GENERAL ELECTRIC CO.

General Electric Modern Longfellow Grandfather Clock-Radio Models H-91 and H-91-R

SERVICE NOTES

ELECTRICAL SPECIFICATIONSVoltage Rating . 105-125 Volts
Frequency Rating . 50-60 Cycles or 25-40 CyclesPower Consumption120 Watts
Recommended Antenna Length. 25-75 Feet
Type of Circuit. A. C. Screen Grid Super-Heterodyne
Number of Radiotrons. 3 RCA-235, 1 UY-224, 3 UY-227, 2 RCA-247, 1 UX-280-Total of 10Number of Radio Frequency StagesOne
Type of First Detector. Tuned Input Grid BiasNumber of Intermediate Stages.Two
Type of Second Detector. Power Grid Bias
Type of Automatic Volume Control UY-227
(Controlling bias voltage on R. F. and I. F. stages by means of drop across resistor in plate circuit)Number of Audio StagesOne (Push-Pull)
Type of Rectifier.Full Wave, UX-280
Type of Loudspeaker Dynamic with Special High Frequency FilterWattage Dissipation in Loudspeaker FieldTen
Undistorted Output Four Watts
PHYSICAL SPECIFIGATIONS

INTRODUCTION

General Electric Radio, Models H-91 and H-91-R are ten tube, Super-Heterodyne type radio receivers incorporated in the cabinet of a massive electric Grandfather clock. Mechanical and electrical excellence together. with the beauty of fine period furniture characterize this instru. ment.

Model H-91 is a straight radio receiver and model H-91-R is of the remote control type. Ten Radiotrons are used, three RCA-235 as R. F., and I. F. stages one UY-224 as first detector, three UY-227 as oscillator, automatic volume control and 2nd detector; two RCA-247 as the power output stage and one UX-280 as the rectifier.

These instruments, with the exception of the cabinet are similar to the model H-51 and H-51-R except than an automatic volume control tube and Radiotrons RCA- 235 and RCA- 247 in the R. F., I. F. and Power stages, have been included. For service data other than on the remote control unit that is applicable to vertical operation and on the automatic volume control circuit, reference should be made to the Service Notes already issued on the Model H-51 and H-51-R.

GENERAL ELECTRIC CO.

GENERAL ELECTRIC CO.

GENERAL ELECTRIC CO.

GENERAL ELECTRIC CO.

Wiring Diagram of Model H-91-R Receiver Assembly

GENERAL ELECTRIC CO.

IWTETRAL CONNECTIONS OF POWER TRAHSFORMER

DGOXN-WITH-GOEEE-TRACER-

5401DMMMOS

GENERAL ELECTRIC CO.

INTERMAL CONMECTIONS OF POWER TRANSFORMER

InTERMAL CONNECTIONS OF CAPACITOR PACK

internal connections of a.f. transformers

TO
ASCEIVER REMBLY GREENEOLN
TOCLOCK

Firing Diagram of Model H-9I-R S. P. U.

GENERAL ELECTRIC CO.

Assembly Wiring of Model H-91

GENERAL ELECTRIC CO.

Shiolder Load
With Coprer Tracer
$C 4$
4

JACKSON-BELL CO., LTD.

JACKSON-BEL CO, LTD.

JACKSON-BELL CO., LTD.

VOLTAGE AND CURRENT YALNES:

With the volume control at naximum, the following readings should be
ootained with an allowable var istion of 10% :-

RESTSTAICE COLOR OOES - CAPPOI RESISTORS.

1 NaTP

2 WATT

5000 Ohm - Green with Black Band and Red Dot 2200 " - Red
300 " - R.F. Bias Resistor is Bire Wound.

RADIO FREQUENCY COILS.

Kadio frequency coils in this Receiver are wound with 130 , and 132 turns on the secondaries. The antenna coil has 132 turns, the second; third and detector coils have 130 turns.

JACKSON-BELL CO., LTD.

JACKSON-BELL CO., LTD.

JACKSON-BEL CO., LTD.

D.C. line 110 volts, voltages check as follows:-
R.F.Filament,.......................... 2 volts

 Push-Pull Bias,..............................

CARBON RESISTOR COLOR CODE.
300 Ohm - Wire Wound
1100 " - Blue

0
C_{0}^{0}
\vdots
0
1
$=$
0
8

ह
台
1
$=$
8
8

8 " Orange | | |
| :--- | :--- |
| 0 | |
| 0 | |
| 0 | 0 |
| 0 | |
| 1 | 1 | 5

\sum_{0}
品
1
1
 Green Orange

JACKSON-BELL CO., LTD.

JACKSON-BELL CO., LTD.

JACKSON-BELL CO., LTD.

JACKSON-BELL CO., LTD.

PHIL ADELPHIA STORAGE BATTERY CO.

Models 70 and 70-A Receivers

(Above Serial No. B-22,000)
Model 70 Receivers are for operation on $\mathbf{1 0 0 - 1 3 0}$ volt, $\mathbf{5 0 - 6 0}$ cycle AC lines Model 70A Receivers are for operation on 100-130 volt, 25-60 cycle AC lines

Table 1-Tube Socket Readings Taken with A.C. Set Tester-AC Line-115 volts

Tube		Vent	Plate Volta	$\begin{aligned} & \text { Control } \\ & \text { Grld } \\ & \text { Volte } \end{aligned}$	$\begin{aligned} & \text { Screen } \\ & \text { Grld } \\ & \text { Volt: } \end{aligned}$	Cuthode Volta	PiateMill-maperes
Type	Ctresat						
35	R.F.	2.25	250	5	70	6	4.3
24	OSC \& It Det.	2.25	250	8	12	8	. 5
35	I. F.	2.25	250	20	70	0	1.7
27	Rectifier Detector	2.25		0	0	0	0
35	Audio Amplifier	2.25	50	0	60	0	1.0
47	Output	2.25	240**	4*	255*	.	$28 *$
80	Rectifier	4.70	260/plate				

*These readings must be taken from the underside of the chassis, using test prods and leads unless the set checker is specially equipped for testing pentode tulies.

Table 2-Power Transformer Voltages

Terminal:	A.C. Volts	Circuit	Color
1-2	105 to 125	Primary	White
3-5	2.5	Filament of 24 and 35's	Black
6-8	2.5	Filament of 47	Dark Green
9-10	5.	Filament of 80	Blue
11-13	700	Plates of 80	Yellow
4	...	Center Tap of 3-5	
7 12	...	Center Tap of 6-8 Center Tap of 11-13	Black, Green Tracer
12	-	Center Tap of 11-13	Yellow, Green Tracer

Table 3-Condenser Data

Non. on Plas. 1 and 2	Capecity (mid.)	Container
(id)	. 00011	Blue and Yellow
(17)	. 00041	Yellow and Orange
(2)	. 0007	White and Yellow
(6)	. 003	Orange and White
(1) (9)	. 01	Hlack Bakelite
	. 015 (Double)	Black Bakelite
(B) (in)	$.05$	Black Hakelite
(8)	.05, 25, 1.5	Metal Black Bakelite
(0)		Metal
(1) (51) (50-60 cycles)	6	Electrolytic
(31) (25-40 cycles)	10	Electrolytic
(30) (25-40 cycles)	14	Electrolytic

Table 4-Resistor Data

Nox. on	Power (watts)	Realetance (ohms)	Color		
1 and 2			Body	Tip	Dot
(3)	Terminals $\left\{\begin{array}{l}1-2 \\ 2-3 \\ 3-4 \\ 4-5\end{array}\right\}$	$\left\{\begin{array}{r}6 \\ 850 \\ 1650 \\ 1060\end{array}\right\}$	I.ong Tubular		
(8)	. 5	1,000	Brown	Black	Red
(1) \mathbf{A}	. 5	2,900	led	White	Red
(1) (19)	. 5	10,000)	Irown	Black	Orange
5	. 5	25,000	Rerl	Green	Orange
3	.5	51,(00)	Cireen	Brown	Orange
1	. 5	70,000	Violel	Mlack	Orange
0	. 5	39,000	White	White	Orange
(1)	. 5	330,000	Red	Yellow	Fellow
(3) (3)	. 5	190,000	Yellow	White	Yellow
(3)	. 5	1,000,000	Brown	13lack	Green
(12) (2)	. 5	2,000,000	Red	Ithack	Green
(3)	. 5	4,000,000	Yellow	Black	Green

PHILADELPHIA STORAGE BATTERY CO.

国CTIFIER SOCKET

PHILADELPHIA STORAGE BATTERY $\mathbf{C O}$.

Model 90

(Serial Nos. B-32,001 to B-35,000 and Above B-53,100)
Model 90 receivers are for operation on 100 to 130 volt, $50-60$ cycle AC lines. This receiver is a nine tube superheterodyne with push-pull pentode output. Automatic volume control, 4 point tone control, super control screen grid tubes and combination first detector and oscillator tube are some of the additional features. The maximum power consumption is 100 watts.

Table 1-Tube Socket Readings Taken with A.C. Set Tester-A.C. Line 115 Volts

Tube		FilamentVolta	$\begin{aligned} & \text { Plate } \\ & \text { Volt } \end{aligned}$	Control Grid Volte	$\begin{aligned} & \text { Screan } \\ & \text { Grid } \\ & \text { Volte } \end{aligned}$	CathodeVolte	$\begin{aligned} & \text { P1ato } \\ & \text { Milth- } \\ & \text { Amperen } \end{aligned}$
Trpe	Circule						
35	R.F.	2.5	225	0	38	6	
24	Det.-Osc.	2.5	215	12	40	22	4.2 .5
35	Det. Rectifier	2.5	235	10	38	10	1.0
27 27	Det. Rectifier	2.5		\ldots	\%:	10	
27	Det. Amplifier Ist Audio	2.5	50	0	\cdots	1.	1.0
47	1st Audio	2.5 2.5	90 210	0		1.	5.0
47	$\{$ Output	-2.5	210	10	225 225	...	31.
80	Rectifier	5.0	225/plate	10	225		31.

Above readings taken with volume control at maximum and dial turned to low frequnecy end.
Table 2-Power Transformer Voltages

Terminale Figs. 1 and 2	A.C. Volt.	Circuit	Color
1-2	115	Primary	White
3-5		Center Tap Heater	Black, Yellow Tracer
6-8	2.5 2.5	Heater	Black
${ }_{9}^{6-8}$	2.5	Filament 47's	Dark Green
9-10	5.0	Center Tap Filament 47's	Black, Green Tracer
11-13	665	Flates 80	Light Blue
12		Center Tap Plates 80	Yellow, Green Tracer

Table 3-Condenser Data

PHILADELPHIA STORAGE BATTERY CO.

PHILADELPHIA STORAGE BATTERY CO.

Standard By-Pass Condenser Data

The tables below list the various Philco standard byqpass condensers in black bakelite containers. The drawing shows all possible lug arrangements and the tables list the lug numbers.

Condenser 3615

Part No.	Cond Cap. Mfd.	$\begin{aligned} & \text { Lugs }_{\text {Usid }} \end{aligned}$	Wire Reais. Ohms	Insis. Wiring Lugs	Cond. Wiring Lugs
3615-B	. 05	1-3-5	250	3-5	1-5
3615-C	. 05	1-5-7	250	5-7	$1-5$
3615-D	. 05	1-3-5	. .		1-5
3615-E	. 05	2-5
3615-F	. 05	2-3-5	.	. .	$3-5$
3615-G	. 05	5-8
3615-H	. 05	3-5-8	$\because \cdot$. . .	- -8
3615-J	. 05	1-5-7	\because \%	. .	1-5
3615-K	. 05	3-5-8	250	3-5	5-8
3615-L	. 05	1-5	. \cdot.		- .
$3615-\mathrm{M}$. 05	2-5.3			$2-5$
3615-N	. 05	1-4-7			$1-4$
3615-P	. 05	1-1-7	2013	1-7	1-1
3615-R	. 05	1-5-7	280	5-7	1-7
3615-S	. 05	1-4			
3615-T	. 05	1-5-7	1:0	1-7	1-5
3615-U	. 05	1-9-7	- .		1-7
3615-W	05	1-2-i			(-,)
3615-X	. 05	1-2-5-7	1.50	1-7	1-i)
3615-Y	. 05	1-2-5-7	150	1-5	1-7
$3615-\mathrm{AA}$. 05	$\cdot 1-3-5-8$			1-5
3615-AB	. 05	1-4-7-8			1-1
$3615-\mathrm{AC}$. 03	1-5-7-8	\cdots		1-7
3615-AD	. 05	3-5-8	.	\ldots	
3615-AE	. 05	1-7-8	. .	\cdots	7-8
3615-AF	Twin . 05	4-7-8	- .	\cdots	$4-8$ d -8
3815-AG	. 05	1-3-3	. .	\cdots	1-8
$3615-\mathrm{AH}$. 05	1-5	.	\cdots	1-2
3615 -AJ	Twin 05	1-3-6-8		. .	1-3 s-1-6
$3615-\mathrm{AK}$	05.	1-5-i-8.	. .		1-7

Condenser 3793

Part No.	Cond. Cap. Mfd.	Lugs. Used	Wire Resis. Ohms	Reais. Wiring Lugs	cosed. Wiring Lags
3793-B	. 015	5-7	.		
3793-C	. 015	2-4	.		\ldots
3703-D	. 015	2-6		. .	
3793-E	Tuin 015	1-5-7	\cdots	\ldots	1-5\& 1-7
-3793-F	. 015	5-7-8	\ldots	. .	$7-8$
3793-G	. 015	2-3-6	\ldots	\ldots	2-6
3793 - ${ }^{\text {H }}$	Tน in 015	1-3-5			$1-3 \& 1-5$
3793-J	015	2-5-7	. \cdot	. \cdot	2-5
3793-K	Tuin 015	1-3-5-8	.		1-3 \& 1-5
3793-L	Tuin . 015	5-7-8	.		7-8
3793-M	Txin 015	5-7-8			$5-8$ \& 7.8

Condenser 3903

Condenser 4989

	$\begin{aligned} & \text { Cond. } \\ & \text { Cap. } \\ & \text { Mind. } \end{aligned}$	$\begin{aligned} & \text { Luys } \\ & \text { U'sed } \end{aligned}$	Wire Renis. Ohas	Resis. Wiring Luge	Sond. Viring fuge
4989-13	Twin 09	1-3-5	. .		1-3 \& 1-5
4980 C	Twin 09	1-5-7			1.581-7
4989 -1	. 09	1-5			
4989-E	. 09	1-5-7	250	7-5	1-5
$4989-\mathrm{F}$. 09	1-5-7	\ldots		$1-5$
4989-G	Twin 09	1-4-7	\cdots		$1-4417$
4989	Twin 68	1-5	\ldots		1-5 \& 1-5
4989-5	08	3-5	\ldots		3-5
$4989-{ }^{-1}$	Twin 09	3-5			3-5
$4989-\mathrm{L}^{-1}$.09	3-4-8	200	3-8	4-8
4989-M	I'win 09	4-7-8	. .		4-8 \& 7-8

PHILADELPHIA STORAGE BATTERY CO.

CHASSIS DATA

MODEL		TÚBES														SPEAKER				$\begin{aligned} & \text { VOLUME } \\ & \text { CONTROL } \end{aligned}$		TONE CONTROL				POWER TRANSFORMER		
		27	24	35	47	45	80	14	17	32	33	30	2	3	71 A	Type	Cone Assembly	Field Assembly	Output Transformer	Part No.	Resistance (Ohms)	Part No.	2 Point	4 Point	Capacity (Mfd.)	$50-60$ Cycles	$25-40$ Cycles	$\begin{gathered} 50-60 \\ 230 \text { Volts } \end{gathered}$
	70 B.G.	1	4		1		1									K-3	02996	02987	2673	5039	50008210	03140	\checkmark		2-. 01	5117	5118	5119
	$70 \mathrm{H} . \mathrm{B}$.	1	4		1		1									K-3	02996	02987	2673	5039	$5000 \& 210$	03140	\checkmark		2-. 01	5117	5118	5119
	$2 \% 0$	1	4		1		1									K-3	02996	02987	2673	5039	$5000 \& 210$	03140	\checkmark		2-. 01	5117	5118	5119
	310	1	4		1		1									K-3	02996	02987	2673	5056	$5000 \& 210$	03168	\checkmark		2-. 01	5117	5118	5119
	410	2	5		1		1									K-4	02996	02987	2673	5039	5000 \& 210	03140	\checkmark		2-. 01	¢5117	\{ 5118	$\left\{\begin{array}{l}5119 \\ 5924\end{array}\right.$
		1	4		1		1									K-3	02996	02987	2673	5039	5000 \& 210	03140	\checkmark		2-. 01	5906 5117	5923 5118	5119 5119
	70 B.G.	1	1	3	1		1									K-3	02996	02987	2673	6015	1,000,000	03637	\checkmark		. 01	5117	5118	5119
	70 H.B.	1	1	3	1		1									K-3	02996	U2987	2673	6015	1,000,000	03637	\checkmark		. 01	5117	5118	5119
	210	1	1	3	1		1									K-3	02996	02987	2673	6015	1,000,000	03637	\checkmark		. 01	5117	5118	5119
	370	1	1	3	1		1									K-3	02996	02987	2673	6307	1,000,000	04652	\checkmark		. 01	5117	5118	5119
	410	2	2	3	1		1									K-4	02996	02987	2673	6015	1,000,000	03637	\checkmark		. 01	$\left\{\begin{array}{l}5117 \\ 5906\end{array}\right.$	$\left\{\begin{array}{l}5118 \\ \\ 5923\end{array}\right.$	5119 15924
	510	1	1	3	1		1									K-3	02996	02987	2673	6015	1,000,000	03637	$\sqrt{ }$. 01	5117	5118	5119
	9) B.G.	2	4			2	1									K-2	02996	02987	2766	5039	5000 \& 210	03137		\checkmark	.015, 2-. 01	4938	4939	4940
	9) L.BP.	2	4			2	1									H-2	02874	02988	2766	5039	$5000 \& 210$	03137		\checkmark	. $015,2-.01$	4938	4939	4940
	9) H.B.	2	4			2	1									H-2	02874	02988	2766	5039	$5000 \& 210$	03137		\checkmark	.015, 2-. 01	4938	4939	4940
	9) B.G.	4	3		1		1									K-3	02996	02987	2673	5724	500,000	03137		$\sqrt{ }$.015, 2-. 01	5362	5363	5364
	9) L.B.	4	3		1		1									$\mathrm{H}-3$ $\mathrm{H}-3$	02874	02988	2673	5724	500,000	03137		\checkmark	.015, 2-. 01	5362	5363	5364
		4	3		1		1									H-3	02874	02988	2673	5724	500,000	03137		\checkmark	.015, 2-. 01	5362 5362	5363 $\int 5363$	5364 ¢364
	490	5	4		1		1									K-4	02996	02987	2673	5724	500,000	03137		\checkmark	.015, 2-. 01	$\left\{\begin{array}{l}5362 \\ 5906\end{array}\right.$	$\left\{\begin{array}{r}5363 \\ 5923\end{array}\right.$	$\left\{\begin{array}{l}5364 \\ 5924\end{array}\right.$
	(9) B.G.	3	1	2	2		1									K-5	02996	02987	2635	6015	1,000,000.	03137		\checkmark	.015, 2-. 01	6072	6073	6074
	9)X	3	1	2	2		1									H.6	02874	02988	2635	6015	1,000,000	03137		\checkmark	.015, 2-. 01	6072	6073	6074
		4	2.	2	2 。		1									K-8	02996	02987	2635	6015	1,000,000	03137		\checkmark	.015, 2-. 01	$\left\{\begin{array}{l}6072 \\ 5906\end{array}\right.$	$\left\{\begin{array}{l}6073 \\ 5923\end{array}\right.$	$\left\{\begin{array}{l}6074 \\ 5924\end{array}\right.$
		4	4			2	1									H-2	02874	02988	2766	4093	500,000	03137		\checkmark	.015, 2-. 01	4446	4447	4595
	$\{2!2$	4	4			2	1									H-2	02874	02988	2766	4093	500,000	03137		\checkmark	.015, 2-. 01	4446	4447	4595
	112	4	4		2		1									H-6	02874	02988	2635	4093	500,000	03137		\checkmark	.015, 2-. 01	5594	5595	5596
	112X	4	4		2		1									H-6	02874	02988	2635	4093	500,000	03137		\checkmark,	.015, 2-. 01	5594	5595	5596
		4	4		2		1									H-6	02874	02988	2635	4093	500,000	03137		\checkmark^{\prime}	.015, 2-. 01	5594	5595	5596
	51 B.G.		3		1		1									P-2	02861**	02942	2660	5232	1750					5266	5267	5268
	5) L.B.		3		1		1									S-2	02887**	02942	2660	5232	1750	.				5266	5267	5268
	51 B.G.		2	1	1		1									P-2	02861	02942	2660	5839	5000					5266	5267	5268
	51 L.B.		2	1	1		1									S-2	02887	02942	2650	5839	5000					5266	5267	5268
	551		2	1	1		1									P-2	02861*	02942	2660	5839	5000					5266 5785	5267 5786	5268 5787
	46 B.G.		1				1	3	1				1	1 (E)	2	N-2	02996	02924	2766	4141	1750							
	45 H.B.							3	1				1	1 (E)	2	N-2	02996	02924	2766	4141	1750							
	35 B.G.									3	1	3				R-2	02887**		2646	5317	5000 (Dual)	03637	\checkmark		. 01			
	35 H.B.									3	1	3				R-2	02887**		2646	5317	5000 (Dual)	03637	\checkmark		. 01			\cdots

[^0]
PHILADELPHIA STORAGE BATTERY CO. Checking I. F. Oscillator Calibration

Any oscillator which is not crystal controlled particularly those which are battery operated and portable, should be checked from time to time for correct frequency calibration. The calibration can be appreciably affected by rough handling of the oscillator while it is being moved about, and by the condition of the tubes and batteries. If an oscillator is in constant daily use, it should be checked two or three times a week and any necessary adjustment made to correct errors in calibration.

One of the most accurate and convenient methods of making this check is through the use of the signals from reliable broadcasting stations. Most of the better class stations have accurate crystal controlled frequency regulation which assures broadcasting on the assigned frequency. Intermediate frequency oscillators can be checked with the aid of broadcast signals in the following manner:

175 KC Intermediate Frequency Oscillator Check-Place radio set in operation, and tune it accurately to a station broadcasting on any of the following frequencies: 700, 1050, or 1400 KC . When a station is heard at any one of these three points, disconnect the antenna and substitute a connection to the output of the oscillator. Place the oscillator in operation at 175 KC . If the oscillator is calibrated correctly, its signal should be heard on the receiver without changing the tuning of the broadcast receiver in any way. If it is necessary to retune the set before the oscillator signal can be heard at maximum volume for the particular setting of the attenuator and the radio set volume control, the oscillator is off calibration. Its compensating condenser should be re-adjusted until the signal is heard at exactly 700,1050, and 1400 KC . (These frequencies are the fourth, sixth, and cighth harmonics of 175 KC .) In the Philco Oscillator Model 095, this compensating condenser is the one nearer the 175 KC switch position.

260 KC Intermediate Frequency Oscillator Check-Proceed in the same manner as for the 175 KC check described above, but tune the broadcast receiver to a signal at 780, 1040, or 1300 KC . Remove the antenna and substitute the connection from the oscillator, the latter being in operation at 260 KC . Check in the same manner as for 175 KC , making any necessary adjustments of the 260 KC compensating condenser so as to make the oscillator signal heard at 780, 1040, or 1300 KC . (Third, fourth, and fifth harmonics, respectively of 260 KC). In the Philco 095 oscillator, this compensatıng condenser is nearer the 250 KC switch position.

POWER CONSUMPIION OF PHILCO MODELS

A number of requests have been received for information on the power consumption of various Hhilco Receivers. The table below lists the different instruments with the power consumption in watte of each.

Model	Watts			Model	Watts	
511	75	A.C.		211	135	"
65	95	"		70	80	"
86	90	"	The power consump-	90	95	n
87	95	"	tion of the 25 oycle	112	105	"
76	95	"	models is the same	212	135	"
77	95	"	as that of the 60	270	100	"
95	105	"	cycle models. Instru-	40	210	D.C.
96	105	"	ments rated at 230	41	210	D.C.
296	145	"	volts consume the	41-E	420	"
20	75	"	same power as those	42	210	"
220	100	"	rated at 110 volts.	42-E	420	"
111	105	\cdots		46	42	"

RCA-VICTOR, INC.

Filure 1-Schemetic Diadram for 7-tube Receiv er

Filure 2.-Wiring Diadram for 7-tube Recoiver

RCA-VICTOR, INC.
 SERVICE NOTES
 for
 Victor Radio R-12

Victor Console, R-12 is a nine tube Super-Heterodyne Radio Receiver providing excellent performance in all the features incorporated in modern radio broadcast receivers.

Automatic volume control, push-pull Pentode output stage, tone control, calibrated kilocycle dial, acoustically correct cabinets and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne are some of the features of this receiver. Referring to Figure 1, the schematic circuit diagram, and tracing a signal through the various stages, we find the following action taking place.

The first tube is the tuned R. F. stage. This is the new Super Control Screen Grid Radiotron, UY-235. The outstanding feature of this Radiotron is that due to its grid potential plate current curve having a constant rate of curvature, cross modulation, moduation distortion, and hum modulation effects are eliminated from the receiver. Also it is very adaptable to automatic volume control action due to its characteristics that preclude the necessity of a local distant switch. The control grid bias for this Radiotron is varied by means of the automatic volume control tube.

The output of this circuit is coupled inductively to the grid coil of the first detector. At this point the oscillator should be considered as its output is also coupled inductively to the grid coil of the first detector. This is a tuned grid circuit oscillator using a Radiotron UY-227, and having a closely coupled plate coil that gives sufficient feed-back to provide stable operation. The grid circuit is so designed that by means of a correct combination of capacity and inductance a constant frequency difference between the oscillator and the tuned R.F. circuits throughout the tuning range of the receiver is obtained.
The next circuit to examine is the first detector. The circuit is tuned by means of one of the gang condensers to the frequency of the incoming signal. Radiotron UY-224 is used in this stage. In the grid circuit therc is present the incoming signal and the oscillator signal, the latter being at a 175 K . C . difference from the former. The first detector is biased so as to operate as a plate rectification detector and its purpose is to extract the difference or beat frequency, produced by combining the signal and oscillator frequencies. The beat frequency- 175 K . C. -appears in the plate circuit of the first detector which is accurately tuned to $175 \mathrm{~K} . \mathrm{C}$.

The next stage is that of the I. F. amplifier. A single stage is used, requiring two I. F. transformers, consisting of four tuned circuits. The plate circuit of the first detector, the grid and plate circuit of the I. F. amplifier and the grid circuit of the second detector are all tuned to 175 K. C. Radiotron UY-235 is used in this stage and its control grid voltage is also varied by means of the automatic volume control tube.

At this point it is well to consider the action of the automatic volume control tube as it controls the R. F. and I. F. amplifiers of the receiver. The automatic volume control functions in the usual manner in that the signal voltage is applied to its grid and the voltage drop across a resistor in the plate circuit is the grid voltage applied to the I. F. and R. F. stages. As the value of the plate current is a direct result of the signal voltage applied to the grid, a greater plate current gives a greater voltage drop across the resistor in its plate circuit and therefore a higher bias on the I. F. and R.F. stage. This results in less sensitivity and vice versa. The signal output of the I. F. stage is always maintained at a constant value.

The volume control should now be considered as its position in the circuit has a large bearing on the quiet and smooth action of this receiver.

In previous automatic volume control receivers, the volume control was placed in the grid circuit of the automatic volume control tube, its action being to vary the control grid voltage of this tube. When operating sets of this character, the receiver jumped to full sensitivity when not tuned to a signal and if in a noisy location, this noise was very objectionable.

In this instrument, however, the volume control is not in the automatic volume control tube circuit, but in the grid circuit of the second detector. By means of it the signal voltage applied to the second detector is controlled and under no conditions can noise or other signals exceed the level for which it has been set. Electrically, the primary and secondary of the second I. F. transformer are shielded from each other so that there is no transference of energy except by means of a small pickup coil. The volume control is a potentiometer shunted across this coil which determines the amount of pickup that will be used. As a further means of controlling a strong signal, a second section is provided which places up to 10,000 ohms ($R-21$) in series with the tuned circuit of second detector grid. This effectively reduces even the most powerful signals received.

The second detector is a high-plate voltage, grid-biased type, using Radiotron UY-227, which gives sufficient output to drive two Radiotrons UY247 connected in push-pull without an intermediate audio stage. The purpose of the second detector is to extract the audio frequency component of the R. F. signal which represents the voice or musical modulations produced in the studio of the broadcasting station. The audio component is extracted and used to drive the power tubes while the R. F. current is by-passed and not further used.

A grid filter consisting of a 1 megohm resistor ($\mathrm{R}-13$) in the second detector circuit and a 0.5 megohm resistor (R-4) in the R.F. circuit helps to reduce any possible hum in these atages. The power A. F. stage consitst
of two Radiotrons UY-247 connected in push-pull. Transformer coupling is used between the detector and the grids of the Radiotrons UY-247 as well as from the plates to the cone coil of the reproducer unit.

A tone control, consisting of a 0.008 mfd . condenser in series with a 200,000 chm variable resistor connected acroes the two grids of Radiotrons UY-247 is incorporated in this stage. The tone control functions to reduce the high frequency output as the resistance is reduced. At the extreme low position, the condenser' and secondary of the A. F. transformer resonate at a low frequency and thereby further accentuate the bass response. The two 0.0004 mfd . condensers, connected in series with their mid-point grounded are connected acrose the secondary of the input transformer. The purpose of these condensers is to prevent audio oscillations and provide a high frequency audio cut-off.

A 0.005 mfd . condenser connected in series with a 10,000 ohm resistor is placed across the primary of the output transformer. This functions to reduce the third harmonic distortion, an inherent characteristic of the Pentode output tube. The direct plate and grid voltages are supplied from high voltage alternating current which is rectified by means of Radiotron UX-280. The filter is of the tapped reactor type which gives an output of well filtered D. C. The bias voltage for the Radiotrons UY-247 is obtained by using. a portion of the drop across the reproducer field. One $190,000 \mathrm{ohm}$ and one $40,000 \mathrm{ohm}$ resistors act as the voltage dividing resistors.

SERVICE DATA

Information pertaining to general service data for this type receiver may be obtained from the Service Notes already issued on the Victor Radio Superette. Figure 1 shows the schematic diagram, Figure 2 the proper connections for attaching a magnetic pickup to the $\mathbf{R}-12$ and Figure 3 the wiring diagram. The voltage readings and replacement parts are shown on page 3.

R. F. OSCILLATOR AND I. F. ADJUSTMENTS

A reference to the Victor Radio Superette Service Notes will give the details for making correct R. F., I. F. and Oscillator adjustments. However, due to the use of an automatic volume control tube, its action will defeat the use of an output meter. To overcome this, a "dummy" Radiotron UY- 227 (one that has one heater prong removed but is otherwise O.K.) should be substituted for the tube in the automatic volume control socket. Do not make any adjustments with this tube removed from the socket. While apparently everything functions in the normal manner, the lack of tube capacity in the circuits will cause an incorrect alignment to be made.

RCA-VICTOR, INC.

Wiring Diagram of Model R-12.

RCA-VICTOR, INC.

RCA-VICTOR, INC.

SUPPLEMENT

to

VICTOR RADIO R-12 SERVICE NOTES

Late production of the Victor Radio R-12 has a slight change in the wiring, two changes in capacitor values and the addition of a 0.5 megohm resistor (R-20). Capacitor C-7 has been changed from 0.5 mfd . to 0.1 mfd . and $\mathbf{C}-13$ from 0.1 mfd . to 0.05 mfd . Resistor $\mathrm{R}-20$ has been added.

Figure 1 shows the revised schematic diagram and Figure 2 the wiring diagram.

The replacement parts listed and supplied are entirely interchangeable with either the old or new models. In the case of the older models, however, the additional black lead supplied in the new capacitor pack should be joined to the old black ground lead. All other capacitor leads are exactly the same and are soldered to the same points.

Figure 1-Rerised Schematic diagrant of late production R-12

RCA-VICTOR, INC.

RCA-VICTOR, INC.

SERVICE NOTES
for

VICTOR RADIO R-20 and R-21

The Victor Radio R-20 and R-21 are ten tube screen grid automatic volume control Super-Heterodyne radio receivers. With the exception of the Audio Transformer, Speaker and Cabinet both models are identical.

Features of these Models are. Super Control Screen Grid Radiotrons in the R. F. and I, F. stages, automatic volume control so arranged in the circuit to reduce noise between channels, push-pull Pentode output stage, accurately calibrated dial reading directly in kilocycles, totally shielded chassis and sensitivity, selectivity and fidelity superior to any previous Victor receiver.

Referring to Figure 1 and tracing a signal through the various stages, we find the following action taking place.

The signal voltage, indeuced into the antenna system, is coupled by means of the antenna coil to the tuned circuit of the "link circtit." The link circuit tunes exactly with the tuned R.F. and first detector circuits. There is no gain in the circuit, it being merely a selection circuit.

A tuned R. F. stage follows which uses Radiotron UY-235. The control grid bias for this tube is a function of the automatic volume controi tube. The output is coupled inductively to the first detector grid circuit together with the output from the oscillator.

The first detector is tuned by one unit of the gang condenser. In its grid circuit, there is present the incom ing signal and the oscillator signal, the latter being at a 175 K . C. higher than the former. The tube is biased so as to operate as a plate rectification detector and its purpose is to extract the difference or beat frequency, pro duced by combining the signal and oscillator frequencies. The beat fre-quency- 175 K . C.-appears in the plate circuit of the first cietector which is accurate!y tuned to 175 K . C. The tube used as a first detector is Radio. tron UY- 224.

The next circuit is that of the first I. F. stage. It is a high gain Amplifier having both its grid and plate circuits tuned to $175 \mathrm{~K} . \mathrm{C}$. Its grid voltage is controlled by the automatic volume control tube.

At this point the automatic volume control tube should be considered as its grid is controlled by the output from the first I. F. Stage.

The automatic volume control tube functions in the usual manner in that the signal voltage is applied to its grid and the voltage drop across a resistor
in its plate circuit is the grid voltage applied to the R. F. and first I. F. amplifier. As the value of the plate current is a direct result of the signal voltage applied to the grid, a greater plate current gives a greater voltage drop across the resistor in its plate circuit and therefore a higher bias on the R. F. and I. F. stage. This results in less sensitivity and vice versa. The signal output of the first I. F. stage is always maintained at a constant value.

The volume control should now be considered as its position in the circuit has a large bearing on the quiet and smooth action of the rectiver.

In previous automatic volume control receivers, the volume control was placed in the grid circuit of the automatic volume control tube, its action being to vary the control grid voltage of this tube. When operating sets of this character, the receiver jumped to full sensitivity when not tuned to a signal and if in a noisy location, this noise was very objectionable.

In this instrument, however, the volume control is not in the automatic volume control tube circuit, but in the grid circui: of the second I. F. Amplifier. By means of it the signal voltage applied to the second I.F. amplifier is controlled and under no conditions can noise or other signals exceed the level for which it has been set. Electrically, the primary and secondary of the second I. F. transformer are placed so that there is no transference of energy except by means of a small pickup coil. The volume control is a potentiometer shunted across this coil which determines the amount of pickup that will be used.

The second detector is a high-plate voitage, grid-biased type, using Radio tron UY-227, which gives sufficient output to drive two Radiotrons UY-247 connected in push-pull without an intermediate audio stage. The purpose of the second detector is to extract the audio frequency component of the R. F. signal which represents the voice or musical modulations produced in the studio of the broadcasting station. The audio component is extracted and used to drive the power tubes while the R. F. current is by-passed and not further used.

A grid filter consisting of a 1 megohm resistor in the second detector circuit helps to reduce any possible hum in these stages. The power A. F. Stage consists of two Radiotrons UY-247 connected in push-pull. Transformer coupling is used between the detector and the grids of the Radiotron UY-247 as well as from the plates to the cone coil of the reproducer unit.

A tone control, consisting of an inductor .01 mfd . Capacitor and a 0.5 meg. variable resistor is in the plate circuit of the second detector. The tone control functions to reduce the high frequency output as the resistance is reduced, without accentuating the bass response. The two 0.0004 mfd . condensers, connected in series with their mid-point grounded are connected across the secondary of the imput transformer. The purpose of these condensers is to prevent audio oscillations and provide a high frequency audio cut-off.

A 0.005 mfd . condenser connected in series with an 18,000 ohm resistor is placed across the primary of the output transformer. This functions to reduce the third harmonic distortion an inherent characteristic of the Pentode output tube. The direct plate and grid voltages are supplied from high voltage alternating current which is rectified by means of Radiotron UX280. The filter is of the tapped reactor type which gites an output of well filtered D. C. The bias voltage of Radiotrons UY-247 is obtained by using a portion of the drop across the reproducer field. One 100,000 and 20,000 ohm resistors act as the voltage dividing resistors.

SERVICE DATA

Information pertaining to R. F., oscillator and I. F. adjustments together with general service data for this type receiver may be obtained from the Service Notes already issued. Figure 1 shows the schematic diagram.

R. F. OSCILLATOR AND I. F. ADJUSTMENTS

A reference to the Victor Radio Superette Service Notes will give the dctails for making correct R. F., I. F. and Oscillator adjustments. However, due to the use of an automatic volume control tube, its action will defeat the use of an output meter. To overcome this, a "dummy" Radiotron UY-227 (one that has one heater prong removed but is otherwise O. K.) should be substituted for the tube in the automatic volume control socket. Do not make any adjustments with this tube removed from the socket. While apparently everything functions in the normal manner, the lack of tube capacity in the circuits will cause an incorrect alignment to be made.

In the Model R-20 and R-21 the I. F. transformers are adjusted for maximum output and no attempt at band pass tuning should be made when these adjustments are made.

RCA-VICTOR, INC.

RCA-VICTOR, INC.

Figure 2-Receiver Assembly Wiring Diagram
RADIOTRON SOCKET VOLTAGES
volitages are the same at either position of the volume control
110 VOLT LINE

Radiotron No.	Heater to Cathode Volts	Cathode or Filament or Control Grid Volts	Cathode or Filament to Screen Grid Volts	Cathode or Filament to Plate Volts	Plate Current M. A.	Heater Volt
1-R.F.	2.0	* 0.2	58	210	3.0	2. 5
2-Osc.	5.0	0	-	- 50	3.5	2.5
3-1st Det.	4.0	3.5	55	210	1.1	2.5
4-1 st I.F.	2.0	* 0.2	58	210	3.0	2.5
5-A.V.C.	0	0	-	30	0.1	2.5
6-2nd I.F.	2.0	3.5	55	210	2.0	2.5
7-2nd Det.	20.0	*8. 0	-	190	0.5	2.5
8-Pwr.	-	*10.0	230	215	25.0	2.5
9-Pwt.	$=$	*10.0	230	215	25.0	2.5

*These readings are not correct due to the resistance in the circuits.

RCA-VICTOR, INC.

RCA-VICTOR, INC.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

$\frac{1}{5}$ $\underbrace{\frac{1}{5} \frac{1}{5}}$

MODEL 37

OFFICIAL RADIO SERVICE MANUAL

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

poner transformer 60 CYCLE RG/60 35 CYCLE R 6085			
			slepressor Cowa R6218
$\frac{\text { EKTER CONDEASER }}{R G 131}$			
			$. \operatorname{cose} \text { है }$ TENE CONTROL CONDENSER RG/4G
LEAD ORTAIS OF POWER TRANSFORMER-IE TRANS -I. F TUNWG CONO-FLTER. TONE CONTRA ELECTROLTTIC P SUPPRESSOR CONDENSDRS. REF-ANT BOSCILLATER COLLS MODEL 44			

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

SEARS, ROEBUCK \& CO.

MODEL 50 AVC.

POWER TRANSFORMER		
ORANGE: 003 MF. PLATE 277 OUTPUT O? HLUOW-2 MF.-IOM RESISTOR GAREN- TMF- 2 M REESTSTOR RLD-:IMF.-LF PLATE SUPPLY TERM BLDE-IMF-CATHOOE 235 AKC.	ANTENNA COIL R6043	
DENSER-R6238		
LEAD DETAILS OF POWER TRANSFORMER-IF. TRANS. - I.F. TUNING COND. FILTER COND.-ELECTROLY COND - ANTENNA, SUPPRESSOR, TRANSLATOR AND CHOKE COILS - TUNING METER.		

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

TYPE 250 RECEIVER AND POWER UNIT

STANDARD RADIO MFG. CORP., LTD.
(ROGERS)
400 SERIES RECEIVER AND POWER UNIT.
ReF. CHASSIS.

POWER UNIT.

bise popup
SpEcifications.
Power Unit for type. 15 Power Tube.

$$
\begin{aligned}
& \text { T1:- UNIVERSA - (2541060 CYCLE) PART } 2260 \\
& \text { Ch PART } 2271 . \\
& \text { REGULATORS. }\left\{\begin{array}{l}
\frac{25}{6} \text { CC TYpE } \frac{6-20}{} \text { REGULATOR } \\
60 \text { " } \quad 14-20
\end{array}\right. \\
& R 1=7000 \omega \quad R 2=20000 \omega \quad R 3=1390 \omega \quad R 4=50000 \omega \quad \text { AVIaTE } \\
& B 3=250 \mathrm{~V} . B 2=110 \mathrm{~V} . B 1=30 \mathrm{~V} . \quad C 2=50 \mathrm{~V} .10 \frac{1}{2} \mathrm{M} . \mathrm{F} \text {. ONO } \\
& \frac{1}{10} \text { COND-800V. FLASH TEST PT } 2285 .
\end{aligned}
$$

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

STANDARD RADIO MFG. CORP., LTD. (ROGERS)

-Ananouncing the

Presented on these two pages are the new books of the RADIO-CRAFT LIBRARY- the most complete and authentic set of volumes treating individually, important divisions of radio. Each book has been designed to give radio men the
opportunity to specialize in one or more of the popular branches of the industry. The material contained in these kwoks will increase your knowledge; you will find them a real help in your work and they will contribute to your money earning

RADIO SET ANALYZERS

C4 PAGES. Size. 8×9 inches Ower 50 tllustratlons

HOW TO BECOME A RADIO SERVICE MAN

 How To Get Started and How To Make monoy in Ractio Servicingby Louis martin
The ambition of many men in radio today is to become a first-grade Service Man, with a business that is flourishing. It is not as difficult as one might believe. but it cannot be done in a few short. months. Following very carefully the sdvise of Mr. Martin. who has dealt with the problems of thousands of Seryice Men. this book deals very carefully with the essential stages in the preparation fur qualifying as a Service Man. The Chapters of the book are so divided that each element is thorouxhly covered. Here are the chapters: The Small Independent Service Man: Advanced Commercial Aspects: The Radio Set; SemiTechnical Considerations: Advanced Service Data. Each chapter is again subdivided to bring out in minute detail every point of importance.

64 PAGES. Slze, $\$ \times 9$ Inches Over 55 Illustrations

AUTOMOBILE RADIO AND SERVICING

4 PAGES. Size. 6×9 inches Over 65 Illiustrations

A Complete Treatise on the Subject Covering All Phases from Installing to Servicing and Maintenance

By LOUIS MARTIN
Automobile radio is $\mu \mathrm{p}$ and coming, and someone has to service them properly. It is certsin that one of these days your turn will come, whether you are an experimenter or Service Man. It therefore behooves you to read this immensely important new book on the art of Auto mobile Radio. There is no better book in print and none as concise. The book is full of illustrations, photographs, diagrams and hookups.

Here are only a few of some of the really interesting chapters: Introduction; \dot{A}--omotive Radio Installations: Complete Descriptions of Commercial Automotive Receivers: Servicing Automotive Receiv. ers: The Ignition System: General Service Considerations: Effects of Tempera ture on Power Supply; Concharinn.

MODERN VACUUM TUBES

WIth Aad How They Work
With Complate Teeluical Data on All Stamdard and Many Special Tubes
by Robert hertzberg
MODERN VACUUM TUBES describes the fundamental electron theory which is the basis of all vacuum tube operation, and goes progressively from the simplest two-element tubes rixht up to the latest pentodes and thyratrons. It is written in clear, simple language and is devoid of the mathematics which is usually so confusing. Valuable reference charts and characteristic curves of standard and special tubes are to be found, also diagrams of sockets and pin connections.
Here are some of the chapters: Thi Edison Effect and The Electron Theory Electron Emitters and the Ionization Effect: The Three-Electrode Tube; Vacuum Tube Characteristics; Four- ind FiveElement Tubes; Lizht Sensitive Cells and Other Special Tubes.

BRINGING ELECTRIC SETS UP TO DATE

With Pentodes, Multi-Mus. Dynamic Speakers-Complate Information How to Modernize A.C., D.C. and Gattery Operated Receivers
By CLIFFORD E. DENTON
In this country there are over ten million electrically operated receivers that could be modernized-by placing in them new type tubes, new speaker equipment and other modern improvements. This
business of improving old sets can go to business of improving old sets can go to the experimenters and Service M
Read in this book by Mr. Denton, how easily you can modernize any obsolete set. cabinets and ctill have a receiver expensive right-up-to-the-minute, and with little additional co s.
Here are t.ae high lights of this book: Tubes Available for Replacements: Electrifying Battery Receivers: Use of the New 2- and 6-Volt Tubes: Operating Sets with Single Control: Conversion of A.C. Sets into D.C.. and D.C. into A.C. : Replacing Output Tubes with Higher Output Tubes; Improving Old Supers; Loftin-

HOME RECORDING AND ALL ABOUT IT

A Complete Treatise on Instantanious Recording Microphones, Recorders, Amplifiers, Commercial Machines, Servicine. ete.

By george J. saliba

If there is one subject that is fascinating to every radio man, it is that of Home Recording. Of course, this volume is not all on "Home" recording, but the information contained therein is important to commercial radio men, studio operators, enkineers and others interested in this phase of radio.
The art of recording and reproducing broadcast selections is becominy more im portant every day to radio men, experi menters and Service Men. Equipping dance halls, auditoriums. churches. res taurants and homes with public address and amplifiers brings many extra dollara nd
In this book are found such topics as: Short History of the Art: Microphones; Recording Amplifiers; Cuting Heads; Aypes of Records: Commercial Machines Layouts: Mechanical Filters for Turntables.

L

capacity. Read these books during your spare time at home. The authors of these books are well-known to everybody. Each one is an expert radio man; an authority on the subjecteach is thoroughly familiar with the field which he represents.

This is perhaps the first real opportunity that you have ever had to build a radio library of books that are authentic, right-up-to-the-minute and written so that it is easily digested and clearly understood. Mail the coupon below for your books.

MODERN RADIO HOOK-UPS

The Best Radio Gireuits

A Complete Compendium of the Most Important Experimental and Custombuilt Receivers
By R. D. WASHBURNE
It is fascinating to the experimenter. or even to the up-to-date Service Man, to take a commercial set and to change it into one using a famous hookup that is not found in any manufactured set: and it is usually worth the traulile because results are far superior than in the
original. Mans excellent circuit. have original. Mans excelient circuits have never been commercialized, but limited
only to home-set builders. Thousands of only to home-set builders. Thousands of these popular circuits have been requested
from time to time, and in this book we from time to time, and in this book we include the famous Peridyne. Cash-Box A.C.-D.C. Set and others.

The circuits cover the following: BROADCAST RECEIVERS ALL-WAVE RECEIVERS, SHORT-WAVE RECEIVERS, CONVERTERS AND ADAPTERS, TELEVISION RECEIVERE HOME RE-
CORDING APPARATUS,
RUTOMOBILE CORDING APPARATUS, KUTOMOBILE RECEIVERS. AUDIO AND POWER AM-
PLIFIERS, POWER UNITS and MISPLIFIERS, PO WER UNITS.

There is no more fascinating a subject in the large array of radio circuits than the famous superheterodyne circuit. It has taken the world by storm, and today practically all modern receivers employ this principle of design. Whether you are a Service Man or experimenter. firsthand knowincte about the construction of book on Superheterodynes gives underlying principles of their construction, right from the very first set made. Mastering from the very first set made. Mastering able you to build or service any receiver.
The following is a short list of contents: Basic Principles of the Superheterodyne: The Oscillator: First Detector: Single Dial Tuning Systems; Intermediate Amplifier: Second Detector, Audio
Amplifier and Power Supply; Commercial Amplifier and Power Supply; Commercial
Superheterodyne Receivers;
Servicing Superheterodynes.

64 PAGES. SIze. 6×9 Inches Beund in stin board cavers

RADIO QUESTIONS AND ANSWERS

64 PAGES. Slze, 6×9 Inches Over 80 lllustrations
Beund in stiff beard covers

A Selection of the Host Important of 5.000 Questions Submitted by Radio Men Durime the Course of One Year
By R. D. WASHBURNE
There has been collected a wide variety of questions which have come into our editorial offices during the past two years and only those whose answers would benefit the majority of men engaged in radio have been incerporated in this amazing question and answer book. The tremendously long inst of topics better expiains the subjects Radio Servicing Receiver
Radio Servicing; Receiver Devign: Theory : Home Recording: Television: Sound Oquipment Nhort waves: Antennus uperating Tubes: Engineering: Ultra-ShortWaves: Police Radio: Reproducer: Graphs: Superheterodynes: Automotive Sets: Power Packs: Automatic Volume Controls: Remote Control Devices : Alisning Procedure: Photoelectricity: Tone Control: Coil Construction: Adapters Measuring Apparatus: Band-Selectors. Meters: Symbols: Microphones; Converters: Definitions: Public Address Equipment; Modernizing Methods: Set Analyzers: Midget Sets; Oscillators: Phōno-
graph Pickups; Tube Testers; Dia!rams.

BIG DISCOUNT OFFERED

In order to make it possible for everyone to buy these books, the fifty (50) cents price has been made uniform for all volumes. You can buy these books separately ${ }_{3}$ but you should take advantage of our special offer:

WHEN FIVE (5) BOOKS OR MORE ARE ORDERED DEDUCT 20% FROM YOUR REMITTANCE

Simply fill in the coupon below, and mail it to us together with your remittance. Checks, stamps or money orders accepted.

All Books Uniform

The books in the new RADIO-CRAFT LIBRARY are all strictly up-to-date, and written by men who know their subjects. The volumes are all uniform size, 6×9 inches, and contain on an average of 50 to 120 illustrations. Each book is printed on fine book paper, and no expense has been spared to make it an outstanding value, for its editorial contents as well as from the mechanical standpoint.

GERNSBACK PUBLICATIONS, Inc. $\begin{aligned} & 96-98 \text { Park Place } \\ & \text { New York, N. Y. }\end{aligned}$

I have circled below the numbers of books in the RADIO-CRAFT LIBRARY, which you are to send me, and have deducted 20% for ordering five (5) books or more. I have included my remittance in full, at the price of 50 c each. When less than five books are ordered. The amount of my remittance is (Stamps, checks or mpney orders accepted.) $\begin{array}{lllllllllllll}\text { Circle numbers wanted: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ Name
\qquad

SUPPLEMENT No. 2

Index and Incidental Information

TTHE inclex helow lisis all the diagrams contained in tooth the first and second supplements to the 1932 Official. Ramio Servicf Mantial. Flace this sheet before page 579 , so that it will be as close as possible to the main index. In looking for a particular receiver, be sure
to consult both this index and the main index.

The completely revised index promised with this supplement could not be completed in ime hecause of the great amount of work involved in its preparation, but it will definitely be included
with the third supplement. It will appear in a new and more convenient form, and will include every diagram published in both the 1931 and 1932 Manuals and in all the supplements. As a record of commercial receivers it will be of great interest and value to all radio Service Men.

C

GENERAL ELECTRIC CO.
Models $\mathrm{H}-91$ and H -

5
PHILADELPHIA STORAGE BATTERY CO. Models 70 and 70A
M-.........326A, 326B
Model $90 \therefore 326 \mathrm{C}$, 326D
Standard By - Pass
Condenser Data....326E
Radio Chassis Data.. 326F
Checking if Oscil-
lator Calibration...326G

91-R (Longfellow Grandfather Clock)

GENERAL MOTORS
RADIO CORP.
Model 211176E
Model 211176G
Mcdel 220
Model 281 Converter 242J

JACKSON-BELL, Ltd.

S

SEARS, ROEBUCK \& CO.
Model 36376A, 376B
Model 36P $\cdots 376 \mathrm{~A}, 376 \mathrm{~B}$
Mcdel 37P …....376D
Model $37376 \mathrm{E}, 376 \mathrm{~F}, 376 \mathrm{I}$
Model 41376G, 376J
Model 41P376H
Model 44 . . . 376J, 376 K
Models 47 and 48
376L. $376 \mathrm{M}, 376 \mathrm{~N}$
Model 50AVC 376O, 376P

STANDARD RADIO MFG.
CORP. LDT. (Rogers)
Advanced Chassis. . 414 A
Model 220 Chassis........4144
Model 250 …........4414C
Model 400 …........414D
Model 451 …........414E
Model 545414F
Mcdel 640578C
Model 831578C

RCA.VICTOR, Inc. Model R-6 Console. 326H Model R-12. 326 I to 326 M Models R-20 and R-
21 326 N to 326 P
Model RAE-59 326Q, 326R

Owners of the Official Radio Service. Manuar. are requested to observe a. few simple rules in regard to the question service. First of all, please bear in mind the fact that it is necessarily limited to matters concerning commercial receivers. Out of justice to the hundreds of Service Men who send in legitimate service inquiries every wcek, we cannot undertake to do special design work, draw up elaborate diagrams to fit odd collections of parts, enter into involved discussions of radio theory, ideatify mysterious short-wave stations, or do similar jobs that have no relation to service work.
Answering straight scrvice letters is chough of a problem in itself, as frequently this involves considerable digging through files of service manuals. Sometimes fifteen or twenty minutes of research is necessary merely for a yes. or no answer to a question.

We cannot offer opinions on the rela. tive merits of different makes of apparatus, nor can we obtain discounts on any kind of merchandise. If you want catalugs or special data from a manufacturer, write to him directly; if you do not know his address, send your letter, in a stamped envelope, to us, and we will forward it.
rlease be reasonable and limit your questions to not more than three or four per letter, and send one coupon for cach question. Please write clearly; use a typewriter if you have one, or at least pen and ink and white paper. We have a "dead letter" file containing doz. ens of letters that cannot be answered hecause names or addresses, or both. have been omitted, or the writing is undecipherable, or the language is one that no scholar can identify.

* * *

Many owners of the Manual evidently have not read the first section of the book, which contains a wealth of practical service data that answers many of their everyday service problems. For intance, we have had dozens of requests for the R.M.A. standard color code, yet this is fully explained on page 117. Take an evening off sometime and study the section from page 5 to 129 . You'll be surprised to sce how much you can learn.

* * *

Past issues of Radio Craft have contained articles describing servicing in. struments of various kinds. The following list should be remembered for reference. Back copies of the magazine cost 25 sents each and may be obtained from Radio Craft, 98 Park Place, New

York, N. Y. Specify the issue you want.
"How to Test the Pentodes", page 155. September, 1931.
"Modernizing the Jewell 133A Analyzer", page 211, October, 1931.
"Mutual Conductance Meter", page 282, November, 1931.
"Magic in Meters", November and December, 1931, and January, 1932. (These articles tell everything you want to know about shunts and multipliers for all kinds of meters.)
"Vacuum Tube Voltmeter", page 466, February, 1932.
"The Supreme Diagnometer", February, March and April, 1932.
"Short-Checkers and Pre-Heaters", page 474, February, 1932, and page 535, March, 1932.
"A Service Test Panel for the Shop". page 533, March, 1932.
"Improving the Weston 537 Analyzer", page 605, April, 1932.
"Combination Oscillator and Tube Tester", page 586; April, 1932.
"Constructing a Simple Sèt Tester", page 659, Мау, 1932.
"Servicing Modern Supers", page 670, May, 1932.
"A Modern Tube Checker", page 671, May, 1932.

[^0]: *Used with spacer washer 3316 and mounting screw W-161 when replacing cone assembly 02970.
 $*$ Used with spacer washer 2616 and mounting screw W-161 when replacing cone assembly 02949.

