
111

1:44.'d• PHOTOFACT PUBLICATION • BAB-1

abc's of

Boolean.
Algebra

by ALLAN LYTEL

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

An introduction to the

fascinating world of the

symbolic logic used in

digital systems . . . the

basis of modern

automation, telephone

systems, electronic

computers, and process

control.

J. R. Polk

177 Post St. Rm. 206

abc's of
BOOLEAN ALGEBRA

by Allan Lytel

$1.95

Cat. No. BAB-1

HOWARD W. SAMS & CO., INC.

THE BOBBS-MERRILL COMPANY, INC.

Indianapolis • New York

FIRST EDITION

FIRST PRINTING —JULY, 1963
SECOND PRINTING — JUNE, 1964

ABC's OF BOOLEAN ALGEBRA

Copyright © 1963 by Howard W. Sams & Co., Inc., Indian-
apolis 6, Indiana. Printed in the United States of America.

Reproduction or use, without express permission, of editorial
or pictorial content, in any manner, is prohibited. No patent
liability is assumed with respect to the use of the information
contained herein.

Library of Congress Catalog Card Number: 63-20743

PREFACE

Boolean algebra is the algebra of /ogie, an abstract mathematical
structure appearing in three different forms—a switching algebra, a
propositional calculus, and an algebra of sets. Heady fare for a
beginner, yet, contrary to what many might think, you do not need
a mathematical background to understand and use Boolean algebra.
All you need is an orderly and inquiring mind. Boolean algebra is
the basis for all switching engineering, from which comes modern
electronic computers, automated process control, and telephone sys-
tems.
ABC's of Boolean Algebra explains the principles of symbolic

logic, logical statements, and electronic circuits used for logical
functions.

With simple block diagrams you are shown the relationship
between language and switches, the principles of logical design, and
examples of the application of these principles. You are shown how
to write logical expressions, how to expand and simplify them, and
how to use relays and switches in simple practical circuits.
The book shows block diagrams of AND, OR, NAND, and NOR

circuits, their symbols, and how to convert algebraic expressions
into practical switching circuits. The concept of numbering systems
is discussed to explain how logical circuit blocks can be combined
and used to make calculations.

For simple examples of switching circuits you will progress
through circuits increasing in complexity until finally the logical func-
tions of entire stages are discussed.

This book is for the engineer who desires to understand and design
circuits performing logical functions, the electronics technician who
is yet a neophyte in the logic of digital computers, the 'student, and
the interested layman. For these people the content forms a base not
only for more advanced study, but also for a deeper understanding of
the complex mechanisms that do much of the work in today's world.

June, 1963

ALLAN LYTEL

,'

CONTENTS

CHAPTER 1

BASIC LOGICAL CONCEPTS 7

Symbolic Logic—Fundamental Operations—Logical Connectives
Applications—Electronic Circuits

CHAPTER 2

LANGUAGES AND ELECTRONIC SWITCHES 16

Electronic Switches—Circuits and Equations

CHAPTER 3

LOGICAL CIRCUITS 28

Rules of Logical Design—Examples of Circuit Design

CHAPTER 4

CIRCUIT BLOCK DIAGRAMS 42

Basic Logic Function—Other Logical Blocks—Logical Levels—
Logical Operations—NOR/NAND Logic—Computing Circuits

CHAPTER 5

THE ALGEBRA OF SETS 65

Elements and Sets--Operations on Sets—Applications of Sets

CHAPTER 6

THE ALGEBRA OF SWITCHING CIRCUITS 73

The Rules of Algebra—Switching Algebra and Circuits—Circuit

Simplification by Algebra—Circuit Simplification by Charting—
Sequential or Timed Logic

CHAPTER 7

NUMBERS AND NUMBERING SYSTEMS 89

Binary Numbers—Binary Arithmetic—Coded Numbering Systems
—Using Numbers

CHAPTER 8

SWITCHING CIRCUITS 100

Non-series Parallel Circuits—Symmetric Functions—Relay Control

Circuits

INDEX 112

Chapter 1

Basic Logical Concepts
One of the most ironical aspects of mathematics is that some-

times many years elapse between the construction of a mathemati-
cal system and its application in engineering or science. For ex-
ample, complex numbers, sometimes called imaginary numbers,
were used in a mathematical sense for many years before their ap-
plication to alternating-current circuit theory.

Another example is mathematical or symbolic logic. This was a
fully developed and independent field of mathematics long before
its application to modern switching circuits and computers. Ap-
parently the famous German mathematician Gottfried Wilhelm von
Leibniz (1646-1716) was the first person to formulate a system of
mathematical logic. Other basic contributions to mathematical logic
were made by Augustus DeMorgan (1806-1871) and George Boole
(1815-1864). Indeed, one entire field is now called Boolean alge-
bra after Boole, whose major contribution was a monumental publi-
cation entitled An Investigation of the Laws of Thought on Which
Are Founded the Mathematical Theories of Logic and Probabilities.
When this was published in 1854, it was considered an abstract
mathematical novelty. It was first recognized as a fundamental con-
tribution to the field of mathematics by Whitehead and Russell in
their famous Principia Mathematica (1910-1913) . Another famous
work on this topic of logic is the classic Mathematical Logic, writ-
ten in 1928 by Hilbert and Ackermann.

Originally symbolic logic was designed as a technique of se-
mantics and construction in the use of language; it was designed to
provide an analytical and logical method of presenting ideas. For
this reason symbolic logic has long been taught in colleges and
universities as a language technique. The milestone in mathemati-
cal logic, indeed the turning point between the use of logic as an

7

abstract system and the beginning of its use in modem electronics, was
in 1938. Then Dr. Claude E. Shannon, who was later to join the
Bell Telephone Laboratories, published a paper entitled A Symbolic
Analysis of Relay and Switching Circuits. This paper, which first
appeared in the A1EE 'Transactions (Vol. 57, 1938), was an ab-
stract of Dr. Shannon's thesis presented at MIT for the degree of
Master of Science. Comprising only ten pages, this paper is the tap
root from which has come much of the modern work in symbolic
logic. Symbolic analysis supplies the basis for the logcial design used
in modern digital computers, switching systems, and industrial con-
trol systems.

Although much can be said about symbolic logic and its uses, it is
possible to make a brief and yet meaningful introduction to this
field in terms of its use in control systems. Suppose that there are
two switches connected in series to a source of electrical energy.
such as a battery. Label these two switches A and B. This may
be called an AND circuit since it is quite obvious that there will be
current flow only if A and B are both closed. This seems to be a
very trivial point, yet it is the very basis of symbolic logic as used
in electronic switching circuits. In logical arrangements an output
from the circuit is desired only if A is true (switch A closed), and
B is true (switch B closed). It is not enough that either switch
alone be closed; it is important that they both be closed at the same
time.

Another possibility to consider again uses two switches, but here
the switches are connected in parallel, and each is in series with
a source of energy. This can be called an OR circuit because there
will be current flow if A is closed or if B is closed. Thus, if it is
desired to have an output if either input is present, a parallel
arrangement, known as an OR circuit is used.

Although AND and OR circuits are obvious and quite simple,
amazingly complex systems can be built with them. Obviously we
could have any number of switches in series, such as A and B and C
and D and E. In this case there will be an output only if all the
switches are closed. In the other case, if the switches are all con-
nected in parallel, there will be a circuit output if any one of A or B
or C or D or E is closed.

Although this is quite simple and basic, almost immediately trou-
ble appears. Consider the OR circuit, for example; in the English

s language there are two meanings for the word or. We have a non-
exclusive or; by this we mean it is possible that either A is true or
B is true or that they are both true. As an example, it is possible
to say "You are going to wear a hat or a coat." Now though it is
quite clear from this sentence that you can wear a hat or you can
wear a coat, it is also quite possible that you can wear both. How-

8

ever, it is also possible to say "I am going to New York or I am
going to Chicago." Here is a very different meaning. I can go to
New York or I can go to Chicago, but quite obviously I cannot go
to both, at least not at the same time. The second meaning of the
word or then, is the exclusive one, meaning either statement A or
statement B is true but not both statements are true.

SYMBOLIC LOGIC

Symbolic logic is often considered to be identical with Boolean
algebra. We can see why this is called an algebra by comparing the
laws of Boolean algebra to those of common algebra. In order to do
this, there are three terms that must be defined. The first is the
logical connective; in logically arranged constructions certain state-
ments are related by these connectives. For example, one such con-
nective is and; it is possible to say "The book is green, and it has
two hundred pages." The first statement is "The book is green" and
the second statement is "it has two hundred pages;" the connective
"and" ties the two statements together. Another logical connective
is or; we say, for example, that it will either rain or snow. Again,
there are two possible states, one is rain, the other is snow, and
they are connected by the word or.

Just as in ordinary algebra, we use symbols in the vocabulary of
Boolean algebra. It is possible, for example, for A to represent the
statement that the book is green and B to represent the statement
that the book has two hundred pages, so that we can write in this
case A and B, which means the book is green, and it has two
hundred pages.
The third definition, that of a truth value, is more difficult to

formulate. Various types of logical statements and propositions writ-
ten in symbolic form can be tested for their truth value or corre-
spondence to reality. As an example it is sufficient to say here that a
truth value of 1 means that the statement is true and a truth value
of 0 means that the statement is false.

With these very rudimentary definitions it is possible to compare
algebra and symbolic logic (Table 1-1). Algebra has certain sym-
bols which can be used to represent variables that are either de-
pendent or independent, with numerical values that range over the
entire number system from plus infinity to minus infinity. The num-
bers that are used in algebra can be of various types such as real,
imaginary, complex, rational, irrational, integral, fractional, and
many others. Letter symbols are used in symbolic logic to represent
dependent and independent variables just as in algebra; but these
variables are statement variables and represent complete phrases of
a sentence. Their purpose is to reduce a statement from its content,

9

Table 1-1. Comparison of Algebra and Symbolic Logic.

Fundamental operations of Algebra. Fundamental operations of symbolic
Addition (+) logic.

Conjunction (symbol o)

a + b = c abc
1 1 2
1 2 3
2 2 4
5 4 9

etc. in infinite variety.

Subtraction (—)

a — b = c ab c
2 1 1
3 1 2
1 3 —2
9 4 5

etc. in infinite variety.

a • b = c
a and b = c
c is true only
when 'a' and 'b' are
both true
simultaneously.
True = 1,
False = 0
no other possibilities exist.

abc
0 0 0
0 1 0
1 0 0
1 1 1

disjunction (symbol +)

b = c
a or b = c
c is true whenever
either 'a' or 'b' are
true.
T = 1,
F =

negation
a =
'a' is true if 'b' is
false; 'a' is false
if 'b is true; 'a'
is the negation of 'b'

a
0 1
1 0

l a b c
1 000
0 1 1
1 0 1
1 1 1

expressed in words, to its form, expressed in symbols. Once a chain
of reasoning is reduced to its purely formal outline, the validity of
any conclusion may be determined by the truth or falsity of the com-
ponent statements and the truth or falsity of the connectives between
the statements. Since a statement variable can have only one of two
values, true or false, and since any statement connectives can only
be either true or false, they may be considered binary, or two-valued.
The system considered in its entirely can be regarded as a binary
system. Thus it is possible to represent these variables as a series
of pairs; for example, one pair is 1 and 0, another pair is true and
false, another pair is pulse and no pulse, another pair is plus volt-
age and minus voltage. In every case we are dealing with binary
numbers in which the variable can assume one of two possible
values.

FUNDAMENTAL OPERATIONS

Referring again to Table 1-1, if A is 0 and B is 0, then C is O.
If A is 0 and B is 1, C is still O. If A is 1 and B is 0, C remains 0,
but if A is 1 and B is I. then C is equal to I. Thus for conjunction

10

A AND B equals C is true if and only A and B are simultaneously
true. This is written as A • B = C.

Disjunction, which has the symbol +, is the equivalent of the
word or, so that we can say A or B equals C. As shown in the truth
table, C is 1 (C is true) if A is 1 (true) or if B is 1 (true) or if
both A and B are 1 (true).
The third fundamental operation is negation; very simply, it is

stated that A is true if B is false, A is false if B is true. Therefore
A is the negation of B as shown in the truth table.

There are other types of logical operations which are useful to the
logician. But these may always be derived from the three above.
These three are easily utilized by electronics; consequently, digital
logic for switching circuits is generally concerned only with the op-
erations of conjunction, disjunction, and negation.

The Binary Variable

The binary variable assumes two and only two values. It corre-
sponds directly to the "bit" of information theory. The term bit
means the binary digit. The two values of a binary variable are
commonly represented as true, false; one, zero; plus voltage, minus
voltage; pulse, absence of pulse; open relay contact, closed relay
contacts; etc. A finite number of binary variables when taken to-
gether must yield a finite number of possible combinations. Thus if
a variable is represented by the position of a toggle switch, two
switches (representing two variables) can result in only four pos-
sible combinations, as shown in Table 1-2. Three switches would

Table 1-2. Combination of Two Binary Variables.

A B

1 1 1, ON
0 1 0 = OFF
1 0
0 0

give eight possible combinations, four would give sixteen. The num-
ber of possible combinations can be seen to be 2,''' where N is the
number of switches or binary variables.

Consider the three binary variables represented by the three
switches, A, B, and C. There are eight possible configurations of
ON and OFF that could be set up on A, B, and C. These are shown
in Table 1-3. Some arbitrary action could be predicated solely on
the occurrence of any one of the eight possible combinations of A,
B, and C. The predicated action could also be based on the occur-
rence of more than one combination; that is, it could be initiated

11

Table 1-3. Combination of Three Binary Variables.

Combination A B C

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

by either combination 1 or combination 5; or by any of combi-
nations 3 or 4 or 7; or any combination except 8; etc. These com-
binations of combinations represent functions. There are a finite
number of possible functions of N variables. The reader should
satisfy himself that in general the number of combinations is 2s
where N is the number of variables, and that the number of func-
tions is 22s.

There could be any of eight occurrences in a scheme where each
unique action corresponds to a single combination as 010, 110, or
001. Note that there are N variables, hence 2N combinations. Since:

N = 3
then 2s = 8

Also, the number of possible functions or combinations of com-
binations is given by:

N = 22N

where N is the number of possible functions.
For N = 3, we have:

N = 2'
N = 256 possible functions

LOGICAL CONNECTIVES APPLICATIONS

The rules of binary arithmetic provide for a complete system of
numbers that may be used for counting and computation. There are
several advantages to this two-valued system, as compared to sys-
tems having other numbering bases. The rules are direct and simple;
for example, there are no tables for multiplication. For use in com-
puters, binary numbers have the advantage of requiring only two
states of the counters (vacuum tubes or transistors). The 1 and 0
of the binary system may be used to represent the ON and OFF
states, respectively.

12

The manipulation of numbers can be treated by the use of logical
connectives; i.e., OR or AND. As mentioned earlier, in the terms
of logic, or has two meanings. If A is one event and B is another
event, then A or B can mean either one event A, or, if not A, then
the event B. But this is not the only meaning of the word or. If
event A occurs, and at the same time event B occurs, this satisfies
the condition either A or B. Hence the two meanings: either A or
B but not both, and either A or B or both. Thus if A and B are both
statements, we can form several compound statements.
A AND B = C
We say that C is true if (and only if) A is true and B is true.

C is false if A is false, if B is false, or if both are false.
A OR B = C

We say that C is true if A is true or if B is true or (in this case) if
both are true. Note that for the OR connective only one statement
must be true; for the AND connective all statements must be true.

Since nearly all storage devices and circuit techniques that are
used for digital systems are binary in nature, the simplicity of arith-
metic operations in the binary system provides theoretical advantages
and circuit simplifications that surpass those of other numbering
systems. The two-state nature of binary switching devices permits
the use of conventional logic; the names of the states are purely
arbitrary; for the present discussion the two states will be denoted "1"
and "0". State 1 is defined as the transmission of information, and
state 0 as the absence of transmission. Thus a conventional switch
with a pair of normally open and a pair of normally closed contacts,

called A and A respectively, would be described by:

A = 1 A = 0 when operated,
and by:

A =_ 0 A = 1 when not operated.

Negation (A) has been introduced in these expressions to define
a not on condition (symbolized by the use of the bar). If two
switches are such that one is in the transmitting state while the
other is not transmitting, each device is said to be the negation of
the other. A permanently closed circuit is, therefore, the negation
of a permanently open circuit:

-1- = 0 and Ô = 1
Since a double negation is equivalent to an assertion, it follows

that:

A=A

Table 1-4 shows the basic Boolean relations; these will be ex-
amined later and are given here for reference.

13

Table 1-4. Basic Logic Rules.

1 + 0 = 1

1 + 1 = 1
1 • 1 = 1
1 • 0 = 0
0 • 0 = 0

DeMORGAN'S THEOREM
(X • y) = i;
X +Y =i•"7-

ABSORPTION PROPERTY

X • (X + Y) =
X+X•Y = X

X + 0=X
X + 1 = 1

X • 0 = 0

X • 1 = X

X + = 1

X + X -= X
X • X = X

X • «5(-= 0

USEFUL IDENTITIES
X + i(• Y = as Y
X • (X + Y) = X • Y

(X + Y) • (X + Z) • (X +
(X + 4E21 z)

X•Y+5(•Z-1-Y•Z=X•Y-1--)i•Z

The algebraic notation for the operations is: AND is repre-
sented by the dot; i.e., A AND B is written A • B; OR is represented
by the plus; i.e., A OR B is written A+ B; NOT is represented by the

bar; i.e., NOT A is written A.
The axioms of Boolean algebra are similar to those of conven-

tional algebra:

X+Y= Y+Xj
X • Y — y •)0 Commutative Laws

X + (Y + Z) = (X + Y) + Z
X • (Y • Z) = Z • ()(• y) ÇAssociative Laws
X • (Y + 5) = (X • Y) + (X • Z) j

s X +LY • Z = (X + Y) • (X + Z) Distributive Laws

The relationship between the. OR and the AND may be seen
from the equation known as DeMorgan's Theorem. This theorem
states basically: (the negative of the sum of two classes is equal
to the product of their negatives, and the negative of their product
equals the sum of their negatives. In other words,) to negate an ex-
pression such as (A + B), negate each variable and change each
AND to OR, each OR to AND.

Thus: if we take (A +B) and negate it, we get (A + B). This

equals A •

Also: A • B negated may be written as: (A • B) = (A +

ELECTRONIC CIRCUITS

Electronic circuits may be readily designed to meet the Boolean
input and output conditions. The three basic blocks are AND, OR,
and NOT, as in Fig. 1-1. In these circuits the state of transmission
of information (I state) is defined by a particular voltage level and
the state of nontransmission (0 state) as a second level. Typically,
a ground condition represents the 1 state, and a negative voltage

14

represents the O state. AND or OR circuits often are diode gates;

their application requires the use of emitter-followers or other buf-

fering devices to provide the necessary driving impedances.

A • B A+ B

Fig. 1-1. Basic building blocks.

A useful feature of logic circuits is variation by inversion. As

DeMorgan's law implies, inversion, or negation, is also applied to

operations. As a result, the negative, or inverse, of AND is equiva-

lent to OR. Therefore the circuit that produces an AND for the

logic convention specified before will produce an OR for inverse

logic. A common variation is the use of NOT AND and NOT OR

(NAND and NOR) circuit. These variations provide a powerful

design tool.

15

Chapter 2

Language and Electronic
Switches

Symbolic logic may be defined as the manipulation by means of
symbols of various statements, where a statement is a written or a
verbal assertion. An assertion is considered as a simple statement
of declaration such as, "I will take a walk," or "I will read a book,"
or "I will go outside." It is also possible to combine two or more as-
sertions in a sentence such as, "I will read a book if the library is
open," or "I will go outside if it is not raining," or "I will go to
sleep if it is after twelve o'clock." The differences here between
the simple declaration and the complex declaration are simply this:
a simple assertion is a simple statement although combinations of
two or more simple statements form a compound statement. Note
that simple statements tied together by connectives make compound
statements. This section of the book is concerned with such state-
ments, both simple and compound, as well as their logical order,
sequence use, and meaning. These statements are given values such
as true or false; the symbolism will be T for true and F for false.

Consider as an example the assertion "I will go outside." In the
context of this chapter, if you go out after making such a state-
ment, the statement is true. If you do not go out after making such
a statement, the statement is false. To make the manipulation more
direct and less cumbersome we will use letters such as A, B, C or
D to stand for individual simple statements. Thus these letters are
variables, and in the context of this chapter the variables can assume
only one of two values; they can be either true or false.

In order to use statements in their compound form it is neces-
sary to provide links or connectives. A list of these connectives is
given in Table 2-1.

16

Table 2-1. Symbols of the Propositional Logic.

SYMBOL NAME MEANS

A Conjunction A and B

V Disjunction (inclusive) Either A or B
or both

v Disjunction (exclusive) Either A or B
but not both

I Noncon¡unction Not both A and B
_

Negation Not A

-- Equivalence A if, and only if B ..,—
(biconditional)

The first thing to remember about logical connectives is that the
truth value of any connective is defined by the truth values of the
propositions it connects. For example, the truth value of and may be
defined by the truth table of the conjunctive proposition A•B as
shown in Table 2-2. In the first case, if A is true and B is true, the
compound statement A AND B must be true. However, if, as in the
second step, A is true and B is false, the conjunction of A AND B
must necessarily be false. In the third example, if A is false and B
is true their conjunction in this case must also be false. In the fourth

Table 2-2. Truth Table of AAB.

a b aAb

1 T T T

2 T F F

3 F r F

4 F F F

case, where A is false and B is false, the conjunction of A AND B
must also be false. In summary, when we have two simple state-
ments connected by the conjunction, the compound statement A
AND B is true if, and only if, A is true and B is true. There are no
other possibilities; the table exhausts all the possible truth values of
the propositions.

The second connective is the OR, which is the disjunction of A
and B. If we have two simple statements A and B, the compound
statement A OR B is true when either of the two individual simple
statements is true. For example, if A is true, then A OR B is true; if
B is true, then A OR B is true. However, if A is false and B is false,
then the compound statement A OR B must necessarily be false.
There is a problem with the case shown in Table 2-3 where A is

17

Table 2-3. Truth Table of AVB.

aVb

1 T T T

2 T F r
3 F T T

4 F F F

true and B is true. The question is simply this: does the statement
A OR B mean either A OR B, or does it mean either A OR B or both?
If we consider that it means the latter, then A OR B is true if A is
true and if B is true. In technical terms this truth table reflects the
inclusive disjunction of A and B.

In order to differentiate between the two possible meanings of the
word OR, it is necessary to define the exclusive disjunction of A
and B as meaning either A or B but not both. A truth table for this
is shown in Table 2-4. By definition the only two cases that are true

Table 2-4. Truth Table of AB.

a aVb

1

2

3

4

T r F

T F T

F r T

F F F

are the second and third shown in the truth table; in case 2, A is
true and B is false; in case 3, A is false and B is true. Both of these
compound statements are then true. In the fourth case, if both A
and B are false, the compound statement is false. In the first case, by
definition, if both are true, the compound statement is false since the
exclusive disjunction of A and B is necessarily false if both are true.

Another basic connective is negation, which means simply that
NOT A is the negation of A, and NOT B is the negation of B. This
means of course that if A is true, the negation of A is false. If A
is false, the negation of A is true. Although the fundamental idea
of negation seems simple it is very significant for compound state-
ments. For example, Table 2-5 shows the statement A OR NOT B.
In the truth table shown there are again four possible cases. Con-
sider the first, where A is true and B is true. Since B is true its
negation is false, and the statement becomes the equivalent of a
compound statement that is true OR false; hence the statement is
true. In the second case, when A is true and B is false, the negation
of B is of course true; hence the statement becomes a compound

18

Table 2-5. Truth Table of AV — B.

Consider a V—b (a or not b)

o b a V—b

T T T V F is T

2 T F T V T is T

3 F T F V T is T

4 F F F V F is F

statement that is true OR true, which of course is true. In the third
case, A is false and B is true; the negation of B is then false so
that this compound statement is false. In the last case, A is false
and B is false; the negation of B is then true so that the compound
statement is false OR true, which is true. This is an example of
the inclusive disjunction of A OR NOT B.
A more complex compound statement (Table 2-6) is NOT [(A

AND B) OR (A AND NOT B)]. For statements like this in the prep-
aration of the truth table, it is a simplification to have several tabu-
lar entries. For example, the first two columns represent all possible
cases for A and for B. The third column represents the truth value
of A AND B; the fifth column represents the truth value of the sec-
ond parenthetical expression which is (A AND NOT B). (The fourth
column is included merely to enable the reader to derive the fifth
and sixth columns.) The sixth column represents the entire state-
ment (except for the initial negation) which is [(A AND B) OR (A

Table 2-6. Truth Table of Compound Statement.

[(aAb) V (aA I)))

not ((a and b) or (a and not b)) = C
not (a and b) and not (a and not b) = C

(not a or not b) or (not a or b) = C

a b (a A b) (a V b) (a A —13) (aAb) V (0A— b) C

1 2 3 4 5 6

T T T T F T F

2 T F F T T T F

3 F T F T F F T

4 F F F F F F T

19

AND NOT B)]. The last column, written as C for convenience, rep-
resents the entire compound statement. It gives the truth value of
the entire statement.

Consider the first case where A is true and B is true. Here obvi-
ously A AND B is a true statement, though A AND NOT B is a false
statement. Hence, the disjunction in the sixth column, which is the
disjunction of a true statement and a false statement, is true. The
entire compound statement in brackets is negated, hence C is false.
In the same manner with the second example, where A is true and
B is false, it follows that A AND B is false, though A AND NOT B is
true, so that [(A AND B) OR (A AND NOT B)] is true, but again the
entire statement is negated; hence, C is false. In the third case, where
A is false and B is true, A AND B is false, and it follows that (A
AND NOT B) is false, so that [(A AND B) OR (A AND NOT B)] is
also false; the final negation makes the entire statement true. In the
last case, where A is false and B is false, (A AND B) is false; (A
AND NOT B) is false; [(A AND B) OR (A AND NOT B)] is false, and
the negation makes statement C true.

Truth tables of this type require careful thought. Another ex-
ample is shown in Table 2-7, which NOT [(A OR B) AND (NOT A

Table 2-7. Truth Table of C , NOT [(A OR B) AND
(NOT A AND B)].

—[(avb) A (— aAb)1

(a V b) a b (— a A b) [(a V b) A (— a A b)) C

1 T T T F F T

2 T F T F F T

3 F T T T r F

4 F F F F F T

AND B)] is represented by C. In the first line, where A is true and
B is true, it follows that A OR B is true, and (NOT A AND B) is false;
thus [(A OR B) AND (NOT A AND B)] is false, so that the negation
makes statement C true. In the second case, where A is true and B is
false, A OR B is true, though (NOT A AND B) is false, so that the state-
ment [(A OR B) AND (NOT A AND B)] is false; hence C is true.
In the third case, where A is false and B is true, (A OR B) is true;
(NOT A AND B) is true, and [(A OR B) AND (NOT A AND B)] is
true. Therefore C is false. In the fourth case, where A is false and B
is false, (A OR B) is false, (NoT A AND B) is false. Therefore [(A
OR B) AND (NOT A AND B)] is false, and so C is true.

There are two additional connectives (Table 2-8) which are re-

20

Table 2-8. Conditional Connectives.

CONDITIONAL BICONDITIONAL

m

if A then B A if, and only if, B

quired. The first of these is the conditional "IF A THEN B,' while
the second is the biconditional A IF, AND ONLY IF, B. As shown in
the first case (conditional connective) in Table 2-9, A is true, and
B is true. From this it follows that IF A THEN B must be true. We
can also see that in the second case where A is true and B is false,
the expression is false for the statement IF A THEN B. The reason
why the first case is true and the second false lies in the definition
of implication.

Table 2-9. Truth Table of A D B.

A z B, if A then B

A B A m B

1 T T T

2 T F F

3 F T T

4 F F T

However, there is a problem where A is false and B is true as in
case 3, or if both are false as in case 4. In case 2 the statement is
false, since a true proposition cannot imply a false one. In cases 3
and 4, the statement is true, since a false proposition implies any
proposition, true or false.

Remember, the truth value of the connective is completely de-
termined by the truth values of the propositions it connects. Indeed,
it is only in the truth table that a definition for implication is found.
There is no necessary relationship between the logical proposition
A • B and the real world, although our intuition may tell us other-
wise. The realization of this fact is an essential step in the under-
standing of symbolic logic.

The biconditional connective is shown in the truth table in Table
2-10. This is "A if, and only if, B." By definition this compound
statement is true only under the circumstances of case 1 or 4, where
A and B have the same truth value. In case 1, A is true and B is
true; in case 4, A is false and B is false. In both these cases the com-
pound statement is true. When A and B differ as in cases 2 and 3,
the compound statement is false. In 2, where A is true and B is false,
the biconditional statement is false. In 3, where A is false and B is
true, the biconditional statement is false.

21

Table 2-10. Truth Table of A.7--'13.

A .=.' B

A if, and only if, B

A B A -, B

1

2

3

4

T T T

T F F

F T F

F F r

ELECTRONIC SWITCHES

A truth table is a list of all possible values for the independent
variables in a logical proposition. These values can also be shown in
terms of their electronic implementation. For example, consider Fig.
2-1; a simple OR arrangement. Again we define 1 as representing

A=0

B=0

A=0
8 = I

A=1

B= I

A= I
8=0

o
S--

_ 0

0

C=A+B

A B C
0 0 0

0 I I

I I I

I 0 I

Fig 2-1. OR circuit using switches.

a closed switch, 0 as an open switch, and OR as the logical connec-
tive in the proposition A + B. In its circuit implementation we can
consider this proposition as representing two switches in parallel. The
circuit illustrations and the accompanying truth table indicate all the
possible combinations for this logical proposition as well as its elec-
tronic analogy.

If both switches are open, which is represented in the truth table
for A equals 0 and B equals 0, then there will be no current flow in

22

the circuit. This is represented by the case in which C equals 0 in
the truth table. If A is open and B is closed, then there will be cur-
rent flow in the circuit; this is represented by the second case in the
truth table, where A equals 0, B equals 1, and C equals 1. The third
circuit, since A is closed and B is open, this will result in current
flow, so once again C equals 1. In the fourth case, where A is closed
(A=1) and B is closed (B=1), current will flow, and C is equal
to I. Thus we can see that current will flow (C=1) when switch
A is closed (A=1) OR switch B is closed OR when both switches
are closed (A -I- B=1).

A B

A= 0 -----e",, •-.'o— B = 0 C= A • B

A= l GO O- B=I

A = 1 o o ce."0 B = 0

A=0 .•',— 8 = 1
Fig. 2-2. AND circuit using switches.

A B C
0 0
I
0

I I
I 0
0 I

0
0

Fig. 2-2 shows the AND circuit. In terms of electronics this can be
two switches in series. Once again these two switches are A and B,
and the logical statement is "C is equal to A AND B" (C=A • B).
Again there are four simple circuits and a truth table. As in the
previous example, A=0 represents an open switch A, and A=1 a
closed switch. When switch A is open (A=0) and switch B is open
(B=0), no current will flow and C, an open circuit, equals O. When
switch A and switch B are closed (A=1 and B=1), current will
flow, and C=1. However, when either of the switches is open (either
A=0 or B=0), the circuit is not complete, and C=0. Therefore we
can see that in this electronic analog of A • B, both A and B must
be closed (A=1, B=1) to obtain a complete circuit (C=1).

CIRCUITS AND EQUATIONS

We shall now consider a relationship among three different forms
of logic. These are the logical equation, the Venn diagram, and the
electronic circuit. Fig. 2-3, for example, shows a logical equation
where C is a function of both A and B.

The first equation is C = A. In the Venn diagram the darker area
represents A. Implementation of this circuit is a simple straight wire
since everything that happens to A also happens to C. The second

equation is C = À (C is equal to NOT A). In the Venn diagram
everything but the area within the circle A is darkened to represent

23

LOGICAL
EQUATION

C = f(A,B)

VENN
DIAGRAM

C = f(A,B)

ELECTRONIC
CIRCUIT

C=f (A, B)

C = A
A C
o o

C = A

C=B B C
o o

C=I

Fig. 2-3. Three different forms of logic.

NOT A. The electronic implementation of "C equals NOT A" requires
an inverter so that A will always be the negation of C. In terms of
the binary variables, if A is 1, NOT A is 0, hence C is O. If A is 0,
NOT A is 1, so that C is 1. The third equation, C = B, is similar to
C = A, while the fourth, C = B (C is equal to NOT B), is similar

to the equation C = A.
Fig. 2-4 shows a group of equations using the logical connective

AND. The first one is C = A • B (C is equal to A AND B). In the
Venn diagram the area which is in common to both A and B is
the darkened area in which the two circles A and B overlap. This is
the only area in the universe C which is common to both A and B.
The electronic circuit for this condition would be the very simple
AND gate in which the two input A AND B must both be present
simultaneously in order to get an output at C.

The second logical equation is C = A • TII (C is equal to A AND
NOT B). Note in the Venn diagram that the entire circle A is in-
cluded except that portion of A which overlaps the circle B. The
logical block diagram or electronic implementation is the same AND

24

LOGICAL
EQUATION

C= f(A,B)

VENN
DIAGRAM

C=f(A,B)

ELECTRONIC
CIRCUIT

C=f(A,B)

C = A • B
A a_i

C= A • à
A

)

o
C

C =i • B
B°) C

C

I= inverter
Fig. 2-4. Three forms of logic using AND.

gate as above except that B is inverted. The inputs to the AND gate
are A AND B, but since B is inverted the output C is equal to A
AND NOT B.

The third equation is C =_ A • B (C is equal to NOT A AND B).
Note in the Venn diagram the area described in the equation is the
circle B less that part of B which overlaps the circle A. In the elec-
tronic implementation or block diagram, A is inverted to produce
the input NOT A, and B is applied directly to the AND gate to de-
velop NOT A AND B.

In the fourth case, the Venn diagram shows that universe C is
the entire rectangle except for the circles including the areas A and
B, and the area in which they overlap. This circuit is implemented
electronically by inverting A and inverting B and putting both of

them through the gate to produce NOT A AND NOT B (A •
In a similar manner, various types of OR circuits are shown in Fig.

2-5. The implementation for this logical equation is through various
forms of the OR gate. In the first case C = A + B (C is equal to A

25

LOGICAL
EQUATION

C=f(A,B)

VENN
DIAGRAM

C= f(A,B)

ELECTRONIC
CIRCUIT

C= f(A,B)

C=A+B
)

C=À+B

C= A+6

C =À +—B

B'

Fig. 2-5. Three forms of logic using OR.

OR B), the Venn diagram for this shows quite clearly that this is the

same as the inverse of C = A • ià (C is equal to NOT A AND NOT B).
The electronic block diagram for this is a simple OR circuit with A
and B as the inputs.
The second logical equation is C = À + B (C is equal to NOT

A OR B). As shown in the Venn diagram this is the inverse of
C = A • i3 (C is equal to A AND NOT B). Implementation is ob-
tained by inverting A input.
To obtain C = A + (C is equal to A OR NOT B) we invert

the B input. As shown in the Venn diagram this is the inverse of
C = A • B (C is equal to NOT A AND B).

The last logical equation shows C = À + I (C is equal to NOT
A OR NOT B). This can be obtained electronically by inverting both
A and B inputs into the OR gate. This is the inverse of C = A • B
(C is equal to A AND B).

Fig. 2-6 shows some other possible logical arrangements. The
first equation is [(A AND NOT B) OR (NOT A AND B)]. As shown in
the Venn diagram this includes the areas of circle A and circle B

26

LOGICAL
EQUATION

C =1(A,B)

VENN
DIAGRAM
C = f(A,B)

ELECTRONIC
CIRCUIT

C=1(A,B)

C= (A•i)+

(À•13)

C=(A•B)-1-

(i•il)

A• à

C = 0

c =1 _Eel 11--0 C

Fig. 2-6. Three forms of logic using connectives.

but not the area which is common to both. This is implemented in

the block diagram by having one AND circuit to produce A AND B

(A AND NOT B), another AND circuit to produce À • B (NoT A AND
B), and an OR gate to produce the final results of [(A AND NOT B)
OR (NOT A AND B)].

The second equation is [(C is equal to A AND B) OR (NoT A
AND NOT B)]. In the Venn diagram this includes the universe C
less the area A and less the area B but including the area which is
in common to both. This is implemented electronically by using two
AND gates, the first produces A AND B, the second produces NOT A
AND NOT B, while these are both used as input into an OR gate whose
output is [(A AND B) OR (NOT A AND NOT B)].
The third case is C = 0 (C is equal to 0) which means that the

universe is empty, or the universe C has no occupants. The last case
is C = 1 (C is equal to 1) shows that the universe contains all pos-
sible occupants.

27

Chapter 3

Logical Circuits
Ordinary switches provide a simple implementation for basic

logical circuits.

RULES OF LOGICAL DESIGN

In order to apply the logical concepts to circuits, some symbolism
is necessary. This symbolism is as follows:

Relay and
Symbol Logic Contact Meaning

1 True Closed The statement is true,
the circuit is closed.

O False Open The statement is false,
the circuit is open.

• Series A and B A is in series with B.
Parallel A or B A is in parallel with B.

Before any circuit analysis can be made, some of the more funda-
mental relations should be established. A set of contacts is denoted
by a letter such as A, B, or C. In some cases, to express an un-
known, the letters may be X, Y, or Z. If 0 means open, and 1 means
closed, the following relations apply:

O + O = 0 An open in parallel with an open is open.
O + 1 = 1 An open in parallel with a closed is closed.
1 + 1 = 1 A closed in parallel with a closed is closed.

And in the same manner for series:

0 • 0 = 0 An open in series with an open is open.
0 • 1 = 0 An open in series with a closed is open.
1 • 1 = 1 A closed in series with a closed is closed.

28

Since contacts are either open or closed, only two symbols are
necessary to denote the states of the contacts. We use 1 for closed
contacts and 0 for open contacts. Suppose two contacts are in
series, as in Fig. 3-1, where X denotes the state of the first and Y
the state of the second. The possible combinations are:

Fig. 3-1. X AND Y network.
-----0 X 0 0 y 0____

X Y Network
X • Y

O 0 0
O 1 0
1 0 0
1 1 1

Contacts in parallel are shown in Fig. 3-2. The possible combina-
tions in this arrangement are:

Fig. 3-2. X OR Y network.
 0X0

 cO(o

X Y Network
X + Y

O 0 0
O 1 1
1 0 1
1 1 1

To prove 1 + X = 1, we set X = 0, getting 1 + 0 = 1;
setting X :--- -- 1, we have 1 + 1 = I. Since these equations are
valid, the rule is proved. As in Fig. 3-3:

o

x

x

 i
 X

Fig. 3-3. Implementation of 0+ X and X+ X with switches.

0 + X = X

X + X = X

29

In addition to these rules, a representation of normally closed
contacts as well as those normally open is required. If X denotes

the normally open contacts of a relay, then Y.(will denote normally
closed contacts. We may substitute 0 is a value of X, and 1 as a value
of X. From this, as in Fig. 3-4:

o
 er°

For DeMorgan's laws,

Fig. 3-4. Implementation of binary variable.

f =. 0

(X + Y) = X • Y,

there are two values for each of the two variables, and there are
four possible combinations of them. If X .-.=. 1, Y = 0, then

(X + Y) = (1 + 0) = —1 = 0

and

K• ir = 1 • 0 = 0 • 1 = 0

Y X Y

Z

X • (Y+Z) = X•Y +X•Z
Fig. 3-5. Implementation of distributive law—first case.

Hence, for X = 1 and Y -= 0, we have (X • Y) = X + Y. The
three remaining cases are proved just as easily.

The two distributive laws are represented in Figs. 3-5 and 3-6.
They are:

30

X
- E

X + (Y•Z) = (X+Y) • (X+ Z)

Fig. 3-6. Implementation of distributive law—second case.

X

Z

X•(Y + Z) =X•Y + X•Z
X + (Y • Z) = (X + Y) • (X + Z)

We also need the associative and commutative laws:

X+Y=Y+X
X•Y=Y•X
X + (Y + Z) = (X + Y) + Z
X • (Y • Z) = (X • Y) • Z

Fig. 3-7. Implementation of X•IX-1-11.

X
—0 X

Y

X•(X+Y)= X

Consider Fig. 3-7, where the circuit is represented by X • (X +
Y). If X is closed (X = 1), the circuit is closed; if X is open
(X = 0), the circuit is open. Both of these statements are also
true for either value of Y. A truth table is:

X Y Network
X • (X + Y)

1 0 1
0 1 0
1 1 1
0 0

Thus, only if X = 1 is the network closed, and X • (X + Y)
X. This may be extended to the network

X • (X + Y + Z) • (X + Y) • (Y + Z)

 X

X Y

X•(X+Y+Z)•(X+Y)•(Z+Y)

(A) Original circuit.

 yi

Y

(8) Simplified circuit.

X • (Y + Z)

Fig. 3-8. Implementation of commutative principles.

 o

31

as in Fig. 3-8A. Since X • (X + Y + Z) reduces to X, and X •
(X + Y) reduces to X, then

X • (X + Y + Z) • (X + Y) • (Y + Z)

becomes X • (Y + Z) as shown in Fig. 3-8B.

X

X+Y•(X+Z)•(Y+W)•Z = X+(X•Y+Y•Z)*(Y•Z+W•Z)

Fig. 3-9. Application of principles to circuits.

The utility of even these few relationships may be seen in Fig.
3-9, where the relay circuit is drawn and is expressed by

X + Y • (X + Z) • (Y + W) • Z

Then the circuit may be evaluated for a given set of conditions. If
W = 0, X _= 0, Y = 1, and Z .=_ 1, these values may be substituted
directly in the expression

X + Y • (X + Z) • (Y + W) • Z

However, we may rewrite this expression as

X + (X • Y + Y • Z) • (Y • Z + W • Z)

Substituting in this expression the given values, we have:

0 + (0 • 1 + 1 • 1) • (1 • 1 + 0 • 1)=
0 + (0 + 1) • (1 + ()).=
0 + (1) • (1) = 0+1 = 1

Thus, with these conditions there is a complete path, i.e., the ex-
pression represents a closed circuit. A summary of these relation-
ships is given below:

1 = closed
0 = open

32

• = series = AND
± = parallel = OR

1 + 1 = 1 X+Y=Y+X
1 + 0 = 0 + 1 = 1 X•Y=Y•X

0 + 0 = 0
0 • 0 = 0

1 • 0 = 0 • 1 = 0
1 • 1 = 1

X + (Y + Z) = (X + Y) + Z
X • (Y • Z) = (X • Y) • Z

X•(X+Z) + X•Y+X•Z
X + Y • Z + (X + Y) • (X + Z)

X + 5-C = 1
X • Y.(= 0

0 + X = X

X— = X

X y

cs‘o o> I L I
o o.

o y Y 1 o
(A) Switch circuit.

(B) Block diagram.

Fig. 3-10. Circuit synthesis.

EXAMPLES OF CIRCUIT DESIGN

As an example of a circuit synthesis, in Fig. 3-10A there are two
switches, X and Y, arranged so that they control load L in such a
manner as to turn the load either on or off. The load is the light;
it is controlled by two wall switches. There are only four possibilities:

Case L X Y

a. 1 1 1
b. 0 1 0
C. 0 0 1
d. 1 0 0

Since there is an output (light) for case b and for case c, as well
as no output for case a and case d, it is possible to write:

L = X • Y

L = X • Y

The first equation says, in effect, that the load is energized when
NOT X (X open) is in the circuit with Y. Since a parallel connec-
tion is impossible, the switches must be in series, so L = X • Y.

Thus, if L = X • Y, or if L = X • Y, the load is energized. Since
the load is energized in case of either expression, the combination
of both can only be an OR circuit.
Thus we have:

33

L = X•Y+X•Y.

Switches X and Y each have two positions, and there are two pos-

sible paths for L to be connected; X • Y is one, and the other is

X • Observe that if • is used, or if X • Y, the load is not
connected. Fig. 3-10B is an equivalent block diagram of the switch
circuit.

Making the simplification of circuits is easy. Fig. 3-11A shows a
circuit for which the expression is:

—0 X 0--0 Y 0—To

(A) Complex circuit.

(B) Simplified circuit. o X 0—o y o—o To---

Fly. 3-11. Circuit simplification.

X • Y • (X+Z) • (Y + X • Z + W) • T

But this can be rewritten as

X • (X+Z) • Y • (Y + X • Z + W) • T

And since X • (X + Z) = X, and Y • (Y + X • Z + W) = Y,
the equivalent expression is X • Y • T, for which the circuit is
shown in Fig. 3-11B.
Compare the equivalent circuits in Figs. 3-11A and B. It is

clear that X, Y, or T individually can break, or open, the cir-
cuit. But it is necessary that all three be closed for the circuit to
be complete. Neither Z nor W have any effect on the circuit, since
they are not in B. This is true for any series contacts. But notice
that Z and W are in parallel with other switches. For example, the
Z • X portion of the circuit is in parallel with the Y switch. Since,
in another part of the circuit, X is in series and is not in parallel
with other switches, X must be closed (X=1) for a complete circuit.
And if X = 0, the value of Z does not affect the complete path;
whether it is closed (Z = 1) or open (Z = 0), there is current
flow through X = 1 in parallel.

This analysis provides a circuit equivalence that appears unusual
at first. Fig. 3-12 illustrates three circuits and their equivalents. The
state of X determines the state of the circuit in Fig. 3-12A, since
X + X • Y = X. The expression for the circuit in Fig. 3-12B is:

(X+Y)•(X+Z) = X•k+X•Z-1- 5-C•Y +Y•Z

34

o X 0- 0 Yo

oio— oZo

— E7:0-07D—

(A) Circuit equals X.

x 0—ro 0 0 0-0 x 0-0 Y o

yo 1 o Zo = o—o Z

(B) Circuit equals X • Y -1-T.• z -F Y • Z.

X 0-0 Y 0-0 Z

y 0-0 z
(c) Circuit equalsX•Y -l- i•Z-I-Y•Z.

Fig. 3-12. Examples of equivalent logical circuits.

O
But X • X = al' thus the expression reduces to:

X•Y-I-X•Z+Y•Z

From Fig. 3-12C, we see that:

X•Y+X•Z = X•Y+X• Z

Multiple-Contact Switching

Relay switching is similar to computer switching. Industrial con-
trols have used switching relays for years, but the development of
digital computers led to a deeper analysis of relay switching. The
circuits discussed here are all used in industrial control, but they
are closely related to those in computer switching. Even now relay
contacts are usually drawn for switching circuits.

Fig. 3-13 shows a simple group of circuits, but from these many
others may be devised. A and B are in series; both must be closed
to complete the circuit, but each can open the circuit. In computer
logic this is an AND circuit; current flows only if A and B are both

Rg. 3-13. Simple switch circuits.

35

closed. In machine controls A could be the main power switch and
B the operator's foot-switch. When the contacts C and D are in
parallel as shown, closing either C or D (this is an OR circuit) per-
mits current flow. Here both may be closed, and the circuit still
works; but one alone is not enough to open the complete circuit.
Both must be open.

1 IX Yi 2 1 cr) X yl 2
_ren

(A) Completed circuit-7 • Y. (B) Open circuit-7 • Y.

10,1X YL2 1 Ix YL.,02
p ri c'ep `7T

(C) Completed circuit—X • Y. (D) Open circuit—X • Y.

Fig. 3-14. A relay AND circuit.

In Fig. 3-14 there are two relays shown. In Fig. 3-14A, 1 and 2
complete the circuit. Fig. 3-14B shows 1 breaking the circuit. Note
that 1 can turn the complete circuit either on or off (Fig. 3-14A
or B). Fig. 3-14C shows the next "on" position, and Fig. 3-14D
shows the other "off" position. This is also given below where U
means up, and D means down.

X Y Circuit

(A) D D closed
(B) UD open
(C) U U closed
(D) D U open

From this it is clear that both switches must be in the same position
for a complete circuit. If up is used for X and Y and down for X

and Y, the circuit is closed for Fig. 3-14A which is X • Y and closed

for X • Y, but open for 5 (- • Y and X • Y.
It is only a slight extension to the Christmas tree relay circuit in

Fig. 3-15. Here there are eight inputs; they are controlled so that
one (and only one) at a time is available at the output. Three re-
lays (A, B. and C) control the seven sets of relay contacts; the out-
put is switched by energizing the proper combination of relays.

If, as illustrated, all relays are open, and each contact is in the
upper position, the input is at D. RY-C is a relay that moves each C
contact down when it is energized. If RY-C is energized, and if
RY-A and RY-B are open, the only input is at E. For any given
input there is a unique combination of the positions of the relays.

36

a 1

OUT oe o
a 2

b 1

 ro
b 2

leb03 C5 aeoc6 H

 0— K
à I _C7 L

64"r-j rvi

RY-A RY-B

RY-A RY-B RY-C
D

r E
r F
I r G

r H
/ r K
r r L
V' r r M

r= ENERGIZED

Hg. 3-15. A "Christmas tree" relay circuit.

,

IN

For input M, all three relays must be energized. For input K, only
relays RY-A and RY-C are energized. In Fig. 3-15 there are three
relays for eight inputs. The relationship between the number of re-
lays and the number of inputs is:

No. of Relays Inputs Possible

1 2
2 4
3 8
4 16
5 32
6 64
7 128

37

CASES CD E F A B
C 1 1 ON ON
b 2 1 OFF ON
a 3 1 OFF OFF

1 2 OFF OFF
1 3 OFF ON

2 2 ON ON
h 2 3 OFF OFF

d 3 2 OFF ON
e 3 3 ON ON

Fig. 3-1 6. Relay switching circuit.

From this table the formula is 2N = C, where N is the number of
relays, and C is the number of inputs. One use of this type of switch-
ing occurs when a number of readings are presented on a single re-
mote indicator, and the reading that is available depends on how the
control relays are energized.

Adding positions to each relay increases the possibilities for more
complex switching. In Fig. 3-16 there are two sets of ganged step-
ping-relay contacts, C-D and E-F. The power source is represented
by G, and the two loads are A and B. Here the problem is to con-

38

trol the loads by both relays so that load B, loads A and B, or
neither load is connected to the source. There are nine possibilities,
as shown below the circuit. These are listed as cases a, b, c, d, e, f,
g, h, and k. A list of the steps of the system's operation follows.

1. Starting with case a, both A and B are not energized; they are
open. Using only relay CD, (EF is fixed at 1), first B is closed
(b) then both A and B are closed (c). Note that this is by the
rotation of CD from 3 to 2 to 1.

2. Starting with case a, both A and B are open. With CD now
fixed in position 3, rotation of EF only will go through ex-
actly the same sequence (1, 2, 3), so that the three choices are
both A and B, B alone, or neither.

Table 3-1. Possible Circuit Combinations Shown in Fig. 3-16.

CD EF A

1
a
b
c

3
I 2 I
1

1
1
1

0
0
1

0
1
1

2
a
d
e

3
3
3

1
1 2 i
3

0
0
1

0
1
1

3
C
f
g

1
1
1

£1
2 3 i

1
0
0

1
0
1

4
h
k
b

2
2
2

3

2 l I
1

0
1
0

..

0
1
1

5
f
k
d

1
1 21
3

2
2
2

0
1
0

0
1
1

6
g
h
e

1
I 32 1

3
3
3

0
0
1

1
0
1

Note: 0 = open
1 = closed

I/ indicates rotation as 1, 2, 3 or 3, 2, 1

39

3. Starting with f, both A and B are open. CD is fixed at 1. EF
changes to c, which is both A and B closed, or g, which is B
closed and A open.

4, 5, and 6 in Table 3-1 show the other possibilities. In 4, CD is
fixed; in 5 and 6, EF is fixed.

Sequence switching with simple relays is indicated in Fig. 3-17.
There is a DC power source, a push-button P, and four relays A,
B, C, and D. Here it is required that the operating sequence shall
be as listed:

(A) No relays energized.

1

(C) Relays A and B energized.

Fig. 3-17. Seq

40

d2

(B) Relay A energized.

(D) Relays A, 8, and C energized.

(E) Relays A, 11, C, and D energized.

NOTE:

± NO JUNCTION
T JUNCTION

d2

witching with simple relays.

d2

d2

Steps Relays On

1 none
2 A
3 A, B
4 A, B, C
5 A, B, C, D

The operating sequence is as follows:

1. P is open, no relay energized. (Fig. 3-17A)
2. P is closed. A is energized, closing al, and completes a path

B, but B is shorted out and does not energize (Fig. 3-17B).
3. P is opened. The short across B is removed; A and B are both

energized, and they are in series; bl is in the upper position
(Fig. 3-17C).

4. P is closed. C is energized through d 1 lower and bl upper.
Both A and B are also energized (Fig. 3-17D). Also cl is
closed, but D is shorted out by the path that energized C.

5. P is opened. The short across D is removed, C and D remain
in series and are both energized, d 1 is in the upper position.
A, B, and C are also energized (Fig. 3-17E). When D is
energized, however, it also opens d2 which restores the circuit
to the original condition.

We can record the results as follows:

Step Element

P A BCD
1 00000
2 1 1 0 0 0
3 0 1 1 0 0
4 1 1 1 1 0
5 0 1 1 1 1

where 0 represents an open element, and 1 represents a closed ele-
ment.

41

Chapter 4

Circuit Block Diagrams
Electronic circuit blocks employ the various logical connectives;

the basic connectives are AND and OR.

INPUT

AB

OUTPUT

F

L L L
L H H
HL H
H H H

42

INPUT
AB

OUTPUT
F

L L L
(A) L H L
AND

HL L
3 H H H

(A) AND circuits.

(B) OR circuits.

Fig. 4-1. Basic logic circuits.

L - LOW
H • HIGH

BASIC LOGIC FUNCTION

Consider two neon lamps; each lamp fires (conducts) when the
voltage across it is high enough. Where H is high or more positive,
and L is low or less positive, the AND (Fig. 4-1A) output will be
high if, and only if, both inputs are high. Under these conditions
neither tube will fire, so the output will also be high as shown.

The OR circuit (Fig. 4-1B) also has two lamps. If either point 1
or point 2 is high, the lamp with the high input will fire, producing
a high output; thus, this is an OR function. Note the output is high
if 1 is high, or 2 is high, or if both are high. Gas tubes such as these
are seldom used, but they do demonstrate the principle.

Logical symbols, regardless of the type of circuit, and regardless
of whether transistors, diodes, or gas tubes are used, reflect the logi-
cal meaning of the circuit. These are shown in Fig. 4-2; Fig. 4-2A

A

) B

A

)
B

(A) AND.

(B) OR.

A AND B (AB)

A OR B (A+B)

A-0 A

Fig. 4-2 Logical symbols.

is A AND B, Fig. 4-2B is A OR B; Fig. 4-2C is the inverter produc-

ing A from A. These may be combined for other logical functions
as shown in Fig. 4-3 where the negation of the OR is NOT (A OR B)

A
B)

(A • B)

A • B A
B)

(C) Inversion.

(A) NOT AND. (B) NOT OR.

Fig. 4-3. Negation of logical functions.

A+B

and the negated AND produces A • B. Two of the most significant
logical functions are the NAND (NOT AND) and NOR (NOT OR).

Consider the three-input NOT AND shown in Fig. 4-4A; the output
is low only if all inputs are high. Actually there are two ORS; Fig. 4-

43

A
B
C > F

(A) AND—negated.

INPUT

ABC

LLL
LLH
LHL
L H H
HLL
HLH
HHL
HHH

INPUT

A C) ABC
) F B ILL

LLH
LHL
LHH
HLL
HLH
HHL
H HH

(B) Inclusive OR—negated.

INPUT

A 8

F L L
L H

A
B

HL
H H

(C) Exclusive OR—negated.

Flg. 4-4. Logical negation.

OUTPUT

F

H
H
H
H
H
H
H
L

OUTPUT

F

H
L
L
L
L
L
L
L

OUTPUT

F

H
L
L
H

4B shows the inclusive OR (negated), where the output is low if any
one of the inputs is high. Fig. 4-4C shows the exclusive oR, where
the output is low ,0 onlyene inputs high. if -aione

Fig. 4-5 shows eight combinations relating the AND and OR func-

tions. In Fig. 4-5A. for example, A • B = X is the same as À A- B

= X, which is an expression of DeMorgan's theorem.

OTHER LOGICAL BLOCKS

Other circuit blocks are available for building logical systems;
some of these are described in this section.

The flip-flop shown in Fig. 4-6A is a device that stores a single
bit of information. It has three possible inputs, set (S), reset (C),
and trigger (T), and two possible outputs, 1 and O. Reset is some-
times called clear.
The two outputs are normally of opposite polarity. A 1 is stored

in the flip-flop when the 1 output level is active, and the 0 output

44

nU(X
A
N
D
 nnUÇ

Fi
g.

4-

5.

C
o
m
b
i
n
a
t
i
o
n
s
 o
f
A
N
D
 a
n
d
 O
R

fu

nc
ti

on
s.

1
T
FF (OR)

Ill
SIC

FF
0

(A) Flip-flops.

I

(OR)

[
Ill

SS SS

RG(4))(
10 010 0

in !Ill

(B) Binary register.

Fig. 4-6. Logical blocks.

level is inactive. A 0 is stored in the flip-flop when this condition is
reversed. The flip-flop assumes the 1 state when an active signal ap-
pears at the S input, regardless of the original state. It assumes the
0 state when an active signal appears at the "C" input, regardless
of the original state. It reverses its state when an active signal ap-
pears at the T input. There are several possible variations to normal
flip-flop operations, depending on the response of the device when
active inputs are simultaneously applied. The S input is near the 1
output; the C input is near the 0 output.

The binary register symbol (Fig. 4-6B) represents a group of flip-
flops used in parallel to constitute a single register (such as would
be used to store four bits of a character). It is necessary to indicate
the number of bits or individual flip-flops in the register. Examples
show four S inputs grouped on one multiple input line, and four pairs

RI GHT
SHIFT
INPUT

SERIAL
INPUT

46

PARALLEL INPUT

PARALLEL OUTPUT

LEFT RIGHT
SHIFT SHIFT
INPUT INPUT

SERIAL SER IAL
OUTPUT (OR) INPUT

PARALLEL INPUT

PARALLEL OUTPUT

Fig. 4-7. Shift register symbol.

LEFT
SHIFT
INPUT

SERIAL
OUTPUT

of 1 and 0 grouped output lines. In some applications, individual
input and output lines are shown as in the right hand figure.

The shift-register symbol (Fig. 4-7) represents a binary register
with provision for displacing or shifting the content of the register
one stage at a time; it is shifted to the right or left by means of the
shift input. The words "right shift input" are usually placed at a left
corner of the symbol to indicate a shift from left to right. If the shift
is from right to left, the words "left shift input" are placed at a right
corner of the symbol.

SS

-15 u SECL

ONE OUTPUT

(OR)

SS

SEC 1-C-I

TWO OUTPUT

Fig. 4-8. Single-shot symbol.

Fig. 4-8 shows the symbol representing single-shot (SS) functions.
Output signal shape, amplitude, duration, and polarity are deter-
mined by the circuit characteristics of the SS, (not by the input
signal) and may be shown inside or outside the symbol. The quiescent
state of the SS is either zero or one. When actuated, it changes to
the opposite state and remains in that state for a specified time de-
pendent on the design of the device.

ST

J. SECL
(OR)

ST

.5uSEC
O

Fig. 4-9. Schmitt trigger symbol.

TWO OUTPUT

Fig. 4-9 represents the Schmitt Trigger (ST) function. This de-
vice is actuated when the input signal exceeds a threshold voltage.
Output signal amplitude and polarity are determined by the circuit
characteristics of the ST (not by the input signal). Stylized wave-
forms may be shown (inside or outside the symbol), indicating
amplitude, polarity, threshold voltage and duration. The quiescent

Jii>1

Fig. 4-10. Amplifier symbols.

47

state of the ST is either 0 or 1. When actuated, it changes to the
opposite state and remains in that state as long as the input exceeds
the threshold value.

Fig. 4-10 shows a linear or nonlinear current or voltage amplifier.
This amplifier may have one or more stages and can produce either
gain or inversion. Level changers and inverters, pulse amplifiers,
emitter followers, cathode followers, relay and lamp drivers, and
shift register drivers are devices represented by this symbol.

1.5MS

(OR)

Fig. 4-11. Time delay symbol.

A time delay is shown in Fig. 4-11. The duration of the delay
is included with the symbol. If the delay device is tapped, the delay
time with respect to the input is included adjacent to the tap output.
Twin vertical lines indicate the input side.

LOGICAL LEVELS

The AND and OR functions are duals: a single arrangement of cir-
cuits may perform both the AND function and the OR function. This
functional quality is employed in numerous single-device and multi-
device systems. We may consider the AND function as an element
whose output is active when all its inputs are active. Any nonactive
AND input produces a nonactive output. The OR function is con-
sidered an element whose output is active when any one or more
inputs are active. When all OR inputs are nonactive, the circuit pro-
duces a nonactive output.
To identify the activity of a device selected to implement the logic,

the state condition of active inputs and the resultant active outputs
are identified by active state signal indicators (small circles) at the
inputs or outputs of logic functions (AND OR). These graphic repre-
sentations as well as the English notations illustrate the relationship of
specific functions. A small circle at the inputs indicates that the rel-
atively low (L) input signal activates the function. Conversely, the
absence of a small circle indicates that the relatively high (H) in-
put signal activates the function. A small circle at the symbol out-
put side indicates that the output of the activated function is relatively
low. Absence of a small circle at the symbol output indicates that
the output of the activated function is relatively high.

48

Table 4-1. Activity States for Output F (A, Bl .

(Electrical Truth)
Device Activity States

Table A

Input Output

A

+2volts

▪ 2volts

—3volts

—3volts

▪ 2volts
—3volts

▪ 2volts

—3volts

2volte

—3volts

—3volts

—3volts

Activity Combinations
Table C

AND Function Activity States
Table B

Input Output

A

o
o

o

o

o
o
o

OR Function Activity States
Table D

Input Output Input Output

A e
H
H

H

H

H o

The presence of an indicated active output does not necessarily
provide a useful input to other elements. It may prevent the oper-
ation of some elements and enable others. Conversely, the absence
of an output may provide a useful input to some elements in the
logical net and prevent the operations of other elements.

Activating inputs, or an activated output of a function, may be:

1. Logical 1 in either the high state (H) or the low state (L).
2. A logical 0 either high or low.
.3. A mixture of both 1 or 0 either high or low.

Consider a device whose active output (F) is a function of two
signals (A, B). The output and both input levels are capable of as-
suming only the arbitrarily chosen values, +2 volts (H) and — 3
volts (L). The circuit behaves according to Device Activity State
Table A of Table 4-1. Substitution of the abbreviation H for the
+ 2 volt levels and L for the — 3 volt levels results in Activity Com-
binations Table C (Table 4-1).
When the +2 volt level is considered the activating level and is

assigned the logic value 1, and the — 3 volt level is considered the
inactive level and is given the logic value 0, then substitution of
these logic state values for the Table A active voltage levels results in
AND Function Activity States (Internal) Table B (Table 4-1). The
device is now said to perform the AND function. Consider the same
device behaving according to Table A. Substitution of the abbrevia-
tion H for the + 2 volt levels and L for the — 3 volt levels in De-

49

vice Activity States Table A results in Activity Combinations Table
C (Table 4-1). When the — 3 volt level is the activating level and
assigned the logic value 1 and the +2 volt level is considered the
inactive level and has the logic value 0, then substitution of these
logic state values for Table A active voltage levels results in OR
Function Activity States (Internal) Table D (Table 4-1). The de-
vice is now said to perform the OR function.

Consider a different device whose active output (F) is a function
of two signals (B, C). The output and both input levels are capable
of assuming only the arbitrarily chosen values + 2 volts (H) and — 3
volts (L). The circuit behaves according to Device Activity States
Table A of Table 4-2.

Table 4-2. Activity States for Output = F (B, C).

) F
CB—I

(Electrical Truth)
Device Activity States

Table A
Input Output

B C F
—3volts —3volts +2volts
—3volts +2volts —3volts
4- 2volts —3volts —3volts
+2volts +2volts —3volts

AND Function Activ'ty States
Table C

Input Output
B c F
1 1 1
1 o o
o i o
o o o

F

Activity Combinations
Table B

Input Output
B C F
L L H
L H L
H L L
H H L

OR Function Activity States
Table D

Input Output
B c F
0 0 0
0 1 1
1 0 1
1 1 1

Substitution of mnemonic abbreviation H for +2 volt levels and
L for — 3 volt levels in Device Activity States Table A results in
Activity Combinations Table B (Table 4-2).

Inputs (B, C) — 3 volt levels are the activating input levels and are
assigned the logic value 1; the + 2 volt output level (F) is considered
the activated output and is also assigned the logic value 1; inactive
input levels +2 volt and the inactive — 3 volt output level are
assigned the logic value O. Substitution of these logic state assign-
ments for Table A circuit voltage levels results in AND Function Ac-
tivity States Table C. The device is now said to perform the AND

50

s

t

t

logic function defined by Table C and the AND inverting operation
defined by Table A and combinations Table B. The device is sym-
bolized by combining the AND function symbol with input level in-
dicators (less positive than F).

Substitution of abbreviations H for + 2 volt levels and L for —3
volt levels results in Activity Combinations Table B where H is high
and L is low. Inputs (B, C) + 2 volt levels are considered the ac-
tivating input levels and are assigned the logic value 1, and the — 3
volt output level (F) is considered the activated output and is also
assigned the logic value 1; inactive input level —3 volt and the in-
active +2 volt output level are assigned to the logic value O. Sub-
stitution of these logic state assignments for Table A circuit voltage
levels results in OR Function Activity States Table D (Table 4-2).
The device is now said to perform the OR logic function as in Table
D and the OR inverting input operation as defined by Table A and
combinations Table B. The device is symbolized by combining the OR
function symbol with an output level indicator (less positive than
B, C).

Electrical state English notations are added to signal line inputs
and outputs for identification when that line is either logical 1 or 0
in a logic network of operations. For example, if line P (H) is placed
at the input to logic elements, notation (H) indicates that line P
signal is high, that is, a logical 1, when it exists. If upon inspection,
line input P (H) is low, then it is in the logical 0 state. This non-
active logical 0 low state output can activate a device input in the
logic network. Table 4-3 illustrates this concept.
As in Fig. 4-12 a given line signal P (H) can be active or in-

active depending on the point under discussion. When P (H) is

B(H)
P(H)

T(L)

Table 4-3. Electrical State Notations.

Activity Device States
State + 2 volts —3 volts

P (H) 1 0
B (H) 1 0
T (L) 0 1

X (L) X = (B + PXL)

B (H) or P (H) or both 8 (H) and P (H)

Y = (P • T) (H)

Y(H) P (L) and T (L) = P and T (H)

Fig. 4-12. logical network.

51

high, as noted, it is in the logical 1 state and will produce output X
but will inhibit output Y. Conversely, when P does not exist as a
high, it is in the logical 0 state for the o R function and produces AND
output Y if line T is low.
A given signal must be considered and, when necessary, notated

in terms of three independently variable parameters for every point
in the logic network. These parameters are:

1. Logical State; presence (1) or absence (0).
2. Electrical State; high or low.
3. Activity State; Signal Line condition, noted by graphic repre-

sentation (presence or absence of small circles) or English
notations (line named high or low).

LOGICAL OPERATIONS

Involved operations are possible with these blocks; a simplifica-
tion of operations is possible. The following block diagram ar-
rangements may be rearranged by the use of the logical relation-

D
Fig. 4-13. AND and OR combination.

A+À•B=A+B

ships. These rearrangements are not obvious from the original. In
each case, the more simple and direct equation will serve the same
function as the original from which it is derived.

A
B

A
C

B
C

52

Af

_
B•

Fig. 4-14. Logical operation circuit.

A B+A•C+ B•C =

(A•C+B-C)

To show that A + A • B is the same as A + B, as in Fig. 4-13:

A+ À•B = A • (B + 713) + • B, since B + T13 = 1
= A•B+A•713+Â•B
= A•B+A•B+À•B-1- -À•B
= A • (B + B) + B • (A + A)
= A + B

Another example is illustrated in Fig. 4-14. We want to show:

A•B+A•C

+ B • é = AC + BE
Now,A•B+A•C

+ B • C = A•B(C+é) +A•C+B•C
= A•B•C+A•B•C+

A•C+B• -é-
= A • C • (B + 1) + B • E • (A + 1)
= A•C+B•é

The Boolean expression A•B + C = D
may be expressed symbolically as follows:

A
BP
C

AG)
) OR) ID

(A) A • B C = D.

The Boolean expression A•B•C + D•E + F•G = H
may be expressed symbolically as follows:

AG

El

FI

GI

AG) 00—tH

AG)

(B)A•B•C-i-D•E-i-F•G=H.

Fig. 4-15. Logical circuit arrangements.

53

AG

AG)—

AG

AG)

A•(B+C)+D•E+F.G.F1•1=K

) OR)

Fig. 4-16. Circuit implementing complex expression.

Combinations of AND gates and OR gates are shown in Fig. 4-15,
Fig. 4-15A is A • B + C= D; Fig. 4-15B is A•B•C+D•E
+ F • G H.

Fig. 4-16 shows A • (B + C) + D•E + F•G•H•I = K.
This requires three two-legged AND gates and one four-legged AND
gate and one four-legged OR gate.

As another example, the relationship (A + B) + (A • C + B)
can be reduced by Boolean algebra. This expression can be simpli-
fied to:

(A + B) + (A • C + B) = (A + A • C) + (B + B)
= (A + A • C) + B
= A + B

Therefore, a simple oR gate can be used.
Diagrams can be developed directly from expressions as (NOT X OR

Y) AND (X OR NOT Y). To draw the block diagram for (k.- + Y) •

(X + Y), each expression is first set up. The two expressions are
then combined as shown in Fig. 4-17. We may also change relation-

54

X

i+Y

X-07

Y

Fig. 4-17. How diagrams are developed from expressions.

A

 DÀ-d-FÈ

A
ABC B

C j

Fig. 4-18. Implementation of De Morgan's Theorems.

(A-U-U)

ships from AND to OR. The change from AND to OR (and from OR to

AND), from (A • B • C) to A + + as in Fig. 4-18, may be
made by the use of DeMorgan's Theorems.

NOR/NAND LOGIC

For implementing binary algebra, two logic assignments, NOR and
NAND, are possible. In one system, NOR, a logical 1 is represented
by the presence of a voltage and a logical 0 is represented by no
voltage. The NAND system results if the assignments are reversed.

Binary 0 Binary 1

NOR Low voltage High voltage
NAND High voltage Low voltage

A gate can be used as either a NOR or NAND gate, depending upon
the logic system selected. The transfer functions of the gates are:

NOR A, B, . . X A ... X or A + B + + X

NAND A, B, X -À Y(or AB ... X

Fig. 4-19 shows the duals F = (A + B) • (C + D) and G =
A • B + C • D.

Consider using the two equations shown below:

F = (A+B)•(C+D) = A•C+B•C+
A•D+B•D

G = A•B+C•D -= (A +C)•(B+C)•
(A + D) • (B + D)

As in Fig. 4-20 it can be seen that the two logic systems are duals
with the NOR logic favoring maxterm type equations and the NAND
logic favoring minterm type equations. Employing a particular
equation with its favored type of logic ordinarily results in the best
system with respect to economy and speed. It is sometimes possible
to reduce the number of gates connected in series, hence increasing

55

Fig. 4-19. NOR/NAND logical circuits.

F = (A+ B).(C+D)

o
Bo

NAND

Co
b 0

G. A•B+C•D

NAND

56

(A+B)

(C+D)

(A.é) g•rik(C.D)

)(E•5) (À•11)+(C.D)=M+B).(C+D)

(À41)

(C-FUI) (À4-31).(E-1-II

A•B+C•D

(A.B)

(C-D) (A.B)+(C-D)

F4A+B).(C+ D)= A•C+B•C+A•D +B•D

A

C

B
C

NAND:

A

D

B
D

A

C

Fr- A•B + C•D= (A + C)•(B + C)• (A + D) • (B + D)

B
C

NOR:

A

D

B
D

F

G

Fig. 4-20. NOR/NAND duality.

57

F -(A13)•(FO)
=(AB)+(CO)

F r-(A+ B) -1-(C+D)
=(A + En • (c+D)

Fig. 4-21. Combinations of NAND and NOR logic.

speed at the expense of using extra networks. In the previous ex-
ample, the two equations may be transformed to achieve this pur-
pose. Any equation may be readily reduced to its simplest tninterm
form, but it is often difficult to expand an equation that is in min-
term form into a maxterm type equation that is reduced to the
optimum form for implementation. For this reason, NAND logic is
usually preferred.

Combinations of NOR and NAND logic are shown in Fig. 4-21. Fig.
4-22 is a summary of logic symbols.

All basic logic symbols drawn without small inversion circles at
the input or output are considered to operate as positive logic ele-
ments. Positive logic is designated as the most positive relative DC
level that is equivalent to high state, true, or binary 1. Therefore,
the most negative relative DC level is equivalent to low state, false,
or binary O.

COMPUTING CIRCUITS

Computing circuitry generally requires various forms of arithmetic
operations. These operations are usually performed with fundamen-
tal devices called either half-adders or half-subtracters, grouped in
appropriate combinations.
The addition of two binary numbers generates a sum bit, either

0 or 1 depending on the addition result, and a carry bit identical to
the carry in normal or decimal addition. A full-adder, composed of
two half-adders, is required to accommodate a full sum and carry
operation for each binary bit. Fig. 4-23 illustrates a circuit and the
associated truth table for the generation of the half-addition of two

58

AMPLIFIER
NO INVERSION

AMPLIFIER WITH
NVERSION AT
OUTPUT

AMPLIFIER WITH
INVERSION AT INPUT

BLOCKING
OSCILLATOR

PNP EMITTER
FOLLOWER

2

AG) c'

AND GATE

PASSIVE DELAY

COMPLEMENTARY
EMITTER FOLLOWER

NPN EMITTER
FOLLOWER

EX

EXCWSIVE OR

 2

HALF SUBTRACTOR

z
e
è

FLIP-FLOP

FLIP- FLOP

FL I P -FLOP

IN

LD

LAMP DRIVER

NAND

NAND GATE

SUM

CARRY

DIFFERENCE

BORROW

SERIAL
INPUT

SHIFT REGISTER

Fig. 4-22. Logical symbols.

S NGLE-SHOT
MULTI VI BR ATOR

2 t
è

OR GATE

SCHMITT TRIGGER

PULSE DRIVER

PARITY SWITCH

RELAY DRIVER

REGISTER

SERIAL
OUTPUT

59

ÀB•AB- S

ABC

AB
SUM
S

CARRY
C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

THUS: S • + AI
C • AB

Fig. 4-23. Half-adder circuit.

binary bits. All logic functions generated are shown on the diagram
with the algebraic reduction for the completed equations of the sum
and carry bits.

Fig. 4-24 shows the circuitry and truth table for the half-sub-
traction of two binary bits. The equations for the difference and
borrow are similar to those for the sum and carry in a half-adder.
Specifically, the sum and difference equations are identical. Only
the carry and borrow equations differ. Thus, the major portions of
the circuitry for the half-adder and half-subtracter are identical; the
only difference is in the generation of the carry or borrow bits.

The full-adder is shown in Fig. 4-25. When using the carry in-
formation to correct a serial binary sum, or when a third carry in-
put from a half-adder of the next lowest significant digit is to be
added to the present sum, a full adder must be employed. An ex-
ample of the logic required for the full adder is shown. The full-
adder logic may be simplified by utilizing the exclusive OR logic ele-
ment as in Fig. 4-26.
The full-subtractor is shown in Fig. 4-27. A full subtractor may

be formed by combining two half-subtractors, an OR gate, and a
single-unit delay.

60

17B-Ari= ÀB + AÉ= DIFF

[rr3]- AB= BORR

A B DIFF BORR

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

DIFF -7B + e
BORR -iB

Fig. 4-24. Half-subtracter circuit.

As before, the addition of binary numbers is direct and simple
when only two digits are to be added. The OR circuit is used, since
for a two-input OR only when both inputs are 0 does a 0 output re-
sult. If either input is a 1, the output is a 1. If both inputs are l's,
the output is a logical 1, which represents in this case, a 10 or a
carry 1.

Thus, to add two two-digit numbers, there are eight possibilities
(Table 4-4). A is the addend; B is the augend; C is the carry-in
from the last addition; D is the sum; and E is the carry-out to the
next addition. There are three different cases, aside from the trivial
case of all O's. These are one 1, two l's, and three l's.

For a single 1, there are three cases: (A + B + -é.), (-À + B
+ E), and (A + B + C). There is always a sum and never a

carry. For any two l's, (A + B + «), (A + it + C), and (-À
+ B + C), there is always a carry but never a sum. When every
digit is a 1, (A + B + C), there is a carry and a sum. When every

digit is a 0, (À + É + E), there is neither a sum or a carry.
The implementation may be seen in Fig. 4-28, with the AND'S and

the OR'S as indicated. The INV block is an inverter that changes a 1
to a 0 and a 0 to a 1. A description of the operation of the logical
circuits shown in Fig. 4-28 follows.

61

o
o.
a.

AG

AG)
11 OR

AG) OR 1 UNIT DELAY

AG)

AG)

AG)

A.B.0 + TVi•C

OR) ?_ SUM

A.B.0 +'13•C + A•iI•C +

CARRY

,

EX

All l's

A?
B2

AG)) OR 1 UNIT DELAY 1 AG)- CEF
Fig. 4-26. Full-adder logic using exclusive OR.

 2 SUM

 ¿CARRY

OR'S 2, 3, 4 each have two l's, which means three l's into
AND 2; the 1 into INV means 0 into OR 1. But, l's through
AND 1 and OR 5 means a sum of 1. OR'S 2, 3, 4, as with
sum, all have l's, which means AND 2 will have a carry of
1.

HAG)
EX

T SS
i

 SDIFFERENCE BORROW AG) S
Fig. 4-27. Full subtract«.

Two l's Any two l's through OR'S 2, 3, 4, will mean a 1 out from
AND 2. Through iNv, a 0 will be sent to OR 1. But through
AND 1 there will be a 0, since all three inputs to AND 1 are
not 1; thus there will be no sum since AND 3 has but a
single 1 through OR 5. Since AND 2 has three l's there
will be a carry of I.

Table 4-4. Adding Two-Digit Numbers.

A B C D E
Addend Augend Carry•in Sum Corrrout

1 1 0 0 1 0
2 0 1 0 1 0
3 0 0 1 1 0
4 1 1 0 0 1
5 1 0 1 0 1
6 0 1 1 0 1
7 1 1 1 1 1
8 0 0 0 0 0

63

A C I CARRY IN I

E (CARRY-OUT)

D (SUM)

Fig. 4-28. Logical circuit for addition.

One I AND 2 does not have three l's; thus through INV there is
a 1 to OR I, which passes a 1 to AND 3. OR 5 also has a 1
out because of a single 1 in. AND 3 thus has a sum out of
I. AND 2 has not three l's for only two OR'S (2, 3, 4) can
have a 1. Thus there is no carry of 1 but O.

No l's Neither AND 1 nor OR 5 has a single 1; hence there is no
sum of I. No l's into AND 2; hence there can be no
CARRY of I out, but a CARRY of O.

64

Chapter 5

The Algebra of Sets
The logician makes a sharp distinction between the two values

of a variable in Boolean algebra. He postulates that the range of the
variable is a collection of elements, each of which may be tested to
meet only one of two conditions; either the element belongs to a
predetermined set, or it does not. The mathematical structure of the
system of collections is called the algebra of sets. To the logician
this structure is identical with Boolean algebra.

ELEMENTS AND SETS

We define a set to be any collection into a whole of separate and
distinct objects. Thus a set is a collection of elements. The elements
of a set will be denoted a, b, . . ., z; The sets will be denoted A, B,
C, . . . Z. If the object a belongs to the set A, we write a E A, read
"a is a member of A." If A and B are sets, and every element of A
is also an element of B, we write A c B, read "A is a subset of B."
If A c B, and there is at least one element of B that does not be-
long to A, then we say A is a proper subset of B. Equality of sets
is defined in the obvious way; we say A=B if A c B and Bc A.
The universal set is the set of all elements under discussion and is
denoted by l. The empty set is the set having no members and is
denoted by O. The complement of a set A is the set of all elements
not in A and is denoted A'.

Given two sets X and Y, there are various ways of combining them.
One way is a union of sets. The union of X and Y is the set con-
taining every element of both X and Y. Hence the meaning of union
is that of the non-exclusive OR, denoting X OR Y or both. The sym-
bol for the union of two sets X and Y is X U Y. It has the logical
meaning of OR (Table 5-1).

65

Table 5-1. Symbols of Logic.

OR AND NOT X, Y
Boolean Algebra
Propositional Logic
Algebra of Classes

X --1- Y X • Y i Switches

X v Y X A Y —X Propositions
XUY X n Y X' Sets

The intersection of two sets X and Y is the set containing every
element common to X and Y. In contrast to union, intersection
means AND and represents the logical sum of X and Y. The symbol
denoting the intersection of two sets X and Y is X (1 Y (Table 5-1).

Consider the sets in Fig. 5-1A. The universal set (1) is the rec-
tangle C. One can show that, for the set S, S U S' = C, i.e., all ele-
ments in S or S' constitute the universe (C) under discussion. Also
observe that S n = 0, i.e., the elements to S and S' com-
prise the empty set (that is, there are none).

66

(A) Nonintorsocting sots.

(B) Intersecting sets.

Fig. 5-1. Examples of sots.

(B)

(D)

X n Z

X u Y

11111 D='
=X'nY' n r-XnY

X'nY'r(XuY)
(X nY) = X'u Y

(A)

(E)

(X uY)n(YuZ)

(F)

Fig. 5-2. Venn diagrams.

(C)

Yu(Xn Z)

YuZ

Yu(XnZ)=(XuY)n(YuZ)

In Fig. 5-1B there are two rectangles A and B. It is clear that
A c C, and BCC, i.e., every element in A is in C, and every element
in B is in C. Now consider the set A n B; all the elements of A n B
are in the rectangle designated A n B. But for the union of A and B,
the new set A U B is the set of all elements in A and in B, and this
new set includes the common area of A and B.

Diagrams that illustrate logical relations often are Venn diagrams.
(Fig. 5-2). In Fig. 5-2A we consider two sets X and Y. The area
of vertical shading represents the complement X' of X. Note that
the diagram illustrates X n x' = 0, and X U X' = 1. The area
with diagonal shading represents Y'. Note that X' n Y' is the area
with both vertical and diagonal lines. This area is also (X U Y)'.
Hence, we have (X U Y)' = X' n Y'. Observe that the area com-
mon to X and Y is unshaded; this represents X n Y; it is also
represents (X' U Y')'. So:

67

X U Y = (X' U Y')'
(xnY)' = X'UY'

Consider Fig. 5-2B. The shaded area in this Venn diagram repre-
sents X n Z. In Fig. 5-2C we have included the set Y, and the shaded
area is Y U (X n Z). Fig. 5-2D illustrates the set X U Z, and Fig.
5-2E illustrates Y U Z. If we intersect the sets X U Y and Y U Z, we
obtain a set:

(X U Y) n (Y U Z)

that is shown as the shaded area in Fig. 5-2F. Note that the shaded
area in this diagram is the same as the area shaded in Fig. 5-2C.
Hence we observe that:

Y U (X 11Z) = (X U Y) n (Y U Z)

and that the Venn diagram is a very useful representation of the
union and intersection of sets.

Very important to the concept of number is a relation known as
similarity. We say that two sets A and B are similar if a 1 to 1
correspondence can be established between the members of A and
the members of B. This relation is not the same as equality, since
two similar sets may be entirely different collections. For example,
if we write [r,s,t,w] to denote the set A consisting of elements
r,s,t, and w, and if [c,d,e,f] denotes a set B consisting of elements
c,d,e, and f, then we will observe that A and B are similar (Table
5-2). It is important to observe that two similar sets have the saine
number of elements.

Table 5-2. Similarity of Sets.

A =--- tr, s, t, w]

B = [C, d, e, fl

Early in this chapter the concept of the empty set (0) and the
universal set (1) was discussed. There is also a further characteriza-
tion of sets, and this defines the difference between the finite and the
infinite set. If there is no end to the number of individual members
in a set, this set is known as an infinite set. For example, the set of
all even numbers is infinite. In contrast to this, if the totality of the
members of a set can be counted, it is known as a finite set. Clearly,
the number of members in an infinite set is always greater than the
number of members in a finite set. It is possible to show that there
are as many numbers as their are even numbers. For example, let
A be the set of all whole numbers such as 1, 2, 3, 4, 5, 6, . . .

68

and B be the set of all even numbers, such as 2, 4, 6, 8, 10, 12,
. . . We obtain the 1 to 1 correspondence simply by pairing each
number with its double, e.g., 1 4-› 2, 2 4-› 4, 3 4-› 6, . . ., etc. Thus
there are as many even numbers as there are whole numbers.

OPERATIONS ON SETS

In the algebra of sets, there are certain rules that define the
manipulation of sets. There are seven basic identities formed by
using only the operations of union, intersection, and negation. Those
identities are listed for reference:

(1) (a) on x :=- 0;
(b) inx= x;
(c) o' = 1
(d) l' = 0
(e) OUX = X
(f) 1 U X = 1

(2) (a) xnY = Ynx
(b) XUY = YUX

(3) (a) X n (Y U Z) = (X n Y) U (X n z)
(b) X U (Y n z) = (x U Y) n (xu Z)

(4) (a) xn(Ynz) = (xn Y) nz
(b) X U (YU Z) = (X U Y) UZ

(5) (a) X(1 X = X
(b) XUX = X
(c) X n (x U Y) = X
(d) X U (x nY) = X

(6) (a) X nx' = o
(b) X U X' = 1
(c) (X')' = X

(7) (a) (X nY)' = x' UY'
(b) (X U Y)' = X' n Y'

The preceding relations could be established using the diagram
shown in Fig. 5-3:
where,

Fig. 5-3. Diagram used to establish the
rules for manipulation of sets.

69

X = [a, e, d, g]
Y = [b, e, g, f]
Z = [c, d, f, g]

For example to find XUY:

X U Y = [a, e, d, g] n [b, e, g, f]
= [a, e, d, g, b, f]

And to find X n Y:

X n Y = [a, e, d, g] n [b, e, g, f]
XflY -= [e, g]

We can also use this technique to verify the seven relations
previously given.
We can also simplify expressions. For example:

x n (x' U Y) U YU (Y n (Y U Z))
= (xnx') UYUY U (YnY) U (xn z)

But by (6)a, X n x' -= 0
by (5)b, X UX = X
by (5)a, XnX = X

Thus, (xnx') UYUYU (xnY) u (Y Z) becomes
OU Y U (Y n z).

Also, by (5)d, X U (X n Y) = X. Therefore the expression be-
comes simply Y.

Applied to sets, De Morgan's law provides a dual relationship
between intersection and union. This duality exists in such a way
that all unions may be replaced by intersections; all intersections
may be replaced by unions; all l's may be replaced by O's; all O's
may be replaced by l's, and the result will still be an identity. Some
simple examples are shown in Table 5-3.

Table 5-3. Dual Relation Between Union (U I
and Intersection (n) .

onx=o
1 U X = 1
1nx=x
oux=x

}
1

APPLICATIONS OF SETS

The algebra of sets has several applications. Consider a line A
drawn on a sheet of paper. This line is defined as the intersection of
two planes, and the line extends as far as we wish in both directions.
This line X may be considered to be composed of an infinite number

70

LIne X

Fig. 5-4. Three sets defined by a point on a line.

of points as in Fig. 5-4. If on this line X a point P is placed, there
are three sets now defined. There is the set of points on the line to
the right of point P. There is a set of points to the left of point P.
There is point P, which is a set having a single member. Thus a
single point on a line defines three sets.

Fig. 5-5. Two lines having the same
number of points.

A surprising correspondence between two lines is shown in Fig.
5-5. For any point d on line DE, there is corresponding point on
base BC of triangle ABC. To show this, draw a straight line from
the vertex A through point d. This line intersects BC in one and
only one point b. And conversely, a line drawn from point b to the
vertex A will intersect the line DE in one and only one point d.
Hence there is a 1 to 1 correspondence between the set of points
composing line DE and the set composing line BC. We must con-
clude, then, that DE has the same number of points as BC.

The expression [x/x<7] is read as "the set of all numbers x such
that x is less than 7". Because this set is infinite, it is not possible
to enumerate all of the members; it is, however, possible to

0 1 2 3 4 5 6 7 8
(A) Graph of x<7.

X<-2 X>4

—8 —6 —4 — 2 0 2 4 6 8
(B) Graph of [xlx >4 or xlx.< —2]

Fig. 5-6. Graphs of sets.

71

graph such a set. Fig. 5-6A shows the graph of this expression or
the solution set of x<7. A rounded arrowhead means the set does
not include 7, but all numbers up to 7.
Suppose A = [x x > 4], i.e., A is the set of all numbers x such
that x is greater than 4. Also suppose B = [xix < —2], i.e.,
B is the set of all numbers x such that x is less than —2. Then if
C = A U B, C = [xlx > 4 or xlx < —2], i.e., C is equal to the
union of A and B, as in Fig. 5-6B.

72

Chapter 6

The Algebra of
Switching Circuits

The algebra of switching circuits is a two-valued type of Boolean
algebra in which the only two possible values are 0 and 1. Suppose
that 1 represents a closed circuit that allows current flow, and 0
represents an open circuit through which there is no current flow. A
scheme of switching algebra can be established on this basis such
that the algebra is applicable largely to series and parallel circuits. We
will show that it can also be used for non-series parallel circuits.

THE RULES OF ALGEBRA

The basic circuits are the series circuit and the parallel circuit.
The parallel circuit is an OR and is usually designated by switches
in parallel. This may be written as A OR B, which is the same as
A + B. In this algebra, the addition or + sign designates two
switches in parallel. A series circuit, say of two switches, is con-
sidered to be an AND circuit. The two switches A and B in series
are designated as A AND B, which is multiplication and is written
A • B.

These are as defined in Table 6-1. There are three basic rules for
addition, as shown. 0 + 0 = 0 means that an open circuit in
parallel with an open circuit is still an open circuit. 0 + 1 = 1
means that an open circuit in parallel with a closed circuit is a
closed circuit. The third rule of addition is that 1 + 1 = 1 and
means that a closed circuit in parallel with a closed circuit is a
closed circuit. In summary, the rules for addition say, considering
a parallel circuit, there is current flow if A is closed, or B is closed,
or if both are closed.

73

In the same way, multiplication represents a series connection.
0 • 0 = 0 means an open circuit in series with an open is still an
open. 0 • 1 = 0 means that an open circuit in series with a closed
circuit is still an open circuit. 1 • 1 = 1 means that a closed circuit
in series with a closed circuit is a closed circuit. Thus, in summary
for multiplication, which expresses a series circuit, there is current
flow if, and only if, all of the switches in series are closed.
The third operation for switching algebra is negation. Clearly, the

negation of an open circuit is a closed circuit, and the negation of a
closed circuit is an open circuit. The superior bar represents negation,

as I- = 0, 7(1 = 1.

SI S2
 de

Fig. 6-1. Duality—AND/OR.

In order to establish a valid system of switching algebra, it is
necessary to establish certain rules such as those already given.
There are many possibilities of establishing the basic rules or sys-
tems by which various types or forms of switching algebra could
be developed. For example, 0 could represent a closed circuit, and
1 could represent an open circuit. It is also possible, since this is a
two-valued system, to use any of two opposite values such as an
open circuit and a closed circuit, current flow and no current flow,
voltage and no voltage, high voltage and low voltage, positive
voltage and negative voltage, a pulse and no pulse, or any other
duals. For example, consider Fig. 6-1, which shows two switches
S1 and S2 in series with a battery and a current-indicating device.
If we were to define a 1 as meaning current flow through the meter,

Table 6-1. Basic Identities of Switching Algebra.

Addition Multiplication Negation
0 + 0 = 0 0 • 0 = 0 6 = 1
o + 1 = 1 o • 1 = o T=o
1 + 1 = 1 1 • 1 = 1

1 = Closed 0 = Open
Addition is OR, switches in parallel.

Multiplication is AND, switches in series.

HOR (A orB).(A+B)

....."'0-0,1"0— AND (A and B),(A•B)

74

then there would be a 1 only if switch 1 and switch 2 were closed at
the same time. Clearly, under these conditions, a 0 would exist if
either switch was open. On the other hand, if a 1 is to be considered
as expressing no current flow through the meter, then there will
be a 1 indicated if switch Si is open or switch S2 is open.
In this manner the simple circuit shown may be either an AND
circuit or an OR circuit, depending on the definitions.

Although there are a number of possible ways of setting up a
valid switching algebra, the one discussed in this chapter is basically
the one that is shown in Table 6-1, and which is closely allied to
the algebra of sets; indeed, the switching algebra is a form of
Boolean algebra.

There are a number of significant laws that we can use to form
the axioms of this system. They are given below in an abbreviated
form.

I. Commutative Laws
a. Addition
b. Multiplication

2. Associative Laws
a. Addition
b. Multiplication

3. Distributive Law
4. Identities

a. Addition
b. Multiplication

5. Equality
a. Reflexive
b. Transitive
c. Symmetric

6. Idempotent Laws
a. Addition
b. Multiplication

A +B=B+A
A•B=B•A

(A + B) + C = A + (B + C)
(A • B) • C = A • (B • C)
A • (B+ C)=A•B +A•C

A + 0=0 + A = A
1 • (A) = A • (1) = A

A=A
Where A = B and B = C, then A = C
Where A = B then B = A

A + A = A
A • A = A

The first law, which is not illustrated, is the law of closure; It states
merely that addition and multiplication are always defined.

The commutative law has two forms. In the commutative law of
addition, the order in which two quantities are added is not signifi-
cant. Two quantities can be added regardless of the order of addi-
tion. In the same manner, the commutative law of multiplication says
that the sequence in which two items are multiplied is not significant.
These basic laws seem rather trivial; however, in structures of mathe-
matics such as matrix theory, it is not necessarily true that multiplica-
tion obeys the commutative law.
The associative laws are in two forms; the associative law of

addition says that in adding three numbers it is not significant which

75

two are added first. In the same manner with the associative laws
of multiplication, the sequence of multiplication is not significant.
Another way of saying this is that when a series of numbers is added
no parentheses are needed; similarly, when a series of factors is
multiplied, no parentheses are needed.
The distributive law relates to both addition and multiplication.

This law states that multiplication is distributive over addition, or the
multiplier, which in this case is A, is distributed over both quantities
in the parentheses, which are B and C.
A very significant law is the one of identity. The number 0 is

known as the identity of addition for as shown, A = 0, or 0 +
A = A. The identity for multiplication is 1; 1 multiplied by any
number A is equal to the number itself.
The law of equality has essentially three different aspects. In the

reflexive case, the law of equality merely states that A = A. In
the transitive case, the law says, for example, if A = B and B = C,
then A = C. The symmetric aspect of equality says only that if
B = A, then A = B.
The idempotent laws are very significant to this algebra. The

idempotent law for addition, for example, says that A + A = A.
Notice that this is significantly different from other forms of algebra.
In the Boolean algebra used for switching, there is no significance to
a quantity such as 2A, since A + A = A. This is the equivalent
of saying that a switch in parallel with itself has no significance. The
idempotent law of multiplication says that A • A = A; this only
says that a switch in series with itself is itself.

SWITCHING ALGEBRA AND CIRCUITS

There are two aspects of switching algebra; one is the algebraic
representation of a given electronic switching circuit. The second is,

A — B r
(A • B+C)•(--C Mil

(B+C)•(A•B+A)

Fig. 6-2. Switching circuits to represent algebraic expression.

76

given the algebraic expression, to form the electronic switching cir-
cuit that it represents. Both of these can be done, and the basic pur-
pose of switching algebra is to enable the circuit designer to create
specific circuits and to reduce these circuits to a minimum of com-
plexity. For example, two circuits are shown in Fig. 6-2. One of
these pictures a switch A in series with a switch B, and both of
these in parallel with switch C. This entire combination is in series
with NOT C and in series with NOT B. Hence, the algebraic expres-
sion for this is:

(A • B + C) • (C) • (B)

The second of these is a parallel combination of switches B and C.
This parallel combination is in series with a second parallel com-
bination. The second parallel combination is a series of NOT A and
B in parallel with A. Hence, the algebraic form of this is:

(B + C) • (A • B + A)

One of the ways that we can evaluate the value of a given
function and its circuit is to set up a truth table such as shown in
Table 6-2. This is shown for the AND circuit.

Table 6-2. Truth Table for AND Circuit.

A B A•B A•B A•B (A•B)

I

2

3

4 o o o

Consider two switches A and B, in series. These take on the
four separate values shown in rows 1, 2, 3, and 4. In row 1, for
example, A is 0 and B is 0 so that the combination of A AND B is
also O. The next combination, which is NOT A AND B, is the equiva-
lent of a series connection of 1 and 0, so that the result is also 0
as shown in row I. The next combination is A AND NOT B, which
has value O. The last combination, which is the negation of A AND B,
turns out to be I. Thus it is possible, using this table, to establish the
truth values for all AND combinations of switches A and B.

Truth tables are used as follows. Suppose that we have a series
circuit of A AND B. Suppose also that we wish to know whether
this series circuit is open or closed, if the function under considera-
tion is the negation of A AND B. According to the table, this func-
tion is 1 except when both A and B are 1. In the same manner, if
the function is A AND NOT B, the function is 1 if A is 1 and B is O.

77

Table 6-3. Truth Table for OR Circuit.

A B A + B —A + B A + à (A + B)

1 0 0 0 1 1 1

2 0 1 1 1 0 0

3 1 0 1 0 0 1

4 1 1 1 1 0 1

In the same manner, Table 6-3 shows the OR table. A OR B turns
out to be 1 except when both are 0; NOT A OR B turns out to be 1
except when A is 1 and B is 0; the negation of A OR B is 1 if A is
0 and B is 0; A OR NOT B is 1 in all cases except when A is 0 and
B is I.

Table 6-4.
All Possible Combinations of Truth Values for A and B.

A B Así A + B (A • B) (A + B)

0 0 1 0 1 0

0 1 0 1 1 0

1 0 0 1 1 0

1

Table 6-4 illustrates other truth tables; each column evaluates a
function for all possible combinations of the truth values of A and B.

CIRCUIT SIMPLIFICATION BY ALGEBRA

The simplification of a circuit reduces a more complex form to a
less complex form. We can always use truth tables to establish the

 X Y

L A — B---C

— X — Y—

A

 B
-

 C
Fig. 6-3. Example of complex switching circuit.

equivalence between the original and reduced function. Consider, for
example, Fig. 6-3; the original circuit is represented by:

(X•Y+A•B•C)•(X•Y+A+ii+C)

78

This expands to:

X. Y+À•X•Y+ii• X•Y+ê•X•Y+

A•B•C•X•Y + A•ÂB•C+ A•B•ii•C+

A•B•C•ê

which reduces to:

X•Y(1+ -À+ri+ê+A•B•C) +0+0+0

This, in turn, reduces to

X • Y

We can also simplify expressions involving other forms, consider
this simplification:

X • (g + Y) + Y + Y • (Y + Z) =

X.,(.+X•Y+Y+Y+Y•Y+Y•Z

But

X • 5Z. =
Y+Y = Y
Y • Y = Y

Thus, we have

X•Y+Y+Y•Z

Also,

Y+Y • Z = Y and Y+X • Y = Y

And the expression becomes Y.

CIRCUIT SIMPLIFICATION BY CHARTING

A chart is a form of truth table used for simplification. Its use
allows a reduction of circuit complexity.

Consider a function X of three variables, as in Fig. 6-4A, such

thatX=À•B•ê + À•Ti•C +À•B•C + A•B• C.
This figure is a charting of the three variables where one state is 1
(closed), and the other state is 0 (open). The three variables are
ordered as A, B, C, and the numbered squares are:

1. (0, 0, 0)
2. (0, 0, 1)
3. (0, 1, 0)
4. (0, 1, 1)
5. (1, 1, 0)
6. (1, 1, 1)
7. (1, 0, 0)
8. (1, 0, 1)

79

0 1 1 0 C

A B

0 0

0 1 C

1

5

7 8

A B
0 0 1 1 D

2 4

5 6 7 8

10 11

13 14

('

16

(A) Three-variable chart. (B) Four variable chart.

Fig. 6-4. Chart form of truth table.

The shaded blocks (2, 3, 4, 6) represent the 1 condition for the
function X. If the values are (0, 1, 0) as in square 3:

X = 1 • 1 • 1 + 1 •0•0+ 1 • 1 •0+0• 1
X = 1 + 0 + 0 + 0
X = 1

• 0

Again, for square 6, which is (1, 1, 1):

X =-.0• 1 •0+0•0•1 + O• 1 • 1 + 1 • 1 • 1
X = 0 + 0 + 0 + 1
= 1

In similar fashion charts for five, six, seven, and even eight vari-
ables can be created. Note that a three variable chart has eight
squares, a four variable chart has sixteen squares, and that an
N-variable chart has 2S squares. The tabular listing of the coordi-
nate values of the variables is done in a "reflected" sequence rather
than a straight binary sequence such that only one variable at a time
changes state between any two adjacent coordinates. This is done to
facilitate determination of redundant variables in the conjunctive
terms by quick inspection.

In the same manner, (Fig. 6-4B) a four-variable chart is shown
where:

X = (A • B • ê) + (À • •

(ê• + C•D) + A•B•C•51 -

Here again the squares having a value of 1 are shown as 1, 3, 9,
12, and 15.

These results show which values the function is 1 and permit a di-
rect evaluation of the function without algebraic manipulation.

80

AB

0 0

0 1

1 1

0 1 C 0 1 C 0 1 C
A B A B

0 0 0 0

0 1

1 1

0 1

1 1

A • B • A • B+i3-•

Fig. 6-5. Chart development of function X = A • • E.

Consider Fig. 6-5, where the function charted is:

X = A • B + it • é

The first step is to chart A • B as shown; clearly A • B = 1
(shaded) if, and only if, A=1 and B=1. Values for C play no part
in this hence A • B is true if 0=0 or if C=1. We can proceed to

the chart for • é, which is true for B=0 and C=0. These two
charts are then combined, as in the third chart, to produce:

X = A•B+B•ê

Since this is the OR connective the two charts are superimposed to
produce the final chart.

AB

0 0

0 1

1 0

0 1

A+B

AB

0 0

0 1

1 1

1 0

0 1 C 0 1 C
A B

0 0

0 1

b+c

1 1

1 0

(A+B)'(B+C)

Fig. 6-6. Chart development of function X = (A+B) • (8+C).

Fig. 6-6 shows the chart development of the function X = (A +

B) • di- + C). Fig. 6-7 gives several charts for simple expressions.

Note that A • B + À • (B + C) also equals B + À • C.

81

AB
0 0

0 1

1 1

1 0

0 1

A • B

AB
0 0

0 1

AB
0 0

0 1

1 1

1 0

0 1

0 1

ffIrmey..yeerra

AB
0 0

0 1

1 1 1 1

1 0 1 0

À.(B+C) B+(il•C)
Fig. 6-7. Chart of simple expressions.

AB
0 0

0 1

1 1

1 0

0 1 C

0 1

BC

Also, formally:

X = A • B + (À • B + À • C)
A•B+ À•B+ K•C

r= B (A + A') + À • C
B + -À • C

Consider now the three-variable chart (Fig. 6-4A). Each square is
written as an N-legged AND gate, where N is the number of variables.

Square Gate

2 -A- • 1-i • C
3 Tit • B • C
4 -À • B • C
6 A • B • C

The shaded squares indicate the values of A, B, and C for which
the value of the function X = À • T3 •C + A•B•+ À•B•C
+ A • B • C is 1. The unshaded squares indicate the values for A,
B, and C for which the function X is O. Each shaded square defines

82

a configuration of a three-legged AND gate; this is given by those
values of A, B, and C, which, formed in an AND combination, have
a value of 1. For example, square 2 of Fig. 6-4A is shaded, and the
values of A, B, and C that define it are A = 0, B = 0, and C = 1.
Hence, a combination of values for an AND gate (representing square

2) is À • à • C, since 1 • 1 • 1 = 1. Thus, square 2 represents an

AND gate that is high for an input of À • b • C, where A is a high
input, and à is a high input, and C is a high input. Note the gates
represented by squares 3, 4, and 6. Forming all of the gates in an OR
combination, we construct a circuit whose functional expression is X.
This is because the function X has a value of 1 whenever any of
these gates has a value of 1.

In the four-variable case (Fig. 6-4B) the expression could be
written as:

iii•ii•è•i5+ A•ii•C•D+ A•B••i)- +

A•B•C•D + A•t-i•é•D

This is obtained by considering the squares 1, 3, 9, 12 and 15 in
sequence, each as a four-legged AND. This is also expressed in the
form of the original function:

A•B• .è+ (À•B)•(ê•ii+C•D) + A•B•C•D

as shown in Fig. 6-8A.

The simplification of the expression is achieved by inspecting the
chart for shaded large squares or rectangles comprised of the indi-
vidual shaded squares such that all of the individual squares are
shaded and such that the number of individual squares comprising
the larger shaded square or rectangle is one, two, four, or eight.
The two outside columns of the chart are considered to be contiguous
for purposes of this inspection. Similarly, the top and bottom rows
of the chart are also considered to be contiguous to each other.

There are rules for simplification that are often used. Here are sev-
eral:

I. Four adjacent squares (a 2 X 2 rectangle or 4 X 1 rec-
tangle) form a two legged gate.

2. Two adjacent squares form a three-legged gate.
3. Single squares form a four-legged gate.

With the four-variable example, in Fig. 6-4B:

Squares Representation

9, 12 A • B • C

3, 15 B • C • D

1 A • B • 'é • D

83

Hence the reduced function is:

A•B•è+à•C•D+

This is shown in Fig. 6-8B.

A

D

A

) 1 >

(A) Original circuit.

LD

A

(B) Simplified circuit.

Fig. 6-8. Simplifying circuits by reducing algebraic expression.

For the three-variable case (Fig. 6-4A), the function is:

K•B•ê-l-K•ii•C+ K•B•C+ A•B•C

Squares 3 and 4 give 7%-- • B; squares 2 and 4 give A • C; squares 6
and 4 give B • C. This reduces to:

À-•B+À•C+B•C

84

SEQUENTIAL OR TIMED LOGIC

Logic is not always a static relationship; in any system, logical
output is required only during a sampling time. In a pure DC system,
a sampling time may be any time; in a pulse, or AC, or mixed sys-
tem, sampling may be made by a clock pulse.

So far, only DC, or combinational logic has been discussed, in
which the output is a function of the input states as they exist dur-
ing the same sampling period that the output is utilized. However,
in some systems, an output during a particular sampling period may
be a function of logic that existed during some previous sampling
period. AC systems, where the output is not dependent upon func-
tions generated in a particular sampling period, are generally classed
as sequential systems.

In sequential logic, time is quantized into clock pulses or clock
times. A possible sequential expression might be:

+ Bt.3) • (Ct-2 + Ft=4)

This expression implies that F at time interval 5 is a function of A
at interval 1, B at interval 3, C at interval 2, and F at interval 4.
From this expression, it is evident that some form of memory, or
storage, is required. In the expression above, the function F at in-
terval 4 must be stored until interval 5. A generalized memory ele-
ment, or flip-flop, can be defined as having the following inputs and
outputs.

Set to 1 (S)
Reset to O (R)

1 OUTPUT (F)

O OUTPUT (É)

The Set and Reset inputs are activated only one at a time, and
only one output is active at a time. The flip-flop, or bistable multivi-
brator, remains in its previous condition until the opposite condition
is presented to its input.

Table 6-5. Truth Table for a Sequential Expression.

S

o o o o
o o 1 1
o i o o
o 1 1 o
1 o o 1
1 o 1 1

85

In a truth table (Table 6-5) for these conditions the notation F
signifies the previous state or time period. Consider the equation for
F derived from this table:

F = F • -S • R+ i' •S•R-1-F•S• k

This reduces to:

F = ii • (F • S + S)

NAND/NOR circuits can be used to synthesize a circuit whose
equation is that of a memory flip-flop. Utilizing a cross-connected
pair of NAND circuits, a flip-flop can be produced as in Fig. 6-9.

NAND

NAND

Fig. 6-9. A flip-flop constructed from NAND circuits.

The equations for the circuit are:

D .-.= A • B

but,

B .7-= C • D

hence

D = A • (C • D)

In this flip-flop consider these relations:

1. D will be active (logic 1) if A is logic 0, if C is logic 1 and
D was logic 1.

2. D will be inactive (logic 0) if A is logic 1, C is logic 0, and
D was logic O.

3. The set condition occurs if the flip-flop was set and no re-
set occurs, or if a set occurs as a logic 0 level at the A input.

4. The reset condition occurs if the flip-flop was reset and no
set occurs, or if a reset occurs as a logic 0 at the C input.

This flip-flop is the basic SR FF (Set-Reset Flip-Flop), but many
other configurations can be derived and employed. One common

86

Fig. 6-10. A three-bit, flip-flop counter.

alternative is the counter flip-flop. This device contains, in addition
to, or in place of, the S and R inputs, a trigger input. The trigger
input is an AC input requiring a pulse going from the logic 0 to the
logic 1 state to cause activation. The trigger action causes a change
of state of the flip-flop, regardless of the previous condition. With
this action they are sometimes called complementary flip-flops.
The trigger flip-flop is used in counting circuits. The binary count-

ing sequence is shown in the Table 6-6 with the equivalent decimal

Table 6-6. Binary Counting Sequence.

2- 2' 2° Dec.

o 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

0 0 0 0

values. Inspection of this table shows that a next higher order bit
changes state when the lower bit changes from a 1 to a O. The flip-
flop counter for 3 bits is shown in Fig. 6-10. The trigger input was

PULSES TO
BE COUNTED

defined to require a logic 1 activation. Interstage connection is be-
tween the T (trigger) input and the 0 output of the preceding stage.

87

The 0 output is the logic inverse of the 1 output; when the 1 out-
put is energized, the 0 output is not. Thus, a transition of the flip-
flop from the 1 to the 0 state causes the 0 output to go from the 0 to
the 1 state; thus it meets the requirements for a trigger.

88

Chapter 7

Numbers and Numbering
Systems

Switching-circuit algebra rapidly leads to an examination of the
numbering system that is used with this algebra. The switching cir-
cuits that have been discussed can be used as the basis of logical
design in various types of control configurations; these switching cir-
cuits can be arranged in logical systems to perform certain necessary
switching functions. These circuits work on a go—no-go basis, which
means that they either pass a signal, or they do not pass a signal.
In this sense, circuits do not handle numbers as such.

Switching circuits, however, can be designed to perform arithmetic
functions such as addition, subtraction, multiplication or division.
In order to do this, a numbering system must be defined.
This is quite different from the use of the switching circuits in logical
design. In arithmetic circuits we are concerned with the manipula-
tion of various number representations. However, such arithmetic
calculating circuits are based upon the fundamentals of algebraic
switching and of logical design.

BINARY NUMBERS

There are many possibilities for numbering systems; the one that
is in common use in our civilization is the decimal notation based
upon powers of ten. For example, the number 732 means seven hun-
dred thirty-two. This number also means seven times one hundred
plus three times ten plus two times one. The same number can be
expressed as seven times ten squared plus three times ten to the first
power plus two times ten to the zero power (since any number to
the zero power is one).

89

The base of our decimal system is of course ten, since, in moving
from right to left in any number we increase by one power of ten
for each digit that we move to the left. In a similar manner, by mov-
ing to the right we decrease by one power of ten.

There are many possibilities for numbering systems where other
bases can be used. One of the most convenient numbering bases is
two. This is the binary numbering system in which any digit can have
only one of two possible values; one of these values is 0 and the
other is 1. In the decimal numbering system, of course, it is possible
to have ten different indications which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The binary system corresponds well to the requirements of cir-

cuits designed by the application of Boolean algebra, since Boolean
algebra is a two-valued system. It is possible, for example, in a truth
table to have a proposition be true or false, and in the same way it is
possible to give values such as 0 or 1. Usually 1 corresponds to true,
and 0 corresponds to false. The binary number system may be used
for calculating circuits using binary arithmetic.

The first five powers of ten are 1, 10, 100, 1,000, and 100,000. The
first five powers of 2 are 1, 2, 4, 8 and 16. The decimal numbers
1, 2, 3, 4, 5 and 6 correspond to the binary number 1, 10, 11, 100,
101 and 110. This means, for example, that the binary number 101
is the equivalent of 4 plus 0 plus 1, which is decimal 5 (Table 7-1).

Table 7-1. Decimal to Binary Conversion.

Readout
Trigger 2° 2' . . . 2s-a 2s

Reset 0 0 0 0
1 st 1 0 0 0
2nd 0 1 0 0
3rd 1 1 0 0
4th 0 0 0 0
5th 1 0 0 0
6th 0 1 0 0
7th 1 1 0 0

N-1 1 1 1 1
N 0 0 0 0

(Carry)

The binary numbering system makes it extremely convenient to
use Boolean algebra since only one of two possible states has to be
considered. These states are the 1 state and the 0 state. For example,
consider a vacuum tube or a transistor as the circuit element repre-

90

senting a digit. If the transistor is on, this represents a 1; if the tran-
sistor is off, this represents a 0. In the same way, if the vacuum tube
is conducting current this could be a 1, and if the vacuum tube were
not conducting, this would be a 0. The binary system is the most
convenient numbering system, since the active circuit elements such
as transistors, vacuum tubes, diodes, or various types of magnetics,
have two positive states (either on or off); thus there is no ambiguity.
The use of a decimal numbering system, for example, would require
an active circuit element with ten clearly distinct states. This is not
impossible, but it is much more difficult to achieve than circuits using
the binary numbering system.

BINARY ARITHMETIC

We must study the manipulation of binary numbers before it is
proper to examine the circuit arrangements by which the logical de-
sign manipulates the numbers. For example, consider addition, the
fundamental arithmetic operation. The concept of addition implies
that there are two numbers; one is called the augend, and the other
is called the addend. When these two are added, the result is the
sum. This is obvious in decimal arithmetic where, for example, the
sum of 8 and 9 is 17. Note, however, even in this simple example
there are now two digits in the sum, though there was only one digit
in each of the two numbers that were added.

For binary addition there are only the two digits 0 and 1. There
are four possible cases. These are given below;

0 + 0 = 0
1 + 0 = 1

0 + 1 = 1
1 + 1 = 10

The only one of these above that may create a problem is that
1 + 1 = 10. Suppose, for example, that you have a decimal dial
counter such as an automobile odometer. The number on the right
begins at 0, and goes from 1 through 9. After you have gone more
than 9 miles you have exceeded the range of the right hand digit,
and the counter turns so that the rightmost digit becomes 0 and the
left digit becomes 1. In the same manner the 1 + 1 = 10 indicates
that you have exceeded the range of values of the rightmost digit in
the binary system.

Actually, all of the other arithmetic operations are defined in
terms of the operation known as addition. For example, subtraction
is negative addition, multiplication is just a shorthand way of adding
a long series of numbers, and division is the inverse of multiplication.

91

CODED NUMBERING SYSTEMS

The binary numbering system that we have discussed are known
as pure binary systems, where each individual bit (binary digit) has
a weighted decimal value. There is a direct conversion between this
binary system and its equivalent decimal. For example, the binary
numbers 001, 010 and 011 are the equivalent of the decimals 1, 2
and 3. There are limitations to the use of pure or straight binary
numbers, and for this reason codes are often used.
One of these is the binary coded decimal, which is a special way

of expressing decimal numbers in terms of binary numbers. For
example, consider number 18 in decimal. If this decimal is expressed
in pure binary, it is 10010. Evaluating this binary number place for
place gives a series of weighted values that add up to the decimal
number 18. This binary number is the equivalent of decimal 16 plus
decimal 2, or decimal 18.

However, in the binary coded system a different technique is used.
If the two digits in the number 18 are evaluated separately the num-
ber 1 is evaluated and its expression in binary coding is 0001. The
8 is evaluated separately and its coding is 1000. In this way we can
convert individual digits such as 1 or 8 using the binary coded num-
ber system rather than converting a group of digits such as 18. This
system is used because conversion from decimal to binary, or from
binary to decimal, is not convenient. The conversion from binary
coded decimal to decimal, or from decimal to binary coded decimal
is simple, straightforward and convenient. In this way the binary
coded decimal system allows us to use binary numbers to code any
decimal number on a digit-by-digit basis. Each of the individual digits
is given a binary coding.
One of the other codes that is often used is the excess three. In

this type of coding each binary number is represented by a method
in which the binary number is three units greater than the decimal
unit from which it is converted. For example, the decimal 1 appears
as the straight-binary equivalent of the decimal 4; the decimal 3
appears as the straight-binary equivalent of the decimal 6. The rea-
son the excess-three code is used is that it provides a simplification
of certain types of arithmetic so that complements may be used
directly.

Another group of codes are the reflected cyclic codes. These codes
have one thing in common; in going from one coded decimal digit
to the next coded decimal digit only one of the coded digits changes
at a time. For example, in straight, or pure, binary a decimal 2 is
0010, and a decimal 3 is 0011. Note that there is only one digit
changed in going from 0010 to 0011. However, in going from deci-
mal 7 to decimal 8 there is a change from 0111 to 1000, a change in

92

four digits. In the gray code, which is one type of reflected cyclic
code, the change from decimal 7 to decimal 8 involves a change of
only one binary digit, i.e., 0100 to 1100. The gray code is used be-
cause the change of only a single digit in going from one decimal
value to another is convenient in analog-to-digital conversion.

USING NUMBERS

The preceding sections in this chapter have outlined the basic
principles of binary numbers and the binary number system. These
numbers, of course, may be used for calculating circuits in which
addition, subtraction, multiplication or division is possible. This sec-
tion covers the manipulation of these numbers by counting circuits.

The circuit element that is used for a counter is a binary flip-flop.
This is the electrical equivalent of a toggle switch having two posi-
tions. Just as a toggle switch is either on or off, so a binary flip-flop
has two states; these are the 1 and 0 state. Thus a binary flip-flop
is a counter, and it counts in sequence such as 0, 1, 0, 1, etc. A
series of flip-flops may be used for the counting in the binary num-
bering scheme.

Binary Counters

A straight binary counter may be assembled by using one or more
flip-flops connected in such a manner that the binary number stored
within these flip-flops will represent the total number of trigger pulses
received at the input to the counter (Fig. 7-1).

TRIGGER
INPUT

1

T 20

1

T 21

1

2N-1

0

Fig. 7-1. Binary counter.

,---4

-
1 —t

T 2N

0 —t

This is a series of flip-flops, each representing a power of 2. To
determine a readout of a flip-flop, the binary state of the 1 terminal
(the terminal adjacent to the set side of the flip-flop) is used as the
output for a positive logic binary state indicator; the 0 terminal may
be used to drive a negative logic binary indicator. If a positive logic
binary state indicator is connected to the flip-flop output, the indi-
cator presents the indications given in Table 7-2. A binary 1 is
equivalent to the "on" condition of the element.

93

Table 7-2. Binary Counter Indications.

BINARY DECIMAL

0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Ring Counters

A ring counter may be assembled by using two or more flip-flops
connected in such a manner that all of their outputs are at the
binary 0 state except one flip-flop. By pulsing the input the ring
counter will sequentially change the binary state of the succeeding
flip-flop from a binary 0 to a binary I. The flip-flop that contains
the binary 1 indicates the count of the counter. The number of
pulses that can be counted by N flip-flops is N pulses.

Shift Registers

A serial-entry shift register is similar to the ring counter with the
exception that the output flip-flop is not connected to the input flip-
flop. The serial binary information is applied to the first flip-flop set
and reset gates. All set-trigger and reset-trigger inputs are tied to-
gether to form the shift bus. Clock pulses are applied to the shift bus
to cause the binary information to shift from left to right, one bit
position for each clock pulse received.

Preset Counters

A preset counter may be assembled by using two or more flip-
flops connected as a straight binary counter or as a feedback counter
(binary coded decimal, excess three, etc.). A number recognition
gate (AND gate) is connected to the output of each individual flip-
flop in the counter. When the desired number has been reached by
the counter, an AND gate, through an inverter, or a NAND gate, in-
hibits the input to the counter and prevents the progression of the
counter beyond the desired number. The output from this AND gate
may also be used to provide an output indication that the preset
counter has reached the desired number.
A preset counter may also be assembled by using two or more

flip-flops connected as a backward counter. A straight binary back-
ward counter with an AND gate to recognize the number zero is

94

T 20

AG

CP r

^

T 21

 Li AG //

1

T 2N-1

-

Fig. 7-2. Binary backward counter.

T

shown in Fig. 7-2. The counter is originally preset to the desired
number. This can be accomplished by the set and reset trigger inputs
or by the DC set and reset inputs. Incoming trigger pulses cause the
counter to count backwards; that is, each trigger pulse subtracts one
count from the counter. This process would continue through zero
and repeat in an endless cycle starting with 2N-' (provided no feed-
back is used). Therefore an AND gate is used to recognize the unique
count of zero and inhibit the input to the counter. The output from
this AND gate can also be used to provide the external signal to in-
dicate that the preset counter has reached the desired number (re-
ceived the desired number of input pulses).
A preset counter connected as a backward counter with zero de-

tection may be used to generate a precise time delay. The counter
starts subtracting counts from its preset number immediately after
a preset condition, if the trigger pulses are in a continuous pulse
train e.g., clock pulses. This is assuming that external gates do not
inhibit the incoming trigger pulses.

Feedback Counters

Feedback counters may be assembled by using two or more flip-
flops connected so as to recycle when a specific number has been
reached. There are many different ways of providing a recycle count
at a desired number. One method that always works to provide a
recycle count at a desired number is to recognize N-1 counts with
a number recognition gate (AND gate), and cause the counter to re-
set on the next incoming trigger pulse. A more sophisticated ap-

95

proach is to use feedback to cause recognition at a desired count.
Care must be exercised in using feedback if a coded binary readout
is desired. Another method which may be employed is to use com-
binations of known counter connections to recycle at the desired
number. In such a configuration, to maintain a binary coded readout,
only straight binary counters may be placed in front of the feedback
counter, and only in front of the feedback counter; that is, the straight
binary counter may not be placed after the feedback counter. An ex-
ample of this method is shown by an N/12 counter, where an N/4
and an N/3 counter are employed.

CP>

RESET>

SG
ST 1

20

RI 0

— t ST 1

21

RI
RG

Fig. 7-3. N/3 counter and truth table.

e 21
RESET 0 0

1 1 0

2 0 1

3 0 0

4 1 0

5 0 1

6 0 0

An N/3 counter and its truth table are shown in Fig. 7-3. This is
a binary-coded ternary counter. The output of the counter is re-
turned to the set gate of the first flip-flop in order to inhibit this flip-
flop for every third incoming pulse. In addition, the complement of
the counter output is returned to the reset gate of the second flip-
flop in order to permit the second flip-flop to reset every third pulse.
An N/7 counter and its truth table are shown in Fig. 7-4. This

counter presents an excellent example of "don't care" conditions.
There are certain bistable states, such as the condition of the counter
after every sixth pulse, in which only the last two flip-flops are of
interest. Therefore, all that is necessary is to recognize the condition
of a binary 1 in the last two flip-flops and to cause a reset to occur
with the next trigger pulse.

Comparators

If it is desired to determine if two serial binary numbers are identi-
cal, an equalizer circuit, using the logic in Fig. 7-5 may be employed.
This logic may be simplified by using an exclusive OR and an in-

96

CR

21 22

AB

RESET

1

2

3

4

5

6

7

Fig. 7-4.

20

o
i
o
1
o
1
o
o

o
o
i
1
o
o
i
o

o
o
o
o
i
i
1
o

N/7 counter and truth table.

Fig. 7-5. Equalizer circuit logic.

verter as shown in Fig. 7-6. If it is required to compare two serial
binary numbers to determine which number is larger, or if it is de-

EX

A

i
i

B

i
0

0 1
0 0

Fig. 7-6. Simplified circuit for logic used in Fig. 7-5.

C

i
o
o
i

97

sired to compare an incoming serial binary number with a reference
number in order to determine whether the incoming number is great-
er than, less than, or equal to the reference number, the logic in
Fig. 7-7 may be used.

A >B

INPUT OUTPUT

A B A>B A-B A<B

A =B 1 1 0 1 0
1 o 1 o 0
0 1 0 0 1
o o 0 1 o

A < B

Fig. 7-7. Comparator logic.

Binary to Decimal Conversion

There are many methods of converting a binary number to a deci-
mal number. Some of these methods are:

1. The division-by-10 process, with the remainder after each
division operation indicating the correct decimal digit,

2. The subtraction-of-10 process,
3. Direct matrix conversion,
4. The use of forward-backward counters.

However, if the binary number assumes an appreciable magnitude,
then the equipment involved may become cumbersome, or the time
may not be available to perform the conversion.

In one system the decimal value of a binary number may be de-
termined by adding the powers of 2, as indicated by the binary
weighting (2", 2', 22, etc.) of the binary number. Convenient use is
made of the fact that when a binary number is shifted one bit
toward the most significant digit in a binary register, it is equivalent
to multiplying the binary number by 2. The shift register may be
divided into groups of four flip-flops, called decades. The first dec-
ade carries a decimal weighting of one; the second a decimal
weighting of ten; the third, a weighting of one hundred, etc. If a
serial binary number of N bits is shifted into the register with the
most significant digit first, the second bit will be doubled N-1 times
and the following bits by N-2 times, N-3 times, etc.

However, in shifting each of these bits from one decade (with a
decimal value of 8) to the next decade (with a decimal value of 10)

98

there is an error of 6. To correct this error, an adjustment process
must be made prior to each shift. The condition of each decade
should be sensed; and, if the value of a decade is 5 or greater, a
value of 3 must be added to that decade prior to the shift. The sim-
plest process by which 3 may be added to each decade is to use a
complementing process as shown below.

Binary/BCD(+3) Complement BCD/Binary (— 3)
5 8-4-1 8
6 8-4-2-1 9
7 8-4- 1 10
8 2-1 11
9 4-1 12

Since there is no propagation of a carry to a higher decade by this
method, each decade may be treated individually, and as many
decades may be cascaded as desired without any interconnecting
logic. One decade (4 flip-flops) is required for each decimal digit
desired.

99

Chapter 8

Switching Circuits
The preceding chapter covered the numbering system used in

most logical calculating circuits. This chapter includes switching
circuits, and their application to calculating circuits.

NON-SERIES PARALLEL CIRCUITS

There are limitations to the use of Boolean algebra in the design
and analysis of switching circuits. In general, Boolean algebra is a
convenient tool for the analysis of series and parallel circuits. There
are essentially no problems in representing a series or a parallel cir-
cuit by Boolean algebra expressions, or, conversely, of representing
a Boolean algebra expression by a series or parallel or combination
circuit.

There are, however, major problems in treating non-series parallel
circuits with the Boolean algebra techniques. Yet, it is possible by
the techniques shown in this section to convert many non-series paral-
lel circuits into their Boolean algebra form. In general, however, it is
not possible to take the Boolean algebra expression for a non-series
parallel circuit and from this expression derive the actual non-series
parallel electronic circuit that this represents. Only in special cases
that are discussed later is there a satisfactory technique for trans-
lating certain complex Boolean algebra expressions into their non-
series parallel circuit equivalents.

Consider Fig. 8-1A. This figure shows a 3-terminal network; these
three terminals are A, B, and C. This is representative of the basic
multi-terminal circuit that we will discuss. Considering the two
terminals, A and B, we can obtain a function that relates the switch-
ing elements between these two terminals. In the same terms we can
obtain a second function relating the switching circuits between A

100

A o— X

— I

--1--- X Y --1 Z

fl r f AB

f2 r f AC

B-

1

 OC

 Y

Z — X --0B

f 3 r f BC
(A) Three-terminal network.

/4\ z Y

A/ \ c

(B) Wye.

I X Y—
Ao

Z

f AB =(X-Y+Z)-(i(+Y)-Z- V

f AC =(X-Y+Z)-(+Y)-W-Z

f AD = (X -Y+ Z)*()—(+Y)41

B

XA X

/ \
/Y Z

AY — ZC

(C) Delta.

-- W — Z V-0B

Y

— Z —0C

W--0D

(D) Four-terminal network.

1— T — W

f AB r)(*(Y.7(+W" rW'T

f Ac =X -(Y --)-(+W)-T-(X+T-W)=W-T-X+W-T= X

f AD =X.(Y-ii+W)-T-(X+T-W)-Yr W-T-Y-(X+T-W)=X•W-T-Y+W-T-Y=W-T-Y

T — 0 B

X

(E) Variation of four-terminal network.

Fig. 8-1. Treatment of non-series parallel circuits.

C

101

Fig. 8-2. Star-to-mesh traniformation.

102

and C. The third function represents the switching circuits between
terminals B and C.
We can generalize the problem in transforming such a multi-

terminal circuit into a series-parallel circuit by considering the trans-
formation also shown in this figure. Fig. 8-1B is the wye circuit,
again having three terminals and three switches. However, there is a
common central point in the wye circuit where the three 2-terminal
circuits have a common point instead of a terminal. Fig. 8-1C shows
a delta circuit, which is a 3-terminal circuit in which the only com-
mon points of any pair of the three 2-terminal circuits are three
terminals A, B, and C. Thus the wye circuit and delta circuits are
equivalent. For example, in going from A to B of the wye circuit,
we must pass through X and Y. The same thing is true in the delta
circuit. In passing from points A to C we must pass through Y and
Z in either the wye circuit or the delta circuit. This is the wye to
delta transformation which is used in converting one circuit into the
other, and is one of the bases for translating non-series parallel cir-
cuits into their series-parallel equivalents. Figs. 8-1D and E are
other multi-terminal circuits.
An extension of this transformation is the star-to-mesh trans-

formation, which can be used for any number of terminals. Fig. 8-2
shows this transformation. In Fig. 8-2A there are four terminals
shown and four switches, which are W, X, Y, and Z. Note also that
there is a common point. In this transformation the first step is to
redraw the two connections as shown in Fig. 8-2B, one from A to
B and the other from B to C. Notice that the A to B connection has
switches X and Y in series, and the B to C connection has switches
Y and W in series. This can be seen from Fig. 8-2A.
Two of the remaining legs are shown in Fig. 8-2C. These are the

legs A to D and C to D. In Fig. 8-2D, the entire transformation is
shown, including the two additional legs from B to D and from A to
C. This same transformation can be redrawn as in Fig. 8-2E. The
common central point has now been eliminated. It is, in general, pos-
sible to apply the star-to-mesh transformation in order to convert
a circuit into one that may be treated by Boolean algebra.

Consider the bridge circuit shown in Fig. 8-3. This is a 2-terminal
non-series parallel circuit. There are four possibilities by which a
current flow could be completed from A to B. These four possibili-
ties are shown as four functions in the figure. For example, if switch
X and switch V were closed, there would be a complete path from
A to B. Also, if switches Y and Z were closed, there would be a
complete path. In the same manner a complete path would exist if
switches X, W, and Z were closed, or if switches Y, W, and V were
closed. Thus the complete function (AB) can be considered as four
possible paths.

103

A

CLOSED CASE

f1 = X•V

f 2 = Y. Z
13 = X•W•Z
f4 = Y•W•Z

OPEN CASE

fi =X+Y
f2 =V+Z
f3 =X+W+Z
f4 =Y+W+V

z

= fl + f2 + f3 + f4

fAB X•V+Y•Z+ X.W.Z+Y.W.Z

f AB = (f1)(f2)03)(f4)

fAB =(X+Y)•(V+Z)(X+W+Z).(Y+W+V)

Fig. 8-3. Two-terminal non-series parallel circuit.

Another alternative is to consider the possible ways in which this
circuit could be opened. If switches X and Y are both open, there
is no current flow. In the same manner if switches V and Z are both
open, there is no current flow. Two similar methods for preventing
current flow are to open the switches X, W, and Z or to open the
switches Y, W, and V. Thus, there are four possible ways of open-
ing the circuit. In this manner, it is possible to write a different ex-
pression for the same function. Based on this, we can take the bridge
circuit shown in Fig. 8-4A and redraw it as any of the three circuits
shown in Figs. 8-4B, C or D. All four of the circuits in Fig. 8-4 are
electrically equivalent.

SYMMETRIC FUNCTIONS

There is a special type of Boolean function that represents the
symmetric circuit. This is a type of non-series parallel circuit which
often occurs and for which established methods of solution are
known. A function is said to be symmetric if, and only if, the inter-
change of any pair of variables leaves the function unchanged.

Consider the three-function symmetric circuit shown in Fig. 8-5.
There are five terminals, A, B, C, D, and E. There are three func-
tions represented by both the functions and their complements. Note
that in this figure it is possible to interchange any pair of variables
and obtain exactly the same function. In order to have a closed cir-
cuit from A to C there are several possible paths. Each of the junc-
tions, 1, 2, 3, 4, and 5, are numbered for convenience. For ex-
ample, in going from point C to point A, we can have the three

104

1

(A)

X o

X 0- 0 W(3

X

oy

o W0-0 y

vc_l L_Ds
(B)

(C)

x v w+Ew+0
S Y

Y

(D)

Fig. 8-4. Electrically-equivalent bridge circuits.

closed switches; X, Y, and Z'. It is also possible to go from C to A
by means of X', Y, and Z. Another possible path is X, Y', and Z,
Note that we cannot go through the path X', Y, Y', Y, and Z' since

A o 2
2

Fig. 8-5. Circuit representing three symmetric functions.

Y and Y' cannot both be closed at the same time. In order to go
from C to A in this symmetric function of three variables, it is
necessary and sufficient that only two of the switches be closed.

105

In tracing the path from C to A there are several possibilities.
Consider first X and Z. Regardless of the condition of Y, there can
be a closed path from C to A by stipulating the condition of X and
Z. For example, if Y is closed (Y = 1), the path can be X, Y and
Z' where, of course, Z' is closed. If, however, Y' is closed, then the
path is necessarily X, Y', and Z. In this manner, regardless of the
condition of switch Y, it is possible to go from C to A by defining
the position of only the two switches X and Z. Since at the moment
we are concerned only with the path from C to A, all of the ex-
traneous switches can be removed from the circuit. This results in the
circuit shown in Fig. 8-6, which is extracted from Fig. 8-5. An in-

X

A Z y

Fig. 8-6. Simplified version of Fig. 8-5.

spection of this circuit shows that it is the same as that shown in
Fig. 8-7.

Y

Fig. 8-7. Fig. 8-5 presented in familiar bridge form.

RELAY CONTROL CIRCUITS

In the preceding discussions, a switch is considered as an idealized
circuit element. This means a circuit in which it is possible to open
or close a switch instantaneously. In general, most of the discussions
in the earlier chapters have assumed a manually operated switch
such as a toggle switch. There are certain limitations, however, of
practical switches, and these are extremely significant.

In basic terms an electromagnetic relay, which can be considered
a form of switch, has a coil of wire wrapped around a pole piece.
There is also an armature that can be attracted or repelled by a
magnetic field. The armature is held in certain positions by a spring.

106

(A) Normally open (make). (B) Normally closed (break).

o

(C) Transfer (break-make).

Fig. 8-8. Types of relay contacts.

In Fig. 8-8, for example, there are three types of relay contacts
shown. The contact is the portion through which the current flows,
just as in a switch. Fig. 8-8A shows a make contact, which is nor-
mally open. This means that the spring keeps the armature posi-
tioned so that the contacts do not close during normal operation.
When current passes through the relay coil the armature is attracted
down, closing the open contacts. Fig. 8-8B shows a break contact,
which is normally closed. In this type of arrangement, the spring
keeps the armature positioned so that the two contacts provide elec-
trical continuity. When there is current flow through the electro-
magnet, the armature is pulled down, opening the contact and break-
ing the circuit, hence the name break contact.
A combination of these two is shown in Fig. 8-8C of the figure;

this is a transfer, or operating, contact. In normal operation the
armature is arranged so that the upper contact is closed, and the
lower contact is open. When current passes through the electro-
magnetic relay coil, the armature moves to open the upper contact
and close the lower contact. Fig. 8-9 shows a typical relay.

BREAK CONTACTS
(NORMALLY CLOSED)

TRANSFER
CONTACTS

ARMATURE

RELAY
COIL

MAKE CONTACTS
(NORMALLY OPEN)

Fig. 8-9. Typical power relay.

A typical relay control circuit is shown in Fig. 8-10. In operation,
a switch at A is closed. This causes current flow from the battery
through the relay coil (X) and pulls down both relay armatures. The
upper armature closes the contacts marked X. The lower armature

107

"r-

X

X
Fig. 8-10. Typical relay control circuit.

closes (the lower contacts) marked X and at the same time breaks
the X' contacts of the lower set. Thus there are three individual ac-
tions that take place in the circuit when switch A is closed.

It is possible to operate a relay on the opening of the switch, as
well as on the closing of the switch. Consider Fig. 8-11. There are
two parallel paths; one is through the switch, the electromagnetic
relay coil, and ground, and the other is through the switch, resistor
(R), battery (E), and ground. (The resistor is used to limit the cur-
rent flow while the switch is closed.) When this switch is open, cur-
rent from the battery flows through the relay coil and breaks the
contacts X' and engages the contacts marked X, as shown in Fig.
8-11. When the switch is closed, the relay coil is shorted out and

S

Fig. 8-11. Relay locking circuit.

the relay contacts return to normal, as shown by the dotted line.
There are a number of relay techniques that are extremely useful

in implementing Boolean algebra. One of these is the locking type

108

of circuit shown in Fig. 8-12. Suppose the relay that is normally
open has two control switches, one A and the other B. Ignoring

.. switch B for the moment (consider it to be open and left open), clos-
ing switch A allows current through the relay, and the relay contacts
close. If switch B is now closed, the relay stays in its closed position,
regardless of whether or not A is opened. There is a complete path
from minus to switch B, through relay contacts X, through the relay
coil, through the current source, and back to minus.

Fig. 8-12. Relay locking-circuit variation.

f XI 0 B

A

 .1111

Another very important relay switching consideration is the con-
tinuity or make-before-break arrangement. Here there are two sets of
relay contacts, X and X' (Fig. 8-13). When energy is applied to the
relay coil, the armature will first move to close the relay contacts X.
As the armature continues to move down it will break the relay con-
tacts X'. In this way there is a transfer from one circuit to another
through the relay.

Fig. 8-13. Make-before-break contact
arrangement.

Often in relay circuits a combination of switches can be used to
actuate the relay coil. For example, in Fig. 8-14A there are two
possibilities; the relay can be actuated by closing switch A or by
closing switches B and C. This is one way of arranging the circuit.
However, there are cases in which switch A is to be used in several
other places, and some form of isolation is needed. This isolation can
be accomplished by using a double coil relay, as shown in Fig. 8-14B,
with two current sources. This has the same overall operation as the
first circuit. However, since A controls its own relay coil and B and
C have a second separate relay coil, these two sets are isolated.

109

A

(A) Single relay coil.

(B) Multiple relay coils.

Fig. 8-14. Multiple switch control of relay.

A typical relay circuit configuration is shown in Fig. 8-15. There
are three relay coils, A, B, and C. As shown, A is normally open,
B is normally closed, and C is normally open. There is current flow
through C which actuates its relay contacts if relay coil B is not
operated and if relay coil A is operated (both conditions occurring

Hg. 8-15. Relay arrangement to obtain A • i.

110

at the same time). In this way, by a very simple logical arrangement
of A AND NOT B, we can obtain the function C.

--,

Y

DI X

Fig. 8-16. Using relays to implement algebraic expression.

Based upon the foregoing information, we can either design a
relay circuit from a given algebraic expression or develop the neces-
sary algebra from a given relay circuit. Consider Fig. 8-16; there are
two signal relays, X and Y. Each of these controls a set of contacts
that performs the work desired from the circuits. These in turn are
controlled by relays A, B, C, and D. We will look at this from the
standpoint of the circuitry rather than the algebra. Considering only
the relays A and B, it is clear from the circuit that there will be no
possibility for continuity and current flow unless A and B are in the
same state. If the relay coils are both energized, there is current
flow; if the relay coils are both de-energized there is current flow.
However, if one relay coil is energized and the other is not, therç
will be no current flow. This is one aspect of the circuit. Now look
at relay Y. Relay Y will be operated only if C is energized, and
A and B are in the same state. By similar reasoning, X is actuated
only if D is energized and A and B are in the same state. This is
the same as saying Y is true if C is true and if A and B are both
true, or A and B are both false. It is also the same as saying that X
is true if D is true and if A and B are both true, or A and B are
both false.

111

INDEX

Absorption property, 14
Algebra and symbolic logic, comparison of,

10
Algebra, circuit simplification by, 78-79
Amplifier symbols, 47

Basic logic rules, 14
Biconditional connective, 21
Binary

arithmetic. 91
counters, 93-94
counting sequence, 87
numbers. 89-91
register, 48
system, 10
to decimal conversion, 98-99
variable, 11-12

combination of
three, 12
two. 11

implementation of. 30
Boole, George, 7

Charting, circuit simplification by, 79-84
"Christmas tree" relay circuit, 37
Circuit

design, examples of. 33-41
simplification, 34
synthesis, 33

Circuits
and equations, 23-27
electronic. 14-15

Coded numbering systems, 92-93
Commutative principles,

implementation of, 31
Comparators, 98-98
Compound statement, truth table of. 19
Computing circuits, 58-64
Conditional connectives, 21
Connectives

applications, logical, 12-14
biconditional, 21
conditional.21
negation, 18

Contacts. 28
Content, expressed in words. 9-10

Disjunction
exclusive, 18
inclusive, 18

De Morgan, Augustus, 7
De Morgan's theorem, 14

Electronic
circuits, 14-15
switches, 22-23

Elements and sets, 65
Equations and circuits. 23-27
Exclusive disjunction, 18

Feedback counters. 95-98
Form, expressed in symbols, 10
Full-adder circuit. 62
Fundamental operations. 10-12

binary variable, 11-12

Half-adder circuit. 60
Half-subtracter circuit, 81

Identities, 14
Inclusive disjunction, 18

Logic
circuits, basic, 42
forms of, 24, 25. 28. 27
junction, basic, 43-44
NOR/NAND. 55-58

112

proportional, symbols of, 17
rules, basic, 14
symbolic, 9, 10
symbols, 88

Logical
blocks. 44-48
circuits, examples of. 35
connectives applications. 12-14
design, rules of, 28-33
junctions, negation of, 43
levels. 48-52
negation. 44
operations, 52-55
symbols, 59

Negation
connective, 18
logical, 44
of logical functions. 43

Non-series narallel circuits, 100-104
NOR/NAND logic, 55-58

Operations, fundamental. 10-12
binary variable, 11-12

Preset counters, 94-95
Propositional logic, symbols of. 17

Reflected cyclic codes, 92
Relay
AND circuit, 38
circuit, "Christmas tree." 37
control circuits. 108-111
switching circuit, 38

Ring counters, 94
Rules of

algebra, 73-76
logical design, 28-33

Schmitt trigger symbol, 47
Sequence switching, 40
Sequential or timed logic, 85-88
Sets

application, 70-72
operation on, 69-70

Shannon, Dr. Claude E. 8
Shift registers, 46, 94
Single-shot symbol, 47
Star-to-mesh transformation, 102
Statement variables, 9
Switch circuits, simple, 35
Switches, electronic, 22-23
Switching

algebra and circuits, 76-78
multiple-contact, 35-41

Symbolic logic, 9-10
Symbolism. 28
Symbols of the propositional logic, 17
Symmetric functions. 104-106
Synthesis, circuit, 33

Theorem, De Morgan's, 14
Three-bit, flip-flop counter, 87
Time delay symbol. 48
Truth tables, 17, 18, 19, 20, 21, 22, 77, 78,

80, 85
Truth value, 9

Variable, binary, 11-12
Variables, statement, 9
Venn diagrams, 87
von Leibniz, Gottfried Wilhelm, 7

X AND Y network, 29
X OR Y network. 29
X (X -I- Y), implementation of, 31

••••••

O

abc's of
Booleam Algebra

by ALLAN LYTEL

The language of today's digital systems is Boolean algebra. It is
the powerful mathematics by which digital computers reduce the
time and labor of toilsome calculations. For anyone wishing to
understand the logical functions of computer circuitry, a knowledge
of Boolean algebra is essential.

This book is divided into eight chapters, the first serving as an
introduction to symbolic logic and containing a discussion of some
of the logical connectives. It also provides an insight into how
electronic circuits can be used for logical functions. In the fol-
lowing chapters a relationship is established between electronic
switches and the language which represents these switches. The
development of logical circuitry and some of the principles of
logical design are explained with examples of these designs and
a discussion of multicontact switching.

Chapter seven covers the concept of numbering systems, showing.
how logical circuit elements and circuit blocks are used in com-
putation.

The final chapter covers switching circuits, treated in terms of
simple toggle switches and relay circuits with various modifica-
tions. This section is particularly important, since elaborate auto-
mation systems, complete telephone networks, and highly sophis-
ticated digital computers have been built using relay switching
circuits exclusively.

ABC's of Boolean Algebra is intended for anyone who is inter-
ested in knowing the basis on which logical circuitry is founded;
including engineers, electronic technicians, students, and experi-
menters. It will be especially useful to the nontechnical reader who,
although he may have no intention of designing or developing
complex machines, does want to know how it is done.

ABOUT THE AUTHOR

Allan Lytel, o graduate of both Temple and Syra-
cuse Universities, holds a Master of Science degree
in Journalism. He has taught mathematics and elec-
tronics at the Technical Institute of Temple University
and radar maintenance in the Army Signal Corps.
Author of more than a dozen books and innumerable
articles, he has prepared and conducted a course on
digital computers. Other SAMS books by Mr. Lytel
include: Handbook of Transistor Circuits; ABC's of
Computers; ABC's of Computer Programming; ABC's
of Model Radio Control; Industrial X-Ray Handbook;
Handbook of Electronic Charts & Homographs; Tran-
sistor Circuit Manual; and Automotive Electronics
Test Equipment. Currently Mr. Lytel is manager of
U.S. Electronic Publications, Inc., Syracuse, N. Y.

HOWARD W. SAMS & CO., INC.

THE BOBBS-MERRILL COMPANY, INC.

$1.95

BAB-1

