-ELEGTRONIC
 DATABOOK 3RD EDITION

Packed with vital, up-to-date facts on every aspect of electronics practice . . . for hobbyists and professionals!

BY RUDOLF F. GRAF

ELECTRONIC DATABOOK 3RD EDITION

BY RUDOLF F. GRAF

R621. 38102
G757E3

Material appearing in Definitions of Integrated Circuits, Logic, and Microelectronics Terms is reprinted by permission of Insulation/Circuits, May, 1982. Copyright Lake Publishing Corporation, Libertyville, IL 60048

THIRD EDITION

SECOND PRINTING

Copyright © 1983 by Rudolf F. Graf
Printed in the United States of America
Certain portions of this work copyright ©1974 and 1971 under the titie Electronic Design Data Book by Rudolf F. Graf. Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein.

Library of Congress Cataloging in Publication Data
Graf, Rudolf F.
Electronic databook.
Includes index.

1. Electronics-Tables. 2. Electronics-Graphic methods. I. Title.
TK7825.G68 $1983 \quad 621.381^{\prime} 021^{\prime} 2 \quad 82-19407$

ISBN 0-8306-0138-4
ISBN 0-8306-1538-5 (pbk.)

Contents

PREFACE v
ACKNOWLEDGMENTS vii

1. FREQuency data 2

The entire electromagnetic spectrum is presented. Then portions of this spectrum that are of particular interest to the electrical and electronic engineer are described in greater detail.

2. COMMUNICATION

18Information useful in all segments of communication, starting with propagation characteristics, modes, standards, and transmission data is given. Antenna, transmission line, and waveguide characteristics and performance data are presented. Modulation and international telecommunications standards, signals, signal reporting codes, radio amateur data, and emission information are also given, as is information on microphones.
3. PASSIVE COMPONENTS AND CIRCUITS

Resistors, amplifiers, attenuators, filters, inductors, transformers, and capacitors are covered and their characteristics and applications are treated in depth. Computer-calculated tabulations of modern filter designs based on network synthesis are given.

4. ACTIVE COMPONENTS AND CIRCUITS

Vacuum tubes, semiconductors, and integrated circuits are covered. Circuit configurations are given in which these components are employed together with definitions of integrated circuit, logic, and microelectronic terms. A tabulation that shows the characteristics of integrated circuit logic families currently in use is given. Solid-state sensor characteristics and semiconductor memories are covered.

5. MATHEMATICAL DATA, FORMULAS, SYMBOLS

This section covers reliability; mathematical signs, symbols, operations, and tables; charts and formulas; prefixes; geometric curves; solids; spherical as well as plane geometry; and trigonometry. Frequency, phase angle, and time relationships for recurrent wave forms are given. Power and voltage level determinations in signals circuits are explained. Letter symbols for all quantities encountered in the electronics, electrical field are defined. This section concludes with a comprehensive selection of conversion factors.

6. PHYSICAL DATA

This section covers the most often needed physical data and includes, among other items, laser radiation, motors, radioactivity, optical data, sound, incandescent lamps, cathode ray tubes, crystals, color codes, relay contact code, military nomenclature, atmospheric and space data, chemical data, plastics, temperature and humidity tables, energy conversion factors and equivalents, wire data, hardware, shock and vibration, cooling data, and characteristics of materials.

INDEX

Preface

This revised and expanded edition includes a great deal of new material that has come to light since the second edition was published.

The filter section has been thoroughly updated and now includes computer-generated tabulations of modern filter design based on network synthesis. This major entry was especially prepared for this book by Mr . Ed Wetherhold, whose contribution I most gratefully acknowledge.

I also wish to thank my friends and colleagues Rich Myers and F. Raymond Dewey for giving so unselfishly of their time to review and comment on the previous edition of this work and for generously sharing with me much of their private source material.

The word knowledge brings to mind the staggering body of facts and data accumulated by mankind since his descent from the trees. Once, thousands of years ago, it was possible for a man to know all that his kind had discovered. But, time has added so greatly to our reservoir of wisdom, that knowledge, today, has assumed another meaning: knowing where to find the information needed.

This book humbly admits to being my attempt at simplifying the task of the busy engineer, technician, amateur, and student in locating the data he needs in the shortest possible time.

Gathered here, in one single volume, is a wealth of information in the form of timely and practical nomograms, tables, charts, and formulas.

Some of the material was available elsewhere, at some time or other, but never has all of it been gathered together under one cover. New and heretofore unpublished charts and nomograms are added because of what seemed to me an obvious need for such material.

The book is arranged in a most readily usable format. It contains only clear-cut, theory-free data and examples that are concise, accurate, and to the point. The user of this book will be looking for answers and he will find them, without having to fight his way through lengthy derivations and proofs.

In order to assist you in finding the data you seek, the book has been divided into six functional sections. That organization, together with a comprehensive index, quickly leads to the specific information needed. The
book maintains uniform terminology and format which assures that data found in one section can be easily and accurately related to those in the rest of the book.

Much new and up-dated material has been added to this current edition of the book. It has been my intention (and certainly my hope) that this new material makes the book still more useful and comprehensive.

The preparation of a reference book such as this is not possible without the cooperation and assistance of numerous industry sources who have so generously made their material available. I gratefully acknowledge, with special thanks, the contributions and critical efforts of Messrs. George J. Whalen, Arthur E. Fury, Rene Colen, and B. William Dudley, Jr.

If this book saves you many hours of tedious computations and search for information, it will indeed have served its intended purpose.

The author and publisher invite your comments and suggestions regarding any such other material as might have been included here, so that it may be considered for any subsequent edition or revision.

Acknowledgments

Acknowledgment is made to the following organizations and publications who have permitted use of material originally published by them. I appreciate their cooperation during the preparation of this book.

Alpha Metals, Inc.: page 390.
The American Radio Relay League: pages 55-58, 60, 65 (all from The Radio Amateur's Operating Manual, © 1969).
Automatic Electric Company: pages 236-237, 238, 267 (all from Tables and Formslae).
Centralab Division of Globe-Union, Inc.: page 99.
Clairex Electronics, Inc. (and J. R. Rabinowitz): page 307.
Computers \& Data Processing News: page 227.
Conrad, Inc.: page 358.
Design News: pages 244-245 (Nov. 1963); 248 (March 1967); 250 (Feb. 1959); 286 (March 1958; 361 (Sept. 1959); 385 (June 1967); 401 (Sept. 1975).

EDN: pages 27 (Nov. 1968); 47 (Sept. 1963); 51 (June 1964); 49 (Nov. 1968); 69 (Nov. 1968); 80 (Nov. 1968); 91 (May 1967); 101 (Sept, 1966); 108 (Nov. 1965); 109 (Apr. 1959); 115 (Jan. 1962); 150 (Oct. 1966); 157 (Nov. 1961); 159 (Sept. 1966); 181 (Sept. 1962); 225 (Nov. 1963); 234 (July 1959); 254 (May 1968); 256 (Dec. 1966); 263 (March, 1977); 284, 285 (Oct. 1960); 311 (Nov. 1962); 312 (Nov. 1962); 365 (May 1963); 383 (Aug. 1978). Electric Hotpack Company, Inc.: page 360.
Electronic Design: pages 87 (July 1956); 102, 103 (March 1959); 171 (Aug. 1981); 304 (Sept. 1966); 327, 328, 329, 330 (May 1966).
The Electronic Engineer: pages 29 (Nov. 1956); 32, 33, 34 (Jan. 1968); 36 (Nov. 1967); 37 (Oct. 1963); 46 (June 1961); 110, 111, 113 (Jan. 1948).

Electronic Equipment Engineering: pages 24 (July 1958); 148 (Aug. 1963).
Electronic Industries: page 156 (May 1966). Electronic Industries Association: pages 166-170 (from "ElANEMA Standards," 1966 By Electronic Industries Association and the National Electrical Manufacturers Association).

Electronic Products: page 190 (June 1982).
Electronics: page 372, 373 (April 3, 1975).
Electronic Tube and Instrument Division of General Atronics Corporation: page 331.
Electronics World: pages 42 (June 1965); 98 (Dec. 1964); 100 (Dec. 1964); 211 (1959); 214 (Sept. 1963); 252-253 (1962); 265, 266 (July 1961); 349 (Nov. 1969).
Franzus Company: pages 398-399.
The Garrett Corporation: pages 340-343.
General Electric Company: pages 152-155, 162-165.
General Radio Company: pages 44, 45.
Hudson Lamp Company: page 319 (from Hudson Lamp Company Catalog).
Industrial Research, Inc.: pages 149 (March 1959); 228-231 (Apr. 1960) (all from Electro-Technology).
Instrument Systems Corporation: page 377.
Insulation-Circuits: pages 192-205 (May, 1982).
Kepco, Inc.: page 366.
Kim Lighting, Subs. of Kidde Co.: page 346.
Lenkurt Electric Co., Inc.: page 26 (from Lenkurt Demodulator "Carrier and Microwave Dictionary").
Machine Design: page 326 (July 1970).
P. R. Mallory \& Co., Inc.: pages 83, 318 ("Minimum Detail that the Human Eye Can Resolve") (both from MYE Technical Manual, © 1942).
Martin Marietta Corporation: page 303.
Measurements and Data: page 357.
Microwave Journal: page 219 (Oct. 1964).
Parker Seal Company: page 249.
Popular Electronics: pages 9, 10 (from Communications Handbook, © 1969); page 171.
PRD Electronics, Inc.: page 48.
Radio Engineering Laboratories, Inc.: page 21.
Reynolds Metals Company: pages 246-247, 251 (all from Facts and Formulas, © 1961).
Howard W. Sams \& Co., Inc.: page 116 (from Audio Cyclopedia, © 1969); pages 173, 190, 369 (from Referende
Data for Radio Engineers, 5th Edition, (0) 1968).
Smithsonian Institution Press: page 317 (from Smithsonian Physical Tables).
Sprague Electric Company: pages 93, 324.
TAB BOOKS, Inc.: pages 338-339, 389(from Master Handbook of Electronic Tables \& Formulas by Martin Clifford, © 1980 BY TAB BOOKS Inc.).
Testing Machines Inc.: pages 287-299.
Tilton, Homer B., Visonics Laboratories: page 313.
TRW, Capacitor Division, page 242.
Vibrac Corporation: page 379.

ELECTRONIC DATABOOK
 3RD EDITION

Section 1

Frequency Data

The Electromagnetic Spectrum 14
Wavelength Bands and Frequency Used in Radiocommunication / 5
Broadcasting Frequency Assignments 15
TV Channel Frequencies 16
Frequencies in Use around the World in the Aeronautical Mobile Bands $/ 9$
Frequencies Used by Ship and Shore Stations / 10
International Amplitude-Modulation Broadcasting Frequencies 110
Amateur Radio Frequencies / 10
Citizens Radio (Personal Radio) Frequencies 10
Commonly Used Letter-Code Designations for Microwave Frequency Bands 111
CTCS (Continuous Tone Coded Squelch) and Remote Control Standard Frequency Table 12
Ultrasonic Transducer Materials 13
Ultrasonic Frequency Spectrum 13
NBS Standard Frequency and Time Broadcast Schedules 14
Wavelength-Frequency Conversion Scale / 17

THE ELECTROMAGNETIC SPECTRUM

This chart presents an overview of the complete electromagnetic radiation spectrum, extending from infrasonics to cosmic rays. The wavelength, the amount of energy required to radiate one photon, a general description, the band designation, and the normal occurrence or use are given. Some specific bands are described in more detail on the following pages.

$$
\begin{aligned}
& \lambda_{\mathrm{m}}=\frac{300,000}{f_{\mathrm{kHz}}}=\frac{300}{f_{\mathrm{MHz}}} \quad \lambda_{\mathrm{cm}}=\frac{30}{f_{\mathrm{GHz}}} \\
& \lambda_{\mathrm{Ht}}=\frac{984,000}{f_{\mathrm{kHz}}}=\frac{984}{f_{\mathrm{MHz}}} \quad \lambda_{\mathrm{in}}=\frac{11.8}{f_{\mathrm{GHz}}}
\end{aligned}
$$

WAVELENGTH BANDS AND FREQUENCY USED IN RADIOCOMMUNICATION
Nomenclature of the frequency and wavelength bands used in radiocommunication in accordance with Article 2, No. 12 of the "Radio Regulations," Geneva, 1959.

Band Number	Frequency Range (lower limit exclusive, upper limit inclusive)			Corresponding Metric Subdivision	Adjectival Band Designation
1	$3-$	$30 \mathrm{c} / \mathrm{s}$	(Hz)	Petametric waves	ELF Extremely-Low Frequency
2	30-	$300 \mathrm{c} / \mathrm{s}$	(Hz)	Terametric waves	SLF Super-Low Frequency
3	300-	$3000 \mathrm{c} / \mathrm{s}$	(Hz)	Gigametric waves	ULF Ultra-Low Frequency
4		$30 \mathrm{kc} / \mathrm{s}$	(kHz)	Myriametric waves	VLF Very-Low Frequency
5		$300 \mathrm{kc} / \mathrm{s}$	(kHz)	Kilometric Waves	LF Low Frequency
7	$300-$	$3000 \mathrm{kc} / \mathrm{s}$	(kHz)	Hectometric waves	MF Medium Frequency
7		$30 \mathrm{Mc} / \mathrm{s}$	(MHz)	Decametric waves	HF High Frequency
8		$300 \mathrm{Mc} / \mathrm{s}$	(MHz)	Metric waves	VHF Very High Frequency
9	300-	$3000 \mathrm{Mc} / \mathrm{s}$	(MHz)	Decimetric waves	UHF Uiltra-High Frequency
10		$30 \mathrm{Gc} / \mathrm{s}$	(GHz)	Centimetric waves	SHF Super-High Frequency
		$300 \mathrm{Gc} / \mathrm{s}$	(GHz)	Millimetric waves	EHF Extremely-High Frequency
12	300-	$3000 \mathrm{Gc} / \mathrm{s}$ or $3 \mathrm{Tc} / \mathrm{s}$	$\begin{aligned} & (\mathrm{GHz}) \\ & (\mathrm{THz}) \end{aligned}$	Decimillimetric waves	-

BROADCASTING FREQUENCY ASSIGNMENTS

This table shows the frequency range, number of available channels, and channel width for AM, FM, and TV service in the United States.

Type of Service	Frequency Range	Number of Available Channels	Width of Each Channel
AM radio	$535-1605 \mathrm{kHz}$	107	10 kHz
FM radio	$88-108 \mathrm{MHz}$ 100 $54-72 \mathrm{MHz}$ $76-88 \mathrm{MHz}$ $174-216 \mathrm{MHz}$ 12		
VHF television	$470-890 \mathrm{MHz}$	70	6 kHz
UHF television			6 MHz

Channel Number	Frequency Limits (MHz)	Video Carrier (MHz) Sound Carrier (MHz)	Channel Number	Frequency Limits (MHz)	Video Carrier (MHz) Sound Carrier (MHz)
-----	--596 --	-------	-----------698 -----------------		
35		$\begin{aligned} & 597.25 \\ & 601.75 \end{aligned}$	52	$\begin{aligned} & 699 \\ & 703 \end{aligned}$	
36		$\begin{aligned} & 603.25 \\ & 607.75 \end{aligned}$	53		$\begin{aligned} & 5.25 \\ & 9.75 \end{aligned}$
37		$\begin{aligned} & 609.25 \\ & 613.75 \end{aligned}$	54		
38		$\begin{aligned} & 615.25 \\ & 619.75 \end{aligned}$	55		
39		$\begin{aligned} & 621.25 \\ & 625.75 \end{aligned}$	56		
40		$\begin{aligned} & 627.25 \\ & 631.75 \end{aligned}$	57		
41		$\begin{aligned} & 633.25 \\ & 637.75 \end{aligned}$	58		
42	638	$\begin{aligned} & 639.25 \\ & 643.75 \end{aligned}$	59	741 745	$\begin{aligned} & 1.25 \\ & 5.75 \end{aligned}$
43		$\begin{aligned} & 645.25 \\ & 649.75 \end{aligned}$	60		$\begin{aligned} & 7.25 \\ & 1.75 \end{aligned}$
44		$\begin{aligned} & 651.25 \\ & 655.75 \end{aligned}$	61	$\begin{aligned} & 753 \\ & 757 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 7.75 \end{aligned}$
45		$\begin{aligned} & 657.25 \\ & 661.75 \end{aligned}$	62		$\begin{array}{r} 39.25 \\ 33.75 \end{array}$
46		$\begin{aligned} & 663.25 \\ & 667.75 \end{aligned}$	63		$\begin{aligned} & 5.25 \\ & 39.75 \end{aligned}$
47		$\begin{aligned} & 669.25 \\ & 673.75 \end{aligned}$	64		$\begin{aligned} & 71.25 \\ & 75.75 \end{aligned}$
48		$\begin{aligned} & 675.25 \\ & 679.75 \end{aligned}$	65	$\begin{aligned} & 777 \\ & 78 \end{aligned}$	
49		$\begin{aligned} & 681.25 \\ & 685.75 \end{aligned}$	66		$\begin{aligned} & 33.25 \\ & 37.75 \end{aligned}$
50		$\begin{aligned} & 687.25 \\ & 691.75 \end{aligned}$	67		$\begin{aligned} & 89.25 \\ & 93.75 \end{aligned}$
51		$\begin{aligned} & 693.25 \\ & 697.75 \end{aligned}$	68		$\begin{aligned} & 95.25 \\ & 99.75 \end{aligned}$

Channel Number	Frequency Limits (MHz)	Video Carrier (MHz) Sound Carrier (MHz)
-----	----800 -	---------
69		801.25
		805.75
70 (*)		807.25
		811.75
71		813.25
		817.75
72		819.25
		823.75
73		825.25
		829.75
74		
		831.25
		835.75
75		837.25
		841.75
76		843.25
		847.75
77		849.25
		853.75
78		
	-860	------
79		861.25
		865.75
80		867.25
		871.75
81		873.25
		877.75
	-878--	--------
82		879.25
		883.75
83		885.25
		889.75

(*)Channels 70 to 83 were withdrawn and reassigned to TV translator station until licenses expire. License renewals will be granted only a secondary basis for land mobile radio operation.

FREQUENCIES IN USE AROUND THE WORLD IN THE AERONAUTICAL MOBILE BANDS

WORLD AIR ROUTE AREA	FREQUENCY ALLOCATION (kHz)							
Alaska	2945	3411.5	4668.5	5611.5	6567		11,328	
Hawall		3453.5		5559	6649.5			
West Indles	2861		4689.5					
Cantral East Pacific		$\begin{aligned} & 3432.5 \\ & 3446.5 \\ & 3467.5 \\ & 3481.5 \end{aligned}$		$\begin{aligned} & 5551.5 \\ & 5604 \end{aligned}$	$\begin{aligned} & 6612 \\ & 6679.5 \end{aligned}$	$\begin{aligned} & 8879.5 \\ & 8930.5 \end{aligned}$	$\begin{aligned} & 10,048 \\ & 10,084 \\ & 11,299.5 \\ & 11,318.5 \end{aligned}$	$\begin{aligned} & 13,304.5 \\ & 13,334.5 \\ & 17,926.5 \end{aligned}$
Cantral West Pacific	2966			$\begin{aligned} & 5506.5 \\ & 5536.5 \end{aligned}$		8862.5		$\begin{aligned} & 13,354.5 \\ & 17,906.5 \end{aligned}$
North Pacific	2987			5521.5		8939		$\begin{aligned} & 13,274.5 \\ & 17,906.5 \end{aligned}$
South Pacific	2945			5641.5		8845.5		$\begin{aligned} & 13,344.5 \\ & 17,946.5 \end{aligned}$
North Atiantic	$\begin{aligned} & 2868 \\ & 2931 \\ & 2945 \\ & 2987 \end{aligned}$			$\begin{aligned} & 5611.5 \\ & 5626.5 \\ & 5641.5 \\ & 5671.5 \end{aligned}$		$\begin{aligned} & 8862.5 \\ & 8888 \\ & 8913.5 \\ & 8947.5 \end{aligned}$		$\begin{aligned} & 13,264.5 \\ & 13,284.5 \\ & 13,324.5 \\ & 13,354.5 \\ & 17,966.5 \end{aligned}$
Europe	$\begin{aligned} & 2889 \\ & 2910 \end{aligned}$	$\begin{aligned} & 3467.5 \\ & 3481.5 \end{aligned}$	$\begin{aligned} & 4654.5 \\ & 4689.5 \end{aligned}$	5551.5	$\begin{aligned} & 6552 \\ & 6582 \end{aligned}$	$\begin{aligned} & 8871 \\ & 8930.5 \end{aligned}$	11,299.5	17,906.5
North-South Amarica	$\begin{aligned} & 2889 \\ & 2910 \\ & 2966 \end{aligned}$	3404.5	4696.5	$\begin{aligned} & 5566.5 \\ & 5581.5 \end{aligned}$	$\begin{aligned} & 6567 \\ & 6664.5 \end{aligned}$	8820 8845.5 8871	$\begin{aligned} & 11,290 \\ & 11,337.5 \end{aligned}$	$\begin{aligned} & 13,314.5 \\ & 13,344.5 \\ & 17,916.5 \end{aligned}$
Far East	$\begin{aligned} & 2868 \\ & 2987 \end{aligned}$			$\begin{aligned} & 5611.5 \\ & 5671.5 \end{aligned}$		8871 8879.5 8930.5		$\begin{aligned} & 13,284.5 \\ & 13,324.5 \\ & 17,966.5 \end{aligned}$
South Atiantic	2875	3432.5			$\begin{aligned} & 6597 \\ & 6612 \\ & 6679.5 \end{aligned}$	$\begin{aligned} & 8879.5 \\ & 8939 \end{aligned}$	10,048	$\begin{aligned} & 13,274.5 \\ & 17,946.5 \end{aligned}$
Middla East		$\begin{aligned} & 3404.5 \\ & 3446.5 \end{aligned}$		5604	6627	8845.5	10,021	$\begin{aligned} & 13,334.5 \\ & 17,926.5 \end{aligned}$
North-South Africa	2966	3411.5		$\begin{aligned} & 5506.5 \\ & 5521.5 \end{aligned}$		$\begin{aligned} & 8820 \\ & 8956 \end{aligned}$		$\begin{aligned} & 13,304.5 \\ & 13,334.5 \\ & 17,926.5 \\ & 17,946.5 \end{aligned}$
Carlbbean	$\begin{aligned} & 2875 \\ & 2952 \\ & 2966 \end{aligned}$			5499 5566.5 5619	6537	$\begin{aligned} & 8837 \\ & 8871 \end{aligned}$	10,021	$\begin{aligned} & 13,294.5 \\ & 13,344.5 \\ & 17,936.5 \end{aligned}$
Canada	2973			5499		8871	11,356.5	

FREQUENCIES USED BY SHIP AND SHORE STATIONS

Band (MHz)	SHIP STATIONS		SHORE STATIONS
	Calling Frequencies (kHz)	Working Frequencies (kHz)	(Approximate Limits)
2	2065-2107	Same as calling	2000-2065
4	4178-4186	$\begin{aligned} & 4161-4176 \\ & 4188-4236 \end{aligned}$	4240-4400
6	6267-6279	$\begin{aligned} & 6241-6264 \\ & 6282-6355 \end{aligned}$	6362-6523
8	$8356-8372$	$\begin{aligned} & 8322-8352 \\ & 8376-8473 \end{aligned}$	8478-8742
12	12,534-12,558	$\begin{aligned} & 12,474-12,528 \\ & 12,564-12,709 \end{aligned}$	12,714-13,128
16	16,712-16,744	$\begin{aligned} & 16,626-16,704 \\ & 16,752-16,946 \end{aligned}$	$16,950-17,285$
22	22,225-22,265	$\begin{aligned} & 22,151-22,217 \\ & 22,272-22,395 \end{aligned}$	22,400-22,670

INTERNATIONAL AMPLITUDE-MDDULATIDN BRDADCASTING FREqUENCIES
$5.950-\quad 6.200 \mathrm{MHz}$
$9.500-9.775$
$11.70-11.975$
$15.10-15.45$
$17.70-17.90$
$21.45-21.75$
$25.60-26.10$

AMATEUR RADID FREQUENCIES

1800	-2000 kHz	$3.300-3.500 \mathrm{GHz}$
$3.500-4.000 \mathrm{MHz}$	$5.650-5.925$	
$7.000-7.300$	$10.00-10.50$	
$14.00-14.35$	$24.00-24.25$	
$21.00-21.45$	$48.00-50.00$	
$28.00-29.70$	$71.00-84.00$	
$50.00-54.00$	$152.0-170.0$	
$144.0-148.0$	$200.0-220.0$	
$220.0-225.0$	$240.0-250.0$	
$420.0-450.0$	Above 275.0	
1215		
2300	-2450	

CITIZINS RADID (PERSONAL RADIO) FREQUENCIES
$26.96 \quad 27.23 \mathrm{MHz}$
$462.5375-462.7375$
$467.5375-467.7375$

CDMMDNLY USED LETTER-CDDE DESIGNATIDNS FOR MICROWAVE FREQUENCY BANDS

Band	Frequency	Wavelength	Typical Use
P	225-390 MHz	$133.3-76.9 \mathrm{~cm}$	Long range (over 200 miles) to very long range (beyond 1,000 miles) surface-to-air search.
L	$390-1550 \mathrm{MHz}$	$76.9-19.3 \mathrm{~cm}$	Very long through medium range surface-to-air missile and aircraft detection, tracking and air traffic control, IFF transponders, beacon systems.
S	$1.55-5.2 \mathrm{GHz}$	$19.3-5.77 \mathrm{~cm}$	Medium and long range surface-to-air surveillance, surfacebased weather radar, altimetry, missile-borne guidance, airbome bomb-navigation systems.
C	$3.9-6.2 \mathrm{MHz}$	$7.69-4.84 \mathrm{~cm}$	Airborne fire control, missile-borne beacons, recon, airborne weather avoidance, aircraft and missile target tracking.
X	$5.2-10.9 \mathrm{MHz}$	$5.77-2.75 \mathrm{~cm}$	Doppler navigation, airborne fire control, airbome and sur-face-based weather detection, bomb-navigation systems, missile-bome guidance, precision landing approach.
K	$10.9-36 \mathrm{GHz}$	$2.75-0.834 \mathrm{~cm}$	Doppler navigation, automatic landing systems, airborne fire control, radar fuzing, recon, missile-borne guidance.
Q	$36-46 \mathrm{GHz}$	$0.834-0.652 \mathrm{~cm}$	Recon, airport surface detection.
V	$46-56 \mathrm{GHz}$	$0.652-0.536 \mathrm{~cm}$	High-resolution experimental shortrange systems.

CTCS (CONTINUOUS TONE CODED SQUELCH) AND REMOTE CONTROL STANDARD FREQUENCY TABLE

The EIA Standard Tone Frequencies for remote (i.e., radio paging) and control applications have been established to allow adequate separation and minimum harmonic relationship for use in multiple frequency systems.

For optimum system performance it is best to choose the widest frequency spacing possible within the recommended range.

Frequency	EIA	Frequency	EIA	Frequency	EIA
Hz 67.0	Code	Hz 258.8	Code 136	Hz 651.9	Code 153
71.9	L 2	266.0	106	669.9	123
77.0	L 3	273.3	137	688.3	154
82.5	L 4	280.8	107	707.3	124
88.5	L 4A	288.5	138	726.8	155
94.8	L 5	296.5	108	746.8	125
100.0	1	304.7	139	767.4	156
103.5	1A	313.0	109	788.5	126
107.2	1B	321.7	140	810.2	157
110.9	2	330.5	110	832.5	127
114.8	2A	339.6	141	855.2	158
118.8	2B	349.0	111	879.0	128
123.0	3	358.6	142	903.0	159
127.3	3A	368.5	112	928.1	129
131.8	3B	378.6	143	953.7	160
136.5	4	389.0	113	979.9	130
141.3	4 A	399.8	144	1006.9	161
146.2	4B	410.8	114	1049.6	131
151.4	5	422.1	145	1084.0	P
156.7	5A	433.7	115	1120.0	S11
162.2	5B	445.7	146	1190.0	S12
167.9	6	457.9	116	1220.0	S2
173.8	6A	470.5	147	1265.0	S14
179.9	6B	483.5	117	1291.4	S3
186.2	7	496.8	148	1320.0	S15
192.8	7A	510.5	118	1355.0	S16
203.5	M1	524.6	149	1400.0	S17
210.7	M2	539.0	119	1430.5	S7
218.1	M3	553.9	150	1450.0	S18
225.7	M4	569.1	120	1500.0	S20
233.6	M5	582.1	H	1520.0	S9
241.8	M6	600.9	121	1550.0	S21
250.3	M7	617.4	152	1600.0	S22
		634.5	122		

The table lists the ultrasonic transducer materials used in instrumentation, sensing and power applications.

Piezoelectric Transducers			
Material	Frequency Range	Maximum Safe Operating Temperature	Typical Applications
Quartz	$100 \mathrm{kHz}-35+\mathrm{MHz}$	$550^{\circ} \mathrm{C}$	Medical and non-destructive testing
Barium Titanate	$100 \mathrm{kHz}-10 \mathrm{MHz}$	$100^{\circ} \mathrm{C}$	Most cleaning and processing applications
Lead Zirconate Lead Titanate	$5 \mathrm{kHz}-10 \mathrm{MHz}$	$320^{\circ} \mathrm{C}$	Most cleaning and processing applications, (high temperature uses)
Rochelle Salt	$20 \mathrm{~Hz}-1 \mathrm{MHz}$	$45^{\circ} \mathrm{C}$	Sonar and depth finding
Magnetostrictive Transducers			
Nickel	$10 \mathrm{kHz}-100 \mathrm{kHz}$	-	Cleaning, drilling, machining, soldering, melt treatment, and applications where transducer has pressure applied
Venadium Permendur	$10 \mathrm{kHz}-100 \mathrm{kHz}$	-	Same as nickel

ULTRASONIC FREQUENCY SPECTRUM

Ultrasonic Frequency Spectrum

NBS STANDARD FREQUENCY AND TIME BROADCAST SCHEDULES

The diagrams presented here, with explanatory notes, summarize the technical services provided by the National Bureau of Standards (NBS) radio stations WWV, WWVH, WWVB, and WWVL.

WWV and WWVH Broadcast Services

Standard Radio Frequencies. WWV and WWVH transmit frequencies and time coordinated through the Bureau Intemational de l'Heure (BIH), Paris, France. Transmissions are based upon the International time scale, Universal Coordinated Time (UTC).

WWV broadcasts continuously on radio carrier frequencies of $2.5,5,10,15,20$, and 25 MHz . WWVH broadcasts continuously on radio carrier frequencies of $2.5,5,10,15$ and 20 MHz .

The broadcasts of WWV may also be heard via telephone by dialing (303) 499-7111, Boulder, Colorado.
Standard Audio Frequencies. Standard audio frequencies of $440 \mathrm{~Hz}, 500 \mathrm{~Hz}$, and 600 Hz are broadcast on each radio carnier frequency by the two stations. Duration of each transmitted standard tone is approximately 45 seconds. A $600-\mathrm{Hz}$ tone is broadcast during odd minutes by WWV and during even minutes by WWVH. A $500-\mathrm{Hz}$ tone is broadcast during alternate minutes unless voice announcements or silent periods are scheduled. The $440-\mathrm{Hz}$ tone is broadcast beginning one minute after the hour at WWVH and two minutes after the hour at WWV. The $440-\mathrm{Hz}$ tone period is omitted during the first hour of the UTC day.

Standard Musical Pitch. The $440-\mathrm{Hz}$ tone is broadcast for approximately 45 seconds beginning 1 minute after the hour at WWVH and 2 minutes after the hour at WWV. The tone is omitted during the zero hour of each UTC day.

Standard Time Intervals. Seconds pulses at precise intervals are derived from the same frequency standard that controls the radio carrier frequencies. Every minute, except the first of the hour, begins with a 800 -millisecond tone of $1,000 \mathrm{~Hz}$ at WWV and $1,200 \mathrm{~Hz}$ at WWVH. The first minute of every hour begins with an 800 -millisecond tone of $1,500 \mathrm{~Hz}$ at both stations.

The 1 -second markers are transmitted throughout all programs of WWV and WWVH except that the 29th of the 59th markers of each minute are omitted.

Time Signals. The time announcements of WWV and WWVH reference the Coordinated Universal Time Scale maintained by the National Bureau of Standards, UTC(NBS).

The 0 to 24 hour system is used starting with 0000 for midnight at the Greenwich Meridian (longitude zero). The first two figures give the hour, and the last two figures give the number of minutes past the hour when the tone returns.

At WWV a voice announcement of Greenwich Mean Time is given during the 7.5 seconds immediately preceding the minute.

At WWVH a voice announcement of Greenwich Mean Time occurs during the period 15 seconds to 7.5 seconds preceding the minute. The voice announcement for WWVH precedes that of WWV by 7.5 seconds. However, the tone markers referred to in both announcements occur simultaneously.

Propagation Forecasts. A forecast of radio propagation conditions is broadcast in voice from WWV at 14 minutes after every hour. The announcements are short-term forecasts and refer to propagation along paths in the North Atlantic area, such as Washington, D.C. to London or New York to Berlin.

The propagation forecast announcements are repeated in synoptic form comprised of a phonetic and a numeral. The phonetic (Whiskey, Uniform, or November) identifies the radio quality at the time the forecast is made. The numeral indicates on a scale of 1 to 9 the radio propagation quality expected during the six-hour period after the forecast is issued. The meaning of the phonetics and numerals are:

Phonetic	Meaning
Whiskey	disturbed
Uniform	unsettled
November	normal

Numeral	Meaning
One	useless
Two	very poor
Three	poor
Four	poor-to-fair
Five	fair
Six	fair-to-good
Seven	good
Eight	very good
Nine	excellent

If, for example, propagation conditions are normal and expected to be good during the next six hours, the coded forecast announcement would be "November Seven."

Geophysical Alerts. Current geophysical alerts (Geoalerts) as declared by the World Warning Agency of the International Ursigram and World Days Service (IUWDS) are broadcast in voice from WWV at 18 minutes after each hour and from WWVH at 45 minutes after each hour.

Weather Information. Weather information about major storms in the Atlantic and Pacific areas is broadcast from WWV and WWVH respectively.

Time Code. The time code is transmitted continuously by both WWV and WWVH on a $100-\mathrm{Hz}$ subcarrier. The code format is a modified IRIG-H time code produced at a $1-\mathrm{pps}$ rate and carried on $100-\mathrm{Hz}$ modulation. The $100-\mathrm{Hz}$ subcarrier is synchronous with the code pulses so that $10-$ millisecond resolution is readily obtained.

The code contains UTC time-of-year information in minutes, hours, and day of year. Seconds information may be obtained by counting pulses.

The binary coded decimal (BCD) system is used. Each minute contains seven BCD groups in this order: two groups for minutes, two groups for hours, and three groups for day of year. The code digit weighting is 1-2-4-8 for each BCD group multiplied by 1,10 , or 100 as the case may be. A complete time frame is 1 minute. The binary groups follow the 1-minute reference marker.

Modulation. At WWV and WWVH, double sideband amplitude modulation is employed with 50 percent modulation on the steady tones, 25 percent for the IRIG-H code, 100 percent for seconds pulses, and 75 percent for voice.

WWVB Broadcast Services

WWVB transmits a standard radio frequency, standard time signals, time intervals, and UT1 corrections. The station is located near WWV on the same site.

Program. WWVB broadcasts a standard radio carrier frequency of 60 kHz with no offset. It also broadcasts a time code consistent with the internationally coordinated time scale UTC(NBS).

WWVL Experimental Broadcasts

WWVL broadcasts experimental programs, usually involving multiple frequencies. The station is located in the same building with WWVB and on the same site with WWV.

Effective On UTC, 1 July 1972, regularly scheduled transmissions from WWVL were discontinued. Contingent upon need and availability of funds this station broadcasts experimental programs on an intermittent basis only.

WWVL transmits only carrier frequencies with no modulation. The format and frequencies used by WWVL are subject to change to meet the requirements of the particular experiment being conducted.

This scale is based on the formula

$$
\lambda_{m}=\frac{300}{f_{M H Z}}
$$

It shows the relationship between free space wavelength λ and frequency f and covers a frequency range extending from 300 Hz to 300 GHz , corresponding to wavelengths of $1000 \mathrm{~m}(1 \mathrm{~km})$ to 1 mm .

FOR EXAMPLE: A $60-\mathrm{MHz}$ signal has a wavelength of 5 m . A signal whose wavelength is 3 mm has a frequency of 100 GHz .

Section 2

Communication

Propagation Characteristics of Electromagnetic Waves 120
Communication Modes 121
Intemational Television Standards / 22
Free Space Transmission Nomogram 124
Signal-Strength Nomogram / 25
Nomogram Relating Transmitter Output, Transmission Loss, and Receiver Input 26
Receiver Bandwidth-Sensitivity-Noise Figure Nomogram / 27
Line-of-Sight Transmission Range Nomogram Showing the Approximate Transmission Range of Signals in the VHF Band 28
Radar Power-Energy Nomogram 129
Types of Radar Indicators 130
Antenna Reference Chart / 32
Microwave Antenna Chart / 36
Antenna Effectiveness Nomogram / 37
Transmission Line Characteristics / 38
Characteristic Impedance of Balanced Two-Wire Lines 39
Characteristics of Coaxial Cables 140
Ultra-High Frequency Half-Wave Shorting-Stub Nomogram 142
Transmission Line Nomogram / 43
Slotted-Line Width-of-Minimum VSWR Nomogram / 44
Slotted Line Width-of-Minimum Attenuation Calculation Nomogram 45
Waveguide Nomogram / 46
VSWR Nomogram 47
VSWR Reduction as a Result of Attenuation 148
Doppler to Speed Conversion Nomogram 149
Doppler Frequency Nomogram 150
Graph for Adding Two In-Phase Signals / 52
Graph for Separating Signal Power from Noise Power 153
Field Power Conversion Chart 54
Q Signals (Mnemonic Code) / 55
Radio Telephone Code / 59
International Morse Code 159
Signal Reporting Codes 160
Commercial Radio Operator and Amateur Operator Licenses Requirements 162
Intemational Phonetic Alphabet / 65
ARRL (American Radio Relay League) Word List for Voice Communication / 65
Transmission Travel Time / 65
Classification of Emissions 166
Microphone Output Nomogram / 68

PROPAGATION CHARACTERISTICS OF ELECTROMAGNETIC WAVES

Band	Frequency (Wavelength)	Characteristics	Applications
Very-low frequency (VLF)	$\begin{aligned} & 20-30 \mathrm{kHz} \\ & (20,000-10,000 \mathrm{~m}) \end{aligned}$	Very stable; low attenuation at all times. Influenced by magnetic storms. Ground wave extends over long distances. (No fading out long-time variations occur.)	Continuously operating longdistance station-to-station communication service.
Low frequency (LF)	$\begin{aligned} & 30-300 \mathrm{kHz} \\ & (10,000-1,000 \mathrm{~m}) \end{aligned}$	Seasonal and daily variations greater than that of VLF; daytime absorption also greater, increasing with frequency. At night similar to VLF although slightly less reliable.	Long-distance station-to-station service (marine, navigational aids).
Medium frequency (MF)	$\begin{aligned} & 300-3,000 \mathrm{kHz} \\ & (1,000-100 \mathrm{~m}) \end{aligned}$	Less reliable over long distances than lower frequencies. Attenuation: low at night, high in daytime; greater in summer than in winter. Low attenuation at night is due to sky-wave reflection. Ground-wave attenuation is relatively high over land and low over salt water.	Commercial broadcasting police, marine and airplane navigation.
High frequency (HF)	$\begin{aligned} & 3-30 \mathrm{MHz} \\ & (100-10 \mathrm{~m}) \end{aligned}$	Dependent on ionospheric conditions, leading to considerable variation from day to night and from season to season. Attenuation low under favorable conditions, and high under unfavorable conditions, at medium to very long distances.	Medium and long-distance communication service of all types.
Very-high frequency (VHF)	$\begin{aligned} & 30-300 \mathrm{MHz} \\ & (10-1 \mathrm{~m}) \end{aligned}$	$30-60 \mathrm{MHz}$ sometimes affected by ionosphere. Quasi-optical transmission (similar to light, but subject to diffraction by surface of the earth).	Television, FM commercial broadcasting, radar airplane navigation, short-distance communications.
Ultra-high frequency (UHF)	$\begin{aligned} & 300-3,000 \mathrm{MHz} \\ & (100-10 \mathrm{~cm}) \end{aligned}$	Substantially same as above; slightly less diffraction. Under abnormal conditions, can be refracted by troposphere similar to sky-wave refraction. This often results temporarily in abnormally long ranges of transmission.	Television, radar, microwave relay, short-distance communications.
Super-high frequency (SHF)	$\begin{aligned} & 3,000-30,000 \\ & \mathrm{MHz}(10-1 \mathrm{~cm}) \end{aligned}$	Same as above. 1-cm range has broad water-vapor absorption band (slight O_{2} absorption).	Radar, microwave relay, short distance communications.

Principal ground-to-ground communication modes, utilizing the microwave (70 MHz to 20 GHz) region of the spectrum. Characteristically wide-band (100 kHz to 20 MHz) service.

 LIME OF SIGMT (Los)	0 to 35 miles, depending on (h).	0.1 to 10 W , two to $10-\mathrm{ft}$ antennas	Low-cost, high-performance wide band system; replaces costly right-of-way maintenance of coaxial or multiple cable or overhead wiring.
	up to $1 / 2$ circum ference of earth depending on satellite orbit and (Θ)	1 to 15 kW , 30 to $85-\mathrm{ft}$ antennas	Only practical system of global coverage using three active synchronous satellites (22,000 miles from earth) or a number of orbiting satellites (dependent on distance covered and altitude) in conjunction with multiple earth earth stations.
DIFFRACTIOM (Plane Surface)	30 to 70 miles, depending on (h) and N_{8})	0.1 to 100 w , six to $28-\mathrm{ft}$ antennas	Diffraction mode is very specialized form of UHF used only rarely where rugged terrain prevents use of direct LOS and permits longer path with obstacle gain.
DIFFRACTIOM (Knife Edge)	30 to 120 miles, depending on $(\mathrm{h}),\left(\mathrm{N}_{\mathrm{B}}\right)$ and $\left(\mathrm{G}_{\mathrm{O}}\right)$	0.1 to 100 w , six to 28-ft antennas	
DIFFRACTIOH (housh Surface)	30 to 120 miles, depending on (h), (N_{g}), $\left(\mathrm{G}_{\mathrm{o}}\right)$, and (A_{0})	0.1 to 100 W , six to $28-\mathrm{ft}$ antennas	Great attention is being given to refining propagational computation in the diffraction region because of need for utilization in tropo path predictions.
	70 to 600 miles, depending on many factors	1 to 100 kW , 10 to $120-\mathrm{ft}$ antennas, refined modulation and receiver techniques	Only practical wide-band, reliable ground-based method of achieving 70 to 600 mile hop where unsuitable intervening territory prevents use of LOS or diffraction modes.
(h) = helght of anteras center $\left(\mathrm{N}_{3}\right)=$ relractive index (Go)-conatele rain		(M_{0}) =obstacle absorption (d) = diatasce between atstlons (Θ) = nestter angle or angle of elevation	

INTERNATIONAL TELEVISION STANDARDS

This table outlines pertinent characteristics of the current TV standards used throughout the world. The video frequency-channel arrangements are also shown. The systems have been designated by letter and are in use or proposed for use in the countries listed.

Country	Standard Used ${ }^{\text {c }}$	Country	Standard Used ${ }^{\text {c }}$
Argentina	N	Mexico	M
Australa	B	Monaco	E, G
Austria	B, G	Morocco	
Belgium	C, H	Natherlands	B, G
Brazil	M D, K	Netharlands Antilles	M
Canada	D. M	New Zealand	B
Canada	M	Nigeria	B
China	M	Noway Pakistan	B
Columbia	M	Panama	M
Cuba	M	Panu	M
Czechosioveliae	D	Phillipines	M
Denmark	B	Poland	0
Egypt	B ${ }_{\text {B }}$	Portugal	B, G
France	E, G	Phodesia	8
Garmany (East)	E,	Romania	K B
Germany (Wast)	B, G	Saudi Arebia	B
Greace	B	South Africa	1
Hong Kong	B. I	Spain	B, G
Hungary	D, K	Sweden	B, G
India	B	Switzarland	B, G
Iran	B	Turkey	8
Iraland	A	United Kingdom	A, 1
Israel	B	United States of America	M
Italy	B, G	Union of Soviet Socialist	
Japan	M	Republics	0
Korea	C, L	Unuguez,	N
Luxembourg	F	Yugosiavia	B, G
${ }^{\text {c }}$ Letter designations corraspond to those in the following table.			

	A	M	N	B	c	G	H	I	D, K	L	F	E
Lines/frame	405	525	625	625	625	625	625	625	625	625	819	819
Fields/sec	50	60	50	50	50	50	50	50	50	50	50	50
Interlace	2/1	2/1	$2 / 1$	2/1	2/1	2/1	2/1	$2 / 1$	2/1	2/1	$2 / 1$	$2 / 1$
Frames/sec	25	30	-	25	25	25	25	25	25	25	25	25
Lines/sec	10125	15750	-	15625	15625	15625	15625	15625	15625	15625	${ }^{20} 475$	20475
Aspect ratio ${ }^{1}$	4/3	4/3	-	4/3	$4 / 3$	4/3	$4 / 3$	4/3	4/3	4/3	4/3	4/3
Video band (MHz)	3	4.2	4.2	5	5	5	5	5.5	6	6	5	10
RF band (MHz)	5	6	6	7	7	8	8	8	8	8	7	14
Visual polarity ${ }^{2}$	$+$	-	-	-	+	-	-	-	-	+	+	+
Sound modulation	A3	F3	-	F3	A3	F3	F3	F3	F3	F3	A3	A3
Pre-emphasis in microseconds	-	75	-	50	50	50	50	50	50	-	50	-
Deviation (kHz)	-	25	-	50	-	50	50	50	50	-	-	-
Gamma of picture signal	0.45	0.45	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6
Notes: ${ }^{1}$ In all systems the scanning sequence is from left to right and top to bottom. ${ }^{2}$ All visual carriers are amplitude modulated. Positive polarity indicates that an increase in light intensity causes an increase in radiated power. Negative polarity (as used in the US-Standard M) means that a decrease in light intensity causes an increase in radiated power.												

This nomogram relates receiver-transmitter distance, wavelength and free space attenuation. It can also be used to convert between nautical and statute miles and between frequency and wavelength.

FOR EXAMPLE: A signal from a $200-\mathrm{MHz}$ transmitter will be attenuated 125 dB before it reaches a receiver located 100 nautical miles away.

At a distance of 200 nautical miles, and a system gain of 130 dB , the highest usable frequency is 180 MHz .
The maximum distance between a transmitter-receiver-antenna system with a total gain of 125 dB operating at 500 MHz is 45 statute miles.

SIGNAL-STRENGTH NOMOGRAM

This nomogram is used to compute signal-strength input at the receiver based on a formula that converts field intensity at the receiving antenna to receiver input voltage.

If field intensity ϵ, in microvolts per meter, of a given signal f, in MHz , is known, the signal strength $\mathrm{E}_{\boldsymbol{r}}$, in microvolts, is determined for an input impedance of 50 ohms (E , in $\mu \mathrm{V}$ for $R=50$) and may be adjusted for any value of input impedance between 30 and 5000 ohms (E_{r} in $\mu \mathrm{V}$ for $30 \leqslant R \leqslant 5,000$). An isotropic antenna, no-loss transmission line is assumed.

Signal strength for receiving antennas of gain >1 (0 dB) are solved first by finding from the chart the voltage input for a system with an isotropic antenna and then adjusting the answer using the relation: $G=20 \log \left(\mathrm{E}^{\prime}, / \mathrm{E}\right.$) where G is the gain of the antenna referred to isotropic; E^{\prime}, is the voltage input to be found; and E , is the voltage input.
(Reprinted from Electronics, June 6, 1958, copyright McGraw-Hill, Inc., 1958)

NOMOGRAM RELATING TRANSMITTER OUTPUT, TRANSMISSION LOSS, AND RECEIVER INPUT

This nomogram shows the available input voltage (microvolts into 50 ohms), if transmitter output in watts and transmission loss in decibels are known. It can also show the maximum permissible transmission loss if transmitter power and receiver requirements are given, or it can be used to determine the required transmitter output for a given transmission loss and receiver input voltage. Microvolts (into 50 ohms) may be directly converted to dBm on the left scale and watts may be converted to dBm on the center scale.

FOR EXAMPLE: (1) For a transmitter output of 5 W and a transmission loss of 90 dB , the receiver input will be $500 \mu \mathrm{~V}$. (2) For a minimum of $50 \mu \mathrm{~V}$ at the receiver, and a transmitter output of 5 W , the transmission loss may not exceed 110 dB .

RECEIVER BANDWIDTH-SENSITIVITY-NOISE FIGURE NOMOGRAM

This nomogram is based on the noise figure of a receiver as given by the equation:

$$
N F=\frac{\left(m \mathrm{E}_{0} \sqrt{\left.P_{n} / P_{S}\right)^{2}}\right.}{2 R(4 K T \Delta f)}
$$

where $N F=$ noise figure; $m=$ modulation index; $P_{n}=$ noise power, $P_{s}=$ signal power; $K=$ Boltzmann's constant or 1.38×10^{-23} joules $/^{\circ} \mathrm{K} ; R=$ antenna resistance; $T=$ degrees Kelvin; $\Delta f=6-\mathrm{dB}$ audio bandwidth, and $\mathrm{E}_{0}=$ signal generator output in $\mu \mathrm{V}$.

Nominal antenna impedance is 52 ohms and the temperature can be approximated at $300^{\circ} \mathrm{K}$.
To find the noise figure of a receiver, it is only necessary to place a straightedge across the sensitivity and audio bandwidth points, extending it to intersect the noise figure line.

FOR EXAMPLE: Sensitivity of $10 \mu \mathrm{~V}$ and bandwidth of 6 kHz gives a noise figure of 100 , or 20 dB .

LINE-OF-SIGHT TRANSMISSION RANGE NOMOGRAM SHOWING THE APPROXIMATE TRANSMISSION RANGE OF SIGNALS IN THE VHF BAND

The theoretical maximum distance that can be covered is equal to the geometrical or "optical" horizon distance of each antenna, and is defined by the formula $D=1.23 \sqrt{H_{t}}+1.23 \sqrt{H_{t}}$, where D is in miles and H_{r} and H_{t} are the height in feet, above effective ground level, of the receiving and transmitting antennas. Atmospheric diffraction increases the distance by a factor of $2 N \sqrt{3}$ which defines the "radio" path under normal or standard diffraction, by the formula $\mathrm{D}=1.41 \sqrt{H_{r}}+1.41 \sqrt{H_{r}}$

FOR EXAMPLE: With a receiving antenna height of 30 ft and a transmitting antenna height of 100 ft , the "optical" horizon is 19 miles and the "radio" horizon is 21.5 miles.

(Reprinted with permission from International Telephone and Telegraph Corporation.)

RADAR POWER-ENERGY NOMOGRAM

The energy available from a radar transmitter is often the limiting factor in determining the maximum free space range. This nomogram relates the four interdependent radar equations involving peak power, average power, energy, duty cycle, pulse width, pulse repetition rate and pulse interval based on the following equations:

$$
\frac{P_{A V}}{P_{P}}=d=\tau f_{r} \text { and } P_{P} \tau=E=P_{A V} t
$$

where $P_{P}=$ peak power in watts
$P_{A V}=$ average power
$E=$ energy in joules
d = duty cycle
$\tau=$ pulse width in microseconds
$f_{\text {f }}=$ pulse repetition rate in pulses $/ \mathrm{sec}$
t = pulse interval in microseconds
FOR EXAMPLE: A pulse repetition rate of 1,000 pulses $/ \mathrm{sec}$ with a pulse width of $5 \mu \mathrm{sec}$ will give a duty cycle of 0.005 . For a peak power of 100 kW , join this value on the P_{p} scale with 0.005 on the duty-cycle scale and read an average power of 500 W . Joining the 100 kW point with the pulse width of $5 \mu \mathrm{sec}$ shows the energy as 0.5 J . (To crosscheck, connect the average power of 500 W with $1,000 \mathrm{pps}$ rep rate, which also yields 0.5 J .)

 vided by position of signal in broad azimuthal trace.

Single signal only. Signal appears as "wingspot," position giving azimuth and elevation errors. Length of wings inversely proportional to range.

Signal appears as two dots. Left dot gives range and azimuth of target. Relative position of right dot gives rough indication of elevation.

Antenna scan is conical. Signal is a circle, the radius proportional to range. Brightest part indicates direction from axis of cone to target.

Same as type A, except time base is circular, and signals appear as radial pips.

Type A with lobe-switching antenna. Spread voltage splits signals from two lobes. When pips are of equal size, antenna is on target.

RANGE
Same as type K , but signals from two lobes are placed back to back.

Type A with range step or range notch. When pip is aligned with step or notch, range can be read from a dial or counter.

A combination of type K and type M.

Range is measured radially from the center.

ANTENNA REFERENCE CHART

Antennas may be classified as linear radiators or elements, apertures arrays, and traveling wave types. Basic information on a few types of antennas is tabulated. For each type the following is given: the antenna name, physical size in wavelengths, a line drawing superimposed on coordinate axis, the impedance R in ohms at the resonant frequency f_{r}, the half-power (3 dB) bandwidth in percent, the gain in dB above an isotropic radiator, as well as the conventional half-wavelength dipole, the polarization for the given configuration, and a set of Fraunhofer Zone field strength patterns for each of the three orthogonal planes of the axis system shown.

An isotropic radiator is given, even though such an antenna for electromagnetic waves does not exist. It is a convenient and frequent reference, however, for gain and pattern measurements.

The antennas tabulated may be vertically or horizontally polarized radiators. The configuration shown in the chart is the one most frequently used in practice. The antennas listed may be fed by balanced transmission lines, by coaxial lines and a balun (balanced-to-unbalanced transformer) when necessary, or in some cases by waveguides. Aperture antennas, such as parabolic dishes and horns, are usually fed by waveguides and, for such feed systems, impedance is not too meaningful.

Brosdside Array

$L=\lambda / 2$
polerization: vertica
Theoretical Gain of Broadeide $1 / 2 \lambda$ sloments ot different spocinge $1 / 9^{+1}$.

Spacing in wevelengths "0"	Gain, dB sbove Dipole
$5 / 4$	4.8
$3 / 4$	4.6
$1 / 2$	4.0
$1 / 3$	2.4
$1 / 3$	1.0

Theoretical Gsin of Brosdside $1 / 2 \lambda$ slements for different numbers of elemente.

Number of elements	Gain, dB ebove Dipole
2	4.0
3	5.5
4	7.0
5	8.0
8	9.0

End Firs Array

$$
L=\lambda / 2
$$

polerization: vertieal
Theoreticel Gain of Two End Fire $1 / 2 \lambda$ Eiemente for Verious Specings "o"

$5 / 4$	1.7
$1 / 2$	2.2
$3 / 9$	3.0
$1 / 4.20$	3.8
$1 / 8$	4.1
	4.3

Parasitic Arrey
$L=\lambda / 2$
polorization: horizontal

Number of Elemente	Gein, dB sbove Dipole	Front to Beck Rotio, dB
2	4 to 5.	10 to 15
3	8 to 7	15 to 25
4	7 to 9	20 to 30
5	9	-

Collineer Arrey

$$
L=\lambda / 2
$$

Number of $1 / 2 \lambda$ elements in arrey versue
Spacing "0" between centers of adjacent
$1 / 2 \times$ olemente
gein in dB ebove reference bipole

| $0=1 / 2 \lambda$ | 1.8 | 3.3 | 4.5 | 5.3 | 8.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $9=3 / 4 \lambda$ | 3.2 | 4.8 | 8.0 | 7.0 | 7.8 |

	票		GAIN 8 above					
			$\begin{aligned} & \frac{\pi}{6} \\ & \frac{\text { In }}{2} \end{aligned}$	葚				Dipole aver small ground plane $L=\lambda / 4$
	E	V	0	2.14	40	28		$L / D=53$ $l=2 \lambda$
	E	V	0	2.14	45	150		$\begin{aligned} & \text { Folded Unipole } \\ & \text { over small } \\ & \text { ground plame } \\ & L=\lambda / 4 \\ & L / D=83 \\ & L=2 \lambda, \\ & L / d=13 \\ & \hline \end{aligned}$
	E	V	0	2.14	16	50		$\begin{aligned} & \text { Coosilal Dipole } \\ & L=\lambda / 4 \\ & L / D=10 \end{aligned}$
	E	v	0	2.14	200	72		$\begin{aligned} & \text { Bleconical } \\ & \text { Couxlal Dipole } \\ & L=\lambda / 2 \\ & d=\lambda / 8 \\ & D=3 \lambda / 8 \end{aligned}$
	E	V	0	2.14	300	50		Disc-Cone or Mod Disc-Cone $L=\lambda / 4$ $1=\lambda$
	E	V	12	14.14	25	20		$\begin{aligned} & \text { Bicenical Hiem } \\ & L=99 / 2 \\ & D=14 \mathrm{x} \end{aligned}$
	F	H	0	2.14	70	350		Slot In Large Ground Plane $\begin{aligned} & L=x / 2 \\ & 1 / d=29 \end{aligned}$
	B	H	1	3.14	13	45		Verfical Full Wave Loop $D=\frac{\lambda}{r}$ $D / d=36$
	G	Circ.	8	10.14	200	130		Hellical over reflector screen, tube $6 \times$ long coiled Into 6 tums 2/4 apart
	H	H	14.5	16.74	100	600		Rhombic $\begin{aligned} & L \\ & 1 \end{aligned}=9 \lambda / 2$
	H	H	12.5	14.74	30	300		Parabolic with folded clipole feed ($1 / 2$)
	H	H	13	15.14	35	50		Horn. coaxial feed $l=3 \lambda$ $L=3 \lambda$

MICROWAVE ANTENNA CHART

Shown here is the relationship between circular antenna aperture size, frequency, and gain. Also listed are the antenna performance requirements for various system applications. Practical factors, such as whether the antenna is solid or perforated, the type of aperture illumination, accuracy of construction, and shadowing from the feed system will tend to reduce the gain somewhat.

FOR EXAMPLE: To achieve a gain of 40 dB at 10 GHz requires an antenna with a diameter of 10 m . An antenna with a diameter of 100 m has a gain of 100 dB at 100 GHz .

Antenna Performance Requirements

APPLICATION	Pattern	POLARIZATION	GAIN g. (dB) above leotrople rad.	BEAMWIOTH (H) degrese	POINTING ACCURACY, to degreet	TYPICAL TYPES
1. SATELLITE Link or Probe	Penell Beam	tny	10 to 40 dB or maore	60 to 2 or lase	8 to 2 or better	Horn, Phased array, Parabela, Cassegreln
2. POINT TO POINT RELAY 1. On Earth b. Earth to Setallite to Earth c. Satellite to Satallite	Pencll Beam	any	e. 50 to 120 b. 50 to 120 c. 50 to 180	$\begin{aligned} & 5.8 \times 10^{-1} \text { to } \\ & 1.8 \times 10^{-4} \\ & 5.8 \times 10^{-1} \text { to } \\ & 1.8 \times 10^{-1} \end{aligned}$	$\begin{aligned} & 5.8 \times 10^{-2} 10 \\ & 1.8 \times 10^{-7} \end{aligned}$	Horn, Perebole. Cessegrain
3. BROAOCAST a. Earth Trana. b. Set. Trans.	omnidir. wide or fon beam	any	6. 3 to 40 b. 1 to 10	$\begin{aligned} & 100 \text { to } 1.8 \\ & 180 \text { to } 80 \end{aligned}$	10 to. 13	a. Vertleal rediator b. Cylindricel perebole
4. NAVIGATION	omnidir, or fon beam	eny	3 to 30	100 to, 50	10 to .058	Verlicel redletor, Hern, or Perabole
5. RADAR a. Seerch b. Tratk	csez Panell Beam	try	40 to 120	. 8 to 1.8×10^{-4}	. 18 to 1.8×10^{-3}	Horn, Parebola, Csssegrain, Phesed orrey
8. RADIO ASTRONOMY 0. Pasaive b. Active	Pencli Beam	ony	50 to 160 or grobler	. 58 to 1.8×10^{-3}	. 057 to 1.8×10^{-7}	Persbola, Cessegreln, Phased array
7. RAOFOMETRY Industrial	eny	ary	unknown	unknown	unknown	Any

Antenna Gain and Size vs Frequency for Uniformly Illuminated Circular Aperture

Antennas are judged on the basis of radiation efficiency or their VSWR. Radiation efficiency is the ratio of the radiated power to the total power fed into the antenna terminals. Total power is the sum of the radiated power and the power lost in ohmic losses in the form of heat. The power going into the antenna terminals is the power which a transmitter can put out less the power reflected due to antenna mismatch. Antenna effectiveness is the ratio of the radiated power to the power which a transmitter can put into a matched load, i.e., the forward or incident power.

$$
\text { Effectiveness }=\frac{4 \text { VSWR }}{(\text { VSWR }+1)^{2}} \times \text { efficiency }
$$

FOR EXAMPLE: A 60% efficient antenna with a 2.5:1 VSWR has an effectiveness of 48% compared to a perfectly matched 100% efficient antenna.

NOTE: In some cases an antenna can be made more effective by lessening its efficiency if this will produce a sufficient reduction in the VSWR.

Characteristics of Various Types of Transmission Lines Erected Parallel to a Perfectly Conducting Earth.

logarithms to the base io			I, - oenerator Current
LINE CONFIGURATION		CHARACTERISTIC IMPEDANCE	MET OROUND-RETURN CURRETIT
Single wire		$z_{0}=138 \log \frac{2 h}{r}$	Land $=I_{1}$
2-Wire balanced		$z_{0}=276 \log \frac{3}{r}$	$\mathrm{I}_{\text {Ond }}=0$
2-Wire grounded		$\begin{aligned} & z_{0} \sim 276 \frac{\log \frac{3}{r} \log \left(\rho^{2} p\right]}{\log \left[\rho^{2}\left(\frac{s}{r}\right)^{2}\right]} \\ & \rho=\frac{2 h}{s} \end{aligned}$	$I_{\text {Gnd }}=I_{1} \frac{\log \frac{3}{r}}{\log \frac{2 h}{r}}$
3-Wire 2 wires grounded		$Z_{0} 069\left[\log \frac{3^{3}}{2 r^{3}} \cdot \frac{\left(\log \frac{3}{2}\right)^{2}}{\log \frac{2 h^{2}}{72}}\right]$	$\begin{aligned} & I_{G n d}=I_{1} \frac{\log \frac{s}{2 r}}{\operatorname{Lr}} \frac{\operatorname{sp}}{2 r} \\ & \rho=\frac{2 h}{3} \end{aligned}$
4-Wire balanced		$z_{0}=138\left(\log \frac{3}{r}\right)-21$	${ }^{1}$ Gnd $=0$
4-Wire 2 wires grounded		$\begin{aligned} & z_{0}=138\left[\frac{\log \frac{5}{\sqrt{2}} \log \left[\rho^{4} \frac{3}{n^{2}}\right.}{\log \left[\rho^{4}\left(\frac{5}{\sqrt{3}}\right)^{2}\right]}\right] \\ & \rho=\frac{2 h}{5} \end{aligned}$	$1_{\text {ond }}=I_{1} \frac{\log \frac{s}{\sqrt{2}}}{\log \frac{\rho^{2} s}{\sqrt{2}}}$
5- Wire 4 wires grounded		$\begin{aligned} & z_{0}-138\left[\log \frac{2 h}{r} \frac{\left[\log 2 p^{2}\right]^{2}}{\log \left[\rho^{3} \frac{3 V_{2}}{r}\right.}\right] \\ & e^{\frac{2 h}{s}} \end{aligned}$	$I_{\text {and }}=1, \frac{\log \frac{s}{r \Delta \sqrt{2}}}{\log \frac{s \rho^{4}}{r \sqrt{2}}}$
Concentric (cooxial)		$\begin{aligned} & z_{0}=138 \frac{\log \frac{c}{b}}{\sqrt{1+\left(\frac{(b-1)}{s} \omega\right.}} \\ & \varepsilon=\text { Dielectric constant } \\ & \text { of insulating material } \end{aligned}$	
Double conxial bslanced		$\tau_{0}=276 \frac{\log \frac{c}{b}}{\sqrt{1+\frac{(\varepsilon-1) \omega}{5}}}$	
Shialded poir balanced		$\begin{aligned} & z_{0} \frac{120}{\sqrt{\varepsilon}}\left[2.303 \log \left(2 v \frac{1-\sigma^{2}}{1 \sigma^{2}}\right)-\right. \\ & \varepsilon=\text { Dieletric constant of } \\ & \varepsilon=\text { Unity for gaseous mec } \\ & v=\frac{h}{b} ; \sigma=t \end{aligned}$	$\left.\frac{1+4 v^{2}}{6 v^{4}}\left(1-4 \sigma^{2}\right)\right]$ medium ium

(From Radio Engineers' Handbook by Frederick E.Terman. Copyright O1943 by McGraw-Hill Book Company. Used with permission of McGraw-Hill Book Company.)

CHARACTERISTIC IMPEDANCE OF BALANCED TWO-WIRE LINES

This nomogram determines the theoretical exact impedance of air-dielectric parallel lines in air or in a vacuum, and remote from any conducting plane. It covers conductors having diameters from 0.01 to 5 in ., spaced from 0.01 to 100 in . center-to-center.

$$
\begin{gathered}
z_{0}=276 \log _{10} \frac{2 D}{d} \\
D>2 d
\end{gathered}
$$

FOR EXAMPLE: (1) The impedance of a line using \#12 wire spaced $11 / 2$ in. is 430 ohms. (2) What is the wire diameter for a 300 -ohm line spaced $11 / 4 \mathrm{in}$.? Answer: 0.20 in .

(Reprinted with permission from International Telephone and Telegraph Corporation.)

SC-silver plated copper, C-bore sopper. PE-polyethylene. NCV-non-contaminoting vinyl.
V-polyvinyichlaride, TC-tinned copper, CW-copperweld

(Reprinted from Special Report on Electronics, copyright by U.S. Industrial Publications, Inc., 209 Dunn Avenue, Stamford, Connecticut.)

ULTRA-HIGH FREQUENCY HALF-WAVE SHORTING-STUB NOMOGRAM

This nomogram is used to determine the length in inches of shorting stubs required to eliminate interference in the UHF television range.

FOR EXAMPLE: To eliminate an interfering signal at 575 MHz (channel 31) requires a $81 / 2 \mathrm{in}$. long half-wave shorting stub, if 300 -ohm twin lead is used. If 75 -ohm twin lead is used, the stub has to be $71 / 4 \mathrm{in}$. for the same frequency.

TRANSMISSION UNE NOMOGRAM
This nomogram gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency provided that the velocity of propagation on the transmission line is equal to that in free space. The length is equal to that in free space and is given on the L scale intersection by a line between λ on ℓ°.

FOR EXAMPLE:

$$
\begin{aligned}
& f=600 \mathrm{MHz} \quad \ell^{\circ}=30^{\circ} \\
& \text { Length } L=1.64^{\prime \prime} \text { or } 4.2 \mathrm{~cm}
\end{aligned}
$$

(

This nomogram is used to determine the VSWR and the magnitude of the reflection coefficient by the use of width-of-minimum measurement technique. This technique relies on the fact that there are two comparatively easy-to-find $3-\mathrm{dB}$ points straddling any minimum, as illustrated.

FOR EXAMPLE: A slotted-line width-of-minimum measurement of 0.18 cm , with a $1-\mathrm{GHz}$ source, indicates a VSWR of 53 or a reflection coefficient magnitude of 0.963 .

NOTE: The signal-to-noise ratio at the bottom of the minimum must be at least 10 dB for accurate results.

SLOTTED LINE WIDTH-OF-MINIMUM ATTENUATION CALCULATION NOMOGRAM

This nomogram is used to determine the total attenuation between the probe position and the reference plane based on width-of-minimum measurements.

FOR EXAMPLE: With a short circuit termination at the reference plane, if the width-of-the-minimum measured 30 cm from the reference plane is 0.014 cm at 3.5 GHz , then the attenuation is 0.045 dB .

NOTE: The signal-to-noise ratio at the bottom of the minimum should be at least 10 dB for accurate results.

WAVEGUIDE NOMOGRAM

This nomogram relates three significant waveguide characteristics:
waveguide wavelength (λ_{q})
free space wavelength (λ_{0}) or frequency (f)
cutoff wavelength $\left(\lambda_{c}\right)$
The vertical scale gives waveguide wavelength in centimeters. The horizontal scale is for the cutoff wavelength, and the points corresponding to the cutoff wavelength in the TE_{10} mode of three common waveguides are indicated. The sloping center scale is calibrated in free space wavelength and frequency.

FOR EXAMPLE: (1) The waveguide wavelength at 6 GHz (5 cm free space wavelength) in an RG-50 waveguide is 7.17 cm . (2) Measurement on an RG-51 waveguide whows the waveguide wavelength to be 6.5 cm . The frequency is 7 GHz , which corresponds to a free space wavelength of 4.27 cm .

If a transmission line is not terminated in its characteristic impedance, then some of the energy sent along the line will be reflected back, and standing waves form on the line. The ratio of the maximum to the minimum voltage of the standing waves is the VSWR (voltage standing wave ratio) and indicates the effectiveness of the match between line and load. For a perfectly matched line, the VSWR is 1 . The VSWR can be given in a number of ways:

$$
\text { VSWR }=\frac{Z_{L}}{Z_{0}}=\frac{E_{\max }}{E_{\min }}=\frac{1+\sqrt{\frac{\text { Reflected power }}{\text { Forward power }}}}{1-\sqrt{\frac{\text { Reflected power }}{\text { Forward power }}}}
$$

This nomogram is based on the last expression and solves for VSWR from measurements of reflected power and forward power.

FOR EXAMPLE: For a forward power of 180 W and a reflected power of 2.7 W , the VSWR is 1.27 .

VSWR REDUCTION AS A RESULT OF ATTENUATION

This nomogram relates load VSWR, input VSWR, and attenuation. It can be used to find the resultant VSWR with a given amount of attenuation, or to determine the attenuation required for a given VSWR.

FOR EXAMPLE: (1) A $5-\mathrm{dB}$ attenuator will reduce input VSWR to 1.23 if the load VSWR is 2.0. (2) The required attenuation to reduce a load VSWR of 1.8 to an input VSWR of 1.06 is 10.0 dB .

DOPPLER TO SPEED CONVERSION NOMOGRAM

Radar or sonar frequency may be converted to hundreds of miles per hour or knots per hour by using this chart. The base sonar frequency in kHz is given on the left scale and the base radar frequency in GHz is given on the right. Doppler frequency, in Hz for sonar and hundreds of Hz for radar, is shown at the bottom. The diagonals represent target rate of change of range, which is the velocity speed vector in the source's direction.

The basic formula for Doppler speed is:

$$
\text { Doppler frequency }=\frac{\text { base } f . \times \text { target range rate }}{\text { signal velocity in medium. }}
$$

The signal velocity in medium is $5,000 \mathrm{ft} / \mathrm{sec}$ for sonar and $186,000 \mathrm{mi} / \mathrm{sec}$ for radar.
FOR EXAMPLE: (1) The base frequency of a sonar system is 40 kHz and its Doppler frequency is 55 Hz . The speed vector is found by the intersection of these two lines on the chart to be approximately 4.1 knots. (2) The base frequency of a radar system is 11 GHz , and the Doppler frequency is $8,000 \mathrm{~Hz}$. The speed vector of the aircraft in miles per hour is found (from the intersection of these two lines) to be approximately 480 mph .

DOPPLER FREQUENCY NOMOGRAM

This nomogram solves for the Doppler frequency, which is produced as a result of relative motion between a transmitter and its receiver or target. The Doppler frequency is a function of transmitted frequency and velocity of motion. The angle to the velocity vector determines the actual relative velocity. For a navigation system (Fig. A) in an airplane, the earth is the target, and the angle A is the acute angle between the aircraft heading and the radar beam. In this case the Doppler shift is downward. A forward-looking radar will produce an upward Doppler shift. For surveillance-type radars (Fig. B), the angle A is the acute angle between the radar beam and target velocity. (Note that the nomogram is based on the Doppler equation for radar and that the Doppler shift for a passive listening device will be half the frequency indicated.)

FOR EXAMPLE: A helicopter navigation system transmits at 10 GHz at an angle of 70°. What is the audio bandwidth required for aircraft velocities of 10 through 200 mph ? On the left scales, connect 10 GHz and 10 mph to the turning scale. From that point on, the turning scale connecting through 70° gives 100 Hz as the lowest frequency. Repeating the steps using 200 mph in place of 10 mph shows the highest frequency to be 2 kHz . Thus the required bandwidth is 100 to $2,000 \mathrm{~Hz}$. The nomogram is based on the formula

$$
f_{d}=89.4 \frac{V}{\lambda}
$$

where
$f_{d}=$ Doppler frequency (Hz)
$V=$ velocity in miles per hour
$\lambda=$ transmitted wavelength in centimeters
Angle-to-velocity vector depends on type of target.

This graph determines the combined signal level and shows the number of dB that must be added to the larger signal.

FOR EXAMPLE: Two in-phase signals are -25 dB and -27 dB respectively. The difference is 2 dB and, from the graph, 2.2 dB must be added to the larger signal. Thus, the combined signal power level is -25 dB plus 2.2 dB or -22.8 dB .

$\left(\frac{A}{B}\right)$

GRAPH FOR SEPARATING SIGNAL POWER FROM NOISE POWER

When making transmission loss or crosstalk measurements, the presence of noise is a potential source of error. If the total voltage measured across the load resistance when a signal is being transmitted is 15 dB or more greater than the noise voltage alone, the error in the received voltage measurement will be negligible. If, however, the dB difference between the combined signal and noise voltage and the noise voltage alone is less than 15 dB , a correction must be made. To do so, two voltage measurements must be made. Namely, (1) the noise power in dBm , and (2) the combined noise and signal power in dBm . On the horizontal axis locate the point equal to the difference between the two powers and read on the vertical axis the number of dB to be subtracted from the noise plus signal power and obtain the power of the signal alone.

FOR EXAMPLE: The difference between the measurements of combined noise and crosstalk and noise alone is 5 dB . Thus, 1.7 dB must be subtracted from the combined signal and noise level to obtain the level of the signal alone.

FIELD POWER CONVERSION CHART
Power density is related to field strength by the equation

$$
P=\frac{E_{2}}{10 \pi}
$$

where

$$
\begin{aligned}
P & =\text { the power density } \\
E & =\text { the field strength } \\
120 \pi & =\text { the resistance of free space }
\end{aligned}
$$

and
This chart converts between field strength and power density.

FOR EXAMPLE: A field strength of $3,000 \mu \mathrm{~V} / \mathrm{m}$ corresponds to a poler density of $0.024 \mu \mathrm{~W} / \mathrm{m}^{2}$ and is 70.5 dB above $1 \mu \mathrm{~V}-\mathrm{m}$.

Q SIGNALS (MNEMONIC CODE)

The Q code was first adopted in 1912 by international treaty agreement to overcome the language barriers faced by ship operators of all nations as they tried to communicate with shore stations all over the world. Many of the original list of 50 signals are still in use with their definitions unchanged. Many more have been added from time to time, and the official meanings of some signals have been changed. In addition, many signals have been informally adopted for use by amateurs in situations not covered by the official lists.

The list below includes virtually every Q signal which could, even remotely, be thought to have an application in amateur radio communication. To simplify the task of finding the definition of an unfamiliar signal, we have combined all the signals into a single alphabetical list, mixing "official" and unofficial signals. The definitions listed are, in most cases, the official ones, taken verbatim from the treaty. In other cases, where definitions are not the official ones, they are as amateurs universally understand them, for purposes of amateur communications. The QN signals, adopted by ARRL for traffic net use, have official definitions which refer to aeronautical situations.

QAM What is the latest available meterological observation for (place)?
The observation made at (time) was
QAP Shall I listen for you (or for . . .) on ... kH ? Listen for me (or for . . .) on . . . kHz .
QAR May I stop listening on the watch frequency for . . . minutes?
You may stop listening on the watch frequency for . . . minutes?
QBF Have we worked before in this contest? We have worked before in this contest.
QHM I will tune from the high end of the band toward the middle
(Used after a call or CQ.)
QIF What frequency is . . . using?
He is using . . . kHz .
QJA Is my RTTY (1-tape, $2-\mathrm{M} / \mathrm{S}$) reversed?
It is reversed.
QJB Shall I use (1-TTY, 2-reperf)? (For RTTY use.) Use (1-TTY, 2-reperf)
QJC Check your RTTY (1-7'C, 2-auto head, 3-reperf, 5-Printer, 7-keyboard).

QJD Shall I transmit (1-letters, 2-figs)? (For RTTY)
Transmit (1-letters, 2-1igs).
QJE Shall I send (1-wide, 2 -narrow, 3-correct) RTTY shift?
Your RTTY shift is (1-wide, 2-narrow, 3-correct).
QJF Does my RTTY signal check out OK? Your RTTY signal checks out OK.
QJH Shall I transmit (1-test tape, 2-test sentence) by RTTY?

Transmit (1-test tape, 2-test sentence) by RTTY.
QJI Shall I transmit continuous (1-mark, 2-space) RTTY signal?
Transmit continuous (1-mark, 2-space) signal.
QJK Are you receiving continuous (1-mark, 2-space, 3-mark bias, 4-space bias)? I am receiving continuous (1-mark, 2 space, 3 -mark bias, 4 -space bias).
QKF May I be relieved at . . . hours?
You may expect to be relieved at.. hours by. . . .
QLM I will tune for answers from the low end of the band toward the middle.
QMD I will tune for answers from my frequency down.
QMH I will tune for answers from the middle of the band toward the high end.
QML I will tune for answers from the middle of the band toward the low end.
QMU I will tune for answers from my frequency upward.
QMT Will you mail the traffic?
I will accept the traffic for delivery by mail.
QNA Answer in prearranged order.
QNB* Act as re ay between . . . and
QNC All net stations copy.
I have a inessage for all net stations.
QND* Net is directed (controlled by net control station).
QNE * Entire net stand by.
QNF Net is free (not controlled).
QNG Take over as net control station.
QNH Your net frequency is high.
QNI * Net stations report in."

- For use only by Net Control Station

I am reporting into the net. (Follow with list of traffic or QRU.)
QNJ Can you copy me?
Can you copy . . . ?
QNK* Transmit messages for . . . to
QNL Your net frequency is low.
QNM* You are QRMing the net. Stand by.
QNN Net control station is
What station has net control?
QNQ Station is leaving the net.
QNP Unable to copy you. Unable to copy
QNQ* QSY to and wait for . . . to finish. Then send him traffic for
QNR* Answer . . . and receive traffic.
QNS Follow ng stations are in the net. " \langle Follow with list.) Request list of stations in the net.
QNT I request permission to leave the net for . . . minutes.
QNU* The net has traffic for you. Stand by.
QNV Establish contact with . . . on this freq. If successful QSY to . . . and send traffic for . . .
QNW How do I route messages for . . . ?
QNX You are excused from the net." Request to be excused from the net.
QNY* Shift to another frequency (or to . . . kHz) to clear traffic with. . . .
QNZ* Zero beat your signal with mine.
QRA What is the name of your station? The name of my station is. . . .
QRB How far approximately are you from my station?
The approximate distance between our station is . . . nautical miles (or kilometers).
QRD Where are you bound for and where are you from?
I am bound for . . . from. . . .
QRE What is your estimated time of arrival at . . . (or over . . .) (place)?
My estimated time of arrival at . . . (or over . . .) (place) is . . . hours.
QRF Are you returning to . . . (place)? I am returning to . . . (place). or
Return to . . . (place).
QRG Will you tell me my exact frequency (or that of . . .)?
*For use only by Net Control Station

Your exact frequency (or that of . . .) is $\ldots \mathrm{kHz}_{2}$ (or MHz_{2}).
QRH Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission?
The tone of your transmission is (1good, 2-variable, 3-bad.
QRJ Are you receiving me badly? Are my signals weak?
I am receiving you badly. Your signals are too weak.
QRK What is the intelligibility of my signals (or those of . . .)?
The intelligibility of your signals (or those of . .) is 1-bad, 2-poor, 3-fair, 4-good, 5-excellent.
QRL Are you busy?
I am busy (or I am busy with. . .). Please do not interfere.
QRM Are you being interfered with?
I am being interfered with (1-nil, 2slightly, 3-moderately, 4-severely, 5extremely).
QRN Are you troubled by static?
I am troubled by static (1-nil, $2-$ slightly, 3-moderately, 4-severely, 5extremely).
QRQ Shall I increase transmitter power? Increase transmitter power.
QRP Shall I decrease transmitter power? Decrease transmitter power.
QRQ Shall I send faster?
Send faster (. . . words per minute).
QRR Are you ready for automatic operation? I am ready for automatic operation. Send at . . . words per minute.
QRRR Distress call signal for use by amateur c.w. and RTTY stations. To be used only in situations where there is danger to human life or safety.
QRS Shall I send more slowly? Send more slowly.
QRT Shall I stop sending? Stop sending.
QRU Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QRW Shall I inform... that you are calling him on . . . kHz ?

Please inform ... that I am calling him on . . . kHz.
QRX When will you call me again?
I will call you again at . . . hours (on . . . kHz).
QRY What is my turn?
(Relates to communication)
Your turn is Number ... (or according to any other indication).
(Relates to communication)
QRZ Who is calling me?
You are being called by . . . (on . . kHz).
OSA What is the strength of my signals (or those of . . .)?
The strength of your signals (or those of ...) is (1-scarcely perceptible, 2-weak, 3 -fairly good, 4 -good, 5 -very good).
QSB Are my signals fading?
Your signals are fading.
QSD Is my keying defective?
Your keying is defective.
QSG Shall I send . . . messages at a time?
Send . . . messages at a time.
QSH Are you able to home on your D/F equipment?
I am able to home on my D/F equipment (on station . . .).
QSI I have been unable to break in on your transmission.
or
Will you inform . . . (call sign) that I have been unable to break in on his transmission (on ... kHz).
OSK Can you hear me between your signals and if so can I break in on your transmission?
I can hear you between my signals; break in on my transmission.
QSL Can you acknowledge receipt? 1 am acknowledging receipt.
OSM Shall I repeat the last telegram which I sent you (or some previous telegram)? Repeat the last telegram which you sent me for telegram(s) number(s) . . .).
QSN Did you hear me [or . . . (call sign)] on kHz ? I did hear you [or ... (call sign)] on ... kHz .
QSO Can you communicate with ... direct (or by relay)?

I can communicate with... direct (or by relay through . . .).
QSP Will you relay to ... free of charge? I will relay to ... free of charge.
QSQ Have you a doctor on board [or is ... (name of person) on board] ?
I have a doctor on board for . . . (name of person) is on board].
QSR Shall I repeat the call on the calling frequency?
Repeat your call on the calling frequency; did not hear you (or have interference).
QSS What working frequency will you use? I will use the working frequency . . kHz .
QST Calling all radio amateurs.
QSU Shall I send or reply on this frequency (or on . . . kHz?
Send or reply on this frequency (or on ... kHz .
QSV Shall I send a series of V's on this frequency (or . . . kHz)?
Send a series of V's on this frequency (or ... $k H z$).
QSW Will you send on this frequency (or on ... kHz)?
I am going to send on this frequency (or on kHz).
OSX Will you listen to ... (call sign(s)) on . . $k \mathrm{kz}^{\text {? }}$
I am listening to ... (call sign(s)) on $\ldots \mathrm{kHz}$

QSY Shall 1 change to transmission on another frequency?
Change to transmission on another frequency (or on ... kHz).
QSZ Shall I send each word or group more than once?
Send each word or group twice for... times).
QTA Shall I cancel message number . . . ? Cancel niessage number. . . .
QTB Do you agree with my counting of words?
I do not agree with your counting of words; I will repeat the first letter or digit of each word or group.
OTC How many messages have you to send? I have . . . messages for you (or for . . .).
QTG. Will you send two dashes of ten seconds each followed by your call sign (re-
peated . . . times) (on . . . kHz)? or -Will you request . . . to send two dashes of ten seconds followed by his call sign (repeated . . . times) on . . . kHz ?
1 am going to send two dashes of ten seconds each followed by my call sign (repeated . . . times) (on . . . kHz). or I have requested . . . to send two dashes of ten seconds followed by his call sign (repeated . . . times) on . . . kHz.
QTH What is your position in latitude and longitude (or according to any other indication)?
My position is . . . latitude . . . longitude (or according to any other indication).
QTN At what time did you depart from . . . (place)?
I departed from . . . (place) at . . . hours.
QTO Have you left dock (or port)? or Are you airborne?
I have left dock (or port). or I am airborne.
Are you going to enter dock (or port)? or Are you going to alight (or land)?
I am going to enter dock (or port). or I am going to alight (or land).
QTQ Can you communicate with my station by means of the International Code of Signals?
I am going to communicate with your station by means of the International Code of Signals.
QTR What is the correct time?
The correct time is . . . hours.
QTS Will you send your call sign for tuning purposes or so that your frequency can be measured now (or at . . . hours) on ... kHz_{z} ?
I will send my call sign for tuning purposes or so that my frequency may be measured now (or at . . . hours) on ... kHz.
QTU What are the hours during which your station is open?
My station is open from . . . to . . . hours.
QTV Shall I stand guard for you on the frequency of . . . kHz (from . . . to hours)? Stand guard for me on the frequency of . . . kHz (from . . . to hours). Will you keep your station open for further communication with me until further notice (or until . . . hours)?

I will keep my station open for further communication with you until further: notice (or until . . . hours).
QTY Are you proceeding to the position of incident and if so when do you expect to arrive?
I am proceeding to the position of incident and expect to arrive at . . . hours on . . . (date).
QTZ Are you continuing the search?
I am continuing the search for (aircraft, ship, survival craft, survivors, or wreckage).
QUA Have you news of . . . (call sign)? Here is news of . . . (call sign).
QUB Can you give me in the following order information concerning: the direction in
degrees TRUE and speed of the surface wind; visibility; present weather; and amount, type, and height of base of cloud above surface elevation at ... (place of observation)?
Here is the information requested:
(The units used for speed and distances should be indicated.)
QUC What is the number (or other indication) of the last message you received from me [or from . . . (call sign)] ?
The number (or other indication) of the last message 1 received from you lor from . . . (call sign)] is
QUE Can you use telephony in . . . (language), with interpreter if necessary; if so, on what frequencies?
I can use telephony in . . . (language) on ... kHz.

QUF Have you received the distress signal sent by . . . (call sign of station)?
I have received the distress signal sent by . . . (call sign of station) at . . . hours.
QUH Will you give me the present barometric pressure at sea level?
The present barometric pressure at sea level is . . . (units).
QUK Can you tell me the condition of the sea observed at . . . (place or coordinates)? The sea at . . . (place or coordinates) is
QUM May I resume normal working? Normal working may be resumed.

RADIO TELEPHONE CODE

General Station Operation
10-1 Receiving poorly.
10-2 Signals good.
10-3 Stop transmitting.
10-4 Okay-Affirmative-Acknowledged.
10-5 Relay this message.
10-6 Busy, stand by.
10-7 Leaving the air.
10-8 Back on the air and standing by.
10-9 Repeat message.
10-10 Transmission completed, standing by.
10-11 Speak slower.
10-13 Advise weather and road conditions.
10-18 Complete assignment as quickly as possible.
10-19 Retum to base.
10-20 What is your location? My location is
10-21 Call . . . by telephone.
10-22 Report in person to
10-23 Stand by.
10-24 Have you finished? I have finished.
10-25 Do you have contact with . . . ?
Emergency or Unusual
10-30 Does not conform to Rules and Regulations.
10-33 Emergency traffic this station.
10-35 Confidential information.
10-36 Correct time.
10-41 Tune to channel . . . for test, operation, or emergency service.
10-42 Out of service at home.
10-45 Call . . . by phone.
10-54 Accident.
10-55 Wrecker or tow truck needed.
10-56 Ambulance needed.

Net Message Handling

10-60 What is next message number?
10-62 Unable to copy, use CW.
10-63 Net clear.
10-64 Net is clear.
10-66 Cancellation.
10-68 Repeat dispatch on message.
10-69 Have you dispatched message . . . ?
10-70 Net message.
10-71 Proceed with transmission in sequence.

Personal

10-82 Reserve room for
10-84 What is your telephone number?
10-88 Advise present phone number of

Technical

10-89 Repairman needed.
10-90 Repairman will arrive at your station
10-92 Poor signal, have transmitter checked.
10-93 Frequency check.
10-94 Give a test without voice for frequency check.
10-95 Test with no modulation.
10-99 Unable to receive your signals.

INTERNATIONAL MORSE CODE

Alphabetical

A - -	J.---	S . .
B $-\cdots$	K - - -	T-
C-*	L. - \cdot	U \cdot -
D - .	M - -	V...-
E.	N-*	W \cdot -
F...*	O---	X - \cdot -
G - -	P.--*	Y-*-
H....	Q - - -	Z - -
I.	R. -	

By Groups

Group One	Group Two	Group Three
E.	A - -	R •-
1..	W •--	F••-
S . .	J•---	L.-*
H. . .	N - .	U..-
T -	D - \cdot	V $\cdot \cdots$ -
M - -	B $-\cdots$	
O--		
Group Four		
K - -	Q - - -	
X - \cdot	G - -	
C - -	Z - - ${ }^{\text {c }}$	
Y-*-	P - - -	

Numerals and Punctuation

```
\(2 \cdots-\) - 7 - \(\cdot \cdots\)
\(3 \cdots-\) - 8 - -
\(4 \cdots \cdots-\quad 9-\) - \(\quad\).
\(5 \cdots \quad 0-\cdots \quad\) -
Period •—•- -
Comma - - . - -
Question mark . . - - .
Error
Double dash - ... -
Fraction bar -.. - .
Wait •- . . .
Invitation to transmit - -
End of message (AR) *-• - .
End of transmission . . . - • -
```


Special Foreign Letters

Ä (German) • - • -
A or A (Spanish-Scandinavian) •- - -
CH (German-Spanish) - - - -
E^{\prime} (French) \cdots -
\widetilde{N} (Spanish) $--\cdot--$
Ö (German) - - - .
Ü (German) • • - -

SIGNAL REPORTING CODES

RST Code

The standard amateur method of giving signal strength reports. For phone operation only the first two sets of numbers are used with the words "readability" and "strength."

Readability (\mathbf{R})

1. Unreadable
2. Barely readable, occasional words distinguishable
3. Readable with considerable difficulty
4. Readable with practically no difficulty
5. Perfectly readable

Signal Strength (\$)

1. Faint; signal barely perceptible
2. Very weak signal
3. Weak signal
4. Fair signal
5. Fairly good signal
6. Good signal
7. Moderately strong signal
8. Strong signal
9. Extremely strong signal

Tone (T)

1. Extremely rough, hissing signal
2. Very rough ac signal
3. Rough, low-pitched ac signal
4. Rather rough ac signal
5. Musically modulated signal
6. Modulated signal, slight whistle
7. Near dc signal, smooth ripple
8. Good dc signal, trace of ripple
9. Purest dc signal

If the signal has the steadiness of crystal control, add "X" after the RST report; add " C " for a chirp; and " K " for a keying click.

A typical report might be: "RST579X," meaning "Your signals are perfectly readable, moderately strong, have a perfectly clear tone, and have the stability of a crystal-controlled transmitter."

This reporting system is used on both CW and voice, leaving out the "Tone" report on voice.

SINPO Code

A reporting method used in the shortwave field. All the numbers after the letters range from one to five. Q-code equivalents for each characteristic are also shown.

FOR EXAMPLE: A typical report for a station that is coming in loud and clear would read: SINPO 55555.

S Signal Strength (QSA)	Interference (QRM)	N Atmospheric Noise (QRN)	P Propagation Disturbance (QSB)	Overall Merit (QRK)
5 Excellent	5 None	5 None	5 None	5 Excellent
4 Good	4 Slight	4 Slight	4 Slight	4 Good
3 Fair	3 Moderate	3 Moderate	3 Moderate	3 Fair
$2 \text { Poor }$	2 Severe	2 Severe	2 Severe	2 Poor
1 Barely audible	1 Extreme	1 Extreme	1 Extreme	1 Unusable

555 Code

Another reporting code sometimes used in the shortwave field.

	Signal Strength	Interference	Overall Merit
	0 Inaudible	0 Total	0 Unusable
1 Poor	1 Very severe	1 Poor	
2 Fair	2 Severe	2 Fair	
3 Good	3 Moderate	3 Good	
4 Very good	4 Slight	4 Very good	
	5 Excellent	5 None	5 Excellent

SINPFEMO Code

This eight-figure signal reporting method rates eight characteristics of a signal. (If a characteristic is not rated, the letter " x " is used instead of a numeral.)

Rating	S	1	N	P	F	E	M	0
	Signal Strength	Degrading Effect of			Frequency of Fading	Modulation		Overall Rating
		$\begin{aligned} & \text { Interference } \\ & \text { (QRM) } \end{aligned}$	$\begin{aligned} & \text { Noise } \\ & \text { (QRN) } \end{aligned}$	Propagation Disturbance		Quality	Depth	
5	Excellent	Nil	Nil	Nil	Nil	Excellent	Maximum	Excellent
4	Good	Slight	Slight	Slight	Slow	Good	Good	Good
3	Fair	Moderate	Moderate	Moderate	Moderate	Fair	Fair	
2	Poor	Severe	Severe	Severe		Poor	Poor or nil	Poor
1	Barely audible	Extreme	Extreme	Extreme	Very fast	Very poor	Continuously overmodulated	Unusable

COMMERCIAL RADIO OPERATOR AND AMATEUR OPERATOR LICENSES REQUIREMENTS
Amateur Operator Licenses

Class	Prior Experience	Code Test	Written Examination	Privileges	Term
Novice	None	5 w.p.m.	Elementary theory and regulations	Al Telegraphy in 3.73.75, 7.1-7.15, 21.121.2, 28.1-28.2 MHz. 250 watts maximum input.	5 years, renewable
Technician	None	5 w.p.m. (Credit given to Novice Class Licensees)	General theory and regulations	All amateur privileges above 50 MHz . Also novice privileges.	5 years, renewable
General	None	13 w.p.m.	General theory and regulations (Credit given to Technician Class Licensees)	$1.8-2$, ${ }^{\text {a }} 3.525-3.775$, 3.89-4, 7.025-7.15, 7.225-7.3, 14.025- 14.2, 14.275-14.35, 21.025-21.25, 21.35- 21.45, 28.0-29.7 MHz , and all amateur privileges above 50 MHz .	5 years, renewable
Advanced	None	13 w.p.m. (Credit is given to General Class Licensees)	Intermediate theory and regulations	$\begin{aligned} & 1.8-2,3.525-3.775, \\ & 3.8-4,7.025-7.3, \\ & 14.025-14.45,21.025- \\ & 21.25 \text {, and all ama- } \\ & \text { teur frequencies } \\ & \text { above } 21.27 \mathrm{MHz} \text {. } \end{aligned}$	5 years, renewable
Amateur Extra	None	20 w.p.m.	Advanced theory and regulations	All amateur privileges	5 years, renewable
${ }^{\text {a }}$ The 1.8-2 band frequency and power assignments differ from state to state. Check with nearest FCC office.					

Commercial Radio Operator Licenses

Type of License	Age Minimum	Code Requirement	Written Test	Term of License
Restricted Radiotelephone Permit	14 years	None	None; obtained by declaration (FCC Form 753)	Lifetime

Commercial Examination Elements

NO. 1, BASIC LAW-
Provisions of laws, treaties and regulations with which every marine operator should be familiar. (20 Questions, multiple choice type)
NO. 2, BASIC OPERATING PRACTICE-
Operating procedures and practices generally followed or required in communicating by marine radio-telephone stations. (20 Questions, multiple choice type)
NO. 3, BASIC RADIOTELEPHONE-
Technical, legal and other matters including basic operating practices and provisions of laws, treaties and regulations applicable to operating radiotelephone stations other than broadcast. (100 Questions, multiple choice type)
NO. 5, RADIOTELEGRAPH OPERATING PRACTICE-
Radio operating procedures and practices generally followed or required in communicating by radiotelegraph stations primarily other than in the maritime mobile services of public correspondence. (50 Questions, multiple choice type)

NO. 6, ADVANCED RADIOTELEGRAPH-

Technical, legal matters applicable to operating all classes of radiotelegraph stations including maritime mobile services of public correspondence, message traffic routing and accounting, radio navigational aids, etc. (100 Questions)
NO. 7, AIRCRAFT RADIOTELEGRAPH-
Special endorsement on Radiotelegraph First and Second Class Operator Licenses. Theory and practice in operation of radio communication and navigational systems in use on aircraft. (100 Questions, multiple choice type; code test of 20 code groups per minute and 25 WPM plain language.)
NO. 8, SHIP RADAR TECHNIQUES-
Special endorsement on Radiotelegraph or Radiotelephone First or Second Class Operator Licenses. Specialized theory and practice applicable to proper installation, servicing and maintenance of ship radar equipment in use for marine navigational purposes. (50 Questions, multiple choice type)

To avoid errors or misunderstanding during voice communication, the new international phonetic alphabet has been adopted.

Letter	Name	Pronunciation	Letter	Name	Pronunciation
A	Alfa	AL-fah	N	November	No-VEM-ber
B	Bravo	BRAH-voh	O	Oscar	OSS-cah
C	Charlie	CHAR-lee	P	Papa	Pah-PAH
		(or SHAR-lee)	Q	Quebec	Keh-BECK
D	Delta	DELL-tah	R	Romeo	ROW-me-oh
E	Echo	ECK-oh	S	Sierra	See-AlR-rah
F	Foxtrot	FOKS-trot	T	Tango	TANG-go
G	Golf	GOLF	U	Uniform	YOU-nee-form
H	Hotel	HOH-tel			(or OO-nee-form)
I	India	IN-dee-ah	V	Victor	VIK-tah
J	Juliett	JEW-lee-ett	W	Whiskey	WISS-key
K	Kilo	KEY-loh	X	X-ray	ECKS-ray
L	Lima	LEE-mah	Y	Yankee	YANG-key
M	Mike	MIKE	Z	Zulu	ZOO-loo

ARRL (AMERICAN RADIO RELAY LEAGUE) WORD UST FOR VOICE COMMUNICATION

A-Adam	N-Nancy
B-Baker	O-Otto
C-Charlie	P-Peter
D-David	Q-Queen
E-Edward	R-Robert
F-Frank	S-Susan
G-George	T-Thomas
H-Henry	U-Union
I-Ida	V-Victor
J-John	W-William
K-King	X-X-Ray
L-Lewis	Y-Young
M-Mary	Z-Zebra

Example: W1AW . . . W1
ADAM WILLIAM . . . W1AW

TRANSMISSION TRAVEL TIME

The time required for electromagnetic energy to travel interplanetary distances is significant. Shown here are some typical times and distances related to the earth's position.

Moon Venus	(overhead)	$=23.9 \times$	7
	(nearest)	$=22.4 \times 10^{6} \mathrm{~nm}$	139.00 sec one way
	(farthest)	$139.0 \times 10^{6} \mathrm{n} \mathrm{mi}$	859.00 sec one way
Mars	(nearest)	$42.4 \times 10^{6} \mathrm{n} \mathrm{mi}$	262.00 sec one way
	(farthest)	$=203.9 \times 10^{6} \mathrm{nmi}$	1259.00 sec one way
Jupiter	(nearest)	$=339.8 \times 10^{6} \mathrm{nmi}$	2099.00 sec one way
	(farthest)	$=501.2 \times 10^{6} \mathrm{nmi}$	3096.00 sec one

In accordance with Federal Communications Commission Rules and Regulations 2.201, Subpart C, the following system of designating emission, modulation, and transmission characteristics is employed.

Class	Name	Code	Action of Modulating Signal
A	Pulse-time modulation	PTM	Varies some characteristic of pulse with respect to time.
	Pulseposition modulation	PPM	Varies position (phase) of pulse on time base.
	Pulseduration modulation	PDM	Varies width of pulse (also called PWM, or PulseWidth Modulation).
	Pulse-shape modulation		Varies shape of pulse.
	Pulsefrequency modulation	PFM	Varies pulse recurrence frequency.
B	Pulseamplitude modulation	PAM	Varies amplitude of pulse-consists of two types: one using unipolar pulses, the other using bipolar pulses.
C	Pulse-code modulation	PCM	Varies the makeup of a series of pulses and spaces. Individual systems are classified as follows: Binary-pulse and spaces, or positive and negative pulses. Ternary-positive pulses, negative pulses, and spaces. N -ary-more complex combinations of pulses and spaces.

MICROPHONE OUTPUT NOMOGRAM

This nomogram determines the output voltages for various microphone ratings and relates this output to actual sound pressure levels.

Two methods of specifying microphone levels are in general use. Acoustic input and electrical output are specified so that the microphone can be considered as a generator, with sound pressure input and voltage or power output.

For low-impedance microphones, output is given in decibels referenced to 1 mW for 10 dynes $/ \mathrm{cm}^{2}$ sound pressure. For high-impedance microphones, output is given in decibels referenced to 1 V for $1 \mathrm{dyne} / \mathrm{cm}^{2}$ sound pressure. (In both, output is into a resistive load equal to the impedance of the microphone.)

This nomogram is prepared for microphone preamplifiers with low input impedances matched to the microphone impedance. (Open-circuit voltage is 6 dB higher than the nomogram value.) Connecting the microphone impedance and the decibel rating solves for the voltage across a matched load for the standard 10 dynes $/ \mathrm{cm}^{2}$ sound pressure field. By referring to the absolute sound pressure vs decibel scale, any other sound pressure level can be found and the decibel difference (with respect to 10 dynes $/ \mathrm{cm}^{2}$) can be determined, and adjustments can be made in the output voltage by adding or subtracting decibels.

For high-impedance microphones, the nomogram is used in the same way, except that the impedance is always considered as $40,000 \mathrm{ohms}$, and the reading will be that for a 10 dynes $/ \mathrm{cm}^{2}$ field. These microphones are usually operated into a very high impedance circuit, hence 6 dB must be added to the output voltage. (Use of this method results in an error of approximately 2 dB .)

Sound pressure level

Section 3

Attenuator Nomograms / 72
Twin-T Filter Nomogram 175
Minimum-Loss Matching Pads 178
Preferred Values of Components 179
Thermal Noise Voltage Nomogram (A) 180
Thermal Noise Voltage Nomogram (B) / 82
Single-Layer Coil Design Nomogram (A) 183
Single-Layer Coil Design Nomogram (B) 184
Inductance of Straight, Round Wire at High Frequencies / 85
Transformer Impedance Nomogram / 86
Energy Storage Nomogram / 88
Power-Factor Correction / 90
Power-Factor Nomogram / 91
kVAR-Capacity Nomogram for $60-\mathrm{Hz}$ Systems / 92
Self-Resonant Frequency of Parallel Lead Capacitors 193
Reactance Nomograms / 94
RF Penetration (Skin Resistance) of Various Materials / 98
Impedance of Series-Connected and Parallel-Connected Combinations of L, C and R 199
Frequency Characteristics of Resistors, Capacitors, and Inductors / 100
Resistance-Voltage-Current=Power Nomogram / 101
Voltage Divider Nomogram 102

Passive Components and Circuits

Nomogram for Capacitively Coupled Circuits 104
R-C Coupling Nomogram / 105
Square Wave Response of Amplifiers 106
Low-End Amplifier Response / 107
Time-Constant Nomogram (A) / 108
Time-Constant Nomogram / 109
Frequency Selective Network Nomogram / 110
Bandwidth Nomogram / 114
Crossover Networks, Design Equations, and Rate of Attenuation Curves 116
Passive LC Filter Design 117
Filter Characteristics and Design Formulas 144
Comb-Filter Design 146
Pulse-Forming Network Nomogram 148
Delay Line Design Nomogram / 149
Coaxial Cable Signal Delay Nomogram 150
Voltage Multiplier Circuits 151
Power Transistor and Diode Requirements for Switching Power Supplies / 152
Percent Regulation of Power Supplies / 156
Power Loss Due to Impedance Mismatch / 157
Seven Commonly Used Bridge Circuits and Their Balance Equations / 158
Parallel-Resistor/Series-Capacitor Nomogram / 159

ATTENUATOR NOMOGRAMS

These two nomograms solve for the resistor values required for the following: $\mathrm{T}, \mathrm{Pi}, \mathrm{H}, \mathrm{O}$, lattice, bridged T , bridged H,L, and U-type attenuators. The nomograms are based on the equations shown. The keys next to the nomograms show which scales must be used for a particular type of attenuator.

FOR EXAMPLE:

1. Z_{0} is 600 ohms and the required attenuation is 20 dB . Design T, H, and Pi attenuators. From nomogram 1 , for a T type, R_{1} is 480 ohms and R_{4} is 120 ohms . For an H type each of the four series arms would be 240 ohms . For Pi type (middle key) R_{2} is 750 ohms and R_{3} is 3,000 ohms.
2. A lattice attenuator (key three, nomogram 1) that gives 20 dB of attenuation at 500 ohms requires R_{1} to be 410 ohms and R_{2} to be 610 ohms.
3. A bridged T attenuator (nomogram 2, first key) with an attenuation of 20 dB and terminal impedances of 450 ohms has R_{5} as 4,000 ohms and R_{6} as 50 ohms.
4. Design an L-type attenuator (middle key, nomogram) with an attenuation of 14 dB , and an impedance of 50 ohms with the shunt arm at the output end. In this case R_{5} is 200 ohms and R_{6} is 62.5 ohms.

NOTE: In all cases the input and output impedances are the same.

$$
\begin{aligned}
& R_{1}=Z_{0}\left(\frac{K-1}{K+1}\right) \quad R_{3}=Z_{0}\left(\frac{K^{2}-1}{2 K}\right) \quad R_{5}=Z_{0}(K-1) \quad R_{7}=Z_{0}\left(\frac{K-1}{K}\right) \\
& R_{2}=Z_{0}\left(\frac{K+1}{K-1}\right) \quad R_{4}=Z_{0}\left(\frac{2 K}{K^{2}-1}\right) \quad R_{6}=Z_{0}\left(\frac{1}{K-1}\right) \quad R_{8}=Z_{0}\left(\frac{K}{K-1}\right)
\end{aligned} \text { where } K=\frac{E_{\mathrm{in}}}{E_{\text {out }}}
$$

NOMOGRAM 1 FOR T, Pi, H, O, AND LATTICE TYPE ATTENUATORS.

NOMOGRAM 2 FOR BRIDGED T, H, L, AND U TYPE ATTENUATORS.

(Reprinted from Radio-Electronics, copyright © Gernsback Publications, Inc., December 1953.)

TWIN-T FILTER NOMOGRAM

Twin-T filters with symmetrical response curves are frequently used to reject specific frequencies, or they may be included in the negative feedback loop of a frequency-selective amplifier as the tuning element. Other component combinations may be used, but the one selected here has the greatest possible selectivity. With this general configuration, any filter exhibits infinite attenuation at the notch frequency $\left(f_{0}\right)$ which is specified by the values of R_{1} and C_{1}. If it is only desired to reject f_{0}, then the choice of these values is arbitrary. However, if it is desired to design a filter with a symmetrical response curve so the dc gain is equal to that at high frequencies, that is accomplished when $R_{1}=\sqrt{R_{8} R_{L} / 2}$, and the notch frequency is determined by the expression $f_{0}=1 / 4 \pi C_{1} R_{1}$. The nomograms are based on these two equations. Usually $R_{0,}, R_{L}$, and f_{o} are known, and the values of R_{1} and C_{1} are to be determined. It is also possible to use chart 2 alone and select arbitrary values for R_{1} or C_{1} if symmetrical response is not essential.

FOR EXAMPLE: Design a filter with infinite attenuation at 800 Hz which is to be inserted between a 2,000 -ohm source impedance and a load resistance of 100,000 ohms. From nomogram 1 determine that R_{1} should be 10,000 ohms, and with that value determine from nomogram 2 that C_{1} must be $0.01 \mu \mathrm{~F}$ to achieve a symmetrical response curve.

Twin-T notch filter, with component values related as shown, yields maximum selectivity and symmetrical gain-frequency response.

(Reprinted from Electronics, April 18, 1966, copyright O McGraw-Hill Inc., 1966.)

(Reprinted from Electronics, April 18, 1966, copynight © McGraw-Hill, Inc., 1966.)

This nomogram solves for the resistance values needed for an impedance matching pad having a minimum of attenuation. Z_{1} is the greater and Z_{2} is the lesser terminal impedance in ohms. To use the nomogram, calculate the ratio of Z_{2} / Z_{1} and connect that point on the center scale with Z_{1} to find R_{1}, and with Z_{2} to find $R_{3} 890$ ohms also read on the center scale.

FOR EXAMPLE: If Z_{2} is 400 ohms and Z_{1} is 500 ohms, the value of R_{1} must be 225 ohms and of $R_{3} 890$ ohms for a minimum insertion loss pad that has 4.2 dB of insertion loss.

(Reprinted with permission from International Telephone and Telegraph Corporation.)

PREFERRED VALUES OF COMPONENTS

Preferred numbers for nominal values of resistance, capacitance, and inductance have been adopted by the electronics industry. Each value differs from its predecessor by step multiples of (10) $1 / 16,(10) 1 / 12$, or (10) $1 / 24$ resulting in incremental increase of approximately $40 \%, 20 \%$, and 10% per step as shown in the table, to yield an orderly progression of component values of $\pm 20 \%, \pm 10 \%$, and $\pm 5 \%$.

Standard values outside of the range listed can be obtained by multiplying by suitable multiples of 10 . (For example, 15 can represent $1.5,150,15 \mathrm{k}, 1.5 \mathrm{M}$, etc.)

MIL and EIA Standard for Component Values and Tolerances

$\pm 20 \%$	$\pm 10 \%$	$\pm 5 \%$
10	10	10
		11
	12	12
15	15	13
		15
	18	16
		18
22	22	20
		22
	27	24
		27
33	33	30
		33
		36
47		39
		43
		43
		47
68		51
		56
		62
		68
100		75
		82
		91
		100

Given frequency, input C, and amplifier input Z, only two operations are required to find the equivalent thermal noise voltage.

When an amplifier is fed from a capacitive source, the spot (one frequency) noise is generated by the real part of the impedance. This nomogram reduces the calculation required to arnive at the noise value. Impedance at the amplifier input is

$$
\begin{equation*}
z=\frac{R-j R^{2} \omega C}{R^{2} \omega^{2} C^{2}+1} \tag{1}
\end{equation*}
$$

Thermal noise is generated by the real part of this expression, which is

$$
\begin{equation*}
(\text { REAL } Z)=\frac{R}{R^{2} \omega^{2} C^{2}+1} \approx \frac{1}{R \omega^{2} C^{2}} \tag{2}
\end{equation*}
$$

The mean square thermal noise voltage associated with the real part of Z is given by

$$
\begin{equation*}
\overline{\mathrm{e}}^{2}=4 k T d f(R E A L Z) \tag{3}
\end{equation*}
$$

For this case

$$
\begin{aligned}
& d f=1 \text { (spot frequency) } \\
& \quad T=25^{\circ} \mathrm{C}
\end{aligned}
$$

Combining (2) and (3)

$$
\begin{equation*}
\bar{e}^{2}=4 k T d f \frac{1}{R \omega^{2} C^{2}} \tag{4}
\end{equation*}
$$

Equation (4) forms the basis for the nomogram. Nomogram of equivalent spot thermal noise voltage of the parallel combination of a capacitor and an amplifier input resistance. Using the nomogram:

1. Choose f, C, and R (in the example $f=10 \mathrm{kHz}, C=0.001 \mu F$, and $R=1 \mathrm{M}$ ohm).
2. Draw a line between the chosen f and C.
3. Mark its intersection on the reference line.
4. Draw a line from the marked point on the reference scale to the chosen R.
5. The intersection of this line with the $\overline{\mathbf{e}}^{2}$ scale is the desired equivalent thermal noise voltage in dB re 1 V .

THERMAL NOISE VOLTAGE NOMOGRAM (B)

Thermally produced noise voltage of any linear conductor is determined by Nyquist's equation

$$
E=2 \sqrt{R k T B}
$$

$$
\text { where } \begin{array}{rlrl}
E & =\text { noise voltage in rms microvolts } & T & =\text { absolute temperature }\left({ }^{\circ} \mathrm{K}\right) \\
k & =\text { Boltzmann's constant, } 1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K} & B=\text { bandwidth in hertz } \\
R & =\text { resistance } & &
\end{array}
$$

This nomogram solves the above equation if any three of the four variables are given.
FOR EXAMPLE: An amplifier has a voltage gain of 1,000 , and input resistance of 470,000 ohms, and a bandwidth of 2 kHz . Find the output noise level due to the input resistance if the amplifier is operated at an ambient temperature of $100^{\circ} \mathrm{C}$.

Connect $100^{\circ} \mathrm{C}$ (T scale) with 470 K (R scale) and note intersect point on turning scale. Connect that point with 2 kHz (B scale) and read noise voltage as $4.4 \mu \mathrm{~V}$ on E scale. The amplifier has a gain of 1,000 ; thus, the outside noise of the amplifier due to the input resistance is 4.4 mV .

This nomogram is based on the formula for the inductance of a single-layer coil

$$
L=\frac{a^{2} N^{2}}{9 a+10 b}
$$

$$
\text { where } \begin{aligned}
L & =\text { inductance in microhenries } \\
a & =\text { coil radius in inches } \\
b & =\text { coil length in inches } \\
N & =\text { number of turns }
\end{aligned}
$$

FOR EXAMPLE: (1). Find the inductance of a 100-turn coil with a diameter of 2 in . and a winding length of 0.8 in. Find K (diameter/length) $2 / 0.8$ to be 2.5 . Connecting 2.5 on the K scale to 100 on the N scale intersects the turning axis at 3.8 . Now connect 3.8 with 2 on the D scale, and read the inductance as $600 \mu \mathrm{H}$. (2) Determine the number of turns required for a $290-\mu \mathrm{H}$ coil 3 in . long with a diameter of 2.5 in . K is equal to 0.8 . Connect 290 on the L scale with 2.5 on the D scale, and read 4.6 on the turning axis. Connecting 4.6 and 0.8 on the K scale gives the answer as 90 turns on the N scale.

SINGLE-LAYER COIL DESIGN NOMOGRAM (B)

This nomogram solves for the number of close-wound tums required to achieve inductances in the range of values required for television, fm , and radar if transformers. The nomogram is based on a slight modification of H.A. Wheeler's inductance formula that was used to construct nomogram A. The formula used here (with all dimensions in inches) is

$$
L=\frac{a^{2} N^{2}}{8.85 a+10 b}
$$

FOR EXAMPLE: Ten turns of number 30 AWG enameled wire closewound on a 0.25 -inch diameter coil form will produce an inductance of $0.7 \mu \mathrm{H}$.

(Reprinted from Electronics, June, 1953, copyright © McGraw-Hill, Inc., 1953.)

INDUCTANCE OF STRAIGHT, ROUND WIRE AT HIGH FREQUENCIES

Above several megahertz the inductance of relatively short lengths of wire becomes important because of the effect on circuit performance. The chart shows the relationship between diameter, wire length, and inductance for various diameters. A more precise tabulation is also shown for short lengths of commonly used wire sizes.

FOR EXAMPLE: A straight piece of wire 4 in . long with a diameter of 25 mil has an inductance of $0.2 \mu \mathrm{H}$. At a frequency of 80 MHz , this represents an inductive reactance of about 100 ohms.

AWG Wire Size	Length (in.)	Approx. inductance $(\mu \mathrm{H})$
20	$1 / 4$	0.0031
	$1 / 2$	0.0064
	$3 / 4$	0.0115
	1	0.019
	$11 / 2$	0.031
	2	0.04
24	$1 / 4$	0.0037
	$1 / 2$	0.0082
	$3 / 4$	0.014
	1	0.022
	$11 / 2$	0.036
	2	0.05

(From Radio Engineers' Handbook by Frederick E. Terman. Copyright 01943 by McGraw-Hill Book Company. Used with permission of McGraw-Hill Book Company.)

TRANSFORMER IMPEDANCE NOMOGRAM
Tapped transformers provide standard impedances between the various taps and the common terminal. If a nonstandard impedance is required, it can often be found between the taps. This nomogram determines the impedance between terminals B and C if the impedance from A to B and A to C are known, and it is based on the following formula

$$
Z_{(B-C)}=\left(\sqrt{Z_{(A-C)}}-\sqrt{Z_{(A-B)}}\right)^{2 \cdot}
$$

FOR EXAMPLE: If the impedance from A to B is 15 ohms, and the impedance from A to C is 250 ohms, then the impedance from B to C is ≈ 145 ohms.

$$
\text { *Derived from } Z_{(B-C)}=Z_{A-B}\left(\sqrt{\frac{Z_{(A-C)}}{Z_{(A-B)}}}-1\right)^{2}
$$

| 1 |
| ---: | ---: | ---: |
| 3 |
| 5 |

ENERGY STORAGE NOMOGRAM

The nomogram relates capacitance, charging voltage, and stored energy in a capacitor in accordance with the formula

$$
J \text { or } W=\frac{C V^{2}}{2}
$$

$$
\begin{aligned}
\text { where } J \text { or } \begin{aligned}
W & =\text { energy in joules or watt-seconds } \\
C & =\text { capacitance in microfarad } \\
V & =\text { charging voltage }
\end{aligned}
\end{aligned}
$$

FOR EXAMPLE: The energy stored in a $525-\mu \mathrm{F}$ capacitor charged to 450 V is 53 W -sec or joules.

	Charging voltage (de V)	CAPACITANCE ($\mu \mathrm{F}$)

POWER-FACTOR CORRECTION

Power factor is the ratio (usually given in percent) of the actual power used in a circuit to the power apparently drawn from the line.

$$
P F=\frac{\text { actual power }}{\text { apparent power }}
$$

A low power factor is undesirable, and it can be raised by the addition of power-factor correction capacitors which are rated in kVAR (kilovolt-ampere reactive). To determine the kVAR of the capacitors needed to correct from an existing to a higher power factor, multiply the proper value in the table by the average power consumption on kilowatts, of the load.

FOR EXAMPLE: Find the kVAR of capacitors that is required to raise the power factor of a $500-\mathrm{kW}$ load from 70% to 85%.

From the table select the multiplying factor 0.400 which corresponds to the existing 70% and required 85% power factor. Multiplying 0.400 by 500 shows that 200 kVAR of capacitors are required.

Existing Power Factor $\%$	100%	95%	90%	85%	80%	75%
	Corrected Power Factor					
50	1.732	1.403	1.247	1.112	0.982	0.850
52	1.643	1.314	1.158	1.023	0.893	0.761
54	1.558	1.229	1.073	0.938	0.808	0.676
55	1.518	1.189	1.033	0.898	0.768	0.636
56	1.479	1.150	0.994	0.859	0.729	0.597
58	1.404	1.075	0.919	0.784	0.654	0.522
60	1.333	1.004	0.848	0.713	0.583	0.451
62	1.265	0.936	0.780	0.645	0.515	0.383
64	1.201	0.872	0.716	0.581	0.451	0.319
65	1.168	0.839	0.683	0.548	0.418	0.286
66	1.139	0.810	0.654	0.519	0.389	0.257
68	1.078	0.749	0.593	0.458	0.328	0.196
70	1.020	0.691	0.535	0.400	0.270	0.138
72	0.964	0.635	0.479	0.344	0.214	0.082
74	0.909	0.580	0.424	0.289	0.159	0.027
75	0.882	0.553	0.397	0.262	0.132	
76	0.855	0.526	0.370	0.235	0.105	
78	0.802	0.473	0.317	0.182	0.052	
80	0.750	0.421	0.265	0.130		
82	0.698	0.369	0.213	0.078		
84	0.646	0.317	0.161			
85	0.620	0.291	0.135			
86	0.594	0.265	0.109			
88	0.540	0.211	0.055			
90	0.485	0.156				
92	0.426	0.097				
94	0.363	0.034				
9	0.329					
9						

The power factor $(\cos \phi)$ of a series RL or a parallel RC network is given by the following formulas

$$
\begin{aligned}
& \text { P.F. (inductive) }=\frac{R_{2}}{\sqrt{R_{s}^{2}+(\omega L)^{2}}} \\
& \text { P.F. (capacitive) }=\frac{1}{\sqrt{\left(R_{\mathrm{p}} \omega C\right)^{2}+1}}
\end{aligned}
$$

To use the nomogram connect frequency with the desired value of L or C and note the intersect point on the turning scale. Using this intersect point, connect to the resistance, and by extending this line, read power factor and phase angle.

FOR EXAMPLE:

1. A $1-\mathrm{H}$ inductance in series with 100 ohms is connected to a $60-\mathrm{Hz}$ source. In this case ϕ is 75° and $\cos \phi$ $=0.26$.
2. An inverter operating at 2 kHz is used to supply a 100 -ohm load which is in parallel with a capacitance of $0.047 \mu \mathrm{~F}$. In this case ϕ is 3.5° and $\cos \phi=0.998$.

This nomogram is based on the formula

$$
k V A R=\frac{2 \pi f C E^{2}}{10^{9}}
$$

where C is in microfarad E in volts, and f is 60 Hz .
FOR EXAMPLE: To provide 5 kVAR at 460 V requires $62 \mu \mathrm{~F}$.
(
kVAR

SELF-RESONANT FREQUENCY OF PARALLEL LEAD CAPACITORS

The curves show the approximate self-resonant frequency of capacitors with various lead lengths. They apply to parallel lead wires of equal length \#20 to \#24 AWG, spaced no further than 0.375 in . apart.

FOR EXAMPLE: A $1,000-\mathrm{pF}$ capacitor with 2 -in. leads resonates at about 18 MHz . The same capacitor with $0.2-\mathrm{in}$. leads will resonate at 60 MHz .

REACTANCE NOMOGRAMS

The set of three nomograms on the following pages covers the frequency range of 1 Hz to $1,000 \mathrm{MHz}$ in three ranges which give direct answers without the need for additional calculations to locate the decimal point. These nomograms may be used to find capacitive reactance, inductive reactance, as well as resonant frequency ($X_{L}=$ X_{c}) of any combination of inductance and capacitance.

FOR EXAMPLE:

1. The reactance of a $10-\mathrm{mH}$ inductor at $10-\mathrm{kHz}$ is 630 ohms.
2. The reactance of a $3-\mathrm{pF}$ capacitor at 5 MHz is 10,500 ohms.
3. A $5-\mu \mathrm{F}$ capacitor and a $1.4-\mathrm{H}$ inductance resonante at 60 Hz .

At very high frequencies current travels close to the outer surface of the conductor and eddy current losses increase beneath the surface. This effect is called "skin resistance" or "rf resistance." This chart shows the minimum required conductor depth related with frequency. The depth varies with the resistivity of the material and is least for silver. Therefore, a silver plating is frequently applied to conductors that are used at high frequencies so as to reduce the skin resistance.

FOR EXAMPLE: At 200 MHz a minimum thickness of 0.81 mils of cadmium is required, whereas only 0.18 mils of silver are needed at the same frequency.

IMPEDANCE OF SERIES-CONNECTED AND PARALLEL-CONNECTED COMBINATIONS OF L, C, AND R

Circuit	Series combination	$\begin{aligned} & \text { Impedance } \\ & \mathbf{Z}=R+j X \end{aligned}$	Magnutude of impedance $\|Z\|=\sqrt{R^{\prime}+X^{\prime}}$	$\begin{gathered} \text { Phase sngle } \\ \phi=\operatorname{tin}^{-1}(X / R) \end{gathered}$	$\begin{gathered} \text { Admiftance }^{a} \\ \mathbf{Y}=1 / \mathbf{Z} \end{gathered}$
\longrightarrow C-m	R	ohm R	ohms R	$\begin{gathered} \text { radians } \\ 0 \end{gathered}$	$\begin{aligned} & \text { mhos } \\ & 1 / R \end{aligned}$
mor	L	+jwL	ωL	$+\pi / 2$	$-f(1 / \omega L)$
- 1	C	$-j(1 / \omega C)$	$1 / \omega C$	- - $/ 2$	$j \omega C$
C-mm	$R_{1}+R_{3}$	$R_{1}+R_{1}$	$\boldsymbol{R}_{\mathbf{4}}+\mathrm{R}_{\mathbf{z}}$	0	$1 /\left(R_{1}+R_{\mathrm{s}}\right)$
$\sim_{\text {- }}^{\text {- }}$	$L_{1}(M) L_{1}$	$+j \omega\left(L_{1}+L_{1} \pm \mathbf{2 M}\right)$	$\omega\left(L_{1}+L^{\prime} \pm 2 M\right)$	+ $\pi / 2$	$-j / \omega\left(L_{1}+L_{1} \pm 2 M\right)$
$\longrightarrow \mathrm{HH}$	$C_{1}+C_{3}$	$-j \frac{1}{\omega}\left(\frac{C_{1}+C_{3}}{C_{1} C_{3}}\right)$	$\frac{1}{\omega}\left(\frac{C_{1}+C_{7}}{C_{4} C_{2}}\right)$	$-\frac{\pi}{2}$	$j \omega\left(\frac{C_{1} C_{3}}{C_{1}+C_{2}}\right)$
mmon	$R+L$	$R+j \omega L$	$\sqrt{\overline{R^{3}}+\omega^{3} L^{3}}$	$\tan ^{-1} \frac{\omega L}{R}$	$\frac{R-j \omega L}{R^{3}+L^{*}}$
\longrightarrow -	$R+C$	$R-j \frac{1}{\omega C}$	$\sqrt{\frac{\omega^{2} C^{t} R^{2}+1}{\omega^{2} C^{t}}}$	$-\tan ^{-1} \frac{1}{\omega R C}$	$\frac{\omega^{3} C^{3} R+j \omega C}{\omega^{1} C^{3} R^{1}+1}$
mel!	$L+C$	$+j\left(\omega L+\frac{1}{\omega C}\right)$	$\left(\omega L-\frac{1}{\omega C}\right)$	$\pm \frac{\pi}{2}$	$-\frac{j \omega C}{\omega^{2} L C-1}$
$\rightarrow \sim$-mF	$R+L+C$	$R+i\left(\omega L-\frac{1}{\omega C}\right)$	$\sqrt{R^{1}+\left(\omega L-\frac{1}{\omega C}\right)^{3}}$	$\tan ^{-1}\left(\frac{\omega L-1 / \omega C}{R}\right)$	$\frac{R-j(\omega L}{R^{3}+(\omega L} \frac{-1 / \omega C)}{-1 / \omega C)^{t}}$

Circuit	Parallel combination	$\begin{aligned} & \text { Impedance } \\ & \mathbf{z}=\boldsymbol{R}+j X \end{aligned}$	Magnitude of impedance $\|Z\|=\sqrt{R^{v}+X^{y}}$	Phase angle $\phi=\tan ^{-1}(X / R)$	$\begin{aligned} & \text { Admitrance }{ }^{\text {a }} \\ & \mathbf{Y}=1 / \mathbf{Z} \end{aligned}$
	R_{3}, R_{1}	$\frac{\begin{array}{c}\text { ohms } \\ R_{1} R_{3}\end{array}}{R_{1}+R_{1}}$	$\begin{gathered} \begin{array}{c} \text { ohms } \\ R_{1} R_{2} \end{array} \\ R_{1}+R_{3} \end{gathered}$	radians	$\begin{aligned} & \text { mbot } \\ & \frac{R_{1}+R_{\mathrm{s}}}{R_{\mathrm{v}} R_{\mathrm{i}}} \end{aligned}$
	$C_{34} C_{3}$	$-\frac{1}{0\left(C_{1}+C_{2}\right)}$	$\frac{1}{w\left(C_{1}+\bar{G}_{2}\right)}$	$-\frac{\pi}{2}$	$+j \omega\left(C_{1}+C_{2}\right)$
	L, R	$\frac{\omega^{3} L^{3} R+j \omega L R^{2}}{\omega^{2} L^{3}+R^{*}}$	$\frac{\omega L R}{\sqrt{\omega^{2} L^{1}+R^{3}}}$	$\tan ^{-1} \frac{R}{\omega L}$	$\frac{1}{R}-\frac{j}{w L}$
	R, C	$\frac{R-j \omega R^{*} C}{1+\omega^{2} R^{2} C^{1}}$	$\frac{R}{\sqrt{1+\omega^{*} R^{\prime} C^{i}}}$	$\tan ^{-1}(-\omega R C)$	$\frac{1}{R}+j \omega C$
	L, C	$+j \frac{\omega L}{1-\omega^{2} L C}$	$\frac{\omega L}{1-\omega^{0} L C}$	$\pm \frac{17}{2}$	$j\left(\omega C-\frac{1}{\omega L}\right)$
	$L_{4}(M) L_{i}$	$+j \omega \frac{L_{1} L_{4}-M^{\prime}}{L_{1}+L_{1} \mp 2 M}$	$\frac{L_{1} L_{1}-M^{2}}{L_{1}+L_{1} \mp 2 M}$	$\pm \frac{\pi}{2}$	$-j \frac{1}{\omega}\left(\frac{L_{1}+L_{0} \mp 2 M}{L_{1} L_{4}-M^{2}}\right)$
	L, C, R	$\frac{\frac{1}{R}-j\left(\omega C-\frac{1}{\omega L}\right)}{\left(\frac{1}{R}\right)^{\prime}+\left(\omega C-\frac{1}{\omega L}\right)^{1}}$	$\frac{R}{\sqrt{1+R^{\prime}\left(\omega C-\frac{1}{\omega L}\right)^{2}}}$	$\tan ^{-2}-R\left(\omega C-\frac{1}{\omega L}\right)$	$\frac{1}{R}+j\left(\omega C-\frac{1}{\omega L}\right)$

FREQUENCY CHARACTERISTICS OF RESISTORS, CAPACITORS, AND INDUCTORS

Tabulated here are the effects when potentials of increasing frequency are applied to resistors, capacitors, and inductors.

As the frequency increases from dc to above resonance, the effective "look" of the component changes as shown.

RESISTANCE-VOLTAGE-CURRENT-POWER NOMOGRAM

This nomogram is based on Ohm's law, and one straight line will determine two unknown parameters if two others are given. Preferred ($\pm 20 \%$) resistance values are marked in addition to the ordinary resistance scale divisions. The power scale is calibrated in watts and dBm with a reference level of $0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600 ohms. This, direct conversion between dBm and watts can be made. To cover a wide range of values and yet maintain accuracy, a dual numbering system is used. To avoid confusion, all members should be read from either the regular or the gray-barred scales.

FOR EXAMPLE:

1. The current through a $150-\mathrm{k}$ resistor with a potential drop of 300 V is 2 mA , and the power dissipated is 600 mW or 0.6 W .
2. When a 12,000 -ohm resistor has a current of 6 mA through it, the power dissipated is 0.43 W and the voltage across the resistor is 72 V .
3. The voltage across a 4.7 M ohm resistor with a signal level of -30 dBm is about 2.15 V rms.
4. The maximum allowable current through a 10 W 200 -ohm resistor is 0.22 A . Under these operating conditions there will be 45 V across the resistor.

This nomogram aids in the rapid selection of component values for the simple resistive and capacitive voltage dividers illustrated, where

$$
\frac{e_{0}}{e_{i}}=\frac{R_{g}}{R_{g}+R_{s}} \text { or } \quad \frac{e_{0}}{e_{i}}=\frac{C_{s}+C_{g}}{C_{s}}
$$

Only two decades are covered on the left and right scale to achieve maximum accuracy. The range of the nomogram can be extended by multiplying these two columns by the same power of ten without making any changes in the center column.

FOR EXAMPLE:

1. A blocking oscillator must be held at cutoff by means of a voltage divider between B - and ground. Cut-off bias is -15 V , the negative supply is 150 V , and the grid-to-ground resistor is 22,000 ohms. Thus, e_{o} / e, is 0.1 . Joining that value with 2.2 on the R_{g} scale gives 20 on the R_{s} scale, which makes that resistor equal to 200,000 ohms since each scale had to be multiplied by 10^{4}.
2. Design an rf probe with a $5: 1$ attenuator using standard capacitance values. Rotating about the 0.2 point on the center scale gives typical values of 30 pF for C_{g} and 7.5 pF for C_{s}.

NOTE: The longer lines outside the left and right columns locate standard $\pm 10 \%$ values and the shorter lines locate standard $\pm 5 \%$ values.

(a)

(b)

It is often necessary to know the portion of the input voltage that will appear across the load resistor in a capacitively coupled circuit. This is a function of frequency and a factor of the ratio of R to X_{c}, the required ratio is shown on the center scale. It is interesting to note that any ratio of R to X_{c} greater than $7.4: 1$ yields over 99% output. The X_{c} and R scales can be multiplied by any common power of ten to extend the range of the nomogram.

FOR EXAMPLE: For $R=100 \mathrm{k}$ and $X_{c}=10 \mathrm{k}, V_{2}$ will be 99.4% of V_{1}.

(From Electronics and Communications, June, 1966.)

R-C COUPLING NOMOGRAM

This nomogram is used to calculate phase shift and attenuation in R-C coupling networks. To use, connect capacitance with frequency and note the intersect point on the turning scale. Using this intersect point, connect to the resistance, and by extending this line, read attenuation and phase shift.

FOR EXAMPLE: At $60 \mathrm{~Hz}, \mathrm{a} 0.01-\mu \mathrm{F}$ capacitor and 10,000 -ohm resistor will exhibit a phase shift of 72° and an attenuation factor of 0.35 .

This table illustrates how performance characteristics of an amplifier can be determined by observing the waveform of the output, when the input is a square wave.

Output Waveform	Low Frequency		High Frequency		Damping
	Gain	Delay	Gain	Delay	
--5	Ideal	Ideal	Ideal	Ideal	Ideal
	Inadequate	Good	Excessive	Good	High
	Excessive	Good	Inadequate	Good	High
	Good	Excessive	Good	Inadequate	High
	Good	Inadequate	Good	Excessive	High
V	Excessive	Excessive	Inadequate	Inadequate	High
5	Excessive	Inadequate	Inadequate	Excessive	High
	Inadequate	Excessive	Excessive	Inadequate	High
	Good	Good	Excessive	Good	Medium
	Good	Good	Excessive	Good	Low
	Good	Good	Excessive	Good	Poor
\square	Good	Good	Sharp Cutoff or Peaked	Good	Low

LOW-END AMPLIFIER RESPONSE
In an RC-coupled amplifier, the coupling capacitance (C), combines with the output load (R), to form a potential divider or filter.

The response curve of this combination usually is specified in terms of the relative gain -3 dB point which can be calculated from the equation:

$$
\frac{e_{2}}{e_{1}}=\frac{1}{\sqrt{1+\frac{1}{(2 \pi f T)^{2}}}}=0.708
$$

where $T=R C$ and 0.708 is used to calculate the 3 dB point.
The accompanying nomogram relates the parameters $R, \operatorname{Cor} f_{-3 \mathrm{~dB}}$. Given any two, the third term can be determined by a simple straight-line alignment.

EXAMPLE: With a load of 10 k , what capacitance will give a low cutoff frequency of 20 Hz ?
The alignment shows that a capacitor of $0.8 \mu \mathrm{~F}$ will yield the desired high-pass characteristic.

This nomogram is based on the formula $T=R C$ where T (the time constant) is the time required for the capacitor in an RC series circuit to reach 63.2% of the applied voltage.

FOR EXAMPLE: The time constant of 10 msec can be achieved with a $1-\mathrm{M}$ ohm resistor and a $0.01-\mu \mathrm{F}$ capacitor.

TIME-CONSTANT NOMOGRAM (B)

This chart is used to determine the time required in an RC series circuit to reach a given fraction of an applied step input, or to determine the percent of the applied input when the time constant is given.

The nomogram is based on the relationship.

$$
\frac{E_{\text {out }}}{E_{\text {in }}}=1-\mathrm{e}^{-t / A C}
$$

FOR EXAMPLE: Determine the time required to charge a $50-\mu \mathrm{F}$ capacitor to 400 V through 1,000 ohms from a 450 V supply. The percent of applied voltage is $88.5 \%(400 / 450)$ which requires 2.2 time constants. The time constant is 50 ms (from time-constant nomogram A), so the time required to charge to 400 V is 110 ms .

FREQUENCY SELECTIVE NETWORK NOMOGRAM

The expression $f=1 / 2 \pi R C$, where f is in hertz, C and R in ohms, is the expression for:

1. The 3-dB bandwidth of a single tuned circuit having parameters as shown in Figure 1.
2. The frequency at 3 dB relative attenuation of the parallel RC low-pass network shown in Figure 2.
3. The frequency at 3 dB relative transfer attenuation of the series RC high-pass network of Figure 3.
4. Wien bridge balance.

FOR EXAMPLE:

1. The circuit shown in Figure 1 is used to couple two successive stages of an amplifier. The 3-dB bandwidth of the circuit must be 3.4 MHz and the equivalent shunt capacitance of the circuit is 25 pF . What equivalent resonant resistance will the circuit exhibit? Connect 3.4 MHz and 25 pF and find the equivalent resonant resistance as 1,850 ohms.
2. The low-pass network of Figure 2 uses a $0.05-\mu \mathrm{F}$ capacitor. What value of resistance is required for the output to drop to 0.707 of the input at 5 kHz ? Connect $0.05-\mu \mathrm{F}$ with 5 kHz and read answer as 620 ohms.

Figure 1. Characteristics of a single tuned circuit.

Figure 2. Characteristics of a parallel RC low-pass network.

Figure 3. Transfer characteristics of an RC high-pass network.
3. It is required that the RC high-pass network in Figure 3 attenuate rapidly below 300 Hz . What value resistor must be used with a $0.1-\mu \mathrm{F}$ capacitor? Connect $0.1-\mu \mathrm{F}$ with $300 \mathrm{~Hz}(0.3 \mathrm{kHz})$ and read answer as 5,250 ohms.
4. Figure 4 shows an RC coupled amplifier and its equivalent circuits. It is assumed that the reactance of the bypass capacitors is negligible throughout the frequency range of the amplifier. If the equivalent circuit resistance has a value of 1,300 ohms and the equivalent capacitance is 25 pF , at what frequency is the amplification 0.707 of the midfrequency range of the amplifier? Connect 25 pF and 1,300 ohms and read frequency of 4.75 MHz at which amplifier gain is down 3 dB .
5. The Wien bridge circuit shown in Figure 5 has R_{1} and R_{2} equal to 10,000 ohms and C_{1} and C_{2} equal to $0.1-\mu \mathrm{F}$. With those values the balance frequency of the circuit is 1.59 kHz .

$$
\begin{aligned}
& R_{1}=R_{2}=R \\
& C_{1}=C_{2}=C \\
& \frac{R_{3}}{R_{4}}=2
\end{aligned}
$$

For the measurement of frequency, the unknown frequency is connected across A and B and a null detector, across C and D.

When used with an oscillator, the circuit is connected to a suitable amplifier with regenerative feedback.

Figure 5. Conventional Wien bridge circuit.

Figure 4. An RC-coupled amplifier and its equivalent circuits.

Figure 4. Circuit Diagram of N-Channel JFET Transistor Amplifer. (Continued from page 111.)

Note: Scales with corresponding letters (A or B) are used together.

BANDWIDTH NOMOGRAM

This nomogram is used to compute the bandwidth of a tuned circuit at $70.7 \%(-3 \mathrm{~dB})$ of maximum gain. It is based on the equation

$$
\Delta f=\frac{f_{r}}{Q}
$$

where
$\Delta f=$ bandwidth in kilohertz
$f_{r}=$ resonant frequency in megahertz
$Q=$ figure of merit of the inductance

FOR EXAMPLE:

1. A circuit that has a resonant frequency of 6 MHz , and uses an inductance with a Q of 140 , will have a bandwidth of 43 kHz . NOTE: The range of the nomogram can be extended to cover other frequencies by multiplying or dividing both frequency scales by the same power of 10 .
2. To achieve a bandwidth of 2.5 kHz at a resonant frequency of 600 kHz the inductance must have a Q of 240.
f_{r}
($\mathrm{MHz}_{\mathrm{z}}$)

Crossover curves showing 6,12, and 18 dB /octave crossover net work cutoff rate
(Reprinted from Radio-Eloctronics, copyright © Garnsback Publications, Inc., March, 1968.)

PASSIVE LC FILTER DESIGN

Previous editions of the Electronic Databook used nomograms to determine the component values of image parameter lowpass and highpass filters. This edition provides computer-calculated tabulations of modern filter designs that are based on network synthesis. These modern designs are more versatile, less complicated and easier to build than the old image parameter designs. For example, to simplify construction, the tabulated modern filter designs require fewer components than comparable image parameter designs, and all (or most) of the capacitor values of the modern filter designs are standard values.

Most filtering applications do not require a precisely defined cutoff frequency, and as long as the actual cutoff frequency is within about five percent of the desired cutoff frequency, and the passband and stopband attenuation levels are satisfactory, the design will be acceptable. Of almost equal importance is finding a design that has the minimum number of components and that requires standard-value capacitors to simplify the ordering of parts and the assembly of the filter. Standard values for the inductors is less important because the inductors are usually hand-wound or ordered to specification from inductor manufacturers.

Each filter table provides many designs over one frequency decade in which the change in cutoff frequency from one design to the next is sufficiently small so that virtually any cutoff requirement can be satisfied within a few percent. The 50 -ohm impedance level for source and load was used for most of the tabulations because this impedance termination is most frequently needed by the electronics engineer. All component values and frequencies versus selected stopband attenuation levels have been computer-calculated for each design for the convenience of the user. Although the tabulated designs are only for the equally terminated condition at the listed impedance level and frequency decade, a simple scaling procedure allows the tables to be scaled to any equally terminated impedance level and any frequency decade, while keeping the important advantage of all designs requiring only standard-value capacitors. These pre-calculated filter tables are therefore universally applicable because they can be used to select a suitable design having standard-value capacitors for any impedance level or any cutoff frequency.

Only the passive LC filter was considered for tabulation because this filter type is capable of passing rf power, whereas the active filter is not. Also, the passive filter does not require a power supply, and it usually is easier to assemble in small quantities than the active filter.

Filter Types and Responses

Only the lowpass and highpass filter types having the Chebyshev or elliptic attenuation responses are considered. For design information on other filter types (bandpass, bandstop, etc.), and responses (Butterworth, Bessel, etc.), see References 13-18. Only the 5th- and 7th-degree Chebyshev designs (5 and 7 elements each, respectively) and the 5th-degree elliptic design are included in the tables because these designs are suitable for almost all of the non-stringent filtering requirements encountered by the non-professional filter designer.

The Chebyshev attenuation response is characterized by attenuation ripples in the passband and a constantly (monotonic) increasing attenuation in the stopband. The level of maximum passband ripple (A_{p}) is directly related to the filter reflection coefficient (RC) and VSWR (see Appendix A), and these parameters can be increased or decreased to get a corresponding increase or decrease in the rate of attenuation rise in the filter stopband in the vicinity of the filter cutoff frequency.

The elliptic attenuation response is characterized by attenuation ripple in the passband, attenuation peaks in the stopband, and a specific level of minimum stopband attenuation. The presence of the two resonant circuits in the elliptic filter configuration results in a more abrupt rise in attenuation than is possible with the Chebyshev configuration.

[^0]
Filter Tables

Lowpass and highpass filter designs are listed in ten tables, with eight tables based on a 50 ohm impedance level, and two tables (5 B and 8 B) based on 600 ohms. The schematic diagram and a typical attenuation response of each tabulated filter appears at the head of each table, except Tables $5 B$ and $8 B$, where the only difference is the impedance level. The component designations in the schematic diagram and the frequency designations ($F_{c 0^{\prime}} F_{3}$, F20 and F50) in the attenuation response diagram correspond to similar designations in the table column headings.

Although there is passband ripple in all these designs, the amplitude of the ripple is so small that it is usually swamped out by the losses of the filter components. Consequently, when the completed design is measured, the passband response appears to be flat. For this reason, the passband in the response diagrams is shown flat.

The filter reflection coefficient (RC) provides an indication of the flatness of the passband and the VSWR of the filter. For if filtering applications where low VSWR is desired, designs with low reflection coefficients are preferred. For audio filtering applications, where a faster rise of attenuation is more important than minimizing VSWR, designs having high RC values are preferred.

Lowpass Filters

Chebyshev Designs and Applications. Tables 1 through 4 list 5-and 7 -element Chebyshev lowpass designs. Use the 5 -element designs when about 30 dB of attenuation is needed at one octave above the cutoff frequency, and the filter component count must be minimized. Use the 7 -element designs when about 42 dB of attenuation is needed at one octave above the cutoff frequency. A typical application for these filters is to reduce the harmonic output of transistor amplifiers. Normally, the capacitive input/output configurations shown in Figures 1 and 3 are preferred to the altemative inductive input/output configurations in Figures 2 and 4 to minimize the number of inductors. Inductors are usually more bulky, more expensive and have higher losses than capacitors. Both filter types have identical attenuation responses, but the filter input impedances in the stopbands are markedly different. For the inductive input filter, the input impedance starts increasing between the 3 and $15-\mathrm{dB}$ attenuation level, and continues increasing with increasing stopband frequency. The reverse is true for the capacitive input filter. Under certain conditions, transistor if amplifiers may become unstable when looking into a decreasing or increasing reactive impedance (see Bibliography, Nos. 8 \& 15). Because of this, it is necessary that the rf filter designer be able to design lowpass filters having either capacitive or inductive input elements.

Elliptic Designs and Applications. Tables 5A and 5B list 5th-degree elliptic lowpass designs for 50 and 600 ohms, respectively. This type of filter is preferred where a more abrupt rise in attenuation is desired. This type is also useful because the attenuation peaks at F4 and F2 sometimes can be placed at the second and third harmonic frequencies of a constant-frequency if amplifier to provide more than 60 dB attenuation to the harmonics.

In this filter type, only capacitors C1, C3 and C5 are standard value. The fact that C2 and C4 are not standard values is not important because these capacitors should be tuned to precisely resonate L2 and L4 at F2 and F4. This is necessary if the minimum stopband attenuation level $\left(A_{s}\right)$ is to be achieved throughout the entire stopband. A slight variation in the values of C2, L2 and C4, L4 is not important as long as the F2 and F4 frequencies are as close as possible to the tabulated frequencies.

Table 5B is provided for audio filtering applications where this impedance level is very common. This table also serves to provide 600 -ohm designs that can be used to confirm the correctness of the impedance scaling procedure to be explained later.

Highpass Filters

Chebyshev Designs and Applications. Tables 6 and 7 list 5-and 7 -element Chebyshev highpass filter designs, but unlike the lowpass designs only the capacitive input/output configuration is considered. This is because they are very few applications for the altemate L-input/output configuration. The C-input/output configuration has the important advantage of increasing input impedance with decreasing frequency. This configuration is therefore suitable as an isolation network between a signal source and a detection system being used to examine the harmonics of the signal source fundamental. The highpass filter passes the harmonic frequencies unattenuated,
but provides considerable attenuation to the fundamental signal. Also, the high input impedance of the filter will not cause excessive loading of the generator. This is not true for the alternate inductive input filter.

Elliptic Designs and Applications. Tables 8A and 8B list the 5th-degree elliptic highpass designs for 50 and 600 ohms, respectively. This type filter is preferred where a more abrupt increase in attenuation is desired as compared to the Chebyshev filter. The comments concerning the elliptic lowpass design relative to $\mathrm{C} 1, \mathrm{C} 3$ and C 5 being standard values and the importance of tuning C 2 and C 4 to F 2 and F 4 are equally applicable here. The concluding comments about the elliptic 600 -ohm lowpass filter are equally applicable to the highpass filter.

How to Use the Precalculated Design Tables

For 50-0hm Impedance Levels. Before selecting a suitable filter design, the reader must know or be able to specify the important parameters of the filter, such as type (highpass or lowpass), cutoff frequency, impedance level, and an approximation of the required stopband attenuation. It is obvious as to which tables to use for lowpass or highpass applications, but it is not so obvious as to which one design of the many possible choices is optimum for the intended application. Generally, the Chebyshev is preferred over the elliptic because the Chebyshev does not require tuning of the inductors; however, if the gradual rise in attenuation of the Chebyshev is not satisfactory, then the elliptic should be considered. For audio frequency filtering, the elliptic designs with high values of RC are preferred because they have a much more abrupt rise in attenuation as compared to the Chebyshev. For if applications, RC values less than 8% are recommended to minimize VSWR. Low VSWR is also important when cascading high and lowpass designs to achieve a bandpass response of more than two octaves wide. Each filter will operate as expected if it is correctly terminated, but this condition will exist only if both designs have the relatively constant terminal impedance that is associated with low values of RC.

Knowing the filter type and the response needed, the table of designs most appropriate for the application is selected on a trial basis. Find the table and search the cutoff frequency column for a cutoff frequency nearest the desired cutoff frequency. After finding a possible design, examine the stopband attenuation levels to see if they are satisfactory. Then check the RC value to see if it is appropriate for the application. Finally, check the component values to see if they are convenient. Usually, it is easier to obtain capacitors with the ten-percent tolerance than the five-percent value. For example, in the audio frequency range, the capacitor values will probably be in the microfarad range, and capacitors in this size are available only in the ten-percent tolerance group.

Because all the important parameters of each design are listed, it is possible to quickly check many designs so the most suitable design can be selected. After the final choice has been made, interconnect the components in accordance with the schematic diagram above the table headings. Use good engineering practices in assembling the filter components as explained in listing number 12 of the bibliography.

For Impedance Levels Other Than 50 Ohms. All tabulated designs are easily scaled to impedance levels other than 50 ohms while maintaining the advantage of standard-value capacitors. If the impedance level differs from fifty ohms by a factor equal to an integral power of ten (such as .01, 1, 10 or 100), the design tables can be scaled by inspection (by shifting the decimal points of the component values). The tabulated frequency, A_{s} and RC values remain unchanged. For example, if the 50 -ohm impedance level is raised by a factor of ten to 500° ohms, the new capacitance and inductance values are found by multiplying the tabulated inductance values by ten, and by dividing the capacitor values by ten. This means that the decimal points of the inductor values are shifted one place to the right, and the decimal points of the capacitor values are shifted one place to the left. The reverse is true if the impedance level is reduced from 50 to 5 ohms. For example, the impedance level of Design \#1, Table 1, can be increased to 500 ohms by shifting the decimal points of $L 2$ and $L 4$ one place to the right (to become $107.3 \mu \mathrm{H}$), and by shifting the decimal points of the capacitance values one place to the left (to become 300 pF and 560 pF).

To change the tabulated frequency decades to another frequency decade differing by a factor equal to an integral power of ten, multiply all tabulated frequencies by the factor, and divide all capacitance and inductance values by the same factor. For example, the frequency decade of Table 1 can be reduced from $1-10 \mathrm{MHz}$ to $1-10$ kHz by multiplying all frequencies by .001 (the frequency units in the column headings become kHz), and by
dividing the capacitance and inductance values by the same factor. (The units of capacitance and inductance become nanofarads and millihenries.)

Filter designs with standard-value capacitors may be found for impedance levels that differ from 50 ohms by a factor equal to a non-integral power of ten (such as 1.2, 12, etc.). To do this, use the following procedure:

1. Calculate the scaled impedance factor, $R=Z_{x} / 50$ where Z_{x} is the desired new impedance level in ohms.
2. Calculate the cutoff frequency of a "trial" 50 -ohm filter using the equation: $F_{50}=R \cdot F_{x_{c \infty}}$ where $F_{x_{\infty}}$ is the desired cutoff frequency of the filter at the new impedance level.
3. From the 50 -ohm tables, select a design having its cutoff frequency closest to the calculated F_{50} value. The tabulated capacitor values will be used directly, and the frequencies and inductance values will be scaled.
4. Calculate the exact values of $F_{x_{\infty}}=F_{50}^{\prime} / R$, where F_{50}^{\prime} is the tabulated cutoff frequency. In a similar manner, calculate all the other frequencies.
5. Calculate the new inductance values for the new filter from $L_{x}=R^{2} \cdot L_{50}$, where L_{50} is the tabulated inductance value of the trial filter design, and L_{x} is the inductance value of the scaled filter.

An example follows showing how the 50 -ohm design \#3 of Table 5A can be replaced with a 60 -ohm design having a similar cutoff frequency and other similar characteristics. Using the same previously numbered steps:

1. $R=60 / 50=1.2$
2. $F_{50_{\infty}}=1.2(1.06 \mathrm{MHz})=1.272 \mathrm{MHz}$
3. From Table 5A, design \#15 has a cutoff frequency closest to the calculated F_{50} value. The A_{s} and $R C$ values are similar to design \#3. Design \#28 is also suitable as a replacement. The tabulated capacitor values of design \#15 are copied directly. Thus, C1, 3,5,2 and $4=2,200,3,900,1,800,271$ and 779 pF , respectively.
4. The exact values of $F_{x_{c o}}, F_{x_{3}}$ and $F_{A_{s}}$ are calculated, and are equal to: $1.27 \mathrm{MHz} / 1.2=1.058 \mathrm{MHz}, 1.45$ $\mathrm{MHz} / 1.2=1.208 \mathrm{MHz}$ and $2.17 \mathrm{MHz} / 1.2=1.808 \mathrm{MHz}$.
5. The $L 2$ and $L 4$ inductance values of the 60 ohm filter are calculated: $L_{2}{ }_{x}=(1.2)^{2} \cdot 7.85 \mu \mathrm{H}=11.3 \mu \mathrm{H}$, $L 4_{x}=(1.2)^{2} \cdot 6.39 \mu \mathrm{H}=\mathrm{H}=9.20 \mu \mathrm{H}$. The validity of the scaling procedure can be confirmed by scaling the new 60 -ohm filter to an impedance level of 600 ohms , and scaling the frequency from 1 MHz to 1 kHz , and then comparing the $600-\mathrm{ohm}, 1 \mathrm{kHz}$ filter with design \#5 of Table 58. All parameters of the designs will be identical, thus confirming the correctness of the scaling procedure.

The validity of the pre-calculated tables may be confirmed by independently calculating the component values using previously published normalized tables from authoritative sources such as References 8-10 and 13 . This is done by finding a tabulated pre-calculated design that has a reflection coefficient nearly identical to that of a published normalized design. For example, design \#80, Table 3 is suitable to match a 10% RC Chebyshev design. The pre-calculated impedance level and the cutoff frequency are then used with the normalized values, and the inductance and capacitance component values are calculated in the usual manner. Because the pre-calculated tabulated values agree within less than 1% variation with the independently calculated values, the correctness of the tables is confirmed.

APPENDIX A

Equations and Table Relating RC, A_{p} and VSWR for all Modern Design Filters
$R C_{(F)}=100 * \operatorname{SQR}[1-(0.1 \uparrow x)]$
where 100 *SQR $=100$ times the square root of...
$x=0.1\left(A_{p}\right)$
$t=$ symbol for exponentiation

* = symbol for multiplication

$$
\begin{equation*}
A_{P_{(d B)}}=-4.3429 * \operatorname{LOG}[1-(.01 * \mathrm{RC}) \uparrow 2] \tag{2}
\end{equation*}
$$

VSWR $=[1+(.01 * R C)] /[1-(.01 * R C)]$
where $\quad A_{p}=$ Maximum passband ripple amplitude in $d B$
RC $=$ Reflection coefficient in percent
VSWR = Voltage standing wave ratio

Equations 1-3 are presented in a format suitable for computer programming. The LOG function in Eq. (2) is based on the natural log.

Table 1. Reflection Coefficient with Corresponding Values of A_{p} and VSWR.

REFLECTION COEFFICIENT (\%)	MAX. RIPPLE AMPLITUDE (dB)	MAX. VSWR -.--	REFLECTION COEFFICIENT (\%)	MAX. RIPPLE AMPLITUDE (dB)	MAX. VSWR ------
1.0	0.000434	1.020	12.0	0.0630	1.273
2.0	0.001738	1.041	14.0	0.0860	1.326
3.0	0.003910	1.062	16.0	0.1126	1.381
4.0	0.006954	1.083	18.0	0.1430	1.439
5.0	0.010871	1.105	20.0	0.1773	1.500
6.0	0.015663	1.128	22.0	0.2155	1.564
7.0	0.021333	1.151	24.0	0.2576	1.632
8.0	0.027884	1.174	26.0	0.3040	1.703
9.0	0.035321	1.198	28.0	0.3546	1.778
10.0	0.043648	1.222	30.0	0.4096	1.857

References

The first four references are recommended as authoritative sources on image parameter passive LC filter design.
References 5 through 18 are recommended as authoritative sources on passive LC modem filter design.

1. Skilling, H.H.. Electric Transmission Lines. New York: McGraw-Hill, 1951. Chapter 10, "Introduction to (Image Parameter) Filters," pp. 224-257.
2. Kerchner, R.M. and Corcoran, G.F. Alternating-Current Circuits, 3rd Edition. New York: John Wiley \& Sons, 1953. Chapter 13, "Electric Wave (Image Parameter) Filters," pp. 436-487.
3. Van Valkenburg, M.E. Network Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1955. Image Parameter theory, pp. 344-353.
4. Reference Data for Radio Engineers, Sixth Edition. Howard W. Sams \& Co., Inc., a subsidiary of IT\&T Corp., 1975. Chapter 7, Filters-Image Parameter Design.
5. Orchard, H.J. "Formulae for Ladder Filters," Wireless Engineer. January, 1953.
6. Cohn, S. "Direct Coupled Resonator Filters," IRE Proceedings. February, 1957.
7. Zverev, A.I. "Introduction to Filters," Electro-Technology. June, 1964, pp. 61-70.
8. Saal, R. and Ulbrich, E. "On the Design of Filters by Synthesis," IRE Transactions. CT. 5, 1958, pp. 284-327.
9. Geffe, Philip R. Simplified Modern Filter Design. New York: John F. Rider Publisher, Inc., a division of Hayden Publishing Co., Inc. New York, 1963.
10. Saal, R. The Design of Filters Using the Catalog of Normalized Lowpass Filters. Backnang, Western Germany: Telefunken GmbH, 1966.
11. Eggen, C.P. and McAllister, A.S. "Modern Lowpass Filter Characteristics," Electro-Technology. August, 1966.
12. Zverev, A.I. "The Golden Anniversary of Electric Wave Filters," IEEE Spectrum. March 1966, pp. 129-131.
13. Zverev, A.I. Handbook of Filter Synthesis. New York: John Wiley \& Sons, NY 1967.
14. Geffe, Philip R. "EDN Designers' Guide to Active Filters," EDN. February 5, and March 5, 1974. (Parts 1 and 2, Butterworth and Chebyshev Design Fundamentals).
15. Daniels, Richard W. Approximation Methods for Electronic Filter Design. New York: McGraw-Hill, 1974.
16. Reference Data for Radio Engineers, Sixth Edition. Howard W. Sams \& Co., Inc., a subsidiary of IT\&T Corp., 1975. Chapter 8, Filters-Modern-Network Theory.
17. Blinchikoff, H. and Zverev, I.A. Filtering in the Time and Frequency Domains. New York: John Wiley \& Sons, 1976.
18. Williams, A.B. Electronic Filter Design Handbook. New York: McGraw-Hill Book Co., 1981.

Bibliography

1. Wetherhold, E. "Pick a Filter From This Chart," Electronic Design 24. Vol. 20, No. 24. November 23, 1972. Rochelle Park, NJ: Hayden Publishing Co., Inc.
2. \qquad "Passive LC Filter Design (Part 1), Home Study Course 69/51," Measurements \& Control and Medical Electronics. Both June 1978. Pittsburgh, PA: Measurements and Data Corp.
3. \qquad "Component Selection and Test Procedures for LC Filters (Part 2), Home Study Course $71 / 53, "$ Measurements \& Control and Medical Electronics. Both October 1978. Pittsburgh, PA: Measurements and Data Corp.
4. \qquad "Lowpass Filters for Amateur Radio Transmitters, QST. December 1979.
5. \qquad "Practical 75- and 300-ohm High-Pass Filters, QST. February, 1982.
6. \qquad "Chebyshev Filters Using Standard-Value Capacitors," R.F. Design. Vol. 3, No. 2. February, 1980.
7. \qquad "Correction to Chebyshev Filters Using Standard-Value Capacitors," R.F. Design. Vol. 3, No. 6. June 1980, p. 19.
8. \qquad "Lowpass Filters-Table of Precalculated Chebyshev Lowpass Filters With Inductive Input and Output," R.F. Design. Part 1, Vol. 4, No. 4. July /August 1981; Part 2, Vol. 4, No. 5. September/October 1981.
9. \qquad "Design 7-Element Lowpass Filters Using Standard-Value Capacitors," EDN. Vol. 26, No. 1, 7. January 1981.
10. \qquad "Elliptic Lowpass Filters for Transistor Amplifiers," Ham Radio. January 1981.
11. \qquad "7-Element Chebyshev Filters for TEMPEST Testing," Interference Technology Engineers' Master (ITEM). 1981, published annually by R \& B Enterprises, Plymouth Meeting, PA.
12. \qquad "Filter Construction Techniques," ITEM. 1982.
13. \qquad "Lowpass Chebyshev Filters use Standard-Value Capacitors," Engineer's notebook, p. 160, Electronics. June 19, 1980.
14. \qquad "Highpass Chebyshev Filters use Standard-Value Capacitors," Engineer's notebook, p. 140, Electronics. January 27, 1981.
15. \qquad "Standard C, L-Input Filters Stabilize Hf Transistor Amplifiers," Engineer's notebook, Electronics. November 3, 1981.
16. Electronic Designers' Casebook No. 5. pp. 94-97, "Low-Pass and High-Pass Filters Use Standard-Value Capacitors, McGraw-Hill, Inc., 1982.
17. J. Barge and E. Wetherhold. "A BASIC Program for Designing Chebyshev Filters," EMC Technology. Vol. 1, No. 2, pp. 60-69, April 1982, published quarterly by Don White Consultants, Inc., Gainesville, VA.

Figure 1. Lowpass filter schemetic diagram and attenuation response, capacitive input and output.
Table $1.50-0 \mathrm{hm}$ 5-Element Chebyshev Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output.
(Continued on page 124.)

Filter - . . . - Frequency (MHz) - - - -					RC (\%)	C1, C5 (pf)	$\begin{aligned} & \text { L2, L4 } \\ & (\mu \mathrm{H}) \end{aligned}$	$\begin{gathered} \mathrm{C} 3 \\ (\mathrm{pF}) \end{gathered}$
No.	Cutoff	3-dB	20-dB	50-dB				
1	1.016	1.209	1.652	3.038	9.58	3000	10.73	5600
2	1.101	1.320	1.809	3.334	8.93	2709	9.882	5100
3	1.039	1.371	1.944	3.657	4.06	2200	9.818	4700
4	1.146	1.409	1.951	3.618	7.19	2400	9.373	4700
5	1.127	1.496	2.125	4.0102	3.88	2000	9.003	4360
6	1.256	1.541	2.133	3.955	7.27	2200	8.564	4300
7	1.054	1.619	2.379	4.566	1.39	1690	8.351	3900
8	1.232	1.646	2.344	4.420	3.67	1800	8. 187	3900
9	1.388	1.701	2.353	4.360	7. 38	2060	7.754	3900
10	1.169	1.756	2.570	4.922	1.60	1500	7.703	3600
11	1.275	1.771	2.547	4.830	2.77	1600	7.635	3600
12	1.452	1.825	2.542	4.731	6.30	1800	7.281	3600
13	1.430	1.939	2.773	5.241	3.29	1500	6.960	3300
14	1.541	1.971	2.768	5.179	5.16	1600	6.789	3300
15	1.315	2.101	3.108	5.989	1.07	1200	6.424	3000
16	1.481	2.117	3.065	5.836	2.26	1300	6.393	3006
17	1.754	2.190	3.050	5.677	6.30	1500	6.067	3000
18	1.887	2.252	3.080	5.669	9.33	1600	5.773	3000
19	1.506	2.337	3.440	6. 611	1.29	1100	5.782	2700
20	1.706	2.361	3.396	6.441	2.77	1200	5.726	2700
21	1.868	2.483	3.383	6.336	4.93	1300	5.573	2700
22	1.753	2. 6.34	3.854	7.383	1.60	1000	5.135	2400
23	1.985	2.671	3.810	7.193	3.49	1100	5.049	2400
24	2.193	2.737	3.813	7.096	6.30	1200	4.854	2400
25	2.462	2.838	3.865	7.094	10.21	1390	4.549	2400
26	1.892	2.872	4.210	8.073	1.50	910	4.799	2200
27	2.145	2.989	4.159	7.861	3.29	1000	4.640	2200
28	2.392	2.986	4.159	7.741	6.30	1190	4.449	2200
29	2.053	3.157	4.639	8.906	1.38	820	4.283	2000
35	2.362	3.201	4.575	9.646	3.31	916	4.217	2000
31	2.6.31	3.284	4.575	8.515	E. 30	1000	4.945	2000

Table 1. 50 -Ohm 5-Element Chebyshev Lowpass Filter designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 123.)

Filter --- - Frequency (MHz) - - . .					RC	C1, C5	L2, L4	C3
No.	Cutoff	3-dB	$20-\mathrm{dB}$	$50-\mathrm{dB}$	(\%)		$(\mu \mathrm{H})$	(pF)
32	2.338	3.512	5.139	9.843	1.60	750	3.851	
33	2.628	3.557	5.083	9.603	3.34	826	3.794	1800
34	2.960	3.664	5.089	9.453	6.76	910	3.614	1806
35	2.705	3.959	5.763	11.01	1.92	680	3.418	1609
36	3.058	4.027	5.710	10.74	4.10	750	3.346	1600
37	3. 381	4.145	5.734	10.63	7.35	820	3.182	1600
38	2. 772	4.212	6.176	11.84	1.49	620	3.211	1500
39	3.135	4.265	6.101	11.54	3.22	680	3.166	1500
40	3.508	4.379	6.100	11.35	6.30	750	3.633	1500
41	3.391	4.881	?.079	13.49	2.15	560	2.772	1309
42	3.838	4.979	7.026	13.18	4.62	620	2.695	1300
43	4.259	5.147	7.080	13.08	8.32	680	2.545	1300
44	3.607	5.279	7.684	14.6 ?	1.92	510	2. 563	1200
45	4.056	5.364	?.614	14.33	3.98	560	2.509	1206
46	4.550	5.545	7.654	14.17	7.72	620	2.372	1200
47	3.963	5.762	8.376	15.98	2.61	470	2.348	1100
48	4.391	5.843	8.309	15.66	3.80	510	2.305	1100
49	4.881	6.012	8.334	15.46	7.05	560	2.198	1100
50	4.398	6.344	9.265	17.55	2.12	430	2.133	1000
51	4.987	6.448	9.135	17.18	4.18	470	2.085	1006
52	5.380	6.618	9.169	17.01	7. 13	510	1.996	1006
53	4.811	6.968	10.12	19.30	2.06	390	1.942	910
54	5.426	7.095	10.04	18.86	4.34	430	1.894	910
55	5.997 4.862	7.311	10.89	18.68	7.79	470	1.799	910
56	4.862	7.690	11.36	21.86	1.14	330	1.756	820
57	5.511	7.758	11.20	21.28	2.51	360	1.743	820
58	6.066	7.887	11.14	20.90	4.54	390	1.702	820
59	6.771	8.169	11.23	20.73	8.44	430	1.602	820
60	5.262	8.464	12.43	23.95	1.07	300	1.606	750
61	6.642	8.485	12.24	23.25	2.56	330	1.594	750
62	6.702	8.645	12.18	22.82	4.83	360	1.550	750
63	7.332	8.897	12.26	22.66	8.93	390	1.475	750
6.4	6.687	9.363	13.49	25.62	2.61	309	1.444	680
65	7.484	9.565	13.43	25.13	5.29	330	1.398	680
66	8.254	9.896	13.57	25.00	8.93	360	1.317	680
68	8. 181	10.48	14.82 14.73	28.20	2.35	276	1.320	626
69	9.109	10.88	14.90	27.43	9.22	330	1.195	629
70	7.818	11.32	16.45	31.37	2.06	240	1.195	560
71	9.021	11.59	16.31	36.54	4.98	270	1.155	560
72	10.16	12.89	16.52	30.38	9.58	304	1.073	560
73	8.659	12.44	18.04	34.38	2.17	220	1.087	510
74	9.636	12.65	17.91	33.67	4.22	240	1. 1.663	510
75	9.224	13.48	19.61	37.45	1.94	200	1.003	470
76	10.39	13.71	19.44	36.57	4.06	220	0.981	470
78	9.851	14.71	21.50	41.14	1.67	180	0.919	436
78	10.54	16.19	23.79	45.66	1.39	160	0.835	390

Figure 2. Lowpass filter schematic diagram and attenuation response, inductive input and output.
Table 2. 50-Ohm 5-Element Chebyshev Lowpass Fitter Designs Using Standard-Value Capacitors, Inductive Input and Output. (Continued on page 126.)

Filter No.	Frequency (MHz) -			$50-\mathrm{dB}$	RC (\%)	$\begin{array}{r} \mathrm{L}, \mathrm{~L}, \mathrm{~L} \\ (\mu \mathrm{H}) \end{array}$	$\begin{gathered} \mathrm{C} 2, \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \mathrm{L} 3 \\ & (\mu \mathrm{H}) \end{aligned}$
	Cutoff	3-dB	$20-\mathrm{dB}$					
1	0.74	1.15	1.69	3.25	1.32	5.6	4700	13.72
2	0.90	1.26	1.81	3.44	2.67	5.6	4300	12.66
3	1.86	1.38	1.94	3.64	4.60	5.6	3900	11.75
4	1.19	1.47	2.05	3.82	6.47	5.6	3600	11.15
5	1.32	1.58	2.17	4.69	8.76	5.6	3300	10. 61
6	0.91	1.39	2.03	3.90	1.47	4.7	3900	11.38
7	1.03	1. 50	2.16	4.10	2.71	4.7	3606	10.60
8	1.25	1.63	2.30	4.32	4.42	4.7	3301	9.92
9	1.42	1.77	2.46	4.56	6.65	4.7	3000	9.32
16	1. 61	1.92	2.63	4.84	9.47	4.7	2700	0.79
11	1.05	1.64	2.41	4.64	1.22	3.9	3300	9.63
12	1.29	1.80	2.60	4.93	2.64	3.9	3000	8.83
13	1.54	1.95	2.30	5.25	4.73	3.9	2700	8.15
1.4	1. 89	2.19	3.03	5.61	7.59	3×9	2406	7.57
15	1.99	2.35	3.21	5.89	10.010	3.5	2200	7.23
16	1.34	2.00	2.93	5.51	1.E6	3.3	2700	7.89
17	1. 68	2.25	3.20	6.93	3.69	3.3	2400	7.15
18	1.92	2.43	3.40	6.34	5.59	3.3	2200	6.72
19	$2 \cdot 16$	2. 63	3.62	6.69	7.99	3.3	2006	6.35
28	2.43	2.85	3.87	7.09	10.98	3.3	1800	6.92
21	1.E6	2.46	3.59	6.87	1.72	2.7	2200	6.43
22	1.99	2.70	3.86	7.29	3.33	2.7	2006	5.93
23	2.34	2.97	4.15	7×75	5.59	2×7	1800	5.50
≥ 4	2.71	3.27	4.49	8.28	8.61	2.7	1600	5.13
25	2.92	3.44	4.63	8.58	10.44	2.7	1500	4.97

Table 2. $50-0 \mathrm{hm}$ 5-Element Chebyshev Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 125.)

Filter No.	Cutoff	(MHz)3-dB	20-dB	$50-\mathrm{dB}$	$\begin{aligned} & \mathrm{RC} \\ & (\%) \end{aligned}$	$\begin{gathered} \text { L1, L5 } \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C} 2, \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \mathrm{LB}_{2} \\ & (\mu \mathrm{H}) \end{aligned}$
26	2×1	3.01	4.35	8.41	1.6E	2.2	1800	5.26
27	2×52	3.37	4.80	9.04	3.69	2.2	1600	4.76
28	2.78	3.57	5.62	9.39	5.07	2.2	1500	4.55
29	3.34	4.02	5.52	10.18	8.68	2.2	1309	4.18
36	3.65	4.28	5.80	10.63	10.98	2.2	1200	4.01
31	2.35	3.61	5.29	10.16	1.41	1.8	1500	4.38
32	3.12	4.14	5.89	11.10	3.83	1. 8	1300	3.88
33	3.51	4.45	6.23	11.63	5.59	1.8	1206	3.67
34	3.93	4.78	6.60	12.21	7.78	1.8	1100	3.48
35	4.37	5.16	7.01	12.86	10.44	1.8	1006	3.31
36	3.10	4.51	6.56	12.51	2.00	1.5	1206	3.51
37	3.65	4.90	6.99	13.20	3,52	1.5	1109	3.27
33	4.21	5.34	7.47	13.95	5.59	1.5	1000	3.016
39	4.75	5.77	7.96	14.71	7.97	1.5	910	2.89
40	5.34	6.26	8.50	15.57	10.92	1.5	826	2.74
41	3.53	5.41	7.94	15.24	1.41	1.2	1060	2.92
42	4.30	5.94	8. 53	16.17	2.89	1.2	910	2. 68
43	5.09	6. 53	9.19	17.20	5.02	1.2	829	2. 2.49
44	5.73	7.04	9.75	18.69	7.18	1.2	750	2.35
45	6.42	7.62	10.39	19.09	9.87	1.2	686	2.23
46	4.40	6.60	9.65	18.43	1. 63	1.0	820	2.40
47	5.27	7.20	10.32	19.53	3.69	1.0	750	2.22
48	6.15	7.87	11.06	20.70	5.13	1.6	680	2. 26
49	6.95	8.51	11.77	21.81	7.39	1.0	620	1.95
50	7.80	9.22	12.56	23.05	10.21	1.0	560	1.85
51	5.23	7.96	11.67	22.38	1.48	0.82	680	1.99
52	6.33	8.72	12.51	23.70	2.95	8.82	620	1.83
53	7.45	9.56	13.45	25.18	5.03	0.82	560	1.709
54	8.44	10.35	14.32	28.55	7.31	8.82	510	1.60
55	9.28	11.05	15.10	27.76	9.54	0.82	470	1.53
56	6.41	9.66	14.15	27.16	1. 57	0.68	560	1.64
57	7.75	10.59	15.18	28.73	3.69	6. 6.6	510	1.51
58	E.83	11.41	16.98	30.15	4.76	0.68	470	1.42
59	9.97	12.31	17.08	31.72	6.88	0.68	430	1.34

Figure 3. Lowpass filter schematic diagram and attenuation response, capacitive input and output.

Table 3. 50-ohm 7-Element Chebyshev Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output.

Filter No.	- Fr	quency	Hz)		RC	C1, C7	L2, L6	C3, C5	L4
	Cutoff	3-dB	$20-\mathrm{dB}$	$50-\mathrm{dB}$	(\%)	(pF)	$(\mu \mathrm{H})$	(pF)	$(\mu \mathrm{H})$
1	1.037	1.162	1.401	2.006	16. 63	2,901	10.90	5609	12.57
2	1.047	1.229	1.511	2. 2666	3.41	2200	10.29	5198	12.29
3	1.118	1.264	1. 530	2.256	5.78	2406	10.04	5100	11.66
4	1.033	1.299	1. 6.33	2. 480	1.46	1890	9.518	4700	11.88
5	1. 124	1.329	1. 098	2. 455	3.12	2800	9.502	4700	11.40
5	1. 2118	1.358	1.658	2. 450	5.80	2209	9.270	4700	10.78
$\stackrel{7}{7}$	1.294	1.423	1.697	2.434	9.8.	2.406	8.824	4708	10.01
3	1.151	1.412	1.785	2. 331	1.16	1505	8. 5131	4390	10.97
9	1. 214	1. 4.446	1.783	2. 687	2.80	18918	B. 709	4360	10.51
19	1.314	1.492	1.810	2. 6773	5.481	20010	8.502	4300	9.910
11	1.41?	1.556	1.85 ?	2.705	9.17	2.319	8.561	4306	9.138
12	1.256	1.56E	1.9E7	2.194	1.51	15061	7.961	3960	9.846
13	1.318	1.58?	1.979	2.468	2.44	1604	7.910	3900	9.617
14	1.449	1.E41	1.943	2. 951	5.16	18 BW	7.733	3900	9.035
15	1. 5455	1.718	2.1949	2.984	9.88	26514	7. 298	3900	8.268
10°	1.445	1.726	2.135	3.216	2. 71	1569	?.294	3600	8.819
17	1.517	1.756	3.148	3.197	4.11	1609	7.219	3600	8.537
18	1. Ebil	1.837	2. 2t1	3.218	8.119	1808	6.860	36001	7.826
19	1.513?	1.8601	2.325	3. 525	1.82	1364	6.694	3300	8.265
28	1.082	1.329	ㄹ.350	3.487	4.71	15.619	6.517	3390	7.721
31	1.767	1.976	2. 3861	3.49	15. 54	1640	6.403	3360	7.370
$\therefore 2$	1.556	2.020	2. 560	8.925	1.612	1160	E.043	30180	7.682
13	1.679	2.052	2. 5.518	3.879	2.114	1269	6.9188	3040	7. 472
24	1.786	2.952	2.5013	3.841	3. 51	1208	6. 048	3000	7.213
25	1.993	2.205	2.E.41	3.852	3.16	1549	5.718	3000	6.522
26	1. 3.45	2. 248	2.1944	4.35:i	1.11	10619	5.447	2799	5.894
\therefore	1.843	2. 289	2.844	4.391	$\therefore .32$	1100	5, 4 ${ }^{\text {a }}$,	27813	6.677
378	2.0 .2	2.341	2. 85,	4.253	4. 11	1200	5.414	2790	6.493
\% 4	$\therefore 1.48$	2.409	2. 514	4.27:2	5.58	1396	5.258	2700	6.064
31	\therefore - 0150	2.539	3.174	4.87 ?	1.35	918	4.856	2480	5.086
11	$\because 147$	2. 888	3. 2113	4.815	2.11	1, 12106	4.363	2400	5.879
3.	$\therefore 3.13$	$\therefore .6511$	3. ${ }^{\text {a }} 15$	4.7.95	4.95	1106	4.730	2400	5.586
3	$\therefore 4^{\prime 31}$	$\therefore 156$	3. 311	4.82,	5.10	1204	4.513	2494	5.217
4	$\therefore 155$	\therefore 为	1.4.49	5.336	1.17	820	4.442	2200	5.507
35	.351	$\therefore 131 \%$	2. 4 93	5. 25	2.58	418	4.45 cal	2200	5.406
3 .	. $5,+$	$\therefore 394$	3.5.5	5. 23.19	4.11	1050	4.264	2290	5.147
-17	A1i	4. 61610	3. 5181	5. Atit	9.10	11 ¢4	4.192	2200	4.782

Table 3. 50-ohm 7-Element Chebysher Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 127.)

Filter - Frequency (MHz)					RC (\%)	C1, C7 (pF)	$\begin{gathered} \text { L2, L6 } \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C} 3, \mathrm{C} 5 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{L} 4 \\ (\mu \mathrm{H}) \end{gathered}$
No.	Cutoff	3-dB	20-dB	$50-\mathrm{dB}$					
28	2.384	3.041	3.838	5.863	1.24	756			
39	2.568	3.0994	3.840	5.788	2.43	829	4.041	2009	5.089 4.933
40	2.778	3.184	3.878	5.753	4.74	910	3.985	2060	4.933 4.676
42	2.989	3.307	3.961	5.792	8.10	1500	3.811	2060	4.378 4.348
43	2.686 2.889	3.383 3.451	4.264 4.271	6.507	1.31	689	3.640	1800	4.570
44	3.090	3.539	4.316	6. 5.393	2.1	750	3. 647	1800	4.409
45	3.351	3.695	4.417	6.44?	8.60	820	3.585	1800	4.205
46	3.056	3.823	4.795	7.299	1.61	520	3.484	1890	3.871
48	3.300	3.902	4.811	7.211	3.09	689	3.235	1600	4.029
49	3.552	4.922	4.873	7.196	5.65	750	3.154	1609	3.667
50	3.166	4.186 4.051	4.992	7.272	9.25	820	2.995	1600	3.394
51	3.445	4.133	5.122	7.824	2. 57	560	3.029	1500	3.821
52	3.694	4.249	5.168	7.571	4. 6.4	680	3.041	1500	3.687
54	3.985 3.813	4.409	5.282	7.723	8.10	750	2.858	1508	3.515
55	4.193	4.717 4.819	5.902 5.927	8.955	1.76	510	2.636	1300	3.266
56	4.429	4.983	6.819	8.867	3.38	569	2. 623	1390	3.135
57	4.125	5.108	6.394	9.704	1.74	620	2.543	1300	2.941
58	4.490	5.202	6.414	9.615	3.619	510	2.433	1200	3.011
	4.719	5.354	6.491	9.593	5.59	560	2. 369	12 Ab	2.913
E1	4.493	5.606	6.677	9.713	9.66	620	2. 232	1206	2.524
62	4.819	5.683	7.9180	10.59	1.72	430	2.230	1100	2.762
6.3	5.123	5.827	7.073	18.46	5.30	470	2.222	1100	2.663
64	5.516	6.067	7.245	10.56	8.93	560	2.177	1160	2.540
5	4.933 5.326	6.125	7.673	11.65	1. 69	390	2.027	1608	2.349
67	5.694	6.262	7.754	11.53	3.34	430	2.018	1000	2.413
68	6.017	6. 689	7.801	11.52	5.7	470	1.969	10010	2.287
69	5.485	6.749	8.432	12.78	1.88	510	1.879	1000	2.132
71	5.838	6.875	8. 464	12.67	3.27	390	1.846	910	2.275
1	E. 288	?.693	8.581	12.66	5.91	436	1.787	918	2. 200
13	6.158 5.582	¢. 391	8.803	12.81	9.64	470	1.693	910	1.914
-4	6.172	7.516	9.368	14.37	1.00	360	1.651	820	2.181
15	6.597	7.681	9.415	14.04	2.13	330	1.664	820	2.037
76	7.067	7.892	9.536	14.65	E. 214	360	1. 649	820	1.958
$\therefore 7$	6.715	8.298	10.23	15.48	2.64	300	1.522	820	1.859
18	7.225	8.493	10.30	15.35	3.86	330	1.587	T50	1.868
19	7.716	8.660	10.45	15.37	6. 46	369	1.462	750	1.788
31	8.238	9.002	10.71	15. 55	9.99	394	1.387	750	1.588
81	$\therefore .362$	9.039	11.29	17.09	1.93	270	1.379	680	1.698
82	1.985	9.275	11.36	16.93	3.93	3016	1.366	688	1.619
	8.583	9.595	11.55	16.97	6.87	336	1.318	680	1.517
85	¢. 9.573	9.865	12.38	18.82	1.59	240	1.256	6,20	1.562
86	9. 392	10.13	12.44	18.58	3.62	270	1.248	620	1.486
87	8,852	19.95	12.68	18.61	6. 76	306	1.204	620	1.387
88	9,4:77	11.17	13.18	20.78	1.78	220	1.135	560	1.403
89	10.37	11.62	14. 91	20.68	3. ${ }_{5}$,	2401	1.131	560	1.353
96	9.717	12.02	15.134	22.83	1.73	2701	1.069	568	1.256
91	11.47	12.29	15.11	22. 60	3, 41	26131	1.034	510	1.279
92	19.33	12.99	16.33	24.84	1.46	2201	1.029	510	1.229

Figure 4. Lowpass filter schematic diagram and attenuation response, inductive input and output.

Table 4. 50-ohm 7-Element Chebyshev Lowpass Fitter Designs Using Standard-Value Capacitors, Inductive Input and Output.

Filter No.	- - Freq Cutoff	$\begin{gathered} \mathrm{cy}(\mathrm{MH} \\ 3-\mathrm{dB} \end{gathered}$	20-dB	50-dB	RC (\%)	$\begin{gathered} \mathrm{L}, \mathrm{~L} 7 \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C} 2, \mathrm{C} 6 \\ (\mathrm{pF}) \end{gathered}$	$\begin{array}{r} \text { L3, L5 } \\ (\mu \mathrm{H}) \end{array}$	$\begin{aligned} & \mathrm{C4} \\ & (\mathrm{pF}) \end{aligned}$
1	1.014	1.179	1.444	2.152	3.89	5.890	4300	13.37	5100
2	1.087	1.293	1.597	2.398	2.88	5.062	3900	12.04	4700
3	1.197	1.405	1.728	2.584	3. 41	4.810	3600	11.15	4360
4	1.328	1.537	1.879	2.797	4.16	4.581	3300	10.29	3900
5	1.425	1.683	2.075	3.110	3.12	3.947	3009	9.274	3600
6	1.528	1.855	2.308	3.486	2.21	3.363	2700	8.316	3300
7	1.634	2.059	2.589	3.945	1.43	2.828	2400	7.408	3000
8	1.859	2.271	2.832	4.284	2.04	2.710	2200	6.775	2700
9	2.137	2.525	3.113	4.665	3.12	2. 631	2000	6.182	2408
10	2.291	2.782	3.462	5.228	2.21	2.242	1800	5. 544	2200
11	2.452	3.088	3.884	5.918	1.43	1.885	1600	4.939	2000
12	2.849	3.367	4.150	6.219	3.12	1.973	1500	4.637	1800
13	3.126	3.838	4.791	7.256	1.93	1.589	1300	4.004	1600
14	3.269	4.117	5.179	7.890	1. 43	1.414	1200	3.704	1500
15	3.475	3.897	4.701	6.915	6.53	2.004	1300	4.169	1500
16	3.985	4.610	5.637	8.390	4.16	1.527	1100	3.4.29	1300
17	4.274	5.050	6.225	9.329	3.12	1.315	1000	3.091	1200
18	4.633	5.533	6.846	10.29	2.72	1.170	910	2.807	1100
19	5.053	6.115	7.600	11.47	2.30	1.027	820	2.525	1000
29	5.581	6.702	8.309	12.51	2.53	0.953	750	2.311	910
21	6.229	7.412	9.160	13.76	2.85	0.880	680	2.098	820
22	6.791	8.119	10.05	15.11	2.68	0.795	620	1.912	750
23	7.463	8.973	11.13	16.76	2.50	0.710	560	1.725	680
24	8.176	9.847	12.22	18.41	2.44	0. 644	510	1.571	620
25	9.207	10.77	13.23	19.76	3.57	0.633	470	1.457	560
26	10.14	11.79	14.44	21.52	3.89	0.589	430	1.337	510
27	10.87	12.93	15.97	23.98	2.88	0.506	390	1.203	470

Figure 5. 50-ohm 5th-degree elliptic lowpass filter designs using standard-value capacitors for C1, C3, and C5

Table 5A. 50-ohm 5th-Degree Elliptic Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output.

Filter No.	$\begin{gathered} \text { F-CO } \\ \cdots \end{gathered}$	F-3dB (MHz)	$\mathrm{F}-\mathrm{A}_{\mathrm{S}}$	A_{s} (dB)	RC (\%)	C1	C3	$\begin{array}{r} \mathrm{C} 5 \\ -(\mathrm{pF}) \end{array}$	C2	C4	$\begin{aligned} & \text { L2 L4 } \\ & \cdots(\mu \mathrm{H})-- \end{aligned}$	F2 - (MHz)	F4
1	0.80	0.99	1.57	47.4	4.40	2790	56800	2200	324	937	12.110 .1	2.54	1.64
2	0.93	1.89	1.67	46.7	7.16	2789	5100	2200	333	960	10.68 .74	2.67	1.17
3	1.46	1.20	1.72	46.2	10.5	2790	4796	2000	341	982	9.36 ․ 56	2.82	1.85
4	1.23	1.35	1.92	45.8	15.3	2700	4300	2200	352	1010	7.936 .27	3.12	2.00
5	1.47	1. 57	2.15	45.4	22.7	2796	3960	2200	364	1045	$6.32 \quad 4.33$	3.32	2.23
6	0.87	1.10	1.83	49.7	3.84	2400	5106	20100	257	735	11.09 .41	2.99	1.91
7	1.99	1.20	1.93	49.2	6. 94	2490	4704	2008	262	748	9.31 8.36	3.12	2.81
8	1.15	1.33	2. 615	48.6	9.37	2490	43018	2000	269	765	8.67 ? 2.19	3.30	2. 15
9	1.37	1. 51	2. 25	48.1	14.5	2490	3700	2060	276	735	7.255 .90	3.55	2.34
10	1.39	1.60	3.11]	61.5	161.8	2200	3903	2000	136	355	7.536 .80	5.09	5. 24
11	1.58	1.71	2.45	47.8	201. 2	24818	3696	2090	284	865	6.064 .85	3.84	2.55
12	1.62	1.80	3.37	61.3	15.91	22610	$3 \mathrm{Fig6}$	2900	132	359	6.365 .69	5.49	3.52
13	18.93	1.18	1.91	48.4	3.71	22904	4 ? g ใ	1800	$25{ }^{\circ}$	74.3	19.28 .59	3.11	1.99
14	1.98	1.36	2.02	47.3	6.815	22610	43013	1360	2.5.	759	9.097 .55	3.25	2.10
15	1. 27	1.45	2.17	46.7	9.63	2300	35018	1800	271	779	?.85 6. 39	3.45	2.26
15	1.45	1.51	2,3 ?	45.3	13, 8	≥ 2190	36.j¢	1806	278	796	6.805 .44	3.66	2. 42
17	1.47	1.70	3.36	51.5	9.41	20990	366461	1869	130	357	7.0776 .33	5.24	3.35
18	1.69	1.82	2.54	$4{ }^{3} .9$	19.1	$\therefore 290$	3.809	18 A	237	821	5.644 .42	3.96	2.64
19	1.13	1.93	3.45	57.2	15.1	21096	9300	18 ¢0	132	362	$5.94 \quad 5.25$	5.61	3.64
20	1.00	1.27	2. 919	46.1	3.54	2090	4.369	1689	258	752	9.35 7.76	3.24	2.03
21	1.18	1.41	2. 12	45.4	5.91?	2009	3'100	1609	265	771	8.27 6.73	3.40	2.21
32	1.34	1.54	2.24	44.8	8.8'\%	2009	3609	16010	272	779	7. $36 \quad 5.89$	3.56	2.33
23	1. 55	1.71	2.41	44.3	13.19	2609	3.3001	1600	286	812	6.354 .97	3.78	2.50
24	1.56	1.82	3.32	57.3	8.91	1606	3300	16010	130	360	6.615 .85	5.42	3.47
25	1.82	1.95	2.65	43.8	19.1	20ืbด	З可近	1600	290	841	5.213 .97	4.09	2. 75
26	1.86	2.08	3.62	57.0	14.1	1806	3 bug	1660	133	366	5.524 .83	5.88	3.79

Filter No.	$\mathrm{F}-\mathrm{CO}$	F-3 dB (MHz)	$\mathrm{F}-\mathrm{A}_{\mathrm{S}}$	$\begin{aligned} & A_{S} \\ & (\mathrm{~dB}) \end{aligned}$	RC (\%)	C1	C3	(pF)	C2	C4	12	$\begin{gathered} \mathrm{L} 4 \\ (\mu \mathrm{H}) \cdots \end{gathered}$		F4 z) --
27	1.12	1.44	2.41	49.8	3.42	1809	3900	1500	192	549	8. 45	7.25	3.95	2.52
28	1.28	1.56	2.53	49.3	5. 41	1300	3600	15018	196	558	7.65	6.47	4.11	2.65
29	1.49	1.73	2.70	43.8	8.45	1800	3300	1500	200	570	6.75	5.62	4.33	2.81
30	1.75	1.95	2.92	48.2	13.01	1800	3000	1500	206	585	5.72	4.68	4.64	3.04
31	2.11	2.27	3.27	47.8	20.2	1800	2706	1500	213	604	4.55	3.64	5.12	3.40
32	1.15	1.54	2.51	47.7	2.70	1660	35090	1300	191	553	7.86	6.65	4.11	2.63
33	1.35	1.68	2.64	47.1	4.53	1600	3300	1300	195	564	?. 10	5.92	4.28	2.75
34	1.58	1.86	2. 81	46.4	ㄱ. 41	1606	3010	1300	200	578	6.24	5.11	4.50	2.93
35	1.57	1.93	3.40	53.9	5.51	1500	3080	1308	129	362	6.33	5.54	5.57	3.55
36	1.88	2.11	3.95	45.8	12.8	1600	2791	1300	207	596	5.26	4.21	4.82	3.18
37	1.89	2. 19	3.68	53.3	9.50	1500	2709	1300	132	369	5.39	4.65	5.96	3.84
38	2.31	2. 48	3.44	45.3	19.5	1600	24013	1300	216	620	4.12	3.21	5.33	3.57
39	2.35	2.58	4.12	52.9	16.3	1500	2400	1300	136	379	4.28	3.62	6.59	4.30
40	1. 28	1.66	2.63	46.3	3.11	1500	3300	1200	192	561	7.20	6.00	4.28	2.74
41	1.51	1.83	2.78	45.6	5.33	1500	3000	1200	197	574	6.42	5.25	4.47	2.90
42	1.79	2.06	2.99	44.8	8.89	1500	2706	1200	204	592	5.52	4.42	4.75	3.11
43	2.17	2.38	3. 31	44.2	14.7	1500	2400	1200	212	616	4.49	3.49	5.16	3.43
44	2.52	2.70	3.63	43.8	20.8	1500	22000	1200	220	636	3.71	2.82	5.58	3.76
45	1.68	2.10	3.56	51.2	4. 41	1300	2790	1100	129	365	5.79	4.99	5.83	3.73
46	2.35	2. 40	3.87	50.5	8. 22	1360	2406	1100	133	375	4.90	4.15	6.24	4.04
47	2.39	2.68	4.16	50.0	12.3	1300	2206	1100	136	383	4.22	3.52	6.65	4.34
48	2.84	3.08	4.80	49.7	18.6	1300	2006	1100	140	393	3.45	2.82	7.26	4.78
49	1.56	2.08	3.55	50.1	2.69	1200	2700	1090	127	363	5.88	5.07	5.83	3.71
50	1.92	2.35	3.80	49.3	5,41	1200	2496	1990	130	372	5.10	4.32	6.17	3.97
51	2.23	2.59	4.194	48.8	8.40	1200	2200	1900	133	380	4.50	3.75	6.50	4.22
52	2.62	2.92	4.38	48.2	13.0	1200	2006	1000	137	390	3.81	3.12	6.96	4.56
53	3.24	3. 60	6. 34	61.3	16.0	1100	1806	1090	65.9	180	3.18	2.85	11.0	?.04
54	3.17	3.41	4.96	47.8	20.2	1200	1800	1000	142	402	3.03	2.42	7.68	5.10
55	1.80	2. 33	3.97	49.1	3.27	1100	2400	910	121	349	5.21	4.45	6.33	4.04
56	2.09	2. 55	4.07	48.6	5.39	1100	2206	910	124	355	4.68	3.94	6.60	4.25
57	2.45	2. 84	4.36	48.6	8,69	1109	2006	910	127	364	4. 115	3.37	6.99	4.54
58	2.93	3.25	4. 17	47.4	13.9	1100	1800	910	131	375	3.38	2.74	7.55	4.97
59	3.64	3.88	5.45	47.0	22.6	1100	16019	910	137	389	2.58	2.04	8.46	5.65
80	1.94	2.52	4.15	48.4	3.11	1060	2206̆	820	115	331	4.79	4.06	6.78	4.34
61	2.29	2.79	4.39	47.7	5.37	1009	2006	820	118	339	4.26	3.56	7.10	4.58
62	2.73	3.14	4.73	47.0	9.615	1609	1806	820	121	348	3. 66	2.99	7.56	4.93
63	3.33	3.65	5.25	46.4	15.2	16109	1600	820	126	361	2.95	2.36	8.25	5.46
64	3.37	3.87	7.23	59.6	11.2	910	1603	820	53.8	161	3.08	2.75	11.8	7.55
65	3.73	4.02	5.53	46.2	19.7	1000	1500	820	129	368	2.56	2.01	8.76	5.85
E. 6	3.82	4.26	7.72	59.5	15.2	919	1506	820	59.6	163	2.70	2.39	12.6	8.07
67	2.14	2.79	4.61	48.8	3.13	919	2004	750	102		4.35	3.71	7.55	4.82
68	2.57	3.11	4.92	48.1	5.71	910	1800	750	105	301	3.82	3.19	7.95	5.13
69	3.13	3.56	5.36	47.4	16.1	910	1600	750	108	315	3.20	2.62	8.55	5.59
70	3.49	3.87	5.68	47.1	13.4	910	1500	750	111	316	2.84	2.30	8.97	5.91
71	4.53	4.81	E. 67	46.5	24.1	910	1300	750	116	331	2.04	1. 60	10.3	6.92

Table 5A. 50-ohm 5th-Degree Elliptic Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 131.)

Filter No.				A_{S} (dB)		C1	C3	$\begin{gathered} \mathrm{C} 5 \\ (\mathrm{pF}) \end{gathered}$	C2	C4	L2	$\begin{gathered} L 4 \\ -(\mu H) \end{gathered}$	$\begin{aligned} & \text { F2 } \\ & \cdots(M H z) \end{aligned}$	$\begin{gathered} \text { F4 } \\ \text { z) } \end{gathered}$
72	2.39	3.11	5.20	49.4	3.15	820	1800	680	89.3	256	3.91	3.35	8.51	5.44
73	2.93	3.52	5.59	48.6	6.14	820	1606	689	92.0	263	3.37	2.83	9.04	5.83
74	3.26	3.79	5.85	48.2	8.45	820	1506	ES0	93.6	267	3.617	2.54	9.39	6.10
75	4.17	4.57	6.65	47.5	16.0	820	1309	630	97.7	278	2.36	1.90	10.5	6.92
76	4.23	4.82	9.15	60.8	12.1	750	1309	680	45.8	125	2.46	2.21	15.9	9.58
77	4.83	5.17	7.30	47.2	22.1	820	1296	680	100	286	1.95	1. 54	11.4	7.58
78	4.97	5.47	10.6	60.7	17.7	750	1206	680	48.4	127	2.06	1.83	16.3	10.5
79	2.74	3.49	5.73	48.9	3.75	750	1600	520	83.6	248	3.46	2.94	9.36	5.99
89	3.07	3.73	5.97	48.5	5.39	750	1500	620	84.9	243	3.19	2.68	9.67	6.23
81	3.96	4.41	6. 63	47.6	10.8	750	1390	629	88,4	252	2.57	2.10	18.6	6.91
82	4.47	4.91	?. 15	47.2	15.3	750	1209	620	90.6	258	2.21	1.77	11.3	7.43
83	5.24	5.61	7.89	46.9	21.8	750	1100	620	93.4	266	1.80	1. 42	12.3	8.19
84	2.85	3.71	6. 15	48.8	3. 65	680	1500	560	76.6	220		2.78	10.1	6.43
85	3.64	4.32	6.72	47.8	6.79	680	1306	560	79.4	223	2.72	2.26	15.8	7.01
86	4.16	4.74	7. 14	47.3	9.95	684	1260	560	81.3	233	2.46	1.97	11.4	7.44
87	4.82	5.31	7.72	46.9	14.5	680	1109	560	83.5	239	2.05	1.65	12.2	8.03
88	4.88	5. 62	10.6	60.1	10.7	628	1100	560	39.1	107	2.13	1.91	17.4	11.1
89	5.72	6.13	8.58	46.5	21.5	688	1006	560	86.3	245	1. 65	1.30	13.3	8.91
90	5.88	6.49	11.8	59.9	16.9	620	10001	560	39.8	109	1.74	1.55	19.1	12.3
9	3.41	4.28	6.93	49,3	4. 15	620	1309	516	71.1	204	2.80	2.37	11.3	
93	3.91	4.6 ?	7.29	47.8	6.38	629	12013	510	72.6	208	2.53	2.10	11.8	7.61
93	4.52	5.17	7.78	47.3	9.69	620	1100	510	74.4	213	2.21	1.81	12.4	8.16
95	5.31	5.85	8.47	46.8	14.7	629	16168	510	76.7	219	1.85	1.49	13.3	8.81
95	6. 29	6.73	9.40	46.4	21.6	620	916	510	79.3	226	1.50	1.18	14.6	9.76
96	3.67	4. 69	7.95	50.5	3.55	560	1200	470	57.6	16.4	2.59	2.23	13.0	8.31
97	4.27	5.15	8. 410	49.9	5.97	560	1100	470	58.8	167	2.32	1.97	13.6	8.77
98	5.92	5.77	9.191	49.4	9.57	56.8	1961	470	60.3	171	2.01	1.68	14.5	9.40
99	5.91	6.53	9.82	48.9	14.6	560	910	470	62.13	175	1.59	1.38	15.6	10.2
100	7. 18	7.68	11.1	48.6	22.5	560	829	470	64.1	181	1.32	1. 46	17.3	11.5
101	3.99	5.13	8.30	51.0	3.52	510	1100	439	51.1	145	2.38	2.96	14.4	9.20
1024	4.71	5.69	9.34	51, 4	6. 04	510	1000	430	52.3	148	2.11	1.79	15.2	9.76
1035	5.54	6.36	10.0	49.9	9.65	510	918	$4: 30$	53.5	152	1.82	1.53	16.1	10.5
194	6. 64	7.32	11.0	49.4	15.4	510	826	4.30	55.2	156	1.50	1. 23	17.5	11.5
105 ?	?.87	8.42	12.3	49.1	22.3	510	750	430	56.8	160	1.21	0.98	19.2	12.7
106	4.40	5.60	9.24	49.3	3.81	478	1060	390	51.4	147	2.16	1.84	15.1	9.66
107	5.18	6.19	9.82	48.6	6.39	476	910	398	52.6	151	1.91	1.60	15.9	10.2
1086	6.17	$\xrightarrow{7} .01$	10.6	48.8	10.5	479	820	398	54.2	155	1.63	1.34	17.0	11.1
109 ?	7.19	7.98	11.5	47.6	15.5	470	750	398	55.7	159	1.37	1.11	18.2	12.0
110	7.30	8.34	15.9	60.9	11. ?	430	750	396	26.1	71.3	1.43	1.28	26.1	16.6
11112	8.63	9.26 9.78	12.9	47.3	23.2	470	680	390	57.6	164	1. 69	0.86	20.1	13.4
11.28	8.88	9.73	17.7	60.8	18.7	430	680	390	26.6	72.4	1.15	1.02	28.8	18.5

Filter No.			$\mathrm{F}-\mathrm{A}_{\mathrm{S}}$	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ \text { (dB) } \end{gathered}$	RC (\%)	C1	C3	C5	C2	C4	$\begin{aligned} & 12 \\ & \cdots(\mu \end{aligned}$	L4 $(\mu H) \cdots$	F2 $--(M)$	$\begin{gathered} \text { F4 } \\ \text { z) } \end{gathered}$
113	4.88	6.18	10.4	50.1	3.94	430	916	360	45.0	128	1.96	1.68	16.9	10.8
114	5.84	6.93	11.1	49.5	6.94	430	820	360	46.1	131	1.71	1.44	17.9	11.6
115	6.79	7.72	11.9	49.0	10.6	430	750	360	47.3	134	1.48	1.23	19.0	12.4
116	8.06	8.83	13.1	48,5	16.3	439	680	360	48.7	138	1.22	1.00	20.6	13.6
117	9,61	10.2	14.6	48.3	23.9	430	520	360	50.2	142	0.97	0.78	22.8	15.2
118	5.47	6.91	11.8	51.3	4.11	390	829	330	38.5	109	1.76	1.52	19.3	12.3
119	6.39	7.53	12.5	50.7	6.70	390	756	330	39.3	111	1.57	1.33	20.3	13.1
120	7.55	8.59	13.5	50.2	10.8	390	680	330	40.4	114	1.34	1.12	21.7	14.1
121	8.90	9.77	14.8	49.8	16.2	390	620	330	41.4	117	1.11	0.92	23.4	15.4
122	10.9	11.5	16.8	49.5	24.8	390	560	338	42.8	120	0.86	0.70	26.2	17.4
123	9.87	10.7	15.7	48.0	17.4	360	560	300	42.9	119	0.99	0.80	24.7	16.3
124	10.1	11.3	21.6	61.4	13.4	330	560	300	19.7	53.6	1.03	0.93	35.3	22.6
125	8.26	9.33	14.2	48.4	11.2	360	620	300	40.7	116	1.22	1.00	22.6	14.8
126	8.28	9.84	19,6	$61 . ?$	8.03	330	620	300	19.3	52.8	1.25	1.14	32.4	20.6
127	7.97	8.34	13.2	49.9	7.26	360	680	300	39.7	113	1.41	1.18	21.3	13.8
128	5.98	7.49	12.3	49.6	4.31	360	750	390	38.7	111	1.61	1.37	20.1	12.9
129	7.69	9.03	13.8	47.1	7.37	330	B20	270	40.0	115	1.27	1.06	22.2	14.4
130	6.59	8,1?	13.6	47.7	4.57	330	680	270	39.9	112	1.46	1.22	21.1	13.6
131	9.10	10.2	15.9	45.5	11.8	330	560	270	41.2	118	1.09	0,88	23.7	15.6
132	9.15	10.8	25.7	59.6	8.23	300	56.3	270	19.4	53.3	1.13	1.01	34.0	21.6
133	10.7	11.6	16.4	46.0	17.4	330	510	270	42.6	122	0.91	0.72	25.6	17.0
134	10.9	12.3	22.5	59.3	13.1	300	510	278	19.7	54.1	0.95	0.85	36.7	23.5
135	12.4	13.2	18.1	45.8	24,1	330	478	278	43.9	125	0.74	0.57	27.9	18.8
136	12.8	14.0	24.7	59.2	19.2	300	470	270	20,1	54.9	0.79	0.69	40.1	25.8
137	?. 14	8.134	13.6	45.8	4.47	3001	620	240	39.1	114	1.34	1.10	22.6	14.2
138	8.44	9.86	14.6	45.1	7. 51	369	5610	240	40.3	117	1.17	0.94	23.2	15.2
139	9.81	11.9	15.6	44.5	11.4	300	510	248	41.6	121	1.00	0.79	24.6	16.3
140	9.85	11.7	21.6	57.4	7. 64	270	516	240	19.5	53.8	1.04	0.93	35.4	22.6
141	11.2	12.2	16.9	44.1	16.9	300	478	240	42.8	124	0.86	0.67	26.2	17.5
142	11.4	13.0	23.1	57.1	11.5	270	470	240	19.8	54,5	0.90	0.79	37.7	24.2
143	13.1	14.0	18.6	43.7	22.7	300	430	240	44.3	128	0.70	0.53	28.6	19.3
144	13.6	14.9	25.4	56.9	17.4	270	436	245	20.2	55.4	0.75	0.65	41.0	26.5

Table 5B. 600-Ohm 5th-0egree Elliptic Lowpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output.

Filter No.		F-3 dB - (kHz) -	$\mathrm{F}-\mathrm{A}_{\mathrm{S}}$	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{aligned} & \mathrm{RC} \\ & \text { (\%) } \end{aligned}$	C1	C3	$\begin{aligned} & \text { C5 } \\ & (\mathrm{nF}) \end{aligned}$	C2	C4	$\begin{gathered} L 2 \\ \cdots \end{gathered}$	$\begin{gathered} 14 \\ (\mathrm{mH})-- \end{gathered}$	$\begin{aligned} & \text { F2 } \\ & \cdots(\mathrm{kHz} \end{aligned}$	$\begin{gathered} F^{\prime} \\ \text { (z) } \end{gathered}$
1	9.66	10.82	1. 31	47.4	4.49	270	55 ts	20	F2, 4	93.1	174	145	2.12	1.36
2	6.89	1.00	1.48	46.2	10.5	270	475	. 220	34.1	98.2	135	109	2.35	1.54
3	1.23	1.31	1.79	45.4	22.1	270	398	220	36.4	105	91.6	70.3	2.76	1.86
4	0.77	0.98	1.51	48.0	3.11	220	470	180	25.7	74.3	147	124	2.59	1.66
5	1. 1.81	1.21	1.80	46.7	9.83	220	376	130	27.1	77.9	113	92.9	2.87	1.88
6	1.41	1.52	2. 12	45.9	19.7	220	336	180	28.7	82.1	81.2	63.7	3.30	2.20
$?$	6.93	1.20	2.191	49.8	3.42	180	396	159	19.2	54.9	122	104	3.29	2.10
8	1.24	1.44	2.25	48.8	S.48	180	336	150	20.0	57.6	97.1	81.0	3.61	2.34
9	1.76	1.90	2.72	47.8	20.2	180	270	150	21.3	66.4	65.5	52.4	4.26	2.83
10	1.07	1.38	2.19	46.3	3.11	150	330	120	19.2	56.1	104	86.4	3.57	2.29
11	1.49	1.71	2. 49	44.8	8.89	150	270	120	20.4	59.2	79.5	63.6	3.95	2.59
12	2.10	2.25	3,02	43.8	20.8	159	220	128	22.0	63.6	53.4	40.6	4.65	3.13
13	1.30	1.73	2.95	50.1	2.69	120	270	100	12. 7	36.3	84.7	73.0	4.86	3.09
14	1.86	2. 16	3.37	48.8	8.49	120	220	100	13.3	38.0	64.8	54.0	5.41	3.51
15	2.64	2.84	4.09	47.8	20.2	120	186	100	14.2	40.2	43.6	34.9	6.40	4.25
16	1.82	2.10	3.46	48.4	3.11	100	220	82	11.5	33.1	68.9	58.5	5.65	3.61
17	2.27	2.62	3.94	47.6	9.05	100	180	82	12.1	34.8	52.6	43.1	6.30	4.11
18	3.11	3.35	4.69	46.2	19.7	100	150	82	12.9	36.8	36.9	29.0	7.30	4.87
19	1.99	2. 5.59	4.33	49.4	3.15	82	180	68	8.93	25.6	56.3	48.2	7.10	4.53
20	2.72	3.16	4.88	48.2	8.45	82	150	68	9.36	$26 . ?$	44.2	36.6	7.83	5.09
21	4.03	4.31	5. 08	47.2	22.1	82.	120	68	10.0	28.6	28.1	22.2	9.47	6.32
22	2.37	3.09	5.12	48.8	3.06	68	150	56	7. 66	22.9	47.0	40.0	8.39	5.36
23	3.46	3.95	5.95	47.3	9.95	68	126	56	8.13	23.3	34.6	28.3	9.49	6.20
24	4.77	5.11	7.15	46.5	21.5	68	100	56	8.63	24.6	23.8	18.7	11.1	7.42
25	3.06	3.91	6.62	50.5	3.66	56	120	47	5.76	16.4	37.4	32.1	18.8	6.93
26	4.18	4.80	7. 51	49.4	9.57	56	100	47	6.03	17.1	28.9	24.1	12.1	7.83
27	5.98	E. 40	9.22	48.6	22.5	56	82	47	6.41	18.1	19.0	15.2	14.4	9.58
28	3.67	4.66	7.70	49.3	3.81	47	100	39	5.14	14.7	31.1	26.5	12.6	8.05
29	5.14	5.84	8.86	48.0	10.5	47	82	39	5.42	15.5	23.4	19.2	14.1	9.23
30	7.19	7.67	10.8	47.3	23.2	47	68	39	5.76	16.4	15.6	12.3	16.8	11.2
31	4.56	5.76	9.83	51.3	4. 11	39			3.85	10.9	25.4	21.9	16.1	10.3
32	6. 30	7.16	11.3	56.2	10.8	39	68	33	4.04	11.4	19.3	16.1	18.1	11.7
33	9.05	3.62	14.8	49.5	24.8	39	56	33	4.28	12.0	12.4	10.8	21.8	14.5
34	5.149	6. 81	10.6	47.7	4.57	33	68	27	3.90	11.2	21.1	17.6	17.6	11.3
35	T. 58	8. 51	12.5	46.5	11.8	33	56	27	4.12	11.8	15.7	12.7	19.8	13.0
36	10.4	11.0	15.1	45.8	24.1	33	47	27	4.39	12.5	10.7	8.25	23.3	15.6

$.100 \mathrm{nF}=.1 \mu \mathrm{~F}$

Figure 6. Highpass filter schematic diagram and attenuation response, capacitive input and output.
Table 6. 50-ohm 5-Element Chebyshev Highpass Filter Designs, Using Standard-Value Capacitors, Capacitive Input and Output. (Continued on Page 136.)

$\begin{aligned} & \text { Filter } \\ & \text { No. } \\ & \hline \end{aligned}$	Cutoff	Frequenc 3-dB	$\begin{gathered} \hline(\mathrm{MHz})- \\ 20-\mathrm{dB} \\ \hline \end{gathered}$	$50 \mathrm{~dB}$	$\begin{aligned} & \hline \mathrm{RC} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{C1,C5} \\ \text { (pF) } \end{gathered}$	$\begin{gathered} \mathrm{L}, \mathrm{L4} \\ (\mu \mathrm{H}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C}, \\ & \text { (pF) } \\ & \hline \end{aligned}$
1	1.043	9. 726	0.501	0.263	2.17	5109	6.447	2200
2	1.045	0.788	0.554	0.294	3.88	4300	5.969	2060
3	1.169	0.800	9. 550	0.288	1.94	4700	5.851	2000
4	1.070	0.857	0. 6.15	0.331	6.30	3600	5.562	1800
5	1.172	0.877	0.616	0.327	3.67	39010	5.358	1800
6	1.329	9.899	0.609	0.318	1.67	4300	5.258	1809
7	1.119	0.936	0.685	0.372	9.33	3000	5.195	1606
8	1.246	0.974	0.693	0.371	5.16	3300	4.860	1600
9	1:380	0.993	0.691	0.364	2.77	3650	4.714	1600
10	1. 541	1.003	9.683	0. 356	1.39	3900	4.669	1606
11	1. 284	1.828	0. 738	0.397	6.30	309日	4.635	1509
12	1.432	1.055	0.738	0.391	3.29	3300	4.444	1500
13	1.655	1.068	0.730	0.381	1.60	3600	4.380	1500
14	1.352	1.144	0.840	0.458	10.21	2406	4.286	136
15	1. 5.45	1.201	0.853	0. 4.45	4.93	2700	3.935	1308
16	1.754	1.22?	0.848	0. 445	2.26	3000	3.812	1306
17	1.453	1.235	0.908	6. 496	15.63	2209	3.985	1200
18	1.604	1.285	0.923	0.496	6.30	2400	3.708	1209
19	1.840	1.325	0.921	0.486	2.77	2700	3.536	1200
20	2.140	1.340	0.906	0.476	1.07	3060	3.501	1200
21	1.569	1.348	0.988	0.540	11.14	2000	3.686	1100
22	1.750	1.402	1.007	0. 5.51	6.30	22810	3.399	1100
23	1.933	1.437	1.610?	0. 534	3.49	2409	3.267	1190
24	2.265	1.460	0.992	b. 516	1.29	2700	3.269	1100
25	1.925	1.542	1.167	0. 595	6.30	2006	3.990	1000
26	2.148	1.583	1.107	0.586	3.29	2201	2.963	1090
27	2.408	1.603	1. 695	0.572	1.60	2400	2.920	1009
28	2.090	1.688	1.216	0. 654	6.76	1809	2.832	910
29	2.357	1.739	1.217	日. 644	3.31	2006	2.697	910
910	2.675	1.762	1.252	6.627	1.519	2200	2.656	916
31	2.120	1.805	1.328	0.725	10.76	1506	2.729	820
32	2.284	1.863	1.347	0.727	7.35	1600	2.576	829
33	2.612	1.930	1.351	9. 315	3.34	1800	2.431	820
34	3.689	1.957	1.332	0.694	1,88	2000	2.393	820

Table 6. 50-ohm 5-Element Chebyshev Highpass Filter Designs
Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 135.)

Filter No.	-- - - Frequency (MHz) - . - . .				RC$(\%)$	$\begin{gathered} \mathrm{C1}, \mathrm{C} 5 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 4 \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (pF) } \end{gathered}$
	Cutoff	3-dB	$20-\mathrm{dB}$	50 dB				
35	2.567	2.057	1.476	0.793	6,301	1506	2.317	750
36	2.762	2.097	1.479	0.786	4.10	1600	2.245	750
37	3.211	2. 137	1.469	0.762	1.69	1890	2.190	756
38	2.691	2.227	1.619	0.877	8.32	1354	2.170	680
39	3.168	2.329	1.628	0.861	3.22	1500	2.813	680
40	3.443	2.352	1. 616	0.846	1.92	1600	1.989	680
41	2.993	2.456	1.779	0.961	7.72	1280	1.959	620
42	3.275	2.525	1.789	0. 954	4.62	1300	1.869	620
43	3.931	2.587	1.764	0.920	1.49	1560	1.869	620
44	3.370	2.736	1.974	1.064	7.05	1100	1.751	560
45	3.718	2.811	1.980	1.052	3.98	1206	1. 673	56 b
45	4.155	2.852	1.966	1.032	2.15	1300	1.640	560
47	3.693	3.002	2. 167	1.168	7.13	1080	1.596	510
48	4.113	3.091	2.174	1.154	3.80	1100	1.520	510
49	4.596	3.136	2.155	1.128	1.92	1200	1.491	510
50	3.950	3.240	2.347	1.268	7.70	910	1.485	470
51	4.393	3.343	2.360	1.255	4.18	1000	1.408	470
52	4.945	3.401	2.340	1.226	2.01	1100	1.375	470
53	4.244	3.517	2.559	1.386	8.44	820	1.375	430
54	4.772	3.650	2.580	1.373	4.34	910	1.291	430
55	5.358	3.714	2.560	1.343	2.12	1009	1.259	430
56	4.724	3.893	2.826	1.528	8.03	750	1.239	390
57	5.223	4.017	2.844	1.516	4.54	820	1.174	390
58	5.934	4.097	2.821	1.479	2.46	910	1.142	390
59	5.014	4.182	3.051	1.655	8.93	680	1.161	360
60	5.599	4.341	3.081	1.645	4.83	750	1.088	360
61	6.228	4.424	3.066	1.613	2.51	820	1.058	360
62	5.437	4.550	3.324	1.806	9.22	620	1.069	330
63	6.033	4.720	3.361	1.797	5.20	680	1.002	330
64	6.775	4.825	3.345	1.761	2.56	750	0.970	330
65	7.702	4.869	3.297	1.713	1.14	820	0.962	330
66	5.936	4.988	3.651	1.985	9.58	560	0.978	300
67	6.658	5.197	3.697	1.976	5.10	620	0.910	300
68	7.427	5.395	3.681	1.938	2.61	680	0.882	300
69	8.558	5.358	3.622	1.880	1.07	750	0.875	300
70	6.686	5.576	4.0668	2.207	8.93	510	0.870	270
71	7.428	5.780	4.108	2.194	4.98	560	9.817	270
72	8.392	5.986	4.084	2.146	2.35	620	0.792	270
73	7.836	6.376	4.604	2.482	7.19	470	0.752	240
74	8.591	6.546	4.622	2.459	4.22	510	0.719	249
75	9.643	6.658	4.584	2.494	2.06	560	0.702	240
76	8.529	6.950	5.021	2.708	7.27	430	0.690	220
77	9.430	7.150	5.941	2.679	4.06	476	0.658	220
78	10.43	7.257	5.0106	2.627	2.17	510	0.644	220
79	9.358	? 6.637	5.521	2.979	7. 38	396	0. 628	200
89	10.45	7.877	5.544	2.944	3.88	430	0. 596	290
81	9.686	8.232	6.056	3. 304	10.63	339	0.597	180
82	10.70	8.569	6.152	3.305	6.30	560	0.556	180

(A) Schematic diagram

(B) Typical attenuation response

Figure 7. Highpass filter schematic diagram and attenuation response, capacitive input and output.
Table 7. 50-ohm 7-Element Chebyshev Highpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued on Page 138.)

Filter No.	- .-. - Frequency (MHz) -----				$\begin{aligned} & \hline \mathrm{RC} \\ & (\%) \end{aligned}$	$\begin{gathered} \hline \mathrm{Cl}, \mathrm{C7} \\ (\mathrm{pF}) \end{gathered}$	$\begin{array}{r} \hline \text { L2, L6 } \\ (\mu \mathrm{H}) \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{C} 3, \mathrm{C5} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{L} 4 \\ (\mu \mathrm{H}) \\ \hline \end{gathered}$
1	1.022	0.826	0.660	0.435	1.76	5100	6.162	2000	4.982
2	1.002	0.880	0.724	0.489	5.16	3900	5.673	1800	4.855
3	1.079	0.905	0.732	0.487	2.80	4300	5.554	1800	4.601
4	1.159	0.922	0.734	0.482	1.46	4700	5.554	1890	4.449
5	1.086	0.971	0.806	0.549	6.84	3300	5.153	1600	4.477
6	1.160	1.002	0.819	0.559	4.11	3600	4.986	1600	4.216
7	1.232	1.023	0.824	0.547	2.44	3900	4.930	1600	4.055
8	1.338	1.043	0.825	0.539	1.16	4308	4.953	1690	3.921
9	1.139	1.021	0.853	0.583	8.10	3600	4.919	1590	4.312
10	1.217	1.061	0.871	0.587	4.71	3300	4.703	1509	4.006
11	1.299	1.087	0.879	0.584	2.71	3600	4.626	1500	3.826
12	1.386	1.106	0.880	0.578	1.51	3909	4.627	1506	3.713
13	1.344	1.198	0.994	0.676	6.58	2700	4.171	1300	3.617
14	1.455	1.242	1.011	0.676	3.51	3000	4.029	1300	3.379
15	1.567	1.270	1.016	0.670	1.82	3300	4.004	1300	3.244
16	1.413	1.277	1.066	0.729	8.10	2400	3.935	1200	3.449
17	1.546	1.336	1.092	0.734	4.11	2700	3.739	1299	3.162
18	1.677	1.372	1.100	0.727	2.04	3000	3.695	1200	3.011
19	1.541	1.393	1.163	0.795	8.10	2200	3.607	1190	3.162
20	1.649	1.443	1.186	0.800	4.95	2400	3.458	1190	2.953
21	1.802	1.490	1.200	0.795	2.32	2709	3.388	1190	2.779
22	1.973	1.520	1.199	0.782	1.02	3000	3.412	1100	2.684
23	1. 695	1.532	1.279	0.875	8.10	2009	3.279	1800	2.874
24	1.825	1.592	1.307	0.881	4.71	2206	3.135	1064	2.671
25	1.948	1.631	1.318	0.877	2.71	2409	3.684	1000	2.551
26	2.159	1.669	1.320	0.862	1.11	2700	3.097	1090	2.447
27	1.846	1. 674	1.400	6. 959	8.60	1800	3.507	910	2.644
28	2.004	1.748	1.436	0.968	4.74	2000	2.854	910	2.432
29	2.153	1.795	1.449	0.963	2.58	2296	2.805	919	2.314
30	2.312	1.827	1.451	0.951	1.35	2406	2.810	910	2.242
31	2.025	1.845	1. 547	1.062	9.25	1600	2.737	820	2.415
32	2.222	1.940	1.593	1.074	4.78	1806	2.573	820	2.193
33	2.496	1.997	1.609	1.067	2. 43	2009	2.525	820	2.077
34	2.606	2.934	1.610	1.053	1.17	2209	2.538	829	2.910
35	2.260	2.043	1.705	1.166	8.10	1598	2.459	750	2.156
36	2.377	2.099	1.733	1.173	5.65	1600	2.377	750	2.045
3	2.598	2.175	1.757	1.169	2.71	1806	2.313	750	1.913
38	2.834	2.221	1. 760	1.152	1.24	2056	2.319	750	1.842

Table 7. 50-ohm 7-Element Chehyshev Highpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 137.)

Filter No.	. .-. . . Frequency (MHz) -				RC (\%)	$\begin{gathered} (\mathrm{pF}) \\ \mathrm{C} 1, \mathrm{C} 7 \end{gathered}$	$\begin{gathered} \text { L2, L6 } \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { C3, C5 } \\ (\mathrm{pF}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L4} \\ (\mu \mathrm{H}) \end{gathered}$
	Cutoff	3-dB	20-dB	50-dB					
39	2.689	2.343	1.922	1.295	4.6 .4	1506	2.130	680	1.813
40	2.822	2.387	1.936	1.291	3.69	1606	2.161	689	1.750
41	3.105	2.447	1.941	1.272	1.31	1800	2.101	680	1. 673
42	2. 660	2.429	2.040	1.402	9.66	1200	2.082	620	1.842
43	2.838	2. 523	2.089	1.418	6.23	1300	1.986	620	1.712
44	3.162	2. 636	2.127	1. 413	2.57	1509	1.911	620	1. 576
45	3.331	2. 671	2.130	1.401	1. 61	1600	1.911	620	1.538
46	2.982	2.711	2.270	1. 557	8.93	1100	1.859	560	1. 6.38
47	3.195	2.816	2.323	1.572	5.50	1200	1.772	560	1. 522
48	3.392	2.888	2.348	1.570	3.38	1309	1.734	560	1.451
49	3.810	2.977	2.357	1.542	1.19	1500	1.732	560	1.373
50	3.269	2.974	2.491	1.709	9.01	1600	1.696	510	1.494
51	3.525	3.160	2. 553	1.726	5.30	1100	1.610	510	1.380
52	3.763	3.183	2.581	1.722	3.69	1200	1.576	510	1.312
53	4.008	3.240	2.589	1.786	1.76	1300	1.571	510	1.270
54	3.510	3.205	2.691	1.850	9.64	910	1.578	470	1.396
55	3.786	3.347	2,764	1.872	5.73	1000	1.491	470	1.283
56	4.067	3.449	2.800	1.869	3.20	1100	1. 453	470	1.213
57	4.355	3.517	2.810	1.851	1.74	1200	1.448	470	1.170
58	4.121	3.651	3.017	2.045	5.91	910	1.367	430	1.179
59	4.424	3.763	3.058	2.044	3.34	1003	1.331	430	1.113
60	4.768	3.846	3.071	2.023	1.72	1100	1.325	430	1.070
61	4.205	3.848	3.235	2.226	9.99	750	1.317	390	1.167
62	4.521	4.015	3.322	2.255	6.14	820	1.244	390	1.074
63	4.890	4.153	3.373	2.253	3.27	910	1.206	390	1.008
64	5.267	4.242	3.386	2.230	1.69	1000	1.202	390	0.969
65	4.864	4.333	3.592	2.441	6.46	759	1.153	360	0.999
66	5.202	4.469	3.646	2.444	3.81	820	1.118	360	0.942
67	5.639	4.582	3.668	2.420	1.88	910	1.108	360	0.899
68	5.260	4.706	3.908	2.660	6.87	680	1.963	330	0.924
69	5. 666	4.872	3.976	2. 667	3.86	750	1.926	330	0.864
70	6.067	4.981	4.000	2. 646	2.13	820	1.916	330	0.829
71	5.809	5.183	4.302	2.927	6.76	620	0. 965	300	0.838
72	6.220	5.355	4.372	2.934	3.93	680	0.933	300	0.787
73	6.706	5.487	4.401	2.909	2.04	750	0.923	300	0.752
74	7. 249	5.576	4.397	2.867	1.00	820	0.931	300	0.731
75	6.462	5.767	4.784	3.253	6.63	560	0.867	270	0.752
76	6.979	5.972	4.865	3. 258	3.62	620	9.837	270	0.703
77	7.496	6.105	4.890	3.229	1.93	680	0.831	279	0.675
78	6.940	6.315	5.292	3.631	9.07	470	0.798	246	0.704
79	7.407	6.551	5.411	3.666	5.78	510	0.762	240	0.656
80	7.946	6.748	5. 481	3.661	3.27	569	0.742	240	0.620
81	8. 612	6.903	5.592	3.619	1.59	520	0.740	240	0. 595
82	7.559	6.883	5.769	3.960	9.17	430	0.733	220	0. 0.646
83	8.113	7.161	5.909	4.0005	5.60	470	0.697	220	0. 599
84	8.626	?. 349	5.976	3.996	3.41	510	0.681	220	0.570
85	9. 280	7.509	6.002	3.957	1.78	560	0. 677	220	0.548
86	8.298	7.561	6.341	4.353	9.28	395	0. 067	200	0.589
87	8.968	7.895	6.508	4.401	5.45	430	0.632	200	0.542
88	9.587	8.113	6.581	4.391	3.12	479	0.618	2010	0.515
89	10.22	8.263	6.603	4.351	1.75	510	0.616	260	0.498
95	9.417	8.511	7.195	4.859	8.10	364	0. 596	180	0. 517
91	15.62	8.796	7. 241	4.891	5.16	399	0. 567	180	0.485
92	10.79	9.051	7. 321	4.873	2.80	436	5.555	180	5.460

Figure 8. 50-ohm 5-th degree elliptic highpass filter designs using standard-value capacitors for C1, C3 and C5.

Table 8A. 50 -ohm 5th-Degree Elliptic Highpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued on Page 140.)

Filter No.				$\begin{gathered} \mathrm{A}_{\mathrm{s}} \\ (\mathrm{~dB}) \end{gathered}$	RC (\%)	C1	C3		C2	C4	$\begin{aligned} & \mathrm{L} 2 \\ & \cdots(\mu \mathrm{H}) \end{aligned}$	$\stackrel{L 4}{(H)-}$	$\begin{aligned} & \text { F2 } \\ & \text { (M1 } \end{aligned}$	F4
1	0.79	0.74	0.50	49.6	20.7	3.3	2.2	3.9	30.5	10.8	8.28	10.2	0.32	0.48
2	0.93	0.84	0.63	41.0	12.9	3.6	2.2	4.7	21.5	7.26	7.09	9.46	0.41	0.61
3	0.92	0.80	0.53	48.1	9.80	3.9	2.2	4.?	34.6	11.9	6.86	8.32	0.33	0.51
4	1.02	0.86	0.60	42.4	5.92	4.3	2.2	5.6	27.7	9.34	6.44	8.18	0.38	0.58
5	1.04	0.82	0.48	50.5	3.73	4.7	2.2	5.6	45.6	16.0	6.36	7.49	0. 30	0. 46
6	1.15	0.86	0.58	42.3	2.27	5.1	2.2	6.8	32.1	10.7	6.26	7.77	0.36	0.55
7	0.97	0.90	0.69	40.8	18.2	3.0	2.0	3.9	17.6	5.93	7.03	9.58	0. 45	0.67
8	0.95	0.85	0.55	49.9	13.8	3.3	2.6	3.9	31.4	11.1	6.67	8.04	0.35	0.53
9	1.08	0.94	0.68	41.6	8.67	3.6	2.0	$4 . ?$	22.4	7. 53	6.06	7.87	0.43	0.65
10	1.98	0.90	0.57	48.7	6.17	3.9	2.0	4.7	34.9	12.2	5.93	7.07	0.35	0.54
11	1.19	0.94	0.63	43.1	3.57	4.3	2.0	5. 6	28.6	3.62	5.73	7.12	6. 39	0.61
12	1.28	0.94	0.62	43.0	2.06	4.7	2.6	6.2	30.7	10.3	5.69	7.00	0.38	0.59
13	1.01	0.94	0.67	45.9	$19 . ?$	$2 . ?$	1.8	3.3	20.7	7.24	6.58	8.40	0.43	0.65
14	0.98	0.88	0.47	61.3	14.7	3.6	1.8	3.3	50.2	18.4	6.22	6.94	0.28	0.45
15	1.14	0.98	0.61	50.4	8.50	3.3	1.8	3.9	32.3	11.4	5.53	6.54	0.38	0.58
16	1.27	1.05	0.73	42.4	5.27	3.6	1.8	4.7	23.2	7.80	5.23	6.62	0.46	0.79
17	1.39	1.01	0.60	49.4	3.42	3.9	1.8	$4 . ?$	35.8	12.5	5.19	6.07	0.37	0.58
18	1.33	1.05	0.71	42.9	3.42	3.9	1.8	5.1	25.6	8.60	5.15	6.40	0.44	0.68
19	1.02	0.94	0.57	56.8	$22 . ?$	2.4	1.6	2.7	31.7	11.5	6.36	7.38	9. 35	9.55
20	1.13	1.01	0.55	59.3	13.6	2.7	1.6	3.0	40.9	15.8	5.41	6.09	9.34	0.53
21	1.24	1.11	0.76	46.5	12.1	2.7	1.6	3.3	21.6	7.52	5.15	6.39	9. 48	9.73
22	1.37	1.18	0.83	42.2	7.22	3.8	1.6	3.9	19.2	6.47	4.76	6.09	0.53	0.80
23	1.39	1.12	0.66	51.1	4.59	3.3	1.6	3.9	33.2	11.7	4.67	5.43	9. 46	9. 63
24	1.54	1.18	0.78	43.3	2.73	3.6	1.6	4.7	24.9	8.08	4.56	5.62	0.48	
25	1.19	1.11	0.81	45.4	21.3	2.2	1.5	$2 . ?$	16.4	5.71	5.65	7.28	9.52	9. 78
26	1.16	1.06	0.62	56.9	17.9	2.4	1.5	$2 . ?$	32.2	11.7	5.37	6.17	0.38	0.59
27	1.38	1.20	0.80	46.8	9.03	$2 . ?$	1.5	3.3	22.1	7.66	4.61	5.65	0.50	0.77
28	1.45	1.27	0.94	40.3	8.59	2.7	1.5	3.6	15.6	5.20	4.53	5.99	9. 54	0.98 0.83
29	1.52	1.26	0.87	$42 . ?$	5.28	3.0	1.5	3.9 3.9		6.61 11.9				0.86
30	1.56	1.19	0.69	51.6	3.11	3.3	1.5	3.	33.7	11.9	4.32	4.97	0.42	0.66

Table BA. 50-0hm 5-th Degree Elliptic Highpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output.
(Continued from Page 139.)

Filter F No.			$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ (\mathrm{~dB}) \end{gathered}$	RC (\%)	C1	C3		C2	C4	L2	$\begin{gathered} \mathrm{L4} \\ (\mu \mathrm{H}) \cdots \end{gathered}$	F2 $\cdots(1)$	$\begin{gathered} \mathrm{F} 4 \\ \mathrm{~Hz}) \\ \cdots \end{gathered}$
311.29	1.23	0.91	45.7	26.9	1.8	1.3	2.						
321.25	1.15	0.63	61.3	21.3	2.0	1.3	2.2	33.6	12	5.07	5.	10. 39	
331.53	1.37	0.94	46.1	11.9	2.2	1.3	2.7	17.2	6.00	4.17	5.19	9.59	
341.64	1.41	0.96	45,0	7.91	2.4	1.3	3.0	17.8	6.13	3.92	4.87	0.69	9.92
351.75	1.40	0.88	47.8	4.37	2.7	1.3	3.3	22.9	7.95	3.77	4.50	9.54	9.84
361.81	1.47	1.03	41.4	4.33	2.7	1.3	3.6	16.4	5.47	3.74	4.76	0.64	0.99
371.51	1.40	1.01	45.9	19.7	1.8	1.2	2.2	13.8	4.82	4.39	5.60	9. 65	
381.47	1.32	0.70	61.3	14.7	2.0	1.2	2.2	33.5	12.3	4.15	4.62	9.43	9.67
391.61	1.44	0.96	48.2	13.8	2.9	1.2	2.4	17.5	6.16	3.93	4.81	9. 51	9.93
$40 \quad 1.75$	1.51	1.000	46.6	8.27	2.2	1.2	2.7	17.7	6.14	3.65	4.47	0.63	0.96
411.87	1.54	1.01	45.6	5.33	2.4	1.2	3.0	18.2	6.27	3.51	4.29	0.63	0.97
422.02	1.52	6.92	48.3	2.69	2.7	1.2	3.3	23.4	8.69	3.44	4.04	0.56	0.88
431.42	1.33	0.81	56.9	26.01	1.6	1.1	1.8	21.9	7.65	4.66	5.43	0. 51	0.78
$44 \quad 1.65$	1.55	1.15	43.7	21.5	1.6	1.1	2.0	10.9	3.76	4.13	5.45	0.75	1.11
451.60	1.44	0.80	59.2	15.7	1.8	1.1	2.0	27.1	9.92	3.86	4.36	0.49	9.77
461.76	1.59	1.10	46.3	13.8	1.8	1.1	2.2	14.2	4.96	3.64	4.55	9.70	1.06
$\begin{array}{lll}47 & 1.87 \\ 48 & 2.87\end{array}$	1.61	1.04	48.?	8.74	2.9	1.1	2.4	17.9	6.30	3.38	4.06	0.65	0.99
$48 \quad 2.02$	1.66	1.06	47.1	5.36	2.2	1.1	2.7	18.1	6.28	3.22	3.88	9.66	1.02
$49 \quad 1.48$	1.38	0.66	69.6	25.8	1.5	1.0	1.6	36.6	13.7	4.32	4.69	9.40	
501.78	1.65	1.15	47.8	20.2	1.5	1.0	1.8	12.7	4.47	3.71	4.64	9.73	1.10
511.92	1.65	0.88	59.5	9.91	1.8	$1 . \square$	2.0	27.6	10.1	3.18	3.55	9. 54	0.84
$52 \quad 2.07$	1.80	1.20	46.8	9.03	1.8	1.0	2.2	14.7	5.11	3.07	3.77	9.75	1.15
532.18	1.91	1.41	40.3	8.59	1.8	1.0	2.4	10.4	3.47	3.02	3.99	0.96	1.35
542.45	1.93	1.34	40.6	3.15	2.2	1.6	3.0	$12 . ?$	4.20	2.85	3.63	9.84	1.29
551.93	1.81	1.34	45.1	23.5	1.3	0.91	1.6	9.45	3.29	3.56	4.64	9.87	1.29
56.2 .11	1.98	1.27	48.2	13.6	1.5	0.91	1.8	13.1	4.60	3.02	3.69	9.80	1.22
572.69	1.82	1.02	57.1	11.0	1.6	0.91	1.8	21.9	7.94	2.93	3.33	0. 6.6	6.98
582.42	2.00	1.28	47.4	5.69	1.8	0.91	2.2	15.1	5.24	2.68	3.22	0.79	1.23
592.51	2.10	1.50	41.0	5.55	1.8	0.91	2.4	10.8	3.59	2.65	3.41	0.94	1.44
$60 \quad 2.84$	2.00	1.18	48.5	1.62	2.2	0.91	2.7	19.0	6.56	2.60	3.93	0.72	1.1 .3
612.22	2.08	1.55	43.7	21.0	1.2	0.82	1.5	8.19	2.83	3.05	4.02	1.01	1.49
$62 \quad 2.33$	2.12	1.50	45.5	15.6	1.3	0.82	1.6	9.83	3.42	2.79	3.54	8.96	1.45
$63 \quad 2.52$	2.17	1.39	48.7	8.49	1.5	0.82	1.8	13.5	4.73	2.51	3.01	0.87	1.33
642.69	2.25	1.50	45.4	6.05	1.6	0.82	2.0	12.1	4.15	2.42	2.97	6.93	1.43
652.89	2.23	1.36	48.2	3.15	1.8	0.82	2.2	15.5	5.37	2.36	2.78	9.83	1.30
$66 \quad 2.97$	2.33	1.59	41.8	3.18	1.8	0.82	2.4	11.1	3.71	2.34	2.94	0.99	1.52
67. 2. 27	2.12	1.45	49.6	22.7	1.1	Q. 75	1.3	10.1	3.59	2.93	3,62		1.40
68.2 .60	2.37	1.79	44.2	14.?	1.2	0.75	1.5	8.48	2.92	2. 51	3.22	1.99	1.64
69 2.56	2.26	1.37	53.2	11.4	1.3	0.75	1.5	14.6	5.24	2.42	2.82	0.85	1.31
70.2 .93	2.40	1.48	49.2	5.35	1.5	0. 75	1.8	13.8	4.82	2.20	2.61	0.91	1.42
$? 17.3 .12$	2.47	1.58	46.6	3.74	1. 6	Q. 75	2.8	12.4	4.25	2.16	2.61	0.97	1.51
$72 \quad 3.42$	2.43	1.43	48.8	1.71	1.8	0.75	2.2	15.8	5.47	2.14	2.50	0.86	1.36
$73 \quad 2.57$	2.40	1.68	47.8	21.9	1.0	0.68	1.2	8.40	2.96	2.60	3.27	1.08	
742.49	2.26	1.17	63.2	17.1	1.1	0. 68	1.2	20.1	7.40	2.46	2.73	0.72	1.12
$75 \quad 3.05$	2.68	1.85	$44 . ?$	9.72	1.2	0.68	1.5	8.77	3.02	2.19	2.64	1.1?	1.78
763.05	2.56	1.48	53.6	7.02	1.3	0.68	1.5	14.9	5.34	2.05	2.36	0.91	1.42

Table 8A. 50-0hm 5-th Degree Elliptic Highpass Filter Designs Using Standard-Value Capacitors, Capacitive Input and Output. (Continued from Page 141.)

Filter No.	$\mathrm{F}-\mathrm{CO}$	$\begin{aligned} & \text { F-3 dB } \quad \text { F-A } \\ & =(\mathrm{MHz}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ (\mathrm{~dB}) \end{gathered}$	RC (\%)	C1	C3	$\begin{aligned} & \text { C5 } \\ & -(n F) \end{aligned}$	C2	C4		L4 $\mu \mathrm{H})=$	$\begin{aligned} & \text { F2 F4 } \\ & -(\mathrm{MHz})= \end{aligned}$
123	5.99	5.343 .60	47.1	11.8	0.56	0.33	0.68	4.63	1.62	1.06	1.31	2.273 .46
124	6.72	5.764 .15	41.1	7.11	0.62	0.33	0.82	3.74	1.25	0.98	1.27	2.633 .99
125	6.81	5.483 .37	49.0	4.58	0.68	0.33	0.82	6. 15	2.15	0.96	1.13	2.073 .22
126	8.07	5.503 .17	49.3	1.301	0.82	0.33	1.0	7.33	2.54	0.94	1.09	1.913 .02
127	6.25	5.884 .61	40.4	21.5	0.43	0.30	9. 56	2.45	0.83	1.12	1.55	3.054 .45
128	5.40	4.952 .54	64.5	20.2	0.47	0.30	0. 51	9.09	3.36	1.15	1.27	1.562 .43
129	6.10	5.593 .77	48.8	17.1	0.47	0.30	0. 0.56	4.20	1.48	1.06	1.30	2.393 .63
130	6.00	5.312 .77	61.7	13.4	0. 0.51	0.38	0. 5.56	8.73	3.21	1.01	1.13	1.692 .65
131	7.03	6.003 .89	47.7	7.64	0.56	0.36	0.68	4.76	1. 66	0.91	1.69	2. 423.73
132	8.08	6.043 .56	49.7	2.56	0.68	0.30	0.82	6.29	2.19	0.86	1.00	2.163 .40
133	6.38	5.994 .26	47.3	23.3	0. 39	0.27	0.47	3.18	1.12	1.06	1.34	2.744 .10
134	6.19	5.632 .97	62.7	18.4	6.43	0.27	0.47	7.65	2.82	1. 0.06	1.11	1.822 .84
135	7.34	6.474 .18	49.2	10.8	0. 47	0.27	0. 56	4.33	1.53	0.86	1.03	2.614 .01
136	8.26	7.085 .13	40.6	6.92	0.51	0.27	0. 68	3.09	1.60	0.80	1.04	3.254 .93
137	8.39	6.734 .17	48.4	4.41	0.56	0.27	0.68	4.90	1.71	0.78	0.93	2.574 .00
138	9.30	7.024 .67	42.7	2.40	10.62	0.27	0.82	3.99	1.33	0.77	0.95	2.874 .47
139	E. 36	5.923 .08	65.0	24.8	0.36	0. 24	0. 39	7.06	2. 62	1.01	1.12	1.892 .94
140	8. 68	7.525 .81	40.4	18.1	0.36	0.24	0. 47	2.07	9. 70	0.84	1.15	3.815 .61
141	7.94	7.184 .87	47.7	14.4	0.39	0. 24	0. 47	3:31	1.16	0.80	0.99	3.084 .68
142	8.40	7.304 .62	49.9	9.46	0.1 .43	0.24	0. 51	4:10	1.45	0.75	0.89	2.884 .43
143	8.97	7.444 .58	49.9	6. 06	0.47	0.24	0. 56	4.47	1.57	0.71	日. 84	2.824 .38
144	9.94	7.965 .51	41.6	3.82	0.51	0.24	0.68	3.13	1.04	0.69	0.87	3.435 .29

Table 8B. 600-ahm 5th-Degree Elliptic Highpass-Filter Designs Using Stanard-Value Capacitors, Capacitor Input and Output.

$\begin{aligned} & \text { Filter } \\ & \text { No. } \end{aligned}$		$\begin{gathered} \mathrm{F}-3 \mathrm{~dB} \\ -(\mathrm{kHz}) \end{gathered}$	$\mathrm{F}-\mathrm{A}_{\mathrm{S}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{S}} \\ & (\mathrm{~dB}) \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & (\%) \end{aligned}$		C3	C5	$\mathrm{C} 2$	C4		$\begin{gathered} \mathrm{L} 4 \\ (\mathrm{mH}) \ldots \end{gathered}$	$\begin{array}{cc} \hline \text { F2 } & \text { F4 } \\ --(k H z) & \cdots \\ \hline \end{array}$	
1	E. 60	6.13	4.15	49.6	20.7	33	22	39	305	168	11.9	14.6	2.64	3.99
2	7. 8.7	6.71	4.39	48.1	9.80	39	22	47	346	119	9.88	12.0	2.75	4.21
3	8.70	5.81	4.93	50.5	3.73	47	22	56	456	160	9.17	10.7	2.46	3.85
4	8.401	7.80	5.59	45.9	19.7	27	18	33	207	72.4	9.48	12.1	3.59	5.38
5	9.47	8.13	5, 06	50.4	8.501	33	18	39	323	114	7.96	9.42	3.14	4.85
5	10.8	8. 39	5.514	49.4	3.42	39	18	47	358	125	7.47	8.74	3.08	4.82
7	11.1	8.76	5.96	42.9	3.42	39	18	51	256	86.0	7.42	9.22	3.65	5.65
8	9.94	9.29	6.75	45.4	21.3	22	15	27	164	57.1	8.13	10.5	4.36	6. 50
9	11.5	9.98	E. 64	46.8	9.80	27	15	33	220	76.E	6. 64	8.13	4.16	6.38
19	12.1	18.6	7.81	40.3	8.59	27	15	36	156	52.0	6.52	8.62	4.99	7.52
11	13.5	9.95	5.71	51.6	3.11	33	15	39	337	119	6.22	7.16	3.47	5.46
12	12.5	11.7	B.38	45.9	19.7	18	12	22	138	48.2	6.32	8. 0.6	5.39	8.07
13	14.6	12.6	8.35	46.6	8.27	22	12	27	177	61.4	5.25	6.43	5.22	8.01
14	16.8	12.7	7.67	48.3	2.69	27	12	33	234	80.9	4.95	5.82	4.68	7.33
15	12.3	11.5	5.48	69.6	25.8	15	19	16	366	137	6.21	6.75	3.34	5.24
16	14.8	13.7	9.57	47.8	20.2	15	10	18	127	44.7	5.35	6.68	6.11	9.21
17	16.19	13.8	7.33	59. 5	9.91	18	10	20	276	101	4.58	5.12	4.47	7.01
18	17.2	15.0	9.96	46.8	9.93	19	10	22	147	51.1	4.43	5.42	6.24	9.56
19	18.1	15.9	11.7	40.3	8.59	18	10	24	194	34.7	4.34	5.75	7.49	11.3
20	20.5	16.1	11.2	49.6	3.15	22	16	50	127	42.0	4.10	5.23	6.96	10.7
21	18.5	17.3	12.9	43.7	21.0	12	8.2	158	81.9	28.3	4.39	5.79	8.39	12.4
22	21.0	18.1	11.6	48.7	$8: 49$	15	8.2	18	135	47.3	3.61	4.34	7.21	11.1
23	24.1	18.6	11.4	48.2	3.15	18	8.2	22	155	53.7	3.39	4.00	6.94	10.9
24	24.8	19.4	13.2	41.8	3.18	18	8.2	24	111	37.1	3.37	4.24	8.21	12.7
${ }^{\prime} 25$	21.4	20.0	14.018	47.8	21.9	10	E. 8	128	84.0	29.6	3.75	4.71	8.97	13.5
26	25.4	22.3	15.5	44.7	9.72	12	6.8	158	87.7	39.2	3. 03	3.80	9.76	14.8
27	29.0	22.2	13.1	49.9	3.86	15	E. 8	18	141	49.4	2.82	3.28	7.98	12.5
28	26.4	24.7	17.8	46.1	21.7	8.2	5.6	106	63.1	22.1	3.06	3.92	11.5	17.1
29	30.2	26.3	17.8	48.6	9.51	19	5.6	128	89.3	31.4	2. 51	3.02	10.6	16.4
30	34.9	27.5	17.E	46.1	3.64	12	5.6	159	93.0	31.9	2.32	2.80	10.8	16.8
31	30.5	28.7	20.4	47.2	23,2	6.8	4.7	8.25	55.3	19.5	2.65	3.36	13.2	19.7
32	35.8	31.6	21.2	46.9	16, 4	8.2	4.7	106	66.9	23.3	2.13	2.61	13.3	20.4
33	40.7	32.6	19.2	49.7	3.81	19	4.7	129	93.4	32.7	1.96	2. 29	11.8	18.4
34	49.0	32.5	19.2	47.4	1. 25	12	4.7	159	97.1	33.2	1.94	2.27	11.6	18.3
35	37.6	34.8	25.1	46.5	23.6	5.6		E. 84	43.7		2.21	2.83	16.2	24.2
35	42.8	37.7	24.9	48.0	16.6	6.8	3.9	8.25	58.8	20.6	1.77	2.16	15,6	23.9
37	49.0	39, 6	24.2	48.0	4.198	8.2	3.9	107	70.5	24.5	1.63	1.93	14.9	23.2
38	42.2	39.8	27.9	48.5	25.2	4.7	3,3	5. 64	40.7	14.4	1.94	2.43	17.9	26.9
39	49.9	44.5	361, 0	47.1	11.8	5.6	3.3.	6.8	4E, 3	16.2	1.53	1.88	18.9	28.8
49	56.7	45.7	38.1	49.6	4.59	6.9	3,3	8.26	61.5	21.5	1.38	1.63	17.3	26.9
41	67.3	45,8	26.4	49.3	1.30	8.2	3.3	107	73.3.	25.4	1.36	1.57	15.9	25.2
42	53.2	49.9	35.5	47.3	23.3	3.9	2.	4.73	31.8	11.2	1.53	1.94	22.8	34.2
43	1.1.2	53.9	34.8	49.2	10.3	4.7	2. 7	5.64	43.3	15.3	1.23	1. 1.48	21.8	33.4
44	69.9	56.1	34.8	48.4	4.41	5,6	$2 . \vec{i}$	6.8 .4	49.0	17.1	1.13	1.34	21.4	33.3

FILTER CHARACTERISTICS AND DESIGN FORMULAS

						цим pesn 'oul 'Kuedu
	నేచేకే 111 న్కరల					yoog II! $\mathrm{H}^{- \text {Meigo }}$
						$\begin{aligned} & \text { n } \\ & \text { in } \\ & \frac{0}{5} \\ & \frac{1}{6} \\ & 9 \\ & \frac{5}{0} \end{aligned}$
	 1111 550					
				$\frac{1}{5}$		
(\%)	$\frac{\sim}{4}$					
$\begin{aligned} & 5: \\ & \text { 日i } \\ & 989 \end{aligned}$	$\begin{array}{r} 08 \\ 18 \\ 18 \\ y \end{array}$	$>$	E	Ei	Ei	

COMB-FILTER DESIGN

Comb filters consist of a chain of narrow-band filters which pass spectral lines over the frequency spectrum of the signal. They pass discrete frequency components and discriminate against noise. Such filters are used to separate a composite input signal into a number of channels before data processing in telemetry systems and radar. The spacing between channels may be expressed as a frequency ratio which depends on the number of channels needed to cover one octave, or " n." Thus $f / f_{c}=2^{n}$, where f_{c} is the reference, f is the unknown frequency of the adjacent channel, and n is any positive or negative real number. For $n= \pm 1, f$ equals $2 f_{c}$ and $1 / 2 f_{c}$. These values are the center frequencies of channels, one octave away from the reference frequency.

The nomogram solves for positive or negative fractional values of n. The frequency scales, f_{c} and f, are normalized so that the nomogram can be used for any frequency by shifting the decimal point. The ratio scale, n, has a decimal range as well as fractional values.

To use the nomogram, place a straight-edge from the octave fraction or decimal on the n scale to the reference frequency on the f_{c} scale. Read the center frequency of the next channel on the f scale. Hold the n-scale value as a pivot point and shift the straight-edge to the same frequency on the f_{c} scale as the first answer. Read the next bandpass center frequency on the f scale. Continue the process until all center frequencies are obtained. For negative n values, divide the reference frequency by two to obtain the lower octave. After this step, proceed as for a positive n value.

FOR EXAMPLE: Calculate the center frequencies for $1 / 3$ octave filters, starting at 100 Hz (see illustration).
Set the straight-edge from $1 / 3$ or 0.33 on the n scale to the one (for 100 Hz) on the f_{c} scale and read 1.26 on the f scale; the center frequency of the next channel bandpass filter is 126 Hz . Pivot at $1 / 3$ on the n scale and shift the straightedge to 126 on the f_{c} scale. Read 160 Hz on the f scale. When $1,260 \mathrm{~Hz}$ on the f scale and 1,000 Hz on f_{c} is reached, shift back to the lower portion of the f_{c} scale and continue.

Bandpass filter array shown requires three
channals to cover one octave. Therefore $n=1 / 3$.

Pulse-forming networks supply high-voltage pulses to magnetrons and lasers. This nomogram relates the pulse width and characteristic impedance to the network's inductances and capacitances. It is based on the formulas:

$$
\begin{aligned}
Z_{o}=\sqrt{\frac{L}{C}} ; P_{w} & =2 n \sqrt{L C} \\
n & =\frac{P_{w}}{2 r}
\end{aligned}
$$

where

$$
\begin{aligned}
Z_{0} & =\text { characteristic impedance } \\
L & =\text { inductance per section } \\
C & =\text { capacitance per section } \\
n & =\text { number of sections } \\
P_{w} & =\text { pulse width } \\
r & =\text { rise time }
\end{aligned}
$$

FOR EXAMPLE: Designa PFN that delivers a $4-\mathrm{kV}, 500-\mu \mathrm{sec}$ pulse with a $25-\mu \mathrm{sec}$ rise time into a 1-ohm load: The numbers of sections ($\mathrm{P}_{\mathrm{w}} / 2 r$) is 10. Connecting 1 ohm to $500 \mu \mathrm{sec}$ on the left and right scales yields $250 \mu \mathrm{~F}$ and $250 \mu \mathrm{H}$ as total capacitive C_{N} and total inductance L_{N}. Dividing by 10 gives $25 \mu \mathrm{~F}$ and $25 \mu \mathrm{H}$ per section. The two end inductances are 1.15 the value of each section or $2.875 \mu \mathrm{H}$.

A pulse applied to the input of a delay line is continuously delayed by a predetermined amount as it travels along the line. The artificial or lumped parameter type of delay line consists of a series of low pass LC filters. The delay for n sections is given by the formula

$$
t=n \sqrt{L C}
$$

where $t=$ time delay in microseconds
$L=$ inductance in microhenries
$n=$ number of sections
$C=$ capacitance in microfarad
The characteristic impedance Z_{0} must be matched to reduce reflections within the delay line and is given by the formula

$$
z_{0}=\sqrt{U C}
$$

where Z_{0} is in ohms
The cutoff frequency of each section must be higher than the operating frequency $f_{c}=\frac{1}{\pi \sqrt{L C}}$
where f_{c} is the cutoff frequency in megahertz

This nomogram solves for the delay per foot as well as the total delay of a coaxial cable when the relative dielectric constant of the insulation is known. The nomogram is based on the relationship

$$
T=1.108 \sqrt{E} n \mathrm{sec} / \mathrm{ft}
$$

The relative dielectric constant and delay per foot are plotted on the left-hand index and can be related directly. The chart gives the approximate ranges of dielectric constants of commonly used insulating materials. Some dielectric properties are a function of composition, frequency, and temperature, and the values shown should be used accordingly.

FOR EXAMPLE: A 4-ft cable with a polystyrene dielectric will produce a total delay of about 6.3 to 6.5 nsec .

DIELECTRIC CONSTANTS

Bokalite ${ }^{\text {' } 3.95}$
Fluarinated athylene prapyiene 2.2
lrrodiated polyethylane 2.3
Lueite ${ }^{2}$ 2.7
Mognesium oxade 9 .7
Nylan. 30
Pelyethylene 2.25-2.32
Pelystyrene 2.4.26
Polytetrefluoroethylene 20.2 .3
Pelyurethens 64.76
Polywinylehloride (nanerigid) 7.0
Rubber (netural). 24.46
Rubber (silicone) 2.9.3.7
1.TM Unien Carbide Corp.
2.TM DVPent

Inv $\overrightarrow{\text { In }}$

Circuit diagrams are given and the minimum voltage ratings of the capacitors are shown as related to V_{m}. The minimum PIV of the diodes is $2 V_{m}$.

FULL-WAVE VOLTAGE TRIPLER

FULL-WAVE VOLTAGE QUADRUPLER

HALF-WAVE VOLTAGE QUADRUPLER

n-SECTION VOLTAGE MULTIPLIER

This tabulation shows the transfer function, switching transistor currents and voltages, diode currents and voltages as well as voltage and current waveforms for ten different converter circuit configurations used in switching power supplies.

The advantages and disadvantages of each circuit configuration are also given.

AND CURRENT RATINGS BE INCREASED TO 125% OF THE REQUIRED MAXIMUM.

(4) PUSH-PULL	Ćuk (Boost - Buck invertimg)	cux (with transfonmer)
$\frac{V_{0}}{V_{\text {IN }}}=2 \frac{\mathrm{Nz}}{\mathrm{NI}}\left(\frac{\mathrm{T}}{\mathrm{T}}\right)$	$\frac{V_{0}}{V_{\text {IE }}} \cdot\left(\frac{\tau}{T-T}\right)(t-1)$	$\frac{v_{0}}{v_{i n}} \cdot \frac{r}{T-\tau}, 0=\frac{T}{T}, 0 \leq 0 \leq 1$
$I_{C \text { max }}=\frac{N 2}{\text { WI }}$ ($\left(I_{m L}+\frac{\Delta I_{\text {LI }}}{2}\right)+I_{\text {mac }}$	$I_{\text {cmax }}=I_{1}+I_{2}=I_{1}\left(\frac{T}{T}\right)$	
$\mathrm{vcxo}=2 \mathrm{v}_{\mathrm{m}}$	$\mathrm{v}_{\text {ceo }} \geq 2 \mathrm{v}_{\text {m }}$	$v_{\text {cEO }}=\underbrace{15 v_{m}}_{0.33} \cdot \underbrace{2 v_{\text {Im }}}_{0.5} \cdot \underbrace{2.5 v_{m}}_{0.5}$
$\begin{aligned} & I_{C n 1} * \frac{I_{n L}}{2} \\ & I_{C n 2} * \frac{I_{n L}}{2} \end{aligned}$	$\begin{aligned} I_{\text {CH }} & =I_{1}+I_{2} \\ I_{1} & +I_{2}=I_{1}\left(\frac{T}{r}\right) \end{aligned}$	$\begin{aligned} & I_{C R 1}=1,5 I_{m L} \text { FOR } 0=33 \\ & I_{C N 1}=2 I_{m L} \text { FON } D=50 \\ & I_{C N 1}=25 I_{R L} \text { FON } 0=60 \end{aligned}$
$v_{\text {Ru }}\left\{\begin{array}{l}v_{\text {CRI }}=2 v_{\text {IM }}\left(\frac{N 2}{N 1}\right) \\ v_{C R 2}=2 v_{\text {IW }}\left(\frac{N 2}{N 1}\right)\end{array}\right.$	$v_{0}+1$	$15 V_{\text {IM }}$ FOR $0=.33$ $2 V_{\text {IW }}$ FOR O = SO $2 S V_{i m}$ FOR $0=60$
Sample, goob Thansformer UTILI2ATION COLLECTOA CURRENT REOUCED AS A FUNCTION OF $\frac{M 2}{\mathrm{NI}}$ G000 AT LOW values of v_{m}.	CONTWNOUS DPUT ANO OUTPUT CURMENT, HIGHEST EFFICIENCY, LOW MPPLE, SMALLEST RUMEER OF SWITCHING COMPONENTS, SWTCHING LOSSES CUT IN HALF, ONIVE CIRCUIT REFENENCED TO GROUNO hiGREST OPERATIWG PREOUENCY	COMTINUOUS INPUT ANO OUTPUT CURNEMT, MGHEST EFFICIENCY, VEAY LOW RIPMLE, SMALLEST MUMBER OF SWITCANG COMPONENTS, SWITCHNG Losses low, orive cunnemt referenceo to grouno highest OPEAATMG FREOUENCY.
CROSS COWDUCTION OF OL, oz POSSUBLE,MGBH PARTS COUNT TRUWSFONMER DESICN CPITICAL POON OTMANC RANGE, POOR TRANSENT RESPONSE	HIGH COLLECTOR CUFRENT CI MAS HIGM MIPPLE CURRENT REOUREMENT MiGH VOLTAGE REDURED FOR OI PGWER OUTPUT LIMITEO	CI ano Cz have hich ripple CUnRent reouifements transformer dESIGN CRITICAL. POWER OUTPUT IS LIMITEO.

(From General Electric Application Note 200.87, "Power Transistor Applications for Switching Regulators and Motor Control," copyrighted © by and reprinted with permission of General Electric Company.)

PERCENT REGULATION OF POWER SUPPLIES

The percent regulation of a power supply is found by the change in output voltage between Full Load and No Load voltage as given by the formula:

$$
\% \text { regulation }=\frac{\text { No Load Voltage }- \text { Full Load Voltage }}{\text { Full Load Voltage }} \times 100 .
$$

FOR EXAMPLE:

1. What is percent regulation if No Load Voltage is 500 V and Full Load Voltage is 492 V ? The difference is 8 V. Answer: Connecting 492 and 8 gives a regulation of about 1.6%.
2. For 0.04% regulation what is maximum allowable change in output voltage if required Full Load Voltage is 15 V . Answer: 0.006 V .

POWER LOSS DUE TO IMPEDANCE MISMATCH

This chart shows the power loss resulting from inequality in the absolute magnitude of two impedances connected so as to transfer power from one to the other. The figures on the curves are the number of degrees of algebraic phase difference between the two impedances.

FOR EXAMPLE: Find the resulting power loss when a loudspeaker with an impedance of 10 ohms and a phase angle of 60° is fed from a generator with a 100 -ohm internal impedance. The impedance mismatch ratio is $10: 1$, and at the 60° line the loss due to mismatch is read as 5.7 dB .

SEVEN COMMONLY USED BRIDGE CIRCUITS AND THEIR BALANCE EQUATIONS

A bridge consists essentially of four arms connected in series and so arranged, that when an electromotive force is applied across one pair of opposite junctions, the response of a detecting and /or indicating device connected between the outer pair of junctions may be zeroed by adjusting one or more of the elements of the arms of the bridge. Seven commonly used bridge circuits and their balance equations are shown.

This nomogram is used to find the effective resistance of resistors connected in parallel or the capacitance of capacitors connected in series. The range of the nomogram may be extended by multiplying the three scales by the same factor 10^{n}, where n may be positive or negative.

FOR EXAMPLE: (1) The effective resistance of a 150 k and 120 k resistor in parallel is 67 k . (2) A 6.8μ f and $5.6 \mu \mathrm{f}$ capacitor connected in series present an effective capacitance of $3 \mu \mathrm{~F}$.

(From "Parallel-Resistance Chart," EDN, September 14, 1966 by perimission of EDN.)

Section 4

Active Components and Circuits

Major Semiconductor Components 162
Letter Symbols and Abbreviations for Semiconductor Devices 166
Comparative Characteristics of Active Devices / 171
Summary of Integrated Circuit Properties / 171
Analogy Between the Three Basic Junction Transistor Circuits and Their Equivalent Electron Tube Circuits / 172
Definitions of Equivalent Circuit Parameters / 173
Equivalent Circuits for Small-Signal Low-Frequency Transistor Stages 174
Transistor Parameter Conversion Tables 176
Multivibrator Design Curves 180
Operational Amplifiers 182
Glossary of Operational Amplifier Terms 188
European Semiconductor Numbering System (Pro Electron Code) 189
Characteristics of Integrated Circuit Logic Families / 190
Characteristics of Displays Used in Electronic Equipment / 191
Definitions of Integrated Circuits, Logic, and Microelectronic Terms / 192
Classification of Amplifiers 206
Risetime of Cascaded Amplifiers / 208
Negative Feedback Nomogram 1210
Class B Push-Pull Amplifier Nomogram $/ 211$
Cathode Follower Nomogram / 212
Cathode Feedback Nomogram 1213
European Tube Numbering System 215
Solid-State Sensing Technologies / 216
Semiconductor Memories 1217
Voice Input /Output Family Tree 1218
Noise Figure Nomogram for Two Cascaded Stages 219

NAME OF Device	CIRCUTT symbol	$\begin{aligned} & \text { COMMONLY USED } \\ & \text { JUKCTION } \\ & \text { SCHEMATIC } \\ & \hline \end{aligned}$	ELECTRICAL CHARACTERISTICS	MAJOR APPLICATIONS	$\begin{gathered} \text { ROUGHLY } \\ \text { ANALOGOUS } \\ \text { TO } \end{gathered}$
Diode or Rectifier			AmODE I YAMDDE (-1)	Rectification Blocking Detecting Steering	Check valve Drade tube Gas diode
Avalanche (Zener) Diode			Constant voltage characteriatic in negative quadrant	Regulation Beference Clipping	$\mathrm{V}-\mathrm{R}$ tube
Integrated Voltage Regulator (IVR)			Programmed to deair ed V_{21} by two resiatora	Shum voltage regulator Reference element Error madifler Level senamp Level shifting	Avalanche Diode
Tunnel Diode				UHF comerter Logic circuits Microwave elreuita Levet sensing	None
Back Diode	CATHODE		 Similar characterlatice to conventionsl difode except very low forward voltage drop	Mierowave mixer: and low power oncillators	None

NAME OF DEvice	cIRCUIT symbol.	COMMONLY USED JUNCTION SCHEMATIC	Electrical characteristics		MAJOR APPLICATIONS	$\begin{gathered} \text { ROUGGLY } \\ \text { ANALOCOUS } \\ \text { TO- } \end{gathered}$
rtyrector				Rupudly Increasing current above rated voltage in either direction	Tramsient voltage suppression and are suppression	Thythe Two avalanche diodes in inverne-weries connection
$\begin{aligned} & \text { n-p-n } \\ & \text { Tranaistor } \end{aligned}$				Constant collector current for ziven bate drive	Amplification Switehing Oscillation	Pentode Tube
$\begin{aligned} & \mathrm{p}=\mathrm{m}-\mathrm{p} \\ & \text { Tramistor } \end{aligned}$				Complement to n-p-n tranalator Lecton (-)	Amplification Switching Oscillation	None
Photo Tranmastor			$\underbrace{2}_{V E E}$	Incident light acts as base current of the photo transistor	Tape readers Card reader: Position sensor Tachometers	None
Unjuametion Fransistor (tu) I)				Unijunctlon emitter blocks uat!! its voltage reacher V_{p}. then conducts	Interval timiag Oseltlation Level Detector SCR Trugger	Nome

NAME OF DEVICE	CIRCIIT SYMBOL	COMMONLY USFB JNCTIOS SCHFMATIC	ELECTRICAL CIIARACTERISTICS	MA.JOR APPLICATIONS	$\begin{aligned} & \text { Heviculir } \\ & \text { ANALOGOUS } \\ & \text { TO } \end{aligned}$
Complementary Ual junction Tranaistor (CUST)	BASE 2		Functionsl complement to DJST	High atabilet? tumere Oscillators and level detectors	None
Programmable Unijunction Transistor (PUT)	ANODE: CATHODE		Programmed by two resilatora for V_{p}. I_{p}. I_{v}. Function equivalent to normal UJT,	L.ow cont timere and osclllators Long period timers SCR trigger Level detector	UJT
Silicon Controlled Rectifier (5CR)	CATHODE			Power awitching Phase control Inverter: Chopperif	Gas thyratron of Igntron
Complementary Silicon Controlled Hectifier (CSCR)	ANODE CATHODE		$\xrightarrow[(2)]{\text { ANDDE }}$	Fung counters Low mpeed logic Lamp. driver	None
Laght Activated SCR (LABCR)	CATHODE			Relay Replacement Poeition costrola Photcelectrif applications Sisve flashea	None

NAME OF DEVICE	CIRCUIT SYMBOL	COMMONLY USED JUNCTION SCHEMATIC	ELECTRICAL CHA	ARACTERISTICS	MAJOR APPLJCATIONS	$\begin{gathered} \text { ROUGHLY } \\ \text { ANALOGOUS } \\ \text { TO. } \end{gathered}$
suicon Controlied Switch" (SCS)		ANODE		Operatea similar to SCR except can also be triggered on by a negative signal on anode-gate. Alao eeveral other specialized modea of operation	Lagic applications Countera Nixie drivers Lamp drivers	Complementary transistor part
Silicon Unilateral Switch (5U5)	CATHODE	ANODE CATHOOE		Similar to scs but zener added to anode gate to trigger device Into conduction at $\sim B$ volts. Can also be triggered by negative pulae at gate lead.	Switching Circuite Counters SCR Trigger Oacilistor	Shockley or 4-layer diode
Silioon Bilateral Switch (SBS)				Symmetrleal blateral veraion of the SUS. Breake down in both directions as SUS does in forwa d.	Swltching Cireults Counters TRIAC Phase Control	Two tiverke Shockley dilodea
Trise	ANOOE 1			Operates aimiliar to SCR except ean be triggered Into conduction in either direction by (+) or (-1 gate alynai	AC awltching Phare control Relay replacement	Two SCR' In inverse parallel
Dise Trlgerer		n n n n		When voltage reaches tragger level \{about 35 voltin), abruptly swithehea down shout 10 volts.	Trlice and SCR trigger Owcillator	Neen lamp

LETTER SYMBOLS AND ABBREVIATIDNS FDR SEMICDNDUCTOR DEVICES

Table 1: General Semiconductor Symbols

l, i	region of a device which is intrinsic and in which neither holes nor electrons predominate
N, n	region of a device where electrons are the majority carriers
$N F$	noise figure

Table 2: Signal Diode and Rectifier Diode Symbols

$V_{(B R)}$ or $V_{(B R) R}$	reverse breakdown voltage, dc
$v_{\text {(BR) }}$ or $v_{\text {(BR)R }}$	reverse breakdown voltage, instantaneous total value
$I_{\text {F }}$	forward current, dc
$I_{\text {F }(A V) ~}$	forward current, average value
${ }^{\prime}{ }_{\text {F }}$	forward current, instantaneous total value
$I_{\text {f }}$	forward current, rms value of alternating component
$I_{\text {F(RMS })}$	forward current, rms total value
$I_{\text {FM }}$	forward current, maximum (peak) total value
$I_{\text {FM }}$ (rep)	forward current, repetitive, maximum (peak), total value
IFM(surge)	forward current, maximum (peak), total value of surge
Io	output current, average rectified
$I_{\text {R }}$	reverse current, dc
$i_{\text {R }}$	reverse current, instantaneous total value
$I_{\text {R(AV) }}$	reverse current, average value
$I_{\text {RM }}$	reverse current, maximum (peak) total value
I_{r}	reverse current, rms value of alternating component
$I_{\text {R(RMS }}$	reverse current, rms total value
$L_{\text {c }}$	conversion loss (microwave diodes)
$P_{\text {F }}$	forward power dissipation, dc
$P_{\text {F(AV) }}$	forward power dissipation, average value
$P_{\text {FM }}$	forward power dissipation, maximum (peak) total value
$p_{\text {F }}$	forward power dissipation, instantaneous total value

$P_{\text {R }}$	reverse power dissipation, dc
$P_{\text {R(AV) }}$	reverse power dissipation, average value
$P_{\text {RM }}$	reverse power dissipation, maximum (peak) total value
$p_{\text {R }}$	reverse power dissipation, instantaneous total value
V_{F}	forward voltage drop, dc
v_{F}	forward voltage drop, instantaneous total value
$V_{\text {F (AV) }}$	forward voltage drop, average value
$V_{\text {FM }}$	forward voltage drop, maximum (peak) total value
$V_{\text {F (RMS }}$)	forward voltage drop, total rms value
$V_{\text {f }}$	forward voltage drop, rms value of alternating component
$V_{\text {R }}$	reverse voiltage, dc
$V_{\text {R }}$	reverse voltage, instantaneous total value
$V_{\text {R(AV) }}$	reverse voltage, average value
$V_{\text {RM }}$	reverse voltage, maximum (peak) total value
$V_{\text {RM (}}$ (wkg)	working peak reverse voltage, maximum (peak) total value
$V_{\text {RM (rep) }}$	repetitive peak reverse voltage, maximum (peak) total value
$V_{\text {RM (nonrep) }}$	nonrepetitive peak reverse voltage, maximum (peak) total value
$V_{\text {R(RMS })}$	reverse voltage, total rms value
V_{r}	reverse voltage, rms value of alternating component

Table 3: Transistor Symbols

$B V_{\text {cso }}$	obsolete-see $V_{\text {(BR)ceo }}$
$B V_{\text {CEE }}$	obsolete-see $V_{\text {(BR)CEO }}$
$B V_{\text {CER }}$	obsolete-see $V_{\text {(BA)CER }}$
$B V_{\text {CES }}$	obsolete-see $V_{\text {(BR)CES }}$
$B V_{\text {cex }}$	obsolete-see $V_{\text {(BR)CEx }}$
$B V_{\text {EBo }}$	obsolete-see $V_{\text {(BR)EBo }}$
$B V_{R}$	obsolete-see $V_{\text {(BR) }}$
$C_{\text {ibo }}$	open-circuit input capacitance, common base
$C_{\text {ibs }}$	short-circuit input capacitance, common base
$C_{\text {eo }}$	open-circuit input capacitance, common emitter
$C_{\text {ies }}$	short-circuit input capacitance, common emitter
$C_{\text {obo }}$	open-circuit output capacitance, common base
$C_{\text {obs }}$	short-circuit output capacitance, common base
$C_{\text {oso }}$	open-circuit output capacitance, common emitter
$C_{\text {oes }}$	short-circuit output capacitance, common emitter
$f_{\text {hto }}$	small-signal short-circuit forward current transfer ratio cutoff frequency (common base)
$f_{\text {hite }}$	small-signal short-circuit forward current transfer ratio cutoff frequency (common collector)
f hfe	small-signal short-circuit forward current transfer ratio cutoff frequency (common emitter,
$f_{\text {max }}$	maximum frequency of oscillation
f_{T}	frequency at which small-signal forward current transfer ratio (common emitter) extrapolates to unity
$g_{\text {ME }}$	static transconductance (common emitter)
$g_{\text {me }}$	small-signal transconductance (common emitter)
$G_{P B}$	large-signal average power gain (common base)
$G_{\text {pb }}$	small-signal average power gain (common base)
$G_{P C}$	large-signal average power gain (common collector)
$G_{p c}$	small-signal average power gain (common collector)
$G_{\text {PE }}$	large-signal average power gain (common emitter)
$G_{\text {pe }}$	small-signal average power gain (common emitter)

$h_{\text {FB }}$	ratio (common base)
$h_{\text {fo }}$	small-signal short-circuit forward current transfer ratio (common base)
$h_{\text {FC }}$	static forward current transfer ratio (common collector)
$h_{\text {fc }}$	small-signal short-circuit forward current transfer ratio (common collector)
$h_{\text {FE }}$	static forward current transfer ratio (common emitter)
$h_{\text {fo }}$ 。	small-signal short-circuit forward current transfer ratio (common emitter)
h_{18}	static input resistance (common base)
$h_{\text {ib }}$	small-signal short-circuit input impedance (common base)
$h_{\text {IC }}$	static input resistance (common collector)
$h_{\text {ic }}$	small-signal short-circuit input impedance (common collector)
$h_{\text {IE }}$	static input resistance (common emitter)
$h_{\text {i }}$ 。	small-signal short-circuit input impedance (common emitter)
$h_{\text {ob }}$	small-signal open-circuit output admittance (common base)
$h_{\text {oc }}$	small-signal open-circuit output admittance (common collector)
$h_{\text {oo }}$	small-signal open-circuit output admittance (common emitter)
$h_{\text {ro }}$	small-signal open-circuit reverse voltage transfer ratio (common base)
$h_{r c}$	small-signal open-circuit reverse voltage transfer ratio (common collector)
$h_{r e}$	small-signal open-circuit reverse voltage transfer ratio (common emitter)
I_{B}	base current, dc
I_{6}	base current, rms value of alternating component
i_{B}	base current, instantaneous total value
1 C	collector current, dc
t_{c}	collector current, rms value of alternating component
i_{c}	collector current, instantaneous total value
$I_{\text {CBO }}$	collector cutoff current, dc, emitter open
$I_{\text {Ceo }}$	collector cutoff current, dc, base open
ICER	collector cutoff current, dc, with specified resistance between base and emitter
I'CEV	collector cutoff current, dc, with specified voltage between base and emitter
${ }^{\prime}$ CEX	collector current, dc, with specified circuit between base and emitter
ICES	collector cutoff current, dc, with base short circuited to emitter
I oss	drain current, dc, with gate shorted to emitter
I_{E}	emitter current, dc.
1.	emitter current, rms value of alternating component
$\begin{aligned} & I_{\mathrm{EBO}} \\ & P_{\mathrm{BE}} \end{aligned}$	emitter cutoff current (dc), collector open power input (dc) to the base (common emitter)
$p_{\text {BE }}$	power input (instantaneous total) to the base (common emitter)
$P_{\text {CB }}$	power input (dc) to the collector (common base)
$P_{\text {CB }}$	power input (instantaneous total) to the collector (common base)
$P_{\text {ce }}$	power input (dc) to the collector (common emitter)
$p_{\text {ce }}$	power input (instantaneous total) to the collector (common emitter)
$P_{\text {eb }}$	power input (dc) to the emitter (common base)
$p_{\text {EB }}$	power input (instantaneous total) to the emitter (common base)
$P_{\text {18 }}$	large-signal input power (common base)
$p_{\text {ib }}$	small-signal input power (common base)
$P_{\text {Ic }}$	large-signal input power (common collector)
$p_{\text {Ic }}$	small-signal input power (common collector)
$P_{\text {IE }}$	large-signal input power (common emitter)
$p_{\text {ie }}$	small-signal input power (common emitter)
$P_{\text {OB }}$	large-signal output power (common base)
$p_{\text {ob }}$	small-signal output power (common base)
$P_{\text {OC }}$	large-signal output power (common collector)
$p_{\text {oc }}$	small-signal output power (common collector)
$P_{\text {OE }}$	large-signal output power (common emitter)

$\rho_{\text {on }} \quad$ small-signal output power (common emitter)
$P_{T} \quad$ total nonreactive power input (dc) to all terminals
$p_{T} \quad$ nonreactive power input (instantaneous total) to all terminals
$R_{\mathrm{B}} \quad$ external base resistance
R_{C} external collector resistance
$r_{\text {CE (sant) }}$ collector-to-emitter saturation resistance
R_{E}
$R e\left(h_{i d}\right)$ real part of the small-signal short-circuit input impedance (common emitter)
$V_{\text {(BR)CBO }}$ breakdown voltage, collector-to-base, emitter open
$V_{\text {(BR)CEO }}$ breakdown voltage, collector-to-emitter, base open
$V_{\text {(BR)CER }}$ breakdown voltage, collector-to-emitter, with specified resistance between base and emitter
$V_{\text {(BA)CES }}$ breakdown voltage, collector-to-emitter, with base short-circuited to emitter
$V_{\text {(BA)CEX }}$ breakdown voltage, collector-to-emitter, with specified circuit between base and emitter
$V_{\text {(BR)OGO }}$ breakdown voltage, drain-to-gate, source open
$V_{\text {(BR)EBO }}$ breakdown voltage, emitter-to-base, collector open
$V_{\text {(BR)R }}$ breakdown voltage, reverse
$V_{\mathrm{BB}} \quad$ base supply voltage
$V_{\mathrm{BC}} \quad$ base-to-collector voltage, dc
$V_{\mathrm{bc}} \quad$ base-to-collector voltage, rms value of alternating component
$V_{\mathrm{bc}} \quad$ base-to-collector voltage, instantaneous value of ac component
$V_{\text {BE }}$ base-to-emitter voltage, dc
$V_{\text {be }} \quad$ base-to-emitter voltage, rms value of alternating component
$v_{\text {be }}$ base-to-emitter voltage, instantaneous value of ac component
$V_{C B} \quad$ collector-to-base voltage, dc
$V_{\mathrm{cb}} \quad$ collector-to-base voltage, rms value of alternating component
$V_{c b}$ collector-to-base voltage, instantaneous value of ac component
$V_{C B}$ (t1) dc open-circuit voltage (floaking potential) between the collector and base, with the emitter biased with respect to the base
VCC collector supply voltage, dc
$V_{C E} \quad$ collector-to-emitter voltage, dc
$V_{c e} \quad$ collector-to-emitter voltage, rms value of alternating component
$V_{\text {ce }} \quad$ collector-to-emitter voltage, instantaneous value of ac component
$V_{C E(f)}$ dc open-circuit voltage (floating potential) between the collector and emitter, with the base biased with respect to the emitter
$V_{\text {CEO }} \quad$ collector-to-emitter voltage, dc, with base open
$V_{\text {CEO(sus) }}$ collector-to-emitter (breakdown) sustaining voltage with base open
$V_{\text {CER }} \quad$ collector-to-emitter voltage, dc with specified resistor between base emitter
$V_{\text {CER(sus) }}$ collector-to-emitter (breakdown) sustaining voltage with specified resistor between base and emitter
VCES collector-to-emitter voltage, dc with base short circuited to emitter
$V_{\text {CES(sus) }}$ collector-to-emitter (breakdown) sustaining voltage with base short-circuited to emitter
$V_{\text {CEX }} \quad$ collector-to-emitter voltage, dc with specified circuit between base and emitter
$V_{\text {CEX (wn) }}$ collector-to-emitter (breakdown) sustaining voltage with specified circuit between base and emitter
$V_{\text {CE (sat) }}$ collector-to-emitter saturation voltage, dc
$V_{E B}$
$V_{E B(f)}$ emitter-to-base voltage, dc
dc open-circuit voltage (floating potential) between the emitter and base, with the collector biased with respect to the base
$V_{\text {eb }} \quad$ emitter-to-base voltage, rms value of alternating component
$v_{\mathrm{ab}} \quad$ emitter-to-base voltage, instantaneous value of ac component
$V_{E C}$ emitter-to-collector voltage, dc
$V_{E C(f)}$ dc open-circuit voltage (floating potential) between the emitter and collector, with the base biased with respect to the collector
$V_{\text {ec }} \quad$ emitter-to-collector voltage, rms value of alternating component
$V_{\text {ec }}$ emitter-to-collector voltage, instantaneous value of ac component
$V_{E E} \quad$ emitter supply voltage
$V_{R T}$ reach-through voltage
Table 4: Tunnel Diode Symbols
I/ inflection point current
/p peak point current
Iv valley point current
r_{i} dynamic resistance at inflection point
$V_{\text {pp }}$ projected peak point voltage
[forward voltage point (greater than the peak voltage), at which the current is equal to the peak current]
V_{1} inflection point voltage
V_{p} peak point voltage
V_{v} valley point voltage

Typical Characteristics

Characteristic	Vacuum Tube	Small-Signal Transistor	High-Power Transistor	Junction Fet	Mosfet
Input impedance	High	*	Very low	High	Very high
Output impedance	High	a	Low/moderate	High	High
Noise	Low	Low	Moderate	Low	Unpredictable
Warm-up time	Long	Short	Short	Short	Short
Power consumption	Large	Small	Moderate	Very Small	Very small
Aging	Appreciable	Low	Low	Low	Moderate
Reliability	Poor	Excellent	Very good	Excellent	Very good
Overload sensitivity	Excellent	Good	Fair	Good	Poor
Size	Large	Small	Moderate	Small	Small

almpedances depend on circuit arrangement:

For common base	Input Impedance	
For common emitter	Mew (10's of ohms)	

SUMMARY OF INTEGRATED CIRCUIT PROPERTIES

This table compares pertinent characteristics of present day and future ICs.

Propertles	Current technotogles								$\begin{array}{lc} \hline \text { Future (1985-1990) } \\ \text { sos GeAs } \\ \hline \end{array}$	
	12	LSTM	ECL	12.	PMOS	NMOS	BULK CMOS	CM0s/30s		
Relative process meturity $(1-10)$	$\begin{array}{r} 10 \\ (8)^{*} \\ \hline \end{array}$	$\begin{gathered} 9 \\ (4 \text { to } 5)^{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & 8 \text { to } 9 \\ & \text { (3 to } 5) \\ & \hline \end{aligned}$	4	10	9	8	4	2	1
Process complexity (No proceasing steps)	18 to 22t	18 to $23 t$	19 to 23t	13 to 17	8 to 14	9 to 15	14 to 17	14 to 20	14 to 20	18
Logic complexity (No componente, 2 -input gete)	12	12	8	3 to 4	3	3	4	4	3 to 4	2
Pecking Density (gates/mm*)	10 to 20	20 to 40	15 to 20	75 to 150	75 to 150	100 to 200	40 to 90	100 to 500	200 to 500	300 to 1000
Propagation dalay, ne (typicel velue)	$8 \text { to } 30$ (10)	2 to 10 (5)	0.7 to 2 (2)	7 to 50 (20)	$\begin{gathered} 30 \text { to } 200 \\ (100) \end{gathered}$	4 to 25 (15)	$\begin{gathered} 10 \text { to } 35 \\ \text { (20) } \end{gathered}$	4 to 20 (10)	$\begin{gathered} 0.2 \text { to } 0.4 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.05 \text { to } 0.1 \\ (0.07) \end{gathered}$
Speed-power product (P)	30 to 150	10 to 60	15 to 60	0.2 to 2.0	50 to 500	5 to 50	2 to 40	0.5 to 30	0.1 to 0.2	0.01 to 0.1
Typicel supply volteges (volts)	+5.0	+5.0	-5.2	$\begin{gathered} +0.8 \text { to } \\ +1.0 \end{gathered}$	-15 to +20	+5.0	+10.0	+10.0	+2.0	+1.2
Signel swing (volts)	0.2 to 3.4	0.2 to 3.4	-0.8 to -1.7	0.2 to 0.8	0.0 to -15.0	0.2 to 3.4	0.0 to 10.0	0.0 to 10.0	0.0 to 2.0	0.0 to 0.8
Guarenteed noise margin (volls)	0.3 to 0.4	0.3 to 0.4	0.125	<0.1	1 to 2	0.5 to 20	3.5 to 4.5	3.5 to 4.5	0.2 to 0.8	0.2 to 0.3
Neutron hardness cepebility ($\mathrm{n} / \mathrm{cm}^{2}$)	0.2 to 108	0.2 to 10^{18}	0.5 to 2×10^{14}	$\begin{array}{r} 1 \text { to } 5 \\ \times 1013 \\ \hline \end{array}$	$\begin{gathered} >10^{15} \text { to } \\ 10^{10} \end{gathered}$	$\begin{gathered} >10^{45} \text { to } \\ 10^{15} \end{gathered}$	$\begin{gathered} >10^{15} \text { to } \\ 10^{15} \\ \hline \end{gathered}$	$\begin{gathered} >10^{15} \text { to } \\ 10^{13} \end{gathered}$	$\begin{gathered} >10^{15} \text { to } \\ 10^{15} \end{gathered}$	>1048
Total dose (h) hardness cepebility (rads)	10° to 100	10^{0} to 10°	$\begin{gathered} 10^{r} \text { to } \\ 10^{5} \\ \hline \end{gathered}$	$\begin{gathered} 100 \text { to } \\ 100 \\ \hline \end{gathered}$	10^{\prime}	$\begin{gathered} 1 \text { to } 5 \times \\ 100^{3} \\ \hline \end{gathered}$	$\begin{gathered} 10^{4} \text { to } \\ 10^{7} \\ \hline \end{gathered}$	$\begin{gathered} 100^{5} \text { to } \\ 100^{2} \\ \hline \end{gathered}$	10° to 10°	$>10^{\prime}$
Dose rate (r) or pnotocurrent hardness cepebility (tacsis)	$\left\|\begin{array}{c} 0.5 \text { to } 2 x \\ 10^{15} \end{array}\right\|$	0.2 to 10^{10}	0.2 to 10^{10}	0.1 to 4 $\times 10^{18}$	$\begin{aligned} & 0.1 \text { to } \\ & 5 \times 10^{0} \end{aligned}$	$\begin{gathered} 0.1 \text { to } \\ 5 \times 10^{40} \end{gathered}$	$\begin{gathered} 0.5 \text { to } \\ 2 \times 100 \end{gathered}$	0.2 to 10^{11}	0.5 to 10^{11}	$>10^{10}$

(Reprinted with permission from Electronic Design, Vol. 29, No. 16; copyrightO Hayden Publishing Co., Inc., 1981.)

ANALOGY BETWEEN THE THREE BASIC JUNCTION TRANSISTOR CIRCUITS AND THEIR EQUIVALENT ELECTRON TUBE CIRCUITS

A transistor can be operated with the input signal applied to the base and the output taken from the collector (common emitter), with the input signal applied to the emitter and the output taken from the collector (common base), or with the input signal applied to the base and the output taken from the emitter (common collector or emitter follower). The performance characteristics of these three connections correspond roughly to the three tube connections shown below, with the exception that the input impedance is generally lower in the transistor circuit. General characteristics of these three connections are given in the table.

Common Emitter	Common Base	Common Collector
Large current gain	Approximate unity current gain	Large current gain
Large voltage gain	Large voltage gain	Approximate unity voltage gain
Highest power gain	Intermediate power gain	Lowest power gain
Low input resistance	Very low input resistance	High input resistance
High oututut resistance	Very high output resistance	Low output resistance
Analogous to grounded cathode	Anaiogous to grounded grid	Analogous to cathode follower generally

definitions of equivalent circuit parameters

| Common | Common
 Base | Common
 Collector | Definition |
| :---: | :---: | :---: | :---: | :---: | :---: |

Typical Transistor Parameters

Common Base	Common Emitter	
Common Collector		
$h_{11}=39$ ohms	$h_{11}=2,000$ ohms	
$h_{12}=380 \times 10^{-6}$	$h_{12}=-600 \times 10^{-6}$	$h_{12}=1$
$h_{21}=-0.98$	$h_{21}=50$	$h_{21}=-51$
$h_{22}=0.49 \mu$ mho	$h_{22}=25 \mu$ mhos	$h_{22}=25 \mu$ mhos

EQUIVALENT CIRCUITS FOR SMALL-SIGNAL LOW-FREQUENCY TRANSISTOR STAGES

Small-signal, low-frequency, T-equivalent circuits for transistor stages

Common-base configuration (a) and hybrid equivalent circuit (b).

Common-emitter configuration (a) and hybrid equivalent circuit (b).

Common-collector configuration (a) and hybrid equivalent circuit (b).

(a)

(b)
y-Parameter equivalent circuit.

T-equivalent circuit, common base.

T-equivalent circuit, common emitter.

TRANSISTOR PARAMETER CONVERSION TABLES
(A) Common-base h parameters in terms of common-emitter, common-collector, and T parameters.
(B) Common-collector h parameters in terms of common-emitter, common-base, and T parameters.
(C) Common-emitter h parameters in terms of common-base, common-collector, and T parameters.
(D) T parameters in terms of common-emitter, common-base, and common-collector parameters.

(E) Input impedance and output impedance in terms of h and T parameters.
(F) Insertion power gain and transducer power gain in terms of h parameters.
(G) Current gain and voltage gain in terms of h and T parameters.
(H) Available power gain and operating power gain in terms of h parameters.

(I) Z parameters in terms of h parameters.
(J) Y parameters in terms of h parameters.
(K) Common emitter z parameters in terms of common collector and common base z parameters and T parameters.
(L) Common emitter y parameters in terms of common collector and common base y parameters and T parameters.

	Common amitter	Common base	Common collector
$z_{11 b}$	$\frac{\Delta h}{h_{o e}}$	$\frac{\Delta h}{h_{o b}}$	$\frac{1}{h_{o c}}$
$\text { (ii) }\left\{\begin{array}{l} z_{12 b} \\ \hline \end{array}\right.$	$\frac{\Delta h-h_{r o}}{h_{o e}}$	$\frac{h_{\text {do }}}{h_{o b}}$	$\frac{1+h_{f c}}{h_{o c}}$
$z_{21 b}$	$\frac{\Delta h+h_{\text {fe }}}{h_{\text {o }}}$	$\frac{{ }^{-h_{f b}}}{h_{\text {ob }}}$	$\frac{1-h_{r c}}{h_{o c}}$
$z^{22 b}$	$\frac{d}{h_{00}}$	$\frac{1}{h_{\text {ob }}}$	$\frac{d}{h_{o c}}$
$y_{11 b}$	$\frac{d}{h_{i j}}$	$\frac{1}{h_{16}}$	$\frac{d}{h_{i c}}$
(a) $\left\{\begin{array}{l}y_{12 b}\end{array}\right.$	$\frac{h_{r e}+h_{f e}}{h_{\text {ie }}}$	$-\frac{h_{\text {d }}}{h_{\text {b }}}$	$-\frac{1+h_{f e}}{h_{k}}$
\{ $y_{21 b}$	$-\frac{\Delta h+h_{f 0}}{h_{0}}$	$\frac{h_{\text {fb }}}{h_{\text {ib }}}$	$\frac{h_{r c}-1}{h_{i c}}$
$V^{22 b}$	$\frac{\Delta h}{h_{i o}}$	$\frac{\Delta h}{h_{b}}$	$\frac{1}{h_{k}}$
$\begin{aligned} \Delta h & =h_{i} h_{0}-h_{r} h_{f} \\ d & =\left(1+h_{f}\right)\left(1-h_{r}\right)+h_{i} h_{0} \cong 1+h_{f} \end{aligned}$			
z parameiter	Common collector	Common base	T equivelent-circuit
z_{11}	$z_{11}-z_{12}-z_{21}+z_{22}$	z_{11}	$r_{e}+r_{b}$
(K) $\left\{\begin{array}{l}\text { z } 2 \mathrm{e} \\ z_{21}\end{array}\right.$	$z_{22}-z_{12}$	$z_{11}-z_{12}$	r_{0}
(1) z_{210}	$z_{22}-z_{21}$	$z_{11}-z_{21}$	$r_{e}-a r c_{c}$
z_{22}	2_{22}	$z_{11}-z_{12}-z_{21}+z_{22}$	$r_{e}+r_{c}(1-a)$
y parameter	Common collector	Common bese	T equivalént-circuit
v_{11}	V_{11}	$y_{11}+y_{12}+y_{21} y_{22}$	$\frac{r_{b}+r_{c}(1-a)}{\Delta}$
(L) $\left\{\begin{array}{l}y_{120}\end{array}\right.$	$-\left(y_{11}+y_{12}\right)$	$-\left\langle y_{12}+y_{22}\right)$	$-\frac{r_{e}}{\Delta}$
(L) V_{210}	$-\left(y_{11}+y_{21}\right)$	$-\left\langle y_{21}+y_{22}\right\}$	$-\frac{r_{a}-a r_{c}}{\Delta}$
r_{220}	$y_{11}+y_{12}+y_{21}+y_{22}$	V_{22}	$\frac{r_{0}+r_{b}}{\Delta}$
$\Delta=r_{s} r_{b}+r_{c}$			

(M) Common base z parameters in terms of common emitter and common collector z parameters and T parameters.
(N) Common base y parameters in terms of common emitter and common collector y parameters and T parameters.
(O) Common collector z parameters in terms of common emitter and common base z parameters and T parameters.
(P) Common collector y parameters in terms of common emitter and common base y parameters and T parameters.
(Q) Input impedance, output impedance, voltage gain, and current gain in terms of z and y parameters.

(From "Transistor Circuit Design," Texas Instruments, Inc. Copyright © 1963 by Texas Instruments Incorporated. Used with permission of McGraw-Hill Book Company.)

MULTIVIBRATOR DESIGN CURVES

The accompanying curves permit an easy and rapid determination of the frequency of oscillation of a symmetrical-astable (free-running) multivibrator, and the pulse duration (t_{p}) of a monostable (one-shot) multivibrator. The pulse duration of the astable multivibrator output also can be read from the curve.

The expressions on which the curves are based are derived readily. The expression for the voltage at the base of the "off" transistor is

$$
e_{b}=E_{c c}\left(1-2 \epsilon^{-t R G}\right)+V_{b b}
$$

where $V_{b e}$ is the base-to-emitter voltage of an "on" transistor. The above equation assumes that base-to-emitter breakdown is prevented by using transistors whose base-to-emitter breakdown voltage is greater than $E_{c c}$ volts, or by connecting a diode in either the base or emitter lead.

The "off" transistor tums on when $e_{b}=V_{b 0^{\prime}}$ or $\epsilon^{-t / A C}=1 / 2$ where t is the "off" time (t_{p}) at the end of which time $e_{b}=V_{b e}$. Solving the equation yields $t_{b}=0.69$ RC. The curves in graph (A) are plots of this equation. For the monostable multivibrator, t_{p} is the pulse duration. The period of the symmetrical-astable multivibrator is equal to $2 t$.

Graph (B) is a family of curves of frequency of the symmetrical-astable multivibrator versus capacitance Cfor various values of resistance R. Since the period of the output wave is $2 t_{p}$, the equation for frequency is given as $f=1 / 1.38 \mathrm{RC}$, from which the curves were plotted.

FOR EXAMPLE: Find the value of C required to generate a frequency of 500 Hz from a free-running multivibrator, or a 1 msec pulse from a monostable. In both cases the value of R is limited to 100,000 ohms by the beta of the transistor selected. The curves indicated a value of $0.0145 \mu \mathrm{~F}$ for the capacitor.

OPERATIONAL AMPLIFIERS

An operational amplifier is essentially a very high gain dc amplifier whose open-loop gain is generally high enough when compared with the closed-loop gain so that the closed-loop characteristics depend solely on the feedback element. Circuit applications for which operational amplifiers can be used are illustrated below.

Canstant Current Saurce
(Large Current Levels)

Current Canstant Saurce
(Flaating Laad)

Current ta Valtage Converter

Valtage Follawer with Gain

$$
\frac{e_{0}}{e_{i}}=+1
$$

High-impedance Low-voltoge Voltmeter

Voltage Comporator Circuit

Polority Separotor

Lagarithmic Transconductor

Modulator-Demodulator (Half-Wave)

Floating Load

$e_{0}=\left(e_{1}-e_{2}\right)\left(1+\frac{R_{2}+R_{3}}{R_{1}}\right)$

Frequency Divider

Crystal Oscillatar(Square Wave)

GLOSSARY OF OPERATIONAL AMPLIFIER TERMS

Common-mode gain Ratio of output voltage over input voltage applied to (+) and (-) terminal in parallel. Common-mode rejection ratio (CMRR) Ratio of an op amp's open-loop gain to its common-mode gain. Differential-input voltage range Range of voltages that may be applied between input terminals without forcing the op amp to operate outside its specifications.
Differential Input Impedance ($Z_{\text {if }}$ diff) Impedance measured between $(+)$ and (-) input terminals.
Drift, input voltage Change in output voltage divided by open-loop gain, as a function of temperature or time.
Input voltage offset Dc potential required at the differential input to produce an output voltage of zero.
Input bias current Input current required by $(+)$ and $(-)$ inputs for normal operation.
Input offset current Difference between $(+)$ and $(-)$ input bias currents.
Offset Measure of unbalance between halves of a symmetrical circuit.
Open-loop bandwidth Without feedback, frequency at which amplifier gain falls 3 dB below its low-frequency value.
Open-loop voltage gain ($A_{\text {vol }}$) Differential gain of an op amp with no external feedback.
Slew rate Maximum rate at which output voltage can change with time; usually given in volts per microsecond.

First Letter	Second Letter	Third, Fourth, and Fifth Character
Material	Type	Senal Code
A Germanium B Silicon C Compound materials, such as cadmium sulfide or gallium arsenide used in semiconductor devices. (Energy gap band of 1.3 or more electron-volts) D Materials with an energy gap band of less than 0.6 elec-tron-volts such as indium antimonide R Radiation detectors, photoconductive cells. Hall effect generators, etc.	A Low-power diode, voltage-variable capacitor B Varicap C Small-signal audio transistor D Audio power transistor E Tunnel diode F Small-signal if transistor G Miscellaneous H Field probe K Hall generator L Rf-power transistor M Hall modulators and multipliers P Photodiode, phototransistor, photoconductive cell (LDR), radiation device R Low-power controlled rectifier S Low-power switching transistor T Breakdown devices, high-power controlled rectifier, Shockley diode, Thyristor, pnpn diodes U High-power switching transistor X Multiplier diode Y High-power rectifier (diode) Z Zener diode	Three figuresserial codes used on devices for domestic and commercial applications One letter and two figuresserial codes used on devices for use in military, industrial, scientific, and pulse, equipment

The third letter-if there is one-indicates industrial device and is a Y. If there is no third letter, the device is for consumer or entertainment use. The digits that follow the letters for industrial units indicate how many devices of that particular type have been registered. The digits start at 10 and go up to 99 . When 99 is reached-i.e., after 89 devices-the last letter changes from a Y to an X and the numbering begins anew, working back towards A . There is no Z . For consumer devices, the numbers that follow the two letters start with 100, allowing registration of 899 similar devices.

FOR EXAMPLE: The designation BLY 80 means the device uses silicon (B) is for high rf power use (L), and is used in industrial applications, (Y); the 80 means that it is the 71st device of its type to be registered with Pro Electron.

CHARACTERISTICS OF INTEGRATED CIRCUIT LOGIC FAMILIES

	Typical Circuit Disgram	$\begin{aligned} & \text { Loger } \\ & \text { Type } \end{aligned}$	Ralative Cosi Par Gste	Propagation Thme Par Gute (nstc)	$\begin{gathered} \text { Power } \\ \text { Disospation } \\ \text { Per Gati } \\ \text { (mow) } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Typical } \\ \text { Nosase } \\ \text { Mergin } \\ \text { (V) } \end{array}$	$\begin{aligned} & \text { Typical } \\ & \text { Tanin } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Typical } \\ & \text { fonout } \end{aligned}\right.$	A Aomaks
RTL Resistor:Couplied Transustor Logic		NOR	Low	15	10	0.2	3	3	Variations in input characteris tics result in base-current "hogging" problem. Proper operation not always guaranteed. More susceptible to noise because of low operating and signal voltages
ACTL Ressistor-Capacitor Transistor Logic		NOR	Medium	50	10	0.2	3	4	Very sumilar to DCTL. Resistors resolve current "hogging" problem and reduce power dissipation. However, operating speed is riduced.
DCTL Dract-Coupted Trampstor Logic		NOR	Med high	30	10	0.2	3	4	Though capactors can increase speed capability, noise immunity is affected by capaci: tive coupling of noise signals.
OTL Diode-Transistor Loge		NAND	Medium	25	15	07	8	8	Use of pull-up resistor and charge control technique im. proves speed capabalities. Many variations of this circurt exist, each having specific advantages,
TTL Transistor: Transustor Loge		NAND	Medium	10	20	1	8	12	Very similar to DTL. Has lower parasitic capacity at uiputs. With the many existing varia. tions, this logic family is very popular.
CTL Complimentary Transistor Logic		OR/NOR	High	5	50	0.4	5	25	Sumilar to a differental ampir fier, the reference voltage sets the threshold voltage High speed, high fanout operation is possible with associated high power dissipation, Also known as emitter coupled logic (ECL).
CML Current-Mode Logic IECL Emuttar Coupled Loget		AND/OR	High	5	50	0.4	5	25	More difficult manufacturny process results in compromises of active device characteristics and hrgher cost.
mosL Matal-Oxida Samiconductor Logic	\exists^{4}	NOR	Very lon	250	<1	2.5	10	5.	Limited in switching speed compared to bipolar transistor circuits because the MOS transis. tor is a high-impedance device and cannot charge the stray carcuit capacitance quickly.

CHARACTERISTICS OF DISPLAYS USED IN ELECTRONIC EQUIPMENT

Drspley Technoiogy	Averege Viewing Anglo	Typical Current Requirement	Typicel Voltege Requrement	Typicel Opereting Temperetures	Relative Brightness	Durebulity	Colors averieble (besic fight source)
Light emiting drodes	Med bright (washout in sunlight)	150° (magnifying lens cuts down angle)	5 to 10 mA	2 to 5 V	-40 to $85^{\circ} \mathrm{C}$	Rugged, no breakable parts	Red, orenge yellow, green
Liquid crystal displays	Highcontrast. no juminance	90 to 150°	$50 \text { to } 500$	3 to 7V	$\begin{gathered} -10 \\ \text { to } 65^{\circ} \mathrm{C} \end{gathered}$	Glass construction	Black on white (or reverse)
Gas discharge	Bright	100°	${\underset{2 A}{150 \mathrm{~mA}} \text { to }}^{2}$	135 to 250 V	0 to $70^{\circ} \mathrm{C}$	Gas-filled glass construction	Orange
Incandescent	Very bright	150°	$\begin{gathered} 10 \text { to } 17 \\ \mathrm{~mA} \end{gathered}$	3 to 5 V	$\text { to }-55$	Glass and filaments construction subject to shock	Whte. filterabie to most colors
Vacuum fluorescent	Bright	100°	$\begin{gathered} 400 \text { to } 650 \\ \mathrm{~mA} \end{gathered}$	30 to 50 V	$\begin{gathered} -10 \\ \text { to } 55^{\circ} \mathrm{C} \end{gathered}$	Vacuum-tube device, glass construction	Bright-green filterable to many colors
(From Electronic Products, June, 1982, courtesy of Electronic Products.)							

DEFINITIONS OF INTEGRATED CIRCUITS, LOGIC, AND MICROELECTRONICS TERMS

Abrading equipment This type of equipment fires a gas propelled stream of finely graded abrasive particles through a precise nozzle against the work surface. When linked to abrading equipment, it can cut intricate patterns in silicon semiconductors.
Abrasive trimming Trimming a film resistor to its nominal value by notching the resistor surface with a fine adjusted stream of abrasive material such as aluminum oxide.
Access time Time required in a computer to move information from memory to the computing mechanism.
Activating A treatment which renders nonconductive material receptive to electroless deposition.
Active elements Those components in a circuit which have gain or which direct current flow: diodes, transistors, SCR's, etc.
Active substrate A substrate for an integrated component in which parts display transistance. Examples are single crystals of semiconductor materials, within which transistors and diodes are formed.
A.D. converter Analog-to-digital converter; a circuit which accepts information in a continuously varying ac or dc current or voltage and whose output is the same information in digital form.
Adder Switching circuits which combine binary bits to generate the SUM and CARRY of these bits. Takes the bits from the two binary numbers to be added (ADDEND and AUGEND) plus the CARRY from the preceding less significant bit and generates the SUM and the CARRY.
Address Noun: a location, either name or number, where information is stored in a computer. Verb: to select or pick out the location of a stored information set for access.
Alloy junction A junction produced by alloying one or more impurity metals to a semiconductor. A small button of impurity metal is placed at each desired location on the semiconductor wafer, heated above its melting point, and cooled. The impurity metal alloys with the semiconductor material to form a p or n region, depending on the impurity used.
Alternate print In screen printing, one squeegee print stroke per substrate in alternate directions.
Alumina Aluminum oxide $\left(\mathrm{A1}_{2} \mathrm{O}_{3}\right)$ used as a ceramic substrate material.
Align To put into proper relative position, agreement, or coordination when placing parts of a photomask together or placing a photomask over an etched pattern in the oxide on a semiconductor wafer.
Alignment The accuracy of coordination or relative position of images on a semiconductor oxide coating and on the photomask, or any other images placed in relation to those.
"AND" A boolean logic expression used to identify the logic operation wherein given two or more variables, all must be logical " 1 " for the result to be logical "1." The AND function is graphically represented by the dot (*) symbol.
Angle of attack In screen printing, angle at which the squeegee blade attacks the screen surface.
Anticipated carry adder A parallel ADDER in which each stage is capable of looking back at all ADDEND and AUGEND bits of less significant stages and deciding whether the less significant bits provide a " 0 " or a " 1 " CARRY IN. Having determined the CARRY IN it combines it with its own ADDEND and AUGEND to give the SUM for that bit or stage. Also called FAST ADDER or look ahead CARRY ADDER.
Arrays Integrated circuits designed to perform near or actual subsystem operations. They are characterized by high complexity and component density. Each array package replaces a number of conventional I/Cs. Arrays are classified as medium-scale or larger-scale according to function performed. They can be monolithic or fabricated on a silicon wafer with interconnections between circuits.
Artwork The original pattem or configuration produced at an enlarged ratio, from which a circuit product is made, using a technique of photographic reduction to achieve microelectric scale; layouts and photographic films created to produce thick film screens and thin film masks.
As-fired Description of properties of ceramic substrates (smoothness) or thick film resistors (values) as they emerge from furnace processing, before any trimming or polishing.
Asynchronous inputs Those terminals in a flip-flop which can affect the output state of the flip-flop independent of the clock. Called Set, Preset, Reset or DC Set and Reset, or clear.
Back bonding Bonding active chips to the substrate using the back of the chip, leaving the face with its circuitry face up. The opposite is face down bonding.
Backfill Filling an evacuated hybrid circuit package with dry inert gas prior to hermetric sealing of the package.
Bake-out Elevated temperature process which evaporates unwanted gases and moisture before final sealing of a hybrid circuit package.
Ball bond Type of thermocompression bond wherein a ball shaped end interconnect wire is fiattened against a metallized pad.
Basic logic diagram A logic diagram that depicts logic functions with no reference to physical implementations. It consists primarily of logic symbols and is used to depict all logic relationships as simply and understandably as possible. Nonlogic functions are not normally shown.
Beam leads A generic term describing a system in which flat, metallic leads extend beyond the edges of a chip component, much the same as wooden beams extend from a root overhang. These are used to interconnect the component to film circuitry. Beryllia Beryllium oxide ceramics (BeO) significant in that they have high thermal conductivity characteristics.
Binders Substances added to unfired substrates and thick film compounds to add strength.

Binary coded decimal (BCD) A binary numbering system for coding decimal numbers in groups of 4 bits. The binary value of these 4 -bit groups ranges from 0000 to 1001 and codes the decimal digits " 0 " through 9 . To count to 9 takes 4 bits; to count to 99 takes two groups of 4 bits; to count to 999 takes three groups of 4 bits.
Binary logic Digital logic elements which operate with two distinct states. The two states are variously called true and false, high and low, on and off, or " 1 " and " 0 ." In computers they are represented by two different voltage levels. The level which is more positive (or less negative) than the other is called the high level, the other the low level. If the true (" 1 ") level is the most positive voltage, such logic is referred to as positive true or positive logic.
Bistable element Another name for flip-flop. A circuit in which the output has two stable states (output levels " 0 " or " 1 ") and can be caused to go to either of these states by input signals, but remains in that state permanently after the input signals are removed. This differentiates the bistable element from a gate also having two output states but which requires the retention of the input signals to stay in a given state. The characteristic of two stable states also differentiates it from a monostable element which keeps returning to a specific state, and an astable element which keeps changing from one state to the other.
Bit A synonym for binary numeral. Also refers to a single binary numeral in a binary word.
Bleeding In photomasking, poor edge definition or acuity caused by spread of image onto adjacent areas.
Blister A lump or raised section of a conductor or resistor caused by out-gassing of the binder or vehicle during firing. Boat A container for materials to be evaporated or fired.
Bond liftoff The failure mode whereby the bonded lead separates from the surface to which it was bonded.
Bond-to-bond distance The distance measured from the bonding site on the die to the bond impression on the post, substrate land, or fingers which must be bridged by a bonding wire or ribbon.
Bond-to-chip distance In beam lead bonding, the distance from the heel of the bond to the component.
Bonding pad A metallized area at the end of a thin metallic strip or on a semiconductor to which a connection is made. Also called Bonding Island.
Bonding ribbon and tape Bonding ribbon and tape are used in the manufacture of high-volume ICs such as memory devices and consumer products. Wire connections between I /O pads on the circuit die and the lead frame are replaced by a piece of tape with finely etched fingers that are patterned to fit exactly onto the pads.
Bonding wire Fine gold or aluminum wire for making electrical connections in hybrid circuits between various bonding pads on the semiconductor device substrate and device terminals or substrate lands.
Boolean algebra The mathematics of logic which uses alphabetic symbols to represent logical variables and " 1 " and " 0 " to represent states. There are three basic logic operations in this algebra: AND, OR, and NOT. (Also see NAND, NOR, Invert which are combinations of the three basic operations.)
Bubble memories In general, magnetic bubble memory systems consist of a film deposited on a gamet substrate. Data is stored in magnetic domains (bubbles) which are formed on the film by the application of a perpendicular magnetic field.
Buffer A circuit element, which is used to isolate between stages or handle a large fanout or to convert input and output circuits for signal level compatibility.
Bump chip A chip that has on its termination pads a bump of solder or other bonding material that is used to bond the chip to external contacts.
Bump contact A large area contact used for alloying directly to the substrate of a chip, for mounting or interconnecting purposes.
Buried layer A heavily doped ($\mathrm{N}+$) region directly under the N doped epitaxial collector region of transistors in a monolithic integrated circuit used to lower the series collector resistance.
Bum-in Operation of electronic components often at elevated temperature, prior to their ultimate application in order to stabilize their characteristics and to identify their early failures.
Burn-in, dynamic High temp test with device(s) subject to actual or simulated operating conditions.
Bum-in, static High temp test with device(s) subjected to unvarying voltage rather than to operating conditions; either forward or reverse bias.
Camber In screen printing, a slight rise or curve in the surface of the substrate.
Carriage Mechanism on a screen printer to which the workholder is attached, which conveys the substrate to and from the print position.
Carriers Holders for electronic parts and devices which facilitate handling during processing, production, imprinting, or testing operations and protect such parts under transport.
Ceramic Non-metallic and inorganic material (e.g., alumina, beryllia, or steatite) used in microelectric substrates and component parts.
Cermet A combination of ceramic and metal powders used for thin and thick film resistors.
Chip A single substrate on which all the active and passive circuit elements have been fabricated using one or all of the semiconductor techniques of diffusion, passivation, masking, photoresist, and epitaxial growth. A chip is not ready for use until packaged and provided with extemal connectors. The term is also applied to discrete capacitors and resistors which are small enough to be bonded to substrates by hybrid techniques.
Chip and wire A hybrid technology exclusively employing face-up-bonded chip devices interconnected to the substrate conventionally, i.e., by flying wires.
Chip architecture The design or structure of an IC chip, incorporating arithmetic logic unit, registers, and control-bus pathway configuration.

Chip capacitors Discrete devices which introduce capacitance into an electronic circuit, made in tiny wedge or rectangular shapes to be fired onto hybrid circuits.
Chip component An unpackaged circuit element (active or passive) for use in hybrid microelectronics. Besides ICs, the term includes diodes, transistors, resistors, and capacitors.
Chip-outs Semiconductor die defects where fragments of silicon on the face have been chipped off in processing, leaving an active junction exposed.
Circuit The interconnection of a number of devices in one or more closed paths to perform a desired electrical or electronic function.
Clean room A work station or processing area in which steps are taken (e.g., air filtering) to protect incomplete circuits from dust and contamination.
Clear An asynchronous input. Also called Reset. To restore a memory elementor flip-flop to a "standard" state, forcing the Q terminal to logic " 0 ."
Clearance The shortest distance between the outer edges of images applied in sequence.
Clock A pulse generator which controls the timing of computer switching circuits and memory stages and regulates the speed at which the computer central processor operates. It serves to synchronize all operations in a digital system.
Clock input That terminal on a flip-flop whose condition or change of condition controls the admission of data into a flip-flop through the synchronous inputs and thereby controls the output state of the flip-flop. The clock signal performs two functions:
(1) It permits data signals to enter the flip-flop; (2) after entry, it directs the flip-flop to change state accordingly.

CML (Current Mode Logic) Logic in which transistors operate in the unsaturated mode as distinguished from most other logic types which operate in the saturation region. This logic has very fast switching speeds and low logic swings. Also called ECL or MECL.
CMOS Complementary metal-oxide semiconductor. Device formed by the combination of a PMOS and an NMOS (P-type and N -type channel semiconductors).
Co-fire To place circuits onto an unfired ceramic and fire both circuits and ceramic simultaneously.
Collector junction The semiconductor junction in a transistor between the collector and base regions.
Collocator Device used to collect substrates from a screen printer and deposit them, in rows, onto a conveyor/dryer or furnace belt.
Compliant bond A bond which uses an elastically and /or plastically deformable member to import the required energy to the lead.
Component A packaged functional unit consisting of one or more circuits made up of devices, which (in turn) may be part of an operating system or subsystem. A part of, or division of, the whole assembly or equipment.
Component part A term sometimes used to denote a passive device.
Component placement equipment Automatic systems for sorting and placing components onto hybrid circuit substrates: consisting of indexing-conveyor, sorter, placement heads, missing component detector, programmable electro-pneumatic control, and options to handle special requirements.
Con/dryer Process equipment designed to receive screen printed substrates and dry the ink on the substrate while conveying them away.
Contact printing Print mode in screen printing wherein entire substrate contacts bottom surface of screen during print cycle. Necessary when using metal masks.
Contaminant An impurity or foreign substance present in a material that affects one or more properties of the material.
Cosmetic defect A variation from the conventional appearance of an item, such as a slight change in color: not necessarily detrimental to performance.
Corrosion In semiconductors, a defect in or on the aluminum metallization, usually a white crystalline growth.
Counter A device capable of changing states in a specified sequence upon receiving appropriate input signals. The output of the counter indicates the number of pulses which have been applied. (See also Divider.) A counter is made from flip-flops and some gates. The output of all flip-flops are accessible to indicate the exact count at all times.
Counter, binary An interconnection of flip-flops having a signal input so arranged to enable binary counting. Each time a pulse appears at the input, the counter changes state and tabulates the number of input pulses for readout in binary form. It has a 2^{n} possible counts where n is the number of flip-flops.
Counter, ring A special form of counter sometimes called a Johnson or shift counter which has very simple wiring and is fast. It forms a loop or circuits of interconnected flip-flops so arranged that only one is " 0 " and that as input signals are received, the positioning of the " 0 " state moved in sequence from one flip-flop to another around the loop until they are all " 0 ," then the first one goes to " 1 " and this moves in sequence from one flip-flop to another until all are " 1 . "It has $2 \times n$ possible counts where n is the number of flip-flops.
Cover lay, cover coat Outer layer(s) of insulating material applied over the conductive pattern on the surface of the substrate.
Crazing Minute cracks on or near the surface of materials such as ceramic.
Data Term used to denote facts, numbers, letters, symbols, binary bits presented as voltage levels in a computer. In a binary system data can only be " 0 " or "1."
DCTL (Direct-Coupled Transistor Logic) Logic employing only transistors as active circuit elements.
Debug To remove malfunctions from a system or device.

Decimal A system of numerical representation which uses ten numerals $0,1,2,3, \ldots, 9$. Each numeral is called a digit. A number system to the radix 10.
Defect Any deviation from the normally accepted characteristics of a product or component.
Delay The slowing up of the propagation of a pulse either intentionally, such as to prevent inputs from changing while clock pulses are present, or unintentionally as caused by transistor rise and fall time pulse response effects.
Detailed logic diagram A diagram that depicts all logic functions and also shows nonlogic functions, socket locations, pin numbers, test points, and other physical elements necessary to describe the physical and electrical aspects of the logic. The detailed logic diagram is used primarily to facilitate the rapid diagnosis and localization of equipment malfunctions. It also is used to verify the physical consistency of the logic and to prepare fabrication instructions. The symbols are connected by lines that represent signal paths.
Detritus Fragments of material produced during resistor trimming which remain in the trimmed area.
Device The physical realization of an individual electrical element in a physical independent body which cannot be further reduced or divided without destroying its stated function. This term is commonly applied to active devices. Examples are transistors, pnpn structures, tunnel diodes, resistors, capacitors, and inductors.
Diamond powders, grits, and compounds These materials are used mainly as abrasives for processes such as lapping and polishing, abrasives in abrasive trimming, or to create the cutting surface of slicing equipment.
Die A tiny piece of semiconductor material, broken from a semiconductor slice, on which one or more active electronic components are formed. (Sometimes called chip).
Die bonding Attaching the semiconductor chip to the substrate, with an epoxy, eutectic, or solder alloy.
Dielectric isolation The use of silicon dioxide barriers created during silicon IC processing to provide isolation between components on a chip.
Diffusion A process, used in the production of semiconductors, which introduces minute amounts of impurities into a substrate material such as silicon or germanium and permits the impurity to spread into the substrate. The process is very dependent on temperature and time.
Diffusion and oxidation systems Equipment in which non-conductive materials are made semiconductive by diffusing controlled amounts of selected impurities into the surface and the surface of silicon is oxidized selectively to provide a protective or insulative layer. Diffusion and oxidation are accomplished by exposing the silicon wafer to specific atmospheres in a high temperature fumace.
Diffusion depth testing A diffusion depth tester determines to what depth diffused impurities have been implanted into a wafer under ion implantation.
Digital circuit A circuit which operates in the manner of a switch, that is, it is either "on" or "off." More correctly should be called a binary circuit.
Diode A device permitting current to flow in one direction only. Diodes are used in logic circuits to control the passage or nonpassage of a signal from one element to another.
Discrete Having an individual identity. Fabricated prior to installation, and /or separately packaged, not part of an integrated circuit.
DIP Dual in-line package.
Discrete circuits Electronic circuits built of separate, individually manufactured, tested, and assembled diodes, resistors, transistors, capacitors, and other specific electronic components.
Discrete component A circuit component having an individual identity, such as a transistor, capacitor, or resistor.
Divider (frequency) A counter which has a gating structure added which provides an output pulse after receiving a specified number of input pulses. The outputs of all flip-flops are not accessible.
Dopants Selected impurities introduced into semiconductor substrates in controlled amounts, the atoms of which form negative (n-type) and positive (p-type) conductive regions. Phosphorus, arsenic, and antimony are n-type dopants for silicon; boron, aluminum, gallium, and indium are p-type dopants for silicon.
Doping Addition of controlled impurities to a non-conductive material to achieve the desired semiconductor characteristic, accomplished through thermal diffusion or ion implantation.
Dot "AND" Externally connecting separate circuits or functions so that the combination of their outputs results in an "AND" function. The point at which the separate circuits are wired together will be a "1" if all circuits feeding into this point are " 1 " (also called WIRED "OR").
Dot "DR" Externally connecting separate circuits or functions, so that the combination of their outputs results in an "OR" function. The point at which the separate circuits are wired together will be a "1" if any of the circuits feeding into this point are "1."
Driver An element which is coupled to the output stage of a circuit in order to increase its power or current handling capability or fanout; for example, a clock driver is used to supply the current necessary for a clock line.
DTL (Diode-Transistor Logic) Logic employing diodes with transistors used only as inverting amplifiers.
Dual-in-line package (DIP)) Carrier in which a semiconductor integrated circuit is assembled and sealed. Package consists of a plastic or ceramic body with two rows of seven vertical leads which are inserted into a circuit board and secured by soldering.
Durometer An instrument for measuring the hardness of the squeegee material for screen printing.
ECL Emitter-coupled logic; a type of current mode logic in which the circuits are coupled with one another through emitter followers at the input or output of the logic circuit.

Ejection Wipe off or removal of the printed part from the workholder, in screen printing.
Electrical element The concept in uncombined form of the individual building blocks from which electric circuits are synthesized.
Electron beam bonding Process using a stream of electrons to heat and bond two conductors within a vacuum.
Electron beam lithography Lithography in which the radiation sensitive film or resist is placed in the vacuum chamber of a scanning beam electron microscope and exposed by an electron beam under digital computer control.
Electron heam welding Process in which welder generates a stream of electrons traveling at up to 60% of the speed of light, focuses it to a small, precisely controlled spot in a vacuum, and converts the kinetic energy into extremely high temperature on impact with the workpiece.
Emitter The region of transistor from which charge carriers (minority carriers in the base) are injected into the base.
Enable To permit an action or the acceptance or recognition of data by applying appropriate signals (generally a logic " 1 " in a positive logic) to the appropriate input. (See Inhibit.)
Encapsulate To embed electronic components or other entities in a protective coating, usually done when the plastic encapsulant is in fluid state so that it will set in solid form as an envelope around the work.
Entrapment The damaging admission and trapping of air, flux, and fumes, caused by contamination and plating process defects.
Epitaxial Pertaining to a single-crystal layer on a crystalline substrate, and having the same crystalline orientation as the substrate: e.g., silicon atoms condensed from vapor phase onto a silicon-wafer substrate.
Epitaxial growth A process of growing layers of material on a selected substrate. Usually silicon is grown in a silicon substrate. Silicon and other semiconductor materials may be grown on a substrate with compatible crystalography, such as sapphire (silicon-on-sapphire).
Epitaxial layer A precisely doped, thin layer of silicon grown on a p-doped thick wafer and into which n-type semiconductor junctions are diffused.
EPROM Electrically programmable read only memory.

Etch factor

The ratio of depth of etch to the amount of undercut.
Exclusive " 0 " A logical function whose output is " 1 " if either of the two variables is " 1 " but whose output is " 0 " if both inputs are "1" or both are "0."
Exposure The act of subjecting photosensitive surfaces or matter to radiant energy such as light to produce an image.
Evaporation and sputtering materials Metals used for evaporation charges and sputtering targets, including: chromium and
its alloys, for (1) a thin adhesive layer on IC substrates to allow better deposition of gold or other metal, (2) resistor material, and
(3) vacuum deposition in mask production; aluminum and certain Al alloys, for first layer deposition in MOS technology; molybdenum, as a conductor or adhesive layer for IC fabrication; and titanium, as an intermediate adhesive layer for beam-lead interconnection.
Evaporation sources Boats and filaments used as heat sources for vacuum evaporation to form thin film layers on substrates. The process is frequently done by resistively heating the evaporant in a ceramic crucible or by self-heating or boats constructed of tungsten, molybdenum, or tantalium.
Extrinsic properties Properties introduced into a semiconductor by impurities with a crystal.
Extrinsic semiconductor The resulting semiconductor produced when impurities are introduced into an otherwise nonsemiconductor crystal. The electrical properties depend upon the impurities.
Face bonding Process of bonding semiconductor chip so that its circuitry side faces the substrate. Flipchip and beam lead bonding are two common methods. (Opposite of back bonding.)
Fall time A measure of the time required for the output voltage of a circuit to change from a high voltage level to a low voltage level once a level change has started. Current could also be used as the reference, that is, from a high current to a low current level.
Fanin The number of inputs available to a specific logic stage of function.
Fanout The number of input stages that can be driven by a circuit output.
Fast ADDER (See Anticipated CARRY ADDER.)
FEB (Functional Electronic Block) Another name for a monolithic integrated circuit of thick-film circuit.
Feedback When part of the output of a circuit is channeled back to an input, it is said to have feedback. When part of the output of an amplifier is routed back to augment the input signal, the amplifier has positive feedback or if this rechanneling is employed to diminish the input it is called negative feedback.
FET Field effect transistor; semiconductor device in which resistance between source and drain terminals is modulated by a field applied to the third (gate) terminal.
Film conductor Electrically conductive material formed by deposition on a substrate.
Film microcircuit Thin or thick film network forming an electrical interconnection of numerous devices.
Film resistor A device whose resistive material is a film on an insulator substrate; resistance value is determined by trimming.
Final seal The hybrid microelectronic packaging step which encloses the circuit so that further intemal processing cannot be performed without disassembly.
Flatpack Subassembly composed of two or more stages made up of integrated circuits and thin film components mounted
on a ceramic substrate. This semiconductor network is enclosed in a shallow rectangular package with the connecting leads projecting from edges of the package.
Flip-chip A generic term describing a semiconductor device having all terminations on one side of the form of bump contacts. After the surface of the chip has been passivated or otherwise treated, it is flipped over for attaching to a matching substrate.
Flip-flop (storage element) A circuit having two stable states and the capability of changing from one state to another with the application of a control signal and remaining in that state after removal of signals. (See Bistable element.)
Flip-flop, "D" D stands for delay. A flip-flop whose output is a function of the input which appeared one pulse earlier; for example, if a "1" appeared at the input, the output after the next clock pulse will be a "1."
Flip-flop, "J-K" A flip-flop having two inputs designated J and K . At the application of a clock pulse, a " 1 " on the " J " input and a " 0 " on the " K " input will set the flip-flop to the " 1 " state; a " 1 " on the " K " input and a " 0 " on the " J " input will reset it to the " 0 " state; and "1's" simultaneously on both inputs will cause it to change state regardless of the previous state. $\mathrm{J}=0$ and $\mathrm{K}=0$ will prevent change.
Flip-flop, "R-S" A flip-flop consisting of two cross-coupled NAND gates having two inputs designated "R" and "S." A " 1 " on the " S " input and " 0 " on the " R " input will reset (clear) the flip-flop to the " 0 " state, and " 1 " on the " R " input and " 0 " on the " S " input will set it to the "1." It is assumed that " 0 's" will never appear simultaneously at both inputs. If both inputs have " 1 ' s " it will stay as it was. " 1 " is considered nonactivating. A similar circuit can be formed with NOR gates.
Flip-flop, "R-S-T" A flip-flop having three inputs, "R," "S," and "T." This unit works as the "R-S" flip-flop except that the "T" input is used to cause the flip-flop to change states.
Flip-flop, "T" A flip-flop having only one input. A pulse appearing on the input will cause the flip-flop to change states. Used in ripple counters.
Floating squeegee This squeegee, as opposed to a rigid squeegee, has the ability to produce a rocking movement on the horizontal plane in screen printing.
Flood stroke Return stroke of squeegee in screen printing which redistributes ink back over the pattern. Provides for proper ink control, and is especially useful for thixotropic inks. (See "Print Stroke".)
Fluid flow masking A gold electro-plating technique in which the work to be plated is the cathode and current flows through the fluid stream of plating material, allowing control of deposit at the point of contact between the stream and the workpiece.
Furnaces, diffusion and firing Systems designed for enclosed elevated temperature processing of solid state devices and systems, in gaseous atmospheres. Diffusion furnaces are operated at temperatures from 1,000 to $1300^{\circ} \mathrm{C}$ to achieve doping of semiconductor substrates, by one of a number of processes. Oxidation is a process that puts a protective layer of silicon oxide on the wafer and is used either as an insulator or to mask out certain areas when doping. Deposition systems, of which there are three (liquid, gaseous, solid), are used to deposit impurities on the silicon wafer. Other systems include a drive-in system used to diffuse impurities into the wafer to a specified level, and an alloy system which is used in a final step of the metallization process. Firing furnaces are used for the curing of multilayer ceramics for integrated electronics and for the firing of thick film materials on microcircuits.
Furnace, screen printing Process equipment designed to cure substrates after screen printing and drying.

FULL ADDER See Adder.

Gate 1. A circuit having an output and a multiplicity of inputs designed so that the output is energized only when a certain combination of pulses is present at the inputs. An AND-gate delivers an output pulse only when every input is energized simultaneously in a specified manner. An OR-gate delivers an output pulse when any one or more of the pulses meet the specified conditions. 2. An electrode in a field effect transistor. 3. A circuit that admits and amplifies or passes a signal only when a gating (triggering) pulse is present. 4. A circuit in which one signal serves to switch another signal on and off.

Gate definitions below assume positive logic

Gate, AND All inputs must have " 1 " level signals at the input to produce a " 1 " level output.
Gate, NAND All inputs must have " 1 " level signals at the input to produce a " 0 " level output.
Gate, NOR Any one input or more than one input having a "1" level signal will produce a "0" level output.
Gate, OR Any one input or more than one input having a " 1 " level signal will produce a " 1 " level output.
Gates (decision elements) A circuit having two or more inputs and one output. The output depends upon the combination of logic signals at the input.
Germanium polycrystalline A prime raw material for making crystal ingots.
Glassivation A deposited layer of glass on top of a metallized wafer or chip; primarily a protective layer.
Glazed substrate Ceramic substrate with a glass coating to effect a smooth and nonporous surface.
Green ceramic Unfired ceramic material.
Green substrate Unfired material in substrate form. Normally substrates are printed after firing. Under special circumstances, however, green (unfired) substrates are printed.
Half ADDER A switching circuit which combines binary bits to generate the SUM and the CARRY. It can only take in the two binary bits to be added and generate the SUM and CARRY (see also ADDER).
Half shift register Another name for certain types of flip-flops when used in a shift register. It takes two of these to make one stage in a shift register.

Header Base of a hybrid circuit package, holding the leads.
High See Binary logic.
High temperature reverse bias Burn-in type test of diodes and transistors conducted with the junctions reverse biased to effect any failure due to ion migration in bonds of dissimilar metals
Hole A mobile vacancy or electron deficiency in the valence structure of a semiconductor. It is equivalent to a positive charge.
HTRB High temperature reverse bias.
Hybrid A method of manufacturing integrated circuits by using a combination of monolithic, thin-film and thick-film techniques.
IC Integrated circuit.
IC socket Female contact which provides pluggable electrical engagement on its inner surface for integrated circuit components to achieve interfacing to a PCB.
Image/pattern The printed screen or design on the substrate after screen printing.
Inhibit To prevent an action, or acceptance of data, by applying an appropriate signal to the appropriate input (generally a logic " 0 " in positive logic). (See Enable.)
Ink In hybrid technology the conductive paste used on thick film materials to form the printed conductor pattern. Usually contains metals, metal oxide, glass frit, and solvent.
Input/output Interface circuits or devices offering access between external circuits and the central processing unit or memory.
Integrated circuit (EIA definition) (1) "The physical realization of a number of electrical elements inseparably associated on or within a continuous body of semiconductor material to perform the functions of a circuit." (See Slice and Chip.) (2) Electronic circuits or systems consisting of an interconnected array of extremely small active and passive elements, inseparably associated on or within a continuous substrate or body. Other names are integrated electronic circuit, integrated electronic system, and integrated microcircuit.
Integrated injection logic Integrated circuit logic which uses bipolar transistor gates. Makes possible large scale integration on silicon for logic arrays and other analog and digital applications.
Inverter A circuit whose output is always in the opposite state from the input. This is also called a NOT circuit. (A teeter-totter is a mechanical inverter.)
1/0 Input/output.
Ion implantation Precise and reproducible method of doping semiconductors to achieve a desired characteristic. lons of the particular dopant are energized and accelerated to the point where they can be driven in a focused beam directly into the silicon wafer. This technique assures uniform, accurately controlled depth of implantation and ionic diffusion in the wafer.
Ion milling Ion milling is a VLSI production technique that performs many of the same type of tasks that more traditional wet chemical and plasma etching processes do.
ISHM The International Society for Hybrid Microelectronics.
Isolation diffusion In MIC technology, the diffusion step which generates back-to-back junctions to isolate active devices from one another.
Josephson effect The tunneling of electron pairs through a thin insulating barrier between two superconducting materials.
Junction A joining of two different semiconductors or of semiconductor and metal. Alloy, diffused, electrochemical, and grown are the four junction types.
Kerf The slit or channel cut in a resistor during trimming by laser beam of abrasive jet.
Laminar flow A directed stream of filtered air moved constantly across a clean work station, usually parallel to the workbench surface.
Land area in image Closed spaces in the screen which result in open spaces on the printed image in screen printing.
Lapping Grinding and polishing such products as semiconductor blanks in order to obtain precise thicknesses or extremely smooth, flat, polishing surfaces.
Large-scale integration (LSI) Usually denotes arrays of integrated circuits on a single substrate that comprise 100 or more individual active circuit functions or gates.
Laser bonding A process which forms a metal-to-metal fastened union, using a laser heat source to join conductors.
Laser trim The adjustment (upward) of a film resistor value by applying heat from a focused laser source to remove material.
Laser welding Process in which thermal energy released by a laser impinging upon the surface of a metal is conducted into the bulk of the metal work-piece by thermal conduction, bonding component leads to highly conductive materials such as copper printed circuitry.
Lead frame The metal part of a solid state device package which achieves electrical connection between the die and other parts of the systems of which the IC is a component. Large scale integrated circuits are welded onto lead frames in such a way that leads are available to facilitate making connections to and from the various solid state devices to the packages.
Leadless inverted device (LID) A shaped, metallized ceramic form used as an intermediate carrier for the semiconductor chip devices, especially adapted for attachment to conductor lands of a thick or thin film network by reflow solder bonding.
Leak detectors Applied only to hermetic devices, fine leak detectors are used to detect defects in sealing that are too small to be detected by gross-leak methods. Devices are placed in a bomb pressurized with a mixture of gases.

LID Leadless inverted device.
Life aging Burn-in test which moderates the elevation of temperature and extends the time period in order to test overall device quality as opposed to infant mortality.
Linear circuit A circuit whose output is an amplified version of its input, or whose output is a predetermined variation of its input.
Logic A mathematical arrangement using symbols to represent relationships and quantities, handled in a microelectronic network of switching circuits or gates, which perform certain functions; also, the type of gate structure used in part of a data processing system.
Logic diagram A picture representation for the logical functions of AND, OR, NAND, NOR, NOT.
Logic function A combinational, storage, delay, or sequential function expressing a relationship between variable signal input(s) to a system or device and the resultant output(s).
Logic swing The voltage difference between the two logic levels "1" and "0."
Logic symbol The graphic representation of the aggregate of all the parts implementing a logic function.
Low See Binary logic.
LSI Large scale integration.
Magnetic integrated circuit The physical realization of one or more magnetic elements inseparably associated to perform all, or at least a major portion, of its intended function.
Masks, microelectronic Thin metals or other materials with an open pattern designed to mask off or shield selected portions of semiconductors or other surfaces during deposition processes. There also are photomasks or optical masks for contact or projection printing of wafers-these may use an extremely flat glass substrate with iron oxide, chrome, or emulsion coating. There also are thick film screen masks.
Medium scale integration (MSI) The physical realization of a microelectronic circuit fabricated from a single semiconductor integrated circuit having circuitry equivalent to more than 10 individual gates or active circuit functions.
Memory The semi-permanent storage of numbers, in digital form, in a circuit or system. With reference to computers, the term also describes the storage capability or location and which receives and holds information for later use. Also, the storage arrangement, such as RAM or other type.
Metallization The selective deposition of metal film on a substrate to form conductive interconnection between IC elements and points for connections with the outside world.
Metal-oxide-semiconductor (MOS) A metal over silicon oxide over silicon arrangement which produces circuit components such as transistors. Electrical characteristics are similar to vacuum tubes.
MIC Monolithic integrated circuit.
Microbond The realization of a very small fastened joint between conductors or between a conductor and a microelectronic chip device.
Microcircuit The physical realization of a hybrid or monolithic interconnected array of very small active and passive electronic elements.
Microelectronics The entire spectrum of electronic art dealing with the fabrication of sophisticated, practical systems using miniaturized electronic components. Microelectronics has developed along two basic technologies-monolithic integrated circuits and hybrid integrated circuits.
Microminiaturization The process of packaging an assembly of microminiature active and passive electronic elements, replacing an assembly of much larger and different parts.
Micromodule A microcircuit constructed of a number of components (e.g., microwafers) and encapsulated to form a block that is still only a fraction of an inch in any dimension.
Microprobe An extremely sharp and small exploring tool head attached to a positioning handle, used for testing microelectronic circuits by establishing ohmic contact.
Microprocessor An IC package incorporating logic, memory, control, computer, and/or interface circuits, the whole of which is designed to handle certain functions.
Microwave integrated circuit The physical realization of an electronic circuit operating at frequencies above one gigahertz and fabricated by microelectronic techniques. Either hybrid or monolithic integrated circuit technology may be utilized.
Minority carrier The less-predominant carrier in a semiconductor. Electrons are the minority in p-type; holes are the minority in n-type semiconductors.
Mobility. The ease with which charge carriers can move through a semiconductor. Generally electornics and holes do not have equal mobility in a given semiconductor. Mobility is higher in germanium than in silicon.
Module A packaging unit displaying regularity and separable repetition. It may or may not be separable from other modules after initial assembly. Usually all major dimensions are in accordance with a prescribed set of dimensions.
Molecular beam epitaxy equipment This equipment is used for growing epitaxial thin films under UHV conditions by directing beams of atoms or molecules created by thermal or electron beam evaporation onto clean, heated substrates.
Molecular electronics Simply, electronics on a molecular scale, dealing with the production of complex circuitry in semiconductor devices with integral elements processed by growing multi-zoned crystals in a furnace for the ultimate performance of electrical functions.
Monolithic Refers to the single silicon substrate in which an integrated circuit is constructed. (See Integrated circuit.)
Monolithic integrated circuit The physical realization of electronic circuits or sub-systems from a number of extremely small
circuit elements inseparably associated on or within a continuous body or a thin film of semiconductor material.
Morphology, integrated The structural characterization of an electronic component in which the identity of the current or signal modifying areas, patterns, or volumes has become lost in the integration of electronic materials, in contrast to an assembly of devices performing the same function.
Morphology, translational The structural characterization of an electronic component in which the areas or patterns of resistive, conductive, dielectric, and active materials in or on the surface of the structure can be identified in a one-to-one correspondence with devices assembled to perform an equivalent function.
MOS Metal-oxide-semiconductor. A technology for producing transistors that incorporates metal over oxide over silicon layers. Electrical characteristics are similar to vacuurn tubes.
MSI Medium scale integration.
MTNS Metal thick nitride semiconductor, which is similar to an MTOS device except that a thick silicon nitride or silicon nitride-oxide layer is used instead of just plain oxide.
MTOS Metal thick oxide semiconductor, where the oxide outside the desired active gate area is made much thicker in order to reduce problems with unwanted parasitic effects.
Multichip integrated circuit Hybrid integrated circuit which includes two or more SIC. MSI, or LSI chips.
Multilayer dielectric A compound including glass and ceramic which is applied as an insulating barrier between conductors for multi-layer and crossover work.
"NAND" A Boolean logic operation which yields a logic " 0 " output when all logic input signals are logic "1."
Negative logic Logic in which the more negative voltage represents the " 1 " state; the less negative voltage represents the "0" state. (See Binary logic.)
Network A collection of elements, such as resistors, coils, capacitors, and sources of energy, connected together to form several interrelated circuits.
NMOS N-channel MOS circuits, using currents made up of negative charges and producing devices at least twice as fast as PMOS.
Noble metal paste A soft, moist, smooth compound made up partially of precious metals such as gold, platinum, ruthenium, or others classed as noble metals, providing conductors in film circuitry.
Noble system Thick film system using conductors of gold, platinum, and possibly palladium silver, or certain alloys of these precious metals.
Noise immunity A measure of the insensitivity of a logic circuit to triggering or reaction to spurious or undesirable electrical signals or noise, largely determined by the signal swing of the logic. Noise can be either of two directions, positive or negative.
Non-noble system Thick film system using conductors of copper, tungsten, nickel, molybdenum, and other non-noble metals.
"NOR" A Boolean logic operation which yields a logic " 0 " output with one or more true " 1 " input signals.
"NOT" A Boolean logicoperation indicating negation, not " 1 ." Actually an inverter. If inputs is " 1 " output is NOT " 1 " but " 0 ." If the input is " 0 " output is NOT " 0 " but " 1 ." Graphically represented by a bar over a Boolean symbol such as A. A means "when A is not 1 ."
n -Region The zone in a semiconductor in which electron density is greater than hole density.
n-type Semiconductor material whose impurities produce free electrons in the compound, leading to conduction.
n-type semiconductor An extrinsic semiconductor in which electron density exceeds hole density. An electron donor type.
Off-contact printing Print mode wherein screen printer's squeegee stretches screen to touch the substrate and deposit ink. Usually $0.010^{\prime \prime}$ snap-off is used. Allows thicker ink deposition.
Offset The change in input voltage required to produce a zero output voltage in a linear amplifier circuit. In digital circuits it is the dc voltage on which a signal is impressed.
One ("1") See Binary Logic.
"OR" A Boolean logic operation used to identify the logic operation wherein two or more true " 1 " inputs only add to one true "1" output. Only one input needs to be "true" to produce a "true" output. The graphical symbol for "OR" is a plus sign (+).
Overglaze A glass compound in low-melting, vitreous form, used as a coating to passivate thick film resistors and offer mechanical protection.
Overlap The contact area between a film resistor and film conductor.
Packaging The process of physically locating, connecting, and protecting devices or components.
Packaging density The number of devices or equivalent devices per unit volume in a working system or subsystem.
Pad In IC technology, the bonding area.
Parallel gap welding Type of resistance welding wherein electrodes contact the work from one side only. Mechanism by which bonding occurs is virtually always fusion. Process is well suited to welding component leads to planar surfaces such as IC leads to PC conductors.
Parallelity Relationship of screento work-holder and print head in screen printing. Each should be parallel to one another in order to print accurately.
Parameter Any specific characteristic of a device. When considered together, all the parameters of a device describe its operational and physical characteristics.
Parallel This refers to the technique for handling a binary data word which has more than one bit. All bits are acted upon simultaneously. It is like the line of a football team. Upon a signal all line men act. (See also Serial.)

Parallel Adder A conventional technique for adding where the two multibit numbers are presented and added simultaneously (parallel). A ripple adder is still a parallel adder; the carry is rippled from the least significant to the most significant bit. Another type of parallel adder is the "Look Ahead," or "Anticipated Carry" adder. (See Ripple ADDER and Fast ADDER.)
Parallel operation The organization of data manipulation within computer circuitry where all the digits of a word are transmitted simultaneously on separate lines in order to speed up operation, as opposed to serial operation.
Particle impact noise detection (PIND) PIND testing equipment detects any loose foreign particles that may be present in a hermetic package. The package is placed on a shaker table where it is in intimate contact with an acoustic transducer that drives an ultrasonic amplifier.
Parts handling Devices used to load and unload substrates during screen printing and drying operations.
Passivation The growth of an insulating layer on the surface of a semiconductor to provide electrical stability by isolating the transistor surface from electrical and chemical conditions in the environment. It reduces reverse-current leakage, increases breakdown voltages, and improves the power-dissipation rating.
Passive elements Resistors, inductors, or capacitors, elements without gain.
Passive substrate A substrate for an integrated component which may serve as physical support and thermal link to a thickor thin-film integrated circuit, but which exhibits no transistance. Examples of passive substrates are glass, ceramic, and similar materials.
Paste Synonymous with "composition" and "ink" when relating to screenable, thick film materials.
Pattern/image The open area in the screen through which the ink penetrates to become the printed image on the substrate, in screen printing.
Photomask A square, flat glass substrate, coated with a photographic emulsion or a very thin layer of metal, on which appear several hundred circuit pattems (each containing thousands of images). The patterns are exposed onto semiconductor wafers.
Photoresists and processing materials These are light sensitive materials that are deposited as a uniform film on a wafer or substrate. The exposure of specific pattern is performed through masking operations.
Pinhole A minute hole through a layer or pattern.
Planar process Fabrication of MICs and semiconductor devices using silicon dioxide as a masking agent and producing components on a single plane.
Platen Plate which holds substrate during screen printing.
Plating The deposition of a metal layer on a substrate surface by electrolytical or certain chemical means. The materials include gold, copper, solder, etc. The functions of the metal plate vary, including corrosion protection, solderability enhancement, etch resist, bonding for lead frames, and electrical connection, among others.
PMOS P-channel MOS: refers to the oldest type of MOS circuit where the electrical current is a flow of positive charges.
Polishing A mechanical finishing operation conducted upon solid state substrates to achieve smoothness and desired surface qualities. See Lapping.
Porcelainize To coat and fire a metal with glass material, forming a hybrid circuit substrate.
Positive logic Logic in which the more positive voltage represents the "1" stage. (See Binary logic.)
Preset An input like the Set input and which works in parallel with the Set.
Probing A term used to describe electrical testing that employs very finely-tipped probes applied sequentially to each of the finished dice of a wafer.
PROM Programmable read-only memory; a ROM which requires a programming operation.
Propagation delay A measure of the time required for a change in logic level to be transmitted through an element or a chain of elements.
Propagation time The time necessary for a unit of binary information (high voltage or low) to be transmitted or passed from one physical point in a system or subsystem to another. For example, from input of a device to output.
p-type semiconductor An extrinsic semiconductor in which the hole density exceeds the conduction electron density. An electron acceptor type.
Print stroke Stroke of the squeegee in screen printing at which time ink is forced through the pattem on the screen.
Print-print Squeegee prints in both directions per substrate in screen printing process.
Printer Process unit designed to accept, hold, and screen print a substrate in order that ink may be applied with extremely accurate and repeatable registration.
Pulse A signal of very short duration.
Purple plague Defect-causing formation of gold-aluminum chemical compounds often produced when gold and aluminum are bonded. Purple in color, brittle, subject to degenerative failure, and sometimes compounded by inclusion of silicon.
Q output The reference output of a flip-flop. When this output is " 1 " the flip-flop is said to be in the " 1 " state; when it is " 0 " the output is said to be in the "0" state. (See also State and Set.)
$\overline{\mathrm{Q}}$ output The second output of a flip-flop. It is always opposite in logic level to the Q output.
RAM Random access memory; a type of memory which offers access to storage locations within it by means of X and Y coordinates.
RCTL (Resistor-Capacitor-Transistor-Logic) Same as RTL except that capacitors are used to enhance switching speed. Register A device which can store information, usually that contained in a small subset or word of the total within a digital computer system.

Registration The degree of proper alignment of a circuit pattern on the substrate.
Resist Material such as ink, paint, or metallic plating, used to protect the desired portions of the printed conductive pattern from the action of the etchant, solder, or plating.
Reset Also called clear. Similar to Set except it is the input through which the Q output can be made to go to "0."
Rigid squeegee Firm mounting of the screen printer squeegee blade and holder. Squeegee adjustment is more critical.
Ripple The transmission of data serially. It is a serial reaction analogous to a bucket brigade or a row of falling dominoes.
Ripple ADDER A binary adding system similar to the system most people used to add decimal numbers-that is, add the
"units" column, get the carry, add it to the " 10 's" column, get the carry, add it to the " 100 ' s " column, and so on. Again it is necessary to wait for the signal to propagate through all columns even though all columns are present at once (parallel). Note that the carry is rippled.
Ripple counter A binary counting system in which flip-flops are connected in series. When the first flip-flop changes it effects the second which effects the third and so on. If there are ten in a row, the signal must go sequentially from the first flip-flop to the tenth.
Risers In a multilayer substrate, the conductive paths that vertically connect various levels.
Rotary (theta) motion Angular (rotary) adjustment of image to substrate. Allows registration in angularity in addition to " X " and " Y " in screen printing. (Also called Theta motion.)
Rise time A measure of the time required for the output voltage of a state to go from a low voltage level (" 0 ") to a high voltage level ("1") once a level change has been started.
ROM Read-only memory; a random access storage in which the data pattern is unchangeable after manufacture.
RTL (Resistor-Transistor-Logic) Logic is performed by resistors. Transistors are used to produce an inverted output.
Sapphire substrates Materials which provide a uniform dielectric constant, controlled orientation, thermal conductivity, and the single crystal surface desired for SOS, hybrid IC, and other microcircuit systems. The material may be grown directly in ribbons, tubes, filaments. and sheets.
Screen Tensioned mesh material with an open pattern through which ink penetrates to place an image on the substrate. Screen is above and parallel to the substrate during screen printing.
Screen printing, thick film The art of depositing conductive, resistive, and insulating materials on a dielectric base. This deposition is made through selected open areas in screens with inks or pastes forced through the open areas of the screen by squeegee motion onto the substrate base. In some cases, masks instead of conventional mesh screens may be used.
Scribing Scratching a tooled line or laser path on a brittle substrate to allow a wafer to be cleft or broken along the line, producing IC chips when all brakes are completed.
Scribing machines and tools Equipment used to separate wafers into individual devices, chips, or dice. This has been done by crude techniques similar to glass cutting, but is now accomplished by more efficient methods, using truncated pyramid diamond scribers, automated machines, conical tools, or lasers.
SEM Standard electronic module; a subassembly configuration format which meets a particular U.S. Navy set of specifications. This abbreviation is also used for scanning electron microscope.
Semiconductor The name applied to materials which exhibit relatively high resistance in a pure state but much lower resistance when minute amounts of impurities are added. The word is commonly used to describe electronic devices made from semiconductor materials.
Semiconductor devices Devices in which the characteristic distinguishing electron conduction takes place within a semiconductor, ranging from the single unit transistor to multiple unit devices such as the semiconductor rectifier. Other devices are diodes, photocells, thermistors, and thyristors.
Semiconductor integrated circuit (SIC) The physical realization of a number of electric elements inseparably associated on or within a continuous body of semiconductor material to perform the function of a circuit.
Serial The technique for handling a binary data word which has more than one bit. The bits are acted upon one at a time. It is like a parade going by a review point.
Serial operation The organization of data manipulation within computer circuitry where the digits of a word are transmitted one at a time along a single line. The serial mode of operation is slower than parallel operation, but utilizes less complex circuitry.
Set An input on a flip-flop not controlled by the clock (see Asynchronous inputs), and used to effect the Q output. It is this input through which signals can be entered to get the Q output to go to "1." Note it cannot get Q to go to "0."
Shear tester Shear testers are used to determine the integrity of a material or to test the adherance between two attached items. It is used for testing eutectic and epoxy die-bond strengths, and for adherance testing a gold-wire ball bonds, gold and solder chip bumps, external lead frames, coined and welded gold electrical contacts, thick film plating, and more.
Shift The process of moving data from one place to another. Generally many bits are moving at once. Shifting is done synchronously and by command of the clock. An 8 -bit word can be shifted sequentially (serially)-that is, the 1 st bit goes out, 2nd bit takes 1st bit's place, 3rd bit takes 2nd bit's place, and so on, in the manner of a bucket brigade. Generally referred to as shifting left or right. It takes 8 clock pulses to shift an 8 -bit word or all bits of a word can be shifted simultaneously. This is called parallel load or parallel shift.
Shift register An arrangement of circuits, specifically flip-flops, which is used to shift serially or in parallel. Binary words are generally parallel loaded and then held temporarily or serially shifted out.

SIC Semiconductor integrated circuit.
Silicon A brittle, gray, crystalline chemical element which, in its pure state, serves as a semiconductor substrate in microelectronics. It is naturally found in compounds such as silicon dioxide.
Silicon gate A type of MOS in which the gate is made of silicon instead of metal. It is faster and denser than the metal-gate MOS.
Silicon nitride A compound of silicon and nitrogen deposited on the surface of silicon monolithic ICs to impart greater stability.
Silicon oxide Silicon monoxide or dioxide or a mixture, the latter of which can be deposited on a silicon IC as insulation between metallization layers.
Single print One squeegee print stroke and flood return per substrate, in screen printing.
Skewing Refers to time delay or offset between any two signals in relation to each other.
Slewing rate Rate at which the output can be driven from limit to limit over the dynamic range.
Slice A single wafer cut from a silicon ingot forming a thin substrate on which all active and passive elements for multiple integrated circuits have been fabricated utilizing semiconductor epitaxial growth, diffusion, passivation, masking, photo resist, and metallization technologies. A completed slice generally contains hundreds of individual circuits. (see Chip.)
Small scale integration A circuit of under 10 gates, generally involving one metallization level implementing one circuit function in monolithic silicon.
Snap-off Distance from top of substrate in screen printing to bottom surface of screen. Squeegee must stretch screen this far to meet the substrate and deposit ink. Set by " Z " motion adjustments.
Snapstrate Scored large area substrate which, after screen printing, may be snapped or broken apart into smaller sized substrates.
Snugger Device for automatically positioning and holding the substrate in proper position during the print cycle, in screen printing.
Solder systems for bonding and welding Processors for ceramic hybrid microcircuits, substrates, lead frames, microassemblies, flat packs, wire memory arrays, ceramic headers, and magnet wire, where solder normally has been pretinned on the substrate or individual components, or solder pastes provide solder without the need for pretinning operations. Temperature controlled preheat, reflow, and cooling stages are involved, with reflow being almost instantaneous.
Solid state The electronic properties of crystalline materials (usually semiconductor in type). The interaction of light, heat, magnetic fields, and electric currents in these crystalline materials are involved in solid state devices. Less power is required to operate solid state devices and a greater variety of effects can be obtained. (2) Technology utilizing solid semiconductors in place of vacuum tubes for amplification, rectification, and switching.
SOS Silicon-on-sapphire transistor device. Silicon is grown on a passive insulating base (sapphire) and then selectively etched away to form a solid state device.
Sputtering A method of depositing a thin film of material onto a substrate. The substrate is placed in a large demountable vacuum chamber having a cathode made of the metal or ceramic to be sputtered. The chamber is then operated so as to bombard the cathode with positive ions. As a result, small particles of the material fall uniformly on the substrate.
Sputtering targets These are usually in the form of simple circular or rectangular plates, comprised of a variety of materials, and bombarded by gas ions that transfer their momentum to particles of the target, ejecting them into the vacuum chamber that houses the operation. These particles are then deposited in a thin film on strategically located substrates.
SSI Small scale integration.
Squeegee Hard, flexible blade with a precision edge which, with applied pressure, forces or pushes ink through the screen in screen printing.
Squeegee pressure Downward force exerted upon the screen and substrate by the squeegee during screen printing. Squeegee speed Rate of speed at which the squeegee is driven across the screen during screen printing.
Stability The specific ability of electronic circuits or other devices to withstand use and environmental stresses without changing. Also continued operation according to specifications despite adverse conditions.
State This refers to the condition of an input or output of a circuit as to whether it is a logic " 1 " or a logic " 0 ." The state of a circuit (gate or flip-flop) refers to its output. The flip-flop is said to be in the "1" state when its Q output is "1." A gate is in the "1" state when its output is "1."
Static In burn-in, the quality of a test wherein the device is subject to either forward or reverse bias applied to appropriate terminals; voltages are unvarying throughout test.
Steatite Ceramic material composed mainly of a silicate of magnesium, used as a circuit substrate.
Step To use the step-and-repeat method.
Substrate The physical material upon which an electronic circuit is fabricated. Used primarily for mechanical support but may serve a useful thermal or electrical function. Also, a material on whose surface an adhesive substance is spread for bonding or coating, or any material which provides a supporting surface for other materials.
Subsystem A part or division of a system which in itself has the properties of a system.
Surface diffusion The high temperature injection of atoms into the surface layer of a semiconductor material to form the junctions. Usually a gaseous diffusion process.

Synchronous Operation of a switching network by a clock pulse generator. All circuits in the network switch simultaneously. All actions take place synchronously with the clock.
Synchronous inputs Those terminals on a flip-flop through which data can be entered but only upon command of the clock. These inputs do not have direct control of the output such as those of a gate but only when the clock permits and commands. Called JK inputs or ac set and reset inputs.
System A group of integrated circuits or other components interconnected to perform a single function or number of related functions. If further interconnected into a large system, the individual elements are referred to as subsystems.
Taper testers A taper tester is used to test one aspect of the dimensional integrity of wafers. Taper results when the two faces of the water under test are not parallel.
TCR Temperature coefficient of resistance.
Temperature coefficient of resistance The amount of change in the resistance of a material per degree of temperature rise. Thermal compression bonding Process of diflusion bonding in which two prepared surfaces are brought into intimate contact, and plastic deformation is induced by the combined effects of pressure and temperature, which in tum results in atom movement causing the development of a crystal lattice bridging the gap between facing surfaces and resulting in bonding.
Thermistor A semiconductor device, the electrical resistance of which varies with the temperature. Its temperature coefficient of resistance is high, nonlinear, and usually negative.
Thick film Conductive, resistive, and/or capacitive passive network deposited on a substrate using a metallic or resistive film which is more than five microns in thickness.
Thick film hybrid integrated circuits The physical realization of a hybrid integrated circuit fabrication on a thick film network.
Thick film resistor, conductor, and dielectric compositions The principle materials for making thick film circuits, available in paste form and consisting of mixtures of metal, oxide, and glass powders.
Thin film Conductive, resistive, and/or capacitive passive network deposited on a substrate using a metallic or resistive film which is less than five microns in thickness.
Thin film deposition, chemical vapor type The CVD technique involves a decomposition and reaction between gases on the surface of a heated substrate such that a solid layer is nucleated and grown. Metals are generally derived from the decomposition of the metal halides. Insulators may be formed by reacting metal halides with oxygen (oxides), ammonia (nitrides), diborane (borides), etc.
Thin film deposition, evaporation type Popular technique for depositing thin film in vacuum, accomplished by heating the source material in a low pressure chamber so that it vaporizes and then condenses onto all cooler surfaces in line-of-sight from the source.
Thin film deposition, sputtering type Evaporation produced by ion bombardment of the source material, known as cathodesputtering.
Thin film deposition materials, conductors and resistors Metals such as aluminum, gold, chromium, nickel, platinum, fungsten, alloys, and cermets deposited as electrical conductors and resistors on silicon or other substrates.
Thin film deposition materials, inorganic dielectrics Film compounds produced by various vacuum evaporation processes and deposited on substrates to perform electrical functions. Examples include silicon monoxide. $\mathrm{ZnS}, \mathrm{CaF}, \mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{SI}_{3} \mathrm{~N}_{4}$, and other chemical compounds.
Thin film deposition materials, organic dielectrics Insulating film compounds produced when organic vapors are heated under conditions in which polymerization and deposition occur. Examples are parylene, butadene, acrolein, and divinyl benzene.
Thin film deposition materials, semiconductors Polycrystalline films deposited by vacuum or flash evaporation to produce high purity single crystal silicon or other semiconductor substances.
Thin film hybrid integrated circuits The physical realization of a hybrid integrated circuit fabricated on a thin film network. Thin film integrated circuit The physical realization of a number of electric elements entirely in the form of thin films deposited in a patterned relationship on a structural supporting material.
Toggle To switch between two states as in a flip-flop.
Tooling Vacuum holes, grooves, and locating pins on the tool plate surface dedicated to a certain size substrate in order to position and hold the substrate during the print cycle of screen printing.
TO package Can-type IC chip configuration, an outgrowth of the original TO transistor package. Most common are the TO-5, TO-18, and TO-47. The IC chip is mounted within the package, interconnected to terminals on the can, and then hermetically sealed. TO stands for transistor outline.
Transistance The characteristic of an electric element which controls voltages or current so as to accomplish gain or switching action in a circuit. Examples of the physical realization of transistance occur in transistors, diodes, saturable reactors, limitors, and relays.
Transistor An active semiconductor device having three or more electrodes, and capable of performing almost all the functions of tubes, including rectification and amplification. Germanium and silicon are the main materials used, with impurities introduced to determine the conductivity type (n-type as an excess of free electrons, p-type, a deficiency).
Transistor testers Equipment and instruments which detect or measure leakage current, breakdown voltage, gain, or saturation voltage. Some testers are computer operated.
Trigger A timing pulse used to initiate the transmission of logic signals through the appropriate circuit signal paths.

Trimming Removal of film resistor material in order to increase the resistance to a certain value. Two types of equipment are used for this purpose. The air abrasive jet trimming system (AJT) depends on a precisely controlled stream of abrasive particles to carve away small portions of a thick film resistor. Laser systems are often used for both thick and thin films. With lasers, the material is burned away.
Truth table A chart which tabulates and summarizes all the combinations of possible states of the inputs and outputs of a circuit, It tabulates what will happen at the output for a given input combination.
ITL, T ${ }^{2}$ L (Transistor-Transistor-Logic) A logic system which evolved from DTL wherein the multiple diode cluster is replaced by a multiple-emitter transistor. A circuit which has a multiple emitter input and an active pullup network.
Tum-on time The time required for an output to turn on (sink current, to ground output, to go to $0-\mathrm{V}$). It is the propagation time of an appropriate input signal to cause the output to go to 0 V .
Turn-off time Same as Turn-on time except the output stops sinking current, goes off and/or goes to a high voltage level (logic "1").
Ultrasonic bond A contact area where two materials are joined by means of ultrasonic energy and pressure.
Ultrasonic wire bonder Equipment unit which fastens fine wire onto substrate by use of ultrasonic energy.
Unit under test (UUT) Any system, set subsystem, assembly, or subassembly undergoing testing.
UV curing Polymerizing, hardening, or cross linking a low molecular weight resinous material in a wet coating or ink, using ultraviolet light as an energy system.
VISI Very large scale integration.
Vacuum evaporation. The creation of thin films by vaporizing the film substance and allowing its deposition onto a substrate through mask openings.
Varistor A two-electrode semiconductor device with a voltage-dependent nonlinear resistance which falls significantly as the voltage is increased.
Via A vertical conductor or conductive path forming the interconnection between multi-layer hybrid circuit layers.
Wafer and die sorters. Equipment which automates the testing and sorting of semiconductor devices from wafer form.
Wafer handling equipment Equipment used for processing silicon wafers using methods which include batch processing in a common carrier, air bearing single wafer processing, and a combination of batch and single wafer processing.
Wafers Slices of semiconductor crystal materials used as substrates for monolithic ICs, diodes, and transistors.
Wet-process benches These are benches or stations used for water processing. Because of the hazardous materials (acids) that are used, they should be designed with personnel safety and contamination control foremost. Wire bond The fastened union point between a conductor or terminal and the semiconductor die.
Wire, semiconductor lead Fine wire used to connect semiconductor chips to substrate patterns, packages, other chips, etc. Usually made from an aluminum alloy or gold.
Wired "OR" Externally connected separate circuits or functions arranged so that the combination of their outputs results in an "AND" function. The point a which separate circuits are wired together will be an "O" It any one of the separate outputs is an "O." The same as a dot "AND."
Word A group of bits treated as an entity in a computer.
X axis The horizontal or left-to-right direction in a two-dimensional system of coordinates.
$X-X \quad$ Signifies one direction followed in a step-and-repeat method.
" X " motion Registration adjustment left and right of the screen pattern to the substrate, in screen printing.
Y axis The vertical direction, perpendicular to the X axis, in a two-dimensional system of coordinates. \mathbf{Y} - \mathbf{Y} signifies one direction followed in a step-and-repeat method.
" Y " motion Registration adjustment front to rear of the screen pattern to the substrate, in screen printing.
Zener diode A p-n junction two-terminal, single junction semiconductor device reverse biased into the breakdown region and providing high impedances under less than breakdown voltage but conduction with no impedance above breakdown voltage level.
Zero (" $0^{\prime \prime}$) See Binary logic.
" ${ }^{\prime}$ ' motion Vertical adjustment of screen-substrate distance. Used for setting snap-off and leveling in screen printing.
(The glossary includes terms from Insulation/Circuits, May, 1982. Copyright Lake Publishing Corporation, Libertyville, IL 60048. Used with permission.)

CLASSIFICATION OF AMPUFIERS

The definitions of class A, B, or C operation apply to vacuum tubes as well as to transistor circuits. Bias voltage on the emitter junction of a transistor determines collector current just as grid voltage determines plate current in a vacuum tube.

Class A allows for 360° operation of a sine wave.
Class B operation is with zero bias (cutoff) and allows 180° conduction.
Class C operation is with bias beyond cutoff which allows less than 180° conduction.
Class $A B$ operation allows small-signal class A operation, and large-signal class B operation.
The above classes of operation are defined and illustrated for transistors and vacuum tubes.

Class	Bias Setting	Input-signal Voltage Swing	Plate or Collector Current Flow	Performance Characteristic
A_{1}	Center point of characteristic curve	Confined to linear portion of characteristic curve	Complete cycle	Undistorted output. High gain. Low power conversion efficiency. (25\% maximum)
A_{2}	Above center point of characteristic curve	Extends into upper (saturation) bend of characteristic curve	Complete cycle	Almost undistorted output. Lower gain but higher efficiency than class A_{1}.
$A B_{1}$	Below center point of characteristic curve	Extends into lower (cutoff) bend of characteristic curve	Cuts off for a small portion of negative half-cycle	In push-pull operation output is practically undistorted. Lower gain but higher efficiency than class A_{2}.
AB_{2}	Center point of characteristic curve	Extends into lower (cutoff) and upper (saturation) bends of characteristic curve	Cuts off for small portion of negative half-cycle	Slight harmonic distortion in push-pull operation. Lower gain but higher efficiency than class $A B_{1}$
B_{1}	Near lower bend of characteristic curve	Extends beyond lower (cutoff) bend of characteristic curve	Cuts off for greater part of negative half-cycle	Little harmonic distortion in push-pull operation. Gain less than class $A B_{2}$. Maximum efficiency $\mathbf{7 8 . 5 \%}$.
B_{2}	Near lower bend of characteristic curve	Extends into lower (cutoff) and upper (saturation) bend of characteristic curve	Cuts off for greater part of negative half-cycle and small portion of positive half-cycle	Some harmonic distortion in push-pull operation. Lower gain but higher efficiency than class B_{1}.
C	Beyond lower bend of characteristic curve	Extends well beyond lower (cutoff) and upper saturation) bends of characteristic curve	Cuts off all of negative and part of positive halfcycles	Considerable harmonic distortion. Low gain. High power conversion efficiency (80% maximum).

Subscript 1 denotes that no grid current flows during any part of the cycle.
Subscript 2 denotes that grid current flows at least for a portion of the cycle.
In class C amplifiers, grid current always flows, and a subscript is therefore unnecessary.

TRANSISTORS

VACUUM TUBES

Two cascaded amplifying devices will have an overall risetime given by:

$$
T_{r_{t}}=\sqrt{T_{r_{1}}^{2}+T_{r_{2}}^{2}}
$$

where $T_{r_{1}}, T_{r_{2}}$, and $T_{r_{t}}$ are the first stage, second stage, and total risetimes respectively.
The above relation is presented in the accompanying graph.
FOR EXAMPLE: A system incorporating two cascaded amplifiers having risetimes of $100 \mu \mathrm{sec}$ and $25 \mu \mathrm{sec}$ (a ratio of 4:1), would have an overall risetime of $103 \mu \mathrm{sec}$.

NOTE: The Y -axis is the percentage increase in the risetime above the risetime of the slower of two cascaded devices.

Where $A_{1}, A_{2} \cdots A_{n}$ are amplifiers with zero output impedance and infinite input impedance

$$
e_{n}=\text { square wave of frequency } F
$$

Then for TILTS of 10% or less

$$
\% \text { TILT }_{1}=\pi \frac{F_{1}}{F} \times 100 \text { where } F_{1}=\frac{1}{2 \pi R_{1} C_{1}}
$$

TILTS of 10% magnitude or less are additive. Thus

$$
\% \text { TILT }_{2}=\pi\left(\frac{F_{1}}{F}+\frac{F_{2}}{F}\right) \times 100
$$

where

$$
F_{2}=\frac{1}{2 \pi R_{2} C_{2}}
$$

and

$$
\% \mathrm{TILT}_{n}=\pi\left(\frac{F_{1}}{F}+\frac{F_{2}}{F}+\cdots \frac{F_{n}}{F}\right) \times 100
$$

By definition

$$
\% \text { TILT }=\frac{V_{1}-V_{2}}{V / 2} \times 100 \approx \pi \frac{F_{1}}{F} \times 100
$$

where

$$
\begin{aligned}
& F=\text { Frequency of applied wave } e_{i n} \\
& F_{1}=\frac{1}{2 \pi \mathrm{RC}}-\text { cutoff of high pass network }(3 \mathrm{~dB}) \\
& \mathrm{C} \text { in farads } \mathrm{R} \text { in ohms }
\end{aligned}
$$

Square wave Thf Due To RC Coupang

(From Electronics and Communications, December, 1968.)

NEGATIVE FEEDBACK NOMOGRAM

In negative-feedback amplifier considerations, β (expressed as a percentage) has a negative value. A line across the β and μ scales will intersect the center scale to indicate resulting change in gain. It also indicates amount (in decibels) by which input must be increased to maintain original output. Original amplification may be expressed as voltage ratio or in decibels by using appropriate scale at right.

FOR EXAMPLE: For a β of 10% and an amplifier μ of 30 , the nomogram yields a change in μ of 0.25 .

(Reprinted with permission from International Telephone and Telegraph Corporation

This nomogram determines the available power from the output of class B vacuum tube or transistor push-pull stage operating under the following conditions: The output is a sine wave, the collector or plate swing is twice the supply voltage, and the available output power is determined by the formula

$$
P=\frac{(\sqrt{2} v)^{2}}{z}
$$

FOR EXAMPLE: A transistor amplifier with a 12-V supply and a collector-to-collector impedance of 400 ohms could produce 720 mW of undistorted output power.

CATHODE FOLLOWER NOMOGRAM

A cathode follower is useful for properly terminating transmission lines and coaxial cables. It provides high $Z_{\text {in }}$ and low $Z_{\text {our }}$, good frequency and phase response, ground common to the input and output, reduced input capacitance, power gain and in-phase input and output. To match a transmission line, R_{0} should equal the impedance of the line (A). If R is less, add a series resistor (B), if R_{o} is greater use a resistor (C) so that $R=R_{o} Z_{o} /\left(R_{o}-Z_{o}\right)$.

FOR EXAMPLE: To drive a 52 -ohm line using a tube with a g_{m} of 5,000 requires an R_{o} of 70 ohms . To provide proper cathode bias, determine the required cathode resistance from the tube manual or by calculation, and subtract R_{o} to determine R_{κ}. Assuming that 220 ohms is required for proper bias, the R_{K} is 150 ohms and R_{o} is 70 ohms. If fixed bias is used, R_{κ} is not needed.

CATHODE FEEDBACK NOMOGRAM

This nomogram shows the reduction in the gain of an amplifier as a result of negative feedback that is introduced if the cathode resistor is not bypassed.

FOR EXAMPLE: What will be the gain of an amplifier that has an initial stage gain of 20 , a cathode resistor of 22 K , and a dynamic plate load resistor of 220 K if the cathode bypass capacitor is removed. The ratio of R_{L} to R_{K} is 10 , thus the resultant "actual" stage gain is 7.

The range of the nomogram can be extended by multiplying all three scales by the same power of 10 .

EUROPEAN TUBE NUMBERING SYSTEM

Receiving and Amplifying Tubes

First Letter	Second and Subsequent Letter	Numbers
Type of Filament or Heater	Electrode StructureClass of Tube	Type of Base
A 4 V ac (parallel) C 200 mA heater D $0.5-1.5 \mathrm{~V}$ dc E 6.3 V ac (parallel) G 5 V heater H 12.6 V 150 mA heater (parallel) K 2 V dc (parallel) M 2.5 V O no filament P 300 mA heater (series) U 100 mA heater (series) Z code cathode	A Single diode B Dual diode C Triode, small-signal D Triode, large-signal E Tetrode, small-signal F Pentode, small-signal H Hexode or heptode K Octode, pentagrid converter L Pentode or tetrode, large-signal M Electron-beam indicator N Thyratron P Secondary emission tube Q Nonode (9 electrodes) T Miscellaneous X Gas-filled full-wave rectifier Y Vacuum half-wave rectifier Z Vacuum full-wave rectifier Two or more of these letters may be combined. Thus ac indicates a diode and a triode in one envelope.	1 Base indicated by second number 2 Loctal 3 Octal 4 European rim-lock 5 Miscellaneous special bases 6,7 Subminiature tube 8 Nine-pin miniature (noval) 9 Seven-pin miniature Second and third digits differentiate between tubes that have the same general description but different characteristics. If the first number is a 1 , then the second number indicates the type of base.

FOR EXAMPLE:

Type ECH81 Triode-heptode oscillator converter, with noval socket and 6.3 V heater
Type EL34 Power pentode with octal base and 6.3-V heater
Type GZ34 Full-wave rectifier with octal base and 5-V heater
NOTE: For special tubes (ruggedized, long-life, etc.), the numbers are placed between the letters. For example: E80F, E90CC, E80CF.

Transmitting Tubes

First Letter	Second Letter	Third Letter	Numbers
Tube Type	Filament	Cooling Type	Characteristic
D Rectifier	A Tungsten, directly heated	G Mercury filled	No uniform
M Triode	B Thoriated tungsten, directly heated	L Forced air	notation
P Pentode	C Oxide coated, directly heated	W Water cooled	used
Q Tetrode	E Heater/cathode	X Xenon filled	
T Triode			

FOR EXAMPLE: Type QQE-04-20 Dual tetrode with indirectly heated cathode

SOLID-STATE SENSING TECHNOLOGIES
This table summarizes the characteristics of solid-state sensors of position, temperature, level, pressure, and speed.

Sensing Technique	Actuation	Actuator	Construction	Advantages	Disadvantages
Hall effect	Proximity	Electromagnet or permanent magnet	Integrated circuit only	Not rate sensitive, fast signal conditioning, simple	Requires magnet actuator, cannot achieve fine resolution
Hall effect vane	Interrupted	Ferrous material	IC, permanent magnet	Integral design, not rate sensitive, low cost, signal conditioning	Magnet attraction mode of actuation, cannot achieve fine resolution
Eddy current olution	Proximity	Ferrous or	Coil, IC and nonferrous material ponents	All-metal detector, indiscrete comcontaminated, high frequency	Cannot achieve fine resdiscrete comtegral unit, not easily
Opt-electronic	Interrupted or reflective	Any opaque material	IC, LED, and components	Detects any opaque material, good resolution	Easily contaminated ambient light sensitive
Piezoelectric	Impact	Any hard material	Crystal	No stand-by power, potentially lowest cost device	Pulse output, requires impact
Piezo-resistance	Pressure or flexing	Gaseous or mechanical	IC	Detection without mechanical linkage	Complex, difficult construction, expensive for accuracy
Variable reluctance (Magnetic) pickup	Proximity	Ferrous	Coil, magnet, IC and discrete components	Fine resolution, integral unit, high speed detection	Cannot sense zero speed, hard signal conditioning, small operate point, complex
Capacitance	Touch or proximity	Any material	IC and sensing capacitor	Detects any low dielectric material	False triggering, moisture and temperature sensitive, complex
Sonic	Audio bearn interrupted or reflected	Any material	Transmitter, receiver, IC and discretes	Large sensing gap, detects any material	Triggered by random noise, not precise, nondirectional

This family tree illustrates the interrelationship of the various types of volatile and nonvolatile semiconductor memories.

CCD	Charge-coupled device
EEPROM	Electrically erasable programmable read-only memory
EPROM	Erasable programmable read-only memory
MOS	Metal-oxide semiconductor
NOVRAM	Nonvolatile random access memory
RAM	Random-access memory
ROM	Read-only memory

VOICE INPUT/OUTPUT FAMILY TREE

Electronic voice input/output capability endows machines with the human qualities of hearing (speech recognition) and speaking (speech output). This family tree highlights some of the current applications of voice input/output equipment.

The cascade noise figure of two noise sources is given by the equation

$$
F_{T}=F_{1}+\frac{\left(F_{2}-1\right)}{G_{1}}
$$

where F_{1}, F_{2}, and F_{T} are the first-stage, second-stage, and overall noise figures respectively, and G is the gain of the first stage-all expressed as power ratios. The nomogram has all scales calibrated in decibels. To use the nomogram connect F_{2} and G and note the intersect point on the turning scale. That point is then connected to F_{T} or F_{1} depending on which of these figures is given. Two ranges (high and low) are given for all three " F " scales and they must be used together. Only one " G " scale is necessary.

FOR EXAMPLE: A first-stage noise figure of 3 dB , a second-stage noise figure of 7 dB , and a first-stage gain of 8 dB , results in an overall noise figure of 4.2 dB .

Section 5

Mathematical Data, Formulas, Symbols

Reliability Charts 1222
Reliability Nomogram 223
Reliability-Redundancy Nomogram 1224
Confidence Level Determinator / 226
Angular Resolution Table / 227
The Postulates of Boolean Algebra / 228
Conversion Chart of Standard Metric Prefixes 1233
Harmonic Rejection Nomogram / 234
Powers of Two / 235
Squares, Cubes, and Roots / 236
Powers of Numbers n^{4} to n^{8} 1238
Mathematical Signs and Symbols / 239
Factorials / 241
Rectangular-Polar Conversion Chart / 242
Geometrical Curves for Reference / 244
Formulas for Solids / 246
Areas of a Few Common Shapes 248
Triangles / 249
Values of Functions for Certain Angles / 250
Trigonometric Functions / 251
Lissajous Figures 1252
Pulse Parameter Nomogram / 254
Pulse Definitions / 255
Frequency-Period Conversion 256
Greek Alphabet / 257
Roman Numerals / 257
Phase Angle, Time Interval, and Frequency Nomogram / 258
Characteristics of Recurrent Waveforms-Relationship Between Peak, Rms, and Average Values / 260
Fourier Content of Common Periodic Waveforms / 261
Conversions from dB and dBm to Voltage and Power Ratios, and from dBm to Power and Voltage Levels / 262
Decibel Nomograms / 264
Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering 1267
Letter Symbols for Units Used in Electrical Science and Electrical Engineering / 278
Conversion of Electromagnetic Units / 284
Space-Time-Velocity and Acceleration Formulas / 286
Conversion Factors 287

RELIABILITY CHARTS

This chart relates system MTBF (Mean-Time-Between-Failures) with the number of components per system and the component MTBF.

FOR EXAMPLE: A system using 10,000 components with a component MTBF of 30 years will have a system MTBF of 1 day.

This chart relates system reliability in percent with the number of serial parts, that is, the critical partsthat must function in order for the system to perform its function.

FOR EXAMPLE: 10,000 critical parts with a 99.99% parts reliability provide a system reliability of only 37%.

RELABILITY NOMOGRAM

Reliability is a dependent function of operating time and failure rate. It is generally given as a percentage or a decimal that states the probability that an equipment will perform its function satisfactorily during a mission. Reliability is based on the formula

$$
P_{0}=e^{-t T}=e^{-\lambda t}
$$

where

$$
\begin{aligned}
T & =1 / \lambda & t & =\text { operating time in hours } \\
P_{0} & =\text { probability of success, i.e., reliability } & T & =\text { mean time between failures } \\
e & =\text { base of natural logarithm } & \lambda & =\text { failure rate (\% per } 1,000 \mathrm{hr})
\end{aligned}
$$

FOR EXAMPLE: A circuit that has a falure rate of $100 \% / 1,000 \mathrm{hr}$ (an hourly failure rate of 0.001 or an MTBF of 1,000) has a reliability of 99.8% when operated for 2 hr . That means that the circuit will not operate properly an average of 2 times out of 1,000 operations, or out of 1,000 circuits an average of 2 will fail in 2 hr .

NOTE: An equipment or circuit with an MTBF of one hour will have a reliability of only 33.788% (100/e) when operated for one hour.

NOTE: For more detailed treatment of MTBF see the latest edition of MIL-Handbook-217.

(From Electronics and Communications, March, 1965.)

RELIABILITY-REDUNDANCY NOMOGRAM

For certain critical applications, such as manned space flights, the required reliability is often greater than what can be achieved with a single system. Under these conditions it is necessary to resort to redundancy where two or more identical systems are paralleled. The required redundancy is based on the following equation:

$$
P_{N}=1-\left(1-P_{0}\right)^{N}
$$

where
$P_{N}=$ probability of success of N paralleled systems
$P_{\mathrm{o}}=$ probability of success of one system
$N=$ number of paralleled systems
FOR EXAMPLE: A subsystem for a two-week moon exploration flight has a special reliability of 99.99% and a MTBF of $2,000 \mathrm{hr}$. What is the required redundancy? On reliability nomogram (A) connect 2,000 on the T scale with 336 (2 weeks) on the t scale to determine subsystem reliability to be 0.845 . On redundancy nomogram connect 0.845 on the P_{0} scale with 0.9999 on the P_{N} scale to determine that a redundancy of five is required.

CONFIDENCE LEVEL DETERMINATOR

This graph is used to determine the minimum MTBF for a given confidence level. To use the chart, determine the actual number of Operating Hours, the Observed Failures, and the required Confidence Level. Read across from "Observed Failures" to "Confidence Level" and then down to obtain the "Divisor." Divide the number of Operating Hours by the "Divisor." The result is the minimum MTBF for the stated Confidence Level.

FOR EXAMPLE: During 2,000 hours of operation there were 8 failures. What is MTBF stated with a confidence level of 90% ? Reading across 8 to the 90% curve shows the divisor to be 13 . Dividing 2,000 by 13 yields approximately 154. Thus, it can be said that the MTBF (minimum) is 154 hours with a confidence of 90%. If, in the above example, a confidence level of 70% had been required, then it could be said that the MTBF was 194 hours with a confidence level of 70%.

ANGULAR RESOLUTION TABLE

The shaft angle corresponding to an integral binary fraction is required wherever shaft angle encoders are used. This resolution table aids in determining accurately the angle represented by a specific number of counts or conversely, the precise number of counts which equals a given angle.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \& \multirow[t]{2}{*}{r^{-6}} \& \multicolumn{4}{|l|}{Aspular Resiohetion Coresponding to inequal-Exponmex Biray Frizition} \&

\hline \& 7 \& \& $1700000 / 7^{6}($ secends $)$ \& $21500 /{ }^{2}$ (minues) \& $36 / z^{\text {n }}$ (deyrees) \& \&

\hline - \& \& \& 1206000 \& 21500 \& 300.0 \& \& 0

\hline \& 2 \& 5 \& 048000 \& 10000 \& 1000 \& 3. 411502051580078323848 \& '

\hline \& \& 8 \& 334000
162000 \& 5000
2700 \& - 400 \& (1) \& ${ }_{3}^{2}$

\hline \& t \& 12 \& 162000 \& 2790 \& O \& \&

\hline \& 1 \& 0×2 \& ${ }^{01000}$ \& 1330 \& 22.5 \& 202 2000001608724154.008 \& :

\hline \& 32 \& 2018 \& 20 200 \& ${ }_{3}^{208}$ \& 11.28 \& 106 178 \& s

\hline \& \cdots \& 01568 \& 208 \& 39.3 \& \& \&

\hline \& 128 \& 0078125 \& ${ }^{10} 128$ \& 10875 \& \& \& 8

\hline \& 812 \& ${ }^{003}$ \& 50025
2531

28 \& $$
{ }_{42}^{4.375}
$$ \& \& \& :

\hline \& 1024 \& \& 12058 \& 2100375 \& 1515023 \& 00613593 15154258597687 \& 10

\hline \& 204 \& 0004843125 \& 432175 \& 10 Se6 208 \& 11578125 \& \& 11

\hline 12 \& 4096 \& 000 2441100428 \& 31640625 \& 5 mbay \& 00000025 \& 00153390076 \&

\hline 13 \& 4192 \& $0001220 \% 3125$ \& 13480318 \& 2.63871875 \& .003904 12125 \& \& 13

\hline \& 163 m \& 000 0510381568 \& 701015025 \& 1.31830 31085 \& \& (ex \& 14

\hline 13 \& 32750 \& 000030 S1754 18 \& 558507818 \& \& . 010985388 \& 000101747508 cts 7051131 715 \& 15

\hline \& ess 320 \& 000015 88 mow \& 19738008 \& . 3085080437 \& 0054091640025 \& \&

\hline \& 131072 \& \& - 508053125 \& 104 784818185 \& (\& (emo \& 18

\hline 14 \& 262144 \& \& 4.90007045 \& 0413740095 \& . 01738101015 \& 000023968468810 773 144 2144 \&

\hline \& 530 204 \& \& 2.47102308818 \& 01198700480 \& Ooo se6 us soy 123 \& 000 011 va4 214 cos 3303721072 \&

\hline 20 \& 104858 \& \& 1235961914023 \& \& \& (1) \& 12

\hline 21 \& 2007152 \& \& 41740085031838 \& \& \& \&

\hline 2 \& 4104504 \& \& 304000477 51508 \& \& \& \& 22

\hline ${ }^{2}$ \& ${ }^{1} 304000$ \& 000000 116 20\% 200150 \& 154 mes 2302888125 \& \& \& \& ${ }_{24}^{23}$

\hline \& 16716 \& \& \& \& 00001072 ELS CSO 570312 S \& $00000018 \% 2335141461964017 \%$ \& 25

\hline
\end{tabular}

Boolean Relationships

Idempoint:
$a+0=a \quad a 0=0$
$a+1=1 \quad a 1=a \quad 0 \equiv \bar{a}$
$a+a=a \quad a a=a$
Commutative: $a+b=b+a$

$$
a b=b a
$$

Associative: $(a+b)+c=a+(b+c)$

$$
(a b) c=a(b c)
$$

Distributive: $a b+a c=a(b+c)$

$$
a+b c=(a+b)(a+c)
$$

Absorption: $a(a+b) \equiv a+a b \equiv a$
DeMorgan Theorem: $\overline{\bar{a}}=a$

$$
\begin{aligned}
& (\overline{a b})=\bar{a}+\bar{b} \quad(\overline{\overline{a b}})=a+b \\
& \overline{a+b}=\overline{a b} \quad \overline{\bar{a}+\bar{b}}=a b
\end{aligned}
$$

Basic Logic

Legend:
NOT: The line over a term indicates a false or not true state.
AND: Two terms directly adjacent to each other are called an "AND" function.
OR : Two terms separated by " + " are called an "OR" function.
Examples: $\quad a b$ reads as " a and not b " $\bar{a} b$ reads as "Not a and b " $\bar{a} b$ reads as "Not a and Not b " $a b$ reads as "Not a or Not b " (See DeMorgan)

Clocked Logic Elements

CONVERSION CHART OF STANDARD METRIC PREFIXES

This chart shows, in their relative positions, symbols, multiples $\left(10^{2}\right)$, and abbreviations for all the international multiples and submultiples as recommended by the International Committee on Weights and Measures (1962) and adapted by the National Bureau of Standards.

This chart provides a fast and easy method of conversion from any metric notation to any other. "Unity" represents the basic unit of measurement such as volts, ohms, watts, amperes, grams, hertz, etc. The number of steps up or down between the two prefixes which are being compared is equal to the direction and the number of places in which the decimal point has to be moved to convert from one to the other.

FOR EXAMPLE: To convert 0.0032 milliampere to nanoampere-move six places down. Answer: $3,200 \mathrm{nA}$.
To convert 43,280 kilohertz to megahertz-move three places up. Answer: 43.28 MHz .
To convert 10.74 microns to millimeters-move three places up. Answer: 0.01074 mm .

HARMONIC REJECTION NOMOGRAM

This scale relates the magnitude of harmonic distortion, expressed as a rejection ratio in decibels, to percentage of distortion.

FOR EXAMPLE: (1.) A design specifies that a given audio sine-wave oscillator should have its closest harminic at least 28 dB below the fundamental. The chart indicates that the closest harmonic must be less than 3.9% of the magnitude of the fundamental.
(2.) Find the harmonic content of a signal made up of the following:

Fundamental frequency	100 V rms
Second harmonic	5 V rms
Third harmonic	2 V rms

Adding harmonics vectorially gives

$$
\sqrt{5^{2}+2^{2}}=5.39
$$

$\%$ distortion $=\frac{\text { harmonic voltage }}{\text { fundamental voltage }} \times 100=\frac{5.39}{100} \times 100$

Thus the distortion is 5.30%, which means that the harmonic content of the signal is 25.2 dB below the fundamental.

n 2^{-n}
10
05
0.25
0.125
0.0525
0.03125
0.015625
0.0078125
000390625
0.001953125
$0.000 \quad 976 \quad 5625$
$0.000488281 \quad 25$
0.000244140625
$0.000122 \quad 0703125$
$\begin{array}{lllll}0.0000 & 122 & 055 & 156 & 25\end{array}$
$0.000 \quad 030 \quad 517 \quad 578 \quad 125$
0.0000152587890625
0.00000762939453125
0.000003814697265625
0.0000019073486328125 $\begin{array}{lllllllll}0.000 & 000 & 953 & 674 & 316 & 406 & 25\end{array}$
$0.000 \quad 000 \quad 476837 \quad 158 \quad 203125$
$0.000 \quad 000 \quad 238418 \quad 579101.562 \quad 5$ $0.000 \quad 0001192092695501781 \quad 25$ $0.000 \quad 000 \quad 059604644775 \quad 390 \quad 625$ $\begin{array}{lllllllll}0.000 & 000 & 059 & 601 & 644 & 775 & 390 & 625 \\ 0.000 & 000 & 029 & 802 & 322 & 387 & 695 & 312 & 5\end{array}$
 $\begin{array}{llllllllllll}0.000 & 000 & 007 & 450 & 580 & 596 & 923 & 828 & 125\end{array}$ 0.000000003725290298461914062 S

n	$2{ }^{\text {n }}$
73	9444732965739290427392
74	18889465931478560854784
75	37778931862957181709568
76	75557863725914323419136
77	1511157274518286468838272
78	302231454903657293678544
79	604462909807314587353088
80	1208925819614629174706176
81	2417851639229258349412352
82	4835703278458518898824704
83	9671406558917033397849408
84	19342813113834086795298818
85	38585828227668133590197632
86	$\begin{array}{ll}77371 & 25245 \\ 53362 & 87181 \\ 19526\end{array}$
87	154742504910672534362390588
86	309485009621345088724781056
89	618970019642690137449562112
90	1237940039285360274899124224
91	2475880078570780549795248448
92	4951760157141521099596496896
93	9903520314283042199192903792
94	19807040628586084398385967584
95	39814081257132168798771975168
96	79228182514264337593543950338
97	158456325028528875187087900872
96	318912650057057350374175801344
99	833825300114114700748351802888
100	1267850600228229401496703205378

 $\begin{array}{lllllllllll}0.000 & 000 & 000 & 232 & 830 & 643, & 653 & 869 & 628 & 906 & 25\end{array}$ $0.000 \quad 000 \quad 000116415321826934314453125$ 0.000000000 058 $207660913467407 \quad 2265625$
 $\begin{array}{llllllllllll}0.000 & 000 & 000 & 029 & 103 & 830 & 456 & 733 & 703 & 613 & 281 & 25 \\ 0.000 & 000 & 000 & 014 & 551 & 915 & 228 & 366 & 851 & 806 & 640 & 625\end{array}$ $\begin{array}{lllllllllll}0.000 & 000 & 000 & 014 & 551 & 915 & 228 & 366 & 851 & 806 & 640 \\ 0.000 & 000 & 000 & 007 & 275 & 957 & 614 & 183 & 425 & 903 & 320 \\ 312 & 5\end{array}$ $0.000 \quad 000000003637978 \quad 807091712951660156 \quad 25$ $0.000 \quad 000 \quad 000 \quad 001818989403545835475830078125$

 $\begin{array}{llllllllllllll}0.000 & 000 & 000 & 000 & 227 & 373 & 675 & 43 & 232 & 059 & 478 & 759 & 765 & 625\end{array}$
 0.00000000000005684341886080801486968994140525 0.000000000000028421709430404007434344970703125

 $0.000 \quad 000 \quad 000 \quad 000 \quad 003 \quad 582713678800500929 \quad 355 \quad 621 \quad 337 \quad 890 \quad 625$ 0.000000000000001776356839400250464677810868

0.000	000	000	000	000	444	089	209	830	062	616	169	452	667	236	325	125
0.000	000	000	000	000	222	044	604	925	031	308	084	725	333	618	184	052

 590295 $\begin{array}{lllllllll}1 & 180 & 591 & 680 & 717 & 411 & 303 & 424\end{array}$ $\begin{array}{lllllllll}2 & 361 & 183 & 241 & 434 & 822 & 606 & 848\end{array}$ $4322366482869645 \quad 213 \quad 696$

n	n^{2}	\sqrt{n}	$\sqrt{10 n}$	n^{2}	n	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$
1	1	1.000000	3.162278	1	1	1.000000	2.154435	4.641589
2	4	1.414214	4.472136	8	2	1.259921	2.714418	5.848035
3	9	1.732051	5.477226	27	3	1.442250	3.107233	6.694330
4	16	2.000000	6.324555	64	4	1.587401	3.419952	7.368063
5	25	2.236068	7.071068	125	5	1.709976	3.684031	7.937005
6	36	2.449490	7.745967	216	6	1.817121	3.914868	8.434327
7	49	2.645751	8.366600	343	7	1.912931	4.121285	8.879040
8	64	2.828427	8.944272	512	8	2.000000	4.308869	9.283178
9	81	3.000000	9.486833	729	9	2.080084	4.481405	9.654894
10	100	3.162278	10.00000	1,000	10	2.154435	4.641589	10.00000
11	121	3.316625	10.48809	1,331	11	2.223980	4.791420	10.32280
12	144	3.464102	10.95445	1,728	12	2.289428	4.932424	10.62659
13	169	3.605551	11.40175	2,197	13	2.351335	5.065797	10.91393
14	196	3.741657	11.83216	2,744	14	2.410142	5.192494	11.18689
15	225	3.872983	12.24745	3,375	15	2.466212	5.313293	11.44714
16	256	4.000000	12.64911	4,096	16	2.519842	5.428835	11.69607
17	289	4.123106	13.03840	4,913	17	2.571282	5.539658	11.93483
18	324	4.242641	13.41641	5,832	18	2.620741	5.646216	12.16440
19	361	4.358899	13.78405	6,859	19	2.668402	5.748897	12.38562
20	400	4.472136	14.14214	8,000	20	2.714418	5.848035	12.59921
21	441	4.582576	14.49138	9,261	21	2.758924	5.943922	12.80579
22	484	4.690416	14.83240	10,648	22	2.802039	6.036811	13.00591
23	529	4.795832	15.16575	12,167	23	2.843867	6.126926	13.20006
24	576	4.898979	15.49193	13,824	24	2.884499	6.214465	13.38866
25	625	5.000000	15.81139	15,625	25	2.924018	6.299605	13.57209
26	676	5.099020	16.12452	17,576	26	2.962496	6.382504	13.75069
27	729	5.196152	16.43168	19,683	27	3.000000	6.463304	13.92477
28	784	5.291503	16.73320	21,952	28	3.036589	6.542133	14.09460
29	841	5.385165	17.02939	24,389	29	3.072317	6.619106	14.26043
30	900	5.477226	17.32051	27,000	30	3.107233	6.694330	14.42250
31 32	961	5.567764	17.60682	29,791	31	3.141381	6.767899	14.58100
32	1,024	5.656854	17.88854	32,768	32	3.174802	6.839904	14.73613
33	1,089	5.744563	18.16590	35,937	33	3.207534	6.910423	14.88806
34	1,156	5.830952	18.43909	39,304	34	3.239612	6.979532	15.03695
35	1,225	5.916080	18.70829	42,875	35	3.271066	7.047299	15.18294
36	1,296	6.000000	18.97367	46,656	36	3.301927	7.113787	15.32619
37	1,369	6.082763	19.23538	50,653	37	3.332222	7.179054	15.46680
38	1,444	6.164414	19.49359	54,872	38	3.361975	7.243156	15.60491
39	1,521	6.244998	19.74842	59,319	39	3.391211	7.306144	15.74061
40	1,600	6.324555	20.00000	64,000	40	3.419952	7.368063	15.87401
41	1,681	6.403124	20.24846	68,921	41	3.448217	7.428959	16.00521
42	1,764	6.480741	20.49390	74,088	42	3.476027	7.488872	16.13429
43	1,849	6.557439	20.73644	79,507	43	3.503398	7.547842	16.26133
44	1,936	6.633250	20.97618	85,184	44	3.530348	7.605905	16.38643
45	2,025	6.708204	21.21320	91,125	45	3.556893	7.663094	16.50964
46	2,116	6.782330	21.44761	97,336	46	3.583048	7.719443	16.63103
47	2,209	6.855655	21.67948	103,823	47	3.608826	7.774980	16.75069
48	2,304	6.928203	21.90890	110,592	48	3.634241	7.829735	16.86865
49	2,401	7.000000	22.13594	117,649	49	3.659306	7.883735	16.98499
50	2.500	7.071068	22.36068	125.000	50	3.684031	7.937005	17.09976

n	n^{2}	\sqrt{n}	$\sqrt{10 n}$	n^{3}	n	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$
50	2,500	7.071068	22.36068	125,000	50	3.684031	7.937005	17.09976
51	2,601	7.141428	22.58318	132,651	51	3.708430	7.989570	17.21301
52	2,704	7.211103	22.80351	140,608	52	3.732511	8.041452	17.32478
53	2,809	7.280110	23.02173	148,877	53	3.756286	8.092672	17.43513
54	2,916	7.348469	23.23790	157,464	54	3.779763	8.143253	17.54411
55	3,025	7.416198	23.45208	166,375	55	3.802952	8.193213	17.65174
56	3,136	7.483315	23.66432	175,616	56	3.825862	8.242571	17.75808
57	3,249	7.549834	23.87467	185,193	57	3.848501	8.291344	17.86316
58	3,364	7.615773	24.08319	195,112	58	3.870877	8.339551	17.96702
59	3,481	7.681146	24.28992	205,379	59	3.892996	8.387207	18.06969
60	3,600	7.745967	24.49490	216,000	60	3.914868	8.434327	18.17121
61	3,721	7.810250	24.69818	226,981	61	3.936497	8.480926	
62	3,844	7.874008	24.89980	238,328	62	3.957892	8.527019	18.37091
63	3,969	7.937254	25.09980	250,047	63	3.979057	8.572619	18.46915
64	4,096	8.000000	25.29822	262,144	64	4.000000	8.617739	18.56636
65	4,225	8.062258	25.49510	274,625	65	4.020726	8.662391	18.66256
66	4,356	8.124038	25.69047	287,496	66	4.041240	8.706588	18.75777
67	4,489	8.185353	25.88436	300,763	67	4.061548	8.750340	18.85204
68	4,624	8.246211	26.07681	314,432	68	4.081655	8.793659	18.94536
69	4,761	8.306624	26.26785	328,509	69	4.101566	8.836556	19.03778
70	4,900	8.366600	26.45751	343,000	70	4.121285	8.879040	19.12931
71	5,041	8.426150	26.64583	357,911	71	4.140818	8.921121	19.21997
72	5,184	8.485281	26.83282	373,248	72	4.160168	8.962809	19.30979
73	5,329	8.544004	27.01851	389,017	73	4.179339	9.004113	19.39877
74	5,476	8.602325	27.20294	405,224	74	4.198336	9.045042	19.48695
75	5,625	8.660254	27.38613	421,875	75	4.217163	9.085603	19.57434
76	5,776	8.717798	27.56810		76	4.235824	9.125805	19.66095
77	5,929	8.774964	27.74887	456,533	77	4.254321	9.165656	19.74681
78	6,084	8.831761	27.92848	474,552	78	4.272659	9.205164	19.83192
79	6,241	8.888194	28.10694	493,039	79	4.290840	9.244335	19.91632
80	6,400	8.944272	28.28427	512,000	80	4.308869	9.283178	20.00000
81	6,561	9.000000	28.46050	531,441	81	4.326749	9.321698	20.08299
82	6,724	9.055385	28.63564	551,368	82	4.344481	9.359902	20.16530
83	6,889	9.110434	28.80972	571,787	83	4.362071	9.397796	20.24694
84	7,056	9.165151	28.98275	592,704	84	4.379519	9.435388	20.32793
85	7,225	9.219544	29.15476	614,125	85	4.396830	9.472682	20.40828
86	7,396	9.273618	29.32576	636,056	86	4.414005	9.509685	20.48800
87	7,569	9.327379	29.49576	658,503	87	4.431048	9.546403	20.56710
88	7,744	9.380832	29.66479	681,472	88	4.447960	9.582840	20.64560
89 90	7,921 8,100	9.433981	29.83287	704,969	89	4.464745	9.619002	20.72351
90	8,100	9.486833	30.00000	729,000	90	4.481405	9.654894	20.80084
91	8,281	9.539392	30.16621	753,571	91	4.497941	9.690521	
92	8,464	9.591663	30.33150	778,688	92	4.514357	9.725888	20.95379
93	8,649	9.643651	30.49590	804,357	93	4.530655	9.761000	21.02944
94	8,836	9.695360	30.65942	830,584	94	4.546836	9.795861	21.10454
95	9,025	9.746794	30.82207	857,375	95	4.562903	9.830476	21.17912
96	9,216	9.797959	30.98387	884,736		4.578857		
97	9,409	9.848858	31.14482	912,673	97	4.594701	9.898983	21.32671
98	9,604	9.899495	31.30495	941,192	98	4.610436	9.932884	21.39975
99	9,801	9.949874	31.46427	970,299	99	4.626065	9.966555	21.47229
100	10,000	10.00000	31.62278	1,000,000	100	4.641589	10.00000	21.54435

Radix (base) point

- Logic multiplication symbol
$\infty \quad$ Infinity
+ Plus, positive, logic OR function
- Minus, negative
$\pm \quad$ Plus or minus, positive or negative
$\mp \quad$ Minus or plus, negative or positive
\times Times, logic AND function
$\div \quad$ Divided by
/ Divided by (expressive of a ratio)
$=$ Equal to
$\equiv \quad$ Identical to, is defined by
\cong Approximately equal to, congruent to
\doteq Approximately equal to
$\neq \quad$ Not equal to
~ Similar to
$<\quad$ Less than
$<\quad$ Not less than
$\ll \quad$ Much less than
$>$ Greater than
$\ngtr \quad$ Not greater than
>> Much greater than
$\leqslant \quad$ Equal to or less than
$\geqslant \quad$ Equal to or greater than
$\propto \quad$ Proportional to, varies directly as
$\rightarrow \quad$ Approaches
: Is to, proportional to
.. Therefore
\# Number
\% Percent
@ At the rate of; at cost of
ϵ or $\theta \quad$ The natural number $=2.71828$
$\pi \quad \mathrm{Pi} \cong 3.14159 \ldots$
() Parentheses. Used to enclose a common group of terms.
[] Brackets. Used to enclose a common group of terms which includes one or moregroups in parentheses.
\{ \} Braces. Used to enclose a common group of terms which includes one of moregroups in brackets.
\angle Angle
Degrees (arc or temperature)
Minutes, prime " Seconds, double prime
|| Parallel to
\perp Perpendicular to
And beyond, ellipsis

$x+y$	x added to y, x OR y
$x-y$	y subtracted from x
$x \cdot y, x \times y$ or $x y$	x multiplied by y, x AND y
$x-y$	x divided by y
x / y or $\frac{x}{y}$	x divided by y
$1 / x$	Reciprocal of x
$\sqrt{1}$	x raised to the indicated power of n
$\sqrt[5]{x}$	Indicated root ($\sqrt{ }$) of x
x:y	x is to y
傢.	Absolute value of x, magnitude of x
$\overline{\bar{X}}, \dot{X}$, or X	Vector X
I	Average value of x
$f(x)$ or $F(x)$	Function of x
i	$\sqrt{-1}$
	Operator, equal to $\sqrt{-1}$
Δx	Increment of x
dx	Differential of x
∂x	Partial differential of x
Δx	Change in x with respect to y
Δy	Change in x with respect to y
$\frac{\mathrm{d}}{\mathrm{d}}$	Derivative of x with respect to y
dy	
$\frac{\mathrm{d}}{\mathrm{~d} y}(x)$	Derivative of x with respect to y
$\mathrm{D}_{\boldsymbol{r}} \boldsymbol{x}$	Derivative of x with respect to y
∂x	Partial derivative of x with respect to y
$\frac{\partial y}{}$	Partial derivalive of x with respect toy
Σ	Summation
Σ_{6}^{0}	Summation between limits (from a to b)
\square	Product
Пٌ	Product between limits (from a to b)
f	Integral
$\int_{0}^{\text {b }}$	Integral between limits (from a to b)
$\int x d y$	Integral of x with respect to y
10	Evaluated at a
10	Evaluated between limits (from a to b)

FACTORIALS
Numerical

n	$\frac{1}{n!}$							$n!$		n
1	1.								1	1
2	0.5								2	2
3	. 16666	66666	66666	66666	66667				6	3
4	. 04166	66666	66666	66666	66667				24	4
5	. 00833	33333	33333	33333	33333				120	5
6	0.00138	88888	88888	88888	88889				720	6
7	. 00019	84126	98412	69841	26984				5040	7
8	. 00002	48015	87301	58730	15873				40320	8
9	. 00000	27557	31922	39858	90653			3	62880	9
10	. 00000	02755	73192	23985	89065			36	28800	10
11	0.00000	00250	52108	38544	17188			399	16800	11
12	. 000000	00020	87675	69878	68099			4790	01600	12
13	. 00000	00001	60590	43836	82161			62270	20800	13
14	. 00000	00000	11470	74559	77297		8	71782	91200	14
15	. 00000	00000	00764	71637	31820		130	76743	68000	15
16	0.00000	00000	00047	79477	33239		2092	27898	88000	16
17	. 000000	00000	00002	81145	72543		35568	74280	96000	17
18	. 00000	00000	00000	15619	20697	6	40237	37057	28000	18
19	. 00000	00000	00000	00822	06352	121	64510	04088	32000	19
20	. 00000	00000	00000	00041	10318	2432	90200	81766	40000	20
				$1=1 \times 2$	$\times 3 \times 4$					

FOR EXAMPLE: For $n=7, n!=5040$.
$1 / n!=0.001984126984126984126984$,
$\log (n!)=3.702431$.

Logarithmic

Logarithms of the products $1 \times 2 \times 3 \ldots n, n$ from 1 to 100 .

\boldsymbol{n}	$\log (n /)$	n	$\log (n) / 1$	n	$\log (n /)$	n	$\log (n))$
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

RECTANGULAR-POLAR CONVERSION CHART

This chart quickly converts between cartesian (rectangular) and polar forms of notation. The horizontal (real) and the vertical (imaginary) coordinates are used for rectangular notations, and the angular (magnitude) and circular (angle) coordinates are used for polar notation. The same units of measurement are used for both systems. This makes conversion from one system to the other readily possible. The range of the chart can be extended by multiplying the horizontal and vertical axes by the same power of ten.

FOR EXAMPLE:

1. $2+\beta$ is equivalent to $3.6 / 56^{\circ}$
2. $70 / 55^{\circ}$ is equivalent to $40+j 57$
3. $6-\beta$ is equivalent to $6.7<333^{\circ}$

$X^{2}+Y^{2}=a^{2}$
$\mathbf{X}=\mathrm{a} \cos \mu, \mathrm{Y}=\mathrm{a} \sin \mu$

$\mathrm{r}=2 \mathrm{a} \cos \mu$

$\mathrm{r}=\mathrm{a} \cos \mu+\mathrm{b} \sin \mu$

$$
\mathbf{r}=2 \mathrm{a} \sin \mu
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\begin{gathered}
\mathrm{r}=\mathrm{a}+\mathrm{b} \cos \mu \\
\mathrm{a}>\mathrm{b}>0
\end{gathered}
$$

$$
\mathrm{X}=\mathrm{a} \cos \mu, \mathrm{Y}=\mathrm{b} \sin \mu
$$

$r=a(1+\cos \mu)$

Witch of Agnesi

$Y\left(X^{2}+4 a^{2}\right)=8 a^{3}$

$r=a \cos 3 \mu$

$\mathrm{r}=\mathrm{a} \cos 2 \mu$

$r=a \sin 2 \mu$

$Y^{2}(2 a-X)=X^{3}$

$Y^{2}=X^{2} \frac{a+X}{a-X}$

$Y=a^{x}$

$Y=\log _{a} X$

$Y=e^{-x^{2}}$

$\mathrm{X}=\mathrm{a}(\mu-\sin \mu)$
$Y=a(1-\cos \mu)$

$X^{3 / 4}+Y^{2 / 5}=a^{2 / 5} \quad Y=a\left(\cos H \frac{X}{a}-1\right)$

$$
\begin{aligned}
Y=a\left(\cos H \frac{X}{a}-1\right) & X= \\
& \pm\left(a \operatorname{sech}^{-1} \frac{Y}{a} \sqrt{a^{2}-Y^{2}}\right)
\end{aligned}
$$

Cube

Parallelopiped

Surface Area
$A=2(a b+h c+a c)$
Volume
$V=a b c$
Diagonal
$D=\sqrt{a^{2}+b^{2}+c^{2}}$

Right Cireular Cylinder

Surlace Area
$A=1.5708 \mathrm{~d}(2 \mathrm{~h}+\mathrm{d})$
Volume
$V=.7854 d^{2} h$

Right Regular Pyramid

Surface Area
$\mathrm{A}={ }_{1}{ }_{2} \mathrm{nbl}+\mathrm{AB}$ (area of base)

Volume
$V=1 / \int A s h$

Right Regular Cone

Surface Area
$A=1.5708 d(.5 d+1)$

Volume
$V=.2618 \mathrm{~d}^{2} h$

Frustrum of Right Regular Pyramid

Surface Area

$$
\mathrm{A}=1 / \mathrm{/}\left|\mathrm{n}\left(\mathrm{~b}+\mathrm{b}_{1}\right)+\mathrm{AB}+\mathrm{AT}\right|
$$

Volume

$$
V=I / 3 h(A B+A T+\sqrt{A B A T})
$$

Frustrum of Right Regular Cone

Surface Area
$A=.3927\left[d^{2}+d^{2}+4\left|\left(d+d_{1}\right)\right|\right.$

Volume

$V=.2618 h\left(d^{2}+d d_{1}+d_{1}{ }^{2}\right)$

Sphere

Surface Area

$\mathrm{A}=3.1416 \mathrm{~d}^{2}$
Volume
$V=.5236 \mathrm{~d}^{3}$

Surface Area
 $\mathrm{A}=1.5708 \mathrm{r}(4 \mathrm{~h}+\mathrm{c})$

Volume

$V=2.0944 r^{1} h$

Surface Area of Top Section $\mathrm{A}=6.2832 \mathrm{rh}$ or

$$
\mathrm{A}=.7854\left(4 \mathrm{~h}^{2}+\mathrm{c}^{2}\right)
$$

Total Surface Area $A=1.5708\left(2 h^{2}+c^{2}\right)$

Volume

$\mathrm{V}=1.0472 \mathrm{~h}^{\mathbf{1}}(3 \mathrm{r}-\mathrm{h})$ or $V=, 1318 h\left(3 c^{2}+4 h^{3}\right)$

Zone of Sphere

Area of Spherical Surface $\mathrm{A}=6.2832 \mathrm{rh}$

Total Surface Area

 $A=.7854\left(8 r h+c^{2}+c,{ }^{1}\right)$Volume
$V=.1318 h\left(3 c^{2}+3 c^{2}+4 h^{2}\right)$
Torus

Surface Ares $\mathrm{A}=39.47 \mathrm{Brr}$

Volume
$\mathrm{V}=19.739 \mathrm{r}^{1} \mathrm{r}_{\mathrm{l}}$

Volume
$\mathrm{V}=.5236 \mathrm{abc}$

Volume

$V=.3927 a b^{3}$

HALF ROUNDS
$A R E A=\frac{0.7854 d^{2}}{2}-d \longrightarrow d$

HALF OVALS
AREA $=0.7854 \mathrm{ab}$

OCTAGONS

HEXAGONS AREA $=3.464 \mathrm{r}$

SEGMENT OF ROUNDS
AREA $=\frac{\mathrm{rl}-\mathrm{c}(\mathrm{r}-\mathrm{h})}{2}$,

EQUILATERAL TRIANGLES
AREA $=0.433013 \mathrm{~b}^{2}$

KEYSTONES

$$
\text { AREA }=\frac{a(b+c)}{2}
$$

$1-b-1$

Knewn	Find	
0,6	A, B, b	$\sin A=\frac{a}{c}, \cos B=\frac{a}{c}, b=\sqrt{c^{2}-a^{2}}$
	Area	$\frac{a}{2} \sqrt{c^{2}-a^{2}}$
a, b	A, B, e	$\tan A=\frac{a}{b}, \tan B=\frac{b}{a}, c=\sqrt{a^{2}+b^{2}}$
	Ares	$\frac{a b}{2}$
A, 0	B,b,c	$s=90^{\circ}-\mathrm{A}, \mathrm{b}=\operatorname{cet} \mathrm{A}, \mathrm{c}=\frac{\mathrm{a}}{\sin \mathrm{A}}$
	Arso	$\frac{a^{2} \cot A}{2}$
A, b	B, e, c	$s=90^{\circ}-\mathrm{A}, \mathrm{a}=\mathrm{b} \tan \mathrm{~A}, \mathrm{c}=\frac{\mathrm{b}}{\cos \mathrm{~A}}$
	Arsa	$\frac{b^{2} \tan A}{2}$
A, 6	B, es,b	$B=90^{\circ}-A, a=c \sin A, b=c \cos A$
	Area	$\frac{c^{2} \sin A \cos A}{2}=\frac{t^{2} \sin 2 A}{4}$
Known	Find	
		$\begin{aligned} & \sin \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}}, \cos \frac{1}{2} A= \\ & \sqrt{\frac{s(b-a)}{b c}}, \operatorname{ten} \frac{1}{2} A=\sqrt{\frac{(s-b)(v-c)}{1(b-a)}} \end{aligned}$
	3	$\begin{aligned} & \sin \frac{1}{2} B=\sqrt{\frac{(1-a)(p-c)}{a \varepsilon}}, \sec \frac{1}{2} B= \\ & \sqrt{\frac{1(3-b)}{a c}}, \tan \frac{1}{2}=\sqrt{\frac{(s-a)(3-c)}{s(s-b)}} \end{aligned}$
	C	$\begin{aligned} & \sin \frac{1}{2} c=\sqrt{\frac{(b-a)(s-b)}{a b}}, \cos \frac{1}{2} c= \\ & \qquad \sqrt{\frac{s(s-c)}{a b}}, \operatorname{lan} \frac{1}{2} c=\sqrt{\frac{(b-a)(s-b)}{s(s-c)}} \end{aligned}$
	Aree	$\sqrt{s(s-a)(b-b)(b-c)}$
\star A, B,	$b, 6$	$\mathrm{b}=\frac{0 \sin B}{\sin A}, c=\frac{a \sin C}{\sin A}=\frac{\sin (A+B)}{\sin A}$
	C	$C=180^{\circ}-(A+B)$
	Area	$\frac{1}{2} a b \sin C=\frac{\sigma^{2} \sin B \sin C}{2 \sin A}$
$0, b, A$	\checkmark	$\sin B=\frac{b \sin A}{b}$
	C	$C=150^{\circ}-(A+B)$
	6	$c=\frac{a \sin C}{\sin A}=\frac{b \sin C}{\sin B}=\sqrt{a^{2}+b^{2}-2 a b \cos C}$
	Area	$\frac{1}{2} a b \sin C=\frac{1}{2} e c \sin s=\frac{1}{2} b \operatorname{cosin} A$
a, b, C	A	$\tan A=\frac{a \sin c}{b-\cos c}$
	-	$s=180^{\circ}-(A+c), \tan \frac{1}{2}(a-b)=\frac{a-b}{a+b} \cot \frac{1}{2} c$
	C	$c=\frac{a \sin c}{\sin A}=\sqrt{a^{2}+b^{2}-2 \cdot b \cos C}$
	Area	$\frac{1}{2} a b \sin C$
$\begin{gathered} a^{2}=b^{2}+c^{2}-2 b c \cos A, b^{2}=a^{2}+c^{2}-2 \cos \operatorname{sen}, \\ c^{2}=a^{2}+b^{2}-2 a b \cos C \\ \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} . \end{gathered}$		

Angle deg.	Are	Sin	Cos	Tan	Cot	See	Cse	Chord.
0	0	0	+1	0	∞	+1	∞	0
30	1/6 \%	1/2	$1 / 2 \sqrt{3}$	$1 / 3 \sqrt{3}$	$\sqrt{3}$	$2 / 3 \sqrt{3}$	2	$\sqrt{2-\sqrt{3}}$
45	1/4 7	$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{2}$	+1	+1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2-\sqrt{2}}$
60	1/3	$1 / 2 \sqrt{3}$	1/2	$\sqrt{3}$	$1 / 3 \sqrt{3}$	2	$2 / 3 \sqrt{3}$	1
90	$1 / 2 \pi$	$+1$	0	∞	0	-	+1	$\sqrt{2}$
120	2/3 \#	$1 / 2 \sqrt{3}$	-1/2	$-\sqrt{3}$	$-1 / 3 \sqrt{3}$	-2	$2 / 3 \sqrt{3}$	$\sqrt{3}$
135	3/4 π	$1 / 2 \sqrt{2}$	$-1 / 2 \sqrt{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$	$\sqrt{2+\sqrt{2}}$
150	5/6 π	1/2	$-1 / 2 \sqrt{3}$	$-1 / 3 \sqrt{3}$	$-\sqrt{3}$	$-2 / 3 \sqrt{3}$	2	$\sqrt{2+\sqrt{3}}$
180	π	0	-1	0	∞	-1	∞	2
210	7/6 π	-1/2	-1/2 $\sqrt{3}$	$1 / 3 \sqrt{3}$	$\sqrt{3}$	$-2 / 3 \sqrt{3}$	-2	$\sqrt{2+\sqrt{3}}$
225	5/4 7	$-1 / 2 \sqrt{2}$	$-1 / 2 \sqrt{2}$	+1	+1	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2+\sqrt{2}}$
240	4/3 7	$-1 / 2 \sqrt{3}$	$-1 / 2$	$\sqrt{3}$	$1 / 3 \sqrt{3}$	-2	$-2 / 3 \sqrt{3}$	$\sqrt{3}$
270	3/2 π	-1	0	∞	0	∞	-1	$\sqrt{2}$
300	5/3 π	$-1 / 2 \sqrt{3}$	1/2	$-\sqrt{3}$	$-1 / 3 \sqrt{3}$	2	$-2 / 3 \sqrt{3}$	1
315	7/4 π	$-1 / 2 \sqrt{2}$	$1 / 2 \sqrt{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2-\sqrt{2}}$
330	11/6 \%	$-1 / 2$	$1 / 2 \sqrt{3}$	$-1 / 3 \sqrt{3}$	$-\sqrt{3}$	$2 / 3 \sqrt{3}$	-2	$\sqrt{2-\sqrt{2}}$
360	2π	0	+1	0	∞	+1	∞	0

Fundamental Trigonometric Functions

$$
\begin{array}{ll}
\sin A=\frac{a}{c} . & \csc A=\frac{c}{a} \\
\cos A=\frac{b}{c} & \sec A=\frac{c}{b} \\
\tan A=\frac{a}{b} & \cot A=\frac{b}{a}
\end{array}
$$

Functions of one angle

$$
\begin{aligned}
& \sin ^{2} A+\cos ^{2} A=1 \\
& \sec ^{2} A-\tan ^{2} A=1 \\
& \csc ^{3} A-\cot ^{2} A=1
\end{aligned}
$$

Functions of the sum of two angles
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\cot (A+B)=\frac{\cot A \cot B-1}{\cot B+\cot A}$

Functions of the difference of two angles
$\sin (A-B)=\sin A \cos B-\cos A \sin B$ $\cos (A-B)=\cos A \cos B+\sin A \sin B$ $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$ $\cot (A-B)=\frac{\cot A \cot B+1}{\cot B-\cot A}$

Functions of one-half an angle

$$
\begin{aligned}
& \sin 1 / 2 A=\frac{\sin A}{2 \cos 1 / 2 A}= \pm \sqrt{\frac{1-\cos A}{2}} \\
& \cos 1 / 2 A=\frac{\sin A}{2 \sin 1 / 2 A}= \pm \sqrt{\frac{1+\cos A}{2}} \\
& \tan 1 / 2 A=\frac{1-\cos A}{\sin A}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \\
& \cot 1 / 2 A= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}
\end{aligned}
$$

Functions of twice an angle

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A=\frac{2 \tan A}{1+\tan ^{2} A} \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A=1-2 \sin ^{2} A \\
& =2 \cos ^{2} A-1=\frac{1-\tan ^{2} A}{1+\tan ^{2} A} \\
\tan 2 A & =\frac{2 \tan A}{1-\tan ^{2} A}=\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A} \\
\cot 2 A & =\frac{\cot A-1}{2 \cot A}
\end{aligned}
$$

Functions of three times an angle
Functions of angles squared

$$
\begin{aligned}
& \sin 3 A=3 \sin A-4 \sin ^{2} A \\
& \cos 3 A=4 \cos ^{2} A-3 \cos A \\
& \tan 3 A=\frac{3 \tan A-\tan ^{2} A}{1-3 \tan ^{2} A} \\
& \cot 3 A=\frac{\cot ^{3} A-3 \cot A}{3 \cot ^{2}-1}
\end{aligned}
$$

$$
\sin ^{2} \mathrm{~A}=\frac{1-\cos 2 \mathrm{~A}}{2}
$$

$$
\cos ^{2} A=\frac{1+\cos 2 A}{2}
$$

$$
\tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A}
$$

$$
\cot ^{1} \mathrm{~A}=\frac{1+\cos 2 \mathrm{~A}}{1-\cos 2 \mathrm{~A}}
$$

$$
\sin ^{2} A-\sin ^{1} B=\sin (A+B) \sin (A-B)
$$

$$
\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)
$$

Functions-Relationships

$$
\begin{aligned}
& \sin A=\frac{\cos A}{\cot A}=\frac{1}{\csc A}=\cos A \tan A=\sqrt{1-\cos ^{1} A} \\
& \cos A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A=\sqrt{1-\sin ^{2} A} \\
& \tan A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A \\
& \cot A=\frac{\cos A}{\sin A}=\frac{1}{\tan A}=\cos A \csc A \\
& \sec A=\frac{\tan A}{\sin A}=\frac{1}{\cos A} \\
& \csc A=\frac{\cot A}{\sin A}=\frac{1}{\sin A} \\
& \sin A+\sin B=2 \sin 1 / 2(A+B) \cos 1 / 2(A-B) \\
& \sin A-\sin B=2 \cos 1 / 2(A+B) \sin 1 / 2(A-B) \\
& \cos A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B) \\
& \cos A-\cos B=-2 \sin 1 / 2(A+B) \sin 1 / 2(A-B) \\
& \tan A+\tan B=\frac{\sin (A+B)}{\cos A \cos B} \\
& \tan A-\tan B=\frac{\sin (A-B)}{\cos A \cos B} \\
& \cot A+\cot B=\frac{\sin (A+B)}{\sin A \sin B} \\
& \cot A-\cot B=\frac{\sin (B-A)}{\sin A \sin B}
\end{aligned}
$$

For two signals having the same frequency, the phase can be determined by measuring the majorand minor axes of the ellipse. The phase angle is equal to twice the angle whose tangent is the ratio of the major axis to the minor axis. The absolute accuracy of this method is dependent upon the phase in the horizontal and vertical amplifiers of the oscilloscope being equal and the care that is taken to make the horizontal and vertical amplitudes equal.

PULSE PARAMETER NOMOGRAM

This normalized nomogram relates pulse rise time, repetition frequency, and pulse width to data channel bandwidth. To use the nomogram, connect a horizontal line through the selected bandwidth. The intersection with the other columns gives maximum pulse repetition frequency, minimum pulse width, and minimum risetime. For a given bandwidth, any combination of factors below the line can be used.

FOR EXAMPLE: For a bandwidth of $10 \mathrm{MHz}\left(10 \times 10^{6} \mathrm{~Hz}\right)$ the fastest risetime is $0.035 \times 10^{-6} \mathrm{sec}$, the maximum pulse repetition frequency is 3.34×10^{6} pulses per second, and the minimum pulse width is $0.15 \times 10^{-6} \mathrm{sec}$.

This scale is based on the formula $f=1 / T$ ．It converts between the frequency（ f ）and the period（ T ）of any recurrent waveform between 1 Hz and $10,00 \mathrm{GHz}$ ．It is useful where a large number of conversions are re－ quired as in the case when an oscilloscope with a time－calibrated sweep is used for frequency mea－ surements．

FOR EXAMPLE：（1）The period of a $40-\mathrm{MHz}$ sig－ nal is 25 nsec ．（2）The frequency of a signal with a period of $12.5 \mu \mathrm{sec}$ is 80 kHz ．

FREQUENCY	PERIOD
$\mathrm{Hz}^{\longrightarrow}$	
HHz_{2}	
$\mathrm{MH}_{2} \longrightarrow$ nsec	
CH_{2} psec	
$10000=0.1$	
$8000=$	
6000－7	
$4000 \frac{z}{5=}$	
$3000 \frac{=}{=}=0.3$	
$2000=0.5$	
E	
$1000 \frac{-5}{=-1}$	
$800=$	
$600-\frac{E}{E}$	
$500 \frac{\square}{\text { E }}^{2}$	
$400 \frac{\text { 者 }}{\text { 者 }}$	
$300=5$	
$200 \frac{\sum^{-E}}{\frac{E}{=1}} 5$	
＝$=6$	
$=$	
$80=7$	
$60-5$	
$50 \frac{\text { F }}{\text { \＃}}$－ 20	
$40 \frac{\text { En }}{\frac{1}{2}}$	
$30 \frac{F}{E} 30$	
三年 40	
20－$=30$	
$\frac{\bar{E}}{=-} 60$	
$8=$	
$5 \frac{E}{=-} 200$	
$\begin{array}{r} 2=500 \\ \frac{y}{t}-600 \end{array}$	
I－800	
$1-1000$	

Letter		Name	Letter		Name
Small	Capital		Small	Capital	
$\begin{aligned} & \alpha \\ & \beta \\ & \gamma \\ & \delta \\ & \epsilon \\ & \zeta \\ & \eta \\ & \theta \\ & \iota \\ & \kappa \\ & \lambda \\ & \mu \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{r} \\ & \Delta \\ & \mathrm{E} \\ & \mathrm{Z} \\ & \mathrm{H} \\ & \Theta \\ & \mathrm{I} \\ & \mathrm{~K} \\ & \Lambda \\ & \mathrm{M} \end{aligned}$	Alpha Beta Gamma Delta Epsilon Zeta Eta Theta lota Kappa Lambda Mu	ν ξ o π ρ σ τ v ϕ χ ψ ω	$\begin{aligned} & \mathrm{N} \\ & \Xi \\ & \mathrm{O} \\ & \Pi \\ & \mathrm{P} \\ & \mathrm{\Sigma} \\ & \mathrm{~T} \\ & \mathrm{Y} \\ & \Phi \\ & \mathrm{X} \\ & \Psi \\ & \Omega \end{aligned}$	Nu XI Omicron Pi Rho Sigma Tau Upsilon Phi Chi Psi Omega

ROMAN NUMERALS
The chief symbols are $I=1 ; V=5 ; X=10 ; L=50 ; C=100 ; D=500$; and $M=1,000$. Note that $I V=4$, means 1 short of $5 ; I X=9$, means 1 short of ten; XL $=40$, means 10 short of 50 ; and $X C=90$, means 10 short of 100 . Any symbol following one of equal or greater value adds its value- $\|=2$. Any symbol preceding one of greater value subracts its value-IV $=4$. When a symbol stands between two of greater value its value is subtracted from the second and the remainder is added to the first-XIV = 14; LIX $=59$. Of two equivalent ways of representing a number, that in which the symbol of larger denomination preceded is preferred-XIV instead of VIX for 14.

1	1	8	VIII
2	II	9	IX
3	III	10	X
4	IV	50	L
5	V	100	C
6	VI	500	D
7	VII	1,000	M

Time delay, phase angle, and frequency are related by the following formula:

$$
t=\frac{10^{2} \theta}{36 f}
$$

where
t is in milliseconds
θ is in degrees
f is in hertz
FOR EXAMPLE: A phase angle of 90° between two $60-\mathrm{Hz}$ wave shapes has a time interval of 4.16 msec .
NOTE: Corresponding right-hand frequency and time scales are used together as are left-hand frequency and time scales. The range of the nomogram can be extended by multiplying the frequency scale by any power of 10 and dividing the time scale by the same power of 10 .

Description	Waveform	$E_{\text {mss }}$	$E_{\text {ave }}$
Alternating sine wave		$\frac{E_{\text {peak }}}{\sqrt{2}}$	$\frac{2 E_{\text {peak }}}{\pi}$
Sawtooth wave	$\text { ~レレ } \frac{1}{\varepsilon_{\text {peok }}}$	$\frac{E_{\text {peak }}}{\sqrt{3}}$	$\frac{E_{\text {pesk }}}{2}$
Clipped sawtooth wave		$E_{\text {peak }} \sqrt{\frac{T_{0}}{3 T}}$	$\frac{E_{\text {peak }} T_{0}}{2 T}$
Square wave		$E_{\text {peok }} \sqrt{\frac{1}{2}}$	$\frac{E_{\text {peok }}}{2}$
Rectified sine wave	$\cdots \cdots \frac{1}{k_{p o o k}^{c}}$	$\frac{E_{\text {patak }}}{\sqrt{2}}$	$\frac{2 E_{\text {peak }}}{\pi}$
Clipped sine wave	$\bigcap_{1-T \rightarrow 1}^{T_{0} \mid} \cap \frac{\frac{1}{E_{\text {peok }}}}{1}$	$E_{\text {peak }} \sqrt{ } \begin{aligned} & \frac{T_{0}}{2 T} \\ & \frac{\text { if } T=T_{0}}{2} \\ & \frac{E_{\text {peak }}}{2} \end{aligned}$	$\frac{E_{\text {peak }}}{\pi}$
Alternating square wave		$E_{\text {peak }}$	$E_{\text {peak }}$
Rectangular wave	$\prod_{1-T \rightarrow+}^{160} \prod^{\frac{1}{E_{\text {peok }}}}$	$E_{\text {peak }} \sqrt{\frac{T_{0}}{T}}$	$\frac{E_{\text {peak }} T_{0}}{T}$
Triangular wave		$\frac{E_{\text {peak }}}{\sqrt{3}}$	$\frac{E_{\text {peak }}}{2}$

The Fourier content of five common periodic waveforms, out to the seventh harmonic, is given in this table. Magnitudes only are tabulated-not phase relationships. The magnitudes are those of the voltage waveform, followed by the corresponding percentage values in parentheses. If energy content is desired, these values must be squared. Note that there are no even harmonics present in any of the symmetrical waveforms.

Waveform	Name	Harmonic Compotition (magnitude)						
		Fund.	2nd	3 rd	4th	5th	6th	7th
	Squàre Wave	$\begin{gathered} \frac{4}{\pi} E \\ (127 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{4}{3 \pi} \mathrm{E} \\ & (42.5 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{4}{5 \pi} E \\ & (25.5 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{4}{7 \pi} \mathrm{E} \\ & (18.2 \%) \end{aligned}$
	Triangular Wave	$\begin{aligned} & \frac{8}{\pi^{2}} \mathrm{E} \\ & (81 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{8}{9 \pi^{2}} E \\ & (9 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{8}{25 \pi^{2}} E \\ & (3.2 \%) \end{aligned}$	0 (0%)	$\begin{aligned} & \frac{8}{49 \pi^{5}} E \\ & (1.6 \%) \end{aligned}$
	Sawtooth Wave	$\begin{aligned} & \frac{2}{\pi} E \\ & (63.6 \%) \end{aligned}$	$\begin{gathered} \frac{1}{\pi} E \\ (31.8 \%) \end{gathered}$	$\begin{aligned} & \frac{2}{3 \pi} E \\ & (21.2 \%) \end{aligned}$	$\begin{gathered} \frac{1}{2 \pi} E \\ (15.9 \%) \end{gathered}$	$\begin{aligned} & \frac{2}{5 \pi} E \\ & (12.7 \%) \end{aligned}$	$\begin{aligned} & \frac{1}{3 \pi} E \\ & (10.6 \%) \end{aligned}$	$\begin{aligned} & \frac{2}{7 \pi} \mathrm{E} \\ & (9.1 \%) \end{aligned}$
	Half-Wave Rectifier Output	$\begin{aligned} & \frac{1}{\pi} E \\ & (31.8 \%) \end{aligned}$	$\begin{aligned} & \frac{2}{3 \pi} \mathrm{E} \\ & (21.2 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\frac{2}{15 \pi} E$ (4.2\%)	0 (0\%)	$\begin{aligned} & \frac{2}{35 \pi} \mathrm{E} \\ & (1.8 \%) \end{aligned}$	0 (0\%)
	Full-Wave Rectifler Output	$\begin{aligned} & \frac{2}{\pi} \mathrm{E} \\ & (63.6 \%) \end{aligned}$	$\begin{gathered} \frac{4}{3 \pi} \mathrm{E} \\ (42.3 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{4}{15 \pi} \mathrm{E} \\ & (8.5 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{aligned} & \frac{4}{35 \pi} \mathrm{E} \\ & (3.6 \%) \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$

(From May, 1968 Electronic Instrument Digest, copyright © Milton S. Kiver Publications, Inc.)

(From May, 1968 Electronic Instrument Digest, copyright \mathbf{O} Milton S. Kiver Publications, Inc.)

The nomogram below is based on the equation shown and makes possible rapid addition or subtraction of two or more dB levels.

For off-scale levels $1,2,5,10,20,30$, etc., can be added or subtracted, simultaneously, to all nomograph scale values. For more than two levels, add any two, and to the first sum add the third, etc.

FOR EXAMPLE: (1) What is the combined sound power level of 70,76 and 80.5 dB ? Align $(\mathrm{dB})=76$ with $(\mathrm{dB})_{\mathrm{b}}=70$ and read $(\mathrm{dB})_{\mathrm{t}}=77.0$; align $(\mathrm{dB})_{\mathrm{a}}=77.0$ with $(\mathrm{dB})_{\mathrm{b}}=80.5$ and read the answer as $(\mathrm{dB})_{\mathrm{t}}=82.1$ dB.
(2) When a fan is on, the sound pressure level equals 68 dB and 64 dB with the fan off. What is the sound pressure level of the fan? To extend the range of the nomogram, subtract 10 from all scale values; align $(\mathrm{dB})_{\mathrm{t}}=68=78-10$ with $(\mathrm{dB})_{a}=64=74-10$, and read $(\mathrm{dB})_{b}=75.8-10=65.8 \mathrm{~dB}=$ fan sound pressure level.

(From "Nomograph lets you add and subtract decibels," EDN, March 20, 1977, p. 149, courtesy of EDN.)

DECIBEL NOMOGRAPHS

With the nomograph below and the one on the next page dB gain or loss of any equipment can be determined (even if input and output impedances differ) if input and output voltages and resistances can be measured. The nomograms cover a power range of 10,000 to 1 , a voltage range of 100 to 1 , and a decibel range from +40 to - 40 dB . Voltage and resistance scales of nomogram 1 bearing the same suffix are used together.

FOR EXAMPLE: Determine the gain of an amplifier that produces an output of 5 V across 8 ohms with a $10-\mathrm{V}$ signal applied to its 500 -ohm input. From nomogram 1 , the input power is 0.2 W and the output power is 3.1 W. Connecting input and output power on nomogram 11 shows the amplifier gain to be slightly less than 12 dB .

LETTER SYMBOLS FDR QUANTITIES USED IN ELECTRICAL SCIENCE AND ELECTRICAL ENGINEERING

Extracted from IEEE Standard No. 280

The tables that follow list quantities grouped in several categories, and give quantity symbols, units based on the International System,* and unit symbols.

Those quantity symbols that are separated by a comma are alternatives on equal standing. Where two symbols for a quantity are separated by three dots (...), the second is a reserve symbol, which is to be used only where there is specific need to avoid a conflict. As a rule the tables do not indicate the vectorial or tensorial character that some of the quantities may have.

The International System of Units (Systeme International d'Unités) is the coherent system of units based on the following units and quantities:

Unit	Quantity
meter	length
kilogram	mass
second	time
ampere	electric current
kelvin	temperature
candela	luminous intensity
radian	plane angle
steradian	solid angle

This system was named (and given the international designation SI) in 1960 by the Conférence Générale des Poids et Mesures (CGPM). The SI units include as subsystems the MKS system of units, which covers mechanics, and the MKSA or Giorgi system, which covers mechanics, electricity, and magnetism.
*The name of the unit is given as a further guide to the definition of the symbol. A quantity shall be represented by the standard letter symbol appearing in the table regardless of the system of units in which the quantity is expressed.

${ }^{3}$ Commas separate symbols on equal standing. Where two symbols are separated by three dots the second is a reserve symbol and is to be used only when there is specific need to avoid a conflict. See Introduction to the Tables.

logerithmic decrement	\wedge	(numeric)		then δ is the damping coefficient. $\Lambda=T \delta$, where T and 6 ere es given in tha equetion of 1.28 .
ettenuetion coefficient	*	neper per meter	Np / m	
phese coefficient	β	redien per meter	$\mathrm{rad} / \mathrm{m}$	
propagation coefficient	$\boldsymbol{\gamma}$	reciprocal meter	m^{-1}	$\gamma=\alpha+j \beta$.
2. Mechenics ${ }^{\text {b }}$				
mass	m		$\mathbf{k g}$	
(mess) density	ρ	kilogrem per cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$	Mess divided by volume.
momentum	ρ	kilogram meter per second	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$	
momant of inertie	1, J	kilogrem meter squared	$\mathrm{kg} \cdot \mathrm{m}^{2}$	
second (exiel) moment of erea	I, Ia	meter to the fourth power	m^{4}	Quentities 2.4a end 2.4 b should be distinguished from 2.4

Itam Quantity	Quantity Symbo/a	Unit Based on International System	Unit Symbol	Remarks
				They have often been given the nama "moment of inertie."
second (poler) moment of erea	J, I_{p}	meter to the fourth power	m^{4}	
force	F	newton	N	
weight	W	newton	N	Veries with eccelerstion of free fall.
weight density	${ }^{\boldsymbol{\gamma}}$	newton per cubic meter	$\mathrm{N} / \mathrm{m}^{3}$	Weight divided by volume.
moment of force		newton meter	$N \cdot m$	
torque	$T \ldots M$	newton meter	$N \cdot m$	
		newton per squere meter	$\mathrm{N} / \mathrm{m}^{2}$	The neme pasca/ hes been suggested for this unit.
normal stress	σ	nowton per squere meter	$\mathrm{N} / \mathrm{m}^{2}$	
sheer stress	τ	newton per square meter	$\mathrm{N} / \mathrm{m}^{2}$	
stress tensor	σ	newton per squere meter	$\mathrm{N} / \mathrm{m}^{2}$	
lineer strein	ϵ	(numeric)		
	$\boldsymbol{\gamma}$	(numeric)		
strein tensor	\boldsymbol{E}	(numeric)		
volume strain		(numeric)		
Poisson's retio	μ, ν E	(numeric)		Lateral contrection divided by elongation.
Young's modulus modulus of elesticity	E	newton per square meter	$\mathrm{N} / \mathrm{m}^{2}$	$E=\sigma / \epsilon$
sheer modulus modulus of rigidity	G	newton per squere meter	$\mathrm{N} / \mathrm{m}^{2}$	$G=\tau / \gamma$
bulk modulus	K	newton per squere meter	$\mathrm{N} / \mathrm{m}^{2}$	$K=-p / \theta$
work	w	joule		
energy	E, W	joule		U is recommended in thermodynemics for internal energy and for blackbody radiation.

${ }^{\mathrm{b}}$ The units and corresponding unit symbois are included for use in electricel science and electrical engineering. In mechanics and mechanical engineering other units and corresponding unit symbols ere also used. (USAS Y 10.3 now being revised.)

energy (volume) density power	w	joule per cubic meter	$\mathrm{J} / \mathrm{m}^{3}$	
efficiency 3. Heat obsolute tempera- ture thermodynemic temperature	$T \ldots \Theta$	watt	W	Rete of energy trens- fer,
$W=\mathrm{J} / \mathrm{s}$				
(numeric)				

${ }^{\text {CThe }}$ The units and corresponding unit symbols are included for use in electrical science end engineering. In mechenical engineering other units and corresponding unit symbols are also used. (Cf. USAS Y10.4.)

tharmal conductivity	入...k	wett per meter kelvin	W/(m-K)	
thermel conductence	G_{θ}	wett per kelvin	W/K	
thermal resistivity	$\stackrel{\rho}{0}_{R_{0}}$	meter kelvin per wett	$\underset{K M}{m} \cdot K / W$	
thermel resistence	R_{θ}	kelvin per wett	K/W	
thermel capecitance	c_{θ}	joule per keivin		
heat capacity				
thermal impedence	Z_{θ}	kelvin per watt	K/W	
specif ic heet capscity	c	joule per kelvin kilogrem	J/(K.kg)	Heet capecity divided by mass.

LETTER SYMBOLS FOR UNITS USED IN ELECTRICAL SCIENCE AND ELECTRICAL ENGINEERING

Extracted from IEEE Standard No. 260

The use of unit symbols, instead of the spelled-out names of the units, is frequently desirable where space is restricted. Their use presupposes that the reader will find them intelligible. If there is any doubt that the reader will understand a symbol, the name of the unit should be written in full. When an unfamiliar unit symbol is first used in text, it should be followed by its name in parentheses; only the symbol need be used thereafter. Explanatory notes or keys should be included where appropriate on drawings and in tabular matter.

The use of unit symbols is never mandatory, but when unit symbols are employed they must conform to those given in the Standard.

List of Symbols

Symbols for units are listed alphabetically by name of unit below. The list is intended to be reasonably complete, but could not possibly include all units that might conceivably be used in modern electrical technology. Many compound symbols and many illustrations of the use of the metric prefixes are included. Other combined forms may easily be constructed.

Every effort should be made to maintain the distinction between upper- and lowercase letters shown in the list, wherever the symbols for units are used, even if the surrounding text uses uppercase style.

In the notes accompanying the symbols, some units are identified as SI units. These units belong to the Intemational System of Units (Système Intemational d'Unités), which is the name given in 1960 by the Conference Genérale des Poids et Mesures to the coherent system of units based on the following basic units and quantities:

Unit	Quantity
meter	length
kilogram	mass
second	time

Unit	Quantity
ampere	electric current
kelvin	temperature
candela	luminous intensity

The SI units include as subsystems the MKS system of units, which covers mechanics, and the MKSA or Giorgi system, which covers mechanics, electricity, and magnetism.

Unit	Symbol	Remarks
ampere	A	
ampere-hour	Ah	
ampere-turn	At	
angstrom	\AA	
atmosphere		
normal atmosphere	atm	$1 \mathrm{~atm}=101325 \mathrm{~N} / \mathrm{m}^{2}$
technical atmosphere	at	$1 \mathrm{at}=1 \mathrm{kgf} / \mathrm{cm}^{2}$
atomic mass unit (unified)	u	The (unified) atomic mass unit is defined as one-twelfth of the mass of an atom of the ${ }^{12} \mathrm{C}$ nuclide. Use of the old atomic mass unit (amu), defined by reference to oxygen, is deprecated.
bar	bar	$1 \mathrm{bar}=100000 \mathrm{~N} / \mathrm{m}^{2}$
barn	b	$1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$
bel	B	
billion electronvolts	GeV	The name billion electronvolts is depre-
British thermal unit	Btu	cated; see gigaelectronvolt.

LETTER SYMBOLS FOR UNITS USEDIN ELECTRICAL SCIENCE AND ELECTRICAL ENGINEERING

Unit	Symbol	Remarks
calorie (International Table calorie)	$\mathrm{cal}_{1 T}$	$1 \mathrm{cal}_{!T}=4.1868 \mathrm{~J}$ The 9th Conférénce Générale des Poids et Mesures has adopted the joule as the unit of heat, avoiding the use of the calorie as far as possible
calorie (thermochemical calorie)	$\mathrm{cal}_{\text {th }}$	$1 \mathrm{cal}_{\mathrm{th}}=4.1840 \mathrm{~J}$ (See note for International Table calorie.)
candela	cd	
candela per square foot	$\mathrm{cd} / \mathrm{ft}^{2}$	
candela per square meter	$\mathrm{cd} / \mathrm{m}^{2}$	The name nit is sometimes used for this unit.
candle	cd	The unit of luminous intensity has been given the name candela; use of the name candle for this unit is deprecated.
centimeter	cm	
circular mil	emil	$1 \mathrm{cmil}=(\pi / 4) \cdot 10^{-6} \mathrm{in}^{2}$
coulomb	C	
cubic centimeter	cm^{3}	
cubic foot	tt^{3}	
cubic foot per minute	$\mathrm{ft}^{3} / \mathrm{min}$	
cubic foot per second	$\mathrm{ft}^{3} / \mathrm{s}$	
cubic inch	in^{3}	
cubic meter	m^{3}	
cubic meter per second	$\mathrm{m}^{3} / \mathrm{s}$	
cubic yard	yd^{3}	
curie	Ci	Unit of activity in the field of radiation dosimetry
cycle per second	c / s	The name hertz (Hz) is internationally accepted for this unit.
decibel	dB	
decibel referred to one milliwatt degree (plane angle)	$\begin{gathered} \mathrm{dBm} \\ \ldots \end{gathered}$	
degree (temperature) degree Celsius degree Fahrenheit	${ }^{\circ} \mathrm{C}$	Note that there is no space between the symbol ${ }^{\circ}$ and the letter. The use of the word centigrade for the Celsius tempera-
kelvin	K	ture scale was abandoned by the Conférence Générale des Poids et Mesures in 1948. In 1967 the CGPM gave the name kelvin to the SI unit of temperature, which was formerly called degree Kelvin, and assigned it the symbol K (without the symbol ${ }^{\circ}$).
dyne	dyn	
electronvolt	eV	
erg	erg	
farad	F	
foot	ft	
footcandle	fc	The name lumen per square foot $\left(1 \mathrm{~m} / \mathrm{ft}^{2}\right)$ is preferred for this unit.

Unit	Symbol	Remarks
kilovolt	kV	
kilovoltampere	kVA	
kilowatt	kW	
kilowatthour	kWh	
knot	knot	
lambert	L	The lambert is the CGS unit of luminance. Use of the SI unit, the candela per square meter, is preferred.
liter	1	
liter per second	1/s	
lumen	Im	
lumen per square foot	$1 \mathrm{~m} / \mathrm{ft}^{2}$	
lumen per square meter	$1 \mathrm{~m} / \mathrm{m}^{2}$	
lumen per watt	$1 \mathrm{~m} / \mathrm{W}$	
lumen second	$1 \mathrm{~m} \cdot \mathrm{~s}$	
lux	IX	$1 \mathrm{~lx}=1 \mathrm{~lm} / \mathrm{m}^{2}$
maxwell	Mx	The maxwell is the electromagnetic CGS unit of magnetic flux. Use of the SI unit, the weber, is preferred.
megacycle per second	Mc / s	See note for cycle per second.
megaelectronvolt	MeV	
megahertz	MHz	
megavolt	MV	
megawatt	MW	
megohm	M Ω	
meter	m	
mho	mho	The IEC has adopted the name siemens (S) for this unit.
microampere	$\mu \mathrm{A}$	
microbar	$\mu \mathrm{bar}$	
microfarad	$\mu \mathrm{F}$	
microgram	$\mu \mathrm{g}$	
microhenry	$\mu \mathrm{H}$	
micrometer	$\mu \mathrm{m}$	
micromho	$\mu \mathrm{mho}$	See note for mho.
micron	$\mu \mathrm{m}$	The name micrometer is preferred.
microsecond	$\mu \mathrm{s}$	
microsiemens	$\mu \mathrm{S}$	
microwatt	$\mu \mathrm{W}$	
mil	mil	$1 \mathrm{mil}=0.001 \mathrm{in}$
mile (statute)	mi	
nautical mile	nmi	
mile per hour	mi / h	
milliampere	mA	
millibar	mbar	
millibarn	mb	
milligal	mGal	
milligram	mg	
millihenry	mH	-

Unit	Symbol	Remarks
milliliter	ml	
millimeter	mm	
conventional millimeter of mercury	mmHg	$1 \mathrm{mmHg}=133.322 \mathrm{~N} / \mathrm{m}^{2}$
millimicron	nm	The name nanometer is preferred.
mill isecond	ms	
millisiemens	mS	
millivolt	mV	
milliwatt	mW	
minute (plane angle)	\ldots	
minute (time)	min	Time may be designated as in the following example: $9^{h} 46^{m} 30^{\text {t }}$
nanoampere	nA	
nanofarad	$n \mathrm{~F}$	
nanometer	nm	
nanosecond	ns	
nanowatt	nW	
nautical mile	nmi	
neper	Np	
newton	N	
newton meter	$N \cdot m$	
newton per square meter	$\mathrm{N} / \mathrm{m}^{2}$	
oersted	Oe	The oersted is the electromagnetic CGS unit of magnetic field strength. Use of the SI unit, the ampere per meter, is preferred.
ohm	Ω	
ounce (avoirdupois)	O2	
picoampere	pA	
picofarad	pF	
picosecond	ps	
picowatt	pW	
pint	pt	The gallon, quart, and pint differ in the U.S. and the U.K., and their use is deprecated.
pound	lb	
poundal	pdl	
pound-force	Ibf	
pound-force foot	lbf $\cdot \mathrm{ft}$	
pound-force per square inch	$\mathrm{lbf} / \mathrm{in}^{2}$	
pound per square inch		Although use of the abbreviation psi is common, it is not recommended. See pound-force per square inch.
quart	qt	The gallon, quart, and pint differ in the U.S. and the U.K., and their use is deprecated.
	rd	Unit of absorbed dose in the field of radiation dosimetry.
radian	rad	
rem	rem	Unit of dose equivalent in the field of radiation dosimetry.

Unit	Symbol	Remarks
revolution per minute	r/min	Although use of the abbreviation rpm is common, it is not recommended.
revolution per second	r/s	
roentgen	R	Unit of exposure in the field of radiation dosimetry.
second (plane angle)	..."	
second (time)	s	Time may be designated as in the following example: $9^{h} 46^{m} 30^{s}$.
siemens	S	$1 \mathrm{~S}=1 \Omega^{-1}$
square foot	ft^{2}	
square inch	in ${ }^{2}$	
square meter	m^{2}	
square yard	yd^{2}	
steradian	sr	
tesla	-T	$1 \mathrm{~T}=1 \mathrm{~Wb} / \mathrm{m}^{2}$
tonne	t	$1 \mathrm{t}=1000 \mathrm{~kg}$
(unified) atomic mass unit	u	The (unified) atomic mass unit is defined as one-twelfth of the mass of an atom of the ${ }^{12} \mathrm{C}$ nuclide. Use of the old atomic mass unit (amu), defined by reference to oxygen, is deprecated.
var	var	Unit of reactive power
volt	V	
voltampere	VA	Unit of apparent power
watt	W	
watthour	Wh	
watt per steradian	W/sr	
watt per steradian square meter	W/sr $\cdot \mathrm{m}^{2}$)	
weber	Wb	$1 \mathrm{~Wb}=1 \mathrm{~V} \cdot \mathrm{~s}$
yard	yd	

CONVERSION OF ELECTROMAGNETIC UNITS

Three common systems of electromagnetic units are in universal employ. They are:

1. The absolute system of CGS electromagnetic system.
2. The practical CGS electromagnetic system.
3. The MKS system (Gaussian or Giorgi depending upon the choice of constants).

The chart allows rapid conversion from one system to another. In any one row, any quantity divided by any other quantity produces unity.

These Quantities Are Those Effected by Rationalization

Quentity	Rotionolized			Unrotionolized		
	MKS	CGS EM	CGS ES	MKS	CGS EM	ÇGS ES
Dielectric displocement Units	1	10^{-5}	3×10^{5}	4\%	$4 \pi \times 10-5$	$12 \pi \times 10^{5}$
	10^{5}	1	3×10^{10}	$4 \times \times 10^{5}$	4\%	$12 \times \times 10^{10}$
	$1 / 3 \times 10^{-5}$	$1 / 3 \times 10-10$	1	$4 \mathrm{~m} / 3 \times 10-5$	4 $\times 13 \times 10^{-10}$	4\%
	$1 / 4 m$	$1 / 4 m \times 10^{-5}$	$3 / 4 \pi \times 10^{5}$	1	10-5	$3 \times 10-5$
	$1 / 4 \times 10^{5}$	1/4	$3 / 4 \times 10^{10}$	10^{5}	1	3×10^{10}
	$1 / 12 \times 10^{-5}$	$1 / 12 \times \times 10^{-10}$	1/4m	$1 / 3 \times 10^{-5}$	$1 / 3 \times 10-10$	1
	Coulomb/m ${ }^{2}$	Abcoulomb/m ${ }^{2}$	Stotcoulomb/cm ${ }^{2}$	Coulomb/m ${ }^{2}$	Abcoulomb/cm ${ }^{2}$	Stotcoulomb/ cm^{2}
Mognefic field intensity	1	10^{-3}	3×107	4π	$4 \pi \times 10^{-3}$	$12 \pi \times 10^{7}$
	10^{3}	1	3×10^{10}	$4 \pi \times 10^{3}$	4π	$12 \pi \times 1010$
	$1 / 3 \times 10^{-7}$	$1 / 3 \times 10^{-10}$	1	$4 \pi / 3 \times 10^{-7}$	$4 \pi / 3 \times 10^{-10}$	4\%
	$1 / 4 \pi$	$1 / 4 \pi \times 10^{-3}$	$3 / 4 \pi \times 10^{7}$	1	10^{-3}	3×10^{7}
	$1 / 4 \pi \times 10^{3}$	$1 / 4 \pi$	$3 / 4 \pi \times 10^{10}$	10^{3}	1	3×10^{10}
	$1 / 12 \pi \times 10^{-7}$	$1 / 12 \times \times 10^{-10}$	$1 / 4 \pi$	$1 / 3 \times 10^{-7}$	$1 / 3 \times 10^{-10}$	1
Units	Amp.fum/m	Oersted	ESU	Amp-fum/m	Oersted	ESU
Magnefometive force	1	10-1	3×10^{9}	48	$4_{17} \times 10-1$	$12 \mathrm{~m} \times 109$
	10	1	3×10^{10}	40.	4π	$12 . \times 10^{10}$
	$1 / 3 \times 10^{-9}$	$1 / 3 \times 10-10$	1	$4 \pi / 3 \times 10^{-9}$	$4 \pi / 3 \times 10-10$	4π
	$1 / 4$ m	$1 / 4 \times \times 10^{-1}$	$3 / 4 \times 10^{9}$	1	$10-1$	3×10^{9}
	10/4	1/4	$3 / 4 \times 10^{10}$	10	1	3×10^{10}
	$1 / 12 \pi \times 10^{-9}$	$1 / 12=10-10$	1/4\%	$1 / 3 \times 10^{-9}$	$1 / 3 \times 10-10$	1
Units	Amp-turn	Gilbert	ESU	Amp-turn	Gilbert	ESU

	Practical Unit	Electromagnetic Unit	Electrostatic Unit
Quentity	MKS	CGS EM	CGS ES
1. Cupocitence	1 Farod	10^{-9} Abfored	9.100^{11} Starfored
	10^{9} Farod	1 Ab fored	9×1020 Siatiered
	$1 / 9 \times 10^{-11}$ Forod	1/9 = 10-20 Ablerod	1 Stetferad
2. Charge	1 Coulomb	$10-1$ Absoulomb	3×109 Statcoulamb
	10. Coulomb	1 Abcoulomb	3×10^{10} Statcoulamb
	$1 / 3=10^{-9}$ Coulamb	$1 / 3 \times 10-10$ Abcoulomb	15 tatcoulomb
3. Cherge denxity	1 Coulamb/m ${ }^{3}$	10^{-7} Abcoulamb/ $/ \mathrm{cm}^{3}$	3×10^{3} Statesulemb/ $/ \mathrm{cm}^{3}$
	10^{7} Coulomb/m ${ }^{3}$	$1 \mathrm{Abcoulomb/} / \mathrm{cm}^{3}$	3×10^{10} Stotcoulomb/ $/ \mathrm{cm}^{3}$
	$1 / 3 \times 10^{-3}$ Coviomb/m ${ }^{3}$	$1 / 3 \times 10^{-10}$ Abcoulomb/ $/ \mathrm{cm}^{2}$?	1 Statceutomb/en ${ }^{3}$
4. Conduetivity	$1 \mathrm{mho} / \mathrm{m}$	10-11 Abmha/cm	9×10^{9} Statmherion
	10^{11} Wha m	1 Abmho/cm	9×1020 Statmhe/em
	1/9 = 10^{-9} Who/m	1/9 $=10-20 \mathrm{Abmho} / \mathrm{cm}$	15 tatmbo/cm
5. Current	1 Ampere	10^{-1} Abompero.	3×10^{9} Statampere
	10 Ampere	1 Abempere	3×10^{10} Statampere
	$1 / 3 \times 10-9$ Ampere	$1 / 3 \times 10^{-10}$ Abompere	1 Stestampere
6. Current den sity	1 Ampare/m ${ }^{2}$	10-5 Abempere/cm ${ }^{\text {2 }}$	3×10^{5} Statampere $/ \mathrm{cm}^{2}$
	10^{5} Ampere/m m^{2}	1 Abempere/ $/ \mathrm{cm}^{2}$	3×10^{10} Statampera $/ \mathrm{cm}^{2}$
	$1 / 3 \times 10^{-5}$ Ampera/m ${ }^{2}$	$1 / 3=10-10$ Abampera $/ \mathrm{cm}^{2}$	15 thempera/em ${ }^{2}$
7. Electric field intenxity	$1 \mathrm{Voli} / \mathrm{moter}$	$10^{6} \mathrm{Abvalh} / \mathrm{cm}$	$1 / 3=10-4$ Stativalt/em
	10-6 Volt/moter	1 Abrolt/cm	$1 / 3 \times 10-10$ Statralt/sm
	3 $404 \mathrm{Valt} / \mathrm{meler}$	$3 \times 10^{10} \mathrm{Abrolt} / \mathrm{cm}$	15 tatrolt/ $/ \mathrm{cm}$
8. Electrie potantial	1 Velt	10^{10} Abvolts	$1 / 3=10^{-2}$ Stetralts
	10-8 Valt	1 Abvolt	$1 / 3 \pm 10-10$ Stetrolin
	$3 \times 10^{2} \mathrm{Valt}$	3×10^{10} Abvelts	1 Statwolt
9. Electric dipole moment	1 Coulomb-meter	10 Abcoulomb-cm	3×10^{11} Statcoulemb-cm
	10-1 Covlomb-meter	1 Abesulomb-cm	3* 10^{10} Stetceulemb-cm
	$1 / 3 \times 10^{-11}$ Coulamb-mater	1/3 $=10-10$ Abceulomb-cm	1 Stelcoulemb-cm
10. Eneryy	1 Joule	$10^{7} \mathrm{Ect}$	$10^{7} \mathrm{Ers}$
	100^{-7} Joule	1 Erg	1 Ere
	10-7 Jouls	1 Erg	1 Erg
11. Farce	1 Newton	${ }_{105}{ }^{5}$ Dyne	10^{5} Oyne
	10-5 Nowton	1 Dyne	1 Dyne
	10-5 Neaton	1 Dype	1 Drne
12. Flun density	1 Weber m2	10^{4} Gouss	$1 / 3 \times 10-6$ an
	10^{-4} Wober'm ${ }^{2}$	1 Gevse	13×10^{-51700}
	$3 \times 10^{\text {d }}$ Weber/m ${ }^{2}$	3×10^{19} Geusa	1 esu
12. Induetence	1 Manry	10^{9} Abhenry	1/9 = 10-11 stathenry
	$10-9$ Henry	1 Abhenry	$1 / 9.10-20$ Stathenry
	9 a 10^{11} Menry	9×10^{20} Athenty	1 Stathenry
14. Inductive copecity	1 Forod/meter	$10-11 \mathrm{Ab}$ lorad/cm	$9=12^{9} 5$ tenfered. cm
	10^{11} Fared mater	1 Ablered/cm	9×1020 Statfored cm
	1/9 $\times 10-9$ Fored/meter	$1 / 9 \times 10-20 \mathrm{Abferad} / \mathrm{cm}$	1 statfered/em
15. Magnetice flux	1 Weber	10^{8} mexwell	1/3 $\times 10-2$ enu
	10-8 Weber	1 Maswoll	$1 / 3 \times 10-10^{\text {ax }}$
	3×10^{2} Weber	3×10^{10} maxwell	1.00
16. Mognutic dipelo mament	1 Ampere-meter ${ }^{2}$	10^{3} Abomp-cm ${ }^{2}$	3×10^{13} Stetemp-cm ${ }^{2}$
	10-3 Ampere-mener ${ }^{2}$	1 Aboemp-cm ${ }^{2}$	3×1010 Stotomp- cm^{2}
	$1 / 3 \times 10-12$ Ampere-menter ${ }^{2}$	1 $1.3 \times 10-10$ Abemp-cm ${ }^{2}$	15 tetamp-cm ${ }^{2}$
17. Permesbility	1 Hency mater	10^{7} Abhenry om	$1 / 20 \cdot 10^{-13}$ Stathenry cm
	10^{-7} Manry metar	1 Abhenry cm	$1 / 9.10-20$ Siathenry - mm
	$9 \times 10^{13} \mathrm{Hency}$ meter	9×10^{20} Alhenry cm	1 Stothency cm
18. Pawer	1 Woll	10^{7} erg/zec	10^{7} era/uec
	10-7 Wett	1 wi nec	1 erg/ses
	10^{-7} wout	1 erg sec	1 ars/aec
19. Resistence	10 hm	10^{9} Abehm	$19.10-11_{\text {stetahm }}$
	$10^{-9} 9 \mathrm{hm}$	1 Ahehm -	1/9: $10-20$ Steratem
	Q $\cdot 100^{11} 0 \mathrm{~mm}$	$0=10^{20} \mathrm{Abohm}$	1 Statahm

SPACE-TIME-VELOCITY AND ACCELERATION FORMULAS

This tabulation presents all basic linear motion formulas with all their variations. Terms are defined and units of measurement are specified.
A = Acceleration or deceleration- $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}$ (32.2 for gravity)
D = Distance-ft (may be used in lieu of "H" in vertical free fall)
E = Energy-ft-lbs
F = Force-lbs
$\mathrm{H}=$ Height- ft (may be used lieu of " D " with $\mathrm{A}-32.2$)
$M=$ Mass $\quad \frac{W}{32.2}=\frac{\mathrm{lb}-\mathrm{sec}^{2}}{\mathrm{ft}}$
T = Time-sec
$\mathrm{V}_{\mathrm{a}}=$ Average velocity- $\mathrm{tt} / \mathrm{sec}$
$V_{t}=$ Final velocity- $\mathrm{Ht} / \mathrm{sec}$
$\mathrm{V}_{1}=$ Initial velocity- $\mathrm{t} / \mathrm{sec}$
$\mathrm{W}^{\prime}=$ Weight- bs

To Convert	Into	Multiply By
ares	sq meters	100.0
Astronomical Unit	Kilometers	1.495×10^{8}
Atmospheres	Ton/sq. inch	. 007348
etmospheres	cms of mercury	76.0
atmospheres	ft of water (et $4^{\circ} \mathrm{C}$)	33.90
atmospheres	in. of mercury (et $0^{\circ} \mathrm{C}$)	29.92
atmospheres	kgs/sq cm	1.0333
atmospheres	kgs/sq meter	10,332.
etmospheres	pounds/sq.in.	14.70
etmospheres	tons/sq ft	1.058
B		
Berrels (U.S., dry)	cu. inches	7056.
Berrels (U.S., dry)	querts (dry)	105.0
Barrels (U.S., liquid)	gellons	31.5
berrels (oil)	gallons (oil)	42.0
bers	atmospheres	0.9869
bars	dynes/sq cm	10^{6}
bars	kgs/sq meter	1.020×10^{4}
bars	pounds/sq ft	2,089.
bars	pounds/sq in.	14.50
Beryl	Dyne/sq. cm.	1.000
Bolt (US Cloth)	Meters	36.576
BTU	Liter-Atmosphere	10.409
Btu	ergs	1.0550×10^{10}
Btu	foot-lbs	778.3
Btu	gram-celories	252.0
Btu	horsepower-hrs	3.931×10^{-4}
Btu	joules	1,054.8
Btu	kilogrem-calories	0.2520
Btu	kilogrem-meters	107.5
Btu	kilowatt-hrs	2.928×10^{-4}
Btu/hr	foot-pound/sec	0.2162
Btu/hr	grem-cel/sec	0.0700
Btu/hr	horsepower-hrs	3.929×10^{-4}
Btu/hr	wetts	0.2931

To Convert
Abcoulomb䓘 는 는
$\stackrel{4}{4}$岕
 amperes/sq cm amperes/sq in.
 emperes/sq meter ampere-hours ampere-hours . ampere-turns/cm ampere-turns $/ \mathrm{cm}$ ampere-turns/cm ampere-turns/in. empere-turns/in. ampere-turns/in. ampere-turns/meter ampere-turns/meter ampere-turns/meter Angstrom unit Angstrom unit Angstrom unit

To Convert
cubic centimeters
cubic centimeters
cubic centimeters
cubic centimeters
cubic feet
cubic feet/min
cubic feet/min
cubic feet/min
cubic feet/min
cubic feet/sec
cubic feet/sec
cubic inches
cubic meters
cubic metersMultiply By

12.96
0.02356
0.01757
17.57
0.1221
1.818×10^{4}
1.2445
$2,150.4$
0.03524
35.24
4.0
64.0
32.0

To Convert	Into
8tu/min	foot-lbs/sec
8tu/min	horsepower
8tu/min	kilowatts
$8 \mathrm{tu} / \mathrm{min}$	watts
$8 \mathrm{tu} / \mathrm{sq} \mathrm{ft} / \mathrm{min}$	watts/sq in.
8ucket (8r. dry)	Cubic Cm.
bushels	cu ft
bushels	cu in.
bushels	cu meters
bushels	liters
bushels	pecks
bushels	pints (dry)
bushels	quarts (dry)
	C
Calories, gram (meen) centares (centiares)	B.T.U. (mean) sq meters
Centigrade (Celsius)	Fehrenheit
Centigrams	grams
Centiliter	Ounce fluid (US)
Centiliter	Cubic inch
Centiliter	drams
centiliters	liters
centimeters	feet
centimeters	inches
centimeters	kilometers
centimeters	meters
centimeters	miles
centimeters	millimeters
centimeters	mils
centimeters	yards
centimeter-dynes	cm-grams
centimeter-dynes	meter-kgs.
centimeter-dynes	pound-feet
centimeter-grams	cm-dynes
centimeter-grems	meter-kgs

pound-feet
atmospheres
feet of water
$\mathrm{kgs} / \mathrm{sq}$ meter
pounds/sq ft
pounds/sq in.
feet/min
feet/sec
kilometers/hr
knots
meters/min
miles/hr
miles/min
feet/sec/sec
$\mathrm{kms} / \mathrm{hr} / \mathrm{sec}$
meters/sec/sec
miles/hr/sec
Inches
meters
yards
sq cms
sq mils
Radians
sq inches
cord feet
cu feet
Statcoulombs
faradays
coulombs/sq in.
coulombs $/ \mathrm{sq} \mathrm{meter}$
coulombs/sq cm
coulombs/sq meter
coulombs/sq cm
coulombs/sq in.
cu feet
cu inches
cu meters
cu yards

To Convert	Into	Multiply By
foot－pounds	ergs	1.356×10^{7}
foot－pounds	gram－calories	0.3238
foot－pounds	hp－hrs	5.050×10^{-7}
foot－pounds	joules	1.356
foot－pounds	kg－calorias	3.24×10^{-4}
foot－pounds	kg－meters	0.1383
foot－pounds	kilowatt－hrs	3.766×10^{-7}
foot－pounds／min	Btu／min	1.286×10^{-3}
foot－pounds／min	foot－pounds／sec	0.01667
foot－pounds／min	horsepower	3.030×10^{-5}
foot－pounds／min	kg－calories／min	3.24×10^{-4}
foot－pounds／min	kilowatts	2.260×10^{-5}
foot－pounds／sec	Btu／hr	4.6263
foot－pounds／sec	Btu／min	0.07717
foot－pounds／sec	horsepower	1.818×10^{-3}
foot－pounds／sec	kg－celories／min	0.01945
foot－pounds／sec	kilowetts	1.356×10^{-3}
Furlongs	milas（U．S．）	0.125
furlongs	rods	40.0
furlongs	feet	660.0
	G	
gallons	cu cms	3，785．0
gallons	cu feet	0.1337
gellons	cu inches	231.0
gallons	cu metars	3.785×10^{-3}
gallons	cu yards	4.951×10^{-3}
gallons	liters	3.785
gallons（liq．Br．Imp．）	gellons（U．S．liq．）	1.20095
gellons（U．S．）	gallons（Imp．）	0.83267
gallons of water	pounds of water	8.3453
gellons／min	cu ft／sec	2.228×10^{-3}
gallons／min	liters／sec	0.06308
gallons／min	$\mathrm{cu} \mathrm{ft/hr}$	8.0208
gausses	lines／sq in．	$6.452{ }^{-8}$
gausses	wabers／sq cm	10^{-8}

Multiply By

 Inch of Marcury at $0^{\circ} \mathrm{C}$ Inch of Marcury at $0^{\circ} \mathrm{C}$
Inch of Watar at $4^{\circ} \mathrm{C}$ grams grams
joules $/ \mathrm{cm}$ joulas／meter（newtons） kilograms poundals詋哙

E
 gram－csiories
gram－cms horsepower－hrs joules kg －calories kg－meters kilowatt－hrs watt－hours Btu／min ft － $\mathrm{lbs} /$ min $\mathrm{ft}-\mathrm{lbs} / \mathrm{sec}$ horsepower kg －calories／min kilowatts

To Convert Dyna／sq． cm ．
Dyne／sq． cm ．
dynes
dynes
dynes
dynes
dynes
dynnes
dynes／sq cm产 $\overline{\bar{w}}$ ：
范
世氾朢总 ${ }^{\circ}$苞总
 $\stackrel{8}{6}$㤐 ergs／sec ergs／sec ergsas sec ergs／sec args／sec

[^1]<1
msac
EMucentus livm 60 ta 70% is 10W sinet
Whth nem magnot matarilis, can dativer high palk
penver (herugomer a,gol)

``` & \begin{tabular}{l}
For fuli ranta of: inampensiva, qwed-performance Srive and cantrol applicolisas \\
Weth apprapiata anvusnmeatal precovtipas, saft. abie ter military/aersseact ase \\
Praterod as a hish performance, geneial.-gupese serve matore
\end{tabular} \\
\hline  & \begin{tabular}{l}
Wa commutater wear ar frictop \\
Ualimited lite \\
Intiesta masadotion. \\
Smoeth, cot-trey rolatish \\
No EW zeneration \\
Avilable is moter alemints or fally heused
\end{tabular} & \begin{tabular}{l}
Travel ramag typically ta \(120^{\circ}\) \\
Torese trom a low at-ut to \(>40 \mathrm{Ht}-\mathrm{Ht}\) \\
Mochanical tume comstaals trom it ta 50 mioc
\end{tabular} &  over a limitod angla \\
\hline  & \begin{tabular}{l}
Slow mpend. Miţh terque. \\
Redativily low powes estent \\
Availatie as pancale-shaped componesits. \\
Whice dyemic retga \\
Large samber of cowis give smoth aperation.
\end{tabular} & From 10's of ex-ia ta 100 's an M.llo Moderata machanical time constants Contred to secondis are. Elintively eqpomion & Fow durect couplag it loed Fex wry pacise contion Almastive to suted types \\
\hline  (invicess mitear & Similer to permasent-megart \&c sails Liment tow 4 we-spewd charectonstics Smeeth, sencergise rowation Handles wey migh, short-Antation peak loeds. Fast repansio \ll 10 mucl! & \begin{tabular}{l}
Outputs from <1W is tractional hersepower. \\
High efficiencies \\
Yey low mechanceal and alictrical tima comutants
\end{tabular} & \begin{tabular}{l}
Compoter penphersls melera smoch control and last ratponse are abeded \\
Conterif applicatiens needing bigh response band midh. last storting ond steppers
\end{tabular} \\
\hline  & \begin{tabular}{l}
Arusthess and rutted \\
High stapereef rita deppendent on drive cricesity \\
 \\
Pow interent damplet \\
Lom powe ellicients. \\
Con manibl resemance \\
Operates dem heep \\
Wite domsmic conga \\
Easily ctantrilled \\
Vef rolablio sad iow in cest in popoler trama nizes
\end{tabular} & Soweral hamined to thegsinds of ipes Powte autpul of ta a low handred matts. & \begin{tabular}{l}
Alferative ta aynchronews mate Used ia cumtial applicatives whera tust asponsa rether then high pewer is the pancipal raguryemant \\
Ietaritess well la digital computers
\end{tabular} \\
\hline \begin{tabular}{l}
tund micti \\

\end{tabular} & \begin{tabular}{l}
Uses werriey principle te tive wey amall atopoint antivs Migh mappiat notes \\
 Efficesicy ssestly wiog loe.
\end{tabular} & Slapping ats from < 100 pes ts mesy 1000 's. Dependent on friver alibecrenici: Pronte op to a tom bundiad waths. Siagle step tatei a few milliscocodst & \begin{tabular}{l}
Usefel in apmencel centrol and actester applicativen where contiol is digrtal \\
Pronbes fael slomag and hiegh-riselution tiscliog
\end{tabular} \\
\hline TMEETER-EENTR at & \begin{tabular}{l}
Operates fope de fine anae a wrilching inverwe \\
Somewhut liss athicient this ic induction motero, ethermse simiter in parlemanace \\
Sughe-phass (capactiof) of 2 -phase vorsions mot cammen
\end{tabular} & Ontouta trom <1W no frectivat hersepower Efficiencims troa 20 to 00 Z in larger modela Spends ap ts 30,000 RTM sud higher & \begin{tabular}{l}
Une whers ec is enly power avalable \\
Fer annornal applications whert ac sepples vary vidaly, as in ferwepa applicitions \\
Use where inshas mifit not be sufticiently refabie, is in refr high speeds of in severs owwrot mants: \\
Varable-trequency wrivens ased is accalematifit hugh anertial losids
\end{tabular} \\
\hline Buysucts ef & \begin{tabular}{l}
Wr neits asiag dectrink commutation of ruthe "ermetive" Etimes convmationsi \& molor cheractenitics. Wot hortow madolotion with roxatien is haghe \\
Lact of Irashis towe rivabilty in ethoull isplications
\end{tabular} & Iram < lim to 1.2 hg toletwely hight luma constants Speeds ta 30.000 M留 Cficiencos te tos Vertages to 100's of Voc & For leoshless. lont-hite seplications regernat supenex allicieney and centrol Mey be operated at very high alltudess or toxalif subangal \\
\hline as cmutam & \begin{tabular}{l}
Erushlets. \\
2-phose \\
tom inetia \\
Sauncol caga \\
Lisepr fivques.spend corves is inall searts finertasiet camalon loe wits \(>20 \mathrm{~W}\) OAmping talls off al iom controi witiati Efficioncy very low (10-30\%) \\
Poer werlead capability
\end{tabular} & \begin{tabular}{l}
Pramity ased in ien peene-owtput applications (<1w te Som) \\
Alverable in 60 sad 400 Mz varsums Thime constents in the 10 's of millisecoses
\end{tabular} & \begin{tabular}{l}
Eacommanded tor ac carner sybtams manuriag very lem autpot powne \\
Very small sites io 3 on dial ewilable \\
Used in mony millatary systams becase ot high motor relability
\end{tabular} \\
\hline Mrstemesis & \begin{tabular}{l}
Smehrenows \\
Low.ts-moderata thicioncy \\
Medwats starling torqua \\
Smehrenuation indspondant al lead inemtia \\
\$noeth, cog-Ires lorgea \\
Lem honting
\end{tabular} & Power wetpot ap ta allewt 100w Spewds up to 30.000 MPI Efticiantels can ented 50\% & Use whera spochusous opertisa ispened Swited ta canstant speed compater-penipheral appications \\
\hline mates & \[
\begin{aligned}
& \text { Thirsent } \\
& \text { now be }
\end{aligned}
\] & ese motas usint newly dereleged. very hith aneety ia in compact integrat holsepower sulas with very high pa & th mapnets can verland ciegability \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Specific Applications & Comparisons with Other Motors & Selection and Application Factors \\
\hline  watri) and last resposie ( 10 te 20 msec ) tecourto tlask dive ie ancreff comirs spitems & Mugher efficeency, damping, lewer alectrical fise constants than campa rable ac enntrot motors, eatopt in wery low-pentt applications Far mere enticient than stapper drwet Whe asuly contraliect than of her metar typet & \begin{tabular}{l}
Select for sala eseration with acceptesib inmperatwo nwa \\
Chech aperatung canditions twa abupt ilarti w reverials which can semagnetive PM heias \\
Chech fisc altitues ar envereamentat effects on brushess, aupecally wer 10.000 APM \\
Hygh static curreats ane dicwn in elficher ar hagh-poner moters. \\
 motoc dampiat
\end{tabular} \\
\hline Frequently used in equipment incurperabite trats Pancale shape o ugnticant asem in grogimhats Gaves imooth Srictioniesis controd & Much singler than conlituous relatien torquers with ar mithem cammutators & Sultable for direct-Inve, miahant, hyth-accuracy mechameat cantrol Simitar male-angle brushless tachamaters cualehie heselires higb-power druint ampl \\
\hline Wigavil preozion mblac and awospace applications Aatonse pestubning and lracking to whis seconds of are Used in oll super stcurate muthpole resolvers Whete rasponse band wsalut in hegh-secutacy stehle plattarms Und mith gres rale tables & \begin{tabular}{l}
Supphes mest grecise conted imoeth, and accorave trachag tor ctophanuevt totation applications \\

\end{tabular} & Stiff bruct coupling to load gellored nwi ampi gerterid for high cominil power \\
\hline Seall, masenaive unts find use in computer penpher als the tape drwen and carid reations lefuitral central and automatic applicationz. & Faster respmse than iun-epter mptors Escerient brush the tower ateriat wellage limited only by brush friction Hiveb mera sfivicient than stapper moters & \begin{tabular}{l}
Recommanded for leve coigisg. low atarting wilate fast reapoose applicatises \\
Reter liats ws quectly \\
Thermal transiests aed meat meeval can le unpertant factirs Larfor, high-jertsmance units can be apensive \\
Lew arsafura isductance permits cammutation al wery wigh currant swifes.
\end{tabular} \\
\hline \begin{tabular}{l}
 moter fetiamiass respanase limets Oampang mended by divisif slectronics Sinple tow-cost atherastive to listsr peationers in positioning llopprwist masts \\
Can be ousd in ctesed-seep appocsitions
\end{tabular} &  moters & \begin{tabular}{l}
Cave nepuirs is apphcation \\
Pertornince depandett en evectranic divew circuitry \\
Meal disigalino a massile protirn \\
M4 certain pulse rotes rasenascas cas accur minch redvce load-banding capability \\
Lsod inertis ratuctes performance \\
Fiction can improwe damping \\

\end{tabular} \\
\hline \begin{tabular}{l}
Procides winy iow cost apen loep conefol is actuator aras Coening torque refected through gest train night wiviate brake revaitimesti \\
Where feodlach is resuined, can be used woll opticat inciansmal nencoder diks
\end{tabular} & \begin{tabular}{l}
Ethicuncy el shaft peww grearation is iow \\
Mare flezille than ctmparible means \\
Suaple add inexpensive altern tive ta spachanevi we wide-aped frame dives \\
Handles higher had ineftey than waralie-relvefance stepper and has verter damping
\end{tabular} & \begin{tabular}{l}
 efficinecy \\
Chect for resmaneses at all pulse ratos \\
 stepper eparation. \\
Coupling csamplasces cas help in accolecating bad inertia, wef adflfienal iosenasces can be ietrotuces. \\
Derwercircuit tesita is cintical \\
Sandard drwess avaliable.
\end{tabular} \\
\hline \begin{tabular}{l}
Usefol in fas apptextues for high -rolabilty computac espuipment \\
 fat
\end{tabular} & Las athoedt thantrue brushle:12 motors using olectropic commutation Wora comples, apeniwe ant notsier than bevsh-hpe de meturs Lass surtable fer contred than ofther ac hass Very long Mfe with propecily designod inyeris & \begin{tabular}{l}
Inverter can be separaty or packaged with moter \\
Nigbline-cifcuit sphes \\
EMi generatum, milt bulty fiffer capacitors mefuined for supprasion \\
SCR inverters pralerned if higher pewer usen, but transisier iwreftars are as wier to awitct and mers reliable \\
Pown-wiphly capaciteri can be reqared and nust mithatand supply transwets
\end{tabular} \\
\hline \begin{tabular}{l}
ISasif for hith-athetuete fans \\
 segrade optration Used in very high-speed machina tools
\end{tabular} & \begin{tabular}{l}
 meters \\
Comaviabing trasisitas can be usad for speed control, reversing current and torpat limiting aithout a saparnies centralles, unlike wher tpes \\
Delivers highast sustuned outpot in a guen packefe mize
\end{tabular} & \begin{tabular}{l}
Enetremes can be packaged ertornally ar mithan moter hersing Hich peah libe carrents \\
Bully line-fifter required if fill is a pabliom \\
Powe-s-suply capacitios covid be requite \\
Whth propely designed alecironist. Iffe is limited enhy by beanagi. \\
Temperaturet can set himis to same commatatonn sensers
\end{tabular} \\
\hline \begin{tabular}{l}
Instrument sewas for military appbrations \\
400 kz cheris leads te higher shatt pown, moter ethesancy and smalier sude \\
Drives fials, teedenci tramsfocks end mechanical devices Freeuenty simplier thas all-electronic systoms in applications teguring miny welput Arsptons
\end{tabular} & \begin{tabular}{l}
Ethconscy, power autput and overinad capalifity ae poer campared with de deviens \\
Suitaine fer weg low-jown applicatiens because there is no brush fration and ieas cetient
\end{tabular} & \begin{tabular}{l}
Oifter desigt, sood proven units timerelly avalable \\
For chitical apolicatiens, use lachometer dompint Decase ixherant \\
dampang is unrelasble and networl damping difititutfle apply \\
Requared \(90^{\circ}\) phase shiff is leat supphed by the cantrol amp \\
Wein field-capacifor phase shit anly canvenent in vary a mall motons \\
Wain field pewer heeps units hot even while ithing
\end{tabular} \\
\hline Usalul in drwing mamery dites. which require unform, cet free torese yery clese taitrances, tetedom frem beansi play and minimum speed motralation Und in precisate aro them & \begin{tabular}{l}
 either mound-field of PM consitruction \\
Less huming than efther types of synthronsus motors \\
Simpler than platilloch dives
\end{tabular} & \begin{tabular}{l}
High efficiencies important for cempule applications \\
Leo powe factors ined ta higb inpot courents \\
Hightr power facton swalable in singte-phase capactor werswas \\
Sensitive to input harmencics \\
Can eccelerate high-inetia isads \\
Does not have a preferted syachicemiation angle
\end{tabular} \\
\hline \multicolumn{3}{|c|}{These t, pes have low totoc theinal capacities To asuge ine hem nase if takes about 200w ts rase the temperature ci a I-18 armature ty I"C in in set Other values can be suitabiy prepettioned} \\
\hline
\end{tabular}
FAMILY TREE OF ELECTRIC MOTORS

Device Average Rating (Watts)
Air Cleaner ..... 50
Air Conditioner (room) ..... 1,500
Blender ..... 390
Broiler ..... 1,450
Carving Knife ..... 100
Clock ..... 2
Clothes Dryer ..... 4,850
Coffee Maker ..... 900
Deep Fryer ..... 1,450
Dehumidifier ..... 250
Dishwasher ..... 1,200
Electric Blanket ..... 175
Fan:
attic ..... 370
fumace ..... 290
window ..... 200
Floor Polisher ..... 300
Freezer:
( \(14 \mathrm{cu} . \mathrm{ft}\) ) ..... 340
(frostless - \(15 \mathrm{cu} . \mathrm{ft}\) ) ..... 440
Frying Pan ..... 1,200
Heater (portable) ..... 1,320
Heating Pad ..... 65
Hot Plate ..... 1,250
Humidifier ..... 175
Iron (Hand) ..... 1,000
Microwave Oven ..... 1,450
Mixer ..... 125
Oil Burner (stoker) ..... 265
Radio ..... 70
Radio/Record Player ..... 100
Range with oven ..... 12,200
Refrigerator:
300
( \(12 \mathrm{cu} . \mathrm{ft}\) )
390
(frostless, \(12 \mathrm{cu} . \mathrm{ft}\) )
Refrigerator /Freezer: ..... 
352 ..... 
352
( \(14 \mathrm{cu} . \mathrm{ft}\) )
( \(14 \mathrm{cu} . \mathrm{ft}\) )
600
600
Roaster ..... 1,300
Sandwich Grill ..... 1,150
Sewing Machine ..... 75
Television:
black and white:
tube type ..... 160
solid state ..... 55
color TV:
tube type ..... 300
solid state ..... 200
Toaster ..... 1,150
Trash Compactor ..... 400
Vacuum Cleaner ..... 630
Waffle Iron ..... 1,100
Washing Machine: automatic ..... 500
nonautomatic ..... 280
Waste Disposer ..... 440
Water Heater:
standard ..... 2,475
quick recovery ..... 4,475
Water Pump ..... 460

\section*{NOMOGRAM RELATING AMPLITUDE, FREQUENCY, AND ACCELERATION OF A BODY WITH SIMPLE HARMONIC MOTION}

This nomogram is based on the formula
\[
g=0.10225(d)(f)^{2}
\]
where
\(g=\) acceleration in g-units
\(f=\) frequency of vibration in cps
\(d=\) amplitude of vibration (peak displacement each side of resting point) in inches
FOR EXAMPLE: A vibrating body with a displacement of 0.01 in . each side of center at 200 Hz , has an acceleration of 40 g 's.

NOTE: To find the acceleration in a rotating body resulting from centrifugal force, substitute radius of rotation for amplitude (d), and revolutions per second for vibrations per second ( \(f\) ). \(g=32 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}\) in the MKS system of units.


\section*{SHOCK DECELERATION NOMOGRAM}

This nomogram relates deceleration ( G load), stopping distance, and drop height as an aid to designers and engineers who must deal with problems of shock caused by violent or sudden deceleration.

The equation used to plot the nomograph is \(\log G=\log g+\log H-\log D\). Relating deceleration ( \(G\) load), stopping distance, and drop height, it is based on the following relationships:
\[
\begin{aligned}
& H=g t^{2} / 2 \\
& D=G T^{\prime 2} / 2 \\
& V_{t}=g t^{\prime \prime} \\
& V_{i}=G t^{\prime \prime}
\end{aligned}
\]
where:
\(H=\) free-fall distance
\(g=\) acceleration due to free fall
\(t=\) free-fall time
\(D=\) stopping or deflection distance
\(G=G\) load due to impact shock
\(t^{\prime}=\) deceleration time
\(V_{t}=\) terminal velocity due to free fall at instant of impact
\(V_{f}=\) initial deceleration velocity at instant of impact
Since at the moment of impact the terminal velocity \(\left(V_{t}\right)\) caused by acceleration is equal to the initial velocity \(\left(V_{1}\right)\), it follows that:
\[
g t=G t^{\prime}
\]

Combining the equations:
\[
H / D=\frac{g t^{2} / 2}{G t^{\prime} 2 / 2}=g t(t) / G t^{\prime}\left(t^{\prime}\right)
\]

Since \(g t=G t^{\prime} H / D=t / t^{\prime}\). Also, since \(G / g=t / t^{\prime}, H / D=G / g\). Transposing, \(G=g(H / D)\) or \(\log G=\log\) \(g+\log H-\log D\). This equation is based on a constant or uniformly decelerating force. For linear deceleration the equation for load distance relationship is: \(G=2 g H / D\).

Neither formula includes the stopping distance as part of the distance traveled because its effect is negligible for small values of stopping distance (D).

FOR EXAMPLE: 1. Find the \(G\) load on a shock-mounted case that endures a \(30-\mathrm{in}\). drop height with a maximum mount deflection of 0.4 in . Assume a rigid case and uniform deceleration in the mount.

ANSWER: Intersect impact shock \((\mathrm{G})\) scale with a line connecting the \(30-\mathrm{in}\). drop height with 0.4 in . on the absorber deflection scale. Read answer off impact shock scale. In this example, it is 73G.
2. Find the impact shock on a piece of equipment that is dropped 20 in . on expanded rubber foam gasket. The foam is compressed a total of 0.1 in . and is assumed to have a linear deceleration characteristic.

ANSWER: Intersect the impact shock \((G)\) scale with a line connecting the 20 -in. drop height with 0.1 in. on the absorber deflection scale. Since peak impact shock \((G)\) load due to linear deceleration is approximately twice as severe as that due to uniform deceleration, the value of 200 G obtained is multiplied by 2 for linear deflection. Answer is 400 G .


\section*{AIR-COOLING NOMOGRAM}

For a given power dissipation and air density, this nomogram solves for the air flow (cubic feet per minute) that is required to keep the temperature rise of an equipment at a specified value. At sea level ( 760 mm Hg ), \(0^{\circ} \mathrm{C}\), and an air density of \(0.079 \mathrm{lb} / \mathrm{ft}^{3}\), the temperature rise is approximately equal to \(3,000 P / Q\), where \(P\) is power dissipation in kilowatts and \(Q\) is the air flow in cubic feet per minute.

To use the nomogram first determine the ambient temperature and altitude at which the equipment must operate and note from the graph the applicable air density for these conditions. On the nomogram align the permissible temperature rise with the equipment's power dissipation and note the intersect point on the turning scale. Align this point with the applicable air density and read required air flow in cubic feet per minute on scale \(B\).

FOR EXAMPLE: To operate an equipment with a power consumption of 500 W at sea level, an ambient temperature of \(20^{\circ} \mathrm{C}\), and a permissible heat rise of \(15^{\circ} \mathrm{C}\), requires an air flow of \(50 \mathrm{ft}^{3} / \mathrm{min}\).


METALLIC ELEMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name and Symbol & Color & Atomic Weight & Specific Gravity or Density & Specific Heat & Meltingpoint ( \({ }^{\circ} \mathrm{Celsin}\) ) & Coefficient of Linear Expansion \\
\hline  &  &  &  &  &  & \begin{tabular}{l}
00000231 0000003105
0.0000055 \\
\(\overline{0000014}\) \\
\(\overline{0} 000087\) \\
-0000ess \\
\(\overline{0} 0000121\) \\
00000167 \\
\(]_{00000167}\) \\
00000136 \\
00000065
0.000118 \\
0000027 \\
\(\overline{0} 0000859\) \\
0.0000010 \\
-0000127 \\
00000085
00000117 \\
00000069
0000081 \\
-000000es \\
00000096 \\
00000192
0000071 \\
-00000079
00000187 \\
00000002 \\
\(\overline{00000 e 0 s}\) \\
\(=\)
\(=\)
\(\overline{0}\)
\(=0000874\)
\end{tabular} \\
\hline
\end{tabular}
(Reprinted from Master Handbook of Electronic Tables \& Formulas by Martin Clifford, courtesy TAB BOOKS, Inc.)

\section*{densities of solids and liquids in cubic centimeters and cubic feet}

\begin{tabular}{|c|c|}
\hline 21.50 g . per cub. cm . & \(1,342.2 \mathrm{lb}\). per cub. \\
\hline Sea Water....................... 1.025 g . per cub. cm . & 64.0 lb , per cub. f . \\
\hline Silver........................... 10.5 g . per cub. cm. & 655.5 lb . per cub. ft. \\
\hline Tin..............................7.18 g . per cub. cm . & 448. lb. per cub. it. \\
\hline Tungsten.....-............-... 16.6 g per cub. cm . & 1,161.2 ib. per cub. ft \\
\hline Uranlum ....-.......-............. 18.7 g . per cub. cm. & 1,167.4 lb. per cub. fi. \\
\hline  & 82.4 lb . per cub. ft. \\
\hline 19 g . per cuib. cm. & 448.6 lb . per cub. fl. \\
\hline
\end{tabular}

Zinc. \(\qquad\) 7.19 g . per cub. cm. 448.8 lb . per cub. it

\section*{SOLDER ALLOYS}

The term solder alloys covers a broad range of materials with greatest emphasis placed on compositions of tin and lead. The tin lead system of alloys has a general solidus temperature of \(361^{\circ} \mathrm{F}\). The eutectic composition, the alloy with a single sharp melting point and no plastic range, is \(63 \%\) tin, \(37 \%\) lead. This alloy is in widest use in the electronic industry.

The specific tin lead alloy selected is determined by the nature of the joining operation and the degree to which a plastic or "mushy" solder state can be tolerated or is desirable. Tin lead alloys with a tin content from 20\% up through and including \(97.5 \%\) have the same \(361^{\circ} \mathrm{F}\) solidus line. Alloys containing lower percentages of tin have an increased solidus temperature. This is also true of tin antimony, tin silver, and lead silver alloys. The higher solidus line permits operation of the soldered part in higher ambient temperatures. It also permits sequential or piggy-back soldering. Where two soldering connections are to be made in areas very close to each other, the first joint can be made with one of the high-temperature alloys. When the second joint is made with an alloy in the normal tin lead system, the first joint will not be disturbed.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{Tempereture ot which Solder Becomes Plastic} & \multicolumn{2}{|l|}{Temperature et which Solder Becomes Liquid} \\
\hline Percent Tin & Parcent Lead & Percent Silver & Percent Antimony & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{F}\) & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{F}\) \\
\hline 0 & 100 & & & & & 327. & 621 \\
\hline 5 & 95 & & & 300 & 572 & 315 & 699 \\
\hline 10 & 90 & & & 267.5 & 514 & 300 & 572 \\
\hline 15 & 85 & & & 223 & 433 & 290 & 554 \\
\hline 20 & 80 & & & 183 & 361 & 280 & 536 \\
\hline 25 & 75 & & & 183 & 361 & 287 & 513 \\
\hline 30 & 70 & & & 183. & 361 & 255 & 491 \\
\hline 35 & 65 & & & 183 & 361 & 245 & 473 \\
\hline 40 & 60 & & & 183 & 361 & 235 & 456 \\
\hline 45 & 55 & & & 183 & 361 & 223 & 433 \\
\hline 50 & 50 & & & 183 & 361 & 212 & 414 \\
\hline 55 & 45 & & & 183 & 361 & 200 & 392 \\
\hline 60 & 40 & & & 183 & 361 & 189 & 372 \\
\hline 83 & 37 & & & *utectic & -170y \({ }^{3}\) & \({ }^{183}\) & 361 \\
\hline 65 & 35 & & & 183 & 361 & 186 & 367 \\
\hline 70 & 30 & & & 183 & 361 & 191 & 376 \\
\hline 75 & 25 & & & 183 & 361 & 195 & 383 \\
\hline 80 & 20 & & & 183 & 361 & 201 & 394 \\
\hline 85 & 15 & & & 183 & 361 & 207 & 404 \\
\hline 90 & 10 & & & 183 & 361 & 214 & 417 \\
\hline 95 & 5 & & & 183 & 361 & 222 & 432 \\
\hline 97.5 & 2.5 & & & 183 & 361 & 227 & 441 \\
\hline 100 & 0 & & & & & 232 & 460 \\
\hline 35 & 63 & & 2 & 187 & 389 & 237 & 459 \\
\hline 20 & 78.7 & 1.3 & & 181 & 358 & 276 & 529 \\
\hline 27 & 70 & \[
3
\] & & 178 & 352 & 263 & 487 \\
\hline & 95 & 5 & & 305 & 581 & 360 & 680 \\
\hline
\end{tabular}
\({ }^{8}\) A sutectic slloy is that composition of two or mors metals that hes one sherp melting point and no plastic range.


\section*{TRACK WIDTH OF PRINTED WIRING BOARDS}

The two graphs are used to determine the current-carrying capacity and sizes of etched copper conductors (tracks) for various temperature rises above ambient. To use the charts, enter the top chart from the left at the current value which is anticipated, to the point where it interrupts the applicable copper temperature-rise curve. Then, proceed vertically down to the second chart to the appropriate weight (the weight of one square foot of copper of a given thickness) slanted line, and proceed left to determine the minimum track width.

FOR EXAMPLE: To carry 10 amperes and not exceed a \(20^{\circ} \mathrm{C}\) rise above ambient requires a 0.100 -inch wide conduct of 2-ounce copper track.

*Based on \(1 / 16\) inch boards. For thicker boards, derate by \(15 \%\).

\section*{DEFINED VALUES AND PHYSICAL CONSTANTS}

A consistent set of physical values has been adapted by the National Bureau of Standards. The values presented below are at least as accurate as any others available, and have the advantage of being self-consistent, thus preventing the necessity of having to make a choice between different answers derived in different ways.

Fundamental Constants

Compiled by E. R. Cohen and B. N. Taylor under the auspices of the CODATA Task Group on Fundamental Constants. This set has been officially adopted by CODATA and is taken from J. Phys. Chem. Ref. Data, Vol. 2, No. 4, p. 663 (1973) and CODATA Bulletin No. 11 (December 1973).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Quenthy & Symbol & Numarical value* Un & Uncerth (ppm) & S1t & \(\leftarrow\) Units \(\rightarrow\) & cs: \(\ddagger\) \\
\hline Speed of light in vacuum & c & 299792458(1.2) & 0.004 & \(\mathrm{m} \cdot \mathrm{s}^{-1}\) & & \(10^{3} \mathrm{~cm} \cdot \mathrm{~s}^{-1}\) \\
\hline Permeability of vacuum & \(\mu_{0}\) & \[
\stackrel{4 \pi}{=} 12.5663706144
\] & & \[
\begin{aligned}
& 10^{-1} \mathrm{H} \cdot \mathrm{~m}^{-1} \\
& 10^{-7} \mathrm{H} \cdot \mathrm{~m}^{-1}
\end{aligned}
\] & & \\
\hline Permittivity of vacuum,
\[
1 / \mu_{0} c^{2}
\] & \(\epsilon_{0}\) & 8.854187818(71) & 0.008 & \(10^{-11} \mathrm{~F} \cdot \mathrm{~m}^{-1}\) & & \\
\hline Fine-structure constant, \(\left[\mu_{0} c^{2} / 4 \pi\right]\left(e^{3} \hbar c\right)\) & \({ }^{\text {a }}\) & \[
\begin{gathered}
7.2973506(60) \\
137.03604(11)
\end{gathered}
\] & \[
\begin{aligned}
& 0.82 \\
& 0.82
\end{aligned}
\] & \(10^{-1}\) & & \(10^{-2}\) \\
\hline Elementary charge & e & \[
\begin{aligned}
& 1.6021892(46) \\
& 4.803242(14)
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.9
\end{aligned}
\] & \(10^{-13} \mathrm{C}\) & & \[
\begin{aligned}
& 10^{-14} \text { emu } \\
& 10^{-16} \text { esu }
\end{aligned}
\] \\
\hline Planck constant & \[
\begin{aligned}
& n \\
& n=h / 2 \pi
\end{aligned}
\] & \[
\begin{aligned}
& 6.626176(36) \\
& 1.0545887(57)
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 5.4
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-24} \mathrm{~J} \cdot \mathrm{~s} \\
& 10^{-34} \mathrm{~J} .5
\end{aligned}
\] & & \[
\begin{aligned}
& 10^{-27} \mathrm{erg} \cdot \mathrm{~s} \\
& 10^{-27} \mathrm{erg} \cdot \mathrm{~s}
\end{aligned}
\] \\
\hline Avogadro constant & \(\mathrm{N}_{\text {A }}\) & \(6.022045(31)\) & 5.1 & \(10^{11} \mathrm{~mol}^{-1}\) & & \(10^{13} \mathrm{~mol}^{-1}\) \\
\hline Atomic mass unit, \(10^{-3} \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \mathrm{~N}_{\mathrm{A}}{ }^{-1}\) & u & \(1.6605655(86)\) & 5.1 & \(10^{-27} \mathrm{~kg}\) & & \(10^{-24} \mathrm{~g}\) \\
\hline Electron rest mass & m 。 & \[
\begin{aligned}
& 9.109534(47) \\
& 5.4858026(21)
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 0.38
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-11} \mathrm{~kg} \\
& 10^{-4} \mathrm{u}
\end{aligned}
\] & & \[
\begin{aligned}
& 10^{-21} \mathrm{~g} \\
& 10^{-4} \mathrm{u}
\end{aligned}
\] \\
\hline Proton rest mass & \(m\), & \[
\begin{aligned}
& 1.6726485(86) \\
& 1.007276470(11)
\end{aligned}
\] & 5.1 & \[
u^{10^{-21} \mathrm{~kg}}
\] & & \[
{ }_{4}^{10-24} \mathrm{~g}
\] \\
\hline Ratio of proton mass to electron mass & \(m_{p} / m_{e}\) & 1836.15152(70) & 0.38 & & & \\
\hline Neutron rest mass & \(m_{n}\) & \[
\begin{aligned}
& 1.6749543(86) \\
& 1.008665012(37)
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 0.037
\end{aligned}
\] & \[
\mathrm{u}^{10^{-21} \mathrm{~kg}}
\] & & \[
{ }_{u}^{10^{-14} \mathrm{~g}}
\] \\
\hline Electron charge to mass ratio & \(e / m_{r}\) & \[
\begin{aligned}
& 1.7588047(49) \\
& 5.272764(15)
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 2.8
\end{aligned}
\] & \(10^{11} \mathrm{C} \cdot \mathrm{kg}{ }^{1}\) & &  \\
\hline Magnetic flux quantum, \([c]^{-1}(h c / 2 e)\) & \[
\Phi_{i n}{ }_{n}
\] & \[
\begin{aligned}
& 2.0678506(54) \\
& 4.135701(11) \\
& 1.3795215(36)
\end{aligned}
\] & \[
\begin{aligned}
& 2.6 \\
& 2.6 \\
& 2.6
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-16} \mathrm{~Wb} \\
& 10^{-11} \mathrm{~J} \cdot \mathrm{~s} \cdot \mathrm{C}^{-1}
\end{aligned}
\] & & \[
\begin{aligned}
& 10^{-1} \mathrm{G} \cdot \mathrm{~cm}^{2} \\
& 10^{-1} \mathrm{erg} \cdot{ }^{-1} \cdot{ }^{-1} \mathrm{erg} \cdot \mathrm{emu} \\
& 0^{-17} \mathrm{eg} \cdot \mathrm{~s} \cdot \mathrm{esu}{ }^{-1}
\end{aligned}
\] \\
\hline Josephson frequencyvoltage ratio & 2e/h & 4.835939(13) & 2.6 & \(10^{14} \mathrm{~Hz} \cdot \mathrm{~V}^{-1}\) & & \\
\hline Quantum of circulation & \[
\begin{aligned}
& h / 2 m_{\psi} \\
& h / m_{\psi}
\end{aligned}
\] & \[
\begin{aligned}
& 3.6369455(60) \\
& 7.273891(12)
\end{aligned}
\] & 1.6 & \[
\begin{aligned}
& 10^{-4} \mathrm{~J} \cdot \mathrm{~s} \cdot \mathrm{~kg}^{-1} \\
& 10^{-4} \mathrm{~J} \cdot 5 \cdot \mathrm{~kg}^{-1}
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{erg} \cdot \mathrm{~s} \cdot \mathrm{~g}^{-1} \\
& \mathrm{erg} \cdot \mathrm{~s} \cdot \mathrm{~g}^{-1}
\end{aligned}
\] \\
\hline Faraday constant, \(\mathrm{N}_{\wedge} \mathrm{e}^{\text {e }}\) & F & \[
\begin{aligned}
& 9.648456(27) \\
& 2.8925342(82)
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 2.8
\end{aligned}
\] & \(10^{4} \mathrm{C}^{\mathrm{mol}}{ }^{-1}\) & & \(10^{2}\) emu \(\cdot \mathrm{mol}^{-1}\) \(10^{14}\) esu \(\cdot \mathrm{mol}^{-1}\) \\
\hline Rydberg constant,
\[
\left[\mu_{0} c^{2} / 4 \pi\right]^{2}\left(m_{e} e^{2} / 4 \pi n^{7} c\right)
\] & \(\mathrm{R}_{\boldsymbol{x}}\) & \(1.097373177(83)\) & 0.075 & \(10^{\prime} \mathrm{m}^{-1}\) & & \(10^{1} \mathrm{~cm}^{-1}\) \\
\hline Böhr radius,
\[
\left[\mu_{0} c^{1} / 4 \pi\right]^{-1}\left(n^{2} / m_{e} e^{2}\right)=a / 4 \pi R_{a}
\] & \({ }_{\text {a }}^{11}\) & \(5.2917706(44)\) & 0.82 & \(10^{-11} \mathrm{~m}\) & & \(10^{-2} \mathrm{~cm}\) \\
\hline Classical electron radius,
\[
\left[\mu_{0} c^{3} / 4 \pi\right]\left(e^{2} / m e c^{2}\right)=a^{3} / 4 \pi R_{\pi}
\] & \(r_{\text {c }}=a \lambda_{C}\) & \(2.8179380(70)\) & 2.5 & \(10^{-11} \mathrm{~m}\) & & \(10^{-13} \mathrm{~cm}\) \\
\hline Thomson cross section, \((8 / 3) \pi r_{e}{ }^{2}\) & \(\sigma_{\text {c }}\) & 0.6652448 (33) & 4.9 & \(10^{-11} \mathrm{~m}^{2}\) & & \(10^{-24} \mathrm{~cm}^{1}\) \\
\hline Free electron g -factor, or & \(\mathrm{g}_{4} / 2=\mu\) & \(1.0011596567(35)\) & 5) 0.0035 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Quantity & Symbol & Numerical Value * U & Uncert. (ppm) & SIt + - Units \(\rightarrow\) & - \(\cos 7\) \\
\hline Free muon g-factor, or muon magnetic moment in units of \([c]\left(e n / 2 m_{\mu} c\right)\) & \(\mathrm{g}_{\mu} / 2\) & \(1.00116616(31)\) & 0.31 & & \\
\hline \multirow[t]{2}{*}{Bohr magneton, \([\mathrm{c}](\mathrm{en} / 2 \mathrm{~m}, \mathrm{c}\) )
Electron magnetic moment} & \(\mu_{B}\) & \(9.274078(36)\) & 3.9 & \(10^{-34} \mathrm{~J} \cdot \mathrm{~T}^{-1}\) & \(10^{-11} \mathrm{erg} \cdot \mathrm{G}^{-1}\) \\
\hline & \(\mu_{*}\) & \(9.284832(36)\) & 3.9 & \(10^{-34} \mathrm{~J} \cdot \mathrm{~T}-1\) & \(10^{-31} \mathrm{erg} \cdot \mathrm{G}^{-1}\) \\
\hline Gyromagnetic ratio of protons in \(\mathrm{H}_{2} \mathrm{O}\) & \(\gamma^{\prime}\)
\(\gamma^{\prime} / 2 \pi\) & \[
\begin{aligned}
& 2.6751301(75) \\
& 4.257602(12)
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 2.8
\end{aligned}
\] & \[
\begin{array}{ll}
10^{2} & \mathrm{~s}^{-1} \cdot \mathrm{~T}^{-1} \\
10^{+} & \mathrm{Hz} \cdot \mathrm{~T}^{-1}
\end{array}
\] & \[
\begin{aligned}
& 10^{4} \mathrm{~s}^{-1} \cdot \mathrm{G}^{-1} \\
& 10^{1} \mathrm{~Hz} \cdot \mathrm{G}^{-1}
\end{aligned}
\] \\
\hline \(\gamma_{\text {, }}^{\prime}\), corrected for diamagnetism of \(\mathrm{H}_{2} \mathrm{O}\) & \(\gamma_{n} / 2 \pi\)
\(\gamma_{n} / 2 \pi\) & \[
\begin{aligned}
& 2.6751987(75) \\
& 4.257711(12)
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 2.8
\end{aligned}
\] & \[
\begin{aligned}
& 10^{3} \mathrm{~s}^{-1} \cdot \mathrm{~T}^{-1} \\
& 10^{+} \mathrm{Hz} \cdot \mathrm{~T}^{-1}
\end{aligned}
\] & \[
\begin{aligned}
& 10^{4} \mathrm{~s}^{-1} \cdot \mathrm{G}^{-1} \\
& 10^{4} \mathrm{~Hz} \cdot \mathrm{G}^{-1}
\end{aligned}
\] \\
\hline Magnetic moment of protons in \(\mathrm{H}_{2} \mathrm{O}\) in Bohr magnetons & \(\mu^{\prime} / \mu_{H}\) & \(1.52099322(10)\) & 0.066 & \(10^{-2}\) & \(10^{-3}\) \\
\hline Proton magnetic moment in Bohr magnetons & \(\mu_{s} / \mu_{1}\) & 1.521032209(16) & ) 0.011 & \(0^{-3}\) & \(10^{-1}\) \\
\hline Ratio of electron and proton magnetic moments & \(\mu_{s} / \mu_{\nu}\) & 658.2106880(66) & 0.010 & & \\
\hline \multirow[t]{2}{*}{Proton magnetic moment Magnetic moment of protons in \(\mathrm{H}_{2} \mathrm{O}\) In nuclear magnetons} & \(\mu_{2}\) & 1.4106171 (55) & 3.9 & \(10^{-12} \mathrm{~J} \cdot \mathrm{~T}^{-1}\) & \(10^{-11}\) erg. \({ }^{-1}\) \\
\hline & \(\mu^{\prime}{ }_{\nu} / \mu_{n}\) & 2.7927740 (11) & 0.38 & & \\
\hline \(\mu^{\prime}, / \mu_{\mathrm{N}}\) corrected for diamagnetism of \(\mathrm{H}_{2} \mathrm{O}\) & \(\mu_{v} / \mu_{0}\) & 2.7928456(11) & 0.38 & & \\
\hline Nuclear magneton, [c](en/2m,c) & \(\mu\) & \(5.050824(20)\) & 3.9 & \(10^{14} \mathrm{~J} \cdot \mathrm{~T}^{-1}\) & \(10^{-14}\) erg. \(\mathrm{G}^{-1}\) \\
\hline Ratio of muon and proton magnetic moments & \(\mu_{\mu} / \mu_{\nu}\) & \(3.1833402(72)\) & 2.3 & & \\
\hline Muon magnetlc moment & \({ }_{\mu}\) & 4.490474(18) & 3.9 & \(10^{-21} \mathrm{~J} \cdot \mathrm{~T}^{-1}\) & \(10^{-31}\) org. \(\mathrm{G}^{-1}\) \\
\hline Ratio of muon mass to electron mass & \(\mathrm{m}_{\mu} / \mathrm{m}_{\sim}\) & \(206.76865(47)\) & 2.3 & & \\
\hline Muon rest mass & \(\mathrm{m}_{\mu}\) & \[
\begin{aligned}
& 1.883566(11) \\
& 0.11342920(26)
\end{aligned}
\] & \[
\begin{aligned}
& 5.6 \\
& 2.3
\end{aligned}
\] & \[
\mathrm{u}^{10^{-23} \mathrm{~kg}}
\] & \[
l_{4}^{10^{-25}} \mathrm{~g}
\] \\
\hline Compton wavelength of the electron, \(h / m_{e} c=a^{2} / 2 R_{x}\) & \[
\begin{aligned}
& \lambda_{\mathrm{C}} \\
& \lambda_{\mathrm{C}}=\lambda_{\mathrm{C}} / 2 \pi=\alpha a_{0}
\end{aligned}
\] & \begin{tabular}{l}
\(2.4263089(40)\) \\
\(3.8615905(64)\)
\end{tabular} & \[
\begin{aligned}
& 1.6 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-13} \mathrm{~m} \\
& 10^{-13} \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-13} \mathrm{~cm} \\
& 10^{-11} \mathrm{~cm}
\end{aligned}
\] \\
\hline Compton wavefength of the proton, \(h / m_{e} \mathrm{c}\) & \[
\begin{aligned}
& \lambda_{\text {C, }} \\
& \pi_{C, r}=\lambda_{C, p} / 2 \pi
\end{aligned}
\] & \[
\begin{aligned}
& 1.3214099(22) \\
& 2.1030892(36)
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-15} \mathrm{~m} \\
& 10^{-18} \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-11} \mathrm{~cm} \\
& 10^{-14} \mathrm{~cm}
\end{aligned}
\] \\
\hline Compton wavelength of the neutron, \(h / \mathrm{m}_{\mathrm{n}} \mathrm{c}\) & \[
\lambda_{\mathrm{C}, \mathrm{n}}{ }_{\mathrm{t}_{\mathrm{C}, \mathrm{n}}}=\lambda_{\mathrm{C}, \mathrm{n}} / 2 \pi
\] & \[
\begin{aligned}
& 1.3195909(22) \\
& 2.1001941(35)
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-15} \mathrm{~m} \\
& 10^{-13} \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-11} \mathrm{~cm} \\
& 10^{-11} \mathrm{~cm}
\end{aligned}
\] \\
\hline Molar volume of ideal gas at s.t.p. & \(\mathrm{V}_{\mathrm{mb}}\) & \(22.41383(70)\) & 31 & \(10^{-2} \mathrm{~m}^{2} \cdot \mathrm{~mol}^{-1}\) & \(10^{3} \mathrm{~cm}^{1} \cdot \mathrm{~mol}^{-1}\) \\
\hline \multirow[t]{2}{*}{Molar gas constant, \(V_{m} p_{n} / T_{n}\) ( \(T_{0} \equiv 273.15 \mathrm{~K} ; p_{0} \equiv 101325\) \(\mathrm{Pa} \equiv 1 \mathrm{~atm})\)} & \(R\) & \(8.31441(26)\) & 31 & \(\mathrm{J} \cdot \mathrm{mol}^{-1}, \mathrm{~K}^{-1}\) & \(10^{+}\)erg. \(\mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\) \\
\hline & & 8.20568(26) & 31 & \(10^{-5} \mathrm{~m}^{2} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\) & \(10 \mathrm{~cm}^{2} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Boltzmann constant, \(R / N_{A}\) \\
Stefan-Boltzmann constant,
\[
\pi^{2} k^{4} / 60 \hbar^{3} c^{2}
\]
\end{tabular}} & \(k\) & \(1.380662(44)\) & 32 & \(10^{-38} \mathrm{~J} \cdot \mathrm{~K}^{-1}\) & \(10^{-12}\) erg. \(\mathrm{K}^{-1}\) \\
\hline & \(\sigma\) & \(5.67032(71)\) & 125 & \(10^{-2} \mathrm{~W} \cdot \mathrm{~m}^{-8} \cdot \mathrm{~K}^{-4}\) & \(10^{-5} \mathrm{erg}^{-1} \mathrm{~s}^{-1} \cdot \mathrm{~cm}^{-8} \cdot \mathrm{~K}^{-4}\) \\
\hline First radiation constant, \(2 \pi h c^{2}\) & \(c_{1}\) & \(3.741832(20)\) & 5.4 & \(10^{-18} \mathrm{~W} \cdot \mathrm{~m}^{2}\) & \(10^{-3} \mathrm{erg} \cdot \mathrm{cm}^{2} \cdot \mathrm{~s}^{-1}\) \\
\hline Second radiation constant, hc/k & \(\mathrm{c}_{2}\) & \(1.438786(45)\) & 31 & \(10^{-3} \mathrm{~m} \cdot \mathrm{~K}\) & cm. K \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Gravitational constant Ratio, kx-unit to ângström, \(A=\lambda(A) / \lambda(k x u)\);
\[
\lambda\left(C u K a_{1}\right) \equiv 1.537400 \mathrm{kxu}
\] \\
Ratio, \(\mathrm{A}^{*}\) to ấngström,
\[
\begin{aligned}
& \lambda^{*}=\lambda(A) / \lambda\left(A^{*}\right): \\
& \lambda\left(W K_{a}\right) \equiv 0.2090100 A^{0}
\end{aligned}
\]
\end{tabular}} & G & 6.6720(41) & 615 & \(10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~kg}^{-1}\) & \(10^{-3} \mathrm{~cm}^{3} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~g}^{-1}\) \\
\hline & A & \(1.0020772(54)\) & 5.3 & & \\
\hline & A* & \(1.0000205(56)\) & 5.6 & & \\
\hline
\end{tabular}

\section*{ENERGY CONVERSION FACTORS AND EQUIVALENTS}
\begin{tabular}{|c|c|c|c|c|}
\hline Quantity & Symbol & Numarical Valua* & Units & Uncert. (ppm) \\
\hline 1 kilogram (kg* \({ }^{2}\) ) & & \[
\begin{aligned}
& 8.987551786(72) \\
& 5.609545(16)
\end{aligned}
\] & \[
\begin{aligned}
& 10^{18} \mathrm{~J} \\
& 10^{29} \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 0.008 \\
& 2.9
\end{aligned}
\] \\
\hline 1 Atomic mass unit ( \(\mathrm{u}^{-\mathrm{c}^{2} \text { ) }}\) & & \[
\begin{aligned}
& 1.4924418(77) \\
& 931.5016(26)
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-10} \mathrm{~J} \\
& \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 2.8
\end{aligned}
\] \\
\hline 1 Electron mass m. \(\mathrm{m}^{\left(c^{2}\right)}\) & & \[
\begin{aligned}
& 8.187241(42) \\
& 0.5110034(14)
\end{aligned}
\] & \[
\begin{aligned}
& 10{ }^{H 1} \mathrm{~J} \\
& \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 2.8
\end{aligned}
\] \\
\hline 1 Muon mass ( \(m_{\mu} \cdot{ }^{*}{ }^{2}\) ) & & \[
\begin{gathered}
1.6928648(96) \\
105.65948(35)
\end{gathered}
\] & \[
\begin{aligned}
& 1011 \mathrm{~J} \\
& \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 5.6 \\
& 3.3
\end{aligned}
\] \\
\hline 1 Proton mass ( \(m_{1} \cdot c^{4}\) ) & & \[
\begin{gathered}
1.5033015(77) \\
938.2796(27)
\end{gathered}
\] & \[
\begin{aligned}
& 10^{10} \mathrm{~J} \\
& \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 2.8
\end{aligned}
\] \\
\hline 1 Neutron mass ( \(\mathrm{m}_{\|}{ }^{*} \mathrm{c}^{\text {a }}\) ) & & \[
\begin{aligned}
& 1.5053738(78) \\
& 939.5731(27)
\end{aligned}
\] & \[
\begin{aligned}
& 10^{10} \mathrm{~J} \\
& \mathrm{MeV}
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 2.8
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{1 Electron volt} & & \(1.6021892(46)\) & \[
\begin{aligned}
& 10^{-11} \mathrm{~J} \\
& 10^{-15} \mathrm{erg}
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.9
\end{aligned}
\] \\
\hline & \(1 \mathrm{eV} / \mathrm{h}\) & 2.4179696 (63) & \(10^{14} \mathrm{~Hz}\) & 2.6 \\
\hline & \(1 \mathrm{eV} / \mathrm{hc}\) & 8,065479(21) & \[
\begin{aligned}
& 10^{5} \mathrm{~m}^{-1} \\
& 10^{3} \mathrm{~cm}^{-1}
\end{aligned}
\] & 2.6
2.6 \\
\hline & \(1 \mathrm{eV} / \mathrm{k}\) & \(1.160450(36)\) & \(10^{4} \mathrm{~K}\) & 31 \\
\hline Voltage wavelength conversion, he & & \[
\begin{aligned}
& 1.986478(11) \\
& 1.2398520(32)
\end{aligned}
\] & \[
\begin{aligned}
& 10^{25} \mathrm{~J} \cdot \mathrm{~m} \\
& 10^{-6} \mathrm{eV} \cdot \mathrm{~m} \\
& 10^{-4} \mathrm{eV} \cdot \mathrm{~cm}
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 2.6 \\
& 2.6
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Rydberg constant} & \(\mathrm{R}_{\mathrm{x}} \mathrm{hc}\) & \(2.179907(12)\) & \[
\begin{aligned}
& 10^{-11} \mathrm{~J} \\
& 10^{-11} \mathrm{erg}
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 5.4
\end{aligned}
\] \\
\hline & & 13.605804(36) & \(\mathrm{eV}^{10^{15} \mathrm{~Hz}}\) & 2.6 \\
\hline & \(\mathrm{R}_{\mathrm{x}} \mathrm{c}\) & \(3.28984200(25)\) & \(10^{15} \mathrm{~Hz}\) & 0.075 \\
\hline & \(\mathrm{R}_{\mathrm{x}} h \mathrm{c} / \mathrm{k}\) & \(1.578885(49)\) & \(10^{5} \mathrm{~K}\) & 31 \\
\hline \multirow[t]{4}{*}{Bohr magneton} & \(\mu_{M}\) & \[
\begin{aligned}
& 9.274078(36) \\
& 5.7883785(95)
\end{aligned}
\] & \[
\begin{aligned}
& 10^{-24} \mathrm{~J} \cdot \mathrm{~T}^{\prime} \\
& 10^{-5}{\mathrm{eV} \cdot \mathrm{~T}^{-1}}^{\text {an }}
\end{aligned}
\] & 3.9
1.6 \\
\hline & & 1.3996123(39) & \(10^{18} \mathrm{~Hz} \cdot \mathrm{~T}^{-1}\) & 2.8 \\
\hline & \[
\mu_{\mathrm{B}} / h \mathrm{hc}
\] & \(46.68604(13)\) & \(\mathrm{m}^{-1 .} \mathrm{T}^{-1}\) & 2.8 \\
\hline & & \(0.671712(21)\) & \({ }_{K \cdot T^{-1}}^{10^{-1}} \mathrm{~cm}^{-1 \cdot \mathrm{~T}^{-1}}\) & 31. \\
\hline \multirow[t]{6}{*}{Nuclear magneton} & & \(5.505824(20)\) & \(10^{25} \mathrm{~J} \cdot \mathrm{~T}^{-1}\) & 3.9 \\
\hline & \(\mu\). & \(3.1524515(53)\) & \(10^{-8} \mathrm{eV} \cdot \mathrm{T}-1\) & 1.7 \\
\hline & \(\mu_{\mathrm{N}} / \mathrm{h}\) & 7.622532(22) & \(10^{\circ} \mathrm{Hz} \cdot \mathrm{T}-1\) & 2.8 \\
\hline & \(\mu, / h c\) & \(2.5426030(72)\) & \(10^{-2} \mathrm{~m}^{-1 . \mathrm{T}^{-1}}\) & 2.8 \\
\hline & & & \(10^{-4} \mathrm{~cm}^{-1} \cdot \mathrm{~T}^{-1}\) & 2.8 \\
\hline & \(\mu_{\mathrm{x}} / \mathrm{k}\) & 3.65826(12) & \(10^{-4} \mathrm{~K} \cdot \mathrm{~T}^{-1}\) & 31 \\
\hline
\end{tabular}
* Nota that tha numbers in paranthases are the one standerd-daviation uncartaintias in the last digits of the quoted value computed on the basis of intarnat consistancy. that tha unifiad atomic mass acala "C \(\leqslant 12\) has base used throughout, that u \(u\) atomic mass unit, \(\mathrm{C}=\mathrm{coulomb}\),
 T* \(\mathrm{m}^{1}\), and \(W=\) watt in casas where formulas for constants are givan (e.g., Re). the relations are written as the product of two factors. Tha eecond factor, in paranthases, is the axprassion to ba usad whan all quantities ara expressed in cgs units, with the alectron charge in aiectrostatic units. Tha first factor, in brackats, is to bo included only if all quantitias are exprassad in Si units. Wa remind the reader that with the arcaption of the auxilisry constants which hava base takan to be exact, tha uncertaintias of thase constants are correlated, and tharefore the ganaral taw of arror propagation must ba used in calculating additional quantitias requiring two or more of thesa constants.
+ Quantities given in \(u\) and atm ara for tha conveniance of tha reader, thass units are not part of the International Syatem of Units (SI).
If ordar to avoid saparata columns for "electromagnetic" and "alactrostatic" units, both are givan undar the single haeding "cge Units." When using these units. the elamantery chares a in the sacond column should be underatood to be replaced by ase or e, respectlvely.

\section*{APPROXIMATE CAPACITANCE OF CONDUCTORS (pf/inch)}
\begin{tabular}{|l|l|l|l|}
\hline Spacing (in.) & XXXP & \begin{tabular}{l} 
Material \\
Melamine
\end{tabular} & Teflon \\
\hline \(1 / 32\) & 1.05 & 1.25 & 0.33 \\
\(1 / 16\) & 0.85 & 1.10 & 0.26 \\
\(1 / 8\) & 0.72 & 0.90 & 0.22 \\
\hline
\end{tabular}

\section*{APPROXIMATE RESISTANCE OF CONDUCTORS (ohms/inch)}

Based on \(100 \%\) conductivity of copper at \(20^{\circ} \mathrm{C}\)
\[
\begin{aligned}
& R=\frac{0.000503}{w} \text { for } 1 \text { ounce copper } \\
& R=\frac{0.000226}{W} \text { for } 2 \text { ounce copper } \\
& R=\frac{0.000135}{W} \text { for } 3 \text { ounce copper } \\
& W=\text { conductor width in inches }
\end{aligned}
\]

VELOCITY OF SOUND IN SOLIDS, GASES, AND LIQUIDS


This is the letter code adapted by the American Standards Association and by the National Association of Relay Manufacturers to describe relay contacts.

Other standard contact symbols
\begin{tabular}{|c|c|c|}
\hline Form & IEC. JIC and NMTBA symbol & Other IEC symbols \\
\hline A & \(\frac{1}{T}\) & - OR O. \\
\hline  & \[
\frac{1}{7}
\] & \(\frac{1}{1}\) On \\
\hline c & \[
\frac{1}{4} \frac{1}{4}
\] & \[
\frac{1}{1} \text { OR }
\] \\
\hline D & \[
\frac{1}{\mathrm{~L}} \text { ст }
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline - LETTER ABBREVIATIONS \\
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
B: BREAK \\
C: CLOSED \\
D: OOUBLE \\
M. MAKE \\
N NORMALLY \\
O OPEN \\
P POLE \\
S. SINGLE \\
T. THROW \\
EXAMPLE: SP ST NC OB is reod as Single Pole, Single Throw, Narmolly Clased. Oouble Break
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FORM & TERM & CONTACT CONFIGURATION & FORM & TERM & CONTACT CONFIGURATION \\
\hline A & MAKE & SP ST NO & J & MAKE MAKE BREAK &  \\
\hline B & break &  & K & \[
\begin{aligned}
& \text { SP DT } \\
& \text { CENTER } \\
& \text { OFF }
\end{aligned}
\] &  \\
\hline C & BREAK MAKE (transier) &  & 1 & BREAK MAKE MAKE &  \\
\hline D & \begin{tabular}{l}
MAKE-BEFORE \\
BREAK \\
(cantinuity transter)
\end{tabular} &  & U & double make CONTACT ON ARMATURE &  \\
\hline E & \begin{tabular}{l}
BREAK \\
MAKE-BEFORE \\
BREAK
\end{tabular} &  & V & DOUBLE BREAK CONTACT ON ARMATURE &  \\
\hline F & MAKE MAKE &  & W & DOUBLE 3REAK DOUBLE MAKE CONTACT ON ARmature &  \\
\hline G & BREAK BREAK &  & x & DOUBLE MAKE &  \\
\hline H & break BREAK MAKE &  & Y & OOUBLE BREAK &  \\
\hline I & MAKE BREAK MAKE &  & \(z\) & OOUBLE BREAK OOUBLE MAKE &  \\
\hline
\end{tabular}

Heat-sink thermal resistance can be determined with the accompanying chart. Values determined graphically are not as accurate as those found from thermal equations but are precise enough for most applications. To find thermal resistance, draw a vertical line from the scale for surface area to the scales for materials and read the corresponding thermal resistance. For example, a \(3 / 16\)-in.-thick piece of horizontally mounted copper with a surface area of \(15 \mathrm{in} .^{2}\) has a thermal resistance of approximately \(4.1^{\circ} \mathrm{C} / \mathrm{W}\). And a \(3 / 32\)-in.-thick piece of vertically mounted copper with a surface area of \(25 \mathrm{in}^{2}\) has a thermal resistance of approximately \(3.1^{\circ} \mathrm{C} / \mathrm{W}\). Note that vertical heatsinks have lower thermal resistances than horizontal sinks because convection provides increased heat dissipation.


\section*{FOREIGN VOLTAGE GUIDE}

Following is an up-to-date guide to predominant electric voltages in foreign countries. In general, all references to 110 V apply to the range from 110 V to 160 V . References to 220 V apply to the range from 200 V to 260 V . Where \(110 / 220 \mathrm{~V}\) is indicated, voltage varies within the country, depending on location.
\begin{tabular}{|c|c|c|c|}
\hline Aden & 220 V & Dominica & 220 V \\
\hline Atghanistan & 220 V & Dominican Rep. & \[
110 / 220 \mathrm{~V}
\] \\
\hline Algeria & \(110 / 220 \mathrm{~V}\) & Ecuador & \(110 / 220 \mathrm{~V}\) \\
\hline Angoia & 220 V & Egypt & \(110 / 220 \mathrm{~V}\) \\
\hline Anguilia & 220 V & El Salvador & 110 V \\
\hline - Antigua & \(110 / 220 \mathrm{~V}\) & Ethiopla & \(110 / 220 \mathrm{~V}\) \\
\hline + Argentina & 220 V & \(\ddagger\) Fijl & 220 V \\
\hline Aruba & 110 V & Finiand & 220 V \\
\hline \#+ Australia & 220 V & France & \(110 / 220 \mathrm{~V}\) \\
\hline - Austria & 220 V & French Guiana & \(110 / 220 \mathrm{~V}\) \\
\hline Azores & \(110 / 220 \mathrm{~V}\) & Gabon & 220 V \\
\hline Bahamas & \(110 / 220 \mathrm{~V}\) & Gambla & 220 V \\
\hline Bahrain & 220 V & ** Germany & \(110 / 220 \mathrm{~V}\) \\
\hline Bangladesh & 220 V & Ghana & 220 V \\
\hline Barbados & \(110 / 220 \mathrm{~V}\) & Gibraltar & 220 V \\
\hline Beiglum & \(110 / 220 \mathrm{~V}\) & - Greal Britain & 220V \\
\hline Bermuda & \(110 / 220 \mathrm{~V}\) & + Greece & \(110 / 220 \mathrm{~V}\) \\
\hline Bhutan & 220 V & Greenland & 220 V \\
\hline Bolivia & \(110 / 220 \mathrm{~V}\) & - Grenada & 220 V \\
\hline Bonaire & \(110 / 220 \mathrm{~V}\) & Grenadines & 220 V \\
\hline - Botswana & 220 V & - Guadeloupe & \(110 / 220 \mathrm{~V}\) \\
\hline +Brazil & \(110 / 220 \mathrm{~V}\) & Guatemala & \(110 / 220 \mathrm{~V}\) \\
\hline Brit. Honduras & \(110 / 220 \mathrm{~V}\) & Guinea & 220 V \\
\hline Brit. Virgin l. & \(110 / 220 \mathrm{~V}\) & Guyana & \(110 / 220 \mathrm{~V}\) \\
\hline Buigaria & \(110 / 220 \mathrm{~V}\) & Halti & \(110 / 220 \mathrm{~V}\) \\
\hline Burma & 220 V & Honduras & \(110 / 220 \mathrm{~V}\) \\
\hline Burundi & 220 V & - Hong Kong & 220 V \\
\hline Cambodia & \(110 / 220 \mathrm{~V}\) & Hungary & 220 V \\
\hline Cameroon & \(110 / 220 \mathrm{~V}\) & Iceiand & 220 V \\
\hline Canada & 110 V & tindia & 220 V \\
\hline Canal Zone & \(110 / 220 \mathrm{~V}\) & Indonesia & \(110 / 220 \mathrm{~V}\) \\
\hline Canaryl. & \(110 / 220 \mathrm{~V}\) & Iran & 220 V \\
\hline Caymani. & 110 V & Iraq & 220 V \\
\hline Cen. African Rep. & 220 V & - Ireiand & 220 V \\
\hline Chad & 220 V & isle of Man & 220 V \\
\hline +Channell. (Brit) & 220 V & israel & 220 V \\
\hline \({ }^{+}\)Chile & 220 V & Italy & 110 I 220 V \\
\hline \({ }^{\text {t }}\) China & 220 V & Ivory Coast & 220 V \\
\hline Cosombia Rica & 110 V
\(110 / 220 \mathrm{~V}\) & - Jamaica & \(110 / 220 \mathrm{~V}\) \\
\hline Costa Rica & \(110 / 220 \mathrm{~V}\) & Japan & 110 V \\
\hline Cuba & 110 V & Jordan & 220 V \\
\hline Curacao & 110 V & - Kenya & 220 V \\
\hline - Cyprus & 220 V & Korea & 110 V \\
\hline Czechosiovakia & \(110 / 220 \mathrm{~V}\) & Kuwait & 220 V \\
\hline Dahomey & 220 V & Laos & \(110 / 220 \mathrm{~V}\) \\
\hline Denmark & 220 V & Lebanon & \(110 / 220 \mathrm{~V}\) \\
\hline
\end{tabular}


\footnotetext{
Denotes countries in which plugs with 3 square pins are used (in whole or part)
\(\ddagger\) Requires plug with angled blades
}
tCountries using dc in certain areas -Countries with recessed outlets (Reprinted from "Foreign Electricity Is No Deep Dark Secret," couitesy of Franzus Company Inc.)


\section*{COORDINATES FOR EQUALLY SPACED HOLES}

It is sometimes necessary to determine the \(x\) and \(y\) coordinates of a circle divided into an equal number of parts. The following table can be used directly, or it can serve as a crosscheck against answers obtained by normal trigonometric methods.

FOR EXAMPLE: A circle that has a radius of 5.0 cm and contains 4 holes spaced at \(90^{\circ}\). Determine the distance between their centers. \(A=1.4142 R=1.4142(5.0)=7.07 \mathrm{~cm}\).
(

\section*{Index}

\section*{A}

Abbreviations, semiconductor, 166170
Absolute value amplifier, 185
Acceleration, 266, 299
gravity, 337
Acetates, 347
Acrylics, 347
Active devices, characteristics, 171
Active filter circuit, 186
Active notch filter, 186
Actual power/apparent power, 90
Advanced license, 62
Aeronautical frequencies, 9
mobile band, 9
Air cooling, 385
Air density, 337-339
Air flow, 385
Air traffic control frequencies, 11
Airspace transmission line, 38, 39
Alkyds, 349
Alphabet, international phonetic, 65
Alternating sine wave, 260
Alternating square wave, 260
Altitude, 337-339
Altitude chart, 337
AM, 66, 67
AM radio broadcast frequencies, 5
Amateur extra license, 62

Amateur operator license, 62 requirements, 62
Aminos, 349
Amplifier
JFET transistor, 112
low-end, 107
negative feedback, 210
operational, 182
performance characteristics, 106
push-pull, 211
RC-coupled, 107, 110, 111, 113
square wave, 106
Amplifier gain, 212
Amplifier noise, 80-82
Amplifiers, classification, 206
Amplifying tubes, European, 215
Amplitude modulation, 66-67
AN nomenclature, 320-323
Angles, 250
Angular resolution, 227
Antenna
biconical, 33
biconical horn, 33
coaxial dipole, 33
dipole, 33
folded dipole, 33
helical, 33
horn, 33
microwave, 36
parabolic, 33
rhombic, 33
turnstile, 33
vertical full wave loop, 33
Antenna aperture, 36
Antenna bandwidth, 32-35
Antenna effectiveness, 37
Antenna efficiency, 37
Antenna gain, 36
Antenna impedance, 32-35
Antenna pattern, 32-35
Antenna polarization, 32-35
Antenna reference charts, 32-35
Apparent power, 90
Appliance wiring, 364
Appliances, power consumption, 381
Arc resistance, 350
Areas, 248
ARRL word list, 65
ASCII code, 371
Aspect ratio, 22
Astable multivibrator, 180, 181
Atmosphere, properties, 337-340
Atmospheric layers, 340
Attenuation
crossover network, 116
VSWR reduction, 48
Attenuation factor, 105
Attenuation response, 117

Attenuators, 72-74
bridged-T, 72-74
H, 72-74
lattice, 72-74
O, 72-74
pi, 72-74
resistive, 72-74
U, 72-74
Atto, 233
Audibility threshold, 316
Audio line table, 365
Automatic gain control amplifier, 186
Automatic landing systems, 11
Avalanche diode, 162
Average velocity, 286
AWG, 360
Azimuth, 30
Azimuth error, 25, 30

B \& S gauge, 360
Back diode, 162
Backswing, 255
Balanced two-wire lines, 39
Bandpass amplifier, 185
Bandpass filter, 144
Bands, 5
Bandwidth, tuned circuit, 114-115
Baudot code, 369
Beacon frequencies, 11
Biconical antenna, 33
Biconical horn, 33
Body resistance, 318
Breakdown, spark gap, 366
Bridge
Hay, 158
Maxwell, 158
Owen, 158
Shering, 158
Wheatstone, 158
Wien, 111, 158
Bridge circuits, 158
Bridge voltage doubler, 151
Bridged H attenuator, 72 -74
Bridged T attenuator, 72-74
Broadcast antenna, 36
Broadcast array, 34-35
Broadcast frequencies, 5
C
Cable insulation, 361
Calcium, 326
Candlepower, 306, 309, 319
Candles/square centimeter, 309
Candles/square foot, 309
Candles/square inch, 309
Capacitance, 285
effective capacitance of, 159
reactive, 94-97
Capacitance bridge, 158
Capacitive coupling, 104
Capacitive reactance, 94-97

Capacitors
ceramic dielectric, 324-325
color codes, 321
energy storage, 88, 89
frequency characteristic, 100
self-resonant frequency, 93
values, 79
Capacity, 374
KVAR, 92
Cardioid, 244
Cascade voltage doubler, 151
Cascade voltage tripler, 151
Cascaded amplifier, 219 risetime, 209
Cascaded stages, noise figure, 219
Catenary, 245
Cathode feedback, 213
Cathode follower, 212, 214 circuit, 172
Cathode ray tube phosphors, 331
Cellulosics, 347
Celsius, 351, 354
Centi, 233
Centigrade, 351-354
Centimetric waves, 5
Cesium, 326
Characteristics of active devices, 171
Charge, 285
Charge density, 285
Chassis wiring, color codes, 320
Chebyshev attenuation response, 117
Chlorinated polyethers, 347
Circle, 244, 399
Circuit components, 372
Cissold of Diocles, 245
Citizen's radio frequencies, 10
Class A amplifier, 206-207
Class A insulation, 362
Class AB amplifier, 206-207
Class B amplifier, 206-207 push-pull, 211
Class B insulation, 362
Class C amplifier, 206-207
Class C insulation, 362
Class F insulation, 362
Class H insulation, 362
Class O insulation, 362
Class 220 C insulation, 362
Classification of emissions, 66
Clipped sawtooth wave, 260
Clipped sine wave, 260
Clystron wire leads, 320-321
CML, 190
Coaxial antenna, 33
Coaxial cables
attenuation, 40
characteristics, 40
signal delay, 150
Cobalt, 326
Code
555, 60

International Morse, 59
mnemonic, 55-58
Q, 55-58
radio telephone, 59
signal reporting, 60
SINPO, 60
Coil design, 83
single layer, 83-84
Colinear array, 35
Color codes, 260-261
Color scale, temperatures, 359
Comb filter, 146-147
Commercial radio operator license, 63-64
requirements, 62
Common base circuit, 172, 173, 175, 179
Common collector circuit, 172-173, 175-179
Common emitter circuit, 172-173, 175-179
Communication modes, 21
Complementary silicon controlled rectifier, 164-165
Complementary transistor logic, 190
Complementary unijunction transistor, 164-165
Component color codes, 320-323
Component MTBF, 222
Component tolerances, 79
Component values, preferred, 79
Concentric transmission line, 38
Conditional license, 62-64
Conductance, 374
Conductivity, 374
Conductors
capacitance of, 392
resistance of, 392
Cone, 246
Contidence level, 226
Constant current source, 183
Constant K network, 144
Constant-resistance network, 116
Constants, 389
Contacts, 373, 393
Control marking, foreign equipment, 375
Conversion factors, 287-299
Cooling, 385
Copper conductors, 388
Copper wire tables, 360
Corrosion, 346
Cosmic rays, 4
Crossed field devices, color codes, 322
Crossover network, 116
Crystal cuts, 329-330
Crystal displays, 191
Crystal oscillator, 185
Crystals, 327-331
CSCR, 164-165

CTCS, 12
CTL, 190
Cube roots, 236-237
Cubes, 236-277
Cubical parabola, 244
CUJT, 164
Current, 285, 374
density, 285
motors, 377
Current injector circuit, 182
Current mode logic, 190
Current-to-voltage inverter, 183-185
Cutoff, waveguide, 46
Cut-off wavelength, 46

\section*{D}
da, 233
D/A converter, 186
dB, 262-263
dBm, 262-263
DCTL, 190
Deca, 233
Decametric waves, 5
Decay time, 255
Deceleration, 286, 386
Deci, 233
Decibel conversion, 262-263
Decibel nomogram, 264-266
Decimetric waves, 5
Decimillimetric waves, 5
Definitions, 192-205
Delay line, 149
Density, air, 337-339
Deviation, 22
Diac, 164-165
Diagram symbols, electronic, 370
Diallyl phthalates, 349
Dielectric constant, 150, 350, 374
Dielectric displacement, 284
Dielectric strength, 350
Differentiation, 182
Diffraction
knife edge, 21
plain surface, 21
rough surface, 21
Diode, 163
Diode power requirements for switching power supplies, 152
Diode transistor logic, 190
Dipole antenna, 33
Direct-coupled transistor logic, 190
Discomfort index, 358
Displacement, electric flux density, 374
Dissipation factor, 350
Doppler trequency, 50
Doppler navigation, 11
Doppler to speed conversion, 49
Doubler, voltage, 151
Dry bulb thermometer, 355-358
DTL, 190

ECL, 190.
EIA Designations, 324-325
EIA Standard Tone Frequencies, 12
Effective impedance, 99
Effectiveness, antenna, 37
EHF, 4-5
EIR nomogram, 101
Elastance, 374
Electric current, effect on the human body, 318
Electric dipole moment, 285, 374
Electric field density, 285, 374
Electric flux, 374
Electric potential, 285
Electric waves, 4
Electrical charge, 374
Electrical equipment power consumption, 381
Electromagnetic spectrum, 4
Electromagnetic units, 284, 285
Electromagnetic waves, propagation characteristic, 20
Electron volts, 304
Electronic symbols, 370
Electronics and telecommunication, 372-374
Electrostatic series, 345
Elements, metallic, 386
Elevation, 30-31
Elevation error, 30-31
ELF, 4
Ellipse, 244
Ellipsoid, 247
Elliptical attenuation response, 117
Emission classification, 66-67
Emitter-coupled logic, 190
Encoders, 227
End fire array, 35
Energy, 285, 286
conversion, 302
conversion factors, 391
work, 374
Energy storage capacitor 88-89
Epoxies, 349
Equal loudness curves, 316
Equilateral hyperbola, 244
Equivalent resistance, 91
European semiconductor numbering system, 189
European tube numbering system, 215
Eutectic temperature, 387
Exponential curve, 245
Eye, 326
Eye hazard, laser, 303
Eye spectrosensitivity, 326
F
Factorials, 241
Fahrenheit, 351-354
Failure rate, 223

Feedback, cathode, 213
Femto, 233
Field density, 54
Field intensity, 54 receiving antenna, 25
Field power conversion, 54
Field strength, 54
Fields and circuits, 272-275
Fields/second, 23
Figure of merit, 114
Filter
comb, 146, 147
design, 117-143
high pass, 117
low pass, 117
twin-T, 75-77
Final velocity, 286
Fire control frequencies, 11
First class radio telegraph license, 63-64
First class radio telephone license, 63-64
555 code, 61
Floating load circuit, 185
Fluorescent display, vacuum, 191
Fluorocarbons, 276, 347
Flux density, 285
FM radio frequencies, 5
Folded dipole antenna 33
Foot-candles, 306-307, 309-310
Foot-lamberts, 310
Force, 285, 286, 374
Foreign equipment terminal and control markings, 377
Foreign voltage guide, 396
Forward power, transmission line, 47
Fourier content, 261
Four-leaved roses, 245
Frames, 23
Free fall, 383
Free space, cutoff, waveguide, 46
Free space frequency, 46
Free space transmission, 24
Free space wavelength, 46
Frequencies
aeronautical mobile bands, 8-9
broadcasting, 5, 10
citizen's radio, 10
remote control, 12
ship station, 10
shore station, 10
TV channels, 6-8
Frequency bands, 5 microwave, 11
Frequency bridge, 158
Frequency characteristics
capacitors, 100
inductors, 100
resistors, 100
RL and C, 100
Frequency divider, 185
Frequency modulation, 66, 67

Frequency nomograph, 258
Frequency-period conversion, 256
Frequency selective networks, 110113
Frequency-wavelength conversion, 17
Full load current, motors, 377
Full wave, 261
Full wave voltage doubler, 151
Full wave voltage quadrupler, 151
Functions of angles, 250
Fusing current, 364

\section*{G}

Galvanic series, 346
Gamma of picture signal, 23
Gamma rays, 4
Gas discharge, 191
Gases, 392
Gate definitions, 197
General license, 62
Geoalerts, 16
Geometric curves, 244-245
Geometrical horizons, 28
Giga, 233
Gold, 305
Graphic symbols, 370
Greek alphabet, 257
Ground to ground communication, 21 modes, 21
Grounded cathode circuit, 172
Grounded grid circuit, 172

\section*{H}

H parameter, 176, 177
H type attenuator, 72-74
Half life, 305
Half wave, 261
Half wave voltage quadrupler, 151
Hardware, 400
Harmonic distortion, 234
Harmonic rejection, 234
Harmonics, 234
Hay bridge, 158
Heat, 270-271
Heat-sink thermal resistance, 395
Hecto, 233
Hectometric waves, 5
Height, 286
Helical antenna, 33
HF, 4-5
propagation, 20
High altitude chart, 337
High frequency current, 98
High frequency inductance, 85
High frequency inductance wire, 85
High-pass active filter, second order, 186
High-pass network RC, 110
Holes, equally spaced, 399
Horn antenna, 33

Human ear, 186
Human eye spectrosensitivity, 326
Humidity, relative, 356-357
Hyperbola, 244
Hypocycloid, 245

\section*{1}

IC logic families, 190
IER nomogram, 101
Illuminance, 308
Illumination units, 309
Impedance
parallel connected RL and C, 99
series connected RL and C, 99
two-wire lines, 39
Impedance match power loss, 157
Impedance mismatch power loss, 157
impedance ratio, transformer, 88-89
Impedance transformer, 86
Incandescent display, 191
Incandescent lamps, 314
Indicators, radar, 30-31
Indium, 305
Inductance, 285
Inductance bridge, 158
Inductive capacity, 285
Inductive reactance, 94-97
Inductor values, preferred, 79
Inductors, frequency characteristics, 100
Infrared, 4
Infrasonics, 4
Initial velocity, 286
Insulating materials, temperature classification, 362
Input VSWR, 48
Integrated circuit logic families, 190
Integrated circuit definitions, 192
Integrated circuit properties, 171
Integrated voltage regulator, 162-163
Integration, 182
Interlace, 23
International Morse code, 59
International phonetic alphabet, 65
International television standards, 22
International time map, 336
Interplanetary transmission time, 65
lodine, 305
Iron, 305
Isotope, 32-35, 246
IVAR, 162-163
J
JEDEC, 331
Jupiter, 65
K
Kelvin, 353-354
Kilo, 233
Kilometric waves 5
KVAR, 90, 92
KVAR-capacity, 92

L type attenuator, 72-74
Lambert, 311
Lamp life, 319
LASCR, 164-165
Laser, 4, 303
beam width, 303
eye hazard, 303
output energy, 303
radiation, 304
Lattice type attenuator, 72-74
LED, 304
Lemniscate, 244
Length, 374
Letter code, microwave frequencies, 11
Letter symbols, 166-170, 267-277, 278-283
LF, 4-5
LF propagation, 20
License requirements amateur operator, 62
commercial operator, 63-64
Light, 271, 272
Light activated SCR, 165
Light emitting diode, 190
Light sources, 245, 304
Light waves, 4
Lightning activity, 341
Limacon, 244
Line of sight, 21
Line-of-sight transmission range, 28
Linear charge density, 374
Lines/frame, 23
Lines/second, 23
Liquid crystal, 191
Liquids, 392
Liquids, densities of, 386
Lissajous figures, 252-253
Load VSWR, 48
Logarithm, factorials, 241
Logarithmic curves, 245
Logarithmic transconductor circuit, 185
Logic definitions, 197
Logic devices, 372
Loudness level, 316
Loudspeaker crossover networks, 116
Low-end amplifier response, 107
Low-pass active filter, second order, 183
Low-pass network, RC, 110
Lumen, 311
Lumens/square centimeter, 311
Lumens/square foot, 311
Lumens/square meter, 311
Luminance spectrum, 313
Lux, 311
M
m-derived network, 116

Machines, 277
Magnetic charge, 374
Magnetic dipole moment, 285, 374
Magnetic field intensity, 284, 374
Magnetic field strength, 334
Magnetic flux, 285, 374
Magnetic flux density, 374
Magnetic force, 374
Magnetic induction, 374
Magnetization, 374
Magnetomotive force, 285, 374
Mars, 65
Mass, 286
Matching pad, minimum loss, 78
Mathematical operations, 240
Mathematical signs and symbols, 239
Maxwell bridge, 158
Mean time between failures, 222-225
Mechanics, 269-270
Mega, 233
Memories, semiconductor, 217
Metal oxide semiconductor logic, 190
Metallic elements, 386
Metric prefixes, 233
Metric waves, 5
MF, 4-5
MF propagation, 20
Micro ( \(\mu\) ), 233
Microelectronics terms definitions, 192-205
Microphone output, 68-69
Microwave antenna, 36
Microwave circuits, 373
Microwave frequency band, 11
Military designations, 324-325
Military nomenclature, 332-333
Milli, 233
Millimetric waves, 5
Minimum attenuation, slotted line, 45
Minimum loss, matching pad, 78
Mnemonic code, 56-58
Modulator-demodulator, 185
Molecular weight, 337
Moon, 65
Monostable multivibrator, 180-181
Morse code, 59
MOSL, 190
Motor characteristics, 378
Motors, full load current, 377
MTBF, 222-224, 226
Multipliers, voltage, 151
Multivibrator
astable, 180-181
monostable, 180-181
symmetrical, 180-181
Multivibrator design, 180-181
Myriometric waves, 5

\section*{\(N\)}

Nano, 233
National Bureau of Standards, 14-16
Natural rubber insulation, 361

Navigation antenna, 36
Negative feedback, 210
Neon lamp, 304
Neoprene insulation, 361
Network, pulse forming, 148
Noble metal, 346
Noise figure, 27, 219
receiver, 27
Noise power/signal power separation, 53
Noise-signal separation, 53
Noise voltage, thermal, 80-82
Notch filter, 186
Novice license, 62
npn transistor, 162-163
Nylons, 347

0
O type attenuator, 72-74
Ohm's law, 101
nomogram, 101
Operational amplifier, 182-187 terms, 187
Optical horizon, 28
Optics, 4
Optimum reverberation time, 317
Optoelectronic devices, 371
Oscillator
crystal, 186
Wien bridge, 186
Overvoltage clamp circuit, 185
Owen bridge, 158
P
PAM, 67
Parabolic antenna, 33
Paraboloid, 247
Parallel circuit, 99
Parasitic array, 34
Parylenes, 348
Passive LC filter design, 117-143
PCM, 67
PDM, 67
Peak follower circuit, 184
Period-frequency conversion, 256
Permeability, 285, 374
Permeance, 374
PFM, 67
Phase angle, 258
Phase modulation, 66, 67
Phase shift, 105
RC network, 105
Phenolics, 349
Phonetic alphabet, 65
international, 65
Phosphor characteristics, CRT, 331
Photometry, 306-307
Photon energy, 304
Photoreceptors, 304
Photot ansistor, 164-165
Physical constants, 389
Physical units conversion, 374

Pi type attenuator, 72-74
Pico, 233
Plastics, 347-350
PM, 67
pnp transistor, 164-165
Polar-rectangular conversion, 242243
Polarity separator circuit, 184
Polarization, 374
Polarization, antenna, 32-34
Polyallomers, 348
Polyamide-imides, 348
Polycarbonates, 348
Polyesters, 348, 349
Polyethylenes, 348
Polyimedes, 348
Polyphenylene oxides, 348
Polypropylenes, 348
Polystyrenes, 348
Polysultones, 347
Potential, 374
Power, 374
rotation, 376
units, 285
Power consumption of electrical equipment, 381
Power density, 53
Power engineering, 277
Power factor, 91, 350
RC network, 91
RL network, 91
Power factor correction, 90
Power loss, impedance mismatch, 157
Power supply regulation, 156
Power supply switching, 152
Powers of numbers, 235
Powers of two, 238
PPI, 30-31
PPM, 67
PPM \(/{ }^{\circ} \mathrm{C}, 339\)
Predistortion, 255
Pre-emphasis, 23
Pressure, 337-339
PRF, 91
Printed wiring boards, 388
Printers, 367
Probability curve, 245
Probability of success, 225
Programmable unijunction transistor, 164-165
Propagation, 20
Propagation characteristic, electromagnetic waves, 20
Propagation forecast, WWV, 14-16
Propagation velocity, 41
PTM, 67
Pulse-amplitude modulation, 67
Pulse-code modulation, 67
Pulse definitions, 255
Pulse-duration modulation, 67
Pulse-forming network, 148

Pulse-frequency modulation, 67
Pulse interval, 30-31
Pulse modulation, 66-67
Pulse parameters, 254
Pulse-position modulation, 67
Pulse repetition frequency, 254
Pulse risetime, 254
Pulse-shape modulation, 67
Pulse-time modulation, 67
Pulse width, 148
Push-pull amplifier, 211
PUT, 164-165
PVC, 361
Pyramid, 246
a
Q, 114-115
Q signal, 55-58
Quadrupler, voltage, 156
Quartz crystals, 327-330
R
Racan, 11
Radar
antenna, 36
frequencies, 11
indicators, 30-31
power, 29
power-energy, 29
Radiation, 305
and height, 271-272
spectrum, 4
Radioactivity decay curve, 326
Radio astronomy, 36
Radio operator license, 62-64
Radio telephone code, 59
Radio waves, 4
Radiometry, 36
Range, on radar indicators, 30-31
Rankine, 353
RC coupled amplifier, 111
R-C coupling, 105
R-C filters, 75-77
R-C high-pass network, 110-111
R-C low-pass network, 110-111
R-C time constant, 108-109
RCTL, 190
Reactance
capacitive, 94-97
inductive, 94-97
nomogram, 94-97
Reaumur, 353
Receiver bandwidth sensitivity-noise figure, 27
Receiving tubes, European, 215
Rectangular polar conversion, 242243
Rectangular wave, 260
Rectified sine wave, 260
Rectifier, 162-165
Rectifier diode symbols, 166-167
Redundancy, 225

Reflected power, transmission line, 47
Reflection coefficient, slotted line, 44
Regulation, power supply, 156
REI nomogram, 101
Relative humidity, 355-357
Relay contact code, 393
Reliability, 222-224
Reluctivity, 374
Remote control frequencies, 12
Repetition rate, 29
Resistance, 350, 374
units, 285
Resistance bridge, 158
Resistance-capacitance coupling, 105
Resistive attenuators, 72-74
Resistivity, 350, 374
Resistor capacitor transistor logic, 190
Resistor-coupled transistor logic, 190
Resistor frequency characteristic, 100
Resistor values, preferred, 79
Resistors, color code, 321
Resistors, effective resistance of, 159
Resolution, human eye, 308
Resonance bridge, 158
Resonant frequency, capacitors, 93
Restricted radio telephone permit, 63-64
Reverberation, 317
RF band, 23
RF penetration, 98
RG cable, 40-41
Rhombic antenna, 33
Risetime, 148, 255
cascaded amplifier, 208-209
Roman numerals, 257
RST code, 60
RTL, 190

\section*{S}

Sample and hold circuit, 184
Satellite antenna, 36
Sawtooth wave, 260-261
SBS, 164-165
Scaling, 182
Schmitt trigger, 186
SCR, 164-165
SCS, 164-165
Second class radio telephone license, 63-64
Second-order high-pass active filter, 186
Second-order low-pass active filter, 186
Second-order transfer function amplifier, 186
Self-resonant frequency, capacitors, 93
Semiconductor devices, color code, 322-323
Semiconductor memories, 217

Semiconductor numbering system, European, 189
Semiconductor symbols, 166
Semicubical parabola, 244
Sensing Technologies, solid-state, 216
Series circuit, 99
Shaft angle, 227
Shering bridge, 158
SHF, 4-5
propagation, 20
Shielded pair transmission line, 38
Ship and shore station frequencies, 10
Ship station frequencies, 10
Shock, 318, 383
Shorting stubs, 42
Signal Analysis Center, 117
Signal delay, coaxial cable, 150
Signal diode symbols, 166
Signal level, additions, 52
Signal level, in phase, 52
Signal power/noise power separation nomogram, 53
Signal reporting codes, 60-62
Signal strength nomogram, 25
Signs, mathematical, 239
Silicon bilateral switch, 164-165
Silicon controlled rectifier, 164-165
Silicon controlled switch, 164-165
Silicon unilateral switch, 164-165
Silicones, 350
Sine wave, 260
Single-layer coil design, 83, 84
SINPFEMO code,61
SINPO code, 61
Skin resistance, 98
SLF, 4
Slotted line
minimum attenuation, 44-45
nomogram, 44
reflection coefficient, 44
width of minimum attenuation, 45
VSWR, 44
Solder, 387
Solids, 246, 386, 392
Sonics, 4
Sound
intensity, 314-315
intensity level, 314-315
modulation, 23
pressure, 314-315
velocity of, 392
Space and time, 268-269
Spark-gap breakdown, 366
Speaker crossover network, 116
Speaker line length, 365
Spectral sensitivity
human eye, 326
photoreceptors, 326
Spectrum, electromagnetic, 4
Speech recognition, 218
Speed, 376

Sphere, 247
Square wave, 106, 260-261
multivibrator, 186
Squares, 236
Standard frequency broadcast, 14-16 schedule, 14-16
Standard time broadcast schedule, 14-16
Stereo pickup leads, color code, 322, 323
Subtraction circuit, 182
Summing amplifier, 182
Surface charge density, 374
Surface current density, 374
SUS, 164, 165
Switches, 373
Symbols, mathematical, 239
Symmetrical multivibrator, 180-181
System MTBF, 222

\section*{T}

T-equivalent circuit, 177, 179
T parameter, 176-177
T-type attenuators, 72-74
Target tracking frequencies, 11
Technician license, 62
Teflon insulation, 361
Telecommunication, 275-277
Television frequencies, 5, 6-8
Television standards, international, 22
Temperature, color scale, 359
Temperature conversion, 253-254, 339
Temperature-humidity index, 358
Ten code, 59
Tera, 233
Terminal marking, foreign equipment, 375
Thermal noise voltage, 80-82
Thermal resistance chart, 402
Thermoplastics, 347-348
Thermosetting plastics, 349-350
THI, 358
Third class radio telegraph permit, 63 , 64
Third class radio telephone permit, 63,64
Three-leaved roses, 245
Threshold of audibility, 316
Thunderstorm activity, 341
Thyractor, 162, 163
Time, 268-269, 286
Time constant, 108-109
R-C, 108-109
Time delay, 257
Time map, international, 336
Time signal, 14-16
Torque, 376
Torus, 247
Tracking frequencies, 11
Trailing edge, 255
Transformer, 88-89
color code, 320-321
impedance, 86
nomogram, 86-87
turns ratio, 88-89
Transistor amplifier, 206-207
Transistor circuit
available power gain, 177
current gain, 177
input impedance, 177, 179
insertion power gain, 177
operating power gain, 177
output impedance, 177, 179
power gain, 177
power requirements for switching
power supplies, 152
voltage gain, 177
Transistor symbols, 167-170
Transistor-transistor logic, 190
Transmission line, 38
attenuation, 40, 41
characteristics, 38
electrical degrees, 43
electrical length, 43
Transmission loss, 26
Transmission output/receiver input, 26
Transmission path, 373
Transmission travel time, 65
Travel time-transmission, 65
Traveling wave tube, wired leads, 320-321
Triac, 164-165
Triangles, 249
Triangular wave, 260-261
Triboelectric series, 345
Trigonometric functions, 251
Tripler, voltage, 151
TTL, 190
Tuned circuit, 110
bandwidth, 110, 114-115
Tungsten lamp, 305
Tunnel diode, 162-163, 170
Turns ratio, 88-89
Turnstile antenna, 33
Twin-T filter, 75-77
Two-wire line, 38, 39
TWT wired leads, 320
Types of radar indicators, 30-31

\section*{U}

U type attenuator, 72-74
UHF, 4
half-wave shorting stub, 42
propagation, 20
shorting stub, 42
television frequencies, 5
UJT, 164-165
ULF, 4
Ultrasonics, 4
Unijunction transistor, 164-165
Unity follower circuit, 184
U.S. standard atmosphere properties, 337-339

\section*{\(v\)}

Vacuum fluorescent display, 191
Vacuum tube amplifier, 206-207
Velocity of propagation, 40, 41
Venus, 65
Vertical full-wave loop antenna, 33
VHF, 4-5
propagation, 20
television frequencies, 5
Vibration, 385
Video band, 23
Vinyls, 348
Visual polarity, 23
VLF, 4-5 propagation, 20
Voice family tree, electronic, 218
Voltage comparator circuit, 184-185
Voltage divider
capacitive, 102-103
resistive, 102-103
resistive-capacitive, 104
Voltage doubler, 151
Voltage drop nomogram, 363
Voltage follower with gain, 183-185
Voltage guide, foreign, 396
Voltage multiplication, 182
Voltage multiplier, 151
Voltage quadrupler, 151
Voltage source, 183-185
Voltage tripler, 151
Volume charge density, 374
Volume current density, 374
VSWR, 37, 47
reduction, attenuation, 48
slotted line, 44
w
Watt, 310
Waveforms, 260
Waveguide, 46
cutoff, 46
free space wavelength, 46
wavelength, 46
Wavelength bands, 5
Wavelength-frequency conversion, 17
Waxed cotton insulation, 361
Weight, 286
Wet bulb thermometer, 355-357
Wheatstone bridge, 158
Width of minimum, 44, 45
Wien bridge, 111, 158
Wien bridge oscillator, 186
Wind designations, 341
Wind map, 343
Windchill chart, 342
Wire fusing, 364
Wire inductance at high frequencies, 85

Wire insulation, 361
Wire tables, 360
Wires, fusing current, 364 Wiring ampacities, 364
Wiring boards, 388
Witch of Agnesi, 245 Work, 374

WWV, 11
WWVB, 14-16
WWVH, 11
WWVL, 14-16

\section*{X}
\(X\)-ray waves, 4
\(\mathbf{r}\)
Y-parameter equivalent, 178, 179
circuit, 175, 178

\section*{2}

Z parameter, 178 Zener diode, 162, 163

\section*{Electronic Databook－3rd Edition}

\author{
by Rudolf F．Graf
}

9
Any electronic job will be easier and less time consuming when you have instant access to exactly the nomogram，table， chart，or formula you need，when you need it！All this and much more is included in this completely revised and updated version of one of the most respected information sources in the elec－ tronics field！

Here＇s a single data source that provides a rich fund of reliable，easy－to－use facts ．．data needed by hobbyists and experimenters as well as vital information for professionals， including data never before published in handbook form．Generously illustrated and thoroughly indexed，this handbook is divided into six convenient sections：Fre－ quency Data；Communication；Passive Components；Active Components； Mathematical Data，Formulas，and Symbols；and Physical Data．

If you＇re involved in any area of electronics－from novice experimenter to graduate engineer－you＇ll find this an indispensable information source！

Rudolf Graf has been an electronics professional for more than 30 years and is a graduate in communications engineering from Polytechnic Institute of Brooklyn．A senior member of IEEE，he has written numerous books and articles on electronics， mechanics，and automotive engineering topics．

\section*{TAB TAB BOOKs inc．}

Blue Ridge Summit，Pa． 17214
```


[^0]: The computer programming required for the Chebyshev and elliptic filter design tabulations was prepared by Mike Barge under the direction of Ed Wetherhold. The tables are made available for publication through the courtesy of the Signal Analysis Center of Honeywell Inc., Annapolis, MD.

[^1]: gausses

 microferads
 Ampere（absolute） ampere－hours

 centimeters
 운 miles（nevt．） millimeters mils atmospheres in．of mercury $\mathrm{kgs} / \mathrm{sq} \mathrm{cm}$ $\mathrm{kgs} / \mathrm{sq}$ meter

 cm／sec feot／sec $\mathrm{kms} / \mathrm{hr}$ | $\frac{C}{E}$ |
 | :---: |
 | E． |
 | E． | miles／hr舞 $\mathrm{kms} / \mathrm{hr}$ knots

 meters／min $\stackrel{\stackrel{c}{c}}{\text { en }}$ miles／min
 $\mathrm{kms} / \mathrm{hr} / \mathrm{sec}$ meters／sec／sec miles／hr／sec per cent grade
 lumen／sq．，meter コ

 \section*{farads} Fersdey／sec feredeys蕅長 $\stackrel{\text { 世 }}{\text { 世 }}$ \％ foet ¢． ＂ feet feet of watar feet of wetar feet of weter feet of weter feet of weter feet of weter feet／min feet／min ㅌ foet／min feet／min feet／sec feet／sec eet／sec | 8 |
 | :--- |
 | 8 |
 | 8 |

 eet／sec feet $/ \mathrm{sec} / \mathrm{sec}$ feet $/ \mathrm{sec} / \mathrm{sec}$ feet $/ \mathrm{sec} / \mathrm{sec}$ eeet $/ \mathrm{sec} / \mathrm{sec}$ feet／100 feet

 | Multiply By |
 | :---: |
 | |
 | |
 | 9.480×10^{-4} |
 | 10^{7} |
 | 0.7376 |
 | 2.389×10^{-4} |
 | 0.1020 |
 | 2.778×10^{-4} |
 | 1.020×10^{4} |
 | 10^{7} |
 | 100.0 |
 | 723.3 |
 | 22.48 |
 | |
 | $980,665$. |
 | $1,000.0$ |
 | 0.09807 |
 | 9.807 |
 | 70.93 |
 | 2.205 |
 | 9.842×10^{-4} |
 | 1.102×10^{-3} |
 | 0.001 |
 | 0.06243 |
 | 3.613×10^{-5} |
 | 3.405×10^{-10} |
 | 0.6720 |
 | 980,665 |
 | 0.9678 |
 | 32.81 |
 | 28.96 |
 | 2.048 |
 | 14.22 |
 | 9.678×10^{-5} |
 | 98.07×10^{-6} |
 | 3.281×10^{-3} |
 | 2.896×10^{-3} |
 | |
 | |

 | To Convert |
 | :--- |
 | |
 | joules |
 | joules/cm |
 | |
 | kilograms |
 | kilograms/cu meter |
 | kilograms/cu meter |
 | kilograms/cu meter |
 | kilograms/cu meter |
 | kilograms/meter |
 | Kilogram/sq. cm. |
 | kilograms/sq cm |
 | kilograms/sq meter |
 | kilograms/sq meter |
 | kilograms/sq meter |
 | kilograms/sq meter |

 | Into |
 | :--- |
 | foot-pounds |
 | horsepower-hrs |
 | kilowatt-hrs |
 | watt-hrs |
 | Btu/hr |
 | 8tu |
 | ergs |
 | joules |
 | kg-cal |
 | kg-meters |
 | \quad H |
 | Crm. |
 | acres |
 | sq feet |
 | grams |
 | liters |
 | meters |
 | watts |
 | millihenries |
 | cubic ft. |
 | cubic ft . |
 | gallons (U.S.) |
 | Btu/min |
 | foot-lbs/min |
 | foot-lbs/sec |
 | horsepower |
 | (550 ft lb/sec) |
 | horsepower (metric) |
 | (542.5 ft Ib/sec) |
 | kg-calories/min |
 | kilowatts |
 | watts |
 | 8 tu/hr |
 | kilowatts |
 | 8 8tu |
 | ergs |

 To Convert
 To Convert
 gram-calories
 gram-calories
 gram-calories
 gram-calories
 gram-calories/sec
 gram-centimeters
 gram-centimeters
 gram-cantimeters
 gram-centimeters
 gram-centimeters

 Hand
 hectares
 hectares
 hectograms
 hectoliters
 hectometars
 hectowatts
 henries
 Hogsheads (British)
 Hogsheads (U.S.)
 Hogsheads (U.S.)
 horsepower
 horsepower
 horsepower
 horsepower (metric)
 (542.5 ft lb/sec)
 horsepower
 (550 ft lb/sec)
 horsepower
 horsepower
 horsepower
 horsepower (boiler)
 horsepower (boiler)
 horsepower-hrs
 horsepower-hrs

 | pounds/sq ft |
 | :--- |
 | pounds/sq in. |
 | kgs/sq meter |
 | Btu |
 | foot-pounds |
 | hp-hrs |
 | joules |
 | kg-meters |
 | kilojoules |
 | kilowatt-hrs |
 | Btu |
 | ergs |
 | foot-pounds |
 | joules |
 | kg-calories |
 | kilowatt-hrs |
 | maxwells |
 | liters |
 | centimeters |
 | feet |
 | inches |
 | meters |
 | miles |
 | millimeters |
 | yards |
 | cms/sec |
 | feet/min |
 | feet/sec |
 | knots |
 | meters/min |
 | miles/hr |
 | cm/sec/sec |
 | ft/sec/sec |
 | meters/sec/sec |
 | miles/hr/sec |
 | Btu/min |
 | foot-lbs/min |
 | foot-lbs/sec |
 | horsepower |

 kilogram meters s.apau wis6ㅇ! ! kilogram meters sมasew we.60!! ! kilolines
 kiloliters kilometers kilometers
 kilometers kilometers频!! ers $/ \mathrm{hr}$ 은 kilometers/hr kilometer $5 / \mathrm{hr}$ kilometer s/hr kilometers

 kilometer $\mathrm{s} / \mathrm{hr} / \mathrm{sec}$ kilowatts会 n
 5
 0
 0
 0

 | horsepower-hrs | foot-lbs |
 | :---: | :---: |
 | horsepower-hrs | gram-calories |
 | horsepower-hrs | joules |
 | horsepower-hrs | kg-calories |
 | horsepower-hrs | kg-meters |
 | horsepower-hrs | kilowatt-hrs |
 | hours | days |
 | hours | weeks |
 | Hundredweights (long) | pounds |
 | Hundredweights (long) | tons (long) |
 | Hundredweights (short) | ounces (avoirdupois) |
 | Hundredweights (short) | pounds |
 | Hundredweights (short) | tons (metric) |
 | Hundredweights (short) | tons (long) |
 | | 1 |
 | inches | centimeters |
 | inches | meters |
 | inches | miles |
 | inches | millimeters |
 | inches | mils |
 | inches | yards |
 | inches of mercury | atmospheres |
 | inches of mercury | feet of water |
 | inches of mercury | kgs/sq cm |
 | inches of mercury | kgs/sq meter |
 | inches of mercury | pounds/sq ft |
 | inches of mercury | pounds/sq in. |
 | inches of water (at $4^{\circ} \mathrm{C}$) | atmospheres |
 | inches of water (at $4^{\circ} \mathrm{C}$) | inches of mercury |
 | inches of water (at $4^{\circ} \mathrm{C}$) | kgs/sq cm |
 | inches of water (at $4^{\circ} \mathrm{C}$) | ounces/sq in. |
 | inches of water (at $4^{\circ} \mathrm{C}$) | pounds/sq ft |
 | inches of water (at $4^{\circ} \mathrm{C}$) | pounds/sq in. |
 | International Ampere | Ampere (absolute) |
 | International Volt | Volts (absolute) |
 | International volt | Joules (absolute) |
 | International volt | Joules |

 | To Convert |
 | :--- |
 | meters $/ \mathrm{sec}$ |
 | meters $/ \mathrm{sec}$ |
 | meters $/ \mathrm{sec} / \mathrm{sec}$ |
 | meter-kilograms |
 | meter-kilograms |
 | microfarad |
 | micrograms |
 | microhms |
 | microhms |
 | microliters |
 | Microns |
 | miles (naut.) |
 | mites (statuta) |
 | miles (statute) |
 | miles (statute) |
 | miles (statute) |
 | miles (statute) |
 | miles (statuta) |
 | mites (statute) |
 | miles $/ \mathrm{hr}$ |
 | miles $/ \mathrm{hr} / \mathrm{sec}$ |
 | miles $/ \mathrm{hr} / \mathrm{sec}$ |

 Multiply By

 | \circ |
 | :--- |
 | \times |
 | \times |
 | - |

 $\stackrel{\%}{\circ}$

 \section*{kilowatt-hrs} | knots |
 | :--- |
 | knots | league Light year Light year lines/sq cm lines/sq in. lines/sq in.

 lines/sq in. links (engineer's) links (surveyor's) liters傼 liters

 miles $/ \mathrm{min}$ min miles／min mil－feet milliers Millimicrons Milligrams客 milligrams／liter

 millihenrias millihenrias millimeters | E |
 | :---: |
 | E |
 | E | E

 E
 E
 E B
 E
 E
 E millimetars millimeters millimetars millimeters Aap／sıos vo！！！！ 틀 E言音 mils miner＇s inches
 Minims（British） Minims（U．S．，fluid） Minutes（engles）

 myriegrams N
 \sum_{2}^{0}
 $\frac{6}{2}$
 $\frac{1}{2}$

 1.308×10^{-3} 1.308×10^{-3}
 0.2642 1.057 5.886×10^{-4} 4.403×1 1.079 .07958 0.0929
 cu meters
 cu yards
 gallons（U．S．liq．）
 pints（U．S．liq．）
 quarts（U．S．liq．）
 cu ft／sec
 gals／sec
 foot－candles
 Spherical candle power
 Watt
 Lumen／sq．meter
 foot－candles

 \[
 \Sigma

 \] feet inches kilometers miles（naut．） milas（stat．） millimaters yards | U |
 | :--- |
 | E |
 | E | feet／min feet／sec kms／hr miles／hr feat／min feet／sec kilometers／hr

 liters／min liters／min lumens／sq ft Lumen Lumen／sq．ft． $\underset{\text { x }}{2}$
 maxwells maxwelis megalines megohms meters meters meters meters meters N
 E
 E
 meters meters／min meters／min meters／min meters／rnin

 들 | 4 |
 | :--- |
 | $\stackrel{y}{4}$ |
 | 5 |
 | E． |

 meters／sec meters／sec

 $$
 \begin{aligned}
 & \text { kilolines } \\
 & \text { webers } \\
 & \text { maxwells } \\
 & \text { microhms } \\
 & \text { ohms } \\
 & \text { centimeters }
 \end{aligned}
 $$

 | To Convert | Into |
 | :---: | :---: |
 | | N |
 | nepers | decibels |
 | Newton | Dynes |
 | | 0 |
 | OHM (International) | OHM (absolute) |
 | ohms | megohms |
 | ohms | microhms |
 | ounces | drams |
 | ounces | grains |
 | ounces | grams |
 | ounces | pounds |
 | ounces | ounces (troy) |
 | ounces | tons (long) |
 | ounces | tons (metric) |
 | ounces (fluid) | cu inches |
 | ounces (fluid) | liters |
 | ounces (troy) | grains |
 | ounces (troy) | grams |
 | ounces (troy) | ounces (avdp.) |
 | ounces (troy) | pennyweights (troy) |
 | ounces (troy) | pounds (troy) |
 | Ounce/sq. inch ounces/sq in. | Dynes/sq. cm. pounds/sq in. |
 | | P |
 | Parsec | Miles |
 | Parsec | Kilometers |
 | parts/million | grains/U.S. gal |
 | parts/million | grains//mp.gal |
 | parts/million | pounds/million gal |
 | Pecks (British) | cubic inches |
 | Pecks (British) | liters |
 | Pecks (U.S.) | bushels |
 | Pecks (U.S.) | cubic inches |
 | Pecks (U.S.) | litters |

 | quadrants (angle) | radians |
 | :--- | :--- |
 | quadrants (angle) | seconds |
 | quarts (dry) | cu inches |
 | quarts (liq.) | cu cms |
 | quarts (liq.) | cu feet |
 | quarts (liq.) | cu inches |
 | quarts (liq.) | cu meters |
 | quarts (liq.) | cu yards |
 | quarts (liq.) | gallons |
 | quarts (liq.) | liters |
 | | |
 | | |
 | radians | degrees |
 | radians | minutes |
 | radians | quadrants |
 | radians | seconds |
 | radians $/ \mathrm{sec}$ | degrees $/ \mathrm{sec}$ |
 | radians $/ \mathrm{sec}$ | revolutions $/ \mathrm{min}$ |
 | radians $/ \mathrm{sec}$ | revolutions $/ \mathrm{sec}$ |
 | radians $/ \mathrm{sec} / \mathrm{sec}$ | revs $/ \mathrm{min} / \mathrm{min}$ |
 | radians $/ \mathrm{sec} / \mathrm{sec}$ | revs $/ \mathrm{min} / \mathrm{sec}$ |
 | radians $/ \mathrm{sec} / \mathrm{sec}$ | ravs $/ \mathrm{sec} / \mathrm{sec}$ |
 | revolutions | degrees |
 | revolutions | quadrants |
 | revolutions | radians |
 | revolutions $/ \mathrm{min}$ | degrees $/ \mathrm{sec}$ |
 | revolutions $/ \mathrm{min}$ | radians $/ \mathrm{sec}$ |
 | revolutions $/ \mathrm{min}$ | revs $/ \mathrm{sec}$ |
 | revolutions $/ \mathrm{min} / \mathrm{min}$ | radians $/ \mathrm{sec} / \mathrm{sec}$ |
 | revolutions $/ \mathrm{min} / \mathrm{min}$ | revs $/ \mathrm{min} / \mathrm{sec}$ |
 | revolutions $/ \mathrm{min} / \mathrm{min}$ | revs $/ \mathrm{sec} / \mathrm{sec}$ |
 | revolutions $/ \mathrm{sec}$ | degrees $/ \mathrm{sec}$ |
 | revolutions $/ \mathrm{sec}$ | radians $/ \mathrm{sec}$ |
 | revolutions $/ \mathrm{sec}$ | revs $/ \mathrm{min}$ |
 | revolutions $/ \mathrm{sec} / \mathrm{sec}$ | radians $/ \mathrm{sec} / \mathrm{sec}$ |
 | revolutions $/ \mathrm{sec} / \mathrm{sec}$ | revs $/ \mathrm{min} / \mathrm{min}$ |
 | revolutions $/ \mathrm{sec} / \mathrm{sec}$ | revs $/ \mathrm{min} / \mathrm{sec}$ |
 | Rod | Chain (Gunters) |
 | Rod | Meters |
 | Rod (Surveyors' meas.) | yards |

 pennyweights (troy) pennyweights (troy) pennyweights (troy) pennyweights (troy)
 pints (dry) pints (liq.)
 pints (liq.)
 흘
 훌
 흧
 흘
 亲
 pints (liq.)
 Planck's quantum Poise
 poundals poundals poundals poundals
 poundals poundals pounds n
 5
 5
 8
 8 n
 8
 8
 8 pounds n
 8
 8
 8 n
 $\frac{n}{5}$
 8 pounds pounds pounds pounds
 pounds (troy) pounds (troy)
 pounds (troy)

 | To Convert | Into M | Multiply By |
 | :---: | :---: | :---: |
 | | T | |
 | temperatura $\left({ }^{\circ} \mathrm{C}\right)+273$ | absoluta tamperature $\left({ }^{\circ} \mathrm{C}\right.$ | C) 1.0 |
 | tamperatura $\left({ }^{\circ} \mathrm{C}\right)+17.78$ | tamperetura ${ }^{\circ} \mathrm{F}$) | 1.8 |
 | tamperature $\left({ }^{\circ} F\right)+460$ | absolute temperetura (${ }^{\circ} \mathrm{F}$) | F) 1.0 |
 | temperaturs (${ }^{\circ} \mathrm{F}$) $\mathbf{- 3 2}$ | tempereture (${ }^{\circ} \mathrm{C}$) | 5/9 |
 | tons (long) | kilograms | 1,016. |
 | tons (long) | pounds | 2,240. |
 | tons (long) | tons (short) | 1.120 |
 | tons (matric) | kilograms | 1,000. |
 | tons (matric) | pounds | 2,205. |
 | tons (short) | kilograms | 907.1848 |
 | tons (short) | ounces 32 | 32,000. |
 | tons (short) | ounces (troy) 29 | 29,166.66 |
 | tons (short) | pounds | 2,000. |
 | tons (short) | pounds (troy) | 2,430.56 |
 | tons (short) | tons (long) | 0.89287 |
 | tons (short) | tons (metric) | 0.9078 |
 | tons (short/sq ft | kgs/sq meter 9 | 9,765. |
 | tons (short)/sq ft | pounds/sq in. | 2,000. |
 | tons of weter $/ 24 \mathrm{hrs}$ | pounds of water $/ \mathrm{hr}$ | 83.333 |
 | tons of water/24 hrs | gallons/min | 0.16643 |
 | tons of weter/24 hrs | cu ft/hr | 1.3349 |
 | | V | |
 | Volt/inch | Volt/cm. | . 39370 |
 | Volt (absoluta) | Statvolts | . 003336 |
 | | W | |
 | wetts | Btu/hr | 3.4129 |
 | watts | Btu/min | 0.05688 |
 | wetts | ergs/sec | 10^{7} |
 | wetts | foot-lbs/min | 44.27 |

 Multiply By
 16.5

 20
 2.778×10^{-4}
 0.01667
 3.087×10^{-6}
 4.848×10^{-6}
 14.59
 32.17
 12.57
 1.973×10^{5}
 1.076×10^{-3}
 0.1550
 0.0001
 3.861×10^{-11}
 100.0
 1.196×10^{-4}
 2.296×10^{-5}
 1.833×10^{8}
 929.0
 144.0
 0.09290
 3.587×10^{-8}
 9.290×10^{4}
 0.1111
 1.273×10^{6}
 6.452
 6.944×10^{-3}
 645.2
 10^{6}
 7.716×10^{-4}

 To Convert
 $\stackrel{\square}{8}$
 $\frac{\square}{8}$

 squere kilometers
 squere kilometers squere kilometers square kilometers squere kilometers square kilometers ssesewoIㅈ s senbs

 n
 है
 8
 $\frac{8}{8}$ equere meters
 square meters square meters quare miles quere miles
 quare miles squere millimeters squere millimeters square millimeters squere millimeters square mils square mils squere mils square yords quere yerds n
 $\frac{8}{8}$
 8
 0

 squere yards

 ## Section 6

 Energy Conversion Chart / 302
 Laser (Eye Hazard) Nomogram / 303
 Laser Radiation Nomogram / 304
 Spectral Characteristics of Photoreceptors and Light Sources / 305
 Photometry Nomogram / 306
 Minimum Detail That the Human Eye Can Resolve / 308
 Suggested Values of Illuminance / 308
 Illumination Units Conversion Nomogram / 309
 Units Used in Photometry and Radiometry / 310
 Illumination Power Conversion Nomogram /312
 Luminance Spectrum / 313
 Tabulation of Sound Intensity Levels / 314
 Equal Loudness Curves of the Average Human Ear / 316
 Reverberation Time / 317
 Physiological Effects of Electric Current on the Human Body $/ 318$
 Characteristics of Miniature Incandescent Lamps / 319
 Color Codes for Electronic Components / 320
 EIA and Military Designations of Temperature Characteristics and Tolerances for Ceramic Dielectric Capacitors / 324
 Generalized Radioactivity Decay Curve / 326
 Cathode-Ray Tube Phosphor Characteristics / 327
 Guide to Crystal Selection / 328
 Military Nomenclature System / 332
 Magnetic Field Strength Nomogram / 334
 International Time Map / 336
 High Altitude Chart / 337
 Atmosphere Chart 338
 PPM $/{ }^{\circ} \mathrm{C}$ Vs \% Change Conversion Chart 339
 Atmospheric Layers / 340
 Wind Designations / 340
 Lightning and Thunderstorm Activity for Vanious Sections of the U.S. 341
 Windchill Chart / 342
 Wind Map of the U.S. / 343
 Ground Conductivity / 344
 The Triboelectric (or Electrostatic) Series 345
 Corrosion / 346
 Thermoplastics for Electrical Applications 347
 Thermosetting Plastics for Electrical Applications 349
 Significance of Properties of Electrical Insulating Materials 1349
 Temperature Conversion Tables and Formulas / 351

 ## Physical Data

 Relative Humidity Tables 355
 Temperature-Humidity Index / 358
 Color Scale of Temperature / 359
 Thermal Spectrum 359
 Standard Annealed Copper Wire Table 360
 Properties of Common Wire and Cable Insulations 361
 Wire Stranding Chart 361
 Temperature Classification of Insulating Materials 362
 Voltage-Current-Wire Size Nomogram 363
 Fusing Currents of Wires 364
 Suggested Ampacities for Appliance Wiring Material-All Types of Insulation 364
 Audio Line Table 365
 Spark-Gap Breakdown Voltages 366
 Printers 367
 ASCII Code / 368
 Baudot Code 369
 Graphic Symbols for Electronic Diagrams / 370
 Conversion Table for Basic Physical Units / 374
 Terminal and Control Markings on Foreign Equipment 375
 Torque-Power-Speed Nomogram 376
 Approximate Full-Load Current for Continuous-Duty Motors 377
 Characteristics of Selected Motor Types / 378
 Family Tree of Electric Motors 380
 Power Consumption of Electrical Equipment / 381
 Nomogram Relating Amplitude, Frequency, and Acceleration of a Body with Simple Harmonic Motion 382
 Shock Deceleration Nomogram 383
 Air-Cooling Nomogram / 385
 Metallic Elements 386
 Densities of Solids and Liquids in Cubic Centimeters and Cubic Feet / 386
 Solder Alloys 387
 Track Width of Printed Wiring Boards 388
 Defined Values and Physical Constants 389
 Approximate Capacitance of Conductors (p //inch) / 392
 Approximate Resistance of Conductors (ohms/inch) 392
 Velocity of Sound in Solids, Gases, and Liquids 392
 Relay Contact Code 393
 Heat-Sink Thermal Resistance Chart 395
 Foreign Voltage Guide 396
 Typical Hardware Used in Electronic Equipment 398
 Coordinates for Equally Spaced Holes 399

 This nomogram is used to estimate the safe range at which an object may be illuminated directly. It incorporates a scale for the introduction of loss factors including losses in the eye, optical surfaces external to the laser mirror, and optical losses.

 FOR EXAMPLE: Assume system losses of 50%, a pupil diameter of 4 mm , a laser output of 0.05 J , and a laser beamwidth of 1 mrad. Connect loss factor and pupil size to turning scale (1), from that point to laser output of 0.05
 J to turning scale (2), then through safety threshold point to turning scale 3 and finally through J to turning scale (2), then through safety threshold point to turning scale (3), and finally through laser beamwidth (4) to distance line. In this case the safe range is approximately 4.0 km or 2.6 statute miles.

 NOTE: "Safe" threshold levels are a subject of some controversy and the figures specified in the nomogram should be interpreted in the light of most recent information.

 This nomogram relates laser radiation terms, which may be given as photon energy, wave number, frequency, or wavelength. Any of these terms can be converted to the others by a horizontal line across the nomogram.

 FOR EXAMPLE: 1. Light at a wavelength of 0.5μ can also be described as having (1) A wavelength of 5000 \AA, (2) a frequency of 600 THz or $6 \times 10^{14} \mathrm{~Hz}$, (3) a wavenumber of $20,000 \mathrm{~cm}^{-1}$, and (4) a photon energy of 2.48 eV.
 2. Electrons when falling through 4 V will radiate at $3100 \AA$.
 3. Light at 200 THz will produce conduction in semiconductors with band-gaps up to 0.83 V .

 ## SPECTRAL CHARACTERISTICS OF PHOTORECEPTORS AND LIGHT SOURCES

 This figure shows spectral sensitivity of various photoreceptors. Response of cadmium sulfide cells is similar to that of the human eye, but other commonly used receptors perform best at wavelengths invisible to the eye.

 This nomogram solves the light intensity equation:

 $$
 \text { foot-candles }=\frac{\text { candlepower }}{(\text { distance in feet })^{2}}
 $$

 which assumes a point source (distance greater than five times maximum lamp dimension).
 Most lamps are classified according to wattage, and the following approximate relations apply:

 1. The shorter the rated life of the lamp, the higher the efficiency ($\mathrm{op} / \mathrm{watt}$) and the higher the color temperature of the light.
 2. For standard $120-\mathrm{V}$ inside-frosted incandescent lamps rated for $1,000 \mathrm{hr}$, the following hold true:
 a. Efficiency increases with increasing wattage.
 b. A $25-\mathrm{W}$ lamp is approximately 19 cp, a $60-\mathrm{W}$ lamp about 60 cp , and a $150-\mathrm{W}$ lamp is near 200 cp .
 c. Color temperature increases with increasing wattage ($150-\mathrm{W}$ lamp is near $2,900 \mathrm{~K}$).
 d. When lamps are operated at constant voltage, light output falls with time, rapidly during the first 50 hrs and more slowly thereafter.
 e. When lamps are operated at constant current, light output rises with time, slowly at first, then accelerating to catastrophic failure.
 FOR EXAMPLE: A 6 -cp lamp will produce a light intensity of 100 fc , at a distance of 2.94 in . $(0.245 \mathrm{ft})$ from the lamp filament. The same lamp will provide 1 fc at 29.4 in . and 0.01 fc at 294 in .

 ## Several Useful Definitions

 A foot-candle is the illumination produced when the light from one candle falls normally on a surface at a distance of one foot.

 A lux (commonly used in Europe) is the illumination produced when the light from one candle falls normally on a surface at a distance of one meter.

 A point source emitting light uniformly in all directions radiates 4π lumens/candle.
 A lambert is the brightness of a perfectly diffusing surface emitting or reflecting one lumen per square centimeter.

 A foot lambert $1 / \pi$ candles $/ \mathrm{ft}^{2}$.
 (Reod correspondingly headed columns, i.e., $A, A^{\prime}, A^{\prime \prime}$, efc.)

 SUGGESTED VALUES OF ILLUMINANCE

 Auditorium
 Lecture room-library
 Classroom
 Dratting room
 Low-contrast work inspection
 Hospital operating room

 10 fc
 30 fc
 30 fc
 30 fc
 250 fc
 $500-1,000$ fc

 This nomogram relates candles/square foot, footcandles, lumens/square foot, lamberts, foot-lamberts, lumens/square centimeter, candles/square centimeter, candles/square inch, end lux, and it is based on the following relationships:
 foot-lamberts $=$ lumens $/$ square foot $=$ foot-candles $=10.764$ lux
 lambets $=$ lumens/square centimeter $=295.72$ candles/square foot $=929.03$ lumens/square foot
 lux $=$ lumens/square centimeter and candles/square centimeter $=3.14159$ lambert
 A line from any known value through the index point intersects all other scales at corresponding values.
 FOR EXAMPLE:

 $$
 \begin{aligned}
 4 \mathrm{~L} & =8.2 \mathrm{~cd} / \mathrm{in.}^{2} & & =3,715 \mathrm{lM} / \mathrm{ft}^{2} \\
 & =4,400 \mathrm{fc} & & =1,183 \mathrm{~cd} / \mathrm{ft}^{2}
 \end{aligned}
 $$

 NOTE: the ranges can be extended by multiplying all scales by the same power of 10 .

 Measurements of Sources (as Seen by Observer)
 (Examples: Lamps, Stars, T.V., Lighthouse)

 | Measurement | Radiometric (Wide Band Receiver) | Photometric
 (Eye will be the Receiver) | Where Used |
 | :---: | :---: | :---: | :---: |
 | Total emission | Power: watts | : Lumens | Lamps light standards |
 | Emissions into a solid angle from a point source | Intensity: watts/steradian | Luminous Intensity $\text { Candela }=\frac{\text { Lumen }}{\text { Steradian }}$ | Stars |
 | Emissions into a solid angle from a large source | Radiance watts $/ \mathrm{m}^{2} /$ steradian | Luminance
 (Brighness) $\begin{aligned} & : \frac{\text { Candle }}{\mathrm{ft}^{2}}=\pi \text { foot lamberts } \\ & : \frac{\text { Candle }}{\mathrm{m}^{2}}=1 \text { nit } \\ & : \frac{\text { Candle }}{\mathrm{cm}^{2}}=1 \text { stilb }=\pi \text { lamberts } \end{aligned}$
 also: 1 foot lambert $=.0010764 \text { lamberts }$ $=3.426 \text { nits }$ | Lamps
 T.V. Screen
 L.E.D. |
 | Emission into all angles point source | Emittance watts/m ${ }^{2}$ | Luminous Emittance
 : Lumen/ft ${ }^{2}$
 : Lumen/m ${ }^{2}$
 : Lumen/ cm^{2} | Flourescent lamps |

 Measurements of Sources (as Seen by Observer)
 (Examples: Lamps, Stars, T.V., Lighthouse)

 | Measurement | Radiometric (Wide Band Receiver) | Photometric
 (Eye will be the Receiver) | Where Used |
 | :---: | :---: | :---: | :---: |
 | Total emissions received | Power: watts | : Lumens | Detectors |
 | Emissions per unit area | $\begin{aligned} & \text { Irradiance } \\ & \mathrm{W} / \mathrm{m}^{2} \end{aligned}$ | Hluminance $\begin{aligned} & : \frac{\text { Lumen }}{\mathrm{ft}^{2}}=\text { foot candle } \\ & : \frac{\text { Lumen }}{\mathrm{m}^{2}}=\text { lux }=\text { meter candle } \\ & : \frac{\text { Lumen }}{\mathrm{cm}^{2}}=\text { phot } \\ & \text { also: } \\ & 1 \text { foot candle }=10.764 \text { lux } \end{aligned}$ | |

 ## Typical Measurements and Values

 | Source | Total Emissions | | Luminance
 Photometric Foot Lamberts | Illuminance | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Photometric Lumens | Radiometric Watts | | Photometric
 Lumens/m ${ }^{2}$ | Radiometric $\mathrm{W} / \mathrm{m}^{2}$ |
 | Sun (noon) Lightning Flash | | | $\begin{array}{r} 4.7 \times 10^{8} \\ 2 \times 10^{10} \end{array}$ | 10^{5} | . 1 |
 | 100W Lamp | 1630 | 30 | 2.6×10^{6} | | |
 | 40W Flourescent Lamp | 2560 | 16 | 2000 | | |
 | Moon | | | 730 | . 27 | |
 | Twilight | | | | 10 | |
 | Starlight (Total) (zero magnitude) | | | | $\begin{gathered} .001 \\ 2.6 \times 10^{-6} \end{gathered}$ | |

 ## ILLUMINATION POWER CONVERSION NOMOGRAM

 This nomogram relates international lumens, watts, and candlepower. Select the known value. A line from that point through the index point intersects other scales at corresponding values.

 FOR EXAMPLE:

 $$
 \begin{aligned}
 5 \mathrm{Im} & =0.0074 \mathrm{~W} \\
 50 \mathrm{Im} & =3.98 \mathrm{cp}
 \end{aligned}
 $$

 NOTE: the ranges can be extended by multiplying all scales by the same power of 10 . The nomogram is based on the following:

 $$
 \begin{aligned}
 & 1 \mathrm{cp}=12.566 \mathrm{Im} \\
 & 1 \mathrm{Im}=0.001496 \mathrm{~W}
 \end{aligned}
 $$

 LUMINANCE SPECTRUM

 ## TABULATION OF SOUND INTENSITY LEVELS

 This tabulation extends from the barely audible to the unbearable and/or damaging sound intensity levels. The various levels are given in terms of sound pressure in dynes per square centimeter, sound intensity (at the eardrum) in watts per square centimeter, and intensity level in decibels above $10^{-16} \mathrm{~W} / \mathrm{cm}^{2}$ and related to familiar sound situations.

 FOR EXAMPLE: A faint to moderate sound such as can be found in an average residence is equal to a sound pressure of $0.024 \mathrm{dyn} / \mathrm{cm}^{2}$, which produces a sound intensity at the eardrum of $10^{-12} \mathrm{~W} / \mathrm{cm}^{2}\left(1 \mathrm{pW} / \mathrm{cm}^{2}\right)$ and is equal to an intensity level of 40 dB above $10^{-16} \mathrm{~W} / \mathrm{cm}^{2}$.

 ## EQUAL LOUDNESS CURVES OF THE AVERAGE HUMAN EAR

 The curves show that the frequency response characteristic of the human ear varies with the loudness of the sound. At low sound levels the ear is relatively insensitive to the lower frequencies, which must be at least 60 dB to be heard. Higher sound levels are heard nearly equally well at the high and low frequencies. Therefore, for llstening at low volume levels, the low frequencies must be boosted considerably to produce the effect of equal loudness and to avoid an apparent lack of low frequency tones. The ear is most sensitive to sounds in the 2,000 to $4,000 \mathrm{~Hz}$ range.
 (20- to 29-year old subjects)

 ## REVERBERATION TIME

 These graphs determine the optimum recommended reverberation time as a function of room volume and usage. The optimum times for speech rooms, motion picture theaters, and school auditoriums are given by a single line, whereas the optimum time for music is a broad band. Furthermore, the optimum reverberation time is not the same for all kinds of music. For example, slow organ and choral music require more reverberation than does a brilliant allegro composition played on woodwinds or a harpischord.

 The first chart is used to find the optimum reverberation time for frequencies above 512 Hz . For lower frequencies that value must be multiplied by the appropriate factor in the second graph. For small rooms the lower part of the shaded portion (closer to 1.0 should be used.)

 Optimum reverberetion time es efunction of volume of rooms for verious types of sound for efrequency of about 512 Hz .

 ## PHYSIOLOGICAL EFFECTS OF ELECTRIC CURRENT ON THE HUMAN BODY

 The chart shows the physiological effect of various current densities on the human body. Voltage is not the prime consideration, though it takes voltage to produce the current flow. The amount of shock current depends on the body resistance between the points of contact and the skin condition, (that is, moist or dry). For example, the internal resistance between the ears is only 100 ohms (less the skin resistance), while from hand to foot it is close to 500 ohms. Skin resistance may vary from about 1,000 ohms for wet skin to over $1 / 2$ Mohm for dry skin, and is even lower for ac.

 The chart shows that shock becomes more severe as current rises. At values as low as 20 mA breathing becomes labored, and as the current approaches 100 mA , ventricular fibrillation of the heart occurs. Above 200 mA , the muscular contractions are so severe that the heart is forcibly clamped during the shock. This clamping protects the heart from going into ventricular fibrillation and the victim's chances for survival are good if the victim is given immediate attention. Resuscitation, consisting of artificial respiration, will usually revive the victim.

 This graph relates light output, current, and life of incandescent lamps with rated (design) voltage. The curves show that the light output varies directly as the applied voltage raised to the 3.4 th power, while life is inversely proportional to applied voltage raised to the 12th power.

 FOR EXAMPLE: At 110% of rated voltage, the current will increase by 5%, light output increases by 40%, and life will be reduced to nearly 35% of that at design voltage.

 At 80% of rated voltage, current decreases by 10%, light output drops by more than 50%, but lamp life is increased to 18 times normal.

 COLOR COOES FOR ELECTRONIC COMPONENTS

 | | 感 | | | $\begin{array}{\|l} \hline \frac{\pi}{6} \\ \hline \frac{\overline{4}}{3} \\ \hline \end{array}$ | | | － | （\％） | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | \％ | 皆 | 号 | 宫 | | E． | 皆喜 | | |
 | $\begin{aligned} & \frac{\pi}{3} \pi \\ & n \\ & \text { n } \\ & \text { 준 } \end{aligned}$ | | | | | 咢 | | | \％ | 皆 |
 | | | T | \bigcirc | 8 | － | － | 7 | $\frac{2}{7}$ | 8 |
 | | | 앙 | | \bigcirc | $\stackrel{\sim}{\square}$ | N | m | $\stackrel{ }{*}$ | $\stackrel{10}{\sim}$ |
 | | 諹言 | \bigcirc | \％ | $\stackrel{N}{n}$ | $\stackrel{\bigcirc}{0}$ | 끅 | － | \bigcirc | 응 |
 | | 䉼 ${ }^{\text {aby }}$ | \sim | $\stackrel{\square}{0}$ | | | | $\stackrel{\circ}{\circ}$ | | |
 | | | － | － | － | $\stackrel{\sim}{\sim}$ | | \sim | | |
 | | 言音 | \rightarrow | \bigcirc | － | 8 | $\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$ | | | |
 | | 気遂 | \bigcirc | \rightarrow | \sim | m | ＊ | \sim | 6 | N |
 | | － | 1 | \cdots | \sim | । | 1 | $\stackrel{\sim}{\circ}$ | $\begin{array}{\|c} n \\ 0 \\ \hline 0 \end{array}$ | \bigcirc |
 | | 立 | \％ | \％ | $\stackrel{\square}{\square}$ | \％ | －¢ | $\stackrel{\square}{\circ}$ | $\stackrel{\square}{7}$ | － |
 | | 咅定 | － | － | \sim | m | \checkmark | \sim | 6 | － |
 | | | ＋ | $\stackrel{-}{+1}$ | $\begin{gathered} N \\ +1 \\ \hline \end{gathered}$ | $\begin{array}{\|c} m \\ +1 \\ \hline \end{array}$ | \sum_{0}^{n} | | $\begin{aligned} & 0 \\ & +1 \\ & \hline \end{aligned}$ | － |
 | | | \％ | －\％ | 3 | O－ | － | 0° | \％ | 5 |
 | | | \％ | －\％ | $\stackrel{\square}{\square}$ | 3 | － | 앙 | $\stackrel{\square}{7}$ | $\stackrel{\square}{\circ}$ |
 | | 砏家 0 | － | \cdots | \sim | m | \checkmark | \sim | \bullet | \wedge |
 | | | | \| | \％ | 訔 | | 풇퉁 | 岂 | 产 |

 ${ }^{1}$ IFor components such as resistors, capacitors. and wires. Also, for identification of torange body identifies elements used principally for modulation purposes or beam

 $$
 \begin{aligned}
 & \text { In Value. have ext. leads, the body } \\
 & \text { intertally connetted element. } \\
 & \text { (b) } \\
 & \text { STANOARD-6-DOT }
 \end{aligned}
 $$ (E)ements used to control beam current. Deam norse ete

 i. Elements are numbered according to their relative position from cathoce-lowest

 $$
 \begin{aligned}
 & \text { digwhement } \mathrm{s}_{9} \text { (Yeillow) } \\
 & \text { Seceand } \\
 & \text { Equilikent fle }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { Fivst } \\
 & \text { WigNheent } \mathrm{K}_{9} \text { (Yollow) }
 \end{aligned}
 $$

 (t)

 FUM RESISTORS

 i For components such as resistors, capacitors. and wires. Also, for identification of
 terminals and circuit functions.
 I GMy $=-0$ - 100% tolerance or Cuaranteed Minimum Value.
 If heater-cathode elements are internally conaected, but have ext. leads, the body
 color gives the major element and the tracer is the internally connected element.
 (a) COMPOSITION RESISTORS
 Seosed

 ## EIA AND MILTARY DESIGNATIONS OF TEMPERATURE

 CHARACTERISTICS AND TOLERANCES FOR CERAMIC DIELECTRIC CAPACITORS
 ## General Application and High-K Capacitors

 EIA

 Example: X7R means a max. cap. change of $\pm 15 \%$ over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

 ## Military

 Example: BX means a max. cap. change of $\pm 15 \%$ with no applied voltage or $-25 \%,+15 \%$ with applied voltage over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

 From Engineering Bulletin 6098D, copyright © 1975 by Sprague Electric Company. Reprinted courtesy Sprague Electric Company.

 Temperature Stable and Temperature Compensating Capacitors
 EIA

 | $\mathrm{C} 0 \mathrm{G}$ | | | |
 | :---: | :---: | :---: | :---: |
 | Temp. Coeff. in ppm/ ${ }^{\circ} \mathrm{C}$ | | Tolerance
 in ppm/ ${ }^{\circ} \mathrm{C}$ | |
 | Significant Figures | Multiplier | | |
 | C 0.0 | $\begin{array}{ll}0 & -1 \\ 1 & -10\end{array}$ | G | |
 | M 1.0 | $2-100$ | H | ± 60 |
 | $\begin{array}{ll}\mathrm{P} & 1.5\end{array}$ | $3-1000$ | J | ± 120 |
 | R 2.2 | $5+1$ | K | ± 250 |
 | S $\quad 3.3$ | $6+10$ | L | ± 500 |
 | T 4.7 | $7+100$ | M | ± 1000 |
 | $\begin{array}{ll}U & 7.5\end{array}$ | $8+1000$ | N | ± 2500 |

 Example: characteristic COG is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. For many years these capacitors were known by the trade designation NPO , which stood for Negative-Positive Zero.
 Exceptions: $\mathrm{S} 2 \mathrm{~L}=$ any temp. coeff. between +100 and $-750 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
 U2M $=$ any temp. coeff. between +150 and $-1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
 S3 $\mathrm{N}=$ any temp. coeff. between -1000 and $-5200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

 ## Military

 Example: characteristic CG is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (NPO).

 ## Capacitance Tolerance Codes

 | EIA and Military | Tolerance | Sprague | EIA and Military | Tolerance | Sprague |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | A | $\pm 0.05 \mathrm{pF}$ | - | K | $\pm 10 \%$ | X9 |
 | B | $\pm 0.1 \mathrm{pF}$ | F1 | L | $\pm 15 \%$ | $\times 8$ |
 | C | $\pm 0.25 \mathrm{pF}$ | F1 | M | $\pm 20 \%$ | $\times 0$ |
 | D | $\pm 0.5 \mathrm{pF}$ | F2 | N | $\pm 30 \%$ | G3 |
 | F | $\pm 1 \%$ or $\pm \mathrm{lpF}$ | $\times 1$ | r | GMV or -0%, $+100 \%$ | A8 |
 | G | $\pm 2 \%$ or $\pm 2 \mathrm{pF}$ | $\times 2$ | \checkmark | $-20 \%,+40 \%$ | D4 |
 | H | $\pm 2.5 \%$ | $\times 7$ $\times 5$ | Y | $-20 \%,+50 \%$ | D5 |
 | 1 | $\pm 5 \%$ | $\times 5$ | 2 | -20\%. $+80 \%$ | D8 |

 Knowing the isotope half-life, its original activity at some particular time, it is an easy matter, using the chart, to determine the residual activity at some subsequent time

 FOR EXAMPLE: A sample of radioactive iodine -131 has an activity of $10 \mu \mathrm{C}$, find the remaining strength 20 days later.

 ANSWER: From an appropriate source determine the half-life of the isotope. For radioactive iodine-131, the half-life is 8.1 days.

 Calculate how many "half-lives"" there are corresponding to the time interval in question, that is, divide the time interval by the half-life: in this case 20/8.1 = 2.47.

 Enter this value on the horizontal axis of the chart and read the "fraction remaining" on the vertical axis as shown by the broken lines. In the case under consideration the value is 0.177 .

 Multiply this value by the original activity thus giving a final value of $1.77 \mu \mathrm{C}$.

 CATHODE-RAY TUBE PHOSPHOR CHARACTERISTICS

 | | Color | | Spectral |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | Type | Fluorescence | Phosphorescence | Range A |

 | P11 | Blue | Blue | $4000-5500$ | Medium short | Oscillographic recording |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | P12 | Orange | Orange | $5450-6800$ | Long | Radar |
 | P13 | Red-Orange | Red-Orange | | Medium | No longer in general use |
 | P14 | Purple-Blue | Yellow-Orange | $3900-7100$ | One, medium short,
 One, medium | Radar |
 | P15 | Green | Green | $3700-6050$ | Visible, short;
 Ultraviolet, very short | Flying spot scanning
 systems; photographic |
 | P16 | Blue-Purple and
 near UV | Blue-Purple and
 near UV | $3450-4450$ | Very short | Flying spot scanning
 systems; photographic |
 | P17 | Yellow-White to
 Blue-White | Yellow | $3800-6400$ | One, short; One, long | Radar |
 | P18 | White | White | $3260-7040$ | Medium to
 medium short | Television |
 | P19 | Orange | Orange | $5450-6750$ | Long | Radar |
 | P20 | Yellow-Green | Yellow-Green | $4850-6700$ | Medium to
 medium short | Radar |
 | P21 | Red-Orange
 Tri-color | Red-Orange | $5540-6500$ | Medium
 Medium short | Radar |
 | P23 | White | White | $4000-7200$ | | |

 ## GUIOE TO CRYSTAL SELECTION

 Important operating parameters are listed for various crystal cuts. The impedance of a crystal is close to zero at the resonant frequency $\left(f_{s}\right)$ and rises to a peak at the antiresonant frequency $\left(f_{d}\right)$. The practical parallel resonant operating frequency ranges between f_{s} and f_{s} and may include these two limiting values. The operating frequency is expressed as

 $$
 f_{p}=f_{s} \sqrt{1+\frac{C_{1}}{C_{0}}}
 $$

 The steep slope of the curve and the corresponding large differential between the impedances at f_{s} and f_{p} indicate that the Q of the crystal is high. Also, the frequency separation between f_{s} and f_{p} is determined by the capacitance ratio C_{o} / C_{1}. For example, the 45° cut is a favorite choice in crystal filters because of its low C_{0} / C_{1} ratio. Thus a larger filter bandwidth is achieved with fewer crystals.

 The orientation of the better known crystal cuts shows the difference among the types.

 Equivalent circuit of a crystal includes the capacitances contributed by the wire leads and the holder in C_{0}. ratio of C_{0} and C_{1} indicates the frequency separation between the resonant and antiresonant frequencies of the crystal.

 The impedance of a crystal is near zero at the series resonant frequency, f and reaches its peak at the antiresonant frequency, F_{A}. Steep slope between these two frequencies indicates a high Q.

 Temperature characteristics of four popular crystal cuts show the extremely stable behavior of the GT cut. Its frequency change is about 1 part per million over a $100^{\circ} \mathrm{C}$ range.

 | Cut | Designation | Mode of vibration | Frequency range in kHz | $\mathrm{C}_{0} / \mathrm{C}_{1}$ | Max.
 drive
 level | Remarks |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Duplex $5^{\circ} \mathrm{X}$ | J | Length, | 0.800-10 | 190-250 | 0.20 | Used in frequency and oscillator applications. Zerotemperature coefficient occurs at approximately room temperature; therefore the crystal is limited to oven operation and to rigid temperature-control conditions. |
 | XY | Custommade | Length, width | 3-50 | 600-900 | 0.1 | Suited for oven-control applications, especially in its optimum frequency range. |
 | NT | N | Length, | 4-150 | 800-1500 | 0.1 | Preferred in low-frequency oscillators and filters. It operates over large temperature ranges. Stability of ± 5 ppm can be obtained over $\pm 5^{\circ} \mathrm{C}$, if ovencontrolled in the frequency range. Rugged, if properly mounted.
 Can obtain frequency stability within $\pm 0.0025 \%$ over the normal roon-temperature range, withoul temperature control. |
 | $+5^{\circ} \mathrm{X}$ | H | Flexure | 5-140 | 225 | 0.1 | A relatively large frequency deviation over temperature range restricts filter applications to controlled environments. Low temperature coefficient and large ratio of stored mechanical energy to electrical energy are the characteristic features.
 Used in wideband filters, below the range of practical size E plates, and in transistor oscillators, where LC circuits are not stable enough, or where there is a space problem.
 Disadvantages: Fabrication difficulties. The crystal must be made in the form of a long, thin bar to fit in a special holder, to avoid jumping between modes. |
 | BT | B | Thickness | 1.75 | - | - | Thicker crystal possible at higher frequencies. Disadvantages: Too thick for low frequency. Also, difficult to fabricate and has zero-temperature coefficient over only a very small temperature range. Not as active as the AT. |
 | $-18-1 / 2^{\circ} \mathrm{X}$ | F | Extensional | 50-250 | 200 | - | Used principally in filters where low temperature coefficient is sacrificed for freedom from certain sputious responses. Suitable for multi-electrodes. |
 | $+5^{\circ} \mathrm{X}$ | E | Extensional | 50-250 | 130-160 | 2.0 | Mostly applicable in low-frequency filters, because of low $\mathrm{C}_{0} / \mathrm{C}_{1}$ and good temperature coefficient. |
 | DT | D | Face sheat | 80-500 | 450 | 2.0 | Suitable for oven and non-oven applications. Its low capacity ratıo permits many useful filter applications. Used as calibrator crystal and time base for frequency counters. Also used in FM and TV transmitters.
 Disadvantage: Does not perform well over 500 kHz . |

 | Cut | Designation | Mode of vibration | Frequency range in kHz | C_{0} / C_{1} | Max.
 drive
 level | Remarks |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | MT | M | Extensional | 50-250 | 250 | 2.0 | Its low temperature coefficient makes it useful for oscillator control and for filters where low C_{0} / C_{1} ratio is required along with low inductance and good temperature coefficient. However, this crystal is seldom used, because more compact units have replaced it. |
 | GT | G | Extensional | 85-400 | 375 | 0.1 | Has the greatest stability yet attained within a cut. Does not vary more than 1 part per million over a range of $100^{\circ} \mathrm{C}$.
 Offiers a low temperature coefficient over a wide frequency range, by coupling any desired mode with another of nearly equal amplitude at a frequency equal to 0.86 times its natural frequency.
 Used in frequency standards and when stability without temperature control or low impedance is essential.
 Disadvantages: Most expensive of all types, because of painstaking labor required to obtain exact orientation in dimension. |
 | CT | C | Face shear | 300-1100 | $350-400$ | 2.0 | Provides a zero temperature coefficient in the shear mode for low frequencies.
 Widely used in low-frequency osciliators and filters and does not require constant temperature control over normal operating conditions. Useful in filters because of low $\mathrm{C}_{0} / \mathrm{C}_{1}$ ratio. Popular in oscillators because of its low series resistance, especially above 400 kHz .
 Disadvantages: Large face dimensions make it difficult to fabricate for the very low frequencies. |
 | X | Custommade | Extensional | 350-20,000 | - | - | Mechanically stable and an economic type of cut. Disadvantages: Large temperature coefficient, with the tendency to jump from one mode to another. |
 | SL | Custommade | Face shear, coupled to flexure | 300-800 | 450 | - | Electrical characteristics similar to DT, but it is larger, has better Q and uniformity of characteristics above 300 kHz . Its various characteristics make it desirable for some filter applications. |
 | Y | Y | Thickness, shear | 500-20,000 | - | - | Most active. Ratio of stored mechanical to electrical energy is large. is strong mechanically. Disadvantages: Large temperature coefficient and poor frequency spectrum. |
 | AT | A | Thickness | 550-20,000 fundamental $10,000-60,000$ (3rd overtone) 100,000 (5th overtone) | 10-100,000 | 1.0-8.0 | Excellent temperature and frequency characteristics. Its overtones are used in cases where the frequency should not change with oscillator reactance variations.
 Designs provide suitable capabilities for satisfying $70-80 \%$ of all crystal requirements. Preferred for high-frequency oscillator-control wherever wide variation of temperature is encountered. Because of small size, it can be readily mounted to meet stringent vibration specifications.
 Disadvantage: Difficult to fabricate for optimum operation without coupling between modes. |

 ## MILITARY NOMENCLATURE SYSTEM

 The AN nomenclature designation is assigned to:

 1. Complete sets of equipment and major components of military design.
 2. Groups of articles of commercial or military design which are grouped for a military purpose.
 3. Major articles of military design which are not part of, or used with, a set.
 4. Commercial articles where nomenclature facilitates identification and /or procedures.

 As applied to complete sets, the nomenclature consists of the two letters $A N$ followed by a slash and three indicator letters which indicate installation, type of equipment, and purpose. The number that may follow the letters indicates model number, and a subsequent letter refers to modification.

 FOR EXAMPLE: AN/APN-10B airborne-radar-navigational aid 10th model-second modification
 As applied to components, the AN nomenclature consists of one or two designator letters substituted for AN.
 FOR EXAMPLE: An indicator model 42 for use with APQ-13 is designated as ID-42 /APQ-13. Modifications are indicated by letters, for example, ID-42B /APQ-13
 Component Indicator Letters

 | AB-Support, antenna | HC-Crystal holder |
 | :---: | :---: |
 | AM-Amplifier | HD-Air conditioning apparatus |
 | AS-Antenna assembly | ID-Indicating device |
 | AT-Antenna | IL-Insulator |
 | BA - Battery, primary type | IM-Intensity measuring device |
 | BB-Battery, secondary type | IP-Indicator, cathode-ray tube |
 | BZ-Signal device, audible | J-Junction device |
 | C-Control article | KY-Keying device |
 | CA-Commutator assembly. sonar | LC-Tool, line construction LS-Loudspeaker |
 | CB Capacitor bank | M-Microphone |
 | CG-Cable and transmission | MD - Modulator |
 | CK line.rf | ME-Meter, portable |
 | CK Crystal kit | MK - Maintenance kit or equip |
 | CM-Comparator | ment |
 | CN -Compensator | ML-Meterological device |
 | CP-Computer | MT Mounting |
 | CR-Crystal | MX Miscellaneous |
 | CU-Coupling device | O Oscillator |
 | CV -Converter (electronic) | OA-Operating assembly |
 | CW Cover | OS-Oscilloscope, test |
 | CX -Cord | PD-Prime driver |
 | CY. Case | PF-Fitting, pole |
 | DA Antenna, dummy | PG-Pigeon article |
 | DT Detecting head | PH-Photographic article |
 | DY- Dynamotor | PP-Power supply ${ }^{\text {P }}$ |
 | E-Hoist assembly | PT-Plotting equipment |
 | F-Filter | PU-Power equipment |
 | FN-Furniture | R-Radio and radar receiver |
 | FR-Frequency measuring device | RD Recorder and reproducer RE-Relay assembly |
 | G-Generator | RF - Radio frequency com- |
 | GO-Goniometer | ponent |
 | GP. Ground rod H -Head, hand, and chest set | RG-Cable and transmission line, bulk r.f. |

 RL-Reel assembly
 RP-Rope and twine
 RR-Reflector
 RT - Receiver and transmitter
 S-Shel ter
 SA-Switching device
 SB-Switchboard
 SG-Generator, signal
 SM-Simulator
 SN-Synchronizer
 ST Strap
 T-Radio and radar transmitter
 TA-Telephone apparatus
 TD - Timing device
 TF. Transformer
 TG Positioning device
 TH - Telegraph apparatus
 TK-Tool kit or equipment
 TL-Tool
 TN- - Tuning unit
 TS-Test equipment
 TT - Teletypewriter and fac. simile apparatus
 TV - Tester, tube
 U-Connector, audio and power
 UG-Connector, r.f.
 V-Vehicle
 VS Signaling equipment, visual
 WD-Cable, two-conductor
 WF -Cable, two conductor
 WM - Cable, multuple conductor
 WS-Cable, single-conductor
 WT Cable, three conductor
 ZM - Impedance measuring device

 | | Ist larter Dengeed Instationion Clasmes | | $20 /$ lat ter
 Trpe of Equipment | | $3 d$ lerrer Purpose | Model Na . | Modif: carion lerter | | Miscenlaneous Idantification |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | A | Airborna (installed and opereted in aircraft). | A | Invisible light, hat radiation. | A | Auxiliary assemblies (not complete operating sets used with, or part of, two or more sets or sets serias). | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\left.\begin{array}{l} x \\ y \\ z \\ T \end{array}\right\}$ | Chenges in voltage, phase, or frequency.
 Treining. |
 | 8 | Underwater mobile, submarine. | B | Pigeon. | B | Bombing. | etc. | etc. | (V) | Variabla grouping. |
 | C | Air trensportable finactrvatad, do not use). | c | Carrier. | C | Communications (recerving and transmitting). | | | | , |
 | D | Plotlass Carrie. | D | Radiac. | D | Direction finder, reconnals: sance, end/or survaillance. | | | | |
 | | | E | Nupec. | E | Ejection and/or release. | | | | |
 | F | Fixed. | F | Photographic. | | | | | | |
 | G | Ground, general ground use (include two or more groundtype installetoons). | G | Telegraph or taletype. | G | Fire-control or searchlight directing. | | | | |
 | | | | | H | Racording end/or reproduc ing (grephic meteorological end sound). | | | | |
 | | | J | Intarphona and public eddress.
 Electromechanical or inertial wire covered. | | | | | | |
 | K | Amphibious. | K | Talemetering. | K | Computing | | | | |
 | | | L | Countarmaesures. | 1 | Searchlight control (Inactivated, use G). | | | | |
 | M | Ground, mobila (installed es opereting unut in a vahicla which hes no function othar then trensporting tha aquip. mant). | M | Meteorological. | M | Meintenanca and tast assemblias (including tools). | | | | |
 | | | N | Sound in arr. | N | Navigational ards fincluding eltimaters, baacons, compasses, racons, dapth sounding, epproach and landingl. | | | | |
 | P | Pack or portabla (animel or men). | P | Rader. | P | Reproducing finectiveted, do not use). | | | | |
 | | | 0 | Sonar and underwater sound. | 0 | Special, or combinetion of purposes. | | | | |
 | | | R | Radio. | R | Racaiving, passiva datecung | | | | |
 | 5 | Water surface craft. | S | Special types, megnetic, atc., or combinations of typas. | 5 | Datecting end/or renge and baaring, search. | | | | |
 | T | Ground, trensportabla. | T | Talephona (wira). | T | Trensmitting | | | | |
 | U | Genaral utility (includes two or mora generel installetion classes, errborne, shipboard, end ground). | | | | | | | | |
 | V | Ground, vahicular (installed in vahicle designed for functions other then carrying alactronic equipment, atc., such as tanks). | V | Visual and visible light. | | | | | | |
 | W | Water surfaca and underweter | W | Armamant (peculeer to armament, not otherwise covered). Fecsimile or talevision. Data processang. | W | Autometic flight or remota control.
 Identification and recognition | | | | |

 This nomogram solves for the magnetic field strength, surrounding a power line, as a function of current in the line and the distance from it. Electronic equipment is susceptible to magnetic field interference, and this nomogram helps in determining the magnitude of the problem. For convenience the distance scale is calibrated in inches and centimeters.

 FOR EXAMPLE: The magnetic field strength at a point 5 cm from a line that carries 100 A is 4.2 gauss.

 ## Derivation of the Field-Strength Equation

 The field at point P resulting from the current in segment $d l$ is given by

 $$
 d B=\mu_{0} \frac{l}{r^{2}} \cos \alpha d l
 $$

 If $d l$ is small, then

 $$
 \begin{aligned}
 d l \cos \alpha & =r d \alpha \\
 r & =R / \cos \alpha
 \end{aligned}
 $$

 and

 $$
 \therefore d B=\mu_{\circ} \frac{I}{R} \cos \alpha d \alpha
 $$

 If the line is very long with respect to R,

 $$
 B=\int_{-\pi / 2}^{\pi / 2} \mu_{0} \frac{l}{R} \cos \alpha d \alpha=\mu_{0} \frac{2 l}{R}
 $$

 If B is in gauss, l in amperes, and R in centimeters, μ_{0} is equal to 0.1 .

 $$
 B=\mu_{0} \frac{2 I}{R}
 $$

 R
 (inches) (centimeters)

 INTERNATIONAL TIME MAP
 This map shows the number of hours to add or subtract from Eastern Standard Time to determine the time anywhere on earth.

 05648 060

 06590
 070
 07647

 ## PPM/ ${ }^{\circ} \mathrm{C}$ VS \% CHANGE CONVERSION CHART

 This chart is used to determine the \% change over a certain temperature range when the $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ characteristic is known or to determine the desired $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for a maximum change over a given temperature range.

 FOR EXAMPLE: 1. What will be the change in capacitance of a capacitor with a TC of 750 ppm when used over a 60° temperature range? Answer: 4.5%
 2. What is the required stability in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of an oscillator that should not change in frequency by more than 1% when used between 10 to $90^{\circ} \mathrm{C}$ (i.e., temp. change $=80^{\circ} \mathrm{C}$)? Answer: $125 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

 (Reprinted courtesy TRW Capacitor Division, Ogallala, Nebraska.)

 Troposphere, Stratosphere and Ionosphere

 WIND DESIGNATIDNS

 | Designation | Wind Speed (mph) | Designation | Wind Speed (mph) |
 | :--- | :--- | :--- | :---: |
 | Calm | Less than 1 | Moderate gale | 32 to 38 |
 | Light air | 1 to 3 | Fresh gale | 39 to 46 |
 | Light breeze | 4 to 7 | Strong gale | 47 to 54 |
 | Gentle breeze | 8 to 12 | Whole gale | 55 to 63 |
 | Moderate breeze | 13 to 18 | Storm | 64 to 72 |
 | Fresh breeze | 19 to 24 | Hurnicane | Above 72 |

 Based on U.S. Weather Bureau data, this map shows the number of lightning storms occurring over a 20 -year period.

 This chart shows the "windchill" and state of comfort under varying conditions of temperature and wind velocity.

 ## WIND MAP OF THE U.S.

 This map shows the annual wind extremes in miles/hour, 30 feet above ground, 50 year mean recurrence interval.

 Wind map-annual extreme in miles per hour, 30 feet above ground, 50 year mean recurrence interval. From Thom "New Distribution of Winds in the United States". ASCE Proceedings, 1968.

 ## Steady Wind - miles/hour (as shown on map)

 6070 70 80 85 85 90 100 110 120

 ## Gusting Wind - equivalent miles/hour

 (using standard 1.3 gust factor)78 91 104 110 117 130 143 156
 (Reprinted from "SBC Square Beam Cutoff," Kim Lighting publication A5, page A5-10, courtesy Kim Lighting.)
 GROUND CONDUCTIVITY
 This map shows the effective ground conductivity in the United States in millimhos/meter. The conductivity of seawater (not shown) is assumed to be 5,000 millimhos/meter.

 ## THE TRIBOELECTRIC (OR ELECTROSTATIC) SERIES

 The table below is so arranged that any material becomes positively charged (that is, it gives up electrons) when rubbed with any material lower on the list. The farther apart the materials are on the list, the higher the charge will be. Surface conditions and variations in characteristics of some materials may alter some positions slightly.

    ```
    Positive polarity (+)
    Asbestos
    Rabbit's fur
    Glass
    Mica
    Nylon
    Wool
    Cat's fur
    Silk
    Paper
    Cotton
    Wood
    Lucite
    Sealing wax
    Amber
    Polystyrene
    Polyethylene
    Rubber balloon
    Sulphur
    Celluloid
    Hard rubber
    Vinylite
    Saran wrap
    Negative polarity (-)
    ```

 FOR EXAMPLE: A rubber balloon rubbed with nylon will produce a negative charge on the balloon and leave the nylon positively charged.

 ## CORROSION

 Galvanic corrosion occurs when two dissimilar metals are in contact, in a liquid capable of carrying an electric current. Under these conditions the least noble metal (the anode) corrodes, while the more noble metal (the cathode) is not attacked.

 In general, galvanic corrosion may be avoided by uniformity in the types of metals used. If uniformity is not practical, then metals should be used that are as close as possible to each other in the galvanic table, which lists metals in order of increasing nobility.

 Stainless steel is "active" when chemicals present do not allow the formation of an oxide film on the surface of the metal. The treatment of stainless steel in a passivating solution accelerates the formation of the oxide film, thus making it "passive" and thereby increasing its resistance to galvanic corrosion.

 | Material and Major Applicetion Considerations | Common Availeble Forms | Representetive Tradenames and Suppliers |
 | :---: | :---: | :---: |
 | Acetals
 Good alectrical proparties at most frequancies, which ere little changed in humid environmants to $125^{\circ} \mathrm{C}$. Dutstanding machanical strength, stiffness, toughness, and dimensional stability. | Extrusions, injection moldings, stock shapas. | Dalrin (DuPont); Calcon (Calanese Corp.) |
 | Acrylics
 Excellent resistance to arcing and elactrical tracking. Excellant clarity and resistance to outdoor waatharing. | Castings, ektrusions, injection moldings, tharmoformed parts, stock shapes, film, fiber. | Lucita (DuPont); Plaxiglas (Rohm and Hass Co.) |
 | Cellulosics
 Good electrical properties and toughness. Used more for general-purpose applications than for ultimate in any electrical requiremant. Saveral types evailable. | Blow moldings, axtrusions, injection moldings, tharmoformed parts, film, fiber, stock shapas. | Tanite (Eastman Chamical Co.): Ethocal-EC (Dow Chamical Co.): Fortical-CAP (Celanese Corp.) |
 | Chlorineted Polyathars
 Good alectrically, but most outstanding propartias ara corrosion resstance and physicel and thermal stability. | Extrusions, injaction moldings, stock shapas, film. | Panton (Harculas Powder Co.) |
 | Fluorocarbans
 TFE. Electrically one of the most outstanding thermoplastic meterials. Vary low alectrical losses: very high electrical resistivity. Usaful from -300° to over $500^{\circ} \mathrm{F}$ Excellent high frequency dielectric. Hes excellent combinetion of mechanical and alectrical properties but is relatively weak in cold.flow properties Nearly inert chemically, as ara most fluorocarbons. Very low coefficient of friction. Nonflammabla | Compression moldings, stock shapes, film. | Tsflon TFE (DuPont); Halon TFE (Allied Chamical Corp.) |
 | FEP: Similar to TFE, except uselul temparatura limitad to ebout $400^{\circ} \mathrm{F}$ Easier to mold than TFE.
 CTFE: Excellent electrical proparties and relatively good mechanicel properties. Stiffar than TFE and FEP, but does have some cold flow Useful to about $400^{\circ} \mathrm{F}$ | Extrusions, injection moldings, laminatas, film.
 Extrusions, isostatic moldings, injection moldings, film, stock shapas. | Teflon FEP (DüPont)
 Kal-F (3M Co.); Plaskon CTFE (Allied Chemical Corp.) |
 | PVF $_{2}$ Dne of the easiest of the flugrocarbons to process Stiffer and more resistant to cold flow than TFE Good electrically Useful to ebout $300^{\circ} \mathrm{F}$. Major electrical application is wire jacketing. | Extrusions, injaction moldings, Ieminatas, film. | Kynar (Pannsalt Chamicals Corp.) |
 | Nylons
 Conventionel: Good general-purpose electrical proparties Eesily processed Good mechanical strangth and abrasion resistance and low coefficient of friction. Commonly used types of nylon era nylon 6 , nylon $6 / 6$ and nylon $6 / 10$. Some hava limited use in electrical applications beceuse of moistursabsorption properties. Nylon $6 / 10$ is best hera. | Extrusions, injection moldings, laminates, rotational moldings, stock shapas, film, fiber. | Zytel (DuPont); Plaskon (Allied Chamical Co.); Bakalite (Union Carbida Corp.) |
 | High-Tempereture. Hes excellent combination of thermel andurence (to $200^{\circ} \mathrm{C}$) end electrical propertias Exhibits relatively low dialectric constant, high volume resistivity, and good dielectric strangth. Has high tensile strength and wear resistance. | Fiber, sheet, tape, paper, fabric. | Normex (DuPont) |
 | Polysulfones | | |
 | Good combination of thermal endurance to ovar $300^{\circ} \mathrm{F}$) end dielectric propertes. Ralativaly low dielecticic constant end dissipation factor, and high volume resistivity Elactrical properties are maintanad at 90% of initual valuas after ona yaar at $300^{\circ} \mathrm{F}$ Good dimansional stability and high ertep rasistanca Flama rasistant, and good charnical resistanca | Extrusions, injection moldings, tharmoformed parts, stock shapes, ffilm, sheet. | Polysulfona (Union Carbida Corp.) |

 | Mareriel end Mejor Application Consideretions |
 | :--- |
 | Parylenes |
 | Excellent low-loss dielectric properties end good |
 | dimensional stebility. Low permeebility to gases end |
 | moisture. Produced as a film on a substrete, from e |
 | vapor phese. Used primerily as thin films in capeci- |
 | tors and dielectric coetings. |

 Polycarbonetes
 Relatively low electrical losses and high voluma resistivity. Loss properties ere steble to ebout $150^{\circ} \mathrm{C}$. Excellent dimensional stebility, low weter absorption, low creep, end outstending impect resistence.

 ## Polyestars

 Outstending dielectric strength end tear strength. Widely usad for mechine-applied tepe insuletion. Hes high volume resistivity end low moisture ebsorption.

 Polyethylenes, Polypropylanes, Polyallomars
 Excellent electrical properties, especially low electricel losses. Tough end chamicelly resistant, but weak to varying degrees in creep end thermal resistence. Thermal stebility generelly increeses with density clesses of polyethylene. Polypropylenes are generally similer to polyethylenes, but offer ebout $50^{\circ} \mathrm{F}$ highar heat resistance. Polyallomers are electricelly similar to polyethylene and polypropylene but have better stress-creck resistanca and surfece hardness. Crosslinked polyethylanes provide improved thermal enduranca.

 Polyimides and Polyamida-imides
 Among the highest-temperature thermoplastics aveileble, heving useful operating tamperatures to about $700^{\circ} \mathrm{F}$ or higher. Excellent electrical proparties, good rigidity, end excellent thermel stebility.

 ## Polyphenylene Oxides (PPO)

 Excellant electrical properties, especielly loss propertias to above $350^{\circ} \mathrm{F}$, and over a wide frequency range. Good mechenicel strength end toughness. A lower-cost grode, Noryl, hes similer properties to PPO, but with e 75° to $100^{\circ} \mathrm{F}$ reduction in heat resistence.

 ## Polystyranes

 Genaral-Purpose: Excellent electricel properties, especially loss properties. Conventionel polystyrans is temperaturs-limited, but high-temperature modifications such as Rexalite or Polypenco crosslinked polystyrene ere widely used, especielly for highfrequency epplications.
 ABS: Good general electricel properties but not outstending for eny spacific electric applicetion. Extremely tough, with high impect resistence. Can be formuleted over a wide renge of herdness and toughness properties. Special gredes avarleble for pleted surfeces.

 ## Vinyls

 Good low-cost, generel-purpose thermoplestic meteriels, but electrical properties ere not outstending. Properties are graetly influenced by plesticizers. Meny verietions aveilable, including flexibie and rigid types. Flexible vinyls, especielly PVC, ere widaly used for wire insuletion.
 Common Aveileb/a Forms
 Film coatings.

 Extrusions, injection mold-
 ings, thermoformed parts, ings, thermoformed parts, stock shepes, film.

 Films and tapes.

 Blow moldings, extrusions, injection molding, thermoformed parts, stock shapes, film, fiber, foam.

 Films, coetings, molded end mechined perts, resin solutions.

 Extrusions, injection moldings, thermoformed parts, stock shepes, film.

 Blow moldings, extrusions, injection moldings, rotetionel moldings, thermoformed perts, foam.

 Extrusions, injection moldings, thermoformed parts, leminetes, stock shepes, foem.

 Blow moldings, extrusions, injaction moldings, rotetionel moldings, film, sheet.

 | Representative Tradenames |
 | :---: |
 | and Suppliars |

 Parylene (Union Carbide Corp.)

 Lexen (G. E. Co.); Marlon (Mabay Chemical Co.)

 Mylar (OuPont); Scotchper (3M Co.): Celenar (Celanese Corp.)

 Alathon Polyethylene (OuPont); Petrothene Polyethylene IUSI Chamical Co.); Grax H. O. Polyethylene (Allied Chemical Corp.); Hi-Fax H. D. Polyethylane, ProFax Polypropylene (Hercules Powder Co.l; Tenite Polyethylene, Polypropylene, end Polyallomer (Eestman Chemical Co.)

 Vespal perts end shapes, Kapton film, and PyreM.L. resin (DuPont); Al (Amoco); Skybond (Monsanto Co.)

 PPO and Noryl (G. E. Co.)

 Styron (Dow Chernical Co.); Lustrex (Monsanto Co.); Rexolite (American Enka Corp.); Polypanco $0-200.5$ (Polymer Corp.)

 Marbon Cycolec (BorgWarner Corp.): Lustren (Monsanto Co.): Abson (Goodrich Chemical Co.)

 Oiemond PVC (Diamond Alkalı Co.): Pliovic (Goodyear Chemical Co.1; Seran (Oow Chamicel Co.)

 | Matarial and Major Application Considerations | Common Available Forms | Reprasentative Tradenames and Suppliers |
 | :---: | :---: | :---: |
 | Alkyds
 Excaliant dialectric strangth, arc rasistance, and dry insulation rasistanca. Low dialactric constant and dissipation factor. Good dimansional stability. Easily molded. | Compression and transfar moldings. | Plaskon (Allied Chemical Corp.); Glaskyd (American Cyanamid Co.) |
 | Aminos (Matamina and Uraa)
 Good general alectrical propertias, but not outstanding except for glass-filled malaminas whose hardnass and arc rasistanca maka them useful for molded conneectors. | Comprassion and transter moldings, extrusions, laminatas | Plaskon (Allied Chamical Corp.); Resimena (Monsanto Co.); Cymel malamine, Beatla urse (American Cyanamid Co.) |
 | Diallyl Phthalates (Allylics)
 Unsurpassed ernong tharmosets in ratantion of alactrical propertias in high-humidity environmants. Also, thay have among the highast volume and surface resistivitus in tharmosets. Low dissipation fector and haat resistenca to $400^{\circ} \mathrm{F}$ or highar. Excallant dimansional stability. Easily molded. | Comprassion, injection, and transfer moldings; axtrusiona; laminatas. | Dapon (FMC Corp.); Diall (Allied Chemical Corp.l |
 | Epoxies
 Good alactrical propartias, low shrinkage, axcallant dimansional stability, and good to axcallant adhesion. Eesy to compound, using nonpressura processes, for e variaty of and proparties. Usaful ovar e wida range of anvironments. | Castings; comprassion, injection, and transfer moldings; extrusions; Iaminatas; matched-dia moldings: filamant windings; foam. | Epon (Shall Chamical Co.); EpiRez (Jones-Dabney Co.); D.E.R. (Dow Chamical Co.l: Araldita (Ciba Products Co.); ERL (Union Carbida Corp.); Scotchcast (3M Co. 1 |
 | Phanolics
 Good genaral alectrical propartias, laeding to wide use for genaral-purpose molded parts. Not outstanding in any specific electric property, but soma formulations have axcalient thermal stability above $300^{\circ} \mathrm{F}$. | Castings; compression, injection, and transfar moldings; axtrusions; laminatas; matched-die moldings: stock shapas; foam. | Bakelita (Union Carbide Corp.): Duraz (Hookar Chamical Corp.) |
 | Polyesters
 Very low dissipation factor. Low-cost and extremaly aasy to compound using nonprassura procasses. Lika epoxias, they can be formulated for arthar room tamparature or alevated tamperatura use. Not equivalent to apoxias in anvironmental rasistanca. | Compression, injection, and transfar moldings: axtrusions; leminates; matched-dia moldings; filamant windings; stock shapas. | Selactron (Pittsburgh Plate Glass Co.l: Laminec (Amarican Cyanamid Co.); Paraplex (Rohm \& Hass Co. 1 |
 | Silicones (rigid)
 Excallent alactrical proparties, espacially low dielectric constant and dissipation factor, which change little to $400^{\circ} \mathrm{F}$. | Castings, comprassion and transfar moldings, laminates. | DC Rasins (Dow Corning Corp.) |

 ## SIGNIFICANCE OF PROPERTIES OF ELECTRICAL INSULATING MATERIALS

 | Property end Definition |
 | :--- |
 | Dialectric Strangth |
 | All insuleting meteriels feil et some level of epplied voltege for a given set of |
 | opereting conditions. The dielectric strength is the voltege an insuleting |
 | materiel cen withstand before dielectric braekdown occurs. Dielectric |
 | strength is normally exprassed in voltege gradient terms, such es volts per |
 | mil. In testing for dielectric strength, two methods of epplying the voltege |
 | (gradual or by steps) ere used. Type of voltege, tamperature, and any pre- |
 | conditioning of the test pert must be noted. Also, thickness of the piece |
 | being tested must be recorded because the voltage per mil at which break- |
 | down occurs veries with thickness of test piece. Normally, breakdown occurs |
 | at a much higher volt-per-mil value in very thin test pieces (e few mils thick) |
 | than In thickar sections ($1 / 3$ in. thick, for exemple). |

 ## Resistanca and Resistivity

 Resistance of en insuleting meteriel, like that of e conductor, is the resistence offered by the conducting peth to pessage of electricel current. Resistance is expressed in ohms. Insuleting meteriels are very poor conductors, offering high resistence. For insulating materials, the term volume resistivity is more commonly applied. Volume resistivity is the electrical resistence between opposite faces of e unit cube for a given metarial end et a given tempereture. The reletionship between resistance end resistivity is expressed by the equation $\rho=R, A / /$ where $\rho=$ volume resistivity in ohm-cm, $R=$ resistance in ohms between feces; $A=$ area of tha faces, and $/ \mathrm{m}$ distance between facas of the piece on which meesurement is made. This is not resistence per unit volume, which would ba ohm/ cm^{3}-elthough this term is sometimes erroneously used. Other terms are sometimes used to describe a specific epplication or condition. One such term is surface resistivity, which is the resistence between two opposite edges of a surface film 1 cm squere. Since the length and width of the path are the same, the centimeter terms cencel. Thus, units of surface resistivity are actuelly ohms. However, to avoid confusion with usual resistance velues, surface resistivity is normally given in ohms/sq. Another broadly used term is insulation resistance, which, again, is a measurement of ohmic resistence for a given condition, rather than e stendardized resistivity test. For both surface resistivity and insulation resistence, standardized comperetive tests are normelly used. Such tests can provide dete such as effects of humidity on a given insuleting matarial configuretion.

 ## Dialectric Constant

 The dielectric constant of an insuleting meterial is the ratio of the cepacitance of a capacitor containing thet perticular material to the capacitance of the same electroda system with eir replacing the insuletion as the dielectric medium. The dielectric constant is also sometimes defined as the proparty of an insulation which determines the electrostatic energy stored within the solid material. The dielectric constent of most commarcial insulating materials varies from about 2 to 10 , eir heving the value 1 .

 ## Powar Factor and Dissipation Factor

 Power factor is the ratio of the power dissipated (watts) in en insulating materiel to the product of the effective voltage and current (volt-ampere input) end is a meesure of the relative dielectric loss in the insulation when the system acts as a capacitor. Power factor is nondimensionel and is a commonly used measure of insuletion quality. It is of perticular interest at high levels of frequency and power in such applications as microwave equipment, trensformers, and other inductive devices.

 Dissipetion factor is the tangent of the dielectric loss angle. Hence, the term tan defta (tangent of the angle) is also sometimes usad. For the low values ordinarily encountered in insulation, dissipation factor is prectically the equivalent of powar fector, and the terms are used interchangeably.

 ## Arc Resistanca

 Arc resistance is a meesure of an electrical breakdown condition along an insulating surfece, caused by the formation of a conductive path on the surface. It is a common ASTM measurement, especielly used with plastic materiels because of the veriations among plastics in the extent to which a surfaca breakdown occurs. Arc resistance is measured as the time, in seconds, required for breakdown along the surface of the material being measured. Surfaca breakdown (arcing or electrical tracking along the surface) is also affected by surface cleenliness and dryness.

 The highar the value, the better for a good insulating material. The resistence value for e given material depends upon e number of fectors. It veries inversaly with temperatura, end is affacted by humidity, moisture contant of the test part, level of the epplied voltage, and time during which the voltage is epplied. When tests are mada on epieca that has been subjected to moist or humid conditions, it is important that meesurements be made at controlled time intervals during or after the test condition has been applied, since dry-out and resistance increese occur rapidly. Comparing or interpreting deta is difficult unless the test period is controlled end dafined.

 Low values are best for high-frequancy or power epplications, to minimize electrical power losses. Higher values are best for capacitance applications. For most insulating materials, dialactric constent increases with temparature, es pecielly above a critical temparature region which is unique for each material. Dielectric constant velues are also affected (usually to a lesser dagree) by fraquency. This variation is also unique for each material.

 Low values ara favoreble, indicating a more afficient system, with lowar power losses.

 The higher the valua, the better. Higher valuas indicate greatar resistence to break. down along the surface due to arcing or trackıng conditions.

 To convert from Fahrenheit to Celsius*-locate temperature (${ }^{\circ} \mathrm{F}$) in center column and read ${ }^{\circ} \mathrm{C}$ in left column.
 To convert from Celsius* to Fahrenheit-locate temperature (${ }^{\circ} \mathrm{C}$) in center column and read ${ }^{\circ} \mathrm{F}$ in right column.

 | Interpolation Factors | | | | | | | | Interpolation Factors | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | C | F | C | F | | | | | | | |
 | 0.56 | 1 | 1.8 | 3.33 | 6 | 10.8 | | | | | |
 | 1.11 | 2 | 3.6 | 3.9 | 7 | 12.6 | | | | | |
 | 1.67 | 3 | 5.4 | 4.44 | 8 | 14.4 | | | | | |
 | 2.22 | 4 | 7.2 | 5.00 | 9 | 16.2 | | | | | |
 | 2.78 | 5 | 9.0 | 5.56 | 10 | 18.0 | | | | | |

 *The term Centigrade was officially changed to Celsius by international agreement in 1948. The Celsius scale uses the triple phase point of water, at 0° Centigrade, in place of the ice point as a reference, but for all practical purposes the two terms are interchangeable.

 | ${ }_{0}^{5}$ | Temperature Conversion | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Colsius | Fahrenheit | Kelvin | Reaumur | Rankine |
 | Cels. | - | $\left(\frac{9}{5} c\right)+32$ | $C+273.16$ | $\frac{4}{5} \mathrm{C}$ | $1.8(C+273.16)$ |
 | Fahr. | $\frac{5}{9}(F-32)$ | - | $\left[\frac{5}{9}(F-32)\right]+273.16$ | $\frac{4}{9}(F-32)$ | $F+459.7$ |
 | Kelvin | K-273.16 | $\left[\frac{9}{5}(K-273.16)\right]+32$ | - | $\frac{4}{5}(K-273.16)$ | K $\times 1.8$ |
 | Reau. | $\operatorname{Re} \times \frac{5}{4}$ | $\left(\frac{9}{4} \mathrm{Re}\right)+32$ | $\left(\frac{5}{4} R e\right)+273.16$ | - | $\left(\frac{9}{4} \mathrm{Re}\right)+491.7$ |
 | Rank. | $\frac{R a}{1.8}-273.16$ | Ra-459.7 | $\frac{R a}{1.8}$ | $\frac{4}{9}(R a-491.7)$ | - - |

 Five major temperature scales are in use at present. They are: Fahrenheit, Celsius, Kelvin (Absolute), Rankine, and Reaumur. The interrelationship among the scales is shown here.

 | | 5 | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | \％ | | | | | |
 | | 7 | | | | | |
 | c | \％ | | | | | |
 | \bigcirc | ＝ | | | | | |
 | 0 | 8 | | | | | |
 | | 8 | | | | | |
 | \bigcirc | \％ | | | | | |
 | $?$ | \％ | | | | | |
 | | E | | | ＋ | | |
 | | ＊ | | | | | |
 | U | 8 | | | | | |
 | | \％ | | | | | |
 | \bigcirc | x | | | － | | |
 | い | 2 | | | | | |
 | 区 | \％ | | | | | |
 | 0 | $\bar{\square}$ | | | | | |
 | 0 | 8 | | | | | |
 | | \％ | | | | | － |
 | \bigcirc | \％ | | | | | \cdots |
 | 2 | А | | | | | －a |
 | | \pm | | | | | |
 | 山 | ニ | | | | | |
 | | 2 | | | | | |
 | ∞ | | m | N | | \cdots | のna゚ロ |
 | | 2 | | m | | － | －のニッシ |
 | | \％ | | | | monn | －ここの上 |
 | ¢ | － | | | | Nouna？ | ごッヘッ |
 | － | \％ | の｜ん | $!\Omega \mid \sigma$ | | のnnag＝－ | －\％\％\％ |
 | － | \pm | | II | | のいいーoージッ | シニーデ |
 | | \pm | | | \cdots | | －N\％\％ |
 | 2 | \wedge | | | man | －ロッジ吅ご品 | |
 | ＜ | \pm | | | のがa＝ | | 界タデ |
 | | \checkmark | | | のロッツニこの | | \％タばか |
 | 3 | ＊ | | | のいーロッジッマ | | |
 | z | $=$ | | \cdots | | | の日がシ |
 | 山 | \＃ | | － | | | －アッヷ |
 | 2 | $=$ | | いいいのジッ | －2\％ | | |
 | | － | | ＂－ッミットロ | | | －¢ ¢ ¢ |
 | い | － | | | | | |
 | | － | ma＝ | | | | 分角景吾号 |
 | U | － | $\cdots \mathrm{n}$ ニシャッ | | | | ェッ\％\％ |
 | 2 | － | | | | | －¢ ¢ 5 \％ |
 | $\underset{\sim}{\square}$ | \sim | | | | | ごパ゙ス |
 | $\stackrel{4}{4}$ | － | | | | | NRER2 |
 | $\underline{4}$ | \cdots | | | | | \％M \％\％ |
 | $\bar{\square}$ | \sim | | | | | こと8さ\％ |
 | | － | | | | | まそうとも |
 | | | | | | | 9ッ\％\％ |

 | | | | －n－n－ | | 5 |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | Nomen－ | － | － $2=$ ごッ | E |
 | | | manor | Ma．e＝ | ニこのワニー | 3 |
 | | | －n－ | aッ日 | | 3 |
 | | $\cdots \cdots$ | | － | ごぎきき | － |
 | | いのロ゙ | いon＊＊ | －ニッッチー | セぜさミニ | 8 |
 | | の＂－ | －ran＝ | こごのを | ごささご | R |
 | | \cdots | ～のッロニ゙ | ーセロロ゙ | －ミニこの年 | 8 |
 | | No＊－＊ | －－－＝＝ | ニセぜご | | 5 |
 | | \cdots | －－＝－＝ | ギにざ | －－－\％${ }^{\text {a }}$ | \square |
 | － | － | 二ボッニッさ | ニミさニ＊ | －มีผพ\％ | Σ |
 | $\cdots *$ | －nco＝ | べッセニッマ | ニニニご边 | \％สสม\％ | z |
 | N＊＊＊ | | こモセッニ | －＝28＝ | | \square |
 | の日＊＊ | －＝－ | －セご吅 | ごめ゙が2 | | H |
 | muna | ํニッニ＊ | | | | \square |
 | nunay | こセジャ | | มี2\％${ }^{\text {2 }}$ | | 8 |
 | －＊＊a＝ | ごさミニ | －2\％＊ส | 2¢ | \＃\＃EAR品 | 2 |
 | －＊－0． | －ニニニン | | | 2988或 | 2 |
 | －－ニッ゙ | －さミニ2 | | | | 0 |
 | －ッマニッ | －－\％－ | ス2a＊ | － ¢88 $^{\text {a }}$ | | A |
 | ツロッニ2 | ถสสสะ | มสสสล | 2п゙ロ\％ | | $\stackrel{\text { ® }}{ }$ |
 | －ミニッロ | | | | | 4 |
 | ニロั\％สส | | | | 二男2858 | － |
 | －¢\％${ }^{\text {a }}$ | にสมヵR | | | R288：4 | ม |
 | －ิ゙ะス2 | | | 界界星易 | | ＊ |
 | | | | 995二サ | －28：¢ \％ | โ |
 | | | 的碞号 | \％\％853 | －\％ 3 32 | － |
 | \％®ロ号 | ご台界 | 59：\％ | をミざ 7 | 58538过 | － |
 | 20ngm | | ご8：56 | 3ヶ985 | 898馬可 | E |
 | | | | 7888号 | | $\stackrel{+}{2}$ |
 | ¢星号可 | | ） 5980 | | 5¢ | \simeq |
 | 9－5\％ | －シ578 | | | 3503＊30 | － |
 | 2゙5 \％ | 7885： | | | 93：888＝ | 2 |
 | 1788馬 | | | 8585こ | 줖88 | $\stackrel{\text {－}}{ }$ |
 | 行馬界品 | | 云思牱可 | | 55485 | $=$ |
 | 砝号处公 | 988．05 | | －88\％ | へ58888 | \bigcirc |
 | 538985 | －～゙5\％ | －8：\％5 | 3昂88＊ | 2ロロススス | － |
 | －\％\％\％ | ごらち8 | －『ロ゚ロス | | 2こさえで | － |
 | 4858\％ | 3゚ロスス | ※そたのス | 20゙ったで | RロRスR | ～ |
 | R2に界 | こRRRで | ORスRス | | スズス8\％ | |
 | だぐR | 人ズズス | 2889\％ | －＝ancm | \＃83585 | |
 | | －\＃¢スn | － $5 \pm 5 \pm 6$ | －ざざら | 7313：3 | － |
 | 二゙ゴざら | 3335\％ | －¢¢され | 2288\％ | ¢588\％ | － |
 | －E882 | 88おのか | －$\overline{\text {－}}$－\％${ }^{\text {a }}$ | 二小3\％ | \％ 8 838 | \cdots |
 | 名ちな号 | －5\％\％\％ | ¢¢8×8 | 283xa | | |
 | 9\％8538 | 9\％8：8 | SRERER | 9\％Ex | 8\％ 2788 | 年 |

 To determine relative humidity from wet and dry bulb temperature readings，subtract the wet－bulb temperature from the dry－bulb temperature and find the number representing this difference in the top row．Follow that column vertically to find the relative humidity at the intersection of the horizontal column representing the dry－bulb reading． Tables are given for Celsius and Fahrenheit readings at sea level．
 FOR EXAMPLE：A dry－bulb reading of $88^{\circ} \mathrm{F}$ and a wet－bulb reading of $80^{\circ} \mathrm{F}$（difference $8^{\circ} \mathrm{F}$ ）indicates a relative humidity of 70° ．

 The United States Weather Bureau developed the formula for temperature-humidity index. It is based on temperature and relative humidity.

 $$
 \mathrm{THI}=15+0.4\left(T_{\text {dry bulb }}+T_{\text {wet buib }}\right)
 $$

 where temperatures are in degrees Fahrenheit. It has been determined that when the THI reaches 72, some people are uncomfortable; when it reaches 76 most everyone is uncomfortable.

 Actually it is the combination of both high temperature and high humidity which causes discomfort. Lowering either one will increase comfort. On the other hand, lower temperature plus low humidity can cause discomfort on the cool side. Thus, in the wintertime, when the humidity in heated buildings is low, a higher temperature is needed for comfort than is required during other seasons when the humidity is higher.

 FOR EXAMPLE: At a dry-bulb temperature of $75^{\circ} \mathrm{F}$ and a relative humidity of 60%, the THI is 71 .

 Commonly used terms to describe the color of heat are related to the approximate range of temperature.

 | | | | |
 | :--- | :--- | :--- | ---: |
 | Incipient red heat | $500-550$ | Yellow heat | 1050-1150 |
 | Dark red heat | $650-750$ | Incipient white heat | $1250-1350$ |
 | Bright red heat | $800-900$ | White heat | Above 1450 |
 | Orange-red heat | $900-1000$ | | |

 ## THERMAL SPECTRUM

 | AWG
 B A S
 Gauge | Dam. aver in Mils | Cross Section | | Ohms/
 1000 Ft
 at $20^{\circ} \mathrm{C}$
 $168^{\circ} \mathrm{Fi}$ | $\stackrel{20}{1000} \mathrm{Ft}$ | Fi/Lb | Fi/Ohm at $20^{\circ} \mathrm{C}$ $168^{\circ} \mathrm{F} 1$ | Ohms/b
 at $20^{\circ} \mathrm{C}$
 $158^{\circ} \mathrm{F}$) | $\begin{aligned} & \mathrm{Lb} / O \mathrm{Am} \\ & \text { \& } 20^{\circ} \mathrm{C} \\ & \left(=68^{\circ} \mathrm{F}\right) \end{aligned}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | Circular Mils | Square Incher | | | | | | |
 | 0000 | 4600 | 211,600 | 0.1662 | 0.04901 | 6405 | 1561 | 20,400 | | |
 | 000 | 4096 | 167.800 | 01318 | 006180 | 507.9 | 1968 | 16,180 | 000007652 00001217 | 13.070 8.219 |
 | 00 | 364.8 | 133,100 | 0.1045 | 007793 | 402.8 | 2482 | 12.830 | 00001935 | $\begin{aligned} & 8,219 \\ & 5,169 \end{aligned}$ |
 | 0 | 324.9 | 105.500 | 0.08289 | 009827 | 3195 | 3130 | 10,180 | 00003076 | 3.251 |
 | 1 | 2893 | 83,690 | 0.06573 | 0.1239 | 2533 | 3947 | 8.070 | 00004891 | 2.044 |
 | 2 | 257.6 | 66,370 | 0.05213 | 01563 | 2009 | 4977 | 6.400 | 00007778 | 1.286 |
 | 3 | 2294 | 52,640 | 004134 | 0.1970 | 159.3 | 6276 | 5,075 | 0001237 | 1.286 8086 |
 | 4 | 204.3 | 41.740 | 0.03278 | 0.2485 | 1264 | 7.914 | 4,025 | 0001966 | 5085 |
 | 5 | 181.9 | 33,100 | 002600 | 0.3133 | 100.2 | 9980 | 3,192 | 0003127 | 3198 |
 | 6 | 1620 | 26.250 | 002062 | 03951 | 7946 | 1258 | 2,531 | 0004972 | 2011 |
 | 7 | 1443 | 20,820 | 0.01635 | 04982 | 6302 | 1587 | 2,007 | 0007905 | 1265 |
 | 8 | 1285 | 16,510 | 0.01297 | 0.6282 | 4998 | 2001 | 1,592 | 001257 | 1265 7955 |
 | 9 | 1144 | 13,090 | 0.01028 | 0.7921 | 39.63 | 2523 | 1.262 | 001999 | 5003 |
 | 10 | 1019 | 10.380 | 0008155 | 09989 | 3143 | 3182 | 1,001 | 003178 | 3147 |
 | 11 | 90.74 | 8,234 | 0006467 | 1260 | 2492 | 4012 | 794 | 005053 | 1979 |
 | 12 | 8081 | 6,530 | 0005129 | 1.588 | 1977 | 50.59 | 629 | 008035 | 1245 |
 | 13 | 71.96 | 5,178 | 0004067 | 2.003 | 1568 | 6380 | 499.3 | 01278 | 7827 |
 | 14 | 6408 | 4,107 | 0003225 | 2.525 | -12.43 | 8044 | 396.0 | 02032 | 4922 |
 | 15 | 5707 | 3,257 | 0002558 | 3.184 | 9858 | 101.4 | 314.0 | 03230 | 4922 |
 | 16 | 5082 | 2,583 | 0002028 | 4016 | 7818 | 1279 | 249.0 | 05136 | 1947 |
 | 17 | 45.26 | 2.048 | 0001609 | 5064 | 6200 | 161.3 | 197.5 | 08167 | 1224 |
 | 18 | 40.30 | 1624 | 0001276 | 6385 | 4917 | 2034 | 156.6 | 1299 | 07700 |
 | 19 | 3589 | 1,288 | 0001012 | 8051 | 3899 | 2565 | 124.2 | 2065 | 4843 |
 | 20 | 3196 | 1,022 | 00008023 | 1015 | 3092 | 3234 | 98.50 | 3283 | 3843 |
 | 21 | 28.46 | 8101 | 0.0006363 | 12.80 | 2452 | 4078 | 78.11 | 5221 | 3046 1915 |
 | 22 | 25.35 | 6424 | 0.0005046 | 16.14 | 1945 | 5142 | | | 1205 |
 | 23 | 22.57 | 5095 | 00004002 | 2036 | 1542 | 6484 | 61.95 49.13 | 8301 1320 | 1205 07576 |
 | 24 | 20.10 | 4040 | 00003173 | 2567 | 1223 | 8177 | 38.96 | 2099 | 04765 |
 | 25 | 17.90 | 3204 | 00002517 | 3237 | 09699 | 1,0310 | 30.90 | 3337 | 02997 |
 | 26 | 1594 | 2541 | 00001996 | 4081 | 0.7692 | 1,300 | 24.50 | 5306 | 02997 01885 |
 | 27 | 1420 | 201.5 | 00001583 | 51.47 | 06100 | 1.639 | 19.43 | 8437 | 01185 |
 | 28 | 1264 | 1598 | 00001255 | 6490 | 04837 | 2,067 | 1943 | 1342 | 01185 |
 | 29 | 1126 | 1267 | 000009953 | 8183 | 03836 | 2.607 | 1541 12.22 | 2133 | 007454 004688 |
 | 30 | 1003 | 1005 | 000007894 | 1032 | 03042 | 3.287 | 9691 | 3392 | 002948 |
 | 31 | 8928 | 7970 | 000006260 | 1301 | 02413 | 4.145 | 7.685 | 5393 | 001854 |
 | 32 | 7950 | 6321 | 000004964 | 1641 | 01913 | 5,227 | 6.095 | 8576 | 001166 |
 | 33 | 7080 | 5013 | 000003937 | 2069 | 01517 | 6,591 | 4.833 | 1,364 | 0007333 |
 | 34 | 6305 | 3975 | 000003122 | 2609 | 01203 | 8,310 | 3.833 | 2,168 | 0007333 |
 | 35 | 5615 | 3152 | 000002476 | 3290 | 009542 | 10.480 | 3.040 | 2,168 3,448 | 0004612 |
 | 36 | 5000 | 2500 | 000001964 | 4148 | 007568 | 13.210 | 2411 | 5.482 | 0001824 |
 | 37 | 4453 | 1983 | 000001557 | 5231 | 006001 | 16.660 | 1912 | 8.717 | 0001147 |
 | 38 | 3965 | 1572 | 000001235 | 6596 | 004759 | 21,010 | 1516 | 13,860 | 00007215 |
 | 39 | 3531 | 1247 | 0000009793 | 8318 | 003774 | 26.500 | 1.202 | 13,860 22,040 | $\begin{aligned} & 00007215 \\ & 00004538 \end{aligned}$ |
 | 40 | 3145 | 9888 | 0000007766 | 10490 | 002993 | 33,410 | 095.34 | 35,040 | 00002854 |

 Temperature coefficient of resistance: The resistance of a conductor at temperature t in degrees Celsius is given by

 $$
 R_{1}=R_{20}\left[1+a_{20}(t-20)\right]
 $$

 where R_{20} is the resistance at $20^{\circ} \mathrm{C}$ and a_{20} is the temperature coefficient of resistance at $20^{\circ} \mathrm{C}$. For copper, a_{20} $=0.00393$. That is, the resistance of a copper conductor increases approximately 0.4% per degree celsius rise in
 temperature.

 PROPERTIES OF COMMON WIRE ANO CABLE INSULATIONS

 | Insulation Material | Breakdown Voltage | R. F.
 Losses | Operating
 Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Weather Resistance | Flexibility | Suggested Use |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Standard PVC | High | Medium | -20 to +80 | Good | Fair | General purpose |
 | Premium PVC | High | Medium | -55 to +105 | Good | Fair | General purpose |
 | Polyethylene | High | Low | -60 to +80 | Good | Good | R. f. cables |
 | Natural rubber | High | High | -40 to +70 | Poor | Good | Light duty |
 | Neoprene | Low | High | -30 to +90 | Good | Good | Rough service |
 | Waxed cotton | Low | High | | Poor | Good | Experimenting |
 | Teflon | High | Low | -70 to +260 | Good | Fair | High temperature |

 ## WIRE STRANDING CHART

 A stranded conductor is made up of a number of smaller wire strands. This chart shows the size of each strand, when the number of strands in the finished wire size is known. Also, the number of strands for each given strand size may be determined for a finished wire gauge size.

 Locate the conductar's desired AWG size an the chart and trace it vertically. The number and size af strands needed ta make the stranded canductar will be indicated by the harizantal line (strand number) and diaganal line (strand size), respectively.

 ## For example:

 A \#22 AWG stranded conductor can be made with 4 strands of \#28 AWG wire or 10 strands of \#32 AWG wire, etc.

 | Class | Definition | |
 | :---: | :---: | :---: |
 | 0 | Materials or combinations of materials such as cotton, silk, and paper without impregnation. Other materials or combinations of materials may be included in this class if by experience or accepted tests they can be shown to be capable of operation at | 90 C |
 | A | Materials or combinations of materials such as cotton, silk, and paper when suitably impregnated or coated or when immersed in a dielectric liquid such as oil. Other materials or combinations of materials may be included in this class if by experience or accepted tests they can be shown to be capable of operation at | 105C |
 | B | Materials or combinations of materials such as mica, glass fiber, asbestos, etc., with suitable bonding substances. Other materials or combinations of materials, not necessarily inorganic, may be included in this class if by experience or accepted tests they can be shown to be capable of operation at | 130C |
 | F | Materials or combinations of materials such as mica, glass fiber, asbestos, etc., with suitable bonding substances. Other materials or combinations of materials, not necessarily inorganic, may be included in this class if by experience or accepted tests they can be shown to be capable of operation at | 155C |
 | H | Materials or combinations of materials such as silicone elastomer, mica, glass fiber, asbestos, etc., with suitable bonding substances such as appropriate silicone resins. Other materials or combinations of materials may be included in this class if by experience or accepted tests they can be shown to be capable of operation at | 180C |
 | 220C | Materials or combinations of materials which by experience or accepted tests can be shown to be capable of operation at | 220 C |
 | Over
 220 C (class C) | Insulation that consists entirely of mica, porcelain, glass, quartz, and similar inorganic materials. Other materials or combinations of materials may be included in this class if by experience or accepted tests they can be shown to be capable of operation at temperatures over | 220 C |

 ## NOTES:

 1. Insulation is considered to be "impregnated" when a suitable substance provides a bond between components of the structure and also a degree of filling and surface coverage sufficient to give adequate performance under the extremes of temperature, surface contamination (moisture, dirt, etc.), and mechanical stress expected in service. The impregnant must not flow or deteriorate enough at operating temperature so as to seriously affect performance in service.
 2. The electrical and mechanical properties of the insulation must not be impaired by the prolonged application of the limiting insulation temperature permitted for the specific insulation class. The word "impaired" is here used in the sense of causing any change which could disqualify the insulating material for continuously performing its intended function whether creepage spacing, mechanical support, or dielectric barrier action.
 3. In the above definitions the words "accepted tests" are intended to refer to recognized Test Procedures established for the thermal evaluation of materials by themselves or in simple combinations. Experience or test data, used in classifying insulating materials are distinct from the experience or test data derived for the use of materials in complete insulation systems. The thermal endurance of complete systems may be determined by Test Procedures specified by the responsible Technical Committees. A material that is classified as suitable for a given temperature may be found suitable for a different temperature, either higher or lower, by an insulation system Test Procedure. For example, it has been found that some materials suitable for operation at one temperature in air may be suitable for a higher temperature when used in a system operated in an inert gas atmosphere.
 4. It is important to recognize that other characteristics, in addition to thermal endurance, such as mechanical strength, moisture resistance and corona endurance, are required in varying degrees in different applications for the successful use of insulating materials.

 This nomogram can be used to determine:

 1. The minimum wire size for any given load current and voltage drop;
 2. the mV drop/foot for any given wire size and load current;
 3. the maximum recommended* current for any given size wire.

 FOR EXAMPLE: 1 . With a permissible voltage drop of $5 \mathrm{mV} / \mathrm{ft}$, the minimum wire size in a 3-A circuit is \#12 AWG.
 2. At 300 mA the voltage drop across \#22 AWG wire is $4.5 \mathrm{mV} / \mathrm{ft}$.
 3. The maximum recommended current for \#18 AWG wire is 3.5 A . (This is found by connecting point A on the IR drop scale with the wire gauge scale, and reading the intersect point on the Current scale).

 *Based on an arbitrary minimum 500 circular mils per ampere. High-temperature class insulation will safely allow higher current.

 ## FUSING CURRENTS OF WIRES

 This table gives the fusing currents in amperes for five commonly used types of wires. The current l in amperes at which a wire will melt can be calculated from $I=K d^{3 / 2}$ where d is the wire diameter in inches and K is a constant that depends on the metal concerned. A wide variety of factors influence the rate of heat loss, and these figures must be considered approximations.

 ## SUGGESTED AMPACITIES FOR APPLIANCE WIRING MATERIAL—ALL TYPES OF INSULATION

 | Copper Temperature | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Amperes per Conductor | | | | | | |
 | 30 | 3 | 3 | 3 | 4 | 4 | CURRENT RATING FOR DIFFERENT CONDUCTOR MATERIALS MAY BE CALCULATED BY MULTIPLYING THE APPROPRIATE COPPER CONDUCTOR RATING BY THE FOLLOWING FACTORS: |
 | 28 | 4 | 4 | 5 | 6 | 6 | |
 | 26 | 5 | 5 | 6 | 7 | 8 | |
 | 24 | 7 | 7 | 8 | 10 | 11 | |
 | 22 | 9 | 10 | 11 | 13 | 14 | |
 | 20 | 12 | 13 | 14 | 17 | 19 | Nickel - clad copper 0.87 |
 | 18 | 25 | 20 | 22 | 26 | 29 | Nickel 0.43 |
 | 16 | 27 | 28 | 30 | 36 | 38 | Note: The ultimate temperature an appliance wire reaches is |
 | Correction Factors For Various Air Temperatures | | | | | | influenced more by its proximity to heat sources (resistors, motors, etc.), within the appliance than by the |
 | 30 C | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | current flowing in the wire itself. The ratings, therefore, |
 | 40 | 0.91 | 0.93 | 0.95 | 0.97 | 0.98 | should only be used as a guide. In no case should the |
 | 50 | 0.82 | 0.85 | 0.89 | 0.94 | 0.95 | wire be used in a manner that will cause it to exceed its |
 | 60 | 0.71 | 0.77 | 0.83 | 0.91 | 0.93 | maximum temperature rating. |
 | 70 | 0.58 | 0.68 | 0.76 | 0.87 | 0.91 | |
 | 80 | 0.41 | 0.57 | 0.69 | 0.84 | 0.87 | |
 | 90 | ... | 0.44 | 0.61 | 0.80 | 0.83 | |
 | 100 | | 0.25 | 0.51 | 0.77 | 0.80 | |
 | 125 | | ... | ... | 0.66 | 0.69 | |
 | 150 | | | | 0.54 | 0.56 | |
 | 200 | ... | . . | \ldots | | 0.43 | |

 ## AUDIO LINE TABLE

 This chart shows the maximum length of line that can be used between an amplifier and speaker(s) that would assure that the power loss does not exceed 15% in low-impedance circuits, and 5% in high-impedance circuits.

 When several speaker lines are brought separately to an amplifier, calculations must be made for each line independently.

 FOR EXAMPLE: Four 16 -ohm speakers are connected in parallel to the 4 -ohm tap for perfect impedance match. Line losses are calculated for each line on the basis of the 16 -ohm impedance rather than the combined 4 -ohm impedance.

 | Wire Size (B and S) | 4 ahms | Load Impedance 8 ohms | 16 ohms |
 | :---: | :---: | :---: | :---: |
 | 14 | 125 ft | 250 ft | 450 ft |
 | 16 | 75 ft | 150 ft | 300 ft |
 | 18 | 50 ft | 100 ft | 200 ft |
 | 20 | 25 ft | 50 ft | 100 ft |
 | Maximum Length of Line for 5\%-Power Loss-High Impedance Lines | | | |
 | Wire Size (B and S) | 100 ohms | Load Impedance 250 ohms | 500 ohms |
 | 14 | 1000 ft | 2500 ft | 5000 ft |
 | 16 | 750 ft | 1500 ft | 3000 ft |
 | 18 | 400 ft | 1000 ft | 2000.ft |
 | 20 | 250 ft | 750 ft | 1500 ft |

 ## SPARK-GAP BREAKDOWN VOLTAGES

 The curves are for a voltage that is continuous or at a frequency low enough to permit complete deionization between cycles, between needle points, or clean, smooth, spherical surfaces (electrodes ungrounded) in dust-free clean air. Temperature is $25^{\circ} \mathrm{C}$ and pressure is 760 mm (29.9 in .) of mercury. Peak kilovolts shown in the graph should be multiplied by the factors given in the table for other atmospheric conditions.

 An approximate rule for uniform fields at all frequencies up to at least 300 MHz is that the voltage breakdown gradient of air is 30 peak $\mathrm{kV} / \mathrm{cm}$ or 75 peak $\mathrm{kV} / \mathrm{in}$. at sea level (760 mm of mercury) and normaltemperature (25° C). The breakdown voltage is approximately equal to pressure and inversely proportional to absolute (${ }^{\circ} \mathrm{Kelvin}$) temperature.

 Spark-gap breakdown voltages.
 Table of Multiplying Factors

 | Pressure | | | | | | | | |
 | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | (in.
 $\mathrm{Hg})$ | (mm) | | | | | | | |
 | $\mathrm{Hg})$ | -40 | -20 | 0 | 20 | 40 | 60 | | |
 | 5 | 127 | 0.26 | 0.24 | 0.23 | 0.21 | 0.20 | 0.19 | |
 | 10 | 254 | 0.47 | 0.44 | 0.42 | 0.39 | 0.37 | 0.34 | |
 | 15 | 381 | 0.68 | 0.64 | 0.60 | 0.56 | 0.53 | 0.50 | |
 | 20 | 508 | 0.87 | 0.82 | 0.77 | 0.72 | 0.68 | 0.64 | |
 | 25 | 635 | 1.07 | 0.99 | 0.93 | 0.87 | 0.82 | 0.77 | |
 | 30 | 762 | 1.25 | 1.17 | 1.10 | 1.03 | 0.97 | 0.91 | |
 | 35 | 889 | 1.43 | 1.34 | 1.26 | 1.19 | 1.12 | 1.05 | |
 | 40 | 1016 | 1.61 | 1.51 | 1.42 | 1.33 | 1.25 | 1.17 | |
 | 45 | 1143 | 1.79 | 1.68 | 1.58 | 1.49 | 1.40 | 1.31 | |
 | 50 | 1270 | 1.96 | 1.84 | 1.73 | 1.63 | 1.53 | 1.44 | |
 | 55 | 1397 | 2.13 | 2.01 | 1.89 | 1.78 | 1.67 | 1.57 | |
 | 60 | 1524 | 2.30 | 2.17 | 2.04 | 1.92 | 1.80 | 1.69 | |

 ## PRINTERS

 The family trees show the various types of serial and parallel printers and how they relate.

 The American Standard Code for Information Interchange (ASCII code) is used extensively in computer data transmission. The ASCII Code produced by most computer keyboards is shown here.

 | NUL | Null, or all zeros |
 | :--- | :--- |
 | SOH | Start of heading |
 | STX | Start of text |
 | ETX | End of text |
 | EOT | End of transmission |
 | ENQ | Enquiry |
 | ACK | Acknowledge |
 | BEL | Bell, or alarm |
 | BS | Backspace |
 | HT | Horizontal tabulation |
 | LF | Line feed |
 | VT | Vertical tabulation |
 | FF | Form feed |
 | CR | Carriage return |
 | SO | Shift out |
 | SI | Shift in |
 | DLE | Data link escape |

 DC1
 DC2
 DC3
 DC4
 NAK
 SYN
 ETB
 CAN
 EM
 SUB
 ESC
 FS
 GS
 RS
 US
 SP
 DEL

 Device control 1
 Device control 2
 Device control 3
 Device control 4
 Negative acknowledge
 Synchronous idle
 End of transmission block
 Cancel
 End of medium
 Substitute
 Escape
 File separator
 Group separator
 Record separator
 Unit separator
 Space
 Delete

 BAUDOT CODE
 The Baudot Code is a 5 -bit code suitable for punched paper tape and standard teletypewriter operation. In addition to the five bits per character, each character is preceded by a start bit, which is a space, followed by a stop bit, which is a mark, approximately $11 / 2$ times longer than the regular data mark.

 | CHARACTER | IMPULSE POSITION | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | LOWER UPPER CASE CASE | | 2 | 3 | 4 | 5 |
 | A - | - | - | | | |
 | B ? | - | | | - | - |
 | C | | - | - | - | |
 | D 3 | - | | | - | |
 | E 3 | - | | | | |
 | F ! | - | | - | - | |
 | G a | | - | | - | - |
 | H | | | - | | - |
 | 18 | | - | - | | |
 | \checkmark, | - | - | | - | |
 | K | - | 0 | - | - | |
 | L) | | - | | | - |
 | M | | | - | - | - |
 | N | | | - | - | |
 | $0 \quad 9$ | | | | - | - |
 | $P \quad 0$ | | - | - | | \bullet |
 | $0 \quad 1$ | - | - | - | | - |
 | R 4 | | - | | - | |
 | 5 Boll | - | | - | | |
 | T 5 | | | | | - |
 | U 7 | - | - | - | | |
 | V i | | - | - | - | \bigcirc |
 | W 2 | - | \bigcirc | | | - |
 | $x \quad 1$ | - | | \bigcirc | - | - |
 | Y \% | - | | - | | \bigcirc |
 | 2 " | - | | | | \bigcirc |
 | LETTERS Lower Case | - | - | - | - | - |
 | FIGURES Upper Cose. | \bigcirc | - | | \bigcirc | - |
 | SPACE | | | - | | |
 | CARRIAGE RETURN | | | | - | |
 | LINE FEED | | - | | | |
 | BLANK | | | | | |

 NOTE: PRESENCE OF INDICATES MARKING IMPULSE

 ABSENCE OF - INDICATES SPACING IMPULSE

 ## GRAPHIC SYMBOLS FOR ELECTRONIC DIAGRAMS

 ## Semiconductors

 ## Optoelectronic Devices

 FIELD-EFFECT TRANSISTORS (FETs)

 three-terminal depletion-type
 insulated-gate (IGFET)

 threeterminal depletion-type IGFET, substrate tred to source

 four-terminal depletion-type IGFET

 four-terminal enhancement-type IGFET

 five-terminal dual gate depletion-type IGFET

 five-terminal dual-gate enhancement-type IGFET

 OIODES
 light-emittung drode (LED)
 00
 photodiode

 npn bedirectional photodiode (photo-duo diode)

 pnp bidirectional photodiode (photo-duo-diode)

 pnp two-segment photodiode. mip two-segment phomon cathode

 pno four-quadrant photodiode, with common cathode

 ## TRANSISTORS

 npn phototransistor, no base connection

 npn phototransistor, npn photorransustor.

 OPTICALLY COUPLED ISOLATORS
 with photodiode output

 with phototransistor output. no bese connection

 with phototransestor output, and base connection

 with photo-Darlington output, no base

 with photo Darlington output, and base

 with photodiode and amplifiertransistor output

 with NAND-gate-photodetector output

 ## Two-State Logic Devices

 Fundamental Circuit Components

 ## Contacts, Switches, and Relays

 Transmission Path
 CABLE
 twoconductor cable
 with grounded shield
 coaxial cable with
 grounded shield

 Microwave Circuits
 COUPLING
 coupling by loop to space
 DIRECTIONAL
 COUPLERS
 dual directional coupler

 | coupling by loop to |
 | :--- |
 | guided transmassion |
 | path |
 | coupling by loop from |
 | coaxial to circular |
 | grounds connected |

 | | css-Esu | Multiply by to get CGS-Emu | | Mnitiply by to get Rationalized MKs | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1. Length | Centimeter | 1 | Centimeter | 10^{-2} | Meter |
 | 2. Mass | Gram | 1 | Gram | 10^{-3} | Kilogram |
 | 3. Force | Dyne | 1 | Dyne | 10^{-5} | Newton, Dyne-five |
 | 4. Energy, Work | Erg | 1 | Erg | 10^{-7} | Joule |
 | 5. Power | Erg/second | 1 | Erg/second | 10^{-7} | Watt |
 | 6. Electric Charge | Statcoulomb | 3.335×10^{-11} | Abcoulomb | 10 | Coulomb |
 | 7. Linear Charge Density | Statcoulomb/cm. | 3.335×10^{-11} | Abcoulomb/cm. | 10^{3} | Coulomb/m. |
 | 8. Surface Charge Density | Statcoulomb/cm. ${ }^{2}$ | 3.335×10^{-11} | Abcoulomb/cm. ${ }^{2}$ | 10^{5} | Coulomb/m. ${ }^{2}$ |
 | 9. Volume Charge Density | Statcoulomb/cm. ${ }^{2}$ | 3.335×10^{-11} | Abcoulomb/cm. ${ }^{3}$ | 10^{7} | Coulomb/m. ${ }^{2}$ |
 | 10. Electric Flux | Statcoulomb | 3.335×10^{-11} | Abcoulomb | 10 | Coulomb |
 | 11. Displacement, Electric Flux Density | Statcoulomb/cm. ${ }^{2}$ | 3.335×10^{-11} | Abcoulomb/cm. ${ }^{2}$ | 10^{5} | Coulomb/m. ${ }^{2}$ |
 | 12. Polarization | Statcoulomb/cm. ${ }^{2}$ | 3.335×10^{-11} | Abcoulomb/cm. ${ }^{2}$ | 10^{5} | Coulomb/m. ${ }^{2}$ |
 | 13. Electric Dipole Moment | Statcoulomb-cm. | 3.335×10^{-11} | Abcoulomb-cm. | 10^{-1} | Coulomb-m. |
 | 14. Potential | Statvolt | 2.998×10^{10} | Abvolt | 10^{-8} | Volt |
 | 15. Electric Field Intensity | Statvolt/cm. | 2.998×10^{10} | Abvolt/cm. | 10^{-6} | Volt/m. |
 | 16. Current | Statampere | 3.335×10^{-11} | Abampere | 10 | Ampere |
 | 17. Surface Current Density | Statampere/cm. | 3.335×10^{-11} | Abampere $/ \mathrm{cm}$. | 10^{3} | Ampere/m. |
 | 18. Volume Current Density | Statampere/cm. ${ }^{2}$ | 3.335×10^{-11} | Abampere/cm. ${ }^{2}$ | 10^{3} | Ampere/m. ${ }^{2}$ |
 | 19. Resistance | Statohm | 8.988×10^{20} | Abohm | 10^{-9} | Ohm |
 | 20. Resistivity | Statohm-cm. | 8.988×10^{20} | Abohm-cm. | 10^{-11} | Ohm-m, |
 | 21. Conductance | Statmho | 1.113×10^{-21} | Abmho | 10^{9} | Mho |
 | 22. Conductivity | Statmho/cm. | 1.113×10^{-21} | Abmho/cm. | $10^{\prime \prime}$ | Mho/m, |
 | 23. Capacity | Statfarad, Cm. | 1.113×10^{-81} | Abfarad | 10^{9} | Farad |
 | 24. Elastance | Statdaraf | 8.988×10^{20} | Abdaraf | 10^{-9} | Daraf |
 | 25. Dielectric Constant, Permittivity | - | 1.113×10^{-21} | - | . 7958×10^{10} | Farad/m. |
 | 26. Inductance | Stathenry | 8.988×10^{20} | Abhenry (Centimeter) | 10^{-9} | Henry |
 | 27. Permeability | - | 8.988×10^{20} | Gauss/0ersted | 1.257×10^{-6} | Henry/m. |
 | 28. Reluctivity | - | 1.113×10^{-21} | Oersted/Gauss | 10^{7} | - |
 | 29. Magnetic Charge | - | 2.998×10^{10} | Unit Pole | 1.257×10^{-7} | Weber |
 | 30. Magnetic Flux | - | 2.998×10^{10} | Maxwell (Line) | 10^{-8} | Weber |
 | 31. Magnetic Flux Density, Magnetic Induction | - | 2.998×10^{10} | $\begin{gathered} \text { Gauss, }{ }^{2} \\ \text { Lines } / \mathrm{cm}^{2}{ }^{2} \end{gathered}$ | 10^{-4} | Weber/m. ${ }^{2}$ |
 | 32. Magnetization | - | 2.998×10^{10} | Pole/cm. ${ }^{2}$ | 1.257×10^{-2} | Weber/m. ${ }^{2}$ |
 | 33. Magnetic Dipole Moment | - | 2.998×10^{10} | Pole-cm, | 1.257×10^{-9} | Weber-m, |
 | 34. Magnetic Field Intensity Magnetizing Force | - | 3.335×10^{-11} | Oersted (Gilbert/cm.) (Gauss) | $.7958 \times 10^{102}$ | $\begin{gathered} \text { Praoersted } \\ \text { Ampere-turn/m. } \end{gathered}$ |
 | 35. Magnetomotive Force | - | 3.335×10^{-11} | Gilbert | $\begin{gathered} .10 \\ .7958 \\ \hline \end{gathered}$ | Pragilbert Ampere-turn |
 | 36. Reluctance | - | 1.113×10^{-21} | $\begin{array}{\|c} \hline \begin{array}{c} \text { Gilbert/Maxwell } \\ \text { (Oersted) } \end{array} \\ \hline \end{array}$ | $.7958 \times 10^{10}$ | Pragilbert/Weber Ampere-turn/Weber |
 | 37. Permeance | - | 8.988×10^{20} | Maxwell/Gilbert | $1.257 \times 10^{10-1}$ | Weber/Ampere-turn |

 Practical System: Incomplete system similar to MKS, but using centimeters and grams.
 For all Systems: Temperature is in ${ }^{\circ} \mathrm{C}$. Time is in seconds.
 For MKS System: Space Permittivity $8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. Space permeability $1.257 \times 10^{-6} \mathrm{H} / \mathrm{m}$.
 Older or obsolete names are shown in parentheses.
 To convert CGS-ESU to Rationalized MKS, multiply by both factors.

 ## Radio-Phono

 ## Television

 (Reprinted from Radio Electronics, copyright © Gernsback Publications, Inc., September, 1964.)

 ## TORQUE-POWER-SPEED NOMOGRAM

 This nomogram relates power, torque, and speed.
 FOR EXAMPLE: 200 oz-in. at 500 rpm is 0.1 hp , which equals approximately 75 W . The nomogram is based on the formula:

 $$
 \text { Horsepower }=9.92 \times \text { torque } \times \text { speed } \times 10^{-7}
 $$

 where torque is in ounce-inches and speed in revolutions per minute.

 | Direct-Current Motors
 (Amperes at
 (Aull Load) | | | |
 | :---: | :---: | :---: | :---: |
 | $H P$ | 115 V | 230 V | 550 V |
 | $1 / 2$ | 4.6 | 2.3 | |
 | $3 / 4$ | 6.6 | 3.3 | 1.4 |
 | 1 | 8.6 | 4.3 | 1.8 |
 | | | | |
 | $1 \frac{1}{2}$ | 12.6 | 6.3 | 2.6 |
 | 2 | 16.4 | 8.2 | 3.4 |
 | 3 | 24 | 12 | 5.0 |
 | | | | |
 | 5 | 40 | 20 | 8.3 |
 | $7 \frac{1}{2}$ | 58 | 29 | 12.0 |
 | 10 | 76 | 38 | 16.0 |
 | | | | |
 | 15 | 112 | 56 | 23.0 |
 | 20 | 148 | 74 | 31 |
 | 25 | 184 | 92 | 38 |
 | | | | |
 | 30 | 220 | 110 | 46 |
 | 40 | 292 | 146 | 61 |
 | 50 | 360 | 180 | 75 |
 | | | | |
 | 70 | 430 | 215 | 90 |
 | 75 | 536 | 268 | 111 |
 | 100 | | 355 | 148 |
 | 125 | | 443 | 184 |
 | 150 | | 534 | 220 |
 | 200 | | 712 | 295 |

 Single-Phase, Alternating-Current Motors ${ }^{\text {b }}$ (Amperes at Full Load)

 | $H P$ | 115 V | 230 V | 440 V |
 | :---: | :---: | :---: | :---: |
 | $1 / 6$ | 3.2 | 1.6 | |
 | $1 / 4$ | 4.6 | 2.3 | |
 | $1 / 2$ | 7.4 | 3.7 | |
 | $3 / 4$ | 10.2 | 5.1 | |
 | 1 | 13 | 6.5 | |
 | | | | |
 | $1 \frac{1}{2}$ | 18.4 | 9.2 | |
 | 2 | 24 | 12 | |
 | 3 | 34 | 17 | |
 | | | | |
 | 5 | 56 | 28 | |
 | $7 \frac{1}{2}$ | 80 | 40 | 21 |
 | 10 | 100 | 50 | 26 |

 For fuli-load currents of 208 - and $200-\mathrm{V}$ motors, increase corresponding $230-\mathrm{V}$ motor full-load current by 10% and 15%, respectively.
 ${ }^{\text {a }}$ These values for full-load current are average for all speeds.
 bThese values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Motors built for especially low speeds or high torques may require more running current, in which case the name plate current rating should be used.

 ## CHARACTERISTICS OF SELECTED MOTOR TYPES

 \begin{tabular}{|c|c|c|c|}
 \hline Motor Type \& Basic Characteristics \& Performance Ranges \& Application Areas

 \hline cawbriomu Penmuiri-hacmer \& a smaple allewnstive to wownd-fale sheel. Pu finte ples movend asastura Lunear lareat-speed rolationships is small enis Lta limited by brostas in high-speos er sewert applications Eadily controlled by lransisters or SCR : \& ```
 Oetpet from IW to a laction of o horsspower
 Time constants to 63 6% \&f m-lowd upedita

