | 6–7 | 2.3 | 0.3 | | Tube V
80 volts | oltage l
at 7.0 | Drop:
ma d-c | | | | 2BN4¶ | High Frequency
Triode | | 7EG | 52 | 2.3 | 0.6 | 2.2 🏶 | 275 🏶 | - 1 | 3.2 | 1.4 | 1.2 | | 2BN 4-A¶ | High-Frequency
Triode | | 7EG | 5-2 | 2.35 | 0,6 | 2.2 | 275 | | 3.2 | 1.4 | 1.2 | | 2BU2 ■ | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 12JB | 9-146 | 2.5 | 0.33 | | Tube V
100 vol | oltage
is at 7.0 | Drop:
) ma d- | c | | | 2C21/1642 | Medium-Mu
Twin Triode | | 7BH | 12-6 | 6.3 | 0.6 | 2.1 🌩 | 250 | | | | | | 2C22 | Medium-Mu
Triode | | 4AM | T-X | 6.3 | 0.3 | 3.3 | 300 | | 2.2 | 0.7 | 3.6 | | 2C39 | Hi Mu Triode
Planar | | 2C39 | TX | 6.3 | 1.1 | | 1000 | | 6.5 | 0.035 | 1.95 | | 2C39-A | Hi Mu Triode
Planar | | 2C39A | TX | 6.3 | 1.03 | 100 | 1000 | | 6.5 | 0.035 | 1.95 | | 2C39WA | Hi Mu Triode
Planar | | 2C39
WA | TX | 6.3 | 1.03 | 100 | 1000 | _ | 6.5 | 0.035 | 2.01 | | 2C39B | High-Mu Triode
(Planar) | | 2C39B | T-X | 6.3 | 1.03 | 100 🖻 | 1,000 | _ | 6.5 ▲ | 0.023 | 2.01 | | 2C40 | Medium-Mu
Triode
(Planar) | | 2C40 | T-X | 6.3 | 0.75 | 6.5 ₪ | 500 ₪ | - | 2.15▲ | 0.03 🛦 | 1.3 ▲ | | 2C40-A | Medium-Mu
Triode
(Planar) | | 2C40 | T-X | 6.3 | 0.75 | 6.5 ₪ | 500 € | - | 2.15 ▲ | 0.03 🛦 | 1.3 ▲ | | 2C42 | Plate Pulsed
UHF Oscil-
lator (Planar) | | 2C40 | T-X | 6.3 | 0.9 | 12 📵 | 3,000
peak | _ | 2.9 ▲ | 0.05 | 1.7 ▲ | | 2C43 | High-Mu Triode
(Planar) | | 2C43 | T-X | 6.3 | 0.9 | 12 🖲 | 500 € | _ | 3.0 🛦 | 0.04 ▲ | 1.8 ▲ | | 2C46 | UHF Triode
Oscillator
(Planar) | | 2C40 | T-X | 6.3 | 0.75 | 12 🖷 | 500 ₪ | | 2.2 🛦 | 0.025 | 1.7▲ | | 2C50 | Medium-Mu
Twin Triode | | 8BD | T-X | 12.6 | 0.3 | 3.85 ♠ | | | | | _ | | | | | | | | | | | | | | | | 2C51 | High-Frequency
Twin Triode | | 8CJ | 6-1 | 6.3 | 0.3 | 1.5♠ | 300 | | 2.3 | 0.75 | 2.7 | [—]X-Radiation Rated, and —No X-Radiation Rating. Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲ Without external shield. Design maximum rating. ^{Total for all similar sections. Absolute
maximum rating. #Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--|---|----------------------|--|----------------------------------|--|------------------------------|--------------------------------|--|---|---| | TV Focus
Rectifier | Max inv
7,000 vo | rerse vo
lts); ma | oltage (
x d-c ou | d-c and
itput cu | peak)
rrent 🏶 | = 8,250
= 0.6 ma; | 0 volts
max pe | (d-c co
ak curre | | t 🏶 = | 8AV2 | | Rectifier | Max inv
18,000 v
45 ma. S
near fila | rolts); r
Socket t | nax d-c
erminal | output
s 3 and | peak) < current 7 may b | = 22,00 ♦ = 0.5 oe used as t | 0 volts
ma; m
ie point | (d-c co
ax peak
s for co | mponen
curren
mponen | t ♦ =
t ♦ =
its at or | 2AZ2 | | TV Flyback
Rectifier | 22,000
50 ma. | volts);
Socket | max d-
termina | c outpu
ls 3 and | t curren
l 5 may | | 5 ma; n
tie poin | ax pea | k curre | nt 🛞 🖚 | 2 B3
• | | Class A
Amplifier | 250
250 | 125
100 | 3.0
3.0 | 9.0
6.0 | 2.3
1.5 | 600,000
800,000 | 1,125
1,000 | | _ | = | 2B7 | | Detector | Max o | -c outp | ut curre
rent | ent 🖲 =
=700 m | 20 ma; 1
a | nax peak i | iverse v | oltage | = 300 | volts; | 2B22 | | TV Focus
Rectifier | ł | | | | | | | | | f | 2BA2 | | TV Flyback
Rectifier | Max in | verse | oltage (
max pea | d-c and
ak curre | peak) ∢
nt ◈ = | • = 20,000
80 ma. |) volts; | max d- | c outpu | t current | 2BJ2
● | | TV Flyback
Rectifier | Max in
20,000
80 ma. | verse v
volts); | oltage
max d- | (d-c and
c outpu | i peak)
t curren | | 00 volts
0 ma; n | (d-e e
nax pea | ompone
k curre | nt 磨 =
nt 🏶 = | 2BJ2-A
● | | Class A
Amplifier | 150 | | R _k = 220 | 9.0 | - | 6,300 | | 43 | | | 2BN4¶ | | Class A
Amplifier | 150 | | R _k = 220 | 9,0 | | 5,400 | 8,000 | 43 | | | 2BN4-A¶ | | TV Flyback
Rectifier | 24,000
80 ma. | volts): | max d-
termina | c outpu
ls 4, 10 | t curren | | ma; m | iax pea | k curre | nt 🏶 = | 2BU2 ■
● | | Class A
Amplifier • | 250 | | 16.5 | 8.3 | | 7,600 | 1,375 | 10.4 | | - | 2C21/1642 | | Class A
Amplifier | 300 | _ | 10.5 | 11 | | 6,600 | 3,000 | 20 | | | 2C22 | | CW
Oscillator | 800 | _ | 48 | 58 | | | 17000 | 100 | _ | 25 | 2C39 | | Oscillator at | | | l | | | | 1 | | | | | | 500Mc | 900 | _ | 22 | 90 | _ | _ | _ | _ | | 27 | 2C39-A | | | | _ | 22
40 | 90 | _ | <u> </u> | - | | | 40 | 2C39-A
2C39WA | | 500Mc
Oscillator at | 900 | _ | | | - | —
— | - | | | 40 | 2C39-A
2C39WA
2C39B | | Oscillator at
500Mc
Oscillator at | 900 | | 40 | 90 | - | | | | | 40 | 2C39-A
2C39WA | | Oscillator at 500Mc Oscillator at 500 Mc Oscillator at 500 Mc | 900
900
250
250
1,400
Peak | | 40
40
5.0 | 90
90
20
1,000
Peak | | | | | | 40
40
0.075
300
Peak | 2C39-A
2C39WA
2C39B | | Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at | 900
900
250
250
1,400
Peak | plate v | 40
40
5.0 | 90
90
20
1,000
Peak | | RF = 1,000 | | 1.0 mid | Prosecon | 40
40
0.075
300
Peak | 2C39-A
2C39WA
2C39B
2C40 | | 500Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3.370 Mc Plate-Pulsed Oscillator at 3.000 Mc Plate-Pulsed Oscillator at 1.050 Mc Plate-Pulsed Oscillator at 1.050 Mc | 900
900
250
1,400
Peak
Peak
Peak
3,000
Peak | plate v | 40
40
5.0 | 90
90
20
1,000
Peak | volts; P | RF =1,000 | ; PD = | 1.0 mid | crosecor | 40
40
0.075
300
Peak | 2C39-A
2C39WA
2C39B
2C40 | | Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 3,370 Mc UHF Oscillator Oscillator | 900
900
250
250
1,400
Peak
Peak
13,000
Peak
150 | plate v | 40
40
5.0 | 90
90
20
1,000
Peak
=3,000
=1,750 | volts; P | RF=1,000 |); PD = | 1.0 mid | Prosecor | 40
40
0.075
300
Peak | 2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42 | | Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 1,050 Mc UHF Oscillator at 3,370 Mc UHF Oscillator at 1,100 Mc | 900
900
250
250
1,400
Peak
Peak
13,000
Peak
150 | plate v | 40
40
5.0 | 90
20
1,000
Peak
=3,000
=1,750
 2,500
Peak | volts; P | RF = 1,000 | ; PD = | 1.0 mid | crosecor | 40
40
0.075
300
Peak
ds; | 2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42 2C43 | | Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 500 Mc Oscillator at 3,370 Mc Plate-Pulsed Oscillator at 3,000 Mc Plate-Pulsed Oscillator at 1,050 Mc Plate-Pulsed Oscillator at 3,370 Mc UHF Oscillator Oscillator | 900
250
250
1,400
Peak
Peak
Peak
3,000
Peak
150 | plate v | 40 40 5.0 Coltage : | 90
90
20
1,000 Peak
=3,000
=1,750
Peak
8.0 | volts; P | | | | Prosecon | 40
40
0.075
300
Peak
ds; | 2C39-A 2C39WA 2C39B 2C40 2C40-A 2C42 2C43 | | Tube
Type | Classification X-R | | - Uut- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | Ca | pacitan
Picofara | ce in | |--------------|---|---------|-----------------|---------------|---------------|---------------|------------------------------|---------------------------------|-----------------|----------------------|----------------| | | Construction diation Ratio | | There | Volts | Amps | | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 2CN3-A | Half-Wave High-
Voltage Recti-
fier | 8MU | T-X | 1.8 | 0.9 | _ | Tube V
60 volt | oltage
s at 7.0 | Drop: | -1 | | | 2CN3-B | Half-Wave High-
Voltage Recti-
fier | hr | 9-153 | 1.8 | 0.9 | | Tube V
60 volt | oltage
s at 7.0 | Drop:
ma d-c | | 7, | | 2CW4¶ | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 2.1 | 0.45 | 1.5 🔷 | 135 🏟 | - 1 | 4.3 ▲ | 1.8 🛦 | 0.92 ▲ | | 2CY5¶ | Sharp-Cutoff RF
Tetrode | 7EW | 5-2 | 2.4 | 0.6 | 2.0 🏟 | 180 🏟 | 180 \$ | 4.5 | 3.0 | 0.03 | | 2D21 | Thyratron | 7BN | 5-2 | 6.3 | 0.6 | | An | ode vol | tage dr | op =8 v | olts | | 2DF4 | Pentode | 9JL | 6-2 | 2.5 | 0.345
0.69 | 4.5 | 250 € | 125 🖼 | 7.5 🛦 | 5.5 ▲ | 0.25 | | 2DS4¶ | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 2.1 | 0.45 | 1.5 | 135 ◈ | - | 4.3 ▲ | 1.8▲ | 0.92 | | 2DV4¶ | Medium-Mu Triode
(Nuvistor) | 12EA | 4-4 | 2.1 | 0.45 | 1.0 | 125 🏟 | | 4.4 ▲ | 1.9 ▲ | 1.8▲ | | 2DX4¶ | UHF Triode
Oscillator | 7DK | 5-1 | 2.4 | 0.6 | 2.2 🏶 | 150 ♦ | | 3.9 | 1.5 | 1.6 | | 2DY4¶ | UHF Triode
Oscillator | 7DK | 5–2 | 2.05 | 0.45 | 1.5 🏶 | 135 ♦ | | 3.5 | 1.15 | 2.0 | | 2DY4-A¶ | UHF Triode
Oscillator | 7DK | 5-1 | 2.05 | 0.45 | 1.5 🏶 | 135 ◈ | | 3.5 | 1.15 | 2.0 | | \$DZ4¶ | UHF Triode
Oscillator | 7DK | 5-1 | 2.35 | 0.6 | 2.3 | 135
🏶 | | 2.2 | 1.3 | 1.8 | | 2E5 | Electron-Ray Indicato | r 6R | 9-26
or 12-5 | 2.5 | 0.8 | | 250\$ | Max
Min | target v | voltage
voltage : | =250
=125 | | 2E24 | Beam Pentode | 7CL | T-X | 6.3 | 0.65 | 10 🗷 | 300 ₪ | 200 @ | 9.5 🛦 | 7.0 ▲ | 0.12 | | 2E26 | Beam Pentode | 7CK | T-X | 6.3 | j | 10 📵
10 📵 | 600 €
400 € | 250 ©
2.5 ©
200 © | Two T
Pentod | e Conn | ich Piil | | 2E30 | Beam Power Amplifie | 7CQ | 5–3 | {6.0
3.0 | 0.65 | 10 | 250 | 250
5.2 | 9,6 | 14 | 0.18 | | 2E31 ● | Sharp-Cutoff RF
Pentode | 2E31 | T-X | 1.25
DC | 0.05 | = | 45 | 45 | 4.2 | 4.0 | 0.018 | | 2E32 ● | Sharp-Cutoff RF
Pentode | 2E31 | T-X | 1.25
DC | 0.05 | | 45 | 45 | 4.2 | 4.0 | 0.018 | | 2E35 ● | Power Amplifier Pente | de 2E31 | T-X | 1.25
DC | 0.03 | | 45 | 45 | 2.7 | 5.7 | 0.2 | | 2E36 🌑 | Power Amplifier Pente | de 2E31 | T-X | 1.25
DC | 0.03 | | 45 | 45 | 2.7 | 5.7 | 0.2 | | 2E41 💿 | Diode Pentode | 2E41 | T-X | 1.25
DC | 0.03 | | 45 | 45 | 2.7 | 4.3 | 0.10 | | 2E42 🌑 | Diode Pentode | 2E41 | T-X | 1.25
DC | 0.03 | | 45 | 45 | 2.7 | 4.3 | 0.10 | | 2EA5¶ | Sharp-Cutoff RF
Tetrode | 7EW | 5-2 | 2.4 | 0.6 | 3.25 � | 250 � | 150 (a) | 4.5 | 3.0 | 0.05 | | 2EG4 | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 1.7 | 0.6 | 1.5 🏶 | 135 ◈ | | 4.3 ▲ | 1.8 ▲ | 0.92 ▲ | | 2EN 5¶ | Twin Diode | 7FL | 5-2 | 2.1 | 0.45 | | Tube V
5.0 volt | oltage I
s at 20 | Orop: • | | | | žER5 | High-Frequency Triod | | 5–2 | 2.3 | 0.6 | 2.2 | 250 | | 4,4 | | 0.36 | | 2ES6¶ | High-Frequency Triod | e 7FP | 5-2 | 2.35 | 0.6 | 2.2 🏶 | 250 🏟 | | 3.2 | 4.0 | 0.5 | | 2EV5¶ | Sharp-Cutoff RF
Tetrode | 7EW | 5-2 | 2.4 | 0.6 | 3.25 ◈ | | 180 ♦ \$
0.2 ♦ | 4.5 | 2.9 | 0.035 | | 2FH6¶ | High-Frequency Triod | e 7FP | 5–2 | 2.35 | 0.6 | 2.2 🏶 | 150 ◈ | | 3.2 | 4.0 | 0.52 | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— X-Radiation Rated, and N-No X-Radiation Rating. Compactron. Zero signal. Per section. ‡ Plate-to-plate. ♣Maximum. \$ Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ⊕Total for all similar sections ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------|--------------------------|--------------------------------|------------------------|---------------------------------|----------------------------------|-------------------------------------|---------------------------|-----------------|--|--------------------------------|---------------| | TV Flyback
Rectifier | at or ne | ar heat | er poter | ıtial. | | | cu as tie | points | ior com | ponents | 2CN3-A | | TV Flyback
Rectifier | 110 ma. | Socket | | als 4. 10 | | ■ = 38,00
t ◆ = 2.2
may be us | | | | | 2CN3-B | | Class A
Amplifier | 110 | | R _k = 130 | 7.2 | - | 6,600 | 9,800 | 65 | T | <u> </u> | 2CW4¶ | | Class A
Amplifier | 125 | 80 | 1.0 | 10 | 1.5 | 100,000 | i ' | - | | | 2CY5¶ | | Controlled
Rectifier | Max d-
volts; n | c catho | de cur
k catho | rent 🖲 = | =100 m
ent 🕸 = | a; max pe
500 ma | ak inve | rse vo | ltage 🖲 | =1,300 | 2D21 | | Class A
Amplifier | 120 | 120 | 3.6 | 40 | 3.5 | | 7,500 | I = | T - | - | 2DF4 | | Class A
Amplifier | 110 | _ | R _k = | 6.5 | _ | 7,000 | 9,000 | 63 | - | | 2DS4¶ | | Class A
Amplifier | 75 | _ | R _k == 100 | 10.5 | _ | 3,100 | 11,500 | 35 | = | - | 2DV4¶ | | Class A
Amplifier | 85 | | R _k = 150 | 10 | _ | 2,700 | 11,000 | 30 | _ | | 2DX4¶ | | Class A
Amplifier | 90 | | R _k = 180 | 10.4 | | | 11,000 | 28 | | | 2DY49 | | Class A
Amplifier | 90 | | $R_k = 180$ | 10.4 | _ | | 11,000 | 28 | - | - | 2DY4-A¶ | | Class A
Amplifier | With 2 | .700 oh | m resist | 15
tor in pl | ate circ | 2,000
uit | 6,700 | | | | 2DZ4¶ | | Tuning
Indicator | Plate v
=0°) (
ma) | oltage :
E _c = 0 | =250 th
volt, sha | ru 1 me
adow = 9 | g, targe
90°, pla | t voltage =
te current = | 250 (Ee
=0.24 m | = -8
a, targ | volts, s
et curre | nadow
nt =4 | 2E5 | | Class A
Amplifier | 250 | 160 | 8.0 | 35† | 2.6† | <u> </u> | - | _ | 6,000 | 3.9 | 2E24 | | Class AB1
Amplifier | 500 | 250 | 40 | 13† | _ | _ | | | 8,650 | 40 | 2E26 | | Class AB2
Amplifier | 400 | 125 | 15 | 20† | | | - | | 6,200‡ | 42 | | | Class A
Amplifier | 250 | 250 | 20 | 40† | 3.3† | 63,000 | 3,700 | _ | 4,500 | 4.5 | 2E30 | | Class A
Amplifier | 22.5 | 22.5 | R _g ≈ 5 meg | 0.4 | 0.3 | 350,000 | 500 | _ | = | | 2E31 ● | | Class A
Amplifier | 22.5 | 22.5 | R _g = 5 meg | 0.4 | 0.3 | 350,000 | 500 | | | | 2E32 ● | | Class A
Amplifier | 45 | 45 | 1.25 | 0.45 | 0.11 | 250,000 | 500 | _ | 100,
000 | 0.006 | 2E35 ● | | Class A
Amplifier | 45 | 45 | 1.25 | 0.45 | 0.11 | 250,000 | 500 | | 100,
000 | 0.006 | 2E36 ⊚ | | Class A
Amplifier | 22.5 | 22.5 | R _g = 5 meg | 0.35 | 0.12 | 250,000 | 375 | | _ | _ | 2E41 ● | | Class A
Amplifier | 22.5 | 22.5 | R _g = 5 meg | 0.35 | 0.12 | 250,000 | 375 | | | - | 2E42 ● | | Class A
Amplifier | 250 | 140 | 1.0 | 10 | 0.95 | 150,000 | 8,000 | _ | | | 2EA 5¶ | | Class A
Amplifier | 110 | | R _k = 130 | 6.5 | | 7,000 | 9,000 | 63 | | | 2EG4 | | Half-Wave
Rectifier | | c outpu | | nt per p | late 🏶 = | 5.0 ma | | | | | 2EN5¶ | | Class A
Amplifier | 200 | | 1.2 | 10 | | | 10,500 | 80 | | | 2ER5 | | Class A
Amplifier | 200 | | 1.0 | 10 | | 8,000 | 9,000 | 75 | _ | | \$ES6¶ | | Class A
Amplifier | 250 | 80 | 1.0 | 11.5 | 0,9 | 150,000 | 8,800 | _ | | | 2EV5¶ | | Class A
Amplifier | 135 | | 1.0 | 11 | | 5,600 | 9,000 | 50 | _ | = | 2FH6¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tubo | Classification | X-Řa- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | Cap
P | acitance
icofarad | e in | |---------------|---|----------------------------|---------------|--------------|---------------|--------------|----------------|--|---------------------------------|--------------------|----------------------|----------------| | Tube
Type | Construction | a-Ra-
liation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 2FQ5¶ | High-Frequency
Triode | | 7FP | 5-2 | 2.3 | 0.6 | 2.5 🏶 | 200 🏶 | - WALLS | 4.8 | 4.0 | 0.4 | | 2FQ5-A¶ | High-Frequency
Triode | | 7FP | 5-2 | 2.3 | 0.6 | 2.5 🏶 | 200 ◈ | = | 5.0 | 3.5 | 0.52 | | 2FS5¶ | "Shadow-Grid"
Beam Pentod | e | 7GA | 5-2 | 2.4 | 0,6 | 3.25 ◈ | 300 � | 150 ♦
0.15 ♦ | 4.8 | 2.8 | 0.016 | | 2FV6¶ | Sharp-Cutoff RI
Tetrode | 1 | 7FQ | 5-2 | 2.4 | 0,6 | 2.0 🏶 | 275 🏶 | 180 ♦ \$
0.5 ♦ | 4.5 | 3.0 | 0.03 💠 | | 2FY5 | High-Mu Triode | | 7FP | 5~2 | 2.4 | 0.6 | 2.2 | 200 🖲 | = | 4.75 | 4.3 | 0.48 | | 2G21 ● | Triode-Heptode
Converter | | 2G21 | T-X | 1.25
DC | 0.05 | | 45 | 45 | Osc Icl
Rel = 5 | =0.030
0,000 ol | ma
ims | | 2G22 € | Triode-Heptode
Converter | | 2G21 | T-X | 1.25
DC | 0.05 | | 45 | 45 | Osc In | =0.030
0,000 ol | ma | | 2GK6¶ | High-Frequency
Triode | | 7FP | 5-2 | 2.3 | 0.6 | 2.5 🏶 | 200 🏶 | = | 5.0 | 3,5 | 0.52 | | 2GU5¶ | "Shadow-Grid"
Beam Pentode | | 7GA | 5-2 | 2.4 | 0.6 | 3.0♦ | 300 � | 150 (a) 0.15 (b) | 0.7 ▲ | 3.2 ▲ | 0.018 | | eGW6¶ | High-Mu Triode | | 7GK | 5-2 | 2.45 | 0.6 | 2.5 🏶 | 200 🏶 | | 5.5 | 4.0 | 0.6 | | 2H A 5 | High-Mu Triode | | 7GM | 5-1 | 2.2 | 0.6 | 2.6 🏶 | 220 🏶 | - | 4.3 | 2.9 | 0.36 | | 2HK5¶ | High-Frequency
Triode | | 7GM | 5–2 | 2.3 | 0.6 | 2.3 🏶 | 200 🏶 | | 4.4 | 2.6 | 0.29 | | 2HM5¶ | High-Mu Triode | | 7GM | 5-2 | 2.0 | 0.6 | 2.6 🏶 | 200 🏶 | | 4.5 | 3.0 | 0.34 🌲 | | 2HQ5¶ | Triode | | 7GM | 5–2 | 2.4 | 0.6 | 2.5 🏶 | 200 🏶 | = | 5.0 | 3.5 | 0.52 | | 2H R8 | Pentode | | 9BJ | 6-2 | 2.5 | 0.6 | 1.0 | 300 | 300 0.2 | 3.5 ▲ | 5.0 ▲ | 0.05 | | 2J2 | Half-Wave High-
Voltage Recti-
fier | (A) | 9DT | T-X | 2.0 | 0.35 | | | _ | | _ | | | 2 L2 | Miniature High-
Voltage Recti-
fier | (4) | | T-X | 2.0 | 0.2 | _ | _ | _ | _ | _ | _ | | 2T4¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 2.35 | 0.6 | 3.5 | 200 | - | 2.6 ▲ | 0.4 ▲ | 1.7 ▲ | | 2V2 | Half-Wave High-
Voltage Recti-
fier | (A) | 8FV | T-X | 2.5
1.25 | 0.2
0.4 | _ | Tube V
150 vol | oltage
ts at 7. | Drop:
0 ma d- | С | | | 2V3-G | Half-Wave High-
Voltage Recti-
fier | (4) | 4Y | 12-8 | 2.5 | 5.0 | | _ | | _ | _ | _ | | 2W3
2W3-GT | Half-Wave
High-Vacuum
Rectifier | | 4X | 8-6
9-12 | 2.5 | 1.5 | _ | _ | _ | _ | | _ | | 2X2 | Half-Wave High-
Voltage Rectifier | (A) | 4AB | 12-6 | 2.5 | 1.75 | _ ' | Tube v
98 volts | oltage d | | | | | 2X2A | Half-Wave High-
Voltage Rectifier | (A) | 4AB | 12-6 | 2.5 | 1.75 | | | | _ | | T - | | 2Y2 | Half-Wave High-
Voltage Rectifier | | 4P | 12-6 | 2.5 | 1.75 | _ | _ | _ | | - | - | | 3A2 | Half-Wave High-
Voltage Recti-
fier | | 9RT | 6–7 | 3.15 | 0.22 | _ | Tube Voltage Drop:
70 volts at 7.0 ma d-c | | | | | | 3A2-A | Half-Wave High-
Voltage Recti-
fier | | 9RT | 6-7 | 3.15 | 0.22 | _ | Tube Voltage Drop:
70 volts at 7.0 ma d-c | | | | | | 3A3 | Half-Wave High-
Voltage Recti-
fier | (A)
 8EZ | 9-52 | 3.15 | 0.22 | _ | | _ | | | _ | | 3A3-A | Half-Wave High-
Voltage Recti-
fier | (a) | 8EZ | T-X | 3.15 | 0.22 | _ | Tube V
100 voi | oltage
ts at 7. | Drop:
0 ma d- | c | | ▲ -X-Radiation Rated, and ▲ - No X-Radiation Rating. Compactron. † Zero signal. • Per section. † Plate-to-plate. Maximum. Supply voltage. ⊗Subminiature type.▲Without external shield.⊗Design maximum rating. ⊕Total for all similar sections. ®Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | | |--------------------------------------|--|--------------------------|----------------------|---------------------------------|----------------------------------|---|---------------------------|--------------------|--|--------------------------------|---------------|--|--| | Class A
Amplifier | 135 | <u> </u> | 1.2 | 11.5 | <u> </u> | 5,500 | 11,000 | 60 | <u> </u> | <u> </u> | 2FQ5¶ | | | | Class A | 135 | | 1.2 | 8.9 | - | 6,300 | 12,000 | 74 | === | | 2FQ5-A¶ | | | | Amplifier
Class A
Amplifier | 275 | 135 | 0.2 | 9,0 | 0.17 | 240,000 | 10,000 | _ | - | | 2FS5¶ | | | | Class A
Amplifier | 125 | 80 | 1,0 | 10 | 1.5 | 100,000 | 8,000 | İ | _ | | 2FV6¶ | | | | Class A
Amplifier | 135 | _ | 1.0 | 11 | | _ | 13,000 | 70 | _ | | 2F Y 5 | | | | Converter | 22.5 | 22.5 | 0 | 0.2 | 0.3 | 500,000 | 60 # | Eb(Tri | ode Osc
ode) =1. | c) =22.5
0 ma | 2G21 ● | | | | Converter | 22.5 | 22.5 | 0 | 0.2 | 0.3 | 500,000 | 60 # | Eb(Tri | ode Osc
ode) =1. | e) = 22.5
0 ma | 2G22 ● | | | | Class A
Amplifier | 135 | | 1.0 | 11.5 | | 5,400 | 15,000 | 78 | | | 2GK5¶ | | | | Class A
Amplifier | 275 | 135 | 0.4 | 10 | 0.17 | 165,000 | 15,500 | _ | _ | | 2GU5¶ | | | | Class A
Amplifier | 135 | _ | 1.0 | 12.5 | _ | 5,800 | 15,000 | 70 | | | 2GW5¶ | | | | Class A
Amplifier | 135 | | 1.0 | 11.5 | | _ | 14,500 | 72 | _ | | 2HA5 | | | | Class A
Amplifier | 135 | _ | 1.0 | 12.5 | | 5,000 | 15,000 | 75 | | | 2HK5¶ | | | | Class A
Amplifier | 135 | | 1.0 | 12.5 | | | 14,500 | 78 | | - | 2HM 6¶ | | | | Class A
Amplifier | 135 | | 1.0 | 11.5 | | 5,400 | 15,000 | 78 | | | 2HQ5¶ | | | | Class A
Amplifier | 250 | 140 | 2.0 | 3.0 | 0.6 | 2,500,000 | 2,000 | _ | _ | | 2H R8 | | | | Flyback
Rectifier | (desigr | eak inve |) 🏶 🗯 | age (ab
23,500 | solute)
volts; m | | volts; i | nax pea | k invers
.2 ma; i | se voltage
max peak | 2J2
● | | | | Flyback
Rectifier | Max p
(on loa
= 25 i | eak inv
d) = 1
nA. | erse vol
9,000 v | tage (n
olts; ma | o load)
ix d-c oi | = 22,000 vitput curre | volts; m
nt = 0. | ax peal
5 mA m | k invers
ax. pea | e voltage
k current | 2L2 | | | | Class A
Amplifier | 80 | - | R _k = 150 | 18 | | 1,860 | 7,000 | 13 | T = | $\overline{1} - \overline{1}$ | 2T4¶ | | | | TV Flyback
Rectifier | 1.0 ma | ; max p | eak curi | rent = : | 80 ma. S | = 21,000 v
Socket term
nent potent | inals 1 a | x d-c o | utput ci
ay be u | urrent =
sed as tie | 2V2 | | | | Half-Wave
Rectifier | Max in
2.0 ma | verse v | oltage (
eak cur | d-c and
rent = | peak)
12 ma. | = 16,500 v
Socket ter
or near filar | olts; ma
minals | 1, 3, 4, | utput ci
5 and 6 | urrent = | 2V3-G | | | | Half-Wave
Rectifier | Max | d-c out | put cur | rent = 5 | 55 ma; n | nax rms su | pply vo | tage = : | 350 volt | s | 2W3
2W3-GT | | | | Half-Wave
Rectifier | max. p | eak cur | rent = | 100 m/ | 4. | 2500 Voits; | | | | | 2X2 | | | | Half-Wave
Rectifier | Max. | peak inv
urrent | verse vo | oltage = | = 12500 | volts; d-c | output | current | = 7.5 | mA; max. | 2X2A | | | | Half-Wave
Rectifier
TV Flyback | Max. | peak in | verse vo | oltage = | = 12000 | volts; max | r. d-c o | stput ci | urrent : | = 5.0 mA | 2Y2 | | | | TV Flyback
Rectifier | Max in
1.7 ma; | verse vo
max pe | itage (c
ak curr | i-c and
ent = 8 | peak) =
30 ma. | * 18,000 vo | lts; ma | d-c ou | tput cu | rrent = | 3A2 | | | | TV Flyback
Rectifier | Max in
18,000
80 ma. | verse vo
volts); i | oltage (
nax d-c | d-c and
output | peak)
t curren | (a) = 20,000 t (a) = 1.5 | 0 volts
ma; m | (d-c co
ax peal | mponer
k currer | nt | 3A2-A | | | | TV Flyback
Rectifier | Max inverse voltage (d-c and peak) ⊕ = 30,000 volts; max d-c output current ⊕ = 1.5 ma; max peak current ⊕ = 88 ma. Socket terminals 4 and 6 may be used as tie points for components at or near heater potential. | | | | | | | | | | | | | | TV Flyback
Rectifier | Max in | verse vo | ltage (c | l-c and | peak) (| = 30,000
100 ma. So
r near heat | volte: | max d-c | output
4 and 6 | current
may be | 3A3-A | | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥G2 and G4 are screen. G3 is signal-input grid. 1, x, y, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | X-Řa- | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | | acitano
icofara | | |--------------------|--|-------------------|---------------|--------------|--------------------|--|---------------|---|---------------------------------|-------------------|--------------------|----------------| | Type | by
Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 3A3-B
● | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8EZ | T-X | 3.15 | 0.22 | | Tube V
100 volt | oltage I
s at 7.0 | Prop:
ma d-c | | f | | 3A3-C | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8EZ | 9-169 | 3,15 | 0.22 | | Tube Vo
60 volts | oltage I
at 7.0 | Этор:
ma d-c | | | | 3A 4 | Power Amplifier
Pentode | | 7BB | 5–2 | (2.8
(1.4
DC | $\left. egin{array}{c} 0.1 \\ 0.2 \end{array} ight\}$ | 2.3 | 150 | 90
0.4 | 4.8 | 4.2 | 0.20
• | | 3A 5 | High-Frequency
Twin Triode | | 7BC | 5-2 | (2.8
1.4
DC | 0.11 } | 0.5 🏚 | 135 | | 0.9 | 1.0 | 3.2 | | 3A8-GT | Diode-Triode
Sharp-Cutoff
RF Pentode | | 8AS | 9-17 | {2.8
1.4
DC | 0.05 | | 110
110 | 110 | Triode
Pentode | | | | SAF4-A¶
SAF4-B¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 3.2 | 0.45 | 2.5 🏟 | 150 ◈ | | 2.2 | 1.4 | 1.9 | | 3A L 6 ¶ | Twin Diode | | 6BT | 5-1 | 3.15 | 0.6 | | Tube Voltage Drop: 4 10 v at 60 ma d-c | | | | | | 3AT2 | Half-Wave High-
Voltage Recti-
fier | (A) | 12FV | 9–100 | 3.15 | 0.22 | | Tube Voltage Drop:
77 volts at 7.0 ma d-c | | | | ***** | | 3AT2-A ■ | Half-Wave High-
Voltage Recti-
fier | 25,0
mR/hr | 12FV | 9-100 | 3.15 | 0,22 | | Tube Voltage Drop:
77 volts at 7.0 ma d-c | | | | | | 3AT2-B | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12FV | 9-146 | 3.15 | 0.22 | | Tube Voltage Drop:
60 volts at 7.0 ma d-c | | | | | | 3AU6¶ | Sharp-Cutoff RI
Pentode | | 7BK | 5–2 | 3.15 | 0.6 | 3.5 ◈ | 330 ◈ | 330 ●\$
0.75 ● | Pentod | e Conn | ection | | | | | | | | | 3.5 ◈ | 275 🏶 | _ | | Connec | | | 3A V 6¶ | Duplex-Diode
High-Mu
Triode | | 7BT | 5-2 | 3.15 | 0.6 | 0.5 | 300 | _ | 2.2 | 1.2 | 2.0 | | 3AW2 | Half-Wave High
Voltage Recti-
fier | (A) | 12HA | 9-100 | 3.15 | 0.35 | | Tube \
60 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3AW2-A | Half-Wave High
Voltage Recti-
fier | 25.0
mR/hr | 12HA | 9-146 | 3.15 | 0.35 | _ | Tube \ 60 volt | oltage
s at 7.0 | Drop:
ma d-c | : | | | 3AW3 | Half-Wave High
Voltage Recti-
fier | (a) | 8EZ | 9-53 | 3.15 | 0.22 | | Tube \
110 vo | /oitage
lts at 7. | Drop:
0 ma d- | c | | | 3B2 | Half-Wave High
Voltage Recti-
fier | (a) | 8GH | T-X | 3.15 | 0.22 | | Tube V
135 vo | Voltage
lts at 7. | Drop:
0 ma d- | ·c | | | \$B4 | Beam Power
Amplifier | | 7CY | 5-2 | 1.25
2.50
DC | 0.33
0.165 | 3.0 🖻 | 150 | 135 @ | 4.6 ▲ | 7.6 ▲ | 0.16 | | 3B5-GT | Beam Power
Amplifier | | 7AQ | 9-12 | 1.4 | 0.1 | _ | 67.5 67.5 Parallel Filaments 67.5 67.5 Series Filaments | | | | | | 3B7 | High-Frequency
Twin Triode | | 7BE | 9-30 | 1.4
2.8
DC | 0.22
0.11 | 2.7 🏚 | 180 | | Both S
Push-p | ections
ull | in | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. #Conversion transconductance. ^{▲-}X-Radiation Rated, and ▲-No X-Radiation Rating. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--|---|------------------------------------|-------------------------------------
----------------------------------|---|-----------------------------------|----------------------------------|--|----------------------------------|--------------------| | TV Flyback
Rectifier | 24,000
100 ma | volts): | max d
t termin | c outpu | it curre | 19 = 30,0 nt ♦ = 2. y be used as | 0 ma: 1 | nax nea | k curre | ent 🚳 💳 | 3A3-B | | TV Flyback
Rectifier | 100 ma | nverse v
volts);
a. Socke
eater po | t termi | nais 4 ar | d peak)
it curre
id 6 may | | 000 volt
0 ma; i
s tie poi | s (d-c o
max pea
nts for o | ompone
ak curre
compon | ent 🗷 =
ent 🚸 =
ents at or | 3A3-C | | Class A
Amplifier | 150 | 90 | 8.4 | 13.3† | 2.2† | 100,000 | 1,900 | _ | 8,000 | 0.7 | 5A4 | | Class A
Amplifier • | 90 | | 2.5 | 3.7 | | 8,300 | 1,800 | 15 | | | 3A5 | | Class A | 90 | | 0 | 0.2 | | 200,000 | 275 | | | | 3A8-GT | | Amplifier
Class A
Amplifier | 90 | 90 | 0 | 1.5 | 0.5 | 800,000 | 750 | _ | - | - | | | Class A
Amplifier | 80 | | R _k = 150 | 17.5 | | | 6.500 | 13.5 | | | 3AF4-A¶
3AF4-B¶ | | Half-Wave
Rectifier | volts
plate | ; max ri
=54 m | ns supp
a | oly volta | ige per p | =9 ma; ma;
olate = 117 | volts; m | ах реа | k curre | nt per | 3A L 6 ¶ | | TV Flyback
Rectifier | = 1 | .7 ma; 1 | nax pea | ık curre | nt 🐵 = | = 30,000
88 ma. So
at or near h | cket ter | minals 4 | 4, 7 and | current
10 may | 3AT2 ■
● | | TV Flyback
Rectifier | Max in
24,000
88 ma. | verse v | oltage
max d-
termina | (d-c and
c outpu
ds 4, 7 a | l peak)
t currer | | 00 volts
7 ma; n | (d-c co | ompone
k curre | nt 🏶 🖚 | 3AT2-A | | TV Flyback
Rectifier | Max in
30,000
88 ma. | verse v
volts);
Socket
heater | oltage
max d-
termina | (d-c and
c outpu
ds 4, 7 a | l peak)
t currer
nd 10 m | | 00 volts
7 ma; n
as tie p | d-c conax pea
oints fo | ompone
k curre
r comp | nt 🖲 =
nt 🚸 =
onents at | 3AT2-B | | Class A
Amplifier | 250
100 | 150
100 | $R_k =$ | 10.6
5.0 | 4.3
2.1 | 1,000,000
500,000 | 5,200
3,900 | _ | | | <i>3AU6</i> ¶ | | Class A
Amplifier | 250 | | $150 \\ R_k = 330$ | 12.2 | _ | _ | 4,800 | 36 | _ | | | | Class A
Amplifier | 250
100 | _ | 2.0
1.0 | 1.2
0.5 | | 62,500
80,000 | 1,600
1,250 | 100
100 | = | | 3A V6¶ | | TV Flyback
Rectifier | 110 ma | verse v
volts);
. Socket
heater | termin | als 4, 7a | l peak)
t currer
ind 10 m | | 00 volts
2 ma; n
l as tie p | d-c conax pea | ompone
k curre
r compo | nt 🏶 =
nt 🌢 =
onents at | 3AW2 ■ | | TV Flyback
Rectifier | or near | . Socket
heater | termin
potenti | ais 4, 7 :
al. | and IU r | | i as tie p | oints 10 | r comp | onents at | 3AW2-A I | | TV Flyback | Max in | verse v | oltage (| d-c and
ak curre | peak) «
ent ♦ =
ents at c | = 30,000 = 88 ma. Soor near hear | 0 volts;
ocket te
ter pote | max d-o
rminals
ntial. | outpu
4 and (| t current
3 may be | 3AW3 | | Rectifier | used as | | | | | | | | | | | | TV Flyback
Rectifier | Max ii
25.000 | nverse volts);
termin | voltage
max d- | (d-c an | d peak)
t curren
sed as ti | ■ = 35
it = 1.1 m
ie point for | ,000 vol
a; max
compo | ts (d-c
peak cu
nents a | compo
irrent =
t or ne | nent =
= 80 ma.
ar heater | 3B2 | | TV Flyback | Max ii
25,000
Socket | nverse volts);
termin | voltage
max d-
al 4 ma | (d-c an | d peak) t curren sed as t | E = 35
it = 1.1 m
ie point for
Input Sign | compo | nents a | compourrent :
t or ne | nent =
= 80 ma.
ar heater | 3B2
●
3B4 | | TV Flyback
Rectifier Class C Amplifier Class A Amplifier | Max is 25,000 Socket potenti 150 67.5 | volts);
terminial.
135 | voltage
max d-
al 4 ma
38 | (d-c an
c outpu
y be us
25 | 6.2
0.6† | Input Sign | 1,650 | nents a | 5,000 | 1.25
0.2 | • | | TV Flyback
Rectifier Class C Amplifier Class A | Max ii
25,000
Socket
potenti
150 | verse volts);
terminial. | voltage
max d-
al 4 ma | (d-c and c outputy be us | 6.2 | Input Sign | compo | 7 watt | t or ne | 1.25
0.2
0.18 | ● 3B4 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tuba | Classification | X-Ra- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | l 1 | pacitano
Picofara | e in
ds | |---------------|---|-------------------|---------------|--------------|---------------|--------------|----------------|--------------------|---------------------------------|-----------------------------|----------------------|----------------| | Tube
Type | by
Construction | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 3B28 | Half-Wave Gas
Rectifier | | 4P | T-X | 2.5 | 5.0 | | Tube V | | | 10 Volts | 3 | | 5BA6¶ | Remote-Cutoff
RF Pentode | | 7BK | 5-2 | 3.15 | 0.6 | 3.4 🏶 | 330 ◈ | 330 ♦8
0.7 ♦ | 5.5 | 5.5 | 0.0035
• | | 3BC5¶ | Sharp-Cutoff RF
Pentode | | 7BD | 5-2 | 3.15 | 0.6 | 2.3 🏶 | 330 � | 330 ◆\$
0.55 ◆ | Pentod | e Conne | ection | | | | | | | | | 2.9 🏶 | 330 � | | Triode
(G ₂ & | Connec
P tied) | tion | | 3BE6¶ | Pentagrid
Converter | | 7CH
♥ | 5-2 | 3.15 | 0.6 | 1.0 | 300 | 100
1.0 | | =0.5 m
0,000 ol | a
ims | | 3BF2 | Half-Wave High-
Voltage Recti-
fier | (A) | 12GQ | 9-100 | 3.6 | 0.225 | _ | _ | | | _ | _ | | 3BL2 ■ | Half-Wave High-
Voltage Recti-
fier | (A) | 12HK | 9-100 | 3.3 | 0.285 | | Tube V
50 volt | oltage is at 7.0 | Drop:
ma d-c | | - | | 3BL2-A ■ | Half-Wave High-
Voltage Recti-
fier | | 12HK | 9-100 | 3.3 | 0.285 | | Tube V
50 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BM2 1 | Half-Wave High-
Voltage Recti-
fier | (A) | 12HK | 9-100 | 3.0 | 0.3 | _ | Tube V
50 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BM2-A ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12HK | 9–100 | 3.0 | 0.3 | _ | Tube V
50 volts | oltage l
at 7.0 | Drop:
ma d-c | | | | 3BN2 ■ | Half-Wave High-
Voltage Recti-
fier | • | 12FV | 9–100 | 3.15 | 0.3 | _ | Tube V
150 vol | oltage l
ts at 7.0 | Drop:
0 ma d- | c | | | 3BN2-A ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12FV | 9-146 | 3.15 | 0.3 | | Tube V
150 vol | oltage l
ts at 7.0 | Drop:
0 ma d- | e | | | 3BN 4¶ | High-Frequency
Triode | | 7EG | 5-2 | 3.0 | 0.45 | 2.2 🄷 | 275 ◈ | | 3.2 | 1.4 | 1.2 | | 3BN 4-A¶ | High-Frequency
Triode | | 7EG | 5–2 | 3.0 | 0.45 | 2.2 | 275 | | 3.2 | 1.4 | 1.2 | | 3BN6¶ | Gated-Beam
Discriminator | | 7DF | 5-3 | 3.15 | 0.6 | | 330 ◈ \$ | 110 🏶 | $\overline{E_{c1}} = 1$ | .25 volts | RMS | | 3BS2 | Half-Wave High-
Voltage Recti-
fier | (A) | 12HY | 9-100 | 3.15 | 0.48 | | Tube V
60 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BS2-A ■ | Half-Wave High-
Voltage Recti-
fier | (A) | 12HY | 9-100 | 3.15 | 0.48 | | Tube V
60 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BS2-B ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12HY | 9-100 | 3.15 | 0.48 | _ | Tube V
60 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BT2 ■ | Half-Wave High-
Voltage Recti-
fier | • | 12HY | 9-100 | 3.15 | 0.48 | - | Tube V
70 volt | oltage
s at 7.0 | Drop:
ma d-c | | | | 3BT2-A | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12HV | 9-100 | 3,15 | 0.48 | — | Tube V
70 volt | oltage s
s at 7.0 | Drop:
ma d-c | | | Compactron. † Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. ^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating. See X-Radiation Warning, page 4. | Service | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|---------------------------------------|---|--------------------------------|----------------------------------|----------------------------------
---|-----------------------------------|----------------------------------|--|--------------------------------|-----------------| | Half-Wave
Rectifier | Max o | l-c outr | ut curr | ent 📵 | =0.5 am | peres; ma:
2.0 amperes | x peak i | nverse | | | 3B28 | | Class A | 250 | 100 | Rk= | 11 | | 1,000,000 | 4,400 | | _ | | 3BA6¶ | | Amplifier | 100 | 100 | 68
R _k =
68 | 10.8 | 4.4 | 250,000 | 4,300 | | | | | | [| 250 | 150 | R _k = 180 | 7.5 | 2.1 | 800,000 | 5,700 | _ | | _ | 3 BC 5 ¶ | | Class A
Amplifier | 125 | 125 | R _k = 100 | 8.0 | 2.4 | 500,000 | 6,100 | _ | - | | | | in pine. | 100 | 100 | Ř _k = 180 | 4.7 | 1.4 | 600,000 | 4,900 | | _ | - | | | Class A | 250 | _ | R _k == 820 | 6.0 | - | 9,000 | 4,400 | 40 | - | - | | | Amplifier | 180 | _ | R _k = 330 | 8.0 | - | 6,000 | 6,000 | 42 | - | - | | | Converter | 250
100 | 100
100 | 1.5
1.5 | 2.9
2.6 | 6.8
7.0 | 1,000,000 400,000 | 475 #
455 # | | | | 3BE6¶ | | TV Flyback
Rectifier | Max ir | iverse v
2.2 ma; | t current | 3BF2 ■ | | | | | | | | | TV Flyback
Rectifier | Max ii
27,500
100 ma
or near | nverse v
volts);
i. Socket
filamet | nt 🆫 =
nt 🖫 =
onents at | 3BL2 ■ | | | | | | | | | TV Flyback
Rectifier | 27,500
100 ma | volts); | max d-
t termin | c outpuals 4, 7 | it curre | | 0 ma; r | nax pea | k curre | nt 🏶 🖚 | 3BL2-A ■ | | TV Flyback
Rectifier | 100 ma | verse v
volts);
a. Socker
filamer | t termin | als 4, 7 | d peak) it curre and 10 | | 00 volts
0 ma; r
1 as tie p | s (d-c c
nax pea
points fo | ompone
k curre
or compo | nt ◈ =
nt ◈ =
onents at | 3M B2 ■ | | TV Flyback
Rectifier | 27,500
100 ma
or near | volts);
i. Socke
f filamei | max d-
t termin
nt poten | c outpu
als 4, 7
itial. | and 10 | | 0 ma; r
i as tie p | nax pea
points fo | k curre
or compo | nt 🏶 =
onents at | 3BM2-A ■ | | TV Flyback
Rectifier | 88 ma. | verse v
volts);
Socket
heater | termina | us 4. <i>(</i> a | d peak)
it curre
and 10 n | \Rightarrow = 30.0 nt \Rightarrow = 1. nay be used | 00 volts
7 ma; r
as tie p | s (d-c c
nax pea
ooints fo | ompone
k curre
r compo | nt ◈ =
nt ◈ =
onents at | 3BN2 ■
● | | TV Flyback
Rectifier | Max in
27,500
88 ma. | nverse 1 | oltage
max d-
termina | (d-c and
c outpu
ds 4, 7 a | d peak)
it curren
and 10 n | | 00 volt:
7 ma; n
l as tie p | s (d-c c
nax pea
ooints fo | ompone
k curre
r compo | nt 🐌 =
nt ◈ =
onents at | 3BN2-A | | Class A
Amplifier | 150 | 1 - | R _k = | 9.0 | - | 6,300 | 6,800 | 43 | T - | 1-1 | 3BN 4¶ | | Class A
Amplifier | 150 | | R _k == 220 | 9.0 | | 5,400 | 8,000 | 43 | - | | 3BN4-A¶ | | FM Limiter-
Discrimi-
nator | 285 | 100 | R _k = 200 to 400 | 0.49 | 9.8 | = | _ | | 330,
000 | | 3BN6¶ | | TV Flyback
Rectifier | 110 ma | a. Socke
r heater | t termir
potenti | ıals 4 a:
al. | nd 10 m | $\hat{\otimes}$ = 38,0 at $\hat{\otimes}$ = 2. The contract $\hat{\otimes}$ = 2. The contract $\hat{\otimes}$ is a second | as tie p | oints fo | r compo | nents at | 3BS2 ■ | | TV Flyback
Rectifier | near h | eater po | tential. | | | $\hat{\otimes} = 38,0$ ant $\hat{\otimes} = 2$ by be used a | | | | | 3 BS2-A ■ | | TV Flyback
Rectifier | 30,000
110 ma | nverse v
volts);
a. Socke
eater po | max d-
t termin | (d-c an
c outpu
als 4 an | d peak)
it curre
id 10 ma | ■ = 38,0 nt | 00 volts
2 ma; r
s tie poi | s (d-c c
nax pea
nts for c | ompone
k curre
compone | nt ∰ =
nt ◈ =
ents at or | 3 BS2- B | | TV Flyback
Rectifier | 1110 ma | nverse volts);
a. Socke
eater po | t termin | (d-c an
c outpu
als 4 an | d peak)
it curre
id 10 ma | | 000 volt:
2 ma; r
s tie poi | s (d-c c
nax pea
nts for c | ompone
k curre
compone | nt 📵 =
nt 🦫 =
ents at or | 3BT2 ■ | | TV Flyback
Rectifier | Max i
30,000
110 ma | nverse v
volts;
a. Socke | oltage
max d-
t termin | (d-c an
c outpu
als 4 an | d peak)
t currer
id 10 ma | | 000 volt:
2 ma; n
s tie poi | s (d-c c
nax pea
nts for c | ompone
k curre
ompone | nt 侧 =
nt ◈ =
ents at or | 3BT2-A ■ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. § Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | X-Řa- | Base
Con- | Out- | | Fila-
ment | | | Max.
Screen | 1 1 | pacitan
Picofara | ce in | |---------|---|-------------------|---------------|-------|------------------|---------------|--------------|---------------------|-------------------------------|-----------------|------------------------------------|---------------| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | | | | | | Input | Out-
put | Grid
Plate | | 3BU8¶ | Twin Pentode | | 9FG | 6-3 | 3.15 | 0.6 | 1.1 € | 300 € | 150 (
0.75 | - | - | 1- | | 3BU8-A¶ | Twin Pentode | | 9FG | 6-3 | 3.15 | 0.6 | 1.1 ♦ | 300 ♦ | 150 ♦
0.75 ♦ | <u> </u> | | | | 3BW2 ■ | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 12HY | 9-146 | 3.15 | 0.48 | | Tube V
70 volt | oltage I
s at 7.0 | Orop:
ma d-c | The second second | | | SBY6¶ | Dual Control
Heptode | | 7CH | 5-2 | 3.15 | 0.6 | 2.3 🏈 | 330 ◈ | 330 ♦ \$ | ****** | | | | 3B26¶ | Semi-Remote-
Cutoff RF
Pentode | | 7CM | 5-2 | 3.15 | 0.6 | 2.3 🏶 | 330 � | | 7.0 | 3.0 | .0015 | | 3C2 | Half-Wave High
Voltage Recti-
fier | | 8FV | 12-19 | 3.15
1.58 | 0.21
0.42 | | Tube V
62 volt | oltage las at 7.0 | Drop:
ma d-c | - | | | 3C5-GT | Power-Amplifier
Pentode | | 7AQ | 9-12 | 1.4
2.8
DC | 0.1
0.05 | _ | 110
110 | 1 | | l Filamen | | | 3C6 | Medium-Mu
Twin Triode | | 7BW | 9-30 | 1.4
2.8
DC | 0.1
0.05 | _ | 110
110 | [8 | ection | 1 Para
2 Filar
1 Serie | es } | | 3C23 | Thyratron | | 3G | T-X | 2.5 | 7.0 | | Anode | Voltage | | 2 Fila:
15 Vol | | | 3CA3 | Half-Wave High-
Voltage Recti-
fier | (A) | 8MH | 9-51 | 3.6 | 0.225 | | Tube V
100 vol | oltage D | rop:
ma d-c | | | | 3CA3-A | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8EZ | T-X | 3.6 | 0.225 | _ | Tube V
60 volts | oltage D
at 7.0 n | rop:
na d-c | | | | 3CB6¶ | Sharp-Cutoff RP
Pentode | | 7CM | 5-2 | 3.15 | 0.6 | 2.3๋� | 330 ◈ | 330 2 �
0.55 � | 6.5 | 3.0 | 0.015 | | 3CE5¶ | Sharp-Cutoff
RF Pentode | | 7BD | 5-2 | 3.15 | 0.6 | 2.0 | 300 | 150 | 6.5 ▲ | 1.9 ▲ | 0.03 | | SCF6¶ | Sharp-Cutoff
RF Pentode | | 7CM | 5–2 | 3.15 | 0.6 | 2.3 🏶 | 330 ◈ | 330 2 🆠
0.55 🏶 | 6.5 | 3.0 | 0.015 | | 3CN3 | Half-Wave High-
Voltage Recti-
fier | (A) | 8MU | Ť-X | 3.15 | 0.48 | _ | Tube Vo | oltage D
at 7.0 n | rop:
na d-c | | I | | 3CN3-A | Half-Wave High-
Voltage Recti-
fier | (A) | 8MU |
T-X | 3.15 | 0.48 | _ | Tube Vo
60 volts | oltage D
at 7.0 n | rop:
1a d-c | | | | 3CN3-B | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8MU | 9-153 | 3.15 | 0.48 | - | Tube Vo
60 volts | oltage D
at 7.0 n | rop:
1a d-c | | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A—X-Radiation Rated, and A—No X-Radiation Rating. Compactron. Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ⊕Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance. | Service | | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|---------------------------------------|---|---|---------------------------------|----------------------------------|--|----------------------------------|--|--|--------------------------------|----------------| | Sync Sepa-
rator and
AGC Keyer | | 67.5
acteristi | cs give | | 5.0
—
or each
ground | section sep | 1,500
parately | | $E_{c3} = 0$ $E_{c3} = 0$ late and | volts | <i>3BU8</i> ¶ | | Sync Sepa-
rator and
AGC Keyer | numb | 67.5
acterist
er 3 of | ics give
opposite | n are f | n groun | | | | E _{cs} = | | 3BU8-A¶ | | TV Flyback
Rectifier | Max in
30,000
110 ma
near he | 3BW2 ■ | | | | | | | | | | | Gated
Amplifier | 250
10 | 100
25 | $\begin{array}{c} 2.5 \\ 0 \end{array}$ | 6.5
1.4 | 9
3.5 | | | $ \begin{array}{c} E_{c3} = -\\ E_{c3} = 0 \end{array} $ | -2.5 vol
volts | lts | 3BY6¶ | | Class A
Amplifier | 125
125 | 125
125 | R _k = 56
4.5 | 14 | 3.6 | 260,000 | 8,000
700 | _ | - | | \$BZ6¶ | | TV Flyback
Rectifier | 28,000
80 ma. | volts);
Socket | max d- | c outpu
Is I and | t currer
13 may | \Rightarrow = 33,0
at \Rightarrow = 1.
be used as
act to any of | l ma; n
tie poin | nax pea | k curre | nt 🏟 😑 | 3C2 | | Class A
Amplifier
Class A
Amplifier | 90
90 | 90 | 9.0 | 6.0†
6.0† | 1.4†
1.4† | _ | 1,550
1,450 | _ | 8,000
10.000 | | 3C5-GT | | Class A Amplifier Class A Amplifier | 90
90
90
90 | = | 0 0 | 4.5
4.5
4.5
3.2 | | 11,200
11,200
11,200
12,800 | 1,300
1,300
1,300
1,100 | 14.5
14.5
14.5
14.1 | = | | 3C6 | | Controlled
Rectifier | Max 6 | i-c cath
volts; n | ode cur | rent 🖭
k catho | =1.5 a
de curre | mperes; main ent = 6.0 | ax peak | inverse | voltag | e 🖲 = | 3C23 | | TV Flyback
Rectifier | j 🄷 = 1 | 00 ma; | max pea | ık curre | nt 🔷 = | = 30,000 100 ma. Sor near heat | ocket te | rminals | output
4 and 6 | current
may be | 3CA3 | | TV Flyback
Rectifier | 30,000
100 ma | volts); | max d-c | outpu | t currer | | 0 ma; n | nax pea | k curre | nt 🐵 🛥 | 3CA3-A | | Class A
Amplifier | 125
125 | 125
125 | Rk = 56
3.0 | 13
2.8 | 3.7 | 280,000 | 8,000 | | | | <i>\$CB6</i> ¶ | | Class A
Amplifier | 125 | 125 | 1.0 | 11 | 2.8 | 300,000 | 7,600 | <u> </u> | | | 3CE5¶ | | Class A
Amplifier | 125
125 | 125
125 | $\begin{array}{c} R_k = \\ 56 \\ 3.0 \end{array}$ | 12.5
2.2 | 3.7 | 300,000 | 7,800 | | _ | | 3CF6¶ | | TV Flyback
Rectifier | 30,000
110 ma | volts); | max d-d | outpu | t currer | | 2 ma; π | iax pea | k curre | nt 🐵 😑 | 3CN3 | | TV Flyback
Rectifier | Max in
30,000
110 ma
near he | verse v
volts);
. Socket | ompone | nt 🔷 =
nt 🗞 =
nts at or | 3CN3-A
● | | | | | | | | TV Flyback
Rectifier | Max in
30,000
110 ma | verse v
volts);
. Socket
ater po | oltage (
max d-
termin | d-c and
c outpu
als 4 an | l peak)
t currer
d 6 may | ■ = 38,0
nt = 2.5
be used as | 00 volts
2 ma; n
tie poir | (d-c conax pea
its for c | mpone
k curre
ompone | nt 📵 =
nt 🚸 =
nts at or | 3CN3-B
● | | Tube | Classification | X-Ra- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | | pacitano
Picofara | | |-------------|---|-------------------|---------------|--------------|---------------|--------------|----------------|-------------------|-----------------------|-------------------|----------------------|----------------| | Type | | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 3CS6¶ | Dual Control
Heptode | | 7CH
♥ | 5-2 | 3.15 | 0.6 | 1.0 | 300 | 300 2
1.0 | 5.5 | 7.5 | 0.07 | | BCU3 | Half-Wave High-
Voltage Recti-
fier | • | 8МК | T-X | 3.15 | 0.28 | | Tube V
50 volt | oltage s at 7.0 | Drop:
ma d-c | : | | | BCU3-A | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8M K | 9-153 | 3.15 | 0.28 | | | oltage s
s at 7.0 | | | | | 3CV3 | Half-Wave High-
Voltage Recti-
fier | | 8EZ | 9-51 | 3.15 | 0.25 | | Tube V
100 vo | Voltage
Its at 9. | Drop:
5 ma d | -c | | | 3CV3-A | Half-Wave High-
Voltage Recti-
fier | | 8EZ | 9–153 | 3.15 | 0.27 | | Tube \
100 vo | Voltage
lts at 9. | Drop:
5 ma d | -c | | | 3CX3 | Half-Wave High-
Voltage Recti-
fier | • | 8MT | T-X | 3.15 | 0.48 | | Tube V
60 volt | Voltage
s at 7.0 | Drop:
ma d-o | 2 | | | BCY3 | Half-Wave High-
Voltage Recti-
fier | | 8M X | 9-161 | 3.15 | 0.22 | *** | Tube V
60 volt | Voltage
s at 7.0 | Drop:
ma d-o | 2 | | | SCY5¶ | Sharp-Cutoff RF
Tetrode | | 7EW | 5-2 | 2.9 | 0.45 | 2.0 🆠 | 180 ◈ | 180 ♦ \$ | 4.5 | 3.0 | 0.03 | | 3CZ3 | Half-Wave High-
Voltage Recti-
fier | | 8EZ | T-X | 3.15 | 0.48 | | Tube V
60 volt | oltage
s at 7.0 | Drop:
ma d- | -l <i></i> | -[, | | 3CZ3-A
● | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8EZ | T-X | 3.15 | 0.48 | | Tube V
60 volt | Voltage
is at 7.0 | Drop:
ma d- | 2 | | | 3D6 | Beam Power
Amplifier | | 6BA | 9-30 | 1.4
DC | 0.22 | 4.5 | 180 | 135 | 7.5 | 6.5 | 0.30 | | BDA3 | Half-Wave High-
Voltage Recti-
fier | | 8MY | 9-161 | 3.15 | 0.48 | | | Voltage
s at 7.0 | | | - | | 3DB3 | Half-Wave High-
Voltage Recti-
fier | | 8MX | 9-161 | 3.15 | 0.245 | **** | | Voltage
s at 7.0 | | 2 | | | 3DC3 | Half-Wave High-
Voltage Recti-
fier | | 8MZ | 9–153 | 3.15 | 0.280 | | Tube V
50 volt | Voltage
s at 7.0 | Drop:
ma d-o | 2 | | | 3DF3 | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8MT | 9–161 | 3.15 | 0.48 | _ | Tube V
60 volt | Voltage
ts at 7.0 | Drop:
ma d- | e | | | 3DF3-A | Half-Wave High-
Voltage Recti-
fier | | 8MT | T-X | 3.15 | 0.48 | _ | Tube V
60 volt | Voltage
ts at 7.0 | Drop:
ma d- | c | | | 3DG4 | Full-Wave High-
Vacuum
Rectifier | | 5DE | 12-16 | 3.3 | 3.8 | | | Tube V
32 volt | oltage
s at 35 | Drop: 4
0 ma d- | c | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— [A]—X-Radiation Rated, and (A)—No X-Radiation Rating. Compactron. † Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. ⊕Subminiature type.▲Without external shield.⊕Design maximum rating. ⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | put,
Watts | Tube
Type | |-------------------------|-----------------------------|--|------------------------------|---------------------------------|----------------------------------|---|-----------------------------------|---|--|------------------------------|--------------| | Gated
Amplifier | 100
100
10 | 30
30
30 | 1.0
0
0 | 1.0
0.8
2.0 | 1.3
5.5
4.5 | 1,000,000
700,000 | 1,100 | $ \begin{aligned} \mathbf{E}_{\mathbf{c3}} &= 0 \\ \mathbf{E}_{\mathbf{c3}} &= 0 \\ \mathbf{E}_{\mathbf{c3}} &= 0 \end{aligned} $ | -1.0 vol | ts | 3CS6¶ | | TVFlyback
Rectifier | 27,500
100 ma | volts); | max d-d
termin | c outpu
als 4 an | t currer | | 0 ma: n | lax nea | k curre | nt 🏟 🖚 | 3CU3 | | TV Flyback
Rectifier | 30,000
100 ma | volts): | max d-d
termin | c outpu
als 4 an | t currer | ■ = 38,0
at � = 2.
be used as | 0 ma· n | nav nes | k curre | nt 🙈 🛥 | | | TV Flyback
Rectifier | 27,500
100 ma | volts); | max d-:
termin | : outpu | t currer | 1 = 35,0
it | 9 ma: n | nax pra | k curre | nt 🏇 🛥 | | | TV Flyback
Rectifier | 27,500
100 ma
near he | volts);
Socket
ater pot | max d-e
termin
ential. | c outpu
als 4 ai | t currer
nd 6 ma | ■ = 35,0
it * = 1.
y be used | 9 ma; n
as tie po | nax pea | k curre
compo | nt 🦫 =
nents at | 3CV3-A | | TV Flyback
Rectifier | 110 ma | voits): | max d-(
termin | : outpu | t curren | | 2 ma: n | lax rea | k curre | nt 🌤 😑 | 3CX3 | | TV Flyback
Rectifier | 30,000
110 ma | volts): | max
d-o
termin | coutou | t currer | ■ = 38,0
it | 0 ma: n | nax nea | k curre | nt 🗆 🖚 | 3CY3 | | Class A
Amplifier | 125 | 80 | 1.0 | 10 | 1.5 | 100,000 | 8,000 | | | | 3CY5¶ | | TV Flyback
Rectifier | 30,000
110 ma | volts): | max d-e
termin | CONTRACT | t currer | = 38,0 at *= 2. be used as | 2 mar n | ax nea | k curren | nt 🌥. = | 3CZ3 | | TV Flyback
Rectifier | 30,000
110 ma | volts); | max d-o
termin | coutou | t currer | ■ = 38,0 at * = 2. be used as | 2 ma: n | ax nea | k currer | nt 🌤 = | | | Class A
Amplifier | 150 | 90 | 4.5 | 9.8† | 1.0† | | 2,400 | - | 14,000 | 0.60 | 3D6 | | TV Flyback
Rectifier | 30,000
110 ma | volts); | max d-
termin | c outpu | it curre | ■ = 38,0
nt | .2 ma: 1 | nax pea | ik curre | nt 🌤 = | 3DA3 | | TV Flyback
Rectifier | 30,000
100 ma
near he | volts);
i. Socket
eater po | max d-
termin
tential. | c outpu
als 4 ar | it currei
id 6 maj | ■ = 38,0
nt * = 2,
7 be used a | .0 ma; r
s tie poi | nax pea
nts for o | k curre
compone | nt 🍫 = | | | TV Flyback
Rectifier | 30,000
110 ma | volts); | max d-
t termir | c outpu
ials 4, (| it currei | ■ = 38,0
nt ◆ = 2
may be us | .2 ma: r | nax pea | ık curre | nt 🌤 = | | | TV Flyback
Rectifier | 30,000
110 ma | verse v
volts);
. Socket
eater po | max d-
: termin | (d-c and
c outpu
als 1 an | d peak)
it currei
id 7 may | ■ = 38,0
nt | 000 volt.
2 ma; i
s tie poi | s (d-c c
nax pea
nts for c | ompone
k curre
compone | nt 🖲 =
nt 🍫 =
nts at o | 3DF3 | | TV Flyback
Rectifier | 30,000
110 ma
near he | volts);
i. Socket
eater po | max d-
termin
tential. | c outpu
als I an | t currend 7 may | ■ = 38,0
nt | .2 ma; r
s tie poi | nax pea
nts for o | k curre
compone | nt 🍫 = | 3DF3-A | | Full-Wave
Rectifier | Max | d-c out;
050 vol
nt per p | out cur
s; max
late 🏶 | rent pe
RMS s
=1200 | r plate
upply v
ma | ♦ =400 m oltage per j | ia; max
olate 🏶 | peak i
=325 v | nverse
olts; ma | voltage
x peak | 3DG4 | | Tube | Classification | X-Řa- | Base
Con- | Out- | Fila- | Fila- | Max. | Max. | Max.
Screen | Cap | acitano
icofara | e in
ds | |---------|---|-------------------|---------------|--------------|---------------|--------------|----------------|-------------------|----------------------------------|---------------------------|--------------------|----------------| | Туре | Construction | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | Plate
Watts | Plate
Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 3DH3 | Half-Wave High-
Voltage Recti-
fier | 25.0
mR/hr | 8NM | 9–161 | 3.15 | 0.48 | _ | Tube V
70 volt | oltage l
s at 7.0 | Drop:
ma d-c | 1 | | | 3DJ | Half-Wave High-
Voltage Recti-
fier | 25,0
mR/hr | 8MX | 9-169 | 3.15 | 0.3 | _ | Tube V
70 volt | oltage l
at 7.0 | Drop:
ma d-c | , | | | 3DK6¶ | Sharp-Cutoff
Pentode | | 7CM | 5-2 | 3.15 | 0.6 | 2.3 🏶 | 330 € | 330 ♦ \$
0.55 ♦ | 6.3 ▲ | 1.9▲ | 0.025 | | 3DR3 | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 8NL | 12-141 | 3.15 | 0.3 | _ | Tube V
70 volt | oltage l
s at 7.0 | Drop:
ma d-c | 1 | | | 3DS3 | Half-Wave High-
Voltage Recti-
fier | 0.5
mR/hr | 8NL | T-X | 3.15 | 0.48 | | Tube V
70 volt | oltage l
s at 7.0 | Drop:
ma d-c | • | | | 3DT6¶ | Sharp-Cutoff
Pentode | | 7EN | 5-2 | 3.15 | 0.6 | 1.7 ◈ | 330 ◈ | 330 ♦ \$
1.1 ♦ |
I _{e1} = 0.0 | 5 ma | 1 | | 3DT6-A¶ | Sharp-Cutoff
Pentode | | 7EN | 5-2 | 3.15 | 0.6 | 1.7 ◈ | 330 � | 330 ♦ \$ | | | - | | 3DX4¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 3.0 | 0.45 | 2.2 🄷 | 150 ◈ | | 3.9 | 1.5 | 1.6 | | 3DY4¶ | UHF Triode
Oscillator | | 7DK | 5-2 | 2.9 | 0.3 | 1.5� | 135 🏶 | | 3.5 | 1.15 | 2.0 | | 3DY4-A¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 2.9 | 0.3 | 1.5 🏶 | 135 � | | 3.5 | 1.15 | 2.0 | | 3DZ4¶ | UHF Triode
Oscillator | | 7DK | 5-1 | 3.2 | 0.45 | 2.3 🏶 | 135 € | 1 - | 2.2 | 1.3 | 1.8 | | 3E5 | Beam Power
Amplifier | | 6BX | 5-2 | 1.4 | 0.05 | | 135 | 90 | Paralle | l Filam | ients | | | - | | | | 2.8
DC | 0.025 | - | 135 | 90 | Series 1 | Filame | nts | | 3E6 | Sharp-Cutoff RF
Pentode | ì | 7CJ | 930 | 2.8 | 0.05 | _ | 110 | 110 | Series 1 | | | | | | | | | 1.4
DC | 0.1 | | 110 | 110 | Paralle | l Filan | ents | | 3EA5¶ | Sharp-Cutoff RF
Tetrode | | 7EW | 5-2 | 2.9 | 0.45 | 3.25 | 250 € | 150 (a) | 4.5 | 3.0 | 0.05 🌩 | | 3EH7 | Remote-Cutoff
Pentode | | 9AQ | T-X | 3.4 | 0.6 | 2.5 | 250 | 250
0.65 | 9.5 | 3.0 | 0.005 | | 3EJ7 | Sharp-Cutoff
Pentode | | 9AQ | T-X | 3.4 | 0.6 | 2.5 | 250 | 250
0.9 | 10 | 3.0 | 0.005 | | 3ER5 | High-Frequency
Triode | | 7FP | 5-2 | 2.8 | 0.45 | 2,2 | 250 | | 4.4 | 4.0 | 0.36 | | 3ES5¶ | High-Frequency
Triode | | 7FP | 5-2 | 3.0 | 0.45 | 2.2 🏟 | 250 € | = | 3.2 | 4.0 | 0.5 | | 3EV 6¶ | Sharp-Cutoff RF | · | 7EW | 5-2 | 2.9 | 0.45 | 3.25 ◈ | 275 ◈ | 180 \$ | 4.5 | 2.9 | 0.035 | | 3FH5¶ | High-Frequency
Triode | | 7FP | 5–2 | 3.0 | 0.45 | 2.2 🏶 | 150 ◈ | | 3.2 | 4.0 | 0.52 | | 3FQ5¶ | High-Frequency
Triode | + | 7FP | 5–2 | 2.8 | 0.45 | 2.5 🏟 | 200 ◈ | | 4.8 | 4.0 | 0.4 | | 3FQ5-A¶ | High-Frequency
Triode | | 7FP | 5-2 | 2.8 | 0.45 | 2.5 🌑 | 200 🏶 | = | 5.0 | 3.5 | 0.52 | | 8FS5¶ | "Shadow Grid"
Beam Pentode | | 7GA | 5-2 | 2.9 | 0.45 | 3.25 ◈ | 300 ◈ | 150 ③
0.15 ④ | 4.8 | 2.8 | 0.016 | \$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A—X-Radiation Rated, and A—No X-Radiation Rating. Compactron. † Zero signal. Per section. † Plate-to-plate. †Maximum. †Supply voltage. ●Subminiature type. ▲Without external shield. ◆Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | Ohms | G _m ,
μmhos | tor | Load
for
Rated
Out-
put,
Ohms | watts | Tube
Type | |-----------------------------------|-----------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|---|---------------------------|-------------------|--|--------------------|---------------| | TV Flyback
Rectifier | 30,000
110 ma
at or n | volts);
a. Socke
ear hea | max det termi
ter pote | c outpu
nals 1, 2
ntial. | t currer
2 and 7 | ■ = 38,0
nt ● = 2,
may be us | 2 ma; n
ed as tie | nax pea
points | k curre
for con | nt 🐞 =
nponents | 3DH3 | | TV Flyback
Rectifier | 30,000
100 ma | volts); | -max d
t termir | c outpu | t curre | | 0 ma; n | nax pea | ık curre | nt 伦 😑 | 3DJ3 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 12 | 3.8 | 350,000 | 9,800 | | | | 3DK6¶ | | TV Flyback
Rectifier | 30,000
Socket
heater | volts);
termina
potentia | max d-c
als 4 and
al. | output
d 7 may | current
be use | = 38,0= 2.0 mad as tie po | ; max p
ints for | eak cur
compoi | rent =
nents at | or near | 3DR3 | | TV Flyback
Rectifier | 30,000
Socket
near he | volts); n
termina
ater po | nax d-c o
als 4 an
tential. | output c | urrent 🤄 | = 38,0 = 2.2 ma d as tie po | max pe | ak curre | nt 🙈 = | 110 ma | 3DS3 | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.1 | 2.1 | 150,000 | 800 | _ | $E_{c3} = 0$ | volts | <i>3DT6</i> ¶ | | FM Limiter-
Discrimina-
tor | 250\$ | 100 | R _k = 560 | 0.22 | 5.5 | $\mathbf{E_{c3}} = -6$ | .0 völts | | 270,-
000 | - | | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.55 | 1.8 | 150,000 | 1,350 | E _{c3} = | 0 volts | | 3DT6-A¶ | | Class A
Amplifier | 85 | | Rk =
150 | 10 | _ | 2,700 | 11,000 | 30 | _ | | 3DX4¶ | | Class A
Amplifier | 90 | | Rk =
180 | 10.4 | _ | | 11,000 | 28 | | | 3DY4¶ | | Class A
Amplifier | 90 | _ | Rk =
180 | 10.4 | _ | | 11,000 | 28 | | | 3DY4-A¶ | | Class A
Amplifier | 80
With | 2,700 o | hm resi | 15
stor in 1 | late cir | 2,000
cuit | 6,700 | 14 | I — | - i | 3DZ4¶ | | Class A
Amplifier | 90
67.5 | 90
67.5 | 7.0
5.0 | 8.0
5.5 | 1.6 | 100,000
120,000 | 1,550
1,400 | _ | 8,000
8,000 | 0.250 | 3E5 | | Class A
Amplifier | 90
67.5 | 90
67.5 | 7.0
5.0 | 6.8 | 1.4 | 120,000 | 1,450 | _ | 9,000 | 0.225 | | | Class A | 90 | 90 | Re = | 2.9 | 1.2 | 325,000 | 1.300 | -=- | 11,000 | 0.115 | 3E6 | | Amplifier
Class A
Amplifier | 90 | 90 | 2 meg
Rg =
2 meg | 4.2 | 1.7 | 250,000 | 2,000 | _ | _ | - | | | Class A
Amplifier | 250 | 140 | 1.0 | 10 | 0.95 | 150,000 | 8,000 | | | <u> </u> | 3EA5¶ | | Class A
Amplifier | 200 | 90 | 2.0 | 12 | 4.5 | 500,000 | 12,500 | | | | 3EH7 | | Class A
Amplifier | 200 | 200 | 2.5 | 10 | 4.1 | 350,000 | 15,000 | | _ | | 3EJ7 | | Class A
Amplifier | 200 | _ | 1.2 | 10 | _ | | 10,500 | 80 | _ | | 3ER5 | | Class A
Amplifier | 200 | _ | 1.0 | 10 | | 8,000 | 9,000 | 75 | | | 3ES5¶ | | Class A
Amplifier | 250 | 80 | 1.0 | 11.5 | 0.9 | 150,000 | 8,800 | | | | 3EV5¶ | | Class A
Amplifier | 135 | | 1.0 | 11 | | 5,600 | 9,000 | 50 | | | 3FH5¶ | | Class A
Amplifier | 135 | | 1.2 | 11.5 | | 5,500 | 11,000 | 60 | | | 3FQ5¶ | | Class A
Amplifier | 135 | | 1.2 | 8.9 | | 6,300 | 12,000 | 74 | _ | | 3FQ5-A¶ | | Class A
Amplifier | 275 | 135 | 0.2 | 9.0 | 0.17 | 240,000 | 10,000 | | | _ |
3FS5¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitano
cofarad | e in
Is | |-----------------|----------------------------------|---------------|------------|------------------|---------------|--------------------------------|--------------|-------------------------------|--------------------------|--------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Voits | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 3FW7¶ ⊚ | Double Triode | 8LM | T-X | 3.5 | 0.6 | i — i | 150 ◈ | | Section | 1 (Pir | s ö, | | | | | | | | | 150 ◈ | _ | 7, 8)
Sectio
2, 3) | n 2 (Pi | ns 1, | | 3FX7¶ ⊚ | Twin Triode | 8LK | T-X | 3.5 | 0.6 | 1.7 ⊕ ♠
3.2
Total | 100◈ | | | | = | | 3GK5¶ | High-Frequency Triode | 7FP | 5–2 | 2.8 | 0.45 | 2.5♦ | 200 ◈ | | 5.0 | 3,5 | 0.52 | | 3GS8¶ | Twin Pentode | 9LW | 6–3 | 3.15 | 0.6 | 1.1 🆠 | 300 ◈ | 150 ♦
0.75 ♦ | | | | | \$GU6¶ | "Shadow-Grid"
Beam Pentode | 7GA | 5-2 | 3.1 | 0.45 | 3.0 ◈ | 300 ◈ | 150 () | 7.0 ▲ | 3.2 ▲ | 0.018 | | 3GW 5¶ | High-Mu Triode | 7GK | 5-2 | 3.0 | 0.45 | 2.5 🏶 | 200 🏶 | | 5.5 | 4.0 | 0.6 | | 3HA5 | High-Mu Triode | 7GM | 5-1 | 2.7 | 0.45 | 2.6 🏶 | 220 ◈ | | 4.3 | 2.9 | 0.36 | | 3H K 5¶ | High-Frequency Triode | 7GM | 5–2 | 2.9 | 0.45 | 2.3 🏟 | 200 ◈ | | 4.4 | 2.6 | 0.29 | | <i>3HM 5</i> ¶ | High-Mu Triode | 7GM | 5–2 | 2.9 | 0.45 | 2.6 🏶 | 200 ◈ | | 4.5 | 3.0 | 0.34 💠 | | 3HM6¶ | Sharp-Cutoff
RF Pentode | 9PM | 6–2 | 3.15 | 0.6 | 2.5 🏶 | 250 � | 250 8 🆠
0.6 🏶 | 8.7 | 3.0 | 0.024 | | 3HQ5¶ | Triode | 7GM | 5–2 | 3.0 | 0.45 | 2.5 🏶 | 200 🏟 | - | 5.0 | 3.5 | 0.52 | | 3HS8¶ | Twin Pentode | 9FG | 6–3 | 3,15 | 0.6 | 1.1 | 300 ◈ | 0.75 (a) | - | | - | | 3HT6¶ | Semi-Remote-Cutoff
RF Pentode | 9PM | 6-2 | 3.15 | 0.6 | 2.5 ◈ | 250 ♦ | 250 \$ @ 0.6 | 8.7 | 3.0 | 0.024 | | 3JC6¶ | Sharp-Cutoff Pentode | 9PM | 6-2 | 3.5 | 0.6 | 2.5♦ | 330 ♦ | | 8.2 ▲ | 3.0 ▲ | 0.019 | | 3JC6-A | Sharp Cutoff
Pentode | 9PM | 6-2 | 3.5 | 0.6 | 3.1 🏶 | 330 ◈ | | 8.5 ▲ | 3.0 ▲ | 0.019 | | 3JD6¶ | Sharp-Cutoff Pentode | 9PM | 6-2 | 3.5 | 0.6 | 2.5 🏶 | 330 ◈ | | 8.2 ▲ | 3.0 ▲ | 0.019 | | 3KF8¶ | Twin Pentode | 9FG | 6-3 | 3.15 | 0.6 | 1.1 🌢 | 300 � | | | - | | | 3KT6 | Semi-Remote-Cutoff Pentode | 9PM | 6–2 | 3.5 | 0.6 | 3.1 🏶 | 330 ◈ | 330\$ ♦ | 9.5 ▲ | 3.0 ▲ | 0.019 | | 3LE4 | Power Amplifier Pentode | 6BA | 9-30 | | 0.1 | | 110 | 110 | | l Filan | • | | | | | | 2.8
DC | 0.05 | | 110 | 110 | | Filame | | | 3LF4 | Beam Power Amplifier | 6BB | 9-30 | | 0.05 | | 110 | 110 | | Filame
I Filam | | | 3Q4 | Power Amplifier Pentode | 7BA | 5-2 | 1.4
DC | 0.1 | . | 90 | 90 | | l Filan | | | 3(/4 | Fower Amplifier Fentode | 1 DA | 3-2 | | 0.1 | | 90 | 90 | | Filame | | | 305-GT | Beam Power Amplifier | 7AP | 9-11 | 2.8
DC
1.4 | 0.1 | l | 110 | 110 | Paralle | l Filan | ents | | | | | or
9-41 | 2.8 | 0.05 | _ | 110 | 110 | | Filame | | | 3 S4 | Power Amplifier Pentode | 7BA | 5-2 | DC
1.4 | 0.1 | - | 90 | 67.5 | Paralle | l Filan | nents | | | | | | 2.8
DC | 0.05 | - | 90 | 67.5 | Series | Filame | nts | | 3V4 | Power Amplifier Pentode | 6BX | 5-2 | 1.4 | 0.1 | 1- | 100⊛ | 100� | Paralle | l Filan | nents | | | 1 | | | 2.8
DC | 0.05 | - | 100� | 100� | Series | Filame | nts | Compactron. † Zero signal. † Per section. Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ■Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | Rp,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------------------|--------------------|-----------------|--|---------------------------------|----------------------------------|-------------------------------|---------------------------|------------------|--|--------------------------------|----------------| | Class A | 90 | | 1.0 | 7.0 | <u> </u> | 6,000 | 6,000 | 36 | | - 1 | 3FW7¶ ● | | Amplifier
Class A
Amplifier | 90 | | 1.0 | 9.0 | - | 3,800 | 9,500 | 36 | | - | | | Class A
Amplifier | 90 | | 1.0 | 9.0 | _ | 3,800 | 9,500 | 36 | | | 3FX7¶ ⊚ | | Class A
Amplifier | 135 | | 1,0 | 11.5 | | 5,400 | 15.000 | 78 | | | 3GK5¶ | | Sync Sepa- | 100 | 67.5 | I _{c1} = | 2.0 • | 3.6 | (Both sec | tions | | Ec3 = 0 | volts | 3GS8¶ | | rator and
AGC Keyer | 100 | 67.5 | 0,1 ma
0 | _ | - | operatir | 1,200 | _ | E es =0 | 0 volts | | | | (Plate | and gri | d numb | er 3 of o | pposite | section grou | inded) | | | | 0077-5 | | Class A
Amplifier | 275 | 135 | 0.4 | 10 | 0.17 | 165,000 | 15,500 | _ | | | 3GU5¶ | | Class A Amp | 135 | | 1.0 | 12.5 | | 5,800 | 15,000 | 70 | | | 3GW5¶ | | Class A
Amplifier | 135 | | 1.0 | 11.5 | _ | _ | 14,500 | 72 | | | 3HA5 | | Class A
Amplifier | 135 | | 1.0 | 12.5 | | 5,000 | 15,000 | 75 | | | 3HK5¶ | | Class A
Amplifier
Class A | 135 | 125 | 1.0
R _k = | 12.5 | 3.2 | 156,000 | 14,500 | 78 | | | 3HM5¶
8HM6¶ | | Amplifier
Class A | 135 | | 56 | 11.5 | | 5,400 | 15,000 | 78 | | | 3HQ5¶ | | Amplifier | | | | | | | <u> </u> | | \ <u></u> | 0 14-1 | | | Sync Sepa-
rator and
AGC Keyer | 100 | 67.5 | I _{c1} = 0.1 ma | 2.0 | 4.4 | (Both Sec | 1,100 | _ | T. | 0 volts | 3HS8¶ | | | | | | | | te section g | | 1) | | | | | Class A
Amplifier | 125 | 125 | $R_{k} = \frac{56}{Rk} = \frac{1}{R}$ | 15 | 3.2 | 143,000 | 14,000 | | | | 3HT6¶
3JC6¶ | | Class A
Amplifier
Class A | 125 | 125 | $\frac{RR}{56} = \frac{56}{R_k} = \frac{1}{2}$ | 14 | 3.4 | 180,000 | 16,000 | (93 | connect | ed to | 3JC6-A | | Amplifier | | | 56 | Ĺ | l | | l | kats | connect
socket) | | 3JD6¶ | | Class A
Amplifier | 125 | 125 | Rk = 56 | 15 | 4.0 | 160,000 | 14,000 | | | | | | Sync Sepa-
rator and
AGC Keyer | 100 | 67.5 | $I_{e1} = 0.1 \text{ ma}$ | 2.8 | - | - | 270 | - | i | 0 volts | SKF8¶ | | AGC Keyer | 100
(Char | 67.5 | 0 | n are f | or each | section se | 1,750 | with | Ecs≔
nlate an | 0 volts | | | | numb | er 3 of | opposite | section | a ground | led) | | | | | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 17 | 4.2 | 160,000 | 18,000 | | | 0 volts | 3KT6 | | Class A
Amplifier | 90 | 90 | 9.0 | 10† | 2.0† | 100,000 | 1,700 | _ | | 0.325 | 3LE4 | | Amplifier
Class A
Amplifier | 90 | 90 | 9.0 | 8.81 | 1.8† | 110,000 | 1,600 | | | 0.300 | | | Class A
Amplifier | 110
90 | 110
90 | 6.6
4.5 | 8.5
8.0 | 1.1 | 110,000
80,000 | 2,000 | | 8,000
8,000 | 0.23 | 3LF4 | | Class A | 110 | 110 | 6.6 | 10
9.5 | 1.4
1.3 | 100,000 | 2,200
2,200 | - | 8,000
8,000 | 0.40 | | | Amplifier Class A | 90 | 90 | 4.5 | 9.5 | 2.1† | 100,000 | 2,150 | | 10,000 | | 3Q4 | | Amplifier
Class A
Amplifier | 90 | 90 | 4.5 | 7.7† | 1.7† | 120,000 | 2,000 | - | 10,000 | 0.24 | | | Class A | 110 | 110 | 6.6 | 101_ | 1.41 | 100,000 | 2,200 | _ | 8,000 | 0.40 | 3Q5-GT | | Amplifier
Class A
Amplifier | 90
110
90 | 90
110
90 | 4.5
6.6
4.5 | 9.5†
8.5†
8.0† | 1.3†
1.1†
1.0† | 90,000
110,000
80,000 | 2,200
2,000
2,000 | = | 8,000
8,000
8,000 | 0.33 | | | Class A | 90 | 67.5 | 7.0 | 7.4† | 1.4† | 100,000 | 1,575 | T - | 8,000 | 0.270 | 3 S4 | | Amplifier Class A Amplifier | 67.5
90
67.5 | 67.5 | 7.0
7.0
7.0 | 7.2†
6.1†
6.0† | 1.5†
1.1†
1.2† | 100,000
100,000
100,000 | 1,550
1,425
1,400 | = | | 0.180
0.235
0.160 | | | Class A | 90 | 90 | 4.5 | 9.5t | 2.1† | 100,000 | 2,150 | _ | 10,000 | 0.27 | SV4 | | Amplifier { Class A Amplifier | 85
90 | 85
90 | 5.0
4.5 | 6.9†
7.7† | 1.5†
1.7† | 120,000
120,000 | 1,975
2,000 | | 10,000
10,000 | $0.25 \\ 0.24$ | | | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | oacitano
icofara | | |----------------|----------------------------------|---------------|--------------|--------------------|---------------|--------------|--------------|----------------------------------|------------------------------|---------------------|------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 3W4 | Power Amplifier
Pentode | 7BA | 5-2 | 1.4
2.8
DC | 0.05
0.025 | | 90 | 90 | | | | | C3J | Thyratron
same as 5632 | | | | | | | | | | | | 4A6-G | Twin Triode Power
Amplifier | 8L | 12-7 | (4.0
(2.0
DC | 0.06 } | _ | 90 | _ | _ | _ | - | | 4A U6¶ | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 4.2 | 0.45 | 3.0 | 300 | 150
0.65 | Pentod | e Conn | ection | | | | | | | | 3.2 | 250 | _ | Triode | Conne | ction
P tied) | | 4A V 6 | Duplex-Diode High-Mu
Triode | 7BT | 5-2 | 4.2 | 0.45 | 0.55 ♦ | 330 ♦ | = | 2,2 | 1.2 | 2.0 | | 4BA6¶ | Remote-Cutoff RF
Pentode | 7BK | 5-2 | 4.2 | 0.45 | 3.0 | 300 | 3002 | 5.5 | 5.5 | 0.003 | | 4BC6¶ | Sharp-Cutoff
RF Pentode | 7BD | 5-2 | 4.2 | 0.45 | 2.0 | 300 | 300 | Pentod | le Conn | ection | | | | | | | | 2.5 | 300 | | Triode
(G ₁ an | Conne | ction
1) | | 4 <i>BC8</i> ¶ | High-Frequency
Twin Triode | 9AJ | 6-2 | 4.2 | 0.6 | 2.2 | 250 ◈ | | 5.52 | 2.41 | 1.2 | |
4BE6¶ | Pentagrid Converter | 7CH | 5-2 | 4.2 | 0.45 | 1.1 | 330 🏶 | 110 (| Osc. I | 1 = 0.5
0,000 o | ma | | 4BL8 | Triode-Pentode | 9AE | 6-2 | 4.6 | 0.6 | 1.7 | 250 | 200 | Pentod | e Section | on | | | | | | | | 1.5 | 250 | - 0.13 | Triode | Section | 1 | | 4BN 4 | High-Frequency
Triode | 7EG | 5-2 | 4.2 | 0.3 | 2.2 | 275 ♦ | | 3.2 | 1.4 | 1.2 | | 4BN6¶ | Gated-Beam
Discriminator | 7DF | 5-3 | 4.2 | 0.45 | _ | 330 ◈\$ | 110 🏶 | E _{c1} = 1
RMS | .25 volt | s | | 4BQ7-A¶ | High-Frequency Twin Triode | 9AJ | 6-2 | 4.2 | 0.6 | 2.0 🏚 | 250 | | 2.61 | 1.21 | 1.2 | | 4BS8¶ | Medium-mu
Twin Triode | 9AJ | 6-2 | 4.5 | 0.6 | 2.0 ♠ | 150 | | 2.61 | 1.21 | 1.15 | | 4BU8¶ | Twin Pentode | 9FG | 6-3 | 4.2 | 0.45 | 1.1 🆠 | 300 ◈ | 150 ♦
0.75 ♦ | | | - | | 4 <i>BX8</i> ¶ | High-Frequency Twin Triode | 9AJ | 6-2 | 4.5 | 0.6 | 2.0 🏽 | 150 ◈ | | 2.42 | 1,252 | 1.4 | | 4 <i>BZ6</i> ¶ | Semi-Remote-Cutoff
RF Pentode | 7CM | 5-2 | 4.2 | 0.45 | 2.3 🏶 | 330 ♠ | 330 ♦ \$
0.55 ♦ | | 3.0 | 0.01 | | 4 <i>BZ</i> 7¶ | High-Frequency Twin Triode | 9AJ | 6-2 | 4.2 | 0.6 | 2.0 ♠ | 250 | - | 2.61 | 1.21 | 1.2 | | 4BZ8¶ | High-Frequency Twin Triode | 9AJ | 6-2 | 4.2 | 0.6 | 2.2 ♠ | 250 | = | | | = | | 4 <i>CB6</i> ¶ | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 4.2 | 0.45 | 2.3 🏶 | 330 ◈ | 330 ♦ \$ | 6.5 | 3.0 | 0.01 | | 4CEδ¶ | Sharp-Cutoff
RF Pentode | 7BD | 5-2 | 4.2 | 0.45 | 2.0 | 300 | 3008 | 6.5 ▲ | 1.9 ▲ | 0.03 | | 4CS6¶ | Dual-Control Heptode | 7CH | 5-2 | 4.2 | 0.45 | 1.0 | 300 | 100 | 5.5 | 7.5 | 0.07 | | 4CX7¶ | Medium-mu
Twin Triode | 9FC | 6-2 | 4.2 | 0.6 | 2.0 ♠ | 250 | | 2.41 | 1.31 | 1.21 | | 4CY5¶ | Sharp-Cutoff RF
Tetrode | 7EW | 5-2 | 4.5 | 0.3 | 2.0 🏶 | 180 ◈ | 180 ♦ \$
0.5 ♦ | 4.5 | 3.0 | 0.03 | | 4DE6¶ | Sharp-Cutoff RF
Pentode | 7CM | 5-2 | 4.2 | 0.45 | 2.3 🏶 | 330 ◈ | 330 ♦ \$
0.55 ♦ | | 3.0 | 0.01 | | 4DK6¶ | Sharp-Cutoff Pentode | 7CM | 5-2 | 4.2 | 0.45 | 2.3 | 330 € | | | 1.9 ▲ | 0.025 | Compactron. † Zero signal. †Per section. Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Plate Screen | | , , | | | | | |---|--------------------------|---------------------------|-------------------|--|--------------------------------|---------------| | Service Plate Volts Screen Grid William-peres Plate | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Class A | 150,000 | 1,700 | _ | 11,000 | 0.25 | \$W4 | | Class A Amplifier ♠ 90 — 1.5 1.2 — | 28,000 | 900 | 25 | | - | 4A6-G | | Class A 250 150 R _k = 10.6 4.3 | 1,000,000 | 5,200 | _ | _ | - | 4A U6¶ | | Amplifier 100 100 $R_k = 5.0 2.1 $ Class A 250 $R_k = 12.2 $ | 500,000 | 3,900 | | - | - | | | Amplifier 330 | 40 500 | 4,800 | 36 | | | / A 1/ OF | | Amplifier 100 1.0 0.5 | 62,500
80,000 | 1,600
1,250 | 100
100 | 三 | _=_ | 4A V6¶ | | Class A 250 100 R _k = 11 4.2 Amplifier 100 100 R _k = 11 4.2 | 1,000,000 | 4,400 | _ | _ | - | 4BA6¶ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 250,000 | 4,300 | _ | | | , D.C# | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 800,000 | 5,700 | | - | _ | 4BC5¶ | | Amplifier 100 | 500,000
600,000 | 6,100
4,900 | _ | _ | _ | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 9,000 | 4,400 | 40 | | | | | Class A | 6,000 | 6,000 | 42 | _ | _ | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5,300 | 6,200 | 35 | | | 4BC8¶ | | Amplifier ◆ 250 100 1.5 2.9 6.8 | 1,000,000 | 475# | | | | 4BE6¶ | | Class A 100 170 170 170 2.0 10 2.8 | 400,000 | 455#
6,200 | | | | 4BL8 | | Amplifier Class A 100 — 2.0 14 — | 4,000 | 5,000 | 20 | _ | - | , | | Class A Amplifier 150 — R _k = 9.0 — | 6,300 | 6,800 | 43 | | | 4BN 4 | | FM Limiter-
Discrimina-
tor 285\$ 100 R _k = 0.49 9.8 100 to 400 | | _ | | 330,-
000 | | 4BN6¶ | | Class A Amplifier ♠ 150 | 5,900 | 6,400 | 38 | | | 4BQ7-A¶ | | Class A Amplifier \spadesuit 150 - $R_k = 10$ - | 5,000 | 7,200 | 36 | | - | 4BS8¶ | | Sync Sepa-
rator and 100 67.5 I _{c1} = 2.2 5.0 | | | | Ec3 = 0 | | 4BU8¶ | | AGC Keyer 100 67.5 0 — —
(Characteristics given are for each section separa opposite section grounded) | tely with | 1,500
plate a | | E _{c3} = 0
numbe | r 3 of | | | Class A 65 — 1.0 9.0 — | 3,750 | 6,700 | 25 | | | 4BX8¶ | | Class A 125 125 R _k =56 14 3.6 Amplifier 125 125 4.5 — | 260,000 | 8,000
700 | = | _ | | <i>4BZ6</i> ¶ | | Class A Amplifier Φ 150 $R_k = 10$ $R_k = 10$ | 5,300 | 6,800 | 36 | _ | _ | 4BZ7¶ | | Class A Amplifier ♠ 125 | 5,600 | 8,000 | 45 | _ | | 4BZ8¶ | | Class A 125 125 R _k =56 13 3.7 Amplifier 125 125 3.0 2.8 — | 280,000 | 8,000 | = | | | 4CB6¶ | | Class A Amplifier 125 125 1.0 11 2.8 | 300,000 | 7,600 | | | - | 4CE5¶ | | Gated 100 30 1.0 1.0 1.3 100 30 0 0.8 5.5 10 30 0 2.0 4.5 | 1,000,000
700,000 | 1,100 | E _{c3} = | 0 volts
-1.0 vo
0 volts | olts | 4CS6¶ | | Class A Amplifier ♠ 150 - R _k = 9.0 - | 6,100 | 6,400 | 39 | <u> </u> | | 4CX7¶ | | Class A 125 80 1.0 10 1.5 | 100,000 | 8,000 | | | | 4CY5¶ | | Class A 125 125 R _k =56 15.5 4.2 Amplifier 125 125 5.5 — — | 250,000 | 8,000
700 | | = | | 4DE6¶ | | Class A Amplifier 125 125 R _k = 12 3.8 | 350,000 | 9,800 | - | | | 4DK6¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ▼G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3. etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Voits | Cap
P | acitanc
icofarac | e in
Is | |-----------------|----------------------------------|---------------|------|---------------|---------------|---------------|--------------|----------------------------------|-----------------------------|-----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 4DT6¶ | Sharp-Cutoff Pentode | 7EN | 5-2 | 4.2 | 0.45 | 1.7◆ | 330 ◈ | 330 ♦ \$ | I _{c1} =0. | 6 ma | <u> </u> | | <i>4DT6-A</i> ¶ | Sharp-Cutoff Pentode | 7EN | 5-2 | 4.2 | 0.45 | 1.7 🏶 | 330 🏶 | 330 🖜 | | ı — | | | 4EH7 | Remote-Cutoff Pentode | 9AQ | T-X | 4.4 | 0.45 | 2.5 | 250 | 1.1 ♦ 250 0.65 | 9.5 | 3.0 | 0.005 | | 4EJ7 | Sharp-Cutoff Pentode | 9AQ | T-X | 4.4 | 0.45 | 2.5 | 250 | 250 | 10 | 3.0 | 0.005 | | 4ES8¶ | High-Frequency
Twin Triode | 9DE | 6-2 | 4.0 | 0.6 | 1.8 ♠ | 130 | 0.9 | - | | 7 | | 4EW6¶ | Sharp-Cutoff
RF Pentode | 7CM | 5–2 | 4.2 | 0.6 | 3.1 🏶 | 330 🏶 | 330 ♦ 8
0.65 ♦ | 10 | 3.4 | 0.03 | | 4FS7 | Triode-Pentode | 9MP | 6-2 | 4.6 | 0.6 | 2.0 | 250 | 150 | Pentod | e Secti | on | | | | | | | | 1.5 | 125 | 0.5 | Triode | Section | ı | | 4GJ7 | Triode-Pentode | 9QA | T-X | 4.1 | 0.6 | 2.4 🏶 | 275 🏶 | 275 �
0.55 � | Pentod | e Secti | on | | | | | | | | 1.8 🏶 | 140 🏶 | 0.50 | Triode | Section | 1 | | 4GK5¶ | High-Frequency Triode | 7FP | 5–2 | 4.0 | 0.3 | 2.5 🏶 | 200 🏶 | | 5.0 | 3.5 | 0.52 | | 4GM6¶ | Semi-Remote-
Cutoff Pentode | 7CM | 5–2 | 4.2 | 0.6 | 3.1 🏶 | 330 🏶 | 330 ♦ \$
0.65 ♦ | 10.0 ▲ | 2.4 ▲ | 0.036 | | 4GS7 | Triode-Pentode | 9GF | 6-2 | 4.0 | 0.6 | 2.0 | 250 | 150
0.5 | Pentod | e Secti | on | | | | | | | | 1.5 | 125 | = | Triođe | Section | 1 | | 4GS8¶ | Twin Pentode | 9LW | 6-3 | 4.2 | 0.45 | 1.1 🏶 | 300 ◈ | 150 *
0.75 * | | | - | | 4GW5¶ | High-Mu Triode | 7GK | 5–2 | 4.2 | 0.3 | 2.5 🌢 | 200 🌢 | - | 5.5 | 4.0 | 0.6 | | 4GX7¶ | Triode-Pentode | 9QA | 6–2 | 4.2 | 0.6 | 2.2 🏶 | 275 🏶 | 275 \$ �
0.45 � | | e Secti | | | .02.5 | | | | | | 1.5 🏶 | 275 🏶 | | | Section | | | 4GZ5¶ | Power Amplifier
Pentode | 7CV | 5–2 | 4.0 | 0.6 | 4.8 🌢 | 300 ◈ | 300 ♦
1.1 ♦ | 8.5 ▲ | | 0.24 | | 4HA5 | High-Mu Triode | 7GM | 5–1 | 3.9 | 0.3 | 2.6 🏶 | 220 🏶 | _ | 4.3 | 2.9 | 0.36 | | 4HA7¶ | Dissimilar
Double Triode | 12FQ | 9-56 | 4.2 | 0.6 | 2.75 ♦ | 330 ◈ | | Section
9, 10
Section | 1 (Pin
)
2 (Pin | s 4, | | 4HC7¶ | Dissimilar Double | 12FR | 9-57 | 4.2 | 0.6 | 3.0� | 330 ◈ | | Section |)
1 (Pin | | | | Triode | | | | | 1.2 🏶 | 330 � | _ | 7, 9,
Section | 2 (Pin | s 2, | | 4HG8¶ | Triode-Pentode | 9MP | 6-2 | 4.5 | 0.6 | 2.0 | 250 | 150 | 3, 11
Pentod | e Secti | on | | | | | | | | 1.5 | 125 | 0.5 | Triode | Section | 1 | | 4HK5 | High-Frequency
Triode | 7GM | 5–2 | 4.0 | 0.3 | 2.3 🏶 | 200 🏶 | | 4.4 | 2.6 | 0.29 | | 4HM5¶ | High-Mu Triode | 7GM | 5–2 | 4.0 | 0.3 | 2.6 | 200 🏶 | | 4.5 | 3.0 | 0.34 | | 4HM6¶ | Sharp-Cutoff
RF Pentode | 9PM | 6-2 | 4.2 | 0.45 | 2.5 🏶 | 250 ◈ | 250 8 🏟 | 8.7 | 3.0 | 0.024 | | 4HQ5¶ | Triode | 7GM | 5–2 | 4.2 | 0.3 | 2.5 🏶 | 200 🏟 | - | 5.0 | 3.5 | 0.52 | | 4HR8 | Pentode | 9BJ | 6-2 | 4.5 | 0.3 | 1.0 | 300 | 200
0.2 | 3.5▲ | 5.0 ▲ | 0.05 | | 4HS8¶ | Twin Pentode | 9FG | 6–3 | 4.2 | 0.45 | 1.1 🌸 | 300 ◈ | 150 ③
0.75 ﴿ | | | | | 4HT6¶ | Semi-Remote-Cutoff
RF Pentode | 9PM | 6–2 | 4.2 | 0.45 | 2.5 🏶 | 250 🏶 | 250 3 ⊕
0.6 ♠ | 8.7 | 3.0 | 0.024 | | 4JC6¶ | Sharp-Cutoff
Pentode | 9PM | 6–2 | 4.5 | 0.45 | 2.5 🏶 | 330 ◈ | 330 2 ⊕
0.6 ⊕ | 8.2 ▲ | 3.0 ▲ | 0.019 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar
sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | Rp,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------------------|----------------|-----------------|---------------------------|---------------------------------|----------------------------------|-----------------|---------------------------|---|--|--------------------------------|----------------| | Class A | 150 | 100 | R _k = 560 | 1.1 | 2.1 | 150,000 | 800 | E _{c3} =(| volts | <u> </u> | 4DT6¶ | | Amplifier FM Limiter-
Disc. | 250 | 100 | R _k = 560 | 0.22 | 5.5 | $E_{c3} = -6.0$ | volts | _ | 270,-
000 | - | | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.55 | 1.8 | 150,000 | 1,350 | Ec. = 0 | volts | <u> </u> | 4DT6-A | | Class A
Amplifier | 200 | 90 | 2.0 | 12 | 4.5 | 500,000 | 12,500 | | | | 4EH7 | | Class A
Amplifier | 200 | 200 | 2.5 | 10 | 4.1 | 350,000 | 15,000 | | | | 4EJ7 | | Class A
Amplifier | 90 | | 1.2 | 15 | | | 12,500 | | | | 4ES8¶ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 11 | 3.2 | 200,000 | 14,000 | = | - | | 4EW6¶ | | Class A | 170 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | | | | 4FS7 | | Amplifier
Class A
Amplifier | 100 | | 3.0 | 14 | | 3,100 | 5,500 | 17 | | - | · | | Class A | 170 | 120 | 1.2 | 10 | 3.0 | 350,000 | 11,000 | | | | 4GJ7 | | Amplifier
Class A
Amplifier | 100 | | 3.0 | 15 | _ | | 9,000 | 20 | - | | • | | Class A
Amplifier | 135 | | 1.0 | 11.5 | | 5,400 | 15,000 | 78 | | | 4GK5¶ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.4 | 200,000 | 13,000 | - | | | 4GM6¶ | | Class A | 170 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | <u> </u> | | | 4GS7 | | Amplifier
Class A
Amplifier | 100 | _ | 3.0 | 14 | | | 5,500 | 17 | - | - | | | Sync | 100 | 67.5 | Icl = | 2.0 | 3.6 | (Both sec | tions O | peratin | g) Ec3 : | <u>-</u> | 4GS8¶ | | Separator
and AGC
Keyer | 100
(Plate | 67.5 | 0.1 ma
0
id numl | | opposit | 0 Volts | 1,200
rounded | <u>, </u> | Ec3 =0 | Volts | | | Class A Amp | 135 | | 1.0 | 12.5 | | 5,800 | 15,000 | 70 | | | 4GW5¶ | | Class A
Amplifier | 125 | 125 | 1.0 | 8.0 | 2.5 | 200,000 | 11,000 | - | I — | - | 4GX7¶ | | Class A
Amplifier | 125 | | 1.0 | 13 | | 4,700 | 8,500 | 40 | - | - | | | Class A
Amplifier | 250 | 250 | R _k = 270 | 16† | 2.7† | 150,000 | 8,400 | | 15,000 | 1.1 | 4 <i>GZ5</i> ¶ | | Class A
Amplifier | 135 | | 1.0 | 11.5 | | | 14,500 | 72 | _ | | 4HA5 | | Class A
Amplifier | 250 | | 8.5 | 10.5 | - | 7,700 | 2,200 | 17 | | | 4HA7¶ | | Class A
Amplifier | 250 | - | 2.0 | 1.2 | _ | 62,000 | 1,600 | 100 | - | - | | | Class A
Amplifier | 150 | | 1.0 | 18 | | 5,200 | 4,400 | 23 | - | | 4HC7¶ | | Class A
Amplifier | 150 | - | 1.0 | 1.0 | | 53,000 | 1,900 | 100 | - | - | | | Class A
Amplifier | 170 | 150 | 1,2 | 10 | 3.3 | 350,000 | 12,000 | | - | | 4HG8¶ | | Class A
Amplifier | 100 | - | 3.0 | 14 | _ | 3,100 | 5,500 | 17 | - | - | | | Class A
Amplifier | 135 | | 1.0 | 12.5 | | 5,000 | 15,000 | 75 | - | | 4HK5 | | Class A
Amplifier | 135 | | 1.0 | 12.5 | | | 14,500 | 78 | _ | | 4H M 5¶ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.2 | 156,000 | 15,000 | - | | | 4HM6¶ | | Class A
Amplifier | 135 | _ | 1.0 | 11.5 | | 5,400 | 15,000 | 78 | - | | <i>4HQ5</i> ¶ | | Class A
Amplifier | 250 | 140 | 2.0 | | 0.6 | 2,500,000 | 2,000 | - | - | 1 - 1 | 4HR8 | | Sync Sepa-
rator and
AGC Keyer | 100 | 67.5
67.5 | $I_{c1} = 0.1 \text{ ms}$ | _ | | (Both Se | ctions O | | 1 | 0 Volts | 4HS8¶ | | | | e and gr | id num | | | te section e | grounde | d) | , –es – | - , 0,10 | | | Class A
Amplifier | 125 | 125 | R _k = | 15 | 4.0 | 143,000 | .j | .[| | | 4HT6¶ | | Class A
Amplifier | 125 | 125 | R _k = | 13 | 3.2 | 180,000 | 15,000 | - | _ | _ | 4JC6¶ | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca ₁ | pacitano
icofara | e in
ds | |----------------|--|---------------|-------|---------------|---------------|------------------------------|------------------------------|----------------------------------|-----------------|------------------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volta | and
Watts | Input | Out-
put | Grid-
plate | | 4JC6-A¶ | Sharp-Cutoff
Pentode | 9PM | 6-2 | 4.5 | 0.45 | 3.1 🏶 | 330 🧇 | 330 \$ ♦
0.7 ♦ | 8.5 ▲ | 3.0 ▲ | 0.019 | | 4J D6¶ | Sharp-Cutoff
Pentode | 9PM | 6-2 | 4.5 | 0.45 | 2.5 🍫 | 330 ◈ | 330 8 🆠
0.6 🍣 | 8.2 ▲ | 3.0 ▲ | 0.019 | | 4J H6 ₹ | Semi-Remote-
Cutoff Pentode | 7CM | 5–2 | 4.2 | 0.45 | 2.3 🍲 | - | 300 \$ �
0.55 � | 7.0 | 3.0 | 0.015 | | 4JK6* | Sharp-Cutoff
RF Pentode | 7CM | 5–2 | 3.7 | 0.6 | 2.5 🏇 | | 275 8 🆫 | 9.5▲ | 2.7 ▲ | 0.02 | | 4J 1.6₹ | Semi-Remote-Cut-off
RF Pentode | 7CM | 5-2 | 3.7 | 0.6 | 2.5 🏶 | 275 🏶 | 275 8 ◈
0.6 ◈ | 9.3 ▲ | 2.7 ▲ | 0.02 | | 4J11'8¶ | Triode-
Pentode | 9DC | 6-2 | 4.3 | 0.6 | 1.2 | 250
250 | 250
0.8
— | | de Sect
e Sectio | | | 4KE8¶ | Triode-Pentode | 9DC | 6-2 | 4.5 | 0.6 | 2.0 ♦
2.0 ♦ | 280 ③ | 280 \$ �
0.5 � | i | le Section | | | 4KF8¶ | Twin Pentode | 9FG | 6-3 | 4.2 | 0.45 | 1.1 | 300 ◈ | 150 ♦
0.75 ♦ | | | - | | 4KN8¶ | Twin Triode | 9AJ | 6-2 | 4.2 | 0.6 | 2.2 | 220 € | | | | - | | 4KT6 | Semi-Remote-Cutoff Pentode | 9PM | 6–2 | 4.5 | 0.45 | 3.1 ◈ | 330 ◈ | 3308 ◈ | 9.5▲ | 3.0 ▲ | 0.019 | | 4LJ8¶ | Triode-Pentode | 9GF | 6–2 | 4.3 | 0.6 | 2.0 🆠 | 280 ◈ | | Pentoc | le Secti | on | | | | | | | | 2.0 🏶 | 280 ◈ | - | Triode | Section | n | | 4LU6¶ | Semi-Remote-
Cutoff RF
Pentode | 7CM | 5-2 | 4.2 | 0.6 | 4.0 🆠 | 300 ◈ | 300 2 ⊕
1.5 ⊕ | 7.3 ▲ | 2.2 | 0.058 | | 4MK8¶ | Twin Pentode | 9FG | 6-3 | 4.2 | 0.45 | 1.1 ♦ | 300 ◈ | 150 ♦
0.75 ♦ | - | _ | _ | | ōAF4-A | UHF Triode Oscillator | 7DK | 5–1 | 4.7 | 0.3 | 2.5 🏶 | 150 € | - | 2.2 ▲ | 1.4▲ | 1.9 🛦 | | 5AM8¶ | Diode Sharp-Cutoff
RF Pentode | 9CY | 6-2 | 4.7 | 0.6 | 3.2 🌢 | 330 ◈ | 330 ♦ 8
0.55 ♦ | | 2.6
Section | 0.015 | | 5AN8¶ | Triode-Pentode | 9DA | 6-2 | 4.7 | 0.6 | 2.3 🏶 | 330 ◈ | 330 \$ ♦
0.55 ♦ | | le Secti | | | | | | | | <u></u> | 2.8 🏶 | 330 ⊛ | | i | Section | | | 5AQ5¶ | Beam Power Amplifier | 782 | 5-3 | 4.7 | 0.6 | 12 ③
10 ④ | 275 ③
275 ③ | 275 *
2.0 * | } | ie Conne
Conne
P tied) | | | 5AR4 | Full-Wave High- | 5DA | T-X | 5.0 | 1.9 | | | | - | T = | 1- | | 5AS4-A | Vacuum Rectifier Full-Wave High-Vacuum Rectifier | 5T | 12-15 | 5.0 | 3.0 | | Tube
50 vol | Voltage
ts at 275 | Drop: 6 ma d- | e
e | - | | 5AS8¶ | Diode Sharp-Cutoff
RF Pentode | 9DS | 6-2 | 4.7 | 0.6 | 2.5 | 300 | 3008 | | de Secti | | | 5AT4 | Full-Wave High-
Vacuum Rectifier | 5L | T-X | 5.0 | 5.5 | | Tube
30 vol | Voltage
ts at 50 | Drop: | Section
-c | n | | 5AT8¶ | Triode-Pentode | 9DW | 6-2 | 4.7 | 0.6 | 2.3 ③
1.7 ④ | | 275 ♦ 1
0.45 ♦ | | de Section | | | 5AU4 | Full-Wave High-Vacuum
Rectifier | 5T | T-X | 5.0 | 3.75 | | Tube | Voltage
t 350 ma | Drop: | • | | | 5A V8¶ | Triode-Pentode | 9DZ | 6-2 | 4.7 | 0.6 | 2.0 | 300 | 300 N
0,5 | Pento | de Section | | | | | | | | | 2.5 | 300 | 1 | 1.100 | - Decile | *** | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ®Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|----------------|-----------------|--------------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|---------------------|--|--|---------------| | Class A | 125 | 125 | R _k = | 14 | 3.4 | 180,000 | 16,000 | (g ₃ cor | nected | to | 4JC6-A | | Amplifier Class A | 125 | 125 | $\frac{56}{R_k} =$ | 15 | 4.0 | 160,000 | 14,000 | k at so | | _=-1 | 4JD6¶ | | Amplifier Class A | 125 | 125 | $\frac{56}{R_k} =$ | 14 | 3.6 | 260,000 | 8,000 | | | | 4JH6 ₹ | | Amplifier
Class A
Amplifier | 125 | 125 | $\frac{56}{R_k} = 68$ | 11.5 | 3.9 | 150,000 | 18,000 | | | | 4JK6¶ | | Class A
Amplifier | 125 | 60 | R _k = | 12.5 | 4.0 | 120,000 | 15,500 | | | | 4JL6¶ | | Class A | 100 | 100 | 1.0 | 6.0 | 1.7 | - | 5,500 | _ | | _ | 4J W8¶ | | Amplifier
Class A
Amplifier | 200 | _ | 2.0 | 3.5 | - | | 3,500 | 70 | | - | | | Class A | 125 | 125 | R _k = | 10 | 2.8 | 125,000 | 12,000 | | | | 4KE8¶ | | Amplifier
Class A
Amplifier | 125 | _ | 33
R _k =
68 | 13 | - | 5,000 | 8.000 | 40 | | - | | | Sync Sepa- | 100 | 67.5 | I _{c1} = 0.1 ma | 2.8 | | | 270 | | Ec3 =(| Volts | 4KF8¶ | | rator and
AGC Keyer | 100
(Char | 67.5 | 0
ics give | n are f | or. each
n ground | section se | 1,750
parately | with p | E _{c3} = (| Volts
d grid | - | | Class A | 110 | i — | 1.0 | 16 | | | 16,000 | 45 | | | 4KN8¶ | | Amplifier ♠
Class A | 125 | 125 | R _k = | 17 | 4.2 | 160,000 |
18,000 | | Ec3 = (|) volts | 4KT6 | | Amplifier
Class A | 125 | 125 | 56
R _k = | 12 | 3.5 | 125,000 | 13,000 | | | - | 4LJ8¶ | | Amplifier
Class A
Amplifier | 125 | - | 33
R _k =
68 | 13 | _ | 5,000 | 8,000 | 40 | | - | | | Class A
Amplifier | 250 | 250 | R _k = 820 | 9.0 | 2.3 | 280,000 | 3,900 | - | - | | <i>4LU6</i> ¶ | | Color
Demodu-
lator • | 100
(Grid o | 67.5
current | adjusted | 2.0
i for 10 | | (Both sectamperes d- | | erating) | = | = | 4.MK8¶ | | Class A | 80 | - | R _k = | 17.5 | <u> </u> | 2,100 | 6,500 | 13.5 | | I 1 | 5AF4-A | | Amplifier Class A Amplifier | 125 | 125 | R _k = 56 | 12.5 | 3.2 | 300,000 | 7,800 | | - | | 5AM8 | | Video Det.
Class A | Max d | c outpu | R _k = | t = 5 m | a; voltas | ze drop: 10 | v at 50 i | mad-c | 1 | | 5AN8¶ | | Amplifier
Class A | 150 | - | 56
3.0 | 15 | - | 4,700 | 4,500 | 21 | | - | , | | Amplifier Class A Amplifier | 180
250 | 180
250 | 8.5
12.5 | 29†
45† | 3.0†
4.5† | 58,000
52,000 | 3,700
4,100 | = | 5,500
5,000 | 2.0
4.5 | 5AQ5¶ | | Vertical
Amplifier | watts: | max d- | 12.5
 pulse p
 c cathoo | 49.5
late vo
le curre | ltage ◈
:nt ◈ =4 | 1,970
=1,100 v
0 ma | ; max p | late dis | sipation | i | | | Full-Wave
Rectifier | Maxd | c outpu | t currer | it = 250 | ma: ma | x peak inv
max peak | erse volt | age = 1, | 500 vol | ts; rms | 5AR4 | | Full-Wave
Rectifier | Max d | -c outp | ut curre | nt = 27 | 5 ma: n | nax peak i
50 volts; r | nverse | voltage | =1,550 | volts: | 5AS4-A | | Class A | 200 | ma
 150 | R _k = | 9.5 | 3.0 | 300,000 | 6,200 | Τ- | T | r=1 | 5AS8¶ | | Amplifier
Detector | marn | nak cur | ut curr | Որո | | max peak | | | | - 1 | | | Full-Wave
Rectifier | Max I | d-c out | put cur
pply vo | rent =8 | 00 ma;
er plate | max peak
=550 volt | inverse
s; max p | voltage
peak cu | =1,550
rrent pe | volts;
r plate | 5AT4 | | Class A | 125 | 125 | 1.0 | 9.0 | 2.2 | 300,000 | 5,500 | T | | | 5AT8¶ | | Amplifier
Class A
Amplifier | 125 | - | 1 | 12 | | 6,000 | | 40 | - | _ | | | Full-Wave
Rectifier | Max d | l-c outpi | it curre | nt = 325 | ma; ma | x peak invelts; max pe | erse volt | age = 14 | 00 volt | s;
075 ma | 5AU4 | | Class A
Amplifier | 200 | 150 | Rk = | 9.5 | 2.8 | 300,000 | 6,200 | | <u> </u> | T - | 5AV8 | | Class A
Amplifier | 200 | | 6.0 | 13 | | 5,750 | 3,300 | 19 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. \$ G3 and G5 are screen. G4 is signal-input grid. \$ G2 and G4 are screen. G3 is signal-input grid. \$ inmediately below the screen voltage. \$ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitano
icofara | | |---------|--------------------------------------|---------------|-------|---------------|---------------|------------------------------|----------------------------|----------------------------------|-----------------------------|---------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 5AW4 | Full-Wave High-Vacuum
Rectifier | 5T | T-X | 5.0 | 3.7 | <u> </u> | 46 v at | 250 ma | | | | | 5AX4-GT | Full-Wave, High-
Vacuum Rectifier | 5T | 9-13 | 5.0 | 2.5 | - | oo v at | 1/5 m | Drop: | | | | 5AZ3 | Full-Wave High-
Vacuum Rectifier | 12BR | 12-62 | 5.0 | 3.0 | _ | Tube V
44 Vol | Voltage
ts at 22 | Drop:♠
5 ma d- | 3 | | | 5AZ4 | Full-Wave High-
Vacuum Rectifier | 5T | 9-31 | 5.0 | 2.0 | - | Tube V | Voltage
t 125 m | Drop: 4 |) | ··· | | 5B8¶ | Triode-Pentode | 9EC | 6-2 | 4.7 | 0.6 | 2.0 | 300
300 | 300 | Pentod
Triode | | | | 5BC3 | Full-Wave High-
Vacuum Rectifier | 9 Q J | 12-66 | 5.0 | 3.0 | | Tube V | Voltage | Drop: •
) ma d-c | | | | 5BC3-A | Full-Wave High-
Vacuum Rectifier | 9QJ | 12-99 | 5.0 | 3.0 | _ | Tube V
53 volt | Voltage
s at 300 | Drop: • | 1 | | | 5BE8¶ | Triode-Pentode | 9EG | 6-2 | 4.7 | 0.6 | 2.8 | 300
300 | 300 | Pentod
Triode | | | | 5BK7-A¶ | High-Frequency
Twin Triode | 9AJ | 6-2 | 4.7 | 0.6 | 2.7 ♠ | 300 | | 3.0 ▲ | 1.0 ₁ ▲ 0.9 ₂ ▲ | 1.8 | | δBQ7-A¶ | High-Frequency
Twin Triode | 9AJ | 6-2 | 5.6 | 0.45 | 2.0 ♠ | 250 | == | 2.61 | 1.21 | 1.2 | | 5BR8¶ | Triode-Pentode | 9FA | 6-2 | 4.7 | 0.6 | 3.0 | 330
330 | 330: | Pentod
Triode | | | | 5BS8¶ | Medium-mu Twin Triode | 9AJ | 6-2 | 5.6 | 0.45 | 2.0 ♠ | 150 | | 2.61 | 1.21 | 1.15 | | 5BT8¶ | Duplex-Diode Pentode | 9FE | 6-2 | 4.7 | 0.6 | 2.0 | 300 | 300 8 | 7.0 A | | 0.04 4 | | 5BW8¶ | Duplex-Diode Pentode | 9HK | 6–2 | 4.7 | 0.6 | 3.0 ◈ | 330 ◈ | 330 ◈ \$ 0.55 ◈ | 4.8
Diode S | 2.6
ections | 0.02 4 | | 6BZ?¶ | High-Frequency Twin
Triode | 9AJ | 6-2 | 5.6 | 0.45 | 2.5♠ | 250 | | 2.61 | 1.21 | 1.2 | | 5CG4 | Full-Wave High-Vacuum
Rectifier | 5L | 9-13 | 5.0 | 2.0 | | | | | | | | 5CG8¶ | Triode-Pentode | 9GF | 6-2 | 4.7 | 0.6 | 2.3 🏶 | į | 275 * * 0.45 * | Pentod | Section | on | | 5CL8¶ | Triode-Tetrode | 9FX | 6-2 | 4.7 | 0.6 | 1.7 ♦ 2.8 2.7 | 275 ♦
300
300 | 300 \$
0.5 | Triode
Tetrode
Triode | Section | n | | 5CL8-A¶ | Triode-Tetrode | 9FX | 6–2 | 4.7 | 0.6 | 2.8 | 300
300 | 300\$ | Tetrode
Triode | | | | 6C.M6¶ | Beam Power Amplifier | 9CK | 6–3 | 4.7 | 0.6 | 9.0
8.0 | 315
315
315 | 285
2.0
—
285 | Pentode
Triode
or Pen | G ₂ and | P tied) | | 6CM8¶ | Triode-Pentode | 9FZ | 6-2 | 4.7 | 0.6 | 2.0
1.0 | 300
300 | 1.75
300 \$
0.5 | tion
Pentode
Triode | Section | n | | ōCQ8¶ | Triode-Tetrode | 9GE | 6–2 | 4.7 | 0.6 | 3.2 ♦
3.1 ♦ | 330 ♦ | 330 ♦ \$
0.7 ♦ | Tetrode
Triode | | | | 6CR8¶ | Triode-Pentode | 9GJ | 6-2 | 4.7 | 0.6 | 2.3 ③ 2.75 ④ | 330 ♦ | 330 ⊕ \$
0.55 ⊕ | Pentode
Triode | | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections.Absolute maximum rating.Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--------------------------|----------------------------------|--|---------------------------------|----------------------------------|----------------------------|--------------------------|---------------------|--|--------------------------------|---------------| | Full-Wave
Rectifier | Max derms su | c outpu | t currer | nt = 250
r plate = | ma; ma
= 450 vol | x peak inve
ts; max pea | erse volt | age = 1 | 550 volts | 50 ma | 5AW4 | | Full-Wave
Rectifier | rms su | -c outpu
pplv vo | t currer
ltage pe | nt = 175
er plate : | ma; ma
= 350 vo | x peak inve
lts: max ne | erse volt | age = 14 | 100 vol t: | s; max | 5AX4-GT | | Full-Wave
Rectifier | Max d | -c outp
rolts; R
t per pla | ut curr
MS sup
ite ⊕= | ent � =
ply volt
:1.000 n | 275 ma
tage per
na. | ; Max pea
plate ◈ = | k invers
600 vol | se volta
ts; Mar | ige � =
c peak | | 5AZ3 ■ | | Full-Wave
Rectifier | Max d- | c outpu | t current | nt = 125 | ma; ma | x peak inve
lts; max pe | erse volt | age = 1 | 400 volt | s; max | 5AZ4 | | Class A | 200 | 150 | K _k = | 9.5 | 2.8 | 300,000 | 6,200 | | | | 5B8¶ | | Amplifier
Class A
Amplifier | 200 | _ | 180
6.0 | | - | 5,750 | 3,300 | 19 | _ | _ | | | Full-Wave
Rectifier | Max d
RMSs | c outpu | ut curre | ent 🏶 = | =300 ma | ; max pea
); max peak | k inver | se volta | ige 🌢 = | 1,700;
000ma | 5BC3 | | Full-Wave
Rectifier | Max d
RMS s
1000 m | l-c outp
supply | ut cur
voltage | rent 🏶 =
per pl | =300 m
ate 🏶 = | a; max pe
500; max 1 | ak inve
peak cu | rse vo | ltage 🌢 :
er plate | =1,700; | 5BC3-A | | Class A | 250 | 110 | R _k = | 10 | 3.5 | 400,000 | 5,200 | | ī — | | 5BE8¶ | | Amplifier
Class A
Amplifier | 150 | | 68
R _k =
56 | 18 | - | 5,000 | 8,500 | 40 | - | _ | | | Class A
Amplifier • | 150 | _ | R _k = 56 | 18 | | 4,600 | 9,300 | 43 | _ | | 5BK7-A¶ | | Class A
Amplifier • | 150 | _ | R _k = 220 | 9.0 | | 5,900 | 6,400 | 38 | | | 5BQ7-A¶ | | Class A
Amplifier | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | - | | <i>5BR8</i> ¶ | | Class A
Amplifier | 125 | _ | 1.0 | 13.5 | _ | _ | | 40 | | - | | | Class A
Amplifier • | 150 | | R _k = 220 | 10 | | 5,000 | 7,200 | 36 | | | 5BS8¶ | | Class A
Amplifier
Horizontal
Phase
Detector | 200
Max d | c outpu | R _k =
180
t curre | 9.5
nt \Phi = 1 | 2.8
.0 ma; | 300,000
voltage dro | 6,200
p ♠ : 10 | volts a | t 8.0 ma | ı d-c | 5BT8¶ | | Class A
Amplifier
Horizontal
Phase
Detector | | 110
-c outpu | 68
it curre | | 3.5
=5.0 m | 250,000
a; voltage | 5,200
drop ♠ ; | —
5 volts | at 20 n | na d-c | 5BW8¶ | | Class A
Amplifier • | 150 | _ | 220 | 10 | | 5,300 | 6,800 | 36 | - 1 | _ | 5BZ7¶ | | Full-Wave
Rectifier | Max d-
max pe | c outpu
ak curre | t curre
ent per | nt = 125
plate = | ma; n
400 ma | ax peak i | nverse v | oltage | =1,400 | volts; | 5CG4 | | Class A Amp | 125 | 125 | 1.0 | 9.0 | 2.2 | 300,000 | 5,500 | _ | | | 5CG8¶ | | Class A Amp | $\frac{125}{125}$ | 125 | $\frac{1.0}{1.0}$ | $\frac{12}{12}$ | 4.0 |
6,000
100,000 | 6,500
5,800 | 40 | | | 5CL8¶ | | Amplifier
Class A
Amplifier | 125 | _ | R _k = | 15 | _ | 5,000 | 8,000 | 40 | _ | _ | | | Class A | 125 | 125 | $\frac{-56}{1.0}$ | 12 | 4.0 | 100,000 | 6,400 | | | | 5CL8-A¶ | | Amplifier
Class A
Amplifier | 125 | _ | $R_k = 56$ | 15 | - | 5,000 | 8,000 | 40 | | _ | | | Class A
Amplifier | 250 | 250 | 12.5 | 45† | 4.5† | 50,000 | 4,100 | | 5,000 | 4.5 | 5CM6¶ | | Vertical
Amplifier | Max p
=40 r | ositive
na | pulse p | late vo | ltage 🖳 | =2,000 vo | lts; max | d-c ca | thode c | urrent | | | Class A
Amplifier | 200 | 150 | R _k = 180 | 9.5 | 2.8 | 600,000 | 6,200 | | -1 | | 5CM8¶ | | Class A
Amplifier | 250 | | 2.0 | 1.8 | | 50,000 | 2,000 | 100 | - | - | | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.2 | 140,000 | 5,800 | | | | 5CQ8¶ | | Class A
Amplifier | 125 | | $\begin{array}{c} R_k = \\ 56 \end{array}$ | 15 | | 5,000 | 8,000 | 40 | - | - | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.0 | 300,000 | 7,700 | | | | 5CR8¶ | | Class A
Amplifier | 125 | | 2.0 | 12 | | 5,500 | 4,000 | 22 | | _ | | Metal tubes are shown in bold-face type, miniature tubes in italics. \$\$ \ G3\$ and G5 are screen. G4 is signal-input grid. \$\$ \ G2\$ and G4 are screen. G3 is signal-input grid. \$\$ 1, 2, 3, etc. indicate tube sections. \$\$ Maximum screen dissipation appears immediately below the screen voltage. \$\$ Heater warm-up time controlled. | <u>T</u> ube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | pacitan
Picofara | | |----------------|-------------------------------------|---------------|-------|---------------|---------------|--------------|-------------------|----------------------------------|------------------|---------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 5CU4 | Full-Wave High-
Vacuum Rectifier | 8KD | 12-16 | 5.0 | 3.5 | - | Tube V
27 volt | Voltage
s at 425 | Drop: 4 | c | • | | 5CZ5¶ | Beam Power Amplifier | 9HN | 6-4 | 4.7 | 0.6 | 10 € | 350 ◈ | | 9.0 ▲ | 6.0 ▲ | 0.04 | | <i>5DH8</i> ¶ | Triode-Pentode | 9EG | 6-2 | 5.2 | 0.6 | 2.2 🆠 | 300 ◈ | 300 ♦ 8
0.55 ♦ | Pentod | | | | | | | | | | 2.0 🏶 | 300 ◈ | | ļ [*] | Section | n. | | 5DJ4 | Full-Wave High-
Vacuum Rectifier | 8 K S | 12-16 | 5.0 | 3.0 | | Tube V
44 volt | Voltage
s at 225 | Drop: 4
mad- | 3 | | | 5EA8¶ | Triode-Pentode | 9AE | 6-2 | 4.7 | 0.6 | 3.1 ◈ | 330 ◈ | 330 ♦ \$
0.55 ♦ | Pentod | e Secti | on | | | | | İ | | | 2.5 🏟 | 330 ◈ | 0.55 | Triode | Section | n | | 5EH8¶ | Triode-Pentode | 9JG | 6-2 | 4.7 | 0.6 | 2.8♦ | 300 ◈ | 300 * * 0.5 * | Pentod | le Secti | on | | | | | | | | 2.5 ◈ | 300 ◈ | 0.5 | Triode | Section | n | | 5EU8¶ | Triode-Pentode | 9JF | 6-2 | 4.7 | 0.6 | 3.1 🏟 | 330 ◈ | 330 ♦\$ | Pentod | e Secti | on | | | | | | | | 3.0 � | 330 🏶 | 0.55 | Triode | Section | n | | 5EW6¶ | Sharp-Cutoff RF
Pentode | 7CM | 5-2 | 5.6 | 0.45 | 3.1◈ | 330◈ | 330 : ③
0.65 ③ | 10 | [3.4 | 0.03 | | 5FG7¶ | Triode-Pentode | 9GF | 6-2 | 4.7 | 0.6 | 3.0 ◈ | 330 ◈ | 330 🍑 🖁 | Pentod | e Section | on | | | | | | | | 2.5 🏶 | 330 ◈ | 0.55 | Triode | Section | ı | | 5FV8¶ | Triode-Pentode | 9FA | 6-2 | 4.7 | 0.6 | 2.3 🏽 | 330 ◈ | | Pentod | e Section | on | | | | | | | | 2.0 🏟 | 330 ◈ | 0.55 | Triode | Section | n | | 5GH8¶ | Triode-Pentode | 9AE | 6–2 | 4.7 | 0.6 | 2.5 🏶 | 350 ◈ | 330 ♦\$ | Pentod | e Section | on | | | | | | | | 2.5 🏶 | 330 ◈ | 0.55 🏶 | Triode | Section | ı | | ōGH8-A ♥ | Triode-Pentode | 9AE | 6-2 | 4.7 | 0.6 | 2.5◈ | 350◈ | 330:♦ | Pentod | e Sectio | 'n | | | | | | | | 2.5� | 330◈ | 0.55 | Triode | Section | | | 5GJ7 | Triode-Pentode | 9QA | T-X | 5.6 | 0.45 | 2.4 🔷 | 275 🏶 | 275 🏟 | Pentod | e Section | on | | | | | | | | 1.8 🌒 | 140 ◈ | 0.55 | Triode | Section | 1 | | 5GM6¶ | Semi-Remote-
Cutoff-Pentode | 7CM | 5-2 | 5.6 | 0.45 | 3.1 🏽 | 330 ◈ | 330 ♦ 8
0.65 ♦ | 10.0 ▲ | 2.4 ▲ | 0.036 | | 5GS7 | Triode-Pentode | 9GF | 6-2 | 5.4 | 0.45 | 2.0 | 250 | | Pentod | e Sectio | on | | | | | | | | 1.5 | 125 | - 0.5 | Triode | Section | 1 | | 5GX6¶ | Dual-Control
Pentode | 7EN | 5-2 | 4.7 | 0.6 | 1.7 🏶 | 300 ◈ | 3008 | | | i – | | 5GX7¶ | Triode-Pentode | 9QA | 6-2 | 5.6 | 0.45 | 2.2 🏈 | 275 🏟 | 1.0 ♦ 275 8 ♦ | Pentod | e Section | on | | | | | | | | 1.5 ◈ | 275 🏶 | 0.45 | Triode | Section | ı | | 5HA7¶ ■ | Dissimilar
Double Triode | 12FQ | 9-56 | 5.6 | 0.45 | 2.75 ◈ | 330 ◈ | | Section | | s 4, | | | Double Irlode | | | | | 0.3 🏶 | 330 ◈ | | 9, 10
Section | 2 (Pin | s 2, | | 5HB7¶ | Triode-Pentode | 9QA | 6-2 | 4.7 | 0.6 | 3.1 🏟 | 330 ◈ | 330\$ ◈ | 3, 11
Pentod | | on | | | | | | | | 2.5 🏟 | 330 ◈ | 0.55 | Triode | | | | 5HC7¶ ■ | Dissimilar Double | 12FR | 9-57 | 5.6 | 0.45 | 3.0 ◈ | 330 ◈ | | Section | 1 (Pin | s 4, | | | Triode | | | | | 1.2 🏶 | 330 � | | 7, 9,
Section | 10)
2 (Pin | | | δHG8¶ | Triode-Pentode | 9MP | 6-2 | 5.3 | 0.45 | 2.2 🌢 | 250 ◈ | 2508 ◈ | 3, 11)
Pentod | | on | | | | | | | | 1.9 🏟 | 125 ◈ | 0.55 | Triode | | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | | Load
for
Rated
Out-
put,
Ohms | Power Out-
put,
Watts | Tube
Type | |--|--------------------|------------------------------------|---|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|-----------------------------|---------------| | Full-Wave
Rectifier | Max o | d-c outp
RMS su
• =1.3 | ut curr
pply v | ent 🏶 =
oltage 1 | 425 ma;
per plat | max peak
e | inverse
volts; m | voltag
ax pea | e ♦ =80
k curre | 0 volts;
nt per | 5CU4 | | Vertical
Amplifier | 250
75
Max 1 | 250
250
positive
i-c cath | 14
0
pulse p | 46
 130
 late vol | 4.6
16
tage ◈ | 73,000
 | 4,800 | = | | | 5CZ5¶ | | Class A
Amplifier
Class A
Amplifier | 125
250 | 125 | R _k = 56
R _k = 390 | 13.5
7.3 | 3.8 | 150,000
12,000 | 8,600
4,400 | 53 | _ | | 5DH8¶ | | Pull-Wave
Rectifier | Max
volts; | d-c out
max R
ate ⊛ == | put cur | rent * | =300 m
tage per | a; max pe
plate 🏶 = | ak inve
600 vol | rse vol
ts; mar | tage 🌢 : | =1,700
current | 5DJ4 | | Class A
Amplifier
Class A | 125 | ate ♦ = | 1.0
R _k = | 12 | 4.0 | 200,000
5.000 | 6,400
8,500 | 40 | | | 5EA8¶ | | Amplifier Class A { Amplifier } | 125
100 | 125
70 | 56
1.0
0 | 12 | 4.0 | 170,000 | 6,000 | | <u> </u> | | δΕΗ8¶ | | Class A Amplifier Class A | 125 | | 1.0 | 13.5 | 4.0 | 80,000 | 7,500 | 40 | | | 5EU8¶ | | Amplifier
Class A
Amplifier | 150 | _ | R _k = 56 | 18 | | 5,000 | 8,500 | 40 | _ | _ | o EU o T | | Class A
Amplifier | 125 | 125 | $R_k = 56$ | 11 | 3.2 | 200,000 | 14,000 | | | | 5EW6¶ | | Class A
Amplifier {
Class A
Amplifier | 125
100
125 | 125
100
— | 1.0
0
1.0 | 11 13 | 4.0 | 180,000
5,700 | 6,000
7,400
7,500 | 43 | = | = | 5FG7¶ | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0
1.0 | 12
14 | 4.0 | 200,000
5,000 | 6,500
8,000 | 40 | | | 5FV8¶ | | Amplifier
Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | | | | 5GH8¶ | | Amplifier
Class A
Amplifier | 125 | _ | 1.0 | 13.5 | | 5,400 | 8,500 | 46 | _ | _ | | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 12
13,5 | 4.0 | 200,000
5,400 | 7,500
8,500 | 46 | | | 5GH8-A | | Amplifier
Class A
Amplifier | 170 | 120 | 1.2 | 10 | 3.0 | 350,000 | 11,000 | | _ | | 5GJ7 | | Class A
Amplifier | 100 | | 3.0 | 15 | | | 9,000 | 20 | | | | | Class A
Amplifier
Class A | 125 | 125 | $\frac{R_k = 56}{1.2}$ | 14 | 3.4 | 200,000 | 13,000 | | | | 5GM6¶
5GS7 | | Amplifier
Class A
Amplifier | 100 | _ | 3.0 | 14 | _ | | 5,500 | 17 | _ | _ | 9037 | | Class A
Amplifier | 150 | 100 | R _k = 180 | 3.7 | 3.0 | 140,000 | 3,700 | E _{c3} = | 0 volts | | 5GX6¶ | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 8.0 | 2.5 | 200,000
4,700 | 11,000
8,500 | 40 | | | 5GX7¶ | | Amplifier
Class A | 250 | | 8.5 | 10.5 | | 7,700 | 2,200 | 17 | | | 5HA7¶ | | Amplifier
Class A
Amplifier | 250 | _ | 2.0 | 1.2 | _ | 62,500 | 1,600 | 100 | - | | | | Class A
Amplifier
Class A | 125
150 | 125 | 1.0
R _k = | 12
18 | 4.0 | 200,000
5,000 | 6,400
8,500 | 40 | _ | | 5HB7¶ | | Amplifier
Class A | 150 | | $\frac{56}{1.0}$ | 18 | | 5,200 | 4,400 | 23 | | | 5HC7¶■ | | Amplifier
Class A
Amplifier | 150 | _ | 1.0 | 1.0 | _ | 53,000 | 1,900 | 100 | - | | | | Class A
Amplifier
Class A Amp | 170
100 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | | | | δHG8¶ | | Class A Amp | 100 | | 3.0 | 14 | | 3,100 | 5,500 | 17 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. • Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
_j | acitanc
icofara | e in
ds | |-----------------|--|---------------|---------------|---------------|---------------|------------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 5HZ6¶ | Dual-Control
Pentode | 7EN | 5–2 | 4.75 | 0.6 | 1.7 🏶 | 300 ◈ | 300 8 ◈ | _ | _ | <u> </u> | | <i>5J6</i> ¶ | Medium-Mu
Twin Triode | 7BF | 5-2 | 4.7 | 0.6 | 1.5 ♠ | 300 | | | 1.6 ₁
1.0 ₂ | 1.5 | | s v v off | 0 0 | 7CM | 5–2 | 4.9 | 0.45 | 1.5 • | 300
275 � | - | Push-I | | | | 5JK6¶
5JL6¶ | Sharp-Cutoff
RF Pentode | 7CM | 5-2
5-2 | 4.9 | 0.45 | 2.5 🏶 | 274 | 275 8 ③ 0.6 ③ | 9.5 | 2.7 ▲ | | | | Semi-Remote-Cut-off
RF Pentode | | | | | 2.5 ◈ | | 275 \$ 🏵 | 9.3 ▲ | 2.7 ▲ | 0.02 | | 5 <i>JW8</i> ¶ | Triode-
Pentode | 9DC | 6–2 | 4.7 | 0.6 | 1.2 | 250
250 | 250
0.8
— | | de Sect
e Sectio | | | 5KD8¶ | Triode-Pentode | 9AE | 6–2 | 5.6 | 0.45 | 3.0◈ | 1 | 3308 ♦
0.55 ♦ | Pentod | e Sectio |)Tı | | 5KE8¶ | Triode-Pentode | 9DC | 6-2 | 5.6 | 0.45 | 2.5 🏵 | 330 ◈ | <u> </u> | Pentod | Section
e Section | on | | | | | | | | 2.0 🏶 | 280 🏶 | | | Section | | | 5KZ8¶ | Triode-Pentode | 9FZ | 6-2 | 4.7 | 0.6 | 2.5 ③ | 330 ◈ | 330 \$ ♠
0.55 ♠ | ì | e Section | | | 5LJS¶ | Triode-Pentode | 9GF | 6-2 | 5.6 | 0.45 | 2.0 🏈 | 280 ◈ | 280\$ ◈ | | e Section | | | | | | | | | 2.0 🏶 | 280 🏶 | 0.5 | Triode | Section | 1 | | 5M B8¶ | Triode-Pentode | 9FA | 6–2 | 5.6 | 0.45 | 2.0 🏽 | 280 🏶 | 280 \$ �
0.5 � | Pentoc | le Secti | on | | | | | | | | 2.0 🏶 | 280 🏶 | 0.5 | Triode | Section | n | | 5MQ8¶ | Triode-Pentode | 9AE | 6-2 | 5.6 | 0.6 | 2.5 ③
2.7 ④ | 330 ◈
330 ◈ | 330 \$ ♦
0.55 ♦ | | e Section | | | 5R4-G
5R4-GY | Full-Wave High-Vacuum
Rectifier | 5T | 16-3
16-3 | 5.0 | 2.0 | = | Tube V
67 v at | oltage 1
250 ma | L
Drop: 4
d-c | • | | | 5R4-GYA | Full-Wave High-Vacuum
Rectifier | 5T | T-X | 5.0 | 2.0 | _ | Tube V | Voltage
t 250 m | Drop: | | | | 5R4-GYB | Full-Wave High-
Vacuum Rectifier | 5T | 12-15 | 5.0 | 2.0 | - | Tube 63 vol | Voltage
ts at 250 | Drop: 4 | c | | | 5T4 | Full-Wave High-Vacuum
Rectifier | 5T | 10-1 | 5.0 | 2.0 | | Tube V | Voltage
t 225 ma | Drop: | • | - | | 5T8¶ | Triple Diode
High-Mu Triode | 9E | 6-2 | 4.7 | 0.6 | 1.1 🏶 | 330 ◈ | | 1.7 | 2.4 | 1.7 | | 5U4-G | Full-Wave High-Vacuum
Rectifier | 5T | 16-3 | 5.0 | 3.0 | | Tube V | Voltage
225 ma | Drop: | • | | | 5U4-GA | Full-Wave High-Vacuum
Rectifier | 5T | T-X | 5.0 | 3.0 | | Tube V
44 v at | oltage
225 ma | Drop: 4
d-c | | | | 5U4-GB | Full-Wave High-Vacuum
Rectifier | 5T | 12-16 | 5.0 | 3.0 | - | | oltage
275 ma | |) | | | 5U8¶ | Triode-Pentode | 9AE | 6-2 | 4.7 | 0.6 | 3.0 ♦
2.5 ♦ | | 330 \$
0.55 \$ | | e Section | | | 5U9 | Triode-Pentode | 10K | 6-2 | 5.9 | 0.45 | 2.1 | 250
250 | 250
0.7
— | | e Section | | | 5V3 | Full-Wave High-Vacuum | 5T | 12-16 | 5.0 | 3.8 | - | Tube | Voltage |
Drop: | | | | 5V3-A | Rectifier Full-Wave High- Vacuum Rectifier | 5T | 12–16 | 5.0 | 3.0 | | 47 v at | Voltage
s at 350 | a d-c
Drop: ◀ | | | | 5V4-G
5V4-GA | Full-Wave High-Vacuum
Rectifier | 5L | 14-3
12-14 | 5.0 | 2.0 | | Tube 1
25 v a | Voltage
t 175 m | Drop: 4
a d-c | • | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|---------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|---------------------|--|---|-----------------| | Class A
Amplifier | 150 | 100 | R _k == 180 | 3.2 | 3.2 | 110,000 | 3,400 | Ec; = | 0 volts | · | 5HZ6¶ | | Class A
Amplifier • | 100 | _ | R _k = | 8.5 | _ | 7,100 | 5,300 | 38 | | | 5J6¶ | | Class C
Amplifier | 150 | _ | 50 ⊕
10.0 | 30 | _ | Input Sign | i
nal = 0.3;
i d-c | 5 watt | | 3.5 | | | Class A
Amplifier | 125 | 125 | R _k = 68 | 11.5 | 3.9 | 150,000 | 18,000 | | | | 5J K6¶ | | Class A
Amplifier | 125 | 60 | R _k = 68 | 12.5 | 4.0 | 120,000 | 15,500 | | | | 5JL6¶ | | Class A
Amplifier | 100 | 100 | 1.0 | 6.0 | 1.7 | | 5,500 | _ | _ | - | <i>5JW8</i> ¶ | | Class A
Amplifier | 200 | | 2.0 | 3.5 | - | | 3,500 | 70 | _ | - | | | Class A
Amplifier | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | | | 5KD8¶ | | Class A Amp | 125 | | 1.0 | 13.5 | | | 7,500 | 40 | | | | | Class A
Amplifier | 125 | 125 | R _k = 33 | 10 | 2.8 | 125,000 | 12,000 | _ | - | _ | 5KE8¶ | | Class A
Amplifier | 125 | _ | R _k = | 13 | - | 5,000 | 8,000 | 40 | _ | - | | | Class A
Amplifier | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | | | 5KZ8¶ | | Class A
Amplifier | 125 | - | 1.0 | 13.5 | - | | 7,500 | 40 | _ | - | | | Class A
Amplifier | 125 | 125 | R _k = 33 | 12 | 3.5 | 125,000 | 13,000 | | | | 5LJ8¶ | | Class A
Amplifier | 125 | - | 8 = 68 | 13 | - | 5,000 | 8,000 | 40 | | - | | | Class A | 125 | 125 | R _k = | 10 | 2.8 | 125,000 | 12,000 | <u> </u> | ' | | 5M B8¶ | | Amplifier
Class A
Amplifier | 125 | - | 33
R _k ==
68 | 13 | - | 5,000 | 8,000 | 40 | _ | - | - | | Class A | 125 | 125 | R _k == | 12 | 4.5 | 150,000 | 10,000 | _ | <u> </u> | i 1 | 5MQ8¶ | | Amplifier
Class A
Amplifier | 150 | _ | 62
R _k = 56 | 18 | - | 5,000 | 8,500 | 40 | - | - | | | Full-Wave
Rectifier | Max of
rms st
650 m | upply v | ut curre | nt = 25
er plat | 0 ma; m
e = 750 | ax peak inv
volts; max | verse voi
peak cu | tage = : | 2800 vol
er plate | ts; | эк4-6
5R4-GY | | Full-Wave
Rectifier | Max | d-c out | put cur | rent =2 | 50 ma; | max peak
olts; max p | inverse | voltag | e = 2800 | 0 volts; | 5R4-GYA | | Full-Wave
Rectifier | Max
volts; | d-c out
max R | put cur
MS sup | rent 🖲 : | =250 m | a; max pe
r plate • = | ak inve
900 vol | rse vol
ts; max | tage 🖲 = | =3,100
urrent | 5R4-GYB | | Full-Wave
Rectifier | Max o | i-c outp | ut curre | nt = 22.
er plate | 5 ma; m
=450 v | ax peak inv
olts; max p | erse vol | tage = 1 | 550 vol | ts; max | 5T4 | | Class A
Amplifier | 250
100 | = | 3.0 | 1.0 | = | 58,000
54,000 | 1,200 | 70
70 | | | 5T8¶ | | Full-Wave
Rectifier | aubbt. | y vortag | e her bu | 4vc - 40 | O VOICE, | ax peak in
max peak o | mircur f | er plau | : OUU I | na i | 5U4-G | | Full-Wave
Rectifier | Max o | i-c outp | ut curre | ent = 25
er plate | 0 ma; m
=450 v | ax peak in
olts; max pe | verse vo | itage = | 1550 vol | lts; | 5U4-GA | | Full-Wave
Rectifier | Maxo | l-c outp | ut curre | nt = 27 | 5 ma; m: | ax peak inv
lts; max pe | erse vol | tage = 1 | 550 vol | ts; | 5U4-GB | | Class A | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | - | - | 5U8¶ | | Amplifier
Class A
Amplifier | 125 | - | 1.0 | 13.5 | - | ***** | 7,500 | 40 | | - | | | Class A | 160 | 110 | 1.4 | 13 | 5.0 | | 12,000 | (E _{c3} : | = 0 volts | i) | 5U9 | | Amplifier
Class A
Amplifier | 100 | _ | 2.0 | 14 | - | | 5,000 | 1,7 | | - | | | Full-Wave
Rectifier | supply | y voltag | e per p | late =4 | 25 volts | ax peak in
; max peal | c curren | t per p | late = 1. | 200 ma | 5V3 | | Full-Wave
Rectifier | Max
volts; | d-c out
max R
ate 🏶 = | put cur
MS sup | rent 🐵 | =415 m
tage pe | a; max pe
r plate 🏶 = | ak inve
550 vol | rse vol
ts; max | tage 🏶 = | =1,550
urrent | 5V3-A | | Full-Wave
Rectifier | Max | l-c outp | ut curre | nt = 17 | 5 ma; m
5 volts; | ax peak inv
max peak c | verse vo | ltage =
er plate | 1400 vo
= 525 r | lts; rms | 5V4-G
5V4-GA | | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |------------------------|---|---------------|-----------------------|---------------|---------------|--------------|--------------|-------------------------------|--------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts
¥ | Input | Out-
put | Grid-
plate | | 5V6-GT¶ | Beam Power Amplifier | 7AC | 9-11
or | 4.7 | 0.6 | 12 | 315 | 285 | Single | Tube | | | | | | 9-41 | | | | _ | _ | 2 Tube | s, Push- | Pull | | | | | | | | 9,0 | 315 | _ | Triode
(G2 & | Connec
P tied) | ction | | 5W4
5W4-GT | Full-Wave High-Vacuum | 5T | 8-6
9-13 | 5.0 | 1.5 | - | Tube V | oltage
100 m | Drop: 4 | • | | | 5X4-G | Rectifier Full-Wave High-Vacuum Rectifier | 5Q | 16-3 | 5.0 | 3.0 | | Tube V | | Drop: | • | | | 5X4-GA | Full-Wave High-Vacuum | 5Q | 12-16 | 5.0 | 3.0 | | Tube V | | Огор: ♠ | | | | 5X8¶ | Rectifier
Triode-Pentode | 9AK | 6-2 | 4.7 | 0.6 | 2.3 🏵 | 275 ♦ | 275 8
0.45 8 | Pentod | e Section | on | | |
Converter | | | | | 1.7 ◈ | 275 🏶 | 0.45 | Triode | Section | 1 | | 5X9 | Triode-Pentode | 10K | 6-2 | 5.9 | 0.45 | 2.1 | 250 | 250
0.7 | Pentod | e Secti | on | | | | | | | | 1.5 | 250 | 0.7 | Triode | Section | 1 | | 5¥3-G | Full-Wave High-Vacuum
Rectifier | 5T | 14-3 | 5.0 | 2.0 | | Tube V | oltage
125 ma | Drop: 4 | • | | | 5¥3-GA | Full-Wave High-Vacuum
Rectifier | 5T | 12-16
9-13 | 5.0 | 2.0 | | Tube V | | Drop: |) | | | 5Y3-GT | Full-Wave High-
Vacuum Rectifier | 5T | 9-13
or 9-42 | 5.0 | 2.0 | _ | Tube V | oltage | Drop: | : | | | 5Y4-G | Full-Wave High-Vacuum
Rectifier | 5Q | 14-3 | 5.0 | 2.0 | | Tube V | | Drop: | | | | 5Y4-GA
5Y4-GT | Full-Wave High-Vacuum
Rectifier | 5Q | 12-16
9-13
9-42 | 5.0 | 2.0 | | Tube V | | Drop: 4 | • | | | 5Z3 | Full-Wave High-Vacuum
Rectifier | 4C | 16-1 | 5.0 | 3.0 | | Tube V | Voltage
t 225 m | Drop: | • | | | 5Z4 | Full-Wave High-Vacuum
Rectifier | 5L | 8-6 | 5.0 | 2.0 | | Tube V | | Drop: | | | | 5Z4-GT | | 5L
4D | $\frac{9-11}{16-1}$ | 5.0 | 1.0 | | 325 | | Single | +u ba | | | 6A3 | Power Amplifier Triode | 41) | 10-1 | 0.3 | 1.0 | | 323 | | | tube
s, push- | pull | | 6A4/LA | Power Amplifier Pentode | 5B | 14-1 | 6.3 | 0.3 | | 180 | 180 | | <u> </u> | ΓΞ | | 6A5-G | Power Amplifier Triode | 6T | 16-3 | 6.3 | 1.25 | _ | 250 | | Single
2 tube | Tube
s, push- | pull | | 6A6 | Twin Triode Power
Amplifier | 7B | 14-1 | 6.3 | 0.8 | 1.0 ♠ | 300 | | Push
Both S | ections
pull
sections
arallel | | | 6A7 | Pentagrid Converter | 7C♦ | 12-6 | 6.3 | 0.3 | 1.0 | 300 | 100
0.3 | | =0.4 n
0,000 o | na
hms | | 6A8
6A8-G
6A8-GT | Pentagrid Converter | 8A ♦ | 8-4
12-8
9-18 | 6.3 | 0.3 | 1.0 | 300 | 100 | Osc Ici
Rgi = 5 | =0.4 n
0,000 o | na
hms | | 6A B4 | High-Frequency
Triode | 5CE | 5-2 | 6.3 | 0.15 | 2.5 | 300 | | 2.2 | 1.4 | 1.5 | | 6AB5/6N5 | Electron-Ray Indicator | 6R | 9-26 | 6.3 | 0.15 | _ | 1802 | Max ta
Min ta | rget vo | laa ' | 180
125 | | 6AB7/1853 | Remote-Cutoff
RF Pentode | 8N | 8-1 | 6.3 | 0.45 | 3.75 | 300 | 200
0.65 | | 5.0 | 0.015 | | 6A B9 | Twin Tetrode | 10N | T-X | 6.3 | 0.365 | 2.0 🌢 | 250 ◈ | 180 \$ @ | 5.7 | 2.7 | 0.055 | | 6AC5-GT | Triode Power Amplifier | 6Q | 9-11 | 6.3 | 0.4 | 10 | 250 | | 2 tube | s, Push | -pull | | 6AC6-GT | Dynamic-Coupled Power
Amplifier | 7W | 9-11 | 6.3 | 1.1 | 8.5
1.3 | 180 | _ | | T - | T | | 6AC7 | RF Pentode | 8N | 8-1 | 6.3 | 0.45 | 3.0 | 300 | 3008 | 11 | 5 | 0.018 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. * Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------------|-----------------------------|-----------------------------|---|----------------------------------|------------------------------|---------------------------|---|--|--------------------------------|------------------------| | Class A
Amplifier | 315
250
180 | 225
250
180 | 13
12.5
8.5 | 34†
45†
29†
70† | 2.2†
4.5†
3.0† | 80,000
50,000
50,000 | 3,750
4,100
3,700 | = | 8,500
5,000
5,500 | 5.5
4.5
2.0 | 5V6-GT¶ | | Class AB ₁ Amplifier Vertical Amplifier | 285
250
250
Max | 285
250
—
positive | 19
15
12.5
pulse p | 70†
49.5
late vo | 4.0†
5.0†
 | =1200 v; n | 5,000
nax plat | 9.8 | 8,000‡
10,000‡
—
pation = | 10 | | | Full-Wave
Rectifier | Maxo | l-c'outp | it curre | nt = 10 | 0 ma: m | ax peak inv
lts; max pe | erse vol | tage = 1 | 400 vol | ts; max
00 ma | 5W4
5W4-GT | | Full-Wave
Rectifier | Max o | i-c outp
ipply vo | ut curre
ltage pe | ent = 22
er plate | 5 ma; m
=450 vc | ax peak inv
lts; max pe | erse vol | tage = 1
ent per p | 550 vol plate = 6 | ts; max
75 ma | 5X4-G | | Full-Wave
Rectifier | | | | | | ax peak inv
lts; max pe | erse vol | tage = 1
ent per | 550 volt
plate = 9 | s;
000 ma | 5X4-GA | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 9.0 | 2.2 | 300,000
6,000 | 5,500
6,500 |
40 | _ | _ | <i>5</i> | | Amplifier Class A Amplifier | 160 | 135 | 1.7 | 13 | 5.0 | | 14,000 | | | | 5X9 | | Class A
Amplifier | 170 | | 1.0 | 8.5 | - | | 4,800 | 55 | | _ | | | Full-Wave
Rectifier | Max
rms su | d-c outp
ipply vo | ut curr
ltage p | ent = 12
er plate | = 350 v | ax peak inv
olts; max p | erse vo | ltage =
rent per | 1400 vo
plate = | ts; max
375 ma | 5Y3-G | | Full-Wave
Rectifier | suppl | y voltag | e per pi | ate = 35 | U volts; | ax peak in
max peak c | urrent p | er plate | 2 == 44U r | na. | 5Y3-GA | | Full-Wave
Rectifier | suppl | y voltag | e per p | late ⇒3: | 50 volts: | ax peak in
max peak | current | per pla | te = 440 | ma | 5Y3-GT | | Full-Wave
Rectifier | suppl | y voltag | e per pl | ate = 35 | 0 volts; | ax peak in
max peak o | urrent p | er plate | = 375 m | na | 5Y4-G | | Full-Wave
Rectifier | Max
suppl | d-c outp
y voltag | ut curr
e per pl | $\begin{array}{l} \text{ent} = 12 \\ \text{ate} = 35 \end{array}$ | 5 ma; m
0 volts; | ax peak in
max peak o | verse vo
urrent p | er plate | =400 vo | na | 5Y4-GA
5Y4-GT | | Full-Wave
Rectifier | Max | d-c outp | ut curre | ent = 22
er plate | 5 ma; m
= 450 vc | ax peak inv | verse vol | tage = 1
ent per | 1550 vol
plate = 6 | ts; max
375 ma | 5Z3 | | Full-Wave
Rectifier | Max | d-c outp | ut curr | ent = 12 | 5 ma: m | ax peak involts; max pe | verse vo | tage = | 1400 vol | ts; max | 5Z4
5Z4-GT | | Class A
Amplifier | 250 | | 45 | 60† | Ι = | 800 | 5,250 | 4.2 | 2,500 | 3.2 | 6A3 | | Class AB ₁
Amplifier | 325 | | 68 | 80† | | | | | 3,000‡ | | | | Class A
Amplifier | 180 | 180 | 12 | 22† | 3.9† | 45,400 | 2,200 | | 8,000 | 1.4 | 6A4/LA | | Class A
Amplifier
Class A | 250
325 | | 45
68 | 60†
80† | _ | 800 | 5,250 | 4.2 | 2,500
3,000 | 3.75 | 6A5-G | | Amplifier
Class B | 300 | | 00 | 35† | | | | | 8,000 | | 6A6 | | Amplifier
Class A | 294 | _ | 6.0 | 7.0 | _ | 11,000 | 3,200 | 35 | # | - | 5110 | | Amplifier
Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | E_{c2} (Os
thru 20
$I_{c3} = 4$. | c Plate)
0,000 oh | =250
ims | 6A7 | | Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | Ec2 (Os | c Plate) | =250
ms | 6A8
6A8-G
6A8-GT | | Clara A | 250 | | R _k = | 10 | | 10,900 | 5,500 | 60 | <u> </u> | T= | 6A B4 | | Class A
Amplifier | 100 | - | R _k = 270 | 3.7 | - | 15,000 | 4,000 | 60 | | | | | Tuning
Indicator | | | t, shado | $w = 90^{\circ}$ | , plate c | rget voltage
urrent = 0.5 | ma, tar | E _c = - | 10, sharent $= 2$ | dow =
ma) | 6AB5/6N5 | | Class A
Amplifier | 300 | 200 | 3.0 | 12.5 | 3.2 | 700,000 | 1 | | | | 6AB7/1853 | | Class A
Amplifier ♠
Class B | 125
250 | 80 | 1.0 | 8.0
5.0† | 2.0 | 110,000
Input sign | 1 | 0 watt | 10,000 | 8.0 | 6AB9
6AC5-GT | | Amplifier Class A Amplifier | 180 | 180 | 0 | 45.0 | 7.0 | 18,000 | 3,000 | Γ- | 3,500 | 3.6 | 6AC6-GT | | Amplifier
Class A | 300 | 150 | R _k = | 10 | 1 2.5 | 11,000,000 | 19.000 | 1 | ī — | T | 6AC7 | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. • Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila- | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofara | e in
ls | |------------------|--|---------------|-------------|---------------|-------|-----------------------------|------------------------------|---|--------------------------------------|---|------------------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6AC9¶ | Duplex-Diode
Pentode | 12GN | 9-57 | 6.3 | 0.6 | 2.5 🏽 | 1 | 10.55 | Pentod
Drop: | | on | | | | | | | ł | | 10 volt | s at 50 | Drop:
ma d-c | • | | | 6AC10¶ | Triple Triode | 12FE | 9-58 | 6.3 | 0.6 | 2.0 ◈ | 330 ◈ | - | 2.4₁ ▲
2.6₂ ▲ | 0.22 ₁
0.30 ₂
0.44 ₃ | 1.3 ₁ A
1.2• A | | 6AD4 ● | High-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 0.3 | 150 | <u> </u> | 1.9 | 2.2 | 0.7 | | 6AD6-G | Twin Electron-Ray
Indicator | 7AG | 9-3 | 6.3 | 0.15 | | Max ta
Min ta | rget vo | ltage =
ltage = | 150
00 | | | 6AD7-G | Triode-Power Amplifier
Pentode | 8AY | 14-3 | 6.3 | 0.85 | 1.0
8.5 | 285
375 | 285
2.7 | | section
le section | | | 6AD10 | Dissimilar Double
Pentode | 12EZ | 9-59 | 6.3 | 1.05 | 10 ♦
1.7 ♦ | 275 ♦
300 ♦ | 275 3 2.0 3 300 3 | Section
9, 10
Section
3, 5, |), 11) (F | Pins 8,
Pins 2, | | 6AD10-A | Dissimilar | 12EZ | 9-59 | 6.3 | 1.05 | 12 🏶 | 300 ◈ | 300 ◈ | Section | | . 8 | | on pro-n | Double
Pentode | 1262 | 9-09 | 0.3 | 1.00 | 1.7 🏶 | 300 ◈
| 2.5 ♦ | 9, 10
Section
3, 5, | , 11)
2 (Pin
6, 7) | s o,
s 2, | | 6AE5-GT | Low-Mu Triode | 6Q | 9-11 | 6.3 | 0.3 | 2.5 | 300 | - | | - | <u> </u> | | 6AE6-G | Single-Grid Twin-Plate
Control Tube | 7AH | 12-7 | 6.3 | 0.15 | | 250 | Remot
Sharp- | e-cut-of
cut-off | f plate
plate (F | (Pin 3)
in 4) | | 6AE7-GT | Twin-Input Triode | 7AX | 9-11 | 6.3 | 0.5 | 5.0 | 300 | _ | _ | - | | | 6 A F 3 | Half-Wave High-
Vacuum Rectifier | 9CB | 6-8 | 6.3 | 1.2 | 6.0 🏶 | Tube \ | oltage | Drop:
ma d- | | | | 6AF4
6AF4-A | UHF Triode Oscillator | 7DK | 5-2
5-1 | 6.3 | 0.225 | 2.5 🏶 | 150 ◈ | | 2.2 ▲ | 1.4 ▲ | 1.9▲ | | 6AF5-G | Low-Mu Triode | 6Q | 12-7 | 6.3 | 0.3 | = | 180 | | | | - | | 6AF6-G | Twin Electron-Ray
Indicator | 7AG | 9-1
9-36 | 6.3 | 0.15 | | _ | Min ta | arget vo | ltage = | 125 | | 6AF10 | Dissimilar Double
Pentode | 12GX | 9-58 | 6.3 | 1.2 | 3.0 ♦ 5.0 ♦ | | 0.8 | Section
8, 9,
Section
3, 4, | 10. 11 | ins 6,
ins 2, | | 6AF11 | Dissimilar-Double-
Triode Pentode | 12DP | 9-58 | 6.3 | 1.05 | 5.0� | 330 � | 330 | Pentod | 5, 6)
e Secti | on | | | Thode rentode | | | | | 1.1 🏶 | 330 ◈ | 1.25 | 1 | Section | | | | 0: 0 : 0 0 0 | -55 | | | | 2.0 | 330� | | Triode
(Pins 3 | Section (4, 7) | | | 6A G5 | Sharp-Cutoff RF
Pentode | 7BD | 5–2 | 6.3 | 0.3 | 2.0 | 300 | 300 8
0.5 | 1 | e Conr
Conne | | | 6AG7 | Power Amplifier | 8Y | 8-6 | 6.3 | 0.65 | 9.0 | 300 | 300 | (G ₁ & | Conne
P tied)
 7.5 | 0.06 | | 6AG9 | Pentode
Triode-Pentode | 12HE | 9-59 | 6.3 | 0.82 | 10 🕸 | 330 ◈ | | Pentod | le Secti | on. | | | | | | | | 1.1 🏶 | 330 ◈ | 1.5 | Triode | Section | n | | 6AG10 | Gated Twin Hexode | 12GT | 9-60 | 6.3 | 0.75 | 2.0 • | 330 € | 1.0 \$\left\ \times \text{g4} \\ 300 \times \text{g3} \\ 2.0 \times \text{g3} \\ \times \text{g3} \\ \times \text{g2} \\ 0.25 \end{array} | | | | | | Duplex-Diode Twin | 12DA | 9-56 | 6.3 | 0.75 | 2.0 | 330� | <u>-</u> •g2 | Triode | Section | ns . | | 6AG11 | Triode | 1 | i | i | 1 | | | | | | | | 6AG11
6AH4-GT | Triode | 1 SEL | J 9-41 | 6.3 | 0.75 | 7.5 | 500 | <u> </u> | Diode | Section | s | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. \$ Supply voltage. [●]Subminiature type. ▲Without external shield. •Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------|------------------|-------------------------------|--|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|--|------------------| | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.5 | 150,000 | 10,000 | | i | — i | 6AC9¶ | | rimpinie: | Max d | c outpu | t curre | nt 🔷 💠 | = 5.0 ma | 1 | 1 | ! | ı | ' | | | Class A
Amplifier ♠ | 200 | _ | R _k == 150 | 9.0 | - - | 10,700 | 5,800 | 62 | - | | 6AC10¶ | | Class A
Amplifier | 100 | | R _k = 820 | 1.4 | - | , | 2,000 | 70 | - | - | 6AD4 @ | | Tuning
Indicator 🏟 | Target
(Ray c | voltage
= ontrol | = 150 (
= +8 vo | Ray co | ntrol = -1
low = 90 | +75 volts. | shadow | =0°) | | | 6A D6-C | | Class A
Amplifier | 250 | | 25 | 3.7 | | 19,000 | 325 | 6.0 | <u> </u> | - | 6AD7-0 | | Class A
Amplifier | 250 | 250 | 16.5 | 34† | 6.5† | 80,000 | 2,500 | | 7,000 | 3.2 | | | Class A
Amplifier | 250 | 250 | 8.0 | 35† | 2.5† | 100,000 | 6,500 | | 5,000 | 4.2 | 6AD10 | | Class A
Amplifier | 150 | 100 | R _k =
180 | 2.8 | 3.4 | 110,000 | 2,500 | (E _{c3} : | =0 volts | i) | | | Amplifier | 250 | 250 | 8.0 | 35 | 2.5 | 100,000 | 6,500 | | 5,000 | 4.2 | 6AD10 | | Class A
Amplifier | 150 | 100 | R _k = 180 | 2.8 | 3.4 | 110,000 | 2,500 | | 0 volts | | | | Class A
Amplifier | 95 | _ | 15 | 7.0 | - | 3,500 | 1,200 | 4.2 | - | | 6AE5-G | | Class A
Amplifier | 250
250 | | 1.5
1.5 | 6.5
4.5 | | 25,000
35,000 | 1,000 | 25
33 | | | 6AE6-G | | Class A
Amplifier ♠ | 250 | | 13.5 | 5 | | 9,300 | 1,500 | 14 | | | 6AE7-G | | TV Damper | Max
volts; | max pe | ak curr | rent 🏶 = | =185 m
:750 ma | a; max pe | ak inve | rse vol | tage 🏶 = | -4 ,500 | 6AF3 | | Class A
Amplifier | 80 | | $R_k = 150$ | 17.5 | - | 2,100 | 6,500 | 13.5 | - | | 6AF4 | | Class A
Amplifier | 180 | | 18 | 7.0 | | 4,900 | 1,500 | 7.4 | | | 6AF4-A
6AF5-G | | Tuning
Indicator 🌩 | (Ray c | voltage
= ontrol | =250 (
0 v, sh | Kay co:
adow = | ntrol = -
100°, ta: | +155 volts | , shadow $= 3.75$ | ma) | | - 1 | 6AF6-G | | Class A
Amplifier | 200 | 150 | 2.0 | 10 | 2.5 | _ | 10,000 | _ | | | 6AF10 | | Class A
Amplifier | 200 | 125 | R _k = | 22 | 4.0 | 75,000 | 23,000 | | | | | | Class A
Amplifier | 200 | 150 | R _k = 100 | 24 | 4.8 | 68,000 | 11,000 | _ | _ | _ | 6AF11 | | Class A Amp | 200 | _ | 2.0 | 7.0 | - | 12,400 | 5,500 | 68 | - | | | | Class A
Amplifier | 200 | | R _k = 220 | 9.2 | | 9,400 | 4,400 | 41 | _ | | | | Class A
Amplifier
Class A | 250
250 | 150 | R _k == 180
R _k == | 6.5
5.5 | 2.0 | 800,000
10,000 | 5,000
3,800 | 42 | | | 6AG6 | | Amplifier
Class A | 300 | 150 | 820
3.0 | | | | | | 10.005 | | | | Amplifier Class A | 250 | 150 | 3.0
R _k == | 30†
28 | 7.0†
5.6 | 130,000 | 11,000 | | 10,000 | 3.0 | 6AG7 | | Amplifier | 55 | 125 | 0 | 56 | 21 | 40,000 | 30,0 0 0 | _ | _ | _ | 6AG9 | | Class A
Amplifier | 150 | - | R _k = 350 | 6.2 | - | 8,500 | 4,600 | 39 | <u> </u> | | | | Color
Demodu- | Section
40 | 10g4 | R = | less oth | 0.4g4 | ndicated
— | 10,000 | _ | ' | , _ | 6AG10 | | lator
Avg. Char. | | 100g3
25g2 | 120 | • | 2.2g3
0.5g2 | | | | | | | | <u>.</u> | 250 | -26g4
100g3 | R _k =
120 | 0.1 | | _ | - | _ | - | - | | | | 100 | 25g2
10g4
100g3
25g2 | 0 | 37 | 2.5g4
6.0g3
1.5g2 | _ | _ | _ | _ | - | | | Class A | 125 | | 1.0 | 7.5 | | 8,500 | 7,800 | 66 | | <u> </u> | 6AG11 | | Amplifier ♠
Detector ♠ | Max d | -c outpu | it curre | nt 🔷 🖚 | 5.0 ma | | • | | | ŀ | | | Vertical
Amplifier | 250 | I 1 | 23 | 30 | | 1,780
=2000 v; | 4,500
max d-c | 8.0
catho | de curre | -
ent = | 6AH4-0 | Metal tubes are shown in bold-face type, miniature tubes in italics. \$\delta\$ G3 and G5 are screen. G4 is signal-input grid. \$\delta\$ G2 and G4 are screen. G3 is signal-input grid. \$\delta\$ Maximum acreen dissipation appears immediately below the screen voltage. \$\delta\$ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitano
icofara | e in | |-------------------|-------------------------------------|---------------|-------------------|---------------|---------------|-----------------------------|------------------------------|----------------------------------|--|---|--| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6AH6 | Sharp-Cutoff RF
Pentode | 7BK | 5–2 | 6.3 | 0.45 | 3.2 | 300 | 300 | | e Conn | | | 64) I 7 C W | Medium-Mu | -005 | | | | | | İ | Triode
(G ₂ , G ₂ | Conne | ction
ed) | | 6AH7-GT | Twin-Triode | 8BE | 9-7 | 6.3 | 0.3 | 1.5♠ | 180 | | | | | | 6AH9 | Triode-Pentode | 12HJ | 9–58 | 6.3 | 0.9 | 10◈ | 400◈ | 330 : ♦
1.0♦ | | e Sectio | n | | | | | | | | 2.0◈ | 330◈ | | Triode | Section | | | 3AJ4 | UHF Medium-Mu
Triode | 9BX | 6-1 | 6.3 | 0.225 | 2.0 | 150 | | | _ | _ | | SA J 6 | Sharp-Cutoff
RF Pentode | 7BD | 5-1 | 6.3 | 0.175 | 1.7 | 180 | 180 8
0.5 | 4.0 | 2.8 | 0.02 | | SAJ7 | RF Pentode | 8N | 8-1 | 6.3 | 0.45 | 3.0 | 300 | 300 8
0.38 | 11 | 5 | 0.015 | | 5AK4 ⊜ | Medium-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 3.0 | 250 | _ | 2.2 | 2.2 | 1.3 | | SA K5 | Sharp-Cutoff
RF Pentode | 7BD | 5-1 | 6.3 | 0.175 | 1.7 | 180 | 180 2
0.5 | 4.0 | 2.8 | 0.02 | | AK6 | Power Amplifier | 7BK | 5-2 | 6.3 | 0.15 | 2.75 | 300 | 250 | 3.6 ▲ | 4.2 ▲ | 0.12 | | SAK7 | Pentode Power Amplifier Pentode | 8Y | 8-6 | 6.3 | 0.65 | 9.0 | 300 | 300 | 13 | 7.5 | 0.06 | | 6АК9■ | Dissimilar-Double- | 12GZ | 12-56 | 6.3 | 1.6 | 10� | 350◈ | 1.5
250 ◈ | Pentode | Section | 1 क | | | Triode Pentode | | | | | 1.25� | 330� | 2.0 | Triode | Section | 1 | | | | | | | | 1.0◈ | 330⊛ | _ | (Pins 7,
Triode
(Pins 2, | Section | 2 | | 6AK10 = | Triple Triode | 12FE | 9-59 | 6.3 | 0.9 | 2.0 ♠ | 330 ♠ | _ | 4.2 ₁ ▲ 4.2 ₂ ▲ | 0.3 ₁ \triangle 0.4 ₂ \triangle 0.54 ₃ \triangle | 3.2 ₁
3.0 ₂
3.0 ₃ | | 6A L3 | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 6.3 | 1.55 | 5.0 | Tube V | oltage :
s at 440 | Drop: | 0.01.2 | 4 0.00 | | SALS | Twin Diode | 6BT | 5-1 | 6.3 | 0.3 | | Tube V | oltage
60 ma | Dгор: ф | | | | 6AL6-G | Beam Power Amplifier | 6AM | T-X | 6.3 | 0.9 | 18.5 | 350 | 300
2.7 | _ | _ | = | | SAL7-GT | Electron-Ray Indicator | 8CH | 9-7
or
9-39 | 6.3 | 0.15 | | | Max ta | rget vol | | | | 6AL9 | Triode-Pentode | 12HE | 9-59 | 6.3 | 0.82 | 10 🏶 | 330 ◈ | 200 🌒 | Pento | de Sect | ion | | | | | | | | 1.5 ◈ | 330 ◈ | 1.5 🏶 | Triode | e Sectio | n | | 6AL11 | Dissimilar Double
Pentode | 12BU | 9-59 | 6.3 | 0.9 | 10 ♦
1.7 ♦ |
275 ♦
330 ♦ | 2.0 ③
330 8 ⑥ | Section
9, 10
Section
3, 4, 6, | , 11)
2 (Pin: | - | | SAM 4 | UHF High-Mu Triode | 9BX | 6-1 | 6.3 | 0.225 | 2.0 | 200 | | - | ' | | | SA M8 | Diode Sharp-Cutoff
RF Pentode | 9CY | 6-2 | 6.3 | 0.45 | 3.2 🏈 | 330 ♦ | 330 ♦ \$
0.55 ♦ | 6.5 | 2.6 | 0.015 | | SA M8-A¶
SA N4 | UHF High-Mu Triode | 7DK | | 6.2 | 0.005 | | - 200 | J.55 🐠 | Diode S | Section | • | | | | | | 6.3 | 0.225 | 4.0 | 300 | | | _ | | | AN6 | Beam Power Amplifier | 7BD | 5-2 | 6.3 | 0.45 | 4.2 | 120 | 120
1.4 | 9.0 | 4.8 | 0.075 | | AN6 | Quadruple Diode | 7BJ | 5-2 | 6.3 | 0.2 | | Tube V
9.0 v at | oltage l
6.6 ma | Drop:♠ | | | | AN8 | Triode-Pentode | 9DA | 6-2 | 6.3 | 0.45 | 2.3 🏶 | | 330 ♦ 8 | | e Sectio | n | | AN8-A¶ | | | | | | 2.8 🏶 | 330 ◈ | 0.50 | Triode | Section | | | AQ5 | Beam Power Amplifier | 7BZ | 5-3 | 6.3 | 0.45 | 12 🔷 | 275 🏶 | 275 ♦
2.0 ♦ | Pentod | e Conne | ection | | A Q 5-A ¶ | | | | | | 10 🔷 | 275 🏶 | 2.5 | Triode
(G ₂ & F | Connec | tion | Compactron. † Zero signal. • Per section. [†] Plate-to-plate. †Maximum. *Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--|---|--|---
--|--|--|--
---|--|--| | Class A | 300 | 150 | Rk = | 10 | 2.5 | 500,000 | 9.000 | _ | <u> </u> | | 6AH6 | | Amplifier
Class A
Amplifier | 150 | - | 160
R _k ==
160 | 12.5 | - | 3,600 | 11,000 | 40 | - | - | | | Class A
Amplifier • | 180 | | 6.5 | 7.6 | | 8,400 | 1,900 | 16 | | | 6AH7-GT | | Avg. Char. | 250
50 | 150 | R _k = | 25
76 | 6.0 | 55,000 | 21,000 | _ | _ | - | 6AH9 | | Avg. Char. | 250 | 123 | 9.0 | 8.0 | 32 | 7,300 | 2,750 | 20 | = | | | | Class A
Amplifier | 125 | - | $R_k = 68$ | 16 | | 4,200 | 10,000 | 42 | - | _ 1 | 6AJ4 | | Class A
Amplifier | 28 | 28 | 1.0 | 2.7 | 1.0 | 100,000 | 2,500 | | | | 6AJ8 | | Class A
Amplifier | 300 | 150 | R _k = 160 | 10 | 2.5 | 1,000,000 | 9,000 | | _ | | 6AJ7 | | Class A
Amplifier | 200 | | R _k = 680 | 9.5 | | 5,300 | 3,800 | 20 | | | 6AK4 ● | | Class A | 180 | 120 | R _k = 180 | 7.7 | 2.4 | 500,000 | 5,100 | | | | 6AK5 | | Amplifier | 120 | 120 | R _k = 180 | 7.5 | 2.5 | 300,000 | 5,000 | - | _ | | | | Class A
Amplifier | 180 | 180 | 9.0 | 1 5 † | 2.5† | 200,000 | 2,300 | | 10,000 | 1.1 | 6A K6 | | Class A
Amplifier | 300 | 150 | 3.0 | 30† | 7.0† | 130,000 | 11,000 | | 10,000 | 3.0 | 6AK7 | | Avg. Char. | 150
60 | 150
125 | 14
0 | 49
140 | 3.5
18 | 16,400 | 6,200 | _ | = | | 6A K9 | | Avg. Char. | 150 | - | 2.0 | 5.4 | - 1 | 11,000 | 3,900 | 43 | = | _ | | | Avg. Char. | 150 | - | 5.0 | 5.5 | _ | 8,500 | 2,350 | 20 | _ | - | | | Color Dif-
ference Am- | 200 | | R _k = 230 | 10 | j – j | 7,500 | 7,000 | 53 | | | 6AK10 | | | | 1 | 1200 | l | 1 1 | | | | | | | | plifier ∲
TV Damper | | | t currer | | ma; ma | x peak inve | erse volt | age 🗐 = | -7,500 v | olts; | 6AL5 | | plifier 🌩 | Max d
330 vo | ak curr
-c outp
lts; max | t currer
ent = 55
ut curre
rms su | 0 ma | • | x peak inve
= 9 ma; n
er plate 🏶 = | | | • | · | 6AL3 | | plifier • TV Damper Half-Wave | max pe
Max d
330 vol
per pla
250 | eak curr-
-c outp
lts; max
lte - 5
250 | t currer
ent = 55
ut curre
rms su
4 ma | 0 ma
ent per
pply vo | plate &
ltage pe | =9 ma; n
er plate ⊕ =
22,500 | ax peal
=117 vo | k invers | se volta
k peak o | ge | | | plifier • TV Damper Half-Wave Rectifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode c
trols b | eak curre-c outpoints; maxite = 50 250 t voltage pin 6 electron bettom bettom bettom bettom controls | t currer ent = 55 ut curre rms su 4 ma 14 e = 315 ectrode top rig nalf of f | 0 ma
ent per
pply vo
72†
volts; control
ht quar
luoresce | plate oltage per 5.0† cathode s top lefter of flent area | =9 ma; n
er plate | 6,000
6,000
3,300 oh
of fluore
area, and | k inversits; mai | 2,500 id volta rea, pin electroid | ge - 0 4 electer con- | 6AL6-G | | plifier TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video | max per Max d 330 vol per pla 250 Target volts; trode c trols b with a 250 | eak curr-c outputs; maxite ⊕ =5 250 t voltage pin 6 elecontrols octom leplane pin 150 | t current = 55 ut current = 55 ut current rms su id ma 14 e = 315 ectrode top riguals of sessing the session that sessing the session that session sessio | 0 ma
ent per
pply vo
72†
volts; control
ht quar
luoresce
hrough | plate oltage per 5.0† 5.0† cathode s top lefter of flent area pins 4 ar | =9 ma; ner plate •= 22,500 resistor = 3 it quarter cuorescent a when the | 6,000
6,000
3,300 oh
of fluore
area, and
tube is
l and wi | k inversits; mai | 2,500 id volta rea, pin electroid | ge - 0 4 electer con- | 6AL6-G | | plifier • TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose | max pe
Max d
330 vol
per pla
250
Target
volts;
trode of
trols b
with a | eak curre-c outpoints; maxite \$\infty = 50 250 t voltage pin 6 el controls outtom leplane p | t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode top rig nalf of f assing t | 0 ma ent per pply vo 72† volts; control ht quar luoresce | plate tage per 5.0† cathode s top lefter of flent area pins 4 ar | 22,500 resistor = 3 t quarter of when the ad 8 vertica | 6,000
6,000
3,300 oh
of fluore
area, and
tube is
l and wi | k inversits; mai | 2,500 id volta rea, pin electroid | ge - 0 4 electer con- | 6AL6
6AL6-G
6AL7-GT | | plifier A TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max per Max d 330 volper pla 250 Target volts; trode of trols by with a 250 55 | eak curr-c outputs; maxite ⊕ =5 250 t voltage pin 6 elecontrols octom leplane pin 150 | t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode top rig nalf of f assing t R _k = 56 0 R _k = 270 | 0 ma
ent per
pply vo
72†
volts; of
control
ht quar
luoresce
hrough | plate oltage per 5.0† 5.0† cathode s top lefter of flent area pins 4 ar | resistor = 22,500 resistor = 22,500 resistor = 3 t quarter quorescent a when the ad 8 vertica 40,000 | 6,000
6,000
6,000
6,300 oh
of fluore
trea, and
tube is
1 and wi | k inversits; maxims; griscent aid pin 5 mounte th pin 4 | 2,500 id volta rea, pin electroid | ge - 0 4 electer con- | 6AL6
6AL6-G
6AL7-GT | | plifier A TV Damper Half-Wave Rectifier Class A Amplifier RM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A | max pe
Max d
330 voltes
250
Target
volts;
trode e
trols b
with a
250
55
200 | eak curr- c outp lts; max tte \$\infty = 5\$ 250 t voltag pin 6 el controls controls plane p 150 125 | t currer ent = 55 ut currer rms su 4 ma 14 e = 315 ectrode etop rig alf of f assing t Rk = 56 0 Rk = 270 8.0 Rk = | 0 ma
ent per
pply vo
72†
volts; control
ht quar
luoresce
hrough;
28
56
7.6 | plate lange per stop left ter of first area pins 4 ar | 22,500 resistor = 22,500 resistor = 3 t quarter correscent s when the d 8 vertica 40,000 9,200 | 6,000
6,000
3,300 oh
f fluore
trea, and
tube is
1 and wi
30,000
6,300 | inversits; mains; griscent and pin 5 mounte th pin 4 | 2,500 2,500 d volta rea, pin electrod norize on top. | ge 🏶 = urrent 6.5 ge = 0 4 election contaily | 6AL6-G 6AL7-GT 6AL9 ■ | | plifier TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode of
trols be
with a
250
55
200 | eak curr- c outp lts; max tte \$\left(= 50 \) t voltag pin 6 el controls outom l plane p 150 125 250 | t currer
ent = 55
ut currer
rms su
4 ma
14
e = 315
ectrode
top rig
nalf of f
assing t
R _k = 56
0
R _k =
270
R _k =
560
R _k = | 0 ma ent per pply vo 72† volts; control ht quar duoresce hrough 56 7.6 | plate politage per 5.0† cathode s top lefter of firmt area pins 4 ar 5.6 21 | 22,500 resistor = 2 t quarter correscent swhen the d8 vertica 40,000 9,200 | 6,000 6,300 oh f fluores rea, and tube is l and wi 30,000 6,300 6,500 | inversits; mains; griscent and pin 5 mounte th pin 4 | 2,500 2,500 d volta ea, pin electrod d horize on top. | ge 🏶 = urrent 6.5 ge = 0 4 election contaily | 6AL6-G 6AL7-GT 6AL9 ■ | | plifier A TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode c
trols b
with a
250
250
250 | eak curr- c outp lts; max tte \$\left(= 50 \) t voltag pin 6 el
controls outom l plane p 150 125 250 | t currer ent = 15 to true to true to true to true true true true true true true true | 0 ma ent per pply vo 72† volts; e control ht quar hrough 28 56 7.6 1.3 | plate politage per 5.0† cathode s top lefter of firmt area pins 4 ar 5.6 21 | 22,500 22,500 22,500 resistor = 1 t quarter currescent 2 when the 40,000 9,200 100,000 150,000 | 6,000
6,000
3,300 oh
of fluore
trea, and
tube is
1 and wi
30,000
6,300
1,000 | inversits; manual strains and | 2,500 2,500 d volta ea, pin electrod d horize on top. | ge 🏶 = urrent 6.5 ge = 0 4 election contaily | 6AL6-G 6AL7-GT 6AL9 | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A D Class A Amplifier Class D | max pe
Max d
330 vol
per pla
250
Target
volts;
trode e
trols b
with a
250
55
200
150
200 | eak curre-c outputs; max. tee | t currer ent = 55 to ture rms su 4 ma 14 e = 315 e top rig alf of fassing t Rk = 56 0 Rk = 270 Rk = 100 Rk = 560 top rig fast results for the results | 0 ma ent per pply vo 72t volts; (control ht quar luoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms | plate states plate to the plate state of the plate term of first area pins 4 are states and states plate term of the pla | 22,500 resistor = 3 t quarter cuorescent swhen the d8 vertica 40,000 9,200 100,000 150,000 8,700 300,000 te drop: 10 | 6,000 6,300 6,300 6,300 6,300 7,800 vat 50 r | k inversits; ma: | 2,500 2,500 d volta ea, pin electrod d horize on top. | ge 🏶 = urrent 6.5 ge = 0 4 election contaily | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode e
trols b
with a
250
250
150
200
125
Max d-
200 | ak curre-c outputs; max. tte \$\insertex = 5 \\ 250 \text{tvoltage} t voltage | t currer ent = 15 to true true true true true true true true | 0 ma ent per pply vo 72t volts; control ht quar luoresce hrough; 28 56 7.6 1.3 10 12.5 t = 5 ms | plate states plate to the plate state plate to the | 22,500 resistor = resis | 1000 page p | k inversits; ma: | se voltas peak c 2,500 id volta rea, pin electror d horizot on top. 5,000 0 volts | ge 🏶 = uurrent 6.5 ge = 0 4 electie contrally | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max dd
330 vol
per pla
250
Target
volts;
trode c
trols b
with a
250
250
150
200
125
Max d-
200 | 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 125 250 | t currer ent = 15 to ture rms su 4 ma 14 | 0 ma ent per pply vo 72† volts; c control ht quar duoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35 | plate state of the plate | 22,500 resistor = 22,500 resistor = 22,500 resistor = 32,500 resistor = 32,500 100,000 100,000 100,000 100,000 8,700 300,000 2,500 12,500 | 10,000 | k inverse inve | se voltas peak c 2,500 id volta rea, pin electrod dhorizza on top. 5,000 0 volts | ge - urrent 6.5 ge - 0 4 electe contally 4.2 | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode e
trols b
with a
250
250
150
200
125
Max d
200
120
Max d | ak currc outputs; max 250 250 100 125 250 25 | t currer ent = 15 to true turrer trms su 4 ma 14 e = 315 ectrode top rig assing t Rk = 56 to Rk = 100 | 0 ma ent per pply vo 72t volts; control trough; 28 56 7.6 135t 1.3 10 12.5 t = 5 ms 13 35 ent per | Distance | 22,500 resistor = 10,000 100,000 | 1000 a to 0 | k inverse inve | ze voltaj ze peak ce za voltaj ze voltaj za | ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210; | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode e
trols b
with a
250
250
150
200
125
Max d
200
120
Max d | ak currc outputs; max 250 250 100 125 250 25 | t currer ent = 55 tut currer rms su 4 ma 14 e = 315 ectrode top rig assing t R _k = 56 0 R _k = 270 R _k = 100 R _k = 100 R _k = 100 R _k = 120 ut curren R _k = 120 ut curren | 0 ma ent per pply vo 72t volts; control trough; 28 56 7.6 135t 1.3 10 12.5 t = 5 ms 13 35 ent per | Distance | 22,500 resistor = 22,500 resistor = 22,500 resistor = 32,500 resistor = 32,500 100,000 100,000 100,000 100,000 8,700 300,000 2,500 12,500 | 1000 a to 0 | k inverse inve | ze voltaj ze peak ce za voltaj ze voltaj za | ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210; | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5 | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM
Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max d
330 volo
per pla
250
Target
volts;
trode e
trols b
with a
250
250
150
200
125
Max d
200
120
Max d
7ms su | ak curre-c outputs; max. te \$\infty\$=\frac{5}{250} t voltag pin 6 el controls output list 250 | t currer ent = 55 to turer rms su 4 ma 14 e = 315 e top rig alf of fassing t | 0 ma ent per pply vo 72t volts; (control ht quar luoresce hrough 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35 ent per er plate | Description Description | 22,500 resistor = 2 t quarter cuorescent swhen the d8 vertica 40,000 9,200 100,000 150,000 8,700 300,000 edrop:10 7,000 12,500 8.0 ma; ma ax peak cu | 6,000 6,000 6,000 6,300 6,300 6,300 1,000 7,800 vat 50 r 10,000 8,000 x peak irrent pe | k inverse inve | ze voltaj ze peak ce za voltaj ze voltaj za | ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210; | 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5 | | plifier A TV Damper TV Damper Half-Wave Rectifier Class A Amplifier FM/AM Tuning Indicator Video Amplifier General Purpose Amplifier Class A | max pe
Max d
330 vol
per pla
250
Target
volts;
trode e
trols b
with a
250
250
150
200
125
Max d
200
120
Max d
rms su
125 | ak curre-c outputs; max. te \$\infty\$=\frac{5}{250} t voltag pin 6 el controls output list 250 | t currer ent = 55 tut currer erms su 4 ma 14 e = 315 ectrode top rig assing t R _k = 56 0 R _k = 270 8.0 R _k = 100 | 0 ma ent per pply vo 72t volts; (control ht quar duoresce hrough; 28 56 7.6 1.3 10 12.5 t = 5 ms 13 35 ent per plate 12 | Description Description | 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 resistor = 22,500 10,000 100,000 | 6,000 6,000 6,000 6,300 oh of fluore rea, an tube is l and wi 30,000 6,300 1,000 7,800 v at 50 r 10,000 x peak r rrent pe 7,800 | k inverse this; many many many many many many many many | ze voltaj ze peak ce za voltaj ze voltaj za | ge - urrent 6.5 ge - 0 4 electe controlly 4.2 1.3 - 210; | 6AL6-G 6AL6-G 6AL7-GT 6AL9 ■ 6AL11 ■ 6AM4 6AM8 6AM8-A 6AN4 6AN5 6AN6 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca _j | acitanc
icofarac | e in
is | |-----------------|--------------------------------------|---------------|--------------------|---------------|---------------|--------------|--------------|---------------------------------|-------------------|-----------------------------------|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6AQ6 | Duplex-Diode
High-Mu Triode | 7BT | 5-2 | 6.3 | 0.15 | <u> </u> | 300 | | 1.7 | 1.5 | 1.8 | | 6AQ7-GT | Duplex-Diode
High-Mu Triode | 8CK | 911
941 | 6.3 | 0.3 | 1.0 | 250 | = | | | | | 6AQ8 | Twin Triode | 9AJ | 6-2 | 6.3 | 0.435 | 2.5♠
4.5⊕ | 300 | | 3.0 ▲ | 1.2 ▲ | 1.5▲ | | 6AR5 | Power Amplifier
Pentode | 6CC | 5-3 | 6.3 | 0.4 | 8.5 | 250 | 250
2.5 | | | = | | 6AR6 | Beam Power Amplifier | 6BQ | T-X | 6.3 | 1.2 | 21 🖷 | 630 🖲 | | 11.0 🛦 | 7.0 ▲ | 0.8 | | 6A R8 | Double Plate
Sheet-Beam Tube | 9DP | 6–3 | 6.3 | 0.3 | 2.0 ♠ | 300 | 300 | | | = | | 6AR11 | Twin Pentode | 12DM | 9–58 | 6.3 | 0.8 | 3.1 ♠ | 330 ◈ | 330 3 ⊕
0.65 � | 10 | 2.8 ₁ 3.0 ₂ | 0,026 | | 6AS5 | Beam Power Amplifier | 7CV | 5-3 | 6.3 | 0.8 | 5,5 | 150 | 117 | 12▲ | 9.0▲ | 0.6 ▲ | | 6AS6 | Dual-Control
RF Pentode | 7CM | 5-1 | 6.3 | 0.175 | 1.7 | 180 | 140 | 4.0 | 3.0 | 0.02 💠 | | 6AS7-G | Low-Mu Twin Triode | 8BD | 16-3 | 6.3 | 2.5 | 13 ♠ | 250 | | | | | | 6AS7-GA | Low-Mu Twin Triode | 8BD | 12-16 | 6.3 | 2.5 | 13 ♠ | 250 | | | | | | 6AS7-GYB | Low-Mu Twin
Triode | 8BD | 12-16 | 6.3 | 2.5 | 13 ♠ | 250 | | | = | | | 6AS8 | Diode Sharp-Cutoff
RF Pentode | 9DS | 6-2 | 6.3 | 0.45 | 2.5 | 300 | 300 2
0.5 | | e Section
Section | n | | 6AS11 | Dissimilar-Double-
Triode Pentode | 12DP | 9–58 | 6.3 | 1.05 | 5.0� | 330� | 3308 👁 | Pentod | e Section | on. | | | Inode Pentode | | | | | 1.5� | 330 � | 1.1 | Triode
(Pins 5 | Section | 1 | | | | | | | | 2.0 🏶 | 330� | - | Triode
(Pins 3 | Section | 2 | | 6AT6 | Duplex-Diode
High-Mu Triode | 7BT | 5-2 | 6.3 | 0.3 | 0.5 | 300 | - | 2.2 ▲ | | 2.0 ▲ | | 6AT8 | Triode-Pentode
Converter | 9DW | 6-2 | 6.3 | 0.45 | 2.3 🏟 | 275 🏶 | 275 🔷 🖁 | Pentod | e Section |)t. | | 6A T8-A¶ | Converter | | | | | 1.7 🏶 | 275 ◈ | 0.45 | Triode | Section | ı | | 6AU4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 6.3 | 1.8 | 6.0 | Tube V | oltage | Drop: | | | | 6AU4-GTA | Half-Wave High-
Vaouum Rectifier | 4CG | 9-44 | 6.3 | 1.8 | 6.5 | Tube \ | 350 ma
Joltage
350 ma | Drop: | | | | 6AU5-GT | Beam Power Amplifier | 6CK | 9-11
or
9-41 | 6.3 | 1.25 | 10 | 550\$ | 200 | 11.3▲ | 7.0 ▲ | 0.5▲ | | 6AU6
6AU6-A¶ | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 6.3 | 0.3 | 3.5♠ | 300 ◈ | 330 ⊕\$
0.75 ⊕ | Pentod | e Conn | ection | | | | | | | | 3.5 ♦ | 275 🏶 | _ | | Connec | | Compactron. † Zero signal. Per section. [†] Plate-to-plate. •Maximum. § Supply voltage. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube | |-----------------------------|-------------------------------|---|--|-----------------------------------|------------------------------------|--|---------------------------|---------------------|--|--------------------------------|----------| | Class A
Amplifier | 250
100 | | 3.0
1.0 | 1.0
0.8 | _ | 58,000
61,000 | 1,200 | 70
70 | | | 6AQ6 | | Class A
Amplifier | 250
100 | = | 2.0
1.0 | 2.3
1.1 | | 44,000
64,000 | 1,600
1,250 | 70
79 | | | 6AQ7-GT | | Class A
Amplifier • | 250 | | 2.3 | 10 | | 9,700 | 5,900 | 57 | | | 6AQ8 | | Class A
Amplifier | 250
250 | 250
250 | 18
16.5 | 32†
34† | 5.5†
5.7† | 68,000
65,000 | 2,300
2,400 | | 7,600
7,000 | 3.4
3.2 | 6AR5 | | Class A
Amplifier | 300 | 300 | 36.0 | 58 | 4.0 | 22,000 | 4,300 | | _ | | 6AR6 | | Color TV
Synchronous | 250 | 250 | R _k = 300 | 10 | 0.4 | | 4,000 | | | | 6A R8 | | Detector Class A Amplifier | Total v | oltage c | hange o | n either
uired to | r deflect | ors (pins 1 a
or with an
the plate c | equal an | d oppos | site cha: | nge on
to the | 6AR11 | | Class A
Amplifier | 150 | 110 | 8.5 | 35† | 2.0† | | 5,600 | | 4,500 | 2.2 | 6AS6 | | Class A
Amplifier | 120
120 | 120
120 | 2.0
2.0 | 5.2
3.6 | 3.5
4.8 | 110,000 | 3,200
1.850 | E _{c3} = (| volts | - | 6AS6 | | DC
Amplifier • | 135 | | R _k = 250 | 125 | | 280 | 7,000 | 2.0 | - | T = | 6AS7-G | | DC
Amplifier • | 135 | | R _k = 250 | 125 | | 280 | 7,000 | 2.0 | _ | | 6AS7-GA | | DC
Amplifier • | 135 | | R _k = 250 | 125 | | 280 | 7,000 | 2.0 | | | 6AS7-GYB | | Class A
Amplifier | 200 | 150 | R _k = | 9.5 | 3.0 | 300,000 | 6,200 | | _ | | 6AS8 | | Detector | Max d | -c outpu | t curre | nt =5 n | ia; max | peak inve | rse volt | age = 3 | 30 voits | ; max | | | Class A
Amplifier | 200 | 125 | R _k = | 24 | 5.2 | 70,000 | 10,500 | _ | Γ- | T — | 6AS11 | | Class A Amp | 200 | - | 68
2.0 | 7.0 | _ | 12,400 | 5,500 | 68 | - | - | | | Class A
Amplifier | 200 | - | R _k = 220 | 9.2 | | 9,400 | 4,400 | 41 | - | - | | | Class A
Amplifier | 250
100 | = | 3.0
1.0 | 1.0 | | 58,000
54,000 | 1,200 | 70
70 | | = | 6AT6 | | Class A
Amplifier | 125 | 125 | 1.0 | 9.0 |
2.2 | 300,000 | 5,500 | | | _ | 6AT8 | | Class A
Amplifier | 125 | - | 1.0 | 12 | - | 6,000 | 6,500 | 40 | - | - | 6AT8-A¶ | | TV Damper | Max d | -c outp | ut curre | nt = 17
50 ma | 5 ma; n | nax peak in | iverse v | oltage [| =4,50 | 0 volts; | 6AU4-GT | | TV Damper | Max d | l-c outp
max pea | ut curre | ent 🔷 =
nt 🏶 = 1 | =210 m
.,300 ms | a; max po | eak inv | erse vo | ltage 🏶 | =4,500 | 6AU4-GTA | | Horizontal
Amplifier | 115
60
Max po
watts; | 175
 175
 175
 psitive p
 max d-c | ulse pla | 60
210
te volta
le curre | 6.8
 25
 ge 🖭 =
 nt = 110 | 5,500 v; m | 5,600
ax scree | _
n dissip | ation = | 2.5 | 6AU5-GT | | Class A
Amplifier | 250
100 | 150 | R _k = | | 4.3 | 1,000,000 | 5,200 | _ | <u> </u> | T = | 6AU6-A¶ | | Class A Amplifier | 250 | _ | R _k = 150
R _k = 330 | 12.2 | | | 3,900
4,800 | 36 | = | | | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
I | pacitano
Picofara | e in | |--------------|-------------------------------------|---------------|--------------------|--|--|-------------------------------|-------------------|---------------------------------|-------------------------|----------------------------|---------------------------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volis | and
Watts | Input | Out-
put | Grid-
plate | | 6A U7¶ | Medium-Mu
Twin Triode | 9A | 6-2 | 6.3
3.15 | 0.3
0.6 | 2.75♠ | 300 | - | 1.8 | 2.0 | 1.5 | | 6A U8¶ | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.6 | 3.0 | 300 | 300\$ | Pentod | e Section | on | | | **** | | | | | 2.5 | 300 | _ | Triode | Section | ı | | 6AU8-A¶ | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.6 | 3.3 ◈ | 330 ◈ | 330 | Pentod | e Sectio | n | | | | | | | | 2.8 🏶 | 330 🏶 | - | Triode | Section | 1 | | 6AV5-GA | Beam Power Amplifier | 6CK | T-X | 6.3 | 1.2 | 11 | 550\$ | 175
2.5 | 14 ▲ | 7.0 ▲ | 0,5▲ | | 6AV5-GT | Beam Power Amplifier | 6CK | 9-11
or
9-41 | 6.3 | 1.2 | 11 | 550\$ | 175
2.5 | 14 ▲ | 7.0 ▲ | 0.7 ▲ | | 6AV6 | Duplex-Diode High-
Mu Triode | 7BT | 5-2 | 6.3 | 0.3 | 0.5 | 300 | | 2.2 | 1.2 | 2.0 | | 6AV11 | Triple Triode | 12BY | 9–56 | 6.3 | 0.6 | 2.75 ♦
6.0 ♦ | 330 ◈ | _ | 1.9▲ | 1.8₁ ▲
0.7₂ ▲
2.0₃ ▲ | 1.2▲ | | 6AW7-GT | Duplex-Diode,
High-Mu Triode | 8CQ | 9-16 | 6.3 | 0.3 | - | 300 | | | | _ | | 6A W8¶ | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.6 | 3.25 | 300
300 | 3008 | | e Section | | | 6AW8-A¶ | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.6 | 3.75 ◈
1.1 ◈ | 330 ♦ | 330 ♦ \$
1.1 ♦ | | e Section | | | 6AX3 | Half-Wave High-
Vacuum Rectifier | 12BL | 9-59 | 6.3 | 1.2 | 5.3 🏶 | Tube | Voltage
ts at 25 | Drop: | c | | | 6AX4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11
9-41 | 6.3 | 1.2 | 5.0 ◈ | Tube V | oltage
250 ma | Drop: | | | | 6AX4-
GTA | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11 | 6.3 | 1.2 | 5.3 🏶 | Tube V | oltage
s at 250 | Drop: | | | | 6AX4-
GTB | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11 | 6.3 | 1.2 | 5.3 🆠 | Tube V | oltage
s at 250 | Drop: | | · · · · · · · · · · · · · · · · · · · | | 6AX5-GT | Full-Wave High-
Vacuum Rectifier | 6S | 9-41 | 6.3 | 1.2 | | Tube V | oltage
125 ma | Drop: | • | | | 6AX6-G | Full-Wave High-Vacuum
Rectifier | 70 | 14–3 | 6.3 | 2.5 | _ | Tube V
21 v at | oltage
250 ma | Drop: 4
i d-c | | | | 6A X 7¶ | High-Mu Twin Triode | 9A | 6-2 | $\{ \begin{array}{c} 6.3 \\ 3.15 \end{array} \}$ | $\begin{bmatrix} 0.3 \\ 0.6 \end{bmatrix}$ | 1.0♠ | 300 | _ | 1.8 | 1.9 | 1.7 | | 6A X8 | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.45 | 2.8 | 300 | 300 \$
0.5 | | e Section | | | | | | | | | 2.7 | 300 | _ | | Section | l
 | | 6AY3 | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 6.3 | 1.2 | 6.5� | Tube V
32 volt | oltage
s at 350 | Drop:
ma d-o | - | | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|---|------------------------|---|---------------------------------|---------------------------------------|-----------------------------|----------------------------|--------------------|--|--------------------------------|--------------| | Class A Amplifier • Vertical Amplifier | 250
100
Max 1
=20 1 | | 8.5
0
pulse p | 10.5
11.8
late vol | tage 🗉 | 7,700
6,500
=1,200 vo | 2,200
3,100
lts; max | 17
20
d-c ca | thode c | urrent | 6A U7¶ | | Class A
Amplifier
Class A | 200
150 | 125 | $\begin{array}{c} R_{k} = \\ 82 \\ R_{k} = \end{array}$ | 15
9.0 | 3.4 | 150,000
8,200 | 7,000
4,900 | 40 | _ | | 6A:U8¶ | | Amplifier Class A Amplifier | 200 | 125 | $\frac{150}{R_k = 82}$ | 17 | 3.4 | 100,000 | 8,000 | | - | | 6A U8-A¶ | | Class A
Amplifier | 40
150 | 125 | 0
R _k =
150 | 28
9.5 | 10_ | 8,100 | 5,300 | 43 | = | = | | | Horizontal
Amplifier | 250
60
Max 1 | 150
150
positive | 22.5
0
pulse p | 57
260
late vol | 2.1
26
tage • | 14,500
= 5,500 vol | 5,900
ts; | = | = | | 6AV5-GA | | | 250 | creen di | | | · · · · · · · · · · · · · · · · · · · | nax d-c cat | | rrent = | =110 ma | | CAVE OF | | Horizontal
Amplifier | 60
Max | 150
positive | pulse | plate v | 2.1
 25
 oltage
 ent = 110 | = 5,500 v | 5,500
; max | screen d | lissipati | on =2.5 | 6AV5-GT | | Class A
Amplifier | 250
100 | = | 2.0
1.0 | $\frac{1.2}{0.5}$ | | 62,500
80,000 | 1,600
1,250 | 100
100 | ΙΞ | | 6AV6 | | Class A
Amplifier • | 250 | | 8.5 | 10.5 | | 7,700 | 2,200 | 17 | - | | 6AV11 | | Class A
Amplifier | 100 | | 0 | 1.4 | | | 1,200 | 80 | | - | 6AW7-GT | | Class A
Amplifier
Class A | 200 | 150 | R _k = 180 2.0 | 13
4.0 | 3.5 | 400,000
17,500 | 9,000
4,000 | 70 | _ | | 6A W8¶ | | Amplifier Class A | 150 | 150 | R _k = | 15 | 3.5 | 200,000 | 9,500 | | _ | | 6A W8-A¶ | | Amplifier Class A | 65
200 | 150 | 2.0 | 46
4.0 | 15 |
17,500 | 4,000 | —
70 | | _ | | | Amplifier \ TV Damper | Max | d-c out | put cur | rent 🌒 : | = 165 m
= 1,000 | a; max pe | | | !
tage � = | =5,000 | 6AX3 | | TV Damper | Max | d-c out | tput cu | rrent 🏵 | | ma; max p | eak inv | erse vo | ltage 🆠 | =4,400 | 6AX4-GT | | TV Damper | Max
volts; | d-c out;
max pe | put cur
ak curr | rent 🌢 =
ent 🗞 = | =165 m
1,000 m | a; max pe
ia | | | | | 6AX4-GTA | | TV Damper | Max
volts; | d-c out;
max pe | put cur
ak curr | rent 🏶 =
ent 🕸 = | =165 m
1,000 n | a; max pe
ia | | | | | 6AX4-GTB | | Full-Wave
Rectifier | supply | voltage | e per pla | te = 35 | 0 volts; | ax peak in
max peak c | urrent p | er plate | e = 375 r | na | 6AX5-GT | | Full-Wave Rectifier TV Damper | supply voltage per plate = 350 volts; max peak current per plate = 600 ma Max d-c output current per plate = 125 ma; max peak inverse voltage = 2000 volts; max peak current per plate = 600 ma | | | | | | | | | | | | Class A
Amplifier • | 100
250 | | 1.0
2.0 | $0.5 \\ 1.2$ | | 80,000
62,500 | 1,250
1,600 | 100
100 | | | 6AX7¶ | | Class A
Amplifier | 250 | 110 | R _k = 120 | 10 | 3.5 | 400,000 | 4,800 | - | = | | 6AX8 | | Class A
Amplifier | 150 | 1 | R _k = 56 | 18 | 175 | 5,000 | 8,500 | 40 | - | 5000 | 6AY3 | | TV Damper | wolts; | max pe | ak curr | ent 🆠 | =175 n
=1,100 i | na; max pe
na | ak inve | rse vol | tage 🏶 | = 5000 | OAY3 | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. ↓ Maximum screen dissipation appears immediately below the screen voltage. ↓ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Caj
P | acitanc
icofarac | e in
Is | |------------------------|--|---------------|---------------------|---------------|---------------|--------------------|--------------------|-------------------------------|---|------------------------------|-------------------------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | | and
Watts | Input | Out-
put | Grid-
plate | | 6AY3-A | Half-Wave High-
Vacuum Rectifier | 9HP | 9-85 | 6.3 | 1.2 | 6.5 🏶 | Tube V
32 volt | oltage
at 350 | Drop:
ma d-o | 3 | | | 6AY3-B | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 6.3 | 1.2 | 6.5 ◈ | Tube V
32 volts | oltage
s at 350 | Drop:
mad-o | : | | | 6AY11 | Duplex-Diode
Twin Triode | 12DA | 956 | 6.3 | 0.69 | 1.0◈ | 330 ◈ | _ | | Section
Sections | | | 6AZ5 ● | Twin Diode | 8DF | 3-1 | 6.3 | 0.15 | = | Tube V
10 v at | oltage
15 ma | Drop: 4 | | | | 6AZ6 ⊕ | Twin Diode | 8EH | 3-11 | 6.3 | 0.15 | | Tube V
3.5 v at | oltage
8 ma c | | • | | | 6AZ8 | Triode-Pentode | 9ED | 6-2 | 6.3 | 0.45 | 2.0 | 300 | 300 | | e Sectio | n | | | | | | | | 2.6 | 300 | 0.5 |
Triode | Section | ı | | 6B4-G | Power Amplifier Triode | 5S | 16–3 | 6.3 | 1.0 | 15 | 325 | | Single | tube | | | | | | | | | | | | 2 tub | es, Push | -pull | | 6B5 | Direct-Coupled Power
Amplifier Triode | 6AS | 14-1 | 6.3 | 0.8 | 13.5 | 300 | 300 | _ | | = | | 6B6-G | Duplex Diode High-Mu
Triode | 7V | 12-8 | 6.3 | 0.3 | | 250 | | | | | | 6B7 | Duplex-Diode Remote-
Cutoff Pentode | 7D | 12-6 | 6.3 | 0.3 | 2.25 | 300 | 125
0.3 | 3.5 ▲ | 9.5 ▲ | .007 | | 6B8
6B8-G
6B8-GT | Duplex-Diode Remote-
Cutoff Pentode | 8E | 8-4
12-8
9-20 | 6.3 | 0.3 | 3.0
2.25
3.0 | 300 | 125
0.3 | 6.0
3.6
4.5 | 7.5
9.5
10.0 | .005 4
.01 4 | | 6B10¶ ■ | Duplex-Diode
Medium-Mu Twin
Triode | 12BF | 9–56 | 6.3 | 0.6 | 2.5 ◈ | 330 ◈ | _ | 1.7 ₁ ▲
1.8 ₂ ▲
Diode | 1.6₁ ▲
0.6₂ ▲
Section: | | | 6BA3 | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 6.3 | 1.2 | 5.3 🏶 | Tube V | oltage
s at 250 | Drop: | | | | 6BA4 | High-Mu Planar Triode
(Planar) | 6BA4 | T-X | 6.3 | 0.4 | 2.0 € | 200 | | | | - | | 6BA5 ⑤ | Sharp-Cutoff Pentode | 8DY | 3-1 | 6.3 | 0.15 | 0.7 | 150 | 140 | 3.4 | 3.6 | 0.065 | | 6BA6 | Remote-Cutoff RF
Pentode | 7BK | 5-2 | 6.3 | 0.3 | 3.4 🏶 | 330 | 330 ◈\$ | 5.5 | 5.5 | 0.003 | | 6BA7 | Pentagrid Converter | 8CT | 6-3 | 6.3 | 0.3 | 2.0 | 300 | 100 | Osc Icl | =0.35
0,000 o | ma
hms | | 6BA8¶ | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.6 | 3.25 | 300 | 300\$ | Pentod | le Section | on | | | | | | | | 2.0 | 300 | - | Triode | Section | ı | | 6BA8-A¶ | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.6 | 3.25 | 300 | 300\$ | Pentod | le Section | on | | | | | | | | 2.0 | 300 | - | Triode | Section | 1 | | 6BA11¶ | Triode-Twin
Pentode | 12ER | 9-58 | 6.3 | 0.6 | 1.1 | 300 ◈ | 150 ♦
0.75 ♦ | Pento | le Secti | ons | | | | | | | | 1.5� | 300 ◈ | _ | Triode | Section | ı | Zero signal. Per section. | Service | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μπhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------|----------------------|---|---------------------------------|----------------------------------|----------------------------|-------------------------------|----------------------|--|--------------------------------|-----------------| | TV Damper | Max o | d-c outp | ut curr | ent 🔷 : | =175 m
=1,100 r | a; max pea | k inver | se volta | age 🔷 = | 5,000 | 6 A Y3-A | | TV Damper | | l-c outp | | | | max peak i
a | nverse v | roltage · | | ю | 6AY3-B | | Class A
Amplifier •
Detector • | 250
Max e | d-c outp | 2.0
ut curre | 1,2
ent 🔷 = | -5.0 ma | 52,700 | 1,900 | 100 | - | - | 6AY11 | | Half-Wave
Rectifier | plate | =24 ma | | | | =4 ma; ma
plate =150 | | | | 1 | 6AZ5 ⊕ | | Full-Wave
Rectifier | Max o | d-c outp
apply vo | ut curre | ent = 20
er plate | ma; ma; ma | ax peak inv
lts; max pe | erse vo
ak curre | ltage =
ent per p | 450 vol $plate = 6$ | ts; max
0 ma | 6AZ6 ● | | Class A
Amplifier | 200 | 150 | R _k = 180 | 9.5 | 3.0 | 300,000 | 6,000 | | | | 6AZ8 | | Class A
Amplifier | 200 | _ | 6.0 | 13 | | 5,750 | 3,300 | 19 | | | | | Class A
Amplifier
Class AB ₁ | 250
325 | _ | 45
68 | 60†
80† | | 800 | 5,250 | 4.2 | 2,500
3,000 | 3.2
15.0 | 6B4-G | | Amplifier
Class A
Amplifier | 300 | 300 | 0 | 45 | 8.0
Plate | 24,000 | 2,400 | | 7,000 | 4.0 | 6B5 | | Class A
Amplifier | 250 | - | 2.0 | 0.9 | | 91,000 | 1,100 | 100 | T - | Γ= | 6B6-G | | Class A
Amplifier | 250 | 125 | 3.0 | 9.0 | 2.3 | 600,000 | 1,125 | | - | | 6B7 | | Class A
Amplifier | 250 | 125 | 3.0 | 10 | 2.3 | 600,000 | 1,325 | = | | | 6B8-G
6B8-GT | | Class A
Amplifier | 250 | - | 9.5 | 7.0 | | 9,750 | 1.850 | 18 | = | - | 6B10¶ | | Horizontal
Phase Det. | 1 | _ | | | | a; voltage | - | | | | | | TV Damper | volts; | d-c out;
max pe | ak curr | ent 🐵 : | =165 m
=1,000 s | a; max pe
ma | | | age 🐠 : | =5,000 | 6BA3 | | Class A
Amplifier | 150 | | R _k = | 10 | | 8,700 | 8,000 | 70 | | | 6BA4 | | Class A
Amplifier | 100 | 100 | R _k = 270 | 5.5 | 2.0 | 175,000 | 2,150 | | | | 6BA5 ● | | Class A
Amplifier | 250
100 | 100 | R _k = 68
R _k = | 10.8 | 4.4 | 1,000,000
250,000 | 4,400
4,300 | _ | _ | | 6BA6 | | Converter | 250 | 100 | 68 | 3.8 | 10.0 | 1,000,000 | 950 # | | | | 6BA7 | | Class A | 200 | 150 | R _k = | 13 | 3.5 | 400,000 | 9.000 | | | | 6BA8¶ | | Amplifier
Class A | 200 | _ | 180
8.0 | | _ | 6,700 | 2,700 | 18 | - | _ | | | Amplifier Class A Amplifier | 200 | 150 | R _k = 180 | 13 | 3.5 | 400,000 | 9,000 | | | | 6BA8-A¶ | | Class A
Amplifier | 65
200 | 150 | 0
8.0 | 42
8.0 | 12.5 | 6,700 | 2,700 | 18 | = | = | | | Sync Sepa-
rator and
AGC Keyer | 100 | 67.5 | I _{c1} = 0.1 ma | 2.5 | 4.4 | (Both sect | ions ope | rating) | $E_{c3}=0$ | volts | 6BA11¶ | | | 100
250 | 67.5
(F | late and | d grid r
5.0 | umber | of opposi | 1,700
te sectio
 1,800 | n grou | E _{c3} = | 0 volts | | | Class A
Amplifier | 250 | | 11 | 3.0 | | | 1,000 | 1 10 | | | <u> </u> | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. #Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | X-Ra- | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | l t | pacitanc
icofara | e in
ds | |-----------------|---------------------------------------|-------------------|--------------|------------|---------------|---------------|---------------|-------------------|----------------------------------|-----------------------------|---|----------------| | Туре | Construction | diation
Rating | nec- | Dwg. | Volts | Amps | | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6BC4 | UHF Triode | | 9DR | 6-1 | 6.3 | 0.225 | 2.5 | 250 | | 2.9 ▲ | 0.26 | 1.6 | | <i>6ВС</i> δ | Sharp-Cutoff
RF Pentode | | 7BD | 5-2 | 6.3 | 0.3 | 2.3 ♦ | 330 ◈ | 330 ♦ \$
0.55 ♦ | Pentod | e Conn | ection | | | | | | | | | 2.9 🏶 | 330 ◈ | _ | Triode
(G ₂ & | Connec
P tied) | tion | | 6BC7 | Triple Diode | | 9AX | 6-2 | 6.3 | 0.45 | | Avg
35 n | Diode (| urrent
5 v d-c | (Diode | 1 or 3 | | 6BC8 | High-Frequency
Twin Triode | | 9AJ | 6-2 | 6.3 | 0.4 | 2.2 🕸 | 250 ◈ | | 2.6 ₁
5.52 | $\begin{vmatrix} 1.3_1 \\ 2.42 \end{vmatrix}$ | 1.2 | | 6BD4 | Sharp-Cutoff
Beam Triode | (A) | 8FU | T-X | 6.3 | 0.6 | 20 | 20,000 | = | 3.8 ▲ | 0.04 | 1.0 | | 6BD4-A | Sharp-Cutoff
Beam Triode | (A) | 8FU | T-X | 6.3 | 0.6 | 25 | 27,000 | _ | 3.8▲ | 0.04 | 1.0 ▲ | | 6BD5-GT | Beam Power
Amplifier | | 6CK | T-X | 6.3 | 0.9 | 10 | 325 | 325
3.0 | | | - | | 6BD6 | Remote-Cutoff
RF Pentode | | 7BK | 5-2 | 6.3 | 0.3 | 3.0 | 300 | 125
0.65 | 4,3 | 5.0 | 0.005 | | 6BD11 | Dissimilar
Double | | 12DP | 9–58 | 6.3 | 1.05 | 4.0� | 330 ◈ | | Pentod | e Sectio | n T | | | Triode
Pentode | | | | | | 1.5 🏶 | 330 ◈ | | | Section
5, 6, 8 | | | | | | | | | | 2.0 ◈ | 330 ◈ | _ | Triode | Section
3, 4, 7 | . 2 | | 6BE3■ | Half-Wave
High-Vacuum
Rectifier | | 12GA | 9-60 | 6.3 | 1.2 | 6.5� | Tube V
25 volt | oltage
s at 350 | Drop. | | | | 6BE3-A | Half-Wave
High-Vacuun
Rectifier | 1 | 12GA | 9–60 | 6.3 | 1,2 | 6.5♦ | Tube V
22.5 vc | oltage
olts at 3 | Drop:
50 ma c | 1-c | | | 6BE6 | Pentagrid
Converter | | 7CH | 5-2 | 6.3 | 0.3 | 1.1 ◈ | 330 ◈ | 110 (| Osc Ici | = 0.5 m
0.000 ol | a
ams | | 6BE8 | Triode-Pentode | 1 | 9EG | 6-2 | 6.3 | 0.45 | 2.8 | 300 | 300 8
0.5 | Pentod | e Section | on . | | | | | | | | | 2.5 | 300 | = | Triode | Section | l | | 6BE8-A¶ | Triode-Pentode | | 9EG | 6-2 | 6.3 | 0.45 | 2.8 | 300 | 300 2
0.5 | Pentod | e Sectio | on | | | | | | | | | 2.5 | 300 | - | Triode | Section | 1 | | 6BF6 | Beam Power
Amplifier | | 7BZ | 5-3 | 6.3 | 1.2 | 5,5 | 250 | 117
1.25 | Pentod | e Conn | ection | | | , | | | | | | 5.0 | 250 | - | Triode
(G ₂ & | Connec
P tied) | tion | | 6BF6 | Duplex-Diode
Medium-Mu
Triode | | 7BT | 5-2 | 6.3 | 0.3 | 2.5 | 300 | | 1.8 | 0.7 | 1.9 | | 6BF7 ● | Medium-Mu
Twin Triode | 1 | 8DG | 3-2 | 6.3 | 0.3 | 1.0♠ | 110 | _ | 2.0 | 1.6 ₁
2.0 ₂ | 1.5 | | 6BF7-A ⊚ | Medium-Mu
Twin Triode | 1 | 8DG | 3-2 | 6.3 | 0.3 | 1.1 • | 120 🗑 | | 2.0 | 1.6 ₁
2.0 ₂ | 1.5 | | 6BF8 | Sextuple Diode | | 9NX | 6–2 | 6.3 | 0.45 | = | | Tube V | oltage | Drop: | d-c | | 6BF11 | Dissimilar
Double | T | 12EZ | 9-59 | 6 .3 | 1.2 | 6.5 🏶 | 165 ◈ | | | 1 (Pin | | | | Pentode | | | | | | 1.7 ◈ | 330 ◈ | 330 2 🌢 | Section
3, 5. | 2 (Pin:
6, 7) | s 2, | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A—X-Radiation Rated, and A—No X-Radiation Rating. Compactron. Zero signal. Per section. [●]Subminiature type. ▲Without external shield. ♦Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watte | Tube
Type | |--------------------------------------|-----------------------|--------------------
------------------------|---------------------------------|----------------------------------|--------------------------|--------------------|--------------|--|---------------------------------------|-----------------| | Class A
Amplifier | 150 | Ī — | R _k = 100 | 14.5 | i - | 4,800 | 10,000 | 48 | | - 1 | 6BC4 | | | 250 | 150 | R _k = 180 | 7.5 | 2.1 | 800,000 | 5,700 | | | | 6BC6 | | Class A
Amplifier | 125 | 125 | R _k = | 8.0 | 2.4 | 500,000 | 6.100 | | - | | | | | 100 | 100 | R _k = | 4.7 | 1.4 | 600,000 | 4,900 | | - | - | | | Class A. | 250 | - | R _k = 820 | 6.0 | - | 9,000 | 4,400 | 40 | - | _ | | | Amplifier | 180 | - | R _k = | 8.0 | _ | 6,000 | 6,000 | 42 | | | | | Half-Wave
Rectifier | Max | d-c out | | rent pe | r plate = | =12 ma | <u>'</u> | | 1 | | 6BC 7 | | Class A | 150 | _ | R _k = | 10 | T — | 5,300 | 6,200 | 35 | | $\Gamma = -$ | 6BC8 | | Amplifier ◆
HV Shunt
Regulator | Max u | nregulat | ed d-c | supply | voltage | = 40,000 | volts; n | ıax d-c | plate c | urrent = | 6BD4 | | HV Shunt | Max u | nregulat | ed d-c | supply | voltage | = 55,000 | volts; n | ax d-c | plate c | urrent = | 6BD4-A | | Regulator
Horizontal | 1.5 ma
Max | positive | pulse | plate v | oltage = | =4,000 vol | ts; max | screen | dissipa | tion = | 6BD5-GT | | Amplifier
Class A | 3.0 w | atts; ma | 3.0 | 0 | current: | =100 ma
800,000 | 2 000 | | 1 | | 6BD6 | | Amplifier | 100 | 100 | 1.0 | 13 | 5 | 150,000 | 2,000
2,550 | | | | | | Class A
Amplifier | 135 | 135 | R _k = | 17 | 4.0 | 45,000 | 10,400 | _ | _ | | 6BD11 | | Class A
Amplifier | 200 | _ | 2.0 | 7.0 | - | 12,400 | 5,500 | 6 8 | _ | | | | Class A
Amplifier | 200 | _ | R _k = 220 | 9.2 | - | 9,400 | 4,400 | 41 | - | _ | | | TV Damper | Max | d-c out | out cur | rent 🆫 | =200 m | a; max pe | ak inve | se volt | age 🚸 : | 5,000 | 6BE3 | | | voits; | max pe | ak curr | ent 🐡 : | = 1,200 r | na | | | | 1 | | | TV
Damper | | i-c outp
max pe | | | | max peak i
ia. | inverse v | oltage | = 5,00 | 00 | 6BE3-A | | Converter | 250
100 | 100 | 1.5 | 2.9
2.6 | 6.8 | 1,000,000 | 475 #
455 # | | | | 6BE 6 | | Class A | 250 | 110 | $R_k =$ | 10 | 3.5 | 400,000 | 5,200 | | | | 6BE8 | | Amplifier
Class A | 150 | | 68
R _k = | 18 | _ | 5,000 | 8,500 | 40 | _ | _ | | | Amplifier
Class A | 250 | 110 | | 10 | 3.5 | 400,000 | 5,200 | | | | 6BE8-A | | Amplifier
Class A | 150 | - | 68
R _k = | 18 | _ | 5,000 | 8,500 | 40 | _ | _ | | | Amplifier Class A | 110 | 110 | 7.5 | 36† | 4† | 12,000 | 7,500 | | 2,500 | 1.9 | 6BF5 | | Amplifier (| 005 | | 00 | 10 | | 0.700 | 0.700 | | | | | | Vertical
Amplifier | 225
Max 1
40 ma | positive | | l10
late vol | tage 🖲 : | =900 volts | 2,700
; max d | c cath | ode curi | rent = | | | Class A
Amplifier | 250 | | 9.0 | 9.5 | - | 8,500 | 1,900 | 16 | 10,000 | 0.3 | 6BF6 | | Class A
Amplifier • | 100 | | R _k = | 8.0 | | 7.000 | 4,800 | 35 | | | 6BF7 ● | | Class A
Amplifier • | 100 | | $\frac{R_k}{100}$ | 8.0 | | 7,300 | 4,800 | 35 | | | 6BF7-A ● | | Detector • | Max | l-c outp | ut curre | nt 🔷 =: | 2.2 ma; | max peak i | nverse v | oltage | | volts; | 6BF8 | | Class A | 145 | eak cur | | =11 ma
36† | 3.0+ | 30,000 | 8,600 | | 3,000 | 2.4 | 6BF11 | | Amplifier
Class A | 150 | 100 | $R_k =$ | 1.3 | 2.0 | 150,000 | 1,000 | $E_{c3} = 0$ | , , | | ODETE | | Amplifier | | | 560 | | l <u>.</u> | | | | ! | · · · · · · · · · · · · · · · · · · · | | | Tube | Classification | X-Ra- | Base
Con- | Out- | Fila- | Fila- | Max.
Plate | Max.
Plate | Max.
Screen | Car
P | acitano
icofara | e in
Is | |-------------------|---------------------------------------|-------------------|--------------|---------------|---------------|--------------|---------------|-------------------|----------------------------------|---------------------------------------|---|----------------| | Туре | by
Construction | diation
Rating | nec- | line
Dwg. | ment
Voits | ment
Amps | | Velts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6BG6-G
6BG6-GA | Beam Power
Amplifier | | 5ВТ | 16-5
12-21 | 6.3 | 0.9 | 20 | 700\$ | 350
3.2 | 12▲ | 6.5 ▲ | 0.34 ▲ | | 6BG7 ⊕ | Medium-Mu
Twin Triode | | 8DG | 3-5 | 6.3 | 0.3 | 1.0 💠 | 110 | = | 2.0 | $\begin{array}{c} 1.6_1 \\ 2.0_2 \end{array}$ | 1.5 | | 6BH3 | Half-Wave
High-Vacuum
Rectifier | | 9HP | 9-86 | 6.3 | 1.6 | 6.5� | Tube V
33 volt | oltage
s at 360 | Drop:
) ma d-c | | | | 6BH3-A | Half-Wave
High-Vacuum
Rectifier | | 9 H P | T-X | 6.3 | 1.6 | 6.5 🏶 | Tube V
33 volt | oltage
s at 360 | Drop:
ma d-c | | | | 6BH6 | Sharp-Cutoff
RF Pentode | | 7CM | 5-2 | 6.3 | 0.15 | 3.0 | 300 | 300 \$
0.5 | 5.4 | 4.4 | 0.0035 | | 6BH8¶ | Triode-Pentode | | 9DX | 6-3 | 6.3 | 0.6 | 3.0 | 300 | 300 \$
0.6 | i | e Sectio | | | | | | | | | | 2.5 | 300 | | | Section | | | 6BH11 | Twin-Triode
Pentode | | 12FP | 9-58 | 6.3 | 0.8 | 2.5 ③ | 350 ◈ | 330 \$ ③
0.55 ③ | 1 | e Section | | | | 1 | | 12BL | 9-59 | 6.3 | 1.2 | _ + | | 7-14 | | | | | 6BJ3 Ⅲ | Half-Wave
High-Vacuum
Rectifier | | | | 0.3 | | 4.0 🏶 | Į. | | Drop:
0 ma d- | c | | | 6BJ6 | Remote-Cutoff
RF Pentode | | 7CM | 5–2 | 6.3 | 0.15 | 3.0 | l | 300 \$
0.6 | 4.5 | 5.5 | 0.003 | | 6BJ6-A | Remote-Cutoff
RF Pentode | | 7CM | 5–2 | 6.3 | 0.15 | 3.0 | 300 | 300 \$
0.6 | 4.5 | 5.5 | 0.003 | | 6BJ? | Triple Diode | | 9AX | 6-2 | 6.3 | 0.45 | _ | | oltage
10 ma | Drop: ♠
d-c | | | | 6BJ8¶ | Duplex-Diode
Triode | | 9ER | 6–3 | 6.3 | 0.6 | 4.0 🏶 | 330 ◈ | | 2.8 🛦 | 0.31 | 2.6 ▲ | | ВВК4 | Character Control | | 8GC | 12-21 | 6.3 | 0.2 | 25 | 25,000 | | Diode : | Section | 0.03 | | ●
● | Sharp-Cutoff
Beam Triode | (4) | 800 | or
12-36 | 0,0 | 0.2 | 20 | 23,000 | | 2.0 | 1.0 | 0.00 | | ввк4-А | Sharp-Cutoff
Beam Triode | (A) | 8GC | 12-36 | 6.3 | 0.2 | 30 ◈ | 27,000 | - | 2.6▲ | 1.0▲ | 0.03 | | 6BK4-B | Sharp-Cutoff
Beam Triode | <u> </u> | 8GC | 12-36 | 6.3 | 0.2 | 40 🏶 | 27,000 | | 2.6 ▲ | 1.0 ▲ | 0.03 | | 6BK4-C | Sharp-Cutoff
Beam Triode | 1.5 | 8GC | 12-36 | 6.3 | 0.2 | 40 ◈ | 27.000 | | 2.6 ▲ | 1.0 | 0.03 | | 6BK5 | Beam Power
Amplifier | | 9BQ | 6–3 | 6.3 | 1.2 | 9.0 | 250 | 250
2.5 | 13 ▲ | 5.0 ▲ | 0.6 ▲ | | 6BK6 | Duplex-Diode
High-Mu
Triode | | 7BT | 5–3 | 6.3 | 0.3 | = | 300 | | = | | = | | 6BK? | High-Frequency
Twin Triode | | 9AJ | 6-2 | 6.3 | 0.45 | 2.7 • | 300 | _ | 3.0 ▲ | 1.1 ₁ A | 1.9 ▲ | | 6BK7-A
6BK7-B | High-Frequency
Twin Triode | / | 9AJ | 6-2 | 6.3 | 0.45 | 2.7 ♠ | 300 | | 3.0 ▲ | 1.0 ₁ ▲ 0.9 ₂ ▲ | 1.8 🛦 | | 6BK11¶ | Three Section
Triode | | 12BY | 9-56 | 6.3 | 0.6 | 0.4 🏶 | 330 ◈ | i | 9, 10
Section | is 2 and | 3 (Pir | | 6BL4 | Half-Wave
High-Vacuun | n | 8GB | 12-26 | 6.3 | 3.0 | 8.0 | | Voltage
t 400 m | Drop: | 7 and | 2, 3, 1 | | 6BL7-G | Rectifier Medium-Mu Twin Triode | - | 8BD | 9-41 | 6.3 | 1.5 | 10 ♠
12 ⊕ | 500 | | 4.2 ₁ ▲ 4.6 ₂ ▲ | 0.9 | 6.0 ▲ | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions- Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. - Subminiature type. ▲Without external shield. Design maximum rating. - Total for all similar sections.Absolute maximum rating.Conversion transconductance. A -X-Radiation Rated, and A - No X-Radiation Rating. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | | | |--|-------------------------------|---|------------------------------------|---------------------------------|----------------------------------|---|---------------------------|-------------|--|--------------------------------|-----------------------------|--|--|--| | Horizontal Amplifier | 250
60
Max p
3.2 wat | 250
250
ositive p
tts; max | 15
0
oulse pl
d-c cat | 75
180
ate vol | 4.0
18
tage • = | 25,000
=6600 volts
110 ma | 6,000
max | screen | | ion = | 6BG6-G
6BG6-GA | | | | | Class A
Amplifier ♠ | 100 | | R _k = 100 | 8.0 | | 7,000 | 4,800 | 35 | | | 6BG7 ⊚ | | | | | TV Damper | Max d-
max pe | -c outpu
eak curr | t currer
ent 🏶 = | nt | 80 ma; i
a | nax peak is | iverse v | oltage (| |) volts; | 6BH3 | | | | | TV Damper | Max d-
volts; | c outpu
max pea | t curren
k curren | nt 🏶 = 18
nt 🕸 = 1 | 80 ma; r
,100 ma | nax peak in | verse v | oltage 🌢 | ⇒ = 5,500 |) | 6BH3-A | | | | | Class A
Amplifier | 100
250 | 100
150 | 1,0
1.0 | 3.6
7.4 | 1.4 | 700,000
1,400,000 | 3,400
4,600 | _ | | | 6 <i>BH6</i> | | | | | Class A
Amplifier | 200 | 125 | R _k = 82 | 15 | 3.4 | 150,000 | 7,000 | | | | 6BH8¶ | | | | | Class A
Amplifier | 150 | 105 | 5.0 | 9.5 | | 5,150 | 3,300 | 17 | | | entri i em | | | | | Class A
Amplifier
Class A | 125
120 | 125 | 1.0 | 12
13.5 | 4.0 | 200,000
5,400 | 7,500
8,500 | 46 | _ | _ | 6BH11 | | | | | Amplifier
TV
Damper | Max d
3,300; | -c outp
max pea | ut curr
ik curre | ent 🌢 =
nt 🕏 = 8 | 140 ma
340 ma | ; max pea | k inver | se volt | age ◈ = | | 6BJ3 | | | | | Class A
Amplifier | 250
100 | 100 | 1.0
1.0 | 9.2
9.0 | 3.3 | 1,300,000
250,000 | 3,600 | | Π | | 6BJ6 | | | |
| Class A
Amplifier | 250
100 | 100 | 1.0 | 9.2 | 3.3 | 1,300,000
250,000 | 3,650
3,600
3,650 | = | | = | 6BJ6-A | | | | | DC Restorer
Service | Max d | | t curre | nt per p | plate = 1 | .0 ma; max | | nverse | voltage | = 330 | 6BJ7 | | | | | Class A Amplifier Vertical Amplifier Horizontal Phase Det. | =22 m | ıa " | - | | | 7,150
4,700
1,200 volts
; voltage dr | ; max d | | | . 1 | 6BJ8¶ | | | | | HV Shunt
Regulator | | lated d-
cation fa | | | ge = 36. | 000 volts; i | nax d-c | plate ci | urrent = | 1.5 ma; | 6BK4 | | | | | HV Shunt
Regulator | Unregu | | -c supp | ly volta | ige = 3 | 6,000 volt: | s; max | d-c pla | te curre | nt= * | 6BK4-A | | | | | HV Shunt
Regulator | Unregu
1.6 ma | ılated d | -c supp | ly volta | ige = 3 | 6,000 volt: | s; max | d-c pla | te curre | nt = 🔹 | 6BK4-B | | | | | HV Shunt
Regulator | Unregu
1.5 ma | | c suppl | ly volta | ige = 3 | 6,000 volts | ; max | d-c plat | te curre | nt = 🏶 | 6BK4-C
● | | | | | Class A
Amplifier | 250 | 250 | 5.0 | 35† | 3.5† | 100,000 | 8,500 | _ | 6,500 | 3.5 | 6BK5 | | | | | Class A
Amplifier | 250
100 | = | 2.0
1.0 | 0.5 | = | 62,500
80,000 | 1,600
1,250 | 100
100 | | | 6BK6 | | | | | Class A | 150 | - | Rk = 56 | 18 | - | 4,700 | 8,500 | 1 | - | | 6BK7 | | | | | Amplifier • | 100 | | R _k = 120 | 9.0 | | 6,100 | 6,100 | 37 | | | 0.0000 | | | | | Class A
Amplifier •
Class A | 250 | l | $\frac{R_k = 56}{2.5}$ | 18 | | 4,600 | 9,300 | 70 | | | 6BK7-A
6BK7-B¶
6BK11¶ | | | | | Amplifier
Class A
Amplifier | 250 | _ | 2.0 | 1.2 | | 62,500 | 1,600 | 1 | - | - | 0~111 j | | | | | | Max d | 250 — 2.0 1.2 — 62,500 1,600 100 — — Max d-c output current = 200 ma; max peak inverse voltage • = 4500 vol nax peak current = 1200 | | | | | | | | | | | | | | TV Damper | max p | eak curi | ent = 12 | 200 | | | | | | | | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car | acitanc
icofara | e in
Is | |---------------------|-------------------------------------|---------------|-----------------------|---------------|---------------|---------------------|--------------|---------------------------------|--|-------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6BL7-GTA | Medium-mu Twin
Triode | 8BD | 9-41 | 6.3 | 1.5 | 10 ♦
12 ⊕ | 500 | | 4.2 ₁ ▲
4.6 ₂ ▲ | 0,9 🛦 | 6.0▲ | | SBL8 | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.45 | 1.7 | 250 | 200
0.75 | 1 | e Section | | | | | 1 | | | | 1.5 | 250 | - | Triode | Section | 1 | | BM8 | Triode-Pentode | 9EX | 6-4 | 6.3 | 0.78 | 5.0 | 600
300 | 300 | | e Section | | | BN4 | High-Frequency | 7EG | 5-2 | 6.3 | 0.2 | 2.2 🍑 | 275 🏶 | | 3.2 | 1.4 | 1.2 | | BN4-A | Triode
High-Frequency Triode | 7EG | 5-2 | 6.3 | 0.2 | 2.2 | 275 | | 3.2 | 1.4 | 1.2 | | BBN6 | Gated-Beam
Discriminator | 7DF | 5–3 | 6.3 | 0.3 | | 330 ◈ | 110 🏶 | Ec1 = 1 | .25 volt | s R M S | | 6BN7 | Double Triode | 9BT | 6-3 | 6.3 | 0.75 | 7.5 | 400 | | Section | | | | | | | | | | 1,5 | 400 | | Section | 6, 7, 9
2
1, 2, 3 | • | | BN8¶ | Duplex-Diode
High-mu Triode | 9ER | 6-3 | 6.3 | 0.6 | 1.7 ◈ | 330 ◈ | | | 0.25 ▲
Section | | | 6BN11 | Twin Pentode | 12GF | 9-58 | 6.3 | 0.8 | 3.1 ♦ | 330 ◈ | 330\$ ◈ | 12 | 2.8 | 0.041 | | SBQ5 | Beam Power Amplifier | 9CV | 6-4 | 6.3 | 0.76 | 12 | 300 | 300 | | _ | _ | | BO6-G
BO6-GTA | Beam Power Amplifier | 6A M | 12-8
9-49,
9-50 | 6.3 | 1.2 | 11 | 600\$ | 175
2.5 | | | | | 6BQ6-GA
6BQ6-GTB | Beam Power Amplifier | 6AM | T-X
9-49,
9-50 | 6.3 | 1.2 | 11 | 600\$ | 200 2.5 | 15 ▲ | 7.0 ▲ | 0.6 ▲ | | 6BQ6-GT | Beam Power Amplifier | 6AM | 9-49.
9-50 | 6.3 | 1.2 | 11 | 550\$ | 175
2.5 | 15▲ | 7.5 ▲ | 0.0 | | 6BQ7 | High-Frequency Twin | 9AJ | 6-2 | 6.3 | 0.4 | 2.0 ♠ | 250 | | 2.851 | 1.351 | 1.15 | | BQ7-A | High-Frequency Twin Triode | 9AJ | 6-2 | 6.3 | 0.4 | 2.0 ♠ | 250 | | 2.61 | 1.21 | 1.2 | | 6BR3 | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 6.3 | 1.2 | 6.5 ◈ | | oltage
s at 250 | Drop:
mad-c | : | | | BR8 | Triode-Pentode | 9FA | 6-2 | 6.3 | 0.45 | 2.8 | 300
300 | 300 2
0.5 | Pentod
Triode | e Section | | | BR8-A¶ | Triode-Pentode | 9FA | 6-2 | 6.3 | 0.45 | 3.0 ♦ | 330 ◈ | 330 ♦ 8
0.55 ♦ | Pentod | | | | 6BS3 | Half-Wave High- | 9HP | 9-86 | 6.3 | 1.2 | 2.5 ♦ | 330 ◈ | /oltage | | Section | | | | Vacuum Rectifier | | - 34 | | | 1 * | 12 volt | s at 140 | ma d-c | : | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m .
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|-----------------------------|--|-----------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------|-----------------------|--|--------------------------------|---------------------| | Vertical
Amplifier ♠ | 250
250
150
Max no | | 9.0
17
0 | 40
4.0
65 | | 2,150
—
2,000; max | 7,000
— | 15
 | | | 6BL7-GTA | | Class A | 170 | 170 | 2.0 | 10 | 2.8 | 400.000 | 1 6.200 | - | | - | 6BL8 | | Amplifier
Class A
Amplifier | 100 | | 2.0 | 14 | | 4,000 | 5,000 | 20 | - | _ | | | Class A
Amplifier Class A
Amplifier | 200
100
100 | 200
100 | 16
6.0
0 | 35
26
3.5 | 7.0
5.0 | 20,000
15,000 | 6,400
6,800
2,500 | 70 | 5,600
3,900 | 3.5
1.05 | 6BM8 | | Class A
Amplifier | 150 | | R _k = 220 | 9.0 | _ | 6,300 | 6,800 | 43 | | | 6BN4 | | Class A
Amplifier | 150 | | R _k = 220 | 9.0 | | 5,400 | 7,700 | 43 | | | 6BN4-A | | FM Limiter-
Discriminator | 285 | 100 | R _k = 200 to 400 | 0.49 | 9.8 | | _ | _ | 330000 | _ | 6BN6 | | Vertical Amplifier Class A Amplifier | 250
Max p
120 | ositive | 15.0
pulse pl | 24
ate volt | age = 1, | 2,200
500 volts
14,000 | 2,000 | 12 | | | 6BN7 | | Class A
Amplifier
Horizontal | 250
100
Max d | -c outpu | 3.0
1.0 | 1.6
1.5 | 9.0 ma | 28,000
21,000
; voltage d | 2,500
3,500
rop: •2 | 70
75
3.6 volts | at 9.0 : | ma d-c | 6BN8¶ | | Phase Det. Class A | 125 | 125 | R _k = | 11 | 3.8 | 200,000 | 13,000 | (g3 cc | nnected | | 6BN11 ■ | | Amplifier • Class A | 250 | 250 | $\frac{56}{R_k} =$ | 48† | 5.5t | 38.000 | $\frac{11,300}{11,300}$ | at soc | ket)
5.200 | 6.0 | 6B05 | | Amplifier
Horizontal | 250 | 150 | $\frac{135}{22.5}$ | 55 | 2.1 | 20,000 | 5,500 | | <u> </u> | <u> </u> | 6BO6-G | | Amplifier | 60
Max p | 150
ositive | 0
pulse p | 225
late vol | 25
ltage | =6000 vol | | screen | dissipa | tion = | 6BÕ6-ĞTA | | Horizontal
Amplifier | 250
60
Max powatts; | 150
 150
 sitive p
 max d- | ulse pla | 57
260
te volta
le curre | 2.1
 26
age 🖲 =
nt = 110 | 14,500
6,000 volts | 5,900

; max so | reen di | ssipation | n = 2.5 | 6BQ6-GA
6BQ6-GTB | | Horizontal
Amplifier | 250
60
Max pe | 150
 150
 ositive p | 22.5
0
oulse pla | 55
225
ite volt | 2.1
25 | 20,000
5500 volts | 5,550
—
; max so | reen di | ssipation | n = 2.5 | 6BQ6-GT | | Class A
Amplifier • | 150 | - | R _k == 220 | 9 | 1 - | 5,800 | 6,000 | 35 | _ | | 6BQ7 | | Class A
Amplifier 🌩 | 150 | | R _k = 220 | 9.0 | | 5,900 | 6,400 | 38 | | | 6BQ7-A | | TV
Damper | Max d | -c outp | ut curre | ent 🏶 ==
1,200 n | 200 ma | ; max peal | k invers | e volta | ge 🏶 == 5 | 5,500; | 6BR3 | | Class A
Amplifier | 250 | 110 | R _k = 68 | 10 | 3.5 | 400,000 | 5,200 | | - | | 6BR8 | | Class A
Amplifier | 150 | | $R_k = 56$ | 18 | | 5,000 | 8,500 | 40 | | | | | Class A
Amplifier
Class A
Amplifier | 125
125 | 110 | 1.0 | 9.5
13.5 | 3.5 | 5,300 | 5,000
7,500 | 40 | _ | _ | 6BR8-A¶ | | TV
Damper | Max d
max pe | c outp | ut curr | ent 🏶 =
1,100 n | 200 ma | ; max pea | k invers | se volta | ge ♦ = 5 | ,000; | 6BS3 | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | X-Ra- | Base
Con- | Out- | Fila- | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | Caj | pacitano
icofara | e in
is | |---------|--|-------------------|---------------|-------|---------------|---------------|------------------------------|------------------------------|---------------------------------|------------------|------------------------------------|------------------| | Туре | by
Construction | diation
Rating | nec-
tions | Dwg. | ment
Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6BS3-A | Half-Wave
High-Vacuum
Rectifier | | 9HP | T-X | 6.3 | 1.2 | 6.0 🌢 | Tube V | Voltage
s at 140 | Drop:
) ma d- | c | | | 6BS8 | Medium-mu
Twin Triode | | 9AJ | 6-2 | 6.3 | 0.4 | 2.0 ♠ |
150 | _ | 2.61 | 1.21 | 1.15 | | 6BT6 | Duplex-Diode
High-Mu
Triode | | 7BT | 5-3 | 6.3 | 0.3 | - | 300 | _ | - | _ | _ | | 6BT8 | Duplex-Diode
Pentode | | 9FE | 6-2 | 6.3 | 0.45 | 2.0 | 300 | 300 \$
0.5 | 7.0 A | 2.3 ▲ Sections | 0.04 | | 6BU4 | Sharp-Cutoff
Beam Triode | (A) | 8GC | T-X | 6.3 | 0.45 | 25 | 25,000 | | Diode | - | <u> </u> | | 6BU5 | Sharp-Cutoff
Beam Pentode | <u> </u> | 6BU5 | T-X | 6.3 | 0.15 | 20 | 20,000 | 100
0.1 | 3.0 ▲ | 0.9 ▲ | 0.024 | | 6BU6 | Duplex-Diode
Medium-Mu
Triode | | 7BT | 5-3 | 6.3 | 0.3 | | 300 | | _ | _ | = | | 6BU8 | Twin Pentode | | 9FG | 6-3 | 6.3 | 0.3 | 1.1 🆠 | 300 � | 150 ♦
0.75 ♦ | | | | | 6BU8-A* | Twin Pentode | | 9FG | 6-3 | 6.3 | 0.3 | 1.1 🏟 | 300 ◈ | 150 ♦
0.75 ♦ | | | | | 6BV8¶ | Duplex-Diode
Triode | | 9FJ | 6-2 | 6.3 | 0.6 | 2.7 🏶 | 330 ◈ | | 3.6
Diode | 0.4
Section | 2.0 | | 6BV11 | Twin Pentode | | 12HB | 9-59 | 6.3 | 0.9 | 1.7 | 300 � | 300 \$ ♦ | | | - | | 6BW3 | Half-Wave High-
Vacuum | | 12FX | 9-60 | 6.3 | 1.6 | 6.5 🏟 | Tube V
32 volts | oltage I | Drop:
ma d-c | | 1, | | 6BW4 | Rectifier Full-Wave High- Vacuum Rectifier | | 9DJ | 6-3 | 6.3 | 0.9 | | Tube V
40 v at | oltage
100 ma | Drop: 4 | • | ••• | | 6BW6 | Beam Power
Amplifier | | 9AM | 6-3 | 6.3 | 0.45 | 12 | 315 | 285
2.0 | _ | <u> </u> | _ | | 6BW8 | Duplex-Diode
Pentode | | 9HK | 6-2 | 6.3 | 0.45 | 3.0 ♦ | 330 ◈ | 330 ♦ 8
0.55 ♦ | | 2.6 ▲ | 0.02 | | 6BW11 | Dissimilar
Double
Pentode | | 12HD | 9~58 | 6.3 | 0.8 | 4.0 ◈
3.1 ◈ | 330 ⊗
330 ⊗ | 330:♦
0.8♦
330:♦
0.65♦ | Section | Sections 1 (Pins 1, 11) 2 (Pins 6) | 7. | | 6BX7-GT | Medium-Mu
Twin Triode | | 8BD | 9-41 | 6.3 | 1.5 | 10 ♠
12 ⊕ | 500 | | 4.4₁ ▲
4.8₂ ▲ | 1.1₁ ▲
1.2• ▲ | 4.2₁ ▲
4.0₃ ▲ | | 6BX8 | High-Frequency
Twin Triode | | 9AJ | 6-2 | 6.3 | 0.4 | 2.0 | 150 🏶 | | 2.42 | 1.251 | 1.4 | | 6BY4 | High-mu Triode
(Planar) | | 6BY4 | T-X | 6.3 | 0.2 | 1.1 🏶 | 300 ◈ | | | | _ | | 6BY5-G | Full-Wave High-
Vacuum
Rectifier | | 6CN | 14-3 | 6.3 | 1.6 | _ | Tube V
32 volt | oltage
s at 175 | Drop: 4 | c | <u> </u> | | 6BY5-GA | Full-Wave High-
Vacuum
Rectifier | | 6CN | 12-14 | 6.3 | 1.6 | | Tube \ 32 volt | Voltage
s at 175 | Drop: | • | | \$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— [A]—X-Radiation Rated, and (A)—No X-Radiation Rating. Compactron. Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4 | Service | Plate
Volts | Screen
Volts | eg
rid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------------|-------------------------------|-------------------------------------|-----------------------------------|----------------------------------|--|---------------------------|-------------------|--|--------------------------------|--------------| | TV Damper | Max o | i-c out | put cur
ent 🏶 = | rent 🏶 =
1,100 m | = 200 m | a; max pe | ak inve | erse vo | ltage 🏶 | =5,000; | 6BS3-A | | Class A
Amplifier • | 150 | _ | R _k = 220 | 10 | | 5,000 | 7,200 | 36 | | | 6BS8 | | Class A
Amplifier | 250
100 | = | 3.0
1.0 | 1.0
0.8 | = | 58,000
54,000 | 1,200
1,300 | 70
70 | = | = | 6BT6 | | Class A
Amplifier
Horizontal
Phase Det. | 200
Max d | 1 | R _k =
180
t currer | 9.5
at \Phi = 1 | 2.8
0 ma; v | 300,000
roltage dro | 6,200
• • : 10 | volts at | 8,0 ma | d-c | 6BT8 | | HV Shunt
Regulator | Max u
10 ma. | nregulat | ed d-c s | supply v | oltage | = 55,000 v | olts; ma | x d-c ca | athode c | urrent= | 6BU4 | | HV Shunt | 20000 | 70
creen di | 2.4 | 1.0 | 0.4 | | | - 25 | Ec3 = | · 0 volts | 6BU5 | | Regulator
Class A
Amplifier | 250 | - di | 9.0 | 9.5 | watt; c | l-c cathode
8,500 | 1,900 | 16 | 10,000 | 0.30 | 6BU6 | | Sync Sepa- | 100 | 67.5 | I _{e1} = 0.1 ma | 2.2 | 5.0 | | | | Ecs =0 | volts | 6BU8 | | rator and
AGC Keyer | 100
(Chara | 67.5
cteristic
r 3 of o | 0
s given | are fo | r each | section sep | 1,500 parately | with | E _{cs} = 0 | volts
nd grid | | | Sync Sepa- | 100 | | I _{c1} = | 2.2 | 3.3 | | <u> </u> | _ | Ec. = 0 | voits | 6BU8-A | | rator and
AGC Keyer | 100
(Chara | 67.5 | s given | are fo | r each | section sep | 1,500
arately | | E _{cs} = 0 | | | | | 200 | r 3 of o | R _k = | section 11 | grounde | 5,900 | 5,600 | 33 | ī — | | 6BV8¶ | | Class A
Amplifier
Synchronous | 75 | -c outpu | 330 | 14 |
ma; v | oltage drop | _ | | 23 ma | d-c | | | Detector
Avg. Char. | 150 | 100 | R _k = | 3.6 | 2.0 | 200,000 | 3,700 | | =0 volts | | 6BV11 | | TV Damper | Max d | -c outpi
max pea | 180
ut curre
k curre | nt 🍪 = | = 175 n
= 1,100 r | na; max pe
na. | ak inve | rse vol | tage 🏶 = | = 5,000 | 6BW3 ■ | | Full-Wave
Rectifier | Max d | -c outpopply vol | ut curre | ent = 100
r plate = | 0 ma; r
=325 vol | nax peak i
its; max pe | nverse v
ak curre | voltage
nt per | =1,275
plate =3 | volts;
350 ma | 6BW4 | | Class A
Amplifier | 315
250
180 | 225
250
180 | 13.0
12.5
8.5 | 34†
45†
29† | 2.2†
4.5†
3† | 77,000
52,000
58,000 | 3,750
4,100
3,700 | | 8,500
5,000
5,500 | 5.5
4.5
2.0 | 6BW6 | | Class A | 250 | 110 | R _k = 68 | 10 | 3.5 | 250,000 | 5,200 | | - | | 6BW8 | | Amplifier
Horizontal
Phase Det. | Max | d-c outr | ut curr | ent 🏶 💠 | ˈ≖5.0 m
l | a; voltage | dгор 🍁 | 5 volt | s at 20 | ma d-c | | | Avg. Char. | 125 | 125 | R _k = 56 | 22 | 4.8 | 120,000 | 8,500 | | - | | 6BW11 | | Avg. Char. | 125 | 125 | R _k = 56 | 11 | 3.8 | 200,000 | 13,000 | | _ | | | | Vertical
Amplifier ◆ | 250
100 | _ | R _k = 390 | 42
80 | | 1,300 | 7,600 | · 10 | _ | _ | 6BX7-GT | | | Maxp | ositive p | | | age 🖲 🖚 | 2000; max | d-c cat | hode cı | irrent = | 60 ma | | | Class A
Amplifier 🍁 | 65 | | 1.0 | 9.0 | | 3,750 | 6,700 | 25 | | | 6BX8 | | Class A
Amplifier | 200 | - | R _k = 200 | 5.0 | | 16,700 | 6,000 | 100 | _ | | 6BY4 | | Pull-Wave Rectifier TV Damper | Max d | voitage | e per pi
ut curre | ate = 37 $ent = 17$ | 5 volts;
5 ma; n | x peak inverse max peak in | curren | трегр | late $= 0$ | so ma; | 6BY5-G | | Full-Wave { Rectifier TV Damper | Max d
max pe
Max d | -c outp | ut curre
ent per
it curre | nt = 175
plate = 5
at = 175 | ma; m
525 ma
ma; m | ax peak in | | | | - 1 | 6BY5-GA | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. 1, 1, 1, etc. indicate tube sections. • Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarac | e in
Is | |------------------|--------------------------------------|---------------|--------------|---------------|---------------|-----------------------------|------------------------------|---------------------------------|---|---|-------------------| | Туре | Construction |
nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | GBY6 | Dual-Control Heptode | 7CH | 5-2 | 6.3 | 0.3 | 2.3 🕸 | 330 🏶 | 330 ♦2
1.1 ♦ | | _ | <u> </u> | | SBY8♥ | Diode-Pentode | 9FN | 6-3 | 6.3 | 0.6 | 3.0 | 300 | 300 8
0.65 | 5.5 | 5.0 | 0.003 | | | | | | | | | | | Diode : | | | | 6BY11 | Dissimilar Double
Pentode | 12EZ | 9-59 | 6.3 | 1.2 | 10 ◈
1.7 ◈ | 200 ◈
300 ◈ | 1.8 ◈
300 : ◈ | Section
10, 11)
Section
3, 5, 6, | 1 (Pins
2 (Pins
7) | 8, 9,
2, | | 6BZ3 | Half-Wave, High-
Vacuum Rectifier | 12FX | 9-60 | 6.3 | 1.2 | 6.5 ◈ | Tube V | oltage
olts at 3 | Drop: | | brus | | 6BZ6 | Semi-Remote-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.3 🏶 | 330 ◈ | 330 ♦\$
0.55 ♦ | 7.0 | 3.0 | 0.015
• | | 6BZ7 | High-Frequency
Twin Triode | 9AJ | 6-2 | 6.3 | 0.4 | 2.0 ♠ | 250 | | 2.6 _i | 1.21 | 1.2 | | 6 BZ8 | High-Frequency
Twin Triode | 9AJ | 6-2 | 6.3 | 0.4 | 2.2♠ | 250 | | | | = | | 6C4 | Medium-Mu
Triode | 6BG | 5–2 | 6.3 | 0.15 | 3.5
5.0 | 300
300 | | 1.8▲ | 1.3 ▲ | 1.6 ▲ | | 6C5
6C5-GT | Medium-Mu
Triode | 6Q | 8-1
9-12 | 6.3 | 0.3 | 2.5 | 300 | | 3.0
4.4 | 11.0
12.0 | $\frac{2.0}{2.2}$ | | 6C6 | Sharp-Cutoff
Pentode | 6F | 12-2 | 6.3 | 0.3 | 0.75 | 300 | 125
0.75 | 5.0 ▲ | 6.5 ▲ | 0.007 | | 6C7 | Duplex-Diode
Medium-Mu Triode | 7G | 12-2 | 6.3 | 0.3 | | 250 | | | | | | 6C8-G | Medium-Mu
Twin Triode | 8G | 12-8 | 6.3 | 0.3 | 1.0 ♠ | 250 | | | | | | 6C9 | Twin Tetrode | 10F | 6-13 | 6.3 | 0.4 | 1.5 ♦ 2.5 ♦ | 250 ◈ | 180 ♦ \$ | 4.41 | 2.2 | .0551 | | 6C10¶ | Triple-Triode | 12BQ | 9-56 | 6.3 | 0.6 | 1.0 ◈ | 330 ◈ | | 1.8 ▲ | 0.24 ₁ ▲ 0.34 ₂ ▲ 0.48 ₂ ▲ | 1.4▲ | | 6CA4 | Full-Wave High-
Vacuum Rectifier | 9 M | 6-4 | 6.3 | 1.0 | - | | _ | | | - | | 6CA5 | Beam Power Amplifier | 7CV | 5-3 | 6.3 | 1.2 | 5.0 | 130 | 130 | 15 ▲ | 9▲ | 0.5 ▲ | | 6CA7 | Power Amplifier Pentode | 8EP | T-X | 6.3 | 1.5 | 25 | 800 | 425
8.0 | _ | | | | 6CA11 | Dissimilar-Double-
Triode Pentode | 12HN | 9-58 | 6.3 | 1.02 | 5.0◈ | 330◈ | 330 : ♦
1.0♦ | | e Section | | | | | | | | | 1.5◈ | 330 ◈
330 ◈ | | (Pins 4 | Section | | | 6CB5 | Beam Power Amplifier | 8GD | T-X | 6.3 | 2.5 | 23 | 700\$ | 200
3.6 | 24 ▲ | 10 🛦 | 0.8▲ | | 6CB5-A | Beam Power Amplifier | 8GD | 12-36 | 6.3 | 2.5 | 26 ◈ | 880 🕸 🛭 | 220 *
4.0 * | 22 🛦 | 10 🛦 | 0.4 ▲ | | 6CB6 | Sharp-Cutoff | 7CM | 5-2 | 6.3 | 0.3 | 2.3 🏶 | 330 ◈ | 330 ⊕ 1
0.55 ⊕ | 6.5 | 3.0 | 0.015 | | 6CB6-A¶
6CD3■ | RF Pentode
Half-Wave High- | 12FX | 9-62 | 6.3 | 2.5 | 12 🏵 | Tube V | /oltage | Drop: | l | | | | Vacuum Rectifier | | | | | | 18 volt | s at 350 |) ma d- | | 0.6. | | 6CD6-G | Beam Power Amplifier | 5BT | 16-5 | 6.3 | 2.5 | 15 | 700\$ | 175
3.0 | 24 ▲ | 9.5 ▲ | 0.8 🛦 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. § Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ®Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |------------------------------------|--------------------|---------------------|-------------------------------|--|--|--------------------------|---------------------------|---------------------|--|--------------------------------|---| | Gated
Amplifier | 250
10 | 100
25 | 2.5 | 6.5 | 9
3.5 | | 1,900 | $E_{c3} = -$ | -2.5 vol
volts | ts | 6BY6 | | Class A | 250 | 150 | $\overline{R_k} =$ | 10.6 | 4.3 | 1,000,000 | 5,200 | G ₃ tied | | | 6BY8¶ | | Amplifier
Video
Detector | 100 | 100 | 08
R _k =
150 | 5.0 | 2.1 | 500,000 | 1 | G₃ tied | | | | | | | 1 | | | , | age drop: | 10 volts | at 60 n | na d-c | | *************************************** | | Class A
Amplifier
Avg. Char. | 170 | 140 | Rk = 82
Rk = | 74† | 3.9† | 33,000
110,000 | 4,900
2,500 | | 2,500
=0 volt | 4.0 | 6BY11 | | TV Damper | l | | 180 | <u> </u> | | nax peak ir | | <u> </u> | | | 6BZ3■ | | | max pe | ak curr | ent 🏶 = | 1,200 n | ıa, | | | o.u.ge & | , 1,000 | , , , , , | 0220 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.6 | 260,000 | 8,000 | i - | | | 6BZ6 | | Class A
Amplifier • | 125
150 | 125 | $\frac{4.5}{R_k = 220}$ | 10 | = | 5,300 | 6,800 | 36 | | | 6BZ7 | | Class A
Amplifier • | 125 | | R _k = 100 | 10 | | 5,600 | 8,000 | 45 | | | 6BZ8 | | Class A | 250
100 | | 8.5 | 10.5 | | 7,700 | 2,200 | 17 | | | 6C4 | | Amplifier \ Class C Amplifier | 300 | = | 0
27 | 11.8
25 | _ | 6,250
Input sign | 3,100 al = 0.35 | | | 5.5 | | | Class A
Amplifier | 250 | | 8.0 | 8.0 | | 10,000 | 2,000 | 20 | | | 6C5
6C5-GT | | Class A
Amplifier | 250 | 100 | 3.0 | 2.0 | 0.5 | 1,000,000 | 1,225 | | | | 6C6 | | Class A
Amplifier | 250 | | 9.0 | 5.5 | | 16,000 | 1,250 | 20 | | | 6C7 | | Class A
Amplifier • | 250 | _ | 4.5 | 3.2 | _ | 22,500 | 1,600 | 36 | | | 6C8-G. | | Class A
Amplifier • | 125 | 80 | 1.0 | 10 | 1.5 | 100,000 | 8,000 | _ | _ | | 6C9 | | Class A
Amplifier • | 250
100 | | 2.0 | 1.2 0.5 | | 62,500
80,000 | 1,600
1,250 | 100
100 | | = | 6C10¶■ | | Full-Wave
Rectifier | Max d-
max pe | c outpu
ak curre | t curre | nt = 150
plate = | ma; m
450 ma | ax peak in | verse vo | oltage = | 1,000 v | olts; | 6CA4 | | Class A
Amplifier | 125
110 | 125
110 | 4.5
4.0 | 37†
32† | 4.0†
3.5† | 15,000
16,000 | 9,200
8,100 | _ | 4.500
3.500 | 1.5 | 6CA5 | | Class A
Amplifier | 250 | 250 | 13.5 | 100† | 15† | 15,000 | 11,000 | = | 2,000 | 11 | 6CA7 | | Avg. Char. | 200 | 120 | R _k = 65 | 27.5 | 4,9 | 490,000 | 21,200 | _ | _ | | 6CA11 | | Avg. Char, | 200 | - | R _k = 270 | 7.1 | - | 10,000 | 6,300 | 63 | | _ | | | Avg. Char. | 200 | - | R _k = 270 | 7.1 | | 12,400 | 5,500 | 69 | | - | | | Horizontal | 175 | 175 | 30 | 90 | 6.0 | 5,000 | | | | | 6CB5 | | Amplifier | max po
watts; | max d-c | plate o | te voita | ige | 3,800 volts
a | ; max so | reen di | ssipatio | n = 3.6 | | | Horizontal
Amplifier | 175
75 | 175
150 | 30
0 | 90
460 | $\begin{array}{c c} 6.0 \\ 42 \end{array}$ | 5,000 | 8,800 | = | | | 6CB5-A | | rimpilie. | Max po | sitive p | ılse pla | | ge � = 6 | ,800 volts;
40 ma | max scr | een diss | pation | ♦ = 4.0 | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.7 | 280,000 | 8,000 | | | - | 6CB6 | | P***** | 125 | 125 | 3.0 | 2.8 | | | | l — | | <u> </u> | 6CB6-A | | TV Damper | Max d-
volts; r | c outpu
nax pea | t currer
k curre | $ \begin{array}{c} \text{nt } \circledast = 35 \\ \text{nt } \circledast = 1 \end{array} $ | 50 ma; n
,500 ma | nax peak ir | iverse v | oltage 🏶 | » = 6,000 |) | 6CD3■ | | Horizontal
Amplifier | 175
60 | 175
100 | 30
0 | 75
230 | 5.5
21 | 7,200 | 7,700 | | | | 6CD6-G | | = | Max p | ositive | pulse p | late vol | tage 🖭 | =6600 volt
200 ma | s; max | screen | dissipa | tion = | | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max
Plate | Max | Max
Screen
Volts | Car
P | acitance
icofarad | e in | |-----------------|--|---------------|---------------------|---------------|-------------|------------------------------|-------------------|------------------------------|---------------|----------------------|--| | Type | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6CD6-GA | Beam Power Amplifier | 5BT | 12-21 | 6.3 | 2.5 | 20 | 700 | 175
3.0 | 22 ▲ | 8.5 🛦 | 1.1 ▲ | | 6CE3 | Half-Wave, High-
Vacuum Rectifier | 12GK | 9-62 | 6.3 | 2.5 | | Tube V | oltage
s at 680 | Drop: | <u> </u> | | | 6CE6¶ | Sharp-Cutoff
RF Pentode | 7BD | 5-2 | 6.3 | 0.3 | 2.0 | | 150 | 6.5 ▲ | 1.9 ▲ | 0.03 4 | | 6CF6 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.3 🏶 | 330 🏶 | 330 ♦ 8 0.55 ♦ | 6.5 | 3.0 | 0.015
• | | 6CG3 | Half-Wave, High-
Vacuum Rectifier | 12HF | 9–62 | 6.3 | 1.8 | 6.5 🏶 | Tube V | oltage
s at 700 | Drop: | : | <u>. </u> | | BCG6 | Remote-Cutoff
Pentode | 7BK | 5-2 | 6.3 | 0.3 | 4.0 | 300 | 150
0.75 | 5.0 | 5.0 | 0.008 | | 6CG7¶ | Medium-mu
Twin Triode | 9A.J | 6-3 | 6.3 | 0.6 | 4.0�♠
5.7�⊕ | 330 ◈ | | 2.3 ▲ | 2.2▲ | 4.0 ▲ | | 6CG8
6CG8-A¶ | Triode-Pentode | 9GF | 6-2 | 6.3 | 0.45 | 2.3 🏟 | 275 🏶 | 275 ♦ 8 0.45 ♦ | Pentod | e Section | on. | | 0000 11 | | | | | | 1.7 ◈ | 275 ◈ | | Triode | Section | | | 6СН3 | Half-Wave, High-
Vacuum Rectifier | 9HP | 9-86 | 6.3 | 2.5 | 11 🕸 | Tube V
20 volt | Voltage
s at 680 | Drop:
mad- | C | | | 6CH7 | High-Frequency
Twin Triode | 9FC | 6-2 | 6.3 | 0.4 | 2.0 ♠ | 250 | T = | 2.41 | 0.8 | 1.11 | | 6CH8 | Triode Pentode | 9FT | 6-2 | 6.3 | 0.45 | 2.0 | 300
300 | 300 \$
0.5 | | le Section | | | 6CJ3 | Half-Wave High-
Vacuum
Rectifier | 9SD | 9-111
or
9-87 | 6.3 | 1.8 | 6.5 | | Voltage
ts at 70 | | c | | | 6CK3 | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X
or 9-86 | 6.3 | 1.2 | 6.5 ◈ | Tube V | Voltage | Drop: | c | | | 6CK4 | Low-mu Triode | 8JB | 9-43 | | 1.25 | 12 🆠 | 550 ◈ | | 8.0 ▲ | 1.8▲ | 6.5 ▲ | | 6CL3 | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 6.3 | 1.2 | 8.5 🏶 |
Tube V | Voltage
ts at 350 | Drop: | c | | | 6CL5 | Beam Power Amplifier | 8GD | 12-21 | 6.3 | 2.5 | 25 | 700\$ | | 20 ▲ | 11.5▲ | 0.7 | | 6CL6 | Power Amplifier
Pentode | 9BV | 6-3 | 6.3 | 0.65 | 7.5 | 300 | 150 | 11 🛦 | 5.5 ▲ | 0.12 | | 6CL8¶ | Triode-Tetrode | 9FX | 6-2 | 6.3 | 0.45 | 3.0 ♦
2.5 ♦ | 330 ◈ | 0.55 | | e Section | | | 6CL8-A¶ | Triode-Tetrode | 9FX | 6-2 | 6.3 | 0.45 | 3.0 ◈ | 330 🏶 | 330 € | Tetrod | le Section | n | | | | | | | | 2.5 ◈ | 330 € | 0.55 | Triode | Section | 1 | | 6CM3 | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X | 6.3 | 2.4 | 12® | Tube V | Voltage
s at 350 | Drop: | : | | | 6CM6 | Beam Power
Amplifier | 9CK | 6-3 | 6.3 | 0.45 | 12 | 315 | 285
2.0 | Pento | le Conn | ection | | | | | | | | 9.0 | 315 | | P ti | | | | | | | | | | 8.0 | 315 | 285
2.0 | | entode
nection | | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. * Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|-------------------------------|-------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------|------------------------------|-----------------|--|--|-----------------| | Horizontal
Amplifier | 175
60
Max po
watts; | 175
100
ositive p | ulse pla | 75
230
ite volt
e curre | 5.5
21
age • =
nt = 200 | 7,200
7,000 volts
ma | 7,700
—
; max so | reen di | ssipatio | n =3.0 | 6CD6-GA | | TV Damper | Max d-
max pe | c outpu | t curren | $t \circledast = 35$
1,500 n | 50 ma; n | ax peak in | verse vo | ltage 🎕 | = 6,000 | volts; | 6CE3 | | Class A
Amplifier | 125 | 125 | 1.0 | 11 | 2.8 | 300,000 | 7,600 | | - | | 6CE5¶ | | Class A
Amplifier | 125
125 | 125
125 | R _k = 56 3.0 | 12.5
2.2 | 3.7 | 300,000 | 7,800 | - | | | 6CF6 | | TV Damper | Max d- | | t curren | t ♦ = 3 | | ax peak in | verse ve | ltage 🍕 | >=5,000 | volts; | 6CG3 | | Class A
Amplifier | 250 | 150 | 8.0 | 9.0 | 2.3 | 720,000 | 2,000 | | - | <u> </u> | 6CG6 | | Class A
Amplifier • | 250
250 | | 8.0
12.5 | 9.0 | 三 | 7,700 | 2,600 | 20 | = | | 8CG7¶ | | | 90 | | 0 | 10 | | 6,700 | 3,000 | 20 | | | | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 9.0
12 | 2.2 | 6,000 | 5,500
6,500 | 40 | _ | _ | 6CG8
6CG8-A¶ | | Amplifier
TV Damper | Max d- | c outpu
ak curr | t curren | t ♦ = 3. | 50 ma; n | nax peak in | verse vo | ltage 🍕 | = 6,000 | volts; | 6СН3 | | Class A
Amplifier • | 150 | - Curr | R _k = | 10 | | 5,300 | 6,800 | 36 | - | T = | 6СН7 | | Class A
Amplifier
Class A | 200 | 150 | R _k = 180
6.0 | 9.5
13 | 2.8 | 300,000
5,750 | 6,200
3,300 | 19 | = | | 6CH8 | | Amplifier
TV Damper | Max d | l-c outp
max pea | ut curre | ent 🍪 | = 350 1
= 2,100 | na; max p
ma. | eak inv | erse vo | ltage 🌸 | = 5,500 | 6CJ3 | | TV Damper | | c outpu | | | | nax peak ir | verse v | oltage 🤇 | » = 5 ,200 |) volts; | 6CK3 | | Vertical
Amplifier | 250
100 | ositive | 28.0 | 40
125 | | 1,200
=2,000 vol | 5,500
s; max | 6.6
d-c catl | | rent = | 6CK4 | | TV Damper | Max demax pe | | t currer
ent 🏶 = | 1,300 r | na | nax peak in | verse ve | oltage 🍕 | = 5,500 | volts; | 6CL3 | | Horizontal
Amplifier | 175
80 | 175
100 | 40
0 | 90
280 | 7.0
20 | 6,000
=7,000 vol | 6,500 | | = | | 6CL5 | | | 4.0 wa | tts; mar | d-c ca | thode c | urrent = | 240 ma | | aci celi | | | | | Class A
Amplifier | 250 | 150 | 3.0 | 30† | 7.0† | 150,000 | İ | | 7,500 | 2.8 | 6CL6 | | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 12
14 | 4.0 | 120,000
5,000 | 6,000
8,000 | 40 | | | 6CL8¶ | | Amplifier
Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6.500 | | \- <u>-</u> - | | 6CL8-A¶ | | Amplifier Class A Amplifier | 100
125 | 100 | 1.0 | 14 | = | 5,000 | 8,200
8,000 | 40 | = | = | | | TV Damper | Max | d-c ou | tput cu | rrent • | =400 m
=1,700 m | a; max pe
a | ak inve | se volt | age⊗ = | 5,500 | 6CM3 | | Class A { Amplifier } Vertical Amplifier } | 250
Max 1 | 250
positive | 12.5
pulse | 45† | 4.5† | ~ | 4,100
olts; m
-c catho | ax scre | 5,000
en diss
rent = 40 | ipation | 6CM6 | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
cofarad | | |-------|--------------------------------------|---------------|------|-----------------|---------------|--------------|--------------|------------------------------|----------------|---------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts
₩ | Input | Out-
put | Grid-
plate | | BCM7¶ | Double Triode | 9ES | 6–3 | 6.3 | 0.6 | 1.45 🏶 | 550 ◈ | | Section | 1 (Pins | 3, 6, 7 | | | | | | | | 6.0� | 550 ◈ | - | Section | 2 (Pins | 1, 8, 9 | | SCM8¶ | Triode-Pentode | 9FZ | 6–2 | 6.3 | 0.45 | 2.0 | 300 | 3008 | Pentod | e Sectio | n | | | | | | | | 1.0 | 300 | 0.5 | Triode | Section | | | 6CN7¶ | Duplex-Diode Triode | 9EN | 6–2 | 6.3 3.15 | 0.3 } | 1.1 🏶 | 330 ◈ | | 1.5 ▲
Diode | 0.5 ▲
Sections | 1.8 | | 6CQ4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 6.3 | 1.6 | 6.5 🏶 | | | Tube V | oltage
s at 250 | Drop: | | 6CQ8¶ | Triode-Tetrode | 9GE | 6-2 | 6.3 | 0.45 | 3.2 ♦ | 330 � | 330 ♦\$ | Tetrod | e Sectio | ma d- | | | | | | | | 3.1 🏶 | 330 🏶 | 0.7 🏵 | Triode | Section | | | 6CR6 | Diode Remote-Cutoff
Pentode | 7EA | 5-2 | 6.3 | 0.3 | 2.5 | 300 | 150
0.3 | | | | | 6CR8¶ | Triode-Pentode | 9GJ | 6–2 | 6.3 | 0.45 | 2.3 🆠 | 330 ◈ | 330 * * 0.55 * | Pentod | e Sectio | n | | | | | | | ĺ | 2.75 🏶 | 330 ◈ | 0.55 | Triode | Section | L | | 6CS5 | Beam Power Amplifier | 9GR | 6-3 | 6.3 | 1.2 | 10 | 300 | 300 \$
1.25 | 15▲ | 9.0 ▲ | 0.5 | | 6CS6 | Dual-Control Heptode | 7CH
▼ | 5-2 | 6.3 | 0.3 | 1.0 | 300 | 100 | 5.5 | 7.5 | 0.07 | | 6CS7¶ | Double Triode | 9EF | 6-3 | 6.3 | 0.6 | 1.25 | 500 | | Section | 1 (Pins | 6, 7, 8 | | | | | | | | 6.5 | 500 | — | Section | 2 (Pins | s 1, 3, 9 | | 6CS8¶ | Triode-Pentode | 9FZ | 6-2 | 6.3 | 0.45 | 2.3 🏟 | 330 ◈ | 330 ♦\$ | Pentod | e Sectio | on | | | | | | | | 2.75 🏶 | 330 🏶 | 0.55 | Triode | Section | 1 | | 6CT3 | Half-Wave, High-
Vacuum Rectifier | 9RX | T-X | 6,3 | 1.2 | 4.75� | | oltage I
s at 350 | | | | | 6CU5 | Beam Power Amplifier | 7CV | 5-3 | 6.3 | 1.2 | 7.0 🏶 | 150 🏶 | 130 (a) | 13 ▲ | 8.5 ▲ | 0.64 | | 6CU6 | Beam Power Amplifier | 6AM | T-X | 6.3 | 1.2 | 11 | 600\$ | 200 | 15 ▲ | 7.0 ▲ | 0.64 | | 6CU8¶ | Triode-Pentode | 9G M | 6-2 | 6.3 | 0.45 | 2,3 🏟 | 330 € | 330 🏵 | Pentod | e Section | on . | | | | | | | | 2.8 🌢 | 330 🏶 | 0.55 🏶 | Triode | Section | ı | | 6CW4 | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.135 | 1.5 🏽 | 135 � | - | 4.3 ▲ | 1.8▲ | 0.92 | | 6CW5 | Power Amplifier
Pentode | 9CV | 6-4 | 6.3 | 0.76 | 14 🏶 | 275 🏶 | 220 ③
2.1 ⑤ | | Tube
ubes, P | ush- | | 6CX7 | Medium-mu
Twin Triode | 9FC | 6-2 | 6.3 | 0.4 | 2.0 ♠ | 250 | | Pull 2.41 | 1.3 | 1.21 | | 6CX8 | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.75 | 5.0 🏟 | 330 ◈ | 330 ♠\$ | Pentod | e Section | on . | | | | | | | | 2.0 🏟 | 330 � | 1.1 🏶 | Triode | Section | 1 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------------|--------------------|------------------------------|---|----------------------------------|---------------------------------|-----------------------------|--|--|--------------------------------|--------------| | Vertical | 200 | | 7.0 | 5.0 | | 10,500 | 2,000 | 21 | I — | 1 - T | 6CM7¶ | | () | Max d-
250 | c catho | | nt ⊕ = | 17 ma | 4.100 | 4,400 | 18 | | _ | | | Ampliner | Max po
= 22 m | sitive p
a | ulse pla | te volt | | 2,200 volts | ; max d | | ode cur | rent 🕸 | | | Class A
Amplifier | 200 | 150 | R _k = 180 | 9.5 | 2.8 | 600,000 | 6,200 | _ | _ | - | 6CM8¶ | | Class A
Amplifier | 250 | | 2.0 | 1.8 | - | 50,000 | 2,000 | 100 | - | - | | | Class A
Amplifier {
Horizontal | 250
100
Max d- | c outpu | 3.0
1.0
t curren | 1.0
0.8 | =5.5 ma | 58,000
54,000
; voltage d | 1,200
1,300
rop • : 5 | 70
70
volts a | | d-c | 6CN7¶ | | Phase Det. | | - | | | | | | | | | **** | | TV Damper | Max d | -c outp
ax peak | ut curre | ent � =
t � = 1. | 190 ma
200 ma | ; max pea | ik inve | rse voi | tage 🏶 = | = 5,500 | 6CQ4 | | Class A | 125 | 125 | 1.0 | 12 | 4.2 | 140,000 | 5,800 | T = | T = | | 6CQ8¶ | | Amplifier
Class A
Amplifier | 125 | _ | R _k = 56 | 15 | | 5,000 | 8,000 | 40 | - | - | | | Class A
Amplifier | 250 | 100 | 2.0 | 9.6 | 2.6 | 800,000 | 2,200 | | | |
6CR6 | | Class A
Amplifier | 125 | 125 | R _k = | 13 | 3.0 | 300,000 | 7,700 | _ | | | 6CR8¶ | | Class A
Amplifier | 125 | _ | 56
2.0 | 12 | - | 5,500 | 4,000 | 22 | - | | | | Class A
Amplifier | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | = - | 4,000 | 3.8 | 6CS5 | | | 110 | 110 | 7.5 | 49† | 4.0† | 13,000 | 8,000 | | 2,000 | 2.1 | | | Gated
Amplifier | 100
100
10 | 30
30
30 | 1.0
0
0 | 1.0
0.8
2.0 | 1.3
5.5
4.5 | 1,000,000
700,000 | 1,100 | $E_{ci} = 0$
$E_{ci} = 0$
$E_{ci} = 0$ | -1.0 vc | olts | 6CS6 | | Vertical | 250 | | 8.5 | 10.5 | | 7,700 | 2,200 | 17 | 1 - | T=- | 6CS7¶ | | Oscillator
Vertical | 250 | c catho | 10.5 | 19 | I — | 3,450 | 4,500 | 15.5 | | - 20 | | | Amplifier
Class A | <u>Мах р</u>
125 | 125 | | 13 | age 🖭 == | 2,200; max | 7.700 | node ci | I | 30 ma | 6CS8¶ | | Amplifier
Class A
Amplifier | 125 | - | R _k = 56 2.0 | 12 | - | 5,500 | 4,000 | 22 | | | va-s- " | | TV Damper | Max | d-c outp | out curre | ent == = = = = = = = = = = = = = = = = = | 250 ma; | max peak i | iverse v | oltage® | =5,000 | volts; | 6CT3 | | Class A | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | ī — | 2,500 | 2.3 | 6CU5 | | Amplifier
Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 57
260 | 2.1 | 14,500 | 5,900 | | | | 6CU6 | | | Max p | ositive r | oulse pla | ate volt | age 🖲 = | 6000 volts | ; max s | creen di | ssipatio | n = 2.5 | | | Class A | watts; | max d-0 | $R_k =$ | 12 | $\frac{\text{nt} = 110}{3.8}$ | 170,000 | 7,800 | | 1 == | r=1 | 6CU8¶ | | Amplifier
Class A | 125 | _ | 56
1.0 | 17 | _ | 4,100 | 5,800 | 24 | _ | - | | | Amplifier
Class A | 110 | | R _k = | 7.6 | | 6,300 | 9,800 | 62 | - | | 6CW4 | | Amplifier
Class A | 170 | 170 | 12.5 | 70† | 3.5† | 26,000 | 11,000 | = | 2,400 | 5.6 | 6CW5 | | Amplifier
Class AB ₁
Amplifier | 250 | 200 | 18.5 | 91† | 4.0† | - | _ | - | 3,000‡ | 25 | | | Class A
Amplifier | 150 | | R _k = 220 | 9.0 | - | 6,100 | 6,400 | 1 | | | 6CX7 | | Class A | 200 | 125 | R _k = 68 | 24 | 5.2 | 70,000 | 10,000 | | _ | - | 6CX8 | | Amplifier
Class A | 40
150 | 125 | 0
R _k =
150 | 40
9.2 | 15.5 | 8,700 | 4,600 | 40 | = | = | | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |--------|-------------------------------------|---------------|--------------------|---------------|---------------|--------------|--------------|--------------------------------|---|--------------------------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6C Y 5 | Sharp-Cutoff
RF Tetrode | 7EW | 5-2 | 6.3 | 0,2 | 2.0 🏶 | 180 🏶 | 180 ♦ 8
0.5 ♦ | 4.5 | 3.0 | 0.03 | | SCY7 | Double Triode | 9LG | 6-3 | 6.3 | 0.75 | 1.0 | -350◆ | | Section
8) | 1 (Pin | s 6, 7, | | | | | | | | 5.5� | 350 ◈ | _ | Section
9) | 2 (Pin | s 1, 3, | | 6CZ5¶ | Beam Power Amplifier | 9HN | 6-4 | 6.3 | 0.45 | 10 🕸 | 350 ◈ | 315 ♦
2.2 ♦ | 9.0▲ | 6.0 ▲ | 0.04 | | 6D4 | Thyratron | 5AY | 5-2 | 6.3 | 0.25 | _ | | Tube V
16 v at | oltage
25 ma | Drop: | | | 6D6 | Remote-Cutoff RF
Pentode | 6F | 12-2 | 6.3 | 0.3 | 2.25 | | 300 \$
0.25 | 4.7 ▲ | 6.5 ▲ | 0.007 | | 6D7 | Sharp-Cutoff
Pentode | 7H | 12-2 | 6.3 | 0.3 | | 300 | 125 | 5.2 ▲ | 6.8▲ | 0.01 | | 6D8-G | Pentagrid Converter | 8A♦ | 12-8 | 6.3 | 0.15 | 1.0 | 300 | 100
0.3 | $\begin{array}{c} \text{Osc } I_{cl} \\ R_{gl} = 5 \end{array}$ | =0.4 m
0,000 o | na
hms | | 6D10 | Triple-Triode | 12BY | 9-56 | 6.3 | 0.45 | 2.0 ♦ | 330 ◈ | | 2.8 ▲ | 1.4 ▲ | 1.5 ▲ | | 6DA4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11
or
9-41 | 6.3 | 1.2 | 5.5 ◈ | | | - | = | = | | 6DA4-A | Half-Wave High-
Vacuum Rectifier | 4CG | 9-41 | 6.3 | 1.2 | 8.0⊛ | | _ | 30 volt | oltage
s at 340 | ma d | | 6DA6 | Electron-Ray Indicator | 9DB | 6-3 | 6.3 | 0.3 | 0.2 | 300 | | Max T
age
Min T | arget V
= 300
arget V
= 165 | olt-
olt- | | 6DA7 | Double Triode | 9EF | 6-3 | 6.3 | 1.0 | 2.0 | 300 | | | 1 (Pir | ıs 6, 7, | | | | | | | | 6.0 | 500 | | | ı 2 (Pir | ıs 1, 3, | | 6DB6 | Beam Power Amplifier | 9GR | T-X | 6.3 | 1.2 | 10 | 300 | 150
1.25 | 13 ▲ | 8.0 🛦 | 0.2 🛦 | | 6DB6 | Dual-Control Pentode | 7CM | 5-2 | 6.3 | 0.3 | 3.0 | 300 | 3008 | 6.0 ▲ | 5.0 ▲ | 0.003 | | 8DC6 | Semi-Remote-Cutoff
Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.0 | 300 | 300\$ | 6.5 ▲ | 2.0 ▲ | 0.02 | | 6DC8 | Duplex-Diode-Pentode | 9HE | 6-3 | 6.3 | 0.3 | 2.25 | 300 | 125
0.45 | 5.0 ▲ | 5.2 ▲ | 0.002 | | | | | | | | | | | Diode | Section | s | | 6DE4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 6.3 | 1.6 | 6.5♦ | 32 volt | Voltage
is at 35 | 0 ma d- | | | | 6DE6 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.3 🏶 | 330 ◈ | 330 ⊕1
0.55 ⊕ | | 3.0 | 0.015 | | 6DE7 | Double Triode | 9HF | 6-3 | 6.3 | 0.90 | 1.5 🏶 | 330 ◈ | | Section 8) | n 1 (Pi | ns 6, 7 | | | | | | | | 7.0 ◈ | 275 🎕 | _ | Section 3, 9 | n 2 (Pi | ns 1, 2 | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |------------------------|----------------|----------------------------------|---------------------------------|---|----------------------------------|--------------------------|---------------------------|---|--|--------------------------------|--------------| | Class A
Amplifier | 125 | 80 | 1,0 | 10 | 1.5 | 100,000 | 8,000 | | - | | 6CY5 | | Vertical { | 250 | I | 3.0 | 1.2 | - | 52,000 | 1,300 | 68 | | | 6CY7 | | Oscillator \ | Max p
150 | eak neg | ative gr
R _k =620 | rid volt | age 🏶 🛥 | 400
920 | 5.400 | 5.0 | | | | | Amplifier | 60 | | 0 | 80 | | 920 | 3,400 | 5.0 | = | = | | | - { | | | ulse pla | te volta | | 1800; max o | i-c cath | ode cur | rent 🏶 = | 35 ma | | | Vertical
Amplifier | 250
75 | 250
250 | | | 4.6
16 | 73,000
2,200; max | 4,800 | | | | 6CZ5¶ | | Relay | | | | | | x voltage | | | | | 6D4 | | Control | | ak cath | | | | an volvinge | 000,,001 | | | , , , , , | | | Class A
Amplifier | 250 | 100 | 3.0 | 8.2 | 2.0 | 800,000 | 1,600 | | <u> </u> | | 6D6 | | Class A
Amplifier | 250 | 100 | 3.0 | 2.0 | 0.5 | 1,000,000 | 1,225 | | | | 6D7 | | Converter | 250 | 100 | 3.0 | 3.5 | 2.6 | 400,000 | 550 # | E_{c2} (Os
thru 20
$I_{c2} = 4$. | c Plate)
),000 oh
3 ma | =250
ims | 6D8-G | | Class A
Amplifier • | 125 | | 1.0 | 4.2 | _ | 13,600 | 4,200 | 57 | [- | | 6D10 | | TV Damper | | -c outpomax pea | | | | ; max pea | k inver | se volt | age 🏶 = | 4,400 | 6DA4 | | TV Damper | tralte r | MAT 000 | le curre | m+ A C | 300 ma | ; max pe | | | | 1 | 6DA4-A | | Tuning
Indicator | Plate | voltage
v angle :
arget cu | =250 tl
=5°) (E | $ \begin{array}{ll} \text{hru} & 0.5 \\ \text{c} & = -1 \end{array} $ | meg; | Target vo | ltage = :
le = 65°. | 250; (E
Plate | current | volts,
=0,37 | 6DA5 | | Vertical
Oscillator | 250 | | 8.0 | 9.0 | Γ- | 7,700 | 2,600 | 20 | T = | T – I | 6DA7 | | Vertical | 150
60 | | 17.5 | 40
80 | l =, | 1,100 | 5,700 | 6.3 |] = | | | | Amplifier | Max p | ositive p | puise pi | ate voit | age = 1, | 800 volts; | max q-c | catnoc | ie curre | nt = | | | Class A
Amplifier | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | 1 1 | 6DB5 | | Vertical
Amplifier | Max p | 110
ositive 1
-c catho | pulse pl | 49†
ate volt | 4.0†
age | 13,000
2,000 volts | 8,000
s; | | 2,000 | 2.1 | | | Class A
Amplifier | 150 | 150 | 1.0 | 5.8 | 6.6 | 50,000 | 2,050 | Ees = | -3,0 v | olts | 6DB6 | | Class A
Amplifier | 200 | 150 | R _k = | 9.0 | 3.0 | 500,000 | 5,500 | | - | = | 6DC6 | | Class A
Amplifier | 250 | 100 | E _{c3} = | 19.0 | 2.7 | 1,000,000 | 3,800 | - | | - | 6DC8 | | ÷ | | | $E_{ci} = 2.0$ | | | | | | | | | | AM Det. | | -c outp | | | | a: max pea | Jr. im-se- | | 0.00 | 5 500 | 6DE4 | | TV Damper | | n-c outp
max pea | | | | | rw illvel | se voit: | a R 6. 📤 🛥 | 0,000 | 01114 | | Class A
Amplifier | 125 | 125 | R _k = 56 | | 4.2 | 250,000 | 8,000 | | T- | T = | 6DE6 | | - TV | 125 | 125 | 5.5 | | . | 0.750 | $\frac{700}{2,000}$ | | | -[| gn Ev | | Vertical
Oscillator | 250
Max d | -c cath | 11
de curi | 5.5
ent 🏶 = | 22 ma | 8,750 | , 2,000 | 17.5 | · | . – | 6DE7 | | (| 150 | - Carl | 17.5 | 35 | Ī — | 925 | 6,500 | 6.0 | - | I - I | | | Vertical
Amplifier | | ositive p | 0
pulse pla | 80
ate volt |
age � = | 1,500 volts | ; max d | -c catho | de curr | ent 🌑 | | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofara | e in
Is | |----------|--|---------------|--------------------|---------------|---------------|--------------|------------------------|---------------------------------|-------------------------|--------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6DG6-GT | Beam Power Amplifier | 75 | 9-11
or
9-41 | 6.3 | 1.2 | 10 | 200 | 125
1.25 | | - | _ | | 6DJ8 | Twin Triode | 9DE | 6-2 | 6.3 | 0.365 | 1.8 | 130 | = | _ | | = | | 6DK3 | Half-Wave High-
Vacuum
Rectifier | 9SG | 9-117 | 6.3 | 1.8 |
9.0 🏇 | 16 volt | Voltage
s at 400
s at 800 |) ma d-c | : | <u> </u> | | 6DK6 | Sharp-Cutoff
Pentode | 7CM | 5–2 | 6.3 | 0.3 | 2.3 🏶 | 330 🏶 | 330 ♦ 8
0.55 ♦ | 6.3 ▲ | 1.9 ▲ | 0.025 | | 6DL3 | Half-Wave High-
Vacuum
Rectifier | 9GD | 9-135 | 6.3 | 2.3 | 11 🏇 | | oltage
s at 800 | Drop: | : | | | 6DL4 | Triode | 9NY | T-X | 6.3 | 0.165 | 2.0 | 230 | | 3.8 | 0.055 | 1.7 | | 6DM4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 6.3 | 1.2 | 6.5 🏶 | Tube V | Voltage | Drop: | <u>'</u> | | | 6DM4A | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 6.3 | 1.2 | 6.5 🏶 | Tube V | Voltage
s at 400 | Drop: | | | | 6DN3 | Half-Wave High-
Vacuum
Rectifier | 9НР | 9-111 | 6.3 | 2.4 | 9.0 🌑 | Tube V | oltage
s at 350 | Drop: | | | | 6DN6 | Beam Power Amplifier | 5BT | 12-21 | 6.3 | 2.5 | 15 | 7008 | 175
3.0 | 22 🛦 | 11.5 ▲ | 0.8 🛦 | | 6DN7 | Double Triode | 8BD | 9-5 | 6.3 | 0.9 | 1.0 🌑 | 350 ◈ | | Section | l
1 (Pin | s 4, 5, | | | | | | | | 10 🏶 | 550 ◈ | - | 6) | 2 (Pin | | | 6DQ3 ■ | Half-Wave High-
Vacuum
Rectifier | 12HF | 9-62 | 6.3 | 1.8 | 9.0 🏶 | 16 volt | oltage
s at 400
s at 800 | ma d-c | : | | | 6DQ3-A ■ | Half-Wave High-
Vacuum
Rectifier | 12HF | 9-62 | 6.3 | 1.8 | 10 ◈ | Tube \ 17 volt 27 volt | oltage
s at 450
s at 900 | Drop:
mad-o
mad-o | | | | 6DQ4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-43 | 6.3 | 1.2 | 6.0◈ | Tube V | Voltage
is at 250 | Drop: | , | | | 6DQ5 | Beam Power Amplifier | 8JC | 12-21 | 6.3 | 2.5 | 24 🕸 | 990 🔷 | 190 ♦
3.2 ♦ | 23 ▲ | 11 ▲ | 0.5 🛦 | | 6DQ6 | Beam Power Amplifier | 6AM | T-X | 6.3 | 1.2 | 15 | 550\$ | 175
2.5 | 15▲ | 7.0 ▲ | 0.55 ▲ | | 6DQ6-A | Beam Power Amplifier | 6AM | 12-51 | 6.3 | 1.2 | 18 🏶 | 770 �\$ | 220 ♦
3.6 ♦ | 15▲ | 7.0 ▲ | 0.5 ▲ | | 6DQ6-B | Beam Power Amplifier | 6AM | 12–51 | 6.3 | 1.2 | 18 🏶 | 770 🔷 🖁 | 220 ♦
3.6 ♦ | 15 ▲ | 7.0 ▲ | 0.5 ▲ | | 6DR4 | High-Mu Triode | 6BG | 5-2 | 6.3 | 0.15 | 1.2 🏶 | 330 ◈ | - | 1.6▲ | 0.46 ▲ | 1.7▲ | | 6DR7 | Double Triode | 9HF | 6–3 | 6.3 | 0.9 | 1.0 🏶 | 330 ◈ | = | Section
8) | 1 (Pin | s 6, 7, | | | | | | | | 7.0 ◈ | 275 ◈ | | Section
3, 9) | 2 (Pin | s 1, 2, | | 6DS4 | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.135 | 1.5 ◈ | 135 ◈ | - | 4.3 ▲ | | 0.92 | | 6DS5 | Beam Power Amplifier | 7BZ | 53 | 6.3 | 0.8 | 9.0 🏶 | 275 🏶 | 275 ♦ | 9.5 ▲ | 6.3 ▲ | 0.19 🛦 | | 6DT3 | Half-Wave High-
Vacuum
Rectifier | 12HF | 9-62 | 6.3 | 2.4 | 9.0 🏶 | Tube V
14 volt | oltage l
s at 350 | Drop:
mad-c | | • | | 6DT4 | Half-Wave High-
Vacuum Rectifier | 4CG | 9-33 | 6.3 | 1.2 | 7.5♦ | Tube V | Voltage
is at 350 | Drop: | • | | | 6DT5 | Beam Power Pentode | 9HN | 6–3 | 6.3 | 1.2 | 9.0 🏶 | | 285 3 | | | 0.57 🛦 | Compactron. Zero signal. Per section. [●]Subminiature type. ▲Without external shield. ♦Design maximum rating. [⊕]Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance. | Service | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|-------------------------|--------------------------------|----------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|------------------|--|--------------------------------|---------------| | Class A | 200 | 125 | Rk= | 46† | 2.2† | 28,000 | 8,000 | _ | 4,000 | 3.8 | 6DG6-GT | | Amplifier | 110 | 110 | 180
7.5 | 49† | 4.0† | 13,000 | 8,000 | _ | 2,000 | 2.1 | | | Class A | 90 | | 1.3 | 15 | | | 12,500 | 33 | - | | 6DJ8 | | Amplifier ◆ TV Damper | Max d | -c outp | ut curre | ent 🏶
nt 🗣 = | = 400 r
= 1,200 r | na; max p
ma. | eak inve | erse vol | tage 🌞 | = 6,500 | 6DK3 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 12 | 3.8 | 350,000 | 9,800 | _ | | | 6DK6 | | TV Damper | Max d | -c outpomax pea | ut curre | nt 🏶 = | = 400 r
= 1,800 r | na; max p
ma. | eak inve | erse vol | tage 🏶 : | = 6,500 | 6DL3 | | Class A
Amplifier
TV Damper | 160 | | R _k = | 12.5 | | | 13,500 | 65 | | | 6DL4 | | | Max
volts; | d-c out
max pe | put cur
ak curr | rent 🏶 =
ent 🕸 = | =175 m:
1,100 m | a; max pe
a | ak inve | rse volt | age 🄷 = | 5,000 | 6DM4 | | TV
Damper | Max
volts; | d-c out;
max pe | put cur
ak curr | rent 🏶 =
ent 🕸 = | =200 m:
:1,200 m | a; max pea
a | k inver | se volta | age ◈ =: | 5,000 | 6DM4A | | TV Damper | Max d
volts; | -c outpo
max pea | ut curre
ik curre | nt 🏶 = | = 350 n
= 2,100 n | na; max pe
na. | ak inve | rse vol | tage 🏶 = | = 5,500 | 6DN3 | | Horizontal
Amplifier | 125
50 | 125
100 | 18
0 | 70
240 | 6.3 | 4,000 | 9,000 | | | | 6DN6 | | Kilipililei | Max po | sitive p | ulse pla | te volta | age 📵 == (| 6,600 volts | max sc | reen dis | sipation | 1 = 3.0 | | | Vertical | 250 | | 8.0 | 80 | nt = 200 | 9 000 | 2,500 | 22.5 | T = | | 6DN7 | | Oscillator | Max p | eak neg | ative gr | id volt:
 41 | age � = ⁴ | 100 volts
2,000 | 7,700 | 15.4 | _ | _] | | | Vertical
Amplifier | 150 | ositive n | 0 | 68
 te volt: | —-
age ⊗ ==: |
2,500; max | d-c cath | l —
iode cu | rrent 🏵 | =50 ma | | | TV Damper | Max d | | it curre | nt 🏶 = | = 400 m | ia; max pe | | | | = 6,500 | 6DQ3 ■ | | TV Damper | Max d-
volts; r | -c outpu
nax pea | ıt curre
k currer | nt 🏶 = | = 450 m
1,200 m | ia; max pe
ia. | ak inve | rse volt | age 💠 | = 6,500 | 6DQ3-A ■ | | TV Damper | | | | ıt � = 1
1,000 n | | nax peak i | | oltage (| | 0 volts; | 6DQ4 | | Horizontal
Amplifier | 175
70
Max po | 125
125
sitive p | 0 | 110
550
te volta | 5.0
42
ge ♠ = 6 | 5,500

,500; max | 10,500 | de cur | | 315 ma | 6DQ5 | | Horizontal | 250 | 150 | 22.5 | 75 | 1 2.4 | 20,000 | 6,000 | _ | T | | 6DQ6 | | Amplifier | 60
Max po
watts: | 150
 sitive p
 max d-c | ulse pla | 300
te volta | 27 age 🗐 = ant = 120 | 6,000 volts | ; max so | reen di | ssipatio | n = 2.5 | | | Horizontal | 250 | 150 | 22.5 | 55 | 1 1.5 | 20,000 | 6,600 | | T | r=1 | 6DQ6-A | | Amplifier | 60
Max po
3.6 wat | 150
psitive p
tts: max | ulse pla | 315
te volt | 25
age ◈ =:
urrent ◈ | 6,000 volts
= 155 ma | max so | reen d | issipatio | on 🏶 = | | | Horizontal | 250 | 150 | 22.5 | 65 | 1 1.8 | 18,000 | 7,300 | _ | I | | 6DQ6-B | | Amplifier | 60
Max
• = 1 | l 150
positive
75 ma | pulse p | 345
plate vo | 27
oltage 🏶 | =6,500 vo | ts; max | d-c ca | thode c | urrent | | | Class A
Amplifier | 250
100 | | 2.0 | 1.2 | ΙΞ | 62,500
80,000 | 1,600
1,250 | 100 | Ī = | | 6DR4 | | Vertical
Oscillator | 250 | -c catho | 3.0 | 1.4 | | | 1,600 | | =- | | 6DR7 | | Vertical
Amplifier | 150
60 | = | 17.5 | 35
80 | | 925
1,500; max | 6,500 | 6.0
— | rrent @ | =50 ma | | | Class A
Amplifier | 110 | | R _k = 130 | 6.5 | | 7,000 | 9,000 | 63 | - | - | 6DS4 | | Class A
Amplifier | 250
200 | 200
200 | 8.5
7.5 | 29†
35† | 3.0†
3.0† | 28,000
28,000 | 5,800
6,000 | \equiv | 8,000
6,000 | 3.8 | 6DS6 | | TV Damper | Max d-
volts; r | c outpu
nax pea | t curre
k currer | nt 🏶 =
nt 🗞 = | | a; max pe | ak inver | se volt | age 🔸 | = 6,500 | 6DT3 ■ | | TV Damper | Max d | -c outpu | t curren | nt 🏶 = 2 | 35 ma; | max peak i | nverse v | oltage | | 0 volts; | 6DT4 | | | | | | | - | | 6,200 | | | | 6DT5 | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | X-Řa- | Base
Con- | Out- | Fila- | Fila- | Max.
Plate | Max.
Plate | Max.
Screen | Car | pacitanc
icofara | e in
ds | |--------|---------------------------------------|-------------------|---------------|--------------|---------------|--------------|---------------|------------------------------|-----------------------------------|--------------------------------------|---------------------|----------------| | Type | by
Construction | diation
Rating | nec-
tions | line
Dwg. | ment
Volts | ment
Amps | | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6DT6 | Sharp-Cutoff
Pentode | | 7EN | 5-2 | 6.3 | 0.3 | 1.7 🏶 | 330 ◈ | 330 ◈\$ | I _{c1} = 0. | 6 ma | | | 6DT6-A | Sharp-Cutoff
Pentode | | 7EN | 5–2 | 6,3 | 0.3 | 1.7 🏶 | 330 ◈ | 330 ♦▮ | = | | - | | 6DT8 | High-Mu Twin
Triode | | 9DE | 6–2 | 6.3 | 0.3 | 2.5♠ | 300 | | 2.7 | 1.6 | 1.6 | | 6DV4 | Medium-Mu
Triode
(Nuvistor) | | 12EA | 4-4 | 6.3 | 0.135 | 1.0� | 125 ◈ | | 4.4 ▲ | 1.9 ▲ | 1.8▲ | | 6DW4 | Half-Wave
High-Vacuum
Rectifier | | 9HP | 986 | 6.3 | 1.2 | 8.5� | Tube V
25 volt | oltage
s at 350 | Drop:
) ma d-o | 3 | | | 6DW4-A | Half-Wave
High-Vacuum
Rectifier | | 9HP | T-X | 6.3 | 1.2 | 8.5 🏶 | Tube V
25 volt | oltage
s at 350 | Drop:
) ma d-o | E | | | 6DW4-B | Half-Wave
High-Vacuum
Rectifier | | 9HP | T-X | 6.3 | 1.2 | 8.5 🏶 | Tube V
25 volt | oltage
s at 350 | Drop:
) ma d-c | : | | | 6DW5 | Beam Power
Amplifier | | 9CK | 6-4 | 6.3 | 1.2 | 11 🏶 | 330 ◈ | 220 ③
2.5 ④ | 14 ▲ | 9.0▲ | 0.5 ▲ | | 6DX4 | UHF Triode
Oscillator | | 7DK | 5-1 | 6.3 | 0.2 | 2.2 🏶 | 150 ◈ | | 3.9 | 1.5 | 1.6 | | 6DX8 | Triode-Pentode | | 9HX | 6-3 | 6.3 | 0.72 | 4.0
1.0 | 300
300 | 300
1.7 | 1 | e Section | | | 6DY4 | UHF Triode
Oscillator | | 7DK | 5-2 |
6.3 | 0.125 | 1.5 ♦ | 135 ◈ | = | 3.5 | Section
1.15 | 2.0 | | 6DY4-A | UHF Triode
Oscillator | | 7DK | 5-1 | 6.3 | 0.125 | 1.5♦ | 135 ◈ | | 3.5 | 1.15 | 2.0 | | 6DY7 | Twin Pentode | | 8JP | 12-14 | 6.3 | 1.2 | 15 � ♠ | 400 ◈ | 300 ♦
4.0 ♦
⊕ | | ections,
-Pull | İ — | | 6DZ4 | UHF Triode
Oscillator | | 7DK | 5–1 | 6.3 | 0.225 | 2.3 🆠 | 135 ◈ | | 2.2 | 1.3 | 1.8 | | 6DZ7 | Twin Pentode | | 8JP | 12-14 | 6.3 | 1.52 | 13.2 ❖ | 440 ◈ | 300 ♦
4.0 ♦
⊕ | Two Se
Push | ections,
-Pull | | | 6DZ8 | Triode-Pentode | | 9JE | T-X | 6.3 | 0.9 | 6.5 | 150 | 135 | Pentod | e Section | on | | | | | | | | | 0.75 | 150 | 1.5 | Triode | Section | 1 | | 6E5 | Electron-Ray
Indicator | | 6R | 9-26 | 6.3 | 0.3 | | 250\$ | | rget vo | | | | 6E6 | Twin-Triode
Power
Amplifier | | 7B | 14-1 | 6.3 | 0.6 | | 250 | | Both S
Push-p | Sections
ull | in | | 6E7 | Remote-Cutoff
RF Pentode | | 7H | 12-2 | 6.3 | 0.3 | | 300 | 100 | 5.2 ▲ | 6.8 ▲ | 0.01 | | 6EA4 | Beam Triode | (A) | 12FA | 12-90 | 6.3 | 0.2 | 30 ◈ | 27,000
** | | 1.9▲ | 0.63 ▲ | 0.036 | | 6EA5 | Sharp-Cutoff
RF Tetrode | <u> </u> | 7EW | 5–2 | 6.3 | 0.2 | 3.25 ◈ | 250 🏶 | 150 ♦
0.5 ♦ | 4.5 | 3.0 | 0.05 4 | | 6EA7 | Double Triode | | 8BD | 9–5 | 6.3 | 1.05 | 1.0 ③ | 350 ⊕
550 ⊕ | _ | Section
5, 6)
Section
2, 3) | - | Pins 4 | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A - X-Radiation Rated, and A - No X-Radiation Rating. Compactron. Zero signal. Per section. † Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. ⊕Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|-------------------|---------------------|--------------------------------|--|----------------------------------|-----------------------------|---------------------------|-----------------|--|--------------------------------|--------------| | Class A | 150 | 100 | Rk= | 1.1 | 2.1 | 150,000 | 800 | Ec2 = 0 | | | 6DT6 | | Amplifier
FM Limiter
Discrimina-
tor | 250\$ | 100 | 560
R _k =
560 | 0.22 | 5.5 | $E_{c3} = -6.0$ | volts | .— | 270,-
000 | - | | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.55 | 1.8 | 150,000 | 1,350 | Ee3 = | 0 volts | 1-1 | 6DT6- | | Class A
Amplifier • | 250 | | R _k = 200 | 10 | | 10,900 | 5,500 | 60 | | | 6DT8 | | · · · · · · · · · · · · · · · · · · · | 100 | | R _k = 270 | 3.7 | | 15,000 | 4,000 | 60 | - | - | | | Class A
Amplifier | 75 | _ | R _k = 100 | 10.5 | _ | 3,100 | 11,500 | 35 | = | | 6DV4 | | TV Damper | Max d
max p | c outpueak curr | t curre
ent -= | $ \begin{array}{c} \text{nt} \circledast = 2 \\ \text{= 1,300 n} \end{array} $ | 50 ma; | max peak i | nverse v | roltage (| | 0 volts; | 6DW4 | | TV
Damper | Max o | l-c outp
nax pea | ut curre | rent 🏶 =
nt 🗞 = 1 | =250 m
,300 m | a; max pe | ak inv | erse vo | oltage 🏶 | =5,500 | 6DW4- | | TV Damper | Max d-
max pe | c outpu | t currer
ent 🔷 = | nt 🏶 = 2
1,300 n | 50 ma; 1
na | max peak ir | iverse v | oltage 《 | » = 5,500 | volts; | 6DW4 | | Vertical | 200 | 150 | 22.5 | 55
260 | 2.0 | 15,000 | 5,500 | - | — | | 6DW5 | | Amplifier | Max p | 150
ositive p | | | | 2,200; max | d-c cath | i —
lode cur | rent 🏶 : | =65 ma | | | Class A
Amplifier | 85 | - | R _k = | 10 | _ | 2,700 | 11,000 | 30 | - | | 6DX4 | | Class A
Amplifier | 220 | 220 | 3.4 | 18 | 3.0 | 150,000 | 10,000 | | | | 6DX8 | | Class A Amp
Class A | 200 | | $\frac{1.7}{R_k} =$ | $\frac{3.0}{10.4}$ | | | 4,000
11,000 | 65
28 | | -=- - | CDVI | | Amplifier | | | 180 | Ì | | | <u> </u> | | | | 6DY4 | | Class A
Amplifier | 90 | | R _k = 180 | 10.4 | _ | - | 11,000 | 28 | _ | _ | 6DY4- | | Character-
istics •
Class AB; | 250 | 250 | 12.5 | 50 | 3.0 | 28,000 | 6,000 | _ | | | 6DY7 | | Class AB ₁
Amplifier | 400 | 250 | 20 | 58† | 1.7† | _ | | - | 14,000 | 20 | | | Class A | 250 | 250 | 16 | 77† | 3.5+ | | | | 9,000‡ | 11 | | | Amplifier | With | 2,700 ol | | stor in 1 | | | 6,700 | 14 | ı — | | 6DZ4 | | Character-
istics •
Class AB: | 250 | 250 | 7.3 | 48 | 5.5 | 38,000 | 11,300 | | | | 6DZ7 | | Class AB ₁
Amplifier | 400
300 | 250
250 | 11
R _k =
120 | 40†
66† | 4.0†
7.0† | _ | = | = | 9,000‡ | 18
12 | | | Class A
Amplifier | 145 | 120 | R _k = 180 | 45† | 6.0† | | 7,500 | | 2,500 | 2.0 | 6DZ8 | | Class A
Amplifier | 120 | - | $R_k = 1500$ | 0.8 | _ | _ | 1,400 | 100 | | | | | Tuning
Indicator | Plate
(Ec = | voltage
0 v, Sha | =250 tl | nru 1 me
90°, Pla | g, Targ
te curre | et voltage =
ent =0.24 m | =250 (E.
na, Targ | e = -8 v | , Shado
ent = 4 r | w = 0°) | 6E5 | | Class A
Amplifier | 250 | _ | 27.5 | 18† ♠ | - | 3,500
♠ | 1,700 | | 14,000 | | 6E6 | | Class A
Amplifier | 250 | 100 | 3.0 | 8.2 | 2.0 | 800,000 | 1,600 | | | | 6E7 | | HV Shunt
Regulator | Unregu
1,6 ma. | lated d- | c suppl | y volta | ge = 36 | 6,000 volts: | max d | -c plate | curren | t 🐐 = | 6EA4 | | Class A
Amplifier | 250 | 140 | 1.0 | 10 | 0.95 | 150,000 | 8,000 | _ | | | 6EA5 | | Vertical
Oscillator | 250
Max 1 | eak ne | 3.0
gative g | 2.0
rid volt | age 🏶 = | 30,000
400 volts | 2,200 | 66 | | | 6EA7 | | Vertical
Amplifier | 60
175
Max | = | $\frac{0}{25}$ | 100
40 | _ | 920
=1,500 vol | 6,000
ts; max | 5.5
d-c ca | thode c | urrent | | | Tube | Classification
by | X-Řa- | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Piate | Max.
Screen | Car
P | acitanco
icofarad | e in | |---------------|----------------------------|--------------------|---------------|--------------------|---------------|---------------|------------------------------|------------------------------|---------------------------------|--------------------|----------------------|----------------| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6EA8¶ | Triode-Pentode | | 9AE | 6–2 | 6.3 | 0.45 | 3.1 ♦
2.5 ♦ | 330 ♦
330 ♦ | | Į. | e Section | | | 6EB5 | Twin Diode | | 6BT | 5–2 | 6.3 | 0.3 | | | Tube V | ol tage | Drop: 4 | | | 6EB8 | Triode-Pentode | | 9DX | 6-3 | 6.3 | 0.75 | 5.0 ◈ | 330 ◈ | 330 ♦\$ | s at 11
 Pentod | ma a-c
e Sectio | n | | | | | | | | | 1.0 ◈ | 330 ◈ | 1.1 | Triode | Section | | | BEF4 ■ | Beam Triode | (A) | 12HC | 12-90 | 6.3 | 0.2 | 40 ◈ | 27,000
• | _ | 2.0▲ | 0.8▲ | 0.03 | | 6EF6 | Beam Power
Amplifier | | 7S | 9–13
or
9–42 | 6.3 | 0.9 | 10 | 250 | 250
2.0 | 11.5 ▲ | 9.0▲ | 0.8 ▲ | | 6EH4 ■
● | Beam Triode | 0.5
mR/hr | 12FA | 12-90 | 6.3 | 0.2 | 30 ◈ | 27,000
• | _ | 1.9▲ | 0.63 ▲ | 0.036 | | EH4-A ■ | Beam Triode | 0,5
mR/hr | 12FA | 12135 | 6.3 | 0.2 | 40 🖲 | 27,000 | _ | 1.9▲ | 0.63 ▲ | 0.036 | | 6EH5 | Power Amplifier
Pentode | | 7CV | 5–3 | 6.3 | 1.2 | 5.5 ◈ | 150 🏶 | 130 ♦
2.0 ♦ | 17 ▲ | 9.0 ▲ | 0.65 ▲ | | 6EH7 | Remote-Cutoff
Pentode | | 9AQ | T-X | 6.3 | 0.3 | 2,5 | 250 | 250
0.65 | 9.5 | 3.0 | 0.005 | | <i>6EH8</i> ¶ | Triode-Pentode | | 9JG | 6-2 | 6.3 | 0.45 | 2.8 ③ 2.5 ④ | 300 ◈ | 300 ♦\$
0.5 ♦ | | E Section | | | SEJ4 ■ | Beam Triode | 0.5
mR/hr | 12HC | 12-90 | 6.3 | 0.2 | 40 ◈ | 27,000
• | _ | 2.0 ▲ | 0.8 🛦 | 0.03 | | 6EJ4-A ■ | Beam Triode | 0.5
mR/hr
▲ | t2HC | 12-135 | 6.3 | 0.2 | 40 € | 27,000
• | - | 2.0 ▲ | 0.8▲ | 0.03 | | 6EJ7 | Sharp-Cutoff
Pentode | | 9AQ | T-X | 6.3 | 0.3 | 2.5 | 250 | 250
0.9 | 10 | 3.0 | 0.005 | | SEL4 | Beam Triode | 1.5
mR/hr | 8MW | 12-36 | 6.3 | 0.2 | 40 ● | 27,000
● | | 2.6 ▲ | 1.0▲ | 1.0 ▲ | | BEL4-A | Beam Triode | 0.5
mR/hr | 8MW | 12-21 | 6.3 | 0.2 | 40 ● | 27,000 | - | 2.6 ▲ | 1.0▲ | 1.0 ▲ | | 6EM5 | Beam Power
Amplifier | | 9HN | 6-4 | 6.3 | 0.8 | 10 | 315 | 285
1.5 | 10▲ | 5.1 ▲ | 0.7 | | 6EM7 | Double Triode | | 8BD | 9-37 | 6.3 | 0.925 | 1.5 ◈ | 330 ◈ | _ | 6) | 1 (Pin | | | | | | | | | | 10 ◈ | 330 ◈ | | Section
3) | 2 (Pin | s 1, 2, | | EN4
● | Beam Triode | 0.5
mR/hr | 8NJ | 12-21 | 6.3 | 0.2 | 40 ◈ | 30,000 | _ | 2.6 ▲ | 1.0 ▲ | 1.0 ▲ | | 6EQ7 | Diode-Pentode | | 9LQ | 6~3 | 6.3 | 0.3 | 3.0 🏶 | 300 🏶 | 300 ♦ \$
0.6 ♦ | 5.5 ▲ | 5,0 ▲ | 0.002 | | 6ER5 | High-Frequency
Triode | | 7FP | 5–2 | 6.3 | 0.18 | 2.2 | 250 | | 4.4 | 4.0 | 0.36 | | 6ES5 | High-Frequency
Triode | | 7FP | 5-2 | 6.3 | 0.2 | 2.2 🏶 | 250 ◈ | | 3.2 | 4.0 | 0.5 | | 6ES8 | Twin Triode | | 9DE | 6-2 | 6.3 | 0.365 | 1.8♠ | 130 | _ | | | | | 6ET7 | Duplex-Diode
Pentode | | 9LT | 6-3 | 6.3 | 0.75 | 5.0 ◈ | 330 ◈ | 330 § \$ | | 4.2 ▲ | 0.1 | | | 20 and 21 for Y-V | 1
Va. 4 1 - 4 1 | | 1 | 1 | <u> </u> | 1 | ! | 1 | | Section | 15 | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions ^{▲ -}X-Radiation Rated, and ▲ - No X-Radiation Rating. [■]Compactron. † Zero signal. † Plate-to-plate. ●Subminiature type. ⊕Total for all similar sections. ◆Per section. ◆Maximum. ◆Without external shield. ●Absolute maximum rating. ◆See X-Radiation Warning, page 4. \$ Supply voltage. ◆Design maximum rating. # Conversion transconductance. | | | | - | | | | | | | | | |--
--------------------|-----------------------------|-------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|------------------------------|--|--------------------------------|--------------| | Service | Plate
Voits | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Class A
Amplifier
Class A
Amplifier | 125
150 | 125 | $R_k = 56$ | 12
18 | 4.0 | 200,000
5,000 | 6,400
8,500 | 40 | _ | _ | 6EA8¶ | | Voltage
Doubler | Max o | i-c outp | ut curre | ent per | plate 🏶 | =5.5 ma; n
te •> =40 m | nax peal | k inver | se volta | ge (= | 6EB5 | | Class A
Amplifier
Class A | 200 | 125 | R _k = 68 2.0 | 25
2.0 | 7.0 | | 12,500 | 100 | - | - | 6EB8 | | Amplifier
HV Shunt | | | | L | | | 2,700 | L | | | CEU4 | | Regulator | 1.6 ma. | | | | | 6,000 volts | | i-c plat | e currei | nt • = | 6EF4 ■ | | Vertical
Amplifier | 250
75 | 250
250 | 18
0 | 50
170 | 2.0 | | 5,000 |
 | _ | 60 mg | 6EF6 | | HV Shunt
Regulator | | lated d- | | | | 6,000 volts | | | | | 6EH4 ■
● | | HV Shunt
Regulator | Unregu
1.5 ma. | | c suppl | y volta | ge = 30 | 6,000 volts | ; max o | l-c plat | e currei | nt 🖲 = | 6EH4-A ■ | | Class A
Amplifier | 110 | 115 | R _k = 62 | 42† | 11.5† | 11,000 | 14,600 | _ | 8,000 | 1.4 | 6EH5 | | Class A
Amplifier | 200 | 90 | 2.0 | 12 | 4.5 | 500,000 | 12,500 | | _ | | 6EH7 | | Class A Amplifier { Class A Amplifier { | 125
100
125 | 125
70
— | 1.0
0
1.0 | 12
13.5 | 4.0 | 170,000 | 6,000
6,500
7,500 | <u>-</u> | | | 6EH8¶ | | HV Shunt
Regulator | Unregu
1.6 ma. | | c suppl | y volta | ge = 30 | 6,000 volts | ; max c | i-c plat | e currei | nt 🔖 = | 6EJ4 ■ | | HV Shunt
Regulator | Unregu
1.5 ma. | | c suppl | y volta | ge = 30 | 6,000 volts | ; max d | i-c plat | e currei | nt 🖲 = | 6EJ4-A ■ | | Class A
Amplifier | 200 | 200 | 2.5 | 10 | 4.1 | 350,000 | 15,000 | _ | - | [| 6EJ7 | | HV Shunt
Regulator | Unregu
1.6 ma. | | c supp | ly volta | ge = 30 | 6,000 volts | ; max c | i-c plat | e curre | nt ● ≖ | 6El.4 | | HV Shunt
Regulator | Unregu
1.5 ma. | | c suppl | y volta | ge = 30 | 6,000 volts | ; max o | i-c plat | e curre | nt 🖲 = | 6EL4-A | | Vertical
Amplifier | 250
60
Max p | 250
 250
 ositive n | 18
 0
 ulse pl | 40
 180
ate volt | 3.0
30
age 🖲 = | 50,000
2,200; max | 5,100
d-c cat | hode c | rrent = |
=60 ma | 6EM5 | | Vertical
Oscillator | 250
Max o | l-c catho | 3.0 | 1.4 | | 40,000 | | 64 | | T — | 6EM7 | | Vertical
Amplifier | Max | positive
0 ma | pulse | plate vo | ltage 🖲 | =1,500 vo | lts, max | d-c ca | thode c | urrent | | | HV Shunt
Regulator | Unregu
1,6 ma | ılated d. | -c supp | ly volta | ige = 3 | 6,000 volts | s; max (| d-c plat | e curre | nt 🖲 = | 6EN4 | | Class A
Amplifier | 100 | 100 | E _{ce1} = | 9.0 | 3.5 | 250,000 | 3,800 | $R_{g1} = 2$
$E_{e3} = 0$ | 2.2 Meg | 1 _ | 6EQ7 | | Class A
Amplifier | 200 | | 1.2 | 10 | _ | | 10,500 | 80 | _ | | 6ER5 | | Class A
Amplifier | 200 | | 1.0 | 10 | | 8,000 | 9,000 | 75 | | | 6ES5 | | Class A
Amplifier • | 90 | | 1.2 | 15 | | | 12,500 | - | _ | | 6ES8 | | Class A
Amplifier | 200
60 | 150 | R _k = 100 | 25
55 | 5.5 | 60,000 | 11,500 | _ | | | 6ET7 | | | | | | | | =1.5 ma | | . – | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |--------------------------------|---------------------------------|---------------|--------------------------------|---------------|---------------|---------------------------|--------------|----------------------------------|------------------|--|------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6EU7 | High-Mu
Twin Triode | 9LS | 6–2 | 6.3 | 0.3 | 1.2 🏶 | 330 ◈ | | 1.6 ▲ | 0.2 🛦 | 1.5 ▲ | | 6EU8¶ | Triode-Pentode | 9JF | 6–2 | 6.3 | 0.45 | 3.1 🆠 | 330 ◈ | 330 ♦ 8
0.55 ♦ | Pento | de Secti | ion | | | | ! | | | | 3.0 ◈ | 330 ◈ | 0.55 | Triode | e Sectio | n | | 6EV5 | Sharp-Cutoff
RF Tetrode | 7EW | 5-2 | 6.3 | 0.2 | 3.25 ◈ | 275 🌢 | 180 ♦ \$
0.2 ♦ | 4.5 | 2.9 | 0.035 | | 6EV7 | High-Mu
Twin Triode | 9LP | 6-3 | 6.3 | 0.6 | 2.5 🆠 | 300 ◈ | | 3.0 ▲ | 0.33 ₁ ▲ 0.23 ₂ ▲ | 3.4 ▲ | | 6EW6 | Sharp-Cutoff
RF Pentode | 7CM | 5–2 | 6.3 | 0.4 | 3.1 🆠 | 330 🏶 | 330 ♦ \$
0.65 ♦ | 10 | 3.4 | 0.03 | | 6EW7 | Double Triode | 9HF | 9-70 | 6.3 | 0.9 | 1.5 ◈ | 330 ◈ | | Sectio
7, 8) | n 1 (P | ins 6, | | | | | | | | 10 ◈ | 330 ◈ | | Section 2, 3, 9 | n 2 (P | ins 1, | | 6EX6 | Beam-Power Amplifier | 5BT | 12-21 | 6.3 | 2.25 | 22 🆠 | 770 ◈\$ | 195 ♦
3.5 ♦ | 22 ▲ | 8.5 ▲ | 1.1 🛦 | | 6EY6 | Beam-Pentode | 7AC | 9–15 | 6.3 | 0.68 | 11 🔷 | 350 ◈ | 300 ♦
2.75 ♦ | 8.5 ▲ | 7.0 ▲ | 0.7 ▲ | | 6EZ5 | Beam-Pentode | 7AC | 9-15 | 6.3 | 0.8 | 12 🏶 | 350 ◈ | 300 ♦
2.75 ♦ | 9.0▲ | 7.0 ▲ | 0.6 ▲ | | 6EZ8 | Triple-Triode | 9KA | 6-2 | 6.3 | 0.45 | 2.0 ♦ 5.0 ♦ | 330 🏶 | | 2.6 | 1.4 ₁
1.2 ₂
1.2 ₃ | 1.5 | | 6F4 | High-Frequency Triode (Acorn) | 7BR | 4-2 | 6.3 | 0.225 | 2.0 | 150 | = | 1.9 ▲ | 0.6 ▲ | 1.8▲ | | 6 F5
6F5-G
6F5-GT | High-Mu
Triode | 5M | 8-4
12-8
9-17
or 9-47 | 6.3 | 0.3 | | 300 | | | _ | _ | | 6 F6
6F6-G
6F6-GT | Power Amplifier Pentode | 78 | 8-6
14-3
9-15 | 6.3 | 0.7 | 11 | 375 | 285
3.75 | Single
2 Tube | Tube
es, Push | -pull | | 6F7 | Triode-Remote-Cutoff
Pentode | 7E | 12-6 | 6.3 | 0.3 | 1.7
0.4 | 250
100 | 0.2 | | le section | | | 6F8-G | Medium-Mu
Twin Triode | 8G | 12-8 | 6.3 | 0.6 | 2.5♠ | 300 | - | | 1 - | Γ | | 6FA7 | Diode Twin-
Plate Tetrode | 9MR | 6-3 | 6.3 | 0.3 | 1.5 ◈ | 330 ◈ | 330 ♦ 8 | | | | | 6FD6 | RF Pentode | 7B K | 5-2 | 6.3 | 0.33 | _ | 30 ◈ | 30 � | 5.5 | 4.8 | 0.006 | | 6FD7 | Double Triode | 9HF | 9-77 | 6.3 | 0.925 | 1.5 🏶 | 330 ◈ | | Section 7, 8) | on 1 (I | Pins 6, | | | | | | | | 10.0 🏶 | 330 🏶 | - | Section 2, 3, 9 | on 2 (I
9) | | | 6FE5 | Beam-Power Amplifier | 8KB | 9-33 | 6.3 | 1.2 | 14.5 ◈ | 175 € | 175 ③ 2.4 ④ | 15 ▲
Single | 9.0 ▲
Tube
bes, Pus | 0.44 | | 6FG8 | "Shadow-Grid"
Beam Pentode | 7GA | 5-2 | 6.3 | 0.2 | 2.75 € | 275 🏶 | 275 �
0.15 � | 4.2 ▲ | 2.8 ▲ | 0.02 | | 6FG6 | Electron-Ray
Indicator | 9GA | T-X | 6.3 | 0.27 | 0.5 | - | - | Min | Target
) volts
Target
) volts | Voltag
Voltag | | 6FG7¶ | Triode-Pentode | 9GF | 6-2 | 6.3 | 0.45 | 3.0 ♦ | 330 ♦ | 0.55 | Pento | le Section | | | 6FH5 | High-Prequency Triode | 7FP | 5-2 | 6.3 | 0.2 | 2.2 🏟 | 150 € | | 3.2 | 1 4.0 | 10.52 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|-----------------------------------|---|---|---|-------------------------------------|-----------------------------|----------------------------------|-----------------------------|--|--------------------------------|--------------------------------| | Class A
Amplifier | 250
100 | | 2.0
1.0 | 1.2
0.5 | | 62,500
80,000 | 1,600
1,250 | 100
100 | _= | | 6EU7 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 80,000 | 6,400 | | _ | | 6EU8¶ | | Class A
Amplifier | 150 | | R _k = 56 | 18 | | 5,000 | 8,500 | 40 | | | | | Class A
Amplifier | 250 | 80 | 1.0 | 11.5 | 0.9 | 150,000 | 8,800 | | | | 6EV5 | | Relay
Control
Class A | 250
125 | 125 | 2.0 | 9.2 | 3.2 | 11,500 | 5,200 | 60 | | | 6EV7 | | Amplifier
Vertical | 250 | 123 | R _k = 56 | 5.5 | 3.2 | | 2,000 | 17.5 | | | 6EW7 | | Oscillator Vertical Amplifier | 150
Max p | ositive p | le curre
17.5 | $1t \stackrel{\textcircled{•}}{=} 2$ | 2 ma
 —
tage � = | • | 7.500 | 6.0 | | rrent | | | Horizontal
Amplifier | 175
60
60
Max po | 175
 150
 125
 sitive p | | 67
460
360
te volta | 3.3
45
30
ge 🗐 = 7 | 8,500
—
.000; max o | 7,700 | de curr | ent 🏶 = | 220 ma | 6EX6 | | Vertical
Amplifier | 250
50
Max pe | 250
 250
 sitive p | 17.5
0
ulse pla | 44
153
te volta | 3.0
21
age ♦ =: | 60,000
2,500; max | 4,400
d-c cath | = | ΙΞ | = 60 ma | 6EY6 | | Vertical
Amplifier | 250
60
Max pe | 250
250
sitive p | 20
 0
oulse pla | 43
 180
 te volta | 3.5
26
age ♦ = | 50,000
 | 4,100
 —
d-c cath | ode cur | rent 🏵 | =75 ma | 6EZ5 | | Class A
Amplifier
 125 | | 1.0 | 4.2 | | 13,600 | 4,200 | 57 | - | | 6EZ8 | | Class A
Amplifier | 80 | | R _k = 105 | 13 | | 2,900 | 5.800 | 17 | | | 6F4 | | Class A
Amplifier | 250
100 | | 2.0
1.0 | 0.9
0.4 | | 66,000
85,000 | 1,500
1,150 | 100
100 | = | | 6 F5
6F5-G
6F5-GT | | Class A
Amplifier {
Class A
Amplifier | 285
250
315 | 285
250
285 | 20
16.5
24 | 38†
34†
62† | 7.0†
6.5†
12† | 78,000
80,000
— | 2,550
2,500 | | 7,000
7,000
10,000
‡ | 4.8
3.2
11 | 6 F6
6F6-G
6F6-GT | | Class A
Amplifier
Class A
Amplifier | 250
100 | 100 | 3.0 | 6.5
3.5 | 1.5 | 850,000
16,000 | 1,100
500 | 8.0 | | | 6F7 | | Class A
Amplifier • | 250 | | 8.0 | 9.0 | | 7,700 | 2,600 | 20 | | | 6F8-G | | Class A
Amplifier | For on | 100 | E _{ccl} = | 2.2 | 3.0
e ground | 130,000 | 1,900 | R _{g1} =
Meg | 2.2 | - | 6FA7 | | Class A
Amplifier | 12.6 | 12.6 | E _{cci} = | 1.4 | 0.5 | 500,000 | 1,450 | Rgi = | 2.2 | T=- | 6FD6 | | Vertical
Oscillator
Vertical
Amplifier | 150 | c catho | 17.5 | 1 40 | 0 ma | 40,000
800
1,500; max | 7,500 | 6.0 | —
 — | —
 —
= 50 ma | 6FD7 | | Class A
Amplifier | 130 | 130 | R _k = | 88† | 5.0† | 8,000 | 9,500 | l — | 1,000 | 3.5 | 6FE5 | | Class A
Amplifier | 130 | 130 | R _k = 75 | 150† | 7.2† | | _ | | 1,600‡ | 7.0 | | | Class A
Amplifier | 250 | 250 | 0.2 | 9.0 | 0.42 | 250,000 | 9,500 | | | | 6FG5 | | Tuning
Indicator | Plate
length
ma) (
1.6 m | voltage
1. dark
E _c = -2
a; Plate | =250 t
portion
22 volts
curren | hru 0.4
=0.8";
; Patte
t =0.06 | 7 Meg;
Target
rn lengt
ma) | Target vo | oltage =:
1.1 ma;
rtion =0 | 250; (E
Plate
.0"; Ta | c=0; F
current
rget cur | Pattern
= 0.45
rent = | 6FG6 | | Class A
Amplifier {
Class A
Amplifier | 125
100
125 | 125
100 | 1.0
0
1.0 | 11 13 | 4.0 | 180,000
5,700 | 6,000
7,400
7,500 | 43 | = | | 6FG7¶ | | Class A
Amplifier | 135 | - | 1.0 | 11 | | 5,600 | 9,000 | 50 | - | | 6FH5 | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Voits | | acitanc
icofarac | | |---------------|-------------------------------|---------------|-------|---------------|---------------|--|---|---------------------------------|------------------------------|--------------------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6FH6 | Beam Power Amplifier | 6AM | 12–19 | 6.3 | 1.2 | 17 🏶 | 770 ◈\$ | 220 ♦
3.6 ♦ | 33 ▲ | 8.0 ▲ | 0.4 🛦 | | 6F H 8 | Triode-Three Plate
Tetrode | 9KP | 6-2 | 6,3 | 0.45 | 2.3 (Main Plate) 0.3 (Other Plates) 1.7 (Plates) | 275 (Main Plate) 200 (Other Plates) 275 (| 275 ◆\$
0.45 ◆ | (Plate
catho | de Secti
es 2, 3 (
de) | tied to | | 6FJ7 | Double Triode | 12BM | 9-58 | 6.3 | 0.9 | 1.0 ③
10 ⑤ | 350 ♦
550 ♦ | | 10, 11 | n 1 (F
)
n 2 (F | | | 6FM7 | Dissimilar Double | 12EJ | 9-58 | 6.3 | 1.05 | 1.0 | 350 ◈ | | | n 1 (Pi | ns 9, | | | Triode | | | | | 10 🏶 | 550 ◈ | | 10, 11
Section
5, 7, 8 | n 2 (Pi | ns 3, | | 6FM8 | Duplex-Diode Triode | 9KR | 6-2 | 6.3 | 0.45 | 1.1 🏽 | 330 ◈ | | 1.5 ▲
Diode | 0.16 ▲
Section | 1.8 A | | 6FQ5 | High-Frequency Triode | 7FP | 5–2 | 6.3 | 0.18 | 2.5 🆠 | 200 ◈ | | 4.8 | 4.0 | 0.4 | | 6FQ5-A | High-Frequency Triode | 7FP | 5–2 | 6.3 | 0.18 | 2.5♦ | 200 🏶 | = | 5.0 | 3.5 | 0.52 | | 6FQ7¶ | Medium-Mu
Twin Triode | 9LP | 6-3 | 6.3 | 0.6 | 4.0 ♦ 5.7 ♦ | 330 ◈ | | 2.4 ▲ | 0.341 ▲
0.26 ₂ ▲ | 1 | | 6FR7 | Double-Triode | 9HF | 9-70 | 6.3 | 0.925 | | 330 ◈ | | 7, 8)
Section | n 1 (I
n 2 (I | | | 6FS5 | "Shadow Grid"
Beam Pentode | 7GA | 5-2 | 6.3 | 0.2 | 3.25 ◈ | 300 ◈ | 150 (a) 0.15 (b) | 2, 3, 9
4.8 | 2.8 | 0.016 | | 6FV6 | Sharp-Cutoff
RF Tetrode | 7FQ | 5–2 | 6.3 | 0.2 | 2.0 🏶 | 275 🏶 | 180 \$ | | 3.0 | 0.03 | | BFV8¶ | Triode-Pentode | 9FA | 6-2 | 6.3 | 0.45 | 2.3 🏶 | 330 🏶 | | Pento | de Sect | ion | | | | | | | | 2.0 🏶 | 330 ◈ | - | Triod | e Sectio | on | | 6FV8-A¶ | Triode-Pentode | 9FA | 6–2 | 6.3 | 0.45 | 2.3 🏶 | 330 � | 330 ♦ \$ | Pento | de Sect | ion | | | | | | | | 2.0 🏶 | 330 ◈ | - | Triod | e Sectio | on | | 6FW5 | Beam-Power Amplifier | 6CK | 12-14 | 6.3 | 1.2 | 18 🏶 | 770 ◈1 | 220 ♦
3.6 ♦ | 17▲ | 7.0▲ | 0.5 | | 6FW7 ● | Double Triode | 8LM | T-X | 6.3 | 0.3 | _ | 150 ♦ | | 7, 8)
Section | 1 2 (Pir | | | 6FW8 | High-Frequency Twin Triode | 9AJ | 6-2 | 6.3 | 0.4 | 2.2 🆠 | 250 ◈ | 1 | $\frac{2, 3}{3.4_1}$ | 2.41 | 1.9 | | 6FX7 ● | Twin Triode | 8LK | T-X | 6.3 | 0.3 | 1.7 ♦ | 100 ◈ | = | _ | - | | | | 1 | | | <u>l</u> | <u> </u> | Total | | <u> </u> | 1 | | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|------------------------|------------------------|-----------------------|--|----------------------------------|----------------------------|---|-----------------|--|--------------------------------|---------------| | Horizontal
Amplifier | 250
60
Max po | 150
150
sitive p | 22.5
0
ulse pla | 75
300
te volta | 1.7
15
ge � = 6 | 12,000
,000; max o | 6,000
 | de curr | ent 🏶 = | 155 ma | 6FH6 | | Class A
Amplifier | 100 | 50 | 1.0 | 1.6
(Main
Plate)
0.04 4
(Other
Plates) | 0.3 | - | 2,500
(Main
Plate)
70 •
(Other
Plates) | - - | | _ | 6FH8 | | Class A
Amplifier | 100 | | 1.0 | 7.9 | | 7,400 | 5,400 | 40 | | | | | Vertical
Oscillator
Vertical | 250 | ak nega | 9.5 | 41 | ge ♦ = 4 | 9,000
00 volts
2,000 | 2,500
7,700 | 22.5
15.4 | —
 — | - | 6FJ7 ■ | | Amplifier | 150
Max po | sitive p | 0
ulse pla | 68
te volta |
ge � ≕ |
2,500; max | d-c cath | ode cur | rent 🏵 | =50 ma | | | Vertical
Oscillator | 250
Max 2 | l — i | 3.0 | 2.0 | go 🙈 = | 30,000
100 volts | 2,200 | 66 | _ | | 6FM7 ■ | | Vertical Amplifier | 175 ⁻
60 | = | 25 | 40
95 | _ | 920 | 6,000 | 5.5 | = | _ | | | Class A
Amplifier
FM Detector | 250 | _ | 3.0 | 1.0 | - | 1,500; max
58,000 | 1,200 | 70 | _ | - | 6FM8 | | Class A | Max d-
135 | c outpu | t curren | t ♦ • = | 5.0 ma; | voltage dr
5,500 | op: \$ 5.
 11,000 | | at 20 ma | a d-c | 6FQ5 | | Amplifier
Class A | 135 | | 1.2 | 8.9 | | 6,300 | 12,000 | 74 | <u> </u> | | 6FQ5-A | | Amplifier
Class A
Amplifier • | 250 | | 8.0 | 9.0 | | 7,700 | 2,600 | 20 | | - | 6FQ7¶ | | Vertical | 90 | | 3.0 | 10 | | 6,700 | 3,000 | <u>20</u>
68 | | | 6FR7 | | Oscillator
Vertical
Amplifier | Max pe
150 | 1 - 1 | tive gri
20.0 | d voltar | | 00; max d- | c cathod | e currer | ı - | | 1340 | | Class A
Amplifier | 275 | 135 | 0.2 | 9.0 | 0.17 | 240,000 | | | - | - JO III - | 6FS5 | | Class A
Amplifier | 125 | 80 | 1.0 | 10 | 1.5 | 100,000 | 8,000 | | - | | 6FV6 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,500 | | | | 6FV8¶ | | Class A
Amplifier | 125 | _ | 1.0 | 14 | - | 5,000 | 8,000 | 40 | _ | - | | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,500 | | | | 6FV8-A¶ | | Class A
Amplifier | 125 | _ | 1.0 | 12 | | 5,600 | 8,000 | 45 | _ | | | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 65
345 | 1.8
27 | 18,000 | 7,300 | | = | | 6FW5 | | Class A | 90 Max po | sitive p | ulse pla | te volta | ge ⊚ = 0 | 500; max 6 | 6,000 | 36 | ent 🌑 = | = 1/0 ma | 6FW7 ● | | Amplifier
Class A
Amplifier | 90 | - | 1.0 | 9.0 | _ | 3,800 | 9,500 | 36 | _ | - | 01 . | | Class A
Amplifier • | 100 | | 1.2 | 15 | | 2,500 | 13,000 | 33 | | | 6FW8 | | Class A
Amplifier | 90 | - | 1.0 | 9.0 | | 3,800 | 9,500 | 36 | | | 6FX7 ● | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Ca
I | pacitan
Picofara | ce in
ds | |--------
--|---------------|--------------------|---------------|---------------|------------------------------|------------------------------|---------------------------------|----------------|-----------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6FY5 | High-Mu Triode | 7FP | 5-2 | 6.3 | 0.2 | 2.2 | 200 📵 | <u> </u> | 4.75 | 4.3 | 0.48 | | 6FY7 | Dissimilar Double
Triode | 12EO | 9-60 | 6.3 | 1.05 | 1.0 ◈
7.0 ◈ | 330 ◈
275 ◈ | _ | 10, 11 | on 1 (P
l)
on 2 (P | | | 6FY8 | Triode-Pentode | 9EX | 6-4 | 6.3 | 1.2 | 8.0 🌸 | 150. | 150 🏟 | | de Sec | lion | | 01 10 | Those Tomose | 02.1 | | 0.0 | 112 | 1.0 🏶 | 150 ◈ | 2.0 | | e Secti | | | 6G6-GT | Power Amplifier Pentode | 7S | 12-7
9-11
or | 6.3 | 0.15 | 2.75 | 300
300 | 300
0.75 | Triod | de con | ection | | 6G11 | Dissimilar Double
Pentode | 12BU | 9-41
9-58 | 6.3 | 1,2 | 6.5 🏶 | 150 🏶 | 1.8 | Section 9, 10, | P tied
on 1 (P
11) | ins 8, | | 6GA7■ | Diode-Pentode | 12EB | 12-58 | 6.3 | 2.26 | 1.7 ♦ | 7702 € | 330 \$ ♦ 1.1 ♦ 220 ♦ | 3, 4, | on 2 (P
6, 7)
ode Sec | | | oGA/ ■ | Liode-rentode | 1266 | 12-38 | 0.3 | 2.20 | 19. | 1108 | 3.6 € | | e Section | | | | | | | | | 5.0 ◈ | Tube | Voltage | Drop: | l-e | ·*• | | 6GB5 | Beam Power
Amplifier | 9NH | T-X | 6.3 | 1.38 | 17 ◈ | 275 🏶 | 275 ♦
6.0 ♦ | _ | T = | T = | | 6GC5 | Beam-Power Amplifier | 9EU | 9-71 | 6.3 | 1.2 | 12 🏶 | 220 🌢 | 140 ③
1.4 ③ | 18▲ | 7.0 | 0.9 | | 6GC6 | Beam Power Amplifier | 8JX | 12-51 | 6.3 | 1.2 | 17.5 ◈ | 770 ◈\$ | 220 ③
4.5 ⑤ | 15▲ | 7.0 ▲ | 0.55 | | 6GD7 | Triode-Pentode | 9GF | 6-2 | 6.3 | 0.38 | 2.2 ③ | 250 ③
125 ③ | 250 8 🏵 | | de Sec
le Secti | | | 6GE5■ | Beam Power Amplifier | 12BJ | 12-56 | 6.3 | 1.2 | 17.5 ♦ | 770 \$ ⊕ | 220 *
3.5 * | | | 0.34 | | 6GE8 | Triode-Pentode | 9LC | 6-3 | 6.3 | 0.9 | 1.0 🏶 | 330 ◈ | 275 ③ | Pento | de Sect | ion | | | Thousand the second sec | | | | | 7.0 ◈ | 275 🏶 | 0.5 | Triod | e Sectio | n | | 6GF5 | Beam Power Amplifier | 12BJ | 9-60 | 6.3 | 1.2 | 9.0 🏶 | 770\$ ◈ | 220 ③
2.5 ⑤ | 16▲ | 7.5 ▲ | 0.2 🛦 | | 6GF7 | Dissimilar Double
Triode | 9QD | T-X | 6.3 | 0.985 | 1.5 🏶 | 330 ◈ | = | Section 8, 9) | on 1 (P | ins 1. | | | | | | | | 11 🏶 | 330 ◈ | - | Section 3, 6) | on 2 (P | ins 2, | | 6GF7-A | Dissimilar Double
Triode | 9QD | 9-107 | 6.3 | 0.985 | 1.5 🏶 | 330 � | = | Section 8, 9) | on 1 (P | ins 1. | | | | | | | | 11 🏶 | 330 ◈ | _ | | on 2 (P | ins 2, | | 6GH8¶ | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.45 | 2.5 🏶 | 350 ◈ | 330 ♦ 8
0.55 ♦ | Pento | ode Sec | tion | | | | | 1 | 1 | 1 | 2.5 🏶 | 330 ◈ | | Triod | e Secti | on | Compactron. † Zero signal. • Per section. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|-----------------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|------------------|--|--------------------------------|--------------| | Class A
Amplifier | 135 | _ | 1.0 | 11 | - | | 13,000 | 70 | - | | 6F Y 5 | | Vertical
Oscillator | 250
Max d | c catho | 3.0
de curre | 1.4
ent � = | 20 ma | • | 1,600 | | 1 | | 6FY7 | | Vertical
Amplifier | 150
60 |
 | 17.5 | 35
95 | = | 920
2,000; max | 6,500 | 6.0 | = | | | | Class A | 125 | 125 | 13.5 | 50† | 10† | | 7,500 | — | 2,000 | | 6FY8 | | Amplifier
Class A
Amplifier | 125 | _ | 1.5 | 2.5 | - | | 2,000 | _ | _ | - | | | Class A
Amplifier | 180 | 180 | 9.0 | 15† | 2.5† | 175,000 | 2,300 | | 10,000 | 1.1 | 6G6-GT | | Class A
Amplifier | 180 | _ | 12 | 11† | - | 4,750 | 2,000 | 9.5 | 12,000 | 0.25 | 000-01 | | Class A | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | _ | 2,500 | 2.3 | 6G11 | | Amplifier
Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.0 | 150,000 | 1,000 | Ec3 = | 0 Volts | 1 | | | Horizontal | 250
60 | 150 | 22.5 | 75
345 | 2.4 | 20,000 | 6,600 | Ξ | | TEI | 6GA7 | | Amplifier (| Max po
Max d
max po | ositive p
-c outpu
eak curr | ulse pla
t currer
ent = | te volta
nt | ge ♦ = 6
40 ma; | i,500; max
max peak i | nverse v | oltage (| | 150 ma
00 volts; | | | Horizontal
Amplifier | 75
Max n | | 10
e plate | 440 | 37
= 7 700: | Max d-c | istantan | | | ıa. | 6GB5 | | Class A | 200 | 125 | R _k = | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | | 6GC5 | | Amplifier | 110 | 110 | 180
7.5 | 49† | 4.0† | 13.000 | 8.000 | _ | 2.000 | 2.1 | | | Horizontal | 250 | 150 | 22.5 | 75 | 2.4 | 20,000 | 6,600 | - | = | - | 6GC6 | | Amplifier | 60
Max p
(*) =17 | 150
ositive p
5 ma | 0
pulse pla | 345
ate volt | 30
age 🏶 : | =6,500 vol | ts; max | d-c cat | hode cu | rrent | | | Class A | 170 | 150 | R _k = | 10 | 3.3 | 350,000 | 12,000 | T | - | T | 6GD7 | | Amplifier
Class A Amp | 125 | _ | 82
1.0 | 15 | l — | 4,700 | 10,000 | 47 | - | | | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 65
345 | 1.8
27 | 18,000 | 7,300 | | | | 6GE5 | | Ampliner | | os, pulse | e plate v | | | 0; max d-c | cathod | e curren | ıt ♦ = 1 | 75 ma | | | Class A Amp | 150 | 150 | 2.0 | 5.5 | 1.7 | 340,000 | 3,200 | - | - | | 6GE8 | | Series
Regulator | 150 | | 21 | 35 | | 1,080 | 5,000 | 5.4 | | | | | Horizontal
Amplifier | 250
60 | 150
150 | 26.5 | .34
345 | 1.6 | 260,000 | 4,700 | = | | | 6GF5 | | Ampinei | | | | | | ,000; max | | | rent 🏶 = | =160 ma | | | Vertical
Oscillator | 250
Mar d | -c catho | 3.0 | 1.4 | 22 ma | 40,000 | 1,600 | 64 | I — | | 6GF7 | | Vertical | 150 | | 20 | 50 | 1 - | 750 | 7,200 | 5.4 | - | 1 - | | | Amplifier | Max p | ositive r | 0
pulse pla | 95
te volt | age � = | 1,500; max | d-c catl | i —
hode cu | rrent ◈ | =50 ma | | | Vertical
Oscillator | 250
Max d | -c catho | 3.0 | 1.4
ent 🏶 = | T | 40,000 | 1,600 | 64 | 1 — | T — | 6GF7-A | | Vertical
Amplifier | 150
60
Max 1
50 ma | oositive | 20
0
pulse | 50
 95
 plate v | oltage @ | 750 | <u> </u> | | - | ent 🏶 = | | | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | 1 - | 1 — | i — l | 6GH8¶ | | Amplifier | 125 | 1 | 1.0 | 13.5 | 1 | 5,400 | 8,500 | 46 | 1 | 1 1 | | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |--------------|---|---------------|-------|---------------|---------------|--------------|--------------|---------------------------------|------------------------|----------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6GH8-A¶ | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.45 | 2.5 🏶 | 350 ♦ | 330 | Pento | de Sect | ion | | | | | | | | 2.5 🏶 | 330 � | 0.55 🏶 | Triod | e Sectio | n | | 6GJ5 | Beam Power Amplifier | 9QK | T-X | 6.3 | 1.2 | 17.5 ◈ | 7708◆ | 220 ③
3.5 ⑤ | 15▲ | 6.5 ▲ | 0.26 ▲ | | 6GJ5-A | Beam Power Amplifier | 9QK | T-X | 6.3 | 1.2 | 17.5 🏶 | 770\$ 🏶 | 220 ♦
3.5 ♦ | 15 ▲ | 6.5 ▲ | 0.26 ▲ | | 6GJ7 | Triode-Pentode | 9QA | T-X | 6,3 | 0.41 | 2.4 🏶 | 275 🏶 | 275 🏶 | Pento | de Sect | ion | | | | | | | | 1.8 🏶 | 140 ◈ | 0.55 | Triod | e Sectio | n
 | 6GJ8¶ | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.6 | 2.5 🏶 | 330 ◈ | 330 \$
0.55 \$ | Pento | de Secti | on | | · | | | | | 0.10 | 2.5 | 330 ♦ | | | e Sectio | | | 6GK5
6GK6 | High-Frequency Triode
Beam-Power Amplifier | 7FP
9GK | 6-4 | 6.3 | 0.18 | 2.5 ♦ | 330 ◈ | 330 ◈ | 5.0
Single | 3.5
Tube | 0.52 | | OORO | Beam-1 over 1 impinior | | - | | | | | 2.0 | - | es, Pusi | n-Pull | | | | | | | | | | | 2 Tut | es, Pusi | h-Pull | | €GK7 | RF Pentode | 9AQ | T-X | 6.3 | 0.3 | 2.8 🏶 | 330 ◈ | 330 8 ♦ | 8.5 ▲ | 3.3 ▲ | 0.005 | | 6GL7 | Dissimilar Double | 8BD | 9-5 | 6.3 | 1.05 | 1.0 | 350� | _ | | n 1 (Pi | ns 4, | | | Triode | | | | | 10◆ | 550 ♦ | - | 5, 6)
Section 2, 3) | on 2 (Pi | ns 1, | | 6GM5 | Beam Power
Amplifier | 9MQ | 9-71 | 6.3 | 0.8 | 19 ◈ | 550 ◈ | 440 ♦
3.3 ♦ | 1 | Tube | n-Pull | | 6GM6 | Semi-Remote-Cutoff
Pentode | 7CM | 5-2 | 6.3 | 0.4 | 3.1 ◈ | 330 ◈ | 330 1 | 10.0 ▲ | 2.4 ▲ | 0.0364 | | 6GM8 | Twin Triode | 9DE | 6-2 | 6.3 | 0.33 | 0.6 | 30 | | 3.0▲ | | 1.3▲ | | 6GN8 | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.75 | 5.0 ③ | 330 ◈ | 330 ♦ 1
1.1 ♦ | 1 | de Sect
e Sectio | | | <i>6G</i> Q7 | Triple Diode | 9QM | 6-2 | 6.3 | 0.45 | - | Tube 10 vol | Voltage
ts at 60 | Drop:
ma d-c | + | year. | | 6GS8 | Twin Pentode | 9LW | 6-3 | 6.3 | 0.3 | 1.1 ◈ | 300 ♦ | 150 ♦
0.75 ♦ | · - | | - | | 6GT5 | Beam Power Amplifier | 9NZ | 12-64 | 6.3 | 1.2 | 17.5 | 770 🆠 | 220 ♦
3.5 ♦ | 15▲ | 6.5 ▲ | 0.26 ▲ | | 6GT5-A | Beam Power Amplifier | 9NZ | 12-95 | 6.3 | 1.2 | 17.5 🏶 | 7708 ⊛ | 220 ③
3.5 ③ | 15 ▲ | 6.5 ▲ | 0.26 🛦 | | Service | Plate
Volts | Screent
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------------------|---------------------|------------------------------|--------------------------------|---------------------------------|----------------------------------|---------------------------------------|---------------------------|-----------------|--|--------------------------------|--------------| | Class A
Amplifier
Class A | 125
125 | 125 | 1.0 | 12
13.5 | 4.0 | 200,000
5,400 | 7,500
8,500 | | <u> </u> | | 6GH8-A | | Amplifier | | | | | | | | 40 | | | | | Horizontal
Amplifier | 250
60
Max po | 150
150
sitive p | 22.5
0
ulse pla | 70
390
te volta | 2.1
32
ge ♦ =6 | 15,000
,500; max o | 7,100
L-c catho | de curr | ent 🏶 = | 175 ma | 6GJ5 | | Horizontal
Amplifier | 175 ma | | | 70
390
late vo | 2.1
32
ltage 🏶 | 15,000
 | 7,100
ax d-c |
cathode | curren | nt 🔷 = | 6GJ5-A | | Class A
Amplifier | 170 | 120 | 1.2 | 10 | 3.0 | 350,000 | 11,000 | _ | - | — I | 6GJ7 | | Class A
Amplifier | 100 | | 3.0 | 15 | | | 9,000 | 20 | | | | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.5 | 150,000 | 7,500 | | _ | | 6GJ8¶ | | Class A Amp | 125 | | $\frac{1.0}{1.0}$ | $\frac{13.5}{11.5}$ | | 5,000 | 8,500
15,000 | $\frac{40}{78}$ | | | 8GK5 | | Class A | 250 | 250 | 7.3 | 48† | 5.5† | 38,000 | 11,300 | | 5.200 | 5.7 | 6GK6 | | Amplifier (| 300 | 300 | R _k = | 72† | 8.0† | _ | | | 8,000‡ | 17 | | | Class AB
Amplifier | 250 | 250 | 130
R _k =
130 | 62† | 7.0† | _ | _ | _ | 8,000‡ | 11 | | | Class B
Amplifier | 300
250 | 300
250 | 14.7
11.6 | 15†
20† | 1.6†
2.2† | = | = | _ | 8,000±
8,000± | 17
11 | | | Class A
Amplifier | 135 | 135 | R _k = 82 | 7.0 | 3.5 | 275,000 | 9,500 | Ec | s = 15 v | olts | 6GK7 | | Vertical
Oscillator | | eak neg | 3.0
stive gr | | ge 🏶 = 4 | 30,000
00 volts | 2,200
6,400 | 66 | - | | 6GL7 | | Vertical
Amplifier | 175
60
Max po | sitive p | 25
0
ulse pla | 46
 100
 te volta | | 780
.500; max | 1. | 5.0
ode cur | j _
rent 🏶 = | -50 ma | | | Class A Amp | 300 | 300 | 10 | 60† | 8.0† | 29,000 | 10,200 | | 3,000 | 11 | 6GM5 | | Class AB ₁
Amp. | 450 | 400 | 21 | 66† | 9.4† | - | _ | _ | 6,600‡ | 45 | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.4 | 200,000 | 13,000 | _ | | | 8GM6 | | Class A Amp | 6.3 | | 0.4 | 0.9 | | 5,400 | 2,600 | 14 | | | 6GM8 | | Class A
Amplifier
Class A | 200
250 | 150 | R _k = 100 2.0 | 25
2.0 | 5.5 | 60,000
37,000 | 11,500
2,700 | 100 | _ | _ | 6GN8 | | Amplifier
Half-Wave
Rectifier | volts; | i-c outp
max R
ate 🏶 = | MS sup | ent per p
ply vol | plate 🔷 =
tage per | =9 ma; ma;
plate 🏶 = | peakir
117 volt | verse v | oltage @ | =330
urrent | 6GQ7 | | Sync Sepa-
rator and
AGC Keyer | 100
100 | 67.5 | | 2.0 | 3.6
 | (Both Se
oper
—
site section | ating)
 1,200 | | E _{c3} = 0 | volts volts | 6GS8 | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5
0 | 70
390 | 2.1
32 | 15,000
5,500; max | 7,100 | | rent 🏶 = | 175 ma | 6GT5 | | Horizontal
Amplifier | 250
60 | 150
150
ositive | 22.5
0 | 70
390 | 2.1
32 | 15,000
=6,500; n | 7,100 | | | $\Gamma \equiv 1$ | 6GT5-A | | Tube | Classification | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Voits | Capa
Pi | acitance
cofarad | in
s | |---------------|-------------------------------|---------------|--------------|---------------|---------------|------------------------------|--------------|-------------------------------|-----------------------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Voits | and
Watts | Input | Out-
put | Grid-
plate | | 6GU5 | "Shadow-Grid"
Beam Pentode | 7GA | 5–2 | 6.3 | 0.22 | 3.0� | 300� | 150 ♦
0.15 ♦ | 70▲ | 3.2 ▲ | 0.018 | | <i>6GU</i> 7¶ | Medium-Mu
Twin Triode | 9LP | 6-3 | 6.3 | 0.6 | 3.0 ◈ | 330 ◈ | | 3.4 ₁ 3.6 ₂ | 0.44 ₁
0.34 ₂ | 3.0 ▲ | | 6GV5 | Beam Power Amplifier | 12DR | 12-79 | 6.3 | 1.2 | 17.5♦ | 7708 | 220 ♦
3.5 ♦ | 16 🛦 | 7.0▲ | 0.6 ▲ | | 6GV7 | Triode-Pentode | 9KN | T-X | 6.3 | 0.35 | 2.0 | 250 | 230
0.5 | | de Sect | | | | | | | | | 2.0 | 250 | | Triod | e Sectio | n | | 6GV8 | Triode-Pentode | 9LY | 6-4 | 6.3 | 0.9 | 7.0 🗨 | | 250 ● 2.0 ● | | de Sect | | | 8GW5 | High-Mu Triode | 7GK | 5-2 | 6.3 | 0.19 | 2.5 ◈ | 250 € | | 5.5 | e Section | n
 0.6 | | 6GW6 | Beam-Power Amplifier | 6AM | 12-51 | 6.3 | 1.2 | 17.5 ♦ | 770 🏶 | 220 ③
3.5 ④ | 17 ▲ | 7.0 ▲ | 0.5 ▲ | | 6GW8 | Triode-Pentode | 9LZ | 6-4 | 6.3 | 0.7 | 9.0 | 300 | 300 | | de Sect | | | -0710 | | - | | | 0.45 | 0.5 | 300 | 200.00 | Triod | e Sectio | n | | 6GX6¶ | Dual-Control Pentode | 7EN | 5-2 | 6,3 | 0.45 | 1.7 🌑 | 300 ◆ | 300 ♦\$ | _ | - | | | 6GX7 | Triode-Pentode | 9QA | 6–2 | 6.3 | 0.4 | 2,2 ③ | 275 🏶 | 0.45 | | de Section | | | | | ĺ | | | | 1.5 | 215 | | 11100 | e Sectio | n | | 6GY5■ | Beam Power
Amplifier | 12DR | 12-79 | 6.3 | 1.5 | 18 ◈ | 7708 🏵 | 220 ♦
3.5 ♦ | 22 ▲ | 9.0▲ | 0.7▲ | | 6GY6¶ | Dual-Control Pentode | 7EN | 5–2 | 6.3 | 0.45 | 1.7 🏽 | 300 ◈ | 300 \$ | | | = | | 6GY8 | Triple-Triode | 9MB | 6-2 | 6.3 | 0.45 | 2.0 ♦
5.0 ♦ | 330 ◈ | | 6, 7)
Section
8, 9) | on 1 (F
on 2 (F
on 3 (F | Pins 3, | | 6GZ5 | Power Amplifier
Pentode | 7CV | 5-2 | 6.3 | 0.38 | 4.8 ◈ | 300 ◈ | 300 ③ | 8.5 ▲ | 3.8▲ | 0.24 🛦 | | 6H4-GT | Diode | 5AF | 9-11 | 6.3 | 0.15 | _ | _ | - | | = | - | | 6H6
6H6-GT | Twin Diode | 70 | 8-5
9-11 | 6.3 | 0.3 | - | Tube V | oltage
t 16 ma | Drop: ◀
d-c | | | | 6HA5 | High-Mu Triode | 7GM | 5-1 | 6.3 | 0.18 | 2.6 ◈ | 220 ◈ | 1 | 4.3 | 2.9 | 0.36 | | 6HA6 | Pentode | 9NW | 6-4 | 6.3 | 0.71 | 8.0 🏶 | 300 ◈ | 250 ♦
1.5 ♦ | 13 ▲ | 8.0 ▲ | 0.18 | | 6HB5 | Beam Power Amplifier | 12BJ | 12-58 | 6.3 | 1.5 | 18♦ | 7708 🏶 | 220 ♦
3.5 ♦ | 22 ▲ | 9.0▲ | 0.4 ▲ | | 6HB6 | Power Amplifier
Pentode | 9NW | 6-4 | 6.3 | 0.76 | 10 🏶 | 350 ◈ | 300 ♦
2.0 ♦ | 13 ▲ | 8.0▲ | 0.18 | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------|---------------------|-----------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|-------------|--|--|--------------| | Class A
Amplifier | 275 | 135 | 0.4 | 10 | 0.17 | 165,000 | 15,500 | | | | 6GU5 | | Class A
Amplifier 🌩 | 250 | _ | 10.5 | 11.5 | | 5,500 | 3,100 | 17 | | | 6GU7¶ | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 65
345 | 27 | 18,000 | 7,300 | = | | <u> </u> | 6GV5 | | <u> </u> | | | | | | ,500; max | | ode curi | ent 🏶 = | 175 ma | | | Class A
Amplifier
Class A | 125
100 | 125 | 1.5
3.0 | 10
14 | 3.1 | _ | 5,500 | 17 | | | 6GV7 | | Amplifier | | | | | | | | 11 | | | | | Class A
Amplifier | 170 | 170 | 15 | 41 | 2.7 | 25,000 | 7,500 | | - | - | 6GV8 | | Class A Amp | 100 | | 0.8 | 5.0 | <u> </u> | 7,600 | 6,500 | 50 | ! | | | | Class A Amp | 135 | | 1.0 | 12.5 | | 5,800 | 15,000 | 70 | | | 6GW5 | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5
0 | 70
390 | 2.1
32 | 15,000
 | 7,100 | de cur | ant & | 175 ma | 6GW6 | | Class A | 250 | 1 250 | 7.0 | 36+ | 5.5t | | 110.000 | Jae Curi | 7.000 | 4.2 | 6GW8 | | Amplifier
Class A Amp |
250 | 250 | 1.7 | 1,2 | J.51 | 62,500 | 1,600 | 100 | 1,000 | 4.2 | oons | | Class A
Amplifier | 150 | 100 | R _k = 180 | 3.7 | 3.0 | 140,000 | 3,700 | | 3 =0 vo | lts | 6GX6¶ | | Class A
Amplifier | 125 | 125 | 1.0 | 8.0 | 2.5 | 200,000 | 11,000 | - | <u> </u> | <u> </u> | 6GX7 | | Class A
Amplifier | 125 | | 1.0 | 13 | _ | 4,700 | 8,500 | 40 | | - | | | Horizontal
Amplifier | 130
60 | 130
130 | 20
0 | 50
410 | 1.75
24 | 11,000 | 9,100 | = | | | 6GY5 | | | 230 ma | 1 | | | | =6,500; m | | | | | | | Class A
Amplifier | 150 | 100 | R _k = 180 | 3.7 | 3.0 | 140,000 | 3,700 | E | =0 vo | lts | 6GY6¶ | | Class A | 125 | eak posi | | se plat | e voitag | e 🔷 = 600 · | 4,500 | 63 | · | | 6GY8 | | Amplifier Class A Amplifier (Sections 2 | 125 | _ | R _k = 220
1.0 | 4.5 | _ | 14,000 | 4,500 | 63 | _ | - | 0018 | | and 3)
Class A | 250 | 250 | R _k = 270 | 16† | 2.7† | 150,000 | 8,400 | | 15,000 | 1.1 | 6GZ5 | | Amplifier
Half-Wave | Maxd | c outpu | t curren | t = 4 m | a; max r | ms supply | voltage | = 100 v | olts; ma | x peak | 6H4-G | | Rectifier
Half-Wave | Max d | t = 18 m
-c outp | ut curre | ent per | plate = | 8 ma; ma | x peak | inverse | voltag | e = 420 | 6H6 | | Rectifier | plate = | max rm
48 ma | • - | | | olate = 150 | | - | k curre | nt per | 6H6-G | | Class A
Amplifier | 135 | | 1.0 | | | | 14,500 | 72 | | | 6HA6 | | Class A
Amplifier | 150
60 | 100 | R _k = 33 | 28
45 | 3.5
9.0 | 20,000 | 20,000 | _ | - | | 6HA6 | | Wasisants' | 130 | 130 | 20 | 50 | 1 1.75 | 11.000 | 9,100 | | | | 6HB5 | | Horizontal
Amplifier | 60 | 130 | Ō | 410 | 24 | 11,000
,000; max | | ode cur | rent 🏶 = | 230 ma | Cano | | Class A | 250 | 250 | R _k = | 40 | 6.2 | 24.000 | 120.000 | 1 | | | 6HB6 | | Amplifier | 200 | 200 | 100 | *** | J | 27,000 | 120,000 | | _ | | 011 100 | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |-------|--------------------------|---------------|-------|---------------|---------------|--------------|----------------|---------------------------------|----------|---------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6HB7¶ | Triode-Pentode | 9QA | 6-2 | 6.3 | 0.45 | 3.1 🔷 | 330 ◈ | 330 8 ♦
0.55 ♦ | Pento | de Sect | ion | | | | | | | | 2.5 🏶 | 330 ◈ | 0.33 | Triod | e Sectio | n | | 6HC8 | Triode-Pentode | 9EX | 9–70 | 6.3 | 1.2 | 11 🕸 | 350 ◈ | 315 ♦
1.5 ♦ | Pento | de Sect | ion | | | | | | | | 1.0♦ | 330 � | | Triod | e Sectio | n | | 6HD5 | Beam Power
Amplifier | 12ES | 12-59 | 6.3 | 2.25 | 24 🏶 | 770 8 🏶 | 220 ③
6.0 ⑤ | = | - | | | 6HD7¶ | Triode-Pentode | 9QA | 6-2 | 6.3 | 0.45 | 2.2 🏶 | 275 🏶 | 275 | Pento | de Sect | ion | | | | | | | | 1.5◆ | 275 ◈ | 0.45 | Triod | e Section | on | | 6HE5 | Beam Power
Amplifier | - 12EY | 9-60 | 6.3 | 0.8 | 12 🏶 | 350 ◈ | 300 ♦
2.75 ♦ | 9.5 ▲ | 7.0 ▲ | 0.50 🛦 | | 6HE7 | Diode-Pentode | 12FS | 12-57 | 6.3 | 2.7 | 10 🏶 | 500 🖁 🏶 | 150 ♦
3.5 ♦ | Pento | de Sect | ion | | | | | | | | | Tube V | oltage
s at 350 | Drop: | e Sectio | n | | 6HF5 | Beam Power
Amplifier | 12FB | 12-89 | 6.3 | 2.25 | 28 🏶 | | | 24 ▲ | 10▲ | 0.56 | | 6HF8 | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.75 | 5.0 ◈ | 330 ◈ | 330 ♦ \$
1.1 ♦ | Pento | de Sect | ion | | | | | | 6.3 | | 1.0 | 330 € | | | e Section | | | 6HG5 | Beam Power
Amplifier | 7BZ | 5–3 | | 0.45 | 12 🏶 | 275 🏶 | 2.0 | 8.0 ▲ | 8.5▲ | 0.4 | | 6HG8 | Triode-Pentode | 9MP | 6-2 | 6.3 | 0.34 | 2.0 | 250 | 150 | Pento | de Sect | ion | | | - | - 12FL | 12-59 | 6.3 | 2.25 | 1.5 | 125 | _ | Triod | e Section | on | | 6HJ5 | Beam Power
Amplifier | IZFL | 12-59 | 0.3 | 2.25 | 24 🏶 | 7708 | 220 ♦
6.0 ♦ | - | _ | | | 6HJ7¶ | Triode-Pentode | 9QA | 6-2 | 6.3 | 0.45 | 2.2 🏶 | 275 🏶 | 275 | | de Sec | tion | | | | | | | | 1.5 ◈ | 275 🏶 | 0.45 | Triod | e Secti | on | | 6HJ8¶ | Diode-Pentode | 9CY | 6-2 | 6.3 | 0.45 | 3.2 � | 330 ◈ | 330 ♦1
0.55 ♦ | | 3.2
Section | 0.015
n | | 6HK5 | High-Frequency
Triode | 7GM | 5-2 | 6.3 | 0.19 | 2.3 🆠 | 200 € | | 4.4 | 2.6 | 0.29 | | 6HL5 | Beam Power
Amplifier | 9QW | 6-4 | 6.3 | 0.95 | 12 🕸 | 330 ◈ | 250 ♦
2.5 ♦ | - | = | - | | 6HL8¶ | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.6 | 2.5 | 330 ◈ | 3308 3 | | ode Sec | tion | | | | 1 | | | 1 | 2.5 🏶 | 330 € |) V | | le Secti | on | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|-----------------------------|-----------------------------|--|---------------------------------|----------------------------------|--------------------------|---------------------|---------------|--|--------------------------------|--------------| | Class A
Amplifier
Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,400 | _ | | 1-1 | 6HB7¶ | | Amplifier | 150 | | $\begin{array}{c} R_k = \\ 56 \end{array}$ | 18 | | 5,000 | 8,500 | 40 | | | | | Vertical
Amplifier | 250
60
Max 1
⊕ =6 | 250
250
positive | 18
0
pulse p | 38
180
late vol | 3.0
30
tage 🏶 : | 55,000
 | 5,100
ts; max | d-c cat | _
hode cu | rrent | 6HC8 | | Vertical
Oscillator | 250
Max. | | 3
node cu | 1.4
rrent � | =20 ma | 34,000
; max pea | j 2,000
k negati | 68
ve puls | e grid v | oltage | | | Horizontal
Amplifier | 135
60 | 135
135 | 22
0
ouise pla | 65
540
ete volta | 4.0
48 | 5,000

7,000; max | 10,000 | ode cur | = | 280 ma | 6HD5 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 3.5 | ,,000, max | 7,000 | | | -200 ma | 6HD7¶ | | Class A
Amplifier | 100 | — | R _g = 0.1 meg | 14 | | 4,880 | 8,200 | 40 | _ | _ | | | Vertical
Amplifier | 250
60
Max r | 250
250
ositive | 20
0 | 43
180
ate volt | 3.5
20 | 50,000
2,500; max | 4,100 | hode cu | Frent | =75 ma | 6HE5 | | Horizontal | 130 | 130 | 22 | 60 | 2.8 | 6,200 | 8,800 | | I — | 70100 | 6HE7 | | Amplifier | 50
Max 1
230 m | | 0
pulse | 450
plate v | 40
oltage 🏶 | =5,000; r | nax d-c | cathod | e curre | nt ♦ = | , — | | TV Damper | Max d
peak c | -c outpu
urrent (| = 1.20 | 0 ma | | nax peak ir | | oltage @ | » = 4,200 |); max | | | Horizontal
Amplifier | 175
70
Max 1
315 m | 125
120
positive
a | 25
0
pulse 1 | 125
570
olate vo | 4.5
34
oltage 🏶 | 5,600
=7,500; n | 11,300
nax d-c | cathod | e currer | | 6HF5 | | Class A
Amplifier | 200 | 125
125 | R _k = 68 | 25
40 | 7.0
15 | 75,000 | 12,500 | - | _ | | 6HF8 | | Class A Amp | 45
200 | 123 | 2.0 | 4.0 | 15 | 17,500 | 4,000 | 70 | _ | _ | | | Class A
Amplifier | 250 | 250 | 12.5 | 45† | 4.5† | 52,000 | 4,100 | | 5,000 | 4.5 | 6HG5 | | Class A
Amplifier | 170
100 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | 17 | | | 6HG8 | | Class A Amp
Horizontal
Amplifier | 135
60 | 135 | $\frac{3.0}{22}$ | $\frac{14}{80}$ | 5.5 | 5,000 | 5,500 | | onnecte | d to k | 6HJ5 | | rimpinier . | | positive | | | | =7.000; n | nax d-c | | | nt ♦ = | | | Class A
Amplifier | 125 | 125 | 1.0 | 9.5 | 2.3 | | 12,300 | | _ | | 6HJ7¶ | | Class A
Amplifier | 100 | | R _g =
0.1
meg | 14 | - | 4,880 | 8,200 | 40 | | _ | | | Class A
Amplifier
Video De-
tector | 125
Max | 125
-c outp | R _k = 56 | 11.5 | 3.6
5.0 ma | 200,000
voltage d | 9,300
rop: 10 | volts at | 50 ma | | 6HJ8¶ | | Class A
Amplifier | 135 | | 1.0 | 12.5 | _ | 5,000 | 15,000 | 75 | | | 6HK5 | | Class A
Amplifier | 130 | 130 | $R_k = 56$ | 70† | 5.0† | 7,500 | 17,000 | | 2,000 | 3.0 | 6HL5 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.5 | 150,000 | 7,000 | | | | 6HL8¶ | | Class A Amp | 125 | | 1.0 | 12.5 | 1 | 5,000 | 7,000 | 40 | | | | | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
I | pacitanc
Picofara | e in
ds | |-----------------|----------------------------------|---------------|---------------------|---------------|---------------|---------------------------------|-----------------|-------------------------------|----------------------------------|---|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6HM 5 | High-Mu Triode | 7GM | 5–2 | 6.3 | 0.185 | 2.6 🏶 | 200 🏶 | - | 4.5 | 3.0 | 0.34 | | 6HM6 | Sharp-Cutoff
RF Pentode | 9PM | 6-2 | 6.3 | 0.3 | 2.5 🏶 | 250 ◈ | 250 8 ♦
0.6 ♦ | 8.7 | 3.0 | 0.024 | | 6HQ5 | Triode | 7GM | 5-2 | 6.3 | 0.2 | 2.5 🏶 | 200 🏶 | = | 5.0 | 3.5 | 0.52 | | 6HQ6 | Semi-Remote-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.4 🌑 | 330 ◈ | 330 8 �
0.65 � | 7.8 | 3.0 | 0.016 | | 6HR5¶ | Beam Pentode | 7BZ | 5-3 | 6.3 | 0.45 | 8.0 🏶 | 260 🏶 | 270 ③ 2.0 ⑤ | 8.3 ▲ | 8.2 ▲ | 0.35 🛦 | | 6HR6¶ | Semi-Remote-Cutoff
RF Pentode | 7BK | 52 | 6.3 | 0.45 | 3.0♦ | 300 ◈ | | 8.8 ▲ | 5.2 ▲ | 0.006 | | 6HS5■ | Beam Triode | 12GY | 12-60 | 6.3 | 1.5 | 30 🏶 | 5500 🏶
Peak | | 24 ▲ | 6.5 ▲ | 1.6▲ | | 6HS6¶ | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 6.3 | 0.45 | 3.0� | 300 ◈ | 3008 ♦ | 8.8 🛦 | 5.2 ▲ |
0.006 | | 6HS8 | Twin Pentode | 9FG | 6–3 | 6.3 | 0.3 | 1.1 🆠 | 300 ◈ | 150 ♦
0.75 ♦ | | _ | _ | | 6HT6 | Semi-Remote-Cutoff
RF Pentode | 9PM | 6-2 | 6.3 | 0.3 | 2.5 🏶 | 250 � | 250 3 🏟
0.6 🏟 | 8.7 | 3.0 | 0.024 | | 6HU6 | Electron-Ray Indicator | 9GA | T-X | 6.3 | 0.3 | 0.6 | _ | _ | Max T
= 300
Min T
= 170 | arget V
Volts
arget V
Volts | oltage | | 6HV5 ■ | Beam Triode | 12GY | T-X | 6.3 | 1.8 | 30 ◈ | 5,500
peak @ | _ | 19 🛦 | 7.0 ▲ | 1.5 | | 6HV5-A ■ | Beam Triode | 12GY | T-X | 6.3 | 1.8 | 35 ◈ | 5,500
peak 🏶 | - | 22 ▲ | 11 🛦 | 1.84 | | 6HW8 | Double-Plate Sheet-
Beam Tube | 9NQ | 6-3 | 6.3 | 0.3 | 2.0♦ | 330 ◈ | 330 ◈ | | | _ | | 6HZ5 | Beam Triode | 12GY | 12-62 | 6.3 | 2.4 | 30 ◈ | 6,000 | _ | 22 🛦 | 10▲ | 2.2 4 | | 6HZ6¶ | Dual-Control Pentode | 7EN | 5-2 | 6.3 | 0.45 | 1.7 🏶 | 300 ◈ | 3008 ◈ | | = | _ | | 6HZ8 | Triode-Pentode | 9DX | 9-77 | 6.3 | 1.125 | 8.0 🏟 | 330 🏶 | | | e Sectio | | | 6J4 | High-Frequency Triode | 7BQ | 5-2 | 6.3 | 0.4 | 1.0 ③ 2.25 | 300 ♦ | <u> </u> | Triode | Section | | | 6]8 | Medium-Mu | 6Q | 8-1 | 6.3 | 0.3 | 2.5 | 300 | | 3.4 | 3.6 | 3.4 | | 6]5-GT
6]6 | Triode
Medium-Mu | 7BF | 9-12
5-2 | 6.3 | 0.45 | 1.5 • | 300 | | 2.6 | 5.0
1.6 ₁ | 3.8 | | 6J6-A¶ | Twin Triode | 7.51 | <i>J-2</i> | 0.3 | 0.43 | 1.04 | 300 | _ | 1 | 1.0 ₂
ections | 1 | | 6J7-G
6J7-GT | Sharp-Cutoff Pentode | 7R | 8-4
12-8
9-18 | 6.3 | 0.3 | 0.75
1.75 | 300
250 | 300 \$
0.1 | Pentod
Triode | le connec | tion | | 6J8-G | Triode-Heptode
Converter | 8H | 12-8 | 6.3 | 0.3 | 0.4 | 300 | 100
0,3 | Osc Iel
Rgl = 5 | G ₁ & P
= 0.4 m
0.000 of | a
hms | | 6J9¶ | Triple Triode | 10G | 6-13 | 6.3 | 0.45 | 0.75
2.0 ♦
5.0 ♦
Total | 330 ◈ | | iriode | Section | - | Compactron. Zero signal. Per section. Subminiature type. ▲Without external shield. Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|---|--|--|--|--|---|--|---------------------------------------|--|--------------------------------|--| | Class A
Amplifier | 135 | - | 1.0 | 12.5 | | | 14,500 | 78 | - | <u> </u> | 6HM5 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.2 | 156,000 | 15,000 | | | | 6HM6 | | Class A
Amplifier | 135 | | 1.0 | 11.5 | = | 5,400 | 15,000 | 78 | | | 6HQ5 | | Class A
Amplifier | 125 | 125 | R _k = | 15 | 3.8 | 220,000 | 10,500 | | | | 6HQ6 | | Class A
Amplifier | 260 | 270 | 19 | 30 | 2.3 | | 3,600 | | = | =- - | 6HR5¶ | | Class A
Amplifier | 200 | 115 | R _k = 68 | 13.2 | 4.3 | 500,000 | 8,500 | | = | | 6HR6¶ | | Avg. Char. | 3500 | | 4.4 | 300
Peak | | 4,600 | 65,000 | 300 | (b.p. conected at sock | to k | 6HS5 | | Class A
Amplifier | 150 | 75 | R _k = | 8.8 | 2.8 | 500,000 | 9,500 | = | | <u> </u> | 6HS6¶ | | Sync Sep-
arator and
AGC Keyer | 100 | 67.5
67.5 | I _{et} = 0.1 ma | 2.0 | 4.4 | (Both Sec | tions C
ing)
 1,100 | perat- | $E_{ci} = 0$ $E_{ci} = 0$ | 1 | 6HS8 | | Class A | 125 | (Plate a | and grid | number
15 | er 3 of c | opposite sec | tion gre | ounded) | <u> </u> | | 6HT6 | | Amplifier
Level | | | 56 | - | | | | 250- /1 | <u> </u> | Pottorn | 6HU6 | | Indicator | length,
20 ma)
1.8 ma | dark p $E_c = -$; Plate of | ortion =
10 volts
current | =0.83";
s; Patte
=0.5 m | Target
ern lengt | Target vo
current = 1
th, dark po | 1.0 ma;
ortion = | Plate
0.0"; T | current
arget cu | rrent = | 91100 | | Pulse
Regulator | 3,500 | _ | 4.4 | 300
peak | | 4,600 | 65,000 | 300 | (b.p. o
nected
k at s | | 6HV5 ■ | | Pulse
Regulator | 3,500 | _ | 4.4 | 300
peak | - | 4,600 | 65,000 | 300 | (b.p. o
nected
k at so | i to | 6HV5-A | | Synchronous
Detector | (With Total other | voltage
deflector | Rk = 270 ed toge on eith requir s maxin | er defte
ed to s | 1.4
d deflector with
witch t | tors ground
th an equa
he plate c | 4,000
led)
land ourrent | pposite
rom or | change
ne plate | on the | 6HW8 | | | | | | | | | | | 1 | | | | Pulse
Regulator | 500 | 40 Voit | -1.25 | 5.4 | - | _ | 11,500 | 235 | (b.p.
nected
k at s | d to | 6HZ5 ■ | | | | 100 | | 3.2 | 3.2 | 110,000 | 3,400 | | necte | d to
ocket) | 6HZ5 ■ 6HZ6¶ | | Class A
Amplifier
Class A | 150
250 | | -1.25 R _k = 180 R _k = 100 | 3.2 | 3.2 | 140,000 | | E. | nected
k at s | d to
ocket) | | | Class A
Amplifier
Class A
Amplifier
Class A Amp | 150
250 | 100 | -1.25 $R_{k} = 180$ $R_{k} = 100$ 2.0 | 3.2 | . | | 3,400 | | nected
k at s | d to
ocket) | 6HZ6¶ | | Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A | 150
250
200
150
250 | 100 | -1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0 | 3.2
29
3.5
15 | . | 140,000
17,500
4,500 | 3,400
12,600
4,000
12,000 | 70
55 | nected
k at s | d to
ocket) | 6HZ6¶
6HZ8 | | Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier | 150
250
200
150 | 100 | -1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0 0 | 3.2
29
3.5
15
9.0
10 | . | 140,000
17,500
4,500
7,700
6,700 | 3,400
12,600
4,000
12,000
2,600
3,000 | E. 70 | nected
k at s | d to
ocket) | 6HZ6¶ 6HZ8 6J4 6J6 6J5-GT | | Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A | 150
250
200
150
250
90 | 100 | -1.25 R _k = 180 R _k = 100 2.0 R _k = 100 8.0 | 3.2
29
3.5
15
9.0
10
8.5 | . | 140,000
17,500
4,500 | 3,400
12,600
4,000
12,000
2,600
3,000
5,300 | 70
55
20
20
38 | nected k at s | d to
ocket) | 6HZ6¶ 6HZ8 6J4 6J5 6J5-GT 6J6-A¶ | | Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Amplifier | 150
250
200
150
250
90
100
150 | 100 | $ \begin{array}{c} -1.25 \\ \hline \\ R_k = \\ 180 \\ \hline \\ R_k = \\ 100 \\ 2.0 \\ \hline \\ R_k = \\ 100 \\ \hline \\ R_k = \\ 50 \\ \oplus \end{array} $ | 3.2
29
3.5
15
9.0
10
8.5 | . | 140,000
17,500
4,500
7,700
6,700
7,100
Input Si | 3,400
12,600
4,000
12,000
2,600
3,000
5,300 | 70
55
20
20
38 | nected k at s | its | 6HZ6¶ 6HZ8 6J4 6J5-GT 6J6 | | Class A Amplifier | 150
250
200
150
250
90
100
150 | 100
170
———————————————————————————————— | | 3.2
29
3.5
15
9.0
10
8.5
30
2.0
2.0 | 6.0
—
—
—
—
—
—
— | 140,000
17,500
4,500
7,700
6,700
7,100
Input Si
Ict = 16
1,000,000
1,000,000 | 3,400
12,600
4,000
12,000
2,600
3,000
5,300
gnal =0
ma d-c
1,225
1,185 | 70
55
20
20
38
.35 wat | nectee k at s | 1 to oocket) | 6HZ6¶ 6HZ8 6J4 6J6 6J5-GT 6J6-A¶ 6J7-G | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piste | Max
Screen
Volts | Ca
I | pacitane
Picofara | e in
ds | |---------------|--------------------------------------|---------------|-----------------|---------------|---------------|--------------------------|--|---------------------------------|----------------|--------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6J10 | Pentode-Gated-
Beam Discriminator | 12BT | 9-58 | 6.3 | 0.95 | 10 🏶 | 275 🏶 | 275 | Pentod | e Sections 2, 3, 9 | n
11) | | | Beam Discriminator | | | | | | 330 ◈ | 110% | Gated-
Disc | Beam
riminates 4, 5, 6, | or. | | 6J11 | Twin Pentode | 12BW | 9-58 | 6.3 | 0.8 | 3.1.♦ | 330 ◈ | 330 8 ♦ | 11 | 2.8 ₁
3.2 ₁ | 0.04 💠 | | 6JA5 = | Beam Power
Amplifier | 12EY | 12-57 | 6.3 | 1.0 | 19 🏶 | 400 | 300 ♦
275 ♦ | 14 ▲ | 7.5 ▲ | 0.66 ▲ | | | | 1 | | | | | | | | | | | 6JA8 | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.75 | 5.0 ③ | 330 ◈ | 330 \$ ⊕
1.5 ⊕ | 1 | le Section | | | 6ЈВ5 ■ | Beam Power
Amplifier | 12EY | 12-57 | 6.3 | 0.8 | 15 % | 350 ◈ | 300 ♦
2.75 ♦ | 9.5 ▲ | 6.5 ▲ | | | 6JB6 | Beam Power
Amplifier | 9QL | 12-70 | 6.3 | 1.2 | 17.5 ◈ | 7708 🏶 | 220 �
3.5 � | 15 ▲ | 6.0▲ | 0.2 ▲ | | 6JB6-A | Beam Power
Amplifier | 9QL | T-X | 6.3 | 1.2 | 17.5 ◈ | 770\$♦ | 220 ♦
3.5 ♦ | 15 🛦 | 6.0▲ | 0.2 🛦 | | 6JC5 = | Beam Power
Amplifier | 12EY | 12-57 | 6.3 | 0.8 | 19 🏶 | 350 ◈ | 300 ♦
2.75 ♦ | 9.5 ▲ | 7.0▲ | 0.54 ▲ | | 6JC6 | Sharp-Cutoff
Pentode |
9PM | 6-2 | 6.3 | 0.3 | 2.5 🏶 | 330 🏶 | 330 8 ◆ | 8.2 ▲ | 3.0 ▲ | 0.019 | | 6JC6-A | Sharp-Cutoff
Pentode | 9PM | 6–2 | 6.3 | 0.3 | 3.1 🏶 | 330 🏶 | 330 1 | 8.5 ▲ | 3.0 ▲ | 0.019 | | 6JC8¶ | Triode-Pentode | 9PA | 6-2 | 6.3 | 0.45 | 2.3 🏽 | 275 🏶 | 275 🔷 🖁
0.45 🏶 | 1 | le Section | on | | 6JD5 ■ | Beam Triode | 12GY | T-X | 6.3 | 2.4 | 1.7 ♦ 35 ♦ | 275 ⊕
5,500
⊕ peal | = | 23 ▲ | Section
12 ▲ | 1.7 ▲ | | | | 9PM | 6-2 | 6.3 | 0.3 | 2.5 🏵 | 330 ♦ | | 8.2 ▲ | 201 | 0.019 | | 6JD6 | Sharp-Cutoff
Pentode | | | | | | i . | 0.6 | | İ | ** | | 6JE6 | Beam Power
Amplifier | 9QL | T-X | 6.3 | 2.5 | 24 🏶 | 9908 ◈ | 190 ♦
3.2 ♦ | 21 🛦 | 11 🛦 | 0.44 ▲ | | 6JE6-A | Beam Power
Amplifier | 9QL | 12-116 | 6.3 | 2.5 | 30 ◈ | 990\$ ◈ | 220 ③ 5.0 ⑤ | 22, 🛦 | 11 🛦 | 0.56 ▲ | | 6JE6-B | Beam Power Amplifier | 9QL | 12-116 | 6.3 | 2.5 | 30� | 990:0 | 220 ♦
5.0 ♦ | 22 🛦 | 11 🛦 | 0.56 🛦 | | 6JE6-C | Beam Power Amplifier | 9QL | 12-116 | 6.3 | 2.5 | 30� | 990:⊛ | 220 ♦
5.0 ♦ | 22 🛦 | 11 🛦 | 0.56 ▲ | | 6JE8 | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.78 | 5.0 * | 330 € | 330 🌖 | 1 | le Section | | | 6JF6 | Beam Power
Amplifier | 9QL | T-X or
12-70 | 6.3 | 1.6 | 17 🏶 | | 220 ③
3.5 ③ | 22 🛦 | | 1.2▲ | | 6JG5 | Sharp-Cutoff
Pentode | 9SF | 6-3 | 6.3 | 0.52 | 5 5.0 € | 330 ◈ | 330 2 € | 11 🛦 | 4.5 | 0.10 | | 6JG6 | Beam Power
Amplifier | 900 | 12-64 | 6.3 | 1.6 | 17 🆠 | 7708 | ≥ 220 4 3.5 € | 22 🛦 | 9.04 | 0.7 🛦 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. [⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance. | | | | | | | | | - | | | | |--|-----------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|---------------|--|--------------------------------|---------------| | Service | Plate
Volts | Screen
Volts | Voits | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Class A | 250 | 250 | 8.0 | 35† | 2.5† | 100,000 | 6,500 | | 5,000 | 4.2 | 6J10 | | Amplifier
FM Limiter-
Discrimina-
tor | 285 | 100 | R _k = 200
to 400 | 0.49 | 9.8 | _ | | _ | 330,-
000 | - | | | | Ecl = | 1.25 Vo | ts RMS | 5 | | | | | İ | 1 | | | Class A
Amplifier • | 125 | 125 | R _k = 56 | 11 | 3.8 | 200,000 | 13,000 | - | _ | _ | 6J11 | | Vertical-
Deflection
Amplifier | 135
45
Max p | 125
125
ositive p
ma. | 10
0
oulse pla | 95
210
te volta | 4.2
20
age ◈ = | 12,000
2,500 voit | | _
l-c cath |
ode cur | ent 🏶 | 6JA5 ■ | | Class A
Amplifier
Class A Amp | 200
30
200 | 135
135 | 1.5
0
2.0 | 18
32
3.5 | 4.0
14 | 70,000 | 3,700 | 70 | Ξ | E | 6JA8 | | Vertical
Amplifier | 250
60
Max p | 250
250
ositive j | 20
0 | 43
180 | 3.5
20
age 🏶 = | 50,000
= 2,500 volt | 4.100 | = | ode cur | rent 🏶 | 6JB5 ■ | | Horizontal
Amplifier | = 75
250
60
Max
175 m | 150
150
positive | | 70
390
plate vo | 2.1
32
oltage 🏶 | 15,000
=6,500; m | 7,100
 | at soc | nnected
ket)
e curren | | 6JB6 | | Horizontal
Amplifier | 250
60 | 150
 150
 positive | 22.5
0
pulse p | 70
390
olate vo | 2.1
32
oltage 🏶 | 15,000
 | 7,100

ax d-c | at soc | nnected
ket)
currer | | 6JB6-A | | Vertical
Amplifier | | 250
250
ositive j
ma. | 20
0
oulse pla | 43
180
ate volt: | 3.5
20
age 🏶 = | 50,000
2,500 volt | 4,100
ts; max |
1-c cath | ode cur | rent 🏶 | 6JC5 ■ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.2 | 180,000 | 15,000 | _ | - | T — | 6JC6 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.4 | 180,000 | 16,000 | (gs co | nnected | i to k | 6JC6-A | | Class A Amp | 125 | 125 | 1.0 | 9.0 | 2.2 | 300,000 | 5,500 | | - | T- | 6JC8¶ | | Class A Amp | 125 | - | 1.0 | 12 | | 6,000 | 6.500 | 40 | _ | | | | Pulse
Regulator | 3,500 | _ | 4.4 | 300
peak | _ | 4,600 | 55,000 | 300 | (b.p.
necte
k at s | con-
d to
socket) | 6JD5 🖷 | | Class A
Amplifier | 125 | 125 | R _k ≈ 56 | 15 | 4.0 | 160,000 | 14,000 | | = | | 6JD6 | | Horizontal
Amplifier | 175
70
Max
315 m | 125
125
positive | 25
0 | 115
580
plate v | 5.0
40
oltage ◈ | 5,500
=7,000; n | 10,500
ax d-c | at soc | nnecte
ket)
e curre | | 6JE6 | | Horizontal
Amplifier | 175
55
Max
350 m | 125
125
positive
a | | | - | 5,800
= 7,500; n | | cathod | | nt 🏶 = | 6JE6-A | | Horizontal
Amplifier | 350 1 | 125
 125
 positive
ma | 25
0
pulse p | 130
 600
 olate vol | 2.8
 36
 tage⊕ = | 5,500
=7,500 volts | 10,500
; max d | to k | connect
at socke
de curr | t) | 6JE6-B | | Horizontal
Amplifier | 350 | 125
 125
 positive
ma | 25
0
pulse p | 130
 600
 olate vol | 2.8
30
tage 🗷 = | 5,500
=7,500 volts | 10,500

s; max d | l to k | connect
at socke
de curr | t) | 6JE6-C | | Class A
Amplifier
Class A Amp | 250 | 170 | R _k = 82 2.0 | 22
4.5 | 4.0 | 140,000 | 12,000 | 70 | | | 6JE8 | | Horizontal
Amplifier | 130
55
Max
275 m | 125
125
positive | 20 | 80
525 | 2.5
32
oltage @ | 12,000
 | 10,000 | (Ec3: | = +25 v | | 6J F 6 | | Class A
Amplifier | 200
60 | 150
150 | R _k = 100 | 25
55 | 5.5
18 | 60,000 | 11,500 | _ | T | | 6JGs | | Horizontal
Amplifier | 130
50 | 125
125
positive | 20
0 | 80
525 | $\frac{2.5}{32}$ | 12,000
 | 10,000
nax d-c | at soc | nnected
ket)
e curre | | 6JG6 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max | Max
Plate | Max
Screen
Volts | Ca _j | acitanc
icofarac | e in
Is | |---------------|-------------------------------------|---------------|-------|---------------|---------------|------------------------------|-----------------|---------------------------------|--------------------------------------|---------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Plate
Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6JG6-A | Beam Power
Amplifier | 9 Q U | 12–96 | 6.3 | 1.6 | 17 🏶 | 770\$ ◈ | | 22 🛦 | 9.0 🛦 | 0.7 ▲ | | 6JH5 = | Beam Triode | 12JE | T-X | 6.3 | 2.4 | 35 🏶 | 5,500
∳peak | - | 23 ▲ | 12▲ | 1.7 ▲ | | 6JH6 | Semi-Remote-
Cutoff Pentode | 7CM | 5–2 | 6.3 | 0.3 | 2.3 🏽 | 300 ◈ | 300 8 ③
0.55 ③ | 7.0 | 3.0 | 0.015 | | 6J H 8 | Double Plate Sheet-
Beam Tube | 9DP | 6-3 | 6.3 | 0.3 | 3.0♠ | 330� | 330 �
1.0 � | | | | | 8JK5 ■ | Beam Trìode | 12JE | T-X | 6.3 | 1.8 | 35 ◈ | 5,500
• peak |
 – | 22 ▲ | 11 🛦 | 1.8 ▲ | | 6JK6 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.35 | 2.5 🏶 | 275 🏶 | 275 | 9.5 ▲ | 2.7 ▲ | 0.02 | | 6JK8 | Double Triode | 9AJ | 6-2 | 6.3 | 0.4 | 1.0 ③ 2.0 ③ | 165 ♦ | - | Section
7, 8)
Section
2, 3) | 1 (Pir | is 6,
ns 1, | | 6JL6 | Semi-Remote-Cut-off
RF Pentode | 7CM | 5–2 | 6.3 | 0.35 | 2.5 🏶 | 275 ◈ | 275 8 • 0.6 • | | 2.7▲ | 0.024 | | 6JL8 | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.75 | 5.0 ③
2.0 ③ | 330 ♦ | 175 ③ | | le Section | | | 6JM6 ■ | Beam Power
Amplifier | 12FJ | 12-79 | 6.3 | 1.2 | 17.5 🏶 | 7702 🏶 | 220 *
3.5 * | 16 ▲ | 7.0 🛦 | 0.6 🛦 | | 6J M6-A | Beam Power
Amplifier | 12FJ | 12-79 | 6.3 | 1.2 | 17.5 🆠 | 7702 * | 220 * 3.5 * | 16 ▲ | 7.0 ▲ | 0.6 ▲ | | 6JN6 | Beam Power
Amplifier | 12FK | 12-56 | 6.3 | 1.2 | 17.5 🏶 | 7708 🏶 | 220 *
3.5 * | 16 ▲ | 7.0 ▲ | 0.34 | | 6JN6-A∎ | Beam Power
Amplifier | 12FK | 12-56 | 6.3 | 1.2 | 17.5 🌞 | 770\$ € | 220 è
3.5 è | 16▲ | 7.0▲ | 0.34 4 | | 6JN8¶ | Triode-Pentode | 9FA | 6-2 | 6.3 | 0.45 | 2.5 🏶 | 300 € | | Pento | le Secti | on | | | | _ | | | | 2.5 🏟 | 300 ◈ | 0.55 🏶 | Triode | Section | 3 | | 6JQ6 | Beam Pentode with
Integral Diode | 9RA | 6-4 | 6.3 | 1.2 | 10� | 425◈ | 330 ◈
2.0 ◈ | 13 🛦 | 6.0▲ | 0.32 🛦 | | 6JR6 | Beam Power Amplifier | 9QU | 12-96 | 6.3 | 1.6 | 17� | 770:◈ | 220 ◈
3.5 ◈ | 22 🛦 | 9.0▲ | 0.7 4 | | 6JS6 | Beam Pentode |
 12FY | 12-89 | 6.3 | 2.25 | 28 🆠 | 990\$ € | 190 (5.5 (| 24 🛦 | 10 🛦 | 0.7 | | 6JS6-A∎ | Beam Power
Amplifier | 12FY | 12-89 | 6.3 | 2.25 | 28 🏶 | 990\$ ◈ | 190 �
5.5 � | 24 ▲ | 10▲ | 0.7 ▲ | | 6JS6-B | Beam Power Amplifier | 12FY | 12-89 | 6,3 | 2.25 | 28� | 990:0 | 190 ⊗
5.5 ⊗ | 24 ▲ | 10 🛦 | 0.7 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. \$ Supply voltage. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _{p,}
Ohms | G _{m,}
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts |
Tube
Type | |-------------------------------------|------------------------------------|----------------------------|--------------------------|---------------------------------|----------------------------------|--|--------------------------|-------------|--|--------------------------------|---------------| | Horizontal
Amplifier | 130
55
Max
275 m | 125
125
positive | 20
0
pulse | 80
 525
plate v | 2.5
 32
 oltage @ | 12,000
= 6,500; n | 10,000
nax d-c | 1 | = +25 vo | 1 | 6JG6-A | | Pulse
Regulator | 3,500 | - | 4.4 | 300
peak | _ | 4,600 | 55,000 | 300 | (b.p. | con-
d to
socket) | 6JH5 ■ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.6 | 260,000 | 8,000 | _ | | | 6JH6 | | Color TV
Synchronous
Detector | age cha | ange on | either of
red to s | leflector | r with a: | ors (pins 1
n equal and
current fr | i opposi | te chan | ge on th | e other | 6JH8 | | Pulse
Regulator | 3,500 | - | 4.4 | 300
peak | _ | 4,600 | 65,000 | 300 | (b.p.
necte
k at : | con-
d to
socket) | 6JK5 ■ | | Class A
Amplifier | 125 | 125 | R _k == 68 | 11.5 | 3.9 | 150,000 | 18,000 | | | _ | 6JK6 | | Class A
Amplifier | 100
135 | | 1.0 | 5.3 | = | 8,000
5,400 | 6,800 | 55
70 | - | | 6JK8 | | Class A
Amplifier
Class A | 125 | 60 | R _k = | 12.5 | 4.0 | 120,000 | 15,500 | | - | | 6JL6 | | Amplifier
Class A | 300 | 150 | 3.5 | 25† | 5.0† | 60,000 | 11,500 | | 5,000 | 1.8 | 6JL8 | | Amplifier
Class A
Amplifier | 150 | - | R _k = 150 | 10 | - | 7,500 | 4,700 | 35 | _ | _ | | | Horizontal
Amplifier | 250
60
Max
275 m | 150
150
positive | 22.5 | 65
345
plate v | 1.8
27
oltage * | 18,000
=6,500; n | 7,300
nax d-c | at so | connecte
cket)
le curres | | 6JM6 | | Horizontal
Amplifier | 250
55 | 150
 150
 positiv | 22.5
 0
 e pulse | 70
345
plate | 2.4
30
voltage | 15,000
 | 7,300
max d | kats | connect
socket)
ode cur | - 1 | 6J M6-A | | Horizontal
Amplifier | 250
60
Max
175 n | 150
 150
positive | 22.5
0
pulse | 65
 345
 plate v | 1.8
27
oltage @ | 18,000
=6,500; n | 7,300
 | at so | connect
cket)
le curre | 1 | 6JN6 ■ | | Horizontal
Amplifier | 250
55
Max
= 175 | 150
 150
 positive | 22.5
 0
 pulse | 70
 345
 plate | 2.4
30
voltage | 15,000
→ = 6,500; | 7,300
max d | kat: | connect
socket
ode cur | 1 | 6JN6-A | | Class A
Amplifier
Class A Amp | 125
125 | 125 | 1.0 | 12 | 4.0 | 200,000
5,400 | 7,500
8,500 | 46 | | | 6JN8¶ | | Vertical
Amplifier | 140
40
Max
70 m
Insta | ia.
intaneoi | 18
0
e pulse | 35
150
plate vo | o-catho | 10,500
=2,000 volt
le voltage | 4,200
s; max o | -c cath | | | 6JQ6 | | Horizontal
Amplifier | 130
50
Max | | 20
0 | 45
470 | 1.5 | 18,000
—
6,500 volts | 7,000
—
; max d- | c catho | de curre |
nt | 6JR6 | | Horizontal
Amplifier | 275 1
175
70
Max
315 n | 125
 120
 positive | 25
0
pulse | 125
 570
 plate v | 4.5
34
oltage * | 5,600
=7,500; r | 11,300
nax d-c | at so | connecte
cket)
le curre | - 1 | 6JS6∎ | | Horizontal
Amplifier | 175
62 | 125
125
positive | 25
 0
 pulse | 125
 570
 plate | 4.5
 34
 voltage [| 5,600
-7,500; | 11,300
max d | k at | connect
socket)
ode cur | 1 | 6JS6-A | | Horizontal
Amplifier | 175
62
Max | 125
125
positive | 25
0
pulse p | 125
 570
 sam-plat | 4.5
 34
 tage ⊡ = | 5,600
 | ; max d- | to k | connect
at socke
de currer | t) [| 6JS6-B | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screén
Voits | Car
P | acitanc
icofarac | e in
Is | |---------------------------|--|---------------|----------------------------|--|-------------|-------------------------------|------------------------------|------------------------------|-------------------------------|----------------------------------|-------------------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6J\$6-C ■ | Beam Power
Amplifier | 12FY | 12-89 | 6.3 | 2.25 | 30 🏶 | 990 🏶 | 220 8 🆠
5.5 🏶 | 24 ▲ | 10 ▲ | 0.7 ▲ | | 6JT6 | Beam Pentode | 9QU | T-X | 6.3 | 1.2 | 17.5 🏟 | 770\$ ◈ | 220 ♦
3.5 ♦ | 15▲ | 6.5▲ | 0.26 ▲ | | 6JT6-A | Beam Power
Amplifier | 9 Q U | 12-95 | 6.3 | 1.2 | 17.5 🏶 | 7708 🍣 | 220 🏟
3.5 🏟 | 15 ▲ | 6.5 ▲ | 0.26 ▲ | | 6JT8 | Triode-Pentode | 9DX | 9-69 | 6.3 | 0.725 | 4.0 🏶 | 330 ◈ | 330 8 ⊕ | Pentod | le Section | on. | | 6JU6 | Beam Power
Amplifier | 9QL | T-X | 6.3 | 1.6 | 1.0 ♦
17 ♦ | 330 ◈ 770\$ ◈ | 220 🏟
3.5 🏟 | Triode
22 ▲ | Section
9.0 ▲ | | | 6J U8 | Quadruple Diode | 9PQ | 6-3 | 6.3 | 0.6 | _ | | Tube V | Voltage
is at 60 | Drop:
ma d-c | <u> </u> | | 6JU8-A | Quadruple Diode | 9PQ | 6-2 | 6.3 | 0.6 | | Tube | Voltage | | | | | 6JV8¶ | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.6 | 4.0 ♦ | 330 ♦ | 330 ◈ | Pentod | le Section | | | 6JW6¶ | Pentode | 9PU | 6-3 | 6.3 | 0.6 | 11.5 🏶 | 400 🏟 | | 16 ▲ | 5.0 ▲ | 0.13 | | 6JW8 | Triode-Pentode | 9DC | 6-2 | 6.3 | 0.43 | 1.2 | 250
250 | 1.0 ♦ 250 0.8 — | | le Section | | | 6JZ6 | Beam Power
Amplifier | 12GD | 12-79 | 6.3 | 1.5 | 18 🏶 | 770\$♦ | 220 ♦
3.5 ♦ | 24 ▲ | 8.5 ▲ | 0.34 | | 6JZ8 | Triode-Pentode | 12DZ | 9-58 | 6.3 | 1.2 | 7.0 | | 200 *
1.8 * | | le Secti | | | | | | | | | 1.0◈ | 250 ◈ | | | Section | | | 6K4 ⊛ | Medium-Mu
Triode | 6K4 | 3–2 | 6.3 | 0.15 | 3.0 | 250 | | 2.4 ▲ | 0.8 🛦 | 2.4 ▲ | | 6K5-G
6K5-GT
6K6-GT | High-Mu Triode Power Amplifier Pentode | 5U
7S | 12-8
9-17
9-11
or | 6.3 | 0.3 | 8.5 | 250
315 | 285
2.8 | 2.4 ▲
Single | 3.6 ▲
Tube | 2.0 | | | remode | | 9-41 | The state of s | | 7.0 | 315 | | Triode | es, Push
Conne
P tied) | | | 6K7
6K7-G
6K7-GT | Remote-Cutoff RF
Pentode | 7R | 8-4
12-8
9-18 | 6.3 | 0.3 | 2.75 | 300 | 300 \$
0.35 | 7.0
5.0
4.6 | 12.0
12.0
12.0 | 0.005
0.007
0.005 | | 6K8
6K8-G
6K8-GT | Triode-Hexode
Converter | 8K♥ | 8-2
12-8
9-24 | 6.3 | 0.3 | 0.75 | 300 | 150
0.7 | Osc Ici
Rgi = 5 | =0.15
0,000 o | ma
hms | | 6K11¶ | Three-Section Triode | 12BY | 9-56 | 6.3 | 0.6 | 2.75 ③
0.3 ⑤ | 330 ♦
330 ♦ | = | Section
Section
5. 6. 7 | n 1 (Pins
n 2 and
', and 2 | 3 (Pin
2, 3, 11 | | 6KA8¶ | Triode-Pentode | 9PV | 6-3 | 6.3 | 0.6 | 2.0 | 300 ◈ | 300\$ € | Pento | le Secti | | | | | | | | | 1.1 🏶 | 300 ◈ | | Triode | Section | n | Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------------|------------------------------|------------------------------|-------------------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------|---------------|--|--------------------------------
--------------------------------| | Horizontal
Amplifier | 175
60 | 125
125 | 25
0 | 130
600 | 2.8
32 | _ | 11,500 | <u>-</u> | (b.p. o
nected
k at s | i to
ocket) | 6JS6-C ■ | | | = 350 | ma. | ouise pia | ite voita | ige ◆ = | = 7,500 volt | s; max | a-c cath | ode curi | rent 😻 | | | Horizontal
Amplifier | 250
60
Max
175 m | 150
 150
positive | 22.5
0
pulse | 70
 390
plate v | 2.1
 32
oltage * | 15,000
=6,500; n | 7,100
nax d-c | at soc | onnecte
ket)
e curre | | 6ЈТ6 | | Horizontal
Amplifier | 250
60
Max
= 175 | 150
150
positive
ma | 22.5
0
pulse | 70
390
plate v | 2.1
32
voltage | 15,000
= 6,500; | 7.100
max d- | at soc | onnected
ket)
ode cur | | 6JT6-A | | Class A Amplifier Class A Amp | 200
35
250 | 100 | R _k = 82 0 2.0 | 17
50
1.5 | 3.5 | 50,000
-
37,000 | 20,000 | 100 | | | 6JT8 | | Horizontal
Amplifier | 130
50
Max
= 275 | 125
125
positive
ma | 20
0
pulse | 45
470
plate | 1.5
32
voltage | 18,000
• = 6,500; | 7,000
max d | kats | connect
ocket)
ode cur | 1 | 6JU6 | | Detector | Maxo | d-c outp | ut curre | nt per p | olate 🏶 = | =9.0 ma; m
>=54 ma | ax peak | inverse | voltage | ♦ =300 | 6JU8 | | Detector | Max o | d-c outp | ut curr | ent per | plate 🏶 | =9.0 ma; r
te • = 54 n | nax pea | k inver | se volta | ge ♦ = | 6JU8-A | | Class A
Amplifier
Class A | 125
40
200 | 125
125
— | 1.0
0
2.0 | 22
28
4.0 | 9.0 | 100,000
17,500 | 11,500 | 70 | = | | 6JV8¶ | | Amplifier
Class A | 250 | 150 | R _k = | 28 | 6.5 | 50,000 | 36,000 | | | <u> </u> | 6JW6¶ | | Amplifier
Class A | 100 | 100 | $\frac{56}{1.0}$ | 6.0 | 1.7 | l | 5,500 | | | l- <u>-</u> -1- | 6JW8 | | Amplifier
Class A
Amplifier | 200 | - | 2.0 | 3.5 | | _ | 3,500 | 70 | | _ | 03 # 8 | | Horizontal
Amplifier | 130
50
Max p
230 ma | 130
130
ositive | 20
0
pulse p | 46
450
late vo | 1.8
29
Itage � | 9,900
= 6,500; m | 9,000
ax d-c | athode | curren | t - | 6JZ6 | | Vertical
Amplifier | 120
45 | 110
110 | 8.0
0 | 46
 122
 te volts | 3.5 | 11,700
 | 7,100 | - ode cu | | 70 ma | 6JZ8 | | Vertical
Oscillator | 150
May d | c catho | 5.0 | 5.5 | 20 ma | 2,000; max
8,500 | 2,350 | 20 | | T - | | | Class A
Amplifier | 200 | - | R _k = 680 | 11.5 | - | 4,650 | 3,450 | 16 | <u> </u> | - | 6K4 ⊚ | | Class A
Amplifier | 250 | | 3.0 | 1.1 | | 50,000 | 1,400 | 70 | | - | 6K5-G
6K5-GT | | Class A
Amplifier | 315
250
100
285 | 250
250
100
285 | 21
18
7.0
R _b = | 25.5†
32†
9.0†
55† | 4.0†
5.5†
1.6†
9.0† | 110,000
90,000
104,000 | 2,100
2,300
1,500 | | 9,000
7,600
12,000
12,000 | 4.5
3.4
0.35
9.8 | 6K6-GT | | Class A
Amplifier | 285 | 285 | R _k = 400
25.5 | 55† | 9.01 | - | | _ | 12,000 | 10.5 | | | Vertical
Amplifier | 250
Max po | sitive p | 18
ulse pla | 37.5
te volta | ge 🗐 = 1 | 2,500
200 volts; n | nax d-c c | 6.8
athode | t
current | =25 ma | | | Class A
Amplifier | 250
250
100 | 125
100
100 | 3.0
3.0
1.0 | 10.5
7.0
9.5 | 2.6
1.7
2.7 | 600,000
800,000
150,000 | 1,650
1,450
1,650 | = | = | | 6 K7
6K7-G
6K7-GT | | Converter | 250 | 100 | 3.0 | 2.5 | 6.0 | 600,000 | 350 # | Eb (Tri | ode Osc
ode) =3. |) = -
8 ma | 6K8
6K8-G
6K8-GT | | Class A Amp
Class A
Amplifier • | 250
250 | = | 8.5
2.0 | 10.5
1.2 | | 7,700
62,500 | 2,200
1,600 | 17 | ————————————————————————————————————— | | 6K11¶ | | Class A
Amplifier
Class A Amp | 150
200 | 100 | R _k = 180 2.0 | 4.0 | 2.8 | 100,000
17,500 | 4,400 | 70 | _ | | 6KA8¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears sc | Tube | Classification | Base
Con- | Qut- | Fila- | Fila- | Max | Max | Max
Screen
Volts | Ca
J | pacitano
Picofara | e in
ds | |--------|-------------------------------|---------------|-----------------|---------------|-------------|------------------------------|---------------------------------|--|----------------|----------------------|----------------| | Type | by
Construction | nec-
tions | line
Dwg | ment
Voits | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | KD6 | Beam Power
Amplifier | 12GW | 12-118 | 6.3 | 2.85 | 33 🖲 | 9908 🍫 | 200 ♠
5.0 ♠ | 40 ▲ | 16 ▲ | 0.8 | | SKD8 | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.4 | 3.0 ♦ | | 330 \$ ♦
0.55 ♦ | Pentoc | l
le Sectio | on | | KE6 | Beam Power
Amplifier | 12G M | 12-79 | 6.3 | 1.5 | 2.5 ③ | 330 ⊕
770 \$ ⊕ | | Triode
22 ▲ | Section
9.0 ▲ | 0.7 | | 6KE8 | Triode-Pentode | 9DC | 6-2 | 6.3 | 0.4 | 2.0 ♦ | 280 ♦ | 280 8 🏶
0.5 🏶 | | le Section | | | SKF8 | Twin Pentode | 9FG | 6–3 | 6.3 | 0.3 | 1.1 | 1 | 150 ♦
0.75 ♦ | | - | - | | 6KG6 | Beam Power
Amplifier | 9RJ | T-X | 6.3 | 2.0 | 34 ♦ | 700\$ ♦ | 250 ♦
7.0 ♦ | | | | | SKL8 | Diode-Pentode | 9LQ | 6-3 | 6.3 | 0.3 | 3.0� | 300 � | 300\$ ◈ | Pento | le Section | on | | 5KM6 | Beam Power
Amplifier | 9QL | T-X or
12-70 | 6.3 | 1.6 | 20 🏟 | 770 8 🏽 | 0.6 ③ 220 ⑤ 3.5 ⑥ | Diode
22 ▲ | Section
9.0 ▲ | 1.24 | | KM8 | Diode Triple-Plate
Tetrode | 9QG | 6-3 | 6.3 | 0.3 | 1.0 | 330 ♦ | 330 2 ◆
0.65 ◆ | | _ | | | 6KN6 | Beam Power
Amplifier | 12GU | 12-82 | 6.3 | 3.0 | 30 ◈ | 7708 ◈ | 220 ③ 5.0 ⑤ | 44 ▲ | 18 ▲ | 1.04 | | 6KN8 | Twin Triode | 9AJ | 6-2 | 6.3 | 0.4 | 2.2 | 220 🗉 | | - | - | | | SKR8 | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.75 | 5.0 ③
2.0 ③ | 330 ◈ | 330\$ ♦ | | de Section | | | SKR8-A | Triode-Pentode | 9DX | 6-3 | 6.3 | 0.75 | 5.0 🏶 | 330 ◈ | 330 ♦
1.5 ♦ | | de Sectio | | | | | | | | | 2.0 🏶 | 330 ◈ | | Triode | Section | 1 | | 3KS6 | Gated-Beam
Discriminator | 7DF | 5–3 | 6.3 | 0.3 | _ | 330\$ ◈ | 330\$ ◈ | | - | - | | 8KS8¶ | Triode-Pentode | 9DX | 6–3 | 6.3 | 0.6 | 3.75 ♦ | | 1.1 🏶 | | le Section | | | 6KT6 | Semi-Remote-Cutoff
Pentode | 9PM | 6-2 | 6.3 | 0.3 | 3.1 ◈ | 330 ◈ | | | Section
3.0 ▲ | 0.019 | | SKT8 | Triode-Pentode | 9QP | 6-2 | 6.3 | 0.6 | 2.5 ③ | 330 ♦ | | | de Section | | | 6KU8 | Duplex-Diode
Pentode | 9LT | 9-69 | 6.3 | 0.725 | 4.0 🏶 | | 330 2 ⊕
1,1 ⊕ | 1 | 3.0 ▲ | 0.1 | | 6KV6 | Beam Power
Pentode | 9QU | 12-97 | 6.3 | 1.6 | 20 🏶 | 7708 🏵 | 220 ♦
2.0 ♦ | Diode
22 ▲ | Section
9.0 A | 0.64 | | SKV6-A | Beam Power
Pentode | 9Qt' | 12-97 | 6.3 | 1.6 | 28 🏶 | 900 🏶 | 220 ③
2.0 ⑤ | 22 ▲ | 9.0 ▲ | 0.6 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Voits | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|-----------------------|-----------------------|-----------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|--|--------------| | Horizontal | 150 | 110 | 22.5 | 100 | 2.0 | 6,000 | 14,000 | (b.p. | connect | ed to | 6KD6 | | Amplifier | 45
Max p
400 ma | 160
ositive | 0
pulse p | 1,100
late vo | 110
ltage 🏶 : | =7,000; m | ax d-c | k at s
athode | ocket)
curren | t 🏶 = | | | Class A | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | T — | | 6KD8 | | Amplifier
Class A Amp | 125 | | 1.0 | 13.5 | | | 7,500 | 40 | l — | | | | Horizontal
Amplifier | 130
60 | 130
130 | 20 | 50
410 | 1.75
24 | 11,000 | 9,100 | | | | 6KE6 | | - | Max p
230 ma | ositive | pulse p | late vo | ltage 🏶 = | =6,500; m | | athode | current | t 🏶 = | | | Class A
Amplifier | 125 | 125 | R _k = 33 | 10 | 2.8 | 125,000 | 12,000 | _ | - | - | 6KE8 | | Class A
Amplifier | 125 | - | R _k = 68 | 13 | - | 5,000 | 8,000 | 40 | - | - | | | Sync
Separator | 100 | 67.5 | $I_{c1} = 0.1 \text{ ma}$ | 2.8 | - | | 270 | - | $E_{c3}=0$ | volts | 6KF8 | | and AGC | 100 | 67.5 | 0 | l — | | | 1,750 | <u> </u> | Ec3 = 0 | volts | | | Keyer | (Chara
ber 3 o | cteristic
f apposi | s given
ite secti | are for | each sec | tion separ | ately wit | th plate | and gri | id num- | | | Horizontal | 160 | 160 | 0 | 1,400 | 45 | | 1 1 | (E _{c3} = | 0 volts |) - | 6KG6 | | Amplifier | 45
Max n | 160 | nulse n | 1.000 | | | —
nax d-c | , | de cur | İ | | | | | | Purse D | - VO | ltage 🔷 | | .a. u-c | Catilo | LE CUI | TOTAL ST | | | Class A
Amplifier
Detector | 100
Max d | 100
conton | Ecci
=0 | 5.5 | .0 ma | 550,000 | 4,300 | R _{g1} == | 2.2 Meg | gohms | 6KL8 | | Horizontal | 140 | 140 | 24.5 | 80 | 2.4 | 6,000 | 9,500 | (Ee3 = | =30 volt | (s) | 6KM6 | | Amplifier | Max p
= 275 r | 140
ositive
na | | 560
plate v | 31
voltage @ | = 6,500; | max d- | c cathe | ode cur | rent 🔷 | | | Class A
Amplifier | 100 | 100 | E _{cci}
=0
ed toge | 4.2 | 1.7 | 30,000 | 3,400 | $R_{g1} = 2$ | .2 mego | hms | 6KM8 | |
Horizontal | 130 | 130 | 20 | 100 | 4.0 | 4.000 | 16,000 | (h.n. | connect | ed to | 6KN6 | | Amplifier | 60 | 125 | | 800 | 50 | | max d-c | kats | ocket) | rent 🏶 | 022110 | | Class A
Amplifier • | 110 | - | 1.0 | 16 | | | 16,000 | 45 | | | 6KN8 | | Class A
Amplifier | 200 | 100 | R _k = 82 | 19.5 | 3.0 | 60,000 | 20,000 | _ | - | - | 6KR8 | | Class A
Amplifier | 125 | | R _k == 68 | 15 | | 4,400 | 10,400 | 46 | | | | | Avg. Char. | 200
35 | 100 | R _k = 82 | 19.5
54 | 3.0
13.5 | 60,000 | 20,000 | _ | _ | | 6KR8- | | Avg. Char. | 125 | _ | R _k = | 15 | _ | 4,400 | 10,400 | 46 | = | | | | FM Limiter-
Discrimi-
nator | 135 | 280 | _ | 5.0 | (R _{g2} = | 33,000 oh: | ms) (E _c | = +4.0 |) volts) | | 6KS6 | | Class A | 150 | 150 | R _k = 150 | 20 | 4.5 | 150,000 | 9,500 | | | - | 6KS8¶ | | Amplifier | 65 | 150 | 0 | 60 | 20 | | | | | | | | Class A Amp
Class A | 200
125 | 125 | 2.0 | 4.0
17 | 4.2 | 17,500
160,000 | 4,000
18,000 | 70 | 76 - | <u> </u> | OFTE | | Amplifier | | 1 | R _k = 56 | | | | | | Ec3 = 1 | 0 volts) | 6KT6 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.5 | 150,000 | 10,000 | _ | | - | 6KT8 | | Class A
Amplifier | 250 | _ | 2.0 | 1.8 | | 31,500 | 3,200 | 100 | | | | | Class A
Amplifier | 200 | 100 | R _k = 82 | 17 | 3.5 | 50,000 | 20,000 | | - | | 6KU8 | | | 50
Averag | 100
e diode | 0 current | 55
at 10 | 18
volts = 2 | .0 ma | | _ | _ | <u> </u> | | | HV Pulse
Shunt | 140
100 | 140
140 | 24.5 | 40
440 | 2.4
30 | 10,000 | 6,000 | (E _{c1} = | ·0 volts |) | 6KV6 | | Regulator | Max p | ositive | pulse i | plate v | oltage 🏶 | =6,500; | max d-c | catho | de cur | rent 🔷 | | | Pulse | $= 275^{\circ}$ | 140 | 24.5 | 40 | 2.4 | 10.000 | 6,000 | (Ecz | = 0 vol | ts) | 6KV6 | | Regulator | 100 | [140
ositive [| 0 | 440 | 30 | 6,500 vol | I — | l | | | | | Tube | Classification
by | X-Řa- | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | ₩
Max.
Screen | Caj
P | acitanc
icofarac | e in
Is | |---------------------------|--------------------------------|--|---------------|-------------------------------|---------------|---------------|------------------------------|---------------|----------------------------------|-----------------------------|----------------------|----------------| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6KV8 | Triode-Pentode | | 9DX | 6-3 | 6.3 | 0.775 | 5.0◆ | 300 ◈ | 300 \$ ♦
1.0 ♦ | Pentod | e Secti | on | | | | | | | | | 1,0♦ | 300 � | _ | Triode | Section | n | | GKY6 | Sharp-Cutoff
Pentode | | 9GK | 6-3 | 6.3 | 0.52 | 9.0� | 330◈ | 330 : ⊛
1.0⊛ | 14 ▲ | 6.0 ▲ | 0.16 ▲ | | 6 KY 8 | Triode-Pentode | | 9QT | T-X | 6.3 | 1.1 | 12 🄷 | 300 ◈ | 150 ♦
1.9 ♦ | Pentod | e Secti | on | | | | | | | | | 1.5 ◈ | 330 🏶 | | i | Section | | | 6KY8-A | Triode-Pentode | | 9QT | 9-107 | 6.3 | 1.1 | 12 🔷 | 300 ◈ | 150 ♦
1.9 ♦ | Pentod | le Secti | on | | | | İ | | | | | 1.5 ◈ | 330 🏶 | _ | 1 | Section | n | | 6KZ8¶ | Triode-Pentode | | 9FZ | 6-2 | 6.3 | 0.45 | 2.5 🏶 | 330 ◈ | 330 \$ ③
0.55 ③ | 1 | le Secti | | | | | | | | | | 2.5 🏶 | 330 🏶 | | İ | Section | | | 6L4 | Medium-Mu
Triode
(Acorn) | | 7BR | 4-2 | 6.3 | 0.225 | 1.7 | 500 | | 0.5 | 1.8 ▲ | 1.6 ▲ | | 6L5-G | Medium-Mu
Triode | | 6Q | 12-7 | 6.3 | 0.15 | _ | 250 | _ | 3.0 | 5.0 | 2.7 | | 6L6-G
6L6-GA
6L6-GB | Beam Power
Amplifier | | 7AC | 10-1
16-3
14-3
12-15 | 6.3 | 0.9 | 19 | 360 | 270
2.5 | Single
Single | | | | 0L0-GD | | | | 12-15 | | | | | | 2 Tub | es, Pusl | n-pull | | | | | | | | | | | | 1 | es, Pusl
es, Pusl | - | | | | | | | | | 19 | 275 | _ | 1 | Conne
P tied) | _ | | 6L6-GC | Beam-Power
Amplifier | | 7AC | 12-15 | 6.3 | 0.9 | 30 ◈
30 ◈ | 500 ♦ | 5.0 | Two T | Conne
P tied) | ush- | | 6L7 | Pentagrid Mixer | | 7T | 8-4
12-8 | 6.3 | 0.3 | 1.5 | 300 | 100 | - | - | T | | 6L7-G | | | | 12-8 | | | 1.0 | 300 | 150
1.0 | E _{c2} (
v peak | Injectio | n) =18 | | 6LB6 | Beam-Power
Amplifier | | 12GJ | 12-90 | 6.3 | 2.25 | 30 🖲 | 990\$ 🏶 | 200 ♦
5.0 ♦ | 33 ▲ | 18▲ | 0.44 🛦 | | 6LB8 | Triode-Pentode | | 9DX | 9–69 | 6.3 | 0.725 | 4.0 🏶 | 330 ◈ | 330 \$ ③ | Pento | ie Secti | on | | | | | | | | | 2.0 🏶 | 330 ◈ | - | Triode | Sectio | n | | 6LC6 | Beam Triode | (A) | 8ML | 12-36 | 6.3 | 0.2 | 40 🏶 | 27,000 | _ | 2.6 🛦 | 1.0 ▲ | 1.04 | | 6LC8¶ | Triode-Pentode | | 9QY | 6–3 | 6.3 | 0.6 | 2.0 ③
1.1 ③ | 300 € | 3008 € | · | de Sectio | | | 6LE8 | Twin Pentode | | 9QZ | 6-4 | 6.3 | 0.76 | 2.0 ◈ | 300 € | 150 * 2.0 * | - | T | T | | 6LF6 | Beam Power
Amplifier | | 12GW | T-X | 6.3 | 2.0 | 40◈ | 990:0 | | 37 ▲ | 18.5 | 2.5 🛦 | | 6LF8¶ | Triode-Pentode | 1 | 9DX | 6-3 | 6.3 | 0.6 | 3.75 | 330 🎕 | 3301 € | Pento | de Sect | ion | | | | | | | | | 1.1 | 330 € | · ··· | Triode | e Sectio | n | | | | | | | | | | | | | | | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A - X-Radiation Rated, and A - No X-Radiation Rating. Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|-----------------|------------------|----------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|---------------------|--|--------------------------------|--------------| | Class A | 200 | 125 | R _k = | 20 | 3.5 | 75,000 | 23,000 | _ | _ | | 6KV8 | | Amplifier \ | 125 | 125 | R _k = 82 | 16.5 | 3.1 | 55,000 | 21,000 | _ | _ | - | | | Class A
Amplifier | 200 | | 2.0 | 4.0 | | 17,500 | 4,000 | 70 | _ | | | | Class A
Amplifier | 200 | 135 | R _k = 47 | 30 | 5.2 | 40,000 | 30,000 | (g3 c
k at | onnecte
socket) | d to | 6KY6 | | Vertical
Amplifier | 135
50 | 120
120 | 10
0 | 39
170 | 3.0
20 | 18,000 | 8,400 | _ | = | = | 6KY8 | | rampinio: | Max p | ositive j | pulse pl | ate vol | tage 🔷 = | =2,000; ma | x d-c | athode | current | - ♦ | | | Vertical
Oscillator | | c catho | | ent 🏶 = | 22 ma | 40,000 | 1,600 | 64 | _ | | | | Vertical
Amplifier | 135
50 | 120
120 | 10 | 39
170 | 3.0 | 18,000 | 8,400 | _ | = | = | 6KY8-A | | ************************************** | Max p | ositive
a | pulse | plate v | | =2,000; | max d- | c catho | de cur | rent 🕸 | | | Vertical | 250 | | 1 3.0 1 | 1.4 | | 40,000 | 1,600 | 64 | | ı — | | | Oscillator
Class A | Max d-
125 | c catho | de curre | ent ⊕ = | 22 ma
4.0 | 200,000 | 7,500 | 1 | | | 6KZ8¶ | | Amplifier | | 120 | ļ | <u> </u> | 1.0 | | 1 | 40 | | | 0.7.200 | | Class A
Amplifier | 125 | | 1.0 | 13.5 | | 5,400 | 8,500 | 46 | - | | | | Class A
Amplifier | 80 | | R _k = 150 | 9.5 | | 4,400 | 6400 | 28 | _ | | 6L4 | | Class A Amp | 250 | | 9.0 | 8.0 | _ | 9.000 | 1.900 | 17 | | | 6L5-G | | Class A
Amplifier | 250 | 250 | 14 | 72† | 5.0† | 22,500 | 6,000 | _ | 2,500 | 6.5 | 6L6
6L6-G | | Class A | 350 | 250 | 18 | 54† | 2.5† | 33,000 | 5,200 | _ | 4,200 | 10.8 | 6L6-GA | | Amplifier
Class A | 270 | 270 | 17.5 | 134† | 11† | 23,500 | 5,700 | | 5,000 | 17.5 | 6L6-GB | | Class A
Amplifier
Class AB ₁ | 360 | 270 | 22.5 | 88† | 5.0† | | | | 3,800 | 18 | | | Amplifier | 360 | 270 | 22.5 | 88† | 5.0† | | | | 3.800 | 47 | | | Class AB ₂
Amplifier
Class A
Amplifier | 250 | | 20 | 40† | - | 1,700 | 4,700 | 8,0 | 5,000 | 1.4 | | | Class AB ₁ | 450 | 400 | 37 | 116+ | 5.61 | | | | 5,6001 | 55 | 6L6-GC | | Amplifier | (Chara | ctarietic | s civer | above | for BLB | 6L6G, 6L | 6GA an |
 d=61.60 | i Pi | | | | | apply a | also.) | | | | | | | | | | | Class A
Amplifier | 250 | 100 | 3.0 | 5.3 | 6.5 | 600,000 | 1,100 | E _{c8} = - | 3.0 vol | ts | 6L7
6L7-G | | Mixer | 250 | 150 | 6.0 | 3.3 | 9.2 | 1,000,000 | 350 # | E _{c3} = - | -15 volt | s | - | | Horizontal | 150 | 110 | 20 | 105 | 2.0 | 6,600 | 13,400 | (b.p. | connect | ed to | 6LB6 | | Amplifier | 45
Max pe | 160
ositive p | 0
oulse pla | 900
ite volta | 110
age ⊕ = | 7,000; max | d-c cat | kats
hode cu | ocket)
rrent 🏽 | | | | Class A | 200 | 100 | Rk = | 17 | 3.5 | 50,000 | 20,000 | | | 1 | 6LB8 | | Class A
Amplifier | 50 | 100 | 82
0 | 55 | 18 | _ | | | _ | | | | Class A
Amplifier | 125 | - | Rk = 68 | 13 | - | 6,000 | 5,000 | 30 | - | - | | | HV Shunt
Regulator | Unregu
= 1.6 | | l-c supp | oly voit | age = | 36,000 volt | s; max | d-c pla | te curr | ent 🏶 | 6LC6 | | Class A
Amplifier | 150 | 100 | Rk =
180 | 4.0 | 2.8 | 100,000 | 4,400 | _ | - | - | 6LC8¶ | | Class A
Amplifier | 200 | _ | 2.0 | 4.0 | - | 17,500 | 4,000 | 70 | - | | | | Color De-
modulator | 100 | 100 | 2.5 | 8.0 | 15 | 50,000 | 5,800 | | Ec3 = | 0 volts | 6LE8 | | Horizontal
Amplifier | 160
75 | 160
160 | 30 | 175
1350 | 2.5 | 9 0001- | = | (Ec. | 3 =0 vol | 6LF6 | | | Class A | 100 | 150 | puise p | 20 | tage ⊗ == | 8,000 volts | 11,000 | 1 | T- | | 6LF8¶ | | Amplifier { | 75
200 | 150 | 0 2.0 | 50
4.0 | 12 | 17,500 | 4,000 | 70 | _ | - | 92.0 | Metal tubes are shown in bold-face type,
miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | X-Ra- | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | Ca _j | pacitanc
Picofarac | e in
Is | |---------------|--------------------------------------|-------------------|---------------|--------|---------------|---------------|------------------------------|---------------------------|-----------------------------------|-----------------|-----------------------|----------------| | Туре | Construction | diation
Rating | nec-
tions | Dwg. | Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6LG6■ | Beam Power
Amplifier | | 12HL | 12-89 | 6.3 | 2.0 | 28◈ | 990:⊛ | 200 ◈
5.0 ◈ | 25 ▲ | 13 ▲ | 0.8 🛦 | | 6LH6 | Beam Triode | 0.5
mR/hr | 8ML | 12-36 | 6.3 | 0.2 | 40 ◈ | 27,000
• | - | 2.6 ▲ | 1.0 ▲ | 1.0 ▲ | | 6LH6-A | Beam Triode | 0.5
mR/hr | 8ML | 12-36 | 6.3 | 0.2 | 40 🗃 | 27,000
D | - | 2.6 ▲ | 1.0▲ | 1.0 🛦 | | 6LJ6 | Beam Triode | (A) | 8MQ | 12-36 | 6.3 | 0.2 | 40 ◈ | 27,000
• | - | 2.6 ▲ | 1.0▲ | 1.0 ▲ | | 6LJ6-A | Beam Triode | 0.5
mR/hr | 8MQ | 12-21 | 6.3 | 0.2 | 40 🖲 | 27,000
• | - | 2.6 ▲ | 1.0▲ | 1.0 🛦 | | 6I.J8 | Triode-Pentode | | 9GF | 6–2 | 6.3 | 0.4 | 2.0 ③
2.0 ④ | 280 ③ 280 ④ | 280 \$ �
0.5 �
— | | e Section | | | 6LM8 | Triode-Pentode | | 9AE | 6-2 | 6.3 | 0.45 | 2.5 🆠 | 350 � | 330 8 🏶 | Pentod | le Sectio | n | | | | | | | | | 2.5 🏶 | 330 🏶 | | - | Section | | | 6LM8-A¶ | Triode-Pentode | | 9AE | 6-2 | 6.3 | 0.45 | 3.75 ♦ 2.5 ♦ | 350 ◈ | 330 8 🏵 | | le Section
Section | | | 6LN8¶ | Triode-Pentode | | 9AE | 6–2 | 6.0 | 0.45 | 1.7 | 250
250 | 200
0.75
— | | e Section | | | 6LQ6 | Beam Power
Amplifier | | 9QL | 12-117 | 6.3 | 2.5 | 30◈ | 990:⊛ | 220 ◈
5.0 ◈ | 22 ▲ | 11 🛦 | 0.56 | | 6LQ8 | Triode-Pentode | | 9DX | 6–3 | 6.3 | 0.775 | 5.0 ③ 2.0 ③ | 300 ♦ | 300\$ | l . | le Section | | | 6LR6 | Beam Power
Amplifier | | 12FY | 12-90 | 6.3 | 2.5 | 30◈ | 990:⊛ | 220 ◈
5.0 ◈ | 33 ▲ | 12 ▲ | 0.47 | | 6LR8 | Triode-Pentode | | 9QT | 12-65 | 6.3 | 1.5 | 14 ③ 2.5 ④ | 400 ③ | 300 (a)
2.75 (b) | 1 | le Section | | | 6LT8¶ | Duplex-Diode
Pentode | | 9RL | 6–2 | 6.3 | 0.6 | 3.1 🏟 | 330 ◈ | 330 8 ♠
0.65 ♠ | 1 | le Section | | | 6LU6 | Semi-Remote-
Cutoff RF
Pentode | | 7CM | 5–2 | 6.3 | 0.4 | 4.0 🏶 | 300 ◈ | 300 8 ♦ | | 2.2▲ | 0.058 | | 6LU8■ | Triode-Pentode | | 12 DZ | 12–57 | 6.3 | 1.5 | 14 ③ 2.5 ③ | 400 • | 300 3
2.75 3 | l | le Section | | | 6LV6 = | Beam Power
Amplifier | | 12GW | T-X | 6.3 | 2.0 | 40 ◈ | 9908 @ | 275 ③ 9.0 ⑤ | 37 ▲ | 18.5 ▲ | 2.5 | | 6LW6 | Beam Power
Amplifier | | 8NC | 14-7 | 6.3 | 2.65 | 40 🏶 | 990\$@ | 280 ♦
7.0 ♦ | 40▲ | 14.5 | 1.04 | | 6LX6■ | Beam Power
Amplifier | | 12JA | 12-136 | 6.3 | 2.55 | 33 🏶 | 9908 @ | 250 *
5.0 * | 40▲ | 17 ▲ | 1.04 | | 61.X8¶ | Triode-Pentode | | 9DC | 6–2 | 6.0 | 0.45 | 1.2 | 250
250 | 250
0.8 | 1 | le Section | | | | | <u> </u> | <u></u> | | l | | | | | | | - | See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ■Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | | | | | | | | | | | | 123 | |--|-----------------------------|--------------------------------------|------------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|------------------|--|--------------------------------|--------------| | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Horizontal
Amplifier | 175
60
Max
= 31 | 125
 125
 positiv
 5 ma. | 23
0
e pulse | 90
600
plate ve | 1.7
42
oltage 🗷 | $\frac{7,500}{-7,500}$ vol | 11,500
ts; max | d-c cat | ΤΞ | rrent 🏽 | 6LG6 | | HV Shunt
Regulator | Unreg
1.6 ma | | i-c supp | oly volta | ige = 3 | 6,000 volts | ; d-c pla | ite curr | ent 🔷 : | = | 6LH6 | | HV Shunt
Regulator | Unreg
1.6 ma | ulated o | i-c supp | oly volta | ige = 3 | 6,000 volts | ; d-c pla | ite curr | ent = | • | 6LH6-A
● | | HV Shunt
Regulator | Unregi | | l-c supp | ly volta | ige = 3 | 6,000 volts | ; d-c pla | te curre | ent 🚸 : | - 1 | 6LJ6 | | HV Shunt
Regulator | Unreg | | d-c supp | ply volt | age == | 36,000 volt | ts; max | d-c pla | ite curre | ent 🖲 | 6LJ6-A | | Class A | 125 | 125 | R _k = | 12 | 3.5 | 125,000 | 13,000 | | | ı — I | 6LJ8 | | Amplifier
Class A
Amplifier | 125 | | 33
R _k =
68 | 13 | _ | 5,000 | 8,000 | 40 | - | - | | | Class A | 125 | 125 | 2.0 | 12 | 4.0 | 150,000 | 6,000 | | | | 6LM8 | | Amplifier
Class A
Amplifier | 125 | | 1.0 | 13.5 | _ | 5,400 | 8,500 | 46 | | _ | | | Class A
Amplifier | 125 | 125 | 2.0 | 12 | 4.0 | 150,000 | 6,000 | _ | | | 6LM8-A | | Class A
Amplifier | 125 | | 1.0 | 13.5 | _ | 5,400 | 8,500 | 46 | | | | | Class A | 170 | 170 | 2.0 | 10 | 2.8 | 400,000 | 6,200 | _ | _ | - 1 | 6LN8¶ | | Amplifier
Class A
Amplifier | 100 | _ | 2.0 | 14 | _ | 4,000 | 5,000 | 20 | | | | | Horizontal
Amplifier | | | 35
0
pulse | 95
710
plate vo | 2.4
55
Itage⊛ | 7,000
=7,500; ma | 7,500
x d-c ca | <u> </u> | =30 vo
urrent € | - 1 | 6LQ6 | | Class A | 350 r
125 | na.
125 | R _k = | 16.5 | 3.1 | 55,000 | 21,000 | T == | T == - | | 6LQ8 | | Amplifier
Class A
Amplifier | 125 | | 82
R _k =
68 | 15 | | 4,400 | 10,400 | 46 | _ | - | | | Horizontal
Amplifier | 175
60
Mar | 110
110 | 20
0 | 140
700 | 2.4
35 | 5,300
7,500; max | 16,000 | i tok | connect
at socke | t) [| 6LR6 | | Class A | 135 | 120 | 10 | 56 | 3.0 | 12,000 | 9,300 | — | - | 373 IIIa. | 6LR8 | | Amplifier
Class A
Amplifier | 250 | - | 4.0 | 2.3 | _ | 16,000 | 3,600 | 58 | _ | - | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 10 | 3.4 | 200,000 | 13,000 | | 4 20 | - | 6LT8¶ | | Class A | 250 | -c outp | ut curre | 9.0 | 2.3 | 280,000 | 3,900 | Voits : | at 20 ma | 1 a-c - | 6LU6 | | Amplifier | | | 820 | | | | | | | | 6LU8 | | Class A
Amplifier
Class A
Amplifier | 135
250 | 120 | 10
4.0 | 56
2.3 | 3.0 | 12,000
16,000 | 9,300
3,600 | 58 | _ | _ | 0200 | | Amplifier Horizontal Amplifier | 160
75 | 160
160 | 30 | 175
1350 | ${2.5}$ | | | (E _{r3} | = 0 vol | ts) | 6LV6 | | 11mpiner | Max | ositive | pulse p | late vol | | = 8,000 vc | olts. | | | | | | Horizontal
Amplifier | 250
60
Max | 250
110
positive | 56
0 | 125
650
plate vo | 4.2
37 | <u> </u> | 12,000
volts; d | -c cathe | ode cur | ent 🏟 | 6LW6 | | Ampimei | | 1 | , , | | | | | | , | | | | | = 400 | | | | | | 144000 | | 1 | | 6LX6 | | Horizontal
Amplifier | = 400
175
60 | 110
110 | 21
0
pulse pl | 125
750
ate volt | 3.3
4.2
age 🇆 | = 7,000 vol | 14,000
ts; max | d-c cath | ode cur | rent 🌢 | OLAU = | | Horizontal | = 400
175
60
Max p | 110
110 | 1 0 | 750 | 4.2 | · — | , , | d-c catl | ode cur | rent 🌢 | 6LX8¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, s, s, etc. indicate tube sections. ■ Maximum screen dissipation appears mediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | X-Řa- | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max.
Plate | Max.
Plate | Max.
Screen | Car
P | acitanco
icofarad | e in
Is | |--------|---------------------------------------|--|---------------|--------------|---------------|---------------|------------------------------|---------------|-------------------------------|--|-----------------------------|--| | Type | by
Construction | diation
Rating | nec-
tions | line
Dwg. | Volts | Amps | Watts | Volts | Volts
and
Watts | Input | Out-
put | Grid-
Plate | | 6LY8 | Triode-Pentode | | 9DX | 6–3 | 6.3 | 0.75 | 5.0 🏟 | 330 � | | Pentod | e Section | on. | | | | | | | | | 1.0 ◈ | 330 🏶 | | Triode | Section | i | | 6LZ6 | Beam Power
Amplifier | | 9QL | 12-117 | 6.3 | 2.3 | 30 🏶 | 9902 | 220 ③
5.0 ⑤ | 22 🛦 | 11 🛦 | 0.6 | | 6M3 | Half-Wave
High-Vacuum
Rectifier | , | 8GV | T-X | 6.3 | 3.0 | 8.0 | | l
/oltage
: 640 ma | | | l | | 6M11 | Twin-Triode
Pentode | | 12CA | 9-58 | 6.3 | 0.75 | 3.1 🏶 | 1 | 330 2 �
0.65 � | Pento | le Section | on | | | | | | | | | 2.25 | 330 € | | Triode | Section | ıs | | 6MA6 | Beam Triode | 0.5
mR/hr | 8NP | 12-21 | 6.3 | 0.2 | 40 € | 30,000
(E) | _ | 2.4 🛦 | 0.88 ▲ | 0.03 | | 6M B6 | Beam Power
Amplifier | | 12FY | T-X | 6.3 | 2,25 | 35 ◈ | 9908 🏶 | 225 ♦
7.0 € | 35 ▲ | 17▲ | 0.5 | | 6MB8 | Triode-Pentode | - | 9FA | 6-2 | 6.3 | 0.4 | 2.0 🏶 | 280 € | | Pento
| le Section | on | | | | | | | | | 2.0 🏶 | 280 🏶 | 0.5 | Triode | Section | ı | | 6MC6 | Beam Power
Amplifier | | 9QL | T-X | 6.3 | 2.85 | 33 🏶 | 9908 🏶 | 250 ③
5.0 ④ | 40▲ | 16 ▲ | 1.0▲ | | 6MD8 | Triple Triode | - | 9RQ | T-X | 6.3 | 0.9 | 3.0 ◈ | 330 ◈ | - | = | <u> </u> | - | | 6ME6 | Beam Power
Amplifier | | 9QL | 12-117 | 6.3 | 2,3 | 30 ◈ | 9908 🏶 | 220 ♦
5.0 ♦ | 22 ▲ | 11 🛦 | 0.6 ▲ | | 6ME8 | Double Plate
Sheet Beam
Tube | | 9RU | 6-3 | 6.3 | 0.3 | 2.0 ♦ | 400 🏶 | 400 *
2.0 * | _ | | _ | | 6MF8 | Triode-Pentode | | 12DZ | 12-57 | 6.3 | 1.4 | 12. | 400€ | 300◈ | Pentoc | le Section | n | | | | | | | | | 2.5� | 400� | 2.75 | Triode | Section | ı | | 6MG8 | Triode-Pentode | | 9DC | 6-2 | 6.3 | 0.45 | 2.0 ③
2.5 ④ | 330 3 | 300 \$ | ! | ie Section | | | 6MJ8 | Triple Triode | | 12HG | 9-60 | 6.3 | 0.9 | 3.0♦ | 330⊛ | _ | 2.9 ₁ ▲
2.9 ₂ ▲
3.0 ₃ ▲ | 0.361 A
0.62 A
0.73 A | 2.8 ₁ A
2.8 ₂ A
2.8 ₃ A | | 6MK8 | Twin Pentode | | 9FG | 6-3 | 6.3 | 0.3 | 1.10 | 300◈ | 150 ◈
0.75 ◈ | 5.0. | = | - | | 6MK8-A | Twin Pentode | † | 9FG | 6-3 | 6.3 | 0.3 | 1.1 | 300 ◈ | | | [= | 1- | | 6ML8 | Triple Triode | | 9RQ | 6-2 | 6.3 | 0.675 | 2.0♦ | 330⊛ | 1 - | 1- | † - | F | | 6MN8 | Triple Triode | | 12HU | 9-60 | 6.3 | 0.9 | 3.0◈ | | | 4.6 ▲ | 0.331
0.572
0.651 | | | 6MQ8 | Triode-
Pentode | | 9AE | 6.2 | 6.3 | 0.535 | 2.5 3 | 1 ' | 0.55 | | ode Secti | | | 6MU8¶ | Triode- | | 9AE | 6-3 | 6.3 | 0.6 | 3.75 | 330 € | | Pent | ode Sec | tion | | | Pentode | 1 | | | | | 2.5 | 330 € | 1.1 | Trio | ie Secti | on | \$See pages 20 and 21 for X-Radiation Rated Recommended Replacement Chart and Symbol Definitions— A - X-Radiation Rated, and A - No X-Radiation Rating. Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Class A Amplifier TV Damper TV Damper Ma Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Final Part Amplifier Class A Amplifier Horizontal Amplifier Final Part Amplifier Elass A Amplifier Final Part Amplifier Amplifier Final Part A | 15 100 — 125 125 125 125 125 125 125 125 125 125 | ut currer rent = 1. R_k = 56 R_k = 120 d-c supple 20 0 0 pulse pla | 11 8.0 oly volt | 3.4 | = 7,500 v
x peak inv
200,000
7,250
36,000 volt | 13,000
8,000 | tage • | =6,000 | volts; | 6LY8 6LZ6 6M3 6M11 | |--|---|---|---|---|---|---|-------------------------|---------------------------|--------------------|--------------------| | Amplifier Class A Amplifier Horizontal Amplifier TV Damper Ma Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Total To | 125 | 25
0 e pulse p
ut currer
rrent = 1. R _k = 56
R _k = 120
d-c supp | 1.0
140
1800
slate volume
100 ma
11
8.0
110
660 | 2.0 56 tage | 6,000
= 7,500 v
x peak inv
200,000
7,250
36,000 volt | 11,000
volts; d-
verse vol
13,000
8,000 | c catho | =6,000 | volts; | 6M3 | | Amplifier TV Damper Ma ma: Class A Amplifier Class A Amplifier HV Shunt Regulator Horizontal Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Total State Sta | 125 | 0 e pulse p ut currer rent = 1, R_k = | 800 | 56
 tage ◆
 ma; ma
 3.4
 | = 7,500 v
x peak inv
200,000
7,250
36,000 volt | volts; d-
verse vol
13,000
8,000 | tage • | =6,000 | volts; | 6M3 | | Class A Amplifier Class A Amp HV Shunt Regulator Horizontal Amplifier Class A
Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Horizontal Amplifier Horizontal Amplifier Figure 6 Horizontal Amplifier Horizontal Amplifier | x peak cure 25 125 | $R_{k} = 56$ $R_{k} = 120$ $d-c \text{ supp}$ 20 0 pulse pla | 1100 ma 11 8.0 0ly volt 110 660 | 3.4
—
age = 3 | 200,000
7,250
36,000 volt | 13,000 |
58 | | | 6M11 | | Amplifier Class A Amp Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Elass A Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier Figure 6 Horizontal Amplifier | 25 — aregulated 1.5 ma. 110 110 ax positive 400 ma. 125 | $ \begin{array}{c} 56 \\ R_k = \\ 120 \end{array} $ d-c supp $ \begin{array}{c} 20 \\ 0 \end{array} $ pulse pla | 8.0
oly volt | age = : | 7,250
36,000 volt | 8,000 | | te curre | ent 📵 | _ | | HV Shunt Regulator Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Figure 4 Horizontal Amplifier Horizontal Amplifier Figure 5 Horizontal Amplifier Horizontal Amplifier | regulated 1.5 ma. 110 110 ax positive 400 ma. 5 125 | d-c supp | oly volt | 2.0 | 36,000 volt | | | ite curre | ent 🖲 | 6MA6 | | Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Class A Amplifier The state of | 110
ax positive
400 ma.
5 125 | 0
pulse pla | 660 | 2.0 | | | | | i | • | | Class A Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Class A Amplifier Horizontal Amplifier Amplifier | 5 125 | (D | acc voite | 42 | 5,000
= 8,000 volt | 14,000
s; max o | _
l-c cath | ode cur | -
rei.c 🏈 | 6M B6 ■ | | Amplifier Class A Amplifier Horizontal Amplifier Class A Amplifier Horizontal Amplifier Horizontal Amplifier Horizontal Amplifier | | 181 = | 10 | 2.8 | 125,000 | 12.000 | | Г | + | 6M B8 | | Horizontal Amplifier 66 Max = Class A Amplifier 4 Horizontal Amplifier 55 | 5 | R _k = 33
R _k = 68 | 13 | | 5,000 | 8,000 | 40 | _ | _ [| 0 M B8 | | Class A Amplifier Horizontal Amplifier 55 | 5 110
0 110
ax positive
400 ma | 21 0 | 125
750
ate volt | 3.3
42
age 🏶 = | 6,000
= 8,000 vol | 14,000
ts; max | d-c cati | ode cur | rent 🏶 | 6MC6 | | Horizontal 175
Amplifier 55 | | 10.5 | 11.5 | T | 5,500 | 3,100 | 17 | T — | r=+ | 6MD8 | | Me | | 25 | 130
580 | 2.8 | 5,800 | 9,600 | = | 三 | | 6ME6 | | 1 == | ax positíve
350 ma. | pulse pl | ate volt | age 🚸 = | ≈ 8,000 voli | ts; max | i-c cath | ode cur | rent 🔷 | | | Color TV 25
Synchronous
Detector (Windows)
Tot | ith plates | e chang
ie other | e on e
deflect | ither de
or requi | eflectors (eflector wired to switimum. | 4,400
pins l
th an
itch the | and 2
equal
plate | grou
and or
current | nded.) posite from | 6ME8 | | Class A 250
Amplifier | 250 | 20 | 50 | 3.5 | 5,000 | 4,100 | | _ | - | 6MF8 | | Class A 250
Amplifier
Class A 17 | | 4.0 | 2.6 | 2.8 | 14,000 | 4,100 | 58 | | - | | | Amplifier
Class A
Amplifier | 1 | R _k = 56 | 18 | 2.8 | 400,000
5,000 | 6,200
8,500 | 40 | _ | _ | 6MG8 | | Class A
Amplifier ♠ |) - | 10.5 | 10 | - | 5,600 | 3,000 | 17 | | - | 6MJ8 | | | Grid curre | nt adjuste | | | (Both see | c) | | <u> </u> | | 6MK8 | | Color De-
modulator ♠ (G | | t adjuste | 2.0
d for 10 | 4.4
00 micro | (Both Sec
amperes d- | tions Or
c) | erating | :) | | 6MK8-A | | Class A
Amplifier ♠ 125 | - | 1.0 | 111 | | 6,400 | 6,700 | 43 | | | 6ML8 | | Class A
Amplifier • | | 1.0 | 11 | _ | 5,500 | 9,000 | 50 | _ | _ | 6MN8 | | Class A 125
Amplifier
Class A 150 | | R _k = 62
R _k = | 12
18 | 4.5 | 150,000
5,000 | 10,000
5,000 | 40 | _ | | 6MQ8 | | Amplifier | | 56 | | | <u> </u> | | 20 | | | | | Class A 150
Amplifier
Class A 125
Amplifier | 1 | R _k = 150 1.0 | 19
115 | 4.2 | 165,000
5,800 | 9,000 | —
35 | _ | | 6MU8¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
cofarad | s | |--|---|---------------|----------------------|---------------|---------------|--------------|------------------|-------------------------------|-------------------|-------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 3MV8* | Triode-Pentode | 9DX | 6-2 | 6.3 | 0.6 | 2.5 🏶 | 330 ŵ | 330 8 🏵 | Pentoc | le Section | on | | | | | | | | 1.0 🏶 | 330 ◈ | | Triode | Section | 1 | | 6MY8 ■ | Triode-Pentode | 12DZ | 12-57 | 6.3 | 1.45 | 16 🏶 | 400 🏶 | 300 ♦
2.75 ♦ | Pentoc | le Section | on | | | | | | | | 2.5 🏶 | 400 🏶 | 2.10 · | Triode | Section | 1 | | 6N4 | Medium-Mu Triode | 7CA | 5-1 | 6.3 | 0.2 | 3.0 | 180 | | 3.0 | 1.6 | 1.1 | | 6N5 | Electron Ray
Indicator
same as 6AB5 | | | | | | | | | | | | 6N6-G | Direct-Coupled Power
Amplifier Triode | 7AU | 14-3 | 6.3 | 0.8 | 13.5
2.5 | 300 | 300 | | _ | _ | | 6N7
6N7-G
6N7-GT | Twin-Triode Power
Amplifier | 8B | 8-6
14-3
9-11 | 6.3 | 0.8 | 1.0 ♠ | 300 | _ | Push | ections
-pull
ections
llel | | | 6P5-GT | Medium-Mu
Triode | 6Q | 9-11 | 6.3 | 0.3 | 1.25 | 250 | | 3.4 | 5.5 | 6.2 | | 6P7-G | Triode-Pentode | 7U | 12-8 | 6.3 | 0.3 | 1.7
0.4 | 250
100 | 100 | Pentod
Triode | e Section
Section | on
L | | 6 07
6 07 -G
6 07 -GT | Duplex-Diode High-Mu
Triode | 7V | 8-4
12-8
9-18 | 6.3 | 0.3 | _ | 300 | | _ | _ | - | | 6Q11¶ | Three-Section
Triode | 12BY | 9-56 | 6.3 | 0.6 | 3.0 * | 330 ◈ | | 10)
Section | 1 (Pin
s 2 and
5, 6, 7, | 3 | | 6R3 | Half-Wave, High-
Vacuum Rectifier | 9CB | 6-8 | 6.3 | 0.81 | - | Tube V
16.3 V | oltage | | | | | 6R7
6R7-G
6R7-GT | Duplex-Diode
Medium-Mu Triode | 7 V | 8-4
12-8
9-17 | 6.3 | 0.3 | 2.5 | 250 | Ī — | 4.8 | 3.8 | 2.4 | | 6R8 | Triple-Diode,
Low-Mu Triode | 9E | 6-2 | 6.3 | 0.45 | 2.5 | 250 | | | | T = | | 6.54 | Medium-Mu Triode | 9AC | 6-3 | 6.3 | 0.6 | 8.5� | 550 ◈ | _ | 4.2 ▲ | 0.6 ▲ | 2.4 ▲ | | 654-A¶ | Medium-Mu Triode | 9AC | 6-3 | 6.3 | 0.6 | 8.5 🏈 | 550 ◈ | _ | 4.2 ▲ | 0.6 ▲ | 2.4 ▲ | | 6S7
6S7-G | Remote-Cutoff RF
Pentode | 7R | 8-2
12-8 | 6.3 | 0.15 | 2.25 | 300 | 300 \$
0.25 | 6.5 | 10.5
8.0 | 0.005 | | 6S8-GT | Triple-Diode
High-Mu Triode | 8CB | 9-23.
9-48 | 6.3 | 0.3 | 0.5 | 300 | | | _ | = | | 6SA7-GT | Pentagrid Converter | 8R♥
8AD♥ | 8-1
9-11,
9-41 | 6.3 | 0.3 | 1.0 | 300 | 1.0 | $R_{gi} = 3$ | =0.5 n
20,000 c | hms | | 6SB7-Y | Pentagrid Converter | 8R ♥ | 8-1 | 6.3 | 0.3 | 2.0 | 300 | 100 | Osc Ic
Rg1 = 2 | =0.35
0,000 o | ma
hms | | 6SC7-GT | High-Mu Twin-Triode | 88 | 8-1
9-11 | 6.3 | 0.3 | | 250 | | _ | | - | | 6SD7-GT | Semi-Remote-Cutoff
Pentode | 8N | 9-12 | 6.3 | 0.3 | 4.0 | 300 | 125
0.4 | 9.0 | 7.5 | 0.003 | | 6SE7-GT | Sharp-Cutoff Pentode | 8.N | 9-12 | 6.3 | 0.3 | 4.0 | 300 | 125
0.4 | 8.0 | 7.5 | 0.005 | | 6SF5
6SF5-GT | High-Mu
Triode | 6AB | 8-1
9-11 | 6.3 | 0.3 | | 300 | - | 1 = | = | - | | 6SF7 | Diode Remote-Cutoff
Pentode | 7AZ | 8-1 | 6.3 | 0.3 | 3.5 | 300 | 300 1
0.5 | 5.5 | 6.0 | 0.004 | | 6SG7-GT | Semi-Remote-Cutoff RF
Pentode | 8BK | 8-1
9-12 | 6.3 | 0.3 | 3.0 | 300 | 300 \$
0.6 | 8.5
8.5 | 7.0
7.0 | 0.003 | | 6SH7
6SH7-GT | Sharp-Cutoff RF
Pentode | 8BK | 8-1
9-12 | 6.3 | 0.3 | 3.0 | 300 | 300 8
0.7 | 8.5 | 7.0 | 0.003 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. *Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|-----------------------|-------------------|----------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------|--------------------|--|--------------------------------|-------------------------------| | | 125 | 125 | 1.0 | 13 | 4.0 | 150,000 | 9,000 | | | | 6MV8* | | Amplifier
Class A
Amplifier | 250 | - | 2.0 | 2,5 | - | 25,000 | 4,000 | 100 | - | - | | | Class A
Amplifier | 135 | 120 | 10 | 56 | 3.0 | 12.000 | 9.300 | | _ | | 6MY8 | | Amplifier
Class A
Amplifier | 45
250 | 125 | 0
4.0 | 200
2.3 | 20 | 16,000 | 3,600 | -
58 | = | = | | | Class A
Amplifier | 180 | | 3.5 | 12 | | 5,400 | 6,000 | 32 | | | 6N4 | | | | | | | | | | | | | | | Class A
Amplifier | 300
Input | 300
 Plate | 0 | 45 | 8.0 | 24,000 | 2,400 | _ | 7,000 | 4.0 | 6N6-G | | Class B | 300 | - | 0 | 35t | † <u>-</u> - | | | | 8,000‡ | 10 | 6N7 | | Amplifier
Class A
Amplifier | 294 |
_ | 6.0 | 7.0 | _ | 11,000 | 3,200 | 35 | - | _ | 6N7
6N7-G
6N7-GT | | Class A
Amplifier | 250 | | 13.5 | 5.0 | | 9,500 | 1,450 | 13.8 | | _ | 6P5-GT | | Class A Amp
Class A Amp | 250
100 | 100 | 3.0
3.0 | 6.5
3.5 | 1.5 | 850,000
16,000 | 1,100
500 | 8.0 | | | 6P7-G | | Class A
Amplifier | 250
100 | = | 3.0
1.0 | 1.0
0.8 | = | 58,000
58,000 | 1.200
1,200 | 70
70 | _ | = | 6Q7
6Q7-G
6Q7-GT | | Class A
Amplifier | 150 | | 0 | 22 | | 7,000 | 2,500 | 18 | _ | | 6Q11¶ | | Class A
Amplifier • | 100
250 | = | 1.0
2.0 | 0.5
1.2 | | 80,000
62,500 | 1,250
1,600 | 100
100 | = | = | | | TV Damper | Max d | -c outp | ut curr | ent = 15 | 0 ma; | nax peak i | nverse | voltage | = 4,500 | volts; | 6R3 | | Class A
Amplifier | 250 | _ | 9.0 | 9.5 | _ | 8,500 | 1,900 | 16 | _ | | 6R7
6R7-G
6R7-GT | | Class A
Amplifier | 250 | | 9.0 | 9.5 | | 8,500 | 1,900 | 16 | 10,000 | 0.30 | 6R8 | | Vertical
Amplifier | 250
Max p
30 ma | ositive 1 | 8.0
pulse pl | 26
ate volt | —
tage 🖲 = | 3,600
2,200 volts | 4,500
; max d- | 16
c catho | de curre | nt 🔷 = | 654 | | Vertical | 250 | 1 | 8.0 | 24 | T — | 3,700 | 4,500 | 16.5 | I | T- | 6S4-A¶ | | Amplifier | 30 ma | | | | | 2,200 volts; | | c catho | ie curre | ent ⊕ = | | | Class A
Amplifier | 250 | 100 | 3.0 | 8.5 | 2.0 | 1,000,000 | 1,750 | _ | | | 6S7
6S7-G | | Class A
Amplifier | 250 | | 2.0 | 0.9 | - | 91,000 | 1,100 | 100 | _ | | 6S8-GT | | Converter | 250 | 100 | 2.0 | 3.5 | 8.5 | 1,000,000 | 450# | _ | | | 6SA7 | | Converter | 100
250 | 100 | 2.0 | 3.3 | 8.5 | 500,000 | 425#
950# | <u> </u> | | <u> </u> | 6SA7-GT | | Class A | 250 | - | 2.0 | 2.0 | - | 53,000 | 1,325 | 70 | | | 6SC7 | | Amplifier • Class A | 250 | 125 | 2.0 | 9.5 | 3.0 | 700,000 | 4,250 | _ | | | 6SC7-GT
6SD7-GT | | Amplifier
Class A
Amplifier | 250 | 100 | 1.5 | 4.5 | 1.5 | 1,000,000 | 3,400 | - | - | | 6SE7-GT | | Class A
Amplifier | 250
100 | 1= | 2.0 | 0.9 | T | 66,000
85,000 | 1,500
1,150 | 100
100 | | | 6SF5-GT | | Class A
Amplifier | 250 | 100 | 1.0 | 12.4 | 3.3 | 700,000 | 2,050 | = | - | - | 6SF7 | | Class A
Amplifier | 250
250
100 | 150
125
100 | 2.5
1.0
1.0 | 9.2
11.8
8.2 | 3.4
4.4
3.2 | 1,000,000
900,000
250,000 | 4,000
4,700
4,100 | = | = | | 6SG7-GT | | Class A | 250 | 150 | 1.0 | 10.8 | 4.1 | 900,000 | 4,900 | - | | | 6SH7
6SH7-GT | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |-------------------|-------------------------------------|---------------|---------------|---------------|---------------|-----------------------|-------------------|---|---------------------------------------|--|---------------------------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6SJ7-GT | Sharp-Cutoff Pentode | 8. | 8-1
9-12 | 6.3 | 0.3 | 2.5 | 300 | 300 \$ | Pentod | e Conne | ection | | 00),-01 | | | | | | 2.5 | 250 | | | Connec
G ₂ & P | | | 6SK7
6SK7-GT | Remote-Cutoff RF
Pentode | 8N | 8-1 | 6.3 | 0.3 | 4.0 | 300 | 300 | 6.0 | 7.0 | 0.003 | | 03111-01 | | | 9-11 | | | | | | 6.5 | 7.5 | 0.005 | | 6SL7-GT | High-Mu
Twin-Triode | 8BD | 9-11,
9-41 | 6.3 | 0.3 | 1.0♠ | 300 | _ | _ | | | | 6SN7-GT | Medium-Mu Twin
Triode | 8BD | 9-11,
9-14 | 6.3 | 0.6 | 3.5 ♦
5.0 ⊕ | 300 | | 2.8 ₁ ▲ 3.0 ₂ ▲ | 0.8 ₁ A | 3.8₁ ▲
4.0₃ ▲ | | 6SN7-GTA
6SN7- | Medium-Mu
Twin Triode | 8BD | 9-11
or | 6.3 | 0.6 | 5.0 ♠ | 450 | | 2.2 ₁ ▲ 2.6 ₂ ▲ | 0.7 ▲ | 4.0 ₁ ▲ 3.8 ₁ ▲ | | GTB¶ | TWIN THOUSE | | 9-41 | | | 7.5⊕ | | | 2.01 | | 3.03 | | 6SQ7-GT | Duplex-Diode, High-
Mu Triode | 8Q | 8-1
9-12 | 6.3 | 0.3 | 0.5 | 300 | | 3.2
4.2 ▲ | 3.0
3.4 ▲ | 1.6
1.8 A | | 6SR7
6SR7-GT | Duplex-Diode
Medium-Mu Triode | 8Q | 8-1
9-11 | 6.3 | 0.3 | 2.5 | 250 | | 3.6 | 2.8 | 2.4 | | 6SS7 | Remote-Cutoff RF
Pentode | 8N | 8-1 | 6.3 | 0.15 | 2.25 | 300 | 100
0.35 | 5.5 | 7.0 | 0.004 | | 6ST7 | Duplex-Diode
Medium-Mu Triode | 8Q | 8-1 | 6.3 | 0.15 | 2,5 | 250 | | 2.8 | 3.0 | 1.5 | | 6SU7-
GTY | High-Mu Twin-Triode | 8BD | 9-11 | 6.3 | 0.3 | 1.0 ♠ | 250 | | _ | | _ | | 6SV7 | Diode Sharp-Cutoff
RF Pentode | 7AZ | 8-1 | 6.3 | 0.3 | 2.3 | 300 | 300 \$
0.6 | 6.5 | 6.0 | 0.004 | | 6SZ7 | Duplex-Diode High-Mu
Triode | 8Q | 8-1 | 6.3 | 0.15 | _ | 300 | = | 2.6 | 2.8 | 1.1 | | 6T4 | UHF Triode Oscillator | 7DK | 5-1 | 6.3 | 0.225 | 3.5 | 200 | | 2.6 ▲ | 0.4 ▲ | 1.7▲ | | 6T5 | Electron-Ray Indicator | 6R | 9-26 | 6.3 | 0.3 | _ | 250\$ | | | | | | 6T7-G | Duplex-Diode High-Mu
Triode | 7V | 12-8 | 6.3 | 0.15 | _ | 250 | _ | 1.8 | 3.1 | 1.7 | | 6T8
6T8-A¶ | Triple-Diode High-Mu
Triode | 9E | 6-2 | 6.3 | 0.45 | 1.1 🏶 | 330 ◈ | _ | 1.7 | 2.4 | 1.7 | | 6T9 | Triode-Pentode | 12FM | 9-58 | 6.3 | 0.93 | 12 🕸 | 275 ◈ | 275 ♦ | Pentod | e Section | on | | | | | | | | 1.5 ◈ | 300 ◈ | | Triode | Section | 1 | | 6T10 | Dissimilar
Double Pentode | 12EZ | 9-59 | 6.3 | 0.95 | 10 🆠 | 275 🏶 | 275 ③ 2.0 ③ | Section
10, 1 | | s 8, 9, | | | Double Tensore | | | | | 1.7 ◈ | 330 ◈ | 330 2 🏵 | Section | ı 2 (Pin | s 2, 3, | | 6U4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9-13 | 6.3 | 1.2 | | Tube V
21 v at | oltage
250 m | Drop: | | | | 6U5 | Electron-Ray Indicator | 6R | 9-26 | 6.3 | 0.3 | | 285 | 58 Max target voltage = 285
Min target voltage = 125 | | | | | 6U6-GT | Beam Power Amplifier | 7AC | 9-11 | 6.3 | 0.75 | 11 | 200 | 135 | - | | Γ | | 6U7-G | Remote-Cutoff RF
Pentode | 7R | 12-4 | 6.3 | 0.3 | 2.25 | 300 | 100
0.25 | 5.0 | 9.0 | 0.007 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕] Total for all similar sections. ■ Absolute maximum rating. # Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------|----------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------|-------------------|--|--------------------------------|-----------------------| | Class A
Amplifier
Class A | 250
100
250 | 100
100 | 3.0
3.0
8.5 | 3.0
2.9
9.2 | 0.8
0.9 | 1,000,000
700,000
7,600 | 1,650
1,575
2,500 | | = | = | 6SJ7
6SJ7-GT | | Amplifier (| 250
180 | | 6.0 | 6.0 | | 8,200 | 2,300 | 19 | | _=_ | | | Class A
Amplifier | 250
100 | 100
100 | 3.0
1.0 | 9.2
13 | 2.6
4.0 | 800,000
120,000 | 2,000
2,350 | _ | = | = | 6SK7
6SK7-GT | | Class A
Amplifier • | 250 | | 2.0 | 2.3 | | 44,000 | 1,600 | 70 | | | 6SL7-GT | | Class A
Amplifier • | 250
90 | | 8.0
0 | 9.0
10 | = | | 2,600
3,000 | 20
20 | | = | 6SN7-GT | | Class A
Amplifier • | 250
90 | = | 8.0
0 | 9.0
10 | = | 7,700
6,700 | 2,600
3,000 | 20
20 | = | | 6SN7-GTA
6SN7-GTB¶ | | Vertical
Amplifier ♠ | Max p
7.5 wat | ositive
tts; max | pulse pi | ate vol | tage 🖲 = | =1500 volt
=20 ma | s; max | plate d | ssipatio | n 🕀 = | | | Class A
Amplifier | 250
100 | = | 2.0
1.0 | 1.1
0.5 | | 85,000
110,000 | 1,175
925 | 100
100 | | | 6SQ7
6SQ7-GT | | Class A
Amplifier | 250 | | 9.0 | 9.5 | | | 1,900 | 16 | | | 6SR7
6SR7-GT | | Class A
Amplifier | 250 | 100 | 3.0 | 9.0 | 2.0 | 1,000,000 | 1,850 | _ | | | 6887 | | Class A
Amplifier | 250 | | 9.0 | 9.5 | | 8,500 | 1,900 | 16 | | | 6ST7 | | Class A
Amplifier • | 250 | | 2.0 | 2.3 | | 44,000 | 1,600 | 70 | | | 6SU7-GTY | | Class A
Amplifier | 250
100 | 150
100 | 1.0
1.0 | 7.5
3.7 | 2.8
1.4 | 1,500,000
700,000 | 3,600
2,600 | = | | | 6SV7 | | Class A
Amplifier | 250 | | 3.0 | 1.0 | | 58.000 | 1,200 | 70 | | | 6S27 | | Class A
Amplifier | 80 | | R _k == 150 | 18 | _ | 1,860 | 7,000 | 13 | | | 6T4 | | Tuning
Indicator | illumin | roltage =
(ation) (| $E_c = 0$ | volts for | g, targe
r min il | et voltage :
lumination |) | _ | 2 volts | for max | 6T5 | | Class A
Amplifier | 250 | | 3.0 | 1.2 | | 62,000 | | 65 | | | 6T7-G | | Class A
Amplifier | 250
100 | <u> </u> | 3.0
1.0 | 1.0
0.8 | | 58,000
54,000 | | 70
70 | | | 6T8
6T8-A¶ | | Class A
Amplifier
Class A | 250
250 | 250 | 8,0
2.0 | 35†
1.5 | 2.5† | 100,000 | 6,500
2,100 | 95 | 5,000 | 4.2 | 6T9 | | Amplifier
Class A | 250 | 250 | 8.0 | 35† | 2.5† | 100.000 | 6,500 | 95 | 5,000 | | | | Amplifier
Class A | 150 | 100 | R _k == | 1,3 | 2.1 | 150,000 | 1,000 | E _{c3} = | 0 volts | 4,2 | 6T10 | | Amplifier
Half-Wave | Max d- | c outou | t curren | t = 125 | ma: ma | x peak inv | zerse vo | tage = | 1250 vo | lts: rms | 6U4-GT | | Rectifier
TV Damper | supply
Max d
max pe | voltage
-c outpu
eak curr | =350 v
it curre
ent =60 | olts; ma
nt = 125
0 ma | x peak of ma; m | current = 60
nax peak ir | 00
ma
iverse v | oltage (| 3850 |) volts; | | | Tuning
Indicator | Plate v
=0°) (
4 ma) | oltage =
(E _c = 0 | =250 th
volt, sh | ru 1 me;
adow = | g, targe
90°, pl | t voltage =
ate curren | :250 (E,
t = 0.24 | = -22
ma, ta | volts,
rget cu | shadow
rrent = | 6U5 | | Class A
Amplifier | 200 | 135 | 14.0 | 55† | 3.0† | 20,000 | 6,200 | _ | 3,000 | 5.5 | 6U6-GT | | Class A
Amplifier | 250 | 100 | 3.0 | 8.2 | 2.0 | 800,000 | 1,600 | | | | 6U7-G | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Volts | Capa
Pi | cofarac | e in
Is | |--------------------|--------------------------------------|---------------|--------------------|---------------|-------------|----------------|-------------------|-------------------------------|-------------------------------|----------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | U8 | Triode-Pentode | 9AE | 6-2 | 6.3 | 0.45 | 3.0 🌢 | 330 🏽 | 330 ♦\$ | Pentode | e Section | on | | SU8-A¶ | | | | | | 2.5 🏶 | 330 ◈ | 0.55 | Triode | Section | 1 | | 3U9 | Triode-Pentode | 10K | 6-2 | 6.3 | 0.41 | 2.1 | 250 | 250
0.7 | Pentode | Section | on | | | | | | | | 1.5 | 250 | == | Triode | Section | 1 | | 3U10¶ 📰 . | Three-Section
Triode | 12FE | 9-56 | 6.3 | 0.6 | 2.0 🏶 | 330 ◈ | _ | Section:
(Pins | 4, 9, 1 | | | | | | | | | 1.0 🏶 | 330 ◈ | - | 2, 3,
(Section
6, 7) | 11)
12 (F | ins 5, | | 3V3
3V3-A | High-Wave, High-
Vacuum Rectifier | 9BD | 6-7
T-X | 6.3 | 1.75 | 2.7 | Tube V | oltage
250 ma | Drop: | | | | 6V4 | Full-Wave, High-
Vacuum Rectifier | 9 M | 6-3 | 6.3 | 0.6 | | Tube V | | Drop: • | | | | 6V5-GT | Beam Power Amplifier | 6AO | 9-11 | 6.3 | 0.45 | 12 | 315 | $\frac{285}{2.0}$ | | | T- | | SV6 | Beam Power Amplifier | 7AC | 86 | 6.3 | 0.45 | 14 ◈ | 350 ◈ | 315 ♦
2.2 ♦ | Single 7 | l'ube | | | : | | | | | | | | | 2 Tubes | s, Push | -pull | | 5V6-GT
5V6-GTA¶ | Beam Power Amplifier | 7AC | 9-11
or | 6.3 | 0.45 | 14 🕸 | 350 ◈ | 315 * 2.2 * | Single ? | Γube | | | | | | 9-41 | | | | _ | _ | 2 Tube: | s, Push | -Pull | | | | | | | | 10 | 315 ◈ | _ | Triode
(G ₂ & I | Conne | ction | | 6V7-G | Duplex-Diode
Medium-Mu Triode | 7V | 12-8 | 6.3 | 0.3 | | 250 | | 2.0 | 3.5 | 1.7 | | 6V8 | Triple-Diode, High-Mu
Triode | 9AH | 6-2 | 6.3 | 0.45 | 1.0 | 300 | | | | - | | 6W4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11,
9-41 | 6.3 | 1.2 | 3.5 | 21 v at | oltage
250 ma | ı d-c | | | | 6W4-GTA | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11 | 6.3 | 1.2 | 4.0 🌑 | Tube V | oltage
s at 250 | Drop:
) ma d-c | | | | 6W5-G | Full-Wave High-Vacuum
Rectifier | 6S | 12-7 | 6.3 | 0.9 | | Tube V
24 v at | oltage
90 ma | Drop:♠
d-c | , | 411 | | 6W6-GT | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 6.3 | 1.2 | 12 🏶 | 330 🏶 | 165 *
1.35 * | Pentod | e Conr | ection | | | | | 9-41 | | | 8.5 🏶 | 330 ◈ | - | Triode | Conne
tied) | ction | | 6W7-G | Sharp-Cutoff Pentode | 7R | 12-8 | 6.3 | 0.15 | 0.5 | 300 | 300
0.1 | 5.0 | 8.5 | 0.007 | | 6X4 | Full-Wave High-Vacuum
Rectifier | | 5-3 | 6.3 | 0.6 | | 22 v at | 70 ma | | | | | 6X5
6X5-GT | Full-Wave High-Vacuum
Rectifier | 6S | 8-6
9-11 | 6.3 | 0.6 | - | 22 v at | oltage
70 ma | Drop: ♠
d-c | • | | | 6X8 | Triode-Pentode
Converter | 9AK | 6-2 | 6.3 | 0.45 | 2.3 🆠 | 275 | | Pentod | | | | 6X8-A¶ | | | | | | 1.7 ◈ | 275 ◈ | | Triode | | | | 6X9 | Triode-Pentode | 10K | 6-2 | 6.3 | 0.41 | 2.1 | 250 | 250
0.7 | Pentod | | | | | | | | 1 | 1 | 1.5 | 250 | - | Triode | Section | n | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|-------------------|-----------------|----------------------|-----------------------------------|----------------------------------|----------------------------|---------------------------|--------------------|--|--------------------------------|----------------| | Class A
Amplifier | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | _ | <u> </u> | 6U8
6U8-A¶ | | Class A
Amplifier | 125 | - | 1.0 | 13.5 | _ | | 7.500 | 40 | _ | - | 000-A (| | Class A
Amplifier | 160 | 110 | 1.4 | 13 | 5.0 | | 12,000 | (E _{e3} = | 0 volts |) | 6U9 | | Class A
Amplifier | 100 | | 2.0 | 14 | _ | | 5,000 | 17 | _ | - | | | Class A
Amplifier | 200 | _ | 6,0 | 9,6 | _ | 7,700 | 2,300 | 17.5 | | | 6U10¶ | | Class A
Amplifier | 200 | - | 1.5 | 1.2 | _ | 61,000 | 1,600 | 98 | - | - | | | TV Damper | | d-c outp | | | 5 ma; 1 | max peak i | nverse v | voltage | = 600 | 0 volts; | 6V3
6V3-A | | Full-Wave
Rectifier | Max 6 | | | |) ma; m | ax RMS su | pply vo | ltage pe | r plate | | 6V4 | | Class A
Amplifier | 315
250 | 225
250 | 13
12.5 | 34†
45† | 2.2†
4.5† | 77,000
52,000 | 3,750
4,100 | | 8,500
5.000 | 5.5
4.5 | 6V5-GT | | Class A | 315
250 | 225
250 | 13
12.5 | 34†
45† | 2.2†
4.5† | 80,000
50,000 | 3.750
4.100 | _ | 8,500
5,000 | 5.5 | 6V6 | | Amplifier
Class AB: | 180 | 180
285 | 8.5
19 | 29†
70† | 3†
4† | 50.000
70.000 | 3,700 | l — | 5,500
80001 | 2.0 | | | Amplifier | $\frac{285}{250}$ | 250 | 15 | 70t | 5† | 60,000 | 3,750 | | 10000 | 10 | | | Class A | 315
250 | 225
250 | 13
12.5 | 34†
45† | 2.2†
4.5† | 80,000
50,000 | 3,750
4,100 | | 8,500
5,000 | | 6V6-GT
6V6- | | Amplifier | 180 | 180 | 8.5
19 | 29†
70† | 3.01 | 50,000 | 3,700 | - | 5,500
8,0001 | 2.0 | GTAT | | Class AB ₁ { Amplifier | 285
250
250 | 285
250 | 15
12.5 | 70† | 5.0† | 1.960 | 5,000 | 9.8 | 100001 | 10 | | | Vertical
Amplifier | Max
=40 | positive
ma | pulse 1 | plate vo | ltage 🕏 | = 1200 vol | ts; max | d-c cat | hode cu | irrent 🏵 | | | Class A
Amplifier | 250 | - | 20 | 8.0 | | 7,500 | 1,100 | | 20,000 | 0.350 | 6 V 7-G | | Class A
Amplifier | 250
100 | | 3.0
1.0 | 1.0 | | 58,000
54,000 | 1,200
1,300 | | = | _ | 6V8 | | TV Damper | Max | d-c out | out curr | ent = 1 | 25 ma; | max peak | inverse | voltage | = 385 | 0 volts; | 6W4-GT | | TV Damper | Max | d-c outp | ut curre | ent 🏶 = | 140 ma
t = | ; max peak
840 ma | inverse | voltage | · • = | | 6W4-GTA | | Full-Wave
Rectifier | Max | d-c outp | ut curre | ent = 90 | ma; m: | ax peak inv
olts; max p | erse vol | ltage = : | 1250 vo | lts; max
=270 ma | 6W5-G | | Class A | 200 | 125 | R _k = | 46† | 2.21 | 28,000 | 8,000 | - | 4,000 | 3.8 | 6W6-GT | | Amplifier Vertical | 110
225 | 110 | 7.5 | 49†
22 | 4.0† | 13,000
1,600 | 8,000
3,800 | | 2,000 | 2.1 | | | Amplifier (| | positive | | ate vol | | =1200; max | d-c cat | hode cu | | =65 ma | | | Class A
Amplifier | 250 | 100 | 3.0 | 2.0 | 0.5 | 1,500,000 | | _ | _ | | 6W7-G | | Full-Wave
Rectifier | suppl | v voltag | e per pl | ate 🏟 = | 360 vol | ax peak inv
ts; max pea | k currer | at per p | late 🏶 = | =245 ma | | | Full-Wave
Rectifier | Maxe | d-coutp | e per ni | nt ⊚ = 8
ate ⊛ = | 360 vol | ax peak inv
ts; max pea | erse vol | tage 🍥 | = 1250 v
late 🏶 = | olts;rms
245 ma | 6X5
6X5-GT | | Class A | 125 | 125 | 1.0 | | 2.2 | 300,000 | 5,500 | | T | T = | 6X8 | | Amplifier
Class A
Amplifier | 125 | - | 1.0 | 12 | - | 6,000 | 6.500 | 40 | - | - | 6X8-A¶ | | Class A | 160 | 135 | 1.7 | 13 | 5.0 | | 14,000 | - | - | _ | 6X9 | | Amplifier
Class A
Amplifier | 170 | - | 1.0 | 8.5 | _ | | 4,800 | 55 | <u> </u> | | | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | in
s | |---------------------------|--------------------------------------|---------------|-----------------------|--------------------|-------------|----------------|--------------|---|--------------------------------|--|----------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6Y3-G | Half-Wave High-
Voltage Rectifier | 4AC | 12-8 | 6.3 | 0.7 | _ | | - | | _ | | | 6Y6-G
6Y6-GA
6Y6-GT | Beam Power
Amplifier | 7AC | 14-3
12-14
9-11 | 6.3 | 1.25 | 12.5 | 200 | 200 \$
1.75 | 12.0 🛦 | 7.5▲ | 0.7▲ | | 6Y7-G | Twin-Triode Power Amplifier | 8B | 12-7 | 6.3 | 0.6 | 11.5⊕ | 250 | | Both S
Push-p | ections
ull | in | | 6Y9 | Dissimilar Double
Pentode | 10L | 6–3 | 6.3 | 0.8 | 5.0
1.5 | 250
250 | 250
2.5
250 | Section
8, 9, 10
Section | 1 (Pin:
))
2 (Pin: | • | | 6Y10 | Dissimilar Double
Pentode | 12EZ | 9-58 | 6.3 | 0.83 | 4.8 🏶 | 300 ◈ | | 2, 3, 4)
Section
10, 11) | 1 (Pin | s 8, 9, | | | rentode | | | | | 1.7 🏶 | 300 ◈ | 300 8 🌢 | Section 5, 6, 7) | | s 2, 3, | | 6Z5 | Full-Wave High-Vacuum
Rectifier | 6K | 12-5 | ${6.3 \atop 12.6}$ | 0.8) | | | | _ | | | | 627-G | Twin-Triode Power Amplifier | 8B | 12-7 | 6.3 | 0.3 | 4.0 ♠ | 180 | | Push-p | | | | 6Z10 | Pentode—Gated-Beam
Discriminator | 12 BT | 9–58 | 6.3 | 0.95 | 10 🏶 | , | 275 ♦
2.0 ♦
330 \$ ♦ | Discrin | e Section 3, 9, 1 Beam ninator 5, 6, 7 | | | 6ZY5-G | Full-Wave High-Vacuum
Rectifier | 6 S | 12-7 | 6.3 | 0.3 | | Tube V | oltage
40 ma | Drop: | | , | | 7A4 | Medium-Mu
Triode |
5AC | 9-30 | 6.3 | 0.3 | 2.5 | 300 | T = | 3.4 | 3.0 | 4.0 | | 7A5 | Beam Power Amplifier | 6AA | 9-31 | 6.3 | 0.75 | 5.5 | 125 | 125
1.2 | | | _ | | 7A6 | Twin Diode | 7AJ | 9-30 | 6.3 | 0.15 | _ | | oltage
16 ma | | • | | | 7A7 | Remote-Cutoff RF
Pentode | 8V | 9-30 | 6.3 | 0.3 | 4.0 | 250 | 100
0.4 | 6.0 | 7.0. | 0.005 | | 7A8 | Octode Converter | 8U ♦ | 9-30 | 6.3 | 0.15 | 1.0 | 300 | 100
0.3 | Osc Ici
Rg1 = 5 | =0.4 m
0,000 o | a
nms | | 7AB7 | Sharp-Cutoff RF
Pentode | 8BO | 9-32 | 6.3 | 0.15 | 1.2 | 300 | 300 \$
0.15 | 3,5 | 4.0 | 0,06 | | 7AD7 | Power Amplifier
Pentode | 87 | 9-31 | 6.3 | 0.6 | 10 | 300 | 300 \$ | 11.5 | 7.5 | 0.03 | | 7AF7 | Medium-Mu
Twin Triode | 8AC | 9-30 | 6.3 | 0.3 | 2.5 🍁 | 300 | _ | 2.2 | 1.6 | 2.3 | | 7AG7 | Sharp-Cutoff RF
Pentode | 8V | 9–30 | 6.3 | 0.15 | 2.0 | 300 | 300
0.75 | 7.0 | 6.0 | 0.005 | | 7AH7 | Remote-Cutoff RF
Pentode | 8V | 9–30 | 6.3 | 0.15 | 2.0 | 300 | 300 \$
0.7 | 7.0 | 6.5 | 0.0 08 | | 7AJ7 | Sharp-Cutoff RF
Pentode | 8V | 9-30 | 6.3 | 0.3 | 1.0 | 300 | 100
0.1 | 6.0 | 6.5 | 0.007 | | 7AK7 | Sharp-Cutoff
Dual-Control Pentode | 8V | 9-31 | 6.3 | 0.8 | 8.5 | 200 | 100
2.5 | 12.0 | 9.5 | 0.7 | | 7AU7¶ | Medium-Mu
Twin Triode | 9A | 6-2 | {7.0
{3.5 | 0.3 | 2.75 ♦ | 330 ◈ | - | 1.8 | 2.0 | 1.5 | | 7B4 | High-Mu Triode | 5AC | 9-30 | 6.3 | 0.3 | - | 300 | - | 3.6 | 3.4 | 1.6 | Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|---------------------|----------------------|----------------------|---------------------------------|----------------------------------|------------------------------|-----------------------------|--|--|--------------------------------|---------------------------| | Half-Wave
Rectifier | Max o | d-c outp
ms supp | ut currely volt | ent = 7. $age = 5.0$ | 5 ma; r
000 volt | nax peak i
s; max pea | nverse | voltage
nt = 100 | =14,000
ma | volts; | 6Y3-G | | Class A
Amplifier | 200 | 135 | 14 | 61† | 2.2† | 18,300 | 7,100 | - | 2,600 | 6.0 | 6Y6-G
6Y6-GA
6Y6-GT | | Class B
Amplifier | 250 | | 0 | 5.3† | | | | | 14,000‡ | 8.0 | 6Y7-G | | Class A
Amplifier
Class A | 170
150 | 170
150 | 2.6
2.3 | 30
10 | 6.5
3.0 | 40,000
160,000 | 21,000
8,500 | _ | - | _ | 6Y9 | | Amplifier
Class A
Amplifier | 250 | 250 | R _k = 270 | 16† | 2.7† | 150,000 | 8,400 | | 15,000 | 1.1 | 6 Y 10 | | Class A
Amplifier | 150 | 100 | R _k = 180 | 3.7 | 3.0 | 140,000 | 3,700 | | | - | | | Full-Wave
Rectifier | Maxo | i-c outp | ut curre | ent =60 | ma; ma | x peak inv | erse vol | tage =] | 500 vol | ts | 6Z5 | | Class B
Amplifier | 180 | | 0 | 4.2† | | Input sign | al =0.32 | 20 watts | | | 6Z7-G | | Class A
Amplifier
FM Limiter-
Discrimi-
nator | 250
135 | 250
280 \$ | 8.0 | 35†
5.0 | 3.0†
(Rg ₂ = 3 | 100,000
33,000 ohm | 6,500
(E _{C3} : | -
+4.0 | 5,000
volts) | 4.2 | 6Z10 | | Full-Wave
Rectifier | Maxo | l-c outp | it curre | nt = 40 | ma; ma
= 325 vc | x peak inv | erse vol | tage = 1 | 250 vol | ts; max
20 ma | 6ZY5-G | | Class A
Amplifier | 250
90 | _ | 8.0 | 9.0 | | 7,700
6,700 | 2,600
3,000 | | = | E | 7A4 | | Class A
Amplifier | 110 | 110 | 7.5 | 40† | 3.0† | 16,000 | 5,800 | | 2,500 | 1.5 | 7A5 | | Half-Wave
Rectifier | Max o | i-c outpolits; max | ut curre | ent per p | olate = 8
per plate | ma; max r
= 45 ma | ms supp | ly volt | age per | plate = | 7A6 | | Class A
Amplifier | 250 | 100 | 3.0 | 9.2 | 2.6 | 800,000 | 2,000 | | - | | 7A7 | | Converter | 250 | 100 | 3.0 | 3.0 | 3.2 | 700,000 | 550 # | E_{c2} (Osthru 20 $I_{c2} = 4$. | c Plate)
,000 oh
2 ma | =250
ms | 7A8 | | Class A
Amplifier | 250 | 100 | 2.0 | 4.0 | 1.3 | 500,000 | 1,800 | | _ | | 7AB7 | | Class A
Amplifier | 300 | 150 | R _k = 68 | 28 | 7.0 | 300,000 | 9,500 | | | | 7AD7 | | Class A
Amplifier • | 250 | | 10 | 9.0 | | 7,600 | 2,100 | 16 | | | 7AF7 | | Class A
Amplifier | 250 | 250. | R _k = 250 | 6.0 | 2.0 | 1,000,000 | 4,200 | | | - ' | 7AG7 | | Class A
Amplifier | 250 | 250 | R _k = 250 | 6.8 | 1.9 | 1,000,000 | 3,300 | _ | | | 7AH7 | | Class A
Amplifier | 100
250 | 100
100 | 1.0
3.0 | 5.7
2.2 | 1.8
0.7 | 400,000
1,000,000 | 2,275
1,575 | | | | 7AJ7 | | Class A
Amplifier | 150
150
150 | 90
90
90 | 0
11
0 | 40
2.5 ♠
2.0 ♠ | 21
0.45
60♣ | 11,500 | 6,000 | $E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = 9$ | volts
volts
.5 volts | | 7AK7 | | Class A Amplifier Vertical | 250
100
Max p | ositive p | 8.5
0
ulse pla | 10.5
11.8 | = | 7,700
6,500
1,200; max | 2,200
3,100
d-c cath | 17
20
lode cu | rrent 🏶 | | 7A U7¶ | | Amplifier Class A Amplifier | 250 | - | 2.0 | 0.9 | | 66,000 | 1,500 | 100 | - | | 7B4 | | Tube | Classification
by | Base
Con-
nec-
tions | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitano
icofarac | | |--------------|---------------------------------------|-------------------------------|------|---------------|---------------|--------------|--------------|-------------------------------|--|-------------------------------|----------------| | Type | Construction | | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7B5 | Power Amplifier
Pentode | 6AE | 9-31 | 6.3 | 0.4 | 8.5 | 315 | 285
2.8 | | | _ | | B6 | Duplex-Diode High-Mu
Triode | 8W | 9-30 | 6.3 | 0.3 | 0.5 | 300 | | | | _ | | В7 | Remote-Cutoff RF
Pentode | 8V | 9-30 | 6.3 | 0.15 | 2.25 | 300 | 100
0.25 | 5.0 | 6.0 | 0.00 | | B8 | Pentagrid Converter | 8X♦ | 9-30 | 6.3 | 0.3 | 1.0 | 300 | 100
0.3 | Osc I _{c1}
R _{g1} = 5 | =0.4 m
0,000 ol | a
nms | | 7C4 | High-Frequency Diode | 4AH | 9-30 | 6.3 | 0.15 | | | Tube V | | | | | 7C5 | Beam Power Amplifier | 6AA | 9-31 | 6.3 | 0.45 | 12 | 315 | 285
2.0 | | | | | 7C6 | Duplex-Diode High-Mu
Triode | 8W | 9-30 | 6.3 | 0.15 | 0.6 | 300 | | | = | = | | 7C7 | Sharp-Cutoff Pentode | 8V | 9-30 | 6.3 | 0.15 | 1.0 | 300 | 100 | 5.5 | 6.5 | 0.00 | | 7E5 | High-Frequency Triode | 8BN | 9-30 | 6.3 | 0.15 | 4,0 | 250 | | 3.6 | 2.8 | 1.5 | | 7E6 | Duplex-Diode
Medium-Mu Triode | 8W | 9-30 | 6.3 | 0.3 | 2.5 | 250 | = | | _ | = | | E7 | Duplex-Diode
Remote-Cutoff Pentode | 8AE | 9-30 | 6.3 | 0.3 | 2.0 | 250 | 100 | 4.6 | 4.6 | 0.00 | | EY6¶ | Beam Pentode | 7AC | 9-15 | 7.2 | 0.6 | 11 🏟 | 350 ◈ | 300 ♦
2.75 ♦ | 8.5 ▲ | 7.0▲ | 0.7 ▲ | | 7F7 | High-Mu Twin Triode | 8AC | 9-30 | 6.3 | 0.3 | 1.0♠ | 250 | | | | = | | 7F8 | High-Frequency Twin Triode | 8BW | 9-32 | 6.3 | 0.3 | 3.5 ♠ 3.5 ⊕ | 300 | - | 2.8 | 1.4 | 1.6 | | 7 G 7 | Sharp-Cutoff Pentode | 8V | 9-30 | 6.3 | 0.45 | 1.5 | 250 | 100 | 9.0 | 7.0 | 0.00 | | 7G8 | Sharp-Cutoff
Twin Tetrode | 8BV | 9-32 | 6.3 | 0.3 | 1.5♠ | 300 | 300\$ | 3.4 | 2.6 | 0.15 | | 7GS7 | Triode-Pentode | 9GF | 6-2 | 7.6 | 0.3 | 2.0 | 250 | 150 | Pentod | e Section | n | | | | | | | | 1.5 | 125 | = | Triode | Section | 1 | | 7GV 7 | Triode-Pentode | 9KN | T-X | 7.4 | 0.3 | 2.0 | 250 | 230 | Pentoc | le Section | on | | | | | | | | 2.0 | 250 | _ | Triode | Section | 1 | | 7H7 | Semi-Remote-Cutoff
RF Pentode | 8V | 9-30 | 6.3 | 0.3 | 2,5 | 300 | 300 \$
0.5 | 8.0 | 7.0 | 0.00 | | 7 <i>HG8</i> | Triode-Pentode | 9MP | 6–2 | 7.2 | 0.3 | 2.0 | 250 | 150 | Pentod | e Section | on | | | | | | | | 1.5 | 125 | - | Triode | Section | ı | | 737 | Triode Heptode
Converter | 8BL | 9-30 | 6.3 | 0.3 | 0.5
1.25 | 300
150 | 100
0.4 | $R_{g_1} = 5$ | =0.4 m
0,000 of
Section | hms | | 7 K 7 | Duplex-Diode High-Mu
Triode | 8BF | 9-30 | 6.3 | 0.3 | _ | 250 | | _ | _ | Γ- | | 7KY6¶ | Sharp-Cutoff Pentode | 9GK | 6-3 | 7.3 | 0.45 | 9.0� | 330◈ | 330 : ③ | 14 🛦 | 6.0 ▲ | 0.16 | | 7KZ6¶ | Sharp-Cutoff Pentode | 9GK | 6-3 | 7.3 | 0.45 | 9.0◈ | 330◈ | 330:♦ | 13 ▲ | 6.0▲ | 0.16 | | 7L7 | Sharp-Cutoff Pentode | 8V | 9-30 | 6.3 | 0.3 | 4.0 | 300 | 125 | 8.0 | 6.5 | 0.01 | | 7N7 | Medium-Mu Twin
Triode | 8AC | 9-31 | 6.3 | 0.6 | 2.5♠ | 300 | 1= | _ | _ | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|----------------|-----------------|----------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|---|--|--------------------------------|----------------| | Class A
Amplifier | 315
250 | 250
250 | 21
18 | 25.5†
32† | 4.0†
5.5† | 68,000 | 2,100
2,300 | | 9,000
7,600 | 4.5
3.4 | 7B5 | | Class A
Amplifier | 250
100 | | 2.0
1.0 | 0.9
0.4 | | 91,000
110,000 | 1,100
900 | 100
100 | = | | 7B6 | | Class A
Amplifier
 250
100 | 100
100 | 3.0
3.0 | 8.5
8.2 | 1.7 | 750,000
300,000 | 1,750
1,675 | | = | | 7B7 | | Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | E_{c2} (Os
thru 20
$I_{c2} = 4.0$ | c Plate)
,000 oh
0 ma | =250
ms | 7B8 | | Half-Wave
Rectifier | Max d- | c outpu | t currer | t = 5.0 | ma; ma: | x rms suppl | y volta | | | | 7C4 | | Class A
Amplifier | 315
250 | 225
250 | 13.0
12.5 | 34†
45† | 2.2†
4.5† | 77,000
52,000 | 3,750
4,100 | = | 8,500
5,000 | 5.5
4.5 | 7C5 | | Class A
Amplifier | 250
100 | _ | 1.0
0 | 1.3 | = | 100,000
100,000 | 1,000
850 | 100
85 | | | 7C6 | | Class A
Amplifier | 250 | 100 | 3.0 | 2.0 | 0.5 | 2,000,000 | 1,300 | _ | | | 7C7 | | Class A
Amplifier | 180 | _ | 3.0 | 5.5 | _ | 12,000 | 3,000 | 36 | | | 7E5 | | Class A
Amplifier | 250 | | 9.0 | 9.5 | _ | 8,500 | 1,900 | 16 | | - | 7E6 | | Class A
Amplifier | 250 | 100 | 3.0 | 7.5 | 1.6 | 700,000 | 1,300 | = | | | 7E7 | | Vertical
Amplifier | 250
50 | 250
250 | 17.5
0 | 44
153 | 3.0 | 60,000
2,500; max | 4,400 | = | = | = | 7EY6¶ | | Class A
Amplifier • | 250 | — | 2.0 | 2.3 | | | 1,600 | 70 | - | | 7F7 | | Class A
Amplifier • | 250 | | R _k = 500 | 6.0 | | | 3,300 | 48 | | | 7F8 | | Class A
Amplifier | 250 | 100 | 2.0 | 6.0 | 2.0 | 800,000 | 4,500 | | | | 7G7 | | Class A
Amplifier • | 250 | 100 | 2.5 | 4.5 | 0.8 | 225,000 | 2,100 | | | | 7G8 | | Class A
Amplifier | 170 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | _ | - | | 7GS7 | | Class A
Amplifier | 100 | | 3.0 | 14 | | _ | 5,500 | 17 | | | | | Class A
Amplifier | 125 | 125 | 1.5 | 10 | 3.1 | _ | 11,000 | _ | _ | | 7GV7 | | Class A
Amplifier | 100 | | 3.0 | 14 | | | 5,500 | 17 | | | | | Class A
Amplifier | 250
100 | 150
100 | R _k = 180 | 10 | 3.2 | 800,000 | 4,000 | - | _ | - | 7H7 | | Class A | 170 | 150 | $\frac{1.5}{1.2}$ | 7.5 | 3.3 | 350,000 | 12,000 | - | | - | 7HG8 | | Amplifier
Class A
Amplifier | 100 | - | 3.0 | 14 | _ | 3,100 | 5,500 | 17 | - | - | | | Converter | 250 | 100 | 3.0 | 1.4 | 2.8 | 1,500,000 | 290 # | 250 thr | ode Osc
u 20,000
ode) = 5 | ohms | 7J7 | | Class A
Amplifier | 250 | = | 2.0 | 2.3 | - | 44,000 | 1,600 | | | <u> </u> | 7K7 | | Class A
Amplifier | 200 | 135 | Rk = 47 | 30 | 5.2 | 40,000 | 30,000 | (g3 c
k at | onnecte
socket) | d to | 7KY6¶ | | Class A
Amplifier | 250 | 115 | R _k = | 25 | 3.6 | 45,000 | 24,000 | (g3 c | onnecte
socket) | d to | 7 <i>KZ6</i> ¶ | | Class A
Amplifier | 250 | 100 | 1.5 | 4.5 | 1.5 | 1,000,000 | 3,100 | | <u> </u> | Γ=- | 7L7 | | Class A
Amplifier • | 250 | T= | 8.9 | 9.0 | 1= | 7,700 | 2,600 | 20 | | | 7N7 | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca _j | acitan
icofara | e in
ds | |---------------|--|---------------|------|---------------|---------------|-----------------------------|------------------------------|---------------------------------|---|---|--| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 707 | Pentagrid Converter | 8AL | 9-30 | 6.3 | 0.3 | 1.0 | 300 | 1.0 | Osc Ici
Rgi = 2 | =0.5 r | na
hms | | 7R7 | Duplex-Diode
Remote-Cutoff
Pentode | 8AE | 9-30 | 6.3 | 0.3 | 2.0 | 250 | 250 8
0.25 | 5.6 | 5.3 | 0.004 | | 787 | Triode-Heptode
Converter | 8BL | 930 | 6.3 | 0.3 | 0.6 | 300 | 100
0.4 | Osc Ici
Rei = 5 | | | | 7T7 | Sharp-Cutoff RF
Pentode | 8V | 9-30 | 6.3 | 0.3 | 3.0 | 300 | 3008 | 7.5 | 5.5 | 0.005 | | 7V7 | Sharp-Cutoff
RF Pentode | 8V | 9-30 | 6.3 | 0.45 | 4.0 | 300 | 3001 | | | - | | 7W7 | Sharp-Cutoff RF Pen-
tode | 8BJ | 9-30 | 6.3 | 0.45 | 4.0 | 300 | 3008 | - | _ | | | 7X6 | High-Vacuum Rectifier-
Doubler | 7AJ | 9-31 | 6.3 | 1.2 | | 22 v at | oltage
150 ma | Drop: 4 | • | ······ | | 7X7/-
XXFM | Duplex-Diode High-Mu
Triode | 8BZ | 9-31 | 6.3 | 0.3 | | 300 | = | | = | _ | | 7¥4 | Full-Wave High-Vacuum
Rectifier | 5AB | 9-30 | 6.3 | 0.5 | | 22 v at | oltage
70 ma | d-c | | | | 724 | Full-Wave High-Vacuum
Rectifier | 5AB | 9-31 | 6.3 | 0.9 | | Tube \ | oltage
100 ma | Drop: 4 | • | | | 8A8 | Triode-Pentode | 9DC | 6-2 | 8.4 | 0.3 | 1.7 | 250
250 | 200
0.75 | Pentod
Triode | | | | 8AC9¶ | Duplex-Diode | 12GN | 9-57 | 8.4 | 0.45 | 2.5 🏶 | 330 ◈ | 330 2 ♠
0.55 ♠ | Pentod | e Sect | on | | | Pentode | | | | İ | | Tube V | Voltage
s at 50 | Drop: | • | | | 8AC10¶ | Triple Triode | 12FE | 9-58 | 8.4 | 0.45 | 2.0◈ | 330◈ | - | 2.41 ▲
2.62 ▲ | 0.221 | 1.3 ₁ A
1.2 ₂ A
1.2 ₃ A | | 8AC10-AT | Friple Triode | 12FE | 9-56 | 8.4 | 0.45 | 2.0 | 330 ◈ | - | 2.41 | 0.2214 | 1.31 | | 8AL9¶ ■ | Triode-Pentode | 12HE . | 9~59 | 8.6 | 0.6 | 10 ♦
1.5 ♦ | 330 ♦
330 ♦ | 200 � | Pento | de Secti
e Secti | ion | | 8AR11¶ | Twin Pentode | 12DM | 9-58 | ∴8.4 | 0.6 | 3.1 | 330 ◈ | 330 8 ③ 0,65 ③ | 10 | 2.8 ₁
3.0 ₂ | 0.026 | | 8AU8¶ | Triode-Pentode | 9DX | 6-3 | 8.4 | 0.45 | 3.0 | 300 | 300 | Pentor | e Sect | ion. | | anco (| 111000 1 011000 | | | " | | 2.5 | 300 | 1.0 | i | Sectio | | | 8AU8-A¶ | Triode-Pentode | 9DX | 6-3 | 8.4 | 0.45 | 3.0 | 300 | 3002 | Pentoc | e Sect | ion | | | | | | | | 2.5 | 300 | _ | Triode | Sectio | n | | 8AW8-A¶ | Triode-Pentode | 9DX | 6-3 | 8.4 | 0.45 | 3.75 ◈ | 330 ◈ | 330 ♦ \$
1.1 ♦ | Pentod | le Sect | on | | | | | | | | 1.1 🏶 | 330 ◈ | | Triode | Sectio | n | | 8B10¶ | Duplex-Diode
Medium-Mu
Twin Triode | 12BF | 9-56 | 8.5 | 0.45 | 2.5 ♦ | 330 € | } | 1.7 ₁ A
1.8 ₂ A
Diode | 1.6 ₁
0.6 ₂
Section | 1.5 A | | 8BA8-A¶ | Triode-Pentode | 9DX | 6-3 | 8:4 | 0.45 | 3.25 | 300 | 3001 | Pentoc | le Sect | ion | | | | | | | | 2.0 | 300 | | Triode | Sectio | n | | 8BA11¶- | Triode-Twin
Pentode | 12ER | 9-58 | 8.4 | 0.45 | 1.1 🏶 | 300 € | 150 ③
0.75 ④ | Pentoc | le Sect | ions | | | | | | | | 1.5 🏶 | 300 € | | Triode | Sectio | n | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|----------------|-----------------|--|---------------------------------|----------------------------------|----------------------------|---------------------------|------------------|--|--------------------------------|---------------| | Converter | 250 | 100 | 2.0 | 3.5 | 8.5 | 1,000,000 | 550 # | | _ | - 1 | 707 | | Class A
Amplifier | 250
100 | 100
100 | 1.0 | 5.7
5.5 | 2.1
2.2 | 1,000,000
350,000 | 3,200
3,000 | | | | 7R7 | | Converter | 250 | 100 | 2.0 | 1.8 | 3.0 | 1,250,000 | 525 # | thru 20 | ode Osc
0,000 oh
ode) = 5 | ms . | 787 | | Class A
Amplifier | 250 | 150 | 1.0 | 10.8 | 4.1 | 900,000 | 4,900 | | <u> </u> | | 7T7 | | Class A
Amplifier | 300 | 150 | R _k = 160 | 10 | 3.9 | 300,000 | 5,800 | | | | 7V7 | | Class A
Amplifier | 300 | 150 | R _k = 160 | 10 | 3.9 | 300,000 | 5,800 | | _ | | 7W7 | | Rectifier or
Doubler | Max | d-c out | out curr | ent per | plate = | =75 ma; m | ax peak | inverse | voltag | e = 700;
450 ma | 7X6 | | Class A
Amplifier | 250 | _ | 1.0 | 1.9 | _ | 67,000 | 1,500 | 100 | - | T | 7X7/-
XXFM | | Full-Wave
Rectifier | Max | d-c outp | ut curre | ent = 70 | ma; ma | ax peak inv
olts; max p | erse vol | tage == 1 | 250 vol | ts; max | 7Y4 | | Full-Wave | Max | d-c outp | ut curre | nt = 10 |) ma; m | ax peak inv
olts; max p | erse vol | tage = 1 | ,250 vo | ts; max | 7 Z 4 | | Rectifier
Class A | 170 | upply vo | 2.0 | er plate | = 325 V | 400,000 | 6,200 | ent per | plate = | 300 ma | 8A8 | | Amplifier
Class A | 100 | - | 2.0 | 14 | - | _ | 5,000 | 20 | - | | | | Amplifier
Class A | 125 | 125 | 1.0 | 12 | 4.5 | 150,000 | 10,000 | | - | | 8AC9¶ | | Amplifier | Max | d-c outp | out curr | ent 🕸 🛊 | = 5.0 n | i
na | 1 | 1 | 1 | ' | | | Class A
Amplifier • | 200 | - | R _k = | 9.0 | T = | 10,700 | 5,800 | 62 | T = | T= | 8AC10¶ | | Class A
Amplifier • | 200 | - | R _k = 150 | 9.0 | T= | 10,700 | 5,800 | 62 | _ | | 8AC10-A | | Video
Amplifier | 250 | 150 | R _k = | 28 | 5.6 | 40,000 | во,000 | <u> </u> | † – | - | 8AL9¶ ■ | | General
Purpose | 55
200 | 125 | 0
R _k =
270 | 56
7.6 | 21_ | 9,200 | 6,300 | 59 | = | | | | Amplifier Class A Amplifier | 125 | 125 | R _k = 56 | 11 | 3.5 | 200,000 | 10,500 | _ | | - | 8AR11¶ | | Class A | 200 | 125 | R _k = 82 | 15 | 3.4 | 150,000 | 7,000 | | | | 8AU8¶ | | Amplifier
Class A
Amplifier | 150 | - | R _k == 150 | 9.0 | - | 8,200 | 4,900 | 40 | - | | | | Class A | 200 | 125 | R _k == 82 | 17 | 3.4 | 100,000 | 8,000 | | | | 8AU8-A | | Amplifier Class A | 40 | 125 | 0 | 28 | 10 | | | _ | - | - | | | Class A
Amplifier | 150 | 150 | R _k = 150
R _k = | 9.5 | 3.5 | 8,100 | 5,300
9,500 | 43 | | | 8AW8-A | | Class A
Amplifier | | 1 | 150 | 46 | | 200,000 | 3,000 | | | | 0A W 0-A | | Class A
Amplifier | 200
200 | 150 | 2.0 | 4.0 | 15 | 17,500 | 4,000 | 70 | = | = | | | Class A
Amplifier | 250 | - | 9.5 | 7.0 | | 9,750 |
1,850 | 18 | | - | 8B10¶ | | Horizontal
Phase Det. | Max | d-c out | put curr | ent 🕸 🖣 | =5.0 n | na; voltage | drop: | ♣ 5 vo | ts at 20 | ma d-c | | | Class A | 200 | 150 | R _k = | 13 | 3.5 | 400,000 | 9,000 | | T - | T= | 8BA8-A | | Amplifier \ Class A | 65
200 | 150 | 8.0 | 42
8.0 | 12.5 | 6,700 | 2,700 | 18 | - | = | | | Amplifier
Sync Sepa- (| 100 | 67.5 | | 2.5 | 4.4 | (Both Se | ctions | (Ec8; | =0 volts | <u> </u>
s) | 8BA11¶ | | rator and
AGC Keyer
Class A
Amplifier | 100
250 | 67.5 | 0.1 ma | 5.0 | = | Operatin | g)
1,700
1,800 | | 0 volts | i) | . | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca _j | acitano
icofara | e in
ds | |-----------------|------------------------------|---------------|------|---------------|-----------------|-----------------------|--------------|--|---------------------------------|--------------------|---------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid
plate | | 8BH8¶ | Triode-Pentode | 9DX | 6-3 | 8.4 | 0.45 | 3.0 | 300 | 300 \$
0.6 | Pentod | e Section | on | | | | | | | | 2.5 | 300 | - | Triode | Section | 1 | | 3BM11¶ | Dissimilar Double
Pentode | 12FU | 9-58 | 8.4 | 0.45 | 2.2 🏟 | 160 ◈ | | Section | 1 (Pin | s 7, | | | rentode | | | | | 2.2 🏶 | 160 🏶 | 0.55 *
160 *
0.55 * | 8, 9, 10
Section
3, 4, 5, | 2 (Pin
6) | s 2, | | BN8¶ | Duplex-Diode | 9ER | 6-3 | 8.4 | 0.45 | 1.5 | 300 | - | 3.6 ▲ | 0.32 ▲ | 2.5 | | | High-mu Triode | | | İ | | | | | Diode | Section | j
S | | 8BN11¶ | Twin Pentode | 12GF | 9-58 | 8.4 | 0.6 | 3.1 ◈ | 330� | 330 : ⊕
0.65 ⊕ | 12 | 2.8 | 0.041 | | 8BQ5¶ | Beam Power Amplifier | 9CV | 6-4 | 8.0 | 0.6 | 12 | 300 | 300
2.0 | = | | - | | BQ11¶ ■ | Dissimilar Double
Pentode | 12DM | 9-58 | 8.4 | 0.6 | 3.1 🏶 | 330 ◈ | 3309 | Section | 1 (Pin | s 7, | | | rentoge | | ĺ | | | 3.1 🏶 | 330 ◈ | 0.65 3 | Section 3, 4, 5, | 2 (Pin | ıs 2, | | BU11¶ | Twin-Triode | 12FP | 9-59 | 7.8 | 0.6 | 2.5 🏶 | 330 ♦ | 3308 | | | on | | | Pentode | | | | | 1.8 | 330 � | 0.55 | Triode | Section | ıs | | BCB11¶ ■ | Twin Pentode | 12DM | 958 | 8.4 | 0.6 | 3.1 🏶 | 330� | 330 ♦
0.65 ♦ | 12₁ ▲
12₂ ▲ | 2.6₁ ▲
2.8₂ ▲ | 0.028
0.02 | | CG7¶ | Medium-mu
Twin Triode | 9AJ | 6–3 | 8,4 | 0.45 | 3.5 ♠
5.0 ⊕ | 300 | _ | 2.3 ▲ | 2.2 ▲ | 4.0 | | BCM7¶ | Medium-mu | 9ES | 6-3 | 3.4 | 0.45 | 1.25 | 500 | | Section | 1 (Pins | 3, 6, | | | Double Triode | | | | | 5.0 | 500 | _ | Section | 2 (Pins | 1, 8, | | SCN7¶ | Duplex-Diode Triode | 9EN | 6-2 | 8.4
4.2 | $0.225 \\ 0.45$ | 1.0 | 300 | | 1.5▲ | 0.5 🛦 | 1.8 | | | | | | 1 4.2 | 0.10 | | | | Diode | Section | S | | CS7¶ | Double Triode | 9EF | 6-3 | 8.4 | 0.45 | 1.25 | 500 | | Section | 1 (Pins | 6, 7, | | | | | | | | 6.5 | 500 | - | Section | 2 (Pins | s 1, 3, | | 8CW5
8CW5-A¶ | Power Amplifier
Pentode | 9CV | 6-4 | 8.0 | 0.6 | 14 🏟 | 275 ♦ | 220 ♦
2.1 ♦ | Single | Tube | | | SCW 8-A T | rentode | | | | | | | 2.1 | Two T | ubes, P | ush- | | CX8¶ | Triode-Pentode | 9DX | 6-3 | 8.0 | 0.6 | 5.0 🏶 | 330 ◈ | 330 ♦\$ | | e Sectio | on | | | | | | | | 2.0 🏟 | 330 � | _ | Triode | Section | 1 | | BCY7¶ | Double Triode | 9LG | 6-3 | 7.9 | 0.6 | 1.0 🏶 | 350 ◈ | - | | 1 (Pin | ns 6, | | | | | | | | 5.5 ◈ | 350 ◈ | - | 8)
Section
9) | 2 (Pi | ns 1, | | EB8¶ | Triode-Pentode | 9DX | 6-3 | 8.0 | 0.6 | 5.0 ◈ | 330 € | 330 ♠ \$ | Pentod | e Section | on | | | | | | | | 1.0 🏶 | 330 ◈ | 1.1 | ł | Section | | | 8EM5¶ | Beam Power Amplifier | 9HN | 6-4 | 8.4 | 0,6 | 10 | 315 | 285
1.5 | 10 🛦 | 5.1 ▲ | 0.7 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watta | Tube
Type | |--|----------------|-----------------|-------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|-------------|--|--------------------------------|--------------| | Class A | 200 | 125 | R _k = | 15 | 3.4 | 150,000 | 7,000 | | | i — i | 8BH8¶ | | Amplifier
Class A
Amplifier | 150 | _ | 82
5.0 | 9.5 | _ | 5,150 | 3,300 | 17 | _ | _ | - | | Class A | 125 | 125 | R _k = | 14 | 3.6 | 220,000 | 8,800 | | | | 8BM11¶ | | Amplifier
Class A
Amplifier | 125 | 125 | 56
R _k =
120 | 9.0 | 2.5 | 300,000 | . 8,500 | | _ | | | | Class A Amplifier | 250
100 | _ | 3.0
1.0 | 1.6
1.5 | | 28,000
21,000 | 2,500
3,500 | 70
75 | _ | = 1 | 8BN8¶ | | Horizontal
Phase Det. | Max d | | it curre | nt 💠 = | | voltage dr | ор ♠: 2 | 6 volts | | ma d-c | | | Class A
Amplifier • | 125 | 125 | R _k = 56 | 11 | 3.8 | 200,000 | 13,000 | (g3 c | onnecte
socket) | d to | 8BN11¶ | | Class A
Amplifier | 250 | 250 | R _k == 135 | 48† | 5.5† | 40,000 | 11,300 | | 4,500 | 5.7 | 8BQ5¶ | | Class A | 125 | 125 | Rk= | 11 | 3.5 | 200,000 | 10,500 | - | = | | 8BQ11¶ | | Amplifier
Class A
Amplifier | 125 | 125 | 56
R _k =
56 | 11 | 3.8 | 200,000 | 13,000 | _ | _ | | | | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | | _ | | 8BU11¶ | | Amplifier
Class A
Amplifier • | 125 | - | R _k = | 13.5 | _ | 5,000 | 8,600 | 43 | _ | | | | IF, Band-
pass Burst,
Video
Amplifier ♠ | 125 | 125 | R _k = 56 | 11 | 3.8 | 200,000 | 13,000 | _ | _ | _ | 8CB11¶ | | Class A | 250 | | 8.0 | 9.0 | T — " | 7,700 | 2,600 | 20 | I — | | 8CG7¶ | | Amplifier 🌩 | 250
90 | = | 12.5
0 | 1.3 | | 6,700 | 3,000 | 20 | | = | | | Vertical | 200 | l = | 7.0 | 5.0 | | 10,500 | 2,000 | 21 | | (=- | 8CM7¶ | | Oscillator
Vertical | 250 | -c catho
 — | 1 8.0 | 20 | ı — | 4,100 | 4,400 | 18 | l — | <u></u> | | | Amplifier (| 250 | ositive r | oulse pla | te volt | age 🖲 🛥 | 2,200; max
58,000 | 1.200 | hode cu | rrent = | 20 ma | 8CN7¶ | | Amplifier | 100 | = | 1.0 | 0.8 | | 54,000 | 1,300 | 70 | | l, = | 001111 | | Horizontal
Phase Det. | | -c outpu | | | 5.0 ma; | voltage dro | | | 20 ma | a-c | | | Vertical
Oscillator | 250
Max d | —
-c catho | 8.5 | 10.5 | ma | 7,700 | 2,200 | 17 | · — | ı — | 8CS7¶ | | Vertical | 250 | | 10.5 | 10 | | 3,450
2,200; max | 4,500 | 15.5 | — | 30 ma | | | Amplifier \\ Class A | 170 | 170 | 12.5 | 1 70† | 3.5† | 26,000 | 11,000 | — | 2,400 | 5.6 | 8CW5 | | Amplifier
Class AB ₁
Amplifier | 250 | 200 | 18.5 | 91† | 4.0† | _ | | | 3,000‡ | 25 | 8CW5-A | | Class A | 200 | 125 | R _k == | 24 | 5.2 | 70,000 | 10,000 | | | | 8CX8¶ | | Amplifier | 40 | 125 | 68 | 40 | 15.5 | _ | _ | l — | I — | | | | Class A Amplifier | 150 | _ | R _k = 150 | 9.2 | | 8,700 | 4,600 | 40 | | | | | Vertical {
Oscillator | 250
Max p | eak neg | 3
ative gr | 1.2 | —
age | 52,000
400 | 1,300 | | — | ١ — | 8CY7¶ | | Vertical | 150 | - | R _k = 620 | 30
80 | <u> </u> | 920 | 5,400 | 5.0 | - | | | | Amplifier | 60
Max p | ositive 1 | | i ou
ste volt | age 🏶 = | 1,800; max | d-c cat | hode cu | rrent 🏶 | =35 ma | | | Class A | 200 | 125 | R _k = 68 | 25 | 7.0 | 75,000 | 12,500 | ī — | 1 - | T - | 8EB8¶ | | Amplifier
Class A
Amplifier | 250 | - | 2.0 | 2.0 | | 37,000 | 2,700 | 100 | _ | | | | Vertical | 250
60 | 250
250 | 18 | 35
180 | 3.0 | | 5,100 | _ | | | 8EM6¶ | | Amplifier | Max p | ositive | pulse pl | ate vol | tage 🖭 | = 2,200 vol | ts; max | d-c cat | hode cu | rrent = | | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max | Max
Screen
Volts | | acitano
icofara | | |---------------|--------------------------|--|-------------|---------------|---------------|-----------------------------------|---------------------|---------------------------------|-----------------|--|----------------| | Type | by
Construction | nec-
tion | line
Dwg | Volts | Amp | Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 8ET7¶ | Duplex-Diode
Pentode | 9LT | 6–3 | 8.0 | 0.6 | 5.0 🏶 | 330 � | 330 ♦ \$
1.1 ♦ | 10▲ | 4.2 ▲ | 0.1 ▲ | | | | _ | | | - | | | | | Section | | | 8FQ7¶ | Medium-Mu
Twin Triode | 9LP | 6–3 | 8.4 | 0.45 | 4.0 ♦
5.7 ♦
⊕ | 330 ◈ | | 2.4 | 0.34 ₁ ▲
0.26 ₂ ▲ | 1 | | 8GJ7 | Triode-Pentode | 9QA | T-X | 8.0 | 0.3 | 2.4 🌑 | 275 ♦ | 275 🏶 | Pentod | e Section | on | | | | | | | | 1.8 ♦ | 140 ◈ | 0.55 🏶 | | Section | | | 8GN8¶ | Triode-Pentode | 9DX | 6-3 | 8.0 | 0.6 | 5.0 ③ | 330 � | 330 ♦ \$
1.1 ♦ | i | e Section | | | <i>8GU</i> 7¶ | Medium-Mu Twin
Triode | 9LP | 6–3 | 8.4 | 0.45 | 3.0 ♦ | 330 ◈ | | | 0.441 | 3.0 ▲ | | 8GX7¶ | Triode-Pentode | 9QA | 6–2 | 7.7 | 0.3 | 2.2 🏟 | 275 | 2758 ◈ | Pentod | e Secti | on | | | | | | | | 1.5� | 275 🏶 | 0.45 | Triode | Section | 1 | | 8HA6 | Pentode | 9NW | 6-4 | 8.0 | 0.6 | 8.0 🏶 | 300 ◈ | 250 ♦
1.5 ♦ | 13 ▲ | 8.0 ▲ | 0.18 | | 8HG8 |
Triode-Pentode | 9MP | 6-2 | 8.0 | 0.3 | 2.0 | 250 | 150
0.5 | 1 | le Secti | | | 8JE8¶ | Triode-Pentode | 9DX | 6-3 | 8.2 | 0.6 | 1.5 5.0 € | 125
330 ♦ | 330. | Pentod | Section
Section | | | os me il | 1110de-1 entode | JUA | | 5.2 | 0.0 | 1.0 🏟 | 300 ◈ | 2.0 | ľ | Section | | | 8JK8 | Double Triode | 9AJ | 6-2 | 8.4 | 0.3 | 1.0 🏶 | 165 🏶 | = | Section
8) | 1 (Pi | ns 6, 7, | | | | | | | | 2.0 🏶 | 200 🏶 | | 3) | | ns 1, 2, | | 8JL8 | Triode-Pentode | 9DX | 6-3 | 8.0 | 0.6 | 5.0 ③ 2.0 ④ | 330 ◈ | 175 (a) | l | le Secti
Section | | | 8 JT8¶ | Triode-Pentode | 9DX | 9-69 | 7.7 | 0.6 | 4.0 🏶 | 330 ◈ | 330 \$ ⊕
1,1 ⊕ | Pentoc | le Secti | on | | 8JU8-A¶ | Quadruple Diode | 9PQ | 6-2 | 8.4 | 0.45 | 1.0 🌢 | 330 €
Tube \ | Voltage
s at 60 | Triode
Drop: | Section | <u>n</u> | | 8JV8¶ | Triode-Pentode | 9DX | 6-3 | 8.5 | 0.45 | 4.0 🏟 | 10 volt | s at 60
 330 � | Pentoc | le Secti | on | | 00 7 0 % | 111046 1 6110046 | 1211 | | | | 1.1 🏶 | 330 ◈ | 1.7 | ı | Section | | | 8KA8¶ | Triode-Pentode | 9PV | 6-3 | 8.4 | 0.45 | 2.0 🏶 | | 300 3 ③ | ·I | le Section | - | | 8KR8¶ | Triode-Pentode | 9DX | 6-3 | 8.0 | 0.6 | 1.1 ♦ 5.0 ♦ | 300 € | | | de Sec | | | onno i | a riout-a carout | J. J | | 0.0 | "" | 2.0 🏶 | 330 ♦ | 1.5 | 1 | e Section | | | 8KS8¶ | Triode-Pentode | 9DX | 6–3 | 8.4 | 0,45 | 3.75 ♦ | 330 ◈ | 330 3 🍨 | Pentod | le Secti | on | | | | | | | | 1.1 🏶 | 330 ◈ | | Trioda | Section | | | 8LC8¶ | Triode-Pentode | 9QY | 6-3 | 8.4 | 0.45 | 2.0 🏶 | 300 ◈ | 1.1 | Pentod | le Secti | on | | | | | | <u> </u> | | 1.1 🏶 | 300 ◈ | l . | ruode | Section | п | | 8LE8¶ | Twin Pentode | 902 | 6-4 | 8.0 | 0.6 | 2.0 ◈ | 300 ◈ | 2.0 | | _ | | | 8LS6¶ | Sharp-Cutoff
Pentode | 9GK | 6-3 | 7.7 | 0.45 | 5.0 ◈ | 180 � | 180 ♦
1.2 ♦ | 7.2 ▲ | 4.2 ▲ | 0.075 | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. § Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|--------------------|-----------------|----------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|------------------|--|--------------------------------|--------------| | Class A | 200 | 150 | $R_k = $ | 25 | 5.5 | 60,000 | 11,500 | | | i — i | 8ET7¶ | | Amplifier | 60
Avera | 150
ge Diod | 100
0
e curren | 55
it at 10 | 18
volts = | 1.5 ma | | - | | | | | Class A | 250 | | 8.0 | 9.0 | I | 7,700
6,700 | 2,600 | 20 | | i = | 8FQ7¶ | | Amplifier | 90 | _ | 0 | 10 | - | 6,700 | 3,000 | 20 | | | - 7 | | Class A | 170 | 120 | 1.2 | 10 | 3.0 | 350,000 | 11,000 | | | | 8GJ7 | | Amplifier
Class A
Amplifier | 100 | | 3.0 | 15 | | | 9,000 | 20 | _ | - | | | Class A | 200 | 150 | R _k = | 25 | 5.5 | 60,000 | 11,500 | | | | 8GN8¶ | | Amplifier
Class A Amp | 250 | | $\frac{100}{2.0}$ | 2.0 | | 37,000 | 2,700 | 100 | l — | | | | Class A
Amplifier • | 250 | | 10.5 | 11.5 | | 5,500 | 3,100 | 17 | | - | 8GU7¶ | | Class A | 125 | 125 | 1.0 | 8,0 | 2.5 | 200,000 | 11,000 | _ | | | 8GX7¶ | | Amplifier
Class A
Amplifier | 125 | | 1.0 | 13 | | 4,700 | 8,500 | 40 | | | | | Class A
Amplifier | 150 | 100 | R _k = 33 | 28 | 3.5 | 20,000 | 20,000 | _ | - | - | 8HA6 | | | 60 | 100 | 0 | 45 | 9.0 | | | | | | OTT CO | | Class A
Amplifier | 170 | 150 | 1.2 | 10 | 3.3 | 350,000 | 12,000 | | - | _ | 8HG8 | | Class A Amp | 100
250 | 170 | 3.0 | $\frac{14}{22}$ | 4.0 | 3,100 | $\frac{5,500}{12,000}$ | | | | 8JE8¶ | | Class A
Amplifier | | 170 | R _k = 82 | | 4.0 | - | 1 | | - | - | 0.7 2.0 1 | | Class A Amp
Class A | 100 | = | 1.0 | 4.5
5.3 | <u> </u> | 16,600
8,000 | 4,200
6,800 | 70
55 | | | 81K8 | | Amplifier
Class A
Amplifier | 135 | _ | 1,2 | 10 | | 5,400 | 13,000 | 70 | - | _ | 0,110 | | Class A | 300 | 150 | 3.5 | 25† | 5.0† | 60,000 | 11,500 | | 5,000 | 1.8 | 8JL8 | | Amplifier
Class A
Amplifier | 150 | | R _k = 150 | 10 | | 7,500 | 4,700 | 35 | - | - | | | Class A
Amplifier | 200 | 100 | R _k = 82 | 17 | 3.5 | 50,000 | 20,000 | | _ | - | 8JT8¶ | | Class A Amp | 35
250 | 100 | 90 | 50
1.5 | 17 | 37,000 | 2,700 | 100 | | | | | Detector | Max | d-c out | put curi | ent pe | r plate | >=9.0 ma;
plate ♦=5 | max pe | ak inv | erse vo | tage 🗇 | 8JU8-A¶ | | Class A | $\frac{=300}{125}$ | volts; | max per | 1 22 | 1 4.0 | 100.000 | 111,500 | 1 — | Т— | ī — | 8JV8¶ | | Amplifier
Class A | 40
200 | 125 | 0
2.0 | 28
4.0 | 9.0 | 17,500 | 4,000 | 70 | = | = | | | Amplifier
Class A
Amplifier | 150 | 100 | R _k = 180 | 4.0 | 2.8 | 100,000 | 4,400 | - | - | | 8KA8¶ | | Class A Amp | | | 2.0 | 4.0 | | 17,500 | 4,000 | 70 | . | | | | Video
Amplifier | 200
35 | 100 | R _k = 82 | 19.5
54 | 13.5 | 60,000 | 20,000 | _ | _ | _ | 8KR8¶ | | General
Purpose
Amplifier | 125 | 100 | R _k = 68 | 15 | 10.0 | 4,400 | 10,400 | 46 | - | - | | | Class A | 150 | 150 | R _k = 150 | 20 | 4.5 | 150,000 | 9,500 | - | T - | - | 8KS8¶ | | Amplifier Class A Amp | 65
200 | 150 | 0
2.0 | 60
4.0 | 20 | 17,500 | 4,000 | 70 | | | | | Class A | 150 | 100 | $R_k =$ | 4.0 | 2.8 | 100,000 | 4,400 | - | - | | 8LC8¶ | | Amplifier
Class A
Amplifier | 200 | _ | 180
2.0 | 4.0 | - | 17,500 | 4,000 | 70 | - | | | | Color De-
modulator | 100 | 100 | 2.5 | 8.0 | 15 | 50,000 | 5,800 | | Ee3 = | 0 volts | 8LE8¶ | | Video
Amplifier | 110 | 110 | R _k = 65 | 14 | 3.2 | 54,000 | 11,000 | (E ₀₃ | = 0 vo | olts) | 8LS6¶ | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Volts | Cap
P | acitano
icofara | e in
ds | |---------------|--------------------------|---------------|--------------------|---------------|---------------|----------------|----------------|--|----------------------------|-----------------------------|--| | Type | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Voits | and
Watts | Input | Out-
put | Grid-
plate | | 8LT8¶ | Duplex-Diode
Pentode | 9RL | 6–2 | 8,1 | 0.45 | 3.1 ◈ | 330 ◈ | 330 8 ♦
0.65 ♦ | Pentod | e Section | | | 8MU8¶ | Triode-Pentode | 9AE | 6-3 | 8.4 | 0.45 | 3.75 ◈ | 330 ◈ | 3308 🏶 | | de Sect | | | | | | | | | 2.5 🏶 | 330 � | 1.1 🏶 | Triod | e Sectio | on | | 8SN7-
GTB¶ | Medium-mu
Twin Triode | 8BD | 9-11
or
9-41 | 8.4 | 0.45 | 5.0 ♠
7.5 ⊕ | 450 | | 2.2₁ ▲
2.6₂ ▲ | 0.7 ▲ | 4.0 ₁ 4
3.8 ₂ 4 | | 8U9 | Triode-Pentode | 10K | 6-2 | 8.0 | 0.3 | 2.1 | 250 | 250
0.7 | | e Section | | | | | | | | | 1.5 | 250 | | | Section | | | 8X9 | Triode-Pentode | 10K | 6–2 | 8.0 | 0.3 | 2.1 | 250 | 250
0.7 | Pentod | e Sectio | on | | | | | | | | 1.5 | 250 | - | Triode | Section | 1 | | 948 | Triode-Pentode | 9DC | 6-2 | 9.0 | 0.3 | 1.7 | 250 | 200 | Pentod | e Section | on | | | | | | | | 1.5 | 250 | 0.75 | Triode | Section | 1 . | | 9AH9¶ ■ | Trìode-Pentode | 12HJ | 9-59 | 8.8 | 0.6 | 10 🕸 | 400 ◈ | 3308 € | Pento | de Sect | ion | | | | | | | | 2.0� | 330 ◈ | 1.0 | Triode | e Sectio | n | | 9AK10¶ ■ | Triple Triode | 12FE | 9–59 | 9.5 | 0.6 | 2.0 🏟 | 330 ◈ | = | 4.2₁ ▲
4.2₁ ▲
4.2₁ ▲ | 0.31 A
0.41 A
0.541 A | 3.2 ₁
3.0 ₂
3.0 ₃ | | 9AU7¶ | Medium-mu
Twin Triode | 9A | 6-2 | {9.4
{4.7 | 0.225
0.45 | 2.75 ◈ | 330 ◈ | - | 1.8 | 2.0 | 1.5 | | 9BJ11¶ | Dissimilar Double | 12FU | 9-58 | 9.6 | 0.45 | 2.8 🏶 | 160 🌒 | 160 🌢 | Section | 1 1 (Pi | ns 7, 1 | | | Pentode | | | | | 2.2 🏶 | 160 ◈ | 1.25 *
160 *
0.55 * | 9, 10
Section
4, 5, |), 11)
1 2 (Pi
6) | ns 2, | | 9BR7¶ | Duplex-Diode Triode | 9CF | 6-2 | {9.4
4.7 | 0.3 | 2,5 | 300 | | 2.8
Diode | 1.0 | 1.9 | | 9CG8-A¶ | Triode-Pentode | 9GF | 6-2 | 9.5 | 0.3 | 2.3 🏟 | 275 🎕 | 275 | 1 | le Secti | | | 3CO8-A [| Triode-rentode | agr | 0-2 | 5.0 | 0.3 | 1.7 🏶 | 275 🏶 | 0.45 | 1 | Section | | | 9CL8¶ | Triode-Tetrode | 9FX | 6-2 | 9.5 | 0.3 | 2.8 | 300 | 300\$ | Tetrod | e Secti | on | | | | | | | | 2.7 | 300 | 0.5 | Triode | Section | n | | 9DZ8 | Triode-Pentode | 9JE | T-X | 9.0 | 0.6 | 6.5 | 150 | 135 | Pentoc | le Secti | on | | | | | | | | 0.75 | 150 | 1.5 | Triode | Section | n | | 9EA8¶ | Triode-Pentode | 9AE | 6-2 | 9.5 | 0.3 | 3.1 ◈ | 330 € | 330 8 | Pentoc | le Secti | on | | | | | | | | 2.5 🏶 | 330 € |) — · | Triode | Section | n | | 9EF6¶ | Beam Power Amplifier | 78 | 9-13
or
9-42 | | 0.6 | 10 | 250 | 250
2.0 | 11.5▲ | 9.0 ▲ | 0.8 | | 9GH8-A¶ | Triode-Pentode | 9AE | 6-2 | 9.45 | 0.3 | 2.5 | 350 € | | Pentoc | le Secti | ion | | | | | | | | 2.5 ◈ | 330 € | 0.55 | Triode | Sectio | n | | 9GV8 | Triode-Pentode | 9LY | 6-4 | 9.5 | 0.6 | 7.0 | 250 € | | Pento | de Secti | ion | | | | | | | | 0.5 | 250 | 2.0 | Triode | Section | n | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. # Conversion transconductance. | Service | Piate
Volts | Screen
Voits | Neg
Grid
Volts | Piate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type
 |---------------------------------------|--------------------------------|-----------------|--------------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------|-------------------|--|--------------------------------|-----------------| | Class A
Amplifier | 125
Max d | 125
c outpu | R _k = 56 | 10 | 3.4
= 5.0 ma | 200,000
; voltage d | 13,000
rop: 5.0 | volts a | | d-c. ♠ | 8LT8¶ | | Class A | 150 | 150 | Rk= | 19 | 4.2 | 165.000 | 9,000 | | l — | | 8MU8¶ | | Amplifier
Class A
Amplifier | 125 | _ | 150
1.0 | 11.5 | | 5,800 | 6,000 | 35 | _ | _ | om co , | | Class A Amplifier Vertical | 250
90
Mar 2 | - citiva | 8.0
0 | 9.0
10 | | 7,700
6,700
1,500 volts | 2,600
3,000 | 20
20 | = | = | 8SN7-
GTB¶ | | Amplifier • | max d- | sitive p | de curre | nt 🏶 = | 22 ma | 1,500 VOIES | • | | | | | | Class A | 160 | 110 | 1.4 | 13 | 5.0 | | 12,000 | (E _c = | 0 volts | , I | 8U9 | | Amplifier
Class A
Amplifier | 100 | _ | 2.0 | 14 | - | _ | 5,000 | 17 | - | - | | | Class A | 160 | 135 | 1.7 | 13 | 5.0 | | 14,000 | | | | 8X9 | | Amplifier
Class A
Amplifier | 170 | - | 1.0 | 8.5 | - | _ | 4,800 | 55 | - | _ | | | Class A | 170 | 170 | 2.0 | 10 | 2.8 | 400,000 | 6,200 | | | | 9A8 | | Amplifier
Class A
Amplifier | 100 | _ | 2.0 | 14 | - | _ | 5,000 | 20 | _ | _ | | | Video | 250 | 150 | R _k = | 25 | 6.0 | 55,000 | 21,000 | | <u> </u> | | 9AH9¶ ■ | | Amplifier | 50 | 125 | 122
0 | 76 | 32 | | | | | | | | General
Purpose
Amplifier | 250 | - | R _k == 68 | 8.0 | ³² — | 7,300 | 2,750 | 20 | = | = | | | Color Dif-
ference
Amplifier | 200 | _ | R _k == 230 | 10 | _ | 7,500 | 7,000 | 53 | - | - | 9AK10¶ ■ | | Class A Amplifier Vertical Amplifier | 250
100
Max po
max d- | ositive p | 8.5
0
oulse pla | 10.5
11.8
ate volt | age � = | 7,700
6,500
1,200 volts | 2,200
3,100 | 17
20 | = | = | 9AU7¶ | | Class A | 110 | | E _{cc1} = | 5.8 | 6.8 | 40,000 | 7,500 | Ret= | 0.1 meg | | 9B J11¶ | | Amplifier
Class A
Amplifier | 125 | 125 | 0
R _k =
120 | 8.5 | 2.5 | 400,000 | 9,600 | Ecci = | 0 volts | - | | | | 250 | | R _k = 200 | 10 | | 10.900 | 5,500 | 60 | | | 9BR7¶ | | Class A
Amplifier | 100 | - | 200
R _k =
270 | 3.7 | - | 15,000 | 4,000 | 60 | | - | | | Horizontal ` | Max pe | ak outp | ut curre | ent 💠 = | 60 ma; v | roltage dro | p 💠 : 5 v | olts at 1 | 7 ma | ` | | | Phase Det.
Class A | 125 | 125 | 1.0 | 9.0 | 1 2.2 | 300,000 | 5,500 | | | | 9CG8-A¶ | | Amplifier
Class A
Amplifier | 125 | | 1.0 | 12 | _ | 6,000 | 6,500 | 40 | _ | _ | BOOD-IX (| | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 100,000 | 5,800 | | | | 9CL8¶ | | Amplifier
Class A
Amplifier | 125 | – | R _k = 56 | 15 | _ | 5,000 | 8,000 | 40 | - | - | • | | Class A | 145 | 120 | Rk = | 45† | 6.01 | | 7,500 | | 2,500 | 2.0 | 9DZ8 | | Amplifier
Class A
Amplifier | 120 | - | 180
R _k = 1500 | 0.8 | - | _ | 1,400 | 100 | _ | - | | | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,400 | | | | 9EA8¶ | | Amplifier
Class A
Amplifier | 150 | - | R _k = 56 | 18 | - | 5,000 | 8,500 | 40 | - | - | | | Vertical | 250 | 250 | 18 | 50 | 2.0 | | 5,000 | | | | 9EF6¶ | | Amplifier | 75
Max n | 250 | 0 | 170 | 17 |
2,000; max | d-0.004 | hode a | | 60 | | | Class A | 125 | 125 | 1.0 | 12 | age 🖭 = | 2,000; max
200,000 | 7.500 | | | l — | 9GH8-A¶ | | Amplifier
Class A
Amplifier | 125 | _ | 1.0 | 13.5 | _ | 5,400 | 8,500 | 46 | - | - | vono-a 1 | | Class A | 170 | 170 | 15 | 41 | 2.7 | 25,000 | 7,500 | | | | 9GV8 | | Amplifier
Class A Amp | 100 | <u> </u> | 0.8 | 5.0 | <u> </u> | 7,600 | 6,500 | 50 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears ■ mmediately below the screen voltage. ■ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |----------------|------------------------------|---------------|------|---------------|---------------|---------------------|--------------|----------------------------------|---------------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volis | and
Watts | Input | Out-
put | Grid-
plate | | 9JW8¶ | Triode-Pentode | 9DC | 6-2 | 9.0 | 0.3 | 1.2 | 250 | 250
0.8 | Pento | de Sect | ion | | | | | | | | 1.4 | 250 | V.8 | Triod | e Sectio | n | | 9KC6¶ | Dual-Control
Pentode | 9RF | 6-3 | 8.7 | 0.45 | 7.0 🏶 | 400 ◈ | 330 \$ ♦
1.5 ♦ | | | - | | 9K X6¶ | Sharp-Cutoff Pentode | 9GK | 6-3 | 8.7 | 0.45 | 11.5◈ | 400◈ | 330:♦ | 17.5▲ | 4.0▲ | 0.12 ▲ | | 9KZ8¶ | Triode-Pentode | 9FZ | 6–2 | 9.45 | 0.3 | 2.5 🏶 | 330 ◈ | 330 8 ◈
0.55 ◈ | Pentod | & Section | n | | | | | | | | 2.5 🏶 | 330 ◈ | - | Triode | Section | | | 9LA6¶ | Sharp-Cutoff Pentode | 9GK | 6-3 | 8.7 | 0.45 | 10⊛ | 400◈ | 330 : �
1.0� | 15▲ | 6.0▲ | 0.15 | | 9ML8¶ | Triple Triode | 9RQ | 6–2 | 9.6 | 0.45 | 2.0 ♦ € | 330 ♦ | _ | _ | <u> </u> | T- | | 9MN8¶ = | Triple Triode | 12HU | 960 | 9.5 | 0.6 | 3.0 ◈ | 330 ◈ | _ | 4.6 ▲ | 0.3 ₁
0.57 ₂
0.65 ₃ | 2.6 ▲ | | 9U8-A¶ | Triode-Pentode | 9AE | 6-2 | 9.45 | 0.3 | 3.0 ◈ | 330 ◈ | 330 ♦ \$
0.55 ♦ | Pentod | | n | | | | | | | | 2.5 | 330 ◈ | | | Section | | | 9X8¶ | Triode-Pentode
Converter | 9AK | 6–2 | 9.5 | 0.3 | 2.0 | 250 | 250 \$
0.4 | ĺ | e Sectio | | | | - | | | | | 1.5 | 250 | - | Triode | Section | | | 10 | Power Amplifier Triode | 4D | T-X | 7.5 | 1.25 | 12 | 425 | = | 4.0 | 3.0 | 7.0 | | 10AL11¶ | Dissimilar Double
Pentode | 12BU | 9-59 | 9.8 | 0.6 | 10 🏶 | 275 ♦ | 275 ♦
2.0 ♦ | Section
9, 10 | 1.1 (P | ns 8, | | - | rentode | | | | | 1.7 ◈ | 330 ◈ | 330 1 🍑 | Section 3, 4, | 6, 7) | ins 2, | | 10BQ5¶ | Beam Power
Amplifier | 9CV | 6-4 | 10.6 | 0.45 | 12 | 300 | 300
2.0 | | <u> </u> | | | 10C8¶ | Triode-Pentode | 9DA | 6-2 | 10.5 | 0.3 | 2.2 🏶 | 300 ◈ | 300 ♦8
0.55 ♦ | Pentod | e Section | on | | | 1 | | | | | 2.0 🏶 | 300 ◈ | 0.50 | Triode | Section | L | | | | | | | | 2.5 🏶 | 300 ◈ | | e Section | on—Tri | ođe | | | | | | | | 1.0 🌢 | 300 ◈ | - | | Section | ı | | 10CW5¶ | Power Amplifier | 9CV | 6-4 | 10.6 | 0.45 | 12 | 250 | 200 | Single | Tube | | | | Pentode | | | | | | | 1.75 | Two T | ubes, P | ush- | | 10DA7¶ | Double Triode | 9EF | 6–3 | 10.5 | 0.6 | 2.0 | 300 | | Section
8) | ı 1 (Pin | s 6, 7, | | | | | | | | 6.0 | 500 | _ | | 2 (Pin | s 1, 3, | | 10DE7¶ | Double Triode | 9HF | 6-3 | 9.7 | 0.6 | 1.5 🏶 | 330 � | _ | | 1 (Pin | s 6, 7, | | | | | | | | 7.0 ♦ | 275 ◈ | - | 8)
Section
3, 9) | ı 2 (Pin | s 1, 2, | | 10DR7¶ | Double Triode | 9HF | 6-3 | 9.7 | 0.6 | 1.0 🏟 | 330 ◈ | | | ı 1 (Pin | s 6, | | | | | | | | 7.0 ♦ | 275� | | 7, 8)
Section
2, 3, | 1 2 (Pin | s 1, | | | | | | | l | . | | | | | - | | 10DX8 | Triode-Pentode | 9HX | 6–3 | 10.2 | 0.45 | 4.0 | 300 | 300
1.7 | 1 | le Section | | | 10EB8¶ | Triode-Pentode | 9DX | 6-3 | 10,5 | 0.45 | 1.0
5.0 ♦ | 330 € | 330 ◈\$ | | Section
le Section | | | 10000 | 1110de-1 entode | JUA | | 10.0 | 0.10 | 1.0 🏶 | 330 € | 1.1 | 4 | Section | | | 10EG7¶ | Double Triode | 8BD | 9-38 | 9.7 | 0,6 | 1.5 | 330 ♦ | - | Section | 1 (Pin | | | - | | | | | 1 | 10 🅸 | 330 ◈ | _ | | 1 2 (Pin | s 1, | | | - | 1 | 1 | 1 | 1 | <u> </u> | <u> </u> | <u> </u> | 2, 3) | | | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. *Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ®Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------|-----------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|-------------------|--|--------------------------------|--------------| | | 100 | 100 | 1.0 | 6.0 | 1.7 | | 5,500 | | i | i — i | 9JW8¶ | | Amplifier
Class A
Amplifier | 200 | _ | 2.0 | 3.5 | - | _ | 3,500 | 70 | | - | | | Class A
Amplifier | 250
50 | 150
100 | R _k = 56 | 18
25 | 9.0
25 | 55,000 | 24,000 | E _{c2} = | 0 volts | | 9KC6¶ | | Avg. Char. | 250 | 150 | R _k = 56 | 28 | 6.5 | 50,000 | 36,000 | = | | - | 9KX6 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | | | | 9KZ8¶ | | Class A
Amplifier | 125 | - | 1.0 | 13.5 | 6.0 | 5,400
55,000 | 8,500 | 46 | | | 9LA6¶ | | Avg. Char. | 250 | 150 | R _k = 122 | | 6.0 | | | | | | | | Class A
Amplifier ♠ | 125 | | 1.0 | 11 | | 6,400 | 6,700 | 43 | | | 9ML8¶ | | Class A
Amplifier ♠ | 125 | - | 1.0 | 11 | _ | 5,500 | 9,000 | 50 | - | _ | 9MN8¶ | | Class A
Amplifier | 125 | 110 | 1.0 | 9.5 | 3.5 | 200,000 | 5,000 | | | - | 9U8-A¶ | | Class A Amp | 125
250 | 150 | $\frac{1.0}{R_k =}$ | 7.7 | 1.6 | 750,000 | 7,500 | 40 | | | O V OF | | Amplifier
Class A
Amplifier | 100 | - | 200
R _k =
100 | 8.5 | - | 6,900 | 5,800 | 40 | _ | | 9X8¶ | | Class A
Amplifier | 425 | | 40 | 18† | | 5,000 | 1,600 |
8.0 | 10,200 | 1.6 | 10 | | Class A | 250 | 250 | 8.0 | 35† | 2.5† | 100,000 | 6,500 | | 5,000 | 4.2 | 10AL11¶ | | Amplifier
Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.1 | 150,000 | 1,000 | E _{c3} = | 0 volts | - | | | Class A
Amplifier | 250 | 250 | R _k = 135 | 48† | 5.5† | 38,000 | 11,300 | - | 5,200 | 6.0 | 10BQ5¶ | | Class A
Amplifier | 135 | 135 | R _k = 100 | 11,5 | 3.2 | 190,000 | 8,000 | | | | 10C8¶ | | Class A
Amplifier | 250 | - | R _k = 390 | 7.3 | - | 12,000 | 4,400 | 53 | | - | | | Vertical
Amplifier
Vertical
Oscillator | - | ositive p
-c catho | _ | | | 1,000; max | d-c cath | ode cu | rrent 🔷 | =18 ma | | | Class A | 170 | 170 | 12.5 | 70† | 5.0† | 23,000 | 10,000 | _ | 2,400 | 5.6 | 10CW5¶ | | Amplifier
Class AB ₁
Amplifier | 250 | 200 | 18.5 | 91† | 4.0† | | _ | | 3,000‡ | 25 | | | Vertical
Oscillator | 250 | _ | 8.0 | 9,0 | | 7,700 | 2,600 | 20 | - | | 10DA7¶ | | Vertical
Amplifier | 150
60 | = | 17.5 | 40
80 | = | 1,100 | 5,700 | 6.3 | = | = | | | Vertical / | 250 | | uise pia | 5.5 | .ge = 1,8 | 00 volts; m | 2,000 | | urrent | =40 ma | 10DE7¶ | | Oscillator \ | | c catho | de curr | ent 🏶 == | 22 ma | 925 | 6.500 | 6.0 | 1 - | _ | 10027 | | Vertical
Amplifier | 60 | —
ositive p | 0 | 80
te volta | age � = 1 | ,000; max | | | rent 🌑 | -50 ma | | | Vertical
Oscillator | 250
Max (| i-c cath | 3,0 | 1.4 | —
=20 ma | 40,000 | 1,600 | 64 | | r=1 | 10DR7¶ | | Vertical
Amplifier | 150
60 | _ | 17.5
0 | 35
80 | = | 925 | 6,500 | | = | = | | | | 220 | ositive p | _ | | | 1,500; d-c | | curren | t ♦ = 50 | ma | | | Class A
Amplifier
Class A Amp | 200 | 220 | 3.4 | 3.0 | 3.0 | 150,000 | 10,000 |
65 | | _ | 10DX8 | | Class A
Amplifier | 200 | 125 | Rk == | 25 | 7.0 | 75,000 | 12,500 | _ | = | | 10EB8¶ | | Vertical / | 250
250 | - | $\frac{2.0}{11}$ | 5.5 | | 37,000
8,750 | 2,700 | | | | 10EG7¶ | | Oscillator \ | ∣ Max o | d-c cath | ode cur | rent 🔷 | =22 ma | | 7,500 | | - | · | • | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Caj
P | acitano
icofara | e in
ds | |-----------------|-----------------------------|---------------|-------|---------------|---------------|------------------------------|--------------|-------------------------------|------------------|---------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 10EM7¶ | Double Triode | 8BD | 9-38 | 9.7 | 0.6 | 1.5 🏶 | 330 🏶 | | Section
5, 6) | 1 (Pin | s 4, | | | | | | | | 10 🔷 | 330 ◈ | | Section 2, 3) | 2 (Pin | • | | 10EW7¶ | Double Triode | 9HF | 9-70 | 9.7 | 0.6 | 1.5 🏶 | 330 🏶 | | 78) | 1 (Pin | • | | AND | | | | | | 10 🏶 | 330 ◈ | | Section 2, 3, | 2 (Pin
9) | s 1, | | 10FD7¶ | Double Triode | 9HF | 9-77 | 9.7 | 0.6 | 1.5 🏶 | 330 🏶 | _ | 1 7.8) | 1 (Pin | - | | | | | | | | 10.0 🏶 | 330 ◈ | | Section
2, 3, | | | | 10FR7¶ | Double Triode | 9HF | 9–70 | 9.7 | 0.6 | 1.5♦ | 330 🏶 | _ | Section
7, 8) | 1 (Pin | s 6, | | | | | | | | 10 🏶 | 330 ◈ | | Section 2, 3, | | | | 10GF7¶ | Dissimilar
Double Triode | 9QD | T-X | 9.7 | 0,6 | 1.5 | 330 ◈ | _ | Section
9) | 1 (Pin | s 1, 8, | | | Bousie Thoug | | | | | 11 🔷 | 330 � | - | Section
6) | 2 (Pin | s 2, 3, | | 10GF7-A¶ | Dissimilar Double
Triode | 9QD | 9-107 | 9.7 | 0.6 | 1.5 🏶 | 330 ◈ | - | Section
9) | 1 (Pin | ns 1, 8, | | | Triode | | | | | 11 🏶 | 330 🏶 | - | Section | 2 (Pi | is 2, 3, | | | | | | | | | | | 6) | | | | 10GK6¶ | Beam Power | 9GK | 6-4 | 10.6 | 0.45 | 13.2 🏶 | 330 ◈ | 330 | Single | Tube | | | | Amplifier | | | | | | | 2.0 🏶 | Two T
Pull | ubes, F | ush- | | | | | | | | | | | Pull | ubes, P | | | 10GN8¶ | Triode-Pentode | 9DX | 6–3 | 10.5 | 0.45 | 5.0 ③ | 330 ◈ | 330 ♦ \$ | | le Secti
Section | | | 10HA6 | Pentode | 9NW | 6-4 | 10.4 | 0.45 | 8.0 | 300 ♦ | 250 (a) | 13 A | 8.0 ▲ | | | 10HF8¶ | Triode-Pentode | 9DX | 6-3 | 10.5 | 0.45 | 5.0♦ | 330 ◈ | 330 (*) | Pentod | le Secti | on | | | - | | | | | 1.0 | 330 🌢 | _ | Triode | Section | 1 | | 10JA5¶ ■ | Beam Power
Amplifier | 12FY | 12-57 | 10.5 | 0.6 | 19 🏟 | 400 ◈ | 300 ♦
2.75 ♦ | 14▲ | | 0.66 | | 10JA8¶ | Triode-Pentode | 9DX | 6-3 | 10.5 | 0.45 | 5.0 🏶 | 330 � | | Pentod | le Secti | on | | | | | | | | 1.0 🏶 | 300 ♦ | 1.5 | | Section | 3 | | 10JT8¶ | Triode-Pentode | 9DX | 9-69 | 10.2 | 0.45 | 4.0 🏶 | 330 ◈ | 330 2 🎕 | Pentod | le Secti | on | | | | | | | 0.45 | 1.0 ♦ | 330 ♦ | | Triode | Section | 1 | | 10JY8¶ | Triode-Pentode | 9DX | 6-3 | 10.5 | 0.45 | 5.0 ♦
2.0 ♦ | 330 ◈ | 330 \$ 🌢 | • | le Section | | | 10V DOS | Triode-Pentode | 9DX | 6-3 | 10.5 | 0.45 | 5.0 ◈ | 330 € | 3308 ◈ | | le Section | - | | 10KR8¶ | I node-Pentode | any | 0-3 | 10.5 | 0.45 | 2.0 🏶 | 330 € | 1.1 | 1 | Section | | | 10KU8¶ | Duplex-Diode | 9LT | 9-69 | 10.2 | 0.45 | 4.0 | 1 |
 330 8 | ļ | 3.0 ▲ | | | | Pentode | | | | | | | 1.1 | Diode | Section | • | | 10LB8¶ | Triode-Pentode | 9DX | 9-69 | 10.2 | 0.45 | 4.0 ♦ | 330 ♦ | 330 2 🎕 | | le Secti | | | | | | | | | 2.0 🏶 | 330 € | 1.1 | Triode | 0 | _ | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. * Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | | | 1 | | | | | | | Tand | 1 | | |--------------------------|----------------|-----------------|------------------------------|---------------------------------|----------------------------------|--------------------------|--------------------------|---------------|--|--------------------------------|--------------| | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _{m,}
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Vertical (| 250 | <u> </u> | 3.0 | 1.4 | | 40,000 | 1,600 | 64 | ı — | I — | 10EM7¶ | | Oscillator Vertical | 150 | i-c cath | 20 | 50 | =22 ma | 750 | 7,200 | 5.4 | I — | | | | Amplifier | 250 | | | | | 1,500; max | 2.000 | | | = 50 ma | 10EW7¶ | | Vertical
Oscillator | Max | i-c cath | ode cur | 5.5
rent 🏶 : | =22 ma | | | | • | 1 — | TOE W/A | | Vertical { Amplifier { | 150
May 1 | ositive | 17.5
 nuise pl | 45
ate volt | age 🕸 = | 800
1,500; max | 7,500
d-c cath | 6.0 | rrent 🕏 | = 50 ma | | | Vertical | 250 | | 3.0 | 1.4 | _ | | 1,600 | | - | | 10FD7¶ | | Oscillator
Vertical | Max 6 | -c cath | ode curr
 17.5 | ent 🏶 = | 20 ma | ! 800 | 7,500 | 6.0 | ı | l | - | | Amplifier \ | Maxı | ositive | pulse pl | ate volt | age 🧇 💳 | 1,500; max | d-c catl | ode cu | rrent 🏶 | =50 ma | | | Vertical
Oscillator | 250
Max | —
peak ne | 3.0 | 1.4 | —
tage @b = | 4000 max | 1,600
d-c cath | 68
ode cui | rent 🏟 | 22 ma | 10FR7¶ | | Vertical | l 150 | | 20.0 | 50 | ! — | 750% | 7.200 | 5.4 | _ | | | | Amplifier \ Vertical | 250 | | puise pi | 1.4 | age 🏶 = | 1,500; max | | | rrent 🍲 | = 50 ma | 10GF7¶ | | Oscillator | Max | -c cath | ode cur | rent 🏶 : | 22 ma | | | • | . — | | 10011 | | Vertical | 150
60 | = | 20 | 50
95 | = | 750 | 7,200 | 5.4 | | = | | | Amplifier | Max | ositive | | ate volt | | 1,500; max | | | | =50 ma | | | Vertical
Oscillator | 250
Max | i-c cath | 3.0 | 1.4 | —
=22 ma | 40,000 | 1,600 | 64 | I — | | 10GF7-A¶ | | ſ | 150 | — | 20 | 50 | | 750 | 7,200 | 5.4 | · — | | | | Vertical
Amplifier | 60
Max | positive | Dulse | 95
plate ve |
oltage ⊛ | =1,500; n | lax d-c | —
cathod | e curre | nt 🏶 = | | | | 50 ma | | | - | | | | | | - | | | Class A
Amplifier | 250 | 250 | 7.3 | 48† | 5.5† | 38,000 | 11,300 | _ | 5,200 | 5.7 | 10GK6¶ | | Class AB | 300 | 300 | R _k == 130 | 72† | 8.0† | | | | 8,000‡ | 17 | | | Amplifier | 250 | 250 | R _k = | 62 † | 7.0† | _ | | | \$,000; | 11 | | | Class B
Amplifier | 300
250 | 300
250 | 14.6
11.6 | 15†
20† | 1.6†
2.2† | = | = | _ | 1000,8
1000,8 | 17
11 | | | Class A | 200 | 150 | Rk= | 25 | 5.5 | 60,000 | 11,500 | | | | 10GN8¶ | | Amplifier
Class A Amp | 250 | | 100
2.0 | 2.0 | l —_ | 37,000 | 2,700 | 100 | | | | | Class A
Amplifier | 150 | 100 | R _k = | 28 | 3.5 | 20,000 | 20,000 | | | | 10HA6 | | | 60 | 100 | -0- | 45 | 9.0 | 75.000 | 10.500 | | | | 1011505 | | Class A
Amplifier | 200 | 125 | R _k = 68 | 25 | 7.0 | 75,000 | 12,500 | _ | _ | _ | 10HF8¶ | | Class A Amp | 45
200 | 125 | 2.0 | 40
4.0 | 15 | 17,500 | 4,000 | 70 | | | | | Vertical- | 135 | 125 | 10 | 95 | 4.2 | 12,000 | 10,300 | | T- | | 10JA5¶ ■ | | Deflection
Amplifier | 45
Max | 125
positive | Dulse p | l 210
late vol | 1 20
tage ♠ | = 2,500 vo | ts: max | d-c cat | l —
hode cu | rrent 🏵 | | | | = 110
200 | <u>ma.</u> | | | , | 70,000 | | | ı—— | | 107405 | | Class A
Amplifier | 30 | 135
135 | 1.5
0 | 18
32 | 4.0
14 | | 14,000 | = | | | 10JA8¶ | | Class A Amp | 200 | | 2.0 | 3.5 | <u> </u> | 19,000 | 3,700 | 70 | | | | | Class A | 200 | 100 | R _k = 82 | 17 | 3.5 | 50,000 | 20,000 | | _ | | 10JT8¶ | | Amplifier Class A Amp | 35
250 | 100 | 0
2.0 | 50
1.5 | 17 | 37,000 | 2,700 | 100 | | | | | Class A | 200 | 150 | R _k == | 24 | 4.8 | 55,000 | 11,000 | | | |
10JY8¶ | | Amplifier
Class A | 125 | _ | R _k = | 15 | _ | 4,400 | 10,400 | 46 | - | | | | Amplifier
Class A | 200 | 100 | 68
R _k =
82 | 19.5 | 3.0 | 60,000 | 20,000 | | | | 10KR8¶ | | Amplifier
Class A | 125 | | R _k == | 15 | _ | 4,400 | 10,400 | 46 | l – | | | | Amplifier
Class A | 200 | 100 | 68
R _k == | 17 | 3.5 | 50,000 | 20,000 | | <u> </u> | | 10KU8¶ | | Amplifier | 50 | 100 | 82
0 | 55 | 18 | _ | | _ | _ | | | | | Avera | ge diod | curren | t at 10 | volts = | 2.0 ma | | _ | r | | | | Class A | 200 | 100 | R _k = 82 | 17 | 3.5 | 50,000 | 20,000 | | - | | 10LB8¶ | | Amplifier Class A | 50
125 | 100 | 0
R _k = | 55
13 | 18 | 6,000 | 5,000 | 30 | | | | | Amplifier | | | 68 | | | 0,000 | 0,000 | | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. \$ G3 and G5 are screen. G4 is signal-input grid. \$ G2 and G4 are screen. G3 is signal-input grid. \$ 1, 2, 3, etc. indicate tube sections. \$ Maximum screen dissipation appears immediately below the screen voltage. \$ Heater warm-up time controlled. | | Classification | Base | Out- | Fila- | Fila- | Max | Max | Max
Screen | Capacitance in
Picofarads | |--------------|--|-----------------------|-------------|---------------|-------------|------------------------------|------------------------------|---|--| | Tube
Type | by
Construction | Con-
nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | Volts
and
Watts | Input Out- Grid-
put plate | | 10LE8¶ | Twin Pentode | 9QZ | 6–4 | 10 | 0.45 | 2.0 ♦ | 300 ◈ | 150 ③
2.0 ⑤ | | | 10LW8¶ | Triode-Pentode | 9DX | 6–3 | 10.5 | 0.45 | 4.0 🏶 | 330 ◈ | 330 \$ � | Pentode Section | | | | | | | | 1.5 🏶 | 330 ◈ | | Triode Section | | 10LY8¶ | Triode-Pentode | 9DX | 6–3 | 10.5 | 0.45 | 5.0 ◈ | 330 ◈
330 ◈ | 330 \$ �
1.1 �
— | Pentode Section Triode Section | | 10LZ8¶ | Triode-Pentode | 9DX | 6-3 | 10.5 | 0.45 | 4.5 ③
1.0 ③ | 225 ♦
300 ♦ | 160 ③
2.0 ⑤ | Pentode Section Triode Section | | 10T10¶ ■ | Dissimilar Double Triode- Pentode | 12EZ | 959 | 9.8 | 0.6 | 10 ③ | 275 ♦
330 ♦ | 275 ③ 2.0 ⑤ 330 3 ⑥ 1.1 ⑥ | Section 1 (pins 8, 9, 10 and 11) Section 2 (pins 2, 3, 5, 6 and 7) | | 10210¶ | Pentode-Gated
Beam Discrim-
inator | 12BT | 9–58 | 10 | 0.6 | 10 🔷 | 275 ♦
330 ♦ | 275 ♦
2.0 ♦
330 \$ ● | Pentode Section
(Pins 2, 3, 9, 11)
Gated-Beam
Discriminator
(Pins 4, 5, 6, 7, 8) | | 11AR11¶ | Twin Pentode | 12DM | 9-58 | 11.2 | 0.45 | 3.1 🌢 | 330 ◈ | 330 3 ♦
0.65
♦ ♦ | | | 11BM8 | Triode-Pentode | 9EX | 6–4 | 10.7 | 0.45 | 5.0
1.0 | 250
250 | 250
1.8 | Pentode Section Triode Section | | 11BQ11¶ | Dissimilar Double
Pentode | 12DM | 9-58 | 11.2 | 0.45 | 3.1 ♦
3.1 ♦ | 330 ♦ | 0.65 | 9, 10, 11) | | 11BT11¶ | Dissimilar-Double-
Triode Pentode | 12GS | 9-58 | 10.7 | 0.6 | 3.5 ◈ | 165 🏶 | | Pentode Section | | | | | | - Contraction | | 1.5 ③
2.0 ③ | 330 ◈ | | Triode Section 1
(Pins 5, 6, 7)
Triode Section 2
(Pins 3, 4, 9) | | 11C5¶ | Beam Power Amplifier | 7CV | 5-3 | 11.6 | 0.45 | 4.5 | 135 | 117
1.0 | 12▲ 9.0▲ 0.6▲ | | 11CA11 5 | Dissimilar-Double-
Triode Pentode | 12HN | 9-58 | 10.7 | 0.6 | 5.0◈ | 330⊛ | 330 : ③ | Pentode Section | | | | | | | | 1.5 ⊗
1.5 ⊗ | 330 ◈
330 ◈ | _ | Triode Section 1
(Pins 4, 5, 6)
Triode Section 2
(Pins 2, 3, 7) | | 11CF11¶ | Dissimilar- | 12HW | 9-58 | 10.7 | 0.6 | 5.0 ◈ | 330 ◈ | 330 8 🌢 | | | | Double-
Triode-
Pentode | | | | | 2.0 🏶 | 330 ◈ | | Triode Section 1 | | | Temode | | | | | 1.5 ◈ | 330 ◈ | - | Triode Section 2 | | 11CH11¶ | Dissimilar-
Double- | 12GS | 9-58 | 10.7 | 0.6 | 6.0 ◈ | 330 ◈ | " | Pentode Section | | | Triode-
Pentode | | | | | 2.0 ③
1.0 ④ | 330 ♦
330 ♦ | | Triode Section 1
Triode Section 2 | | 11CY7¶ | Double Triode | 9LG | 6-3 | 11.0 | 0.45 | 1.0 ◈ | 350 ◈ | - | Section 1 (Pins 6, 7, 8) | | | | | | | | 5.5 ◈ | 350 ◈ | | Section 2 (Pins 1, 3, 9) | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. * Supply voltage. [⊕]Subminiature type. ▲Without external shield. ⊕Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohm | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|------------------|-----------------|--------------------------------|---------------------------------|----------------------------------|-------------------------|---------------------------|-------------|--|--------------------------------|-----------------| | Color De-
modulator | 100 | 100 | 2.5 | 8.0 | 15 | 50,000 | 5,800 | | E _{c3} = | 0 volts | 10LE8¶ | | Class A Amplifier | 200
35 | 100
100 | R _k = 82 0 2.0 | 16.5
48
2.6 | 2.8
12.5 | 60,000 | 19,000 | 75 | _ | | 10LW8¶ | | Class A
Amplifier | 200 | | | | | | 4;000 | 13 | | | | | Class A
Amplifier | 200 | 100 | R _k = 82 | 19.5 | 3.0 | 60,000 | 20,000 | | _ | | 10LY8¶ | | Class A
Amplifier | 35
250 | 100 | 2.0 | 54
1;0 | 13.5 | 59,000 | 1,700 | 100 | | | | | Class A
Amplifier
Class A
Amplifier | 200
30
250 | 140
140
— | 2.0
0
2.0 | 12
30
1.1 | 2.5
13.5 | 150,000
52,000 | 9,500
2,100 | 110 | = | = | 10LZ8¶ | | Class A
Amplifier | 250 | 250 | 8,0 | 35+ | 2.5+ | 100,000 | 6,500 | | 5,000 | 4.2 | 10T10¶ 🗰 | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.1 | 150,000 | 1,000 | (Eca | = 0 volt | s) | | | Class A
Amplifier | 250 | 250 | 8.0 | 35+ | 3.0+ | 100,000 | 6,500 | | 5,000 | 4.2 | 10Z10¶ = | | FM Limiter-
Discriminator | 135 | 280 | _ | 5.0 | (Rg2 - | 33,000 oh | ms) | (Ee3 : | = +4.0 1 | volts) | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 11 | 3.5 | 200,000 | 10,500 | Value | _ | | 11AR11¶ | | Class A | 200 | 200 | 16 | 35 | 7.0 | 20,000 | 6,400 | | | | 11BM8 | | Amplifier
Class A
Amplifier | 100 | | 0 | 3.5 | | | 2,500 | 70 | | | | | Class A
Amplifier | 125 | 125 | R _k = | 11 | 3.5 | 200,000 | 10,500 | | _ | | 11BQ11¶ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 11 | 3.8 | 200,000 | 13,000 | | - | - | | | Avg. Char. | 150 | 100 | R _k = | 17.4 | 3.2 | 51,000 | 19,000 | | | | 11BT11¶ | | Class A | 35
200 | 100 | 0
R _k = | 54
7.1 | 13.5 | 12,300 | 5,500 | 69 | = | | | | Amplifier
Class A
Amplifier | 200 | _ | 270
R _k =
470 | .7.2 | - | 7,600 | 5,300 | 40 | _ | - | | | Class A
Amplifier | 110 | 110 | 7.5 | 40† | 3.0† | | 5,800 | | 2,500 | 1.5 | 11C5¶ | | Class A
Amplifier | 200 | 120 | R _k = 65 | 27.5 | 4.9 | 490,000 | 21,200 | | | | 11CA11¶ | | Class A
Amplifier | 200 | - | R _k = 270 | 7.1 | - | .10,000 | 6,300 | 63 | _ | | | | Class A
Amplifier | 200 | - | R _k = 270 | 7.1 | - | 12,400 | 5,500 | 69 | | - | | | Class A
Amplifier | 200 | 120 | R _k = 65 | 27,5 | 4.9 | 490,000 | 21,200 | I | _ | | 11CF1f¶1 | | Class A
Amplifier | 200 | - | R _k = 270 | 7.1 | - | 12,400 | 5,500 | 69 | _ | | | | Class A
Amplifier | 200 | _ | R _k = 270 | 7.6 | - | 9,200 | 6,300 | 59 | - | | | | Video
Amplifier | 200 | 120 | R _k = 65 | 27.5 | 4.9 | 49,000 | 20,000 | _ | T - | _ | 11CH11¶ | | General
Purpose | 50
200 | 120 | 0
R _k =
270 | 71
7.1 | 18 | 12,500 | 5,500 | 69 | = | _ | | | Amplifier
General
Purpose
Amplifier | 200 | _ | R _k = 470 | 7.2 | _ | 7,600 | 5,300 | 40 | - | _ | | | Vertical | 250 | T — | 3.0 | 1.2 | 1= | 52,000 | 1,300 | 68 | _ | | 11CY7¶ | | Oscillator
Vertical | 150 | - | R _k = 620 | 30 | - | 920 | 5,400 | 5.0 | _ | | | | Amplifier | 60
Max | positive | 0
pulse pl | 80
ate volt | age � = | 1,800; max | d-c cat | hode cu | rrent 🏶 | =35 ma | | Metal tubes are shown in bold-face type, miniature tubes in itatics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitano
icofara | | |-------------------|---|---------------|--------------|--------------------|-----------------|--------------|--------------|---------------------------------|--------------------|---|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 1DS5¶ | Beam Power
Amplifier | 7BZ | 5–3 | 11.2 | 0.45 | 9.0� | 275 🏶 | 275 ♦
2.2 ♦ | 9.5 ▲ | 6.3 ▲ | 0.19 | | 11FY7¶ | Dissimilar Double
Triode | 12EO | 9–60 | 11 | 0.6 | 1.0 🏶 | 330 🇇 | | Section
10, 1 | | ins 9, | | | 11000 | | | | | 7.0 ◈ | 275 ◈ | | Section
7) | Ź (Pin | s 3, 5, | | 11HM7 | Sharp-Cutoff
Pentode | 9BF | 6–3 | 11 | 0.3 | 7.0 🏶 | 330 ◈ | 330 8 ♦
1.0 ♦ | 14 ▲ | 5.0 ▲ | 0.15 | | 11JE8¶ | Triode-Pentode | 9DX | 6-3 | 10.9 | 0.45 | 5.0 ③ | 330 ♦ | 330 ♦ \$ | Pentod
Triode | e Section | | | 11KV8¶ | Triode-Pentode | 9DX | 6–3 | 10.9 | 0.45 |
5.0 ◈ | | 300 \$ ♦
1.0 ♦ | Pentod | | | | | | | | | | 1.0 ◈ | 300 � | _ | Triode | Section | 1 | | 11LQ8¶ | Triode-Pentode | 9DX | 6-3 | 10.9 | 0.45 | 5.0 🏶 | 300 🏶 | 3008 ◈ | | e Section | | | | | | | | | 2.0 🏶 | 300 ◈ | _ | Triode | Section | 1 | | 11LT8 | Duplex-Diode Pentode | 9RL | 6-2 | 11.4 | 0.315 | 3.1 ◈ | 330◈ | 330 : ③
0.65 ③ | | e Sections | | | 11LY6¶ | Sharp-Cutoff
Pentode | 9GK | 6-3 | 11.0 | 0.3 | 6.5 🏶 | 330 ◈ | 190 * | 9.5 ▲ | 3.8 ▲ | 0.07 | | 11MS8¶ | Triode-Pentode | 9LY | 6-4 | 11.6 | 0.45 | 6.0� | 250 ◈ | | Pento | de Sect | ion | | | 1 | | | | | 0.5 🏶 | 250 � | 1.5 | Triod | e Sectio | on | | 1 Y 9 | Dissimilar Double | 10L | 6-3 | 11 | 0.45 | 5.0 | 250 | 250
2.5 | Section
9, 10 | 1 (Pin | s 7, 8, | | | Pentode | | | | | 1.5 | 250 | 250
0.5 | Section 3, 4) | 2 (Pir | ıs 1, 2, | | 2A | Detector Amplifier
Triode | 4D | 14-1 | 5.0
DC | 0.25 | | 180 | | 4.0 ▲ | 2.0 ▲ | 8.5 ▲ | | 2A4 | Medium-Mu Triode | 9AG | 6–3 | ${12.6} \atop 6.3$ | 0.3 | 5.9 | 450 | _ | 4.9 | 0.9 | 5.6 | | 2A5 | Power Amplifier Pentode | 7F | 12-5 | 12.6 | 0.3 | 8.25 | 180 | 180
2.5 | | = | | | 12A6
12A6-GT | Beam Power Amplifier | 7AC | 8-6
9-9 | 12.6 | 0.15 | 7.5 | 250 | 250
1.5 | | | | | 2A7 | Half-Wave Rectifier Power Amplifier Pentode | 7K | 12-6 | 12.6 | 0.3 | | 135 | 135 | | = | | | 12A8-G
12A8-GT | Pentagrid Converter | 8A ♦ | 12-8
9-18 | 12.6 | 0.15 | 1.0 | 300 | 100
0.3 | Osc Ici
Rgi = 5 | =0.4 m
0,000 o | na
hms | | 12A B5 | Beam Power Amplifier | 9EU | 6-3 | 12.6 | 0.2 | 12 | 315 | 285
2.0 | 8.0 🛦 | 8.5 ▲ | 0.7 | | 2AC6 | Remote-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.15 | | 30 | 30 | 4.3 | 5.0 | 0.004 | | 12AC10-A¶ | | 12FE | 9-56 | 12.6 | 0.3 | 2.0 🏶 | 330 ◈ | | 2.62 | 0.22 ₁
0.30 ₂
0.44 ₃ | 1.22, | | 2A D6 | Pentagrid Converter | 7CH | 5-2 | 12.6 | 0.15 | _ | 16 | 16 | Osc. L | 1 = 0.06
3,000 o | 0 ma | | 12AD7 | High-mu
Twin Triode | 9A | 6-2 | ${12.6} \atop 6.3$ | $0.225 \\ 0.45$ | 1.0♠ | 300 | | 1.6 ▲ | 0.5 ₁ A 0.45 ₂ | 1.8▲ | | 12AE6 | Duplex-Diode Triode | 7BT | 5-2 | 12.6 | 0.15 | | 30 | | 1.8 ▲
Diode | 1.1 A
Section | | | 12A E6-A | Duplex-Diode Triode | 7BT | 5-2 | 12.6 | 0.15 | | 30 | - | 1.8 ▲
Diode | 1.1 ▲
Section | 2.0 A | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|----------------------|-----------------|------------------------------|---------------------------------|----------------------------------|--------------------------|---|---|--|--------------------------------|-------------------| | Class A
Amplifier | 250
200 | 200
200 | 8.5
7.5 | 29+
35+ | 3.0+
3.0+ | 28,000
28,000 | 5,800
6,000 | | 8,000
6,000 | 3.8
3.0 | 11DS6¶ | | Vertical | 250 | <u> </u> | 3.0 | 1.4 | I I | 40,500 | 1,600 | 65 | | | 11FY7¶ | | Oscillator
Vertical | 150 | d-c cath | ode cur | rent ◆ : | 20 ma | 920 | 6.500 | 6.0 | | | | | Amplifier | 60 |
positive | 0 | 95 | —
voltage∢ | | | | de cur | rent 🏶 | | | | | | | 1 00 | 1 | | 1 | | | | | | Class A
Amplifier | 200 | 135 | R _k = 47 | 30 | 5.2 | 40,000 | 30,000 | (E _{c3} = | 0 volts |) | 11HM7 | | Class A
Amplifier
Class A Amp | 250
200 | 170 | R _k = 82 2.0 | 22
4.5 | 4.0 | 140,000
16,600 | 12,000 | 70 | _ | | 11JE8¶ | | Class A Amp | | 105 | | + | 1 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | 4475750# | | Class A | 200 | 125 | Rk.== | 22 | 4.0 | 75,000 | 23,000 | · | - | - | 11KV8¶ | | Amplifier | 125 | 125 | R _k == 82 | 19 | 3.8 | 55,000 | 21,000 | - | - | - | | | Class A
Amplifier | 200 | <u> </u> | 2.0 | 4.0 | _ | 17,500 | 4,000 | 70 | | | | | Class A | 125 | 125 | Rk= | 16.5 | 3.1 | 55,000 | 21,000 | | - | | 11LQ8¶ | | Amplifier
Class A
Amplifier | 125 | - | 82
R _k = | 15 | _ | 4,400 | 10,400 | 46 | - | | | | Class A
Amplifier | 125 | 125 | R _k = | 10 | 3.4 | 200,000 | 13,000 | - | _ | | 11LT8 | | | | d-c out | | | | a; voltage | | 0 volts | at 20 m | ad-c 🌢 | | | Class A
Amplifier | 250 | 180 | R _k = | 26 | 5.75 | 89,000 | 11,000 | - | | _ | 11LY6¶ | | Vertical
Deflection
Amplifier | 120
Max p
= 70 | 110
ositive | 10
pulse pl | 50
ate volt | 3.0
age 🏶 = | 13,000
= 2,000 vol | 0i 8,500
ts; max | d-c cath | ode cur | rent 🏶 | 11MS8¶ | | Class A
Amplifier | 100
100 | 1 = | 0.85 | 5.0
10 | 1 = | 11,000
9,000 | 5,500
7,000 | 60 | | 1 = | | | Class A | 170 | 170 | 2.6 | 30 | 6.5 | 40,000 | 21,000 | _ | | Ι= | 11 Y 9 | | Amplifier
Class A
Amplifier | 150 | 150 | 2.3 | 10 | 3.0 | 160,000 | 8,500 | - | - | _ | | | Class A
Amplifier | 180 | | 13.5 | 7.7† | _ | 4,700 | 1,800 | 8.5 | 10,650 | 0.285 | 12A | | Vertical | 250 | <u> </u> | 9.0 | 23 | | 2,500
=1,000; ma | 8,000 | 20 | | | 12A4 | | Amplifier
Class A | 180 | 180 | puise p | 45t | | 35,000 ma | 1 2 400 | trioge c | 3,300 | 3 4 | 12A5 | | Amplifier | 100 | 100 | 15 | 45†
17† | 8†
3† | 50,000 | 2,400
1,700 | | 4,500 | 3.4
0.8 | | | Class A
Amplifier | 250 | 250 | 12.5 | 30† | 3.5† | 70,000 | 3,000 | | 7,500 | 3.4 | 12A6
12A6-GT | | Class A Amp
Half-Wave | 135 | | 13.5 | | | 102,000 | | - | 13,500 | 0.55 | 12A7 | | Rectifier | i | | | | | ax rms sup | | _ | | | | | Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | $E_{c2}(Osc thru 20)$
$I_{c2} = 4.0$ | Plate)
,000 oh
) ma | =250
ms | 12A8-G
12A8-GT | | Class A
Amplifier | 250
250 | 250
200 | 12.5
R _k = 270 | 45†
33.5† | 4.5†
1.6† | 50,000 | 4,100
4,000 | = | 5,000
6,000 | 4.5
3.3 | 12A B5 | | Class A
Amplifier | 12.6 | 12.6 | E _{cel} =0 | 0.6 | 0.2 | 600,000 | 750 | R _{g1} = 2. | 2 meg | | 12AC6 | | Class A
Amplifier • | 200 | _ | R _k == 150 | 9.0 | - | 10,700 | 5,800 | 62 | _ | | 12AC10-A¶ | | Converter | 12.6 | 12.6 | E _{ces} =0 | 0.34 | 1.19 | 400,000 | 320# | $R_{e^2} = 2$ | 2.2 meg | | 12AD6 | | Class A
Amplifier • | 250 | | 2.0 | 1.25 | | 62,500 | 1,600 | 100 | - | | 12AD7 | | Class A
Amplifier
AM Detect. | 12.6 | | 0 | 0.75 | - | 15,000 | 1,000 | 15 | - | | 12AE6 | | Class A
Amplifier | | d-c outr | | | 1 | voltage dr | ì | 16.7 | at 2.0 n | | 12A E6-A | | AM Detect. | Max | 1-c outp | out curr | ent 🕈 = | 1.0 ma; | voltage di | гор Ф: 1 | U VOITS | at 2.0 f | na d-c | | | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | pacitano
icofara | | |-------------------|--------------------------------------|---------------|--------------|---|---------------|--------------|-------------------|-------------------------------------|---------------------|--------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts
₩ | Input | Out-
put | Grid-
plate | | 12A E7 | Double Triode | 9A | 6–2 | 12.6 | 0.45 | 1.0 🏶 | 16 ◈ | | Section | 1 (Pir | ns 6, 7, | | | | | | | | 1.0◈ | 16 ◈ | | 8)
Section
3) | 2 (Pir | ns 1, 2, | | 12AE10¶ | Dissimilar Double
Pentode | 12EZ | 9-59 | 12.6 | 0.45 | 6.0 ◈ | 165 ◈ | 150 ♦
1.25 ♦ | Section
10, 1 | 1 (Pin: | s 8, 9, | | | | | | | | 1.7 🏶 | 1 | 330 \$ ◈ | Section 5, 6, | i 2 (Pin
7) | s 2, 3, | | 12AF3¶ | Half-Wave High-
Vacuum Rectifier | 9CB | 6–8 | 12.6 | 0.6 | 6.0 ◈ | Tube V
30 volt | oltage
s at 340 | Drop: | : | | | 12AF6 | RF Pentode | 7BK | 5-2 | 12.6 | 0.15 | | 16 ◈ | | 5.5 ▲ | 4.8 ▲ | 0,006 | | 12AG6 | Heptode | 7CH | 5-2 | 12.6 | 0.15 | | 16 | 16 | Osc. Ic | 0.05 | ma
hms | | 12AH7-GT | Medium-Mu
Twin Triode | 8BE | 9-7 | 12.6 | 0.15 | 1.5 ♠ | 180 | | - | - | - | | 12AJ6 | Duplex-Diode-Triode | 7BT | 5-2 | 12.6 | 0.15 | | 30 | _ | | Section | 2.0 ▲
s | | 12AL5 | Twin Diode | 6BT | 5–1 | 12.6 | 0.15 | - | Tube V | foltage
60 ma | Drop: 4 | | | | 12A L8 | Triode Space-Charge-
Grid Tetrode | 9GS | 6-3 | 12.6 | 0.55 | | 30 | _ | | e Sectio | n | | | | | | | | | 30 | | | Section | | | 12AL11¶ | Dissimilar-Double
Pentode | 12BU | 9-59 | 12.6 | 0.45 | 10 🏶 | 275 🏶 | 275 ③ 2.0 ⑤ | Section
9, 10 | ı 1 (Pin
), 11) | s 8, | | | Tentode | | | | | 1.7 🏶 | 330 ◈ | 330 8 🆠 | Section 3, 4, |), 11)
1 2 (Pin
6, 7) | | | 12AQ5 | Beam Power Amplifier | 7BZ | 5–3 | 12.6 | 0.225 | 12 | 250 | 250
2.0 | | 8.2 🛦 | 0.35 ▲ | | 19AS5 | Beam Power Amplifier | 7CV | 5–3 | 12.6 | 0.4 | 5.5 | 150 | 150 2
1.0 | 12▲ | 6.2 ▲ | 0.6 ▲ | | 12AT6
12AT6-A¶ | Duplex-Diode
High-Mu Triode | 7BT | 5–2 | 12.6 | 0.15 | 0.5 | 300 | | 2.2 | 1.2 | 2.0 | | 12AT7 | High-Frequency Twin Triode | 9A | 6-2 | {12.6
6.3 | 0.15 | 2.5♠ | 300 | _ | 2,2 | 1.2 ₁
1.5 ₂ | 1.5 | | 12AU6
12AU6-A¶ | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 12.6 | 0.15 | 3.5 ◈ | 330 ◈ | 330 \$ ⊗
0.75
⊗ | Pentod | le Conn | ection | | | | | | | | 3.5 ◈ | 275 � | - | Triode | Conne | ction
ied) | | 12AU7
12AU7-A | Medium-Mu
Twin Triode | 9A | 6-2 | ${12.6 \atop 6.3}$ | 0.15 | 2.75 | 330 ◈ | - | 1.8 | 2.0 | 1.5 | | 12A U8 | Triode-Pentode | 9DX | 6-3 | 12.6 | 0.3 | 3.0 | 300 | 3008 | Pentoc | le Secti | on | | | | | | | | 2.5 | 300 | 1.0 | Triode | Section | 1 | | 12AV5-
GA¶ | Beam
Power Amplifier | 6CK | T-X | 12.6 | 0.6 | 11 | 550\$ | 175
2.5 | 14▲ | 7.0. | 0.5 ▲ | | 12AV6
12AV6-A¶ | Duplex-Diode High-Mu
Triode | 7BT | 5-2 | 12.6 | 0.15 | 0.55 | 330 ◈ | - | 2.2 | 1.2 | 2.0 | | 12AV7 | Twin Triode | 9A | 6-2 | $\overline{\left\{ \begin{smallmatrix} 6.3\\12.6\end{smallmatrix} \right.}$ | 0.45
0.225 | 2.7 ♠ | 300 | | 3.2 | 1.3 ₁
1.6 ₂ | 1.9 | | 12A W6 | Sharp-Cutoff RF | 7CM | 5-2 | 12.6 | 0.15 | 2.0 | 300 | 3008 | | le Conn | ection | | ··· ·· • | Pentode | | | | | 2.5 | 300 | 0.5 | Triode | Conne | | | 12AX3¶ | Half-Wave High- | 12BL | 9-59 | 12.6 | 0.6 | 5.3 🏶 | Tube | Voltage | Orop:
O ma d- | P tied) | | | 12AX4-GT | Vacuum Rectifier
Half-Wave High- | 4CG | 9-11 | 12.6 | 0.6 | 4.8 | Tube | Voltage | Drop: | c | | | 12AX4-
GTA¶ | Vacuum
Rectifier | | 9-41 | | | | 32 v a | t 250 m | a d-c | | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |------------------------------------|----------------|---------------------|--|---------------------------------|----------------------------------|----------------------------|---------------------------|---------------------------------------|--|--------------------------------|---------------------| | Class A | 12.6 | | $E_{cc} = 0$ | 1.9 | <u>i — </u> | 3,150 | 4,000 | 13 | $R_{\mathbf{g}} = 1$. | 5 meg | 12AE7 | | Amplifier
Class A
Amplifier | 12.6 | - | $E_{ec} = 0$ | 7.5 | _ | 985 | 6,500 | 6.4 | $R_g = 1$. | 1 | | | Class A | 145 | 110 | 7.0 | 34† | 6.5† | 33,000 | 5,600 | | 2,500 | 1.45 | 12AE10¶ | | Amplifier
Avg. Char. | 150 | 100 | R _k == 560 | 1.3 | 2.0 | 150,000 | 1,000 | (Ec3 = | 0 volts) | | | | TV Damper | Max volts; | d-c out
max pe | put cur
ak curr | rent 🏶
ent 🕸 = | = 185 n
750 ma | na; max p | | | | =4,500 | 12AF3¶ | | Class A
Amplifier | 12.6 | 12.6 | E _{cc1} =0 | 1.1 | 0.45 | 350,000 | 1,500 | $R_{g1} = 2$ | .2 meg | - | 12AF6 | | Converter | 12.6 | 12.6 | | 0.55 | 1.4 | | 300# | $\overline{E_{ces}} = 0$ $R_{gs} = 2$ | volts
2 meg | \equiv | 12AG6 | | Class A
Amplifier ♠ | 180 | = | 6.5 | 7.6 | | 8,400 | 1,900 | 16 | | = | 12AH7-GT | | Class A Amp
AM Detector | 12.6
Max c |
i-c outp | 0
ut curr | 0.75
ent ф == | 1.0 ma; | 45,000
voltage di | 1,200
op ♠: I | 55
0 volts | at 2.0 r | na | 12AJ6 | | Half-Wave
Rectifier | Max | t-c outr | nit curr | ent ner | niate = | 9 ma; ma:
117; max p | neak | nverse | voltage | =330 : | 12A L5 | | Class A
Amplifier | 12,6 | | $E_{ccz}=0$
ts; $I_{c1}=$ | 40
75 ma | i — | 480
grid 1 is spa | 15,000
ce-cha | | l — | I — I | 12AL8 | | Class A Amp | | | $E_{ccl}=0$ | | 9.54 | 13,000 | | 13 | = 000 | 4.2 | 12AL11¶ | | Class A
Amplifier
Class A | 250
150 | 250
100 | 8.0
R _k = | 35†
1.3 | 2.5† | 100,000 | 6,500
1,000 | E _{c1} = | 5,000
0 volts | 4.2 | 12ALII | | Amplifier
Class A | 180 | 180 | 8.5 | 29† | 3.0+ | 58,000 | 3,700 | <u> </u> | 5,500 | 2.0 | 12AQ5 | | Amplifier
Class A | 250
150 | 250
110 | 12.5
8.5 | 45†
35† | 4.5†
2.0† | 52,000 | 4,100
5,600 | <u> </u> | 5,000
4,500 | 2.2 | 12AS5 | | Amplifier | | | | | 2.01 | FO 000 | | 70 | 2,000 | | 12AT6 | | Class A
Amplifier | 250
100 | <u> </u> | 3.0 | 1.0
0.8
10 | | 58,000
54,000
10,900 | 1,200
1,300
5,500 | 70
70
60 | <u> </u> | | 12A T6-A¶
12A T7 | | Class A
Amplifier • | 250
100 | _ | R _k = 200
R _k = 270 | 3.7 | _ | 15,000 | 4,000 | 60 | _ | _ | IRAII | | | 250 | 150 | R _k = | 10.6 | 4.3 | 1,000,000 | 5,200 | | <u> </u> | | 12AU6 | | Class A
Amplifier | 100 | 100 | R _k == | 5.0 | 2.1 | 500,000 | 3,900 | _ | _ | - | 12AU6-A¶ | | Class A
Amplifier | 250 | - | 150
R _k =
330 | 12.2 | - | - | 4,800 | 36 | - | - | | | Class A
Amplifier •
Vertical | 250
100 | = | 8.5
0 | 10.5
11.8 | | 7,700
6,500 | 2,200
3,100 | 17
20 | | | 12AU7
12AU7-A | | Vertical
Amplifier | Max p | ositive p | pulse pla | ate volt | age 🏶 🛥 | 1,200; max | d-c cat | hode cu | rrent 🔷 | =22 ma | | | Class A | 200 | 125 | R _k = 82 | 15 | 3.4 | 150,000 | 7,000 | T - | | | 12A U8 | | Amplifier
Class A
Amplifier | 150 | _ | R _k = 150 | 9.0 | _ | 8,200 | 4,900 | 40 | - | - | | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5
0 | 57
260 | 2.1
26 | 14,500 | 5,900 | | | | 12AV5-GA¶ | | | Max
2.5 w | positive
atts: m | pulse par d-c c | plate vo | oltage 🖲
current | =5,500 vo
=110 ma | its; ma | x screen | dissipa | tion = | | | Class A | 250 | - | 2.0 | 1.2 | T — | 62,500 | 1,600 | 100 | $\Gamma =$ | \Box | 12AV6
12AV6-A¶ | | Amplifier
Class A | 100 | - | 1.0
R _b = | 0.5 | - | 4,800 | 1,250
8,500 | 100 | = | | 12AV7 | | Amplifier • | 100 | _ | R _k = 56
R _k = 120 | 9.0 | - | 6,100 | 6,100 | 37 | | _ | | | Class A
Amplifier | 250 | 150 | R _k = | 7.0 | 2.0 | 800,000 | 5,000 | 1= | - | | 18AW6 | | Amplifier
Class A
Amplifier | 250 | - | 200
R _k ==
825 | 5.5 | - | 11,000 | 3,800 | 42 | _ | - | | | TV Damper | Max | d-c out | put cu | rrent 🏶 | =165 n
=1,000 n | na; max p | eak inv | erse vo | tage 🔷 | =5,000 | 12AX3¶ | | TV Damper | Max | d-c out
peak cu | put cur | rent = 1 | 25 ma; | max peak | inverse | voltage | = 44 0 | 0 volts; | 12AX4-GT | | | 1 | | | | | | | | | | 12AX4-
GTA¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarac | e in
Is | |-------------------|--|---------------|--------------------|--|---|--------------|--------------------|---|--------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12AX4-
GTB¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11 | 12.6 | 0.6 | 5.3 🏶 | Tube V
32 volts | oltage
at 250 | Drop:
mad- | : | | | 12AX7 | High-Mu
Twin Triode | 9A | 6-2 | ${12.6 \atop 6.3}$ | 0.15 | 1.2 ◈ | 330 🅸 | _ | 1.8 | 1.9 | 1.7 | | 12A X7-A | High-Mu Twin Triode | 9A | 6-2 | $\{12.6 \\ 6.3 \}$ | $\left[egin{array}{c} 0.15 \\ 0.3 \end{array} ight\}$ | 1.2 ◈ | 330 � | _ | 1.6▲ | 0.46 ₁ A
0.34 ₂ A | 1.7 ▲ | | 12AY3¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9–86 | 12.6 | 0.6 | 6.5 ◈ | Tube V
32 volt | oltage
s at 350 | Drop: | | · | | 12AY3-A¶ | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 12.6 | 0.6 | 6.5 ◈ | Tube V
32 volt | oltage
at 350 | Drop: | 2 | | | 12A Y 7 | Twin Triode | 9A | 6-2 | $\{\begin{array}{c} 6.3 \\ 12.6 \end{array}$ | $\{ \begin{array}{c} 0.3 \\ 0.15 \end{array} \}$ | 1.5 ♠ | 300 | - | 1.3 ▲ | 0.6 ▲ | 1.3 ▲ | | 12AZ7 | Twin Triode | 9A | 6-2 | ${12.6 \atop 6.3}$ | 0.225
0.45 | 2.5♠ | 330 | | 2.8 | 1.4 ₁
1.6 ₂ | 1.9 | | 18A Z7-A¶ | Twin Triode | 9A | 6-2 | 12.6
6.3 | 0.225
0.45 | 2.5 ♦ | 300 ◈ | | 2.8 | 1.41 | 1.9 | | 12B4
12B4-A¶ | Low-Mu Triode | 9AG | 6-3 | ${12.6} \atop 6.3$ | 0.3 | 5.5 | 550 | | 5.0 ▲ | 1.5▲ | 4.8 ▲ | | 12B7 | Remote Cutoff
Pentode
same as 14A7 | | | | | | | | | | | | 12B8-GT | Triode Remote-Cutoff
Pentode | 8T | 9-24 | 12.6 | 0.3 | _ | 90 | 90 | Pentode
Triode | le Section
Section |)
1 | | 12BA6
12BA6-A¶ | Remote-Cutoff RF
Pentode | 78K | 5-2 | 12.6 | 0.15 | 3.4 🆠 | 330 🏶 | 330 ◈\$ | 5.5 | 5.0 | 0.003 | | 12BA7 | Pentagrid Converter | 8CT
▼ | 6-3 | 12.6 | 0.15 | 2.0 | 300 | 100
1.5 | Osc Ici
Rg1 = 2 | =0.35
0,000 o | | | 12BD6 | Remote-Cutoff RF
Pentode | 7BK | 5-2 | 12.6 | 0.15 | 3.0 | 300 | 125
0.65 | 4.3 ▲ | | 0.005 | | 12BE3¶ | Half-Wave High-
Vacuum Rectifier | 12GA | 9–60 | 12.6 | 0.6 | 6.5 ◈ | Tube V
25 volt | oltage
s at 350 | Drop:
) ma d- | c | | | 12BE3-A
¶■ | Half-Wave High-
Vacuum Rectifier | 12GA | 9-60 | 12.6 | 0.6 | 6.5 ◈ | | oltage
lts at 3 | | d-c | | | 12BE6
12BE6-A¶ | Pentagrid Converter | 7CH | 5-2 | 12.6 | 0.15 | 1.1 🏶 | 330 ◈ | 110 ③
1.1 ④ | Osc Ici
Rgi = 2 | =0.5 m
0.000 o | ia
hms | | 12BF6 | Duplex-Diode
Medium-Mu Triode | 7BT | 5-2 | 12.6 | 0.15 | 2.5 | 300 | _ | 1.8 | 0.7 | 1.9 | | 12BF11¶ | Dissimilar Double
Pentode | 12EZ | 9-59 | 12.6 | 0.6 | 6.5 | 165 ♦ | 150 ♦
1.8 ♦
330 \$ | 0 16 | n 1 (Pin
0, 11)
n 2 (Pin
. 6, 7) | | | 12BH7
12BH7- | Medium-Mu Twin
Triode | 9A | 6-3 | | 0.3 } | 3.5♠ | 300
450 | 1.1 🏶 | 3, 5, 3.2 ▲ | 0.5 ₁ \triangle | 2.6 ▲ | | A¶
12BK5¶ | Beam Power Amplifier | 9BQ | 6-3 | 12.6 | 0.6 | 9.0 | 250 | 250
2.5 | 13 ▲ | 5.0 ▲ | 0.6 ▲ | | 12BK6 | Duplex-Diode,
High-Mu Triode | 7BT | 5-3 | 12.6 | 0.15 | - | 300 | - | | _ | _ | | 12BL6 | Sharp-Cutoff Pentode | 7BK | 5-2 | 12.6 | 0.15 | _ | 30 | 30 | 5.5 | 4.8 | 0.006 | |
12BN6
12BN6-A | Gated-Beam
Discriminator | 7DF | 5–3 | 12.6 | 0.15 | _ | 300 ◈ | 110 🏶 | Eci = | 1.25 vo | lts | | 12BQ6-
GTA¶ | Beam Power Amplifier | 6AM | 9-49
or
9-50 | 1 | 0.6 | 11 | 600\$ | 175
2.5 | | | - | Compactron. Zero signal. Per section. [†] Plate-to-plate. • Maximum. • Supply voltage. [●]Subminiature type. ▲Without external shield. ◆Design maximum rating. Total for all similar sections. Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------|------------------------|------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|--------------------------------|-------------------| | TV Damper | Max | l-c outp | ut curre | nt 🏶 = | 65 ma; | max peak | nverse | voltage | | 0 volts | 12AX4 | | Class A | 100 | eak cur | 1.0 | 0.5 | ma
— | 80,000 | 1,250 | 100 | | r== | GTB¶
12AX7 | | Amplifier • | 250 | | 2.0 | 1.2 | <u>!</u> | 62,500 | | 100 | ! | | | | Class A
Amplifier • | 100
250 | = | 1.0
2.0 | 0.5
1.2 | = | 80,000
62,500 | 1,250
1,600 | 100
100 | = | = | 18A X7-Å | | TV Damper | Max o | l-c outp
eak cur | ut curre | ent 🔷 =
=1100 i | 175 ma;
na | maz peak | inverse | roltage · | ♦=5,00 | 0 volts: | 12AY3¶ | | TV Damper | Max
volts; | d-c out | put cur | rent 🔷 : | = 175 m
1,100 m | ia; max pe | ak inve | rse vol | tage 🏶 = | = 5,000 | 12AY3-A¶ | | Class A
Amplifier • | 250 | _ | 4.0 | 3.0 | | 25,000 | 1,750 | 44 | | | 18AY7 | | Class A
Amplifier | 250 | - | R _k == 200 | 10 | - | 10,900 | 5,500 | 60 | - | | 12AZ7 | | | 100 | _ | R _k == 270 | 3.7 | _ | 15,000 | 4,000 | 60 | - | _ | | | Class A
Amplifier | 250 | _ | R _k = 200 | 10 | | 10,900 | 5,500 | 60 | | | 12AZ7-A¶ | | Ampaner | 100 | - | R _k = 270 | 3.7 | _ | 15,000 | 4,000 | 60 | _ | _ | | | Vertical | 150 | | | 34 | | 1,030 | 6,300 | 6.5 | | | 12B4 | | Amplifier | Max 1 | positive | puise p | late voi | tage 🖭 | =1000; ma | x a-c ca | thode c | urrent = | = 30 ma | 12B4¶-A | | | | | | | <u> </u> | | | | <u> </u> | | | | Class A Amp
Class A Amp | 90
90 | 90 | 3.0
0 | 7.0
2.8 | 2.0 | 200,000
37,000 | 1,800
2,400 | 96 | = | | 12B8-GT | | Class A | 250 | 100 | R _k = | 11 | 4.2 | 1,000,000 | 4,400 | | | | 12BA6 | | Amplifier | 100 | 100 | 68
R _k =
68 | 10.8 | 4.4 | 250,000 | 4,300 | | - | - | 12BA6-A¶ | | Converter | 250 | 100 | 1.0 | 3.8 | 10 | 1,000,000 | 950 # | | | | 12BA7 | | Class A
Amplifier | 250 | 100 | 3.0 | 9.0 | 3.5 | 700,000 | 2,000 | | | | 12BD6 | | TV Damper | Max
volts; | d-c out
max pe | put cur
ak curr | rent 🏶 = | =200 m
1,200 n | a; max pe | ak inve | rse vol | tage 🏶 = | =5,000 | 12BE3¶ | | TV Damper | Max volts; | d-c out;
max pe | put cur
ak curr | rent 🔷 = | =200 m
1,200 m | a; max pe | ak inve | rse vol | tage 🏶 = | =5,000 | 12BE3-A¶ | | Converter | 250
100 | 100
100 | 1.5
1.5 | 2.9
2.6 | 6.8
7.0 | 1,000,000 | 475 #
455 # | | = | | 12BE6
12BE6-A¶ | | Class A
Amplifier | 250 | | 9.0 | 9.5 | | | 1,900 | 16 | 10,000 | 0.3 | 12BF6 | | Class A | 145 | 110 | 6.0 | 36† | 3.0† | 30,000 | 8,600 | | 3,000 | 2.4 | 12BF11¶ | | Amplifier
Class A
Amplifier | 150 | 100 | $R_k = 560$ | 1.3 | 2.0 | 150,000 | 1,000 | (E _{c3} = | 0 volts | | | | Class A | 250 | | 10.5 | 11.5 | | 5,300 | 3,100 | 16.5 | | | 12BH7 | | Amplifier ♠
Vertical
Amplifier ♠ | Max 1 | oositive | pulse p | late vol |
tage 🖲 = | =1.500; ma | x d-c ca | thode c |
urrent = | 20 ma | 12BH7-A¶ | | Class A
Amplifier | 250 | 250 | 5.0 | 35† | 3.5† | 100,000 | 8,500 | _ | 6,500 | 3.5 | 12BK6¶ | | Class A
Amplifier | 250
100 | = | 2.0
1.0 | 1.2
0.5 | | 62,500
80,000 | 1,600
1,250 | 100
100 | | _ | 12BK6 | | Class A
Amplifier | 12.6 | | E _{cc1} =0 | 1.35 | 0.5 | 500,000 | 1,350 | $R_{g1}=2$ | .2 meg | | 12BL6 | | FM Limiter-
Discrimina-
tor | 285 | 100 | R _k = 200 to 400 | 0.49 | 9.8 | _ | = | | 33,0000 | | 12BN6
12BN6-A¶ | | Horizontal
Amplifier | 250
60
Max 1 | 150
150
positive | 22.5
0 | 55
225
plate vo | 2.1
25
Itage | 20,000
=6,000 vo | 5,500
olts; ma | x screen | dissip | tion = | 12BQ6-
GTA¶ | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarad | e in | |---------------------------------|---|---------------|----------------------|----------------|-----------------|--------------|--------------|------------------------------|---------------------------|--|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12BQ6-
GA¶
12BQ6-
GTB¶ | Beam Power Amplifier | 6AM | T-X
9-49,
9-50 | 12.6 | 0.6 | 11 | 600\$ | 200
2.5 | 15▲ | 7.0▲ | 0.6 ▲ | | 12BR3¶ | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 12.6 | 0.6 | 6.5♦ | Tube V | oltage
s at 250 | Drop: | · | | | 12BR7 | Duplex-Diode Triode | 9CF | 6-2 | ${12.6} \ 6.3$ | $0.225 \\ 0.45$ | 2.5 | 300 | - | 2.8 | 1.0 | 1.9 | | | | | | | | | | | Diode |
Sections | ļ
i | | 12BR7-A¶ | Duplex-Diode Triode | 9CF | 6-2 | ${12.6} \ 6.3$ | $0.225 \\ 0.45$ | 2.5 | 300 | | 2.8 | 1.0 | 1.9 | | | | | | | | | | | Diode |
Sections | i
5 | | 12BS3¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 12.6 | 0.6 | 6.0 🏶 | Tube V | oltage
s at 140 | Drop: | c | | | 12BS3-A¶ | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 12.6 | 0.6 | 6.0 🏶 | Tube \ | oltage
s at 140 | Drop: | | | | 12BT3 | Half-Wave High-
Vacuum Rectifier | 12BL | 9-59 | 12.6 | 0.45 | 5.3 🏶 | Tube \ | oltge I | rop: | | | | 12BT6 | Duplex-Diode
High-Mu Triode | 7BT | 5-3 | 12.6 | 0.15 | | 300 | Ī | _ | T = - | | | 1 2 BU6 | Duplex-Diode
Medium-Mu Triode | 7BT | 5–3 | 12.6 | 0.15 | | 300 | | | | = | | 12BV7 | Sharp-Cutoff Pentode | 9BF | 6-3 | 12.6
6.3 | 0.3 | 6.25 | 300 | 175
1.0 | 11 ▲ | 3.0 ▲ | 0.055 | | 12BV11¶ | Twin Pentode | 12HB | 9-59 | 12.6 | 0.45 | 1.7◈ | 300 ◈ | 300 8 ♠
0.1 ♠ | | | | | 12BW4 | Full-Wave High-
Vacuum Rectifier | 9DJ | 6-3 | 12.6 | 0.45 | | | oltage
100 ma | | • | | | 12BY3¶ | Half-Wave, High-
Vacuum Rectifier | 9CB | 6–8 | 12,6 | 0.45 | 4.0 🆠 | Tube \ | oltage
s at 250 | Drop: | ······ | | | 12BY7
12BY7-A¶ | Sharp-Cutoff
Pentode | 9BF | 6-3 | {12.6
6.3 | 0.3 | 6.5 🏶 | 330 � | | 10.2 ▲ | 3.5 ▲ | 0.063 | | 12BZ6 | Semi-Remote-
Cutoff RF Pentode | 7CM | 5-2 | 12.6 | 0.15 | 2.3 🏶 | 330 ◈ | 330 ♦ 8 0,55 ♦ | 7.0 | 3.0 | 0.015 | | 12BZ? | High-Mu Twin Triode | 9A | 6-3 | 12.6
6.3 | 0.3 | 1.5♠ | 300 | | 6.5 ▲ | 0.7 ₁ A 0.55 ₂ A | 2.5 ▲ | | 12C5¶ | Beam Power Amplifier | 7CV | 5-3 | 12.6 | 0.6 | 6.0 | 135 | 117
1.25 | 13▲ | 8.5▲ | 0.6 ▲ | | 12C8 | Duplex-Diode
Semi-Remote-Cutoff
Pentode | 8E | 8-4 | 12.6 | 0.15 | 2.25 | 300 | 125
0.3 | 6.0 | 9.0 | 0.005 | | 12CA5¶ | Beam Power Amplifier | 7CV | 5-3 | 12.6 | 0.6 | 5.0 | 130 | 130 | 15 ▲ | 9▲ | 0.5 ▲ | | 12CK3¶ | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 12.6 | 0,6 | 6.5 🏶 | Tube | Voltage | Drop: | c | | | 12CL3¶ | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 12.6 | 0.6 | 8.5 🏶 | Tube ' | Voltage
ts at 350 | Drop: | | | | 12CM6 | Beam Power Amplifier | 9CK | 6-3 | 12.6 | 0.225 | 12 9.0 | 315 | 285 | Pentod | le Conn | ection | | | | | | | | 8.0 | 315
315 | 285
1.75 | Triode
or Pen
Conne | | ' tied) | Compactron. Zero signal. Per section. [†] Plate-to-plate. †Maximum. § Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------------------|----------------|---------------------|-------------------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|--------------------|--|--------------------------------|-------------------| | Horizontal | 250 | 150 | 22.5 | 57 | 2.1 | 14,500 | 5,900 | | i — | <u> </u> | 12BQ6-GA¶ | | Amplifier | Max 1 | 150
positive | pulse p | 260
late vo | 26
ltage 🖲 | =6,000 vo
=110 ma | lts; max | screen | dissipa | tion = | 12BO6-
GTB¶ | | TV Damper | Max | d-c outp | out cur | rent 🏶 = | =200 ma | a; max per | k inver | se volt | age 🄷 = | 5,500; | 12BR3¶ | | Class A | 250 | $\lceil - \rceil$ | Rk= | 10 | T — | 10,900 | 5.500 | 60 | I | | 12BR7 | | Amplifier | 100 | - | $\frac{200}{R_k} = \frac{270}{100}$ | 3.7 | | 15,000 | 4,000 | 60 | - | - | | | Horizontal
Phase Det. | Max | peak out | put cu | rent 💠 | =60 ma | ; voltage d | rop 💠 : | 5 volts | at 17 m | ad-c | | | Class A
Amplifier | 250 | | R _k = 200 | 10 | T - | 10,900 | 5,500 | 60 | _ | | 12BR7-A¶ | | Ampliner | 100 | - | R _k = 270 | 3.7 | - | 15,000 | 4,000 | 60 | | | | | Horizontal
Phase Det. | - | - | ut curre | _ | | oltage dro | - | | | | | | TV Damper | Max
max r | d-c out
beak cur | out cur | rent 🏶 =
= 1,100 |
=200 m
ma | a; max pe | k inver | se volt | age ◈ = | 5,000; | 12BS3¶ | | TV Damper | Max
max p | d-c outpoeak cur | out cur
rent 🏶 = | rent 🏶 :
= 1,100 | ≈200 m:
ma | a; max pea | | | | | 12BS3-A¶ | | TV Damper | volts; | d-c out
max pe | ak curr | ent 🏈 = | ≈165 m
:1,000 m | a; max pe
na | | | tage 🏶 = | =3,300 | 12BT3 | | Class A
Amplifier | 250
100 | - | 3.0
1.0 | 1.0
0.8 | - | 58,000
54,000 | 1,200 | 70
70 | - | | 12BT6 | | Class A
Amplifier | 250 | = | 9.0 | 9.5 | = | 8,500 | 1.900 | 16 | 10,000 | 0.30 | 12BU6 | | Class A
Amplifier | 250 | 150 | R _k = 68 | 27 | 6.0 | 85,000 | 13,000 | | | | 12BV7 | | Avg. Char. | 150 | 100 | R _k = 180 | 3.6 | 2.0 | 200,000 | 3,700 | (E _{c3} = | 0 volts |) | 12BV11¶ | | Full-Wave
Rectifier | suppl | y voltag | e per p | ate = 3 | 25 volts | ax peak inv
; max peak | current | t per pi | ate $=35$ | 0 ma | 12BW4 | | TV Damper | volts; | max pe | ak curr | ent 🏶 = | 840 ma | | | rse vol | tage 🏶 = | = 4,500 | 12BY3¶ | | Class A
Amplifier | 250 | 180 | $R_k = 100$ | 26 | 5.75 | 93,000 | 11,000 | | _ | | 12BY7
12BY7-A¶ | | Class A
Amplifier | 125 | 125 | R _k = 56 | 14 | 3.6 | 260,000 | 8,000 | - | | | 12BZ6 | | Clara A | 125 | 125 | 4.5 | <u> </u> | | 21 000 | 700 | 100 | | | 10077 | | Class A
Amplifier • | 250 | | 2 | 2.5 | - | 31.800 | 3,200 | 100 | 0.500 | - | 12BZ7 | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | | 2,500 | 2.3 | 12C5¶ | | Class A
Amplifier | 250 | 125 | 3.0 | 10 | 2.3 | 600,000 | 1,325 | _ | | _ | 12C8 | | Class A
Amplifier | 125
110 | 125
110 | 4.5
4.0 | 37†
32† | 4.0†
3.5† | 15,000
16,000 | 9,200
8,100 | = | 4,500
3,500 | 1.5 | 12CA5¶ | | TV Damper | | d-c out | | rent 🏈 | =250 m | a; max pe | | | tage 🖫 : | = 5,200 | 12CK3¶ | | TV Damper | Max | | out cur | rent 🏵 | =250 m | a; max pe | ak inve | erse vol | tage 🏶 = | = 5,500 | 12CL3¶ | | Class A Amplifier Vertical Amplifier | 250
Max | 250
positive | 12.5
pulse | 45†
plate v | 4.5† | 50,000
= 2000 v | 4,100
olts; ma | ax scree | 5,000
en dissir
rent = 40 | 4.5
pation
ma | 12CM6 | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Volts | | acitance
icofarad | | |---------|--|---------------|--------------|-----------------|-------------|----------------|------------------------|------------------------|------------------|----------------------|----------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12CN5 | RF Pentode | 7CV | 5-3 | 12.6 | 0.45 | _ | 16 | 16 | | | _ | | 12CR6 | Diode Remote-Cutoff
Pentode | 7EA | 5-2 | 12.6 | 0.15 | 2.5 | 300 | 150
0.3 | | | = | | 12CS5¶ | Beam Power Amplifier | 9GR | 6-3 | 12.6 | 0.6 | 10 | 300 | 150
1.25 | 15 ▲ | 9.0 ▲ | 0.5 ▲ | | 12CS6 | Dual-Control
Heptode | 7CH
▼ | 5–2 | 12.6 | 0.15 | 1.0 | 300 | 100 | | | | | 12CT3¶ | Half-Wave High-
Voltage Recti-
fier | 9RX | T-X | 12.6 | 0.6 | 4.75 🏶 | Tube
16 vol | Voltage
Its at 35 | Drop:
0 ma d | -с | | | 12CT8¶ | Triode-Pentode | 9DA | 6-2 | 12.6 | 0.3 | 2.75 🏶 | 300 ◈ | 300 ♦ \$ | Pentod | e Sectio | n | | | | | | | | 2.5 🏶 | 300 🇇 | - | Triode | Section | | | 12CU5¶ | Beam Power Amplifier | 7CV | 5-3 | 12.6 | 0.6 | 7.0 🏶 | 150 ◈ | 130 (s) | 13 ▲ | 8.5 ▲ | 0.6 | | 12CU6 | Beam Power Amplifier | 6AM | T-X | 12.6 | 0.6 | 11 | 600\$ | 200
2.5 | 15 ▲ | 7.0 ▲ | 0.6 | | 12CX6 | Sharp-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.15 | _ | 33 ◈ | 33 ◈ | | 6.2▲ | 0.05 🛦 | | 12CY6 | Sharp-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.2 | | 33 ◈ | 33 🏶 | 8.5 ▲ | 4.0 ▲ | 0.18 | | 12D4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11
9-41 | 12.6 | 0.6 | 5.5 🏶 | | | | | + | | 12D4-A¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-41 | 12.6 | 0.6 | 8.0 🏶 | | | Voltage | Drop: | -с | | 12DB6¶ | Beam Power Amplifier | 9GR | T-X | 12.6 | 0.6 | 10 | 300 | 150
1.25 | 13 🛦 | 8.0▲ | 0.2 | | 12DE8 | Diode-Pentode | 9HG | 6–2 | 12.6 | 0.2 | | 30 | 30 | 5.5 ▲ | | 0.006 | | 12DF5 | Full-Wave High- | 9BS | 6-3 | ∫12.6 | 0.45 | | Tube 1 | Voltage | Drop: | Section | <u>s</u> | | | Vacuum Rectifier | | | 16.3 | 0.9 | | 40 volt | ts at 10 | ma d- | С | | | 12DF7 | High-mu Twin Triode | 9A | 6-2 | ${12.6} \\ 6.3$ | 0.15 | 1.0 💠 | 300 | 1 | 1.6 ▲ | 0.41 ▲
0.32 ▲ | 1.4 ▲ | | 12DJ8 | Twin Triode | 9DE | 6-2 | 12.6 | 0.18 | 1.8 | 130 | | _ | | - | | 12DK5 | RF Pentode | 9GT | 6-2 | 12.6 | 0.3 | | 16 🏶 | 16 🏶 | 9.5 | 2.65 | 0.045 | | 12DK6 | Sharp-Cutoff
Pentode | 7CM | 5-2 | 12.6 | 0.15 | 2.3 🏶 | 330 � | 3308 € | | 1.9 ▲ | 0.025 | | 12DK7 | Duplex-Diode-Tetrode | 9HZ | 6-3 | 12.6 | 0.5 | 0.5 | 30 | 30 | Diode | Section | s | | 12DL8 | Duplex-Diode Space-
Charge-Grid Tetrode | 9HR | 6-3 | 12.6 | 0.55 | _ | 30 | - | 12▲ | 1.3 ▲ | 14▲ | | | | | | | | | | | Diode | Section | s | | 12DM4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 12.6 | 0.6 | 6.5� | 35 volts at 400 ma d-c | | | | | | 12DM4A¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 12.6 | 0.6 | 6.5� | Tube
35 vol | Voltage
ts at 40 | Drop:
0 ma d- | c | | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------|-------------------|----------------------|-----------------------------------|---------------------------------|----------------------------------|-----------------------------|---------------------------|---------------------------|--|--------------------------------|--------------| | Class A
Amplifier | 12.6 | 12.6 | $\mathbf{E_{eci}} = 0$ | 4.5 | 0.35 | 40,000 | 3,800 | $R_{g1} = 2$ | .2 meg | | 12CN 5 | | Class A
Amplifier | 250 | 100 | 2.0 | 9.6 | 2.6 | 800,000 | 2,200 | | | | 12CR6 | | Class A
Amplifier | 200 | 125 | R _k == 180 | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | 3.8 | 12CS5¶ | | Gated | 100 | $\frac{110}{30}$ | $\frac{75}{1.0}$ | 49t
1.0 | 1.3
5.5 | 13,000
1,000,000 | 8,000
1,100 | $E_{c3} = 0$ | volts | 2.1 | 12CS6 | | Amplifier | 100
10 | 30
30 | 0 | 0.8
2.0 | 5.5
4.5 | 700,000 | = | $E_{c3} = -$ $E_{c3} = 0$ | -1.0 vol | ts | | | TV Damper | Max d-
5,000 v | c outpu | it curre
ix peak | nt 🔷 :
current | = 250 n | na; max pe
,200 ma. | ak inve | | | × | 12CT3¶ | | Class A
Amplifier | 200 | 125 | R _k = | 15 | 3.4 | 150,000 | 7,000 | | | _ | 12CT8¶ | | Class A
Amplifier | 150 | _ | R _k = 150 | 9.0 | _ | 8,200 | 4,900 | 40 | <u> </u> | - | | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0f | 10,000 | 7,500 | | 2,500 | 2.3 | 12CU5¶ | | Horizontal
Amplifier | 250
60 | 150
150 | $\frac{22.5}{0}$ | 57
260 | 2.1
26 | 14,500 | 5,900 | = | | | 12CU6 | | • | Max 1
2.5 wa | positive
itts; ma | pulse p
x d-c ca | olate vo | oltage 🖲
current | =6,000 vo
=110 ma | lts; ma: | screen | dissipa | ation = | | | Class A
Amplifier | 12.6 | | $E_{ccl} = 0$ | 3.0 | 1.4 | 40,000 | 3,100 | $R_{g1} = 2$ | .2 meg | | 12CX6 | | Class A
Amplifier | 12.6 | 12.6 | $E_{cel} =$ | 1.6 | 0.4 | 140,000 | 3,250 | $R_{g1} = 2$ | ,2 meg | | 12CY6 | | TV Damper | | l-c outp | | | | max peak i | nverse v | oltage | | 0 volts; | 12D4¶ | | TV Damper | Max volts; | d-c out | put cur | rent 🚸 | =185 r
=900 ma | na; max p | eak inv | erse vo | ltage 🆠 | =5,000 | 12D4-A¶ | | Class A | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | _ | 4,000 | 3.8 | 12DB5¶ | | Amplifier
Vertical | 110
Mar. | 110 | 180
7.5 | 49† | 4.0† | 13,000
=2,000; ma | | ' | 2,000 | , | | | Amplifier \\ Class A | 12.6 | | E _{cc1} = | 1.3 | 1 0.5 | 300.000 | | $R_{g,1}=2$ | | -55 ma | 12DE8 | | Amplifier
AM Detector | | 1 | 0 | | ŀ | ltage drop | 1 | - | _ | 1 | 120230 | | Full-Wave
Rectifier | | i-c outp
ms supp | | | | ax peak inv
325 volts; n | | | | lts;
ate | 12DF5 | | Class A
Amplifier • | 250
100 | 1 = | 2.0
1.0 | 1.2
0.5 | 1 = | 55,000
70,000 | 1,600 | 100
100 | | | 12DF7 | | Class A
Amplifier • | 90 | | 1.3 | 15 | _ | | 12,500 | 33 | | | 12DJ8 | | Class A
Amplifier | 12.6 | 12.6 | $\overline{\mathbf{E}_{cel}} = 0$ | 2.0 | 0.65 | 100,000 | 3,300 | $R_{g1} = 2$ | .2 meg | - | 12DK5 | | Class A
Amplifier | 125 | 125 | R _k = 56 | 12 | 3.8 | 350,000 | 9,800 | | | | 12DK6 | | Class A
Amplifier | 12.6 | 12.6 | $\overline{E_{cc1}} = 0$ | 6.0 | 1.0 | 4,000 | 5,000 | $R_{g1} = 2$ | .2 meg | | 12DK7 | | AM Detector | 12.6 | l-c outp | ut curre | nt • = | 10 ma; v | oltage drop | $\frac{\bullet}{115,000}$ | olts at | 1 mad-c | <u>:</u> | 12DL8 | | Amplifier | |
12.6 vol | 0 | | Note: g | rid 1 is spa | , | ge grid. | grid 2 i | s | 12000 | | AM Detector | contro | ol grid) | | | - | voltage dro | | | _ | | | | TV Damper | Max | | put cur | rent 🏶 : | =175 m | a; max pe | | | | | 12DM4¶ | | TV Damper | | d-c out | put cur | rent 🏵 | | a; max pe | ak inve | rse vol | tage 🚸 : | =5,000 | 12DM4A¶ | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | | pacitanc
Picofarac | | |----------|--|---------------|-------|--------------------|----------------|--------------|--------------|------------------------------|---------------------|--|----------------| | 2DM7 1 |
by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 2DM5¶ | Beam Power Amplifier | 7CV | 5-3 | 12.6 | 0.45 | 5.5 | 135 | 117
1.25 | 13 ▲ | 9.0 ▲ | 0.55 | | 2DM7 | High-Mu
Twin Triode | 9A | 6-2 | 12.6
6.3 | 0.130
0.260 | 1.1 🏶 | 330 ◈ | _ | 1.6 ▲ | 0.46 ₁ A | 1.7▲ | | 2DQ4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-43 | 12.6 | 0.6 | 6.0 🏶 | Tube V | oltage
s at 250 | Drop: | c | | | 2DQ6¶ | Beam Power Amplifier | 6AM | T-X | 12.6 | 0.6 | 15 | 550\$ | 175
2.5 | 15▲ | 7.0 ▲ | 0.55 4 | | 2DQ6-A¶ | Beam Power Amplifier | 6AM | 12-51 | 12.6 | 0.6 | 18 🏶 | 770 ◈\$ | 220 ♦
3.6 ♦ | 15▲ | 7.0 ▲ | 0.55 4 | | 12DQ6-B¶ | Beam-Power
Amplifier | 6AM | 12-51 | 12.6 | 0.6 | 18 🏶 | 770 ◈ | 220 ③ 3.6 ④ | 15▲ | 7.0▲ | 0.5 ▲ | | 12DQ7¶ | Sharp-Cutoff Pentode | 9BF | 6-3 | ${12.6 \atop 6.3}$ | 0.3 | 6.5 🏶 | 330 🏶 | 330 8 | 10.0 ▲ | 3.8 ▲ | 0.1 | | 12DS7 | Duplex-Diode Space-
Charge-Grid Tetrode | 9]U | 6-3 | 12.6 | 0.4 | | 16 ◈ | _ | _ | _ | _ | | | | | | | | | | | | Sections | | | 12DS7-A | Duplex-Diode
Space-Charge-Grid
Tetrode | 910 | 6–3 | 12.6 | 0.4 | | 16 🏟 | _ | 12.7 ▲
Diode | 2.2 ▲ Sections | 13.8 ▲ | | 12DT6¶ | Beam Power Pentode | 9HN | 6-3 | 12.6 | 0.6 | 9.0 | 315 ♦ | 285 ③ 2.0 ⑤ | 12.5▲ | 4.9 ▲ | 0.57 | | 12DT6 | Sharp-Cutoff
Pentode | 7EN | 5-2 | 12.6 | 0.15 | 1.7 🏶 | 330 ◈ | 330 ♦ \$ | I _{c1} = 0 | .6 ma | | | 12DT7 | High-Mu Twin Triode | 9A | 6-2 | 12.6
6.3 | 0.15 | 1.0♠ | 300 | | 1.6 | 0.46 ₁ A
0.34 ₂ A | 1.7 🛦 | | 12DT8 | High-Mu Twin Triode | 9DE | 6-2 | 12.6 | 0.15 | 2.5 🏚 | 300 | | 2.7 | 1.6 | 1.6 | | 12DU7 | Duplex-Diode-Tetrode | 9JX | 6-2 | 12.6 | 0.250 | | 16 🏶 | 16 ◈ | _ | 3.6 ▲
Section | 0.6 ▲ | | 12DV7 | Duplex-Diode-Triode | 9JY | 6-2 | 12.6 | 0.15 | = | 16 🏶 | | 1.3 ▲
Diode | 0.38 ▲
Section | - | | 12DV8 | Duplex-Diode Space-
Charge-Grid Tetrode | 9HR | 6-3 | 12.6 | 0.375 | _ | 16 🏶 | = | 9.0▲ | 1.0▲ | | | | | | | | | | | | Diode | Section | s | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|---------------------------------|-----------------------|---|--|----------------------------------|---------------------------------|--------------------------------|---------------------------|--|--------------------------------|----------------| | Class A
Amplifier | 110 | 110 | 7.5 | 49† | 4.0† | 14,000 | 7,500 | _ | 2,500 | 1.9 | 12DM5¶ | | Class A
Amplifier | 100
250 | = | 1.0 | $\frac{0.5}{1.2}$ | = | 80,000
62,500 | 1,250
1,600 | 100
100 | | | 12DM7 | | TV Damper | Max d
volts; r | -c outp | ut curre | ent ◈ =
nt ◈ = 1 | 175 ms
,000 ms | ; max pe | ak inve | rse vol | tage 🏶 = | =5,500 | 12DQ4¶ | | Horizontal
Amplifier | | | | | | 20,000
 | 6,000

s; max | screen | _
dissipati | ion = | 12DQ6¶ | | Horizontal
Amplifier | 250
60
Max p | 150
150
ositive | 22.5
0
pulse pl | 55
 315
 ate_vol | 1.5
25
tage 🏶 = | 20,000
=6,000 vol | | screen | dissipa | tion 🏶 | 12DQ6-A¶ | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5
0 | 65
345 | 1.8 | 18,000 | 7,300 | | _ | | 12DQ6-B¶ | | Class A
Amplifier | 200
40 | 125
125 | R _k = 68 | 26
45 | 5.6
16 | 53,000 | | — | - | | 12DQ7¶ | | Class A
Amplifier | 12.6
E _{c1} = 1 | 2.6 volts | E _{cc2} = | 35 | = | 500
d 1 is space | 16,000
c-charge | grid, gr | $R_{g2} = 2.2$ meg $id 2 is$ | = | 1 2 DS7 | | AM Detector | Max d- | | | t ♦ ♦ = | 5.0 ma | | op: • • | | | a d-c | 10000 | | Class A
Amplifier | E _{c1} = 12
control | grid) | | 75 ma | | grid 1 is | space- | harge | grid, g | | 12DS7-A | | Vertical
Amplifier | 250
80
Max p | 250
250
ositive | 16.5
0
pulse p | 44
195 | 1.5
19 | a; voltage

=2,200 vol | 6,200 | = | | | 12DT5¶ | | Class A | 150 | = 55 ma
 100 | R _k = | 1.1 | 2.1 | 150,000 | 800 | E _{cl} = | 0 volts | | 12DT6 | | Amplifier
FM Limiter
Discrimina-
tor | 250\$ | 100 | 560
R _k =
560 | 0.22 | 5.5 | E _{c3} =6 | .0 volts | | 270,000 | - | | | Class A
Amplifier | 250
100 | | 2.0
1.0 | 1.2
0.5 | = | 62,500
80,000 | 1,600
1,250 | 100
100 | = | = | 12DT7 | | Class A
Amplifier • | 250
100 | _ | R _k = 200
R _k = 270 | 10
3.7 | _ | 10,900
15,000 | 5,500
4,000 | 60
60 | _ | | 12DT8 | | Class A
Amplifier | 12.6 | 12.6 | $\frac{E_{cei} =}{0}$ | 12 | 1.5 | 6,000 | 6,200 | R _{g1} = 2.2 meg | 2,700 | 0.025 | 12DU7 | | <u> </u> | | c outpu | | | =1 ma; | voltage dr | | volts | | | | | Class A
Amplifier | Maxim
ma d-c | | $\mathbf{E_{ecl}} = 0$ output | 0.04
current | | 19,000
ma; voltag | 750
ge drop: | 14
♠10 v | $R_{g1} = 2$. olts at 1 | ~ | 12DV7 | | Class A Amplifier Detector AVC | 12.6
E _{cl} = 12 | | E _{ce2} =
 0
s; R _k = 1
control
t currer | 9.0
18 ohms
grid)
at * • = | s, I _{c1} = 5 | 900
3 ma (Not
; voltage d | 8,500
e: grid 1
rop: • 1 | is spac | e-charg | e
na | 12DV8 | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofara | | |---------|--------------------------------------|---------------|--------------------|---------------|---------------|---------------------------|------------------------------|-------------------------------|------------------|--------------------|-------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12DW4-A | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 12.6 | 0.6 | 8.5 ◈ | Tube V
25 volt | oltage
s at 350 | Drop: | | | | 12DW6¶ | Beam Power Amplifier | 9CK | 6–4 | 12.6 | 0.6 | 11 🔷 | 330 ◈ | 220 *
2.5 * | 14▲ | 9.0▲ | 0.5▲ | | 12DW7 | Double Triode | 9A | 6-2 | 12.6
6.3 | 0.15
0.3 | 1.2 ♦ | 330 ♦
330 ♦ | _ | 7, 8) | 1 (Pin
2 (Pin | | | 12DW8 | Diode Double Triode | 9JC | 6-2 | 12.6 | 0.45 | 0.5 ♦ 0.5 ♦ | 16 ◈
16 ◈ | | 8) | 1 (Pin | | | 12DY8 | Triode-Tetrode | 9JD | 6-2 | 12.6 | 0.35 | | 16 ♦ | 16 🏶 | | e Section | | | 12DZ6 | Remote-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.190 | | 16 ◈ | 16 🏶 | 9.5 ▲ | | 0.05 | | 12DZ8 | Triode-Pentode | 9JE | T-X | 12.0 | 0.45 | 6.5
0.75 | 150
150 | 135
1.5 | | e Section | | | 12E5-GT | Medium-Mu Triode | 6Q | 9-11 | 12.6 | 0.15 | 1.25 | 250 | | 3.4 | 5.5 | 2.6 | | 12EA6 | Remote-Cutoff Pentode | 78K | 5–2 | 12.6 | 0.190 | | 16 ◈ | | 11 🛦 | 4.0 ▲ | 0.04 | | 12EC8 | Triode-Pentode | 9PA | 6-2 | 12.6 | 0.225 | _ | 16 () | 16 ◈ | Pentod
Triode | e Section | | | 12ED5¶ | Beam Power Amplifier | 7CV | 5-3 | 12.6 | 0.45 | 6.25 ◈ | 150 🏶 | 150 ③
1.5 ④ | 14▲ | 8.5 ▲ | 0.26 🛦 | | 12EF6¶ | Beam Power Amplifier | 7S | 9-13
or
9-42 | 12.6 | 0.45 | 10 | 250 | 250
2.0 | 11.5 🛦 | 9.0▲ | 0.8 🛦 | | 12EG6 | Dual-Control Heptode | 7CH ♥ | 5-2 | 12.6 | 0.15 | _ | 30 | 30 | | _ | - | | 12EH5¶ | Power-Amplifier Pentode | 7CV | 5-3 | 12.6 | 0.6 | 5.5 🏶 | 150 🆠 | 130 (a) 2.0 (b) | 17▲ | 9▲ | 0.65 ▲ | | 12EK6 | Sharp-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.190 | _ | 16 🏶 | 16 🏶 | 10▲ | 5.0 ▲ | 0.036 | | 12EL6 | Duplex-Diode High-Mu
Triode | 7FB | 5-2 | 12.6 | 0.15 | _ | 30 | | 2.2 ▲
Diode | 1.0 ▲
Section | 1.8▲ | | 12EM6 | Diode-Tetrode | 9HV | 6-3 | 12.6 | 0.5 | 0.5 | 30 | 30 | | | ı — | | 12EN6¶ | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 12.6 | 0.6 | 7.0 🏶 | 300 ◈ | 150 (a) | | Section
8.0 ▲ | 0.65 ▲ | | 12EQ7 | Diode-Pentode | 9LQ | 6-3 | 12.6 | 0.15 | 3.0 🏶 | 300 ◈ | 300 ⊕
0.6 ⊕ | 1 | 5.0 ▲
Section | 0.002 | | 12EZ6 | Sharp-Cutoff
RF Pentode | 7BK | 5-2 | 12.6 | 0.175 | _ | 30 | 30 | 7.8 🛦 | 5.5 ▲ | 0.008
4 | | 12F5-GT | High-Mu Triode | 5M | 9-17 | 12.6 | 0.15 | _ | 300 | | 1.9 | 3.4 | 2.4 | | 12F8 | Duplex-Diode-Pentode | 9FH | 6-2 | 12.6 | 0.15 | | 30 | 30 | | Section | | | 12FA6 | Pentagrid Converter | 7СН ♥ | 5–2 | 12.6 | 0.15 | - | 30 | 30 | | 3,000 o | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------------|-----------------|--|---|----------------------------------|------------------------------------|----------------------------------|---------------------------|--|--------------------------------|--------------| | TV Damper | Max d | -c outp | ut curr | ent 🗞 =
nt 🏶 = 1 | 250 ma
 ; max pe | ak inve | rse vol | tage 🏶 = | = 5,500 | 12DW4-A¶ | | Vertical
Amplifier | 200
60 | 150
150 | 22.5
0 | 55
260 | 2.0 | 15,000
 | 5,500
 —
d-c cati | node cu | rrent 🔷 | | 12DW5¶ | | Class A
Amplifier
Class A
Amplifier | 250
100
250
100 | = | 2.0
1.0
8.5
0 | 1.2
0.5
10.5
11.8 | | 62,500
80,000
7,700
6,500 | 1,600
1,250
2,200
3,100 | 100
100
17
20 | = | | 12DW7 | | Class A
Amplifier
Class A
Amplifier | 12.6 | | E _{cc} = 0
E _{cc} = 0 | 7.5 | | _ | 2,700
6,500 | l | $R_{g} = 1.$ $R_{g} = 1.$ | | 12DW8 | | Class A | Averag
12.6 | | E _{ccl} = | 14 | volts = 2.0 | 5,000 | 6 000 | $R_{g1} = 2$ | 2 meg | | 12DY8 | | Amplifier
Class A Amp | 12.6 | _ | 0 | 1.2 | 2.0 | 10,000 | 2,000 | 20 | | | 12210 | | Class A
Amplifier | 12.6 | 12.6 | $\frac{\overline{E_{cc1}}}{0}$ | 4.5 | 2.2 | 25,000 | | $R_{g3} = 1$ | 0 megoh
0 megoh | ims
ims | 12DZ6 | | Class A
Amplifier | 145 | 120 | R _k = | 45† | 6.0† | | 7,500 | _ | 2,500 | | 12DZ8 | | Class A
Amplifier | 120 | | $\begin{array}{c} R_k = \\ 1500 \end{array}$ | 0.8 | | | 1,400 | 100 | | | | | Class A Amp | 250 | | 13 | 5.0 | | 9,500 | 1,450 | 13.8 | <u> </u> | <u> </u> | 12E5-GT | | Class A
Amplifier | 12.6 | 12.6 | $E_{cc^1} = 0$ | 3.2 | 1.4 | 32,000 | 3,800 | $R_{g1} = 1$ | 0 megoh
 | ims
 | 12EA6 | | Class A
Amplifier | 12.6 | 12.6 | 0 | 0.66 | 0.28 | 750,000 | 2,000 | _ | | | 12EC8 | | Class A Amp | 12.6 | | 0 | 2.4 | | 6,000 | 4,700 | 25 | | | | | Class A
Amplifier | 125
110 | 125
110 | 4.5
4.0 | 37†
32† | 7.0†
4.0† | 14,000
14,000 | 8,500
8,100 | =_ | 4,500
4,500 | 1.5
1.1 | 12ED5¶ | | Vertical
Amplifier | 250
75 | 250
250 | 18
0 | 50
170 | 2.0 | .000; max c | 5,000 | | | | 12EF6¶ | | Class A
Amplifier | 12.6 | 12.6 | $E_{ecl} = 0$ | 0.4 | 2.4 | 150,000
1 through | 800 | | - | - I | 12EG6 | | Class A
Amplifier | 110 | 115 | R _k = 62 | 42† | 11.5† | 11,000 | | - | 8,000 | 1.4 | 12EH5¶ | | Class A
Amplifier | 12.6 | 12.6 | E _{ccl} = | 4.0 | 1.7 | 50,000 | 4,200 | $R_{g1} = 2$ | .2 meg | _ | 12EK6 | | Class A Amp
Detector | 12.6
Max d- | c outpu | 0
t curren | 0.75
t • = 1. | 0 ma: v | 45,000
oltage drop | 1,200
: •10 v | | ma d-c | | 12EL6 | | Class A
Amplifier | 12.6 | 12.6 | $\mathbf{E_{ccl}} = 0$ | 6.0 | 1.0 | 4,000 | 5,000 | $R_{g1} = 2$ | .2 meg | | 12EM6 | | Detector
Vertical | 200 | 110 | 9.5 | t = 10 n | 1a; voita | ge drop: 10
28,000 | 8,000 | i mac | I-C | - | 12EN6¶ | | Amplifier | 50 | 110 | 0 | 135 | 18 | 1,200; max | l — | ode cu | —
rrent ⊛ |
=50 ma | 1221101 | | Class A
Amplifier
AM Det. | 100
Max d- | 100
c outpu | E _{ccl} = 0 | $ \begin{array}{c c} 9.0 \\ \mathbf{nt} & = 1 \end{array} $ | 3.5
ma; vo | 250,000
ltage drop: | 3,800
: 10 volt | $R_{g_1} = 2$
s at 2.0 | .2 meg
ma | | 12EQ7 | | Class A
Amplifier | 12.6 | 12.6 | E _{cci} = | 1.9 | 0.7 | 400,000 | | $R_{g1} = 2$ | | | 12EZ6 | | Class A Amp | 250 | | 2.0 | 0.9 | | 66,000 | 1,500 | 100 | Г | | 12F5-GT | | Class A Amp
AM Det. | 12.6
Max d- | 12.6
c outpu | 0
it curre | 1.0 | 0.38
.0 ma; v | 330,000
roltage dro | | | t 2.0 m | a d-c | 12F8 | | Converter | 12.6 | 12.6 | E _{cc3} = | 0.67 | | _ | 300# | [- " | | = | 12FA6 | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |----------|------------------------------|---------------|-------|--------------------|---------------|-----------------------------|--------------|------------------------------|--------------------|-------------------------------------|---| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 2FK6 | Duplex-Diode Triode | 7BT | 5-2 | 12.6 | 0.15 | | 16 | | 1.8 ▲ | 0.7 A | 1.6▲ | | 2FM6 | Duplex-Diode Triode | 7BT | 5-2 | 12.6 | 0.15 | | 30 | | 2.7 ▲ | 1.7▲ | 1.7▲ | | 2FQ7¶ | Medium-Mu Twin
Triode | 9LP | 6-3 | 12.6 | 0.3 | 4.0 ♦ 5.7 ♦ ⊕ | 330 ◈ | | 2.4 ▲ | 0.34 ₁ 0.26 ₂ | 3.6 ₁ 4 3.8 ₂ 4 | | 2FQ8 | Twin Double-Plate
Triode | 9KT | 6-2 | 12.6 | 0.15 | 2.0 | 330 ◈ | | | | - | | 2FR8 | Diode Triode-Pentode | 9KU | 6-10 | 12.6 | 0.32 | | 16 | 16 | Pentod | e Section | on | | | | | | | | | 16 | | | Section
Section | 1 | | 2FT6 | Duplex-Diode Triode | 7BT | 5-2 | 12.6 | 0.15 | | 30 | - | 1.8▲ | 1.1 ▲
Section | 2.0 | | 2F V 7 | Medium-Mu
Twin Triode | 9A | 6–3 | 12.6
6.3 | 0.45 | 2.5 | 330 ◈ | | 0.6 ▲ | | 6.0 | | 2FX5¶ | Power Amplifier
Pentode | 7CV | 5-3 | 12.6 | 0.45 | 5.5 🏶 | 150 ◈ | 130 ♦
2.0 ♦ | 17▲ | 9.0 ▲ | 0.65 | | 2FX8 | Triode-Heptode | 9KV
▼ | 6–10 | 12.6 | 0.27 | | 16
16 | 16 | 1 - | le Secti
Section | | | 2F X8-A | Triode-Heptode | 9KV | 6-10 | 12.6 | 0.27 | | 16 | 16 | Hepto | le Secti | on | | | | \ | | | | | 16 | | Triode | Section | 1 | | 2F Y 8 | Triode-Pentode | 9EX | 6-4 | 12.6 | 0.6 | 8.0 ③ | 150 ♦ | 150 *
2.0 * | | le Section | | | 2G4 | Medium-Mu Triode | 6BG | 5-3 | 12.6 | 0.15 | 2.5 | 300 | | 2.6 | 3.2 | 3.4 | | 12G8 | Double Triode | 9CZ | 6-3 | 12.6 | 0.4 | | 16
16 | Ξ | Section
Section | 1 (Pin
1 2 (Pin | s 6, 7, 8
s 1, 2, 3 | | 2G11¶ | Dissimilar Double
Pentode | 12BU | 9-58 | 12.6 | 0.6 | 6.5 ◈ | 150 � | 135 (a) | Section | | ıs 8, 9 | | | rentode | | | | | 1.7 🏶 | 330 � | 3308 & | | ı 2 (Pir | ıs 2, 3, | | 2GA6 | Heptode | 7CH | 5-2 | 12.6 | 0.15 | | 16 🏶 | | Osc. I | 1 = 0.06 $3,000$ | ma | | 12GC6¶ | Beam-Power Amplifier | 8JX | 12-15 | 12.6 | 0.6 | 17.5 🏶 | 770 🔷 🖁 | 220 ③
4.5 ③ | 15 ▲ | 7.0 | 0.55 | | 2GE5¶ | Beam Power
Amplifier | 12BJ | 12-56 | 12.6 | 0.6 | 17.5 ◈ | 770\$ ◈ | 220 ♦
3.5 ♦ | 16 ▲ | 7.0 🛕 | 0.34 | | 2GJ5¶ | Beam Power
Amplifier | 9QK | T-X | 12.6 | 0,6 | 17.5 ◈ | 7708 🏶 | 220 ③
3.5 ④ | | 6.5 4 | 0.26 | | 12GN7 | Sharp-Cutoff Pentode | 9BF | 6-3 | ${12.6 \atop 6.3}$ | 0.3 \ 0.6 | 7.5 ◈ | 400 ◈ | 3308 ◈ | 17.5▲ | 4.0 ▲ | 0.12 | | 12GN7-A¶ | Sharp-Cutoff
Pentode | 9BF | 6-3 | 12.6
6.3 | 0.3 | 11.5 € | 400 ◈ | 330 1 (| | 4.0 ▲ | 0.12 | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|--|-----------------|---------------------------|---------------------------------------|----------------------------------|--------------------------|---------------------------|---------------------------------|--|--------------------------------|--------------| | Class A
Amplifier | 12.6 | - | E _{cc} = | 1.3 | | 6,200 | 1,200 | | $R_{\mathbf{g}} = 2.$ | 2 meg | 12FK6 | | | | c outpu | | | ma; voli | age drop: | | | | | 400140 | | Class A
Amplifier
Detector | 12.6 | Coutou | E _{cc} = | 1.0 | ma: volt | 7,700
age drop: | 1,300 | 10 | $R_g = 2.5$ | 2 meg | 12FM6 | | Class A | 250 | C Outpu | 8.0 | 9.0 | | 7,700 | 2,600 | 20 | | | 12F07¶ | | Amplifier • | 90 | _ | 0 | 10 | | 6,700 | 3,000 | 20 | | - | 121 (21 | | Class A
Amplifier | 250 | | 1.5 | 1.5
(Valu | es for e | 76,000
ach plate) | 1,250 | 95 | | | 12FQ8 | | Class A | 12,6 | 12,6 | Eccl = | 1.9 | 0.7 | 400,000 | 2,700 | | $ \mathbf{R}_{\mathbf{g}1} = 2 $ | .2 meg | 12FR8 | | Amplifier
Class A | 12.6 | _ | E _{cc} = | 1,0 | _ | _ | 1,200 | 10 | $R_{g}=2.$ | - 1 | 141 110 | | Amplifier
AM Det. | Max d- | c outpu | t currer | t = 5.0 | ma; vol | tage drop: | 10 volts | at 2.0 | ma d-c | | | | Class A
Amplifier
AM Det. | 12.6 | | E _{cc} = | 0.6 | Ι – | 13,000 | 1,000 | 14 | $R_g = 2.$ | 2 meg | 12FT6 | | | 100 | c outpu | 1 2.0 | 16 | ma; voi | tage drop: | 9.600 | $\frac{\text{s at } 3.0}{21.5}$ | ma | | 12FV7 | | Class A
Amplifier ♠
Class A | 110 | 115 | $R_k =$ | 36+ | 10+ | 17,500 | 13,500 | 21.5 | 3.000 | 1.3 | 12F X 5 ¶ | | Amplifier
Converter | 12.6 | 12.6 | $\frac{62}{E_{ec3}} =$ | 0.29 | 1.25 | 500,000 | | | $R_{g3} = 2$ | " | 12FX8 | | Class A | 12.6 | _ | $E_{cc}^{0} =$ | 1.3 | - | _ | 1,400 | 10 | $R_g = 2.$ | ۱ . | | | Amplifier | | | U | | | | | | | | | | Converter
Class A | 12.6
12.6 | 12.6 | E _{cc3} = | 0.29 | 1.25 | 500,000 | 1,400 | 10 | $R_{g3} = 2$ $R_g = 2.$ | - | 12FX8-A | | Amplifier
Class A | 125 | 125 | $\frac{E_{cc} = 0}{13.5}$ | 50† | 10+ | | 7,500 | | 2,000 | 2.7 | 12FY8 | | Amplifier
Class A Amp | 125 | | 1.5 | 2.5 | | | 2,000 | | | | | | Class A
Amplifier | 90
250 | | 8.0 | 9.0 | | 6,700
7,700 | 3,000
2,600 | 20
20 | | = | 12G4 | | Direct-
Coupled
Amplifier | 12.6 ₁
12.6 ₂ | | O ₁ | 3.0 ₁ † 7.2 ₂ † | nin 7 co | 8,500
nnected di | 2,600 | 22 | | 0.025 | 12G8 | | Amplinei | μare n | neasure | l with r | espect 1 | to the g | rid voltage | of inp | ut secti | on (sect | tion 1) | | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | - | 2,500 | 2.3 | 12G11¶ | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.0 | 150,000 | 1,000 | Ec3 = | 0 volts | ' | | | Converter | 12,6 | | $E_{\text{ccl}} = 0$ | 0.3 | 0.8 | 1,000,000 | 140 # | $E_{cc3} = 0$ $R_{g3} = 2$ | 0 volts
2.2 meg | | 12GA6 | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 75
345 | 30 | 20,000 | 6,600 | = | Ī | - | 12GC6¶ | | | | | | | | 5,500; max | | ode cur | rent 🄷 = | 1/0 ma | 10000 | | Horizontal
Amplifier | 250
60 | 150
 150 | 22.5 | 65
 345
 tayrolta | 1.8 | 18,000
 | 7,300 | de cur |

 | 175 ma | 12GE5¶ ■ | | | 250 | 1 150 | 22.5 | 1 70 | 2.1 | | 1 7.100 | l cae car. | - C110 | 1.01114 | 12GJ5¶ | | Horizontal
Amplifier | 60 | 150 | 0 | 390 | 32 | 15,000
5,500; max | | ode cur | rent 🏶 = | 175 ma | 120301 | | Class A
Amplifier | 250 | 150 | R _k = | 28 | 6.5 | 50,000 | 36,000 | - | - | | 12GN7 | | Class A
Amplifier | 250 | 150 | $R_k = 56$ | 28 | 6.5 | 50,000 | 36,000 | - | — | | 12GN7-A¶ | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Voits | Ca
F | pacitanc
Picofara | e in
ds | |-----------------|-------------------------------------|---------------|----------------------|--------------------|---------------|---------------------------|--------------|------------------------------|------------|----------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12GT5¶ | Beam Power
Amplifier | 9NZ | 12-64 | 12.6 | 0.6 | 17.5 🏶 | 770 �\$ | 220 ♦
3.5 ♦ | 15▲ | 6.5 ▲ | 0.26 4 | | 12GT5-A¶ | Beam Power
Amplifier | 9NZ | 12-95 | 12.6 | 0.6 | 17.5 ◈ | 770\$ ◈ | 220 ♦
3.5 ♦ | 15▲ | 6.5 ▲ | 0.26 ▲ | | 12GW6¶ | Beam-Power Amplifier | 6AM | 12-51 | 12.6 | 0.6 | 17.5 🏵 | 770 ♦\$ | 220 ③
3.5 ⑤ | 17▲ | 7.0▲ | 0.5 ▲ | | 12H4 | Medium-Mu Triode | 7DW | 5-3 | 12.6
6.3 | 0.15
0.3 | 2.5 | 300 | | 2.6 | 3.2 | 3.4 | | 12H6 | Twin Diode | 7Q | 8-5 | 12.6 | 0.15 | | | oltage
16 ma | | • | | | 12HE7 | Diode-Pentode | 12FS | 12-57 | 12.6 | 1.35 | 10 🏶 | 500\$ ◈ | | WAR-97- | le Sectio | on | | | | | | | | _ | Tube V | oltage
s at 350 | Drop: | Section
c | | | 12HG7 | Sharp-Cutoff
Pentode | 9BF | 9-70 | ${6.3}\atop{12.6}$ | 0.52) | 10 🆠 | 400 ◈ | 330\$ ♦ | 14 ▲ | 4.4 ▲ | 0.18 | | 12H L.5 | Beam Power
Amplifier | 9QW | 6-4 | 12.6 | 0.45 | 12 🕸 | 330 🏶 | 250 ③
2.5 ③ | _ | | | | 12J5
12J5-GT | Medium-Mu Triode | 6Q | 8-1
9-11,
9-41 | 12.6 | 0.15 | 2.5 | 300 | - | 3.4
4.2 | 3.6
5.0 | 3.4
3.8 | | 12J7-GT | Sharp-Cutoff Pentode | 7R | 9-18 | 12.6 | 0.15 | 0.75 | 300 | 3008 | Pentoc | le Conn | ected | | | | | | | | 1.75 | 250 | 0.1 | Triode | Connec | cted | | 12J8 | Duplex-Diode Tetrode | 9GC | 6-2 | 12.6 | 0.325 | - | 30 | 30 | 10.5 | G ₃ & P | 0.7 ▲ | | | | | | | | | | | Diode | Section | s | | 12JB6¶ | Beam Power Amplifier | 9QL | 12-70 | 12.6 | 0.6 | 17.5 ◈ | 7708 🏶 | 220 ♦
3.5 ♦ | 15▲ | 6.0 ▲ | 0.2 🛦 | | 12JB6-A¶ | Beam Power
Amplifier | 9QL | T-X | 12.6 | 0.6 | 17.5� | 7708 🏵 | 220 ③
3.5 ④ | 15▲ | 6.0▲ | 0.2 | | 12JF5¶ | Beam Power
Amplifier | 12JH | 12-79 | 12.6 | 0.6 | 17.5 🏶 | 7708 ◈ | 220 ♦
3.5 ♦ | 15.6 ▲ | 6.4 ▲ | 0.55 | | 12JN6¶ | Beam Power
Amplifier | 12FK | 12-56 | 12.6 | 0.6 | 17.5� | 770\$ ◈ | 220 ③
3.5 ④ | 16 ▲ | 7.0▲ | 0.34 | | 12JN6-A¶ | Beam Power
Amplifier | 12FK | 12-56 | 12.6 | 0.6 | 17.5 🏶 | 7708 ◈ | 220 ③
3.5 ④ | 16 ▲ | 7.0▲ | 0.34 | | 12JN8 | Triode-Pentode | 9FA | 6-2 | 12.6 | 0.225 | 2.5 ③ 2.5 ③ | 300 ♦ | 300 \$ @
0.55 @ | 1 | le Section | | | 12JQ6¶ | Beam Pentode with
Integral Diode | 9RA | 6-4 | 12.6 | 0.6 | 10� | 425� | 330 ♦
2.0 ♦ | 13 🛦 | 6.0▲ | 0.32 | | 12JS6 | Beam Power
Amplifier | 12FY | 12-89 | 12.6 | 1,125 | 28 🏶 | € \$066 | 190 ♦
5.5 ♦ | 24 ▲ | 10 🛦 | 0.7 ▲ | Compactron. † Zero signal. • Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|---------------------------|--|--------------------------------------|---------------------------------|---|--|---------------------------------|---------------------|--|--------------------------------|------------------------| | Horizontal
Amplifier | 250
60
Max no | 150
150 | 22.5
0 | 70
390 | 2.1
32 | 15,000
,500; max | 7.100 | ode cur | | 175 ma | 12GT5¶ | | Horizontal
Amplifier | 250
60 | 150
 150
 positive | 22.5
0 | 70
390 | $\begin{vmatrix} 2.1 \\ 32 \end{vmatrix}$ | 15,000
•6,500; m | 7,100 | _ | | | 12GT5-A¶ | | Horizontal
Amplifier | 250
60
Max po | 150
150
sitive p | | | 2.1
 32
 ge � = 6 | 15,000
 | 7,100
d-c cath | ode cur |
rent⊛= | 175 ma | 12GW6¶ | | Class A
Amplifier | 90
250 | | 0
8.0 | 10
9.0 | Ī | 6,700
7,700 | 3,000
2,600 | 20
20 | ĪĒ | | 12H4 | | Half-Wave
Rectifier | Max d | l-c outp | ut curr | ent per | plate = l | =8 ma; ma
50; max pe | x peak | inverse | voltage | e = 420;
48 ma | 12H6 | | Horizontal
Amplifier | 130
50
Max
230 m | 130
130
positive | 22
0
pulse | 60
 450
 plate v | 2.8
 40
 oltage � | 6,200
 | 8,800
nax d-c | cathode | e currer |
nt | 12HE7 | | TV Damper | Max
max r | d-c out _l
eak cur | put cur
rent 🏶 : | rent 🏶 =
= 1,200 | =200 m
ma | a; max pea | ak inver | se volt | age 🏶 = | 4,200; | | | Class A
Amplifier | 300 | 135 | R _k = 47 | 31 | 4.8 | | 32,000 | (g3 cc
k at s | | | 12HG7 | | Class A
Amplifier | 130 | 130 | R _k = 56 | 70† | 5.0† | 7,500 | 17,000 | | 2,000 | 3.0 | 12HL5 | | Class A
Amplifier | 90
250 | | 0
8.0 | 9.0 | = | 6,700
7,700 | 3,000
2,600 | 20
20 | _ | = | 12]5
12]5-GТ | | Class A
Amplifier
Class A
Amplifier | 250
250 | 100 | 3.0
8.0 | 2.0
6.5 | 0.5 | 1,000,000 | 1,225 | 20 | | _ | 12J7-GT | | Class A
Amplifier
AM Det. | 12.6
Max | d-c outp | E _{ccl} = 0 out curr 5.0 vo | 12†
ent • =
lts at 1 | 1.5†
=5.0 ma
2 ma d- | 60,000
voltage d | \ | $R_{gi} = 2$ | _ | na d-c; | 12J8 | | Horizontal
Amplifier | 250
60 | 150
150
positive | 22.5
0 | 70
390 | 32.1 | 15,000
=6,500; n | 7,100
nax d-c | at soc | | ! | 12JB6¶ | | Horizontal
Amplifier | 250
60
Max
175 m | | | 70
 390
 ate vo | 2.1
 32
oltage � | 15,000
= 6,500; n | 7,100
nax d-c | kats | onnected
socket)
e currer | | 12JB6-A¶ | | Horizontal
Amplifier | | 150
150
ositive p
ma. | 22.5
0
oulse pla | 65
345
ite volta | 1.8
27
age 🏶 = | 18,000
= 6,500 vol | 7,300
Ls; max | d-c cath | ode cur | rent 🕸 | 12JF5¶ | | Horizontal
Amplifier | 250
60
Max
175 m | | 22.5
0
pulse | 65
 345
 plate v | 27
voltage | 18,000
= 6,500; | 7,300
max d-0 | at soc | connecte
ket)
de curre | | 12JN6¶ | | Horizontal
Amplifier | 250
55
Max
175 m | | 22.5
0
pulse | 70
345
plate v | 2.4
 30
oltage @ | 15,000
=6,500; n | 7,300
nax d-c | kats | connect
ocket)
e currer | 1 | 12JN6-A¶ | | Class A
Amplifier
Class A
Amplifier | 125
125 | 125 | 1.0 | 13.5 | 4.0 | 200,000
5,400 | 7,500
8,500 | 46 | | | 12JN8 | | Vertical
Amplifier | Insta | intaneou | s diode | -plate-to | o-cathod | 10,500
= 2,000; max
e voltage dr | 4.200
c d-c cat
op for in | hode cu
stantan | rrent 🗞 : | = 70 ma.
de-plate | 12JQ6¶ | | Horizontal
Amplifier | 175
70 | ent of 2.6
125
120
positive
na | 25
0 | 125
570 | 4.5
34 | 5,600
=7,500; n | 11,300
nax d-c | (b.p. k at s cathod | connecte
ocket)
e currer | ed to
nt | 12JS6 - | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Voits | | acitanc
icofarac | | |-------------------|----------------------------------|---------------|----------------------|---------------|-------------|----------------|-------------------------|------------------------------|---------------------------------------|---------------------|--------------------------------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12JT6¶ | Beam Power
Amplifier | 9QU | T-X | 12.6 | 0.6 | 17.5 🏶 | 7708 ◈ | 220 ③
3.5 ④ | 15▲ | 6.5 ▲ | 0.26 | | 12JT6-A¶ | Beam Power
Amplifier | <u>9QU</u> | 12-95 | 12.6 | 0.6 | 17.5 ◈ | 7702 | 220 ♦
3.5 ♦ | 15▲ | 6.5▲ | 0.26 | | 12K5 | Space-Charge-Grid
Tetrode | 7FD | 5–3 | 12.6 | 0.4 | | 30 | | 23.0 ▲ | 1.8 ▲ | 11.0 | | 2K7-GT | Remote-Cutoff RF
Pentode | 7R | 9-18 | 12.6 | 0.15 | 2.75 | 300 | 300 \$
0.35 | 4.6 | 12.0 | 0.005 | | 12K8
12K8-GT | Triode Hexode
Converter | 8K♥ | 8-2
9-24 | 12.6 | 0.15 | 0.75 | 300 | 300 \$
0.7 | Osc Ici
Rei = 5 | =0.15
0,000 o | ma
hms | | 12KL8¶ | Diode-Pentode | 9LQ | 6–3 | 12.6 | 0.15 | 3.0 🏶 | 330 ◈ | 330 \$ 🏵 | Pentod | le Section | | | 12L6-GT¶ | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 12.6 | 0.6 | 10 | 200 | 125
1.25 | 15▲ | 10▲ | 0.8 🛦 | | 12L8-GT | Twin-Pentode Power
Amplifier | 8BU | 9-11 | 12.6 | 0.15 | 2.5♠ | 180 | 180 | 5.0 ▲ | 6.0▲ | 0.7 🛦 | | 2M D8¶ | Triple Triode | 9RQ | T-X | 12.6 | 0.45 | 3.0 ◈ | 330 ◈ | = | | = | - | | 12Q7-GT | Duplex-Diode High-Mu
Triode | 7 V | 9-18 | 12.6 | 0.15 | = | 300 | | 2.2 | 5.0 | 1.6 | | 2R5¶ | Beam Power Amplifier | 7CV | 5–3 | 12.6 | 0.6 | 4.5 | 150 | 1.0 | 13▲ | 9.0 🛦 | 0.55 | | 12S8-GT | Triple-Diode
High-Mu
Triode | 8CB | 9-23 | 12.6 | 0.15 | 0.5 | 300 | = | 1.2 | 5.0 | 2.0 | | 12SA7
12SA7-GT | Pentagrid Converter | 8R ♥
8AD ♥ | 8-1
9-11,
9-41 | 12.6 | 0.15 | 1.0 | 300 | 1.0 | Osc Ici
Rgi = 2 | =0.5 n
0,000 o | na
hms | | 12SC7 | High-Mu Twin Triode | 88 | 8-1 | 12.6 | 0.15 | _ | 250 | | _ | | | | 12SF5
12SF5-GT | High-Mu Triode | 6AB | 8-1
9-11 | 12.6 | 0.15 | _ | 300 | = | 4.0 | 3.6 | 2.4 | | 12SF7
12SF7-GT | Diode Remote-Cutoff
Pentode | 7AZ | 8-1
9-18 | 12.6 | 0.15 | 3.5 | 300 | 3008 | 5.5
5.5 | 6.0 | 0.004 | | 12SG7 | Semi-Remote-Cutoff RF
Pentode | 8BK | 8-1 | 12.6 | 0.15 | 3.0 | 300 | 300 \$
0.6 | 8.5 | 7.0 | 0.003 | | 12SH7 | Sharp-Cutoff RF
Pentode | 8BK | 8-1 | 12.6 | 0.15 | 3.0 | 300 | 3008 | 8.5 | 7.0 | 0.003 | | 12SJ7 | Sharp-Cutoff Pentode | 88 | 8-1
9-12 | 12.6 | 0.15 | 2.5 | 300 | 3001 | Pentoc | le Conn | ection | | 12SJ7-GT | | | | | | 2.5 | 250 | - | | Connec | | | 125K7
125K7-GT | Remote-Cutoff RF
Pentode | 8N | 8-1
9-11 | 12.6 | 0.15 | 4.0 | 300 | 3008 | 6.0 | 7.0 | 0.003 | | 12SL7-GT | High-Mu Twin Triode | 8BD | 9-11 | 12.6 | 0.15 | 1.0 ♠ | 300 | - | = | - | - | | 12SN7-GT | Medium-Mu Twin
Triode | 8BD | 9-11,
9-41 | 12.6 | 0.3 | 3.5 ♠
5.0 ⊕ | 300 | | 2.8 ₁ A 3.0 ₂ A | 0.8 ₁ A | 3.8 ₁
4.0 ₂ | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |----------------------------------|-------------------------------------|------------------------|---|---------------------------------|----------------------------------|----------------------------|---------------------------|------------------|--|--|-------------------| | Horizontal
Amplifier | 250
60
Max
175 m | | 22.5
0
pulse 1 | 70
390
plate v | 2.1
 32
oltage � | $=\frac{15,000}{6,500;}$ n | 7,100
—
nax d-c | at soc | nnected
ket)
e currer | i | 12JT6¶ | | Horizontal
Amplifier | 250
60
Max
175 m | | | 70
390
plate vo | 2.1
32
oltage 🏶 | 15,000
=6,500; m | 7,100
nax d-c | kats | nnected
ocket)
e currer | - 1 | 12JT6-A¶ | | Class A
Amplifier | 12.6
E _{cl} =
grid r | 12.6 vol | $E_{cct} = 0$
ts; $I_{ct} = 0$
2 is con | -75 ma | —
(Note:
d) | de 480 grid numb | 15,000
er 1 is | | R _{g1} = 2
harge gi | | 12K5 | | Class A
Amplifier | 250 | 125 | 3.0 | 10.5 | 2.6 | 600,000 | 1,650 | _ | _ | | 12K7-GT | | Converter | 250 | 100 | 3.0 | 2.5 | 6.0 | 600,000 | 350 # | Eb(Tri | ode Osc) | = 100
3.8 ma | 12K8
12K8-GT | | Class A
Amplifier
Detector | 100
Max | 100
d-c outp | E _{ccl} = | 5.5 | 2,2 | 550,000 | 4,300 | | .2 mego | | 12KL8¶ | | Class A | 200 | 125 | R _k = | 46† | 1 2.2† | 28,000 | 8.000 | l | 4,000 | 3.8 | 12L6-GT9 | | Amplifier | 110 | 110 | 180 | 491 | 4.0† | 13,000 | 8,000 | _ | 2,000 | 2.1 | 1220-01 | | Class A
Amplifier | 180 | 180 | 9.0 | 13† | 2.8† | 160,000 | 2,150 | - | 10,000 | 1.0 | 12L8-GT | | Class A
Amplifier • | 250 | _ | 10.5 | 11.5 | | 5,500 | 3,100 | 17 | | | 12MD8¶ | | Class A
Amplifier | 250 | = | 3.0 | 1.0 | | 58,000 | 1,200 | 70 | | | 12Q7-GT | | Vertical
Amplifier | 110
45
Max | 110
110
positive | 8.5
0 | 40
120
clate vo | 3.3
17 | 13,000
=1,500 vo | 7,000
Lts: max | screen | dissipa | tion = | 12R5¶ | | | 1.0 w | att; max | d-c ca | thode c | urrent = | =45 ma | | | | | | | Class A
Amplifier | 250 | | 2.0 | 0.9 | | 91,000 | 1,100 | 100 | | | 12S8-GT | | Converter | 250
100 | 100
100 | 2.0
2.0 | 3.5
3.3 | 8.5
8.5 | 1,000,000 | 450 #
425 # | = | = | = | 12SA7
12SA7-G | | Class A
Amplifier • | 250 | | 2.0 | 2.0 | - | 53,000 | 1,325 | 70 | _ | | 12SC7 | | Class A
Amplifier | 250 | | 2.0 | 0.9 | _ | 66,000 | 1,500 | 100 | | | 12SF5
12SF5-G7 | | Class A
Amplifier | 250
100 | 100
100 | 1.0 | 12.4
12 | 3.3
3.4 | 700,000
200,000 | 2,050
1,975 | _ | = | | 12SF7
12SF7-G | | Class A
Ampliner | 250
250 | 150
125 | 2.5
1.0 | 9.2 | 3.4
4.4 | 1,000,000 | 4,000
4,700 | | | $ \equiv $ | 12SG7 | | Class A
Amplifier | 100
250 | 150 | 1.0 | 10.8 | 3.2
4.1 | 250,000
900,000 | 4,100 | | <u> </u> | | 12SH7 | | Class A
Amplifier | 250 | 100 | 3.0 | 3.0 | 0.8 | 1,000,000 | 1,650 | <u> </u> | _ | | 12SJ7 | | Class A
Amplifier | 250 | - | 8.5 | 9.2 | - | 7,600 | 2,500 | 19 | - | - | 12SJ7-G7 | | Class A
Amplifier | 250
100 | 100 | 3.0 | 9.2 | 2.6
4.0 | 800,000
120,000 | 2,000
2,350 | 三 | = | = | 12SK7
12SK7-G | | Class A
Amplifier | 250 | - | 2.0 | 2.3 | - | 44,000 | 1,600 | 70 | - | | 12SL7-G | | Class A
Amplifier | 250
90 | = | 8.0 | 9.0 | 1= | 7,700
6,700 | 2,600
3,000 | | = | | 12SN7-G | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max
Piate | Max | Max
Screen
Voits | | acitance
icofarad | | |-------------------|-------------------------------------|---------------|--------------------|---------------|-------------|-----------------------------|-------------------|------------------------------------|--------------------------------------|--|--| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Watts | Piate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 12SN7-
GTA | Medium-Mu
 Twin Triode | 8BD | 9-11,
9-41 | 12.6 | 0.3 | 5.0 ♠
7.5 ⊕ | 450 | | 2.2₁ ▲
2.6₂ ▲ | 0.7 🛦 | 4.0 ₁ 4
3.8 ₂ 4 | | 12SQ7-GT | Duplex-Diode High-Mu
Triode | 8Q | 8-1
9-12 | 12.6 | 0.15 | 0.5 | 300 | | 3.2
4.2 ▲ | 3.0
3.4 ▲ | 1.6
1.8 A | | 12SR7
12SR7-GT | Duplex-Diode
Medium-Mu Triode | 8Q | 8-1
9-11 | 12.6 | 0.15 | 2.5 | 250 | | 3.6
3.5 | 2.8
3.8 | 2.4
2.3 | | 12SW7 | Duplex-Diode
Medium-Mu Triode | 8Q | 8-1 | 12.6 | 0.15 | 2.5 | 250 | _ | 3.0 | 2.8 | 2.4 | | 12SX7-GT | Medium-Mu Twin
Triode | 8BD | 9-11 | 12.6 | 0,3 | 2.5♠ | 300 | | 3.0 ₁
2.8 ₂ | 0.8 ₁
1.2 ₁ | 3.6 | | 12SY7
12SY7-GT | Pentagrid Converter | 8R♥
8AD♥ | 8-1
9-12 | 12.6 | 0.15 | | 300 | 1.0 | R = 1 = 2 | =0.5 m
0,000 ol
=0.1 m
0,000 ol | hms | | 12T10¶ | Dissimilar Double
Pentode | 12EZ | 9-59 | 12.6 | 0.45 | 10 ③ | 1 | 275 ♦
2.0 ♦
330 ♣ ♦
1,1 ♦ | | 1 (Pin | s 8, | | 12U7 | Twin Triode | 9A | 6-2 | 12.6 | 0.15 | | 30 | = | 1.8 | 2.0 | 1.5 | | 12V6-GT | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 12.6 | 0.225 | 12 | 315 | 285
2.0 | Single | | | | | | | | | | | | | 2 Tube | s, Push | -Pull | | 12W6-GT¶ | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 12.6 | 0.6 | 12 ◈
8.5 ◈ | | 165 ◈
1.35 ◈ | | e Conn | | | | | | | | | | 330 🏶 | | (G ₂ & 1 | Conne
tied) | ction | | 12X4 | Full-Wave High-
Vacuum Rectifier | 5BS | 5-3 | 12.6 | 0.3 | | Tube V
22 v at | oltage
70 ma | Drop: 4
d-c | | | | 12 Z 3 | Half-Wave High-Vacuum
Rectifier | 4G | 12-5 | 12.6 | 0.3 | - | Tube V | oltage
110 ma | Drop:
a d-c | | | | 13CW4 | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 13.5 | 0.06 | 1.5 ◈ | 135 🏶 | _ | 4.3 ▲ | 1.8 ▲ | 0.92 ▲ | | 13DE7¶ | Double Triode | 9HF | 6-3 | 13.0 | 0.45 | 1.5 🏶 | 330 🏶 | | Section
8) | 1 (Pin | s 6, 7 | | | | | | | | 7.0 ◈ | 275 🏶 | | Section
3, 9) | 2 (Pin | s 1, 2, | | 13DR7¶ | Double Triode | 9HF | 6–3 | 13.0 | 0.45 | 1.0 🏶 | 330 ◈ | | | 1 (Pin | s 6, 7 | | | | | | | | 7.0 ◈ | 275 🏶 | | Section
3, 9) | | | | 13EM7¶ | Double Triode | SBD | 9–37 | 13.0 | 0.45 | 1.5 * | 330 ♦ | | 5, 6)
Section | 1 (Pins
2 (Pins | | | 13FD7¶ | Double Triode | 9HF | 9-77 | 13.0 | 0.45 | 1.5 🏶 | 330 € | | 2, 3)
Section | 1 (Pins | s 6. | | | | | | | | 10 🏶 | 330 ◈ | | 7, 8)
Section
2, 3, | 2 (Pins | • | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. Without external shield. Design maximum rating. [⊕]Total for all similar sections. BAbsolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|----------------------|---------------------|------------------------------------|---|----------------------------------|------------------------------|---------------------------|---------------------|--|--------------------------------|---| | Class A Amplifier • Vertical Amplifier • | 250
90
Max po | sitive p | 8.0
0
oulse pla | 9.0
10
te volta |
age 🖲 = | 7,700
6,700
1,500; max | 2,600
3,000
d-c cat | 20
20
hode cu | rrent = |
20 ma | 12SN7-GTA | | Class A
Amplifier | 250
100 | _ | 2.0
1.0 | 1.1
0.5 | _ | 85,000
110,000 | 1,175
925 | 100
100 | | = | 12SQ7
12SQ7-GT | | Class A
Amplifier | 250 | _ | 9.0 | 9.5† | | 8,500 | 1,900 | 16 | 10,000 | 0.3 | 12SR7
12SR7-GT | | Class A
Amplifier | 250
26.5 | = | 9.0
R _g =
2 meg | 9.5
1.1 | = |
8,500
15,500 | 1,900
1,100 | 16
17 | = | | 12SW7 | | Class A
Amplifier • | 250
26.5 | = | 8.0
R _g =
.05 mcg | 9.0
1.8 | = | 7,700
11,500 | 2,600
1,800 | 20
21 | | | 12SX7-GT | | Converter
Converter | 250
28 | 100
28 | 2.0
1.0 | 3.5
0.5 | 8.5
1.8 | 1,000,000 | 450 #
250 # | = | | = | 12SY7
12SY7-GT | | Class A
Amplifier | 250 | 250 | 8.0 | 35† | 2.5† | 100,000 | 6,500 | | 5,000 | 4.2 | 12T10¶ | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.1 | 150,000 | 1,000 | | 0 volts |) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Class A
Amplifier • | 12.6 | | 0 | 1.0 | | 12,500 | 1,600 | 20 | | | 1207 | | Class A
Amplifier | 315
250
180 | 225
250
180 | 13
12.5
8.5 | 34†
45†
29† | 2.2†
4.5†
3.0† | 80,000
50,000
50,000 | 3,750
4,100
3,700 | = | 8,500
5,000
5,500 | 5.5
4.5
2,0 | 12V6-GT | | Class AB ₁ { Amplifier { | 285
250 | 285
250 | 19
15 | 70†
70† | 4.0†
5.0† | 70,000
60,000 | 3,600
3,750 | | 8,000±
10,000± | 10 | | | Class A
Amplifier | 200
110 | 125
110 | R _k = 180 7.5 | 46†
49† | 2.2†
4.0† | 28,000
13,000 | 8,000 | | 4,000
2,000 | 3.8 | 12W6-GT¶ | | Vertical
Amplifier | 225 | | 30 | 22 | | 1,600
1,200; max | 3,800 | 6.2
ode cu | _ | | | | Full-Wave
Rectifier | Max d-
ply vol | c outpu
tage per | t currer
plate = | nt =90 :
-360; m | ma; ma:
nax peal | k peak inve
current p | erse volt
er plate | age = 1.
= 245 n | ,250; rm
na | ns sup- | 12X4 | | Half-Wave
Rectifier | Max d-
rms sur | c outpu
ply vol | t currentage = 2: | 35 volts | ma; ma
; max pe | x peak inveak current | erse volt
=330 m | age = 7 | 00 volts | ; max | 12Z3 | | Class A
Amplifier | 110 | | R _k == 130 | 7.0 | | 6,600 | 9,800 | 65 | | | 13CW4 | | Vertical
Oscillator | 250
Max d-
150 | c catho | 11
le curre | | 22 ma | 8,750 | 2,000 | | | ! — | 13DE7¶ | | Vertical
Amplifier | 60 | sitive n | 17.5
0
ulse pla | 35
80
te volta |
ige | 925
4,000; max | 6,500
d-c cath | 6.0
ode cu | rent ® | =50 ma | | | Vertical
Oscillator | 250
Max d | l — | 3.0
de curre | 1.4
ent | I I | 40,000 | 1,600 | 68 | - | I — | 13DR?¶ | | Vertical
Amplifier | 150
60
Max po | sitive p | 17.5
0
ulse pla | 35
80
te volta |
uge ⑤ = | 925
 | d-c cath | 6.0
ode cu | rent * | = 50 ma | | | Vertical
Oscillator
Vertical | 150 | - | | 50 | | 750 | 7,200 | 5.4 | | <u>-</u> | 13EM7¶ | | Amplifier Vertical Oscillator Vertical | 250
Max d-
150 | c cathod | 3.0
le curre
17.5 | $ \begin{array}{c} 1.4 \\ \text{nt} \circledast = 2 \\ 40 \end{array} $ | 0 ma | 800 | 1,600
 7,500 | 64 | | - | 13FD7¶ | | Amplifier | | ositive r | ulse pla | te volt | age 🏶 l , | 500; max d | -e catho | de curr | ent 🏶 = | 50 ma | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max
Plate | Max | Max
Screen
Volts | | pacitano
icofara | | |----------------|--------------------------------------|---------------|-------------|---------------|-------------|------------------------------|---------------------------------|--|--|---|---------------------------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 13FM7¶ | Dissimilar Double
Triode | 12 E J | 9-58 | 13 | 0.45 | 1.0 ③
10 ⑤ | 350 ♦
550 ♦ | | Section
10, 1
Section
5, 7, | 1) | ins 9,
ins 3, | | 13FR7¶ | Double Triode | 9HF | 9-70 | 13.0 | 0.45 | 1.5 (| 330 ♦ | | Section
7, 8)
Section | | | | 13GB5 | Beam Power | 9NH | T-X | 13.3 | 0.6 | 17 🏶 | | 275 🏶 | 2, 3, | 9) - | s ;.
 | | 13GF7¶ | Amplifier Dissimilar Double | 9QD | T-X | 13 | 0.45 | 1.5 | 330 ◈ | 6.0 | Section | 1 (Pir | s 1, 8, | | | Triode | | | | | 11 🔷 | 330� | | 9)
Section
6) | 2 (Pir | s 2, 3, | | 13GF7-A¶ | Dissimilar Double
Triode | 9QD | 9-107 | 13 | 0.45 | 1.5 🏶 | 330 ◈ | | Section
8, 9) | | sl, | | | Triode | | | | | 11 🔷 | 330 ◈ | _ | Section
3, 6) | 2 (Pin | s 2, | | 13J10¶ | Pentode Gated-Beam
Discriminator | 12BT | 9-58 | 13.2 | 0.45 | 10 🏶 | l | 275 (a) 2.0 (a) 110 (a) | Pentod
(Pin
Gated-
Disc
(Pin | Beam | on
9, 11)
for
6, 7, 8) | | 13JZ8¶ | Triode-Pentode | 12DZ | 9-58 | 12.7 | 0.6 | 7.0◈ | 250� | 200 ⊗
1.8 ⊗ | Pentod | e Section | 'n | | | | | | | | 1.0� | 250� | i – | Triode | Section | | | 13JZ8-A¶ | Triode-Pentode | 12DZ | 9-98 | 12.7 | 0.6 | 1.0 🏶 | 250 ♦
250 ♦ | 200 (a) | | de Sect | | | 13V10¶ | Dissimilar Double
Pentode | 12EZ | 9-59 | 13.2 | 0.45 | 6.5 * | Ì | 150 ♦
1.8 ♦
330 \$ ♦
1.1 ♦ | Section
9, 10
Section
3, 5, | 1 (Pin
, 11)
2 (Pin
6, 7) | s 8,
s 2, | | 13210 | Pentode—Gated-Beam
Discriminator | 12BT | 9-58 | 13.2 | 0.45 | 10 🏶 | 275 ♦
330 \$ ♦ | 275 | Pentod
(Pin
Gated-
Disc | e Secti
s 2. 3, 9
Beam
riminat | on
9, 11) | | 14A4 | Medium-Mu Triode | 5AC | 9–30 | 12.6 | 0.15 | 2.5 | 300 | = | 3.4 | 3.0 | 4.0 | | 14A5 | Beam Power Amplifier | 6AA | 9-30 | 12.6 | 0.15 | 7.5 | 250 | 250
1.5 | | | - | | 14A7/12B7 | Remote-Cutoff
Pentode | 8V | 9-30 | 12.6 | 0.15 | 4.0 | 300 | 125
0.4 | 6.0 | 7.0 | 0.005 | | 14AF7/-
XXD | Medium-Mu Twin
Triode | 8AC | 9-30 | 12.6 | 0.15 | 2.5 💠 | 300 | | 2.2 | 1.6 | 2.3 | | 14B6 | Duplex-Diode
High-Mu Triode | 8W | 9-30 | 12.6 | 0.15 | 0.5 | 300 | _ | _ | _ | _ | | 14B8 | Pentagrid Converter | 8X♦ | 9-30 | 12.6 | 0.15 | 1.0 | 300 | 100
0.3 | Osc Iel
Rg1 = 5 | =0.4 r
0,000 c | na
hms | | 14BL11¶ | Dissimilar-Double-
Triode Pentode | 12GC | 9-58 | 14.2 | 0.45 | 2.5 🏶 | 250 ◈ | 1.25 | | le Secti | | | | | | | | | 1.5 ♦
2.0 ♦ | 330 ♦ | 1 | (Pin | Sections 5, 6, Sections 3, 4, | 7)
n 2 | Compactron. † Zero signal. †Per section. [†] Plate-to-plate. †Maximum. § Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate | Screen | Neg
Grid | Plate
Milli- | Screen
Milli- | R _p , | G _{m,} | μ
Fac- | Load
for
Rated | Power
Out- | Tube | |--------------------------|--|------------------|----------------------|------------------|--------------------|--------------------------|--------------------------|------------------------------------|------------------------------|---------------|-----------------| | | Volts | Volts | Volts | am-
peres | am-
peres | Ohms | μmhos | tor | Out-
put,
Ohms | put,
Watts | Туре | | Vertical
Oscillator | 250
Max 1 | - l | 3.0 | 2.0 | are 🖎 = | 30,000
400 volts | 2,200 | 66 | i — | - | 13FM7¶ ■ | | Vertical | 175 | - | 25
0 | 40
 95 | | 920 | 6,000 | 5.5 | - | _ | | | Amplifier | | | | | oltage 🏶 | =6,500; n | ax d-c | cathod | e currer | nt ⊕ = | | | Vertical
Oscillator | 250 | - I | 3.0 | 1.4 | 1000 | 40,000 | 1,600 | 68 | rent @ | =22 ma | 13FR7¶ | | Vertical | 150 | - I | 20 | 50 | lage 🖤 - | 400; max 6 | 7,200 | 5.4 | — | | | | Amplifier
Horizontal | 75 | 200 | puise p | 440 | tage 🍩 : | =1,500; ma | neous \ | (alues) | urrent: | = 50 ma | 13GB5 | | Amplifier
Vertical | Max po | sitive p | | | | (Instanta
,700; max o | | | rent 🏶 = | 275 ma | 13GF7¶ | | Oscillator | Max | l-c cath | ode cur | rent 🐵 : | 22 ma | | • | • | . — : | _ | 13011 1 | | Vertical
Amplifier | 150
60 | | 20
0 | 50
95 | = | 750
— | 7,200 | 5.4 | = | | | | | | sitive p | | | | 40,000 i | | | rent 🏶 : | = 50 ma | 100777 4 4 | | Vertical
Oscillator | | d-c cath | 3.0
lode cu | rrent 🏵 | = 22 m | a | | | . – ! | _ | 13GF7-A¶ | | Vertical | 150
60 | = | 20 | 50
95 | | 750 | 7,200 | 5.4 | | _ | | | Amplifier | Max
50 ma | positive | pulse : | plate v | oltage 🏶 | =1,500; m | ax d-c | cathode | e curren | it ⊕ = | | | Class A
Amplifier | 250 | 250 | 8.0 | 35† | 2.5† | 100,000 | 6,500 | | 5,000 | 4.2 | 13J10¶ | | FM Limiter-
Discrimi- | 285 | 100 | R _k = 200 | 0.49 | 9.8 | _ | - | _ | 330000 | - | | | nator | | | to | | | | | | | | | | | $E_{e1} = 1$ | 25 volts | 400
RMS | 1 | 1 | l | 1 | · | 1 | | | | Vertical
Amplifier | 120
45 | 110
110 | 8.0 | 46
122 | 3.5
16.5 | 11,700 | 7,100 | _ | = | | 13JZ8¶ | | Vertical | Max
150 | positive | pulse i | | ltage 🕸 : | =2,000; ma:
 8,500 | ,
x d-c ca
 2,350 | | irrent® | =70 ma | _ | | Oscillator | Max | d-c catl | | rrent 🅸 | =20 ma | | | 1 20 | · | | | | Vertical
Amplifier | 120
45 | 110
110 | | $\frac{46}{122}$ | 3.5
16.5 | 11,700 | 7,100 | | | _ | 13JZ8-A¶
■ | | · | $\begin{array}{l} \text{Max po} \\ = 70 \text{ r} \end{array}$ | ositive p
na. | ulse pla | te volta | ıge ◈ = | 2,000 volt | | | ode curr | ent 🏶 | | | Vertical
Oscillator | 150 | 1 1 | 10.0 | | l —
= 20 ma | 8,500 i | 2,350 | 20 | - | | | | Class A | 145 | 125 | 6.0 | 34† | 2.2† | 58,000 | 6,400 | _ | 3,000 | 1.5 | 13V10¶ | | Amplifier
Class A | 150 | 100 | R _k = 560 | 1.3 | 2.0 | 150,000 | 1,000 | (E _{c3} = | 0 volts) | | | | Amplifier
Class A | 250 | 250 | 8.0 | 35† | 3.0† | 100,000 | 6,500 | | 5,000 | 4.2 | 13Z10¶■ | |
Amplifier
FM Limiter- | 135 | 280 | | 5.0 | (R _{g2} = | 33,000 ohr | ns) (Éc | a = +4.0 | 0 volts) | | | | Discrimi-
nator | | | | | | | | | | | | | Class A
Amplifier | 250
90 | | 8.0 | 9.0 | | 7,700
6,700 | 2,600
3,000 | 20
20 | _ | | 14A4 | | Class A | 250 | 250 | 12.5 | 30† | 3.5† | 70,000 | 3,000 | -= | 7,500 | 2.8 | 14A5 | | Amplifier
Class A | 250 | 100 | 3.0 | 9.2 | 2.6 | 800,000 | 2,000 | <u> </u> | | | 14A7/12B7 | | Amplifier
Class A | 250 | | 10 | 9.0 | | 7.600 | 2,100 | 16 | | | 14AF7/- | | Amplifier • Class A | | | 2.0 | 0.9 | | 91,000 | 1,100 | 100 | | | 14B6 | | Amplifier | 250
100 | _ | 1.0 | 0.4 | = | 110,000 | 900 | 100 | | | 14.50 | | Converter | 250 | 100 | 3.0 | 3.5 | 2.7 | 360,000 | 550 # | E_{c2} (Osthru 20 $I_{c2} = 4$. | c Plate)
0,000 oh
0 ma | =250
ms | 14B8 | | Class A | 200 | 100 | R _k = | 16 | 3.0 | 70,000 | 19,000 | - | - | - | 14BL11¶ | | Amplifier | 35 | 100 | 82
0 | 40 | 13 | 10.700 | | - | - | _ | | | Class A
Amplifier | 200 | _ | R _k = 270 | 7.1 | - | 12,500 | 5,500 | 69 | _ | _ | | | Class A
Amplifier | 200 | - | R _k = 470 | 7.2 | - | 7,600 | 5,300 | 40 | _ | - | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | pacitanc
Picofarac | | |---------------|--|---------------|------|---------------|---------------|------------------|--------------|---------------------------------|---|--------------------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 14BR11 | Dissimilar-Double-
Triode Pentode | 12GL | 9-59 | 14.2 | 0.45 | 4.0 🏶 | 330 ◈ | 330 \$ ③
1,1 ④ | Pentod | e Sectio | n | | | | | | | | 1.5 🏶 | 330 ◈ | _ | Triode
(Pins 7 | Section
, 9, 10)
Section | . 1 | | | | | | | | 2.0 🏶 | 330 🏟 | | Triode
(Pins 5 | Section
, 6, 8) | 2 | | 14C5 | Beam Power Amplifier | 6AA | 9-31 | 12.6 | 0.225 | 12 | 315 | 285
2.0 | | - | | | 14C7 | Sharp-Cutoff Pentode | 8V | 9-30 | 12.6 | 0.15 | 1.0 | 300 | 100 | 6.0 | 6.5 | 0.007 | | 14E6 | Duplex-Diode High-Mu
Triode | 8W | 9-30 | 12.6 | 0.15 | 2.5 | 250 | | = | | = | | 14E7 | Duplex-Diode Remote-
Cutoff Pentode | 8AE | 9-30 | 12.6 | 0.15 | 2.0 | 250 | 100
0.3 | 4.6 | 5.3 | 0.005 | | 14F7 | High-Mu Twin Triode | 8AC | 9-30 | 12.6 | 0.15 | 1.0♠ | 250 | | _ | | | | 14F8 | High-Frequency
Twin Triode | 8BW | 9-32 | 12.6 | 0.15 | 3.5 ♠ 3.5 ⊕ | 300 | | 2.8 | 1.4 | 1.6 | | 14GT8 | Duplex-Diode
Triode | 9KR | 6-2 | 14.0 | 0.15 | 1.1 🏶 | 330 ◈ | | 1.6▲ | 0.24 | 1.8▲ | | 14GT8-A ¶ | | | | | | | - 800 | 0005 | | Section | 0.004 | | 14H7 | Semi-Remote-Cutoff RF
Pentode | 8V | 9-30 | 12.6 | 0.15 | 2.5 | 300 | 300 8
0.5 | 8.0 | 7.0 | 0.004 | | 1 4 J7 | Triode-Heptode
Converter | 8BL | 9-30 | 12.6 | 0.15 | 0.5 | 300 | 100
0.4 | Osc I_{c1}
$R_{g1} = 5$ | =0.4 m
0,000 ol
Section | a
nms | | 14JG8 | Duplex-Diode | 9KR | 6-2 | 14.0 | 0.15 | 1.25 | 330 € | | Triode | Section
0.22 ▲ | 1.7 | | 143 00 | Triode | SKK | 0-2 | 14.0 | 0.10 | 1 | 330 \$ | | _ | Sections | | | 14N7 | Medium-Mu
Twin Triode | 8AC | 9-31 | 12.6 | 0.3 | 2.5♠ | 300 | | | | - | | 14Q7 | Pentagrid Converter | 8AL♥ | 9-30 | 12.6 | 0.15 | 1.0 | 300 | 100 | $ \begin{array}{c} Osc I_{c1} \\ R_{g1} = 2 \end{array} $ | =0.5 m
0,000 o | na
hms | | 14R7 | Duplex-Diode
Remote-Cutoff Pentode | 8AE | 9-30 | 12.6 | 0.15 | 2.0 | 250 | 250 8
0.25 | 5.6 | 5.3 | 0.004 | | 1487 | Triode-Heptode
Converter | 8BL | 9-30 | 12.6 | 0.15 | 0.6 | 300 | 100
0.4 | $R_{\sigma 1} = 5$ | =0.4 m
0,000 o | hms | | | | | | | | 1.0 | 175 | | | Section | 1 | | 14W7 | Sharp-Cutoff
RF Pentode | 8BJ | 9-30 | | 0.225 | | 300 | 150
0.8 | | | | | 14X7 | Duplex-Diode
High-Mu Triode | 8BZ | 9-31 | 12.6 | 0.15 | | 300 | | | | | | 14Y4 | Full-Wave High-Vacuum
Rectifier | 5AB | 9-30 | | 0.3 | | 22 v at | oltage
70 ma | d-c | | | | 15 | Sharp-Cutoff RF
Pentode | 5F | 12-6 | 2.0
DC | 0.22 | | 135 | 67.5 | 2.35 ▲ | | 0.01 | | 15A8¶ | Triode-Pentode | 8GS | 9-49 | 15.0 | 0.6 | 10
2.5
7.5 | 300
300 | Pentod
nection | Triode
e Section
G and | | le Con- | | 15A B9 | Twin Tetrode | 10N | T-X | 15.0 | 0.15 | 2.0 ♦ | | 180 \$ ♦
0.5 ♦ | | 2.7 | 0.055 | | 15AF11¶ | Dissimilar-Double
Triode Pentode | 12DP | 9-58 | 14.7 | 0.45 | 5.0 🏶 | 330 ◈ | 1 | 1 | le Section | | | | | | | | | 1.1 🏶 | 330 � | 1,25 🏶 | (Pins | Section 5, 6, 8) | | | | | | | | 1 | 2.0 | 330 ◈ | _ | | Section 3, 4, 7) | 1 Z | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------|----------------|-----------------|-----------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|----------------------|--|--------------------------------|------------------| | Avg. Char. | 135 | 135 | R _k = 100 | 17 | 4.0 | 45,000 | 10,400 | | | | 14BR11¶ | | - 11 | 35 | 135 | 0 | 34
7.0 | 13 | | | | _ | | | | Class A
Amplifier | 200 | - | 2.0 | l | _ | 12,400 | 5,500 | 68 | _ | _ | | | Class A
Amplifier | 200 | _ | R _k = 220 | 9.2 | _ | 9,400 | 4,400 | 41 | | - | | | Class A
Amplifier | 315 | 225 | 13 | 34† | 2.2† | 77,000 | 3,750 | | 8,500 | 5.5 | 14C5 | | Class A
Amplifier | 250 | 100 | 3.0 | 2.2 | 0.7 | 1,0000,00 | 1,575 | _ | | | 14C7 | | Class A
Amplifier | 250 | | 9.0 | 9.5 | | 8,500 | 1,900 | 16 | | | 14E6 | | Class A
Amplifier | 250 | 100 | 3.0 | 7.5 | 1.6 | 700,000 | 1,300 | _ | | | 14E7 | | Class A
Amplifier • | 250 | | 2.0 | 2.3 | | 44,000 | 1,600 | 70 | | | 14F7 | | Class A
Amplifier • | 250 | | R _k = 500 | 6.0 | | | 3,300 | 48 | | | 14F8 | | Class A
Amplifier | 250 | _ | 3.0 | 0.7 | | 72,000 | 1,000 | 72 | | | 14GT8 | | FM Det. | 250 | 1-c outp | | ent 🕸 4 | =5.0 n
1 3.2 | na; voltage | drop ♠ : | 5.0 vol | ts at 18 | ma | 14GT8-A¶ | | Class A | | 1 | R _k = | | | | 1 | | _ | _ | 14114 | | Amplifier | 100 | 100 | 1.5 | 7.5 | 2.6 | 350,000 | 4,000 | | <u> </u> | <u> </u> | | | Converter | 250 | 100 | 3.0 | 1.4 | 2.8 | 1,500,000 | 290 # | 250 thr | ode Osc
u 20,000
ode) = 5 | ohms | 14J7 | | Class A | 250 | - | 2.0 | 2.0 | | 41,000 | 2,200 | 90 | | | 14JG8 | | Amplifier
FMDetector | Mar | dec out | l
put cur | rent 📤 : |
=50 ma | ; voltage d | ron 📤 : | i
5 volts | at 20 n | i
na | | | Class A | 250 | 1 | 8.0 | 9.0 | 1 | 7,700 | | 20 | <u> </u> | 1 - | 14N7 | | Amplifier 🌩 | -050 | | | | | . 000 000 | | | | | | | Converter | 250 | 100 | 2.0 | 3.5 | 8.5 | 1,000,000 | 550 # | | | | 14Q7
14R7 | | Class A
Amplifier | 250
100 | 100 | 1.0 | 5.7
5.5 | 2.1
2.2 | 1,000,000
350,000 | 3,200
3,000 | _ | _ | = | 14R7 | | Converter | 250 | 100 | 2.0 | 1.8 | 3.0 | 1,250,000 | 525 # | 250 thr | ode Osc
u 20,000
ode) = 5 | ohms | 1487 | | Class A
Amplifier | 300 | 150 | R _k = 160 | 10 | 3.9 | 300,000 | 5,800 | | — | | 14W7 | | Class A
Amplifier | 250 | = | 1.0 | 1.9 | | 67,000 | 1,500 | 100 | | - | 14X7 | | Full-Wave
Rectifier | Max | d-c outrupply v | out curr | ent = 70
er plate | =325 v | ax peak inv
olts; max p | erse vol | tage = 1
rent per | 250 vol
plate = | ts; max
210 ma | 14Y4 | | Class A
Amplifier | 135 | 67.5 | 1.5 | 1.85 | 0.3 | 800,000 | 750 | _ | | | 15 | | Class A | 110
250 | 110 | 7.5
8.0 | 45
9.0 | 4.0 | 13,000
7,700 | 7,300
2,600 | 20 | | | 15A8¶ | | Amplifier
Vertical | 225 | | 30 | 25 | | 1,600 | 3.800 | 6.0 | | I | | | Amplifier \ | | | | | | 1,200; ma: | | | urrent = | 40 ma | | | Class A
Amplifier • | 125 | 80 | 1.0 | 8.0 | 2.0 | 110,000 | 10,000 | | | | 15A B9 | | Class A | 200 | 150 | R _k == 100 | 24 | 4.8 | 68,000 | 11,000 | - | - | - | 15AF11¶ ■ | | Amplifier
Class A Amp | 200 | - | 2,0 | 7.0 | - | 12,400 | 5,500 | 1 | | - | | | Class A
Amplifier | 200 | _ | R _k = 220 | 9.2 | - | 9,400 | 4,400 | 41 | - | _ | | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanco
cofarad | | |-----------|--------------------------------------|---------------|-------|---------------|---------------|----------------|------------------------------|---------------------------------|--|---------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 15BD11¶ | Dissimilar-Double-
Triode Pentode | 12DP | 9-58 | 14.7 | 0.45 | 4.0 🏶 | 330 🆫 | 330 \$ | Pentode | Sectio | n | | - | Trione rentode | | | | | 1.5 🏶
2.0 🏶 | 330 ◈
330 ◈ | | Triode
(Pins 5,
Triode
(Pins 3, | 6, 8)
Section | | | 15BD11-A | Dissimilar-Double- | 12DP | 9-58 | 14.7 | 0.45 | 4.0 | 330� | 330:◈ | Pentode |
| n | | ₹ 💻 | Triode Pentode | | | | | 1.5⊛ | 330◈ | 1.5 | Triode S | Section | 1 | | | | | | | | 2.0� | 330⊛ | - | (Pins 5,
Triode 8
(Pins 3, | Section | 2 | | 15CW5 | Power Amplifier
Pentode | 9CV | 6-4 | 15 | 0.3 | 14 🏶 | 275 🏶 | 220 �
2.1 � | 11.8 | 6.0▲ | 0.6 ♣ | | 15DQ8 | Triode-Pentode | 9HX | 6-3 | 15 | 0.3 | 4.0 | 250 | 250
1.7 | Pentode | Section | n | | | | | | | | 1.0 | 250 | 1.1 | Triode | Section | | | 15EA7¶ | Double Triode | 8BD | 9-5 | 14.8 | 0,45 | 1.0 🏶 | 350 ◈ | | Section
5, 6) | 1 (Pini | s 4, | | | | | | | | 10 🏟 | 550 ◈ | | Section
2, 3) | 2 (Pins | s 1, | | 15EW6 | Sharp-Cutoff
RF Pentode | 7CM | 5–2 | 15.0 | 0.15 | 3.1 🏶 | 330 ◈ | 330 \$
0.65 \$ | 10 | 3.4 | 0.03 | | 15EW7¶ | Dissimilar Double
Triode | 9HF | 9-70 | 14.8 | 0.45 | 1.5 | 330 🏽 | | Section
7, 8) | 1 (Pin | s 6, | | | Triode | | | | | 10 🆫 | 330 ◈ | | Section
2, 3, 9) | 2 (Pin | s 1, | | 15FM7¶ | Dissimilar Double
Triode | 12EJ | 958 | 14.8 | 0.45 | 1.0 🏶 | 350 ◈ | | Section
10, 1 | | s 9, | | | Triode | | | | | 10 ◈ | 550 ◈ | | Section
7, 8) | | s 3, 5, | | 15FY7¶ | Dissimilar Double | 12EO | 9-60 | 14.7 | 0.45 | 1.0 ◈ | 330 🏶 | | Section | 1 (Pin | s 9, | | | Triode | | | | | 7.0 🏶 | 275 � | - | 10, 1
Section
5, 7) | 2 (Pin | s 3, | | 15HA6 | Pentode | 9NW | 6–4 | 15 | 0.3 | 8.0 🏶 | 300 ◈ | 250 ③
1.5 ④ | 13▲ | 8.0▲ | 0.184 | | 15HB6¶ | Power Amplifier
Pentode | 9NW | 6-4 | 14.7 | 0.3 | 10 ◈ | 350 ◈ | 300 ♦
2.0 ♦ | 13 ▲ | 8.0 🛦 | 0.18 | | 15KY8¶ | Triode-Pentode | 9QT | T-X | 15 | 0.45 | 12 🏶 | 300 � | 150 ♦
1.9 ♦ | Pentod | e Section | on | | | | | | | | 1,5 🏶 | 330 ◈ | _ | Triode | Section | ì | | 15KY8-A ¶ | Triode-Pentode | 9QT | 9-107 | 15 | 0.45 | 12 🏶 | 300 ♦ | 150 ♦
1.9 ♦ | Pentod | e Sectio | on | | | | | | | | 1.5 🏶 | 330 ♦ | _ | Triode | Section | ı | | 15LE8¶ | Twin Pentode | 9QZ | 6-4 | 15 | 0.3 | 2.0 ◈ | 300 ◈ | 150 ♦
2.0 ♦ | _ | | _ | Subminiature type. ▲Without external shield. Design maximum rating. | Amplifier Class A Amplifier Class A Amplifier | 135
200
200 | 135 | R _k = | | peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Out-
put,
Ohms | put,
Watts | Tube
Type | |---|-----------------------|-----------------|----------------------|-----------------|--|--------------------------|---------------------------|-------------|----------------------|---------------|--------------| | Class A Amplifier Class A Amplifier | 1 | | V.F. | 17 | 4.0 | 45,000 | 10,400 | | | | 15BD11¶ | | Class A 2
Amplifier 2 | 200 | | 100
2,0 | 7.0 | | 12,400 | 5,500 | 68 | | _ | | | Amplifier | | | | 9.2 | | 9.400 | 4,400 | 41 | | | | | Class A 13 | 200 | | R _k = 220 | 9.2 | | 3,100 | 1,100 | 41 | | | | | | 35 | 135 | R _k = | 17 | 4.0 | 45,000 | 10,400 | | | _ [| 15BD11-A | | Amplifier
Class A 20 | 00 | | 100
2.0 | 7.0 | l _ | 12,400 | 5,500 | 68 | l _ | l _ l | 1 | | Amplifier | 1 | | | | - | · | 1 | | | | | | Class A 20
Amplifier | 00 | | R _k = | 9.2 | - | 9,400 | 4,400 | 41 | | - | | | | | | l | | | | | | | | | | Class A
Amplifier | 170 | 170 | 12.5 | 70† | 3.5† | 26,000 | 11,000 | | 2,400 | 5.6 | 16CW6 | | Class A | 200 | 200 | 2.9 | 18 | 3.0 | 130,000 | 10,400 | | | | 15DQ8 | | Amplifier
Class A | 200 | | 1.7 | 3.0 | | _ | 4.000 | 65 | _ | _ | | | Amplifier | | | | | | | | | <u> </u> | | | | | 250
Max t | eak ne | 3.0 gative g | | tage 🏶 = | 30,000
400 volts | 2,200 | 66 | I — | 1 - | 15EA7¶ | | 37in-3 | 60 | | 0 | 100 | 1 - | - | 6.000 | | - | 1 - 1 | | | A tiC 1 | 175
Iax po | sitive p | 25
pulse pla | 40
ite volti | age 🏶 = | 920
1,500; max | | | | =50 ma | | | Class A | 125 | 125 | R _k == | 11 | 3.2 | 200,000 | 14,000 | | | Γ | 15EW6 | | Amplifier Vertical | 250 | l | 56 | 5.5 | <u> </u> | 8 750 | 1 2,000 | 17.5 | 1 | | 15EW7¶ | | Oscillator | Max | l-c cath | ode cur | rent 🏶 : | - 22 ma | • | | • | • | | 102,,,, | | Amplifier | 150
Max :
50 ma | positive | 17.5
pulse | l 45
plate v | oltage ® | =1,500; r | 7,500
nax d-c | cathod | | nt 🕸 = | | | Vertical | 250 | 1 — | 3.0 | 2.0 | 1 - | | 2,200 | 66 | I — | T — | 15FM7¶■ | | () . | Max 1
175 | peak ne | gative g | rid vol | tage ● = | 400 volts | 6,000 | 5.5 | | | | | Amalican | 60 | l— | 0 | 95 | l — | | | | | i | | | | 250 | ositive I | | | age 🏶 = | 1,500; max | 1,600 | | rrent | = 50 ma | 15FY7¶ | | Oscillator | Max | -c cath | iode cur | rent 🔷 | -20 ma | | • | | | | 101.111 | | vertical | 150
60 | = | 17.5 | 95 | _ | 920 | 6,500 | 6.0 | | | | | | | | | te volt | | 2,000; max | | node cu | rrent 🔷 | =50 ma | | | Class A
Amplifier | 150 | 100 | R _k == 33 | 28 | 3.5 | 20,000 | 20,000 | | - | - | 15HA6 | | | 60 | 100 | 0 | 45 | 9.0 | | | | | | | | Class A
Amplifier | 250 | 250 | R _k = 100 | 40 | 6.2 | 24,000 | 20,000 | _ | - | - | 16HB6¶ | | | 135 | 120 | 10 | 39 | 3.0 | 18,000 | 8,400 | | - | | 15KY8¶ | | Amplifier | 50
Max | 120 | 0 | 170
plate v | 20
oltage | =2,000; r | nax d-c | cathod | e curre | nt 🏶 = | | | 1 ' | 70 ma | | - | - | _ | • | | | 1 | | | | | 250
Max e | d-c cath | 3.0
node cur | rent 🏶 | —
=22 ma | 1 *0,000 | 1,600 | 1 04 | 1 | 1 — | | | Vertical | 135 | 120 | 10 | 39 | 3.0 | 18,000 | 8,400 | | | T - | 15KY8-A¶ | | | | 120
positive | 0
:pulse p | 170
slate vo | 20
ltage � | =2,000; m | ax d-c c | athode | current | ⇒ = 70 | | | 1 | ma
250 | | - | 1.4 | - ' | | 1,600 | | ı — | 1 | | | | | d-c catl | ode cur | | | | , 1,000 | , 0* | | | | | Color
Demodul tor | 100 | 100 | 2.5 | 8.0 | 15 | 50,000 | 5,800 | - | Ec3 = | 0 volts | 15LE8¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 2, etc. indicate tube sections. Maximum screen dissipation appears | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |----------|--------------------------------------|---------------|-------|---------------|---------------|--------------|--------------|------------------------------------|----------------------------------|------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 5MF8¶ | Triode-Pentode | 12DZ | 12-57 | 14.7 | 0.6 | 12 🌸 | 400 ◈ | 300 ♦
2.75 ♦ | Pento | de Sect | ion | | _ | | | | | | 2.5 🏶 | 400 ◈ | 2.10 % | Triode | Section | n | | 5MX8 | Triode-Pentode | 9QT | 9-109 | 15.0 | 0.45 | 14 🏶 | 300 ◈ | 150 ♦
1.9 ♦ | Pento | de Sect | ion | | | | | | | | 1.5 ◈ | 330 ◈ | | Triode | e Sectio | n | | 16A8 | Triode-Pentode | 9EX | 6-4 | 16 | 0.3 | 5.0 | 250 | 25C | Pentod | e Section | on | | | | | | | | 1.0 | 250 | 1.8 | Triode | Section | 1 | | 16AK9¶ | Dissimilar-Double-
Triode Pentode | 12GZ | 12–56 | 16.4 | 0.6 | 10� | 350� | 250 ③ | Pentode | Section | n | | _ | Though Tentouc | | | | | 1.25� | 330◈ | 2.0 | Triode | Section | 1 | | | | | | | | 1.0� | 330◈ | - | (Pins 7,
Triode ;
(Pins 2, | Section 3, 7) | 2 | | 16AQ3 | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 16.4 | 0.6 | 5.0 | Tube V | oltage | Drop:
40 ma d | l-c | | | 16BÖ114 | Dissimilar-
Double | 12DM | 9-58 | 16.0 | 0.315 | 3.1 🏶 | 330 🏶 | 330 8 �
0.65 � | Sectio
9, 10, | n 1 (pi | ns 7, 8 | | _ | Pentode | | | | | 3.1 🏶 | 330 ◈ | 3308 *
0.65 * | Sectio
6) | n 2 (2, | 3, 4, 5 | | 16BX11¶ | Dissimilar-
Double | 12CA | 9-58 | 16.0 | 0.315 | 3.0 ◈ | 165 🏶 | 1 | Pento | de Sect | ion | | | Triode-
Pentode | | | | | 2.0 🌑 | 330 ◈ | 1.0 🏶 | | e Sectio | | | | | | | | | 1.5 ◈ | 330 ◈ | _ | Triod | ns 7, 8,
e Sections 4, 5, | on 2 | | 16GK6¶ | Beam Power
Amplifier | 9GK | 6-4 | 16.0 | 0.3 | 13.2 € | 330 € |
 330 ♦
 2.0 ♦ | Single | Tube | | | | | | | | | | | • | | s, Pusi | h-Pull | | | | | | | | | | | 2 Tube | s, Pusl | n-Pull | | 16GY5¶ ■ | Beam Pentode | 12DR | 12-79 | 15.8 | 0.6 | 18 🕸 | 7708 ◈ | 220 ♦
3.5 ♦ | 22 ▲ | 9.0 🛦 | 0.7 | | 16KA6¶ | Beam Pentode | 12GH | 12-79 | 15.8 | 0.6 | 18 🕸 | 7708 🏶 | 220 ♦
3.5 ♦ | 23 ▲ | 8.5 ▲ | 0.6 ▲ | | 16LU8¶ | Triode-Pentode | 12DZ | 12-57 | 15.8 | 0,6 | 14◈ | 400� | 300� | Pentod | e Section | on | | | 1 | | | 1 | ł | 2.5◈ | 400⊛ | 2.75 | Triodo | Section | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|---------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|----------------------------|--|--------------------------------|--------------| | Class A | 250 | 250 | 20 | 50 | 3.5 | 5,000 | 4.100 | | _ | | 15MF8* | | Amplifier
Class A
Amplifier | 250 | _ | 4.0 | 2.6 | | 14.000 | 4,100 | 58 | _ | _ | - | | Vertical-
Deflection
Amplifier | Max p | | 10
0
ulse pla | 39
170
te volta | 3.0
20
ge 🏶 = | 18,000
2,500 volt | 8.400
s; max d | -c cath | ode curr | =
ent 🊸 | 15MX8¶ | | Vertical-
Deflection
Oscillator | = 200
250 | ma. | 3.0 | 1.4 | | 40,000 | 1,600 | 64 | _ | _ | | | Class A
Amplifier | 200 | 200 | 16 | 35 | 7.0 | 20,000 | 6,400 | _ | _ | - | 16A8 | | Class A
Amplifier | 100 | - | 0 | 3.5 | | | 2,500 | 70 | - | - | | | Avg.
Char. | 150 | 150
125 | 14 | 49
140 | 3.5 | 16,400 | 6,200 | _ | | | 16AK9 ¶ | | Avg. Char. | 150 | 123 | 2.0 | 5.4 | - | 11,000 | 3,900 | 43 | - | | - | | Avg. Char. | 150 | | 5.0 | 5,5 | | 8,500 | 2,350 | 20 | | | | | TV Damper | | d-c outr | | | 20 ma; | max peak i | nverse | voltage | =6,000 | volts; | 16AQ3 | | Class A | 125 | 125 | Rk = | 11 | 3.5 | 200,000 | 10,500 | _ | _ | _ | 16BQ11 | | Amplifier
Class A
Amplifier | 125 | 125 | 56
R _k =
56 | 11 | 3.8 | 200,000 | 13,000 | - | - | - | • | | Video
Amplifier | 125 | 125 | R _k = 56 | 12 | 3.8 | 100,000 | 11,300 | _ | | | 16BX11 | | General-
Purpose | 35
150 | 125 | 0
R _k =
150 | 20
11 | 9.2 | 6,800 | 6,200 | = | = | = | | | Amplifier
General-
Purpose
Amplifier | 150 | | R _k = 220 | 7.6 | | 8.400 | 6,800 | | - | | | | Class A
Amplifier | 250 | 250 | 7.3 | 48† | 5.5† | 38,000 | 11,300 | _ | 5,200 | 5.7 | 16GK6¶ | | Class AB | 300 | 300 | $R_k = 130$ | 72† | 8.0† | _ | - | | 8,000; | 1 | | | Amplifier | 250 | 250 | $R_k = 130$ | 62† | 7.0† | | - | _ | 8,000‡ | [| | | Class B
Amplifier | 300
250 | 300
250 | 14.7
11.6 | 15†
20† | 1.6†
2.2† | | | | 8,000; | | | | Horizontal
Amplifier | 130
60
Max
230 m | | 20
0
pulse | 50
410
plate v | 1.75
24
oltage � | 11,000
=7,000; r | 9,100
max d-c | cathod | e curre |
nt | 16GY5¶ | | Horizontal
Amplifier | 130
60
Max
ma | 130
 130
 positive | 20
0
pulse p | 50
 410
 ate vol | 1.75
 24
 tage 🏶 = | 11,000
-6,500; ma | 9,100
x d-c ca | (b.p.
k at s
thode c | connect
socket)
urrent @ | ed to
>=230 | 16KA6¶ | | Class A
Amplifier | 135 | 120 | 10 | 56 | 3.0 | 12,000 | 9,300 | - | _ | | 16LU8¶ | | Class A
Amplifier | 250 | _ | 4.0 | 2.3 | | 16,000 | 3,600 | 58 | - | _ | - | | Tube
Type | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |----------------|--------------------------------------|---------------|--------------------|---------------|---------------|--------------|-------------------|-------------------------------|---------------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 16LU8-A¶ | Triode-Pentode | 12DZ | 12-56 | 16.0 | 0,6 | 14 🏶 | 400 🏶 | 300 ♦
2.75 ♦ | Pento | de Secti | on | | - | ļ | | | | | 2.5 🏶 | 400 ◈ | 2.13 | Triode | Section | n | | 16M Y8" | Triode-Pentode | 12DZ | 12-57 | 15.8 | 0.6 | 16 🏶 | 400 ◈ | 300 ♦
2.75 ♦ | Pento | de Secti | on | | • | | | | | | 2.5 🏶 | 400 ◈ | | Triode | Sectio | n | | 16Y9 | Dissimilar Double
Pentode | 10L | 6–3 | 16.5 | 0.3 | 5.0 | 250 | 250
2.5 | Section
8, 9, | 1 (P | ins 7, | | | Tentode | | | | | 1.5 | 250 | 250
0.5 | Section 2, 3, | 2 (P | ins 1. | | C16J | Thyratron
same as 5665 | | | | | | | | | | | | 17A8 | Triode-Pentode | 9DC | 6-2 | 9.0 | 0.3 | 1.7 | 250 | 200
0.75 | Pentod | e Section | on | | | | | | | | 1.5 | 250 | | Triode | Section | | | 17A B9 | Twin Tetrode | 10N | T-X | 16.8 | 0.15 | 2.0 ◈ | 250 ◈ | 0.5 | 5.7 | 2.7 | 0.055 | | 17AB10¶ | Pentode—Gated-Beam
Discriminator | 12BT | 9-58 | 16.8 | 0.45 | 6.5 🏶 | 165 ◈ | 150 ③ | Pentod
(Pin | e Section 2, 3, 9 | on
), 11) | | _ | | | | | | _ | 330\$ ◈ | 330\$ ◈ | Gated-
Disc | Beam
riminat
s 4, 5, 6 | or | | 17AV5-GA | Beam Power Amplifier | 6CK | T-X | 16.8 | 0.45 | 11 | 550\$ | 175
2.5 | 14 🛦 | 7.0 ▲ | 0.5 🛦 | | 17AX3¶ | Half-Wave High-
Vacuum Rectifier | 12BL | 9-59 | 16.8 | 0.45 | 5.3 ◈ | Tube V | /oltage
s at 250 | Drop:
0 ma d- | <u>. </u> | 1 | | 17AX4-G7 | | 4CG | 9-11,
9-41 | 16.8 | 0.45 | 4.8 | Tube \ | oltage
250 m | Drop: | | | | 17AX4-
GTA¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11 | 16.8 | 0.45 | 5.3 🏶 | Tube V | oltage
s at 250 | Drop: | • | | | 17AY3¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 16.8 | 0.45 | 6.5 | Tube \ | Voltage
s at 350 | Drop: | c | | | 17AY3-A¶ | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 16.8 | 0.45 | 6.5 🏶 | Tube V | oltage
s at 350 | Drop:
mad- | C | | | 17BE3¶ | Half-Wave High-
Vacuum Rectifier | 12GA | 960 | 16.8 | 0.45 | 6.5 🕸 | Tube V
25 volt | Voltage
s at 350 | Drop: | c | | | 17BE3-A¶ | Half-Wave High
Vacuum Rectifier | 12GA | 9-60 | 16.8 | 0.45 | 6.5 ◈ | | Voltage
olts at 3 | Drop:
50 ma | 1-c | | | 17BF11¶ | Dissimilar-Double
Pentode | 12EZ | 9-59 | 16.8 | 0.45 | 6.5 ◈ | 165 ◈ | 150 🏶 | Section | 1 (Pir | ıs 8, | | _ | | | | | | 1.7 ◈ | 330 🏶 | 330 🛊 🏵 | Section 3, 5, | 3 (Pir
5, 7) | 1S Z, | | 17BF11-A | Dissimilar Double
Pentode | 12EZ | T-X | 16.8 | 0.45 | 6.5 ◈ | 1 | 150 ③
1.8 ④ | Section
9, 10 | 1 (Pir
), 11) | ıs 8, | | " - | | | | | | 1.7 🏶 | 330 ◈ | 330 🕻 🏵 | 9, 10
Section
3, 5, | 1 2 (Pin
6, 7) | ıs 2, | | 17BH3¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 17 | 0.6 | 6.5 🏶 | Tube 33 volt | Voltage
is at 360 | Drop:
0 ma d- | c | | | 17BH3-A¶ | | 9HP | T-X | 17 | 0.6 | 6.5 🏶 | Tube V | Voltage
s at 360 | Drop: | 2 | | | 17BQ6-
GTB¶ | Beam Power Amplifier | 6AM | 9-49
or
9-50 | 16.8 | 0.45 | 11 | 600\$ | | 15 🛦 | 7.0 ▲ | 0.6 | | 17BR3¶ | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 16.8 | 0.45 | 6.5� | Tube V | Voltage
s at 250 | Drop: | c | | | 17BS3 ¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 16.8 | 0.45 | 6.0 🏶 | Tube V | Voltage
s at 140 | Drop: | c | | | 17BS3-A¶ | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 16.8 | 0.45 | 6.0 🏶 | Tube V | Voltage
is at 140 | Drop:
0 ma d- | c | | | 17BW3 * | Half-Wave, High-
Vacuum Rectifier | 12FX | 9-60 | 16.8 | 0.6 | 6.5� | Tube V
32 volt | oltage
s at 350 | Drop:
ma d-c | | | | 17BZ3¶ | Half-Wave, High-
Vacuum Rectifier | 12FX | 9-60 | 16.8 | 0.45 | 6.5 🏶 | Tube 1 | Voltage
ts at 350 | Drop:
0 ma d- | c | | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. See X-Radiation Warning, page 4. Subminiature type.▲Without external shield.Design maximum rating. [⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------------|----------------|---------------------|----------------------|-----------------------------------|----------------------------------|---------------------------|---------------------------|---------------------|--|--------------------------------|----------------| | Class A | 135 | 120 | 10 | 56 | 3.0 | 12,000 | 9,300 | | | | 16LU8-A | | Amplifier
Class A
Amplifier | 250 | | 4.0 | 2.3 | _ | 16,000 | 3,600 | 58 | _ | _ | • | | Class A | 135
45 | 120
125 | 10 | 56
200 | $\frac{3.0}{20}$ | 12,000 | 9,300 | | | | 16MY8¶ | | Amplifier
Class A
Amplifier | 250 | 125 | 4.0 | 2.3 | | 16,000 | 3,600 | 58 | = | _ | • | | Class A
Amplifier | 170 | 170 | 2.6 | 30 | 6.5 | 40,000 | 21,000 | | - | _ | 16Y9 | | Class A
Amplifier | 150 | 150 | 2.3 | 10 | 3.0 | 160,000 | 8,500 | _ | _ | | | | | | | | | | | | | | | | | Class A | 170 | 170 | 2.0 | 10 | 2.8 | 400,000 | 6,200 | _ | | | 17A8 | | Amplifier
Class A
Amplifier | 100 | _ | 2.0 | 14 | - | - | 5,000 | 20 | _ | _ | | | Class A | 125 | 80 | 1.0 | 8.0 | 2.0 | 110,000 | 10,000 | | | | 17A B9 | | Amplifier • Class A Amplifier | 145 | 110 | 6.0 | 36† | 3.0† | 30,000 | 8,600 | | 3,000 | 2.4 | 17AB10¶ | | FM Limiter-
Discrimina-
tor | 135 | 280 | | 5.0 | (R _{g2} = | 33,000 ohr | ns) (E _{c3} | = +4.0 | volts) | | | | Horizontal | 250 | 150 | 22.5 | 57 | 2.1 | 14,500 | 5,900 | _ | - | | 17AV5-GA¶ | | Amplifier | 2.5 W | ices, ma | pulse p | tnode | current: | =5,500 vol
=110 ma | | | | | - | | TV Damper | Max | d-c out | put cur | rent 🔷 : | =165 m
1,000 m | a; max pe | ak inve | rse vol | tage 🏶 = | 5,000 | 17AX3¶ | | TV Damper | Max d | l-c outp
eak cur | ut curre
rent = 7 | nt = 12
50 ma | 5 ma; m | ax peak in | | | | | 17AX4-GT¶ | | TV Damper | Maxd | -c outp | ut curre | nt 🏶 = | 165 ma; | max peak i | nverse v | voltage | | 00 volts | 17AX4- | | TV Damper | Maxd | -c outp | ut curre | nt 🏵 😑 | 175 ma; | max peak i | nverse v | oltage | >=5,00 | 0 volts; | GTA¶
17AY3¶ | | TV Damper | Max o | i-c out;
max pe | put curre | rent 🏶 =
ent 🗞 = | = 175 m
1,100 m | a; max pe | | | | 1 | 17AY3-A¶ | | TV Damper | Max d
max p | -c outpu
eak cur | ut curre
rent 🏶 = | $ nt \circledast = 2 \\ = 1,200 $ | 200 ma; i
ma | max peak ii | verse v | oltage (| >=5,00 | volts; | 17BE3¶ | | TV Damper | Max o | i-c out | put cur | rent 🏶 = | =200 m:
1,200 m | a: max pea | ak inve | rse volt | age 🏶 = | 5,000 | 17BE3-A¶■ | | Class A
Amplifier | 145 | 110 | 6.0 | 36† | 3.01 | 30,000 | 8,600 | <u> </u> | 3,000 | 2.4 | 17BF11¶ | | Class A
Amplifier | 150 | 100 | R _k = 560 | 1.3 | 2.0 | 150,000 | 1,000 | $E_{c3} = 0$ | Volts | | | | Class A
Amplifier | 145 | 110 | 6.0 | 36† | 3.0† | 30,000 | 8,600 | | 3,000 | 24 | 17BF11-A¶ | | Class A
Amplifier | 150 | ì | R _k = | 1.3 | 2.0 | 150,000 | 1,000 | | 0 volts) | 1 | | | TV Damper | Max d | -c outpu | at curre | nt 🏶 = 1 | 80 ma; | max peak is | verse v | oltage (| >=5,50 | 0 volts; | 17BH3¶ | | TV Damper | Max | l-c out | out cur | rent 🌢 = | = 180 m:
1,100 m | a; max per | ak inve | rse volt | age 🄷 = | 5,500 | 17BH3-A¶ | | Horizontal
Amplifier | 250
60 |
150
150 | 22.5 | 57
260 | 2.1 | 14,500 | 5,900 | = | = | | 17BQ6-
GTB¶ | | TV Damper | Max d | -c outpu
urrent | it currei | nt 🏶 == 2 | age 🖲 = 6 | 5,000; max
nax peak ir | d-c catl | hode cu
oltage (| rrent = 0 $= 5,500$ | 110 ma
D; max | 17BR3¶ | | TV Damper | Maxd | | it curren | nt 🐵 = 2 | 00 ma; r | nax peak ir | verse v | oltage ﴿ | > = 5,000 |); max | 17BS3¶ | | TV Damper | Max | | ut curr | ent 🇆 = | 200 ma | ; max pea | k inver | se volta | age ♦ = . | 5,000; | 17BS3-A¶ | | TV Damper | Max | d-c out | put cur | rent 🏶 = | | i; max pea | k invers | se volta | ge ♦ =5 | ,000, | 17BW3¶ | | | | | | | | ; max pea | | | | | 17BZ3¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube
Type | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Capa
Pic | citance
ofarads | in | |-----------------|--------------------------------------|---------------|----------------|---------------|---------------|-----------------------|-------------------|------------------------------|--------------------------|--------------------|---------------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | pnd
Watts | Input | Out-
put | Grid
plate | | 17C5¶ | Beam Power Amplifier | 7CV | 5-3 | 16.8 | 0.45 | 6.0 | 135 | 117
1.25 | 13 ▲ | 8.5 ▲ | 0.6 | | 17C9
17C9-A¶ | Twin Tetrode | 10F | 6-13 | 16.8 | 0.15 | 1.5 | 250 ♦ | 180 ◈\$ | 4.41 | 2.2 | .0551 | | 17CA5¶ | Beam Power Amplifier | 7CV | 5–3 | 16.8 | 0.45 | 2.5 ⋄ ⊕
5.0 | 130 | 0.5 *
130
1.4 | 4.2 ₂
15 ▲ | 9.0 🛦 | .06 ₂
0.5 ▲ | | 17CK3¶ | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 16.8 | 0.45 | 6.5 🏶 | Tube V | oltage
s at 350 | Drop: | : | | | 7CL3¶ | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 16.8 | 0.45 | 8.5 🏶 | Tube V | oltage
s at 350 | Drop: | : | | | 17CT3¶ | Half-Wave, High-
Vacuum Rectifier | 9RX | T-X | 16.8 | 0.45 | 4.75 | | oltage I
at 350 | | | | | 7CU6¶ | Beam Power Amplifier | 7CV | 5–3 | 16.8 | 0.45 | 7.0 🏽 | | | 13 ▲ | 8.5 ▲ | 0.6 ▲ | | 17D4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11,
9-41 | 16.8 | 0.45 | 5.5 ◈ | | | | = | _ | | 17D4-A¶ | Half-wave High-
Vacuum Rectifier | 4CG | 9-41 | 16.8 | 0.45 | 8.0 🏶 | Tube V
30 volt | oltage
s at 340 | Drop:
mad- | : | | | 17DE4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 17.0 | 0.6 | 6.5 🏶 | Tube V
32 volt | oltage
s at 350 | Drop:
mad-c |
: | | | 17DM4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 16.8 | 0.45 | 6.5 🏶 | Tube V | oltage
s at 400 | Drop: |
> | | | 17DM4A¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 16.8 | 0.45 | 6.5 🏶 | Tube V | oltage
s at 400 | Drop: | 2 | | | 17DQ4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-43 | 16.8 | 0.45 | 6.0 🏶 | Tube V | Voltage
s at 250 | Drop: | C | | | 7DQ6¶ | Beam Power Amplifier | 6AM | T-X | 16.8 | 0.45 | 15 | | 175
2.5 | 15▲ | 7.0 ▲ | 0.55 | | 7DQ6-A¶ | Beam Power Amplifier | 6AM | 12-51 | 16.8 | 0.45 | 18 🏶 | 770 ◈ |
 220 �
 3.6 � | 15 ▲ | 7.0 🛦 | 0.5 | | 17DQ6-B¶ | Beam Power Amplifier | 6AM | 12-51 | 16.8 | 0.45 | 18 🏶 | 770 �\$ | 220 ③ 3.6 ④ | 15▲ | 7.0▲ | 0.5 | | 17DW4-A | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X or
9-86 | 16.8 | 0.45 | 8.5 🏶 | Tube V | Voltage
s at 350 | Drop: | | | | 17EW8 | Twin Triode | 9AJ | 6-2 | 17.5 | 0.15 | 2.5 | 250 | S at 350 | 3.0 ▲ | 1.2 ▲ | 1.5 | | 17GE5¶ ■ | Beam Power
Amplifier | 12BJ | 12-56 | 16.8 | 0.45 | 4.5 ⊕
17.5 � | 7708 ◈ | 220 ♦
3.5 ♦ | 16▲ | 7.0 | 0.34 | | 17GJ5¶ | Beam Power
Amplifier | 9QK | T-X | 16.8 | 0.45 | 17.5 🏶 | 7708 🏶 | 220 3.5 | 15▲ | 6.5 ▲ | 0.26 | | 17GJ5-A¶ | Beam Power
Amplifier | 9QK | T-X | 16.8 | 0.45 | 17.5 ◈ | 770\$ 🏶 | 220 ♦
3.5 ♦ | 15 ▲ | 6.5 ▲ | 0.26 | | 17GT5¶ | Beam Power
Amplifier | 9NZ | 12-64 | 16.8 | 0.45 | 17.5 ◈ | 770 ♦1 | 220 ♦
3.5 ♦ | 15▲ | 6.5 ▲ | 0.26 | | 17GT5-A¶ | Beam Power
Amplifier | 9NZ | 12-95 | 16.8 | 0.45 | 17.5 ◈ | 770\$ ◈ | 220 ③
3.5 ④ | 15 ▲ | 6.5 ▲ | 0.26 | | 17GV5¶ ■ | Beam Power
Amplifier | 12DR | 12-79 | 16.8 | 0.45 | 17.5 ◈ | 7708 🏽 | 220 ♦
3.5 ♦ | 16▲ | 7.0 | 0.6 | | 17GW6 * | Beam Power Amplifier | 6AM | 12-51 | 16.8 | 0.45 | 17.5 🏶 | 770 🌒 | 220 ♦
3.5 ♦ | 17▲ | 7.0 ▲ | 0.5 🛦 | | 17H3¶ | Half-Wave High-
Vacuum Rectifier | 9FK | 6-3 | 17.5 | 0.3 | 3.0 🏶 | Tube | Voltage
t 140 m | Drop: | 1 | 1 | | 17HC8* | Triode-Pentode | 9EX | 9-70 | 16.8 | 0.45 | 11 🕸 | 350 ⊗ | 315 | Pentoc | le Section | on | | | 1 | | | | | 1.0 🏶 | 330 € | 1.5 | | Section | | Compactron. Zero signal. Per section. See X-Radiation Warning, page 4. Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} **Total** for all similar sections. Absolute maximum rating. # Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------|----------------------|-----------------------|----------------------|---------------------------------|---|--------------------------|---------------------------|--------------|--|--------------------------------|-------------------| | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | _ | 2,500 | 2.3 | 17C5¶ | | Class A
Amplifier • | 125 | 80 | 1.0 | 10 | 1.5 | 100,000 | 8,000 | - | _ | _ | 17C9
17C9-A¶ | | Class A
Amplifier | 125
110 | 125
110 | 4.5
4.0 | 37†
32† | 4.0† | 15,000
16,000 | 9,200
8,100 | | 4,500
3,500 | 1.5 | 17CA5¶ | | TV Damper | volts; | max pe | ak curi | ent 🏶 = | :1,200 n | | | | - | - 1 | 17CK3¶ | | TV Damper | volts; | max pe | ak curr | ent 🏶 = | 1.300 i | | | | | | 17CL3¶ | | TV Damper | volts | ; max p | eak curi | rent 🏵 = | 1,200 m | ia; max pe
ia | | | | | 17CT3¶ | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | | 2,500 | | 17CU5¶ | | TV Damper | volts | max p | eak curi | ent 🏶 = | 900 ma | | | | | | 17D4¶ | | TV Damper | max | peak cu | rrent 🏶 | =900 m | a | max peak | | | | | 17D4-A¶ | | TV Damper | max | peak cu | rrent 🏵 | =1,100 | ma | max peak | | | | l | 17DE4¶ | | TV Damper | mar | neak cu | rrent 🏟 | =1.100 | ma | max peak | | | | | 17DM4¶ | | TV Damper | volts | max p | eak curr | ent 🏶 = | = 1,200 m | na; max p | inverse | erse vo | A = 5 5/ | = 3,000 | 17DM4A¶ | | TV Damper | max
250 | peak cu | rent | =1,000 | ma
 2.4 | max peak | 6,000 | Voltage | -5,5 | - Voits, | 17DQ4¶ | | Horizontal
Amplifier | 60
Max | 150 | 0
 pulse 1 | 300
olate vo | 27
ltage ● | = 6,000 vo
= 120 ma | I | 1 | dissipa | ation = | 11.0 0 0 k | | Horizontal
Amplifier | 250
60
Max | 150
150 | 22.5 | 55
315 | $\begin{vmatrix} 1.5 \\ 25 \end{vmatrix}$ | 20,000
= 6,000 vo | 6,600
 —
olts; ma | x d-c ca | athode | current | 17DQ6-A¶ | | Horizontal
Amplifier | 250
60 | 150
 150 | 22.5 | 65
 345 | 1.8 | 18,000
 | · — | I — | Tent & | 175 ma | 17DQ6-B¶ | | TV Damper | Max | d-c ou
; max p | tout cu | rrent 🏵 | = 250 n | na; max p | eak inv | erse vo | ltage 🏶 | = 5,500 | 17DW4-A¶ | | Class A
Amplifier • | 200 | 1- | 2.1 | 10 | | 1 = | 5,800 | 48 | | T - | 17EW8 | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5
0 | 65
345 | 1.8 | 18,000
6,500; max | 7,300 | | rent. | =175 ma | 17GE5¶ ■ | | Horizontal
Amplifier | 250 | 150
150 | 22.5 | 70
 390 | 32 | 15,000 | 7,100 | 1 = | = | | 17GJ5¶ | | Horizontal | 250
60 | 150
150 | 22.5 | 70
390 | 2.1
32 | 6,500; max
15,000 | | | rent 🔷 | -175 ma | 17GJ5-A¶ | | Amplifier | | positive | | | | =6,500; | max d-c | cathod | le curre | ent 🏶 = | | | Horizontal
Amplifier | 250
60 | 150
150 | 22.5 | 70
390 | 32.1 | 15,000 | 7,100 | I — | = | | 17GT5¶ | | Horizontal | 250 | 150 | 22.5 | 1 70 | 2.1 | 6,500; max
15,000 | d-c cath
7,100 | lode cur | rent 🏵 : | =175 ma | 17GT5-A¶ | | Amplifier | 60
Max 1
175 m | 150
positive
a | 0
pulse r | 390
late vo | 32
ltage � | =6,500; n | nax d-c | cathod | ie curre | ent 🌢 = | | | Horizontal
Amplifier | 250
60
Max D | 150
150
ositive | 22.5
 0 | 65
 345
 ate volt | 1.8
27 | 18,000
6,500; max | 7,300 | l | rent ® | = 175 ma | 17GV5¶ | | Horizontal
Amplifier | 250
60 | 150 | 22.5 | 70
380 | 32.1 | 15,000
6,500; max | 7,100 | " = | _ | | 17GW6¶ | | TV Damper | Max | i-c outp
eak cur | ut curre | ent 🏶 = | 75 ma; | max peak | inverse | voltage | e 🔷 = 2,0 | 000 volts | 17H3¶ | | Vertical Amplifier | 250
60
Max p | 250 | 18
0
pulse pl | 38
 180
 ate volt | 3.0 | 55,000
-2,200; max | i | —
hode cu | irrent 🏶 |
=65 ma | 17HC8¶ | | Vertical Socillator | Max d | l-c catho | de curr | 1.4
ent ♦ = | 20 ma; | 34,000
max peak | negative | grid vo | ltage 🕏 | =400 | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | <u>T</u> ube |
Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |-----------------|-------------------------------------|---------------|--------------------|---------------|---------------|--------------|------------------------------|----------------------------------|---------------|---------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 17JB6¶ | Beam Power
Amplifier | 9QL | 12-70 | 16.8 | 0.45 | 17.5 ◈ | 7708 | 220 ♦
3.5 ♦ | 15▲ | 6.0 ▲ | 0.2 | | 17JB6-A¶ | Beam Power
Amplifier | 9QL | T-X | 16.8 | 0.45 | 17.5 🏈 | 7708 ◈ | 220 ♦
3.5 ♦ | 15▲ | 6.0 ▲ | 0.2 🛦 | | 17JF6* | Beam Power
Amplifier | 9QL | 12-70
or
T-X | 16.8 | 0.6 | 17 % | 7708 ﴿ | 220 3
3.5 4 | 22 🛦 | 9.0 ▲ | 1.2 | | 17JG6¶ | Beam Power
Amplifier | 9QU | 12-64 | 16.8 | 0.6 | 17 🏶 | 7708 ◈ | 220 ③
3.5 ⑤ | 22 🛦 | 9.0▲ | 0.7 🛦 | | 17JG6-A¶ | Beam Power
Amplifier | 9QU | 12-96 | 16.8 | 0.6 | 17 🏶 | 7708 ◈ | 220 ③
3.5 ⑤ | 22 🛦 | 9.0 ▲ | 0.7 ▲ | | 17JK8¶ | Double Triode | 9AJ | 6–2 | 16.8 | 0.15 | 1.0 🏶 | 165 🏶 | | Section
8) | l
1 (Pin | s 6, 7, | | | | | | | | 2.0 🏶 | 200 🏶 | | Section
3) | | | | 17JM6¶ ■ | Beam Power
Amplifier | 12FJ | 12-79 | 16.8 | 0.45 | 17.5 ◈ | 7708 ◈ | 220 ③
3.5 ⑤ | 16 ▲ | 7.0▲ | 0.6 ▲ | | 17JM6-A¶ | Beam Power
Amplifier | 12FJ | 12-79 | 16.8 | 0.45 | 17.5 ◈ | 7708 ◈ | 220 ♦
3.5 ♦ | 16 ▲ | 7.0▲ | 0.6 ▲ | | 17JN6¶ | Beam Power
Amplifier | 12FK | 12-56 | 16.8 | 0.45 | 17.5 🏈 | 7708 ◈ | 220 ♦
3.5 ♦ | 16▲ | 7.0▲ | 0.34 ▲ | | 17JN6-A¶ | Beam Power
Amplifier | 12FK | 12-56 | 16.8 | 0.45 | 17.5 🏶 | 770\$ 🏶 | 220 �
 3.5 � | 16▲ | 7.0 ▲ | 0.34 ▲ | | 17 J Q6¶ | Beam Pentode with
Integral Diode | 9RA | 6-4 | 17 | 0.45 | 10� | 425� | 330 ◈ 2.0 ◈ | 13 ▲ | 6.0▲ | 0,32 ▲ | | 17JR6¶ | Beam Power Amplifier | 9QU | 12-96 | 16.8 | 0.6 | 17◈ | 770 : � | 220 ♦
3.5 ♦ | 22 ▲ | 9.0▲ | 0.7 ▲ | | 17JT6¶ | Beam Power
Amplifier | 9QU | T-X | 16.8 | 0.45 | 17.5 ◈ | 770\$ 🏶 | 220 ♦
3.5 ♦ | 15▲ | 6.5 ▲ | 0.26 ▲ | | 17JT6-A¶ | Beam Power
Amplifier | 9QU | 12-95 | 16.8 | 0.45 | 17.5 ◈ | 770\$ ◈ | 220 ③
3.5 ⑤ | 15▲ | 6.5▲ | 0.26 ▲ | | 17JZ8¶ | Triode-Pentode | 12DZ | 9-58 | 16.8 | 0.45 | 7.0 🏶 | 250 ◈ | 200 ♦
1.8 ♦ | Pentod | e Section | n | | | | | | | | 1.0 🏶 | 250 🆠 | - | Triode | Section | | | 17JZ8-A¶ | Triode-Pentode | 12DZ | 9-58 | 16.8 | 0.45 | 10 (| 250 ③
250 ④ | 200 (*)
1.8 (*) | | le Section | | | 17KV6¶ | Beam Power
Pentode | 9 Q U | 12-97 | 16.8 | 0.6 | 20 🏶 | 7708 ◈ | 220 ③
2.0 ⑤ | 22 ▲ | 9.0▲ | 0.6 ▲ | | 17KV6-A¶ | Beam Power
Amplifier | 9QU | 12-97 | 16.8 | 0.6 | 28 🍎 | 9008 * | 220 4
2.0 | 22 🛕 | 9.0▲ | 0.6 ▲ | ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. Compactron. † Zero signal. Per section. See X-Radiation † Plate-to-plate. Maximum. Supply voltage. Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Piate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|------------------------------|---------------------------------|--------------------------|--|---|-------------------------------------|---------------------------|--------------------------------|--|--------------------------------|-----------------| | Horizontal
Amplifier | 250
60
Max po
ma | 150
150
ositive p | 22.5
 0
 pulse p | 70
390
ate vol | 2.1
32
tage 🏶 = | 15,000
6,500; ma | I — | (g; consocket)
thode co | nected t | 1 | 17JB6¶ | | Horizontal
Amplifier | 250
60 | 150
150
ositive | 22.5
 0
 pulse p | 70
 390
 ate vo | 2.1
 32
 stage � | 15,000
= 6,500; m | 7,100
ax d-c | (g3 co
k at s
cathode | onnected
ocket)
curren | l to | 17JB6-A¶ | | Horizontal
Amplifier | 130
55
Max 1
= 275 | 125
125
positive
5 ma. | 20
0
pulse p | 80
525
late volt | 2.5
32
tage � | 12,000
= 6,500 vo | 10,000
lts; max | l | = +25 v | i | 17JF6¶ | | Horizontal
Amplifier | 130
50
Max po
ma | 125
125
ositive | 20
0
pulse p | 80
 525
 ate vol | 2.5
32
tage 🏶 = | 12,000
-6,500; ma | 10,000
x d-c ca | socket) | | | 17JG6¶ | | Horizontal
Amplifier | 130
55
Max p
275 ma | 125
125
ositive | 20
0
pulse | 80
 525
 plate v | 2.5
32
oltage � | 12,000
 | 10,000
nax d-c | Ī | | | 17JG6-A¶ | | Class A
Amplifier
Class A
Amplifier | 100
135 | <u> </u> | 1.0 | 5.3
10 | _ | 8,000
5,400 | 6,800
13,000 | 55
70 | _ | _ | 17JK8¶ | | Horizontal
Amplifier | 250
60
Max po
ma | 150
150
ositive p | 22.5
0
oulse pl | 65
345
ate volt | 1.8
27
age 🏶 = | 18,000
6,500; max | | (b.p. co
k at so
thode o | cket) | ļ | 17JM6¶ ■ | | Horizontal
Amplifier | 250
55
Max p
175 ma | 150
150
ositive | 22.5
0
pulse | 70
345
plate v | 2.4
30
oltage � | 15,000
=6,500; n | 7,300
nax d-c | k at s | onnecte
ocket)
curren | - 1 | 17JM6-A¶ | | Horizontal
Amplifier | 250
60
Max p
175 ma | 150
150
ositive | 22.5
 0
 pulse | 65
 345
 plate ve | 1.8
27
oltage 🏶 | 18,000
=6,500; n | 7,300
ax d-c | k at so | connecte
ocket)
curren | | 17JN6¶ | | Horizontal
Amplifier | 250
55
Max 1
175 m | 150
150
positive
a | 22.5
0
pulse 1 | 70
 345
 plate vo | 2.4
30
oltage � | 15,000
= 6,500; m | 7,300
—
ax d-c | k at se | connecte
cket)
curren | 1 | 17JN6-A¶ | | Vertical
Amplifier | Max
Insta | ntaneou | pulse pus diode- | 35
150
plate voluments
of volts | -cathode | 10,500
2,000; max
voltage dre | d-c catl | node cur
stantane |
rent� =
ous dioc | 70 ma.
le-plate | 17JQ6¶ | | Horizontal
Amplifier | | 125
125
positive | 20
0
pluse p | 45
470
late vol | 1.5
32
tage⊛ = | 18,000
6,500; max | 7,000
d-c catl | | rent 🏶 = |
= 275ma | 17JR6¶ | | Horizontal
Amplifier | 250
60 | 150
150 | $\frac{22.5}{0}$ | 70
390 | $\begin{vmatrix} 2.1 \\ 32 \end{vmatrix}$ | 15,000
6,500; max | 7,100 | (g; conr | ected t | o k | 17JT6¶ | | Horizontal
Amplifier | 250
60 | 150
150
positive | 22.5
0
pulse 1 | | 2.1
32
oltage 🏶 | 15,000
= 6,500; m | 7,100
—
ax d-c | k at so | nected
ocket)
curren | | 17JT6-A | | Vertical
Amplifier | 120
45
Max po | 110
110
sitive p | ulse pla | 46
122
te volta | 3.5
16.5
ge � =2 | 11,700
,000; max c | | | | 70 ma | 17JZ8¶ | | Vertical
Oscillator
Vertical | 120 | 110 | 5.0
8.0 | 5,5
-46 | 3.5
16.5 | 8,500 | 7,100 | 20 | _ | _ | 17JZ8-A* | | Amplifier
Vertical | 45
Max 1
= 70
150 | ositive | 0
pulse p | late volt | age 🌤 : | = 2,200 vol
8.500 | ts; max | d-c cath | iode cur
— | rent • | | | Oscillator HV Pulse Shunt Regulator | 140
100
Max 1
275 m | 140
140
positive | 24.5
0
pulse | 40
440
plate vo | 2.4
30
oltage 🏶 | 10,000
=6,500; m | 6,000
ax d-c | | 0 volts)
curren | t • = | 17KV6¶ | | Pulse
Regulator | 140
100 | 140
140
positive | 24.5
0
pulse pl | 440 | 2.4
30
age 🌢 = | 10,000
= 6,500 vol | | | = 0 vol
ode cur | | 17KV6-A | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥G2 and G4 are screen. G3 is signal-input grid. 1, 2, 2, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | <u>T</u> ube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
I | pacitan
Picofara | ce in | |--------------|-------------------------------------|---------------|--------------------|---------------|---------------|--------------|------------------------------|---|----------------------|-------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out- | Grid-
plate | | 17L6-GT¶ | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 16.8 | 0.45 | 10 | 200 | 125
1.25 | 15▲ | 10 🛦 | 0.8 🛦 | | 17LD8¶ | Triode-Pentode | 9QT | T-X | 16.8 | 0.45 | 7.0 🏟 | 250 ◈ | 200 (| Pentod | e Secti | on | | | | | | | | 1.0 🏶 | 250 ◈ | - | Triode | Section | 1 | | 17R5¶ | Beam Power Amplifier | 7CV | 5–3 | 16.8 | 0.45 | 4.5 | 150 | 150
1.0 | 13 ▲ | 9.0 🛦 | 0.55 | | 17W6-GT¶ | Beam Power
Amplifier | 7AC | 9-11
or
9-41 | 16.8 | 0.45 | 7.5 | 300 | 1.25 | | e Conr | | | | <u> </u> | 1.000 | | | | | | | (G ₂ & | Conne
P Tied) | LUIDII | | 17X10¶■ | Pentode—Gated-Beam
Discriminator | 12BT | 9-58 | 16,8 | 0.45 | 6.5 🏶 | 165 ◈ | 150 ③
1.8 ⑤
110 ⑤ | Gated- | e Sections 2, 3, 9 Beam 1 s 4, 5, 6 |), 11)
Disc | | 18A5¶ | Beam Power Amplifier | 6CK | 9-15
or
9-43 | 18.5 | 0.3 | 9.0 🏶 | 3508 ◈ | 160 ♦
2.5 ♦ | 13 🛦 | 7.0 🛦 |
0.7 | | 18AJ10¶ | Dissimilar- | 12EZ | 9-59 | 18.0 | 0.315 | 6.0 🏽 | 165 ◈ | 150 🍨 | Section | n 1 (pir | ıs 8, | | | Double
Pentode | | | | | 1.7 🏶 | 300 ◈ | 1.25 ♦
300 ♦
1.0 ♦ | Section 3, 5 | 0, 11)
n 2 (pir
, 6, 7) | ıs 2. | | 18DZ8 | Triode-Pentode | 9JE | T-X | 18.0 | 0.3 | 6.5
0.75 | 150
150 | 135
1.5 | Pentod
Triode | | | | 18FW6 | Remote-Cutoff
RF Pentode | 7CC | 5–2 | 18.0 | 0.1 | 2.5 🏶 | 150 ◈ | 150 ◆ \$
0.6 ♦ | 5.5 | 5.0 | 0.0035 | | 18FW6-A¶ | Remote-Cutoff
RF Pentode | 7CC | 5–2 | 18.0 | 0.1 | 2.5 🏶 | 150 ◈ | 150 \$
0.6 \$ | 5.5 | 5.0 | 0.0035 | | 18FX6 | Pentagrid
Converter | 7CH
▼ | 5–2 | 18.0 | 0.1 | 1.0 🏶 | 150 ◈ | | Osc. Ici
Rg1 = 2 | =0.5 r
0.000 ol | na
hms | | 18FX6-A¶ | Pentagrid
Converter | 7CH | 5-2 | 18.0 | 0.1 | 1.0 🏶 | 150 🏶 | 110 | Osc. Ici
Rg1 = 20 | =0.5 r | na | | 18FY6 | Duplex-Diode
High-Mu Triode | 7BT | 5–2 | 18.0 | 0.1 | 0.5 🏶 | 150 ◈ | _ | 2.0
Diode S | 2.4 | 1.8 | | 18FY6-A¶ | Duplex-Diode
High-Mu Triode | 7BT | 5-2 | 18.0 | 0.1 | 0.5 🏶 | 150 ◈ | | 2.0
Diode S | 2.4 | 1.8 | | 18GB5 | Beam Power
Amplifier | 9NH | T-X | 18.0 | 0.45 | 17 🏶 | 275 🏶 | 275 ♦
6.0 ♦ | - | | | | 18GD6 | Sharp-Cutoff
RF Pentode | 7BK | 5-2 | 18.0 | 0.1 | 2.5♦ | 150 ◈ | 150 ♦
0.6 ♦ | 6.0 | 5.0 | 0.0035 | | 18GD6-A¶ | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 18.0 | 0.1 | 2.5♦ | 150 ◈ | 150 ♦
0.6 ♦ | 6.0 | 5.0 | 0.0035 | | 18GE6 | Duplex-Diode
High-Mu Triode | 7BT | 5-2 | 18.0 | 0.1 | 0.5 🏶 | 150 ◈ | | 2.4 ▲
Diode | 0.2 A | 1.8 | | 18GE6-A¶ | Duplex-Diode
High-Mu Triode | 7BT | 5–2 | 18.0 | 1.0 | 0.5 🏶 | 150 ◈ | | 2.4 ▲ Diode S | 0.2 ▲ | 1.8 | | 18GV8 | Triode-Pentode | 9LY | 6–4 | 18 | 0.3 | 7.0 • | 250 ●
250 ● | 250 ⑤
2.0 ⑥ | Pentode
Triode | e Section | | | 18HB8 | Triode Pentode | 9ME | 6-3 | 18.0 | 0.3 | 6.5 🌑 | 150 🌑 | 135 ◈ | Pentode | | | | | | | | 10.0 | 3.0 | 0.75 🏶 | 150 ◈ | 1.5 | Triode | | | | 19 | Twin-Triode Power
Amplifier | 6C | 12-5 | 2.0
DC | 0.26 | | 135 | | Both S
Push-p | ections
ill | in | Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} | | | | | | | | | | | | 109 | |---------------------------------------|-------------------|-----------------|--|---------------------------------|----------------------------------|---------------------------|--------------------------|-----------------|--|--------------------------------|--------------| | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _{p,}
Ohms | G _{m,}
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Class A
Amplifier | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | 3.8 | 17L6-GT¶ | | | 110 | 110 | 7.5 | 49† | 4.0† | 13,000 | 8,000 | | 2,000 | 2.1 | | | Vertical | 120 | 110 | 8.0 | 46 | 4.0 | 11,700 | 7,100 | | - | - | 17LD8¶ | | Amplifier | Max 1 | 110
positive | | 122
late vol | 17
tage 🔷 : | =2,000; ma | x d-c ca | thode o | urrent | ♦ =70 | | | Vertical
Oscillator | 150
Max |
d-c cath | 5.0
ode cur | | —
=20 ma | | | 21.5 | ı — | ι — | | | Vertical | 110 | 110 | 8.5 | 40 | 3.3 | 13,000 | 7,000 | l — | I — | 1 — | 17R5¶ | | Amplifier | 45
Mar a | 110 | 0
 | 120 | 17 | 1,500; max | <u> </u> | | - | 45 | | | | 200 | 125 | | | | | | noue cu | | | 17 Die O'Tel | | Class A | 200 | 125 | R _k = | 46† | 2.2† | 28,000 | 8,000 | _ | 4,000 | 3.8 | 17W6-GT¶ | | Amplifier | 110 | 110 | 7.5 | 49† | 4.0† | 13,000 | 8,000 | _ | 2.000 | 2.1 | | | Vertical ` | 225 | | 30 | 22 | | 1.600 | 3.800 | 6.2 | l — | | | | Amplifier | Max po | ositive p | | te volta | | 1,200; max | d-c cath | ode cu | rent 🖲 | ≈60 ma | | | Class A | 145 | 110 | 6.0 | 36† | 3.0† | 30,000 | 8,600 | | 3,000 | 2.4 | 17X10¶ | | Amplifier
FM Limiter-
Discrimi- | 285 | 100 | R _k = 200 to | 0.49 | 9.8 | | _ | | 330,000 | | | | nator | F | 1.25 Vol | 400 | 1 | l | l . | 1 | | Į | 1 | | | Horizontal | 200 | 1 125 | 117 | 40 | 1 1 1 | 27,000 | 4,800 | | 1 | | 10456 | | Amplifier | 60 | 125 | ő | 165 | 1.1
15 | 21,000 | 4,000 | _ | _ | | 18A5¶ | | | Maxt | ositive | pulse pl | ate volt | age 🌒 : | -3,000 volt | s; max s | creen d | issipatio | on 🏶 = | | | | 2.5 wa | atts; ma | îx d-c c | athode | current | ♦ = 90 ma | | | | ··· v | | | Class A
Amplifier | 145 | 110 | 7.0 | 34- | 6.5+ | 33,000 | i l | | 2,500 | | 18AJ10¶ | | Class A
Amplifier | 150 | 100 | $R_k = 180$ | 2.8 | 3.5 | 180,000 | 2,400 | { E e 3 | = 0 vo | lts) | | | Class A
Amplifier | 145 | 120 | R _k = 180 | 45† | 6.0† | _ | 7,500 | | 2,500 | 2.0 | 18DZ8 | | Class A
Amplifier | 120 | | R _k = 1500 | 0.8 | | | 1,400 | 100 | | | | | Class A
Amplifier | 100 | 100 | $R_k = 68$ | 11 | 4.4 | 250,000 | 4,400 | \equiv | | | 18FW6 | | Class A
Amplifier | 100 | 100 | R _k = 68 | 11 | 4.4 | 250,000 | 4,400 | | _ | _ | 18FW6-A¶ | | Converter | 100 | 100 | 1.5 | 2.3 | 6.2 | 400,000 | 480# | _ | _ | | 18FX6 | | Converter | 100 | 100 | 1.5 | 2.3 | 6.2 | 400,000 | 480 # | | | | 18FX6-A¶ | | Class A
Amplifier | 100 | | 1.0 | 0.6 | _ | 77,000 | 1,300 | 100 | - | - | 18FY6 | | AM Det. • Class A | 100 | r-c outp | ut curre | nt ⊗ = | ı.∪ ma; | voltage dr | op: 10 v | olts at | 2.0 ma | d-c | | | Amplifier | 100 | _ | 1.0 | 0.0 | _ | 77,000 | 1,300 | 100 | - | | 18FY6-A¶ | | Amplifier
AM Det. • | Max | l-c outp | ut curre | ent 🏶 = | 1.0 ma: | voltage dr | ່ວຣ: 10 ບ | olts at | 2.0 ma | d-c | | | Horizontal
Amplifier | 75
Max r
ma | 200 oositive | 10
pulse pl | 440
ate volt | 37
age � = | (Instantan
=7,700; max | eous Va | lues)
hode c | ırrent 🏶 | >=275 | 18GB5 | | Class A
Amplifier | 100 | 100 | R _k = 150 | 5.0 | 2.0 | 500,000 | 4,300 | | _ | | 18GD6 | | Class A
Amplifier | 100 | 100 | R _k = | 5.0 | 2.0 | 500,000 | 4,300 | | _ | | 18GD6-A ¶ | | Class A
Amplifier | 100 | | 1.0 | 1.0 | | 40,000 | 1,700 | 70 | | | 18GE6 | | AM Det. | Maxd | -c outp | ut curre | nt 🅸 = İ | .0 ma; | voltage dro | p: 10 vo | lts at 2 | 0 mad | -c | | | Class A
Amplifier
AM Det. • | 100 | _ | 1.0 | 1.0 | - 1 | 40,000 | 1,700 | 70 | - 1 | _ | 18GE6-A¶ | | Class A | 170 | 170 | 15 | 41 = | 2.7 | voltage di
25,000 | 7.500 i | volts a | 2.0 ma | d-c | 10000 | | Amplifier
Class A | 100 | _ | 0.8 | 5.0 | | 7,000 | 6,500 | 50 | _ | _ | 18GV8 | | Amplifier
Class A | 115 | 115 | R _k = | 33† | 7.5† | | 6,250 | | 3,500 | 1.0 | 18HB8 | | Amplifier
Class A | 115 | _ | R _k = 150
R _k = | 2.5 | _ | | 3,900 | 74 | | _ | 2011 100 | | Amplifier Class B Amplifier | 135 | | 0 | 5.0† | | Input Sign | al = 0.17
watt | 0 | 10,000 | 2.1 | 19 | | | | | | | | | | | | | | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
Pi | cofarad | in
s | |---------------------|--|---------------|---------------|---------------|---------------|------------------------------|--------------------------|-----------------------------------|-------------------------------|-------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 19AU4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 18.9 | 0.6 | 6.0 | Tube V
25 v at | oltage
350 ma
oltage | Drop: | | | | 19AU4-
GTA¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 18.9 | 0.6 | 6.0 | 25 v at | : 350 ma | ı d-c | | | | 19BG6-G
19BG6-GA | Beam Power Amplifier | 5BT' | 16-5
12-21 | 18.9 | 0.3 | 20 | 700\$ | 350
3.2 | ¹² | 6.5
▲ | 0.34
▲ | | 19C8 | Triple-Diode,
High-Mu Triode | 9E | 6-2 | 18.9 | 0.15 | 1.0 | 250 | | | | | | 19CG3 ¶ | Half-Wave, High-
Vacuum Rectifier | 12HF | 9-62 | 19 | 0.6 | 6.5◈ | Tube V
25 volt | oltage I
s at 700 | Drop:
ma d-c | | | | 19CL8-A | Triode-Tetrode | 9FX | 6–2 | 18.9 | 0.15 | 3.0 ◈ | 330 ◈ | 330 ♦8
0.55 ♦ | Tetrode | e Sectio | n | | 19CL8-B¶ | | | | | | 2.5 🏶 | 330 ◈ | | | Section | | | 19DE3¶ ■ | Half-Wave High-
Vacuum Recti-
fier | 12HX | 9-101 | 19,0 | 0.6 | 9.0* | Tube \ 25 vol | Voltage
ts at 700 | Drop:
0 ma d- | c | | | 19DE7¶ | Double Triode | 9HF | 6-3 | 19.4 | 0.3 | 1.5 ◈ | 330 ◈ | _ | Section | 1 (Pins | 6, 7, 8 | | | | l | | | | 7.0 🏶 | 275 🏶 | | <u>3, 9)</u> | 2 (Pin | s 1, 2, | | 19DK3¶ | Half-Wave High-
Vacuum Recti-
fier | 9SG | 9-117 | 19 | 0.6 | 9.0 🏶 | 16 volt | 'oltage !
s at 400
s at 800 | Drop:
 mad-c
 mad-c | :
: | | | 19DQ3¶ | Half-Wave High-
Vacuum Recti-
fier | 12HF | 9-62 | 19 | 0.6 | 9.0 🏶 | Tube \\16 volt \\25 volt | oltage
s at 400
s at 800 | Drop:
) ma d-c
) ma d-c | | | | 19DQ3-A¶ | Half-Wave High-
Vacuum Recti-
fier | 12HF | 9-62 | 19 | 0.6 | 10 🏶 | 17 volt | oltage
s at 450
s at 900 | Drop:
) ma d-c
) ma d-c | : | | | 19EA8 | Triode-Pentode | 9AE | 6–2 | 18.9 | 0.15 | 3.1 ◈ | 330 ◈ | 330 ⊗8
0.55 ⊗ | Pentod | e Sectio | n | | 19EA8-A¶ | | | | | | 2.5 🏶 | 330 🏶 | | | Section | | | 19EW7¶ | Dissimilar Double
Triode | 9HF | 9–70 | 18.9 | 0.3 | 1.5 (| 330 ◈ | _
_ | 7.8) | 1 (Pin
2 (Pin | | | 19EZ8 | Triple-Triode | 9KA | 6–2 | 18.9 | 0.15 | 2.0 ③ 5.0 ⑤ | 330 ◈ | | 2.6 | 1.4_1 1.2_2 1.2_3 | 1.5 | | 19F X 5¶ | Power Ampli-
fier Pentode | 7CV | 53 | 18.9 | 0.3 | 5,5 🏶 | 150 ◈ | 130 🏶 | 17 ▲ | 9.0▲ | 0.65 | | 19GQ7 | Triple Diode | 9Q M | 6–2 | 18.9 | 0.15 | - | Tube \\10 volt |
oltage
s at 60 | Drop:
ma d-c | • | | | 19HR6¶ | Semi-Remote-
Cutoff RF Pentode | 7BK | 5-2 | 18.9 | 0.15 | 3.0 🏶 | İ | 300 8 🌢 | | 5.2 ▲ | 0.006 | | 19HS6¶ | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 18.9 | 0.15 | 3.0 🏶 | 300 ◈ | 300 \$ ♦ | 8.8 🛦 | 5.2 ▲ | 0.006 | | 19HV8 | Triode-Pentode | 9FA | 6-2 | 18.9 | 0.15 | 3.0 ♦ | 330 ◈ | 330 ◈ \$ | 1 | e Section | 1 | | 19J6 | Medium-Mu
Twin Triode | 7BF | 5-2 | 18.9 | 0.15 | 1.5♠ | 300 | | 2.0 🛦 | 0.4 🛦 | 1.5 ▲ | | 19JN8 | Triode-Pentode | 9FA | 6–2 | 18.9 | 0.15 | 2.5 ③ 2.5 ④ | 1 | 300 ◈ \$ | 1 | e Section | | | 19KG8 | Triode-Pentode | 9LY | 6-2 | 18.9 | 0.15 | 2.5 🏶 | 300 ◈ | 300 8 🏟 | Pentod | e Section | on | | 19Q9¶ | Triode-Pentode | 10H | 6-13 | 18.9 | 0.15 | 3.0 ♦ | 330 ◈ | 330 \$ ⊕ 0.55 ⊕ | Pentod | Section
le Section | n | | 19T8
19T8-A¶ | Triple-Diode
High-Mu Triode | 9 E | 6-2 | 18.9 | 0.15 | 2.5 ③
1.1 ⑥ | | - | Triode
1.7 | Section 2.4 | 1.7 | | 1918-A 1
19V8 | Triple-Diode, High-Mu | 9AH | 6-2 | 18.9 | 0.15 | 1.0 | 300 | I | | | l | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. See X-Radiation Warning, page 4. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|--------------------------|---------------------------------|---------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|--------------------------------|------------------| | TV Damper | Max | i-c outp | ut curre | nt = 17 | 5 ma; m | ax peak in | verse vo | ltage 🗷 | =4,500 | volts; | 19AU4¶ | | TV Damper | Max o | eak cur | ut curre | nt = 19, 150 m | 0 ma; m
a | ax peak in | | ltage 🗉 | =4,500 | volts; | 19AU4-
GTA¶ | | Horizontal | 250 | 250 | 15 | 75 | 4 | 25,000 | 6,000 | | T | | 19BG6-G | | Amplifier | 60
Max
3,2 wa | 250
positive
atts; ma | pulse p
x d-c ca | 180
late vo
thode | 18
 tage | =6,600 vo
=110 ma | | | dissipa | tion = | 19BG6-GA | | Class A
Amplifier | 100 | | 1.0 | 0.5 | | 80,000 | 1,250 | 100 | | | 19C8 | | TV Damper | volts | ; max pe | eak curr | en t 🏵 = | 2,100 m | | | se volt | age◈ = | 5,000 | 19CG3 • | | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,500 | - | - | - | 19CL8-A | | Amplifier (
Class A Amp | 100
125 | 70 | 1.0 | 14 | | 5,000 | 7,000
8,000 | 40 | | | 19CL8-B¶ | | TV Damper | | l-c outp
volts; m | | | | ma; max 1
1050 ma. | eak inv | erse vo | ltage 4 | = | 19DE3¶. ■ | | Vertical | 250 | ! =. | 111 | 5.5 | <u></u> | 8,750 | 2,000 | 17.5 | T = | Τ — | 19DE7¶ | | Oscillator
Vertical | 150
60 | d-c cath | ode curr
 17.5
 0 | ent | = 22 ma | 925 | 6,500 | 6.0 | - | - | | | Amplifier | | ositive t | | | age 🌢 = | 1,500; max | d-c catl | node cu | rrent ® | =50 ma | | | TV Damper | Max d
6,500 v | -c outpu | it curre
ax peak | nt •
curren | = 400 r | na; max pe
1,200 ma. | ak inve | rse vol | tage • | = | 19DK3¶ | | TV Damper | Max d
6,500 | -c outpu | it curre
ax peak | nt 🌞
curren | = 400 r
t • = | na; max pe
1,200 ma. | ak inve | erse vol | tage 🔸 | = | 19DQ3¶ | | TV Damper | Max d
6,500 v | -c outpu | it curre
ax peak | nt ◆
curren | = 450 r
t • = | na; max pe
1,200 ma. | ak inve | rse vol | tage ◆ | = | 19DQ3-∆¶ | | Class A | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,400 | 1 — | <u> </u> | i — | 19EA8 | | Amplifier
Class A
Amplifier | 150 | - | R _k = 56 | 18 | _ | 5,000 | 8,500 | 40 | _ | - | 19EA8-A¶ | | Vertical | 250 | | 11 | 5.5 | | 8,750 | 2,000 | 17.5 | | | 19EW7¶ | | Oscillator
Vertical | 150 | d-c cath | ode cur
 17.5 | rent 🏵 :
 45 | =22 ma | 800 | 7,500 | 6.0 | 1 — | 1 | | | Amplifier | Max
50 ma | positive | pulse | plate v | oltage 🏽 | =1,500; n | nax d-c | cathod | | nt ◆ = | | | Class A
Amplifier 4 | 125 | _ | 1.0 | 4.2 | _ | 13,600 | 4,200 | 57 | _ | _ | 19EZ8 | | Class A
Amplifier | 110 | 115 | R _k = 62 | 36+ | 10- | | 13,500 | _ | 3,000 | | 19F X 5¶ | | Half-Wave
Rectifier | Max o
volts;
plate | d-c outp
max R l
• = 54 r | ut curre
MS supp
na | nt per poly volt | olate 🏶 =
age per 1 | =9 ma; ma:
plate | peak in
17 volts | nverse v
max pe | oltage (
eak curr | ⇒=330
ent per | 19GQ7 | | Class A
Amplifier | 200 | 115 | R _k = 68 | 13.2 | 4.3 | 500,000 | 8,500 | _ | T | | 19HR6¶ | | Class A
Amplifier | 150 | 75 | R _k = 68 | 8.8 | 2.8 | 500,000 | 9,500 | - | | | 19HS6¶ | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 6,500 | _ | | | 19HV8 | | Class A Amp
Class A | 100 | I | $\frac{1.0}{R_k} =$ | 0.8
8.5 | | 7,100 | 1,300
5,300 | 70 | | | 19J6 | | Amplifier 🌩 | 125 | 125 | 150 ⊕ | 12 | | 200,000 | 7,500 | | | | | | Class A
Amplifier | | 125 | 1.0 | 13.5 | 4.0 | 1 | 8,500 | - | - | _ | 19JN8 | | Class A Amp
Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | | - | = | 19KG8 | | Class A Amp | | | 1.0 | 13.5 | | 5,400 | 8,500 | 46 | | | | | Class A
Amplifier | 125
100 | 125
70 | 1.0 | 12 | 4.0 | 200,000 | 6,500
7,000 | - | = | = | 19Q9¶ | | Class A Amp
Class A | 250 | 1= | 3.0 | 1.0 | | 5,000 | 8,000
1,200 | 70 | - | 1= | 19T8 | | Amplifier
Class A | 100
250 | = | $\frac{1.0}{3.0}$ | 1.0 | - | 54,000 | 1,300 | 70 | | | 19T8-A¶
19V8 | | Amplifier | 100 | . | 1.0 | 0.8 | . | 54,000 | 1,300 | | . | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in | |--------------------------|-----------------------------|---------------|--------------|---------------|---------------|--------------------------|--------------|-------------------------------|------------------------------|---------------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 19X8 | Triode-Pentode
Converter | 9AK | 6-2 | 18.9 | 0.15 | 2.0 | 250 | 250 \$
0.4 | Pentod | e Sectio | n | | | | | - 0.05 | | | 1.5 | 250 | : | | Section | | | 20 | Power-Amplifier Triode | 4D | 9-25 | 3.3
DC | 0.132 | _ | 135 | | 2.0 | 2.3 | 4.1 | | POEQ7 | Diode-Pentode | 9LQ | 6–3 | 20 | 0.1 | 3.0 | 300 ◈ | 300 ♦ \$ | 5.5 ▲ Diode | 5.0 ▲
Section | 0.002 | | 0EW7¶ | Dissimilar Double | 9HF | 9-70 | 20.5 | 0.3 | 1.5 | 330 🏵 | | Section | 1 (Pin | 6, | | | Triode | | | | | 10 🏶 | 330� | | 7, 8)
Section
2, 3, 9) | 2 (Pin | s 1, | | 0EZ7¶ | High-Mu Twin
Triode | 9PG | 6-2 | 20 | 0.1 | 1.2 🏟 | 330 ◈ | | 1.6▲ | 0.2 ₁ ▲ 0.3 ₂ ▲ | 1.5▲ | | PIEX6¶ | Beam-Power
Amplifier | 5BT | 12-21 | 21.5 | 0.6 | 22 🏟 | 770 �\$ | 195 ♦ 3.5 ♦ | 22 ▲ | 8.5 ▲ | 1.1 🛦 | | 21GY5¶ | Beam Pentode | 12DR | 12-79 | 21 | 0.45 | 18 🏶 | 7708 � | 220 ♦
3.5 ♦ | 22 ▲ | 9.0 🛦 | 0.7 | | 21HB5¶ | Beam Power
Amplifier | 12BJ | 12-58 | 21 | 0.45 | 18◈ | 7708 ◈ | 220 ♦
3.5 ♦ | 22 ▲ | 9.0 🛦 | 0.4 | | 21HB5-A¶ | Beam Power
Amplifier | 12BJ | 1258 | 21 | 0.45 | 18 🏶 | 770\$ ◈ | 220 ♦
3.5 ♦ | 24 ▲ | 9.5▲ | 0.4 🛦 | | 21HD5¶ | Beam Power
Amplifier | 12ES | 12-59 | 21.5 | 0.6 | 24 🏶 | 7708 ◈ | 220 ♦
6.0 ♦ | | | | | 21HJ5 | Beam Pentode | 12FL | 12-59 | 21.5 | 0.6 | 24 🏵 | 770\$ € | 220 🆠 | | <u> </u>
 — | | | | 4 | | | | | | | 6.0 🏶 | | | | | 21JS6-A¶ | Beam Power
Amplifier | 12FY | 12-89 | 21.0 | 0.6 | 28 % | 9908 4 | 190 ♦
5.5 ♦ | 24 🛦 | 10 ▲ | 0.7 | | 21 J V6¶ | Beam Power
Amplifier | 12FK | 12-58 | 21 | 0.45 | 18 🏶 | 770\$ ◈ | 220 ♦
3.5 ♦ | 22 ▲ | 9.0▲ | 0.4 ▲ | | 21 JZ 6¶ ■ | Beam Power
Amplifier | 12G D | 12-79 | 21 | 0.45 | 18 🏶 | 770\$ * | 220 ♦
3.5 ♦ | 24 ▲ | 8.5▲ | 0.34 ▲ | | 21KA6¶ | Beam Power
Amplifier | 12GH | 12-79 | 21 | 0.45 | 18 🏶 | 770\$ * | 220 ③
3.5 ④ | 23 ▲ | 8.5 ▲ | 0.6 🛦 | | 21KQ6 | Beam Power
Amplifier | 9RJ | T-X | 21.5 | 0.45 | 17 🏶 | 275 🆠 | 275 ♦ 6.0 ♦ | 27 ▲ | 11 🛦 | 1.5▲ | | 21LG6 • | Beam Power Amplifier | 12HL | 12-89 | 21 | 0.6 | 28⊛ | 900:0 | 200 ♦
5.0 ♦ | 25 ▲ | 13 ▲ | 0.8 🛦 | | 21LG6-A¶ | Beam Power
Amplifier | 12HL | 12-89 | 21.0 | 0.6 | 28 🛊 | 900\$ | 200 \$ 5.0 | | 13 ▲ | 0.8 4 | | 21LR8¶ | Triode-Pentode | 9QT | 12-65 | 21 | 0.45 | 14 ③ 2.5 ③ | 400 🏶 | 300 ③
2.75 ③ | | de Section | | | 21LU8¶ | Triode-Pentode | 12DZ | 12-57 | 21 | 0.45 | 14 ③ 2.5 ④ | 400 🏶 | 300 ③
2.75 ③ | | de Secti | | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R
_p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|-----------------------------|-------------------------------|--|---------------------------------|----------------------------------|--|---------------------------|-------------------------------|--|--------------------------------|-----------------| | Class A
Amplifier
Class A | 250 | 150 | R _k = 200
R _k = | 7.7
8.5 | 1.6 | 750,000
6,900 | 4,600
5,800 | 40 | _ | | 19X8 | | Amplifier | | | 100 | | | | | <u> </u> | | | | | Class A
Amplifier | 135 | | 22.5 | 6.5† | | 6,300 | 525 | 3.3 | 6,500 | 0.110 | 20 | | Class A
Amplifier
AM Det. | 100
Max | 100 | E _{ccl}
=0 | 9.0 | 3.5 | voltage dr | 3,800 | Rg1 = Meg | | | 20EQ7 | | Vertical
Oscillator | 250 | d-c cath | 11 | 5.5 | | 8,750 | 2,000 | 17.5 | | Τ=- | 20EW7¶ | | Vertical
Amplifier | 150 | 1 — | 17.5 | 45 | i | 800
==1,500; ma | 7,500
ax d-c c | 6.0 athode |
current | | | | Class A | 250 | | 2.0 | 1.2 | T | 62,500 | 1,600 | 100 | | - | 20EZ7¶ | | Amplifier Horizontal | 175 | 175 | 30 | 67 | 3.3 | 80,000
8,500 | 7,700 | 100 | -=- | - | 21EX6¶ | | Amplifier | 60
60 | 150
125 | 0 | 460
 360 | 45
 30
 30 | | | | = | 220 ms | | | Horizontal
Amplifier | 130 | 130
130 | 20 | 50
410 | 1.75 | 7,000; max | 9,100 | | | | 21GY5¶ | | | Maxp | sitive p | ulse pla | te volta | ge 🏶 = 6 | ,500; max | | de curr | ent 🏶 = | 230 ma | OUTDER | | Horizontal
Amplifier | | 130
 130
 positive | 20
 0
 pulse p | 50
 410
 ate vol | 1.75
 24
tage � = | 11,100
-6,000; ma | 9,100
x d-c ca | —
thode c | urrent « | =230 | 21HB5¶ | | Horizontal
Amplifier | | 130
 130
 positive | 20
0
pulse p | 46
450
late vol | 1.8
 29
tage 🏶 = | 9,900
6,000; ma | 9,000
x d-c ca | thode c | —
urrent∢ | =230 | 21HB5-A¶ | | Horizontal
Amplifier | ma
135
60
Max | 135
 135
 positive | 22
0
pulse p | 65
540
late vol | 4.0
48
tage 🏶 = | 5,000
=7,000; ma | 10,000
x d-c ca | thode c | Urrent (| = 280 | 21HD5¶ | | Horizontal
Amplifier | 135
60 | 135
 135
 positive | 22
0
pulse p | 80
 540
 ate vol | 5.5
48
tage 🏶 = | 5,000
=7,000; ma | l | (b.p. c
k at so
thode c | cket) | | 2īHJ5¶ ≡ | | Horizontal
Amplifier | 175
62 | | 25
0
pulse pl | 125
570
ate volt | 4.5
 34
age ♦ : | 5,600
= 7,500 vol | 11,300
ts; max | kats | connect
socket)
sode cur | | 21JS6-A¶ | | Horizontal
Amplifier | 130
60 | 130
130
positive | 20
 0
 pulse | 50
 410
plate v | 1.75
 24
 oltage @ | $\begin{vmatrix} 11,000 \\ -6,000; r \end{vmatrix}$ | 9,100
nax d-c | toka | connect
at socke
e curre | et) | 21JV6¶ | | Horizontal
Amplifier | 130
50 | 130
 130
 positive | 20
0
pulse | 46
 450
plate v | 1.8
 29
oltage @ | 9,900
= 6,500; r | 9,000
nax d-c | cathod | e curre |
nt | 21)Z6¶ | | Horizontal
Amplifier | 130
60
Max
230 n | 130
 130
 positive | 20
0
pulse | 50
 410
plate v | 1.75
 24
oltage @ | $\begin{vmatrix} 11,000 \\ $ | 9,100
nax d-c | kats | connectocket) le curre | | 21KA6¶ | | Horizontal
Amplifier | 50
40
Max
275 n | 200
 135
 positive | 12
0
pulse | 550
 450
 plate v | 50
 35
oltage @ | $(E_{c3} = 0 \text{ v})$
$(E_{c3} = 0 \text{ v})$
$(E_{c3} = 0 \text{ v})$ | olts) | cathod | e curre |
ent ⊗ = | 21 KQ6 | | Horizontal
Amplifier | 175
60
Max | 125
125
positive | 23
0
e pulse | 90
600
plate vo | 1.7
42
ltage● = | 7,500
= 7,500; ma | 11,500

x d-c cat | l |
rrent� |
=375 ma | 21LG6¶ | | Horizontal
Amplifier | 175
50
Max 1
= 315 | 125
125
positive
ma. | 23
0
pulse pl | 90
600
ate volt | 1.7
42
age 🏶 | | 11,500
—
lts; max | d-c cath | node cui | rrent 🏈 | 21LG6-A¶ | | Class A
Amplifier
Class A
Amplifier | 135
250 | 120 | 10 4.0 | 2.3 | 3.0 | 12,000
16,000 | 9,300
3,600 | | - | _ | 21LR8¶ | | Class A
Amplifier
Class A
Amplifier | 135
250 | 120 | 10 4.0 | 56
2.3 | 3.0 | 12,000
16,000 | 9,300
3,600 | | | <u> </u> | 21LU8¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitanc
icofarac | e in
Is | |-----------|--------------------------------------|---------------|-----------------|---------------|---------------|--------------|-------------------|------------------------------|-------------------|----------------------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out- | Grid-
plate | | 21MY8¶ ■ | Triode-Pentode | 12DZ | 1257 | 21.0 | 0.45 | 16 🍫 | 400 🏇 | 300 ◈ | Pento | de Secti | on | | | | | | | | 2.5 🏶 | 400 ◈ | 2.75 🆠 | Triode | Section | n | | 22 | Sharp-Cutoff RF
Tetrode | 4K | 14-2 | 3.3
DC | 0.132 | | 135 | 67.5 | | 10.0 | 0.02 | | 22BH3¶ | Half-Wave High-
Vacuum Rectifier | 9HP | 9-86 | 22.4 | 0.45 | 6.5 🏶 | Tube V
33 volt | oltage :
s at 360 | Drop: | ; | | | 22BH3-A¶ | Half-Wave High-
Vacuum Rectifier | 9HP | T-X | 22.4 | 0.45 | 6.5 🏶 | Tube \33 volt | Voltage
s at 360 | Drop:
ma d-c | ; | | | 22BW3 | Half-Wave High-
Vacuum Rectifier | 12FX | 9–60 | | 0.45 | 6.5 ◈ | Tube V
32 volt | oltage
s at 350 | Drop:
mad- | : | | | 22DE4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-44 | 22.4 | 0.45 | 6.5 🏶 | Tube V
32 volt | oltage
s at 350 | Drop:
ma d-c | : | | | 22JF6¶ | Beam Power
Amplifier | 9QL | T-X | 22 | 0.45 | 17 🏶 | 7708 🏶 | 220 ♦
3.5 ♦ | 22 ▲ | 9.0 | 1.2▲ | | 22JG6¶ | Beam Power
Amplifier | 9QU | T-X | 22 | 0.45 | 17◈ | 7708 ◈ | 220 ♦
3.5 ♦ | 22 ▲ | 9.0 ▲ | 0.7 ▲. | | 22JG6-A¶ | Beam Power
Amplifier | 9QU | 12-96 | 22 | 0.45 | 17 🏶 | 7708 🏶 | 220 ♦
3.5 ♦ | 22.▲ | 9.0▲ | 0.7 ▲ | | 22JR6¶ | Beam Power Amplifier | 9QU | 12-96 | 22 | 0.45 | 17◈ | 770:0 | 220 ⊗
3.5 ⊗ | 22 🛦 | 9.0▲ | 0.7 ▲ | | 22JU6¶ | Beam Power
Amplifier | 9QL | T-X | 22 | 0.45 | 17 ♦ | 770\$ ◈ | 220 ③
3.5 ④ | 22 ▲ | 9.0 ▲ | 1.2▲ | | 22KM6¶ | Beam Power
Amplifier | 9QL | T-X or
12-70 | 22 | 0.45 | 20 🏶 | 7708 🏶 | 220 ③
3.5 ⑤ | 22 ▲ | 9.0 ▲ | 1.2 ▲ | | 22KV6-A¶ | Beam Power
Amplifier | 9QU | 12-97 | 22.0 | 0.45 | 28 🏟 | 9008 | 220 ③
2.0 ④ | 22 🛦 | 9.0▲ | 0.6 ▲ | | 23JS6-A¶ | Beam Power
Amplifier | 12FY | 12-89 | 23.6 | 0.6 | 28 🆠 | 990\$ * | 190 ♦
5.5 ♦ | 24 ▲ | 10 ▲ | 0.7▲ | | 23M B6¶ ■ | Beam Power
Amplifier | 12FY | T-X | 23 | 0.6 | 35 ◈ | 9908 | 225 ♦ 7.0 ♦ | 25 ▲ | 17▲ | 0.5 ▲ | | 23Z9¶■ | Dissimilar-Double-
Triode Pentode | 12GZ | 9-58 | 23 | 0.45 | 7.0 ◈ | 250 ◈ | 200 ③
1.8 ④ | Pentod | le Secti | on | | | | | | İ | - | 1.25 🏶 | 330 🏶 | | Triode | Section | 1 1 | | | | | | | | 1.0 🏶 | 250 🏶 | _ | Triode
(Pins 2 | 7, 10, 11
Section
2, 3, 7) | í 2 | | 24 A | Sharp-Cutoff RF
Tetrode | 5E | 14-2 | 2.5 | 1.75 | | 250 | 90 | 5.3 ▲ | 10.5 ▲ | 0.007 | | 24BF11¶ | Dissimilar Double Pentode | 12EZ | 9-59 | 24.2 | 0.315 | 6.5◈
| 165� | 150 ◈
1.8 ◈ | 9, 10, 1 | 1 (Pin: | | | _ | | | | | | 1.7◈ | 330◈ | 330 : ♦
1.1♦ | Section 3, 5, 6, | 2 (Pin | s 2, | | 24JE6-A¶ | Beam Power
Amplifier | 9QL | 12-116 | 24 | 0.6 | 30 ◈ | 990\$ ◈ | 220 ③
5.0 ④ | 22 ▲ | 11 🛦 | 0.56 🛦 | | 24JZ8¶ | Triode-Pentode | 12DZ | 9-58 | 24.2 | 0.315 | 7.0◈ | 250◈ | 200 ⊗
1.8 ⊗ | Pentod | le Section |)
) n | | | | | | 1 | | 1.0� | 250� | - | Triode | Section | | ^{Subminiature type. ▲Without external shield. Design maximum rating.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|------------------------------|-----------------------------------|----------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|-------------|---|--------------------------------|------------------------| | Class A
Amplifier
Class A
Amplifier | 135
45
250 | 120
125
— | 10
0
4.0 | 56
200
2.3 | 3.0
20
— | 12,000
16,000 | 9,300
3,600 | <u></u> | = | | 21MY8¶ | | Class A
Amplifier | 135 | 67.5 | 1.5 | 3.7 | 1.3 | 325,00 0 | 500 | _ | | 1 - 1 | 22 | | TV Damper | Max | l-c outp | ut curre | nt 🔷 🖚 | 180 ma; | max peak | inverse | voltage | <u> </u> | 00 volts; | 22BH3¶ | | TV Damper | Max | d-c out
max pe | put cur | rent 🏶 : | = 180 m | a; max pe | ak inve | rse vol | tage 🗞 | =5,500 | 22BH3-A¶ | | TV Damper | Max | d-c outp
peak cur | ut curre | ent 🏶 = | 175 ma; | max peak | inverse v | voltage | ♦ = 5,0 0 | 00 volts; | 22BW3 | | TV Damper | Max | | put cu | rrent 🏽 | =180 m | na; max p | eak inv | erse vo | ltage 🔷 | =5,500 | 22DE4¶ | | Horizontal
Amplifier | 130
55 | 125
 125
positive | 20 | 80
525 | 2.5
32 | 12,000
= 6,500; r | 10,000
nax d-c | (Ec3 = | +25 vo
le curre | lts)
nt 🏶 = | 22JF6¶ | | Horizontal
Amplifier | 130
50 | 125
 125 | 20
0
pulse p | 80
 525
 ate vol | 2.5
 32
tage 🏶 = | 12,000

-6,500; ma | _ | k at so | nected
ocket)
urrent | 1 | 22JG6¶ | | Horizontal
Amplifier | 130
55
Max
275 m | 125
 125
 positive | 20
0
pulse | 80
 525
plate vo | 2.5
 32
oltage � | 12,000
=6,500; n | 10,000
nax d-c | (Ec3 = | +25 vo | lts)
nt ⊕ = | 22JG6-A¶ | | Horizontal
Amplifier | 130
50
Max | 125
 125
 positive | 20
0
pulse r | 45
470
plate vol | 1.5
 32
 tage⊛ = | 18,000
-6,500; max | 7,000
 | - | —
rrent�: |
 _
= 275ma | 22 J R 6 ⁴⁷ | | Horizontal
Amplifier | 130
50
Max
275 m | 125
 125
 positive | 20
0
pulse | 45
 470
plate vo | 1.5
 32
oltage � | 18,000
 | 7,000
nax d-c | k at | connect
socket)
e curre | ı | 22JU6¶ | | Horizontal
Amplifier | 140
60
Max
♦=2 | 140
 140
positive
75 ma | 24.5
0
pulse p | 80
 560
 clate vo | 2.4
 31
 tage 🏶 | 6,000
= 6,500 vo | 9,500

 ts; max | | = 0 volts | | 22KM6¶ | | Pulse
Regulator | 140
100
Max 1
= 275 | 140
140
oositive
ma. | | 40
440
ate volt | 2.4
30
age 🗣 = | 10,000

= 6,500 vol | 6,000
ts; max | 1 | = 0 vol | i | 22KV6-A¶ | | Horizontal
Amplifier | 175
62
Max
315 m | 125
 120
 positive | 25
0
pulse | 125
 570
plate v | 4.5
 34
oltage 🏶 | 5,600
 | 11,300
nax d-c | to k | connect
at socke
le curre | t) l | 23JS6-A¶ ■ | | Horizontal
Amplifier | 150
60
Max 1
= 400 | 110
110
ositive
ma. | 20
0
pulse pl | 110
660
ate volt | 2.0
42
age 🏶 : | 5,000
= 8,000 vol | 14,000
ts; max | ١ | hode cur | rent 🏶 | 23M B6¶ ■ | | Vertical
Amplifier | 120
45
Max
• = 7 | 110
110 | 8.0
0
pulse p | 46
 122
 ate vol | 3.5
 16.5
 tage � = | 11,700
=2,000; tota | 7,100
al d-c pl | ate and | screen o | urrent | 23Z9¶■ | | Class A
Amplifier
Vertical { | 150
150 | _ | 2.0
5.0 | 5.4 | _ | 11,000
8,500 | 3,900
2,350 | 43
20 | _ | - | | | Oscillator \ | 250 | d-c plat | e currer | $1t \circledast = 20$ | 1.7 | 600,000 | 1,050 | ı — | | | 24A | | Class A | 145 | 110 | 6.0 | 36† | 3.0† | 30,000 | 8,600 | | 3,000 | 0 2.4 | 24BF11¶ | | Amplifier
Class A
Amplifier | 150 | 100 | Rk = 560 | 1.3 | 2.0 | 150,000 | 1,000 | (Ec. | 3 = 0 vol | | 240711 | | Horizontal
Amplifier | 175
55
Max
350 n | 125
125
positive | 25
0
pulse | 130
580
plate v | 2.8
40
oltage @ | 5,800
= 7,500; r | 9,600
nax d-c | | 30 volts
le curre | | 24JE6-A¶ | | Vertical
Amplifier | 120
45
Max | 110
110 | 8,0
0 | 46
122 | 3.5 | 11,700 | 7,100 | _ | T = | T_= | 24JZ8¶ | | Vertical
Oscillator | 130 | d-c cat | 3.0 | 3.3 | | =2,000; ma:
 8,500 | 2,350 | 10 20 | irrent⊕
 — | =70 ma
 — | | Ga and G5 are screen. G4 is signal-input grid. G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | e in
s | |---------------------------|--|---------------|---------------------|---------------|---------------|--------------|----------------|---------------------------------|-------------------|--|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 24LQ6¶ | Beam Power Amplifier | 9QL | 12-117 | 24 | 0.6 | 30◈ | 990:◈ | 220 ♦
5.0 ♦ | 22 🛦 | 11 🛦 | 0.56 | | 24LZ6¶ | Beam Power
Amplifier | 9QL | 12-117 | 24 | 0.6 | 30 ◈ | 8 <u>90\$</u> | 220 ⑤
5.0 ⑥ | 22 ▲ | 11. | 0.6 | | 25A6
25A6-GT | Power-Amplifier Pentode | 7S | 8-6
9-11 | 25.0 | 0.3 | 5.3 | 160 | 135 | 8.5 | 12.5 | Ú.2
— | | 25A7-GT | Half-Wave Rectifier,
Power Amplifier
Pentode | 8F | 9-11 | 25.0 | 0.3 | 2.25 | 117 | 117
0.8
Tube V
23 v at | oltage
150 ma | Drop: | _ | | 25AC5-GT | Triode Power Amplifier | 6Q | 9-11 | 25.0 | 0.3 | 10 | 180 | _ | | oes, Pus | h-pull | | 25AV5-GA | Beam Power Amplifier | 6CK | T-X | 25.0 | 0.3 | 11 | 550\$ | 175
2.5 | 14 ▲ | 7.0 ▲ | 0.5 🛦 | | 25AV5-GT | Beam Power Amplifier | 6CK | 9-11
or
9-41 | 25.0 | 0.3 | 11 | 5508 | 175
2.5 | 14▲ | 7.0 ▲ | 0.7▲ | | 25AX4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11
9-41 | 25.0 | 0.3 | 4.8 | Tube V | oltage
250 ma | Drop: | 1 | · | | 25B5 | Direct-Coupled Power
Amplifier | 6D | 12-1 | 25.0 | 0.3 | 8.5 | 180 | - | - | | _ | | 25B6-G | Power Amplifier
Pentode | 78 | 14-3 | 25.0 | 0.3 | 12.5 | 200 | 135
2.0 | | | | | 25B8-GT | Triode Remote-Cutoff
Pentode | 81 | 9-24 | 25.0 | 0.15 | | 100 | 100 | ł | le Section
Section | | | 26 BK 6 | Beam Power Amplifier | 9BQ | 6–3 | 25.0 | 0.3 | 9.0 | 250 | 250
2.5 | 13 A | 5.0 ▲ | 0.6 | | 25BQ6-GA
25BQ6-
GTB | Beam Power Amplifier | 6AM | T-X
9-49
9-50 | 25.0 | 0.3 | 11 | 6008 | 2.5
2.5 | 15 ▲ | 7.0 ▲ | 0.6 ▲ | | 25BQ6-GT | Beam Power Amplifier | 6AM | 9-49
or
9-50 | 25.0 | 0.3 | īī | 5508 | 175
2.5 | 15 ▲ | 7.5 ▲ | 0.6 🛦 | | 25BR3¶ | Half-Wave High-
Vacuum Rectifier | 9CB | T-X | 25.0 | 0.3 | 6.5 🏶 | Tube V | Voltage
s at 250 | Drop: | <u>'</u> | · | | 26C8 | Beam Power Amplifier | 7CV | 5-3 | 25.0 | 0.3 | 7.0 🏶 | 150 ♦ | 130 (a) | 13 ▲ | 8.5▲ | 0.6 | | 25C6-G
25C6-GA | Beam Power Amplifier | 7AC | 14-3
12-16 | 25.0 | 0.3 | 12.5 | 200 | 135 | | _ | - | | 25CA5 | Beam Power Amplifier | 7CV | 5-3 | 25.0 | 0.3 | 5.0 | 130 | 130 | 15 ▲ | 9.0▲ | 0.5 🛦 | | 25CD6-G
25CD6-
GA¶ | Beam Power Amplifier | 5BT | 16-5 | 25.0 | 0.6 | 15 | 700\$ | 175
3.0 | 25 ▲ | 9.5 ▲ | 0.6 | | 25CD6-
GB¶ | Beam Power Amplifier | 5BT | 12-21 | 25.0 | 0.6 | 20 | 700\$ | 175
3.0 | 22 ▲ | 8.5 ▲ | 1.1 🛦 | | 25CG3¶ | Half-Wave, High-
Vacuum Rectifier | 12HF | 9-62 | 25 | 0.45 | 6.5 🏶 | Tube
25 vol | Voltage
ts at 70 | Drop:
0 ma d- | ·c | <u> </u> | | 25CK3¶ | Half-Wave High-
Vacuum Recti-
fier | 9HP | T-X
or
9-86 | 25.0 | 0.3 | 6.5 ◈ | | Voltag
ts at 35 | | | | | 25CM3 ¶ | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X | 25 | 0.6 | 12� | Tube V | /oltage
is at 350 | Drop: | : | | | 25CT3¶ | Half-Wave High-
Vacuum Recti-
fier | 9RX | T-X | 25.0 | 0.3 | 4.75 | Tube | Voltag | ge Drop
150 ma | :
d-c | | Compactron, Zero signal. Per section. [†] Plate-to-plate. •Maximum. • Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmbos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--------------------|-----------------------------|----------------------|---------------------------------|----------------------------------|---|-----------------------------|------------------|--|--------------------------------
------------------------------| | Horizontal
Amplifier | 175
60
Max | 145
145
positive | 35
0
pulse r | 95
710
plate vol | 2.4
 55
 tage | 7,000
-7,500; max | 7,500
d-c cat | , | 30 volts | i | 24LQ6¶ | | Horizontal
Amplifier | 175
55 | 125
125
positive | 25
0 | 140
800 | 2.0
56 | 6,000 | 11,000 | I = | = | = | 24LZ6¶ | | Class A
Amplifier | 160 | 120 | 18 | 33† | 6.5† | 42,000 | 2,375 | - | 5,000 | 2.2 | 25A6
25A6-GT | | Class A Amplifier Half-Wave { Rectifier | 100
Max
rms | d-c ou
supply | 15
tput cu | 20.5†
rrent =
=117 v | 4.0†
75 ma;
max p | 50,000
max peak
eak curren | 1,800
inverse
t = 450 | voltag | 4,500
e = 350 | 0.77
v; max | 25A7-GT | | Class B
Amplifier | 180 | - | 0 | 4.0† | <u> </u> | Peak Inpu
0.810 w | it Signa | | 4,800 | 6.0 | 25AC5-GT | | Horizontal
Amplifier | 250
60
Max | 150
150
positive | 22.5
0
pulse p | 57
260
late vo | 2.1
26
ltage • | 14,500
= 5.500 vol | 5,900 | screen | dissipat | ion = | 25AV5-GA | | Horizontal Amplifier | 60
Max | 150
positive | 0
pulse p | 225
 late vo | 25
ltage ⊕ | =110 ma
 20,000
 -5,500 vo
=110 ma | 5,500
lts; ma: | _
k screen | dissipa | tion = | 25AV5-GT | | TV Damper | Max | | ut curr | ent = 12 | | nax peak i | nverse v | oltage [| = 4,40 | 00 volts | 25AX4-GT | | Class A
Amplifier | 180 | 100 | 0 | 46 | 5.8
 Inp | ut Plate | 2,300 | T — | 4,000 | | 25B5 | | Class A
Amplifier | 200 | 135 | 23 | 62† | 1.8† | 18,000 | | | 2,500 | 7.1 | 25B6-G | | Class A
Amplifier
Class A Amp | 100 | 100 | 3.0
1.0 | 7.6 | 2.0 | 185,000
75,000 | 2,000
1,500 | 112 | _ | _ | 25B8-GT | | Class A
Amplifier | 250 | 250 | 5.0 | 35† | 3.5† | 100,000 | 8,500 | -= | 6,500 | 3.5 | 26BK6 | | Horizontal
Amplifier | 250
60
Max 1 | 150
150
positive | 22.5
0
pulse p | 57
260
ate vol | 2.1
26
tage 🗷 = | 14,500
=6,000 volt | 5,900
s; max | screen o |
lissipati | on =2.5 | 25BQ6-GA
25BQ6-GTB | | Horizontal | watts
250 | max d | 22.5 | 55 | ent = 11 | 0 ma
20,000 | 5,500 | Т — | 1 — | 1 | 25BQ6-GT | | Amplifier | 60
Max
2.5 w | 150
positive
atts; ma | pulse
x d-c c | 225
plate ve
athode | 25
oltage ©
current | =5,500 vo
=110 ma | olts; ma | | _ | | | | TV Damper | peak | current « | = 1,20 | 00 ma | | max peak | | voltage | | | 25BR3¶ | | Class A
Amplifier | 120 | 110 | 8.0 | 491 | 4.0† | 10,000 | 7,500 | | 2,500 | | 25C5 | | Class A
Amplifier | 200 | 135 | 4.5 | 61† | 2.2† | 18,300 | 7,100 | | 2,600
4,500 | 1.5 | 25C6-GA
25C6-GA
\$6CA6 | | Class A
Amplifier
Horizontal | 125
110
175 | 110
 175 | 4.0 | 37†
32†
75 | 3.5 | 15,000
16,000
7,200 | 8,100 | 느ᆖ | 3,500 | 1.1 | 25CD6-G | | Amplifier | 60
Max po | 100
sitive p | ulse pla | 230
 te volta | 21 | 6,600 volts | | creen di | ssipatio | n = 3.0 | 25CD6-GA¶ | | Horizontal
Amplifier | 175
60
Max p | 175
 100
 ositive p | 30
0
oulse pla | 75
230
te volt | 5.5
21 | 7,200
7,000 volt | 7,700
s; max | screen d | _

 issipati | on =3.0 | 25CD6-GB¶ | | TV Damper | Max d | -c out | ut cur | rent 🏶 = | | a; max pe | ak inve | erse vol | tage 🔷 = | =5,000 | 25CG3¶ ■ | | TV Damper | Max d- | c outpu | t curre | nt 🏶 🌣 | = 250 n | na; max pe
1,200 ma. | ak invė | rse volt | age 🔷 | = | 25CK3¶ | | TV Damper | volts | ; max p | eak curi | rent� = | 1,700 m | na; max pe | | | | | 25CM3¶ | | TV Damper | May d | Le auto | nt curr | ent 🚳 | = 250 s | ma; max p
1,200 ma. | eak inv | erse vo | tage 🏶 | | 25CT3¶ | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max | Max
Screen
Volts | Cap
P | acitance
cofarad | in
s | |-----------------|--|---------------|--------------------|---------------|---------------|--------------|-------------------|--------------------------------|------------------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 25CU6 | Beam Power Amplifier | 6AM | T-X | 25.0 | 0.3 | 11 | 600\$ | 200
2.5 | 15 ▲ | 7.0 ▲ | 0.6 ▲ | | 25D4¶ | Half-Wave High-
Vacuum Rectifier | 4CG | 9-11,
9-41 | 25,0 | 0.3 | 5.5 ◈ | Tube V
22 volt | oltage
s at 250 | Drop:
ma d-c | | <u> </u> | | 25 D8-GT | Diode-Triode-Pentode | 8AF | 9-23 | 25.0 | 0.15 | | 100 | 100 | Pentod
Triode | e Section
Section | | | 25DK3¶ | Half-Wave High-
Vacuum Recti-
fier | 9SG | 9-117 | 25.0 | 0.45 | 9.0 🏶 | 16 volt | oltage
s at 400
s at 800 | ma d-c | | | | 25DK4 | Half-Wave High-
Vacuum Rectifier | 5BQ | 5-3 | 25 | 0.15 | | Tube \ | oltage
s at 200 | Drop: | <u> </u> | | | 25DN6¶ | Beam Power Amplifier | 5BT | 12-21 | 25.0 | 0.6 | 15 | | 175
3.0 | 22 ▲ | 11.5 ▲ | 0.8▲ | | 25DQ6 | Beam Power Amplifier | 6AM | T-X | 25.0 | 0.3 | 15 | 550\$ | 175
2.5 | 15 🛦 | 7.0 ▲ | 0.55 🛦 | | 25DQ6-A¶ | Beam-Power
Amplifier | 6AM | 12-51 | 25.0 | 0.3 | 18 🏶 | 770 🕸 | 220 ③
3.6 ⑤ | 15▲ | 7.0▲ | 0.5 ▲ | | 25DT6¶ | Beam-Power
Pentode | 9HN | 6-3 | 25,0 | 0.3 | 9.0 🏶 | 315 ◈ | 285 ♦
2.0 ♦ | 12.5▲ | 4.9 ▲ | 0.57 ▲ | | 25E5 | Beam Power
Amplifier | 8GT | T-X | 25 | 0.3 | 11 | 250 | 250
5.0 | 17.5 ▲ | 8.0 ▲ | 1.1 ▲ | | 25EC6¶ | Beam Power Amplifier | 5BT | T-X | 25 | 0,6 | 10 🏶 | 700 ♦\$ | | 24 ▲ | 10 ▲ | 0.6 ▲ | | 25EH5 | Power-Amplifier Pentode | 7CV | 5-3 | 25 | 0.3 | 5.5 🏶 | 150 ◈ | 130 ③
2.0 ⑤ | 17 ▲ | 9.0▲ | 0.65 ▲ | | 25F5 | Beam Power Amplifier | 7CV | 5-3 | 25.0 | 0.15 | 4.5 | 135 | 117 | 12▲ | 8.0▲ | 0.44 ▲ | | 25F5A¶ | Beam Pentode | 7CV | 5-3 | 25 | 0.15 | 5.5 🏶 | 150 € | | 12▲ | 8.0 🛦 | 0.44 ▲ | | 25F Y 8 | Triode-Pentode | 9EX | 6-4 | 25 | 0.3 | 8.0 ◈ | 150 ③ | 150 *
2.0 * | ·l | e Section | | | 25H X 5 | Beam Power
Amplifier | 9SB | T-X | 25.0 | 0.3 | 14 🆠 | 400 🏶 | | 17.3 ▲ | i | 1.1 ▲ | | 25JQ6¶ | Beam Pentode with
Integral Diode | 9RA | 6-4 | 25.2 | 0.3 | 10 🏶 | 425◈ | 330 ♦
2.0 ♦ | 13 🛦 | 6.0 ▲ | 0.32 ▲ | | 25JZ8¶ ■ | Triode-Pentode | 12DZ | 958 | 25.2 | 0.3 | 7.0 ③ | 250 * | 1.8 🕉 | 1 | de Sectio | | | 25L6 | Beam Power Amplifier | 7AC | 8-6 | 25.0 | 0.3 | 10 | 200 | 117 | 16.0 | 13.5 | 0.3 | | 25L6-GT | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 25.0 | 0.3 | 10 | 200 | 1.25
1.25
1.25 | 15▲ | 10 🛦 | 0.8 ▲ | | 25N6-G | Direct-Coupled Power
Amplifier | 7W | 12-3 | 25.0 | 0.3 | 8.5
1.1 | 180
180 | | | | | | 25W4-GT | Half-Wave High-
Vacuum Rectifier | 4CG | 9~11,
9~41 | 25.0 | 0.3 | 3.5 | Tube 1
21 v at | Voltage
t 250 ma | Drop:
a d-c | | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
For
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|---------------------|--------------------------------|-----------------------|---------------------------------|----------------------------------|------------------------------|---------------------------|-------------------|--|--------------------------------|-----------------| | Horizontal
Amplifier | watts; | max d-c | cathoo | le curre | nt = 110 | 14,500
6,000 volts | | | issipation | | 25CU6 | | TV Damper | Max d | -c outp
nax pea | ut curre | ent 🔷 =
nt 🔷 = | =155 m
900 ma | a; max pe | ak inve | rse volt | age 🚸 | =4,400 | 25D4¶ | | Class A
Amplifier
Class A Amp | 100 | 100 | 3.0 | 8.5
0.5 | 2.7 | 200,000
91,000 | 1,900 | _ | _ | _ | 25D8-GT | | TV Damper | Max d
6,500 | -c outp
volts; m | ut curre
ax peak | ent 🏽
curren | = 400 r
t 🔷 = | na; max po
1,200 ma. | eak inve | erse vol | tage 🚸 | = | 25DK3¶ | | Half-Wave
Rectifier | Max d-
max R | c outpu
MS sup | t currer | it ♦ = 1
age ♦ = | 00 ma;
129 vol | max peak i
ts; max pe | nverse v
ak curre | oltage
ent 🏶 = | | volts; | 25DK4 | | Horizontal
Amplifier | 125
50
Max po | 125
100
sitive p | 18
0
oulse pl | 70
240
ate volt | 6.3
 30
tage @
urrent = | 4,000
=6,600 vol | 9,000
ts; max | screen | dissipa | tion = | 25DN6¶ | | Horizontal
Amplifier | 250
60
Max po | 150
150
sitive p | 22.5
0
oulse pl | 75
300
ate vol | 2.4
27 | 20,000
=6,000 vol | 6,000

ts; max | screen | dissipa | tion = | 25DQ6 | | Horizontal
Amplifier | 250
60
Max po | 150
150
sitive p | 22.5
0
ulse pla | | 1.5
25
ge ⊕ = 6 | 20,000
,000; max d | 6,600
 | de curi | ent 🏶 = | 155 ma | 25DQ6-A¶ | | Vertical
Amplifier | 250
80 | 250
250 | 16.5
0 | 44
195 | 1.5 | | 6,200 | | = | | 25DT 5 ¶ | | Horizontal
Amplifier | 100 | 100 | 8.2 | 100 | 7.0 | | 14,000 | | | | 25E5 | | Horizontal
Amplifier | 135
60
Max po | 135
135
sitive p | | 70
350
te volta | 4.5
40
ge ♦ = 7 | 4,700
 | 7,500
-c cath | de curr | ent -= | 200 ma | 25EC6¶ | | Class A
Amplifier | 110 | 115 | R _k = 62 | 42† | 11.5† | | 14,600 | | 8,000 | 1.4 | 25EH5 | | Class A
Amplifier | 110 | 110 | 7.5 | 36† | 3.0† | 16,000 | 5,800 | | 2,500 | 1.2 | 25F5 | | Class A
Amplifier
Class A | 110 | 110 | 7.5 | 43†
50† | 3.8†
10† | 13,000 | 7,500 | | 2,500 | 1.5
 | 25F5A¶
25FY8 | | Amplifier
Class A Amp | 125 | _ | 1.5 | 2.5 | | _ | 2,000 | | | - L | 20116 | | Vertical
Amplifier | 100
40
Max p | 100
100
ositive r
ma. | 8.2
0
oulse pla | 100
240
ate volta |
7.0
19 | 5,000
= 2,500 volt | 14,000
s; max | i-c cath | ode cur | rent 🌸 | 25H X 5 | | Vertical
Amplifier | 140
40 | 140
120 | 18
0 | 35
150 | 2.5
20 | 10,500 | 4,200 | _ | | | 25JQ6¶ | | | 70 m
Insta | a. | s diode- | plate-to | | 2,000 volts
voltage dr | | | | | | | Vertical
Amplifier | 120
45
Max 1 | 110
110
positive | 8.0
0
pulse p | 46
122
late vol | 3.5
16.5
tage ◈ | 11,700
= 2,000 v | 7,100
olts; ma | x d-c c | athode | _
current | 25JZ8¶ ■ | | Vertical
Oscillator | | -c catho | ode curi | | _
= 20 m | 8,500]
a. | 2,350 | 20 | (| | | | Class A
Amplifier | 200
110 | 110
110 | 8.0
7.5 | 50†
49† | 2.0†
4.0† | 30,000
13,000 | 9,500
9,000 | _ | 3,000
2,000 | 4.3
2.1 | 25L6 | | Class A
Amplifier | 200
110 | 125
110 | $R_k = 180 \\ 7.5$ | 46†
49† | 2.2†
4.0† | 28,000
13,000 | 8,000
8,000 | | 4,000
2,000 | 3.8 | 25L6-GT | | Class A
Amplifier | 180 | 100 | 0 | 46 | 5.8 | 15,000
15,000
1t Plate | 2,300 | | 4,000 | 3.8 | 25N6-G | | TV Damper | Max d-volts; n | c outpu
ax peal | t curre | nt = 125
nt = 750 | ma; m | ax peak in | verse v | oltage (| =3850 |) | 25W4-GT | Metal tubes are shown in bold-face type, miniature tubes in italics. \$\delta\$ G3 and G5 are screen. G4 is signal-input grid. \$\delta\$ G2 and G4 are screen. G3 is signal-input grid. \$\delta\$ Maximum screen dissipation appears immediately below the screen voltage. \$\delta\$ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | e in
Is | |-----------------|-------------------------------------|---------------|--------------------|---------------|---------------|--------------|-------------------|------------------------------|--------------------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 25W6-GT | Beam Power Amplifier | 7AC | 9-11
or
9-41 | 25.0 | 0.3 | 7.5 | 300 | 1.25
1.25 | Pentod | e Conn | ection | | | | | 9-41 | | | | 300 | | Triode | Connec
P tied) | tion | | 25X6-GT | High-Vacuum Rectifier
Doubler | 7Q | 9-11 | 25.0 | 0.15 | - | | oltage
120 ma | Drop: 4 | | | | 25Y5 | High-Vacuum Rectifier
Doubler | 6E | 12-5 | 25.0 | 0.3 | | - | - | _ | - | - | | 2524 | Half-Wave High-
Vacuum Rectifier | 5AA | 8-1 | 25.0 | 0.3 | _ | Tube V
20.5 v | Voltage
at 250 r | Drop: | ···· | | | 25Z5 | High-Vacuum Rectifier
Doubler | 6E | 12-5 | 25.0 | 0.3 | | Tube V | oltage
150 ma | Drop: 4 | | | | 25Z6
25Z6-GT | High-Vacuum Rectifier
Doubler | 7Q | 8-6
9-11 | 25.0 | 0.3 | _ | Tube V
22 v at | /oltage
: 150 ma | Drop: 4 | • | | | 26 | Medium-Mu Triode | 4D | 14-1 | 1.5 | 1.05 | | 180 | | 2.8 | 2.5 | 8.1 | | 26A6 | Remote-Cutoff RF Pentode | 7BK | 5–2 | 26.5 | 0.07 | 5.3 | 250 | 100
0.4 | 5.5 | 5.0 | 0.004 | | 26A7-GT | Twin-Pentode Power Amplifier | 8BU | 9-33,
9-44 | 26.5 | 0.6 | 2.0 💠 | 50 | 50
0.5 | 16.0 ▲ | 13.0 ▲ | 1.2▲ | | 26C6 | Duplex-Diode
Medium-Mu Triode | 7BT | 5-2 | 26.5 | 0.07 | 2.5 | 250 | | 1.8 | 1.4 | 2.0 | | 26CG6 | Remote-Cutoff Pentode | 7BK | 5-2 | 26.5 | 0.07 | 4.0 | 300 | 150
0.75 | 5.0 | 5.0 | 0.008 | | 2 6D6 | Pentagrid Converter | 7CH ♥ | 5-2 | 26.5 | 0.07 | 1.0 | 300 | 1.0 | Osc Ici
Rgi = 2 | =0.5 m
0,000 ol | na
hms | | 26E6-G | Beam Power Amplifier | 78 | T-X | 26.5 | 0.3 | 12.5 | 200 | 135
1.5 | = | = | = | | 26HU5¶ | Beam Power
Amplifier | 8NB | 12-21 | 26.0 | 0.6 | 33 ◈ | 9908 | 250 ♦
5.0 ♦ | 40 ▲ | 17▲ | 1.0 ▲ | | 26LW6¶ | Beam Power
Amplifier | 8NC | 14-7 | 26 | 0.6 | 40 ◈ | 9908 | 280 ♦
7.0 ♦ | 40 ▲ | 14.5 ▲ | 1.0▲ | | 26LX6¶ ■ | Beam Power
Amplifier | 12JA | 12–136 | 26.0 | 0.6 | 33 ◈ | 9908 🏶 | 250 ♦
5.0 ♦ | 40 ▲ | 17▲ | 1.0▲ | | 26Z5 | Full-Wave High-
Vacuum Rectifier | 9BS | 6-2 | 26.5 | 0.2 | | Tube V | /oltage
: 100 ma | Drop: 4 | • | I | | 27 | Medium-Mu Triode | 5A | 12-5 | 2.5 | 1.75 | | 275 | I — | 3.1 | | 3.3 | | FG-27-A | Thyratron | FG-
27-A | T-X | 5.0 | 4.5 | _ | Anode
Peak | Voltage | Drop : | =16 Vol | ts | | 27GB5 | Beam Power
Amplifier | 9NH | T-X | 27 | 0.3 | 17 🏶 | | 275 �
6.0 � | _ | - | - | | 27KG6 | Beam Power
Amplifier | 9RJ | T-X | 26.7 | 0.45 | 34 ◈ | 7008 ◈ | | = | = | = | | 28D7 | Twin Beam Power
Amplifier | 8BS | 9-31 | 28.0 | 0.4 | 3.0♠ | 100 | 67.5
0.5 | | | | | 28GB5 | Beam Power
Amplifier | 9NH | T-X | 28 | 0.3 | 17 🏶 | 275 🏶 | 275 ③ 6.0 ⑤ | | | == | | 28H A 6 | Pentode | 9NW | 6-4 | 28.6 | 0.15 | 8.0 🏶 | 300 ◈ | | 13 🛦 | 8.0 ▲ | 0.18 | | 28HD5¶ | Beam Power
Amplifier | 12ES | 12-59 | 28 | 0.45 | 24 🔷 | 7708 🏶 | 220 ♦
6.0 ♦ | | | | | 28 Z 5 | Full-Wave High-Vacuum
Rectifier | 6BJ | 9-31 | 28.0 | 0.24 | | Tube V | oltage
100 ma | Drop: | | <u> </u> | Compactron. Zero signal. Per section. See X-Radiation Warning, page 4. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------|--------------------------|------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|--|--------------------------------|---------------| | Class A | 200 | 125 | R _k = | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | 3.8 | 25W6-GT | | Amplifier Vertical | 110
225 | 110 | 7.5
30 | 49†
22 | 4.0† | 13,000
1,600 | 8,000
3,800 | 6.2 | | 2.1 | | | Amplifier \ Rectifier | | | | | | =1200; ma;
30 ma; rm | | | | | 25X6-GT | | or Doubler | 125 vol | ts | it curre | nt ber | prace – c | o ma; rm | s suppi | y voita | ge per | plate = | 23A6-G1 | | Rectifier
or Doubler | Max d-
volts; n | c outpunarms | t curre | nt per
voltage | plate = 4
per plat | 12 ma; ma
e = 250 vol | x peak
ts | invers | e volta | ge = 700 | 25Y5 | | Half-Wave
Rectifier | | | | | | x peak inv
peak curre | | | | | 25Z4 | | Rectifier
or Doubler | Max d | -c outp | at curre | nt per | plate = | 75 ma; ma
35; max pe | x peak | inverse | voltag | e = 700; | 25Z5 | | Rectifier | Max d | -c outp | ut curre | ent per | plate = | 75 ma: ma | x peak | inverse | voltag | e = 700: | 25Z6 | | or Doubler | max rn | ns suppl | y volta | ge per 1 | olate =2 | 75 ma; ma
35; max pe | | | | 450 ma | 25Z6-GT | | Class A
Amplifier | 180 | | 14.5 | 6.2 | _ | 7,300 | 1,150 | 8.3 | - | - | 26 | | Class A
Amplifier | 250 | 100 | $R_k = 125$ | 10.5 | 4.0 | 1,000,000 | 4,000 | _ | | | 26 A 6 | | limpinaci | 26.5 | 26.5 | R _{g1} = 2 meg | 1.7 | 0.7 | 250,000 | 2,000 | _ | - | - | | | Class A
Amplifier • | 26.5 | 26.5 | 4.5 | 20† | 1.9† | | 5,700 | | 1,500 | 0.165 | 26A7-GT | | Class A
Amplifier | 250
26.5 | = | 9.0
R _g =
2 meg | 9.5
1.1 | = | 8,500
15,500 | 1,900
1,100 | 16
17 | = | | 26 C6 | | Class A
Amplifier | 250 | 150 | 8.0 | 9.0 | 2.3 | 720,000 | 2,000 | | | - | 26CG6 | | Converter | 250 | 100 | 1.5 | 3.0 | 7.8 | 1,000,000 | 475 # | | = | | 26D6 | | Class A
Amplifier | 200 | 135 | 14 | 61† | 3.0† | 18,000 | 7,100 | | 2,600 | 6.0 | 26E6-G | | Horizontal
Amplifier | 175
60
Max
= 40 | 110
110
positive | 21
0
pulse pi | 125
750
late vol | 3.3
42
tage 🏶 | 6,000
= 7,000 vo | 14,000
lts; max | d-c cat | hode cu | _
rrent ◈ | 26HU5¶ | | Horizontal | 250 | 250 | 56 | 125 | 4.2 | 6,700 | 12,000 |] | I - | T = 1 | 26LW6¶ | | Amplifier | Max | 110
positive | 0
pulse | 650
plate v | 37
oltage ∢ | = 7,500 | volts; | l —
l-c cath | iode cui | rrent 🌸 | | | - | | 0 ma. | | | | | | , | 7 | | 221 1124 | | Horizontal
Amplifier | 175
60
Max | 110
 110
positive | 21
0
pulse p | 125
750
late vol | 3.3
42
tage 🏶 | = 7,000 vo | 14,000
lts; max | d-c cat | hode cu | rrent 🆠 | 26LX6¶ | | Full-Wave
Rectifier | Max d- | 0 ma.
c outpu
pply vol | t curre | nt per p | plate = 5
325; ma | 0 ma; max
ax peak cur | peak in | verse v | oltage =
300 ma | =1250; | 26Z5 | | Class A Amp | 250 | ı — | 21 | 5.2 | I — | 9,250 | 975 | 9.0 | <u> </u> | | 27 | | Controlled
Rectifier | Max d | c catho | de curre | ent 🖲 = | 2.5 amp | eres; max
10 ampere | peak in | verse vo | ltage 🖲 | =1,000 | FG-27-A | | Horizontal | 75 | 200 | 10 | 440 | 37 | (Instantar
,700; max | eous V | alues) | rent 🙈 = | 275 ma | 27GB5 | | Amplifier
Horizontal | 160 | 160 | uise pia | 1.400 | ge ⊕ = / | | | (Ec+= | 0 volts |) | 27KG6 | | Amplifier | 45 | 160
ositive | 0
pulse | 1000 | oltage 🏶 | =7,000; | max d- | catho | de curr | ent 🏶 = | | | Class A
Amplifier • | 28 | 28 | 3.5 | 12.5† | 1 | 4,200 | 3,400 | i | 4,000 | 1 | 28D7 | | Horizontal
Amplifier | 75
Max D | 200
ositive r | 10
ulse pla | 440
te volta | 37
ge � ≕ | (Instant
7,700; max | aneous
d-c cath | Values)
ode cur | rent 🔷 = | =275 ma | 28GB5 | | Class A
Amplifier | 150 | 100 | $R_k = 33$ | 28 | 3.5 | 20,000 | 20,000 | | - | - | 28HA6 | | | 60 | 100 | 0 | 45 | 9.0 | <u> </u> | 1,000 | <u> </u> | | <u> — </u> | 28HD5¶ | | Horizontal
Amplifier | 135
60
Max p | 135
135
ositive | 22
0
pulse p
| 65
540
slate vo | 4.0
48
ltage 🏶 | 5,000
=7,000; m | 10,000
ax d-c c | | current | — | 2011 100 11 ■ | | Full-Wave | Max | d c outr | 11 01155 | nt = 10 | 0 ma · m | av neak in | verse vo | ltage = | 1250 vo | lts: max | 2825 | | Rectifier | rmss | upply v | oltage p | er plate | = 325 v | olts; max p | eak cur | rent per | plate = | 300 ma | | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Volts | Car
P | acitano
icofara | e in
ds | |----------------|---|---------------|---|---------------|-------------|--|------------------------------|-------------------------------|---------------|------------------------------------|----------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 29GK6¶ | Beam Power | 9GK | 6-4 | 28.6 | 0.15 | 13.2 🏶 | 330 🏶 | 330 ♦ | Single | Tube | | | | Amplifier | | *************************************** | | | - Little Committee Committ | | 2.0 | Two T
Pull | ubes, F | ush- | | | | | | | | | | | Two T | ubes, F | ush- | | 29KQ6 | Beam Power
Amplifier | 9RJ | T-X | 29 | 0.3 | 17 🏶 | 275 ◈ | 275 ③
6.0 ④ | 27 ▲ | 11 🛦 | 1.5 ▲ | | 29LE6 | Beam Power
Amplifier | 9RJ | T-X | 29.0 | 0.3 | 20 🏶 | 275 🏶 | 275 ③ 5.0 ④ | | 27 ▲ | 1.5 ▲ | | 30 | Medium-Mu Triode | 4D | 12-5,
9-26 | 2.0
DC | 0.06 | | 180 | - | 3.0 ▲ | 2.2 ▲ | 6.0 ▲ | | 30AG11 | Duplex-Diode
Twin Triode | 12DA | 9-56 | 30 | 0.15 | 2.0 | 330 � | | | Section
Section | | | 30CW5 | Power Amplifier
Pentode | 9CV | 6-4 | 30 | 0.15 | 14 🕸 | 275 ◈ | 220 �
2.1 � | 11.8 | | 0.6 | | 30HJ5¶ | Beam Pentode | 12FL | 12-59 | 30 | 0.45 | 24 🏶 | 770\$� | 220 *
6.0 * | | | = | | 30KD6¶ | Beam Power
Amplifier | 12GW | 12-119 | 30 | 0.6 | 33 € | 990 🕻 🏶 | 200 ♦
5.0 ♦ | 40 ▲ | 16 🛦 | 0.8 ▲ | | 30JZ6 ■ | Beam Power
Amplifier | 12ĞD | 12-79 | 30.0 | 0.3 | 18 🏶 | 7708 🏶 | 220 ③ 3.5 ④ | 24 ▲ | 8.5 ▲ | 0.34 ▲ | | 30M B6¶ ■ | Beam Power
Amplifier | 12FY | T-X | 30 | 0.45 | 35 � | 9908 🏶 | 225 ③
7.0 ④ | 35 ▲ | 17▲ | 0.5 ▲ | | 31 | Power-Amplifier Triode | 4D | 12-5 | 2.0
DC | 0.13 | _ | 180 | | 3.5 | 2.7 | 5.7 | | 31AL10¶ | Dissimilar-
Double Triode
Pentode | 12HR | 9-59 | 31.5 | 0.315 | 7.0 🏶 | 250 🏶 | 200 (| | de Sect | ion | | | Tentode | | | | | 1.25 * | 330 ♦
250 ♦ | | (pir | e Sections 9, 10, 2 Sections 2, 3, | , 11)
n 2 | | 31JS6-A¶ | Beam Power
Amplifier | 12FÝ | 12-89 | 31.5 | 0.45 | 28 🏶 | 990\$ | 190 (s) 5.5 (s) | 24 ▲ | 10▲ | 0.7 🛦 | Zero signal. Per section. See X-Radiation Warning, page 4. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|------------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------------|--|---------------------------|------------------|--|--------------------------------|--------------| | Class A
Amplifier | 250 | 250 | 7.3 | 48† | 5.5† | 38,000 | 11,300 | | 5,200 | 5.7 | 29GK6¶ | | Ampaner | 300 | 300 | R _k = | 72† | 8.0† | _ | | _ | 8,000‡ | 17 | | | Class AB
Amplifier | 250 | 250 | 13C
R _k =
130 | 62† | 7.0+ | _ | | - | 8,000‡ | 11 | | | Class AB
Amplifier | 300
250 | 300
250 | 14.7
11.6 | 15†
20† | 1.6†
2.2† | = | = | = | 8,000±
8,000± | 17
11 | | | Horizontal
Amplifier | 50
40
Max
275 m | 200
135
positive | 12
0
pulse | 550
450
plate v | 50
35
oltage � | $(E_{ci} = 0 \text{ V})$
$(E_{ci} = 0 \text{ V})$
= 6,500; n | rolts) | cathod | e curre | | 29KQ6 | | Horizontal
Amplifier | 40
50 | 135
200 | 0
12 | 450
550 | 35
50 | | | | ΙΞ | ΓΞ | 29LE6 | | Class A
Amplifier | 180 | _ | 13.5 | 3.1 | = | 10,300 | 900 | 9.3 | <u> </u> | - | 30 | | Class A
Amplifier •
Detector • | 125
Max d | -c outpu | 1.0 | 7.5 | .0 ma | 8,500 | 7,800 | 66 | _ | | 30AG11 | | Class A
Amplifier | 170 | 170 | 12.5 | 70+ | 3.5† | 26,000 | 11,000 | _ | 2,400 | 5.6 | 30CW5 | | Horizontal
Amplifier | 135
60
Max 1
ma | 135
135
ositive | 22
0
pulse pl | 80
540
ate volt | 5.5
48
age ♦ = | 5,000
7,000; max | 10,000
d-c cat | k at so | connecte
ocket)
rrent � | _ | 30HJ5¶■ | | Horizontal
Amplifier | 150
45
Max
400 m | | 22.5
0
pulse | 100
 1,100
plate ve | 2.0
110
oltage � | 6,000
 | 14,000
 | kats | ocket) | | 30KD6¶ | | Horizontal
Amplifier | 130
50
Max pe
= 230 | 130
130
ositive p | 20
0
oulse pla | 46
450
te volta | 1.8
29
age ♦ = | 9,900
6,500 volt | 9,000
s; max c | _
l-c cath | ođe curi | ent 🌢 | 30ЈZ6 ■ | | Horizontal
Amplifier | 150
60 | 110
110
ositive p | | | 2.0
42
ige ♦ = | 5,000
8,000 volt | 14,000
s; max d |
l-c cath | ode curr | ent 🏶 | 30MB6¶ ■ | | Class A
Amplifier | 180 | _ | 30 | 12.3 | <u> </u> | 3,600 | 1,050 | 3.8 | 5,700 | 0.375 | 31 | | Vertical
Amplifier | 120
45
Max
= 70 | 110
110
positive | 8.0
0
pulse | 46
122
plate vo | 3.5
16.5
sltage = | 11,700
= 2,000 vo | 7,100
lts; max | d-c ca | thode o | urrent | 31AL10¶ | | Sync.
Separator
Vertical
Oscillator | 150
150 | _ | 2.0
5.0 | 5.4
5.5 | _
= 20 m | 11,000
8,500 | 3,900
2,350 | 43
20 | | | | | Horizontal
Amplifier | 175
62 | 125
 120
 positive | 25
0 | 125
570 | 4.5
34 | | 11,300
nax d-c | kats | connect
ocket)
e curres | | 31JS6-A¶ | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | | | | n ~ | apacitar
Picofar | ice in
ads | |----------|---|---------------|----------------------|---------------|---------------|-------------|-------------------|--|----------------------------|---------------------|---------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watt | | | Inpu | t Out | | | 31JS6-C¶ | Beam Power
Amplifier | 12FY | 12-89 | 31.5 | 0.45 | 30 ◈ | 9908 | 220 € 5.5 € | | 10▲ | 0.7 ▲ | | 31LQ6¶ | Beam Power
Amplifier | 9QL | 12-117 | 31.0 | 0.45 | 30 ◈ | 9908 | 220 ⊕ 5.0 € | | 11 🛦 | 0.56 | | 31LR8¶ | Triode-Pentode | 9QT | 12-65
or
12-96 | 31.5 | 0.3 | 14 ③ | 400 ¢ | 2.75 € | • | ode Sec
le Secti | | | 31LZ6¶ | Beam Power
Amplifier | 9QL | 12-117 | 31 | 0.45 | 30 ◈ | 990\$ | | 22 ▲ | 11 🛦 | 0.6 🛦 | | 32 | Sharp-Cutoff RF
Tetrode | 4K | 14-2 | 2.0
DC | 0.06 | 1 | 180 | 67.5 | 5.3 ▲ | 10.5 ▲ | 0.015 | | 32ET5 | Beam-Power
Amplifier | 7CV | 5-3 | 32.0 | 0.1 | 5.4 🏶 | 150 ◈ | 130 ③
1.2 ③ | 12 🛦 | 6.0▲ | 0.6 ▲ | | 32ET5-A¶ | Beam-Power
Amplifier | 7CV | 5-3 | 32,0 | 0.1 | 5.4 🏶 | 150 🏶 | | 12▲ | 6.0▲ | 0.6▲ | | 32HQ7¶ ■ | Diode-Pentode | 12HT | 12-56 | 32.6 | 0.315 | | | 150 ♦
3.0 ♦
oltage D
at 200 | Diode : | e Section | on | | 32L7-GT | Half-Wave Rectifier
Beam Power amplifier | 8Z | 9-11 | 32.5 | 0.3 | | 90 | 90 | - | | _ | | FG-32 |
Half-Wave
Mercury-
Vapor
Rectifier
same as 5558 | | _ | | | | | | | | _ | | 33 | Power-Aniplifier Pentode | 5K | 14-1 | 2.0
DC | 0.26 | | 180 | 180 | 8.0 | 12.0 | 1.0 | | A33 | Photoconductive Cell | - | T-X | | | 0.01 | 30 ₪ | | | | | | 33GT7¶ | Diode-Pentode | 12FC | 12-56 | 33.6 | 0.45 | · | 400 \$ | 2.5 🏶 | Diode S | e Section | n | | 33GY7¶ | Diode-Pentode | 12FN | 12–56 | 33.6 | 0.45 | | 21 volt | s at 250
150 ♠
3.0 ♠ | ma d-c | e Sectio | 'n | | 7,500 | | | | | | 3.8 ◈ | Tube V
21 volt | oltage I
s at 250 | Diode S
Drop:
ma d-c | Section | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | For
Rated
Out-
put,
Ohm | Power Output, Watts | Tube
Type | |--|-------------------------------|---|-----------------------------------|---------------------------------|----------------------------------|--|---------------------------|----------------|-------------------------------------|-------------------------------------|--------------| | Horizontal
Amplifier | 175
60
Max | 125
125
positive
50 ma. | 25
0
pulse p | 130
600
late vol | 2.8
32 | 5,500
-
= 7,500 vol | 11,500
ts; max | d-c cath | nect
k at | con-
ed to
socket)
rrent 🏶 | 31JS6-C¶ | | Horizontal
Amplifier | 175
60
Max | 145
145 | 35
0
pulse p | 95
710
late vol | 2.4
55
tage � | 7,000
= 7,500 vol | | _ | = 30 v | - | 31LQ6¶ | | Class A
Amplifier
Class A
Amplifier | 135
250 | 120 | 10
4.0 | 56
2.3 | 3.0 | 12,000
16,000 | 1 | 58 | - | | 31LR8¶ | | Horizontal
Amplifier | | 125
125
positive | 25
0
e pulse | 140
800
plate v | 2.0
56
oltage | 6,000
= 7,500 | 11,000
volts; d | -c cath | ode cui | rent 🄷 | 31LZ6¶ | | Class A
Amplifier | 180 | 67.5 | 3.0
7.5 | 1.7
30t | 0.4
2.8+ | 21,500 | 5,500 | | 2.800 | 1.2 | 32
32ET5 | | Amplifier Class A Amplifier | 110 | 110 | 7.5 | 30† | 2.8† | 21,500 | 5,500 | - | 2,800 | 1.2 | SEET 5-A¶ | | Horizontal
Amplifier
TV Damper | ★ = Max d | 110
110
ositive
125 ma.
-c outpu
max pes | it curre | nt 🕸 = | 120 m | 8,400
= 4,000 vo
a; max peal | • | | | 1 | 32HQ7¶ ■ | | Class A
Amplifier
Half-Wave
Rectifier | 90
90 | 90
90 | 7.0
5.0 | 27†
38† | 2.0†
3.0† | 17,000
15,000
nax rms suj | | tage = 1 | 2,600
2,600
25 v | 1.0
0.8 | 32L7-GT | | | _ | _ | _ | | - | | - | - | | - | | | Class A
Amplifier | 180 | 180 | 18 | 22† | 5.0† | 55,000
units; ma | 1,700 | | 6,000 | 1.4 | 33
A33 | | Control Horizontal Amplifier TV Damper | 130
60
Max
ma
Max | 130
130
positive | 22.5
0
pulse pl
ut curre | 48
320
ate vol | 2.9
22
tage � = | 10,000
=3,500; max
max peak in | 6,500
d-c cat | _
node cu | rrent 🏶 | =140 | 33GT7¶ | | Horizontal
Amplifier | 130
60
Max
155 n | 130
 130
 positive | 22.5
0
pulse | 48
 320
 plate ve | 2.9
22
oltage * | 10,000
-5,000; m | | | | - 1 | 33GY7¶ | | | | | | | | a; max pea | | | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car | acitanc
icofarac | e in
Is | |--------------------|--------------------------------------|---------------|--------------------|---------------|---------------|--------------|-------------------|--|-----------------|---------------------|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 33GY7-A¶ | Diode-Pentode | 12FN | 12-56 | 33.6 | 0.45 | 9:0 🏶 | 400\$ | 150 ♦
3.0 ♦ | Pentod | e Section | on | | | | | | | | 3.8 🏶 | Tube V
21 volt | oltage
s at 250 | Drop: | | | | 33HE7¶ 🖜 | Diode-Pentode | 12FS | 12-57 | 33.6 | 0.45 | 10� | Tube V | 150 *
3.5 *
oltage le at 350 | Diode
Drop: | de Secti
Section | | | 33JR6¶ | Beam Power
Amplifier | 9QU | 12-96 | 33.0 | 0.3 | 17 ◈ | 7708 ◈ | 220 ♦
3.5 ♦ | 22 ▲ | 9.0▲ | 0.7 ▲ | | 33JV6¶ | Beam Power
Amplifier | 12FK | 12-58 | 33 | 0.3 | 18 🕸 | 770\$⊛ | 220 ♦
3.5 ♦ | 22 🛦 | 9.0▲ | 0.4▲ | | 34 | Remote-Cutoff RF
Pentode | 4M | 14-2 | 2.0
DC | 0.06 | | 180 | 67.5 | 6.0 ▲ | 11.0 ▲ | 0.015 | | 34CD3¶ | Half-Wave, High-
Vacuum Rectifier | 12FX | 9-62 | 34.5 | 0.45 | 12 🏶 | Tube V | oltage
s at 350 | Drop:
ma d-c |) | | | 34CE3¶ ■ | Half-Wave, High-
Vacuum Rectifier | 12GK | 9-62 | 34.5 | 0.45 | | Tube V
20 volt | oltage
s at 680 | Drop: | | | | 34CM3 🖺 | Half-Wave, High-
Vacuum Rectifier | 9HP | T-X | 33.5 | 0.45 | 12� | Tube V | oltage I
at 350 | Drop:
ma d-c | | | | 84GD5
84GD5-A¶ | Beam-Power
Amplifier | 7CV | 5-3 | 34.0 | 0.1 | 5.0 ◈ | 150 ◈ | 130 ③
1.1 ⑤ | 12.0 ▲ | 9.0▲ | 0.6▲ | | 34R3 | Half-Wave, High-
Vacuum Rectifier | 9CB | 6-8 | 34 | 0.15 | _ | | oltage | |
l-c | | | A35 | Photoconductive Cell | | T-X | | | 0.05 🗷 | 50 📵 | | _ | _ | 1 - | | 35/51 | Remote-Cutoff RF
Tetrode | 5E | 14-2 | 2.5 | 1.75 | | 275 | 90 | 5.3 ▲ | 10.5 ▲ | 0.007 | | 35A5 | Beam Power Amplifier | 6AA | 9-31 | 35.0 | 0.15 | 8.5 | 200 | 125
1.0 | | = | = | | 86 B5 | Beam Power Amplifier | 7BZ | 5-3 | 35.0 | 0.15 | 4.5 | 117 | 117 | 11 🛦 | 6.5 ▲ | 0.4 ▲ | | 85C6
85C6-A¶ | Beam Power Amplifier | 7CV | 5-3 | 35.0 | 0.15 | 5.2 🏶 | 150 ◈ | 130 🏟 | 12 ▲ | 9.0 ▲ | 0.6 ▲ | | 35CD6-
GA¶ | Beam Power Amplifier | 5BT | 12-21 | 35.0 | 0.45 | 20 | 7001 | 175
3.0 | 22 ▲ | 8.5 ▲ | 1.1 🛦 | | \$5DZ8 | Triode-Pentode | 9JE | T-X | 35.0 | 0.15 | 6.5 | 150 | 135
1.5 | Pentod | e Section | n | | | | | | | | 0.75 | 150 | - | Triode | Section | ı | | 85EH5
85EH5-A ¶ | Beam-Power
Amplifier | 7CV | 5-3 | 35.0 | 0.15 | 5.0♦ | 150 ◈ | 130 ③
1.75 ③ | 17▲ | 9.0▲ | 0.65 🛦 | | 85GL6 | Beam-Power
Amplifier | 7FZ | 5-3 | 35.0 | 0.15 | 5.5 ♦ | 150 ◈ | | 14▲ | 9.5▲ | 0.5 ▲ | | 86 H B8 | Triode-Pentode | 9ME | 6-3 | 35.0 | 0.15 | 6.5 ♦ | 150 (| 135 *
1.5 * | | e Section | | | 35L6-GT | Beam Power Amplifier | 7AC | 9-11
or
0-41 | 35.0 | 0.15 | 8.5 | 200 | 125
1.0 | = | - | Γ= | | 35LR6¶ | Beam Power Amplifier | 12FY | 9-41
12-90 | 35 | 0.45 | 30◈ | 990:0 | 220 ♦
5.0 ♦ | 33 ▲ | 12▲ | 0.47 🛕 | | 35W4
35W4-A¶ | Half-Wave High-Vacuum
Rectifier | 5BQ | 5–3 | 35.0 | 0.15 | - | Tube \\18 v at | oltage
200 m | Drop:
a d-c | 1 | <u> </u> | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. [●]Subminiature type. ▲Without external shield. ◆Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
For
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------|------------------------|--|---------------------------------|---------------------------------|---|--|---------------------------------|--------------------------------|--|--------------------------------|-------------------| | Horizontal
Amplifier | | | | 48
 320
 315
 clate v | 2.9
22
20
oltage * | =5,000; m | 6,500
—
—
nax d-c | cathode | -
currer |
nt - | 33GY7-A¶ | | TV Damper | 155 m
Max
volts; | | put cur | rent 🌢 | =135 m
=810 m | ia; max pe | ak inve | rse volt | tage 🌢 = | 4,200 | | | Horizontal
Amplifier | = 230 | ma. | - | | | 6,200
= 5,000 vo | | | | | 33HE7¶ | | TV Damper | Max o | i-c outp
max pe | ut curre
ak curre | ent 🌢
ent 🔷 | = 200 r
= 1,200 | na; max pe
ma. | ak invei | rse volta | age 🚸 : | = 4,200 | | | Horizontal
Amplifier | | 125
125
positive
275 ma | | 45
470
olate vo | 1.5
32
oltage • | 18,000 | · | ax d-c | cathode | | 33JR6¶ | | Horizontal
Amplifier | 130
60 | 130
 130
 positive | 20
0 | 50
 410
plate v | 1.75
24
oltage (| 11,000
= 6,000; n | 9,100
nax d-c | kats | connect
socket)
e curre | | 33JV6¶ | | Class A
Amplifier | 180 | 67.5 | 3.0 | 2.8 | 1.0 | 1,000,000 | 620 | | _ | Ī — | 34 . | | TV Damper | Max
volts | d-c out | put cur | rrent 🏶 | =350 r
=1,500 r | na; max pe
ma | ak inve | erse vol | tage 🌢 : | =6,000 | 34CD3¶■ | | TV Damper | Max
volts | d-c out | put cur | rent 🌢 | =350 n
=1,500 n | na; max pe
ma | ak inve | erse vol | tage 🏶 : | =6,000 | 34CE3¶ | | TV Damper | | d-c ou
; max p | | | | na; max pea | ak inver | se volta | age⊛ =5 | 5,500 | 6CM3 | | Class A
Amplifier | 110 | 110 | 7.5 | 35† | 3.0† | 13,000 | 5,700 | - | 2,500 | 1.4 | 34GD5
34GD5-A¶ | | TV Damper | Max
max | d-c out | put curr | rent = 1
150 ma | 50 ma; | max peak | inverse | voltage | =4,500 | volts; | 34R3 | | Control | Spectr | | onse = | 5,500 a | ngstron | units; m | aximum | curre | nt 🖲 =1 | 0 milli- | A35
 | Class A
Amplifier | 250 | 90 | 3.0 | 6.5 | 2.5 | 400,000 | 1,050 | | T | _ | 35/51 | | Class A
Amplifier | 200 | 125 | R _k = 180 | 43† | 2.0† | 34,000 | 6,100 | | 5,000 | 3.0 | 35A5 | | Class A
Amplifier | 110 | 110 | 7.5 | 40†
40† | 3.0† | 14,000 | 5.800
5,800 | = | 2,500 | $\frac{1.5}{1.5}$ | 35B5 | | Class A
Amplifier | 110 | 110 | 7.5 | 40† | 3.01 | | 5.800 | == | 2,500 | 1.5 | 35C5
35C5-A¶ | | Horizontal
Amplifier | 175
60
Max p | 175
100
ositive | 30
0
pulse pl | 75
230
ate vol | 5.5
21
tage 🖲 | 7,200
=7,000 volt | 7,700
s; | i — | | = | 35CD6-GA¶ | | Class A | max so | reen dis | $R_k =$ | $\frac{1 = 3.0}{45}$ | $\frac{\text{watts; r}}{\mid 6.0 \uparrow}$ | nax d-c cat | $\frac{\text{hode cu}}{1.500}$ | rrent = | 200 ma | 2.0 | 35DZ8 | | Amplifier Class A Amp | 120- | _ | 180
R _k =
1500 | 0.8 | _ | | 1,400 | 100 | _ | _ | 50020 | | Class A
Amplifier | 110 | 115 | R _k = 62 | 32† | 7.2† | 14,000 | 12,000 | | 3,000 | 1.2 | 35EH5
35EH5-A¶ | | Class A
Amplifier | 110 | 110 | 7.5 | 45† | 3.0† | 12,000 | 7,500 | _ | 2,500 | 1.8 | 35GL6 | | Class A
Amplifier | 115 | 115 | R _k = 150 | 33† | 7.5† | | 6,250 | - | 3,500 | 1.0 | 35HB8 | | Class A
Amplifier | 115 | l - | $R_k = 410$ | 2.5 | _ | _ | 3,900 | 74 | _ | | | | Class A
Amplifier | 200 | 125 | R _k = 180 | 43† | 2.0† | 34,000 | 6,100 | _ | 5,000 | 3.0 | 35L6-GT | | Horizontal | 110
175 | 110 | 7.5 | 140 | 3.0†
2.4 | 14,000
5,300 | 5,800
16,000 | (b.p | . connec | ted | 35 <u>L</u> R6¶ | | Amplifier | 60 | 110 | 1 0 | 700 | 35 | 7,500; max | | l to k | at sock | et) | | | Half-Wave
Rectifier | Max
rms s
With | d-c out
supply v
panel l
, max d
panel l | put curr
oltage=
amp No | rent *= = 117 vo. 40 or | = 110 m;
olts; ma
No. 47 | a; max peak
x peak curr
between pi | inverse
rent 🏶 =
ns 4 and | e voltag
=660 ma
1 6 and | e 🏶 = 36
no shur | 0 volts;
iting re- | 36W4
36W4-A¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap | acitance
icofarad | e in
Is | |---------------|-------------------------------------|---------------|--------------------|---------------|---------------|--------------|-------------------|------------------------------|------------------|----------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 35¥4 | Half-Wave High-Vacuum
Rectifier | 5AL | 9–31 | 35.0 | 0.15 | _ | Tube V
18 v at | oltage
200 ms | Drop:
d-c | | | | 35 Z 3 | Half-Wave High-Vacuum
Rectifier | 42 | 9-31 | 35.0 | 0.15 | | Tube V | oltage
200 ms | Drop: | | | | 35Z4-GT | Half-Wave High-Vacuum
Rectifier | 5AA | 9-11 | 35.0 | 0.15 | | Tube V | oltage
200 ma | Drop: | | | | 35Z5-GT | Half-Wave High-Vacuum
Rectifier | 6AD | 9-11
or
9-41 | 35.0 | 0.15 | | Tube V | oltage
200 ma | Drop: | | | | 35Z6-G | High-Vacuum Rectifier
Doubler | 70 | 14-3 | 35.0 | 0.3 | - | Tube V | oltage
220 ms | Drop: | • | - | | 36 | Sharp-Cutoff RF
Tetrode | 5E | 12-6 | 6.3 | 0.3 | 0.8 | 250 | 90.0 | 3.8 ▲ | 9.0 ▲ | 0.007 | | 36 A M S | Half-Wave High-
Vacuum Rectifier | 5BQ | 5–3 | 36 | 0.1 | | Tube \\20 volt | oltage
s at 150 | Drop:
mad- | c | | | 36A M 8-A | Half-Wave High-
Vacuum Rectifier | 5BQ | 5–3 | 36 | 0.1 | - | Tube \\16 volt | oltage
s at 150 | Drop: | | | | 36A M3-B¶ | Half-Wave High-
Vacuum Rectifier | 5BQ | 5–3 | 36 | 0.1 | = | Tube \ | oltage
s at 150 | Drop: | | | | 36KD6¶ | Beam Power Amplifier | 12GW | 12–118 | 36 | 0.45 | 33 📵 | 990:0 | 200 ♦
5.0 ♦ | 40 ▲ | 16▲ | 0.8 🛦 | | 36MC6¶ | Beam Power
Amplifier | 9QL | T-X | 36 | 0.45 | 33 ◈ | 9908 🏶 | 250 ③
5.0 ⑤ | 40▲ | 16▲ | 1.04 | | 37 | Medium-Mu
Triode | 5A | 12-5 | 6.3 | 0.3 | - | 250 | = | 3.5 | 2.9 | 2.0 | | 38 | Power-Amplifier
Pentode | 5F | 12-6 | 6.3 | 0.3 | | 250 | 250 | 3.5 | 7.5 | 0.30 | | 38H E7¶ | Diode-Pentode | 12 F S | 12-57 | 37.8 | 0.45 | 10 🏶 | 500 8 🏵 | 150 *
3.5 * | Diode | e Section | | | 38HK7¶ | Diode-Pentode | 12 F S | 12-57 | 37.8 | 0.45 | 10 🏟 | | | Drop:
mad- | | on | | | | | | | | | Tube V | 3.5 ♠
Voltage
s at 356 | Drop:
) ma d- | Section | | | 39/44 | Remote-Cutoff RF
Pentode | 5F | 12-6 | 6.3 | 0.3 | 1.5 | 250 | 90 0.15 | 3.8 ▲ | 10.0 ▲ | | | 40 | Medium-Mu
Triode | 4D | 14-1 | 5.0
DC | 0.25 | - | 180 | | 2.8 | 2.2 | 2.0 | | 40FR5¶ | Beam-Power
Amplifier | 7CV | 5–3 | 40.0 | 0.1 | 5.2 🏶 | 150 ◈ | 130 (a) | 12▲ | 9.0▲ | 0.3 🛦 | | 40KD6¶ | Beam Power
Amplifier | 12GW | 12-119 | 40 | 0.45 | 33 🖭 | 990\$ \$ | 200 ♦
5.0 ♦ | 40▲ | 16 ▲ | 0.8 ▲ | | 40KG6 | Beam Power
Amplifier | 9RJ | T-X | 40 | 0,3 | 34 🏶 | 7008 🏶 | 250 ♦
7.0 ♦ | - | - | - | Compactron. † Zero signal. Per section. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--------------------------------------|---------------------------|----------------------------------|-------------------------------|-----------------------------------|----------------------------------|--|---------------------------------|------------------------|--|--------------------------------|--------------| | Half-Wave
Rectifier | rms su
With | ipply vo
panel la | ltage =
mp No | 235 volt
. 40 or 1 | s; max j
No. 47 t | ax peak in
peak curren
petween pir
ma
ting resisto | t = 600 | ma.
4 and | 700 vol | ting re- | 35Y4 | | Half-Wave
Rectifier | Max | i-c outp | ut curre
e = 235 | ent = 10
volts, n | 0 ma; n | nax peak in
k current = | verse ve | oltage = | 700 vo | lts; rms | 3523 | | Half-Wave
Rectifier | Max | i-c outp | ut curre | ent = 10 | 0 ma; n | ax peak in
peak curr | verse vo | ltage = | 700 vol | ts; max | 35Z4-GT | | Half-Wave
Rectifier | max of rms su | i-c outp
ipply vo
panel la | ut curre
ltage =
.mp No | ent = 10
235 volt
. 40 or 1 | 0 ma; m
ts; max j
No. 47 t | ax peak in
peak curren
petween pir
ma
ting resisto | verse vo
t = 600
as 2 and | ltage =
ma
3 and | no shun | ting re- | 35Z5-GT | | Rectifier
or Doubler | Max d | -c outpu | it curre | nt per | plate = 1 | 10 ma; ma
35; max pe | x peak | inverse | voltag | e = 700; | 35Z6-G | | Class A
Amplifier | 250 | 90 | 3.0 | 3.2 | | 550,000 | 1,080 | | - | 1 - | 36 | | Half-Wave
Rectifier | Max | 1-c outp | ut curre | ent 🌒 =: | 82 ma; :
= 129 v | max peak i
olts; max p | nverse v | oltage | | volts; | 36A M 3 | | Half-Wave
Rectifier | | | | | | nax peak i | | | | | 36 A M 3-A | | Half-Wave
Rectifier | Max | d-c outp
RMS su | ut curr | ent 🏟 = | 82 ma; | max peak i
volts; max | nverse v | oltage | =365 | volts; | 36 A M 3-B | | Horizontal
Amplifier | | 110
 160
 ositive | 22.5
0
pulse pla | | 2.0
110
age 🖹 = 7 | 6,000
7,000; max | 14,000
d-c cath | to k | connec
at sock
ent = | et) | 36KD6 | | Horizontal
Amplifier | 175
55
Max p | 125
125
ositive
00 ma. | 25
0
pulse p | 130
580
late vo | 2.8
 40
 tage | l — | 9,600
volts; | d-c ca | _
thode o | urrent | 36MC6 | | Class A
Amplifier | 250 | 1 - | 18 | 7.5 | T - | 8,400 | 1,100 | 9.2 | - | | 37 | | Class A
Amplifier | 250 | 250 | 25 | 22 | 3.8 | 100,000 | 1,200 | | 10,000 | 2.5 | 38 | | Horizontal
Amplifier
TV Damper | 230 m
Max | na | put cur | rent 🏶 : | =200 m | 6,200
=5,000; n
a; max per | | | | - | 38HE7¶ | | Horizontal
Amplifier | 130 | 130 | 22
0 | 60
450 | 2.8 | 6,200 | 8,800 | | Γ- | T | 38HK7¶ | | TV Damper | Max
230 m
Max | positive
1a | pulse | plate v | oltage 🏶
= 200 m | =5,000; n
a; max per | | | | | | | Class A
Amplifier | 250 | 90 | 3.0* | 5.8 | 1.4 | 1,000,000 | 1.050 | | - | T | 39/44 | | Class A
Amplifier | 180 | | 3.0 | 0.2 | | 150,000 | 200 | 30 | 250,000 | | 40 | | Class A
Amplifier | 110
115 | 110
115 | 7.5
R _k = 180 | 32†
34† | 3.0†
3.2† | 20,000 | 6,000 | | 2,800
3,200 | 1.5 | 40F R 5 ¶ | | Horizontal
Amplifier | 150
45
Max
400 m | 110
160
positive | 22.5 | 100
1,100
plate ve | 2.0
110
oltage @ | 6,000
-7,000; n | 14,000
nax d-c | kats | connect
socket)
e curre | 1 | 40KD6¶ | | Horizontal
Amplifier | | 160
160 | | 1,400 | 45 | =7,000; n | ΙΞ. | | =0 volts | · } | 40KG6 | Metal tubes are shown in bold-face type, miniature tubes in ilalics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ¶ Maximum screen dissipation appears metal minimediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | in
s |
-------------------|-------------------------------------|---------------|---------------|---------------|---------------|--------------|--------------------|------------------------------|-----------------------------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 41 | Power-Amplifier Pentode | 6B | 12-5 | 6.3 | 0.4 | 8.5 | 315 | 285 | - | <u> </u> | i — | | 42 | Power-Amplifier Pentode | 6B | 14-1 | 6.3 | 0.7 | 11 | 375 | 285
3.75 | | | - | | 42KN6¶ | Beam Power
Amplifier | 12G U | 12-82 | 42 | 0.45 | 30 ◈ | 7708 🏶 | | 44 ▲ | 18 ▲ | 1.0 🛕 | | 43 | Power-Amplifier Pentode | 6B | 14-1 | 25.0 | 0.3 | 5.3 | 160 | 135 | 8.5 | 12.5 | 0.2 | | 45 | Power-Amplifier Triode | 4D | 14-1 | 2.5 | 1.5 | 10 | 275 | = | 4.0 | 3.0 | 7.0 | | 45B5 | Power Amplifier
Pentode | 9CV | 6-4 | 45 | 0.1 | 14 🏶 | 275 ◈ | 220 ③
2.1 ④ | | Tube
ubes P | ush- | | 46Z3 | Half-Wave High-
Vacuum Rectifier | 5AM | 5-2 | 45.0 | 0.075 | = | Tube V
23 v at | oltage
130 ma | Drop: | ******* | | | 45Z5-GT | Half-Wave High-
Vacuum Rectifier | 6AD | 9-11 | 45.0 | 0.15 | | Tube V | oltage
200 ma | Drop: | · | | | 46 | Dual-Grid
Power-Amplifier | 5C | 16-1 | 2.5 | 1.75 | 10 | 400 | _ | Single
(G ₂ & | tube
P tied) | | | B46 | Photoconductive Cell | | T-X | | | 0.12 | 60 € | | _ | <u> </u> | | | 47 | Power-Amplifier
Pentode | 5B | 16-1 | 2.5 | 1.75 | = | 250 | 250 | 8.6 | 13.0 | 1.2 | | 48 | Power-Amplifier
Tetrode | 6A | 16-1 | 30.0
DC | 0.4 | | 125 | 100 | | | | | 49 | Dual-Grid
Power-Amplifier | 5C | 14-1 | 2.0
DC | 0.12 | | 135 | | Single
(G ₂ & | tube
P tied) | | | 50 | Power-Amplifier Triode | 4D | T-X | 7.5 | 1.25 | 25 | 450 | | 4.2 | 3.4 | 7.1 | | 50A5 | Beam Power Amplifier | 6AA | 9-31 | 50.0 | 0.15 | 10 | 200 | 125
1.25 | _ | | = | | 50AX6-G | Full-Wave High-Vacuum
Rectifier | 7Q | 14-3 | 50.0 | 0.3 | | Tube V
21 v at | oltage
250 ma | Drop: 4 | | <u></u> | | 60B5 | Beam Power Amplifier | 7BZ | 5-3 | 50.0 | 0.15 | 6.0 | 135 | 117
1.25 | 13.0 ▲ | 8.5 ▲ | 0.6 ▲ | | 50BK5 | Beam Power Amplifier | 9BQ | 6-3 | 50.0 | 0.15 | 9.0 | 250 | 250
2.5 | 13 ▲ | 5.0 ▲ | 0.6 ▲ | | 60BM8 | Triode-Pentode | 9EX | 6-4 | 50 | 0.1 | 7.0
1.0 | 250
250 | 250
1,8 | | e Section | | | 60C6
60C6-A¶ | Beam Power Amplifier | 7CV | 5–3 | 50.0 | 0.15 | 7.0 ♦ | 150 ♦ | 130 (a) | 13.0 | 8.5 ▲ | 0.6 🛦 | | 50C6-GA | Beam Power Amplifier | 7AC | 14-3
12-16 | 50 | 0.15 | 12.5 | 200 | 2008
1.75 | | | | | 50CA5 | Beam Power Amplifier | 7CV | 5-3 | 50.0 | 0.15 | 5.0 | 130 | 130
1,4 | 15▲ | 9.0▲ | 0.5 🛦 | | 50DC4 | Half-Wave High-
Vacuum Rectifier | 5BQ | 5-3 | 50.0 | 0.15 | | Tube V
21 volts | oltage
s at 240 | Drop:
ma d-c | : | | | 50E5 | Beam Power
Amplifier | 8GT | T-X | 50 | 0.15 | 111 | 250 | 250
5.0 | 17.5 ▲ | 8.0 ▲ | 1.1 🛦 | | 50EH5
50EH5-A¶ | Power-Amplifier Pentode | 7CV | 5-3 | 50 | 0.15 | 5.5 ◈ | | 130 ♦
2.0 ♦ | 17▲ | 9.0 🛦 | 0,65 ▲ | | 50FA6¶ | Beam-Power
Amplifier | 7CV | 5-3 | 50,0 | 0.1 | 5.2 🏶 | 150 ◈ | 130 ③
1.1 ④ | 11 🛦 | 8.5 ▲ | 0.28 ▲ | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|---------------------------|------------------------|--------------------------|---------------------------------|--|--|--|-------------------------------|--|--------------------------------|-------------------| | Class A
Amplifier | 250 | 250 | 18 | 32† | 5.5† | 90,000 | 2,300 | _ | 7,600 | 3.4 | 41 | | Class A
Amplifier | 285 | 285 | 20 | 38† | 7.0† | 78,000 | 2,550 | | 7 000 | 4.8 | 42 | | Horizontal
Amplifier | 130
60
Max
400 m | 130
125
positive | 20
0
pulse | 100
 800
 plate vo | 4.0
 50
 oltage 🏶 | 4,000
 | 16,000
nax d-c | kats | connect
ocket)
e currer | | 42KN6¶ | | Class A
Amplifier | 160 | 120 | 18 | 33† | 6.5† | 42,000 | 2,375 | _ | 5,000 | 2.2 | 43 | | Class A
Amplifier | 275 | | 56 | 36† | | 1,700 | 2,050 | 3.5 | 4,600 | 2.0 | 45 | | Class A
Amplifier
Class AB | 200
170 | 200 | 17.3
R _k = | 60†
113† | 4.1†
6.0† | 28,000 | 8,800 | | 2,400
3,5001 | 5.2 | 45B5 | | Amplifier
Half-Wave | Max d | -c outp | ut curr | ent = 6 | ma; n | nax peak i | nverse | voltage | <u> </u> | | 45Z3 | | Rectifier | rms su | pply vol | tage = 1 | 117 volt | s; max j | peak curre | nt = 390 | ma | | | 45Z5-GT | | Half-Wave
Rectifier | With n | anel lat | nn No. | 40 or N | io. 47 be | x peak inveak current
etween pin
a
ing resistor | s 2 and | 3 and t | 10 shun | ting re- | 4023-01 | | Class A
Amplifier | 250 | - | 33 | 22† | _ | 2,380 | 2,350 | 5.6 | 6,400 | 1.25 | 46 | | Control | Spectra | | onse = 6 | ,100 ar | ngstrom | units; m | aximum | curren | t 🖲 = 20 | 0 milli- | B46 | | Class A
Amplifier | 250 | 250 | 16.5 | 31† | 6.0† | 60,000 | 2,500 | _ | 7,000 | 2.7 | 47 | | Class A
Amplifier | 125 | 100 | 20 | 56 | 9.5 | | 3,900 | | 1,500 | 2.5 | 48 | | Class A
Amplifier | 135 | | 20 | 6.0 | | 4,175 | 1,125 | 4.7 | 11,000 | 0.170 | 49 | | Class A Amp | 450 | | 84 | 55 | | 1,800 | 2,100 | 3.8 | 4,350 | 4.6 | 50 | | Class A
Amplifier | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | _ | 4,000 | 3.8 | 50A5 | | Full-Wave
Rectifier
TV Damper | supply
Max d | voltage | per pl | ate = 35 | 4.0†
ma; ma
 0 volts;
 late = 12
 ate = 600 | 13,000
x peak inventage max peak
25 ma; max
ma | 8,000
erse volt
curren
k peak i | age = 1:
t per p
nverse | 2,000
250 volt
late = 6
voltage | s; rms
00 ma
=2000 | 50AX6-G | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | _ | 2,500 | l .i. | 50B5 | | Class A
Amplifier | 250 | 250 | 5.0 | 35† | 3.5† | 100,000 | 8,500 | | 6,500 | 3.5 | 50BK5 | | Class A
Amplifier | 200 | 200 | 16 | 35 | 7.0 | 20,000 | 6,400 | 70 | 5,600 | 3.5 | 50BM8 | | Class A Amp
Class A
Amplifier | 120 | 110 | -0
8.0 | 3.5
49† | 4.0† | 10,000 | 7,500 | 70 | 2,500 | 2.3 | 50Cδ
50Cδ-A¶ | | Class A
Amplifier | 135
200 | 135
135 | 13.5
14 | 58†
61† | 3.5†
2.2† | 9,300
18,300 | 7,000
7,100 | | 2,000
2,600 | 3.6
6.0 | 50C6-G
50C6-GA | | Class A
Amplifier | 125
110 | 125
110 | 4.5
4.0 | 37†
32† | 4.0†
3.5† | 15,000
16,000 | 9,200
8,100 | = | 4,500
3,500 | 1.5 | 50CA5 | | Half-Wave
Rectifier | volts;
ma. W | max rm | s supply
el lamp | voltag
No. 40 d | e | ; max peal
17 volts; m
between p
• = 70 ma | nax peak
pins l an | e voltag
currer
d 4 and | ge ◆ = 3
nt ◆ = 7
no shu | 330
720
nt- | 50DC4 | | Horizontal
Amplifier | 100 | 100 | 8.2 | 100 | 7.0 | | 14.000 | ode cur | | —
200 ma | 50E5 | | Class A
Amplifier | 110 | 115 | R _k = 62 | 42† | 11.5† | | 14,600 | | 8,000 | | 50EH5
50EH5-A¶ | | Class A
Amplifier | 110 | 110 | 7.5 | 40† | 3.0† | 13,000 | 5,800 | | 2,500 | 1.5 | 50FA5¶ | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | construction cam-Power Amplifier cam-Power Amplifier ciode-Pentode ciode-Pentode cam Power Amplifier | nections 8KB 7CV 9EX 12FN 7FZ 7FZ 9QW 8MG 7AC | 5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 | 50.0
50.0
50.0
50
50
50
50
50 | 0.15 0.1 0.15 0.1 0.15 0.3 0.3 0.15 0.15 0.15 0.15 | Plate Watts 14.5 ♦ 5.0 ♦ 10 ♦ 1.0 ♦ 9.0 ♦ 3.8 ♦ 5.5 ♦ 12 ♦ | 150 \$\infty 150 \$\infty 150 \$\infty 400\$ \$\infty 21 volt | 1.1 | Pentod Pentod Pento Diode Drop: D ma d-c | 9.0 A le Section de Section de Section c de Section | 0.65 A | |--|--|--|---|--|--|---
--|---|---|---| | Amplifier am-Power Amplifier iode-Pentode iode-Pentode am Power Amplifier am Pentode am Power Amplifier | 7CV 9EX 12FN 12FN 7FZ 7FZ 9QW 8MG | 5-3
6-4
12-56
12-56
5-3
5-3
6-4
T-X | 50.0
50.0
50.0
50
50
50
50
50 | 0.1
0.15
0.3
0.3
0.15
0.15
0.15 | 5.0 ◆ 10 ◆ 1.0 ◆ 9.0 ◆ 3.8 ◆ 5.5 ◆ | 150 \$\infty\$ 150 \$\infty\$ 150 \$\infty\$ 400\$ \$\infty\$ Tube \(\frac{21}{21} \text{ volt} \) 150 \$\infty\$ 150 \$\infty\$ | 130 ♦ 1.75 ♦ 1.50 ♦ 3.0 ♦ 1.50 ♦ 3.0 ♦ 7oltage s at 250 7oltage s at 250 130 ♦ 2.0 ♦ 130 ♦ 1.1 ♦ | 2 Tube 17 A Pentod Triode Pento Diode Drop: ma d-c Pento Diode Drop: ma d-c | 9.0 A e Section de Section de Section de Section de Section de Section de Section | 0.65 don | | Amplifier iode-Pentode iode-Pentode iode-Pentode iode-Pentode am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier am Power Amplifier | 9EX 12FN 12FN 7FZ 7FZ 9QW 8MG | 6-4 12-56 12-56 5-3 5-3 6-4 T-X | 50.0
50
50
50
50
50
50 | 0.15
0.3
0.15
0.15
0.15
0.15 | 10 ♦
1.0 ♦
9.0 ♦
3.8 ♦
9.0 ♦
3.8 ♦ | 150 \$\rightarrow\$ 150 \$\limes\$ 400\$ \$\limes\$ Tube \(\frac{21}{21} \text{ volt} 150 \$\limes\$ 150 \$\limes\$ | 1.75 ♦ 150 ♦ 3.0 ♦ 150 € 3.0 \$ /oltage s at 250 130 ♦ 2.0 ♦ 1.1 ♦ | Pentod Triode Pento Diode Drop: Diode Drop: Diode Drop: Diode Drop: Diode Drop: Diode Drop: | Section de Section c de Section de Section de Section general Section general Section | ion i 0.5 4 | | iode-Pentode am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier | 12FN 12FN 7FZ 7FZ 9QW 8MG | 12-56 12-56 5-3 5-3 6-4 T-X | 50
50
50
50
50 | 0.3
0.3
0.15
0.15 | 1.0 ♦
9.0 ♦
3.8 ♦
5.5 ♦
5.5 ♦ | 150 \$\rightarrow\$ 400\$ \$\rightarrow\$ Tube \(\frac{21}{21} \) volt 400\$ Tube \(\frac{21}{21} \) volt 150 \$\rightarrow\$ | 3.0 ♠ 150 ♠ 3.0 ♠ | Triode Pento Diode Drop: Diode Pento Diode Drop: Diode Drop: Diode Drop: Diode Drop: | Section de | ion ion i . | | am Power Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier | 7FZ
7FZ
7FZ
9QW
8MG | 5-3
5-3
6-4
T-X | 50
50
50
50 | 0.15
0.15
0.15 | 9.0 ♦ 3.8 ♦ 9.0 ♦ 3.8 ♦ 5.5 ♦ | Tube \\ 21 volt \\ 400\$\\ Tube \\ 21 volt \\ 150 \leftarrow \\ 150 \leftarrow \\ | 3.0 ♦ /oltage s at 250 150 ♦ 3.0 ♦ /oltage s at 250 130 ♦ 1.1 ♦ | Pento Diode Drop: Drop: Drope | de Section de Section de Section Section | ion i i i i i i i i i i i i i i i i i i | | am Power
Amplifier
am Pentode
am Power
Amplifier
am Power
Amplifier
am Power Amplifier | 7FZ
7FZ
9QW
8MG | 5-3
5-3
6-4
T-X | 50
50
50 | 0.15
0.15
0.15 | 3.8 ♦ 5.5 ♦ | Tube \ 21 vol | 3.0 ♦ /oltage is at 250 130 ♦ 2.0 ♦ 1.1 ♦ | Diode
Drop:
ma d-o | Section | 0.5 | | Amplifier am Pentode am Power Amplifier am Power Amplifier am Power Amplifier | 7FZ
9QW
8MG | 5-3
6-4
T-X | 50 50 | 0.15 | 5.5 🏶 | 150 🏶 | 2.0 ♦
130 ♦
1.1 ♦ | | | | | am Pentode
am Power
Amplifier
am Power
Amplifier
am Power Amplifier | 9QW
8MG | 6-4
T-X | 50 | 0.15 | | | 130 (a) | 14▲ | 9.0 ▲ | 0.54 | | Amplifier
am Power
Amplifier
am Power Amplifier | 8MG | T-X | 50 | | 12 🏶 | 330 🏶 | | | | | | Amplifier
am Power Amplifier | | | | 0.15 | | l | 250 🏶
2.5 🏶 | | | _ | | | 7AC | 9-11 | | 0.10 | 13 🏶 | 275 ◈ | 275 ③ 5.5 ④ | 17.5▲ | 8.0 ▲ | 1.14 | | | | or
9-41 | 50.0 | 0.15 | 10 | 135 | 125
1.25 | | | _ | | gh-Vacuum Rectifier-
Doubler | 7AJ | 9-31 | 50.0 | 0.15 | _ | Tube V
22 v at | oltage
150 ma | Drop: • |) | | | gh-Vacuum Rectifier-
Doubler | 7Q | 9-11 | 50.0 | 0.15 | _ | Tube V
22 v at | oltage
150 ms
 Drop: 4 |) | | | gh-Vacuum Rectifier-
Doubler | 8AN | 9-11
or
9-41 | 50.0 | 0.15 | | Tube V
22 v at | oltage
150 ma | Drop: ¢
a d-c | | en dik kengong | | gh-Vacuum Rectifier-
Doubler | 7Q | 14-3 | 50.0 | 0.3 | | | | | | - | | gh-Vacuum Rectifier
Doubler | 8AN | 12-7 | 50.0 | 0.15 | | Tube V
21 v at | oltage
130 ma | Drop: 4 | | | | vin-Triode Power
Amplifier | 7B | 14-1 | 2.5 | 2.0 | 1.0♠ | 300 | _ | Push-p
Both S | ull
ections | in
in | | iode-Pentode | 12FS | 12-57 | 53.2 | 0.315 | 10◈ | Tube V | 3.5⊕

 oltage |
Diode Se
Drop: | ction | n | | iplex-Diode
Medium-Mu Triode | 6G | 12-6 | 2.5 | 1.0 | - | 250 | | _ | - | - | | edium-Mu Triode | 5A | 12-5 | 2.5 | 1.0 | 1.3 | 250 | | | | _ | | iode-Pentode | 12EN | 9-58 | (Pins
7 12)
14 | 0.15 | 6.5 | 150 ♦ | 135 ♦
1.8 ♦ | | | | | I ve | in-Triode Power Amplifier ode-Pentode plex-Diode Medium-Mu Triode dium-Mu Triode | ode-Pentode plex-Diode Medium-Mu Triode ode-Medium-Mu Triode 5A | Doubler in-Triode Power Amplifier ode-Pentode plex-Diode Medium-Mu Triode dium-Mu Triode 5A 12-5 | Doubler | Doubler | Doubler | Tube Via Tube Via Section Se | 14-1 2.5 2.0 1.0 | Triode Power TB 14-1 2.5 2.0 1.0 | 12FS 12-57 53.2 0.315 10 | Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. BAbsolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|---|---|---|--|---|--|--|-------------------------------------|--|--|--------------| | Class A | 130 | 130 | R _k = 120 | 88† | 5.0† | | <u> </u> | <u> </u> | 1,000 | 3.5 | 50FE5 | | Amplifier
Class A
Amplifier | 130 | 130 | 120
R _k = 75 | 150† | 7.2† | | - | <u> </u> | 1,600‡ | 7.0 | | | Class A
Amplifier | 100 | 115 | R _k = 62 | 32† | 8.5† | 14,000 | 12,800 | | 3,000 | 1.2 | 50F K 5 | | Class A
Amplifier
Class A Amp | 125
125 | 125 | R _k = 120
1.5 | 70†
2.5 | 10† | 5,000
17,000 | 7,500
2,700 | 46 | 2,000 | 3.0 | 50F Y 8 | | Horizontal | 130 | 130 | 22,5 | 48 | 2.0 | 10,000 | 6,500 | 1 | - | | 50GY7¶ ■ | | Amplifier | 60
Max r | 130 | 0
pulse pl | 320 | 2.9
22
tage 🏶 | = 5,000 v | l |
ix d-c c | athode | current | 5001 | | TV Damper | Maxd | -c outp | ut curre | ent 🚳 : | = 135 m
= 810 m | a; max pea
a. | k inver | se volta | ıge 🏶 ≖ | = 4,200 | | | Horizontal
Amplifier | 130
60 | 130 | 22.5
0 | 48
320 | 2.9 | 10,000 | I — | ΓΞ. | = | = | 50GY7-A¶ | | | l 155 m: | a. | | oltage 4 | | 000 volts; n | | | | 1 | | | TV Damper | Max d | l-c outp | ut curre
ak curre | nt 🔷 = | = 135 m
= 810 m | a; max pea | k inver | se volta | ige 🚸 = | * 4,200 | | | Class A
Amplifier | 110 | 115 | R _k = 62 | 42 | 11.5 | | 14,600 | | 3,000 | | 50HC6 | | Class At
Amplifier | 110 | 110 | 7.5 | 49† | 4.0† | 10,000 | 7,500 | _ | 2,500 | 1.9 | 50HK6 | | Class A
Amplifier | 130 | 130 | R _k = 56 | 70† | 5.0† | 7,500 | 17,000 | _ | 2,000 | 3.0 | 50HN5 | | Horizontal
Amplifier | 100 | 100 | 8.2 | 100 | 7.0 | 5,000 | 14,000 | (b.p. | connect | ed to | 50JY6 | | Class A
Amplifier | 200
110 | 125 | $R_k = 180 \\ 7.5$ | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | i i | 50L6-GT | | Rectifier
or Doubler | Max d | -c outp | ut curre | 49† | 4.0† | 13,000
75 ma; ma | 8,000
x peak | inverse | 2.000
voltag | -700 | 50X6 | | Rectifier
or Doubler | Max d | -c outpu | it curre | nt per | =235; n | nax peak c
75 ma; ma
35; max pe | x peak | inverse | e = 450
voltag | ma
e = 700; | 50Y6-GT | | Rectifier
or Doubler | volts;
plate:
With
sistor,
With
plate: | max rn
= 450 m
panel la
max d-
panel la
= 65 ma. | out curres suppose mp No. c output mp and | ent per
ly volta
40 or l
it curre
l 250 ol | plate = age per No. 47 b nt per p am shun | =75 ma; m
plate = 235
petween pin
late = 60 m
sting resist | ax peak
volts;
as 6 and
a.
or (max | invers
max pe
7 and
), max | e voltag
ak curr
no shun
d-c out | ge = 700
ent per
ting re-
put per | 50Y7-GT | | Rectifier
or Doubler | Prese - | - 100 III | | | | 125 ma; m
plate = 235 | | | | 1 | 50Z6-G | | Rectifier
or Doubler | Max ovolts;
plate =
6 and | l-c outp
max rn
=400 ma
7. | out curr
ns suppl
n. Ratin | ent per
ly volta
gs also | plate =
ige per
apply w | 65 ma; ma
plate = 235
ith panel la | volts;
mp 292 | inverse
max pe
or 292 | e voltag
ak curr
A betwe | re = 700
ent per
en pins | 50Z7-G | | Class B
Amplifier | 300 | - 1 | 0.0 | 17.5† | | _ | | | 8,000 | 10 | 53 | | Class A
Amplifier | 294 | | 6.0 | 7.0 | | 11,000 | 3,200 | 35 | - | | | | Horizontal
Amplifier | 130
50 | 130
130 | 22 | 60
450 | 2.8 | 6,200 | 8,800 | | _ | | 53HK7¶ | | TV Damper | Man. | positive
d-c outp
peak cur | ut curre | ate volt
ent⊕ =: | zoo ma: | 5,000; max
max peak i | d-c cath
nverse v | ode curi
oltage (| ent⊗ =
> =3,70 | 230 ma.
0 volts; | • | | Class A
Amplifier | 250 | _ | 20 | 8.0† | | 7,500 | 1,100 | 8.3 | 20,000 | 0.350 | 55 | | Class A
Amplifier | 250 | | 13.5 | 5.0 | | 9,500 | 1,450 | 13.8 | | | 56 | | Class A
Amplifier | 120 | 110 | 8.0 | 49† | 4.0† | 10,000 | 7,500 | _ | 2,500 | 2.3 | 56R9 | | Class A
Amplifier | 100 | _ | R _k = 1500 | 0.6 | _ | 55,500 | 1,800 | 100 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. If minimal active below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca ₁ | pacitanc
icofarac | e in
Is | |---------|---|---------------|---------------|---------------|---------------|--------------|-------------------|------------------------------|---------------------------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 57 | Sharp-Cutoff Pentode | 6F | 12-2 | 2.5 | 1.0 | 0.75 | 300 | 125 | Pentod | le Conne | ection | | | | | | | | 1.75 | 250 | | Triode | Connec | tion
Tied) | | FG-57 | Thyratron
same as 5559 | | | | | | | | | | | | 58 | Remote-Cutoff RF
Pentode | 6F | 12-2 | 2.5 | 1.0 | 2.25 | 300 | 100 | - | | - | | 58HE7¶ | Diode-Pentode | 12 F S | 12-57 | 58 | 0.3 | 10 ◈ | 500\$ ◈ | 150 ③
3.5 ⑤ | Pentod | e Section | on | | | | | | | | | Tube V
21 volt | oltage
s at 350 | Diode
Drop:
0 ma d- | Section
c | | | 59 | Power-Amplifier Pentode | 7A | 16-1 | 2.5 | 2.0 | 10 | 250 | 250 | | | <u> </u> | | 60F X 5 | Beam-Power
Amplifier | 7CV | 5–3 | 60.0 | 0.1 | 5.5 ◈ | 150 🏶 | 2.0 | 17▲ | 9.0▲ | 0.65 ▲ | | 60HL5 | Beam Power
Amplifier | 9QW | 6-4 | 60 | 0.1 | 12 🏶 | 330 ◈ | 250 ③
2.5 ⑤ | | | _ | | 70A7-GT | Half-Wave Rectifier
Beam Power Amplifier | 8AB | 9-11 | 70.0 | 0.15 | _ | 110 | 110 | Tube V | oltage | Drop: | | 70L7-GT | Half-Wave Rectifier
Beam Power Amplifier | 8AA | 9-15 | 70.0 | 0.15 | | 117 | 117
1.0 | Tube V | oltage | Drop: | | 71-A | Power-Amplifier Triode | 4D | 14-1 | 5.0 | 0.25 | | 180 | | 3.2 | 2.9 | 7.5 | | 75 | Duplex-Diode High-Mu
Triode | 6G | 12-6 | 6.3 | 0.3 | | 250 | = | _ | = | | | 76 | Medium-Mu
Triode | 5A | 12-5 | 6.3 | 0.3 | | 250 | _ | 3.5 | 2.5 | 2.8 | | 77 | Sharp-Cutoff Pentode | 6F | 12-6 | 6.3 | 0.3 | 0.75 | 300 | 100 | 4.7 ▲ | 11.0 ▲ | 0.007 | | 78 | Remote-Cutoff RF
Pentode | 6F | 12-6 | 6.3 | 0.3 | 2.75 | 300 | 300 8
0.35 | 4.5 | 11.0 | 0.007 | | 79 | Twin-Triode Power
Amplifier | 6H | 12-6 | 6.3 | 0.6 | 11.5⊕ | 250 | = | Both S
Push-p | ections
ull | in | | 80 | Full-Wave High-Vacuum
Rectifier | 4C | 14-1,
9-26 | 5.0 | 2.0 | | Tube V
60 v at | oltage
125 ma | Drop: 4
a d-c | • | | | 81 | Half-Wave High-Vacuum
Rectifier | 4B | T-X,
16-1 | 7.5 | 1.25 | | | oltage
170 ma | | | | | FG-81-A | Thyratron | 3G | T-X | 2.5 | 5.0 | _ | Anode | voltage | drop = | 16 volts | peak | | 82 | Full-Wave Mercury-
Vapor Rectifier | 4C | 14-1 | 2.5 | 3.0 | - | Tube V | oltage | Drop: | | | | 83 | Full-Wave Mercury-
Vapor Rectifier | 4C | 16-1 | 5.0 | 3.0 | _ | Tube V | oltage | Drop: | | | | 83-V | Full-Wave High-Vacuum
Rectifier | 4AD | 14-1 | 5.0 | 2.0 | - | | oltage
175 ma | Drop: | • | | | 84/6Z4 | Full-Wave High-Vacuum
Rectifier | 5D | 12-5 | 6.3 | 0.5 | | Tube V | | Drop: | • | ***** | | 85 | Duplex Diode
Medium-Mu Triode | 6G | 12-6 | 6.3 | 0.3 | _ | 250 | | 1.5 | 4.3 | 1.5 | | 89 | Power-Amplifier
Pentode | 6F | 12-6 | 6.3 | 0.4 | | 250 | | (G ₂ , (| e conne | tied) | | | 1 | <u> </u> | <u> </u> | l | <u> </u> | <u> </u> | 250 | 250 | Pento | ode cont | nection | | Service | Plate
Volts | Screen
Volts |
Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μπλοs | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|----------------|---------------------|--|---------------------------------|----------------------------------|-------------------------------------|---------------------------|----------------------|--|--------------------------------|--------------| | Class A | 250 | 100 | 3.0 | 2.0 | 0.5 | 1,000,000 | 1,225 | | $\overline{}$ | <u> </u> | 57 | | Amplifier
Class A
Amplifier | 250 | _ | 8.0 | 6.5 | | 10,500 | 1,900 | 20 | _ | | | | | | | | | | | | | | | | | Class A
Amplifier | 250 | 100 | 3.0 | 8.2 | 2.0 | 800,000 | 1,600 | _ | T - | | 58 | | Horizontal
Amplifier | 130
50 | 130
130 | $\begin{array}{c} 22 \\ 0 \end{array}$ | 60
450 | 2.8
40 | 6,200 | 8,800 | | | | 58HE7 | | TV Damper | 230 m
Max | īa. | put cu | -
rren t 🏵 | =200 n | ⇒=6,500; r
na; max p | | | | • | | | Class A
Amplifier | 250 | 250 | 18 | 35 | 9.0 | 40,000 | 2,500 | <u> </u> | 6,000 | 3.0 | 59 | | Class A
Amplifier | 110 | 115 | R _k = 62 | 36† | 10† | 17,500 | 13,500 | | 3,000 | 1.3 | 60FX5 | | Class A
Amplifier | 130 | 130 | R _k = 56 | 70† | 5.0† | 7,500 | 17,000 | | 2,000 | 3.0 | 60HL5 | | Class A
Amplifier
Half-Wave | 110 | 110 | 7.5 | 40† | 3.0† | _ | 5,800 | | 2.500 | 1.5 | 70A7-GT | | Half-Wave {
Rectifier | lamp | i-c outp
must be | ut curre | ent =60
cted bet | ma; ma
ween pi | x rms supr
ins 6 and 7 | oly volta | ge = 12. | 5 volts. | A panel | | | Class A
Amplifier
Half-Wave {
Rectifier | | d-c outp | ut curr | | | 15,000
ax peak in
t peak curr | | ·
oltage == | 2,000
350 vol | | 70L7-GT | | Class A
Amplifier | 180 | - | 40.5 | 20† | - | 1,750 | 1,700 | 3.0 | 4,800 | 0.790 | 71-A | | Class A
Amplifier | 250 | | 2.0 | 0.9 | | 91,000 | 1,100 | 100 | = | | 75 | | Class A
Amplifier | 250 | | 13.5 | 5.0 | | 9,500 | 1,450 | 13.8 | - | | 76 | | Class A
Amplifier | 250 | 100 | 3.0 | 2.3 | 0.5 | 1,000,000 | 1,250 | | | | 77 | | Class A
Amplifier | 250 | 125 | 3.0 | 10.5 | 2.6 | 600,000 | 1,650 | _ | _ | | 78 | | Class B
Amplifier | 250 | | 0 | 10.5† | _ | Input sign | al = .386 | watt | 14,000 | 8.0 | 79 | | Full-Wave
Rectifier | supply | y voltag | e per pl | ate = 35 | 0 volts: | nax peak in
max peak (| urrent p | er plate | e = 400 r | na | 80 | | Half-Wave
Rectifier | Max o | i-c outp
upply v | ut curroltage = | ent =85
700 vo | ma; ma
lts; max | ax peak inv
peak curr | rerse vol
ent = 50 | tage = 2
0 ma | 2000 vol | ts; max | 81 | | Controlled
Rectifier | volts; | max pe | ak cath | ode cu | rent 🖲 : | nperes; ma
=2.0 ampe | res | | | | FG-81-A | | Full-Wave
Rectifier | rms st | apply vo | ltage p | er plate | =450 v | ax peak inv
olts; max p | eak cur | rent per | plate = | 600 ma | 82 | | Full-Wave
Rectifier | suppl | y voltag | e per p | late = 4 | 50; max | nax peak in
peak curr | ent per | plate = : | 1,000 m | a | 83 | | Full-Wave
Rectifier | rmssu | apply vo | oltage p | er plate | =375 v | ax peak in
olts; max p | eak cur | rent per | · plate = | 525 ma | 83-V | | Full-Wave
Rectifier | Max o | d-c outp | ut curre | ent = 60
er plate | ma; ma
= 325 v | x peak inv
olts; max p | erse vol
eak cur | tage = 1
rent per | ,250 vol
plate = | ts; max
180 ma | 84/6Z4 | | Class A
Amplifier | 250 |] | 20 | 8† | _ | 7,500 | 1,100 | 8.3 | 20,000 | 0.350 | 85 | | Class A
Amplifier | 250 | | 31 | 32† | | 2,600 | 1,800 | 4.7 | 5,500 | | 89 | | Class A Amp | 250 | 250 | 25 | 32† | 5.5† | 70,000 | 1.800 | | 6,750 | 3.4 | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con-
nec- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | citance
cofarad | | |-----------------|---|----------------------|-------------|---------------|---------------|--------------|--------------|-------------------------|---------|--------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | FG-97 | Thyratron | FG-97 | T-X | 2.5 | 5.0 | <u> </u> | Anode | voltage | drop = | 16 volts | peak | | FG-98-A | Thyratron | FG-97 | T-X | 2.5 | 5.0 | _ | Anode | voltage | drop = | 16 volts | peak | | V99
X99 | Low-Mu
Triode | 4E
4D | T-X
9-25 | 3.3
DC | 0.063 | _ | 90 | - | 2.5 | 2.5 | 3.3 | | FG-105 | Thyratron | FG-
105 | T-X | 5.0 | 10 | | Anode | voltage | drop = | 16 volts | peak | | 117L7/
M7-GT | Half-Wave Rectifier
Beam Power Amplifier | 8AO | 9-15 | 117 | 0.09 | 6.0 | 117 | 1.0 | | oltage | | | 117N7-GT | Half-Wave Rectifier
Beam Power Amplifier | 8AV | 9-15 | 117 | 0.09 | 5.5 | 117 | 117 | Tube V | oltage | Drop: | | 117P7-GT | Half-Wave Rectifier
Beam Power Amplifier | 8AV | 9-15 | 117 | 0.09 | 6.0 | 117 | 117
1.0 | Tube V | oltage | Drop: | | 117Z3 | Half-Wave High-Vacuum
Rectifier | 4CB | 5-3 | 117 | 0.04 | | | oltage
at 180 r | Drop: | 100 111 | | | 117Z4-GT | Half-Wave High-Vacuum
Rectifier | 5AA | 9-5 | 117 | 0.04 | | Tube V | oltage
at 180 r | Drop: | | <u></u> | | 117Z6-GT | High-Vacuum Rectifier
Doubler | 7Q | 9-11 | 117 | 0.075 | | Tube V | oltage
at 120 r | Drop: • | | | | FG-154 | Thyratron | FG-
154 | T-X | 5.0 | 7.0 | | Anode | voltage | drop = | 16 volt | Š | | FG172 | Thyratron | FG-
172 | T-X | 5.0 | 10 | _ | Anode | Voltage | Drop : | = 16 Vo | olts | | 182-B/
482B | Power-Amplifier Triode | 4D | 14-1 | 5.0 | 1.25 | _ | 250 | - | _ | - | | | 183/483 | Power-Amplifier Triode | 4D | 14-1 | 5.0 | 1.25 | | 250 | _ | | _ | | | 393-A | Thyratron | 5AV | T-X | 2.5 | 7.0 | | Anode | voltage | drop = | 15 volt | 3 | | 407A | Medium-Mu
Twin Triode | 407A | 6-1 | {40
20 | 0.05 | 1.35 | 330 ₪ | - | 2.2 ▲ | 1.0▲ | 1.1 | | 408A | Sharp-Cutoff
Pentode | 7BD | 51 | 20 | 0.05 | 1.7 🖲 | 180 € | 180 2 ⊕
0.5 ⊕ | 3.9 | 2,85 | 0.01 | | 414 | Thyratron | 414 | T-X | 5.0 | 19 | _ | Anode | Voltage | Drop | = 20 V | olts | | B425 | Photoconductive Cell | | T-X | _ | _ | 0.25 | 250 € | - | I - | - | | | 482B | Power-Amplifier
Triode
same as 182B | | | | | | | | | | | | 485 | Medium-Mu
Triode | 5A | 12-5 | 3.0 | 1.25 | - | 180 | - | - | - | I | | 502-A | Thyratron | 6BS | 8-1 | 6.3 | 0.6 | _ | Anode | voltage | drop = | 8 volts | | | 512AX 📵 | AF Pentode | 512AX | 2-2 | 0.625 | 0.02 | | 45 | 45 | 2.0 ▲ | 1.5▲ | 0.045 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. \$ Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _{m,}
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | <u> </u> | Tube
Type | |---|---------------|------------------------------|----------------------|---------------------------------|----------------------------------|---------------------------|--------------------------|-------------------|--|-------------------|-----------------| | Controlled
Rectifier | Max o | l-c cathe
max pe | ode curi
ak cath | ent = = | rent 🖲 = | peres; max
=2.0 amper | peak inv | verse vo | itage 🖲 | =1,000 | FG-97 | | Controlled
Rectifier | volts; | | ak cath | ode cur | | peres; max
=2.0 amper | es | | voltage | ● = 500 | FG-98-A | | Class A
Amplifier | 90 | <u> </u> | 4.5 | 2.5 | | 15,500 | 425 | 6.6 | _ | | V99
X99 | | Controlled
Rectifier | volts; | max pe | ak cath | ode cur | rent 🖲 | peres; max
=40 amper | es | verse vo | | | FG-105 | | Class A Amplifier Half-Wave { Rectifier | | | | | | ax peak in
peak curre | | | 4,000
350 vol | } | 117L7/
M7-GT | | Class A Amplifier Half-Wave { Rectifier | 100
Max o | 100 | 6.0 | 51†
ent = 75 | 5†
ma; m | 16,000
ax peak inv | 7,000
erse vol | tage = 3 | 3,000
50 volt | | 117N7-GT | | Class A Amplifier Half-Wave Rectifier | 105
Max | 105
d-c outr | 5.2
out curr | 43†
ent = 75 | 4†
ma; m | 17,000
ax peak in | 5,300
verse vo | ltage = | | 0.85
ts; max | 117P7-GT | | Half-Wave
Rectifier | Max | d-c outr | ut curr | ent = 90 | ma; m | ax peak in | verse vo | ltage = | 330 vol | ts; max | 117 Z3 | | Half-Wave
Rectifier | Max | d-c outr | ut curr | ent = 90 | ma; m | az peak int | erse vo | ltage = | 350 vol | ts; max | 117Z4-GT | | Rectifier
or Doubler | volts; | d-c out;
max ri
=360 m | ns supp | ent per
ly volt | plate =
age per | =60 ma; ma
plate = 238 | ax peak
volts; | inverse
max pe | voltag | e =700
ent per | 117Z6-GT | | Controlled
Rectifier | | | | | | peres; max
=10 amper | | nverse | voltage | ● =500 | FG-154 | | Mercury
Thyratron | | | | | | peres; max
= 40 ampe | | verse v | oltage | = 2000 | FG172 | | Class A
Amplifier | 250 | _ | 35 | 18 | | _ | 1,500 | | | | 182-B/482E | | Class A
Amplifier | 250 | _ | 60 | 30 | _ | 1,750 | 1,700 | 3.0 | - | _ | 183/483 | | Controlled
Rectifier | | | | | | peres; max
=6.0 ampe | | verse v | oltage 🖲 |
=1,250 | 393-A | | Class A
Amplifier | 150 | - | R _k = 240 | 8.2 | | 6,350 | 5,500 | 35 | - | | 407A | | Class A
Amplifier | 120 | 120 | R _k = 200 | 7.0 | 2.2 | 340,000 | 5,000 | | _ | - | 408 A | | Mercury
Thyratron | volts; i | max pea | k catho | de curr | ent 🖲 : | peres; max
= 100 ampe | eres. | | | - 1 | 414 | | Control | Spect
ampe | rai Res | ponse = | 6,100 a | ngstror | n units; m | aximun | curre | nt 🖲 =2 | 0 milli- | B425 | | Class A
Amplifier | 180 | - | 9.0 | 5.8 | | 8,900 | 1,400 | 12.5 | _ | | 485 | | Controlled
Rectifier | voits; | max pe | ak cath | ode cur | rent 🖭 : | na; max p
=1.0 amper | eak inv | erse vo | ltage 🖲 | =1,300 | 502-A | | Class A
Amplifier | 22.5 | 22.5 | 0.625 | 0.125 | 0.040 | 1,250,000 | 160 | | _ | | 512AX ⊕ | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca
I | pacitano
icofara | e in
ds | |-------|--|---------------|------|---------------|---------------|--------------|--------------|------------------------|---------------|---------------------------------|--| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 575-A | Half-Wave Mercury-
Vapor Rectifier | 575-A | T-X | 5.0 | 10 | - | Tube v | oltage (| lrop: 10 | volts | | | 627 | Thyratron | 4BZ | T-X | 2.5 | 6.0 | | Anode | voltage | drop = | 12 volt | s | | 672-A | Thyratron | 672-A | T-X | 5.0 | 5.0 | - | Anode | voltage | drop = | 12 volt | s | | 673 | Half-Wave Mercury-
Vapor Rectifier | 2P | T-X | 5.0 | 10 | | Tube v | oltage (| irop: 10 | volts | | | 678 | Thyratron | 678 | T-X | 5.0 | 7.5 | | Anode | voltage | drop = | 15 volt | s | | 710 | Thyratron same as 6011 | | | | | | | | | | | | 710L | Thyratron
same as 7518 | | | | | | | | | | | | 40 | Thyratron
same as 6856 | | | | | | | | | | | | 60 | Thyratron
same as 6858 | | | | | | | | _ | | | | 760P | Thyratron
same as 6859 | <u> </u> | | | | | | | • | | ··· | | 807 | Beam Power Amplifier | 5AW | 16-2 | 6.3 | 0.9 | 25 🖲 | 400 🕞 | ı — | Triode | Conne | ction | | | | | | | | 25 € | 609 ₪ | 300 ₪
3.5 ₪ | Pentod | ubes, Pu
le Conn
ubes, Pu | ection | | 816 | Half-Wave Mercury-
Vapor Rectifier | 4P | T-X | 2.5 | 2.0 | _ | Tube \ | oltage | Drop = | 15 Volt | .s | | 866-A | Half-Wave Mercury-
Vapor Rectifier | 4P | T-X | 2.5 | 5.0 | _ | Tube \ | oltage | Drop = | 15 Volt | s | | 872-A | Half-Wave Mercury-
Vapor Rectifier | 4AT | T-X | 5.0 | 7.5 | | Tube V | oltage | Drop = | 10 Volt | s | | 884 | Thyratron | 6Q | 12-7 | 6.3 | 0.6 | | Anode | voltage | drop = | 16 volt | s | | 950 | Power-Amplifier Pentode | -5K | 14-1 | 2.0
DC | 0.12 | - | 135 | 135 | | - | | | 954 | Detector Amplifier
Pentode (Acorn) | 5BB | 4-3 | 6.3 | 0.15 | 1.5 | 250 | 100 | 3.4 | 3.0 | 0.007 | | 955 | Medium-Mu Triode
(Acorn) | 5BC | 4-1 | 6.3 | 0.15 | 1.6 | 250 | | 1.0▲ | 0.4 ▲ | 1.3 🛦 | | 956 | Remote-Cutoff RF | 5BB | 4-3 | 6.3 | 0.15 | 1.7 | 180
250 | 100 | 3.1 | 2.5 | 0.009 | | 957 | Pentode (Acorn) Medium-Mu | 5BD | 4-1 | 1.25 | 0.05 | | 135 | 0.3 | 0.25 | 0.5 | 1.1 | | 958-A | Triode (Acorn) Medium-Mu Triode | 5BD | 4-1 | DC
1.25 | 0.1 | 0.6 | 135 | | 0.45 | 0.6 | 2.5 | | | (Acorn) | - | " - | DC | | _ | 135 | | 0.10 | 0.0 | 2.0 | | 959 | Sharp-Cutoff
Pentode (Acorn) | 5BE | 4-3 | 1.25
DC | 0.05 | | 145 | 67.5 | 1.8 | 2.5 | 0.015 | | B1035 | Photoconductive
Cell | _ | T-X | | | 0.3 | 350 ₪ | | | | = | | 1612 | Pentagrid Mixer
(Special 6L7) | 7T | 8-4 | 6.3 | 0.3 | 1.5 | 250 | 100
1.0 | | | - | | 614 | Beam Power Amplifier | 7AC | 10-1 | 6.3 | 0.9 | 21 📵 | 375 ₪ | 300 ©
3.5 © | Two tu | bes, Pu | sh-pull | | 1620 | Sharp-Cutoff Pentode
(Special 6J7) | 7R | 8-4 | 6.3 | 0.3 | | 250 | 100 | 7.0 | 12.0 | 0.005 | | 1621 | Power-Amplifier Pentode
(Special 6F6) | 7S | 8-6 | 6.3 | 0.7 | 7.9 | 300 | 300 | 2 tubes | , Push- | pull | | 622 | Beam Power Amplifier
(Special 6L6) | 7AC | 10-1 | 6.3 | 0.9 | 13.8 | 300 | 250
1.4 | 2 tubes | , Push- | pull | | 1625 | Beam Power Amplifier | 5AZ | 16–2 | 12.6 | 0.45 | 25 📵
25 📵 | 400 ® | | | Connec
ibes, Pu | sh-Pul | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--|----------------------|--|---|----------------------------------|---|---|--|--|--------------------------------|---| | Half-Wave
Rectifier | volts; | max pe | ak curr | ent 🚱 🖚 | 10 amp | | | | | 1 | 575-A | | Controlled
Rectifier | Max d
2,500 v | i-c cath
volts; n | ode cu
ax peal | rrent 🖲
k cathoo | =0.64 a
le curre | amperes; m
nt 🖲 == 2.5 : | ax peal
amperes | k inver | se volta | ge 🖲 = | 627 | | Controlled
Rectifier | 2,500 | volts; m | ax pear | k cathoo | ie curre | mperes; m
nt 🖹 = 40 a | mperes | | | I | 672-A | | Half-Wave
Rectifier | volts; | max pe | ak curr | ent 🚇 🚥 | 10 amp | | | | | - 1 | 673 | | Controlled
Rectifier | Max 6
15,000 | i-c cath
volts; | node cu
max per | rrent | =1.6 a | mperes; m
ent = 6.0 | ax peak
ampere | invers | se volta | ge 🖲 = | 678 | | | | | | | ļ | | <u> </u> | L | L | W.O | | Class AB ₁
Amplifier | 400 | - | 45 | 64† | - | _ | - | - | 3,000‡ | 1 | 807 | | Class AB ₂ Amplifier | 600 | 300 | 29 | 481 | 0.7† | | – | - | 6,900‡ | Į j | | | Half-Wave
Rectifier | Max
5,000 | d-c out
volts; r | put cur | rent 🖲 : | =0.125
nt 🖲 =0 | amperes; n
.5 amperes | nax pea | k inver | se volt | age 🖲 = | 816 | | Half-Wave
Rectifier | Max | i-c outp | ut curre | | 0.25 am | peres; max | | verse vo | ltage 🖲 | =5,000 | 866-A | | Half-Wave
Rectifier | Maxo | 1-c outn | ut curr | ent le m | 1.25 am | peres: max | peak in | verse vo | ltage 🖲 | =5,000 | 872-A | | Controlled {
Rectifier {
Relaxation
Oscillator | wax i | реак са | tnoae c | urrent | 8 = 3∪∪ : | peres
; Max peak
ma
nax peak c | | | | | 884 | | Clase A | | | | | | | | | | | | | Class A
Amplifier | 135 | 135 | 16.5 | 7.0† | 2.0† | 105,300 | 950 | | 13,500 | 0.450 | 950 | | Amplifier Class A Amplifier | 135
250
90 | 135
100
90 | 3.0
3.0 | 2.0
1.2 | 2.0†
0.7
0.5 | |
950
1,400
1,100 | _ | | | 950 | | Class A
Amplifier
Class A | 250
90
250 | 100 | 3.0
3.0
7.0 | 2.0
1.2
6.3 | 0.7 | 105,300
1,000,000
1,000,000
11,400 | 950
1,400
1,100
2,200 | | 13,500 | 0.450 | | | Class A Amplifier Class A Amplifier | 250
90
250
180
90 | 100 | 3.0
3.0
7.0
5.0
2.5 | 2.0
1.2
6.3
4.5†
2.5 | 0.7 | 105,300
1,000,000
1,000,000 | 950
1,400
1,100 | _ | | 0.450 | 954 | | Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A | 250
90
250
180 | 100 | 3.0
3.0
7.0
5.0 | 2.0
1.2
6.3
4.5† | 0.7 | 105,300
1,000,000
1,000,000
11,400
12,500 | 950
1,400
1,100
2,200
2,000 | | 13,500 | 0.450 | 954 | | Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A Amplifier Class A | 250
90
250
180
90
180 | 100 90 | 3.0
3.0
7.0
5.0
2.5
35 | 2.0
1.2
6.3
4.5†
2.5
7.0† | 0.7
0.5
—
— | 1,000,000
1,000,000
11,400
12,500
14,700 | 950
1,400
1,100
2,200
2,000
1,700 | | 13,500
 | 0.450 | 954
955 | | Amplifier Class A Amplifier Class A Amplifier Class C Amp Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A | 250
90
250
180
90
180
250 | 100 90 | 3.0
3.0
7.0
5.0
2.5
35
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7 | 0.7
0.5
—
— | 1,000,000
1,000,000
11,400
12,500
14,700
700,000 | 950
1,400
1,100
2,200
2,000
1,700
—
1,800 | 25
25
25
25
— | 13,500
 | 0.450 | 954
955
956 | | Amplifier Class A Amplifier Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp | 250
90
250
180
90
180
250
135 | 100 | 3.0
7.0
5.0
2.5
35
3.0
5.0
7.5 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0 | 2.7 | 105,300
1,000,000
1,000,000
11,400
12,500
14,700
700,000
20,800
Input Sigr | 950
1,400
1,100
2,200
2,000
1,700
1,800
650
1,200
al =0.0 | 25
25
25
25
 | 20,000 | 0.450 | 954
955
956
957
958-A | | Amplifier Class A Amplifier Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp | 250
90
250
180
90
180
250
135
135 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
35
3.0
5.0
7.5
20
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7 | 0.7
0.5
 | 105,300
1,000,000
1,000,000
11,400
12,500
14,700
700,000
20,800
10,000
Input Sigr
800,000 | 1,400
1,100
2,200
1,700
1,700
1,800
650
1,200
1,200
1,600 | 25
25
25
25

13.5
12 | 20,000 | 0.450
 | 954
955
956
957
958-A | | Amplifier Class A Amplifier Class A Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Amplifier Class A Class A Class A Amplifier Class A | 250
90
250
180
90
180
250
135
135
135 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
35
3.0
5.0
7.5
20
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7 | 0.7
0.5
 | 105,300
1,000,000
1,000,000
11,400
12,500
700,000
20,800
10,000
Input Sigr
800,000
units; resis | 950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.0: 600 | 25
25
25
25

13.5
12 | 20,000 | 0.450
 | 954
955
956
957
958-A | | Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class A | 250
90
250
180
90
180
250
135
135
135 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
35
3.0
5.0
7.5
20
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7 | 0.7
0.5
 | 105,300
1,000,000
1,000,000
11,400
12,500
14,700
700,000
20,800
10,000
Input Sigr
800,000 | 950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.00 600 tance at s | 25
25
25
25
 | 20,000 | 0.450
 | 954
955
956
957
958-A | | Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class C Amp Class C Amp Class C Amp Class A Amplifier Class A | 250
90
250
180
90
180
250
135
135
135
Spects
ohms: | 100
90
 | 3.0
3.0
7.0
5.0
2.5
3.0
5.0
7.5
20
3.0
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7
6.100 ar
20 footed | 0.7
0.5
 | 105,300
1,000,000
1,000,000
11,400
12,500
14,700
700,000
20,800
10,000
Input Sigr
800,000
units; resis | 950 1,400 1,100 2,200 2,000 1,700 1,800 650 1,200 al =0.00 600 tance at s | 25
25
25
25
 | 20,000
 | 0.450
 | 954
955
956
957
958-A
959
B1035 | | Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Amplifier | 250
90
250
180
90
250
135
135
135
135
Spects
ohms; | 100
90
 | 3.0
3.0
7.0
5.0
2.5
3.0
5.0
7.5
20
3.0
3.0
7.5
20
3.0
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7
6,100 ar
20 footed | 0.7
0.5
 | 105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000 | 1,400
1,100
2,200
1,700
1,800
650
1,200
1,200
1,200
tance at s | 25
25
25
25
 | 20,000
 | 0.450
 | 954
955
956
957
958-A
959
B1035 | | Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class C Class A Amplifier Class C Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier | 250
90
250
180
90
180
250
135
135
135
135
250
360 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
3.0
7.5
20
3.0
3.0
2.5
3.0
2.5
3.0
2.5
3.0 | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7
6.100 ar
2.0 foote | 0.7
0.5
 | 105,300
1,000,000
1,000,000
11,400
12,500
14,700
700,000
20,800
10,000
Input Sigr
800,000
units; resis
1,200 ohm
600,000 | 950
 1,400
 1,100
 2,200
 2,000
 1,700
 1,800
 650
 1,200
 600
 600
 tance at s | 25
25
25
25
 | 20,000
 | 0.450
 | 954
955
956
957
958-A
959
B1035
1612 | | Amplifier Class A Amplifier Class A Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Amplifier | 250
90
250
180
250
180
250
135
135
135
135
250
360
250 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
3.0
7.5
20
3.0
2.5
3.0
2.5
3.0
3.0
2.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 2.0
1.2
6.3
4.5+
2.5
7.0+
6.7
2.0
3.0
7.0
1.7
6.100 ar
20 foote
5.3
88†
2.0
2.0 | 0.7
0.5
 | 105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000 | 1,400
1,100
2,200
1,700
1,800
650
1,200
1,200
1,200
tance at s | 25
25
25
25
 | 20,000 | 0.450 | 954
955
956
957
958-A
959
B1035
1612
1614
1620 | | Amplifier Class A Amplifier Class C Amp Class C Amp Class C Amp Class C Amp Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Amplifier Class A Class A Class A Class A Class A Class A | 250
90
180
250
180
250
135
135
135
135
250
360
250
100
300 | 100
90
 | 3.0
3.0
7.0
5.0
2.5
3.0
7.5
20
3.0
20
3.0
22.5
3.0
20
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3. | 2.0
1.2
6.3
4.5†
2.5
7.0†
6.7
2.0
3.0
7.0
1.7
5.100 ar
20 foote:
5.3
88†
2.0
2.0
38† | 0.7
0.5
 | 105,300 1,000,000 1,000,000 11,400 12,500 700,000 20,800 10,000 Input Sigr 800,000 units; resis=1,200 ohm 600,000 | 1,400
1,100
2,200
1,700
1,800
650
1,200
1,200
1,200
tance at s | 25
25
25
25
 | 20,000 | 0.450 | 954
955
956
957
958-A
959
B1035
1612
1614
1620
1621 | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Caj
P | acitano | e ia
Is | |----------------------------|--|----------------|------|---------------|---------------|---------------|------------------------------|------------------------|----------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | watts | Input | Out-
put | Grid-
plate | | 1629 | Electron-Ray Indicator | 7AL | T-X | 12.6 | 0.15 | _ | 250 | Max ta
Min ta | rget vol | tage = :
tage = : | 250
25 | | 1631 | Beam Power
Amplifier | 7AC | 10-1 | 12.6 | 0.45 | 16 | 360 | 270
2.5 | 2 tubes | , Push- | pull | | 1632 | Beam Power Amplifier | 7AC | 8-6 | 12.6 | 0.6 | 5.5 | 117 | 117
1.25 | | | - | | 1633 | Medium-Mu Twin
Triode | 8BD | 9-11 | 25.0 | 0.15 | 2.5 🏚 | 300 | _ | | _ | | | 1634 | High-Mu Twin Triode
(Special 12SC7) | 85 | 8-1 | 12.6 | 0.15 | | 250 | _ | | _ | | | 1635 | Twin-Triode Power Amplifier | 8B | 9-11 | 6.3 | 0.6 | 3.0♠ | 300 | _ | Both s | ections
-pull | in | | 1642 | Medium-Mu
Twin Triode
same as 2C21 | _ | | | | _ | | - | _ | _ | _ | | 1644 | Twin-Pentode Power
Amplifier
(Special 12L8-GT) | 8BU | 9–11 | 12.6 | 0.15 | 2.5♠ | 180 | 180
1.0 | 5.0 ▲ | 6.0▲ | 0.7 ▲ | | 1654 | Half-Wave High-
Vacuum Rectifier | 2Z | T-X | 1.4 | 0.05 | | | = | | | _ | | 1853 | Remote-Cutoff
RF Pentode
same as 6A B7 | _ | | _ | - | - | _ | _ | _ | _ | _ | | 2050 | Thyratron | 6BS | 12-7 | 6.3 | 0.6 | - | Anode | Voltage | Drop : | -8.0 V ∂ | olts | | 2050-A | Thyratron | 6BS | 9-7 | 6.3 | 0.6 | | Anode | Voltage | Drop = | -8.0 V o | lts | | 5544 | Thyratron | 4BZ | T-X | 2.5 | 12 | | Anode | Voltage | Drop : | =16 Vo | ts | | GL5550 | Ignitron | GL
5550 | ТX | - | | _ | | - | | _ | _ | | GL5551A/
GL5551A
-PC | Ignitron | GL
5551A | TX | _ | | _ | | - | - | _ | - | | GL5551A | Ignitron | GL
5551A | тx | - | | - | | - | | _ | _ | | GL5551A
-PC | Ignitron | GL
5551A | TX | | _ | _ | | - | | _ | _ | | GL5552A/
GL5552A
-PC | Ignitron | GL
5552A | TX | _ | | _ | _ | _ | | _ | - | | GL5553B/
GL5553B
-PC | Ignitron | GL
5553B | ТX | _ | _ | | | | _ | _ | | | GL5553B | Ignitron | GL
5553B | ТX | - | - | - | - | | - | - | _ | | GL5553B
-PC | Ignitron | GL
5553B | TX | - | _ | | | | _ | _ | _ | | GL5554 | Ignitron | GL
5554 | TX | T- | | _ | | - | _ | — | | | GL5555 | Ignitron | GL
5555 | TX | - | _ | _ | _ | _ | - | _ | _ | | 5557 | Thyratron | 3G | T-X | 2.5 | 5.0 | _ | Anode | Voltage | Drop : | -16 Vo | ts | | 5558/
FG-32 | Half-Wave Mercury-
Vapor Rectifier | 5558/
FG-32 | T-X | 5.0 | 4.5 | _ | Tube | Voltage | Drop = | 15 Volt | s | | 5559/
FG-57 | Thyratron | 4BL | T-X | 5.0 | 4.5 | $\overline{}$ | Anode | Voltage | Drop : | =16 Vo | lts | | 5560 | Thyratron | 4CD | T-X | 5.0 | 4.5 | _ | Anode Voltage Drop =16 Volts | | | | | | 5561 | Half-Wave Mercury-
Vapor Rectifier | 5561 | T-X | 5.0 | 10 | | Tube Voltage Drop =15 Volts | | | s | | | 5563-A | Thyratron | 5563-A | T-X | 5.0 | 10 | _ | Anode | Voltage | Drop : | =15 Vo | lts | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. [●]Subminiature type. ▲Without external shield. ⊕Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | |--------------------------------------|---|---|----------------------|---------------------------------|----------------------------------|--|----------------------------|--------------------------|--|--------------------------------|-------------------------|--| | Tuning
Indicator | Plate
ow =(| voltage
)°) (E _c | =250 t
=0 volt | hru 1 n | neg; Tai
low =90 | get voltag | e = 250
urrent = | (E _e = 0.24 n | -8 volts | ; Shad-
et cur- | 1629 | | | Class AB ₁
Amplifier | 360 | 270 | 22.5 | 88† | 5† | | Γ- | | 6,6001 | | 1631 | | | Class A
Amplifier | 110 | 110 | 7.5 | 49† | 4† | 13,000 | 9,000 | | 2,000 | 2.1 | 1632 | | | Class A
Amplifier • | 250 | = | 8 | 11.5 | =- | 6,900 | 2,600 | 18 | = | | 1633 | | | Class A
Amplifier • | 250 | | 2 | 2.0 | | 53,000 | 1.325 | 70 | | | 1634 | | | Class B
Amplifier | 300 — 0 6.6t — — — 12,000 10.4
— — — — — — — — — — | | | | | | | | | | | | | Class A
Amplifier • | 180 | 180 | 9 | 13† | 2.8† | 160,000 | .2,150 | - | 10,000 | 1.0 | 1644 | | | Half-Wave
Rectifier | Max
rms s | d-c out
upply v | put cur
oltage = | rent = 1
= 1,500 | .0 ma;
volts; m | max peak
ax peak cu | inverse
rrent = (| voltag
o ma | e = 4,30 | volts; | 1654 | | | | | _ | - | - | - | | - | - | - | - | | | | Controlled | Max | d-c catl | node cu | rrent 🗷 | =100 n | ia; max pe
=1.0 amper | ak inve | erse vo | tage 🖲 | =1,300 | 2050 | | | Rectifier
Controlled
Rectifier | Max | d-c catl | ode cu | rrent 🏶 | =100 n | =1.0 amper
na; max po
=1.0 amper | eak inv | erse vo | ltage 🔷 | =1,300 | 2050-A | | | Controlled | Max | d-c cath | ode cur | rent @ | =3.2 am | peres; max
=40 amper | peak in | verse v | oltage 🖲 | =1,500 | 5544 | | | Rectifier
Resistance
Welding | Max. | curr. 1 | volts R
2.1 A.; | MS 250
max. | -600; m
av. ano | ax. demano
de curr. 22 | KVA
2.4 A;. | 300; correst | orrespon | ding av.
demand | GL5550 | | | Resistance
Welding | Max. | | volts R | MS 250
max. av | -600; m | ax. demand
curr. 56 A | KVA | 600; co | orrespon
g dema | ding av.
nd KVA | GL5551.
GL5551. | | | Frequency
Changer | ing av | . anode | curr. | itage 12
5 A.; m | 200 V.; r
ax. av. | nax. peak a
anode curi | node cu
r. 22.5 | ırr. 600
A.; cor | A.;.cor
respondi | respond-
ng peak | -PC
GL5551. | | | Frequency
Changer | Max. | ode curr. 185 A.
ax. peak inverse voltage 1500 V.; max. peak anode curr. 480 A.; correspond-
g av. anode curr. 4 A.; max av. anode curr. 18 A.; corresponding peak anode
irr. 108 A. | | | | | ik anoue | GL5551.
-PC | | | | | | Resistance
Welding | Max.
anode
KVA | supply curr. 7 | volts R | MS 250
max. | -600; ma | ax. demand
de curr. 1 | KVA
40 A.; | 1200; c
correst | orrespon
onding | ding av.
demand | GL5552
GL5552
-PC | | | Resistance
Welding | Max.
anode
800. | supply curr. 19 | volts R | MS 250
nax. av | -600; ma | ax. demand
curr. 355 A | KVA : | 2400; c
spondir | orrespon
1g dema | ding av.
nd KVA | GL5553
GL5553
-PC | | | Frequency
Changer | Max. | . anode | erse vo
curr. 4 | ltage 12
0 А.; п | 00 V.; n | nax. peak a
anode cur | node cu
r. 140 <i>A</i> | rr. 3000
L.; corr |) A.; cor
espondir | respond-
ig anode | GL5553 | | | Frequency
Changer | Max. | peak in | verse v
le curr. | oltage
672 A. | 1500 V. | ; max. pea | k anod | e curr. | 2400 A | ; согге- | GL5553
-PC | | | Resistance
Welding | Max. | supply | volts F | MS 24 | 00; max
node cur | t. demand
r. 113 A.: c | KVA 1
orrespor | 200; conding d | orrespon
emand K | ding av.
VA 600. | GL5554 | | | Resistance
Welding | 36 | ding av.
nd KVA | GL5555 | | | | | | | | | | | Controlled
Rectifier | Max
10,00 | age 🗷 = | 5557 | | | | | | | | | | | Half-Wave
Rectifier | Max | 8 = 5,000 | 5558/FG- | | | | | | | | | | | Controlled
Rectifier | | =1,000 | 5559/FG- | | | | | | | | | | | Controlled
Rectifier | | =1,000 | 5560 | | | | | | | | | | | Half-Wave
Rectifier | Max | =3,000 | 5561 | | | | | | | | | | | Controlled
Rectifier | Max | d-c ca | thode | urrent | 1.8 | amperes; rrent 🖹 = 1 | max pe | ak inve | erse vol | tage 🗑 == | 5563-A | | Metal tubes are shown in bold-face type, miniature tubes in stalics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 1, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. The extra tubes are shown in bold-face type, miniature tubes in stalics. Maximum screen dissipation appears immediately below the screen voltage. The extra tubes are shown in bold-face type, miniature tubes in stalics. | Tube | Classification | Base
Con- | Out- | Fila- | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |------------|--|---------------|-------------|---------------|---------------|----------------|----------------|------------------------------|--|----------------------|----------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | Amp | Plate
Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | GL5564 | Ignitron | GL
5564 | TX | - | - | - | - | _ | - | | _ | | 5590 | RF Pentode | 7BD | 5-1 | 6.3 | 0.15 | 1.7 | 180 | 140
0.5 | 3.40 | 2.90 | 0.01 | | 5591 | Sharp-Cutoff RF Pen-
tode (Special 6AK5) | 7BD | 5-1 | 6.3 | 0.15 | 1.7 | 180 | 180 8
0.5 | 4.0 | 2.8 | 0.02 👍 | | 5608-A | Medium-Mu
Twin-Triode | 7B | 14-1 | 2.5 | 2.0 | 5.5 ♠ | 350 | | | | | | 5610 | Medium-Mu Triode | 6CG | 5-2 | 6.3 | 0.15 | 3.0 | 300 | | | | | | GL5630 | Ignitron | GL
5630 | TX | - | - | | - | - | - | | - | | 5632/C3J | Thyratron | FG-
27-A | T-X | 2.5 | 9.0 | | Anode | Voltage | Drop : | =10 Vol | ts | | 5633 ● | Remote-Cutoff RF
Pentode | 5633 | T-X | 6.3 | 0.15 | 0.8 | 150 | 140 | 4.0 ▲ | 2.2 ▲ | 0.015 | | 5634 🌑 | Sharp-Cutoff RF Pentode | 5633 | T-X | 6.3 | 0.15 | 0.8 | 150 | 140 | 4.4 ▲ | 2.2 ▲ | 0.015 | | 5635 ⊛ | Medium-Mu
Twin Triode | 8DB | 3-1 | 6.3 | 0.45 | 1.25 | 150 | | 2.6 | 1.6 | 1.2 | | 5636 ● | Dual-Control Pentode | 8DC | 3-1 | 6.3 | 0.15 | 0.65 | 165 € | 155 ♦
0.7 ♦ | | | _ | | 5637 ● | High-Mu Triode | 5637 | 3–2 | 6.3 | 0.15 | 0.3 | 150 | | 2.6 ▲ | 0.7 ▲ | 1.4 ▲ | | 5638 👁 | Amplifier Pentode | 5638 | 3-2 | 6.3 |
0.15 | 0.6 | 150 140 0.2 | | 4.0 | 6.5 | 0.19 | | 5639 ● | Video Pentode | 8DL | 3-3 | 6.3 | 0.45 | 3.8♦ | 165 € | 155 ©
1.0 © | 9.5 | 7.5 | 0.10 4 | | 5640 ● | Beam Power Amplifier | 5640 | 3–4 | 6.3 | 0.45 | 3.5 | 150 | 140 | 9.0 | 7.0 | 0.18 | | 5641 ● | Half-Wave Rectifier | 6CJ | 3-3 | 6.3 | 0.45 | | Tube | Voltage
90 ma | Drop: | | | | 5642 ● | Half-Wave High-Voltage | 5642 | T-X | 1.25 | 0.2 | <u> </u> | Tube | Voltage
4.0 ma | Drop: | | | | 5645 ● | Rectifier Medium-Mu Triode | 5645 | T-X | 6.3 | 0.15 | 1.0 | 150 | - | 2.2 | 3.0 | 1.7 | | 5646 ⊜ | High-Mu Triode | 5645 | T-X | 6.3 | 0.15 | 0.3 | 150 | 1- | 2.2 ▲ | 1.0 ▲ | 1.3 🛦 | | 5647 ● | High-Frequency Diode | 5647 | T-X | 6.3 | 0.15 | | | Voltage
at 18 ma | | <u> </u> | | | 5651 | Glow-Discharge Diode
Voltage Reference | 5BO | 5-2 | | _ | = | - | | | voltage
x | (6) = | | 5651-A | Glow-Discharge Diode
Voltage Reference | 5BO | 5–2 | - | | _ | Anode
Volts | Supply
Max | Voltag | e (a) = 1 | 50 | | 5654
5★ | Sharp-Cutoff RF Pen-
tode
(Special 6AK5) | 7BD | 5-1 | 6.3 | 0.175 | 1.55 | 200 ∢ | 155 0 .55 | | 2.9 | 0.02 | | 5663 | Thyratron | 6CE | T-X | 6.3 | 0.15 | _ | Anode | voltage | e drop = | =11 volt | s | | 5665/C16J | Thyratron | 5665/
C16J | T-X | 2.5 | 31 | - | Anode | Voltag | e Drop | =11 Vo | lts | | 5670
5★ | High-Frequency Twin
Triode | 8CJ | 6-1 | 6.3 | 0.35 | 1.4 ◈ | 330∢ | - | 2.2 ▲ | 1.0 ▲ | 1.1 | | | (Special 2C51) | 01301 | 2-1 | - | 0.05 | - | 90 | 90 | - | - | - | | 5672 ● | Power Amplifier
Pentode | 2E31 | | DC | · | | _ | | <u> </u> | - | | | 5675 | Medium-Mu Triode
(Pencil) | 5675 | T-X | _ | 0.135 | 5.0 | | | 2.4 | • | • | | 5676 ● | Medium-Mu Triode | 5676 | T-X | 1.25
DC | 0.12 | - | 135 | _ | 1.3 | 4.0 | 2.0 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subministure type. ▲Without external shield. ♦Design maximum rating. [⊕]Total for all similar sections. ⊕Absolute maximum rating. #Conversion transconductance. | | Ī | Ī | Ī | 1 | l_ | | Ī | | Load | | - Comment of the control cont | |---------------------------------|----------------|----------------------|---------------------------|---------------------------------|----------------------------------|--|---------------------------|--------------------|--------------------------------------|--------------------------------|--| | Service | Plate
Volts | Screen
Volts | Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Resistance
Welding | 2210. | supply
curr. 27 | volts R
O A.; n | MS 240
nax. av. | 00; max
anode o | demand | KVA 4 | 800; co
spondin | rrespond
g demar | ling av.
id KVA | GL5564 | | Class A
Amplifier | 90 | 90 | R _k = 820 | 3.9 | 1.4 | 300,000 | 2,000 | | | - 1 | 5590 | | Class A
Amplifier | 180 | 120 | R _k = 180 | 7.7 | 2.4 | 500,000 | 5,100 | | - | | 5591 | | 14mpiner | 120 | 120 | R _k = 180 | 7.5 | 2.5 | 300,000 | 5,000 | | - | - | | | Class A
Amplifier • | 300 | _ | 6.0 | 6.0 | | 13,000 | 2,450 | 32 | | | 5608-A | | Class A Amp | 90 | | 1.5 | 17 | | 3,500 | 4,000 | 14 | | | 5610 | | Capacitor
Discharge | per mu | nute 2. | | | | 5000 volts
20000 A.; | | | | 1 | GL5630 | | Controlled
Rectifier | Max o | -c cath | ode curr | ent 🗷 = | 2.5 amprent 🗑 = | eres; max
=30 amper | peak inv | rerse vo | ltage 🗷 | =1,250 | 5632/C3J | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.0 | 2.8 | 200,000 | 3,400 | | _ | | 5633 ● | | Class A
Amplifier | 100 | 100 | R _k = | 6.5 | 2.5 | 240,000 | 3,500 | | | | 5634 ● | | Class A
Amplifier • | 100 | | R _k = 100 ⊕ | 4.8 | | 10,000 | 3,800 | 38 | | - | 5635 ● | | Gated
Amplifier | 100 | 100 | R _k = 150 | 5.3 | 3.6 | 110,000 | 3,200 | Gs tie | d to cat | hode | 5636 ● | | | 100 | 100 | R _k = 150 | 4.0 | 5.8 | 50,000 | 1,950 | Ees = | -1.0 vo | lt | | | Class A
Amplifier | 100 | _ | R _k = 820 | 1.4 | | 26,000 | 2,700 | 70 | | _ | 5637 🌑 | | Class A
Amplifier | 100 | 100 | R _k = 270 | 4.8 | 1.25 | 150,000 | 3,300 | _ | | | 5638 ● | | Class A
Amplifier | 150 | 100 | R _k = 100 | 21 | 4,0 | 50,000 | 9,000 | | - | | 5639 🌑 | | Class A
Amplifier | 100 | 100 | 9.0 | 31† | 2.2† | 15,000 | 5,000 | | 3,000 | 1.25 | 5640 ● | | Half-Wave
Rectifier | Max o | d-c outr | out curre | ent 🖲 = | 50 ma;
5; max | max peak
peak curre | inverse | voltag
00 ma | e 🖻 = 93 | 0; rms | 5641 ● | | TV Flyback
Rectifier | Max | | out curr | ent = 0 | | max peak | | | | | 5642 ● | | Class A
Amplifier | 100 | | R _k = 560 | 5.0 | | 7,400 | 2,700 | 20 | _ | | 5645 ● | | Class A
Amplifier | 100 | | R _k == 820 | 1.4 | | 29,000 | 2,400 | 70 | | | 5646 ● | | Half-Wave
Rectifier | Max o | d-c outr | out curr | ent 🖲 = | 10 ma;
165 vol | max peak
ts; max pe | inverse
ak curre | voltage | e ● =460
30 ma | volts; | 5647 ◉ | | D-c operatin
D-c operatin | g currer | it =1.5 | ma min | | Ionizat | ion voltage
ing voltage
tion (1.5 to | = 115 v | olts d-c | , max | | 5651 | | D-c operat | ing cur | rent = 1
rent 🖲 = | .5 ma, r
=3.5 ma | nin } | Ionizat
Operat | ion voltage
ing voltage
tion (1.5 to | e = 115
= 85.5 | volts d- | c, max | | 5651-A | | Class A
Amplifier | 120 | 120 | R _k = 200 | 7.5 | 2.5 | 340,000 | 5,000 | | _ | | 5654
5 ★ | | Controlled
Rectifier | Max o | i-c cathe
eak cat | ode curr | ent 🖲 = | 20 ma;
=60 ma | max peak i | inverse v | voltage | ● =500 | volts; | 5663 | | Controlled
Rectifier | Max | 1-c cath | ode cur | rent 🖲 = | =16 amr | eres; max
=160 ampe | peak inveres | verse vo | ltage 🖲 | =1,250 | 5665/C16J | | Class A
Amplifier | 150 | | R _k = 240 | 8.2 | | 6,400 | 5,500 | 35 | - | | 5670
5★ | | Class AB ₁ Amplifier | 300 | - | R _k =
800 ⊕ | 9.8† | - | _ | - | _ | 27,000 | 1.0 | ~ * | | Class A
Amplifier | 67.5 | 67.5 | 6.5 | 3.25 | 1.1 | _ | 650 | | 20,000 | 0.065 | 5672 ● | | Class A
Amplifier | 135 | _ | R _k = 68 | 24 | | 3,225 | 6,200 | 20 | | | 5675 | | Class A
Amplifier | 135 | | 5.0 | 4.0 | | _ | 1,600 | 15 | | | 5676 ● | | | 1 | 1—— | 1 | 1 —— | 1 | l | -1 | ! | 1 | 1 | | Metal tubes are shown in bold-tace type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 1, 5, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |---------------------|--|---------------|-------------|--------------------|---------------|--------------|----------------
---|-------------------|--|----------------| | Type | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 5677 ● | Medium-Mu Triode | 5676 | T-X | 1.25
DC | 0.06 | - | 135 | - 1 | 1.3 | 3.8 | 2.0 | | 5678 👁 | Pentode Amplifier | 1AD4 | T-X | 1.25
DC | 0.05 | | 90 | 67.5 | 3.3 | 3.8 | 0.01 | | 5679 | Twin Diode
(Special 7A6) | 7CX | 9-30 | 6.3 | 0.15 | | Tube V | oltage l | Drop: • | 1 | | | 5686
5 ★ | Beam Power
Amplifier | 9G | 6-2 | 6.3 | 0.35 | 8.25
• | 275 📵
275 📵 | 275 1 3.0 1 275 1 3.0 1 | 6.5 | 8.5 | 0.08 | | 5687
5★ | Medium-Mu
Twin Triode | 9H | 6-2 | $\frac{6.3}{12.6}$ | 0.9
0.45} | 4.2 🌩 | 300 | = | 4.0 ▲ | 0.6₁ ▲
0.5₂ ▲ | 4.0 ▲ | | 5690 | Full-Wave High-Vacuum
Rectifier | 5690 | 12-25 | | 1.2 } | _ | | oltage I
150 ma | | | | | 5691 | High-Mu Twin Triode
(Special 6SL7-GT) | 8BD | 9-37 | 6.3 | 0.6 | 1.0
• • | 275 | _ | <u> </u> | | | | 5692 | Medium-Mu Twin Triode
(Special 6SN7-GT) | 8BD | 9-37 | 6.3 | 0.6 | 1.75 | 275 E | | | | | | 5693 | Sharp-Cutoff Pentode
(Special 6SJ7) | 8N | 8-1 | 6.3 | 0.3 | 2.0 | 300 ₪ | 125 ®
0.3 ® | 5.3 | 6.2 | 0.005 | | 5694 | Medium-Mu Twin
Triode | 8CS | 14-3 | 6.3 | 0.8 | 5.5 ♠ | 300 | | Both S
Paralle | ections | in | | 5696 | Thyratron | 7BN | 5-1 | 6.3 | 0.15 | | Anode | voltage | | 10 volt | 5 | | 5696-A | Thyratron | 7BN | 5-1 | 6.3 | 0.15 | _ | Anode | Voltage | Drop : | =10 vol | ts | | 5702 🌘 | RF Pentode | 5702 | 3-7 | 6.3 | 0.2 | = | 180 | 140
0.5 | 4.4 | 3.5 | 0.03 | | 5703 ● | Medium-Mu Triode | 5703 | 3-6 | 6.3 | 0.2 | 3.0 | 250 | _ | 2.6 | 0.7 | 1.2 | | 5704 🗑 | Diode | 5704 | T-X | 6.3 | 0.15 | | Tube V | oltage
9 ma d- | Drop: | | | | 5718 € | Medium-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 1.0 🏶 | 165 ♦ | — | 2.4 | 2.4 | 1.3 | | 5719 ● | High-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 0.3 🏶 | 165 🏶 | | 1.9 | 2.2 | 0.8 | | 5720 | Thyratron | 5559 | T-X | 5.0 | 4.5 | = | Anode | Voltage | Drop: | =16 Vol | ts | | 67 2 6
5★ | Dual-Control RF
Pentode
(Special 6AS6) | 7CM | 5-1 | 6.3 | 0.175 | 1.55 | 200 🏟 | 155 (a) | | 3.0 | 0.01 | | 57 2 6
5★ | Twin Diode
(Special 6AL5) | 6BT | 5-1 | 6.3 | 0.30 | | | Voltage
t 60 ma | | • | | | 5727
5★ | Thyratron
(Special 2D21) | 7BN | 5-2 | 6.3 | 0.6 | _ | Anode | Voltage | Drop = | =8 Volts | 1 | | 5728 | Thyratron | 5559 | T-X | 5.0 | 4.5 | - | Anode | Voltage | е Dгор | =16 Vo | lts | | 5731 | Power Amplifier
Triode (Acorn) | 5BC | 4-1 | 6.3 | 0.15 | - | 250 | | 1.0 | 0.4 | 1.3 | | 5744 ◉ | High-Mu Triode | 5744 | 3-6 | 6.3 | 0.2 | = | 250 | - | | - | _ | | 5749
5★ | Remote-Cutoff RF Pentode (Special 6BA6) | 7BK | 5-2 | 6.3 | 0.3 | 3.1 🆠 | 330 ◈ | 300 ♦1
0.6 ♦ | 5.5 | 5.5 | 0.003 | | 6750
5★ | Pentagrid Converter
(Special 6BE6) | 7CH | 5-2 | 6.3 | 0.3 | 1.1 📵 | 330 € | 110 1 | Osc I | $\frac{1}{20,000}$ | ma
ohms | | 5751
5★ | High-Mu Twin Triode
(Special 12AX7) | 9A | 6-2 | ${6.3 \atop 12.6}$ | 0.35
0.175 | 0.7 | 330 ◈ | | 1.4 | 0.46 ₁
0.36 ₂ | 1.4 | | 5763 | Beam Power Amplifier | 9K | 6–3 | 6.0 | 0.75 | 8.0 | 250 a | 1.5 D
250 D | - 1 | | _ | | 5767 | UHF Triode
(Planar) | 5767 | T-X | 6.3 | 0.4 | 6.0 | 350 | 2.0 🗷 | 1.3 ▲ | 0.025 | 1.3 ▲ | Compactron. † Zero signal. Per section. [†] Plate-to-plate. *Maximum. *Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|----------------|-----------------|-------------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|------------------|--|--|--------------------| | Class A
Amplifier | 135 | | 6.0 | 1.9 | <u> </u> | | 650 | 13.5 | _ | - i | 5677 🍅 | | Class A
Amplifier | 67.5 | 67.5 | 0 | 1.8 | 0.48 | 1,000,000 | 1,100 | | | - | 5678 🏶 | | Half-Wave | Max | l-c outp | ut curr | ent per | plate = | 8 ma; max
plate =45 r | rms su | pply vo | ltage p | er plate | 5679 | | Rectifier
Class A | 250 | 250 | nax pea | 27† | 3.01 | 45.000 | 3 100 l | | 9.000 | 2.7 | 5686 | | Amplifier
Class C
Amplifier | 250 | 250 | 50 | 40 | 10.5 | Input Sign
0.15 watt | | _ | - | 6.5 | 5★ | | Class A
Amplifier • | 180
250 | | 7.0
12.5 | 23
12 | | 2,000
3,000 | 8,500
5,400 | 17
16 | = | <u> = -</u> | 5687
5★ | | Full-Wave | Max | d-c out | out cur | rent = 1 | 25 ma; | max peak | invers | e voltas | ge = 1,1; | 20; rms | 5690 | | Rectifier
Class A | suppr
250 | y voltag | 2.0 | $\frac{\text{late} = 3}{1 \cdot 2.3}$ | 30; max | peak curr | 1,600 | 70 | 373 ma | | 5691 | | Amplifier • | 250 | | 9.0 | 6.5 | <u> </u> | 9,100 | 2,200 | 20 | | | 5692 | | Amplifier • Class A Amplifier | 250 | 100 | 3.0 | 3.0 | 0.85 | 1,000,000 | 1,650 | | | | 5693 | | Class A
Amplifier | 294
250 | = | 6.0
5.0 | 7.0 | 三 | 11,000
11,300 | 3,200
3,100 | 35
35 | = | | 5694 | | Controlled
Rectifier | Maxo | l-c cath | ode curi | ent 🗐 = | 25 ma;
= 100 r | max neak | <u> </u> | voltage | ● =500 | volts; | 5696 | | Controlled
Rectifier | Max | d-c cath | ode cur | rent 🖲 | | ; max peak | inverse | voltage | e 🖲 = 50 | 0 volts; | 5696-A | | Class A
Amplifier | 120 | 120 | R _k = 200 | 7.5 | 2.5 | 340,000
 5,000 | - | - | $\lceil - \rceil$ | 5702 🌑 | | Class A
Amplifier | 120 | _ | R _k = 220 | 9.0 | | _ | 5,000 | 25 | | | 5703 ⊛ | | Half-Wave
Rectifier | Max
rms s | d-c outr | out curi | ent = 9
150 vo | ma; ma | x peak inv | erse vol | itage = 4
ma | 20 volt | s; max | 5704 🌑 | | Class A
Amplifier | 100 | 1 - | R _k = 150 | 8.5 | T = | 4,650 | 5,800 | 27 | - | | 5718 ● | | Class A
Amplifier | 100 | | R _k = 1,500 | 0.73 | _ | 41,000 | 1,700 | 70 | _ | | 5719 🌒 | | Controlled
Rectifier | Max
volts: | d-c cath | ode cur | rent 🗨 | =2.5 am
rrent 🖫 | peres; max
=15 amper | peak in | verse vo | oltage 🖲 | =1,000 | 5720 | | Class A
Amplifier | 120 | 120 | 2.0 | 5.2 | 3.5 | | 3,200 | Ec3 = | 0 volts | | 5725
5★ | | Half-Wave
Rectifier | Max | d-c outp | ut curre | ent per p | olate | = 10 ma; ma
nax peak cu | x peaki | nverse v | oltage (| = 360; | 5726
5★ | | Controlled | Max | d-c cat | hode c | urrent @ | = 100 | ma; max p
= 500 ma | eak inv | erse vo | ltage 🖲 | = 1,300 | 5727 | | Rectifier
Controlled | Max | d-c cath | ode cur | rent 🗐 : | =2.5 am | peres; max | peak in | | | | 5 ★
5728 | | Rectifier
Class A | volts: | maxp | ak cati | node cu | rrent 🖲 | =15 amper | es
 2.200 | 25 | | - | 5731 | | Amplifier
Class A | 250 | - | | 4.0 | <u> </u> | 11,400 | 4,000 | 70 | | -
-
- | 5744 @ | | Amplifier Class A | 250 | 100 | $R_{k} = 500$ $R_{k} =$ | 11 | 4.2 | 1,000,000 | 4,400 | - | l | - | 5749 | | Amplifier | 100 | 100 | 68
R _k = | 10.8 | 4.4 | 250,000 | 4,300 | _ | | _ | 5 ★ | | Converter | 250 | 100 | 1.5 | 2.6 | 7.5 | 1,000,000 | 475 # | - | - | - | 5750
5 ± | | Class A
Amplifier • | 250
100 | _ | 3.0 | 1.0 | <u> </u> | 58,000
58,000 | 1,200 | 70 | <u> </u> | | 5 ★
5751
5 ★ | | Class C | 250 | 250 | 39 | 40 | 5.6 | (bias obta | ined from | n Rø1 = | 1 | 6.4 | 5763 | | Telephony
Class C | 300 | 250 | 28.5 | 50 | 6.6 | (bias obta | | | | 10.3 | | | Telegraphy UHF Oscil- lator at 3300 | 200 | 1= | R _k = | 25 | = | 18,000) | _ | T | - | 0.45 | 5767 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car | acitance
icofarad | e in
s | |----------------------|---|---------------|----------------------------|---------------------|-----------------|--------------|------------------------------|----------------------------------|---------------------|--|----------------| | Турс | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts
₩ | Input | Out-
put | Grid-
plate | | 5784 🌒 | Dual-Control RF
Pentode | 5702 | 3-7 | 6.3 | 0.2 | 1.7 | 180 | 140
0.75 | 3.9 | 3.0 | 0.03 | | 5785 🌑 | Half-Wave High-Voltage
Rectifier | 5785 | T-X | 1.25
DC | 0.015 | | Tube V
17 v at | oltage
0.1 ma | Drop:
d-c | | | | 5797 🌑 | Semi-Remote-Cutoff
RF Pentode | 8CY | 3-2 | 26.5 | 0.045 | 0.8 | 50 | 50
0.25 | 4.2 | 3.2 | 0.02 | | 5798 👁 | Medium-Mu Twin
Triode | 8CZ | 3-2 | 26.5 | 0.09 | 0.2 🏚 | 50 | | 1.9 | 1.7 | 1.7 | | 5814
5814-A
5★ | Medium-Mu Twin
Triode
(Special 12AU7) | 9A | 6-2 | $6.3 \\ 12.6$ | 0.35
0.175 | 2.7 | 330 🏶 | | 1.6 ▲ | 0.5 ₁ A
0.4 ₂ A | 1.5 | | GL5822A | Ignitron | GL
5822A | TX | _ | _ | - | | | - | - | <u> </u> | | GL5822A
-PC | Ignitron | GL
5822A | TX | - | - | _ | - | _ | | - | - | | 5823 | Gas Triode | 4CK | 5–2 | - | _ | - | _ | _ | - | - | _ | | 5824 | Beam Power Amplifier
(Special 25B6-G) | 7AC | 14-3
or 9-11
or 9-41 | 25.0 | 0.3 | 12.5 | 200 | 135
2.0 | | - | - | | 5825 | Half-Wave High-
Voltage Rectifier | 4P | T-X | 1.6 | 1.25 | | Tube V
1,750 v | oltage
at 40 r | Drop:
na d-c | ` | <u> </u> | | 5829 ● | Twin Diode | 5829 | 2-5 | 6.3 | 0.15 | | Tube \ | oltage
15 ma d | Drop: | • | | | 5830 | Thyratron | 5830 | T-X | 5.0 | 20 | _ | Anode | Voltage | e Drop | = 16 V | olts | | 5838 | Full-Wave High-
Vacuum Rectifier | 6S | т-х | 12.0 | 0.6 | | | | | _ | <u> </u> | | 5839 | Full-Wave High-
Vacuum Rectifier | 6 S | T-X | 26.5 | 0.285 | = | | | | = | | | 5840 🖜 | Sharp-Cutoff RF
Pentode | 8DE | 3-1 | 6.3 | 0.15 | 0.9 🏶 | 165 ◈ | 155 ♦
0.55 ♦ | 4.2 | 3.4 | 0.01 | | 5842 | High-Mu Triode | 9V | 6-1 | 6.3 | 0.3 | 4.0 | 180 | _ | | | | | 5844
5★ | Medium-Mu Twin
Triode | 7BF | 5-2 | 6.3 | 0.3 | 1.0 | 200 🖲 | | 2.4 🛦 | 0.5 ₁ A 0.4 ₂ A | 2.7 | | 5847 | Sharp-Cutoff RF
Pentode | 9X | 6-1 | 6,3 | 0.3 | 3.0 | 180 | 150
0.75 | 7.1 | 2.9 | 0.04 | | 5847-A | Sharp-Cutoff RF
Pentode | 9X | 6–1 | 6.3 | 0.3 | 3.0 | 180 | 150
0.75 | 7.1 | 2.9 | 0.04 | | 5851 ● | Beam Power Amplifier | 6CL | T-X | {1.25
2.50
DC | $0.11 \\ 0.055$ | 1.5 | 180 | 135
0.3 | 2.5 | 3.0 | 0.0 | | 5852 | Full-Wave High-
Vacuum Rectifier | 6S | T-X | 6.3 | 1.2 | | | | | | _ | | 5854 ● | Power Amplifier
Pentode | 2E31 | 2-1 | 1.25 | 0.03 | | 50 € | 50 ₪ | | = | = | | 5855 | Thyratron | 5855 | T-X | 2.5 | 34 | == | Anode | Voltage | Drop = | =16 Vol | ts | | 5873 🌑 | Medium-Mu Twin
Triode | 5873 | 3-2 | 6.3 | 0.3 | 1.6 ♠ | 300 | | | - | Γ- | | 5875 🌑 | Sharp-Cutoff Pentode | 1AD4 | 2-1 | 1.25
DC | 0.1 | | 90 | 90 | 4.0 | 4.0 | 0.0 | | 5876 | High-Mu Triode
(Pencil) | 5675 | T-X | 6.3 | 0.135 | 6.25 | 300 📾 | | 2.5 ▲ | 0.035 | 1.4 | | 5876-A | High-Mu Triode
(Pencil) | 5675 | T-X | 6.3 | 0.135 | 6.25 € | 300 € | = | 2.4 ▲ | 0.035 | 1.4 | | 6879 | Sharp-Cutoff AF
Pentode | 9AD | 6-2 | 6.3 | 0.15 | 1.25 � | 330 ♦
275 ♦ | 330 ♦ \$
0.25 ♦ | 1 | e Connec | | | | | | | l | | | 2.0 | L | (G ₂ , G | & P T | ied) | Compactron. Zero signal. Per section. [†] Plate-to-plate. •Maximum. • Supply voltage. [●]Subminiature type. ▲Without external shield. ◆Design maximum rating. [⊕]Total for all similar sections. ⊞Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------------|----------------------|----------------------|---------------------------|---|----------------------------------|--------------------------------|---------------------------|----------------------|--|--------------------------------|----------------------| | Class A
Amplifier | 120
120 | 120
120 | 2.0 | 5.2
3.6 | 3.5
4.8 | | 3,200 | E _{c8} = 0 | | | 5784 🌑 | | Half-Wave
Rectifier | Max | l-c outp | ut curre | ent =0. | l ma: m | ax peak cu
ply impeda | rrent = | 0.45 ma | : max t | | 5785 ⊜ | | Class A
Amplifier | 26.5 | 26.5 | 0 | 2.8 | 0.9 | 70,000 | 3,450 | | - | - | 5797 ● | | Class A | 26.5 | | 0 | 2.0 | | 7,100 | 3,400 | 24 | | | 5798 ◉ | | Amplifier Class A Amplifier | 250
100 | | 8.5 | 10.5
11.8 | = | 7,700
6,250 | 2,200
3,100 | 17
19.5 | = | Ξ | 5814
5814-A
5★ | | Frequency
Changer | jpeak ar | node cur | т. 420 А | 1 . | | max. peal | | | | | GL5822A | | Frequency
Changer | peak ar | node cur | т. 336 А | A . | | max. peal
x. av. ano | | | | ! | GL5822A
-PC | | Peak cathode drop • = 61 v | e curren
olts; an | t 📵 = 10
ode drop | 0 ma m
0 © = 62 | ax; d-c | cathode | current | =25 ma | max; s | tarter v | roltage | 5823 | | Class A
Amplifier | 135 | 135 | 22 | 61† | 2.5† | 15,000 | 5,000 | - | 1,700 | 4.3 | 5824 | | Half-Wave
Rectifier | Max o | i-c outp | ut curre | nt 🖲 = | 2 ma;.m
volts; n | ax peak inv
nax peak c | verse vo | ltage 🖸 | =60,00 | 0 volts, | 5825 | | Half-Wave
Rectifier | Max | l-c outp | ut curre | ent per | plate = 5 | ma; max i | oeak inv | erse vo | tage = 3 | 330; rms | 5829 ● | | Mercury
Thyratron | Max d
10,000 | -c catho
volts; n | de curr
ax peal | ent 🖲
k catho | = 12.5
de curre | amperes; ant 🗗 = 75 | max pea
5 amper | k invei
es. | se volta | age 🔂 😑 | 5830 | | Full-Wave
Rectifier | Max of
supply | i-c outp
y voltag | ut curre
e per pla | $\begin{array}{c} \text{ent} = 65 \\ \text{ate} = 30 \end{array}$ | ma; ma
0 volts; | nx peak inv
max peak c | erse vol
urrent p | tage = 1
er plate | 375 vol = 270 r | lts; rms
na | 5838 | | Full-Wave
Rectifier | Max o | i-c outp
y voltag | ut curre
e per pl | ent = 65
ate = 30 | ma; ma
00 volts; | x peak inve
; max peak | erse vol
current | tage == 1
per pla | 375 vol = 270 | lts:rms
) ma | 5839 | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.5 | 2.4 | 260,000 | 5,000 | | - | | 5840 ⊚ | | Class A
Amplifier | 150 | | R _k = 62 | 26 | | 1,800 | 24,000 | 43 | | | 5842 | | Class A | 100 | | R _k = 470 | 4.8 | | 7,550 | 3,700 | 28 | | | 5844
5★ | | Frequency {
Halfer • | 1508
1508 | _ | 0
10 | 4.8
0.1 | = | $R_g = 47,00$
$R_g = 47,00$ | 0 ohms
0 ohms | | 20,000
20,000 | | ,, | | Class A
Amplifier | 150 | 150 | R _k = 110 | 13 | 4.5 | _ | 12,500 | - | _ | | ō847 | | Class A
Amplifier | 150 | 150 | R _k = | 13 | 4.5 | | 12,500 | | | - | 5847-A | | · · · · · · · · · · · · · · · · · · · | 150 | 150 | $R_k = 4,000$ | 4.4 | 1.2 | _ | 8,500 | E _{cc1} = | +20 v | olts | | | Class A
Amplifier | 125 |
125 | 7.5 | 5.5 | 0.9 | 175,000 | 1,600 | _ | _ | | 5851 ● | | Full-Wave
Rectifier | Max | d-c outp | ut curre | ent = 65
ate = 30 | ma; ma | ax peak inv
max peak c | erse vol | tage = 1 | 375 vo = 270 r | lts; rms
ma | 5852 | | Class A
Amplifier | 45 | 45 | 2.0 | 0.8 | 0.25 | 350,000 | 550 | | 50,000 | 0.0095 | 5854 ⊕ | | Controlled
Rectifier | volts; | -c catho
max pea | k catho | ode curi | : 18 amp
rent | eres; max
160 amper | es | | oltage 🖲 | =1,500 | 5855 | | Class A
Amplifier • | 150 | - | 3.0 | 9.0 | <u> </u> | _ | 2,900 | 22 | | | 5873 ● | | Class A
Amplifier | 90 | 90 | 0 | 3.5 | 1.0 | | 2,500 | | _ | | 5875 ⊚ | | Class A
Amplifier | 250 | _ | R _k = 75 | 18 | _ | 8,625 | 6,500 | 56 | | _ | 5876 | | Class A
Amplifier | 250 | | R _k = 75 | 18 | - | 8,625 | 6,500 | 56 | _ | | 5876-A | | Class A
Amplifier | 250 | 100 | 3.0 | 1.8 | 0.4 | 2,000,000 | 1,000 | | | | 5879 | | Class A
Amplifier | 250 | | 8.0 | 5.5 | | 13,700 | 1,530 | 21 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 1, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con-
nec- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | | pacitano
icofara | | |--------------|--|----------------------|---|---------------|---------------|--------------|--------------------|-------------------------------|---|---------------------------------------|-------------------| | Туре | Construction | tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid
plate | | 5881 | Beam Power Amplifier
(Special 6L6-G) | 7AC | T-X | 6.3 | 0.9 | 23 | 360 | 270
3.0 | Single | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | <u> </u> | | | pull | bes, Pu | | | 5885 ◉ | Twin Tetrode | 5885 | 3-2 | 1.25 | 0.02 | | 22,5 | l | | Conne
1 P Tie | | | 5886 ● | Electrometer Pentode | 5886 | 2,1 | 1.25 | 0.01 | | 45 | 45 | Triode
(G: an | le Conn
Connec
d P Tie | ction
d) | | 5890 | Remote-Cutoff Pentode
Regulator | 12J | T-X | 6.3 | 0.6 | 10 € | 30,000 | 450 ∰ | $ \begin{array}{l} E_{e3} = 5 \\ E_{e3} = 5 \\ E_{e8} = 5 \end{array} $ | ,500 vo
,500 vo
,500 vo | lts
lts
lts | | 5894-B | Tetrode | 5894-B | тx | 6.7 | 2.1 | 40 | 600
750 | 300
300 | 11.6 | 3.7 | 0.08 | | 5896 ⊜ | High-Frequency
Twin Diode | 8DJ | 3–1 | 6.3 | 0.3 | | Tube V | oltage
t 18 ma | Drop: 4 | · | • | | 5897 ● | Medium-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 3.3 | 165 € | | 2.2 | 0.7 | 1.40 | | 5898 🗑 | High-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 0.55 | 165 🖷 | | 2.40 | 0.60 | 0.70 | | 5899 🌘 | Semi-Remote-Cutoff
RF Pentode | 8DL | 3-1 | 6.3 | 0.15 | 0.85
• | 165 ◈ | 155 ♦
0.55 ♦ | 4.2 | 3.4 | 0.01 | | 5900 💿 | Semi-Remote-Cutoff
RF Pentode | 8DL | 3-1 | 6.3 | 0.15 | 1.1 | 165 ₪ | 155 ∰
0.55 € | 4.4 | 3.4 | 0.018 | | 5901 ⊚ | Sharp-Cutoff RF
Pentode | 8DL | 3-1 | 6.3 | 0.15 | 1.1 🕥 | 165 🗃 | 155 ●
0.55 ● | 4.2 | 3.4 | 0.015 | | 5902 📵 | Beam Power Amplifier | 8DL | 3-3 | 6.3 | 0.45 | 4.1 🏶 | 165 ◈ | 155 ♦
0.4 ♦ | 6.5 | 7.5 | 0.11 | | 5903 ⊚ | High-Frequency Twin
Diode | 8DJ | 3-1 | 26.5 | 0.075 | _ | Tube V | oltage
t 18 ma | Drop: ♠ | • | | | 5904 ● | Medium-Mu Triode | 8DK | 3-1 | 26.5 | 0.045 | _ | 55 ඬ | _ | 2.4 | 2.2 | 1.8 | | 5905 ⊛ | Sharp-Cutoff RF Pen-
tode | 8DL | 3-1 | 26.5 | 0.045 | | 55 📵 | 55 € | 4.4 | 3.4 | 0.015 | | 5906 ⊚ | Sharp-Cutoff RF Pen-
tode | 8DL | 3-1 | 26.5 | 0.045 | 1.1 | 165 € | 155 ●
0.55 ● | 4.2 | 3.4 | 0.015 | | 5907 ⊚ | Remote-Cutoff RF
Pentode | 8DL | 3-1 | 26.5 | 0.045 | | 55 € | 55 € | 4.0 | 3.4 | 0.015 | | 5908 ⊚ | Dual-Control RF
Pentode | 8DC | 3-1 | 26.5 | 0.045 | | 55 ₪ | 55 ๋ € | Ec ₂ =0 | volts | | | 910 | Sharp-Cutoff Pentode | 6AR | 5–2 | 1.4
DC | 0.05 | | 90 | 90 | 3.6 | 7.5 | 0.008 | | 915
915-A | Pentagrid Amplifier | 7CH
▼ | 5-2 | 6.3 | 0.3 | 1.0 | 250 ₪ | 250 ∰ \$
1.0 ௵ | $ E_{c3} = 0 $ $ E_{c3} = - $ $ E_{c3} = 0 $ | volts
10 volt
volts | s | | 5916 ● | Dual-Control
Pentode | 8DC | 3-1 | 26.5 | 0.045 | 1.1 | 165 📵 | 0.7 🗃 | G_3 tied
$Ec_3 = -$ | | de | | 930 | Low-Mu Power-
Amplifier Triode
(Special 2A3) | 4D | T-X | 2.5 | 2.5 | 15 € | 360 ₪ | | - | | _ | | 931 | Full-Wave High-
Vacuum Rectifier
(Special 5U4-G) | 5T | T-X | 5.0 | 3.0 | | Tube V
47 volts | oltage I
at 275 | Drop: ♠
ma d-c | · · · · · · · · · · · · · · · · · · · | | | 932 | Beam Power Amplifier
(Special 6L6-G) | 7AC | T-X | 6.3 | 0.9 | 21 🖲 | 400 ₪ | 300 ■
2.75 ■ | - 1 | - 1 | - | Compactron. Zero signal. Per section. [†] Pláte-to-plate. Maximum. Supply voltage. ^{Subminiature type. Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. # Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------------------|--------------------------|--|---------------------------------|----------------------------------|--|----------------------------|---------------------|--|--------------------------------|----------------| | Class A Amplifier Class AB ₁ Amplifier | 350
250
360
360 | 250
250
270
270 | 18
14
22.5
22.5 | 53†
75†
88†
88† | 2.5f
4.3†
5.0†
5.0† | 48,000
30,000
 | 5,200
6,100
— | | 4,200
2,500
3,800
6,600 | 11.3
6.7
18
26.5 | 5881 | | Electrometer | 13.5 | - | 3.0 | 0.185 | - | | 160 | 2.4 | _ | | 5885 ⊚ | | Electrometer
Electrometer | 12
10.5 | 4.5 | 2.0
3.0 | 6.0
200 | 3.6 | 18,000,000 | 14
160 | 2.0 | = | | 5886 ◉ | | Shunt
Regulator | 30,000
30,000
30,000 | 200
200
200 | 60
60
60 | 0
0.06
0.50 | 0
0
0 | | Peak C | signa | = 0 vol
= 20 vol
= 45 vol | olts | 5890 | | Amplifier | 450 | 300 | 25 | 200 | 26 | <u> </u> | — | _ | - | 86 | 5894-B | | Class B
Amplifier-
Oscillator
Telegraphy | 500 | 250 | 80 | 200 | 16 | | - | 8.2 | | 90 | | | Class C
Telegraphy | 600 | 250 | 80 | 150 | 20 | | | | | 71 | | | Full-Wave
Rectifier | 460; r | ms supp | oly volta | ent per
ige per j | plate el
plate = 1 | =10 ma; n
.50; max pe | nax pea
ak curre | k inver
nt per i | se volta
olate 🖲 | = 60 ma | 5896 ⊜ | | Class A { Amplifier { | 100 | | R _k = | 8.5 | _ | | 5,800 | 27 | | | 5897 ⊜ | | RFOscillator | 150 | | _ | 20 | | Frequen | | | | 0.9 | · | | Class A
Amplifier | 150 | | R _k = 680 | 1.7 | | | 2,700 | 70 | _ | _ | 5898 ● | | Class A
Amplifier | 100 | 100 | R _k = 120 | 7.2 | 2.0 | 260,000 | 4,500 | | | | 5899 ⊚ | | Class A
Amplifier | 100 | 100 | R _k = 120 | 7.2 | 2.2 | 260,000 | 4,500 | | _ | - | 5900 ⊛ | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.5 | 2.4 | 230,000 | 5,000 | | _ | _ | 5901 ⊚ | | Class A
Amplifier | 110 | 110 | R _k = 270 | 30 | 2.2 | 15,000 | 4,200 | | 3,000 | 1.0 | 5902 ● | | Full-Wave
Rectifier | Max d-
rms su | coutpu
pply vo | t curren | t per pl | ate 🖲 =
� = 165 | 10 ma; max
; max peal | peak in | verse v | oltage 🖲
late 🖲 = |
=460;
=60 ma | 5903 ● | | Class A
Amplifier | 26.5 | | $R_g = 2.2$ meg | 3.0 | | 4,250 | 5,000 | 20 | | | 5904 🔵 | | Class A
Amplifier | 26.5 | 26.5 | R _g = 2.2 meg | 2.1 | 0.9 | 110,000 | 2,850 | | | | 5905 ⊚ | | Class A
Amplifier | 100 | 100 | R _k == 150 | 7.5 | 2.4 | 260,000 | 5,000 | | _ | | 5906 ◉ | | Class A
Amplifier | 26.5 | 26.5 | $R_{g1} = 2.2$ meg | 2.7 | 1.1 | 100,000 | 3,000 | | | | 5907 ⊛ | | Class A
Amplifier | 26.5 | 26.5 | $R_{g1} = 2.2$ meg | 3.3 | 2.0 | 31,000 | 2,200 | | | | 5908 ⊚ | | Class A
Amplifier | 90 | 90 | 0 | 1.6 | 0.45 | 1,500,000 | 900 | | | | 5910 | | Gated
Amplifier | 150
150
150 | 75
69
71 | 10
0
0 | 0
0
5.8 | 0
14
9.0 | $R_{g1} = R_{g3} = R_{g1} = R_{g3} = R_{g1} = R_{g3} R$ | 47,000
47,000
47,000 | = | 20,000
20,000
20,000 | | 5915
5915-A | | Class A
Amplifier | 100
100 | 100
100 | R _k = 150
R _k = | 5.3
4.0 | 3.6
5.8 | 110,000
50,000 | 3,200
1,950 | | _ | _ | 5916 ⊚ | | Class A
Amplifier | 250 | | 150
45 | 60† | _ | 800 | 5,250 | 4.2 | 2,500 | 3.5 | 5930 | | Full-Wave
Rectifier | Max d
max ri
=110 | ms supp | ut curre
ly volta | nt | 00 ma;
olate 🔷 | max peak ii
=600 volts; | nverse v
max pe | oltage (| =1,700
ent per | 0 volts; | 5931 | | Class A | 250 | 250 | 14 | 72† | 5.0† | 22,500 | 6,000 | | 2,500 | 6.5 | 5932 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | in
s | |---------------|--|---------------|-------|---------------|---------------|----------------------------|-------------------|---------------------------|----------|---|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts
∰ | Input | Out-
put | Grid-
plate | | 5963 | Medium-Mu Twin
Triode | 9A | 6-2 | 12.6
6.3 | 0.15 | 2.5
♠ ● | 250 ₪ | - | 1.9 ▲ | 0.5 ₁ ▲ 0.35 ₂ ▲ | 1.5 ▲ | | 5964 | High-Mu Twin Triode | 7BF | 5-2 | 6.3 | 0.45 | 1.5 | 250 📵 | | 2.1 ▲ | 0.4 ▲ | 1.3 ▲ | | 5965 | Twin Triode | 9A | 6-2 | {12.6
6.3 | 0.225
0.45 | 2.4
• • •
4.4
• • | 300 | - | 3.8 ▲ | 0.5₁ ▲
0.38₂ ▲ | 3.0 ▲ | | 5965-A
5 ★ | Twin Triode | 9A | 6-2 | 12.6
6.3 | 0.225
0.45 | 2.2 * 4.0 * | 330 ◈ | | 4.0 ▲ | 0.5 ₁ △ 0.36 ₂ | 3.0 ▲ | | 5967 ● | Medium-Mu Twin
Triode | 8DQ | 3-8 | 1.25 | 0.12 | - • | 50 🖲 | | 0.9 ▲ | 0.9 | 1.7▲ | | 5968 ⊚ | Twin Triode | 8DQ | 3-8 | 1.25 | 0.12 | | 45 ∰ | | 0.9 ▲ | 0.9 | 2.3 ▲ | | 5969 ◉ | Twin Tetrode | 8DR | 3-8 | 1.25 | 0.2 | 0.96 | 150 🖲 | 50 € | 2.5 ▲ | 2.5 ▲ | 0.3 ▲ | | 5970 ● | Twin Pentode | 8DS | 3-3 | 1.25 | 0.16 | | 45 🗐 | 45 € | 3.3 ▲ | 2.4 ▲ | 0.1 | | 5971 ● | Medium-Mu Triode | 5971 | 2-1 | 1,25
DC | 0.08 | 0.7 | 135 | | 1.6 ▲ | 1.7▲ | 2.3 ▲ | | 5972 ◉ | Remote-Cutoff
RF Pentode | 1AD4 | 2-1 | 1.25 | 0.06 | = | 75 🖲 | 75 € | 4.3 ▲ | 4.1 ▲ | 0.01 | | 5975 🐞 | Medium-Mu Triode | 5975 | 36 | 6.3 | 0.175 | 3.0 | 250 | = | | | - | | 5977 ● | Medium-Mu Triode | 8DK | 3-1 | 6.3 | 0.15 | 1.2 🏶 | 180 ◈ | | 2.0 | 2.2 | 1.3 | | 5987 ⊚ | Low-Mu Triode | 8DM | 3-4 | 6.3 | 0.45 | 4.0 | 165 | = | 3.2 | 5.0 | 3.2 | | 5992 | Beam Power Amplifier
(Special 6V6-GT) | 7AC | 9-9 | 6.3 | 0.6 | 10 | 300 | 275
2.0 | _ | _ | - | | 5993 | Full-Wave High-
Vacuum Rectifier | 5993 | 6-3 | 6.3 | 0.8 | | | | | | - | | 5995 ⊚ | Half-Wave High-
Vacuum Rectifier | 5995 | T-X | 6.3 | 0.3 | | Tube V
25 volt | oltage
s at 100 | Drop: | : | | | 5998 | Low-Mu Twin Triode | 8BD | 163 | 6.3 | 2.4 | 13 ♠ | 250 | | <u> </u> | <u> </u> | | | 5998A | Low-Mu Twin Triode | 8BD | 12-15 | 6.3 | 2.4 | 15 🖲 💠 | 275 📵 | - | 6.5 ▲ | 2.0 ▲ | 14.5 ▲ | | 6000 | Beam-Power
Amplifier | 6CK | T-X | 26.5 | 0.28 | 25 🗨 | 600 ₪ | 300 ● 4.0 ● | 15 ▲ | 7.0▲ | 0.18 ▲ | | 6004 | Full-Wave High-
Vacuum Rectifier | 2AJ | T-X | 5.0 | 2.0 | = | Tube V | oltage
s at 14 | Drop: | | · | | 6006
5 ★ | Beam Power Amplifier
(Special 6AQ5) | 7BZ | 5-3 | 6.3 | 0.45 | 11 🕸 | 275 ♦ | | Single | | -puil | | 6011/710 | Thyratron | FG-
27-A | T-X | 2.5 | 9.0 | - | Anode | Voltage | Drop | =15 Vol | ts | | 6012 | Thyratron | 6CO | 12-24 | 6.3 | 2.6 | = | Anode | Voltage | Drop | =10 Vol | ts | | 6014/C1K | Thyratron | 4AX | T-X | 2.5 | 6.3 | | Anode | Voltage | Drop : | =14 Vol | ts | | 6021 ● | Medium-Mu
Twin Triode | 8DG | 3-1 | 6.3 | 0.3 | 0.8 | 165 🏶 | | 2.4 ▲ | 0.28₁ ▲
0.32₂ ▲ | 1.5▲ | | 6028 | Sharp-Cutoff RF
Pentode | 7BD | 5-1 | 20.0 | 0.05 | 1.7 | 180 | 180 \$
0.5 | 4.0 | 2.8 | 0.02 | | 6029 ● | Medium-Mu Triode | 5676 | 2-1 | 1.25
DC | 0.2 | 1.0 | 135 | === | 1.3 ▲ | 1.4▲ | 1.6 ▲ | | 6045 | Medium-Mu
Twin Triode | 7BF | 5-2 | 6.3 | 0.35 | 1.6
♠ 🖲 | 330 🖲 | | 2.0 ▲ | 0.45ı ▲
0.34₁ ▲ | 1.3 ▲ | [†] Plate-to-plate. †Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections.Absolute maximum rating.# Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | put,
Watts | Tube
Type | |---|--------------------------------|----------------------|-----------------------|---------------------------------|----------------------------------|--|---------------------------|----------------------|--|------------------|---------------| | Class A
Amplifier • | 67.5 | | 0 | 8.5 | | 6,600 | 3,200 | 21 | - | I — I | 5963 | | Frequency Halfer | 150 2
150 2 | | 15
0 | 0
5.1 | _= | $R_{g} = 47,00$
$R_{g} = 47,00$ | 0 | _ | 20,000
20,000 | = | | | Class A
Amplifier | 100 | | R _k = 50 ⊕ | 9.5 | | 6,500 | 6,000 | 39 | | | 5964 | | Frequency
Halfer | 150 \$
150 \$ | | 10 | 0
5.0 | | $R_g = 47.00$
$R_g = 47.00$ | U i | | 20,000
20,000 | = | | | Class A
Amplifier • | 150 | | R _k = 220 | 8.5 | _ | 7,000 | 6,700 | 47 | 1 - | - | 5965 | | Frequency
Halfer • | 1508
1508 | | 5.5 | 10.5
0.15 | | | I _c =140 | µamp
— | 7,200
7,200 | = | | | Class A
Amplifier 🌢 | 150 | — | 2.0 | 8.5 | - | 6,700 | 7,000 | 47 | — | - | 5965-A
5 ★ | | Frequency
Halfer • | 100 | | | 17.8 | | | I _e = 200 | · • | _ | - | · · | | Class A
Amplifier • | 45 | - | E _{ec} = | 3.0 | - | 8,500 | 2,000 | 17 | $R_g = 5.$ | 0 meg | 5967 ● | | Class A
Amplifier • | 45 | | 0 | 0.7 | = | manual ma | 1,300 | 50 | _ | | 5968 ● | | Class A
Amplifier • | 135 | 45 | 3.0 | 6.0 | 0.6 | hadrage . | 1,700 | | | | 5969 ● | | Class A
Amplifier • | 45 | 45 | 0 | 3.0 | 0.9 | 170,000 | 1,850 | | = | | 5970 ⊛ | | Class A
Amplifier | 135 | | 2.5 | 4.0 | | | 2,150 | 23 | | | 5971 ● | | Class A
Amplifier | 67.5
45 | 67.5
45 | 0 | 2.5
1.5 | 0.8
0.4 | 1,000,000 | 1,300 | _ | = | | 5972 ● | | Class A
Amplifier | 200 | = | R _k = 680 | 12 | | 4,000 | 4,000 | 16 | - | | 5975 ● | | Class A
Amplifier | 100 | | R _k = 270 | 10 | | | 4,500 | 16 | | | 5977 ◉ | | Class A Amp | 100 | | 18 | 9.0 | | | 1,850 | 4.1 | | | 5987 ⊚ | | Class A
Amplifier | 250 | 250 | 12.5 | 45† | 4.5† | 45,000 | 4,000 | - | 5,000 | 4.0 | 5992 | | Full-Wave
Rectifier | Max of supply | l-c
outp
y voltag | ut curre
e per pla | ent = 60
ate = 26 | ma; ms
0 volts; | ix peak inv
max peak c | erse vol
urrent p | tage = l
er plate | .250 vo
= = 230 r | lts; rms
na | 5993 | | Half-Wave
Rectifier | Max o | i-c outp
ipply v | oltage = | 300 vo | ma; m
lts; max | ax peak in
peak curr | verse vo
ent = 27. | ltage =
5 ma | 850 vol | ts; max | 5995 ⊛ | | Class A
Amplifier 🌩 | 110 | | R _k = 105 | 100 | | | 15,500 | | | | 5998 | | Class A
Amplifier • | 110 | | $R_k = 105$ | 100 | _ | 350 | 15,500 | 5.4 | | | 5998A | | Class C
Amplifier | 600
400 | 225
200 | 60
60 | 100
125 | 18
16 | | | | | 35
28 | 6000 | | Full-Wave
Rectifier | suppl | y voltag | e per pl | ate $=37$ | 5 volts; | ax peak in
max peak c | urrent p | ltage =
er plate | e = 375 r | na | 6004 | | Class A Amplifier Class AB ₁ Amplifier | 250
180
250 | 250
180
250 | 12.5
8.5
15 | 45†
29†
70† | 4.5†
3.0†
5† | 52,000
58,000 | 4,100
3,700 | = | 5,000
5,500
10,000
‡ | 4.5
2.0
10 | 6005
5★ | | Controlled
Rectifier | Max o | l-c cath
max pe | ode cur
ak cath | rent 🖲 =
iode cui | =2.5 am
rent 🖲 | peres; max
=30 amper | peak in | verse ve | oltage 🖲 | =1,500 | 6011/710 | | Controlled
Rectifier | volts; | max pe | ak cath | ode cur | rent 🖲 | peres; max
=5.0 ampe | res | | | | | | Controlled
Rectifier | volts; | | ak cath | ode cui | | peres; max
=8.0 ampe | res | | oltage 🖲 | =1,250 | 6014/C1K | | Class A
Amplifier • | 100 | | R _k = 150_ | 6.5 | | 6,500 | 5,400 | 35 | | | 6021 🌒 | | Class A
Amplifier | 120 | 120 | R _k = 180 | 7.5 | 2.5 | 300,000 | 5,000 | | | | 6028 | | Class A
Amplifier | 90 | | 4.0 | 11 | | 4,250 | 2,000 | 8.5 | | | 6029 💿 | | Class A
Amplifier • | 100 | | R _k = 50 ⊕ | 9.0 | | 5,900 | 6,400 | 38 | | | 6045 | Metal tubes are shown in bold-face type, miniature tubes in italics. • G3 and G5 are screen. G4 is signal-input grid. • G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max | Max
Screen
Volts | | acitanc
icofarac | | |-------------|---|---------------|-------|--------------------|---------------|--------------------|--------------|---------------------------------|-------------------|--|---------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid
plate | | 5046 | Beam Power Amplifier
(Special 25L6-GT) | 7AC | 9-11 | 25.0 | 0.3 | 10 | 200 | 125
1.5 | _ | | _ | | 6049 ⊚ | Semi-remote Cutoff
RF Pentode | 8DL | 3-1 | 6.3 | 0.15 | 1.1 🖲 | 165 🖻 | 155 ©
0.55 © | 3.6 | 3.8 | 0.009 | | 5050 ⊕ | High-Frequency
Medium-Mu Triode | 5676 | 2-1 | 1.25
DC | 0.12 | | 135 | | 1.3 | 3.4 | 1.4 | | 5051 ● | Pentode | 6051 | T-X | 1.25 | 0.1 | 0.37 🏶 | 67.5 ◈ | 67.5 (a) 0.11 (b) | | 3.0▲ | 0.25 | | 3072 | Twin Triode
(Special 12AY7) | 9A | 6-2 | ${12.6 \atop 6.3}$ | $0.175\ 0.35$ | 1.5� | 330 ◈ | | 1.4 | 0.5 ₁ ▲ 0.38 ₂ ▲ | 1.5 | | 3072A
5★ | Twin Triode
(Special 12AY7) | 9A | 6-2 | 12.6
6.3 | 0.175
0.35 | 1.5 🏶 | 330 ◈ | - | 1.4 ▲ | 0.5 ₁ A 0.38 ₂ A | 1.54 | | 3080 | Low-Mu Twin Triode Power Amplifier (Special 6AS7-G) | 8BD | 12-43 | | 2.5 | 13 🏚 📵 | 250 ₪ | | 6.0 ▲ | 2.2 ▲ | 8.04 | | 5082 | Low-Mu Twin Triode
Power Amplifier | 8BD | 12-43 | | 0.6 | 13 🏚 🖲 | 250 ₪ | | 8.0 🛦 | 2.2 🛦 | 8.04 | | 6082-A | Low-Mu Twin Triode | 8BD | 12-25 | 26.5 | 0.6 | 13♠ | 250 | _ | - | - | _ | | 5087
5 ★ | Full-Wave High-Vacuum
Rectifier
(Special 5Y3-GT) | 5L | 9-41 | 5.0 | 2.0 | | | oltage l
125 ma | | - | | | 6088 🗑 | Power Amplifier Pentode | 512-
AX | 2-1 | 1.25
DC | 0.02 | | 67.5 🖻 | 67.5 € | _ | | <u> </u> | | 6092 ⊜ | Power Amplifier
Pentode | 2E31 | 2-1 | 1.25 | 0.05 | _ | 67.5 📵 | 67.5 € | | = | | | 3094 | Beam Power Amplifier | 9DH | T-X | 6.3 | 0.6 | 12.5 | 275 🖲 | 275 ● 2.0 ● | | 5.3 ▲ | 1.45 | | 6095 | Beam Power
Amplifier | 7BZ | 5–3 | 6.3 | 0.45 | 12 🏶 | 275 ◈ | 275 ♦
2.0 ♦ | 8.0▲ | 8.5 ▲ | 0.4 | | 6096 | Sharp-Cutoff RF
Pentode | 7DB | 5-1 | 6.3 | | 1.55 ◈ | 200 🌢 | 155 �
0.55 � | 4.0 | 2.9 | 0.02 4 | | 3097 | Twin Diode | 6BT | 51 | 6.3 | 0.3 | _ | Tube V | oltage
s at 60 | Drop: 6
ma d-c | • | | | 6098 | Beam Power
Tetrode | 6BQ | T-X | 6.3 | 1.2 | 21 💿 | 630 © | 315 3 .5 3 .5 | 11 ▲ | 7.0▲ | 0.8 | | 3100 | Medium-Mu Triode | 6BG | 5-2 | 6.3 | 0.15 | 3.5 | 300 | | 1.8 | 2.5 | 1.4 | | | | | | | | 5.0 | 300 | _ | | | | | 3101 | Medium-Mu
Twin Triode
(Special 616) | 7BF | 5-2 | 6.3 | 0.45 | 0.85
♠ ● | 330 ₪ | | 2.0 ▲ | 0.4 ▲ | 1.54 | | 6106 | Full-Wave High-
Vacuum Rectifier
(Special 5Y3-GT) | 5L | T-X | 5.0 | 1.7 | = | | oltage
125 ma | | | · | | 6110 ⊚ | Twin Diode | 8DJ | 3-1 | 6.3 | 0.15 | _ | | oltage l
15 ma d | | | | | 6111 🗑 | Medium-Mu
Twin Triode | 8DG | 3-1 | 6.3 | 0.3 | 1.0 | 165 🏶 | | 2.1 | 1.3 ₁
1.4 ₂ | 1.4 | | 5112 ⊚ | High-Mu Twin Triode | 8DG | 3-1 | 6.3 | 0.3 | 0.3
♠ ♠ | 165 🏶 | | 1.9 | 1.5 | 1.0 | Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲ Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|-------------------------------------|----------------------|-----------------------|---------------------------------|----------------------------------|---|----------------------------|-----------------------|--|--|--------------| | Class A { Amplifier { | 200 | 125 | R _k = 180 | 46† | 2.2† | 28,000 | 8,000 | | 4,000 | 3.8 | 6046 | | Relay
Energizer | 110
115 2
115 3 | 110
115
115 | 7.5
0
25 | 49†
105
0.1 | 4.0†
12.8 | $R_{g1} = 2 \text{ me}$ $R_{g2} = 1000$ | 8,000
g
ohms | = | 2,000
500
500 | 2.1 | | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.5 | 2.5 | 400,000 | 3,550 | | | | 6049 ● | | Class A
Amplifier | 135 | | 5 | 4.0 | | _ | 1,600 | 16 | | | 6050 ⊜ | | Class A
Amplifier | 45 | 45 | 4.0 | 4.0 | 1.1 | 35,000 | 1,350 | | | | 6051 ● | | Class A
Amplifier • | 250 | = | 4.0 | 3.0 | | 25,000 | 1,750 | 44 | | | 6072 | | Class A
Amplifier | 250 | == | 4.0 | 3.0 | | 25,000 | 1,750 | 44 | | | 6072A
5★ | | DC
Amplifier • | 135 | - | R _k = 250 | 125 | | 280 | 7,000 | 2 | = | | 6080 | | DC
Amplifier • | 135 | _ | R _k = 250 | 125 | | 280 | 7,000 | 2 | | | 6082 | | Class A
Amplifier • | 135 | = | R _k = 250 | 125 | | 280 | 7,000 | 2.0 | | | 6082-A | | Full-Wave
Rectifier | Max o | l-c outp
y voltag | ut curre
e per pl | ent = 12.
ate = 35 | 5 ma; m
0 volts; | ax peak in
max peak o | verse vol | tage =
er plate | 1400 vo
= 375 | lts; rms
ma | 6087
5 ★ | | Class A
Amplifier | 45 | 45 | 1.25 | 0.65† | 0.15† | 700,000 | 625 | | 80,000 | 0.0105 | 6088 ◉ | | Class A
Amplifier | 45 | 45 | 4.5 | 1.4 | 0.4 | _ | 600 | ****** | 30,000 | 0.025 | 6092 ⊚ | | Class A
Amplifier | 250 | 250 | 12.5 | 45 | 3.5 | 32,000 | 4,100 | _ | | 4.5 | 6094 | | Class A
Amplifier | 250 | 250 | 12.5 | 45† | 4.5† | 52,000 | 4,100 | | 5,000 | 4.5 | 6095 | | Class A
Amplifier | 120 | 120 | R _k = 200 | 7.5 | 2.5 | 340,000 | 5,000 | | _ | - | 6096 | | Half-Wave
Rectifier | | | | | | 10 ma; ma
117; max p | | | | | 6097 | | Class A
Amplifier | 300 | 300 | 36 | 58 | 4.0 | 22,000 | 4,300 | 95 | - | | 6098 | | Class A
Amplifier
Class C
Amplifier | 250
100
300 | | 8.5
0
27 | 10.5
11.8
25 | | 7,700
6,250
Input S | 2,200
3,100
signal = | 17
19.5
0.35 wa | | 5.5 | 6100 | | Class A
Amplifier • | 100 | _ | R _k = 50 ⊕ | 8.5 | | 6,300 | 6,000 | 38 | | | 6101 | | Full-Wave
Rectifier | Max d | l-c outp | ut curr
ltage pe | ent = 12
r plate | 25 ma;
=350 vo | max peak
olts; max p | inverse
eak curr | voltag
ent per | e = 1.55
plate = | 0 volts;
415 ma | 6106 | | Full-Wave
Rectifier | Max d-
max rn
ma | -c outpu
ns suppl | t curren
y volta | t per pl
ge per p | ate 🖲 ==
late 🖲 = | 4.4 ma; ma
=165; max | x peak ir
peak cur | rent pe | oltage (
r plate (| = 460;
= 26.5 | 6110 ● | | Class A
Amplifier • | 100 | | R _k = 220 | 8.5 | - | 4,000 | 5,000 | 20 | <u> </u> | | 6111 ⊚ | | Class A
Amplifier • | 150 | | R _k = 820 | 1.75 | | 28,000 | 2,500 | 70 | | | 6112 👁 | | | 100 | - | $R_k = 1,500$ | 0.8 | <u> </u> | 39,000 | 1,800 | 70 | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |--------------------|--|---------------|--------------|---------------------
---|--------------|--------------|---------------------------------|-------------------------|---------------------|---| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6113 | High-Mu Twin Triode
(Special 6SL7-GT) | 8BD | 9-11 | 6.3 | 0.3 | 1.0 ♠ | 250 | _ | 3.0 | 3.8 | 2.8 | | 6121 🕲 | Medium-Mu Triode | 5676 | 2-1 | 1.25 | 0.12 | 1.1 🖲 | 185 🗨 | | 1.4 🛦 | 1.9 ▲ | 1.4 ▲ | | 6134
5★ | Sharp-Cutoff
RF Pentode
(Special 6AC7) | 8N | 8-1 | 6.3 | 0.45 | 3.0 🏶 | 330 ◈ | 330 ♦ \$
0.4 ♦ | 11 | 5.0 | 0.015 | | 6135
5★ | Medium-Mu Triode
(Special 6C4) | 6BG | 5-2 | 6.3 | 0.175 | 3.4 🏶 | 330 ◈ | | 1.5 ▲ | 0.7 ▲ | 1.4 ▲ | | 6136
5★ | Sharp-Cutoff
RF Pentode
(Special 6AU6) | 7BK | 5-2 | 6.3 | 0.3 | 3,3 🖲 | 330 ₪ | 330 \$ ●
0.7 ● | 6.0 ▲ | 5.0 ▲ | 0.0035 | | 6137
5★ | Remote-Cutoff RF Pentode (Special 6SK7) | 8N | 8-1 | 6.3 | 0.3 | 3.0 🏟 | 330 ◈ | 330 ♦ 8 0.45 ♦ | 5.0 | 7.0 | 0.003 | | 6145 | Sharp-Cutoff Pentode | 8V | 9-31 | 6.3 | 0.6 | 10 | 300 | 3002 | 14 | 7.5 | 0.06 | | 6146 | Beam Power Amplifier | 7CK | T-X | 6.3 | 1.25 | 20 💿 | 400 ◉ | | Triode | Connectibes, Pu | tion | | | | | | | | 20 🖲 | 600 € | 250 ●
3.0 ● | Pentod | e Connubes, Pu | ection | | 6146-A | Beam Power Amplifier | 7CK | T-X | 6.3 | 1.25 | 20 🖲 | 600 € | 250 ◉ 3.0 ◉ | Pentod
Two T | e Connubes, Pu | ection
ish-Pul | | 6146-B | Beam Power
Amplifier | 7CK | T-X | 6.3 | 1.125 | 27 📵 | 600 ₪ | 250 ●
3.0 ● | Pentod
Two T
Pull | e Connubes, P | ection
ush- | | 6147 ● | RF Pentode | 6CL | 3-8 | $\{1.25 \\ 2.5$ | 0.125 | 1.5 🖲 | 180 € | 125 ●
0.6 ● | 2.6 | 3.0 | 0.055 | | 6152 ⊚ | Low-mu Triode | 5975 | 3-6 | 6.3 | 0.2 | 1.1 | 180 € | | 2.9 ▲ | 1.28 ▲ | 1.32 ▲ | | 6159-A | Beam Power Amplifier | 7CK | T-X | 26.5 | 0.3 | 20 🖲 | 600 ₪ | 250 ● 3,0 ● | Pentod
Two T | le Conn
ubes, Pi | ection
ish-Pul | | 6139-B | Beam Power
Amplifier | 7CK | T-X | 26.5 | 0.3 | 27 🖲 | 600 € | 250 ●
3.0 ● | Pentod | e Connubes, P | ection | | 6169 ● | High-Frequency Triode | 8EE | 31 | 6.3 | 0.15 | 3.0 | 250 | | 2.5 | 2.6 | 1.6 | | 6173 | UHF Diode
(Pencil) | 6173 | T-X | 6.3 | 0.135 | | | _ | | | | | 6184 ⊚ | UHF Twin Diode | 8EH | T-X | 6.3 | 0.15 | _ | Tube V | oltage .
8.0 ma | Drop: 💠 | | *************************************** | | 6186 | Sharp-Cutoff
RF Pentode | 7BD | 5-2 | 6.3 | 0.3 | 2.5 🖲 | | 250 •
0.55 • | 6.5 ▲ | 1.8▲ | 0.03 | | 6187 | Sharp-Cutoff
RF Pentode | 7CM | 5-1 | 6.3 | 0.175 | 1.65 🖲 | 200 | | 4.0 | 3.0 | 0.02 | | 6188 | High-Mu
Twin Triode | 8BD | 9-11 | 6.3 | 0.3 | 1.1 🖲 | 275 🗨 | | _ | | | | 6189
5 ★ | Medium-Mu Twin
Triode | 9A | 6-2 | 12.6
6.3 | $\left[\begin{array}{c} 0.15 \\ 0.3 \end{array} \right]$ | 2.75 | 300 | | 1.8 | 2.0 | 1.5 | | 6193 € | High-Frequency Twin Triode | 6193 | 3-3 | 6.3 | 0.3 | 2.0♠ | 250 | | 2.75 | 2.20 | 1.46 | | 6195 ⊚ | Beam Power Amplifier | 6CL | T-X | (1.25
{2.5
DC | $0.22 \ 0.11$ | 2.5 | 180 | 150
0.6 | 2.4 | 1.3 | 0.045 | | 619ĩ | Sharp-Cutoff Power
Amplifier Pentode | 9BV | 63 | 6.3 | 0.65 | 7.5 🖲 | 300 € | 250 ●
2,5 ● | | _ | | Compactron. Zero signal. Per section. Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲ Without external shield. Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _{p,}
Ohms | G _{m,}
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|------------------|-------------------|----------------------|---------------------------------|----------------------------------|--------------------------|--------------------------|-------------|--|--------------------------------|-------------------| | Class A
Amplifier • | 250 | | 2.0 | 2.3 | | 44,000 | 1,600 | 70 | - | | 6113 | | Class A
Amplifier | 135 | | 5.0 | 4.0 | _ | 9,400 | 1,600 | 15 | _ | | 6121 👁 | | Class A
Amplifier | 300 | 150 | R _k = 160 | 10 | 2.5 | 1,000,000 | 9,000 | | = | | 6134
5 ★ | | Class A
Amplifier | 250
100 | Ξ | 8.5
0 | 10.5
11.8 | = | 7,700
6,250 | 2,200
3,100 | 17
19.5 | = | | 6135
5 ★ | | Class A
Amplifier | 250 | 150 | R _k = 68 | 10.6 | 4.3 | 1,000,000 | 5,200 | | - | | 6136 | | Ampiner | 100 | 100 | $R_k = 150$ | 5.0 | 2.1 | 500,000 | 3,900 | - | - | - | 5★ | | Class A
Amplifier | 250
100 | 100
100 | 3 | 9.2
13 | 2.6
4.0 | 800,000
120,000 | 2,000
2,350 | _ | = | | 6137
5★ | | Pulse
Amplifier | 150
150
60 | 100
100
100 | 5.3
0 | 34
2.0 | 8 | 100,000 | | = | = | | 6145 | | Class AB ₁ | 400 | _ | 100 | 40† | | | | | 1000,8 | 22 | 6146 | | Amplifier
Class AB ₂
Amplifier | 600 | 165 | 44 | 22† | 0.6† | | | | 6,800‡ | 90 | | | Class AB ₁
Amplifier | 400
600 | 190
180 | 40
45 | 63†
26† | 2.5†
1.0† | _ | | = | 4,000: | 55
82 | 6146-A | | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | | _ | | 5,600 | 96 | 6146-B | | Class A
Amplifier | 125 | 125 | 7.5 | 5.5 | 0.9 | 175,000 | 1,600 | | - | | 6147 🖜 | | Class A
Amplifier | 100 | _ | R _k = 270 | 10 | | 3,400 | 5,100 | 17.5 | | | 6152 ⊚ | | Class AB ₁
Amplifier | 400
600 | 190
180 | 40
45 | 63†
26† | 2.5†
1.0† | | | _ | 4,000±
7,000± | 55
82 | 6159-A | | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | _ | _ | _ | 5,600‡ | 96 | 6159-B | | Class A
Amplifier | 180 | | 1.0 | 11.5 | | 8,500 | 6,500 | 55 | = | | 6169 ⊛ | | Half-Wave
Rectifier | | d-c outroeak cur | | | | max peak | inverse | voltage | e 🖲 = 37. | 5 volts; | 6173 | | Full-Wave
Rectifier | Max | d-c out | put cur | ent =2 | 0 ma; r | nax peak i
x peak cur | nverse v | oltage = | =450; n | nax rms | 6184 ● | | Class A
Amplifier | 250 | 150 | R _k = | 7.0 | 2.0 | | 5,000 | | I - | - | 6186 | | Class A
Amplifier | 120 | 120 | 2.0 | 5.2 | 3.5 | _ | 3,200 | _ | | | 6187 | | Class A
Amplifier • | 250 | _ | 2.0 | 2.3 | _ | 44,000 | 1,600 | | | | 6188 | | Class A
Amplifier • | 250
100 | | 8.5 | 10.5
11.8 | | 7,700
6,500 | 2,200
3,100 | 17
20 | | | 6189
5★ | | Class A
Amplifier • | 180 | | 1.0 | 11.5 | = | 8,500
9,000 | 6,500
5,800 | 55
50 | 三 | | 6193 ⊛ | | Class A
Amplifier | 125 | 125 | 7.5 | 9.0 | 1.5 | 120,000 | 2,100 | | | | 6195 ◉ | | Class A
Amplifier | 250 | 150 | 3.0 | 30 | 7.0 | 90,000 | 11,000 | | _ | | 6197 | | <u>T</u> ube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | Ca
1 | pacitan
Picofara | ce in
ds | |--------------|---|---------------|------|--|--|--------------|-------------------|---------------------------|--------------------------|---------------------|-----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid
plate | | 6201
5★ | High-Frequency Twin Triode (Special 12AT7) | 9A | 6-2 | 12.6
6.3 | $\left \begin{array}{c}0.15\\0.3\end{array}\right\}$ | 2.5 | 330 ◈ | _ | 2.5 ▲ | 0.45ı ▲
0.38₂ ▲ | 1.6 ▲ | | 6202
5 ★ | Full-Wave High-Vacuum
Rectifier
(Special 6X4) | 5BS | 5-3 | 6.3 | 0.6 | - | Tube V
22 v at | oltage I
50 ma d | Orop: ♠
-c | | 1 | | 6203
5★ | Full-Wave High-Vacuum
Rectifier | 9CD | 6-3 | 6.3 | 0.9 | | Tube V
22 v at | oltage l
70 ma d | Orop: • |) | | | 6205 ⊚ | Sharp-Cutoff
RF Pentode | 8DC | 3-1 | 6.3 | 0.15 | 0,9 | 165∰ | | 4.2 | 3.4 | 0.015 | | 6206 € | Semi-Remote-Cutoff
RF Pentode | 8DC | 3-1 | 6.3 | 0.15 | 0.85 | 165⊚ | 155@
0.55@ | 4.2 | 3.4 | 0.015 | | 6211 | Medium-Mu
Twin Triode | 9A | 6-2 | $\{ \begin{array}{c} 12.6 \\ 6.3 \end{array} \}$ | $\begin{bmatrix} 0.15 \\ 0.3 \end{bmatrix}$ | 1.5 | 200 ₪ | - | 2.9 ▲ | 0.541 A
0.46; A | 2.22 | | 6211-A | Medium-Mu
Twin Triode | 9A | 6-2 | 12.6 | 0.15 | 1.3 🏶 | 200 🌢 | | 2.9 ▲ | 0.541 | 2.22 4 | | 5★ | Twin Triode | | | 6.3 | 0.3 | - | | _ | | 0.462 | - | | 6215 | Half-Wave High-Voltage
Rectifier | 3C | T-X | 1.25 | 0.2 | | | oltage I
2.0 ma o | | | | | 6216
5★ | Beam Power Amplifier | 9CE | 6-3 | 6.3 | 1.2 | 10 | 300 | 200 2.0 | 13.2 ▲ | 6.7 ▲ | 0.37 | | 6221 ◉ | Medium-Mu Triode | 8HF | 3-1 | 6.3 | 0.175 | 3.3 ₪ | 165 ◉ | | | | = | | 6222 🌑 | High-Mu Triode | 8HF | 3-1 | 6.3 | 0.175 | 0.55 🗷 | 165 € | | | | _ | | 6223 ◉ | Sharp-Cutoff Pentode | 8DL | 3-1 | 6.3 | 0.175 | 1.1 🖲 | 165 ₪ | 155 ©
0.55 © | 4.2 | 3.4 | 0.015 | | 6224 ⊚ | Beam Power
Amplifier | 8DL | 3–3 | 6.3 | 0.45 | 5.0 € | 165 📵 | 155 @
0.6 @ | 6.5 | 7.5 | 0.2 | | 6225 ◉ | Semi-remote Cutoff
Pentode | 8DL | 3-1 | 6.3 | 0.175 | 1.1 🖲 | 165 € | 155 ®
0.55 ® | 4.1 | 3.4 | 0.015 | | GL6228 | Ignitron | GL
6228 | ТX | | _ | | _ | _ | | _ | _ | | 6245 🕲 | Sharp-Cutoff
Pentode | 5702 | 3-6 | 6.3 | 0.2 | 1.85 🖲 | 200 🖲 | 155 @
0.55 @ | 4.35 | 3.15 | 0.03 4 | | 6247 ⊚ | High-Mu Triode | 8FO | 3-2 | 6.3 | 0.2 | 1.6 🖹 | 275 € | | | | <u> </u> | | GL-6251 | Tetrode | GL-
6251 | тx | 5.5 | 19.0 | 25000 | 7000 | 700 | | e-Plate | | | 6265
5★ | Sharp-Cutoff RF
Pentode
(Special 6BH6) | 7CM | 5-2 | 6.3 | 0.175 | 2.0 | 300 | 300 \$
0.5 | 5.2 ▲ | | 0.004
•• | | 6267 | AF Pentode | 9CQ | 6-2 | 6.3 | 0.2 | 1.0 | 300 | 200
0.2 | | | _
| | 6281 ⊚ | Sharp-Cutoff
AF Pentode | 2E31 | 2-2 | 0.625 | 0.02 | | 25 € | 25 📵 | 2.5 | 3.4 | 0.01 | | L-6283 | Tetrode | GL-
6283 | тx | 6.3 | 3.6 | 300 | 2000 | 320 | Cathod
Input 1
6.4 | e-Plate
8.25; Oi | 0.006;
itput | | 6286 ⊛ | Medium-Mu Triode | 5676 | 2-1 | 1.25 | 0.125 | 0.45 📵 | 100 📵 | | 1.3 ▲ | 2.1 🛦 | 1.6▲ | | 6287 | Beam Power
Amplifier | 9CT | T-X | 6.3 | 0.6 | 13.2 📵 | 275 📵 | 275 ● 3.2 ● | 8.0 🛦 | 9.0▲ | 1.1 💠 | | 6299 | High-Mu UHP
Triode (Planar) | 6299 | T-X | 6.3 | 0.3 | 2.0 🖲 | 200 🖲 | | 3.5 ▲ | 0.015 | 1.7 🛦 | | 6320 ◉ | High-mu Twin Triode | 8DG | T-X | 6.3 | 0.085 | 0.6 ♠ | 150 | | 1.0 | 1.4 | 0.6 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕] Total for all similar sections. ● Absolute maximum rating. # Conversion transconductance. See X-Radiation Warning, page 4. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-------------------------------------|-------------------|--|--|---------------------------------|----------------------------------|------------------------------------|---------------------------|-------------------------|--|--------------------------------|--------------------| | Class A | 250 | | Rk = | 10 | | 10,900 | 5,500 | 60 | i — | <u> </u> | 6201 | | Amplifier 🌩 | 100 | | 200
R _k =
270 | 3.3 | _ | 14,300 | 4,000 | 57 | | _ | 5★ | | Full-Wave
Rectifier | Max d-
rms sug | c outpu | t curre | nt 📵 = 5
plate = | 5 ma; 1
325 vol | nax peak i
ts; max pea | nverse
k curre | voltage
nt per p | ● =137.
late == | 5 volts;
220 ma | 6202
5 ★ | | Full-Wave
Rectifier | Max d- | c outpu | t curre | nt 🖲 = 7
plate = | 7 ma; 1
325 vol | nax peak i
ts; max pea | nverse
k curre | voltage
nt per p | ■ = 137.
late | 5 volts;
300 ma | 6203
5 ★ | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.5 | 2.4 | 260,000 | 5,000 | | | | 6205 ● | | Class A
Amplifier | 100 | 100 | R _k = 120 | 7.2 | 2.2 | 260,000 | 4,500 | | | | 6206 ⊚ | | Class A
Amplifier • | 100 | | R _k = 470 | 4.6 | ~~ | 7,500 | 3,600 | 27 | _ | | 6211 | | Frequency Halfer | 1508
1508 | | 0
10 | 4.8
0.1 | | $R_{g} = 47,00$
$R_{g} = 47,00$ | 0 ohms
0 ohms | | 20,000
20,000 | | | | Class A
Amplifier • | 100 | | 2.0 | 6.6 | _ | 6,500 | 4,700 | 30 | | _ | 6211-A
5 ★ | | Frequency
Halfer 🌩 | 85 | | _ | 16 | | | İ |).2 ma) | | | | | Half-Wave
Rectifier | Max d-
peak cu | c outpu
irrent = | t curren
8.0 ma | | | peak inve | | | | ts; max | 6215 | | Class A Amp
Filter
Reactor | 200
100 | 100
100 | 6.0
3.0 | 47†
72 | 2.0†
3.0 | 38,000
18,500 | 8,800
12,500 | $R_{g1} = 0$ | 4,500
1 meg | 3.8 | 6216
5 ★ | | Class A
Amplifier | 100 | _ | R _k = 150 | 8.5 | | 4,700 | 5,800 | 27 | _ | | 6221 ◉ | | Class A
Amplifier | 100 | | R _k = 1500 | 0.7 | | 41,000 | 1,700 | 70 | _ | | 6222 🗑 | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.5 | 2.4 | 175,000 | 5,000 | | | | 6223 ◉ | | Class A
Amplifier | 110 | 110 | R _k = 270 | 30 | 2.0 | 10,000 | 4,200 | | | | 6224 📵 | | Class A
Amplifier | 100 | 100 | R _k = 120 | 7.2 | 2.0 | 175,000 | 4,500 | | | _ | 6225 ⊚ | | Capacitor
Discharge | voltage | orward
50000
per mini | volts; n | node v | oltage
ak anod | 50000 volt
le curr. 300 | s; max
000 A.; | . invers | se peak
dischar | anode
ge rate | GL6228 | | Class A
Amplifier | 120 | 120 | R _k = | 7.5 | 2.6 | | 5,000 | $E_{c3} = 0$ | volts | | 6245 ● | | | 20 | 30 | 0 | 2.5 | 1.5 | | 3,275 | $E_{c3} = 0$ | volts | | <u>.</u> | | Class A
Amplifier | 250 | _ | R _k = 500 | 4.2 | _ | 22,600 | 2,650 | 60 | | | 6247 ⊚ | | VHF Ampli-
fier-Oscil-
lator | 6800 | 600 | 20 | 7500 | 50 | _ | _ | 20 | _ | 25000 | GL-6251 | | Class A
Amplifier | 250 | 150 | R _k = 100 | 7.4 | 2.9 | 1,000,000 | 4,600 | _ | _ | | <i>6265</i>
5 ★ | | Class A
Amplifier | 250 | 140 | 2.0 | 3.0 | 0.6 | 2,500,000 | 2,000 | $\overline{E_{c3}} = 0$ | volts | | 6267 | | Class A
Amplifier | 15 | 15 | 1.0 | 0.05 | 0.02 | 2,000,000 | 105 | | - | | 6281 ◉ | | Oscillator/
Amplifier
Class C | 1600 | 250 | 40 | 290 | | _ | _ | 10 | | 154 | GL-6283 | | Amplifier
Class B | 1500 | 250 | 25 | 400 | 7 | - | - | - | - | 260 | | | Class A
Amplifier | 67.5 | - | 2.0 | 6.0 | 1 - | 5,500 | 2,100 | 11.5 | _ | _ | 6286 ⊚ | | Class A
Amplifier | 250 | 250 | 12.5 | 46† | 5.0† | 55,000 | 4,100 | | 6,000 | 4.5 | 6287 | | Class A
Amplifier | 175 | | Adjust
for
I _b =
10 ma | 10 | | 9,600 | 15,000 | 115 | | - | 6299 | | Class A
Amplifier • | 100 | - | $\frac{10 \text{ ma}}{R_k = 680}$ | | _ | 33,000 | 1,800 | 60 | | | 6320 ◉ | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca ₁ | pacitanc
Picofarac | e in
Is | |-------------|---|---------------|-------|---------------------|-----------------|---|--------------|------------------------------|-----------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6321 ◉ | Low-Mu Twin Triode | 8DG | T-X | 6.3 | 0.085 | 0.6♠ | 150 | | 1.0 | 1.4 | 0.55 | | 6325 | Full-Wave High-
Vacuum Rectifier | 6325 | T-X | 6.3 | 2.7 | - | = | = | | | | | 6327 | Beam Power Amplifier | 6327 | T-X | 6.3 | 1.8 | 35 € | 1,650 | 330 ●
6.0 ● | 13▲ | 13 ▲ | 0.64 | | 6336 | Low-Mu Twin Triode | 8BD | T-X | 6.3 | 4.75 | 30 📵 🏚 | 400 D | | 13.7 ▲ | 4.7 ▲ | 15.2 | | 6336-A | Low-Mu Twin Triode | 8BD | T-X | 6.3 | 5.0 | 30 🖭 💠 | 400 ◉ | | 16.7 ▲ | 3.8 ▲ | 21.8 ▲ | | 6350 | Medium-Mu
Twin Triode | 9CZ | 6-3 | 6.3
12.6 | 0.6 | 4.0 ● | 330 € | | 3.6 ▲ | 0.6 | 3.2 ▲ | | 6352 ⊚ | Temperature-Limited Twin Diode | 8EY | 3-2 | 3.0
AC | 0.36 | - | Max pl | ate volt | age 🖲 = | ● =4.0
250 d-c
1.1 ma | | | 6355 | Twin Electron-Ray
Indicator | 6355 | T-X | 6.3 | 0.14 | | Max ta | rget vo | tage = | 275 v | | | 6360 | Twin Tetrode | 9PW | 6-4 | 12.6
6.3 | 0.41 0.82 | 7.0 € | 300 🖲 | 200 ⑤
2.0 ⑥ | Two S | ections, | Push- | | 6384 | Beam Power Amplifier | 6BQ | T-X | 6.3 | 1.2 | 30 € | 750 € | 325 ®
3.5 ® | | <u> </u> | _ | | 6386 | High-Frequency
Twin Triode | 8CJ | 6–2 | 6.3 | 0.5 | 1.5♠ | 300 | | 2.4 ▲ | 1.1 🛦 | 1.7▲ | | 6386
5 ★ | Medium-Mu
Remote-Cutoff Twin
Triode | 8CJ | 6-1 | 6.3 | 0:35 | 1.5♠ | 300 | | 2.0 ▲ | 1.1 🛦 | 1.2▲ | | 6394 | Low-Mu Twin Triode | 8BD | T-X | 26.5 | 1.2 | 30 📵 💠 | 400 | | 13.7 ▲ | 4.7 ▲ | 15.2 ▲ | | 6394-A | Low-Mu Twin Triode | 8BD | T-X | 26.5 | 1.3 | 30 📵 💠 | 400 🖲 | = | 16.7 ▲ | 3.8 ▲ | 21.8 | | 6397 ● | Power-Amplifier
Pentode | 6CL | T-X | $\frac{12.5}{1.25}$ | 0.0625
0.125 | 1.5 🖲 | 135 📵 | 135 ©
0.6 © | 2.75 | 3.0 | 0.055 | | 6414
5★ | Twin Triode | 9A | 6–3 | {12.6
6.3 | 0.225 | 2.0 ♦
3.6 ♦
⊕ | 200 🏟 | | 4.0 ▲ | 0.47 ₁
0.38 ₂ | 3.0 ▲ | | 6418 | Power-Amplifier
Pentode | 512-
AX | T-X | 1.25 | 0.01 | - | 30 📵 | 30 ₪ | | - | | | 6419 🏶 | Power-Amplifier
Pentode | 512-
AX | T-X | 0.625 | 0.01 | | 25 📵 | 25 € | - | | <u> </u> | | 6442 | Medium-Mu UHF
Triode (Planar) | 6442 | T-X | 6.3 | 0.9 | 8.0 📵 | 350 € | | 5.5 ▲ | 0.035 | 2.3 ▲ | | 6463 | Medium-Mu
Twin Triode | 9CZ | 6–3 | ${12.6} \atop 6.3$ | 0.3 | 4.0 ♠
7.0 ⊕ | 300 | | 3.0 ▲ | 0.6 ₁ A
0.5 ₂ A | 5.0 ▲ | | 6485 | Sharp-Cutoff RF
Pentode | 7BK | 5-2 | 6.3 | 0.45 | 3.2 | 300 | 150
0.6 | 10 | 3.6 | 0.02 4 | | 6486 | Dual-Control Pentode | 9DV | 6-2 | 6.3 | 0.25 | 2.0 | 180 | 140
0.75 | 4.5 4 | 3.3 | 0.035 | | 6486-A | Dual-Control Pentode | 9DV | 6-2 | 6.3 | 0.25 | 2.0 ◉ | 200 | 155 ®
0.85 ® | 4.4 ♣ | 3.7 | 0.04 | | GL6512 | Ignitron | GL
6512 | Integ | ral ther | mostat | version | of GL- | | me rati | ngs app | ly. | | GL6513 | Ignitron | GL
6513 | Integ | ral ther | mostat | version | of GL- | 555. Sa | me rati | ngs app | ly. | | GL6515 | Ignitron | GL
6515 | Integ | ral ther | mostat | version | of GL- | 564. Sa | me rati | ngs app | ly. | | 6519 🌑 | Power-Amplifier
Pentode | 512AX | T-X | 1.25 | 0.01 | | 30 📵 | 30 € | $R_{g1} = 1$ | 0 meg | | | 6520 | Low-Mu Twin Triode | 8BD | 16-3 | 6.3 | 2.5 | 14 📵 💠 | 300 ₪ | | 8.4 ▲ | 2.2 ▲ | 9.4 ▲ | | Class A Amplifier Full-Wave Rectifier Class A Amplifier DC Amplifier DC | Piate Volts 100 Max d-supply 400 250 | c outpu | 40
22.5 | Milli-
am-
peres | Screen
Milli-
am-
peres
50 ma;
80; ma:
3.5
7.0 | R _p ,
Ohms 9,400 max peak x peak curr 20,000 250 | G _m , µmhos 1,700 inverse ent per 5,500 8,000 11,000 | Factor 16 voltage plate | Load for Rated Output, Ohms = 220 = 550 r | Power Output, Watts | Tube Type 6321 ● 6325 6327 6336 | |--|--|------------|-------------------------------|---------------------------|---|---|---|---------------------------|---|---------------------|-------------------------------------| | Amplifier
♠
Class A | 150 | | $\frac{R_k = 200}{5.0}$ | 11 | | 3,900 | 4,600 | 18 | _ | | 6336-A
6350 | | Amplifier Control Service Tuning | | | | | | te current | | | P. | | 6352 ● | | Indicator
Class AB ₁ | trode- | 2 volta | e = 250 $ge = 120$ 21.5 | to 190 | 1.2† | Ode-1 Volta | ige = 120 | | 10,000 | 12 | 6360 | | Amplifier Horizontal Amplifier | 250
Max po
max sc | sitive r | 22.5
oulse pla
sipation | 77
ite volt
= 3.5 w | 3.5
age = 1,
vatts; m | 500 volts;
ax d-c catl | 5,400
node cur | | 25 ma | | 6384 | | Class A
Amplifier • | 150 | _ | 2.0 | 8.0 | _ | 7,000 | 5,000 | 35 | | | 6385 | | Class A
Amplifier • | 100 | | R _k = 200 | 9.6 | _ | 4,250 | 4,000 | 17 | | | 6386
5 ★ | | DC
Amplifier • | 190 | | R _k = | 185 | | 200 | 13,500 | | | | 6394 | | DC
Amplifier • | 190 | | R _k = 200 | 185 | | _ | 13,500 | 2.7 | <u> </u> | _ | 6394-A | | Class A
Amplifier | 125 | 125 | 7.5 | 7.25 | 1.2 | | 1,950 | _ | | | 6397 🌑 | | Class A
Amplifier • | 180
150
100 | = | 2.0
4.8 | 8.0
0.15
17 | = | 7,650
— | 5,550
I _c = 0.2 | 42.5
ma | = | | 6414
5★ | | Class A
Amplifier | 22.5 | 22.5 | 1.2 | 0.24† | 0.06† | 420,000 | 300 | | 100,000 | 0.0022 | 6418 🖜 | | Class A
Amplifier | 15 | 15 | 0.625 | 0.055 | 0.02 | 2,000,000 | 100 | _ | - | | 6419 ● | | Class C
Amplifier | 250 | _ | I _c = 6 ma | 23 | _ | | | | | 2.8 | 6442 | | Class A
Amplifier | 250
100 | _ | R _k = 620 | 14.5
29 | _ | 3,850 | $I_c = 200$ | l | | | 6463 | | Frequency Halfer • (Class A | 300 | 150 | 11
P | 1.0 | 2.5 | 500,000 | 9.000 | | -=- | <u> </u> | 6485 | | Amplifier Class A | 120 | 120 | $R_k = 160$ -2.0 | 3.5 | 3.3 | 300,000 | | $\frac{-}{E_{c3}=0}$ | volts | <u> </u> | 6486 | | Amplifier | | | 1 | | | | | | | | | | Class A
Amplifier | 120
120 | 120
120 | 2.0 | 3.5
4.2 | 3.3
5.1 | | 2,100 | Ect = - | volts
-3 volts | <u> </u> | 6486-A | | | _ | | | | <u> </u> | | _ | | _ | | GL6512 | | | | | _ | | | | = | | | | GL6513 | | | _ | _ | | | _ | - | | _ | | _ | GL6515 | | Class A
Amplifier | 22.5 | 22.5 | E _{cc1} =0 | 0.4 | 0.1 | 300,000 | 450 | | 100,000 | 0.0015 | 6519 🖨 | | DC
Amplifier ♠ | 135 | | R _k = 250 | 112 | | 280 | 7,000 | 2.0 | | | 6520 | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | pacitanc
Picofarac | | |---------------|---|---------------|------|---------------|---------------|--------------|--------------|---------------------------------|---------|-----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Voits | and
Watts | Input | Out-
put | Grid-
plate | | 6525 | Thyratron | 7BN | 5-1 | 6.3 | 0.15 | - | 500 ◈ | Anode | voltage | drop = | 8 volts | | 6526 ● | Power-Amplifier
Pentode | 512-
AX | 2-1 | 1.25 | 0.125 | 1.1 🖲 | 135 🖷 | 135 a | - | - | | | 6528 | Twin Triode | 8BD | T-X | 6.3 | 5.0 | 30 🗩 💠 | 400 € | = | 17.8▲ | 2.9 ▲ | 23.8 ▲ | | 6533 ⊛ | High-Mu Triode | 8FY | 3-1 | 6.3 | 0.2 | 0.35 🏶 | 150 ◈ | _ | 1.75 ▲ | 0.6▲ | 1.6▲ | | 6540 ⊚ | Sharp-Cutoff Pentode | 5702 | 3-6 | 6.3 | 0.2 | 1.1 ◈ | 165 ◈ | 155 ③ 0.4 ③ | 4.8 | 3.5 | 0.03 💠 | | 6550 | Beam Power Amplifier | 7AC | T-X | 6.3 | 1.8 | 42 🏶 | 660 ◈ | 440 * | 15▲ | 10▲ | 0.8 🛦 | | 6582 | RF Pentode | 9EJ | 6-2 | 6.3 | 0.25 | 2.0 | 200 | 155
0.85 | 5.0 | 3.4 | 0.03 💠 | | 6582-A | Sharp-Cutoff
RF Pentode | 9EJ | 6–2 | 6.3 | 0.25 | 2.0 | 200 🖲 | | 4.5 | 3.0 | 0.03 ♣ | | 6611 ⊕ | RP Pentode | 512AX | 2-1 | 1.25 | 0.02 | 0.1 🖲 | 50 📵 | | 4.0 | 4.0 | 0.008 | | 6612 ⊕ | RF Pentode | 512AX | 2-1 | 1.25 | 0.08 | 0.2 💽 | 50 ₪ | 50 ®
0.05 ® | 5.5 | 4.2 | 0.01 | | 6660 | Remote-Cutoff
RF Pentode
(Special 6BA6) | 7BK | 5-2 | 6.3 | 0.3 | 3.3 ♦ | 330 ◈ | | 5.5 | 5.5 | 0.0035 | | 6661 | Sharp-Cutoff RF Pentode (Special 6BH6) | 7CM | 5–2 | 6.3 | 0.15 | 3.3 🌑 | 330 🏟 | 330 ♦ 8
0.55 ♦ | 5.4 | 4.4 | 0.0035 | | 6662 | Remote-Cutoff
RF Pentode
(Special 6BJ6) | 7CM | 5-2 | 6.3 | 0.15 | 3.3 ◈ | 330 ◈ | 330 ♦ \$
0,65 | 4.5 | 5.5 | 0.0035 | | 6663 | Twin Diode
(Special 6AL5) | 6BT | 5-1 | 6.3 | 0.3 | | | oltage
60 ma | | • | ! | | 6664 | High-Frequency
Triode | 5CE | 5-2 | 6.3 | 0.15 | 2.9 🄷 | 330 ◈ | | 2.2 | 1.4 | 1.5 | | 6669 | Beam Power Amplifier
(Special 6AQ5) | 7BZ | 5-3 | 6.3 | 0.45 | 12 🏶 | 250 ◈ | 250 ③
2.0 ④ | Single | Tube | | | | ' | | | | | | | | 2 Tube | es, Push | Pull | | 6676 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.3 🏶 | 330 🏶 | 330 ♦ 8 | 6.5 | 3.0 | 0.015 | | 6677 | Power-Amplifier Pentode (Special 6CL6) | 9BV | 6–3 | 6.3 | 0.65 | 8.5 🏶 | 330 � | 330 ♦ 8 | 11 🛦 | 5.5 ▲ | 0.12 ♣ | | 6678 | Triode-Pentode
(Special 6U8) | 9AE | 6-2 | 6.3 | 0.45 | 3.0 ♦ | 330 ◈ | 0.55 | | le Section | | | 6679 | High-Mu Twin Triode | 9A | 6-2 | 12.6 | 0.15 | 2.8 🏟 | 330 ♠ | | 2.2 | 1 1.21 | 1.5 | | | (Special 12AT7) | | | 1 6.3 | 0.3 | • | | .i | | 1.52 | | | 6680 | Medium-Mu Twin
Triode
(Special 12AU7) | 9A | 6-2 | {12.6
6.3 | 0.15 | 3.0 ◈ | 330 ◈ | | 1.8 | 2.0 | 1.5 | | 6681 | High-Mu Twin Triode
(Special 12AX7) | 9A | 6-2 | {12.6
6.3 | 0.15 | 1.1 ◈ | 330 ◈ | - | 1.8 | 1.9 | 1.7 | Compactron. † Zero signal. • Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. [⊕]Total for all similar sections. ■Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | for
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |------------------------------------|----------------|-----------------|---|---------------------------------|----------------------------------|-------------------------------------|---------------------------|---------------------------------|---|--------------------------------|--------------| | Relay
Energizer | volts d | -c, Eccı | =0 volt | s. RL = | 22,000 | iode condu
ohms, R _{g2} | = 1.0 m | eg R _{g1} = | : 0 | | 6525 | | Class A
Amplifier | 110 | 110 | 6.0 | 6.5† | 1.15† | 140,000 | 1,900 | | 10,000 | 0.375 | 6526 ● | | DC
Amplifier 4 | 100 | | 4.0 | 185 | | 245 | 37,000 | 9.0 | | | 6528 | | Class A
Amplifier | 120 | | R _k = 1500 | 0.9 | | 31,000 | 1,750 | 54 | _ | | 6533 ⊚ | | Class A
Amplifier | 120 | 120 | $R_k = 200$ | 7.5 | 2.6 | 150,000 | 5,000 | | $E_{c3}=0$ | i_ | 6540 ⊚ | | Class A
Amplifier | 400
250 | 225
250 | 16.5
14 | 87
140 | $\frac{4.0}{12}$ | 15,000 | 11.000 | = | 3,000
1,500 | 20
12.5 | 6550 | | Class A
Amplifier | 120 | 120 | 2.0 | 7.5 | 2.5 | | 4,500 | _ | | _ | 6582 | | Class A
Amplifier | 120 | 120 | R _k = 180 | 7.5 | 2.5 | 500,000 | 4,500 | _ | _ | _ | 6582-A | | Class A
Amplifier | 30 | 30 | E _{cci} =0 | | 0.35 | 400,000 | | $R_{g1} = 5$ | | | 6611 ● | | Class A
Amplifier | 30 | 30 | E _{cci} =0 | 3.0 | 1.0 | 180,000 | | R _{g1} =2.6 | | | 6612 @ | | Class A
Amplifier | 250 | 100 | R _k = 68
R _k = | 11 | 4.2 | 1,000,000 | | E _{c3} = 0 | | | 6660 | | | 100 | 100 | 68 | 10.8 | 4.4 | 250,000 | | $\mathbf{E}_{\mathbf{c}^3} = 0$ | | | | | Class A
Amplifier | 250 | 150 | R _k = 100 | 7.4 | 2.6 | 1,400,000 | 4,600 | $\mathbf{E}_{\mathbf{c}^3} = 0$ | volts | | 6661 | | Class A
Amplifier | 250 | 100 | R _k = | 9.2 | 3.3 | 1,300,000 | 3,600 | $E_{e^3} = 0$ | volts | - | 6662 | | | 100 | 100 | R _k = | 9.0 | 3.5 | 250,000 | 3,650 | $E_{c3} = 0$ | volts | | | | Rectifier
Service | Max d | -c outp | ut curre | ent per
urrent | plate 🏶
per plat | =10 ma;
e - 60 ma | max pea | ak inver | se volta | age ◈ = | 6663 | | Class A
Amplifier | 250 | 1 - | R _k = | 10 | | 10,900 | 5,500 | 60 | | | 6664 | | | 100 | - | R _k = 270 | 3.7 | _ | 15,000 | 4,000 | 60 | _ | - | | | Class A
Amplifier | 250 | 250 | 12.5 | 45† | 4.5† | 52,000 | 4,100 | _ | 5,000 | 1 | 6669 | | Class AB ₁
Amplifier | 250 | 250 | 15 | 70† | 5.0† | | | | 10,000 | 10 | | | Class A
Amplifier | 125 | 125 | R _k = 56 | 13 | 3.7 | 280,000 | 8,000 | | | | 6676 | | - A | 125
250 | 125 | 3.0 | 2.8
30† | 7.01 | 150.000 | 11.000 | Ga tied | 7.500 | 2.8 | 6677 | | Class A
Amplifier | 250 | 150 | 3.0 | 307 | 7.07 | 150,000 | 11,000 | to K | 1,300 | 4.0 | 00// | | Class A
Amplifier | 250 | 110 | R _k = | 10 | 3.5 | 400,000 | 5,200 | | | | 6678 | | | 150 | - | 68
R _k =
56 | 18 | | 5,000 | 8,500 | 40 | | | | | Class A
Amplifier | 250 | | R _k = | 10 | | 10,900 | 5,500 | 60 | _ | _ | 6679 | | Class A | 1 | | | 10.5 | | 7,700 | 2,200 | 17 | | | 6680 | | Class A
Amplifier
Class A | 250
100 | = | 8.5 | 11.8 | - | 6,500 | 3,100 | 20 | | - | | | Tube | Classification
by | Base
Con- | Out- | File-
ment | File-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car | pacitanc
icofara | e in
ds | |------------|---|---------------|------|---------------|---------------|------------------------------|-------------------|------------------------|-------------------|---|---------------| | Туре | Construction | nec-
tions | Dwg | Voits | Amp | Watte | | and
Watts | Input | Out-
put | Grid
plate | | 6688
5★ | RF Pentode | 9EQ | 6-1 | 6.3 | 0.3 | 3.0 😥 | 210 | 175 😥
0.9 📵 | 7.5 | 3.0 | 0.03 | | 6690 ● | Medium-Mu Twin
Triode | 8GQ | Ť-X | 6.3 | 0.3 | 1.1 🗷 | 120 🗃 | | 2.6 | 1.7 ₁
2.1 ₂ | 1.8 | | 6754 | Full-Wave High-
Vacuum Rectifier | 9ET | T-X | 6.3 | 1.0 | _ | _ | | _ | | _ | | 6763 | Cold-Cathode
Half-
Wave Rectifier | 6763 | T-X | | | _ | Tube V | oltage | Drop: 1 | 00 volt | s | | 6771 | High-Mu UHF
Triode (Planar) | 6442 | T-X | 6.3 | 0.57 | 6.25 | 300 € | - | 4.05 | 0.018 | 2.0 🛦 | | 6788 ⊚ | Sharp-Cutoff
Pentode | 8DL | 3-11 | 6.3 | 0.175 | 0.5 🖲 | 250 🖼 | 150 📵
0.15 🚇 | 2.4 | 3.3 | 0.032 | | 6792 | High-Vacuum
Beam Tetrode | 8GL | T-X. | 6.3 | 0.45 | 25 | 25,000 | | 2.0 ▲ | 4.0 ▲ | 0.03 | | 6807 | Thyratron | 6807 | T-X | 2,5 | 21 | | Anode | Voltage | Drop : | =16 Vol | ts | | 6808 | Thyratron | 6808 | T-X | 2.5 | 21 | | Anode | Voltage | Drop | =16 Vol | its | | 6809 | Thyratron | 6807 | T-X | 2.5 | 21 | | Anode | Voltage | Drop : | =16 Vol | ts | | 6814 🖷 | Medium-Mu
Triode | 8DK | 3-1 | 6.3 | 0.15 | 2.0 | 250 | - | 2.4 | 2.4 | 1.3 | | 6829
5★ | Twin Triode | 9A | 6-3 | 12.6
6.3 | 0.225 | 2.2 ♦ | 275 ◈ | | 4.0 ▲ | 0.51 △ 0.38 ₂ | 3.0 ◢ | | 6832 ● | Medium-Mu Twin
Triode | 8DG | 3-2 | 6.3 | 0.4 | 0.1 | 165 🕦 | | | _ | - | | 6840 | Medium-Mu Twin
Triode | 9CZ | 6–3 | 12.6
6.3 | 0.4 | 4.0 ♦
7.0 ♦ | 300 🏟 | | 4.0 ▲ | 0.70 ₁ ▲ 0.65 ₂ ▲ | 5.5 4 | | 6842 | High-Voltage
Regulator | 7EQ | T-X | 6.3 | 0.15 | 8.0 | 4000 | 150 | 3.95 ▲ | 1.34 | 0.06 | | GL6848 | Tetrode | GL
6848 | ТX | 7.0 | 13.5 | 2000 | 4500
7000 | 500
750 | | e-Plate
27.8; Ou | | | 6851 | High-Mu Twin | 9A | 6-2 | 6.3 | 0.25 | 1.0 | 330 € | | 1.6▲ | 0.46₁ ▲ | 1.4 | | 6853 | Triode Full-Wave High- Vacuum Rectifier | 8HE | 9-42 | 5.0 | 1.7 | - | Tube V
60 volt | oltage
s at 125 | Drop: 4
ma d-c | 0.36₂ ▲ | L | | 6834 | Medium-Mu Twin Triode | 8CJ | 6-2 | 6.3 | 0.5 | 1.5♠ | 300 | _ | 2.4 ▲ | 1.1 ▲ | 1.7 🛦 | | 6856/740 | Thyratron | 6856 | T-X | 2.5 | 16 | | Anode | Voltage | Drop = | 12 Vol | ts | | 6858/760 | Thyratron | 6807 | T-X | 2.5 | 21 | | Anode | Voltage | Drop = | =12 Vol | ts | | 6859/760-P | Thyratron | 6808 | T-X | 2.5 | 21 | | Anode | Voltage | Drop = | =12 Vol | ts | | 6872 ◉ | Pentode | 5702 | 3-7 | 6.3 | 0.2 | 1.1 🏶 | 165 🏶 | 155 �
0.4 � | 5.0 | 3.5 | 0.03 | | 6877 | Low-Mu Triode | 9GB | 6-4 | 6.3 | 0.8 | 12 🖲 | 200 🖲 | | | | = | | 6883 | Beam Power
Amplifier | 7CK | T-X | 12.6 | 0.625 | 20 💿
20 🗟 | 400 ® | 250 🗑 | Two To | Connectibes, Pure Connection | sh-Prection | | 6883-A | Beam Power Amplifier | 7CK | T-X | 12.6 | 0.625 | 20 🖲 | 600 € | | | bes, Pu | | | , | | | | | | | | | | | |-------------------------|--|-----------------------|--|--|---|--|---|---
--|--| | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | 190 | 160 | R _k = | 13 | 3.3 | 90,000 | 16,500 | E _{ccl} = | +9.0 vo | lts | 6688
5★ | | 100 | | R _k = | 8.0 | | | 4,800 | | <u> </u> | <u> </u> | 6690 ● | | Max d | -c outp | ut curr | ent = 90 | ma; r | max peak | inverse | voltage | e = 1,450 | volts | 6754 | | Max | l-c outp | ut curre | nt 🖲 = 1 | 2 ma; n | nax peak in | verse vo | ltage 🖲 | =2,800 | volts; | 6763 | | 250 | 1 = 1 | 1.6 | 25 | - | _ | 23,000 | 90 | - | | 6771 | | 100 | 100 | R _k = 1500 | 0.7 | 0.1 | 1,200,000 | 1,100 | | | | 6788 ● | | Max so | reen dis | 18
sipation | $\dot{n} = 1.0 \text{ v}$ | vatt; m | ax d-c cath | ode cur | rent = 1 | 0 ma | | 6792 | | Max d-
volts; r | c catho | de curre
k catho | ent 🖲 = | 6.4 amp
ent 🖲 = | eres; max ;
80 amperes | peak inv | erse vo | ltage 🖲 | =1,500 | 6807 | | Max d-
volts; r | c catho | de curre
k catho | ent 🛎 = | 6.4 amp | eres; max ;
80 amperes | peak inv | rerse vo | ltage 🖲 | =1,500 | 6808 | | Max d-
volts; r | c catho | de curre
k catho | ent 🖲 = | 6.4 amp
ent 🖲 = | eres; max ;
80 amperes | peak in | rerse vo | ltage 🖲 | =1,500 | 6809 | | 100 | | $R_k = 150$ | 10 | _ | 4,800 | 6,000 | 29 | | <u> </u> | 6814 ● | | 150 | | R _k = 220 | 8.5 | _ | 7,000 | 6,700 | 47 | | | 68 2 9
5★ | | 100 | | | 17 | _=_ | | | ma. | | | | | | | | | _ | | | 26 | _ | | 6832 ● | | | _ | R _k = 620 | | _ | 3,400 | 5,900 | 20 | _ | - | 6840 | | 80 | | | 31 | | | |
μa | = | | | | | 100 | | 4.5 | 0.5 | 930,000 | 2,500 | | | - | 6842 | | 4000
6500 | 400
700 | 100
100 | 570
800 | 20
25 | - | - | _ | _ | 1250
3200 | GL6848 | | 250 | _ | R _k = 3100 | 1.0 | | 60,000 | 1,200 | 70 | | | 6851 | | Max o
max R
415 m | l-c outr
MS sur
a | out curr | ent = 12
tage per | 5 ma;
plate = | max peak i
350 volts; | nverse
nax pea | voltage
k curre | =1550
nt per p | volts;
late = | 6853 | | 150 | | R _k == | 8.2 | | 6,500 | 5,225 | 35 | | | 6854 | | Max 0 | i-c cath
volts; n | ode cu | rent 🖲 | =2.5 ar | nperes; ms | x peak | inverse | voltag | ge ⑤ = | 6856/740 | | Max 0 | i-c cath
volts; n | ode cui | rrent 🖲 | =6.4 ar
le curre | nperes; ma | x peak | inverse | voltag | ge 🖷 = | 6858/760 | | | | | | | | | | | | 6859 /
760-P | | 120 | 120 | R _k = | 7.75 | 2.7 | 340,000 | 4,100 | | - 1 | - | 6872 ● | | 150 | _ | 12 | 75 | = | 2,000 | 6,500 | 3.75 | | = | 6877 | | 400 | | 100 | 40† | | | | | 8,000 | 22 | 6883 | | | | | | | | | | ‡_ | | | | 400
600 | 190
180 | 40
45 | 63†
26† | 2.5†
1.0† | | = | = | 4,000‡
7,000‡ | 55
82 | 6883-A | | | 190 100 Max d rms su rolts; I Max d rolts; I Max d rolts; I Max d rolts; I Max d rolts I S 0 100 100 150 150 100 6500 Max c rmax R rms d rms su | Volts Volts | Volts 190 160 Rk = 100 Rk = 100 Rk = 100 Rk = 1500 15 | Plate Screen Grid Grid Wolts Wolts Wolts Wolts Millimperes | Plate Screen Grid William Milliam Peres Peres | Plate Screen Grid Grid Milliams Rp, Ohms | Plate Screen Grid Wolts Milliment Millime | Plate Volts Volts Volts Am- Am- Am- Ohms Pactor | Plate Volts Volts Volts Amperes Amperes Ohms Amperes Ohms O | Plate Volts Volt | Metal tubes are shown in bold-face type, miniature tubes in italics. \$\display \text{G3}\$ and G5 are screen. G4 is signal-input grid. \$\display \text{G2}\$ and G4 are screen. G3 is signal-input grid. \$1, 2, 2, etc. indicate tube sections. \$\display \text{Maximum screen dissipation appears immediately below the screen voltage.}\$\$ \$\display \text{Heater warm-up time controlled.}\$\$ | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitance
icofarad | | |------------|---------------------------------------|---------------|------|----------------------|---------------|--------------|--------------|----------------------------|-------------------------|---|--| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 6883-B | Beam Power
Amplifier | 7CK | T-X | 12.6 | 0.562 | 27 🖷 | 600 ₪ | 250 ₪
3.0 ₪ | Pentod
Two T
Pull | e Conn
ubes, P | ection
ush- | | 3887 | Twin Diode | 6BT | 5-1 | 6.3 | 0.2 | | Tube V | oltage
ts at 6.0 | Drop: | | ····· | | 6888 | Dual-Control Pentode | 8N | 9-12 | 6.3 | 0.8 | 8.0 🖲 | 250 ₪ | | | 6.5 ▲ | 0.7 ▲ | | 6889 | Beam-Power
Amplifier | 8HG | T-X | 6.3 | 1.2 | 30 € | 3,000 | 850
3.5 ● | | | | | 6897 | High-Mu UHF
Triode (Planar) | 2C39-
B | T-X | 6.3 | 1.05 | 100 🖲 | 1,000 | | 6.5 ▲ | 0.023 | 2.01 ▲ | | 6900 | Medium-Mu Twin Triode | 9H | 6-3 | 12.6
6.3 | 0.5 | 4.25
• • | 600 ₪ | | 6.5 ▲ | 0.8 ₁ A 0.61 ₂ A | 4.0 ▲ | | 6913 | Medium-Mu Twin Triode | 9A | 6-3 | 12.6 | 0.3 | 3.5 ♠ | 300 | | 3.6 ▲ | 0.5 | 3.4 ▲ | | 6919
5★ | Twin Diode | 6BT | 5-1 | 6.3 | 0.2 | | Tube V | oltage
ts at 6.0 | Drop: | | <u>. </u> | | 6922 | Twin Triode | 9AJ | 6–2 | 6.3 | 0.3 | 1.5 | 220 | - | | 1.75 ₁ 1.65 ₂ | 1.4▲ | | GL6942 | Tetrode | GL
6942 | тx | 5.7 | 24 | 1500 | 4000 | 600 | Cathoo | e-Plate
18.5; Ou | 0.04; | | | | 0012 | | | | 1200
1500 | 3200
4000 | | 5.8 | 15.0, 01 | reput | | 6943 ⊜ | Sharp-Cutoff
RF Pentode | 8DC | 3-11 | 6.3 | 0.175 | 1.0 | 250 🖹 | 150 🖲
0.33 🖷 | 3.0 | 3.0 | 0.015 | | 6944 🖷 | Semi-Remote Cutoff
RF Pentode | 8DC | 3–11 | 6.3 | 0.175 | 1.0 🗨 | 250 ◉ | 150 • 0.36 • | 2.9 | 3.1 | 0.015 | | 6945 ◉ | Beam Power Amplifier
 8DL | 3-3 | 6.3 | 0.35 | 3.0 | 250 🖲 | | 5.0 | 5.5 | 0.13 | | 6946 ◉ | Medium-Mu Triode | 8DK | 3-11 | 6.3 | 0.175 | 1.5 🖲 | 250 ₪ | = | 1.6 ▲ | 0.75▲ | 1.0 ▲ | | 6947 ● | Medium-Mu Twin Triode | 8DG | 3-11 | 6.3 | 0.35 | 0.75 | 250 | =- | 1.6▲ | 0.20 ₁ A 0.25 ₂ A | 1.2 ▲ | | 6948 🏶 | High-Mu Twin Triode | 8DG | 3-11 | 6.3 | 0.35 | 0.5 | 250 € | = | 1.6 ▲ | 0.20 ₁ ▲ 0.25 ₂ ▲ | 0.75 | | 6954 | Dual-Control Sharp-
Cutoff Pentode | 7CM | 5-2 | 6.3 | 0,3 | 3.0 | 300 | 300 \$ | 6,0 ▲ | | 0,003 | | 6955 | Medium-Mu Twin
Triode | 9A | 6-2 | 12.6
6.3 | $\{0.175\}$ | 2.75 💠 | 300 | _ | 1.5 ▲ | 0.5₁ ▲
0.4₂ ▲ | 1.4 | | 6968 | Sharp-Cutoff Pentode | 7BD | 5-1 | 6.3 | | 1.65 | 200 | 155 @
0.55 | 4.0 | 2.85 | 0.02 | | 6973 | Beam Power Amplifier | 9EU | 6-4 | 6.3 | 0.45 | 12 | 400 | 300
2.0 | Single | Tube | 3 | | | | | | | | | | 2.0 | Two T | ubes, Pı | ush-Pu | | 6999 👁 | Power Amplifier Pentode | 6999 | T-X | 2.64 | 0.05 | 0.75 🖭 | 145 🗨 | 95 🗎
0.12 🖻 | | - | <u> </u> | | 7025 | High-Mu Twin Triode | 9A | 6–2 | ${ 12.6 \atop 6.3 }$ | $0.15 \ 0.3$ | 1.0 💠 | 300 | - | 1.8 | 1.9 | 1.7 | | 7027 | Beam Pentode | 8HY | T-X | 6.3 | 0.9 | 25 | 450 | 400
3.5 | Two Tubes, Push-P | | ush-Pu | | | | | | | | 25 | 450\$ | 450\$
3.0 | (With | ubes, P
Screen
asforme | Тар | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|----------------------------|-----------------------------------|------------------------------------|--|----------------------------------|---------------------------------|---------------------------|---|--|--------------------------------|--------------| | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | _ | _ | | 5,600‡ | 96 | 6883-B | | Gating and
Clamping | Max d
360 vc | -c outp | ut curre | ent per
current | plate 🖲
per pla | =10 ma; m
te = 30 m | ax peal | | | e 🖲 = | 6887 | | Gated
Amplifier | 150
150
150
150 | 90
90
90
90 | 9.4
13.8
0 | 37.5
2.5
0.03
2.0 | 19
—
— | I _{e1} =190 μa | = | $E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = 0$ $E_{c3} = -$ | volts | ts | 6888 | | Class A
Amplifier | 250 | 250 | 22.5 | 77 | 3.5 | | 5,400 | | _ | | 6889 | | Class C
Amplifier | 900 | _ | 40 | 90 | | _ | | | | 40 | 6897 | | Class A
Amplifier • | 120 | | 2.0 | 36
11 | | 3,900 | 11,500 | 18.5 | | | 6900 | | Class A
Amplifier •
Gating and | 150 | | 5.0 | | plata A | =10 ma; m | 4,600 | | | 70.6 | 6913 | | Clamping | 300 vc | lts; ma | x peak | current | per pla | $te \circledast = 30 \text{ m}$ | ıa _ | | e voitag | | 5★ | | Class A
Amplifier | 90 | | R _k = 120 | 12 | | _ | 11,500 | 33 | | _ | 6922 | | RF Amplifier
Class B | 3500 | 500 | 40 | 520 | 35 | _ | _ | | _ | 1000 | GL6942 | | Class C
Telephony | 3000 | | 100 | 250 | 10 | _ | _ | | _ | 565 | | | Class C
Telegraphy | 3800 | | 120 | 500 | 22 | - | _ | | - | 1200 | | | Class A
Amplifier | 100 | 100 | R _k = 150 | 8.0 | 2.3 | 300,000 | 3,600 | | | | 6943 ● | | Class A
Amplifier | 100 | 100 | R _k = 150 | 7.0 | 2.0 | 280,000 | 3,200 | _ | | | 6944 ● | | Class A
Amplifier | 100 | 100 | R _k = 270 | 25 | 1.5 | 20,000 | 3,500 | | _ | | 6945 ● | | Class A
Amplifier | 100 | | Rk = 270 | 9.0 | _ | | 3,800 | 16.5 | | | 6946 ● | | Class A
Amplifier • | 150 | | R _k = 270 | 6.5 | | | 4,000 | 35 | | | 6947 ◉ | | Class A
Amplifier • | 100 | _ | R _k = 1500 | 0.8 | _ | | 1,650 | 70 | | | 6948 ● | | Class A
Amplifier | 150 | 150 | 1.0 | 5.8 | 6.6 | 50,000 | l | E _{ct} = - | -3.0 vol | ts | 6954 | | Class A
Amplifier 🌩 | 250
100 | = | 8.5
0 | 11.5
13 | | 7,000
5,800 | 2,350
3,500 | $\frac{16.5}{21.3}$ | | | 6955 | | Class A
Amplifier | 120 | 120 | 2.0 | 7.5 | 2.5 | | 5,000 | | | | 6968 | | Class A
Amplifier | 250 | 250 | 15 | 46 | 3.5 | 73,000 | 4,800 | | _ | - | 6973 | | Class AB ₁
Amplifier | 400
350
250 | 290
280
250 | 25
22
15 | 50†
58†
92† | 2.5†
3.5†
7.0† | = | | = | 8,000
7,500
8,000 | 20 | | | Class A
Amplifier | 67.5 | 67.5 | 4.0 | 4.0 | 0.9 | _ | 1,650 | | 12,000 | 0.135 | 6999 ● | | Class A
Amplifier • | 100
250 | | 1.0
2.0 | 0.5
1.2 | = | 80,000
62,500 | 1,250
1,600 | 100
100 | | | 7025 | | Class AB ₁ Amplifier Class AB ₁ Amplifier | 450
400
330
410\$ | 350
300
330
410 3 | 30
25
24
R _k = | 95† 102† 122† 1 _k = 134 ma† | 3.4†
6.0†
5.6† | | | | 6,0001
6,6001
4,5001
8,0001 | 50
34
31.5
24 | 7027 | | Tube | Classification | Base
Con- | Out- | Fila- | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofara | | |------------|---------------------------------------|---------------|-------------|---------------|---------------|--------------|--------------|--------------------------------|--|---------------------|----------------| | Туре | by
Construction | nec-
tions | line
Dwg | ment
Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7027-A | Beam Pentode | 8HY | T-X | 6.3 | 0.9 | 35 ◈ | 600 ◈ | 500 �
5.0 � | Two Tu
Pull | ibes, Pi | ish- | | | | | | | | | | | Pull (W | ibes, Priith Scr | een | | 7036
5★ | Pentagrid Amplifier | 7CH
♥ | 5–3 | 6.3 | 0.3 | 0.9 | 250 🏶 | 250 ♦
1.35 ♦ | $ E_{ci} = 0 E_{ci} = - E_{ci} = 0 $ | -10 Vol | ts | | 7044 | Medium-Mu Twin | 9H | 6-3 | 6.3 | 0.9 | 4.5 | 300 € | | 4.8 ▲ | | 6.0 ▲ | | | Triode | | | 12.6 | 0.45 | 8.0 | | | | 0.552 | | | 7054 | RF Pentode | 9GT | 6-3 | 13.5 | 0,275 | 5.0 | 330 🖲 | 180 (a) | 10.2 ▲ | 3.5 ▲ | 0.063 | | 7055 | Twin Diode | 6BT | 5-1 | 13.5 | 0.155 | - | | _ | _ | | _ | | 7056 | Sharp-Cutoff Pentode | 7CM | 5-2 | 13.5 | 0.15 | 2.0 🖲 | 330 🖲 | 330 8 | 6.5 | 3.0 | 0.015 | | 7057 | Medium-Mu Twin | 9AJ | 6-2 | 13.5 | 0.18 | 2.2 | 275 | | _ | | - | | 7058 | High-Mu Twin Triode | 9AJ | 6-2 | 13.5 | 0.155 | 1.0 | 330 🖲 | = | 1.6 ▲ | 0.46 ₁ A | 1.7▲ | | 7059 | Triode-Pentode | 9AE | 6-2 | 13.5 | 0.195 | 2.8 | 300 € | 300 ⊕ \$ | Pentod | e Section | on. | | | | | | | | 2.5 🖷 | 300 ∰ | 0.5 | Triode | Section | ı | | 7060 | Triode-Pentode | 9DA | 6-2 | 13.5 | 0.28 | 3.0 € | 300 € | 300 D\$ | Pentod | e Section | on | | | | | | | | 2.5 🗃 | 300 📵 | 1.0 | Triode | Section | ì | | 7061 | Beam Power Amplifier | 9EU | 6-3 | 13.5 | 0.21 | 9.0 🖲 | 345 🖲 | 310 a 2.0 a | 8.0 ▲ | 8.5 ▲ | 0.7 | | 7077 | High-Mu UHF Triode
(Planar) | 7077 | 3-16 | 6.3 | 0.24 | 1.0 🏶 | 250 ◈ | _ | ~~~ | = | - | | 7079 🖷 | Twin Triode | 8DG | 3-1 | 6.3 | 0.3 | 1,1 🗨 | 165 € | - | 2.1 | 1.31 | 0.01 💠 | | 7083 ● | Sharp-Cutoff
RF Pentode | 5702 | 3-6 | 6.3 | 0.2 | 1,1 | 165 € | 155 📵
0.55 🕮 | 5.0 | 3.75 | 0.03 💠 | | 7105 | Low-Mu Twin Triode
Power Amplifier | 8BD | T-X | 12.6 | 1.25 | 13 🖹 💠 | 250 € | | 6.2 ▲ | 2.2 ▲ | 8.4 ▲ | | 7187 | Medium-Mu Triode | 7BQ | 5-2 | 6.3 | 0.225 | 2.25 ◈ | 150 ◈ | | 6.0 | 4.5 | 1.7 | | GL7151 | Ignitron | GL
7151 | тх | _ | - | - | - | - | _ | - | - | | 7167 | Tetrode | 7EW | 5-2 | 13.5 | 0.09 | 2.0 🆠 | 180 🏶 | 180 ♦ 1
0.5 ♦ | | 2.74 | 0.03 💠 | | GL7171 | Ignitron | GL
7171 | тх | - | _ | _ | | _ | _ | _ | - | | 7189 | Beam Pentode | 9CV | 6-4 | 6,3 | 0.76 | 12 | 400 | 300
2.0 | Single
Two T | Tube
ubes, P | ush- | | | | | | | | 12 | 375 | 375 | Pull | ubes, P | | | | | | | | | | | 2.0 | With S
Transf | creen 7 | Гар | | 7189-A | Beam Pentode | 9LE | 6-4 | 6.3 | 0.76 | 13.2 🏟 | 440 🏶 | | Single | Tube | | | | | | | | | | | 2.2 🏽 | Two T | ubes, P | ush- | Compactron. † Zero signal. Per section. [†] Plate-to-plate. †Maximum. *Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|------------------------------|------------------------------|--|---------------------------------|----------------------------------
--|----------------------------------|--------------------|--|--------------------------------|--------------| | Class AB ₁ Amplifier | 425 8
400 8 | 425 8
300 8 | R _k = 200
R _k = 200 | 150†
112† | 8.0†
7.0† | | _ | _ | 3,800
6,600 | 44
32 | 7027-A | | Class AB ₁ Amplifier | 410 | 4108 | R _k = 220 | I _k = 134† | | | | | 8,000 | 24 | | | Gated
Amplifier | 1508
1508
1508 | 75
69
71 | 10
0
0 | 0
0
5.8 | 0
14
9.0 | $R_{g1} = R_{g3} = R_{g1} = R_{g3} = R_{g1} = R_{g3} R$ | = 47,000
= 47,000
= 47,000 | = | 20,000
20,000
20,000 | = | 7036
5 ★ | | Class A
Amplifier • | 120 | | 2.0 | 36 | _ | 1,750 | 12,000 | 21 | | | 7044 | | Class A
Amplifier | 250 | 150 | R _k = 120 | 19 | 3.5 | 100,000 | 11,500 | | _ | | 7054 | | Half-Wave
Rectifier | Max d-
max rn | c outpu
is suppl | t currer
y voltag | t per pl
e per pl | ate 🖲 🛥
ate 📵 😑 | 10 ma; max
117; max pe | t peak ir
eak curr | verse v
ent per | oltage @
plate @ | = 250;
= 60 ma | 7055 | | Class A
Amplifier | 200 | 150 | R _k = 180 | 9,5 | 2.8 | 600,000 | 6,200 | _ | | - | 7066 | | Class A
Amplifier 🌩 | 150 | | Rk = 220 | 10 | | 5,300 | 6,800 | 36 | | | 7057 | | Class A
Amplifier • | 250 | | 2.0 | 1.25 | | 61,000 | 1,650 | 100 | | | 7058 | | Class A
Amplifier
Class A | 250
150 | 110 | R _k = 68
R _k = 56 | 10
18 | 3.5 | 400,000
4,700 | 5,200
8,500 | 40 | _ | _ | 7059 | | Amplifier Class A Amplifier | 200 | 125 | R _k = | 15 | 3.4 | 150,000 | 7,000 | | | | 7060 | | Class A
Amplifier | 150 | | R _k = 150 | 9.0 | | 8,200 | 4,900 | 40 | _ | | | | Class A
Amplifier | 200 | 200 | 10.0 | 35.5† | 9.0† | 9,000 | 4,200 | 90 | 5,000 | 3.0 | 7061 | | Class A
Amplifier | 250
(With | 18,000 | R _k = 82 ohm by | | resistor | in plate ci | | 90 |] | - | 7077 | | Class A
Amplifier | 100 | - | R _k = | 8.5 | <u> </u> | 4,000 | 5,000 | 20 | <u> </u> | | 7079 ◉ | | Class A
Amplifier | 120 | 120 | R _k = 200 | 7.5 | 2.6 | 340,000 | 5,000 | | | | 7083 ⊛ | | DC
Amplifier • | 135 | | R _k = 250 | 125 | | | 7,000 | 2.0 | _ | | 7105 | | Class A
Amplifier | 150 | | R _k = 100 | 13.5 | | | 8,500 | 40 | | _ | 7187 | | Resistance
Welding | 1600 | curr. 48 | 6 A.; m | ax. av. | anode o | ax demand
curr. 900 A | .; corres | ponding | rrespone
g demar | ding av. | GL7151 | | Class A
Amplifier | 125 | 80 | 1.0 | 10 | 1.4 | 125,000 | 8,000 | | _ | | 7167 | | Capacitor
Discharge | voltage
pulses 1 | 15000
per min | volts; t | nax. pe | ak anoo | 15000 vol
le curr. 35 | 000 A.; | . inver
typical | se peak
dischar | anode
rge rate | GL7171 | | Class A
Amplifier | 250 | 250 | 7.3 | 48 | 5.5 | 40,000 | 11,300 | _ | _ | | 7189 | | Class AB:
Amplifier
Class AB:
Amplifier | 400
375 | 300
375 | 15
R _k =
220 | 15†
I _k =
70† | 1.6† | _ | _ | _ | 8,000
11,000
‡ | 16.5 | | | Class A | 250 | 250 | 7.3 | 48 | 5.5 | 40,000 | 11,300 | | | | 7189-A | | Amplifier
Class AB ₁
Amplifier | 400 | 300 | 15 | 15† | 1.6† | _ | | _ | 8,000
‡ | 24 | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. § Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Piate | Max
Plate | Max
Screen
Volts | Ca
I | pacitano
icofara | e in
ds | |---------------|---------------------------------------|---------------|-------|---------------|----------------|---------------------------|--------------|---------------------------------|---------|---|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7199 | Triode Pentode | 9JT | 6-2 | 6.3 | 0.45 | 3.0 🏶 | 330 ◈ | 330 ♠ \$
0.6 ♠ | Pentod | e Section | on | | | | | | | | 2.4 🆠 | 330 🏶 | | Triode | Section | | | 7211 | High-Mu Triode
(Planar) | 7815R | T-X | 6.3 | 1.3 | 10 📵 | 1000 🗷 | | 8.0▲ | 0.06 | 2.25 🛦 | | 7212 | Beam Power Amplifier | 7CK | T-X | 6.3 | 1.25 | 20 🖲 | 400 ₪ | | Triode | Conne | ction | | | | | | | | 20 🗟 | 600 🗉 | 250 ₪
3.0 ₪ | Pentod | ubes, Pu
le Conn
ubes, Pu | ection | | 7216/
C3JL | Control
Rectifier | 7216/
C3JL | TX | 2.5 | 9 | | Averag | e Arc D | Prop = | 10 Volt | s | | 7233 | Low-Mu Triode | 9FR | 6-4 | 6.3 | 1.0 | 8.0 € | 330 € | | 7.5 ▲ | 2.2 ▲ | 14▲ | | 7234 | Pentode | 9KD | T-X | 6.3 | 0.15 | 10 | 8,000 | 200
0.5 | 4.06 ▲ | 2.23 ▲ | 0.0159 | | 7235 | Triode | 9KE | T-X | 6.3 | 0.3 | 10 | 10,000 | | 2.24 | 1.03 | 1.03 ▲ | | 7236 | Low-Mu Twin Triode Power Amplifier | 8BD | 12-25 | 6.3 | 2.4 | 15 🗃 💠 | 300 ₪ | | 9,0 🛦 | 3.3 ▲ | 10▲ | | 7 25 9 | Beam Pentode | 9KH | 6–6 | 6.3 | 0.3 | 4.0 € | 2,000
B | 220 🗑
0.5 🕦 | 7.0 ▲ | 4.0▲ | 0.12 A | | 7244 | Medium-mu Twin
Triode | 7BF | 5–2 | 6.3 | 0.45 | 1.1 🆠 | 300 ◈ | | 3.0 ▲ | 0.34 ₁ ▲ 0.28 ₂ ▲ | 1.4 | | 7244-A | Medium-Mu
Twin Triode | 7BF | 5–1 | 6.3 | 0.45 | 1.1 ♦ | 300 ◈ | | 3.0▲ | 0.34 ₁ 0.28 ₂ | 1.4 ▲ | | 7245 | High-Mu Triode | 7BQ | 5-2 | 6.3 | 0.4 | 2.25 🏶 | 150 ♦ | | | = | | | 7245-A | High-Mu Triode | 7BQ | 5–1 | 6.3 | 0.4 | 2.25♦ | 150 ♦ | | | | | | 7246 ● | Triode | 5676 | 2-1 | 1.25 | 0.15 | 0.7 🏶 | 150 ♦ | | 1.6▲ | 1.9 ▲ | 1.5▲ | | 7247 | Double Triode | 9A | 6–2 | 12.6
6.3 | 0.15
0.3 | 1.2 ③ 3.0 ④ | 330 ◈ | | 8) | 1 (Pins | | | | | | | | | | | | 3) | | | | 7258 | Triode-Pentode | 9DA | 6–2 | 13.5 | 0.21 | 2.3 🏶 | 330 ♦ | 330 ♦ 8
0.55 ♦ | ĺ | e Section | | | 7266 | High-Prequency Diode (Planar) | 7266 | T-X | 6.3 | 0.215 | | Tube V | oltage | Drop: | | | | 7289 | High-Mu Triode | 7289 | T-X | 6,0 | 1.0 | 100 ₺ | 1,000 | | 6.3 | 0.035 | 2.0 ▲ | | 7296 | (Planar) High-Mu Triode (Planar) | 7296 | T-X | 6.3 | 0.4 | 5.5 € | 330 € | | 5,0 ▲ | 0.075 | 2.2 ▲ | | 7310 | Half-Wave, High-
Voltage Rectifier | 4P | T-X | 5.0 | 6.5 | - | | | | = | | | 7311 | Beam Power
Amplifier | 7311 | T-X | 6.3 | 0.8 | 21 🗃 | 300 | 300
2.75 € | | | | | 7312 | Low-Mu Triode | 7312 | T-X | 6.3 | 1.25 | 20 🖷 | 275 | | | | | | 7313 | Half-Wave High-
Vacuum Rectifier | 7313 | T-X | 6.3 | 1.55 | _ | | | - | | | | 7314 | Power Amplifier
Pentode | 7314 | T-X | 6.3 | 0.6 | 10 🗟 | 300 | 300 | | | _ | | 7318 | Twin Triode | 9A | 6–2 | 12.6
6.3 | 0.175
0.350 | 3.0 ₺ | 330 € | | 1.5▲ | 0.5▲ | 1.4 ▲ | [⊕] Total for all similar sections. ⊕ Absolute maximum rating. # Conversion transconductance. | | | | | Plate | Screen | | | | Load | Power | *************************************** | |---|---------------------|---------------------|------------------------|------------------------|------------------------|----------------------------------|---------------------------|----------------------------------|--------------------------------------|-----------------------|---| | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Milli-
am-
peres | Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | for
Rated
Out-
put,
Ohms | Out-
put,
Watts | Tube
Type | | Class A | 220 | 130 | Rk ==
62 | 12.5 | 3.5 | 400,000 | 7,000 | | | | 7199 | | Amplifier { | 100 | 50 | R _k == 1000 | 1.1 | 0.35 | 1,000,000 | 1,500 | | | | | | Class A Amp | 215 | | 8.5 | 9.0 | <u> </u> | 8,100 | 2,100 | _17 | | | | | RF
Oscillator | 900 | - | 20 | 140 | | _ | - | | | 25 | 7211 | | Class AB ₁ | 400 | | 100 | 40† | | | | | 8,000‡ | 22 | 7212 | | Amplifier
Class AB
₂
Amplifier | 600 | 165 | 44 | 22† | 0.6† | _ | - | | 6,800‡ | 90 | | | Grid Control
Rectifier | Max p | eak inv
I voltag | erse vo | oltage (| (max. i | nstantaneou
= 1250 vo | us) == | 900 vo | lts; ma | x peak | 7216/
C3JL | | DC | 508 | - | Rk = | | | 230 | 17,500 | 4.0 | | === | 7233 | | Amplifier
DC | 1,500 | 150 | $\frac{22}{1.0}$ | 5.0 | 2.0 | 1,000,000 | 3,800 | | | | 7234 | | Amplifier | | | | | | | | | | | , | | DC Amp | 1,500 | | 1.0 | 1.5 | | | 850 | | | | 7235 | | DC
Amplifier | 150
120 | _ | 24
14 | 60
100 | _ | = | 12,500 | 4.8 | _ | = | 7236 | | DC
Amplifier | 300
100 | 100
100 | 5.0 | 10.5
43 | 2.6
13.5 | 300,000
I _{ct} = 400 | 4,200
microar | E _{cs} =0 | E _{c3} =0 | | 7239 | | Class A | $\frac{1,500}{100}$ | 100 | 12 | $\frac{0.2}{9.0}$ | | 6,300 | 6,000 | $\frac{\mathbf{E_{cs}} = 0}{38}$ | | | 7011 | | Amplifier 💠 | | | R _k = 50 ⊕ | | | | | | | | 7244 | | Class A
Amplifier • | 100 | _ | R _k = 50 ⊕ | 9.0 | | 6,300 | 6,000 | 38 | - | | 7244-A | | Class A
Amplifier | 150 | | R _k = | 13.5 | | | 11,000 | 50 | | | 7245 | | Class A
Amplifier | 150 | | R _k = | 13.5 | | | 11,000 | 50 | | | 7245-A | | Class A Amp | 105 | | 2.5 | 4.5 | | 8,150 | 2,700 | 22 | | | 7246 ◉ | | Class A | 250 | | 2.0 | 1.2 | | 62,500 | 1,600 | 100 | | | 7247 | | Amplifier Class A | 100
250 | _ | 1.0
8.5 | 0.5
10.5 | | 80,000
7,700 | 1,250
2,200 | 100
17 | _ | _ | | | Amplifier \ | 100 | | 0 | 11.8 | | 6,500 | 3,100 | 20 | | | | | Class A
Amplifier | 125 | 125 | R _k == 56 | 12 | 3.8 | 170,000 | 7,800 | _ | _ | _ | 7258 | | Class A
Amplifier | 150 | - | -3 | 15 | | 4,700 | 4,500 | 21 | | | | | Detector | Max o | l-c outp
max pe | ut curr | ent 🔷 ==
ent 🏵 == | 2.0 ma; | max peak | inverse | voltage | ♦ = 600 |) | 7266 | | Class C Amp
at 500 Mc | 900 | _ | 40 | 90 | = | | - | _ | | 40 | 7289 | | Class A
Amplifier | 200 | | R _k = | 17 | | 5,450 | 16,500 | 90 | | | 7296 | | Half-Wave
Rectifier | Max | d-c outroeak cur | ut curr | ent = 11
50 ma | 5 ma; r | nax peak in | nverse v | oltage = | = 20,000 | volts; | 7310 | | Class A
Amplifier | 300 | 200 | 12.5 | 48† | 2.5† | 35,000 | 5,300 | | 4,500 | 6.5 | 7311 | | Class A
Amplifier | 135 | _ | R _k = 250 | 125 | | 280 | 7,000 | 2 | = | | 7312 | | Half-Wave
Rectifier | Max
max | d-c out | out cur | ent = 1 | 40 ma;
700 volt | max peak
s; max pea | inverse | voltage | =2,800
00 ma | volts; | 7313 | | Class A
Amplifier | 300 | 150 | 3.0 | 30† | 7.0t | | 11,000 | | 10,000 | 3.0 | 7314 | | Class A
Amplifier • | 250
100 | | 8.5
0 | 11.5
13 | | 7,000
5,800 | 2,350
3,500 | 16.5
21.3 | | | 7318 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 1, 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca | pacitano
icofara | e in
ds | |-----------|---------------------------------|---------------|------|---------------|---------------|--------------|--------------|------------------------------|----------------------------------|---|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7327 👁 | Twin Triode | 8DG | 3-1 | 6.3 | 0.3 | 0.95 💠 | 250 ₺ | | 2.0▲ | 0.28 ₁ ▲ 0.30 ₂ ▲ | 1.5 🛦 | | 7355 | Beam-Power
Amplifier | 8KN | 9-15 | 6.3 | 0.8 | 18 🕸 | 500 🏶 | 400 ♦
3.5 ♦ | Single | | L | | | • | | | | | | | 0.0 | Pull | ubes, P | | | 7357 | Beam-Power
Amplifier | 7CK | T-X | 26.5 | 0.3 | 20 🖷 | 400 ₪ | | Two T | Connecubes, Pu | tion
1sh- | | | | | | | | 20 🕮 | 600 B | 250 👰
3.0 🕮 | Pull
Pentod
Two To
Pull | e Conne
ubes, Pa | ection
ash- | | 7358 | Beam Power
Amplifier | 7CK | T-X | 6.3 | 1.25 | 10 🗷 | 3,500 | 500 ∰\$
1.75 ₪ | | 8.5 ▲ | 0.24 | | 7360 | Double Plate
Sheet-Beam Tube | 9KS | 6–3 | 6.3 | 0.35 | 1.5 🏶 | 300 ♦ | 250 *
0.5 * | | = | | | 7370 | Medium-Mu
Twin Triode | 9H | 6-2 | 20 | 0.26 | 4.75 | 330 € | | 4.0 ▲ | 0.61 | 4.0 ▲ | | | Twin Triode | | | 40 | 0.13 | 8.5 ® | | | | 0.5₃ ▲ | | | 7391 | High-Mu UHF
Triode (Planar) | 6299 | T-X | 6.3 | 0.385 | 2.0 🖻 | 200 ₪ | | 3.25 ▲ | 0.016 | 1.58 | | GL7399 | Tetrode | GL
7399 | TX | 6.3 | 5,6 | 500 | 10000 | 2000 | | de-Plate
21.5; O | | | 7403 | Beam-Power
Amplifier | 8JU | T-X | 6.3 | 1.7 | 40 📵 | 4,000 | 850 ●
3.5 ● | | | _ | | 7408 | Beam-Power
Amplifier | 7AC | 9-41 | 6.3 | 0.45 | 14 🗇 | 350 ◈ | | 9.0▲ | 7.5▲ | 0.7 | | 7427 | Photoconductive
Cell | 9LN | 6-3 | | | 0.4 🏶 | 350 ◈ | | - | | - | | 7430 | Sharp-Cutoff
RF Pentode | 7430 | T-X | 6.3 | 0.2 | 1.7 | 180 | 140
0.5 | _ | | | | 7462 | High-Mu Triode
(Planar) | 7462 | T-X | 6.3 | 0.24 | 1.0 | 250 🏶 | | 1.8▲ | 0.032 | 1.2 4 | | 7486 | High-Mu Triode
(Planar) | 7077 | 3–16 | 6.3 | 0.24 | 1.0 🏶 | 250 ◈ | | 1.7▲ | 0.01 🛦 | 1.0 4 | | 7518/710L | Thyratron | 7518/
710L | T-X | 2.5 | 9.0 | | Anode | Voltage | ргор : | =15 Vol | ts | | 7543 | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 6.3 | 0.3 | 3.0 | 300 | 300 \$
0,65 | | e Conn
d to K | | | | | | | | | 3.2 | 250 | _ | | Conne | | | 7548 | Secondary
Emission Hexode | 9LJ | 6-4 | 6.3 | 0.7 | 3.5 ◈ | 1,000 | 300 ♦
1.5 ♦ | 8.0 ▲ | 3.1 ▲ | 0.027 | | 7550 ◉ | Twin Triode | 8DG | 3–3 | 6.3 | 0.500 | A | 150 🖭 | | 4.0 ▲ | 0.241 | 4.0 ▲ | | | | | | Ì | | 3.6 ₪ | | - | _ | 0.282 | - | | 7881 | Beam-Power
Amplifier | 9LK | 6–3 | 13.5 | 0.36 | 10 📵 | 375 ₪ | 300 e
2.0 e | Single
Two T
Pull | Tube
ubes, P | ush- | | Service | Plate
Volts | Screen
Volts | Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | | Tube
Type | |---|-----------------|-----------------|---|---------------------------------|----------------------------------|--------------------------|----------------------|-------------|--|---------|---------------| | Pulse Applications | Max 1 | peak cat
iec | hode cu | | =1.25 | imperes at | 0.25% d | luty cy | cle; puls | e width | 7327 ● | | Class A | 250 | 225 | 15 | 62† | 3.2† | 42,000 | 7,600 | | 2,500 | 9.0 | 7355 | | Amplifier
Class AB ₁ | 400 | 300 | 34 | 56† | 3.5† | | l _ l | | 5,0001 | 40 | | | Amplifier | 300 | 250 | 21 | 100+ | 5.5 | | l | | 4,000 | 28.5 | | | Class AB ₁
Amplifier | 400 | - | 100 | 40† | | _ | _ | | 8,000 | 22 | 7357 | | Class AB:
Amplifier | 600 | 165 | 44 | 22† | 0.6† | _ | _ | - | 6,800‡ | 90 | | | Pulse
Modulator | Max | pulse ca | thode c | urrent (| E = 3.0 a | imperes (fo | r duty | cycle u | p to 0.3 | %) | 7358 | | Balanced | 150 | 175 | R _k = 150 | 8.5 | 2.1 | l – | 5,400 | | T — | | 7360 | | Modulator
and Product
Detector | | tor vol | tage = 2 | | d-c | | | | | | | | Class A | 250 | - | 12.5 | 12 | <u> </u> | 3,000 | 5,400 | 16
17 | | | 7370 | | Amplifier 💠 | 180
120 | = | 7.0
2.0 | 23
36 | = | 2,000
1,560 | 8,500
11,500 | 18 | = | = | | | Class A | 175 | | 1.5 | 10 | | ļ <u>.</u> | 11,000 | 62 | | | 7391 | | Amplifier | | 1400 | | 10 | 470 | | 11,000 | 02 | | 52000 | | | RF Amp/Osc
Class B | 9000 | | 125 | | 470 | _ | | | - | 52000 | GL7399 | | Class C | 4800 | 1000 | | 1200 | 100 | | | | | 11000 | | | DC Ampli-
fier | 600 | 300 | R _k = 825 | 32.5 | 1.5 | | 6,000 | | | | 7403 | | Class A
Amplifier | 250
60 | 250
250 | 12.5
0 | 100 | 4.5†
22 | 50,000 | 4,100 | | 5,000 | 4.5 | 7408 | | Relay | Spect | ral Rest | onse, S | -15; sen | sitivity | , 4,000 mic | roampe | res per | foot-car | ndle | 7427 | | Control
Class A | 180 | polarizi | ng voit | age = 50
7.7 | 2.4 | mum curre | $nt \circledast = 2$ | U millia | mperes | I | 7430 | | Amplifier | 120 | 120 | 2.0 | 7.5 | 2.5 | 300,000 | 5,000 | | _ | | 1 200 | | Class A
Amplifier | 150 | | R _k = 910, | 7.2 | | 9,000 | 10,500 | 94 | _ | | 7462 | | _ | | _ | $\begin{array}{c} E_{c1} = \\ +6.0 \end{array}$ | | - | _ | _ | | - | - | | | Class A
Amplifier | 150 | _ | R _k = | 7.5 | | | 10,500 | 90 | | | 7486 | | | 100 | يصا | 0 | 8.0 | <u> </u> | <u> </u> | 11,500 | | <u>l — </u> | | | | Controlled
Rectifier | Max 1 500 | d-c cati | lode cu | rrent 😥
k catho | =2.5 a
da curre | mperes; ment • = 30 a | ax peak | invers | e voltas | ge 🖷 = | 7518/
710L | | 1 | 250 | 150 | R _k = 68 | 10.6 | 4.3 | 1,000,000 | 5,200 | | | | 7543 | | Class A | 250 | 125 | 68
R _k =
100 | 7.6 | 3.0 | 1,500,000 | 4,500 | | | | | | Amplifier | 100 | 100 | R _k = | 5.0 | 2.1 | 500,000 | 3,900 | | - | _ | | | Class A
Amplifier | 250 | - | R _k == 330 | 12.2 | _ | _ | 4,800 | 36 | - | - | | | Class A
Amplifier | 300 | 50 | 1.5 | 18.0 | 2.0 | _ | 26,000 | -12 | olts
de curi
ma | | 7548 | | Pulse Applications | Max 1
2.5 μs | eak cat
ec | hode cu | rrent 🖲 | =3.0 ar | nperes at 0. | .25 % du | ty cycl | e; pulse | width | 7550 € | | Class A | 250 | 250 | 18 | 40 | 3.0 | | 5,300 | Ee3 = | Volts | | 7661 | | Amplifier
Class AB ₁
Amplifier | 300 | 250 | 21 | 4 0† | 2.0† | Ect = 0
Volts | | | 5,000‡ | 20.5 | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. [Maximum screen dissipation appears immediately below the
screen voltage. § Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |--------------------------|---------------------------------------|---------------|--------------|--------------------|---------------|--------------|--------------|------------------------------|-------------------------------|-------------------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7558 | Beam-Power
Amplifier | 9LK | 6–3 | 6.3 | 0.8 | 10 📵 | 375 ₪ | | Single
Two Ti
Pull | Tube
ubes, Pu | ısh- | | 7576 ◉ | High-Mu Triode | 8KM | 3-3 | 6.3 | 0.45 | 4.1 🖲 | 250 ◉ | | | <u> </u> | | | 7581 | Beam-Power
Amplifier | 7AC | 12-15 | 6.3 | 0.9 | 30 ◈ | 500 ◈ | 450 ♦
5.0 ♦ | Single | Tube | | | | | | | | | | | | Pull | ubes, P | | | | | | | | | 30 ◈ | 450 ◈ | | Pull
Triode | ubes, P
Connec
d P tied | ction | | 7581-A | Beam Power
Amplifier | 7AC | 12-15 | 6.3 | 0.9 | 35� | 500 ◈ | 450 ♦
5.0 ♦ | Pentod | e Conne | ection | | | | | | | | 35 ◈ | 450 ◈ | - | Triode
(G ₂ and | Connect
1 P Ties | tion
1) | | 7586 | Medium-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.14 | 1.0 ● | 110 | _ | 4.2 ▲ | 1.4 | 2.2 ▲ | | 7587 | Sharp-Cutoff
Tetrode
(Nuvistor) | 12AS | 4-5 | 6.3 | 0.15 | 2.2 📵 | 250 ₪ | 110 0
0.2 0 | 7.0▲ | 1.4 ▲ | 0.015 | | 7588 | High-Mu Triode
(Planar) | 7296 | T-X | 6.3 | 0.4 | 5.5 ◈ | 300 ◈ | | 6.5 ▲ | 0.075 | 2.8 ▲ | | 7591 | Beam-Power
Amplifier | 8KQ | 9-41 | 6.3 | 0.8 | 19 🆠 | 550 ◈ | 440 ♦
3.3 ♦ | Single
Two T
Pull | Tube
ubes, P | ush- | | 7591-A | Beam Power
Amplifier | 8KQ | 9-41 | 6.3 | 0.8 | 19 🆠 | 550 ◈ | 440 ③
3.3 ④ | Single | Tube
ubes, P | ush- | | 7607 | Beam-Power
Amplifier | 7CK | 12-44 | 6.3 | 1.6 | 23 🗨 | 600 ₪ | 400 ● 4.0 ● | 15 ▲ | 8.5 ▲ | 0.28 🛦 | | 7623 | Beam Pentode | 6AM | T-X | 6.3 | 1.6 | 37.5 € | 1,250 | 6.0 ● | 17 ▲ | 13.5 ▲ | 0.25 ▲ | | 7624 | Beam Pentode | 6AM | T-X | 12.6 | 0.8 | 37.5 € | 1,250 | 600 ● 6.0 ● | 17 ▲ | 13.5 ▲ | 0.25 ▲ | | 7625 | High-Mu Triode
(Planar) | 7462 | T-X | 6.3 | 0.215 | 0.8 🏶 | 275 ◈ | | 1.5 ▲ | 0.03 | 1.5 ▲ | | 7626 ◉ | Power Amplifier Pentode | 7626 | 2-1 | 1.25 | 0.125 | 1.1 🗨 | 135 € | 135 ©
0.4 © | 3.2 ▲ | 2.9 ▲ | 0.1 ▲ | | 7644 | High-Mu UHF
Triode (Planar) | 6299 | T-X | 6.3 | 0.3 | 2.0 | 200 € | | 3.65 ▲ | 0.02 | 1.75 ▲ | | 7645 | Twin Tetrode | 9HL | 6–2 | ${6.3 \atop 12.6}$ | 0.6 | 2.75 ● ♠ | 250 € | 200 ©
3.0 © | Two S
Pull | ections, | Push- | | GL7669/
GL7669
-PC | Ignitron | GL
7669 | ТX | - | - | _ | - | - | - | - | - | | GL7669 | Ignitron | GL
7669 | TX | - | _ | - | - | - | - | - | - | | GL7669
-PC | Ignitron | GL
7669 | TX | - | - | - | - | - | _ | <u>l -</u> | - | | GL7671/
GL7671
-PC | Ignitron | GL
7671 | TX | _ | _ | | _ | _ | _ | _ | | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} ^{Total for all similar sections. Absolute maximum rating. # Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|--|--|---|---|--------------------------------------|---------------------------------|---------------------------|-------------------|--|-------------------------------------|---------------| | Class A | 250 | 250 | 18 | 40 | 3.0 | | 5,300 | E _{c3} = | 0 Volts | | 7558 | | Amplifier
Class AB ₁
Amplifier | 300 | 250 | 21 | 40† | 2.0† | $E_{c3} = 0$
Volts | | | 5,000‡ | 20.5 | | | Class A
Amplifier | 200 | _ | R _k = 150 | 15.5 | | | 10,700 | 46 | | _ | 7576 ● | | Class A
Amplifier
Class A
Amplifier | 350
300
250
270
250 | 250
200
250
270
250 | 18
12.5
14
17.5
16 | 54†
48†
72†
134†
120† | 2.5†
2.5†
5.0†
11†
10† | 33,000
35,000
22,500
— | 5,200
5,300
6,000 | | 4,200
4,500
2,500
5,000‡
5,000‡ | 10.8
6.5
6.5
17.5
14.5 | 7581 | | Class AB ₁ Amplifier Class AB ₂ Amplifier Class A | 450
360
360
360
360
250 | 400
270
270
270
270
225 | 37
22.5
22.5
22.5
18
20 | 116†
88†
88†
88†
78†
40† | 5.6†
5.0†
5.0†
5.0†
3.5† | | -
-
-
4,700 | | 5,600
3,800
6,600
3,800
6,000
5,000 | 55
18
26.5
47
31
1.4 | | | Amplifier | <u> </u> | | <u> </u> | **** | 1 | | | <u> </u> | | <u> </u> | | | | Servic | e, opera | iting co | nditions | s, and ch | aracteristi | cs given | above | for 7581 | apply | 7581-A | | Class A
Amplifier | 758 | | R _k = 100 | 10.5 | | 3,000 | 11,500 | 35 | | | 7586 | | Class A
Amplifier | 125 | 50 | R _k = 68 | 10 | 2.7 | 200,000 | 10,600 | | | | 7587 | | Class A
Amplifier | 200 | _ | R _k = 270;
E _{c1} = +6 | 24 | _ | 3,900 | 45,000 | 175 | | | 7588 | | Class A ₁ | 300 | 300 | 10 | 60† | 8.0† | 29,000 | 10,200 | | 3,000 | 11 | 7591 | | Amplifier
Class AB ₁
Amplifier | 450 | 400 | 21 | 66† | 9.4† | | _ | _ | 6,600‡ | 45 | | | Class A
Amplifier | 300 | 300 | 10 | 60† | 8.0† | 29,000 | 10,200 | | 3,000 | 11 | 7591-A | | Class AB ₁
Amplifier | 450 | 400 | 21 | 66† | 9.4† | | | | 6,600‡ | 45 | | | Class A
Amplifier | 300 | 225 | 17.0 | 80 | 6.0 | 40,000 | 8,000 | | | | 7607 | | Class C
Amplifier | 1,250 | 300 | 115 | 160 | 20 | | _ | | | 162.5 | 7623 | | Class C
Amplifier | 1,250 | 300 | 115 | 160 | 20 | | | | | 162.5 | 7624 | | Class A
Amplifier | 150 | | R _k = | 0.95 | | 57,000 | 1,400 | 80 | | | 7625 | | Class C
Amplifier | 120 | 120 | 20 | 10 | 2.0 | | | | | 0.6 | 7626 ● | | Class A
Amplifier | 175 | _ | Adjust
for
I _b =
10 ma | 10 | | _ | 15,000 | 110 | _ | | 7644 | | Frequency
Tripler | 170 | 150 | 100 | 40 | 10 | | _ | | _ | 1.5 | 7645 | | Resistance
Welding | anode of 200. | | GL7669/
GL7669
-PC | | | | | | | | | | Frequency
Changer | | anode | curr. 5 | | | ax, peak a
anode curr | | | | | GL7669 | | Frequency
Changer | Max. poing av.
anode o | eak inve
anode
urr. 108 | erse volt
curr. 4
3 A. | A.; m | ax. av. | ax. peak a
anode cur | r. 18 A | .; corre | espondir | ig peak | GL7669
-PC | | Resistance
Welding | Max, si
anode
KVA 4 | ling av.
demand | GL7671/
GL7671
-PC | | | | | | | | | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ■ Maximum screen dissipation appears mediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Cap
P | acitance
icofarad | e in
s | |--------------------------|----------------------------|---------------|--------------|---------------|---------------|--------------|--------------|---------------------------------|-------------------------|----------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | GL7672 | Ignitron | GL
7672 | тx | - | _ | | | - | _ | | | | GL7672
-PC | Ignitron | GL
7672 | тх | - | - | _ | - | - | _ | _ | | | GL7673/
GL7673
-PC | Ignitron | GL
7673 | TX | _ | _ | - | - | - | - | _ | | | GL7673 | Ignitron | GL
7673 | ТX | _ | _ | _ | - | - | _ | _ | | | GL7673
-PC | Ignitron | GL
7673 | тx | | - | | - | | | _ | | | GL7681/
GL7681
-PC | Ignitron | GL
7681 | TX | | | _ | | _ | - | | | | GL7681 | Ignitron | GL
7681 | тx | | _ | _ | _ | _ | _ | _ | | | GL7681
-PC | Ignitron | GL
7681 | TX | | _ | | | | | – | | | 7683 | High Voltage
Pentode | 9MN | 6-3 | 6.3 | 0.15 | 15 📵 | 1,000 | 250 🗑
0.7 🗑 | - | - | _ | | 7687 | Triode-Pentode | 9AE | 6-3 | 6.3 | 0.5 | 3.0♦ | 330 � | 330 ♦ | Pentod | e Section | n | | | | | | | | 2.4 🏶 | 330 🏶 | 0.6 | Triode | Section | | | 7688 | Medium-Mu Triple
Triode | 12BA | 7-3 | 6.3 | 0.45 | 3.0 ◈ | 330 ◈ | _ | - | - | | | 7689 | High-Mu Triple
Triode | 12BA | 7-3 | 6.3 | 0.45 | 1.1 🏶 | 330 ◈ | | | _ | | | 7690 | Medium-Mu Triple
Triode | 12BA | 7-3 | 6.3 | 0.45 | 2.8 ♦ | 330 ◈ | | | | _ | | 7695 | Beam-Power
Amplifier | 9PX | T-X | 50 | 0.15 | 16 🏶 | 150 ◈ | 150 ♦
2.5 ♦ | Single
Two T
Pull | Tube
ubes, F | ush- | | 7701 | Beam-Power
Amplifier | 9MS | 6-3 | 13.6 | 0.16 | 9.0 | 350 ◈ | 300 ♦
3.5 ♦ | 7.0 ▲ | 3.6 ▲ | 0.15 | | GL7703 | Ignitron | GL
7703 | тх | | _ | _ | | | _ | _ | _ | | 7716 | Triode Pentode | 9DX | 6–3 | 13.6 | 0.35 | 5.0 🏶 | | 330 ♦ \$
1.1 ♦ | l | | | | 7717 | Sharp-Cutoff
RF Tetrode | 7EW | 5-2 | 6.3 | 0.2 | 1.0 ♦ | 330 ◈ | 180 \$ | 4.4 | Section
2.74 | 0.3 4 | | 7719 | Medium-Mu Triode | 9MX | 6–3 | 6.3
12.6 | 0.45
0.225 | 6.0♦ | 330 ◈ | | 6.5 ▲ | 1.0▲ | 5.5 ▲ | | 7720 | High-Mu Triode
(Planar) | 7462 | T-X | 6.3 | 0.24 | 1.0 🏶 | 250 � | _ | 1.8▲ | 0.032 | 1.3 ▲ | | 7721 | RF Pentode | 9EQ | 6–3 | 6.3 | 0.32 | 4.0 € | 220 🖲 | 180
(a) | 10 🛦 | 2.0 ▲ | 0,035 | | 7722 | RF Pentode | 9EQ | 6–3 | 6.3 | 0.32 | 4.0 | 220 🖲 | 180 a
1.1 a | 9.3 ▲ | 2.6 ▲ | 0.035 | | 7724 | Duplex-Diode
Triode | 9KR | 6–2 | 14.0 | 0.15 | 1.1 🏶 | 330 ◈ | - | 1.6
Diode | 0.24
Section | 1.8 | Compactron. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | | | | | Plate | Screen | |] | | Load | Power | | |------------------------------------|-----------------------------|--------------------------------|--|------------------------|------------------------|----------------------------|---------------------------|----------------------|--------------------------------------|-----------------------|--------------------------| | Service | Volts | Screen
Volts | Neg
Grid
Volts | Milli-
am-
peres | Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | Fac-
tor | for
Rated
Out-
put,
Ohms | Out-
put,
Watts | Tube
Type | | Frequency
Changer | ineak a | node cu | rr. 420 / | ۹. | | max. pea | | | 1500 A
; corres | | GL7672 | | Frequency
Changer | Max. 1
spondi
336 A. | oeak inv
ng av. a | verse vo
node cu | oltage l
irr. 16 . | 500 V.;
A.; max | max. pea
. av. anode | k anode
curr. 5 | curr.
6 A.; p | 1200 A
eak ano | ; corre-
de curr. | GL7672
-PC | | Resistance
Welding | Max. s | upply v | olts RM | IS 250- | 600; ma | x. demand
urr. 355 A | KVA 2 | 400; co | rrespon | ding av. | GL7673/
GL7673
-PC | | Frequency
Changer | spondii
peak a | ng av. a
node cu | ; corre-
ponding | GL7673 | | | | | | | | | Frequency
Changer | Max. 1
spondi:
peak a | eak inv
ng av. a
node cu | ; corre-
ponding | GL7673
-PC | | | | | | | | | Resistance
Welding | anode o | curr. 13 | 5 A.; m | ax. av. | anode c | x. demand
urr. 220 A | .; corres | ponding | demar | id KVA | GL7681/
GL7681
-PC | | Frequency
Changer | spondir
peak ar | ng av. a
node cui | mode ci
r. 630 A | ırr. 30
\. | A.; max | max. pea
x. av. anoc | ie curr. | 105 A. | ; corres | ponding | GL7681 | | Frequency
Changer | spondir
peak ar | ng av. a
node cur | node c
r. 502 | urr. 24
\ | A.; ma | max. pea
x. av. ano | de curr | curr.
84 A. | 1800 A.; corres | ; corre-
ponding | GL7681
-PC | | DC Ampli-
fier | 800
600
300 | 250
250
250 | 1.0
1.0
0.5 | | 1.6
1.7
2.2 | 35,000
34,000
28,000 | 4,200
4,200
4,200 | = | = | | 7683 | | Class A
Amplifier | 220 | 130 | R _k = 62 | 10 | 3.4 | 500,000 | 5,800 | | | | 7687 | | Class A
Amplifier | 215 | | 8.5 | 7.5 | | 7,200 | 2,500 | 18 | | | - 5000 | | Class A
Amplifier • | 250
100 | | 8.5
0 | 10.5
11.8 | _ | 7,700
6,500 | 2,200
3,100 | 17
20 | _ | | 7688 | | Class A
Amplifier | 250
100 | | 1.0 | 1.2
0.5 | | 62,500
80,000 | 1,600
1,250 | 100
100 | | | 7689 | | Class A
Amplifier • | 250
100 | | 2.0
1.0 | 10
3.7 | | 10,900
15,000 | 5,500
4,000 | 60
60 | | | 7690 | | Class A
Amplifier | 130 | 130
140 | 11.0
R _k = | 100†
210† | 5.0†
9.0† | 7,000 | 11,000 | _ | 1,100
1,500‡ | 10 | 7695 | | Class AB ₁
Amplifier | 130 | 130 | 50 | 195† | 9.0† | | | | 1,800‡ | 10 | | | Class A
Amplifier | 250 | 250 | 12.5 | 28 | 3.1 | 31,000 | 3,600 | | | | 7701 | | Capacitor
Discharge | Max.
voltage | forward
20000
per min | peak
volts; r
ute 2. | anode
nax. pe | voltage
ak anod | 20000 vole curr. 100 | lts; ma:
0,000 A. | k, inver
; typica | rse pea
il discha | k anode
irge rate | GL7703 | | Class A
Amplifier | 200 | 125 | R _k = | 24 | 5.2 | 70,000 | 10,000 | _ | | _ | 7716 | | Class A Amp | $\frac{125}{125}$ | 80 | 1.0 | 1.5 | 1.4 | 35,000
125,000 | 2,900 | 102 | | _=_ | 7717 | | Class A
Amplifier
Class A | 300 | | 10.5 | 4.0 | 1.4 | 7,100 | 3,500 | 25 | | - <u>-</u> - | 7719 | | Amplifier | 150 | | R _k = | 7.5 | | | 10,500 | 90 | | | 7720 | | Class A
Amplifier | 100 | | 82 | 9.0 | | _ | 11,500 | | | _ | 1120 | | 450 Mc UHF
Oscillator | 150 | | $R_g = 7,500$ | 4.0 | = | = | | $I_c = 0$ | 5 ma | 0.1 | | | Class A
Amplifier | 190 | 160 | R _k = 400;
E _{ci} = +10 | 22 | 6.0 | 120,000 | 35,000 | | | | 7721 | | Class A
Amplifier | 190 | 160 | R _k = 370;
E _{ci} = +8 | 20 | 6.0 | 100,000 | 26,000 | _ | | | 7722 | | Class A | 250 | = | 3.0 | 0.7 | _ | 72,000 | 1,000 | 72 | _ | | 7724 | | Amplifier
FM Det. | Max o | | ut curre | ent 🏶 💠 | =5.0 m | ia; tube vo | ltage dr | op • : 5 | .0 volts | at 18 | | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. 1, 2, 3, etc. indicate tube sections. ¶ Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | | acitanc
icofarac | | |---------------|---------------------------------|---------------|-------|---------------|---------------|--------------|----------------|----------------------------------|------------------|---|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7725 | Thyratron | FG-
27-A | T-X | 2.5 | 9.0 | | Anode | Voltage | Drop = | =15 Vol | ts | | 7726 | Thyratron | 7518/
710L | T-X | 2.5 | 9.0 | | Anode | Voltage | Drop = | =15 Vol | ts | | 7728 | Medium-Mu Twin
Triode | 9A | 6–2 | 12.6
6.3 | 0.15
0.3 | 2.8 ◈ | 330 ◈ | _ | 2.2 ▲ | 0.5 ₁ ▲ 0.4 ₂ ▲ | 1.5 🛦 | | 7729 | High-Mu Twin
Triode | 9A | 6-2 | 12.6
6.3 | 0.15
0.3 | 1.1 🏶 | 330 ◈ | | 1.6 ▲ | 0.46 ₁ ▲ 0.34 ₂ ▲ | 1.7▲ | | 7730 | Medium-Mu Twin
Triode | 9A | 6–2 | 12.6
6.3 | 0.15
0.3 | 3.0♦ | 330 ◈ | | 1.8 | 2.0 | 1.5 | | 7731 | Triode-Pentode | 9AE | 6–2 | 6.3 | 0.45 | 3.0 ♦ | 330 ◈ | 330 ♦ \$
0.6 ♦ | Pentod | e Sectio | n | | | | | | | | 3.0 ◈ | 330 ◈ | | Triode | Section | | | 7732 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 6.3 | 0,3 | 2.3 🆠 | 330 ◈ | 330 ♦ \$
0.55 ♦ | 6.5 | 3.0 | 0.15 | | 7788 | Sharp-Cutoff
Pentode | 9BF | 6–3 | 12.6
6.3 | 0.3 | 6.5 ◈ | 330 🏶 | 190 ③ | 10.7 🏶 | 4.0 ▲ | 0.063 | | 7734 | Triode-Pentode | 9LC | 6–3 | 6.3 | 0.9 | 1.0♦ | 330 🏶 | 275 ③ | Pentod | e Section | | | | | | | | | 7.0 ◈ | 275 🏶 | | Triode | Section | . • | | 7737 | RF Pentode | 9MZ | 6-1 | 6.3 | 0.32 | 3.0 € | 210 🖲 | 175 ⊕
0.7 ⊕ | 7.6 ▲ | 3.3 ▲ | 0.03 ♣ | | 7738 | High-Frequency
Triode | 7DK | 5–1 | 6,3 | 0.225 | 5.0 ♦ | 330 🏶 | | 3.0 | 1.8 | 1.7 | | 7751 | Beam-Power
Amplifier | 8KB | T-X | 6.3 | 1.2 | 10 | 250 ₪ | 250 €
5.0 € | 17.5▲ | 9.0▲ | 1.3 | | 7754 | Beam-Power
Amplifier | 9PX | T-X | 6.3 | 1.2 | 16 🏶 | 150 ◈ | 150 ♦
2.5 ♦ | Single | Tube | | | | | | | | | | | | Two T
Pull | ubes, P | ush- | | 7757 | Beam Power
Amplifier | 9NE | T-X | 6.3 | 0,6 | 14 🖲 | 3,000 | 700 €
3.0 € | | <u> </u> | - | | 7759 🌑 | Medium-Mu
Twin Triode | 8DG | 3-1 | 26.5 | 0.09 | 1.1 🖹 | 165 🖲 | = | 2.2 | 1.3 | 1.4 | | 7760 € | Medium-Mu
Twin Triode | 8DG | 3-1 | 26.5 | 0.09 | <u> </u> | 55 ₪ | = | 2.5 | 1.3 | 1.8 | | 7761 👁 | Semi-Remote
Cutoff Pentode | 8DL | 3-3 | 26.5 | 0.11 | 4.0 € | 165 🖲 | 155 ⊕
1.0 ⊕ | 8.5 | 8.0 | 0.18 💠 | | 7762 ® | Power Amplifier
Pentode | 8DL | 3-3 | 26.5 | 0.11 | 4.0 | 165 🖼 | | 6.5 | 7.5 | 0.11 | | 7763 | Double-Plate
Sheet-Beam Tube | 9NF | 6-3 | 6.3 | 0.3 | 0.75 📵 | 330 ₪ | 330 @
1.5 @ | _ | | | | 7768 | High-Mu Triode
(Ceramic) | 7768 | T-X | 6.3 | 0.4 | 5,5 🙉 | 330 € | | 6.0▲ | 0.025 | 1.7▲ | | 7784 | High-Mu UHF
Triode (Planar) | 7784 | T-X | 6.3 | 0.3 | 2.0 | 200 🗉 | | 3.65 ▲ | 0.02 ▲ | 1.75 ▲ | | 7788 | Pentode | 9NK | 6-2 | 6.3 | 0.34 | 5.0 📵 | 250 € | 200 @
1.0 @ | 16 | 4.1 | 0.035 | | 7802 | Low-Mu Twin
Triode | 8BD | 12-43 | 6.3 | 2.5 | 13 🗨 | 250 € | | | | | | 7803 | Medium-Mu
Twin Triode | 9AJ | 6-2 | 6,3 | 0.365 | 3.5 ◈ | 200 @ | _ | 3.3 | 2.5 | 1.4 | | 7815 | High-Mu Triode
(Planar) | 7815 | T-X | 6.0 | 1.0 | 10 🖲 | 3500 @
Peak | i - | 6.3 ▲ | 0.035 | 2.05 ▲ | | 7815R | High-mu Triode
(Planar) | 7815R | T-X | 6.0 | 1.0 | 10 📵 | 3500 Peak | | 6.3 ▲ | 0.035 | 2.05 ▲ | | 7841 | Diode
(Planar) | 7266 | T-X | 6.3 | 0.215 | _ | Tube | Voltage
its at 5. | Drop:
0 ma d- | - | | Compactron. † Zero signal. • Per section. [†] Plate-to-plate. Maximum. Supply voltage. See X-Radiation Warning, page 4. Subminiature type. ▲Without external shield. Design maximum rating. Total for all similar sections. Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |--|--------------------------|-------------------------------|--|---------------------------------|----------------------------------|---------------------------|--|--------------------|--|--------------------------------|--------------| | Controlled
Rectifier | Max 6 | l-c cath
volts; n | ode cu | rrent 🖲
k catho | =2.5 ar
de curre | nperes; ma
nt • = 30 a | ax
peak
imperes | inverse | | e 🖲 = | 7725 | | Controlled
Rectifier | 3,500 | l-c cath
volts; n | nax pea | k catho | =2.5 ar
de curre | nperes; ma
nt 🖲 = 30 a | mperes | | voltag | e ● = | 7726 | | Class A
Amplifier 4 | 250
100 | = | 2.0
1.0 | 10
3.7 | | 10,900
15,000 | 5,500
4,000 | 60
60 | | | 7728 | | Class A
Amplifier 🌩 | 250
100 | _ | 2.0
1.0 | $\frac{1.2}{0.5}$ | | 62,500
80,000 | 1,600
1,250 | 100
100 | | | 7729 | | Class A
Amplifier 🌩 | 250
100 | | 8.5
0 | 10.5
11.8 | | 7,700
6,500 | 2,200
3,100 | 17
20 | | | 7730 | | Class A
Amplifier
Class A
Amplifier | 250
150 | 110 | R _k = 68
R _k = 56 | 10
18 | 3.5 | 400,000
5,000 | 5,200
8,500 | 40 | _ | _ | 7731 | | Class A
Amplifier | 250 | 150 | $\frac{R_{\mathbf{k}} =}{200}$ | 8.5 | 2.5 | 600,000 | 6,000 | G _s cor | nnected
de at | to | 7732 | | Class A
Amplifier | 250 | 180 | $\frac{R_k}{100} =$ | 24 | 5.0 | 90,000 | 12,000 | G ₃ co | nnected
de at | to | 7733 | | Class A
Amplifier | 150 | 150 | 2.0 | 5.5 | 1.7 | 340,000 | 3,200 | _ | _ | - 1 | 7784 | | Series
Regulator | 150 | _ | 21 | 35 | | 1,080 | 5,000 | 5.4 | - | - | | | Class A
Amplifier | 180 | 150 | R _k = | 11.5 | 2.9 | | 15,900 | | =0 vol | ts | 7737 | | Class A
Amplifier | 200 | | R _k = 100 | 12 | | | 9,500 | 80 | | | 7738 | | lass A
Amplifier | 100 | 100 | | 100 | 7.0 | 5,000 | 14,000 | | | | 7751 | | Class A
Amplifier | 130 | 130 | | 100† | 5.0† | 7,000 | 11,000 | | 1,100 | 4.5 | 7754 | | Class AB ₁ | 140
130 | 140
130 | R _k = 50 12.0 | 210†
195† | 9.0†
9.0† | | | | 1,500‡
1,800‡ | 10
10 | | | OC Ampli- | 250 | 250 | 12.5 | 45 | 3.5 | | 4,100 | = | 1,0001 | | 7757 | | Class A
Amplifier • | 100 | _ | R _k = | 6.5 | | | 5,400 | 35 | | | 7759 ● | | Class A
Amplifier • | 26.5 | | R _g = 2.2 meg. | 3.0 | | | 5,000 | 20 | | | 7760 ● | | Class A
Amplifier | 150 | 100 | R _k = | 21 | 4.0 | 50,000 | 9,000 | | | _ | 7761 ● | | Class A
Amplifier | 110 | 110 | Rk = 270 | 30† | 2.2† | 15,000 | 4,200 | _ | 3,000 | 1.0 | 7762 ● | | F Ampli-
ier-Limiter | 135
Deflect
voltag | 300
ctor · Vo
ge = 10 · | 0
ltage =
volts R | 4.2⊕
135 vo
MS | 4.0
lts d-c | (each defi | lector); | deflect | or-to-de | flector | 7763 | | Class A
Amplifier | 200 | _ | Rk = 270
Ec1 = +6 | 24 | - | 4,500 | 50,000 | 225 | | _ | 7768 | | Class A
Amplifier | 175 | _ | Adjust
for
Ib =
10 ma | 10 | _ | | 15,000 | 110 | _ | | 7784 | | Class A
Amplifier | 135 | 165 | R _k = 360;
E _{e1} = +12.5 | 35 | 5.0 | _ | 50,000 | _ | | | 7788 | | DC Ampli-
fier ♠ | 100 | | 4 | 115 | | | 20,000 | 8.5 | | | 7802 | | Class A
Amplifier • | 90 | | 1.3 | 15 | - | _ | 12,500 | 33 | | | 7803 | | Plate-Pulsed
Oscillator | 3500 | | | 9.0 | | _ | - - | | _ | 2,000
Peak | 7815 | | Plate-Pulsed
Oscillator | 3500 | | - | 9.0 | - | | \ <u> </u> | - | | 2,000
Peak | 7815R | | Half-Wave
Rectifier | | | out curr | | | max peak | inverse | voltage | ♦=350 | | 7841 | Metal tubes are shown in bold-face type, miniature tubes in italics. § G3 and G5 are screen. G4 is signal-input grid. § G2 and G4 are screen. G3 is signal-input grid. § 3. 2, etc. indicate tube sections. Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila- | Fila-
ment | Max
Plate | Max
Piate | Max
Screen
Volts | Ca ₁ | pacitanc
Picofarac | e in
Is | |------------|---|---------------|-------|---------------|---------------|---------------------------|----------------------|------------------------------|------------------|--------------------------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | ment
Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 7851 | Tetrode | 7GE | T-X | 2.5 | 0.2 | - | 12 | 12 | 2.6 ▲ | 1.8▲ | 0.19 🛦 | | 7855 | High-Mu UHF
Triode (Planar) | 7815R | T-X | 6.0 | 1.0 | 20 🗷 | 2500
© | | 6.3 ▲ | 0.06 | 2.5 ▲ | | 7861
5★ | High-Frequency
Twin Triode | 8CJ | 6-1 | 12.6 | 0.175 | 1.35 | 330 🏶 | | 2.2 ▲ | 1.0▲ | 1.1 ▲ | | 7867 | Beam-Power
Amplifier | 5BT | 12-21 | 6.3 | 2.5 | 24 🏶 | 700 ◈ | 175 ♦
3.6 ♦ | Single
Two T | Tube
ubes, P | ush- | | 7868 | Power Amplifier
Pentode | 9RW | 9-85 | 6.3 | 0.8 | 19 🏶 | 550 ◈ | 440 ♦
3.3 ♦ | Single
2 Tube | Tube
s, Push | Pull | | 7887 ● | Medium-Mu
Twin Triode | 8DG | 3-1 | 26.5 | 0.09 | 1.1 😥 | 165 🕥 | | 2.1 | 1.31 | 1.4 | | 7888 | Medium-Mu
Triode | 8DK | 3–1 | 26.5 | 0.045 | 3.3 👁 | 165 📵 | | 2.4 | 2.4 | 1.3 | | 7889 🌘 | Medium-Mu
Twin Triode | 8DG | 3–1 | 26.5 | 0.09 | 0.55 ₪ | 165 🗷 | = | 2.2 | 1.3 ₁
1.4 ₂ | 1.0 | | 7892 | Twin Triode | 9H | 6-2 | 12.6
6.3 | 0.45
0.9 | 4.2 ♦ 7.5 ♦ | 330 ◈ | _ | 4.0 ▲ | 0.6₁ ▲
0.5₂ ▲ | 4.0 🛦 | | 7894 • | Glow-Discharge Diode
Voltage Regulator | 7894 | T-X | - | | - | _ | _ | | _ | _ | | 7895 | High-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.135 | 1.0 ∰ | 110 🗟 | | 4.2 ▲ | 1.7▲ | 0.9 | | 7898 | High-Mu Twin Triode | 9EP | 6-2 | 13.5 | 0.15 | 2.75 | 330 € | == | 2.5 | 1.2 _i
1.3 ₂ | 1.6 | | 7905 | Beam Power Amplifier | 9PB | 6-3 | 6.3 | 0.65 | 10 📵 | 300 ₪ | 250 ₪
1.5 ₪ | 8.5 ▲ | 5.5 ▲ | 0.14 | | 7910 | Plate-Pulsed UHF
Oscillator (Planar) | 7910 | T-X | 6.3 | 0.275 | 1.5 | 1200 E
Peak | _ | 2.1 ▲ | 0.02 ▲ | 1.0▲ | | 7911 | Plate-Pulsed UHF
Oscillator (Planar) | 7911 | T-X | 6.3 | 0.55 | 6.5 🕒 | 3000 @
Peak | | 5.0 ▲ | 0.05 🛦 | 1.4 ▲ | | 7913 | High-Mu Triode
(Planar) | 7768 | T-X | 6.3 | 0.4 | 5.5 € | 330 🖪 | | 6.0▲ | 0.03 🛦 | 2.4 ▲ | | 7962 ● | Twin Triode | 8DG | 3-1 | 6.3 | 0.24 | 1.0 🕞 | 100 🖲 | | 3.0 | 1.1 | 2.4 | | 7963 🖷 | Twin Triode | 8DG | 3-1 | 6.3 | 0.35 | 1.1 🖸 | 165 📵 | - | 4.0 | 1.0 ₁
1.3 ₂ | 2.7 | | 7979 🌑 | Gas Triode | 7979 | T-X | 1.25 | 0.25 | | | | | | _ | | 7985 | Twin Tetrode | 9PS | 6-4 | 3.15 | 1.65 | 7.0 (9) | 300 ₹ | 200 B | Two S
Push-F | ections,
Pull | | | 7984 | Beam Power Amplifier | 12EU | 12-56 | 13.5 | 0.58 | 35 🗑 | 750 🖲 | 250 🗃
3.0 🖻 | 16▲ | 6.0▲ | 0.16 | | GL7985 | Tetrode | GL
7985 | TX | 6.7 | 13.5 | 3500 | 7000
4500
7000 | 750
500
750 | | ie-Plate
28.0; O | | | 7994 🌑 | Triode | 8KM | 3-1 | 6.3 | 0.25 | 2.0 | 200 | — | |] | | | 7995 🌑 | Sharp-Cutoff
Pentode | 8KZ | 3-1 | 6.3 | 0.25 | 1.6 | 200 📵 | 165 ●
0.6 ● | 8.5 | 2.75 | 0.035 | See X-Radiation Warning, page 4. Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. | Service | Piate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | |---|--------------------------|------------------------|-------------------------------|---------------------------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------|--|--------------------------------|--------------|--| | Class A
Amplifier | 11.0 | 11.0 | 2.2 | 0.016 | _ | 1,700,000 | 40 | 5 | | | 7861 | | | Grid-Pulsed
Oscillator | 1700 | | 45 | 1900
peak | | | | | - | 1,500
peak | 7855 | | | Class A
Amplifier • | 150 | | R _k = | 8.2 | | 6,400 | 5,500 | 35 | _ | | 7861
5★ | | | Class A ₁ | 250 | 90 | Rk = 120 | 80 † | 1.0† | 12,000 | 10,000 | | 3,000 | 7.5 | 7867 | | | Amplifier
Class AB ₁
Amplifier | 450 | 150 | 35 | 58† | 1.4† | | _ | | 5,000‡ | 65 | | | | Class A
Amplifier | 300 | 300 | 10 | 60† | 8.0† | 29,000 | 10,200 | _ | 3,000 | 11 | 7868 | | | Class AB ₁ { Amplifier | 450
450 | 400
400 | 21
R _k =
170 | 40†
86† | 5.0†
10† | = | = | = | 6,600‡
10,000
‡ | 44
28 | | | | Class A
Amplifier • | 100 | | R _k = 220 | 8.5 | | | 5,000 | 20 | _ | | 7887 ● | | | Class A
Amplifier | 150 | _ | R _k = | 13 | | | 6,500 | 27 | | | 7888 ● | | | i impinio | 100 | _ | R _k = | 8.5 | - | _ | 5,800 | 27 | _ | - | | | | Class A
Amplifier | 150 | | Rk = 820 | 1.75 | | | 2,500 | 70 | | | 7889 ● | | | | 100 | _ | R _k = 1500 | 0.8 | - | _ | 1,800 | 70 | _ | - | | | | Pulse
Amplifier • | Max 1 | 1500 | | | | | | | | | | | | { d-c operati | | | | nin. } Io
ax. } O
R | nization
perating
egulation | voltage =
voltage =
n (0.03 to | 3,300 vo
3,000 vo
0.85 mil | olts d-c
olts d-c
liampe | res =85 | volts) | 7894 ● | | | Class A
Amplifier | 110 | | R _k = 150 | 7.0 | _ | 6,800 | 9,400 | 64 | <u> </u> | | 7895 | | | Class A
Amplifier • | 250 | | R _k = 200 | 10 | _ | 10,900 | 5,500 | 60 | _ | _ | 7898 | | | Class C
Amplifier | 300 | 160 | 36 | 50 | 2.5 | | | _ | | 5.5 | 7905 | | | Plate-Pulsed
Oscillator at
5,900 Mc | power | output | =100 w | atts | | RF = 1,000; | | | | | 7910 | | | Plate-Pulsed
Oscillator at
4,100 Mc | Peak
power | plate vo
output | oltage =
= 2.2 k | 3,000 v
ilowatts | olts; Pl | RF = 1,000; | PD =1 | .0 mier | osecond | ; peak | 7911 | | | Class A
Amplifier | 200 | <u> </u> | R _k = | 25 | - | 2,500 | 40,000 | 100 | | | 7913 | | | Class A
Amplifier • | 60 | _ | R _k = | 7.8 | = | 2,100 | 10,000 | 21 | | | 7962 ● | | | Class A
Amplifier • | 100 | | R _k = 270 | 7.5 | | 3,100 | 13,000 | 40 | _ | | 7963 ● | | | Indicator | | anode c | | 8 = 11 r | na max; | d-c anode | current | ⊕ =3 : | na max | | 7979 ● | | | Class C
Amplifier | 250
R _{g2} = | 250 8
22,000 | ohms | 90 | 8.4 | | _ | _ | - | 11 |
7983 | | | Class A
Amplifier | 200 | 125 | 20 | 125 | 4.5 | | 7,300 | _ | | | 7984 | | | Class C Amp | 450 | 200 | 60 | 180 | 12 | | | | <u> </u> | 46 | A | | | RF Amplifier
Class B | 7000 | 600 | 35 | 475 | 10 | - | - | _ | 1 - | 1100 | GL7985 | | | Class C
Telephony | 4000 | 400 | 100 | 570 | 20 | _ | _ | - | - | 1250 | | | | Amp/Osc
Telegraphy | 6500 | 700 | 100 | 800 | 25 | | | | | 3200 | | | | Class A
Amplifier | 100 | | R _k = 82 | 13 | | 22,000 | 18,000 | 42 | | | 7994 | | | Class A
Amplifier | 150 | 150 | R _k = | 8.0 | 2.0 | 85,000 | 13,000 | | | | 7995 ● | | | Tube
Type | Classification
by | Base
Con- | Out-
line | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Cap
P | acitance
icofarad | e in
s | |--------------------------|---------------------------------------|---------------|--------------|---------------|----------------|--------------|-----------------------------|------------------------------|-------------------------|--|----------------| | Type | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | GL7998/
GL7998
-PC | Ignitron | GL
7998 | ТX | _ | _ | _ | — | _ | | _ | _ | | GL7998 | Ignitron | GL
7998 | тx | _ | - | - | | - | | | - | | GL7998
-PC | Ignitron | GL
7998 | тx | _ | _ | _ | | | | | | | 8008 | Half-Wave Mercury-
Vapor Rectifier | 2P | T-X | 5.0 | 7.5 | _ | Tube \ | oltage | Drop = | 10 Volt | S | | 8032 | Beam Power
Amplifier | 7CK | T-X | 13.5 | 0.585 | 20 🖻
20 🖷 | 400 🖻 | 250 ®
3.0 ® | Two T
Pull
Pentod | Connecubes, Processing Connecution Connecu | ısh-
ection | | 8032-A | Beam Power
Amplifier | 7CK | T-X | 12.6 | 0.562 | 27 🖲 | 600 € | 250 ⑤
3.0 ⑥ | Pull
Pentod | e Conne
ubes, P | ction | | 8042 | Beam Power Amplifier | 8LJ | T-X | 1.6 | 3.2 | 25 ◉ | 650 € | 200 ⑤
5.0 ⑥ | 13.5 ▲ | 8.5 ▲ | | | 8056 | Medium-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.135 | 0.45 | 50 ₪ | | 4.0 | 1.7 | 2.1 | | 8058 | High-Mu Triode
(Nuvistor) | 12CT | 4-6 | 6.3 | 0.135 | 1.5 € | 150 € | | = | _ | = | | 8064 ● | Semi-Remote-Cutoff
Pentode | 8DL | 3-1 | 26.5 | 0.045 | 0.75 🔳 | 165 € | 155 ● 0.35 ● | 4.0 | 3.4 | 0.015 | | 8068 | Beam Pentode | 8LC | 12-20 | 6.3 | 0.9 | 35 € | 3500 € | | 10▲ | 5.5 ▲ | 0.6 | | 8070 | High-Mu Triode | 8LD | 3-1 | 6.3 | 0.125 | 1.0 📵 | 165 🖲 | | 3.3 | 2.1 | 1.7 | | 8071 ⊚ | High-Mu Triode | 8LE | 3–1 | 6.3 | 0.125 | 2.0 € | 165 € | | 4.0 | 1.8 | 2.4 | | 8077 | Pentode | 9GK | 6–2 | 13.5 | 0.275 | 5.0 € | 330 ₪ | 180 ® | 10.2 ▲ | 3.5 ▲ | 0.068 | | 8081 | Triode (Ceramic) | 8081 | T-X | 6.3 | 0,22 | 0.85 🖲 | 275 🖲 | | 1.5▲ | 0.03 🛦 | 1.0 | | 8082 | Triode (Planar) | 8081 | T-X | 6.3 | 0.24 | 1.0 € | 250 🖲 | | 1.8 ▲ | 0.032 | 1.3 ▲ | | 8083 | Triode (Planar) | 8081 | T-X | 6.3 | 0.24 | 1,1 🖷 | 250 € | _ | 1.8▲ | 0.032 | 1.2 | | 8084 | Sharp-Cutoff
RF Pentode | 7CM | 5-2 | 13.5 | 0.16 | 2.3 € | 250 ₪ | 180 2 🖲 | 8.0 | 3.0 | 0.04 | | 8096 ⊚ | Triode | 8FY | 3-1 | 6.3 | 0.2 | 0.5 | 150 | _ | 1.75▲ | 0.6 ▲ | 2.0 | | 8100 | Photoconductive Cell | 8100 | T-X | | | 0.3 | 400 | _ | - | | - | | 8102 | Triode-Pentode | 9PJ | 6-2 | 13.5 | 0.23 | 2.5 | 330 🖲 | 330 % © | Pentod | e Section | on | | 8103 | Medium-Mu Twin | 8DG | 3-1 | 26.5 | 0.075 | 2.5 📵 | 330 ⑤
55 ⑥ | | Triode
3.8 | Section | 2.7 | | 8106 | Triode
Beam Pentode | 9PL | 6-2 | 13.5 | 0.25 | 6.0 € | 330 € | 300 ⋑ | 10▲ | 2.8 ▲ | 0.09 🛦 | | 8108 | Medium-Mu Triode | 8108 | T-X | 6.3 | 0.735 | 12.5 🗨 | 300 € | 1.25 🗨 | 3.0 ▲ | 0.035 | 1.4▲ | | 8113
5 ★ | (Planar) Sharp-Cutoff RF Tetrode | 7EW | 5–2 | 6.3 | 0.2 | 2.0 € | 180 | 180 8 🖲 | 4.3 | 2.8 | 0.035 | | 8116 | Tetrode | 8116 | TX | 26.5
13.25 | 0.433
0.866 | 2x30 🖲 | 1000 € | | 11.8 | 3.7 | 0.09 | | 8116A | Tetrode | 8116. | TX | 13.25 | 1.0 | 2x30 🖭 | 1000 🖭 | 360 ₺ | 11.8 | 3.7 | 0.09 | | 8117 | Tetrode | 8117 | TX | 12.6
6.3 | 0.9
1.8 | 2x30 🖭 | 1000 🖻 | 360 🖻 | 11.8 | 3.7 | 0.09 | | 8117A | Tetrode | 8117/ | TX | 13.25 | 1.0 | 2x30 | 1000 👳 | 360 € | 11.8 | 3.7 | 0.09 | Compactron. † Zero signal. Per section. [†] Plate-to-plate. †Maximum. Supply voltage. See X-Radiation Warning, page 4. ^{Subminiature type. ▲Without external shield. Design maximum rating.} Total for all similar sections. Absolute maximum rating. Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|-----------------------------|---------------------|--|---------------------------------|----------------------------------|--------------------------|---------------------|-------------------|--|--------------------------------|-------------------| | Resistance
Welding | Max. st
anode of
600. | upply v
curr. 13 | olts RM
5 A.; m | IS 250-6
ax. av. | 300; ma
anode c | x. demand
urr. 220 A. | KVA 1.; corres | 800; co | rrespond
deman | ling av.
d KVA | GL7998/
GL7998 | | Frequency
Changer | Max. p | eak inv | verse vo
mode cu
r. 630 A | ltage 1:
irr. 30 | 200 V.;
A.; max | max. peal | k anode
le curr. | curr. :
105 A. | 2250 A.; corres _i | ; corre- | -PC
GL7998 | | Frequency
Changer | Max, p
spondin | eak inv
gav. a | rerse vo
mode ci | ltage 1
urr. 24 | 500 V.;
A.; ma | max. peal | k anode
de curr. | curr.
84 A. | 1800 A.
; corres | ; corre-
ponding | GL7998
-PC | | Half-Wave
Rectifier | Max | i-c out | out cur | rent 🖨 = | =1.25 an | nperes; m
0 amperes | ax peak | invers | e voltag | ge 🖲 = | 8008 | | Class AB ₁ | 400 | | 100 | 40† | | | | | 1000,8 | 22 | 8032 | | Amplifier
Class AB ₂
Amplifier | 600 | 165 | 44 | 22† | 0.6† | operations. | _ | - | 6,000‡ | 90 | | | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | | | | 5,600‡ | 96 | 8032-A | | Class C
Amplifier | 600 | 180 | 71 | 150 | 15 | | | | | 65 | 8042 | | Class A
Amplifier | 24 | | R _k = 100 | 8.7 | | 1,530 | 7,500 | 11.5 | | | 8056 | | Class A
Amplifier | 110 | _ | R _k = 47 | 10 | | 5,600 | 12,400 | 70 | | | 8058 | | Class A
Amplifier | 100 | 100 | R _k = 120 | 7.2 | 2.0 | 275,000 | 4,500 | | | | 8064 🏶 | | Series
Regulator | 600
Max c | l 125
l-c cath | 7.5
ode cur | 36
rent 🖲 ≈ | 1.0
=100 ma | | 5,200 | _ | | - | 8068 | | Class A
Amplifier | 110 | _ | R _k = 130 | 7.5 | _ | 5,300 | 10,500 | 55 | - | | 8070 | | Class A
Amplifier | 150 | _ | R _k = 100 | 13 | • | 4,670 | 12,750 | 55 | | _ | 8071 🏟 | | Class A
Amplifier | 250 | 150 | R _k = 120 | 19 | 3.5 | 100,000 | 11,500 | | _ | | 8077 | | Class A
Amplifier | 150 | _ | R _k = 1,000 | 0.95 | | 57,000 | 1,400 | 80 | | | 8081 | | Class A
Amplifier | 150 | _ | R _k = 82 | 7.5 | _ | | 10,500 | 90 | | _ [| 8082 | | Class A
Amplifier | 150 | | R _k = 910;
E _c = +6.0 | 7.2 | _ | 9,000 | 10,500 | 94 | | - | 8083 | | Class A
Amplifier | 125 | 80 | 1.0 | 7.0 | 1.7 | | 10,500 | | | | 8084 | | Class A
Amplifier | 120 | _ | R _k == 1,500 | 0.9 | | | 1,750 | 54 | _ | | 8096 ● | | TV Bright-
ness Control | Wave = 500 | length
.000 oh: | of maxi
ms: cell | mum re | sponse | = 6,100 and | stroms | cell res | sistance | (dark) | 8100 | | Class A
Amplifier | 125 | 125 | 1.0 | 12 | 4.0 | 200,000 | 7,500 | _ | l = | - | 8102 | | Class A Amp | $\frac{125}{26.5}$ | | 1.0 | 13.5 | | 5,400 | 8,500 | 46 | | . | 8103 | | Amplifier 💠 | | | $R_g = 2.2 \text{meg}$ | | | | 11,000 | 20 | | | | | Class A
Amplifier | 300 | 150 |
3.5 | 16 | 3.2 | 90,000 | 9,000 | | | | 8106 | | Class A
Amplifier
Class A | 180 | 100 | 2.8 | 30 | | | 18,000 | 43 | | | 8108 | | Amplifier | 120 | 120 | 2.0 | 10 | 2.3 | 20,000 | 7,000 | _ | | | 8113
5★ | | Amp/Osc
Parallel) | 800 | 250 | 34 | 50 | 1.2 | | | 7.0 | | | 8116 | | Class AB ₁
Amplifier | 1000 | 265 | 41 | 30 | _ | | | 7.0 | | | 8116A | | Class AB ₁
Implifier | 800 | 250 | 34 | 50 | 1.2 | | | 7.0 | | | 8117 | | Class AB ₁
Amplifier | 1000 | 265 | 41 | 30 | - | | - | 7.0 | - | | 8117A | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarac | e in
Is | |--------|--------------------------------|---------------|-------|---|---------------|---------------------------|--------------|-------------------------------|------------------|--|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 3118 | Tetrode | 8118 | тх | 1.6 | 4.25 | 2x10 @
2x7 @
2x10 @ | 500 ₪ | 300 ₪ | 4.5 | 1.8 | | | 8186 | Sharp-Cutoff Pentode | 7CM | 5-2 | 6.3 | 0.3 | 2.2 💿 | 330 € | 165 ●
0.65 ● | 7.0▲ | 2.2 ▲ | 0.02 🛦 | | 8142 | Photoconductive Cell | 8100 | T-X | | | 0.3 | 400 € | 0.03 | | | | | 8143 | Photoconductive Cell | 8100 | T-X | | | 0.3 📵 | 400 € | | | | | | 8149 | Beam Power Amplifier | 12DT | 12-57 | 13
6.5 | 0.6 | 35 📵 | 750 € | 250 ⑤
3.3 ⑥ | 13 ▲ | 6.0▲ | 0.35 | | 8150 | Beam Power Amplifier | 12DŪ | 12-86 | 13
6.5 | 0.6
1.2 | 35 ₪ | 750 ₪ | 250 ®
3.3 ® | 13▲ | 6.5▲ | 0.2 🛦 | | 8156 | Beam Pentode | 12EU | T-X | 13.5 | 0.3 | 15 📵 | 600 € | 250 a 2.5 a | 11 🛦 | 5.0 ▲ | 0.07 🛦 | | 8185 ● | Medium-Mu Triode | 8KM | 3-8 | 6.3 | 0.3 | 4.25 D | 250 | | | | _ | | 8186 🖜 | Medium-Mu Triode | 8KM | 3-8 | 26.5 | 0.075 | 4.25 🖲 | 250 € | | | | | | 8203 | Medium-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 6.3 | 0.16 | 1.5 € | 250 | | 4.2 ▲ | 1.6▲ | 2.2 ▲ | | GL8205 | Ignitron | GL
8205 | тx | _ | _ | | _ | _ | _ | _ | _ | | 8210 ● | Sharp-Cutoff RF
Pentode | 8LS | T-X | 6.3 | 0.125 | 1.1 📵 | 165 🖲 | 155 ●
0.55 ● | 5.0 | 3.8 | 0.012 | | 8211 👁 | Video Pentode | 8DL | 3-3 | 6.3 | 0.36 | 4.0 € | 165 🖲 | 155 ® | 12 | 8.0 | 0.164 | | 8212 | Medium-Mu Triode | 9PY | 6–2 | $\begin{cases} 6.3 \\ 12.6 \end{cases}$ | 0.46 } | 10 🖲 | 300 € | | 10 ▲ | 1.2▲ | 2.9 ▲ | | 8213 ● | Medium-Mu Triode | 8LT | 3-8 | ₹ 6.3
12.6 | 0.38 } | 5.0 € | 300 🖲 | | 7.0 | 3.2 | 1.9 | | 8217 | Photoconductive Cell | 8100 | т-х | - | - | 0.4 🖲 | 300 € | - | | | - | | 8318-A | Photoconductive
Cell | 8100 | T-X | | | 0.075 | 300 € | | | | = | | 8223 | Medium-Mu Twin
Triode | 9AJ | T-X | 6.3 | 0.475 | 3.0 € | 250 € | | 4.7▲ | 1.9 ₁ ▲
1.8 ₂ ▲ | 1.8 ▲ | | 8228 🖜 | Glow-Discharge
Diode | 7894 | T-X | | | | _ | | | | | | 8233 | Power Amplifier
Pentode | 9PZ | T-X | 6.3 | 0.6 | 10 🕳 | 200 | 175 1 | 18 | 6.0 | 0.08 | | 8236 | Beam Power
Amplifier | 8JC | T-X | 6.3 | 2.5 | 50 🖲 | 1,000 | 200 li | 23 ▲ | 11 🛦 | 0.5 ▲ | | 8254 ● | Triode | 8LW | T-X | 6.3 | 0.185 | 1.5 € | 110 🖲 | I—— | 3.5▲ | 0.5▲ | 1.9▲ | | 8255 | High-Mu Triode | 9NY | T-X | 6.3 | 0.16 | 1.8 | 175 | | | | - | | 8278 | Beam Power
Amplifier | 9QB | T-X | 6.3 | 1.2 | 25 | 300 | 300
4.0 | Single
2 Tube | Tube
es, Push | -Pull | Compactron. † Zero signal. Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type.▲Without external shield.Design maximum rating. ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
μmhos | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---------------------------------|----------------------------|-----------------------------------|-------------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------|--------------------|--|--------------------------------|--------------| | Amp-Class C | 400 | 250 | 50 | 2x50 | 2x3.5 | - | 2500 | 9 | l — | 28 | 8118 | | Telegraphy
Class C | 500 | 250 | | 2x40 | 2x4.0 | _ | _ | | _ | 29 | | | Modulation
Class C | 300 | 250 | 175 | 2x45 | 3.5 | _ | _ | | _ | 9 | | | Freq Tripler Class A Amplifier | 125 | 125 | R _k = 56 | 10.8 | 2.9 | | 9,800 | - | | | 8136 | | Relay
Control | Wave | length o | | mum re | sponse = | =6,100 ang
candles at a | stroms; | cell res | istance | 1,500 | 8142 | | Relay | Wave | length a | of maxi | mum r | 1 & 100t- | =6 100 and | color t | empera | ture or | 2,870 K | 8143 | | Control | ohms | with an | illumin | ation o | f 2 foot- | =6,100 and | a color t | empera | ture of | 2,870 K | 0110 | | Class A | 200 | 200 | | 100 | T — | | 7,500 | | ī — | _ | 8149 | | Amplifier
Class C Amp | 380 | E _{cc2} = 380 | 78 | 180 | 12 | _ | _ | | _ | 40 | | | | Ì | $R_{g2} = 10,000$ | | | 1 | | | | | | | | Class A
Amplifier | 200 | 200 | | 100 | | | 7,500 | | _ | | 8150 | | Class C Amp | 380 | $E_{cc2} = 380$ $R_{g2} = 10,000$ | 78 | 180 | 12 | _ | _ | | _ | 40 | | | Class A | 200 | 125 | 9.0 | 75 | 3.5 | | 7.600 | l | <u> </u> | | 8156 | | Amplifier
Class C Amp | 400 | 170 | 60 | 90 | 10 | _ | 7,000 | | _ | 21 | 8130 | | Class A
Amplifier | 200 | | R _k = 220 | 17 | = | | 19,000 | 42 | | | 8185 ● | | Class A
Amplifier | 200 | | R _k = 220 | 17 | _ | | 19,000 | 42 | | | 8186 ● | | Class A
Amplifier | 150 | | R _k = 560 | 7.0 | | 5,000 | 6,000 | 30 | | | 8203 | | Resistance
Welding | Max. s
anode o
1600. | supply
curr. 48 | volts 2 | 50-600;
ax. av. | max.
anode c | demand K
urr. 900 A. | VA 486
; corres | 00; cor
ponding | respond
g deman | ing av.
d KVA | GL8205 | | Class A
Amplifier | 100 | 100 | R _k = 100 | 8.5 | 2.8 | 260,000 | 9,000 | _ | - | - | 8210 🌑 | | Class A
Amplifier | 150 | 100 | R _k = 62 | 17 | 4.2 | 65,000 | 15,500 | | _ | | 8211 👁 | | Class A
Amplifier | 105 | | R _k = 75 | 25 | | 965 | 29,000 | 28 | _ | | 8212 | | Class A
Amplifier | 105 | _ | R _k = 75 | 23 | - | 1,348 | 23,000 | 31 | | | 8213 ● | | Relay | Spect | ral resp | onse, S | -15; mi | nimum | dark resist | ance = 1 | .0 meg | ohm; re | sistance | 8217 | | Control | Warra | IU foot- | candles, | averag | ge == 7,00 | 0 ohms; m: | minim | curren | t e = 20 | ma
ance = | 8318-A | | Relay
Control | | egohms; | | | h 2 foo | = 6,100 A;
t-candles, a | | | 0 ohms | ae – | | | Class A
Amplifier 4 | 100 | - | $R_k = 350$ $E_{c1} = +9.0$ | 30 | _ | 1,400 | 18,000 | 25 | _ | _ | 8 223 | | Voltage | D-c o | peratin | g curre | nt = 3.0 | ma; Io | onization v | oltage = | =115 v | olts d-c | , min; | 8228 🖜 | | Reference
Class A | opera
125 | ting vol | $\frac{\text{tage} = 8}{3.0}$ | 1 volts | d-c
 5.5 | 20,000 | 45,000 | - | | - | 8233 | | Amplifier
Class C | 700 | 140 | 75 | 200 | 14 | | | _ | | 105 | 8236 | | Amplifier
Class A | 80 | | 2.0 | 14 | | | 14,500 | 24 | ļ- <u>-</u> - | | 8254 ⊚ | | Amplifier | | | | | | | | | | | | | Class A
Amplifier | 150 | _ | R _k = 100 | 12 | _ | | 13.500 | 65 | | | 8255 | | Class A
Amplifier | 250 | 250 | 12.5 | 100 | 8.0 | 7,300 | 24,000 | _ | | | 8278 | | Class AB ₁ Amplifier | 265 | 265 | R _k = 56 | 200† | 16† | _ | _ | | 2,400‡ | 40 | | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarac | e in
Is | |--------------|--------------------------------|---------------|------|---------------|---------------|--------------|--------------|----------------------------------|-------------------------|---------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 8298 | Beam Power
Amplifier | 7CK | T-X | 6.75 | 1.165 | 20 🕮 | 400 ₪ | _ | Triode
Two T
Pull | Connectubes, P | tion
ush- | | | | | | | | 20 😸 | 400 ₪ | | Pentod | e Connubes, P | | | 8298-A | Beam Power
Amplifier | 7CK | T-X | 6.3 | 1.125 | 27 🖷 | 600 B | 250 №
3.0 № | Pentod
Two T
Pull | e Connubes, P | ection
ush- | | 8318 | Photoconductive Cell | 8100 | T-X | | | 0.05 🙉 | 300 ₪ | | | <u> </u> | Ι = | | 8319 🖷 | High-Mu Triode | 8LD | 3-1 | 6.3 | 0.15 | 1.0 🗷 | 165 🖻 | | 4.2 | 2.2 | 1.8 | | 8327 | Power Amplifier
Pentode | 9CV | 6-4 | 6.3 | 0.76 | 13.2 🏶 | 450 ♦ | 400 ♦
2.2 ♦ | 10.8 ▲ | 6.5 ▲ | 0.5 ▲ | | 8334 | High-Mu Triode | 7DK | 5–1 | 6.3 | 0.225 | 4.4 | 330 € | = | 3.3 | 1.8 | 1.7 | | 8345 | Photoconductive Cell | 8100 | T-X | | = | 0.3 🖲 | 400 ₺ | | - | | - | | 8346 | Photoconductive Cell | 8100 | T-X | = | | 0.3 🖼 | 400 € | | | | = | | 8347 | Photoconductive Cell | 8100 | T-X | | | 0.3 🗟 | 400 ₺ | | | | = | | 8348 | Twin Tetrode | 9QN | 6-4 | 1.6 | 2.5 | 5.0 € | 300 € | 200 BB
2.0 BB | Two Se | ections, | Push- | | 8368 | Twin Pentode | 9QR | 6-3 | 1.9 | 3.15 | 7.5 📵 | 250 ₪ | 200 🗐
3.5 🗑 | Two Se
Push-F | ections,
ull | | | 8380 | Power Tetrode
(Nuvistor) | 12AS | 4-5 | 6.0-
8.5 | | 1.6 🖲 | 250 € | 100 🗷 | 7.0▲ | 1.4▲ | 0.015 | | 8382 | Triode
(Nuvistor) | 12AQ | 4-4 | 6.0-
8.5 | | 2.0 | 250 🖨 | | 4.2 ▲ | 1.6▲ | 2.2 | | 8393 | Medium-Mu Triode
(Nuvistor) | 12AQ | 4-4 | 13.5 | 0.06 | 1.0 € | 110 @ | | 4.4 ▲ | 1.6 ▲ | 2.4 ▲ | | 8403 | High-Mu UHF
Triode (Planar) | 7815R | T-X | 6.3 | 1.25 | 33 🚱 | 2,500 |
 8.0▲ | 0.065 | 3.1 ▲ | | <i>8</i> 408 | Twin Tetrode | 9QV | T-X | 1.1 | 3.0 | 4.0 € | 300 ₪ | 200 ₪
2.5 ₪ | Two S
Pull | ections, | Push | | 8412 | High-Mu Triode
(Planar) | 8412 | T-X | 6.0 | 0.8 | 30 🗑 | 600 B | | 2.6 ▲ | 0.02 🛦 | 1.7▲ | | 8413 | High-Mu Triode
(Planar) | 8413 | T-X | 6.0 | 0.8 | 25 🖷 | 600 🖲 | | 2.6 ▲ | 0.02 ▲ | 1.7▲ | | 8414 🌑 | Sharp-Cutoff RF
Pentode | 8DC | 3-1 | 26.5 | 0.045 | | 55 🗟 | 55 🕮 | 4.9 | 3.0 | 0.02 | | 8417 | Beam Power
Amplifier | 78 | T-X | 6.3 | 1.6 | 35� | 660 � | 500 ♦
5.0 ♦ | Single
2 Tube | Tube
es, Push | ı-Pull | | 8425 | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 6.3 | 0.3 | 3.5� | 330 � | 330 8 ♦
0.75 ♦ | Pentod | le Conn | ection | | | | | | | | 3.5� | 275 🏶 | | | Conne | | | 8425-A | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 6.3 | 0.3 | 3.5� | 330 ◈ | 330 \$ ③
0.75 ⑤ | Pento | le Conn | ection | | | | | | | | 3.5 ❖ | 275 🏶 | | | Conne | | | | | | | | | | | | | | 20. | |---|------------------|-----------------|----------------------------|---------------------------------|----------------------------------|---------------------------|---------------------------|--------------|--|--------------------------------|--------------| | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohm | G _m ,
μmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | | Class AB ₁
Amplifier | 400 | _ | 100 | 40† | _ | _ | _ | _ | 8,000‡ | 22 | 8298 | | Class AB ₂
Amplifier | 600 | 165 | 44 | 22† | 0.6† | _ | _ | _ | 6,000‡ | 90 | | | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | _ | | | 5,600 | 96 | 8298-A | | Relay
Control | Wave I | ength of | f maxim | um res | ponse le | =6,100 A;
indles, aver | minimu
age 🗐 = | m dark | resistar | nce 🖲 = | 8318 | | Class A
Amplifier | 100 | | R _k == 160 | 7.5 | - | | 14,000 | 55 | - | - | 8319 🌑 | | Class C
Amplifier | 250 | 250 | 30 | 20 | 4.5 | Input Sig | | | | 3.0 | 8327 | | Class A
Amplifier | 200 | | R _k == 100 | 18 | | - | 10,750 | 55 | | | 8334 | | Relay
Control | Wavele
=75,00 | ength of | maxim | um respesistan | ponse =
ce (2 fo | 6,100 angs
ot-candles) | troms; = 750 c | cell res | istance | (Dark) | 8345 | | Relay
Control | Spects
3,000 | ral respo | onse = 6 | ,100 ап | gstrom | units; cell | resistan | ce at 2 | foot-ca | ndles = | 8346 | | Relay
Control | Spect | | onse =6 | ,100 an | gstrom | units; cell | resistan | ce at 2 | foot-ca | ndles = | 8347 | | Class C
Amplifier | 300 | 300\$ | 40 | 75 | 2.3 | $R_{g2} = 56,00$ | 00 ohms | _ | - | 12 | 8348 | | Class C
Amplifier | 180 | 180 | 20 | 50 | 11.5 | _ | - | | | 4.5 | 8358 | | Class A
Amplifier | 100 | 50 | R _k = 68 | 11 | 2.9 | | 11,000 | | - | | 8380 | | Class A
Amplifier | 75 | _ | R _k = 100 | 15 | _ | 2,200 | 12,800 | 28 | | _ | 8382 | | Class A
Amplifier | 75 | _ | R _k = 100 | 10.5 | _ | 3,000 | 11,500 | 35 | | | 8393 | | Grid-Pulsed
Oscillator | 2,000 | | 150 | 4000
Peak | _ | _ | _ | _ | - | 1,000
Peak | 8403 | | Class C
Amplifier | 275 | 275 | 25 | 80 | 13 | $R_{g2} = 8,200$ | Oohms | _ | _ | 15 | 8408 | | Class A
Amplifier | 420 | | R _k = 390 | 60 | - | | 16,000 | 60 | E _{cc1} = | +20
lts | 8412 | | Class A
Amplifier | 420 | | R _k = 390 | 60 | | | 16,000 | 60 | Ecc1 = | | 8413 | | Class A
Amplifier | 26.5 | 26.5 | E _{cc1} = | 4.5 | 1.5 | 50,000 | 5,000 | $R_{g1} = 2$ | | - | 8414 🜒 | | Class A | 300 | 300 | 12 | 100 | 5.5 | 16,000 | 23,000 | _ | - | | 8417 | | Amplifier
Class AB ₁
Amplifier | 560 | 300 | 15.5 | 100 | 3.4 | | | _ | 4,200‡ | 100 | | | Class A | 250 | 150 | R _k = 68 | 10.5 | 4.1 | 1,100,000 | 6,200 | - | - | - | 84 25 | | Amplifier | 250 | 125 | R _k ==
 100 | 7.4 | 2.8 | 1,300,000 | 5,500 | | _ | - | | | Class A
Amplifier | 250 | - | R _k = 330 | 11.2 | - | _ | 6,000 | 41 | _ | _ | | | Class A | 250 | 150 | R _k = 68 | 10.5 | 4.1 | 1,100,000 | 6,200 | _ | _ | _ | 8425-A | | Amplifier | 100 | 100 | R _k = 150 | 4.8 | 1.9 | 600,000 | 4,500 | - | - | - | | | Class A
Amplifier | 250 | _ | R _k = 330 | 11.2 | - | - | 6,000 | 41 | - | - | | | Tube | Classification | Base
Con- | Out- | Fila- | Fila- | Max | Max | Max
Screen
Volts | | acitano
icofara | | |--------|---------------------------------|---------------|-------------|----------------|------------------|------------------------------|------------------------------|----------------------------------|-------------------|---------------------|----------------| | Type | by
Construction | nec-
tions | line
Dwg | ment
Volts | ment
Amp | Plate
Watts | Plate
Volts | and
Watts | Input | Out-
put | Grid-
plate | | 8426 | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 12.6 | 0.15 | 3.5� | 330 ◈ | 330 \$ ③
0.75 ③ | Pentod | e Conne | ction | | | | | | | | 3.5 ◈ | 275 ◈ | | Triode
(G2, G3 | Connec | tion
ied) | | 8426-A | Sharp-Cutoff
RF Pentode | 7BK | 5–2 | 12.6 | 0.15 | 3.5 ◈ | 330 ◈ | 330 8 ③
0.75 ③ | Pentod | e Conn | ection | | | | | | | | 3.5 ◈ | 275 🏶 | | | Connec | | | 8431 | Medium-Mu
Twin Triode | 9AJ | 6–2 | 12.6 | 0.18 | 3.5 ◈ | 200 🏶 | | 3.3 | 2.5 | 1.4 | | 8441 | Triode
(Nuvistor) | 12AQ | 4-4 | 6.0-
8.5 | _ | 1.0 🗨 | 250 ₪ | | 4.2 ▲ | 1.7 ▲ | 0.9 ▲ | | 8444 📵 | Sharp-Cutoff
RF Pentode | 8DC | 3–1 | 6.3 | 0.125 | 1.1 | 165 € | 155 ●
0.55 ● | 5.2 | 3.8 | 0.016 | | 8445 | Triode-Pentode | 9AE | 6–2 | 6.75 | 0.44 | 1.7 ③ 2.0 ④ | 330 ◈
330 ◈ | 200 �
0.5 � | | e Section | | | 8446 | Triode-Pentode | 9FA | 6–2 | 6.75 | 0.44 | 1.7 ♦
2.0 ♦ | 330 ♦ | 200 �
0.5 � | | e Section | | | 8447 | Duplex-Diode High-
Mu Triode | 9CF | 6–2 | | 0.38 \ 0.19 | 2.5 🆠 | 300 ◈ | | 2.8 | 1.0 | 1.9 | | 8448 | Sharp-Cutoff
Pentode | 9BF | 6-3 | | $0.52 \ 0.26 \$ | 6.5 🏶 | 330 ◈ | 190 ③
1.2 ④ | 10.2 | 3.5 ▲ | 0.063 | | 8456 | Triode
(Nuvistor) | 12AQ | 4-4 | 6.0-
8.5 | | 0.45 | 50 ₪ | | 4.0▲ | 1.7▲ | 2.1 ▲ | | 8457 | Twin Tetrode | 9PW | 6–4 | { 6.75
13.5 | 0.76 \
0.38 } | 7.0 ◉ | 300 € | 200 ©
2.0 © | Two Se | ections. | Push- | | 8458 | Twin Tetrode | 9PW | T-X | { 6.75
13.5 | $0.76 \ 0.38$ | 7.5 🖲 | 400 ₪ | 200 ©
2.0 © | | ections, | Push- | | 8463 | Pentode | 9QX | 6-3 | 1.1 | 1.05 | 5.0 🖲 | 300 ₪ | 300 (a) | 6.5 ▲ | 3.8 ▲ | 0.15 | | 8474 | Photoconductive Cell | 8100 | T-X | | | 0.05 | 150 € | | | | | | 8475 | Photoconductive Cell | 8100 | T-X | | | 0.05 | 200 🖲 | | | | | | 8475-A | Photoconductive Cell | 8100 | T-X | _ | | 0.075 | 200 🗨 | | | | | | 8476 | Photoconductive Cell | 8100 | T-X | | | 0.05 | 300 € | | | - | | | 8477 | Photoconductive Cell | 8100 | T-X | - | | 0.05 | 300 € | | | | | | 8477-A | Photoconductive Cell | 8100 | T-X | | | 0.075 | 300 ₪ | | _ | | | | 8478 | Photoconductive Cell | 8100 | T-X | | | 0.05 | 300 ₪ | | | - | _ | | 8489 | Triode-Pentode | 9DA | 6–2 | 6.3 | 0.45 | 2.3 ③
2.8 ④ | 330 ◈ | 330 \$ ♦
0.55 ♦ | | e Section | | | GL8500 | Tetrode | GL
8500 | TX | 6.3 | 3.8 | 500 | 2000 | 320 | | e-Plate
19.5; Ou | | | | | | <u> </u> | <u></u> | <u></u> | <u> </u> | 1600 | <u> </u> | | | | Compactron. † Zero signal. • Per section. [†] Plate-to-plate. Maximum. Supply voltage. Subminiature type. ▲Without external shield. Design maximum rating. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |------------------------------------|----------------|-----------------|---|---------------------------------|----------------------------------|----------------------------|---------------------------|-------------------|--|--------------------------------|--------------| | C) _ A | 250 | 150 | Rk = | 10.5 | 4.1 | 1,100,000 | 6,200 | | i — | - 1 | 8426 | | Class A
Amplifier | 250 | 125 | $\begin{array}{c} 68 \\ R_k = \\ 100 \end{array}$ | 7.4 | 2.8 | 1,300,000 | 5,500 | _ | | - | | | Class A
Amplifier | 250 | | R _k == 330 | 11.2 | | | 6,000 | 41 | | | | | Class A | 250 | 150 | Rk = 68 | 10.5 | 4.1 | 1,100,000 | 6,200 | _ | _ | - | 8426-A | | Amplifier | 100 | 100 | $R_k = 150$ | 4.8 | 1.9 | 600,000 | 4,500 | _ | - | - | | | Class A
Amplifier | 250 | - | $R_k = 330$ | 11.2 | - | _ | 6,000 | 41 | - | - | | | Class A
Amplifier • | 90 | - | 1.3 | 15 | - | _ | 12,500 | 33 | | | 8431 | | Class A
Amplifier | 110 | _ | R _k = 150 | 7.0 | | 6,800 | 9,400 | 64 | | ==1 | 8441 | | Class A
Amplifier | 100 | 100 | R _k == 100 | 8.5 | 2.8 | 260,000 | 9,000 | | _ | | 8444 @ | | Class A
Amplifier | 170 | 170 | 2.0 | 10 | 2.5 | 400,000 | 6,200 | | | - | 8445 | | Class A
Amplifier | 100 | - | 1.0 | 12.5 | - | _ | 7,000 | 43 | _ | - | | | Class A
Amplifier | 170 | 170 | 2.0 | 10 | 2.5 | 400,000 | 6.200 | | | | 8446 | | Class A
Amplifier | 100 | _ | 1.0 | 12.5 | _ | | 7,000 | 43 | <u> </u> | - | | | Class A
Amplifier | 250 | | R _k = 200 | 10 | _ | 10,900 | 5,500 | 60 | | | 8447 | | Class A
Amplifier | 250 | 180 | R _k = 100 | 26 | 5.7 | 93,000 | 11,000 | | | | 8448 | | Class A
Amplifier | 24 | | R _k == 100 | 8.7 | _ | 1,530 | 7,500 | 11.5 | | = | 8456 | | Class AB ₁
Amplifier | 300 | 200 | 21.5 | 30† | 1,2† | | | _ | 10,000 | 12 | 8457 | | Class C
Amplifier | 400 | 155 | 59 | 85 | 2.3 | _ | | | | 20 | 8458 | | Class C
Amplifier | 300 | 150 |
35 | 40 | 3.5 | | | | | 8.0 | 8463 | | Relay
Control | Spect
1,500 | ral respo | onse = 6 | ,100 an | gstrom
resistan | units; cell
ce = 150,00 | resistan | ce at 2 | foot-ca | ndles = | 8474 | | Relay
Control | Spect | ral respo | nse = 6 | ,100 an | gstrom | units; cell
ce = 300,00 | resistan | ce at 2 | foot-ca | ndles= | 8475 | | Relay
Control | Wave | length o | f maxi | mum re | esponse | = 6,100 A;
-candles, a | minim | um dar
2,000 d | k resis | tance = | 8475-A | | Relay
Control | Spect
6,000 | ral respo | onse = 6 | ,100 an
n dark | gstrom
resistan | units; cell
ce = 600,00 | resistano
0 ohms | ce at 2 | foot-ca | ndles= | 8476 | | Relay
Control | Spect | ral respo | nse = 6 | 100 an | gstrom | units; cell : | resistano | e at 2 | | | 8477 | | Relay
Control | Wave | length o | f maxir | num res | ponse = | 6,100 A; radles, avera | ninimun | dark | resistan
s | ce = 0.8 | 8477-A | | Relay
Control | Spect | ral respo | onse = 6 | .100 an | gstrom | units; cell
nce = 2,400 | resistan | ce at 2 | | ndles = | 8478 | | Class A | 125 | 125 | 1.0 | 12 | 3.8 | 170,000 | 7,000 | | | <u> </u> | 8489 | | Amplifier
Class A
Amplifier | 150 | - | 3.0 | 15 | - | 4,700 | 4,500 | 21 | | - | | | RF Amplifier | 1750 | 250 | 20 | 200 | 5 | | | 14 | | 110 | GL8500 | | Class B
Felegraphy
Class C | 2000 | 225 | 40 | 250 | 10 | | - | _ | _ | 300 | | | Tube | Classification
by | Base
Con- | Out- | Fila-
ment | File-
ment | Max
Plate | Max
Plate | Max
Screen
Voits | Ca _j | acitano
icofara | e in
is | |--------|--------------------------------|---------------|------|---------------|---------------|--------------|---|----------------------------|---------------------------|---------------------------------------|------------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volta | and
Watts | Input | Out-
put | Grid-
plate | | 8506 | Triode (Planar) | 8506 | T-X | 6.3 | 0.4 | 5.0 🏶 | 300 🏶 | T = | 4.8▲ | 0.025 | 2.5 | | GL8513 | Tetrode | GL
8513 | TX | 7.0 | 13.5 | 4000 | 9000 | 800 | Catho
Input
6.7 | de-Plat
27.8; O | e 0.01;
itput | | | | | | | | | 4500
7000 | 500
750 | | | | | 8517 👁 | Pentode | 8DC | 3-1 | 6.3 | 0.15 | 0.8 🖲 | 165 | 155 🗷
0.55 🗷 | 4.3 | 3.5 | 0.02 💠 | | 8522 ● | Dual-Control
Pentode | 8DC | 3-1 | 6.3 | 0.15 | 0.7 | 165 ₪ | | | | _ | | 8524 | Sharp-Cutoff
Pentode | 8DC | T-X | 6.3 | 0.15 | 0.55 | 165 | 155 🖭
0.45 💽 | - | | | | 8525 | Medium-Mu Twin
Triode | 8DG | T-X | 6.3 | 0.3 | 0.7 | 165 🖷 | | 2.1 ▲ | 1.3₁ ▲
1.4₂ ▲ | 1.4 ▲ | | 8526 | Medium-Mu Twin
Triode | 8DG | T-X | 6.3 | 0.3 | 0.95 🖭 | 165 🗷 | | 2.1 ▲ | 1.3 ₁ ▲ 1.4 ₂ ▲ | 1.4▲ | | 8527 | Medium-Mu Triode | 8DK | T-X | 6.3 | 0.15 | 3.3 📵 | 165 🖭 | | 2.4 ▲ | 2.4 🛦 | 1.3 ▲ | | 8528 | Beam Power
Amplifier | 8DE | T-X | 6.3 | 0.45 | 3.7 | 165 | 155 🗑
0.4 🖷 | 6.5 ▲ | 7.5 ▲ | 0.11 | | 8529 | Semi-Remote-
Cutoff Pentode | 8DE | T-X | 6.3 | 0.15 | 0.85 🏶 | 165 🖲 | 155 ● 0.25 ◆ | 4.2 ▲ | 3.4 ▲ | 0.015 | | 8530 | Sharp-Cutoff
Pentode | 8DE | T-X | 6.3 | 0.15 | 1.1 | 165 🛎 | 155 ₪
0.55 ₪ | 4.2▲ | 3.4 ▲ | 0.015 | | 8532 | High-Mu Triode | 7BQ | 5–2 | 6.3 | 0.4 | 2.5 | 150 € | | | | _ | | 8533 | Triode
(Planar) | 8533 | ТX | 6.3 | 1.3 | 100 🗐 | 8000 ® | - | 8.0 | .06 | 1.65 | | 8534 | Triode
(Planar) | 8534 | TX | 6.3 | 1.3 | 10 📵 | 2500 🗩 | | 9.5 | .06 | 2.25 | | | , | | | | | 60 🖲 | Grid 1
2500
Plate 1
3500 | | - | _ | | | 8535 | Triode
(Planar) | 8535 | TX | 6.3 | 1.3 | 150 🖸 | 2500 | _ | 9.5 | .06 | 2.25 | | | (2 16,161) | | | | | 60 ₪ | 2500 ₪
3500 ₪ | _ | - | _ | | | 8536 | Triode
(Planar) | 8536 | TX | 6.0 | 1.0 | 10 🕦 | 2500 | - | 7.5 | 0.4 | 1.65 | | | (Flanar) | | | | | | 2500 面
3500 面 | _ | _ | _ | | | 8537 | Triode | 8537 | TX | 6.0 | 1.0 | 150 🖭 | 2500 🗈 | | 7.5 | .04 | 1.65 | | | (Planar) | | ••• | 5.8 | 1.0 | 35 🛍 | _ | _ | - | _ | - | | 8538 | Hi Mu Triode
(Planar) | 8538 | TX | 6.3 | 1.3 | 10 🗑 | 8000 © | - | 9.5 | .06 | 1,40 | | | | | | | | | 10000 € | | - | - | | | 8539 | Hi Mu Triode
(Planar) | 8539 | ТX | 6.3 | 1.3 | 100 🖻 | 8000 ®
10000 ® | - | 9.5 | .06 | 1.40 | | 8552 | Beam Power
Amplifier | 7CK | T-X | 12.6 | 0.562 | 27 🛍 | 600 (| 250 @
3.0 @ | Pentode
Two Tu
Pull | Conne | ction
ish- | Compactron, † Zero signal. • Per section. [‡] Plate-to-plate. Maximum. Supply voltage. ^{Subminiature type. ▲Without external shield. Design maximum rating.} [⊕]Total for all similar sections. @Absolute maximum rating. #Conversion transconductance. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m ,
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------|-----------------|--------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------|---------------------|--|--------------------------------|--------------| | Average
Characteristics | 200 | <u> </u> | R _k = | 25 | <u> </u> | - | 29,000 | 110 | _ | <u> </u> | 8506 | | RF Amplifier | 8000 | 750 | 50 | 600 | 10 | | _ | | | 1500 | GL8513 | | Class B
Telephony | 4000 | 400 | 100 | 570 | 20 | _ | | _ | _ | 1250 | | | Class C
Telegraphy | 6500 | 700 | 100 | 800 | 25 | | | | | 3200 | | | Class C
Average
Characteristics | 100 | 100 | R _k = 150 | 6.1 | 4.2 | | - | | | | 8517 ● | | Gated | 100 | 100 | Rk= | 5.3 | 3.6 | 110,000 | 3,200 | (g: tie | d to cal | hode) | 8522 | | Amplifier | 100 | 100 | 150
R _k =
330 | - | | _ | 1,300 | (Ec: = | -1.65 | volts) | | | Class A
Amplifier | 100 | 100 | R _k == 150 | 5.3 | 3.6 | 110,000 | 3,200 | (g ₃ tie | d to car | thode) | 8524 | | Class A
Amplifier • | 100 | | R _k == 150 | 6.5 | | 6,500 | 5,400 | 35 | | | 8525 | | Class A
Amplifier • | 100 | | R _k == 220 | 8.5 | | 4,000 | 5,000 | 20 | _ | | 8526 | | Class A
Amplifier | 150 | | R _k == 180 | 13 | | 4,150 | 6,500 | 27 | | | 8527 | | Class A
Amplifier | 110 | 110 | R _k == 270 | 30 | 2.2 | 15,000 | 4,200 | · | 3,000 | 1.0 | 8528 | | Class A
Amplifier | 100 | 100 | R _k ==
120 | 7.2 | 2.0 | 260,000 | 4,500 | | | | 8529 | | Class A
Amplifier | 100 | 100 | R _k == 150 | 7.5 | 2.4 | 260,000 | 5,000 | | | | 8530 | | Class A
Amplifier | 150 | | R _k == 100 | 13.5 | _ | 4,800 | 11,000 | 52.5 | _ | | 8532 | | Hi Mu Triode
RF Oscillator | | _ | | 150 | _ | | 38000 | 90
Cut-
off | | - | 8533 | | CW RF
Osc/Amp | 900 | | 30 | 140 | _ | | | _ | _ | 65 | 8534 | | Class C
Pulsed RF
Osc/Amp
Class C | 2000 | _ | 70 | 3000 | _ | — | | 1 | _ | 2500kw | | | CW RF
Osc/Amp
Class C | 900 | 1 | 30 | 140 | | | - | _ | | 65 | 8535 | | RF Osc/Amp
Grid Pulsed
Plate Pulsed | 2000 | _ | 70 | 3000 | _ | _ | _ | 1 | - | 2500kw | | | CW RF
Osc/Amp | 900 | | 40 | 90 | _ | _ | | | _ | 40 | 8536 | | Class C
Grid Pulsed
RF Oscillator | -45 | _ | 1700
(Pos) | 1900 | | _ | | _ | | 2500kw | | | Plate Pulsed
Oscillator | peak
3500 | _ | | 9.0 | _ | | | _ | | 2500kw | | | CW RF
Osc/Amp
Oscillator | 900
45 | | 40
1700 | 90
peak | _ | | _ | - | - | 40
2000kw | 8537 | | Grid Pulsed
Oscillator | peak | | (Pos) | 1900 | _ | _ | _ | | _ | 2000kw | | | Plate Pulsed | 3500 | | | | | | 20000 | | | | 0520 | | Pulsed RF
Amp/
Modulator
Plate Pulsed
RF Oscillator | | | | | _ | 1 | 38000 | 90
Cut-
off | | — | 8538 | | Pulsed RF
Amp/
Modulator
Plate Pulsed
RF Oscillator | | | _ | _ | _ | - | 38000 | 90
Cut-
off | _ | _ | 8539 | | Class AB ₁
Amplifier | 600 | 200 | 47 | 48† | 14.8† | | _ | | 5,600‡ | 96 | 8552 | Metal tubes are shown in bold-face type, miniature tubes in italics. ♦ G3 and G5 are screen. G4 is signal-input grid. ♥ G2 and G4 are screen. G3 is signal-input grid. 1, 3, 2, etc. indicate tube sections. ■Maximum screen dissipation appears immediately below the screen voltage. ¶ Heater warm-up time controlled. | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Ca ₁ | oacitanc
Picofarac | e in
is | |--------|---------------------------------|---------------|------
--|---------------|--------------------|--|--|-------------------|-----------------------|----------------| | Type | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 8582 | Photoconductive Cell | 8100 | T-X | | - | 0.05 | 300 ₪ | - | | | | | 8582-A | Photoconductive Cell | 8100 | T-X | | | 0.075 | 300 € | <u> </u> | | | | | 8595 | Twin Tetrode | 8595 | TX | 6.3 | 0.6 | 2x2 🗐
2x3 🗑 | 200 ®
250 ® | 200 | 6.4 | 1.6 | 0.15 | | 8627 | Triode (Nuvistor) | 12CT | 4-6 | 6.3 | 0.15 | 2.5 | 250 📵 | | | - | _ | | 8628 | Triode (Nuvistor) | 12AQ | 4-4 | 6.3 | 0.1 | 0.3 | 250 | | 3.4 ▲ | 1.7▲ | 0.7 | | 8632 | Hi Mu Triode | 8632 | TX | 6.3 | .30 | 18 | | 1 = | 5.0 | 1.9 | .75 | | 8639 | Beam Power
Tetrode | 8639 | TX | 6.3 | 1.8 | 40 | 4000 | 450 | 21.0 | 6.5 | .3 | | 8643 | Twin Tetrode | 8643 | TX | 13.5
6.7 | 1.0
2.0 | 2x38 € | 800 ₪ | 300 ₪ | 6.7 | 2.1 | _ | | | | | - | - | - | _ | - | - | | _ | - | | 8727 | High-Mu Triode
(Pencil Tube) | 5675 | T-X | 6.3 | 0.225 | 2.5 | 250 🗃 | - | 4.4 | 0.04 | 2.1 | | 8745 | High-Mu Triode
(Planar) | 7815R | T-X | 6.0 | 1.0 | 10 🖲 | 3500 ⊕
Peak | _ | 6.3 ▲ | 0.035 | 2.05 ▲ | | GL8751 | TRIODE | GL
8751 | TX | 6.3 | 1.05 | 2500
Peak
30 | _ | - | | | - | | 8755 | Triode
(Planar) | 8755 | TX | 6.3 | 1.3 | 150 | 8000 | - | 9.3 | .06 | 1.25 | | 8755A | Triode
(Planar) | 8755-
A | TX | 6.3 | 1.3 | 150 | 8000 | - | 9.5 | .06 | 1,05 | | 8808 | Hi Mu Triode | 8808 | ТX | 6.3 | .34 | 6 € | 1000 🖻 | _ | 9.6 | .05 | 2.7 | | 8847 | Triode
(Planar) | 8847 | TX | 6.3 | 1.3 | 150 🖲 | 2500 € | _ | 9.5 | .06 | 1.4 | | | (Fianar) | | | And the contract of contra | | | 3000 🖻
peak 🗐
3500 🗑 | _ | _ | | - | | 8847A | Triode | 8847- | TX | 6.0 | 0.95 | 150 € | 2500 € | | 9.5 | .06 | 1.4 | | | (Planar) | A | | | | | 3000 @
peak
3500 @ | - | | _ | - | | 8859 | High-Mu Triode
(Planar) | 8413 | T-X | 6.3 | 0.35 | 15 🖲 | 450 ® | | | | | | GL8866 | Tetrode | GL
8866 | тx | 6.3 | 3.8 | 150 | 3500 | 750 | Cathod
Input 2 | le-Plate
20; Out | .006;
out | | 8892 | Triode
(Planar) | 8892 | TX | 6.3 | .65 | 50 | 2000 🖭 | | 5.0 | .06 | 1.6 | | 8893 | Triode
(Planar) | 8893 | TX | 6.3 | 1.3 | 100 | 2000 🗑 | _ | 8.0 | .10 | 2.35 | | 8906 | Triode
(Planar) | 8906 | ТX | 6.0 | 1.0 | 10 📵 | 2500 🖭
3500 | _ | 8.0 | .06 | 1.98 | | 8907 | Triode
(Planar) | 8907 | TX | 6.0 | 1.0 | 100 📵 | 2500 ₪
3500 ₪ | _ | 8.0 | .06 | 1.98 | | 8917 | Triode
(Planar) | 8917 | TX | 6.3 | 1.2 | | 1600 | - | _ | - | _ | | 9001 | Detector Amplifier
Pentode | 7BD | 5-1 | 6.3 | 0.15 | - | 250 | 100 | 3.6 | 3.0 | 0.01 | | 9002 | Medium-Mu Triode | 7BS | 5-1 | 6.3 | 0.15 | | 250 | | 1.2 | 1.1 | 1.4 | Compactron. Zero signal. Per section. [●]Subminiature type. ▲Without external shield. ⊕Design maximum rating. | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _{m,}
µmhos | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------|-----------------|----------------------|---------------------------------|----------------------------------|---------------------------|--------------------------|-------------|--|--------------------------------|--------------| | Relay
Control | Cell ro | esistanc | e (dark) | = 10 m | egohms; | cell resista | ance (2 f | oot-can | | 100,000 | 8582 | | Relay
Control | Wave | length o | of maxir | num re | sponse = | 6,100 A; n
dles, avera | ninimum | dark i | esistano | ce = 10 | 8582-A | | Amplifier | 180 | 180 | 20 | 2x20 | 9.5 | _ | | _ | | 4.2 | 8595 | | Class C(CCS)
Frequency
Multiplier | 180 | 180 | Rg = 82
ohm | 2x20 | 9.7 | _ | | _ | _ | 2.3 | | | Class A
Amplifier | 110 | - | R _k = 47 | 11.5 | - | 5,400 | 13,000 | 70 | | - | 8627 | | Class A
Amplifier | 120 | | R _k = 200 | 1.5 | == | 41,000 | 3,100 | 127 | | | 8628 | | Amplifier | 14000 | _ | | 0.7 | | | | | | | 8632 | | Pass Tube | | - | | _ | - | _ | - | 8.2 | _ | - | 8639 | | RF Amp/Osc | 750 | 300 | 90 | 266 | 9.5 | _ | | 7 | | 137 | 8643 | | | - | - | - | - | - | _ | - | - | - | - | | | Avg. Char. | 125 | | R _k = 50 | 14 | - | _ | 16,000 | 70 | | | 8727 | | Plate-Pulsed
Oscillator | 3500 | | | 9.0 | | | | | | 2000
Peak | 8745 | | Plate Pulsed
Oscillator | 2000
Peak | | _ | 3000
Peak | 1200
Peak | _ | | - | _ | PEAK
2500 | GL8751 | | Hi Mu Amp/
Oscillator | 5000 | | 100 | 5000 | - | | | | = | 7000kw | 8755 | | Hi Mu Amp/
Oscillator
Grid Pulsed | 1750 | _ | 20 | 1000
Peak | - | _ | _ | _ | | 650w | 8755A | | RF Amp/Osc
Freq Mult | 200 | _ | 0 | 15 | Rk = 68 | 6400 | 18000 | 100 | _ | _ | 8808 | | Cw RF Amp/
Oscillator
Grid Pulsed
Plate Pulsed | - | _ | | _ | - | | 38,000 | 75 | _ | | 8847 | | Cw RF
Amp/Osc
Grid Pulsed
Plate Pulsed | _ | | | | | | 38000 | 75 | _ | _ | 8874A | | Avg. Char. | 250 | _ | R _k = 75 | 25 | - | _ | 17,000 | 70 | - | T - T | 8859 | | RF Amplifier
Class C | 2500 | 600 | 70 | 1400 | 50 | | _ | _ | - | 1600 | GL8866 | | RF Oscillator
Class C | | _ | | - | _ | | 30000 | 60 | = | - | 8892 | | RF Oscillator
Class C | - | _ | _ | _ | - | | 30000 | 60 | — | _ | | | Cw RF
Amp/Osc | 630 | | _ | _ | | | 38 | 80 | _ | 45 | 8906 | | RF Amp/Osc | 2200 | | 50 | Peak
2500 | | | | | | 2500w | | | Cw RF
Amp/Osc | 630 | - | | Peak | | | 38 | 80 | _ | 45 | 8907 | | RF Amp/Osc | 2200 | | 50 | 2500 | | | | | | | | | Linear
Amplifier | 1000 | - | _ | 100 | - | | 65000 | 210 | | - | 8917 | | Class A
Amplifier | 250 | 100 | 3.0 | 2.0 | 0.7 | 1,000,000 | 1,400 | | | | 9001 | | Class A
Amplifier | 250 | | 7.0 | 6.3 | | 11,400 | 2,200 | 25 | _ | | 900 2 | | Tube | Classification | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitanc
icofarac | e in
Is | |----------------------------|---------------------------------|---------------|------|---------------|---------------|--------------|--------------------------|------------------------|----------|------------------------------|----------------| | Туре | by
Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | 9003 | Remote-Cutoff Pentode | 7BD | 5–1 | 6.3 | 0.15 | | 250 | 100 | 3.6 | 3.0 | 0.01 | | 9004 | High-Frequency Diode (Acorn) | 4BJ | 4-1 | 6.3 | 0.15 | | _ | | | _ | - | | 9005 | High-Frequency Diode
(Acorn) | 5BG | 4-1 | 3.6 | 0.165 | | - | _ | | | | | 9006 | High-Frequency Diode | 6BH | 5-1 | 6.3 | 0.15 | | ļ— | | | _ | = | | GE12661 | Triode (Planar) | GE
12661 | ТX | 6.3 | .24 | 4 🖻 | 350 ₪ | _ | 1.6 | .015 | 1.35 | | GE13971 | Triode (Planar) | GE
13971 | ТX | 6.3 | .55 | 6.5 | 1500 | | 4.8 | 0.05 | 1.5 | | GE14501 | Triode (Planar)
Hi Mu | GE
14501 | ТX | 6.3 | .24 | 2.0 🖲 | 250 ₪ | | 1.75 | 0.01 | 1.25 | | GE14811 | Triode (Planar) | GE
14811 | ТX | 6.3 | .36 | 6.5 🕦 | 1200 ₺ | _ | 4.4 | .036 | 1.65 | | GE15371 | Triode (Planar) | GE
15371 | ТX | 6.3 | .50 | 10 🗑 | 2000 🖸 | _ | 5.0 | .035 | 1.9 | | GE16231 | Triode (Planar) | GE
16231 | тx | 6.3 | .40 | 6.5 | 1250 🗷 | _ | 6.0 | .018 | 1.7 | | GE16411 | Triode (Planar)
Hi Mu | GE
16411 | ТX | 6.3 | .15 | 1.0 🗑 | 250 📵 | | 1.5 | .01 | 1.3 | | GE16841 | Triode (Planar) | GE
16841 | ТX | 5.7 | .27 | 1.5 🗷 | 250 🗑 | _ | 2.1 | .018 | 1.05 | | GE17241 | Triode (Planar) | GE
17241 | TX | 6.0 | .97 | - | 1500 🗷 | _ | 6.3 | .035 | 1.9 | | | | 17241
 | | | 10 👁 | 1750 🖭
Peak
2500 🗈 | | _ | - | <u> </u> | | GE17701 | Triode (Planar) | GE
17701 | ТX | 6.3 | 1.25 | 30 € | 2500 🖻 | | 9.0 | 0.1 | 2.15 | | GE18651 | Triode (Planar) | GE
18651 | ТX | 6.3 | .55 | 6.5 🖭 | 1500 ₪ | _ | 4.9 | - | 1.6 | | GL37207 | Ignitron | GL
32207 | тх | _ | _ | | | _ | _ | _ | _ | | GL37248 | Ignitron | GL
37248 | тх | | | _ | | _ | | | _ | | GL37250/
GL37250
-PC | Ignitron | GL
37250 | TX | | _ | _ | | _ | _ | $\lceil \overline{-} \rceil$ | _ | ^{Total for all similar sections. Absolute maximum rating. Conversion transconductance.} | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |-----------------------------|--------------------------|-------------------------------|------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------|-------------|--|--------------------------------|---------------------------| | Class A
Amplifier | 250 | 100 | 3.0 | 6.7 | 2.7 | 700,000 | 1,800 | | _ | <u> </u> | 9003 | | Half-Wave
Rectifier | Max | d-c outp | ut curre | ent = 5 | ma; max | rms supp | ly volta | ge = 11 | 7 volts | <u>'</u> | 9004 | | Half-Wave
Rectifier | Max | d-c outp | ut curre | nt = 1.0 | 0 ma; m | ax rms suj | oply vol | tage = 1 | 17 volts | 5 | 9005 | | Half-Wave
Rectifier | Max
suppl | d-c outr | out curr
e = 270 | ent = 5
volts; | ma; ma
max peal | x peak in
k current: | verse vo | ltage = | 750 vo | its; rms | 9006 | | Power Osc.
450MHz | 150 | I _k = 40mA | 0 | 25
30 | | _ | 8500 | 40 | _ | 6 | GE12661 | | Osc./Amp. | 200 | _ | R _k = 100 | 23 | _ | | 25000 | 58 | _ | | GE13971 | | 1200MHz | 1500
Peak | —
I _k =
1.8a | ohms | 1.5a | - | | _ | _ | - | 900w | | | Osc./RF Amp. | 150 | _ | Rk =82
ohms | 9.5 | | | 12500 | 90 | | _ | GE14501 | | 450M Hz | 250 | I _k = 21mA | _ | - | - | _ | _ | _ | - | 2.3 | | | C Band Osc. | 200 | | R _k = 100 | 27 | | | 29000 | 60 | _ | | GE14811 | | 4300MHz | 800. | I _k =
1.2a | ohms
— | _ | - | _ | - | - | _ | 190w | <u> </u> | | Osc./Amp. | 200 | _ | R _k = 100 | 17 | _ | | 22000 | 85 | = | _ | GE15371 | | 1090MHz | 1800 | I _k = 2.0A | ohms | - | - | _ | - | _ | - | 700w | | | Amplifier | 200 | - | R _k = 22
ohms | 22 | - | | 50000 | 225 | - | 20w | GE16231 | | Osc./RF Amp. | 150 | _ | R _k =82
ohms | 12.5 | - | - | 12500 | 75 | | - | GE16411 | | 450 MHz | 150 | I _k = 10mA | <u> </u> | - | - | _ | | - | - | 450mW | | | CW Osc./Amp | 150 | _ | R _k = 82
ohms | 14 | | | 17000 | 78 | _ | — · | GE16841 | | 4300MHz | 100 | I _k = 18mA | | | - | | - | - | - | 25mW | | | Osc./Amp.
1100MHz | 600 | _ | 5 | 25 | | | 13500 | 95 | _ | | GE17241 | | Grid Pulsed
Plate Pulsed | 1500 | I _k = 3.0a | 115 | 1.4a | _ | - | _ | _ | - | 675w | | | Osc./Amp. | 200 | R _k =68 | 34
ohms | _ | _ | | 26000 | 58 | | _ | GE17701 | | 1200MHz | 2500
Peak | i _k =6a | _ | _ | _ | _ | _ | _ | | 3.5 | | | Osc./Amp. | 200 | _ | R _k = 100 ohms | 21 | | _ | 22000 | 58 | | _ | GE18651 | | 1200MHz | 1500
Peak | ik =
1.8a | - | - | - | _ | - | - | - | 800w | | | Capacitor
Discharge | Max.
voltag
pulses | | peak a
volts;
ute 500. | anode
max. p | voltage
eak ano | 25000 vo
de curr. | lts; max
500 A.; | typical | se peal
discha | k anode
rge rate | GL37207 | | Capacitor
Discharge | Max.
voltage | forward | peak a
volts; r | anode | | 50000 vo
le curr. 25 | | | | | GL37248 | | Resistance
Welding | Max. | supply v | olts RM | 1S 250-
lax. av. | 600; ma
anode o | x. demand
urr. 75 A. | KVA 1
; correst | 000; co | rrespon
deman | ding av.
d KVA | GL37250
GL37250
-PC | | Tube | Classification by | Base
Con- | Out- | Fila-
ment | Fila-
ment | Max
Plate | Max
Plate | Max
Screen
Volts | Car
P | acitano
icofara | e in
ds | |----------------------------|-------------------|-----------------|------|---------------|---------------|--------------|--------------|------------------------|------------------------------|--------------------|----------------| | Туре | Construction | nec-
tions | Dwg | Volts | Amp | Watts | Volts | and
Watts | Input | Out-
put | Grid-
plate | | GL37251/
GL37251
-PC | Ignitron |
GL
37251 | ТX | | | | | | | | | | GL37252/
GL37252
-PC | Ignitron |
GL
37252 | ΤX | | | | | | | | | | GL37253/
GL37253
-PC | Ignitron |
GL
37253 | TX | | | | | | | | | | GL37254/
GL37254
-PC | Ignitron |
GL
37254 | ТX | | | | | | | , | | | GL37255
GL37255
-PC | Ignitron |
GL
37255 | TX | | | | | | | | | | GL51025 | Triode |
GL
51025 | TX | 6.3 | 3.8 | 110 | 8000
2500 | | Cathod
0.45; Ir
Output | put 15 | | | GL51038 | Tetrode |
GL
51038 | тx | 6.3 | 5.6 | 500 | | 2000
1100 | 24 | 9 | _ | | GL51064 | Tetrode |
GL
51064 | тx | 5.7 | 24 | 2750 🖲 | 8000 (| 650 🖻 | Cathod
.006 ma
17.0; O | x; Inpu | t | | GL51065 | Tetrode |
GL
51065 | ΤX | 6.3 | 3.8 | 600 | 5000 | 1000 | Cathod
Input 2
7.5 | e-Plate
0; Outp | .006;
out | | GL51070 | Tetrode |
GL
51070 | TX | | 3.8 | 600 | | | | | | | GL51074 | Triode |
GL
51074 | TX | | 3.8 | 110 | | | | | | | Service | Plate
Volts | Screen
Volts | Neg
Grid
Volts | Plate
Milli-
am-
peres | Screen
Milli-
am-
peres | R _p ,
Ohms | G _m , | μ
Fac-
tor | Load
for
Rated
Out-
put,
Ohms | Power
Out-
put,
Watts | Tube
Type | |---|----------------------------|---|----------------------|---------------------------------|----------------------------------|--------------------------|------------------|--|--|--------------------------------|----------------------------| | Resistance
Welding | Max. si
anode o
200. | upply veurr. 43. | olts RM
2 A.; n | IS 250-6
nax. av. | anode o | x. demand
curr. 75 A. | KVA 10 | 000; cor
ponding | rrespond
deman | ling av.
d KVA | GL37251/
GL37251
-PC | | Resistance
Welding | anode o | curr. 10 | 8 A.; m | ax. av. | anode c | k. demand
urr. 150 A | ; corres | ponding | deman | d KVA | GL37252/
GL37252
-PC | | Resistance
Welding | anode o | curr. 10 | 8 A.; m | ax. av. | anode c | x. demand
urr. 150 A | ; corres | ponding | deman | d KVA | GL37253/
GL37253
-PC | | Resistance
Welding | | | | | | x. demand
urr. 400 A | | | | | GL37254/
GL37254
PC- | | Resistance
Welding | Max. s
anode o
1000. | upply vourr. 22 | olts RM
4 A.; m | IS 250-0
ax. av. | 300; ma:
anode c | x. demand
urr. 400 A | KVA 30 | 000; cor
ponding | rrespond
deman | ling av.
d KVA | GL37255
GL37255
-PC | | Oscillator
Plate Pulsed
Grid Pulsed
1100MHz | 6000
1950 | i _k =
11.3a
i _k =
3.8a | | 7a
2.6a | | | | | | 24000w
2000w | GL51025 | | Amplifier
Class B
Amplifier
Class C | 9000
4800 | 1400
1000 | 125
200 | 9.2A
4.2A | 470
100 | | | | | 52000
11000 | GL51038 | | Amplifier/
Oscillator
Class C
420 mcs
Amplifier
Class B
420 mcs | 7500
7500 | 600 | 100
50 | 650
330 | 16
5 | | | | | 4000
750 | GL51064 | | Amplifier | 4500 | 750 | 115 | 5.3A | 110 | | | | | 11000 | GL51065 | | | | | | | | | | | | 260 | GL51070 | | | \dagger | 1 | | † | + | <u> </u> | 1 | | t | 40KW | GL51074 | ## GENERAL ELECTRIC MULTIPLE/BRAND RECEIVING TUBE REPLACEMENT GUIDE | Tube Type
to be
Replaced | General Electric
Multiple/Brand | |--------------------------------|------------------------------------| | 0Z4
0Z4A | OZ4/OZ4A | | 1AD2
1AD2A | 1BY2A/1AD2A | | 1B3GT | 1G3GTA/1B3GT | | 1BX2 | 1X2C/1BX2 | | 1BY2
1BY2A | 1BY2A/1AD2A | | 1G3GT
1G3GTA | 1G3GTA/1B3GT | | 1K3
1K3A | 1K3A/1J3 | | 1R-K23 | 1S2A/DY87 | | 1S2A | 1S2A/DY87 | | 1X2
1X2A
1X2B
1X2C | 1X2C/1BX2 | | 2AF4
2AF4A
2AF4B | 2DZ4/2AF4B | | 2AH2 | 2BU2/2AS2A/
2AH2 | | 2AS2
2AS2A | 2BU2/2AS2A/
2AH2 | | 2BU2 | 2BU2/2AS2/
2AH2 | | 2DZ4 | 2DZ4/2AF4B | | 2FQ5
2FQ5A | 2GK5/2FQ5A | | 2GK5 | 2GK5/2FQ5A | | 3A3
3A3A
3A3B
3A3C | 3A3C/3AW3/3B2 | | 3AF4A
3AF4B | 3DZ4/3AF4B | | 3AW3 | 3A3C/3AW3/3B2 | | 3B2 | 3A3C/3AW3/3B2 | | 3BC5 | 3CE5/3BC5 | | 3BS2
3BS2A | 3BW2/3BS2A/
3BT2A | | 3BT2
3BT2A | 3BW2/3BS2A/
3BT2A | | 3BU8 | 3BU8/3GS8 | | 3BW2 | 3BW2/3BS2A/
3BT2A | | 3CB6 | 3CB6/3CF6 | | 3CE5 | 3CE5/3BC5 | | | | | Tube Type
to be
Replaced | General Electric
Multiple/Brand | |--------------------------------|------------------------------------| | 3CF6 | 3CB6/3CF6 | | зсхз | 3DA3/3CX3 | | 3CY3 | 3DB3/3CY3 | | 3DA3 | 3DA3/3CX3 | | 3DB3 | 3DB3/3CY3 | | 3DZ4 | 3DZ4/3AF4B | | 3EH7 | 3EH7/XF183 | | 3EJ7 | 3EJ7/XF184 | | 3GS8 | 3BU8/3GS8 | | ЗНА5 | 3HM5/3HA5 | | 3HM5 | 3HM5/3HA5 | | 4BL8 | 4BL8/XCF80 | | 4BQ7A | 4BZ7/4BQ7A | | 4BU8 | 4BU8/4GS8 | | 4BZ7 | 48Z7/4BQ7A | | 4GS8 | 4BU8/4GS8 | | 4HA5 | 4HA5/PC900 | | 4HA7 | 4HA7/4HC7 | | 4KN8 | 4KN8/4R-HH8 | | 4R-HH8 | 4KN8/4R·HH8 | | 5AR4 | 5AR4/GZ34 | | 5AS4A | 5U4GB/5AS4A | | 5AU4 | 5V3/5AU4 | | 5BQ7A | 5BZ7/5BQ7A | | 5BR8 | 5FV8/5BR8 | | 5BZ7 | 5BZ7/5BQ7A | | 5FV8 | 5FV8/5BR8 | | 5HG8 | 5HG8/LCF86 | | 5KD8 | 6U8A/6AX8/
6KD8/5KD8 | | 5U4GA
5U4GB | 5U4GB/5AS4A | | 5U9 | 5U9/LCF201 | | 5V3 | 5V3/5AU4 | | 6AF4A | 6DZ4/6AF4A | | 6AK5 | 6AK5/EF95 | | 6AL3 | 6AL3/EY88 | | 6AQ5A | 6AQ5A/6HG5 | | 6AQ8 | 6AQ8/ECC85 | | Tube
Type
to be
Replaced | General Electric
Multiple/Brand | |---------------------------------|------------------------------------| | 6AX8 | 6U8A/6AX8/
6KD8/5KD8 | | 6AY3B | 6AY3B/6BS3A | | 6BA6 | 6BA6/EF93 | | 6BC5 | 6CE5/6BC5 | | 6BC8 | 6BC8/6BZ8 | | 6BE3 | 6BE3/6BZ3 | | 6BK4
6BK4A
6BK4B
6BK4C | 6BK4C/6EL4A | | 6BL8 | 6BL8/ECF80 | | 6BM8 | 6BM8/ECL82 | | 6BN6 | 6KS6/6BN6 | | 6BQ5 | 6BQ5/EL84 | | 6BQ6GA | 6BQ6GTB/6CU6 | | 6BQ6GTB | 6BQ6GTB/6CU6 | | 6BQ7A | 6BZ7/6BQ7A | | 6BR3 | 6BR3/6R-K19 | | 6BR8
6BR8A | 6FV8A/6BR8A | | 6BS3A | 6AY3B/6BS3A | | 6BZ3 | 6BE3/6BZ3 | | 6BZ7 | 6BZ7/6BQ7A | | 6BZ8 | 6BC8/6BZ8 | | 6CA7 | 6CA7/EL34 | | 6CB6
6CB6A | 6CB6A/6CF6 | | 6CD3 | 6CG3/6CE3/
6CD3 | | ece3 | 6CG3/6CE3/
6CD3 | | 6CE5 | 6CE5/6BC5 | | 6CF6 | 6CB6A/6CF6 | | 6CG3 | 6CG3/6CE3/
6CD3 | | 6CG7 | 6FQ7/6CG7 | | ecra
ecra | 6CJ3/6DW4B/
6CL3 | | 6CQ4 | 6DE4/6CQ4 | | 6CU6 | 6BQ6GTB/6CU6 | | 6CW5 | 6CW5/EL86 | | 6DA4A | 6DA4A/6DM4A | | | | | Tube Type | | Tube Type | 0 | Tube Type | | |------------------------|------------------------------------|-------------------------|------------------------------------|-------------------|------------------------------------| | to be
Replaced | General Electric
Multiple/Brand | to be
Replaced | General Electric
Multiple/Brand | to be
Replaced | General Electric
Multiple/Brand | | 6DE4 | 6DE4/6CQ4 | 6HM5 | 6HM5/6HA5 | 12AU7A | 12AU7A/ECC82 | | 6DG6GT | 6W6GT/6DG6GT | 6J10 | 6Z10/6J10 | 12AX7 | 12AX7/ECC83 | | 6D18 | 6DJ8/ECC88 | 6JB5 | 6JB6/6HE5 | 12AX7A | 12AX7A/7025 | | 6DL5 | 6DL5/EL95 | 6JE6
6JE6A | 6JE6C/6LQ6 | 12AY3A | 12AY3A/12BS3A | | 6DM4A | 6DA4A/6DM4A | 6JE6A
6JE6B
6JE6C | | 12BQ6GA | 12BQ6GA/
12CU6 | | 6DQ3A | 6DU3/6DQ3A
6D06B/6GW6 | 6JW8 | 6JW8/ECF802 | 12BQ6GTB | 12BQ6GTB/ | | 6DQ6
6DQ6A
6DQ6B | OD QOD/OGWO | 6K11 | 6K11/6Q11 | 12BR3 | 12CU6 | | 6DT6 | 6DT6/6DQ6A | 6KD8 | 6U8A/6AX8/
6KD8/5KD8 | 12BS3A | 12BR3/12R-K19
12AY3A/12BS3A | | 6DT6A | | 6KN8 | 6KN8/6R-HH8 | 12BV7 | 12BY7A/12BV7/ | | 6DU3 | 6DU3/6DQ3A | 6KS6 | 6KS6/6BN6 | | 12DQ7 | | 6DW4B | 6CJ3/6DW4B/
6CL3 | 6LC6 | 6LJ6A/6LH6A | 12BY7A | 12BY7A/12BV7/
12DQ7 | | 6DX8 | 6DX8/ECL84 | 6LH6
6LH6A | 6LJ6A/6LH6A | 12C5 | 12CU5/12C5 | | 6DZ4 | 6DZ4/6AF4A | 6LJ6A | 6LJ6A/6LH6A | 12CU5 | 12CU5/12C5 | | 6EA7 | 6EM7/6EA7 | 6LQ6 | 6JE6C/6LQ6 | 12CU6 | 12BQ6GTB/
12CU6 | | 6EB8 | 6GN8/6EB8 | 6LX8 | 6LX8/LCF802 | 12DQ6B | 12DQ6B/12GW6 | | 6EC4A | 6EC4A/EY500 | 6Q11 | 6K11/6Q11 | 12DQ7 | 12BY7A/12BV7/ | | 6EH7 | 6EH7/EF183 | 6R-HH2 | 6BC8/6BZ8 | | 12DQ7 | | 6EJ7 | 6EJ7/EF184 | 6R-HH8 | 6KN8/6R-HH8 | 12DZ6 | 12EK6/12DZ6/
12EA6 | | 6EL4A | 6BK4C/6EL4A | 6R-K19 | 6BR3/6R-K19 | 12EA6 | 12EK6/12DZ6/
12EA6 | | 6EM7 | 6EM7/6EA7 | A8U6 | 6U8A/6AX8/
6KD8/5KD8 | 12EK6 | 12EK6/12DZ6/ | | 6ES8 | 6ES8/ECC189 | 6V4 | 6V4/EZ80 | | 12EA6 | | 6FG6 | 6FG6/EM84 | 6W6GT | 6W6GT/6DG6GT | 12G-87 | 12BQ6B/12GW6 | | 6FQ5
6FQ5A | 6GK5/6FQ5A | 6X9 | 6X9/ECF200 | 12GN7A/
12HG7 | 12HG7/12GN7 | | 6FQ7 | 6FQ7/6CG7 | 6Z10 | 6Z10/6J10 | 12GW6 | 12DQ6B/12GW6 | | 6FV8A | 6FV8A/6BR8A | 7HG8 | 7HG8/PCF86 | 12HG7 | 12HG7/12GN7 | | 6GB5 | 6GB5/EL500 | 7KY6 | 7KY6/9KX6 | 12R-K19 | 12BR3/12R-K19 | | 6GJ7 | 6GJ7/ECF801 | 8A8 | 9A8/8A8/PCF80 | 13EM7 | 15EA7/13EM7 | | 6GK5 | 6GK5/6FQ5A | 8CG7 | 8FQ7/8CG7 | 13FM7 | 15FM7/13FM7 | | 6GM8 | 6GM8/ECC86 | 8EB8 | 8GN8/8EB8 | 13GB5 | 13GB5/XL500 | | 6GN8 | 6GN8/6EB8 | 8FQ7 | 8FQ7/8CG7 | 13J10 | 13Z10/13J10 | | 6GW6 | 6DQ6B/6GW6 | 8GJ7 | 8GJ7/PCF801 | 13Z10 | 13Z10/13J10 | | 6GW8 | 6GW8/ECL86 | 8GN8 | 8GN8/8EB8 | 15CW5 | 15CW5/PL84 | | 6GX6 | 6GY6/6GX6 | 9A8 | 9A8/8A8/PCF80 | 15EA7 | 15EA7/15EM7 | | 6GY6 | 6GY6/6GX6 | 9KX6 | 7KY6/9KX6 | 15FM7 | 15FM7/13FM7 | | 6HA5 | 6HM5/6HA5 | 10CW5 | 10CW5/LL86 | 16A8 | 16A8/PCL82 | | 6HA6 | 6HB6/6HA6 | 10DX8 | 10DX8/LCL84 | 16AQ3 | 16AQ3/XY88 | | 6HB6 | 6HB6/6HA6 | 10JA8 | 10LZ8/10JA8 | 17AB10 | 17AB10/17X10 | | 6HE5 | 6JB5/6HE5 | 10LZ8 | 10LZ8/10JA8 | 17AY3A | 17AY3A/17BS3A | | 6HG5 | 6AQ5A/6HG5 | 11Y9 | 11Y9/LFL200 | 17BE3 | 17BE3/17BZ3 | | 6HG8 | 6HG8/ECF86 | 12AT7 | 12AT7/ECC81 | 17BR3 | 17BR3/17R-K19 | | Tube Type | | Tube Type
to be | _ | Tube Type | _ | |-------------------|------------------------------------|--------------------|------------------------------------|-------------------|------------------------------------| | to be
Replaced | General Electric
Multiple/Brand | to be
Replaced | General Electric
Multiple/Brand | to be
Replaced | General Electric
Multiple/Brand | | 17BS3A | 17AY3A/17BS3A | 8425A | 8425A/6AU6A | PCF80 | 9A8/8A8/PCF80 | | 17BZ3 | 17BE3/17BZ3 | 8426A | 8426A/12AU6 | PCF86 | 7HG8/PCF86 | | 17C5 | 17CU5/17C5 | 8552 | 6883B/8032A/
8552 | PCF801 | 8GJ7/PCF801 | | 17CU5 | 17CU5/17C5 | DY87 | 1S2A/DY87 | PCL82 | 16A8/PCL82 | | 17D4 | 17D4/17DM4A | ECC81 | 12AT7/ECC81 | PL84 | 15CW5/PL84 | | 17DM4A | 17D4/17DM4A | ECC82 | 12AU7A/ECC82 | PL500 | 27GB5/PL500 | | 17DQ6B | 17DQ6B/17GW6 | ECC83 | 12AX7/ECC82 | UL84 | 45B5/UL84 | | 17EW8 | 17EW8/HCC85 | ECC85 | 6A08/ECC85 | XCF80 | 4BL8/XCF80 | | 17GW6 | 17DQ6B/17GW6 | | 6GM8/ECC86 | XF183 | 3EH7/XF183 | | 17R-K19 | 17BR3/17R-K19 | ECC86 | | XF184 | 3EJ7/XF184 | | 17X10 | 17AB10/17X10 | ECC88 | 6DJ8/ECC88 | XL500 | 13GB5/XL500 | | 18GV8 | 18GV8/PCL85 | ECC189 | 6ES8/ECC189 | XY88 | 16AQ3/XY88 | | 19CG3 | 19DQ3/19CG3 | ECF80 | 6BL8/ECF80 | | | | 19CL8A | 19JN8/19CL8A | ECF86
ECF200 | 6HG8/ECF86 | | | | 19DQ3 | 19DQ3/19CG3 | | 6X9/ECF200 | | | | 19JN8 | 19JN8/19CL8A | ECF801 | 6GJ7/ECF801 | | | | 20AQ3 | 20AQ3/LY88 | ECF802 | 6JW8/ECF802 | | | | 21JS6A | 21JS6A/23JS6A | ECL82 | 6BM8/ECL82 | | | | 23JS6A | 21JS6A/23JS6A | ECL84 | 6DX8/ECL84 | | | | 24JE6A | 24LQ6/24JE6C | ECL86 | 6GW8/ECL86 | | | | 24LQ6 | 24LQ6/24JE6C | EF93 | 6BA6/EF93 | | | | 25BQ5GA | 25BQ5GA/
25CU6 | EF95
EF183 | 6AK5/EF95
6EH7/EF183 | | | | OF DOCOTO | | EF184 | 6EJ7/EF184 | | | | 23806618 | 25BQ6GTB/
25CU6 | EL34 | 6CA7/EL34 | | | | 25CU6 | 25BQ6GTB/
25CU6 | EL84 | 6BQ5/EL84 | | | | 25L6GT | 25L6GT/_ | EL86 | 6CW5/EL86 | | | | 231001 | 25W6GT | EL95 | 6DL5/EL95 | | | | 25W6GT | 25L6GT/
25W6GT | EL500 | 6GB5/EL500 | | | | 27GB5 | 27GB5/PL500 | EM84 | 6FG6/EM84 | | | | 34CE3 | 34CE3/34CD3 | EY88 | 6AL3/EY88 | | | | 36KD6 | 36KD6/40KD6 | EZ80 | 6V4/EZ80 | | | | 40KD6 | 36KD6/40KD6 | GZ34 | 5AR4/GZ34 | | | | 42EC4A | 42EC4A/PY500 | HCC85 | 17EW8/HCC85 | | | | 45B5 | 45B5/UL84 | KT66 | 7581A/KT66 | | | | | | | | | | | 6883B | 6883B/8032A/
8552 | LCF86 | 5HG8/LCF86 | | | | 7025 | 12AX7A/7025 | LCF201 | 5U9/LCF201 | | | | 7054 | 8077/7054 | LCL84 | 10DX8/LCL84 | | | | 7581A | 7581A/KT66 | LFL200 | 11Y9/LFL200 | | | | 8032A | 6883B/8032A/ | LL86 | 10CW5/LL86 | | | | 0077 | 8552 | LY88 | 20AQ3/LY88 | | | | 8077 | 8077/7054 | PC900 | 4HA5/PC900 | l | | ## RECEIVING TUBE—INTERCHANGEABILITY GUIDE FOREIGN TYPES vs. AMERICAN TYPES In most cases the domestic tube types shown below are satisfactory replacements for the corresponding foreign types however, in some circuits a few of the indicated replacements may be unsatisfactory owing to mechanical or electrical differences (which can be more critical in some circuits than others). The domestic types shown are not necessarily all available at present from domestic sources. Tubes set in bold type are presently available from General Electric. | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | Foreign Type
To Be Replaced | American Type
For Replacement | |--------------------------------|----------------------------------|-----------------------------|----------------------------------|--------------------------------|----------------------------------| | 1C1 | 1R5 | 6CH40 | 6AJ8 | 6Q8 | 6A8 | | 1C2 | 1AC6 | 6D1 | 6DR4 | 6R-HH2 | 6HK8, 6BZ8/6BC8 | | 1C3 | 1AB6 | 6D2 | 6AL5 | 6R-HH8 | 6KN8. | | 1D13 | 1A3 | 6D-HH13 | 6FX7 | | 6KN8/6R-HH8 | | 1F1 | 1AJ4 | 6E8 | 6A8 | 6R-K19 | 6BR3/6R-K19 | | 1F2 | 1L4 | 6F10 | 6AC7 | 6R-R8C | 5847/404A | | 1F3 | 1T4 | 6F11 | 6AM6 | 6S5G | 6E5 | | 1FD1 | 1AH5 | 6F12 | 6AM6 | 6T1 | 6AF4, 6DZ4/6AF4 | | 1FD9 | 1 S 5 | 6F15 | 6CJ5 | 6V4 | 6CA4 | | 1G50 | 2050A | -6F16 | 6CJ5 | 6Z4 | 6BX4, 6X4 | | 1H2 | 1S2,1 S2A/DY87 | 6F18 | 6EC7 | 6Z31 | 6X4 | | 1H33 | 1AQ5 | 6F19 | 6BY7 | 7D9 | 6AM5 | | 1H35 | 1AB6 | 6F21 | 6CQ6 | 7D10 | 6CH6 | | 1P1 | 3C4 | 6F22 | 6267 | 7D11 | 6550, 6550A | | 1P10 | 3S4 | 6F23 | 6EL7, | 7F16 | 6CJ5 | | 1P11 | 3V4 | | 6EH7/EF183 | 8D3 | 6AM6 | | 1R5SF | 1AQ5 | 6F24 | 6EJ7/EF183 | 8D5 | 6BR7 | | 1RK23 | 1S2,1S2A/DY87 | 6F25 | 6EH7/EF183 | 8D6 | 6BW7 | | 1S5SF | 1AR5 | 6F26 | 6BY7 | 8D7 | 6BS7 | | 1T4SF | 1AM4 | 6F29 | 6EH7/EF183 | 8D8 | 6267 | | 1U5SF | 1AS5 | 6F30 | 6EJ7/EF184 | 8R-HP1 | 8B8 | | 2B/250A | 807 | 6F31 | 6BA6/EF93 | 9D6 | 6CQ6 | | 2D | 1P40 | 6F32 | 6AK5/EF95 | 9M-HH3 | 9J6 | | 2XM600A | 866A | 6F33 | 6AS6 | 9P9 | 9 BM 5 | | 3D-HH13 | 3EX7 | 6F35 | 6AJ5 | 9R-AL1 | 10DE7 | | 3M-R24 | 3DK6 | 6F36 | 6AH6 | 9R-HH2 | 9GH8A | | 3M-V7 | 3BZ6 | 6FD12 | 6DC8 | 10C14 | 19D8, 19AJ8 | | 3S4SF | 3W4 | 6FX4 | 6AV4 | 10F9 | 12AC5 | | 4G280K | 2D21 | 6G-B3A | 6BQ6GTB/6CU6 | 10F18 | 13EC7 | | 4R-HH2 | 4BC8 | 6G-B6 | 6BQ6GTB/6CU6 | 10FD12 | 19FL8 | | 4R-HH8 | 4KN8/4R-HH8 | 6G-B9 | 6GW6, | 10L14 | 26AQ8 | | 4Y25 | 807 | l | 6DQ6B/6GW6 | 10LD3 | 14L7 | | 5A/160H | 6AM6 | 6G-K17 | 6AU4GTA | 10LD12 | 28AK8 | | 5B/250A | 807 | 6H-31 | 6BE6 | 10LD13 | 14G6 | | 5C/100A | 813 | 6L10 | 6AG7 | 10P18 | 45B5/UL84 | | 5M-HH3 | 5J6 | 6L12 | 6AQ8/ECC85 | 10PL12 | 50BM8 | | 5P-29 | 6CN6 | 6L13 | 12AX7A/7025 | 12B-B14 | 13GB5/XL500 | | 5R-HP1 | 4BL8/XCF80 | 6L16 | 6CW7 | 12BC32 | 12AV6 | | 5S1 | 807 | 6L31 | 6AQ5A/6HG5 | 12E13 | 6550, 6550A | | 5 Z 10 | 5U4GB/5AS4A | 6L34 | 6AQ4 | 12F31 | 12BA6 | | 6/30L2 | 6GA8 | 6L43 | 6CL6 | 12G-B6 | 12BQ6GT, | | 6AT7N | 6DT8 | 6LD3 | 6CV7 | ļ | 12BQ6GTB/12CU6 | | 6B32 | 6AL5 | 6LD12 | 6AK8, 6T8-A | 12G-B7 | 12DQ6B/12GW6 | | 6BC32 | 6AV6 |
6LD13 | 6BD7A | 12G-K17 | 12D4A, 12D4 | | 6C10 | 6CU7 | 6LP12 | 6BM8/ECL82 | 12H31 | 12 BE 6 | | 6C12 | 6AJ8 | 6M1 | 6U5-G | 12R-K19 | 12BR3/12R-K19 | | 6C15 | 6CJ5 | 6M2 | 6CD7 | 12R-LL3 | 12AV7 | | 6C16 | 6BL8/ECF80 | 6M-H1 | 6 J4 | 12R-LL5 | 12FQ7 | | 6C18 | 6GV7 | 6M-HH3 | 6J6A | 13D2 | 6SN7GTB | | 6C31 | 6K8 | 6P9 | 6BM5, | 13D3 | 6158 | | 6CC10 | 5692 | I | 6AQ5A/6HG5 | 16A | 6AM5 | | 6CC31 | 6J6A | 6P15 | 6BQ5/EL84 | 17N8 | 17C8 | | 6CC42 | 5670, 5670W | 6P17 | 6AM5 | 17R-K19 | 17BR3/17R-K19 | | 6CC43 | 6AQ8/ECC85 | 6P25 | 6AG6 | 18AK5 | 6028, 408A | | 6CF8 | 6267 | 6PL12 | 6BM8/ECL82 | 19AJ8 | 19D8 | | Foreign Type | American Type | Foreign Type | American Type | Foreign Type | American Type | |-------------------|----------------------------------|-----------------|----------------------------|----------------|---| | | For Replacement | ***** | For Replacement | | For Replacement | | 19BD | 19X3 | A677 | 6C6 | CV143 | 813 | | 19M-R9 | 18FW6A | A863 | 6J7 | CV144 | 829B
813 | | 19M-R10
19SU | 18GD6
19Y3 | A1834
A2252 | 6AS7GA
5675 | CV177
CV216 | OD3 | | 1903 | 19X3 | A2521 | 6CR4 | CV281 | 6K8 | | 19W3 | 19X3 | A2599 | 6CT4 | CV283 | 6AL5 | | 20A3 | 2D21 | A2900 | 12AT7. | CV303 | 7G7 | | 20D3 | 12AH8 | 712000 | 12AT7/ECC81 | CV346 | 7Y4 | | 20D4 | 6AJ8 | A4051 | 807 | CV394 | 6CD7 | | 25G-B6 | 25BQ6GA/25CU6 | A4051J | 807 | CV417 | 6AQ4 | | 25R-K19 | 25BR3 | AA91E | 5726 | CV424 | 5894 | | 30C1 | 9A8/8A8/PCF80 | ABC91 | 12A6 | CV426 | 6X2 | | 30C15 | 9EN7 | AD | 6Z3 | CV431 | 0E3 | | 30C18 | 7GV7 | AFX212 | 6D4 | CV449 | OG3, 5651 | | 30F5 | 7ED7 | AG | 83 | CV450 | 6CN6 | | 30FL1 | 9GB8 | AG866A | 866A | CV452 | 6AT6 | | 30L1 | 7AN7 | AG2509 | OG3, 5551 | CV453 | 6BE6
6BA6/EF93 | | '30L15 | 7EK7 | AG5211 | OA2 | CV454
CV455 | | | 30P4
30P12 | 25GF6
12FB5 | AH201
AH216 | 866A
872A/872 | CV455
CV466 | 12AT7/ECC81
6488 | | 30P16 | 16A5 | ARS25 | 807 | CV460
CV467 | 6487 | | 30P18 | 15CW5/PL84 | ARS25A | 807 | CV469 | 6489 | | 30P19 | 25GF6 | ASG512 | 2D21 | CV472 | 6391 | | 30PL1 | 13GC8 | ASG5023 | 3C23 | CV475 | 5899 | | 30PL10 | 13GC8 | ATS25 | 807 | CV476 | 6391 | | 30PL12 | 16A8/PCL82 | ATS225A | 807 | CV477 | 5899 | | 30PL13 | 16GK8 | AX224 | 3B28 | CV484 | 3\$4 | | 30PL14 | 16GK8 | B36 | 12SN7GTA | CV491 | 12AU7A/ECC82 | | 40SUA | 1D5 | B63 | 6A6 | CV492 | 12AX7A/7025 | | 52 KU | 5Z4G, 5V4GA | B65 | 6SN7GTB | CV493 | 6X4 | | 53AWB | 927 | B139 | 7AN7 | CV500 | 6T7G | | 54KU
61A3 | 5AQ4, 5V4GA
930 | B152
B309 | 12AT7/ECC81 | CV503
CV509 | 5W4GT, 5V4GA
6V6G, 6V6GT | | 61DV3 | 929 | B319 | 12AT7/ECC81
7AN7 | CV510 | 6V6 | | 62DDT | 6CV7 | B329 | 12AU7/ECC82 | CV511 | 6V6GTA | | 62TH | 6CU7 | B339 | 12AX7A/7025 | CV512 | 6W7G | | 62VP | 6CJ5 | B349 | 7EK7 | CV515 | 6Y6G, 6Y6GT | | 63TP | 6AB8 | B719 | 6AQ8/ECC85 | CV522 | 7B7 | | 63T1 | 6BA8A | B729 | 6GA8 | CV523 | 12Y4 | | 64ME | 6CD7 | B739 | 12AT7/ECC81 | CV525 | 12A6 | | 64SPT | 6BX6, | B749 | 12AU7A/ECC82 | CV526 | 12A6GT | | | 6EH7/EF183 | B759 | 12AX7A/7025 | CV529 | 12AH7GT | | 65ME | 6BR5 | BA2 | 2050 | CV531 | 1208 | | 66KU | 6BT4 | BF61 | 6CK5 | CV534 | 12J5 | | 67PT | 6CK5 | BF451 | 45A5 | CV535 | 12J5GT
1 2SA 7 | | 85A1
85A2 | OE3
OG3, 5651 | BPM04
BVA264 | 6AQ5/6HG5
6AG6G | CV537
CV538 | 12SA7GT, 12SA7 | | 85A3 | 5783 | BVA265 | 6AG6G | CV540 | 12SC7 | | 108C1 | OB2 | C143 | 813 | CV543 | 12SK7 | | 121VP | 12AC5 | C180 | 832A | CV544 | 12SK7GT, 12SK7 | | 141DDT | 14L7 | C610 | 737 | CV546 | 12 SQ 7 | | 141TH | 14K7 | C866 | 866A | CV547 | 12SQ7GT, 12SQ7 | | 150B2 | 6354 | CC81E | 12AT7WA, 6201 , | CV549 | 25A6 | | 150C1 | OA2 | | 12AT7WC | CV550 | 25A6GT | | 150C2 | OA2 | CC86E | 6GM8/ECC86 | CV551 | 25L6G, | | 150C3 | OD3 | CCa | 6922/E88CC | l overe | 25L6GT/25W6GT | | 150C4 | OA2 | CR27 | 866A | CV552 | 25L6, | | 163 PEN | 16A5 | CV26 | 813
966 A | CV553 | 25L6GT/25W6G1 | | 171DDP
213 PEN | 17C8, 17N8 | CV32
CV124 | 866A
807 | CV555 | 25L6GT/25W6GT
25Z5 | | 311SU | 21A6
31A3 | CV124
CV131 | 6C06 | CV561 | 35L6, 35L6GT | | 451PT | 45A5 | CV131 | SC4 | CV562 | 35L6GT | | 866AX | 866A | CV136 | 6AM5 | CV568 | 35Z5GT | | 3874A | 813 | CV138 | 6AM6 | CV569 | 6SL7GT | | A61 | 17Z3 | CV140 | 6AL5 | CV571 | 50L6GT | | Foreign Type To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | |-----------------------------|---|-----------------------------|------------------------------------|-----------------------------|----------------------------------| | CV574 | 6X5GT | CV765 | 1D7G | CV887 | 7C6 | | CV578 | 6A8G | CV766 | 1E5GP | CV888 | 7D7 | | CV579 | 6A8 | CV767 | 1F4 | CV889 | 7D8 | | CV580 | 6A8GT | CV768 | 1F5G | CV890 | 7E5 | | CV581 | 6C5G, 6C5 | CV769 | 1F6 | CV891 | 7E6 | | CV582
CV583 | 6C5 | CV770
CV771 | 1F7 | CV892
CV893 | 7E7 | | CV585 | 6C5GT, 6C5
6C6 | CV771
CV772 | 1G5
1G6 | CV894 | 7F7
7G7 | | CV586 | 6L6GC | CV773 | 1G6GT | CV895 | 7H7 | | CV587 | 6Q7G | CV774 | 1H4 | CV896 | 7K7 | | CV588 | 6Q7 | CV775 | 1LA6 | CV897 | 717 | | CV589 | 6Q7GT | CV776 | 1LB4 | CV898 | 7N7 | | CV590 | 6SJ7G, 6SJ7 | CV777 | 1LC5 | CV899 | 7Q7 | | CV591 | 6\$J7 | CV778 | 1LC6 | CV900 | 7Ř7 | | CV592
CV593 | 6SJ7GT, 6SJ7
5AQ4, 5V4GA | CV779
CV780 | 1LD5
1LH4 | CV901
CV902 | 7Z4
7W7 | | CV594 | 6SH7 | CV781 | 1LN5 | CV908 | 12A5 | | CV595 | 6SH7GT, 6SH7 | CV782 | 1R5 | CV909 | 12A7 | | CV597 | 2X2A | CV783 | 154 | CV910 | 12A8GT | | CV599 | 1851 | CV784 | 1\$5 | CV911 | 12B8GT | | CV603 | 10 | CV785 | 1T4 | CV916 | 12 H 6 | | CV604 | 30 | CV786 | 1T5 | CV917 | 12J7GT | | CV606 | 37 | CV787 | 2A7 | CV918 | 12K7GT | | CV608 | 41
42 | CV797 | 2D21 | CV919 | 12SF5 | | CV609
CV610 | 42
45 | CV807
CV808 | 3A4
3A5 | CV920
CV921 | 12SF5GT, 12SF5
12SF7 | | CV610 | 56 | CV815 | 3D6/1299 | CV922 | 12SH7 | | CV612 | 57 | CV818 | 304 | CV923 | 12SJ7GT, 12SJ7 | | CV613 | 58 | CV819 | 305 | CV924 | 12SL7, 12SL7GT | | CV614 | 75 | CV820 | 3Š4 | CV925 | 12SN7GTA | | CV615 | 76 | CV833 | 89 | CV930 | 14F7 | | CV616 | 77 | CV837 | 1208 | CV931 | 15 | | CV617
CV618 | 80
83 | CV844
CV845 | 6AC5G
6AC5GT | CV936
CV937 | 24A
25A7 | | CV618
CV627 | 810 | CV846 | 6AC7 | CV938 | 25AC5 | | CV628 | 811A | CV847 | 6AF6G | CV939 | 25B6, 5824 | | CV642 | 872A /872 | CV848 | 6AG5 | CV940 | 25B8 | | CV660 | 6AC7 | CV849 | 6AC7 | CV942 | 25Y5 | | CV661 | 6AB7, 6AC7 | CV850 | 6AK5/EF95 | CV943 | 26 | | CV686 | OC3 | CV851 | 6B4 | CV944 | 27 | | CV694
CV698 | 12SG7 | CV852
CV854 | 6C4
6C7 | CV945
CV946 | 28D7
28D7GT | | CV700 | 12SJ7GT, 12SJ7
12SR7 | CV856 | 6G8G | CV947 | 31 | | CV703 | 12K8 | CV858 | 6J6A | CV948 | 32L7 | | CV705 | 1D5GP | CV859 | 6J8G | CV949 | 33 | | CV706 | 6U7G, 6K7 | CV860 | 6K5 | CV951 | 32A | | CV711 | 32 | CV861 | 6K5GT | CV953 | 32G | | CV712 | 38 | CV862 | 6L5G | CV966 | 6ED8 | | CV724 | 816
1050T | CV864 | 6P5G | CV995 | 6AJ5 | | CV728
CV729 | 1P5GT
5V4GA | CV865
CV866 | 6SD7GT
6SJ7Y | CV1060
CV1067 | 807
6J5 | | CV729 | 6A3 | CV867 | 6SR7 | CV1007
CV1074 | 6J5 | | CV731 | 6V6GTA | CV870 | 6V7G | CV1075 | 6L6GC | | CV741 | 6CA7, EL34/6CA7 | CV872 | 6Z7G | CV1100 | 687 | | CV747 | 6AC7 | CV873 | 6ZY5 | CV1195 | 6K7 | | CV750 | 01A | CV876 | 7A6 | CV1280 | 6L7 | | CV752 | OA4G | CV877 | 7A7 | CV1285 | 6N7 | | CV753
CV754 | 1A3
1A4P | CV878
CV779 | 7A8
7B4 | CV1286 | 6L6 | | CV755 | 175 | CV880 | 7B5 | CV1287 | 25L6GT/25W6G1 | | CV756 | 1A5 | CV881 | 7B5 | CV1301 | 6H6 | | CV757 | 1A6 | CV882 | 7B6 | CV1347 | 6E8 | | CV758 | 1B4P | CV883 | 7B8 | CV1352 | 6BR5 | | CV759 | 1B5/25S | CV885 | 7 C 5 | CV1364 | 807 | | CV760 | 1A7GT | CV886 | 7C5LT, 7C5 | CV1375 | 6BY7 | | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type | American Type
For Replacement | |--------------------------------|------------------------------------|--------------------------------|------------------------------------|------------------|----------------------------------| | CV1376 | 6BX6, | CV1900 | 6D6 | CV1990 | 6SQ7 | | 0,10,0 | 6EH7/EF183 | CV1901 | 6AM6 | CV1991 | 6SQ7GT, 6SQ7 | | CV1377 | 5AR4/GZ34 | CV1902 | 6D8 | CV1992 | OA4G | | CV1449 | 872A/872 | CV1908 | 6F5G, 6F5 | CV1993 | 6SS7 | | CV1535
CV1572 | 6V4/EZ80
807 | CV1909
CV1910 | 6F5
6F5GT, 6F5 | CV1995
CV1996 | 6ST7G
6ST7 | | CV1633 | 3V4 | CV1911 | 6F6G, 6F6 | CV2004 | 6AL5 | | CV1741 | 6CA7, EL34/6CA7 | CV1912 | 6F6 | CV2005 | 6AL5 | | CV1751 | 34 | CV1915 | 6F7 | CV2007 | 12AU7A/ECC82 | | CV1752
CV1753 | 35/51 | CV1917 | 6F8G | CV2009 | 6AQ4 | | CV1758 | 35A5
1L4 | CV1918
CV1924 | 6F8
5866 | CV2010
CV2011 | 6J6A
12AU7A/ECC82 | | CV1762 | 6AK6 | CV1926 | 6G6 | CV2012 | OG3, 5651 | | CV1763 | 6J4 | CV1928 | 12BA6 | CV2013 | 6CH6 | | CV1769 | 2A6 | CV1929 | 6H6G, 6H6 | CV2014 | 5763 | | CV1770 | 7A4 | CV1930 | 6H6 | CV2016 | 12AT7/ECC81 | | CV1771
CV1772 | 39/44
47 | CV1931
CV1932 | 6H6GT, 6H6 | CV2020
CV2021 | 6AK5/EF95 | | CV1772 | 82 | CV1933 | 6J5G, 6J5
6J5 | CV2021 | 6X4
6BW6 | | CV1774 | 112A | CV1934 | 6J5GT, 6J5 | CV2023 | 6C06 | | CV1775 | 36 | CV1935 | 6J7G, 6J7 | CV2024 | 6BE6 | | CV1776 | 6D7 | CV1936 | 6J7 | CV2026 | 6BA6/EF93 | | CV1777 | 7C7 | CV1937 | 6J7GT, 6J7 | CV2105 | 6973 | | CV1784
CV1800 | 6AK7, 6AG7
1A7G, 1A7GT | CV1938
CV1940 | 6K6G,
6K6GT
6K6GT | CV2127
CV2128 | 6CH6
6AJ8 | | CV1802 | 1A7G, 1A7G1
1A7GT | CV1941 | 6K7G, 6K7 | CV2129 | 5763 | | CV1803 | 1C5G | CV1942 | 6K7 | CV2130 | 6155 | | CV1805 | 1C5GT | CV1943 | 6K7GT, 6K7 | CV2131 | 6156 | | CV1806 | 1D5GT | CV1944 | 6K8G | CV2135 | 6BR7 | | CV1811 | 1D8GT | CV1945 | 6K8 | CV2136 | 6BW6 | | CV1812
CV1815 | 1E7
6Q5G | CV1946
CV1947 | 6K8GT
6L6G, 6L6GC | CV2137
CV2180 | 6ED6
19H4 | | CV1817 | 1G4 | CV1948 | 6L6 | CV2195 | 6AM6 | | CV1818 | 1H5G | CV1949 | 6D4 | CV2210 | 5544 | | CV1819 | 6P5GT | CV1950 | 6L7G | CV2215 | 5545A | | CV1820 | 1H5GT | CV1951 | 6L7 | CV2225 | 6374 | | CV1821
CV1823 | 1N5
1N5GT | CV1953
CV1954 | 6N6G
6N6 | CV2235
CV2237 | 6374
1AD4 | | CV1824 | 1Q5G | CV1956 | 6N7G, 6N7 | CV2238 | 5672 | | CV1826 | 1Q5GT | CV1957 | 6N7 | CV2239 | 5676 | | CV1829 | 1T5GT | CV1958 | 6N7GT, 6N7 | CV2240 | 3B4 | | CV1831 | 2A3 | CV1959 | 50C5 | CV2241 | 5642 | | CV1832
CV1833 | OA2
OB2 | CV1960
CV1961 | 6R6G
12AU6 | CV2253
CV2254 | 6574
5678 | | CV1834 | 2A5 | CV1962 | 6R7G | CV2275 | 6375 | | CV1837 | 2B7 | CV1963 | 6R7 | CV2300 | 3A4 | | CV1838 | 5895 | CV1964 | 6R7GT | CV2361 | 3C4 | | CV1852 | OA2 | CV1966 | 6SA7 | CV2370 | 3S4 | | CV1854
CV1856 | 5Y3G, 5Y3GT
5Y3GT | CV1967
CV1969 | 6SA7GT, 6SA7 | CV2382 | 6CH7 | | CV1862 | 6AQ5A/6HG5 | CV1969
CV1970 | 6SC7
6SC7GT, 6SC7 | CV2390
CV2432 | 3A4
6205 | | CV1865 | 6R4 | CV1971 | 1T4 | CV2434 | 6779 | | CV1867 | 6A6 | CV1972 | 6SF5 | CV2466 | 6939 | | CV1870 | 6A7 | CV1973 | 6SF5GT, 6SF5 | CV2492 | 6DJ8/ECC88 | | CV1873
CV1878 | 6AB7, 6AC7 | CV1974 | 6\$7G | CV2500 | 35Z4GT | | CV1878
CV1882 | 6AD7
6AG7 | CV1975
CV1977 | 6S7
45A5 | CV2501
CV2507 | 40
1U4 | | CV1885 | 6B5 | CV1978 | 6SG7 | CV2507
CV2514 | 43 | | CV1886 | 6Q4 | CV1981 | 6SK7 | CV2520 | 6279 | | CV1887 | 6B6G | CV1982 | 6SK7GT, 6SK7 | CV2522 | 6AS6 | | CV1888 | 6R4 | CV1984 | 6SL7, 6SL7GT | CV2523 | 6AS7G, 6AS7GA | | CV1891
CV1893 | 6B7
6B8G | CV1985 | 6SL7GT | CV2524 | 6AU6A | | CV1893
CV1894 | 6B8 | CV1986
CV1988 | 6SN7, 6SN7GTB
6SN7GT, | CV2526
CV2527 | 6AV6
6BA7 | | CV1896 | 6C8 | 3,1300 | 6SN7GTB | CV2530 | 45Z5 | | O V 1030 | 000 | <u> </u> | di Dinco | 1045330 | 4JZJ | | Foreign Type
To Be Replaced | American Type
For Replacement | | American Type
For Replacement | Foreign Type
To Be Replaced | American Type
For Replacement | |--------------------------------|----------------------------------|------------------|----------------------------------|--------------------------------|----------------------------------| | CV2531 | 46 | CV2810 | 6ED6B | CV4023 | 6AU6WA, 6136 , | | CV2532 | 49 | CV2842 | 6C4W, 6C4WA , | 0111001 | 6AU6WC | | CV2533 | 50 | 01/0044 | 6100 | CV4024
CV4025 | 6201, 12AT7WC | | CV2534
CV2535 | 50L6GT
53 | CV2844
CV2854 | 6X4W, 6202
6AN5 | CV4025
CV4026 | 5726
6R4WGA | | CV2536 | 53A | CV2876 | 5727 | CV4028 | OB2WA | | CV2537 | 55 | CV2877 | 5654, 5654W | CV4029 | 5902 | | CV2538 | 59 | CV2882 | 5726 | CV4031 | 6101, 6J6WA | | CV2541 | 71A | CV2883 | 6005, 6005W | CV4039 | 5763 | | CV2542 | 72 | CV2884 | 5725, 5 725W | CV4044 | 6443 | | CV2543 | 73 | CV2901 | 6267 | CV4058 | 6100, 6C4WA | | CV2544 | 78 | CV2903 | 6073 | CV4066 | 5783WA | | CV2545 | 79
91 | CV2940 | 6CM5 | CV4100 | OA2WA
OB2WA | | CV2546
CV2547 | 81
83V | CV2967
CV2975 | 8020
6005 /F1 94 | CV4101
CV4108 | 7308 | | CV2548 | 84 | CV2980 | 6BQ5/EL84
1M3 | CV5008 | 6080 | | CV2549 | 85 | CV2983 | 3V4 | CV5021 | 6V3A | | CV2556 | 117L7/M7GT | CV2984 | 6080 | CV5032 | 1X2A. | | CV2557 | 117N7GT | CV3508 | 12AT7WA, 6201, | | 1X2C/1BX2 | | CV2558 | 117Z6GT | | 12AT7WC | CV5034 | 6FG6/EM84 | | CV2565 | 2050 | CV3512 | 5696, 5696A | CV5036 | 6AF4, | | CV2573 | 5651 | CV3521 | 5949/1907 | 01/5007 | 6DZ4/6AF4A | | CV2575 | 5670, 5670W | CV3522 | 6079 | CV5037 | 6BA6W, 5749 | | CV2578 | 5687, 5687WA,
5687WB | CV3523
CV3526 | 6146B | CV5040
CV5042 | 6BQ6GTB/6CU6 | | CV2638 | 393A | CV3789 | 6BN5
417A, 5842/417A | CV5042
CV5055 | 12BH7A
6DA5 | | CV2642 | 417A, 5842/417A | CV3798 | OA3 | CV5065 | 6U8A/6AX8/ | | CV2658 | 806 | CV3799 | OB3 | 0.3003 | 6KD8/5KD8 | | CV2660 | 809 | CV3882 | 6CV7 | CV5071 | 6CA4 | | CV2661 | 812A | CV3883 | 6CT7 | CV5072 | 6CA4 | | CV2662 | 5639 | CV3886 | 6CJ5 | CV5074 | 6AN4 | | CV2663 | 815 | CV3888 | 6CU7 | CV5077 | 21A6 | | CV2666 | 829B | CV3889 | 6CK5 | CV5079 | 5643 | | CV2669 | 849
851 | CV3891 | 6BT4 | CV5094 | 6CW5/EL86 | | CV2671
CV2680 | 868 | CV3905
CV3908 | 5847
6BH6 | CV5122
CV5126 | 5823
6AJ4 | | CV2683 | 878A | CV3912 | 1U5 | CV5120 | 6923 | | CV2685 | 880 | CV3928 | 5636 | CV5156 | 6DA6 | | CV2692 | 918 | CV3929 | 5840 | CV5172 | 1AC6 | | CV2693 | 929 | CV3930 | 5718 | CV5181 | 5R4GY, 5R4GYB | | CV2694 | 930 | CV3933 | 5783 | CV5186 | 5681 | | CV2695 | 931, 931A | CV3938 | 5636 | CV5188 | 5651 | | CV2696 | 931A | CV3939 | 6BM6A | CV5189 | 5726 | | CV2697 | 935 | CV3960 | 5783WA | CV5190 | 6005, 6005W | | CV2698
CV2700 | 5896
957 | CV3986
CV3987 | 6021
5644 | CV5192
CV5212 | 7AN7 | | CV2700
CV2701 | 958A | CV3990 | 2E26 | 043212 | 12AT7WB, 6201,
12AT7WC | | CV2704 | 7E5 | CV3995 | 6CB6A/6CF6 | CV5214 | 5920 | | CV2706 | 7C4 | CV3998 | 6688 | CV5215 | 6BL8/ECF80 | | CV2707 | 1231 | CV4003 | 6189, 6189W | CV5216 | 5654, 5654W | | CV2709 | 1R4 | CV4004 | 12AX7A/7025 | CV5220 | 6550, 6550A | | CV2710 | 3D6 | CV4007 | 5726 | CV5231 | 7308 | | CV2714 | 1614, 6L6 | CV4008 | 5719 | CV5242 | 6CT4 | | CV2715 | 1630 | CV4009 | 5749, 5749W | CV5268 | 7384 | | CV2716 | 6SC7 | CV4010 | 5654, 5654W | CV5281 | 6CW7 | | CV2721
CV2726 | 6CJ6
6CK6 | CV4011
CV4012 | 5725, 5725W
6BE6 | CV5311
CV5331 | 6J4WA
6ES8/ECC189 | | CV2729 | 6084 | CV4014 | 6084 | CV5354 | 7308 | | CV2742 | 1L4 | CV4015 | 6065 | CV5358 | 6DJ8/ECC88 | | CV2748 | 5Z4GT, 5V4GA | CV4016 | 6189. 6189W | CV5365 | 6BQ7A/6BZ7 | | CV2769 | 9006 | CV4017 | 5751 | CV5397 | 8108 | | CV2795 | 1L4 | CV4018 | 5727 | CV5404 | 6463 | | CV2797 | 5894 | CV4019 | 6005, 6005W | CV5427 | 1X2B, | | CV2798 | 6360 | CV4020 | OA2WA | | 1X2C/1BX2 | | CV2799 | 6252 | CV4022 | 6135 | CV5434 | 6FG6/EM84 | | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | |--------------------------------|-------------------------------------|--------------------------------|----------------------------------|-----------------------------|----------------------------------| | CV5724 | 6218 | CV8229 | 6AQ5/6HG5 | DH74 | 12Q7GT | | CV5817 | 6BW7, | CV8231 | 6J6A | DH76 | 12Q7GT | | CV5831 | 6EH7/EF183
6EH7/EF183 | CV8232
CV8237 | 6080
6X4 | DH77
DH81 | 6AT6 | | CV5843 | 5965A | CV8237 | 5783 | DH118 | 7B6
14L7 | | CV5893 | 5654, 5654W | CV8246 | 5654, 5654W | DH119 | 14G6 | | CV5894 | 5670, 5670W | CV8247 | 5670, 5670W | DH142 | 14L7 | | CV5895 | 5750 | CV8248 | 5750 | DH149 | 7C6 | | CV5896 | 6136, 6AU6WC | CV8249 | 6136, 6AU6WC | DH150 | 6CV7 | | CV5905
CV5948 | 6R3
18D3 | CV8280 | 6AX5GT | DH718 | 6CV7 | | CV5986 | 6112 | CV8287
CV8297 | 5686
6GW8/ECL86 | DH719
DH817 | 6T8A
6CV7 | | CV5989 | 6085 | CV8310 | 5725, 5725W | DK32 | 1A7GT | | CV7047 | OA5 | CV8311 | 5726 | DK91 | 1R5 | | CV8017 | 6CQ6 | CV8312 | 5751 | DK92 | 1AC6 | | CV8020 | 6AM6 | CV8324 | 5744WB | DK96 | 1AB6 | | CV8038
CV8039 | 6CN6 | CV8403 | 6AU6WB, 6136 , | DK97 | 1AB6 | | CV8041 | 5840
6489 | CV8430 | 6AU6WC
6BK4B | DL29
DL31 | 3D6/1299
1A5GT | | CV8045 | 6CH6 | CV8431 | 7062 | DL33 | 305GT | | CV8047 | 6BR7 | CV8433 | 9A8/8A8/PCF80 | DL35 | 1C5GT | | CV8048 | 6BW6 | CV8450 | 0A5 | DL36 | 1Q5GT | | CV8065 | 6922 | CV8458 | 6DL5 | DL37 | 6L6GC | | CV8068 | 6267 | CV8469 | 7554 | DL67 | 6007 | | CV8069
CV8070 | 6BQ5/EL84 | CV8470 | 7587
057 | DL70 | 6373 | | CV8070
CV8071 | 6059
6CQ6 | D1C
D2C | 957
958 A | DL82
DL91 | 7B6
1S4 | | CV8073 | 6072, 6072A | D2M9 | 6AL5 | DL92 | 3 S 4 | | CV8076 | 6132 | D3F | 959 | DL93 | 3A4 | | CV8080 | 6158 | D63 | 6H6 | DL94 | 3V4 | | CV8086 | OA5 | D77 | 6AL5 | DL95 | 3Q4 | | CV8154 | 12AT7/ECC81 | D152 | 6AL5 | DL96 | 3C4 | | CV8155
CV8156 | 12AU7A/ECC82 | D717
DA90 | 6AL5
1A3 | DL98
DL620 | 3B4 | | CV8158 | 12AX7A/7025
2D21 | DAGU
DAC21 | 185
185 | DM70 | 5672
1M3 | | CV8159 | 6AK5/EF95 | DAC32 | 1H5GT | DM71 | 1N3 | | CV8160 | 6J6A | DAF90 | 1A3 | DM160 | 6977 | | CV8161 | OA2 | DAF91 | 1 S 5 | DP61 | 6AK5/EF95 | | CV8162 | OB2 | DAF92 | 105 | DY30 | 1B3GT, | | CV8189
CV8190 | 5R4GY, 5R4GYA
6AH6 | DAF96 | 1AH5 | DVE1 | 1G3GTA/1B3GT | | CV8191 | 6CL6 | DAF97
DC70 | 1AN5
6375 | DY51
DY70 | 1BG2
5642 | | CV8192 | 6J4 | DC80 | 1E3 | DY80 | 1X2A, | | CV8200 | 6AL5 | DCC90 | 3A5 | - / | 1X2C/1BX2 | | CV8201 | 6BE6 | DCF60 | 1V6 | DY86 | 1S2, 1S2A/DY87 | | CV8202 | 6BA6 | DCG4/1000G | 866A | DY87 | 1\$2A/DY87 | | CV8203 | 6X4 | DD6 | 6AL5 | DY802 | 1BQ2 | | CV8204
CV8205 | 5R4GYA
6D4 | DD7
DD77 | 6AM5
5726 | E1F
E2F | 954
956 | | CV8206 | 5763 | DD77 | 6AM5 | E55L | 8233 | | CV8208 | 6AH6 | DET17 | 810 | E80CC | 6085 | | CV8209 | 6AS6 | DF26 | 1\$5 | E80CF | 7643 | | CV8210 | 6AU6A | DF33 | 1N5GT | E80F | 6084 | | CV8211 | 6AN5 | DF60 | 5678 | E80L | 6227 | | CV8214
CV8215 | 8020
5656 | DF62 | 1AD4
F011 C000 | E80T | 6218 | | CV8216 | 6080 | DF67
DF91 | 5911, 6008
1T4 | E81CC
E81L |
6201, 12AT7WC 6686 | | CV8218 | 6146, 6146B | DF92 | 1L4 | E82CC | 6189, 6189W | | CV8221 | 12AU7A/ECC82 | DF96 | ÎÃJ4 | E83CC | 6681 | | CV8222 | 12AX7A/7025 | DF97 | 1AN5 | E83F | 6689 | | CV8223 | 6X4 | DF650 | 6419 | E84L | 7320 | | CV8224 | 5726 | DF652
DF668 | 1AD4
1AD4 | E88C | 6DL4, 8255
6922/E88CC | | といなううち | | | IAUA | E88CC | na///PXXICIC | | CV8225
CV8226 | 6AK5/EF95
6AS6 | DF904 | 104 | E89F | 6DG7 | | Fareles Torre | A | F T | A | F | | |--------------------------------|----------------------------------|-----------------------------|---|--------------------------------|----------------------------------| | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | Foreign Type
To Be Replaced | American Type
For Replacement | | E90CC | 5920 | EC94 | 6AF4, | ED2 | 6AL5 | | E90F | 7693, 6661 | | 6DZ4/6AF4A | ED500 | 6ED4 | | E90Z | 6X4 | EC95 | 6ER5 | EF2 | 6DA6 | | E91AA
E91H | 5726 6687 | EC97
EC157 | 6FY5
8108 | EF5
EF13 | 6DA6
6DA6 | | E91N | 5727 | EC157 | 8436 | EF22 | 7G7 | | E95F | 5654, 5654W | EC900 | 6HA5/6HM5 | EF36 | 6J7GT, 6J7 | | E99F | 6662 | EC903 | 6BS4 | EF41 | 6CJ5 | | E108K | OB2 | EC1000 | 8254 | EF70 | 6487 | | E130L | 7534 | ECC32 | 6SN7GTB | EF71 | 5899 | | E180CC
E180F | 7062
6688 | ECC70
ECC81 | 6021, 12AT7WC | EF72
EF73 | 5840
6488 | | E180L | 7534 | ECC82 | 12AT7/ECC81
12AU7A/ECC82 | EF74 | 6391 | | E182CC | 7119. 7044 | ECC83 | 12AX7A/7025 | EF80 | 6BX6. | | E182F | 5847/404A | ECC84 | 6CW7 | | 6EH7/EF183 | | E186F | 7737 | ECC85 | 6AQ8/ECC85 | EF81 | 6BH5 | | E188CC | 7308 | ECC86 | 6GM8/ECC86 | EF82 | 6CH6 | | E280F
E288C | 7722
8223 | ECC88
ECC89 | 6DJ8/ECC88
6FC7 | EF83
EF85 | 6BK8
6BY7. | | E810F | 7788 | ECC91 | 6J6A | L1 03 | 6EH7/EF183 | | E902 | 6X4 | ECC180 | 6BQ7A/6BZ7 | EF86 | 6CF8, 6267 | | E1485 | 3A4 | ECC186 | 12AU7Á/ECC82 | EF87 | 6CF8, 6267 | | E2016 | 6CQ6 | ECC189 | 6ES8/ECC189 | EF89 | 6DA6 | | E2157 | 12AT7/ECC81 | ECC230 | 6080 | EF89F | 6DG7 | | E2163
E2164 | 12AU7A/ECC82
12AX7A/7025 | ECC801 | 12AT7WA, 6201 ,
1 2AT7WC | EF91
EF92 | 6AM6
6C06 | | EA41 | 6CT7 | ECC801S | 12AT7WA, 6201 . | EF93 | 6BA6/EF93 | | EA50 | 2B35 | | 12AT7WC | EF94 | 6AU6A | | EA52 | 6923 | ECC802 | 6189, 6189W | EF95 | 6AK5/EF95 | | EA76 | 6489 | ECC802S | 6189, 6189 W | EF96 | 6AG5 | | EAA91
EAA901 | 6AL5
5726 | ECC803
ECC 803S | 12AX7A/7025 | EF97
EF98 | 6ES6
6ET6 | | EAA901S | 5726
5726 | ECC 8033 | 12AX7A/7025
6GA8 | EF183 | 6EH7/EF183 | | EABC80 | 6AK8, 6T8-A | ECC808 | 6KX8 | EF184 | 6EJ7/EF184 | | EAF42 | 6CT7 | ECC813 | 6463 | EF190 | 6CB6A/6CF6 | | EAM86 | 6GX8 | ECC863 | 12DT7, | EF730 | 5636 | | EB91 | 6AL5 | F00000 | 12AX7A/7025 | EF731 | 5899 | | EBC3
EBC41 | 6BD7A
6CV7 | ECC900 | 6HA5,
6HM5/6HA5 | EF732
EF734 | 5840
6205 | | EBC80 | 6BD7 | ECC960 | 5920 | EF811 | 6EH7/EF183 | | EBC81 | 6BD7A | ECF80 | 6BL8/ECF80 | EF812 | 6EL7, | | EBC90 | 6AT6 | ECF82 | 6U8A/6AX8/ | l | 6EH7/EF183 | | EBC91 | 6AV6 | FOFOC | 6KD8/5KD8 | EF861 | 6688 | | EBF41
EBF80 | 6CJ5
6N8 | ECF86
ECF200 | 6HG8/ECF86 | EF905
EFL200 | 5654, 5654 W
6Y9 | | EBF81 | 6AD8 | ECF200
ECF201 | 6X9/ECF200
6U9 | EH90 | 6CS6 | | EBF83 | 6DR8 | ECF202 | 6AJ9 | EK90 | 6BE6 | | EBF85 | 6DC8 | ECF801 | 6GJ7/ECF801 | EL33 | 6AG6 | | EBF89 | 6DC8 | ECF802 | 6JW8/ECF802 | EL34 | 6CA7, | | EC22 | 6R4 | ECF805 | 6GV7 | EL36 | EL34/6CA7 | | EC51
EC55 | 5861
5861 | ECH42
ECH80 | 6CU7
6AN7 | EL36
EL37 | 6CM5
6L6GC | | EC56 | 8108 | ECH81 | 6AJ8 | EL38 | 6CN6 | | EC57 | 8108 | ECH82 | 6E8 | EL41 | 6CK5 | | EC70 | 6778, 5718 | ECH83 | 6DS8 | EL71 | 5902 | | EC71 | 5718 | ECH84 | 6JX8 | EL80 | 6M5 | | EC80
EC81 | 6Q4
6R4 | ECH113
ECH200 | 6CU7
6V9 | EL81
EL82 | 6CJ6
6DY5 | | EC84 | 6AJ4 | ECH200 | 6AB8 | EL83 | 6CK6 | | EC86 | 6CM4 | ECL82 | 6BM8/ECL82 | EL84 | 6BQ5/EL84 | | EC88 | 6DL4, 8255 | ECL84 | 6DX8/ECL84 | EL85 | 6BN5 | | EC90 | 6C4 | ECL85 | 6GV8 | EL86 | 6CW5/EL86 | | EC91
EC92 | 6AQ4 | ECL86 | 6GW8/ECL86 | EL90 | 6AQ5A/6HG5 | | EC92
EC93 | 6AB4
6BS4 | ECL821
ECLL800 | 6CH6
6KH8 | EL91
EL95 | 6AM5
6DL5 | | -030 | VUUT | I FAFFORD | VALIG | I LLJJ | UDLU | | Foreign Type | American Type | Foreign Type | American Type | Foreign Type | American Type | |--------------------|-----------------------------|------------------|---|------------------|--------------------------------| | | For Replacement | | For Replacement | | For Replacement | | EL136
EL180 | 6FV5
12BY7A/12BV7/ | H2-10
H52 | 2X2A | LCF802
LCH200 | 6LX8/LCF802
5V9 | | ELION | 12DQ7 | H63 | 5U4GB/5AS4A
6F5GT, 6F5 | LCH200
LCL82 | 11BM8 | | EL300 | 6FN5 | HAA91 | 12AL5 | LCL84 | 10DX8/LCL84 | | EL500 | 6GB5/EL500 | HBC80 | 19T8A | LCL85 | 10GV8 | | EL503 | 8278
CODE 4 | HBC90 | 12AT6 | LF183 | 4EH7 | | EL504 | 6GB5A,
6GB5/EL500 | HBC91
HCC85 | 12AV6
17EW8/HCC85 | LF184
LFL200 | 4EJ7
11Y9/LFL200 | | EL505 | 6KG6, 6KG6A | HCH81 | 12AJ7 | LL86 | 10CW5/LL86 | | EL508 | 6KW6 | HD14 | 1H5GT | LL500 | 18GB5 | | EL509 | 6KG6A | HD30 | 3B4 | LL505 | 27KG6 | | EL802 | 6LD6 | HD51 | OA2 | LL521 | 21KQ6 | | EL821
EL822 | 6CH6
6CH6 | HD52
HD93 | OB2
1X2B. | LN119
LN152 | 50BM8
6AB8 | | EL861 | 6686 | 11033 | 1X2C/1BX2 | LN309 | 16A8/PCL82 | | ELF86 | 6HG8/ECF86 | HD94 | 6BQ6GTB/6CU6 | LN319 | 13GC8 | | ELL80 | 6HU8 | HD96 | 25BQ6GTB/ | LY81 | 11 R 3 | | EM34 | 6CD7 | usei | 25CU6 | LY88 | 20AQ3/LY88 | | EM35
EM80 | 6U5
6BR5 | HF61
HF93 | 6CJ5
12BA6 | LY500
LZ319 | 28EC4
8A8, | | EM81 | 6DA5/EM81 | HF94 | 12AU6 | 1,2313 | 9A8/8A8/PCF80 | | EM84 | 6FG6/EM84 | HF121 | 12AC5 | LZ329 | 9A8/8A8/PCF80 | | EM85 | 6DG7 | HK90 | 12BE6 | LZ339 | 9EN7 | | EM87 | 6HU6 | HL86 | 30CW5 | M8063 | 6AM6 | | EM840
EN32 | 6FG6/EM84
2050 | HL90
HL92 | 19AQ5
50C5 | M8079
M8081 | 5726
6101/6J6WA | | EN91 | 2D21 | HL94 | 30A5 | M8096 | 5763 | | EN92 | 5696A | HM04 | 6BE6 | M8100 | 5654, 5654W | | EN93 | 6D4 | HP6 | 6AM6 | M8121 | 5840 | | EQ80 | 6BE7 | HY51B | 829B | M8136 | 6189, 6189W | | ESU866 | 866A | HY61 | 807 | M8137 | 12AX7A/7025 | | EY51
EY80 | 6X2
6U3 | HY90
HY145 | 35W4
1U4 | M8161
M8162 | 6065
12AT7WA, 6201 , | | EY81 | 6R3 | HZ50 | 14Z3 | 1110102 | 12AT7WC | | EY81F | 6V3A | HZ90 | 12X4 | M8190 | 5783WA | | EY82 | 6N3 | KD21 | OA3 | M8196 | 5725, 5725 W | | EY84 | 6374 | KD24 | OC3 | M8204 | 5727 | | EY86
EY87 | 6S2
6S2A | KD25
KF35 | OD3
1E3 | M8212
M8223 | 5726
OA2WA | | EY88 | 6AL3/EY88 | KK32 | 107 | M8224 | OB2WA | | EY500 | 6EC4A/EY500 | KT32 | 25L6GT/25W6GT | M8232 | 8532/6J4WA, | | EZ3 | 6V4/EZ80 | KT33 | 25A6 | | 6J4WA | | EZ4 | 6CA4 | KT61 | 6AG6G | M8245 | 6005, 6005W | | EZ11
EZ22 | 6V4/EZ80
7Y4 | KT63
KT66 | 6F6GT, 6F6 | MU14
MV6-5 | 6BT4
6SA7GT, 6SA7 | | EZ35 | 6X5GT | KT71 | 7581A/KT66
50L6GT | N2ED | 6HT5 | | EZ40 | 6BT4 | KT77 | 6CA7/EL34 | NI4 | 1C5GT | | EZ80 | 6V4/EZ80 | KT88 | 6550, 6550A | N15 | 3Q5GT | | EZ81 | 6CA4 | KTW63 | 6J7 | N16 | 3Q5GT | | EZ90 | 6X4 | KTZ63 | 6K7GT, 6K7 | N17 | 3 \$4 | | EZ91
EZ900 | 6AV4
6X4 | KTZ63M
KY50 | 6J7GT, 6J7
2L2 | N18
N19 | 3Q4
3V4 | | FA6 | 5677 | KY80 | 2J2 | N22LL | 19FK6 | | FIEL | 8278 | L63 | 6C5 | N25 | 3C4 | | G75/2D | OA3 | L63B | 6C5 | N30EL | 6LF6 | | G77 | 606 | L77 | 6C4 | N47 | 6AM5 | | G105/1D | OC3 | LC97 | 3FY5, 3ER5 | N63 | 6K6GT
6l6GT, 6l6GC | | G150/3D
G150/4K | OD3
OA2 | LC900 | 3HA5,
3HM5/3HA5 | N66
N77 | 6AM5 | | GU12 | 866A | LCC189 | 5ES8 | N78 | 6BJ5 | | GY501 | 3BH2 | LCF80 | 6LN8 | N119 | 45B5/UL84 | | GZ30 | 5Z4G, 5V4GA | LCF86 | 5HG8 | N142 | 45A5 | | GZ31 | 5U4GB/5AS4A | LCF200 | 5X9 | N144 | 6AM5 | | GZ32
GZ34 | 5V4GA
5AR4/GZ34 | LCF201
LCF801 | 5U9/LCF201
5GJ7 | N147
N148 | 6AG6G
7C5 | | GLUT | JANT GLOT | I COLOUT | 7401 | 1 11140 | 100 | | Foreign Type | American Type | Foreign Type | American Type | Foreign Type | American Type | |--------------------|---------------------------|---------------------|--------------------------|-----------------------|---------------------------| | | For Replacement | To Be Replaced | For Replacement | | For Replacement | | N150 | 6CK5 | PCL800 | 16GK8 | OM559 | 5726 | | N152 | 21A6 | PCL801 | 13GC8 | OOC04/14 | 5895 | | N153 | 15A6 | PD500 | 9ED4 | QQE02/5 | 6939 | | N154 | 16A5 | PF9 | 6K7 | QQE03/12 | 6360 | | N155 | 6BN5 | PF86 | 4HR8 | QQE03/20 | 6252 | | N308 | 25E5 | PF818 | 7ED7 | QQE06/40 | 5894 | | N309 | 15A6 | PFL200 | 16Y9 | QQV02-6 | 6939 | | N329
N359 | 16A5
21 A 6 | PH4
PL21 | 6A8GT
2D21 | QQV03-10
00V03-20 | 6360
6252 | | N369 | 16A8/PCL82 | PL36 | 25E5 | QQV07/40 | 829B | | N378 | 15CW5/PL84 | PL81 | 21A6 | 0\$83/3 | 5651 | | N379 | 15CW5/PL84 | PL82 | 16A5 | OS150/40 | OD3 | | N389 | 25GF6 | PL83 | 15A6 | OS1205 | OA3 | | N709 | 6BQ5/EL84 | PL84 | 15CW5/PL84 | QS1206 | OC3 | | N727 | 6AQ5A/6HG5 | PL86 | 14GW8 | QS1207 | SAO | | OBC3 | 12 SQ 7 | PL136 | 35FV5 | QS1208 | OB2 | | OF1 | 6S7 | PL300 | 35FN5 | QS1209 | 5651A, 5651 | | OF5
OH4 | 12K7GT
12A8 | PL302 | 25GF6 | QS1210 | OA2WA | | OM6 | 6K7 | PL500
PL505 | 27GB5/PL500
40KG6A | QS1211
QS2404 | OB2WA
5726 | | OSW2190 | 6AC7 | PL508 | 17KW6 | QS2404
QS2406 | 12AT7WA. | | OSW2192 | 6AG7 | PL509 | 40GK6A | QUETOU | 6201, 12AT7WC | | OSW2600 | 6AC7 | PL521 | 29KQ6 | OVO3-12 | 5763 | | OSW2601 | 6AG7 | PL800 | 16KG8 | QV05/25 | 807 | |
OSW3104 | 6SA7 | PL801 | 12FB5 | QV06-20 | 6146B | | OSW3105 | 6SQ7 | PL802 | 16LD8 | QV06-20B | 6883 | | OSW3107 | 5CG4, 5V4GA | PL820 | 21A6 | QV06-20C | 6159 | | OSW3109 | 6H6 | PL1267 | 0A4G | QW77 | 6CQ6 | | OSW3110
OSW3111 | 6E5
6SK7 | PLL80
PMO4 | 12HU8
6BA6/EF93 | QY2-100
QY2/250 | 813
813 | | OSW3112 | 6J5 | PMO5 | 6AK5/EF95 | 0777
0777 | 6AM6 | | P17A | 807 | PMO7 | 6AM6 | Ř3 | 1W4 | | PA5021 | 866A | PM84 | 9FG6 | R12 | 6X2 | | PABC80 | 9AK8 | PM95 | 6AK6 | R12A | 6X2 | | PC86 | 4CM4 | PY80 | 19X3 | R16 | 1T2 | | PC88 | 4DL4 | PY81 | 17 Z 3 | R19 | 1X2A, | | PC92 | 3AB4 | PY82 | 19Y3 | D 00 | 1X2C/1BX2 | | PC93 | 4BS4 | PY83 | 17Z3 | R20 | 2J2 | | PC95
PC97 | 4GK5
4FY5 | PY88
PY301 | 30AE3
19CS4 | R52
R144 | 5Z4, 5V4GA
6AM6 | | PC900 | 4HA5/PC900 | PY500 | 42EC4A | RG3-250A/866 | 866A | | PCC84 | 7AN7 | PY800 | 17 Z 3 | RK39 | 807 | | PCC85 | 9AQ8 | PY801 | 17 Z 3 | RL21 | 2D21 | | PCC88 | 7DJ8 | QA2400 | 6065 | RL1267 | OA4G | | PCC89 | 7FC7 | QA2401 | 6135 | RS2 | 5Z4, 5V4GA | | PCC186 | 7AU7 | QA2404 | 5726 | RS1029 | 6360 | | PCC189 | 7ES8 | QA2406 | 12AT7WB, 6201 , | S6F12 | 6AM6 | | PCC805
PCE800 | 7EK7
9GB8 | OA2407 | 12AT7WC
6201, 12AT7WC | S856
S860 | OA2
OB2 | | PCF80 | 9A8/8A8/PCF80 | 0A2408 | 5692 | S901C | 5651 | | PCF82 | 9U8A, 9GH8A | QB2/250 | 813 | SM150-30 | OA2 | | PCF86 | 7HG8/PCF86 | ÒB3-5/750 | 6156 | SP6 | 6AM6 | | PCF200 | 8X9 | QB5/1750 | 6079 | SR2 | OG3 | | PCF201 | 8U9 | QB65 | 6SN7GTA | SR3 | OB3 | | PCF800 | 9EN7 | QB309 | 12AT7 | SR55 | OB2 | | PCF801 | 8GJ7/PCF801 | QE03/10 | 5763 | SR56 | OA2 | | PCF802 | 9JW8 | QE05-40 | 6146B | STR85/10 | 0G3 | | PCF805
PCF806 | 7GV7 | QE05-40H
QE06/50 | 6159
907 | STR108/30 | OB2
OA2 | | PCH200 | 8GJ7/PCF801
9V9 | 0F408 | 807
1AD4 | STR150/30
STV85/10 | 0G3 | | PCL82 | 16A8/PCL82 | 0L77 | 6C4 | STV108/30 | OB2 | | PCL84 | 15DQ8 | OM328 | 5686 | STV150/30 | OA2 | | PCL85 | 18GV8/PCL85 | QM556 | 6X4W, 6202 | SU61 | 6X2 | | PCL86 | 14GW8 [°] | QM557 | 5654, 5654W | T2M05 | 6J6A | | PCL88 | 16GK8 | QM558 | 5725, 5725 W | T77 | 6C6 | | Foreign Type
To Be Replaced | American Type
i For Replacement | Foreign Type
To Be Replace | American Type | Foreign Type To Be Replaced | American Type
For Replacement | |--------------------------------|------------------------------------|-------------------------------|--------------------------|-----------------------------|----------------------------------| | T866A/866 | 866A | UF89 | 12AD6 | X77 | 6BE6 | | TB2.5/300 | 5866 | UL41 | 45A5 | X79 | 6AE8 | | TH813 | 813 | UL84 | 45B5/UL84 | X81 | 7S7 | | TH5021B
TM12 | 866A | UM80 | 19BR5 | X107 | 18FX6A, 18FX6 | | TS229 | 6J7
5687 | UM84
UN954 | 12FG6
954 | X119
X142 | 19D8
14K7 | | TT10 | 813 | UN955 | 955 | X147 | 6E8 | | TTZ63 | 6J7 | UQ80 | 12BE7 | X148 | 7S7 | | TX2/3 | 5544 | บบัร | 6BT4 | X155 | 6BZ8, 6BC8/6BZ8 | | U25 | 2L2 | UU9 | 6BT4 | X319 | 6351 | | U26 | 2J2 | UU12 | 6CA4 | X719 | 6AJ8 | | U31 | 25Z4GT | UX866 | 866A | X727 | 6BE6 | | U37
U41 | 1T4
1B3GT. | UY41
UY42 | 31A3
31A3 | XAA91
XB91 | 3AL5
3AL5 | | 041 | 1G3GT/1B3GT | UY82 | 55N3 | XC88 | 2DL4 | | U43 | 6X2 | UY85 | 38A3 | XC95 | 2ER5 | | U49 | 6S2A | UY89 | 31AV3 | XC97 | 2FY5. | | U50 | 5Y3GT | UY807 | 807 | | 2GK5/2FQ5 | | U51 | 5W4GT, 5V4GA | V2M70 | 6X4 | XC900 | 2HA5 | | U52 | 5U4GB/5AS4A | V61 | 6BT4 | XCC82 | 7AU7 | | U70
U74 | 6X5GT | V177 | 6CQ6 | XCC89 | 4FC7
4ES8 | | U74
U76 | 35Z4GT
35Z4GT | V311
V312 | 31A3
31A3 | XCC189
XCF80 | 4BL8/XCF80 | | U77 | 5AR4/GZ34 | V741 | 6C4 | XCF82 | 5U8A | | U78 | 6X4 | V884 | 6CQ6 | XCF801 | 4GJ7 | | U82 | 7Y4 | V886 | 6AM5 | XCH81 | 3AJ8 | | U118 | 31A3 | VH550H | 866A | XCL82 | 8B8 | | U119 | 38A3 | VP6 | 6CQ6 | XCL84 | 8DX8 | | U142 | 31A3 | VP12D | 1208 | XCL85 | 9GV8 | | U145 | 31A3 | VR150 | OD3 | XCL86 | 8GW8 | | U147
U149 | 6X5G, 6X5GT
7Y4 | VT83
W17 | 83
1T4 | XF80
XF85 | 3BX6
3BY7 | | U150 | 6BT4 | W25 | 1AJ4 | XF86 | 2H R 8 | | Ŭ151 | 6X2 | W63 | 6K7 | XF94 | 3AU6 | | U152 | 19X3 | W77 | 6CQ6 | XF183 | 3EH7/XF183 | | U153 | 17Z3 | W81 | 7AŽ | XF184 | 3EJ7/XF184 | | U154 | 19Y3 | W110 | 13EC7 | XFR3 | 5676 | | U191 | 19CS4 | W118 | 12AC5 | XL36 | 13CM5 | | U192
U193 | 19Y3
17 Z 3 | W119
W142 | 13EC7 | XL84
XL86 | 8BQ5
8CW5 | | U251 | 1723 | W145 | 12AC5
12AC5 | XL136 | 17FV5 | | U309 | 19X3 | W148 | 7A7 | XL500 | 13GB5/XL500 | | U319 | 19Y3 | W149 | 7B7 | XXB | 3C6 | | U329 | 25BR3 | W150 | 6CJ5 | XXD | 14F7 | | U339 | 19CS4 | W719 | 6BY7, | XXFM | 7X7 | | U349 | 17Z3 | 14707 | 6EH7/EF183 | XXL | 7A4 | | U381
U707 | 38A3
6X4 | W727
W739 | 6BA6/EF93
6EC7 | XY88
Y25 | 16AQ3/XY88
1N3 | | U709 | 6CA4 | WD119 | 19FL8 | Y64 | 6U5 | | UABC80 | 28AK8 | WD142 | 1287 | Y119 | 19BR5 | | UAF42 | 1287 | WD150 | 6CT7 | YC88 | 3DL4 | | UBC41 | 14L7 | WD709 | 6N8 | YC95 | 3ER5 | | UBC80 | 14G6 | WT294 | OD3 | YC97 | 3FY5, 3ER5 | | UBC81 | 14G6 | WT301 | 83 | YCC89 | 5FC7 | | UBF80
UBF89 | 17C8
19FL8, 19DC8 | X14
X17 | 1A7GT
1 R5 | YCC189
YCF86 | 5ES8
5HG8/LCF86 | | UC92 | 9AB4 | X18 | 1AC6 | YCL82 | 10BM8 | | UCC85 | 26AQ8 | X20 | 1AC6 | YCL84 | 10DX8/XCL84 | | UCH42 | 14K7 | X25 | 1AB6 | YCL86 | 10GW8 | | UCH80 | 14Y7 | X61M | 6K8 | YF183 | 4EH7 | | UCH81 | 19D8, 19AJ8 | X63 | 6A8 | YF184 | 4EJ7 | | UCL82 | 50BM8 | X64 | 6L7 | YL84 | 10BQ5 | | 115.41 | | | | | | | UF41
UF80 | 12AC5
19BX6 | X65
X71M | 6E8
12K8 | YL86
YL1370 | 10CW5/LL86
6146B/8298A | | Foreign Type
To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | Foreign Type To Be Replaced | American Type
For Replacement | |--------------------------------|----------------------------------|-----------------------------|----------------------------------|-----------------------------|----------------------------------| | YL1372 | 6159B | Z319 | 6351 | Z900T | 5823 | | Z14 | 1N5G | Z329 | 7ED7 | ZD17 | 1S 5 | | Z63 | 6J7 | Z550M | 8453 | ZD25 | 1AH5 | | Z 77 | 6AM6 | Z719 | 6BX6. | ZD152 | 6N8 | | Z150 | 6CU7 | | 6EH7/EF183 | ZM1050 | 8453 | | Z152 | 6BX6. | Z729 | 6CF8, 6267 | ZZ1000 | 8228 | | | 6EH7/EF183 | Z749 | 6EL7. | | | | Z300T | OA4G | 1 | 6EH7/EF183 | 1 | | # INDUSTRIAL, MILITARY, AND SPECIAL-PURPOSE TUBES AND THEIR PROTOTYPES Industrial, military, and various special-purpose types are all listed under the heading "Special Type," along with an indication of the general type of service for which the special type was originally intended. Based on an examination of the data, these special types appear to be similar to the types listed opposite them under the heading "Prototype or Similar Receiving Tube Type." Notes are referenced to describe some of the apparent differences between the associated types. Following the basic listing in order of the "Special Type" number, a cross-reference listing in order of the "Prototype or Similar Receiving Tube Type" number is given. The inclusion of a type number under either heading does not necessarily mean that it is currently available, or that it is the latest modification of the basic type. All of the modifications of types, as represented by the addition of various suffix letters, are not listed. General information on the interpretation of suffix letters is presented near the front of this book under the heading "Arrangement of Data." The associated types in these lists are not generally interchangeable in all respects, even where no specific differences are mentioned in the notes. However, the lists may be used as an aid in locating emergency replacements for unavailable tube types. Although reasonable care has been taken in compiling the lists and notes, no tube substitution should be made without a prior independent investigation to make sure that the tube under consideration is basically compatible with the specific circuit. ### In Order By Special Types | Special Type | MIL
Designation
if Other Than
EIA | Service | Prototype or
Similar Receiving
Tube Type | |---|--|---|--| | 1612*
1620*
1621
1622
1634† | | Broadcast—Audio Voltage Amplifier
Broadcast—Audio Voltage Amplifier
Ind.—Audio Power Output
Ind.—Audio Power Output
Ind.—Voltage Amplifier | 6L7
6J7
6F6
6L6
12SC7 | | 1644
5591‡
5654
5670§
5679¶ | 5654W
5670W | Ind.—Audio Power Output Ind.—Wide-band Amplifier Ind. or Mil.—Wide-band Amplifier (5★) Ind. or Mil.—General Purpose (5★) Ind.—Low-current Rectifier | 12L8GT
6AK5
6AK5
2C51
7A6 | | 5691†§△
5692#△
5693#
5725
5726† |
5725W | Ind. or Mil.—Voltage Amplifier Ind.—General Purpose Ind. or Mil.—Voltage Amplifier Ind. or Mil.—Gated Amplifier (5★) Ind. or Mil.—Dectector, Low-current Rectifier (5★) | 6SL7GT
6SN7GT
6SJ7
6AS6
6AL5 | | 5727
5749
5750
5751†#§
5814A†§ | 5749W | Ind. or Mil.—Relay Control (5★) Ind. or Mil—RF or IF Amplifier (5★) Ind. or Mil.—Converter (5★) Ind. or Mil.—Voltage Amplifier (5★) Ind. or Mil.—General Purpose (5★) | 2D21
6BA6
6BE6
12AX7
12AU7 | | 5824
5842
5844‡
5847
5852§ |

 | Ind.—Audio Power Output
Ind. or Mil.—Wide-band Amplifier
Ind. or Mil.—Computer (5★)
Ind. or Mil.—RF Amplifier
Ind. or Mil.—Rectifier | 25B6G
417A
6J6
404A
6X5 | | 5871
5881##
5915
5930
5931 | _
_
_ | Mobile—Audio Power Output
Audio—Power Output
Ind. or
Mil.—Computer—Gated Amplifier
Ind.—Audio Power Output
Ind. or Mil.—Rectifier | 6V6GT
6L6G
6BE6
2A3
5U4G | | 5932
5965†
5965A†
5992§#
5998 | | Ind.—Audio Power Output
Ind. or Mil.—Computer
Computer (5★)
Ind.—Audio Power Output
Ind. or Mil.—Series Regulator | 6L6G
12AV7
12AV7
6V6GT
421A | ^{*}Low-microphonic †Balanced Sections †Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings ##Higher Ratings AShorter Envelope ¶Longer Envelope △Cathode Type †Different Basing 5★General Electric Five-Star Tube | Special Type | MIL Designation if Other Than EIA | Service | Prototype or
Similar Receiving
Tube Type | |--|-----------------------------------|---|--| | 5998A
6005
6028
6045‡
6046 | 6005W | Ind.—Series Regulator
Ind. or Mil.—Audio Power Output (5★)
Ind. or Mil.—RF Amplifier
Ind.—General Purpose
Ind.—Relay Energizer | 421A
6AQ5
408A
6J6
25L6GT | | 6057
6058
6060
6061
6063 | —
—
— | Ind.—Voltage Amplifier
Ind.—Detector, Low-current Rectifier
Ind.—Oscillator-mixer
Ind.—Audio Power Output
Ind.—Rectifier | 12AX7
6AL5
12AT7
6BW6
6X4 | | 6066
6067
6072*§
6073
6074 | 6072A
— | Ind.—Dectector, Voltage Amplifier
Ind.—General Purpose
Ind. or Mil.—Audio Voltage Amplifier (5★)
Ind.—Voltage Regulator
Ind.—Voltage Regulator | 6AT6
12AU7
12AY7
0A2
0B2 | | 6080
6087△△
6095
6096
6097 | 5 У3 ₩GТВ

 | Ind.—Series Regulator
Ind. or Mil.—Rectifier (5★)
Ind.—Audio Power Output
Ind.—Wide-band Amplifier
Ind.—Dectector, Low-current Rectifier | 6AS7G
5Y3GT
6AQ5
6AK5
6AL5 | | 6100
6101†#
6106△△
6113*
6134 | 6C4WA

6AC7WA | Ind. or Mil.—General Purpose (5★) Ind.—General Purpose Ind.—Rectifier Ind.—Audio Voltage Amplifier Ind. or Mil.—RF Amplifier (5★) | 6C4
6J6
5Y3GT
6SL7GT
6AC7 | | 6135§
6136
6137
6180#
6186 | 6AU6WC
6SK7WA
6186W | Ind. or Mil.—General Purpose (5★) Ind. or Mil.—RF or IF Amplifier (5★) Ind. or Mil—RF or IF Amplifier (5★) Ind.—General Purpose Ind. or Mil.—RF or IF Amplifier | 6C4
6AU6
6SK7
6SN7GT
6AG5 | | 6187
6188
6189
6197
6201 | | Ind.—Gated Amplifier Ind. or Mil.—DC Amplifier Ind. or Mil.—General Purpose (5★) Ind. or Mil.—Gomputer—Frequency-divider Ind. or Mil.—Oscillator-mixer (5★) | 6AS6
6SU7WGT
12AU7
6CL6
12AT7 | | 6202#
6203††§
6265§
6384
6385¶¶§ | 6X4WA
 | Ind. or Mil.—Rectifier (5★) Ind. or Mil.—Rectifier (5★) Ind.—Wide-band Amplifier (5★) Ind. or Mil.—Pulse Amplifier Ind.—General Purpose | 6X4
6X4
6BH6
6AR6
2C51 | | 6386§
6388
6414
6485
6520† | 6414W
— | Ind. or Mil.—Cascode Amplifier (5★) Ind.—Cold-cathode Relay Tube Ind. or Mil.—Computer—General Purpose (5★) Ind.—Wide-band Amplifier Ind.—Series Regulator | 2C51
443A
12AV7
6AH6
6AS7G | | 6626
6627
6660
6661
6662 | _
_
_
_ | Ind.—Voltage Regulator
Ind.—Voltage Regulator
Mobile—RF or IF Amplifier
Mobile—Wide-band Amplifier
Mobile—Wide-band Amplifier | 0A2
0B2
6BA6
6BH6
6BJ6 | | 6663
6664
6669
6676
6677 | = | Mobile—Detector, Low-current Rectifier
Mobile—General Purpose
Mobile—Audio Power Output
Mobile—RF or IF Amplifier
Mobile—Audio Power Output | 6AL5
6AB4
6AQ5
6CB6
6CL6 | | 6678
6679
6680
6681
6829 | | Mobile—Oscillator-mixer
Mobile—Oscillator-mixer
Mobile—General Purpose
Mobile—Voltage Amplifier
Ind. or Mil.—Computer (5★) | 6U8
12AT7
12AU7
12AX7
12AX7 | | 6913
6928‡#
6968
7025
7036 | | Computer
Ind.—Audio Power Output
Ind.—Wide-band Amplifier
Audio—Voltage Amplifier
Computer—Gated Amplifier (5★) | 12BH7
6AQ5
6AK5
12AX7
6BE6 | ^{*}Low-microphonic †Balanced Sections ;Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings | Special Type | MIL Designation if Other Than EIA | Service | Prototype or
Similar Receiving
Tube Type | |--|-----------------------------------|--|--| | 7189## | | Audio—Power Output | 6BQ5 | | 7212 | | Mobile—RF Power Output | 6146 | | 7244 | | Ind.—General Purpose | 6J6 | | 7245A△ | | Ind.—RF Amplifier | 6J4 | | 7318§ | | Ind.—Pulse Amplifier | 12AU7 | | 7320 | | Mobile—Audio Power Output | 6BQ5 | | 7408 | | Audio—Power Output | 6V6GT | | 7543* | | Audio—Voltage Amplifier | 6AU6 | | 7581 | | Audio Power Output | 6L6GC | | 7581A## | | Audio—Power Output | 6L6GC | | 7717 | | Mobile—RF Amplifier | 6CY5 | | 7724 | | Mobile—Detector, Voltage Amplifier | 14GT8 | | 7728 | | Industrial—Instrument Service | 12AT7 | | 7729 | | Industrial—Instrument Service | 12AX7 | | 7730 | | Industrial—Instrument Service | 12AU7 | | 7731 | | Industrial—Instrument Service | 6U8 | | 7732 | | Industrial—Instrument Service | 6CB6 | | 7733 | | Industrial—Instrument Service | 12BY7 | | 7734 | | Ind.—Voltage Regulator | 6GE8 | | 7738## | | Ind.—Class C Amplifier | 6AN4 | | 7803
8113
8425A
8426A
8532 |

8532W | Ind.—Class C Amplifier
Ind.—RF Amplifier
Industrial—Instrument Service
Industrial—Instrument Service
Ind. or Mil.—RF Amplifier | 6FW8
6CY5
6AU6
12AU6
6J4 | *Low-microphonic †Balanced Sections ‡Lower Heater Current §Higher Heater Current ¶Center-tapped Heater #Lower Ratings ##Higher Ratings AShorter Envelope ¶¶Longer Envelope ACathode Type ††Different Basing ★General Electric Five-Star Tube ## In Order by Prototype or Similar Receiving Tube Type | | | | g : | |---|--|---|--| | Prototype or
Similar
Receiving
Tube Type | Special Type
(Refer to Preceding List for
Service and Notes) | Prototype or
Similar
Receiving
Tube Type | Special Type
(Refer to Preceding List for
Service and Notes) | | 0A2 | 6073, 6626 | 6J7 | 1620 | | 0B2 | 6074, 6627 | 6L6 | 1622 | | 2A3 | 5930 | 6L6G | 5881, 5932 | | 2C51 | 5670, 6385, 6386, 396A | 6L6GC | 7581, 7581A | | 2D21 | 5727 | 6L7 | 1612 | | 5U4G | 5931 | 6SJ7 | 5693 | | 5Y3GT | 6087, 6106, 5Y3WGTB | 6SK7 | 6137 | | 6AB4 | 6664 | 6SL7GT | 5691, 6113 | | 6AC7 | 6134 | 6SN7GT | 5692, 6180 | | 6AG5 | 6186 | 6SU7WGT | 6188 | | 6AH6 | 6485 | 6U8 | 6678, 7731 | | 6AK5 | 5591, 5654, 6096, 6968, 403B | 6V6GT | 5871, 5992, 7408 | | 6AL5 | 5726, 6058, 6097, 6663 | 6X4 | 6063, 6202, 6203 | | 6AN4 | 7738 | 6X5 | 5852 | | 6AQ5 | 6005, 6095, 6669, 6928 | 7A6 | 5679 | | 6AR6 | 6384 | 12AT7 | 6060, 6201, 6679, 7728 | | 6AS6 | 5725, 6187 | 12AU6 | 8426A | | 6AS7G | 6080, 6520 | 12AU7 | 5814A, 6067, 6189, 6680, 7318, 7730 | | 6AT6 | 6066 | 12AV7 | 5965, 5965A, 6829, 6414, 6414W | | 6AU6 | 6136, 7543, 8425A | 12AX7 | 5751, 6057, 6681, 7025, 7729 | | 6BA6 | 5749, 6660 | 12AY7 | 6072 | | 6BE6 | 5750, 5915, 7036 | 12BH7 | 6913 | | 6BH6 | 6265, 6661 | 12BY7 | 7733 | | 6BJ6 | 6662 | 12L8GT | 1644 | | 6BQ5 | 7189, 7320 | 12SC7 | 1634 | | 6BW6 | 6061 | 14GT8 | 7724 | | 6C4 | 6100, 6135, 6C4WA | 25B6G | 5824 | | 6CB6 | 6676, 7732 | 25L6GT | 6046 | | 6CL6 | 6197, 6677 | 403B | 5591 | | 6CY5 | 7717, 8113 | 404A | 5847 | | 6F6 | 1621 | 408A | 6028 | | 6FW8 | 7803 | 417A | 5842 | | 6GE8 | 7734 | 421A | 5998, 5998A | | 6J4 | 7245A, 8532, 8532W | 443A | 6388 | | 6J6 | 5844, 6045, 6101, 7244 | 6146 | 7212 | 5U4-GB With a capacitor-input filter, the operating point of d-c output current and a-c supply voltage must fall within the curve FAEDG. With a choke input filter, the operating point must fall within the curve FABCDG. 5U4-G **6AU6,** 3AU6, 4AU6, 12AU6, 6AU6-A 6BQ6-GA, 128Q6-GA, 25BQ6-GA, 6CU6, 12CU6, 25CU6, 6AV5-GA, 65N7-GTB, 6SN7-GTA, 12SN7-GTA, 6SN7-GT, 12SN7-GT, 6CG7, 8CG7 AVERAGE PLATE CHARACTERISTICS 200 300 PLATE VOLTAGE IN VOLTS 9 28 PLATE CURRENT IN MILLIAMPERES 65N7-GTB, 6SN7-GTA, 12SN7-GTA, 6SN7-GT, 12SN7-GT, 6CG7, 8CG7 6K11 (SECTION 1), 7AU7, 9AU7, 12AU7, 12AU7-A, 7247 (SECTION 2) 6C10, 6EU7, 6K11 (SECTIONS 2 AND 3), **12AX7,** 12AX7-A, 7025, 7247 (SECTION 1) # Radio & TV Pilot Lamps | Lamp
Number | Voltage | Amperes | Type of Base | Max. Overall
Length
Inches | Max. Overall
Length
Millimeters | |----------------|---------|---------|-------------------|----------------------------------|---------------------------------------| | 12 | 6.3 | 0.15 | Miniature 2 Pin | 0.938 | 23.825 | | 39 | 6.3 | 0.36 | Miniature Bayonet | 1.188 | 30.175 | | 40 | 6.3 | 0.15 | Miniature Screw | 1.188 | 30.175 | | 41 | 2.5 | 0.50 | Miniature Screw | 1.188 | 30.175 | | 42 | 3.2 | 0.35 | Miniature Screw | 1.188 | 30.175 | | 44 | 6.3 | 0.25 | Miniature Bayonet | 1.188 | 30.175 | | 45 | 3.2 | 0.35 | Miniature Bayonet | 1,188 | 30,175 | | 46 | 6.3 | 0.25 | Miniature Screw | 1.188 | 30.175 | | 47 | 6.3 | 0.15 | Miniature Bayonet | 1,188 | 30.175 | | 48 | 2.0 | 0.06 | Miniature Screw | 1.188 | 30.175 | | 49 | 2.0 | 0.06 | Miniature Bayonet | 1.188 | 30.175 | | 130 | 6.3 | 0.15 | Miniature Bayonet | 0.938 | 23.825 | | 137 | 6.3 | 0.25 | Miniature Bayonet | 0.938 | 23.825 | | 159 | 6.3 | 0.15 | Wedge | 1.063 | 27.000 | | 239 | 6.3 | 0.36 | Miniature Bayonet | 1.188 | 30.175 | | 240 | 6.3 | 0.36 | Miniature Bayonet | 1.188 | 30.175 | | 242 | 6.3 | 0.15 | Miniature Bayonet | 1.188 | 30.175 | | 259 | 6.3 | 0.25 | Wedge | 1.063 | 27.000 | | 1490
| 3.2 | 0.16 | Miniature Bayonet | 1.188 | 30.175 | | 1847 | 6.3 | 0.15 | Miniature Bayonet | 1.188 | 30.175 | | 1847AF | 6.3 | 0.15 | Miniature Bayonet | 1.188 | 30.175 | | 1855 | 6.3 | 0.80 | Miniature Bayonet | 1.375 | 34.925 | | 1866 | 6,3 | 0.25 | Miniature Bayonet | 1.188 | 30.175 | | 1891 | 14.0 | 0,24 | Miniature Bayonet | 1.188 | 30,175 | | 1893 | 14.0 | 0.33 | Miniature Bayonet | 1,188 | 30.175 | | 2067D | 4.0 | 0.06 | Wire Terminal | 1.188 | 30.175 | | | | | ¥ | | FACE | E PL | | | <u>_</u> | | | | HEA | TER | |--|-----------------------|----------------------------------|----------------------------|-------|---------------------------------------|---|--|--|--|--|--|--|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL, ANGLE
Degrees | BLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | LIGHT
TRANSMIT-
TANCE IN % | Overall Length
(inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | FOCUS | ٧. | A. | | 10VABP22
11SP22
11WP22
12DCP22
12VAHP22
13GP22 | | 72
72
72
90
90
90 | 999999 | | B
B
V
X
E | U
U
U
U
U
U | 72.0
72.0
52.0
65.0
81.5
48.0 | 15.240
14.915
14.915
13.976
13.870
13.594 | 7.930
7.605
7.605
6.968
6.693
6.417 | 600/800
600/800
600/800
500/900
500/1000
500/1000 | 14BM
14BJ
14BJ
14BH
14BH
14BH | IBPES IUPES IUPES DUPES DUPES DUPES | 6.3
13.8
13.8
6.3
6.3
6.3 | 0.90
0.58
0.58
0.90
0.90
0.90 | | 13JP22
13LP22
13MP22
14BCP22
14VABP22
14VADP22 | | 90
90
90
65
90
90 | GGGGG | | X
E
E
X | U U U U | 52.0
69.0
69.0
-
52.0
52.0 | 13.861
13.594
13.594
19.281
15.000
15.199 | 6.693
6.417
6.417
9.562
6.693
6.893 | 500/1000
500/1000
500/1000
500/1500
500/1000
550/1050 | 148H
148H
148H
14AU
14BH
14BH | DUPES
DUPES
DUPES
DBPES
DUPES
DUPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
0.90
1.80
0.90
0.90 | | 14VAEP22
14VAFP22
14VAGP22
14VAHP22
14VALP22
15ACP22 | | 90
90
90
90
90 | GGGGGG | | ¥
X
Y
E | | 52.0
52.0
60.0
60.5
60.5
52.0 | 15.199
15.000
15.000
15.199
15.199
15.000 | 6.893
6.693
6.693
6.893
6.893
6.693 | 550/1050
700/1200
550/1050
550/1050
550/1050
500/1000 | 148H
148H
148H
148H
14BH
14BH | DUPES
DUPES
DUPES
DUPES
DUPES
DUPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 15AEP22
15AFP22
15GP22
15HP22
15KP22
15LP22 | | 90
90
45
45
90 | GGGGG | | Υ
Ε
-
-
P | שט טר | 52.0
60.5
—
74.0
44.0 | 15.000
14.724
26.125
26.125
15.000
15.191 | 6.693
6.417
10.375
10.375
6.693
6.693 | 550/1050
700/1300
1500/3000
1500/3000
550/1050
550/1050 | 14BH
14BH
20A
20A
14BH
14BH | DUPES
DUPES
H.V.E.S.
H.V.E.S.
DUPES
DUPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
1.80
1.80
0.90
0.90 | | 15MP22
15NP22
15RP22
15SP22
15WP22
15XP22 | | 90
90
90
90
90
90 | 999999 | | P
X
E
P
X | UR
UUUUUU
U | 56.0
52.0
48.0
48.0
44.0
52.0 | 15.838
15.000
14.724
14.724
14.924
15.000 | 7.332
6.693
6.417
6.417
6.417
6.693 | 750/1200
550/1050
550/1050
550/1050
550/1050
500/1050 | 148K
148H
148H
148H
14BH
14BH | DBPES
DUPES
DUPES
DUPES
DUPES
DUPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
0.90
0.90
0.90
1.30 | | 15YP22
16CDP22
16CSP22
16CYP22
16DAP22
16VABP22 | ZDDDDD | 90
90
90
90
90
90 | GGGGGG | | V V V V V V V V V V | ט טטט ט | 52.0
72.0
54.0
65.0
65.0
48.0 | 15.648
15.125
15.120
15.709
15.120
16.798 | 7.332
6.420
6.420
7.008
6.420
6.893 | 750/1200
500/1000
700/1300
700/1300
700/1300
1000/1500 | 14BK
14BE
14BE
14BH
14BE
14BH | DBPES
DBPES
DBPES
DUPES
DBPES
DUPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
0.90
0.90
0.90
0.90 | | 16VACP22
16VAFP22
16VAHP22
16VAKP22
16VASP22
16VATP22 | | 90
90
90
90
90
90 | G
G
G
G
G
G | | X
E
V
Y
E | U
U
U
U
U
U
U
U
U | 57.0
48.0
57.0
57.0
57.0
86.0 | 16.598
16.598
16.598
16.798
16.598
16.598 | 6.693
6.693
6.693
6.693
6.693 | 1000/1500
1200/1700
1000/1500
1000/1500
1000/1500
1000/1500 | 14BH
14BH
14BH
14BH
14BE
14BE | DUPES
DUPES
DUPES
DUPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 16VAWP22
16VBDP22
17ETP22
17EVP22
17EXP22
17EXP22 | | 90
90
90
90
90
90 | GGGGG | | V
V
P
E
V | U U U U U | 57.0
57.0
44.0
48.0
48.0
48.0 | 17.247
17.259
16.727
16.598
17.247
16.598 | 7.332
7.344
6.837
6.693
7.332
6.693 | 1000/1500
1000/1500
500/1000
1000/1500
1000/1500
1000/1500 | 14BK
14BK
14BE
14BH
14BK
14BH | IBPES IBPES DUPES IBPES DUPES OUPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
1.30
0.90
1.35
0.90 | | 17FGP22
17FHP22
17FJP22
17FKP22
17VABP22
17VACP22 | | 90
90
90
90
90
90 | GGGGGG | | P
E
V
V
W | 00000 | 55.0
67.0
48.0
48.0
54.5
56.5 | 16.790
16.322
17.247
16.598
16.650
17.122 | 6.693
6.417
7.332
6.693
6.420
6.893 | 1000/1500
1200/1700
1000/1500
1000/1500
1400/1900
1200/1600 | 14BH
14BH
14BK
14BH
14BH
14BH | DUPES
DUPES
IBPES
DUPES
DUPES
DUPES | 6.3
6.3
6.3
6.3 | 0.90
0.90
1.35
0.90
0.90
0.90 | | 17VADP22
18VABP22
18VACP22
18VADP22
18VAFP22
18VAHP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | V
V
P
V
W
P | UM
UR
U
U
UR | 72.0
53.5
41.0
43.5
43.5
53.0 | 17.122
17.876
18.048
17.856
17.856
18.248 | 6.893
6.703
6.693
6.693
6.693
6.893 | 1200/1600
1500/2000
1400/1900
1500/2100
1500/2100
1400/1900 | 14BH
14BE
14BE
14BE
14BH
14BE | DUPES
DBPES
DBPES
DBPES
DUPES
DBPES | 6.3
6.3
6.3
6.3 | 0.90
1.35
0.90
0.90
0.90
0.90 | | • | TY | PICAL OPER | ATING CO | NDITIONS | - | |-----------------------|----------|----------------------------------|---|----------------------------|------------------------------------| | Ž. | ₹. | | SPOT | CUTOFF | , | | ANODE KV
DESIGN MA | ANODE K | FOCUS
ELEC-
TRODE
VOLTS | GRID-
NUMBER 2
VOLTS | GRID-
NUMBER 1
VOLTS | TUBE
TYPE | | 22.0 | 20 | 3200/4300 | 355/595 | -70 | 10VABP22 | | 18.0
18.0 | 15
15 | -250/500
-250/500 | 250/540
250/540 | -55
-55 | 11SP22
11WP22 | | 20.0
22.5 | 16
20 | -75/400
-75/400 | 260/540
150/420 | 80
100 | 12DCP22
12VAHP22 | | 20.0 | 18 | -75/400 | 150/390 | -100 | 13GP22 | | 22.5
22.5 | 20
18 | -75/400
-75/400 | 150/390
150/390 | -100
-100 | 13JP22
13LP22 | | 22.5 | 20 | -75/400 | 150/390 | -100 | 13MP22 | | 22.0
22.5 | 16
20 | 2400/3400
-75/400 | 200
150/380 | -50/-105
-100 | 14BCP22
14VABP22 | | 22.5 | 20 | -75/400 | 210/508 | -125 | 14VADP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 210/505
70/220 | -125
-60 | 14VAEP22
14VAFP22 | | 22.5 | 20 | -75/400 | 150/390 | ~100 | 14VAGP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 210/505
210/505 | -125
-125 | 14VAHP22
14VALP22 | | 22.5 | 20 | -75/400 | 150/380 | -100 | 15ACP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 150/390
150/390 | -100
-100 | 15AEP22
15AFP22 | | 22.0 | 20 | 2400/3800 | _ | worken. | 15GP22 | | 22.0 ●
22.5 | 20
20 | 3100
-75/400 | 150/390 | -100 | 15HP22
15K P 22 | | 22.5 | 20 | -75/400 | 150/390 | -100 | 15LP22 | | 24.0
22.5 | 20
20 | 3300/4300
-75/400 | 215/360
150/390 | 60
100 | 15MP22
15NP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 150/390
150/390 | -100
-100 | 15 RP 22
15 SP 22 | | 22.5 | 20 | -75/400 | 150/390 | -100 | 15WP22 | | 22.5 | 20 | -75/400
3300/4300 | 150/390
220/370 | -100
-60 | 15XP22
15YP22 | | 20.0 | 18 | 3000/3600 | 200/650 | -100 | 16CDP22 | | 23.0
23.0 | 18
20 | 3020/3600
-75/400 | 110/300
125/370 | -70
-70 | 16CSP22
16CYP22 | | 23.0 | 20 | 3360/4000 | 110/300 | -70 | 16DAP22 | | 22.5 | 20 | -75/400
-75/400 | 210/505
160/400 | -125
-100 | 16VABP22
16VACP22 | | 22.5 | 20 | -75/400 | 150/385 | -100 | 16VAFP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 150/390
210/505 | -100
-125 | 16VAHP22
16VAKP22 | | 22.5
22.5 | 20
20 | 3360/4000
3360/4000 | 140/410
140/410 | ~100
~100 | 16VASP22
16VATP22 | | 24.0 | 20 | 3300/4300 | 355/600 | -70 | 16VAWP22 | | 24.0
22.5 | 20
20 | 3300/4300
3200/4000 | 355/690 | -70
-75 | 16VBDP22
17ETP22 | | 22.5 | 20 | -75/400 | 135/335
150/380 | -100 | 17EVP22 | |
24.0
22.5 | 20
20 | 3300/4300
-75/400 | 330/550
150/390 | -60
-100 | 17EXP22
17EZP22 | | 22.5 | 20 | -75/400 | 165/430 | -100 | 17FGP22 | | 22.5
24.0 | 20
20 | -75/400
3300/4300 | 150/390
330/550 | -100
60 | 17FHP22
17FJP22 | | 22.5 | 20 | -75/400 | 150/390 | -100 | 17FKP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 150/370
210/505 | ~100
~125 | 17VABP22
17VACP22 | | 22.5 | 20 | -75/400 | 210/505 | -125 | 17VADP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 175/460
285/685 | -100
-150 | 18VABP22
18VACP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 18VADP22 | | 22.5
27.5 | 20
25 | -75/400
4200/5000 | 150/390
200/535 | -100
-125 | 18VAFP22
18VAHP22 | | | | | *************************************** | | | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O-Round Tube - □ —Rectangular Tube - B-Fiberglass wrap implosion protection - E-Filled rim type implosion protection - G -- Glass Tube - MET -- Metal Tube - M Matrix Screen - P—Sagged glass implosion plate attached to face - R-Anti-reflection faceplate - U-Rare earth red phosphor - V-Rim bands and tension band - W—Rim bands and tension band with mounting lugs - X -Tension band - Y —Tension band and mounting lugs - DUPES—Uni-potential electrostatic focus, delta - DBPES -- Bi-potential electrostatic focus, - IUPES Uni-potential electrostatic focus, inline - IBPES—Bi-potential electrostatic focus, inline - L.V.E.S. -- Low voltage electrostatic focus - H.V.E.S.—High voltage electrostatic focus | | | | A. | | FACE | PL | ATE | - | I | | | | HEA | TER | |--|-----------------------|-----------------------------------|-----------------------|-------|---------------------------------------|------------------------------|--|--|--|--|--|---|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | LIGHT
TRANSMIT-
TANCE IN % | Overall Length
(Inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | Focus | v. | A. | | 18VAJP22
18VAKP22
18VALP22
18VAMP22
18VANP22
18VAQP22 | | 90
90
90
90
110
90 | G G G G G | | V
W
P
V
V | U
UR
U
U
U | 53.5
53.5
42.5
43.5
53.0
52.0 | 18.056
18.056
18.248
18.056
13.872
17.856 | 6.893
6.893
6.893
6.893
5.538
6.693 | 1500/2100
1500/2100
1500/2100
1500/2100
1350/1750
1500/2100 | 14BE
14BE
14BH
14BH
13C
14BE | DBPES
DBPES
DUPES
DUPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
1.35 | | 18VASP22
18VATP22
18VAZP22
18VBAP22
18VBDP22
18VBEP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | V
V
V
W | כככככ | 53.5
43.5
53.5
52.0
53.5
53.0 | 17.856
17.856
18.056
18.050
18.056
18.056 | 6.693
6.693
6.893
6.900
6.893
6.893 | 1500/2000
1500/2000
1500/2100
1400/1900
1500/2100
1500/2100 | 14BE
14BE
14BH
14BE
14BH
14BH | DBPES
DBPES
DUPES
DBPES
DUPES
DUPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
1.30
0.90
0.90 | | 18VBGP22
18VBHP22
18VBJP22
18VBKP22
18VBMP22
19EXP22 | | 90
90
90
90
90
90 | G
G
G
G | | P
V
W
V | UR
U
U
UM
U
U | 53.5
69.0 | 18.248
17.876
18.056
18.056
18.056
17.856 | 6.893
6.703
6.893
6.893
6.893
6.693 | 1500/2100
1500/2000
1500/2100
1500/2100
1500/2100
1500/2100 | 14BH
14BE
14BH
14BE
14BE
14BE | DUPES
DBPES
DUPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
0.90
0.90
0.90
0.90 | | 19EYP22
19FMP22
19FXP22
19GLP22
19GSP22
19GVP22 | | 90
90
92
90
90
90 | GGGGGG | | P P P P | UR
UR
UR
UR
UR | 41.0
50.0
41.0
41.0
41.0
69.0 | 18.048
18.048
18.062
17.937
18.066
17.856 | 6.693
6.693
6.687
6.437
6.703
6.693 | 1500/2100
1500/2100
1500/2000
1500/2000
1500/2000
1400/1900 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
1.35
0.90
1.35
0.90 | | 19GWP22
19GXP22
19GYP22
19HBP22
19HCP22
19HFP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | P
P
V
P | UR
U
U
U
UR | 41.0
72.0
72.0
41.0
43.5
55.0 | 18.048
17.520
17.520
18.048
17.856
18.255 | 6.693
6.417
6.417
6.693
6.693
6.900 | 1400/1900
1300/1800
1000/2000
1400/1900
1500/2100
1400/1900 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
1.30 | | 19HKP22
19HMP22
19HNP22
19HQP22
19HRP22
19HTP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | V
W
V
P
W | U
U
U
UR
U | 43.5
43.5
43.5
64.0
45.0
43.5 | 17.856
17.856
17.856
17.579
17.772
17.856 | 6.693
6.693
6.693
6.417
6.417
6.693 | 1500/2000
1500/2100
1500/2100
1400/1900
1400/1900
1500/2100 | 14BE
14BE
14BH
14BE
14BE
14BH | DBPES
DBPES
DUPES
DBPES
DBPES
DUPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 19HXP22
19HYP22
19JLP22
19JNP22
19JWP22
19JYP22 | | 90
90
90
90
90
90 | GGGGGG | | V V V P P | U
U
U
UR
UR | 43.5
43.5
42.0
43.5
42.5
51.5 | 17.876
17.856
18.050
17.876
18.048
18.048 | 6.703
6.693
6.900
6.703
6.693
6.693 | 1500/2000
1500/2100
1400/1900
1500/2000
1500/2100
1400/1900 | 14BE
14BH
14BE
14BE
14BH
14BE | DBPES
DUPES
DBPES
DBPES
DUPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
1.30
1.35
0.90
0.90 | | 19JZP22
19KLP22
19TP22
19VABP22
19VAFP22
19VAGP22 | | 90
90
60
70
90 | G
G
G
G
G | | V
W
P
E
E | U
U
UR
UM
U | 53.0
53.0
—
39.0 | 17.856
17.856
24.375
25.219
18.047
18.047 | 6.693
6.693
8.843
9.625
6.693
6.693 | 1500/2100
1500/2100
1500/3000
2000/2500
1750/2250
1750/2250 | 14BE
14BE
20A
14AU
14BE
14BE | DBPES
DBPES
H.V.E.S.
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
1.80
1.80
0.90
0.90 | | 19VAMP22
19VANP22
19VAQP22
19VATP22
19VAUP22
19VBDP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | P
V
V
V
P | UR
U
U
U
UR | 52.0
53.0
53.5
53.5
43.5
52.0 | 18.439
18.247
18.247
18.247
18.047
18.047 | 6.893
6.893
6.893
6.893
6.693 | 1400/1900
1800/2300
1800/2300
1800/2300
1500/2000
1500/2000 | 14BE
14BH
14BE
14BE
14BE
14BE | DBPES
DUPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 19VBLP22
19VBQP22
19VBRP22
19VBSP22
19VBWP22
19VCBP22 | ZZZZZZ | 90
90
90
90
90
90 | G G G G | | > > > > > > > > > > > > > > > > > > > | U
UM
U
U
U
UM | 70.0
53.5
70.0 | 14.091
18.247
18.247
18.247
18.065
18.247 | 5.568
6.893
6.893
6.893
6.703
6.893 | 1350/1750
1800/2300
1800/2300
1800/2300
1800/2300
1800/2300 | 13C
14BH
14BE
14BE
14BE
14BE | DBPES
DUPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
1.35
0.90 | | • | TYF | ICAL OPER | ATING CO | NDITIONS | | |----------------------|----------|----------------------------------|----------------------------|--------------|----------------------| | KV
MAX. | ٧. | | SPOT (| UTOFF | | | ANODE KV
Design M | ANODE KV | FOCUS
ELEC-
TRODE
VOLTS | GRID-
NUMBER 2
VOLTS | GRID- | TUBE
TYPE | | 27.5
27.5 | 25
25 | 4200 /5000 | 215/550 | 125 | 18VAJP22 | | 22.5 | 20 | 4200/5000
-75/400 | 215/550
210/505 | -125
-125 | 18VAKP22
18VALP22 | | 22.5 | 20 | -75/400 |
210/505 | -125 | 18VAMP22 | | 22.5
27.5 | 20
25 | 3360/4000
4200/5000 | 210/540
285/685 | -125
-150 | 18VANP22
18VAQP22 | | 27.5 | 25 | 4200/5000 | 250/650 | -150 | 18VASP22 | | 27.5
22.5 | 25
20 | 4200/5000
-75/400 | 250/650
210/505 | -150
-125 | 18VATP22
18VAZP22 | | 27.5 | 25 | 4200/5000 | 340/970 | -150 | 18VBAP22 | | 22.5
22.5 | 20
20 | -75/400
-75/400 | 210/505
150/390 | -125
-100 | 18VBDP22
18VBEP22 | | 22.5 | 20 | -75/400 | 210/505 | -125 | 18VBGP22 | | 27.5
22.5 | 25
20 | 4200/5000
75/400 | 220/545
150/390 | -125
-100 | 18VBHP22
18VBJP22 | | 27.5 | 25 | 4200/5000 | 215/550 | -125 | 18VBKP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 205/535
285/685 | −125
−150 | 18VBMP22
19EXP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 19EYP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | 150
150 | 19FMP22
19FXP22 | | 23.0 | 22 | 3700/4400 | 100/400 | -75 | 19GLP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | -150
-150 | 19GSP22
19GVP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 19GWP22 | | 24.0 | 22 | 3700/4400 | 190/460 | -100 | 19GXP22 | | 25.0
27.5 | 22
25 | 3530/4200
4200/5000 | 130/300
285/685 | −70
−150 | 19G Y P22
19HBP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
340/970 | ~150
~150 | 19HCP22
19HFP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 19HKP22 | | 27.5
22.5 | 25 | 4200/5000 | 285/685 | -150 | 19HMP22 | | 27.5 | 20
25 | -75/400
4200/5000 | 150/390
285/685 | -100
-150 | 19HNP22
19HQP22 | | 27.5
22.5 | 25
20 | 4200/5000 | 285/685 | -150 | 19HRP22 | | 27.5 | 25 | -75/400
4200/5000 | 150/390
175/460 | -100
-100 | 19HTP22
19HXP22 | | 22.5 | 20 | -75/400 | 150/390 | -100 | 19HYP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 340/970
175/460 | -150
-100 | 19JLP22
19JNP22 | | 22.5
27.5 | 20
25 | -75/400 | 150/390
285/685 | -100
-150 | 19JWP22 | | 27.5 | 25 | 4200/5000
4200/5000 | 285/685 | -150 | 19JYP22
19JZP22 | | 27.5
24.2 | 25
20 | 4200/5000 | 285/685 | -150 | 19KLP22 | | 27.5 | 25 | 1950/3250
4200/5000 | 310/690 | -150 | 19TP22
19VABP22 | | 27.5
27.5 | 25
25 | 4200/5000 | 250/640 | -150 | 19VAFP22 | | 27.5 | 25 | 4200/5000
4200/5000 | | -150
-125 | 19VAGP22
19VAMP22 | | 22.5 | 20 | -75/400 | 210/505 | -125 | 19VANP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -125
-125 | 19VAQP22
19VATP22 | | 27.5 | 25 | 4200/5000 | 200/540 | -125 | 19VAUP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -125
-125 | 19VBDP22
19VBLP22 | | 22.5 | 20 | -75/400 | 210/505 | -125 | 19VBQP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -125
-125 | 19VBRP22
19VBSP22 | | 27.5 | 25 | 4200/5000 | 220/545 | ~125 | 19VBWP22 | | 27.5 | 25 | 4200/5000 | 215/550 | -125 | 19VCBP22 | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O -- Round Tube - ☐ —Rectangular Tube - B—Fiberglass wrap implosion protection - E-Filled rim type implosion protection - G-Glass Tube - MET-Metal Tube - M Matrix Screen - P—Sagged glass implosion plate attached to face - R-Anti-reflection faceplate - U-Rare earth red phosphor - V -Rim bands and tension band - W—Rim bands and tension band with mounting lugs - X —Tension band - Y—Tension band and mounting lugs - DUPES—Uni-potential electrostatic focus, delta - DBPES -- Bi-potential electrostatic focus, delta - IUPES—Uni-potential electrostatic focus, - IBPES —Bi-potential electrostatic focus, inline - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S. High voltage electrostatic focus | | | | # | T | FACE | E PLA | TE | | T_ | T | | | HEA | TER | |--|-----------------------|--|---------------------------|--------|---------------------------------------|----------------------------------|--|--|---|--|--|--|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | TRANSMIT-
TANCE IN % | Overall Length
(Inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | FOCUS | v. | A. | | 19VCSP22
19VP22
20VABP22
20VADP22
20VAEP22
20VAFP22 | | 90
62
90
90
90 | GGGGG | | W - V P V W | UM
U
UR
U | 69.0
42.0
49.5
51.0
51.0 | 18.247
26.437
19.012
19.404
19.212
19.212 | 6.893
10.531
6.693
6.893
6.893 | 1800/2300
1500/3000
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14W
14BE
14BE
14BE | DBPES
H.V.E.S.
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3 | 0.90
1.80
0.90
0.90
0.90 | | 20VAPP22
20VAHP22
20VAJP22
20VAMP22
20VANP22
20VASP22 | | 90
90
90
90
90
90 | 9 9 9 9 9 9 | | P
V
P
P | UR
U
UR
UR
UR | 41.0
52.0
52.0
52.0
52.0
52.0
51.0 | 19.404
19.212
19.032
19.204
19.204
19.032 | 6.893
6.893
6.703
6.693
6.693
6.703 | 2000/2500
2000/2500
1800/2300
2000/2500
2000/2500
2000/2500 | 14BE
14BH
14BE
14BE
14BE
14BE
14BE | DBPES DUPES DBPES DBPES DBPES DBPES DBPES DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
1.35
1.35
1.35 | | 21AXP22
21AXP22A
21CYP22
21CYP22A
21FBP22
21FBP22A | 1999000 | | MET
MET
G
G
G | 000000 | | | 72.0
72.0
72.0
72.0 | 25.312
24.937
25.031
25.031
25.031
25.031 | 9.625
9.625
9.625
9.625
9.625
9.625 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14W
14AH
14AL
14AL
14AU
14AU | DBPES DBPES DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.80
1.60
1.80
1.80
1.80
1.80 | | 21FJP22
21FJP22A
21FKP22
21GFP22
21GRP22
21GUP22 | | 70
70
70
90
90
70 | GGGGGG | 000000 | P
P
P
V | R
UR
UR
U
U | 39.0
39.0
39.0
41.0
41.0
72.0 | 25.219
25.219
25.219
19.457
19.300
25.031 | 9.625
9.625
9.625
6.994
6.875
9.625 | 2000/2500
2000/2500
2000/2500
1500/2000
1500/2000
2000/2500 | 14AU
14AU
14AU
14BE
14BE
14AU | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.80
1.80
1.80
1.35
1.35
1.90 | | 21GVP22
21GWP22
21GYP22
21HBP22
21VABP22
21VACP22 | | 70
90
70
90
92
92 | G G G G G | 000000 | P
P
P
P | UR
UR
U
UR
UR
U | 39.0
41.0
69.0
52.0
40.5
50.5 | 25.219
19.457
25.219
19.457
19.228
19.036 | 9.625
6.994
9.625
6.994
6.893
6.893 | 2000/5000
1500/2000
2000/2500
1700/2200
1750/2250
1750/2250 | 14AU
14BE
14AU
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.8 | 1.90
1.35
1.90
1.35
0.90
0.90 | | 21VADP22
21VAJP22
21VAKP22
21VALP22
21VAQP22
21VARP22 | | 92
92
92
92
92
92
92 | GGGGGG | | W
V
P
W
V | U
URM
UR
UR
UM
UM | 50.5
53.0
66.0
50.5
68.0
68.0 | 19.036
18.820
19.228
19.036
19.036
19.036 | 6.893
6.693
6.893
6.893
6.893 | 1750/2250
1400/1800
1750/2250
1750/2250
1750/2250
1750/2250 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 21 V A U P 22
22 A H P 22
22 A L P 22
22 A N P 22
22 A R P 22
22 A S P 22 | | 92
90
90
90
90
90 | G G G G G | | V V V P V | UM
U
U
U
UR
U | 84.5
42.0
42.0
52.0
50.5
52.0 | 19.036
19.012
19.032
19.012
19.204
19.012 | 6.893
6.693
6.703
6.693
6.693
6.693 | 1750/2250
1700/2200
1800/2300
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BH
14BE
14BE | DBPES
DBPES
DBPES
DUPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
1.35
0.90
0.90
0.90 | | 22ATP22
22EP22
22JP22
22KP22
22LP22
22QP22 | | 90
70
90
90
90
90 | GGGGGG | | W P P P P P P P P P | U IR
UUUUR | 52.0
73.0
41.0
69.0
50.0
42.0 |
19.012
25.375
19.204
19.012
19.204
19.427 | 6.693
11.688
6.693
6.693
6.693
6.920 | 2000/2500
1500/2800
2000/2500
2000/2500
2000/2500
1700/2200 | 14BE
14W
14BE
14BE
14BE
14BE | DBPES DBPES DBPES DBPES DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
1.80
0.90
0.90
0.90
1.35 | | 22RP22
22SP22
22UP22
22WP22
22WP22
22YP22
23EGP22 | 400004D | 90
90
90
90
90
90 | GGGGGG | | I P V W P P | U R
U U U R
R | 69.0
41.0
42.0
42.0
52.0
41.0 | 19.239
19.204
19.012
19.012
19.469
19.969 | 6.920
6.693
6.693
6.693
6.950
7.219 | | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3 | 1.35
1.35
0.90
0.90
1.35
1.35 | | 23EGP22A
23VABP22
23VACP22
23VADP22
23VALP22
23VAMP22 | | 92
90
90
90
90
90 | 999999 | | PPVVPV | UR
UR
U
U
URM
UM | 41.0
50.0
52.0
42.0
67.0
69.0 | 19.969
20.912
20.722
20.702
21.094
20.902 | 7.219
6.703
6.703
6.693
6.893
6.893 | 1800/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
1.35
1.35
0.90
0.90
0.90 | | • | TYI | PICAL OPER | ATING CO | NDITIONS | | |--------------------------------|----------|------------------------|--------------------|-------------------|----------------------| | K
MAX. | ₹. | | SPOT | CUTOFF | | | 빚줎 | DEK | FOCUS
ELEC- | GRID- | GRID- | TUBE
TYPE | | ANOI | ANODE | TRODE
VOLTS | NUMBER 2
VOLTS | NUMBER 1
VOLTS | | | 27.5
29.7 | 25
25 | 4200/5000
6500/8000 | 205/535
150/330 | -125
-75 | 19VCSP22
19VP22 | | 27.5 | 25 | 4200/5000 | | -150 | 20VABP22 | | 27.5 | 25 | 4200/5000 | 215/550 | -125
-125 | 20VADP22
20VAEP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 215/550
215/550 | -125 | 20VAFP22 | | 27.5 | 25 | 4200/5000 | 215/550 | -125 | 20VAGP22 | | 22.5
27.5 | 20 | -75/400
4200/5000 | 210/505
320/750 | -125
-150 | 20VAHP22
20VAJP22 | | 27.5 | 25 | 4200/5000 | 300/660 | -150 | 20VAMP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 300/660
220/545 | -150
-125 | 20VANP22
20VASP22 | | 27.5 | 25 | 3800/5300 | 140/310 | -39/-73 | 21AXP22 | | 27.5 ●
27.5 ● | 25
25 | 3800/5300
1200/5000 | 130/370
105/345 | -45/-100
-70 | 21AXP22A
21CYP22 | | 27.5 | 25 | 4200/5000 | | | 21CYP22A | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 105/345
310/690 | -70
-150 | 21FBP22
21FBP22A | | 27.5 | 25 | 4200/5000 | 105/345 | -70 | 21FJP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 310/690
105/345 | -150
-70 | 21FJP22A
21FKP22 | | 27.5 | 25 | 4200/5000 | 225/425 | -100 | 21GFP22 | | 27.5
27.5 | 25
25 | 4125/5000
4200/5000 | 340/970
310/690 | -150
-150 | 21GRP22
21GUP22 | | 27.5 | 25 | 4200/5000 | 310/690 | -150 | 21GVP22 | | 27.5 | 25 | 4125/5000 | 225/425 | -100 | 21GWP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 310/690
225/425 | -150
-100 | 21GYP22
21HBP22 | | 27.5
27.5 | 25
25 | 4200/5000 | 215/550 | -125 | 21VABP22 | | 27.5 | 25 | 4200/5000
4200/5000 | 215/550
215/550 | -125
-125 | 21VACP22
21VADP22 | | 27.5 | 25 | 4200/5000 | 150/410 | -100 | 21VAJP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 215/550
205/535 | -125
-125 | 21VAKP22
21VALP22 | | 27.5 | 25
25 | 4200/5000 | 215/550 | -125 | 21VAQP22 | | 27.5
27.5 | 25 | 4200/5000
4200/5000 | 215/550
215/550 | -125
-125 | 21VARP22
21VAUP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 22AHP22 | | 27.5
22.5 | 25
20 | 4200/5000
-75/400 | 320/750
150/390 | -150
-100 | 22ALP22
22ANP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 22ARP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | -150
-150 | 22ASP22
22ATP22 | | 27.5 | 25 | 4000/5100 | 50/225 | -55/-105 | 22EP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | -150
-150 | 22JP22
22KP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 22LP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 280/690
280/690 | -150
-150 | 22QP22
22RP22 | | 27.5 | 25 | 4200/5000 | 300/660 | -150 | 22 SP 22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | -150
-150 | 22UP22
22WP22 | | 27.5 | 25 | 4200/5000 | 330/665 | -150 | 22YP22 | | 27.5
27.5 | 25
25 | 4175/5400
4175/5400 | 265/565
265/565 | -90
-90 | 23EGP22
23EGP22A | | 27.5 | 25 | 4200/5000 | 220/545 | -125 | 23VABP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 175/460
285/685 | -100
-150 | 23VACP22
23VADP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 23VALP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 23VAMP22 | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O-Round Tube - □ -- Rectangular Tube - B-Fiberglass wrap implosion protection - E-Filled rim type implosion protection - G-Glass Tube - MET Metal Tube - M -- Matrix Screen - P-Sagged glass implosion plate attached to face - R-Anti-reflection faceplate - U-Rare earth red phosphor - V-Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X -Tension band - Y—Tension band and mounting lugs - DUPES -- Uni-potential electrostatic focus, - DBPES-Bi-potential electrostatic focus, delta - IUPES-Uni-potential electrostatic focus, - IBPES Bi-potential electrostatic focus. - L.V.E.S. -- Low voltage electrostatic focus - H.V.E.S. High voltage electrostatic focus | | | | ¥ | | FACI | PLA | TE | | æ | | | | HEA | TER | |--|-----------------------|----------------------------------|-----------------------|-------|-------------------------|---------------------------------|--|--|--|--|--|--|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | TRANSMIT-
TANCE IN % | Overall Length
(Inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | FOCUS | v. | A. | | 23VANP22
23VAQP22
23VARP22
23VASP22
23VATP22
23VAXP22 | | 90
90
90
90
90
90 | G G G G | | P
V
P
P | UR
UR
URM
URM
URM | 50.5
52.0
41.0
67.5
78.2
78.2 | 21.094
20.902
21.094
20.894
20.924
20.924 | 6.893
6.893
6.693
6.693
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
1.35
0.90
1.35 | | 23VAYP22
23VAZP22
23VBAP22
23VBCP22
23VBDP22
23VBJP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | V V V V V | UM
UM
U
U
U | 80.0
80.0
80.0
42.0
42.0
53.0 | 20.732
20.732
20.732
20.702
20.702
20.702 | 6.693
6.693
6.693
6.693
6.693 | 2350/2850
2000/2500
2350/2850
2000/2500
2000/2500
1400/1800 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.35
0.90
0.90
1.35
0.90
0.90 | | 23VBKP22
23VBNP22
23VBRP22
23VBSP22
23VBTP22
25ABP22 | | 90
90
90
90
90
90 | G
G
G
G
G | | W
V
P
V
P | UR
U
UR
U
U | 52.0
69.0
69.0
67.0
52.0
41.0 | 20.702
20.722
20.902
20.912
20.722
20.924 | 6.893
6.703
6.703
6.703
6.703
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
0.90
1.35
1.35
0.90 | | 25AEP22
25AFP22
25AJP22
25AKP22
25ALP22
25ALP22A | 00000 | 90
90
90
90
90
90 | G G G G | | P
V
E
E
W | U
UR
U
UR
UR | 69.0
52.0
42.0
42.0
52.0
52.0 | 20.960
21.160
20.702
20.960
20.732
20.732 | 6.950
6.950
6.693
6.950
6.693
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE |
DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
1.35
0.90
1.35
0.90
0.90 | | 25AMP22
25ANP22
25AP22
25AP22A
25AQP22
25AWP22 | 444220 | 90
90
90
90
90
90 | G
G
G
G
G | | W
P
P
P
V | U
R
UR
UR
U | 42.0
41.0
41.0
41.0
41.0
42.0 | 20.732
20.924
20.924
20.924
20.912
20.722 | 6.693
6.693
6.693
6.693
6.703
6.703 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
0.90
0.90
1.35
1.35 | | 25AYP22
25AZP22
25BAP22
25BCP22
25BDP22
25BFP22 | | 90
90
90
90
90 | G G G G G | | W > P P > V | U
URM
URM
UM
U | 42.0
42.0
78.2
67.5
69.0
42.0 | 20.797
20.702
20.924
20.894
20.702
20.722 | 6.788
6.693
6.693
6.693
6.693
6.703 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 1.35
1.35
1.35
0.90
0.90
1.35 | | 25BGP22
25BHP22
25BKP22
25BMP22
25BP22
25BP22A | | 90
90
90
90
90 | G G G G | | P>>P) | UR
U
UR
UR | 52.5
52.0
78.2
52.0
69.0
69.0 | 20.924
20.702
20.702
21.160
20.732
20.732 | 6.693
6.693
6.693
6.693
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
1.35
1.35
0.90
0.90 | | 25CAP22
25CBP22
25FP22
25FP22A
25GP22
25GP22A | 000000 | 90
90
90
90
90
90 | G
G
G
G | | W
P
P
P | U
UR
U
R
UR | 52.0
52.0
69.0
69.0
42.0
42.0 | 20.827
21.125
20.939
20.736
21.127
20.924 | 6.788
6.875
6.920
6.693
6.920
6.693 | 2000/2500
2000/2800
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 1.35
1.30
1.30
1.35
1.35
1.35 | | 25RP22
25SP22
25UP22
25VABP22
25VACP22
25VADP22 | 444222 | 90
90
90
90
90
90 | G
G
G
G
G | | P E P > P | U
R
U
URM
UM
URM | 67.5 | 20.535
21.125
20.512
21.822
21.630
21.822 | 6.496
6.875
6.500
6.893
6.893
6.893 | | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | | 0.90
1.30
0.90
0.90
0.90
0.90 | | 25VAEP22
25VAFP22
25VAGP22
25VAJP22
25VAKP22
25VAMP22 | DDDDDD | 90
90
90
90
90
90 | G
G
G
G | | P
W
P
P | UR
U
UR
UR
URM | 48.0
49.5
49.5
48.0
48.0
78.0 | 21.822
21.630
21.630
21.603
21.632
21.628 | 6.893
6.893
6.893
6.693
6.703
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3 | 0.90
0.90
0.90
0.90
1.35
0.90 | | | TYP | ICAL OPER | ATING CON | IDITIONS | | |-----------------------|-----------|----------------------------------|---------------------------------------|----------------------------|----------------------| | ¥, | > | | SPOT C | UTOFF | | | ANODE KV
DESIGN MA | ANODE KV. | FOCUS
ELEC-
TRODE
VOLTS | GRID-
NUMBER 2
VOLTS | GRID-
NUMBER 1
VOLTS | TUBE
TYPE | | 27.5
27.5 | 25
25 | 4200/5000 | 200/535 | -125
-125 | 23VANP22 | | 27.5 | 25 | 4200/5000
4200/5000 | 200/535
205/535 | -125
-125 | 23VAQP22
23VARP22 | | 27.5 | 25 | 4200/5000 | 255/655 | -150 | 23VASP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 250/650
250/650 | -150
-150 | 23VATP22
23VAXP22 | | 27.5 | 25 | 4200/5000 | 250/650 | -150 | 23VAYP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 250/650
250/650 | -150
-150 | 23VAZP22
23VBAP22 | | 27.5 | 25 | 4200/5000 | 200/535 | -125 | 23VBCP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 200/535
285/685 | -125
-150 | 23VBDP22
23VBJP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 23VBKP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 220/545
285/685 | -125
-150 | 23VBNP22
23VBRP22 | | 27.5 | 25 | 4200/5000 | 220/545 | -125 | 23VBSP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 220/545
285/685 | -125
-150 | 23VBTP22
25ABP22 | | 27.5 | 25 | 4200/5000 | 355/685 | -150 | 25AEP22 | | 27.5
27.5 | 25
25 | 4200/5000 | 355/685 | -150
-150 | 25AFP22
25AJP22 | | 27.5 | 25 | 4200/5000
4200/5000 | 285/685
355/685 | -150
-150 | 25AKP22 | | 27.5
27.5 | 25
25 | 4200/5000 | 285/685
285/685 | -150
-150 | 25ALP22
25ALP22A | | 27.5 | 25 | 4200/5000
4200/5000 | 285/685 | -150 | 25AMP22 | | 27.5 | 25 | 4200/5000 | 300/660 | -150 | 25ANP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 285/685
285/685 | -150
-150 | 25AP22
25AP22A | | 27.5
27.5 | 25
25 | 4200/5000 | 320/750 | -150
-100 | 25AQP22 | | 27.5 | 25 | 4200/5000
4200/5000 | · · · · · · · · · · · · · · · · · · · | -150 | 25AWP22
25AYP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 25AZP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 290/650
255/655 | -150
-150 | 25BAP22
25BCP22 | | 27.5 | 25 | 4200/5000 | 255/655 | -150 | 25BDP22 | | 27.5 | 25
25 | 4200/5000
4200/5000 | 4 | -100
-150 | 25BFP22
25BGP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 25BHP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -100
-150 | 25BKP22
25BMP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 25BP22 | | 27.5 | 25
25 | 4200/5000
4200/5000 | · | -150
-150 | 25BP22A
25CAP22 | | 27.5 | 25 | 4250/5000 | 340/990 | -150 | 25CBP22 | | 27.5
27.5 | 25 | 3600/4400
4200/5000 | 360/1000
285/685 | -150
-150 | 25FP22
25FP22A | | 27.5 | 25 | 3600/4400 | 360/1000 | -150 | 25GP22 | | 27.5
27.5 | 25 | 4200/5000 | 285/685 | -150 | 25GP22A | | 27.5 | 25
25 | 4200/5000
4250/5000 | | -150
-150 | 25KP22
25SP22 | | 27.5 | 25 | 4200/5000 | 210/495 | -105 | 25UP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 205/535 | -125
-125 | 25VABP22
25VACP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 25VADP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -125
-125 | 25VAEP22
25VAFP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 25VAGP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | | -100
-125 | 25VAJP22
25VAKP22 | | 27.5 | 25 | 4200/5000 | | -150 | 25VAMP22 | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O-Round Tube - □ —Rectangular Tube - B Fiberglass wrap implosion protection - E-Filled rim type implosion protection - G-Glass Tube - MET-Metal Tube - M -- Matrix Screen - P—Sagged glass implosion plate attached to face - R -Anti-reflection faceplate - U-Rare earth red phosphor - V-Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X -Tension band - Y—Tension band and mounting lug: - DUPES —Uni-potential electrostatic focus, delta - DBPES—Bi-potential electrostatic focus, - IUPES—Uni-potential electrostatic focus, - IBPES—Bi-potential electrostatic focus, - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S.—High voltage electrostatic focus | | | | ¥ | | FACI | E PLA | TE | | x | | | | HEA | TER | |---|-----------------------|----------------------------------|-----------------------|-------|-------------------------|---|--|--|--|--|--|--|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | LIGHT
TRANSMIT-
TANCE IN % | Overall Length
(Inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | FOCUS | ٧. | A. | | 25VAQP22
25VAWP22
25VAXP22
25VAZP22
25VBAP22
25VBGP22 | | 90
90
90
90
90
90 | G G G G G | | >>>>P> | UM
UM
UM
UR
UR |
80.0
67.5
67.5
49.5
66.0
67.5 | 21.430
21.430
21.630
21.457
21.622
21.457 | 6.693
6.693
6.893
6.703
6.693
6.703 | 2300/2800
1400/1800
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
1.35
1.35
1.35 | | 25VBJP22
25VBKP22
25VBLP22
25VBMP22
25WP22
25XP22 | DDDDDD | 90
90
90
90
90
90 | G
G
G
G
G | | W P P P | U
UR
URN
UR
UR | 49.5
67.5
65.5
82.5
41.0
41.0 | 21.630
21.457
21.632
21.822
20.924
20.924 | 6.893
6.703
6.703
6.893
6.693
6.693 | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | 14BE
14BE
14BE
14BE
14BE
14BE | DBPES
DBPES
DBPES
DBPES
DBPES
DBPES | 6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
1.35
1.35
1.35
0.90 | | 25YP22
25ZP22
370AB22
370CB22
490AB22
490ACB22 | <u> </u> | 90
90
90
90
90
90 | G G G G G | | P W H | U
UR
-
- | 69.0
41.0
—
—
— | 20.732
21.160
14.725
14.725
17.520
17.520 | 6.693
6.950
—
—
— | 2000/2500
2000/2500
—
—
—
— | 14BE
14BE
14BH
14BH
14BE
14BE | DBPES
DBPES
—
—
— | 6.3
6.3
6.3
6.3
6.3 | 0.90
1.35
0.90
0.90
0.90
0.90 | | 490ADB22
490AEB22
490AFB22
490AGB22
490AHB22
490AHB22A | | 90
90
90
90
90 | GGGGGG | | P P | | | 17.992
17.992
17.792
17.756
17.950
17.954 | | | 14BE
14BE
14BE
14BE
14BE
14BE | | 6.3
6.3
6.3
6.3
6.3 | 0.80
0.80
0.80
0.90
0.90
0.90 | | 490AJB22
490AJB22A
490AKB22
490ALB22
490AMB22
490ANB22 | 1 1 1 1 | 90
90
90
90
90 | GGGGGG | | P
P
 | | | 18.147
18.147
17.579
17.520
17.952
17.579 | | _
_
_
_ | 14BE
14BE
14BE
14BE
14BE
14BE | | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.80
0.90
0.90
0.90 | | 490ARB22
490ASB22
490BAB22
490BCB22
490BDB22
490BGB22 | 101110 | 90
90
90
90
90 | GGGGGG | | P P W | = | 54.0
—
—
—
64.0 | 17.756
17.772
18.228
18.421
18.140
17.601 | 6.418 | 1300/1900

1500/2100 | 14BE
14BE
14BE
14BE
14BE
14BH | | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.80
0.80
0.90
0.90 | | 490BHB22
490BNB22
490BRB22
490BUB22
490BVB22
490BXB22 | 0 1 00 1 0 | 90
90
90
90
90
90 | GGGGGG | | E
P
V
P | U
U
UR
UR | 45.0
 | 17.793
18.151
17.793
17.601
18.540
17.793 | 6.439
6.439
6.439
6.439 | 1500/2100
1500/2100
1500/2100
1500/2100
1400/1900 | 14BE
14BH
14BE
14BE
14BH
14BE | | 6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 490CB22
490DB22
490EB22
490EB22A
490FB22
490GB22 | | 90
90
90
90
90
90 | GGGGGG | | W - | | | 17.520
18.110
17.520
17.520
18.110
17.520 | 0,700 | | 14BE
14BE
14BE
14BE
14BE
14BE | | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.90
0.90 | | 490HB22
490JB22
490JB22A
490KB22
490KB22A
490LB22 | | 90
90
90
90
90
90 | 999999 | | - | | | 17.913
18.504
18.110
18.110
17.913 | | - | 14BE
14BE
14BE
14BE
14BE
14BE | | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.80
0.80
0.80 | | 490MB22
490NB22
490RB22
490RB22
490TB22
490TB22 | - | 90
90
90
90
90
90 | GGGGG | | W
P
P
P | | _
_
_
_ | 18.150
18.346
17.756
17.795
17.520
17.520 | | -
-
-
- | 148E
14BE
14BE
14BE
14BE
14BE
14BE | | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.90
0.90
0.90
0.90
0.80
0.90 | | • | TYP | ICAL OPER | ATING COI | NDITIONS | <u> </u> | |----------------------|----------|----------------------------------|----------------------------|----------------------|-----------------------| | MAX. | · · | | SPOT C | UTOFF | | | ANODE KV
DESIGN M | ANODE KV | FOCUS
ELEC-
TRODE
VOLTS | GRID-
NUMBER 2
VOLTS | GRID- | TUBE
TYPE | | 27.5 | 25 | 4200 5000 | 250/650 | -150 | 25VAQP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 250/650
205/535 | -150
-125 | 25VAWP22
25VAXP22 | | 27.5 | 25 | 4200/5000 | 220/545 | -125 | 25VAZP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 200, 525
220, 545 | 125
125 | 25VBAP22
25VBGP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 25VBJP22 | | 27.5
27.5 | 25 | 4200/5000
4200/5000 | 220/545
220/545 | -125
-125 | 25VBKP22
25VBLP22 | | 27.5 | 25 | 4200/5000 | 205/535 | -125 | 25VBMP22 | | 27.5
27.5 | 25
25 | 4200/5000
4200/5000 | 300/660
285/685 | -150
-150 | 25WP22
25XP22 | | 27.5 | 25 | 4200/5000 | 285/685 | -150 | 25YP22 | | 27.5
22.5 | 25
20 | 4200/5000
-75/400 | 355/685
200 | -150
-57/-125 | 25ZP22
370AB22 | | 22.5 | 20 | -75/400 | 200 | -57/-125 | 370CB22 | | 23.0
23.0 | 20 | 3360/4000
3360/4000 | 200
200 | -50/-105
-50/-105 | 490AB22
490ACB22 | | 23.0 | 20 | 3360/4000 | 200 | -50/-105 | 490ADB22 | | 23.0 | 20 | 3360/4000 | 200 | -50/-105 | 490AEB22 | | 23.0
23.0 | 20 | 3360/4000
3360/4000 | 200
200 | -50/-105
-50/-105 | 490AFB22
490AGB22 | | 27.5 | 25 | 4200/5000 | 285/684 | -150 | 490AHB22 | | 27.5 | 25 | 4200/5000
4030/4800 | 300/695
150/420 | -150
-150 | 490AHB22A
490AJB22 | | 27.5 | 25 | 4200/5000 | 300/695 | -150 | 490AJB22A | | 26.0
23.0 | 24 20 | 4030/4800
3360/4000 | 200
200 | -50/-105 | 490AKB22 | | 26.0 | 24 | 4030/4800 | 200 | -50/-105
-50/-105 | 490ALB22
490AMB22 | | 25.5 | 22 | 3700/4400 | 200 | -50/-105 | 490ANB22 | | 23.0
26.0 | 20 | 3360/4000
4030/4800 | 200
200 | -50/-105
-50/-105 | 490ARB22
490ASB22 | | 26.0 | 24 | 4030/4800 | 285/685 | -150 | 490BAB22 | | 26.0
26.0 | 24 | 4030/4800
4030/4800 | | -150
-100 | 490BCB22
490BDB22 | | 22.5 | 20 | 4200/5000 | 200/375 | -100 | 490BGB22 | | 27.5
22.5 | 25
20 | 4200/5000
-75/400 | 190/380
150/390 | -100
-100 | 490BHB22
490BNB22 | | 27.5 | 25 | 4200/5000 | 340/630 | -150 | 490BRB22 | | 27.5
23.0 | 25 | 4200/5000
-75/400 | 190/380
150/410 | -100
-100 | 490BUB22
490BVB22 | | 22.5 | 20 | -75/400 | 200/350 | -100 | 490BXB22 | | 23.0 | 20 | 3360/4000 | | -50/-105 | 490CB22 | | 23.0
23.0 | 20
20 | 3360/4000
3360/4000 | | -50/-105
-50/-105 | 490DB22
490EB22 | | 23.0
23.0 | 20 | 3360/4000 | 200 | -50/-105 | 490EB22A | | 23.0 | 20 | 3360/4000
3360/4000 | | -50/-105
-200 | 490FB22
490GB22 | | 24.0 | 22 | 3700/4400 | 325/800 | -150 | 490HB22 | | 23.0
23.0 | 20 | 3360/4000
3360/4000 | 290/670
200 | -150
-50/-105 | 490JB22
490JB22A | | 23.0 | 20 | 3360/4000 | 200 | -50/-105 | 490KB22 | | 23.0
23.0 | 20 | 3360/4000
3360/4000 | | -50/-105
-50/-105 | 490KB22A
490LB22 | | 23.0 | 20 | 3360/4000 | 200 | -50/-105 | 490MB22 | | 23.0 | 20 | 3360/4000 | 200 | -50/-105
-50/-105 | 490NB22 | | 23.0
23.0 | 20 | 3360/4000
3360/4000 | | -50/-105 | 490RB22
490SB22 | | 23.0 | 20 | 3360/4000
3360/4000 | 200 | -50/-105 | 490TB22 | | 23.0 | 20 | 3300/4000 | 200 | _50/-105 | 490UB22 | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O-Round Tube - □ —Rectangular Tube - B -- Fiberglass wrap implosion protection - E -- Filled rim type implosion protection - G -Glass Tube - MET Metal Tube - M Matrix Screen - P—Sagged glass implosion plate attached to face - R-Anti-reflection faceplate - U-Rare earth red phosphor - V-Rim bands and tension band - W—Rim bands and tension band with mounting lugs - X-Tension band - Y-Tension band and mounting lugs - DUPES —Uni-potential electrostatic focus, delta - DBPES—Bi-potential electrostatic focus, delta - IUPES—Uni-potential electrostatic focus, inline - IBPES —Bi-potential electrostatic focus, - L.V.E.S. --- Low voltage electrostatic focus - H.V.E.S. -- High voltage electrostatic focus | | 2 144 | | AL | FACE PLATE | | | TE | = | | | | | HEATER | | |--------------|-----------------------|------------------------|--------------|------------|-------------------------|-----------|----------------------------------|----------------------------|-------------------------|---------------------------------|--------|-------|--------|-------| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or MET | SHAPE | IMPLOSION
PROTECTION | TREATMENT | LIGHT
TRANSMIT-
TANCE IN % | Overall Length
(Inches) | NECK LENGTH
(Inches) | EXTERNAL
COATING
IN
pf | BASING | FOCUS | v. | A. | | 490VB22 | | 90 | G | \Box | Р | _ | | 17.756 | | _ | 14BE | | 6.3 | 0.901 | | 490WB22 | 1 — | 90 | G | | _ | | | 17.520 | _ | | 14BE | - | 6.3 | 0.90 | | 490XB22 | I — | 90 | G | | Р | _ | - | 17.756 | _ | _ | 14BE | | 6.3 | 0.90 | | 490 Y B22 | | 90 | G | | P | - | _ | 17.756 | _ | | 14BE | _ | 6.3 | 0.90 | | 490ZB22 | <u> </u> | 90 | G | | Р | | _ | 17.756 | _ | 1 |
14BE | * | 6.3 | 0.90 | | ♦. | TYP | ICAL OPER | ATING CON | IDITIONS | | |------------------------------|----------------------------|--|---------------------------------|--|--| | KV
MAX. | > | | SPOT C | UTOFF | | | ANODE K
DESIGN N | ANODE KV. | FOCUS
ELEC-
TRODE
VOLTS | GRID-
NUMBER 2
VOLTS | GRID-
NUMBER 1
VOLTS | TUBE
TYPE | | 23.0
23.0
23.0
25.5 | 20
20
20
20
23 | 3360/4000
3360/4000
3360/4000
3860/4600 | 200
200
200
200
200 | -50/-105
-50/-105
-50/-105
-50/-105 | 490VB22
490WB22
490XB22
490YB22 | | 23.0 | 20 | 3360/4000 | | -50/-105 | 490ZB22 | - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. - O -- Round Tube - □ —Rectangular Tube - B—Fiberglass wrap implosion protection - E-Filled rim type implosion protection - G-Glass Tube - MET --- Metal Tube - M -- Matrix Screen - P Sagged glass implosion plate attached to face - R-Anti-reflection faceplate - U-Rare earth red phosphor - V-Rim bands and tension band - W—Rim bands and tension band with mounting lugs - X -Tension band - Y —Tension band and mounting lugs - DUPES—Uni-potential electrostatic focus, - DBPES—Bi-potential electrostatic focus, delta - IUPES Uni-potential electrostatic focus, inline - IBPES—Bi-potential electrostatic focus, inline - L.V.E.S. -- Low voltage electrostatic focus - H.V.E.S.—High voltage electrostatic focus | | z | ш | ¥ | F | ACEPL | ATE | | | ø | | Ŧ | | HEA | TER | |--|--|--|---------------------------|--------|-------------------------|--------------------------------|---|--|----------------------------|--|--|---|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 2EP4
5AXP4
7DP4
7RP4
8AP4
8AP4A | 44444 | 30
53
50
50
54
54 | G
G
G
MET
MET | 000000 | 11111 | A C C C C F | 300/500
None
400/1500
None
None
None | L.V.E.S.
Auto.Es.
H.V.E.S.
Mag.
Mag.
Mag. | N N D S S S | 8.250
10.625
14.062
14.062
14.250
14.250 | 5.625
7.375
8.125
8.125
7.000
7.000 | 8JK
12S
12C
12D
12H
12H | 6.3
6.3
6.3
6.3
6.3 | 0.145
0.60
0.60
0.60
0.60
0.60 | | 8DP4
8JP4
8LP4
8MP4
8XP4
8YP4 | 000000 | 90
110
110
90
90
110 | 000000 | | 11111 | F
FA
FA
F
F | 250/350
None
200/400
250/350
None
None | L.V.E.S.
Auto.Es.
L.V.E.S.
L.V.E.S.
Auto.Es.
Auto.Es. | S N N N N N N | 10.438
8.938
8.688
9.938
11.348
8.688 | 6.500
5.438
5.188
6.000
7.500
5.188 | 12AB
8JL
7FA
12L
12S
7FG | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.30
0.60
0.60
0.60 | | 9ACP4
9AGP4
9QP4
9QP4A
9SP4
9TP4 | 00000 | 90
90
70
70
90
110 | 000000 | | X
X
—
—
E | FA
FA
C
F
A | 300/750
300/750
None
None
300/500
350/600 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N S S N N | 8.265
8.346
12.750
12.750
10.500
8.375 | 3.698
3.700
6.500
6.500
5.719
4.250 | 7GR
7GR
12AD
12AD
8HR
8HR | 12.0
12.0
4.7
4.7
6.3
6.3 | 0.065
0.065
0.30
0.30
0.60
0.45 | | 9UP4
9VP4
9WP4
9YP4
10ABP4
10ABP4A | 44444 | 90
90
90
90
90 | 000000 | | | FA
FA
FA
C
CA | 300/750
300/750
300/750
300/750
400/850
400/850 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
S
S | 8.267
7.906
8.270
8.440
11.875
11.875 | 3.540
3.344
2.920
3.250
6.500
6.500 | 7GR
7GR
7GR
7GR
12L
12L | 12.6
12.6
12.0
12.6
6.3
6.3 | 0.075
0.075
0.075
0.075
0.60
0.60 | | 10ABP4B
10ABP4C
10ADP4
10AEP4
10ARP4
10ASP4 | 00000 | 90
90
90
90
90 | 000000 | | -
-
X
X | F
FA
F
FA
FA | 400/850
400/850
400/850
400/850
300/750
300/750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S S S S N N | 11.875
11.875
11.875
11.875
9.425
8.700 | 6.500
6.500
6.500
6.500
3.875
4.020 | 12L
12L
12L
12L
7GR
7GR | 6.3
6.3
8.4
6.3
6.3 | 0.60
0.60
0.45
0.45
0.30
0.45 | | 10BP4
10BP4A
10BP4C
10BP4D
10DP4
10FP4 | 44444 | 50
50
50
50
50
50 | 000000 | 000000 | | C
F
CA
FA
CA | 500/2500
500/2500
500/2500
500/2500
None
500/2500 | Mag.
Mag.
Mag.
Mag.
H.V.E.S.
Mag. | DDSSE | 17.625
17.625
17.625
17.625
17.625
17.625 | 8.188
8.188
8.188
8.188
8.188
8.188 | 12N
12N
12N
12N
12N
12M
12M | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 10FP4A
SG-10FP4A
10MP4
10MP4A
10RP4
11AP4 | 100000 | 50
50
50
50
50
50 | 999999 | 00000 | -
-
-
- | FA
FA
C
F
CA
FA | 500/2500
500/2500
500/2500
500/2500
750/1500
500/750 | Mag.
Mag.
Mag.
Mag.
L.V.E.S.
L.V.E.S. | X | 17.625
17.625
17.000
17.000
16.500
8.938 | 8.188
8.188
7.557
7.557
7.062
4.250 | 12N
12N
12G
12G
12L
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.45 | | 11BP4
11CP4
11DP4
11EP4
11FP4
11GP4 | 00000 | 110
110
110
114
114
110 | 999999 | | -
-
-
-
E | FA
FA
FA
FA
FA | 400/700
500/750
500/750
300/500
300/500
400/600 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | 8.938
8.938
8.938
8.460
8.460
8.938 | 4.250
4.250
4.250
4.130
4.130
4.250 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.60
0.45
0.45 | | 11HP4
11HP4A
11JP4
11KP4
11LP4
11MP4 | \d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d | 110
110
110
110
110
110 | 000000 | | X X E X E | FA
FA
FA
FA
FA | 500/750
500/750
400/600
500/750
400/600
400/600 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | 8.785
8.938
8.910
9.250
8.938 | | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.30
0.45
0.30
0.30 | | 11QP4
11RP4
11TP4
11UP4
12AYP4
12AZP4 | 00000 | 90
104
110
104
110
110 | 000000 | | -
X
X
- | FA
FA
FA
FA
FA | 400/800
400/750
400/600
400/750
400/900
400/900 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 9.610
9.000
8.937
9.000
9.312
9.312 | 4.125 | 7GR
7GR
8HR
7GR
8HR
8HR | 6.3
6.3 | 0.075
0.45
0.30
0.45
0.45
0.60 | | | TYPI | CAL | OPER | ATING CON | IDITIONS | | |--------------------------------------|----------------|------------------|-----------------|----------------------------------|---------------------------|-----------------------| | ANODE KV.
Design-max.
Values 💠 | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 11.0
19.8 | Grid
Grid | 9
14 | 300
300 | -50/350 | -15/-25
-28/-72 | 2EP4
5AXP4 | | 8.8 | Grid | 6 | 250 | 1215/1465 | -22/-58 | 7DP4 | | 13.2 ●
9.9 ● | Grid
Grid | 9 | 250 | _ | -22/-58
-22/-58 | 7RP4
8AP4 | | 9.9 ●
8.8 ● | Grid
Grid | 9 | 150 | | -22/-58
-13/-35 | 8AP4A
8DP4 | | 22.0● | Grid | 16 | 300 | | -35/-72 | 8JP4 | | 20.0
18.0 ⊚ | Grid
Grid | 16
15 | 300
300 | 0/400
0/450 | -35/-72
-28/-72 | 8LP4
8 MP 4 | | 22.0 ⊚
22.0 ⊚ | Grid
Grid | 16
16 | 300
300 | _ | -28/-72
-28/-72 | 8XP4
8YP4 | | 12.0 | Cath. | 10 | 100 | 0/300 | 30/60 | 9ACP4 | | 12.0
7.5 ⊚ | Cath. | 10
5.5
5.5 | 100
200 | 0/300
0/400 | 26/56
28/52 | 9AGP4
9QP4 | | 7.5 .
18.0 | Cath. | 5.5
14 | 200
300 |
0/400
0/400 | 28/52
33/77 | 9QP4A
9SP4 | | 15.0 | Cath. | 12 | 50 | 0/300 | 37/53 | 9TP4 | | 12.0
12.0 | Cath.
Grid | 9 | 100
100 | 0/300
0/300 | 35/55
-38/-84 | 9UP4
9VP4 | | 12.0
12.0 | Cath.
Grid | 9
9
9 | 100
100 | 0/300
0/300 | 32/50
-38/-84 | 9WP4
9YP4 | | 13.2 | Grid | 7.5 | 300 | 0/500 | -38/-62 | 10ABP4 | | 13.2 1 | Grid | 7.5
7.5 | 300
300 | 0/500
0/500 | -38/-62
-38/-62 | 10ABP4A
10ABP4B | | 13.2 🔳 | Grid | 7.5
7.5 | 300 | 0/500 | -38/-62
-33/-72 | 10ABP4C | | 13.2 ● 13.2 ● | Grid
Grid | 7.5 | 300
300 | 0/500
0/500 | -38/-62 | 10ADP4
10AEP4 | | 13.0
12.0 | Cath.
Cath. | 9 | 140
100 | -250/+150
0/300 | 31/49
33/52 | 10ARP4
10ASP4 | | 11.0 | Grid | | 250 | _ | -22/-58 | 10BP4 | | -13.2 ●
11.0 ● | Grid
Grid | 9999 | 250
250 | _ | -22/-58
-22/-58 | 10BP4A
10BP4C | | 11.0 ●
11.0 ● | Grid
Grid | 9 | 250
250 | 2550/3250 | -22/-58
-36/-84 | 10BP4D
10DP4 | | 11.0● | Grid | 9 | 250 | | -22/-58 | 10FP4 | | 13.2 ●
13.2 ● | Grid
Grid | 11
11 | 250
250 | | -22/-58
-22/-58 | 10FP4A
SG-10FP4A | | 11.0 ⊚
11.0 ⊚ | Grid
Grid | 9 | _ | _ | -22/-58
-22/-58 | 10MP4
10MP4A | | 17.6 ● | Grid | 14 | 300 | -55/300 | -28/-72 | 10RP4 | | 15.0
15.0 | Cath. | 11 | 150
150 | 0/400
0/400 | 31/49
31/49 | 11AP4
11BP4 | | 15.0
15.0 | Grid
Cath. | 12 | 400
50 | 0/400
-100/300 | -39/-94
31/49 | 11CP4
11DP4 | | 14.0 | Grid | 10 | 400 | 0/400 | -36/-94
-36/-94 | 11EP4 | | 14.0
15.0 | Grid
Cath. | 10
11 | 400
135 | 0/400
-200/200 | 27/43 | 11FP4
11GP4 | | 15.0 | Cath. | | 150 | **** | 31/49
31/49 | 11HP4 | | 15.0
15.0 | Cath. | 11 | 150
50 | -200/200 | 24/75 | 11HP4A
11JP4 | | 15.0
15.0 | Cath.
Grid | 11
10 | 150
400 | -100/300
0/400 | 31/49
-36/-94 | 11KP4
11LP4 | | 15.0
14.0 | Cath. | 11 | 135 | -200/200 | 27/43 | 11MP4 | | 15.0 | Cath. | 10
11 | 100
140 | 0/300 | 32/50
31/49 | 11QP4
11RP4 | | 15.0
15.0 | Cath.
Cath. | 10
11 | 400
140 | 0/400
— | 36/78
31/49 | 11TP4
11UP4 | | 14.0
14.0 | Grid
Grid | 10
10 | 400
400 | 0/400
0/400 | -36/-94
-36/-94 | 12AYP4
12AZP4 | - M -- Metal cone tube G-Glass tube - LWG ... Light weight glass tube - G°—Glass tube, dimensions different from normal - MET -- Metal tube - O -Round tube - -Rectangular tube, spherical face - Rectangular tube, cylindrical face - B-Fiberglass wrap implosion protection - E-Filled rim type implosion protection - T -- Molded glass implosion panel attached to face - P—Sagged glass implosion plate attached to face - L -- Plastic implosion barrier attached to face - K-Banded tube with coated funnel for implosion protection - H-Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F-Gray filter glass faceplate - R --- Anti-reflection facentate - A -Aluminized screen - V-Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X-Formed with tension band - Y -- Formed rim with tension band and mounting lugs - Mag. -- Magnetic focus - L.V.E.S. -- Low voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus - Auto.Es. Self-focusing electrostatic Int.Mag. -- Internal magnetic focus - TPF---Tri-potential focus - N -- No ion trap - S-Single field ion trap - D-Double field ion trap - I -- Internal ion trap - *-18 second heater warm-up time (all others are 11 second) - Grid -- Grid drive service (all voltages with respect to cathode) - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1) #### NOTES - Design-Maximum Values Unless Otherwise Indicated - @ Absolute-Maximum Values - ☐ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness; however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | 2 | LLI | ¥ | F/ | CEPL | ATE | | | خ
خ | | _ | | HEA | TER | |---|-----------------------|---|-----------------------|--------|-----------------------|----------------------------|--|--|---|--|--|--|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ν. | Α. | | 12BAP4
12BEP4
12BFP4
12BGP4
12BJP4
12BKP4 | 000000 | 110
110
110
110
110
110 | GGGGGG | | E
E
X | FA
FA
FA
FA
FA | 400/900
500/900
400/1200
550/850
400/900
500/1000 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2 2 2 2 2 | 9.312
9.312
9.330
9.312
9.300
9.348 | 4.125
4.375
3.270
4.375
4.130
4.375 | 8HR
7FA
7GR
8HR
8HR
8HR | 6.3
6.3
4.2
6.3
4.2
6.3 | 0.30
0.45
0.45
0.45
0.45
0.45 | | 12BLP4
12BMP4
12BNP4
12BNP4A
12BQP4
12BSP4 | 00000 | 110
104
110
110
110
110 | 666666 | | X
X
X
X | FA
FA
FA
FA
FA | 800/1000
500/750
500/750
500/750
600/900
400/900 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 9.348
9.531
9.348
9.348
9.348
9.300 | 4.375
3.875
4.375
4.375
4.375
4.130 | 8HR
7GR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.45
0.30 | | 12BTP4
12BUP4
12BUP4A
12BUP4B
12BUP4C
12BVP4 | 100000 | 110
110
110
110
110
110 | 666666 | | E
V
X
X | FA
FA
FA
FA | 550/850
450/900
450/900
450/900
450/900
450/900 | LV.E.S.
LV.E.S.
LV.E.S.
LV.E.S.
LV.E.S.
LV.E.S. | N
N
N
N
N | 9.344
9.290
9.290
9.290
9.290
9.350 | 4.375
4.120
4.130
4.130
4.130
3.900 | 8HR
8HR
8HR
8HR
8HR
7GR | 12.6
6.3
6.3
6.3
6.3
12.6 | 0.150
0.45
0.45
0.45
0.45
0.45
0.075 | | 12BZP4
12GBP4
12GDP4
12GEP4
12CFP4
12GHP4 | 00000 | 104
110
104
110
110
110 | GGGGGG | | X
X
E
X | FA
FA
FA
FA
FA | 500/750
500/900
500/750
600/900
450/900
450/900 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N | 9.531
9.312
9.500
9.021
9.330
9.330 | 3.875
4.375
3.875
3.867
3.900
3.900 | 7GR
7FA
7GR
7GR
7GR
7GR | 12.0
6.3
6.3 | 0.157
0.45
0.45
0.15
0.45
0.45 | | 12CNP4
12CNP4A
12CQP4
12CSP4
12CTP4
12CVP4 | 00000 | 110
110
110
90
110 | GGGGGG | | X
X
E
E
X | FA
FA
FA
FA
FA | 600/1200
600/1200
400/900
600/900
700/1000
500/750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 9.530
9.530
9.312
10.814
9.021
10.035 | 4.090
4.090
4.125
3.750
3.887
3.875 | 7GR
7GR
8HR
7GR
7GR
7GR | 4.2
6.3
12.6
6.3 | 0.45
0.45
0.45
0.15
0.45
0.157 | | 12CWP4
12CZP4
12DEP4
12DFP4
12DGP4
12DHP4 | | 100
110
110
110
110
110 | G G G G G | | X
X
X
X | FA
FA
FA
FA
FA | 500/750
400/1200
600/900
800/1100
600/1000
600/1200 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2 | 10.031
9.330
9.190
8.810
9.187
9.528 | 3.875
3.900
4.190
3.810
4.187
4.370 | 7GR
7GR
7GR
7GR
7GR
8HR | 6.3
12.6
6.3
6.3
6.3
6.3 | 0.45
0.075
0.45
0.45
0.45
0.45 | | 12DKP4
12DMP4
12DQP4
12KP4
12KP4A
SG-12KP4A | 000000 | 110
110
110
54
54
54 | GGGGG | 000 | X
X
X | FA
FA
CA
FA | 600/1000
None
800/1000
500/2500
500/2500
500/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | 2 | 9.187
9.350
9.280
17.625
17.625
17.625 | 4.187
4.380
4.310
7.125
7.125
7.125 | 7GR
8HR
8HR
12N
12N
12N | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.45
0.60
0.45
0.60
0.60
0.60 | | 12LP4
12LP4A
12LP4C
12TP4
12UP4
12UP4A | 000000 | 54
54
54
54
54
54
54 | G G G M M | 000000 | | C
FA
C
C
F | 750/3000
750/3000
750/3000
None
None
None | Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | D D D S S | 18.750
18.750
18.750
18.750
18.750
18.750 | 8.250
8.250
8.250
8.250
8.000
8.000 |
12N
12N
12N
12D
12D
12D | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 12UP4B
12VABP4
12VP4
12VP4A
12YP4
12XP4 | 00000 | 54
110
54
54
54
54
54 | M
G
G
G
G | 00000 | x
=
= | FR
FA
C
F
C | None
800/1000
750/3000
750/3000
750/3000
500/2500 | Mag.
L.V.E.S.
Mag.
Mag.
Auto.Es.
Mag. | S
N
D
D
S
S | 18.750
9.350
18.000
18.000
18.750
17.625 | 8.000
4.380
7.500
7.500
8.250
7.125 | 12D
8HR
12G
12G
12P
12N | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.60
0.60
0.60
0.60 | | 12ZP4A
13AP4
13DP4
14ACP4
14AEP4
14AJP4 | 00000 | 54
110
110
90
90
110 | GGGGGG | 000000 | E
E | FA
FA
FA
FA | 500/2500
550/800
500/1000
800/1200
800/1200
500/850 | Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S
N
N
S
N
S | 17.625
9.266
9.688
14,188
13.188
11.438 | 7.125
4.250
4.375
6.500
5.500
5.500 | 12N
8HR
8HR
12L
12L
8HR | 6.3
6.3
6.3 | 0.60
0.45
0.45
0.60
0.60
0.60 | | | TYPI | CAL | OPER/ | TING COM | IDITIONS | | |--------------------------------------|-----------------|-----------|-----------------|----------------------------------|---------------------------|-------------------| | ANODE KV.
Design-max.
Values 4 | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 14.0 | Grid | 10 | 400 | 0/400 | -36/-94 | 12BAP4 | | 16.0
14.0 | Cath.
Cath. | 12
10 | 30
300 | 0/500
0/400 | 25/40
40/77 | 12BEP4
12BFP4 | | 15.0 | Cath. | 12 | 50 | 0/400 | 35/55 | 12BGP4 | | 13.0
15.0 | Cath. | 10
12 | 450
50 | 0/400
0/400 | 38/73
35/55 | 12BJP4
12BKP4 | | 16.0 | Cath. | 12 | 30 | 0/400 | 30/45 | 12BLP4 | | 15.0
16.0 | Cath. | 12 | 140
250 | 0/400 | 31/49
35/65 | 12BMP4
12BNP4 | | 16.0 | Cath. | 12 | 250 | 0/400 | 35/65 | 12BNP4A | | 16.0
14.0 | Cath.
Grid | 12
10 | 50
500 | 0/400
0/400 | 30/50
-50/-93 | 12BQP4
12BSP4 | | 15.0 | Cath. | 12 | 50 | - | 35/55 | 12BTP4 | | 14.0 | Cath. | | 50
50 | 0/400
0/400 | 37/49
32/52 | 12BUP4
12BUP4A | | 14.0
14.0 | Cath.
Cath. | 12 | 50 | 0/400 | 35/55 | 12BUP4B | | 14.0
14.0 | Cath. | 12
12 | 50
50 | 0/400
0/400 | 35/55
37/49 | 12BUP4C
12BVP4 | | 15.0 | Cath. | 11 | 100 | | 31/49 | 12BZP4 | | 16.0 | Cath. | 12 | 50 | 0/500 | 30/50 | 12CBP4 | | 15.0
15.0 | Cath. | 11 | 140
100 | -200/200 | 31/49
30/50 | 12CDP4
12CEP4 | | 14.0 | Cath. | 10 | 200 | 0/300 | 27/57 | 12CFP4 | | 14.0 | Grid
Cath. | 10 | 300
200 | 0/400
0/400 | -30/-72
25/55 | 12CHP4
12CNP4 | | 14.0 | Cath. | 10 | 200 | 0/400 | 25/55 | 12CNP4A | | 15.4
15.0 | Cath. | 12
12 | 40
100 | 0/400
-200/200 | 30/50
30/50 | 12CQP4
12CSP4 | | 15.0 | Cath. | | 100 | -200/200 | 30/50 | 12CTP4 | | 15.0 | Cath. | 11 | 100 | | 31/49 | 12CVP4 | | 15.0
14.0 | Cath. | | 140
100 | 0/400 | 31/49
33/52 | 12CWP4
12CZP4 | | 15.0 | Cath. | 12 | 100 | -200/+200 | 30/50 | 12DEP4 | | 15.0
16.0 | Cath. | | 200 | -200/+200
0/400 | 30/55
30/50 | 12DFP4
12DGP4 | | 16.0 | Cath. | - | 50 | 0/400 | 30/50 | 12DHP4 | | 16.0
22.0 | Cath.
Grid | 12 | 140
300 | 0/400
-200/+200 | 30/50
-35/-72 | 12DKP4
12DMP4 | | 15.0 | Cath. | 12 | 50 | -200/+200 | 35/55 | 12DQP4 | | 13.2 ●
13.2 ● | Grid | 11 12 | 250
300 | _ | -22/-58
-28/-72 | 12KP4
12KP4A | | 13.2● | Grid | 12 | 300 | | -28/-72 | SG-12KP4A | | 13.2 ⊚
13.2 ⊚ | Grid
Grid | 111 | 250
250 | _ | -22/-58
-22/-58 | 12LP4
12LP4A | | 13.2 | Grid | 11 | 250 | _ | -22/-58 | 12LP4C | | 13.2 ●
13.2 ● | Grid
Grid | 11 12 | 250
300 | _ | -22/-58
-28/-72 | 12TP4
12UP4 | | 13.2 | Grid | 12 | 300 | _ | -28/-72 | 12UP4A | | 13.2 | Grid | 12 | 300 | 2007:000 | -28/-72 | 12UP4B | | 15.0
13.2 ⊚ | Cath. | 12 | 50 | ~200/+200
— | 35/55
-28/-72 | 12VABP4
12VP4 | | 13.2 | Grid | 11 | 250 | - | -28/-72 | 12VP4A | | 13.2 ⊚
13.2 ⊚ | Grid | 11 | 250
250 | _ | -28/-72
-22/-58 | 12YP4
12ZP4 | | 13.2 | Grid | 11 | 250 | | -22/-58 | 12ZP4A | | 15.0
16.0 | Cath. | | 50
50 | 0/400 | 35/55
30/50 | 13AP4
13DP4 | | 15.4 ● | Cath. | . 10 | 125 | -50/350 | 40/80 | 14ACP4 | | 15.4 .
12.1 . | Cath.
 Grid | 10 | 110
250 | -50/350
-100/400 | 32/50
-24/-64 | 14AEP4
14AJP4 | | 12.1 | uiiu | 1 3 | 1 230 | 100/400 | -27/04 | 1178017 | M -- Metal cone tube G -- Glass tube LWG-Light weight glass tube G°-Glass tube, dimensions different from normal MET - Metal tube O-Round tube -Rectangular tube, spherical face @-Rectangular tube, cylindrical face B — Fiberglass wrap implosion protection E — Filled rim type implosion protection T - Molded glass implosion panel attached to face P—Sagged glass implosion plate attached to face L—Plastic implosion barrier attached to face K—Banded tube with coated funnel for implosion protection H.—Tube sealed into steel sheath -Tube sealed into steel sheath for implosion protection C - Clear glass faceplate F-Gray filter glass faceplate R -Anti-reflection faceplate A -Aluminized screen V-Rim bands and tension band W—Rim bands and tension band with mounting lugs X—Formed with tension band X Formed with tension band Y-Formed rim with tension band and mounting lugs Mag. -- Magnetic focus L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus H.V.E.S. — High Voltage electrostatic focu -Auto:Es. — Self-focusing electrostatic Int.Mag. — Internal magnetic focus TPF - Tri-potential focus N-No ion trap S—Single field ion trap D-Double field ion trap 1-Internal ion trap *—18 second heater warm-up time (all others are 11 second) Grid —Grid drive service (all voltages with respect to cathode) Cath. —Cathode drive service (all voltages with respect to Grid No. 1) #### NOTES Design-Maximum Values Unless Otherwise Indicated #### Absolute-Maximum Values - □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, price - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for pusible inaccuracies. | | z | ш | .AL | F | ACEPL | ATE | | | ڧ | _ | I | | HEA | TER | |---|-----------------------|--|----------------|-------|-------------------------|----------------------------|--|--|--------------|--|--|--|--|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | SG-14AJP4
14ARP4
14ASP4
14ATP4
14AUP4
14AVP4 | 424444 | 110
90
110
90
90
110 | GGGGGG | | 11111 | FA
FA
FA
FA
FA | 800/850
800/1200
500/850
500/1000
1000/1500
450/700 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 11.438
13.188
11.375
13.188
13.188
11.375 | 5.500
5.500
5.438
5.500
5.500
5.438 | 8HR
12L
8HR
12L
12L
8HR | 6.3
6.3
6.3
8.4
6.3
6.3 | 0.60
0.60
0.60
0.45
0.45
0.60 | | 14AWP4
14BDP4
14BP4
14BP4A
14CP4*
14CP4A | 44444 | 90
70
70
70
70
70 | 999999 | | P | FA
FA
FR
FA | 800/1200
600/1000
500/2000
500/2000
750/2000
750/2000 | L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag.
Mag. | ZZSSSS | 13.188
17.375
16.812
16.812
16.750
16.750 | 5.500
7.500
7.531
7.531
7.469
7.469 | 12L
12L
12N
12N
12N
12N | 6.3
6.3
6.3
6.3 | 0.45
0.60
0.60
0.60
0.60 | | SG-14CP4A
14CP4B
14DP4
14EP4
14GP4
14HP4 | 000000 | 70
70
70
70
70
70 | 000000 | | -
-
-
- | FA
F
F
F
F | 750/2000
750/2000
None
500/2000
750/2000 | Mag.
Mag.
Mag.
H.V.E.S.
L.V.E.S. | NNDSSS | 16.750
16.500
16.750
16.500
16.812
16.781 | 7.500
7.188
7.469
7.187
7.500
7.500 | 12N
12N
12D
12N
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60 | | 14NP4
14NP4A
14QP4
14QP4A
SG-14QP4A
14QP4B | 000000 | 90
70
70
70
70 | 999999 | | 1 1 1 | F
FA
FA
FA | 800/1200
800/1200
600/1000
600/1000
600/1000 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S S S S N N |
14.188
14.188
16.156
16.156
16.156 | 6.500
6.500
6.875
6.875
6.875
6.875 | 12L
12L
12L
12L
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60 | | 14RP4
14RP4A
14SP4
14UP4
14WP4
SG-14WP4 | 000000 | 90
90
90
70
90 | 000000 | | | F
FA
FA
FA
FA | 800/1000
800/1000
900/1200
None
800/1200
800/1200 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S. | 000022 | 14.562
14.562
14.188
16.781
13.188
13.188 | 6.875
6.875
6.500
7.500
5.500
5.500 | 12L
12L
12L
12D
12L
12L | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 14XP4
14XP4A
14ZP4
15ADP4
15JP4
16ABP4 | 999999 | 90
90
90
110
110
70 | 000000 | | xe - | F
FA
FA
FA
F | 1100/1500
1100/1500
800/1200
700/1100
600/1000
750/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Auto.Es. | ののヱヱヱの | 14.188
14.188
13.188
10.750
11.000
18.750 | 6.500
6.500
5.500
4.370
4.375
7.500 | 12L
12L
12L
8HR
8HR
12P | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.45
0.45
0.60 | | 16ACP4
16AEP4
16ANP4
16AP4
16AP4A
16AQP4 | ODDODD | 60
70
114
53
53
114 | ರ≳≲ರಲ | 00000 | 1 10 1 10 | C
FA
C
FAR | 750/2000
750/1500
800/1200
None
None
800/1200 | Auto.Es.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
L.V.E.S. | SODDE | 20.875
18.750
10.438
22.250
22.250
10.438 | 8.000
7.500
4.125
7.562
7.562
4.125 | 12P
12L
8HR
12D
12D
8HR | 6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60 | | 16ASP4
16ATP4
16AUP4
16AVP4
16AWP4
16AXP4 | | 114
114
114
114
114
114 | 000000 | | P | FA
FA
FA
FA
FA | 1000/1500
1000/1500
800/1500
900/1400
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N | 10.406
10.125
10.062
10.688
10.125
10.125 | 4.125
4.000
4.000
4.375
4.000
3.813 | 8HR
8HR
8HR
7FA
8HR
8HR | 6.3
6.3
6.3 | 0.45
0.45
0.60
0.45
0.30*
0.45 | | 16AYP4
16AZP4
16BAP4
16BDP4
16BEP4
16BFP4 | | 114
114
114
114
114
114 | 000000 | | 1-6 6 | FA
FA
FA
FA
FA | 800/1300
1000/1500
1000/1500
800/1300
800/1200
800/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 10.250
10.375
10.688
10.250
10.688
10.062 | 4.125
4.250
4.375
4.125
4.375
4.000 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.30
0.45 | | 16BGP4
16BMP4
16BNP4
16BRP4
16BSP4
16BUP4 | | 114
114
114
114
114
114 | GGGGGG | | > > > r | FA
FA
FA
FA
FA | 800/1300
800/1500
1000/1500
1000/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2 2 2 2 2 | 10.569
10.062
10.500
10.281
10.531
10.375 | 4.375
4.000
4.375
4.125
4.375
4.250 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.45
0.45 | | . : | TYPICAL OPERATING CONDITIONS | | | | | | |--------------------------------------|------------------------------|-----------|-----------------|----------------------------------|---------------------------|---------------------| | ANODE KV.
DESIGN-MAX.
VALUES ♦ | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 15.4 | Grid | 9 | 300 | -100/400 | - 28 /-72 | SG-14AJP4 | | 15.4 ●
15.4 ● | Cath.
Grid | 10
12 | 50
300 | - 50/350
- 50/350 | 35/50
-28/-72 | 14ARP4
14ASP4 | | 15.4 ●
16.5 ● | Grid
Cath. | 10
12 | 300
50 | 0/400
0/350 | -25/-69
30/50 | 14ATP4
14AUP4 | | 15.4● | Grid | 12 | 300 | -50/350 | -28/-72 | 14AVP4 | | 15.4 ●
24.2 ● | Cath.
Grid | 12
18 | 50
300 | -50/350
0/400 | 32/47
-33/-77 | 14AWP4
14BDP4 | | 13.2 ● | Grid | 12 | 300 | — 07400
— | -28/-72 | 14BP4 | | 13.2 .
15.4 . | Grid
Grid | 12 | 300
300 | _ | -28/-72
-28/-72 | 14BP4A
14CP4 | | 15.4● | Grid | 12 | 300 | | -28/-72 | 14CP4A | | 15.4.
15.4. | Grid
Grid | 12 | 300
300 | _ | -28/-72
-28/-72 | SG-14CP4A
14CP4B | | 15.4 ● | Grid | 11 | 250 | _ | -22/-58 | 14DP4 | | 15.4 ●
15.4 ● | Grid | 12 | 300
300 | 2170/2950 | -28/-72
-28/-72 | 14EP4
14GP4 | | 15.4 | Grid | 12 | 300 | -48/264 | -28/-72 | 14HP4 | | 15.4 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | -50/350
-50/350 | -28/-72
-28/-72 | 14NP4
14NP4A | | 12.1 🖲 | Grid | 9 | 250 | -50/250 | -24/-64 | 14QP4 | | 12.1 ●
15.4 ● | Grid
Grid | 9 | 250
300 | -50/250
-50/300 | -24/-64
-28/-72 | 14QP4A
SG-14QP4A | | 12.1 | Grid | 9 | 250 | -50/250 | -28/-72
-24/-64 | 14QP4B | | 15.4 ●
15.4 ● | Grid
Grid | 10
10 | 300
300 | -50/350
-50/350 | -26/-70
-26/-70 | 14RP4
14RP4A | | 15.4 € | Grid | 12 | 300 | -48/264 | -28/-72 | 14SP4 | | 15.4 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | -50/350 | -28/-72
-28/-72 | 14UP4
14WP4 | | 15.4● | Grid | 12 | 300 | -50/350 | -28/-72 | SG-14WP4 | | 16.5 ⊚
16.5 ⊚ | Grid
Grid | 12
12 | 300
300 | -50/350
-50/350 | -28/-72
-28/-72 | 14XP4
14XP4A | | 15.4 ● | Grid | 12 | 300 | 0/450 | -28/-72 | 14ZP4 | | 20.0
15.0 | Cath. | 16 | 50
50 | -200/+200
0/400 | 33/52
35/55 | 15ADP4
15JP4 | | 17.6● | Grid | 14 | 300 | | -28/ - 72 | 16ABP4 | | 15.4 ●
17.6 ● | Grid
Grid | 12
14 | 250
300 | -64/350 | -28/-63
-28/-72 | 16ACP4
16AEP4 | | 18.0 | Grid | 14 | 300 | 0/400 | -33/-70 | 16ANP4 | | 15.4 ⊚
15.4 ⊚ | Grid
Grid | 12 | 300
300 | _ | -28/-72
-28/-72 | 16AP4
16AP4A | | 18.0 | Grid | 14 | 300 | 0/400 | -33/-70 | 16AQP4 | | 20.0 ⊚
18.0 | Grid
Cath. | 15
15 | 300
50 | -100/300
0/500 | -43/-70
31/49 | 16ASP4
16ATP4 | | 15.4 | Grid | 12 | 400 | 0/400 | -36/-94 | 16AUP4 | | 17.6
18.0 | Cath. | 15
15 | 35
150 | 0/500
0/500 | 25/50
31/49 | 16AVP4
16AWP4 | | 18.0 | Grid | 15 | 300 | 0/500 | -40/-72 | 16AXP4 | | 20.0
18.0 | Cath. | | 300
150 | -100/300
0/400 | 28/60
31/49 | 16AYP4
16AZP4 | | 18.0 | Cath. | 15 | 50 | 0/400 | 35/55 | 16BAP4 | | 20.0
18.0 | Cath. | 14 | 300
50 | -100/300
0/400 | 28/60
30/48 | 16BDP4
16BEP4 | | 15.4 | Grid | 12 | 400 | 0/400 | -36/-94 | 16BFP4 | | 20.0
15.4 | Cath.
Grid | 16
12 | 300
400 | -100/+300
0/400 | 28/60
-36/-94 | 16BGP4
16BMP4 | | 18.0
18.0 | Cath. | 15
15 | 50
400 | 0/400
0/400 | 35/35 | 16BNP4
16BRP4 | | 21.0 | Grid
Cath. | 15 | 50 | 0/400 | - 46/- 94
35/35 | 16BSP4 | | 16.0 | Cath. | 13 | 100 | -250/150 | 31/49 | 16BUP4 | - M -- Metal cone tube - G-Glass tube - LWG -Light weight glass tube - G° Glass tube, dimensions different from normal - MET Metal tube - O -Round tube - -Rectangular tube, spherical face - ©—Rectangular tube, cylindrical face B—Fiberglass wrap implosion - protection E Filled rim type implosion - protection - T -- Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L -- Plastic implosion barrier attached to face - K -- Banded tube with coated funnel - for implosion protection H Tube sealed into steel sheath - for implosion protection - C Clear glass faceplate - F Gray filter glass faceplate R - Anti-reflection faceplate - A-Aluminized screen - V -- Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X-Formed with tension band - Y —Formed rim with tension band and mounting lugs #### Mag. -- Magnetic focus - L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus - Auto.Es. Self-focusing electrostatic - int.Mag. Internal magnetic focus - TPF Tri-potential focus N No ion trap - S-Single field ion trap - D Double field ion trap - I Internal ion trap - *-18 second heater warm-up time (all others are 11 second) - Grid -Grid drive service (all voltages with respect to cathode) - Cath.—Cathode drive service (all voltages with respect to Grid No. 1) #### NOTES - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | Z | mi . | ¥ | F | ACEPI | ATE | | | ø | | = | | HE | ATER | |---|-----------------------|--|----------------------------|--------|-------------------------|----------------------------|--
--|-----------------------|--|--|---|--|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH | BASING | v. | A. | | 16BVP4
16BWP4
16BXP4
16BYP4
16CAP4
16CEP4 | | 114
114
114
114
114
114 | GGGGGG | | V E V V | FA
FA
FA
FA
FA | 1050/1450
800/1300
900/1400
1000/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 10.413
10.563
10.562
10.438
10.531
10.531 | 4.219
4.375
4.375
4.250
4.375
4.375 | 8HR
8HR
7FA
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.45
0.45 | | 16CFP4
16CHP4
16CHP4A
16CJP4
16CKP4
16CMP4 | 442422 | 104
114
114
114
114
114 | G
G
G
G
G | | V
V
X
V
V | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1000/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 11.075
10.569
10.569
10.594
10.281
10.531 | 3.875
4.375
4.375
4.406
4.125
4.375 | 7GR
8HR
8HR
8HR
8HR
8HR | 6.3 | 0.45
0.45
0.45
0.45
0.30
0.45 | | 16CNP4
16CP4
16CQP4
16CTP4
16CUP4
16CWP4 | | 104
52
104
114
114
100 | G G G G G | | v v v v | FA
C
FA
FA
FA | 1000/1500
None
1000/1500
800/1500
800/1500
1000/1500 | L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | ZZZZZZ | 11.075
21.500
11.075
10.080
10.080
11.675 | 3.875
6.625
3.875
4.020
4.020
3.875 | 7GR
12D
7GR
8HR
8HR
7GR | 6.3
6.3
6.3
6.3
6.3 | 0.157
0.60
0.45
0.45
0.45
0.45 | | 16CXP4
16DCP4
16DCP4A
16DP4
16DP4A
16EP4 | 00000 | 100
100
100
60
60
60 | GGGGGM | | V X | FA
FA
C
F
C | 1000/1500
None
None
None | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | N
N
D
D
S | 11.675
11.675
11.610
20.750
20.750
19.625 | 3.875
3.875
3.810
7.891
7.875
6.875 | 7GR
7GR
7GR
12D
12D
12D | 6.3
6.3
6.3
6.3
6.3 | 0.157
0.45
0.45
0.60
0.60
0.60 | | 16EP4A
16EP4B
16GP4
16GP4A
16GP4B
16GP4C | 44444 | 60
60
70
70
70
70 | 2 | 000000 | | F
FR
C
FR
CR | None
None
None
None | Mag.
Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | S S S S S S | 19.625
19.625
17.688
17.688
17.688
17.688 | 6.875
6.875
7.313
7.313
7.313
7.313 | 12D
12D
12D
12D
12D
12D | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 16HP4
16HP4A
16JP4
16JP4A
16KP4
16KP4A | \triangle | 60
60
60
60
70
70 | | 0000 | | C
F
C
F
FA | 750/2000
750/2000
750/2000
750/2000
750/1500 | Mag.
Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | D D D S S | 21.250
21.250
20.750
20.750
18.750
18.750 | 8.375
8.375
7.500
7.500
7.500
7.500 | 12N
12N
12N
12N
12N
12N
12N | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | SG-16KP4A
16LP4
16LP4A
16MP4
16MP4A
16QP4 | | 70
52
52
60
60
70 | GGGGGG | | _ | FA
C
F
C
F | 750/1500
750/2000
750/2000
750/2000
750/2000 | Mag.
Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | D
D | 18.750
22.250
22.250
21.750
21.750 | 7.500
7.375
7.375
8.500
8.500
8.079 | 12N
12N
12N
12N
12N
12N
12D | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 16RP4
16RP4A
16RP4B
16SP4
16SP4A
16TP4 | 442444 | 70
70
70
70
70
70
70 | G G G G G | | = | F
F
C
F
F | 750/1500
750/1500
750/2000
750/2000 | Mag.
Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | N
D
D | 18.750
18.750
18.750
17.312
17.312
18.125 | 7.500
7.500
7.500
7.000
7.000
6.875 | 12N
12N
12N
12N
12N
12N | 6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 16UP4
16VAGP4
16VBAP4
16VBCP4
16VP4
16WP4 | \Box | 70
114
114
114
70
70 | GGGGGG | 00000 | V
V
- | FA : | 1300/1700
1300/1700
1000/1400
None
None | Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag. | S N N N S | 18.125
11.445
11.312
11.200
17.188 | 6.875
4.375
4.500
4.380
6.876
7.438 | 12D
8HR
8HR
8HR
12D
12D | 6.3 | 0.45
0.45
0.45
0.60 | | 16WP4A
16WP4B
16XP4
16YP4
16ZP4
17AP4 | | 70
70
70
70
70
52
70 | G
G
G
G
G
G | 000000 | | FA
F
F
F | 750/1500
None
750/2000
750/1500 | Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | D
S
D | 17.750
18.750 | | 12N
12N
12D
12N
12N
12N | | 0.60
0.60
0.60
0.60
0.60 | | | TYP | CAL | OPER | NDITIONS | | | |--------------------------------------|----------------|-----------|-----------------|----------------------------------|------------------------------|-------------------| | ANODE KV.
Design-max.
Values * | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 20.0 | Cath. | 15 | 300 | -200/300 | 38/59 | 16BVP4 | | 20.0
17.6 | Grid
Cath. | 16
15 | 300
35 | -200/300
0/500 | -35/-72
25/50 | 16BWP4
16BXP4 | | 16.0 | Cath. | 13 | 100 | 0/400 | 31/49 | 16BYP4 | | 18.0
18.0 | Grid
Grid | 15
15 | 400
400 | 0/400 | -46/-94
-46/-94 | 16CAP4
16CEP4 | | 15.0 | Cath. | 11 | 140 | | 31/49 | 16CFP4 | | 20.0
20.0 | Cath.
Cath. | 16
16 | 30
30 | 0/400
0/400 | 30/45
30/45 | 16CHP4
16CHP4A | | 23.0 | Grid | 15 | 400 | 0/400 | -39/-94 | 16CJP4 | | 18.0
18.0 | Grid
Grid | 15
15 | 400
400 | 0/400
0/400 | -46/-94
-46/-94 | 16CKP4
16CMP4 | | 15.0 | Cath. | 11 | 100 | | 31/49 | 16CNP4 | | 16.5 | Grid | 12 | 250 | | -22/-58 | 16CP4 | | 15.0
15.4 | Cath.
Grid | 11
12 | 140
400 | 0/400 | 31/49
-36/-94 | 16CQP4
16CTP4 | | 15.4 | Grid | 12 | 400 | 0/400 | -36/-94 | 16CUP4 | | 15.0
15.0 | Cath. | 11 | 140 | | 31/49
31/49 | 16CWP4
16CXP4 | | 15.0 | Cath. | 11 | 140 | | 31/49 | 16DCP4 | | 15.0 | Cath. | 11 | 140
250 | | 31/49
- 22/-58 | 16DCP4A
16DP4 | | 16.5 ●
16.5 ● | Grid
Grid | 12
12 | 250 | | -22/-58 | 16DP4A | | 15.4 | Grid | 12 | 300 | | -28/-72 | 16EP4 | | 15.4 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | ***** | -28/-72
-28/-72 | 16EP4A
16EP4B | | 15.4. | Grid | 12 | 300 | | -28/-72 | 16GP4 | | 15.4 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | | - 28/-72
-28/ - 72 | 16GP4A
16GP4B | | 15.4 | Grid | 12 | 300 | | -28/-72 | 16GP4C | | 15.4 | Grid | 12 | 300 | - | -28/-72 | 16HP4 | | 15.4.
15.4. | Grid
Grid | 12
11 | 300
250 | | -28/-72
-22/-58 | 16HP4A
16JP4 | | 15.4 | Grid | 11 | 250 | | -22/-58 | 16JP4A | | 17.6 ●
17.6 ● | Grid
Grid | 12
12 | 300
300 | | -28/-72
-28/-72 | 16KP4
16KP4A | | 7.6€ | Grid | 12 | 300 | | -28/-72 | SG-16KP4A | | 15.4 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | | -28/-72
-28/-72 | 16LP4
16LP4A | | 15.4 | Grid | 12 | 300 | | -28/-72 | 16MP4 | | 15.4 ● | Grid | 12
12 | 300
250 | | -28/-72
-22/-58 | 16MP4A
16QP4 | | 17.6 ●
17.6 ● | Grid
Grid | 12 | 300 | | -28/-72 | 16RP4 | | 17.6 | Grid | 12 | 300 | | -28/-72 | 16RP4A | | 17.6 ●
15.4 ● | Grid
Grid | 12
12 | 300
300 | , | -28/-72
-28/-72 | 16RP4B
16SP4 | | 15.4 ● | Grid | 12 | 300 | _ | -28/-72 | 16SP4A | | 15.4 | Grid | 12 | 300 | | -28/-72 | 16TP4 | | 16.5 ●
20.0 | Grid
Cath. | 12
16 | 250
30 | -100/+300 | -22/-58
22/45 | 16UP4
16VAGP4 | | 22.0 | Cath. | 16 | 50 | 0/400 | 33/45 | 16VBAP4 | | 23.0
16.5 📵 | Grid
Grid | 16
12 | 300
250 | -200/200
 | -35/-72
-22/-58 | 16VBCP4
16VP4 | | 16.5 | Grid | 12 | 250 | | -22/-58 | 16WP4 | | 17.6 ●
17.6 ● | Grid
Grid | 12
12 | 250
250 | | -22/-58
-22/-58 | 16WP4A
16WP4B | | 16.5 ● | Grid | 12 | 250 | _ | -22/-58 | 16XP4 | | 15.4 ● | Grid | 12
12 | 300 | | -28/-72
-28/-72 | 16YP4
16ZP4 | | 17.6 ●
17.6 ● | Grid
Grid | 12 | 300
300 | | -28/-72 | 17AP4 | - M Metal cone tube - G -- Glass tube - LWG-Light weight glass tube - G°-Glass tube, dimensions different from normal - MET Metal tube - O -Round tube - ☐—Rectangular tube, spherical face ⓒ—Rectangular tube, cylindrical face - B-Fiberglass wrap implosion - B Fiberglass wrap implosion protection - E Filled rim type implosion protection - T Molded glass implosion panel attached to face - P—Sagged glass implosion plate attached to face - L-Plastic implosion barrier - attached to face - K —Banded tube with coated funnel for implosion protection - H-Tube sealed into steel sheath for implosion protection - C—Clear glass faceplate - $F\!-\!Gray$ filter glass faceplate - R -Anti-reflection faceplate - A-Aluminized screen - V -- Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X-Formed with tension band - Y Formed rim with tension band and mounting lugs ### Mag. — Magnetic focus - L.V.E.S. —Low
voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic - Int.Mag. —Internal magnetic focus - TPF Tri-potential focus - N No ion trap - S-Single field ion trap - D-Double field ion trap - I—Internal ion trap —18 second heater warm-up time (all others are 11 second) - Grid -- Grid drive service (all voltages with respect to cathode) - Cath. —Cathode drive service (all voltages with respect to Grid No. 1) - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | 2 | ш | AL. | FA | CEPL | ATE | | | | | - | | HE/ | TER | |---|-----------------------|--|------------------------------|----------|-------------------------|--------------------------------|--|---|----------------------|--|---|---|---|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length (Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 17DXP4
17DZP4
17EAP4
17EBP4
17EFP4
17EHP4 | 44404 | 110
110
70
110
110
110 | 99999 | | | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1100/1700
1000/1500
1000/1500 | L.V.E.S.TPF
L.V.E.S.
Auto.Es.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 10.688
10.688
19.188
11.250
11.250
11.500 | 3.562
3.562
7.500
4.125
4.125
4.375 | 8JR
8HR
12AT
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.45
0.45
0.60 | | 17EKP4
17ELP4
17EMP4
17EQP4
17ESP4
17FGP4 | 442424 | 70
114
114
114
114
114 | G G G G G | | P.E.>E.>E. | FA
FA
FA
FA | 600/1000
1150/1650
1300/1700
900/1500
1000/1400
900/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 19.438
11.188
11.312
11.250
11.200
11.250 | 7.500
4.375
4.500
4.375
4.380
4.375 | 12L
8HR
8HR
8HR
8HR | 6.333333
6.63633 | 0.60
0.45
0.45
0.45
0.45 | | 17FDP4
17FP4
17FP4A
17GP4
17HP4
17HP4A | <u> </u> | 114
70
70
70
70
70 | G
G
M
G | | v
-
- | FA
F
FR
FR | 1300/1700
500/1500
750/1500
None
750/1500
750/1500 | L.V.E.S.
H.V.E.S.
H.V.E.S.
H.V.E.S.
L.V.E.S. | 200000 | 11.180
19.250
19.250
19.312
19.188
19.188 | 4.370
7.500
7.500
7.500
7.500
7.500 | 8HR
12L
12L
12M
12L
12L | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.60
0.60
0.60
0.60 | | 17HP4B
SG-17HP4B
17HP4C
17JP4
17KP4
17KP4A | 00000 | 70
70
70
70
70
70
70 | G G G G G | | | FA
FA
F
F
F | 750/1500
750/1500
750/1500
500/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Auto.Es.
Auto.Es. | SEESSS | 19.188
19.188
19.250
19.250
19.250 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12N
12P
12P | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60 | | 17LP4
17LP4A
SG-17LP4A
17LP4B
17QP4
17QP4A | 000000 | 70
70
70
70
70
70
70 | 99999 | 000000 | | F
FA
FA
FA
FA | 750/1500
750/1500
750/1500
750/1500
750/1500
750/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag. | SSEESS | 19.188
19.188
19.188
19.188
19.188
19.188 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12L
12N
12N | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | SG-17QP4A
17QP4B
17RP4
17RP4C
17SP4
17TP4 | | 70
70
70
70
70
70 | G
G
G
G
G
MET | | | FA
FA
FA
FR | 750/1500
750/1500
750/1500
750/1500
500/750
None | Mag.
Mag.
L.V.E.S.
L.V.E.S.
Auto.Es.
L.V.E.S. | N N S S S S | 19.188
19.188
19.250
19.250
19.188
18.125 | 7.500
7.500
7.500
7.500
7.500
7.500
6.875 | 12N
12N
12L
12L
12P
12M | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 17UP4
17VP4
17VP4B
17YP4
18VAUP4
19ABP4 | | 70
70
70
70
70
114
114 | G G G G G | | | F
FA
FA
FA | 750/1500
750/1500
750/1500
500/1500
1250/1750
850/1400 | Mag.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S. | SSSNN | 19.188
19.188
19.188
19.188
11.875
10.938 | 7.500
7.500
7.500
7.500
7.500
4.375
3.688 | 12N
12L
12L
12N
8HR
8JK | 6.3
6.3
6.3
6.3
6.3
2.68 | 0.60
0.60
0.60
0.60
0.45
0.45 | | 19ACP4
19AEP4
19AFP4
19AHP4
19AJP4
19ALP4 | 000000 | 114
114
114
114
114
114 | G G G G | | T | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1000/1500
1400/1900
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | 12.375
11.625
11.625
11.375
11.375
11.375 | 5.125
4.375
4.125
4.125
4.125
4.125
4.125 | 8HR
8HR
8HR
8HR
7FA
8HR | 6.3
12.6
6.3
6.3
6.3
6.3 | | | 19ANP4
19AP4
19AP4A
19AP4B
19AP4C
19AP4D | | 114
66
66
66
66
66 | G
M
M
M
M | <u> </u> | | FA
C
F
FR
FA
CR | None
None
None
None
None | L.V.E.S.TPF
Mag.
Mag.
Mag.
Mag.
Mag. | \$
\$
\$
\$ | 21.500
21.500
21.500
21.500
21.500 | 3.562
7.125
7.125
7.125
7.125
7.125
7.125 | 8JR
12D
12D
12D
12D
12D
12D | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.60
0.60
0.60
0.60
0.60 | | 19AQP4
19ARP4
19ASP4
19ATP4
19AUP4
19AVP4 | | 114
114
114
114
113
114 | GGGGGG | | T
T
T
T | FA
FA
FA
FAR
FAR | 1000/1500
1000/1500
1000/1500
1000/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.
L.V.E.S. | 7777 | 11.375
12.625
12.625
11.062
11.625
11.375 | 4.125
5.125
5.125
3.562
4.125
4.125 | 8HR
8HR
8HR
8JR
8HR
8HR | 6.3
6.3
6.3 | 0.30
0.60
0.30
0.60
0.60
0.60 | | | TYPI | CAL | OPER | ATING COM | IDITIONS | | |--------------------------------------|---------------|------------|-----------------|----------------------------------|-------------------------------|---------------------| | ANODE KV.
Design-max.
Values * | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 17.6 € | Grid | 14 | 500 | 0/400 | -43/-78 | 17DXP4 | | 17.6 ●
17.6 ● | Grid
Grid | 14
12 | 300
300 | 0/400 | -28/-72
-28/-72 | 17DZP4
17EAP4 | | 20.0 | Grid | 14
14 | 500
400 | 0/400 | -28/-72
-43/-72
-45/-90 | 17EBP4 | | 19.8 ®
20.0 | Grid
Cath. | 16 | 50 | 0/400
0/400 | 35/55 | 17EFP4
17EHP4 | | 24.2 | Grid | 18 | 300 | 0/400 | -33/-77 | 17EKP4 | | 15.0
22.0 | Cath. | 12
16 | 50
50 | 0/400
0/400 | 35/55
33/45 | 17ELP4
17EMP4 | | 19.8 | Cath. | 16 | 400 | 0/500 | 35/72 | 17EQP4 | | 23.0
19.8 | Grid
Cath. | 16
16 | 300
400 | -200/+200
0/500 | -35/-72
35/72 | 17ESP4
17FCP4 | | 22.0 | Cath. | 14 | 50 | 0/400 | 33/52 | 17FDP4 | | 19.8 ●
19.8 ● | Grid
Grid | 12
12 | 300
300 | 2300/3100
2170/2970 | -28/-72
-28/-72 | 17FP4
17FP4A | | 17.6€ | Grid | 12 | 300 | 2290/3100 | -28/-72 | 17GP4 | | 17.6 ●
17.6 ● | Grid
Grid | 14
14 | 300
300 | -56/310
-56/310 | -28/-72
-28/-72 | 17HP4
17HP4A | | 17.6 | Grid | 14 | 300 | -56/310 | -28/-72 | 17HP4B | | 17.6 | Grid | 14 | 300 | -56/310 | -28/-72 | SG-17HP4B
17HP4C | | 17.6 ●
19.8 ● | Grid
Grid | 14
12 | 300
300 | -56/310 | -28/-72
-28/-72 | 17JP4 | | 17.6 | Grid | 12 | 300 | _ | -28/-72 | 17KP4 | | 17.6 T | Grid
Grid | 12 | 300
300 | -48/260 | -28/-72
-28/-72 | 17KP4A
17LP4 | | 17.6 | Grid | 14 | 300 | -56/310 | -28/-72 | 17LP4A | | 17.6 ●
17.6 ● | Grid
Grid | 14
14 | 300
300 | -56/310
-56/310 | -28/-72
-28/-72 | SG-17LP4A
17LP4B | | 17.6 | Grid | 12 | 300 | -30/010 | -28/-72 | 17QP4 | | 19.8 | Grid | 14 | 300 | <u> </u> | -28/-72 | 17QP4A | | 19.8 ⊚
19.8 ⊚ | Grid
Grid | 14
14 | 300
300
 | -28/-72
-28/-72 | SG-17QP4A
17QP4B | | 17.6€ | Grid | 14 | 300 | -56/310 | -28/-72 | 17RP4 | | 17.6 ⊚
15.4 ⊚ | Grid
Grid | 14
12 | 300
250 | -56/310 | -28/-72
-28/-72 | 17RP4C
17SP4 | | 17.6 | Grid | 14 | 300 | 0/350 | -28/-72 | 17 TP4 | | 15.4 ⊚
17.6 ⊚ | Grid
Grid | 12
14 | 250
300 | -48/260 | -28/-72
-28/-72 | 17UP4
17VP4 | | 17.6 | Grid | 14 | 300 | -48/260 | -28/-72 | 17VP4B | | 19.8 ⊚
23.5 | Grid
Cath. | 16
16 | 300 | 0/400 | -28/-72
22/45 | 17Y P4
18VAUP4 | | 20.0 | Grid | 16 | 300 | 100/500 | -35/-72 | 19ABP4 | | 20.0 | Cath. | 14 | 50 | 0/400 | 35/50 | 19ACP4 | | 17.6
20.0 | Cath.
Grid | 14
16 | 100
300 | -100/100
0/400 | 32/47
-35/-72 | 19AEP4
19AFP4 | | 17.6 | Cath. | 14 | 500 | 0/400 | 40/63 | 19AHP4 | | 19.8
22.0 | Cath. | 14.5
14 | 500 | 0/500
0/400 | 31/49
45/95 | 19AJP4
19ALP4 | | 20.0 | Grid | 16 | 500 | 0/400 | -43/-78 | 19ANP4 | | 17.6.
17.6. | Grid
Grid | 12
12 | 300
300 | = | -28/-72
 -28/-72 | 19AP4
19AP4A | | 17.6 | Grid | 12 | 300 | _ | -28/-72 | 19AP4B | | 17.6 ●
17.6 ● | Grid
Grid | 12
12 | 300
300 | _ | -28/-72
-28/-72 | 19AP4C
19AP4D | | 20.0 | Grid | 16 | 300 | 0/400 | -38/-72 | 19AQP4 | | 20.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 19ARP4 | | 20.0
20.0 | Grid
Grid | 16
 16 | 300
500 | 0/400 | -35/-72
-43/-78 | 19ASP4
19ATP4 | | 20.0 | Grid | 16 | 300 | 0/400 | -35/-72
-36/-94 | 19AUP4 | | 23.0 | Grid | 20 | 400 | 0/400 | -36/-94 | 19AV P4 | - M -- Metal cone tube - G-Glass tube - LWG-Light weight glass tube - G°-Glass tube, dimensions different from normal - MET Metal tube - O -Round tube - -Rectangular tube, spherical face - @-Rectangular tube, cylindrical face - B Fiberglass wrap implosion protection - E-Filled rim type implosion protection - T -- Molded glass implosion panel attached to face - P-Sagged glass implosion plate attached to face - L—Plastic implosion barrier attached to face - K-Banded tube with coated funnel - for implosion protection H Tube sealed into steel sheath - for implosion protection C—Clear glass faceplate - F-Gray filter glass faceplate - R Anti-reflection Jaceplate - A-Aluminized screen - V—Rim bands and tension band W—Rim bands and tension band - with mounting lugs X—Formed with tension band - Y —Formed with tension band Y —Formed rim with tension band - and mounting lugs - Mag. Magnetic focus - L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus - Auto.Es. -- Self-focusing electrostatic - Int.Mag. —Internal magnetic focus - TPF -- Tri-potential focus N -- No ion trap - S—Single field ion trap - D-Double field ion trap - I Internal ion trap - *-18 second heater warm-up time (all others are 11 second) - Grid -Grid drive service (all voltages - with respect to cathode) Cath.—Cathode drive service (all voltages with respect to Grid No. 1) - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - ∇ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | ž | щ | Z | F | CEPL | ATE | | | ġ | _ | I | Γ | HEA | TER | |---|-----------------------|--|-----------------------|-------|-------------------------|-----------------------------|--|---|-----------------------|--|--|--|--|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inohes) | NECK LENGTH
(Inches) | BASING | v. | A. | | 19AXP4
19AYP4
19BAP4
19BCP4
19BDP4
19BEP4 | 400004 | 114
114
114
114
114
92
110 | G
G
G
G
G | |
T
T
 | FA
FA
FAR
FA
FA | 1000/1500
1000/1500
1000/1500
1000/1500
1500/2000
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 11.375
11.375
11.625
11.625
15.250
11.812 | 4.125
4.125
4.125
4.125
5.500
4.250 | 8HR
8HR
8HR
8HR
12L
8HR | | 0.45
0.45
0.30
0.30
0.60
0.30 | | 19BFP4
19BHP4
19BLP4
19BMP4
19BNP4
19BQP4 | | 92
114
114
114
114
114 | G G G G G | | -
-
T
T | FA
FA
FA
FA
FAR | 1500/2000
1000/1500
1300/1700
1300/1700
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N | 15.250
11.750
11.312
11.562
12.625
12.562 | 5.500
4.500
4.125
4.062
5.125
5.125 | 12L
8HR
8HR
8HR
8HR
8HR | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 19BRP4
19BSP4
19BTP4
19BUP4
19BVP4
19BWP4 | 444 <u>0</u> 44 | 114
110
114
114
114
114 | 999999 | | P | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1300/1700
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.
L.V.E.S.
L.V.E.S. | 72222 | 11.812
11.812
10.812
11.625
11.750
11.750 | 4.374
4.250
3.562
4.375
4.500
4.500 | 8HR
8HR
8JR
8HR
8HR
8HR | 6.3
6.3
6.3
2.2
6.3
6.3 | 0.60
0.60
0.60
0.102
0.60
0.45 | | 19CAP4
19CDP4
19CEP4
19CFP4
19CGP4
19CHP4 | | 110
114
114
114
92
114 | 666666 | | + + + + | FA
FAR
FAR
FAR | 1000/1500
1400/1900
1000/1500
1000/1500
1400/1700
1000/1500 | L.V.E.S.TPF
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | 11.125
11.625
11.625
11.500
15.500
11.750 | 3.562
4.375
4.125
4.250
5.500
4.500 | 8JR
7FA
8HR
8HR
12L
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.30*
0.60
0.60
0.60 | | 19CJP4
19CKP4
19CLP4
19CMP4
19CMP4A
19CQP4 | 000000 | 114
114
92
114
114 | <i>GGGGGG</i> | | | FA
FA
FA
FA
FA | 1300/1700
1000/1500
1500/2000
1000/1500
1000/1500
1400/1900 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | X | 11.312
11.750
15.250
11.625
11.625
11.625 | 4.125
4.500
5.500
4.375
4.375
4.375 | 8HR
8HR
12L
8HR
8HR
7FA | 6.3 | 0.60
0.60
0.60
0.45
0.45
0.60 | | 19CRP4
19CUP4
19CVP4
19CXP4
19CYP4
19CZP4 | 4 <u>0</u> 00440 | 92
114
114
114
114
114 | GGGGGG | | T P | FA
FA
FA
FA
FA | 1700/2100
1400/1900
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | Z Z Z Z Z | 15.250
11.625
11.625
11.625
10.875
11.562 | 5.500
4.375
4.125
4.375
3.625
4.125 | 12L
8HR
8HR
7FA
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.60
0.60
0.45 | | 19DAP4
19DBP4
19DCP4
19DEP4
19DFP4
19DHP4 | | 114
114
114
114
114
114 | GGGGG | | P
V
 | FAR
FA
FA
FA
FA | 1000/1500
1400/1900
1000/1500
1000/1500
1300/1700 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N | 11.562
11.812
11.625
11.875
11.688
11.625 | 4.125
4.375
4.375
4.625
4.438
4.375 | 8HR
7FA
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.60
0.60 | | 19DJP4
19DKP4
19DLP4
19DNP4
19DP4
19DP4A | 000000 | 110
114
114
114
66
66 | GGGGGG | | P P - | FA
FA
FA
C
F | 1000/1500
1000/1500
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag. | N
N
N
S
S | 11.875
11.562
11.625
11.562
21.500
21.500 | 4.328
4.125
4.375
4.125
7.125
7.125 | 8HR
8HR
8HR
8HR
12N
12N | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 19DQP4
19DRP4
19DSP4
19DUP4
19DVP4
19DWP4 | BBBBBB | 114
114
114
114
114
114 | GGGGGG | | V
V
V | FA
FA
FA
FA
FA | 1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 11.375
11.625
11.625
11.750
11.750
11.375 | | 8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.60
0.60
0.45
0.45
0.45 | | 19DYP4
19DZP4
19EAP4
19EBP4
19ECP4
19EDP4 | | 114
114
114
114
114
114 | GGGGGG | | T V E V V | FAR
FA
FA
FA
FA | 1700/2100 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. |
N
N
N
N
N | 11.625
11.750
11.625
11.625
11.750
11.625 | 4.125
4.500
4.375
4.375
4.500
4.375 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.60
0.45
0.60 | | | TYPI | CAL (| PERA | TING COM | IDITIONS | | |--------------------------------------|---------------|------------|-----------------|----------------------------------|---------------------------|-------------------| | ANODE KV.
DESIGN-MAX.
VALUES * | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 20.0 | Grid | 16 | 400 | 0/400 | -36/-94 | 19AXP4 | | 23.0
20.0 | Grid
Grid | 20
16 | 400
300 | 0/400
0/400 | -36/-94
-35/-72 | 19AYP4
19BAP4 | | 20.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 19BCP4 | | 20.0
20.0 | Cath. | 14.5
16 | 50
400 | 0/500
0/400 | 31/49
42/78 | 19BDP4
19BEP4 | | 20.0 | Grid | 16 | 400 | 0/400 | -36/-94 | 19BFP4 | | 22.0 | Grid | 18.5 | | 0/500 | -28/-61 | 19BHP4 | | 20.0 ⊚
20.0 | Grid
Grid | 16
16 | 400
400 | 0/400
0/400 | -36/-94
-36/-94 | 19BLP4
19BMP4 | | 20.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 19BNP4 | | 20.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 19BQP4 | | 23.0
20.0 | Grid
Cath. | 16
16 | 300
400 | 0/400
0/400 | -35/-72
42/78 | 19BRP4
19BSP4 | | 23.0 | Grid | 16 | 500 | 0/400 | -43 /-78 | 19BTP4 | | 18.75 ⊕
23.5 | Cath. | 20 | 100
500 | 0/400
0/500 | 45/60
45/95 | 19BUP4
19BVP4 | | 23.5 | Cath. | 20 | 500 | 0/500 | 45/95 | 19BWP4 | | 20.0 | Grid | 16 | 500 | 0/400 | -43/-78 | 19CAP4 | | 19.8
20.0 | Cath.
Grid | 16
16 | 300 | 0/500
0/400 | 35/50
-35/-72 | 19CDP4
19CEP4 | | 17.5 | Cath. | 13 | 50 | 0/400 | 31/49 | 19CFP4 | | 20.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 19CGP4 | | 20.0 | Cath.
Grid | 16
16 | 50
400 | -50/250
0/400 | 32/50
-65/-105 | 19CHP4
19CJP4 | | 22.0 | Cath. | 18 | 50 | 0/500 | 36/54 | 19CKP4 | | 19.8 | Cath. | 14.5 | | 0/500 | 25/40 | 19CLP4 | | 20.0
23.5 | Cath. | 16
16 | 30 | 0/400
0/400 | 30/45
30/45 | 19CMP4
19CMP4A | | 19.8 | Cath. | 16 | 35 | 0/500 | 25/50 | 19CQP4 | | 22.0 | Cath. | 16 | 35 | 0/500 | 25/50 | 19CRP4 | | 22.0
23.0 | Cath. | | 65
50 | -100/300
0/400 | 41/56
32/50 | 19CUP4
19CVP4 | | 19.8 | Cath. | 16 | 45 | 0/500 | 35/50 | 19CXP4 | | 23.0
23.0 | Grid | 20 | 400
400 | 0/400
0/400 | -36/-94
-46/-94 | 19CYP4
19CZP4 | | 23.0 | Grid | 20 | 400 | 0/400 | -46/-94 | 19DAP4 | | 19.8 | Cath. | | 40 | 0/500 | 35/50 | 19DBP4 | | 20.0
22.0 | Grid
Cath. | 16
18 | 400
300 | 0/400
0/500 | -39/-94
36/54 | 19DCP4
19DEP4 | | 22.0 | Cath. | 16 | 65 | -100/300 | 41/56 | 19DFP4 | | 20.0 | Cath. | _ | 50 | 0/400 | 35/65 | 19DHP4 | | 20.0
23.0 | Cath. | 16
20 | 400 | 0/400
0/400 | 42/78
-46/-94 | 19DJP4
19DKP4 | | 20.0 | Cath | 16 | 50 | 0/400 | 35/55 | 19DLP4 | | 18.0
18.7 ⊚ | Grid
Grid | 16 | 300
250 | 0/400 | -35/-72
-21/-58 | 19DNP4
19DP4 | | 18.7 € | Grid | 13 | 250 | | -21/-58 | 19DP4A | | 23.0 | Cath | | 300 | 0/400 | 28/62 | 19DQP4 | | 23.0
20.0 | Cath
Cath | | 300 | 0/400
-100/300 | 28/62
32/50 | 19DRP4
19DSP4 | | 22.0 | Cath | . 16 | 50 | -200/200 | 33/45 | 19DUP4 | | 20.0
23.0 | Cath | . 16 | 150
400 | -250/150
-200/200 | 36/54
-50/-98 | 19DVP4
19DWP4 | | 23.0 | Grid | _ | 50 | 0/400 | 32/50 | 19DYP4 | | 18.0 | Cath | . 13 | 150 | -250/150 | 36/54 | 19DZP4 | | 20.0
23.0 | Cath
Grid | | 50
400 | -100/300
0/400 | 32/50
-39/-94 | 19EAP4
19EBP4 | | 20.0 | Cath | | 150 | -250/150 | 36/54 | 19ECP4 | | 23.0 | Cath | | 400 | 0/400 | 42/78 | 19EDP4 | #### FYPI AMATION OF SYMBOLS - M Metal cone tube - G -- Glass tube - LWG -Light weight glass tube - G°-Glass tube, dimensions different from normal - MET-Metal tube - O -Round tube - — Round tube □ Rectangular tube, spherical face - @-Rectangular tube, cylindrical face - B—Fiberglass wrap implosion protection - E Filled rim type implosion protection - T Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - attached to face L —Plastic implosion barrier - attached to face - K Banded tube with coated funnel for implosion protection - H Tube sealed into steel sheath for implosion protection - C Clear glass faceplate - F-Gray filter glass faceplate - R -Anti-reflection faceplate - A -Aluminized screen - V-Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X-Formed with tension band - Y Formed rim with tension band and mounting lugs - Mag. -- Magnetic focus - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus - Auto, Es. Self-focusing electrostatic - Int.Mag. —Internal magnetic focus TPF —Tri-potential focus - N No ion trap - S-Single field ion trap - D-Double field ion trap - I —Internal ion trap - —18 second heater warm-up time (all others are 11 second) - Grid —Grid drive service (all voltages with respect to cathode) - Cath. —Cathode drive service (all voltages with respect to Grid No. 1) ### HOTES - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | 330 | 7 | h. | 7 | F | ACEP | LATE | | 1 | الدر ا | ī | T_ | Γ- | µF. | ATER | |---|-----------------------|--|-----------------------|-------|-----------------------|-----------------------------|--|--|---------------------------------------|--|--|--|---------------------------------|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION | - | EXTERNA
COATING
IN
pf | | ION TRAP MAG | Overall Length
(inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 19EFP4
19EGP4
19EHP4
19EHP4A
19EJP4
19EKP4 | | 114
114
114
114
114
114 | GGGGG | | V
E
V
V
E | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1250/1750
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 11.625
11.625
11.625
11.625
11.625
11.625 | | 8HR
8HR
8HR
8HR
8HR
7FA | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.45
0.60
0.60
0.45
0.45 | | 19ELP4
19ENP4
19ENP4A
19EP4
19ESP4
19ETP4 | 44444 | 114
114
114
70
114
114 | GGGGG | | V V V W | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
None
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S. | 2222 | 11:375
11:625
11:625
21:125
11:625
11:625 | 4.125
4.375
4.375
7.500
4.375
4.375 | 8HR
8HR
8HR
12D
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.60
0.60
0.45 | | 19EUP4
19EZP4
19FBP4
19FCP4
19FDP4
19FEP4 | 444224 | 114
114
114
114
114
114 | 666666 | | V E E V V | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1000/1500
1000/1500
1250/1750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 11.625
11.625
11.625
11.625
11.375
11.625 | 4.375
4.375
4.375
4.375
4.125
4.375 | 8HR
7FA
8HR
8HR
8HR
8HR | 6.3 | 0.60
0.45
0.45
0.45
0.45
0.45 | | 19FEP4A
19FEP4B
19FGP4
19FHP4
19FJP4
19FJP4A | 400404 | 114
114
114
114
114
114 | GGGGGG | | >>>>>> | FA
FA
FA
FA | 1250/1750
1250/1750
1000/1500
1000/1500
1250/1750
1250/1750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 11.625
11.625
10.813
11.625
11.625
11.625 | 4.375
4.375
3.563
4.375
4.375
4.375 | 8HR
8HR
8JR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.60
0.45 | | 19FKP4
19FLP4
19FNP4
19FP4
19FRP4
19FTP4 | DDDDID | 110
114
114
66
114
114 | 666666 | | ~ < & < = | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1250/1750
None
1000/1500
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S. | 2222 | 11.812
11.375
11.625
22.000
11.375
11.500 | 4.250
4.125
4.375
7.625
4.125
4.250 | 8HR
8HR
8HR
12D
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.30
0.45
0.60
0.60
0.30
0.45 | | 19FWP4
19GAP4
19GBP4
19GEP4
19GFP4
19GHP4 | |
114
114
114
114
114
114 | 999999 | | E
T
W
E
V | FA
FA
FA
FA
FA | 1000/1500
1000/1500
1000/1500
1250/1750
1000/1500
1150/1550 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 11.380
11.625
11.625
11.625
11.656
11.750 | 4.130
4.375
4.125
4.375
4.406
4.500 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | | | 19GJP4
19GJP4A
19GKP4
19GMP4
19GP4
19HAP4 | 444040 | 114
114
114
114
66
114 | 999999 | | V
V
W
T
E | FA
FAR
FAR
FA
F | 1000/1500
1000/1500
1250/1750
700/900
None
1000/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S. | 2222 | 11.630
11.375
11.625
11.625
21.250
11.625 | 4.380
4.125
4.375
4.125
6.875
4.375 | 8HR
8HR
8HR
8HR
12D
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.30
0.45
0.60
0.315 | | 19HGP4
19JP4
19QP4
19VAHP4
19VAJP4 | | 114
70
70
70
114
114 | G
G
G | | V
-
X
X | F
FA | 1000/1700
None
500/750
1400/2000
1400/2000 | L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
S
S
N | 11.380
20.812
21.125
12.519 | 4.130
7.188
7.500
4.375 | 8HR
12D
12L
8HR
8HR | 6.3
6.3
6.3 | 0.45
0.60
0.60
0.45 | | 19VENP4
19XP4
19YP4
19ZP4
20ABP4
20ADP4 | 44242 | 114
114
114
114
114
114 | G
G
G
G
G | | -
-
v | FA
FA
FA | 1000/1500
1000/1500
1000/1500
700/900
1500/2000 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N | 11.375
10.812
11.500
12.270 | | 8HR
8HR
8JR
8HR
8HR
8HR | 6.3
6.3
6.3 | 0.45
0.60
0.60
0.60
0.45
0.45 | | 20AEP4
20AHP4
20CP4
20CP4A
20CP4B
20CP4C | | 114
114
70
70
70
70
70 | G
G
G
G
G | | v
 | | 1500/2200
1400/2000
None
500/1500
None
None | L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag.
Mag.
Mag. | N N S S S S S | 12.390
21.438
21.438
21.438 | 4.500
7.188
7.188
7.188 | 8HR
8HR
12D
12N
12D
12D | 6.3 (
6.3 (
6.3 (| 0.60 | | | TYPI | CAL (| OPER/ | TING CON | DITIONS | | |--------------------------------------|----------------|------------|-----------------|----------------------------------|---------------------------|-------------------| | ANODE KV.
Design-max.
Values * | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 20.0 | Cath. | 16 | 50 | 0/400 | 35/55 | 19EFP4 | | 21.0
18.0 | Cath.
Cath. | 16
16 | 50
400 | 0/400
0/400 | 35/55
40/76 | 19EGP4
19EHP4 | | 18.0 | Cath. | 16 | 400 | 0/400 | 40/76 | 19EHP4A | | 20.0
19.8 | Cath. | 16
16 | 30
45 | 0/400
0/500 | 30/45
35/50 | 19EJP4
19EKP4 | | 18.0 | Cath. | 14 | 400 | 0/400 | 36/94 | 19ELP4 | | 21.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 19ENP4
19ENP4A | | 21.0
20.9 ⊚ | Cath.
Grid | 16
13 | 50
250 | 0/400 | 32/50
-21/-58 | 19EP4 | | 20.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 19ESP4 | | 21.0 | Cath. | 16
16 | 50
400 | 0/400
0/400 | 32/50
-39/-94 | 19ETP4
19EUP4 | | 19.8 | Grid
Cath. | 16 | 45 | 0/500 | 35/50 | 19EZP4 | | 15.0 | Cath. | 12 | 50 | 0/400 | 35/55 | 19FBP4 | | 23.0
23.0 | Grid
Grid | 20
20 | 400
400 | -200/200
0/400 | -50/-98
-36/-78 | 19FCP4
19FDP4 | | 20.0 | Cath. | 16 | 30 | 0/400 | 30/45 | 19FEP4 | | 23.5 | Cath. | 16 | 30 | 0/400 | 30/45 | 19FEP4A | | 23.5
20.0 | Cath.
Grid | 16
16 | 30
500 | 0/400
0/400 | 22/45
43/78 | 19FEP4B
19FGP4 | | 21.0 | Grid | 16 | 400 | 0/400 | -39/-94 | 19FHP4 | | 18.0
18.0 | Cath.
Cath. | 16
16 | 400
400 | 0/400
0/400 | 40/76
40/76 | 19FJP4
19FJP4A | | 20.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 19FKP4 | | 23.0 | Cath. | 16 | 300 | 0/400 | 28/62 | 19FLP4 | | 23.0
20.9 | Cath.
Grid | 16
13 | 300
250 | 0/400 | 28/62
-22/-58 | 19FNP4
19FP4 | | 23.0 | Cath. | 16 | 300 | 0/400 | 28/62 | 19FRP4 | | 21.0 | Cath. | 16 | 400 | 0/400 | 39/94 | 19FTP4 | | 20.0
19.8 | Grid
Cath. | 16
16 | 500
400 | 0/400
0/500 | -50/-93
35/72 | 19FWP4
19GAP4 | | 23.0 | Cath. | 20 | 400 | 0/500 | 45/70 | 19GBP4 | | 23.0
23.0 | Cath.
Grid | 18
16 | 400
400 | 0/400
0/400 | 36/78
39/-94 | 19GEP4
19GFP4 | | 22.0 | Cath. | 16 | 50 | -200/200 | 33/45 | 19GHP4 | | 23.0 | Grid | 20 | 400 | -200/200 | -50/-98 | 19GJP4 | | 23.0
23.0 | Grid
Cath. | 20
16 | 400
300 | -200/200
0/400 | -50/-98
28/62 | 19GJP4A
19GKP4 | | 23.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 19GMP4 | | 20.9 () | Grid
Cath. | 13
16 | 250
50 | 0/400 | -22/-58
35/55 | 19GP4
19HAP4 | | 20.0 | Grid | 16 | 150 | 0/400 | -38/-62 | 19HGP4 | | 19.8 | Grid | 12 | 300 | | -28/-72 | 19JP4 | | 19.8 | Grid | 12 | 300 | -50/350 | -28/-72 | 19QP4 | | 23.0 | Cath. | 16 | 30 | -100/+300 | 22/45 | 19VAHP4 | | 23.0 | Cath. | 16 | 30 | -100/+300 | 22/45 | 19VAJP4 | | 20.0
20.0 | Cath.
Grid | 16
16 | 150
400 | -250/+150
0/400 | -36/-54
-36/-94 | 19VBNP4
19XP4 | | 20.0 | Grid | 16 | 500 | 0/400 | -43/-78 | 19YP4 | | 20.0 | Grid
Cath. | 16.5
16 | 450
50 | 0/500
-200/+200 | -28/-72
32/52 | 19ZP4
20ABP4 | | 23.0
23.0 | Cath. | | 35 | -200/-200 | 30/42 | 20ADP4 | | 23.5 | Cath. | 16 | 30 | 0/400 | 30/45 | 20AEP4 | | 20.0 | Cath.
Grid | 16
16 | 150
300 | -250/150 | 36/54
-28/-72 | 20AHP4
20CP4 | | 19.8 ●
19.8 ● | Grid | 16 | 300 | _ | -28/-72 | 20CP4A | | 19.8 | Grid | 16 | 300 | | -28/-72 | 20CP4B
20CP4C | | 19.8 | Grid | 16 | 300 | | -28/-72 | LUUFTU | #### FYPI AMATION OF SYMBOLS - M -- Metal cone tube - G -- Glass tube - LWG -Light weight glass tube - G°-Glass tube, dimensions different from normal ### MET - Metal tube - O -Round tube - Rectangular tube, spherical face - Rectangular tube, cylindrical face B Fiberglass wrap implosion - b -- riberglass wrap implosion protection - E -Filled rim type implosion protection - T Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L -- Plastic implosion barrier - attached to face - K -- Banded tube with coated funnel for implosion protection - H —Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F -- Gray filter glass faceplate - R -- Anti-reflection faceplate - A-Aluminized screen - V-Rim bands and tension band - W -- Rim bands and tension band with mounting fugs - X -- Formed with tension band - Y-Formed rim with tension band and mounting lugs ### Mag. -- Magnetic focus - L.V.E.S.—Low voltage electrostatic focus H.V.E.S.—High Voltage electrostatic focus - Auto.Es. -- Self-focusing electrostatic - Int.Mag. —Internal magnetic focus TPF —Tri-potential focus - rr-⊷itt-potentiait N-⊶Noion tran - S-Single field ion trap - D-Double field ion trap - I -Internal ion trap - *-18 second heater warm-up time (all others are 11 second) - Grid -- Grid drive service (all voltages with respect to cathode) - Cath.—Cathode drive service (all voltages with respect to Grid No. 1) - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEBEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccurracies. | 334 | z | ш | ¥ | F | CEPL | ATE | | | MAG. | _ | | | HEA | TER | |--|--|--|--------------------|-------|-------------------------|----------------------------|--|--|---|--|---|---|---------------------------------|--| | TUBE
TYPE | X-RADIATIO
RATING | DEFL. ANGLI
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MA | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 20CP4D
SG-20CP4D
20DP4
20DP4A
20DP4B
20DP4C | 000000 | 70
70
70
70
70
70
70 | G G G G | | | FA
FA
F
FA
FA | 500/1500
500/1500
None
500/1500
None
500/1500 | Mag.
Mag.
Mag.
Mag.
Mag.
Mag. | S N S S S S | 21.438
21.438
21.750
21.750
21.750
21.750 | 7.500
7.500 | 12N
12N
12D
12N
12D
12D
12N | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 20DP4D
20FP4
20GP4
20HP4
20HP4A
20HP4B | 00000 |
70
70
70
70
70
70 | GGGGGG | | | FA
F
F
F
FR | 500/1500
None
500/750
None
500/1500
None | Mag.
H.V.E.S.
H.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N 0 0 0 0 0 0 | 21.750
21.750
21.750
21.750
21.750
21.750 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12M
12L
12M
12L
12L | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 20HP4C
20HP4D
SG-20HP4D
20HP4E
20JP4
20LP4 | $\Delta \Delta \Delta \Delta \Delta \Delta \Delta$ | 70
70
70
70
70
70 | GGGGGG | | 1 1 1 1 1 | FA
FA
FA
F
F | None
500/1500
500/1500
500/1500
500/750
750/1500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Auto.Es.
L.V.E.S. | S N N S S | 21.750
21.750
21.750
21.750
21.750
21.750 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12M
12L
12L
12L
12P
12P | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 20MP4
20RP4
20SP4
20TP4
20UP4
20WP4 | | 70
114
114
114
114
114 | 999999 | | V X X E W | F
FA
FA
FA | 500/1500
160 0 /2000
1400/2000
1400/2000
1200/1700
1600/2200 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S N N N N N | 21.750
12.394
12.269
12.269
12.312
12.269 | 7.500
4.500
4.375
4.375
4.375
4.375 | 12L
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.45
0.45
0.45 | | 20XP4
20YP4
20ZP4
21ACP4
21ACP4A
SG-21ACP4A | PDDDDD | 114
114
114
90
90
90 | 666666 | | V V V I I I | FA
FA
FA
FA
FA | 1500/2000
1500/2000
1500/2000
2000/2500
2000/3500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | N N S S N | 12.270
12.270
12.270
20.000
20.000
20.000 | 4.380
4.380
4.380
7.500
7.500
7.500 | 8HR
8HR
8HR
12N
12N
12N | 6.3
6.3
6.3 | 0.45
0.45
0.45
0.60
0.60
0.60 | | 21AFP4
21ALP4
21ALP4A
21ALP4B
21AMP4
21AMP4A | | 70
90
90
90
90
90 | 999999 | | | F
FA
FA
FA | None
500/750
500/750
500/750
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag. | 555555 | 23.000
20.000
20.000
20.000
20.000
20.000 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12M
12L
12L
12L
12L
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21AMP4B
21ANP4
21ANP4A
21AP4
21AQP4
21AQP4A | | 90
90
90
70
90 | G
G
MET
G | | | FA
FA
FR
FA | 2000/2500
None
None
None
None
None | Mag.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | 2 | 20.000
20.000 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12M
12M
12D
12D
12D | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21ARP4
21ARP4A
21ASP4
21ATP4
21ATP4A
21ATP4B | DDDDDD | 70
70
70
90
90
90 | G°GGGG | | | F
FA
FA
FA
F | 500/750
500/755
None
1200/1500
1200/1500
1200/1500 | Int.Mag.
Int.Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | | 23.031
23.031
22.438
20.000
20.000
20.000 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12N
12M
12L
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21AUP4
21AUP4A
21AUP4B
SG-21AUP4E
21AUP4C
21AVP4 | | 72
72
72
72
72
72
72 | 66666 | | 1 1 1 1 | FA
FA
FA
FA
F | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S S S N N S | 23.031
23.031
23.031
22.031
23.031
23.031 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12L
12L
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21AVP4A
21AVP4B
21AVP4C
21AWP4
21AWP4A
SG-21AWP4A | | 72
72
72
72
72
72
72 | 666666 | | | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | S
S
N
S
N | 23.031
23.031
23.031
23.031
23.031
23.031 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12N
12N
12N
12N | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | • | TYPI | CAL | OPER/ | ATING CON | IDITIONS | | |--|---|----------------------------------|---|--|--|--| | ANODE KV.
Design-max.
Values * | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 19.8@
19.8@
19.8@
19.8@
19.8@ | Grid
Grid
Grid
Grid
Grid
Grid | 16
16
16
16
16
16 | 300
300
300
300
300
300 | 11111 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 20CP4D
SG-20CP4D
20DP4
20DP4A
20DP4B
20DP4C | | 19.8 • 19.8 • 19.8 • 17.6 • 17 | Grid
Grid
Grid
Grid
Grid
Grid | 16
12
14
14
14
14 | 300
300
300
300
300
300
300 | 2300/3200
2750/3740
-56/310
-56/310
-56/310 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 |
20DP4D
20FP4
20GP4
20HP4
20HP4A
20HP4B | | 17.6 • 17 | Grid
Grid
Grid
Grid
Grid
Grid | 14
14
14
14
12
14 | 300
300
300
300
300
300 | -56/310
-56/310
-56/310
-56/310
-56/310 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 20HP4C
20HP4D
SG-20HP4D
20HP4E
20JP4
20LP4 | | 17.6 22.0 23.0 23.0 23.0 23.0 | Grid
Cath.
Cath.
Cath.
Cath.
Cath. | 16
16
16 | 300
50
30
300
400
400 | -55/300
0/400
-100/300
0/400
0/500
0/400 | -28/-72
33/50
22/40
28/62
35/72
36/78 | 20MP4
20RP4
20SP4
20TP4
20UP4
20WP4 | | 23.0
23.0
23.0
22.0
22.0
22.0 | Cath.
Cath.
Cath.
Grid
Grid
Grid | 20
16
16
16
16
16 | 400
50
50
300
300
300 | -200/200
-200/200
-200/200
 | 48/82
32/52
32/52
-28/-72
-28/-72
-28/-72 | 20XP4
20YP4
20XP4
21ACP4
21ACP4A
SG-21ACP4A | | 19.8 • 19.8 • 22.0 19.8 • 19.8 | Grid
Grid
Grid
Grid
Grid
Grid | 16
14
14
14
16
16 | 300
300
300
300
300
300 | -64/350
-55/300
-55/300
-55/300 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21AFP4
21ALP4
21ALP4A
21ALP4B
21AMP4
21AMP4A | | 19.8 • 19 | Grid
Grid
Grid
Grid
Grid
Grid | 17
14
14
14
16
16 | 300
300
300
300
300
300 | -55/300
-55/300
 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21AMP4B
21ANP4
21ANP4A
21AP4
21AQP4
21AQP4A | | 22.0 @ 22.0 @ 19.8 @ 22.0 @ 19.8 @ 22.0 @ 19.8 @ | Grid
Grid
Grid
Grid
Grid
Grid | 16
16
16
16
16
16 | 300
300
300
300
300
300
300 | -64/352
-64/350
-64/350
-64/350 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21ARP4
21ARP4A
21ASP4
21ATP4
21ATP4A
21ATP4B | | 19.8 • 19.8 • 22.0 • 22.0 • 19.8 • 19.8 • | Grid
Grid
Grid
Grid
Grid
Grid | 14
14
14
14
14
14 | 300
300
300
300
300
300 | -55/300
-55/300
-55/300
-55/300
-55/300
-55/300 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21AUP4
21AUP4A
21AUP4B
SG-21AUP4B
21AUP4C
21AUP4C | | 19.8 • 22.0 • 22.0 • 19.8 • 19.8 • 19.8 • | Grid
Grid
Grid
Grid
Grid
Grid | 14
14
14
16
16
16 | 300
300
300
300
300
300
300 | -55/300
-55/300
-55/300
-55/300
 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21AVP4A
21AVP4B
21AVP4C
21AWP4
21AWP4A
SG-21AWP4A | - M -Metal cone tube - G...Glass tube - LWG -Light weight glass tube - G°-Glass tube, dimensions different from normal ### MET - Metal tube - O -Round tube - ☐—Rectangular tube, spherical face - @ -Rectangular tube, cylindrical face - B Fiberglass wrap implosion protection - E Filled rim type implosion protection - T -- Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L Plastic implosion barrier - L Plastic implosion barrier attached to face - K—Banded tube with coated funnel for implosion protection - H -- Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F-Gray filter glass faceplate - R Anti-reflection faceplate A Aluminized screen - A -Aluminized screen - V —Rim bands and tension band W —Rim bands and tension band - W Kim bands and tension band with mounting lugs - X-Formed with tension band - Y Formed rim with tension band and mounting lugs ### Mag. — Magnetic focus - $L.V.E.S. Low\ voltage\ electrostatic\ focus \\$ - H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic - Int. Mag. internal magnetic focus - TPF Tri-potential focus - N -No ion trap - S—Single field ion trap -
D-Double field ion trap - I Internal ion trap - *-18 second heater warm-up time (all others are 11 second) - Grid —Grid drive service (all voltages with respect to cathode) - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1) - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | Z | w | ¥ | F | ACEPL | ATE | | | ğ | £ | z | | HEA | TER | |--|----------------------|---|------------------------------------|-------|-------------------------|-----------------------------|---|---|---------------------------------------|--|---|---|--|---| | TUBE
TYPE | X-RADIATIO
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 21AYP4
21BAP4
21BCP4
21BDP4
21BNP4
21BSP4 | | 70
90
90
72
90
90 | G
G
G
G | | | FA
FA
FA
FA | 750/ 2500
2000/ 2500
500/ 750
500/ 750
2000/ 2500
2000/ 2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag. | SNNNNS | 22.438
20.000
23.031
23.031
20.000
20.000 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12L
12L
12L
12N | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21BTP4
21CBP4
21CBP4A
21CBP4B
21CDP4
21CDP4A | | 90
90
90
90
90 | 66666 | | | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S
N
N
N
S
S | 20.000
18.000
18.000
18.000
20.000
20.000 | 7.500
5.500
5.500
5.500
7.500
7.500 | 12L
12L
12L
12L
12L
12L | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.45
0.45 | | 21CEP4
21CEP4A
21CGP4
21CHP4
21CKP4
21CLP4 | | 110
110
90
90
90
90 | G G G G | | = | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2000
2000/2500
1250/1750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | NNSNNS | 14.438
14.438
20.000
18.000
18.000
19.000 | 5.438
5.438
7.500
5.500
5.500
6.500 | 8HR
8HR
12L
12L
12L
12L | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.45
0.30 | | 21CMP4
21CQP4
21CSP4
21CUP4
21CVP4
21CWP4 | | 90
110
110
90
90
90 | G
LWG
LWG
G
G | | | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S. | SEESES | 19.000
14.438
14.438
20.000
20.000
20.000 | 6.500
5.188
5.188
7.500
7.500
7.500 | 12L
7FA
7FA
12N
12L
12L | 6.3
6.3
6.3 | 0.60
0.45
0.60
0.60
0.60
0.60 | | 21CXP4
21CZP4
21DP4
21DAP4
21DEP4
21DEP4A | 4004004 | 70
110
110 | G
LWG
M
LWG
LWG
LWG | | | FA
FA
FA
FA
FA | 2000/2500
2000/2500
None
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
H.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N S S N N N | 18.000
14.688
22,625
14.688
14.688 | 5.500
5.438
7.500
5.438
5.438
5.438 | 12L
8HR
12M
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | SG-21DEP4/
21DFP4
21DHP4
21DJP4
21DKP4
21DKP4 | 44444 | 90
110 | LWG
G
LWG
G
LWG
LWG | | | FA
FA
FA
FA
FA | 2000/2500
1500/2200
1700/2500
2000/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 14.688
14.438
14.688
18.000
14.688
14.688 | 5.438
5.438
5.438
5.500
5.438
5,438 | 8HR
8HR
8HR
12L
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.45
0.30
0.30
0.30* | | 21DLP4
21DMP4
21DNP4
21DQP4
21DRP4
21DSP4 | 00000 | 90
90 | G
LWG
G
G
LWG | | | FA
FA
FA
FA
FA | 2000/2500
2000/2500
1200/1500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N S N N | 17.000
13.750
19.000
17.500
18.250
18.000 | 4.500
4.500
6.500
5.000
5.500
5.500 | 12L
8HR
12L
12L
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21DVP4
21DWP4
21EAP4
21ELP4
21EMP4
21ENP4 | 000000 | 90
110
110
90
110
90 | G G G G G | | | FA
FA
FA
FA
FA | 500/750
2000/2500
1500/2000
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S N N N N S | 20.000
14.438
12.938
19.000
13.375
19.000 | 7.500
5.438
3.688
6.500
4.375
6.500 | 12L
8HR
8JK
12L
8HR
12L | 6.3
2.35
6.3
6.3 | 0.30
0.30
0.60
0.30
0.60
0.30 | | 21EP4
21EP4A
21EP4B
SG-21EP4B
21EP4C
21EQP4 | 000000 | 70
70
70
70
70
70
110 | 666666 | | | F
FA
FA
FA
FA | None
500/750
500/750
500/750
500/750 | Mag.
Mag.
Mag.
Mag.
Mag.
L.V.E.S.TPF | SSSER | 23.000
23.000
23.000
23.000
23.000
12.562 | 7.500
7.500
7.500
7.500
7.500
7.500
3.562 | 12D
12N
12N
12N
12N
12N
8JR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21ERP4
21ESP4
21EVP4
21EXP4
21EXP4
21EZP4
21FAP4 | 4000444 | 110
110
110
110
110 | G
LWG
LWG
G
LWG
LWG | | P | FAR
FA
FA
FA
FA | 1500/2000
2000/2500
1500/2000
2000/2500
2000/2500 | L.V.E.S.TPF
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.TPF | 22222 | 12.812
13.312
12.937
12.562
12.812
12.812 | 3.562
4.062 | 8JR
8JS
8JK
8JR
8JR
8JR | 6.3
6.3
2.68
6.3
6.3 | 0.60
0.60
0.45 | | | TYPI | CAL | OPER/ | ATING COI | IDITIONS | | |--|--|----------------------------------|---|--
---|--| | ANODE KV.
Design-max
Values® | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 19.8 • 22.0 • 22.0 • 22.0 • 22.0 • 22.0 • | Grid
Grid
Grid
Grid
Grid
Grid | 16
16
16
16
16
16 | 300
300
300
300
300
300
300 | -64/352
0/500
50/550
50/550
0/500 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21AYP4
21BAP4
21BCP4
21BDP4
21BNP4
21BSP4 | | 22.0 • 19.8 • 22.0 • 22 | Grid
Grid
Grid
Grid
Grid
Grid | 16
14
16
16
16
16 | 300
300
300
300
300
300 | - 64/352
- 55/300
0/400
0/450
- 64/352
- 64/352 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21BTP4
21CBP4
21CBP4A
21CBP4B
21CDP4
21CDP4A | | 19.8 • 22.0 • 22.0 • 22.0 • 19.8 • 22.0 • 22 | Grid
Grid
Cath.
Cath.
Grid
Grid | 14
14
14
16
16
14 | 300
300
110
110
300
300
300 | 0/400
0/400
-55/300
-50/350
-50/350
-103/203
-64/352 | - 28/-72
-28/-72
32/50
32/50
-28/-72
-35/-75 | 21CEP4
21CEP4A
21CGP4
21CHP4
21CKP4
21CLP4 | | 19.8 • 19.8 • 22.0 • 22 | Grid
Grid
Grid
Grid
Grid
Grid | 16
16
16
16
16
16 | 300
300
300
300
300
300
50 | - 64/352
- 50/350
0/400
- 64/352
- 64/352
0/350 | -35/-72
-35/-72
-35/-72
-28/-72
-28/-72
-35/50 | 21CQP4
21CSP4
21CUP4
21CVP4
21CWP4 | | 19.8 • 19.8 • 19.8 • 22.0 • 22.0 • | Grid
Grid
Grid
Grid
Grid
Grid | 17
14
14
17
17 | 300
300
300
300
300
300 | 0/500
2750/3740
0/400
0/500
0/500 | -28/-72
-28/-72
-28/-72
-28/-72
-28/-72 | 21CZP4
21DP4
21DAP4
21DEP4
21DEP4A
SG-21DEP4A | | 19.8 • 19.8 • 22.0 • 19.8 • 19.8 • | Grid
Grid
Grid
Grid
Grid | 14
16
16
16
16 | 300
300
300
300
300 | 0/400
0/400
-50/350
0/400
0/400 | -28/-72
-35/-72
-25/-72
-35/-72
-35/-72 | 21 DFP4
21 DHP4
21 DJP4
21 DKP4
21 DKP4 | | 22.0 • 22.0 • 20.0 • 22.0 •
22.0 • 22 | Grid
Grid
Grid
Grid
Grid
Cath. | 16
16
16
16
16 | 300
400
300
300
300
50 | 0/400
-50/350
-64/352
-50/350
0/450
0/450 | -28/-72
-36/-92
-35/-72
-35/-72
-28/-72
32/50 | 21 DLP4
21 DMP4
21 DNP4
21 DQP4
21 DRP4
21 DSP4 | | 22.0 • 19.8 • 20.0 • 22.0 • 19.8 • 22.0 • | Grid
Grid
Grid
Grid
Grid
Grid | 14
14
16
16
16
16 | 300
450
300
450
450
300 | -50/300
-50/350
100/500
0/400
0/400
-64/352 | -28/-72
45/105
-35/-72
-45/-105
-45/-105
-35/-72 | 21DVP4
21DWP4
21EAP4
21ELP4
21EMP4
21ENP4 | | 19.8 • 19.8 • 19.8 • 19.8 • 20.0 • | Grid
Grid
Grid
Grid
Grid
Grid | 16
16
16
16
16
16 | 300
300
300
300
300
500 | 0/400 | - 28/-72
-28/-72
-28/-72
-28/-72
-28/-72
-43/-78 | 21EP4
21EP4A
21EP4B
SG-21EP4B
21EP4C
21EQP4 | | 20.0
19.8
20.0
20.0
19.8
22.0 | Grid
Grid
Grid
Grid
Cath.
Grid | 16
17
16
16
18
18 | 500
450
300
500
500
300 | 0/400
0/500
100/500
0/400
0/400
0/400 | - 43/-72
-28/-72
-35/-72
-43/-78
41/69
- 43/-78 | 21ERP4
21ESP4
21EVP4
21EXP4
21EZP4
21FAP4 | - M -- Metal cone tube - G-Glass tube - LWG -Light weight glass tube - G°-Glass tube, dimensions different from normal - MET Metal tube - O -- Round tube - □ -Rectangular tube, spherical face ⊙ Rectangular tube, cylindrical face - B Fiberglass wrap implosion - protection E —Filled rim type implosion - protection - T Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L Plastic implosion barrier - attached to face - K Banded tube with coated funnel for implosion protection - H Tube sealed into steel sheath for implosion protection - C Clear glass faceplate - F Gray filter glass faceplate - R Anti-reflection faceplate - $\mathbf{A}-\mathbf{Aluminized}$ screen - V -- Rim bands and tension band - W -- Rim bands and tension band with mounting lugs - X -- Formed with tension band - Y -- Formed rim with tension band and mounting lugs - Mag. -- Magnetic focus - L.V.E.S. Low voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus - Auto.Es. -- Self-focusing electrostatic Int.Mag. -- Internal magnetic focus - TPF Tri-potential focus - N ~No ion trap - S-Single field ion trap - D-Double field ion trap - *—18 second heater warm-up time (all others are 11 second) - Grid —Grid drive service (all voltages with respect to cathode) - Cath. Cathode drive service (all voltages with respect to Grid No. 1) ### MOTE - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | Z | uj | Z | F | ACEP | LATE | | | ø | _ | I | Ī | HE | TER | |---|-----------------------|--|----------------------------------|-------|-------------------------|----------------------------|--|--|---------------------------------------|--|---|---|--|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLI
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
IF | FOCUS | ION TRAP MAG. | Overall Length
(Inshes) | NECK LENGTH | BASING | ٧. | A. | | 21FCP4
21FDP4
21FLP4
SG-21FLP4
21FMP4
21FP4 | 440404 | 110
110
90
90
110
70 | LWG
LWG
G
G
LWG
G | | -
-
-
-
- | FA
FA
FA
FA
FA | 2000/2500
1500/2000
500/2500
500/2500
2000/2500
None | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 13.500
13.125
18.000
18.000
14.375
23.000 | 4.250
3.875
5.500
5.500
5.125
7.500 | 8HR
8KW
12L
12L
8HR
12M | 6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21FP4A
21FP4C
SG-21FP4C
21FP4D
21FUP4
21FVP4 | 4444□ | 70
70
70
70
114
114 | 666666 | | -
E
V | F
FA
FA
FA
FA | 500/750
500/750
500/750
500/750
1700/2500
1500/2300 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | SNNNN | 23.000
23.000
22.000
23.031
12.656
12.656 | 7.500
7.500
6.500
7.500
4.375
4.375 | 12L
12L
12L
12L
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.45
0.45 | | 21FWP4
21FXP4
21FYP4
21FZP4
21GAP4
21GAP4A | | 114
114
114
114
114
114 | 999999 | | V E W V V V | FA
FA
FA
FA
FA | 1700/2500
1300/2000
1300/2000 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 12.656
12.660
12.781
12.656
12.656
12.656 | 4.375
4.375
4.500
4.375
4.375
4.375 | 8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.45
0.45 | | 21GBP4
21GCP4
21GEP4
21GHP4
21GJP4
21GKP4 | | 114
114
114
114
114
114 | 999999 | | V
W
W
V
Y | FA
FA
FA
FA
FA | 1500/2300
1700/2500
1700/2300
1500/2300
1500/2300
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | X | 12.781
12.656
12.660
12.656
12.968
12.656 | 4.500
4.375
4.380
4.375
4.687
4.375 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.60
0.45 | | 21GTP4
21JP4
21JP4A
21KP4
21KP4A
21MP4 | | 70
70
70
70
70
70
70 | GGGGGM | | Y
-
-
- | FA
F F F F FR | 500/750
500/750
None
500/750
None | L.V.E.S.
Int.Mag.
Int.Mag.
Auto.Es.
Auto.Es.
L.V.E.S. | 000 | 12.660
23.031
23.031
22.875
23.000
22.625 | 4.375
7.500
7.500
7.500
7.500
7.500
7.500 | 8HR
12N
12N
12S
12P
12M | 6.3
6.3
6.3
6.3 | 0.315
0.60
0.60
0.60
0.60
0.60 | | 21VASP4
21VATP4
21WP4
21WP4A
SG-21WP4A
21WP4B | | 114
114
70
70
70
70
70 | ာ့ စွာစွာစူစာစာ | | W
-
-
- | FA
FA
FA
FA
FA | 2000/2500
500/750
500/750
500/750 | L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag.
Mag.
Mag. | N S S N N | 13.130
13.130
22.562
22.562
22.562
22.562
22.562 | 4.380
4.380
7.500
7.500
7.500
7.500 | 8HR
8HR
12N
12N
12N
12N | 6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.60
0.60 | | 21 XP4
21 XP4A
SG-21 XP4A
21 XP4B
21 YP4
21 YP4A | 00000 | 70
70
70
70
70
70
70 | ၁ ၈၈၈၈၈ | | | FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
500/750 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | S
N
S
S | 22.438
22.438
21.438
21.438
23.000
23.000 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12L
12L
12L
12L | 6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | SG-21YP4A
21YP4B
21ZP4
21ZP4A
21ZP4B
SG-21ZP4B | 400044 | 70
70
70
70
70
70
70 | GGGGGG | | | FA
FA
F
FA
FA | 500/750
None
500/750
500/750 | L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag.
Mag. | N
S
S | 22.000
23.000
23.031
23.031
23.031
23.031 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12L
12L
12D
12N
12N
12N
12N | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 21 ZP4C
22 AFP4
22 TP4
22 V ABP4
22 V A CP4
22 V A MP4 | | 70
114
114
110
110
110 | 6
6
6
6
6 | | V
E
X
R
V | FA
FA
FA
FA | 2000/2500
1700/2200
1700/2500
1700/2500
1700/2500 | Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N | 14.406
14.594
14.870 | 4.375
4.375
4.375
5.120 | 12N
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.45 | | 22VANP4
22VARP4
22VASP4
22VATP4
22ZP4
23ACP4 | | 110
110
114
114
114
90 | 99999 | | V
V
W
W
T | FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. |
N
N
N
N | 14.875
14.375
14.875
14.875
13.130
19.394 | 4.625
5.125
5.125
4.380 | 8HR
8HR
8HR
8HR
8HR
12L | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45 | | ن | TYP | ICAL | OPER | ATING CO | NDITIONS | | |--------------------------------------|---------------|-----------|-----------------|----------------------------------|--|-----------------------| | ANODE KV.
Design-Max.
Values 💠 | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 18.0 | Cath. | 16 | 300 | 0/400 | 34/63 | 21FCP4 | | 20.0
22.0 ⊚ | Grid
Grid | 16 | 300
300 | 100/500
0/450 | -35/-72
-28/-72 | 21FDP4
21FLP4 | | 22.0⊚ | Grid | 16 | 300 | 0/450 | -28/-72 | SG-21FLP4 | | 22.0
19.8@ | Cath.
Grid | 18
14 | 50
300 | 0/500
-56/310 | 31/49 | 21FMP4
21FP4 | | 19.8 | Grid | 14 | 300 | -56/310 | -28/-72
-28/-72 | 21FP4A | | 19.8 | Grid | 14 | 300 | -56/310 | -28/-72 | 21FP4C | | 19.8 ⊚
19.8 ⊚ | Grid | 14 | 300
300 | -56/310
-56/310 | -28/-72
-28/-72 | SG-21FP4C
21FP4D | | 23.0 | Cath. | 16 | 50 | 0/400 | 35/55 | 21FUP4 | | 23.0 | Cath. | 20 | 400 | -100/300 | 36/78 | 21FVP4 | | 23.0
23.0 | Cath. | 20
16 | 400
400 | -100/300
0/500 | 36/78
35/72 | 21FWP4
21FXP4 | | 22.0 | Cath. | 16 | 50 | 0/400 | 33/45 | 21FYP4 | | 23.0 | Grid
Cath. | 16 | 400 | 0/400 | -39/-93 | 21FZP4
21GAP4 | | 23.5
23.5 | Cath. | 16
16 | 30
30 | 0/400
0/400 | 30/45
30/45 | 21GAP4 | | 20.0 | Cath. | 16 | 50 | _ | 36/54 | 21GBP4 | | 23.0
23.0 | Cath. | 16
16 | 400 | 0/400
-200/200 | 39/93 | 21GCP4 | | 23.5 | Cath. | 16 | 50
30 | 0/400 | 32/50
30/45 | 21GEP4
21GHP4 | | 20.0 | Cath. | 16 | 400 | 0/400 | 36/78 | 21GJP4 | | 23.0 | Cath. | 16 | 50
50 | 0/400 | 35/55
35/55 | 21GKP4 | | 23.0
22.0⊚ | Cath.
Grid | 16
16 | 300 | 0/400 | -28/ <i>-</i> 72 | 21GTP4
21JP4 | | 22.0. | Grid | 16 | 300 | _ | -28/-72 | 21JP4A | | l9.8 ⊚
l9.8 ⊚ | Grid
Grid | 14
14 | 300
300 | _ | -28'/-72
-28/-72 | 21KP4
21KP4A | | 7.6. | Grid | 14 | 300 | -55/300 | -28/-72 | 21 MP 4 | | 23.0 | Cath. | 20 | 400 | -200/+200 | 48/82 | 21VASP4 | | 23.0
19.8 ⊚ | Cath.
Grid | 20
16 | 400
300 | -200/+200 | 48/82
-28/-72 | 21VATP4
21WP4 | | 19.8€ | Grid | 16 | 300 | | -28/-72 | 21WP4A | | 19.8 ●
19.8 ● | Grid
Grid | 16
16 | 300
300 | | -28/ - 72
-28/ - 72 | SG-21WP4A
21WP4B | | 9.8 | Grid | 16 | 300 | -64/352 | -28/-72 | 21 XP4 | | 9.8 | Grid | 16 | 300 | -64/352 | -28/-72 | 21XP4A | | l9.8 ●
l9.8 ● | Grid
Grid | 16
16 | 300
300 | -64/352
-64/352 | -28/-72
-28/-72 | SG-21 XP4A
21 XP4B | | 19.8€ | Grid | 14 | 300 | -55/300 | -28/-72 | 21 YP4 | | 9.8 | Grid | 16 | 300 | -64/350 | -28/-72 | 21YP4A | | .9.8 ●
.9.8 ● | Grid
Grid | 16
16 | 300
300 | -64/350
-64/350 | -28/-72
-28/-72 | SG-21YP4A
21YP4B | | 9.8. | Grid | 16 | 300 | | -28/-72 | 21ZP4 | | 9.8 ⊚
!9.8 ⊚ | Grid
Grid | 16
16 | 300
300 | _ | -28/-72
-28/ - 72 | 21ZP4A
21ZP4B | | 19.8 ● | Grid | 16 | 300 | | -28/-72 | SG-21ZP4B | | 9.8€ | Grid | 16 | 300 | 7 | -28/-72 | 21ZP4C | | 23.0
23.0 | Cath. | 20
18 | 400
400 | -200/+200
0/500 | 48/82
35/72 | 22AFP4
22TP4 | | 23.5 | Cath. | 18 | 30 | 0/+400 | 22/45 | 22 1 P4
22 V ABP4 | | 23.0 | Cath. | 18 | 30 | 0/+400 | 22/45 | 22VACP4 | | 2.0
2.0 | Grid | 16
18 | 400
300 | 0/400
0/400 | -35/-94
36/54 | 22VAMP4
22VANP4 | | 22.0 | Cath. | 18 | 500
50 | 50/350 | 38/34 | 22VARP4 | | 3.0 | Cath. | 20 | 400 | -200/200 | 48/82 | 22VASP4 | | 23.0
23.0 | Cath. | 20
20 | 400
400 | -200/200
-200/200 | 48/82
48/82 | 22VATP4
22ZP4 | | 8.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23ACP4 | M -- Metal cone tube G...Glass tube LWG-Light weight glass tube G°--Glass tube, dimensions different from normal ### MET -- Metal tube - O-Round tube - ☐ -- Rectangular tube, spherical face @ -Rectangular tube, cylindrical face - B-Fiberglass wrap implosion - protection E-Filled rim type implosion - protection - T -- Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L Plastic implosion barrier attached to face - K -- Banded tube with coated funnel for implosion protection - H-Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F-Gray filter glass faceplate - R Anti-reflection faceplate - A -- Aluminized screen - V -- Rim bands and tension band - W -- Rim bands and tension band with mounting lugs - X-Formed with tension band - Y ... Formed rim with tension band and mounting lugs ### Mag. -- Magnetic focus - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S. High Voltage electrostatic focus Auto.Es. - Self-focusing electrostatic - Int.Mag. -- Internal magnetic focus TPF -- Tri-potential focus - N -- No ion trap - S-Single field ion trap - D -- Double field ion trap - 1-Internal ion trap - *—18 second heater warm-up time (all others are 11 second) - Grid -Grid drive service (all voltages with respect to cathode) - Cath. —Cathode drive service (all voltages with respect to Grid No. 1) - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | 338 | z | 1.1 | 4 | F/ | ACEPL | ATE | | | G | | | | HEA | TER | |--|-----------------------|---|----------------|-------|---|------------------------------------|---|---|---------------------------------------|--|---|---|--|--| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | v. | A. | | 23AFP4
23AHP4
23AKP4
23ALP4
23AMP4
23ANP4 | | 92
92
114
114
114
92 | G G G G G | | T = = = = = = = = = = = = = = = = = = = | FA
FA
FA
FA
FA | 2000/2500
1700/2500
2000/2500
1700/2500
1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.
L.V.E.S.
L.V.E.S. | X X X X X X X X X X X X X X X X X X X | 18.812
18.000
12.812
14.531
14.531
18.438 | 6.000
5.500
3.562
5.125
5.125
5.625 | 12L
12L
8JR
8HR
8HR
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.45
0.30
0.60 | | 23AQP4
23ARP4
23ASP4
23ATP4
23AUP4
23AVP4 | 400444 | 114
110
92
92
92
110 | 666666 | | _
 | FA
FA
FAR
FAR | | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | ZZZZZZ | 14.531
14.875
17.000
18.438
18.000
15.188 | 5.125
5.125
4.500
5.625
5.500
5.125 | 8HR
8HR
12L
12L
12L
8HR | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.30*
0.60
0.60
0.60
0.60
0.60 | | 23AWP4
23AXP4
23AYP4
23AZP4
23BAP4
23BCP4 | 442442 | 92
110
110
92
110
110 | 000000 | | T
T | FA | 1700/2500
2000/2500
2000/2500
1700/2500
2000/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | X X X X X | 18.125
14.000
15.187
18.000
14.375
14.875 | 5.625
4.250
5.125
5.500
4.375
5.125 | 12L
8HR
8HR
12L
8HR
8HR | 6.3
6.3 | 0.60
0.30
0.30
0.30
0.60
0.30 | | 23BDP4
23BEP4
23BEP4A
23BGP4
23BHP4
23BJP4 | | 92
110
110
110
110
92 | 000000 | | T | FA | 2000/2500
2000/2500
2000/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N
N | 18.312
15.188
15.188
15.188
15.188
15.188
18.125 | 5.500
5.125
5.125
5.125
5.125
5.625 | 12L
8HR
8HR
8HR
8HR
12L | 6.3
6.3
6.3 | 0.60
0.30*
0.30*
0.60
0.60
0.60 | | 23BKP4
23BLP4
23BMP4
23BP4
23BNP4
23BQP4 | | 92
92
92
110
110
110 | GGGGGG | | T
T
T
T | FA
FA
FA | 1700/2500
1700/2500
1200/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N |
18.438
18.438
18.312
14.438
15.188
15.188 | 5.625
5.625
5.500
4.375
5.125
5.125 | 12L
12L
12L
8HR
8HR
8HR | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.45 | | 23BRP4
23BSP4
23BTP4
23BVP4
23BXP4
23BYP4
23BZP4 | | 110
110
92
92
92
110
92 | GGGGGG | | T
T
P
T | FAR
FAR
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S. | Z Z Z Z Z Z | 13.625
15.188
18.312
18.812
18.250
13.265
18.000 | 3.562
5.125
5.500
6.000
5.500
3.562
5.500 | 8JR
8HR
12L
12L
12L
8JR
12L | 6.3
6.3
6.3
6.3
6.3 | 0.30
0.30*
0.60
0.60
0.60
0.30*
0.45 | | 23CAP4
23CBP4
23CDP4
23CEP4
23CGP4
23CMP4 | <u> </u> | 92
110
92
110
92
110 | 6 G G G G | | T
T
T | FA
FAR
FA
FA
FA | 2000/2500
2000/2500
2000/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 18.312
15.188
18.312
14.875
18.000
14.875 | 5.500
5.125
5.500
5.125
5.500
5.125 | 12L
8HR
12L
8HR
12L
8HR | 8.4
6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.30
0.45
0.45
0.30* | | 23CP4
23CP4A
23CQP4
23CSP4
23CTP4
23CUP4 | | 110
110
114
110
92
110 | 999999 | | T
T
T
T | FA
FAR | 2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.TPF | N | 15.188
15.188
13.781
13.125
18.312
13.625 | | 8HR
8HR
8HR
8JR
12L
8JR | 6.3
6.3
6.3
6.3
6.3 | 0.60 | | 23CVP4
23CWP4
23CXP4
23CZP4
23DAP4
23DBP4 | | 114
110
110
92
94
110 | 666666 | | | FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
1700/2500
2000/2500 | L.V.E.S.TPF
L.V.E.S.TPF
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 13.312
13.312
18.500
16.953
14.875 | 4.875
5.125 | 8JR
8JR
8JR
12L
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.30*
0.60
0.60
0.60 | | 23DCP4
23DEP4
23DFP4
23DHP4
23DJP4
23DKP4 | 0000D | 94
110
110
110
110
110
92 | G G G G | | E
T
T
V | FA
FA
FAR | 2000/2500
1500/2000
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N | 14.000
14.000
14.188
14.188 | 5.000
4.250
4.250
4.125
4.125
5.500 | 8HR
8HR
8HR
8HR
8HR
12L | 6.3 | 0.30
0.30
0.30 | | | TYPI | CAL | OPER/ | TING COI | NDITIONS | | |--------------------------------------|----------------|-----------|-----------------|----------------------------------|--|-------------------| | ANODE KV.
Design-max.
Values & | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 25.0 | Grid | 20 | 300 | 0/400 | -35/-72 | 23AFP4 | | 22.0
22.0 | Grid
Grid | 18
16 | 400
500 | 0/400
0/400 | -36/-94
-43/-78 | 23AHP4
23AKP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -36/-94 | 23ALP4 | | 22.0
25.0 | Grid
Cath. | 18
20 | 400
50 | 0/400
0/400 | -36/-94
35/50 | 23AMP4
23ANP4 | | 19.8 | Grid | 18 | 400 | 0/400 | -44/-94 | 23AQP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23ARP4 | | 22.0
25.0 | Grid
Cath. | 18
20 | 400
50 | 0/400
0/400 | -36/-94
35/50 | 23ASP4
23ATP4 | | 25.0 | Grid | 18 | 400 | 0/400 | -36/-94 | 23AUP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23AVP4 | | 22.0
20.0 | Cath. | 20
16 | 50
400 | 0/400
0/400 | 36/54
42/72 | 23AWP4
23AXP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72
-36/-94 | 23AYP4 | | 22.0
22.0 | Grid
Grid | 18
14 | 400
450 | 0/400
0/400 | -36/-94
-45/-105 | 23AZP4
23BAP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -45/-105
-35/-72 | 23BCP4 | | 22.0 | Cath. | 16 | 500 | 0/400 | 45/95 | 23BDP4 | | 22.0
22.0 | Grid
Grid | 16 | 300
300 | 0/400
0/400 | -35/-72
-35/-72 | 23BEP4
23BEP4A | | 22.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 23BGP4 | | 22.0 | Cath. | 16 | 50 | 0/400 | 32/50 | 23BHP4 | | 25.0
25.0 | Cath. | 20 | 50
50 | 0/400
0/400 | 36/54
36/54 | 23BJP4
23BKP4 | | 25.0 | Cath. | 20 | 50 | 0/400 | 36/54 | 23BLP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23BMP4 | | 22.0
22.0 | Grid
Grid | 14
18 | 450
400 | 0/400
-100/300 | -45/-105
-60/-110 | 23BP4
23BNP4 | | 23.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23BQP4 | | 22.0 | Grid | 16 | 500 | 0/400 | -43/-78
25 / 72 | 23BRP4 | | 22.0
25.0 | Grid
Grid | 16
16 | 300
300 | 0/400
0/400 | -35/-72
-35/-72 | 23BSP4
23BTP4 | | 25.0 | Grid | 20 | 300 | 0/400 | -35/-72 | 23BVP4 | | 22.0
22.0 | Grid
Grid | 16
16 | 300
500 | 0/400
0/400 | -35/-72
-43/-78 | 23BXP4
23BYP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -36/-94 | 23BZP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/~72 | 23CAP4 | | 23.0
22.0 | Grid
Grid | 16
16 | 300
300 | 0/400
0/400 | -35 [′] /-72
-35 [′] /-72 | 23CBP4
23CDP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72
-35/-72 | 23CEP4 | | 22.0
22.0 | Cath.
Grid | 16
16 | 500
300 | 0/400
0/400 | 45/95
-35/-72 | 23CGP4
23CMP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23CP4 | | 23.5 | Grid | 16 | 300 | 0/400 | -35/-72 | 23CP4A | | 23.5
22.0 | Grid
Grid | 14
16 | 450
500 | 0/400
0/400 | -45/-105
-43/-78 | 23CQP4
23CSP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23CTP4 | | 22.0 | Grid | 16 | 500 | 0/400 | -43/-78
-43/-78 | 23CUP4 | | 22.0 | Grid
Grid | 16
16 | 500
500 | 0/400
0/400 | -43/-78
-43/-78 | 23CVP4
23CWP4 | | 22.0 | Grid | 16 | 500 | 0/400 | -43/-78
-43/-78 | 23CXP4 | | 25.0
23.5 | Grid
Cath. | 20 | 300
50 | 0/400
-50/250 | -40/-76
35/55 | 23CZP4
23DAP4 | | 22.0 | Cath. | 18 | 50 | 0/500 | 36/54 | 23DBP4 | | 23.5 | Cath. | 18 | 50 | 0/400 | 35/55 | 23DCP4 | | 20.0
20.0 | Cath.
Cath. | 16
16 | 400
400 | 0/400
0/400 | 42/78
42/78 | 23DEP4
23DFP4 | | 22.0 | Cath. | 16 | 400 | 0/400 | 36/78 | 23DHP4 | | 22.0
22.0 | Cath.
Grid | 16
16 | 400
300 | 0/400
0/400 | 36/78
-35/-72 | 23DJP4
23DKP4 | | 22.0 | L 4110 | 1.0 | 1 300 | 0/400 | -33/-12 | LUDRIT | - M Metal cone tube - G-Glass tube - LWG-Light weight glass tube - G°—Glass tube, dimensions different from normal - MET -- Metal tube - O-Round tube - -Rectangular tube, spherical face - Rectangular tube, cylindrical face B Fiberglass wrap implosion - protection - E Filled rim type implosion protection - T -- Molded glass implosion panel attached to face - P—Sagged glass implosion plate attached to face - L —Plastic implosion barrier attached to face - K Banded tube with coated funnel for implosion protection - H Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F-Gray filter glass faceplate - R-Anti-reflection faceplate - A-Aluminized screen - V-Rim bands and tension band - W-Rim bands and tension band with mounting lugs - X-Formed with tension band - Y —Formed rim with tension band and mounting lugs ### Mag. - Magnetic focus - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus Auto.Es.—Self-focusing electrostatic - Int.Mag. —Internal magnetic focus - TPF-Tri-potential focus - N No ion trap - S-Single field ion trap - D-Double field ion trap - I Internal ion trap - *—18 second heater warm-up time (all others are 11 second) - Grid —Grid drive service (all voltages with respect to cathode) - Cath. —Cathode drive service (all voltages with respect to Grid No. 1) ### MOTES - Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | | إما | Z | F/ | CEPL | ATE | | | ڧ | _ | = | | HE | ATER | |---|-----------------------|--|-----------------------|-------|-------------------------|-----------------------------|---|---|-----------------------|--|---|--|---------------------------------|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | А. | |
23DLP4
23DLP4A
23DNP4
23DP4
23DQP4
23DRP4 | | 92
92
92
110
92
114 | 999999 | | V
V
T
T
V | FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.TPF
L.V.E.S.
L.V.E.S. | N
N
N
N | 18.000
18.000
18.418
13.562
18.688
13.688 | 5.500
5.500
5.625
3.562
5.875
4.375 | 12L
12L
12L
8JR
8HR
8HR | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.30* | | 23DSP4
23DSP4A
23DTP4
23DVP4
23DVP4A
23DWP4 | | 92
92
92
114
114
94 | <i>GGGGG</i> | | V
V
V
V | FA
FA
FA | 2000/2500
1700/2500
1700/2500
1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N | 18.375
18.375
18.500
14.438
14.438
17.188 | 5.875
5.875
6.000
5.125
5.125
5.125 | 8HR
8HR
12L
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 23DYP4
23DZP4
23EAP4
23ECP4
23EDP4
23EFP4 | 000000 | 110
114
92
92
92
110 | 999999 | | V
V
T
P
V | FA
FA
FA | 1700/2500
2000/2500
2000/2500
2000/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | 14.875
14.438
18.312
18.312
18.188
14.875 | 5.125
5.125
5.500
5.625
5.500
5.125 | 8HR
8HR
12L
12L
12L
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.60
0.60
0.60 | | 23EKP4
23ENP4
23EP4
23EQP4
23ERP4
23ESP4 | | 92
92
110
114
114
110 | GGGGGG | | V
V
V
V
V | FA
FA
FA
FAR | 1700/2500
1700/2500
1700/2500
1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 14.531
14.531
14.875 | 5.550
5.625
5.125
5.125
5.125
5.125
5.125 | 12L
12L
8KP
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.45
0.60
0.60
0.45
0.60
0.60 | | 23ETP4
23EWP4
23EWP4A
23EYP4
23EZP4
23FAP4 | | 110
114
114
92
94
114 | G G G G G | | m&m<<< | FA
FA
FA
FA | 1700/2500
1700/2500
2000/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S. | 2222 | | 5.125
5.125
5.125
5.625
5.625
5.000
5.125 | 8HR
8HR
8HR
12L
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.60
0.45
0.60 | | 23FBP4
23FCP4
23FDP4
23FHP4
23FKP4
23FLP4 | | 92
110
110
110
110
94
92 | GGGGGG | | V
V
V
T
V | FA
FA
FA
FA | 1700/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 2 | 18.125
14.875
14.875
14.875
17.531
18.000 | 5.625
5.125
5.125
5.125
5.125
5.500 | 12L
8HR
8HR
8HR
8HR
12L | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.45
0.60
0.45 | | 23FMP4
23FNP4
23FP4
23FP4A
23FRP4
23FSP4 | 0000 | 110
92
114
114
110
110 | GGGGGG | | V
E
-
E | FA
FA
FA
FA | 2000/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N | 14.875
18.000
13.781
13.688
14.250
14.875 | 5.125
5.500
4.375
4.375
4.500
5.125 | 8HR
12L
8HR
8HR
8HR
8HR | 6.3
6.3
6.3 | 0.45
0.45
0.60
0.60
0.45
0.60 | | 23FVP4
23FVP4-A
23FWP4
23FWP4A
23GBP4
23GDP4 | | 110
110
92 | G G G G G | | V
V
V
V | FA
FA
FA
FA | 2000/2500
2000/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N | 14.875
14.875
18.000
18.000
14.875
14.500 | 5.125
5.125
5.500
5.500
5.125
5.125 | 8HR
8HR
12L
12L
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.45
0.45
0.45
0.45
0.60 | | 23GEP4
23GHP4
23GJP4
23GJP4A
23GKP4
23GP4 | | 92
94
110 | G G G G G | | | FAR
FA
FA
FA
FA | 1700/2500
2000/2500
1700/2500
1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 18.125
16.812
14.250
14.250
18.000 | 5.625
4.750
4.500
4.500 | 12L
8HR
8HR
8HR
12L
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.45
0.45
0.60
0.60 | | 23GRP4
23GSP4
23GTP4
23GVP4
23GWP4
23GXP4 | 4444Z | 92
110
110
114 | G
G
G
G
G | | E
V
V | FA
FA
FA
FA
FA | 2000/2500
1700/2500
1700/2500
2000/2500
2000/2500 | LV.E.S.
LV.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 7 7 7 7 7 | 18.000
14.875
14.875
14.500
14.375 | 5.500
5.125
5.125
5.125
4.625
5.125 | 12L
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.45
0.60
0.60 | | | TYP | CAL | OPER | ATING CO | NDITIONS | | |-------------------------------------|----------------|-----------|-----------------|----------------------------------|---------------------------|--------------------| | ANODE KV.
Design-max
Values * | DRIVE | ANODE KV. | GRID 2
VOLTS | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 22.0 | Cath. | 20 | 50 | 0/500 | 36/54 | 23DLP4 | | 22.0
25.0 | Cath. | 20
20 | 50
35 | 0/500
0/500 | 36/54
25/50 | 23DLP4A
23DNP4 | | 22.0 | Grid | 16 | 500 | 0/400 | -43/-78 | 23DP4 | | 25.0
22.0 | Cath. | 20
16 | 65
400 | -100/300
9/300 | 41/56
33/78 | 23DQP4
23DRP4 | | 25.0 | Cath. | 18 | 65 | -100/300 | 41/56 | 23DSP4 | | 25.0
25.0 | Cath.
Grid | 18
20 | 65
300 | -100/300
0/400 | 41/56
-40/76 | 23DSP4A
23DTP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -46/-94 | 23DVP4 | | 22.0
22.0 | Grid
Cath. | 18
18 | 400
200 | 0/400
0/500 | -46/-94
 31/49 | 23DVP4A
23DWP4 | | 22.0 | Cath. | 18 | 300 | 0/500 | 36/54 | 23DYP4 | | 22.0
22.0 | Grid
Grid | 18
16 | 400
300 | 0/400
0/400 | -46/-94
 -35/-72 | 23DZP4
23EAP4 | | 25.0 | Cath. | 20 | 35 | 0,7400 | 25/50 | 23ECP4 | | 25.0
22.0 | Grid
Cath. | 20
18 | 300
50 | 0/400
0/400 | -35/-72
34/49 | 23EDP4
23EFP4 | | 25.0 | Cath. | 20 | 400 | 0/400 | 36/78 | 23EKP4 | | 25.0 | Cath. | 20 | 50 | 0/400 | 36/54 | 23ENP4 | | 22.0
23.0 | Cath.
Cath. | 16
18 | 50
300 | 0/400
0/400 | 32/50
28/62 | 23EP4
23EQP4 | | 23.0 | Cath. | 18 | 300 | 0/400 | 28/62 | 23ERP4 | | 22.0
23.0 | Cath. | 18
18 | 300 | 0/500
0/400 | 36/54
28/62 | 23ESP4
23ETP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -46/-94 | 23EWP4 | | 22.0
25.0 | Grid
Cath. | 18
20 | 400
30 | -200/200
0/500 | -48/-96
25/50 | 23EWP4A
23EYP4 | | 23.5 | Cath. | 18 | 50 | 0/400 | 35/55 | 23EZP4 | | 22.0
25.0 | Grid
Cath. | 18
20 | 400
50 | -200/200
0/400 | -48/-96
36/54 | 23FAP4
23FBP4 | | 22.0 | Cath. | 18 | 50 | 0/400 | 34/49 | 23FCP4 | | 23.0
23.5 | Cath. | 18
16 | 50
50 | 0/400 | 34/52 | 23FDP4 | | 23.5 | Cath. | 16 | 500 | -200/200
0/500 | 32/50
45/95 | 23FHP4
23FKP4 | | 25.0 | Grid | 18 | 300 | -200/200 | -37/-74 | 23FLP4 | | 23.0
25.0 | Cath.
Grid | 18
20 | 300
300 | 0/400
0/500 | 28/62
-35/-72 | 23FMP4
23FNP4 | | 22.0 | Grid | 14 | 450 | 0/400 | -45/-105 | 23FP4 | | 23.5
23.0 | Grid
Cath. | 14
16 | 450
50 | 0/400
0/400 | -45/-105
35/55 | 23FP4A
23FRP4 | | 23.0 | Grid | 16 | 400 | 0/400 | -39/-94 | 23FSP4 | | 22.0
22.0 | Cath.
Cath. | 18
18 | 300
300 | 0/500
0/500 | 36/54
36/54 | 23FVP4
23FVP4-A | | 22.0 | Cath. | 20 | 50 | 0/500 | 36/54 | 23FWP4 | | 22.0
23.0 | Cath.
Grid | 20
16 | 50
400 | 0/500
0/400 | 36/54
-39/-94 | 23FWP4A
23GBP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -36/-94 | 23GDP4 | | 25.0
23.0 | Cath.
Cath. | 20
18 | 50
200 | 0/400
0/400 | 36/54
31/49 | 23GEP4
23GHP4 | | 22.0 | Cath. | 18 | 50 | 0/400 | 32/50 | 23GJP4 | | 22.0
22.0 | Cath.
Grid | 18
16 | 50
300 | 0/400
0/400 | 32/50
-35/-72 | 23GJP4A
23GKP4 | | 22.0 | Grid | 16 | 300 | 0/400
0/400 | -28/-72 | 23GP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23GRP4 | | 23.0
23.0 | Cath.
Cath. | 18
18 | 300
300 | 0/400
0/400 | 28/62
28/62 | 23GSP4
23GTP4 | | 22.0 | Cath. | 18 | 45 | 0/500 | 35/50 | 23GVP4 | | 22.0
23.0 | Cath.
Grid | 18
16 | 50
300 | 50/350
0/400 | 33/45
-35/-72 | 23GWP4
23GXP4 | - M Metal cone tube - G-Glass tube - LWG -Light weight glass tube - G°-Glass tube, dimensions different from normal ### MET - Metal tube - O-Round tube - □-Rectangular tube, spherical face - ©-Rectangular tube, cylindrical face B-Fiberglass wrap implosion - E-Filled rim type implosion protection - T Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L -- Plastic implosion barrier - attached to face K -- Banded tube with coated funnel - for implosion protection - H-Tube sealed into steel sheath for implosion protection - C-Clear glass faceplate - F-Gray filter glass faceplate - R-Anti-reflection faceplate - A -- Aluminized screen - V-Rim bands and tension band W-Rim bands and tension band with mounting lugs - X Formed with tension band - Y-Formed rim with tension band and mounting lugs ### Mag. - Magnetic focus - L.V.E.S. -Low voltage electrostatic focus - H.V.E.S.—High Voltage electrostatic focus Auto, Es. - Self-focusing electrostatic - Int.Mag. —Internal magnetic focus - TPF Tri-potential focus - N-No ion trap - S-Single field ion trap - D-Double field ion trap I - Internal ion trap - -18 second heater warm-up time (all others are 11 second) - Grid Grid drive service (all voltages with respect to cathode) Cath. - Cathode drive service (all voltages with respect to Grid No. 1) ### MOTES -
Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as of March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | | z | щ | ¥ | F | ACEPI | ATE | | | Ġ | ٠, | I | | HE | ATER | |--|-----------------------|--|-----------------------------|-------|-------------------------|-----------------------------|--|--|---------------------------------------|--|---|--|----------------------------------|---| | TUBE
TYPE | X-RADIATION
RATING | DEFL. ANGLE | GLASS or METAL | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAI
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | v. | A. | | 23HBP4
23HFP4
23HFP4A
23HGP4
23HKP4
23HLP4 | | 110
110
110
110
110
110 | GGGGGG | | E
V
W
E
W | FA
FA
FA
FA
FA | 1700/2500
1700/2500
1700/2500
1700/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N N N N N N N N N N N N N N N | 14.000
14.875
14.875
14.875
14.875
14.875 | 4.250
5.125
5.125
5.125
5.125
5.125
5.125 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3 | 0.30
0.45
0.45
0.45
0.60
0.60 | | 23HMP4
23HP4
23HQP4
23HRP4
23HUP4
23HUP4A | 444242 | 110
110
110
110
110
110 | GGGGG | | V
W
W
V | FA
FA
FA
FA
FA | 1700/2500
2000/2500
1700/2500
2000/2500
1700/2500
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 72222 | 14.875
15.500
14.880
14.375
14.125
14.125 | 5.125
5.438
5.130
4.625
4:375
4.375 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.45
0.45
0.45
0.45 | | 23HWP4
23HWP4A
23HXP4
23HZP4
23JAP4
23JBP4 | | 110
110
110
110
110
110 | GGGGG | | W
W
W
V
E | FA
FAR
FA
FA
FA | 1700/2500
1300/2100
1700/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N
N
N
N
N | 14.875
14.875
14.875
14.875
14.250
14.125 | 5.125
5.125
5.125
5.125
4.500
4.375 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3 | 0.45
0.45
0.45
0.30
0.45
0.60 | | 23JEP4
23JFP4
23JGP4
23JLP4
23JP4
23KP4 | | 110
110
110
110
110
114 | GGGGG | | W
E
W
T | FA
FA
FA
FA
FA | 1700/2500
1700/2500
1700/2500
1700/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N | 14.875
14.250
14.875
14.125
15.438
13.500 | 5.125
4.500
5.125
4.375
5.375
4.250 | 8HR
8HR
8HR
8HR
7FA
8HR | 6.3
6.3 | 0.45
0.315
0.45
0.45
0.45
0.60 | | 23KP4A
23MP4
23MP4A
23NP4
23RP4
23SP4 | 044000 | 114
114
114
114
110
110 | 666666 | | | FA
FA
FA
FA
FA | 2000/2500
1700/2500
1700/2500
1700/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.VE.S.TPF
L.V.E.S. | 22222 | 13.500
14.531
14.531
14.531
13.625
15.188 | 4.250
5.125
5.125
5.125
3.562
5.125 | 8HR
8HR
8HR
8HR
8JR
8HR | 6.3
6.3 | 0.60
0.60
0.60
0.60
0.30
0.30 | | 23TP4
23UP4
23VP4
23WP4
23XP4
23YP4 | | 90
110
114
114
92
92 | 666666 | | T | FA
FA
FA
FA
FA | 1700/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 19.344
15.188
13.625
14.688
18.312
18.312 | 5.500
5.125
4.375
5.438
5.500
5.500 | 12L
8HR
8HR
8HR
12L
12L | 6.3
6.3
6.3
6.3 | 0.60
0.45
0.30*
0.60
0.60
0.60 | | 23ZP4
24ADP4
24AEP4
SG-24AEP4
24AHP4
24AJP4 | 00000 | 90
90
90
90
110 | 000000 | | T | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
1700/2500
2000/2500 | L.V.E.S.
Mag.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 19.469
21.125
19.125
19.125
15.875
19.125 | 5.625
7.500
5.500
5.500
5.438
5.500 | 12L
12N
12L
12L
8HR
12L | 6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 24ALP4
24AMP4
24ANP4
24AP4
24AP4A
24AP4B | | 110
110
90
70
70
70 | G
G
MET
MET
MET | | | FA
FA
FA
FA
FR | 2000/2500
2000/2500
1700/2500
None
None
None | L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag. | 222222 | 15.875
15.625
20.125
23.938
23.938
23.938 | 5.438
5.187
6.500
7.156
7.156 | 8HR
7FA
12L
12D
12D | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 24AQP4
24ASP4
24ATP4
24AUP4
24AVP4
24AWP4 | 00000 | 90
90
90
90
110
110 | 666666 | | | FA
FA
FA
FA | 1700/2500
1700/2500
2000/2500
1700/2500
1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | N N N N N | 15.875
19.125
19.125
18.125
14.812 | | 8HR
12L
12L
12L
8JK
8HR | 6.3
6.3
6.3
6.3
2.35 | 0.45
0.30
0.60
0.60 | | 24AXP4
24BAP4
24BCP4
24BEP4
24BP4
24CP4 | Δ | 110
110
90
110
70
90 | G
G
G
MET
G | | P | FA
FA
FA | 1700/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag. | N N N S S | 15.875
19.375
14.812 | 4.438
5.438
5.500
4.375
7.500
7.500 | 8HR
8HR
12L
8KW
12M
12N | 6.3 | 0.60 | | | TYPI | CAL (| OPER/ | ATING CO | NDITIONS | | |--------------------------------------|----------------|------------|-----------------|----------------------------------|----------------------------------|---------------------| | ANODE KV.
Design-max.
Values * | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBE
TYPE | | 22.0
23.0 | Grid
Grid | 16
16 | 300
400 | 0/400
0:400 | -35/-72
-39/-94 | 23HBP4
23HFP4 | | 23.0 | Cath. | 18 | 300 | 0 /400 | 28/62 | 23HFP4A | | 23.0
23.0 | Cath. | 18
16 | 300
150 | 0/400
0/400 | 28/62
36/54 | 23HGP4
23HKP4 | | 23.0 | Cath. | 18 | 300 | 0/400 | 28/62 | 23HLP4 | | 23.0
20.0 | Cath.
Grid | 18
16 | 300
300 | 0/400
0/400 | 28/62
-35/ - 72 | 23HMP4
23HP4 | | 23.0 | Cath. | 16 | 400 | 0/400 | 39/94 | 23HQP4 | | 23.5
23.5 | Cath.
Cath. | 18
18 | 30
30 | 0/400
0/400 | 30/45
22/45 | 23HRP4
23HUP4 | | 23.5 | Cath. | 17 | 30 | 0/400 | 22/45 | 23HUP4A | | 22.0 | Cath. | 16 | 50 | 0/400 | 35/55 | 23HWP4 | | 22.0
23.0 | Cath. | 16
 18 | 50
300 | 0/400
0/400 | 35/55
28/62 | 23HWP4A
23HXP4 | | 23.0 | Cath. | 18 | 300 | 0/400 | 28/62 | 23HZP4 | | 22.0
23.0 | Cath.
Grid | 18
 16 | 50
400 | -200/200
0/400 | 32/50
-39/-94 | 23JAP4
23JBP4 | | 23.0 | Cath. | 18 | 300 | 0/400 | 28/62 | 23JEP4 | | 23.0
23.5 | Cath. | 16
 18 | 50
30 | 0/400
0/400 | 35/55
22/45 | 23JFP4
23JGP4 | | 23.5 | Cath. | 18 | 30 | 0/400 | 22/45 | 23JLP4 | | 22.0
20.0 | Cath.
Grid | 16
16.5 | 50
450 | 0/400
0/500 | 35 /50
-28/-72 | 23JP4
23KP4 | | 22.0 | Grid | 16.5 | 450 | 0/500 | -28/-72 | 23KP4A | | 22.0
23.5 | Grid
Grid | 18
18 | 400
400 | 0/400
0/400 | -36/-94
-36/-94 | 23MP4
23MP4A | | 22.0 | Cath. | 18 | 50 | 0/400 | 34/49 | 23NP4 | | 22.0
22.0 | Grid
Grid | 16
16 | 500
300 | 0/400
0/400 | -43/-78
-35/-72 | 23RP4
23SP4 | | 22.0 | Grid | 16 | 300 | 0/400 | -28/-72 | 23TP4 | | 18.0 | Grid | 16 | 300 | 0/400 | -35/-72 | 23UP4 | | 22.0
20.0 | Grid
Grid | 14
16 | 450
300 | 0/400
0/400 | -45/-105
-35/-72 | 23VP4
23WP4 | | 18.0 | Grid | 16 | 300 | 0/400 | -35/-72
-35/-72 | 23XP4 | | 22.0 | Grid
Grid | 16
18 | 300
50 | 0/400
0/500 | 35/50 | 23YP4
23ZP4 | | 24.2 🗨 | Grid | 18 | 300 | | -28/-72
-28/-72 | 24ADP4 | | 22.0 ⊚
22.0 ⊚ | Grid
Grid | 18
18 | 300
300 | -50/350
-50/350 | -28/-72 | 24AEP4
SG-24AEP4 | | 22.0 | Grid | 16 | 300 | -50/350 | -28/-72 | 24AHP4 | | 22.0 | Grid
Grid | 18
17 | 50
300 | 0/350
0/500 | 35/50
-28/-72 | 24AJP4
24ALP4 | | 22.0● | Grid | 16 | 300 | 0/400 | -35/-72 | 24AMP4 | | 22.0 ●
17.6 ● | Grid
Grid
| 18
15 | 300
300 | -72/396
— | -35/-72
-28/-72 | 24ANP4
24AP4 | | 17.6 € | Grid | 15 | 300 | | -28/-72 | 24AP4A | | 17.6 ⑤ 22.0 ⑥ | Grid
Grid | 15
16 | 300 | 0/400 | -28/-72
-35/-72 | 24AP4B
24AOP4 | | 22.0 | Grid | 18 | 300 | 0/400 | -35/-72 | 24ASP4 | | 22:0 ●
22.0 ● | Grid
Grid | 18
16 | 50
300 | 0/400
-75/400 | 34/52
-35/-72 | 24ATP4
24AUP4 | | 20.0 | Grid | 16 | 300 | -100/300 | -35/-72 | 24AVP4 | | 22.0 ● 22.0 ● | Grid | 16
16 | 300
300 | 0/400
0/400 | -28/-72
-35/-72 | 24AWP4
24AXP4 | | 22.0 • | Grid
Cath. | 16 | 50 | 0/400 | 32/47 | 24BAP4 | | 22.0
20.0 | Grid | 18
16 | 400
300 | 0/400 | -36 [′] /-94
-35/-72 | 24BCP4
24BEP4 | | 17.6 | Grid
Grid | 14 | 300 | -100/300
-56/310 | -28/-72 | 24BP4 | | 22.0 | Grid | 18 | 300 | | -28′/-72 | 24CP4 | - M -- Metal cone tube - G . Glass tube - LWG -Light weight glass tube - G°--Glass tube, dimensions different from normal - MET -- Metal tube - O -Round tube - □ -- Rectangular tube, spherical face @ - Rectangular tube, cylindrical face - B Fiberglass wrap implosion protection - E Filled rim type implosion - protection T - Molded glass implosion panel attached to face - P Sagged glass implosion plate attached to face - L Plastic implosion barrier attached to face - Banded tube with coated funnel for implosion protection - H Tube sealed into steel sheath for implosion protection - C Clear glass faceplate - Gray filter glass faceplate - Anti-reflection faceplate - A Aluminized screen - V Rim bands and tension band - W Rim bands and tension band with mounting lugs - X Formed with tension band - Formed rim with tension band and mounting lugs - Mag. Magnetic focus - L.V.E.S. Low voltage electrostatic focus - H.V.E.S. -- High Voltage electrostatic focus Auto.Es. -- Self-focusing electrostatic - Int.Mag. -- Internal magnetic focus - TPF Tri-potential focus - N No ion trap - S Single field ion trap - D -- Double field ion trap - 1-Internal ion trap · -- 18 second heater warm-up time - (all others are 11 second) Grid-Grid drive service (all voltages - with respect to cathode) - Cath. -- Cathode drive service (all voltages with respect to Grid No. 1) - . Design-Maximum Values Unless Otherwise Indicated - Absolute-Maximum Values - □ For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 64A, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - △ The EIA Published Product Information as o' March 1, 1972, does not contain an X-Radiation rating or reference to JEDEC X-Radiation-Isodose and Limit Curves for this tube type. This does not necessarily mean the type is not capable of meeting an acceptable X-Radiation limit. Refer to the latest Published Product Information for X-Radiation Ratings and glass absorbtion characteristics. - ☆ This type summary is based on EIA registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to assure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccuracies. | TUBE TYPE | z | M | Z. | F | CEPL | ATE | | | ġ | | I | | HEA | TER | |---|-----------------------|--|---------------------------------|-------|-------------------------|-----------------------------|--|--|---------------------------------|--|---|---|--|--| | TYPE | X-RADIATION
RATING | DEFL. ANGLE
DEGREES | GLA | SHAPE | IMPLOSION
PROTECTION | TREATMENT | EXTERNAL
COATING
IN
pf | FOCUS | ION TRAP MAG. | Overall Length
(Inches) | NECK LENGTH
(Inches) | BASING | ٧. | A. | | 24CP4A
SG-24CP4A
24CP4B
24DP4
24DP4A
24QP4 | | 90
90
90
90
90 | 666666 | | - | FA
FA
FA
FA
F | 2000/2500
2000/2500
2000/2500
2000/2500
500/750
500/750 | Mag.
Mag.
Mag.
L.V.E.S.
L.V.E.S.
Mag. | 00022000 | 21.125
21.125
21.125
21.125
21.125
21.125 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12N
12N
12L
12L
12L | 6.3
6.3
6.3
6.3 | | | 24TP4
24VP4
24VP4A
24XP4
24YP4
24ZP4 | 00000 | 90
90
90
90
90 | 666666 | | | FA
FA
FA
FA | 250/2500
2000/2500
2000/2500
None
2000/2500
2000/2500 | Mag.
Mag.
Mag.
Mag.
L.V.E.S.
L.V.E.S. | 00000N | 21.125
21.125
21.125
21.125
21.125
21.125 | 7.500
7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12N
12N
12D
12L
12L | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60 | | 25DP4
25EP4
25HP4
25JP4
25KP4
25LP4 | 00000 | 110
110
110
110
110
110 | 000000 | | E E E E E | FA
FA
FA
FAR | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | X X X X X X | 15.062
15.812
15.875
15.812
16.000
16.312 | 4.375
5.125
5.125
5.125
5.125
5.125
5.437 | 8HR
8HR
8HR
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3
6.3 | 0.30
0.30
0.45
0.30
0.30
0.60 | | 25TP4
27ABP4
27ACP4
27ADP4
27AEP4
27AFP4 | 00000 | 110
110
90
110
110
110 | GGGGGG | | V P P P | FA
FA
FA
FA
FA | 2000/2500
2000/2500
2000/2500
2000/2500
2000/2500
2000/2500 | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S. | 22222 | 15.813
17.125
21.812
17.562
17.312
17.562 | 5.125
5.125
6.000
5.375
5.375
5.375 | 8HR
8HR
12L
8HR
8HR
8HR | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 27AGP4
27AP4
27EP4
27GP4
27LP4
27MP4 | 00000 | 90
90
90
90
90
90 | G
MET
G
G
G°
MET | | P
-
-
- | FAR
FR
FA
F
FAR | 2000/2500
None
None
None
250/400
None | L.V.E.S.
L.V.E.S.
Mag.
Mag.
Mag.
Mag. | NSSSSS | 17.125
21.625
23.062
23.062
24.359
22.812 | 5.125
7.500
7.500
7.500
9.703
7.500 | 8HR
12M
12D
12D
12D
12N
12D | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 27NP4
27RP4
27RP4A
SG-27RP4
27SP4
27UP4 | 00000 | 90
90
90
90
90
90 | 99999 | | - | FA
FA
FA
FA
F | 2000/2500
500/2500
500/2500
500/2500
500/750
500/750 | Mag.
Mag.
Mag.
Mag.
L.V.E.S.
L.V.E.S. | SSNNSS | 26.812
23.062
23.062
23.062
23.062
23.062 | 7.500
7.500
7.500
7.500
7.500
7.500 | 12N
12N
12N
12N
12N
12L | 6.3
6.3
6.3
6.3
6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | 27VP4
27WP4
27XP4
27YP4
27ZP4
30BP4 | 000000 | 90
90
90
90
110
90 | G
G
G
G
MET | |
 -

 -
 - | FA
FA
FA
FA
FA | 2000/2500
750/2500
1700/2500
2000/2500
2000/2500
None | L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
L.V.E.S.
Mag. | N
S
N
N
N
N
S | 21.062
22.094
20.062
21.562
17.312
23.562 | 5.500
6.500
4.500
5.750
5.625
7.187 | 12L
12AJ
12L
12L
8HR
12D | 6.3 | 0.60
0.60
0.60
0.60
0.60
0.60 | | | TYPI | CAL | OPER/ | NDITIONS | | | |-------------------------------------|--------------|-----------|-----------------|--|---------------------------|---------------------| | ANODE KV.
Design-max
Values * | DRIVE | ANODE KV. | GRID 2
Volts | FOCUS
ELEC-
TRODE
VOLTS | RASTER
CUTOFF
VOLTS | TUBÉ
TYPE | | 22.0 | Grid | 16 | 300 | | -28/-72 | 24CP4A | | 22.0 ●
22.0 ● | Grid
Grid | 16
16 | 300
300 | | -28/-72
-28/-72 | SG-24CP4A
24CP4B | | 22.0 | Grid | 18 | 300 | -72/400 | -28/-72 | 24DP4 | | 22.0 | Grid | 16 | 300 | -64/350 | -28/-72 | 24DP4A | | 19.8● | Grid | 16 | 300 | | -28/-72 | 24QP4 | | 22.0◉ | Grid | 14 | 300 | | -28/-72 | 24TP4 | | 24.2 | Grid | 20 | 300 | | -28/-72 | 24VP4 | | 24.2 | Grid | 20 | 300 | - | -28/-72 | 24VP4A | | 22.0 | Grid | 18 | 300 | -64/350 | -28/-72 | 24XP4 | | 22.0 ⊚
22.0 ⊚ | Grid
Grid | 16
16 | 300
300 | 0/500 | -28/-72
-28/-72 | 24YP4
24ZP4 | | 22.0 | Cath. | 16 | 300 | -200/200 | 32/60 | 25DP4 | | 22.0 | Cath. | 16 | 300 | -200/200 | 32/60 | 25EP4 | | 23.0 | Cath. | 16 | 50 | 0/400 | 35/55 | 25HP4 | | 22.0 | Grid | 16 | 300 | -200/200 | -35/-72 | 25JP4 | | 22.0 | Grid | 16 | 300 | -200/200 | -35/-72 | 25KP4 | | 22.0 | Grid | 18 | 400 | 0/400 | -36/-94 | 25LP4 | | 22.0 | Cath. | 18 | 400 | 0/400 | 36/78 | 25TP4 | | 22.0
25.0 | Grid
Grid | 18
18 | 300
400 | 0/400
0/400 | -35/-72
-48/-96 | 27ABP4
27ACP4 | | 22.0 | Grid | 18 | 300 | 0/400 | -37/-74 | 27ADP4 | | 22.0 | Grid | 18 | 300 | 0/400 | -35/-72 | 27AEP4 | | 22.0 | Grid | 18 | 300 | 0/400 | -37/-74 | 27AFP4 | | 22.0 | Grid | 18 | 300 | 0/400 | -35/-72 | 27AGP4 | | 19.8€ | Grid | 15 | 300 | -60/300 | -28/-72 | 27AP4 | | 22.0 | Grid | 16 | 300 | | -28/-72 | 27EP4 | | 24.8
24.2 | Grid
Grid | 16
20 | 300
300 | | -28/-72 | 27GP4 | | 19.8 | Grid | 16 | 300 | _ | -28/-72
-37/-73 | 27LP4
27MP4 | | 19.8 | Grid | 16 |
300 | | -28/-72 | 27NP4 | | 22.0 | Grid | 16 | 300 | | -28/-72 | 27RP4 | | 22.0 | Grid | 16 | 300 | _ | -28/-72 | 27RP4A | | 22.0 | Grid | 16 | 300 | | -28/-72 | SG-27RP4 | | 22.0 | Grid | 18 | 300 | -72/396 | -28/-72 | 27SP4 | | 22.0 | Grid | 16 | 300 | 0/396 | -28/-72 | 27UP4 | | 19.8 | Grid | 16 | 300 | -72/396
60/350 | -28/-72 | 27VP4 | | 22.0 ⊚
23.0 | Grid
Grid | 18 | 300
400 | -60/350
0/400 | -40/-80
 -36/-94 | 27WP4
27XP4 | | 25.0 | Grid | 18 | 300 | 0/450 | -28/-72 | 27YP4 | | 22.0 | Grid | 18 | 300 | 0/450 | -35/-72 | 27 ZP 4 | | 33.0∰ | Grid | 22 | 300 | | -28/-72 | 30BP4 | M — Metal cone tube G —Glass tube LWG -Light weight glass tube G°-Glass tube, dimensions different from normal MET - Metal tube O -Round tube -Rectangular tube, spherical face Rectangular tube, cylindrical face R - Fiberglass wran implesion B – Fiberglass wrap implosion protection E – Filled rim type implosion protection T — Molded glass implosion panel attached to face P—Sagged glass implosion plate attached to face L —Plastic implosion barrier attached to face K — Banded tube with coated funnel for implosion protection H - Tube sealed into steel sheath for implosion protection C -- Clear glass faceplate F-Gray filter glass faceplate R --- Anti-reflection faceplate A-Aluminized screen V-Rim bands and tension band W —Rim bands and tension band with mounting lugs X-Formed with tension band Y -Formed rim with tension band and mounting lugs Mag. -- Magnetic focus L.V.E.S. -Low voltage electrostatic focus H.V.E.S. — High Voltage electrostatic focus Auto.Es. — Self-focusing electrostatic Int.Mag. — Internal magnetic focus TPF -- Tri-potential focus N-No ion trap S-Single field ion trap D-Double field ion trap i — Internal ion trap *—18 second heater warm-up time (all others are 11 second) Grid —Grid drive service (all voltages with respect to cathode) Cath.—Cathode drive service (all voltages with respect to Grid No. 1) ### NOTES Design-Maximum Values Unless Otherwise Indicated ### ■ Absolute-Maximum Values - S For X-Radiation Measurements, Characteristics, Limitations, and Warning see JEDEC Publication 644, the latest EIA Published Product Information for this type, the specified applicable JEDEC X-Radiation Isodose and Limit Curves, and X-Radiation Warning, page - ☆ This type summery is based on E1A registered data, registered envelope data, and manufacturer's published data. Data presented herein have been carefully prepared from such publicly available data to essure technical correctness, however, no responsibility is assumed by the General Electric Company for possible inaccurscies. | | | | | , | | · | | | | |---------------|---|-----------------|----------------------|---------|------|------|------------------------|-----------------------------|--------------------| | Tube Type | Typical Application | Focus
Method | Deflection
Method | Outline | Base | Fil: | ament
Current
mA | Grid #1
Voltage
Range | Grid #2
Voltage | | 7038 | Monochrome film
and CCTV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 600 | 0 to -100 | 300 | | 7038V | Broadcast color
television cameras | Magnetic | Magnetic | TX | -8HM | 6.3 | 600 | 0 to -100 | 300 | | 7262A | General use CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 90 | 0 to -100 | 300 | | 7263.A | Ruggidized use
CCTV and educa-
tiona! TV Camera | Magnetic | Magnetic | TX | 8НМ | 6.3 | 90 | 0 to -100 | 300 | | 7735A | General use CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 600 | 0 to -100 | 300 | | 7735B | High quality
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | 1X | 8НМ | 6,3 | 600 | 0 to -100 | 300 | | 27911 | Low cost CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 600 | 0 to -100 | 300 | | Z7912 | Ruggidized use
CCTV and mili-
tary TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z 7919 | Low cost CCTV
and educational
TV cameras | Magnetic | Magnetic | ТX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z7929R,B,G, | Chroma channels
Broadcast color
cameras | Electrostatic | Magnetic | TX | 8LN | 6.3 | 95 | 0 to -100 | 300 | | 8134 | General use CCTV
and educational
TV cameras | Electrostatic | Magnetic | TX | 8LN | 6.3 | 95 | 0 to -100 | 300 | | 8134V | Broadcast color
television cameras | Electrostatic | Magnetic | TX | 8LN | 6.3 | 95 | 0 to -100 | 300 | | 8484H | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 600 | 0 to -100 | 300 | | 8507A | Broadcast, CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 600 | 0 to -100 | 300 | | 8541A | Broadcast, CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | 8572 | Monochrome film
and CCTV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 600 | 0 to -100 | 300 | | 8572V | Broadcast color
television cameras | Magnetic | Magnetic | ΤX | 8ME | 6.3 | 600 | 0 to -100 | 300 | | 8573A | Military, CCTV
and educational
TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | 8604 | Monochrome film
and CCTV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | 7735BX | High quality
medical X-ray
TV cameras | Magnetic | Magnetic | TX | 8НМ | 6.3 | 600 | 0 to -100 | 300 | | 8541X | High quality
medical X-ray
TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to ~100 | 300 | | 8573X | High quality
medical X-ray
TV cameras | Magnetic | Magnetic | ΤX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z7975B | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z7975HRB | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to100 | 300 | | Z7996B | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z7996HRB | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 8ME | 6.3 | 90 | 0 to -100 | 300 | | Z7927B | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | 1= | 6.3 | 90 | 0 to -150 | 290 | | Z7927HRB | Low light level
CCTV and educa-
tional TV cameras | Magnetic | Magnetic | TX | | 6.3 | 90 | 0 to -150 | 290 | | | | | <u> </u> | | | | - | | | | IUDE |) | | | | | | | | | | |---------|-------------|-------------------|---------------------------------------|----------|----------|--------------|------------|-----------------------|-----------|----------| | | | | | | | | | Sensitivity-Typ | ical—Res | olution | | Grid #3 | Volte | Grid | #4 Volts | Grid #5 | Target | Blank | ing Volts | .02ua Dark
Current | | | | 40~50 G | uss -60 | | Gauss -60 | Voltage | Voltage | When A | Applied To | 1.0 Ft. Candle | Televisio | | | | | | | | Range | Grid #1 | Cathode | Faceplate | 40-50 Ga | uss -60 | | 300 | 600 | G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .20 micro amps | 700 | 850 | | 300 | 600 | G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 700 | 850 | | 300 | 600 | Inter.
G#3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .20 micro amps | 700 | 850 | | 300 | 600 | Inter.
G #3 | Conn. to | | 0 to +60 | - 7 5 | +20 to +35 | .20 micro amps | 700 | 850 | | 300 | 600 | Inter.
G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .22 micro amps | 700 | 850 | | 300 | 600 | Inter.
G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 700 | 850 | | 300 | | Inter.
G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .18 micro amps | 650 | | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .18 micro amps | 800 | 1000 | | 600 | _ | +50
to
+150 | | 300 | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 600 | | | 600 | | +50
to
+150 | | 300 | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 600 | _ | | 600 | _ | +50
to
+150 | | 300 | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 600 | | | 300 | 600 | | Conn. to | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 700 | 850 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .18 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .20 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .23 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .18 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 900 | 1100 | | 300 | 600 | Inter.
G #3 | Conn. to | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 700 | 850 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 900 | 1100 | | 300 | 600 | 420 | 850 | | 0 to +60 | -75 | +20 to +35 | .25 micro amps | 900 | 1100 | | 300 | 600 | 420 | | - | +8 | -75 | +20 to +35 | 1.15 micro amps | 700 | _ | | 300 | T- | 420 | | | +8 | -75 | +20 to +35 | 1.15 micro amps | 1000 | | | 300 | | 420 | | | +8 | -75 | +20 to +35 | 1.15 micro amps | 700 | <u> </u> | | 300 | | 420 | T- | | +8 | -75 | +20 to +35 | 1.15 micro amps | 1000 | - | | 270 | | 400 | | - | +8 | -75 | +20 to +35 | .75 micro amps | 400 | _ | | 270 | | 400 | | | +8 | -7ă | +20 to +35 | .75 micro amps | 700 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | ### PHYSICAL DIMENSIONS | OUTLINE | | | | INCH | ES | | | MILLIMETERS | | | | | | | | |---------|-------|-----------|-------|-------|-------|-------|-------|-------------|-------|------|------|-------|------|------|--| | DRAWING | | ++ | В | | D | Ī | E + | 1 | ** | E |
3 | D | E | * | | | NUMBER | MIN. | MAX | MIN. | MAX | MAX | MIN. | MAX | MIN. | MAX | MIN. | MAX | MAX | MIN. | MAX | | | 2-1 | 0.350 | 0.385 | 0.245 | 0.285 | 1.500 | 1.200 | 1.400 | 8.89 | 9.77 | 6.23 | 7.23 | 38.10 | 30.5 | 35.5 | | | 2–2 | 0.350 | 0.385 | 0.245 | 0.285 | 1.250 | 0.970 | 1.170 | 8.89 | 9.77 | 6.23 | 7.23 | 31.75 | 24.7 | 29.7 | | | 2–5 | 0.350 | 0.400 | 0.245 | 0.285 | 1.500 | 1.200 | 1.400 | 8.89 | 10.16 | 6.23 | 7.23 | 38.10 | 30.5 | 35.5 | | | 26 | 0.350 | 0.400 | 0.245 | 0.285 | 1.250 | 0.970 | 1.170 | 8.89 | 10.16 | 6.23 | 7.23 | 31.75 | 24.7 | 29. | | ### NOTES - ** Measured from base seat to bulb-top line as determined by a ring gauge of 0.210" (5.333mm) I.D. - . Minimum dimension applies in a zone 0.500" (12.70mm) up from lead in to 0.200" (5.08mm) down from bulb top line. ## 2-1 2-2 2-5 2-6 ### PHYSICAL DIMENSIONS | | | INCHES | | MILLIMETERS | | | | | | | | |-------|---|---|-------|---|------|-------|-------|------|------|--|--| | - | 1 | D | | E * | 7 | 4 | D | i | * | | | | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX | | | | 0.366 | 0.400 | 1.375 | 1.015 | 1.135 | 9.30 | 10.16 | 34.92 | 25.8 | 28.8 | | | | 0.366 | 0.400 | 1.500 | 1.140 | 1.260 | 9.30 | 10.16 | 38.10 | 29.0 | 32.0 | | | | 0.366 | 0.400 | 1.750 | 1.390 | 1.510 | 9.30 | 10.16 | 44.45 | 35.3 | 38.3 | | | | 0.366 | 0.400 | 2.000 | 1.640 | 1.760 | 9.30 | 10.16 | 50.80 | 41.7 | 44.7 | | | | 0.366 | 0.400 | 1.625 | 1.265 | 1.385 | 9.30 | 10.16 | 41.27 | 32.2 | 35.1 | | | | 0.366 | 0.400 | 1.250 | 0.890 | 1.010 | 9.30 | 10.16 | 31.75 | 22.7 | 25.6 | | | | | 0.366
0.366
0.366
0.366
0.366 | 0.366 0.400
0.366 0.400
0.366 0.400
0.366 0.400
0.366 0.400 | N | MIN. MAX. MAX. MIN. 0.366 0.400 1.375 1.015 0.366 0.400 1.500 1.140 0.366 0.400 1.750 1.390 0.366 0.400 2.000 1.640 0.366 0.400 1.625 1.265 | Name | Name | Name | Name | Name | | | ### NOTES * Measured from base seat to bulb top line as determined by ring gauge of minimum 0.209 (5.31 mm) and maximum 0.211 (5.36mm) internal diameter. ### 3-1 TO 3-4 3-8 3-11 ### PHYSICAL DIMENSIONS | OUTLINE | | | INC | CHES | | | | | MILLIM | ETERS | | | |---------|-------|-------|-------|-------|-------|-------|------|-------|--------|-------|------|------| | DRAWING | - 1 | ۹. | С | D | | E• | | A+ | С | D | | E• | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | | 3-5 | 0.366 | 0.400 | 1.750 | 1.500 | 1.140 | 1.260 | 9.30 | 10.16 | 44.45 | 38.10 | 29.0 | 32.0 | | 3-9 | 0.366 | 0.400 | 1.625 | 1.375 | 1.015 | 1.135 | 9.30 | 10.16 | 41.27 | 34.92 | 25.8 | 28.8 | | 3-10 | 0.366 | 0.400 | 2.000 | 1.750 | 1.390 | 1.510 | 9.30 | 10.16 | 50.80 | 44.45 | 35.4 | 38.3 | | 3-12 | 0.366 | 0.400 | 1.500 | 1.250 | 0.890 | 1.010 | 9.30 | 10.16 | 38.10 | 47.62 | 22.7 | 25.6 | | 3-13 | 0.366 | 0.400 | 1.875 | 1.625 | 1.265 | 1.385 | 9.30 | 10.16 | 47.62 | 41.27 | 32.2 | 35.1 | | 3-14 | 0.366 | 0.400 | 2.125 | 1.875 | 1.515 | 1.635 | 9.30 | 10.16 | 53.97 | 47.62 | 38.5 | 41.5 | | 3-15 | 0.366 | 0.400 | 2.250 | 2.000 | 1.640 | 1.760 | 9.30 | 10.16 | 57.15 | 50.80 | 41.7 | 44.7 | ### NOTES: - * The minimum applies in zone starting 0.375" (9.52 mm) from base seat. - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) 1.D. 3-5 3-9 3-10 3-12 TO 3-15 | 200 | | INCHES | , | MILL | IMETER | S | |------|-------|--------|-------|-------|--------|-------| | REF. | MIN. | NOM- | MAX. | MIN. | NOM. | MAX. | | A | | | 0.335 | | | 8.51 | | В | 0.271 | | 0.279 | 6.88 | | 7.09 | | C | 0.034 | | 0.046 | 0.86 | | 1.17 | | D | 0.094 | | 0.104 | 2.39 | | 2.64 | | E | 0.024 | | 0.030 | 0.61 | | 0.76 | | F | 0.156 | | 0.174 | 3.96 | | 4.42 | | G | 0.095 | | 0.105 | 2.41 | | 2.67 | | Н | 0.022 | | 0.028 | 0.56 | | 0.71 | | J | 0.095 | | 0.105 | 2.41 | | 2.67 | | K | 0.268 | | 0.292 | 6.81 | | 7.42 | | L | 0.047 | | 0.063 | 1.19 | | 1.60 | | M | 0.430 | | 0.460 | 10.92 | | 11.68 | | N | 0.281 | | 0.289 | 7.14 | | 7.34 | | P | 0.055 | | 0.081 | 1.40 | | 2.06 | | R | 0.476 | | 0.484 | 12.09 | | 12.29 | | S | 0.086 | | 0.094 | 2.18 | | 2.39 | | T | 0.030 | | | 0.76 | | | Notes: Maximum eccentricity of plate, cathode and grid contact surfaces 0.005" (0.127 mm) from center line. Maximum eccentricity of insulators 0.010" (0.25 mm) from center line. 3 - 16 | | 210 NOM.
(5.33 mm) | ^
/_
73 | E | |------------------------------|---------------------------------|----------------|---------| | 1.500°
MIN.
(38.10 mm) | LEADS .018" MAX. DIA. (.406 mm) | В | | | | OUTLINE | | | IN | CHES | | MILLIMETERS | | | | | | | | |---|---------|------|------|------|-------|-------|-------------|------|-------|-------|-------|------|------|--| | | DRAWING | A * | | В | D | E | | | 4 + | В | D | E | | | | | NUMBER | MIN. | MAX | MAX | MAX | MIN. | MAX | MEN. | MAX | MAX | MAX. | MIN. | MAX | | | | 36 | .366 | .400 | .400 | 1.500 | 1.150 | 1.350 | 9.30 | 10.16 | 10.16 | 38.10 | 29.3 | 34.2 | | | I | 3–7 | .366 | .400 | .410 | 1.500 | 1.150 | 1.350 | 9.30 | 10.16 | 10.16 | 38.10 | 29.3 | 34.2 | | PHYSICAL DIMENSIONS . The minimum applies in a zone 0.500" (12.7mm) up from lead in to 0.200" (5.06mm) down from bulb top 3-6 TO 3-7 NOMINAL CAP DIAMETERS MINIATURE OR SKIRTED MINIATURE - 0,250" MEDIUM - 0.566" | OUTLINE | | | INC | HES | | | MILLIMETERS | | | | | | | |---------|-------|-------|-------|-------|----------|-------|-------------|-------|-------|------|------|------|--| | DRAWING | Α | В | ВС | | D | F | Α | В | С | | , | F | | | NUMBER | MAX. | MAX. | MAX. | MIN. | MAX. | NOM. | MAX. | MAX. | MAX. | MIN. | MAX. | NOM. | | | 4-5 | 0.435 | 0.420 | 1.050 | 0.790 | 0.840 | 0.190 | 11.04 | 10.66 | 26.67 | 20.1 | 21.3 | 4.83 | | | 4-6 | 0.435 | 0.420 | 0.985 | 0.735 | 0.780 | 0.190 | 11.04 | 10.66 | 25.02 | 18.7 | 19.8 | 4.83 | | | | | | | | <u> </u> | ļ | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | - | F | | | | | | | | Ī | | | Maximum O. D. of 0.440''(11.17mm) is permitted along the 0.190''(4.83mm) lug length. ### 4-5 to 4-6 | | ŀ | → A → | | _ | |---|----------|-----------------------------|----------------|----------------| | | 1 | | | OL
DI
NL | | | C | т 5% |
 | | | | Ĭ | | 1 E | | | | <u> </u> | | 7 | | | - | | E 7 – 1 MINIA
7 PIN BASE | \
\TURE-BUT | TON | | PHYSICAL | DIM | ENSIONS | |----------|-----|---------| | INCHES | | | | OUTLINE | | | | INCHES | · · · · · · · · · · · · · · · · · · · | | | MILLIMETERS | | | | | | | | | |---------|-------|-------|-------|--------|---------------------------------------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|--|--| | DRAWING | A ** | | C | D | E* | | K | A** | | С | D | | E* | M | | | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | | | | 5-1 | 0.695 | 0.737 | 1.750 | 1.500 | 1.031 | 1.219 | 0.750 | 17.65 | 18.72 | 44.45 | 38.10 | 26.19 | 30.96 | 19.05 | | | | 5-2 | 0.695 | 0.737 | 2.125 | 1.875 | 1.406 | 1.594 | 0.750 | 17.65 | 18.72 | 53.97 | 47.62 | 35.71 | 40.49 | 19.05 | | | | 5-3 | 0.695 | 0.737 | 2.625 | 2.375 | 1.906 | 2.094 | 0.750 | 17.65 | 18.72 | 66.67 | 60.32 | 48.41 | 53.19 | 19.05 | ### NOTES - ** Measured from base seat to bulb-top line as determined by a gauge of 0.438"i.D. (11.13mm). - _ Applies in zone starting 0.375" (9.525"mm) from base seat. ### 5-1 TO 5-3 | PHYSICAL | DIMENSIONS | |----------|------------| | | | | OUTLINE | | | | INCHE | i | | | | | MIL | LIMETE | : KZ | | | |---------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|--------|-------|-------|-------| | DRAWING | A | ** | С | D | 1 | * | M | A | ** | C | D | E | * | М | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | | 6-1 | 0.800 | 0.845 | 1.750 | 1.500 | 1.031 | 1.219 | 0.875 | 20.32 | 21.46 | 44.45 | 38.10 | 26.19 | 30.96 | 22.22 | | 6-2 | 0.800 | 0.845 | 2.187 | 1.937 | 1.469 | 1.656 | 0.875 | 20:32 | 21.46 | 55.54 | 49.20 | 37.31 | 42.06 | 22.22 | | 6-3 | 0.800 | 0.845 | 2.625 | 2.375 | 1.906 | 2.094 | 0.875 | 20.32 | 21:46 | 66.67 | 60.32 | 48.41 | 53.19 | 22.22 | | 6-4 | 0.800 | 0.845 | 3.062 | 2.812 | 2.344 | 2.531 | 0.875 | 20.32 | 21.46 | 77.77 | 71.42 | 59.54 | 64.29 | 22.22 | | 6-10 | 0.800 | 0.845 | 2.440 | 2.190 | 1.720 | 1.910 | 0.875 | 20.32 | 21.46 | 61.98 | 55.63 | 43.69 | 48.51 | 22.22 | - * Measured from base seat to bulb-top line as determined by a gauge of 0.438" I.D. (11.13 mm). - ** Applies in zone starting 0.375" (9.525 mm) from base seat. E9-1 SMALL-BUTTON 9-PIN BASE ### 6-1 to 6-4 6-10 ### PHYSICAL DIMENSIONS MILL MARTERS | OUTLINE | | | INC | CHES | | | 1 | | MILLIM | ETER\$ | | | |---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------| | DRAWING | | A | С | | D | М | | Α | C | | D | M | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | | 6-5 | 0.800 | 0.845 | 1.969 | 1.437 | 1.687 | 0.875 | 20.32 | 21.46 | 50.01 | 36.50 | 42.85 | 22.22 | | 6-6 | 0.800 | 0.845 | 2.406 | 1.875 | 2.125 | 0.875 | 20.32 | 21.46 | 61.11 | 47.52 | 53.97 | 22.22 | | 6-7 | 0.800 | 0.845 | 2.844 | 2.312 | 2.562 | 0.875 | 20.32 | 21.46 | 72.24 | 58.72 | 65.07 | 22.22 | | 6-8 | 0.800 | 0.845 | 3.281 | 2.750 | 3.000 | 0.875 | 20.32 | 21.46 | 83.34 | 69.85 | 76.20 | 22.22 | | 6-9+ | 0.800 | 0.845 | 2.844 | 2.313 | 2.663 | 0.875 | 20.32 | 21.46 | 72.24 | 58.75 | 67.64 | 22.22 | | 6-18‡ | 0.800 | 0.845 | 2.531 | 2.000 | 2.250 | 0.875 | 20.32 | 21.46 | 64.29 | 50.80 | 57.15 | 22.22 | | | | | | | | | | |
 | | | ### NOTES: - + C1-40 Minature Cap t C1-45 Minature Cap E 9 - 1 SMALL-BUTTON 9-PIN BASE ### 6-5 to 6-9 6-18 ### PHYSICAL DIMENSIONS | . ' | OUTLINE | | | | INCHE | <u> </u> | | | <u> </u> | | MIL | LIMETE | R\$ | | | |-----|---------|-------|-------|-------|-------|----------|-------|-------|----------|-------|-------|--------|-------|-------|-------| | | DRAWING | | A ** | C | D | | E* | M | | A** | C | D | | E+ | M | | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | | | 6-11 | 0.800 | 0.845 | 1.750 | 1.500 | 1.020 | 1.220 | 0.875 | 20.32 | 21.46 | 44.45 | 38.10 | 25.91 | 30.99 | 22.22 | | | 6-12 | 0.800 | 0.845 | 1.970 | 1.720 | 1.240 | 1.440 | 0.875 | 20.32 | 21.46 | 30.04 | 43.69 | 31.50 | 36.58 | 22.22 | | - | 6-13 | 0.800 | 0.845 | 2.190 | 1.940 | 1.460 | 1.660 | 0.875 | 20.32 | 21.46 | 55.63 | 49.28 | 37.08 | 42.16 | 22.22 | | | 6-14 | 0.800 | 0.845 | 2.410 | 2.160 | 1.680 | 1.880 | 0.875 | 20.32 | 21.46 | 61.21 | 54.86 | 42.67 | 47.75 | 22.22 | | | 6-15 | 0.800 | 0.845 | 2.630 | 2.380 | 1.900 | 2.100 | 0.875 | 20.32 | 21.46 | 66.80 | 59.45 | 48.66 | 53.34 | 22.22 | | | 6-16 | 0.800 | 0.845 | 2.850 | 2.600 | 2.220 | 2.320 | 0.875 | 20.32 | 21.46 | 72.39 | 66.04 | 56.39 | 58.93 | 22.22 | | | 6-17 | 0.800 | 0.845 | 3.070 | 2.820 | 2.340 | 2.540 | 0.875 | 20.32 | 21.46 | 77.98 | 71.63 | 59.44 | 64.52 | 22.22 | NOTES: - * Measured from base seat to bulb-top line as determined by a gauge of 0.438" 1.D. (11.13 mm). - ** Applies in zone starting 0.375" (9.525 mm) from base seat. 10 - PIN BASE (CENTER PIN ADDED TO SMALL-BUTTON 9 -- PIN BASE) 6-11 to 6-17 | | - A - | | | | | | PHY: | ŞICAL | DIM | ENSIC | ONS | | | | | |---|------------|------------|---------|-------|-------|-------|-------|-------|-------|-------|------|--------|-------|------|------| | 1 | <u> </u> | - | OUTLINE | | | INC | HES | | | | | MILLIM | ETERS | | | | 1 | \nearrow | ⊤ 1 | DRAWING | | A+ . | С | D | 1 | E• | | A+ | С | D | F | E• | | | / \ | 1 | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | | | | | 7-1 | 0.900 | 1.030 | 1.750 | 1.500 | 1.000 | 1.200 | 22.9 | 26.1 | 44.5 | 38.10 | 25.4 | 30.4 | | | T7.11 | | 7-2 | 0.900 | 1.030 | 2.050 | 1.800 | 1.300 | 1.500 | 22.9 | 26.1 | 52.07 | 45.72 | 33.1 | 38.1 | | | T7 % | ם ם | 7-3 | 0.900 | 1.030 | 2.350 | 2.100 | 1.600 | 1.800 | 22.9 | 26.1 | 59.69 | 53.34 | 40.7 | 45.7 | | C | | E | 7-4 | 0.900 | 1.030 | 2.650 | 2.400 | 1.900 | 2.100 | 22.9 | 26.1 | 67.31 | 60.96 | 48.3 | 53.3 | | | | | 7-5 | 0.900 | 1.030 | 2.950 | 2.700 | 2.200 | 2.400 | 22.9 | 26.1 | 74.93 | 68.58 | 55.9 | 60.9 | | | | | 7-6 | 0.900 | 1.030 | 3.250 | 3.000 | 2.500 | 2.700 | 22.9 | 26.1 | 82.55 | 76.20 | 63.5 | 68.5 | | | <u> </u> | 1 | | | | | | | | | | | | | | NOTES: E 12 - 66 BASE - * The minimum applies in zone starting 0.375" (9.52 mm) from base seat. - Measured from base seat to bulb-top line as determined by a ring gauge of 0.438" L.D. (11.13 mm). ### 7-1 to 7-6 ### PHYSICAL DIMENSIONS | | | INCHE? | | |] | MI | LLIMETE | RS | | |-------|---------------|---------------|-----------------------------------|---|---|--|---|--|---| | Α | В | C | 1 |) | Α | В | C | |) | | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | MAX. | MIN. | MAX. | | 1.312 | 1.031 | 1.750 | 1.000 | 1.188 | 33.33 | 26.19 | 44.45 | 25.4 | 30.1 | | 1.312 | 1.031 | 3.125 | 2.500 | 2.688 | 33.33 | 26.19 | 82.55 | 63.5 | 68.2 | MAX.
1.312 | A B MAX. MAX. | A B C MAX. MAX. 1.312 1.031 1.750 | A B C 1
MAX. MAX. MAX. MIN.
1.312 1.031 1.750 1.000 | A B C D MAX. MAX. MIN. MAX. 1.312 1.031 1.750 1.000 1.188 | A B C D A MAX. MAX. MIN. MAX. MAX. 1.312 1.031 1.750 1.000 1.188 33.33 | A B C D A B
MAX. MAX. MAX. MIN MAX. MAX. MAX.
1.312 1.031 1.750 1.000 1.188 33.33 26.19 | A B C D A B C
MAX. MAX. MAX. MIM MAX. MAX. MAX. MAX.
1.312 1.031 1.750 1.000 1.188 33.33 26.19 44.45 | A B C D A B C III AAX. MAX. MAX. MAX. MAX. MAX. MAX. MAX. | 8-5 to 8-6 # В T 9 C INTERMEDIATE-SHELL OCTAL BASE | OUTLINE | | | INCHES | | | } | MI | LLIMETI | ERS | | |---------|-------|-------|--------|-------|-------|-------|------|---------|-------|--------| | DRAWING | Α | | В | C | D | Α | | В | С | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | | 9-1 | 1.281 | 1.062 | 1.188 | 2.312 | 1.750 | 32.54 | 27.0 | 30.1 | 58.73 | 44.45 | | 9-3 | 1.281 | 1.062 | 1.188 | 2.875 | 2.312 | 32.54 | 27.0 | 30.1 | 73.00 | 58.73 | | 9-5 | 1.281 | 1.062 | 1.188 | 3.000 | 2.438 | 32.54 | 27.0 | 30.1 | 76.20 | 61.91 | | 9-7 | 1.281 | 1.062 | 1.188 | 3.062 | 2.500 | 32.54 | 27.0 | 30.1 | 77.78 | 63.50 | | 9-9 | 1.281 | 1.062 | 1.188 | 3.250 | 2.688 | 32.54 | 27.0 | 30.1 | 82.55 | 68.26 | | 9-11 | 1.281 | 1.062 | 1.188 | 3.312 | 2.750 | 32.54 | 27.0 | 30.1 | 84.13 | 69.85. | | 9-13 | 1.281 | 1.062 | 1.188 | 3.375 | 2.812 | 32.54 | 27.0 | 30.1 | 85.72 | 71.43 | | 9-15 | 1.281 | 1.062 | 1.188 | 3.438 | 2.875 | 32.54 | 27.0 | 30.1 | 87.31 | 73.02 | | 9-33 | 1.281 | 1.062 | 1.188 | 3.812 | 3.250 | 32.54 | 27.0 | 30.1 | 96.83 | 82.55 | PHYSICAL DIMENSIONS 9-1 TO 9-15 (ODD) 9 - 33 9-2 TO 9-16 (EVEN) 9-17 to 9-23 (OD) 9-50 INTERMEDIATE - SHELL OCTAL BASE | ∠æ, | IRTED MINIATUR | E CAP | | | | | PHYS | SICAL | DIM | ENSIC | NS | | | | | |-----|----------------|---------------|------------------------------------|-------|-------|-------|-------|-------|-------|-------|------|--------|--------|------|------| | ì | B - | | OUTLINE | | | INCI | HES | | | | | MILLIN | ETER\$ | | | | П | — V —— | $\overline{}$ | DRAWING | A | | В | С | { |) | A | ı | В | С | ı |) | | 1 | | Ī | NUMBER | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | | ſ | | 9-18 | 1.312 | 1.062 | 1.188 | 3.312 | 2.312 | 2.750 | 33.33 | 27.0 | 30.1 | 84.13 | 58.8 | 69.8 | | | тэ | | 9-20 | 1.312 | 1.062 | 1.188 | 3.438 | 2.312 | 2.875 | 33.33 | 27.0 | 30.1 | 87.31 | 58.8 | 73.0 | | | | | 9-22 | 1.312 | 1.062 | 1.188 | 3.500 | 2.312 | 2.938 | 33.33 | 27.0 | 30.1 | 88.90 | 58.8 | 74.6 | | | | D | 9-24 | 1.312 | 1.062 | 1.188 | 3.562 | 2.312 | 3.000 | 33.33 | 27.0 | 30.1 | 90.48 | 58.8 | 76.2 | | ; إ | | | | | | | | | | | | | | | | | | | w | MALL – WAFER
ITH METAL S
ASE | 18 T | | | | | | | | | | 9-29 TO 9-32 | | L | | INCHES | | | | MIL | LIMETE | R\$ | | |---|-------|-------|--------|-------|-------|------|------|--------|------|------| | | | A+ | С | | D | | A + | C | | D | | | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | _ | 1.062 | 1.188 | 1.625 | 1.000 | 1.250 | 27.0 | 30.1 | 41.27 | 25.4 | 31.7 | | _ | 1.062 | 1.188 | 1.875 | 1.250 | 1.500 | 27.0 | 30.1 | 47.62 | 31.8 | 38.1 | | | 1.062 | 1.188 | 2.125 | 1.500 | 1.750 | 27.0 | 30.1 | 53.97 | 38.1 | 44.4 | 9-56 9-57 1.750 2,000 27.0 30.1 60.32 44.5 50.8 1 188 2.375 9...58 1.062 66.67 50.8 9-59 1.062 1.188 2.615 2.000 2,250 27.0 30.1 57.1 2,500 27.0 30.1 73.02 57.2 63.5 9-60 1.062 1.188 2.875 2.250 9-61 1.062 1.188 3.125 2.500 2.750 27.0 30.1 79.37 63.5 69.8 1.062 3,000 9-62 1.188 3.375 2.750 27.0 30.1 85.72 69.9 76.2 PHYSICAL DIMENSIONS ### NOTES: OUTLINE DRAWING NUMBER 9-55 - Applies to minimum diameter except in the area of the seal. 9-55 to 9-62 ### NOTES: - . The minimum applies in zone starting 0.375" (9.52 mm) from base seat. - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D. 9-67 TO 9-72 | | | | | PHYS | SICAL | DIM | ENSIC | ONS | _ | | | | |---------|-------|-------|-------|-------|-------|-------|-------|------|--------|-------|------|------| | OUTLINE | | | inc | CHES | | | | | MILLIM | ETERS | | | | DRAWING | | A+ | С | ۵ | | • | | A. | С | Đ | | E • | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | | 9-73 | 1.062 | 1.188 | 1.990 | 1.710 | 1.150 | 1.400 | 27.0 | 30.1 | 50.54 | 43.43 | 29.2 | 35.5 | | 9-74 | 1.062 | 1.188 | 2.240 | 1.960 | 1.400 | 1.650 | 27.0 | 30.1 | 56.90 | 49.78 | 35.6 | 41.9 | | 9-75 | 1.062 | 1.188 | 2.490 | 2.210 | 1.650 | 1.900 | 27.0 | 30.1 | 63.24 | 56.13 | 41.9 | 48.2 | | 9-76 | 1.062 | 1.188 | 2.740 | 2.460 | 1.900 | 2.150 | 27.0 | 30.1 | 69.59 | 62.48 | 48.3 | 54.6 | | 9-77 | 1.062 | 1.188 | 2.990 | 2.710 | 2.150 | 2.400 | 27.0 | 30.1 | 75.94 | 68.83 | 54.6 | 60.9 | | 9-78 | 1.062 | 1.188 | 3.240 | 2.960 | 2.400 | 2.650 | 27.0 | 30.1 | 82.29 | 75.18 | 61.0 | 67.3 | | 9-79 | 1.062 | 1.188 | 3,490 | 3.210 | 2.650 | 2.900 | 27.0 | 30.1 | 88.64 | 81.53 | 67.3 | 73.6 | | 9-80 | 1.062 | 1.188 | 3.740 | 3.460 | 2.900 | 3.150 | 27.0 | 30.1 | 94.99 | 87.88 | 73.7 | 80.0 | - NOTES: - . The minimum applies in zone starting 0.625" (15.88 mm) from base seat . - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D. 9-73 70 9-80 ### PHYSICAL DIMENSIONS | OUTLINE | | | INC | HES | | | | | MILLI | ETERS | | | |---------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|------|------| | DRAWING | A | • | C | D | E | • | - | 4. | C | D | E | | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | | 9-82 | 1.062 | 1.188 | 2.210 | 1.830 | 1.310 | 1.490 | 27.0 | 30.1 | 56.13 | 46.48 |
33.3 | 37.8 | | 9-83 | 1.062 | 1.188 | 2,510 | 2.130 | 1.610 | 1.790 | 27.0 | 30.1 | 63.75 | 54.10 | 40.9 | 45.4 | | 9-84 | 1.062 | 1.188 | 2.810 | 2.430 | 1.910 | 2.090 | 27.0 | 30.1 | 71.37 | 61.72 | 48.6 | 53.0 | | 9-85 | 1.062 | 1.188 | 3.110 | 2.730 | 2.210 | 2.390 | 27.0 | 30.1 | 78.99 | 69.34 | 56.2 | 60.7 | | 9-86 | 1.062 | 1.188 | 3,410 | 3.030 | 2.510 | 2.690 | 27.0 | 30.1 | 86.61 | 76.96 | 63.8 | 68.3 | | 9-87 | 1.062 | 1.188 | 3.710 | 3,330 | 2.810 | 2,990 | 27.0 | 30.1 | 94.23 | 84.58 | 71.4 | 75.9 | | | | | | | | | | 1 | | | | | ### NOTES: - * The minimum applies in zone starting 0.375" (9.52 mm) from base seat. - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) 1.D. 9-82 TO 9-87 ### PHYSICAL DIMENSIONS | OUTLINE ! | | | INCHES | | | 1 | MIL | LIMETE | 25 | | |-----------|-------|-------|--------|-------|-------|------|------|--------|------|-------| | DRAWING | - | l» | С | |) | 1 | ١. | С | - | D | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-88 | 1.062 | 1.188 | 2.625 | 2.000 | 2.250 | 27.0 | 30.1 | 66.67 | 50.8 | 57.1 | | 9-89 | 1.062 | 1.188 | 2.875 | 2.250 | 2.500 | 27.0 | 30.1 | 73.0 | 57.2 | 63.5 | | 9-90 | 1.062 | 1.188 | 3.125 | 2.500 | 2.750 | 27.0 | 30.1 | 79.3 | 63.5 | 69.8 | | 9-91 | 1.062 | 1.188 | 3.375 | 2.750 | 3.000 | 27.0 | 30.1 | 85.7 | 69.9 | 76.2 | | 9-92 | 1.062 | 1.188 | 3.625 | 3.000 | 3.250 | 27.0 | 30.1 | 92.0 | 76.2 | 82.5 | | 9-93 | 1.062 | 1.188 | 3.875 | 3.250 | 3.500 | 27.0 | 30.1 | 98.4 | 82.6 | 88.9 | | 9-94 | 1.062 | 1.188 | 4.125 | 3.500 | 3.750 | 27.0 | 30.1 | 104.77 | 88.9 | 95.2 | | 9-95 | 1.062 | 1.188 | 4.375 | 3.750 | 4.000 | 27.0 | 30.1 | 111.12 | 95.3 | 101.6 | ### NOTES: - Applies to minimum diameter except in the area of the seal. 9-88 to 9-95 ### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | - | 1 | MIL | LIMETER | ₹\$ | | |---------|-------|-------|--------|-------|-------|------|------|---------|------|-------| | DRAWING | P | ١- | С | E |) | - | | С | |) | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX, | | 9-96 | 1.062 | 1.188 | 2.625 | 2.000 | 2.250 | 27.0 | 30.1 | 66.67 | 50.8 | 57.1 | | 9-97 | 1.062 | 1.188 | 2.875 | 2.250 | 2.500 | 27.0 | 30.1 | 73.0 | 57.2 | 63.5 | | 9-98 | 1.062 | 1.188 | 3.125 | 2.500 | 2.750 | 27.0 | 30.1 | 79.30 | 63.5 | 69.8 | | 9-99 | 1.062 | 1.188 | 3.375 | 2.750 | 3.000 | 27.0 | 30.1 | 85.70 | 69.9 | 76.2 | | 9-100 | 1.062 | 1.188 | 3.625 | 3.000 | 3.250 | 27.0 | 30.1 | 92.07 | 76.2 | 82.5 | | 9-101 | 1.062 | 1.188 | 3.875 | 3.250 | 3.500 | 27.0 | 30.1 | 98.42 | 82.6 | 88.9 | | 9-102 | 1.062 | 1.188 | 4.125 | 3.500 | 3.750 | 27.0 | 30.1 | 104.77 | 88.9 | 95.2 | | 9-103 | 1.062 | 1.188 | 4.375 | 3.750 | 4.000 | 27.0 | 30.1 | 111.12 | 95.3 | 101.6 | ### NOTES: . Applies to minimum diameter except in the area of the seal. 9-96 to 9-103 ### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | | MIL | LIMETE | RS | | |---------|-------|-------|--------|-------|-------|------|------|--------|------|------| | DRAWING | | 4. | C | 1 |) | | A » | С | | D | | NUMBER | MIN. | MAX. | MAX, | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-104 | 1.062 | 1.188 | 1.630 | 1.000 | 1.250 | 27.0 | 30.1 | 41.40 | 25.4 | 31.7 | | 9-105 | 1.062 | 1.188 | 1.880 | 1.250 | 1.500 | 27.0 | 30.1 | 47.75 | 31.8 | 38.1 | | 9-106 | 1.062 | 1.188 | 2.130 | 1.500 | 1.750 | 27.0 | 30.1 | 54.10 | 38.1 | 44.4 | | 9-107 | 1.062 | 1.188 | 2.380 | 1.750 | 2.000 | 27.0 | 30.1 | 60.45 | 44.5 | 50.8 | | 9-108 | 1.062 | 1.188 | 2.630 | 2.000 | 2.250 | 27.0 | 30.1 | 66.80 | 50.8 | 57.1 | | 9-109 | 1.062 | 1.188 | 2.880 | 2.250 | 2.500 | 27.0 | 30.1 | 73.15 | 57.2 | 63.5 | | 9-110 | 1.062 | 1.188 | 3.130 | 2.500 | 2.750 | 27.0 | 30.1 | 79.50 | 63.5 | 69.8 | | 9-111 | 1.062 | 1.188 | 3.380 | 2.750 | 3.000 | 27.0 | 30.1 | 85.85 | 69.9 | 72.6 | ### NOTES: * Applies to minimum diameter except in the area of the seal. 9-104 to 9-111 ### PHYSICAL DIMENSIONS | OUTLINE
DRAWING
NUMBER | INCHES | | | | | MILLIMETERS | | | | | |------------------------------|--------|-------|-------|-------|-------|-------------|------|--------|------|-------| | | A- | | С | D | | Α- | | С | D | | | | MIN. | MAX. | MAX, | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-112 | 1.062 | 1.188 | 2.630 | 2.000 | 2.250 | 27.0 | 30.1 | 66.80 | 50.8 | 57.1 | | 9-113 | 1.062 | 1.188 | 2.880 | 2.250 | 2.500 | 27.0 | 30.1 | 73.15 | 57.2 | 63.5 | | 9-114 | 1.062 | 1.188 | 3.130 | 2.500 | 2.750 | 27.0 | 30.1 | 79.50 | 63.5 | 69.8 | | 9-115 | 1.062 | 1.188 | 3.380 | 2.750 | 3.000 | 27.0 | 30.1 | 85.85 | 69.9 | 76.2 | | 9-116 | 1.062 | 1.188 | 3.630 | 3.000 | 3.250 | 27.0 | 30.1 | 92.20 | 76.2 | 82.5 | | 9-117 | 1.062 | 1.188 | 3.880 | 3.250 | 3.500 | 27.0 | 30.1 | 98.55 | 82.6 | 88.9 | | 9-118 | 1.062 | 1.188 | 4.130 | 3.500 | 3.750 | 27.0 | 30.1 | 104.90 | 88.9 | 95.2 | | 9-119 | 1.062 | 1.188 | 4.380 | 3.750 | 4.000 | 27.0 | 30.1 | 111.25 | 95.3 | 101.6 | ### NOTES: . Applies to minimum diameter except in the area of the seal. 9-112 To 9-119 #### PHYSICAL DIMENSIONS | OUTLINE | L | | INCHES | | | | MIL | LIMETER | 32 | | |---------|-------|-------|--------|-------|-------|------|------|---------|------|-------| | DRAWING | | A. | C | 1 | 0 | | 1. | C | | D | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-120 | 1.062 | 1.188 | 2.630 | 2.000 | 2.250 | 27.0 | 30.1 | 66.80 | 50.8 | 57.1 | | 9-121 | 1.062 | 1.188 | 2.880 | 2.250 | 2.500 | 27.0 | 30.1 | 73.15 | 57.2 | 63.5 | | 9-122 | 1.062 | 1.188 | 3.130 | 2.500 | 2.750 | 27.0 | 30.1 | 79.50 | 63.5 | 69.8 | | 9-123 | 1.062 | 1.188 | 3.380 | 2.750 | 3.000 | 27.0 | 30.1 | 85.85 | 69.9 | 76.2 | | 9-124 | 1.062 | 1.188 | 3.630 | 3.000 | 3.250 | 27.0 | 30.1 | 92.20 | 76.2 | 82.5 | | 9-125 | 1.062 | 1.188 | 3.880 | 3.250 | 3.500 | 27.0 | 30.1 | 98.55 | 82.6 | 88.9 | | 9-126 | 1.062 | 1.188 | 4.130 | 3.500 | 3.750 | 27.0 | 30.1 | 104.90 | 88.9 | 95.2 | | 9-127 | 1.062 | 1.188 | 4.380 | 3.750 | 4.000 | 27.0 | 30.1 | 111.25 | 95.3 | 101.6 | NOTES: Applies to minimum diameter except in the area of the seal. 9-120 TO 9-127 9 - 128 ### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | | MIL | LIMETE | RS | | |---------|-------|-------|--------|-------|-------|------|------|--------|------|------| | DRAWING | - 1 | ۱. | С | | • | | ١. | C | |) | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-130 | 1.062 | 1.188 | 2.350 | 1.710 | 1.970 | 27.0 | 30.1 | 59.69 | 43.4 | 49.9 | | 9-131 | 1.062 | 1.188 | 2.650 | 2.010 | 2.270 | 27.0 | 30.1 | 67.31 | 51.0 | 57.5 | | 9-132 | 1.062 | 1.188 | 2.950 | 2.310 | 2.570 | 27.0 | 30.1 | 74.93 | 58.7 | 65.2 | | 9-133 | 1.062 | 1.188 | 3.250 | 2.610 | 2.870 | 27.0 | 30.1 | 82.55 | 66.3 | 72.8 | | 9-134 | 1.062 | 1.188 | 3.550 | 2.910 | 3.170 | 27.0 | 30.1 | 90.17 | 74.0 | 80.5 | | 9-135 | 1.062 | 1.188 | 3.850 | 3.210 | 3.470 | 27.0 | 30.1 | 97.79 | 81.6 | 88.1 | NOTES: « Applies to minimum diameter except in the area of the seal. 9-130 TO 9-135 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | MILLIMETERS | | | | | | |---------|-------|-------|--------|-------|-------|-------------|------|-------|------|------|--| | DRAWING | - 1 | ł. | С | Ε |) | - | ١. | C | | D | | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | | 9-136 | 1.062 | 1.188 | 2.350 | 1.710 | 1.970 | 27.0 | 30.1 | 59.69 | 43.4 | 49.9 | | | 9-137 | 1.062 | 1.188 | 2.650 | 2.010 | 2.270 | 27.0 | 30.1 | 67.31 | 51.0 | 57.5 | | | 9-138 | 1.062 | 1.188 | 2.950 | 2.310 | 2.570 | 27.0 | 30.1 | 74.93 | 58.7 | 65.2 | | | 9-139 | 1.062 | 1.188 | 3.250 | 2.610 | 2.870 | 27.0 | 30.1 | 82.55 | 66.3 | 72.8 | | | 9-140 | 1.062 | 1.188 | 3.550 | 2.910 | 3.170 | 27.0 | 30.1 | 90.17 | 74.0 | 80.5 | | | 9-141 | 1.062 | 1.188 | 3.850 | 3.210 | 3.470 | 27.0 | 30.1 | 97.79 | 81.6 | 88.1 | | NOTES: * Applies to minimum diameter except in the area of the seal. 9-136 to 9-141 ### PHYSICAL DIMENSIONS | OUTLINE | | | INC | HES | | | | | MILLI | IETERS | | | |---------|-------|-------|-------|-------|-------|-------|-------|------|-------|---------------|------|-------| | DRAWING | A B+ | | B * | C | |) | Α. | 4 | 3 * | C | | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-142 | 1.250 | 1.062 | 1.188 | 2.625 | 2.000 | 2.250 | 31.75 | 27.0 | 30.1 | 66.6 | 50.8 | 57.1 | | 9-143 | 1.250 | 1.062 | 1.188 | 2.875 | 2.250 | 2.500 | 31.75 | 27.0 | 30.1 | 73.0 | 57.2 | 63.5 | | 9-144 | 1.250 | 1.062 | 1.188 | 3.125 | 2.500 | 2.750 | 31.75 | 27.0 | 30.1 | 79.3 | 63.5 | 69.8 | | 9-145 | 1.250 | 1.062 | 1.188 | 3.375 | 2.750 | 3.000 | 31.75 | 27.0 | 30.1 | 85.7 | 69.9 | 76.2 | | 9-146 | 1.250 | 1.062 | 1.188 | 3.625 | 3.000 | 3.250 | 31.75 | 27.0 | 30.1 | 92.0 | 76.2 | 82.5 | | 9-147 | 1.250 | 1.062 | 1.188 | 3.875 | 3.250 | 3.500 | 31.75 | 27.0 | 30.1 | 98.4 | 82.6 | 88.9 | | 9-148 | 1.250 | 1.062 | 1.188 | 4.125 | 3.500 | 3.750 | 31.75 | 27.0 | 30.1 | 104.7 | 88.9 | 95.2 | | 9-149 | 1.250 | 1.062 | 1.188 | 4.375 | 3.750 | 4.000 | 31.75 | 27.0 | 30.1 | 111.1 | 95.3 | 101.6 | MOTES E 12-103 BASE . Applies to minimum diameter except in the areas of the seal. INCHES 9-142 10 9-149 #### PHYSICAL DIMENSIONS MILLIMETERS | UUTLINE | | | | | | - 1 | | | | | | | |---------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------| | DRAWING | IMPED | | В | С | |) | A | | } | C | | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-150 | 1.281 | 1.062 | 1.188 | 3.062 | 2.250 | 2.500 | 32.53 | 27.0 | 30.1 | 77.7 | 57.2 | 63.5 | | 9-151 | 1.281 | 1.062 | 1.188 | 3.312 | 2.500 | 2.750 | 32.53 | 27.0 | 30.1 | 84.1 | 63.5 | 69.8 | | 9-152 | 1.281 | 1.062 | 1.188 | 3.562 | 2.750 | 3.000 | 32.53 | 27.0 | 30.1 | 90.4 | 69.9 | 76.2 | | 9-153 | 1.281 | 1.062 | 1.188 | 3.812 | 3.000 | 3.250
| 32.53 | 27.0 | 30.1 | 96.8 | 76.2 | 82.5 | | 9-154 | 1.281 | 1.062 | 1.188 | 4.062 | 3.250 | 3.500 | 32.53 | 27.0 | 30.1 | 103.1 | 82.6 | 88.9 | | 9-155 | 1.281 | 1.062 | 1.188 | 4.312 | 3.500 | 3.750 | 32.53 | 27.0 | 30.1 | 109.5 | 88.9 | 95.2 | | 9-156 | 1.281 | 1.062 | 1.188 | 4.562 | 3.750 | 4.000 | 32.53 | 27.0 | 30.1 | 115.8 | 95.3 | 101.6 | | 9-157 | 1.281 | 1.062 | 1.188 | 4.812 | 4.000 | 4.250 | 32.53 | 27.0 | 30.1 | 122.2 | 101.6 | 107.9 | B 6-8 BASE OR ANY DERIVED PIN COMBINATIONS 9-150 to 9-157 | 1-50 , SMALL | | OUTLINE | | | INC | IES | | | | | MILLIN | METERS | | | |----------------------|-----|---------|-------|-------|-------|-------|-------|-------|-------|------|--------|--------|-------|-------| | ` ←— B• | 1 | DRAWING | A | | В | C | |) | A | E | 3 | С | |) | | - } | _ | NUMBER | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MA) | | H | 1 | 9-158 | 1.377 | 1.062 | 1.188 | 3.062 | 2.250 | 2.500 | 34.97 | 27.0 | 30.1 | 77.7 | 57.2 | 63.5 | | ` | 1 | 9-159 | 1.377 | 1.062 | 1.188 | 3.312 | 2.500 | 2.750 | 34.97 | 27.0 | 30.1 | 84.1 | 63.5 | 69.8 | | | | 9-160 | 1.377 | 1.062 | 1.188 | 3.562 | 2.750 | 3.000 | 34.97 | 27.0 | 30.1 | 90.4 | 69.9 | 76.2 | | T 9 | g | 9-161 | 1.377 | 1.062 | 1.188 | 3.812 | 3.000 | 3.250 | 34.97 | 27.0 | 30.1 | 96.8 | 76.2 | 82. | | . , | l i | 9-162 | 1.377 | 1.062 | 1.188 | 4.062 | 3.250 | 3.500 | 34.97 | 27.0 | 30.1 | 103.1 | 82.6 | 88.9 | | | | 9-163 | 1.377 | 1.062 | 1.188 | 4.312 | 3.500 | 3.750 | 34.97 | 27.0 | 30.1 | 109.5 | 88.9 | 95.2 | | | L I | 9-164 | 1.377 | 1.062 | 1.188 | 4.562 | 3.750 | 4.000 | 34.97 | 27.0 | 30.1 | 115.8 | 95.3 | 101.6 | | | 1 1 | 9-165 | 1.377 | 1.062 | 1.188 | 4.812 | 4.000 | 4.250 | 34.97 | 27.0 | 30.1 | 122.2 | 101.6 | 107.9 | 9-158 m 9-165 ### PHYSICAL DIMENSIONS | OUTLINE | | | INC | HE\$ | | | | | MILLIN | METERS | | | |---------|-------|-------|-------|-------|-------|-------|-------|------|--------|--------|-------|-------| | DRAWING | A B | | В | C | |) | A | Ī | 3 | C | | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 9-166 | 1.250 | 1.062 | 1.188 | 3.062 | 2.250 | 2.500 | 31.75 | 27.0 | 30.1 | 77.7 | 57.2 | 63.5 | | 9-167 | 1.250 | 1.062 | 1.188 | 3.312 | 2.500 | 2.750 | 31.75 | 27.0 | 30.1 | 84.1 | 63.5 | 69.8 | | 9-168 | 1.250 | 1.062 | 1.188 | 3.562 | 2.750 | 3.000 | 31.75 | 27.0 | 30.1 | 90.4 | 69.9 | 76.2 | | 9-169 | 1.250 | 1.062 | 1.188 | 3.812 | 3.000 | 3.250 | 31.75 | 27.0 | 30.1 | 96.8 | 76.2 | 85.5 | | 9-170 | 1.250 | 1.062 | 1.188 | 4.062 | 3.250 | 3.500 | 31.75 | 27.0 | 30.1 | 103.1 | 85.6 | 88.9 | | 9-171 | 1.250 | 1.062 | 1.188 | 4.312 | 3.500 | 3.750 | 31.75 | 27.0 | 30.1 | 109.5 | 88.9 | 95.2 | | 9-172 | 1.250 | 1.062 | 1.188 | 4.562 | 3.750 | 4.000 | 31.75 | 27.0 | 30.1 | 115.8 | 95.3 | 101.6 | | 9-173 | 1.250 | 1.062 | 1.188 | 4.812 | 4.000 | 4.250 | 31.75 | 27.0 | 30.1 | 122.2 | 101.6 | 107.9 | L B 8-251 BASE OR ANY DERIVED PIN COMBINATIONS ### 9-166 TO 9-173 | ישם | ソヒル | A I | DIM | LENIC | IONS | |-----|-----|-----|-----|-------|------| | | | | | | | | OUTLINE | | INC | HES | | 1 . | MILLIN | IETERS | | |---------|-------|-------|-------|-------|------|--------|---------------|--------| | DRAWING | | Α | С | D | | 1 | С | D | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | | 11-2 | 1.312 | 1.438 | 3.500 | 2.938 | 33.4 | 36.5 | 88.90 | 74.61 | | 11-3 | 1.312 | 1.438 | 3.875 | 3.312 | 33.4 | 36.5 | 98.42 | 84.13 | | 11-4 | 1.312 | 1.438 | 4.250 | 3.688 | 33.4 | 36.5 | 107.95 | 93.66 | | 11-5 | 1.312 | 1.438 | 4.625 | 4.062 | 33.4 | 36.5 | 117.47 | 103.18 | | | | | | | | | | | 11-2 TO 11-5 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | MILLIMETERS | | | | | | | |---------|-------|-------|--------|-------|-------|-------------|----------|--------|-------|-------|--|--| | DRAWING | 1050 | | С | C |) | - | <u> </u> | С | | D | | | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | | | 11-6 | 1.312 | 1.438 | 3.875 | 2.938 | 3.312 | 33.4 | 36.5 | 98.2 | 74.7 | 84.1 | | | | 11-7 | 1.312 | 1.438 | 4.250 | 3.312 | 3.688 | 33.4 | 36.5 | 107.95 | 84.2 | 93.6 | | | | 11-8 | 1.312 | 1.438 | 4.625 | 3.688 | 4.062 | 33.4 | 36.5 | 117.47 | 93.7 | 103.1 | | | | 11-9 | 1.312 | 1.438 | 5.000 | 4.062 | 4.432 | 33.4 | 36.5 | 127.0 | 103.2 | 112.7 | I | | | ### 11-6 TO 11-9 NOMINAL CAP DIAMETERS MINIATURE OR SKIRTED MINIATURE - 0.250" SMALL - 0.360" MEDIUM- 0.566" #### PHYSICAL DIMENSIONS | OUTLINE | | INC | HES | | | MILLIN | AETERS | | |---------|-------|-------|-------|-------|------|--------|--------|--------| | DRAWING | | Ą | С | D | , | 1 | С | D | | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | | 12-13 | 1.438 | 1.562 | 3.500 | 2.938 | 36.6 | 39.6 | 88.90 | 74.61 | | 12-14 | 1.438 | 1.562 | 3.875 | 3.312 | 36.6 | 39.6 | 98.42 | 84.13 | | 12-15 | 1.438 | 1.562 | 4.250 | 3.688 | 36.6 | 39.6 | 107.95 | 93.66 | | 12-16 | 1.438 | 1.562 | 4.625 | 4.062 | 36.6 | 39.6 | 117.47 | 103.18 | | 12-17 | 1.438 | 1.562 | 5.000 | 4.438 | 36.6 | 39.6 | 127.0 | 112.71 | 12-13 to 12-17 #### PHYSICAL DIMENSIONS | DRAWING NUMBER MIN 12-18 1.43 12-19 1.43 | | C
MAX.
3.875 | MIN. | MAX. | MIN. | MAX. | C
MAX. | MIN. | MAX. | |--|---------|--------------------|-------|-------------|------|------|-----------|-------|------| | 12-18 1.43 | | - | | | MIN. | MAX. | MAX. | MIN. | MAX | | | 8 1.562 | 3.875 | 2 020 | | | | | | | | 12-19 1.43 | | | 2.938 | 3.312 | 36.6 | 39.6 | 98.42 | 74.7 | 84.1 | | | 8 1.562 | 4.125 | 3.312 | 3.688 | 36.6 | 39.6 | 107.95 | 84.2 | 93.0 | | 12-20 1.43 | 8 1.562 | 4.625 | 3.688 | 4.062 | 36.6 | 39.6 | 117.47 | 93.7 | 103. | | 12-21 1.43 | 8 1.562 | 5.000 | 4.062 | 4.438 | 36.6 | 39.6 | 127.0 | 103.2 | 112. | | 12-22 1.43 | 8 1.562 | 5.375 | 4.438 | 4.812 | 36.6 | 39.6 | 136.5 | 112.8 | 122. | 12-18 TO 12-22 #### PHYSICAL DIMENSIONS | OUTLINE | | INCHES | | | | | MI | LLIMET | ERS | | |---------|-------|--------|-------|-------|-------|-------|------|--------|--------|-------------| | DRAWING | Α | | В | С | D | Α | | В | С | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX. | | 12-23 | 1.719 | 1.438 | 1.562 | 3.500 | 2.938 | 43.65 | 36.6 | 39.6 | 88.90 | 74.61 | | 12-24 | 1.719 | 1.438 | 1.562 | 3.875 | 3.312 | 43.65 | 36.6 | 39.6 | 98.42 | 84.13 | | 12-25 | 1.719 | 1.438 | 1.562 | 4.250 | 3.688 | 43.65 | 36.6 | 39.6 | 107.95 | 93.66 | | 12-26 | 1.719 | 1.438 | 1.562 | 4.625 | 4.062 | 43.65 | 36.6 | 39.6 | 117.47 | 103.18 | | 12-27 | 1.719 | 1.438 | 1.562 | 5.000 | 4.438 | 43.65 | 36.6 | 39.6 | 127.0 | 112.71 | • | | | | | - | | | SHORT JUMBO SHELL OCTAL BASE 12-23 to 12-27 | B → | OUTLIN
DRAWIN
NUMBER | |--------------|---------------------------------| | | 12-28 | | TIO | 12-29 | | "" | 12-30 | | | D 12-31 | | | 12-32 | | | | | | h L | | | ↓ | | <u> 0000</u> | SHORT JUMBO SHELL
OCTAL BASE | | | TI2 | | OUTLINE | | | INCHES | |] | | MI | LLIMETI | ERS | | |---------|-------|-------|--------|-------|-------|-------|------|---------|--------|--------| | DRAWING | Α | | 3 | С | D | A | | В | C | D | | NUMBER | MAX. | MIN. | MAX. | MAX. | MAX. | MAX. | MIN. | MAX. | MAX. | MAX | | 12-28 | 1.719 | 1.438 | 1.562 | 3.500 | 2.938 | 43.65 | 36.6 | 39.6 | 88.90 | 74.61 | | 12-29 | 1.719 | 1.438 | 1.562 | 3.875 | 3.312 | 43.65 | 36.6 | 39.6 | 98.42 | 84.13 | | 12-30 | 1.719 | 1.438 | 1.562 | 4.250 | 3.688 | 43.65 | 36.6 | 39.6 | 107.95 | 93.66 | | 12-31 | 1.719 | 1.438 | 1.562 | 4.625 | 4.062 | 43.65 | 36.6 | 39.6 | 117.47 | 103.18 | | 12-32 | 1.719 | 1.438 | 1.562 | 5.000 | 4.438 | 43.65 | 36.6 | 39.6 | 127.0 | 112.71 | 12-28 to 12-32 | } ← Β → | 4 | OUTLINE | | | INC | 1ES | | | | | MILLIN | ETERS | | | |--|--------------|---------|---------|-------|-------|-------|-------|-------|-------|------|--------|--------|-------|-------| | | - | DRAWING | A | | 3 | С | | 1 | A | E | 3 | С | 1 |) | | | 11 | NUMBER | MAX. | MN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | MAX. | MIN. | MA) | | 7 | ١ ١ | 12-33 | 1.719 | 1.438 | 1.562 | 3.875 | 2.938 | 3.312 | 43.65 | 36.6 | 39.6 | 98.42 | 74.7 | 84. | | | | 12-34 | 1.719 | 1.438 | 1.562 | 4.250 | 3.312 | 3.688 | 43.65 | 36.6 | 39.6 | 107.95 | 84.2 | 93.0 | | TIZ | | 12-35 | 1.719 | 1.438 | 1.562 | 4.625 | 3.688 | 4.062 | 43.65 | 36.6 | 39.6 | 117.47 | 93.7 | 103.1 | | | D | 12-36 | 1.719 | 1.438 | 1.562 | 5.000 | 4.062 | 4.438 | 43.65 | 36.6 | 39.6 | 127.0 | 103.2 | 112.7 | | | \mathbf{I} | 12-37 | 1.719 | 1.438 | 1.562 | 5.375 | 4.438 | 4.812 | 43.65 | 36.6 | 39.6 | 136.52 | 112.8 | 122.2 | 기 | , | | - | - | · | | · | | | | | | | | | 1 | | | | | | | | | | | | | | | UUUU | | | | | | | | | | | | | | | | | | OCTAL | JUMBO S | HBLL | | | | | | | | | | | C1-1 OR C1-34 PHYSICAL DIMENSIONS INCHES MILLIMETERS OUTLINE DRAWING C C ٨ NUMBER MAX. MIN. MAX. MAX. MIN. MAX. MAX. MIN. MAX. MAX. MIN. MAX. 2.938 1.719 1.438 3.875 84.1 12-38 1.562 3.312 43.65 36.6 39.6 98.42 74.7 TIZ 12-39 1.719 1.438 1.562 4.250 3.312 3.688 43.65 36.6 39.6 107.95 84.2 93.6 12-40 1.719 1.438 3.688 4.062 43.65 39.6 117.47 93.7 103.1 1.562 4.625 36.6 12-41 1.719 1.438 1.562 5.000 4.062 4.438 43.65 36.6 39.6 127.0 103.2 112.7 C 12-42 1.719 1.438 1.562 5.375 4.438 4.812 43.65 36.6 39.6 136.5 112.8 122.2 LARGE -- WAFER OCTAL WITH METAL SLEEVE BASF 12-38 to 12-42 | | | | | | PHYS | ICAL | DIME | NSIC | NS | | | | |----------------|------|---------|-------|-------|--------|-------|-------|------|------|-----------------------|--------------------|----------| | L A | | OUTLINE | | | INCHES | | | | MIL | LIMETE | RS | | | | | DRAWING | | A+
| C | | D | | A + | C | | D | | T | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 17 | 7. | 12-52 | 1.437 | 1.563 | 1.875 | 1.250 | 1.500 | 36.5 | 39.7 | 47.62 | 31.8 | 38.1 | | | - 11 | 12-53 | 1.437 | 1.563 | 2125 | 1.500 | 1.750 | 36.5 | 39.7 | 53.97 | 38.1 | 44.4 | | 11 | | 12-54 | 1.437 | 1.563 | 2.375 | 1.750 | 2.000 | 36.5 | 39.7 | 60.32 | 44.5 | 50.8 | | C T 12 | ' | 1255 | 1.437 | 1.563 | 2.625 | 2.000 | 2.250 | 36.5 | 39.7 | 66.67 | 50.8 | 57.1 | | . 112 | D | 1256 | 1.437 | 1.563 | 2.875 | 2.250 | 2.500 | 36.5 | 39.7 | 73.00 | 57.2 | 63.5 | | | 11 | 12-57 | 1.437 | 1.563 | 3.125 | 2.500 | 2,750 | 36.5 | 39.7 | 79.3 | 63.5 | 69.8 | | | | 1258 | 1.437 | 1.563 | 3.375 | 2.750 | 3,000 | 36.5 | 39.7 | 85,7 | 69.9 | 76.2 | | The second | 7-1 | 12-59 | 1.437 | 1.563 | 3.625 | 3.000 | 3.250 | 36.5 | 39.7 | 92.0 | 76.2 | 82.5 | | 1 | | 1260 | 1.437 | 1.563 | 3.875 | 3.250 | 3.500 | 36.5 | 39.7 | 98.4 | 82.6 | 88.9 | | E 12 - 74 BASE | _7 | 1261 | 1.437 | 1.563 | 4.125 | 3.500 | 3.750 | 36.5 | 39.7 | 104.77 | 88.9 | 95.2 | | | | 1262 | 1.437 | 1,563 | 4.375 | 3.750 | 4.000 | 36.5 | 39.7 | 111.12 | 95.3 | 101.6 | | | | | 12- | -52 | то 12 | 2-62 | NOT | | | minimun
a of the : | i diamete
seal. | r except | E 9--76 BASE ## **OUTLINE** NOTES: - * The minimum applies in zone starting 0.375" (9.52 mm) from base seat, - Measured from base seat to bulb-top line as determined by a ring gauge of 0.600" (15.24 mm.) I.D. ### 12-63 to 12-68 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | ı | l | MIL | LIMETE | RS | | |---------|-------|-------|--------|-------|-------|------|------|--------|-------|-------| | DRAWING | , | l* | С | £ |) | A+ | | C | D | | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 12-69 | 1.438 | 1.562 | 3.250 | 2.610 | 2.870 | 36.6 | 39.6 | 82.55 | 63.3 | 72.8 | | 12-70 | 1.438 | 1.562 | 3.550 | 2.910 | 3.170 | 36.6 | 39.6 | 90.17 | 74.0 | 80.5 | | 12-71 | 1.438 | 1.562 | 3.850 | 3.210 | 3.470 | 36.6 | 39.6 | 97.79 | 81.6 | 88.1 | | 12-72 | 1.438 | 1.562 | 4.150 | 3.510 | 3.770 | 36.6 | 39.6 | 105.41 | 89.2 | 95.7 | | 12-73 | 1.438 | 1.562 | 4.450 | 3.810 | 4.070 | 36.6 | 39.6 | 113.03 | 96.8 | 103.3 | | 12-74 | 1.438 | 1.562 | 4.750 | 4.110 | 4.370 | 36.6 | 39.6 | 120.65 | 104.4 | 110.9 | #### NOTES: * Applies to minimum diameter except in the area of the seal. ### 12-69 to 12-74 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | İ | | Mil | LIMETER | tS | | |---------|-------|------------|--------|-------|-------|------|------|---------|------|-------| | DRAWING | | ! * | С | |) | Ţ, | ١. | C | D | | | NUMBER | MIN, | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 12-75 | 1.437 | 1.563 | 2.625 | 2.000 | 2.250 | 36.5 | 39.7 | 66.67 | 50.8 | 57.1 | | 12-76 | 1.437 | 1.563 | 2.875 | 2.250 | 2.500 | 36.5 | 39.7 | 73.00 | 57.2 | 63.5 | | 12-77 | 1.437 | 1.563 | 3.125 | 2.500 | 2.750 | 36.5 | 39.7 | 79.3 | 63.5 | 69.8 | | 12-78 | 1.437 | 1.563 | 3.375 | 2.750 | 3.000 | 36.5 | 39.7 | 85.7 | 69.9 | 76.2 | | 12-79 | 1.437 | 1.563 | 3.625 | 3.000 | 3.250 | 36.5 | 39.7 | 92.0 | 76.2 | 85.5 | | 12-80 | 1.437 | 1.563 | 3.875 | 3.250 | 3.500 | 36.5 | 39.7 | 98.4 | 82.6 | 89.9 | | 12-81 | 1.437 | 1.563 | 4.125 | 3.500 | 3.750 | 36.5 | 39.7 | 104.77 | 89.9 | 95.2 | | 12-82 | 1.437 | 1.563 | 4.375 | 3.750 | 4.000 | 36.5 | 39.7 | 111.12 | 95.3 | 101.6 | #### NOTES: * Applies to minimum diameter except in the area of the seal. | 1 | D۴ | 17 | /ر | 10 | ٨ | ı | n | A | FI | NC | 10 | NS | |---|----|----|-----|----|---|---|---|---|-----|-----|----|-----| | 1 | | 11 | - 3 | ľ | А | Ŀ | u | ľ | LEI | C.F | w | M.S | | OUTLINE | | | INCHES | | | | MIL | LIMETER | 25 | | |---------|-------|-------|--------|-------|-------|------|------|---------|------|-------| | DRAWING | , | | С | D |) | A | | С | 1 | D | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 12-83 | 1.437 | 1.563 | 2.625 | 2.000 | 2.250 | 36.5 | 39.7 | 66.67 | 50.8 | 57.1 | | 12-84 | 1.437 | 1.563 | 2.875 | 2.250 | 2.500 | 36.5 | 39.7 | 73.0 | 57.2 | 63.5 | | 12-85 | 1.437 | 1.563 | 3.125 | 2.500 | 2.750 | 36.5 | 39.7 | 79.30 | 63.5 | 69.8 | | 12-85 | 1.437 | 1.563 | 3.375 | 2.750 | 3.000 | 36.5 | 39.7 | 85.70 | 69.9 | 76.2 | | 12-87 | 1.437 | 1.563 | 3.625 | 3.000 | 3.250 | 36.5 | 39.7 | 92.07 | 76.2 | 82.5 | | 12-88 | 1.437 | 1.563 | 3.875 | 3.250 | 3.500 | 36.5 | 39.7 | 98.42 | 82.6 | 88.9 | | 12-89 | 1.437 | 1.563 | 4.125 | 3.500 | 3.750 | 36.5 | 39.7 | 104.77 | 88.9 | 95.2 | | 12-90 | 1.437 | 1.563 | 4.375 | 3.750 | 4.000 | 36.5 | 39.7 | 111.12 | 95.3 | 101.6 | NOTES: - Applies to minimum diameter except in the area of the seal. 12-83 TO 12-90 ### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | | MIL | LIMETE | 25 | | |---------|-------|-------|--------|-------|-------|------|------|--------|------|-------| | DRAWING | 1 | 4. | C | ı |) | 1 | ١. | C | | D | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 12-91 | 1.438 | 1.562 | 1.880 | 1.250 | 1.500 | 36.6 | 39.6 | 47.75 | 31.8 | 38.1 | | 12-92 | 1.438 | 1.562 | 2.130 | 1.500 | 1.750 | 36.6 | 39.6 | 54.10 | 38.1 | 44.4 | | 12-93 | 1.438 | 1.562 | 2.380 | 1.750 | 2.000 | 36.6 | 39.6 | 60.45 | 44.5 | 50.8 | | 12-94 | 1.438 | 1.562 | 2.630 | 2.000 | 2.250 | 36.6 | 39.6 | 66.80 | 50.8 | 57.1 | | 12-95 | 1.438 | 1.562 | 2.880 | 2.250 | 2.500 | 36.6 | 39.6 | 73.15 | 57.2 | 63.5 | | 12-96 | 1.438 | 1.562 | 3.130 | 2.500 | 2.750 | 36.6 | 39.6 | 79.50 | 63.5 | 69.8 | | 12-97 | 1.438 | 1.562 | 3.380 | 2.750 | 3.000 | 36.6 | 39.6 | 85.5 | 69.9 | 76.2 | | 12-98 | 1.438 | 1.562 | 3.630 | 3.000 | 3.250 | 36.6 | 39.6 | 92.20 | 76.2 | 82.5 | | 12-99 | 1.438 | 1.562 | 3.880 | 3.250 | 3.500 | 36.6 | 39.6 | 98.55 | 82.6 | 88.9 | | 12-100 | 1.438 | 1.562 | 4.130 | 3.500 | 3.750 | 36.6 | 39.6 | 104.90 | 88.9 | 95.2 | | 12-101 | 1.438 | 1.562 | 4.380 | 3.750 | 4.000 | 36.6 | 39.6 | 111.25 | 95.3 | 101.6 | * Applies to minimum diameter except in the area of the seat. 12-91 TO 12-101 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | | | MIL | LIMETER | TERS | | | |---------|-------|-------|--------|-------|-------|------|------|---------|------|-------|--| | DRAWING | | A. | С | |) | - | ١. | C | D | | | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | | 12-102 | 1.438 | 1.562 | 2.630 | 2.000 | 2.250 | 36.6 | 39.6 | 66.80 | 50.8 | 57.1 | | | 12-103 | 1.438 | 1.562 | 2.880 | 2.250 | 2.500 | 36.6 | 39.6 | 73.15 | 57.2 | 63.5 | | | 12-104 | 1.438 | 1.562 | 3.130 | 2.500 | 2.750 | 36.6 | 39.6 | 79.50 | 63.5 | 69.8 | | | 12-105 | 1.438 | 1.562 | 3.380 | 2.750 | 3.000 | 36.6 | 39.6 | 85.50 | 69.9 | 76.2 | | | 12-106 | 1.438 | 1.562 | 3.630 | 3.000 | 3.250 | 36.6 | 39.6 | 92.20 | 76.2 | 85.5 | | | 12-107 | 1.438 | 1.562 | 3.880 | 3.250 | 3.500 | 36.6 | 39.6 | 98.55 | 82.6 | 88.9 | | | 12-108 | 1.438 | 1.562 | 4.130 | 3.500 | 3.750 | 36.6 | 39.6 | 104.90 | 88.9 | 95.2 | | | 12-109 | 1.438 | 1.562 | 4.380 | 3.750 | 4.000 | 36.6 | 39.6 | 111.25 | 95.3 | 101.6 | | NOTES: - Applies to minimum diameter except in the area of the seal. 12-102 TO 12-109 #### PHYSICAL DIMENSIONS INCHES MILLIMETERS D C C MIN. MAX. MAX. MIN. MAX. MIN. MAX. MAX. MIN. MAX. 1.562 1.438 2.000 2.630 2.250 36.6 66.80 39.6 50.8 1.438 1.562 2.880 2.250 2.500 36.6 39.6 73.15 57.2 1.438 1.562 3.130 2.500 2.750 36.6 39.6 79.50 63.5 12 -110 12-111 63.5 12-112 69.8 12-113 1.438 1.562 3.380 2.750 3.000 36.6 39.6 85.85 69.9 76.2 12-114 1.438 1.562 3.630 3.000 3.250 36.6 39.6 92.20 76.2 82.5 12-115 1.438 1.562 3.880 3.250 3.500 36.6 39.6 98.55 82.6 88.9 12-116 1.438 1.562 4.130 3.500 3.750 36.6 39.6 104.90 88.9 95.2 12-117 1.438 1.562 4.380 4.000 3.750 36.6 39.6 111.25 95.3 101.6 #### NOTES: OUTLINE DRAWING- NUMBER . Applies to minimum diameter except in the area of the seal. ### 12-110 to 12-117 #### PHYSICAL DIMENSIONS | L | | INCHES | | | | MIL | LIMETE | RS | | |-------|---------------|-------------|---|--|---|--|--|---|--| | | A+ | C | | D | | A . | C | | D | | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | 1.437 | 1.563 | 4.625 | 4.000 | 4.250 | 36.5 | 39.7 | 117.4 | 101.6 | 107.9 | | 1.437 | 1.563 | 4.875 | 4.250 | 4.500 | 36.5 | 39.7 | 123.8 | 108.0 | 114.3 | | | <u> </u> | ļ | | | | | | | | | ļ | | | | | | | | | | | | MIN.
1.437 | 1.437 1.563 | A+ C MIN. MAX. MAX. 1.437 1.563 4.625 | MIN. MAX. MAX. MIN.
1.437 1.563 4.625 4.000 | A+ C D MIN. MAX. MAX. MIN. MAX. 1.437 1.563 4.625 4.000 4.250 | A+ C D IIII MIN. MAX. MAX. MIN. MAX. MIN. 1.437 1.563 4.625 4.000 4.250 36.5 | A+ C D A+ MIN. MAX. MAX. MIN. MAX. MIN. MAX. 1.437 1.563 4.625 4.000 4.250 36.5 39.7 | A+ C D A+ C MIN.
MAX. MAX. MIN. MAX. MIN. MAX. MAX. 1.437 1.563 4.625 4.000 4.250 36.5 39.7 117.4 | A+ C D A+ C MIN. MAX. MAX. MIN. MAX. MIN. MAX. MAX. MIN. 1.437 1.563 4.625 4.000 4.250 36.5 39.7 117.4 101.6 | #### NOTES: * Applies to minimum diameter except in the area of the seal. ### 12-118 TO 12-119 #### PHYSICAL DIMENSIONS | OUTLINE | | | INCHES | | f | MILLIMETERS | | | | | | |---------|-------|-------|--------|-------|-------|-------------|------|--------|-------|-------|--| | DRAWING | A• | | C | 0 | | Α+ | | C | D | | | | NUMBER | MIN. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MIN. | MAX. | | | 12-121 | 1.438 | 1.562 | 3.250 | 2.610 | 2.870 | 36.6 | 39.6 | 82.55 | 66.3 | 72.8 | | | 12-122 | 1.438 | 1.562 | 3.550 | 2.910 | 3.170 | 36.6 | 39.6 | 90.17 | 74.0 | 80.5 | | | 12-123 | 1.438 | 1.562 | 3.850 | 3.210 | 3.470 | 36.6 | 39.6 | 97.79 | 81.6 | 88.1 | | | 12-124 | 1.438 | 1.562 | 4.150 | 3.510 | 3.770 | 36.6 | 39.6 | 105.41 | 89.2 | 95.7 | | | 12-125 | 1.438 | 1.562 | 4.450 | 3.810 | 4.070 | 36.6 | 39.6 | 113.03 | 96.8 | 103.3 | | | 12-126 | 1.438 | 1.562 | 4.750 | 4.110 | 4.370 | 36.6 | 39.6 | 120.65 | 104.4 | 110.9 | | #### NOTES: . Applies to minimum diameter except in the area of the seal. ### 12-121 TO 12-126 E 12-74 BASE . Applies to minimum diameter except in the area of the seal. 12-127 TO 12-136 ## 12 - 137 TO 12 - 144 NOMINAL CAP DIAMETERS MINIATURE OR SIGRTED MINIATURE - 0.250" SMALL - 0.360* MEDIUM - 0.566" | | <u> </u> | OUTLINE | | ***** | INCH | 1E\$ | | | | | MILLIN | ETERS | | | |---------|----------|-----------------------------------|-------|-------|-------|-------|-------|-------|------|------|--------|-------|-------|-------| | \perp | | ORAWING
NUMBER
14-5
14-6 | - 1 | ١. | В | C | |) | | A | В | C | Į |) | | | 1 | NUMBER | MIN. | MAX. | MAX. | MAX. | MIN. | MAX. | MIN. | MAX. | MAX. | MAX. | MIN. | MAX | | | 11 | 14-5 | 1.687 | 1.813 | 1.450 | 4.812 | 4.000 | 4.250 | 42.9 | 46.1 | 36.8 | 122.2 | 101.6 | 107.5 | | | | 14-6 | 1.687 | 1.813 | 1.450 | 5.062 | 4.250 | 4.500 | 42.9 | 46.1 | 36.8 | 128.6 | 108.0 | 114.3 | | T 14 | | 14-7 | 1.687 | 1.813 | 1.450 | 5.312 | 4.500 | 4.750 | 42.9 | 46.1 | 36.8 | 135.0 | 114.3 | 120.6 | | T 14 | a | 14-8 | 1.687 | 1.813 | 1.450 | 5.562 | 4.750 | 5.000 | 42.9 | 46.1 | 36.8 | 141.3 | 120.7 | 127.0 | | | 1 | 14-9 | 1.687 | 1.813 | 1.450 | 5.812 | 5.000 | 5.250 | 42.9 | 46.1 | 36.8 | 147.6 | 127.0 | 133.3 | | | | 14-10 | 1.687 | 1.813 | 1.450 | 6.062 | 5.250 | 5.500 | 42.9 | 46.1 | 36.8 | 154.0 | 133.4 | 139.7 | | (| | 14-11 | 1.687 | 1.813 | 1.450 | 6.312 | 5.500 | 5.750 | 42.9 | 46.1 | 36.8 | 160.3 | 139.7 | 146.0 | | | 1 | | | | | | | | | | | | | | | | | — 98-261 B/ | ASE | | | | | | | | | | | | | - B | | | | | | | | | | | | | | | Physical dimensions of tube types not conforming to standard outline drawings appear on the following nine pages. #### T-X TABLE The following footnotes and symbols appear in the T-X Table: - * FL-Flying Leads SL-Short Leads - † Small Top Cap - ‡ Plate terminal extends from top of envelope—dia. 0.031", length $\frac{5}{32}$ " - § Skirted Miniature Top Cap - ¶ Medium Top Cap - # Special Insulated Miniature Top Cap - || Plate terminal extends from top of envelope—diameter 0.566" - + C1-5, Medium Top Cap (with Ceramic Collar) or C1-6, Skirted Medium Top Cap - Large Top Cap - ♦ Solder lugs on filament pins - ▲ Flexible Lead with Lug - ⊕ Plate Pin(s) on Top ## **OUTLINE DRAWINGS** # T-X TABLE — Physical Characteristics of Types Not Conforming to Standard Outline Drawings | | | | Max D | imensions in In | ches | |---------------|--------------------|--|----------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | OA5 | T-5½ | 7-Pin Miniature | 0.750 | 1.625 | 1.375 | | OY4-G | T-7 | Octal | 1.078 | 2.625 | 2.063 | | OZ4-G | T-7 | Octal | 1.063 | 2.625 | 2.063 | | 1AE5 | T-2 x 3 | Inline Subm-FL* | 0.400 x 0.300 | | 1.500 | | 1BH2 | T-6½ | 9-Pin Miniature ♦† | 0.875 | 2.716 | 2.250 | | 1BH2A | T-6½ | 9-Pin Miniature \$\$† | 0.875 | 2.716 | 2.250 | | 1BV2 | T-6½ | 3-Pin—Solder Lugs ♦§ | 0.875 | 2.716 | 2.250 | | 1G3-GTA | T-9 | Glass † | 1.377 | 3.563 | 3.000 | | 1K3A
1N2A | T-9 | Glass † | 1.377 | 3,563 | 3.000 | | 1N6-G | T-12
T-9 | Octal † | 1.562
1.188 | 3.562
4.000 | 3.438 | | 1T2 | 1-9 | Diode | 0.531 | 1.906 | | | 1Y2 | ST-12 | 4-Pin † | 1.563 | 4.594 | 3.969 | | 172 | T-5½ | · 7-Pin Miniature § | 0.750 | 2,700 | 2.450 | | 2B3 | T-9 | Octal † | 1.281 | 4.063 | 3.500 | | 2B22 | Special | Glass & Metal | 1.313 | 1.938 | 3.300 | | 2C22 | T-9 | Octal § | 1.313 | 3.250 | 2.688 | | 2C39 | Special | Metal & Ceramic | 1.260 | 2.750 | 1 | | 2C39A | Special | Metal & Ceramic | 1.260 | 2.750 | | | 2C39WA | Special | Metal & Ceramic | 1.260 | 2.750 | | | 2C39B | Special | Ceramic & Metal | 1.266 | 2.750 | | | 2C40 | Special | Glass & Metal | 1.312 | 2.563 | <u> </u> | | 2C40-A | Special | Glass & Metal | 1.312 | 2.563 | 1 | | 2C42 | Special | Glass & Metal | 1,312 | 2.688 | | | 2C43 | Special | Glass & Metal | 1,312 | 2.688 | | | 2C46 | Special | Glass & Metal | 1.312 | 2.688 | | | 2C50 | T-9 | Octal | 1.315 | 2.750 | 3.313 | | 2CN3-A | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 2E24 | T-9 | Octal † | 1.313 | 3.656 | 3.094 | | 2E26 | T-9 | Octal † | 1.313 | 3.656 | 3.094 | | 2E31 | T-2 x 3 | Inline Subm-FL * | 0.400 x 0.300 | | 1.563 | | 2E32 | T-2 x 3 | Inline Subm-SL * | 0.400 x 0.300 | | 1.563 | | 2E35 | T-2 x 3 | Inline Subm-FL * | 0.390 x 0.290 | | 1.563 | | 2E36 | T-2 x 3 | Inline Subm-SL * | 0.390 x 0.290 | | 1.563 | | 2E41 | T-2 x 3 | Inline Subm-FL * | 0.390 x 0.290 | | 1.563 | | 2E42 | T-2 x 3 | Inline Subm-SL * | 0.390 x 0.290 | | 1.563 | | 2G21 | T-2 x 3 | Inline Subm-FL * | 0.400 x 0.300 | | 1.563 | | 2G22 | T-2 x 3 | Inline Subm-SL * | 0.400 x 0.300 | | 1.563 | | 2J2 | T-6 ½ | Noval-9 Pin | 0.827 | 3.000 | 2.710 | | 2L2 | Special | Clear—Wire Leads | 0.748 | 2.284 | | | 2V2 | T-11 | Octal † | 1.438 | 4.500 | 3.938 | | 3A3-A | T-9 | Glass † | 1.188 | 3.812 | 3.250 | | 3B2 | T-12 | Octal † | 1.719 | 5.219 | 4.688 | | 3B28 | Special | 4-Pin ¶ | 2.063 | 6.150 | 5.530 | | 3C23 | ST-16 | 4-Pin ¶ | 2.063 | 6.125 | 5.500 | | 3CA3A | T-9 | Glass—Octal † | 1.188 | 3.812 | 3.250 | | 3CN3 | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3CN3-A | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3CU3 | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3CX3 | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3CZ3 | T-9 | Glass—Octal † | 1.188 | 4.312 | 3.750 | | 3CZ3A | T-9 | Glass—Octal † | 1.188 | 4.312 | 3.750 | | 3DA3 | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3DB3 | T-9 | Octal † | 1.281 | 3.812 | 3.250 | | 3DF3A
3DS3 | Special
Special | Glass—Octal † Glass—Octal with Bonded Shield † | 1.205 | 3.812 | 3.250 | | 3EH7 | T-6 1/2 | 9-Pin Miniature | 0.875 | 2.406 | 2.156 | | 3EJ7 | T-6½ | 9-Pin Miniature | 0.875 | 2.406 | 2.156 | | 3FW7 | Special | Metal Subm. | 0.512 | 1.969 | 2.100 | | 3FX7 | T-3 | Special Subm. | 0.512 | 1.969 | | | 4EH7 | T-61/2 | 9-Pin Miniature | 0.875 | 2.406 | 2.156 | | | · · · / # | | | | **** | # T-X TABLE — Physical Characteristics of Types | | T | | May T | Dimensions in I | nohoo | |-------------------|-----------------|---------------------------------|----------------|-----------------|------------------| | Tube | l | | | 7" | r | | Туре | Envelope | Style | Diameter | Over-all | Seated
Weight | | 4EJ7 | T-61/2 | 9-Pin Miniature | 0.875 | Length
2.406 | Height
2.156 | | 4GJ7 | T-6½ | 9-Pin Miniature | 0.875 | 2.000 | 1.750 | | 5AR4 | Special | Octal | 1,500 | 3.438 | 2.875 | | 5AT4 | ST-16 | Octal | 2,000 | 4.750 | 4.175 | | 5AU4 | T-12 | Octal | 1.688 | 4.750 | 4.188 | | 5AW4 | T-12 | Octal | 1.563 | 5.188 | 4.625 | | 5GJ7 | T-61/2 | 9-Pin Miniature | 0.875 | 2.000 | 1.750 | | 5R4-GYA | T-12 | Octal | 1.563 | 4.938 | 4.375 | | 5U4-GA | T-11 | Octal | 1.438 | 4.750 | 4.188 | | 6AB9 | T-61/2 | 10-Pin Miniature | 0.875 | 2,190 | 1.660 | | 6AL3 | T-61/2 | 9-Pin Miniature § | 0.875 | 3.500 | 3.250 | | 6AL6-G | ST-16 | Octal § | 2.063 | 5.688 | 5.125 | | 6AR6 | T-11 | Octal | 1.438 | 3.469 | 2.906 | | 6AV5-GA | T-11 or | Octal | 1.438 | 4.000 | 3.438 | | | T-12 | | 1.563 | 4.000 | 3.438 | | 6AY3-B | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6BA3 | T-9 | Novar | 1.188 | 3.080 | 2.700 | | 6BA4 | Special | Rocket Type | 1.005 | 2.438 | | | 6BD4 | T-12 | Octal † | 1.719 | 5.125 | 4.625 | | 6BD4-A | T-12 | Octal † | 1.719 | 5.125 | 4.625 | | 6BD5-GT | T-9 | Octal | 1.281 | 3.875 | 3.313 | | 6BH3-A
6BQ6-GA | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6BQ6-GA | T-11 or
T-12 | Octal § | 1.438
1.563 | 4.250
4.250 | 3.688
3.688 | | 6BR3 | T-6½ | 9-Pin Miniature § | 0.875 | 3.500 | 3.250 | | 6BS3-A | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6BU4 | T-12 | Octal † | 1.719 | 5.063 | 4.531 | | 6BU5 | T-12 | Octal † | 1.688 | 4.875 | 4.313 | | 6BY4 | Special | Ceramic & Metal | 0.330 | 0.438 | *.010 | | 6CA7 | T-10 | Octal | 1.500 | 4.438 | 3.875 | | 6C B5 | ST-16 | Octal † | 2.063 | 5.125 | 4.594 | | 6CK3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6CL3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6CM3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6СТ3 | T-61/2 | 9-Pin Miniature 0.875 | | 3.125 | 2.875 | | 6CU6 | T-11 or | Octal § | 1.438 | 4.250 | 3.688 | | | T-12 | | 1.563 | 4.250 | 3.688 | | 6DB5 | T-6½ | 9-Pin Miniature | 0.875 | 2.750 | 2.500 | | 6DL4 | T-6½ | 9-Pin Miniature | 0.875 | 1.968 | 1.718 | | 6DQ6 | T-12 | Octal § | 1.563 | 4.250 | 3.750 | | 6DW4-A
6DW4-B | T-9
T-9 | Novar (Fo. 90) IV | 1.188 | 3.410 | 3.030 | | 6DZ8 | | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 6EH7 | T-6½
T-6½ | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 6EJ7 | T-6½ | 9-Pin Miniature 9-Pin Miniature | 0.875 | 2.406 | 2.156 | | 6FG6 | T-6½ | 9-Pin Miniature | 0.875
0.875 |
2.406
2.844 | 2.156 | | 6FW7 | Special | Metal Subm. | 0.512 | 1,969 | 2.594 | | 6FX7 | T-3 | Special Subm. | 0.512 | 1.969 | | | 6GB5 | T-9 | Magnoval (E9-23) Base | 1.188 | 4.109 | 2 766 | | 6GF7 | T-9 | Novar | 1.188 | | 3.766 | | 6GJ5 | T-12 | Novar (E9-76) Base § | 1.563 | 3.000
3.550 | 2.620
3.040 | | 6GJ5-A | T-12 | Novar (E9-88) Base § | 1.563 | 3.505 | 3.040 | | 6GJ7 | T-61/2 | 9-Pin Miniature | 0.875 | 2.000 | 1.750 | | 6GK7 | T-61/2 | 9-Pin Miniature | 0.875 | 2.406 | 2.156 | | 6GV7 | T-6½ | 9-Pin Miniature | 0.875 | 2.206 | 1.930 | | 6HU6 | T-6½ | 9-Pin Miniature | 0.875 | 2.844 | 2.594 | | 6HV5 | T-12 | Glass | 1.563 | 4.250 | 3.875 | | 6HV5A | T-12 | Glass | 1.563 | 4.250 | 3.875 | | 6JB6-A | T-12 | Novar (E9-88) Base § | 1.563 | 3.505 | 3.125 | | 6JD5 | T-12 | Glass | 1.563 | 4.250 | 3.875 | | 6JE6 | T-12 | Novar † | 1.563 | 4.600 | 4.220 | | 6JF6 | T-12 | Novar (E9-88) Base § | 1.563 | 3.550 | 3.170 | | | | . , | | | | ## **Not Conforming to Standard Outline Drawings** | | 1 | | Max I | Dimensions in I | nches | |--------------------|------------------|---|----------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | 6JH5 | T-12 | Glass | 1.563 | 4.250 | 3.875 | | 6JK5 | T-12 | Glass | 1.563 | 4.250 | 3.875 | | 6JT6 | T-12
T-12 | Novar | 1.563 | 3.180 | 2.800
3.170 | | 6JU6
6KG6 | T-12 | Novar (E9-76 or E9-88) Base § Magnoval † | 1.563 | 4.906 | 4.312 | | 6KM6 | T-12 | Novar (E9-88) Base § | 1.563 | 3.550 | 3,170 | | 6LF6 | T-12 | Compactron | 1.563 | 4.950 | 4.570 | | 6LV6 | T-12 | Glass § | 1.563 | 4.950 | 4.570 | | 6M3 | T-12 | Octal § | 1.563 | 4.875 | 4.313 | | 6M B6 | T-12 | Glass † | 1.563 | 4.750 | 4.375 | | 6MC6 | T-12 | Novar † | 1.562 | 4.625 | 4.250 | | 6MD8 | T-9 | Novar (E9-75 or E9-89) Base | 1.188 | 2.960 | 2.580 | | _6V3-A | T-61/2 | 9-Pin Miniature § | 0.875 | 3.063 | 2.750 | | 7GV7 | T-6½ | 9-Pin Miniature | 0.875 | 2.206 | 1.930 | | 8GJ7 | T-61/2 | 9-Pin Miniature | 0.875 | 2.000 | 1.750 | | 9DZ8 | T-61/2 | 9-Pin Miniature | 0.875
2.063 | 3.125 | 2.875
4.750 | | 10
12AV5-GA | ST-16
T-11 or | 4-Pin
Octal | 1.438 | 5.375
4.000 | 3.438 | | IZAVS-GA | T-12 | Octai | 1.563 | 4.000 | 3.438 | | 12AY3-A | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 12BQ6-GA | T-11 or
T-12 | Octal § | 1.438
1.563 | 4.250
4.250 | 3.688
3.688 | | 12BR3 | T-61/2 | 9-Pin Miniature § | 0.875 | 3,500 | 3.250 | | 12BS3-A | T-9 | Novar (E9-89) Base | 1.188 | 3,005 | 2.625 | | 12CK3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 12CL3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2,625 | | 12CT3 | T-61/2 | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 12CU6 | T-11 or
T-12 | Octal § | 1.438
1.563 | 4.250
4.250 | 3.688
3.688 | | 12DB5 | T-61/2 | 9-Pin Miniature | 0.875 | 2.750 | 2.500 | | 12DQ6 | T-12 | Octal § | 1.563 | 4.250 | 3.750 | | 12DZ8 | T-61/2 | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 12GJ5 | T-12 | Novar (E9-76) Base § | 1.563 | 3.550 | 3.040 | | 12JB6-A | T-12 | Novar (E9-88) Base § | 1.563 | 3.505 | 3.125 | | 12JT6 | T-12 | Novar Page 100 P | 1.563 | 3.180 | 2.800 | | 12MD8
15AB9 | T-9
T-61/2 | Novar (E9-75 or E9-89) Base
10-Pin Miniature | 1.188
0.875 | 2.960
2.190 | 2.580
1.660 | | 16AQ3 | T-61/2 | 9-Pin Miniature † | 0.875 | 3.500 | 3.250 | | 17AB9 | T-61/2 | 10-Pin Miniature | 0.875 | 2.190 | 1.660 | | 17AV5-GA | T-11 or | Octal | 1.438 | 4.000 | 3.438 | | 17AY3-A | T-12
T-9 | Novar (E9-89) Base | 1.563 | 4.000
3.005 | 3.438
2.625 | | 17BF11-A | T-9 | Compactron | 1.188 | 2,250 | 1,875 | | 17BH3-A | T-9 | Novar (E9-89) Base | 1,188 | 3.005 | 2.625 | | 17BR3 | T-61/2 | 9-Pin Miniature § | 0.875 | 3.500 | 3.250 | | 17BS3-A | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 17CK3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 17CL3 | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 17CT3 | T-61/2 | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 17DQ6 | T-12 | Octal § | 1.563 | 4.250 | 3.750 | | 17GJ5 | T-12 | Novar (E9-76) Base § | 1.563 | 3,550 | 3.040 | | 17GJ5-A
17JB6-A | T-12
T-12 | Novar (E9-88) Base § Novar (E9-88) Base § | 1.563 | 3.505
3.505 | 3.125
3.125 | | 17JT6 | T-12 | Novar (£9-66) Base § | 1.563 | 3.180 | 2.800 | | 17LD8 | T-9 | 9T9 | 1.188 | 3.110 | 2.730 | | 18DZ8 | T-61/2 | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 18GB5 | T-9 | Magnoval (E9-23) Base | 1.188 | 4.109 | 3.766 | | 21KQ6 | T-9 | Magnoval (E9-23) Base § | 1.188 | 4.133 | 3.760 | | 22BH3-A | T-9 | Novar (E9-89) Base | 1.188 | 3.005 | 2.625 | | 22JF6 | T-12 | Novar (E9-88) Base § | 1.563 | 3.550 | 3.170 | | 22JU6 | T-12 | Novar (E9-76 or E9-88) Base § | 1.563 | 3.550 | 3.170 | | 22KM6 | T-12 | Novar (E9-88) Base § | 1.563 | 3.550 | 3.170 | | 23 M B6 | T-12 | Glass † | 1.563 | 4.750 | 4.375 | ## T-X TABLE — Physical Characteristics of Types | | 1 | I was a second of the o | Max D | imensions in I | nches | |------------------------|------------------|--|----------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | 25AV5-GA | T-11 or
T-12 | Octal | 1.438
1.563 | 4.000
4.000 | 3.438
3.438 | | 25BQ6-GA | T-11 or
T-12 | Octal § | 1.438
1.563 | 4.250
4.250 | 3.688
3.688 | | 25BR3 | T-61/2 | 9-Pin Miniature § | 0.875 | 3,500 | 3.250 | | 25CM3 | T-9 | Novar (E9-89) base | 1.188 | 3.005 | 2.625 | | 25CT3 | T-6½ | 9-Pin Miniature | 0.875 | 3.125 | 2.875 | | 25CU6 | T-11 or
T-12 | Octal § | 1.438
1.563 | 4.250
4.250 | 3.688
3.688 | | 25DQ6 | T-12 | Octal § | 1.563 | 4.250 | 3.750 | | 25E5 | T-9 | Octal § | 1.281 | 4.313 | 3.750 | | 25EC6 | T-12 | Octal † | 1.563 | 4.750 | 4.188 | | 25HX5 | T-9 | Magnoval | 1.188 | 3.511 | 3.169 | | 26E6-G | T-11 | Octal | 1.438 | 3.125 | 2.563 | | FG-27-A | Special | 4-Pin ¶ | 3.000 | 7.250 | 0.700 | | 27GB5 | T-9 | Magnoval (E9-23) Base | 1.188 | 4.109 | 3.766 | | 27KG6 | T-12 | Magnoval † | 1.563 | 4.906 | 4.312 | | 28GB5 | T-9 | Magnoval (E9-23) Base | 1.188 | 4.109 | 3.766 | | 29KQ6 | T-9 | Magnoval (E9-23) Base § | 1.188 | 4.133 | 3.760 | | 29LE6 | T-9 | Magnoval | 1.188 | 4.133 | 3.760 | | 30M B6 | T-12 | Glass † | 1.563 | 4.750 | 4.375
0.225 | | A33 | Special
T-9 | 2-Lead | 0.375
1.188 | 3.005 | 2 525 | | 34CM3 | | Novar (E9-89) base | | 1 | 0.225 | | A35 | Special | 2-Lead | 0.375
0.875 | 3.125 | 2.875 | | 35DZ8 | T-6½
T-12 | 9-Pin Miniature | 1,562 | 4.625 | 4.250 | | 36MC6
40KG6 | T-12 | Novar † Magnoval † | 1.563 | 4.906 | 4.312 | | 846 | | 2-Lead | 0.650 | | 0.350 | | 50 | Special
ST-19 | 4-Pin | 2.438 | 6.250 | 5.625 | | 50E5 | T-9 | Octal § | 1.281 | 4.313 | 3.750 | | 50JY6 | T-9 | Octal § | 1,281 | 4.331 | 3.740 | | FG57 | Special | 4-Pin ¶ | 3.000 | 7.250 | 0.710 | | 81 | ST-19 | 4-Pin | 2.438 | 6.250 | 5.625 | | FG-81-A | Special | 4-Pin ¶ | 2.438 | 6.625 | | | FG-97 | Special | 4-Pin ¶ | 2,438 | 6.750 | | | FG-98-A | Special | 4-Pin ¶ | 2.438 | 6.750 | | | V-99 | T-8 | Special | 1.063 | 3.500 | | | FG-105 | Special | Jumbo 4-Pin \$ | 3.000 | 11.250 | | | FG-154 | Special | 4-Pin¶ | 3.000 | 7.938 | | | FG-172 | Special | Metal | 2.250 | 10.843 | | | 393-A | ST-16 | Octal † | 2.063 | 6.625 | | | GL414 | Special | Thyratron | 3.125 | 15.187 | | | B425 | Special | 2-Lead | 0.650 | | 0.350 | | 575-A | Special | 4-Pin + | 3.125 | 11.125 | | | 627 | Special | 4-Pin ¶ | 2.438 | 7.000 | 6.594 | | 672-A | Special | 4-Pin ¶ | 2.313 | 8.125 | 7.375 | | 673 | Special | 4-Pin ¶ | 3,125 | 11.438 | 11.625 | | 678 | Special | 4-Pin ¶ | 2.563 | 11.063 | | | 816 | ST-12 | 4-Pin † | 1.563 | 4.688 | 4.063 | | 866-A | ST-19 | 4-Pin ¶ | 2.438 | 6.563 | 5.938 | | 872-A | Special | 4-Pin ¶ | 2.313 | 8.500 | | | B1035 | Special | 2-Lead | 1.260 | | 0.365 | | 1629 | T-9 | Octal | 1,188 | 4.125 | 3.438
| | 1654 | T-5½ | 7-Pin Miniature ‡ | 0.750 | 2,438 | 2.188 | | 5544 | Special | 4-Pin ¶ | 2.625 | 7.500 | 6.813 | | GL5550 | Special | Metal ▲ | 2.140 | 9.062 | | | GL5551A/
5551A-PC | Special | Metal▲ | 2.750 | 13.000 | ., | | GL5552A/
5552A-PC | Special | Metal ▲ | 4.250 | 14.000 | | | GL5553B/
GL5553B-PC | Special | Metal ▲ | 5.625 | 19.500 | | | GL5554 | Special | Metal ▲ | 4.125 | 17.000 | | ## **Not Conforming to Standard Outline Drawings** | | | | Max Di | mensions in I | nches | |--------------|--------------------|-----------------------------|------------------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | GL5555 | Special | Metal ▲ | 5.750 | 17.937 | | | 5557 | ST-16 | 4-Pin ¶ | 2.063 | 6.125 | 5.500 | | 5558 | Special | 4-Pin ¶ | 3.000 | 7.000 | | | 5559 | Special
Special | 4-Pin ¶ 4-Pin ¶ | 3,000 | 7.250 | | | 5560
5561 | Special
Special | 4-Pin \$ | 3.813 | 7.938
11.250 | | | 5563-A | T-20 | 4-Pin ¶ | 2.625 | 10.531 | | | GL5564 | Special | Metal ▲ | 9.125 | 25.937 | | | GL5630 | Special | Metal ▲ | 5.750 | 22.187 | * * * * * * | | 5632/C3J | Special | 4-Pin ¶ | 1.578 | 6.250 | | | 5633 | T-3 | Special Subm-FL* | 0.400 | , | 1.660 | | 5634 | T-3 | Special Subm-FL* | 0.400 | , | 1.660 | | 5642 | T-3 | Special Subm-FL* | 0.400 | | 2.655 | | 5645 | T-2 | Special Subm-FL* | 0.310 | | 1.300 | | 5646 | T-2 | Special Subm-FL* | 0.310 | | 1.300 | | 5647 | T-1 | Special Subm-FL* | 0.215 | | 1.250 | | 5663 | T-5½ | 7-Pin Miniature | 0.750 | 1.500 | 1.250 | | 5665/C16J | Special | Flexible Leads | 2.688 | 11.250 | 0.042 | | 5675 | Special | Pencil Type Inline Subm-FL* | 0.817
0.400 x 0.300 | 2.280 | 2.043 | | 5676
5677 | T-2 x 3
T-2 x 3 | Inline Subm-FL* | 0.400 x 0.300 | | 1.500 | | 5678 | T-2 x 3 | Inline Subm-FL* | 0.400 x 0.300 | | 1.515 | | 5704 | T-2 | Inline Subm-FL* | 0.315 | | 1.500 | | 5720 | Special | 4-Pin ¶ | 3.000 | 7.500 | | | 5728 | Special | 4-Pin ¶ | 3.000 | 7.000 | | | 5767 | Special | Rocket Type | 1.005 | 2.375 | | | 5785 | T-2 x 3 | Inline Subm-FL* | 0.400 x 0.300 | | 1.500 | | GL5822A | Special | Metal ▲ | 4.250 | 14.000 | | | 5825 | ST-16 | 4-Pin ¶ | 2.063 | 5.844 | 5.219 | | GL5830 | Special | 4-Pin, Anode Cap C1-8 | 5.062 | 17.687 | 16.468 | | 5838 | T-9 | Octal | 1.313 | 3.375 | 2.875 | | 5839 | T-9 | Octal | 1.313 | 3.375 | 2.875 | | 5851 | T-3
T-9 | Button Subm-FL* | 0.400 | 3.375 | 1.600
2.875 | | 5852
5855 | Special | Octal Lug Base | 1.313
3.625 | 11.328 | | | 5876 | Special | Pencil Type | 0.817 | 2.252 | 2.012 | | 5876-A | Special | Pencil Type | 0.817 | 2.252 | 2.012 | | 5881 | T-11 | Octal | 1,438 | 3.938 | 2.906 | | 5890 | T-11 | Duodecal † | 1.500 | 6.750 | 6.250 | | 5894B | Special | 7-Pin ⊕ | 1.937 | 3.650 | 4.687 | | 5930 | T-12 | 4-Pin | 1.700 | 4.500 | 3.875 | | 5931 | T-12 | Octal | 1.700 | 4.906 | 4.344 | | 5932 | T-12 | Octal | 1.700 | 3.844 | 3.281 | | 5995 | T-3 | Inline Subm-FL* | 0.400 | 2.100 | 1.750 | | 6000 | T-11 | Octal | 1.438 | 3.468 | 2.906 | | 6004 | T-9 | Octal # | 1.313
1.625 | 4.063
6.250 | | | 6014/C1K | Special
Special | 4-Pin ¶ 4-Pin | 1.5653 | 4.250 | | | 6051 | T-2 x 3 | Inline Subm-FL* | 0.385 x 0.285 | 1,500 | | | 6094 | T-61/2 | 9-Pin Miniature | 0.875 | 3.000 | 2.750 | | 6098 | T-11 | Octal | 1.438 | 3,469 | 2.906 | | 6106 | T-9 | Octal | 1,320 | 3.375 | 2.880 | | 6146 | T-12 | Octal † | 1.719 | 3.813 | 3.250 | | 6146-A | T-12 | Octal † | 1.719 | 3.813 | 3.250 | | 6146-B | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 6159-A | T-12 | Octal † | 1.179 | 3.813 | 3.250 | | 6159-B | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 6173 | Special | Pencil Type | 0.100 | 1.987 | 1.050 | | 6184 | T-3 | Button Subm-FL* | 0.400 | | 1.250 | | 6195
6215 | T-3
T-9 | Button Subm-FL* Octal † | 0.400
1.281 | 4.063 | 1.600
3.500 | | GL6228 | Special | Metal ▲ | 9.000 | 42.000 | 3.300 | | Q170550 | Special | inicial A | 3.000 | 72.000 | ***** | ## T-X TABLE — Physical Characteristics of Types | Tube | | | Max Di | mensions in In | ches | |--------------|------------|---------------------------------------|---------------|--------------------|------------------| | Туре | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | GL6251 | Special | Metal & Ceramic | 5.156 | 13.250 | | | GL6283 | Special | Metal & Ceramic | 2.313 | 4.343 | | | 6287 | T-6½ | 9-Pin Miniature | 0.875 | 2.470 | | | 6299 | Special | Ceramic & Metal | 0.497 | 1.040 | | | 6320 | T-3
T-3 | Button Subm-FL* | 0.400 | | 1.125 | | 6321
6325 | T-9 | Button Subm-FL* Octal | 0.400 | | 1,125 | | 6327 | T-12 | Octal † | 1,281 | 4.500 | 2.375
3.938 | | 6336 | ST-16 | Octal | 2.070 | 4.750 | 4,175 | | 6336-A | ST-16 | Octal | 2.070 | 4,750 | 4.175 | | 6355 | T-51/2 | 7-Pin Miniature | 0.750 | 1.531 | 1.250 | | 6384 | T-11 | Octal | 1.438 | 3.469 | 2.938 | | 6394 | T-12 | 8-Pin Octal | 2.070 | 4.750 | 4.175 | | 6394-A | T-12 | 8-Pin Octal | 2.070 | 4.750 | 4.175 | | 6397 | T-3 | Button Subm-FL* | 0.400 | 2.100 | 1.600 | | 6418 | T-1½ x 2 | Inline Subm-FL* | 0.290 x 0.235 | | 1.250 | | 6419 | T-1½ x 2 | Inline Subm-FL* | 0.290 x 0.235 | | 1.000 | | 6442 | Special | Ceramic & Metal | 0.818 | 2.610 | | | GL6512 | | | 4.125 | 17.000 | | | GL6513 | Special | Metal 🛦 | 17.937 | 5.750 | | | GL6515 | Special | Metal ▲ | 9.125 | 26.687 | | | 6519 | T-1½ x 2 | Inline Subm-FL* | 0.290 x 0.220 | | 1.250 | | 6528 | ST-16 | Octal | 2.070 | 4.750 | 4.175 | | 6550 | ST-16 | Octal | 2.063 | 4.750 | 4.188 | | 6690 | T-3 | Button Subm-FL* | 0.400 | | 1.000 | | 6754 | T-61/2 | 9-Pin Miniature | 0.875 | 2.750 | 2.500 | | 6763 | T-51/2 | 7-Pin Miniature | 0.875 | 2.375 | 2.094 | | 6771 | Special | Ceramic & Metal | 0.818 | 2.610 | | | 6792 | T-12 | Octal † | 1.719 5.063 | | 4.531 | | 6807 | Special | 4-Pin ∥ | 2.625 | 9.000 | | | 6808 | Special | Flexible Leads | 2.625 | 8.313 | | | 6809 | Special | Lug Base | 2.625 | 9.000 | | | 6842 | T-51/2 | 7-Pin Miniature § | 0.875 | 2.250 | 2.000 | | 6848 | Special | Metal & Ceramic | 4.000 | 9.625 | | | 6856/740 | Special | 4-Pin ¶ | 2.063 | 9.500 | | | 6858/760 | Special | 4-Pin ¶ | 2.563 | 9,500 | | | 6859/760P | Special | Flexible Leads ¶ | 2,563 | 8.750 | | | 6883 | T-12 | Octal † | 1.719 | 3.813 | 3.250 | | 6883-B | T-12 | Octal † | 1,656 | 3.813 | 3.250 | | 6889 | T-11 | Octal † | 1.438 | 3.906 | 3.375 | | 6897 | Special | Ceramic & Metal | 1.266 | 2.750 | | | 6942 | Special | Metal & Ceramic | 3,260 | 8.500 | | | 6999 | T-2 x 3 | Inline Subm-FL* | 0.385 x 0.285 | 1.750 | | | 7027 | T-12 | Octal | 1.630 | 4.620 | 4.060 | | 7027-A | T-12 | Octal | 1.630 | 4.620 | 4.060 | | 7038 | T-8 | 8-Pin | 1.135 | 6,500 | | | 7038V | T-8 | 8-Pin | 1.135 | 6.500 | | | 7105 | T-12 | Octal | 1.719 | 4.063 | 3.563 | | GL7151 | Special | Metal | 9.125 | 23.250 | , | | GL7171 | Special | Metal | 2.156 | 8.750 | | | 7211 | Special | Ceramic & Metal | 1.264 | 2.701 | | | 7212 | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 7216/C3JL | Special | Lug Type Rectifier,
Anode Cap C1-5 | 2.187 | 6.750 | | | 7234 | T-6 ½ | 9-Pin Miniature § | 0.875 | 2.750 | 2.375 | | 7235 | T-61/2 | 9-Pin Miniature § | 0.875 | 2.750 | 2,375 | | 7262A | T-8 | 8-Pin | 1.135 | 5.250 | | | 7263A | T-8 | 8-Pin | 1.135 | 5.250 | | | 7266 | Special | Ceramic & Metal | 0.335 | 0.327 | | | 7289 | Special | Ceramic & Metal | 1,264 | 2.701 | | | 7296 | Special | Ceramic & Metal | 0.510 | 0.890 | | | 7310 | T-12 | 4-Pin † | 1.570 | 5.250 | | ## Not Conforming to Standard Outline Drawings | | | | Max D | imensions in I | nches | |----------------------|-----------------|-------------------------------|-----------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | 7311 | Special | Metal Miniature | 0.875 | 2.188 | 2.094 | | 7312 | Special | Metal Miniature | 0.875 | 2.188 | 2.094 | | 7313 | Special | Metal Miniature | 0.875 | 2.938 | 2.688 | | 7314 | Special | Metal Miniature | 0.875 | 2.188 | 2,094 | | 7357 | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 7358 | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 7391 | Special | Ceramic & Metal | 0.497 | 1.040 | | | 7399 | Special | Metal & Ceramic | 2.291 | 4.281 | | | 7403 | T-12 | Octal § | 1.719 | 4.281 | 3.750 | | 7430 | Special | Glass | 0.875 x 1.188 x | | ive of leads | | 7462 | Special | Ceramic & Metal | 0.330 | 0.490 | | | 7518/710L | Special | Lug Base ¶ | 1.625 | 6.625 | | | 7588 | Special | Ceramic & Metal | 0.565 | 0.890 | | | 7623 | Special | Glass ¶ | 2.047 | 5.157 | 4.567 | | 7624 | Special | Glass ¶ | 2.047 | 5.157 | 4.567 | | 7625 | Special | Ceramic & Metal | 0.330 | 0.490 | | | 7644 | Special | Ceramic & Metal | 0.497 | 1.040 | | | GL7669/
GL7669-PC | Special | Metal ▲ | 3.250 | 9.875 | | | GL7671/
GL7671-PC | Special | Metal ▲ | 4.625 | 11.875 | | | GL7673/
GL7673-PC | Special | Metal ▲ | 7.125 | | | | GL7681/
GL7681-PC | Special | Metal ▲ | 4.125 | 17.500 | | | 7695 | T-9 | 9-Pin | 1.188 | 3.170 | 2.920 | | GL7703 | Special | Metal-Threaded Anode Terminal | 2.250 | 7.625 | | | 7720 | Special | Ceramic & Metal | 0.330 | 0.490 | | | 7725 | Special Special | 4-Pin ¶ | 1.625 | 6.250 | | | 7726 | Special | Lug Base ¶ | 1.625 | 6.625 | | | 7735A | T-8 | 8-Pin | 1,135 | 6.500 | | | 7735B | T-8 | 8-Pin | 1.135 | 6.500 | | | 7735BX | T-8 | 8-Pin | 1.135 | 6.500 | | | 7751 | Special | Octal | 1.300 | 4.140 | 3.380 | | 7754 | T-9 | 9-Pin | 1.188 | 3.170 | 2.920 | | 7757 | T-6 ½ | 9-Pin Miniature § | 0.875 | 3.000 | 2.750 | | 7768 | Special | Ceramic & Metal | 0.758 | 0.959 | | | 7784 | Special | Ceramic & Metal | 0.497 | 1.040 | | | 7815 | Special | Ceramic & Metal | 1.195 | 2.701 | | | 7815R | Special | Ceramic & Metal | 1.264 | 2.701 | | | 7841 | Special | Ceramic & Metal | 0.335 | 0.327 | | | 7851 | T-5½ | 7-Pin Miniature § | 0.750 | 1.880 | 1.600 | | 7855 | Special | Ceramic & Metal | 1.264 | 2.386 | | | 7894 |
Special | Special Subm-FL* | 0.500 | 2.500 | | | 7910 | Special | Ceramic & Metal | 0.484 | 0.677 | | | 7911 | Special | Ceramic & Metal | 0.758 | 0.959 | | | Z7911 | T-8 | 8-Pin | 1.135 | 6.500 | | | Z7911
Z7912 | T-8 | 8-Pin | 1.135 | 5.250 | | | 7913 | Special | Ceramic & Metal | 0.758 | 0.959 | | | 7913
Z7919 | | 8-Pin | 1.135 | 6.500 | | | | T-8 | | | | | | Z7927B | T-8 | 7-Pin | 0.767 | 3.650 | | | Z7927HRB | T-8 | 7-Pin | 0.767 | | | | Z7929R,B,G | T-8 | 8-Pin | 1.135 | 6.350 | | | Z7975HRB | T-8 | 8-Pin | 1.135 | 6.500 | | | Z7975B | T-8 | 8-Pin | 1.135 | 6.500 | 1.050 | | 7979 | T-2 | Special Subm-FL* | 0.315 | <u> </u> | 1.250 | | 7985 | Special | Metal & Ceramic | 2.766 | 8.562 | | | Z7996B | T-8 | Special | 1.135 | 5,250 | | | Z7996HRB
GL7998/ | T-8 | Special | 1.135 | 5,250 | | | GL7998-PC | Special | Metal▲ | 5.312 | 26.500 | | | 8008 | Special | 4-Pin ¶ | 2.313 | 8.750 | 8.000 | | 8032 | T-12 | Octal † | 1.719 | 3.813 | 3.250 | ## T-X TABLE — Physical Characteristics of Types | | | | Max I | imensions in Ir | ches | |----------------|--------------------|------------------------------------|----------------|-------------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | 8032-A | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 8042 | T-12 | Octal † | 1.750 | 3.844 | 3.281 | | 8100 | Special | Glass, 2-Lead | 0.500 | 0.550
2.362 | | | 8108 | Special | Glass & Metal Dual Tetrode ⊕ | 1.740 | 4.094 | 3.000 | | 8116
8116A | Special
Special | Twin Tetrode & | 1.740 | 4.031 | 2.938 | | 8117 | Special | Dual Tetrode ⊕ | 1.756 | 4.031 | 2.938 | | 8117A | Special | Twin Tetrode ⊕ | 1.756 | 4.031 | 2.938 | | 8118 | Special | Double Tetrode ⊕ | 1.811 | 3.375 | 2.894 | | 8134 | T-8 | 8-Pin | 1.135 | 6.350 | | | 8134V | T-8 | 8-Pin | 1.135 | 6.350 | | | 8142 | Special | Glass, 2-Lead | 0.500 | 0.550 | | | 8143 | Special | Glass, 2-Lead | 0.500 | 0.550 | | | 8156 | T-9 | Compactron | 1.188 | 2.313 | 1.938 | | GL8205 | Special | Metal ▲ | 9.125 | 23.000 | | | 8210 | T-3 | Special Subm-FL* | 0.400 | | 1.795 | | 8217 | Special | Glass, 2-Lead | 0.875 | 1.500 | | | 8223 | T-61/2 | 9-Pin Miniature | 0.875 | 2.430 | 2.154 | | 8228 | T-2 | 2-Lead Subminiature | 0.240 | 1.200 | | | 8233 | T-9 | Magnoval (E9-23) Base | 1.094 | 3.000 | 2.625 | | 8236 | T-12 | Octal † | 1.719 | 4.750 | 4.200 | | 8254 | T-3 | 8-Pin Subminiature
(E8-10 base) | 0,400 | | 1.730 | | 8255 | T-61/2 | 9-Pin Miniature | 0.875 | 1.970 | 1.730 | | 8278 | T-9 | Novar | 1.188 | 3.380 | 3.000 | | 8298 | T-12 | Octal † | 1.719 | 3.813 | 3.250 | | 8298-A | T-12 | Octal † | 1.656 | 3.813 | 2.350 | | 8318 | Special | Glass, 2-Lead | 0.250 | | 0.550 | | 8318-A | Special | Glass, 2-Lead | 0.260 | | 0.545 | | 8345 | Special | Glass, 2-Lead | 0.500 | 0.550 | | | 8346 | Special | Glass, 2-Lead | 0.500 | 0.550 | | | 8347 | Special | Glass, 2-Lead | 0.500 | 0.550 | | | 8403 | Special | Ceramic & Metal | 1.264 | 2.386 | | | 8408 | T-6½ | 9-Pin Miniature | 0.875 | 2.875 | 2.594 | | 8412 | Special | Ceramic & Metal | 0.921 | 2.413
1.905
4.500 | | | 8413 | Special | Ceramic & Metal | 0.553 | | 9.075 | | 8417 | T-12 | Octal | 1.563 | 3.250 | 3.875
2.813 | | 8458 | T-9 | Novar | 1.188
0.250 | | 0.550 | | 8474 | Special | Glass, 2-Lead
Glass, 2-Lead | 0.250 | | 0.550 | | 8475
8475-A | Special
Special | Glass, 2-Lead
Glass, 2-Lead | 0.260 | | 0.545 | | 8476 | Special | Glass, 2-Lead | 0.250 | | 0.550 | | 8477 | Special | Glass, 2-Lead | 0.250 | | 0.550 | | 8477-A | Special | Glass, 2-Lead | 0.260 | | 0.545 | | 8484H | T-8 | 8-Pin | 1.135 | 6.500 | | | 8500 | Special | Metal & Ceramic | 2.323 | 3.453 | | | 8506 | Special | Ceramic & Metal | 0.756 | 0.882 | | | 8507A | T-8 | 8-Pin | 1.135 | 6.500 | | | 8513 | Special | Metal & Ceramic | 6.031 | 9.625 | | | 8524 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8525 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8526 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8527 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8528 | Special | Metal Shell | 0.434 | 1.436 | 1.221 | | 8529 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8530 | Special | Metal Shell | 0.434 | 1.082 | 0.867 | | 8533 | Special | Metal & Ceramic | 1.195 | 2.701 | | | 8534 | Special | Metal & Ceramic | 0.950 | 1.305 | | | 8535 | Special | Metal & Ceramic | 1.265 | 2.040 | | | 8536 | Special | Metal & Ceramic | 0.950 | 1.305 | | | 8537 | Special | Metal & Ceramic | 1.265 | 1.565 | | | 8538 | Special | Metal & Ceramic | 0.950 | 1.159 | | ## Not Conforming to Standard Outline Drawings | | | | Max Di | mensions in Ir | ches | |------------------------|----------|--------------------------|----------------|--------------------|------------------| | Tube
Type | Envelope | Style | Diameter | Over-all
Length | Seated
Height | | 8539 | Special | Metal & Ceramic | 1.265 | 1.794 | | | 8541A | T-8 | 8-Pin | 1.135 | 6.500 | | | 8541X | T-8 | 8-Pin | 1.135 | 6.500 | | | 8552 | T-12 | Octal † | 1.656 | 3.813 | 3.250 | | 8572 | T-8 | 8-Pin | 1.135 | 6.500 | | | 8572V | T-8 | 8-Pin | 1.135 | 6.500 | | | 8573A | T-8 | 8-Pin | 1.135 | 5.250 | | | 8573X | T-8 | 8-Pin | 1.135 | 5.250 | | | 8582 | Special | Glass, 2-Lead | 0.250 | | 0.550 | | 8582-A | Special | Glass, 2-Lead | 0.260 | , | 0.545 | | 8595 | T-6½ | 9-Pin Miniature | 0.875 | 2.625 | 2.375 | | 8604 | T-8 | 8-Pin | 1.135 | 6.500 | | | 8632 | T-9 | 8-Pin Octal † | 1.187 | 4.000 | 3.500 | | 8639 | Special | 8-Pin Octal ⊕ | 1.811 | 5.090 | 4.560 | | 8643 | Special | 7-Pin Septar⊕ | 1.785 | 4.031 | 3.531 | | 8727 | Special | Pencil Type | 0.557 | 1.485 | | | 8745 | Special | Ceramic & Metal | 1.264 | 2.701 | | | 8751 | Special | Metal & Ceramic | 0.758 | 1.054 | | | 8755 | Special | Metal & Ceramic | 0.830 | 1.470 | | | 8755A | Special | Metal & Ceramic | 0.785 | 1.370 | | | 8760 | Special | Glass, 2-Lead | 0.500 | , | 0.550 | | 8797 | T-5½ | Miniature § | 0.750 | 2.750 | 2,500 | | 8808 | Special | Nuvistor | 0.435 | 0.985 | 0.780 | | 8847 | Special | Metal & Ceramic | 0.785 | 1.370 | | | 8847A | Special | Metal & Ceramic | 0.785 | 1.370 | | | 8859 | Special | Ceramic & Metal | 0.520 | 1.920 | | | 8866 | Special | Metal & Ceramic | 1.760 | 3.125 | | | 8892 | Special | Metal & Ceramic | 0.758 | 1.099 | | | 8893 | Special | Metal & Ceramic | 0.758 | 0.974 | | | 8906 | Special | Metal & Ceramic | 1.195 | 1.701 | | | 8907 | Special | Metal & Ceramic | 1.264 | 1.701 | | | 8917 | Special | Metal & Ceramic | 1.988 | 3.489 | | | GE12661 | Special | Metal & Ceramic | 0.483 | 0.686 | | | GE13971 | Special | Metal & Ceramic | 0.758 | 0.959 | | | GE14501 | Special | Metal & Ceramic | 0.483 | 0.617 | | | GE14811 | Special | Metal & Ceramic | 0.758 | 0.959 | | | GE15371 | Special | Metal & Ceramic | 0.608 | 1.009 | | | GE16231 | Special | Metal & Ceramic | 0.758 | 0.959 | ***** | | GE16841 | Special | Metal & Ceramic | 0.484 | 0.677 | | | GE17241 | Special | Metal & Ceramic | 0.800 | 2.025 | | | GE17701 | Special | Metal & Ceramic | 0.758 | 1.054 | | | GE17701
GE18651 | Special | Metal & Ceramic | 0.753 | 1.084 | | | GL37207 | Special | Metal & Ceramic Metal ▲ | 5.750 | 20.000 | | | GL37207
GL37248 | Special | Metal ▲ | 2,250 | 7.625 | | | GL37250/
GL37250-PC | Special | Metal ▲ | 2.750 | 13,000 | | | GL37251/
GL37251-PC | Special | Metal ▲ | 2.750 | 13.000 | | | GL37252/
GL37252-PC | Special | Metal ▲ | 4.250 | 14.250 | | | GL37253/
GL37253-PC | Special | Metal ▲ | 4.625 | 14.250 | | | GL37254/
GL37254-PC | Special | Metal ▲ | 5.625 | 19.500 | | | GL37255/ | Cnastat | Motel A | E 60E | 10 500 | | | GL37255-PC | Special | Metal A | 5.625 | 19.500 | | | GL51025 | Special | Metal & Ceramic | 1.230 | 2.338 | | | GL51038 | Special | Metal & Ceramic | 2,109
4,096 | 3.338 | | | GL51064 | Special | Metal & Ceramic | | 7.500 | | | GL51065 | Special | Metal & Ceramic | 3.109 | 3.198 | | ### REED SWITCH CONDENSED DATA | | | | Phy | sical C | haracteri | istics | | | | EI | ectrical Par | ameters | | | | |-------------------------|-------------------|---------------------------|-------------------------|----------------------------|------------------|---------------------|---|---|---|---------------------------------------|---|--|----------------------------------|-------------------------|-----------------------| | | _ | Di | imensio
Inches | ns | Con | structi | on | | Initial | Charact | eristics | 1 | Com | tact Rat | ings | | Basic Type No.
(New) | Previous Type No. | Glass Diameter
Maximum | Glass Length
Maximum | Over-All Length
Nominal | Contact Material | Contact Arrangement | Resonant Frequency
of Single Reed Hz - Min | Full Range
Available
Ampere Turns | Normally Stocked
in Ranges of
(2) | Contact Resistance
Milliohms — Max | Breakdown Voitages
DC Voitage Min
(3) | Insulation Resistance
Megohms — Min | Resistive Load
Maximum
(4) | Current
Amperes, Max | Voltage,
Volts Max | | SUBM | INIATU | RE | | | - | | | | | • | 4 | | | | | | DR300 | DR159 | 0.090 | ├ | 2.000 | RH | Form
A
(5) | 3000 | 10-60 | 10A.T. | 250 | 100VDC | 104 | 5VA | 0.25 | 56 | | DR301 | DR157 | 0.090 | 0.750 | 2.250 | RH
AU-AG | <u> </u> | 2000 | 10-60 | 10A.T. | 150 | 200VDC | 104 | 10VA | 0.50 | 100 | | DR302 | DR162 | 0.108 | 0.670 | 2.010 | Alloy | ,, | 2000 | 10-60 | 10A.T. | 100 | 100VDC | 104 | 5VA | 0.25 | 50 | | DR303 | DR164 | 0.070 | 0.500 | 2.010 | RH | <u>"</u> | 3000 | 10-50 | 10A.T. | 200 | 100VDC | 104 | 5VA | 0.20 | 50 | | MINIAT | URE | · | · | , | | , | | | | · | | | | , | | | DR401 | DR145 | 0.108 | 0.840 | 2.530 | RH | Form
A
(5) | 2000 | 15-55 | 10A.T. | 150 | 300VDC | 104 | 10VA | 0.50 | 250 | | NTERN |
EDIATE | | | | | | | | | | | | | | | | DR540 | DR163 | 0.173 | 1.200 | 1.750 | AU-AG
Alloy | Form
A
(5) | 1500 | 25-70 | 10A.T. | 100 | 600VDC | 104 | 10VA | 0.50 | 25 | | DP541 | DRP160 | 0.173 | 1.200 | 1.750 | RH | " | 1500 | 25-70 | 10A.T. | 150 | 600VDC | 104 | 15VA | 1.00 | 25 | | INTERN | MEDIATE | FOR | M C | _ | | | | | | | | | _ | | | | DR570 | DR158 | 0.215 | 1.600 | 2.935 | RH | Form
C
(6) | 1200 | 40-130 | 30A.T. | 100 | 250VDC | 104 | 10VA | 0.50 | 250 | | BTAND/ | ARD 2" | | | | | | | | | | | | | | | | DR600 | DR101 | 0.215 | 2.100 | 3.200 | DIF.
AU | Form
A
(5) | 800 | 20-130 | 20A.T. | 50 | 500VDC | 5×10 ⁵ | 15VA | 1.00 | 250 | | DR601 | DR113 | 0.215 | 2.100 | 3.200 | RH | " | 750 | 30-130 | 20A.T. | 50 | 500VDC | 5×10 ⁵ | 50VA | 3.00 | 250 | | DR602 | DR146 | 0.215 | 2.100 | 3.200 | RH | " | 750 | 40-100 | 20A.T. | 50 | 500VDC | 5×10 ⁵ | 50VA | 3.00 | 250 | | HIGH V | OLTAGE | 2″ | | | | | | | | | | | | | | | DR680 | DRV120 | 0.215 | 2.100 | 3.230 | AG-W
Alloy | Form
A
(5) | 750 | 100-250 | 30A.T. | 50 | 7000VDC | 5×10⁵ | 50VA | 3.00 | 500 | | DR681 | DRV161 | 0.215 | 2.100 | 3.230 | AG-W
Alloy | Form
A
(5) | 750 | 150-300 | 30A.T. | 50 | 10000VDC | -5×10⁵ | 50VA | 3.00 | 7500 | ⁽¹⁾ Except for types DR540, DR541, and DR570, leads may be trimmed to a length shorter than that shown, if required. Intermediate and 2" types shown have tin-plated leads. All others shown have gold-plated leads. - (3) Will vary, depending on sensitivity range chosen (pull-in ampere turns). - (4) Some degradation or improvement in performance may be expected as operating voltages and currents are varied. - (5) Form A, single-pole, single-throw, normally open switch. - (6) Form C, single-pole, double-throw switch in which the reed is maintained against the normally-closed contact by mechanical bias. ⁽²⁾ Types DR300, DR301, DR302 and DR401 are tested in a coil of 10,000 turns of No. 48 wire on a 0.75" long bobbin of 0.17" diameter. Types DR540 and DR541 are tested in a coil of 10,000 turns of No. 41 wire on a 1.00" long bobbin of 0.30" diameter. Types DR570, DR600, DR601 and DR602 are tested in a coil of 10,000 turns of No. 39 wire on a 2.0" long bobbin of 0.25" diameter. Types DR680 and DR681 are tested on a coil of 5700 turns of No. 36 wire on a 2.0" long bobbin having an oval cross-section of approximately 0.5" x 0.28". ^{**} A close-differential design where drop-out is typically 75%-85% of pull-in. ### REED SWITCH CONDENSED DATA (Cont'd) #### GE REED SWITCHES SHOWN ARE: - (A) DR-681, 2 in. High Voltage - (B) DR-600, 2 in. Standard; Diffused Gold Contacts (C) DR-601, 2 in. Standard; Rhodium Contacts - (D) DR-570, Intermediate Form C (SPDT) - (E) DR-540, Intermediate - (F) DR-401, Miniature - (G) DR-301, Sub-miniature - (H) DR-300, Sub-miniature - (I) DR-303, Sub-miniature #### DESCRIPTION The heart of the GE reed switch is a set (two) of flat, metal reeds which are plated with a selected precious metal. These reeds are cantilever supported so that their free ends overlap and are separated by a small gap. The reeds are contained in a glass capsule which supports and holds the reeds in alignment. The capsule is hermetically sealed with dry gas; since the contacts are totally encapsulated, GE reed switches are ideal for environments containing explosive or corrosive gases or liquids. #### **OPERATION** GE Reed Switches can be actuated by moving a permanent magnet close to the switch or by energizing an electromagnetic coil located near the switch. With either method, the switch actuates when the magnet flux is strong enough to overcome the tension over the blade containing the normally-open "SPST" contacts. #### **APPLICATIONS** Reed Switches can be used in counters, instruments, key switches, limit switches, position indicators, flow meters, reed relays, toys, appliances, automobiles, cross-point switch systems, alarm devices, or any application where a small, simple, high-speed switching device is required. #### **FEATURES** - Rugged The compact package is built to withstand mechanical shock, vibration, and other adverse environmental conditions. - Fast Operation Quicker to respond than "heavier" conventional relays, GE reed switches are ideal for applications which require high-speed switching operation. - Wide Selection Sizes available range from sub-miniature to standard which are designed to switch dry circuit to 50 watts; breakdown voltages range from 100 volts to 15KV; also available as SPST; SPDT (one form only). - ▶ Long, Reliable Life The basic GE switch design plus customized plating of reed surfaces for your specification application — assures dependability, millions of trouble-free operations. - High Quality Assured GE provides 100% in-process quality control to assure that only switches built and designed to the customer's specifications leave the line. ## REED SWITCH CONDENSED DATA (Cont'd) #### **OUTLINE DRAWINGS** ### **Entertainment Semiconductor Components** Meet your repair needs quickly and economically with . . . #### **GE UNIVERSAL REPLACEMENT TRANSISTORS** APPLICATION: General Electric Universal Replacement Transistors are specifically designed as general replacements for most types of transistors used in radios, TV and other entertainment applications where normal voltages exist. They are not recommended for use in critical high voltage ons. If the application is such that characteristic curves or design ratings voltages exist. They are not recommended for use in critical high voltage applications. If the application is such that characteristic curves or design ratings are needed on the unit, it is recommended that the exact JEDEC replacement type be used. TECHNICAL INFORMATION: Remembering a few general rules in the care and handling of solid-state components can very often mean the difference between success and failure in completing a repair job. 1) VOLTAGES: Observe voltage specifications. Watch for stray transient voltages which might come in on the power line, or which could be induced from adjacent circuits such as an automobile ignition system. (Use a thyrector or zener diode to protect semiconductors from these stray transients.) Check power-line voltage to make sure it is neither too high (above 120 volts) nor too low (below 110 volts). No semiconductor should ever be connected or disconnected from a circuit with the power on. High transient currents may cause permanent damage to the semiconductor. - 2) CURRENT: Do not overload semiconductors, even momentarily—an "arc-over" destroys them immediately. Double check circuits, polarities, component sizes, and wiring BEFORE closing the switch. - 3) HEAT SINKS: Carefully observe the recommended heat sinks for stud-mounted devices. If heat can't get out of a semiconductor, damage is likely to result. Be sure air can circulate around lead mounted devices. The stud end of a stud-mounted unit normally forms part of the electrical circuitry. Therefore, the heat sink to which the stud is mounted is electrically "live." If a "live" heat sink presents any safety hazard or might conceivably create a short circuit, the unit should be electrically insulated from the heat sink by mica and teflon. washers, or the best sink itself must be electrically insulated from the chassis. Lead-mounted devices may be secured by soldering their leads to a terminal strip. This fastening point of the lead should be no less than $\frac{1}{2}$ inch away from the body of the device. Avoid bending the lead too near the component body. Do not try to bend the top terminals of stud-mounted devices. 4) SOLDERING: Use a small, hot soldering iron and high quality resincore solder. If a wire is tarnished or enameled, clean it with fine emery paper before soldering. Wrap the clean wire around the other wire or terminal once to hold it in place, then apply the tip of the iron and the solder to the joint together. Solder as quickly as possible, then blow on the joint to cool it quickly. If possible, with lead mounted devices, use pliers to hold the lead between the body and the joint in order to avoid overheating the device. This is particularly important when soldering germanium devices. Do not use acid flux. - 5) MODIFICATIONS: Compare the base or lead arrangement of the GE Universal Replacement Transistor (see diagrams below) with the base or lead arrangement of the unit being replaced. If these are different it will be necessary to "bend and trim" to match up to the equipment. - 6) CIRCUIT CHECKS: Anytime replacement of a transistor is made in equipment (even if it is a so called "exact" replacement), it is always good practice to check out the alignment of the associated tuned circuits to insure proper operation and achieve the required gain without loss of stability. If replacements are made in high power stages, the transistor bias should always be checked and adjusted in order to protect the replacement transistor against excessive dissipation and minimize distortion. - 7) GERMANIUM OR SILICON? As an aid to determining whether you are working with a germanium or a silicon unit, a good indication is the bias between base and emitter. Germanium normally has less than .5 volts bias, and silicon normally has .5 volts or more bias between base and emitter. | 88 | , | | Drawing | Outline
Drawing
(on Pages | Configuration (on Fig. 6 | Contract Con | Contract 100 Fig. 6 TO-6 TO-6 TO-6 TO-6 TO-6 TO-6 TO-6 TO | Co. 7 Sept. 6 To.5 To.5 To.3 Fig. 8 To.3 Co. 7 Sept. 6 To.5 To.5 To.3 To.3 Co. 7 Sept. 6 To.3 Co. 7 Sept. Se | Continue Doubling Continue Con | Fig. 6 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 | Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 70-38 Fig. 1 Fig. 1 Ov-5 Fig. 1 | Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 6 Fig. 70-5 F | |---|------------------------|-----------------|---------|---
--------------------------|--|---|--|--|---|--|--| | | Topics . | Current
Gain | | | 6 MHz Min. 70 T | 8 8 | 2 8 8 | 2 8 8 8 | 5 8 8 8 6 | 55 88 88 88 88 01T | 5 8 8 8 6 5 8 | 5 8 8 8 6 5 5 | | Emitter (Band to Width | | | (BVEBO) | 20 6 MHz N | - | 5 3 MHz | \$ | \$ | \$ | 1 2 2 | \$ | \$ | | Collector Em Collector Em Collector Em Collector Emitter Be Collector (BVCEO) | | | | 12 (CER)
Min. | | 8 | | | | a a | | | | S S | | | (BVCBO) | 8 | | 8 | | | | | | | | Max.
Collector
Current | | | | 200 MA | | 200 MA | 200 MA
3 A | | | | | | | Power
Dissipation
(Watts) | Dissipation
(Watts) | | | 150 MW | | AW OO | 25* | 25 * 50 * | 25 * 50 * | 20 * 50 * 150 MW | 50*
50*
65 MW | 50*
50*
150 MW
65 MW | | Applications | Applications | | | Mixer/Oscillator Converter, RF & IF
Amplifier (AM Radio) | AF Ampirier | | AF Power Amplifier | AF Power Amplitier
AF High Power Amplitier | AF Power Amplitier AF High Power Amplitier Mixer/Oscillator Converter, RF & IF Amplitier (AM Redio) | AF Power Amplifier AF High Power Amplifier Mixer/Occillator Converter, RF & IF Amplifier (AM Redio) Mixer/Occillator Converter, RF Amplifier (AM Redio) | AF Power Amplitier AF High Power Amplitier Mixer/Oscillator Converter, RF & IF Amplitier (AM Redio) RF Amplitier (AM Redio) IF Amplitier (AM Redio) | AF Power Amplitier AF High Power Amplitier Mixer/Occillator Converter, Mixer/Occillator Converter, RF Amplitier (AM Redio) IF
Amplitier (AM Redio) | | - | | Description | | PNP Bermanium | PNP
Germanium / | | PNP | + | | | | | | | | ₹ Ş | | GE-1 | GE-2 | | GE-3 | GE-3 | GE-3
GE-5 | GE-3
GE-5
GE-6 | GE-3
GE-5
GE-6
GE-7 | GE-3
GE-5
GE-6
GE-8 | | GE-10 | NPN
Silicon | Mixer/Oscillator Converter, RF & IF
Amplifier (AM Redio), AF Amplifier | 200 MW | 100 MA | 22 | 25 | ĸ | 200 MHz Typ. | ž | Fig. 12
To-98 | ш | |---------|------------------|---|--------|--------|-----|-----|-----------|--------------|-----|------------------|---| | GE-11 | NPN
Silicon | Mixer/Oscillator Converter, RF & IF
Amplifier (FM Radio) VHF Tuner,
UHF Oscillator | 200 MW | 25 MA | 30 | 12 | ю | 700 MHz Min. | 8 | Fig. 12
TO-98 | w | | GE-12 | NPN
Silicon | AF Power Amplifier for 120V Line
Operated Stereo Phonographs,
Television, Etc. – High Voltage | 10* | 400 MA | 00Е | 300 | ĸ | 30 MHz Min. | 140 | Fig. 9 | υ | | GE-13MP | PNP
Germanium | Matched Pairs of GE-3, AF Power
Amplifier | 25* | 3 A | 99 | đ | 15 | 400 KHz Typ. | 8 | Fig. 5
TO:3 | ပ | | GE-14 | NPN
Silicon | AF Power Amplifier – High Power | 115* | 15 A | 100 | 8 | 7 | 800 KHz Typ. | 46 | Fig. 5
TO-3 | v | | GE-15MP | NPN
Silicon | Matched Pairs of GE-14 for AF
Power Amplifier | 115* | 15 A | 901 | 8 | , | 800 KHz Min. | 45 | Fig. 5
TO-3 | v | | | Base | Orawing
(On Page 391) | S | 8 | * I | U | I | I | 80 | ა | |--|-------------------|---------------------------------------|-------------------------------------|--|------------------------------------|---|---|--|--|--| | | Outline | Orawing
(On Paper
394-400) | Fig. 5
To-3 | Fig. 2
RO-97A | Fig. 6
T0-5 | Fig. 5
TO-3 | Fig. 7
TO-18 | Fig. 6
TO-5 | Fig. 3
RO-110 | Fig. 9
To-66 | | ORS | | Typical
Current
Gain | 8 | 8 | 86 | 40 | 100 | 65 | 50 | 126 | | TRANSIST | | (Band
Width
Prod.) | 500 MHz Min. | 250 MHz Min. | 50 MHz Min. | 800 KHz Min. | 300 MHz Min. | 200 MHz Min. | 200 MHz Min. | 50 MHz Min. | | ERSAL | 5 | Emitter
to
Base
(BVEBO) | 8 | ß | , | S | 9 | 9 | 4 | ω | | OR UNIV | Breskdown Voltage | Collector
to
Emitter
(BVCEO) | 2 | 8 | 8 | S | 40 | 80 | 26 | 94 | | HART F | ě | Collector
to
Bess
(BVCBO) | 8 | 09 | 120 | 95 | 75 | 09 | 25 | 9 | | DATA CH | 4 | Collector
Current
(IC) | 10 A | 100 MA | 500 MA | 4 A | 500 MA | 500 MA | 500 MA | 2 A | | NICAL I | | Power
Dissipation
(Watts) | *06 | 500 MW | 900 MW | *06 | 500 MW | 500 MW | 500 MW | 15* | | APPLICATION AND TECHNICAL DATA CHART FOR UNIVERSAL TRANSISTORS | | Applications | AF High Power Amplifiers, Switching | FM RF & Oscillator, TV and Other
Low Noise Circuits | AF Amplifier, Output or Oscillator | High Power AF Amplifier, Output
Oscillator, Medium Current | Medium AF Amplifier, RF & IF
Amplifier, Oscillator | AF Amplifier, RF & 1F Amplifier,
Oscillator | AF Amplifier, RF & IF Amplifier,
Oscillator (AM & FM) | AF Power Amplifier for use in class A and 8 AF Power Amplifiers, Communications, Hi-Fi | | | | Description | PNP
Germanium | NPN
Silicon | NPN
Silicon | NPN
Silicon | NPN
Silicon | PNP
Silicon | PNP
Silicon | NPN
Silleon | | | | Type | GE-16 | GE-17 | GE-18 | GE-19 | GE-20 | GE-21 | GE-22 | GE-23 | | | | | | | | | | | | 2 | | |-----------|----------------------|--|------------|---------|-----|------------------------------|-------------|------------------------------|------------|------------------------------------|--------------------------------| | GE-24MP | NPN
Silicon | Matched Pairs of GE-23 | 15* | 2 A | 89 | 04 | 80 | 50 MHz Min. | 125 | TO-86 | ပ | | GE-25 | PNP
Germanium | Horizontal and Vertical TV Sweep
Circuits & Other High Voltage, High
Current Amplifier Application | 56* | 10 A | 320 | 320 | 2 | 1 MHz Min. | 99 | Fig. 5
TO-3 | v | | GE-26 | PNP
Silicon | AF Power Amplifier – Stereo
Tape Players, Communications
and Hi-Fi | 20* | 2 A | 99 | ß | 7 | 10 MHz Mín. | 0 5 | Fig. 9
To-66 | v | | GE-27 | NPN
Silicon | Color/BW video output Amplifier,
High Voltage | * | 100 MA | 300 | 300 (CER) | LO. | BO MHz | 99 | Fig. 15
Plastic
Pak
GE-27 | _ | | GE-28 | NPN
Silicon | AF Power Amplifier | 12* | 3 & | | 60 (CES)
45 (CEO) | ō | 50 MHz | 8 | Fig. 16
Plastic
Pak
GE-28 | 7 | | GE-29 | PNP
Silicon | AF Power Ampirfier | 12*
2 | 3 A | | 60 (CES)
45 (CEO) | uo | 40 MHz | 80 | Fig. 16
Plastic
Pak
GE-29 | > | | EMITTER | BASE COLLECT | OR EMITTER | | 14 A ST | | BASE
COLLECTOR
EMITTER | 1 | COLLECTOR
BASE
EMITTER | ي
ق | 1 | EMITTER
COLLECTOR
- BASE | | į | ω. | BASE C COLLECTOR | SE
CTOR | I | | | | | | - | | | **Base ti | **Base tied to case. | ***Collector may be tied to case, | to case. | | | | *
* | *With heat sink | | | | | | | APPLICATION AND TECHNICAL DATA CHART FOR UNIVERSAL | NICAL I | DATA CI | HART F | OR UNIV | ERSAL | TRANSISTORS | ORS | | | |---------|------------------|--|--------------|------------|-----------|------------------------|---------|---------------------|---------|--|---------------| | | | | | | å | Breekdown Voltage | | | | o de la companya l | | | 302 | Description | Applications | Designation | Carrie | Coffector | Coffector | Emitter | į | Current | Drawing | Drawing | | ! | | | | (<u>)</u> | (8VC8O) | 2 S | BASSO) | Proof.) | 5 | (On Pages
394-400) | (On Page 393) | | GE-30 | PNP
Germanium | Audio Power Output for Stereo
Tape Players and Radios, Tape
Recorders, CB Transceivers, etc. | *9 | ۷ | 8 | 09 | 12 | 1 MHz | 110 | Fig. 9
TO-86 | ပ | | GE-31MP | PNP
Germanium | Audio Power Output Metched Pair
of GE-30's | *9 | 3.8 | 8 | 9 | 12 | 1 MHz | 110 | Fig. 9
TO-86 | ပ | | GE-32 | NPN
Silicon | AC Line Operated AF Amplifier | 30*
1.5 | 1 A | | 500 (CES)
300 (CEO) | ю | 40 MH ₂ | 126 | Fig. 17
Power
Pac | Ļ | | GE-50 | PNP
Germenium | FM, RF Amplitier
TV, IF Amplitier | 140 MW | 15 MA | 8 | 25 (CER) | | 250 MHz
(Typ.) | 76 | R-90
(See
Page 9) | 0 | | GE-51 | PNP
Germenium | AM, RF Amplifier
AM, FM, 1F Amplifier | 60 MW | 10 MA | 32 | 32 (CER) | | 75 MHz
(Typ.) | 150 | Fig. 10
TO-72 | 0 | | GE-82 | PNP
Germenium | Low Noise AF Amplifier | 150 MW | 150 MA | 8 | 20 (CER) | 12 | 2 MHz
(Typ.) | 126 | Fig. 4
TO:1 | æ | | GE-53 | PNP
Germanium | AF Ampifier, Output | 1*
220 MW | 4 T | æ | B | 9 | 1.4 MH ₂ | 110 | Fig. 4
TO:1 | Σ | | GE-60 | NPN
Silicon | RF, IF to 200 MHz;
TV 1st or 2nd IF Amplitier | 180 MW | 26 MA | Q | \$ | 4 | 500 MHz | 8 | Fig. 3
RO-110 | 60 | | GE-61 | NPN
Silicon | TV 3rd IF Amplifier | 300 MW | 85 MA | 99 | đ | + | 500 MHz | 8 | Fig. 11
TO-92 | ٥. | | GE-63 | | Amplifier | 360 MW | 100 'AA | 88 | 26 | ß | 150 MH ₂ |) % | 10.98
10.98 | ш | |------------|--------------------------------
--|---|----------|--------------|----------------------|-------------|------------------------|------------|-------------------------|--| | | NPN
Silicon | AF Ampifier Output | 1 * 000 MW | 4 | 8 | 8 | 40 | 160 MH ₂ | 031 | Fig. 13
X-103 | z | | GE-64 Si | NPN
Silicon
(DARLINGTON) | Very High Gain, Low Noise
Amplifier | 360 MW | 275 MA | \$ | â. | 12 | 2
80 WH | 20,000 | Fig. 12
TO-98 | m | | GE-66 S. | NPN
Silicon | AF Power Output | 28 •
1.5 | 4 | | 70 (CES)
80 (CEO) | ro. | 50 MH ₂ | 02 | Fig. 17
Power
Pac | _ | | GE-67 SI | PNP | AF Amplifier Output | 1*
500 MW | 4 | 8 | 8 | ю | 160 MH _z | 031 | Fig. 13
X-103 | z | | GE-69 | PNP
Silicon | AF Power Output | 28 * | 4 | | 70 (CES)
80 (CEO) | ю | 40 MH _z | 02 | Fig. 17
Power
Pac | ر | | BASE COLLE | T08 | EMITTER CASE BASE CASE CAS | (• · · · · · · · · · · · · · · · · · · | | MOUNTING TAB | | 3 88 | EMITTER COLLECTOR BASE | | | GROUND
LEAC
COLLECTOR
EMITTER
BASE | **Outline Drawing** GE-504A AND GE-509 Universal replacement types GE-504A and GE-509 with a 80 amp surge rating, are recommended as a replacement for silicon rectifiers used in radio, black and white and color TV receivers, plus many other circuits. The GE-504A and GE-509 have dual heatsink design. The pellet is securely rugged mechanical support for the pellet and leads. There are no potentially sandwiched between two heavy thermally-matched slugs. These slugs provide roublesome "S" springs or whisker contacts to fail or to increase thermal resistance. The temperature coefficient of the glass is carefully matched to that of discon for stress-free operation over a wide temperature range. Due to the nherent low OHMIC resistance of the GE-504A and GE-509 package, the devices can withstand current surges up to 100 amps. brward voltage and other characteristics normally associated with germanium rectifiers. The GEBR-600 is a silicon rectifier utilizing GE-504A type units connected in full-wave bridge configuration; the total bridge is encapsulated The 1NB1 is a germanium rectifier in a hermetic sealed package and has low in plestic. **GEBR-600** GE-504A **GE-209** GE-510 1091 Type | FIELD | FIELD EFFECT TRAN | ANSISTORS | Common | 1 | | Zero | | Drain | Gate | | | |------------|---------------------------|--|--|----------------------------------|---------------------------|----------------------------|--------------------------|-----------------------------------|---|----------------------------------|---------------------| | GE
Type | Description | Applications | Source
Forward
Transfer
Admittance
(MNHOS) | Power Dissipation @250C Free Air | Current
(IG)
(MADC) | Voltage
Orain
(IDSS) | Drain
Gate
Voltage | Source
Voltage
VDS
(VDC) | Source
Breskdown
Voltage
V (BR)
GSS | Package
(on Pages
397-398) | Terminal
Drawing | | GE-FET-1 | N Channel
Siticon FET | General Pupose Ampli-
fier to 100 MH ₂ | 6500 Max. | 200 MW | 10MA | 2 to
20 MA* * | 25 | 25 | -25 | Fig. 11
TO-92 | g | | GE-FET-2 | N. Channel
Silicon FET | FM:TV RF Mixer
VHF to 400 MH ₂ | 5500 Typical | 350 MW | 50 MA | 5 to
15 MA** | 8 | | 8 | Fig. 14
X-55 | ¥ | *** Pulse Test: Pulse Width = 100 MSEC, Duty Cycle < 10% (FET) *With heat sink G ¥ | GERM | GERMANIUM AND SILICON DIODES | LICON | DIODES | MANICHE: WIDE COLOR
BAND ADJACENT
CATHODE END | ٤ | BOTH LEADS GOOT MAX—
DIA (TINNED) 1.0' MIN (2 LEADS 44— | 8 4 2885 | MX. DIA. | THEOD LEADS | ## ## ## ## ## ## ## ## ## ## ## ## ## | ••
 | |-------|------------------------------|----------------------|----------------------|---|------------------------------------|---|------------------------------|-------------------------------|---|--|----------------------------| | | | | | | | | | 200 | CHARAC | CHARACTERISTICS | | | Type | Description | Oct
Ese
above) | Temp.
Range
oc | Working
Voltage
(dc-volts) | Peak
Forward
Current
(ma) | Forward
Current
(ma) | Current
1 secmax.
(ma) | Reverse
Voltage
(Volts) | Forward
Current (ma)
at + 1 volt
Min Max | Reverse
Current
(µ a max) | Suggested
List
Price | | N34AS | General Purposes | ٧ | -50 to +90 | 8 | 150 | 25 | 200 | 75 | 5 25 | 500 at -50V | \$.55 | | N60 | Video Detector | ⋖ | -50 to +90 | 22 | 150 | 8 | 200 | 8 | 1 | ı | .55 | | N82A | Silicon UHF Mixer | ∢ | -50 to +120 | က | 25 | ı | , | သ | 5 15 (.5v) | 500 at - 3v | 1.45 | | N296 | 50 MC Detector | 4 | -59 to +100 | \$ | 125 | ೫ | 8 | 8 | 1 | 180 at - 10v | 55. | | E-300 | GE-300 General Purpose | ω | -65 to +150 | 200 | ı | 720 | 2 A | 200 | 200 Min | 1 at - 200v | 1.36 | | Vacusal' SELENIUM DUAL-DIODE RECTIFIERS | APLICATION: The principal application for the Dual-Diode is as a discriminator or phase detector in television receivers. They also can be used in other types of low power circuits where maximum dependability is required at minimum cost. | |---|---| | 6GC1 Common Cathode \$.90 AC AC AC AC AC AC AC A | Cetalog
Ne. | Туре | Suggested
List
Price | | |---|----------------|--|----------------------------|-----------------------| | .90 [4 4 4 4 4 4 4 4 4 4 | 66C1 | Common Cathode | \$:90 | ovi ji jov | | .90 AC 4 1 | 6601 | Series Connected | | +[*[*]- | | Forward current (min.) 1.1 ma at 2.5VDC
Reverse current (nominal) .4 ma at 20VD(| 6GX1 | Common Anode | 96. | AC[*] A JAC | | | Forwa | rd current (min.) 1.
Reverse current (r | 1 ma at 2.
nominal) | 5VDC
1 ma at 20VDC | # ZENER DIODES ZENER DIODES A Zener diode is a two-layer device that above a certain reverse voltage (the zener value) has a sudden rise in current. If forward-biased, the diode ordinary rectifier. But when reversed-biased, the diode exhibits a typical knee, or sharp break, in its current-voltage graph. The voltage across the device remains essentially constant for any further increase of reverse current up to the allowable dissipation rating. The zener and voltage reference. Zener diodes may be connected in a series to achieve desired zener voltage plus or minus tolerances. For best zener performance, specified IZT should be maintained during normal circuit conditions. | - Age | Material | Dissipation
@ 25°C
(Watts) | Voltage
VZ @ IZT
(Volts) | Current
12T
(MA) | Zener
Impedence
Zz © IZT
(OHMS) | DC Zener
Current
IZM (MA) | Suggested
Retail | |------------|----------|----------------------------------|--------------------------------|------------------------|--|---------------------------------|---------------------| | 3E ZD-10-4 | Silicon | 400 MW | 01 | 20 | 17 | 20 | \$1.55 | | GE ZD-3.6 | Silicon | 1 Watt | 3.6 | 8 | : 2 | 253 | | | E ZD-5.1 | Silicon | 1 Watt | 5.1 | 6 | _ | 178 | 1.99 | | ш | Silicon | 1 Watt | 5.6 | 8 | വ | 162 | 1.99 | | E ZD-6.2 | Silicon | 1 Watt | 6.2 | 4 | 7 | 146 | 1.99 | | E ZD-7.5 | Silicon | 1 Watt | 7.5 | 34 | 4 | 121 | 1.99 | | E ZD-9.1 | Silicon | 1 Watt | 9.1 | 28 | S. | 90 | 1.99 | | E ZD-12 | Silicon | 1 Watt |
12 | 21 | თ | 92 | 1.99 | | E 2D-15 | Silicon | 1 Watt | 5 | 17 | 4 | 19 | 1.99 | | E ZD-18 | Silicon | 1 Watt | 82 | 7 | 20 | 20 | 1.99 | | E ZD-20 | Silicon | 1 Watt | 20 | 12.5 | 22 | 46 | 1.99 | | E 2D-27 | Silicon | 1 Watt | 27 | 9 | ĸ | 용 | 1.99 | | E ZD-33 | Silicon | 1 Watt | ဗ္ဗ | 7.5 | 45 | 27 | 1.99 | | E 2D-39 | Silicon | 1 Watt | 8 | 6.5 | 8 | 23 | 1.99 | | E 2D-47 | Silicon | 1 Watt | 47 | 5.5 | 8 | 19 | 1.99 | All Zeners +10% tolerance in Voltage. Junction operating and storage temperature - 650 to 2000C. | MAINTENANCE
INDUSTRIAL
REPLACEMENT | Catalog
No. | Description | Repet-
tive
PRV | Tran-
sient
PRV | Mex. IDC
Stud
Single
Phase | Peak
1 Cycle
Surge | Max. Rev.
Cur. (Full
Cycle Av
@ Full
Load) | | Max.
Fuli
Load
Voltage
Drop | Max.
Oper. | Out.
Jine
Dwg. | Suggested
User
Price | |--|----------------|--|----------------------------|---------------------------|--|--------------------------|--|--------------------|---|---------------|----------------------|----------------------------| | SEMICONDUCTORS | GEMR-1 | Silicon Rectifier | 200 | 350 | 12 A | 240 A | 2.0 mA | | 0.55 V | 2000 | 4 | \$ 4.80 | | | GEMR-2. | Silicon Rectifier | 400 | ı | 35*A | 500 A | 10*mAdc | | 0.65*V | 2000 | 89 | 6.90 | | 4130 | | | PRV
and | _ | Max. IDC | 2 | Max. Temp.
oC | ٩ | Max. Req'd.
Gate Signal | q'd. | | | | | | | V (BO) | - | Temp. oC | ΙŌ | Oper. Stor. | ايرا | @ 25oCT J | ٦, | | | | | GEMR-3 | Silicon Controlled Rectifier | 9 | 35 A @ | 35 A @ 19°C case | | 1250 15 | 1500 3 | 3 V, 40 mA | ∢ | ပ | 8.60 | | | GEMR-4 | Silicon Controlled Rectifier | 6 | 7.4 A (| 7.4 A @ 80°C case | | 1000 | 1000 | 3 V, 25 mA | ď | ۵ | 3.80 | | | GEMR-5 | Silicon Controlled Rectifier
Economy Flat Pack Design | %
500
700 | 4 A ® | 4 A @ 75°C anode tab 110° 150° 0.8 V, 200 uAdc | tab 1 | 100 15 | 9
8 | 8 V, 200 | uAdc | ш | 1.40 | | | | | hFE
VCE = 1V
IC = 1A | hFE
CE = 1V
IC = 1A | VCEO | ď | VCE(sat) IC = 1A IB ^O = 50 mA | eat)
1A
0 mA | ξ. | PT
70º Tab | | | | *@140ºC | GEMR-6 | Silicon Power Tab
Transistor | ğ | 20 min. | 40 \ | | 1.0 V (Max.) | Max.) | | 8 W | u. | 1.42 | # "INTEGRATED CIRCUITS" | 80/1 | Description | |--|---| | | | | GEIC-1
Audio Amplifier | Audio amplifier designed to deliver 2 watts of continuous power to a 16-ohm load. This integrated circuit is used in project A2 as described in Electronics Experimenters Circuit Manual ETRM-3960A. | | GEIC-2
TV/FM Sound, IF, Detector
(Figure No. 1 Below) | Suitable for a wide variety of applications including TV sound channels, line operated and automobile FM radios and mobile communications equipment. Features electronic attenuator. Max. supply voltage: 9V; Zener regulating voltage (V_5): 11.2V typ.; Supply current: 16MA Typ; T _A = 25°C. Replacement for Zenith 221-48; Sears 13-29-6; Sylvania 15-33201-1 and UA3065. | | GEIC-3
Color TV Chroma
Demodulator
(Figure No. 2 Below) | Demodulates the chroma subcarrier information contained in a color television video signal and provides color difference signals at the outputs. Low voltage drift of the DC output insures excellent performance in direct-coupled chrominance output circuitry. Max. supply voltage: 28VDC; minimum load resistance: 3K ohm; peak to peak reference input voltage: 5V; peak to peak chroma input voltage: 5V; internal power dissipation: 450MW; operating temperature range: 0°C to +70°C. Electrical characteristics (TA = 25°C, V ⁺ = 24V) as follows: Supply current ($\epsilon_{\rm c} = 0$, R _L = 1M ohm) 9.0 MA Typ.; ($\epsilon_{\rm c} = 0$) 22 MA typ.; DC Voltage at any output terminal ($\epsilon_{\rm c} = 0$) 14.5V typ.; DC voltage at either reference terminal ($\epsilon_{\rm g} = \epsilon_{\rm b} = \epsilon_{\rm c} = 0$) 5.8V typ.; Replacement for Zenith 221-37 and 221-39; also replaces UA746. | | GEIC-4
Color TV Subcarrier
Regenerator
(Figure No. 3 Below) | Replacement for Zenith 22142 and UA780. Maximum ratings, supply current: $40MA$; gate input current; $5MA$; peak to peak voltage at either APC or ACC detector input terminals; $5V$; internal power dissipation; $600MW$. Electrical characteristics $(T_A = 25^{\circ}C)$, $Gate "ON"$); $Supply current: 26MA \text{ typ.}; voltage at supply terminal: 12V \text{ typ.}; supply regulation (V^+ = 27V): 40MV \text{ typ.}$ | # "INTEGRATED CIRCUITS" | Description | Demodulates the chroma subcarrier information contained in a color TV video signal and provides color difference signals at the outputs. The low voltage drift of the DC output insures excellent performance in direct coupled chrominance output circuitry. Max. supply voltage: 28VDC; minimum load resistance: 3K ohm; peak to peak reference input voltage: 5V; peak to peak chroma input voltage: 5V; internal power dissipation; 450MW; operating temperature range: 0^{O} C to +70 O C. Electrical characteristics (T _A = 25 O C, V ⁺ = 24V) as follows: Supply current ($e_{\rm c}$ = 0, R _L = 1M ohm) 9.0·MA typ.; ($e_{\rm c}$ = 0) 22MA typ.; DC voltage at any output terminal ($e_{\rm c}$ = 0) 14.5 V Typ.; DC voltage at either reference terminal ($e_{\rm g}$ = $e_{\rm b}$ = $e_{\rm c}$ = 0) 5.8V typ; DC voltage at either chroma terminal ($e_{\rm c}$ = 0) 3.2V typ. Replacement for Zenith 221-46 and UA746 (DIP). | Dual gain controlled IF amplifier designed for use as a color TV chroma IF amplifier. The first section is a gain controlled chroma signal amplifier whose output is used to drive a sub carrier regenerator circuit. The gain of the second section is controlled by means of an external DC voltage to set chroma level. In addition the second stage may be gated off to provide "color killing" action in the absence of a color signal with the trip point of the gate adjusted externally. Maximum ratings, supply voltage: 30V; internal power dissipation: 600MW; storage temperature range: -650C to +150°C. Replacement for Zenith 221-43 and UA 781. | Used to accomplish the demodulation of a stereo multiplex signal into the right and left audio channels while inherently suppressing SCA frequency components. Suitable for all line-operated and automotive FM stereo multiplex applications: Maximum ratings, supply voltage: 15V; voltage at stereo lamp driver terminal: 100MA; internal power dissipation: 400MW. Electrical characteristics (T _A = 25°C, V ⁺ = +12V, 200 mV RMS standard stereo multiplex signal applied to input). Supply current: 10mA typ.; input resistance: 20K ohms typ.; stereo separation (adjusted) f= 100Hz; 45dB typ.; f = 1kHz; 55dB typ.; f = 10kHz; 50dB typ.; total harmonic distortion: 5% typ.; 67kHz storecast rejection: 55dB typ.; 19kHz pilot level required at input for stereo indicator lamp on: 12 mVRMS typ.; stereo indicator lamp off: 8mVRMS typ. Replacement for Heath 442-9 and UA729. | |-------------|--|---
---| | Туре | GEIC-5 | GEIC-6 | GEIC-7 | | | Color TV Chroma | Gain Controlled IF | FM Stereo Multiplex | | | Demodulator | Amplifier | Decoder | | | (Figure No. 4 Below) | (Figure No. 4 Below) | (Figure No. 4 Below) | | Tube
Type | Basing | Tube
Type | Basing | Tube Type 2C39A 2C39B 2C39WA 2C40-A 2C42 2C43 2C40-A 2C42 2C50 2C51 2C52 2CN3-A 2CN3B 2CW4 2DY4 2DY4 2DY4 2DY4 2DY4 2DY4-A 2D | Basing | Tube
Type | Basing | |----------------------|--------------|----------------|--------------|--|--------------------------|----------------|--| | OOA | 4D | 1G3-GT | 3C | 2C39A | 2C39A | 3B28 | 4P
7BK | | 01-A | 4D | 1G3GTA | 3C | 2C39-B | 2C39-B | 3BA6 | 7BK
7BD | | OA2 | 5BU
4A.I | 1G5-G | ος
X | 2C40 | 2C40 | 3BE6 | 7CH | | OA3-A | 4AJ | ig6-gt | 7AB | 2C40-A | 2C40 | 3BF2 | 12GQ | | OA4-G | 4V | 1H2 | 9LX | 2C42 | 2C40 | 3BL2 | 12HK | | OR9 | 6CB | IH4-GT | 58
57 | 2C43 | 2C43
2C40 | 3BL2A
3BM2 | 12HK | | OB3 | 4AJ | iH6-GT | 7AA | 2C50 | 8BD | 3BM2A | 12HK | | OB3-A | 4AJ | 1J3 | 3C | 2C51 | 8CJ | 3BN2 | 7CH
12GQ
12HK
12HK
12HK
12HK
12FV
12FV
7EG
7EG | | OC2 | 5BO | 1J3-A
1J5-C | 3C | 2C52 | 8MII | 3BNZA
3BNA | 12FV
7EG | | OC3-A | 4AJ | iJ6-GT | 7AB | 2CN3B | 8M Ŭ | 3BN4-A | 7EG | | OD3 | 4AJ | 1K3 | 3C | 2CW4 | 12AQ | 3BN6 | 7DF
12HY | | OD3-A | 4AJ | 11.4 | 6AR | 2CY5 | 7EW
7BN | 3882 | 12H Y | | OZ4-G | 4R | 1LA4 | 5AD | 2DF4 | 9JL | 3BS2B | 12HY
12HY
12HY
12HY
12HY | | 1A3 | 5AP | 1LA6 | 7AK | 2DS4 | 12AQ | 3BT2 | 12HY | | 1A4-p | 4M | ILB4 | 5AD | 2DV4 | 12EA
7DK | 3BT2A
2B119 | 12H Y | | 1A5-GT | 6X | 1LC5 | 7 A O | 2DY4 | 7DK | 3BU8-A | 9FG | | 1A6 | 6L | iLC6 | 7AK | 2DY4-A | 7DK | 3BW2 | 12HY | | 1A7-GT | 7Z | 1LD5 | 6AX | 2DZ4 | 7DK | 3BY6 | 7CH | | 1AC5 | SCP | 1LF3 | 4AA | 2E24 | 7CL | 3C2 | 8FV | | 1AD2 | 12GV | iLG5 | 7AO | 2E26 | 7CK | 3C5-GT | 7AQ | | 1AD2A | 12GV | 1LH4 | 5AG | 2E30 | 7CQ | 3C6 | 12HY
9FG
9FG
12HY
7CH
7CM
8FV
7AQ
7BW | | 1AD5 | ROP | 1N2 | 7AU
3C | 2E32 | 2E31 | 3CA3 | 8MH | | 1AE4 | 6AR | 1N2A | 3C | 2E35 | 2E31 | 3CA3A | 8EZ | | 1AE5 | 1AE5 | 1N5-GT | 5Y | 2E36 | 2E31 | 3CB6 | 7CM | | IAF4 | 6AR
6AT | 1N6-GT | 7AM
5V | 2E41
2E42 | 2E41 | 3CE5 | 7BD
7CM | | 1AG4 | 512-AX | 1Q5-GT | 6AF | 2EA5 | 7EW | 3CN3 | 8MÜ | | 1AG5 | 1AG5 | 1Q6 | 8CO | 2EG4 | 12AQ | 3CN3-A | 8MU | | 1AH4 | 1AD4
19E1 | 1R4
1R5 | 4AH
7AT | 2EN5 | 7FP | 3CN3B | 8M U
7CH | | 1AJ5 | 1AG5 | 182 | 9DT | 2ES5 | 7FP | 3CU3 | 8MK | | 1AK4 | 1AD4 | 1S2-A | 9DT | 2EV5 | 7EW | 3CU3A | 8MK | | 1AK5 | IAG5
SAR | 184 | 6AII | 2FO5 | 7FP | 3CV3 | 3G
8MH
8EZ
7CM
7BD
7CM
8MU
8MU
8MU
8EZ
8EZ
8EZ
8EZ
8EZ
8EZ
8EZ
8EZ | | 1AQ5 | 7AT | 186 | 8DA | 2FQ5-A | 7FP | 3CX3 | 8MT | | 1AR5 | 6AU | ISA6-GT | 6BD | 2FS5 | 7GA | 3CY3 | 8MX | | 1AS0
1ATT9 | OII
OII W | 1886-GT | 1AV2 | 2FY5 | 7FP | 3C 73 | AEZ | | 1AU3 | 3Č | 1T4 | 6AR | 2G21 | 2Ĝ21 | 3CZ3A | 8EZ | | 1AX2 | 9Y | 1T5-GT | 6X | 2G22 | 2G21 | 3D6 | 6BA | | IAY2 | 1AY2
1AV2 | 1114 | SDA
SAR | 2GL3 | 7GA | 3DR3 | SM I
SM X | | 1B3-GT | 3C | iŭ5 | 6BW | 2GW5 | 7ĞK | 3DC3 | 8MZ | | 1B4-p | 4M | 1U6 | 7DC | 2HA5 | 7GM | 3DF3 | 8MT | | 1B5 | 6M
7Z | 1-V
1V2 | 4G
917 | 2HM5 | 7GM | 3DF3A | 5DE | | iB8-GT | 8AW | 1V5 | 8CP | 2HQ5- | 7GM | 3DH3 | 8NM | | 1BC2 | 9RG | 1V6 | 1V6 | 2HR8 | 9BJ
opr | 3DJ3 | 8MX | | IBC2B | 9RG | 1W5 | 8CP | 2L2 | 2L2 | 3DR3 | 8NL | | 1BH2 | 9RG | 1X2 | 9Y | 2T4 | 7DK | 3DS3 | 8NL | | 1BH2A | 9RG | 1X2-A | 9Y | 2V2 | 8FV | 3DT6 | 7EN | | 1BL2 | 1AY2 | 1X2-D | 9Y | 2W3-GT | 4X | 3DX4 | 7DK | | 1BV2 | 1BV2 | 1Y2 | 4P | 2X2 | 4AB | 3DY4 | 7DK
7DK
7DK | | 1BX2 | 9Y | 1Z2 | 7CB | 212 | 4P
ODT | 3DY4-A | 7DK | | 1BY2A | 12HZ | 2A4-G | 58 | 3A2A | 9RT | 3E5 | 6BX | | 1C3 | 5CF | 2A5 | 6B | 3A3 | 8EZ | 3E6 | 7CJ
7EW | | IC5-GT | 6.X. | 2A6 | 6G
7C | 3A3-A
3A3B | 8EZ | 3EA5 | 7.E.W | | 107-G | 7Z | 2AF4 | 7DK | 3A3C | 8EZ | 3EJ7 | 9AQ
9AQ
7FP
7FP | | 1C8 | 8CN | 2AF4-A | 7DK | 3A4 | 7BB | 3ER5 | 7FP | | 1D3 | 8DN
5V | 2AF4-B | 7DK | 3A5
3A8_CT | 7BU
8AS | 3ES5 | 7FP
7EW | | 1D5-Gp | 5R | 2AS2 | 12EW | 3AF4-A | 7DK | 3FH5 | 7FP | | 1D7-G | 7Z | 2AS2A | 12EW | 3AF4-B | 7DK | 3FQ5 | 7FP | | 1D8-GT
1DG3 | 8AJ
8ND | 2AV2
2AZ2 | 9U
9Y | 3AL5
3AT2 | 6BT
12FV | 3FQ5-A
3FS5 | 7FP
7GA | | | | | | | | | | | 1DN5 | 6BW | 2B7 | 7D | 3AT2B | 12FV | 3FX7 | 8LK | | 1DY4
1DY4-A | 7DK
7DK | 2B22
2BA2 | 2B22
9U | 3AU6
3AV6 | 7BK
7BT | 3GK5
3GS8 | 7FP
9LW | | 1E4-G | 5S- | 2BJ2 | 9RT | 3AW2 | 12HA | 3GU5 | 7GA | | 1E5-Gp | 5Y | 2BJ2A | 9RT | 3AW2A | 12HA | 3GW5 | 7GK | | | | 2BN4 | 7EG | 3A W3 | 8EZ | 3HA5 | 7GM | | 1E7-GT | 8C
8CN | | | 3B2 | 8GH | 1 3HK5 | | | 1E7-GT
1E8
1F4 | 8CN
5K | 2BN4-A
2BU2 | 7EG
12HS | 3B2
3B4 | 8GH
7CY | 3HK5
3HM5 | 7GM
7GM | | 1E7-GT
1E8 | | 2BN4-A | 7EG | | 8GH
7CY
7AQ
7BE | | 7GM | | Tube | ITIDDA | Tube | | Tube | | Tube | | |--|--|--|--|--|--|--|--| | Туре | Basing | Туре | Basing | Туре | Basing | Type | Basing | | 3HT6
3JC6
3JC6-A
3JD6
3KF8
3KT6
3LE4 | 9PM 9PM 9PM 9PM 9PM 9FG 9PM 6BA 6BB 7BA 7AP 7BA 6BX 7BA 7BA 7BA 7BC 7BC 7BC 7CH 9AE 7DG 9AJ | 5AW4
5AX4-GT | 5T
5T | 6A6
6A7
6A8-G
6A8-G
6AB4
6AB5
6AB7
6AB9
6AC5-GT
6AC6-GT
6AC7
6AC9
6AC10
6AD4
6AD6-G
6AD7-G
6AD10A
6AE5-GT
6AE5-GT | 7B
7C | 6AV5-GT
6AV6
6AV11
6AW7-GT
6AW8-6
6AW8-A
6AX3-GT
6AX4-GTB
6AX4-GTB
6AX5-GT
6AX5-G
6AX7
6AX3-G
6AX3-6AY3-A
6AY3-B
6AY3-B
6AY3-B
6AZ5-GZ5
6AZ6
6AZ6
6AZ6
6AZ6
6AZ6
6AZ6
6AZ6
6A | 6CK
7BT
12BY
8CQ
9DX
9DX
12BL
4CG
4CG
4CG
6S
7Q
9A | | 3JC6-A | 9 PM |
5AZ3 | 12BR | 6A8-G | 7C
8A
8A
5CE
6R
8N
10N
6Q
7W
8N | 6AV11 | 12BY | | 3JD6 | 9PM | 5AZ4 | 5T | 6A8-GT | 8A | 6AW7-GT | 8CQ | | 3KT6 | 9PM | 5BC3 | 9QJ | 6AB5 | 6R | 6AW8-A | 9DX | | 3LE4 | 6BA | 5BC3-A | 9QJ | 6AB7 | 8N | 6AX3 | 12BL | | | 6BB
7RA | 5BE8
5BK7-A | 9EG
GAJ | 6AB9
6AC5-GT | 10N
6O | 6AX4-GTA | 4CG
4CG | | 3Q4
3Q5-GT
3S4 | 7AP | 5BQ7-A | 9AJ | 6AC6-GT | 7W | 6AX4-GTB | 4ČĞ | | 3S4 | 7BA | 5BR8 | 9FA | 6AC7 | 8N
12GN
12FE
8DK
7AG
8AY
12EZ
12EZ | 6AX5-GT | 6S
7O | | 3V4
3W4
4A6-G
4AU6
4AV6
4BA6
4BC5
4BC5 | 7BA | 5BT8 | 9FE | 6AC10 | 12FE | 6AX7 | 9Ã | | 4A6-G | 8L | 5BW8 | 9HK | 6AD4 | 8DK | 6AX8 | 9AE
9HP
9HP | | 4AU6 | 78K.
78T | 5BZ7
5CG4 | 9AJ
51. | 6AD7-G | 7AG
8AY | 6A Y3-A | 9HP | | 4BA6 | 7BK | 5CG8 | 9ĜF | 6AD10 | 12EZ | 6AY3-B | OHD. | | 4BC5 | 7BD | 5CL8 | 9FX | 6AD10A | 12EZ | 6AY11 | 12DA
8DF
8EH
9ED | | ITDEU | 7CH | 5CM6 | 9CK | 6AE6-G | 7 Å H | 6AZ6 | 8EH | | 4BL8 | 9AE | 5CM8 | 9FZ | 6AE7-GT | 7AX | 6AZ8 | 9ED | | 4BN4
4BN6 | 7DF | 5CR8 | 9GJ | 6AF3
6AF4 | 7DK | 6B5 | 58
6AS | | 4BQ7-A | 9ĀĴ | 5CU4 | 8KD | 6AF4-A | 7AX
9CB
7DK
7DK | 6B6-G | 7V
7D | | 4858
4RTP | 9AJ
9FG | 5CZ5 | 9HN
9EC | 6AF6-G | 6Q
7ÅG | 6B7
6B8-G | 7D
8E | | 4BX8 | 9AJ | 5DJ4 | 8KS | 6AF10 | 12GX | 6B8-GT | 8E | | 4BQ7-A
4BS8
4BU8
4BX8
4BZ6
4BZ7
4BZ8
4CB6 | 9ĀJ
7CM
9AJ
9AJ
7BD
7CH
9FC
7EW
7CM
7CM
7EN
9AQ
9DE
7CM
9AQ
9DE | Type 5AW4 5AX4-GT 5AZ3 5AZ4 5B8 5BC3-A 5B88 5BC3-A 5BR8 5BC3-A 5BR8 5BC3-A 5C04 5C04 5C04 5C04 5C04 5C08 5C08 5C08 5C08 5C08 5C08 5C08 5C08 | 9AE | 6AF4-A
6AF5-G
6AF6-G
6AF10
6AF11
6AG5
6AG7
6AG9
6AG10
6AG11
6AH4-GT
6AH9
6AH7-GT
6AH9
6AJ7
6AJ7
6AK4
6AK5
6AK6
6AK7 | 7AG
7AG
7AG
12GX
12DP
7BD
8Y
12HE
12GT
12DA
8EL
8BE
12HJ
9BX
7BD
8DK
7BD
8DK
7BK | 1 6B10 | 12BF | | 4BZ8 | 9AJ | 5EU8 | 9JF | 6AG7 | 8Y | 6BA3
6BA4 | 6BA4 | | 4CB6
4CE5
4CS6
4CX7
4CY5
4DE6
4DK6 | 7CM | 5EW6 | 7CM | 6AG9 | 12HE | 6BA5
6BA6 | 8DY | | 4CS6 | 7BD
7CH | 5FV8 | 9GF
9FA | 6AG11 | 12G1
12DA | 6BA7 | 7BK
8CT | | 4CX7 | 9FC | 5GH8 | 9AE | 6AH4-GT | 8EL | 6BA8 | 9DX | | 4CY5 | 7EW | | 9AE | 6AH6 | 7BK
SBE | 6BA8-A | 9DX | | 4DK6 | 7CM | 5GM6 | 7ČM | 6AH9 | 12HJ | 6BC4 | 9DR | | TOIV | 7EN | 5GS7 | 9GF | 6AJ4 | 9BX | 6BC5 | 7BD | | 4DT6-A
4EH7 | 9AQ | 5GX7 | 9QA | 6AJ7 | 8N | 6BC8 | 9AJ | | 4EJ7 | 9AQ | 5HA7 | 12FQ | 6AK4 | 8DK | 6BD4 | 8FU | | 4EH7
4EJ7
4ES8
4EW6 | 9DE
7CM | 5HB7 | 9QA
12FR | 6AK5 | 7BD
7BK | 6BD4-A | 8FU
6CK | | 4EW6
4FS7
4GJ7
4GK5
4GM6
4GS7
4GS8
4GW5
4GX7
4GZ5 | 9MP | 5GJ7
5GM6
5GS7
5GX6
5GX7
5HA7
5HB7
5HC7
5HC8
5JC6
5JK6 | 9MP | 6AK7 | QV | 6BA7
6BA8
6BA8-A
6BA11
6BC4
6BC5
6BC7
6BC8
6BD4-A
6BD5-GT
6BD6
6BD11
6BE3
6BE3-A
6BE6
6BE8 | 7BK | | 4GJ7 | 9QA
7FP
7CM
9GF
9LW
7GK | 5HZ6 | 7EN
7BF | 6AK9 | 12GZ | 6BD11 | 12DP | | 4GM6 | 7CM | 5JK6 | 7CM | 6AL3 | 9CB | 6BE3-A | 12GA | | 4G87 | 9GF | 5JL6
5JW8
5KD8
5KE8
5KZ8 | 7CM | 6AL5 | 6BT | 6BE6 | 7CH | | 4GW5 | 7GK | 5KD8 | 9AE | 6AL7-GT | 8CH | 6BE8
6BE8-A
6BF5 | 9EG | | 4GX7 | 9QA | 5KE8 | 9DC | 6AL9 | 12HE | 6BF5 | 7BZ | | 4GZ5
4HA5 | 9QA
7ČV
7GM | 5KZ8 | 9FZ
9GF | 6ALII
6AM4 | 12BU
9BX | 6BF6 | 7BT
8DG | | 4HA7 | 12FQ | 5LJ8
5BM8
5MB8
5MQ8 | 9FA | 6AM8 | 9CY | 6BF7-A | 8DG | | 4HC7 | 12FR
OMP | 5MB8 | 9FA | 6AM8-A | 9CY
7DK | 6BF8 | 9NX
19EZ | | 4HK5 | 7GM | 5R4-G | 5T | 6AN5 | 7BD | 6BG6-G | 5BT | | 4HA7
4HC7
4HG8
4HK5
4HM5 | 7GM | 5RA-4-GY | 5T | 6AL5
6AL6-G
6AL7-GT
6AL9
6AL11
6AM8
6AM8
6AM8-4
6AN5
6AN8
6AN8
6AN8
6AN8-A | 7BJ | 6BG6-GA | 8E 12BF 9HP 6BA4 8BY 7BK 8CT 9DX 9DX 9DX 9DX 9DR 7BD 9AX 9AI 8FU 8FU 8FU 12GA 7CH 12GA 7CH 9EG 9EG 9EG 9NE 8DG 9NE 8DG 9NE 8DG 9NE 8DG 9HP | | 4HM6
4HQ5
4HR8 | 7GM | 5R4-GYB | 5T | 6AN8-A | 9DA | 6BH3 | 9HP | | 4HR8 | 9BJ | 5T4 | 5T | 6AQ5 | 7BZ | 6ВН3-А | 9HP | | 4HS8
4HT6 | 9PG
9PM | 5U4-G | 9E
5T | 6AQ6 | 7BT | 6BH8 | 9DX | | 4H16
4JC6-A
4JD6
4JH6
4JK6
4JL6
4JW8
4KE8 | 12FQ
12FR
9MP
7GM
9PM
7GM
9PM
9BJ
9FG
9PM
9PM
9PM
7CM
7CM
9DC
9DC | 5R4-G
5R4-GYA
5R4-GYA
5R4-GYB
5T4
5T8
5U4-G
5U4-GA
5U4-GB
5U8
5U9
5V3-A
5V4-G
5V4-G
5V4-GA | 5T 5TB R 5TE STE STE STE STE STE STE STE STE STE S | 6AN8-A
6AQ5
6AQ5-A
6AQ6
6AQ7-GT
6AQ8
6AR5
6AR6
6AR8
6AR11
6AS5 | 12GZ
12FE
12FE
6BT
6AM
8CH
12HE
12BU
9BX
9CY
7DD
7BJ
9DA
7BJ
9DA
7BZ
7BT
8CK
9AJ
6CC
6BQ
9DP
12DM
7CV
7CV
7CV | 6BF6
6BF7-A
6BF7-A
6BF8-6BF11
6BG6-G
6BG7-6BH3-A
6BH3-A
6BH6-6BH8-6BH11
6BJ3-6BJ6-A
6BJ6-A
6BJ6-A
6BJ6-A
6BJ6-A
6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8-6BJ8- | 7CM
9DX
12FP
12BL
7CM
7CM
9AX
9ER
8GC
8GC | | 4JU6-A
4JD6 | 9PM | 5U4-GB | 51
9AE | 6AR5 | 9AJ
6CC | 6BJ3
6BJ6 | 128L
7CM | | 4JH6 | 7CM | 5Ŭ9 | 10K | 6AR6 | $\widetilde{6}\widetilde{\mathbf{B}}\widetilde{\mathbf{Q}}$ | 6BJ6-A | 7ČM | | 4JK6 | 7CM | 5V3 | 5T | 6AR8 | 9DP | 6BJ7 | 9AX
of P | | 4JW8 | 9DC | 5V4-G | 5Ĺ | | 7CV | 6BK4 | 8GC | | 4KE8 | | 5V4-GA | 5L
7AC | 6AS6
6AS7-G | 7CM | 6BK4-A | | | 4KF8
4KN8 | 9FG
9AJ | 5V6-GT
5W4-GT | 7AC
5T | 6AS7-GA | 8BD | 6BK4-B
6BK4C | 8GC
8GC | | 4KT6 | 9PM | 5X4-G | 5Q | 6AS7-GYB | 8BD | 6BK5 | 9BQ
7BT | | 4LJ8
4LU6 | 9GF
7CM | 5X4-GA
5X8
5X9 | 5Q
9AK | 6AS8
6AS11 | 9DS
12DP | 6BK6
6BK7 | 7BT
9AJ | | 4MK8 | 9GF | 5X9 | 10K | 6AT6 | 7BT | 6BK7-A | 9AJ | | 5AF4-A
5AM8 | 7 DK
9CY | 5Y3-G
5Y3-GA | 5T
5T | 6AT8
6AT8-A | 9DW
9DW | 6BK7-B
6BK11 | 9AJ
12BY | | 5AN8 | 9DA | 5Y3-GT | 5T | 6AU4-GT | 4CG | 6BL4 | 8GB | | 5AQ5 | 7BZ | 5Y4-G | 5Q. | 6AU4-GTA | 4CG | 6BL7-GT | 8BD | | 5AR4
5AS4-A | 5DA
5T | 5Y4-GA
5Y4-GT | 5Q
5Q | 6AU5-GT
6AU6 | 6CK
7BK | 6BL7-GTA
6BL8 | 8BD
9AE | | 5AS8 | 9DS | 5Z3 | 5Q
4C | 6AU6-A | 7BK | 6BM8 | 9EX | | 5AT4
5AT8 | 5L
9DW | 5Z4-GT
6A3 | 5L
4D | 6AU7
6AU8 | 9A
9DX | 6BN4
6BN4-A | 7EG
7EG | | 5AU4 | 5T | 6A4/LA | 5B | 6AU8-A | 9DX | 6BN6 | 7DF | | 5AV8 | 9DZ | 6A5-G | 6T | 6AV5-GA | 6CK | 6BN7 | 9BT | | 10 1 | | T-1 | | | J - | 12: | | |---|-------------------|--|--------------------------|--|-------------------|-----------------------------------|------------------------------| | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | | 6BN8 | 9ER | 6CS7 | 9EF | 6EL4 | 8MW | 6GV5
6GV7 | 12DR | | 6BN11
6BQ5 | 12GF
9CV | 6CS8
6CT3
6CU5 | 9FZ
9RX | 6EL4A
6EM5 | 8MW
9HN | 16GV8 | 9KN
9LY | | 16BQ6-G | 6AM | 6CU5 | 7CV | SEM7 | 8BD | 6GW5 | 7GK | | 6BQ6-GTA
6BQ6-GTB | 6AM
6AM | 6CU6
6CU8 | 6AM
9GM | 6EN4
6EQ7
6ER5 | 8NJ
9LQ | 6GW6
6GW8 | 6AM
9LZ | | 6BQ7 | 9AJ | 6CW4 | 12AQ
9CV | 6ER5 | 9LQ
7FP | 6GX6 | 7EN | | 6BQ6-GTB
6BQ7-A
6BQ7-A
6BR3
6BR8 | 9AJ
9CB | 6CW5
6CX7
6CX8 | 9FC
9DX | 6ES8 | 7FP
9DE | 6GW8
6GX6
6GX7
6GY5 | 9QA
12DR | | 6BR8
6BR8-A | 9FA
9FA | 6CX8
6CY5 | 9DX
7EW | 6ES5
6ES8
6ET7
6EU7
6EU8
6EV5 | 9LT
9LS | 6GY6
6GY8 | 7EN
9MB | | 6BS3 | 9HP | 6CY7 | 9LG | 6EU8 | 9JF | 6GZ5 | 7CV | | 6BS3-A
6BS8 | 9HP
9AJ | 6CZ5
6D4 | 9HN
5AY | 6EV5 | 7EW
9LP | 6H4-GT
6H6-GT | 5AF | | 6BT6 | 7BT | 6D6 | 6F | 6EV7
6EW6 | 7CM | 6HA5 | 7Q
7GM | | 6BT8
6BU4 | 9FE
8GC | 6D7
6D8-G | 7H
8A | 6EW7 | 9HF
5BT | 6HA6
6HB5 | 9NW
12BJ | | 6BU5 | 6BU5 | 6D10 | 12 B Y | 6EX6
6EY6 | 7AC | 6HB6 | 9NW | | 6BU6
6BU8 | 7BT
9FG | 6DA4
6DA4-A | 4CG
4CG | 6EZ5
6EZ8 | 7AC
9KA | 6HB7
6HC8 | 9QA
9EX | | 6BU8-A
6BV8 | 9FG | 6DA5 | 4CG
9DB | 1 6F4 | 7BR | 6HC8
6HD5
6HD7 | 12ES | | 6BV11 | 9FJ
12HB | 6DA7
6DB5 | 9EF
9GR | 6F5-G
6F5-GT | 5M
5M | 6HE5
6HE7 | 9QA
12EY | | 6BW3
6BW4 | 12FX
9DJ | 6DB6
6DC6 | 7CM
7CM | 6F6-G
6F6-GT | 7S
7S | 6HE7
6HF5 | 12FS | | 6BW6 | 9AM | 6DC8 | 9HE | 6F7 | 7E | 6HF8 | 12FS
12FB
9DX | | 6BW8
6BW11 | 9HK
12HD | 6DE4
6DE6 | 4CG
7CM | 6F8-G | 8G
9MR | 6HG5
6HG8 | 7BZ
9MP | | 6BX7-GT | 8BD | 6DE7 | 9HF | 6FA7
6FD6
6FD7 | 7BK
9HF | 6HJ5
6HJ7 | 12FL | | 6BX8
6BY4 | 9AJ
6BY4 | 6DG6-GT
6DJ8 | 7S
9 DE | 6FE5 | 9HF
8KB | 6HJ7 | 9QA
9CY
7GM | | 6BY5-G | 6CN | 6DK3
6DK6 | 98G
7CM | 6FG5
6FG6 | 7GA
9GA | 6HK5
6HL5 | 7ĞM | | 6BY5-GA
6BY6 | 6CN
7CH | 16DL3 | 9GD | 6FG7 | 9GF | 6HL8 | 9QW
9AE | | 6BY8
6BY11 | 9FN
12EZ | 6DL4
6DM4 | 9NY
4CG | 6FH5 | 7FP
6AM | 6HM5
6HM6 | 7GM
9PM | | 6BZ3 | 12FX | 6DM4-A | 4CG | 6FH6
6FH8 | 9KP | 6HQ5 | 7GM | | 6BZ6
6BZ7 | 7CM
9AJ | 6DM4-A
6DN3
6DN6
6DN7 | 9HP
5BT | 6FJ7
6FM7
6FM8 | 12BM
12EJ | 6HQ5
6HQ6
6HR5 | 7CM
7BZ | | 6BZ8 | 9AJ | 6DN7 | 8BD | 6FM8 | 9KR | 6HR6 | 7BK | | 6C4
6C5-GT | 6BG
6O | 6DQ3
6DQ3A | 12HF
12HF | 6FQ5 | 7FP
7FP | 6HS5
6HS6 | 12GY
7BK | | 6C6 | 6Q
6F | 6DQ4 | 4CG | 6FQ7
6FR7
6FS5
6FV6 | 9LP | 6HS8 | 9FG | | 6C7
6C8-G | 7G
8G | 6DQ5
6DQ6 | 8JC
6AM | 6FS5 | 9HF
7GA | 6HT6
6HU6 | 9PM
9GA | |
6C8-G
6C9
6C10
6CA4
6CA5
6CA7
6CA11
6CB5
6CB5-A
6CB6
6CB6-A
6CD3 | 10F
12BQ | 6DQ6
6DQ6-A
6DQ6-B
6DR4 | 6AM
6AM
6BG | 6FV6
6FV8 | 7FQ | 6HV5
6HV5A | 12G Y | | 6CA4 | 9M ~ | 6DR4 | 6BG | CTOTO A | 9FA
9FA | 6HW8 | 12GY
9NQ | | 6CA5 | 7CV
8EP | 6DK7 | 9HF
12AQ | 6FW5
6FW7
6FW8
6FX7
6FY5
6FY7
6FY8 | 6CK
8LM | 6HZ5
6HZ6 | 9NQ
12GY
7EN | | 6CA11 | 12HN | 6DS5
6DT3
6DT4
6DT5
6DT6
6DT6-A
6DT8 | 7BZ | 6FW8 | 9AJ
8LK | 1 6HZ8 | 9DX | | 6CB5
6CB5-A | 8GD
8GD | 6DT3 | 12HF
4CG | 6FX7 | 8LK
7FP | 6J4
6J5-GT | 7BQ | | 6CB6 | 7CM
7CM | 6DT5 | 4CG
9HN | 6FY7 | 12EO | ATA | 6Q
7BF | | 6CD3 | 12FX | 6DT6-A | 7EN
7EN
9DE | 6FY8
6G6-G | 9EX
78 | 6J6-A
6J7-G
6J7-GT
6J8-G | 7BF
7R | | 6CD6-G
6CD6-GA | 5BT
5BT | 6DT8
6DW4 | 9DE
9HP | 6G6-GT
6G6-GT
6G11 | 78
78
12BU | 6J7-GT | 7R
8H | | 6CE3
6CE5 | 12GK | 6DW4-A | 9HP | 6GA7 | 12EB | 639 | 10G | | 6CE5
6CF6 | 7BD
7CM | 6DW4-B
6DW5 | 9HP | 6GB5
6GC5 | 9NH | 6J10
6J11 | 12BT
12BW | | 6CG3 | 12HF | 6DX4
6DX8 | 9CK
7DK
9HX
7DK | 6GC6 | 9EU
8JX | 6JA5 | 12EY | | 6CG6
6CG7 | 7BK
9AJ | 6DX8
6DY4 | 9HX
7DK | 6GD7
6GE5 | 9GF
12BJ | 6JA8
6JB5 | 9DX
12EY | | 6CG8 | 9GF | 6DY4-A | 7DK | 6GE8 | 9LC | 6JB6 | 9QL | | 6CG8-A
6CH3 | 9GF
9HP | 6DY7
6DZ4 | 8JP
7DK | 6GF5
6GF7 | 12BJ
9QD | 6JB6-A
6JC5 | 9QL
12EY | | 6CH7
6CH8 | 9FC
9FT
9SD | 6DZ7
6DZ8 | 8JP
9JE | 6GF7-A
6GH8 | 9QD
9QD
9AE | 6JC6 | 9PM
9PM | | 6CJ3 | 9SD | 6E5 | 6R | 6GH8-A | 9AE | 6JC6-A
6JC8 | 9PA | | 6CK3 | 9HP
8JB | 6E6
6E7 | 7B
7 H | 6GJ5
6GJ5-A | 9QK
9QK | 6JD5
6JD6 | 12GY | | 6CL3 | 9HP | 6EA4 | 12FA | 6GJ7 | 9QA
9AE | 6JE6 | 9QL
9QL | | 6CL5
6CL6 | 8GD
9BV | 6EA5
6EA7 | 7EW
8BD | 6GJ8
6GK5 | 9AE
7FP | 6JE6-A
6JE6-B | 9QL | | 6CL8 | 9FX
9FX | 6EA8 | 9AE | 6GK6 | 9GK | 6JE6-C | 9ŎL
9ĎX | | 6CL8-A
6CM3 | 9HP | 6EB5
6EB8 | 6BT
9DX | 6GK7
6GL7 | 9AQ
8BD | 6JE8
6JF6 | 9DX
9QL | | 6CM6
6CM7 | 9CK
9ES | 6EF4
6EF6 | 12HC
78 | 6GM5 | 9MQ | 6JG5 | 98F | | 6CM8 | 9FZ | 6EH4 | 12FA | 6GM6
6GM8 | 7CM
9DE | 6JG6
6JG6-A | 9 Q U
9 Q U | | 6CN7
6CQ4 | 9EN
4CG | 6EH4A
6EH5 | 12FA
7CV | 6GN8 | 9DX
9QM | 6JH5
6JH6 | 12JE
7CM | | 6CQ8 | 9GE | 6EH7 | 9AQ | 6GQ7
6GS8 | 9LW | 6JH8 | 9DP | | 6CR6
6CR8 | 7EA
9GJ | 6EH8
6EJ4 | 9JG
12HC | 6GT5
6GT5-A | 9NZ
9NZ | 6JK5
6JK6 | 12JE
7CM | | 6CS5 | 9GR | 6EJ4A | 12HC | 6GU5 | 7GA | 6JK8 | 9AJ | | 6CS6 | 7CH | 6EJ7 | 9AQ | 6GU7 | 9LP | 6JL6 | 7CM | | 6JM6 | N11
Q5
Q11
U11
B11
G7
M7
N7
S7
S7
W5 | Basing 12GF 9CV 12DM 12FP 12DM 9AJ 9ES 9EN | |--|--|--| | 6JM6 | Q5
Q11
U11
B11
G7
M7
N7
S7
W5
W5-A | 9CV
12DM
12FP
12DM
9AJ
9ES
9EN | | 6JM6-A 12FJ 6LX6 12JA 6W4-GT 4CG 8B 6JN6-A 12FK 6LX8 9DC 6W4-GTA 4CG 8B 6JN6-A 12FK 6LY8 9DX 6W5-G 6S 8C 6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 6S 8C 8C 6MB-GT 7AC 8C 6JS6 12FY 6MA6 8NP 6X5-GT 6S 8C 6MB-GT 7AC 8C 6MB-GT 7AC 8C 6MB-GT 7AC 8C 7AC 7AC 8C 7AC | Q11
U11
B11
G7
M7
N7
S7
W5
W5-A | 12DM
12FP
12DM
9AJ
9ES
9EN | | 6JN6-A 12FK 6LY8 9DX 6W5-G 6S 8C 6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 68 8C 8C 6JS6 8JS6 6JS6 8JS6 6JS6 8JS6 6JS6 | B11
G7
M7
N7
S7
W5
W5-A | 12DM
9AJ
9ES
9EN | | 6JN8 9FA 6LZ6 9QL 6W6-GT 7AC 8C 6JQ6 9RA 6M3 8GV 6W7-G 7R 8C 6JR6 9QU 6M11 12CA 6X4 5BS 8C 6JS6 12FY 6MA6 8NP 6X5-GT 68 8C | G7
M7
N7
S7
W5
W5-A | 9AJ
9ES
9EN | | | M7
N7
S7
W5
W5-A | 9ES
9EN | | 6JS6 | S7
W5
W5-A | | | 6JS6-A 12FY 6MB6 12FY 6X8 9AK 8C | W5
W5-A | 9EF | | | W5-A | 9CV | | 6JS6-B 12FY 6MB8 9FA 6X8-A 9AK 8C | | 9CV | | 6JS6C 12FY 6MC6 9QL 6X9 10K 8C 6JT6 9QU 6MD8 9RQ 6Y3-G 4AC 8C | X8
V7 | 9DX
9LG | | 6JT6-A 9QU 6ME6 9QL 6Y6-G 7AC 8E | B8 | 9DX | | 6JT8 | M5 | 9HN
9LT | | 16JU8 | 07 | 9LP | | 6JU8-A 9PQ 6MJ8 12HG 6Y9 10L 8G | J7 | 9QA | | 6JV8 | N8 | 9DX
9LP | | 6JW8 9DC 6ML8 9RQ 6Z7-G 8B 8G | X7 | 9QA | | 6JZ6 | A6 | 9NW | | 6JZ8 | | 9MP
9DX | | 6K5-G 5U 6MV8 9DX 7A5 6AA 8J1 | K8 | 9AJ | | 16K5-GT 5U 6MY8 12DZ 7A6 7AJ 8B | | 9DX
9DX | | 6K6-GT | U8-A | 9PQ | | 6K7-G | V8
(A8 | 9PQ
9DX | | 6K8-G | A8
R8 | 9PV
9DX | | 6K11 | .S8 | 9DX | | 6KA8 9PV 6Q7-G 7V 7AH7 8V 8L | C8 | 9OY | | 6KD6 12GW 6Q7-GT 7V 7AJ7 8V 8L 6KD8 9AE 6Q11 12BY 7AK7 8V 8L 6KE6 12GM 6R3 9CB 7AU7 9A 8L 6KE6 7AK7 8KE6 7AK7 8KE6 7AK7 7 | E8
86 | 9QZ
9GK | | 6KE6 12GM 6R3 9CB 7AU7 9A 8L | T8 | 9RL | | 16KE8 9DC 6R7-G 7V 7B4 5AC 8M | U8 | 9AE | | 6KF8 | | 8BD
10K | | 6KL8 9LQ 6S4 9AC 7B7 8V 8X | 9 | 10K | | 6KM6 9QL 6S4-A 9AC 7B8 8X 9A
6KM8 9QG 6S7-G 7R 7C4 4AH 9A | | 9DC | | | | 12HJ
12FE | | 6KN8 9AJ 6SA7 8R 7C6 8W 9A | U7 | 9A | | | | 12FU
9CF | | 6KS6 7DF 6SC7-GT 8S 7E6 8W 9C | G8-A | 9GF | | 16KS8 9DX 6SD7-GT 8N 7E7 8AE 9C | L8 | 9FX | | 6KT6 | Z8 | 9JE
9AE | | 6KU8 9LT 6SF7 7AZ 7F8 8BW 9E | F6 | 7S | | 6KV6 | H8-A | 9AE | | 6KV6A | | 9LY
9DC | | 6KY6 9GK 6SK7-GT 8N 7GV7 9KN 9K | C6 | 9RF | | | | 9GK | | 6KY8-A 9QT 6SN7-GT 8BD 7HG8 9MP 9K 6KZ8 9FZ 6SN7-GTA 8BD 7J7 8BL 9L | | 9FZ
9GK | | 6L4 7BR 6SN7-GTB 8BD 7K7 8BF 9M | IL8 | 9RQ | | | | 12HU
9AE | | 6L6-GA 7AC 6SS7 8N 7L7 8V 9X | .8 | 9AK | | 6L6-GB | | 4D | | 6L7-G 7T 6SV7 7AZ 7R7 8AE 10 | | 12BU
9CV | | 6LB6 12GJ 6SZ7 8Q 7S7 8BL 100 | C8 : | 9DA | | 61D8 9DX 674 7DK 7T7 8V 100 6LC6 8ML 6T5 6R 7V7 8V 101 101 6LC6 8ML 6T5 6R 7V7 8V 101 101 6LC6 | CW5
DA7 | 9CV
9EF | | 6LC8 9QY $ 6T7-G $ 7V $ 7W7 $ 8BJ $ 101 $ | DE7 | 9HF | | 6LE8 | DR7 | 9HF | | 6LF6 | | 9HX
9DX | | 6LG6 12HL 6T10 12EZ 7Z4 5AB 10 | EG7 | 8DB | | 6LH6 8ML 6U4-GT 4CG 8A8 9DC 101 | EM7 | 8BD | | 6LH6-A | | 9HF
9HF | | 6LJ6-A 8MQ 6U7-G 7R 8AC10A 12FE 101 | FR7 | 9HF | | 6LJ8 9GF 6U8 9AE 8AL9 12HE 100 | GF7 | 9QD | | | GF7-A
GK6 | 9QD
9GK | | 6LN8 9AE 6U10 12FE 8AU8-A 9DX 100 | GN8 | 9DX | | 6LQ6 9QL 6V3 9BD 8AW8-A 9DX 10l 6LQ8 9DX 6V3-A 9BD 8B10 12BF 10l | HA6
HF8 | 9NW
9DX | | 6LR6 12FY 6V4 9M 8BA8-A 9DX 103 | | 9DX
12EY | | 6LR8 9QT 6V5-GT 6AO 8BA11 12ER 100 | JA8 | 9DX | | 6LT8 | JT8
JY8 | 9DX
9DX | | 6LU8 12DZ 6V6-GTA 7AC 8BN8 9ER | , . 0 | V-2/12 | | | Tube Tube Tube Tube | | | | | | | | |----------------------------------|-----------------------------|---|--|--|--------------------------------|--|--------------------|--| | Туре | Basing | Туре | Basing | Туре | Basing | Туре | Basing | | | 10KR8
10KU8 | 9DX
9LT | 12BE6-A
12BF6 | 7CH
7BT | 12EL6
12EM6 | 7FB
9HV | 13FM7
13FR7 | 12EJ
9HF | | | 10LB8
10LE8 | 9LT
9DX | 12BF11
12BH7 | 12EZ
9A | 12EM6
12EN6
12EQ7 | 7AC | 13GB5
13GF7 | 9NH
9QD | | | 10LW8 | 9QZ
9DX | 12RH7-A | 9A | 12EZ6 | 9LQ
7BK | 13GF7-A | 9QD | | | 10LY8
10LZ8 | 9DX
9DX | 12BK5
12BK6 | 9A
9BQ
7BT | 12F5-GT
12F8 | 5M
9FH | 13J10
13JZ8 | 12BT
12DZ | | | 10T10
10Z10 | 12EZ | 10012 | 7BK
7DF | 12FA6
12FK6 | 9FH
7CH
7BT | 13JZ8A
13V10 | 12DZ
12EZ | | | 11AR11 | 12BJ
12DM | 12BN6-A | 7DF | | 7BT | 13Z10 | 12BT | | | 11BM8
11BQ11 | 9EX
12DM |
12BN6
12BN6-A
12BQ6-GTA
12BQ6-GTB
12BR3
12BR7 | 7DF
6AM
6AM
9CB
9CF
9CF | 12FM6
12FQ7
12FQ8
12FR8
12FT6
12FV7
12FX5 | 9LP
9KT
9KU | 14A4
14A5 | 5AC
6AA
8V | | | 11BQ11
11BT11
11C5 | 12GS | 12BR3 | 9CB | 12FR8 | 9KU
7BT | 14A7
14AF7 | 8V | | | 11CA11 | 12GS
7CV
12HN
12HW | 12BR7-A | 9CF | 12FV7 | 9A
7CV
9KV
9KV
9EX | 14B6 | 8AC
8W
8X | | | 11CF11
11CH11 | 12GS
9LG | 12BS3-A | 9HP | 12FX5
12FX8 | 9KV | 14B8
14BL11 | 12GC | | | 11CY7
11DS5 | 9LG
7BZ | 12BR7-A
12BS3
12BS3-A
12BT3
12BT6
12BU6
12BV7
12BV11
12BW4
12BY3
12BY7
12BY7-A
12BY7-A
12BY6 | 12BL
7BT
7BT | 12FX5
12FX8
12FX8-A
12FY8
12G4
12G8
12G11
12GC6
12GC6
12GE5
12GJ5
12GJ7 | 9KV
9EX | 14BR11
14C5 | 12GL | | | 11FY7
11HM7 | 7BZ
12EO | 12BU6 | 7BT | 12G4 | | 14C5
14C7
14E6 | 6AA
8V
8W | | | 11JE8 | 9BF
9DX | 12BV11 | 9BF
12HB
9DJ | 12G8
12G11 | 9CZ
12BU
7CH | 14E7 | 8AE | | | 11JE8
11KV8
11LQ8
11LT8 | ODX
9DX | 12BW4
12BY3 | 9DJ
9CB | 12GA6
12GC6 | 7CH
8JX | 14F7
14F8 | 8AC
8BW | | | 11LT8 | 9RL | 12BY7 | 9CB
9BF
9BF | 12GE5 | 12 P.J | 14GT8
14GT8-A | 9KR
9KR | | | 11LY6
11MS8 | 9RL
9GK
9LY | 12BZ6 | 7CM | 12GN7
12GN7-A | 9QK
9BF | 14H7 | 8V | | | 11Y9
12A | 10L
4D | 12BZ7
12C5 | 9A
7CV | 12GN7-A
12GT5 | 9BF
9NZ | 14J7
14JG8 | 8BL
9KR | | | 12A4
12A5 | 9AG
7F | 12C8 | 8E
7CV | 12GT5-A
12GW6 | 9NZ
6AM | 14N7 | 8AC
8AL | | | 12A6-GT | 7AC | 12CK3 | 9HP | 12H4 | 7DW | 14Q7
14R7 | 8AE | | | 12A7
12A8-G | 7K
8A | 12627
12C5
12C8
12CA5
12CK3
12CL3
12CM6 | 9HP
9CK
7CV | 12H6
12HE7 | 7Q
12FS | 14S7
14W7 | 8BL
8BJ | | | 12A8-GT
12AB5 | 8A
9EU | 12CN5
12CR6 | 7CV
7EA | 12HG7
12HL5 | 9BF
9QW | 14X7
14Y4 | 8BJ
8BZ
5AB | | | 12AC6 | 7BK | 12CS5 | 9GR | 12J5-GT | 6Q
7R | l 14 | 5F
8GS | | | 12AC10
12AD6 | 12FE
7CH | 12CS6
12CT3 | 7CH
9RX | 12J7-GT
12J8 | 7R
9GC | 15A8
15AB9 | 8GS
10N | | | 12AD7
12AE6 | 9A
7BT | 12CT3
12CT8
12CU5 | 9DA
7CV | 12JB6
12JB6-A | 9QL
9QL | 15A8
15AB9
15AF11
15BD11 | 12DP
12DP | | | 12AE6-A | 7BT | 12CU6 | 6AM | 12JF5 | 12JH | 15BD11-A | 12DP
9CV | | | 12AE7
12AE10 | 9A
12EZ | 12CX6
12CY6 | 7BK
7BK | 12JN6
12JN6-A | 12FK
12FK | 15CW5
15DQ8 | 9HX | | | 12AF3
12AF6 | 9CB
7BK | 12D4
12D4-A
12DB5
12DE8 | 4CG
4CG | 12JN8 | 9FA
9RA | 15DQ8
15EA7
15EW6
15EW7
15FW7
15FY7
15HA6
15HB6 | 8BD
7CM | | | 12AG6 | 7CH | 12DB5 | 9GR | 12JQ6
12JS6 | 12FY | 15EW7 | 9HF | | | 12AH7-GT
12AJ6 | 8BE
7BT | 12DE8
12DF5 | 9HG
9BS | 12JT6
12JT6-A | 9 ର୍ ଧ
9 ର୍ ଧ | 15FM7
15FY7 | 12EJ
12EO | | | 12AL5
12AL8 | 6BT
9GS | 12DF5
12DF7
12DJ8 | 9A
9DE | 12K5 | 7FD | 15HA6
15HR6 | 9NW
9NW | | | 12AL11 | 12BU | 112DK5 | 9GT
7CM | 12K7-GT
12K8-GT
12KL8 | 7R
8K | | 9QT
9QT | | | 12AQ5
12AS5 | 7BZ
7CV | 12DK6
12DK7 | 9HZ | 12KL8
12L6-GT
12L8-GT | 9LQ
7AC | 15KY8-A
15LE8 | 9QZ | | | 12AT6
12AT6-A | 7BT
7BT | 12DL8
12DM4 | 9HR
4CG | 12L8-GT
12MD8 | 8BU
9RQ | 15MF8
15MX8 | 12DZ
9OT | | | 12AT7 | 9A
7BK | 12DM4-A
12DM5 | 4CG
7CV | 12Q7-GT
12Ř5 | 7V
7CV | 16A8
16AK9 | 9QT
9EX
12GZ | | | 12AU6
12AU6-A | 7BK | 12DM7 | 9A | 12S8-GT | 8CB | 16AQ3 | 9CB | | | 12AU7
12AU7-A | 9A
9A | 12DQ4
12DQ6 | 4CG
6AM | 12SA7
12SA7-GT | 8R
8AD | 16BQ11
16BX11 | 12DM
12CA | | | 12AU8
12AV5-GA | 9DX
6CK | 12DQ6-A
12DQ6-B | 6AM
6AM | 12SC7
12SF5-GT | 8S
6AB | 1 160K8 | 9GK
12DR | | | 12AV6 | 7BT | 12DQ7 | 9BF | 12SF7-GT | 7AZ | 16GY5
16KA6
16LU8 | 12GH | | | 12AV6-A
12AV7 | 7BT
9A | 12DS7
12DS7-A | 9JU
9JU | 12SG7
12SH7 | 8BK
8BK | 16LU8A | 12DZ
12DZ | | | 12AW6
12AX3 | 7CM
12BL | 12DT5
12DT6
12DT7 | 9HN
7EN | 12SJ7-GT
12SK7-GT | 8N
8N | 16MY8
16Y9 | 12DZ
10L | | | 12AX4-GT | 4CG | 12DT7 | 9A | 12SL7-GT | 8BD | 17A8 | 9DC | | | 12AX4-GTA
12AX4-GTI | A 4CG
B 4CG | 12DT8
12DU7 | 9DE
9JX | 12SN7-GT
12SN7-GTA | 8BD
8BD | 17AB9
17AB10 | 10N
12BT | | | 12AX7
12AX7-A | 9A
9A | 12DV7
12DV8 | 9JY
9HR | 12SQ7-GT
12SR7-GT | 8Q
8Q | 17AV5-GA
17AX3 | 6CK
12BL | | | 12AY3 | 9HP | 12DW4-A | 9HP | 12SW7 | 8Q | 17AX4-GT | 4CG | | | 12AY3-A
12AY7 | 9HP
9A | 12DW5
12DW7 | 9CK
9A | 12SX7-GT
12SY7 | 8BD
8R | 17AX4-GTA
17AY3 | 9HP | | | 12AZ7
12AZ7-A | 9A
9A | 12DW8
12DY8 | 9JC
9JD | 12SY7-GT
12T10 | 8AD
12EZ | 17AY3-A
17BE3 | 9HP
12GA | | | 12B4
12B4-A | 9AG
9AG | 12DZ6
12DZ8 | 7BK
9JE | 12U7
12V6-GT | 9A
7AC | 17BE3-A
17BF11 | 12GA
12EZ | | | 12B8-GT | 8T | 12E5-GT | 6Q | 12W6-GT | 7AC | 17BF11-A | 12EZ | | | 12BA6
12BA6-A | 7BK
7BK | 12EA6
12EC8 | 7BK
9FA | 12X4
12Z3 | 5BS
4G | 17BH3
17BH3-A | 9HP
9HP | | | 12BA7
12BD6 | 8CT
7BK | 12ED5
12EF6 | 7CV
7S | 13CW4
13DE7 | 12AQ
9HF | 17BQ6-GTB
17BR3 | 6AM
9CB | | | 12BE3 | 12GA | 12EG6 | 7CH | 13DR7 | 9HF | 17B83 | 9HP | | | 12BE3-A
12BE6 | 12GA
7CH | 12EH5
12EK6 | 7CV
7BK | 13EM7
13FD7 | 8BD
9HF | 17BS3-A
17BW3 | 9HP
12FX | | | Tube | D | Tube | n · | Tube | n . | Tube | | |--------------------------|-------------------|--|---------------------------------|---|---|------------------|--| | Type | Basing
12FX | Туре | Basing | Туре | Basing | Туре | | | 17BZ3
17C5 | 7CV | 19HR6 | 7BK
7BK | 25EH5
25F5 | 7CV
7CV
7CV
9EX | 35Z3
35Z4-GT | 4Z
5AA | | 17C5
17C9 | 10F | 19HS6
19HV8 | 9FA | 25F5-A | 7CV | 35Z5-GT | 6AD | | 17C9-A | 10F | 11010 | 7BF | 25F5-A
25FY8
25HX5 | 9EX | 3526-G | 7Q
5E | | 17C9-A
17CA5
17CK3 | 10F
7CV
9HP | 19JN8
19KG8 | 9FA
9LY | 25HA5
25JO6 | 9SB
9RA | 36
36AM3 | 5E
5BQ | | 17CL3 | 9HP | 19Q9 | 10H | 25JQ6
25JZ8 | 12DZ | 36AM3-A | 5BQ | | 17CT3
17CU5 | 9RX | 19Q9
19T8
19T8-A | 9E
9E | | 7AC
7AC
7W
4CG
7AC
7Q
6E | 36AM3-B | 5BQ
12GW | | 17D4 | 7CV
4CG
4CG | 19V8 | 9AH | 25L6-GT
25N6-G
25W4-GT
25W6-GT
25W6-GT
25X6-GT
25Y5 | 7W | 36KD6
36MC6 | 9QL | | 17D4-A | 4CG | 19X8 | 9AK | 25W4-GT | 4CG | 37 | 5A | | 17DE4
17DM4 | 4CG
4CG | 20
20EO7 | 4D | 25W6-GT | 7AC | 38 | 5F
12FS | | 17DM4-A | 4CG | 20EQ7
20EW7 | 9LQ
9HF | 25Y5 | 6Ĕ | 38HE7
38HK7 | 12FS | | 17DQ4
17DQ6 | 4CG
6AM | 20EZ7 | 9PG | 25Z4 | 5AA | 39/44 | 5F
4D | | 17DQ6-A | 6AM | 21EX6
21GY5 | 5BT
12DR | 25Z5
25Z6-GT | 6E
70 | 40
40FR5 | 7CV | | 17DQ6-A
17DQ6-B | 6AM | 21HB5 | 12BJ | 26 | 7Q
4D | 40FR5
40KD6 | 12G W | | 17DW4-A
17EW8 | 9HP
9AJ | 21HB5-A
21HD5 | 12BJ
12ES | 26A6
26A7-GT | 7BK
8BU | 40KG6
41 | 9RJ
6B | | 17GE5 | 12BJ | 21HJ5 | 12FL | 26C6 | 7BT
7BK | 42 | 6B | | 17GJ5 | 90K
90K
9NZ | 21JS6A | 12FY | 26CG6 | 7BK | 42KN6 | 12GU | | 17GJ5-A
17GT5 | 9NZ | 21JV6
21JZ6 | 12FK
12GD | 26D6
26E6-G | 7CH
7S | 43
45 | 6B
4D | | 17GT5-A | 9NZ | 21KA6 | 12GH | 26HU5 | 8NB | 45B5 | 9CV | | 17GV5
17GW6 | 12DR | 21KQ6 | 9RJ
12HL | 26LW6 | 8NC
9BS | 4523 | 5AM | | 17H3 | 6AM
9FK | 21LG6
21LG6A | 12HL
12HL | 26Z5
27 | 9BS
5A | 45Z5-GT
46 | 6AD
5C | | 17HC8 | 9FK
9EX | 21LR8 | 9QT | FG-27-A | FG-27-A | 47 | 5B | | 17JB6
17JB6-A | 9QL
9QL | 21LU8
21MY8 | 12DZ
12DZ | 27GB5
27KG6 | 9NH
9RJ | 48
49 | 6A
5C | | 17JF6 | 9QL | 22 | 4K
9HP | 28D7 | 8BS | 50 | 4D | | 17JG6 | 9QU
9QU | 22BH3 | 9HP | 28GB5 | 9NH | 50A5 | 6AA | | 17JG6-A
17JK8 | 9AJ | 22BH3-A
22BW3 | 9HP
12FX | 28HA6
28HD5 | 9NW
12ES | 50AX6-G
50B5 | 7Q
7BZ | | 17JM6 | 12FJ | 22DE4 | 4CG | 28Z5
29LE6 | 6BJ | 50BK5 | 9BO | | 17JM6-A | 12FJ
12FK | 22JF6
22JG6 | 9QL
9QU | 29LE6
29GK6 | 9RJ
9GK | 50BM8
50C5 | 9EX
7CV
7CV | | 17JN6
17JN6-A | 12FK | 22JG6-A | 9QัU | 29KQ6 | 9RJ | 50C5-A | 7CV | | 17JQ6
17JR6 | 9RA | 22JR6 | 9QU | 30 | 4D
12DA | 50C6-G | 7AC | | 17JT6 | 9QU
9QU | 22JU6
22KM6 | 9QL
9QL | 30AG11
30CW5 | 9CV | 50C6-GA
50CA5 | 7AC
7CV | | 17JT6-A | 9QU
12DZ | 22KV6A | OOTI | 30HJ5 | 9CV
12FL | 50DC4 | 7AC
7AC
7CV
5BQ
8GT
7CV
7CV
7CV | | 17JZ8
17JZ8A | 12DZ
12DZ | 23JS6-A
23MB6 | 12FY
12FY
12GZ | 30JZ6
30KD6 | 12GD
12GW | 50E5
50EH5 | 8GT
7CV | | 17KV6 | 9QU
9QU | 2329 | 12GZ | 30MB6 | 12FY | 50EH5-A | 7ČV | | 17KV6A | 9QU | 24A | 5E | 31 | 4D | 50FA5
50FE5 | 7CV | | 17L6-GT
17LD8 | 7ÅC
9OT | 24BF11
24JE6-A | 12EZ
9QL | 31AL10
31JS6-A | 12HK
12FY | 50FK5 | 7CV | | 17R5 | 9QT
7CV | 24JZ8 | 12 D Z | 31JS6C | 12FY | 50FY8 | 7CV
8KB
7CV
9EX
12FN
12FN | | 17W6-GT
17X10 | 7AC
12BT | 24LQ6
24LZ6 | 9QL
9QL | 31LQ6 | 9QL
9OT | 50GY7
50GY7A | 12FN
12FN | | 18A5 | 6CK
12EZ | 25A6-GT | 7S | 31LQ6
31LR8
31LZ6 | 12HR
12FY
12FY
9QL
9QT
9QL
4R | 50HC6 | (PL | | 18AJ10 | 12EZ | 25A7-GT | 8F | 1 32 | 4K | 50HK6
50HN5 | 7FZ | | 18DZ8
18FW6 | 9JE
7CC | 25AC5-GT
25AV5-GA | 6Q
6ČK | 32ET5
32ET5-A | 7ĈV
7CV
12HT | 50JY6 | 9QW
8MG | | 18FW6-A | 7CC | 25AV5-GT
25AX4-GT | 6CK | 32HQ7 | 12HT | 50L8-GT | 7AC | | 18FX6
18FX6-A | 7CH
7CH | 25AX4-GT
25B5 | 4CG
6D | 32L7-GT | 8Z
5K | 50X6
50Y6-GT | 7AJ
7O | | 18FY6 | 7 RT | 25B6-G | 7S |
33
33GT7 | 12FC | 50Y7-GT | 7Q
8AN | | 18FY6-A | 7BT
9NH
7BK | 25B8-GT
25BK5 | 8T | 33GY7 | 12FC
12FN
12FN | 50Z6-G
50Z7-G | 7Q
8AN | | 18GB5
18GD6 | 7BK | 25BQ6-GA | 9BQ
6AM | 33GY7-A
33HE7 | 12FS | 53 | 7B | | 18GD6-A | 7BK | 25BQ6-GT | 6AM | 33JR6 | 9QU
12FK | 53HK7 | 12FS | | 18GE6
18GE6-A | 7BT
7BT | 25BQ6-GA
25BQ6-GT
25BQ6-GTB
25BR3 | 6AM
9CB | 33JV6
34 | 12FK
4M | 55
56 | 6G
5A | | 18GV8 | 9LY | 12000 | 7CV | 34CD3 | 12FX
12GK | 56R9 | 12EN | | 18HB8 | 9ME | 25C6-G | 7CV
7AC
7AC
7AC
7CV | 34CE3
34CM3 | 12GK | 57
58 | 6F
6F
12FS | | 19
19AU4
19AU4-GTA | 4CG | 25C6-GA
25CA5 | 7CV | 34GD5 | 9HP
7CV | 58HE7 | 12FS | | 19AU4-GTA | A 4CG | 25CD6-G | 5BT | 34GD5-A | 7CV
7CV | 59 | 7A
7CV | | 19BG6-GA
19BG6-GA | 5BT
5BT | 25CD6-GA
25CD6-GA
25CD6-GB | 5BT
5BT | 34R3
35/51 | 9CB
5E | 60FX5
60HL5 | 7CV
9QW | | 19C8 | 9E | 25CG3 | 12 HF | 35A5 | 6AA | 70A7-GT | 8AB | | 19CG3
19CL8-A | 12HF
9FX | 25CK3 | 9HP
9HP | 35B5
35C5 | 7BZ | 70L7-GT
71-A | 8AA
4D | | 19CL8-B | 9FX | 25CM3
25CT3
25CU6 | 9RX | 35C5-A | 7CV
7CV | 75 | 6G | | 19DE3 | 12HX | 25CU6 | 6AM | 35CD6-GA | 5BT | 76 | 5A | | 19DE7
19DK3 | 9HF
9SG | 25D4
25D8-GT | 4CG
8AF | 35DZ8
35EH5 | 9JE
7CV | 77
78 | 6F
6F | | 19DQ3
19DQ3A | 12HF | 25DK3 | 9SG | 35EH5-A | 7CV | 79 | 6H | | 19DQ3A
19EA8 | 12HF | 25DK4
25DN6 | 5BQ
5BT | 35GL6 | 7FZ
9ME | 80 | 4C | | 19EA8-A | 9AE
9AE | 25DQ6 | 6AM | 35HB8
35L6-GT | 7AC | 81
FG-81-A | 4B
3G | | 19EW7 | 9HF | 25DQ6-A
25DT5 | 6AM | 35LR6 | 12FY | 82 | 4C | | 19EZ8
19FX5 | 9KA
7CV | 25DT5
25E5 | 9HN
8GT | 35W4
35W4-A | 5BQ
5BQ | 83
83-V | 4C
4AD | | 19GQ7 | 9QM | 25EC6 | 5BT | 35Y4 | 5AL | 84/6Z4 | 5D | | Tube | | Tube | | Tube | by 101 | Tube | | |--|------------------------------------|--|--|--|--|--|---| | Туре | Basing | Туре | Basing | Туре | Basing | Type | Basing | | 85
89 | 6G | 5636 | 8DC
5637 | 5902
5903
5904 | 8DL | 6197
6201
6202
6203
6205
6206 | 9BV | | FG-97
FG-98-A | 6F
FG-97
FG-97
4E | 5638 | 5638 | 5904 | 8DJ
8DK
8DL
8DL
8DL | 6202 | 9A
5BS
9CD
8DC
8DC | | FG-98-A
V99 | FG-97
4E | 5639
5640 | 8DL
5640 | 5905
5906 | 8DL | 6203 | 9CD | | X99 | | 5641 | 6CJ | 5907 | 8DL | 6206 | 8DC | | FG-105
117L7-GT | FG-105 | 5642 | 5642 | 5908
5910 | 8DC | 6211
6211-A | 9A | | 117M7-GT | FG-1Q5
8AO
8AO
8AV
8AV | 5646 | 5645 | 5015 | 7CH | 6215 | 9A
9A
3C
9CE
8HF | | 117N7-GT | 8AV | 5647 | 5647 | i 5015A | 7CH | 6216 | 9CE | | 117L7-GT
117M7-GT
117N7-GT
117P7-GT
117Z3
117Z4-GT
117Z6-GT | 4UB | 5651-A | 5638
8DL
5640
6CJ
5642
5645
5645
5647
5BO
7BD
6CE
5665
8CJ
2E31
5676
5676
5676
5676
5670
9G
9H | 5916
5930
5931
5932
5963
5964 | 8DC
6AR
7CH
7CH
8DC
4D
5T
7AC | 6215
6216
6221
6222 | SHF | | 117Z4-GT | 5AA | 5654 | 7BD | 5931 | 5T | 6223 | 8HF
8DL
8DL | | ru-104 | 7Q
FĞ-154 | 5665 | 5665 | 5963 | 9A | 6224
6225 | SDL | | FG-172
182-B | FG172
4D | 5670 | 8CJ | 5964
5965 | 9A
7BF
9A | GL6228 | GL6228 | | 183 | 4D | 5675 | 5675 | 5965-A | 9A
8DQ
8DQ
8DR
8DS
5971
1AD4 | 6245
6247 | 8FO | | 393-A
407-A | 5AV | 5676 | 5676 | 5967
5968 | 8DQ | GL-6251 | GL6251 | | 408-A | 407-A
7BD | 5678 | 1AD4 | LEGRO | 8DŘ | 6267 | 9CO | | 414 | 414 | 5679 | 7CX | 5970 | 8DS | 6281 | 2E31 | | 485
502-A | 5A
6BS | 5687 | 9G
9H | 5971 | 5971
1AD4 | GL-6283
6286 | GL6283
5676 | | 512-AX | 512-AX | 5690 | 5690 | 5975 | 5975
8DK | 6287 | 9CT | | 575-A
627 | 575-A
4BZ | 5636
5637
5638
5638
5639
5640
5641
5645
5645
5647
5651-A
5664
5663
5665
5670
5677
5677
5677
5677
5678
5678
5679
5686
5688
5689
5688
5689
5690
5692
5693 | 5690
8BD
8BD | 5970
5971
5972
5975
5977
5987 | 8DK
8DM | 6245
6247
GL-6251
6265
6267
6281
GL-6283
6286
6287
6299
6320
6321
6325
6327
6336 | GL6228
5702
8FO
GL6251
7CM
9CQ
2E31
GL6283
5676
9CT
6299
8DG | | 672-A
673 | 672-A
2P | 5693 | 8N | 0994 | 7AC | 6321 | 8DG
6325
6327
8BD | | 678 | 678 | 5696 | 8US
7BN | 5993
5995 | 5993
5995 | 6325 | 6325
6327 | | 807 | 678
5AW | 5696
5696-A
5702
5703
5704
5718
5718
5720
5725
5726
5727
5728
5727
5728
5731
5744
5749
5750
5750 | 8CS
7BN
7BN
5702
5703
5704
8DK
8DK
8DK
7CM
6BT
7BN
5559
559
559
5744
7BK | 5998 | 8BD | | 8BD | | 816
866-A | 4P
4P | 5702 | 5702
5703 | 5998-A
6000 | 8BD
6CK | 6336-A
6350 | 8BD
9CZ
8EY | | 872-A | 4AT | 5704 | 5704 | 6004
6005 | 2AJ | 6352 | 8EY | | 884
950 | 4AT
6Q
5K
5BB | 5718
5719 | 8DK | 6011/710 | 7BZ
FG-27-A | 6355
6360 | 6355
9PW | | 954 | 5BB | 5720 | 5559 | | FG-27-A
6CO | 6384 | 6BQ
8CJ | | 955
956 | 5BC
5BB
5BD
5BD | 5725
5726 | 7CM
6BT | 6014/C1K | 4AX
8DG
7BD | 6385
6386 | 8CJ
8CJ | | 957 | 5BD | 5727 | 7BN | 6028 | 7BD | 6394 | 8CJ
8BD | | 958-A
959 | 5BE | 5728
5731 | 5559
5BC | 6029
6045 | 5676
7BF | 6394-A
6397 | 8BD
6CL | | 1612 | 7T | 5744 | 5744 | 6012
6014/C1K
6021
6028
6029
6045
6046
6049
6050
6051 | 7AC | 6414
6418 | 9A | | 1614
1620 | 7AC
7R | 5749
5750 | 7BK
7CH | 6049
6050 | 8DL
5676
6051 | 6418
6419 | 512-AX
512-AX | | 1621 | 78 | 5751 | 9A
9K | 6051 | 6051 | 6442
6463 | 6442 | | 1622
1625 | 7AC
5AZ | 1 5767 | 9K
5767 | 6072
6072-A | 9A
QA | 6463
6485 | 6442
9CZ
7BK
9DV | | 1629 | 5AZ
7AL
7AC
7AC | 5784
5785 | 5767
5702 | 6080 | 9A
8BD | | 9DV | | 1631
1632 | 7AC | 5785
5797 | 5785
8CY | 6082
6082-A | 8BD
8BD | 6486-A | 9DV
GL6512 | | 1633 | 880 | 5798 | 8CZ | 6087
6088
6092 | 5L | GL6513 | GL6513 | | 1634
1635 | 8S
8B | 5814
5814-A | 9A
9A | 6088 | 512-AX
2E31 | GL6515 | GL6515 | | 1644 | 8BU | GL5822A | GL5822A | 6094 | 2E31
9DH
7BZ
7DB | 6520 | 8BD | | 1654
2050 | 2Z
6BS | GL5822A-PC
5823 | GL5822A
4CK | 6095
6096 | 7BZ
7DR | 6525
6526 | 7BN
512-AY | | 2050-A | 6BS | 5824 | 4CK
7AC | 6097
6098 | 6BT | 6486-A
GL6512
GL6513
GL6515
6519
6520
6525
6526
6528
6528 | 9DV
9DV
GL6512
GL6513
GL6515
512-AX
8BD
7BN
512-AX
8BD
8BY | | 5544
GL5550 | 4BZ
GL5550 | 5823
5824
5825
5829 | 4P
5829 | 6098
6100 | 6BQ
6BG | 6533
6540 | 8FY
5702
7AC
9EJ | | GL5551A/ | OF FEET L | 5830 | 5830 | 6101 | 7BF | 6550 | 7AC | | GL5551A/
GL5551A-PC
GL5551A-PC
GL5551A-PC
GL5552A/
GL5552A-PC
GL5553B/
GL5553B-PC
GL5553B-PC | GL5551A | 5829
5830
5838
5839
5840
5842
5844
5847
5847-A
5851 | 6S
6S | 6106
6110 | 5L
8DJ | 6582
6582-A | | | GL5551A-PC | GL5551A | 5840 | 8DE | 6111 | 8DG
8DG | 6611 | 512-AX
512-AX
7BK
7CM
7CM | | GL5552A-PC | GL5552A | 5842
5844 | 9V
7BF | 6112
6113 | 8DG
8BD | 6612
6660 | 512-AX
7RK | | GL5553B/ | CIERROD | 5847 | 9X
9X
6CL | 6121 | 5676 | 6661 | 7CM | | GL5553B-PC | GL5553B | 5847-A
5851 | 9X
6CL | 6134
6135 | 8N
6BG | 6662
6663 | 7CM
6BT | | GL5553B
GL5553B-PC
GL5554 | GL5553B | 5852
5854 | 68
2E31 | 6136 | 7BK | 6664 | 5CE | | GL5555 | GL5555
GL5555 | 5854
5855 | 2E31
5855 | 6137
6145 | 8N
8V | 6669 | 7BZ
7CM | | 5557 | 3G | 5873 | 5873 | 6146 | 7CK | 6676
6677 | 7CM
9BV | | 5558
5559 | 5558
4BL | 5875
5876 | 1AD4
5675 | 6146-A
6146-B | 7CK
7CK | 6678
6679 | 9AE
9A | | 5560 | 4CD | 5876-A | 5675 | 6147 | 6CL | 6680 | 9A | | 5561
5563-A | 5561
5563-A | 5879
5881 | 9AD
7AC | 6152
6159-A | 5975
7CK | 6681
6688 | 9A
9EQ | | GL5564 | GL5564 | 5885 | 5885 | 6159-B | 7CK | 6690 | 8GQ | | 5590
5591 | 7BD
7BD | 5586
5890 | 5886
12J | 6169
6173 | 8EE
6173 | 6754
6763 | 9ET
6763 | | 5608-A | 7B | 5894B | 5894B | 6184 | 8EH | 6771 | 6442 | | 5610
GL5630 | 6CG
GL5630 | 5896
5897 | 8DJ
8DK | 6186
6187 | 7BD
7CM | 6788
6792 | 8DL
8GL | | 5632 | FG-27-A | 5898 | 8DK | 6188 | 8BD | 6807 | 6807 | | 5633 | 5633 | 5899 | 8DL | 6189 | 9A | 6808 | 6808 | | 5634 | 5633 | 5900 | 8DL | 6193 | 6193 | 6809 | 6807 | | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | |----------------------|---------------|----------------------|----------------------|----------------------|----------------------|--------------------|--------------------| | 6829 | 9A | 7360 | 9KS | 7841 | 7266 | 8348 |
9QN | | 6832 | 8DG | 7370 | 9 H | 7851 | 7GE | 8358 | 9QR | | 6840
6842 | 9CZ
7EQ | 7391
GL-7399 | 6299
GL7399 | 7855
7861 | 7815-R
8CJ | 8380
8382 | 12AS
12AQ | | GL-6848 | GL6848 | 7403 | 8JU | 7867 | 5BT | 8393 | 12AQ | | 6851 | 9A | 7408 | 7AC
9LN | 7868 | 5BT
9RW | 8403 | 7815-R | | 6853
6854 | 8HE
8CJ | 7427
7430 | 9LN
7430 | 7887
7888 | 8DG
8DK | 8408
8412 | 9QV
8412 | | 6856/740 | 6856 | 7462 | 7462 | 7889 | 8DG | 8413 | 8413 | | 6856/740
6858/760 | 6807 | 7486
7518/710L | 7077 | 7892 | 9H | 8414 | 8DC | | 6859/760-P
6872 | 6808
5702 | 7543 | 7518/710L
7BK | 7894
7895 | 7894
12AQ | 8417
8425 | 78
7 BK | | 6877 | 9GB | 7548 | 9LJ | 7898 | 9EP | 8425-A | 7BK | | 6883
6883-A | 7CK
7CK | 7550
7551 | 8DG
9LK | 7905
7910 | 9PB
7910 | 8426
8426-A | 7BK
7BK | | 6883-B | 7CK | 7558 | 9LK | 7911 | 7910
7911 | 8431 | 9AJ | | 6887 | 6BT | 7576 | 8KM | 7913 | 7768 | 8441 | 12AQ | | 6888
6889 | 8N
8HG | 7581
7581-A | 7AC
7AC | 7962
7963 | 8DG
8DG | 8444
8445 | 8DC
9AE | | 6897 | 2C39-B | 7586 | 12AQ | 7979 | 7979 | 8446 | 9FA | | 6900 | 9H | 7587 | 12AS | 7983 | 9PS | 8447 | 9CF | | 6913
6919 | 9A
6BT | 7588
7591 | 7296 | 7984
GL-7985 | 12EU
GL7985 | 8448
8456 | 9BF
12AQ | | 6922 | 9AJ | 7591-A | 8KQ
8KQ
7CK | 7994 | 8KM | 8457 | 9PW | | GL-6942 | GL6942 | 7607 | 7CK | 7995 | 8KZ | 8458 | 9PW | | 6943
6944 | 8DC
8DC | 7623
7624 | 6AM
6AM | GL7998/
GL7998-PC | GL7998 | 8463
8474 | 9QX
8100 | | 6945 | SDL | 7625 | 7462 | GL7998 | GL7998 | 8475 | 8100 | | 6946 | 8DK | 7626 | 7626 | GL7998-PC | GL7998 | 8475-A | 8100 | | 6947
6948 | 8DG
8DG | 7644
7645 | 6299
9HL | 8008
8032 | 2P
7CK | 8477
8477-A | 8100
8100 | | 6954 | 7CM | GL7669/ | 31111 | 8032-A | 7CK
7CK | 8478 | 8100 | | 6955 | 9A | GL7669-PC | GL7669 | 8042 | 8LJ | 8489 | 9DA | | 6968
6973 | 7BD
9EU | GL7669
GL7669-PC | GL7669
GL7669 | 8056
8058 | 12AQ
12CT | GL-8500
8506 | GL8500
8506 | | 6999 | 6999 | GL7671/ | GINOGO | 8064 | 8DL | GL-8513 | GL8513 | | 7025 | 9A | GL7671-PC | GL7671 | 8068 | 8LC | 8517 | 8DC | | 7027
7027-A | 8HY
8HY | GL7672
GL7672-PC | GL7672
GL7672 | 8070
8071 | 8LD
8LE | 8522
8524 | 8DC
8DC | | 7036 | 7CH | GL7673/ | | 8077 | 9GK | 8525 | 8DG | | 7044 | 9H | GL7673-PC | GL7673
GL7673 | 8081 | 8081 | 8526 | 8DG | | 7054
7055 | 9GT
6BT | GL7673
GL7673-PC | GL7673
GL7673 | 8082
8083 | 8081
8081 | 8527
8528 | 8DK
8DE | | 7056 | 7CM | GL7681/
GL7681-PC | | 8084 | 7CM | 8529 | 8DE | | 7057
7058 | 9AJ
9AJ | GL7681-PC
GL7681 | GL7681
GL7681 | 8096
8100 | 8FY
8100 | 8530
8532 | 8DE
7BQ | | 7059 | 9AE | GL7681-PC | GL7681 | 8102 | 9PJ | 8533 | 8533 | | 7060 | 9DA | 7683 | GL7681
9MN | 8103 | 8DG | 8534 | 8534 | | 7061
7077
7079 | 9EU
7077 | 7687
7688 | 9AE
12BA | 8106
8108 | 9PL
81 0 8 | 8535
8536 | 8535
8536 | | 7079 | 8DG | 7689 | 12BA | 8113 | 7EW | 8537 | 8537 | | 7083 | 5702 | 7690 | 12BA | 8116 | 8116 | 8538 | 8538 | | 7105
7137 | 8BD
7BO | 7695
7701 | 9PX
9MS | 8116A
8117 | 8116
8116 | 8539
8552 | 8539
7CK | | GL7151 | 7BQ
GL7151 | GL7703 | GL7703
9DX | 8117A | 8116 | 8582 | 8100 | | 7167
GL7171 | 7EW
GL7171 | 7716 | 9DX
7EW | 8118
8136 | 8118
7CM | 8582-A
8595 | 8100
8595 | | 7189 | 9CV | 7716
7717
7719 | 9MX | 8142 | 8100 | 8627 | 12CT | | 7189-A | 9LE | 17720 | 7462 | 8143 | 8100 | 8628 | 12AQ | | 7199
7211 | 9JT
7815-R | 7721
7722 | 9EQ
9EQ | 8149
8150 | 12DT
12DU | 8632
8639 | 8632
8639 | | 7212 | 7CK | 7724
7725 | 9KR | 8156 | 12EU | 8643 | 8643 | | 7216/C3JL | 7216/C3JL | 7725 | FG-27-A
7518/710L | 8185 | 8KM | 8727 | 5675 | | 7233
7234 | 9FR
9KD | 7726
7728 | 9A | 8186
8203 | 8KM
12AQ | 8745
GL-8751 | 7815-R
GL8751 | | 7235 | 9KE | 7729 | 9A | GL8205 | GL8205 | 8755 | 8755
8755A | | 7236
7239 | 8BD
9KH | 7730
7731 | 9A
9AE | 8210
8211 | 8LS
8DL | 8755A
8760 | 8755A | | 7244 | 7BF | 7732 | 7CM | 8212 | 9PY | 8808 | 8100
8808 | | 7244-A | 7BF | 7733 | 9BF | 8213 | 9PY
8LT | 8847 | 8847 | | 7245
7245-A | 7BQ
7BQ | 7734 | 9LC
9MZ | 8217
8318-A | 8100
8100 | 8847A
8859 | 8847A | | 7246 | 5676 | 7737 | 7DK | 8223 | 9AJ | GL-8866 | 8413
GL8866 | | 7247 | 9A | 7751 | 8KB | 8228 | 7894 | 8892 | 8892 | | 7258
7266 | 9DA
7266 | 7754
7757 | 9PX
9NE | 8233
8236 | 9PZ
8JC | 8893
8906 | 8893
8906 | | 7289 | 7289 | 7759 | 8DG | 8254 | 8LW | 8907 | 8907 | | 7296
7310 | 7296
4P | 7760 | 8DG | 8255 | 9NY | 8917 | 8917 | | 7311 | 7311 | 7761
7762 | 8DL
8DL | 8278
8298 | 9QB
7ČK | 9001
9002 | 7BD
7BS | | 7312 | 7312 | 7763 | 9NF | 8298-A | 7CK | 9003 | 7BD | | 7313
7314 | 7313
7314 | 7768
7784 | 7768
7784 | 8318
8319 | 8100
8LD | 9004
9005 | 4BJ
5BC | | 7318 | 9A | 7788 | 9NK | 8327 | 9CV | 9006 | 5BG
6BH | | 7327 | 8DG | 7802 | 8BD | 8334 | 7DK | GE12661 | GE12661 | | 7355
7357 | 8KN
7CK | 7803
7815 | 9AJ
7815 | 8345
8346 | 8100
8100 | GE13971
GE14501 | GE13971
GE14501 | | | | | | | | | | ## INDEX of BASING DIAGRAMS by TUBE TYPE 422 | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | |--|--|--|--|--|--|-------------------------------|-------------------------------| | GE15371
GE16231
GE16411
GE16841 | GE15371
GE16231
GE16411
GE16841 | GE17241
GE17701
GE18651
GL37207 | GE17241
GE17701
GE18651
GL37207 | GL37248
GL51025
GL51038
GL51064 | GL37248
GL51025
GL51038
GL51064 | GL51065
GL51070
GL51074 | GL51065
GL51070
GL51074 | | Tube | | INDEX OF BASING DIAGRAMS by TUBE TYPE COLOR PICTURE TUBES 49 | | | | | | | | | |---|----------------------|--|------------------------|--------------|---------------------------------|--------------|-----|-----------------------|--------------|--| | 18F222 | | | Туре | | Туре | | | Туре | | | | 1 | 10VABP22 | | 19GYP22
19GZP22 | 14BE
14BE | | | | | | | | 19VAHP22 | 11WP22 | 14BJ | 19HBP22 | 14BE | 22ASP22 | 14BE | | 25VBMP22 | 14BE | | | 13G P22 | 12DCP22
12VAHP22 | 14BH
14BH | 19HCP22
19HFP22 | | 22ATP22
22EP22 | | | 25WP22
25XP22 | | | | SILP22 | 13GP22 | 14BH | 19HJP22 | 14BE | 22JP22 | 14BE | | 25YP22 | 14BE | | | 13MP22 | 13JP22
 13LP22 | 14BH
14RH | 19HKP22
19HMP22 | 14BE
14BE | | | | 25ZP22
370AB22 | | | | 14VALPP22 | 13MP22 | 14BH | 19HNP22 | 14BH | 22QP22 | 14BE | | 370CB22 | 14BH | | | 14VALPP22 | 14BCP22
14VARP22 | | 19HQP22
 19HRP22 | | 22RP22
22SP22 | | | 490AB22 | 14BE | | | | 14VADP22 | 14BH | 19HTP22 | 14BH | 22UP22 | 14BE | | 490ADB22 | 14BE | | | | 14VAEP22
14VAFP22 | | 19HXP22
19HYP22 | | 22 W P22
22 Y P22 | | | 490AEB22
490AFB22 | 14BE
14BE | | | 1474_1722 | 14VAGP22 | 14BH | 19JAP22 | 14BH | 23EGP22 | 14BE | i | 490AGB22 | 14BE | | | ISAFP22 | 14VAHP22 | | 19JBP22
19JDP22 | | 1 23VABP22 | | | 490AHB22
490AHB22A | | | | ISAFP22 | 15ACP22 | | 19JGP22 | | 23VACP22 | 14BE | | 490AJB22 | 14BE | | | ISSP22 | 15AFP22 | | 19JKP22 | | 23VALP22 | | | 490AKB22 | 14BE
14BE | | | 15MP22 | 15GP22 | | 19JLP22 | | 23VAMP22 | | | 490ALB22 | 14BE | | | 15MP22 | 15KP22 | | 19JQP22 | | 23VAQP22 | | | 490AMB22
490ANB22 | 14BE
14BE | | | 15NP22 | 15LP22 | | 19JSP22 | | 23VARP22 | | | 490ARB22 | 14BE | | | 18BF22 | 15NP22 | 14BH | 19JYP22 | 14BE | 23VATP22 | 14BE | | 490BAB22 | 14BE | | | 15WP22 | 15RP22
15SP22 | | 19JZP22 | | 23VAXP22
23VAVP22 | | | 490BCB22 | 14BE | | | 15YP22 | 15WP22 | 14BH | 19KCP22 | 14BH | 23VAZP22 | 14BE | - 1 | | | | | 16CDP22 | 15XP22
15YP22 | | 19KDP22
19KLP22 | | 23VBAP22
23VBCP22 | | | 490BHB22 | 14BE | | | 160SP22 | 16CDP22 | 14BE | 19TP22 | 20A | 23VBDP22 | 14BE | | 490BRB22 | | | | 16DAP22 | 16CSP22 | | 19VABP22 | | 23VBJP22
23VBKP22 | | | 490BUB22 | | | | 160AFP22 | 16DAP22 | 14BE | 19VAGP22 | 14BE | 23VBNP22 | 14BE | | 490BXB22 | 14BE | | | 16VAHP22 | 16VABP22
16VACP22 | | 19VAMP22
19VANP22 | | 23VBRP22
23VBSP22 | | | 490CB22 | | | | 16VAKP22 | 16VAFP22 | 14BH | 19VAQP22 | 14BE | 23VBTP22 | 14BE | | 490EB22 | 14BE | | | 16VATP22 | 16VAHP22
16VAKP22 | | 19VATP22 | | 25ABP22
25AEP22 | 14BE
14BE | | | | | |
16VBDP22 | 16VASP22 | 14BE | 19VBDP22 | 14BE | 25AFP22 | 14BE | | 490GB22 | 14BE | | | 16VBDP22 | 16VAWP22 | | 19VBQP22 | | 25AKP22 | | | 490HB22
490JB22 | | | | | | | 19VBRP22 | 14BE | | | 1 | 490JB22A | 14BE | | | 17EAP22 | 17EVP22 | 14BH | 19VBWP22 | 14BE | 25AMP22 | 14BE | | 490KB22
490KB22A | | | | 17FGP22 | 17EXP22 | | | | | | | 490LB22 | 14BE | | | 17F1P22 | 17FGP22 | 14BH | 19VCNP22 | 14BE | 25AP22A | 1 4BE | - 1 | 490MB22
490NB22 | | | | 17FKP22 | 17FHP22
 17FJP22 | | 19VP22 | | 25AQP22
25AWP22 | | - 1 | 490RB22 | 14BE | | | 17VAOP22 | 17FKP22 | 14BH | 20VABP22 | 14BE | 25AYP22 | 14BE | | 490TB22 | 14BE | | | 17VADP22 | 17VACP22 | | 20VAEP22 | | 25AZP22
25BAP22 | | 1 | 490UB22 | | | | 18VAPP22 | 17VADP22 | | 20VAFP22 | | 25BCP22 | | | 490WB22 | 14BE | | | 18VAPP22 | 18VACP22 | 14BE | 20VAHP22 | | 25BFP22 | 14BE | l | 490XB22
490YB22 | | | | 18VAHP22 | 18VADP22 | | 20VAJP22 | | 25BGP22 | | | 490ZB22 | | | | 18VAKP22 | 18VAHP22 | 14BE | 20VANP22 | 14BE | 25BKP22 | 14BE | | | | | | 18VAMP22 | 18VAJP22
18VAKP22 | 14BE
14BE | 20VASP22
21 A X P22 | | 25BMP22
25BP22 | | | | | | | 18VAMP22 | 18VALP22 | 14BH | 21AXP22A | 14AH | 25BP22A | 14BE | | | | | | 18VARP22 | 18VAMP22
18VANP22 | | 21CYP22
21CYP22A | | 25CAP22
25CBP22 | | | | | | | 18VASP22 14BE 21FJP22 14AU 25GP22 14BE 18VATP22 14BH 21FVP22A 14AU 25GP22A 14BE 18VBAP22 14BH 21FKP22 14BE 25RP22 14BE 18VBCP22 14BE 21GFP22 14BE 25SP22 14BE 18VBDP22 14BH 21GUP22 14AU 25VABP22 14BE 18VBGP22 14BH 21GVP22 14AU 25VABP22 14BE 18VBGP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBGP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBHP22 14BH 21GWP22 14AU 25VADP22 14BE 18VBHP22 14BH 21GWP22 14AU 25VAEP22 14BE 18VBHP22 14BH 21HP22 14BE 25VAP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAF22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAP22 14BE 19EXP22 14BE 21VALP22 14BE </td <td>18VAQP22</td> <td>14BE</td> <td> 21FBP22</td> <td>14AU</td> <td>25FP22</td> <td>14BE</td> <td></td> <td></td> <td></td> | 18VAQP22 | 14BE | 21FBP22 | 14AU | 25FP22 | 14BE | | | | | | 18VAPP22 | 18VASP22 | 14BE | 21FJP22 | 14AU | 25GP22 | 14BE | | | | | | 18VBAP22 | 18VATP22 | 14BE | 21FJP22A | 14AU | 25GP22A | 14BE | | | | | | 18VBDP22 | 18VBAP22 | 14BE | 21GFP22 | | 25SP22 | | | | | | | 18VBEP22 | 18VBCP22 | | 21GRP22 | 14BE | 25UP22 | 14BE | | | | | | 18VBHP22 | 18VBEP22 | 14BH | 21GVP22 | 14AU | 25VACP22 | 14BE | | | | | | 18VBMP22 14BH 21HBP22 14BE 25VAFP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAGP22 14BE 18VBMP22 14BE 21VADP22 14BE 25VAP22 14BE 19EXP22 14BE 21VADP22 14BE 25VAMP22 14BE 19FMP22 14BE 21VALP22 14BE 25VAMP22 14BE 19FMP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VAP22 14BE 25VAZP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GWP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 24BP22 14BE 25VBAP22 14BE | | | 21GWP22
21GYP22 | | 25VADP22
25VAEP22 | | | | | | | 18VBMP22 14BE 21VACP22 14BE 25VAJP22 14BE 19EXP22 14BE 21VACP22 14BE 25VAKP22 14BE 19EYP22 14BE 21VAVP22 14BE 25VAWP22 14BE 19FXP22 14BE 21VAKP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VALP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GWP22 14BE 21VARP22 14BE 25VBAP22 14BE 19GWP22 14BE 22VABP22 14BE 25VBAP22 14BE | 18VBJP22 | 14BH | 21HBP22 | 14BE | 25VAFP22 | 14BE | | | | | | 19EXP22 | 18VBMP22 | | | | 25VAJP22 | | | | | | | 19FMP22 14BE 21VAKP22 14BE 25VAQP22 14BE 19FXP22 14BE 21VALP22 14BE 25VAWP22 14BE 19GLP22 14BE 21VAQP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22AHP22 14BE 25VBAP22 14BE | 19EXP22 | 14BE | 21VADP22 | 14BE | 25VAKP22 | 14BE | | | | | | 19GLP22 14BE 21VAQP22 14BE 25VAXP22 14BE 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22VBGP22 14BE | 19FMP22 | 14BE | 21VAKP22 | | 25 V A WI F 22
25 V A Q P 22 | | | | | | | 19GSP22 14BE 21VARP22 14BE 25VAZP22 14BE 19GVP22 14BE 21VAUP22 14BE 25VBAP22 14BE 19GWP22 14BE 22AHP22 14BE 25VBAP22 14BE | 19FXP22 | 14BE | 21VALP22 | 14BE | 25VA WP22 | | | | | | | 19GWP22 14BE 22AHP22 14BE 25VBGP22 14BE | 19GSP22 | 14BE | 21VARP22 | 14BE | 25VAZP22 | 14BE | 1 | | | | | 19GXP22 14BE 22ALP22 14BE 25VBJP22 14BE | 19GVP22
19GWP22 | | 21VAUP22
22AHP22 | | 25VBAP22
25VBGP22 | | | | | | | | 19GXP22 | | 22ALP22 | | 25VBJP22 | 14BE | | | | | # INDEX of BASING DIAGRAMS by TUBE TYPE Monochrome Picture Tubes | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube | Basing | |------------------------|--------------------|--------------------------------------|--------------|---------------------|---------------------------------|---------------------|--------------------------| | 2EP4 | 8JK | | 7GR | 16BNP4 | 8HR | Type
17CP4A | 12D | | 5AXP4 | 128 | 12CTP4
12CVP4 | 7GR | 16BRP4 | 8HR | 17CAP4 | 8HR | | 7DP4 | 12C | 12CWP4 | 7GR | 16BSP4 | 8HR | 17CBP4 | 12L | | 7RP4
8AP4 | 12D
12 H | 12CZP4
12DEP4 | 7GR
7GR | 16BUP4
16BVP4 | 8HR
8HR | 17CDP4
17CEP4 | 8HR | | 8AP4A | 12H | 12DEP4 | 7GR
7GR | 16BWP4 | 8HR | 17CFP4 | 12L
12L | | 8DP4 | 12AB | 12DGP4 | 7GR | 16BXP4 | 7FA | 1 17CGP4 | 12L | | 8JP4
8LP4 | 8JL | 12DHP4 | 8HR | 16BYP4 | 8HR | 17CKP4 | 8HR | | 8MP4 | 7FA
12L | 12DKP4
12DMP4 | 7GR
8HR | 16CP4
16CAP4 | 12D
8HR | SG-17CKP4
17CLP4 | 8HR
12L | | 8XP4 | 128 | 12DQP4 | 8HR | 16CEP4 | 8HR | 17CMP4 | 12L | | 8YP4
9ACP4 | 7FG
7GR | 12KP4 | 12N | 16CFP4 | 7GR | 17CNP4 | 12L | | 9AGP4 | 7GR | 12KP4A
SG-12KP4A | 12N
12N | 16CHP4
16CHP4A | 8HR
8HR | 17CRP4 | 12L
7FA | | 9AGP4
9QP4
9QP4A | 12AD | 12LP4 | 12N | 16CJP4
16CKP4 | 8HR | 17CSP4
17CTP4 | 8HR | | 9QP4A
9SP4 | 12AD | 12LP4A | 12N
12N | 16CKP4 | 8HR | 17CUP4 | 12L | | 9TP4 | 8HR
8HR | 12LP4C
12TP4 | 12N
12D | 16CMP4
16CNP4 | 8HR
7GR | 17CVP4
17CWP4 | 8HR
8HR | | 9UP4 | 7GR | 12UP4 | 12D | 16CQP4 | 7GR | 17CXP4 | 12L | | 9VP4
9WP4 | 7GR | 12UP4A | 12D | 16TP4 | 8HR | 17CYP4
17CZP4 | 12L | | 9YP4 | 7GR
7GR | 12UP4B
12VABP4 | 12D
8HR | 16CUP4
16CWP4 | 8HR
7GR | 17UZP4
17DAP4 | 12L
8JK | | 10ABP4 | 12L | 12VP4 | 12G | 16CXP4 | 7GR | 17DBP4 | 121. | | 10ABP4A | 12L | 12VP4A | 12G | 16DP4 | 12D | 17DCP4 | 12L | | 10ABP4B
10ABP4C | 12L
12L | 12YP4
12ZP4 | 12P
12N | 16DP4A
16DCP4 | 12D
7GR | 17DEP4
17DHP4 | 8JN
8HR | | 10ADP4 | 12L | 12ZP4A | 12N
12N | 16DCP4A | 7GR | 17DJP4 | 12L | | 10AEP4 | 12L | 13AP4 | 8HR | 16EP4 | 12D | 17DKP4 | 8JR | | 10ARP4
10ASP4 | 7GR
7GR | 13DP4
14ACP4 | 8HR
12L | 16EP4A
16EP4B | 12D
12D | 17DLP4
17DQP4 | 8HR
7FA | | 10BP4 | 12N | 14AEP4 | 12L | 16GP4 | 12D | 17DRP4 | 8JK | | 10BP4A | 12N
12N | 14AJP4 | 8HR | 16GP4A | 12D | 17DSP4 | 8HR | | 10BP4C
10BP4D | 12N
12N | SG-14AJP4 | 8HR
12L | 16GP4B
16GP4C | 12D
12D | 17DTP4 | 8HR
12L | | 10DP4 | 12M | 14ARP4
14ASP4 | 8HR | 16HP4 | 12N
12N
12N
12N
12N | 17DWP4
17DXP4 | 8JR | | 10FP4 | 12N | 14ATP4 | 12L | 16HP4A | 12N | 17DZP4 | 8HR | | 10FP4A
SG-10FP4A | 12N
12N | 14AUP4 | 12L
8HR | 16JP4
16JP4A | 12N
12N | 17EAP4
17EBP4 | 12AT
8HR | | 10MP4 | 12G | 14AVP4
14AWP4 | 12L | 16KP4 | 12N
12N | 17EFP4 | 8HR | | 10MP4A
10RP4 | 12G
12L | 14BP4
14BP4A | 12N
12N | 16KP4A
SG-16KP4A | 12N
12N | 17EHP4
17EKP4 | 8HR
12L | | 11AP4 | 8HR | 14BDP4 | 12IV
12I. | 16LP4 | 12N
12N | 17ELP4 | 8HR | | 11AP4
11BP4 | 8HR | 14CP4 | 12L
12N | 16LP4A | 12N | 17EMP4 | 8HR | | 11CP4
11DP4 | 8HR
8HR | 14CP4A
SG-14CP4A | 12N
12N | 16MP4
16MP4A | 12N
12N
12N
12N
12N | 17EQP4
17ESP4 | 8HR
8HR | | 11EP4 | 8HR | 14CP4B | 12N
12D | 16QP4 | 121) | 17FCP4 | 8HR | | 11FP4 | 8HR | 14DP4 | 12D | 16RP4 | 12N
12N | 17FDP4 | 8HR | | 11GP4
11HP4 | 8HR
8HR | 14EP4
14GP4 | 12N
12L | 16RP4A
16RP4B | 12N
12N | 17FP4
17FP4A | 12L
12L | | 11HP4A | 8HR | 14HP4 | 12L | 16SP4 | 12N
12N
12N
12N | 17GP4 | 12M | | 11JP4
11KP4 | 8HR
8HR | 14NP4
14NP4A | 12L
12L | 16SP4A
16TP4 | 12N
12N | 12HP4
17HP4A | 12L
12L | | 11LP4 | 8HR | 140P4 | 12L
12L | I ISTIPA | 12D | 17HP4B | 12L | | 11MP4 | 8HR | 14QP4
14QP4A
14QP4B | 12L | 16VAUP4
16VP4 | 8HR | SG-17HP4B | 12L | | 11QP4
11RP4 | 7GR
7GR | SG-14QP4A | 12L
12L | 16VP4
16WP4 | 12D
12D | 17HP4C
17JP4 | 12L
12N | | 11TP4 | 8HR | 14RP4 | 12L | 16WP4A | 12N
12N | 17KP4 | 12P | | 11UP4 | 7GR | 14RP4A | 12L | 16WP4B | 12N | 17KP4A | 12P | | 12AYP4
12AZP4 | 8HR
8HR | 14SP4
14UP4 | 12L
12D | 16XP4
16YP4 | 12D
12N | 17LP4
17LP4A | 12L
12L | | 12BAP4 | 8HR | 14WP4 | 12L | 16ZP4 | 12N
12N | SG-17LP4A | 12L | | 12BEP4 | 7FA | SG-14WP4 | 12L | 17AP4
17ATP4 | 12N | 17LP4B
17QP4 | 12L | | 12BFP4
12BGP4 | 7GR
8HR | 14XP4
14XP4A | 12L
12L | 17ATP4A | 12L
12L | 17OP4A | 12N
12N | | 12BJP4 | 8HR | 14ZP4 | 12L | 17AVP4
17AVP4A | 12L | SG-17QP4A
17QP4B | 12N
12N
12N
12N | | 12BKP4
12BLP4 | 8HR
8HR | 15ADP4
15JP4 | 8HR
8HR | 17AVP4A
17BP4 | 12L
12D | 17QP4B
17ŘP4 | 12N
12L | | 12BMP4 | 7GR | 16AP4 | 12D | 17BP4A | 12N | 17RP4C | 12L | | 12BNP4
12BNP4A | 8HR | 16AP4A | 12D | 17BP4B | 12N
12N | 17SP4 | 12 P | | 12BNP4A | 8HR
8HR | 16ABP4
16ACP4 | 12P
12P | SG-17BP4B
17BP4C | 12N
12N | 17TP4
17UP4 | 12M
12N | | 12BQP4
12BSP4 | 8HR | 16AEP4 | 12L | 17BP4D | 12N | 17VP4 | 12L | | 12BTP4 | 8HR | 16ANP4 | 8HR | 17BJP4 | 12L | 17VP4B | 12L | | 12BUP4
12BUP4A | 8HR
8HR | 16AEP4
16ANP4
16AQP4
16ASP4 | 8HR
8HR | SG-17BJP4
17BKP4 | 12L
12L | 17YP4
18VAGP4 | 12N
8HR | | 12BUP4B | 8HR | 116A'I'P4 | 8HR | 17BKP4A | 12L | 18VAGP4
19AP4 | 12D | | 12BUP4C
12BVP4 | 8HR
7GR | 16AUP4
16AVP4 | 8HR
7FA |
17BMP4
17BNP4 | 12L
12L | 19AP4A
19AP4B | 12D
12D | | 12BZP4 | 7GR
7GR | 16AWP4 | 8HR | 17BRP4 | 8HR | 119AP4C | 12D | | 12CBP4 | 7FA | 16AXP4
16AYP4 | 8HR | 17BSP4 | 12L | 19AP4D
19ABP4 | 12D
8JK | | 12CDP4
12CEP4 | 7GR
7GR | 16AYP4
16AZP4 | 8HR
8HR | 17BTP4
17BUP4 | 12AJ
12L | 119ACP4 | 8JK
8HR | | 12CFP4 | 7GR | 16BAP4 | 8HR | 17BVP4 | 7FA | 19AEP4
19AFP4 | 8HR | | 12CHP4
12CNP4 | 7GR | 16BDP4 | 8HR | 17BWP4 | 7FA | 19AFP4
19AHP4 | 8HR
8HR | | 12CNP4A | 7GR
7GR | 16BEP4
16BFP4 | 8HR
8HR | SG-17BWP4
17BYP4 | 7FA
7FA | 19AJP4 | 7FA | | 12COP4 | 8HR | 16BGP4 | 8HR | 17BZP4 | 8HR | 19ALP4 | 8HR | | 12CSP4 | 7GR | 16BMP4 | 8HR | 17CP4 | 12D | 19ANP4 | 8JR | ### Monochrome Picture Tubes | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube | Basing | |----------------------------|------------|--|----------------------------|-------------------------|------------|---------------------|------------| | 10 A O D4 | 8HR | 19FHP4 | 8HR | SC 91 A TIDAD | 12L | Type
91CDD4 | 8HR | | 19AQP4
19ARP4 | 8HR | 19FJP4 | 8HR | SG-21AUP4B
21AUP4C | 12L | 21GBP4
21GCP4 | 8HR | | 19ASP4 | 8HR | 19FJP4A | 8HR | 21A VP4 | 12L | 21GEP4 | 8HR | | 19ATP4 | 8JR | 19FKP4 | 8HR | 21AVP4
21AVP4A | 12L | 21GHP4 | 8HR | | 19ATJP4 | 8HR | 19FLP4 | 8HR | 21AVP4B | 12L | 21GJP4 | 8HR | | 19AVP4
19AXP4
19AYP4 | 8HR | 19FNP4 | 8HR | 21AVP4C | 12L | 21GKP4 | 8HR | | 19AXP4 | 8HR | 19FRP4 | 8HR | 21AWP4 | 12N | 21GTP4 | 8HR | | 19AYP4 | 8HR | 19FTP4 | 8HR | 21AWP4A | 12N | 21JP4 | 12N | | 19BAP4
19BCP4 | 8HR
8HR | 19FWP4
19GP4 | 8HR
12D | SG-21AWP4
SG-21AWP4A | 12N
19N | 21JP4A
21KP4 | 12N
12S | | 19BDP4 | 12L | 12GAP4 | 8HR | 21AYP4 | 12L | 21KP4A | 128
12P | | 19BEP4 | 8HR | 19GBP4 | 8HR | 21BAP4 | 12L | 21MP4 | 12M | | 19BFP4 | 12L | 19GEP4 | 8HR | 1 21BCP4 | 12L | 21VASP4 | 8HR | | 19BHP4 | 8HR | 19GFP4 | 8HR | 21BDP4
21BNP4 | 12L | 21VATP4 | 8HR | | 19BLP4 | 8HR | 19GHP4 | 8HR | 21BNP4 | 12L | 21WP4 | 12N | | 19BMP4
19BNP4 | 8HR
8HR | 19GJP4
19GJP4A | 8HR
8HR | 21BSP4
21BTP4 | 12N
12L | 21WP4A | 12N
12N | | 10ROP4 | 8HR | 19GKP4 | 8HR | 21CBP4 | 12L | SG-21WP4A
21WP4B | 12N
12N | | 19BQP4
19BRP4 | 8HR | 19GMP4 | 8HR | 21CBP4A | 12L | 21 X P4 | 12L | | 19BSP4 | 8HR | 19HAP4 | 8HR | 21CBP4B | 12L | 21XP4
21XP4A | 12L | | 19BTP4 | 8JR | 19HGP4 | 8HR | l 21CDP4 | 12L | SG-21XP4A | 12L | | 19BUP4 | 8HR | 19JP4 | 12D | 21CDP4A | 12L | 21XP4B | 12L | | 19BVP4 | 8HR | 19QP4
19VAHP4 | 12L | 21CEP4 | 8HR | 21YP4 | 12L | | 19BWP4
19CAP4 | 8HR
8JR | 19VAHP4
19VAJP4 | 8HR
8HR | 21CEP4A
21CGP4 | 8HR
12L | 21YP4A
SG_21VP4A | 12L
12L | | 19CDP4 | 7FA | 19VBNP4 | 8HR | 21CHP4 | 12L
12L | SG-21YP4A
21YP4B | 12L
12L | | 19CEP4 | 8HR | 19XP4 | 8HR | 21CKP4 | 12L | 21ZP4 | 12D | | 19CFP4 | 8HR | 19YP4 | 8JR | 21CKP4
21CLP4 | 12AJ | 21ZP4A | 12N | | 19CGP4 | 12L | 19ZP4 | 8HR | { 21CM P4 | 12L | 21ZP4B | 12N | | 19CHP4
19CJP4 | 8HR | 20ABP4 | 8HR | 21CQP4
21CSP4 | 7FA | SG-21ZP4B | 12N
12N | | 19CJP4
19CKP4 | 8HR
8HR | 20ADP4 | 8HR | 21CSP4
21CUP4 | 7FA | 21ZP4C
22AFP4 | IZN
OUD | | 19CLP4 | 12L | 20AEP4
20AHP4 | 8HR
8HR | 21CVP4 | 12N
12L | 22AFP4
22TP4 | 8HR
8HR | | 19CMP4 | 8HR | 20CP4 | 12D | 21CWP4 | 12L | 22VABP4 | 8HR | | 19CMP4A | 8HR | 20CP4A | 12N | 21CXP4
21CZP4 | 12L | 22VACP4 | 8HR | | 19CQP4
19CRP4 | 7FA | I 20CP4B | 12D | 21CZP4 | 8HR | 22VAMP4 | 8HR | | 19CRP4 | 12L
8HR | 20CP4C | 12D | 21DP4
21DAP4 | 12M
8HR | 22VANP4 | 8HR | | 19CUP4
19CVP4 | 8HR | 20CP4D
SG-20CP4D | 12N
12N | 21DEP4 | 8HR | 22VARP4
22VASP4 | 8HR
8HR | | 19CXP4 | 7FA | 20DP4 | 12D | 21DEP4A | 8HR | 22VATP4 | 8HR | | 19CYP4 | 8HR | 20DP4A | 12N | SG-21DEP4A | 8HR | 22ZP4 | 8HR | | 19CZP4 | 8HR | 20DP4B | 12D | 21DFP4 | 8HR | 23ACP4 | 12L | | 19DP4 | 12N | 20DP4C | 12N
12N | 21DHP4 | 8HR | 23AFP4 | 12L | | 19DP4A
19DAP4 | 12N
8HR | 20DP4D
20FP4 | 12N
12M | 21DJP4
21DKP4 | 12L
8HR | 23AHP4
23AKP4 | 12L
8JR | | 19DRP4 | 7FA | 20GP4 | 12L | 21DKP4A | 8HR | 23ALP4 | 8HR | | 19DBP4
19DCP4 | 8HR | 20HP4 | 12M | 21DLP4 | 12L | 23AMP4 | 8HR | | 19DEP4 | 8HR | 20HP4A | 12L | 21DMP4 | 8HR | I 23ANP4 | 12L | | 19DFP4 | 8HR | 20HP4B | 12M | 21DNP4 | 12L | 23AQP4
23ARP4 | 8HR | | 19DHP4 | 8HR | 20HP4C
20HP4D | 12M
12L | 21DQP4
21DRP4 | 12L
12L | 23ARP4 | 8HR
12L | | 19DJP4
 19DKP4 | 8HR
8HR | SG-20HP4D | 12L
12L | 21DSP4 | 12L | 23ASP4
23ATP4 | 12L
12L | | 19DLP4 | 8HR | 20HP4E | 12L | 21DVP4 | 12L | 23AUP4 | 12L | | 19DNP4 | 8HR | 20JP4 | 12P | 21DWP4 | 8HR | 23AVP4 | 8HR | | 19DQP4
19DRP4 | 8HR | 20LP4 | 12L | 21EP4 | 12D | 23 A W P4 | 12L | | 19DKP4 | 8HR | 20MP4 | 12L | 21EP4A | 12N
12N | 23AXP4 | 8HR | | 19DSP4
19DUP4 | 8HR
8HR | 20RP4
20SP4 | 8HR
8HR | 21EP4B
SG-21EP4B | 19N | 23AYP4
23AZP4 | 8HR
12L | | 19DVP4 | 8HR | 20TP4 | 8HR | 21EP4C | 12N | 23BP4 | 8HR | | 19DWP4 | 8HR | ! 20UP4 | 8HR | 21EAP4 | 12N
8JK | 23BAP4 | 8HR | | 19DYP4 | 8HR | 20WP4 | 8HR | 1 21ELP4 | 12L | 23BCP4 | 8HR | | 19DZP4 | 8HR | 20XP4
20YP4 | 8HR | 21EMP4
21ENP4 | 8HR | 23BDP4
23BEP4 | 12L
8HR | | 19EP4
19EAP4 | 12D
8HR | 20YP4
20ZP4 | 8HR
8HR | 21EOP4 | 12L
8JR | 23BEP4
23BEP4A | 8HR
8HR | | 19EBP4 | 8HR | 21AP4 | 12D | 21EQP4
21ERP4 | 8JR | 23BGP4 | 8HR | | 19ECP4 | 8HR | 21ACP4 | 12N | 21ESP4 | 8JS | 23BHP4 | 8HR | | 19EDP4 | 8HR | 21ACP4A | 12N | 21EVP4 | 8JK | 23RJP4 | 12L | | 19EFP4 | 8HR | SG-21ACP4A | 12N | 21EXP4 | 8JR | 23BKP4 | 12L | | 19EGP4
19EHP4 | 8HR
8HR | 21AFP4
21ALP4 | 12 M
12 L | 21EZP4
21FP4 | 8JR
12M | 23BLP4
23BMP4 | 12L
12L | | 19EHP4A | 8HR | 21ALP4
21ALP4A | 12L
12L | 21FP4
21FP4A | 12M
12L | 23BMP4
23BNP4 | 8HR | | 19EJP4 | 8HR | l 21ALP4B | 12L | 21FP4C | 12L | 23BQP4 | 8HR | | 19EKP4
19ELP4 | 7FA | 21AMP4 | 12L | SG-21FP4C | 12L | 23BRP4 | 8JR | | 19ELP4 | 8HR | 21AMP4A | 12L | 21FP4D | 12L | 23BSP4 | 8HR | | 19ENP4
19ENP4A | 8HR
8HR | 21AMP4B
21ANP4 | 12N
12M | 21FAP4
21FCP4 | 8JR
8HR | 23BTP4
23BVP4 | 12L
12L | | 19ESP4 | 8HR | OTANIDAA | 12M
12M | 21FOP4 | 8KW | 23BXP4 | 12L
12L | | 19ETP4 | 8HR | 21AQP4
21AQP4A
21AQP4A
21ARP4 | 12D | 21FLP4 | 12L | 23BXP4
23BYP4 | AJR. | | 19EUP4 | 8HR | 21AQP4A | 12D | SG-21FLP4 | 12L | 23BZP4 | 12L | | 19EZP4 | 7FA | 21ARP4 | 12N | 21FMP4 | 8HR | 23CP4 | 8HR | | 19FP4
19FBP4 | 12D
8HR | 21ARP4A
21ASP4 | 12N
12M | 21FUP4
21FVP4 | 8HR
8HR | 23CP4A
23CAP4 | 8HR
12L | | 19FCP4 | 8HR | 21ATP4 | 12M
12L | 21FWP4 | 8HR | 23CBP4 | 8HR | | 19FDP4 | 8HR | 21ATP4A | 12L | 21FXP4 | 8HR | 23CDP4 | 12L | | 19FEP4 | 8HR | I 21 ATPAR | 12L | 21FYP4 | 8HR | 23CEP4 | 8HR | | 19FEP4A | 8HR | 21AUP4
21AUP4A | 12L | 21FZP4 | 8HR | 23CGP4
23CMP4 | 12L
8HR | | 19FEP4B
19FGP4 | 8HR
8JR | 21AUP4A
21AUP4B | 12L
12L | 21GAP4
21GAP4A | 8HR
8HR | 23CQP4 | 8HR | | 101.01.1 | WIL | LIAVITO | **** | MUNEAU | CALLE | 20 CATI | JALLE | ### INDEX of BASING DIAGRAMS by TUBE TYPE ### Monochrome Picture Tubes | Tube | | Tube | | Tube | | Tube | | |----------------------------|-------------------|------------------|-------------------|-------------------------|---|-------------------------|--| | Туре | Basing | Туре | Basing | Туре | Basing | Туре | Basing | | 23CSP4 | 8JR | 23FP4A | 8HR | 23HZP4 | 8HR | 24CP4A | 12N | | 23CTP4 | 12L | 23FAP4 | 8HR | 23JP4 | | SG-24CP4A | 12N | | 23CUP4 | 8JR | 23FBP4 | 12L
8HR | 23JAP4 | 7FA
8HR
8HR
8HR
8HR
8HR
8HR
8HR
8HR
8HR
8HR | 24CP4B | 12N
12N | | 23CVP4 | 8JR | 23FCP4 | 8HR | 23JBP4 | 8HR | 24DP4 | 12L
12L
12L
12N
12N
12N
12N | | 23CWP4 | 8JR | 23FDP4 | 8HR
8HR
8HR | 23JEP4 | 8HR | 24DP4A | 12L | | 23CXP4
23CZP4 | SIB | 23FHP4 | 8HR | 23JFP4 | 8HR | 24QP4
24TP4 | 12N | | 23CZP4 | 12L
8JR
8HR | 23FKP4 | 8HR | 23JGP4 | 8HR | 24TP4 | 12N | | 23DP4 | 8JR | 23FLP4 | 12L
8HR | 23JLP4 | 8HR | 24VP4 | 12N | | 23DAP4 | 8HR | 23FMP4 | 8HR | 23KP4 | 8HR | 24VP4A | 12N | | 23DBP4 | 8HR | 23FNP4 | 12L
8HR | 23KP4A | 8HR | 24VP4A
24XP4 | 12D | | 23DCP4 | 8HR | 23FRP4 | 8HR | 23MP4 | 8HR | 24YP4 | 191. | | 23DEP4 | 8HR | 23FSP4 | 8HR | 23MP4A | 8HR | 24ZP4 | 12T. | | 23DFP4 | 8HR | 23FVP4 | 8HR | 23NP4 | 8HR | 25DP4 | 8HR | | 23DHP4 | 8HR
8HR | 23FVP4A | 8HR | 23RP4 | 8JR
8HR | 25EP4 | 12L
8HR
8HR
8HR
8HR
8HR
8HR | | 23DJP4 | 8HR | 23FWP4 | 12L | 23SP4 | 8HR | 25HP4 | 8HR | | 23DKP4 | 12L
12L | 23FWP4A | 12L
8HR | 23SP4
23TP4
23UP4 | 12L
8HR | 25HP4
25JP4
25KP4 | SHR | | 23DLP4 | 12L | 23GP4 | 8HR | 231TP4 | 8HR | 25KP4 | SHR | | 23DLP4A | 12T. | 23GBP4 | 8HR | 23VP4 | 8HR | 25LP4 | SHR | | 23DNP4
23DQP4
23DRP4 | 12L
8HR
8HR | 23GDP4
23GEP4 | 8HR
8HR | 23WP4 | 8HR | 25TP4 | 8HR
8HR | | 23DQP4 | 8HR | 23GEP4 | 121. | 23XP4 | 12L | 27AP4 | 12M | | 23DRP4 | 8HR | 23GHP4 | 12L
8HR | 23YP4 | 12L | 27ABP4 | SHR | | 23DSP4 | 8HR | 23GJP4 | 8HR | 23ZP4 | 12L | 27ACP4 | 121. | | 23DSP4A | 8HR | 23GJP4A | 8HR | 23ZP4
24AP4 | 12D | 27ADP4 | 12M
8HR
8HR
8HR
8HR
12D
12D
12N
12N
12N
12N
12N
12N
12N | | 23DTP4 | 12L | 23GKP4 | 12L | 24AP4A | îžĎ | 27AEP4 | 8HR | | 23DVP4 | 8HR | 23GRP4 | 12L | 23AP4B | 12D | 27AFP4 | 8HR | | 23DVP4A | 8HR | 23GSP4 | 8HR | 24ADP4 | 12N | 27AGP4 | SHR | | 23DWP4
23DYP4 | 8HR | 23GTP4 | 8HR | 24AEP4 | 19I. | 97F.D4 | 12D | | 23DYP4 | 8HR | 23GVP4 | 8HR | SG-24AEP4 | 12L
8HR | 27GP4
27LP4 | 12D | | 23DZP4 | 8HR | 23GWP4 | 8HR | 24 A H P4 | 8HR | 27 LP4 | 12N | | 23EP4 | 8KP | 23GXP4 |
8HR | 24AJP4 | 12L | 27MP4 | 12D | | 23EAP4 | 12L | 23HP4 | 8HR | 24AJP4
24ALP4 | 12L
8HR | 27NP4 | 12N | | 23ECP4 | 12L | 23HBP4 | 8HR | 24AMP4 | 7FA | 27RP4 | 12N | | 23EDP4 | 12L
8HR | 23HFP4 | 8HR | 24ANP4 | 7FA
12L | 27RP4A | 12N | | 23EFP4 | 8HR | 23HFP4A | 8HR | 24AQP4 | 8HR | SG-27RP4 | 12N | | 23EKP4 | 12I. | 23HGP4 | 8HR | 24ASP4 | 12L | 27SP4 | 12L | | 23ENP4
23EQP4
23ERP4 | 12L
8HR | 23HKP4 | 8HR | 24ATP4 | 12L | 27UP4 | 12L | | 23EQP4 | 8HR | 23HLP4 | 8HR | 24AUP4 | 12L | 27VP4 | 12L | | 23ERP4 | 8HR | 23HMP4 | 8HR | 24AVP4 | 8JK | 27WP4 | 12L
12AJ | | 23ESP4 | 8HR | 23HQP4 | 8HR | 24AWP4 | 8HR | 27XP4 | 19T. | | 23ETP4 | 8HR | 23HRP4 | 8HR | 24AXP4 | 8HR | 27YP4 | 12L | | 23EWP4 | 8HR | 23HUP4 | 8HR | 24BP4 | 12M | 27ZP4 | 12L
8HR
12D | | 23EWP4A | 8HR | 23HUP4A | 8HR | 24BP4
24BAP4 | 12M
8HR | 30BP4 | 12D | | 23EYP4 | 12L | 23HWP4 | 8HR | 24BCP4 | 12L | | | | 23EZP4 | 8HR | 23HW P4A | 8HR | 24BEP4 | 12L
8KW | | | | 23FP4 | 8HR | 23HXP4 | 8HR | 24CP4 | 12N | | | ### Vidicons | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | Tube
Type | Basing | |--------------|--------|--------------|----------|--------------|--------|--------------|--------| | 7038 | 8HM | Z7911 | 8HM | Z7975HRB | 8ME | 8541A | 8ME | | 7038V | 8HM | Z7912 | 8ME | 27996B | 8ME | 8541X | 8ME | | 7262A | 8HM | Z7919 | 8ME | Z7996HRB | 8ME | 8572 | 8ME | | 7263A | 8HM | Z7927B | Z7927B | 8134 | 8LN | 8572V | 8ME | | 7735A | 8HM | Z7927HRB | Z7927HRB | 8134V | 8LN | 8573A | 8ME | | 7735B | 8HM | Z7929R.B.G | 8LN | 8484H | 8HM | 8573X | 8ME | | 7735BX | 8HM | Z7975B | 8ME | 8507A | 8ME | 8604 | 8ME | ## ESSENTIAL CHARACTERISTICS BASING DIAGRAMS Basing diagrams on the following pages are schematic representations of the terminal connections for tube types shown on pages 22 thru 275 and pages 306 thru 347. The diagrams are arranged in numerical-alphabetical order with a listing of all tube types having that particular basing arrangement. This listing is useful as a preliminary search for interchangeable tube types. Basing diagrams for Color Picture Tubes, listed on pages 306 thru 317, appear on page 471. Basing diagrams for Monochrome Picture Tubes, listed on pages 318 thru 345, appear on page 472. Basing diagrams for Vidicons, listed on pages 346, and 347 appear on page 473. ### **RECEIVING TUBES** 4AB 2X2, 2X2-A 4AC 6Y3-G **3**G 3C23, FG-81-A, 5557 1 LE3, 1LF3 ### **RECEIVING TUBES** 6AR6, 6098, 6384 28**Z**5 502-A, 2050, 2050-A 6F 6C6, 6D6, 57, 58, 77, 78, 89 25Y5, 25Z5 6G 2A6, 55, 75, 85 79 7BE 3B7 5J6, 6J6, 6J6-A, 19J6, 5844, 5964, 6045, 6101, 7244, 7244-A 2C21/1642 6BY6, 6CS6, 12AD6, 12AG6, 12BE6, 12CS6, 12EG6, 12FA6, 12GA6, 18FX6, 18FX6-A, 26D6, 5750, 5915, 5915-A, 7036 2E26, 6146, 6146-A, 6146-B, 6159-A, 6159-B, 6883, 6883-A, 6883-B, 8032-A, 8552 7212, 7357, 7358, 7607, 8032, 8298, 8298-A 3BZ6, 3CB6, 3CF6, 3DK6, 48Z6, 7CV (Cont'd) 4CB6, 4DE6, 4DK6, 4EW6, 4GM6, 4JK6, 4JL6, 4LU6, 15EW6, 5GM6, 5JK6, 5JL6, 6AS6, 68H6, 6BJ6, 6BJ6-A, 6BZ6, 6CB6, oCB6-A, 6CF6 6DB6, 6DC6, 6DE6, 6DK6, 6EW6, 6GM6, 6HQ6, 6JH6, 6JK6, 6JL6, 6LU6 12AW6, 12BZ6 12DK6, 15EW6, 5725, 6187, 6265, 6661, 6662, 6676, 6954, 7056, 7732, 8084, 8136 4GZ5, 6AS5, 6CA5, 6CU5, 6EH5, (Cont'd) 6GZ5, 11C5 6GZ5, 11C5 12AS5, 12C5, 12CA5, 12CN5, 12CU5, 12DM5, 12ED5, 12EH5, 12FS5, 12R5, 17C5, 17CA5, 17CU5, 17R5, 19FX5 2SC5, 25CA5, 25EH5, 25F5, 25F5-A, 32ET5, 32ET5-A, 34GD5, 35C5, 35EH5, 40FR5, 50C5, 50CA5, 50EH5, 50FA5 70 2B7, 6B7 2AF4-B, 2DX4, 2DY4, 2DY4-A, 2DZ4, 2T4, 3AF4-A, 3AF4-B, 3DX4, 3DY4, 3DY4-A, 3DZ4, 5AF4-A, 6AF4, 6AF4-A, 6AN4, 6DX4, 6DY4, 6DY4-A, 6DZ4, 6T4, 7738, 8334 116, 106 3BN6, 4BN6, 6BN6, 6KS6, 12BN6 1DY4, 1DY4-A, 2AF4, 2AF4-A, 7DW 12H4 6F7 7EA 6CR6, 12CR6 7EN 2BN4, 2BN4-A, 3BN4, 3BN4-A, 4BN4, 6BN4, 6BN4-A 3DT6, 3DT6-A, 4DT6, 4DT6-A, 5GX6, 6842 6D7, 6E7 KEY 8BV 7G8 8 BW 7F8, 14F8 8BU 12L8-GT, 26A7-GT, 1644 8**B**S 28D7 1DG3, 1DG3A 6EN4 6LW6, 26LW6 26HU5 12AU8, 7716 118T11 | 11CH11 6AG10 6KN6, 42KN6 1AD2, 1AD2-A 31AL10 32HQ7 11CF 11 7979 7985 ### **RECEIVING TUBES** 8100, 8142, 8143, 8217, 8318, 8318-A, 8345, 8081, 8082, 8083 20A # **VIDICON TUBES**