PostScript

third edition

spaTANS St

eurrgntecolor ¢
dering cutreni

~ugrrentcolonspace:.

. rtransfer 'curren

: currentglobal curre
urrenthalftone cu

Adobe Systems Incorporated

'World Radio Histol
e e e

PostScriQt®

LANGUAGE"REFERENCE
third edition

Adobe Systems Incorporated

A
vy

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts « Harlow, England » Menlo Park, California
Berkeley, California « Don Mills, Ontario « Sydney
Bonn ¢« Amsterdam ¢ Tokyo « Mexico City

Library of Congress Cataloging-in-Publication Data
PostScript language reference manual / Adobe Systems Incorporated. — 3rd ed.
p.- cm.

Includes bibliographical references and index.

ISBN 0-201-37922-8

1. PostScript (Computer program language) I. Adobe Systems.

QA76.73.P67 P67 1999

005.13'3—dc21 98-55489
CIP

© 19851999 Adobe Systems Incorporated. All rights reserved.
NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced
or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the
name PostScript in the text are references to the PostScript language as defined by Adobe
Systems Incorporated unless otherwise stated. The name PostScript also is used as a prod-
uct trademark for Adobe Systems’ implementation of the PostScript language interpreter.

» «

Except as otherwise stated, any mention of a “PostScript printer,” “PostScript software,” or
similar item refers to a product that contains PostScript technology created or licensed by
Adobe Systems Incorporated, not to one that purports to be merely compatible.

Adobe, Adobe Hlustrator, Adobe Type Manager, Chameleon, Display PostScript, Frame-
Maker, Minion, Myriad, Photoshop, PostScript, PostScript 3, and the PostScript logo are
trademarks of Adobe Systems Incorporated. LocalTalk, QuickDraw, and TrueType are
trademarks and Mac OS is a registered trademark of Apple Computer, Inc. Helvetica and
Times are registered trademarks of Linotype-Hell AG and/or its subsidiaries. Times New
Roman is a trademark of The Monotype Corporation registered in the U.S. Patent and
Trademark Office and may be registered in certain other jurisdictions. Unicode is a regis-
tered trademark of Unicode, Inc. PANTONE is a registered trademark and Hexachrome is
a trademark of Pantone, Inc. Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change
without notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect
to this publication, and expressly disclaims any and all warranties of merchantability, fit-
ness for particular purposes, and noninfringement of third-party rights.

ISBN 0-201-37922-8
123456789 CRS 0302010099
First printing February 1999

1.1
1.2
13
1.4
1.5

2.1
2.2
23
24

3.1
3.2
33
34
35
36
37
38
39
3.10
3n
3.12
313
3.14

4.1
4.2
43

Contents

Preface xiii

Chapter 1: Introduction 1

About This Book 3

Evolution of the PostScript Language 5
LanguageLevel 3 Overview 6

Related Publications 7

Copyrights and Trademarks 9

Chapter 2: Basicldeas 11

Raster Output Devices 11

Scan Conversion 12

Page Description Languages 13
Using the PostScript Language 15

Chapter 3: Language 23

Interpreter 24

Syntax 25

Data Types and Objects 34
Stacks 45

Execution 46

Overview of Basic Operators 51
Memory Management 56
File Input and Output 73
Named Resources 87
Functions 106

Errors 114

Early Name Binding 117
Filtered Files Details 123
Binary Encoding Details 156

Chapter 4: Graphics 175

Imaging Model 176
Graphics State 178
Coordinate Systems and Transformations

182

| Contents [

44 Path Construction 189
45 Painting 193

4.6 User Paths 197

4.7 Forms 206

48 ColorSpaces 210

49 Patterns 248

4.10 Images 288

Chapter 5: Fonts 313

5.1 Organization and Use of Fonts 313
5.2 Font Dictionaries 321

5.3 Character Encoding 328

54 Glyph Metric Information 331

55 FontCache 333

5.6 Unique ID Generation 335

57 Type3Fonts 337

5.8 Additional Base Font Types 343
59 Font Derivation and Modification 348
510 Composite Fonts 357

5.11 C(ID-Keyed Fonts 364

Chapter 6: Device Control 391

6.1 Using Page Devices 393

6.2 Page Device Parameters 398
6.3 In-RIP Trapping 439

6.4 Output Device Dictionary 455

Chapter 7: Rendering 457

7.1 CIE-Based Color to Device Color 459

7.2 Conversions among Device Color Spaces 473
7.3 Transfer Functions 478 -

7.4 Halftones 480

7.5 Scan Conversion Details 501

Chapter 8: Operators 505

8.1 Operator Summary 508
82 Operator Details 524

Appendix A: Languagelevel Feature Summary 725

Al Languagelevel 3 Features 725
A2 Languagelevel 2 Features 731
A3 Incompatibilities 735

| Contents

B.1
B.2

Cci
C2
Cc3
C4

D.1
D.2
D3
D.4

E1
E2
E3
E4
E5
E6
E7
E8
E9
E.10
E.11
E.12
E13

Appendix B: Implementation Limits 737

Typical Limits 738
Virtual Memory Use 742

Appendix C: Interpreter Parameters 745

Properties of User and System Parameters 746
Defined User and System Parameters 749
Details of User and System Parameters 753
Device Parameters 760

Appendix D: Compatibility Strategies 761

The Languagelevel Approach 761
When to Provide Compatibility 763
Compatibility Techniques 765
Installing Emulations 769

Appendix E: Character Sets and Encoding Vectors 773

Times Family 775

Helvetica Family 776

Courier Family 777

Symbol 778

Standard Latin Character Set 779
StandardEncoding Encoding Vector 784
ISOLatin1Encoding Encoding Vector 785
CE Encoding Vector 786

Expert Character Set 787

Expert Encoding Vector 790
ExpertSubset Encoding Vector 791
Symbol Character Set 792

Symbol Encoding Vector 794

Appendix F: System Name Encodings 795
Appendix G: Operator Usage Guidelines 801
Bibliography 811

INDEX 817

World Radio Histor

vii

Figures

21 How the PostScript interpreter and an application interact 16

3.1 Mapping with the Decode array 112
3.2 Homogeneous number array 161
33 Binary object sequence 164

4.1 The two squares produced by Example 4.1 186

4.2 Effects of coordinate transformations 188

43 Nonzero winding numberrule 195

4.4 Even-odd rule 196

4.5 Color specification 212

4.6 Color rendering 213

4.7 Component transformations in the CIEBasedABC color space 222

4.8 Component transformations in the CIEBasedA color space 229

4.9 CIEBasedDEFG pre-extension to the CIEBasedABC color space 232
4.10 Output from Example 4.21 256

4.1 Output from Example 4.23 259

4.12 Starting a new triangle in a free-form Gouraud-shaded triangle mesh 272
4.13 Connecting triangles in a free-form Gouraud-shaded triangle mesh 272
414 Varying the value of the edge flag to create different shapes 273

4.15 Lattice-form triangular meshes 275

4.6 Coordinate mapping from a unit square to a four-sided Coons patch 277
4.17 Painted area and boundary of a Coons patch 279

418 Color values and edge flags in Coons patch meshes 281

4,19 Edge connections in a Coons patch mesh 282

4.20 Control points in a tensor-product mesh 284

4.21 Typical sampled image 288

4,22 Image data organization and processing 293

4.23 Source image coordinate system 294

4.24 Mapping the source image 295

| Contents

viii

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.1

6.1
6.2

71
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.1

Results of Example 5.2 317

Glyphs painted in 50% gray 318

Glyph outlines treated as a path 319
Graphics clipped by a glyph path 320
Encoding scheme for Type 1 fonts 329
Glyph metrics 331

Relationship between two sets of metrics 333
Output from Example 5.6 341

Composite font mapping example 359
CID-keyed font basics 367

Type 0 CIDFont character processing 372

Trapping example 440
Sliding trap 452

Various halftoning effects 486

Halftone cell with a nonzero angle 493

Angled halftone cell divided into two squares 493

Halftone cell and two squares tiled across device space 494
Tiling of device space in a type 16 halftone dictionary 497
Rasterization without stroke adjustment 504

arc operator 530

arc operator example 531

arcn operator example 532
arct operator 533

arct operator example 533
curveto operator 565
imagemask example 609
setflat operator 669

Line cap parameter shapes 673
Line join parameter shapes 674
Miter length 676

2.1

3.1
3.2
3.3
34
3.5
3.6
3.7
38
3.9
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

3.22
3.23
3.24
3.25
3.26
3.27

4.1
4.2
4.3
4.4
4.5

Tables

Control characters for the interactive executive 21

White-space characters 27

Types of objects 34

Standard local dictionaries 65

Standard global dictionaries 66

Access strings 79

Standard filters 85

Regular resources 91

Resources whose instances are implicit 91

Resources used in defining new resource categories 92

Standard procedure sets in Languagelevel 3 96

Entries in a category implementation dictionary 101

Entries common to all function dictionaries 108

Additional entries specific to a type 0 function dictionary 109
Additional entries specific to a type 2 function dictionary 113
Additional entries specific to a type 3 function dictionary 114

Entries in the Serror dictionary 116

Entries in an LZWEncode or LZWDecode parameter dictionary 133
Typical LZW encoding sequence 135

Entries in a FlateEncode or FlateDecode parameter dictionary 138
Predictor-related entries in an LZW or Flate filter parameter dictionary 141
Entries in a CCITTFaxEncode or CCITTFaxDecode parameter

dictionary 144

Entries in a DCTEncode parameter dictionary 148

Entries in a SubFileDecode parameter dictionary (Languagelevel 3) 152
Entries in a ReusableStreamDecode parameter dictionary 155

Binary token interpretation 158

Number representation in header for a homogeneous number array 162
Object type, length, and value fields 166

Device-independent parameters of the graphics state 179
Device-dependent parameters of the graphics state 180
Operation codes for encoded user paths 201

Entries in a type 1 form dictionary 208

Entries in a CIEBasedABC color space dictionary 223

| Contents

e

4.6

4.7

4.8

4.9

4.10
4.1
4.12
4.13
4.14
4.15
4.16
4,17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18

6.1
6.2

Entries in a CIEBasedA color space dictionary 229

Additional entries specific to a CIEBasedDEF color space dictionary 233
Additional entries specific to a CIEBasedDEFG color space dictionary 235
Entries in a type 1 pattern dictionary 251

Entries in a type 2 pattern dictionary 260

Entries common to all shading dictionaries 262

Additional entries specific to a type 1 shading dictionary 265
Additional entries specific to a type 2 shading dictionary 266
Additional entries specific to a type 3 shading dictionary 268
Additional entries specific to a type 4 shading dictionary 270
Additional entries specific to a type 5 shading dictionary 275
Additional entries specific to a type 6 shading dictionary 279

Data values in a Coons patch mesh 282

Data values in a tensor-product patch mesh 287

Entries in a type 1 image dictionary 298

Typical Decode arrays 300

Entries in a type 3 image dictionary 304

Entries in an image data dictionary 305

Entries in a mask dictionary 306

Entries in a type 4 image dictionary 307

Fonttypes 322

Entries common to all font dictionaries 324

Additional entries common to all base fonts 325

Additional entries specific to Type 1 fonts 326

Entries in a Fontinfo dictionary 327

Additional entries specific to Type 3 fonts 338

Additional entries specific to Type 42 fonts 346

Additional entries specific to Type 0 fonts 357

FMapType mapping algorithms 360

Entries in a CIDSystemInfo dictionary 368

CIDFontType and FontType values 370

Entries common to all CIDFont dictionaries 370

Additional entries specific to Type 0 CIDFont dictionaries 373
Entries in a dictionary in FDArray 374

Entries replacing Subrs in the Private dictionary of an FDArray
dictionary 375

Additional entry specific to Type 1 CIDFont dictionaries 377
Additional entries specific to Type 2 CIDFont dictionaries 378
Entries in a CMap dictionary 383

Categories of page device parameters 399
Page device parameters related to media selection 400

| Contents

6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

741
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1

A1
A.2
A3
A4

B.1
8.2

C.1
c2

E.1

G.1

Page device parameters related to roll-fed media 412

Page device parameters related to page image placement 414
Page device parameters related to page delivery 417

Page device parameters related to color support 420

Page device parameters related to device initialization and page
setup 426

Page device parameter related to recovery policies 433
Entries in the Policies dictionary 433

Entries in a Type 1001 trapping details dictionary 442

Entries in a colorant details dictionary 443

Entries in a colorant subdictionary 444

Entries in a trapping parameter dictionary 447

Example of normal trapping rule 451

Entries in a ColorantZoneDetails dictionary 454

Entries in an output device dictionary 455

Entries in a type 1 CIE-based color rendering dictionary 463
Rendering intents 470

Types of halftone dictionaries 485

Entries in a type 1 halftone dictionary 487

Entries in a type 3 halftone dictionary 490

Entries in a type 6 halftone dictionary 491

Entries in a type 10 halftone dictionary 495

Entries in a type 16 halftone dictionary 496

Entries in a proprietary halftone dictionary 500

Operand and result types 506

Languagelevel 3 operators defined in procedure sets 726
New resource categories 727

New resource instances 727

New page device and interpreter parameters 728

Architectural limits 739
Typical memory limits in Languagelevel 1 741

User parameters 749
System parameters 751

Encoding vectors 773

Guidelines summary 802

World Radio Histor
B = —— e R R T

xiii

Preface

IN THE 1980S, ADOBE DEVISED a powerful graphics imaging model that over
time has formed the basis for the Adobe PostScript technologies. These technolo-
gies—a combination of the PostScript language and PostScript language—based
graphics and text-formatting applications, drivers, and imaging systems—have
forever changed the printing and publishing world by sparking the desktop and
digital publishing revolutions. Since their inception, PostScript technologies have
enabled unprecedented control of the look and feel of printed documents and
have changed the overall process for designing and printing them as well. The
capabilities PostScript makes possible have established it as the industry page de-
scription language standard.

Today, as never before, application developers and imaging systems vendors
support the PostScript language as the industry standard. We at Adobe accept our
responsibility as stewards of this standard to continually advance the standard in
response to the creative needs of the industry.

With this third advance of the language, which we call LanguageLevel 3, Adobe
has greatly expanded the boundaries of imaging capabilities made possible
through the PostScript language. This most recent advance has yielded significant
improvements in the efficiency and performance of the language as well as in the
quality of final output.

To complement the strengths of LanguageLevel 3, Adobe PostScript 3 imaging
system technologies have been engineered to exploit the new LanguageLevel 3
constructs to the fullest extent, fulfilling the Adobe commitment to provide
printing solutions for the broad spectrum of users.

No significant change comes without the concerted effort of many individuals.
The work to advance the PostScript language and to create Adobe PostScript 3
imaging system technologies is no exception. Our goal since the introduction of
the first Adobe imaging model has been nothing less than to provide the most in-
novative, meaningful imaging solutions in the industry. Dedicated Adobe em-
ployees and many industry partners have striven to make that goal a reality. We
take this opportunity to thank all those who contributed to this effort.

John Warnock and Chuck Geschke
February 1999

World Radio Histor

-

CHAPTER 1

Introduction

THE POSTSCRIPT® LANGUAGE is a simple interpretive programming lan-
guage with powerful graphics capabilities. Its primary application is to describe
the appearance of text, graphical shapes, and sampled images on printed or dis-
played pages, according to the Adobe imaging model. A program in this language
can communicate a description of a document from a composition system to a
printing system or control the appearance of text and graphics on a display. The
description is high-level and device-independent.

The page description and interactive graphics capabilities of the PostScript lan-
guage include the following features, which can be used in any combination:

Arbitrary shapes made of straight lines, arcs, rectangles, and cubic curves. Such
shapes may self-intersect and have disconnected sections and holes.

Painting operators that permit a shape to be outlined with lines of any thick-
ness, filled with any color, or used as a clipping path to crop any other graphic.
Colors can be specified in a variety of ways: grayscale, RGB, CMYK, and CIE-
based. Certain other features are also modeled as special kinds of colors: re-
peating patterns, smooth shading, color mapping, and spot colors.

Text fully integrated with graphics. In the Adobe imaging model, text charac-
ters in both built-in and user-defined fonts are treated as graphical shapes that
may be operated on by any of the normal graphics operators.

Sampled images derived from natural sources (such as scanned photographs)
or generated synthetically. The PostScript language can describe images sam-
pled at any resolution and according to a variety of color models. It provides a
number of ways to reproduce images on an output device.

| CHAPTER 1 | Introduction l

* A general coordinate system that supports all combinations of linear transfor-
mations, including translation, scaling, rotation, reflection, and skewing. These
transformations apply uniformly to all elements of a page, including text,
graphical shapes, and sampled images.

A PostScript page description can be rendered on a printer, display, or other out-
put device by presenting it to a PostScript interpreter controlling that device. As
the interpreter executes commands to paint characters, graphical shapes, and
sampled images, it converts the high-level PostScript description into the low-
level raster data format for that particular device.

Normally, application programs such as document composition systems, illustra-
tors, and computer-aided design systems generate PostScript page descriptions
automatically. Programmers generally write PostScript programs only when cre-
ating new applications. However, in special situations a programmer can write
PostScript programs to take advantage of capabilities of the PostScript language
that are not accessible through an application program.

The extensive graphics capabilities of the PostScript language are embedded in
the framework of a general-purpose programming language. The language
includes a conventional set of data types, such as numbers, arrays, and strings;
control primitives, such as conditionals, loops, and procedures; and some unusu-
al features, such as dictionaries. These features enable application programmers
to define higher-level operations that closely match the needs of the application
and then to generate commands that invoke those higher-level operations. Such a
description is more compact and easier to generate than one written entirely in
terms of a fixed set of basic operations.

PostScript programs can be created, transmitted, and interpreted in the form of
ASCII source text as defined in this book. The entire language can be described in
terms of printable characters and white space. This representation is convenient
for programmers to create, manipulate, and understand. It also facilitates storage
and transmission of files among diverse computers and operating systems, en-
hancing machine independence.

There are also binary encoded forms of the language for use in suitably controlled
environments—for example, when the program is assured of a fully transparent
communications path to the PostScript interpreter. Adobe recommends strict ad-
herence to the ASCII representation of PostScript programs for document inter-
change or archival storage.

1.1

I 1.1 | About This Book I

About This Book

This is the programmer’s reference for the PostScript language. It is the definitive
documentation for the syntax and semantics of the language, the imaging model,
and the effects of the graphics operators.

* Chapter 2, “Basic Ideas,” is an informal presentation of some basic ideas under-
lying the more formal descriptions and definitions to come in later chapters.
These include the properties and capabilities of raster output devices, require-
ments for a language that effectively uses those capabilities, and some pragmat-
ic information about the environments in which the PostScript interpreter
operates and the kinds of PostScript programs it typically executes.

* Chapter 3, “Language,” introduces the fundamentals of the PostScript lan-
guage: its syntax, semantics, data types, execution model, and interactions with
application programs. This chapter concentrates on the conventional program-
ming aspects of the language, ignoring its graphical capabilities and use as a
page description language.

* Chapter 4, “Graphics,” introduces the Adobe imaging model at a device-
independent level. It describes how to define and manipulate graphical enti-
ties—lines, curves, filled areas, sampled images, and higher-level structures
such as patterns and forms. It includes complete information on the color
models that the PostScript language supports.

¢ Chapter 5, “Fonts,” describes how the PostScript language deals with text.
Characters are defined as graphical shapes, whose behavior conforms to the
imaging model presented in Chapter 4. Because of the importance of text in
most applications, the PostScript language provides special capabilities for or-
ganizing sets of characters as fonts and for painting characters efficiently.

* Chapter 6, “Device Control,” describes how a page description communicates
its document processing requirements to the output device. These include page
size, media selection, finishing options, and in-RIP trapping.

* Chapter 7, “Rendering,” details the device-dependent aspects of rendering page
descriptions on raster output devices (printers and displays). These include
color rendering, transfer functions, halftoning, and scan conversion, each of
which is device-dependent in some way.

[CHAPTER 1 [Introduction |

* Chapter 8, “Operators,” describes all PostScript operators and procedures. The

chapter begins by categorizing operators into functional groups. Then the
operators appear in alphabetical order, with complete descriptions of their op-
erands, results, side effects, and possible errors.

The appendices contain useful tables and other auxiliary information.

Appendix A, “LanguageLevel Feature Summary,” summarizes the ways the
PostScript language has been extended with new operators and other features
over time.

Appendix B, “Implementation Limits,” describes typical limits imposed by im-
plementations of the PostScript interpreter—for example, maximum integer
value and maximum stack depth.

Appendix C, “Interpreter Parameters,” specifies various parameters to control
the operation and behavior of the PostScript interpreter. Most of these parame-
ters have to do with allocation of memory and other resources for specific pur-
poses.

Appendix D, “Compatibility Strategies,” helps PostScript programmers take
advantage of newer PostScript language features while maintaining compatibil-
ity with the installed base of older PostScript interpreter products.

Appendix E, “Character Sets and Encoding Vectors,” describes the organization
of common fonts that are built into interpreters or are available as separate
software products.

Appendix F, “System Name Encodings,” assigns numeric codes to standard
names, for use in binary-encoded PostScript programs.

Appendix G, “Operator Usage Guidelines,” provides guidelines for PostScript
operators whose use can cause unintended side effects, make a document
device-dependent, or inhibit postprocessing of a document by other programs.

The book concludes with a Bibliography and an Index.

The enclosed CD-ROM contains the entire text of this book in Portable Docu-
ment Format (PDF).

5
1 1.2 | Evolution of the PostScript Language J

1.2 Evolution of the PostScript Language

Since its introduction in 1985, the PostScript language has been considerably ex-
tended for greater programming power, efficiency, and flexibility. Typically, these
language extensions have been designed to adapt the PostScript language to new
imaging technologies or system environments. While these extensions have intro-
duced significant new functionality and flexibility to the language, the basic
imaging model remains unchanged.

Extensions are organized into major groups, called Languagelevels. Three
LanguageLevels have been defined, numbered 1, 2, and 3. Each LanguageLevel
encompasses all features of previous LanguageLevels as well as a significant num-
ber of new features. A PostScript interpreter claiming to support a given
LanguageLevel must implement all features defined in that LanguageLevel and
lower. Thus, for example, a feature identified in this book as “LanguageLevel 2” is
understood to be available in all LanguageLevel 3 implementations as well.

This book documents the entire PostScript language, which consists of three dis-
tinct groups of features. Features that are part of the LanguageLevel 2 or
LanguageLevel 3 additions are clearly identified as such. Features that are not
otherwise identified are LanguageLevel 1.

A PostScript interpreter can also support extensions that are not part of its base
LanguageLevel. Some such extensions are specialized to particular applications,
while others are of general utility and are candidates for inclusion in a future
LanguageLevel.

The most significant special-purpose extension is the set of features for the
Display PostScript® system. Those features enable workstation applications to use
the PostScript language and the Adobe imaging model for managing the appear-
ance of the display and for interacting with the workstation’s windowing system.
The Display PostScript extensions were documented in the second edition of this
book but have been removed for this edition. Further information is available in
the Display PostScript System manuals.

Appendix D describes strategies for writing PostScript programs that can run
compatibly on interpreters supporting different LanguageLevels. With some care,
a program can take advantage of features in a higher LanguageLevel when avail-
able but will still run acceptably when those features are not available.

1.3

I CHAPTER 1 | Introduction

Languagelevel 3 Overview

In addition to unifying many previous PostScript language extensions, Language-
Level 3 introduces a number of new features. This section summarizes those fea-
tures, for the benefit of readers who are already familiar with LanguageLevel 2.

* Functions. A PostScript function is a self-contained, static description of a
mathematical function having one or more arguments and one or more results.

* Filters. Three filters have been added, named FlateDecode, FlateEncode, and
ReusableStreamDecode. Some existing filters accept additional optional
parameters.

* Idiom recognition. The bind operator can find and replace certain commonly
occurring procedures, called idioms, typically appearing in application prologs.
The substituted procedure achieves equivalent results with significantly im-
proved performance or quality. This enables LanguageLevel 3 features to work
in applications that have not yet been modified to use those features directly.

* Clipping path stack. The clipsave and cliprestore operators save and restore just
the clipping path without affecting the rest of the graphics state.

* Color spaces. Three color spaces have been added: CIEBasedDEF and CIEBased-
DEFG provide increased flexibility for specifying device-independent colors;
DeviceN provides a means of specifying high-fidelity and multitone colors.

* Color space substitution. Colors that have been specified in DeviceGray,
DeviceRGB, or DeviceCMYK color spaces can be remapped into CIE-based
color spaces. This capability can be useful in a variety of circumstances, such as
for redirecting output intended for one device to a different one or for pro-
ducing CIE-based colors from an application that generates LanguageLevel 1
output only (and thus is unable to specify them directly).

* Smooth shading. It is now possible to paint with a color that varies smoothly
over the object or region being painted.

* Masked images. A sampled image can be clipped by a mask as it is painted. The
mask can be represented explicitly or encoded with a color key in the image
data. This enables the background to show through parts of the image.

* CID-keyed fonts. This font organization provides a convenient and efficient
means for defining multiple-byte character encodings and for creating base
fonts containing a very large number of character descriptions.

1.4

1.4.1

l 1.4 | Related Publications _I

* Font formats. Support has been added for additional types of base fonts, includ-
ing CFF (Compact Font Format), Chameleon®, TrueType™, and bitmap fonts.

* Device setup. There are many additional page device parameters to control col-
orant selection, finishing options, and other features. Any device can now pro-
duce arbitrary separations, even in a monochrome printing system (which can
mark only one colorant at a time).

* In-RIP trapping. Certain products support trapping, which is the automatic
generation of overlaps to correct for colorant misregistration during the print-
ing process.

* Color rendering intent. A PostScript program can specify a rendering intent for
color reproduction, causing automatic selection of an appropriate CIE-based
color rendering dictionary.

* Halftones. Several standard halftone types have been added. They include 16-
bit threshold arrays and more flexible tiling organizations for improved color
accuracy on high-resolution devices. Halftone supercells increase the number
of gray levels achievable on low-resolution devices.

Related Publications

A number of publications related to this book are listed in the Bibliography; some
notable ones are mentioned here. For more details, see the Bibliography.

The Supplement

The PostScript Language Reference Supplement documents PostScript language
extensions that are available in certain releases of Adobe PostScript® software. A
new edition of the Supplement is published along with each major release of
Adobe PostScript software.

The Supplement documents three major classes of extensions:

* New PostScript language features that have been introduced since the most re-
cent LanguageLevel and that are candidates for inclusion in the next Language-
Level.

* Extensions for controlling unique features of products, such as communication
parameters, print engine options, and so on. Certain PostScript language fea-
tures, such as setdevparams, setpagedevice, and the named resource facility,

| CHAPTER 1 [Introduction I

are designed to be extended in this way. Although the framework for this is a
standard part of the PostScript language, the specific extensions are product-
dependent.

* LanguageLevel 1 compatibility operators, principally in the statusdict diction-
ary. Those features were the LanguageLevel 1 means for controlling unique fea-
tures of products, but they have been superseded. They are not formally a part
of the PostScript language, but many of them are still supported in Adobe Post-
Script interpreters as a concession to existing applications that depend on
them.

1.4.2 Font Formats

PostScript interpreters support several standard formats for font programs, in-
cluding Adobe Type 1, CFF (Compact Font Format), TrueType, and CID-keyed
fonts. The PostScript language manifestations of those fonts are documented in
this book. However, the specifications for the font files themselves are published
separately, because they are highly specialized and are of interest to a different
user community. A variety of Adobe publications are available on the subject of
font formats, most notably the following:

* Adobe Type 1 Font Format and Adobe Technical Note #5015, Type 1 Font Format
Supplement

* Adobe Technical Note #5176, The Compact Font Format Specification

* Adobe Technical Note #5012, The Type 42 Font Format Specification

* Adobe Technical Note #5014, Adobe CMap and CID Font Files Specification

1.4.3 Document Structure

Some conventions have been established for the structure of PostScript programs
that are to be treated as documents. Those conventions, while not formally part
of the PostScript language, are highly recommended, since they enable interoper-
ability with applications that pay attention to them.

* Adobe Technical Note #5001, PostScript Language Document Structuring Con-
ventions Specification, describes a convention for structuring PostScript page
descriptions to facilitate their handling and processing by other programs.

L 1.5 1 Copyrights and Trademarks _l

* Adobe Technical Note #5002, Encapsulated PostScript File Format Specification,
describes a format that enables applications to treat each other’s output as in-
cluded illustrations.

1.4.4 Portable Document Format (PDF)

Adobe has specified another format, PDE, for portable representation of electron-
ic documents. PDF is documented in the Portable Document Format Reference
Manual.

PDF and the PostScript language share the same underlying Adobe imaging
model. A document can be converted straightforwardly between PDF and the
PostScript language; the two representations produce the same output when
printed. However, PDF lacks the general-purpose programming language frame-
work of the PostScript language. A PDF document is a static data structure that is
designed for efficient random access and includes navigational information suit-
able for interactive viewing.

1.5 Copyrights and Trademarks

The general idea of using a page description language is in the public domain.
Anyone is free to devise his or her own set of unique commands that constitute a
page description language. However, Adobe Systems Incorporated owns the
copyright for the list of operators and the written specification for Adobe’s Post-
Script language. Thus, these elements of the PostScript language may not be cop-
ied without Adobe’s permission. Additionally, Adobe owns the trademark
“PostScript,” which is used to identify both the PostScript language and Adobe’s
PostScript software.

Adobe will enforce its copyright and trademark rights. Adobe’s intentions are to:

* Maintain the integrity of the PostScript language standard. This enables the
public to distinguish between the PostScript language and other page descrip-
tion languages.

* Maintain the integrity of “PostScript” as a trademark. This enables the public
to distinguish between Adobe’s PostScript interpreter and other interpreters
that can execute PostScript language programs.

10
CHAPTER 1 I Introduction

However, Adobe desires to promote the use of the PostScript language for in-
formation interchange among diverse products and applications. Accordingly,
Adobe gives permission to anyone to:

* Write programs in the PostScript language.

* Write drivers to generate output consisting of PostScript language commands.

Write software to interpret programs written in the PostScript language.

Copy Adobe’s copyrighted list of commands to the extent necessary to use the
PostScript language for the above purposes.

The only condition of such permission is that anyone who uses the copyrighted
list of commands in this way must include an appropriate copyright notice. This
limited right to use the copyrighted list of commands does not include a right to
copy this book, other copyrighted publications from Adobe, or the software in
Adobe’s PostScript interpreter, in whole or in part.

The trademark PostScript® (or a derivative trademark, such as PostScript® 3™)
may not be used to identify any product not originating from or licensed by
Adobe. However, it is acceptable for a non-Adobe product to be described as be-
ing PostScript-compatible and supporting a specific LanguageLevel, assuming
that the claim is true.

2.1

1"

CHAPTER 2

Basic Ideas

OBTAINING A COMPLETE UNDERSTANDING of the PostScript language
requires considering it from several points of view:

* As a general-purpose programming language with powerful built-in graphics
primitives

* Asa page description language that includes programming features

* As an interactive system for controlling raster output devices (printers and
displays)

* As an application- and device-independent interchange format for page de-
scriptions

This chapter presents some basic ideas that are essential to understanding the
problems the PostScript language is designed to solve and the environments in
which it is designed to operate. Terminology introduced here appears throughout
the manual.

Raster Output Devices

Much of the power of the PostScript language derives from its ability to deal with
the general class of raster output devices. This class encompasses such technology
as laser, dot-matrix, and ink-jet printers, digital imagesetters, and raster scan
displays.

The defining property of a raster output device is that a printed or displayed im-
age consists of a rectangular array of dots, called pixels (picture elements), that
can be addressed individually. On a typical black-and-white output device, each
pixel can be made either black or white, On certain devices, each pixel can be set

2.2

12
I CHAPTER 2 [Basic Ideas l

to an intermediate shade of gray or to some color. The ability to individually set
the colors of pixels means that printed or displayed output can include text, arbi-
trary graphical shapes, and reproductions of sampled images.

The resolution of a raster output device is a measure of the number of pixels per
unit of distance along the two linear dimensions. Resolution is typically—but not
necessarily—the same horizontally and vertically.

Manufacturers’ decisions on device technology and price/performance tradeoffs
create characteristic ranges of resolution:

* Computer displays have relatively low resolution, typically 75 to 110 pixels per
inch.

* Dot-matrix printers generally range from 100 to 250 pixels per inch.

* Ink-jet and laser-scanned xerographic printing technologies are capable of
medium-resolution output of 300 to 1400 pixels per inch.

* Photographic technology permits high resolutions of 2400 pixels per inch or
more.

Higher resolution yields better quality and fidelity of the resulting output, but is
achieved at greater cost. As the technology improves and computing costs de-
crease, products evolve to higher resolutions.

Scan Conversion

An abstract graphical element (for example, a line, a circle, a text character, or a
sampled image) is rendered on a raster output device by a process known as scan
conversion. Given a mathematical description of the graphical element, this pro-
cess determines which pixels to adjust and what values to assign those pixels to
achieve the most faithful rendition possible at the device resolution.

The pixels on the page can be represented by a two-dimensional array of pixel
values in computer memory. For an output device whose pixels can be only black
or white, a single bit suffices to represent each pixel. For a device whose pixels can
reproduce gray shades or colors, multiple bits per pixel are required.

Note: Although the ultimate representation of a printed or displayed page is logically
a complete array of pixels, its actual representation in computer memory need not

2.3

l 2.3] Page Description Languages J

consist of one memory cell per pixel. Some implementations use other representa-
tions, such as display lists. The Adobe imaging model has been carefully designed not
to depend on any particular representation of raster memory.

For each graphical element that is to appear on the page, the scan converter sets
the values of the corresponding pixels. When the interpretation of the page de-
scription is complete, the pixel values in memory represent the appearance of the
page. At this point, a raster output process can make this representation visible
on a printed page or a display.

Scan-converting a graphical shape, such as a rectangle or a circle, involves deter-
mining which device pixels lie “inside” the shape and setting their values appro-
priately (for example, setting them to black). Because the edges of a shape do not
always fall precisely on the boundaries between pixels, some policy is required for
deciding which pixels along the edges are considered to be “inside” Scan-
converting a text character is conceptually the same as scan-converting an arbi-
trary graphical shape; however, characters are much more sensitive to legibility
requirements and must meet more rigid objective and subjective measures of
quality.

Rendering grayscale elements on a bilevel device—one whose pixels can only be
black or white—is accomplished by a technique known as halftoning. The array
of pixels is divided into small clusters according to some pattern (called the
halftone screen). Within each cluster, some pixels are set to black and some to
white in proportion to the level of gray desired at that place on the page. When
viewed from a sufficient distance, the individual dots become unnoticeable and
the result is a shade of gray. This enables a bilevel raster output device to repro-
duce shades of gray and to approximate natural images, such as photographs.
Some color devices use a similar technique.

Page Description Languages

Theoretically, an application program could describe any page as a full-page pixel
array. But this would be unsatisfactory, because the description would be bulky,
the pixel array would be device-dependent, and memory requirements would be
beyond the capacity of many personal computers.

A page description language should enable applications to produce files that are
relatively compact for storage and transmission, and independent of any particu-
lar output device.

2.3.1

23.2

14
CHAPTER 2 | Basic Ideas I

Imaging Model

In today’s computer printing industry, raster output devices with different prop-
erties are proliferating, as are the applications that generate output for those de-
vices. Meanwhile, expectations are also rising; typewriter emulation (text-only
output in a single typeface) is no longer adequate. Users want to create, display,
and print documents that combine sophisticated typography and graphics.

A high-level imaging model enables an application to describe the appearance of
pages containing text, graphical shapes, and sampled images in terms of abstract
graphical elements rather than in terms of device pixels. Such a description is
economical and device-independent. It can be used to produce high-quality out-
put on many different printers and displays.

A page description language is a language for expressing an imaging model. An
application program produces printed output through a two-stage process:

1. The application generates a device-independent description of the desired
output in the page description language.

2. A program controlling a specific raster output device interprets the descrip-
tion and renders it on that device.

The two stages may be executed in different places and at different times; the page
description language serves as an interchange standard for transmission and stor-
age of printable or displayable documents.

Static versus Dynamic Formats
A page description language may have either a static or a dynamic format.

* A static format provides some fixed set of operations and a syntax for specifying
the operations and their arguments. Static formats have been in existence since
computers first used printers; classic examples are format control codes for line
printers and “format effector” codes in standard character sets. Historically,
static formats have been designed to capture the capabilities of a specific class
of printing device and have evolved to include new features as needed.

* A dynamic format allows more flexibility than a static format. The operator set
may be extensible and the exact meaning of an operator may not be known un-
til it is actually encountered. A page described in a dynamic format is a pro-

L 2.4 1 Using the PostScript Language J

gram to be executed, rather than data to be consumed. Dynamic page
description languages contain elements of programming languages, such as
procedures, variables, and control constructs.

The PostScript language design is dynamic. The language includes a set of primi-
tive graphics operators that can be combined to describe the appearance of any
printed or displayed page. It has variables and allows arbitrary computations
while interpreting the page description. It has a rich set of programming-
language control structures for combining its elements.

2.4 Using the PostScript Language

It is important to understand the PostScript interpreter and how it interacts with
applications using it.

2.4.1 The Interpreter

The PostScript interpreter controls the actions of the output device according to
the instructions provided in a PostScript program generated by an application.
The interpreter executes the program and produces output on a printer, display,
or other raster device.

There are three ways the PostScript interpreter and the application interact
(Figure 2.1 illustrates these scenarios):

* In the conventional output-only printing model, the application creates a page
description—a self-contained PostScript language description of a document.
The page description can be sent to the PostScript interpreter immediately or
stored for transmission at some other time (via an intermediate print manager
or spooler, for example). The interpreter consumes a sequence of page descrip-
tions as “print jobs” and produces the requested output. The output device is
typically a printer, but it can be a preview window on a workstation’s display.
The PostScript interpreter is often implemented on a dedicated processor that
has direct control over the raster output device.

* In the integrated display model, an application interacts with the PostScript
interpreter controlling a display or windowing system. Instead of a one-way
transmission of a page description, a two-way interactive session takes place
between the application and the interpreter. In response to user actions, the

L CHAPTER 2

Basic Ideas _I

application issues commands to the PostScript interpreter and sometimes reads
information back from it.

* In the interactive programming language model, an interactive session takes
place directly between a programmer and the PostScript interpreter; the pro-
grammer issues PostScript commands for immediate execution. Many Post-
Script interpreters (for both printers and displays) have a rudimentary
interactive executive to support this mode of use; see Section 2.4.4, “Using the
Interpreter Interactively.”

Application

Application

Page

description

Integrated display model

Conventional output-only printing model

Human
programmer

Interactive session

Interactive programming language model

PostScript Printer or
interpreter preview device
PostScript Interactive
interpreter display
PostScript Any
interpreter device

Interactive session

FIGURE 2.1 How the PostScript interpreter and an application interact

Even when a PostScript interpreter is being used noninteractively to execute page
descriptions prepared previously, there may be some dynamic interactions be-
tween the print manager or spooler and the PostScript interpreter. For example,
the sender may ask the PostScript interpreter whether certain fonts referenced by
a document are available. This is accomplished by sending the interpreter a short
program to read and return the information. The PostScript interpreter makes no
distinction between a page description and a program that makes environmental
queries or performs other arbitrary computations.

2.4.2

l 2.4 | Using the PostScript Language J

To facilitate document interchange and document management, a page descrip-
tion should conform to the structuring conventions discussed below. The struc-
turing conventions do not apply in an interactive session, since there is no notion
that the information being communicated represents a document to be preserved
for later execution; a session has no obvious overall structure.

Program Structure

A well-structured PostScript page description generally consists of two parts: a
prolog followed by a script. There is nothing in the PostScript language that for-
mally distinguishes the prolog from the script or imposes any overall document
structure. Such structuring is merely a convention, but one that is quite useful
and is reccommended for most applications.

* The prolog is a set of application-specific procedure definitions that an applica-
tion may use in the execution of its script. It is included as the first part of every
PostScript file generated by the application. It contains definitions that match
the output functions of the application with the capabilities supported by the
PostScript language.

* The script is generated automatically by the application program to describe
the specific elements of the pages being produced. It consists of references to
PostScript operators and to procedure definitions in the prolog, together with
operands and data. The script, unlike the prolog, is usually very stylized, repet-
itive, and simple.

Dividing a PostScript program into a prolog and a script reduces the size of each
page description and minimizes data communication and disk storage. An exam-
ple may help explain the purpose of a separate prolog and script. One of the most
common tasks in a PostScript program is placing text at a particular location on
the current page. This is really two operations: “moving” the current point to a
specific location and “showing” the text. A program is likely to do this often, so it
is useful for the prolog to define a procedure that combines the operations:

/ms {moveto show} bind def

Later, the script can call the ms procedure instead of restating the individual op-
erations:

(some text) 100 200 ms

18
| CHAPTER 2 [Basic Ideas |

The script portion of a printable document ordinarily consists of a sequence of
separate pages. The description of an individual page should stand by itself, de-
pending only on the definitions in the prolog and not on anything in previous
pages of the script. The language includes facilities (described in Section 3.7,
“Memory Management”) that can be used to guarantee page independence.

Adobe has established conventions to make document structure explicit. These
document structuring conventions appear in Adobe Technical Note #5001, Post-
Script Language Document Structuring Conventions Specification. Document
structure is expressed in PostScript comments; the interpreter pays no attention
to them. However, there are good reasons to adhere to the conventions:

* Utility programs can operate on structured documents in various ways: change
the order of pages, extract subsets of pages, embed individual pages within oth-
er pages, and so on. This is possible only if the original document maintains
page independence.

* Print managers and spoolers can obtain useful information from a properly
structured document to determine how the document should be handled.

* The structuring conventions serve as a good basis for organizing printing from
an application.

An application has its own model of the appearance of printable output that it
generates. Some parts of this model are fixed for an entire document or for all
documents; the application should incorporate their descriptions into the prolog.
Other parts vary from one page to another; the application should produce the
necessary descriptions of these as they appear. At page boundaries, the applica-
tion should generate commands to restore the standard environment defined by
the prolog and then explicitly reestablish nonstandard portions of the environ-
ment for the next page. This technique ensures that each page is independent of
any other.

The structuring conventions also include standard methods for performing envi-

ronmental queries. These conventions ensure consistent and reliable behavior in
a variety of system environments, including those with print spoolers.

2.4.3 Translating from Other Print Formats

Many existing applications generate printable documents in some other print file
format or in some intermediate representation. It is possible to print such docu-

244

19
I 2.4 | Using the PostScript Language

ments by translating them into PostScript page descriptions. There are two sce-
narios in which this need arises:

* An application describes its printable output by making calls to an application
programming interface, such as GDI in Microsoft Windows® or QuickDraw™
in the Apple Mac® OS. A software component called a printer driver interprets
these calls and produces a PostScript page description.

* An application produces printable output directly in some other file format,
such as PCL, HPGL, or DVI. A separate program must then translate this file
into a PostScript page description.

Implementing a driver or translator is often the least expensive way to interface
an existing application to a PostScript printer. Unfortunately, while such transla-
tion is usually straightforward, a translator may not be able to generate page
descriptions that make the best use of the high-level Adobe imaging model. This
is because the information being translated often describes the desired results at a
level that is too low; any higher-level information maintained by the original ap-
plication has been lost and is not available to the translator.

While direct PostScript output from applications is most desirable, translation
from another print format may be the only choice available for some applica-
tions. A translator should do the best it can to produce output that conforms to
the document structuring conventions (see Technical Note #5001). This ensures
that such output is compatible with the tools for manipulating PostScript page
descriptions.

Using the Interpreter Interactively

Normally, the interpreter executes PostScript programs generated by application
programs; a user does not interact with the PostScript interpreter directly. How-
ever, many PostScript interpreters provide an interactive executive that enables a
user to control the interpreter directly. That is, from a terminal or terminal emu-
lator connected directly to the PostScript interpreter, you can issue commands
for immediate execution and control the operation of the interpreter in limited
ways. This is useful for experimentation and debugging.

To use the interpreter this way, you must first connect your keyboard and display
directly to the standard input and output channels of the PostScript interpreter,
so that characters you type are sent directly to the interpreter and characters the

20

| CHAPTER 2 | Basic Idezﬂ‘

interpreter sends appear on the screen. How to accomplish this depends on the
product. A typical method is to connect a personal computer running terminal
emulation software to a PostScript printer, either by direct physical connection or
by establishing communication over a network.

Once the input and output connections are established, you can invoke the inter-
active executive by typing

executive

(all lowercase) and pressing the Return key. The interpreter responds with a
herald, such as

PostScript(r) Version 3010.106

Copyright (c) 1984-1998 Adobe Systems incorporated.
All Rights Reserved.

PS>

The PS> prompt is an indication that the PostScript interpreter is waiting for a
command.

Each time you type a complete PostScript statement followed by the Return key,
the interpreter executes that statement and then sends another PS> prompt. If the
statement causes the interpreter to send back any output (produced by execution
of the print or = operator, for example), that output appears before the PS>
prompt. If the statement causes an error to occur, an error message appears be-
fore the PS> prompt; control remains in the interactive executive, whereas errors
normally cause a job to terminate. The interactive executive remains in operation
until you invoke the quit operator or enter a channel-dependent end-of-file indi-
cation (for example, Control-D for a serial connection).

The interactive executive provides a few simple amenities. While you are typing,
the interpreter ordinarily “echoes” the typed characters (sends them back to your
terminal so that you can see them). You can use the control characters in
Table 2.1 to make corrections while entering a statement.

I 2.4 1 Using the PostScript Language _l

TABLE 2.1 Control characters for the interactive executive

CHARACTER FUNCTION

Backspace (BS) Backs up and erases one character.

Delete (DEL) Same as backspace.

Control-U Erases the current line.

Control-R Redisplays the current line.

Control-C Aborts the entire statement and starts over. Control-C can also

abort a statement that is executing and force the executive to revert
to a PS> prompt.

There are several important things to understand about the interactive executive:

* Itis intended solely for direct interaction with the user; an application that is
generating PostScript programs should never invoke executive. In general, a
PostScript program will behave differently when sent through the interactive
executive than when executed directly by the PostScript interpreter. For exam-
ple, the executive produces extraneous output such as echoes of the input char-
acters and PS> prompts. Furthermore, a program that explicitly reads data
embedded in the program file will malfunction if invoked via the executive,
since the executive itself is interpreting the file.

* The user amenities are intentionally minimal. The executive is not a full-scale
programming environment; it lacks a text editor and other tools required for
program development and it does not keep a record of your interactive session.
The executive is useful mainly for experimentation and debugging.

* The executive operator is not necessarily available in all PostScript interpreters.
Its behavior may vary among different products.

'World Radio Histor;
e e — e — .

23

CHAPTER 3

Language

SYNTAX, DATA TYPES, AND EXECUTION SEMANTICS are essential aspects
of any PostScript program. Later chapters document the graphics and font capa-
bilities that specialize PostScript programs to the task of controlling the appear-
ance of a printed page. This chapter explains the PostScript language as a
programming language.

Like all programming languages, the PostScript language builds on elements and
ideas from several of the great programming languages. The syntax most closely
resembles that of the programming language FORTH. It incorporates a postfix
notation in which operators are preceded by their operands. The number of spe-
cial characters is small and there are no reserved words.

Note: Although the number of built-in operators is large, the names that represent
operators are not reserved by the language. A PostScript program may change the
meanings of operator names.

The data model includes elements, such as numbers, strings, and arrays, that are
found in many modern programming languages. It also includes the ability to
treat programs as data and to monitor and control many aspects of the language’s

execution state; these notions are derived from programming languages such as
LISP.

The PostScript language is relatively simple. It derives its power from the ability
to combine these features in unlimited ways without arbitrary restrictions.
Though you may seldom fully exploit this power, you can design sophisticated
graphical applications that would otherwise be difficult or impossible.

Because this is a reference book and not a tutorial, this chapter describes each as-
pect of the language systematically and thoroughly before moving on to the next.

3.1

24
| CHAPTER 3 | Language |

It begins with a brief overview of the PostScript interpreter. The following sec-
tions detail the syntax, data types, execution semantics, memory organization,
and general-purpose operators of the PostScript language (excluding those that
deal with graphics and fonts). The final sections cover file input and output,
named resources, function dictionaries, errors, how the interpreter evaluates
name objects, and details on filtered files and binary encoding.

Interpreter

The PostScript interpreter executes the PostScript language according to the rules
in this chapter. These rules determine the order in which operations are carried
out and how the pieces of a PostScript program fit together to produce the de-
sired results. '

The interpreter manipulates entities called PostScript objects. Some objects are
data, such as numbers, boolean values, strings, and arrays. Other objects are ele-
ments of programs to be executed, such as names, operators, and procedures.
However, there is not a distinction between data and programs; any PostScript
object may be treated as data or be executed as part of a program.

The interpreter operates by executing a sequence of objects. The effect of exe-
cuting a particular object depends on that object’s type, attributes, and value. For
example, executing a number object causes the interpreter to push a copy of that
object on the operand stack (to be described shortly). Executing a name object
causes the interpreter to look up the name in a dictionary, fetch the associated
value, and execute it. Executing an operator object causes the interpreter to
perform a built-in action, such as adding two numbers or painting characters in
raster memory.

The objects to be executed by the interpreter come from two principal sources:

* A character stream may be scanned according to the syntax rules of the Post-
Script language, producing a sequence of new objects. As each object is
scanned, it is immediately executed. The character stream may come from an
external source, such as a file or a communication channel, or it may come
from a string object previously stored in the PostScript interpreter’s memory.

* Objects previously stored in an array in memory may be executed in sequence.
Such an array is known as a procedure.

l 3.2 i jS Syntax _l

The interpreter can switch back and forth between executing a procedure and
scanning a character stream. For example, if the interpreter encounters a name in
a character stream, it executes that name by looking it up in a dictionary and re-
trieving the associated value. If that value is a procedure object, the interpreter
suspends scanning the character stream and begins executing the objects in the
procedure. When it reaches the end of the procedure, it resumes scanning the
character stream where it left off. The interpreter maintains an execution stack for
remembering all of its suspended execution contexts.

3.2 Syntax

As the interpreter scans the text of a PostScript program, it creates various types
of PostScript objects, such as numbers, strings, and procedures. This section dis-
cusses only the syntactic representation of such objects. Their internal representa-
tion and behavior are covered in Section 3.3, “Data Types and Objects.”

There are three encodings for the PostScript language: ASCII, binary token, and
binary object sequence. The ASCII encoding is preferred for expository purposes
(such as this book), for archiving documents, and for transmission via communi-
cations facilities, because it is easy to read and does not rely on any special charac-
ters that might be reserved for communications use. The two binary encodings
are usable in controlled environments to improve the efficiency of representation
or execution; they are intended exclusively for machine generation. Detailed in-
formation on the binary encodings is provided in Section 3.14, “Binary Encoding
Details.”

3.2.1 Scanner

The PostScript language differs from most other programming languages in that
it does not have any syntactic entity for a “program,” nor is it necessary for an en-
tire “program” to exist in one place at one time. There is no notion of “reading in”
a program before executing it. Instead, the PostScript interpreter consumes a pro-
gram by reading and executing one syntactic entity at a time. From the interpret-
er’s point of view, the program has no permanent existence. Execution of the
program may have side effects in the interpreter’s memory or elsewhere. These
side effects may include the creation of procedure objects in memory that are in-
tended to be invoked later in the program; their execution is deferred.

3.22

26

| CHAPTER 3 | Language

It is not correct to think that the PostScript interpreter “executes” the character
stream directly. Rather, a scanner groups characters into tokens according to the
PostScript language syntax rules. It then assembles one or more tokens to create a
PostScript object—in other words, a data value in the interpreter’s memory.
Finally, the interpreter executes the object.

For example, when the scanner encounters a group of consecutive digits sur-
rounded by spaces or other separators, it assembles the digits into a token and
then converts the token into a number object represented internally as a binary
integer. The interpreter then executes this number object; in this case, it pushes a
copy of the object on the operand stack.

ASCII Encoding

The standard character set for ASCII-encoded PostScript programs is the visible
printable subset of the ASCII character set, plus characters that appear as “white
space,” such as space, tab, and newline characters. ASCII is the American Stan-
dard Code for Information Interchange, a widely used convention for encoding
characters as binary numbers. ASCII encoding does not prohibit the use of char-
acters outside this set, but such use is not recommended, because it impairs port-
ability and may make transmission and storage of PostScript programs more
difficult.

Note: Control characters are often usurped by communications functions. Control
codes are device-dependent—not part of the PostScript language. For example, the
serial communication protocol supported by many products uses the Control-D
character as an end-of-file indication. In such cases, Control-D is a communications
function and should not be part of a PostScript program.

White-space characters (Table 3.1) separate syntactic constructs such as names
and numbers from each other. The interpreter treats any number of consecutive
white-space characters as if there were just one. All white-space characters are
equivalent, except in comments and strings.

The characters carriage return (CR) and line feed (LF) are also called newline
characters. The combination of a carriage return followed immediately by a line
feed is treated as one newline.

l 3.2] - Syntax_l

TABLE 3.1 White-space characters

OCTAL HEXADECIMAL DECIMAL NAME

000 00 0 Null (nul)

011 09 9 Tab (tab)

012 0A 10 Line feed (LF)

014 0C 12 Form feed (FF)

015 0D 13 Carriage return (CR)
040 20 32 Space (SP)

The characters (,), <, >, [, 1, {,}, /, and % are special. They delimit syntactic entities
such as strings, procedure bodies, name literals, and comments. Any of these
characters terminates the entity preceding it and is not included in the entity.

All characters besides the white-space characters and delimiters are referred to as
regular characters. These include nonprinting characters that are outside the rec-
ommended PostScript ASCII character set.

Comments

Any occurrence of the character % outside a string introduces a comment. The
comment consists of all characters between the % and the next newline or form
feed, including regular, delimiter, space, and tab characters.

The scanner ignores comments, treating each one as if it were a single white-
space character. That is, a comment separates the token preceding it from the one
following. Thus the ASCII-encoded program fragment

abc% comment {/%) blah blah blah
123

is treated by the scanner as just two tokens: abc and 123.

28
| CHAPTER 3 | : Language l

Numbers
Numbers in the PostScript language include:

* Signed integers, such as

123 -98 43445 0 +17

* Real numbers, such as

—.002 345 -3.62 123.6e10 1.0E-5 1E6 -1. 0.0

* Radix numbers, such as

8#1777 16#FFFE 2#1000

An integer consists of an optional sign followed by one or more decimal digits.
The number is interpreted as a signed decimal integer and is converted to an inte-
ger object. If it exceeds the implementation limit for integers, it is converted to a
real object. (See Appendix B for implementation limits.)

A real number consists of an optional sign and one or more decimal digits, with
an embedded period (decimal point), a trailing exponent, or both. The exponent,
if present, consists of the letter E or e followed by an optional sign and one or
more decimal digits. The number is interpreted as a real number and is converted
to a real (floating-point) object. If it exceeds the implementation limit for real
numbers, a limitcheck error occurs.

A radix number takes the form base#number, where base is a decimal integer in
the range 2 through 36. number is interpreted in this base; it must consist of digits
ranging from 0 to base — 1. Digits greater than 9 are represented by the letters A
through Z (or a through z). The number is treated as an unsigned integer and is
converted to an integer object having the same twos-complement binary repre-
sentation. This notation is intended for specifying integers in a nondecimal radix,
such as binary, octal, or hexadecimal. If the number exceeds the implementation
limit for integers, a limitcheck error occurs.

29
l 3.2 |) Syntax |

Strings
There are three conventions for quoting a literal string object:

* As literal text, enclosed in (and)
* As hexadecimal data, enclosed in < and >

* As ASCII base-85 data, enclosed in <~ and ~> (LanguageLevel 2)

Literal Text Strings

A literal text string consists of an arbitrary number of characters enclosed in
(and). Any characters may appear in the string other than (,), and \, which must
be treated specially. Balanced pairs of parentheses in the string require no special
treatment.

The following lines show several valid strings:

(This is a string)

(Strings may contain newlines

and such.)

(Strings may contain special characters */&}A% and
balanced parentheses () (and so on).)

(The following is an empty string.)

0
(It has 0 (zero) length.)

Within a text string, the \ (backslash) character is treated as an “escape” for vari-
ous purposes, such as including newline characters, unbalanced parentheses, and
the \ character itself in the string. The character immediately following the \ de-
termines its precise interpretation.

\n line feed (LF)

\r carriage return (CR)

\t horizontal tab

\b backspace

\f form feed

\\ backslash

\(left parenthesis

\) right parenthesis

\ddd character code ddd (octal)

30
! CHAPTER 3 | Language |

If the character following the \ is not in the preceding list, the scanner ignores the
\. If the \ is followed immediately by a newline (CR, LF, or CR-LF pair), the scan-
ner ignores both the initial \ and the newline; this breaks a string into multiple
lines without including the newline character as part of the string, as in the fol-
lowing example:

(These \

two strings \

are the same.)

(These two strings are the same.)

But if a newline appears without a preceding \, the result is equivalent to \n. For
example:

(This string has a newline at the end of it.

)

(So does this one\n)

For more information about end-of-line conventions, see Section 3.8, “File Input
and Output.”

The \ddd form may be used to include any 8-bit character constant in a string.
One, two, or three octal digits may be specified, with high-order overflow ig-
nored. This notation is preferred for specifying a character outside the recom-
mended ASCII character set for the PostScript language, since the notation itself
stays within the standard set and thereby avoids possible difficulties in transmit-
ting or storing the text of the program. It is reccommended that three octal digits
always be used, with leading zeros as needed, to prevent ambiguity. The string
(\0053), for example, contains two characters—an ASCII 5 (Control-E) followed
by the digit 3—whereas the strings (\53) and (\053) contain one character, the
ASCII character whose code is octal 53 (plus sign).

Hexadecimal Strings

A hexadecimal string consists of a sequence of hexadecimal digits (0-9 and either
A~F or a—f) enclosed within < and >. Each pair of hexadecimal digits defines one
character of the string. White-space characters are ignored. If a hexadecimal
string contains characters outside the allowed character set, a syntaxerror occurs.
Hexadecimal strings are useful for including arbitrary binary data as literal text.

L3.2 T - - .S?'ntaic_l

If the final digit of a given hexadecimal string is missing—in other words, if there
is an odd number of digits—the final digit is assumed to be 0. For example,
<901fa3> is a 3-character string containing the characters whose hexadecimal
codes are 90, 1f, and a3, but <901fa> is a 3-character string containing the charac-
ters whose hexadecimal codes are 90, 1f, and a0.

ASClI Base-85 Strings

An ASCII base-85 string (LanguageLevel 2) consists of a sequence of printable
ASCII characters enclosed in <~ and ~>. This notation represents arbitrary bi-
nary data using an encoding technique that produces a 4:5 expansion as opposed
to the 1:2 expansion for hexadecimal. The ASCII base-85 encoding algorithm is
described under “ASCII85Encode Filter” on page 131. If an ASCII base-85 string
is malformed, a syntaxerror occurs.

Names

Any token that consists entirely of regular characters and cannot be interpreted as
a number is treated as a name object (more precisely, an executable name). All
characters except delimiters and white-space characters can appear in names, in-
cluding characters ordinarily considered to be punctuation.

The following are examples of valid names:
abc Offset $$ 23A 13-456 a.b $MyDict @pattern

Use care when choosing names that begin with digits. For example, while 23A is a
valid name, 23E1 is a real number, and 23#1 is a radix number token that repre-
sents an integer.

A/ (slash—not backslash) introduces a literal name. The slash is not part of the
name itself, but is a prefix indicating that the following sequence of zero or more
regular characters constitutes a literal name object. There can be no white-space
characters between the / and the name. The characters // (two slashes) introduce
an immediately evaluated name. The important properties and uses of names and
the distinction between executable and literal names are described in Section 3.3,
“Data Types and Objects”; immediately evaluated names are discussed in
Section 3.12.2, “Immediately Evaluated Names.”

Note: The token / (a slash followed by no regular characters) is a valid literal name.

32
CHAPTER 3 1 Language |

Arrays

The characters [and] are self-delimiting tokens that specify the construction of
an array. For example, the program fragment

(123 /abc (xy2)]

results in the construction of an array object containing the integer object 123,
the literal name object abc, and the string object xyz. Each token within the
brackets is executed in turn.

The [and] characters are special syntax for names that, when executed, invoke
PostScript operators that collect objects and construct an array containing them.
Thus the example

[123 /abc (xy2)]
contains these five tokens:

* The name object [

* The integer object 123

* The literal name object abc
* The string object xyz

* The name object] |

When the example is executed, a sixth object (the array) results from executing
the [and] name objects.

Procedures

The special characters { and } delimit an executable array, otherwise known as a
procedure. The syntax is superficially similar to that for the array construction op-
erators [and]; however, the semantics are entirely different and arise as a result of
scanning the procedure rather than executing it.

Scanning the program fragment

{add 2 div}

33

I 3.2 | Syntax

produces a single procedure object that contains the name object add, the integer
object 2, and the name object div. When the scanner encounters the initial {, it
continues scanning and creating objects, but the interpreter does not execute
them. When the scanner encounters the matching}, it puts all the objects created
since the initial { into a new executable array (procedure) object.

The interpreter does not execute a procedure immediately, but treats it as data; it
pushes the procedure on the operand stack. Only when the procedure is explicitly
invoked (by means yet to be described) will it be executed. Execution of the pro-
cedure—and of all objects within the procedure, including any embedded proce-
dures—has been deferred. The matter of immediate versus deferred execution is
discussed in Section 3.5, “Execution.”

The procedure object created by {and} is either an array or a packed array,
according to the current setting of a mode switch. The distinction between these
array types is discussed in Section 3.3, “Data Types and Objects.”

Dictionaries

The special character sequences << and >> (LanguageLevel 2) are self-delimiting
tokens that denote the construction of a dictionary, much the same as [and] de-
note the construction of an array. They are intended to be used as follows:

<< key, value, key,value, ... key,value,>>

This creates a dictionary containing the bracketed key-value pairs and pushes it
on the operand stack. Dictionaries are introduced in Section 3.3, “Data Types and
Objects.”

<< and >> are merely special names for operators that, when executed, cause a
dictionary to be constructed. They are like the [and] array construction opera-
tors, but unlike the { and } delimiters for procedure literals.

The << and >> tokens are self-delimiting, so’they need not be surrounded by
white-space characters or other delimiters. Do not confuse these tokens with
< and >, which delimit a hexadecimal string literal, or <~ and ~>, which delimit
an ASCII base-85 string literal. The << and >> tokens are objects in their own
right (specifically, name objects), whereas in < ... > and <~ ... ~> the delimiting
characters are merely punctuation for the enclosed literal string objects.

LCHAPTER 3 | Language J

3.3 Data Types and Objects

All data accessible to PostScript programs, including procedures that are part of
the programs themselves, exists in the form of objects. Objects are produced, ma-
nipulated, and consumed by the PostScript operators. They are also created by
the scanner and executed by the interpreter.

Each object has a type, some attributes, and a value. Objects contain their own dy-
namic types; that is, an object’s type is a property of the object itself, not of where
it is stored or what it is called. Table 3.2 lists all the object types supported by the
PostScript language. Extensions to the language may introduce additional object
types. The distinction between simple and composite objects is explained below.

TABLE 3.2 Types of objects

SIMPLE OBJECTS COMPOSITE OBJECTS

boolean array

fontiD dictionary

integer file

mark gstate (LanguageLevel 2)

name packedarray (LanguageLevel 2)
null save

operator string

real

3.3.1 Simple and Composite Objects

Objects of most types are simple, atomic entities. An atomic object is always con-
stant—a 2 is always a 2. There is no visible substructure in the object; the type, at-
tributes, and value are irrevocably bound together and cannot be changed.

However, objects of certain types indicated in Table 3.2 are composite. Their
values are separate from the objects themselves; for some types of composite ob-
ject, the values have internal substructure that is visible and can sometimes be

l 3.3 | Data Types and Objects _l

modified selectively. The details of the substructures are presented later in the de-
scriptions of these individual types.

An important distinction between simple and composite objects is the behavior
of operations that copy objects. Copy refers to any operation that transfers the
contents of an object from one place to another in the memory of the PostScript
interpreter. “Fetching” and “storing” objects are copying operations. It is possible
to derive a new object by copying an existing one, perhaps with modifications.

When a simple object is copied, all of its parts (type, attributes, and value) are
copied together. When a composite object is copied, the value is not copied; in-
stead, the original and copy objects share the same value. Consequently, any
changes made to the substructure of one object’s value also appear as part of the
other object’s value.

The sharing of composite objects’ values in the PostScript language corresponds
to the use of pointers in system programming languages such as C and Pascal. In-
deed, the PostScript interpreter uses pointers to implement shared values: a com-
posite object contains a pointer to its value. However, the PostScript language
does not have any explicit notion of a pointer. It is better to think in terms of the
copying and sharing notions presented here.

The values of simple objects are contained in the objects themselves. The values
of composite objects reside in a special region of memory called virtual memory
or VM. Section 3.7, “Memory Management,” describes the behavior of VM.

3.3.2 Attributes of Objects

In addition to type and value, each object has one or more attributes. These
attributes affect the behavior of the object when it is executed or when certain op-
erations are performed on it. They do not affect its behavior when it is treated
strictly as data; so, for example, two integers with the same value are considered
“equal” even if their attributes differ.

36
| CHAPTER 3 l Language |

Literal and Executable

Every object is either literal or executable. This distinction comes into play when
the interpreter attempts to execute the object.

* If the object is literal, the interpreter treats it strictly as data and pushes it on
the operand stack for use as an operand of some subsequent operator.

* If the object is executable, the interpreter executes it.

What it means to execute an object depends on the object’s type; this is described
in Section 3.5, “Execution.” For some object types, such as integers, execution
consists of pushing the object on the operand stack; the distinction between lit-
eral and executable integers is meaningless. But for other types, such as names,
operators, and arrays, execution consists of performing a different action.

* Executing an executable name causes it to be looked up in the current diction-
ary context and the associated value to be executed.

* Executing an executable operator causes some built-in action to be performed.

* Executing an executable array (otherwise known as a procedure) causes the ele-
ments of the array to be executed in turn.

As described in Section 3.2, “Syntax,” some tokens produce literal objects and
some produce executable ones.

* Integer, real, and string constants are always literal objects.
* Names are literal if they are preceded by / and executable if they are not.

* The[and] operators, when executed, produce a literal array object with the en-
closed objects as elements. Likewise, << and >> (LanguageLevel 2) produce a
literal dictionary object.

* {and} enclose an executable array or procedure.

Note: As mentioned above, it does not matter whether an object is literal or execut-
able when it is accessed as data, only when it is executed. However, referring to an
executable object by name often causes that object to be executed automatically; see
Section 3.5.5, “Execution of Specific Types.” To avoid unintended behavior, it is best
to use the executable attribute only for objects that are meant to be executed, such as
procedures.

333

l 3.3 | Data Types and Objects J

Access

The other attribute of an object is its access. Only composite objects have access
attributes, which restrict the set of operations that can be performed on the ob-
ject’s value,

There are four types of access. In increasing order of restriction, they are:

1. Unlimited. Normally, objects have unlimited access: all operations defined for
that object are allowed. However, packed array objects always have read-only
(or even more restricted) access.

2. Read-only. An object with read-only access may not have its value written, but
may still be read or executed.

3. Execute-only. An object with execute-only access may not have its value either
read or written, but may still be executed by the PostScript interpreter.

4. None. An object with no access may not be operated on in any way by a Post-
Script program. Such objects are not of any direct use to PostScript programs,
but serve internal purposes that are not documented in this book.

The literal/executable distinction and the access attribute are entirely indepen-
dent, although there are combinations that are not of any practical use (for exam-
ple, a literal array that is execute-only).

With one exception, attributes are properties of an object itself and not of its
value. Two composite objects can share the same value but have different
literal/executable or access attributes. The exception is the dictionary type: a dic-
tionary’s access attribute is a property of the value, so multiple dictionary objects
sharing the same value have the same access attribute.

Integer and Real Objects

The PostScript language provides two types of numeric object: integer and real.
Integer objects represent mathematical integers within a certain interval centered
at 0. Real objects approximate mathematical real numbers within a much larger
interval, but with limited precision; they are implemented as floating-point num-
bers.

334

3.35

38
| CHAPTER 3 [Language

Most PostScript arithmetic and mathematical operators can be applied to num-
bers of both types. The interpreter performs automatic type conversion when
necessary. Some operators expect only integers or a subrange of the integers as
operands. There are operators to convert from one data type to another explicitly.
Throughout this book, number means an object whose type is either integer or
real.

The range and precision of numbers is limited by the internal representations
used in the machine on which the PostScript interpreter is running. Appendix B
gives these limits for typical implementations of the PostScript interpreter.

Note: The machine representation of integers is accessible to a PostScript program
through the bitwise operators. However, the representation of integers may depend
on the CPU architecture of the implementation. The machine representation of real
numbers is not accessible to PostScript programs.

Boolean Objects

The PostScript language provides boolean objects with values true and false for
use in conditional and logical expressions. The names true and false are associ-
ated with values of this type. Boolean objects are the results of the relational
(comparison) and logical operators. Various other operators return them as sta-
tus information. Boolean objects are mainly used as operands for the control op-
erators if and ifelse.

Array Objects

An array is a one-dimensional collection of objects accessed by a numeric index.
Unlike arrays in many other computer languages, PostScript arrays may be heter-
ogeneous; that is, an array’s elements may be any combination of numbers,
strings, dictionaries, other arrays, or any other objects. A procedure is an array
that can be executed by the PostScript interpreter.

All arrays are indexed from 0, so an array of n elements has indices from 0
through n — 1. All accesses to arrays are bounds-checked, and a reference with an
out-of-bounds index results in a rangecheck error. The length of an array is sub-
ject to an implementation limit; see Appendix B.

3.3.6

3.3.7

L 3.3 1 Data Types and Objects _I

The PostScript language directly supports only one-dimensional arrays. Arrays of
higher dimension can be constructed by using arrays as elements of arrays, nested
to any depth.

As discussed earlier, an array is a composite object. When an array object is cop-
ied, the value is not copied. Instead, the old and new objects share the same value.
Additionally, there is an operator (getinterval) that creates a new array object
whose value is a subinterval of an existing array; the old and new objects share
the array elements in that subinterval.

Packed Array Objects

A packed array is a more compact representation of an ordinary array, intended
primarily for use as a procedure. A packed array object is distinct from an ordi-
nary array object (it has type packedarray instead of array), but in most respects it
behaves the same as an ordinary array. Its principal distinguishing feature is that
it usually occupies much less space in memory (see Section B.2, “Virtual Memory
Use”).

Throughout this book, any mention of a procedure may refer to either an execut-
able array or an executable packed array. The two types of array are not distin-
guishable when they are executed, only when they are treated as data. See the
introduction to the array operators in Section 3.6, “Overview of Basic Operators.”

String Objects

A string is similar to an array, but its elements must be integers in the range 0 to
255. The string elements are not integer objects, but are stored in a more compact
format. However, the operators that access string elements accept or return ordi-
nary integer objects with values in the range 0 to 255. The length of a string is
subject to an implementation limit; see Appendix B.

String objects are conventionally used to hold text, one character per string
element. However, the PostScript language does not have a distinct “character”
syntax or data type and does not require that the integer elements of a string en-
code any particular character set. String objects may also be used to hold arbi-
trary binary data.

| CHAPTER 3 { Language |

To enhance program portability, strings appearing literally as part of a PostScript
program should be limited to characters from the printable ASCII character set,
with other characters inserted by means of the \ddd escape convention (see
Section 3.2.2, “ASCII Encoding”). ASCII text strings are fully portable; ASCII
base-85 text strings are fully portable among LanguageLevel2 and
LanguageLevel 3 PostScript interpreters.

Like an array, a string is a composite object. Copying a string object or creating a
subinterval (substring) results in sharing the string’s value.

3.3.8 Name Objects

A name is an atomic symbol uniquely defined by a sequence of characters. Names
serve the same purpose as “identifiers” in other programming languages: as tags
for variables, procedures, and so on. However, PostScript names are not just lan-
guage artifacts, but are first-class data objects, similar to “atoms” in LISP.

A name object is ordinarily created when the scanner encounters a PostScript to-
ken consisting entirely of regular characters, perhaps preceded by /, as described
in Section 3.2, “Syntax.” However, a name may also be created by explicit conver-
sion from a string, so there is no restriction on the set of characters that can be
included in names. The length of a name, however, is subject to an implementa-
tion limit; see Appendix B.

Unlike a string, a name is a simple object not made up of other objects. Although
a name is defined by a sequence of characters, those characters are not “elements”
of the name. A name object, although logically simple, does have an invisible
“value” that occupies space in VM.

A name is unique. Any two name objects defined by the same sequence of charac-
ters are identical copies of each other. Name equality is based on an exact match
between the corresponding characters defining each name. The case of letters
must match, so the names A and a are different. Literal and executable objects can
be equal, however.

The interpreter can efficiently determine whether two existing name objects are
equal without comparing the characters that define the names. This makes names
useful as keys in dictionaries.

3.3.9

l 3.3 1 Data Types and Objects J

Names do not have values, unlike variable or procedure names in other program-
ming languages. However, names can be associated with values in dictionaries.

Dictionary Objects

A dictionary is an associative table whose entries are pairs of PostScript objects.
The first element of an entry is the key and the second element is the value. The
PostScript language includes operators that insert an entry into a dictionary, look
up a key and fetch the associated value, and perform various other operations.

Keys are normally name objects. The PostScript syntax and the interpreter are
optimized for this most common case. However, a key may be any PostScript ob-
ject except null (defined later). If you attempt to use a string as a key, the Post-
Script interpreter will first convert the string to a name object; thus, strings and
names are interchangeable when used as keys in dictionaries. Consequently, a string
used as a dictionary key is subject to the implementation limit on the length of a
name.

A dictionary has the capacity to hold a certain maximum number of entries; the
capacity is specified when the dictionary is created. PostScript interpreters of dif-
ferent LanguageLevels differ in their behavior when a program attempts to insert
an entry into a dictionary that is full: in LanguageLevel 1, a dictfull error occurs;
in LanguageLevels 2 and 3, the interpreter enlarges the dictionary automatically.
The length of a dictionary is also subject to an implementation limit; see
Appendix B.

Dictionaries ordinarily associate the names and values of a program’s compo-
nents, such as variables and procedures. This association corresponds to the con-
ventional use of identifiers in other programming languages. But there are many
other uses for dictionaries. For example, a PostScript font program contains a
dictionary that associates the names of characters with the procedures for draw-
ing those characters’ shapes (see Chapter 5).

There are three primary methods for accessing dictionaries:

* Operators exist to access a specific dictionary supplied as an operand.
* There is a current dictionary and a set of operators to access it implicitly.

* The interpreter automatically looks up executable names it encounters in the
program being executed.

42
CHAPTER 3 Language
| guag

The interpreter maintains a dictionary stack defining the current dynamic name
space. Dictionaries may be pushed on and popped off the dictionary stack at will.
The topmost dictionary on the stack is the current dictionary.

When the interpreter looks up a key implicitly—for example, when it executes a
name object—it searches for the key in the dictionaries on the dictionary stack. It
searches first in the topmost dictionary, then in successively lower dictionaries on
the dictionary stack, until it either finds the key or exhausts the dictionary stack.

In LanguageLevel 1, there are two built-in dictionaries permanently on the dic-
tionary stack; they are called systemdict and userdict. In LanguageLevels 2 and 3,
there are three dictionaries: systemdict, globaldict, and userdict.

* systemdict is a read-only dictionary that associates the names of all the Post-
Script operators (those defined in this book) with their values (the built-in ac-
tions that implement them). It also contains other definitions, including the
standard local and global dictionaries listed in Section 3.7.5, “Standard and
User-Defined Dictionaries,” as well as various named constants such as true
and false.

* globaldict (LanguageLevel 2) is a writeable dictionary in global VM. This is ex-
plained in Section 3.7.2, “Local and Global VM.”

* userdict is a writeable dictionary in local VM. It is the default modifiable nam-
ing environment normally used by PostScript programs.

userdict is the topmost of the permanent dictionaries on the dictionary stack.
The def operator puts definitions there unless the program has pushed some oth-
er dictionary on the dictionary stack. Applications can and should create their
own dictionaries rather than put things in userdict.

A dictionary is a composite object. Copying a dictionary object does not copy the
dictionary’s contents. Instead, the contents are shared.

3.3.10 Operator Objects

An operator object represents one of the PostScript language’s built-in actions.
When the object is executed, its built-in action is invoked. Much of this book is
devoted to describing the semantics of the various operators.

3.3.1

43
| 33 | Data Types and Objects I

Operators have names. Most operators are associated with names in systemdict:
the names are the keys and the operators are the associated values. When the in-
terpreter executes one of these names, it looks up the name in the context of the
dictionary stack. Unless the name has been defined in some dictionary higher on
the dictionary stack, the interpreter finds its definition in systemdict, fetches the
associated value (the operator object itself), and executes it.

All standard operators are defined in systemdict. However, an application that
tests whether an operator is defined should not use the known operator to deter-
mine whether the operator is in systemdict; it should instead use the where oper-
ator to check all dictionaries on the dictionary stack. Using where enables proper
handling of operator emulations (see Appendix D).

Note: There are some special internal PostScript operators whose names begin with
an at sign (@). These operators are not officially part of the PostScript language and
are not defined in systemdict. They may appear as an “offending command” in error
messages.

There is nothing special about an operator name, such as add, that distinguishes
it as an operator. Rather, the name add is associated in systemdict with the oper-
ator for performing addition, and execution of the operator causes the addition
to occur. Thus the name add is not a “reserved word,” as it might be in other pro-
gramming languages. Its meaning can be changed by a PostScript program.

Throughout this book, the notation add means “the operator object associated
with the name add in systemdict” or, occasionally, in some other dictionary.

File Objects

A file is a readable or writeable stream of characters transferred between the Post-
Script interpreter and its environment. The characters in a file may be stored per-
manently—in a disk file, for instance—or may be generated dynamically and
transferred via a communication channel.

A file object represents a file. There are operators to open a file and create a file ob-
ject for it. Other operators access an open file to read, write, and process charac-
ters in various ways—as strings, as PostScript tokens, as binary data represented
in hexadecimal, and so on.

3.3.12

3.3.13

3.3.14

| CHAPTER 3 [Language |

Standard input and output files are always available to a PostScript program. The
standard input file is the usual source of programs to be interpreted; the standard
output file is the usual destination of such things as error and status messages.

Although a file object does not have components visible at the PostScript lan-
guage level, it is composite in the sense that all copies of a file object share the
same underlying file as their value. If a file operator has a side effect on the under-
lying file, such as closing it or changing the current position in the stream, all file
objects sharing the file are affected.

The properties of files and the operations on them are described in more detail in
Section 3.8, “File Input and Output.”

Mark Objects

A mark is a special object used to denote a position on the operand stack. This
use is described in the presentation of stack and array operators in Section 3.6,
“Overview of Basic Operators.” There is only one value of type mark, created by
invoking the operator mark, [, or <<. Mark objects are not legal operands for
most operators. They are legal operands for], >>, counttomark, cleartomark, and
a few generic operators such as pop and type.

Null Objects

The PostScript interpreter uses null objects to fill empty or uninitialized positions
in composite objects when they are created. There is only one value of type null;
the name null is associated with a null object in systemdict. Null objects are not
legal operands for most operators.

Save Objects

Save objects represent snapshots of the state of the PostScript interpreter’s memo-
ry. They are created and manipulated by the save and restore operators, intro-
duced in Section 3.7.3, “Save and Restore.”

45

L3.4 | Stacks

3.3.15 Other Object Types

34

FontID objects are special objects used in the construction of fonts; see
Section 5.2, “Font Dictionaries.”

A gstate object (Languagelevel 2) represents an entire graphics state; see
Section 4.2, “Graphics State.”

Stacks

The PostScript interpreter manages five stacks representing the execution state of
a PostScript program. Three of them—the operand, dictionary, and execution
stacks—are described here; the other two—the graphics state stack and clipping
path stack—are presented in Chapter 4. Stacks are “last in, first out” (LIFO) data
structures. In this book, “the stack” with no qualifier always means the operand
stack.

* The operand stack holds arbitrary PostScript objects that are the operands and
results of PostScript operators being executed. The interpreter pushes objects
on the operand stack when it encounters them as literal data in a program be-
ing executed. When an operator requires one or more operands, it obtains
them by popping them off the top of the operand stack. When an operator re-
turns one or more results, it does so by pushing them on the operand stack.

* The dictionary stack holds only dictionary objects. The current set of dictionar-
ies on the dictionary stack defines the environment for all implicit name
searches, such as those that occur when the interpreter encounters an execut-
able name. The role of the dictionary stack is introduced in Section 3.3, “Data
Types and Objects,” and is further explained in Section 3.5, “Execution.”

* The execution stack holds executable objects (mainly procedures and files) that
are in intermediate stages of execution. At any point in the execution of a Post-
Script program, this stack represents the program’s call stack. Whenever the in-
terpreter suspends execution of an object to execute some other object, it
pushes the new object on the execution stack. When the interpreter finishes ex-
ecuting an object, it pops that object off the execution stack and resumes exe-
cuting the suspended object beneath it.

35

3.5.1

| CHAPTER 3 | Language |

The three stacks are independent and there are different ways to access each of
them:

* The operand stack is directly under the control of the PostScript program being
executed. Objects may be pushed and popped arbitrarily by various operators.

* The dictionary stack is also under PostScript program control, but it can hold
only dictionaries. The bottom three dictionaries on the stack—systemdict,
globaldict, and userdict—(or the bottom two, in LanguageLevel 1) cannot be
popped off. The only operators that can alter the dictionary stack are begin,
end, and cleardictstack.

* The execution stack is under the control of the PostScript interpreter. It can be
read but not directly modified by a PostScript program.

When an object is pushed on a stack, the object is copied onto the stack from
wherever it was obtained; however, in the case of a composite object (such as an
array, a string, or a dictionary), the object’s value is not copied onto the stack, but
rather is shared with the original object. Similarly, when a composite object is
popped off a stack and put somewhere, only the object itself is moved, not its
value. See Section 3.3, “Data Types and Objects,” for more details.

The maximum capacity of stacks may be limited; see Appendices B and C.

Execution

Execution semantics are different for each of the various object types. Also, exe-
cution can be either immediate, occurring as soon as the object is created by the
scanner, or deferred to some later time.

Immediate Execution

Some example PostScript program fragments will help clarify the concept of exe-
cution. Example 3.1 illustrates the immediate execution of a few operators and
operands to perform some simple arithmetic. .

Example 3.1
40 60 add 2 div

3.5.2

3.53

I 3.5 J' Execution J

The interpreter first encounters the literal integer object 40 and pushes it on the
operand stack. Then it pushes the integer object 60 on the operand stack.

Next, it encounters the executable name object add, which it looks up in the envi-
ronment of the current dictionary stack. Unless add has been redefined else-
where, the interpreter finds it associated with an operator object, which it
executes. This invokes a built-in function that pops the two integer objects off the
operand stack, adds them together, and pushes the result (a new integer object
whose value is 100) back on the operand stack.

The rest of the program fragment is executed similarly. The interpreter pushes
the integer 2 on the operand stack and then executes the name div. The div oper-
ator pops two operands off the stack (the integers whose values are 2 and 100),
divides the second-to-top one by the top one (100 divided by 2, in this case), and
pushes the real result 50.0 on the stack.

The source of the objects being executed by the PostScript interpreter does not
matter. They may have been contained within an array or scanned in from a char-
acter stream. Executing a sequence of objects produces the same result regardless
of where the objects come from.

Operand Order

In Example 3.1, 40 is the first and 60 is the second operand of the add operator.
That is, objects are referred to according to the order in which they are pushed on
the operand stack. This is the reverse of the order in which they are popped off by
the add operator. Similarly, the result pushed by the add operator is the first op-
erand of the div operator, and 2 is its second operand.

The same terminology applies to the results of an operator. If an operator pushes
more than one object on the operand stack, the first object pushed is the first
result. This order corresponds to the usual left-to-right order of appearance of
operands in a PostScript program.

Deferred Execution

The first line of Example 3.2 defines a procedure named average that computes
the average of two numbers. The second line applies that procedure to the inte-
gers 40 and 60, producing the same result as Example 3.1.

| CHAPTER 3 | Language |

Example 3.2

/average {add 2 div} def
40 60 average

The interpreter first encounters the literal name average. Recall from Section 3.2,
“Syntax,” that / introduces a literal name. The interpreter pushes this object on
the operand stack, as it would any object having the literal attribute.

Next, the interpreter encounters the executable array {add 2 div}. Recall that
{and } enclose a procedure (an executable array or executable packed array object)
that is produced by the scanner. This procedure contains three elements: the exe-
cutable name add, the literal integer 2, and the executable name div. The inter-
preter has not encountered these elements yet.

Here is what the interpreter does:

1. Upon encountering this procedure object, the interpreter pushes it on the
operand stack, even though the object has the executable attribute. This is ex-
plained shortly.

2. The interpreter then encounters the executable name def. Looking up this
name in the current dictionary stack, it finds def to be associated in
systemdict with an operator object, which it invokes.

3. The def operator pops two objects off the operand stack (the procedure
{add 2 div} and the name average). It enters this pair into the current diction-
ary (most likely userdict), creating a new association having the name average
as its key and the procedure {add 2 div} as its value.

4. The interpreter pushes the integer objects 40 and 60 on the operand stack,
then encounters the executable name average.

5. It looks up average in the current dictionary stack, finds it to be associated
with the procedure {add 2 div}, and executes that procedure. In this case, exe-
cution of the array object consists of executing the elements of the array—the
objects add, 2, and div—in sequence. This has the same effect as executing
those objects directly. It produces the same result: the real object 50.0.

Why did the interpreter treat the procedure as data in the first line of the example
but execute it in the second, despite the procedure having the executable attribute
in both cases? There is a special rule that determines this behavior: An executable
array or packed array encountered directly by the interpreter is treated as data

3.5 Execution
| | . . |

(pushed on the operand stack), but an executable array or packed array encoun-
tered indirectly—as a result of executing some other object, such as a name or an
operator—is invoked as a procedure.

This rule reflects how procedures are ordinarily used. Procedures appearing di-
rectly (either as part of a program being read from a file or as part of some larger
procedure in memory) are usually part of a definition or of a construct, such as a
conditional, that operates on the procedure explicitly. But procedures obtained
indirectly—for example, as a result of looking up a name—are usually intended
to be executed. A PostScript program can override these semantics when
necessary.

3.5.4 Control Constructs

In the PostScript language, control constructs such as conditionals and iterations
are specified by means of operators that take procedures as operands. Example
3.3 computes the maximum of the values associated with the names a and b, as in
the steps that follow.

Example 3.3
abagt {a} {b} ifelse

1. The interpreter encounters the executable names a and b in turn and looks
them up. Assume both names are associated with numbers. Executing the
numbers causes them to be pushed on the operand stack.

2. The gt (greater than) operator removes two operands from the stack and com-
pares them. If the first operand is greater than the second, it pushes the bool-
ean value true. Otherwise, it pushes false.

3. The interpreter now encounters the procedure objects {a} and {b}, which it
pushes on the operand stack.

4. The ifelse operator takes three operands: a boolean object and two procedures.
If the boolean object’s value is true, ifelse causes the first procedure to be exe-
cuted; otherwise, it causes the second procedure to be executed. All three oper-
ands are removed from the operand stack before the selected procedure is
executed.

In this example, each procedure consists of a single element that is an executable
name (either a or b). The interpreter looks up this name and, since it is associated

50
| CHAPTER 3 | Language |

with a number, pushes that number on the operand stack. So the result of execut-
ing the entire program fragment is to push on the operand stack the greater of the
values associated with a and b.

3.5.5 Execution of Specific Types

An object with the literal attribute is always treated as data—pushed on the oper-
and stack by the interpreter—regardless of its type. Even operator objects are
treated this way if they have the literal attribute.

For many objects, executing them has the same effect as treating them as data.
This is true of integer, real, boolean, dictionary, mark, save, gstate, and fontID
objects. So the distinction between literal and executable objects of these types is
meaningless. The following descriptions apply only to objects having the execut-
able attribute.

* An executable array or executable packed array (procedure) object is pushed on
the operand stack if it is encountered directly by the interpreter. If it is invoked
indirectly as a result of executing some other object (a name or an operator), it
is called instead. The interpreter calls a procedure by pushing it on the execu-
tion stack and then executing the array elements in turn. When the interpreter
reaches the end of the procedure, it pops the procedure object off the execution
stack. (Actually, it pops the procedure object when there is one element
remaining and then pushes that element; this permits unlimited depth of “tail
recursion” without overflowing the execution stack.)

* An executable string object is pushed on the execution stack. The interpreter
then uses the string as a source of characters to be converted to tokens and
interpreted according to the PostScript syntax rules. This continues until the
interpreter reaches the end of the string. Then it pops the string object from the
execution stack.

* An executable file object is treated much the same as a string: The interpreter
pushes it on the execution stack. It reads the characters of the file and interprets
them as PostScript tokens until it encounters end-of-file. Then it closes the file
and pops the file object from the execution stack. See Section 3.8, “File Input
and Output.”

* An executable name object is looked up in the environment of the current dic-
tionary stack and its associated value is executed. The interpreter looks first in
the top dictionary on the dictionary stack and then in other dictionaries suc-

3.6

3.6.1

51
3.6 | Overview of Basic Operators I

cessively lower on the stack. If it finds the name as a key in some dictionary, it
executes the associated value. To do that, it examines the value’s type and exe-
cutable attribute and performs the appropriate action described in this section.
Note that if the value is a procedure, the interpreter executes it. If the interpret-
er fails to find the name in any dictionary on the dictionary stack, an undefined
error occurs.

® An executable operator object causes the interpreter to perform one of the built-
in operations described in this book.

* An executable null object causes the interpreter to perform no action. In partic-
ular, it does not push the object on the operand stack.

Overview of Basic Operators

This is an overview of the general-purpose PostScript operators, excluding all op-
erators that deal with graphics and fonts, which are described in later chapters.
The information here is insufficient for actual programming; it is intended only
to acquaint you with the available facilities. For complete information about any
particular operator, you should refer to the operator’s detailed description in
Chapter 8.

Stack Operators

The operand stack is the PostScript interpreter’s mechanism for passing argu-
ments to operators and for gathering results from operators. It is introduced in
Section 3.4, “Stacks.”

There are various operators that rearrange or manipulate the objects on the oper-
and stack. Such rearrangement is often required when the results of some opera-
tors are to be used as arguments to other operators that require their operands in
a different order. These operators manipulate only the objects themselves; they
do not copy the values of composite objects.

* dup duplicates an object.

* exch exchanges the top two elements of the stack.

* pop removes the top element from the stack.

* copy duplicates portions of the operand stack.

52 :
| CHAPTER 3 { Language |

roll treats a portion of the stack as a circular queue.

* index accesses the stack as if it were an indexable array.
* mark marks a position on the stack.

* clear clears the stack.

* count counts the number of elements on the stack.

* counttomark counts the elements above the highest mark. This is used prima-
rily for array construction (described later), but has other applications as well.

* cleartomark removes all elements above the highest mark and then removes
the mark itself.

3.6.2 Arithmetic and Mathematical Operators

The PostScript language includes a conventional complement of arithmetic and
mathematical operators. In general, these operators accept either integer or real
number objects as operands. They produce either integers or real numbers as
results, depending on the types of the operands and the magnitude of the results.
If the result of an operation is mathematically meaningless or cannot be repre-
sented as a real number, an undefinedresult error occurs.

* add, sub, mul, div, idiv, and mod are arithmetic operators that take two argu-
ments.

* abs, neg, ceiling, floor, round, and truncate are arithmetic operators that take
one argument.

* sqrt, exp, In, log, sin, cos, and atan are mathematical and trigonometric func-
tions.

* rand, srand, and rrand access a pseudo-random number generator.

3.6.3 Array, Packed Array, Dictionary, and String Operators

A number of operators are polymorphic: they may be applied to operands of sev-
eral different types and their precise functions depend on the types of the oper-
ands. Except where indicated otherwise, the operators listed below apply to any of
the following types of composite objects: arrays, packed arrays, dictionaries, and
strings.

l 3.6 | Overview of Basic Operators _I

* get takes a composite object and an index (or a key, in the case of a dictionary)
and returns a single element of the object.

® putstores a single element in an array, dictionary, or string. This operator does
not apply to packed array objects, because they always have read-only (or even
more restrictive) access.

* copy copies the value of a composite object to another composite object of the
same type, replacing the second object’s former value. This is different from
merely copying the object. See Section 3.3.1, “Simple and Composite Objects”
for a discussion of copying objects.

* length returns the number of elements in a composite object.

* forall accesses all of the elements of a composite object in sequence, calling a
procedure for each one.

* getinterval creates a new object that shares a subinterval of an array, a packed
array, or a string. This operator does not apply to dictionary objects.

* putinterval overwrites a subinterval of one array or string with the contents of
another. This operator does not apply to dictionary or packed array objects, al-
though it can overwrite a subinterval of an array with the contents of a packed
array.

In addition to the polymorphic operators, there are operators that apply to only
one of the array, packed array, dictionary, and string types. For each type, there is
an operator (array, packedarray, dict, string) that creates a new object of that
type and a specified length. These four operators explicitly create new composite
object values, consuming virtual memory (VM) resources (see Section 3.7.1,
“Virtual Memory”). Most other operators read and write the values of composite
objects but do not create new ones. Operators that return composite results usu-
ally require an operand that is the composite object into which the result values
are to be stored. The operators are organized this way to give programmers maxi-
mum control over consumption of VM.

Array, packed array, and string objects have a fixed length that is specified when
the object is created. In LanguageLevel 1, dictionary objects also have this proper-
ty. In LanguageLevels 2 and 3, a dictionary’s capacity can grow beyond its initial
allocation.

54
| CHAPTER 3 { Language |

The following operators apply only to arrays and (sometimes) packed arrays:

* aload and astore transfer all the elements of an array to or from the operand
stack in a single operation. aload may also be applied to a packed array.

* The array construction operators [and] combine to produce a new array object
whose elements are the objects appearing between the brackets. The [operator,
which is a synonym for mark, pushes a mark object on the operand stack. Exe-
cution of the program fragment between the [and the] causes zero or more ob-
jects to be pushed on the operand stack. Finally, the] operator counts the
number of objects above the mark on the stack, creates an array of that length,
stores the elements from the stack in the array, removes the mark from the
stack, and pushes the array on the stack.

* setpacking and currentpacking (both LanguageLevel 2) control a mode setting
that determines the type of procedure objects the scanner generates when it en-
counters a sequence of tokens enclosed in { and }. If the array packing mode is
true, the scanner produces packed arrays; if the mode is false, it produces ordi-
nary arrays. The default value is false.

* Packed array objects always have read-only (or even more restricted) access, so
the put, putinterval, and astore operations are not allowed on them. Accessing
arbitrary elements of a packed array object can be quite slow; however, access-
ing the elements sequentially, as the PostScript interpreter and the forall opera-
tor do, is efficient.

The following operators apply only to dictionaries:

* begin and end push new dictionaries on the dictionary stack and pop them off.

* def and store associate keys with values in dictionaries on the dictionary stack;
load and where search for keys there.

* countdictstack, cleardictstack, and dictstack operate on the dictionary stack.
* known queries whether a key is present in a specific dictionary.

* maxlength obtains a dictionary’s maximum capacity.

* undef (LanguageLevel 2) removes an individual key from a dictionary.

* <<and >> (LanguageLevel 2) construct a dictionary consisting of the bracketed
objects interpreted as key-value pairs.

3.6.4

3.6.5

55

l 3.6 | Overview of Basic Operators

The following operators apply only to strings:

* search and anchorsearch perform textual string searching and matching.

* token scans the characters of a string according to the PostScript language syn-
tax rules, without executing the resulting objects.

There are many additional operators that use array, dictionary, or siring operands
for special purposes—for instance, as transformation matrices, font dictionaries,
or text.

Relational, Boolean, and Bitwise Operators

The relational operators compare two operands and produce a boolean result in-
dicating whether the relation holds. Any two objects may be compared for equal-
ity (eq and ne—equal and not equal); numbers and strings may be compared by
the inequality operators (gt, ge, It, and le—greater than, greater than or equal to,
less than, and less than or equal to).

The boolean and bitwise operators (and, or, xor, true, false, and not) compute
logical combinations of boolean operands or bitwise combinations of integer op-
erands. The bitwise shift operator bitshift applies only to integers.

Control Operators

The control operators modify the interpreter’s usual sequential execution of ob-
jects. Most of them take a procedure operand that they execute conditionally or
repeatedly.

* if and ifelse execute a procedure conditionally depending on the value of a
boolean operand. (ifelse is introduced in Section 3.5, “Execution.”)
* exec executes an arbitrary object unconditionally.

* for, repeat, loop, and forall execute a procedure repeatedly. Several specialized
graphics and font operators, such as pathforall and kshow, behave similarly.

* exit transfers control out of the scope of any of these looping operators.

* countexecstack and execstack are used to read the execution stack.

3.6.6

3.7

| CHAPTER 3 | Language |

56

A PostScript program may terminate prematurely by executing the stop operator.
This occurs most commonly as a result of an error; the default error handlers (in
errordict) all execute stop.

The stopped operator establishes an execution environment that encapsulates
the effect of a stop. That is, stopped executes a procedure given as an operand,
just the same as exec. If the interpreter executes stop during that procedure, it
terminates the procedure and resumes execution at the object immediately after
the stopped operator.

Type, Attribute, and Conversion Operators

These operators deal with the details of PostScript types, attributes, and values,
introduced in Section 3.3, “Data Types and Objects.”

* type returns the type of any operand as a name object (integertype, realtype,
and so on).

* xcheck, rcheck, and wcheck query the literal/executable and access attributes of
an object.

* cvlit and cvx change the literal/executable attribute of an object.

* readonly, executeonly, and noaccess reduce an object’s access attribute. Access
can only be reduced, never increased.

* cvi and cvr convert between integer and real types, and interpret a numeric
string as an integer or real number.

* cvn converts a string to a name object defined by the characters of the string.

* cvs and cvrs convert objects of several types to a printable string representa-
tion.

Memory Management

A PostScript program executes in an environment with these major components:
stacks, virtual memory, standard input and output files, and the graphics state.

* The operand stack is working storage for objects that are the operands and re-
sults of operators. The dictionary stack contains dictionary objects that define

3.741

l 3.7 | Memory Management J

the current name space. The execution stack contains objects that are in partial
stages of execution by the PostScript interpreter. See Section 3.4, “Stacks.”

* Virtual memory (VM) is a storage pool for the values of all composite objects.
The adjective “virtual” emphasizes the behavior of this memory visible at the
PostScript language level, not its implementation in computer storage.

* The standard input file is the normal source of program text to be executed by
the PostScript interpreter. The standard output file is the normal destination of
output from the print operator and of error messages. Other files can exist as
well. See Section 3.8, “File Input and Output.”

* The graphics state is a collection of parameters that control the production of
text and graphics on a raster output device. See Section 4.2, “Graphics State”

This section describes the behavior of VM and its interactions with other compo-
nents of the PostScript execution environment. It describes facilities for control-
ling the environment as a whole. The PostScript interpreter can execute a
sequence of self-contained PostScript programs as independent “jobs”; similarly,
each job can have internal structure whose components are independent of each
other.

Some PostScript interpreters can support multiple execution contexts—the execu-
tion of multiple independent PostScript programs at the same time. Each context
has an environment consisting of stacks, VM, graphics state, and certain other
data. Under suitable conditions, objects in VM can be shared among contexts;
there are means to regulate concurrent access to the shared objects.

This edition of this book does not document the multiple contexts extension,
although it does indicate which components of a PostScript program’s environ-
ment are maintained on a per-context basis. Further information about multiple
contexts can be found in the second edition of this book and in the Display Post-
Script System manuals,

Virtual Memory

As described in Section 3.3, “Data Types and Objects,” objects may be either sim-
ple or composite. A simple object’s value is contained in the object itself. A com-
posite object’s value is stored separately; the object contains a reference to it.
Virtual memory (VM) is the storage in which the values of composite objects
reside.

58
| CHAPTER 3 | Language |

For example, the program fragment
234 (string1)

pushes two objects, an integer and a string, on the operand stack. The integer,
which is a simple object, contains the value 234 as part of the object itself. The
string, which is a composite object, contains a reference to the value string1,
which is a text string that resides in VM. The elements of the text string are char-
acters (actually, integers in the range 0 to 255) that can be individually selected or
replaced.

Here is another example:
{234 (string1)}

This pushes a single object, a two-element executable array, on the operand stack.
The array is a composite object whose value resides in VM. The value in turn
consists of two objects, an integer and a string. Those objects are elements of the
array; they can be individually selected or replaced.

Several composite objects can share the same value. For example, in
{234 (string1)} dup

the dup operator pushes a second copy of the array object on the operand stack.
The two objects share the same value—that is, the same storage in VM. So replac-
ing an element of one array will affect the other. Other types of composite ob-
jects, including strings and dictionaries, behave similarly.

Creating a new composite object consumes VM storage for its value. This occurs
in two principal ways:

* The scanner allocates storage for each composite literal object that it encoun-
ters. Composite literals are delimited by (...),<... >, <~ ... ~>,and {...}. The
first three produce strings; the fourth produces an executable array or packed
array. There also are binary encodings for composite objects.

* Some operators explicitly create new composite objects and allocate storage for
them. The array, packedarray, dict, string, and gstate operators create new
array, packed array, dictionary, string, and gstate objects, respectively. Also, the
bracketing constructs [...] and << ... >> create new array and dictionary ob-

L 3.7 1 Memory Management _I

jects, respectively. The brackets are just special names for operators; the closing
bracket operators allocate the storage.

For the most part, consumption and management of VM storage is under the
control of the PostScript program. Aside from the operators mentioned above
and a few others that are clearly documented, most operators do not create new
composite objects or allocate storage in VM. Some operators place their results in
existing objects supplied by the caller. For example, the cvs (convert to string) op-
erator overwrites the value of a supplied string operand and returns a string ob-
ject that shares a substring of the supplied string’s storage.

3.7.2 Local and Global VM

There are two divisions of VM containing the values of composite objects: local
and global. Only composite objects occupy VM. An “object in VM” means a
“composite object whose value occupies VM”; the location of the object (for ex-
ample, on a stack or stored as an element of some other object) is immaterial.

Global VM exists only in LanguageLevel 2 and LanguageLevel 3 interpreters. In
LanguageLevel 1 interpreters, all of VM is local.

Local VM is a storage pool that obeys a stacklike discipline. Allocations in local
VM and modifications to existing objects in local VM are subject to the save and
restore operators. These operators bracket a section of a PostScript program
whose local VM activity is to be encapsulated. restore deallocates new objects and
undoes modifications to existing objects that were made since the matching save
operation. save and restore are described in Section 3.7.3, “Save and Restore.”

Global VM is a storage pool for objects that do not obey a fixed discipline. Ob-
jects in global VM can come into existence and disappear in an arbitrary order
during execution of a program. Modifications to existing objects in global VM
are not affected by occurrences of save and restore within the program. However,
an entire job’s VM activity can be encapsulated, enabling separate jobs to be exe-
cuted independently. This is described in Section 3.7.7, “Job Execution Environ-
ment.”

In a hierarchically structured program such as a page description, local VM is
used to hold information whose lifetime conforms to the structure; that is, it per-
sists to the end of a structural division, such as a single page. Global VM may be

60
| CHAPTER 3 { Language |

used to hold information whose lifetime is independent of the structure, such as
definitions of fonts and other resources that are loaded dynamically during the
execution of a program.

Control over allocation of objects in local versus global VM is provided by the
setglobal operator (LanguageLevel 2). This operator establishes a VM allocation
mode, a boolean value that determines where subsequent allocations are to occur
(false means local, true means global). It affects objects created implicitly by the
scanner and objects created explicitly by operators. The default VM allocation
mode is local; a program can switch to global allocation mode when it needs to.

The following example illustrates the creation of objects in local and global VM:

/lstr (string1) def
/idict 10 dict def
true setglobal
/gstr (string2) def
/gdict 5 dict def
false setglobal

In the first line, when the scanner encounters (string1), it allocates the string ob-
ject in local VM. In the second line, the dict operator allocates a new dictionary in
local VM. The third line switches to global VM allocation mode. The fourth and
fifth lines allocate a string object and a dictionary object in global VM. The sixth
line switches back to local VM allocation mode. The program associates the four
newly created objects with the names Istr, Idict, gstr, and gdict in the current dic-
tionary (presumably userdict).

An object in global VM is not allowed to contain a reference to an object in local
VM. An attempt to store a local object as an element of a global object will result
in an invalidaccess error. The reason for this restriction is that subsequent execu-
tion of the restore operator might deallocate the local object, leaving the global
object with a “dangling” reference to a nonexistent object.

This restriction applies only to storing a composite object in local VM as an ele-
ment of a composite object in global VM. All other combinations are allowed. The
following example illustrates this, using the objects that were created in the pre-
ceding example.

3.7.3

61

| 3.7 [Memory Management

Idict /a Istr put % Allowed—a local object into a local dict

gdict/bgstrput % Allowed—a global object into a global dict

Idict /cgstrput % Allowed—a global object into a local dict

gdict/d Istrput % Not allowed (invalidaccess error)—a local object into a global dict
gdict /e 7 put % Allowed—a simple object into any dict

There are no restrictions on storing simple objects, such as integers and names, as
elements of either local or global composite objects. The gcheck operator in-
quires whether an object can be stored as an element of a global composite
object. It returns true for a simple object or for a composite object in global VM,
or false for a composite object in local VM.

Save and Restore

The save operator takes a snapshot of the state of local VM and returns a save ob-
ject that represents the snapshot. The restore operator causes local VM to revert
to a snapshot generated by a preceding save operation. Specifically, restore does
the following:

* Discards all objects in local VM that were created since the corresponding save,
and reclaims the memory they occupied

® Resets the values of all composite objects in local VM, except strings, to their
state at the time of the save

* Performs an implicit grestoreall operation, which resets the graphics state to its
value at the time of the save (see Section 4.2, “Graphics State”)

* Closes files that were opened since the corresponding save, so long as those
files were opened while local VM allocation mode was in effect (see Section 3.8,
“File Input and Output”)

The effects of restore are limited to the ones described above. In particular,
restore does not:

* Affect the contents of the operand, dictionary, and execution stacks. If a stack
contains a reference to a composite object in local VM that would be discarded
by the restore operation, the restore is not allowed; an invalidrestore error oc-
curs.

* Affect any objects that reside in global VM, except as described in Section 3.7.7,
“Job Execution Environment.”

62
! CHAPTER 3 | Language |

* Undo side effects outside VM, such as writing data to files or rendering graph-
ics on the raster output device. (However, the implicit grestoreall may deacti-
vate the current device, thereby erasing the current page; see Section 6.2.6,
“Device Initialization and Page Setup,” for details.)

The save and restore operators can be nested to a limited depth (see Appendix B
for implementation limits). A PostScript program can use save and restore to en-
capsulate the execution of an embedded program that also uses save and restore.

save and restore are intended for use in structured programs such as page de-
scriptions. The conventions for structuring programs are introduced in
Section 2.4.2, “Program Structure,” and described in detail in Adobe Technical
Note #5001, PostScript Language Document Structuring Conventions Specification.
In such programs, save and restore serve the following functions:

* A document consists of a prolog and a script. The prolog contains definitions
that are used throughout the document. The script consists of a sequence of in-
dependent pages. Each page has a save at the beginning and a restore at the
end, immediately before the showpage operator. Each page begins execution
with the initial conditions established in local VM by the prolog. There are no
unwanted legacies from previous pages.

* A page sometimes contains additional substructure, such as embedded illustra-
tions, whose execution needs to be encapsulated. The encapsulated program
can make wholesale changes to the contents of local VM to serve its own pur-
poses. By bracketing the program with save and restore, the enclosing program
can isolate the effects of the embedded program.

* As a PostScript program executes, new composite objects accumulate in local
VM. These include objects created by the scanner, such as literal string tokens,
and objects allocated explicitly by operators. The restore operator reclaims all
local VM storage allocated since the corresponding save; executing save and
restore periodically ensures that unreclaimed objects will not exhaust available
VM resources. In LanguageLevel 1, save and restore are the only way to reclaim
VM storage. Even in higher LanguageLevels, explicit reclamation by save and
restore is much more efficient than automatic reclamation (described in
Section 3.7.4, “Garbage Collection”).

* The PostScript interpreter uses save and restore to encapsulate the execution of
individual jobs, as described in Section 3.7.7, “Job Execution Environment.”

l 3.7 Il Memory Management _I

3.7.4 Garbage Collection

In addition to the save and restore operators for explicit VM reclamation,
LanguageLevels 2 and 3 include a facility for automatic reclamation, popularly
known as a garbage collector. The garbage collector reclaims the memory occu-
pied by composite objects that are no longer accessible to the PostScript program.

For example, after the program

/a (string 1) def
/a (string2) def
(string3) show

is executed, the string object string1 is no longer accessible, since the dictionary
entry that referred to it has been replaced by a different object, string2. Similarly,
the string object string3 is no longer accessible, since the show operator con-
sumes its operand but does not store it anywhere. These inaccessible strings are
candidates for garbage collection.

Garbage collection normally takes place without explicit action by the PostScript
program. It has no effects that are visible to the program. However, the presence
of a garbage collector strongly influences the style of programming that is per-
missible. If no garbage collector is present, a program that consumes VM endless-
ly and never executes save and restore will eventually exhaust available memory
and cause a VMerror.

There is a cost associated with creating and destroying composite objects in VM.
The most common case is that literal objects—particularly strings, user paths,
and binary object sequences—are immediately consumed by operators such as
show and ufill, and never used again. The garbage collector is engineered to deal
with this case inexpensively, so application programs should not hesitate to take
advantage of it. However, the cost of garbage collection is greater for objects that
have longer lifetimes or are allocated explicitly. Programs that frequently require
temporary objects are encouraged to create them once and reuse them instead of
creating new ones—for example, allocate a string object before an image data ac-
quisition procedure, rather than within it (see Section 4.10.7, “Using Images”).

Even with garbage collection, the save and restore operators still have their stan-
dard behavior. That is, restore resets all accessible objects in local VM to their
state at the time of the matching save. It reclaims all composite objects created in

CHAPTER 3 [Language |

local VM since the save operation, and does so very cheaply. On the other hand,
garbage collection is the only way to reclaim storage in global VM, since save and
restore normally do not affect global VM.

With garbage collection comes the ability to explicitly discard composite objects
that are no longer needed. This can be done in an order unrelated to the time of
creation of those objects, as opposed to the stacklike order imposed by save and
restore. This technique is particularly desirable for very large objects, such as font
definitions.

If the only reference to a particular composite object is an element of some array
or dictionary, replacing that element with something else (using put, for in-
stance) renders the object inaccessible. Alternatively, the undef operator removes
a dictionary entry entirely; that is, it removes both the key and the value of a key-
value pair, as opposed to replacing the value with some other value. In either case,
the removed object becomes a candidate for garbage collection.

Regardless of the means used to remove a reference to a composite object, if the'
object containing the reference is in local VM, the action can be undone by a sub-
sequent restore. This is true even for undef. Consider the following example:

/a(string1) def
save

currentdict /a undef
restore

Execution of undef removes the key a and its value from the current dictionary,
seemingly causing the object string1 to become inaccessible. However, assuming
that the current dictionary is userdict (or some other dictionary in local VM),
restore reinstates the deleted entry, since it existed at the time of the correspond-
ing save. The value is still accessible and cannot be garbage-collected.

As a practical matter, this means that the technique of discarding objects explicit-
ly (in expectation of their being garbage-collected) is useful mainly for objects in
global VM, where save and restore have no effect, and for objects in local VM
that were created at the current level of save nesting.

[3.7 i Memory Management J

3.7.5 Standard and User-Defined Dictionaries

A job begins execution with three standard dictionaries on the dictionary stack
(in order from bottom to top):

* systemdict, a global dictionary that is permanently read-only and contains
mainly operators

* globaldict (LanguageLevel 2), a global dictionary that is writeable

* userdict, a local dictionary that is writeable

There are other standard dictionaries that are the values of permanent named en-

tries in systemdict. Some of these are in local VM and some in global VM, as
shown in Tables 3.3 and 3.4.

A PostScript program can also create new dictionaries in either local or global
VM, then push them on the dictionary stack or store them as entries in userdict
or globaldict.

TABLE 3.3 Standard local dictionaries

DICTIONARY DESCRIPTION

userdict Standard writeable local dictionary. Initially, it is the top dictionary
on the dictionary stack, making it the current dictionary.

errordict Error dictionary. See Section 3.11, “Errors.”

Serror Dictionary accessed by the built-in error-handling procedures to
store stack snapshots and other information. See Section 3.11,
“Errors.”

statusdict Dictionary for product-specific operators and other definitions. See
Chapter 8.

FontDirectory Dictionary for font definitions. It is normally read-only, but is

updated by definefont and consulted by findfont. See Sections 3.9,
“Named Resources,” and 5.2, “Font Dictionaries.”

CHAPTER 3 1 Language _I
TABLE 3.4 Standard global dictionaries
DICTIONARY DESCRIPTION
systemdict Read-only system dictionary containing all operators and other
definitions that are standard parts of the PostScript language. It is
the bottom dictionary on the dictionary stack.
globaldict (LanguageLevel 2) Standard writeable global dictionary. It is on the

dictionary stack between systemdict and userdict.

GlobalFontDirectory (LanguageLevel 2) Dictionary for font definitions in global VM. It is
normally read-only, but is updated by definefont and consulted by
findfont. See Sections 3.9, “Named Resources,” and 5.2, “Font
Dictionaries.”

The dictionaries userdict and globaldict are intended to be the principal reposi-
tories for application-defined dictionaries and other objects. When a PostScript
program creates a dictionary in local VM, it then typically associates that diction-
ary with a name in userdict. Similarly, when the program creates a dictionary in
global VM, it typically associates the dictionary with a name in globaldict. Note
that the latter step requires explicit action on the part of the program. Entering
global VM allocation does not alter the dictionary stack (say, to put globaldict on
top).

Note: systemdict, a global dictionary, contains several entries whose values are local
dictionaries, such as userdict and $error. This is an exception to the normal rule, de-
scribed in Section 3.7.2, “Local and Global VM,” that prohibits objects in global VM
from referring to objects in local VM.

The principal intended use of global VM is to hold font definitions and other re-
sources that are loaded dynamically during execution of a PostScript program.
The findresource operator loads resources into global VM automatically when
appropriate. However, any program can take advantage of global VM when its
properties are useful. The following guidelines are suggested:

* Objects that are created during the prolog can be in either local or global VM;
in either case, they will exist throughout the job, since they are defined outside
the save and restore that enclose individual pages of the script. A dictionary in
local VM reverts to the initial state defined by the prolog at the end of each
page. This is usually the desirable behavior. A dictionary in global VM accumu-

3.7.6

l 3.7 | Memory Management J

lates changes indefinitely and never reverts to an earlier state; this is useful
when there is a need to communicate information from one page to another
(strongly discouraged in a page description).

* When using a writeable dictionary in global VM, you must be careful about
what objects you store in it. Attempting to store a local composite object in a
global dictionary will cause an invalidaccess error. For this reason, it is advis-
able to segregate local and global data and to use global VM only for those ob-
jects that must persist through executions of save and restore.

* In general, the prologs for most existing PostScript programs do not work cor-
rectly if they are simply loaded into global VM. The same is true of some fonts,
particularly Type 3 fonts. These programs must be altered to define global and
local information separately. Typically, global VM should be used to hold pro-
cedure definitions and constant data; local VM should be used to hold tempo-
rary data needed during execution of the procedures.

* Creating gstate (graphics state) objects in global VM is particularly risky. This
is because the graphics state almost always contains one or more local objects,
which cannot be stored in a global gstate object (see the currentgstate operator
in Chapter 8).

User Objects

Some applications require a convenient and efficient way to refer to PostScript
objects previously constructed in VM. The conventional way to accomplish this is
to store such objects as named entries in dictionaries and later refer to them by
name. In a PostScript program written by a programmer, this approach is natural
and straightforward. When the program is generated mechanically by another
program, however, it is more convenient to number the objects with small inte-
gers and later refer to them by number. This technique simplifies the bookkeep-
ing the application program must do.

LanguageLevel 2 provides built-in support for a single space of numbered
objects, called user objects. There are three operators, defineuserobject,
undefineuserobject, and execuserobject, that manipulate an array named
UserObjects. These operators do not introduce any fundamental capability, but
merely provide convenient and efficient notation for accessing the elements of a
special array.

3.7.7

68
!fHAPTER 3 | Language

Example 3.4 illustrates the intended use of user objects.

Example 3.4

17 {ucache 132 402 316 554 setbbox ... } cvlit defineuserobject
17 execuserobject ufill

The first line of the example constructs an interesting object that is to be used re-
peatedly (in this case, a user path; see Section 4.6, “User Paths”) and associates
the index 17 with this object.

The second line pushes the user object on the operand stack, from which ufill
takes it. execuserobject executes the user object associated with index 17. How-
ever, because the object in this example is not executable, the result of the execu-
tion is to push the object on the operand stack.

defineuserobject manages the UserObjects array automatically; there is no rea-
son for a PostScript program to refer to UserObjects explicitly. The array is allo-
cated in local VM and defined in userdict. This means that the effect of
defineuserobject is subject to save and restore. The values of user objects given
to defineuserobject can be in either local or global VM.

Job Execution Environment

As indicated in Section 2.4, “Using the PostScript Language,” the conventional
model of a PostScript interpreter is a “print server”—a single-threaded process
that consumes and executes a sequence of “print jobs,” each of which is a com-
plete, independent PostScript program. This model is also appropriate for certain
other environments, such as a document previewer running on a host computer.

The notion of a print job is not formally a part of the PostScript language, be-
cause it involves not only the PostScript interpreter but also some description of
the environment in which the interpreter operates. Still, it is useful to describe a
general job (and job server) model that is accurate for most PostScript printers,
though perhaps lacking in some details. Information about communication pro-
tocols, job control, system management, and so on, does not appear here, but
rather in documentation for specific products.

l 3.7] Memory Management _l

A job begins execution in an initial environment that consists of the following:

* An empty operand stack

* A dictionary stack containing the standard dictionaries—systemdict,
globaldict (LanguageLevel 2), and userdict

* Execution and graphics state stacks reset to their standard initial state, with no
vestiges of previous jobs

The contents of VM (local and global)

Miscellaneous interpreter parameters

During execution, the job may alter its environment. Ordinarily, when a job fin-
ishes, the environment reverts to its initial state to prepare for the next job. That
is, the job is encapsulated. The server accomplishes this encapsulation by execut-
ing save and restore and by explicitly resetting stacks and parameters between
jobs.

With suitable authorization, a job can make persistent alterations to objects in
VM. That is, the job is not encapsulated. Instead, its alterations appear as part of
the initial state of the next and all subsequent jobs. This is accomplished by
means of the startjob and exitserver facilities, described below.

Server Operation

A job server is presented with a sequence of files via one or more communication
channels. For each file, the server performs the following sequence of steps:

1. Establish standard input and output file objects for the channel from which
the file is to be obtained. The means by which this is done is implementation-
dependent.

2. Execute save. This is the outermost save, which unlike a normal save obtains a
snapshot of the initial state of objects in both local and global VM.

3. Establish the default initial state for the interpreter: empty operand stack, local
VM allocation mode, default user space for the raster output device, and so
on.

4. Execute the standard input file until it reaches end-of-file or an error occurs. If
an error occurs, report it and flush input to end-of-file.

70
| CHAPTER 3 [Language |

5. Clear the operand stack and reset the dictionary stack to its initial state.

6. Execute restore, causing objects in VM (both local and global) to revert to the
state saved in step 2.

7. Close the standard input and output files, transmitting an end-of-file indica-
tion over the communication channel.

Ordinarily, the server executes all of the above steps once for each file that it re-
ceives. Each file is treated as a separate job, and each job is encapsulated.

Altering Initial VM

A program can circumvent job encapsulation and alter the initial VM for subse-
quent jobs. To do so, it can use either startjob (LanguageLevel 2) or exitserver
(available in all implementations that include a job server). This capability is
controlled by a password. The system administrator can choose not to make the
capability available to ordinary users. Applications and drivers must be prepared
to deal with the possibility that altering the initial VM is not allowed.

Note: startjob and exitserver should be invoked only by a print manager, spooler, or
system administration program. They should never be used by an application pro-
gram composing a page description. Appendix G gives more guidelines for using
startjob and exitserver.

startjob is invoked as follows:
true password startjob

where password is a string or an integer (see Section C.3.1, “Passwords”). If the
password is correct, startjob causes the server to execute steps 5, 6, 3, and 4 in the
sequence above. In other words, it logically ends the current job, undoing all
modifications it has made so far, and starts a new job. However, it does not
precede the new job with a save operation, so its execution is not encapsulated.
Furthermore, it does not disturb the standard input and output files; the inter-
preter resumes consuming the remainder of the same input file.

Having started an unencapsulated job, the PostScript program can alter VM in
arbitrary ways. Such alterations are persistent. If the job simply runs to comple-
tion, ending step 5 in the sequence above, the server skips step 6 (since there is no

L 3.7 | Memory Management J

saved VM snapshot to restore), continues with step 7, and processes the next job
normally starting at step 1.

Alternatively, a program can explicitly terminate its alterations to initial VM:

false password startjob

This operation has the effect of executing steps 2, 3, and 4, logically starting yet
another job that is encapsulated in the normal way, but still continuing to read
from the same file.

If startjob executes successfully, it always starts a new job in the sense described
above. It resets the stacks to their initial state and then pushes the result true on
the operand stack. But if startjob is unsuccessful, it has no effect other than to
push false on the operand stack; the effect is as if the program text before and af-
ter the occurrence of startjob were a single combined job.

The example sequence

true password startjob pop

... Application prolog here ...
false password startjob pop

... Application script here ...

installs the application prolog in initial VM if it is allowed to do so. However, the
script executes successfully regardless of whether the attempt to alter initial VM
was successful. The program can determine the outcome by testing the result re-
turned by startjob.

The above sequence is an example; there is no restriction on the sequence of en-
capsulated and unencapsulated jobs. If the password is correct and the boolean
operand to startjob is true, the job that follows it is unencapsulated; if false, the
job is encapsulated. But if the password is incorrect, startjob does not start a new
job; the current job simply continues.

startjob also fails to start a new job if, at the time it is executed, the current save
nesting is more than one level deep. In other words, startjob works only when the
current save level is equal to the level at which the current job started. This per-
mits a file that executes startjob to be encapsulated as part of another job simply
by bracketing it with save and restore.

72
| CHAPTER 3 [Language |

Note: If an unencapsulated job uses save and restore, the save and restore op-
erations affect global as well as local VM, since they are at the outermost save level.
Also, if the job ends with one or more save operations pending, a restore to the outer-
most saved VM is performed automatically.

exitserver

exitserver is an unofficial LanguageLevel 1 feature that is retained in higher
LanguageLevels for compatibility. Although exitserver has never been a formal
part of the PostScript language, it exists in nearly every Adobe PostScript prod-
uct, and some applications have come to depend on it. The startjob feature, de-
scribed above, is more flexible and is preferred for new applications in
LanguageLevels 2 and 3.

The canonical method of invoking exitserver is
serverdict begin password exitserver
This has the same effect as

true password startjob not
{/exitserver errordict /invalidaccess get exec}
if

In other words, if successful, exitserver initiates an unencapsulated job that can
alter initial VM; if unsuccessful, it generates an invalidaccess error. Like startjob,
a successful exitserver operation resets the stacks to their initial state: it removes
serverdict from the dictionary stack. The program that follows (terminated by
end-of-file) is executed as an unencapsulated job.

In many implementations, successful execution of exitserver sends the message
%%l[exitserver: permanent state may be changed]%%

to the standard output file. This message is not generated by startjob. It is sup-
pressed if binary is true in the $error dictionary; see Section 3.11.2, “Error Han-
dling”

Note: Aside from exitserver, the other contents of serverdict are not specified as part
of the language. In LanguageLevels 2 and 3, the effect of executing exitserver more
than once in the same file is the same as that of executing the equivalent startjob se-

3.8

3.8.1

73 .
l 3.8 | File Input and Output I

quence multiple times. In LanguageLevel 1, the effect of executing the exitserver op-
erator multiple times is undefined and unpredictable.

File Input and Output

A file is a finite sequence of characters bounded by an end-of-file indication.
These characters may be stored permanently in some place (for instance, a disk
file) or they may be generated on the fly and transmitted over some communica-
tion channel. Files are the means by which the PostScript interpreter receives exe-
cutable programs and exchanges data with the external environment.

There are two kinds of file: input and output. An input file is a source from which
a PostScript program can read a sequence of characters; an output file is a destina-
tion to which a PostScript program can write characters. Some files can be both
read and written.

The contents of a file are treated as a sequence of 8-bit bytes. In some cases, those
bytes can be interpreted as text characters, such as the ASCII text representing a
PostScript program. In other cases, they can be interpreted as arbitrary binary
data. In the descriptions of files and file operators, the terms character and byte
are synonymous.

Basic File Operators

A PostScript file object represents a file. The file operators take a file object as an
operand to read or write characters. Ignoring for the moment how a file object
comes into existence, the file operators include the following:

* read reads the next character from an input file.

* write appends a character to an output file.

* readstring, readline, and writestring transfer the contents of strings to and
from files.

* readhexstring and writehexstring read and write binary data represented in the
file by hexadecimal notation.

* token scans characters from an input file according to the PostScript language
syntax rules.

74
| CHAPTER 3 | Language |

* exec, applied to an input file, causes the PostScript interpreter to execute a
PostScript program from that file.

The operators that write to a file do not necessarily deliver the characters to their
destination immediately. They may leave some characters in buffers for reasons
of implementation or efficiency. The flush and flushfile operators deliver these
buffered characters immediately. These operators are useful in certain situations,
such as during two-way interactions with another computer or with a human
user, when such data must be transmitted immediately.

Standard Input and Output Files

All PostScript interpreters provide a standard input file and a standard output file,
which usually represent a real-time communication channel to and from another
computer. The standard input and output files are always present; it is not neces-
sary for a program to create or close them.

The PostScript interpreter reads and interprets the standard input file as Post-
Script program text. It sends error and status messages to the standard output
file. Also, a PostScript program may execute the print operator to send arbitrary
data to the standard output file. Note that print is a file operator; it has nothing to
do with placing text on a page or causing pages to emerge from a printer.

It is seldom necessary for a PostScript program to deal explicitly with file objects
for the standard files, because the PostScript interpreter reads the standard input
file by default and the print operator references the standard output file implicit-
ly. Additionally, the file currently being read by the PostScript interpreter is avail-
able via the currentfile operator; this file need not be the standard input file.
However, when necessary, a program may apply the file operator to the identify-
ing strings %stdin or %stdout to obtain file objects for the standard input and
output files; see Section 3.8.3, “Special Files.”

End-of-Line Conventions

The PostScript language scanner and the readline operator recognize all three ex-
ternal forms of end-of-line (EOL)—CR alone, LF alone, and the CR-LF pair—
and treat them uniformly, translating them as described below. The PostScript
interpreter does not perform any such translation when reading data by other
means or when writing data by any means.

l 3.8 | File Input and Output J

End-of-line sequences are recognized and treated specially in the following situa-
tions:

* Any of the three forms of EOL appearing in a literal string is converted to a sin-
gle LF character in the resulting string object. These three examples produce
identical string objects, each with an LF character following the second word in
the string:

(any text“Psome more text)
(any text-"some more text)
(any text“*XFsome more text)

* Any of the three forms of EOL appearing immediately after \ in a string is
treated as a line continuation; both the \ and the EOL are discarded. These four
examples produce identical string objects:

(any text \“Psome more text)
(any text \"P’some more text)
(any text \CRXLF)some more text)
(any text some more text)

* Any of the three forms of EOL appearing outside a string is treated as a single
white-space character. Since the language treats multiple white-space charac-
ters as a single white-space character, the treatment of EOL is interesting only
when a PostScript token is followed by data to be read explicitly by one of the
file operators. The following three examples produce identical results: the oper-
ator reads the character x from the current input file and leaves its character
code (the integer 120) on the stack.

currentfile read(“Fx
currentfile readFx
currentfile readCRXLFy

* The readline operator treats any of the three forms of EOL as the termination
condition.

* Data read by read and readstring does not undergo EOL translation: the Post-
Script interpreter reads whatever characters were received from the channel.
The same is true of data written by write and writestring: whatever characters
the interpreter provides are sent to the channel. However, in either case the
channel itself may perform some EOL translation, as discussed below.

76
| CHAPTER 3 | Language |

Communication Channel Behavior

Communications functions often usurp control characters. Control codes are
device-dependent and not part of the PostScript language. For example, the serial
communication protocol supported by many products uses the Control-D char-
acter as an end-of-file indication. In this case, Control-D is a communications
function and not logically part of a PostScript program. This applies specifically
to the serial channel; other channels, such as LocalTalk™ and Ethernet, have dif-
ferent conventions for end-of-file and other control functions. In all cases, com-
munication channel behavior is independent of the actions of the PostScript
interpreter.

There are two levels of PostScript EOL translation: one in the PostScript inter-
preter and one in the serial communication channel. The previous description
applies only to the EOL conventions at the level of the PostScript interpreter. The
purpose of the seemingly redundant communication-level EOL translation is to
maintain compatibility with diverse host operating systems and communications
environments.

As discussed in Section 3.2, “Syntax,” the ASCII encoding of the language is de-
signed for maximum portability. It avoids using control characters that might be
preempted by operating systems or communication channels. However, there are
situations in which transmission of arbitrary binary data is desirable. For exam-
ple, sampled images are represented by large quantities of binary data. The Post-
Script language has an alternative binary encoding that is advantageous in certain
situations. There are two main ways to deal with PostScript programs that con-
tain binary information:

* Communicate with the interpreter via binary channels exclusively. Some chan-
nels, such as LocalTalk and Ethernet, are binary by nature. They do not pre-
empt any character codes, but instead communicate control information
separately from the data. Other channels, such as serial channels, may support
a binary communication protocol that allows control characters to be quoted.
This approach presupposes a well-controlled environment. PostScript pro-
grams produced in that environment may not be portable to other environ-
ments.

* Take advantage of filters for encoding binary data as ASCII text. Filters are a
LanguageLevel 2 feature, described in Section 3.8.4, “Filters.” Programs repre-
sented in this way do not include any control codes and are therefore portable
to any LanguageLevel 2 or 3 interpreter in any environment.

l 3.8 | File Input and Output J

3.8.2 Named Files

The PostScript language provides access to named files in secondary storage. The
file access capabilities are part of the integration of the language with an underly-
ing operating system; there are variations from one such integration to another.
Not all the file system capabilities of the underlying operating system are neces-
sarily made available at the PostScript language level.

The PostScript language provides a standard set of operators for accessing named
files. These operators are supported in LanguageLevels 2 and 3, as well as in cer-
tain LanguageLevel 1 implementations that have access to file systems. The oper-
ators are file, deletefile, renamefile, status, filenameforall, setfileposition, and
fileposition. Even in LanguageLevel 1 implementations that do not support
named files, the file operator is supported, because the special file names %stdin,
%stdout, and %stderr are always allowed (see Section 3.8.3, “Special Files”).
Although the language defines a standard framework for dealing with files, the
detailed semantics of the file system operators, particularly file naming conven-
tions, are operating system~dependent.

Files are stored in one or more “secondary storage devices,” hereafter referred to
simply as devices. (These are not to be confused with the “current device.” which
is a raster output device identified in the graphics state.) The PostScript language
defines a uniform convention for naming devices, but it says nothing about how
files in a given device are named. Different devices have different properties, and
not all devices support all operations.

A complete file name has the form %device%file, where device identifies the sec-
ondary storage device and file is the name of the file within the device. When a
complete file name is presented to a file system operator, the device portion se-
lects the device; the file portion is in turn presented to the implementation of that
device, which is operating system—dependent and environment-dependent.

Note: Typically, file names cannot contain null characters (ASCII code 0); if a file
name is specified by a string object containing a null character, the null character will
effectively terminate the file name.

When a file name is presented without a %device% prefix, a search rule deter-
mines which device is selected. The available storage devices are consulted in or-
der; the requested operation is attempted on each device until the operation
succeeds. The number of available devices, their names, and the order in which

78

CHAPTER 3 | Language |

they are searched is environment-dependent. Not all devices necessarily partici-
pate in such searches; some devices can be accessed only by explicitly naming
them.

In an interpreter that runs on top of an operating system, there may be a device
that represents the complete file system provided by the operating system. If so,
by convention that device’s name is os; thus, complete file names are in the form
%o0s%file, where file conforms to underlying file system conventions. This device
always participates in searches, as described above; a program can access ordinary
files without specifying the %0s% prefix. There may be more than one device that
behaves in this way; the names of such devices are product-dependent.

Note: The os device may impose some restrictions on the set of files that can be ac-
cessed. Restrictions are necessary when the PostScript interpreter executes with a user
identity different from that of the user running the application program.

In an interpreter that controls a dedicated product, such as a typical printer prod-
uct, there can be one or more devices that represent file systems on disks and car-
tridges. Files on these devices have names such as %disk0%file, %disk1%file, and
%cartridgeQ%file. Again, these devices participate in searches when the device
name is not specified.

Each of the operators file, deletefile, renamefile, status, and filenameforall takes
a filename operand—a string object that identifies a file. The name of the file can
be in one of three forms:

* %device%file identifies a named file on a specific device, as described above.

* file (first character not %) identifies a named file on an unspecified device,
which is selected by an environment-specific search rule, as described above.

* %device or %device% identifies an unnamed file on the device. Certain devices,
such as cartridges, support a single unnamed file as opposed to a collection of
named files. Other devices represent communication channels rather than per-
manent storage media. There are also special files named %stdin, %stdout,
%stderr, %statementedit, and %lineedit, described in Section 3.8.3, “Special
Files” The deletefile, renamefile, and filenameforall operators do not apply to
file names of this form.

“Wildcard” file names are recognized by the filenameforall operator; see
filenameforall in Chapter 8 for more information.

l 3.8 | File Input and Output J

Creating and Closing a File Object

File objects are created by the file operator. This operator takes two strings: the
first identifies the file and the second specifies access. file returns a new file object
associated with that file.

An access string is a string object that specifies how a file is to be accessed. File
access conventions are similar to the ones defined by the ANSI C standard, al-
though some file systems may not support all access methods. The access string
always begins with r, w, or a, possibly followed by +; any additional characters
supply operating system—specific information. Table 3.5 lists access strings and
their meanings.

TABLE 3.5 Access strings

ACCESS STRING MEANING
r Open for reading only. Generate an error if the file does not already
exist.
w Open for writing only. Create the file if it does not already exist.

Truncate and overwrite it if it does exist.

a Open for writing only. Create the file if it does not already exist.
Append to it if it does exist.

r+ Open for reading and writing. Generate an error if the file does not
already exist.

w+ Open for reading and writing. Create the file if it does not already

exist. Truncate and overwrite it if it does exist.

a+ Open for reading and writing. Create the file if it does not already
exist. Append to it if it does exist.

Note: The special files %stdin, %lineedit, and %statementedit allow only r access;
%6stdout and %stderr allow only w access (see Section 3.8.3, “Special Files”).

Like other composite objects, such as strings and arrays, file objects have access
attributes. The access attribute of a file object is based on the access string used to
create it. Attempting to access a file object in a way that would violate its access
attribute causes an invalidaccess error.

80
| CHAPTER 3 I Language |

Certain files—in particular, named files on disk—are positionable, meaning that
the data in the file can be accessed in an arbitrary order rather than only sequen-
tially from the beginning. The setfileposition operator adjusts a file object so that
it refers to a specified position in the underlying file; subsequent reads or writes
access the file at that new position. Specifying a plus sign (+) in the access string
opens a positionable file for reading and writing, as shown in Table 3.5. To ensure
predictable results, it is necessary to execute setfileposition when switching be-
tween reading and writing.

At the end of reading or writing a file, a program should close the file to break the
association between the PostScript file object and the actual file. The file opera-
tors close a file automatically if end-of-file is encountered during reading (see be-
low). The closefile operator closes a file explicitly. restore closes a file if the file
object was created since the corresponding save operation while in local VM allo-

cation mode. Garbage collection closes a file if the file object is no longer accessi-
ble.

All operators that access files treat end-of-file and exception conditions the same.
During reading, if an end-of-file indication is encountered before the requested
item can be read, the file is closed and the operation returns an explicit end-of-
file result. This also occurs if the file has already been closed when the operator is
executed. All other exceptions during reading and any exceptions during writing
result in execution of the error ioerror, invalidfileaccess, or invalidaccess.

3.8.3 Special Files
The file operator can also return special files that are identified as follows:

* %stdin, the standard input file.
* %stdout, the standard output file.

* %stderr, the standard error file. This file is for reporting low-level errors. In
many configurations, it is the same as the standard output file.

* %statementedit, the statement editor filter file, described below.

¢ %lineedit, the line editor filter file, described below.

81
l 3.8 | File Input and Output

For example, the statements

(%stdin) (r) file
(%ostdout) (w) file

push copies of the standard input and output file objects on the operand stack.
These are duplicates of existing file objects, not new objects. Each execution of
the file operator for %stdin, %stdout, or %stderr within a given job returns the
same file object. A PostScript program should not close these files. In an inter-
preter that supports multiple execution contexts, the standard input and output
files are private to each context; the standard error file is shared among all con-
texts.

Some PostScript interpreters support an interactive executive, invoked by the
executive operator; this is described in Section 2.4.4, “Using the Interpreter Inter-
actively.” executive obtains commands from the user by means of a special file
named %statementedit. Applying the file operator to the file name string
%statementedit causes the following to happen:

* The file operator begins reading characters from the standard input file and
storing them in a temporary buffer. While doing so, it echoes the characters to
the standard output file. It also interprets certain control characters as editing
functions for making corrections, as described in Section 2.4.4.

* When a complete statement has been entered, the file operator returns. A state-
ment consists of one or more lines terminated by a newline that together form
one or more complete PostScript tokens, with no opening brackets
(4, ;, <, or <~) left unmatched. A statement is also considered complete if it con-
tains a syntax error.

* The returned file object represents a temporary file containing the statement
that was entered, including the terminating end-of-line character. Reading
from this file obtains the characters of the statement in turn; end-of-file is re-
ported when the end of the statement is reached. Normally, this file is used as
an operand to the exec operator, causing the statement to be executed as a
PostScript program.

The %lineedit special file is similar to %statementedit, except that when reading
from %lineedit, the file operator returns after a single line has been entered,
whether or not it constitutes a complete statement. For both the special files
%statementedit and %lineedit, if the standard input file reaches end-of-file before

384

82

| CHAPTER 3 | Language |

any characters have been entered, the file operator issues an undefinedfilename
error.

It is important to understand that the file object returned by file for the
%statementedit and %lineedit special files is not the same as the standard input
file. It represents a temporary file containing a single buffered statement. When
the end of that statement is reached, the file is closed and the file object is no
longer of any use. Successive executions of file for %statementedit and %lineedit
return different file objects.

The %statementedit and %lineedit special files are not available in PostScript in-
terpreters that do not support an interactive executive. PostScript programs that
are page descriptions should never refer to these files.

Filters

A filter (LanguageLevel 2) is a special kind of file object that can be layered on top
of some other file to transform data being read from or written to that file. When
a PostScript program reads characters from an input filter, the filter reads charac-
ters from its underlying file and transforms the data in some way, depending on
the filter. Similarly, when a program writes characters to an output filter, the filter
transforms the data and writes the results to its underlying file.

An encoding filter is an output file that takes the data written to it, converts it to
some encoded representation depending on the filter, and writes the encoded
data to the underlying file. For example, the ASClIHexEncode filter transforms bi-
nary data to an ASCII hexadecimal-encoded representation, which it writes to its
underlying file. All encoding filters have Encode as part of their names.

A decoding filter is an input file that reads encoded data from its underlying file
and decodes it. The program reading from the filter receives the decoded data.
For example, the ASClIHexDecode filter reads ASCII hexadecimal-encoded data
from its underlying file and transforms it to binary. All decoding filters have
Decode as part of their names.

Decoding filters are most likely to be used in page descriptions. An application
program generating a page description can encode certain information (for ex-
ample, data for sampled images) to compress it or to convert it to a portable
ASCII representation. Then, within the page description itself, it invokes the cor-
responding decoding filter to convert the information back to its original form.

l 3.8 | File Input and Output _l

Encoding filters are unlikely to be used in most page descriptions. However, a
PostScript program can use them to encode data to be sent back to the applica-
tion or written to a disk file. In the interest of symmetry, the PostScript language
defines both encoding and decoding filters for all of its standard data transforma-
tion algorithms. However, encoding filters are optional; not all PostScript inter-
preters support them.

Creating Filters

Filter files are created by the filter operator (LanguageLevel 2). The filter operator
expects the following operands in the order given:

1. A data source or data target. This is ordinarily a file object that represents the
underlying file the filter is to read or write. However, it can also be a string or a
procedure. Details are provided in Section 3.13.1, “Data Sources and Targets.”

2. Filter parameters. All filters may take additional parameters, and some require
additional parameters, to control how they operate. These parameters may be
specified in a dictionary given as an operand following the data source or tar-
get; in some cases, required parameters must be given as operands following
the data source or target or following the dictionary operand, if any. The dic-
tionary operand may be omitted whenever all the dictionary-supplied param-
eters have the corresponding default values for that filter. Exactly which
parameters and operands are required for the various filters is described in
Section 3.13, “Filtered Files Details.”

3. Filter name. This is a name object, such as ASClIHexDecode, that specifies the
data transformation the filter is to perform. It also determines how many pa-
rameters there are and how they are to be interpreted.

The filter operator returns a new file object that represents the filtered file. For an
encoding filter, this is an output file, and for a decoding filter, an input file. The
direction of the underlying file—that is, its read/write attribute—must match
that of the filter. Filtered files can be used just the same as other files; they are val-
id as operands to file operators such as read, write, readstring, and writestring.
Input filters are also valid as data sources for operators such as exec or image.

Since a filter is itself a file, it can be used as the underlying file for yet another fil-
ter. Filters can be cascaded to form a pipeline that passes the data stream through
two or more encoding or decoding transformations in sequence. Example 3.5 il-
lustrates the construction of an input pipeline for decoding sampled image data

84

| CHAPTER 3 i Language |

that is embedded in the program. The application has encoded the image data
twice: once using the RunLengthEncode method to compress the data, and then
using the ASCII85Encode method to represent the binary compressed data as
ASCII text.

Example 3.5

256 256 8 [256 0 0 —256 0 256] % Other operands of the image operator
currentfile

/ASCII85Decode filter

/RuntengthDecode filter

image

... Encoded image data ...

~> % ASCII85 end-of-data marker

The currentfile operator returns the file object from which the PostScript inter-
preter is currently executing. The first execution of filter creates an ASCII85-
Decode filter whose underlying file is the one returned by currentfile. It pushes
the filter file object on the stack. The second execution of filter creates a
RunLengthDecode filter whose underlying file is the first filter file; it pushes the
new filter file object on the stack. Finally, the image operator uses the second fil-
ter file as its data source. As image reads from its data source, the data is drawn
from the underlying file and transformed by the two filters in sequence.

Standard Filters

The PostScript language supports a standard set of filters that fall into three main
categories:

* ASCII encoding and decoding filters enable arbitrary 8-bit binary data to be rep-
resented in the printable subset of the ASCII character set. This improves the
portability of the resulting data, since it avoids the problem of interference by
operating systems or communication channels that preempt the use of control
characters, represent text as 7-bit bytes, or impose line-length restrictions.

* Compression and decompression filters enable data to be represented in a com-
pressed form. Compression is particularly valuable for large sampled images,
since it reduces storage requirements and transmission time. There are several
compression filters, each of which is best suited for particular kinds of data.
Note that the compressed data is in 8-bit binary format, even if the original
data happens to be ASCII text. For maximum portability of the encoded data,

I_ 3.8 1 File Input and Output _|

these filters should be used with ASCII encoding filters, as illustrated above in
Example 3.5.

* Subfile filters pass data through without modification. These filters permit the
creation of file objects that access arbitrary user-defined data sources or data
targets. Input filters also can read data from an underlying file up to a specified
end-of-data marker.

Table 3.6 summarizes the available filters. A program can determine the complete
set of filters that the PostScript interpreter supports by applying the
resourceforall operator to the Filter resource category; see Section 3.9, “Named

Resources.”
TABLE 3.6 Standard filters
REQUIRED

FILTER NAME PARAMETERS DESCRIPTION

ASClIHexEncode (none) Encodes binary data in an ASCII hexadecimal representation. Each
binary data byte is converted to two hexadecimal digits, resulting in
an expansion factor of 1:2 in the size of the encoded data.

ASClIHexDecode (none) Decodes ASCII hexadecimal-encoded data, producing the original
binary data.

ASClI85Encode (none) Encodes binary data in an ASCII base-85 representation. This encod-
ing uses nearly all of the printable ASCII character set. The resulting
expansion factor is 4:5, making this encoding much more efficient
than hexadecimal.

ASClI85Decode (none) Decodes ASCII base-85 data, producing the original binary data.

LZWEncode (none) Compresses data using the LZW (Lempel-Ziv-Welch) adaptive com-
pression method, optionally after pretransformation by a predictor
function. This is a good general-purpose encoding that is especially
well suited for natural-language and PostScript-language text, but it
is also useful for image data.

LZWDecode (none) Decompresses LZW-encoded data, producing the original data.

FlateEncode (none) (LanguageLevel 3) Compresses data using the public-domain zlib/de-

flate compression method, optionally after pretransformation by a
predictor function. This is a variable-length Lempel-Ziv adaptive
compression method cascaded with adaptive Huffman coding. It is a
good general-purpose encoding that is especially well suited for
natural-language and PostScript-language text, but it is also useful
for image data.

86

| CHAPTER 3 | Language |

FlateDecode (none) (LanguageLevel 3) Decompresses data encoded in zlib/deflate com-
pressed format, producing the original data.

RunLengthEncode record size Compresses data using a simple byte-oriented run-length encoding
algorithm. This encoding is best suited to monochrome image data,
or any data that contains frequent long runs of a single byte value.

RunLengthDecode (none) Decompresses data encoded in the run-length encoding format, pro-
ducing the original data.

CCITTFaxEncode (none) Compresses data using a bit-oriented encoding algorithm (the
CCITT facsimile standard). This encoding is specialized to mono-
chrome image data at 1 bit per pixel.

CCITTFaxDecode (none) Decompresses facsimile-encoded data, producing the original data.

DCTEncode dictionary Compresses continuous-tone (grayscale or color) sampled image
data using a DCT (discrete cosine transform) technique based on the
JPEG standard. This encoding is specialized to image data. It is
“lossy,” meaning that the encoding algorithm can lose some informa-
tion.

DCTDecode (none) Decompresses DCT-encoded data, producing image sample data that
approximate the original data.

ReusableStreamDecode (none) (LanguageLevel 3) From any data source, creates an input stream that
can be treated as a random-access, repositionable file.

NullEncode (none) Passes all data through, without any modification. This permits an
arbitrary data target (procedure or string) to be treated as an output
file.

SubFileDecode count, string Passes all data through, without any modification. This permits an

arbitrary data source (procedure or string) to be treated as an input
file. Optionally, this filter detects an end-of-data marker in the source
data stream, treating the preceding data as a subfile.

Note: In LanguageLevel 3, all encoding filters, with the exception of the NullEncode
filter, are optional—that is, they may or may not be present in a PostScript interpret-
er product. Additional nonstandard filters may be available in some products. To en-
sure portability, PostScript programs that are page descriptions should not depend on
optional or nonstandard filters.

Section 3.13, “Filtered Files Details,” provides complete information about indi-
vidual filters, including specifications of the encoding algorithms for some of

| 3.9 Nzizmied Resources‘l

—_— | —— =

them. The section also describes the semantics of data sources and data targets in
more detail.

3.8.5 Additional File Operators
There are other miscellaneous file operators:

* status and bytesavailable return status information about a file.

* currentfile returns the file object from which the interpreter is currently read-
ing.

* run is a convenience operator that combines the functions of file and exec.

Several built-in procedures print the values of objects on the operand stack, send-
ing a readable representation of those values to the standard output file:

* = pops one object from the operand stack and writes a text representation of its
value to the standard output file, followed by a newline.

* == is similar to =, but produces results closer to full PostScript language syntax
and expands the values of arrays.

* stack prints the entire contents of the operand stack with =, but leaves the stack
unchanged.

* pstack performs a similar operation to stack, but uses ==.

Input/output and storage devices can be manipulated individually by
LanguageLevel 2 operators. In particular:

* setdevparams and currentdevparams access device-dependent parameters (see
Appendix C).

* resourceforall, applied to the I0Device resource category, enumerates all avail-
able device parameter sets (see the next section).

3.9 Named Resources

Some features of the PostScript language involve the use of open-ended col-
lections of objects to control their operation. For example, the font machinery
uses font dictionaries that describe the appearance of characters. The number of
possible font dictionaries is unlimited. In LanguageLevels 2 and 3, this same idea

88
| CHAPTER 3 | Language |

applies to forms, patterns, color rendering dictionaries, and many other catego-
ries of objects.

It is often convenient to associate these objects with names in some central regis-
try. This is particularly true for fonts, which are assigned standard names (such as
Times-Roman or Palatino-Bolditalic) when they are created. Other categories of
objects also can benefit from a central naming convention.

If all available objects in a particular category (for example, all possible fonts)
were permanently resident in VM, they could simply be stored in some dictionary.
Accessing a named object would be a matter of performing get from the diction-
ary; checking whether a named object is available would be accomplished by per-
forming a known operation on the dictionary.

There are many more fonts and objects of other categories than can possibly re-
side in VM at any given time. These objects originate from a source external to
the PostScript interpreter. They are introduced into VM in two ways:

* The application or print spooler embeds the objects’ definitions directly in the
job stream.

* During execution, the PostScript program requests the objects by name. The
interpreter loads them into VM automatically from an external source, such as
a disk file, a ROM cartridge, or a network file server.

The notion of named resources (LanguageLevel 2) supports the second method. A
resource is a collection of named objects that either reside in VM or can be located
and brought into VM on demand. There are separate categories of resources with
independent name spaces; for example, fonts and forms are distinct resource cat-
egories. Within each category, there is a collection of named resource instances.
Each category can have its own policy for locating instances that are not in VM
and for managing the instances that are in VM.

3.9.1 Resource Operators

There are five LanguageLevel 2 operators that apply to resources: findresource,
resourcestatus, resourceforall, defineresource, and undefineresource. A more
limited pair of operators applicable only to fonts, findfont and definefont, are
available in LanguageLevel 1.

l 3.9 1 Named Resources _l

The findresource operator is the key feature of the resource facility. Given a re-
source category name and an instance name, findresource returns an object. If
the requested resource instance does not already exist as an object in VM,
findresource gets it from an external source and loads it into VM. A PostScript
program can access named resources without knowing whether they are already
in VM or how they are obtained from external storage.

Other important features include resourcestatus, which returns information
about a resource instance, and resourceforall, which enumerates all available
resource instances in a particular category. These operators apply to all resource
instances, whether or not they reside in VM; the operators do not cause the re-
source instances to be brought into VM. resourceforall should be used with care
and only when absolutely necessary, since the set of available resource instances is
potentially extremely large.

A program can explicitly define a named resource instance in VM. That is, it can
create an object in VM, then execute defineresource to associate the object with a
name in a particular resource category. This resource instance will be visible in
subsequent executions of findresource, resourcestatus, and resourceforall. A
program can also execute undefineresource to reverse the effect of a prior
defineresource. The findresource operator automatically executes define-
resource and undefineresource to manage VM for resource instances that it ob-
tains from external storage.

Resource instances can be defined in either local or global VM. The lifetime of the
definition depends on the VM allocation mode in effect at the time the definition
is made (see Section 3.7.2, “Local and Global VM”). Normally, both local and
global resource instances are visible and available to a program. However, when
the current VM allocation mode is global, only global instances are visible; this
ensures correct behavior of resource instances that are defined in terms of other
resource instances.

When a program executes defineresource to define a resource instance explicitly,
the program has complete control over whether to use local or global VM. How-
ever, when execution of findresource causes a resource instance to be brought
into VM automatically, the decision whether to use local or global VM is inde-
pendent of the VM allocation mode at the time findresource is executed. Usually,
resource instances are loaded into global VM; this enables them to be managed
independently of the save and restore activity of the executing program. How-
ever, certain resource instances do not function correctly when they reside in glo-

3.9.2

| CHAPTER 3 L Language |

bal VM; they are loaded into local VM instead. In general, PostScript programs
using resources should not depend on knowing anything about the policies used
by the resource machinery, since those policies can vary among different resource
implementations.

The language does not specify a standard method for installing resources in ex-
ternal storage. Installation typically consists of writing to a named file in a file
system. However, details of how resource names are mapped to file names and
how the files are managed are environment-dependent. In some environments,
resources may be installed using facilities entirely separate from the PostScript in-
terpreter.

Resource instances are identified by keys that ordinarily are name or string ob-
jects; the resource operators treat names and strings equivalently. Use of other
types of keys is permitted but not recommended. The defineresource operator
can define a resource instance with a key that is not a name or a string, and the
other resource operators can access the instance using that key. However, such a
key can never match any resource instance in external storage.

Resource Categories

Resource categories are identified by name. Tables 3.7, 3.8, and 3.9 list the stan-
dard resource categories. Within a given category, every resource instance that re-
sides in VM is of a particular type and has a particular intended interpretation or
use.

Regular resources are those whose instances are ordinary useful objects, such as
font or halftone dictionaries. For example, a program typically uses the result re-
turned by findresource as an operand of some other operator, such as scalefont
or sethalftone.

Implicit resources represent some built-in capability of the PostScript interpreter.
For example, the instances of the Filter category are filter names, such as
ASClI85Decode and CCITTFaxDecode, that are passed directly to the filter opera-
tor. For such resources, the findresource operator returns only its name operand.
However, resourceforall and resourcestatus are useful for inquiring about the
availability of capabilities such as specific filter algorithms.

91
3.9 | Named Resources

TABLE 3.7 Regular resources

CATEGORY NAME OBJECT TYPE DESCRIPTION

Font dictionary Font definition

CIDFont dictionary CIDFont definition (LanguageLevel 3)

CMap dictionary Character code mapping (LanguageLevel 3)

FontSet dictionary Bundle of font definitions (LanguageLevel 3)

Encoding array Encoding vector

Form dictionary Form definition

Pattern dictionary Pattern definition (prototype)

ProcSet dictionary Procedure set

ColorSpace array Parameterized color space

Halftone dictionary Halftone dictionary

ColorRendering dictionary Color rendering dictionary

IdiomSet dictionary Procedure substitution dictionary
(LanguageLevel 3)

InkParams dictionary Colorant details dictionary (LanguageLevel 3)

TrapParams dictionary Trapping parameter set (LanguageLevel 3)

OutputDevice dictionary Page device capabilities (LanguageLevel 3)

ControlLanguage dictionary Control language support (LanguageLevel 3)

Localization dictionary Natural language support (LanguageLevel 3)

PDL dictionary PDL interpreter support (LanguageLevel 3)

HWOptions dictionary Hardware options (LanguageLevel 3)

TABLE 3.8 Resources whose instances are implicit

CATEGORY NAME OBJECT TYPE DESCRIPTION

Filter name Filter algorithm
ColorSpaceFamily name Color space family
Emulator name Language interpreter

I0Device string Device parameter set

| CHAPTER 3 | Language |
ColorRenderingType integer Color rendering dictionary type
FMapType integer Composite font mapping algorithm
FontType integer Font dictionary type
FormType integer Form dictionary type
HalftoneType integer Halftone dictionary type
ImageType integer Image dictionary type
PatternType integer Pattern dictionary type
FunctionType integer Function dictionary type (LanguageLevel 3)
ShadingType integer Shading dictionary type (LanguageLevel 3)
TrappingType integer Trapping method (LanguageLevel 3)

TABLE 3.9 Resources used in defining new resource categories

CATEGORY NAME OBJECT TYPE DESCRIPTION
Category dictionary Resource category (recursive)
Generic any Prototype for new categories

The Category and Generic resources are used in defining new categories of

resources. This capability is described in Section 3.9.3, “Creating Resource Cate-
. »

gories.

The resource operators—findresource, resourcestatus, resourceforall, define-
resource, and undefineresource—have standard behavior that is uniform across
all resource categories. This behavior is specified in the operator descriptions in
Chapter 8. For some categories, the operators have additional semantics that are
category-specific. The following sections describe the semantics of each resource
category.

Note: Except as indicated below, the PostScript language does not prescribe that a re-
source category must contain any standard instances. Some categories may be popu-
lated with predefined instances, but the set of instances is product-dependent.

3.9 Named Resources
| |]

Font

Instance names of the Font resource category are font names, such as Times-
Roman. The instances are font dictionaries that are suitable for use as operands to
scalefont or makefont, which produce a transformed font dictionary that can be
used to paint characters on the page.

The following special-purpose operators apply only to fonts but are otherwise
equivalent to the resource operators:

* findfont, equivalent to /Font findresource
* definefont, equivalent to /Font defineresource

* undefinefont, equivalent to/Font undefineresource

The definefont and undefinefont operators have additional font-specific seman-
tics, which are described under those operators in Chapter 8. Those semantics
also apply to defineresource and undefineresource when applied to the Font cat-
egory. findfont and definefont are available in LanguageLevel 1, even though the
general facility for named resources is a LanguageLevel 2 feature.

The font operators also maintain dictionaries of font names and Font resource
instances that are defined in VM. Those dictionaries are FontDirectory (all Font
resources in VM) and GlobalFontDirectory (only Font resources in global VM).
They are obsolete, but are provided for compatibility with existing applications.
The preferred method of enumerating all available Font resources is

(*) proc scratch /Font resourceforall

where proc is a procedure and scratch is a string used repeatedly to hold font
names. This method works for all available Font resources, whether or not they
are in VM. Normally, it is preferable to use resourcestatus to determine the avail-
ability of specific resources rather than enumerate all resources and check wheth-
er those of interest are in the list.

When findresource or findfont loads a font from an external source into VM, it
may choose to use global VM rather than the current VM allocation mode. This
choice depends on memory management algorithms used by the interpreter. It
also depends on the font type, since certain Type 3 fonts do not work correctly
when loaded into global VM. The details of this policy are implementation-
dependent; a PostScript program should not depend on knowing what they are.

94
! CHAPTER 3 | Language |

CIDFont

Instances of the CIDFont resource category (LanguageLevel 3) are dictionaries
that are suitable for use with the composefont operator to construct CID-keyed
fonts, as described in Section 5.11, “CID-Keyed Fonts.” The defineresource oper-
ator has certain category-specific semantics when applied to the CIDFont catego-
ry; furthermore, the definefont and undefinefont operators can be applied to
CIDFonts as well as fonts. For more information on the behavior of these opera-
tors, see Section 5.11.3, “CIDFont Dictionaries.”

CMap

Instances of the CMap resource category (LanguageLevel 3) are character code
mapping dictionaries that are suitable for use with the composefont operator to
construct CID-keyed fonts, as described in Section 5.11, “CID-Keyed Fonts.”

FontSet

Instances of the FontSet resource category (LanguageLevel 3) are bundles of font
definitions that are represented in the Compact Font Format (CFF) or other
multiple-font representations, as described in Section 5.8.1, “Type 2 and Type 14
Fonts (CFF and Chameleon).” Each FontSet instance contains the material from
which one or more Font instances can be constructed.

Encoding

Instances of the Encoding resource category are array objects, suitable for use as
the Encoding entry of font dictionaries (see Section 5.3, “Character Encoding”).
An encoding array usually contains 256 names, permitting it to be indexed by any
8-bit character code. An encoding array for use with composite fonts (described
in Section 5.10, “Composite Fonts”) contains integers instead of names, and can
be of any length.

There are two standard encodings that are permanently defined in VM and avail-
able by name in systemdict:

* StandardEncoding, whose value is the same as the array returned by

/StandardEncoding /Encoding findresource

l 3.9 B | Named Resources _I

* I1SOLatin1Encoding, whose value is the same as the array returned by

/1SOLatin1Encoding /Encoding findresource

If any other encodings exist, they are available only through findresource. The
convenience operator findencoding is equivalent to /Encoding findresource.

Form

Instances of the Form resource category are form dictionaries, described in
Section 4.7, “Forms.” A form dictionary is suitable as the operand to the
execform operator to render the form on the page.

Pattern

Instances of the Pattern resource category are prototype pattern dictionaries, de-
scribed in Section 4.9, “Patterns.” A prototype pattern dictionary is suitable as the
operand to the makepattern operator, which produces a transformed pattern
dictionary; a PostScript program can then use the resulting dictionary in painting
operations by establishing a Pattern color space or by invoking the setpattern op-
erator.

ProcSet

Instances of the ProcSet resource category are procedure sets. A procedure set is a
dictionary containing named procedures or operators. Application prologs can
be organized as one or more procedure sets that are available from a library
instead of being included in-line in every document that uses them. The ProcSet
resource category provides a way to organize such a library.

In LanguageLevel 3, there are several standard instances of the ProcSet category
that are associated with specific features of the PostScript language. These proce-
dure sets, listed in Table 3.10, contain procedures, operators, and other objects
that a PostScript program can access as part of using those features.

l CHAPTER 3 - |] Language_l

TABLE 3.10 Standard procedure sets in Languagelevel 3

PROCEDURE SET ASSOCIATED LANGUAGE FEATURE

BitmapFontinit Incremental downloading and management of glyph bitmaps in a
Type 4 CIDFont (see “Type 4 CIDFonts” on page 379)

CIDInit Building a Type 0 CIDFont (“Type 0 CIDFonts” on page 371) or a
CMap dictionary (Section 5.11.4, “CMap Dictionaries”)

ColorRendering Selecting a color rendering dictionary (Section 7.1.3, “Rendering
Intents”)

FontSetInit Building a FontSet resource (“FontSet Resources” on page 344)

Trapping In-RIP trapping (Section 6.3, “In-RIP Trapping”)

ColorSpace

Instances of the ColorSpace resource category are array objects that represent ful-
ly parameterized color spaces. The first element of a color space array is a color
space family name; the remaining elements are parameters to the color space (see
Section 4.8, “Color Spaces”).

Note: The ColorSpace resource category is distinct from the ColorSpaceFamily cate-
gory, described below.

Halftone

Instances of the Halftone resource category are halftone dictionaries, suitable as
operands to the sethalftone operator (see Section 7.4, “Halftones”).

ColorRendering

Instances of the ColorRendering resource category are color rendering diction-
aries, suitable as operands to the setcolorrendering operator (see Section 7.1,
“CIE-Based Color to Device Color™).

97
| 3.9 | Named Resources

IdiomSet

Instances of the IdiomSet resource category (LanguageLevel 3) are procedure sub-
stitution dictionaries, for use with the bind operator (see Section 3.12.1, “bind
Operator”).

InkParams and TrapParams

The LanguageLevel 3 resource categories InkParams and TrapParams are present
only in products that support in-RIP trapping (see Section 6.3, “In-RIP Trap-
ping”). Instances of InkParams are dictionaries that define trapping-related prop-
erties of device colorants; instances of TrapParams are dictionaries that define sets
of trapping parameters suitable as operands to the settrapparams operator.

OutputDevice

Instances of the OutputDevice resource category (LanguageLevel 3) are diction-
aries that describe certain capabilities of a particular page device, such as the pos-
sible page sizes or resolutions (see Section 6.4, “Output Device Dictionary”).

ControlLanguage, PDL, Localization, and HWOptions

Instances of the LanguageLevel 3 resource categories ControlLanguage, PDL,
Localization, and HWOptions provide information that is product-dependent, as
summarized below. For further details, see the PostScript Language Reference Sup-
plement.

* Instances of ControlLanguage are dictionaries that describe the control lan-
guages available in a product. A control language is a means for controlling
product features, such as default configuration and status reporting.

* Instances of PDL are dictionaries that describe the page description language
interpreters available in a product. This category supersedes the Emulator im-
plicit resource category, because its instances provide a more complete descrip-
tion of each interpreter (or emulator).

* Instances of Localization are dictionaries that describe the natural languages
(for example, English, Japanese, or German) supported by a product.

98

! CHAPTER 3 [Language

* Instances of HWOptions are strings that indicate the special hardware options
that are present in this product.

Implicit Resources

For all implicit resources, the findresource operator returns the instance’s key if
the instance is defined. The resourcestatus and resourceforall operators have
their normal behavior, although the status and size values returned by
resourcestatus are meaningless. The defineresource and undefineresource
operators are ordinarily not allowed, but the ability to define new instances of
implicit resources may exist in some implementations. The mechanisms are
implementation-dependent. ~

The instances of the Filter category are filter names, such as ASClI85Decode and
RunLengthEncode, which are used as an operand of the filter operator to deter-
mine its behavior. Filters are described in Section 3.8.4, “Filters.”

The instances of the ColorSpaceFamily category are color space family names,
which appear as the first element of a color space array object. Some color spaces,
such as DeviceRGB, are completely determined by their family name; others, such
as CIEBasedABC, require additional parameters to describe them. Color spaces
are described in Section 4.8, “Color Spaces.”

The instances of the Emulator category are names of emulators for languages
other than PostScript that may be built into a particular implementation. Those
emulators are not a standard part of the PostScript language, but one or more of
them may be present in some products. This category has been superseded by the
PDL resource category in LanguageLevel 3.

The instances of the I0Device category are names of device parameter sets. Some
parameter sets are associated with input/output devices, from which the category
name IODevice originates. However, there are also some parameter sets that do
not correspond to physical devices. The keys for all instances of this category are
expressed as strings of the form %device%. See Section C.4, “Device Parameters.”

The instances of the ColorRenderingType, FMapType, FontType, FormType,
HalftoneType, ImageType, PatternType, FunctionType, ShadingType, and
TrappingType categories are integers that are the acceptable values for the corre-
spondingly named entries in various classes of special dictionaries. For example,
in LanguageLevel 3 the FMapType category includes the integers 1 through 9 as

3.9.3

99

l 3.9 | Named Resources

keys; if an interpreter supports additional FMapType values, the FMapType cate-
gory will also include those values as instances.

Creating Resource Categories

The language support for named resources is quite general. Most of it is indepen-
dent of the semantics of specific resource categories. It is occasionally useful to
create new resource categories, each containing an independent collection of
named instances. This is accomplished through a level of recursion in the re-
source machinery itself.

The resource category named Category contains all of the resource categories as
instances. The instance names are resource category names, such as Font, Form,
and Halftone. The instance values are dictionary objects containing information
about how the corresponding resource category is implemented.

A new resource category is created by defining a new instance of the Category
category. Example 3.6 creates a category named Widget.

Example 3.6

true setglobal
/Widget catdict /Category defineresource pop
false setglobal

In this example, catdict is a dictionary describing the implementation of the
Widget category. Once it is defined, instances of the Widget category can be ma-
nipulated like other categories:

/Frob1 w /Widget defineresource % Returns w

/Frob1 /Widget findresource % Returns w

/Frob1 /Widget resourcestatus % Returns status size true

(¥ proc scratch /Widget resourceforall % Pushes (Frob1) on the stack, then calls proc

Here w is an instance of the Widget category whose type is whatever is appropri-
ate for widgets, and /Frob1 is the name of that instance.

It is possible to redefine existing resource categories in this way. Programs that do
this must ensure that the new definition correctly implements any special seman-
tics of the category.

100
CHAPTER 3 I Language

Category Implementation Dictionary

The behavior of all the resource operators, such as defineresource, is determined
by entries in the resource category’s implementation dictionary. This dictionary
was supplied as an operand to defineresource when the category was created. In
the example

/Frob1 w /Widget defineresource
the defineresource operator does the following:

1. Obtains catdict, the implementation dictionary for the Widget category.
2. Executes begin on the implementation dictionary.

3. Executes the dictionary’s DefineResource entry, which is ordinarily a proce-
dure but might be an operator. When the procedure corresponding to the
DefineResource entry is called, the operand stack contains the operands that
were passed to defineresource, except that the category name (Widget in this
example) has been removed. DefineResource is expected to consume the re-
maining operands, perform whatever action is appropriate for this resource
category, and return the appropriate result.

4. Executes the end operator. If an error occurred during step 3, it also restores
the operand and dictionary stacks to their initial state.

The other resource operators—undefineresource, findresource, resourcestatus,
and resourceforall—behave the same way, with the exception that resourceforall
does not restore the stacks upon error. Aside from the steps described above, all
of the behavior of the resource operators is implemented by the corresponding
procedures in the dictionary.

A category implementation dictionary contains the entries listed in Table 3.11.
The dictionary may also contain other information useful to the procedures in
the dictionary. Since the dictionary is on the dictionary stack at the time those
procedures are called, the procedures can access the information conveniently.

101

L 3.9 1 Named Resources _I
TABLE 3.11 Entries in a category implementation dictionary

KEY TYPE VALUE

DefineResource procedure (Required) A procedure that implements defineresource behavior.

UndefineResource procedure (Required) A procedure that implements undefineresource behavior.

FindResource procedure (Required) A procedure that implements findresource behavior. This pro-
cedure determines the policy for using global versus current VM when
loading a resource from an external source.

ResourceStatus procedure (Required) A procedure that implements resourcestatus behavior.

ResourceForAll procedure (Required) A procedure that implements resourceforall behavior. This
procedure should remove the category implementation dictionary from
the dictionary stack before executing the procedure operand of
resourceforall, and should put that dictionary back on the dictionary
stack before returning. This ensures that the procedure operand is execut-
ed in the dictionary context in effect at the time resourceforall was in-
voked.

Category name (Required) The category name. This entry is inserted by defineresource
when the category is defined.

InstanceType name (Optional) The expected type of instances of this category. If this entry is
present, defineresource checks that the instance’s type, as returned by the
type operator, matches it.

ResourceFileName procedure (Optional) A procedure that translates a resource instance name to a file

name (see Section 3.9.4, “Resources as Files”).

A single dictionary provides the implementation for both local and global in-
stances of a category. The implementation must maintain the local and global
instances separately and must respect the VM allocation mode in effect at the
time each resource operator is executed. The category implementation dictionary
must be in global VM; the defineresource operator that installs it in the Category
category must be executed while in global VM allocation mode.

The interpreter assumes that the category implementation procedures will be
reasonably well behaved and will generate errors only due to circumstances not
under their control. In this respect, they are similar to the BuildChar procedure in
a Type 3 font or to the PaintProc procedure in a form or pattern, but are unlike
the arbitrary procedures invoked by operators such as forall or resourceforall.

| CHAPTER 3 | Language

If an error occurs in a category implementation procedure, the resource operator
makes a token attempt to restore the stacks and to provide the illusion that the
error arose from the operator itself. The intent is that the resource operators
should have the usual error behavior as viewed by a program executing them.
The purpose is not to compensate for bugs in the resource implementation pro-
cedures.

Generic Category

The preceding section describes a way to define a new resource category, but it
does not provide guidance about how the individual procedures in the category’s
dictionary should be implemented. In principle, every resource category has
complete freedom over how to organize and manage resource instances, both in
VM and in external storage.

Since different implementations have different conventions for organizing re-
source instances, especially in external storage, a program that seeks to create a
new resource category might need implementation-dependent information. To
overcome this problem, it is useful to have a generic resource implementation
that can be copied and used to define new resource categories. The Category cat-
egory contains an instance named Generic, whose value is a dictionary contain-
ing a generic resource implementation.

Example 3.7 defines the Widget resource category and is similar to Example
3.6 on page 99; however, it generates the category implementation dictionary by
copying the one belonging to the Generic category. This avoids the need to know
anything about how resource categories actually work.

Example 3.7

currentglobal % Save the current VM status on the stack.
true setglobal

/Generic /Category findresource

dup length 1 add dict copy

dup /InstanceType /dicttype put

/Widget exch /Category defineresource pop
setglobal % Restore the saved VM status.

The Generic resource category’s implementation dictionary does not have an
InstanceType entry; instances need not be of any particular type. The example
above makes a copy of the dictionary with space for one additional entry and in-

394

103
3.9 | Named Resources

serts an InstanceType entry with the value dicttype. As a result, defineresource
requires that instances of the Widget category be dictionaries.

Resources as Files

The PostScript language does not specify how external resources are installed,
how they are loaded, or what correspondence, if any, exists between resource
names and file names. In general, all knowledge of such things is in the category
implementation dictionary and in environment-dependent installation software.

Typically, resource instances are installed as named files, which can also be access-
ed by ordinary PostScript file operators such as file and run. There is a straight-
forward mapping from resource names to file names, though the details of this
mapping vary because of restrictions on file name syntax imposed by the under-
lying file system.

In some implementations, including many dedicated printers, the only access to
the file system is through the PostScript interpreter. In such environments, it is
important for PostScript programs to be able to access the underlying resource
files directly in order to install or remove them. Only resource installation or oth-
er system management software should do this. Page descriptions should never
attempt to access resources as files; they should use only resource operators, such
as findresource.

The implementation dictionary for a category can contain an optional entry,
ResourceFileName, which is a procedure that translates from a resource name to
a file name. If the procedure exists, a program can call it as follows:

1. Push the category implementation dictionary on the dictionary stack. The
ResourceFileName procedure requires this step in order to obtain category-
specific information, such as Category.

2. Push the instance name and a scratch string on the operand stack. The scratch
string must be long enough to accept the complete file name for the resource.

3. Execute ResourceFileName.
4. Pop the dictionary stack.

ResourceFileName builds a complete file name in the scratch string and returns
on the operand stack the substring that was used. This string can then be used as

CHAPTER 3 Language
L) I g 1

the filename operand of file operators such as file, deletefile, status, and so on.
For example, the following program fragment obtains the file name for the Times-
Roman font:

/Font /Category findresource
begin

/Times-Roman scratch ResourceFileName
end

If a ResourceFileName procedure for a particular category and instance name ex-
ists and executes without a PostScript error, it will leave a string on the stack. If
that category maintains all of its instances as named files, this string is the name
of the file for that instance. This file name may or may not contain the %device%
prefix. Use of this file name with file operators may not succeed for a variety of
reasons, including:

* The category does not maintain all of its instances as named files.
* The operator tried to delete a file from a read-only file system.

* The operator tried to write to a file system with insufficient space.

There may be a limit on the length of a resource file name, which in turn imposes
a length limit on the instance name. The inherent limit on resource instance
names is the same as that on name objects in general (see Appendix B). By con-
vention, font names are restricted to fewer than 40 characters. This convention is
recommended for other resource categories as well. Note that the resource file
name may be longer or shorter than the resource instance name, depending on
details of the name-mapping algorithm. When calling ResourceFileName, it is
prudent to provide a scratch string at least 100 characters long,

Some implementations provide additional control over the behavior of
ResourceFileName; see Section C.3.6, “Resource File Location.”

A resource file contains a PostScript program that can be executed to load the re-
source instance into VM. The last action the program should take is to execute
defineresource or an equivalent operator, such as definefont, to associate the
resource instance with a category and a name. In other words, each resource file
must be self-identifying and self-defining. The resource file must be well behaved:
it must leave the stacks in their original state and it must not execute any opera-
tors (graphics operators, for instance) that are not directly related to creating the
resource instance.

105
I 3.9 | Named Resources

For most resource categories, including Generic, the category’s FindResource
procedure executes true setglobal before executing the resource file and restores
the previous VM allocation mode afterward. As a result, the resource instance is
loaded into global VM and defineresource defines the resource instance globally,
regardless of the VM allocation mode at the time findresource is invoked. Unfor-
tunately, certain resource instances behave incorrectly if they reside in global VM.
Some means are required to defeat the automatic loading into global VM. Two
methods are currently used:

* Some implementations of the Font category’s FindResource procedure omit ex-
ecuting true setglobal before executing the font file. This causes fonts to be
defined in the VM allocation mode in effect when findresource is invoked,
rather than always in global VM. Details of this policy are implementation-
dependent.

* If a particular resource instance is known not to work in global VM, the re-
source file should begin with an explicit false setglobal.

A resource file can contain header comments, as specified in Adobe Technical
Note #5001, PostScript Language Document Structuring Conventions Specification.
If there is a header comment of the form

%%VMusage:int int

then the resourcestatus operator returns the larger of the two integers as its size
result. If the %%VMusage: comment is not present, resourcestatus may not be
able to determine the VM consumption for the resource instance, in which case it
will return a size of —1.

The definition of an entire resource category—that is, an instance of the
Category category—can come from a resource file in the normal way. If any re-
source operator is presented with an unknown category name, it automatically
executes

category /Category findresource

in an attempt to cause the resource category to become defined. Only if that fails
will the resource operator generate an undefined error to report that the resource
category is unknown.

106
| CHAPTER 3 | Language |

3.10 Functions

The PostScript language includes operators and procedures that take arguments
off the operand stack and put their results back on the stack. The add operator,
for example, pops two arguments, which must be numbers, and pushes the sum
of those numbers back on the stack. add could be viewed as a function with two
input values and one output value:

f(xO, X)) = x5+ x

Similarly, the following procedure computes the average and the square root of
the product of two numbers:

{ 2copyadd
2div
31 roll mul
sqrt

This could be viewed as a function of two input values and two output values:

Xn+ X

0 1
f(xO, X)) = — [X0 X %,

In general, a function can take any number (m) of input values and produce any
number (n) of output values:

f(xo, Xy 1) = Yo RS S

LanguageLevel 3 supports an explicit, static representation for functions, known
as function dictionaries. Functions are less general than PostScript procedures: all
the input values and all the output values are numbers, and functions have no
side effects. On the other hand, functions can be considerably more efficient than
procedures, since they entail no PostScript operator execution.

At present, there is only one use for functions in the PostScript language: they are
used to define the color values in a shading pattern (see Section 4.9.3, “Shading
Patterns,” and the shfill operator in Chapter 8). There is no operator like exec
that explicitly calls a function. Functions are also used extensively in PDF, where
there are no procedures; for more information, see the Portable Document Format
Reference Manual.

| 3.10 "1)7 Functions |

Each function definition includes a domain, the set of legal values for the input.
Some types of function also define a range, the set of legal values for the output.
Values passed to the function are clipped to the domain, and values produced by
the function are clipped to the range. For example, suppose the function
f(x) =x+2 is defined with a domain of [-1 11. If the function is called with the
value 6, that value is replaced with the nearest value in the defined domain, 1,
before the function is evaluated, and the result is therefore 3. Similarly, if the
function f(xg, x|) = 3 X x + x is defined with a range of [0 100], and if the values
-6 and 4 are passed to the function (and are within its domain), then the value
produced by the function, —14, is replaced with 0, the nearest value in the defined
range.

3.10.1 Function Dictionaries

A function dictionary specifies a function’s representation, the set of attributes
that parameterize that representation, and the additional data needed by that
representation. Three types of function are available, as indicated by the diction-
ary’s FunctionType entry:

* A sampled function (type 0) uses a table of sample values to represent the func-
tion. Various techniques are used to interpolate values between the sample
values.

* An exponential interpolation function (type 2) defines a set of coefficients for an
exponential function.

* A stitching function (type 3) is a combination of other functions, partitioned
across a domain.

All function dictionaries share the entries listed in Table 3.12. In addition, each
type of function dictionary must include attributes appropriate to the particular
function type. The number of output values can usually be inferred from other
attributes of the function; if not (as is always the case for type 0 functions), the
Range attribute is required. The dimensionality of the function implied by the
Domain and Range attributes must be consistent with the dimensionality implied
by other attributes of the function; otherwise, a rangecheck error will occur.

108

l CHAPTER 3 1 Language i
TABLE 3.12 Entries common to all function dictionaries
KEY TYPE VALUE
FunctionType integer (Required) The function type:
0 Sampled function
2 Exponential interpolation function
3 Stitching function
Domain array (Required) An array of 2 X m numbers, where m is the number of input val-
ues. For each i from 0 to m — 1, Domain,; must be less than or equal to
Domainy;,;, and the ith input value, x; must lie in the interval
Domain,; < x; <Domain,;, . Input values outside the declared domain are
clipped to the nearest boundary value.
Range array (Required for type 0 functions, optional otherwise; see below) An array of 2 X n

numbers, where n is the number of output values. For each jfrom 0 to n~ 1,
Range,; must be less than or equal to Range;;, ;, and the jth output value, y;
must lie in the interval Range,; < y; < Range,;,). Output values outside the
declared range are clipped to the nearest boundary value. If the Range entry
is absent, no clipping is done.

Type 0 Function Dictionaries (Sampled Functions)

Type 0 function dictionaries use a sequence of sample values to provide an ap-
proximation for functions whose domains and ranges are bounded. The samples
are organized as an m-dimensional table in which each entry has n components.

Sampled functions are highly general and offer reasonably accurate repre-
sentations of arbitrary analytic functions at low expense. For example, a 1-input
sinusoidal function can be represented over the range [0 180] with an average
error of only 1 percent, using just ten samples and linear interpolation. Two-
input functions require significantly more samples, but usually not a prohibitive
number, so long as the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent high-dimensionality
functions multiplies rapidly unless the sampling resolution is very low. Also, the
process of multilinear interpolation becomes computationally intensive if m is
greater than 2. The multidimensional spline interpolation is even more computa-
tionally intensive.

l3.10

109)
J\ Functions J

In addition to the entries in Table 3.12, a type 0 function dictionary includes the
entries listed in Table 3.13.

TABLE 3.13 Additional entries specific to a type 0 function dictionary

KEY

TYPE

VALUE

Order

DataSource

BitsPerSample

Encode

Decode

Size

integer

string or file

integer

array

array

array

(Optional) The order of interpolation between samples. Allowed values are 1
and 3, specifying linear and cubic spline interpolation, respectively. Default
value: 1.

(Required) A string or positionable file providing the sequence of sample
values that specifies the function. (A file object derived from a Reusable-
StreamDecode filter may be used here.)

(Required) The number of bits used to represent each component of each
sample value. The number must be 1, 2, 4, 8, 12, 16, 24, or 32.

(Optional) An array of 2 x m numbers specifying the linear mapping of input
values into the domain of the function’s sample table. Default value:
[0 (Sizep—1) O (Size, — 1) ...].

(Optional) An array of 2x n numbers specifying the linear mapping of
sample values into the range of values appropriate for the function’s output
values. Default value: Same as the value of Range.

(Required) An array of m positive integers specifying the number of samples
in each input dimension of the sample table.

The Domain, Encode, and Size attributes determine how the function’s input
variable values are mapped into the sample table. For example, if Size is [21 31],
the default Encode array is [0 20 0 30], which maps the entire domain into the full
set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and Range,
we use the following notation:

(r max ~ Y min)

y = Interpolate(x, x_ , X max Ymine Ymaxd) = (X = %) . —x_) /min
max mirny

For a given value of x, Interpolate calculates the y value on the line defined by the
two points (Xmins Ymin) and (Xmax» Ymax)-

110
| CHAPTER 3 [Language |

When a sampled function is called, each input value x;, for 0 < i < m, is clipped to
the domain:

/7 : . .
x/ = min(max(x;, Domain,.), Domain,;)

That value is encoded:

- rd - -
€ = Interpolate(xi, DomamZi, Domalnzi+ P EncodeZi, EncodeZi+ l)

That value is clipped to the size of the sample table in that dimension:

e/ = min(max(e;, 0), Size; - 1)
The encoded input values are real numbers, not restricted to integers. Interpola-
tion is then used to determine output values from the nearest surrounding values

in the sample table. Each output value r;, for 0 < j <, is then decoded:
rj’ = Interpolate(rj, 0, 2BitsPerSample _ | Decode, i Decode, o P

Finally, each decoded value is clipped to the range:

) e min(max(rj’, Rangezj), Range2j+ N,
Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order
bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no
padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last dimen-
sion vary slowest. For example, for a function f(a, b, c), where a, b, and ¢ vary
from 0 to 9 in steps of 1, the sample values would appear in this order: f(0, 0, 0),
f(1,0,0), ..., f(9,0,0), f(0,1,0), f(1,1,0), ..., f(9,1,0), f(0,2,0), f(1,2,0), ...,
£(9,9,0),£(0,0,1),f(1,0, 1), and so on.

For a function with multidimensional output (more than one output value), the
values are stored in the same order as Range.

The DataSource string or file must be long enough to contain the entire sample
array, as indicated by Size, Range, and BitsPerSample; otherwise, a rangecheck

L3.10 1_11 Functions _l

error will occur. If DataSource is a file, the sample data begins at file position 0.
The operators that use the function will reposition this file at unpredictable
times; a PostScript program should not attempt to access the same file. A
ReusableStreamDecode filter is required if in-line data or a subfile is to be used as
data for a sampled function.

Example 3.8 illustrates a sampled function with 4-bit samples in an array con-
taining 21 columns and 31 rows. The function takes two arguments, x and y, in
the domain [-1 1], and returns one value, z, in that same range.

Example 3.8

<< /FunctionType 0
/Domain[-1 1 -1 1]
/Size [21 31]
/Encode [0 20 0 30]
/BitsPerSample 4
/Range [-1 1]
/Decode [-1 1]
/DataSource<... >

>>

The x argument is linearly transformed by the encoding to the domain [0 20] and
the y argument to the domain [0 30]. Using bilinear interpolation between sam-
ple points, the function computes a value for z, which (because BitsPerSample is
4) will be in the range [0 15], and the decoding transforms z to a number in the
range [-1 1] for the result. The sample array is stored in a string of 326 bytes, cal-
culated as follows (rounded up):

326 bytes = 31 rows x 21 samples/row x 4 bits/sample + 8 bits/byte

The first byte contains the sample for the point (—1,-1) in the high-order 4 bits
and the sample for the point (—0.9, —1) in the low-order 4 bits.

The Decode entry can be used creatively to increase the accuracy of encoded
samples corresponding to certain values in the range. For example, if the desired
range of the function is [-1 1] and BitsPerSample is 4, the usual value of Decode
would be [-1 1] and the sample values would be integers in the interval [0 15] (as
shown in Figure 3.1). But if these values were used, the midpoint of the range (0)
would not be represented exactly by any sample value, since it would fall halfway
between 7 and 8. On the other hand, if the Decode array were [-1+1.1428571]
(or more precisely, [-1 16 14 div]) and the sample values supplied were in the in-

112

l CHAPTER 3 _ 1 Language _l

terval [0 14], then the desired effective range of [-1 1] would be achieved, and the
range value 0 would be represented by the sample value 7.

+1

: +'|T—
|
[}
I
LB
%II:}%IIIIIIII=%0%=I:=I
7 8 1S < 7 8 14
Samples Samples
=14
/Decode [-1 1] /Decode [-1 1.1429]

FIGURE 3.1 Mapping with the Decode array

The Size value for an input dimension can be 1, in which case all input values in
that dimension will be mapped to the single allowed value. If Size is less than 4,
cubic spline interpolation is not possible and Order 3 will be ignored if specified.

Type 2 Function Dictionary (Exponential Interpolation Functions)

Type 2 function dictionaries include a set of parameters that define an exponen-
tial interpolation of one input value and 7 output values:

fX) = Yoo s Vo

In addition to the entries in Table 3.12 on page 108, a type 2 function dictionary
includes the entries listed in Table 3.14.

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be greater than or equal to 0, and if N is negative, no value of x
may be 0.

For typical use as an interpolation function, Domain will be declared as [0 1], and
N will be a number greater than 0. The Range parameter is optional and can be
used to clip the output to a desired range.

113 s
3.10 | Functions

TABLE 3.14 Additional entries specific to a type 2 function dictionary

KEY TYPE VALUE

co array (Optional) An array of # numbers defining the function result when x=0
(hence the “0” in the name). Default value: [0].

a array (Optional) An array of n numbers defining the function result when x= 1
(hence the “1” in the name). Default value: [1].

N number (Required) The interpolation exponent. Each input value x will return n

values, given by y; = Co; + N x (Q1;-C0)),for0<sj<n.

Type 3 Function Dictionaries (Stitching Functions)

Type 3 function dictionaries define a “stitching” of the subdomains of several
1-input functions to produce a single new 1-input function. Since the resulting
stitching function is a 1-input function, the domain is given by a two-element
array, [Domaingy Domain, |. This domain is partitioned into k subdomains, as in-
dicated by the dictionary’s Bounds entry, which is an array of k — 1 numbers that
obey the following inequality:

Domain,, < Bounds;, < Bounds, < ... < B'oundsk_ , < Domain,
The value of the Functions entry is an array of k functions. The first function
applies to x values in the first subdomain, Domain, < x < Bounds; the second
function applies to x values in the second subdomain, Bounds < x < Bounds,;
and so on. The last function applies to x values in the last subdomain, which in-
cludes the upper bound: Bounds;_; < x < Domain,.

The Encode array contains 2 x k numbers. A value x from the ith subdomain is
encoded as follows:

%’ = Interpolate(x, Bounds; _ |, Bounds;, Encode, Encode,; .)

for 0<i<k. In this equation, Bounds_; means Domain, and Bounds;_; means
Domain;.

The value of k may be 1, in which case the Bounds array is empty and the single
item in the Functions array applies to all x values, Domain, < x < Domain;.

114

L CHAPTER 3_ 1 {‘anguage J

In addition to the entries in Table 3.12 on page 108, a type 3 function dictionary
includes the entries listed in Table 3.15.

TABLE 3.15 Additional entries specific to a type 3 function dictionary

KEY

TYPE VALUE

Functions

Bounds

Encode

array (Required) An array of k 1-input functions making up the stitching function.
The output dimensionality of all functions must be the same, and compatible
with the value of Range if Range is present.

array (Required) An array of k — 1 numbers that, in combination with Domain, de-
fine the intervals to which each function from the Functions array applies.
Bounds elements must be in order of increasing value, and each value must
be within the limits specified by Domain.

array (Required) An array of 2 X k numbers that, taken in pairs, map each subset of
the domain defined by Domain and the Bounds array to the domain of the
corresponding function.

3.11

Domain must be of size 2 (that is, 7 = 1). Note that Domain, must be strictly less
than Domain; unless k= 1.

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern, over different parts of the shading’s domain.
The same effect could be achieved by creating separate shading dictionaries for
each of the functions, with adjacent domains. However, since each shading would
have similar parameters, and because the overall effect is one shading, it is more
convenient to have a single shading with multiple function definitions.

Also, function type 3 provides a general mechanism for inverting the domains of
1-input functions. For example, consider a function f with a Domain of [0 1], and
a stitching function g with a Domain of [0 1], a Functions array containing f, and
an Encode array of [10]. In effect, g(x) = f(1 - x).

Errors

Various sorts of errors can occur during execution of a PostScript program. Some
errors are detected by the PostScript interpreter, such as overflow of one of the in-
terpreter’s stacks. Others are detected during execution of the built-in operators,
such as occurrence of the wrong type of operand.

3.11 Errors
| i |

Errors are handled in a uniform fashion that is under the control of the Post-
Script program. Each error is associated with a name, such as stackoverflow or
typecheck. Each error name appears as a key in a special dictionary called
errordict and is associated with a value that is the handler for that error. The
complete set of error names appears in Section 8.1, “Operator Summary.”

3.11.1 Error Initiation
When an error occurs, the interpreter does the following:

1. Restores the operand stack to the state it was in when it began executing the
current object.

2. Pushes that object on the operand stack.

3. Looks up the error’s name in errordict and executes the associated value,
which is the error handler for that error.

This is everything the interpreter itself does in response to an error. The error
handler in errordict is responsible for all other actions. A PostScript program can
modify error behavior by defining its own error-handling procedures and associ-
ating them with the names in errordict.

The interrupt and timeout errors, which are initiated by events external to the
PostScript interpreter, are treated specially. The interpreter merely executes
interrupt or timeout from errordict, sandwiched between execution of two ob-
jects being interpreted in normal sequence. It does not push the object being exe-
cuted, nor does it alter the operand stack in any other way. In other words, it
omits steps 1 and 2 above.

3.11.2 Error Handling

The errordict dictionary present in the initial state of VM provides standard
handlers for all errors. However, errordict is a writeable dictionary; a program
can replace individual error handlers selectively. errordict is in local VM, so
changes are subject to save and restore; see Section 3.7, “Memory Management.”

The default error-handling procedures all operate in a standard way. They record
information about the error in a special dictionary named $error, set the VM al-

|

116
CHAPTER 3] Language J

location mode to local, and invoke the stop operator. They do not print anything
or generate any text messages to %stdout or %stderr.

Execution of stop exits the innermost enclosing context established by the
stopped operator. Assuming the user program has not invoked stopped, inter-
pretation continues in the job server, which invoked the user program with
stopped.

As part of error recovery, the job server executes the name handleerror from
errordict. The default handleerror procedure accesses the error information in
the Serror dictionary and reports the error in an installation-dependent fashion.
In some environments, handleerror simply writes a text message to the standard
output file. In other environments, it invokes more elaborate error reporting
mechanisms.

After an error occurs and one of the default error-handling procedures is exe-
cuted, $error contains the entries shown in Table 3.16.

TABLE 3.16 Entries in the $error dictionary

KEY TYPE VALUE

newerror boolean A flag that is set to true to indicate that an error has occurred. handleerror
sets it to false.

errorname name The name of the error that occurred.

command any The operator or other object being executed by the interpreter at the time the
error occurred.

errorinfo arrayor null (LanguageLevel 2) If the error arose from an operator that takes a parameter
dictionary as an operand (such as setpagedevice or setdevparams), this
array contains the key and value of the incorrect parameter. (If a required
entry was missing, this array contains the expected key with a null value.)
handleerror sets errorinfo to null.

ostack array A snapshot of the entire operand stack immediately before the error, stored
as if by the astore operator.

estack array A snapshot of the execution stack, stored as if by the execstack operator.

dstack array A snapshot of the dictionary stack, stored as if by the dictstack operator.

17
l 3.12 | Early Name Binding l

recordstacks boolean (LanguageLevel 2) A flag that controls whether the standard error handlers
record the ostack, estack, and dstack snapshots. Default value: true.

binary boolean (LanguageLevel 2) A flag that controls the format of error reports produced
by the standard handleerror procedure. false produces a text message; true
produces a binary object sequence (see Section 3.14.6, “Structured Output”).
Default value: false.

A program that wishes to modify the behavior of error handling can do so in one
of two ways:

* It can change the way errors are reported simply by redefining handleerror in
errordict. For example, a revised error handler might report more information
about the context of the error, or it might produce a printed page containing
the error information instead of reporting it to the standard output file.

* It can change the way errors are invoked by redefining the individual error
names in errordict. There is no restriction on what an error-handling proce-
dure can do. For example, in an interactive environment, an error handler
might invoke a debugging facility that would enable the user to examine or
alter the execution environment and perhaps resume execution.

3.12 Early Name Binding

Normally, when the PostScript language scanner encounters an executable name
in the program being scanned, it simply produces an executable name object; it
does not look up the value of the name. It looks up the name only when the name
object is executed by the interpreter. The lookup occurs in the dictionaries that
are on the dictionary stack at the time of execution.

A name object contained in a procedure is looked up each time the procedure is
executed. For example, given the definition

/average {add 2 div} def

the names add and div are looked up, yielding operators to be executed, every
time the average procedure is invoked.

This so-called late binding of names is an important feature of the PostScript lan-
guage. However, there are situations in which early binding is advantageous.

3.1241

| CHAPTER 3 | Language |

There are two facilities for looking up the values of names before execution: the
bind operator and the immediately evaluated name.

bind Operator

The bind operator takes a procedure operand and returns a possibly modified
procedure. There are two kinds of modification: operator substitution and idiom
recognition.

Operator Substitution

The bind operator first systematically replaces names with operators in a proce-
dure. For each executable name whose value is an operator (not an array, pro-
cedure, or other type), it replaces the name with the operator object. This lookup
occurs in the dictionaries that are on the dictionary stack at the time bind is exe-
cuted. The effect of bind applies not only to the procedure being bound but to all
subsidiary procedures (executable arrays or executable packed arrays) contained
within it, nested to arbitrary depth.

When the interpreter subsequently executes this procedure, it encounters the
operator objects, not the names of operators. For example, if the average proce-
dure has been defined as

/average {add 2 div} bind def

then during the execution of average, the interpreter executes the add and div
operators directly, without looking up the names add and div.

There are two main benefits to using bind:

* A procedure that has been bound will execute the sequence of ope<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>