SUPPLEMENT No. 6

Index and Incidental Information

This is the sixth and final supplement to the 1932 OFFICIAL RADIO SERVICE MANUAL. Insert this sheet directly after page 4 H and distribute the others in the proper numerical order.

Users of the MANUAL are again requested to read the rules of the free question service, published on page 578 F . Observance of these rules will save a lot of time for every one concerned. We wish particularly to emphasize the fact that service data on some sets-even the simplest kinds of diagrams - is not available because the manufacturers
have been out of business for years, or, if they are still in existence, they have no records of their older products.

In all cases it is absolutely necessary for us to know the model number of any receiver under consideration. We again repeat that we are not mind readers or magicians, and cannot identify sets from such meagre descriptions as "a seven tube Majestic" or "a Crosley battery model brought out in 1927". If you want us to help you, give us some information to work on.

ATWATER KENT MFG. CO. B-15, B-16198A
Electric values of condensers $\mathrm{K}-110, \mathrm{~K}-112, \mathrm{~K}-120.198 \mathrm{~B}$ and resistors in all A-K K-130, K-i32198B receivers
1924-1932 inclusive
CANADIAN MARCONI CO.
32-B
33, 33-AW
$34,35,36,37, .214 \mathrm{E}-214 \mathrm{M}$
BELMONT RADIO CO.
Models $525,560 \ldots 4 \mathrm{Ha}$ CAPEHART CORP.
200,300 phono-radio. 4 Hb

BRANDES PRODUCTS CORP.

B-10198A 90,91,92 auto radio. 214 A

95,96 auto radio...214B PHILCO RADIO \&
132-1 "Chief" …214C TELEVISION CORP.
53 ultra midget ... 214D
DE FOREST CROSLEY
(A division of Consolidated PIERCE-AIRO, INC.
Industries Products Ltd.)
902 chassis (A, B and F models)
"Montrose" . .218A-218F
DeWald '54 "Dynette"
214 N
R-27 ultra midget. . . 214D
FADA RADIO \& ELECTRIC STEWART WARNER
CORP.
CORP.
Series $108 \ldots214 \mathrm{~N}$

BELMONT RADIO CO.

Belmont Models 560 \& 525

CAPEHART CORP.

CAPEHART MODELS 200 AND 300 DE LUXE II-TUBE AUTOMATIC PHONO-RADIO

 (Visual tuning meter; phono. pickup pre-amplifier; tone control; silent-tuning control; automatic record-changer; delayed A.V.C.; superheterodyne circuit.)The Model $\mathbf{C K}$ chassis incorporated in this automatic record-changer phonograph and superheterodyne radio receiver combination, manufactured by The Capehart Corporation, is produced by Howard Radio Corp. as their Model K chassis, the " C "' designation indicating that the circuit has been modified by the Capehart concern to include a separate tube, V10 in the diagram, as a phono, pickup preamplifier. The " 200 " uses a Jensen 12 in. D-9 speaker and the " 300 " a 14 in . "Mastodon," and the cabinets and record changers are different. The sensitivity is 6 microvoltw-permeter; undistorted power output, 5 W ., and ; power consumption. 142 W . (set,

Tube	Fil.	Cath.	S.G.	Sup. G.	Plate
No.	Volts	Volts	Volts	Volts	Volts:
1.	2.5	3	90	3	180
2	.. 2.5	7	90	7	180
3	... 2.5	7	-	\cdots	00
4	2.5	3	70	3	180
5	2.5	70	-	-	180
6.	2.5	95	180	-	180
7.	. 2.5	95	180	-	180
$8{ }^{*}$. 2.5	-	-	-	-
9**	2.5	-	85	3	32
10.....	. 2.5	7	-	-	160
11.....	.. 5.0	-	-	-	300

Condensers C1 to C3, tuning units shunted by trimmers; C 4 , padding condenser: C 5 to C 8 . T.F. trimmers: C9. C15. C17. C18. C19. C20 0.1 -mf. : C10, C11, C12, C13, C14, 1.2 mf . C C16, C21, .001-mf.: C22, C23, 1.4-mf.; C24 to C26 δ mf. ; C27, 1. mf.: C28, 01-mf.
Resistors R1, R2, .125-meg.; R3, 10,000 ohms; R4, .25-mex.: R5, R8, R13. R16. R17. 0.2 -meg. : R6, R20, 3.000 ohms: R7. R14, 500 ohms; R9, 2 megs. : R10, 2,500 ohms; R11, R12, .15-meg.; R15. R23. 10 ohms, center-tapped R18, 30.000 ohms; R19, 0.1-meg.: R21, 4,150
ohms; R22, R25, 2,000 ohms: R24, 210 ohms. Choke coil section A 2,575 ohms, section B 170 ohms; phono pickup 40,000 ohms (at 1,000 cycles) ; field coil Ch. 220 ohms.
The Model 10-12-C automatic record changer used in this phono-radio combination operates at 78 r.p.m. To adjust the pickup change lever for playing 10 in . records, loosen the forward lever stop and hold it in such a position that the needle will come down onto a 10 in . record exactly $411 / 16 \mathrm{ins}$. from the edge of the center pin. When the correct location of the pickup change lever has been ascertained the front stop may be set snug against this lever and the screw tightened, which will allow the lever to always be thrown over to that exact position when playine 10 in. records. to adjust the playing for 12 in . records. loosen a position that the needle will come down a position that the needle will come down
exactly 5 11/16 ins. from the edge of the exactly 5 11/16 ins. from the edge of the centering pin.
Adjust the weight of the pickup with only one record on the turntable. With a delicate pair of scales, having a range of 0 to 12 ozs., catch the needle screw and lift the pickup from the record until the A.F. quality breaks, at which time a reading of $51 / 2$ to 6 ozs. should be indicated.
There are five steps in adjusting the oscillatink and spiral trip lever and the pickup silencer. (1), Turn the master cam until the large timing mark is exactly above the timing mark on the tone arm lifting lever: (2), Hold driven clutch so that the radius of the the will center prainst the clutch. (3) Set the wickup silencer switch aint the Sel the ine so that the shaft of the cam can bear no so that the shaft of the cam cannot be moved further toward the automatic switch; (4). Hold the tail of the cam against the lug on the inside of the master cam and adjust the trip lever until it is $1 / 16-i n$. beyond the catch in the oscillating trip lever; (5), Adjust the pickup silencer switch so that a good contact is made on the pickup short-circuiting switch when the needle is on the record and the automatic switch has been trippod.
Failure to correctly adjust the spiral trip
am, so that the automatic trip the spiral trip
the needle is $149 / 64$ ins. from the edge of the turntable spindle, will cause the instrument to change records before the music is finished, or not to change records automatically.
The correct clearance for the needle to feed into the music groove, between the cork insert and the tone arm base is .015 -in
The record magazine pin must be so placed that the offset at the bottom extends direct: away from the record support shelf, and the pin must have a clearance of exactly $47 / 8$ ins. between the back center of the offset, and the extreme right and left corners of the record support shelf, with the magazine in the 10 in . record playing position.
Adjust the record weight (at the bearing pivot) so that the lower edge clears the record slide shelf while in the 10 in . position but holds one record in correct position for the slide plate to unload it onto the turntable
The receiver chassis incorporates a special A.V.C. circuit so that at low signal levels the A.V.C. is inoperative, due to the high bias on the grid of V10, and only when the received signal exceeds 50 microvolts input does the A.V.C. circuit operate, after which point it holds the output of the receiver substantially constant up to an input as high as 4 volts.
During the condition of "no signal," there is no current flow through R11, R12, and therefore the control-grid of V9 has zero potential, causing a larye current to flow through R16. producing a blocking potential on the con-trol-grid of V5. During the condition of "signal." $\wp 8$ operates and develops a voltage across R11, R12, applying a negative potential on the control-grid of V9, reducing its plate current to zero and thus restoring the control grid potential of V s to normal. (For more positive noise suppressor action the control-grid and suppressor-grid of $V 9$ are tied together.)
Use a low value of service oscillator output in realigning the circuits to counteract the apparent detuning effect due to the action of the A.V.C. circuit. Padding condenser C4 is: accessible through a hole in the upper part of the variable condenser shield can.

Transformer color code: winding X, X. (3.5 A.) blk. \& maroon; Y, Y, (1 A.) and (3. Z, (5 A.) yei

Atwater Kent RADIO

ELECTRICAL VALUES

OF

RESISTORS and CONDENSERS
IN
ALL RECEIVERS
1924-1932
INCLUSIVE

This Service Manual supplement contanns a numerical list, with values, of all Atwater Kent condensers and resistors in receivers produced up to and including 1932.

It also includes simplifed parts-list tables, with values, for each model. In using these tables, please note the following:

1-The value of each part is printed in heavy type under the part number. The value is given in ohms unless otherwise specitied. In cases where a resistor is tapped, the total over-all resistance is given. This also applies to tapped windings on audio transformers.

2-Tubular resistors are not listed in the table for each model. To find the value of a tubular resistor it is necessary to refer to page 7 .
which contains a complete list of tubular resistors with resistance values and identifying color.

3 - In these tables we give only the part number and code marking of by-pass and filter condensers. To find the values inside these condensers, it is necessary to refer to pages 2,3 and 5 . Owing to production changes, there are a few exceptions to the listing of by-pass condensers in the tables.

4 -In the list of flexible and wire wound resistors, we show illustrations of the early, style resistors that were actually used in the sets. In many cases the resistors supplied for replacement are of latestyle with diecast lugs. Replacement resistors are usually furnished without leads.

ATWATER KENT MFG. CO.

VALUES OF BY-PASS CONDENSERS

15157
450 Volts

15158
$.3 \mathrm{MF}, 200$-Volts
.2 . $2.05,400$ Volts

I5262 (1)
B-I, H-I
$\mathrm{H}-9, \mathrm{H}-2 \mathrm{O}$

16233 H-4, $\mathrm{H}-10$

ATWATER KENT MFG. CO.

VALUES OF BY-PASS CONDENSERS (Continued)

MULTIPLE TYPE BY-PASS CONDENSERS

20830 $\mathrm{J}-\mathrm{I}, \mathrm{J}-2$ 200-Volts

2257° $\mathrm{J}-3$
200-Volts

23140 J.4 200 -Volts

24250 J.5

200 -Volts

25690
J-6 200 Volts

28140
$\mathrm{J}-7$ 200-Volts

TONE CONTROL CONDENSERS

ATWATER KENT MFG. CO.

VALUES OF FIXED CONDENSERS AND DRY ELECTROLYTICS

$\left[\begin{array}{c}-1 \mathrm{mz} \\ 200-\mathrm{VOLT} \\ \hline 108\end{array}\right.$
26650

28040

Ti74+0
${ }^{7}$ Copper
washers, or
washers, or
letter A.
12:411

TI7974
4 plates.
$\begin{gathered}\text { Aluminum } \\ \text { washers;or }\end{gathered}$ washers;
letter G.
Trasin 26690

29030

$$
\begin{aligned}
& 26820 \\
& +27130 \\
& 29360
\end{aligned}
$$

§26040

$+16323$

$+9598$

± 16088

$+16360$

16788

: 500-Volts.
200 -Volts.
(100-Volts.

DRY ELECTROLYTICS AND TRIMMERS

ATWATER KENT MFG. CO.

VALUES OF FILTER CONDENSER ASSEMBLIES

ATWATER KENT MFG. CO.

 VALUES OF ELECTROLYTIC CONDENSERS19060, superseded by 22538 .
19728, superseded by 23146.
$20049,24 \mathrm{MF}, 120$ volts.
$22538,8 \mathrm{MF}, 475$ volts. Yellow paint.

23146,8 MF, 475 volts. Yellow paint. 23394, superseded by 22538.
$23498,4 \mathrm{MF}, 475$ volts. Green paint. $23481,12 \mathrm{MF}, 475$ volts. Red paint.

VALUES OF EARLY-TYPE TUBULAR RESISTORS

PART No.	resistance	used as	USED in models	ILLUS	$\begin{aligned} & \text { ATIONS } \\ & \text { L SIZE) } \end{aligned}$	$\underset{\mathbf{B Y}}{\substack{\text { SUPERSEDED }}}$
4782	2 megohms	Grid leak	20-4640 24	15892
4814	2 megohms.	Grid leak	Board sets	CTM	yellow paper under glass	15892
7639	2.megohms	Grid leak	20.7570 ह-21	$F-7$	white glass	15892
7724	.I megohm	A.F. grid resistor	12-4910		blue Paper UNDER GLASS	16282
8195	2 megohms	Grid leak	$\left\{\begin{array}{c} 207960,30,32,33,35, \\ 36,37,38,40,41,42,43, \\ 44,45,46,47,48,49,50, \\ 52,53,568^{2} 57 \end{array}\right\}$	$\square \square \square \square$.	15892
8796	12,500 ohms	No. I R.F. resistor	50	$\square \equiv \square$	yellow glass	-
8919	. 1 megohm	Ditector plate. resistor	$\begin{aligned} & \text { "B" power unit, } 36, \\ & \text { early } 37 \xi^{3} 38 \end{aligned}$		green paint	-
$9+24$	$\begin{gathered} 12,500 \\ \text { ohms } \end{gathered}$	$\left\{\begin{array}{c} \text { ist-A.F. plate } \\ \text { resistor. } \\ \text { Detector plate } \\ \text { resistor. } \end{array}\right.$	$\left.\begin{array}{c} 36,37,38,40,42,43,44 \\ 45,52,568^{\circ} 57 \\ 41 \end{array}\right\}$			$\begin{gathered} 15941 \\ \text { or } \\ 16472 \end{gathered}$
13047	$\begin{gathered} 65,000 \\ \text { ohms } \end{gathered}$	Detector plate resistor	Late 37 É $38,40,42,43$, $44,45,52,56 \text { E } 57$	$\square 0 \Longrightarrow \square \square$		15592
13901	5000 ohms	ist-R.F. plate resistor	41	\%]ama		\cdots
14565	$\begin{aligned} & 65,000 \\ & \text { ohms } \end{aligned}$	Detector plate resistor	46,47 छ3 53		black paint	15592
14575	$\begin{gathered} 12,500 \\ \text { ohms } \end{gathered}$	Ist-A.F. plate resistor	46, 47 णo 53		RED PAINT	$\begin{gathered} 159+1 \\ \text { or } \\ 16472 \end{gathered}$
15286 A	6000 ohms	Bleeder resistor	Early 55	$\square \square$	All purple	16330
15286B	4000 ohms	Bleeder resistor	Early 55	$\square \square$	PURPLE band	16295

ATWATER KENT MFG. CO.

VALUES OF $1 / 2,1$, and $11 / 2$ WATT TUBULAR RESISTORS

(When replacing a tubular resistor, use a resistor of the same value and size.)

These three illustrations are full size.

RESISTANCE IN OHMS	Resistance IN MEGOHMS	$\begin{aligned} & \text { IDENTIFYING } \\ & \text { COLOR } \end{aligned}$	$\begin{gathered} 1 / 2 \text { WIZTT } \\ \text { SIZE } \end{gathered}$	$\begin{aligned} & 1 \text { WATT } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { 18/2 WATT } \\ & \text { SIZE } \end{aligned}$
3,300	.0033	Green and red	26410	19346	-
4,000	. 004	Green and blue	-	18049	-
5,000	.005	blue and yellow	28050	-	--
6,000	. 006	PURPLE	\cdots	20151	28770
7,500	. 0075	Yellow	-	15544	-
10,000	. 01	MAROON	20950	15545	27210
12,500	. 0125	PURPLE AND YELLOW PURPLE AND RED RED	\square	$\begin{aligned} & 15941 \\ & 16472 \\ & 15802 \end{aligned}$	-------
15,000	. 015	GRAY AND YELLOW GRAY AND GREEN	20960	$\begin{aligned} & 22211 \\ & 21784 \end{aligned}$	27220
20,000	. 02	black and red	23120	15891	28030
30,000	. 03	Gray	20970	15285	2971 C
40,000	. 04	WHITE BLACK AND YELLOW	$\underline{26160}$	$\begin{aligned} & 16724 \\ & 16725 \end{aligned}$	28750
50,000	. 05	BLACK, Yellow and red	-	22407	--
65,000	. 065	$\begin{gathered} \text { BLACK } \\ \text { BLACK AND GREEN } \end{gathered}$	21040	$\begin{array}{r} 15592 \\ 17558 \end{array}$	--
100,000	. I	BLUE RED AND blue	$\underline{20980}$	$\begin{aligned} & 15287 \\ & 16282 \end{aligned}$	28760
250,000	. 25	RED AND YELLOW	20920	19581	——.
500,000	. 5	black and purple	20930	19649	-
800,000	. 8	RED AND GRAY	23130	20223	-
900,000	. 9	Green and yellow	23170	\square	- -
1,000,000	I	blue and gray	21050	-	-
2,000,000	2	GreEN	20940	15892	

110

No. 21143 Plug suppressor
Used in Models 8I 83 Resistance 15,000 ohms

No. 21144 Distributor suppressor Used in Models 81 8 Er 91 resistance 15,000 ohms

ATWATER KENT MFG. CO.

VALUES OF FLEXIBLE AND WIRE-WOUND RESISTORS

ATWATER KENT MFG. CO.

VALUES OF FLEXIBLE AND WIRE-WOUND RESISTORS (Continued)

ATWATER KENT MFG. CO.

VAlUES OF FLEXIBLE AND WIRE-WOUND RESISTORS (Continued)

ATWATER KENT MFG. CO.

VALUES OF FLEXIBLE AND WIRE-WOUND RESISTORS (Continued)

INSULATORS FOR WIRE-WOUND RESISTORS

No. 13306 Fibre insulator

No. 16147 Fibre insulator

No. 17232 Fibre insulator

RESISTANCE VALUES OF R. F. AND I. F. CHOKES

8062 , superseded by 8232 .
8232,35 ohms.
8660, 36 ohms.
13482, superseded by 13608 .
13668,25 ohms.
15271, 38 ohnıs.

16286, superseded by 17254 .
-16659, 70 ohnis.
17015, 89 ohms.
17254, 1.4 ohmis.
$17390,3.50$ ohms.
17410,46 ohms.

17420 , superseded by 18220 . 17820 , superseded by 18220 .

18160,75 ohms.
18220,70 ohms.
19210, (if ohms.

19250, 1:30 ohms. 193771, 79 ohms.

20:307, $\times 4$ chms.
22494, 2.9 ohms.
26 2510, 2.7 ohms.

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS
$20,24,30,32,33,35,48,49$ and 50

	$\begin{aligned} & 20-4640 \\ & 24-4920 \end{aligned}$	$\begin{gathered} 20 \\ \text { No. } 7570 \end{gathered}$	$\begin{gathered} 20 \\ \text { No. } 7960 \end{gathered}$	$\begin{gathered} \text { Early } \\ 30 \end{gathered}$	Late 30 and 48	32	$\begin{aligned} & 33 \\ & \text { and } \\ & 49 \end{aligned}$	$\underset{35}{\text { Early }}$	${ }_{35}^{\text {Late }}$	50
	4690	4690	4690	4690	4690	8308	4690	4690	4690	8599
R.F. rheostat resistor		. 10	10	10.	10	. 5.	10.	. 10.	. 10.	5.
Detector rheostat	4690	4690	8310	8310	8310	8310	8310			8310
resistor	10	10	20	20	20	20	20			20
Fixed A.F.			8303	8256	8256	8256	8256	8126	8126	8627
filament resistor			1	1.5	1.5	1.5	1.5	1	1	1.5
Detector grid			8190	8190	8190	8190	8190	8190	8190	
bias resistor			450	450	450	450	450	450	450	
	15892	15892	15892	15892	15892	15892	15892	15892	15892	15892
Detector grid leak	2 Megs.	2 Meg̀s...	2 Megs.	$2 \mathrm{Megs}$. .	$2 \mathrm{Megs}$. .	$\begin{aligned} & 2 \text { Megs. } \\ & 8796 \end{aligned}$				
1st-R.F. plate resistor. 12500 .										
	4949	4949	4949	8092	8439	8284	8996	8225	8439	
No. 1 grid resistor	. 600	600	600	500	350	865	800	500	350.	
	4949	4949	4949	8092	8439	8284	8996	8225	8439	
No. 2 grid resistor.	. 600.	. 600.	. 600.	. 500.	. 350.	865.	800	500.	. 350	
						8284	8996			
No. 3 grid resistor						865.	800.			
				8232	8232	8232		8232	8232	
Antenna Choke				35.	. 35.	. 35.		. 35.	. 35.	
A.F. TRANSFORMERS										
No. 1 A.F.T. Part No.	4779	7661	8060	8060	8060	8060	8060	8060	8060	8650
Primary Resistance..	1700	1700.	1000	1000	1000	1000	1000	1000	1000	1000
Secondary Resistance.	. 3250	3250	7000	7000	7000	7000	7000	. 7000	. 7000	7000
No. 2 A.F.T. Part No.	4779	7661	7661	7661	7661	7661	7661	7661	7661	8940
Primary Resistance..	1700	1700	1700	1700	1700	1700.	1700	1700	1700.	1400
Secondary Resistance.	. 3250	3250	3250	. 3250	. 3250	3250	3250	3250	3250.	7000
FIXED CONDENSERS										
	14902	14902	14902	14902	14902	14902	14902	14902	14902	14902
"Single" By-pass....	. 3 MF									
	8241	8241	8241	8241	8241	8241	8241	8241	8241	8590
Phone Condenser.a. .	$\begin{gathered} .002 \mathrm{MFF} \\ 4465 \end{gathered}$	$\begin{gathered} .002 \mathrm{MF} \\ 8112 \end{gathered}$.002 MF	.002 MF	. 002 MF	.002 MF	.002 MF	.002 MF	. 002 MF	. 002 MF
Srid Condenser.....	250 MMF									

VALUES OF CHASSIS PARTS IN MODELS

$36,37,38,40,41,42,43,44,45,46,47,52,53,56$ and 57

	$\begin{gathered} 44 \\ \text { and } \\ \hline 45 \end{gathered}$	36	${ }_{37}^{\text {Early }}$	$\begin{gathered} \text { Late } \\ 37 \end{gathered}$	$\begin{gathered} \text { Early } \\ 38 \end{gathered}$	$\begin{gathered} \text { Late } \\ 38 \end{gathered}$	$\begin{array}{cc} 40, & 42 \\ 52, & 56 \\ \text { and } 57 \end{array}$	$\begin{aligned} & * * \\ & 41 \end{aligned}$	43	$\begin{gathered} 46 \\ \text { and } \\ 53 \end{gathered}$	47
RESISTORS 450											
	8439	8996	8439	8439	8996	8996	8439	8439	8439	8439	8439
No. 1 grid resistor	. 350.	800	. 350	. 350	. 800	. 800	. 350	. 350	. 350	. 350	. 350
	8225	8996	8439	8439	8996	8996	8439	8439	8439	8439	8225
No. 2 grid resistor.	. 500	800.	350	350.	800	800	. 350	. 350	350.	350	500
	8439	8996			8996	8996					8439
No. 3 grid resistor.	. 350.	. 800 .			800	800					350
1st-R.F. plate resistor								$\begin{aligned} & 13901 \\ & .5000 \end{aligned}$			
1st-R.F. bias resistor.								13961			
R.F. plate	16253			13369		16253	13369		13369	13369	16253
resistor.	1500			3000.		1500	3000.		3000.	3000	1500
Detector grid	15892	15892	15892	15892	15892	15892	15892	15892	15892	15892	15892
leak......	Megs.	Megs.	Megs.	Megs,	Megs.	2 Megs	2 Megs.	2 Megs	2 Megs.	2 Megs.	2 Megs
Detector cathode resistor									13369 3000.	13369 .3000	$\begin{array}{r} 13369 \\ . .3000 \end{array}$
Filament shunt resistor		$\begin{array}{r} 9597 \\ -50 \end{array}$	$\begin{array}{r} 9597 \\ 50 \end{array}$		$\begin{array}{r} 9597 \\ 50 \end{array}$			$\begin{array}{r} 14039 \\ -.535 \end{array}$			
A.F. TRANSFORMERS											
No. 1 A:F.T $\quad .$.	8060	8060	8060	8060	8060	8060	8060	8060	14016	14721	14721
Primary resistance	1000.	1000	1000	1000	1000	1000	1000	1000	. 1800	1500	. 1500
Secondary resistance.	7000	7000.	7000	7000	7000	7000	7000	. 7000	. 7000	7000	7000
No. 2 A.F.T.. . . .	7661	7661	7661	7661	7661	7661	7661	14015	14013	14722	14722
Primary resistance.	1700.	1700	1700	1700.	1700	1700	1700	900	1300	1100	. 1100
Secondary resistance.	. 3250	3250	3250	3250	3250	3250	3250	7000	7000	7000	. 7000

ATWATER KENT MFG. CO.

VALUES OF CHASSIS PARTS IN MODELS

$36,37,38,40,41,42,43,44,45,46,47,52,53,56$ and 57 (Continued)

	$\begin{gathered} 44 \\ \text { and } \\ 45 \end{gathered}$	36	${ }_{37}^{\text {Early }}$	Late 37	$\begin{gathered} \text { Early } \\ 38 \end{gathered}$	Late 38	$\begin{array}{r} 40, \\ 52 \\ 52, \\ \text { and } 57 \end{array}$	41	43	$\begin{gathered} 46 \\ \text { and } \\ 53 \end{gathered}$	47
FIXED CONDENSERS											
"Double" by-pass	15158	15158	15158	15158	15158	15158	15158	15157	15158	15158	15158
Speaker filter	14902	14902	14902	14902	14902	14902	14902				
condenser..	. 3 MF.	. 3 MF	. 3 MF .	. 3 MF	. 3 MF	. 3 MF.	. 3 MF				
	${ }^{9598}$	9598	9598	9598	9598	9598	9598	14072	9598	9598	9598
Phone condenser . . . $002 \mathrm{MF} \ldots .002 \mathrm{MF} \ldots .002 \mathrm{MFF} \ldots 02 \mathrm{MF} \ldots .002 \mathrm{MF}$. . 002 MF											
	$\xrightarrow[8112]{ }$	8112	8112	8112	\$112	8112	8112	8112	8112	14861	14861
Grid condenser..	250 M MF	MMF	MMF	MMF	MMF	M MF	MMF	50 MMF	250 MMF	250 MMF	250 MMF
VOLUME											
CONTROL	13320	9490	9510	13020	13020	13020		13550	13320		13320
Volume control resistor	13604		13604	13604	13604	13604	13604	13604	13604	13604	13604
	. 400	*.	. 400.	400	. 400	. 400 .	. 400	. 400 .	. 400	. 400	.. 400

*Early 36 used a condenser type volume control No. 9561 . In late 36 , the volume control has two resistors, No. 9781 and 9782 , each 425 ohms.
**In Model 41, the detector filament by-pass and the volume control condenser is No. 13956.

VALUES OF PARTS IN POWER UNITS FOR MODELS

 $36,37,38,40,41,42,43,44,45,46,47,52,53,56$ and 57| | Type ' ${ }^{\text {R' }}$ B Power Unit | Early 36 | Late 36 | ${ }_{37}^{\text {Early }}$ | ${ }_{37}$ | $\begin{gathered} \text { Early } \\ 38 \end{gathered}$ | $\begin{gathered} \text { Late } \\ \mathbf{3 8} \end{gathered}$ | $\begin{gathered} 40,42, \\ 52,56 \\ \text { and } 57 \end{gathered}$ | 41 | 44
 and
 45 | 43 | $\begin{gathered} 46 \\ \text { and } \\ 53 \end{gathered}$ | 47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESISTORS 30 and 57. | | | | | | | | | | | | | |
| Detector plate resistor | 8919 | 8919 | 8919 | 8919 | 15592 | 8919 | 15592 | 15592 | 15941 | 15592 | 15592 | 15592 | 15592 |
| | .1 Meg | . 1 Meg | . 1 Meg | . 1 Meg | 65000 | . 1 Meg | 65000 | 65000 | 12500 | 65000 | 65000 | 65000 | 65000 |
| | | 15941 | 15941 | 15941 | 15941 | $159+1$ | 15941 | 15941 | | 15941 | 15941 | 15941 | 15941 |
| 1st-A.F. plate resistor | | 12500. | 12500 | 12500 | . 12500 | 12500 | 12500. | 12500 | | 12500 | 12500 | 12500. | 12500 |
| | | 9515 | 9691 | 9691 | 13128 | 13138 | 13303 | 135388 | | 13756 | 14427 | 14427 | 15063 |
| R.F.-1st-A.F. bias.......... . | | 1100 | 1100 | 1100 | . 625 | 550 | 550. | 625 | | 500 | 625 | 625. | . 550 |
| 2nd-A.F. bias........... | | 9515 (2) | 9692 | 9692 | 13289 | 9692 | 13289 | 13538 | | 13756 | 14427 | $\begin{array}{r} 14427 \\ \text { (3) } \end{array}$ | 15063 |
| | | 1700. | 1750. | 1750 | 2200 | 1750 | 2200 | 2200 | | 2200 | . 1000 | . 1000 | ${ }^{1000}$ |
| | 8915. | 9515 5000 | | | | | | | | | | | |
| Load resistor | (1) | | | | | | | 13645 | 14041 | 1375.5 | 13645 | | |
| Line voltage regulator | | | | | | | | 28 | 242 | $21^{(5)}$ | 28 | | |
| | | 9434 | 9434 | 94.34 | 9434 | 9434 | 9434 | 9434 | | 9434 | 9434 | 9434 | 9434 |
| Filament shunt resistor. | | $\stackrel{20}{9486}$ | 20 | . 20 | 20 | 20 | 20 | . 20 | | 20 | 20 | 20 | $\begin{aligned} & 20 \\ & \hline . \end{aligned}$ |
| Filament shunt potentiometer | | 20. | | | | | | | | | | | |
| | | ${ }_{13323}{ }^{3}$ | | | | | | | | | | | |
| Detector filament series res.
 R.F.-1st-A.F
 filament series res. | | $1332{ }^{\text {² }}$ | | | | | | | | | | | |
| | | . 05 | | | | | | | | | | | |

FILTER CHOKES

No. 1 choke ohms
No. 2 choke ohms

(6)

FILTER CONDENSER
(Replaceable type only)
8875. . 9505.. 9704. .13315. .13315. .13315. .13315. . 17159
89.
.14247.
14743 . . 14743
OUTPU'T TRANSFORMER

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS 55, 55-F, 60, 61, 66, and 67

	$\underset{55}{\text { Early }}$	$\begin{gathered} \text { I.ate } \\ 55 \end{gathered}$	$\underset{55-F}{\text { Early }}$	$\begin{aligned} & \text { Late } \\ & 55-\text { F } \end{aligned}$	$\underset{60}{\text { Early }}$	$\begin{gathered} \text { Late } \\ 60 \end{gathered}$	$\underset{61}{\text { Early }}$	$\underset{61}{\text { Late }}$	66	$\underset{67}{\text { Early }}$	$\underset{67}{\text { Late }}$
RESISTORS											
	16330		16330		16295		16295	16295			
Bleeder resistor 6000 6000 4000 4000 4000											
Bleeder resistor		16295		16295		17041			16641		
No. 1......		4000		4000		6000			7000		
Bleeder resistor		16989		16989		15660			15660		
No. 2.		850.		850		1050			1050.		
1st-R.F. bias					16253	16253			15660		
$\stackrel{\text { resistor }}{ }$					1500	1500					
2nd-R.F. bias resistor							$\begin{aligned} & 16299 \\ & .11 .5 \end{aligned}$	$\begin{aligned} & 16299 \\ & 11.5 \end{aligned}$			
3rd-R.F. bias							16322	16322			
R.F. bias resistor	16988	16988	16988 .160	16988 160	16988 160	16988			16987 .115.		
									16639		
resistor...	1050	. 1050	1050	1050	. 1050	. 1050					
2nd-A.F. bias resistor.			$\begin{array}{r} 15660 \\ 1050 \end{array}$	$\begin{array}{r} 15660 \\ 1050 \end{array}$							
filter resistor.											
1 st or 2nd-R.F filament res.										$\begin{aligned} & 16302 \\ & \cdots 20 \ldots \end{aligned}$	$\begin{gathered} 16302 \\ -\quad 20 \\ \hline \end{gathered}$
Filament séries $\quad 16433 \quad 16433$											
Filament series 16432											
A.F. flament 16434											
${ }_{\text {A.F. }}^{\text {A }}$ (hilament							18400 .	. 600			
3rd Filament											
shunt resistor							22.5	22.5			
Filament shunt resistor	$\begin{aligned} & 17077 \\ & 10 . \end{aligned}$	$\begin{aligned} & 17077 \\ & .10 \ldots \end{aligned}$	$\begin{aligned} & 17077 \\ & .10 \ldots \end{aligned}$	$\begin{gathered} 17077 \\ 10 . \end{gathered}$	$\begin{aligned} & 17077 \\ & .10 \end{aligned}$	$\begin{gathered} 17077 \\ .10 \end{gathered}$			$\begin{gathered} 17077 \\ .10 . \end{gathered}$		
	15747	15747	15747	15747	15747	15747			15747		
Wire-wound section.	6000	6000	. 6000	6000	${ }^{6} 6000$. 6000	6000	6000	6000.		
Carbon section.....		10000		10000.		10000			10000	. 1 Meg	$\therefore 1 \mathrm{Meg}$
CONDENSERS 16792											
Double phone condenser	$\begin{gathered} 15792 \\ .002 \mathrm{MF} \end{gathered}$		$\begin{gathered} 15792 \\ .002 \mathrm{MF} \end{gathered}$		$\begin{gathered} 15792 \\ .002 \mathbf{M F} \end{gathered}$		$\begin{gathered} 16323 \\ .002 \mathrm{MF} \end{gathered}$			$\begin{gathered} 16082 \\ .002 \mathrm{MF} \end{gathered}$	$\begin{gathered} 16082 \\ .002 \mathrm{MF} \end{gathered}$
Local-distance switch condenser		$\begin{gathered} 16788 \\ \mathbf{2 8} \mathbf{M M F} \end{gathered}$		$\begin{gathered} 16788 \\ \mathbf{2 8} \text { MMF } \end{gathered}$		$\begin{gathered} 16788 \\ \mathbf{2 8} \mathbf{M M F} \end{gathered}$		$\begin{gathered} 16788 \\ \mathbf{2 8} \mathbf{M M F} . \end{gathered}$			16788 28 MMF
Filter Condenser.	14340	14340	14720	14720	14340	14340	14710	14710	14880		
	15262	15262	15262	15262							
R.F by-pass No. 1					${ }_{\text {H-1 }}^{15262}$	${ }_{\mathbf{1}}^{15262}$	${ }_{\text {H-1 }}^{15262}$	$\begin{gathered} 15262 \\ \mathrm{H}-1 \end{gathered}$			
R.F. by-pass No. 2					16233	16233	15262	15262	16233	16461	16461
					H-4	H-4	H-1	H-1	H-4	H-6	H-6
	15263	16745	15263	16745	15263	16745	15263	16745	16745	16462	16462
Detector by-pass H-2		H-7	H-2	H-7	H-2	H-7	H-2	H-7	H-7	H-5	H-5
		16828		16828							
Line condenser.....	-	B. 5		B-5							
NO. 1 A.F.T.											
Primary resistance							1500	1500		1500	... 1500
Secondary resistance.						7000	7000		7000	7000
2nd A.F. Input Transformer $1100 \ldots 1100$											
Secondlary resistance.	7000	7000	7000.	7000	7000	. 7000	\%. 7000	7000	7000.	7000	. 7000
2nd A.F. Output Transformer											
Primary resistance...	300	300	300	. 300	. 300	. 300	. 300	300	.300		
Secondary resistance.		. 2	. 2	. 2	. 2.	. 2.	. 2.	. 2.	. 2	$\text { . } 2$	$\ldots .2 . .$
FILTER CHOKES 300											
No. 1 choke No. 2 choke	$\begin{array}{r} 300 \\ \\ 2500 \end{array}$	3500.	$\begin{array}{r} 300 \\ \hline 2500 \end{array}$	2500	25000	2500	$\begin{array}{r}\text { a } \\ \hline 45 \\ \hline .45 \\ \hline\end{array}$	$\ldots 45$	2500.		.a.:.
Field Coil	15635	15635	15629	15629	15635	15635	15854	15854	15854	15863	15863
Field resistance.	1100	11100	1700	1700	1100	1100	. 700	700			

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODEL 60-C, 3rd TYPE

RESISTORS

Volume control	17730	
Resistance of screen section		6000
Resistance of antenria section		2500
R.F. bias resistor	17380	425
1st-R.F. bias resistor	16320	1050
1st-A.F. bias resistor	16320.	1050
Filament shunt resistor	17077.	10
Dial light resistor	17299.	2
AUDIO TRANSFORMERS		
Input A.F. transformer	15520	
Primary resistance		2000
Secondary resistance		6000
Output A.F. transformer	15530	
Primary resistance.		300
Secondary resistance		1

VALUES OF PARTS IN MODELS 70, 72, 74, 75, and 76 (TYPE L, F, P, H,D, and \mathbf{Q} CHASSIS)

FILTER CHOKE

Filter choke assembly	15450	$\begin{gathered} 600 \\ 6000 \end{gathered}$
Resistance of No. 1 choke		
Resistance of No. 2 choke		
FIELD COIL		
Speaker field coil.	175.51	1100
CONDENSERS		
Filter condenser assembly	15480	
R.F. by-pass No. 1	15790	(H-21)
R.F. by-pass No. 2	15770	(H-15)
R.F. by-pass No. 3	15780	($\mathrm{H}-17$)
Detector by-pass.	15640	(H-16)
Stopping or compensatin	15540.	8 MMF

LER CHOKE

Resistance of No. 2
Resistance of No. 3 choke

100
FIELD COIL

CONDENSERS
Filter condenser
assembly......
R.F. by-pass No. 1
R.F. by-pass No.
R.F. by-pass No. 4

RESISTORS
Volume control. Resistance of Screen section..
Resistance of antenna section ume control (P) leeder resistor leeder resistor
F. bias resistor.

1st-R.F. bias st-2nd R.F. bia t-2nd R.F. filament resistor. d-R.F. bias R.F. filamen shunt resistor ment resistor resistor. .
.F. bias resistor...
Dial light resistor. . rest shunt

Filament series
resistor No. 1
ilament series resistor No. 2.
F. filament 18356

AUDIO TRANSFORMERS
No. 1 A.F.
Primary resistance
${ }^{*}$ In type L chassis below 8234881. the filter condenser is No. 15480 .
In type F chassis. the Gilter condenser is No. 16.20, and filter choke is No. 16260
In type F chassis above 5802566. R.F. by-pass No. I is No. 1.5262.
$*$ In type H chassis, the 25 meg section of the control is in the grid circuit of the 1 st-I.F. tube. In type H-1 chassis, the .1 meg section of the control is in the plate circuit of the I.F. tubes. In type H-2 chassis, the I meg section controls the screen voltage of the I.F. tubes.

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS 82-D, 84-D, 87-D, and 228-D

VALUES OF PARTS IN MODELS 81, 81-B, 81-C, 91, 91-B, and 91-C

	$\begin{aligned} & \text { Model } \\ & \text { 81, 81-B, } \\ & \text { and 81-C } \end{aligned}$	Model 91, 91 - B , and 91-C		Model 81, 81-B, and 81-C	Model 91, 91-B and 91-C
RESISTORS					
Volume control.	$\begin{gathered} 21496 \\ 65 \mathrm{MEG} \end{gathered}$	$\begin{gathered} 21496 \\ .65 \mathrm{MEG} \end{gathered}$	1st-R.F. grid circuit by-pass.	$\stackrel{23250}{.01 \mathrm{MF}}$	
Distributor suppressor (long). .	$\begin{array}{r} 21144 \\ .15000 . \end{array}$	$\begin{aligned} & 21144 \\ & .15000 \end{aligned}$	Phone condenser	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 17440 \\ 500 \mathrm{MMF} \end{gathered}$
Plug suppressor (short).	$\begin{aligned} & 21143 \\ & 15000 \end{aligned}$	$\begin{array}{r} 21143 \\ .15000 \end{array}$	Control coupling condenser.	$\begin{gathered} 21160 \\ \mathbf{2 0 0} \mathbf{M M F} \end{gathered}$	$\begin{gathered} 26440 \\ 200 \mathrm{MMF} \end{gathered}$
			Tracking condenser.		$\begin{gathered} 26050 \\ \mathbf{8 0 0} \mathbf{M M F} \end{gathered}$
CONDENSERS	21624	21624			
Condenser for ignition filter	(2) ${ }^{21624} \mathrm{MF}$	(2) ${ }^{21624} \mathrm{MF}$	Oscillator grid condenser..		200 MMF
	23260	23260	Audio input transformer	. . 22810	$26280 .$
Generator condenser.	1 MF	1 MF	Primary resistance Secondary resistance.	$\begin{aligned} & . .2000 \\ & \cdots .6000 \end{aligned}$	$\begin{aligned} & 300 \ldots \\ & .250 \ldots \end{aligned}$
Electrolytic condenser.	$\begin{array}{r} 22538 \\ \ldots \\ \hline .8 \mathbf{M F} \end{array}$	$\begin{array}{r} 22472 \\ . .8 \mathrm{MF} \end{array}$	Audio output transformer		. 228330.
	23140	25690..	Primary resistance Secondary resistance.	$\begin{gathered} .450 \\ \cdots . .02 \end{gathered}$	$\begin{gathered} . \\ \hline .050 \\ \cdots \end{gathered}$
Multiple by-pass condenser.	$\therefore \mathrm{J}-4$.	J-6 .	Secondary resistance..		
R.F. by-pass condenser.	$\text { (3) } \begin{array}{r} 26040 \mathrm{MF} \end{array}$	Field coil. ...	$\begin{gathered} 22440 \\ \cdots 3 . \end{gathered}$	$\begin{gathered} 22440 \\ \cdots .3 \end{gathered}$

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS 82-Q, 84-Q, 85-Q and 228-Q

	$\begin{gathered} \text { 82-Q } \\ \text { 1st } \\ \text { Type } \end{gathered}$	$\begin{gathered} 82-Q \\ \text { 2nd } \\ \text { Type } \\ \text { and } \\ \text { 228-Q } \end{gathered}$	84-Q	85-Q		$82-Q$ 18t Type	82-Q 2nd Type and 228-Q	84-Q	85-Q
	16122	16122	19040	16122		15262	15262	19150	19150
Volume control....	. 1 MEG .	. 1 MEG.	. 5 MEG .	. 1 MEG.	R.F. by-pass No. 2	H-20.	H-20.	H-29.	. H-29..
Filament series resistor.	$\begin{gathered} 19610 \\ . .452 . \end{gathered}$	$\begin{gathered} 19610 \\ . .425 \end{gathered}$	$\begin{array}{r} 19610 \\ . .452 . \end{array}$	$\begin{gathered} 19610 \\ . .452 \end{gathered}$	R.F. by-pass No. 3	$\begin{aligned} & 19150 \\ & . \\ & H-29 . \end{aligned}$	$\begin{aligned} & 19160 \\ & . H-30 . \end{aligned}$	$\begin{gathered} 15262 \\ \ldots \\ \hline \end{gathered}$	$\begin{gathered} 15262 \\ . . \dot{H}-20 . . \end{gathered}$
$\text { resistor } 452 \text {. } 425 \text {. } 452$						$\begin{aligned} & 15262 \\ & . \mathrm{H}-20 \end{aligned}$		$\begin{aligned} & 16461 \\ & . \mathrm{H}-12 . \end{aligned}$	$\begin{gathered} 15262 \\ \ldots \\ \hline \end{gathered}$
AUDIO R.F. by-pass No. 4 ...H-20................H-12..... H-20..									
TRANSFORMER									15262
transformer....	23510	23510		23440	Tone control	16490	16490	16490^{*}	16490
Primary resistance. 1450 1450 1450									
Secondary					SMALL FIXED CONDENSERS				
Audio output transformer.	19697	19697	19697	19697	R.F.-1st-detector stopping cond.	$\begin{gathered} 21160 \\ \mathbf{2 0 0} \mathbf{M M F} \end{gathered}$	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 17974^{*} \\ \mathbf{2 7 0 ~ M M F} \end{gathered}$	$\begin{gathered} 21160^{*} \\ 200 \mathrm{MMF} \end{gathered}$
Primary resistance	. 500	. 500	. 500	. $500 .$.	Oscillator grid condenser.	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 21160 \\ \mathbf{2 0 0 \mathrm { MMF }} \end{gathered}$		$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$
Secondary resistance	. 25		. 25		I.F. stopping condenser.	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 17440 \\ 500 \mathrm{MMF} \end{gathered}$	$\begin{gathered} 21160 \\ 200 \mathrm{MMF} \end{gathered}$
						17440	17440	17440	17440
CONDENSERS					Phone condenser . . 500 MMF 500 MMF 500 MMF 500 MMF				
Filter condenser (electrolytic).	23146	23146	23146	22538	2nd-detector-1st-A.F	*	23250		
	. 8 MF	8 MF	. 8 MF	8 MF .	coupling cond...	\cdots	. 01 MF	. .	
	21170	15262	19560	19980**	Oscillator plate		23250		
R.F. by-pass No. 1.	. $\mathrm{H}-37$.	. H-20.	H-31.	.H-34. .	filter condenser.		.01 MF		

*Used only in late type sets.
** In late 85-Q, R. F. by-pass No. 1 is $21170, \mathrm{H}-37$.

VALUES OF PARTS IN MODEL 93 SHORT-WAVE CONVERTER

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS $80,82,83,84,85,86,87$, and 89

	80	82	83	$\begin{gathered} 84 \\ \text { Early } \\ \text { Type } \end{gathered}$	$\begin{gathered} 84 \\ \text { Late } \\ \text { Type } \end{gathered}$	$\begin{gathered} 85 \\ \text { Early } \\ \text { Type } \end{gathered}$	$\begin{gathered} 85 \\ \text { Late } \\ \text { Type } \end{gathered}$	86	87	89
Volume control	$\begin{array}{r} 20840 \\ -6000 \end{array}$	$\begin{array}{r} 20990 \\ \cdots .550 \end{array}$	$\begin{array}{r} 22330 \\ \times 6000 \end{array}$	$\begin{gathered} 19040 \\ . .5 \mathrm{MEG} \end{gathered}$	$\begin{array}{r} 20180 \\ .3500 . \end{array}$	$\begin{aligned} & 19040 \\ & : 5 \mathrm{MEG} . \end{aligned}$	$\begin{gathered} 20030 \\ . .550 . \end{gathered}$	$\begin{array}{r} 23410 \\ .550 . \end{array}$	$\begin{array}{r} 22650 \\ \times \quad 3500 \end{array}$	$\begin{gathered} 23228 \\ .5 \mathrm{MEG} \end{gathered}$
RESISTORS										
Bleeder resistor No. 1.		$\begin{array}{r} 20150 \\ .8000 \end{array}$		$\begin{array}{r} 16330 \\ \cdots 6000 \end{array}$	$\begin{array}{r} 16330 \\ \times 6000 \end{array}$	$\begin{array}{r} 16330 \\ .6000 \end{array}$	$\begin{array}{r} 20150 \\ \times 8000 \end{array}$	$\begin{array}{r} 20150 \\ .8000 \end{array}$	$\begin{array}{r} 22660 \\ \times 6000 \end{array}$	$\begin{array}{r} 20150 \\ .8000 \\ \hline \end{array}$
Bleeder resistor No. 2.		$\begin{array}{r} 20140 \\ \times 6400 . \end{array}$		$\begin{gathered} 16330 \\ \cdots 6000 \end{gathered}$	$\begin{array}{r} 17610 \\ .4000 \end{array}$	$\begin{array}{r} 16330 \\ .6000 \end{array}$	$\begin{array}{r} 16330 \\ -6000 . \end{array}$	$\begin{array}{r} 20140 \\ \times 6400 \end{array}$	$\begin{array}{r} 22660 \\ .6000 \end{array}$	$\begin{array}{r} 20150 \\ .8000 \end{array}$
Bleeder resistor No. 3 .		$\begin{gathered} 20050 \\ .355 . \end{gathered}$			$\begin{array}{r} 18520 \\ 70 \end{array}$		$\begin{array}{r} 20050 \\ \cdots .355 . \end{array}$	$\begin{array}{r} 16320 \\ -1050 \end{array}$	$\begin{array}{r} 20040 \\ \ldots . \\ \hline 100 . \end{array}$	$\begin{array}{r} 21030 \\ .2000 \end{array}$
Bleeder resistor No. 3A.								$\begin{gathered} 23780 \\ . .550 . \end{gathered}$	$\begin{gathered} 17380 \\ . .425 . \end{gathered}$	$\begin{array}{r} 16320 \\ .1050 \end{array}$
Bleeder resistor No. 4.	$\begin{gathered} 20040 \\ . .100 . \end{gathered}$	$\begin{gathered} 20040 \\ ., 100 \ldots \end{gathered}$	$\begin{array}{r} 20040 \\ . \quad 100 . \end{array}$				$\begin{gathered} 20040 \\ \ldots . .100 \ldots \end{gathered}$	$\begin{array}{r} 20050 \\ \ldots .355 . \end{array}$		$\begin{gathered} 17380 \\ .425 \end{gathered}$
Bleeder resistor No. 5 .		$\begin{gathered} 20150 \\ \cdots .8000 \end{gathered}$					$\begin{array}{r} 20150 \\ .8000 \end{array}$	$\begin{gathered} 20150 \\ \ldots .8000 . \end{gathered}$		$\begin{array}{r} 20150 \\ .8000 \end{array}$
Bleeder resistor No. 6.		$\begin{array}{r} 20120 \\ .800 \end{array}$					$\begin{gathered} 20120 \\ .800 . \end{gathered}$	$\begin{gathered} 20120 \\ .800 . \end{gathered}$		$\begin{gathered} 20120 \\ .800 \end{gathered}$
Bleeder resistor No. 7		$\begin{gathered} 20520 \\ .670 . \end{gathered}$					$\begin{array}{r} 20520 \\ \times 670 \end{array}$	$\begin{array}{r} 20520 \\ . \\ .670 . \end{array}$		$\begin{array}{r} 17610 \\ .4000 \end{array}$
1st-detector bias resistor	$\begin{array}{r} 21030 \\ . \\ \hline 2000 \end{array}$		$\begin{array}{r} 21030 \\ . \\ 2000 \end{array}$	$\begin{array}{r} 19346 \\ \times .3300 \end{array}$	$\begin{array}{r} 20380 \\ . \quad 1500 \end{array}$					
1st-detector plate resistor.					$\begin{gathered} 20320 \\ . .200 \ldots \end{gathered}$					
I.F. bias resistor.				$\begin{array}{r} 16320 \\ \times 1050 \end{array}$		$\begin{array}{r} 16320 \\ \times 1050 \end{array}$			
A.F. bias resistor									$\begin{gathered} 21420 \\ . . \\ \hline 250 . \end{gathered}$	$\begin{array}{r} 21420 \\ . .250 \ldots \end{array}$
		$\begin{gathered} 19180 \\ \cdots 1100 . \end{gathered}$		$\begin{aligned} & 19180 \\ & . .1100 \ldots \end{aligned}$	$\begin{array}{r} 19180 \\ . \\ \hline 1100 . \end{array}$	$\begin{array}{r} 19180 \\ .1100 \end{array}$	$\begin{array}{r} 19180 \\ \times 1100 \end{array}$	$\begin{gathered} 19180 \\ . \quad 1100 \end{gathered}$		
Filament shunt resistor	$\begin{gathered} 17077 \\ . \quad 10 \end{gathered}$	$\begin{gathered} 17077 \\ \cdots 10 . \end{gathered}$	$\begin{array}{r} 17077 \\ \cdots 10 . \end{array}$	$\begin{gathered} 17077 \\ \cdots 10 . \end{gathered}$	$\begin{gathered} 17077 \\ \ldots 10 . \end{gathered}$	$\begin{gathered} 17077 \\ \ldots 10 . \end{gathered}$	$\begin{gathered} 17077 \\ \cdots 10 \end{gathered}$	$\begin{gathered} 17077 \\ \ldots 10 . . \end{gathered}$	$\begin{gathered} 17077 \\ \cdots .10 . \end{gathered}$	$\begin{gathered} 17077 \\ \cdots 10 \end{gathered}$
Dial light resistor								$\begin{gathered} 18236 \\ \ldots 1 \ldots \end{gathered}$	$\begin{gathered} 18236 \\ \ldots 1 \ldots \end{gathered}$	$\begin{gathered} 18236 \\ \ldots \end{gathered}$

AUDIO TRANSFORMERS

A.F. Input transformer								21670	21670
Primary resistance. 2000	. 2000
Secondary resistance								1800	1800.
A.F.output									
transformer* . 19697	19697	19697	19697	19697	19697	19697	21672	21370	21370
Primary resistance. . . 500.	. 500.	. 500.	. 500.	. 500.	. 500.	. 500.	. 500.	.450.	. 450
Secondary resistance... . 25.	. . 25.	. 25	. 25	. 25	. 25	. 25	. 25	. 05	450
FILTER CHOKE UNIT								21680	21680
No. 1 choke, ohms No. 2 choke, ohms. No. 3 choke, ohms								480.	. 480
								1500.	.1500.
									. 90
FIELD COIL 18870	18870	18870	18870	18870	18870	18870	18870	21260	21260
Field coil resistance 2000.	. 2000.	. 2000.	2000.	2000.	2000.	. 2000.	. 2000 .	. 1100.	1100..
CONDENSERS									
Filter condenser unit, paper and foil type		$\begin{gathered} 20370 \\ . . F-1 . \end{gathered}$				$\begin{gathered} 20370 \\ . . \mathrm{F}-1 . . \end{gathered}$	$\begin{gathered} 20370 \\ . F-1 . \end{gathered}$	$\begin{gathered} 21520 \\ . A-7 . \end{gathered}$	$\begin{gathered} 21520 \\ . . A-7 . . \end{gathered}$
Filter condenser No. 1 (electrolytic) . . $8 \mathbf{~ M F}$	\mathbf{D}_{2}		$\begin{array}{r} 23146 \\ .8 \mathbf{M F} . \end{array}$	$\begin{gathered} 23146 \\ .8 \mathbf{M F} . \end{gathered}$	$\begin{array}{r} 23146 \\ .8 \mathbf{M F} \end{array}$				
$\begin{array}{lr}\text { Filter condenser } & 22538 \\ \text { No. } 2 \text { (electrolytic). . } 8 \mathrm{MF} .\end{array}$	$\begin{aligned} & 22538 \\ & .8 \mathbf{M F} . \end{aligned}$		$\begin{array}{r} 22538 \\ .8 \mathbf{M F} \end{array}$	$\begin{array}{r} 22538 \\ .8 \mathbf{M F} . \end{array}$	$\begin{array}{r} 23146 \\ .8 \mathrm{MF} . \end{array}$				

In late type 83 and 85 the output transformer is enclosed in a metal case; part No., less case, is 21672 .
In late type 87 and 88 the output transformer is enclosed in a metal case; part No., less case, is 21693.

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS 90, 92, 94, 96, 99, 228, and 567

$\begin{array}{r} 90 \\ \text { and } \\ \text { and } \end{array}$	$\begin{gathered} 92 \\ \text { and } \\ 228 \end{gathered}$	94	$\begin{aligned} & \text { 96-F, } \\ & \text { 1stand 2nd } \\ & \text { Type } 96 \end{aligned}$	$\begin{gathered} 96 \\ \text { 3rd } \\ \text { Type } \end{gathered}$	$\begin{gathered} 99 \\ \text { 1st and 2nd } \\ \text { Types } \end{gathered}$	$\begin{gathered} \text { 99-F } \\ \begin{array}{c} \text { and } 3 \text { 3rd } \\ \text { Type } \\ 99 \end{array} \end{gathered}$
Volume control...................6000.	$\begin{aligned} & 23228 \\ & .5 \text { MEG } . \end{aligned}$	$\begin{array}{r} 22650 \\ \cdots \end{array}$	$\begin{aligned} & 23228 \\ & .5 \mathrm{MEG} . \end{aligned}$	$\begin{gathered} 23228 \\ . .5 \mathrm{MEG} . \end{gathered}$	$\begin{gathered} 23228 \\ .5 \text { MEG... } \end{gathered}$	$\begin{aligned} & 23228 \\ & .5 \mathbf{M E G} \end{aligned}$
Tonebeam adjustment potentiometer.			$\begin{aligned} & 22152 \\ & .40000 \end{aligned}$	$\begin{array}{r} 22345 \\ \times .8000 \end{array}$	$\begin{array}{r} 22152 \\ .40000 \end{array}$	$\begin{aligned} & 22344 \\ & .14000 . \end{aligned}$
RESISTORS Bleeder resistor No. 1..	$\begin{array}{r} 24340 \\ .8000 \end{array}$	$\begin{aligned} & 24470 \\ & .4000 \end{aligned}$	$\begin{array}{r} 24340 \\ .8000 \end{array}$	$\begin{array}{r} 24340 \\ \times \quad 8000 \\ \hline \end{array}$	$\begin{array}{r} 24340 \\ \times 8000 \end{array}$	$\begin{array}{r} 24340 \\ \times 8000 \end{array}$
Bleeder resistor No. 2.	$\begin{array}{r} 24450 \\ .6400 \end{array}$	$\begin{array}{r} 24450 \\ \times 6400 \end{array}$	$\begin{array}{r} 24450 \\ \times 6400 \end{array}$	$\begin{array}{r} 18520 \\ \cdots .70 \end{array}$	$\begin{array}{r} 24340 \\ .8000 \end{array}$	
Bleeder resistor No. 3.	$\begin{array}{r} 23780 \\ \times 550 \end{array}$	$\begin{array}{r} 18520 \\ \hdashline 70 \end{array}$	$\begin{array}{r} 17380 \\ \quad .425 . \end{array}$	$\begin{gathered} 18520 \\ \cdots 70 \end{gathered}$	$\begin{array}{r} 24340 \\ \times .8000 \end{array}$	$\begin{gathered} 16320 \\ .1050 . \end{gathered}$
Bleeder resistor No. $4 \ldots \ldots$.	$\begin{array}{r} 20040 \\ . .100 . \end{array}$		$\begin{array}{r} 20050 \\ \times 355 \end{array}$	$\begin{array}{r} 21420 \\ -\quad 250 \end{array}$	$\begin{array}{r} 21030 \\ \cdots . \end{array}$	$\begin{gathered} 20040 \\ . \quad 100 \ldots \end{gathered}$
Bleeder resistor No. 5.	$\begin{gathered} 17380 \\ . .425 \end{gathered}$		$\begin{gathered} 20040 \\ . .100 \ldots \end{gathered}$	$\begin{array}{r} 25850 \\ \hdashline 2500 \end{array}$	$\begin{array}{r} 23780 \\ \hdashline 550 \end{array}$	$\begin{gathered} 20050 \\ \ldots .355 \ldots \end{gathered}$
Bleeder resistor No. 6.	$\begin{array}{r} 24340 \\ \times 8000 \end{array}$		$\begin{array}{r} 24340 \\ . .8000 \end{array}$		$\begin{array}{r} 20040 \\ \cdots 100 \end{array}$	$\begin{array}{r} 24470 \\ -\quad 4000 \end{array}$
Bleeder resistor No. 7.	$\begin{array}{r} 21030 \\ .2000 \end{array}$		$\begin{array}{r} 21030 \\ \times 2000 \end{array}$		$\begin{array}{r} 24340 \\ \times 8000 \end{array}$	$\begin{gathered} 25950 \\ \times 200 \ldots \end{gathered}$
Bleeder resistor No. 8...				$\begin{array}{r} 24450 \\ \times 6400 \end{array}$	$\begin{gathered} 20120 \\ \times 800 \end{gathered}$	$\begin{gathered} 25840 \\ \ldots 300 \ldots \end{gathered}$
Bleeder resistor No. 9.					$\begin{array}{r} 24530 \\ .2500 \end{array}$	
$\text { Ist-detector bias resistor } 210000 \text {. }$		$\begin{array}{r} 21030 \\ . \\ .2000 \end{array}$		$\begin{array}{r} 16320 \\ . .1050 \end{array}$		
R.F. bias resistor.....		$\begin{array}{r} 19820 \\ \cdots 48 \end{array}$				
1st-A.F. bias resistor						$\begin{array}{r} 24470 \\ . \\ \hline \end{array}$
A.F. bias resistor.			$\begin{array}{r} 24980 \\ \times 300 \end{array}$	$\begin{array}{r} 25840 \\ .300 \end{array}$	$\begin{array}{r} 21420 \\ . \quad 250 \ldots \end{array}$	

ATWATER KENT MFG. CO.

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS

188, 260, 469, 469-D, 469-Q, 480, 558, 558-D, 558-Q, 612, 627, and 812

	1st Type 188	$\begin{gathered} \text { 2nd } \\ \text { Type } \\ 1888 \end{gathered}$	$\begin{gathered} \text { 18t } \\ \text { and } \\ \text { 2nd } \\ \text { Type } \\ 260 \end{gathered}$	3rd Type 260	$\begin{gathered} \text { 1st } \\ \text { Type } \\ \mathbf{4 6 9} \end{gathered}$	2nd Type 469	$\begin{aligned} & 469-\mathrm{D} \\ & 558-\mathrm{D} \end{aligned}$	$\begin{aligned} & 469-Q \\ & 558-Q \end{aligned}$	480	558	612	627	812
CONTROLS													
	23228	23228	23228	23228	23228	23228	23228	23482	23376	23228	23228	23228	
Volume control.	. 5 Meg	. 5 Meg	. 5 Meg	.5 Meg	. 5 Meg	$.5 \mathrm{Meg}$	$.5 \mathrm{Meg}$						
Tonebeam adjustment. . . .			$\begin{array}{r} 26540 \\ .15000 \end{array}$	$\begin{array}{r} 29020 \\ .20000 \end{array}$	$\begin{array}{r} 27190 \\ .8000 \end{array}$	$\begin{gathered} 29020 \\ .20000 \end{gathered}$			$\begin{array}{r} 27190 \\ -.8000 . \end{array}$		$\begin{array}{r} 29020 \\ .20000 \end{array}$		$\begin{aligned} & 29020 \\ & 20000 \end{aligned}$
Silencing adjustment		$\begin{array}{r} 28220 \\ 20000 \end{array}$		$\begin{array}{r} 28220 \\ .20000 \end{array}$		$\begin{gathered} 28220 \\ .20000 \end{gathered}$	$\begin{array}{r} 28220 \\ .20000 . \end{array}$			$\begin{gathered} 28220 \\ .20000 \end{gathered}$	$\begin{aligned} & 28220 \\ & .20000 \end{aligned}$		$\begin{aligned} & 28220 \\ & .20000 \end{aligned}$

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS
188, 260, 469, 469-D, 469-Q, 480, 558, 558-D $558-\mathrm{Q}, 612,627$, and 812 (Continued)

	1st Type 188	2nd Type 188	$\begin{gathered} 18 t \\ \text { and } \\ \text { 2nd } \\ \text { Type } \\ 260 \end{gathered}$	$\begin{gathered} \text { 3rd } \\ \text { Type } \\ 260 \end{gathered}$	$\begin{aligned} & \text { 1st } \\ & \text { Type } \end{aligned}$ 469	2nd Type 469	$\begin{aligned} & 469-\mathrm{D} \\ & 558-\mathrm{D} \end{aligned}$	$\begin{aligned} & 469-Q \\ & 558-Q \end{aligned}$	480	558	612	627	812
AUDIO TRANSFORMERS 812													
Audio input transformer. . . . Primary resistance. Secondary resistance.		28490 .1900 .1700	$\begin{array}{r} .26940 \\ . ~ \\ \hline \end{array} 17000 .$	$\begin{array}{r} .26940 \\ .1900 \\ . \quad 1700 . \end{array}$	$\begin{aligned} & 26950 \\ & .2600 \\ & .6000 \end{aligned}$	$\begin{array}{r} 26940 \\ 1900 \\ 1700 \end{array}$	$\begin{array}{r} 29380 \\ 2000 \\ 6000 \end{array}$	$\begin{aligned} & 29390 \\ & 650 \\ & 350 \end{aligned}$	27760 .2500 .6000	.28290 .1300 .1400	$\begin{array}{r} .28670 \\ .450 \\ .400 \end{array}$		29960. 230 130
Audio output transformer.... Primary resistance Secondary resistance. \qquad	$\begin{aligned} & .21672 \\ & .500 \\ & \ldots .25 \ldots \end{aligned}$	$\begin{gathered} 21672 \\ 500 \\ .25 . \end{gathered}$	$\begin{gathered} .21693 \\ .450 \ldots \\ . .05 . \end{gathered}$	$\begin{aligned} & .21693 \\ & .450 \\ & . \\ & \hline 05 \end{aligned}$.21693 . .450 .05	$\begin{aligned} & 21693 \\ & .450 \\ & \cdots .05 \end{aligned}$	$\begin{gathered} .30020 \\ \cdots 100 \\ . .08 \end{gathered}$	$\begin{gathered} .23701 . \\ .500 \ldots \\ \ldots .04 \ldots \end{gathered}$	$\begin{gathered} 21693 \\ \cdots 450 \\ \cdots .05 \end{gathered}$	$\begin{aligned} & .19697 \\ & \cdots .500 \\ & . . .25 \end{aligned}$	$\begin{array}{r} .28630 \\ .200 \\ \cdots .03 \end{array}$	$\begin{gathered} 19697 \\ .500 \\ \cdots . .25 \end{gathered}$	$\begin{gathered} .28630 \\ . .200 \\ \cdots .03 . \end{gathered}$
FILTER CHOKES Resistance of 1st choke. Resistance of 2nd choke			26960 .160 .1500	.26960. .160 .1500	. 26970.	26970 .550	29370 .30		26970 .550		$\begin{aligned} & .29410 \\ & \therefore .160 \\ & .550 \end{aligned}$		$\begin{array}{r} .28640 \\ 7.70 \\ . \quad 1500 \end{array}$
SPEAKER FIELD COIL. Speaker field resistance	.18870. . 2000.	18870	. 21260	.21260. .1100.	.21260. .1100.	21260 .1100	$19860 .$		$\begin{array}{r} .21260 \\ . .1100 \end{array}$	$\begin{array}{r} .18870 \\ .2000 \end{array}$	$*$	$\begin{array}{r} 18870 \\ .2000 \end{array}$	*.
FILTER CONDENSERS													
Electrolytic filter No. 1.	$\begin{gathered} 22538 \\ .8 \mathbf{M F} . \end{gathered}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} . \end{aligned}$	$\begin{gathered} 22538 \\ .8 \mathrm{MF} . \end{gathered}$	$\begin{aligned} & 22538 \\ & .8 \mathbf{M F} \end{aligned}$	$\begin{array}{r} 22538 \\ .8 \mathbf{M F} . \end{array}$	$\begin{array}{r} 22538 \\ .8 \mathrm{MF} \end{array}$			$\begin{array}{r} 22538 \\ .8 \mathrm{MF} \end{array}$	$\begin{array}{r} 22538 \\ .8 \mathrm{MF} \end{array}$	$\begin{aligned} & 23498 \\ & .4 \mathrm{MF} \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} \end{aligned}$	$\begin{gathered} 23498 \\ .4 \text { MF. } \end{gathered}$
Electrolytic filter No. 2.....	$\begin{aligned} & 22538 \\ & .8 \text { MF } \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \text { MF } . \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} . \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} \end{aligned}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} \end{aligned}$			$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} \end{aligned}$	$\begin{array}{r} 22538 \\ .8 \mathbf{M F} \end{array}$	$\begin{aligned} & 22538 \\ & .8 \mathrm{MF} . \end{aligned}$	22538	$\begin{array}{r} 22538 \\ .8 \mathrm{MF} . \end{array}$
Electrolytic filter No. 3.											$\begin{aligned} & 22538 \\ & \mathbf{8} \mathbf{~ M F} . \end{aligned}$		$\begin{aligned} & 23481 \\ & 12 \mathrm{MF} \end{aligned}$
Filter condenser unit (paper and foil type)	$\begin{aligned} & 26620 \\ & .7 \mathrm{MF} \end{aligned}$	$\begin{aligned} & 26620 \\ & .7 \mathrm{MF} \end{aligned}$			$\begin{aligned} & 26620 \\ & .7 \mathrm{MF} \end{aligned}$	$\begin{aligned} & 26620 \\ & .7 \mathrm{MF} \end{aligned}$			$\begin{aligned} & 26620 \\ & .7 \mathrm{MF} \end{aligned}$				
Dry electrolytic conidenser. .							$\begin{gathered} 23981 \\ .8 \mathrm{MF} \end{gathered}$	$\begin{aligned} & 22472 \\ & .8 \mathbf{M F} . \end{aligned}$			$\begin{array}{r} 23479 \\ \mathbf{2 0 M F} \end{array}$		$\begin{aligned} & 23479 \\ & \mathbf{2 0 ~ M F} \end{aligned}$

BY-PASS CONDENSERS

Multiple type by-pass.
By-pass No. 1..............
$\begin{array}{cc}24250 & 28140 \\ \cdot . J-5 \ldots .\end{array}$

J140

By-pass No. 2	$\begin{gathered} 15262 \\ . . H-20 . \end{gathered}$	$\begin{gathered} 15262 \\ . . \mathrm{H}-20 . \end{gathered}$	$\begin{gathered} 15262 \\ . . \mathrm{H}-20 . \end{gathered}$	$\begin{aligned} & 15262 \\ & . \mathrm{H}-20 . \end{aligned}$	$\begin{array}{r} 23330 \\ \text {. } \mathrm{H}-43 . \end{array}$	$\begin{gathered} 23330 \\ . . \mathrm{H}-43 . \end{gathered}$	$\begin{gathered} 23330 \\ . . \mathrm{H}-43 . \end{gathered}$
By-pass No. 3	$\begin{array}{r} 22050 \\ . . \mathrm{H}-41 . \end{array}$	$\begin{array}{r} 27140 \\ . . \mathrm{H}-47 \end{array}$	$\begin{array}{r} 23330 \\ . . \\ \hline \end{array}$	$\begin{array}{r} 22050 \\ . . \mathrm{H}-41 . \end{array}$	$\begin{gathered} 27580 \\ . \mathrm{H}-48 . \end{gathered}$	$\begin{gathered} 27140 \\ . . \mathrm{H}-47 . \end{gathered}$	$\begin{array}{r} 27140 \\ . . \mathrm{H}-47 . \end{array}$
By-pass No. 4	$\begin{gathered} 27120 \\ . . \mathrm{H}-46 . \end{gathered}$	$\begin{array}{r} 27120 \\ . . \mathrm{H}-46 \end{array}$	$\begin{array}{r} 21450 \\ . . \mathrm{B}-10 \end{array}$	$\begin{array}{r} 21450 \\ . \mathrm{B}-10 \end{array}$	$\begin{array}{r} 15262 \\ . . H-20 \end{array}$	$\begin{array}{r} 27120 \\ . . \mathrm{H}-46 . \end{array}$	$\begin{array}{r} 27120 \\ . . H-46 \end{array}$
By-pass No. 5...						$\begin{aligned} & 15262^{* *} \\ & \mathrm{H}-20 \ldots \end{aligned}$	$\begin{gathered} 15262^{* *} \\ H-20 \end{gathered}$

SMALL FIXED
CONDENSERS

Antenna condenser		$\begin{gathered} 27130 \\ \stackrel{500 \ldots}{\mathbf{M M F}} \end{gathered}$				
R.F. bias by-pass .					$\begin{aligned} & 26660 \\ & .1 \mathrm{MF} \end{aligned}$	
R.F. grid filter condenser. .	$\begin{gathered} 26820 \\ \cdots \mathbf{M F} \end{gathered}$	$\begin{gathered} 26820 \\ \cdots \mathbf{M F} \end{gathered}$	$\begin{gathered} 26820 \\ \hdashline \mathbf{M F} . \end{gathered}$	$\begin{gathered} 27630 \\ .01 . \end{gathered}$	$\begin{gathered} 26820 \\ \cdots \mathbf{M F} . \end{gathered}$	$\begin{gathered} 26820 \\ .005 \ldots \\ \mathbf{M F} \end{gathered}$
R.F.-I.F. bias by-pass.	$\begin{aligned} & 26660 \\ & .1 \mathrm{MF} \end{aligned}$					$\begin{aligned} & 26660 \\ & .1 \mathrm{MF} \end{aligned}$

The field coll of the 4-prong speaker is No. 18870.2000 ohms. $\quad *$ By-pass No. 5 in late models is No. 29560, H-49.
The feld coll of the 5-prong epeaker is No. 28550, 8500 ohms.

ATWATER KENT MFG. CO.

VALUES OF PARTS IN MODELS
188, 260, 469, 469-D, 469-Q, 480, 558, 558-D, 558-Q, 612, 627, and 812 (Continued)

In late type 612 and 812 , the audio coupling unit between the 1 st-A. F. and driver tubes consists of an audio choke (3000 ohms) in the plate circuit of the 1st-A. F. tube. a coupling condenser (05 MF) and a driver grid leak ($1 / \mathrm{M} \mathrm{MEG}$). These parts are all sealed inside the audio transformer unit together with the and the secondary is 1800 ohms.

ATWATER KENT MFG. CO.

RESISTANCE OF FIELD COILS IN ELECTRO-DYNAMIC SPEAKERS

Model Number of Set	Speaker Type Number	Speaker Part Number	Part No. of Field Coll	. Resiatance of Field Coll (Ohms)
43	F	9890	14361	2500
46, 47	$\begin{aligned} & \mathrm{F}-2 \\ & \mathrm{~F}-2 \mathrm{~A} \\ & \mathrm{~F}-2 \mathrm{C} \end{aligned}$	$\begin{aligned} & 14200 \\ & 14760 \\ & 14300 \end{aligned}$	15629	1700
(Early type)	F_{3}	13990	14361 (short)	2500
$\begin{gathered} 53 \\ \text { (Late type) } \end{gathered}$	F.3	14190	15631 (long)	1700
55	$\stackrel{\mathrm{F}-4}{\mathrm{~F}-4 \mathrm{~A}}$	$\begin{aligned} & 14380 \\ & 14770 \end{aligned}$	$\begin{aligned} & 15635 \\ & 15635 \end{aligned}$	1100 1100
55-C	$\mathrm{F}_{4} \mathrm{C}$	14410	15635	1100
55.F	$\begin{aligned} & \mathrm{F}-2 \\ & \mathrm{~F}-2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14200 \\ & 14760 \end{aligned}$	$\begin{aligned} & 15629 \\ & 15629 \end{aligned}$	1700 1700
55.F-C	$\mathrm{F} \cdot 2 \mathrm{C}$	14300	15629	1700
60	$\stackrel{\mathrm{F}-4}{\mathrm{~F}-4 \mathrm{~A}}$	14380 14770	$\begin{aligned} & 15635 \\ & 15635 \end{aligned}$	1100 1100
60-C	$\mathrm{F} \cdot 4 \mathrm{C}$	14410	15635	1100
$60 \mathrm{C}, 3$ rd type	F.4C	14410	17551	1100
61	$\begin{aligned} & \mathrm{F} \cdot 6 \\ & \mathrm{~F} \in \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14480 \\ & 14780 \end{aligned}$	$\begin{aligned} & 15854 \\ & 15854 \end{aligned}$	700 700
61-C	F.6C	14490	15854	700
66 (made in console type only)	F-6C	14490	15854	700
67	$\stackrel{\mathrm{F}}{\mathrm{~F} \rightarrow 7 \mathrm{~A}}$	$\begin{aligned} & 14510 \\ & 14790 \end{aligned}$	$\begin{aligned} & 15863 \\ & 15863 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
$67 . \mathrm{C}$	$\mathrm{F} \rightarrow \mathrm{C}$	14520	15863	8
70 with L chassis	N	16400	16410	1100
70 with F chassis	N	16400	16410	1100
70 with D chassis	N-3	16900	17020	650
70 with Q chassis	J^{*}	15920	-	\square
72 with H chassis	N	16400	16410	1100
74 with L chassis	N	16400	16410	1100
74 with F chassis	N	16400	16410	1100
74 with D chassis	N-3	16900	17020	650
75 with P chassis	N	16400	16410	1100
76 with L chassis	N	16400	16410	1100
76 with F chassis	N	16400	16410	1100
76 with D chassis	$\mathrm{N} \cdot 3$	16900	17020	650
76 with Q chassis	${ }^{*}$	15920	-	-
$80,80-\mathrm{F}$	S	17300	18870	2000
81, 81-B, 81-C	-	22600	22440	3
$82,82 \cdot \mathrm{~F}$	S	17300	18870	2000

Model Number of Set	Speaker Type Number	Speaker Part Number	Part No. of Field Coll	. Resistance of Field Coil (Ohms)
82 -D**	-	18600	ig860	1200
82-Q***	\div	18400	-	-
$\begin{aligned} & 8_{3}, 83 \cdot F \cdot(\text { early type }) \\ & 83,83 \cdot F \text { (late type) } \end{aligned}$	-	$\begin{aligned} & 18100 \\ & 24600 \end{aligned}$	$\begin{aligned} & 18870 \\ & 18870 \end{aligned}$	2000 2000
84, 84-F	S	17300	18870	2000
$84 \cdot{ }^{* *}$	-	18600	19860	1200
84, $\mathrm{Q}^{* * *}$	-	18400	--	-
85,85 -F (early type) $85,85-\mathrm{F}$ (late type)	二	$\begin{aligned} & 18100 \\ & 24600 \end{aligned}$	$\begin{aligned} & 18870 \\ & 18870 \end{aligned}$	2000 2000
85- $\mathrm{Q}^{* * *}$	-	19900	---	--
86, 86-F	-	24600	18870	2000
87	-	19800	21260	1100
87. D	-	25000	19860	1200
$89,89-\mathrm{F}, 89 \cdot \mathrm{P}$	-	19800	21260	1100
90, 90-F	S	17300	18870	2000
91, 91-B, 91-C	-	27900	22440	3
92, 92-F	S	17300	18870	2000
94, 94-F	-	26300	18870	2000
96, 96-F	-	26300	18870	2000
99 below 4884901	-	26400	21260	1100
99 above 4884901	-	26400	18870	2000
$99 . \mathrm{F}$	-	26400	21260	1100
$99 . \mathrm{P}$	-	26400	18870	2000
188, $188 . \mathrm{F}$	368	28700	18870	2000
228, 228-F	S	17300	18870	2000
228-D**	-	18600	19860	1200
228-Q***	-	18400	-	--
260, $260 \cdot \mathrm{~F}$	380	28800	21260	1100
469, 469 -F	380	28800	21260	1100
469-D	-	31600	19860	1200
469-Q***	-	31500	---	
480, 480.F	380	28800	21260	1100
558, 558-F	S	17300	18870	2000
558.D	-	31800	19860	1200
558-Q***	-	31700		-
567, 567-F	S	17300	18870	2000
612	$\begin{aligned} & 324 \dagger \\ & 326 \dagger \dagger \end{aligned}$	$\begin{aligned} & 30200 \\ & 30300 \end{aligned}$	$\begin{aligned} & 18870 \\ & 28550 \end{aligned}$	$\begin{array}{r} 2000 \\ 6500 \end{array}$
627, $627 . \mathrm{F}$	S	17300	18870	2000
812	$\begin{aligned} & 336 \\ & 338 \dagger \dagger \end{aligned}$	$\begin{aligned} & 30400 \\ & 30600 \end{aligned}$	$\begin{aligned} & 18870 \\ & 28550 \end{aligned}$	$\begin{aligned} & 2000 \\ & 6500 \end{aligned}$

*The J speaker is an inductor-dynamic with two coils connected in series; resistance of each coil is about 275 ohms. Only three prongs on the four-prong plug are used. See diagram on page 241.
**The speakers in Models 82-D, 84-D and 228-D have a protective lamp mounted on the speaker housing. See diagram on page 307 .
*** The speakers in Models $82-Q, 84-Q, 85-Q, 228-Q, 469-Q$ and $558-Q$ are permanent-magnet electro-dynamics without field coils. In the $469-Q$ and $558-Q$ only three prongs on the four-prong plug are used.
tType 324 speaker has a hum-bucking coil connected in series with the voice coil.
ttIn type 320 and 338 speakets, only four prongs on the five-orong plug are used.

BRANDES PRODUCTS CORP.

BRANDES PRODUCTS CORP.

CROSLEY RADIO CORP.

CROSLEY ROAMIO AUTOMOTIVE T.R.F. RECEIVER MODELS 90, 91 AND 92

(The T.R.F. series of Crosley Roamio sets; Radio Service Data Sheet No. 88 describes the superheterodyne series.)

Model 90

Average operating potentials are given below. These values are measured with the re producer connected and the tubes in place. For plate and grid voltages, use a high-resistance meter; measure from tube element to negative filament

Tube	Fil	C.-G.	S.-G.	Plate
Type	Volts	Volts	Volts	Volts
V1	2.0	2.5	90	135
V2	2.0	2.5	90	135
V3	2.0	3.0	\ldots	22.5
V4	4.7	12	-	135
V5	4.7	12	.-	135

The A.V.C. potential is derived as the drop across R2. With increased signal, more current flows through the plate circuit of the combination detector and A.V.C. tube, V3, increasing the drop across R2 and thereby increasing the bias voltage applied to the control-grids of V 1 and V 2 . This results in a reduction of the R.F. amplification, and thus maintains constant the A.F. output determined by tbe setting of R1.
Battery D supplies plate potential for V3. The negative " B " and positive " C " lead returns to the center-tap of two 25 ohm resistors,
to secure the same plate potentials regardless
of whether the car-battery positive or negative terminal is grounded.

Model 9

Average operating potentials are given in the tabulation below. Measure, with a highresistance meter, to the negative flament contact.

Tube	Fil.	C.-G.	S.-G.	Plate
Type	Volts	Volts	Volts	Volts
V1	2.0	1.5	100	170
V2	2.0	1.5	100	170
V3	2.0	2.5	7.5	45
V4	4.7	10^{*}	\cdots	170
V5	4.7	10^{*}	\cdots	170

If a signal of sufficient strength is received to cause current to flow in the grid circuit of V3 (biased by R6), the resultant drop across R2 decreases the amplification of V1, V2. Resistors R3, R4, R5 are R.F. filters.

Manual volume control R1 determines the A.F. input to the control-grid of A.F. amplifier V4.

Model 92
Operating potentials appear in the table.

Tube	Fil	C.G.	S.-G.	Plate
Type	Volts	Volts	Volts	Volts
V1	5.9	3	75	170
V2	5.9	3	40	170
V3	5.9	3	40	45
V4	5.9	20	$\ldots-$	170
V5	4.7	40	$\ldots-$	170
V6	5.9	$\ldots-$		3

The circuit is adjusted for zero current flow in the circuit of A.V.C. tube V6, with normal signal input; at the same time resistor R 3 establishes the normal bias required by the control-grids of V1, V2. Now, an incoming signal of increased strength causes diode V6, in conjunction with load-resistor R2, to develop across $R 2$ an increased D.C. negative notential which reduces the emplification of V1 V2. Resistors R4, R5 are R.F. filters

The A.F. input to the first-A.F. tube, V4 is determined by the setting of the manual volume control, R1
Manual volume control resistor $R 1$ has a value of $0.3-\mathrm{meg}$. Since Crosley Service Bulletin No. A8 does not include the tube operating voltages for the rodel 92 , estimated values are given.
At the present time there are no Roamio models 93 or 94 receivers.

CROSLEY RADIO CORP.

CROSLEY ROAMIO AUTOMOTIVE SUPERHETERODYNE MODELS 95 AND 96

(The superheterodyne series of Crosley Roamio sets; Radio Service Data Sheet No. 87 describes the T.R.F. series.)

Model 95

Average operating potentials are given in the following tabulation. These figures are measured with the speaker connected; a highresistance meter will be required to obtain correct readings.

Tube	Fil.	C.-G.	S.-G.	Plate
Type	Volts	Volts	Volts	Volts
V1	5.9	8	75	170
V2	5.9	$*$	75	170
V3	5.9		$\ldots .$.	$\mathbf{1 7 0}$
V4	5.9	$\ldots \ldots$	\ldots	\ldots
V5	5.9	5.5	\ldots	85
V6	5.9	17	170	160

*A. V. C. only
The pole of the "A" battery which is not directly connected to the frame of the car connects through the insulated battery cable lead to the cable connector of the receiver, and thence to one pole of the power switch; this D. P.D.T. unit controls both the "A" and "B" circuits. After going through the switch, the "A" circuit branches, one branch going to the heaters (connected in parallel) and through them to the chassis, another going through the dial light to the chassis, and the third going through the speaker field, to the speaker cable shield, and then through the battery cable shield to the other side of the " A " battery which connects to the frame of the car.
Tube V1 incorporates the dual action of oscillator and first-detector. Tube V4 is connected as a diode and serves the dual functions of automatic volume control and A.V.C. The grid of the output pentode, V6, is con0.3 -meg. (in models using a type 38 pentode this resistor has a value of 0.5-meg.). The output volume is determined by the setting of the 3 -meg, poteni. smeter, R1.
The A.V.C. potential is developed across resistors R2, R3, which connect to the plate of the second-detector, V4. The maximum negative potential (the total drop across R2, R3) is applied to the control-grid of the pentode I.F. amplifier, V2, through filter resistor R4. A lower potential is obtained at the center-tap of resistors R2, R3, and this voltage is applied to
the control-grid of the screen-grid I.F. amplifier, V3, through filter resistor R5. Thus, resistors R2, R3 serve the dual functions of supplying A.V.C. potential, and at the same time acting as the load resistor combination across which is developed the A.F. potential which is applied to the $.03-\mathrm{mf}$. coupling condenser and thence to the combination gridleak and manual volume control potentiometer R1.
The two 8 mf . condensers are electrolytic units and are contained in one can.
units and are contained in one can.
To re-align the set, turn the station selector To re-align the set, turn the station selector
to 550 kc ., and adjust the service oscillator to to 550 kc ., and adjust the service oscillator to condenser of $0.1-\mathrm{mf}$., to the control-grid of V1 Ground the other side of the service oscillator, and do not remove the control-grid clip-wire (of the set) from V1. Next, adjust the I.F. trimming condensers of I.F.T.I for maximum reading, and then adjust the trimmers in shunt to the secondaries of I.F.T. 2 and I.F.T.3, respectively, for maximum outputmeter reading.
After this step has been completed, the antenna and oscillator circuits, respectively, may be aligned.
Poice Roamio model 951 is the same as the model 95, except for the coils which are designed for the police band.

Model 96
Following are the average operating potentials to be measured with a high-resistance meter. Fil. C.-G. S.-G. Plate
Tube Type Volts Volts Volts Volts $\begin{array}{lllll}\text { V1 } & 5.9 & 4 & 95 & 180 \\ \text { V2 } & 5.5 & 7 & 95 & 180 \\ \text { V3 } & 5.9 & 4 & 95\end{array}$

V3	5.9	4	95	180
V4	5.9	2	95	180
V5	5.9	6	9.	180
V6	5.9	14	180	80
			170	

The aligning procedure in connection with this receiver is the same as for the Model 95 chassis, except that the high side of the service oscillator connects through a condenser of $0.1-\mathrm{mf}$., not to the first tube in the set,

V1, but to the first-detector, V2, for making the I.F. adjustments. After setting the stationselector dial to 550 kc ., adjust the service oscillator to 181.5 kc ., and proceed as previously described.
Then, tune the service oscillator to $1,400 \mathrm{kc}$. set the station-selector dial to $1,400 \mathrm{kc}$. and connect the high side of the service oscillator, tenna lead of the receiver; the low side of the service oscillator connects to the chassis.
It is preferable to use a dummy antenna in making these adjustments. Align the IF and R.F. circuits for maximum reading on the out. put meter. The circuits of L1, L2 and L: should not be adjusted until the I.F. circuits have been aligned.
The action of the A.V.C. section of this reeiver model is a bit more complicated than that of the previously-described Roamio A.V.C. circuits. Consequently, the interested Service Man is referred to the September, 1932 issue of Radio-Craft, which contains a lengthy de scription of the diode-triode tube in the article; "Still More New Tubes" . fundamental data regarding A.V.C circuits in discussed at considerable discussed at considerable length in the article, Operation and Service of Automatic Volume Control Systems" (in the same issue)
The manual volume control resistor, R1, has a value of 3 megs.
Variation in tube current supplied by the automobile storage battery, due to fluctuations caused by the generator and load on the battery, is a cause of so-called "interference" in many automobile receivers. Although these Roamio models are designed to eliminate this effect as much as possible, in order to insure the best reception it may be advisable to pay particular attention to the connection of the yellow "A" lead, running it direct to the car battery rather than to other possible locations to the " A " supply.
Whether filter condensers will be required in shunt to the electric horn, electric windshield wiper, electric fan, etc., may be determined by shunting these units with a test condenser of about 2 mf .

CROSLEY RADIO CORP.

CROSLEY "CHIEF' I2-TUBE MODEL I32-I I2-TUBE SUPERHETERODYNE
 (Dual reproducers, class B push-push A.F. power output fed by a class A push-pull driver stage, meter tuning, A.V.C., tone control, static control.)

The Crosley Chief, 12-tube superheterodyne console model radio receiving set, is the most recent addition to the line. This receiver incorporates the model $132-1$ chassis. Although incorporating a large number of tubes, the power line current consumption is held to a minimum by use of the new tubes which consume much less current than the older types.

Resistors R1A, R1B, 1.5 megs. (per section); R2, 0.4-meg.; R3, 80,000 ohms; R4, 0.15 -meg. R5, R6, 60,000 ohms; R7, 2,000 ohms; R8, 1. meg.; R9, 7,000 ohms; R10, 40 ohms; R11, 750 ohms; R12, R13, R24, 0.5 -meg. ; R-14, R23 $0.3-\mathrm{meg}$ - ; R15, 450 ohms; R16, 3 megs.; R17, 30,000 ohms; R18, 20 ohms center-tapped; R19, 3,500 obms; R20, 6,000 ohms; R21, 10,000 ohms; R22, 5 megs.
Condensers C1 to C4, tuning units; C5 to C8, I. F. trimmers ; C9, C25, C26, .02-mf.; C10, C11, C13, C14, C16, C30, C31, C32, 0.1-mf.; C17, C15, 4 mf.; C18, 150 mmf.; C19, 100 mmf.; C20, C23, .006-mf.; C21, C22, C28, 8 mf.; C24, .05-mf.; C27, .003-mf.; C29, 12 mf .

Tube Type	Fil. Volts	Bias Volts	S.-G. Volts	Plate Volts
V1	2.4	0.5	60	200
V2	2.4	2.5	60	200
V3	2.4	13.5	-	170
V4	2.4	0.5	60	200
V5	2.4	8	165	220
V6	2.4	-	-	-
V7	5.6	23.5	220	200
V8	5.6	23.5	220	200
V9	5.6	28.5	-	405
V10	5.6	28.5	-	405
V11	2.4	7.5	-	70
V12	2.5	-	-	415

With a line potential of 117.5 V . the above figures may be taken as average readings; for " 220 V ." sets a line voltage of 235 is taken as standard. Bias (unless otherwise stated), screen-grid, and plate readings are taken between these tube contacts and the emitter; bias for V3, V5, V7 to V11, cathode to chassis.
Late chasses of this model have a 1,400 -ohm resistor shunted across the visual tuning meter Also, these later chasses may have two 1. meg. resistors (total) in the manual volume control circuit, connected from the moving arms to the ground ends of R1A and R1B.
The tuning meter of this receiver has a resistance of approximately 440 ohms and the deflection is approximately 10 ma .
The A. F. output of V6 actuates tube V11 which, in turn, controls tbe bias on the amplifier tubes for A.V.C. operation. By manual adjustment of $R 2$ the degree of background noise is controlled to suit individual preference of sensitivity.
Note that the transformer secondary supplying tubes V1, V2, V3 is bypassed by a dualsection condenser, C30-C31. Another unusual circuit arrangement is the use of a double choke coil arrangement comprising Ch1-Ch2. and field coils 1 and 2. The first two choke coils are connected in the positive high-voltage lead in the usual manner, while the second two chokes, the field coils of the dynamic reproducers, are connected as an "inductive voltage divider," one terminal of the two coils in series being connected to the positive output of the regular filter system, and the other end being grounded to the chassis; the cen-ter-tap of these field coils supplies voltage to the screen-grids of V1, V2, V4, and to the plate of V5.

The tone correction furnished by C25-C26 applies equally to V9 and V10, the center-tap of these two condensers being grounded to the chassis. If any portion of the tone control R3, C24, becomes grounded the A. F. portion of the receiver will become inoperative as the entire tone control operates at the potential of the plates of V7, V8
The manual volume control operates in the input circuit of the push-pull driver stage, V'r-V8. The two sections of this volume conrol, R1A, R1B, operate simultaneously as a deal unit.
The first A.F. stage, V7, V8, is driven by a so-called split-diode circuit furnishing A.F. veltage from both the cathode and plate circuits, which are out of phase (in push-pull relationship).

The input circuit of V1 is preceded by a band-selector which must be carefully aligned in order to maintain the required degree of selectivity at all points in the tuning band.
The A.V.C. action is obtained through the voltage drop across resistor $R 4$. There is an initial current flowing through this unit and the 5 meg . grid leak, R22, furnishing a normal bias for the R.F. and I.F. stages. The A.V.C. tube V11 is delayed by means of a positive potential on the cathode of about 60 V . When an R.F. signal of sufficient intensity is applied to make this A.V.C. tube (D.C. amplifier) draw plate current, its plate current also flows through R4 and furnishes an additional A V C bias.
The "static" control is also connected to change the current flowing through R4, thus changing the initial bias on the controlled tubes, so that the overall sensitivity of the set is reduced.

Schematic circuit of the Crosley "Chief" model 132-1, 12-tube superheterodyne. Note the unusual arrangement of the circuits of V7-V8, and also VII.

R.C.A. VICTOR R-27 AND PHILCO 53 ULTRA-MIDGET A.C.-D.C. RADIO RECEIVERS

R.C.A. Victor R-27 Universal

This small 'radit set carries the following specifications: Line voltage rating, 105 to 120 V., D.C., or 25 to 133 cycles A.C. Power consumption, 40 W . A feature of this set is the extremely wide tuning range of 540 to 1,700 kc. Operating voltages at maximum volume, on a 115 V. A.C. line (on D.C., slightly less) are as follows:

Tube	Fil.	C.-G.	S.-G.	Plate	Plate
Type	Volts	Volts	Volts	Volts	Ma.
1	6.0	3.0	105	105	7
2	6.0	0.75^{*}	11.0	$60 *$.025
3	6.0	11.0	100	95	5
4	6.0	$\ldots . .$.		115	15

*Impossible to measure on ordinary voltmeter. The left-hand knob is a combined volume control and power switch; the station selector is at the right. If the set does not work within a minute, reverse the position of the line plug in the socket. This particular type of set should be so positioned as to permit full ventilation at all times.

The most satisfactory length of aerial for this set is to be determined by individual trial. In general, a length of about 20 ft . should be quite sufficient: this length is the dimension of the lead which is supplied with the set. If the antenna lead is bunched, or coiled, too near the set, circuit oscillation may occur. A similar effect may be produced if the volume control is advanced too far. When tuned to a local station with the volume control fully advanced, a condition may be observed where a certain amount of counter-clockwise rotation of the control will improve the quality of reproduction and actually increase the volume. This condition is caused by overloading and may be corrected simply by setting the volume control below the readily-apparent critical point.

Philco 53 Universal Compact
Operating voltages at a line potential of 120 V., D.C., are given below :

Tube Fil. C.-G. S.-G. Cath Plate Type Volts Volts Volts Volts Volts

V1	*	8	93	$7-14$	95
V2	(3	34	$6-12$	14
V3	*	4	100	$3-26$	94
V4	$*$	-	-	$58-73$	10

*The total voltage applied to the filaments is 51 V .

All of these readings were taken from the underside of the chassis, using test prods and leads with a suitable high resistance meter the volume control is set at maximum and the station selector at 550 kc .
The following data concerning the operation of this set on 115 V . A.C. are furnished:

Tube	Fin.	C.-G.	S.G.	Cath.	Plate
Type	Volts	Volts	Volts	Volts	Volts
V1	$*$	7	94	18	95
V2	$*$	4	34	12	15
V3	$*$	4	102	10	94
V4	$*$			112	112

*The total voltage applied to the filaments is 49.9 V .

These readings are taken in the manner described for making D.C. tests.
To obtain maximum sensitivity through the use- of the 30 ft . of antenna wire furnished with the set, it will be necessary to adjust the antenna compensating condenser, the L.F. compensating condenser and the sensitivity condensar in condenser and the sensitivity the 30 in the following manner; unroll (do not ft . of antenna wire to its full length (do not connect it to another aerial or ground while the following adjustments are being made). Tune to a station near the H.F. end of the dial (between 1400 and 1500 kc .). With a fibre adjusting wrench, adjust the antenna condenser for maximum volume. (This condenser is the second one from the front control.) After this is completed, tune to a station near the L.F. end of the dial (as near 600 kc . as possible) and then adjust the L.F. condenser for maximum volume (looking at the back of the set, this is the unit at the extreme left) ; retune to the H.F station and do any necessary fine readjusting so a bring in the station with maximum volu

Now check the adjustment of the sensitivity condenser (at the immediate right of the L.F. condenser) with the receiver tuned to station near the H.F. end of the dial; turn this contlenser to the right as far as possibl rithout causing circuit oscillation or a squeal Repeat this adjustment on a station near th L.F. end of the dial; if circuit oscillation oc. curs, turn the condenser to the left until thi disappears.
At the rear of the chassis are four condenser controls, as follows (starting from the left): L.F. condenser; sensitivity; I.F. primary, 450 kc.; and X.F. secondary, 450 kc .
Of exceptional interest is the use of the new, type 77 tube, the externally-connected suppressor-grid 6.3 V. R.F. pentode. The type 12 Z 3 rectifier has a 12 V . filament. The sec-ond-detector, V2, is made slightly regenerative at the I.F. In order to secure adequate filtration on A.C. circuits, the single filterchoke has connected to it not only the usual input and output filter condensers, but also a shunt tuning condenser which, with the choke coil, forms a trap circuit. The chassis does not connect directly to the light line.
The filter condenser bank is color coded as follows: Black, common ; green, . 09 -mf.; white, $.25-\mathrm{mf}$; red, $75-\mathrm{mf}$. ; black and white, $0.2-\mathrm{mf}$. the common lead connects to the shield can only through a condenser of $.05-\mathrm{mf}$.
The fiber screw at the back of the chassis should be adjusted at the time of installation. Place the set in operation, tune in a station near the middle of the dial, and adjust this screw, which controls the regeneration condenser, C_{k} until, by turning clockwise, a swishing sound is heard where different stations are tuned in. Now turn the screw counter-clockwise until the swishing sound just ceases. Continue to turn in the same direction about one-quarter turn. When correctly adjusted the circuit will not break into oscillation at any point in the tuning range.
As indicated in the schematic circuit, several changes have been incorporated in models starting with run 5 .

I. F. $=450$ K.C. POWER CONSUMPTION AC. OR D.C., $45 W$. $2 \&$ SW. 1 ARE GANGED

- PHILCO MOOEL 53 UNIVERSAL CUMPACT~
(* EFFECTIVE With RUN No 5)

CANADIAN MARCONI CO.

MODELS 32-B, 33,33-AW, 34, 35, 36,\& 37

ALIGNMENT OF TRIMMING CONDENSERS

Before attempting to adjust the R.F. trimmers, be sure that the Intermediate Frequency trimmers are properly adjusted. The procedure is as follows:-
I.F. TRIMMERS:-(1) Connect the output meter to the voice coil terminals of the speaker.
(2) See that the receiver chassis is properly grounded.
(3) Remove the oscillator tube from the receiver.
(4) Connect the Test Oscillator to the grid of the 1 st detector tube and the chassis.
(5) Turn the volume control on full and reduce the output of the test oscillator to give a low reading on the output meter.
(6) Adjust the I.F. Trimmers in the following order:-
Models 32-B, 33, 33-AW and 34:-(a) 2nd Det. Grid.
(b) I.F. Plate.
(c) I.F. Grid.
(d) 1 st Det. Plate.

Models 35-36-37:--(a) 2nd I.F. Transformer, Secondary. (b) 1st I.F. Transformer, Secondary. (c) 1st I.F. Transformer, Primary. (d) Band pass coil. The position of these trimmers is shown on the data sheet for each receiver.

Model 33-AW 175 KC Plate Coil:-In addition to the regular I.F. Transformers the oscillator plate coil is tuned to 175 KC . After aligning the I.F. Transformers, connect the 175 KC Oscillator to "A" and "G," switch to the 125 meter band (Mauve) and adjust the S/W I.F. trimmer for maximum output.

See that the output of the Test Oscillator is kept as low as possible at all times, in order to avoid overloading any of the tubes or causing the Automatic Volume Control to function.
R.F. TRIMMERS:-With all tubes in place and the receiver grounded, connect the output meter as above and proceed as follows:-(1) Connect the Test Oscillator to the aerial and ground terminals. (2) Set the oscillator at $1,400 \mathrm{KC}$ and the dial of the receiver to the same frequency. (3) Reduce the output of the oscillator to give a low reading on the output meter with the volume control on full. (4) Adjust the R.F. trimmers in the following order:-(a) Oscillator, (b) 1st Detector, (c) R.F. Amplifier. Reduce the output of the Test Oscillator as the sensitivity of the receiver is increased. (5) Set Oscillator at 600 KC and tune the receiver to this frequency. (6) Adjust the Oscillator tracking condenser for maximum output while rocking the tuning condenser back and forth.

ALIGNMENT OF SHORT WAVE TRIMMERS

The "All Wave" A.C. Models may be tuned to any frequency from $1,500 \mathrm{KC}$ to $26,000 \mathrm{KC}$, as well as the broadcast band. Incoming signals of these frequencies are heterodyned by the S / W Oscillator to produce a resultant frequency of $1,520 \mathrm{KC}$ which is applied to the grid of the R.F. amplifier. In order that the circuits of the broadcast receiver may be at maximum efficiency at this frequency ($1,520 \mathrm{KC}$), adjustable condensers are substituted for the three sections of the gang tuning condenser. These condensers are located alongside of the first three sections of the tuning condenser and may be adjusted with a long screw-driver through holes in the top of the condenser shield. The procedure is as follows:-
1,520 KC TRIMMERS:-(1) Turn the selector switch to the $60-200$ meter (Green) band. See that the receiver is grounded. (2) Remove the S / W Oscillator tube and connect the Test Oscillator to the grid of the S/W Detector and to chassis. (3) Set the Test Oscillator at exactly $1,520 \mathrm{KC}$ and adjust the trimmers in the following order:-(a) Oscillator, (b) 1st Det., (c) R.F. Amplifier. If the Test Oscillator will not tune to $1,520 \mathrm{KC}$, set it at exactly 760 KC , the second harmonic of this frequency is $1,520 \mathrm{KC}$.
S/W TRACKING CONDENSERS:-The S/W Oscillator circuit is provided with three adjustable tracking condensers, one for each of the three short wave bands. We do not advise attempting to adjust these unless a calibrated S / W Oscillator is available. The procedure is similar to adjusting the 600 KC Tracking condenser. With the S/W Test Oscillator connected to "A" and "G," adjust for maximum output while rocking the tuning condenser back and forth at the following frequencies:-

Band Alignment Frequency Dial Reading
(1) S. S/W Red
(2) M. S/W Yellow
(3) L. S/W Green
$12,000 \mathrm{KC}$
$4,500 \mathrm{KC}$
1,650 KC

Trimmer

Left
Center
Right

Trimmer position shown when looking at back of chassis.

CANADIAN MARCONI CO.

MODELS $32-\mathrm{B}, 33,33 \mathrm{AW}, 34,35,36 \& 37$

It is absolutely essential that both the receiver and the \mathbf{S} / W Test Oscillator be properly grounded.
If no short wave oscillator is available it may be possible to pick up a harmonic of a broadcast band oscillator. At all times the signal should be kept as low as possible to avoid picking up the image frequency.

In order to obtain a sufficiently weak signal it may be necessary to remove the Oscillator to some distance from the receiver.

ACTION OF DIODE (2nd) DETECTOR-MODELS 35, 36 and 37

Half wave rectification of the signal takes place in this tube between the cathode and each of the three other elements (counting the screen and suppressor grids as one). This pulsating direct current flows from each of these elements to the cathode. The rectified signal current flowing to the grid is applied to the grid of the 1st Audio tube through condenser C28. The rectified current flowing to the plate produces a voltage drop in resistor R17 which increases the bias on the R.F. Amplifier tube and automatically controls the sensitivity of the receiver The current flowing to the screen and suppressor grids is used for Automatic Silent Tuning.

In Model 34 a separate tube is used for automatic volume control. The grid of this tube is coupled to the 2nd Detector grid circuit by a small condenser (C17). The incoming signal causes the tube to draw more or less plate current which causes a voltage drop in resistor R14 which varies the bias on the grids of the R.F. and I.F. amplifiers, thus controlling the sensitivity of the receiver.
AUTOMATIC SILENT TUNING:-MODELS 35-37:-Silencing the receiver is accomplished by making the bias on the grid of the 1st Audio tube sufficiently negative to prevent this tube from operating. The action is as follows:-The grid of the Suppressor tube is at the same potential as the cathode due to the fact that it is connected to it through resistors R18 and R19, consequently, current flows to the plate through resistor R22. The voltage drop across this resistor produces the extra bias necessary to prevent the lst Audio tube functioning and no sound is heard from the speaker. When a carrier wave is tuned in, current flows to the screen and suppressor grids of the detector through R19. The voltage drop across this resistor makes the grid of the Suppressor tube negative with respect to its cathode and prevents plate current from flowing, this in turn allows the bias on the 1st Audio grid to drop to normal and allows this tube to amplify the signal applied to its grid by the detector.

A three position switch is provided for controlling the action of this tube. In the FULL position the tube is actuated only by fairly powerful stations. In the MEDIUM position, stations of moderate power can be received. This position of the switch should be used wherever the noise level is sufficiently low to permit satisfactory reception.

Throwing the switch to the OFF position makes the grid of the Suppressor tube sufficiently negative to prevent plate current flowing at any time, consequently the bias on the 1st Audio tube remains normal and the receiver is not silenced.
SPEAKERS:-A.C. MODELS. It is not feasible to replace the cone in these speakers, consequently, the entire head of the speaker must be replaced. In Model 37, twin speakers are used. These speakers are identical electrically but differ slightly in the construction of the cone and are therefore not interchangeable. The speakers are distinguished by marking one type with a Red spot.

In ordering speakers or cones, be sure to specify which type is required.
CAUTION:-Care should be taken not to turn on the Power switch (left hand knob) immediately after turning it off. Allow about twenty seconds for the tubes to cool off before turning the receiver on again in order to avoid possible damage to the Rectifier Tube.

TUBE BASES (BOTTOM VIEW)

SOCKETS (TOP VIEW)

CANADIAN MARCONI CO.

32-B SET

CONDENSERS FOR MODEL 32-B

Ref. No.	Part No.		Capac	city	Type	$\begin{aligned} & \text { List } \end{aligned}$
C1	1001	05	Mf		6317	1.20
C2	1002	18-325	Mmf	3 gang	7501	9.60
C3		4-50		Trimmer for C2		
C4	1003	. 75	Mf	Bypass block...	7525	10.00
C5	1003	1		By ${ }^{\text {c }}$		10.00
C8	1003	25	"	" " ..	${ }^{6}$	10.00
C9	1004	15-75	Mmf	Ose. Tracking	7062	1.20
C10	1005	670	"		6320	. 90
C13	1003	8.	Mf	Bypass block	7525	10.00
C15	1006	$\left\{\begin{array}{c}15-75 \\ 140-220\end{array}\right.$	Mmf	I. F. Trimmers.	7062	1.20
C16	1003	. 05	Mf	Bypass block.	7525	10.00
$\left.{ }_{\mathbf{C 1 7}}^{\mathrm{C} 18}\right\}$	1006	$\left\{\begin{array}{c}140-220 \\ 15-75\end{array}\right.$	$\underset{4}{\mathrm{Mmf}}\}$	I. F. Trimmers.	7062	1.20
C19	1007	- 400	"		3085	. 75
C20	1008	005	Mf		2962	1.25
C21	1009	1200	Mmf		2012	. 85
C22	1009	1200	4		2012	. 85
C23	1008	. 005	Mf		2962	1.25
C24	1003	. 025	"	Bypass block	7525	10.00
C25	1003	. 5	"	" 6	7525	10.00
C26	1003	. 025	"	" ${ }^{6}$	،	10.00
C 27	1003	. 005	"	" \%	"	10.00
C28	1003	. 005	"	"	"	10.00
C29	1010	2400	Mmf		2749	1.80

RESISTORS FOR MODEL 32-B

Ref.	Part No.	Resistance				
R1	1011	500,000	Ohms	$1 / 4$	Watt	
R2	1012	8		"	Wire	

Type No.	$\underset{\text { Price }}{\text { List }}$
S-1067	. 60
3043	. 80
3383	. 70
3382	. 70
6244	. 60
6241	. 60
6245	. 60
3033	. 60
"	. 60
6242	. 60
3358	. 70
	. 60
S-1116	. 60
S-1067	. 60
"	. 60
"	. 60
3381	. 60
6328	2.75
6329	3.50

VOLTAGE READINGS-MODEL 32-B

Radiotron No.	Control Grid to Filament Volts	Screen Grid to Filament Volts.	Plate to Filament	Screen Current	Plate Current	Filament
1. R.F.	0.2				M.A.	Volts
2. 1st Detector.	0.5	65	157	1.0	3.0	2.0
3. Oscillator...	1.0	65	155	0.1	0.2 4.0	2.0
4. I.F. $\ldots . .$.	0.5	65	157	1.0	4.0 3.0	2.0 2.0
5. 2nd Detector	2.0	155	15 0	4.0	3.0 0	2.0 2.0
7. Power.	1.0 14.0	..	155	. .	2.5	2.0
8. Power.	14.0		155		1.2	2.0 2.0

CANADIAN MARCONI CO.

MODEL 33

TRIMMER ADJUSTMENTS—MODEL 33
I.F.-175 K.C. adjust in order-No. 1, No. 2, No. 3, No. 4 R.F.-Trim at 1,400 K.C. in order-Osc., Det., R.F.

Oscillator Tracking Condenser-Adjust at 600 K.C.

CONDENSERS FOR MODEL 33

Ref.	Part No.		Cap	acity	Type	List Price	Ref.	Part		Resi	tance	Type	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
C1	1101	17-360	Mmf	3 gang	32948	5.00	R1	1116	. 525	Ohm		36112	. 50
C2				Trimmer for C1			R2	1117	1,000	"	$1 / 2$ Watt		. 50
C3	1102	002950	Mmf	Osc. Tracking.	36078	.75	R3	1118	500,000	"	1/2 ${ }^{1 / 2}$	\cdots	. 50
${ }_{\text {C4 }} \mathrm{C}$	1103	. 002	Mf	Mica..... . .		.50 .50	R4	1119	500,000 10,000	"	1/2 ${ }^{1 / 2}$	\cdots	. 50
C6	1105	. 001	"	"		. 50	R5	1189	50,000	"	Vol. Control	\cdots	1.20
C8	1106	. 00025	/6	"		. 50	R6	1120	450,000	6	$1 / 2 \mathrm{Watt}$	\ldots	. 50
C88	1107	. 02	" ${ }^{\prime \prime}$	Bypass block	36109	.50 3.50	R7	1118	500,000	"	$1 / 2$ "	.	. 50
C10	1108	$1{ }^{3}$	"	Bypass bla	36109	3.50	R8	1118	500,000	"	$1 / 2{ }^{1}$. 50
C11	1109	1	"	200 v . Tubular		. 50	R9	1121	350,000	"	1/2	\cdots	. 50
C12 C 15	1110	. 1002	"	Mica....		. 50	R10	1122	600,000	${ }^{\prime \prime}$	1/2	\cdots	. 50
C16	1108	. 3	"	Bypass block	36109	3.50	R11	1124	7,700	"	1/2		. 50
C17	1108	. 3	"	" "	36109	3.50	R12	1125	650	"	1/2		. 50
C18	1108	${ }^{1} .04$	"	200v. Tubular	36109	3.50	R13	1126	1,300	"	1/2	.	. 50
C19	1114	. 04	,	200v. Tubular		. 50	R14	1127	34,000	"	$1 / 2$ "		. 50
NOTE:-Bypass bloc C10, C16 and C17.			Par	No. 1108 contai	C9,		R15	1128	16,500	/	1/2 "	\ldots	. 50
			R17				1188	250,000	"	Tone Control	...	1.20	

CANADIAN MARCONI CO.

MODEL 33-AW

TRIMMER ADJUSTMENTS-MODEL 33-AW

I.F.-175 K.C. adjust in order-No. 1, No. 2, No. 3, No. 4.
R.F. Trim at 1,400 K.C. in order-Osc., Det., R.F.
Oscillator Tracking Condenser-Adjust at 600 K.C.
S/W I.F. Trimmer-Swith to 125 meter band, connect 175 K.C.
oscillator to A. \& G., adjust for maximum output.

CONDENSERS FOR MODEL 33-AW

CANADIAN MARCONI CO.

MODEL 34

R.F.-Trim at 1,400 K.C. in order-Osc., Det., and R.F.

Oscillator Tracking Condenser-Adjust at 600 K.C.

CONDENSERS FOR MODEL 34 RECEIVER

RESISTORS FOR MODEL 34 RECEIVER

Ref.	Part No.		Resistance			Type No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
R1	1318	16,000	Ohms		Watt		. 75
R2	1319	25,000	"	$1 / 2$	"		. 50
R3	1320	50,000	"	1/2	"		. 50
R4	1321	10,000	"	1/2	"		. 50
R5	1320	50,000	"	1/2	،		. 50
R6	1322	380,000	"	1/2	"		. 50
R7	1323	100,000	\%	1/2	"		. 50
R8	1324	750,000	"	1/2	6		. 50
R9	1325	15,000	18	1	"		. 50
R10	1326	2,500	،	1/2	6		. 50
R11	1327	40,000	"	$1 / 2$	"		. 50
R12	1328	300	،	1/2	"		. 50
R13	1390	100,000	"	Ton	Control.	35926	1.75
R14	1329	1 Meg .	"	1/2	Watt.		. 50
R15	1391	800,000	"	Vol	ume Control.	'35927	1.20
R16	1330	525,000	"		Watt.		. 50
R17	1323	100,000	"	1/2	"		. 50
R18	1323	100,000	"	1/2	4		. 50
R19	1331	2 Meg .	"	$1 / 2$	${ }^{6}$. 50
R20	1329	1 Meg .	"	$1 / 2$	"		. 50
R21	1332	200,000	"	$1 / 2$	"		. 50
R22	1326	2,500	"	1/2	، ${ }^{\text {a }}$. ${ }^{\text {a }}$. 50
R23	1333	20	"	Cen	ter Tapped.		. 50
R24	1334	6	"	s	"		. 50

CANADIAN MARCONI CO.

SERVICE DATA-MODELS 35, 36-37

VOLTAGE READINGS-MODELS 35, 36-37
 Grid P1. Scr. Sup. Cath. Htr
B.C.-R.F.

1st Det.
B.C. Osc
B.C.

Diode
Suppressor
1st. A.F.
FModels $\quad{ }_{36-37}^{130}$ only.

VOLTAGES
to Cathode or Fil.
Grid PI. Scr. Sup. S/W R.F. $\quad \begin{array}{lllll}5 & 230 & 30 & 0\end{array}$ S/W Osc. 25 $\begin{array}{llll} & & \\ \text { Oriver } & 18 & 230 & 225\end{array}$ $\begin{array}{llll}\text { Driver } & 18 & 230 & 225 \\ \text { Power } & 0 & 380 & 0\end{array}$ $\begin{array}{lcc}25 & \text { Rewer. } & \therefore \quad \\ & \mathbf{4 2 0}\end{array}$

TRIMMER ADJUSTMENTS-MODELS 35, 36-37
I.F.- 175 K.C. Adjust in order-No. 1, No. 2, No. 3, No. 4. R.F.-Trim at 1400 K.C. in order-Osc., Det., and R.F. Oscillator Tracking Condenser-Adjust at $600 \mathrm{~K} . \mathrm{C}$.
(MODELS 36-37 ONLY)
S/W I.F.- 1520 K.C. Adjust in order-No. 1, No. 2, No. 3. S/W. Oscillator Tracking Condensers. Adjust at following frequencies-(1) Red Band-12,000 K.C. (Approx. 81° on dial) (2) Yellow band-4,500 F.C.(Approx. 93° on dial) (3) Green Band-1,650 K.C. (Appros: 90° on dial).

CANADIAN MARCONI CO.

MODEL 37
Model 36 is identical except for output transformer and speaker connections which are as in Model 35
CONTINUITY TESTS-MODELS 35, 36-37

CANADIAN MARCONI CO.

CONDENSERS FOR MODELS 35, 36-37

Bypass block, Part No. 1413, contains condensers C18, C31, C35. *Models 36, 37 only. \dagger Model 35 only.

RESISTORS FOR MODELS 35, 36-37

FADA RADIO \& ELECTRIC CORP.

FADA 103 FADALETTE, STEWART-WARNER SERIES 108, AND DE WALD 54 DYNETTE SETS

Fada 103 Fadalette

A tabulation of voltages in this set on D.C.: Tube Fil. C:-G. S.-G. Plate Plate

Type	Volts	Volts	Volts	Volts	Ma.
V1	6.3	2.5	97.5	97.5	4.5
V2	6.3	\ldots.	7.5	$\ldots .$.	\ldots.
V3	6.3	7.5	92.5	95.5	4.8

Tube Fil. C.-G. S.-G. Plate Plate

Type	Volts	Volts	Volts	Volts	Ma.
V1	6.3	2.6	110	110	6

V 2	6.3	\ldots	9	\ldots	\ldots
V 3	6.3	9	104	102	7

The D.C. and A.C. readings are for a 110 V . line. Bias readings are taken across respective bias resistors. The D.C. input is 34 W., and the A.C., 36 W
Stewart-Warner Companion Chassis Series 108 and 108-X Models 10 to 20
With the volume control tuned full on, the
following approximate voltages should be read to the frame of unit \mathbf{C}. (using a high resistance voltmeter).

Tube	Fil.	Cath.	S.G.	Plate
Type	Volts	Volts	Volts	Volts

These figures are for a 115 v., A.C. line; on D.C., the values will be slightly lower.
Circuit oscillation may be due to the an tenna being too close to the set; oscillation at low signal volume with maximum set sen sitivity is normal. The power cord is naturally warm. Do nót force V4 into its socket. This set is designed to be operated on $110,32,12$, or 6 V . current-supply systems.

Pierce-Airo De Wald Model 54 Dynette The following tabulation of operating voltages is furnished by the manufacturer:

Tube	Fil.	C.-G.	S.-G.	Plate	Plate
Type	Volts	Volts	Volts	Volts	Ma.
V1	6.3	2.15	103	103	2
V2	6.3	3	9	39	.1
V3	6.3	9	103	98	10
V4, V5	6.3	$\ldots .$.	\ldots.	\ldots.	15

By means of suitable line resistors, or adapters, this set may be operated on light-line or battery power.

All sets of the "universal current" type now on the market require that the Service Man check the position of the power plug in it socket to determine whether it is correctly poled. It is seldom that the chassis frame connects directly to the power line. Circuit os cillation at the hiph-sensitivits setting of the volume control is normal in many models. The results obtained with ultra-midxet sets will greatly depend upon local reception conditions.

- CHASSIS STEWART-WARNER CHASSIS SERES 108 ANO 10B-X, MODELS 10 TO 20 (INCLUSIVE)~

DE FOREST CROSLEY, Ltd.

902 A-B-F

DE FOREST CROSLEY, Ltd.

DATA ON THE TYPE 902 CHASSIS

INTRODUCTION

Type 902 is a ten tube chassis of the superheterodyne type incorporating the following features:
(1) Automatic volume control.
(2) Automatic silencer.
(3) Visual tuning indicator.
(4) Extended frequency range of 1,500 to 520 kcs .
(5) Dual speakers.
(6) Dual pentode output.
(7) Converter " B " terminal.
This chassis is made in three types, viz.: 902-A, $902-\mathrm{B}$ and $902-\mathrm{F}$, corresponding to 25 cycle, 60 cycle, and universal consoles. The differences in these three chassis are caused mainly by the difference in supply frequency and are three in number: (1) power transformer; (2) value of condenser C22 and (3) silencer circuit. These differences will be discussed later in the text.

In the paragraphs that follow circuit elements will be designated as in the circuit diagrams of illustrations 3,4 and 5 , and to intelligently read the following dis-cussion-frequent reference to these circuit diagrams will be necessary.

ANTENNA STAGE

The incoming signal is applied to the grid of the first tube through a tuned radio frequency coupling transformer T1, having uniform gain throughout the broadcast band. The primary coil of this transformer is mounted inside the secondary coil at its low potential end and terminates in the antenna and ground lead wires coded yellow and black respectively. This primary is coupled to the secondary both inductively and capacitively. The secondary of this transformer is tuned by section of the variable tuning (gang) condenser C 2 .

Transformer T 1 is so designed as to maintain alignment with the radio frequency coupling transformer T2 and oscillator coil T3 with any reasonable value of antenna capacity. In this connection it may be pointed out that most shielded lcud-in installations do not constitute a reasonable antenna capacity, the capacity usually being sufficient to almost constitute a primary short circuit and seriously impairing alignment, unless a condenser of .0002 to .0005 mfd . is inserted in series with the antenna lead at the receiver end. The resistance R1 of 10,000 ohms shunting. primary of T1 is for the purpose of giving improved alignment and is of particular value with low capacity antennae.

RADIO FREQUENCY AMPLIFICATION

A single stage of tuned radio frequency amplification employing a type 58 R.F. pentode is used preceding the first detector. The input circuit to this tube consists of the secondary of transformer T1, described
in preceding paragraph, and condenser C 1 which completes the radio frequency path to ground (chassis). The primary of transformer T2 is connected in the plate circuit of this tube and thus couples the output to the grid circuit of the first detector.

Transformer T2 is similar to transformer T1, being of the uniform gain type with primary both inductively and capacitively coupled to the secondary. A glance at the circuit diagram will show that the primary has two sections, one section of which consists of an open ended winding. This winding, over the lower portion of the secondary, provides capacitive coupling between primary and secondary. The other (main) section of the primary is mounted inside the secondary, and also at the low end. While this latter section of the primary has been called the main section, it is only because through it the plate voltage is supplied to the tube. Both sections are essential to satisfactory transformer characteristics. The secondary of this transformer is tuned by a section of the gang condenser C2. It will be noticed that the grid of the first detector tube is connected to a tap in the secondary of transformer T2 rather than to its high potential end. While this results in somewhat lower gain in this stage than would otherwise be obtainable, it gives improved selectivity 350 kilocycles "off resonance" and, therefore, greatly increased image suppression over that which would be possible under alternative of connecting the control grid to the high potential end of transformer T2 secondary.

Adequate by-passing of the radio frequency energy in cathode, screen and plate circuits of the R.F. amplifier is provided by the condensers C3, C32 and C30 respectively. These condensers also provide by-passing for the first detector and I.F. amplifier. The R.F. amplifier tube (type 58) in common with I.F. amplifier tube, (type 58) obtains its initial bias by self bias through resistor R3 in series from their connected cathodes to ground.

FIRST DETECTOR

In the first detector stage the incoming signal is heterodyned by a locally generated voltage, 175 kilocycles higher in frequency than signal frequency, to produce a new or intermediate frequency of 175 kilocycles. The first detector tube in this set is a type 224 A . The input to this tube is obtained from transformer T2, as described in preceding section "Radio Frequency Amplification", condenser C4 providing the radio frequency path to ground. The heterodyne voltage, referred to previously, is introduced into the cathode circuit of the first detector tube by that winding of the oscillator coil T3 (pick up coil) which is connected between cathode of the first detector tube and the junction of resistor R9 and condenser C6.

The first detector tube obtains its initial bias voltage by self bias from resistor R9 connected from the "pick up" coil (referred to above) to ground. The radio frequency and intermediate frequency bypassing for this resistor, R9, is provided by the con-

DE FOREST CROSLEY, Ltd.

Data on the Type 902 Chassis-Continued

denser C6. Screen grid by-passing is provided by condenser C32 and plate circuit by-passing by condenser C30.

OSCILLATOR

The locally generated heterodyning voltage, mentioned under section "First Detector", is obtained from a vacuum tube oscillator utilizing a 227 A tube. Coil T3 is termed the oscillator coil and in conjunction with C24 provides the necessary coupling between plate and grid circuits of the tube to produce sustained oscillations of the frequency to which the grid circuit of the tube is tuned. The "pick up" coil, connected in cathode circuit of the first detector tube, is coupled to coil T3, connected in grid and plate circuits of the oscillator tube. Thus a voltage is induced in the "pick up" coil and through it fed into the cathode circuit of the first detector tube.
The constants in this oscillator circuit are so proportioned, that the oscillator voltage introduced into the first detector circuit, is practically constant throughout the broadcast band. Coil T3 consists of tapped solenoid coil with the "pick up" coil wound over it at the plate end. The grid circuit of the tube consists of a section of gang condenser C2, C24 and portion of coil T3. The plate circuit of the tube consists of the condenser C5, C24 and portion of coil T3. Thus the grid and plate circuits are coupled inductively by coil T3 and capacitively through the common condenser C24. The inductive coupling is most effective at the high frequency end of the broadcast range, and the capacitive coupling at the low end so that throughout the tuning range, the coupling and, therefore, the oscillator output is uniform.

The tuned portion of coil T3 is that portion connected between grid of oscillator tube and condenser C24, and is tuned by a section of gang condenser C2 in series with C24. The cathode of the oscillator tube is grounded, the tube being grid leak biased by resistor R29. Thus condenser C24 serves a triple purpose.
(1) By-passing resistor R29.
(2) Providing coupling between grid and plate circuits.
(3) In series with section of gang condenser C2 and being variable is adjusted to maintain oscillator frequency 175 kilocycles above signal frequency.
The 227A oscillator tube receives its plate voltage through resistor R 30 which is sufficiently high in value to serve as a radio frequency filter increasing oscillator efficiency and preventing undesirable coupling between oscillator and other parts of circuit.

INTERMEDIATE FREQUENCY AMPLIFICATION (175 kcs .)

The output of the 224 A first detector contains the resultant 175 kilocycle voltage produced through heterodyning of the incoming signals by the locally generated oscillator voltage. This component of the
output is retained by means of an intermediate frequency transformer T4 which is tuned to 175 kilocycles. The primary is connected in the plate circuit of the first detector and is tuned to 175 kilocycles by condenser C 7 . The secondary of this transformer T4 is also tuned to 175 kilocycles by condenser C8. Amplification at 175 kilocycles is accomplished by means of a type 58 R.F. pentode. The input circuit of this tube consists of the secondary of transformer T4 and condenser C 9 which provides the intermediate frequency path to ground. In the plate circuit of this tube is the primary of T5 and this provides the coupling to the diode second detector. Primary and secondary of T5 are both tuned to 175 kilocycles by means of condensers C10 and 11 respectively.

As mentioned under section "Radio Frequency Amplification", the intermediate frequency amplifier tube obtains its initial bias by the voltage drop across R3. The associate by-pass in this case being C3. Adequate by-passing of screen and plate circuits is provided by C32 and 30 respectively.

SECOND DETECTOR (Diode)

A type 227A tube with plate and grid connected together is used as a diode second detector providing linear detection over a wide range of voltages. The cathode of this tube is connected to junction of R7 and 8 , while the grid and plate are connected to the high potential end of the secondary of transformer T5.
The useful component voltages of the diode output are obtained: (1) from the voltage drop across resistors R.5, 6, 7 and 33; (2) condensers C14, 15 and resistor R10. These useful components are: (1) d.c. voltage which is used for automatic volume control and silencer purposes; and (2) audio frequency voltage which is retained and amplified in the succeeding amplifier stages. There is a third component of the diode output consisting of current at a frequency of 175 kilocycles or its harmonics. This output is undesirable and is rejected by filters comprising condensers C12, 13, resistors R5, 33 and the choke L1. Good filtering at this point is necessary to ensure stability and to minimize the beats which might occur at harmonics of the intermediate frequency, when the radio frequency component of the second detector output is permitted to couple back into the radio frequency circuits of the receiver.
It may appear that this diode circuit is unduly complicated, but these apparent complications are occasioned by the fact that the cathode of the first audio amplifier tube is not at ground potential. To avoid degeneration, the cathode of the diode must be at the same audio frequency potential as the cathode of the audio frequency amplifier tube. This has been very closely approached by making the direct audio frequency path from diode cathode to ground high by means of resistor R8, while the audio frequency path to the cathode of first audio tube has been made relatively low by means of condenser C15.

DE FOREST CROSLEY, Ltd.

OBSERVED VOLTAGE AND CURRENT READINGS*
(Types 902-A, 902-B and 902-F Chassis)
58.R.F. AMPLIFIER

Heater Volts	(Ef)
Plate Volts	(Ep)
Plate Current	(Ip)
Screen Grid Volts	(Esg)
Screen Grid Current	(Isg)
Control Grid Volts	(Ecg)
Suppressor Grid Volts	(Esug)
Cathode Volts	(Ek)

22.4 DETECTOR (FIRST)

Heater Volts
Plate Volts
Plate Current
Screen Grid Volts
Screen Grid Current
Control Grid Volts
Cathode Volts
58 I.F. AMPLIFIER
Heater Volts
Plate Volts
Plate Current
Screen Grid Volts
Screen Grid Current
Control Grid Volts
Suppressor Grid.Volts
Cathode Volts
227 DIODE DETECTOR (SECOND)
Heater Volts
(Only voltage which can be measured.)
224A or 57 SILENCER

Heater Volts	(Ef)
Plate Volts	(Ep)
Plate Current	(Ip)
Screen Grid Volts	(Esg)
Screen Grid Current	(Isg)
Control Grid Volts	(Ecg)
Cathode Volts	(Ek)

224A A.F. AMPLIFIER

Heater Volts	(Ef)
Plate Volts	(Ep)
Plate Current	(Ip)
Screen Grid Volts	(Esg)
Screen Grid Current	(Isg)
Control Grid Volts	(Ecg)
Cathode Volts	(Ek)

247 OUTPUT AMPLIFIER
Filament Volts
Plate Volts
Plate Current
Screen Volts
Screen Current
Grid Volts
227 ASCILLATOR
Heater Volts
Plate Volts
Plate Current
Grid Volts
Cathode Volts
(Ef)
(Ep)
(Ip)
(Esg)
(Isg)
(Ecg)
$(\mathbf{E k})$
(Ef)
(Ep)
(Ip)
(Esg)
(Isg)
(Ecg)
(Esug)
(Ek)
(Ef)
(Ep)
(Ip)
(Esg)
(Isg)
(Ecg)
(Ef)
(Ep)
(Ip)
(Eg)
(Ek) Ef)
(p)
pg)
Ek)

Ef)
Ep)
(Esg) (Isg)
(Esug)
(Ek)
(Ef)
(Ep)
(Esg)
(Isg)
(Ek)
(Ef)
(Ep)
(Esg)
(Ecg)
(Ek)
(Ef)
)

Ef)
)
(a)
(a)
(a)
(a)
(a) \quad Not over $1 / 3$ of Ip.
(a) (b) 2.5-3.
(a) (b) 2.5-3
(a) 2.5-3
(a)
(a) (b)
(a)
(a)

(a)		2.4 a.c.
(a)		Indication only
(f)		0
(a)	(e)	$5.5-7.5$
(a)		0
(a)		$.4-.5$
(a)	(e)	$0-3.0$
(a)		2.4 a.c.
(a)		$140-150$
(a)		$.75-.85$ mils
(a)		$40-50$
(a)		Not over $1 / 3$ of Ip.
(a)	(c)	Indication only.
(a)		$12-14$

(a)		2.4 a.c.
(a)		$215-225$
(a)		$22-30$ mils
(a)		$240-250$
(a)		$5-7$ mils
(a)	(d)	Indication only
(a)		2.4 a.c.
(a)		$40-50$
(a)		$2.5-3$ mils
(a)	(c)	Indication only
(a)		0

DE FOREST CROSLEY, Ltd.

280 RECTIFIEK

Filament Volts	(Ef)
Plate Volts	(Ep
Plate Current	(Ip)

(Ef)
(Ep
(Ip)
(a)

IN
120 volts, 25 cycles ($902-\mathrm{A}-\mathrm{F}$)
120 volts, 60 cycles ($902-\mathrm{B}$)
120 volts 60 cycles ($902-\mathrm{F}$)

108 watts
105 watts
102 watts
${ }^{*}$ IMPORTAST: The observed values in this table are for reference only and are subject to considerable variation because of tube and primary voltage variation. It is impossible to obtain reasonable readings at certain sockets because of extremely high values of resistances across which measurements must be made. Under such conditions plate current readings may be used as some indication of proper voltage values being present.

Refer to the following table when taking readings and set the silencer control for minimum effect. The volume control may be adjusted to "full on" position.

Use only a high resistance voltmeter for direct current readings. (1,000 ohms per volt or better).
All measurements should be taken at 120 volts line.
(a) Read with tube in analyzer and analyzer adapter in chassis tube socket.
(b) Read as positive (+) cathode volts.
(c) Value of resistance in circuit will not allow reading at socket. Use plate current as indication of bias (Control grid voltage.)
(d) Actually 16.5 volts. Value of resistance in circuit will not allow reading at socket. Use plate current as indication of bias. (Control grid voltage).
(e) Varies with setting of silencer control (R25).
(f) Actually 6-7 microamperes. Value too low to read on analyzer.
(g) Plate to plate of 280 socket, tube in position and under load.
(h) 40 to 50 mils per plate, making total of $90-100$ mils.

ALIGNMENT

It is essential, of course, in aligning the various chassis to have available a calibrated service oscillator capable of producing a signal at points throughout the broadcast band as well as at 175 kilocycles, which is the frequency of the intermediate frequency stages.

The following is the recommended method of making alignment adjustments on the type 902 chassis and should be closely adhered to, to avoid the probability of mis-alignment.
(1) Connect the output meter across the voice coil terminals of the speaker. These terminate at two lugs on the speaker frame to which the chassis leads are attached. See symbol "Y" in Illustration 1.
(2) Connect oscillator output lead to control grid cap of first detector tube at point indicated by " X " in Illustration 1. Control grid lead should be removed. Connect shield of oscillator lead to chassis ground.
(3) Set receiver tuning at point near 550 kilocycles which is entirely free from interference or incoming signals.
(4) Place set in operation and set volume control at maximum. Adjust the silencer lever to full counterclockwise position (no silencer action).
(5) Adjust service oscillator to 175 kilocycles (exactly), and place in operation.
(6) Align adjusting sçews C11, C10, C8 and C7 in that order for maximum reading on output meter.*
(7) Transfer oscillator output lead to antenna wire of chassis.
(8) Reconnect grid clip to first detector tube cap.
(9) Adjust both receiver and oscillator in tune at 1400 kilocycles. If difficulty is encountered in securing sufficient attenuation with service oscillator output control directly connected to antenna lead, a 100,000 ohm resistance connected in series with antenna lead will reduce the signal sufficiently.
(10) Adjust oscillator trimming condenser indicated by symbol " C " in Illustration 1 or 2 . This condenser peaks at a point approximately three-quarters of minimum capacity setting, (i.e., the adjusting screw turned almost "full out").
(11) Align adjusting screws " B " and " A " in that order for maximum increase on output meter. " B " is the R.F. stage trimming or aligning condenser and " A " is a similar unit for adjusting the antenna stage.
(12) Adjust service oscillator and receiver in tune at 600 kilocycles. Adjust the padding condenser " D " (Illustration 1) for maximum indication on output meter.* The tuning condenser should be varied slightly while peaking this padding condenser "D." If the gang condenser is left stationary a false peak will be obtained and the receiver will be weak at or near 550 kilocycles.
*Always have service oscillator output at lowest possible value, which will give readable indication on output meter When aligning I. F. stages, if sufficient attenuation is not available on service oscillator output control, the volume control of the receiver may be reduced slightly. When aligning at broadcast frequencies, lack of sufficient attenuation in service oscillator output control can be overcome by inserting 100,000 ohm resistance in series between oscillator and antenna lead of receiver. As an alternative to this, the antenna lead of the receiver may be wound around the oscillator output lead instead of directly connected to it, thus giving a capacitive coupling.

DE FOREST CROSLEY, Ltd.

PARTS LIST

"MONTROSE" MODEL

TYPE 902-A CHASSIS (25 CYCLE)

Part
No. CoD́e
6120 HABIT
7166 ALERT 3954 BALLY 3954 BALLY 7370 ALLOY
7178 BAFFY 7214 BRAWN 7216 BREAK 6978 BRAZE
7213 BEGUN
6556 BEGET 220 BOSKY t221 BOSOM

7217 BATHE 228 BASTE 7225 BOLUS 7226 BOTCH 7309 BOUGH 7309 BOUGH 6941 BREAD 790 BAIZE 7174 BOSCH 7336 BLIND

7239 BRAXY 7229 BOUND 6850 BONNE 7182 BAHAR 121 BESOT 7179 BAIRN 7348 BETEL 6887 BANAL 7200 BERTH 6479 BOURN 6911 BELLY 7187 BOOTH 7188 BRASH 7142 BEAUT 7219 BLOAT

7191 BRASS
192 BRAVE
7194 BRANT
7189 BRAND 7196 BLISS 7145 BEDIN 6901 BLOOM 6902 BRACT 6909 BOXER 7198 BLOND
7304 BUTTE
7202 BRAIL 7203 BRAID 6916 BOVIN

7206 BRAIN
7207 BRAKE 6898 BOWIE
7208 BRACE
7209 BRAVO
3799 AMEER
7199 BOWER
7176 BAGGS
7092 BRAWL
7112 BABEL
7094 BABOO
7113 BACON
7297 BUNCO
7162 BREAM
7157 BREED

DESCRIPTION
Bracket, dial light
Bulb, tuning indicator W4
Bulb, dial
Choke, R. F., L1
Condenser, gang C2
Condenser, tubular, 25 mdd., C3.
Condenser, mica, . 00035 mfd ., C5.
Condenser, tubular, 05 mfd , C6.
Condenser, tubular, $0.5 \mathrm{mfd} ., \mathrm{C} 9, \mathrm{C} 1$, C4, C19
Condenser, mica, .0001 mfd ., C12, C13
Condenser, mica, tubular, 1 mfd ., C14.
Condenser, tubular, .5 mfd ., C15, C17, C32
Condenser, tubular, 05 mfd ., C16
Condenser, tubular, 25 mfd., C18, C30
Condenser, tubular, .05 mfd ., C20.
Condenser, tubular, 25 mfd . C 21
Conderiser, tubular, 2-15 mfd., C22
Condenser, tubular, .005 mfd . C23.
Condenser, tubular, 005 mfd , C23.
Condenser, oscillator ${ }^{\text {Condenser, } 1 \mathrm{mfd} \text {., } 25}$
Condenser, electrolytic, 8 mfd .
C26, C27, C28..
Condenser, tubular, 1 mfd . 229
Condenser, tubular, .3 mfd ., C31
Drive assembly, gang.
Drive assembly, tone color
Drive assemb, silencer, (Fibre)
Drive gear, silencer, (Fibre)
Drive pinion, tone color (Rubber)
Drive pinion, tone color (Rubber)
Potentiometer, level control, R10
Potentiometer, centre tap resistor, R20
Potentiometer, silencer control, R25
Resistor, carbon, 10,000 ohms, R1
Resistor, carbon, 25,000 ohms, R2
Resistor, carbon, 190 ohms, R3.
Resistor, carbon, $1900 \mathrm{hms}, \mathrm{R3}$.
Resistor, carbon, $500,000 \mathrm{ohms}$, R4
Resistor, carbon, 100,000 ohms, R5, R8, R33.
Resistor, carbon, 300,000 ohms, R6
Resistor, carbon, 50,000 ohms, R 7
Resistor, carbon, 10,000 ohms, R9
Resistor, carbon, 900,000 ohms, R11
Resistor, carbon, 1 meg., R12, R13...
Resistor, carbon, 1 meg., R12, R1...
Resistor, carbon, 50,000 ohms, R14.
Resistor, carbon, 40,000 ohms, R15.
Resistor, carbon, $40,000 \mathrm{ohms}$, R15.
Resistor, carbon, $35,000 \mathrm{ohms}$, R16.
Resistor, carbon, 25,000 ohms, R17
Resistor, carbon, 250,000 ohms, R18.
Resistor, carbon, 3,440 ohmis, R21
Resistor, carbon, 13,000 ohms, R22
Resistor, carbon, 11,000 ohms, R23
Resistor, tapped candohm,
R24, R26, R32
Resistor, carbon, 83,000 ohms, R27
Resistor, carbon, 180,000 ohms, R28
Resistor, carbon, $100,000 \mathrm{ohms}$, R29
Resistor, carbon, 60,000 ohms, R30
Resistor, carbon, 200,000 ohms, R31
Resistor, carbon, 100,000 ohms, R34.
Rheostat, tone control R19 and switch
Scale, dial:.
Shield, pentode
Sockets, (24-27)
Sockets, (58).
Sockets, (280)
Socket, tuning indicator
Transformer, power 25 cycle, T7.
Transformer, output, T6.

List Price

- 25 .25 .20

6744 BRIER 5291 HOCUS 7165 BRILL 6949 BROAD
5331 HOLI
5411 ADVER
4747 PODGY
5309 HOIST
5327 ADDER
7167 BIFUR
7168 BORAX
7120 BIBLE
7170 BRING
7171 BRINK
7295 BRINY
7292 BRISK
"MONTROSE" MODEL
TYPE 902-A CHASSIS (25 CYCLE)-Continued

$\begin{aligned} & \text { Part } \\ & \text { No. Code } \end{aligned}$	
7069	69 BRENT
7071	1 BREVE
6509	09 BRIAR
6510	10 BRIBE
7061	1 BORON
	TYP
6948 BRIEF	
7138 BRIDE	
6744	4 BRIER
5291	1 HOCUS
7165	5 BRILL
6949	9 BROAD
5331	1 HOLLY
5411	1 ADVER
4747	7 PODGY
5309	9 HOIST
5327	7 ADDER
7167	7 BIFUR
7168	8 BORAX
7120	0 BIBLE
7170	0 BRING
7171	1 BRINK
7295	5 BRINY
7292	2 BRISK

List

 Price

Transformer, osc. stage, T3. 3.50
3.50
"MONTROSE"" MODEL
TYPE 902-B CHASSIS (60 CYCLE)

SILENCER CIRCUIT REVISION TYPES 902-A, B CHASSIS

All parts same as for type $902-\mathrm{A}, \mathrm{B}$, except following: 7219 BLO.AT Resistor, carbon, 100,000 ohms.
"MONTROSE" MODEL
TYPE 902-F CHASSIS (UNIVERSAL)
All items the same as $902-\mathrm{A}$ with following additions:

7414	BRUIT	Potentiometer, silencer control, R25 \ldots.	2.00
7478	BUXOM	Resistor, carbon, 500,000 ohms, R11....	.35
7844	AMICE	Resistor, carbon, 250,000 ohms, R13...	.35

7844 AMICE Resistor, carbon, 250,000 ohms, R13.... 35 7823 AMISS Resistor, carbon, 100,000 ohms, R27.... . 35 The following is qmitted:
6916 Resistor R26-32
All prices are f.o.b. the Company's warehouse, and are subject to change without notice.

D-152-A SPEAKER (Upper)

7211	ANELE	Coil, field, 420 ohms.	3.50
6824	BLADE	Coil, hum neutralizing	50
7360	ANISE	Cone and voice coil assembly	4.25
T288	BORIC	Cone frame and pole plate assembly.	2.00
6822	BLANK	Pot and pole assembly.	1.50
7369	BLARE	Terminal panel assembly	50
D-152-B SPEAKER (Lower)			
7212	ANGLE	Coil, field, 420 ohms.	3.50
7361	ANKLE	Cone and voice coil assembly.	4.25
7289	BLEAR	Cone frame and pole plate assembly	2.00
6822	BLANK	Pot and pole assembly.	1.50
7369	BLARE	Terminal panel afsembly.	50

All prices are f.o.b. the Company's warehouse, and are subject to change without notice.

