HOWARD W. SAM HANDBOOK OF

$$
\begin{aligned}
& \text { ELECTRONIC } \\
& \text { TABLES } \\
& \text { FORMULA }
\end{aligned}
$$

AN INVALUABLE REFERENCE FOR TECHNICIANS, ENGINEERS, STUDENTS, EXPERIMENTERS, AND EVERYONE IN ELECTRONICS

LaTELY REVISED EDITION used in the electronics sages show the rectum. COMPLETE by more parts, tables.

HANDBOOK OF

ELECTRONIC TABLES

\& FORMULAS

Howard W. Sams Handbook of Electronic Tables and Formulas has been planned, compiled and published by Howard W. Sams \& Co., Inc., the world's largest publisher of electronic data. Through the unique and diversified nature of the work it performs, the Sams Engineering Staff has long been close to the "pulse of the industry." As a result of this unparalleled position, this reference book has been designed as a real time-saver and working tool for engineers, technicians, students and serious hobbyists.

Checked and re-checked for accuracy and completeness, the Howard W. Sams Handbook of Electronic Tables and Formulas represents the handiest compilation of its type on the market. As such, it will serve well as a complete reference library by itself.

HOWARD W. SAMS
 HANDBOOK OF
 ELECTRONIC TABLES
 \& FORMULAS

Completely Revised,

 Updated, and Expanded
A MUST FOR ANYONE

CONNECTED WITH ELECTRONICS
Fast access to needed facts and figures is an absolute necessity to those engaged in work or study of a technical nature. The wide acceptance of the first edition of Howard W. Sams Handbook of Electronic Tables and Formulas is evidence of its success as a handy, one-source reference. This second edition has been expanded by nearly 50%-and includes much of the material suggested by purchasers of the first volume. Now, more than ever, it is truly a one-stop reference.

A unique feature of this book is the 6 -page fullcolor foldout chart, which shows the latest FCC allocations for the entire frequency spectrum. This easy-touse chart shows, at a glance, which services operate within given frequency bands, and what frequencies are allocated for specific services.

Includes Seven Major Sections

ELECTRONIC FORMULAS AND LAWS

Formulas for voltage, current, power, resistance, capacitance, inductance, coupling coefficients, Q-factors, resonance, admittance, susceptance, conductance, energy units, reactance, impedance, power factors, time constants, transformer characteristics, voltage regulation, $D C$ meters, frequency, transmission line characteristics, modulation, decibels, and others.

CONSTANTS AND STANDÁRDS

Dielectric constants, conversion factors, metric prefixes, standard frequencies, time signals, frequency and power tolerances of stations, commercial operator license requirements, amateur operator license requirements, amateur bands, types of emission, TV channel frequencies, TV signal standaras, audio- and radio-frequency standards, and others.

SYMBOLS AND CODES

Q-signals, " 10 " signals, international code, Greek alphabet, electronic symbols and abbreviations, semiconductor abbreviations, color codes for transformers, resistors, and capacitors, and schematic symbols.

SERVICE AND INSTALLATION DATA

Coaxial cables, test pattern interpretation, classes of vacuum-tube operation, miniature and gas-filled lamp data, relay rewinding data, speaker connections, machine screw and drill sizes, resistance of metal and alloys, wire table, and others.

DESIGN DATA

Vacuum-tube and transistor formulas, three-phase power calculations, coil windings, filter and attenuator formulas.

MATHEMATICAL TABLES AND FORMULAS

Mathematical constants and symbols, decimal equivalent of fractions, powers of 10 , slide rule, algebraic operations, geometric formulas, trigonometric functions, binary numbers, Boolean algebra, and common logarithms.

MISCELLANEOUS DATA

Temperature conversion, power consumption of appliances, characteristics of the elements, measures and weights, metric equivalents, winds, hydraulic equations, and others.

Hownsidann
 HANDBOOK OF

ELECTRONIC TABLES \& formulas

Compiled and Edited by
DONALD HERRINGTON and STANLEY MEACHAM
Members, Howard W. Sams Engineering Staff

HOWARD W. SAMS \& CO., INC. THE BOBBS-MERRILL COMPANY, INC.

Indianapolis - New York

SECOND EDITION
 FIRST PRINTING - FEBRUARY, 1962
 SECOND PRINTING - DECEMBER, 1962
 THIRD PRINTING - MARCH, 1964
 FIRST EDITION
 FIRST PRINTING - NOVEMBER, 1959
 SECOND PRINTING - JULY, 1960

 HANDBOOK OF ELECTRONIC

 HANDBOOK OF ELECTRONIC TABLES AND FORMULAS

Copyright © 1959, 1962, and 1964 by Howard W. Sams \& Co., Inc., Indianapolis 6, Indiana. Printed in the United States of America.

Reproduction or use, without express permission, of editorial or pictorial content, in any manner, is prohibited. No patent liability is assumed with respect to the use of the information contained herein.

Library of Congress Catalog Card Number: 62-12659

PREFACE

In the Preface to the first edition of this book, published in November, 1959, we asked for recommendations of additional items to consider for inclusion in a future edition. Many suggestions were received and considered; most of them are incorporated in this volume. Hence, this book contains the information which users of the first editionengineers, technicians, students, experimenters, and hobby-ists-have told us they would like to have in a comprehensive one-stop edition.

The basic formulas and laws, so important in all branches of electronics, are given in Part One. Also included are nomographs to speed up the solution of problems involving Ohm's law, power, parallel resistance, and reactance.

Useful, but hard to remember constants, and standards which have been established by the government or industry, are included in Part Two. The comprehensive Table of Conversion Factors is especially helpful in electronic computations.

Part Three contains symbols and codes which have been adopted over the years. The latest semiconductor information is included, to keep you abreast of this rapidly expanding field.

Items of particular interest to electronics service technicians are included in Part Four. Data most often used in circuit design work are given in Part Five. The filter and attenuator configurations and formulas are particularly useful to service technicians and design engineers.

Mathematical tables, formulas, and other information are presented in Part Six. Binary numbers and an introduction to Boolean algebra-the tools of the computer field-are also included in this section. Many items of a miscellaneous nature are included in Part Seven.

No effort has been spared to make this revised handbook of maximum value to anyone, in any branch of electronics. Once again your comments, criticisms, and recommendations for additional data you would like to see included in a future edition, will be welcomed.

January, 1962

TABLE OF CONTENTS

Section Page
ELECTRONICS FORMULAS AND LAWS

1. Ohm's Law for Direct Current 11
2. DC Power 11
3. Ohm's Law Nomograph 13
4. Kirchhoff's Laws 13
5. Resistance 14
6. Capacitance 17
7. Inductance 19
8. Q Factor 22
9. Resonance 22
10. Admittance 22
11. Susceptance 23
12. Conductance 23
13. Energy Units 24
14. Reactance 24
15. Impedance 25
16. Ohm's Law for Alternating Current 33
17. Average, Rms, Peak, and Peak-to-Peak Voltage and Current 34
18. Power Factor 35
19. Time Constants 35
20. Transformer Formulas 37
21. Voltage Regulation 38
22. DC Meter Formulas 39
23. Frequency and Wavelength 41
24. Transmission-Line Formulas 43
25. Modulation Formulas 44
26. Decibels and Volume Units 46
CONSTANTS AND STANDARDS
27. Dielectric Constants of Materials 51
28. Conversion Factors 52
29. Metric Prefixes 57
30. Standard Frequencies and Time Signals 59
31. Frequency and Operating Power Tolerances 65
32. Commercial Operator Licenses 68
33. Amateur Operator Privileges 70
Section34. Amateur ("Ham") Bands71
34. Types of Emission 74
35. Television Channel Frequencies 74
36. Television Signal Standards 74
37. Audio Frequency Standards 74
38. Radio Frequency Standards 74
SYMBOLS AND CODES
39. International Q Signals 80
40. "10" Signals 81
41. The International Code 81
42. Greek Alphabet 82
43. Electronic Symbols and Abbreviations 83
44. Semiconductor Abbreviations 84
45. EIA Transformer Color Codes 87
46. Resistor and Capacitor Color Codes 88
47. Electronic Schematic Symbols 88
SERVICE AND INSTALLATION DATA
48. Coaxial Cable Characteristics 95
49. Test-Pattern Interpretation 96
50. Classes of Vacuum-Tube Operation 99
51. Miniature Lamp Data 101
52. Gas-Filled Lamp Data 102
53. Light Properties of Color TV 104
54. Relay Rewinding Data 107
55. Speaker Connections 108
56. Machine Screw and Drill Sizes 110
57. Types of Screw Heads 111
58. Resistance of Metals and Alloys 111
59. Copper-Wire Table 111
DESIGN DATA
60. Vacuum-Tube Formulas 114
61. Transistor Formulas 114
62. Three-Phase Power Formulas 116
63. Coil Windings 117
64. Filter Formulas 118
65. Attenuator Formulas 127

TABLE OF CONTENTS

SectionPageMATHEMATICAL TABLES AND FORMULAS
67. Mathematical Constants 135
68. Mathematical Symbols 135
69. Decimal Equivalents of Fractions 136
70. Powers of 10 137
71. Operation of the Slide Rule 140
72. Algebraic Operations 144
73. Geometric Formulas 146
74. Trigonometric Functions 150
75. Binary Numbers 157
76. Fundamentals of Boolean Algebra 160
77. Common Logarithms 162
MISCELLANEOUS DATA
78. Power Consumption of Home Electrical Equipment 171
79. Temperature Conversion 172
80. Characteristics of the Elements 174
81. Measures and Weights 176
82. Metric Equivalents 177
83. Winds 178
84. Weight of Water 179
85. Hydraulic Equations 179
86. Miscellaneous 179
INDEX 183

LIST OF TABLES

Table Page
I Average, Rms, Peak, and Peak-to-Peak Values 34
II Time Constants versus Per Cent of Voltage or Current 36
III Decibel Table 48
IV Dielectric Constants of Materials 51
V Conversion Factors 52
VI Metric Prefixes 57
VII Metric Conversion Table 58
VIII Other Standards Stations 66
IX LF and VLF Stations 66
X Power Limits of Citizens-Band Stations 68
XI Frequency Tolerances of Citizens-Band Stations 68
XII "Ham" Bands 71
XIII Types of Emission 72
XIV Frequency Classification 79
XV Q Signals 80
XVI "10" Signals 81
XVII Greek Alphabet 82
XVIII Coaxial Cable Characteristics 95
XIX Miniature Lamp Data 102
XX Gas-Filled Lamps 103
XXI External Resistances Needed for Gas-Filled Lamps 104
XXII Machine Screw and Drill Sizes 110
XXIII Resistance of Metals and Alloys 111
XXIV Copper Wire Table 112
XXV K Factors for Calculating Attenuator Loss 129
XXVI Decimal Equivalents of Fractions 136
XXVII Trigonometric Formulas 151
XXVIII Natural Trigonometric Functions 152
XXIX Powers of 2 158
XXX Basic Rules of Symbolic Logic 161
XXXI Summary of Logical Statements 162
XXXII Common Logarithms 167
XXXIII Power Consumption of Home Electrical Equipment 171
XXXIV Characteristics of the Elements 174
XXXV Wind Designations 178

Electronics Formulas and Laws

1. OHM'S LAW FOR DIRECT CURRENT

All substances offer some obstruction to the flow of current. Ohm's law states that the current which flows is directly proportional to the applied voltage and inversely proportional to the resistance. Thus:

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{E}}{\mathrm{R}} \\
\mathrm{E} & =\mathrm{IR} \\
\mathrm{R} & =\frac{\mathrm{E}}{\mathrm{I}}
\end{aligned}
$$

where,

Fig. 1

I is the current in amperes, E is the voltage in volts, R is the resistance in ohms.

2. DC POWER

The power P expended in load resistance R when current I flows under a voltage pressure E can be determined by the formulas:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{EI} \\
& \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\
& \mathrm{P}=\frac{\mathrm{E}^{2}}{\mathrm{R}}
\end{aligned}
$$

where,
P is the power expressed in watts,
E is the voltage in volts,
I is the current in amperes,
R is the resistance in ohms.

Ohm's Law Nomograph

Fig. 2

3. OHM'S LAW NOMOGRAPH

The nomograph on the preceding page is a convenient way of solving most Ohm's law and DC power problems. If two values are known, the two unknown values can be determined by placing a straightedge across the two known values and reading the unknown values at the points where the straightedge crosses the appropriate scales. The figures in bold face (on the right side of all scales) cover one range of given values, and the figures in light face (on the left side) cover another range. For a given problem, all values must be read in either the bold- or light-face figures.

Example-What is the value of a resistor if a 10 -volt drop is measured across it and a current of 500 milliamperes (.5 ampere) is flowing through it? What is the power dissipated by the resistor?
$A N S W E R$: The value of the resistor is 20 ohms . The power dissipated in the resistor is 5 watts.

4. KIRCHHOFF'S LAWS

Kirchhoff's voltage law states: "The sum of the voltage drops around a DC series circuit equals the source or applied voltage. In other words, disregarding losses due to the wire resistance:

$$
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}
$$

where,

Fig. 3

E_{T} is the source voltage,
$\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} are the voltage drops across the individual resistors.

Kirchhoff's current law states: "The current flowing toward a point in a circuit must equal the current flowing
away from that point." Hence, if a circuit is broken up into several parallel paths, the sum of the currents through the individual paths must equal the current flowing to the point where the circuit branches, or:

$$
\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

Fig. 4
where,
I_{T} is the total current flowing through the circuit, I_{1}, I_{2}, and I_{3} are the currents flowing through the individual branches.
In a series-parallel circuit, the relationships are as follows :

$$
\begin{aligned}
\mathrm{E}_{\mathrm{T}} & =\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3} \\
\mathrm{I}_{\mathrm{T}} & =\mathrm{I}_{1}+\mathrm{I}_{2} \\
\mathrm{I}_{\mathrm{T}} & =\mathrm{I}_{3}
\end{aligned}
$$

Fig. 5

5. RESISTANCE

The following formulas can be used for calculating the total resistance in a circuit.

Resistors in series (Fig. 6) :

Fig. 6

Resistors in parallel (Fig. 7) :

$$
\mathrm{R}_{\mathrm{T}}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots}
$$

Fig. 7

Two resistors in parallel (Fig. 8) :

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Fig. 8
where,
R_{T} is the total resistance of the circuit, R_{1}, R_{2}, and R_{3} are the values of the individual resistors.

The equivalent value of resistors in parallel can be solved with the nomograph given in Fig. 9. Place a straightedge across the points on scale R_{1} and R_{2} where the known value resistors fall. The point at which the straightedge crosses the R_{T} scale will show the total resistance of the two resistors in parallel. If three resistors are in parallel, first find the equivalent resistance of two of the resistors, then consider this value as being in parallel with the remaining resistor.

If the total resistance needed is known, the straightedge can be placed at this value on the R_{T} scale and rotated to find the various combinations of values on the R_{1} and R_{2} scales which will produce the needed value.

Scales $R_{1 Y}$ and $R_{T Y}$ are used with the R_{1} scale when the values of the known resistors differ greatly. The range of the nomograph can be increased by multiplying the values of all scales by $10,100,1,000$, or more, as required.

Fig. 9

Example 1-What is the total resistance of a 50 -ohm and a 75 -ohm resistor in parallel.

ANSWER: 30 ohms.
Example 2-What is the total resistance of a 1,500 -ohm and a 14,000 ohm resistor in parallel?

ANSWER: 1,355 ohms. (Use R_{1} and $\mathrm{R}_{1 \mathrm{y}}$ scales; read answer on R_{T} scale.)

Example 3-What is the total resistance of a 75 -ohm, an 85 -ohm, and a 120 -ohm resistor in parallel?

ANSWER: 30 ohms. (First, consider the 75 -ohm and 85 -ohm resistors, which will give 40 ohms; then consider this 40 ohms and the 120 -ohm resistor, which will give 30 ohms.)

6. CAPACITANCE

(A) Total Capacitance

The following formulas can be used for calculating the total capacitance in a circuit.

Capacitors in parallel (Fig. 10) :
$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$.

Fig. 10

Capacitors in series (Fig. 11) :

$$
\mathrm{C}_{\mathrm{T}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots}
$$

Fig. 11

Two capacitors in series (Fig. 12) :

$$
\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}
$$

Fig. 12
where,
C_{T} is the total capacitance in a circuit,
$\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} are the values of the individual capacitors.
The parallel-resistance nomograph in § ${ }_{5}$ can also be used to determine the total capacitance of capacitors in series.

The capacitance of a parallel-plate capacitor is determined by :
$0.0555 f_{6}$

$$
\mathrm{C}=0.2235 \frac{\mathrm{KA}}{\mathrm{~d}}(\mathrm{~N}-1)
$$

where,
C is the capacitance in micromicrofarads, K is the dielectric constant,*
A is the area of one plate in square inches, d is the thickness of the dielectric in inches, N is the number of plates.
(B) Charge Stored

The charge stored in a capacitor is determined by :

$$
\mathrm{Q}=\mathrm{CE}
$$

where,
Q is the charge, in coulombs,
C is the capacitance in farads,
E is the voltage impressed across the capacitor.
(C) Energy Stored

The energy stored in a capacitor can be determined by :

$$
\mathrm{W}=\frac{\mathrm{CE}^{2}}{2}
$$

where,
W is the energy in joules (watt-seconds),
C is the capacitance in farads,
E is the applied voltage in volts.

[^0]
(D) Voltage Across Series Capacitors

When an AC voltage is applied across a group of capacitors connected in series (Fig. 13), the voltage drop across the combination is, of course, equal to the applied voltage. The drop across each individual capacitor is inversely proportional to its capacitance. The drop across any capacitor in a group of series capacitors is calculated by the formula:

$$
\mathrm{E}_{\mathrm{C}}=\frac{\mathrm{E}_{\mathrm{A}} \times \mathrm{C}_{\mathrm{r}}}{\mathrm{C}}
$$

Fig. 13
where,
E_{C} is the voltage across the individual capacitor in the series ($\mathrm{C}_{1}, \mathrm{C}_{2}$, or C_{3}),
E_{A} is the applied voltage,
C_{T} is the total capacitance of the series combination,
C is the capacitance of the individual capacitor under consideration.

Note: C_{T} and C may be in any unit of measurement as long as the unit selected is the same for both.

7. INDUCTANCE

The following formulas can be used for calculating the total inductance in a circuit.

Inductors in series (with no mutual inductance) (Fig. 14) :

Fig. 14

Inductors in parallel (with no mutual inductance) (Fig. 15) :

Fig. 15

Two inductors in parallel (with no mutual inductance) (Fig. 16):

$$
\mathrm{L}_{\mathrm{T}}=\frac{\mathrm{L}_{1} \times \mathrm{L}_{2}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}
$$

where,

Fig. 16
L_{T} is the total inductance of the circuit,
L_{1}, L_{2}, and L_{3} are the inductances of the individual inductors (coils).
The parallel-resistance nomograph in §can also be used to determine the total inductance of inductors in parallel.

(A) Mutual Inductance

The mutual inductance of two coils with fields interacting can be determined by :

$$
\mathrm{M}=\frac{\mathrm{L}_{\mathrm{A}}-\mathrm{L}_{\mathrm{B}}}{4}
$$

where,
M is the mutual inductance expressed in the same unit as L_{A} and L_{B},
L_{A} is the total inductance of coils L_{1} and L_{2} with fields aiding,
L_{B} is the total inductance of coils L_{1} and L_{2} with fields opposing.

(B) Coupled Inductance

The coupled inductance can be determined by the following formulas.

In parallel, with fields aiding:

$$
L_{T}=\frac{1}{\frac{1}{L_{1}+M}+\frac{1}{L_{2}+M}}
$$

In parallel, with fields opposing:

$$
L_{T}=\frac{1}{\frac{1}{L_{1}-M}+\frac{1}{L_{2}-M}}
$$

In series, with fields aiding:

$$
\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}
$$

In series, with fields opposing:

$$
\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}-2 \mathrm{M}
$$

where,
L_{T} is the total inductance,
L_{1} and L_{2} are the inductances of the individual coils, M is the mutual inductance.

(C) Coupling Coefficient

When two coils are inductively coupled to give transformer action, the coupling coefficient is determined by:

$$
\mathrm{K}=\frac{\mathrm{M}}{\sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2}}}
$$

where,
K is the coupling coefficient, M is the mutual inductance, L_{1} and L_{2} are the inductances of the two coils.

(D) Energy Stored

The energy stored in an inductor can be determined by:

$$
\mathrm{W}=\frac{\mathrm{LI}^{2}}{2}
$$

where,
W is the energy in joules (watt-seconds),
L is the inductance in henries,
I is the current in amperes.

8. Q FACTOR

The ratio of reactance to resistance is known as the Q factor. It can be determined by the following formulas.

For a coil wherein R and L are in series :

$$
\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}
$$

For a capacitor wherein R and C are in series:

$$
\mathrm{Q}=\frac{1}{\omega \mathrm{RC}}
$$

For a capacitor wherein R and C are in parallel:

$$
\mathrm{Q}=\omega \mathrm{RC}
$$

where,
Q is a ratio expressing the factor of merit,
ω equals $2 \pi f$,
L is the inductance in henries,
R is the resistance in ohms,
C is the capacitance in farads.

9. RESONANCE

The resonant frequency, or the frequency at which the reactances of the circuit add up to zero ($\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$), is determined by the formula:

$$
\mathrm{f}_{\mathrm{R}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

where,
f_{R} is the resonant frequency in cycles per second,
L is the inductance in henries,
C is the capacitance in farads.
The resonant frequency of various combinations of inductance and capacitance can also be obtained from the reactance charts in §14. Simply lay a straightedge across the values of inductance and capacitance, and read the resonant frequency from the frequency scale of the chart.

10. ADMITTANCE

The measure of the ease with which alternating current flows in a circuit is the admittance of the circuit.

Admittance of a series circuit is given by :

$$
Y=\frac{1}{\sqrt{R^{2}+X^{2}}}
$$

Admittance is also expressed as the reciprocal of impedance; thus:

$$
\mathrm{Y}=\frac{1}{\mathrm{Z}}
$$

where,
Y is the admittance in mhos,
R is the resistance in ohms,
X is the reactance in ohms,
Z is the impedance in ohms.

11. SUSCEPTANCE

The susceptance of a series circuit is given by :

$$
\mathrm{B}=\frac{\mathrm{X}}{\mathrm{R}^{2}+\mathrm{X}^{2}}
$$

When the resistance is zero, susceptance becomes the reciprocal of reactance; thus:

$$
\mathrm{B}=\frac{1}{\mathrm{X}}
$$

where,
B is the susceptance in mhos,
X is the reactance in ohms,
R is the resistance in ohms.

12. CONDUCTANCE

Conductance is the measure of the ability of a component to conduct electricity. Conductance for DC circuits is expressed as the reciprocal of resistance; therefore:

$$
\mathrm{G}=\frac{1}{\mathrm{R}}
$$

where,
G is the conductance in mhos,
R is the resistance in ohms.

Ohm's law formulas when conductance is considered are:

$$
\begin{aligned}
\mathrm{I} & =\mathrm{EG}=\stackrel{\mathrm{E}}{\mathrm{k}} \\
\mathrm{G} & =\frac{\mathrm{I}}{\mathrm{E}} \\
\mathrm{E} & =\frac{\mathrm{I}}{\mathrm{G}}
\end{aligned}
$$

where,
I is the current in amperes,
E is the voltage in volts,
G is the conductance in mhos, R is the resistance in ohms.

13. ENERGY UNITS

Energy is the capacity or ability to do work. The joule is a unit of energy. One joule is the amount of energy required to maintain a current of one ampere for one second through a resistance of one ohm. It is equivalent to a watt-second. The watt-hour is the practical unit of energy; 3600 wattseconds equals one watt-hour. The number of watt-hours is calculated:

$$
\text { Watt-hours }=P \times T
$$

where,
P is the power in watts,
T is the time in hours the power is dissipated.
See § 6 for the energy stored in a capacitor, and § 7 for the energy stored in an inductor.

14. REACTANCE

The opposition to the flow of alternating current by the inductance or capacitance of a component or circuit is called the reactance.

(A) Capacitive Reactance

The reactance of a capacitor may be calculated by the formula:

$$
\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}
$$

where,
X_{C} is the reactance in ohms, f is the frequency in cycles per second, C is the capacitance in farads.

(B) Inductive Reactance

The reactance of an inductor may be calculated by the formula:

$$
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}
$$

where,
X_{L} is the reactance in ohms, f is the frequency in cycles per second, L is the inductance in henries.

(C) Reactance Charts

Charts for determining unknown values of reactance, inductance, capacitance, and frequency are given on the following pages. The chart in Fig. 17A covers 1 to 1,000 cycles, Fig. 17B covers 1 to 1,000 kilocycles, and Fig. 17C covers 1 to 1,000 megacycles.

To find the amount of reactance of a capacitor at a given frequency, lay the straightedge across the capacitor value and the frequency. Then read the reactance from the reactance scale. By extending the line, the value of an inductance which will give the same reactance can be obtained.

Since $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}$ at resonance, by laying the straightedge across the capacitance and inductance values, the resonant frequency of the combination can be determined.

Example-If the frequency is 10 cycles per second and the capacitance is 50 mfd , what is the reactance of the capacitor? What value of inductance will give this same reactance?

ANSWER: The reactance is 310 ohms. The inductance needed to produce this same reactance is 5 henries. Thus, it follows that a $50-\mathrm{mfd}$ capacitor and a 5 -henry choke are resonant at 10 cps . [Place the straightedge, on the proper chart (Fig. 17A), across 10 cps and 50 mfd . Read the values indicated on the reactance and inductance scales.]

15. IMPEDANCE

The basic formulas for calculating the total impedance are as follows.

For parallel circuits:

$$
\mathrm{Z}=\frac{1}{\sqrt{\mathrm{G}^{2}+\mathrm{B}^{2}}}
$$

Reactance Chart - 1 cps to 1 kc

Fig. 17A

Reactance Chart - 1 kc to 1 mc

Fig. 17B

Reactance Chart - 1 mc to $1,000 \mathrm{mc}$

Fig. 17C

For series circuits:

$$
\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}
$$

where,
Z is the total impedance,
G is the total conductance or the reciprocal of the total parallel resistance,
B is the total susceptance,
R is the total resistance,
X is the total reactance.
The following formulas can be used to find the impedance of the various combinations of inductance, capacitance, and resistance.

For a single resistance (Fig. 18) :

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{R} \\
& \theta=0^{\circ}
\end{aligned}
$$

Fig. 18

For resistances in series (Fig. 19) :

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots \\
\theta & =0^{\circ}
\end{aligned}
$$

Fig. 19

For a single inductance (Fig. 20) :

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{X}_{\mathrm{L}} \\
\theta & =90^{\circ}
\end{aligned}
$$

\qquad
L Fig. 20

For inductances in series (with no mutual inductance) (Fig. 21) :
$\begin{aligned} \mathrm{Z} & =\mathrm{X}_{\mathrm{L}_{1}}+\mathrm{X}_{\mathrm{L}_{2}}+\mathrm{X}_{\mathrm{L}_{3}}+\ldots \\ \theta & =90^{\circ}\end{aligned}$

Fig. 21
For a single capacitance (Fig. 22) :

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{X}_{\mathrm{C}} \\
\theta & =90^{\circ}
\end{aligned}
$$

Fig. 22

For capacitances in series (Fig. 23) :

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{X}_{\mathrm{C}_{1}}+\mathrm{X}_{\mathrm{C}_{2}}+\mathrm{X}_{\mathrm{C}_{3}}+\ldots \\
\theta & =90^{\circ}
\end{aligned}
$$

Fig. 23

For resistance and inductance in series (Fig. 24) :

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}} \\
& \theta=\arctan \frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}
\end{aligned}
$$

Fig. 24

For resistance and capacitance in series (Fig. 25) :

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}} \\
& \theta=\arctan \frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}
\end{aligned}
$$

Fig. 25

For inductance and capacitance in series (Fig. 26) :
When X_{L} is larger than $\mathbf{X}_{\mathbf{C}}$

$$
\mathrm{Z}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}
$$

When X_{C} is larger than X_{L}

Fig. 26

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}} \\
\theta & =0^{\circ} \text { when } \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
\end{aligned}
$$

For resistance, inductance, and capacitance in series (Fig. 27) :

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
& \theta=\arctan \frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}
\end{aligned}
$$

Fig. 27

For resistances in parallel (Fig. 28) :

$$
\begin{aligned}
& \mathrm{Z}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots} \\
& \theta=0^{\circ}
\end{aligned}
$$

Fig. 28

For inductances in parallel (with no mutual inductance) (Fig. 29) :

$$
\begin{aligned}
& \mathrm{Z}=\frac{1}{\frac{1}{\mathrm{X}_{\mathrm{L}_{1}}}+\frac{1}{\mathrm{X}_{\mathrm{L}_{2}}}+\frac{1}{\mathrm{X}_{\mathrm{L}_{3}}}+\ldots} \\
& \theta=90^{\circ}
\end{aligned}
$$

Fig. 29

For capacitances in parallel (Fig. 30) :

For resistance and inductance in parallel (Fig. 31) :

$$
\begin{aligned}
& \mathrm{Z}=\frac{\mathrm{RX}}{\mathrm{~L}} \\
& \sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}} \\
& \theta=\arctan \frac{\mathrm{R}}{\mathrm{X}_{\mathrm{L}}}
\end{aligned}
$$

Fig. 31

For capacitance and resistance in parallel (Fig. 32) :

$$
\begin{aligned}
& \mathrm{Z}=\frac{\mathrm{RX}}{\mathrm{X}_{\mathrm{C}}} \\
& \sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}} \\
& \theta=\arctan \frac{\mathrm{R}}{\mathrm{X}_{\mathrm{C}}}
\end{aligned}
$$

Fig. 32

For capacitance and inductance in parallel (Fig. 33) :
When X_{L} is larger than X_{C} :
$\mathrm{Z}=\frac{\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}}{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}$
When X_{C} is larger than X_{L} :
$\mathrm{Z}=\frac{\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}$

Fig. 33

$$
\theta=0^{\circ} \text { when } \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
$$

For inductance, capacitance, and resistance in parallel (Fig. 34) :

$$
\begin{aligned}
& \mathrm{Z}=\frac{\mathrm{RX}_{\mathrm{L}} \mathrm{X}_{\mathrm{C}}}{{\sqrt{\mathrm{X}_{\mathrm{L}}{ }^{2} \mathrm{X}_{\mathrm{C}}^{2}+\mathrm{R}^{2}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}^{2}} \begin{aligned}
& \\
& \theta \arctan \frac{\mathrm{R}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{X}_{\mathrm{L}} \mathrm{X}_{\mathrm{C}}}
\end{aligned}
\end{aligned}
$$

Fig. 34

For inductance and series resistance in parallel with resistance (Fig. 35) :

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{R}_{2} \sqrt{\frac{\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}} \\
& \theta=\arctan \frac{\mathrm{X}_{\mathrm{L}} \mathrm{R}_{2}}{\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{r}}{ }^{2}+\mathrm{R}_{1} \mathrm{R}_{2}}
\end{aligned}
$$

Fig. 35

For inductance and series resistance in parallel with capacitance (Fig. 36) :

For capacitance and series resistance in parallel with inductance and series resistance (Fig. 37) :

$$
\mathrm{Z}=\sqrt{\frac{\left(\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)\left(\mathrm{R}_{2}{ }^{2}+\mathrm{X}_{\mathrm{c}}{ }^{2}\right)}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}
$$

Fig. 37
$\theta=\arctan \frac{\mathrm{X}_{\mathrm{L}}\left(\mathrm{R}_{2}{ }^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}\right)-\mathrm{X}_{\mathrm{C}}\left(\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)}{\mathrm{R}_{1}\left(\mathrm{R}_{2}{ }^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}\right)+\mathrm{R}_{2}\left(\mathrm{R}_{1}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)}$
where,
Z is the impedance in ohms,
R is the resistance in ohms,
L is the inductance in henries,
X_{L} is the inductive reactance in ohms,
X_{C} is the capacitive reactance in ohms,
θ is the phase angle in degrees by which the current leads the voltage in a capacitive circuit or lags the voltage in an inductive circuit. 0° indicates an in-phase condition.

16. OHM'S LAW FOR ALTERNATING CURRENT

The fundamental Ohm's law formulas for alternating current are given by :

$$
\begin{aligned}
\mathrm{E} & =\mathrm{IZ} \\
\mathrm{I} & =\frac{\mathrm{E}}{\mathrm{Z}} \\
\mathrm{Z} & =\frac{\mathrm{E}}{\mathrm{I}}
\end{aligned}
$$

Fig. 38
where,
E is the voltage in volts,
I is the current in amperes,
Z is the impedance in ohms.
The power expended in an AC circuit is calculated by the formula:

$$
\mathrm{P}=\mathrm{EI} \cos \theta
$$

where,
P is the power in watts,
E is the voltage in volts,
I is the current in amperes,
θ is the phase angle in degrees.
The phase angle is the difference in degrees by which the current leads or lags the voltage in a reactive circuit. In a series circuit, the phase angle is determined by the formula:

$$
\theta=\arctan \frac{X}{\mathrm{R}}
$$

where,
X is the inductive or capacitive reactance in ohms, R is the nonreactive resistance in ohms.

Therefore:
For a purely resistive circuit:

$$
\begin{aligned}
\theta & =0^{\circ} \\
\cos \theta & =1 \\
\mathrm{P} & =\mathrm{EI}
\end{aligned}
$$

For a resonant circuit:

$$
\begin{aligned}
\theta & =0^{\circ} \\
\cos \theta & =1 \\
\mathrm{P} & =\mathrm{EI}
\end{aligned}
$$

For a purely reactive circuit:

$$
\begin{aligned}
\theta & =90^{\circ} \\
\cos \theta & =0 \\
\mathrm{P} & =0
\end{aligned}
$$

17. AVERAGE, RMS, PEAK, AND PEAK-TO-PEAK VOLTAGE AND CURRENT

The following table can be used to convert sinusoidal voltage (or current) values from one method of measurement to another. To use the table, first find the given type of reading in the left-hand column, then find the desired type of reading across the top of the table. To convert the given value to the desired value, multiply the given value by the factor listed under the desired value.

Example-What factor must peak voltage be multiplied by to obtain rms voltage?

ANSWER: .707.

Table I. Average, Rms, Peak, and Peak-to-Peak Values

Given Value	Multiplying Factor To Get			
	Average	Rms	Peak	Peak-to-Peak
Average	-	1.11	1.57	3.14
Rms	0.9	-	1.414	2.828
Peak	0.637	0.707	-	2.0
Peak-to-Peak	0.32	0.3535	0.5	-

18. POWER FACTOR

Power factor is the ratio of true power to apparent power in an alternating circuit. Thus:

$$
\begin{aligned}
\mathrm{pf} & =\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{A}}}=\frac{\mathrm{EI} \cos \theta}{\mathrm{EI}} \\
& =\cos \theta
\end{aligned}
$$

Fig. 39
where,
pf is the power factor,
P_{T} is the true power in watts,
P_{A} is the apparent power in volt-amperes,
EI $\cos \theta$ is the true power in watts,
EI is the apparent power in volt-amperes.

Therefore:
For a purely resistive circuit:

$$
\begin{aligned}
\theta & =0^{\circ} \\
\mathrm{pf} & =1
\end{aligned}
$$

For a resonant circuit:

$$
\begin{aligned}
\theta & =0^{\circ} \\
\mathrm{pf} & =1
\end{aligned}
$$

For a purely reactive circuit:

$$
\begin{aligned}
\theta & =90^{\circ} \\
\mathrm{pf} & =0
\end{aligned}
$$

19. TIME CONSTANTS

A certain amount of time is required, after a DC voltage has been applied to an R-C or R-L circuit, before the capacitor can charge or the current can build up to a portion of the full value. This time is called the time constant of the circuit. However, the time constant is not the time required for the voltage or current to reach the full value; instead, it is the time required to reach 63.2% of full value. During the next time constant, the capacitor is charged or the current builds
up to 63.2% of the remaining difference, or to 86.5% of the full value. Table II gives the per cent of full charge on a capacitor, or current buildup in an inductance after each time constant. Theoretically, the charge on the capacitor, or the current through the coil, can never reach 100%. However, it is usually considered to be 100% after five time constants.

Table II. Time Constants versus Per Cent of Voltage or Current

No. of Time Constants	\% Charge or Buildup	\% Discharge or Decay
1	63.2	36.8
2	86.5	13.5
3	95.0	5.0
4	98.2	1.8
5	99.3	0.7

Likewise, when the voltage source is removed, the capacitor will discharge or the current will decay 63.2%, or to 36.8% of full value during the first time constant. Table II also gives the per cent of full voltage after each time constant for discharge of a capacitor or decay of the current through a coil.

The time per time constant is calculated as follows.
For an R-C circuit (Fig. 40) :

$$
\mathrm{T}=\mathrm{RC}
$$

Fig. 40
For an R-L circuit (Fig. 41) :

$$
T=\frac{L}{\mathrm{R}}
$$

Fig. 41
where,
T is the time in seconds,
R is the resistance in ohms,
C is the capacitance in farads,
L is the inductance in henries.

In addition, the values can also be expressed by the following relationships:

T	R	C or L
seconds	megohms	microfarads
seconds	megohms	microhenries
microseconds	ohms	microfarads
microseconds	megohms	micromicrofarads
microseconds	ohms	microhenries

20. TRANSFORMER FORMULAS

In a transformer, the relationships between the number of turns in the primary and secondary, the voltage across each winding, and the current through the windings are expressed by the equations:

$$
\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}} \quad \text { and } \quad \frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{s}}}=\frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{p}}}
$$

By rearranging these equations, any unknown can be determined from the following formulas:

$$
\begin{aligned}
& E_{p}=\frac{E_{s} N_{p}}{N_{s}}=\frac{E_{\mathrm{s}} I_{\mathrm{s}}}{\mathrm{I}_{\mathrm{p}}} \\
& \mathrm{E}_{\mathrm{s}}=\frac{\mathrm{E}_{\mathrm{p}} N_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{p}}}=\frac{\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{s}}} \\
& \mathrm{~N}_{\mathrm{p}}=\frac{\mathrm{E}_{\mathrm{p}} \mathrm{~N}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{p}}} \\
& \mathrm{~N}_{\mathrm{s}}=\frac{\mathrm{E}_{\mathrm{s}} \mathrm{~N}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{s}}} \\
& \mathrm{I}_{\mathrm{p}}=\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{p}}} \\
& \mathrm{I}_{\mathrm{s}}=\frac{\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}}
\end{aligned}
$$

Fig. 42

The turns ratio of a transformer is determined by the following formulas:

For a step-up transformer:

$$
\mathrm{T}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{p}}}
$$

For a step-down transformer:

$$
\mathrm{T}=\frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}}
$$

The impedance ratio of a transformer is determined by :

$$
\mathrm{Z}=\mathrm{T}^{2}
$$

The impedance of an unknown winding is determined by the following:

For a step-up transformer:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{p}}=\frac{\mathrm{Z}_{\mathrm{s}}}{\mathrm{Z}} \\
& \mathrm{Z}_{\mathrm{s}}=\mathrm{Z} \times \mathrm{Z}_{\mathrm{p}}
\end{aligned}
$$

For a step-down transformer:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{p}}=\mathrm{Z} \times \mathrm{Z}_{\mathrm{s}} \\
& \mathrm{Z}_{\mathrm{s}}=\frac{\mathrm{Z}_{\mathrm{p}}}{\mathrm{Z}}
\end{aligned}
$$

where,
E_{p} is the voltage across the primary winding,
E_{g} is the voltage across the secondary winding,
N_{p} is the number of turns in the primary winding,
N_{s} is the number of turns in the secondary winding,
I_{p} is the current through the primary winding,
I_{s} is the current through the secondary winding,
T is the turns ratio,
Z is the impedance ratio,
Z_{p} is the impedance of the primary winding,
Z_{s} is the impedance of the secondary winding.

21. VOLTAGE REGULATION

When a load is connected to a power supply, the output voltage drops because more current flows through the resistive elements of the power supply. Voltage regulation is a measure of how much the voltage drops and is usually expressed as a percentage. It is determined by the following formula:

$$
\% \mathrm{R}=\frac{\mathrm{E}_{1}-\mathrm{E}_{2}}{\mathrm{E}_{2}} \times 100
$$

where,
$\% \mathrm{R}$ is the voltage regulation in per cent,
E_{1} is the no-load voltage,
E_{2} is the voltage under load.

22. DC METER FORMULAS

The basic instrument for testing current and voltage is the moving-coil meter. The meter can be either a DC milliammeter or a DC microammeter. A series resistor converts the meter to a DC voltmeter, and a parallel resistor converts the meter to a DC ammeter. The resistance of the meter movement is determined first, as follows. Connect a suitable variable resistor R_{a} and a battery as shown in Fig. 43. Adjust resistor R_{a} until full-scale deflection is obtained. Then connect a variable resistor R_{b} in parallel with the meter, and adjust R_{b} until half-scale deflection is obtained. Disconnect

Fig. 43
R_{b} and measure its resistance. The measured value is the resistance of the meter movement.
(A) Voltage Multipliers

$$
\mathrm{R}=\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{s}}}-\mathrm{R}_{\mathrm{m}}
$$

Fig. 44
where,
R is the multiplier resistance in ohms, E_{s} is the full-scale reading in volts, I_{s} is the full-scale reading in amperes, R_{m} is the meter resistance in ohms.
(B) Shunt-type Ohmmeter for Low Resistance

$$
\mathrm{R}_{\mathrm{x}}=\mathrm{R}_{\mathrm{m}} \frac{\mathrm{I}_{2}}{\mathrm{I}_{\mathbf{1}}-\mathrm{I}_{2}}
$$

Fig. 45
where,
R_{x} is the unknown resistance,
R_{m} is the meter resistance in ohms,
I_{1} is the current reading with probes open,
I_{2} is the current reading with probes connected across unknown resistor,
R_{1} is a variable resistance for current limiting to keep meter adjusted for full-scale reading with probes open.
(C) Series-type Ohmmeter for High Resistance

$$
\mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{1}+\mathrm{R}_{\mathrm{m}}\right) \frac{\mathrm{I}_{1}-\mathrm{I}_{2}}{\mathrm{I}_{2}}
$$

Fig. 46
where,
R_{X} is the unknown resistance,
R_{1} is a variable resistance adjusted for full-scale reading with probes shorted together,
$R_{n 1}$ is the meter resistance in ohms,
I_{1} is the current reading with probes shorted,
I_{2} is the current reading with unknown resistor connected.
(D) Ammeter Shunts

$$
\mathrm{R}=\frac{\mathrm{R}_{\mathrm{m}}}{\mathrm{~N}-1}=\frac{\mathrm{I}_{\mathrm{m}} \mathrm{R}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}
$$

where,

Fig. 47
R is the resistance of the shunt, R_{m} is the meter resistance in ohms,
N is the scale multiplication factor,
I_{m} is the meter current,
I_{8} is the shunt current.
(E) Ammeter With Multirange Shunt

$$
\mathrm{R}_{2}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mathrm{R}_{\mathrm{m}}}{\mathrm{~N}}
$$

Fig. 48
where,
R_{2} is the intermediate value in ohms,
$R_{1}+R_{2}$ is the total shunt resistance for lowest full-scale reading,
R_{m} is the meter resistance in ohms,
N is the scale multiplication factor.

23. FREQUENCY AND WAVELENGTH

(A) Formulas

Since the frequency is the number of complete cycles per second and since radio waves travel at a fixed speed, it follows that a complete cycle occupies a given distance in space. The distance between two corresponding parts of two waves (the two positive or negative crests or the points where the two waves cross the zero axis in a given direction) constitutes the wavelength. If either the frequency or the wavelength is known, the other can be computed as follows:

$$
\begin{aligned}
& f=\frac{300,000}{\lambda} \\
& \lambda=\frac{300,000}{f}
\end{aligned}
$$

where,
f is the frequency in kilocycles,
λ is the wavelength in meters.
If it is desired to calculate the wavelength in feet, the following formulas should be used:

$$
\begin{aligned}
& f=\frac{984,000}{\lambda} \\
& \lambda=\frac{984,000}{f}
\end{aligned}
$$

where,
f is the frequency in kilocycles,
λ is the wavelength in feet.

(B) Conversion Chart

The wavelength of any frequency from 30 kc to 3000 mc can be read directly from the chart in Fig. 49. Likewise, if the wavelength is known, the corresponding frequency can be obtained from the chart for wavelengths from 10 centimeters to 1000 meters. To use the chart, merely find the

Frequency-Wavelength Conversion Chart

known value (either frequency or wavelength) on one of the scales, and then read the corresponding value from the opposite side of the scale.

Example-What is the wavelength of a 4 -mc signal?
ANSWER: 75 meters. (Find 4 mc on the third scale from the left. Opposite 4 mc on the frequency scale we find 75 meters on the wavelength scale.)

24. TRANSMISSION-LINE FORMULAS

The characteristic impedance of a transmission line is defined as the input impedance of a line of the same configuration and dimensions but of infinite length. When a line of finite length is terminated with an impedance equal to its own characteristic impedance, the line is said to be matched.

(A) Coaxial Line

The characteristic impedance of a coaxial line is given by :

$$
\mathrm{Z}_{\mathrm{o}}=\frac{138}{\sqrt{\mathrm{k}}} \log \frac{\mathrm{D}}{\mathrm{~d}}
$$

Fig. 50
where,
Z_{o} is the characteristic impedance,
D is the inside diameter of the outer conductor,
d is the outside diameter of the inner conductor expressed
in the same units as D,
k is the dielectric constant of the insulating material* (k equals 1 for dry air).

The attenuation of coaxial line in decibels per foot can be determined by the formula:

$$
a=\frac{4.6 \sqrt{f}(D+d)}{D \times d\left(\log \frac{D}{d}\right)} \times 10^{-\varepsilon}
$$

where,
a is the attenuation in decibels per foot of line,
f is the frequency in megacycles,
D is the inside diameter of the outer conductor in inches, d is the outside diameter of the inner conductor in inches.

[^1]
(B) Parallel-Conductor Line

The characteristic impedance of parallel-conductor line (twin-lead) is determined by the formula:

$$
\mathrm{Z}_{\mathrm{o}}=\frac{276}{\sqrt{\mathrm{k}}} \log \frac{2 \mathrm{D}}{\mathrm{~d}}
$$

where,

Fig. 51
Z_{o} is the characteristic impedance,
D is the center-to-center distance between conductors, d is the diameter of the conductors in the same units as D, k is the dielectric constant of the insulating material between conductors* (k equals 1 for dry air).

25. MODULATION FORMULAS

(A) Amplitude Modulation

The amount of modulation of an amplitude-modulated carrier is referred to as the percentage of modulation. It can be determined by the following formulas:

$$
\% M=\frac{\mathrm{E}_{\mathrm{G}}-\mathrm{E}_{\mathrm{T}}}{2 \mathrm{E}_{\mathrm{AV}}} \times 100
$$

or,

$$
\% M=\frac{E_{C}-E_{T}}{E_{C}+E_{T}} \times 100
$$

where,
$\% \mathrm{M}$ is the percentage of modulation,
E_{C} is the amplitude of the crest of the modulated carrier, E_{T} is the amplitude of the trough of the modulated carrier, E_{Av} is the average amplitude of the modulated carrier.

Also, the percentage of modulation can be determined by applying the modulated carrier wave to the vertical plates and the modulating voltage wave to the horizontal plates of an oscilloscope. This produces a trapezoidal wave, as shown in Fig. 53. The dimensions A and B are proportional to the crest and trough amplitudes, respectively. The percentage

[^2]of modulation can be determined by measuring the height of A and B , and using the formula:
$$
\% M=\frac{A-B}{A+B} \times 100
$$

Fig. 53
where,
$\% \mathrm{M}$ is the percentage of modulation,
A and B are the dimensions measured in Fig. 53.
The sideband power of an AM carrier is determined by:

$$
\mathrm{P}_{\mathrm{sB}}=\frac{\% \mathrm{M}^{2}}{2} \times \mathrm{P}_{\mathrm{C}}
$$

The total radiated power is the sum of the carrier and the radiated powers:

$$
P_{T}=P_{S B}+P_{C}
$$

where,
P_{sB} is the sideband power (includes both sidebands),
$\% \mathrm{M}$ is the percentage of modulation,
P_{C} is the carrier power,
P_{T} is the total radiated power.
Note: The carrier power does not change with modulation.

(B) Frequency Modulation

In a frequency-modulated carrier, the amount the carrier frequency changes is determined by the amplitude of the modulating signal, and the number of times the changes occur per second is determined by the frequency of the modulating signal.

The percentage of modulation of an FM carrier can be computed from:

$$
\% M=\frac{\Delta f}{\Delta f \text { for } 100 \% M} \times 100
$$

where,
$\% \mathrm{M}$ is the percentage of modulation,
Δf is the change in frequency, or the deviation,
$\Delta \mathrm{f}$ for $100 \% \mathrm{M}$ is the change in frequency for a 100% modulated carrier. (For commercial FM, 75 kc ; for television sound, 25 kc ; and for two-way radio, 15 kc .)

The modulation index of an FM carrier is determined by :

$$
M=\frac{f_{d}}{f_{u}}
$$

where,
M is the modulation index,
f_{d} is the deviation in frequency,
f_{a} is the modulating audio frequency in the same units as f_{d}.

26. DECIBELS AND VOLUME UNITS

(A) Equations

The number of decibels corresponding to a given power ratio is 10 times the common logarithm of the ratio. Thus:

$$
\mathrm{db}=10 \log \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}
$$

The number of decibels corresponding to a given voltage or current ratio is 20 times the common logarithm of the ratio. Thus, when the impedances across which the signals are being measured are equal, the equations are:

$$
\begin{aligned}
& \mathrm{db}=20 \log \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}} \\
& \mathrm{db}=20 \log \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}
\end{aligned}
$$

If the impedances across which the signals are measured are not equal, the equations become:

$$
\begin{aligned}
& \mathrm{db}=20 \log \frac{\mathrm{E}_{2} \sqrt{\mathrm{Z}_{1}}}{\mathrm{E}_{1} \sqrt{\mathrm{Z}_{2}}} \\
& \mathrm{db}=20 \log \frac{\mathrm{I}_{2} \sqrt{\mathrm{Z}_{2}}}{\mathrm{I}_{1} \sqrt{\mathrm{Z}_{1}}}
\end{aligned}
$$

(B) Reference Levels

The decibel is not an absolute value; it is a means of stating the ratio of a level to a certain reference level. Usually, when no reference level is given, it is 6 millivolts across a 500 -ohm impedance. However, the reference level should be stated whenever a value in db's is given. Other units, which
do have specific reference levels, have been established. Some of the more common are:
dbk -1 kilowatt
dbm - 1 milliwatt, 600 ohms
dbv -1 volt
dbw -1 watt
dbvg —voltage gain
dbrap-decibels above a reference acoustical power of 10^{-16} watts
VU - 1 milliwatt, 600 ohms (complex waveforms varying in both amplitude and frequency).

(C) Decibel Table

The decibel table on the following pages lists most of the current, voltage, and power ratios encountered, with their decibel values. If a db value is not listed and it is desired to find the corresponding ratio, first subtract one of the given values from the unlisted value (select a value so the remainder will also be listed). Then multiply the ratios given in the chart for each value. To convert a ratio which is not given in the table to a db value, first factor the ratio so that each factor will be a listed value; then find the db equivalents for each factor and add them.

Example 1-Find the db equivalent of a power ratio of . 631 .

ANSWER: 2-db loss.

Example 2-Find the current ratio corresponding to a gain of 43 db .

ANSWER: 141. [First find the current ratio for 40 db (100); then find the current ratio for 3 db (1.41). Multiplying, $100 \times 1.41=141$.

Example 3-Find the db value corresponding to a voltage ratio of $\mathbf{1 5 0}$.

ANSWER: 43.5. [First factor 150 into 1.5×100. The db value for a voltage ratio of 100 is 40 ; the db value for a voltage ratio of 1.5 is 3.5 (approximately). Therefore, the db value for a voltage ratio is $40+3.5$ or 43.5 db.$]$

Table III. Decibel Table (0 to 10.9 Db)

Db	Current or Voltage Ratio		Power Ratio		Db	Current or Voltage Ratio		Power Ratio	
	Gain	Loss	Gain	Loss		Gain	Loss	Gain	Loss
0	1.000	1.0000	1.000	1.0000	5.5	1.884	. 5309	3.548	. 2818
. 1	1.012	. 9886	1.023	. 9772	5.6	1.905	. 5248	3.631	. 2754
. 2	1.023	. 9772	1.047	. 9550	5.7	1.928	. 5188	3.715	. 2692
. 3	1.035	. 9661	1.072	. 9333	5.8	1.950	. 5129	3.802	. 2630
. 4	1.047	. 9550	1.096	. 9120	5.9	1.972	. 5070	3.890	. 2570
. 5	1.059	. 9441	1.122	. 8913	6.0	1.995	. 5012	3.981	. 2512
. 6	1.072	. 9333	1.148	. 8710	6.1	2.018	. 4955	4.074	. 2455
. 7	1.084	. 9226	1.175	. 8511	6.2	2.042	. 4898	4.169	. 2399
. 8	1.096	. 9120	1.202	. 8318	6.3	2.065	. 4842	4.266	. 2344
. 9	1.109	. 9016	1.230	. 8128	6.4	2.089	. 4786	4.365	. 2291
1.0	1.122	. 8913	1.259	. 7943	6.5	2.113	. 4732	4.467	. 2239
1.1	1.135	. 8810	1.288	. 7762	6.6	2.138	. 4677	4.571	. 2188
1.2	1.148	. 8710	1.318	. 7586	6.7	2.163	. 4624	4.677	. 2138
1.3	1.161	. 8610	1.349	. 7413	6.8	2.188	. 4571	4.786	. 2089
1.4	1.175	.8511	1.380	. 7244	6.9	2.213	. 4519	4.898	. 2042
1.5	1.189	. 8414	1.413	. 7079	7.0	2.239	. 4467	5.012	. 1995
1.6	1.202	. 8318	1.445	. 6918	7.1	2.265	. 4416	5.129	. 1950
1.7	1.216	. 8222	1.479	. 6761	7.2	2.291	. 4365	5.248	. 1905
1.8	1.230	. 8128	1.514	. 6607	7.3	2.317	. 4315	5.370	. 1862
1.9	1.245	. 8035	1.549	. 6457	7.4	2.344	. 4266	5.495	. 1820
2.0	1.259	. 7943	1.585	. 6310	7.5	2.371	. 4217	5.623	. 1778
2.1	1.274	. 7852	1.622	. 6166	7.6	2.399	. 4169	5.754	. 1738
2.2	1.288	. 7762	1.660	. 6026	7.7	2.427	. 4121	5.888	. 1698
2.3	1.303	. 7674	1.698	. 5888	7.8	2.455	. 4074	6.026	. 1660
2.4	1.318	. 7586	1.738	. 5754	7.9	2.483	. 4027	6.166	. 1622
2.5	1.334	. 7499	1.778	. 5623	8.0	2.512	. 3981	6.310	. 1585
2.6	1.349	. 7413	1.820	. 5495	8.1	2.541	. 3936	6.457	. 1549
2.7	1.365	. 7328	1.862	. 5370	8.2	2.570	. 3890	6.607	. 1514
2.8	1.380	. 7244	1.905	. 5248	8.3	2.600	. 3846	6.761	. 1479
2.9	1.396	. 7161	1.950	. 5129	8.4	2.630	. 3802	6.918	. 1445
3.0	1.413	. 7079	1.995	. 5012	8.5	2.661	. 3758	7.079	. 1413
3.1	1.429	. 6998	2.042	. 4898	8.6	2.692	. 3715	7.244	. 1380
3.2	1.445	. 6918	2.089	. 4786	8.7	2.723	. 3673	7.413	. 1349
3.3	1.462	. 6839	2.138	. 4677	8.8	2.754	. 3631	7.586	. 1318
3.4	1.479	. 6761	2.188	. 4571	8.9	2.786	. 3589	7.762	. 1288
3.5	1.496	. 6683	2.239	. 4467	9.0	2.818	. 3548	7.943	. 1259
3.6	1.514	. 6607	2.291	. 4365	9.1	2.851	. 3508	8.128	. 1230
3.7	1.531	. 6531	2.344	. 4266	9.2	2.884	. 3467	8.318	. 1202
3.8	1.549	. 6457	2.399	. 4169	9.3	2.917	. 3428	8.511	. 1175
3.9	1.567	. 6383	2.455	. 4074	9.4	2.951	. 3388	8.710	. 1148
4.0	1.585	. 6310	2.512	. 3981	9.5	2.985	. 3350	8.913	. 1122
4.1	1.603	. 6237	2.570	. 3890	9.6	3.020	. 3311	9.120	. 1096
4.2	1.622	. 6166	2.630	. 3802	9.7	3.055	. 3273	9.333	. 1072
4.3	1.641	. 6095	2.692	. 3715	9.8	3.090	. 3236	9.550	. 1047
4.4	1.660	. 6026	2.754	. 3631	9.9	3.126	. 3199	9.772	. 1023
4.5	1.679	. 5957	2.818	. 3548	10.0	3.162	. 3162	10.000	. 1000
4.6	1.698	. 5888	2.884	. 3467	10.1	3.199	. 3126	10.23	. 09772
4.7	1.718	. 5821	2.951	. 3388	10.2	3.236	. 3090	10.47	. 09550
4.8	1.738	. 5754	3.020	. 3311	10.3	3.273	. 3055	10.72	. 09333
4.9	1.758	. 5689	3.090	. 3236	10.4	3.311	. 3020	10.96	. 09120
5.0	1.778	. 5623	3.162	. 3162	10.5	3.350	. 2985	11.22	. 08913
5.1	1.799	. 5559	3.236	. 3090	10.6	3.388	. $2951{ }^{\circ}$	11.48	. 08710
5.2	1.820	. 5495	3.311	. 3020	10.7	3.428	. 2917	11.75	. 08511
5.3	1.841	. 5433	3.388	. 2951	10.8	3.467	. 2884	12.02	. 08318
5.4	1.862	. 5370	3.467	. 2884	10.9	3.508	. 2851	12.30	. 08128

Table III. Decibel Table-(Cont'd) (11.0 to 19.9 Db)

Db	Current or Voltage Ratio		Power Ratio		Db	Current or Voltage Ratio		Power Ratio	
	Gain	Loss	Gain	Loss		Gain	Loss	Gain	Loss
11.0	3.548	. 2818	12.59	. 07943	15.5	5.957	. 1679	35.48	. 02818
11.1	3.589	. 2786	12.88	. 07762	15.6	6.026	. 1660	36.31	. 02754
11.2	3.631	. 2754	13.18	. 07586	15.7	6.095	. 1641	37.15	. 02692
11.3	3.673	. 2723	13.49	. 07413	15.8	6.166	. 1622	38.02	. 02630
11.4	3.715	. 2692	13.80	. 07244	15.9	6.237	. 1603	38.90	. 02570
11.5	3.758	. 2661	14.13	. 07079	16.0	6.310	. 1585	39.81	. 02512
11.6	3.802	. 2630	14.45	. 06918	16.1	6.383	. 1567	40.74	. 02455
11.7	3.846	. 2600	14.79	. 06761	16.2	6.457	. 1549	41.69	. 02399
11.8	3.890	. 2570	15.14	. 06607	16.3	6.531	. 1531	42.66	. 02344
11.9	3.936	. 2541	15.49	. 06457	16.4	6.607	. 1514	43.65	. 02291
12.0	3.981	. 2512	15.85	. 06310	16.5	6.683	. 1496	44.67	. 02239
12.1	4.027	. 2483	16.22	. 06166	16.6	6.761	. 1479	45.71	. 02188
12.2	4.074	. 2455	16.60	. 06026	16.7	6.839	. 1462	46.77	. 02138
12.3	4.121	. 2427	16.98	. 05888	16.8	6.918	. 1445	47.86	. 02089
12.4	4.169	. 2399	17.38	. 05754	16.9	6.998	. 1429	48.98	. 02042
12.5	4.217	. 2371	17.78	. 05623	17.0	7.079	. 1413	50.12	. 01995
12.6	4.266	. 2344	18.20	. 05495	17.1	7.161	. 1396	51.29	. 01950
12.7	4.315	. 2317	18.62	. 05370	17.2	7.244	. 1380	52.48	. 01905
12.8	4.365	. 2291	19.05	. 05248	17.3	7.328	. 1365	53.70	. 01862
12.9	4.416	. 2265	19.50	. 05129	17.4	7.413	. 1349	54.95	. 01820
13.0	4.467	. 2239	19.95	. 05012	17.5	7.499	. 1334	56.23	. 01778
13.1	4.519	. 2213	20.42	. 04898	17.6	7.586	. 1318	57.54	. 01738
13.2	4.571	. 2188	20.89	. 04786	17.7	7.674	. 1303	58.88	. 01698
13.3	4.624	. 2163	21.38	. 04677	17.8	7.762	. 1288	60.26	. 01660
13.4	4.677	. 2138	21.88	. 04571	17.9	7.852	. 1274	61.66	. 01622
13.5	4.732	. 2113	22.39	. 04467	18.0	7.943	. 1259	63.10	. 01585
13.6	4.786	. 2089	22.91	. 04365	18.1	8.035	. 1245	64.57	. 01549
13.7	4.842	. 2065	23.44	. 04266	18.2	8.128	. 1230	66.07	. 01514
13.8	4.898	. 2042	23.99	. 04169	18.3	8.222	. 1216	67.61	. 01479
13.9	4.955	. 2018	24.55	. 04074	18.4	8.318	. 1202	69.18	. 01445
14.0	5.012	. 1995	25.12	. 03981	18.5	8.414	. 1189	70.79	. 01413
14.1	5.070	. 1972	25.70	. 03890	18.6	8.511	. 1175	72.44	. 01380
14.2	5.129	. 1950	26.30	. 03802	18.7	8.610	. 1161	74.13	. 01349
14.3	5.188	. 1928	26.92	. 03715	18.8	8.710	. 1148	75.86	. 01318
14.4	5.248	. 1905	27.54	. 03631	18.9	8.811	. 1135	77.62	. 01288
14.5	5.309	. 1884	28.18	. 03548	19.0	8.913	. 1122	79.43	. 01259
14.6	5.370	. 1862	28.84	. 03467	19.1	9.016	. 1109	81.28	. 01230
14.7	5.433	. 1841	29.51	. 03388	19.2	9.120	. 1096	83.18	. 01202
14.8	5.495	. 1820	30.20	. 03311	19.3	9.226	. 1084	85.11	. 01175
14.9	5.559	. 1799	30.90	. 03236	19.4	9.333	. 1072	87.10	. 01148
15.0	5.623	. 1778	31.62	. 03162	19.5	9.441	. 1059	89.13	. 01122
15.1	5.689	. 1758	32.36	. 03090	19.6	9.550	. 1047	91.20	. 01096
15.2	5.754	. 1738	33.11	. 03020	19.7	9.661	. 1035	93.33	. 01072
15.3	5.821	. 1718	33.88	. 02951	19.8	9.772	. 1023	95.50	. 01047
15.4	5.888	. 1698	34.67	. 02884	19.9	9.886	. 1012	97.72	. 01023

Note: For values from 20 to 180 db , see next page.

Table III. Decibel Table-(Cont'd) (20 to 180 Db)

Db	Current or Voltage Ratio		Power Ratio	
	Gain	Loss	Gain	Loss
20.0	10.00	0.1000	100.00	0.01000
25.0	17.78	0.0562	3.162×10^{2}	3.162×10^{-31}
30.0	31.62	0.0316	$10^{\text {a }}$	10^{-3}
35.0	56.23	0.0178	3.162×10^{3}	3.162×10^{-4}
40.0	100.00	0.0100	10^{4}	10^{-4}
45.0	177.8	0.0056	3.162×10^{4}	3.162×10^{-5}
50.0	316.2	0.0032	10^{5}	10^{-5}
55.0	562.3	0.0018	3.162×10^{5}	3.162×10^{-6}
60.0	10^{3}	10^{-3}	10^{11}	10^{-6}
65.0	1.778×10^{3}	5.623×10^{-4}	3.162×10^{6}	3.162×10^{-7}
70.0	3.162×10^{8}	3.162×10^{-4}	10^{7}	10^{-7}
75.0	5.623×10^{9}	1.78×10^{-4}	3.162×10^{7}	3.162×10^{-8}
80.0	10^{4}	10^{-4}	10^{6}	10^{-8}
85.0	1.778×10^{4}	5.623×10^{-5}	3.162×10^{8}	3.162×10^{-9}
90.0	3.162×10^{4}	3.162×10^{-5}	10°	10^{-9}
95.0	5.632×10^{4}	1.78×10^{-5}	3.162×10^{18}	3.162×10^{-10}
100.0	10^{5}	10^{-5}	10^{10}	10^{-10}
110.0	3.162×10^{5}	3.162×10^{-6}	10^{11}	10^{-11}
120.0	10^{8}	10^{-6}	10^{12}	10^{-12}
130.0	3.162×10^{8}	3.162×10^{-7}	10^{13}	10^{-13}
140.0	10^{7}	10^{-7}	10^{14}	10^{-14}
150.0	3.162×10^{7}	3.162×10^{-8}	10^{15}	10^{-15}
160.0	10^{8}	10^{-8}	10^{16}	10^{-16}
170.0	3.162×10^{8}	3.162×10^{-9}	10^{17}	10^{-17}
180.0	10^{9}	10^{-9}	10^{18}	10^{-18}

Constants and Standards

27. DIELECTRIC CONSTANTS OF MATERIALS

The dielectric constants of most materials vary for different temperatures and frequencies. Likewise, small differences in the composition of materials will cause differences in the dielectric constants. A list of materials, and the approximate range (where available) of their dielectric constants, are given in Table IV. The values shown are accurate enough for most applications. The dielectric constants of some materials (such as quartz, Styrofoam, and Teflon) do not change appreciably with frequency.

Table IV. Dielectric Constants of Materials

Material	Dielectric Constant (Approx.)	Material	Dielectric Constant (Approx.)
Air	1.0	Nylon	$3.4-22.4$
Amber	$2.6-2.7$	Paper (dry)	$1.5-3.0$
Bakelite (asbestos base)	$5.0-22$	Paper (paraffin coated)	$2.5-4.0$
Bakelite (mica filled)	$4.5-4.8$	Paraffin (solid)	$2.0-3.0$
Beeswax	$2.4-2.8$	Plexiglass	$2.6-3.5$
Cambric (varnished)	4.0	Polyethylene	2.3
Celluloid	4.0	Polystyrene	$2.4-3.0$
Cellulose Acetate	$3.1-4.5$	Porcelain (dry process)	$5.0-5.5$
Durite	$4.7-5.1$	Porcelain (wet process)	$5.8-6.5$
Ebonite	2.7	Quartz	5.0
Fiber	5.0	Quartz (fused)	3.78
Formica	$3.6-6.0$	Rubber (hard)	$2.0-4.0$
Glass (electrical)	$3.8-14.5$	Ruby Mica	5.4
Glass (photographic)	7.5	Shellac (natural)	$2.9-3.9$
Glass (Pyrex)	$4.6-5.0$	Silicone (glass) (molding)	$3.2-4.7$
Glass (window)	7.6	Silicone (glass) (laminate)	$3.7-4.3$
Gutta Percha	$2.4-2.6$	Slate	7.0
Isolantite	6.1	Steatite (ceramic)	$5.2-6.3$
Lucite	2.5	Steatite (low loss)	4.4
Mica (electrical)	$4.0-9.0$	Styrofoam	1.03
Mica (clear India)	7.5	Teflon	2.1
Mica (filled phenolic)	$4.2-5.2$	Vaseline	2.16
Micarta	$3.2-5.5$	Vinylite	$2.7-7.5$
Mycalex	$7.3-9.3$	Water (distilled)	$34-78$
Neoprene	$4.0-6.7$	Wood (dry)	$1.4-2.9$

28. CONVERSION FACTORS

The following table lists the multiplying factors necessary to convert from one unit of measure to another, and vice versa. To use the table, locate the unit of measure you are converting from or the one you are converting to in the first column. Opposite this listing are the multiplying factors for converting either unit of measure to the other unit of measure.

Table V. Conversion Factors

To Convert	Into	Multiply by	Conversely, Multiply by
Acres	Square feet	4.356×10^{4}	2.296×10^{-6}
Acres	Square meters	4047	2.471×10^{-4}
Acres	Square miles	1.5625×10^{-3}	640
Amperes	Microamperes	10^{4}	10^{-6}
Amperes	Micromicroamperes	10^{12}	10^{-12}
Amperes	Milliamperes	10^{3}	10^{-3}
Ampere-hours	Coulombs	3600	2.778×10^{-4}
Ampere-turns	Gilberts	1.257	0.7958
Ampere-turns per cm.	Ampere-furns per in.	2.54	0.39
Angstrom units	Inches	3.937×10^{-8}	2.54×10^{4}
Angstrom units	Meters	10^{-10}	10^{10}
Bars	Atmospheres	9.870×10^{-8}	1.0133
Bars	Dynes per sq. cm.		10^{-4}
Bars	Pounds per sq. in.	14.504	$8947 \times$
Bru	Ergs	1.0548×10^{10}	9.486×10^{-11}
Btu	Foot-pounds	778.3	$1.285 \times$
Bru	Joules	1054.8	9.480×10^{-4}
Bru	Kilogram-calories	0.252	3.969
Btu per hour	Horsepower-hours	3.929×10	2545
Bushels	Cubic feet	1.2445	0.8036
Calories, gram	Joules	4.185	0.2389
Centigrade	Celsius		$\left.{ }^{1} \mathrm{~F}-32\right)$
Centigrade	Fahrenheit	$\begin{array}{r} \left({ }^{\circ} \mathrm{C} \times 9 / 5\right) \\ +32={ }^{\circ} \mathrm{F} \end{array}$	$\left.{ }^{\circ} \mathrm{F}-32\right)$
Centigrade	Kelvin	${ }^{\circ} \mathrm{C}+273.1={ }^{\circ} \mathrm{K}$	${ }^{\circ} \mathrm{K}-273.1{ }^{\circ} \mathrm{C}$
Chains (surveyor's)	Feet	66	1.515×10^{-2}
Circular mils	Square centimeters	5.067×10^{-6}	1.973×10^{-3}
Circular mils	Square mils	0.7854	1.273
Cubic feet	Gallons (liq. U.S.)	7.481	$0.1337 \times 1{ }^{-2}$
Cubic feet	Liters	28.32	3.531×10^{-2}
Cubic inches	Cubic centimeters	16.39	6.102×10^{-2}
Cubic inches	Cubic feet	5.787×10^{-4}	1728×10^{4}
Cubic inches	Cubic meters	1.639×10^{-5}	6.102×10^{4}
Cubic inches	Gallons (lia. U.S.)	4.329×10^{-3} 35.31	231 2.832×10^{-2}
Cubic meters	Cubic feet	35.31 1.308	2.832×10 0.7646
Cubic meters	Cubic yards	1.308	10^{3}
Cycles Cycles	Kilocycles Megacycles	10^{-8}	$10^{\prime \prime}$

Table V. Conversion Factors--(Cont'd)

To Convert	Into	Multiply by	Conversely, Multiply by
Degrees (angle)	Mils	17.45	5.73×10^{-2}
Degrees (angle)	Radians	1.745×10^{-2}	57.3
Dynes	Pounds	2.248×10^{-5}	4.448×10^{5}
Ergs	Foot-pounds	7.376×10^{-8}	1.356×10^{7}
Fahrenheit	Rankine	${ }^{\circ} \mathrm{F}+459.58={ }^{\circ} \mathrm{R}$	${ }^{\circ} \mathrm{R}-459.58={ }^{\circ} \mathrm{F}$
Faradays	Ampere-hours	26.8	3.731×10^{-2}
Farads	Mierofarads	10^{8}	10^{-6}
Farads	Micromicrofarads	10^{13}	10^{-12}
Farads	Millifarads	10^{3}	10^{-3}
Fathoms	Feet	6	0.16667
Feet	Centimeters	30.48	3.281×10^{-2}
Feet	Meters	0.3048	3.281
Feet	Mils	1.2×10^{4}	8.333×10^{-5}
Foot-pounds	Gram-centimeters	1.383×10^{4}	1.235×10^{-5}
Foor-pounds	Horsepower-hours	5.05×10^{-7}	1.98×10^{8}
Foot-pounds	Kilogram-meters	0.1383	7.233
Foot-pounds	Kilowatt-hours	3.766×10^{-7}	2.655×10^{3}
Foot-pounds	Ounce-inches	192	5.208×10^{-3}
Gallons (liq. U.S.)	Cubic meters	3.785×10^{-3}	264.2
Gallons (liq. U.S.)	Gallons (liq. Br. Imp.)	0.8327	1.201
Gausses	Lines per sq. cm.	1.0	1.0
Gausses	Lines per sq. in.	6.452	0.155
Gausses	Webers per sq. in.	6.452×10^{-4}	1.55×10^{7}
Grams	Dynes	980.7	1.02×10^{-3}
Grams	Grains	15.43	6.481×10^{-2}
Grams	Ounces (avdp.)	3.527×10^{-2}	28.35
Grams	Poundals	7.093×10^{-2}	14.1
Grams per cm.	Pounds per in.	5.6×10^{-3}	178.6
Grams per cu. cm.	Pounds per cu. in.	3.613×10^{-2}	27.68
Henries	Microhenries	10^{6}	10^{-8}
Henries	Millihenries	10^{3}	10^{-3}
Horsepower	Biu per minute	42.418	2.357×10^{-2}
Horsepower	Foot-lbs. per minute	3.3×10^{4}	3.03×10^{-5}
Horsepower	Foot-lbs. per second	550	1.182×10^{-3}
Horsepower	Horsepower (metric)	1.014	0.9863
Horsepower	Kilowatts	0.746	1.341
Inches	Centimeters	2.54	0.3937
inches	Feet	8.333×10^{-2}	
Inches	Meters	2.54×10^{-2}	39.37
Inches	Miles	1.578×10^{-5}	6.336×10^{4}
Inches	Mils		10^{-3}
Inches	Yards	2.778×10^{-2}	36
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	10^{7}	10^{-7}
Joules	Watt-hours	2.778×10^{-4}	3600
Kilograms	Tonnes	10^{3}	
Kilograms	Tons (long)	9.842×10^{-4}	1016
Kilograms	Tons (short)	1.102×10^{-3}	907.2
Kilograms	Pounds (avdp.)	2.205	0.4536
Kilograms per sq. meter	Pounds per sq. feet	0.2048	4.882

Table V. Conversion Factors-(Cont'd)

To Çonvert	Into	Multiply by	Conversely, Multiply by
Kilometers	Feet	3281	3.408×10^{-4}
Kilometers	Inches	3.937×10^{4}	2.54×10^{-5}
Kilometers	Light years	1.0567×10^{-13}	9.4637×10^{12}
Kilometers per hr.	Feet per minute	54.68	1.829×10^{-2}
Kilometers per hr.	Knots	0.5396	1.8532
Kilowatt-hours	Btu	3413	2.93×10^{-4}
Kilowatt-hours	Foot-pounds	2.655×10^{6}	3.766×10^{-7}
Kilowatt-hours	Joules	3.6×10^{61}	2.778×10^{-7}
Kilowatt-hours	Horsepower-hours	1.341	0.7457
Kilowatt-hours	Pounds water evaporated from and at $212^{\circ} \mathrm{F}$.	3.53	0.284
Kilowatt-hours	Watt-hours	10^{3}	10^{-3}
Knots	Feet per second	1.688	0.5925
Knots	Meters per minute	30.87	0.0324
Knots	Miles per hour	1.1508	0.869
Lamberts	Candles per sq. cm.	0.3183	3.142
Lamberts	Candles per sq. in.	2.054	0.4869
Leagues	Miles	3	0.33
Links	Chains	0.01	100
Links (surveyor's)	Inches	7.92	0.1263
Liters	Bushels (dry U.S.)	2.838×10^{-2}	35.24
Liters	Cubic enntimeters	10^{3}	10^{-3}
Liters	Cubic meters	10^{-3}	10^{3}
Liters	Cubic inches	61.02	1.639×10^{-2}
Liters	Gallons (liq. U.S.)	0.2642	3.785
Liters	Pints (liq. U.S.)	2.113	0.4732
$\log _{\epsilon} N$	$\log _{10} \mathrm{~N}$	0.4343	2.303
Lumens per sq. ft .	Foot-candles	1	1
Lux	Foot-candles	0.0929	10.764
Maxwells	Kilolines	10^{-3}	10^{3}
Maxwells	Megalines	10^{-6}	$10^{\text {s }}$
Maxwells	Webers	10^{-8}	10^{8}
Meters	Centimeters	10^{2}	10^{-2}
Meters	Feet	3.28	30.48×10^{-2}
Meters	Inches	39.37	2.54×10^{-2}
Meters	Kilometers	10^{-3}	10^{3}
Meters	Miles	6.214×10^{-4}	1609.35
Meters	Yards	1.094	0.9144
Meters per minute	Feet per minute	3.281	0.3048
Meters per minute	Kilometers per hour	0.06	16.67
Mhos	Micromhos	10^{63}	10^{-6}
Mhos	Millimhos	10^{3}	10^{-3}
Microfarads	Micromicrofarads	$10^{\prime \prime}$	10^{-n}
Miles (nautical)	Feet	6076.1	1.646×10^{-4}
Miles (nautical)	Meters	1852	5.4×10^{-4}
Miles (statute)	Feet	5280	1.894×10^{-4}
Miles (statute)	Kilometers	1.609	0.6214
Miles (statute)	Light years	1.691×10^{-13}	5.88×10^{12}
Miles (statute)	Miles (nautical)	0.869	1.1508

Table V. Conversion Factors-(Cont'd)

To Convert	Into	Multiply by	Conversely, Multiply by
Miles (statute)	Yards	1760	5.6818×10^{-4}
Miles per hour	Feet per minute	88	1.136×10^{-2}
Miles per hour	Feet per second	1.467	0.6818
Miles per hour	Kilometers per hour	1.609	0.6214
Miles per hour	Knots	0.8684	1.152
Milliamperes	Microamperes	10^{3}	10^{-3}
Millihenries	Microhenries	10^{3}	10^{-3}
Millimeters	Centimeters	0.1	10
Millimeters	Inches	3.937×10^{-2}	25.4
Millimeters	Microns	10^{3}	10^{-3}
Millivolts	Microvolts	10^{3}	10^{-3}
Mils	Minutes	3.438	0.2909
Minutes (angle)	Degrees	1.666×10^{-2}	60
Nepers	Decibels	8.686	0.1151
Newtons	Dynes	10^{5}	10^{-5}
Newtons	Pounds (avdp.)	0.2248	4.448
Ohms	Milliohms	10^{3}	10^{-3}
Ohms	Micro-ohms	10^{6}	10^{-9}
Ohms	Micromicro-ohms	10^{12}	10^{-12}
Ohms	Megohms	10^{-6}	10°
Ohms	Ohms(International)	0.99948	1.00052
Ohms per foot	Ohms per meter	0.3048	3.281
Ounces (fluid)	Quarts	3.125×10^{-2}	32
Ounces (avdp.)	Pounds	6.25×10^{-2}	16
Picofarad	Micromicrofarad	1	1
Pints	Quarts (liq. U.S.)	0.50	2
Pounds (force)	Newtons	4.4482	0.2288
Pounds carbon oxidized	Btu	14,544	6.88×10^{-5}
Pounds carbon oxidized	Horsepower-hours	5.705	0.175
Pounds carbon oxidized	Kilowatt-hours	4.254	0.235
Pounds of water (dist.)	Cubic feet	1.603×10^{-2}	62.38
Pounds of water (dist.)	Gallons	0.1198	8.347
Pounds per sq. in.	Dynes per sq. cm.	6.8946×10^{4}	1.450×10^{-5}
Poundals	Dynes	1.383×10^{4}	7.233×10^{-5}
Poundals	Pounds (avdp.)	3.108×10^{-2}	32.17
Quadrants	Degrees	90	11.111×10^{-2}
Quadrants	Radians	1.5708	0.637
Radians	Mils	10^{3}	10^{-3}
Radians	Minutes	3.438×10^{3}	2.909×10^{-4}
Radians	Seconds	2.06265×10^{5}	4.848×10^{-8}
Rods	Feet	16.5	6.061×10^{-2}
Rods	Miles	3.125×10^{-3}	320
Rods	Yards	5.5	0.1818
Rpm	Degrees per second	6.0	0.1667
Rpm	Radians per second	0.1047	9.549

Table V. Conversion Factors-(Cont'd)

To Convert	Into	Multiply by	Conversely, Multiply by
Rpm	Rps	1.667×10^{-2}	60
Square feet	Acres	2.296×10^{-5}	43.560
Square feet	Square centimeters	929.034	1.076×10^{-3}
Square feet	Square inches	144×10^{-2}	6.944×10^{-3}
Square feet	Square meters	9.29×10^{-2}	10.764
Square feet	Square miles	3.587×10^{-8}	27.88×10^{8}
Square feet	Square yards	11.11×10^{-2}	9
Square inches	Circular mils	1.273×10^{n}	7.854×10^{-7}
Square inches	Square centimeters	6.452	0.155
Square inches	Square mils	10^{8}	10^{-6}
Square inches	Square millimeters	645.2	1.55×10^{-3}
Square kilometers	Square miles	0.3861	2.59
Square meters	Square yards	1.196	0.8361
Square miles	Acres	640	1.562×10^{-3}
Square miles	Square yards	3.098×10^{6}	3.228×10^{-7}
Square millimeters	Circular mils	1973	5.067×10^{-4}
Square millimeters	Square centimeters	. 01	100
Square mils	Circular mils	1.273	0.7854
Tons (long)	Pounds (avdp.)	2240	4.464×10^{-4}
Tons (short)	Pounds	2,000	5×10^{-4}
Tonnes	Pounds	2204.63	4.536×10^{-4}
Varas	Feet	2.7777	0.36
Volts	Kilovolts	10^{-3}	10^{3}
Volts	Microvolts	10^{6}	10^{-16}
Volts	Millivolts	10^{3}	10^{-3}
Watts	Biu per hour	3.413	0.293
Watts	Btu per minute	5.689×10^{-2}	17.58
Watts	Ergs per second	10^{7}	
Watts	Foot-lbs per minute	44.26	2.26×10^{-2}
Watts	Foot-lbs per second	0.7378	1.356
Watts	Horsepower	1.341×10^{-3}	746
Watts	Kilogram-calories per minute	1.433×10^{-2}	69.77
Watts	Kilowatts	10^{-3}	10^{3}
Watts	Microwatts	10^{8}	10^{-6}
Watts	Milliwatts	10^{3}	10^{-3}
Watt-seconds	Joules	1	
Webers	Maxwells	10^{μ}	10^{-8}
Webers per sq. meter	Gausses	10^{4}	10^{-4}
Yards	Feet	3	. 3333
Yards	Varas	1.08	0.9259

29. METRIC PREFIXES

(A) Unit Prefixes

The metric system, whereby a different prefix is assigned for each order of magnitude, is particularly suited for electronic values. In 1958 the International Committee on Weights and Measures assigned prefixes for the ninth and twelfth orders of magnitude (both positive and negative). (See Table VI.) This system eliminates the cumbersome double prefixes (micromicro-," "kilomega-," etc. In 1959 the National Bureau of Standards began using these terms; however, acceptance by industry in the United States has been slow, particularly in using the newer term "picofarad" instead of "micromicrofarad."

Table VI. Metric Prefixes

Multiple	Prefix	Abbreviation	Multiple	Prefix	Abbreviation
10^{12}	tera-	T	10^{-1}	deci-	d
10^{Q}	giga-	G	10^{-2}	centi-	c
10^{B}	mega-	M	10^{-3}	milli-	m
10^{4}	myria-	My	10^{-n}	micro-	μ
10^{3}	kilo-	K	10^{-11}	nano-	n
10^{2}	hecto-	H	10^{-12}	pico-	p
10	deka-	D			

(B) Conversion Table

Table VII gives the number of places, and the direction, the decimal point must be moved to convert from one metric notation to another. The value labeled "units" is the basic unit of measurement-e.g., ohms, farads, etc. To use the chart, find the desired value in the left-hand column; then follow the horizontal line across to the column with the prefix in which the original value is stated. The number and arrow at this point indicate the number of places and the direction the decimal point must be moved to change the original value to the desired value.

Table VII. Metric Conversion Table

Desired Value	Original Value													
	Tera-	Giga-	Mega-	Myria-	Kilo-	Hecto-	Deka-	Units	Deci-	Centi-	Milli-	Micro-	Nano-	Pico-
Tera-		$\leftarrow 3$	$\leftarrow 6$	$\leftarrow 8$	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow 11$	$\leftarrow 12$	$\leftarrow 13$	$\leftarrow 14$	$\leftarrow 15$	$\leftarrow 18$	$\longleftarrow 21$	$\longleftarrow 24$
Giga-	$3 \rightarrow$		$\leftarrow 3$	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow 7$	$\leftarrow 8$	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow 11$	$\leftarrow 12$	$\leftarrow 15$	$\leftarrow 18$	$\leftarrow 21$
Mega-	$6 \rightarrow$	$3 \rightarrow$		$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow 7$	$\leftarrow 8$	$\leftarrow 9$	$\leftarrow 12$	$\leftarrow 15$	$\leftarrow 18$
Myria-	$8 \rightarrow$	$5 \rightarrow$	$2 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow 7$	$\leftarrow 10$	$\leftarrow 13$	$\leftarrow 16$
Kilo-	$9 \rightarrow$	$6 \rightarrow$	$3 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow 9$	$\leftarrow 12$	$\leftarrow 15$
Hecto-	$10 \rightarrow$	$7 \rightarrow$	$4 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\leftarrow 8$	$\leftarrow 11$	$\leftarrow 14$
Deka-	$11 \rightarrow$	$8 \rightarrow$	$5 \rightarrow$	$3 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 7$	$\leftarrow 10$	$\leftarrow 13$
Units	$12 \rightarrow$	$9 \rightarrow$	$6 \rightarrow$	$4 \rightarrow$	$3 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 6$	$\leftarrow 9$	$\leftarrow 12$
Deci-	$13 \rightarrow$	$10 \rightarrow$	$7 \rightarrow$	$5 \rightarrow$	$4 \rightarrow$	$3 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 5$	$\leftarrow 8$	$\leftarrow 11$
Centi-	$14 \rightarrow$	$11 \rightarrow$	$8 \rightarrow$	$6 \rightarrow$	$5 \rightarrow$	$4 \rightarrow$	$3 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 1$	$\leftarrow 4$	$\leftarrow 7$	$\leftarrow 10$
Milli-	$15 \rightarrow$	$12 \rightarrow$	$9 \rightarrow$	$7 \rightarrow$	$6 \rightarrow$	$5 \rightarrow$	$4 \rightarrow$	$3 \rightarrow$	$2 \rightarrow$	$1 \rightarrow$		$\leftarrow 3$	$\leftarrow 6$	$\leftarrow 9$
Micro-	$18 \rightarrow$	$15 \rightarrow$	$12 \rightarrow$	$10 \rightarrow$	$9 \rightarrow$	$8 \rightarrow$	$7 \rightarrow$	$6 \rightarrow$	$5 \rightarrow$	$4 \rightarrow$	$3 \rightarrow$		$\leftarrow 3$	$\leftarrow 6$
Nano-	$21 \rightarrow$	$18 \rightarrow$	$15 \rightarrow$	$13 \rightarrow$	$12 \rightarrow$	$11 \rightarrow$	$10 \rightarrow$	$9 \rightarrow$	$8 \rightarrow$	$7 \rightarrow$	$6 \longrightarrow$	$3 \rightarrow$		$\leftarrow 3$
Pico.	$24 \rightarrow$	$21 \rightarrow$	$18 \rightarrow$	$16 \rightarrow$	$15 \rightarrow$	$14 \rightarrow$	$13 \rightarrow$	$12 \rightarrow$	$11 \rightarrow$	$10 \rightarrow$	$9 \rightarrow$	$6 \rightarrow$	$3 \rightarrow$	

30. STANDARD FREQUENCIES AND TIME SIGNALS

(A) WWV and WWVH

Time signals, audio frequencies, and a 36 -digit binary timing code are broadcast continuously day and night from WWV, operated by the National Bureau of Standards near Washington, D.C. The WWV broadcast frequencies are 2.5, $5,10,15,20$, and 25 megacycles; and its modulation consists of 1 -cps pulses and 440 - and $600-\mathrm{cps}$ tones. A similar station, WWVH, is located at Maui, Hawaii. It broadcasts on frequencies of 5,10 , and 15 megacycles.

Signals from WWV and WWVH are coordinated with Stations GBR and MSF at Rugby, England, and Station NBA in the Canal Zone. This coordination provides a more uniform system of time and frequency transmissions throughout the world. It also aids in the solution of many scientific and technical problems such as radiocommunications, geodesy, and tracking of artificial satellites.

WWV is silent for a four-minute period beginning approximately 45 minutes after each hour. The WWVH transmissions are silent for a four-minute period beginning approximately 15 minutes after the hour, and for 34 minutes beginning at 1900 Universal Time.

The frequencies transmitted from WWV and WWVH are accurate to within 1 part in 10 billion.

The drawing in Fig. 54 shows a breakdown of the transmissions during each hour. Each small division represents 1 minute; each large division, 5 minutes.

The audio-frequency signals are transmitted from WWV for precisely two minutes at the beginning of each fiveminute period except at the beginning of each hour, when the transmission is for three minutes, and at 45 minutes after the hour when WWV is silent. The audio-frequency signal from WWVH is for precisely three minutes during the periods indicated in Fig. 54.

The timing code (a 36 -bit, 100 -pulses-per-second code carried on $1,000-\mathrm{cps}$ modulation) is broadcast for one-minute intervals, 10 times per hour. This timing code is indicated by the shaded area in Fig. 54, and immediately follows the 440 and $600-\mathrm{cps}$ modulation except at the beginning of each hour. The 440 - and $600-\mathrm{cps}$ modulations are alternated as shown in Fig. 54.

The code is binary-coded decimal (BCD), as shown in Fig. 55, and contains the time-of-year information (in Universal Time) in seconds, minutes, hours, and days. The code consists of nine binary groups each second, as shown in Fig. 55A. The groups appear in the following order: two groups for seconds, two for minutes, two for hours, and three for day of year. The expanded drawing at the bottom of Fig. 55A shows the make-up of the pulse code. A " 0 " pulse is 2 milliseconds long (or 2 cycles at $1,000 \mathrm{cps}$), and the " 1 " pulse is 6 milliseconds (6 cycles at $1,000 \mathrm{cps}$). The code is locked in phase with the frequency and time signals.

A complete time frame is 1 second. Fig. 55B shows the make-up of a typical time code. The time code is amplitude-

* One Minute Announcement interval (See Fig. 56).
\dagger North Atlantic Propagation Notice-WWV.
\ddagger North Pacific Propagation Notice-WWVH.
- IWDS Warning-WWV.
- IWDS Warning-WWVH.

WWVH Silent Between 1900 and 1934 Universal Time
Fig. 54

Fig. 55A

Fig. 55B
modulated on $1,000 \mathrm{cps}$. The leading edge of the time-code pulses coincide with the zero axis of the positive-going 1,000cps signal. The least significant binary group and least significant binary digit in each group occur first. The binary groups follow the 1 -second reference marker. The start time occurs at the leading edge of all pulses.

The BCD contains a 100 -per-second clocking rate, 10 -persecond index markers, and 1-per-second reference markers. The 1,000-cps signal is locked to the code pulses so that millisecond resolution can be obtained easily.

The 10 -per-second index markers consist of " 1 " pulses preceding each code group except at the beginning of the second, where there is a " 0 " pulse.

Each second begins at the leading edge of the " 0 " pulse, as shown in Fig. 55.

The 1 -second reference marker is made up of five " 1 " pulses followed by a " 0 " pulse.

The code is spaced so that it follows each of the 10 -persecond index markers. The last index marker is followed by an unused four-bit group of " 0 " pulses immediately preceding the 1 -second reference marker.

A five-millisecond pulse spaced at intervals of one second is also transmitted. The pulse transmitted by WWV consists of five cycles of a 1,000 -cycle tone. The pulse transmitted by WWVH consists of six cycles of a 1,200 -cycle tone. The 440 - and $600-\mathrm{cps}$ tone signal is interrupted for .04 second for each seconds pulse. The pulse starts .01 second after commencement of the interruption, and resumes .025 second after the pulse. For identification, the fifty-ninth second pulse is omitted, and the zero-second pulse is followed by another pulse 100 milliseconds later.

A voice announcement of Eastern Standard Time and call letters is given each five minutes from station WWV. This is followed by a telegraph-code announcement of Universal Time and another voice announcement of Eastern Standard Time. WWVH broadcasts call letters and Universal Time (UT) in telegraphic code only. The time given is the time at the resumption of the tone.

The drawing in Fig. 56 shows a breakdown of the transmissions during the one-minute announcement intervals marked with an asterisk (*) in Fig. 54. Each division on this drawing represents one second.

During announcement intervals at $191 / 2$ and $491 / 2$ minutes past every hour，propagation notices applying to transmis－ sion paths over the North Atlantic are transmitted from WWV．Similar forecasts for the North Pacific are trans－ mitted from WWVH，during announcement intervals，at 9.4 and 39.4 minutes after the hour．

These notices，in telegraphic code，consist of a letter fol－ lowed by a number．The letter signifies the propagation conditions at the time of the broadcast．The following desig－ nations are used：

[^3]Fig． 56

N—Normal U—Unsettled W—Disturbance
The number following the letter applies to expected propagation conditions during the subsequent 6 or more hours. The following designations are used:

1-Useless	4-Poor to Fair	7-Good
2-Very Poor	5-Fair	8-Very good
3-Poor	6-Fair to Good	9—Excellent

At 4.3 and 34.3 minutes past the hour on WWV, and at approximately 14.4 and 44.4 minutes past the hour on WWVH, the IWDS (International World Day Service) warning is broadcast. This message reveals to experimenters in radio, geophysical, and solar sciences the content of the warning message issued at 1600 UT by the world warning agency on days when an outstanding geophysical event has occurred during the preceding 24 hours. This message is first broadcast at 1604.3 UT on WWV and at 1714.4 UT on WWVH.

If the IWDS warning declares an alert, the letters AGI AAAA are broadcast very slowly in code. This means that a significant magnetic storm has started or that an outstanding auroral display or increase in cosmic-ray flux has been reported or observed.

If a special world interval is in progress, the code letters AGI are followed by three extra-long dashes. This again indicates that an alert has been declared and that the geophysical activity is of sufficient interest to warrant special attention and intensified observations. Special world intervals usually last two or three days.

When there is no "state of alert" or "special world interval" in progress, the letters AGI EEEEE are broadcast.

(B) CHU

The Dominion Observatory at Ottawa, Canada, broadcasts time signals which can be heard throughout the North American continent and many other parts of the world. The frequencies are $3,330,7,335$, and $14,670 \mathrm{kc}$, and the transmission is continuous on all frequencies. The $3,330-\mathrm{kc}$ transmitter has a power of 0.75 kw and the other two, 3 kw .

The frequencies are synthesized from a 100 -kc crystal oscillator which is maintained accurate to within a few parts
in one billion. The "seconds" pips are also derived from this same oscillator and consist of 200 cycles of a $1,000-\mathrm{cps}$ tone.

The "seconds" pips are broadcast continuously except for the 29 th and the 51st through 59th pips, which are omitted each minute. In addition, the 1st to 29th pips are omitted during the first minute of the hour. The beginning of the pip marks the exact second. The zero pip has a duration of 0.5 second instead of the 0.2 second of the other pips.

During the first half-minute of each hour, CHU CANADA CHU is transmitted in code.

A voice announcement of the time is given each minute during the 10 -second interval between the 50 th and 60 th second when the pips are omitted. The announcement is as follows: "CHU, Dominion Observatory Canada, Eastern Standard Time, __ hours, minutes." The time given refers to the beginning of the minute pip which follows, and is on the 24 -hour system.

(C) Other Standards Stations

Throughout the world, there are many other stations which broadcast similar data. Table VIII lists some of them, and other data about stations operating on the standards frequencies. Table IX lists some other stations in the LF and VLF bands which broadcast similar data, but not on the frequencies assigned for standard-frequency operation.

31. FREQUENCY AND OPERATING POWER TOLERANCES

(A) AM Broadcast

The operating frequency tolerance of each station shall be maintained within ± 20 cycles of the assigned frequency.

The operating power of each AM broadcast station shall be maintained as near as practicable to the licensed power and shall not exceed the limits of 5 per cent above and 10 per cent below the licensed power except in emergencies.

(B) FM Broadcast

Operating frequency tolerance of each station shall be maintained within $\pm 2,000$ cycles of the assigned center frequency.

Table VIII. Other Standards Stations

Call Sign	Location	Carrier Freq. (mc)	Modulation (cps)	Power (kw)
ATA	New Delhi, India	10	1;1000	1.0
FFH	Paris, France	2.5; 5; 10	1;440; 1000	0.3
HBN	Neuchatel, Switzerland	2.5; 5	1;500	0.5
HBN IAM	Rome, Italy		1; 440;600; 1000	1.0
IBF	Turin, Italy		1;440; 1000	0.3
		2.5; 5; 10; 15	1;440; 1000	2.0
JJY	Tokyo, Japan Buenos Aires, Argentina	2.5; 5; 10; 15; 20; 25	1; 440; 1000	2.0
MSF	Buenos Aires, Argentina Rugby, England	$2.5 ; 5 ; 10 ; 15 ; 20,25$ $2.5 ; 5 ; 10$	1; 1000	0.5
OMA	Prague, Czechoslovakia	2.5	1;1000	1.0
ZLFS	Lower Hutt, New Zealand	2.5	- - - - -	0.03
	Olifantsfontein, South Africa			4.0
WWVL	Fort Collins, Colorado	20 kc	- - - - -	1.0

Table IX. LF and VLF Stations

Call Sign	Location	Carrier Freq. (ke)	Modulation (cps)	Power (kw)
WWVB DCF77 OMA GBR MSF NBA	Fort Collins, Colorado Federal German Republic Czechoslovakia Rugby, England Rugby, England Canal Zone (U. S. Navy)	60 77.5 50 16 60 18	$\begin{aligned} & 1 ; 200 ; 440 \\ & -----------1 \\ & 1 ; 1000 \\ & 1 \end{aligned}$	$\begin{array}{r} 5 \\ 12 \\ 5 \\ 300 \\ 10 \\ 100 \end{array}$

The operating power of each station shall be maintained as near as practicable to the authorized operating power and shall not exceed the limits of 5 per cent above and 10 per cent below the authorized power except in emergencies.

(C) TV Broadcast

The carrier frequency of the visual transmitter shall be maintained within $\pm 1,000$ cycles of the authorized carrier frequency.

The center frequency of the aural transmitter shall be maintained 4.5 megacycles $\pm 1,000$ cycles above the visual carrier frequency.

The peak power shall be monitored by a peak-reading device which reads proportionally to voltages, current, or power in the radio-frequency line. The operating power as so monitored shall be maintained as near as practicable to the authorized operating power and shall not exceed the limits of 10 per cent above and 20 per cent below the authorized power except in emergencies.

The operating power of the aural transmitter shall be maintained as near as practicable to the authorized operating power, and shall not exceed the limits of 10 per cent above and 20 per cent below the authorized power except in emergencies.

(D) Industrial Radio Service

The carrier frequency of stations operating below 220 megacycles in the Industrial Radio Service shall be maintained within $\pm .01 \%$ of the authorized power for stations of 3 watts or less, and $\pm .005 \%$ for stations with an authorized power of more than 3 watts. The frequency tolerance of Industrial Radio Service stations operating between 220 and 1,000 megacycles is specified in the station authorization.

(E) Citizens-Band Radio

The maximum plate power input to the anode (plate) circuit of the electron tube or tubes which supply energy to the radiating system of a station in this service shall not exceed the values given in Table \mathbf{X}.

Table X. Power Limits of Citizens-Band Stations

Class of Station	Maximum Plate Power Input (Watts)
A	60
B	5
C	$5 *$
D	5

* A maximum plate power input of 30 watts is permitted on 27.255 mc only.

The carrier frequency of a station in this service shall be maintained within the percentages of authorized frequency given in Table XI.

Table XI. Frequency Tolerances of Citizens-Band Stations

Class	Maximum Authorized Plate Power Input (Watts)	Frequency Tolerance $\%$	
	3 or less	Fixed and Base	Mobile
A	Over 3	.001	.005
B	3 or less	.001	.001
B	Over 3	---	.5
C	5 or less*	---	.3
C	Over 5 (27.255 me only)	---	.005
D	5 or less	---	.005

* Class-C stations which have a plate power input of 3 watts or less and are used solely for remote control of objects or devices by radio (other than devices used solely as a means of attracting attention) are permitted a frequency tolerance of 0.01%.

32. COMMERCIAL OPERATOR LICENSES

The classes of commercial radio operator licenses issued by the Federal Communications Commission are classified basically as radiotelegraph and radiotelephone licenses.

(A) Examination Elements

Written examinations are composed of questions from various categories called elements. These elements, and the types of questions in each, are:

Element 1. Basic Law. Provisions of laws, treaties, and regulations with which every operator should be familiar.
Element 2. Basic Operating Practice. Radio operating procedures and practices generally followed or required in communicating by means of radiotelephone stations.
Element 3. Basic Radiotelephone. Technical, legal, and other matters applicable to the operation of radiotelephone stations other than broadcast.
Element 4. Advanced Radiotelephone. Advanced technical, legal, and other matters particularly applicable to the operation of the various classes of broadcast stations.
Element 5. Radiotelegraph Operating Practice. Radio operating procedure and practices generally followed or required in communicating by means of radiotelegraph stations primarily other than in the maritime mobile services of public correspondences.
Element 6. Advanced Radiotelegraph. Technical, legal, and other matters applicable to the operation of all classes of radiotelegraph stations, including operating procedures and practices in the maritime mobile services of public correspondences, and associated matters such as radionavigational aids, message traffic routing and accounting, etc.
Element 7. Aircraft Radiotelegraph. Basic theory and practice in the operation of radiocommunications and radionavigational systems aboard aircraft.
Element 8. Ship Radar Techniques. Specialized theory and practice applicable to the proper installation, servicing, and maintenance of ship radar equipment in general use for marine navigational purposes.

(B) Examination Requirements

Applicants for licenses must be able to transmit and receive spoken messages in English, and be able to pass the examination elements required for the license. The requirements for the various licenses are:

1. Radiotelephone second-class operator licenses. Written examination elements 1,2 , and 3 .
2. Radiotelephone first-class operator licenses. Written examination elements $1,2,3$, and 4.
3. Radiotelegraph second-class operator license. Transmitting and receiving code test of 16 code groups per minute. Written examination elements 1, 2, 5, and 6.
4. Radiotelegraph first-class operator license. Transmitting and receiving code test of 25 words per minute in conversational language and 20 groups per minute in code. Written examination elements $1,2,5$, and 6.
5. Radiotelephone third-class operator permit. Written examination elements 1 and 2.
6. Radiotelegraph third-class operator permit. Transmitting and receiving code test of 16 code groups per minute. Written examination elements 1,2 , and 5 .

33. AMATEUR OPERATOR PRIVILEGES

(A) Examination Elements

Examinations for amateur operator privileges are composed of questions from various categories, called elements. The various elements and their requirements are:

Element 1(A): Beginner's Code Test. Code test at 5 words per minute.
Element 1(B): General Code Test. Code test at 13 words per minute.
Element 1(C): Expert's Code Test. Code test at 20 words per minute.
Element 2: Basic Amateur Practice. Amateur radio operation and apparatus, including radiotelephone and radiotelegraph.
Element 3(A): Basic Law. Rules and regulations essential to beginners' operation, including sufficient elementary radio theory to understand these rules.
Element 3(B): General Regulations. Provisions of treaties, statutes, and rules and regulations affecting all amateur stations and operators.
Element 4(B): Advanced Amateur Practice. Advanced radio theory and operation applicable to mod-
ern amateur techniques, including-but not limited to-radiotelephony, radiotelegraphy, and transmission of energy for (1) measurements and observations applied to propagation, (2) radio control of remote objects, and (3) similar experimental purposes.

(B) Examination Requirements

Applicants for original licenses will be required to pass examinations as follows :

1. Amateur Extra Class. Elements 1(C), 2, 3(B), and 4 (B).
2. General Class. Elements 1 (B), 2, and 3(B).
3. Conditional Class. Elements 1(B), 2, and 3(B).
4. Technician Class. Elements 1 (A), 2, and 3 (B).
5. Novice Class. Elements $1(\mathrm{~A})$ and $3(\mathrm{~A})$.

Note: Examinations for licenses (1) and (2) above must be given by an FCC examiner. The examinations for licenses (3), (4), and (5) are taken by mail, under the supervision of a volunteer examiner.

34. AMATEUR ("HAM") BANDS

The various bands of frequencies used by amateur radio operators ("hams") are usually referred to in meters instead of the actual frequencies. The number of meters approximates the wavelength at the band of frequencies being designated. The meter bands and their frequency limits are given in Table XII. (Note: Frequencies between 220 and 225 mc are sometimes referred to as $11 / 4$ meters, and between 420 and 450 meters as $3 / 4$ meter.)

Table XII. "Ham" Bands

Band	Frequency (mc)
80 Meters	$3.5-4.0$
40 Meters	$7.0-7.3$
20 Meters	$14.0-14.35$
15 Meters	$21.0-21.45$
10 Meters	$28.0-29.7$
6 Meters	$50-54$
2 Meters	$144-148$

Table XIII．Types of Emission

Type of Modulation	Type of Transmission	Supplementary Characteristics	Symbol
1．Amplitude	Absence of any modulation	－－－－－－－－－－－－	A0
	Telegraphy without the use of modulating audio frequency（on－off keying）	－－－－－－－－－－－－	Al
	Telegraphy by the keying of a modulating audio frequency or frequencies or by the keying of the modulated emission（special case：an unkeyed modulated emission）	－－－－－－－－－－－－－－－－	A2
	Telephony	Double sideband，full carrier	A3
		Single sideband，reduced carrier	A3a
		Two independent sidebands，reduced car－ rier	A3b
	Facsimile	－－－－－－－－－－－－－－	A4
	Television	－－ー－ー－ーーーーーーー－	A5
	Composite transmissions，and cases not cov－ ered by the above	－－－－－－－－－－	A9
	Composite transmissions	Reduced carrier	A9c
2．Frequency（or phase） modulated	Absence of any modulation	－－－－－－－－－－－－－	FO
	Telegraphy without the use of modulating audio frequency（frequency shift keying）	－－－－－－－－－－－	F1

	Telegraphy by the keying of a modulating audio frequency or audio frequencies or by the keying of the modulated emission (special case: an unkeyed emission modulated by audio frequency)	- - - - - - - - - - -	F2
	Telephony	---------------	F3
	Facsimile	- - - - - - - - - - -	F4
	Television	- - - - - - - - - - - -	F5
	Composite transmissions and cases not covered by the above	---------------	F9
3. Pulsed emissions	Absence of any modulation carrying information	--------------	PO
	Telegraphy without the use of modulating audio frequency	- - - - - - - - - - - -	P1
	Telegraphy by the keying of a modulating audio frequency or of the modulated pulse (special case: an unkeyed modulated pulse)	Audio frequency or frequencies modulating the pulse in amplitude	P2d
		Audio frequency or frequencies modulating the width of the pulse	P2c
		Audio frequency or frequencies modulating the phase (or position) of the pulse	P2f
	Telephony	Amplitude-modulated pulse	P3d
		Width-modulated pulse	P3e
		Phase-(or position-) modulated pulse	P3f
	Composite transmissions and cases not covered by the above	- - - - - - - - - - -	P9

35. TYPES OF EMISSIONS

Emissions are classified according to their modulation, type of transmission, and supplementary characteristics. These classifications are given in Table XIII on pages 72 and 73. When a full designation of the emissions-including bandwidth-is necessary, the symbols in Table XIII are prefixed by a number indicating the bandwidth in kilocycles. Below 10 kc , this number is given to two significant figures.

36. TELEVISION CHANNEL FREQUENCIES

The chart in Fig. 57 (page 75) lists the frequency limits of all television channels and the frequency of the picture and sound carriers of each channel.

37. TELEVISION SIGNAL STANDARDS

The signal standards for television broadcasting are given in Figs. 58A and B (pages 76 and 77). Note: The standards given here are for color transmission. For monochrome transmission, the standards are the same except the color burst signal is omitted. Also, for color the vertical and horizontal scanning frequencies are 59.94 and $15,734.264 \mathrm{cps}$, respectively; for monochrome they are 60 and $15,750 \mathrm{cps}$.

38. AUDIO-FREQUENCY SPECTRUM

The audio-frequency spectrum is generally accepted as extending from 15 cps to $20,000 \mathrm{cps}$. Fig. 60 (page 79) gives the frequencies for each tone of the standard keyboard, based on the current musical pitch of $A=440$ cps. Fig. 59 (page 78) shows the frequency range of various musical instruments and of other sounds. The frequency range shown for each sound is the range needed for faithful reproduction, and includes the fundamental frequency and the necessary harmonic frequencies. The frequency range of the human ear, and the various broadcasting and recording media, are also included in Fig. 59.

39. RADIO-FREQUENCY SPECTRUM

(A) Frequency Classification

The radio-frequency spectrum from 3 kc to $3,000,000 \mathrm{mc}$ is divided into the various bands (shown in Table XIV on page 78) for easier identification.

Television Channel Frequencies

[^4][^5]

NOTES

1. H = Time from start of one line to start of next line.
2. $V=$ Time from start of one field to start of next field.
3. Leading and trailing edges of vertical blanking should be complete in less than 0.1 H
4. Leading and trailing slopes of horizontal blanking must be steep enough to preserve minimum and maximum values of $(x+y)$ and (z) under all conditions of picture content.
5. Dimensions marked with asterisk indicate that tolerances given are permitted only for long time variations and not for successive cycles.
6. Equalizing pulse area shall be between 0.45 and 0.5 of area of a horizontal sync pulse.
7. Color burst follows each horizontal pulse, but is omitted following the equalizing pulses and during the broad vertical pulses.
8. Color burst to be omitted during monochrome transmissions.
9. The burst frequency shall be 3.579545 mc . The tolerance on the frequency shall be $+0.0003 \%$ with a maximum rate of change of frequency shall be $\pm 0.0003 \%$ with a maximum rate of che
10. The horizontal scanning frequency shall be $2 / 455$ times the burst frequency.
11. The dimensions specified for the burst determine the times of starting and stopping the burst but not its phase. The color burst consists of amplitude modulation of a continuous sine wave.
12. Dimension " P " represents the peak excursion of the luminance signal at blanking level but does not include the chrominance signal. Dimension " S " is the sync amplitude above blanking level. Dimension " C " is the peak carrier amplitude.

Fig. 59

Table XIV. Frequency Classification

Frequency	Band No.	Classification	Abbreviation
$3-30 \mathrm{kc}$	4	Very low frequencies	VLF
$30-300 \mathrm{kc}$	5	Low frequencies	LF
$300-3000 \mathrm{kc}$	6	Medium frequencies	MF
$3-30 \mathrm{mc}$	7	High frequencies	HF
$30-300 \mathrm{mc}$	8	Very high frequencies	VHF
$300-3000 \mathrm{mc}$	9	Ultrahigh frequencies	UHF
$3000-30,000 \mathrm{mc}$	10	Super-high frequencies	SHF
$30,000-300,000 \mathrm{mc}$	11	Extremely high frequencies	EHF
$300,000-3,000,000 \mathrm{mc}$	12	-	-

(B) FCC Allocations

The FCC allocations for the various services between 10 kc and $100,000 \mathrm{mc}$ are given in Fig. 61A and B (located on the fold-out page between pages 180 and 181.

Fig. 60

Symbols and Codes

40. INTERNATIONAL Q SIGNALS

The international Q signals were first adopted to enable ships at sea to communicate with each other or to foreign shores without experiencing language difficulties. The signals consist of a series of three-letter groups starting with Q and having the same meaning in all languages. Today, Q signals serve as a convenient means of abbreviation in communications between amateurs. Each Q signal has both an affirmative and an interrogative meaning. The question is designated by the addition of the question mark after the Q signal. The most common Q signals are listed in Table XV.

Table XV. Q Signals

Signal	Question	Answer or Advice
QRG	Will you tell me my exact frequency?	Your exact frequency is . . . kc (or mc).
QRH	Does my frequency vary?	Your frequency varies.
QRK	What is the readability of my signals?	The readability of your signals is
QRM	Are you being interfered with?	I am being interfered with.
QRN	Are you troubled by static?	I am troubled by static.
QRO	Shall I increase power?	Increase power.
QRP	Shall I decrease power?	Decrease power.
QRQ	Shall I send faster?	Send faster.
QRS	Shall I send more slowly?	Send more slowly (. . . . words per minute).
QRT	Shall I stop sending?	Stop sending.
QRU	Have you anything for me?	I have nothing for you.
QRV	Are you ready?	1 am ready.
QRX	When will you call again?	I will call you again at . . hours [on kc (or mc)].
QSA	What is the strength of my signals?	The strength of your signals is
QSB ${ }^{\text {- }}$	Are my signals fading?	Your signals are fading.
QSL	Can you acknowledge receipt?	I am acknowledging receipt.
QSM	Shall I repeat the last message I sent you?	Repeat the last message you have sent me.
QSO	Can you communicate with direct or by relay?	I can communicate with direct (or by relay through).
QSV	Shall I send a series of V's?	Send a series of V's.
QSY	Shall I change to transmission on another frequency?	Change to transmission on another frequency [or on kc (or mc)].
QSZ	Shall I send each word or group twice?	Send each word or group twice.
QTH	What is your location?	My location is

41. "10" SIGNALS

The abbreviations based on the number 10 plus a suffix was originally used for communication between police units. Now they are often used in other forms of two-way communications. The most common signals are given in Table XVI.

Table XVI. " 10 " Signals

Signal	Meaning	Signal	Meaning
$10-1$	Unable to copy	$10-27$	Operator on duty
$10-2$	Signal good	$10-30$	Does not conform to rules
$10-3$	Affirmative-granted-will do	$10-33$	Emergency traffic this station
$10-5$	Relay	$10-36$	Confidential information
$10-6$	Busy	$10-41$	Beginning tour of duty
$10-7$	Off the air	$10-42$	Ending tour of duty
$10-8$	On the air	$10-44$	Message received by all con-
$10-9$	Repeat		cerned
$10-10$	On detail, but subject to call	$10-60$	What is next number?
$10-11$	Remain in service	$10-61$	CW traffic
$10-12$	Visitors or officials present	$10-62$	Teletype traffic
$10-13$	Weather and road conditions	$10-63$	Any answer our number . . .
$10-14$	Correct time	$10-64$	Message for local delivery
$10-16$	Pick up (. .)	$10-65$	Net message assignment
$10-17$	Urgent-rush present detail	$10-66$	Cancellation
$10-18$	Anything for us?	$10-67$	Clear for net message
$10-19$	Nothing for you	$10-68$	Dispatch information
$10-20$	Location	$10-88$	Advise present phone number
$10-21$	Call ...by telephone		of . .
$10-22$	Reporting in person to ...	$10-91$	Too weak; talk closer to mike
$10-23$	Arrived at scene	$10-92$	Too loud; talk farther from mike
$10-24$	Finished with last assignment	$10-93$	Frequency check
$10-25$	Disregard last information	$10-94$	Give a test

42. THE INTERNATIONAL CODE

43. GREEK ALPHABET

The Greek alphabet is given in Table XVII. The items for which each letter is a symbol are also listed. The small Greek letter is the symbol for all the items listed unless a capital letter is indicated (cap).

Table XVII. Greek Alphabet

Letter		Name	Designates
Small	Capital		
a	A	Alpha	Angles, coefficients, attenuation constant, absorption factor, area.
β	B	Beta	Angles, coefficients, phase constant.
γ	Γ	Gamma	Specific quantity, angles, electrical conductivity, propagation constant, complex propagation constant (cap).
δ	λ	Delta	Density, angles, increment or decrement (cap or small), determinant (cap), permittivity (cap).
ϵ	E	Epsilon	Dielectric constant, permittivity, base of natural (Napierian) logarithms, electric intensity.
ζ	Z	Zeta	Co-ordinate, coefficients.
η	H	Eta	Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates.
θ	θ	Theta	Angular phase displacement, time constant, reluctance, angles.
6	1	lota	Unit vector.
κ	K	Kappa	Susceptibility, coupling coefficient.
λ	Λ	Lambda	Wavelength, attenuation constant, permeance (cap).
μ	M	Mu	Prefix micro-, permeability, amplification factor.
ν	N	Nu	Reluctivity, frequency.
ξ	3	Xi	Co-ordinates.
0	\bigcirc	Omicron	-
π	TT	Pi	3.1416 (circumference divided by diameter).
ρ	P	Rho	Resistivity, volume charge density, co-ordinates.
σ	Σ	Sigma	Surface charge density, complex propagation constant, electrical conductivity, leakage coefficient, sign of summation (cap).
T	T	Tau	Time constant, volume resistivity, time-phase displacement, transmission factor, density.
v	Υ	Upsilon	-

Table XVII. Greek Alphabet-(Cont'd)

Letter						
Small	Capital	Name	Designates	$	$	Phi
:---						
ϕ						
ψ						

44. ELECTRONIC SYMBOLS AND ABBREVIATIONS*

A-Ammeter; ampere; area
a-Ampere
AC, a.c., a-c, ac-Alternating current
AF, a.f., a-f, af-Audio frequency
AFC, afc-Automatic frequency control
AGC, age--Automatic gain control
AM, am—Amplitude modulation
Amp, amp., Amps, amps.-Ampere; amperes

Ant, ant.-Antenna
AVC, a.v.c., ave-Automatic volume control
B-Susceptance
b-Magnetic flux density
BC, be-Broadcas \dagger
BFO, bfo-Beat-frequency oscillator
C-Capacitance; capacitor
${ }^{\circ} \mathrm{C}$-Degrees Celsius or centigrade
cm-Centimeter
cps-Cycles per second
CW, cw-Continuous wave
db-Decibels
DC, d.c., d-c, dc—Direct current
d.c.c., dec-Double cotton-covered

DPDT, d.p.d.t., dpdt-Double-pole, dou-ble-throw
DPST, d.p.s.t., dpst-Double-pole, singlethrow
d.s.c., dsc-Double silk-covered

E, e-Voltage
e.c., ex-Enamel-covered

EMF, emf-Electromotive force
ERP—Effective radiated power

F, f-Farad
f-Frequency
${ }^{\circ}$ F--Degrees Fahrenheit
FM, f.m., fm-Frequency modulation
G-Conductance
$\mathbf{G}_{\mathrm{m}}, \boldsymbol{g} m, \mathbf{g}_{\mathrm{m}}$ —Mutual conductance
GCT-Greenwich Civil Time
gnd-Ground
H, h-Henry
HF, h.f., h.f, hf-High frequency
hp-Horsepower
hy.-Henry
I-Current
IF, i.f., i-f, if-Intermediate frequency
ips-Inches per second
i-Joule; an imaginary number; an operator to rotate a vector quantity 90° counterclockwise
K—X 1000; dielectric constant; a numerical value that does not change during a given period
k-Dielectric constant
KC, ke—Kilocycle
kv-Kilovolt
kva-Kilovolt ampere
KW, kw-Kilowatt
KWH, kwh—Kilowatt hour
L-Inductance; inductor
--Length
LF, I.f., I-f, If-Low frequency
M—Mutual inductance; $\times 1000$
m-Meter
ma-Milliampere

[^6]MC, Mc, me-Megacycle
mew-Modulated continuous wave
meg-Megohm
MF, m.f., m-f, mf—Medium frequency
mf, mfd-Mierofarad
$\mathbf{m h}$-Millihenry
mm—Millimeter
mmf, mmfd—Micromicrofarad
mv—Millivoit (sometimes microvolt)
mw-Milliwatt (sometimes microwatt)
NC-No connection
OD-Outside diameter
P-Power
pf-Power factor
p-p-Peak-to-peak
Q-Merit of a coil or capacitor; quantity of electricity
R-Resistance; resistor
RC, R-C—Product of resistance time capacitance; resistor-capacitor
RF, r.f., r-f, rf—Radio frequency
RFC-Radio-frequency choke coil
rms-Root mean square
rpm-Revolutions per minute
s.c.c., sec-Single cotton-covered
s.c.e., sce-Single cotton enamel
sec-Second; secondary
s.s.c., sse—Single silk-covered

SHF; s.h.f., shf-Super-high frequencies
SW, sw-Short wave
†-Time
T-Temperature
trf-Tuned radio frequency
UHF, uhf-Ultrahigh frequencies
V, v-Volt; voltmeter
VHF, vhf-Very high frequencies
VOM, vom-Volt-ohm-milliammeter
VTVM, vivm-Vacuum-tube voltmeter
VU—Volume unit
W-Watt; work
w-Watt
wh, whr-Watt-hour
X—Reactance
X_{6}-Capacitive reactance
X_{L},-Inductive reactance
\mathbf{Y}-Admittance
Z—Impedance
$\mu \mathrm{a}$-Microampere
$\mu \mathrm{f}$-Microfarad
$\mu \mathrm{h}$-Microhenry
$\mu \mu \mathbf{f}$-Micromicrofarad
\sim-Cycles per second

45. SEMICONDUCTOR ABBREVIATIONS

The following symbols and abbreviations have been adopted as standard by the Electronic Industries Association (EIA) and the National Electrical Manufacturers Association (NEMA).

B, b-Base electrode for units employing a single base
$\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$, etc.-Base electrodes for more than one base
BV ${ }_{\text {cro-Breakdown }}$ voltage, collector to base, emitter open
BV ceo-Breakdown voltage, collector to emitter, base open
BV $\mathrm{Brin}^{\text {- Breakdown voltage, collector to }}$ emitter, with specified resistance between base and emitter
BVces-Breakdown voltage, collector to emitter, with base short-circuited to emitter
$\mathrm{BV}_{\text {fro }}-$ Breakdown voltage, emitter to base, collector open
BV_{R}-Breakdown voltage, reverse
C, c-Collector electrode
$C_{1 \downarrow}$-Input capacitance (common base)
$\mathbf{C i c}_{\text {ic }}$-Input capacitance (common collector)
$\mathbf{C}_{\text {te }}$-Input capacitance (common emitter)
$C_{\text {ol }}$-Output capacitance (common base)
$C_{\text {oc }}$-Output capacitance (common collector)
$C_{0 .}$-Output capacitance (common emitter)
E, e-Emitter electrode
$\mathbf{f}_{\text {hfl }}$-Small-signal, short-circuit, forwardcurrent, transfer-ratio cutoff frequency (common base)
$\mathbf{f l y r}$-Small-signal, short-circuit, forwardcurrent, transfer-ratio cutoff frequency (common collector)
$\mathbf{f}_{\text {hfe }}$-Small-signal, short-circuit, forwardcurrent, transfer-ratio cutoff frequency (common emitter)
$\mathbf{f}_{\text {max }}$-Maximum frequency of oscillation
$\mathbf{G p h}_{\mathrm{p}}$-Large-signal average power gain (common base)
\mathbf{G}_{pb}-Small-signal average power gain (common base)
\mathbf{G}_{rc}-Large-signal average power gain (common collector)
\mathbf{G}_{p}-Small-signal average power gain (common collector)
$\mathbf{G}_{\mathrm{p}:}$-Large-signal average power gain (common emitter)
\mathbf{G}_{pe}-Small-signal average power gain (common emitter)
$h_{F s}$-Static value of the forward-current transfer ratio (common base)
$h_{\text {fo }}$-Small-signal, short-circuit, forwardcurrent transfer ratio (common base)
hrc-Static value of the forward-current transfer ratio (common collector)
hec-Small-signal, short-sircuit, forwardcurrent transfer ratio (common collector)
$h_{\mathrm{FE}}-$ Static value of the forward-current transfer ratio (common emitter)
hes-Small-signal, short-circuit, forwardcurrent transfer ratio (common emitter)
$h_{\text {IR }}$-Static value of the input resistance (common base)
$h_{1 s}$-Small-signal value of short-circuit input impedance (common base)
$h_{1 c}-$ Static value of the input resistance (common collector)
$h_{i e}$-Small-signal value of short-circuit input impedance (common emitter)
$h_{1 E}-$ Static value of the input resistance (common emitter)
$h_{\text {ie }}$-Small-signal value of short-circuit input impedance (common emitter)
$h_{\text {se }}$ (real)-Real part of small-signal value of short-circuit input impedance (common emitter)
hos-Static value of open-circuit output conductance (common base)
$\mathbf{h}_{\text {ob }}$-Small-signal value of open-circuit output admittance (common base)
hoc-Static value of open-circuit output conductance (common collector)
$h_{\text {or }}$-Small-signal value of open-circuit output admittance (common collector)
hor-Static value of open-circuit output conductance (common emitter)
$h_{\text {oe }}$-Small-signal value of open-circuit output admittance (common emitter)
$h_{\text {rb }}-S m a l l-s i g n a l$ value of open-circuit, reverse-voltage transfer ratio (common base)
$h_{r u}$-Small-signal value of open-circuit, reverse-voltage transfer ratio (common collector)
$\mathbf{h}_{\text {re }}$-Small-signal value of open-circuit, reverse-voltage transfer ratio (common emitter)
I, i-Intrinsic region of a device (where neither holes nor electrons predominate)
I_{s}-Base current (DC)
I_{l}-Base current (rms)
i_{1}-Base current (instantaneous)
I(-Collector current (DC)
I,-Collector current (rms)
i_{e}-Collector current (instantaneous)
$\mathbf{l}_{\text {cuo }}$-Collector cutoff current (DC), emitter open
$I_{\text {ceoo-Collector cutoff current (}} \mathrm{DC}$), base open
$\mathbf{I}_{\text {(efi-h }}$ Collector cutoff current (DC), with specified resistance between base and emitter
$I_{\text {crix-Collector current (}}$ (DC), with specified circuit between base and emitter
$\mathrm{I}_{\text {cess-Collector cutoff current (}} \mathrm{DC}$), with base short-circuited to emitter
1_{1} :-Emitter current (DC)
$1_{\text {e }}$-Emitter current (rms)
i_{p}-Emitter current (instantaneous)
$I_{\text {mio-Emitter cutoff }}$ current (DC), collec. tor open
IF-Forward current (DC)
if-Forward current (instantaneous)
lo-Average output (rectified) current
I_{H}-Reverse current (DC)
$\mathbf{i}_{\boldsymbol{R}}$-Reverse current (instantaneous)
\mathbf{K}_{θ}-Thermal derating factor
$\mathbf{L}_{\mathbf{c}}$-Conversion loss
N, n-Region of a device where electrons are the majority carriers
NF-Noise figure
P, p-Region of a device where holes are the majority carriers
P_{11} i-Total power input (DC or average) to the base electrode with respect to the emitter electrode
pus-Total power input (instantaneous) to the base electrode with respect to the emitter electrode

Pcr-Total power input (DC or average)
to the collector electrode with respect to the base electrode
Per:-Total power input (instantaneous) to to the collector electrode with respect to the base electrode
P(es-Total power input (DC or average) to the collector electrode with respect to the emitter electrode
per-Total power input (instantaneous) to the collector electrode with respect to the emitter electrode
$\mathbf{P}_{\text {EH }}$-Total power input (DC or average) to the emitter electrode with respect to the base electrode
per-Total power input (instantaneous) to the emitter electrode with respect to the base electrode
\mathbf{P}_{18}-Large-signal input power (common base)
\mathbf{P}_{10}-Small-signal input power (common base)
$P_{\text {IC }}$-Large-signal input power (common collector)
$\mathbf{P}_{\mathrm{te}_{e}}$-Small-signal input power (common collector)
$\mathbf{P a}_{\text {IE }}$-Large-signal input power (common emitter)
$\mathbf{P}_{\text {ie }}$-Small-signal input power (common emitter)
$\mathbf{P}_{\text {os-Large-signal output power (common }}$ base)
$P_{\text {ob }}$-Small-signal output power (common base)
Poc-Large-signal output power (common coliector)
$\mathbf{P}_{\text {oc }}$-Small-signal output power (common coilector)
$\mathbf{P}_{\text {On:-Large-signal }}$ output power (common emitter)
$\mathbf{P}_{\text {ge }}$-Small-signal output power (common emitter)
Pr_{r}-Total power input (DC or average) to all electrodes

Pr-Total power input (instantaneous) to all electrodes
\mathbf{R}_{R}-External base resistance
$R_{C}-$ External colfector resistance
res (sat)-Collector-to-emitter saturation resistance
\mathbf{R}_{t}-External emitter resistance
\mathbf{R}_{1}-Load resistance
T-Temperature
T_{A}-Ambient temperature
T_{f};-Case temperature
t_{d}-Delay time
T_{f}-Fall time
\dagger_{rr}-Forward recovery time
$\mathrm{T}_{\mathbf{J}}$-Junction temperature
Topr-Operating temperature
\dagger_{p}-Pulse time
${ }^{1}$-Rise time
\dagger_{r}-Reverse recovery time
t_{s}-Storage time
$\mathrm{T}_{\mathrm{st}} \mathrm{g}$-Storage temperature
${ }^{+}{ }_{w}$-Pulse average time
θ-Thermal resistance
θ_{J-A}-Thermal resistance, junction-toambient
$\theta_{\mathrm{J} \text {-c }}$-Thermal resistance, junction-to-case
\mathbf{V}_{13}-Base supply voltage (DC)
$\mathbf{V}_{\text {BC }}$-Base-to-collector voltage (DC)
$\mathbf{V}_{b,}$-Base-to-collector voltage (rms)
$\mathbf{V}_{b e}$-Base-to-collector voltage (instantaneous)
$\mathbf{V}_{\text {BE:-Base-to-emitter voltage (DC) }}$
$\mathbf{V}_{\text {be }}$-Base-to-emitter voltage (rms)
\mathbf{v}_{be}-Base-to-emitter voltage (instantaneous)
\mathbf{V}_{CH}-Collector-to-base voltage (DC)
\mathbf{V}_{eb}-Collector-to-base voltage (rms)
$\mathbf{v}_{\text {ch }}$-collector-to-base voltage (instantaneous)
$V_{\text {cc }}$-Collector supply voltage (DC)
$\mathbf{V}_{\text {Ce }}$-Collector-to-emitter voltage (DC)
$\mathbf{V}_{\text {ce }}$-Collector-to-emitter voltage $\langle\mathrm{rms}$)

V_{c}-Collector-to-emitter voltage (instantaneous)	$\mathbf{V}_{\mathbf{F}}$-Forward voltage (DC) V_{F}-Forward voltage (instantaneous)
$\mathbf{V}_{\text {CE }}$ (sat)-Collector-to-emitter saturation voltage	$V_{\text {erf-DC }}$ open-circuit voltage (floating potential) between collector and base,
$\mathrm{V}_{\text {EB }}$-Emitter-to-base voltage (DC)	with emitter biased in reverse direc-
$\mathrm{V}_{\text {eb }}$-Emitter-to-base voltage (rms)	tion with respect to base
$V_{e b}$-Emitter-to-base voltage (instantaneous)	$V_{\text {ref-DC }}$ open-circuit voltage (floating potential) between emitter and collec-
$\mathbf{V}_{\text {EC }}$-Emitter-to-collector voltage (DC)	tor, with base biased in reverse direc-
\mathbf{V}_{ec}-Emitter-to-collector voltage (rms)	tion with respect to collector
v_{ec}-Emitter-to-collector voltage (instan-	$\mathbf{V}_{\mathrm{RT}}-$ Reach-through voltage
taneous)	\mathbf{V}_{H}-Reverse voltage (DC)
VEE-Emitter supply voltage (DC)	V_{K}-Reverse voltage (instantaneous)

46. EIA TRANSFORMER COLOR CODE

The following diagrams illustrate the color code for transformers recommended by the EIA.

(A) Power Transformers

Fig. 62
(B) IF Transformers

(C) Audio Output and Interstage Transformers

47. RESISTOR AND CAPACITOR COLOR CODES

The present method and some of the older methods of color-coding resistors and capacitors are given in Figs. 65A and B (pages 89 and 90).

48. ELECTRONIC SCHEMATIC SYMBOLS

The most common schematic symbols are illustrated in Figs. 66A, B, C, and D (pages 91, 92, 93, and 94).

Resistor and Capacitor Color Codes-(Cont'd)

Electronic Schematic Symbols

(

Fig. 66A

Electronic Schematic Symbols-(Cont'd)

Fig. 66B

Electronic Schematic Symbols-(Cont'd)

Fig. 66C

Fig. 66D

Service and Installation Data

49. COAXIAL CABLE CHARACTERISTICS

Table XVIII lists the most frequently-used coaxial cables. The electrical specifications include the impedance in ohms, capacitance in micromicrofarads per foot, attenuation in db per 100 feet, and the outside diameter. (See page 43 for formulas.)

Table XVIII. Coaxial Cable Characteristics

Type RG... /U	Imp. (ohms)	Cap. (mmf perft.)	Diam. (inches)	Atrenuation-db per 100 ft .					REMARKS
				$\underset{\mathrm{m}}{1}$	$\begin{aligned} & 10 \\ & \mathrm{me} \end{aligned}$	$\begin{gathered} 100 \\ \mathbf{m e} \end{gathered}$	$\begin{aligned} & 400 \\ & \mathrm{mc} \end{aligned}$	$\begin{gathered} 1000 \\ \mathrm{mc} \end{gathered}$	
5	52.5	28.5	. 332	. 21	. 77	2.9	6.5	11.5	Small, double braid
5A	50	29	. 328	. 16	. 66	2.4	5.25	8.8	Small, low loss
6	76	20	. 332	. 21	. 78	2.9	6.5	11.2	IF \& video
8	52	29.5	. 405	. 16	. 55	2.0	4.5	8.5	General purpose
9	51	30	. 420	. 12	. 47	1.9	4.4	8.5	General purpose
9 A	51	30	. 420	. 16	. 59	2.3	5.2	8.6	Stable attenuation
11	75	20.5	. 405	. 18	. 62	2.2	4.7	8.2	Community TV
13	74	20.5	. 420	. 18	. 62	2.2	4.7	8.2	IF
14	52	29.5	. 545	. 10	. 38	1.5	3.5	6.0	RF power
16	52	29.5	. 630	-	-	-	-	-	RF power
17	52.	29.5	. 870	. 06	. 24	. 95	2.4	4.4	RF power
19	52	29.5	1.120	. 04	. 17	. 68	1.28	3.5	Low-loss RF
21	53	29	. 332	1.4	4.4	14.0	29.0	46.0	Attenuating cable
22	95	16	. 405	. 41	1.3	4.3	8.8	46.0	Twin conductors
23	125	12	. $65 \times .945$	-	. 4	1.7	.	-	Twin conductors (balanced)
25	48	50	. 565	-	-	-	-	-	Pulse
26	48	50	. 525	-	-	-	-	-	Pulse
27	48	50	. 675	-	-	-	-	-	Pulse
28	48	50	. 805	-	-	-	-	-	Pulse
33	51	30	. 470	-	-	-	-	-	Pulse
34	71	21.5	. 625	. 065	. 29	1.3	3.3	6.0	Flexible, medium
35	71	21.5	. 945	. 064	. 22	. 85	2.3	4.2	Low-loss video
36	69	22	1.180	-	-	-	-	-	--
41	67.5	27	. 425	-	7	-	-	-	Special twist
54A	58	26.5	. 250	. 18	. 74	3.1	6.7	11.5	Flexible, small

Table XVIII. Coaxial Cable Characteristics-(Cont'd)

Type RG... /U	Imp. (ohms)	Cap. (mmf perft.)	Diam. (inches)	Attenuation-db per 100 ft .					REMARKS
				$\begin{gathered} \mathbf{1} \\ \mathbf{m c} \end{gathered}$	$\begin{aligned} & 10 \\ & \mathrm{mc} \end{aligned}$	$\begin{array}{r} 100 \\ \mathrm{mc} \end{array}$	$\begin{aligned} & 400 \\ & \mathrm{mc} \end{aligned}$	$\begin{gathered} 1000 \\ \mathrm{me} \end{gathered}$	
55	53.5	28.5	. 206	. 36	1.3	4.8	10.4	17.0	Flexible, small
56	-	-	. 535	-	-	-	-	-	Pulse
57	95	17	. 625	. 18	. 71	3.0	7.3	13.0	Twin conductors
58	53.5	30	. 195	. 38	1.4	5.2	11.2	20.0	General purpose
58A	50	30	. 195	. 42	1.6	6.2	14.0	24.0	Test leads
59	73	21	. 242	. 30	1.1	3.8	8.5	14.0	TV lead-in
60	50	-	. 425	-	-	-	-	-	Pulse cable
61	500	-	-	-	-	-	-	-	Special 500 -ohm twin-lead
62	93	13.5	. 242	. 25	. 83	2.7	5.6	9.0	Low capacity, small
63	125	10	. 405	. 19	. 61	2.0	4.0	6.3	Low capacity
64	48	50	. 495	-	-	-	-	-	Pulse
65	950	44	. 405	-	-	-	-	-	Coaxial delay line
71	93	13.5	. 250	. 25	. 83	2.7	5.6	9.0	Low capacity, small
77	48	50	. 415	-	-	-	-	-	Pulse
78	48	50	. 385	-	-	-	-	-	Pulse
87A	50	29.5	. 425	. 13	. 52	2.0	4.4	7.6	Teflon dielectric
88	48	50	. 490	-	-	-	-	-	Pulse
101	75	-	. 588	-	-	-	-	-	
102	140	-	1.088	-	-	-	-	-	
108	76	25	. 245	-	-	-	-	-	Twin conductors
114	185	6.5	. 405	-	-	-	-	-	Extra flexible
117	50	29	. 730	. 05	. 20	. 85	2.0	3.6	Teflon \& Fiberglas
119	50	29	. 470	-	-	-	-	-	Teflon \& Fiberglas
122	50	29.3	. 160	. 40	1.70	7.0	16.5	29.0	
126	50	29	. 290	3.20	9.0	25.0	47.0	72.0	Teflon \& Fiberglas
140	73	21	. 242	. 33	1.03	3.3	6.9	11.7	Teflon \& Fiberglas
141	50	29	. 195	. 35	1.12	3.8	8.0	13.8	Teflon \& Fiberglas
142	50	29	. 206	. 35	1.12	3.8	8.0	13.8	Teflon \& Fiberglas
143	50	29	. 325	. 24	. 77	2.5	5.3	9.0	Teflon \& Fiberglas
144	72	21	. 395	. 16	. 53	1.8	3.9	7.0	Teflon \& Fiberglas
174	50	30	. 10	-	-	-	19.0	-	Miniature coaxial

50. TEST-PATTERN INTERPRETATION

The Indian Head test pattern in Fig. 67 is transmitted by many TV stations and is also used in the flying-spot scanner type of video pattern generators. In addition, many of the features of this pattern are incorporated in the individual test patterns of TV stations. The test pattern is a quick and accurate way of checking receiver adjustments and operating conditions.

In the following explanation, the significance of each point indicated by an arrow and letter on the test pattern is

Fig. 67
explained. For example, the letter A indicates the circles at each corner and the two circles in the center of the pattern.
A. The six circles serve as a check for the adjustment of the Height, Width, Vertical Linearity, Horizontal Linearity, and Horizontal Drive controls and the ion-trap magnets, as well as the over-all operation of the vertical, horizontal, and power-supply circuits. All circles should be round and should not overlap the sides of the picture tube by more than three-fourths of an inch.
B. The eight squares along the horizontal axis and the six squares along the vertical axis indicate the standard aspect ratio of $4: 3$. These squares serve as a check for rectangular distortion caused by misadjusted or missing anti-pincushion magnets or by defects in the deflection yoke.
C. The four diagonal lines are used to check interlace. Poor interlace due to improper operation of the verticaloscillator circuit will make the lines appear jagged.
D. The horizontal wedges located at each corner and in the center of the pattern serve as a check of the vertical resolution and interlace. Note the point where the horizontal lines are no longer clear and straight. The breaks in the
center line indicate 50 -line intervals. That is, starting from the left (on the center and left-hand wedges), the first break indicates vertical resolution of 150 lines; the others, 200, 250,300 , and 350 . The first break to the right of the center circles indicates 500 lines, then $450,400,350$, and 300 . The wedges at the top and bottom of the right side of the pattern give the same information except that the wedge is reversed. The numbers ($20,30,35$, and 45) between the vertical and horizontal wedges in each circle indicate these vertical resolution check points, with the last zero omitted.
E. The vertical wedges at each corner and at the center of the pattern indicate the horizontal resolution. Hence, they serve as a check on all video-amplifying circuits and alignment. Note the point where the vertical lines are no longer clear. Each break in the center line of the vertical wedge indicates 50 lines, as explained for D . The horizontal resolution can be converted to bandwidth by dividing the number of lines by 80 . For example, if the lines are no longer clear at the 300 -line point, the bandwidth equals 300 divided by 80 , or 3.75 mc .
F. The two diagonal wedges and the Indian head indicate the contrast ratio. Therefore, they can be used to check the adjustment of the Contrast, Brightness, and AGC controls, as well as the video-amplifying and picture-tube circuits. When video-amplifier and picture-tube circuits are operating properly and the controls are properly adjusted, four degrees of shading should be observed, ranging from black at the center to light gray at the outermost point on the wedge.
G. The bull's-eyes at each corner and at the center of the pattern indicate receiver focus. Hence, they serve to check the adjustment of the focusing device or, if electromagnetic focusing is employed, of the low-voltage power supply.
H. The eleven horizontal bars represent half cycles of square-wave signals, and are used to check the low-frequency response or phase shift of the receiver. The bars, from top to bottom, represent the following video signals: 19 kc , $28 \mathrm{kc}, 38 \mathrm{kc}, 56 \mathrm{kc}, 75 \mathrm{kc}, 113 \mathrm{kc}, 150 \mathrm{kc}, 225 \mathrm{kc}, 300 \mathrm{kc}$, 450 kc , and 600 kc . If the low-frequency response is satisfactory, the bars will be sharply defined. However, if the receiver has poor low-frequency response due to a defect in the video-amplifier circuit or misadjustment of the Fine

Tuning, Contrast, or AGC controls, the bars will have trailing black or white edges.
I. The single resolution lines at each side of the center circle represent the width of a single line ranging from 50 to 575 lines, in steps of 25 . These lines are used to check for ringing in the video amplifier at frequencies from approximately 600 kc to 7 mc . When ringing occurs at any frequency, the resolution line corresponding to that frequency will be repeated several times at evenly spaced intervals. To convert the resolution lines to the frequency, divide the number of lines by 80 , as explained in the foregoing for E.

51. CLASSES OF VACUUM-TUBE OPERATION

Class-A amplifiers are biased so that the AC input signal is on the linear portion of their characteristic curve, as shown in Fig. 68.

The output signal is a faithful reproduction of the input signal. The only difference is in the amplification. Plate current flows at all times in a Class-A amplifier. Class-A amplifiers are used in audio or other applications where distortion cannot be tolerated. Their efficiency is around 20 to 25%.

Input Signal Voltage

Class-AB amplifiers are biased as shown in Fig. 69. Here, plate current will flow more than one half but less than a full cycle. Higher plate voltages and currents can be employed than for Class-A amplifiers because the increased negative grid bias will hold the plate current within the plate-dissipation rating. For this reason, more power output can be obtained from Class-AB operation. Class-AB amplifiers may be operated either single-ended or in push-pull.

Class-AB amplifiers are subdivided into two classes, AB_{1} and AB_{2}. In a Class- AB_{1} amplifier, no grid current will flow.

Fig. 70

Input Signal Voltage

Fig. 71
That is, the peak signal voltage applied to each grid is never greater than the negative grid bias; therefore, the grid is never driven positive. In a Class-AB 2 amplifier, grid current will flow because the peak signal is greater than the negative grid bias and the grid is driven positive during a portion of the cycle, as shown in Fig. 70. The efficiency of Class-AB amplifiers varies from 40 to 75%, depending on the bias voltage.

Class-B amplifiers are biased at or near cutoff, as shown in Fig. 71. When on exciting grid voltage is applied, plate current is near zero; therefore, it will flow only during approximately half of a cycle. Because plate current flows for only one half the cycle, Class-B amplifiers must be operated in push-pull. More power can be obtained from Class-B amplifiers than from Class-A or Class-AB amplifiers without

Fig. 72
excessive plate dissipation. The efficiency of Class-B amplifiers is around 40 to 60%.

Class-C amplifiers are biased below cutoff, as shown in Fig. 72. Therefore, plate current flows for less than half of a cycle. More power can be obtained from Class-C than Class-B amplifiers. Usually, Class-C amplifiers are used in a selective-tuned circuit, such as those employed in RF amplifiers. The high distortion, characteristic of Class-C amplifiers, is overcome by the flywheel effect of the tuned circuits. The efficiency of Class-C amplifiers is around 50 to 80%.

52. MINIATURE LAMP DATA

Table XIX (page 102) lists the most common miniature lamps and their characteristics. The outline drawings for each lamp are given in Fig. 73 below.

B

D

Fig. 73

Table XIX. Miniature Lamp Data

Lamp No.	Voits	Amps	Bead Color	Base	Bulb Type	Fig. No.
PR2	2.4	0.50	Blue	Flange	B-31/2	A
PR3	3.6	0.50	Green	Flange	B-31/2	A
PR4	2.3	0.27	Yellow	Flange	B-31/2	A
PR6	2.5	0.30	Brown	Flange	B-31/2	A
PR12	5.95	0.50	White	Flange	B-31/2	A
12	6.3	0.15	- -	2-Pin	G-31/2	H
13	3.8	0.30	Green	Screw	G-31/2	B
14	2.5	0.30	Blue	Screw	G-31/2	B
40	6.3	0.15	Brown	Screw	T-31/4	C
41	2.5	0.50	White	Screw	T-31/4	C
42	3.2	0.35*	Green	Screw	T-31/4	C
43	2.5	0.50	White	Bayonet	T-31/4	D
44	6.3	0.25	Blue	Bayonet	T-31/4	D
45	3.2	$0.35 \dagger$	Green \dagger	Bayonet	T-31/4	D
46	6.3	0.25	Blue	Screw	T-31/4 \ddagger	C
47	6.3	0.15	Brown	Bayonet	T-31/4	D
48	2.0	0.06	Pink	Screw	T-31/4	C
49	2.0	0.06	Pink	Bayonet	T-31/4	D
50	6.3	0.20	White	Screw	G-31/2	B
51	6.3	0.20	White	Bayonep	G-31/2	E
55	6.3	0.40	White	Bayonet	G-41/2	F
57	14.0	0.24	White	Bayonet	G-41/2	F
112	1.1	0.22	Pink	Screw	TL-3	G
222	2.2	0.25	White	Screw	TL-3	G
233	2.3	0.27	Purple	Screw	G-31/2	B
291	2.9	0.17	White	Screw	T-31/4	C
292	2.9	0.17	White	Screw	T-31/4	C
1490	3.2	0.16	White	Bayonet	T-31/4	D
1891	14.0	0.23	Pink	Bayonet	T-31/4	D
1892	14.0	0.12	White	Screw	T-31/4	C

* Some brands are .50 amp .
\dagger Some brands are .50 amp and white bead.
\ddagger Frosted.

53. GAS-FILLED LAMP DATA

The characteristics of the more common gas-filled lamps are given in Table XX. The value of external resistance needed for operation with circuit voltages from 110 to 600 volts is given in Table XXI.

Table XX. Gas-Filled Lamps

Number	Hours of Average Useful Life*	Type Gas	Max. Length In inches	Base	Amps	Volts	Watts \dagger
AR-1	3,000	Argon	$31 / 2$	Medium Screw	0.018	110-125	2
AR-3	1,000	Argon	$15 / 8$	Cand. Screw	0.0035	110-125	1/4
AR-4	1,000	Argon	$11 / 2$	Double-Contact Bayonet	0.0035	110-125	1/4
NE-2	Over 25,000	Neon	1 1/16	Unbased	0.003	110-125	1/25
NE-2A	Over 25,000	Neon	27/32 \ddagger	Unbased	0.003	110-125	1/25
NE-17	5,000	Neon	$11 / 2$	Double-Contact Bayonet§	0.002	110-125	1/4
NE-30	10,000	Neon	$21 / 4$	Medium Screw§	0.012	110-125	1
NE-32	10,000	Neon	$21 / 16$	Double-Contact Bayonet§	0.012	110-125	1
NE-34	8,000	Neon	$31 / 2$	Medium Screw	0.018	110-125	2
NE-40	8,000	Neon	$31 / 2$	Medium Screw§	0.030	110-125	3
NE-45	Over 7,500	Neon	$15 / 8$	Cand. Screw	0.002	110-125	1/4
NE-48	Over 7,500	Neon	$11 / 2$	Double-Contact Bayonet	0.002	110-125	1/4
NE-51	Over 15,000	Neon	$13 / 16$	Miniature Bayonet	0.0003	110-125	1/25
NE-56	10,000	Neon	$21 / 4$	Medium Screw§	0.005	220-250	1
NE-57	5,000	Neon	$15 / 8$	Cand. Screw§	0.002	110-125	1/4
NE-58	Over 7,500	Neon	$15 / 8$	Cand. Screw	0.002	220-250	1/2

* Life on DC is approximately 60% of AC values.
\dagger For $110-125 \mathrm{~V}$ operation.
\ddagger The dimension is for glass only.
\& On DC circuits the base should be negative.

Table XXI. External Resistances Needed For Gas-Filled Lamps

Type	110-125V	220-300V	300-375V	375-450V	450-600V
AR-1	Included in Base	10,000	18,000	24,000	30,000
AR-3	Included in Base	68,000	91,000	150,000	160,000
AR-4	15,000	82,000	100,000	160,000	180,000
NE-2	200,000	750,000	1,000,000	1,200,000	1,600,000
NE-2A	200,000	750,000	1,000,000	1,200,000	1,600,000
NE-17	30,000	110,000	150,000	180,000	240,000
NE-30	Included in Base	10,000	20,000	24,000	36,000
NE-32	7.500	18,000	27,000	33,000	43,000
NE-34	Included in Base	9,100	13,000	16,000	22,000
NE-40	Included in Base	6,200	8,200	11,000	16,000
NE-45	Included in Base	82,000	120,000	150,000	200,000
NE-48	30,000	110,000	150,000	180,000	240,000
NE-51	200,000	750,000	1,000,000	1,200,000	1,600,000
NE-56	Included in Base				
NE-57	Included in Base	82,000	120,000	150,000	200,000
NE-58	Included in Base				

54. LIGHT PROPERTIES OF COLOR TV

When we speak of light, we usually think of light coming from the sun or the light emitted from some artificial lighting source, such as electrical lighting. This light is referred to as direct light. Another type of light is indirect or reflected light, which is given off by an object when direct light strikes it. The difference between these two types of light is that the indirect light depends upon the direct light. When light is not shining upon an object, no light will be given off unless the object contains self-luminating properties.

White light is made up of different colors. This composition can be shown by passing light through a prism. The light spectrum is broken up into its constituent wavelengths, each representing a different color. The ability to disperse the light by a prism stems from the fact that light of shorter wavelengths travels slower through glass than does light of longer wavelengths. The spectrum ranges from violet on the lower end to red on the upper end. In between fall blue, green, yellow, and orange. A total of six distinct colors are visible when white light passes through a prism. Since the colors of the spectrum pass gradually from one to the other, the theoretical number of colors becomes infinite.

There are three color attributes used to describe any one color or to differentiate between several colors. These are (1) hue, (2) saturation, and (3) brightness. Hue is the quality used to identify any color under consideration, such as red, blue, or yellow. Saturation is a measure of the absence of dilution by white light, and can be expressed with such terms as rich, deep, vivid, or pure. Brightness defines the amount of light energy contained within a given color.

Color may be produced by either of two processes. When working with paint pigments, the subtractive process is employed. The other process of mixing colors is called the additive process. This process is used in color television. The colors in the additive process do not depend upon an incident light source. Self-luminous properties are characteristic of the additive colors. Phosphorescent signs which glow in the dark are good examples of this process. Cathoderay tubes contain self-luminance properties; so it is only logical that the additive process would be employed in color television.

The three primaries for the additive process of color mixing are red, green, and blue. Two requirements for the primary colors are that each primary must be different and that the combination of any two primaries must not be capable of producing the third. Red, green, and blue were chosen for the additive primaries because they fulfilled these requirements and because it was determined that the greatest number of colors could be produced by the combination of these three colors.

Fig. 74

The three additive primaries used in color television are shown in Fig. 74. From the illustration we can see that by mixing colors in certain proportions, we can obtain the following :

$$
\begin{aligned}
& \text { Red + Green = Yellow } \\
& \text { Red }+ \text { Blue }=\text { Magenta } \\
& \text { Blue }+ \text { Green = Cyan } \\
& \text { Yellow }+ \text { Blue }=\text { White } \\
& \text { Cyan }+ \text { Red }=\text { White } \\
& \text { Magenta }+ \text { Green }=\text { White } \\
& \text { Red }+ \text { Blue }+ \text { Green }=\text { White } \\
& \text { Cyan }+ \text { Magenta }+ \text { Yellow }=\text { White }
\end{aligned}
$$

It is not necessary to overlap the primary colors in the additive process to produce a different color. They may be placed close to each other, and at a certain viewing distance the two colors will blend and produce the new color.

To be compatible, the composite color signal must contain a complete black-and-white signal to which an additional signal is added to convey the color information. The black-and-white signal (also called the luminance signal) carries all the information pertaining to the brightness of the scene being televised, by means of amplitude modulation of the carrier envelope. The other color attributes-hue and satu-ration-are carried by the color signal.

To keep the color signal from interfering with black-and-white reception of the composite color signal, the color information is included within the $4.25-\mathrm{mc}$ video band by an interleaving process. This process is possible because the energy of the luminance signal concentrates at specific intervals in the frequency spectrum. The spaces between these intervals are relatively void of energy, and the energy of the chrominance signal can be caused to concentrate in these spaces.

The color or chrominance signal is conveyed by means of a subcarrier at 3.579 megacycles. This frequency was chosen so that the interleaving process could be accomplished. This chrominance signal is modulated in both phase and amplitude. A change in the phase of this signal represents a change in the hue of the scene, and a change in amplitude
represents a change of color saturation. A color sync signal which keeps the receiver circuits synchronized to the color information is included in the composite signal. This signal is placed on the "back porch" of the horizontal blanking pedestal and is transmitted at a fixed or reference phase. This signal is known as the "color burst" signal.

55. RELAY REWINDING DATA

The following nomograph can be used if it is desired to rewind a relay for operation on a different voltage. To calculate the wire size needed for operation on the desired voltage, first lay a straightedge across the points where the present voltage and the desired voltage appear on the first

Fig. 75
two columns, and note the point where the straightedge intersects the ratio column. Then lay the straightedge across this point on the ratio column and the present wire gauge column. Read the wire gauge needed for the desired voltage from the fifth column. Directly opposite this point, the wire diameter (in inches) is also given.

Example-What size wire is needed to rewind a relay wound with No. 23 wire and designed for 12 -volt operation, for operation on 24 volts?

ANSWER: No. 26 (0.0159 inch diameter). [First lay the straightedge across 12 in the first column and 24 in the second column. Note the point where the straightedge crosses the third column (.5), and lay the straightedge across this point and across 23 on the fourth column. Read the desired size from the fifth and sixth columns.]

56. SPEAKER CONNECTIONS

The following diagrams show the proper connection methods for single- or multiple-speaker operation.
(A) Single Speaker

Fig. 76
(B) Two Speakers in Series

Fig. 77
(C) Speakers in Parallel

Fig. 78
(D) 70.7-Volt Hook-up Using Matching Transformers

Fig. 79

57. MACHINE SCREW AND DRILL SIZES

The most common screw sizes and threads, together with the tap and clearance drill sizes, are given in Table XXII. The number listed under the "Type" column is actually a combination of the screw size and the number of threads per inch. For example, a No. 6-32 screw denotes a size No. 6 screw with 32 threads per inch.

Table XXII. Machine Screw and Drill Sizes

Type	Tap Drill	Clearance Drill	Type	Tap Drill	Clearance Drill
$1-64$	53	47	$10-24$	25	$13 / 64$
$1-72$	53	47	$10-32$	21	$13 / 64$
$2-56$	50	42	$12-24$	16	$7 / 32$
$2-64$	50	42	$12-28$	14	$7 / 32$
$3-48$	47	36	$1 / 4-20$	7	$17 / 64$
$3-56$	45	36	$1 / 4-28$	3	$17 / 64$
$4-40$	43	31	$5 / 16-18$	F	$21 / 64$
$4-48$	42	31	$5 / 16-24$	1	$21 / 64$
$5-40$	38	29	$3 / 8-16$	$5 / 16$	$25 / 64$
$5-44$	37	29	$3 / 8-24$	Q	$25 / 64$
$6-32$	36	25	$7 / 16-14$	U	$29 / 64$
$6-40$	33	25	$7 / 16-20$	$25 / 64$	$29 / 64$
$8-32$	29	16	$1 / 2-13$	$27 / 64$	$33 / 64$
$8-36$	29	16	$1 / 2-20$	$29 / 64$	$33 / 64$

FLAT

BINDING

ROUND

STOVE

OVAL

FILLISTER

HEX

WASHER

PHILLIPS

ALLEN RECESS

BRISTO

CLUTCH

Fig. 80

58. TYPES OF SCREW HEADS

The most common types of screw heads are listed and illustrated in Fig. 80 on the preceeding page.

59. RESISTANCE OF METALS AND ALLOYS

The resistance for a given length of wire is determined by :

$$
\mathrm{R}=\frac{\mathrm{KL}}{\mathrm{~d}^{2}}
$$

where,
R is the resistance, in ohms, of the length of wire.
K is the resistance, in ohms per circular mil foot, of the material,
L is the length of the wire in feet,
d is the diameter of the wire in mils.
The resistance, in ohms per circular mil foot, of many of the materials used for conductors or heating elements is given in Table XXIII. The resistance shown is for $20^{\circ} \mathrm{C}$ ($68^{\circ} \mathrm{F}$).

Table XXIII. Resistance of Metals and Alloys

Material	Symbol	Resistance (ohms per cir. mil foot)
Nichrome	$\mathrm{Ni}-\mathrm{Fe}-\mathrm{Cr}$	675
Nichrome V	Ni Cr	650
Manganese Nickel	$\mathrm{Ni}-\mathrm{Mu}$	85
Pure Nickel	Ni	60
High Brass	$\mathrm{Cu}-\mathrm{Zn}$	50
Commercial Bronze	$\mathrm{Cu}-\mathrm{Zn}$	25
Platinum	Pt	63.8
Iron	Fe	60.14
Zinc	Zn	35.58
Molybdenum	Mo	34.27
Tungsten	W	33.22
Aluminum	Al	16.06
Gold	Au	14.55
Copper	Cu	10.37
Silver	Ag	9.796

60. COPPER WIRE TABLE

Copper wire sizes ranging from American wire gauge (B \& S) 0000 to 40 are listed in Table XXIV (pages 112 and 113). The turns per linear inch, diameter, area in circular mils, current-carrying capacity, feet per pound, and resistance per 1000 feet are included in the table.

Table XXIV. Copper Wire Table

AWG B \& 5 Gauge	Turns Per Linear Inch				Diameter (Inches)	Circular Mils	Current Carrying Capacity @700 CM Per Amp	Feet Per lb. (Bare)	Ohms Per $1,000 \mathrm{Fr}$. @ 20 ${ }^{\circ} \mathrm{C}$
	Enamel	D.C.C.	s.c.c.	Nylon					
0000	-	-	-	-	. 4600	211,600	302.3	1.561	0.04901
000	-	-	-	-	. 4096	167,800	239.7	1.968	0.06180
00	-	-	\cdots	-	. 3648	133,100	190.1	2.482	0.07793
0	-	\cdots	-	-	. 3249	105,500	150.7	3.130	0.09827
1	-	3.3	3.3	-	. 2893	83,690	119.6	3.947	0.1239
2	-	3.6	3.8	-	. 2576	66,370	94.8	4.977	0.1563
3	-	4.0	4.2	-	. 2294	52,640	75.2	6.276	0.1970
4	-	4.5	4.7	-	. 2043	41,740	59.6	7.914	0.2485
5	-	5.0	5.2	-	. 1819	33,100	47.3	9.980	0.3133
6	-	5.6	5.9	-	. 1620	26,250	37.5	12.58	0.3951
7	-	6.2	6.5	-	. 1443	20,820	29.7	15.87	0.4982
8	7.6	7.1	7.4	-	. 1285	16,510	23.6	20.01	0.6282
9	8.6	7.8	8.2	-	. 1144	13,090	18.7	25.23	0.7921
10	9.6	8.9	9.3	-	. 1019	10,380	14.8	31.82	0.9989
11	10.7	9.8	10.3	-	. 09074	8,234	11.8	40.12	1.260
12	12.0	10.9	11.5	-	. 08081	6,530	9.33	50.59	1.588
13	13.5	12.0	12.8	-	. 07196	5,178	7.40	63.80	2.003
14	15.0	13.8	14.2	14.9	. 06408	4,107	5.87	80.44	2.525
15	16.8	14.7	15.8	-	. 05707	3,257	4.65	101.4	3.184

16	18.9	16.4	17.9	18.6	. 05082	2,583	3.69	127.9	4.016	n m $<$ $<$
17	21.2	18.1	19.9	-	. 04526	2,048	2.93	161.3	5.064	\leq
18	23.6	19.8	22.0	23.2	. 04030	1,624	2.32	203.4	6.385	m
19	26.4	21.8	24.4	-	. 03589	1,288	1.84	256.5	8.051	$\$$
20	29.4	23.8	27.0	28.9	. 03196	1,022	1.46	323.4	10.15	2
21	33.1	26.0	29.8	-	. 02846	810.1	1.16	407.8	12.80	\bar{z}
22	37.0	30.0	34.1	36.0	. 02535	642.4	. 918	514.2	16.14	$\xrightarrow{\square}$
23	41.3	31.6	37.6	-	. 02257	509.5	. 728	648.4	20.36	$\underset{\sim}{7}$
24	46.3	35.6	41.5	44.7	. 02010	404.0	. 577	817.7	25.67	2
25	51.7	38.6	45.6	-	. 01790	320.4	. 458	1,031	32.37	\cdots
26	58.0	41.8	50.2	55.7	. 01594	254.1	. 363	1,300	40.81	2
27	64.9	45.0	55.0	-	. 01420	201.5	. 288	1,639	51.47	8
28	72.7	48.5	60.2	69.4	. 01264	159.8	. 228	2,067	64.90	-1
29	81.6	51.8	65.4	-	. 01126	126.7	. 181	2,607	81.83	
30	90.5	55.5	71.5	86.2	. 01003	100.5	. 144	3,287	103.2	
31	101.0	59.2	77.5	-	. 008928	79.70	. 114	4,145	130.1	
32	113.0	62.6	83.6	106.0	. 007950	63.21	. 090	5,227	164.1	
33	127.0	66.3	90.3	-	. 007080	50.13	. 072	6,591	206.9	
34	143.0	70.0	97.0	133.0	. 006305	39.75	. 057	8,310	260.9	
35	158.0	73.5	104.0	-	. 005615	31.52	. 045	10,480	329.0	
36	175.0	77.0	111.0	167.0	. 005000	25.00	. 036	13,210	414.8	
37	198.0	80.3	118.0	-	. 004453	19.83	. 028	16,660	523.1	
38	224.0	83.6	126.0	206.0	. 003965	15.72	. 022	21,010	659.6	
39	248.0	86.6	133.0	-	. 003531	12.47	. 018	26,500	831.8	
40	282.0	89.7	140.0	263.0	. 003145	9.89	. 014	33,410	1,049.0	$\bar{\omega}$

Design Data

61. VACUUM-TUBE FORMULAS

The following formulas can be used to calculate the vacuum-tube properties listed.

Amplification factor:

$$
\mu=\frac{\Delta \mathrm{E}_{\mathrm{p}}}{\Delta \mathrm{E}_{\mathrm{g}}}\left(\text { with } \mathrm{I}_{\mathrm{p}} \text { constant }\right)
$$

AC (dynamic) plate resistance:

$$
r_{p}=\frac{\Delta E_{p}}{\Delta I_{p}}\left(\text { with } E_{g} \text { constant }\right)
$$

Mutual conductance (transconductance) :

$$
\mathrm{g}_{\mathrm{m}}=\frac{\Delta \mathrm{I}_{\mathrm{p}}}{\Delta \mathrm{E}_{\mathrm{g}}}\left(\text { with } \mathrm{E}_{\mathrm{p}} \text { constant }\right)
$$

Gain of an amplifier stage:

$$
\text { Gain }=\mu \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{r}_{\mathrm{p}}}
$$

where,
μ is the amplification factor, Δ is the variation or change in value, E_{p} is the plate voltage in volts, E_{g} is the grid voltage in volts, I_{p} is the plate current in amperes, R_{L} is the plate-load resistance in ohms, r_{p} is the AC plate resistance in ohms, g_{m} is the mutual conductance in mhos.

62. TRANSISTOR FORMULAS

The following formulas can be used to calculate the transistor properties listed.

Input Resistance:

$$
\mathrm{R}_{\mathrm{i}}=\frac{\Delta \mathrm{V}_{\mathrm{i}}}{\Delta \mathrm{I}_{\mathrm{i}}}
$$

Current Gain :

$$
A_{i}=\frac{\Delta I_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{b}}}\left(\text { with } \mathrm{V}_{\mathrm{c}} \text { constant }\right)
$$

Voltage Gain:

$$
A_{v}=\frac{\Delta V_{\mathrm{e}}}{\Delta \mathbf{V}_{\mathrm{b}}}\left(\text { with } \mathrm{I}_{\mathrm{c}} \text { constant }\right)
$$

Output Resistance:

$$
\mathrm{R}_{0}=\frac{\Delta \mathbf{V}_{0}}{\Delta \mathbf{I}_{\mathrm{o}}}
$$

Power Gain:

$$
\mathbf{A}_{\mathrm{p}}=\frac{\Delta \mathbf{P}_{0}}{\Delta \mathbf{P}_{\mathrm{i}}}
$$

The current gain of the common-base configuration is alpha:

$$
a=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{e}}}\left(\text { with } \mathrm{V}_{\mathrm{c}} \text { constant }\right)
$$

The current gain of the common emitter is beta:

$$
\beta=\frac{\Delta \mathrm{I}_{\mathrm{e}}}{\Delta \mathrm{I}_{\mathrm{b}}}\left(\text { with } \mathrm{V}_{\mathrm{e}} \text { constant }\right)
$$

A direct relationship exists between the alpha and beta of a transistor :

$$
a=\frac{\beta}{1+\beta} \quad \beta=\frac{a}{1-a}
$$

where,
a is the current gain of a common-base configuration, A_{v} is the voltage gain,
A_{1} is the current gain,
A_{p} is the power gain,
β is the current gain in a common-emitter configuration,
I_{b} is the base current,
I_{c} is the collector current,
I_{e} is the emitter current,
I_{1} is the input current,
I_{0} is the output current,
P_{1} is the input power,
P_{o} is the output power,
R_{1} is the input resistance,
R_{0} is the output resistance,
V_{b} is the base voltage,
V_{c} is the collector voltage,
V_{1} is the input voltage,
V_{0} is the output voltage.

63. THREE-PHASE POWER FORMULAS

In a three-phase system, there are three voltages, each separated by a phase difference of 120° : The power-supply input transformers may be connected in either a delta or a Y (star). Fig. 81 shows how the terminals are placed in relationship to the coils. In the delta connection, there is one coil between each pair of terminals; and in the Y connection, there are two. The voltage between two terminals of the Y-connected coil is equal to $\sqrt{3}$ times the voltage across one winding.

Fig. 81
The formulas for determining the voltage across the secondary winding for each of the four possible connections are as follows:
Δ to Y :

$$
E_{s}=E_{p} \times N \times \sqrt{3}
$$

Y to Δ :

$$
\mathrm{E}_{\mathrm{s}}=\frac{\mathrm{E}_{\mathrm{p}} \times \mathrm{N}}{\sqrt{3}}
$$

Δ to Δ :

$$
\mathrm{E}_{\mathrm{s}}=\mathrm{E}_{\mathrm{p}} \times \mathrm{N}
$$

Y to Y :

$$
\mathrm{E}_{\mathrm{s}}=\mathrm{E}_{\mathrm{p}} \times \mathrm{N}
$$

where,
E_{s} is the secondary voltage,
E_{p} is the primary voltage, N is the turns ratio.

64. COIL WINDINGS

(A) Single-Layer Coils

The inductance of single-layer coils can be calculated to an accuracy of approximately 1% with the formula:

$$
\mathrm{L}=\frac{(\mathrm{N} \times \mathrm{A})^{2}}{9 \mathrm{~A}+10 \mathrm{~B}}
$$

Fig. 82

To find the number of turns required for a single-layer coil with a given inductance, the foregoing formula is rearranged as follows:

$$
N=\frac{\sqrt{L(9 A+10 B)}}{A}
$$

where,
L is the inductance in microhenries,
N is the number of turns,
A is the mean radius in inches,
B is the length of the coil in inches.
(B) Multilayer Coils

The inductance of a multilayer coil of rectangular cross section can be computed from the formula:

$$
\mathrm{L}=\frac{0.8(\mathrm{~N} \times \mathrm{A})^{2}}{6 \mathrm{~A}+9 \mathrm{~B}+10 \mathrm{C}}
$$

A
Fig. 83
where,
L is the inductance in microhenries,
N is the number of turns,
A is the mean radius in inches,
B is the length of the coil in inches,
C is the depth of the coil in inches.

(C) Single-Layer Coil Chart

The chart on the following page provides an easy method for determining either the inductance or the number of turns for single-layer coils. When the length of the winding, the diameter, and the number of turns of the coil are known, the inductance can be found by placing a straightedge from the "Turns" scale to the "Ratio" (diameter \div length) scale and noting the point where the straightedge intersects the "Axis" scale. Then lay the straightedge from the point of intersection of the "Axis" scale to the "Diameter" scale. The point at which this line intersects the "Inductance" scale indicates the inductance (in microhenries) of the coil. The number of turns can be determined by reversing the procedure.

After finding the number of turns, consult the wire table in $\S 60$ to determine the size of wire to be used.

Example-What is the inductance of a single-layer coil having 80 turns wound to 4 inches in length on a coil form 2 inches in diameter?
ANSWER: 130 microhenries. (First lay the straightedge as indicated by the line labeled "Example 1A." Then lay the straightedge as indicated by the line labeled "Example 1B.")

65. FILTER FORMULAS

(A) Constant-k Filters

A constant-k filter presents an impedance match to the line at only one frequency, and a mismatch at all others. The three basic configurations are the T, L (half-section), and pi.

A constant-k low-pasis filter will pass frequencies below and attenuate those above a set frequency. Fig. 85 gives the circuit configurations, attenuation characteristics, and impedance characteristics of the three types of constant-k lowpass filters.

The attenuation of the L section is equal to half that of the T or pi sections. The impedance of the filter is equal to

Single-Layer Coil Chart

Fig. 84
the characteristic impedance of the line (Z_{0}) at zero frequency only. For all other frequencies, the input and output impedance of the filter are equal to Z_{I} or $\mathrm{Z}_{\mathrm{I}}^{\prime}$, as shown in Fig. 85.

T-SECTION

L-SECTION

PI-SECTION
Fig. 85
The values for L_{1}, C_{2}, Z_{o}, and f_{c} can be computed from the following formulas:

$$
\begin{aligned}
\mathrm{L}_{1} & =\frac{\mathrm{Z}_{0}}{\pi \mathrm{f}_{\mathrm{c}}} \\
\mathrm{C}_{2} & =\frac{1}{\pi \mathrm{f}_{\mathrm{c}} \mathrm{Z}_{\mathrm{o}}} \\
\mathrm{Z}_{\mathrm{o}} & =\sqrt{\frac{\mathrm{L}_{1}}{\mathrm{C}_{2}}} \\
\mathrm{f}_{\mathrm{c}} & =\frac{1}{\pi \sqrt{\mathrm{~L}_{1} \mathrm{C}_{2}}}
\end{aligned}
$$

The values computed for L_{1} and C_{2} must be divided in half, where specified in Fig. 85. That is, the coils in the T

T-SECTION

L-SECTION

PI-SECTION
Fig. 86
and L sections, and the capacitors in the L and pi sections, are equal to one-half the computed value.

A high-pass filter will pass all frequencies above and attenuate all those below a set frequency.

The circuit configurations, attenuation characteristics, and impedance characteristics of constant-k high-pass filltars are given in Fig. 86. The formulas for computing L_{2}, $\mathrm{C}_{1}, \mathrm{Z}_{\mathrm{o}}$, and f_{c} are as follows:

$$
\begin{aligned}
\mathrm{L}_{2} & =\frac{\mathrm{Z}_{0}}{4 \pi f_{\mathrm{c}}} \\
\mathrm{C}_{1} & =\frac{1}{4 \pi f_{\mathrm{c}} \mathrm{Z}_{o}} \\
\mathrm{Z}_{0} & =\sqrt{\frac{\mathrm{L}_{2}}{\mathrm{C}_{1}}} \\
\mathrm{f}_{\mathrm{c}} & =\frac{1}{4 \pi \sqrt{\mathrm{~L}_{2} \mathrm{C}_{1}}}
\end{aligned}
$$

Notice that the values computed for C in the foregoing formulas must be doubled in the T and L sections. Likewise, the value computed for L must be doubled in the L and $p i$ sections.

Transmission Characteristics

Fig. 87
Bandpass filters will pass frequencies of a certain band and reject all others. The configuration and the transmission characteristics for a constant-k bandpass filter are given in Fig. 87. The formulas for computing the various values are:

$$
\begin{gathered}
L_{1}=\frac{Z_{o}}{\pi\left(f_{2}-f_{1}\right)} \\
L_{2}=\frac{\left(f_{2}-f_{1}\right) Z_{0}}{4 \pi f_{1} f_{2}} \\
C_{1}=\frac{\left(f_{2}-f_{1}\right)}{4 \pi f_{1} f_{2} Z_{o}} \\
C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) Z_{o}} \\
f_{m}=\sqrt{f_{1} f_{2}}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}=\frac{1}{2 \pi \sqrt{L_{2} C_{2}}}} \\
Z_{0}=\sqrt{\frac{L_{1}}{C_{2}}}=\sqrt{\frac{L_{2}}{C_{1}}}
\end{gathered}
$$

As before, some values must be doubled or halved, as shown in Fig. 87.

A band-rejection filter will reject a certain band of frequencies and pass all others. The configuration and the transmission characteristics of a constant-k band-rejection filter

Transmission Characteristics

Fig. 88
are given in Fig. 88. The formulas for computing the component values, frequencies, and line impedance are:

$$
\begin{aligned}
& \mathrm{L}_{1}=\frac{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right) \mathrm{Z}_{0}}{\pi \mathrm{f}_{1} \mathrm{f}_{2}} \\
& \mathrm{~L}_{2}=\frac{\mathrm{Z}_{o}}{4 \pi\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)} \\
& \mathrm{C}_{1}=\frac{1}{4 \pi\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right) \mathrm{Z}_{o}} \\
& \mathrm{C}_{2}=\frac{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)}{\pi \mathrm{f}_{1} \mathrm{f}_{2} \mathrm{Z}_{o}} \\
& \mathrm{f}_{\mathrm{m}}=\sqrt{\mathrm{f}_{1} \mathrm{f}_{2}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{2} \mathrm{C}_{2}}} \\
& \mathrm{Z}_{o}=\sqrt{\frac{\mathrm{L}_{1}}{\mathrm{C}_{2}}}=\sqrt{\frac{\mathrm{L}_{2}}{\mathrm{C}_{1}}}
\end{aligned}
$$

where,
L_{1} and L_{2} are the inductances of the coils in henries,
C_{1} and C_{2} are the capacitances of the capacitors in farads,
f_{1} and f_{2} are the frequencies at the edge of the passband, in cycles per second,
f_{m} is the frequency at the center of the passband, in cycles per second,
$f_{1} \infty$ and $f_{2} \infty$ are the frequencies of infinite attenuation, in cycles per second,
Z_{0} is the line impedance in ohms.

(B) M-Derived Filters

In an m-derived filter, the designer can control either the impedance or the attenuation characteristics. The values are first computed as for a constant-k filter and then modified by an algebraic expression containing the constant m. The

Fig. 89
term m will be a positive number between zero and one, and its value governs the characteristics of the filter.

Two frequencies-the cutoff and the frequency of infinite attenuation-are involved in the design of m-derived filters. By selecting the proper value for m, it is possible to control the spacing between the two frequencies. Fig. 89 shows the effect which different values of m have on the impedance

Fig. 90
characteristics. Note that the best impedance match is obtained when m is equal to 0.6 ; hence this value is usually employed.

The attenuation characteristics for the various values of m are given in Fig. 90. The attenuation rises to maximum and then drops on all curves. This graph applies to both lowand high-pass filters.

The value of m is determined from the formulas:

$$
m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}
$$

or,

$$
m=\sqrt{1-\left(\frac{f_{\infty}}{f_{\mathrm{c}}}\right)^{2}}
$$

Select the formula which will give a positive number.

T-SECTION

L-SECTION

PI-SECTION

Fig. 91
The configurations for m-derived filters are classified as either series or shunt. Those for the series m-derived lowpass filters are given in Fig. 91. The formulas are as follows:

$$
\begin{aligned}
& \mathbf{L}_{1}=m\left(\frac{\mathbf{Z}_{.,}}{2 \pi f_{4}}\right) \\
& \mathbf{L}_{2}=\left(\frac{1-m^{2}}{4 m}\right)\left(\frac{\mathbf{Z}_{b}}{2 \pi f_{c}}\right) \\
& \mathrm{C}_{2}=m\left(\frac{1}{\pi f_{\mathrm{c}} \mathbf{Z}_{0}}\right)
\end{aligned}
$$

For a series m-derived high-pass filter (Fig. 92), the formulas are:

$$
\mathrm{L}_{2}=\frac{\left(\frac{\mathbf{Z}_{o}}{4 \pi \mathbf{f}_{s}}\right)}{m}
$$

$$
\begin{aligned}
& \mathrm{C}_{1}=\frac{\left(\frac{1}{4 \pi \mathrm{f}_{\mathrm{r}} \mathrm{Z}_{\mathrm{o}}}\right)}{m} \\
& \mathrm{C}_{2}=\left(\frac{4 m}{1-m^{2}}\right)\left(\frac{1}{4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{Z}_{\mathrm{o}}}\right)
\end{aligned}
$$

T-SECTION

L-SECTION

Fig. 92

Fig. 93
The configurations for shunt m-derived low-pass filters are given in Fig. 93. The formulas for computing the component values are:

$$
\begin{aligned}
& \mathrm{L}_{1}=m\left(\frac{\mathrm{Z}_{0}}{\pi \mathrm{f}_{\mathrm{c}}}\right) \\
& \mathrm{C}_{1}=\left(\frac{1-m^{2}}{4 m}\right)\left(\frac{1}{\pi \mathrm{f}_{\mathrm{c}} \mathbf{Z}_{\circ}}\right) \\
& \mathrm{C}_{2}=m\left(\frac{1}{\pi \mathrm{f}_{\mathrm{c}} \mathrm{Z}_{\mathrm{o}}}\right)
\end{aligned}
$$

Fig. 94
For shunt m-derived high-pass filters (Fig. 94), the formulas are:

$$
\begin{aligned}
& \mathbf{L}_{1}=\left(\frac{4 m}{1-m^{2}}\right)\left(\frac{\mathbf{Z}_{0}}{4 \pi \mathrm{f}_{\mathrm{e}}}\right) \\
& \mathbf{L}_{2}=\frac{\left(\frac{\mathrm{Z}_{0}}{4 \pi \mathrm{f}_{\mathrm{c}}}\right)}{m} \\
& \mathrm{C}_{1}=\frac{\left(\frac{1}{4 \pi f_{\mathrm{k}} \mathrm{Z}_{0}}\right)}{m}
\end{aligned}
$$

where,
L_{1} and L_{2} are the inductances of the coils in henries, C_{1} and C_{2} are the capacitances of the capacitors in farads, m is a constant between 0 and 1 ,
Z_{0} is the line impedance in ohms, f_{c} is the cutoff frequency in cycles per second.

66. ATTENUATOR FORMULAS

(A) General

An attenuator is an arrangement of noninductive resistors used in an electrical circuit to reduce the audio- or radiosignal strength without introducing distortion. The resistors may be fixed or variable. Attenuators can be designed to
work between equal or unequal impedances; hence, they are often used as impedance-matching networks.

Any attenuator working between unequal impedances must introduce a certain minimum loss. These values are given in the graph of Fig. 95. The impedance ratio is the input impedance divided by the output impedance, or vice versa-whichever gives a value of more than one.

A factor is used in the calculation of resistor values in attenuator networks. Called K , it is the ratio of current, voltage, or power corresponding to a given value of attenuation in decibels. Table XXV gives the value of " K " for the more common loss values.

Fig. 95
The four steps in the design of a pad are: (1) Determine the type of network required. (2) If impedances are unequal, calculate the ratio of input to output impedance (or output to input impedance) and refer to Fig. 95 for the minimum loss value. (3) From Table XXV find the value of K for the desired loss. (4) Calculate the resistor values, using the following formulas.

Table XXV. K Factors for Calculating Attenuator Loss

db	K	db	K	db	K	db	K
. 05	1.0058	9.5	2.9854	29.0	28.184	49.0	281.84
. 1	1.0116	10.0	3.1623	30.0	31.623	50.0	316.23
. 5	1.0593	11.0	3.5481	31.0	35.481	51.0	354.81
1.0	1.1220	12.0	3.9811	32.0	39.811	52.0	398.11
1.5	1.1885	13.0	4.4668	33.0	44.668	54.0	501.19
2.0	1.2589	14.0	5.0119	34.0	50.119	55.0	562.34
2.5	1.3335	15.0	5.6234	35.0	56.234	56.0	630.96
3.0	1.4125	16.0	6.3096	36.0	63.096	57.0	707.95
3.5	1.4962	17.0	7.0795	37.0	70.795	58.0	794.33
4.0	1.5849	18.0	7.9433	38.0	79.433	60.0	1000.0
4.5	1.6788	19.0	8.9125	39.0	89.125	65.0	1778.3
5.0	1.7783	20.0	10.0000	40.0	100.000	70.0	3162.3
5.5	1.8837	21.0	11.2202	41.0	112.202	75.0	5623.4
6.0	1.9953	22.0	12.589	42.0	125.89	80.0	10,000
6.5	2.1135	23.0	14.125	43.0	141.25	85.0	17,783
7.0	2.2387	24.0	15.849	44.0	158.49	90.0	31,623
7.5	2.3714	25.0	17.783	45.0	177.83	95.0	56,234
8.0	2.5119	26.0	19.953	46.0	199.53	100.0	10^{6}
8.5	2.6607	27.0	22.387	47.0	223.87		
9.0	2.8184	28.0	25.119	48.0	251.19		

(B) Combining or Dividing Network
$\mathrm{R}_{\mathrm{B}}=\left(\frac{\mathrm{N}-1}{\mathrm{~N}+1}\right) \mathrm{Z}$

Fig. 96
where,
R_{B} is the resistance of the building-out resistors in ohms, N is the number of circuits fed by the source impedance, Z is the source impedance in ohms.
(C) T-Type Attenuator (Between Equal Impedances)

$$
\begin{aligned}
\mathrm{R}_{1} \text { and } \mathrm{R}_{2} & =\left(\frac{\mathrm{K}-1}{\mathrm{~K}+1}\right) \mathrm{Z} \\
\mathrm{R}_{3} & =\left(\frac{\mathrm{K}}{\mathrm{~K}^{2}-1}\right) 2 \mathrm{Z}
\end{aligned}
$$

Fig. 97

(D) H -Type Attenuator (Balanced-T Attenuator)

Calculate the values for R_{1}, R_{2}, and R_{3} as for an unbalanced T-attenuator (Fig. 97). Then halve the values of R_{1} and R_{2}, as shown in Fig. 98. The tap on R_{3} is exactly in the center.

Fig. 98
(E) Taper Pad (T-Type Attenuator Between Unequal Impedances)

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{Z}_{1}\left(\frac{\mathrm{~K}^{2}+1}{\mathrm{~K}^{2}-1}\right)-2 \sqrt{\mathrm{Z}_{1} \mathrm{Z}_{2}}\left(\frac{\mathrm{~K}}{\mathrm{~K}^{2}-1}\right) \\
& \mathrm{R}_{2}=\mathrm{Z}_{2}\left(\frac{\mathrm{~K}^{2}+1}{\mathrm{~K}^{2}-1}\right)-2 \sqrt{\mathrm{Z}_{1} \mathrm{Z}_{2}}\left(\frac{\mathrm{~K}}{\mathrm{~K}^{2}-1}\right) \quad \mathrm{Z}_{1} \rightarrow \\
& R_{3}=2 \sqrt{Z_{1} Z_{2}}\left(\frac{K}{K^{2}-1}\right)
\end{aligned}
$$

where,
Z_{1} is the larger impedance.
(F) Bridged-T Attenuator (Unbalanced)
$\mathrm{R}_{1}=\mathrm{Z}$
$\mathrm{R}_{5}=(\mathrm{K}-1) \mathrm{Z}$
$\mathrm{R}_{6}=\left(\frac{1}{\mathrm{~K}-1}\right) \mathrm{Z}$

Fig. 100
R_{5} and R_{6} are connected to a common shaft, and each varies inversely in value with respect to the other.

(G) Balanced Bridged-T Attenuator

Calculate the values for R_{1}, R_{5}, and R_{6} as for an unbalanced bridged-T attenuator (Fig. 100). Then halve the values as shown in Fig. 101.

Fig. 101

(H) L-Type Attenuators

An L-type attenuator can supply an impedance match in only one direction. If the impedances it works out of and into are unequal, it can be made to match either-but not both-impedances. The arrows in the following illustrations indicate the direction of impedance match.

Between equal impedances and with the impedance match in the direction of the series arm:

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{Z}\left(\frac{\mathrm{~K}-1}{\mathrm{~K}}\right) \\
& \mathrm{R}_{2}=\mathrm{Z}\left(\frac{1}{\mathrm{~K}-1}\right)
\end{aligned}
$$

Fig. 102

Between equal impedances and with the impedance match in the direction of the shunt arm:

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{Z}(\mathrm{~K}-1) \\
& \mathrm{R}_{2}=\mathrm{Z}\left(\frac{\mathrm{~K}}{\mathrm{~K}-1}\right)
\end{aligned}
$$

Fig. 103

Between unequal impedances and with the impedance match toward the larger value:

$$
\begin{aligned}
& \mathrm{R}_{1}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)\left(\frac{\mathrm{KS}-1}{\mathrm{~K}}\right) \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)\left(\frac{1}{\mathrm{~K}-\mathrm{S}}\right)
\end{aligned}
$$

where,

$$
\mathrm{S}=\sqrt{\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}}
$$

Fig. 104

Between unequal impedances and with the impedance match toward the smaller value:

$$
\begin{aligned}
& \mathrm{R}_{1}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)(\mathrm{K}-\mathrm{S}) \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)\left(\frac{\mathrm{K}}{\mathrm{KS}-1}\right)
\end{aligned}
$$

where,

$$
S \text { equals } \sqrt{\frac{Z_{1}}{Z_{2}}}
$$

Fig. 105
(I) Pi-Type Attenuator (Between Equal Impedances)

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=\mathrm{Z}\left(\frac{\mathrm{~K}+1}{\mathrm{~K}-1}\right) \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{Z}}{2}\right)\left(\frac{\mathrm{K}^{2}-1}{\mathrm{~K}}\right)
\end{aligned}
$$

Fig. 106
(J) Pi-Type Attenuator (Between Unequal Impedances)

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{Z}_{1}\left(\frac{\mathrm{~K}^{2}-1}{\mathrm{~K}^{2}-2 \mathrm{KS}+1}\right) \\
& \mathrm{R}_{2}=\left(\frac{\sqrt{\mathrm{Z}_{1} \mathrm{Z}_{2}}}{2}\right)\left(\frac{\mathrm{K}^{2}-1}{\mathrm{~K}}\right) \\
& \mathrm{R}_{3}=\mathrm{Z}_{2}\left(\frac{\mathrm{~K}^{2}-1}{\mathrm{~K}_{2}-2 \frac{\mathrm{~K}}{\mathrm{~S}}+1}\right)
\end{aligned}
$$

where,

Fig. 107

S equals $\sqrt{\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}}$

e Attenuators

culate the values for a pi-type attenuator (Figs. 106 and 107), then halve the values for the series resistors as shown in Figs. 108 (balanced) and 109 (unbalanced).

Fig. 108

Fig. 109

(L) U-Type Attenuator

For impedance match in the direction of the series arms:

$$
\begin{aligned}
& \mathrm{R}_{1}=\left(\frac{\mathrm{Z}_{1}}{2 \mathrm{~S}}\right)\left(\frac{\mathrm{KS}-1}{\mathrm{~K}}\right) \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)\left(\frac{1}{\mathrm{~K}-\mathrm{S}}\right)
\end{aligned}
$$

Fig. 110

For impedance match in the direction of the shunt arm:

$$
\begin{aligned}
& \mathrm{R}_{1}=\left(\frac{\mathrm{Z}_{1}}{2 \mathrm{~S}}\right)(\mathrm{K}-\mathrm{S}) \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{Z}_{1}}{\mathrm{~S}}\right)\left(\frac{\mathrm{K}}{\mathrm{KS}-1}\right)
\end{aligned}
$$

Fig. 111
where,
The arrows indicate the direction of the impedance match,
S equals $\sqrt{\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}}$
(M) Lattice-Type Attenuator

$$
\begin{aligned}
& \mathrm{R}_{1}=\left(\frac{\mathrm{K}-1}{\mathrm{~K}+1}\right) \mathrm{Z} \\
& \mathrm{R}_{2}=\left(\frac{\mathrm{K}+1}{\mathrm{~K}-1}\right) \mathrm{Z}
\end{aligned}
$$

Fig. 112
(N) Ladder-Type Attenuator

Fig. 113
$\mathrm{R}_{1}=\left(\frac{\mathrm{K}^{2}-1}{2 \mathrm{~K}}\right) \mathrm{Z}$
$\mathrm{R}_{2}=\left(\frac{\mathrm{K}+1}{\mathrm{~K}-1}\right) \mathrm{Z}$
$\mathrm{R}_{3}=\frac{\mathrm{R}_{2} \times \mathrm{Z}}{\mathrm{R}_{2}+\mathrm{Z}}$
$R_{4}=\frac{Z}{2}$
$\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{\text {ont }}$
where,
K depends on the loss per step-not on the total loss.

Mathematical Tables and

Formulas

$$
\begin{array}{rlrl}
\text { 67. MATHEMATICAL CONSTANTS } \\
\pi & =3.1416 & (2 \pi)^{2} & =39.4786 \\
\pi^{2} & =9.8696 & 4 \pi & =12.5664 \\
\pi^{3} & =31.0063 & \frac{\pi}{2} & =1.5708 \\
\frac{1}{\pi} & =0.3183 & \frac{\sqrt{\pi}}{2} & =1.2533 \\
\frac{1}{\pi^{2}} & =0.1013 & \sqrt{2} & =1.4142 \\
\frac{1}{\pi^{3}} & =0.0323 & \sqrt{3} & =1.7321 \\
\sqrt{\pi} & =1.7725 & \frac{1}{\sqrt{2}} & =0.7071 \\
\frac{1}{\sqrt{\pi}} & =0.5642 & \frac{1}{\sqrt{3}} & =0.5773 \\
\frac{1}{2 \pi} & =0.1592 & \log \pi & =0.4971 \\
\left(\frac{1}{2 \pi}\right)^{2} & =0.0253 & \log \pi^{2} & =0.9943 \\
2 \pi & =6.2832 & \log \sqrt{\pi} & =0.2486 \\
& \log \frac{\pi}{2} & =0.1961
\end{array}
$$

68. MATHEMATICAL SYMBOLS

\times or $\cdot \quad$ Multiplied by. $\quad+$ Positive, add, and plus.
\div Divided by.
$=$ Equals.
\neq Does not equal.

- Negative, subtract, and minus.
$>$ Is greater than.
$<$ Is less than.
\pm Plus or minus.
\equiv Identical with.
\therefore Therefore.
|| Parallel to.
\angle Angle.
\& Is much less than.
\Rightarrow Is much greater than.
\geqq Equal to or greater than.
\leqq Equal to or less than.
\perp Perpendicular to.
$|n| \quad$ Absolute value of n.
\cong Is approximately equal to.

Square root.

69. DECIMAL EQUIVALENTS OF FRACTIONS

The decimal equivalents to four places of fractions by 64ths are given in Table XXVI.

Table XXVI. Decimal Equivalents of Fractions

Fraction				Decimal	Fraction				Decimal
1/64	1/32	1/16	1/8	$\begin{aligned} & 0.0156 \\ & 0.0313 \end{aligned}$	33/64	17/32	9/16	5/8	0.5156
									0.5313
3/64				0.0469	35/64				0.5469
				0.0625					0.5625
5/64	3/32			0.0781	37/64	19/32			0.5781
				0.0938					0.5938
7/64				0.1094	39/64				0.6094
				0.1250					0.6250
9/64	5/32	3/16		0.1406	41/64	21/32	11/16		0.6406
				0.1563					0.6563
11/64				0.1719	43/64				0.6719
				0.1875					0.6875
13/64	7/32			0.2031	45/64				0.7031
15/64				0.2188		23/32			0.7188
				0.2344	47/64				0.7344
			1/4	0.2500				3/4	0.7500
17/64	9/32	5/16	3/8	0.2656	49/64	25/32	13/16		0.7656
19/64				0.2813					0.7813
				0.2969	51/64				0.7969
				0.3125					0.8125
21/64	11/32			0.3281	53/64	27/32			0.8281
				0.3438					0.8438
23/64				0.3594	55/64				0.8594
				0.3750				7/8	0.8750
25/64	13/32	7/16		0.3906	57/64	29/32	15/16		0.8906
				0.4063	59/64				0.9063
27/64				0.4219					0.9219
				0.4375	61/64				0.9375
29/64	15/32			0.4531					0.9531
31/64				0.4688	63/64	31/32			0.9688
				0.4844					0.9844
			1/2	0.5000				1	1.0000

70. POWERS OF TEN

(A) Exponent Determination

Large numbers can be simplified by using powers of ten. For example, some of the multiples of ten from 1 to $1,000,000$, with their equivalents in powers of ten are:

$$
\begin{aligned}
1 & =10^{0 *} \\
10 & =10^{1} \\
100 & =10^{2} \\
1000 & =10^{3} \\
10,000 & =10^{4} \\
100,000 & =10^{5} \\
1,000,000 & =10^{6}
\end{aligned}
$$

Likewise, powers of ten can be used to simplify decimal expressions. Some of the submultiples of ten from 0.1 to 0.000001 , with their equivalents in powers of ten are:

$$
\begin{aligned}
0.1 & =10^{-1} \\
0.01 & =10^{-2} \\
0.001 & =10^{-3} \\
0.0001 & =10^{-4} \\
0.00001 & =10^{-5} \\
0.000001 & =10^{-6}
\end{aligned}
$$

Any whole number can be expressed as a smaller whole number, and any decimal can be expressed as a whole number, by moving the decimal point to the left or right and expressing the number as a power of ten. If the decimal point is moved to the left, the power is positive and is equal to the number of places the decimal point was moved. If the decimal point is moved to the right, the power is negative and is equal to the number of places the decimal point was moved.

For example:

$$
\begin{aligned}
123 & =1.23 \times 10^{2} \\
456.7 & =4.567 \times 10^{2} \\
78,900 & =78.9 \times 10^{3} \\
0.00012 & =1.2 \times 10^{-4} \\
0.0345 & =34.5 \times 10^{-3} \\
.678 & =67.8 \times 10^{-2}
\end{aligned}
$$

[^7]
(B) Addition and Subtraction

To add or subtract using powers of ten, first convert all numbers to the same power of ten. The numbers can then be added or subtracted, and the answer will be in the same power of ten. For example:

$$
\begin{aligned}
& 9.32 \times 10^{2}+17.63 \times 10^{3}+297=? \\
& 9.32 \times 10^{2}=0.932 \times 10^{3} \\
& 17.63 \times 10^{3}= 17.630 \times 10^{3} \\
& 297=\frac{0.297 \times 10^{3}}{18.859 \times 10^{3}}=18,859 \\
& 18.47 \times 10^{2}-1.59 \times 10^{3}=? \\
& 18.47 \times 10^{2}= 1.847 \times 10^{3} \\
& 1.59 \times 10^{3}= \frac{1.590 \times 10^{3}}{.257 \times 10^{3}}=257
\end{aligned}
$$

(C) Multiplication

To multiply using powers of ten, add the exponents. Thus:

$$
\begin{aligned}
1000 \times 3721 & =10^{3} \times 37.21 \times 10^{2} \\
& =37.21 \times 10^{3+2} \\
& =37.21 \times 10^{5} \\
& =3,721,000 \\
225 \times .00723 & =2.25 \times 10^{2} \times 7.23 \times 10^{-3} \\
& =2.25 \times 7.23 \times 10^{2+(-3)} \\
& =2.25 \times 7.23 \times 10^{-1} \\
& =16.2675 \times 10^{-1} \\
& =1.62675
\end{aligned}
$$

(D) Division

To divide using powers of ten, subtract the exponent of the denominator from the exponent of the numerator. Thus:

$$
\begin{aligned}
\frac{10^{5}}{10^{3}} & =10^{5-3} \\
& =10^{2} \\
& =100
\end{aligned}
$$

$$
\begin{aligned}
\frac{72,600}{.002} & =\frac{72.6 \times 10^{3}}{2 \times 10^{-3}} \\
& =\frac{72.6 \times 10^{3+3}}{2} \\
& =36.3 \times 10^{6} \\
& =36,300,000
\end{aligned}
$$

(E) Combination Multiplication and Division

Problems involving a combination of multiplication and division can be solved using powers of ten by multiplying and dividing, as called for, until the problem is completed. For example:

$$
\begin{aligned}
\frac{3900 \times .007 \times 420}{142,000 \times .00005} & =\frac{3.9 \times 10^{3} \times 7 \times 10^{-3} \times 4.2 \times 10^{2}}{1.42 \times 10^{5} \times 5 \times 10^{-5}} \\
& =\frac{3.9 \times 7 \times 4.2 \times 10^{2}}{1.42 \times 5} \\
& =\frac{114.66 \times 10^{2}}{7.1} \\
& =16.1493 \times 10^{2} \\
& =1614.93
\end{aligned}
$$

(F) Reciprocal

To take the reciprocal of a number using powers of ten, first (if necessary) state the number so the decimal point precedes the first significant figure of the number. Then divide this number into 1 . The power of 10 in the answer will be the same value as in the original number, but will have the opposite sign. For example:

$$
\begin{aligned}
& \text { Reciprocal of } \begin{aligned}
& 400=\frac{1}{400} \\
& \begin{aligned}
\frac{1}{400} & =\frac{1}{.4 \times 10^{3}} \\
& =2.5 \times 10^{-3} \\
& =.0025
\end{aligned}
\end{aligned}=\text {. }
\end{aligned}
$$

$$
\text { Reciprocal of } .0025=\frac{1}{.0025}
$$

$$
\frac{1}{.0025}=\frac{1}{.25 \times 10^{-2}}
$$

$$
=4 \times 10^{2}
$$

$$
=400
$$

(G) Square and Square Root

To square a number using powers of ten, multiply the number by itself, and double the exponent. Thus:

$$
\begin{aligned}
\left(7 \times 10^{3}\right)^{2} & =49 \times 10^{6} \\
& =49,000,000 \\
\left(9.2 \times 10^{-4}\right)^{2} & =84.64 \times 10^{-8} \\
& =.0000008464
\end{aligned}
$$

To extract the square root of a number using powers of ten, do the opposite. (If the number is an odd power of 10 , first convert it to an even power of ten.) Extract the square root of the number, and divide the power of ten by 2 . Thus:

$$
\begin{aligned}
\sqrt{36 \times 10^{10}} & =6 \times 10^{5} \\
& =600,000 \\
\sqrt{5.72 \times 10^{3}} & =\sqrt{57.2 \times 10^{2}} \\
& =7.56 \times 10 \\
& =75.6
\end{aligned}
$$

71. OPERATION OF THE SLIDE RULE

The slide rule (Fig. 114) is an instrument designed to perform mathematical calculations with a high degree of accuracy. For example, the common 10 -inch slide rule has an accuracy of one-tenth of one per cent. Operations such as multiplication, division, extraction of square and cube roots, and finding trigonometric functions such as sine, cosine, and tangent can all be performed on the slide rule.

There are six scales on the front of the slide rule. The letter A, in the upper left-hand corner of the body, denotes the A scale. On the left side of the slide, the letters $B, C I$, and C denote their respective scales. The letters D and K, at the lower left corner of the body, indicate these scales.

Fig. 114

Fig. 115
The number 1 on the left end of the slide is called the left index, and the number 1 on the right end is the right index.

The C and D scales, which are identical, are used for multiplication and division. As a sample problem in multiplication, let us multiply 136 by 27 . First place the left index of the slide on 136 on the D scale. Then slide the runner to 27 on the C scale, and read your answer (3672) on the D scale, as shown in Fig. 115.

Notice that the slide rule is accurate to three places, as illustrated by the sample problem. The fourth number can be estimated close enough for practical purposes.

As a sample problem in division, let us divide 390 by 0.7 . Place the runner on 390 on the D scale; then push the slide to the left until 7 on the C scale is over the 390 , as shown in Fig. 116. Finally, place the runner at the right index, and read the answer (557) on the D scale.

The $C I$, or reciprocal, scale is the same as the C scale except its numbers increase from right to left. Hence, any number on the $C I$ scale is the reciprocal of the number directly below it on the C scale. The $C I$ scale can be used with

Fig. 116
the C and D scales for multiplication and division, including problems involving several multiplication and division operations in sequence.

As a sample problem in multiplication, take $26 \times 32 \times 6$. Place the left index of the slide on 26 of the D scale. Then slide the runner to 32 on the C scale, as shown in Fig. 117. Multiplying by 6 is the same as dividing by the reciprocal of 6 . To do this, place the 6 on the $C I$ scale under the hairline of the runner (Fig. 118), and read the answer (4992) under the left index.

Fig. 117

Fig. 118

The A and B scales, which are identical, are located on the upper portion of the body and slide. The A and/or B scales are used with the C and/or D scales for finding the square or square root of a number.

Example problem: Find the square root of 625 . First place the runner at 625 on the A scale. Then read the answer (25) on the D scale (Fig. 119).

The slide rule can be used for finding the square root of the sum of two squares, as you might wish to do if you were

Fig. 119

Fig. 120
solving a right triangle. For example, if the two sides of a right triangle are 3 and 5 , find the hypotenuse in the following manner:

Divide the 5 by the 3 , by placing 3 on the C scale opposite 5 on the D scale. Square the quotient by reading 2.78 on the A scale opposite the left index of the B scale (Fig. 120). Mentally add 1 to get 3.78, and set the left index of the B scale to 3.78 on the A scale. Extract the square root by going to the D scale and reading 1.945 opposite the C index mark. Without changing the slide, multiply by 3 (the number by which you originally divided) to obtain the answer (5.83) on the D scale (Fig. 121).

The K scale is used with the D scale for finding the cube and cube root. Each number on the K scale is equal to the cube of the number above it on the D scale. Conversely, to extract the cube root of a number, set the runner to this number on the K scale, and read the cube root on the D scale.

The back of the slide is shown in Fig. 122. On it are the sine, \log, and tangent scales. The sine scale is at the top and is designated by the letter S on the right side of the

Fig. 121
slide. The \log scale, designated by the letter L, is in the middle; and the tangent scale, designated by the letter T, is at the bottom.

The "inch" and "centimeter" scales on the rule are only a convenience-they are not used in any slide-rule operations.

Fig. 122

72. ALGEBRAIC OPERATIONS

(A) Transposition of Terms

The following rules apply to the transposition of terms in algebraic equations:

$$
\begin{array}{r}
\text { If } A=\frac{B}{C} \text {, then : } \\
B=A C \\
C=\frac{B}{A} \\
\text { If } \frac{A}{B}=\frac{C}{D}, \text { then }: \\
A=\frac{B C}{D} \\
B=\frac{A D}{C} \\
C=\frac{A D}{B} \\
D=\frac{B C}{A}
\end{array}
$$

$$
\begin{aligned}
& \text { If } \mathrm{A}=\frac{1}{\mathrm{D} \sqrt{\mathrm{BC}}}, \text { then }: \\
& \mathrm{A}^{2}=\frac{1}{\mathrm{D}^{2} \mathrm{BC}} \\
& \mathrm{~B}=\frac{1}{\mathrm{D}^{2} \overline{\mathrm{~A}^{2} \mathrm{C}}} \\
& \mathrm{C}=\frac{1}{\mathrm{D}^{2} \mathrm{~A}^{2} \mathrm{~B}} \\
& \mathrm{D}=\frac{1}{\mathrm{~A} \sqrt{\mathrm{BC}}} \\
& \text { If } \mathrm{A}=\sqrt{\mathrm{B}^{2}+\mathrm{C}^{2}}, \text { then } \\
& \mathrm{A}^{2}=\mathrm{B}^{2}+\mathrm{C}^{2} \\
& \mathrm{~B}=\sqrt{\mathrm{A}^{2}-\mathrm{C}^{2}} \\
& \mathrm{C}=\sqrt{\mathrm{A}^{2}-\mathrm{B}^{2}}
\end{aligned}
$$

(B) Laws of Exponents

A power of a fraction is equal to that power of the numerator divided by the same power of the denominator.

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

The product of two powers of the same base is also a power of that base; the exponent of the product is equal to the sum of the exponents of the two factors.

$$
\mathrm{a}^{\mathrm{x}} \cdot \mathrm{a}^{y}=\mathrm{a}^{\mathrm{x}+\mathrm{y}}
$$

The quotient of two powers of the same base is also a power of that base; the exponent of the quotient is equal to the numerator exponent minus the denominator exponent.

$$
\frac{a^{x}}{a^{x}}=a^{x-2}
$$

The power of a power of a base is also a power of that base; the exponent of the product is equal to the product of the exponents.

$$
\left(\mathrm{a}^{\mathrm{x}}\right)^{y}=\mathrm{a}^{x y}
$$

A negative exponent of a base is equal to the reciprocal of that base, with a positive exponent numerically equal to the original exponent.

$$
\mathrm{a}^{-\mathrm{x}}=\frac{1}{\mathrm{a}^{\mathrm{x}}}
$$

A fractional exponent indicates that the base should be raised to the power indicated by the numerator of the fraction; the root indicated by the denominator should then be extracted.

$$
a^{\frac{x}{y}}=\sqrt[y]{a^{x}}
$$

A root of a fraction is equal to the identical root of the numerator divided by the identical root of the denominator.

$$
\sqrt[x]{\frac{a}{b}}=\frac{\sqrt[x]{a}}{\sqrt{b}}
$$

A root of a product is equal to the product of the roots of the individual factors.

$$
\sqrt[x]{a b}=\sqrt[x]{a} \times \sqrt[x]{b}
$$

(C) Quadratic Equation

The general quadratic equation:

$$
a x^{2}+b x+c=0
$$

may be solved by:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

73. GEOMETRIC FORMULAS

(A) Triangle

$$
\operatorname{area}(\mathrm{A})=\frac{\mathrm{bh}}{2}
$$

(B) Square

$$
\operatorname{area}(\mathrm{A})=\mathrm{b}^{2}
$$

Fig. 124
(C) Rectangle

$$
\operatorname{area}(\mathrm{A})=a b
$$

Fig. 125
(D) Parallelogram

$$
\operatorname{area}(A)=\operatorname{ah}
$$

(E) Trapezoid

$$
\operatorname{area}(\mathrm{A})=\frac{\mathrm{h}}{2}(\mathrm{a}+\mathrm{b})
$$

(F) Trapezium

$$
\begin{aligned}
\operatorname{area}(\mathrm{A})= & 1 / 2[\mathrm{~b}(\mathrm{H}+\mathrm{h}) \\
& +\mathrm{ah}+\mathrm{cH}]
\end{aligned}
$$

(G) Regular Pentagon

$$
\operatorname{area}(\mathrm{A})=1.720 \mathrm{a}^{2}
$$

(H) Regular Hexagon

$$
\operatorname{area}(\mathrm{A})=2.598 \mathrm{a}^{2}
$$

(I) Regular Octagon

$$
\operatorname{area}(\mathrm{A})=4.828 \mathrm{a}^{2}
$$

Fig. 126

Fig. 127

Fig. 128

Fig. 129

Fig. 130

Fig. 131
(J) Circle

$$
\text { circumference } \begin{aligned}
(\mathrm{C}) & =2 \pi \mathrm{R} \\
& =\pi \mathrm{D} \\
\text { area }(\mathrm{A}) & =\pi \mathrm{R}^{2}
\end{aligned}
$$

Fig. 132
(K) Segment

$$
\begin{aligned}
& \text { chord }(\mathrm{c})=\sqrt{4\left(2 \mathrm{hR}-\mathrm{h}^{2}\right)} \\
& \text { area }(\mathrm{A})=\pi \mathrm{R}^{2}\left(\frac{\theta}{360}\right)-\left(\frac{\mathrm{c}(\mathrm{R}-\mathrm{h})}{2}\right)
\end{aligned}
$$

Fig. 133
(L) Sector

$$
\begin{aligned}
\operatorname{area}(\mathrm{A}) & =\frac{\mathrm{bR}}{2} \\
& =\pi \mathrm{R}^{2}\left(\frac{\theta}{360}\right)
\end{aligned}
$$

Fig. 134
(M) Circular Ring

$$
\text { area } \begin{aligned}
(\mathrm{A}) & =\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \\
& =7854\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)
\end{aligned}
$$

Fig. 135
(N) Ellipse

$$
\text { circumference }(C)=\pi(a+b)\left[\frac{64-3\left(\frac{b-a}{b+a}\right)^{4}}{64-16\left(\frac{b-a}{b+a}\right)^{2}}\right]
$$

$$
\operatorname{area}(\mathrm{A})=\pi \mathrm{ab}
$$

Fig. 136

(O) Sphere

$$
\begin{aligned}
\text { area }(\mathrm{A}) & =4 \pi \mathrm{R}^{2} \\
& =\pi \mathrm{D}^{2} \\
\text { volume }(\mathrm{V}) & =\frac{4}{3} \pi \mathrm{R}^{3} \\
& =1 / 6 \pi \mathrm{D}^{3}
\end{aligned}
$$

Fig. 137
(P) Cube

$$
\begin{aligned}
\operatorname{area}(\mathrm{A}) & =6 \mathrm{~b}^{2} \\
\text { volume }(\mathrm{V}) & =\mathrm{b}^{3}
\end{aligned}
$$

Fig. 138
(Q) Rectangular Solid
$\operatorname{area}(A)=2(a b+b c+a c)$
volume $(\mathrm{V})=\mathrm{abc}$

Fig. 139
(R) Cone

$$
\begin{aligned}
\operatorname{area}(\mathrm{A}) & =\pi \mathrm{RS} \\
& =\pi \mathrm{R} \sqrt{\mathrm{R}^{2}+\mathrm{h}^{2}} \\
\text { volume }(\mathrm{V}) & =\frac{\pi \mathrm{R}^{2} \mathrm{~h}}{3} \\
& =1.047 \mathrm{R}^{2} \mathrm{~h} \\
& =0.2618 \mathrm{D}^{2} \mathrm{~h}
\end{aligned}
$$

Fig. 140
(S) Cylinder
cylindrical surface $=\pi \mathrm{Dh}$

$$
\begin{aligned}
\text { total surface } & =2 \pi R(R+h) \\
\text { volume }(V) & =\pi R^{2} h \\
& =\frac{c^{2} h}{4 \pi}
\end{aligned}
$$

Fig. 141
(T) Ring of Rectangular Cross Section

$$
\begin{aligned}
\text { volume }(V) & =\frac{\pi c}{4}\left(D^{2}-d^{2}\right) \\
& =\left(\frac{D+d}{2}\right) \pi b c
\end{aligned}
$$

Fig. 142
(U) Torus (Ring of Circular Cross Section)

$$
\begin{aligned}
\text { total surface } & =4 \pi^{2} \mathrm{Rr} \\
& =\pi^{2} \mathrm{Dd} \\
\text { volume }(\mathrm{V}) & =2 \pi^{2} \mathrm{R} \times \mathrm{r}^{2} \\
& =2.463 \mathrm{D} \times \mathrm{d}^{2}
\end{aligned}
$$

Fig. 143

74. TRIGONOMETRIC FUNCTIONS

(A) Plane Trigonometry

In any right triangle, the values in Table XXVII are valid if we let:

Fig. 144
a equal the acute angle formed by the hypotenuse and the altitude leg,
b equal the acute angle formed by the hypotenuse and the base leg,

A equal the side adjacent to $\angle \mathrm{b}$ and opposite $\angle \mathrm{a}$,

B equal the side opposite $\angle \mathrm{b}$ and adjacent to $\angle \mathrm{a}$,
C equal the hypotenuse.

Table XXVII. Trigonometric Formulas

Known Values	Formulas for Unknown Values of				
	A	8	C	$\angle b$	$\angle \mathrm{a}$
A \& B	-	-	$\sqrt{A^{2}+B^{2 \prime}}$	$\arctan \frac{B}{A}$	$\arctan \frac{A}{B}$
$A \& C$	-	$\sqrt{C^{2}-A^{2}}$	-	$\arccos \frac{A}{C}$	$\arcsin \frac{A}{C}$
$A \& \angle b$	-	$A \tan \angle b$	$\frac{A}{\cos \angle b}$	-	$90^{\circ}-\angle b$
A \& $\angle \mathrm{a}$	-	$\frac{A}{\tan \angle a}$	$\frac{A}{\sin \angle a}$	$90^{\circ}-\angle a$	-
$B \& C$	$\sqrt{C^{2}-B^{2}}$	-	-	$\arcsin \frac{B}{C}$	$\arccos \frac{B}{C}$
B \& $\angle b$	$\frac{B}{B \tan \angle b}$	-	$\frac{B}{\sin \angle b}$	-	$90^{\circ}-\angle b$
B \& \angle a	$B \tan \angle a$	-	$\frac{B}{\cos \angle a}$	$90^{\circ}-\angle a$	-
$C \& \angle b$	$C \cos \angle b$	$C \sin \angle b$	-	-	$90^{\circ}-\angle b$
$C \& \angle a$	$C \sin \angle a$	$C \cos \angle a$	-	$90^{\circ}-\angle \mathrm{a}$	-

The expression "arc sin" or "sin"" indicates an angle whose sine is. . . Similarly, "arc tan" or "tan"" indicates the angle whose tangent is . . . , etc.

(B) Table of Trigonometric Functions

Table XXVIII gives the natural sines, cosines, tangents, and cotangents of angles. To find these values for angles from 0° to 45°, use the headings at the top of the table and the degree listings in the left-hand column. For angles from 45° to 90°, use the headings at the bottom of the table and the degree listings in the right-hand column. Note: Read the degree listings in the right-hand column from bottom to top; thus, the 10^{\prime} listing directly above 89° signifies $89^{\circ} 10^{\prime}$.

Table XXVIII. Natural Trigonometric Functions

Degrees		Sin	Cos	Tan	Cot		
	00^{\prime}	0.0000	1.0000	0.0000	∞	90°	00^{\prime}
	10	. 0029	1.0000	. 0029	343.77		50
	20	. 0058	1.0000	. 0058	171.89		40
	30	. 0087	1.0000	. 0087	114.59		30
	40	. 0116	. 9999	. 0116	85.940		20
	50	. 0145	. 9999	. 0145	68.750		10
		0.0175	0.9998	0.0175	57.290	89°	00'
	10	. 0204	. 9998	. 0204	49.104		50
	20	. 0233	. 9997	. 0233	42.964		40
	30	. 0262	. 9997	. 0262	38.188		30
	40	. 0291	. 9996	.0291	34.368		20
	50	. 0320	. 9995	. 0320	31.242		10
$2{ }^{\circ}$		0.0349	0.9994	0.0349	28.636	88°	00'
	10	. 0378	. 9993	. 0378	26.432		50
	20	. 0407	. 9992	. 0407	24.542		40
	30	. 0436	. 9990	. 0437	22.904		30
	40	. 0465	. 9989	. 0466	21.470		20
	50	. 0494	. 9988	. 0495	20.206		10
3°		0.0523	0.9986	0.0524	19.081	87°	00°
	10	. 0552	. 9985	. 0553	18.075		50
	20	. 0581	. 9983	. 0582	17.169		40
	30	. 0610	. 9981	. 0612	16.350		30
	40	. 0640	. 9980	. 0641	15.605		20
	50	. 0669	. 9978	. 0670	14.924		10
4°	00^{\prime}	0.0698	0.9976	0.0699	14.301	86°	00'
	10	. 0727	. 9974	. 0729	13.727		50
	20	. 0756	. 9971	. 0758	13.197		40
	30	. 0785	. 9969	. 0787	12.706		30
	40	. 0814	. 9967	. 0816	12.251		20
	50	. 0843	. 9964	. 0846	11.826		10
$5{ }^{\circ}$	00'	0.0872	0.9962	0.0875	11.430	85°	00'
	10	. 0901	. 9959	. 0904	11.059		50
	20	. 0929	. 9957	. 0934	10.712		40
	30	. 0958	. 9954	. 0963	10.385		30
	40	. 0987	. 9951	. 0992	10.078		20
	50	.1016	. 9948	. 1022	9.7882		10
6°	00'	0.1045	0.9945	0.1051	9.5144	84°	00°
	10	. 1074	. 9942	. 1080	9.2553		50
	20	. 1103	. 9939	. 1110	9.0098		40
	30	. 1132	. 9936	.1139	8.7769		30
	40	. 1161	. 9932	. 1169	8.5555		20
	50	. 1190	. 9929	. 1198	8.3450		10
$7{ }^{\circ}$	00'	0.1219	0.9925	0.1228	8.1443	83°	00°
	10	. 1248	. 9922	. 1257	7.9530		50
	20	. 1276	. 9918	. 1287	7.7704		40
	30	. 1305	. 9914	. 1317	7.5958		30
	40	. 1334	. 9911	. 1346	7.4287		20
	50	. 1363	. 9907	. 1376	7.2687		10
		Cos	Sin	Cot	Tan	Deg	ees

Table XXVIII. Natural Trigonometric Functions-(Cont'd)

Degrees		Sin	Cos	Tan	Cot		
	00^{\prime}	0.1392	0.9903	0.1405	7.1154	82°	
	10	. 1421	. 9899	. 1435	6.9682		50
	20	. 1449	. 9894	. 1465	6.8269		40
	30	. 1478	. 9890	. 1495	6.6912		30
	40	. 1507	. 9886	. 1524	6.5606		20
	50	. 1536	. 9881	. 1554	6.4348		10
$9{ }^{\circ}$	00'	0.1564	0.9877	0.1584	6.3138	$81{ }^{\circ}$	00'
	10	. 1593	. 9872	. 1614	6.1970		50
	20	. 1622	. 9868	. 1644	6.0844		40
	30	. 1650	. 9863	. 1673	5.9758		30
	40	. 1679	. 9858	. 1703	5.8708		20
	50	. 1708	. 9853	. 1733	5.7694		10
10°		0.1736	0.9848	0.1763	5.6713	80°	
	10	. 1765	. 9843	. 1793	5.5764		50
	20	. 1794	. 9838	. 1823	5.4845		40
	30	. 1822	. 9833	. 1853	5.3955		30
	40	. 1851	. 9827	. 1883	5.3093		20
	50	. 1880	. 9822	. 1914	5.2257		10
11°	00^{\prime}	0.1908	0.9816	0.1944	5.1446	79°	00^{\prime}
	10	. 1937	. 9811	. 1974	5.0658		50
	20	. 1965	. 9805	. 2004	4.9894		40
	30	. 1994	. 9799	. 2035	4.9152		30
	40	. 2022	. 9793	. 2065	4.8430		20
	50	. 2051	. 9787	. 2095	4.7729		10
$12{ }^{\circ}$	00'	0.2079	0.9781	0.2126	4.7046	78°	00^{\prime}
	10	. 2108	. 9775	. 2156	4.6382		50
	20	. 2136	. 9769	. 2186	4.5736		40
	30	. 2164	. 9763	. 2217	4.5107		30
	40	. 2193	. 9757	. 2247	4.4494		20
	50	. 2221	. 9750	. 2278	4.3897		10
13°		0.2250	0.9744	0.2309	4.3315	77°	
	10	. 2278	. 9737	. 2339	4.2747		50
	20	. 2306	. 9730	. 2370	4.2193		40
	30	. 2334	. 9724	. 2401	4.1653		30
	40	. 2363	. 9717	. 2432	4.1126		20
	50	. 2391	. 9710	. 2462	4.0611		10
14°	00^{\prime}	0.2419	0.9703	0.2493	4.0108	76°	00'
	10	. 2447	. 9696	. 2524	3.9617		50
	20	. 2476	. 9689	. 2555	3.9136		40
	30	2504	. 9681	. 2586	3.8667		30
	40	. 2532	. 9674	. 2617	3.8208		20
	50	. 2560	. 9667	. 2648	3.7760		10
	00^{\prime}	0.2588	0.9659	0.2679	3.7321	75°	00'
	10	. 2616	. 9652	. 2711	3.6891		50
	20	. 2644	. 9644	. 2742	3.6470		40
	30	. 2672	. 9636	. 2773	3.6059		30
	40	. 2700	. 9628	. 2805	3.5656		20
	50	. 2728	. 9621	. 2836	3.5261		10
		Cos	Sin	Cot	Tan	Deg	ees

Table XXVIII. Natural Trigonometric Functions-(Cont'd)

Degrees		Sin	Cos	Tan	Cot		
16°	00^{\prime}	0.2756	0.9613	0.2867	3.4874	74°	00'
	10	. 2784	. 9605	. 2899	3.4495		50
	20	. 2812	. 9596	. 2931	3.4124		40
	30	. 2840	. 9588	. 2962	3.3759		30
	40	. 2868	. 9580	. 2994	3.3402		20
	50	. 2896	. 9572	. 3026	3.3052		10
17°	00°	0.2924	0.9563	0.3057	3.27C7	73°	00^{\prime}
	10	. 2952	. 9555	. 3089	3.2371		50
	20	. 2979	. 9546	. 3121	3.2041		40
	30	. 3007	. 9537	. 3153	3.1716		30
	40	. 3035	. 9528	. 3185	3.1397		20
	50	. 3062	. 9520	. 3217	3.1084		10
18°	00^{\prime}	0.3090	0.9511	0.3249	3.0777	72°	00'
	10	. 3118	. 9502	. 3281	3.0475		50
	20	. 3145	. 9492	. 3314	3.0178		40
	30	. 3173	. 9483	. 3346	2.9887		30
	40	. 3201	. 9474	. 3378	2.9600		20
	50	. 3228	. 9465	. 3411	2.9319		10
19°	00'	0.3256	0.9455	0.3443	2.9042	71°	00'
	10	. 3283	. 9446	. 3476	2.8770		50
	20	. 3311	. 9436	. 3508	2.8502		40
	30	. 3338	. 9426	. 3541	2.8239		30
	40	. 3365	. 9417	. 3574	2.7980		20
	50	. 3393	. 9407	. 3607	2.7725		10
20°	00^{\prime}	0.3420	0.9397	0.3640	2.7475	70°	00'
	10	. 3448	. 9387	. 3673	2.7228		50
	20	. 3475	. 9377	. 3706	2.6985		40
	30	. 3502	. 9367	. 3739	2.6746		30
	40	. 3529	. 9356	. 3772	2.6511		20
	50	. 3557	. 9346	. 3805	2.6279		10
21°	00'	0.3584	0.9336	0.3839	2.6051	69°	00'
	10	. 3611	. 9325	. 3872	2.5826		50
	20	. 3638	. 9315	. 3906	2.5605		40
	30	. 3665	. 9304	. 3939	2.5386		30
	40	. 3692	. 9293	. 3973	2.5172		20
	50	. 3719	. 9283	. 4006	2.4960		10
22°	00'	0.3746	0.9272	0.4040	2.4751	68°	00'
	10	. 3773	. 9261	. 4074	2.4545		50
	20	. 3800	. 9250	. 4108	2.4342		40
	30	. 3827	. 9239	. 4142	2,4142		30
	40	. 3854	. 9228	. 4176	2.3945		20
	50	. 3881	. 9216	. 4210	2.3750		10
23°	00'	0.3907	0.9205	0.4245	2.3559	67°	00^{\prime}
	10	. 3934	. 9194	. 4279	2.3369		50
	20	. 3961	. 9182	. 4314	2.3183		40
	30	. 3987	. 9171	. 4348	2.2998		30
	40	. 4014	. 9159	. 4383	2.2817		20
	50	.4041	.9147	. 4417	2.2637		10
		Cos	Sin	Cot	Tan	Deg	rees

Table XXVIII. Natural Trigonometric Functions-(Cont'd)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Degrees \& Sin \& Cos \& Tan \& Cot \&

\hline $24^{\circ} 00^{\prime}$ \& 0.4067 \& 0.9135 \& 0.4452 \& 2.2460 \& $66^{\circ} 00{ }^{\prime}$

\hline \multirow{5}{*}{24°} \& . 4094 \& . 9124 \& . 4487 \& 2.2286 \& 50

\hline \& . 4120 \& . 9112 \& . 4522 \& 2.2113 \& 40

\hline \& . 4147 \& . 9100 \& . 4557 \& 2.1943 \& 30

\hline \& . 4173 \& . 9088 \& . 4592 \& 2.1775 \& 20

\hline \& . 4200 \& . 9075 \& . 4628 \& 2.1609 \& 10

\hline \multirow[t]{6}{*}{25°} \& 0.4226 \& 0.9063 \& 0.4663 \& 2.1445 \& $65^{\circ} 00{ }^{\prime}$

\hline \& . 4253 \& . 9051 \& . 4699 \& 2.1283 \& 50

\hline \& . 4279 \& . 9038 \& . 4734 \& 2.1123 \& 40

\hline \& . 4305 \& . 9026 \& . 4770 \& 2.0965 \& 30

\hline \& . 4331 \& . 9013 \& . 4806 \& 2.0809 \& 20

\hline \& . 4358 \& . 9001 \& . 4841 \& 2.0655 \& 10

\hline \multirow[t]{6}{*}{26°} \& 0.4384 \& 0.8988 \& 0.4877 \& 2.0503 \& $64^{\circ} 00^{\prime}$

\hline \& . 4410 \& . 8975 \& . 4913 \& 2.0353 \& 50

\hline \& . 4436 \& . 8962 \& . 4950 \& 2.0204 \& 40

\hline \& . 4462 \& . 8949 \& . 4986 \& 2.0057 \& 30

\hline \& . 4488 \& . 8936 \& . 5022 \& 1.9912 \& 20

\hline \& . 4514 \& . 8923 \& . 5059 \& 1.9768 \& 10

\hline \multirow[t]{6}{*}{27°
0
10
20
30
40
50} \& 0.4540 \& 0.8910 \& 0.5095 \& 1.9626 \& $63^{\circ} 00^{\prime}$

\hline \& . 4566 \& . 8897 \& . 5132 \& 1.9486 \& 50

\hline \& . 4592 \& . 8884 \& . 5169 \& 1.9347 \& 40

\hline \& . 4617 \& . 8870 \& . 5206 \& 1.9210 \& 30

\hline \& . 4643 \& . 8857 \& . 5243 \& 1.9074 \& 20

\hline \& . 4669 \& . 8843 \& . 5280 \& 1.8940 \& 10

\hline \multirow[t]{6}{*}{28

10

20
30
40
50} \& 0.4695 \& 0.8829 \& 0.5317 \& 1.8807 \& $62^{\circ} 00{ }^{\prime}$

\hline \& . 4720 \& . 8816 \& . 5354 \& 1.8676 \& 50

\hline \& . 4746 \& . 8802 \& . 5392 \& 1.8546 \& 40

\hline \& . 4772 \& . 8788 \& . 5430 \& 1.8418 \& 30

\hline \& . 4797 \& . 8774 \& . 5467 \& 1.8291 \& 20

\hline \& . 4823 \& . 8760 \& . 5505 \& 1.8165 \& 10

\hline \multirow[t]{6}{*}{$29^{\circ}-$} \& 0.4848 \& 0.8746 \& 0.5543 \& 1.8040 \& $61^{\circ} 00{ }^{\prime}$

\hline \& . 4874 \& . 8732 \& . 5581 \& 1.7917 \& 50

\hline \& . 4899 \& . 8718 \& . 5619 \& 1.7796 \& 40

\hline \& . 4924 \& . 8704 \& . 5658 \& 1.7675 \& 30

\hline \& . 4950 \& . 8689 \& . 5696 \& 1.7556 \& 20

\hline \& . 4975 \& . 8675 \& . 5735 \& 1.7437 \& 10

\hline \multirow[t]{6}{*}{30°} \& 0.5000 \& 0.8660 \& 0.5774 \& 1.7321 \& $60^{\circ} 00^{\prime}$

\hline \& . 5025 \& . 8646 \& . 5812 \& 1.7205 \& 50

\hline \& . 5050 \& . 8631 \& . 5851 \& 1.7090 \& 40

\hline \& . 5075 \& . 8616 \& . 5890 \& 1.6977 \& 30

\hline \& . 5100 \& . 8601 \& . 5930 \& 1.6864 \& 20

\hline \& . 5125 \& . 8587 \& . 5969 \& 1.6753 \& 10

\hline \multirow[t]{6}{*}{31°} \& 0.5150 \& 0.8572 \& 0.6009 \& 1.6643 \& $59^{\circ} 00^{\prime}$

\hline \& . 5175 \& . 8557 \& . 6048 \& 1.6534 \& 50

\hline \& . 5200 \& . 8542 \& . 6088 \& 1.6426 \& 40

\hline \& . 5225 \& . 8526 \& . 6128 \& 1.6319 \& 30

\hline \& . 5250 \& . 8511 \& . 6168 \& 1.6212 \& 20

\hline \& . 5275 \& . 8496 \& . 6208 \& 1.6107 \& 10

\hline \& Cos \& Sin \& Cot \& Tan \& Degrees

\hline
\end{tabular}

Table XXVIII. Natural Trigonometric Functions-(Cont'd)

Degrees		Sin	Cos	Tan	Cot		
32°	00'	0.5299	0.8480	0.6249	1.6003	58°	00'
	10	. 5324	. 8465	. 6289	1.5900		50
	20	. 5348	. 8450	. 6330	1.5798		40
	30	. 5373	. 8434	. 6371	1.5697		30
	40	. 5398	. 8418	. 6412	1.5597		20
	50	. 5422	. 8403	. 6453	1.5497		10
33°	00^{\prime}	0.5446	0.8387	0.6494	1.5399	57°	00'
	10	. 5471	. 8371	. 6536	1.5301		50
	20	. 5495	. 8355	. 6577	1.5204		40
	30	. 5519	. 8339	. 6619	1.5108		30
	40	. 5544	. 8323	. 6661	1.5013		20
	50	. 5568	. 8307	. 6703	1.4919		10
34°	00^{\prime}	0.5592	0.8290	0.6745	1.4826	56°	00'
	10	. 5616	. 8274	. 6787	1.4733		50
	20	. 5640	. 8258	. 6830	1.4641		40
	30	. 5664	. 8241	. 6873	1.4550		30
	40	. 5688	. 8225	. 6916	1.4460		20
	50	. 5712	. 8208	. 6959	1.4370		10
35°	00'	0.5736	0.8192	0.7002	1.4281	55°	00^{\prime}
	10	. 5760	. 8175	. 7046	1.4193		50
	20	. 5783	. 8158	. 7089	1.4106		40
	30	. 5807	. 8141	. 7133	1.4019		30
	40	. 5831	. 8124	. 7177	1.3934		20
	50	. 5854	. 8107	. 7221	1.3848		10
36°	00'	0.5878	0.8090	0.7265	1.3764	54°	00'
	10	. 5901	. 8073	. 7310	1.3680		50
	20	. 5925	. 8056	. 7355	1.3597		40
	30	. 5948	. 8039	. 7400	1.3514		30
	40	. 5972	. 8021	. 7445	1.3432		20
	50	. 5995	. 8004	. 7490	1.3351		10
37°	00^{\prime}	. 6018	. 7986	. 7536	1.3270	53°	00'
	10	. 6041	. 7969	. 7581	1.3190		50
	20	. 6065	. 7951	. 7627	1.3111		40
	30	. 6088	. 7934	. 7673	1.3032		30
	40	. 6111	. 7916	. 7720	1.2954		20
	50	. 6134	. 7898	. 7766	1.2876		10
38°	00'	0.6157	0.7880	0.7813	1.2799	52°	00'
	10	. 6180	. 7862	. 7860	1.2723		50
	20	. 6202	. 7844	. 7907	1.2647		40
	30	. 6225	. 7826	. 7954	1.2572		30
	40	. 6248	. 7808	. 8002	1.2497		20
	50	. 6271	. 7790	. 8050	1.2423		10
39°	00'	0.6293	0.7771	0.8098	1.2349	51°	00'
	10	. 6316	. 7753	. 8146	1.2276		50
	20	. 6338	. 7735	. 8195	1.2203		40
	30	. 6361	. 7716	. 8243	1.2131		30
	40	. 6383	. 7698	. 8292	1.2059		20
	50	. 6406	. 7679	. 8342	1.1988		10
		Cos	Sin	Cot	Tan	Deg	ees

Table XXVIII. Natural Trigonometric Functions-(Cont'd)

Degrees	Sin	Cos	Tan	Cot	
$40^{\circ} 00$	0.6428	0.7660	0.8391	1.1918	$50^{\circ} 00{ }^{\prime}$
10	. 6450	. 7642	. 8441	1.1847	50
20	. 6472	. 7623	. 8491	1.1778	40
30	. 6494	. 7604	. 8541	1.1708	30
40	. 6517	. 7585	. 8591	1.1640	20
50	. 6539	. 7566	. 8642	1.1571	10
$41^{\circ} 00$	0.6561	0.7547	0.8693	1.1504	$49^{\circ} 00{ }^{\prime}$
10	. 6583	. 7528	. 8744	1.1436	50
20	. 6604	. 7509	. 8796	1.1369	40
30	. 6626	. 7490	. 8847	1.1303	30
40	. 6648	. 7470	. 8899	1.1237	20
50	. 6670	. 7451	. 8952	1.1171	10
$42^{\circ} 00$	0.6691	0.7431	0.9004	1.1106	$48^{\circ} 00{ }^{\prime}$
10	. 6713	. 7412	. 9057	1.1041	50
20	. 6734	. 7392	. 9110	1.0977	40
30	. 6756	. 7373	. 9163	1.0913	30
40	. 6777	. 7353	. 9217	1.0850	20
50	. 6799	. 7333	. 9271	1.0786	10
$43^{\circ} 00{ }^{\prime}$	0.6820	0.7314	0.9325	1.0724	$47^{\circ} 00^{\prime}$
10	. 6841	. 7294	. 9380	1.0661	50
20	. 6862	. 7274	. 9435	1.0599	40
30	. 6884	. 7254	. 9490	1.0538	30
40	. 6905	. 7234	. 9545	1.0477	20
50	. 6926	. 7214	. 9601	1.0416	10
$44^{\circ} 00{ }^{\prime}$		0.7193	0.9657	1.0355	$46^{\circ} 00{ }^{\prime}$
10	. 6967	. 7173	. 9713	1.0295	50
20	. 6988	. 7163	. 9770	1.0235	40
30	. 7009	. 7133	. 9827	1.0176	30
40	. 7030	. 7112	. 9884	1.0117	20
50	. 7050	. 7092	. 9942	1.0058	10
$45^{\circ} 00{ }^{\prime}$	0.7071	0.7071	1.0000	1.0000	$45^{\circ} 00{ }^{\prime}$
	Cos	Sin	Cot	Tan	Degrees

75. BINARY NUMBERS

(A) Binary Digits

In the binary system of numbers, there are only two digits -0 and 1 . All numbers are written as successive powers of 2 . Actually, in the decimal system, all numbers are written as successive powers of 10 , although we don't normally think of them in this way. For example, decimal 3487 is actually :

$$
\begin{aligned}
& 3 \times 10^{3}=3000 \\
& 4 \times 10^{2}=400 \\
& 8 \times 10^{1}=80 \\
& 7 \times 10^{0}=\frac{7}{3487}
\end{aligned}
$$

With binary numbers, a like system is used except the base (radix) is 2 instead of 10 . For example, the binary numbers corresponding to decimal numbers 0 through 10 are $0,1,10$, $11,100,101,110,111,1000,1001,1010$. Each number is written as a succession of powers of 2 . For example, binary 1010 actually means:

$$
\begin{array}{r}
1 \times 2^{3}=8 \\
+1 \times 2^{1}=\frac{2}{10}
\end{array}
$$

The powers of 2, from 0 to 20, are given in Table XXIX. Thus, to write a number above decimal $1,048,056$ using binary numbers requires a minimum of 21 digits!

Table XXIX. Powers of 2

Power	Decimal	Power	Decimal	Power	Decimal
2^{0}	1	2^{7}	128	2^{14}	16,384
2^{1}	2	2^{8}	256	2^{15}	32,768
2^{2}	4	2^{9}	512	2^{19}	65,536
2^{3}	8	2^{10}	1,024	2^{17}	131,072
2^{4}	16	2^{11}	2,048	2^{19}	262,144
2^{5}	32	2^{19}	4,096	2^{19}	524,288
2^{0}	64	2^{13}	8,192	2^{20}	$1,048,576$

(B) Conversion

To convert from binary to decimal or from decimal to binary, you could use Table XXIX and compute the equivalent in the other numbering system as was done in the previous section. However, there are simpler methods. To convert from decimal to binary, successively divide the decimal number by 2. Write down a 1 if there is a remainder and a 0 if not, until the division gives a 0 . For example, to convert decimal 22 to binary :
2) 22

2) 11	$\mathrm{R}=0$
2)	$\mathrm{R}=1$
2)	$\mathrm{R}=1$
2)	$\mathrm{R}=0$
2	$\mathrm{R}=1$

The least significant figure is at the top; thus, the binary number corresponding to decimal 22 is 10110.

To convert from binary to decimal, take the first binary digit, double it, and add your answer to the second digit. Write this sum under the second digit. Then double this number, add it to the third digit, and write the sum under the third digit. Continue this process up to and including the last digit, as follows:

1	0	1	1	0	1
	2	5	11	22	45

The number under the last digit (45) is the decimal equivalent of binary 101101.

(C) Addition

Binary addition has only four rules:

$$
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
\frac{0}{0} & \frac{1}{1} & \frac{0}{1} & \frac{1}{10}
\end{array}
$$

Following these rules, any binary number can be added. Thus:

$$
\begin{array}{r}
1011 \\
110 \\
\hline 10001
\end{array}
$$

To simplify the carry when $1+1=10$, place the carry under the next digit. Then add the partial total and the carries, as follows:

$$
\begin{aligned}
& 111101 \\
& 10110 \\
& \hline 101011 \\
& \hline 11
\end{aligned}
$$

(D) Subtraction

Binary numbers can be subtracted directly, as follows:

$$
\begin{array}{r}
1111 \\
-\quad 111 \\
\hline 1000
\end{array}
$$

However, a simpler method is to complement the subtracted number and add. In the binary system, a number is
complemented by merely changing all 0 's to 1 's and all 1 's to 0 's and adding 1 to the final digit. Thus:

$$
\begin{array}{r}
1111 \\
-0111 \\
\hline
\end{array} \text { complemented } \begin{array}{r}
1111 \\
+1001 \\
\hline 11000
\end{array}
$$

The first digit in the answer is disregarded. Hence, the answer is 1000 (decimal 8), the same as before.

(E) Multiplication

Binary multiplication is similar to decimal multiplication. All products are the same as in decimal multiplication. That is:

$$
\begin{aligned}
& 0 \times 0=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

To multiply 1011 by 101:
1011
$\frac{0101}{1011}$
0000
$\frac{1011}{110111}$

(F) Division

Binary division is similar to decimal division. Thus, to divide 1101001 by 101 :

$$
\begin{aligned}
& \text { 101 } \begin{array}{l}
\frac{10101}{1101001} \\
\frac{101}{110} \\
\frac{101}{101} \\
\underline{101}
\end{array}
\end{aligned}
$$

76. FUNDAMENTALS OF BOOLEAN ALGEBRA

Boolean algebra is based on symbolic logic, which states that an idea must be either true or false-it can be nothing else. The symbols A, B, and C are used to designate the various conditions (or computer inputs). Two connectivesAND and OR-express the relationship between two statements.

OR is the logical equivalent of a parallel switch circuit. That is, a statement is true if any switch is closed, or if they are all closed. OR is symbolized by a + sign. Thus, "A OR B" is written "A + B."

AND is the logical equivalent of a series switch circuitall switches must be closed to satisfy the condition. AND is symbolized by a multiplication sign (A $\cdot \mathrm{B}$) or no sign at all. For example, A • B and AB both mean A AND B. The various symbols are given in Table XXX. Table XXXI summarizes the various logical statements, explains their meanings, and shows the equivalent switch circuit for the statement.

Table XXX. Basic Rules of Symbolic Logic

Symbol	Logic	Switch	Meaning	Circuit
1	True	Closed	The statement is true, the circuit is closed.	$\rightarrow 0$
0	False	Open	The statement is false, the circuit is open.	\cdots
-	Series	A and B	A is in series with B.	$\xrightarrow[A]{\rightarrow 0}$
+	Parallel	A or B	A is in paraliel with B.	
\bar{A} or A^{\prime}	Not A		Opposite of A (If $A=0$, $\bar{A}=1$; if $A=1, \bar{A}=0$).	

Table XXXI. Summary of Logical Statements

Logic	Meaning	Circuir
$0 \cdot 0=0$	An open in series with an open is open.	\ldots
$0 \cdot 1=0$	An open in series with a closed is open.	$\cdots \infty$
$1 \cdot 1=1$	A closed in series with a closed is closed.	$\longrightarrow \infty$
$A \cdot \bar{A}=0$	A switch in series with its negation is open.	$-\infty$
$0+0=0$	An open in parallel with an open is open.	
$0+1=1$	An open in parallel with a closed is closed.	
$1+1=1$	A closed in parallel with a closed is closed.	
$A+\bar{A}=1$	A switch in parallel with its negation is closed.	$\left[\begin{array}{c} -\infty \\ -\infty \\ -\infty \\ -\infty \end{array}\right]$

77. COMMON LOGARITHMS

The logarithm of a quantity is the power to which a given number (base) must be raised in order to equal that quantity. Thus, any number may be used as the base. The most common system is the base 10 . Logarithms with the base 10 are known as common, or Briggs, logarithms; they are written $\log _{10}$, or simply log. When the base is omitted, the base 10 is understood.

A common logarithm of a given number is the number which, when applied to the number 10 as an exponent, will produce the given number. Thus, 2 is the common logarithm of 100 , since 10^{2} equals $100 ; 3$ is the logarithm of 1000 , since 10^{3} equals 1000 , etc. From this we can see that the logarithm of any number except a whole number power of 10 consists of a whole number and a decimal fraction.

(A) Characteristic of a Logarithm

The whole-number portion of a logarithm is called the characteristic. The characteristic of a whole number, or of
a whole number and a fraction, has a positive value equal to one less than the number of digits preceding the decimal point. The characteristic of a decimal fraction has a negative value equal to one more than the number of zeros immediately following the decimal point. The characteristics of numbers between .0001 and 99,999 are:

\quad Numbers	Characteristic
.0001 to .0009	-4
.001 to .009	-3
.01 to .09	-2
.1 to .9	-1
1 to 9	0
10 to 99	1
100 to 999	2
1,000 to 9,999	3
10,000 to 99,999	4

(B) Use of Logarithm Table

The mantissa, or decimal-fraction portion, of a logarithm is obtained from Table XXXII. To find the mantissa for the logarithm of any number, locate the first two figures of the number in the left-hand column (N) ; then, in the column under the third figure of the number, the mantissa for that number will be found.

For example, to find the logarithm of 6673, first locate 66 in the left-hand column (N) ; then follow across to the column numbered 7 . The mantissa for 667 (.8241) is located at this point. The characteristic for the logarithm of 6673 is 3 . Therefore, the logarithm of 6670 is 3.8241 . For most computations, greater accuracy will not be required.

If accuracy to four places is desired, the columns labeled Proportional Parts may be used. These columns list the numbers to be added to the logarithm to obtain four-place accuracy. In the foregoing, we obtained the logarithm for 6670 (3.8241), but we wanted the logarithm for 6673 ; therefore, we use the proportional parts column to find the proportional part for 3. This is 2 . Therefore, the logarithm for 6673 is 3.8241 plus .0002 , or 3.8243 .

The mantissa of a logarithm is usually positive, whereas a characteristic may be either positive or negative. The total logarithm is the sum of the mantissa and the characteristic.

Thus, the mantissa of .0234 is .3692 , and the characteristic is $\mathbf{- 2}$. The total logarithm is $-2+.3692$, or -1.6308 . A negative logarithm is difficult to use; therefore, it is more convenient to convert the logarithm to a positive number. This is possible by adding 10, or a multiple thereof, to the characteristic when it is negative, and compensating for this by indicating the subtraction of 10 from the entire logarithm. Thus, the logarithm of .0234 would be written $8.3692-10$, since $-2+.3692$ equals $8+.3692-10$. This logarithm may now be used like any other positive logarithm, except that the -10 must be considered in determining the characteristic of the answer.

(C) Antilogarithms

An antilogarithm (abbreviated antilog or $\log ^{-1}$) is a number corresponding to a given logarithm. To find an antilog, locate in the logarithm table the mantissa closest to that of the given logarithm. Record the number in the N column directly opposite the mantissa located, and annex to this the number on the top line immediately above the mantissa. Next determine where the decimal point is located, by counting off the number of places indicated by the characteristic. Starting between the first and second digits, count to the right if the characteristic is positive, and to the left if it is negative. If greater accuracy is desired, the proportional parts columns of the logarithm table can be used, in the same manner described in the foregoing for finding the mantissa.

To find the antilog of 3.4548 , locate 4548 in the table. Then read the first two figures of the antilog from the N column (28) and the third figure directly above the mantissa (5). Thus, the three figures of the antilog are 285 . Locate the decimal point by counting off three places to the right, from the point between the 2 and the 8 , to obtain $2850.0-$ the antilog of 3.4548 .

In the foregoing example, if the logarithm had been -2 +.4548 , the procedure would have been the same except for the location of the decimal point. The decimal point in this example would be located by starting at the point between the 2 and the 8 , and counting two places to the left to obtain 0.0285 -the antilog of $-2+.4548$.

(D) Multiplication

Numbers are multiplied by adding their logarithms and finding the antilog of the sum. For example, to multiply 682×497, proceed as follows:

$$
\begin{aligned}
\log N & =\log 682+\log 497 \\
\log 682 & =2.8338 \\
+\log 497 & =\underline{2.6964} \\
\log N & =5.5302
\end{aligned}
$$

antilog $5.5302=339,000$.
To multiply $.02 \times .03 \times .5$, proceed as follows:

$$
\begin{aligned}
& \log \mathrm{N}=\log .02+\log .03+\log .5 \\
& \log .02=-2+.3010=8.3010-10 \\
& +\log .03=-2+.4771=8.4771-10 \\
& +\log .5=-1+.6990=\underline{9.6990-10} \\
& \log \mathrm{~N}=26.4771-30 \\
& =-4+.4771
\end{aligned}
$$

$$
\text { antilog }-4+.4771=.0003
$$

(E) Division

Numbers are divided by subtracting the logarithm of the divisor from the logarithm of the dividend, and finding the antilog of the difference. For example, to divide 39,200 by 27.2, proceed as follows:

$$
\begin{aligned}
\log N & =\log 39,200-\log 27.2 \\
\log 39,200 & =4.5933 \\
-\log 27.2 & =\underline{1.4346} \\
\log N & =\underline{3.1587}
\end{aligned}
$$

antilog $3.1587=1441$

To divide .3 by .007 , proceed as follows:

$$
\begin{aligned}
& \log \mathrm{N}=\log .3-\log .007 \\
& \log .3=-1+.4771=9.4771-10 \\
& -\log .007=-3+.8451=7.8451-10 \\
& \log N=1.6320-0 \\
& \text { antilog } 1.6320=42.86
\end{aligned}
$$

(F) Raising to Powers

A given number can be raised to any power by multiplying the logarithm of the given number by the power to which the number is to be raised, and finding the antilog of the product. For example, to raise 39.7 to the third power, proceed as follows:

$$
\begin{aligned}
\log \mathrm{N} & =\log 39.7 \times 3 \\
\log 39.7 & =1.5988 \\
\log \mathrm{~N} & =1.5988 \times 3 \\
& =4.7964 \\
\text { antilog } 4.7964 & =62,570
\end{aligned}
$$

(G) Extracting Roots

Any root can be extracted from a given number by dividing the logarithm of the given number by the index of the root, and finding the antilog of the quotient. For example, to extract the cube root of 149 , proceed as follows:

$$
\log N=\log 149 \div 3
$$

$\log 149=2.1732$

$$
\begin{aligned}
\log \mathrm{N} & =2.1732 \div 3 \\
& =0.7244
\end{aligned}
$$

antilog $0.7244=5.301$

Table XXXII. Common Logarithms

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	Proportional Parts								
											1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	29
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	20	22	25
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14 13	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14 14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12 12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
														po	ion	Par			

Table XXXII. Common Logarithms-(Cont'd)

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	Proportional Parts								
											1	2	3	4	5	6	7	8	9
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
											1	2	3	4	5	6	7	8	9
\mathbf{N}	0	1	2	3	4	5	6	7	8	9				Pr		Pa			

Table XXXII. Common Logarithms-(Cont'd)

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	Proportional Paris								
											1	2	3	4	5	6	7	8	9
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
N	0	1	2	3	4	5	6	7	-	9				op	ion	Pa			

Table XXXII. Common Logarithms-(Cont'd)

N	0	1	2	3	4	5	6	7	8	9	Proportional Parts								
											1	2	3	4	5	6	7	8	9
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4
\mathbf{N}	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
														op	ion	Par			

Miscellaneous

78. POWER CONSUMPTION OF HOME ELECTRICAL EQUIPMENT

The power consumption for many items of home electrical equipment by an average family is given in Table XXXIII. The approximate usage of each item is also listed where applicable.

Table XXXIII. Power Consumption of Home Electrical Equipment

Item	Approx. Kwh per Month	Remarks
Blanket (automatic)	15	8 hr . per day (used 7 mo .)
Clock	$11 / 2$	
Coffee Maker	15	25 hr . per mo.
Dishwasher	25	$11 / 2$ washings per day
Dryer (clothes)	50	10 hr . per mo. (family of 4)
Fan (10-inch)	1	25 hr . per mo.
Food Freezer	40	$8 \mathrm{cu} . \mathrm{ft}$.
Garbage Disposal Unit	3/4	4 min . per day
Iron	6	12 hr . per mo.
Ironer	10	10 hr . per mo. (family of 4)
Lighting	65	
Mixer	3/4	5 hr . per mo.
culator fan)	30	(200-500 KW-hours per year)
Radio	10	130 hr . per mo.
Range	90	(Family of 4)
Refrigerator	22	$8 \mathrm{cu} . \mathrm{ft}$.
Roaster	12	16 hr . per mo.
Sandwich Grill	4	5 hr . per mo.
Sewing Machine	1	
Television	18	90 hr . per mo.
Toaster	3	3 hr . per mo.
Vacuum Cleaner (upright)	21/4	6 hr . per mo.
Vacuum Cleaner (tank)	$31 / 4$	6 hr . per mo.
Washer (wringer-type)	2	12 hr . per mo. (family of 4)
Washer (automatic)	3	12 hr . per mo. (family of 4)
Water Heater	350	(Family of 4)

79. TEMPERATURE CONVERSION

The nomograph in Fig. 145 can be used to convert from degrees Fahrenheit to degrees Celsius (or vice versa) for any temperature between absolute zero and $540^{\circ} \mathrm{F}$. $\left(281^{\circ} \mathrm{C}\right)$. The term Celsius was officially adopted, in place of centigrade, by international agreement in 1948; however, acceptance of the new term has been slow in Europe, and still slower in the United States. Actually, Celsius and centigrade scales differ slightly-the Celsius scale is based on 0° at the triple point of water $\left(.01^{\circ} \mathrm{C}\right)$, and centigrade has 0° at the freezing point of water. For all practical purposes, though, the two terms are interchangeable.

Two absolute temperature scales are also in use. The Fahrenheit absolute scale is called the Rankine- 0° Rankine equals -459.67° Fahrenheit. The Celsius absolute scale is the Kelvin- 0° Kelvin equals -273.16° Celsius (or centigrade).

The following formulas can be used to convert from any temperature to the other:

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} . & =\left({ }^{\circ} \mathrm{C} . \times 9 / 5\right)+32 \\
{ }^{\circ} \mathrm{F} . & ={ }^{\circ} \mathrm{R} .-459.67 \\
{ }^{\circ} \mathrm{F} . & =9 / 5\left({ }^{\circ} \mathrm{K} .-273.16\right)+32 \\
{ }^{\circ} \mathrm{C} . & =5 / 9\left({ }^{\circ} \mathrm{F} .-32\right) \\
{ }^{\circ} \mathrm{C} . & ={ }^{\circ} \mathrm{K} .-273.16 \\
{ }^{\circ} \mathrm{C} . & =5 / 9\left({ }^{\circ} \mathrm{R} .-491.67\right) \\
{ }^{\circ} \mathrm{R} . & ={ }^{\circ} \mathrm{F} .+459.67 \\
{ }^{\circ} \mathrm{R} . & =\left({ }^{\circ} \mathrm{C} . \times 9 / 5\right)+491.67 \\
{ }^{\circ} \mathrm{R} . & =9 / 5\left({ }^{\circ} \mathrm{K} .-273.16\right)+491.67 \\
{ }^{\circ} \mathrm{K} . & ={ }^{\circ} \mathrm{C} .+273.16 \\
{ }^{\circ} \mathrm{K} . & =5 / 9\left({ }^{\circ} \mathrm{F}-32\right)+273.16 \\
{ }^{\circ} \mathrm{K} . & =5 / 9\left({ }^{\circ} \mathrm{R} .-491.67\right)+273.16
\end{aligned}
$$

Temperature Nomograph

(200

Fig. 145

80. CHARACTERISTICS OF THE ELEMENTS

A list of all the known elements (103) is given in Table XXXIV. The symbol, atomic number, and atomic weight are included for each element. Where known, the melting and boiling point of each element is also given. A value shown in parentheses indicates the value is approximated; the asterisk (*) indicates the mass number of the longest-lived of the known available forms of the element, usually synthetic; < indicates the value may be lower; > indicates the value may be higher.

Table XXXIV. Characteristics of the Elements

Element	Symbol	Atomic Number	Atomic Weight	Melting Point ${ }^{\circ} \mathrm{C}$	Boiling Point ${ }^{\circ} \mathrm{C}$
Actinium	Ac	89	*227		
Aluminum	Al	13	26.97	660.1	1800
Americium	Am	95	*243		
Antimony	Sb	51	121.76	630.5	1380
Argon	A	18	39.944	-189.2	-185.7
Arsenic	As	33	74.91	(820)	615
Astatine	At	85	*210		
Barium	Ba	56	137.36	850	1140
Berkelium	Bk	97	*249		
Beryllium	Be	4	9.013	1350	(1500)
Bismuth	Bi	83	209.00	271.3	1450
Boron	B	5	10.82	2300	2550
Bromine	Br	35	79.916	-7.2	58.8
Cadmium	Cd	48	112.41	320.9	766
Calcium	Ca	20	40.08	810	1170
Californium	Cf	98	*249		
Carbon	C	6	12.01	>3500	(4200)
Cerium	Ce	58	140.13	640	1400
Cesium	Cs	55	132.91	28	670
Chlorine	Cl	17	35.457	-101.6	-34.7
Chromium	Cr	24	52.01	1615	2200
Cobalt	Co	27	58.94	1492	3000
Copper	Cu	29	63.54	1083	2300
Curium	Cm	96	247	-	
Dysprosium	Dy	66	162.46	-	
Einsteinium	E	99	*254	-	
Erbium	Er	68	167.2	-	-
Europium	Eu	63	152.0	-	
Fermium	Fm	100	*255		-
Fluorine	F	9	19.00	-223	-187
Francium	Fr	87	*223		-
Gadolinium	Gd	64	156.9		
Gallium	Ga	31	69.72	29.7	>1600
Germanium	Ge	32	72.60	958.5	(2700)
Gold	Au	79	197.0	1063	2600

Table XXXIV. Characteristics of the Elements-(Cont'd)

Element	Symbol	Atomic Number	Atomic Weight	Melting Point ${ }^{\circ} \mathrm{C}$	Boiling Point ${ }^{\circ} \mathrm{C}$
Halfnium	Hf	72	178.6	1500	(>3200)
Helium	He	2	4.003	<-271.4	-268.94
Holmium	Ho	67	164.94		,
Hydrogen	H	1	1.0080	-259.14	-252.8
Indium	In	49	114.76	155	>1450
lodine	1	53	126.91	113.5	184.35
Iridium	Ir	77	192.2	2443	(>4800)
Iron	Fe	26	55.85	1533	3000
Krypton	Kr	36	83.8	-169	-151.8
Lanthanum	La	57	138.92	826	1800
Lawrencium	Lw	103	-		
Lead	Pb	82	207.21	327.4	1620
Lithium	Li	3	6.940	186	>1200
Lutetium	Lu	71	174.99		
Magnesium	Mg	12	24.32	651	1100
Manganese	Mn	25	54.94	1260	1800
Mendelevium	Mr	101	*256	-38.87	
Mercury	Hg	80	200.61	-38.87	356.9
Molybdenum	Mo	42	95.95	2620	3700
Neodymium	Nd	60	144.27	840	
Neon	Ne	10	20.183	-248.67	-245.9
Neptunium	Np	93	*237	639	2900
Nickel	Ni	28	58.69	1453	2900
Niobium	Nb	41	92.91	2500	3200
Nitrogen	N	7	14.008	-209.86	-195.81
Nobelium	No	102	251	-	
Osmium	Os	76	190.2	2700	(>5300)
Oxygen	\bigcirc	8	16.000	-218.4	-183
Palladium	Pd	46	106.7	1552	2200
Phosphorus	P	15	30.975	44.1	280
Platinum	Pt	78	195.23	1769	4300
Plutonium	Pu	94	242		
Polonium	Po	84	210		
Potassium	K	19	39.100	62.3	760
Praseodymium	Pr	59	140.92	940	
Promethium	Pm	61	*145	-	-
Protactinium	Pa	91	*231		
Radium	Ra	88	226.05	960	1140
Radon	Rn	86	222	-110	
Rhenium	Re	75	186.31	(3000)	
Rhodium	Rh	45	102.91	1960	>2500
Rubidium	Rb	37	85.48	38.5	700
Ruthenium	Ru	44	101.1	2500	>2700
Samarium	Sm	62	150.43	>1300	
Scandium	Sc	21	44.96	1200	(2400)
Selenium	Se	34	78.96	220	688
Silicon	Si	14	28.09	1420	2600
Silver	Ag	47	107.880	960.8	1950
Sodium	Na	11	22.997	97.5	880
Strontium	Sr	38	87.63	800	1150

Table XXXIV. Characteristics of the Elements-(Cont'd)

Element	Symbol	Atomic Number	Atomic Weight	Melting Point ${ }^{\circ} \mathbf{C}$	Boiling Point ${ }^{\circ} \mathrm{C}$
Sulfur	S	16	32.066	113.119	444.6
Tantalum	Ta	73	180.95	3005	(>4100)
Technetium	Tc	43	$* 99$	-	-1390
Tellurium	Te	52	127.61	452	1390
Terbium	Tb	65	158.93	327	-
Thallium	TI	81	204.39	303.5	1650
Thorium	Th	90	232.12	1845	>3000
Thulium	Tm	69	168.94	-	3500
Tin	Sn	50	118.70	231.9	2260
Titanium	Ti	22	47.90	1820	$>3000)$
Tungsten	W	74	183.92	3380	5900
Uranium	\mathbf{U}	92	238.07	1133	-50.95
Vanadium	\mathbf{V}	23	1735	(3000)	
Xenon	Xe	54	131.3	-140	-109.1
Ytterbium	Yb	70	173.04	-	
Yttrium	Y	39	88.92	1490	(2500)
Zinc	Zn	30	65.38	419.47	$\mathbf{9 0 7}$
Zirconium	Zr	40	91.22	1750	>2900

81. MEASURES AND WEIGHTS

(A) Linear Measure

| 1 inch $=1000$ mils | 1 furlong $=40$ rods |
| :--- | :--- | :--- |
| 1 hand $=4$ inches | 1 statute mile $=8$ furlongs |
| 1 foot $=12$ inches | 1 statute mile $=5,280$ feet |
| 1 yard $=3$ feet | 1 nautical mile $=6076.1$ feet \dagger |
| 1 fathom $=6$ fee \dagger | 1 nautical mile $=1.1508$ statute miles |
| 1 rod $=51 / 2$ yards | 1 league $=3$ miles |

(B) Square Measure

1 sq. foot	$=144$ sq. inches	1 township $=6$ miles sq. (36 sq. miles)
1 sq. yard	$=9 \mathrm{sq}$. feet	1 acre $=160$ sq. rods
1 sq. rod	$=301 / 4$ sq. yards	1 acre $=43,560$ sq. feet
1 section (o	$=1 \mathrm{sq}$. mile	1 sq. mile $=640$ acres
(C) Volume Measure		
1 cu. fo	. 728 cu . inches	1 cu. yard $=27 \mathrm{cu}$. feet

1 U.S. gallon $=231 \mathrm{cu}$. inches
(D) Liquid Measure

1 pint	$=4$ gills	1 barrel $=311 / 2$ gallons
1 quart	$=2$ pints	1 hogshead $=2$ barrels (63 gallons)
1 gallon	$=4$ quarts	1 tun
1 barrel (petroleum)	$=42$ gallons	

(E) Dry Measure

1 quart $=2$ pints $=67.2006 \mathrm{cu}$. in. $\quad 1$ bushel $=4$ pecks $=2150.419 \mathrm{cu}$. in.
1 peck $=8$ quarts $=537.605 \mathrm{cu} . \mathrm{in} . \quad 1$ barrel $=2.381$ bushels $=7056 \mathrm{cu} . \mathrm{in}$.

(F) Avoirdupois Weight

(For other than drugs, gold, silver, etc.)

1 dram (dr.) $=27.3437$ grains*	1 hundredweight (cwt.) $=4$ quarters
1 ounce (oz.) $=16$ drams	1 ton (tn.) = 20 cwts .
1 pound (lb.) = 16 ounces	1 short ton $=2000$ pounds
1 quarter $=25$ pounds	1 long ton $=2240$ pounds

1 pound avdp. $=7000$ grains $=453.59$ grams $=1.2153$ pounds troy

(G) Troy Weight

(For gold, silver, etc.)
1 pennyweight (dwt.) $=24$ grains* $\quad 1$ ounce troy (oz.t.) $=20$ pennyweights
1 pound troy (lb.t.) $=12$ ounces troy $=240$ pennyweights $=5760$ grains
(H) Apothecaries' Weight
(For drugs)
1 scruple (s. ap.) $=20$ grains* $\quad 1$ dram apoth. (dr. ap.) $=3$ scruples
1 ounce apoth. (oz. ap.) $=8$ drams apoth.
1 pound apoth. (lb. ap.) $=12$ ounces apoth.
$=96$ drams apoth.
$=288$ scruples
$=5760$ drams

82. METRIC EQUIVALENTS

(A) Length

1 centimeter	$=0.3937$ inch		1 inch
1 meter	$=3.2808$ feet		$=2.5400$ centimeters (cm.)
1 meter	$=1.0936$ yards		1 yard
1 kilometer	$=0.6214$ miles		$=0.3048$ meter
	1 mile (statute)	$=1.6093$ kilometers $(k m)$.	

(B) Area

1 sq. $\mathrm{cm} .=0.1550$ sq. inch	1 sq. inch $=6.4516$ sq. cm.
1 sq. meter $=10.7639$ sq. feet	1 sq. foot $=0.0929$ sq. meter
1 sq. meter $=1.1960$ sq. yards	1 sq. yard $=0.8361$ sq. meter
1 hectare $=2.4710$ acres	l acre $=0.4047$ hectare
1 sq. $\mathrm{km} .=0.3861$ sq. mile	l sq. mile $=2.5900$ sq. km.

[^8]
(C) Volume

$1 \mathrm{cu} . \mathrm{cm} .=0.0610 \mathrm{cu}$. inch
1 cu. inch $=16.3872 \mathrm{cu} . \mathrm{cm}$.
1 cu. meter $=35.3145 \mathrm{cu}$. feet
1 cu . foot $=0.0283 \mathrm{cu}$. meter
1 cu. meter $=1.3079 \mathrm{cu}$. yards
1 cu. yard $=0.7646 \mathrm{cu}$. meter

(D) Capacity

1 liter $=61.0250 \mathrm{cu}$. inches	1 liter $=0.9081$ quart (dry)
1 liter $=0.0353 \mathrm{cu}$. feet	1 liter $=2.2046$ pounds of water @ $4^{\circ} \mathrm{C}$
1 liter $=0.2642$ gallon (U.S.)	1 cu. inch $=0.0164$ liter
1 liter $=0.0284$ bushel (U.S.)	1 cu. foot $=28.3162$ liters
1 liter $=1000.027 \mathrm{cu} . \mathrm{cm}$.	1 gallon $=3.7853$ liters
1 liter $=1.056$ quarts (liquid)	1 bushel $=35.2383$ liters

(E) Weight

1 gram	$=15.4324$ grains	1 grain	$=0.0648 \mathrm{gram}$
1 gram	$=0.0353$ ounce avdp.	1 ounce (avd	$=28.3495 \mathrm{grams}$
1 kg .	$=2.2046$ pounds avdp.	1 pound (avo	$)=0.4536 \mathrm{~kg}$.
1 kg .	$=0.0011$ ton (short)	1 ton (short)	$=907.1848 \mathrm{~kg}$.
1 ton (me	$=1.1023$ tons (short)	1 ton (short)	$=0.9072$ ton (metric)
1 ton (me	$=0.9842$ ton (long)	1 ton (long)	$=1.0160$ ton (metric)

(F) Pressure

$$
\begin{array}{ll}
1 \text { kg. per sq. } \mathrm{cm} . & =14.223 \mathrm{lbs} . \text { per sq. } \mathrm{inch} \\
1 \mathrm{lb} . \text { per sq. } \mathrm{inch} & =0.0703 \mathrm{~kg} . \text { per sq. } \mathrm{cm} . \\
1 \mathrm{~kg} . \text { per sq. meter } & =0.2048 \mathrm{lb} . \text { per sq. foot } \\
1 \mathrm{lb} . \text { per sq. foot } & =4.8824 \mathrm{~kg} . \text { per sq. meter } \\
1 \mathrm{~kg} . \text { per sq. } \mathrm{cm} . & =0.9678 \text { normal atmosphere } \\
1 \text { normal atmosphere }=1.0332 \mathrm{~kg} . \text { per sq. } \mathrm{cm} . \\
1 \text { normal atmosphere }=1.01325 \text { bars } \\
1 \text { normal atmosphere }=14.696 \mathrm{lbs} . \text { per sq. inch }
\end{array}
$$

83. WINDS

Table XXXV. Wind Designations

Designation	Miles per hour	Designation	Miles per hour
Calm	Less than 1	Moderate gale	32 to 38
Light air	1 to 3	Fresh gale	39 to 46
Light breeze	4 to 7	Strong gale	47 to 54
Gentle breeze	8 to 12	Whole gale	55 to 63
Moderate breeze	13 to 18	Storm	64 to 72
Fresh breeze	19 to 24	Hurricane	Above 72
Strong breeze	25 to 31		

84. WEIGHT OF WATER

1 cubic inch	$=.0360$ pound		1 imperial gallon $=10.0$ pounds
12 cubic inches	$=.433$ pound		11.2 imperial gallons $=112.0$ pounds
1 cubic foot $=62.4$ pounds		224 imperial gallons	$=2240.0$ pounds
1 cubic foot $=7.48052$ U.S. gallons		1 U.S. gallon	$=8.33$ pounds
1.8 cubic feet $=112.0$ pounds		13.45 U.S. gallons $=112.0$ pounds	
35.96 cubic feet $=2240.0$ pounds		269.0 U.S. gallons $=2240.0$ pounds	

85. HYDRAULIC EQUATIONS

Lbs. per sq. in. $=0.434 \times$ head of water in feet
Head in feet $=2.31 \times$ lbs. per sq. inch
Approximate loss of head due to friction in clean iron pipes is:

$$
\frac{0.02 \times \mathrm{L} \times \mathrm{V}^{2}}{64.4 \mathrm{D}} \mathrm{ft}
$$

where,
L is the length of pipe in feet,
V is the velocity of flow in foot-pounds per second,
D is the diameter in feet.
In calculating the total head to be pumped against, it is common to consider this value as being equal to the sum of the friction head and the actual head.

$$
\text { Horsepower of waterfall }=\frac{62 \times \mathrm{A} \times \mathrm{V} \times \mathrm{H}}{33,000}
$$

where,
A is the cross section of water in square feet,
V is the velocity of flow in foot-pounds per minute,
H is the head of fall in feet.

86. MISCELLANEOUS

(A) Falling Object

The speed acquired by a falling object is determined by the formula:

$$
\mathrm{V}=32 \mathrm{t}
$$

where,
V is the velocity in feet per second, t is the time in seconds.

The distance traveled by a falling object is determined by the formula:

$$
\mathrm{d}=16 \mathrm{t}^{2}
$$

where,
d is the distance traveled in feet,
t is the time in seconds.
(B) Speed of Sound

The speed of sound through air at $0^{\circ} \mathrm{C}$. is usually considered to be 1087.42 feet per second, and at normal temperature, 1130 feet per second. The speed of sound through any given temperature of air is determined by the formula:

$$
V=\frac{1087 \sqrt{(273+t)}}{16.52}
$$

where,
V is the speed in feet per second,
t is the temperature in degrees Celsius.

(C) Cost of Operation

The cost per hour of operation of an electrical device is determined by the formula:

$$
\mathrm{C}=\frac{\mathrm{Wtc}}{1000}
$$

where,
C is the cost per hour of operation, W is the wattage of the device,
t is the time in hours,
c is the cost per kilowatt hour of electricity.

(D) Conversion of Matter Into Energy

The conversion of matter into energy (Einstein's theorem) is expressed by:

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

where,
E is the energy in ergs,
m is the mass of the matter in grams,
c is the speed of light in centimeters per second ($\mathrm{c}^{2}=$ 9.10^{20}).

Key to Abbreviations for FCC Allocation Chart

A-Amateur
AC—Airdrome Control
AF-Aeronautical Fixed
AFF-Aviation (Flight Test and Aeronautical Fixed Only)
AM-Aeronautical Mobile
AR-Aeronautical Radionavigation
ARO-Aeronautical Radionavigation
(Omnidirectional Radio Range)
C-Citizens Radio
CC-Common Carrier
CAP—Civil Air Patrol (Land and Mobile)
DP—Domestic Public
F-Fixed
FA-Fixed (Alaska)
FAP—Fixed (Alaska and Puerto Rico)
G-Government
I-Industrial
IAF-International Aeronautical Fixed
IAFP-International Aeronautical Fixed (Alaska, Hawaii, and U.S. Possessions)

IB-International Broadcasting
IC-International Control
IFP—International Fixed Public
IFPT-International Fixed Public (Puerto Rico and Virgin Islands)

ISM-Industrial, Scientific, and Medical Equipment
LT-Land Transportation
M-Mobile
MA—Meteorological Aids
MM—Maritime Mobile
MMCP-Maritime Mobile Coastal Telephony
MMCT-Maritime Mobile Coastal Telegraphy

MMDCP-Maritime Mobile Distress and Calling (Telephony)
MMDCT-Maritime Mobile Distress and Calling (Telegraphy)
MMIP-Maritime Mobile (Intership Telephony)

MMSCP-Maritime Mobile Ship Calling (Telephony)

MMSCT—Maritime Mobile Ship Calling (Telegraphy)
MMSP—Maritime Mobile Ship (Telephony)

MMST—Maritime Mobile Ship (Telegraphy)
MMT-Maritime Mobile (Telegraphy)
MRDF-Maritime Radionavigation (Radio Direction Finding)
(NIB)-Noninterference Basis
OF-Operational Fixed
P-Police
PS—Public Safety
R-Radiosonde
RA-Racon
RL--Radiolocation
RN—Radionavigation
RNAL—Radionavigation (Aeronautical and Land)

RP—Remote Pickup
RPT—Remote Pickup (Television)
SF—Standard Frequency
STLA—Studio Transmitter Link (AM Broadcast)

STLF—Studio Transmitter Link (FM Broadcast)
STLT—Studio Transmitter Link
(Television)
TM-Telemetering

Allocations Shown Are Current Through November, 1961.

INDEX

A

A scale, slide rule, 142
Abbreviations, electronic, 83-84
frequency bands, 78
metric prefixes, 57
semiconductor terms, 84-87
Absolute zero, 172
Absorption factor, 82
AC, Ohm's law for, 33
AC circuits, power factor of, 35
power in, 33-34
AC plate resistance, vacuum tube, 114
Acres, 52, 55, 176, 177
Actinium, 174
Addition, using binary numbers, 159
using powers of 10,138
Admittance, abbreviation for, 84
definition of, 22
formula for, 23
Air, dielectric constant of, 51
Algebra, Boolean, 160-162
Algebraic equations, transposition of, 144-145
Algebraic operations, 144-145
Allocations, FCC, 78
Alloys, resistance of, 121
Alpha, of transistor, 115
Alphabet, Greek, 81-82
Alternating current, abbreviation for, 83 Ohm's law for, 33-34
Aluminum, characteristics of, 174
resistance of, 111
AM broadcast stations, 65
AM carrier, percentage of modulation, 44-45
sideband power, 45
Amateur bands, 71
Amateur operator privileges, 70-71
examination requirements, 71
Amber, dielectric constant of, 51
Americium, 174
Ammeter, abbreviation for, 83
shunts, 40-41
Ampere, abbreviation for, 83
-hours, 52
-turns, per cm., 52
per in., 52
Amperes, 52
Amplification factor, formula for, 114 symbol for, 82
Amplifier, stage gain of, 114
Amplitude modulation, 44-45, 72
abbreviation for, 83
AND gate, 161
symbol for, 93
Angles, 82-83
Angstrom units, 52
Angular phase displacement, 82
Angular velocity. 83
Antenna, abbreviation for, 83
symbols for, 94
Antilogarithms, 164
Antimony, 174
Apothecaries' weight, 17%
Apparent power, 35
Area, abbreviation for, 83
metric equivalents, 177
of circle, 147
of circular ring, 148
of cone, 149
of cube, 149
of cylinder, 149
of ellipse, 148

Area-cont'd
of hexagon, 147
of octagon, 147
of parallelogram, 147
of pentagon, 147
of rectangle, 146
of rectangular solid, 149
of sector, 148
of segment, 148
of sphere, 149
of square, 146
of trapezium, 147
of trapezoid, 147
of triangle, 146
symbol for, 82
Arsenic, 174
Argon, 174
Astatine, 174
ATA, 66
Atmospheres, normal, 178
Atomic number, 174
Atomic weight, 174
Attenuation, coaxial line, 43
Attenuation characteristics, constant-K filters, 120-121
m-derived filters, 123-124
Attenuation constant, 82
Attenuator, bridged-T, 130-131
characteristics of, 127-128
formulas, 127-134
H-type, 129
L-type, 131-132
ladder, 134
lattice, 133
O-type, 133
pi-type, 132
purpose of, 127
T-type, 129-130
taper pad, 130
U-type, 133
Audio frequency, abbreviation for, 83
spectrum, 74, 79
Audio output transformer, color code for, 88
Automatic frequency control, 83
Automatic gain control, 83
Automatic volume control, 83
Average voltage or current, 34
Avoirdupois weight, 177

B

B scale, slide rule, 142
Bakelite, dielectric constant of, 51
Band-rejection filter, 122-123
Bandpass filter, 122
Bands, amateur, 71
radio-frequency spectrum, 74-78
Barium, 174
Barrel, 176, 177
Bars, 52, 178
Battery, 93
Beam-power tube, symbol for, 91
Beat-frequency oscillator, 83
Beeswax, dielectric constant of, 51
Berkelium, 174
Beryllium, 174
Beta, of transistor, 115
Binary numbers, 157-160
addition of, 159
conversion to decimal, 158-159
division of, 160
multiplication of, 160
subtraction of, 159-160

Binistor, 92
Bipolar voltage limiter, 92
Bismuth, 174
Blanket, power consumption of, 171
Boolean algebra, 160-162
Boron, 174
Brass, resistance of, 111
Breakdown diode, 92
Bridged-T attenuator, 130-131
Briggs logarithms, 160
Brightness, definition of, 105
Broadcast, 83
Bromine, 174
Btu, 52, 54, 55
per hour, 52,56
per minute, 53, 56
Burst, color, 107
Bushels, 52, 177, 178

C

C scale, slide rule, 141
Cable, coaxia], characteristics of, 95-96
Cadmium, 174
Calcium, 174
Californium, 174
Calories, gram, 52
Cambric, dielectric constant of, 51
Candles, per sq. cm., 54
per sq. in., 54
Capacitance, 83
series, impedance of, 30
total, 17-18
Capacitive reactance, 84
Capacitor, abbreviation for, 83
change stored in, 18
color codes, 88, 89-90
energy stored in, 18
parallel-plate, 18
Q-factor of, 22
reactance of, 25
series, voltage across, 19
symbols for, 93
Capacity, metric equivalents, 178
Carbon, 174
Cartridges, phono, 93
Cathode-ray tubes, 91
Cell, 93
Celluloid, dielectric constant of, 51
Cellulose acetate, dielectric constant of, 51
Celsius, 172-173
abbreviation for, 83
conversion of, 52, 172-173
Centi-, 57-58
Centigrade, 172-173
abbreviation for, 83
conversion of, 52, 172-173
Centimeter, 177
abbreviation for, 83
conversion of, 53, 55
Cerium, 174
Cesium, 174
Chains, 52, 54
Characteristic curve, vacuum tubes, 99
Characteristic impedance, coaxial line, 43 definition of, 43
parallel-conductor line, 14
Characteristics, of elements, 174-176
of logarithm, 162-163
Charge, of R-C circuit, 35-36
Charge stored, in capacitor, 18
Chemical elements, characteristics of, 174-176
Chlorine, 174
Chord, of segment, 148
Chrominance signal, 106-107
Chromium, 174
CHU, 64
CI scale, slide rule, 141-142
Circle, area of, 147
circumference of, 147
Circuit breaker, 94
Circular mils, 52, 56

Circular ring, area of, 148
Circumference, of circle, 147
of ellipse, 148
Citizens-band radio, 67-68
Class-A operation, vacuum tubes, 99
Class-AB operation, vacuum tubes, 100
Class-B operation, vacuum tubes, 100-101
Class-C operation, vacuum tubes, 101
Classes, of vacuum-tube operation, 99-101
Classification, radio frequencies, 78
types of emission, 72-74
Cleaner, vacuum, power consumption of 171
Clearance-drill sizes, 110
Clock, power consumption of, 171
Clothes dryer, power consumption of, 171
Coaxial cable, characteristics of, 95-96
formulas for, 43
Cobalt, 174
Code, international, 81
time signals, 59-64
Codes
color, capacitors, 88, 89-90
resistor, 88, 89-90
transformer, 87-88
Coefficients, 82
Coffeemaker, power consumption of, 171
Coil ; also see inductor
coupling coefficient of, 21
Q-factor of, 22
symbols for, 93
Coil windings, multilayer, 117-118
single-layer, 117
Color codes, capacitors, 88, 89-90
resistors, 88, 89
transformer, 87-88
Color TV, light properties of, 104-107
Combining network, 129
Commercial operator licenses, 68-69
requirements for, 69-70
Common logarithms, 162-170
antilogarithms, 164
characteristic of, 162-163
division using, $165-166$
mantissa of, 163
multiplication using, 165
powers, raising to using, 166
roots, extracting using, 166
table of, 167-170
use of, 163-164
Computer symbols, 93
Conductance, 23
abbreviation for, 83
Ohm's law formulas with, 24
Cone, area of, 148
volume of, 149
Configurations, impedance of, 25, 29-33
phase angle of, 29-33
Constant-k filters, 118, 120-123
Constants, mathematical, 135
dielectric, 51
Continuous wave, 83
Conversion, binary to decimal, 158-159
decimal to binary, 158-159
matter into energy, 180
Conversion chart, frequency-wavelength 41-43
Conversion factors, 52-56
Conversion table, metric prefixes, 57-58
Co-ordinates, 82,83
Copper, 174
resistance of, 111
Copper-wire table, 111-113
Cost of operation, electrical appliance, 180
Coulombs, 52
Coupled inductance, 20-21
Coupling coefficient, coils, 21
symbol for, 82
Crystals, 93
Cube, area of, 149
of number, using slide rule, 143
volume, of, 149
Cube root, using slide rule, 143
Cubic centimeters, 52,178

Cubic foot, 52, $55,176,178$
Cubic inch, 52,178
Cubic meter, 52, 53, 178
Cubic yard. 52, 176, 178
Current, abbreviation for, 83
AC circuit, 33
average, 34
peak, 34
peak-to-peak, 34
rms. 34
Current gain, in decibels, 46-50
Current ratio, 46-50
Curium, 174
Cycles, 52
Cycles per second, 83, 84
Cylinder, surface area, of, 149
volume of, 149

D

D scale, slide rule, 141
db, 46-47
db loss, attenuators, 128-129
dbk, 47
dbm, 47
dbrap, 47
dbv, 47
dbvg, 47
dbw. 47
DCF77, 66
DC meter formulas, 39.41
DC power, 11
Deci-, 57-58
Decibel, abbreviation for, 83
equations, 46
reference levels, 46-47
table, 47-50
Decibels, conversion to nepers, 55
Decimal equivalents, 136
Decimal expressions, as powers of 10,137
Decrement, 82
Degrees, 53, 55
per second, 55
Deka-, 57-58
Delta connection, three-phase power, 116
Density, 82
Determinant, 82
Dial lamps, 101-102
Dielectric constant, abbreviation for, 83 of materials, 51 symbol for, 82
Dielectric flux, 83
Diode, crystal, 92 tube, 91
Direct current; also see DC abbreviation for, 83
Ohm's law for, 11
Dishwasher, power consumption of, 171
Disposal, power consumption of, 171
Dividing network, 129
Division, using binary numbers, 160 using logarithms, $165-166$
using powers of $10,138-139$
using slide rule, 141, 142
Dominion Observatory, 64-65
Dram, 177
Drill sizes, 110
Dry measure, 176
Dryer, clothes, power consumption of, 171
Durite, dielectric constant of, 51
Dynaquad, 92
Dynes, 53, 55
per sq. cm., 55
Dysprosium, 174

E

Ear, human, frequency range of, 74
Ebonite, dielectric constant of, 51
Effective radiated power, 83
Efficiency, 82
Einsteinium, 174

Einstein's theorem. 180
Electric intensity, 82
Electrical, conductivity, 82
equipment, power consumption of, 171
susceptibility, 83
Electromotive force, 83
Electron-eye tube, 91
Electronic, abbreviations, 83-84
schematic symbols, 88, 91-94
Elements, characteristics of, 174-176
commercial operator license, 68-69
Ellipse, area of. 148 circumference of, 148
Emission, types of, 72-74
Energy, definition of, 24
stored, in capacitor, 18
in inductor, 21
units, formulas for, 24
Equations, decibel, 46
hydraulic, 179
quadratic. 146
transposition of terms in, 144-145
Erbium, 174
Ergs, 53
per second, 56
Europium, 174
Examination requirements, amateur operator, 70-71
commercial operator, 69-70
Exponents, determination of, 137
fractional, 146
laws of, 145-146
negative, 145

F

Fahrenheit, 172-173
abbreviation for, 83
conversion of, 52, 53
Falling object, distance traveled, 180
speed of, 179
Fan, power consumption of, 171
Farad, 83
Faradays, 53
Farads, 53
Fathom, 53, 176
FCC allocations, 78
Feet, 52-56, 176, 177
per minute, 54, 55
per second, 54, 55
Fermium, 174
FFH, 66
Fiber, dielectric constant of, 51
Filters, constant-k, 118, 120-123
m-derived, 123-127
Fluorine, 174
FM broadcast stations, frequency and power tolerances, 65,67
Foot, 176
Foot-lbs., 53, 54
per minute, 53, 56
per second, 53, 56
Formica, dielectric constant of, 51
Formulas, AC plate resistance, 114
admittance, 22-23
ammeter shunt, 40-41
amplification factor, 114
amplitude modulation, 44, 45
attenuator, 127-134
band-rejection filters, 122-123
bandpass filter, 122
bridged-T attenuator, 130-131
capacitance, 17-18
capacitive reactance, 24
charge stored, in capacitor, 18
coaxial line, 43
coil windings, 117
conductance, 23
constant-k filters, 118, 120-123
cost of operation, electrical appliance, 180
coupled inductance, 20-21
coupling coefficient, 21

Formulas-cont'd
current, 11, 13-14
DC meter, 39-41
decibels, 46
Einstein's theorem, 180
energy stored, in capacitor, 18
in inductor, 21
energy units, 24
falling object, 179-180
filters, 118, 120-127
frequency and wavelength, 41
frequency modulation, 45
geometric, 146-150
H-type attenuator, 129
high-pass filter, 121-122, 125, 127
horsepower of waterfall, 179
hydraulic equations, 179^{\prime}
inductance, coupled, 20-21
mutual, 20
inductive reactance, 25
inductors, 19-20
impedance, 25, 29-33
ratio, 38
transformer windings, 38
Kirchhoff's laws, 13-14
L-section filter, 118, 120-122, 125-127
L-type attenuator, 131-132
ladder-type attenuator, 134
lattice-type attenuator, 133
low-pass filters, 118, 120-121, 125-126
m-derived filters, 123-127
mensuration, 146-150
meter, DC, 39-41
modulation, AM, 44-45
FM, 45-46
percentage of, 44-45
mutual conductance, 114
mutual inductance. 20
O-type attenuator, 133
ohmmeter, 39-41
Ohm's law, 11
AC circuits, 33
considering conductance, 24
parallel circuit, impedance of, 25
parallel-conductor lines, 44
percentage of modulation, 44-45
phase angle, 33
pi-section filter, 118, 120-122, 125-127
pi-type attenuators, 133
power, AC circuits, 33
DC circuits, 11
radiated, AM, 45
sideband, AM, 45
power factor, 35
Q-factor, 22
radiated power, AM, 45
reactance, capacitive, 24
inductive, 25
resistance, 11
resonant frequency, 22
regulation, voltage, 38
series circuit, impedance of, 29
series-type ohmmeter, 41
shunt-type ohmmeter, 39-40
sideband power, AM, 45
sound, speed of, 180
stage gain, 114
stored energy, in capacitor, 18
in inductor, 21
susceptance, 23
T-section filter, 118, 120-122, 125-127
T-type attenuator, 129-130
taper-pads, 130
temperature conversion, 172-173
three-phase power, 116-117
time constant, 36
transformer, 37-38
transistor, 114-116
transmission line, 43-44
trigonometric, 151
turns ratio, transformer, 37-38
U-type attenuator, 133
vacuum-tube, 114
voltage, 11, 13

Formulas-cont'd
voltage
across series capacitors, 19
multiplier, DC meter, 39
regulation, 38
watt-hours, 24
wavelength and frequency, 41
Fractional exponents, 146
Fractions, decimal equivalents of, 136
powers of, 145
Francium, 174
Freezer, power consumption of, 171
Frequencies, television channels, 74-75
Frequency, abbreviation for, 83
definition of, 41
formula for, 41
modulation, 72-73
abbreviation for, 83
modulation index. 46
percentage of modulation, 45
musical notes, 74, 78
range, musical instruments, 74, 79
resonent, 22
spectrum, audio-, 74, 79
radio-, 74, 78
standard, 59-66
symbol for, 82
tolerances, AM broadcast stations, 65
FM broadcast stations, 65
TV broadeast stations, 67
Industrial Radio Service, 67
Citizens-band radio, 67-68
-wavelength conversion chart, 41-43
Functions
trigonometric, 150-157
on slide rule, $140,143-144$
Furlong, 176
Furnace, oil, power consumption of, 171
Fuses, symbols for, 93

G

Gadolinium, 174
Gain, in decibels, 46-50
transistor circuits, 115
Gallium, 174
Gallons, British imperial, 53, 179
U. S., 52, 53, 55, 176, 178

Garbage disposal, power consumption of, 171
Gas-filled lamps, 102-104
Gas-filled tubes, symbols for, 91
Gausses, 53, 56
GBR, 59, 66
Geometric formulas, 146-150
Geophysical alert, 64
Germanium, 174
Giga-, 57-58
Gilberts, 52
Gills, 176
Glass, dielectric constant of, 51
Gold, characteristics of, 174
resistance of, 111
Grains, 53, 178
Gram-centimeters, 53
Grams, 53, 178
per cm., 53
per cu. cm., 53
Greek alphabet, 82-83
Green wich Civil Time, abbreviation for, 83
Grill, power consumption of, 171
Ground, abbreviation for, 83°
symbols for, 93
Gutta Percha, dielectric constant of, 51

H
H-type attenuator, 129
Halfnium, 175
Hand, 176
HBN, 66
Headphones, 94

Heads, screw, types of, 110-111
Heater, power consumption of, 171
Hectare, 177
Hecto-, 57-58
Helium, 175
Henries, abbreviation for, 83 conversion of, 53
Hexagon, area of, 147
High frequency, 83
High-pass filters, constant-k, 121-122 m-derived, 125, 127
Hogshead, 176
Holmium, 175
Horsepower, abbreviation for, 83
conversion of, 53, 56
hours, 52, 53, 54, 55
metric, 53
of waterfall, 179
Hue, definition of, 105
Hundredweight, 177
Hydraulic equations, 179
Hydrogen, 175
Hypotenuse, solving for, 143
Hysteresis, symbol for, 12

I

IAM, 66
IBF, 66
IF transformer, color code for, 87
Impedance, 25, 29-33
abbreviation for, 84
AC circuit, 33
capacitive circuit, 29, 30, 31
characteristics, constant-k filter, 120-121 m-derived filters, 124-125
inductance and capacitance, 30, 31
inductive circuit, 29, 31
parallel circuit, 25
ratio, transformer, 38
resistance and capacitance, $30,31,32$
resistance and inductance, $30,31,32$
resistance inductance and capacitance, 30, 32
resistive circuit, 29, 30
series circuit, 29
transformer winding, 38
Imperial gallon, 179
Inches, 52-55, 176, 177
Inches per second, 83
Increment, 82
Index, modulation, 46
slide rule, 141
Indian-head test pattern, 96-99
Indium, 175
Inductance, abbreviation for, 83
coupled, 20-21
mutual, 20
series, impedance of, 29
total, 19-20
Inductive reactance, 84
Inductor: also see coil
abbreviation for, 83
energy stored in, 21
reactance of, 25
symbols for, 93
Industrial electronic symbols, 94
Industrial Radio Service, 67
Input resistance, transistor, 115
Intermediate frequency, abbreviation for, 83
International code, 81
International World Day Service, 64
Intrinsic impedance, 82
Iodine, 175
Iridium, 175
Iron, 175
electric, power consumption of, 171
resistance of, 111
Ironer, power consumption of, 171
Isolantite, dielectric constant of, 51
IWDS, 64

J

Jacks, 94
JJY, 66
Joules, 18
abbreviation for, 83
conversion of, 52, 53, 54, 56
definition of, 24

K

K-factor, attenuators, 128-129
K scale, slide rule, 143
Kelvin, 172
conversion of, 52
Keyboard, frequencies of notes, 74, 79
Kilo-, 57-58
Kilocycles, abbreviation for, 83
conversion of, 52
Kilograms, 53, 178
Kilogram calories, 52
per minute, 56
Kilograms per sq. meter, 53
Kilometers, 54, 177
per hour, 54, 55
Kilovolt ampere, abbreviation for, 83
Kilovolts, abbreviation for, 83
conversion of, 56
Kilowatt hours, 54, 55
Kilowatts, abbreviation for, 83
conversion of, 53, 56
Kirchhoff's laws, 13-14
Knots, 54, 55
Krypton, 175

L

L scale, slide rule, 144
L-section filter, 118, 120-122, 125-127
L-type attenuator, 131-132
Ladder-type attenuator, 134
Lamberts, 54
Lamps, gas-filled, 102-104
miniature, 101-102
symbols for, 93
Lanthanum, 175
Lattice-type attenuator, 134
Lawrencium, 175
Law
Ohm's, AC circuits, 33
considering conductance, 24
DC, 11
nomograph, 12-13
Kirchhoff's, 13-14
Laws of exponents, 145-146
Lead, 175
Leagues, 54, 176
Length, abbreviation for, 83
metric equivalents, 177°
Level, reference, 46-47
Licenses, commercial operator, 68-69
Light, properties of, 104
Light years, 54
Lighting, home, power consumption of 171
Linear measure, 176
Lines per sq. cm., 53
Lines per sq. in., 53
Links, 54
Liquid measure, 176
Lithium, 175
Liters, 52, 54, 178
$\log _{\epsilon}, 54$
Log scale, slide rule, 144
Logarithms
common, 162-170
antilogarithms, 164
characteristic of, 162-163
division using, $165-166$
mantissa of, 163
multiplication using, 165
powers, raising to with, 166

Logarithms-cont'd
common
roots, extracting using, 166
table of, 167-170
use of, 163-164
Naperian, 82
Logic, symbolic, 160-162
Logical statements, summary of, 162
LOL, 66
Loss, in decibels, 46-50
Low frequency, 83
Low pass filter, constant-K, 118, 120-121
m-derived, 125, 126
Lucite, dielectric constant of, 51
Lumens per sq. ft., 54
Luminance signal, 106
Lutetium, 175
Lux, 54

M

m-derived filters, 123-127
Magnesium, 175
Magnetic flux, 83
Magnetic flux density, 83
Machine screw sizes, 110
Manganese, 175
Manganese nickel, 111
Mantissa, of logarithms, 163
Mathematical constants, 135
Mathematical symbols, 135-136
Maxwells, 54, 56
Measures, 176-177
Medium frequency, 84
Mega-, 57-58
Megacycle, abbreviation for, 84 conversion of, 52
Megohm, abbreviation for, 84 conversion of, 55
Mendelevium, 175
Mensuration formulas, 146-150
Mercury, 175
Metallic rectifier, 92
Metals, resistance of, 111
Meter, 177
Meter, abbreviation for, 83
DC, formulas for, 39-41
symbols for, 93
Meters, 53, 54 per minute, 54
Metric equivalents, area, 177
capacity, 178
length, 178
pressure, 178
volume, 178
weight, 178
Metric prefixes, 57-58
Mhos, 54
Mica, dielectric constant of, 51
Micarta, dielectric constant of, 51
Micro-, 57-58
Microampere, abbreviation for, 84 conversion of, 52,55
Microfarad, abbreviation for, 84 conversion of, 53, 54
Microhenry, abbreviation for, 84 conversion of, 53, 55
Micromhos, 54
Micromicroamperes, 52
Micromicrofarad, abbreviation for, 84
conversion of, 53,54,55
Micromicro-ohms, 55
Microns, 55
Micro-ohms, 55
Microphone, symbols for, 93
Microvolts, 55
Microwatts, 56
Mile, nautical, 54, 176
statute, 53, 54, 176, 177
Miles per hour, 65
Milli-, 57-58
Milliampere, abbreviation for, 83 conversion of, 52, 55
Millifarads, 53

Millihenries, abbreviation for, 84
conversion of, 53, 55
Millimeter, abbreviation for, 84
conversion of, 55
Millimhos, 54
Milliohms, 55
Millivolts, abbreviation for, 84
conversion of, 55, 56
Milliwatts, abbreviation for, 84
conversion of, 56
Mils, 53, 54, 55, 176
Miniature lamps, 101-102
Minimum loss, attenuators, 128
Minutes, angular, 55
Mixer, power consumption of, 171
MSF, 59, 66
Modulated continuous wave, 84
Modulation, amplitude, 44-45, 72 frequency, 45-46
percentage of modulation, 45
index, 46
Molybdenum, characteristics of, 175
resistance of, 111
Morse code, 81
Motors, symbols for, 94
Movement, meter, determining resistance of, 39
Moving coil meter, 39
Multiplication, using binary numbers, 160
using logarithms, 165
using powers of $10,138,139$
using slide rule, 141, 142
Multiplier, voltage, DC meter, 39
Musical notes, frequency of, 74, 79
Mutual conductance, abbreviation for, 83
formula for, 114
Mutual inductance, 20
abbreviation for, 83
Mycalex, dielectric constant of, 51
Myria-, 57-58

N

Nano-, 57-58
Naperian logarithms, 82
Natural logarithms, 82
Nautical mile, 176
NBA. 59,66
Negative exponents, 145
Neodymium, 175
Neon, 175
Nepers, 55
Neptunium, 175
Neoprene, dielectric constant of, 51
Network, combining, 129
Newtons, 55
Nichrome, resistance of, 111
Nickel, characteristics of, 175
resistance of, 111
Niobium, 175
Nitrogen, 175
No connection, abbreviation for, 84
Nobelium, 175
Nomograph, Ohm's law, 12-13
parallel resistance, 15-17
parallel inductance, 20
relay rewinding, 107-108
resonant frequency, 22
series capacitance, 18
single-layer coils, 118-119
temperature conversion, 173
Normal atmospheres, 178
NOT gate, 93
Notes, musical, frequency of, 74, 79
Numbers, as powers of 10,137
atomic, 174
binary, 157-160
zero power of, 137
Nylon, dielectric constant of, 51

0

O-type attenuator, 133

Octagon, area of, 147
Ohms, 55
international, $5 \overline{5}$
law, AC circuits, 33-34
considering conductance, 24
DC, 11
nomograph, 12-13
per foot, 55
per meter, 55
symbol for, 83
Ohmmeter, series-type, 40
shunt-type, 39-40
OMA, 66
Operator license, commercial, 68-70
OR gate, 162
symbol for, 93
Osmium, 175
Ounce inches, 53
Ounces, 53, 55, 177, 178
Output resistance transistor circuits, 115
Outside diameter, 84
Oxygen, 175

P

Pad, attenuator, 128
Palladium, 175
Paper, dielectric constant of, 51
Paraffin, dielectric constant of, 51
Parallel circuit, current through, 13-14
Parallel circuit, impedance of, 25
Parallel-conductor line, characteristic impedance of, 44
Parallel resistance, nomograph for, 15-17
Parallelogram, area of, 147
Peak voltage or current, 34
Peak-to-peak, abbreviation for, 84
voltage or current, 34
Peck, 177
Pennyweight, 177
Pentagon, area of, 147
Pentagrid converter, symbol for, 91
Pentode tube, symbol for, 91
Percentage of modulation, 44-45
Permeability, symbol for, 82
Permeance, symbol for, 82
Permittivity, symbol for, 82
Phase angle, 29-33
AC circuit, 33-34
capacitive circuit, $29,30,31$
inductance and capacitance, 31, 32
inductive circuit, 29,31
resistance and capacitance, $30,31,32$
resistance and inductance, $30,31,32$
resistance inductance and capacitance, 30, 32
resistive circuit, 29, 30
Phase constant, 82
Phase difference, 83
Phono cartridges, 93
Phosphorus, 175
Phototube, 91
Pi-section filter, 118, 120-122, 125-127
Pi-type attenuator, 132
Pico-, 57-58
Picofarad, 55, 57
Picture carrier, TV channels, 75
Pints, 176
conversion of, 55
Plane trigonometry, 150
Plate resistance, AC, vacuum tube, 114
Platinum, characteristics of, 175
resistance of, 111
Plexiglass, dielectric constant of, 51
Plugs, 94
Plutonium, 175
P-N Diode, 92
Polyethylene, dielectric constant of, 51
Polonium, 175
Polystyrene, dielectric constant of, 51
Porcelain, dielectric constant of, 51
Potassium, 175
Potentiometer, 93

Pounds, 53, 65, 56, 177, 178
carbon oxidized, 55
of water, 55, 178
per in., 53
per cu, in., 53
per sq. ft., 53
per sq. in., 55
Poundals, 53, 55
Power, abbreviation for, 84
AC circuit, 33
consumption, electrical equipment, 171
DC, 11
factor, 35
abbreviation for, 84
in decibels, 46-50
radiated, AM, 45
ratio, 46-50
sideband, AM carrier, 45
three-phase, 116-117
tolerances, AM broadcast stations, 65
FM broadcast stations, 67
TV broadcast stations, 67
Industrial Radio Service, 67
Citizens Radio Service, 67-68
transformer, color code for, 87
Powers, of fractions, 145
of 2, 158
of $10,137-140$
product of, 145
quotient of, 145
raising to, 166
Praseodymium, 175
Prefixes, metric, 57-58
Pressure, metric equivalents, 178
Primary colors, 105-106
Promethium, 175
Propagation constants, 82
Propagation forecast, WWV and WWVH, 63-64
Protactinium, 175
Pulsed emissions, 73
Q

O-factor, 22
Q-signals, 80
Quadrants, 55
Quadratic equation, 146
Quarter, 177
Quarts, 55, 176, 177, 178
Quartz, dielectric constant of, 51

R

Radians, 53, 55
per second, 55
Radiated power, 45
Radio, power consumption of, 171
Radio Frequency, abbreviation for, 84
choke coil, 84
spectrum, 74, 78
Radium, 175
Radon, 175
Range, power consumption of, 171
Rankine temperature, 53, 172
Ratio, current, 46-50
impedance, transformer, 38
power, 46-50
voltage, 46-50
Reactance, 24-28
abbreviation for, 84
capacitive, 24
charts, 25, 26-28
definition of, 24
inductive, 26
Reactive circuit, power factor for, 35
power in, 34
Reciprocal, using powers of 10,139
using slide rule, 141
Rectangle, area of, 146
Rectangular solid, area of, 148
volume of, 148

Reference levels, 46-47
Refrigerator, power consumption of, 171
Regulation, voltage, 38
Relay, rewinding data, 107-108
symbol for, 94
Reluctance, 82
Reluctivity, 82
Resistance, abbreviation for, 84
-capacitance circuit, time constant of, 36
copper-wire, 112-113
external, gas-filled lamps, 102-104
-inductance circuit, time constant of, 36
measuring of, 39-40
metals and alloys, 111
parallel, 15
nomograph, 15-17
impedance of, 30
series, 14
impedance of, 29
Resistive circuit, phase angle of, 34
power factor of, 35
power in, 34
Resistivity, 82
Resistor, abbreviation for, 84
color codes, 88, 89
symbols for, 93
Resonance, formula for, 22
L-C circuit, 25
Resonant circuit, power factor for, 35 power in, 34
Resonant frequency, formula for, 22
Revolutions per minute, 84
Rewinding, relays, 107-108
Rhenium, 175
Rhodium, 175
Right triangle, solving for, 143
Ring, area of, 148
of circular cross section, surface area, 150
volume, 150
of rectangular cross section, volume of, 150
Rms voltage or current, 34
Roaster, power consumption of, 171
Rods, 55, 176
Root, cube, using slide rule, 143
extracting, using logarithms, 166
of fraction, 146
of product, 146
square, using slide rule, 142-143
using powers of 10,140
Root mean square, 84
Rpm, 55, 56
Rps, 56
Rubber, dielectric constant of, 51
Rubidium, 175
Ruby mica, dielectric constant of, 51
Ruthenium, 175

S

S scale, slide rule, 143-144
Samarium, 175
Saturation, color, definition of, 105
Scalar potential, 83
Scales, slide rule, 140
Scandium, 175
Scanning frequencies, TV, 74
Schematic symbols, 88, 91-94
Screw, machine, sizes of, 110
Screw heads, types of, 110-111
Scruple, 177
Secondary, 84
Seconds, abbreviations for, 84
conversion of, 55
Section, 176
Sector, area of, 148
Segment, area of, 148
chord of, 148
Selenium, 175
Semiconductor, symbols, 92
terms, abbreviations for, 84-87

Series circuit, impedance of, 29
voltage drops around, 13
Series m-derived filters, 125-126
70.7 -volt line, speaker connections, 109

Sewing machine, power consumption of, 171
Sheet-beam tube, 91
Shellac, dielectric constant of, 51
Short wave, 84
Shunt m-derived filters, 126-127
Shunts, ammeter, 40-41
Sideband power, AM carrier, 45
Signal standards, TV broadcasting.

$$
74,76-77
$$

Signals, Q, 80
Signals, "10," 81
Silicon, 175
-controlled rectifier, 92
Silicone, dielectric constant of, 51
Silver, characteristics of, 175 resistance of, 111
Sine scale, slide rule, 143
Single-layer coils, formulas for, 117
nomograph, 118-119
Sinusoidal voltage, 34
Slate, dielectric constant of, 51
Slide rule, operation of, 140-144
Sodium, 175
Solid angles, 83
Sound, speed of, 180
Sound carrier, TV channels, 75
Speakers, connection of, 108-109
symbol for, 93
Specific quantity, 82
Spectrum, color, 104
frequency, 74, 78
Speed, of falling objects, 179
of sound, 180
Sphere, area of, 149
volume of, 149
Square, area of, 146
Square centimeter, 52, 55, 177
Square foot, 52, 56, 176, 177
Square inch, 56, 177
Square kilometer, 56, 177
Square measure, 176
Square meter, 52, 56, 177
Square mile, 52, 56, 176
Square millimeter, 56
Square mils, 52, 56
Square rod, 176
Square root, using powers of 10,140
using slide rule, 142-143
Square yard, 56, 176, 177
Squaring, using powers of 10,140
Standard frequency signals, 59-66
Standard time signals, 59-66
Standards, television signal, 74, 76-77
Star connection, three phase power, 116
Stations, standard, 59-66
Statute mile, 176, 177
Steatite, dielectric constant of, 51
Stored energy, capacitor, 18 inductor, 21
Strontium, 175
Styrafoam, dielectric constant of, 51
Subtraction, using binary numbers, 159-160
using powers of 10,138
Sulfur, 176
Summation, sign of, 82
Super-high frequencies, 84
Surface charge density, 82
Susceptance, abbreviation for, 83
formula for, 23
Susceptibility, 82
Symbolic logic, $160-162$
Symbols, atomic elements, 174-176
computer, 93
Greek alphabet, 81-82
mathematical, 135-136
schematic, 88, 91-94
semiconductors, 92
vacuum tube, 91
Switches, 94

T

T scale, slide rule, 144
T-section filter, $118,120-122,125-127$
T-type attenuator, 129-130
Table, decibel, 47-50
Tangent scale, slide rule, 144
Tantalum, 176
Tap-drill sizes, 110
Taper pad, 130
Technetium, 176
Teflon, dielectric constant of, 51
Television; sce TV
Tellurium, 176
Temperature, abbreviation of, 84
conversion of, 172
systems of measurement, 172
Ten, powers of, 137-140
"10" signals, 81
Tera-, 57-58
Terbium, 176
Terms, transposition of, 144-145
Test pattern, interpretation of, 96-99
Tetrode tube, 91
Thallium, 176
Theorem, Einstein's, 180
Thorium, 176
Three-phase power formulas, 116-117
Thulium, 176
Time, 84
Time constants, 35-37
symbol for, 82
Time-phase displacement, 82
Time signals, standard, 59-66
Tin, 176
Titanium, 176
Toaster, power consumption of, 171
Tolerance
frequency, AM broadcast stations, 65
FM broadcast stations, 67
TV broadcast stations, 67
Industrial Radio Service, 67
Citizens Radio Service, 67-68
power, AM broadcast stations, 65
FM broadcast stations, 67
TV broadcast stations, 67
Industrial Radio Service, 67
Citizens Radio Service, 67-68
Ton, conversion of, 53, 56
metric, 178
U.S., 177, 178

Tonnes, 53, 56
Torus, surface area, 150
volume of, 150
Total inductance, 19-20
Township, 176
Transconductance, formula for, 114
Transducer, 93
Transformer, color codes, 87-88
coupling coefficient betwreen windings, 21
symbols for, 93
Transistors, symbols for, 92
Transistor formulas, 114-116
Transmission characteristics, bandpass filter, 122
band-rejection filter, 122-123
Transmission factor, 82
Transmitters, AM, 44-45 FM, 45-46
Transposition of terms, 144-145
Trapezoid, area of, 147
Trapezium, area of, 147
Triangle, area of, 146
right, solving for, 143
solving for, 150
Trigistor, 92
Trigonometric formulas, 151
Trigonometric functions, 150
on slide rule, 140, 143-144
table of, 151-157
Trigonometry, plane, 150
Triode tube, 91
Troy weight, 177
True power, 35

Tube, classes of operation, 99-101
vacuum, formulas for, 114
Tun, 176
Tuned radio frequency, 84
Tungsten, characteristics of, 176
resistance of, 111
Tunnel diode, 92
Turns ratio, transformer, 37-38
TV, color, light properties of, 104-107
TV broadcast stations, frequency and power tolerances, 67
TV Channel frequencies, 74-75
TV receivers, power consumption of, 171
TV signal standards, 74, 76-77
Twin lead, characteristic impedance of, 44
2, powers of, 158
Types of emission, 72-74

U

U-type attenuator, 133
Ultrahigh frequency, 84
Unit vector, 82
Uranium, 176

V

Vacuum cleaner, power consumption of, 171
Vacuum-tube, classes of operation, 99-101
symbols for, 91
formulas, 114
Vacuum-tube voltmeter, 84
Vanadium, 176
Varas, 56
Vaseline, dielectric constant of, 51
Velocity, of falling object, 179
Very high frequencies, 84
Vinylite, dielectric constant of, 51
Volt, 56, 84
-amperes, 35
Volt-ohm-milliampere, 84
Voltage, abbreviation for, 83
AC circuit, 33
across series capacitor, 19
average, 34
gain, in decibels, 46-50
multipliers, DC meters, 39
peak, 34
peak-to-peak, 34
ratio, 46-50
rms, 34
Voltmeter, 84
Volume, metric equivalents, 178
of cone, 149
of cube, 149
of cylinder, 149
of rectangular solid, 148
of ring of circular cross section, 150
of ring of rectangular cross section, 150
of sphere, 149
Volume charge density, 82
Volume measures, 176
Volume resistivity, 82
Volume unit, 46-47
abbreviation for, 84
VU, 47

W

Washer, power consumption of, 171
Water, dielectric constant of, 51 weight of, 179
Water heater, power consumption of, 171
Watts, 11, 35
abbreviation for, 84
conversion of, 56
Watt-hours, 24
abbreviation for, 84
conversion of, 53, 54
Watt seconds, 24
conversion of, 56
Wavelength, definition of, 41
formula for, 41

Wavelength-cont'd
-frequency conversion chart, 41-43 symbol for, 82
Webers, 56
Webers per sq. in., 53
Webers per sq. meter, 56
Weights, 177
apothecaries', 177
atomic, 174
avoirdupois, 177
metric equivalents, 178
troy, 177
Windings, transformer, 37
Winds, designations of, 178
Wire, resistance of, 111
Wire table, copper, 111-113
Wood, dielectric constant of, 51
Work, 24
abbreviation for, 84
WWV, 59-64
WWVB, 66
WWVH, 59-64
WWVL, 66

X
Xenon, 176

\mathbf{Y}

Y connection, three-phase power, 116
Yard, 53-56, 176, 177
Ytterbium, 176
Yttrium, 176

Z

Zener diode, 92
Zero, absolute, 172
Zero power, of number, 137
Zinc. 176
resistance of, 111
Zirconium, 176
ZLFS, 66
ZUO, 66

[^0]: * For a list of dielectric constants of materials, see § 27 .

[^1]: * For a list of dielectric constants of materials, see $\$ 27$.

[^2]: * For a list of dielectric constants of materials, see $\S 27$.

[^3]: Universal Time and Call Letters（Code）．
 IWDS Warning（Code）－WWV．（4．3 and 34．3 Minutes After Hour Only．）
 N North Pacific Propagation Forecast．（Approx． 9.4 and 39.4 Minutes After Hour Only．）
 IWDS Warning（Code）－WWVH．（Approx． 14.4 and 44.4 Minutes After Hour Only．）
 North Atlantic Propagation Forecast．（19．5 and 49．5 Minutes After Hour Only．）
 Call Letters and EST（Voice）－UT（Code）－EST（Voice）．

[^4]: $\mathbf{p}=$ Picture Carrier Freq.

[^5]: All frequencies in mc.

[^6]: * For Greek letters used as symbols (such as Ω, ω, and ψ), see the Greek alphabet in § 43.

[^7]: * Any number to the zero power is 1 .

[^8]: * The grain is the same in avoirdupois, troy, and apothecaries' weights.

