35 тн EDITION , 1958

THE STANDARD MANUAL OF AMATEUR RADIO COMMUNICATION

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1958

Thirty-fifth Edition

COPYRIGHT 1958 BY

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Library of Congress Catalog Card Number: 41-3345

Thirty-fifth Edition
$\$ 3.50$ in U. S. A. proper
$\$ 4.00$ in U. S. Possessions and Canada
$\$ 4.50$ elsewhere
Buckram Edition \$6.00 Everywhere

THERUMFORD PRESS
Concord, New Hampshire, U. S. A.

Foreword

In over thirty years of continuous publication The Ratio Amateur's Handlook has become as much of an institution as amateur radio itself. Produced by the amateurs own organization, the Imerican Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal aceeptance not only by amateurs but by all segments of the terhnical radio world. This wide dependenere on the Ifandbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract diseussion.

Virtually contimuous modification is a feature of the IIandbook - always with the objertive of presenting the soundest and best asperts of current practice rather than the merely new and novel. Its annual rerision, a major task of the headquarters group of the Leagur, is participated in by skilled and experienced amateurs well arcquainted with the practical problems in the art.

The Ifandlow is printed in the format of the League's monthly magazine, Qs'T. 'This, together with extensive and useful catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

The Ifandlook has long been considered an indispensable part of the amateur's efuipment. We earnestly hope that the present edition will suceed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

A. L. Budlong
General Manager, A.R.R.L.

West IIartford, Conn.

CONTRNTS

Circuit Symbols frontispiece
The Amateur's Code 8
Chapter 1 -Amateur Radio. 9
2 - Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 62
4-Semiconductor Devices 82
5-High-Frequency Receivers 89
6-High-Frequency Transmitters 147
7-Power Supplies 219
8 -Keying and Break-In 244
9 - Speech Amplifiers and Modulators 256
10-Amplitude Modulation 284
11 -Suppressed-Carrier and Single-Side-Band Tech- niques 304
12 - Frequency and Phase Modulation 323
13-Transmission Lines 335
14-Antennas 355
15-Wave Propagation 389
16-V.H.F. Receivers 397
17-V.H.F. Transmitters 418
18-V.H.F. Antennas 448
19 - Mobile and Portable-Emergency Equipment. 460
20-Construction Practices 497
21 - Measurements 507
22 - Assembling a Station 539
23-BCI and TVI 546
24-Operating a Station 566
25-Vacuum Tubes and Semiconductors V1
Catalog Section

THE AMATEUR'S CODE

- ONE•

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

-TWO •

The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

-FOUR •

The Amateur is Friendly . . . Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

CHAPTER 1

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are over 200,000 amateur radio operators who perform a service defined in international law as one of "self-training, intercommunication and terhnical investigations carried on by. . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble begimning at the turn of the contury, amatear radio hats grown to beoome an wablished institution. Tonday the American followers of amateur radio number over 150,000 , trained communieators from whose ranks will eome the pofersional communications specialists and executives of tomorrow just as many of today's radio leaders were first allacted to radio by their early interest in amateur radio eommunication. A powerful and prosperous urganization now proviles a bond between amateurs and protects their interests; an internationally-respected magazine is published solely for their benefit. The military services seek the rooperation of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production teelnigues - in itself a mational asset. Amateurs have won the gratitude of the nation for their heroid performances in times of matural disatster; Lianlitional amatemer skills in emerbenes communcation are also the standby system for the nathon's civil defense. Amatur radin is, indeed, a magnifieently useful institution.

Although as old as the art of radio itself, amatrur ractio did not always enjoy such prestige Its first enthusiasts were private
 imaginatons wont widel when Marconi first proved that messages actually could be sent lig witeless. They set about learning enough about the new seientifie marvel to build homemadn spark transmitters. By 1912 there were numbrous (Goverument and commereial stations, and hundreds of amateurs; regulation was meeded, so laws, licenses and wavelength speceifications appeared. There was then mos amateur organization nor spokesman. The official viewpoint toward amateurs was something like this:
"Amateurs". . . Oh, yes. . . . Well, stick 'ein on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and D)X (distance) jumped from local to 500 -mile and even oceasional 1,000 -mile twoway contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Athantic on 200 meters.

Most important of all, this period withessed the birth of the American Radio Relay Lague, the amatour radio organization whose name was to be virtually srnomymous with subsequent amateur progress and short-wave dovelopment. Conceived and formed by the famous inventor, the late Hiram Perey Maxim, ARRLL was formally launehed in early 1911 . It had just begun to exert its full force in amateur activities when the ["nited States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6000 amateurs. Over 4000 of them served in the armed forees during that war.

Today, fow amateurs realize that World War I not only marked the close of the first phase of amateur development but came very

HIRIM PERKCY IIVIM
fresident ARRL, 1911-10:3f,
near marking its end for all time. The fate of amateur radio was in the balance in the days inmediately following the signing of the Armistice. The Govermment. hatwing had atate of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legistation that wonld have made it impossible for the amaterur radio of old ever to be resumed. ARRLL's l'resident Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban contimued. Repeated representations to Washington met only with silence. The Leagues ollines had been closed for a vear and a hatf, its records stored away. Most of the former amateurs had gone into serviee: many of them womld never come back. Would those returning be interested in such things as amaterur radio." Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was diseomaging: amaterur radio still banned by law, former mombers sattored. no organization, no membership, no fumds. But those few determined men financed the publication of a notice to atl the former amatemes that could be located, hired Frometh 13. Warner as the League's first paid sermetary, floated a bond issue among old Learne members to obtain money for immediate rmming expenses, bought the magazine Qstl to be the League's official organ, started activitios. and dumbed officialdom until the wartime han was lifted and amateur radio resumed again, ont October 1, 1919. There was a healloner rush by amateurs to get back on the air. (iamgway for King Spark! Manufacturns wore hard put to supply radio apparatus fast emough. Each night saw adelitional lozens of stations crashing out over the air. Interteremere? It was bedlam!

But it was an era of progress. Wartime meds had stimulated atechnieal development. Vacuum tubes were being used both for receiving and transmitting. Amatcurs immediately adapted the new goar to 200 -meter work. Ranges promptly inereased and it became possible to bridge the continent with but one internediaterelay.

TRANSATLANTICS

As DX becaine 1000, then 1500 and then 2000 miles, amateurs hegan to dream of transatlantie work, (ound they wit acosse? In Iborember, 1921, ARR1, sent athoned ath expert amateur, Paul lf. Godley, 2/2E, with the best receiving equipment available. Tests were rum, and thirty American stations were heard in Europe. In 1192 another transathantio tust was carried out and 315 Ameriath calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communieation atorss
the Atlantic! It must be possitle - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers". They had superheterodynes. Another wave length? What about those undisturbed wave lengths below 200 meters? The engineering world thought they were worthless - but they hat satid that about 200 metars. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARIRL-sponsored tests on wave lengths down to 90 meters were sureessful. Reports indicated that as the wave length dropped the results urere better. Exaitement began to spread through amateur ranks.
l'inally, in November, 1923, after some months of careful preparation, two-way amatonu transatlantic communication was accomWished, when Schnell, 1MO, and Reinartz, INSM (now $\mathbb{N}+\mathrm{CF}$ and ligiso, respertively) worked for several hours with Deloy, 8AB, in Franere, with all three stations on 110 mefors: Additional stations dropmed down to 100 metors and found that they, too, could easily work two-way across the Atlantic. The exodiss from the 200 -meter region had started. The "short-wave" era had begun!

I3y 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chams threatened, until the first of a series of national and international radio conferences partioned off varions bands of frequencies for the different services. Although thought still eentered around 100 meters, League offirials at the first of these frequene y-determining conforenees, in 1924. wisely obtained amateur bands not only at 80 meters: but at 40,20 , and curn ${ }^{-1}$ moters.

Eighty meters proved so successful that "forty" was given a try, and osos with Australia, New Zealand and South Africa soon became eommonplace. Then how about 20 meters:' This new band revealed entirely unexpected possibilities when 1XAM worked 6TS on the West Coast, direct, at high noon. The dram of amateur radio - daylight DX! was finally true.

public service

Amateur radio is a grand and glorious hobhy but this fact alone would hardly merit such wholeharared support as is given it by our fowermant at international conforences. There atre oh her reasons. One of these is a thorough appreriation by the military and rivil drfonse authentios of the value of the amatere as a soure of skilled radio persommel in time
 strvice."

About 1000 amateurs hat contributed their skill and ability in '17-'18. After the war it was only hatural that cordial relations should prevail betwern the Army and Navy and the ama(char. Thes relations strengthened in the next fow vears and, in gradual steps, grew into cooperative adivities which resulted, in 1925, in
the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Ratio System). In World War II thousatnds of amateurs in the Naval leserve were called to atotive duty, where they served with distinction, while many other thomsands served in the Army, Air Forces. Coast Guard and Marine Corps. Altogether, more thatn 25,000 rambin amateurs served in the armed forces of the United Siates. Other thoustuds were engaged in vital divilian electronic research. development and manufacturing. They also organized and manned the War Emergeney Radio Norvier, the communications section of ()CD).

The "public-service" record of the amateur is a brilliant tribute to his work. These atelivities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in $1!223$ when a League member, Don Mix, $1 T \mathrm{~s}$, of Bristol. Comn. (now assistant technical (editor of $Q, S^{\prime} T$). accompanied MacMillan to the Aretic on the schooner bowdoin with an amateur station. Amateurs in Canada and the Cr.s. provided the home contacts. The success of this venture was so outstanding that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assistod thy amateur radio, the several explorations of the Antarctic being perhaps the best known.

Since 1913 amateur radio has bren the principal, and in many cases the only. means of outside communication in several hundred storm, flood and warthquake emergencies in this country. The $19: 36$ and $19: 37$ castern states floods, the Southern Californias flood and Jome Ishand-New England hurrieane disaster in 1938, the Florida-Gulf Coast hurricanes of 1947 , and the 1055 flood disasters called for the amateur's greatest emergeney effort. In these disusters and many others - tornadoes, sleot storms, forest fires, blizzards - amateurs played a major role in the relief work and earned wide commendation for their resourecfulness in effecting eommanieation where all other means had failed. During 1938 ARIRL, inaugurated a new emer-gency-proparadness program, registering personnel and equipment in its Emergency Corps and putting into effect a eomprehensive program of cooperation with the IRed Cross, and in 1947 at National Fmergency Coordinator was appointed to full-time duty at laygue headpuarlers.

The amateur's outstanding reeord of organized preparation for emergeney communications and performance under fire has been largely rosomsible for the decision of the Federal Government to set up special regulations and set aside sumecial frequencies for use by amateurs in providing auxiliary communications for civil defense purposes in the event of war. Inder the banner, "Izadio Amateur Civil Emergence Service," :anateurs are setting up and manning community and area networks integrated with civil defense fumetions of the municipal governments. Shouk it war cause the shut-down of routine amateur activi-
ties, the R.I(CN will be immediately availatle in the national defense, manned by amateurs highly skilled in emergency eommunication.

TECHNICAL DEVELOPMENTS

Throughout the many years the amateur Wat (arreful not to stight experimentad development in the whtheiasm incident to interna-
 at work on exom-higher frepucreites. devising improved appatatus. and learning how to cram sworal stations where previously there wat room for only onc! In particular. the amatour pressed on to the devolonment of the very high frequaneios and his experionee with five meners is deperially representative of his inithative and resourcelulness and his ability to make the most of what is at hathd. In 1924 , first atmatedr experimenta in the virinity of at Mc. indicalled that band to be pradelatly worthlose for 1) X. Xionethedes. great "short-haul" amivily evematally came about in the band amd new gratr was developed to meet its special prohbmins. Beymaing in 193.t a serios of investigations by the brilliant experimonter, Ross
 of $\begin{array}{r}\text {.h.f. Wave-bemding in the bower atmos- }\end{array}$ phome and led amatous 10 the attamment of better dictances: while weeasional manifestations of jonospheric propatgation, with still greator distances. gatve the band uniquely erratic performance, by Pearl Harbor thousands of amatemes wore spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to sevoral thousand miles, Transeontinental 6meter IJX is not uncommon; during solar peaks, evon the neoans have been bridged! It is a tribute to these indefatigable amaterrs that today ${ }^{\text {s }}$ concept of v.h.f. proparation was devoloped largely through amatear research.

The amatome is constantly in the forefront of technical progress. His incessant curiosity, his eagerness totry any hing new, ate two reasons. Another is that ever-growing amateur radio continualdy ovarcrowds its frequency assignmonts, spurrine amateur's to the development and adoption of new teehniques to permit the

A corner of the $I / R I R I$, laboratory.
accommodation of more stations. For examples, amateurs turned from spark to eew., derigned more solective receivers, adopted rrysal rontrol and pure d.e. power supplies. from the Allkl's own laboratory in 1932 came James Jamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotolograph receiver and, in 1936, the "noise-silencer" circuit. Amatrurs are now turning to speech "clip)pers:" to reduce handwidths of 'phone transmissions and "single-sidehand suppressed-earriur" sustoms as woll as even more selertivity in receiving equipment for greater efficiency in spectrm use.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio deviees, both in Government and private laboratories, Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass eoperation of the amateur hody in Government projects such as propagation studies; cach participating station is in reality a separate field laboratory from which reborts are made for correlation and analysis. An outstanding example is varied anateur participation in several atetivities of the $1957-1958$ International (ioophysical lear program. ARRL, with . ir Forer sponsorship, is condueting an intensive study of $v . h . f$ propargation phenomena - 1)X transmissions via littlo-understood methods such as meteor and auroral reflections, and transequatorial seatter. ARRL-affiliated clubs and groups are sotting up procision recciving antennas and appatratus to halp track the earth satellite via radio, For volunteer astronomers searching visually for the satellite, other amateurs are manning networks to provide instant radio reports of sightings to a central agency so that an orbit maty be eomputed.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public serviee - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspeets of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

THE AMERICAN RADIO RELAY LEAGUE

The ARRLA is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommereial and has no stockholders. The members of the League are the owners of the AIRIRL and Qs'T.

The operating room at WIAW.
The Ieague is pledged to promote interest in two-way amateur commmieation and experimentation. It is interosted in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standare of conduct. It represents the amateur in legislative matters.

One of the leagues principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsibilities - the maintenanee of high standards, a cooperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateur radio may continue to operate "in the public interest, convenience and neressity."

The operating territory of ARRL is divided into one Canatian and fiftern U. S. divisions, The affairs of the League are managed by a Board of Directors. One director is elected every two vears by the membership of each U. S. division, and one by the Canadian membership. These directors then choose the president and vice-president, who are also members of the Board. The secretary and treasurer are also appointed be the Board. The directors, as representatives of the amateurs in their divisions, meet annually to examine current amateur problems and formulate ARRL policies thereon. The directors appoint a general manager to supervise the operations of the league and its headquarters, and to carry out the policies and instructions of the Board.

ARRL owns and publishes the monthly magazine, QSTV. Acting as a bulletin of the League's organized activities, $Q 心 T$ also serves as a medium for the exchange of idoas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subseription to QSTT.

AlRRI maintains a model headquarters amateur station, known as the IIiram Percy Maxim Memorial Station, in Newington, Comn. Its call is W1.IW, the call held by Mr. Maxim until his death and later transferred
to the Jeague station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, WiAlV ramsmitio on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the league in West Hartford, Comm., is a well-rquipped laboratory to assist staff members in preparation of technical material for QS'I and the Ralio Amatrur's Handbook. Among its other activities, the League maintains a Communications Department concerned with the operating activities of Jeague members. 1 large field organization is headed by a section Communications Manager in each of the League's seventy three sections. There are appoint ments for qualified members in various fiedts, as outlined in chapter 24 . Sperial artivities and contests promote operating skill. A special seation is reserved each month in QST for amateur news from every section of the country.

- amateur licensing in the UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly atuthorized person interested in radio technique solely with a personal aim and without pecuniaryinterest. Amateur operator licenses are given to ${ }^{\dagger}{ }^{\dagger}$. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and recoive code. There are four availathe classes of amateur license - Novice, Terhnician, General (ralled "Conditional" if exam taken by mail), and Amateur Extral Class. Diach has different requirements, the first two being the simplest and consequently conveving limited privileges as to freguendes available. Exams for Novier, Technician and Conditional classes are taken by mail under the supervision of a volunterer examiner. Station tienenses are granted only to lioronsed operators and permit communication betwern such stations for amat teur purposes, i.e., for personal noneommercial aims flowing from an interest in radio technique. An amateur station may not be used for matrerial compensation of any sort mor for broadeasting. Narrow bands of frequencios are allowated exchasively for use by amateur stations. Transmissions maty be on any frequency within the assigned bands. All the frequemecies maty be used for e.w. telegraphy: some are avaiable for radiotelephone, others for sperial forms of tramsmission such as teletypr. faresimile, anateur television or radio control. The input to the final stane of amateur stations is limited to 1000 watts and on frequencics below ift Mr. must be ade-quately-filtered dired current. Fimissions must be free from spurious radiations. The licensee must
provide for measurement of the transmitter frequeney and establish a procedure for checking it regularly. A eomplete log of station operation mast be maintatued, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. All radio licensees are subject to penaltios for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issurd only to citizens but that is the only limitation, and they are given without regard to age or physioal condition to anyone who sureessfully eompletes the examination. When you are able to copy code at the required speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination hy an FCC engineer (or by a volunted, deponding on the lieense class), through FC(at Washington. A romplete up-to-throminute disansion of license requirements, and study guides for those preparing for the examinations, wre to be found in an ARRL, mblication, The Radio Amateur's License Vamual, available from the Ameriean Radio Relay League, Wist Hartford 7, Comm., for 50c, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of convering

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9
5 dididididit	0

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Earor:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.

Fig. 1.1-The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of somm, never as combinations of dots and dashes. It is easy to "speak", code equivalents by using "dit" and "lah," so that A would be "didah" (the " t " is dropped in such combinations). The sound "di" should be staceato: a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress each "doh" equally; they are underlined or italicized in this text berause they should be slighty accented and drawn out.

Take a few characters at a time. Jearn them thoroughly in diduh language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his comperation. Learn the code by listening to it. Don't think about speed to start; the first recfuirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any dificult letters. Learning the coke is not at all hard; a simple booklet treating the subject in detail is another of the begimer pablications avaibable from the League, and is ritithod, Learning the Radiotelegraph Cole, 50c postpaid.

- THE AMATEUR BANDS

Amateurs are assighed bands of frequencies at approximate harmonic intervals throughout the speetrum. Like assignments to all services, they are subject to modification to fit the changing picture of world communications needs. Modifications of rules to provide for domestic needs are also ocrasionally isned by FCC , and in that respect each amateor should keep himself informed by W'AW bulletins, QST reports, or by commumication with ARRI, IIq. concerning a specific point.

In the adjoining table is a summary of the U. S. amateur bands on which operation is permitted as of our press date. Figures are megacycles. Ab means an unmodutated carrier, Al means c.w. telagraphy, $A 2$ is tone-modulated \cdot.w. telegraphy, As is amplitude-modulated phone, At is farsimile, A_{5} is television, n.f.m. designates narrow-band frequency- or phase-modulated ratdiotelephony, f.m. mans frequency modulation, phone (including n.f.m.) or telegraphy, and Fl is frequency-shift keying.

${ }^{1}$ Input pow must not exceed 50 watts.
In addition, A1 and A3 on portions of $1.800-2.000$, as follows:

		Forver (watts)	
Area	Band, kc.	Ihay	Night
Minu.. Lowa, Wis.. Mich., Pa.,	1800-1825	500	200
Md., Del. and states to north	1875-1900		
N.D., S.l., Nehr.. Colo., N.	1900-1925	500*	200*
Mex.. and states west, including Hawailan Ids.	1975-2000		

Okla., Kans., Mo., Ark., Ill., 1800-1825 20050 Ind., Ky., Tern., Ohio, W. 1875-1900
Ya., Vi.. N. C., S. C., and
Texas (west of $99^{\circ} \mathrm{W}$ or north
of $32^{\circ} \mathrm{N}$)
No operation elsewhere.

* Except in state of Washington, 200 watts day 50 watts night.

Novice liconsees may use the following frequencies, transmitters to be crystal-controlled and have a maximuin power input of 75 watts.

$3.700-3.750$	A1	$21.100-21,250$	A1
$7.150-7.200$	A1	$145-147$	A1, A2,
			A3, f.m.

Technician licensees are permitted all amateur privileges in 50 Mc. and in the bands 220 Me. and above.

CHAPTER 2

Electrical Laws and Circuits

ELECTRIC AND MAGNETIC FIELDS

When something occurs at one point in space because something else happened at another point, with no visible means by which the "cause" can be related to the "effect," we say the two events are connerted by a field. The fields with which we are eoncerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

A field has two important propertics, intensity (magnitude) and direction. The fiold exerts a force on an object immersed in it; this force represents potential (rady-to-be-used) energy, so the potential of the field is a masure of the field intensity. The direction of the field is the direction in which the object on which the foree is exerted will tend to move.

An clectricatly-charged object in an electric fied will be acted on by a fore that will temd to move it in a direction determined by the dirertion of the field. Similarly, a magnet in a magnetic field will be subject to a foree. Everyone has seen demonstrations of magnetic fields with precket magnets, so intensity and direction are not hard to grasp.

I "static" field is one that neither moves nor" changes in intensity, such a field can be set up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if sither an elerttic or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of firld. That is, a changing electric fied sets up a magnetic field, and a changing magnetic field gen(rates an electric field. This interrelationship botwern magnetio and clectric fields makes possible such things as the electromagnet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carriod on, for such waves are simply traveling fields in which the energy is altemately handed back and forth between the electuie and masnetic fields.

Lines of Force

Although no one knows what it is that rom. poses the fied itself, it is useful to invont a picture of it that will help, in visualizing the foreses and the way in whirh they aret.

A field can be pietured as heing made up of lines of force, or flux lines. There are purely imaginary threads that show, be the direction in whirh they lie, the direction the object on
which the fore is exerted will move. The number of lines in a chosen cross section of the field is a measure of the intensity of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

liverything physical is built up of atoms, partides so small that they eamot be seen even through the most powerful microseone. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electrisity represented by the electron is, in fact, the smallest quantity of electrisity that can exist. The kind of electricity assocriated with the electron is called negative.

In ordinary atom consists of a central core ralled the nucleus, around which one or more electrons direulate somewhat as the earth and other planets circulate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus,

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges of the some kind. The positive nucleus and the negative electrons are attraded to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nuclens is exactly balanced by the negative charges on the electrons, it is possible for an atom to luse one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive charge. such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra eleatron, as it sometimes does, it has a mot negative charge and is ealled a negative ion. 1 powitive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nowriby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or filertrons constitutes the electric current.

The amplitude of the current (that is, its intransity or magnitude) is detemined by the rate at which clectric charge - an aceumulation of elec-
trons of ions of the same kind - moves past a point in a ribuit. Since the charge on a single electron or ion is extremely small, the number that must move as a group to form even a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will mot part with any of their electrons even when the electric foree is extremely strong. Materiats in which electrons or ions can be moved with relative case are called conductors, while those that refive to permit such movement are called nonconductors or insulators. The following list show how some common materials divide betwern the conductor and insulator classifications:

(${ }^{\text {anduluctors }}$	Insulutors
Metals	Dry Air
Carbon	Wood
drids	Porcolain
	Textiles
	(ilas:
	Rubher
	Resins
Electr	Force

The electric fore or potential (called electromotive force, and abhreviated e.m.f.) that canses eurrent flow may be developed in several ways. The action of rertain chemical solutions on dissimilar metals sets up an (em.f.; such a combinat tion is ralled a cell, and a group of cells forms an elertric battery. The amount of current that such cells can carry is limited, and in the course of current fow one of the motals is eaten away. The amount of eloctrical energy that can be taken from a battery comserfently is rather small. Where a large amonut of energy is needed it is usuatly furnished by an clectrir generator, which develops its c.m.f. by a combination of magnetic and merhanical meats.

In pirturing current flow it is matural to think of a sibgle, constant forece causing the electrons to move. When this is so, the clectrons always move in the same direction through a path or circuit made up of eondurtors connected together in a continuous chain, such a current is called a direct current, abbreviated d.c. It is the type of current fumished by batterios and by eertain types of generators. However, it is also possible to have an e.m.f. that periodieally reverses. With this kind of em.f. the current flows first in one direction through the areuit and then in the other. Such in e.m.f. is called an alternating c.m.f., and the current is called an alternating current (abbreviated a.c.). The reversals (alternations) may wecur at any rate from a few per second up to several billion per second. Two reverals make a cycle; in one cycle the force arts first in one direction, then in the other, and then returns to the first direction to begin the next cyole. The number of evoles in one seomal is ralled the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct rurrent and alternating current is shown in lig. 2-1. In these graphs the horizontal axis moasures time, increasing toward the right away from the vertical axis. The vertical axis represents the amplitude or strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is obrere the horizontal axis the current is flowing in one direction through the circuit (indieated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the cireuit (indicated by the - sign). Fig. 2-1.1 shows that, if we close the rircuit - that is, make the path for the current complete - at the time indicated by X, the current instantly takes the amplitude indieated by the height 1 . After that, the eurrent continues at the same amplitude as time groes on. This is an ordinary direct current.

In Fig. $2-113$, the current starts flowing with the amplitude A at time X, eontinues at that amplitude until time V and then instantly ceases. After an interval $\%$ the current again begins to flow and the same sort of start-and-stop performane is repeated. This is an intermittert direer current. We could get it hy altermately closing and opening aswitch in the cireuit. It is a dircet current berenuse the direction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. ㄹ-1(: the current starts at zero, increases in amplitude as time gese on until it reaches the implitude A_{1} while flowing in the + divertion, then derrases until it drops to zero amplitude once more. At that time (J) the
(A)

(B)

(C)

fig. 2.I-Thres types of current flow. A - dived murront: B - intermiltent dired current; \mathbf{i} - altornating rurrent.
direction of the current flow reverses; this is indirated by the fact that the next part of the graph is bolow the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it rearhes amplitude A_{2}. Then the amplitude docreases until finally it drops to zoro (V) and the diredion reverses onee more. This is an allernating curent.

Waveforms

The type of alternating curcht shown in Fig. 2-1 is knows as a sine wave. The variations in many abe. Waves are not so smosth, nor is one halforvele neressarity just tike the preceding one in shape. Howere, these complex waves can be shown to tre the sum of two or more sine waves of frequencios that are exact intogral (whole-mumher) multiples of some lower frequenc: The lowest frequeney is called the fundamental freguenery, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.
fig. 卫-® shows how a fundamental and a serond harmonie (twier the fundamental) might add to form io complex wave simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waverhapes can to romstructed from just a fundamental and seremed harmonic. Wiaves that arestill more complex can be construted if more harmonies are used.

Electrical Units

The unt of coretromotive fore is called the volt. In ordinary flashlight rell generates an e.m.f. of about 1.5 volts. The e.m.f. commonly suppliad for domestic lighting and power is 115 volts, usually at, e. having a frequency of 60 cyeles per seemul. The voltage used in radio receiving and transmitting circuits range from a few volts (usually atco.) for filament heating to as high as a frw thousand d.e. volts for the operation of power tubes.

The flow of clectric current is measured in amperes. ()ne ampere is equivalent to the movemont of many hillioms of clectroms past a point in the rircuit in one second. Currents in the neightorhood of ats ampere ale required for heating the filaments of small power tubes. The direct corrents used in amatem radio equipment usually arr not so latge, and it is customary to measure such currents in miliamperes. (he milliampere is equal to one one-thonsandth of atn ampere, of 1000 milliamperes equals ane ampere.

I "d, e, ampere" is a mesesure of a stendy current, hut the "atoc: ampere" must measure a curcot that is continually varving in amplitude and poriodically reversing direction. To put the two on the same basis, an a.e ampere is defined as the amount of current that will cause the same hoating offect (see later soction) as one ampere of steady dieert current. For sine-wave a.c., this effective (or r.m.s.) value is equal to the mari-
 by 0.707 . The instantaneous value is the value

Fig. 2.2-A complex waveform. A fundamental (top) and second harmonic (eenter) added together, point ly print at eaeh instant, result in the waveform shown at the britom. When the two components have the same polarity at a selected instant, the resultamt is the simple sum of the two. When they have opmosite polaritios, the resulant is the difference; if the negative-polarity component is larger, the resiltant is negative at that instant.
that the eurrent (or voltage) has at any selected instant in the revele.

If all the instantaneous values in a sine wave are averaged over a half-cycle, the resulting figure is the average value. It is equal to $0.6: 36$ times the maximum amplitude. The avorage value is useful in eonnertion with reetifier sy:stemis, as deseribed in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 (y) yes per serond are called audio frequencior, because the vibations of air particles that our cars recognize as sounds ocecur at a similar rate. Audio frequencies (abbreviated a.f.) are used to actuate loudsposkers and thus create sound waves.

Frequencies above about 15,000 eycles are ralled radio frequencies (r.f.) bectuse they are useful in radio transmission. Frequencios atl the way up to and beyond $10,000,000,000$ eveles have been used for radio purposes, It radio froquencies the numbers beeome so large that it bocomes ronvenient to use a larger unit than the rycle. Two such units are the kilocycle, which is equal to 1000 regeles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cercles or 1000 kiloceryes and is abbreciated Mc.
The various radio frequencies are divided off into classifications for ready identifation. These relassifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Frequency
10 to 30 ke . 30 to 300 kc . 300 to 3000 kc . 3 to 30 Mc. 30 to 300 Mc . 300 to 3000 Mc . 3000 to $30,000 \mathrm{Mc}$.

Classification	Abbreriation
Very-low frectuencies	v.l.f.
Lew froturncias	I.f.
Mediam fremuenmes	m.f.
High freotuencios	h.f.
Vars-high frenuencias	\cdots h.f
Tltrahigh frequencies	u.h.f.
superhigh freutuencies	s.h.f.

Wavelength

Radio waves travel at the same speed as light - $300,000,000$ meters or about 186,000 miles a second in space. They ean be sot up, by a radior frequency current flowing in a cireuit, beraluse the rapidly-rhanging current sets up a magnetie field that changes in the same way, and the varying magnetic field in tum sets up a varying electric fiedd. Ind whenever this happens, the two fields move outward at the speed of light.
suppose an ref. current has a frequency of $3,000,000$ eyoles per seromed. The fields will go through complete reversals (one revele) in $1 / 3,000,000$ serond. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ moters, or 100 meters. By the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cercle - that is, the lower the frequency - the greater the distance orcupied by eath wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=W$ invelength in meters
$f=$ Frequency in kilocyeles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wivelength in meters
$f=$ Frequency in megacyeles
Example: The wavelength corresponding to a frequency of 3650 kiloeycles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

Given two eonductors of the same size and shape, but of different materials, the amount of current that will flow when a given em, is applied will he found to vary with what is called the resistance of the material. The lower the resistaner, the greater the courent for a given value of e.m.f.

Resistance is measured in ohms. I rireuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material monsuming one centimeter on earh edge. One of the best romductors is copper, and it is frequently empenient. in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table $2-1$ gives the ratio of the resistivity of various conductors to that of comper.

The longer the path through which the current flows the higher the resistamer of that eomduetor. For direct current and low-frequency alternating

TABLE 2-I	
Material	Resistirity Comprared to (iomper
Aluminum (pure).	1. 0
Brasm...	3.7
Cadmium	5. 20
(:hromintu	1.8:
Copprer (hard-trawa).	1.12
(inpuer (antucalral)...	100
Iron (purs) . .	56.5
l.ead.	- 113
Nickel . .	6-5118.3.3
1hosifular liromze	- $\quad \because-8$
Siluer	091
'Tin.	7.0
Zinc.	3.51

currents (up to a few thousand cycles per second) the resistance is inversely propertional to the cross-soctional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sertional area, the one with the latiger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opmosite, finding a suitable size and length of wire to supply a desired amount of resistance can be casily solved with the help, of the copperwire table given in a later chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: Euppose a resistance of 3.5 ohnis i.: needed and some No. 28 wire is on hand. The wire table in (hapter 20 shows that No. 28 has a resistance of fifi. 17 ohms ner thonsand fect. Since the desired resistanere is 3.5 ohms, the lengtl of wire reguired will the

$$
\frac{3.5}{66.17} \times 1000=32.80 \text { feet. }
$$

Or, supmese that the resistance of the wire in the eircuit must not exceed 0.0is ohin and that the lageth of wire reatured for making the eonnertions totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.02 \pi \text { ohn }
$$

where K is the maximum allowable resistaner in ohtos per thonsand feet. Rearranging the foraulagives

$$
H=\frac{0.05 \times 10(0)}{14}=3.57 \text { ohmas } / 1(100 \mathrm{ft} .
$$

Ruference to the wire table shows that No. 15 in the smallest size having a resistance less than this value.
When the wire is not copper, the resistance values given in the wire table should be malti-

Types of resistors nsed in radio equipnent. 'Those in the foreground with wire leads are carbon types, ranging in size from $1 / 2$ watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on reramic tubes: sizes shown range from $\overrightarrow{0}$ watts to 100 watt:. Three are of the adjustable type, having a sliding contart on an exposed section of the resistance winding.

plied by the ratios given in Table 2-I to obtain the resistance.

Example: If the wire in the first example were iron instead of copper the length required for 3.5 ohms would be

$$
\frac{3.5}{66.17 \times 5.65} \times 1000=9.35 \text { feet. }
$$

Temperature Effects

The resistance of a conductor changes with its temperature. Although it is soldom neoresary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, arts in the opposite way; its resistance decreases when its temperature rises. The temperature effert is important when it is neecssary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heit can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal efferts that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistince increases.

For low audio frequencies the increase in resistance is umimportant, but at radiof frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of sul iuch of the conductor surface. The r.f. resistance is romedumbly many times the d.c. resistance, and increases with increasing frequeney. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol $(x$. . 1 rircuit having large conductance has low resistance, and vice versa, In radio work the term is used. chiefly in comnection with vacuum-tube whacteristics. The unit of conductance is the mho. 1 ressistance of one ohm has a conductance of one mhos, a resistance of 1000 ohms has a conductance of $0,001 \mathrm{mho}$, and so 0 . A unit frequently used in eommertion with vacuum tuber is the micromho, or one-millionth of a mho. It is the comductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance comected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2-3-A simple eircuit consisting of a battery and resistor.

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a comertion is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Dinide by	Multiple by
t nits	Micro-units Milli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,1000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Miern-anits	Milli.units Lnits	$\begin{gathered} 1000 \\ 1,000,100 \end{gathered}$	
Milli-mits	Micro-units Units	1000	1000
Kilo-units	Units Measamits	1000	1000
Mega-ımit;	Cnits Kilo-mints		$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an equation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All threr forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volls, ohms and amperes; other units camnot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefixes are:

> micro - one-millionth (abbreviated μ) milli - one-thousandth (abbreviated m) kilo - one thousand (abbreviated l) mega - one million (abbreviated M)

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Iaw:

The current flowing in a resistitnee of 20,000 ohms is 1.00 millithaneres. Whast is the voltare? since the voltage is to be found, the e patime to use is $E=/ R$. The current must first the converted from milliamperes to amberes, and reference to the tathe shows that to dorso it is necessary to divide by 1000 . Therefore.

$$
E=\frac{150}{1000} \times 20,000=3000 \mathrm{volts}
$$

When a woltage of 1.50 is applied to a circuit the eurrent is measured at $2 . \bar{i}$ amperes. What is the resistanme of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{I}=\frac{180}{2.5}=60 \mathrm{ohms}
$$

No conversion was necessatry beranse the voltage and eurront were givenin woltsand amperes.
How mud current will flow if 200 volts is applied to a $\overline{3}(\mu)$-ohnuresistor". Since I isunknown.

$$
I=\frac{E}{R}=\frac{2.00}{5000}=0.05 \text { :anpere }
$$

Milliampere units would be more convenient for the current, and 0.0 .5 :anp, $\times 1000=50 \mathrm{mil}$ liamperes.

- SERIES AND PARALLEL RESISTANCES

Very few artual electric circuits are as simple as the illustration in the preceding sertion. Commonly, resistances are found connected in a

Fig, 2-4-Resis. tors conmected in series and in par. allel.
varicty of ways. The two fundamental methods of comnecting resistances are shown in Fig. :2-4. In the upper drawing, the curvent flows from the source of a.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These sesistors are comnected in series. The curvent everywhere in the eireuit has the same value.

In the lower drawing the current flows to the common comection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. it the lower comection point these two currents again combine; the total is the same as the current that flowed into the upper common comertion. In this case the two resistors are comected in parallel.

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, ete., then $R^{\prime} \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$
where the dots indicate that as many resistors as necessary may be added.

Example: Suppose that three resistors are connected to a source of e.m.f. as shown in Fig. 2-5. The e.m.f. is 250 volts, R_{1} is 5000 ohms, R_{2} is 20,000 ohms, and R_{3} is 8000 ohms. The total resistance is then

$$
\begin{gathered}
R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
=33,000 \text { ohms }
\end{gathered}
$$

The current flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{250}{33,000}=0.00757 \mathrm{amp} .=7.57 \mathrm{ma}
$$

(We need not carry calculations beyond three significant figures, and often two will suffice becuse the accurary of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to any part of a circuit as well as to the whole circuit. Nlthough the current is the same in all three of the resistanes in the example, the total voltage divides among them. The voltage appearing across eath resistor (the voltage drop) can be found from (Ohm's Law.

Example: If the voltage aeross R_{1} (fig. 2-5) is called E_{1}, that across R_{2} is called E_{2}, and that across R_{3} is called \boldsymbol{L}_{3}, then
$E_{1}=I R_{1}=0.00757 \times 5000=37.9$ volts
$E_{2}=I R_{2}=0.007 .57 \times 20,000=151.4$ volts
$E_{3}=I R_{3}=0.007 .57 \times 8000=60.6 \mathrm{volts}$
The applied voltage must egual the sum of the individual voltage drous:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=37.9+151.4+60.6 \\
=249,9 \text { volts }
\end{gathered}
$$

The answer would have been more nearly exact if the current had been calculated to more deeimal places, but as explained above a very high order of accuracy is not necessary.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fig. 2-5-An example of resistors in series. The solation of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the
total current is alwas greater than the current in any individual resistor. The formmata for finding the total resistance of resistaners in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{1}}+\cdots \cdot}
$$

where the dots again indioate that any number of resistors can be combined by the same method. For only two resistances in paralled (a very common case) the formula becomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a $\mathbf{b 0 0}$-ohm resistor is paralleled with one of 1200 ohms, the total resistamee is

$$
\begin{aligned}
I=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{.000 \times 1200}{600+1200}=\frac{600,000}{1700} \\
& =353 \mathrm{olims}
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fir. 2-6-1 An example of resistors in parallel. 'Jhe solution is worked out in the text.
sistors of the previous example are connerted in parallel as shown in fig. 2-6. The sume e.m.f., 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistance will be expressed
in kilohms so the eurrent will be in millianperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.50}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E_{1}}{R_{2}}=\frac{250}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

Whe total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=13.75 \mathrm{ma} .
\end{gathered}
$$

The total resistance of the circuit is therefore $\mathrm{R}=\frac{E}{I}=\frac{2.50}{93.75}=2.66$ kilohms $(=2660$ ohms $)$

Resistors in Series-Parallel

An actual circuit maty have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving a circuit swh as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed at single resistor. Find their equivalent resistance. Then this resistance in serics with R_{1} forms a simple series circuit, as shown at the right in lig. 2-7.

Fig: 2-7-An example of resistor: in serics-parallal. The equivalent circuit is at the right. The solution in worked out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parablel.

$$
\begin{aligned}
R_{\text {eq. }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohtus }
\end{aligned}
$$

The total resistance in the circuit is then

$$
\begin{aligned}
\mathrm{R}=R_{1} & +R_{\text {rat }}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohus }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.3 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {mal }}$ are
$E_{1}=I R_{1}=23.3 \times 5=117$ wolts
$E_{2}=I R_{\text {ral }}=23.3 \times 5.71=133$ volts
with sufficient accuracy, Thowe total 250 volts, thus checking the cabulations so far, becanse the sum of the voltage drops must equal the applied voltage. since E_{2} abmears across both $/ 2$ and R3.

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.05 \mathrm{ma} \\
& I_{3}=\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}
$I_{3}=$ Current through R_{3}
The total is 23.25 ma, which chacks closoly enough with 23.3 ma., the current through the whole cirenit.

POWER AND ENERGY

Power - the rate of doing work - is efpual to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
P=E I
$$

where $P=$ P'ower in watts
$E=$ E.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one onse-thousandth of is watt, and the kilowatt, or one thonsind watts.

Example: The plate voltage on a transmitting vacuum tube is 2000 volts and the plate corrent is 3.50 milliamueres. (The ronrent must be changed to amperes before substitution in the formmla, and so is 0.35 amm .) Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are oltained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power caleulations
when the rexistance and either the current or voltage (but not both) are known.

Example: How much power will he used up
in a for 0 -ohn risistor if the voltage applied to it is 200 volts:" From the eguation

$$
P=\frac{E^{2}}{R}=\frac{\left(2(00)^{2}\right.}{4000}=\frac{40,000)}{4000}=10 \text { watts }
$$

Or, suppose a current of 20 milliamperes flows througli a 300 -ohint resistor. Then

$$
\left.P=I^{2} R=(0,0)^{2}\right)^{2} \times 300=0.0004 \times 300
$$

$$
=0.12 \text { wist }
$$

Note that the eurrent was changed from millianuwies to amperes before substitution in the formula.
Filectrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio wowk are made in many sizes, the smallest being nated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Filertrieal power is not always turned into heat. The power used in ruming a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely convorted intor radio waves. l'ower applied to a loudspeaker is changed into, sound waves. But in every case of this kind the power is completely "used up" - it "imnot be recovered. Also, for proper operation of the deviee the power must be supplied at a dofinite ratio of voltage to current. Buth thore features are characteristios of resistance, so it can be said that any device that dissipater power has a detinite value of "resistance." This conerpt of resistance as something that ahsorbs frow at a delinite voltage/current ratio is very usenul, sine it permits substituting a simple resistame for the load or power-consumhag part of the device reciving power, of en with consialerable simplification of calculations. Of course, every clectrial device has some resistance of it own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appeats as heat even though the major fart of the power may be converted to another ferm.

Efficiency

In devices sath as motors and vacuum tubes, the object in to obtain power in some other form than heat. Therefore power used in heating is comsidered to be a loss, because it is not the uspil prower. The efficiency of a device is the usoful power output (in its converted form) divided hy the power input to the device. In a varumm-tube transmitter, for example, the ohject is to convert power from a de. sonre into a.re power at some radio frequency. The ratio of the ref. power output to the dec. input is the efficiency of the tube. That is,

$$
E_{d} \int=\frac{P_{0}}{P_{\mathrm{i}}^{\prime}}
$$

where $E f f$. $=$ lifficiency (as a decimal)
$P_{0}=$ Power output (watts)
$P_{\mathrm{i}}=$ Power input (1atts)
Fxample: If the d.c. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E \cdot f .=\frac{P_{*}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Efficiency is usually expressed as a percentige; that is, it tells what per cent of the input power will be available as useful output. The efficiency in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that clectricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. "That is,

$$
W^{\prime}=P^{\prime} T
$$

where $W=$ Fnergy in watt-hours
$l^{\prime}=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.
lonergy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually rowult in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance

Suppose two flat metal phates are placed close to earh other (but not tourhing) as shown in Fig. 2-8. Nomally, the plates will be electrically "neutral"; that is, no clectrical charge will be evident on either plate.

Now suppose that the plates are commerted to a battery through a switch, as shown. It the

instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terninal. This electron movement will continue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.
If the switch is opened after the plates have been charged, the top plate is left with a deficiency of electrons and the bottom plate with an excess. The plates remain charged despite the fact that the batery no longer is comected. However, if a wire is touched betwern the two plates (short-circuiting them) the exeres electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical meutrality. The plates have theol beren discharged.
The two plates constitute an eleetrival capacitor or condenser, and from the discussion athow it should tre clear that a raparitor prosensests the property of storing ofectricity. (The ohergy atelually is stoned in the eleetric findd between the. plates.) It should also he dear that during the time the clectronsare moving that is, whild the raparitor is being charged or discharged - - a rurrent is flowing in the rirenit aven though the (circuit is "broken" lay the gip) bet weren the calpacitor phates. Itowever, the current flows only daring
the time of charge and discharge, and this time is usually very short. There an be no continuous flow of direct current "through" a "apacitor.

The charge or quantity of electricity that (:an he plared on a capacitor is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate area and the smaller the sparing between the plates the greater the capacitance. The capacitance also depends upon the kind of insulating material hetween the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance many times. The ratio of the capacitance with some material other than air between the plates, to the capacitance of the same condenser with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials rommonly used as dielectrics in

TABLE 2-III		
Dielectric Constants and	Breakdown	Voltages
Material	Dielectric Constant	Puncture Voltage*
Air	1.0	19.8-22.8
11 -imag 1106	5.7	$\underline{10}$
Bakelite (paper-base)	3.8-5,5	650-\%50
Bakelite (mica-filled)	5-6	475-600
Cinlulow	4-16	
Cidulome acetate	6-8	300-1000
Pilicr	5-7.5	150-180
Formial	4.6-4.9	450
(ilass (window)	76-8	2(0)-2.00
(ilass (photographie)	7.5	
(hass (Pyrex)	4.2-4.9	335
lucite	$2.5-3$	480-500
Mira	2.5-8	
Mica (elear India)	6. 4-7.5	600)-1.00)
Verater	7.4	230
Piaper	2.1)-2.6	12.50
Prolyrthylane	2.3-2.4	1009
Piolysareme	- $4.4-9$	500)-9.300
Piorcratin	6.2-7.5	40-100
Rubluer (hard)	23.5	450
Stomite (low-los, ${ }^{\text {a }}$	$4+$	150-315
Whood (dry mak)	2.5-6.8	
* In wollo mar mil (1).001	1 inch).	

(apamitom are given in Table $2-111$. If a sheet of photographir glass is substituted for air hetween the plates of a capacitor, for example, the eaparitance will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much tow latre for practical work. ('aparitance is usuably measured in microfarads (abbrevitted $\mu \mathrm{f}$.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The microfarad is one-millionth

Pig. 2-9 - I maltiplr-plate eapacitor. Altornate plates are connected logethar.
of a faral, and the micomicrofarad is one-mitlonth of a mierofam. (aparifors nearly always have mone than two pates, the alternate pates heing comected together to form two sets as shown in Fig. 2-9. This maken it posible to attain a farty lame rapacitane in a small spare, since seromal plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total area. Nso, all plates, exerpt the two on the ends, are exposed to phates of the other gromp on both sides, and so are twiee as offertive in increasing the eapacitane

The formula for caldulating caparitane is:

$$
C=0,2,1 \frac{k^{\prime} A}{d}(y l-1)
$$

where (' = (innatitance in $\mu \mu \mathrm{h}$.
$K=$ Didectric constant of material betwere plates
$A=$ Weal of we side of one plate in squarre inches
$d=$ repuration of phate surfaces in inches
$n=$ Number of plates

If the plates in ome group do not have the same area as the plates in the other, use the area of the smaller plates.

Example: I "variable" eapucitor has 7 semicircular plates on its rotor, the diameter of the semicirele being 2 inches, The stator has 6 reptungular phates, with a semicirenlar ent-out to elear the rotor shaft, but otherwise large enough to fare the entire area of at rotor wate. The diameter of the ent-ont is $1 / 2$ inch. The distance between the adjacent surfaces of rotor and stator plates is $1 / 8 \mathrm{inch}$. The diclectric is air. What is the capacitance with the plates fully moshed?
In this came, the "effective" area is the area of the rotor mate minus the areth of the eut-out in the stator wate. The area of either seminirele is $\pi r^{2} / 2$, where r is the radius. The area of the rotor phate is $\pi / 2$, or 1.87 square inches (the radius is 1 inch). The aroal of the cut-out is $\pi(1 / 4)^{2 / 2}=\pi / 32=0,10$ spuare inch, ajuroximately. The "effective" areat is therefore $1 . .57$ $0.10=1.47 \mathrm{square}$ inches. 'The' capasitance' is therefore

$$
\begin{gathered}
C=0.224 \frac{\kappa A}{d}(n-1)=0.224 \frac{1 \times 1.47}{0.12 \bar{u}}(1.3-1) \\
=0.224 \times 11.76 \times 12=31.4 \mathrm{f} \mu \mathrm{fd} .
\end{gathered}
$$

('lise answer is only : diflicuity of accurate measurembrt, phes a "fringing" effere at the "dges of the plates that makes the actual cabacitance a little hisher.)

The usefuluess of a caparitor in electrical cireuits lies in the fact that it com he changed with electrical energy at one time and then discharged at at later time. In other words, it is an "rloctrieal reservoir."

Capacitors in Radio

The types of capacitors used in radio work differ considerably in physical size, construction, and capacitance. Some representative types are shown in the photograph. In variable capacitors (almost always constructed with air for the dielectrie) one set of plates is made movable with respect to the wother set so that the eaparitinne can be varied. Fixed capacitors - that is, assomblios having a single, non-adjustable value of capacitance -also can be made with metal plates and with air as the dielectric, but usually

Fived and sariable calracitors. The larpe unit at the left is a transmittingtym varinble raparitor for r.f. tath rirumits. 'Fo it- right are other airdielecetric variathes of difforemt simes ranging from the midget "air paddar" to the medinm-power tank raparitor at the top enter. 'Ihe rased caparitors in the top row are for powersupply filters. the eylindrical-can anit being an electrolytic and the rectannular one a paner-diclectrie caparitor. Jarious tymes of misa, ceramio: and paper-dieleciric capacitors are in the forepremad.
are constructed from plates of metal foil with a thin solid or liquid dielectries sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica, paper and spectial ceramics. An example of a liquid dielectric is mineral oil. The electrolytic capacitor uses alumi-mum-foil plates with a semiliquid conducting chemical compound between them; the artual dielectrie is a very thin film of insulating material that forms on one set of plates through electrochemical action when a d.e. voltage is applied to the capacitor. The capacitance obtained with a given phate area in an electrolytic capacitor is very large, compared with capacitors having other dielectrics, berause the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a capacitor, a considerable force is exerted on the electrons and nuclei of the dielectric. Because the dielectrie is an insulator the electrons do not become detached from atoms the way they do in eonductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thiekness of the dielectric, as shown in Table $2-1 I I$. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or arr between the plates, but if the voltage is removed the are ceases and the capacitor is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be inereased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given pate area, a high-voltage "gpacitor must have more plate area than a low-voltage one of the sime capacitance. High-voltage high-capacitance condensers are physically large.

- CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to capacitors have the same circuit meaning as with resistances. When a number of capacitors are connected in parallel, as in Fig. 2-10, the total capacitance of the group is equal to the sum of the individual capacitances, so

$$
C(\text { total })=C_{1}+C_{2}+C_{3}+C_{4}+\cdots \cdots \cdots
$$

However, if two or more capacitors are connected in series, as in the second drawing,

Fig. 2-10-Capacitore in series and parallel.

the total capacitance is less than that of the smallest capacitor in the group. The rule for finding the capmoitance of a number of seriescomerted rajacitors is the same as that for finding the resistance of a mumber of parallelcomerted revistors. That is,
$C($ total $)=\frac{1}{\frac{1}{C_{1}^{\prime}}+\frac{1}{C_{2}^{\prime}}+\frac{1}{C_{3}^{\prime}}+\frac{1}{C_{4}}+\cdots \ldots \ldots . . .}$
and, for only two capacitors in series,

$$
C(\text { total })=\frac{r_{1} r_{2}}{r_{1}+r_{2}}
$$

The same units must be used throughout; that is, all rapauitames must be expressed in either μ f. or $\mu \mu f$; hoth kinds of units cemmot he used in the same erpuation.

Caparitors are commerted in parallel to obtain a larger total caparitance than is available in one unit. The largest voltage that can be applied safely to a group of capacitors in parallel is the voltage that ath be apmbiod sately to the one having the lourest voltage rating.

When eapacitors are comberted in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each eapacitor of a group connected in series is in imores propertion to its cempacitance, as compared with the eaparitance of the whole group.

Example: Three capacitors having capaci-
tances of 1,2 and 4μ., respectively, are con-

Fig. 2.11 - An example of capacitors conneeted in series. The solution to this arrangement is worked out in the text.
neeted in series as shown in Fig. 2-11. The total eapacitance is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}^{\prime}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
=0.571 \mu \mathrm{~F},
\end{gathered}
$$

The woltage across each cabacitor is nroportional to the total capacitame divided by the eat paritance of the condenser in guestion. so the woltage across C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Similarly, the voitaces across $C_{2} 2$ and C_{3} are

$$
E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
$$

$$
E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
$$

totaling approximately 200 solts, the applied voltage.

Capacitors are frequently connected in series to cmable the group to withstand a larger voltage (at the expernse of decreased total capacitance) than any individual condenser is rated to stand. Ilowever, as shown by the previous example, the applied voltage does not divide equally among the capacitors (except when all the capacitances are the same) so care must be taken to see that the voltage rating of no capacitor in the group is exreeded.

Inductance

It is possible to show that the flow of curent through a conductor is areompanied by magnetic effects; a eompass needle brought near the conductor, for example, will be deflected from its normal north-south position. The eurrent, in other words, sets up a magnetic fiold.

As stated at the begiming of this chapter, a field represents potential enorgy. Bnergy stored in the magnetie field about the conductor must come from the encrey soure that cansed the curvent to flow. The energy in the field dows not represent a loss but simply a change in form electrical to magnetio.

The transfer of enorgy to the magnetic fiold represents work done hey the source of r.m.f. Power is required for doing work, and sinme powor is equal to current multiplied by voltage, there must be a voltage drop in the cerenit during the time in which energy is boing stored in the fiedd. This voltage "drop" (which hats nothing to do with the voltage drop in any resistance in the (irenit) is the result of an oposing voltage "induced" in the cirecuit while the liold is building up to its final value. When the fied beromes constant the induced e.m.f. or back e.m.f. disiuppears, since no further energy is being stored.

Sime the induced e.m,f. opposes the e.m.f. of the source, it tends to prevent the current from rising mpidly when the cirenit is elosed. The amplitude of the induced e.m.f. is proportional to the rate at whirh the current is changing and to a constant assomiated with the cireuit itself, called the inductance of the circuit.
Induetance depends on the physical characteristics of the comductor. If the ronductor is formed into a coil, for example, its induetance is inereased. I roil of many turns will have more induetane than one of fow turns, if both eoils are othorwise physidally similar. Also, if a coil is phared on an irm core its inductance will be greater than it was without the magnetie core.

The prolarity of an indured e.m.f. is always such as to oppose any rhange in the curent in the circuit. This means that when the current in the cirenit is increasing, work is being done against the induced e.m.f. lie stoming chergy in the magnetio field. If the current in the cireuit tends to decerease, the stored energy of the field returns to the circuit, and thus adds to the energy leving suppliod hy the somere of e.m.f. This tends to keep the curvent flowing aven though the applied e.m.f. may be derreasing or be removed entirely.

Inductors for power and radio frefucnobs, The two irmome enils at the laft are "chokes" for powersupply filters. The mounted air-core coisk at the top center are adjustable inductors for transmitting lath cirruits. 'The "pie-wound" coils at the left and in the foreground are radiofremuency choke coils. The remaining coils are typical of inductors used in r.f. tuned eirenits, the larger sizes lueing used principally for transmitters.

The values of inductance used in radio equipment vary over a wide range. Indurtance of several hemrys is required in power-supply (ircuits (see chapter on l'ower Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on irom cores. In radio-frequency circuits, the inductance values used will te measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amateurs are of the "air-core" type; that is, wound on an insulating support consisting of nommagnetio material.
Every conductor has inductance, even though the conductor is not formed into a roil. The inductance of a short length of straight wire is small, but it may not be negligible because if the current through it changes its intensity rapidly mough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current having a frequenes of the order of 100 Me , or higher is flowing. However, at much lower freculumiss the inductance of the same wire could be left out of any ealculations beanse the induced voltange would be negligibly small.

Calculating Inductance

The indurtance of airerore enils maty be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 u^{2} u^{2}}{3 a+3 b+10 c}
$$

where $L=$ Inductance in midrohenrys
" $=$ Average diameter of coil in inches
$b=$ length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The

Fig. 2-12-Coil dimensions used in the inductance formula.

quantity $10 c$ may be neglected if the coil only has one layer of wire.

Example: . Issume a coil having 35 turns of No. 30 d.s.e, wire on a form 1.5 inches in diatheter, Consulting the wire tuble, 35 turns of Sis. 30 d.s.c. will occupy 0.5 inch. Therefore, $a=1.5, b=0.5, n=35$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To caleulate the number of turns of a singlelayer coil for a required value of inductanee:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Example: Suppose an inductance of 10 microhenrys is refuired. The form on which the coil is
to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 2$ inches. Then $a=1, b=1.25$, and $L=10$. Substituting,

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(3 \times 1.25)}{0.2 \times 1^{2}} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \text { turns. }
\end{aligned}
$$

A 27-turn coil would be close enough to the required value of inductance, in practical work. Since the coil will be 1.25 inches long, the number of turns per inch will be $27 / 1.25=21.6$. Consulting the wire table, we find that No. 18 entmeled wire (or any smaller size) can be used. The proper inductance is obtained by winding the required number of turns on the form and then adjusting the sparing between the turns to make a uniformly-spaced coil 1.25 inches long.

Inductance Charts

Most inductance formulas lose aceuraey when applied to small coils (such as are used in v.h.f. work and in low-pass filters built for reducing harmonie interference to television) becunse the conductor thickness is no longer negligible in comparison with the size of the coil. Fig. 2-13 shows the measured indurtance of v.h.f. coils, and may be used as a basis for circuit design. Two curves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for eoils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

The charts of ligs. 2-14 and 2-15 are useful for rapid determination of the inductance of eoils of the type commonly used in radio-frequency cirouits in the range $3-30 \mathrm{Me}$. They are based on the formula above, and are of sufficient aceurany for most practical work. Given the coil length in inches, the curves show the multiplying factor to be applied to the inductance value given in the table below the curve for a coil of the same diameter and number of turns per inch.

fig. 2-13 - Measured inductance of coils wound with No. 12 hare wire, 8 turns to the inch. The values include hallf-inch leads.

Example: A coil 1 inch in diameter is 1 14 inches long and has 20 turns. Therefore it has 16 turns per inch, and from the table inder lig. 2-1.5 it is found that the reference induetance for a eail of this diameter and number of turns per ineh is $16.8 \mu \mathrm{l}$. From course B in the figure the multiplying factor is 0.35 , so the inductance is

$$
16.8 \times 0.35=5.9 \mu \mathrm{~h} .
$$

The charts also cau be used for finding suitable dimensions for a coil having a required value of indurtance.

Example: A coil having an inductance of 12 $\mu \mathrm{h}$, is regmired. It is to be wound on a form having a diameter of 1 inch. the length available for the winding being not more than 11 inches. From lig. 2-15, the multiplying factur for a 1 -inch diameter coil (eurve B) having the maxinam possible length of $11 / 4$ inches is 0.3%, Hence the

Fig. 2-14- Fartor to be applied to the moluctance of roils listed in the table below, for eoril lengths up to 5 inches.

$\begin{aligned} & \text { Coil diameter, } \\ & \text { Inches } \end{aligned}$	No. of turns per inch	Inductance in μ h.
11/4	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{gathered} 2.75 \\ 6.3 \\ 11.2 \\ 17.5 \\ 42.5 \end{gathered}$
$11 / 3$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{array}{r} 3.9 \\ 8.8 \\ 15.6 \\ 21.5 \\ 63 \end{array}$
134	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{aligned} & 5.2 \\ & 11.8 \\ & 21 \\ & 33 \\ & 85 \end{aligned}$
2	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{gathered} 6.6 \\ 15 \\ 26.5 \\ 42 \\ 108 \end{gathered}$
21/2	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & 10.2 \\ & 23 \\ & 41 \\ & 64 \end{aligned}$
3	$\begin{array}{r} 4 \\ 0 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & 14 \\ & 31.5 \\ & 56 \\ & 89 \end{aligned}$

number of turns per inch must be chosen for a refcrence indurtance of at least $12 / 0,35$, or $34 \mu \mathrm{~h}$. From the Table under Fig. 2-15; it is seen that 16 turns per inch (reference inductance $16.8 \mu \mathrm{~h}$.) is too sutall. Cising 32 turns per inch, the multiplying factor is $12 / 68$, or 0.177 , and from eurve B this corresponds to a coil length of $3 / 4$ inch.
There will be 24 turns in this length, since the winding "pitch" is 32 turns per inch.

Fif. 2-15-Factor to be applied to the inductance of coils listed in the table below, as a function of coil length. Unc eurve A for coils marhed A, eurve B for eoils marked B.

Coil dinmeter, Inches	No. of turns per inch	Inductance in μ.
$(1 / 2$	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (\mathrm{~A}) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$8 / 4$(B)	4	0.6
	6	1.35
	8	2.4
	10	3.8
	16	9.9
	32	40
$\stackrel{1}{(\mathrm{~B})}$	4	1.0
	6	2.3
	8	4.2
	10	6.6
	16	16.8
	32	68

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core
material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the eoil is increased 800 times be insert ing the iron core sinere, other things being equal, the inductane will be propertional to the magnelic flux through the coil.

The permeability of a magnetic material varios with the flux density, At low flux densities (or with an air core) increasing the curent through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no apperiable change in the flux. When this is so, the iron is said to be saturated. "'haturation" causes a rapid decrease in permoability, hecause it decreases the ratio of flux lines to those obtainable with the same current and an air core, Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductane is independent of current berathe air does mot "saturate."

Iron-eore coils such as the one sketched in Fig. 2-16 are used chicfly in power-supply equipment. Thes usually have direet edremt flowing through the winding, and the variation in induct-

Fig. :- $/ 6$ - Typical monstruc. tion of an iron-core imductor. The satall air gap prevents maknetic saturation of the iron and thus maintains the inductance at high rurrents.
ance with current is usually undesirable. It may be overcone by kerping the flux density below the saturation point of the iron. This is dome by opening the reme so that there is a small "air gap," as indicated the the dashed limes. The magnetie "resistanere" introduced by sueh a gap is so large - (eroll though the gap) is only a small fracelish of an inch - compared with that of the fron that the gap, rather than the iron, controls the flux density. This redueres the inductanere, but makes it pravically constant regardless of the value of the eurrent.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a conductor a current will flow in the eore. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddyeurrent losses can be reduced by laminating the core; that is, bey cutting it into thin strips. These strips of laminations must be insulated from rach other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss in an irom rore: the iron tends to resist any change in its manctic state, so a rapidly-changing
eurrent such as a.c. is forced continually to supply energy to the iron to overome this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current is incroased. For this reason, ordinary iron cores ean be used only at power and audio frequencies - up to, say, 15,000 cyoles. Even so, a very good grade or iron or sted is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.
For radio-frequency work, the losses in iron eores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfactorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Because a large part of the magoetic path is through a nonmarnetie material, the permeability of the iron is low compared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construction, the major portion of the magnetio path fer the flux is in the air surrounding the coil, the slug is quite effertive in increasing the eroil inductance. By poshing the slug in and out of the coil the inductance can be varied over a considerable range.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are eonnered in series (F「ig. 2-17, left) the total inductance is

equal to the sum of the individual inductances, provided the coils are sufficiently separited so that no coil is in the magnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots .
$$

If inductors are connected in parallel ($\mathrm{Fig}, 2-17$, right), the total induetance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}+\ldots \ldots}
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{12}}
$$

Thus the rules for ambining inductances in series and parallel are the same as for resistancer, if the coik are far chough apart so that each is unafferted by another's magnetic field. When this is not so the formulas given above cammot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their aves on the same line, as shown in Fig, '2-18, a current sent through Coil 1 will caluse a magnetie field which "cuts" Coil 2. (omsequently, ath e.m.f. will be induced in Coil ? whenever the field strongth is changing. This induced e.m.f. is similar to the e.m.f. of self-induetion, but since it appears in the secomb coil becouse of current flowing in the lirst, it is a "mutual" effere and result: from the mutual inductance betwern the two coils.

If all the flux set uphene eoil ents all the turns of the other eril the mutual inductane has its maximum posible value. If only a small part of the flux sot up be one conil cuts the turns of the other the mutual induetane is relatively small. Two corils having mutual indurtance are said to be coupled.

The matio of actual mutual induretane to the maximum posibla value that could theoretieally be obtained with two given coils is called the coefficient of coupling between the roils. It is

Fig. 2-18 - Mutual inductance. When the switeh, S, is closed eurrent flows through coil No. I, setting up a magnetic field that indures an e.m.f. in the turns of coil No. 2.
frequently expressed as a pereentage, Coils that have nearly the maximum possible (eoefficient $=$ 1 or 100%) mutual inductance are said to be closely, or tightly, coupled, but if the mutual indurtance is relatively small the coils are said said to be loosely coupled. The degree of coupling depends upon the physiral sparing between the coik and how ther are placed with respeet to eath other. Maximum roupling exists when they have a common axis and are as close toget her as possible (one wound over the other). The coupling is least when the eoils are far apart or are placed so their asos are at right angles.

The maximum possible coefficient of cout pling is closely approached only when the two coils are wound on a rlosed iron core. The coafficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two eoils are separated.

Time Constant

Capacitance and Resistance

In Fig. g-l!a a hattery having an e.m.f., E, a wwitch, S, at resistor, R, and "apacitor, (", are comoreded in series. suppose for the moment that R is short-rituited and that there is no other resistance in the eirenit. If s is now dosed, condenser ("will "harge instumlly to the battery voltage; that is, the celectroms that ronstitute the charge redistribute themselves in a time interval s: small that it can the enosidered to be gero. For just this instant, therefore, a very large eurnent flows in the circuit, becmase all the clectricity neded to charge the capacitor has

fis, 2-19 - schematics illustrating the time constant of an RC circuit.
moved from the battery to the rapacitor at ath extremely high rate.

When the resistance R is put into the rireuit the eapacitor no longer can be changed instantaneously. If the batfery e.nu.f. is 100 volts, for example, and K is 10 ohms, the maximum entrrent that can flow is 10 amperes, and even this mumh ran flow only at the instant the switeh is - losed. But as soon as am! current flows, (aipacitor ${ }^{\prime}$ begins to aropuire at eharge, which means that the voltage between its plates rises. Since the Hpper plate (in Fig, 2-19A) will be positive and the lower nogative, the voltage on the ratpabitor tries to semd a current through the rircuit in the opposite direction to the reurrent from the hattery. Immediately after the switch is closed, therefore, the current drous below its initial Ohm's Law value, aud as the rapacitor continues to arguire charge and its potential or e.m.f. rises. the current beeomes smaller and smaller.

The length of time required to eomplete the pharging process clepends upon the caparitance and the resistame in the eireuit. Theoretically, the charging process is nover really finished,
but eventually the charging carrent drops to a value that is smaller than anything that ram be measured. The time constant of such a ciremit is the length of time, in seconds, required for the voltage arross the capacitor to reath 63 per eont of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage across the caparitor rises with time as shown by Fig. 2-20.

The formula for time constant is

$$
T=(' R
$$

where $T^{\prime}=$ Time constant in seconds (* $=$ ('aparitance in farads $R=$ Resistancer in ohms
If C^{\prime} is in microfarads and R in megohms, the time constant also is in seconds. These mits usually are more convenient.

Example: The time eonstant of a $2-\mu \mathrm{f}$, capacitor and a 250,000 -ohn (0,25 megolim) resistor is

$$
T=C R=2 \times 0.25=0.5 \text { second }
$$

If the applied (amef. is 1000 volts, the voltage across the caparitor plates will he di30 whts at the end of $1 / 2$ second.
If a charged mpacitor is discharged through a resistor, as indicated in Fig. 2-1913, the same time constant applies. If there were no resistance, the eapacitor would discharge instantly when

Fig. 2.20-1 How the voltage across a capacitor rises, with time, when charged through a resistor. "The leower curve shows the way in which the voltage derreares ancos: the capaeitor terminals on diseharking through the same resistor.
S was closed. However, since $/ R$ limits the eurrent fow the capacitor voltage camot instantly go to zero, but it will decrease just as rapidly as the capacitor can rid itself of its charge through R. When the capacitor is discharging through a resistance, the time constant (ealculated in the same way as above) is the time, in seconds, that
it takes for the capacilor to lose $6: 3$ per cent of its voltage: that is, for the voltage to drop to 37 per cent of its initial value.

Example: If the camacitor of the example above is charged to 1000 volts, it will discharge to 370 volts in $1 / 2$ seeond through the $250.000-$ ohturesistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. 2-21, first consider L to have no resistance and also assume that R is zero. Then closing S would tend

Fig. 2-21 - T'ime constant of an $L R$ cirenit.
to send a curvent through the circuit. IIowever, the instantanems tramsition from no current to a finite value, howeversmall, represents a very rapid change in curvent, and a back e.m.f. is developed by the solf-inductance of L that is practoally equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and would conse to offer opposition if the current did not contimue to increase. With no resistamee in the circuit (which would lead to an infinitely-large corrent, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the e.m.f. of self-indurtion equal to the applied e.m.f.

When rewistance is in series, Ohms haw sets a limit to the value that the current can reach. In such a cirenit the curent is small at first, just as in the care without revistance. But as the current grows the voltage drop across R becomes larger. The back c.m.f. generated in L has only to equal the difference between E and the (lrop) arross R, because that difference is the voltage actually appliad to C . This difference beromes smaller the the current approaches the tinal Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but practically it becomes unmeasurable after a time. The difference between the artual current and the ohm's law value also beoomes undetertable. The time constant of an inductive circuit is the time in seconds required for the current to reach 6:3 per cent of its final value. The formulat is

$$
T^{\prime}=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Indurtance in henrys
$R=$ Resistance in ohms

Fiц, 2.22 - Vohage arrost capacitor teminals in a discharging $C R$ eironit, in terms of the initial charged voltage. 'I'o ohtain time in seconde, multiply the factor $t / C R$ hy the time comstant of the circuit.

The resistance of the wire in a coil ants as though it wore in series with the inductance.

Example: A coil having an indactance of 20 hemrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{h}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the circuit. If a d.c. e.m.f. of 10 volts is applied to such a coil, the final current. by Ohm's Jaw, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \text { amp. or } 100 \mathrm{ma}
$$

The current would rise from zero to 63 milliamperes in 0.2 weeond after closing the switch.

An inductor cannot he discharged in the same way as a caparitor, becaluse the magnetie field disappears as soon as current flow ceases. Opening st does not leave the inductor "rharged." The energy stored in the magnetic field instantly returns to the circuit when N is opened. The rapid disappearance of the field causes a very large voltage to be induced in the eoil - ordi-
narily many times larger thath the voltuge applied, beranse the indured voltage is proportional to the sueed with which the firdle changes. The common result of eloning the switeh in a cireuit such ats the me shown is that a spark or are forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great doal of energy is released in a very short period of time. It is not at all unusual for the switeh contacts to burn or melt under such cireumstances.

Time constants play an impertant part in numerous devices, such as electronir keys, timing and eontrol ciredits, and shaping of keying characteristies by vacum tules. The time constants of circuits are also important in surh applications as automatio gain control and moise limiters. In nearly all such appliontions a capacitance-resistanme (C / R) time constant is involvad, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time vomstant of the rircuit as given by the formalat athere. Fig. $2-22$ can he used for the sohation of such problems, since the curve gives the voltage areoss the catpacitor, in terms of perentage of the initial charge, for percentages lietween 5 and 100), at any time after discharge begins.
Bxample: A 0.01- μ f. capacitor is fharged to
150 volts amd then aflowed to discharge throngh
a 0.1-megohn resistor. How long will it take
the voltage to fatl to 10 volts? In berventage.
$10 / 150=6 . \mathbf{7}^{6} \%$. From the (Hatt, the fiseor
corresponding to 0.7% is 2.7 . The thane constant
of the circuit is cratal to $(\%=0.01 \times 0.1=$
0.001 . The time is therefore $2.7 \times 0.001=$
0.0027 second, or 2.7 milliseromels.

Example: An RC circuit is tesired in which the voltare will fall to 30 : of the initiall value in 1 second. From the dhart, $/ / C / 8=0.7$ at the 50%-voltage point. 'Ilhorefore $6 / R=1 / 0.7$ $=1 / 0.7=1.43$. Ins combination of resistance and capacitance whose product (/k in mepohms and (${ }^{\prime}$ in miorofatrads) is equal to $1.4: 3$ can be used: for example, C could be 1μ. and R 1.4:3 megohms.

Alternating Currents

PHASE

The term phase essentially moans "time," or the time intorval between the instant when one thing oerurs and the instant when a second related thing takes place. When a baveball piteher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" berause they do not oceur at exactly the same time.
simply saying that two events are out of phase does not tell us which one occurred first. To give this information, the later event is said to lag the earlier, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the cateh, or the cateh "lags" the throw.

In a.e. circuits the current amplitude changes continuously, so the concept of phase or time becomes important. Phase can be measured in

Fig. 2-2.3 - An a.e, ryele is divided ofl into 360 degrees that are berd as a measure of time or phase.
the ordinary time units, such as the serond, but there is a more convenient method: Since each a.r. recle occupies exartly the same amount of time as every other cyrle of the same frequency, we can use the rycle itself as the time unit. Using

Fïq. 2.2.4- When two waves of the saue frequency stirt their cyeles at slighty different times, the time difiereme or phase difference is measured in degrees. In thic draming wave ${ }^{3}$ starts 4.5 degrees (one-eighth "3.-lo) later than wave f, aml so lags 4 degrees behind A.
the cyrle as the time unit makes the sperifieation of measurement of phase independent of the freguenery of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement off phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. lhase difference could be measured in decimal buts of a cycle, hat it is more convenient to divide the rycle into 360 parts or degrees. A phase denree is therefore $1 / 360$ of a cyrle. The reason for this chaice is that with sine-wave alternating courent the value of the current at any instant is propertional to the sine of the angle that corresponds to the number of degrees - that is, length of time - from the instant the cycle began. There is no actua! "angle" associated with an alfemating current. Fig. 2-23 should help make this method of measurement clear.

Measuring Phase

The phase difference between two currents of the stame frequency is the time or angle difference botweon corresponding parts of ryclos of the two currents. This is shown in Fig. 2-24. The current latwed A leads the one marked B by 45 degrees, since A's credes begin 45 dogrees carlier in time. It is equally comrect to say that B lage A by to degrers.

Two important special cases are shown in Fig. 2-25. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just onequarter cyele later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which ono is comsidered to lead or lag. B is always positive while A is negative, and viee versat. The two waves are thus completely out of phase.

The waves shown in Figs, $2-24$ and $2-25$ could represent current, voltage, or both. A and B might be two currents in smarate cirenits, or A
might represent voltage and B current in the same eireuit. If 1 and B represent two currents in the same cireuit (or two voltages in the same (ircuit) the total or resultant current (or voltage) also is a sine wave, beomuse adding any number of sine waves of the same frequency always gives a sine wave also of the same frequeney.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects diseused in the next section. l'ractically, it is often difficult to ohtain a purely resistive circuit at radio frequences, because the

Fig. 2.25 - Two important special cases of phase dif. ference. In the upper drawing, the phase difference between A and B is 90 degree; in the lower drawing the phase difference is 180 degrees.
reactive effects become more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of cireuits, Ohm's law is just as valid for ace, of any frequency as it is for d.c.

- REACTANCE

Alternating Current in Capacitance

Suppose a she-wave are voltare is applied to a capacitor in a eirruit contaning no resistance, as indicated in Fig. 2-20. In the period (I I, the applied voltage increases from zero to 38 volts; at the end of this period the capacitor is eharged to that voltage. In interval $1 / 3$ the voltage inereases to 71 volts; that is, 33 volts additional. In this interval a smaller quantity of charge has been added than in 0.1 , because the voltage rise during interval $A \mathrm{~B}$ is smaller. Consequently the average eurrent during $A B$ is smaller than during 0.1. In the third interval, $B C ;$, the voltage rises from 71 to !2 volts, an increase of 21 volts. This is less than the voltage increase during $.1 B$, so the quantity of electricity added is less: in other words, the average eurrent during interval $B C^{C}$ is still smaller. In the fourth interval, ("D), the voltage increases only 8 volts; the
charge added is smaller than in any preceding interval and therefore the current also is smatler.

Thus as the instantaneous value of the applied voltage increases the surrent dereases.

By dividing the first quarter cele into a very large number of intervals it could be shown that the current charging the capacitor has the shape of a sime wave, just as the applied voltage does. The current is largest at the begiming of the ryele and becomes zoro at the maximum value of the voltage (the capacitor camot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase

Fig. 2.26 - Voltage and current phase relationships when an alternating voltage is aplited to a condenser.
difference of 90 degrees torwern the voltage and current. Wuring the first quarter cyele of the applied voltage the current is flowing in the normal direction through the cirenit, since the wpacitor is locing charged. Hence the current is positive during this first quarter cyele, as indicated ly the dashed line in lig. "-20.

In the seromd quarter cerele - that is, in the time from D to I, the voltage applied to the capacitor decreases. During this time the caparifor foses the charge it acquired during the first quarter evele. Applying the same reasoning, it is platin that the current is small in interval I) k and continues to incronse during each sucreeding interval. Lowever, the current is flowing ayainst the appliod voltage beanse the capacitor is discharging intw the circuit. Hence the current is negotire during this quarter opele.

The third and fourth quarter rycles repeat the events of the first and socond, respectivoly, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current Rous "through" " cafacitor when at acc. voluge is applied to it. (Actually, current never flows "through" a condenser. It flows in the associated circuit because of the alternate charging and discharging of the capacitance.) As shown by lig. "-20, the current starts its cycle 90 degrees before the voltage, so the current in a eapacitor leads the applied vilage by 90 degrees.

Capacitive Reactance

The amount of charge that is alternateiy stored in and released from the capacitor is proportional to the applied voltage and the caparitance. Consequently, the current in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is moved. The
current also will be proportional to the frequency of the a.e, voltage, berause the same charge is being moved back and forth at a rate that is proportional to the number of eveles per serond.

The fact that the current is proportional to the applied voltage is important, berouse it is the same thing that Ohm's Law says about current flow in a resistive circhit. That being the case, there must be something in the eaparitor that corresponds in a general way to resistancesomething that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the efferts of caparitance and frequency, sinee those also affect the amount of current that flows. It is called reactance, and its relationship to capacitance and frequeney is given by the formula

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f f}
$$

where $X_{C}=$ Capacitive reactance in ohms
$f=$ Frequenty in eveles per second
${ }^{\prime}=$ Capacitance in farads
$\pi=3.14$
Reactance and resistance are not the same thing, but because they have a similar currentlimiting effert the same unit, the ohm, is used for both. Culike resistance, ractance does not consume or dissipate power. The enery stored in the capacitor in one quarter of the cerele is simply retumed to the eircuit in the next.

The fundamental units (eycles per second, farads) are too large for praction use in radio circuits. However, if the eaparitance is in mironfarads and the frequency is in megacyoles, the reactance will come out in ohms in the formula.

Example: The reactance of a caparitor of 170 $\mu \mu$. (0.00047 $\mu \mathrm{f}$.$) at a frequency of 71.00 \mathrm{kc}$. $(7.15 \mathrm{Mc}$.$) is$

$$
X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.1 .5 \times 0.000 .47}=47.4 \text { ohms }
$$

Inductive Reactance

When an alternating voltage is applied to a cireuit containing only indurtance, with no resistance, the eurrent always changes just rapidly enough to induce a back e.m.f. that eguals and opposes the applied voltage. In Fig. In-2 $_{2}$, the eycle is again divided off into equal intervals. Assuming that the current has a maximum value of 1 ampere, the instantaneous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rute at which the current chonges. It is therefore preatest in the intervals $O A$ and $G I I$ and least in the intervals (CD and DE. The induced voltage actually is a sine wave (if the coment is a sine wave) as shown be the dashed curve. The appiad voltage, because it is always equal to and opposed be the induced voltage, is equal to and 180 dogrees out of phase with the induced voltare, as shown by the second dashed curve. The result, therefore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and lags behind the applied
voltage. This is just the opposite of the capacitive case.

Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a smatl current changing rapidly (that is, at a high frequency) can generate a large back e.m.f.

Fif. 202\% - Phase relationships hetween voltage and current when an alternating voltage is applied io an inductanee.
in a given inductance just as well as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. Also, When the applied voltage and frequency are fixed, the value of current required becomes less as the indurtince is made larger, because the induced e.m.f. also is proportional to inductance.

When the frequency and inductance are constant but the applied e.m.f. is varied, the necessary rate of current change (to induce the proper back (.m.f.f.) can be obtained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's Law again, and again the curent-limiting effect is similar to, but not identical with, the effert of resistance. It is called inductive reactance and, like capacitive reactance, is measured in ohms. There is no energy loss in inductive reactance; the energy is stored in the magnetic field in one quarter cycle and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi / I_{4}
$$

where $X_{L}=$ Inductive reactance in ohms

$$
\begin{aligned}
& f=\text { lirequency in cyeles per second } \\
& L=\text { Inductance in henrys } \\
& \pi=3.14
\end{aligned}
$$

Example: The reactance of a coil having an inductute of 8 henrys, at a freguency of 120 cycles, is

$$
X_{\mathrm{L}}=2 \pi f L=6.28 \times 120 \times 8=6029 \text { ohms }
$$

In radio-frequency rircuits the inductance values usuatly are small and the frequencies are large. If the inductance is expressed in millihonrys and the frequency in kilocycles, the conversion fartors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is neressary if the inductance is in micohenrys and the frequency is in megacyeles.

Example: The reartance of a 15 -microhenry coil at a frequency of $1 \& \mathrm{Mc}$. is

$$
X_{\mathrm{L}}=2 \pi f L=6,28 \times 14 \times 1,=1310 \text { ol } 1 \mathrm{~ms}
$$

The resistance of the wire of which the coil is wound has no effert on the readance, but simply acts as though it were a separate resistor connected in series with the roil.

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{\mathrm{X}} \\
E & =I \mathrm{X} \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ current in amperes
$X=$ Reartance in ohms
The reactance may be either inductive or caparitive.

Example: If a current of 2 amperas is flowing through the capacitor of the previous example (reactance $=47.4$ (ohms) at 71.00 ke , the woltage drop arross the camacitor is

$$
E=I N=2 \times 47.4=04.8 \text { volts }
$$

If $4(0)$ volts at 120 ascles is aptalied to the 8 henry inductor of the previous example, the current through the roil will be

$$
I=\frac{E}{N^{\prime}}=\frac{400}{6029}=0.0663 \mathrm{amp},(60.3 \mathrm{ma})
$$

When the circuit eonsists of an inductance in series with a caparitance, the same current flows through both reactances. However, the voltage across the inductor leads the current by 90 de-

Fig. 2-28-Current and voltages in a circuit having indnotive and capacitive reactances in series.
grees, and the voltage across the capacitor lays behind the current by 90 degrees. The voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. 2-28. The same figure also shows the current
(heavy lime) and the voltage drops across the inductance $\left(E_{1}\right)$ amd caparitance ($E_{(}()$. It is assumed that X_{1}, is larger than X_{c} and so has a larger voltage drop. Since the two voltages are completely out of phase the total voltage (that is, the applied voltage $E_{A(}$) is equal to the difference between them. This is shown in the drawing as $E_{L}-E_{C}$. Notice that, because E_{1}, is larger than E_{C}, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as though it were en induchnoe - an inductance of smaller value than the artual indurtance present, since the effect of the actual inductive reactance is reduced by the caparitive ratance in series with it. If X_{l} is larger than X_{L}, the arrangement will behave like a caparitance - again of smaller reactane than the aretual catacitive reactance present in the circuit.
The "equivalent" or total ratatance of any circuit containing inductive and capacitive re-
actances in series is equal to $X_{\mathrm{L}}-\lambda_{\mathrm{C}}$. If thore are several coils and condensers in serios, simply add up all the inductive reartances, then ind up, all the capacitive reactances, and then subtract the later from the former. It is rustomaty to call inductive reactance "positive" and rapative reactance "negative." If the equivalent or net reantance is positive, the voltage leads the curmit by 90 degrees; if the net reactaner is negative, the voltage lags the current by 90 degrees.

Reactance Chart

The accompanying chart, Jig. 2-29, shows the reantance of capacitaness from $1 \mu \mu \mathrm{f}$. $10100 \mu \mathrm{f}$. and the reatance of inductanes from $0.1 \mu \mathrm{~h}$. to 10 henrys. for freguencies betwert 100 reves and 100 megatyeles per sorond. 'IThe thpuroximate value of reactance can be read from the ehate or. where more exact values are needed. the chart will serve as a check on the order of magnitude of

 light lines multiples of 5: 0 ect., the light line bet ween $10 \mu \mathrm{~h}$. and $100 \mu \mathrm{~h}$. represents $30 \mu \mathrm{~h}$, the lisht line briwen 9.1 $\mu \mathrm{f}$ and $1 \mu \mathrm{f}$, represent: $0.5 \mu \mathrm{f}$., ete. Intermediate values can he estimated with the help of the interpobation scale shown.

Reactaners out-inde the range of the chart may be found by applying appropriate factors to values within the chart ranige For cxample, here ractance of 10 henrys at ${ }^{\prime}$ ' cycles can be found by taking the reactatnce of 10 henrys at 600 cycles and dividing by 10 for the 10 -times decrease in frequeney.
reactances calculated from the formulats given above, and thas avoid "decimal-point errors".

Reactive Power

In Fig. 2-28 the voltage drop across the induetor is larger that the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the indurtor's magnetie field, encrgy is being returned to the circuit from the eabaritor's electris: fied, and vice verst. This stored energy is responsible for the fact that the voltages abross reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current canses hoating and a power loss equal to $I^{\prime 2} R$. The power in a reactance is equal to $I^{2} \boldsymbol{N}$, but is not a "loss": it is simply power that is transferred bark and forth between the fied and the circuit but not used up in houting anything. To distinguish this "mondissijated" prower from the power which is actually comsumed, the unit of reactive power is called the volt-ampere instead of the watt. lieartive power is sometimes called "wattess" power.

IMPEDANCE

The fact that rewistance, indurtive reactance and capacitive reactance all are measured in whe doess mot indirate that they can be combined indiseriminately. Foltage and current are in phase in rexistance but differ in phase by a quarter eyrle in reartance. In the simple cirenit shown in lig. 2-30, for example, it is not posible simply to add the resistance and reactance together to ohtain a quantity that will indieate the opmasition offered by the eombination to the flow of current. Inasmuch as both resistance and reartance

Fis. 2-30 - Resistance and inductive reactance connected in series.
are present, the total effect can obviously be neither wholly one mor the other. In eireuits containing both ratatance and resistance the opposition cffert is called impedance (Z). The unit of impedance is atso the ohm.

The term "impedanee" also is generalized to include any quantity that can be expressed as a ration of woltage to coment, Pure rexistance and pure reactance wre both included in "impedance" in this sonse. A circuit with resistive impedance is either one with resistance alone or one in which the effects of any reactance present have been climinated. Similarly, a reactive impedance
is one having reactance only. A complex impedance is one in which both resistance and reactance efferts are observable.

It can be shown that resistance and reartance can be combined in the same way that a rightangled triangle is constructed, if the resistanme is laid off to proper seale as the bave of the triangle and the reactance is lated off as the altitude to the same sale. This is also indicated in Fig. 2-30. When this is done the hypotenuse of the triangle remesents the impedane of the circuit. to the same seale, and the angle betweon Z and R (usually ralled θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. liy geometry,

$$
Z=\sqrt{R^{2}+A^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \text { ohms. }
$$

The phase angle can be found from simple thigonometry. Its tangent is equal to N, R; in this
 tables it can be determined that the angle having a tamgent equal to 1.5% is appoximately 5 aid dogrees. In ordinary amatedr work it is seledom neressary to give muh comsideration to the phase angle.
A rireuit containing resistanse and caparitance in series (Fig. 3-31) can be trated in the same way. The difference is that in this case the current

Fis. 2-3/ - Resistance and capacitive reactance in serics.
lends the applied e.m.f., while in the resistanceinductance case it logs behind the voltage.

If either X or R is small compared with the other (saty $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1 \mathrm{chm}$ and $X=10$ ohms,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.0 .5 \text { ohms. }
\end{aligned}
$$

Hence if cither N or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per rent, which is usually negligible.
since one of the components of impedance is reactance, and since the reactance of a given coil or capacitor changes with the applied frequency, impedance also changes with frequency. The change in impodince as the frequency is changed may te very slow if the resistance is considerably larger than the reactance. Ilowever, if the impedance is mostly reactance a change in frequency will cause the impedance to change pactically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohm's law ean be applied to circuits containing impedane just as reedily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ Fi.m.f. in volts
$I=$ Current in aniperes
$Z=1$ mpedance in ohms
Example: Issume that the e.m.f. applied to the circuit of Fig. 2-30 is 250 volls. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { ampres. }
$$

The same current is flowing in both R and X_{L}, and Ohm's Law as applied to cither of these (Inantities says that the voltage olrop across R should eutual $I R$ and the voltage drop across N_{L} should equal $I X_{\text {L }}$. substituting.

$$
\begin{aligned}
& E_{14}=I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{X}_{\mathrm{L}}}=I \mathrm{~N}_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmeticul sum of these voltages is greater than the applied voltage. However, the actual sum of the two when the phase relationsling is taken into account is equal to 250 volts r.m.s., as shown hy fig. 2-32, where the instantaneous values are added throughout the eyele. Whenever resistance and reactance are in series, the individual volture drops always add up, arithmoticably, to more than the asplied voltage. There is nothing fictitious about these voltare drons: they can he measured readily lay suitable instruments. It is simuly an illustration of the importaned of phase in a.c. circhits.

Fig. 2-32-Voltage drops around the circuit of lige. $2-310$. Because of the phase relationshipa, the applied voltang is les- than the arithmetical sum of the drops acroses the resistor and inductor.

A more complex series circuit, containing resistance, inductive reantance and capacitive reartanere, is shewn in I'ig. 2-33. In this catie it is necossary to take into acooment the fact that the plats angles betweren curment and voltage differ in all three eloments, Since it is a series cireuit, the eurrent is the same throughout. ('onsidering first just the induetance and capacitance and neglereting the resistance, the net reactance is
$X_{1}-X_{C}=150-i 0=100$ ohns (inductive)

Fig. 2-33- Rusistance, inductive reactance, and capacilive reactance in series.

Thus the impedence of a circuit containing resistance, inductance and copmeitance in series is

$$
Z=\sqrt{R^{2}+\left(\Lambda_{1}-N_{1}\right)^{2}}
$$

Example: In the circuit of Fig. $2-33$, the impedanee is

$$
\begin{aligned}
Z & =\sqrt{ } h^{2}+\left(N_{1}-N_{0}\right)^{2} \\
= & \sqrt{(20)^{2}+(150-80)^{2}}=\sqrt{(20)^{2}+(101)^{2}} \\
& =\sqrt{10,400)}=102 \text { olums }
\end{aligned}
$$

The phase angle cat be found from N / R, where $X=\lambda_{L}-\lambda_{c}$.

Parallel Circuits

Suppose that a resistor, calpacitor and coil are comected in parallel as shown in Fig. 2-34 and

Fig. 2-3.1- Resistance, inductance and caparitance in parallel. Instruments conmerted as shown will read the lotal current, I, and the individual eurrents in the three loranches of the circuit.
an acc. voltage is applied to the combination. In any one branch, the eurrent will be unchanged if one or both of the other two branches is discomnected, so long as the applied voltage remains unchanged. Hence the current in each branch can be calculated quite simply by the Ohm's law formulas given in the preceding sections. The total current, I, is the sum of the currents through all three branches - not the arithmetical sum, but the sum when phase is taken into aceount.
The currents through the various branches will be as shown in Fig. ?-35, assuming for purposes of illustration that X_{L} is smaller than X_{0} and that $\lambda_{(}$. is smaller than R, thus making I_{L} larger than I_{6}, and I_{c} lauger than $I_{\text {re }}$. The eurrent through r leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrees, so these two curvents are 180 degress out of phase. Is shown at F , the total reactive current is the difference between I_{C} and I_{L}. This resultant current lags the voltage by 90 degrees, because $/ 2$, is larger than $/ \mathrm{c}$. When the ractive current is added to I_{R}, the total current, I, is as shown at F . It cam he seen that / hage the applied
voltage by an angle smaller than 90 degrees and that the total current, while less than the simple arithmetical sum (neglecting phase) of the three tranch eurrents, is larger than the current through R alone.

The impedance looking into the parallel circuit from the soures of voltage is equal to the applied voltage divided by the total or line current, I.

Fig. 2-35 - Whase relationships between branch currents and applied voltage for the eironit of rix. ©-3.4. The total enrrent throush I_{1} and $\left(\right.$ in paralle: $\left(I_{\mathrm{L}}+I_{i}\right)$ and the total current in the entire cirenit (f) alow are shown.

In the case illustrated, I is greater than I_{n}, so the impedance of the arouit is less thath the resistance of R. How much less depends upon the net raative current flowing through L and 8 ' in parallel. If X^{\prime} and X a are very unarly equat the net reactive current will be quite small berause it is equal to the difference between two nearly equal currents. In surh a case the imperlaner of the circuit will be almost the same as the resistance of R alone. On the other hand, if X a and Xc are quite different the net ractive current can be relatively large and the total current also will be appreciably larger than $/ \mathrm{R}$. In such a ease the circuit imperdance will be lower than the resistance of $l d$ alone.

Power Factor

In the circuit of Fig. 2-30 an applied e.m.f. of 250 volts results in a eurrent of 2 amperes. If the circuit ware purely resistive (containing no reactance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance,
and only the resistance consumes power. The power in the resistance is

$$
r=I^{2} h=(2)^{2} \times 75=300 \mathrm{watts}
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 500=0.6$. Power factor is frequently expressed ats a perrentage; in this case, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-imperes (just like the "wattless" power in at ratetance). It is simply the product of volts and amperes and hats no dired relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or l , while the power factor of a pure reatrance is zero. In this illustration, the reactive power is

$$
V A(\text { volt-amperes })=I^{2} X=(2)^{2} \times 100
$$

$$
=100 \text { volt-amperes. }
$$

Complex Waves

It was pointed out early in this ehapter that a complex wave (a "nonsinusoidal" wave) am be resolved into a fundamental fremuency and at series of harmonid frequencies, When such at complex voltage wave is applied to a rircuit containing reartance, the current through the cirenit will not have the same wave shape as the applied voltage. This is berause the rearamee of ath inductor and raparitor depend upon the applied frequency. For the second-hamonie eomponent of a complex wave, the reartance of the indurtor is twice and the reactance of the rapacitor onehalf their respertive values at the fundamental frequency; for the third harmonic the inductor reactance is three times and the capacitor reartance one-third, and st on. Thus the rircuit impedance is different for each harmonic component.

Just what happens to the curvent wave shape depends upon the values of resistane and reato ance involved and how the cireuit is arranged. In a simple circuit with resistance and inductive reatante in acrics, the amplitudes of the harmonies will be reduced beratuse the indurtive reartance increases in proportion to frequenry. When capacitance and resistance are in series, the harmonic current is likely to he arcontuated because the caparitive ractance beromes lower as the frequenry is raised. When both inductive and capacitive reatance are prosent the shape of the current wave can be altered in a varicty of ways, depending upon the circuit and the "eonstants," or the relative values of L, C, and h, selected.

This property of nonuniform behavior with respect to fundamental and harmonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The eoil comerted to the soure of encrgy is called the primary coil, and the other is called the secondary coil.

The useluhues of the transformer lies in the fact that clectrical energy can be transferred from one circuit to another without direct connertion, and in the prowess can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 4 to-volt sourere is available, a thansformer can be used to change the soure voltage to that required. A transformer can be used only with a.d., since no voltage will be indured in the serondary if the mannetie field is not changing. If d.ce is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of elowing or opering the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in lig. 2-36, the primary and secondary coils of a transformer may be wound on a core

Hig. 2-36 - The transformer. Power is transferred from the primary eobil to the seonotary hy means of the magnetic hield. The uppor symbol at right indicates an irencore transformer, the lower one an air-core transformer.
of magnetio material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. A closed core (one having a contimuens magnetic path) such as that shown in Fig. :-36 also tends to insure that practically all of the fied sot up by the current in the primary eoil will cout the turns of the secondary eoil. However, the core introduces a phere loss bectuse of hysteresis and eddy currents so this type of construction is praticable only at power and audio freguencies. The diseussion in this serotion is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given saming magnetic fiold, the voltage indured in a coil in the fied will be proportional to the number of turns in the coil. If the two poiks of a transformer are in the same field (which is the cose when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of tums in each coil. In the primary the indured voltage is
practically equal to, and opposes, the applied voltage, as deseribed in the sertion on indurtive reatiance. Hanes.

$$
E_{\mathrm{B}}=\frac{n_{\mathrm{s}}}{n_{1}} E_{1,}
$$

where $E_{s}=$ Secondary voltage
$E_{0}=$ Primary applied voltage
$u_{s}=$ Number of turas on secondary
$n_{p}=$ Number of turns on primary
The ratio n_{s} / n_{n} is ealled the turns ratio of the transformer.

Example: A transformer has a primary of 400 turns and a serondary of esem terms. and an c,m.f. of 11.5 volts is applied to the primare The secondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{p}}} \boldsymbol{E}_{\mathrm{p}} & =\frac{28(00}{400} \times 11 \mathrm{i}=7 \times 115 \\
& =805 \mathrm{volts}
\end{aligned}
$$

Also, if an e.m.f. of 80.2 volts is applied to the 2800 -turn winding (whirl) then heromes the primary) the outpuit voltege from the vol-turn winding will be 115 volts.

Either winding of a transformer can be used as the primary, providing the winding has enough turns (enough inductance) to induce a voltape edual to the apmied voltage without reguiring an exedsive current flow.

Effect of Secondary Current

The eurrent that flows in the primary when no curent is taken from the secondary is calien the magnetizing current of the transformer. In any properly-designed transfomer the primary inductance will be so large that the magnetizing current will be quite small. The power consumed b- the transformer when the secondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron eore and in the resistance of the wire with which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetio field that opposes the field set up by the primary eurrent, But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Conserfuently, the primary must draw enough additional eurrent to set up a field exactly eopual and opposite to the field set up by the secondary current.
ln practical calculations on transiom mers it may be assumed that the entire mimary current is caused by the serondary "load." This is justifiable because the magnetizing current should be very small in comparison with the primary "loa!" current at rated power output.

If the magnetic fiekds set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied hy the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{s}}} I_{\mathrm{s}}
$$

```
where \(I_{0}=\) Primary current
    \(I_{s}=\) secondary rurrent
    \(n_{0}=\) Number of turns on primary
    \(\mu_{s}=\) Nuniber of turns on secondary
```

 Example: sujurese that the socondary of the transformer in the previous example is deliver ing it current of 0.2 ampere to a load. Then the primary current will be
 $I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{s}}} I_{s}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$,
Although the secomlary roltage is hiuher than the primars voltage, the secondary current is lower than the primary eurrent, and by the same ratio.

Power Relationships; Efficiency

A transformor cammot create power; it can only transfer it and change the e.m.f. Henes, the power taken from the secomdary rannot exced that taken by the primary from the souree of appled e.m.f. There is always some power loss in the resistanere of the roils and in the iron core, so in all prational cases the power taken from the source will exeed that taken from the secondary. Thus,

$$
I_{0}=n I_{i}
$$

where $I_{0}=$ Powre output from secondary
$r_{\mathrm{i}}=$ Power input to primary
$n=$ Fiflicioncy factor
The efficience, ", always is less than 1 . It is usually expressed as a pereentage; if ${ }^{\prime}$ is 0.6 .5 , for instanere, the efficiency is 65 per cent.
 lowd will be

$$
I_{\mathrm{i}}=\frac{P_{11}}{H_{1}}=\frac{1.50}{0.85}=176.5 \text { wate }
$$

A transformer is usually dewigned to have its highest efliciency at the power output for whinh it is rated. The efficioncy derreases with either lower or higher outputs, (On the other hand, the losses in the transomer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can hande is dotermined by its own losses, berause these heat the wire and core and raise the operating temperature. There is a limit to the temperatite siae that can be tolerated, because tor-high temperature ather will melt the wire or cathee the insulation to break down. I tramsommer alWis's ana la operated at reduced output, eren though the cffiedency is low, berause the actual luse also will be low under sum conditions.
The full-load defferency of small power transformers wheh as are used in radio recouvers and tramsmitters usually lies betwern about to per cent and 90 per cent, depending upon the size and devign.

Leakage Reactance

In a practical transformer not all of the nagnetic flux is common to both windings, although in well-designed transifomers the amount of flux that "euts" one coil and not the other is mily a small percentage of the total flux. This leakage flux causes an e.m.f. of self-induction: conse-
quently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance ants in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit.

Fig. 2.37 - The equivalent circuit of a transformer includes the effects of leakage inductance and resistance of both primary and secondary, windings. The resistance R_{c} is an equivalent resistance representing the core losses, whieh are essentially constant for any given applied voltage and fregueney. Since these are comparatively small, their uffert may be neglected in many apponimate caloulations.

It has, therefore, a certain reactance, depending upon the amount of loakige inductance and the fregumen. This reartance is called leakage reactance.

Current flowing though the leakage roartance causes a woltage drop, This voltage drop increases with increasing current, hence it increases as more power is taken from the secomdary. Thus, the greater the secondary current, the smaller the serondary terminal voltage beromes, The rexistances of the transformer windinges also caune voltage drops when current is flowing: although these voltage drops are not in phase with these cansed by leakage reartanere, together they result in a lower serombary voltage under load than is indirated by the turms ratio of the transfomer.

At power frequencies (tio celes) the voltage at the serondary, with a reasonably well-designod transformer, should not drop more than about 10 per rent from onmerireuit conditions to full kad. The drop in voltage may be considerably mere than this in a transfomer operating at aution frequencies berause the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without lossers or leakage reactance - the following relationship is true:

$$
Z_{3}=Z_{\mathrm{s}} \mathrm{~N}^{2}
$$

Where $Z_{0}=$ Impedaner looking into primary terminals from source of power
$\%_{s}=1$ mpedance of lowd remmerted to serondary
$\lambda=$ Turns ratio, primary to secondary
That is, a load of any given impedance comneeded to the secondary of the transformer will las transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

[^1]By choosing the proper turns ratio, the impedance of a fixed lowd can be tramsformed to any desired value, within praetieal limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power ako will be a pure resistance.

The above relationship may be used in pactical work even though it is based on an "ideal" transfomer, Aside from the normal design requirements of reasomably low internal losses and low loakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedane of a transformer as il appears to ihe source of pouer - is determined wholly by the load commected to the socomdary and by the turns ratio. If the characteristics of the transfomer have an appreciable effect on the impordane presented to the power souree, the transommer is either poorly designed or is not suited to the voltage and frequeney at which it is heing used. Mast transformers will operate quito well at voltages from slightly above to well below the design figure.

Impedance Matching

Many deviere reguire a sperifie vahe of lond resistance (ow impedane for opt imum operation. The impedance of the aretual load that is to dissipate the power may differ widely from this value, so a transformer is used to change the actual loud into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{p}}}
$$

where $N=$ Required turns ratio, secondary to mimary
$Z_{3}=1$ mpedinne of load conneeted to secondary
$\boldsymbol{Z}_{p}=$ Impedthce required
Example: A varomm-tube abf. amplifier reguires a load of 3000 ohnas for optimum performaner, and is to lie connected to a londswaber having an impedance of 10 ohms. The turns ratio, secondary to primary, reguired in the coupling transormer is

$$
N=\sqrt{\frac{\overline{m_{n}}}{\%}}=\sqrt{\frac{10}{\bar{\omega}(\mu)}}=\sqrt{\frac{1}{\square(10}}=\frac{1}{22.4}
$$

The primary therefore mast have 22.4 times as matny turns tw the serombury.
Impedance matching means, in gencrat, adjusting the load impedance - by means of at granfomer or otherwise - to a desired value. However, there is aks another meaning. It is possible to show that any source of power will deliver its maximum possible output when the impedance of the load is equal to the internal impedance of the somare. The impedane of the source is satid to to "matched" under this comditim. The effiemency is omly no per ent in surh
a case: just as much power is used up in the source as is delivered to the Joad. Beanse of the poor eflicieney, this type of impedance matehing is limited to cases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetio path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. A short path also belps to reduce flux leakage and therefore minimizes leakage reatance.

Two core shates are in common use, as shown in Pig. 2-38. In the shed type both windings are placed on the imer leg, while in the rore type

Fis. 2-3 - Two conmmon types of transformer consituction. Core piecea are interleaved to provide a continuous masnetic path.
the primary and seeondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacitive efferts between the primary and sorondary, or when one of the windings must operate at very high voltare.

Core material for smatl transformers is usually silicon steel, called "transformer iron." The erore is built up of laminations, insulated from carh other (by a thin coating of shellare, for example) to prevent the flow of eddy currents. The laminations are interleaved at the ends to make the magnetio pathas continuous as possible and thus reduce flux teakige.

The number of turns repuired in the primatry for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequeney. The number of turns required is inversely proportional to the cross-sertional area of the cone . As a rough indication, windings of small powe transhomers frequently have about six to bight thrus per volt on a core of l-siguareinch rross section and have a magnetie path 10 or 1^{12} inches in longth. A longer path or smather ross section requires more turns per volt, and vire versi.

In mort transformers the eoils are wound in layers, with a thin sheet of treated-paper insulation hetween each layer. Thicker insulation is used betwen mils and heowern roils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-39; the principles just diseussed apply equally well. A one-winding transformer is called an autotransformer. The current in the eommons section (J) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are noarly equal the common section of the winding may be wound with comparatively small wire. This will be the ease only when the primary (line) and

Fig. 2-39 - The autotransformer is based on the transformer principle, but uses only one winding. 'The line and load currents in the common winding (t) flow in opposite directions, so that the resultant current is the difference between them. The soltage alrosis A is proportional to the turns ratio.
 secondary (load) voltages are not very different. The autotrinsformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

The Decibel

In most ralio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the ear is that aninerease or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twire as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 40() -watt signal is twien as loud as a 100 -wate signal. In other words, the human ear has a logarithmic response.

This fact is the hasis for the use of the relative-power unit called the decibel, A change of one decibel (abbreviated db.) in the power level is just chetectable as a change in loudness under ideal conditions. The number of decibels correponding with a given power ratio is given be the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarit hms (base 10) are used.

Voltage and Current Ratios

Note that the decibel is based on power ratios. Voltage or curpent ratios can be used, but only when the impedinee is the stame for hoth values of voltage, or current. The gatin of an amplifier camot be expressed correctly in dh. if it is based on the ratio of the output voltage to the input voltage unless both voltatges are measured across the same value of impedance. When the impedance at bothpoints of motsurement is the same, the following formula may be used for voltage or current ratios:

$$
\begin{aligned}
& \text { lob. }=20 \log \frac{V_{2}}{I_{1}} \\
& \text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{aligned}
$$

Decibel Chart

The two formulas are shown graphieally in Fig. 2-40 for ratios from 1 to 10 . Gains (increases) expressed in decibols may be added arithmetically; losses (decreases) may be sub)tracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 dh. means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4 .

Fig. 2.40-Decilel chart for power, voltage and rurrent ration for jower ratios of $1: 1$ to $10: 1$. In determining decibels for current or voltage ratios the currents (or voltages) being eompared must be referred to the same value of impedance.

The chart may be used for other ratios by adding (or subtracting, if a loss) 10 dh, each time the ratio scale is multiplied by 10 , for power ratios: or hy adding (or subtracting) 20 (db . eath time the scate is multiplied by 10 for voltare or eurrent ratios. For example, a power ratio of $2 . \overline{5}$ is 4 dl . (from the chart). A power ratio of 10 times 2.5 , or 25 , is $1+\mathrm{db})$. $(10+4)$, and a power ratio of 100 times 2.5 , or 250 , is 24 db . $(20+4)$. A voltage or current ratio of 4 is 12 db ., a voltage or current ratio of 40 is 32 db . $(20+12)$, and a voltage or curvent ratio of 400 is 52 db . $(40+12)$.

Radio-Frequency Circuits

RESONANCE

Fig. 2-41 shows a resistor, capacitor and inductor connected in series with a source of alternating current, the frequency of which can be varied over a wide range. At some lou frequenes the capacitive reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance

Fig. 2-1I - A series circuit containing h, C and R is "resmant" at the applied frequency when the reactance of C is equal to the reactance of L.
of C or the resistance of R. (R is assumed to he the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactane of L will be very large. In either of these eases the eurrent will be snall, because the reactance is large at either low or high frequencies.

It some intermediate frequency, the reactances of C and L will be equal and the voltage drops across the coil and rapabitor will be equal and 180 degrees out of phase. Therefore they cancel earh other completely and the current flow is determined wholly by the resistance, R. It that frequeney the eurrent has its largest possible valuc, assuming the soure voltage to be constant regardless of frequency. A series circuit in which the inductive and capacitive reactances are equal is said to be resonant.

Although resonance is possible at any frequency, it finds its most extensive application in radio-frequency circuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series cmenit is resonant is that for which $X_{L}=X_{\text {c }}$. Sulsitituting the formulas for inductive and cabacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequeney in cyeles per second
$L=$ Indurtance in hemrys
$C^{\prime}=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radio-
frequency circuits, A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (kc.)
$L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$\pi=3.14$
Example: lhe resonant frequency of a serics circuit containing a $\overline{\mathrm{j}}-\mu \mathrm{h}$, inductor and a 35$\mu \mu$. capacitor is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{L C}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{83}=12,050 \mathrm{kc} .
\end{aligned}
$$

The formula for resomant frequency is not affeeted by the resistanee in the cirenit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-41 as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-42. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance.

If the reactance of either the coil or eapacitor is of the same order of magnitude as the resistance, the current decreases rather slowly as the fre-

Fig. 2-42 - Current in a series-resonant circuit with varions values of series resistance. The values are arbitrary and wouhl not apply to all circuits, but represent a typical case. It is assumed that the reactances (at the resonant freduency) are 1000 ohms (minimum ()$=10$).才ote that at frefuencies more than flus or minus ten per cent away from the resonant frepueney the current is substantially unaffeeted hy the resistance in the circuit.

Fig. 2-f3 - Current in series-resonant circuits having difforent (O. In this graph the curront at resonance is asamed to the the same in all rasis. "The lower the O, the more slowly the current decreases as the applied fre. froncy is moved away from resonance.
fuchey is mosed in either direction away from resthathe, such a curve is said to be broad. On the other hand, if the reactane is considerably larger than the resistane the current deereases rapidly as the frepuency moves away from resomace and the circuit is said to be sharp. I sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite chase to resomance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequenty.

Both types of resonance curves are useful. A sharp areuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others, I broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Most diagrams of resonant circuits show only inductance and caparitance; no resistance is indirated. Nevertheless, resistance is always present. It frequencies up to perhaps 30 Mc . this resistanne is mastly in the wire of the coil. . Woove this trequency energy loss in the aparitor (principally in the solid diclectric which must be used to form an insulating support for the capacitor plates) beronies appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest posible value.

The value of the reactance of either the induetor or caparitor at the resonant frequency of a series-resonant circuit, divided hy the resistance
in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either coil or condenser, in ohms
$R=$ Resistance in ohms
Example: The inductor and capacitor in a series cireuit earh have a reartance of 350 ohms at the reamant frefuency. The resistance is 5 ohuns. Then the Q is

$$
Q=\frac{\lambda}{R}=\frac{350}{5}=70
$$

The effect of Q on the sharphess of resonance of a circuit is shown by the curves of Fig. 2-43. In these curves the frequency rhange is shown in percentage above and below the resonant frequeney. (Ss of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frequeney is inserted in series in a resonant eireuit, the voltage that appears arross either the inductor or capacitor is considerably higher that the applied voltage. The eurrent in the cireuit is limited only hy the resistance and may have a relatively high value; however, the same current flows through the high reartanese of the inductor and eapacitor and cathes harge voltage drops. The rattio of the reative voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is the Q of the cireuit. Therefore, the voltage across either the inductor or (apanitor is equal to Q tinks the voltage inserted in series with the rimenit.

Example: The inductive ractane of a cirenit is 200 ohms, the cablebritive reatetance is 200 ohms, the resistanee is ohms, and the abplied voltage is 50. The two reartanees cancol and there will be bat ab ohas of pure resistather to limit the current flow. Thus the eurment will be $50 / 5$, or 10 amperws. The voltage devoloped across either the inductur or the caparitor will be equal to its rearetane times the current, or $200 \times 10=2000$ solts. An thternate mothod: The Q of the rimenit is $N / R=200 / 5=40$, Thic ractive valture is enpla! to a times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frepuchry sourer of eonstant voltage is applied to a parallel cirenit of the type shown in Fig. 2-4t there is at resomance offect similar to that in a series cireuit. However, in this case the "line" current (measured at the point indicated) is smollest at the frequeney for which the inductive and capacitive reatances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through (9 , so that only the courrent baken by R flows in the line. At frequencios below resonance the current through I is larger than that through (. becanse the readetner of L is smatler and that of C higher at low frecuencies; there is only partial cancellation of the two reactive
currents and the line current therefore is larger than the current taken by R alone. At frequencies ahore resonance the situation is reversed and more current flows through (' than through L, so the line current again increases. The current at resoname, being determined wholly by R, will be small if R is large and large if R is small.

Fif. 2-44-Circuit illustrating parallel reanance.
The resistance R shown in Fig. $2-44$ is not necessarily an actual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the circuit. This loss can be inherent in the coil or eapacitor, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transfering power from a vacuum-tube amplifier to an antenna system.)

Parallel and serios resonant circuits are quite alike in some respects. For instance, the cireuits given at A and 13 in Fig. 2- $\mathbf{- 1 5}$ will behave identically, when an external voltage is applied, if (1) L and C are the same in both eases; and (2) R_{p}

Fig. 2-45-Series and parallel equivalents when the two circolits are resonamt. The series resistor, R., in A can be replaced ly an equivalent parallel resistor, $R_{p,}$ in 13 , and viee versia.
multiplied by R_{s} equals the square of the reactance (at resonamee) of either L or $($. When these conditions are met the two cireuits will have the same Qs. (These statements are approximate, but are quite aceurate if the (is 10 or more.) The cireuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed 1 y L, C and R - so its Q can be found from the ratio of X to R_{s}.

Thus a circuit like that of Fig. 2-45A has an equivalent parallel impedance (at resonames) equal to R_{1}, the relationship between R_{s} and R_{p}, being as explained above. Although R_{1}, is not an aetual resistor, to the sourer of voltage the parallel-resonant cireuit "looks like" a pure resistancer of that value. It is "pure" resistance herause the inductive and capacitive currents are 180 degrees out of phase and are equal; thus there is no reactive current in the line. At the resonant
frequency the parallel impedance of a resonant eircuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{\mathrm{r}}=$ Resistive impodance at resonance Q = Quality factor
$\dot{X}=$ Reactanee (in ohms) of either the inductor or eapacitor

> bxample: The parallelimpedance of a rircuit having a Q of 50 and having induetive and capacitive reactances of 300 ohms will he
$Z_{\mathrm{r}}=0 \mathrm{~N}=50 \times 300=1 \mathrm{5}, 000$ oltus.
At frequencies off resonance the impedanee is no longer purely resistive heause the inductive

Fig. 2-46-Relative impedance of parallel-resonant cireuits with different Q_{s}. These curves are similar to
 The effect of Q on impedance is most marked near the resonatht freguency.
and capacitive currents are not equal. The offresonant impedance therefore is eomplex, and is lower than the resonant impedance for the reasons previously outlined.
The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel dircuit have just the same shape as the curvos showing the variation of current with frequency in a series circuit. Fig. $2-46$ is a set of such curves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is acrurate only for Qs of 10 or more. When the Q is below 10 , resonance in a parallel circuit having resistance in series with the coil, as in liig. $2-45 . \mathrm{A}$, is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistanee, but with these values the impedaner does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Either
condition could be called "resonance," so with low-Q circuits it is necessary to distinguish between maximum impedance and resistive impedance patallel resonance. The difference between these L and ("values and the equal reactances of a series-resonant eircuit is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the rirenit itself. It frequencies below 30 Mr. most of this resistance is in the eoil. Within limits, incronsing the number of turns on the (a) in increases the reactance faster than it raises the rewistace, so coils for circuits in which the () must be high may have reartances of 1000 ohms or more at the frequency under consideration.

However, when the cireuit delivers energy to a load (as in the case of the resonant rireuits used in transmitters) the energy consumed in the eireuit itself is usually negligible empared with that comsumed by the load. The equivalent of such a circuit is shown in Fig. 2-47. the pamallel resistor represents the load to which powe is dolivered. If the power dissipated in the load is at least ten times as groat as the power losit in the inductor and eaparitor, the parallel impedance of the resonant cirenit itself will be so high eompared with the revistance of the load that for all practical purpowes the impedance of the combined circuit is equal to the load resistance. londer these conditions the Q of a parallesresonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{X}
$$

where $Q=$ Quality factor
$R=$ lamallol load resistance (ohms)
$X=$ Reactane (ohms) of cither the inductor or capacitor
Example: A resistive load of $3(6) 0$ ohms is connoeted arross a resomant cirenit in which the inductive and conawitive reantances are each 250 olnus. The circult \& is then

$$
U=\frac{R}{X}=\frac{3(100}{2.50}=12
$$

Fis, 2. 5 - The equivalent eircuit of a resonant cir--uit delivering power to aload. The resistor R represents the loand re-i=tance. It is the load is tapped across part of L, which by transformer antion is eguivalent to using a higher load resistance aeross the whole eircuit.

The "elfective" (Q of a circuit loaded by a parallel resistance becomes higher when the reactances are derreased. A circuit loaded with a relatively low resistance (a few thonsand ohms) must have low-reactance elements (lange eapari-
tance and small inductance) to have reasonably high Q.

Impedance Transformation

An important application of the parallelresonant circuit is as an impedaner-matching device in the output cireuit of a vamum-tube r.f. power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and sel of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value requived for proper tube operation. To transform the actual load resistance ta the desired value the loid may be tapped across part of the coil, as shown in Fig. $2-4713$. This is equivalent to comnecting a higher value of load resistance across the whole eirenit, and is similar in principle to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetio flux lines do not cut every turn of the eril. I desired reftected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it mas be emmerted in series in the resonant (ifruit (as in lime 2-45. , for example), in which ease it is transformed to an equivalent parallel impedance as previonsly described. If the () is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{X^{2}}{R}
$$

where $Z_{r}=$ Resistive impedane at resmanee
$X=$ Reactance (in ohms) of either the roil or rondenser
$R=$ Looud resistance inserted in series
If the Q is lower than 10 the reatane wall have to be adjusted somewhat, for the reasons given in the diseussion of low-() circuits, to obtain a resistive impedance of the desired value.

Reactance Values

The eharts of Figs, $2-18$ and $2-49$ show reartathe values of industances and capacitanors in the range commonly used in r.f. Luned cireuits for the amateur bands. With the exeption of the 3.5-1 Me, hand, limiting values for which are shown on the charts, the change in reatance over a band, for either inductors or capacitors, is small enough so that a single curve gives the reactance with suflicient accuracy for most practical purposes.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be latge and C'small, L small and ('large, ete. The relation between the two fon a lixed frequeney is catled the L / C ratio. I high- C circuit

Fig, 2.f8-Reactance chart for inductance valucs commonly used in amateur bands from 1.75 to 220 Mc .
is one that has more capacitane tham "nomal" for the freguency: a low- C circuit one that has los than nommal capacitance. These terms depend to a considerable extent upon the partioular applieation comsidered, and have no exart numerical meaning.

LC Constants

It is frequently comvenient to use the numerieal value of the $L C$ constant when a number of calcu-

Fig, 2.49- Reatiance chart for capacitance values commonly used in amateur hands from 1.6 to 200 Mc .
lations have to be made involving different $I \cdot / 6$ ratios for the sume frequency. The constant for any frequeney is given by the following equation:

$$
L C^{\prime}=\frac{.25,330}{f^{2}}
$$

where $L=$ Inductance in mierohemrys ($\mu \mathrm{h}$.)
$C=$ ('iparatance in micromicrofarads: ($\mu \mu \mathrm{f}$.)
$f=$ Frequency in megaryatos
Example: lind the inductance refuired to resonate at 3650 ke . (3.6is Me.) with capacitances of $25,50,100$, and $500 \mu \mu$. The $L C$ constant is

$$
L C^{*}=\frac{25,330}{(3,65)^{2}}=\frac{25,330}{13.3 .35}=1900
$$

With $25 \mu \mu, L=1!30 / 6^{\circ}=1!100 / 25$

$$
=76 \mu \mathrm{~h} .
$$

$50 \mu \mu \mathrm{f} . I_{0}=1900 / \mathrm{C}^{\circ}=1900 / 50$

$$
=38 \mu \mathrm{~h} .
$$

$100 \mu \mu \mathrm{f}, L=1900 / C=1900 / 100$ $=19 \mu \mathrm{~h}$.
$500 \mu \mu \mathrm{f} . L=1900 / C=1900 / 500$ $=3.8 u h_{1}$.

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferted from one to the other, The rireuit delivering power is called the primary "irctit : the one rereiving power is called the secondary arcuit. The power may be practically all dissipated in the secondary circuit itself (this is busually the case in receiver (ircuits) or the secondary mas simply art as a medium through which the power is transferred to a load. In the latter caise, the
 impedance-matehing devire. 'The matching can be aeromplished by adjusting the loading on the secondary and beverying the amount of couphing between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling betweon two resomant cireuits is through a circuir clemont (emmmon ta both. The there variations of this tren of compling
 mon inductanes, "apmitance ated rexistathere, re-

 and the voltage develomed andess this ebenomt calneses current to flow in the wher for hatach

If both eireuits are resonamt to the same froquency, as is usablly the case, the value of rompling reactance or resistance required for maximum energy transfer is genorally quite small compared with the other reactances in the rimcuits. The common-cireuitelement method of coupling is used only occosionally in amateur apparatus.

Capacitive Coupling

In the circuit at I) the couphing inereases as the caparitance of ${ }^{c}$, the "eoppling eapacitor," is made greater (reactance of f_{c} is decreased)

Fig, 2-50 - Vour method= of rircuit coupling.
When two resonant circuits are coupled by this means, the caparitance required for maximum energy transfer is quite small if the Q of the secondary eireuit is at all high. for example, if the patallel impedance of the secondary dircuit is 100,000 ohms, a reactane of 10,000 ohms or so in the caparitor will give ample corpling. The corresponding capacitance required is only a few micromierofarads at high frequencies.

Inductive Coupling

Figs, 2-51 and $2-52$ show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the

Fig. 2-51 - Single-thard imburively -roupled ciemits.
irom-eome transiomer, but because only a part of the magnetie flux lines set up by one coil cut the turns of the other coil, the simple relationships betwern tums ratio, voltage rational impedance ratio in the ironerore transformer do not hold.

Two type of inductively-roupled cirenite are shown in Fig. 2-5l. Only one cire uit is resonant. The circuit at . 1 is frequently used in receivers for coupling betwero anplifier tubes when the tuning of the circuit must be varied to respond to sigmals of different frequencies. (ireuit 13 is used prin-
cipally in transmitters, for coupling a radiofrequence amplifier to a resistive load.

In these rireuits the coupling betwern the primary and secondary coik usually is "tight" that is, the coeflicient of conpling betwern the eoils is large. With very tight coupling either eirenit operates nearly as though the deviee to which the untuned eoil is comerted were simply tapped across a corresponding number of turns on the tumed-eireuit coil, thus either eireuit is approximately equivalent to fig. $2-4$ l3.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned eincuit may be adjusted to the value reguired for the proper operation of the deviee to which it is comected. In any case, the maximum energy transfor posible for a wiven eodicient of erouphing is obtained when the reactanere of the untuned coil is equal to the resistance of its load.

The Q and patallel impedane of the thed circuit are reduced be compling through an untuned eroil in much the sume way as by the tapping arrangement shown in Fig, "-473.

Coupled Resonant Circuits

When the primary and seromdary circuits are both tuned, as in Fig. 2-52, the resomanee efferts

Fig. 2-52 - Inductively-coupled resonant cirvats. Circuit A is used for high-rusistance loats (loat rasistance much higher than the reatanee of cither L_{2} or Ci2 at the resonant frefurnoy). (irenit B is suitalale for low resistance loads (load rexistance much lower than the reactance of eithor I_{z} or $(z$ at the veanatht frequeney).
in beth rincuits make the opreation momonlat mone complieated than in the simple erienits inst considered. Imagine tirst that the two riments are not conpled and that cath is independently tumed to the resonant irequenes. 'The inpedane on esteh will he purely resistive. If the primary aredit is womeded to a soure of ref. mergy of the resomath frequency and the secometary is then tomedy coupled to the primary a current will flow in the secondary eireuit. In flowing through the resistance of the secondary circuit and any load that may be comected to it, the current canses a power loss. This prower must come from the energy source through the primaty cireuit, and manifesta itself in the primary as an increase in har equivatent resistane in serios with the primary coil. Hence the () and parallel impedane of the primary circuit are decreased by the
couplod secondary. As the coupling is made greater (without rhanging the tuning of either circuit) the coupled resistance beeomes larger and the parallel impedance of the primary contimust to decrease. Ihso, as the coupling is made tighter the amount of power transferred from the pimaty to the secondary will increase to a maximum at one value of coupling, called critical coupling, but then deereases if the coupling is tightencel still more (still without ehanging the tminge).
(ritical coupling is a function of the Qs of the two cirenits. I higher cocfficient of eoupling is required to reach critical coupling when the (os are low; if the (). are high, as in recelving applications, a couphing coefficient of a few per cent may give cuitical coupling.

With loaded cireuits such as are used in transmitters the Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construetion permits. In such case, incrasing the Q of either eireuit will be helpiul, although it is generally better to increase the (of the lower-() circuit rather than the werese. The of of the parallel-tuned primary (input) direnit can be inereaved by decreasing the L/C ratio hecame, as shown in conmection with fig, o-th, this eirenit is in effert loaded by a paratlel resistance (effect of compled-in resistander). In the parallel-tuned seoondary circuit, lig. -52.1 , the Q can be increased, for a fixed value of load resistamer, either be decreasing the L^{2} / C^{2} ratio or by tapping the load down (nee Fig. ?-45). In the series-tuned secomdary cireuit, Fig. $\because-i 213$, the 0 mat be increased by incemsing the 1. (matio. There will generally be no difficulty in serouring suflicient eoupling, with particatbe mails, if the produet of the (os of the two tuned rircuits is 10 or more. A smaller product will suffice if the coil construction permits tight coupling.

Selectivity

In Fig, 2-51 only one circuit is tuned and the selectivity eurve will be essentially that of a single resonant cireuit As stated, the effeetive Q deponds upon the resistance connected to the untuned coil.

In لig, $2-52$, the selertivity is the same as that of as single tomed eireuit having a () egual to the pronluct of the (s) of the individual citrenits - if the coupling is well helow eritical (this is not the condition for optimum power transfer diseussed immediately above and both cireuits are tuned to resonames. The (Qs of the individual cireuits are afferted by the degree of coupling, because each couples rosistame into the other; the tighter the coupling, the lower the individual Qs and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonamee, the over-all selectivits will vary about as shown in lig. "-ris as the compling is varied. With loose coupling, A, the output voltage (across the secondary cireuit) is small and the soleetivity is high. Is the eompling is increased the serondary voltage also inerease matil eritieal

Fif. 2.53 - Showing the effect on the nutput voltage from the serondary eirchit of ehanging the coselieiont of coupling tertween two resonant vircoit inderendently thined to the same frequency. 'The woltage applind to the primary is held constant in amplitude while the frequency is varied, and the output voltage is measured across the secondary.
coupling, B, is reached. At this point the output voltage at the resonant freguency is maximum but the selcetivity is lower than with lonser coupling. At still tighter coupling, (${ }^{\prime}$, the output voltage at the resonant frepueney decreases, but as the frequency is varied either side of resumane it is found that there are two "hamps" to the eurve, one on either side of resomance. With very tight coupling, l, there is a further deerease in the output voltage at resonance and the "hamps" are farther away from the resmant frequener Curves such as those at ('and D are called flattopped beeause the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resomance humps have the same maximum value as the resonant output voltage at eritical coupling. These humps are caused by the fare that at frequencies off resomane the secondary circuit is reactive and comples ranctance as well as resistance into the primary. The eonplod resistance deereases off resomanere, and eath hump represents an new eondition of aritical conpling at a frequener to which the primary is tuned by the additional coupled-in reactance from the secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantially uniform output is desired over a continuous band of frequencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the Q os of the two cireuits as well as the tightness of coupling: the frequency separation between the humps will increase, and the curve become more lat-topped, as the ()s are lowered.

Band-pass operation also is secured by tuning the two cireuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. This is called stagger tuning. However, to secure adequate power transfer ower the frequency band it is usually necessary to use tight coupling and experimentally adjust the circuits for the desired performance.

Link Coupling

A modification of inductive coupling, ealled link coupling, is shown in lig. $2-51$. This gives the effect of induetive erupling between two coils
that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils couphod be a link cannot be made as great as if the coils themselves were coupled. This is because the corfficient of coupling between aircore coils is considerably less than 1 , and since there are two coupling points the over-all coupling

Fig. 2.54 - Link conpling. The mulual inductances at both ends of the link are equivalent to mutual induetance tretwern the tuned circuits, and serve the same purponse.
erofficient is loss than for any puir of coils. In practice this need not be disadvantageous because the power transfer can be made great enough by making the tumed eireuits sufficiently high-i. lank contuling is convenient when ordinary inductive compling would the impractioable for constructional reasoms.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the coreflicient of coupling is relatively independent of the mumber of turns on either coil; it is more important that both link coils should have about the same indurtance. The length of the link betweon the coils is not eritical if it is very small compared with the wave length, but if the length is more than about one-twentieth of a wave length the link operates more as a transmission line than as a means for providing mutual inductance. In such rease it should be treated by the methods deseribed in the chapter on Transmission Iines.

IMPEDANCE-MATCHING CIRCUITS

The coupling cireuits discussed in the preceding section have been hased either on inductive coupling or on coupling through a common circuit element between two resonant circuits. These are not the only circuits that may be used for transferring power from one device to another. There is, in fart, a wide variety of such cireuits availathle, all of them being classified generally as impedance-matching networks. Two such net-
(A)

$X_{L}=\sqrt{R R_{i n}-R^{2}}$
$X_{C}=\frac{R R_{i n}}{X_{L}}$
(B)

Fig. 2.55-The I network for transforming a given resistive load, R, into a desired value of resistance, $R_{\text {IN }}$. (A) is for transforming to a higher value of resistance, (I3) for transforming to a lower value.
works frequently used in amateur equipment arro the L network and the pi network, shown in the form commonly used in Figs. 2-55 and $2-56$.

The L Network

The L network is the simplest possible im-pedance-matehing circuit. It closely resembles an ordinary resonant eirenit with the load resistance, R, Fig. $2-55$, either in series or parallel. The arrangement shown in lig. "-njed is used when the desired impedance, $R_{\text {LN }}$, is larger than the actual load resistance, R, while Fig. 2-and is used in the opposite case. The design equations for cach case are given in the figure, in terms of the dircuit reatances. The reactances maty be converted to inductance and (anpacitance by means of the formulas previously given or taken directly from the charts of Figs. $2-18$ and $\because-19$.

When the impedance transfomation ratio is large - that is, one of the two impedances is of the order of 100 times (or more) larger than the other - the operation of the cirent is exactly the same as previously disenssed in connertion with impedance transformation with a simple $L C$ resonant circuit.

The Q of an L, network is found in the same way as for simple resonat circuits, "lhat is, it is equal to X_{1} / R or $R_{\text {LN }} / X_{C}$ in Fig. $2-$-ind, and to $X_{L} / R_{1 N}$ or R / X_{C} in Fig. $2-5$ Bh. The value of Q is determined by the ratio of the impedineses to be matehed, and canmot be solected independently. In the equations of Jis. 2-5. 2 it is assumed that both R and $R_{\text {IN }}$ are pure resistames.

The Pi Network

The pi network, shown in Fig. 2 -inf, offers more flexibility than the L since the oprating Q mity

Fig. 2-56 - The pi network, for matching any two values of purely resistive impedanees, R_{1} and R_{2}, In the definition of the O of the network it is asiamed that R_{1} is the higher of the two resistances, and should tre so chosen in using the equations.
be chosen practically at will. The only limitation on the circuit values that maty bed is that the reactance of the series arm, the inductor L in the figure, must not be greater than the square root of the product of the two values of resistive impedanee to be matched. As the cirruit is applied in amateur equipment, this limiting value of reactance would represent a network with an undesirably low operating $($, and the eireuit values ordinarily used are well on the safe side of the limiting values.

In its prineipal application as a "tank" eircuit matching a transmission line to a power amplifier tube, the load R_{2} will generally have a fairly low value of resistance (up to a few hundred ohms) while l_{1}, the required load for the tube, will be of the order of a few thousind ohms. In such a case the $($) of the eircuit is defined as $R_{1} / X_{C}{ }_{1}$, so the choice of a value for the operating Q immediately sets the value of Xc_{1} and hence of C_{1}. The values of $X_{r_{2}}$ and X_{1}. are then found from the equations given in the figure.

Graphical solutions of these equations for the most important practical eases are given in the chapter on transmitter design in the discussion of plate tank circuits. The L and C values maty be calculated from the reatatices or read from the charts of Figs, $2-18$ and 2-19.

- FILTERS

A filter is an eleretrical circuit configuration (network) designed to have specific characteristies with respert to the transmission or attentation of various frequemes that maty be applied to it. There are there gemeral types of filters: lowpass, high-pass, and band-pass.

A low-pass filter is one that will permit all frequene ios below a surevified one called the cut-off frequency to be transmitted with little or no loss, but that will attemuate all frequencies abowe the cut-ofi frequener.

A high-pass filter similarly hats a cut-off frequeney, athove which there is little or no loss in transmission, but helow which there is considerable attemation. It-; behavior is the opposite of that of the low-pass filter.

A band-pass filter is one that will transmit a selected band of frequeneios with sulstantially no loss, but that will attemato all frequencios aither higher or lower that the desired band.

The pass band of a filter is the fregurner spere trum that is transmitted with little or no loss. The transmission characteristie is not neeressarily pertertly uniform in the pass hand, but the variations in the transmission characteristio usually are sumall.

The stop band is the frequency region in which attemation is desired. The attemation maty vary in the stop hatad, and in a simple filter usuatly is least near the cot-off freguency, rising to high valus at frequemios considerably removed from the colt-off frequences.

Filters are designed for at specific value of purely resistive impedance (the terminating impedance of the filter). When such an impedance is connered to the ontput terminals of the filter, the impedance fooking into the input terminats has exsentially the same value, throughout most of the patss hand. simple filters do not give perfertly uniform performane in this resperet, but the input impedance of a properly-terminated filter can be made faimy constant, as well as closer to the design value. over the pass band bev using m-derived filter sections.

I discussion of filter design primeples is beyond the seope of this IIandbook, but it is not diffieult
to build satisfactory filters from the eircuits and formulas given in Fig, 2-ñ̄. Filter circuits are built up from elementary sertions as shown in the figure. These sections cam be used alone or, if greater attemuation and sharper eut-off (that is, a more rapid rate of rise of attemuation with frequeney beyond the cut-off frequency) are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequeney transmitted without attemation. In the band-pass filter designs, f_{1} is the low-frequency eut-off and f_{2} the high-frequeney cut-off. The units for L, C^{\prime}, R and f are hemrys farads, ohms and ereles per socond, respertively.

All of the types shown are "umbalanced" (one side grounded). For use in hatanced circuits (e.g. . 300 -ohm transmission line, or push-pull audio (irenits), the sories reactaners should be equallydivided hetwern the two legs. Thus the balanced constant-/: π-section low-pass filter would use two inductors of a value equal to $/ L_{k},{ }^{\prime} 2$, while the balaneed constant-k π-sertion high-pass filter would use two eapacitors mach equal to $20^{\prime} k$.

If several low- (or high-) pass seretions are to be used, it is alvisable to use m-derived end sections on either side of a constant-k renter section. although an m-derived benter section cam be used. The factor m determines the ratio of the cut-olf frequency, $f_{\text {. }}$ to a freguency of high atternation, f_{x}. Whare only one m-derived seretion is used, a value of 0, (is gemerally used for m, atthough a deviation of 10 or 15 per cent from this value is mot tom serious in amatemr work. For a value of $m=0.6$, f_{∞} will 1 we $1.25 f_{c}$ for the low-pass filter and 0.8 fe for the high-pass filter. Other values ram be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and
$m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.
The output sides of the filters shown should the terminated in a resistance equal to R, and there should be little or no reactive eomponent in the termination.

Simple andio filters ran be made with pow-dered-iron-eore chokes and paper eapacitors. Sharper cutooff chatucteristios will be obtaned with more sortions. The values of the components can vary by $\pm \bar{y}^{\prime}, \dot{c}$ with little or no reduction in performance. The more sections there are to a filter the greater is the need for atecuracy in the values of the components. Highperformanee andio filters ram be built with only two sections by winding the inductors on toroidial powdered-iron forms: three sedions are genorally needed for obtaining equivalent rosults when using ot her types of inductors.

Band-pass filters for single side-band work (see hater chapter) are oflen designed to operate in the range 10 to 20 kc . Their attentation requirements are such that usually at loast a five-

Fig. 2-57-Basic filter sections and design formulas. In the above formulas R is in ohms, C in farads, L in henrys, and f in cycles per second.
section filter is required. The coils should be as high-() as possible, and mica is the most suitable eaparitor dielertric.
low-pass and high-pass filters for hamonie suppression and rereiveroverload provention in the television frequencios range are usually made with self-supporting coils and micat or reramic rapacitors, depending upon the power reguirements.

In any filter, there should be no magnetic or raparitive coupling between sections of the filter unless the design sperifically calls for it. This requirement makes it neerssary to shied the coils from earh other in some applications, or to mount them at right angles to each other.

PIEZOELECTRIC CRYSTALS

A number of crystalline substances found in nature have the ability to transform mechanical strain into an eloctrical charge, and rice rersa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quartz erystal and plared between two eonducting electrotes will be mechanically strained when the electrodes are comeneded to asource of voltage. Conversely, if the crystal is squereded between two clectrodes a voltage will be developed betwern the electrodes.

Piezoelertric crystals can be used to transform mechanical energy into electrical energy, and vice vorsi. They are used in microphones and phonograiph pick-ups, where mechanieal vibrations are transformed into altornating voltanes of corresponding frequency. They are also used in headsots and loudspeakers, transforming abetrieal chergy into mechanieal vibration. Crystals of Rochelle salts are used for these purposes.

Crystal Resonators

Crystalline plates also are mechanical resonators that have matural frequencies of vibration ranging from a few thousand cyeles to several megaryer per second. The vibration frequency depends on the kind of erystal, the way the phate is cut from the natural crystal, and on the dimensions of the plate. The thing that makes the crystal resonator valuable is that it has extremely high Q. ranging from 5 to 10 times the Qs obtainable with good $L C^{\prime}$ resonant circuits.

Analogies can be drawn between various mewhanical properties of the erystal and the electrical characteristies of a tumed eireuit. This leads to an "equivalent circuit" for the crystal, The electrical coupling to the crystal is through the electrodes between which it is sandwiehed; these clectrodes form, with the crystal as the dielectrie, a small eapacitor like any other capacitor constructed of two plates with a dieleetric between. The crystal itself is equivalent to a series-resonant cireuit, and together with the caparitance of the electrodes forms the equivalent rircuit shown in Fig, 2-58. At frequencies of the orter of 450 ke , where crystals are widely used as resonators, the equivalent L may be several

Fig. 2-58-Equivalent cireuit of a crystal resomator. L, (C and R are the eleetrical equisalents of mechanical properties of the erystal; fob is the capacitame of the electrodes with the erystal plate between them.

henrys and the equivalent (conly a few hundredths of a micromicofarad. Although the equivalent R is of the order of a few thousind ohms, the reactance at resonance is so high that the () of the erystal likewise is high.

A circuit of the type shown in Fig. $2-58$ has a series-resonant frequency, when viewed from the cirenit terminals indiated by the arrowheads, determined by L and C only. At this frequency the circuit impedance is simply equal to R, providing the reactance of C_{1} is large compared with R (this is generally the ease). The circuit also has a parallel-resonant frequency determined by L and the equivalent capacitance of $(b$ and $(b$ in series. Since this equivalent capacitance is smaller tham (C alone, the parallel-resonant froqueney is higher than the series-resonant frequeney. The separation between the two resonant frequencies depends on the ratio of (\% to (", and when this ratio is large (as in the case of a crystal resonator, where c_{b} will be a few $\mu \mu \mathrm{f}$, in the average case) the two frequencies will be quite close together. A separation of a kilocyele or less is typieal of a quarta erystal.

Fig. 2-59- Heathance amd resistance es. freduency of at circuit of the type shown in fly. 2-is. Actual values of reactance, resistance and the separation teetween the scries- and parallel-resonant fromemies, f and $f 2$, respectively, depend on the direnit constants.

Fig. '3-0.! shows how the resistance and reactance of such a eireuit vary as the applied frequency is varied. The reactance passes through zero at both resonant frequencies, hut the resistance rises to a large value at parallel resoname, just as in any tuned eirenit.

Quarta crystals maty be used either as simple resonators for their selective properties or ats the frequency-controlling elements in useillators as deseribed in later chapters. The series-resonant frequency is the one prineipally used in the former case, while the more common forms of oseillator circuit use the parallel-resonant frequency.

Practical Circuit Details

COMBINED A.C. AND D.C

Most radio rireuits are built around vacuum tubes, and it is the nature of these tubes to require dirent current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and somotimes the reverse) at frequencies varying from well down in the audio range to well uy in the superhigh range. The conversion process almost invariahly requires that the direct and alternating currents meet somewhere in the rircuit.
In this moeting, the ald, and dere are artually combined into a single current that "pulsates" (at the ace, frequency) abont an average value aghal to the direct rurrent. This is shown in lig. $2-\mathrm{f} 0$. It is convenient to consider that the alter-

Fis. 2.60 - 1'ul. sating d. e., composted of all alternating current or oltage superimprosed on a steady diruet current or voliage.
nating current is superimposed on the direct current, so we may look upon the atotal current as having two components, one d.c. and the other a.c.

In an alternating current the positive and negat tive alternations have the same average amplitude, so when the wave is superimposed on a dired current the latter is altemately increased and dearased by the same amomant. There is thus no average change in the direct eurent, If a d.e. instrument is being used to read the current, the reading will be exaetly the same whether or not the arce is superimposed.

However, there is actually more power in such a combination current than there is in the direct current akme. This is berause power varies as the square of the instantaneous value of the ruryent, and when all the instantaneous squared values are averaged over a covele the total power is greater than the d.e. power alone. If the ate is a sine wave having a peak value just equal to the d.c., the power in the cireuit is 1.5 times the d.e. power. An instrument whose readings are proportional to power will show surh an increase.

Series and Parallel Feed

liig. 2-6i shows in simplified form how d.e. and ate. may be combined in a varum-tube eirenit. In this ease, it is assumed that the are, is at radio frequency, as suggested by the coil-andcaparitor tuned circuit. It is also assumed that r.f. current can easily flow through the d.e, supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and des sumble all are romerted in series. The
direct current flows through the ref. coil to get to the tube; the r.f. current generated by the tube flows through the d.e. supply to get to the tuned circuit. This is series feed. It works beanse the impedance of the d.e. supply at radio frequencies is solow that it dow not affert the flow of r.f. current, and hecause the der. resistance of the eril is so low that it does not affere the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a seemad coil, RFC' (radio-frequency choke). Direct current emmot flow through L hecanse a blocking capacitance, (', is placed in the circuit to prevent it. (Without (', the d.c. supply would be shortcircuited by the low resintance of L.) (hn the other hand, the ref, current generated by the tube can easily flow through (' to the tuned circuit because the caparitance of ' is intentionally chom to have low reactane (eompared with the impedance of the tuned circuit) at the radio froquency. The rif. current cannot flow through the d.c. supply beratuse the inductance of $R F C^{\prime}$ is intentionally made solarge that it has a very high reartane at the radio frequenes. The rexistance of $R F C^{\prime}$, however, is too low to have an appe-

Fig. 2-61 - Illustrating series and parallel feed.
riable effect on the flow of direct current. The two currents are thus in prorallel, hence the name parallel feed.
Wither type of feod maty be used for both :lf. and r.f. circuits. In parallel feed there is no da. voltage on the ace circuit, a desirable feature from the viewpoint of safety to the operator, herause the voltages applied to tubse - partioularly tranmitting tubes - are dangerous. (on the other hand, it is somewhat diflicult to make an r,f, ehoke work well over a wide range of frequencies. series feed is often preferred, therefore. because it is relatively easer to keep the impedamee between the a.c. circuit and the tube low.

Bypassing

In the series-feed rircuit just discussed, it was assumed that the d.e supply had very low impedance at radio frequencies. This is not likely to be true in a pratical powar suphly, paty
berause the nomal physieal separation between the supply and the r.f. rireuit would make it necessary to use rather long eonnecting wires of leads. It radio freouencies, cren a few feet of wire can have fairly lage reactance - tow large to be considered a really "low-impedance" connection.

An actual circuit would be provided with a by-pass capacitor, as shown in lig. 2-fie. ('apacitor ' C^{\prime} is chowen to have low reatance at the operating freguency, and is installed right in the cireuit where it can be wired to the other parts with quite short connecting wires. Ience the r.f. curent will tend to flow through it rather than through the d.e. supply.

To be effertive, the readance of the by-pass raparitor should not be more than one-tenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is mot known, in which "ase it is desirable to use the hargest capacitance in the bypass that ciremmstances permit. To make doubly sure that ref, corrent will not flow through a non-r.f. cireuit such as a prower supply, an r.f. choke may be connered in the lead to the latter, as shown in Fig. 2-6\%.

The same type of bypassing is used when andio frequencies are prosent in addition to r.f. Berathero the reactance of a calacitor changes with frequency, it is readily possible to choose a capucitance that will represent a very low reactaner at

ドis. 2-62-T: bical nee of at be-pats calparitur in a seriw-feed cirruit.

radio frequencies but that will have surh high reactance at andio frepucheios that it is practi-
 is practioally a short cireuit for rif., for example, but is ahmest an opern eirenit at andio frequenemes. (The artual value of eapacitaner that is usable will be modified be the impedames eoneremed.)
 to eatry the audio freguenerios aromad a d.e. supply.

Distributed Capacitance and Inductance

In the discussions carlier in this chapter it Was assumed that a capacitor has only capacitance and that an indurtor has only inductance. Infortunately, this is not strictly true. There is always a certain amount of inductance in a conductor of amy length, and a caparitor is bound to have a little inductance in addition to its intended eapacitance. Na, there is always cat pacitance between two conductors or between
parts of the same conductor, and thus there is appreciable capacitance between the tums of an inductance conil.

This distributed inductance in a capacitor and the distributed capacitance in an inductor have important pratetical offects. . Detually, every cat paritor is a tuned rircuit, resonant at the frequency where its capacitanes and distributed indurtane have the same reactance. The same thing is true of a coil and its distributed eaparitance. At frequencies well below these natural resonances, the capacitor will act like a nommal rapareitance and the eoil will act like a normal inductance. Near the natural resonamt points, the coil and calbator act like self-tumed riments. Above resoname, the rapacitor ade like an inductor and the inductor acts like a mamotor. Thus there is a limit to the amount of eapacitance that can be used at a given frequenery. There is a similar limit to the indurtance that can be used. At andio frequencios, capacitanes mombured in microfarats and inductances meatsured in hemys are praticable. It low and medium madio froquencies, inductances of a fow millhenrys and rapabitances of a forn thonsand midromiconfarads are the largest practicable. It high ration frecquencies, usable inductance values drop to a fow miorohomss and raparitances to a few hundred mieromierofarads.

Distributed rapacitance and inductance ares important not only in r.f. tuned circuits, but in bypassing and choking as well. It will he apprechated that a by-pass eaparitor that actually ancts like an inductance, or an r.f. choke that acts like a low-reactance capacitor, camot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a conneretion is said to be "grounded" it does not neressarily mean that it actually gores to barth. What it means is that an attual earth comeetion to that point in the cireuit should not distur) the operation of the eireuit in any way. The term also is used to indicate a "common" point in the cirevit where pewer supplies and motallig supports (such as a motal (chassis) are electrically tiod together. It is gemeral pration, for example. to "ground" the negative terminal of a de e power supply, and to "Eround" the filament or heater power supplies for varuum tubes sime the rathode of a vacuum tube is a jutution point for grid and plate voltage supplies and sime the varions circuits comered to the tube chements have at least one point rommered to cathode. these points also are "returned to ground." Ground is therofore a common reforence print in the radio circuit. "(iround potential" means that there is no "difieremee of potential" - that is. no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a cireuit may be cither single-ended (unbalanced) or balanced.

In a single-ended cireuit, one side of the cireuit is connected to ground. In a balanced rirenit, the electrical midpoint is comerted to ground, so that the circuit has two ends each at the same voltage "above" ground.

Typioul singe-ended and balaned direuits are shown in Fig. 2-bi3, R.f. circuits are shown in the uper row, while iron-cone transformers (surh

Fig. 2-6.3 - Singlevended and balanced cirenits.
as are used in power-supply and audio circuits, are shown in the lower row. The r.f. circuits may be balanced cither by eonnerting the center of the coil to ground or by using at "balanced" on "split-stator" capateitor and eonnerting its rotor to ground. In the iron-core transformer, one or both windings maty be tapped at the eenter of the winding to provide the ground eomeetion

Shielding

Two circuits that are physically near each other usually will be eoupled to each other in some degree even though no compling is intended. The metallic parts of the two circuits form a snatl caparitance through which energy can be tramsferred by means of the electuic field. . Aso, the nugnotic field about the coil or wiring of one circuit can eouple that rireuit to a seeond through the latter's roil and wiring. In many
enses these unwanted couplings must be perevented if the cireuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallie containers, ealled shields. The eleretrir firld from the rirenit combonents does not penotrate the shield. A noetallic plate, colled a baffle shield, inserted between two eomponents also may sutfico to prevent electrostatic eompling lexweon them. It should be lavge enough to make the components invisible to cach other.
similar metallio shielding is used at radio frequencies to prevent magnetic coupling, The shielding effert increases with frequency and with the conductivity and thicknoss of the shielding material.

I closed shield is required for good magnetic shielding; in some coses separate shiclels, ome about each eoil, may be required. The batfle shield is rather ineffective for magnetio shielding, although it will give partial shielding if planed at right angles to the ases of, and betwere, the coils to be shielded from wach other

Shictdmg a eroll reducem its inductanoce, becaluse part of its fiold is canceled by the shodid. Naso, there is always a small amoment of resistanme in the shield, and there is therefore an energy loss. lhis loss raises the efferetive resistanere of the coil. The decrease in inductance and increase in resistance lower the $(8$ of the coil, but the redurtion in indurtame and () will be small if the spacing loetween the sides of the roil and the shiold is at least half the enil diameter, and if the spareing at the ends of the eoil is at least equal to the coil diameter, The hisher the conductivity of the shield material, the less the rffect on the inductance and (Q. Copper is the best material, but aluminum is quite satisfiactory.

For good nagretic shiolding at audio frequeneres it is neressury to enclose the roil in a contaner of high-permeability iron or steel. In this rase the shield ran bre quite elose to the eoil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonment circuits as emploved at the lowed frequeneries it is posisible to consider each of the reactance components as a separate entity, The fact that an inductor has a certain amount of self-caparoitather, as well as some resistance, while a caparitor also possesses a small selfinductance, eat usually be disregarded.

At the very-high and ultrithigh frequencies it is not readily possible to separate these components, Also, the eommerting louds, which it lower frecpuencies would serve merely to join the caparitor and coil, now may have more inductance than the roil itself. The required indurtance coil maty be no more than a single turn of wire,
yet even this single turn may have dimensions eomparable to a wave longth at the operating frequency. Thus the energy in the field surrounding the "roil" may in part be radiated. At at sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the cirreuit.

For these reasons it is common pratetice to utilize resomant sections of transmission line as tuned circuits at frefuencies above 100 Mc . or so. A quarter-wave-length line, or any odd multiple thereof, shorted at one end and open at the other exhibits large standing wives, as described in the chapter on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the re-
sponse is very similar to that of a parallel resonamt circuit The equivalent relationships are shown in lig. 2-6t. At freguencies off resonance the line dis, bays qualities comparable with the

Fig, 2.o.4- Equivalemt coupling circuits for parallelline, cosaialiline and conventional resonant cirenits.
inductive and matacitive reactances of a comventional tuned circuit, so sections of transmission line can be used in much the same manner as inductors and capacitors.

Ton minimize radiation less the two comdurtors of at parallel-eonduetor line should not be more than about one-tenth wave length apart, the spacing being messured botweon the eonductor axes. (On the other hand, the sparing should not be less than about wice the combuctor diameter becatuse of "proximity effert," which canses eddy rurrents and an increase in loss. Ahove 300 Mr. it is diflicult to satisfy hoth these reguiremonts simultaneonsls, and the radiation from an open line tends to herome exessive, reducing the Q. In such cease the equital type of line is to be preferred, since it is inherently shieded.

Representative methods for adjusting coasial
 left, a sliding shorting disk is used to reduce the

Fig. 2-6.5-Methods of tuning coaxial resonant lines.
effertive length of the line ber altering the pasition of the short-eirevit. In the center, the same effect is accomplished by using a teleseoping tube in the end of the imer conductor to vary its length and therelg the effertive length of the line. It the right, two possible methods of using parallelplate capacitors are illustrated. The arrangemont with the loading capacitor at the open end of the line has the greatest tuning effect per unit of caparitance; the alternative mothot, Which is equivalent to tapping the condenser down on the line, has less effect on the Q of the circuit. Lines with rapacitive "loading" of the
sort illustrated will be shorter, physically, than unloaded lines rewnant at the sume frequemer.

Two methods of tuning a parabled-onductor lines are shown in Figg, 2-6it. The sliding shortcircuiting strap can be tightened by means of sorews and nuts to make good electrical eontate. The parallel-phate rapacitor in the seemod drawing may be placed antwhere along the line the thing effert beroming less as the (apabitor is located nearer the shorted end of the line. Although a how-capmextane variatble (apacitor of ordinary construction rath be used, the circular-plate type shown is symmet-

Fig. 2-66-Methords of tuning paralleltypersonant liners.

rical and thas does not unbalane the line. It also has the further advantage that no insulating material is required.

WAVE GUIDES

A wave guide is a conducting tube through which conergy is transmithed in the form of elaetromagnetie waves. The tube is not considered as carving a corrent in the same sense that the wires of a fwerombuctor line do, but rather as a boundery which confines the waves to the enclosed spare. Skin effect prevents any electromagnetic effects from being avident outside the guide. The conergy is injerted at onte end, either through rapacitive or indureive coupling or by radiation, and is reereded at the other end. The wave guide then merely eonfines the energy of the fiedds, which are propagated through it to the recoiving end by means of reflections against its inner walls.

Analysis of watrogude operation is hased on the assmonion that the guide material is a perfect conductor of edectridits. Typieal distributions of eleetric and magnetie fiolds in a reetangulat guide ate shown in lig. こ-6. It will be ohserved that the intensity of the eloetrie field is greatest (as indicated by closer smacing of the lines of fore) at the renter along the x dimension, Fig, "- 6 - 7 B , diminishing to zero at the end walls. The batter is a necessary condition, since the existence of any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an imposible situation.

Modes of Propagation

Fig. 2-67 represents a relatively simple distribution of the electrie and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a
guide so long as there is no upper limit to the frequency to be transmitited. Wach field configuration is called a mode. All moles may be separated into two general groups. One group,

(A)

Fig. 2.67- Fïidd distribution in a rectankular wave gnide. The TE, mode of propagation is depicted.
(lowignated TM (transverse magnetic), has the magnetic fidd entirely transverse to the direction of propagation, but has a component of chectric field in that direction. The other type, dowignated TE (transverse electric) has the clectric field entircly transerse, but has a component of magnetic ficld in the direction of propagation. T, Y waves are sometimes called E waves, and $T E$ waves are sometimes called $I I$ waves, but the $T V$ and $T E$ designations are preferred.

The particular mode of transmission is identifiod by the group letters followed by two subscript numerals; for example, $T K_{1.0}^{\prime}$, T $H_{1,1}$ ete. The number of possible miles increases with frequency for a given size of guide, There is only one possible mode (ablled the dominant mode) for the lowest fiequener that can be tramsmitted. 'The dominant mode is the one generally wed in practical work.

Wave-Guide Dimensions

In the rectangular guide the critical dimension is x in Fiig. 2-67; this dimension must bo more than one-half wave lengeth at the lowest frequency to be transmitted. In practiee, the y dimension usually is made about equal to $1 / 2 x$ er to avoid the possibility of operation at other than the dominant mode.

Other cros-scational shapes than the rectangle can be wed, the most important being the rimeular pipe. Much the same considerat-
tions apply as in the rectangular case.
Wave-length formulas for reetangular and circular guides are given in the following table, where x is the wilt of a rectangular guide and r is the radias of a circular guide. All figures are in terms of the dominant mode.

Cavity Resonators

Another kind of (ireuit particularly applicable at wave lengths of the order of entimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given longth can be maintained inside.

Typical shapes used for resonators are the eylinder, the rectangular box and the sphere, as shown in lig, e-g8. The resonatht frequeney depends upon the dimensions of the cavity and the mode of oscillation of the waves (compar-

SQUARE PRISM

CYLINDER

Fig, 2-o8-liorms of cavity resonators.
able to the transmission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

Crlinder	$2.61 r$
Souare box	1.411
sphere.	2.28

The regonant wave lengthe of the crlinder and square lox are independent of the hoight when the height is less than a half wave length. In other mondes of oscillation the height must be a multiple of a half watve lenuth as measured inside the cavity. A cylindrical cavity can be tumed by a sliding shorting disk when operating in such a mode. Other tuning mothors inchude placing adjustable tuming padifles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetio fields can be varied.

A form of cavity resonator in practical use is the re-entrant cylindrial type shown in lige. 2-69. In construction it resembles a concentric line closed at both ends with eaparitive loading at the top, but the actual mode of oscillation may differ considerably from that ocourring in
consial lines. The resonant frequency of such a carity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer cylinders.

CROSS-SECTIONAL VIEW
Fig. 2-69- Hh-entrant eylindrical cavity resonator.
Compared with ordinary resomant circuits, cavity resonators have extremely high (). A value of Q of the order of 1000 or more is readily ohtainable, and $(Q$ values of several thousand can be secured with good design and construetion.

Coupling to Wave Guides and Cavity Resonators

Energy may be introdenced into or abstracted from a wave gutde or resonator by means of either the clectrix or magnetic field. The energy transfer frequently is through a coaxial lime two methode for coupling to which are shown in Fig, 2-70. The probe shown at A is simply a short extension of the inner fon-
ductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at 13 is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the compling will he maximum when the coupling device is in the most intense field.

Fig. 2.70-Coupling to wave gnides and resonators.
Coupling cam be varied by turning either the probe or loop through a 90-degree angle. When the probe is perpendicular to the dectrie lines the coupling will be minimum; similarty, when the plane of the loop is parallel to the magnetio lines the coupling will have its least possible value.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radios frequencies is the transmission of spereh and music, it would be very convenient if the atudio spertrum to be watminite ed could simply be shifted up to some radio frequenes, 1 ramsmitted as radio waves, and shifted back down to the abdio speretrum at the receiving point. suppose the audio signal to be tramsmitted by radio is a pure 1000 cycle tone, and we wish to transmit it at some frequency around 1 Mr . ($1,000,000$ eveles). One passible way might he to add $1,000,000$ redes and 1,000 rever togather, theroby obtaming a radio frequency of $1.001,000$ reves. No simple method for doing suth at thing direetly has ever been devised, although the effoct is obtained and used in advanced rommunirations techaiques.

Actually, when two different frequencies are present simultaneously in an ordinary eireuit (sperifically, one in which Ohm's I.aw holds) meh hehaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is becatuse there can be only one value of curent or voltage at ans single point in a circuit at any instant. Fig. e-al. and 13 show two such frem quencies, and (shows the resultant. The amplitude of the $1,000,000-\mathrm{e}$ - c le current is mot afferted by the presence of the loon-rovele cument, but merely has its axis whifted back and forth at the 1000-cyele rate. An attempt to transmit surh a combination as a radio wave would result simply
in the transmiswion of the 1,000, , (0) O- cyole frequency, since the 1000 -ry $\begin{gathered}\text { de frequene retains its }\end{gathered}$ identity as an audiofrequency and hence will mot ber maliated.

Therearedevies, however, which make it possible for one frecquency to control the amplitude of the other. If, for example, a 1000 -erelde tome is used to contion a 1-Ma. signal, the maximum r.f. output will be obtained when the 1000 (0-role signal is at the ueak of one altemation and the minimum will orcur at the peak of the next altermation. The process is called amplitude modulation, and the offere is shown in lig. 2-711), The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 cyoles). Recoriving oquipment adjusted to reedive the $1,000,000$-evele r.t. signal eat reprotuer these changes in amplitude, and thus tell what the audio sigual is, through a process called detection or demodulation.

It might be assumed that the only radio fregueney present in such a signal is the original 1,000,000 "yches, but such is not the caser. It will tre found that two new frequencios have appeared. These are the sum $(1,000,000)+1010)$ and differconce ($1,000,000-1000$) frequendiss, and hener the radio frequencies apmaring in the (a)cuit after modulation are $999,000,1,000,000$ and $1,001,000$ a redes.

When an andio frequency is used to control the amplatude of a radio frequenery, the promess is generally ealled "amplitude modulation," as

Fig, 2-71-Amplitude-rs.-time and amplitude-rs.frerquency plots of varions signals. (A) $11 / 2$ cyeles of a loun-eyde signal. (13) A 1,600 , (000)-eyrde signal ploted to the sante soale an 1 . Beramse there are 15100 eyeles during this time, thry camot le shown accurately, (C) 'The signals of A and 13 flowing in the sance eirenit. (I) 'The simnals of 1 and 13 combined in a eirenit where A can eontrol the amplitule of 13 . 'The $1,000,000$-eycle signal is moduluted loy the loot-ryele signal. (E), (F'), (G), (II) Amplitude-es.-frequency plots of the signals is A, IS, C and 1).

"

mentioned previously, but when a radio freguener modulates another radio frequeney it is called heterodyning. However, the processes are identical. A general term for the sum and difference frequmemes generated during heterodyning or amplitude modulation is "beat frequencies," and a more sperific one is upper side frequency, for the sum frefuency, and lower side frequency for the difference frequence.

In the simple rexample, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a berm of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper side band and the lower side band. In any case, the frequeney that is modulated is called the carrier frequency.

In A, 13, (and D) of Fig. 2-71, the sketches are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spertrum, or what a plot of amplitude es. freguency looks like, at any given instant of time. Li, 1 , A and 11 of ligg. 2-7 show the signals of Figg e-71A, I3, (and 1) on an amplitude-vs.-

frequency basis, Any one frequency is, of eoruse, represented by a vertical line. Fig, 2-71ll shows the side frequencies apperring as a result of the modulation process.

Amplitude modulation (a.m.) is not the only possible trpe nor is it the only one in use. This and other types of modulation are treated in detail in later chatpters.

Vacuum-Tube Principles

- CURRENT IN A VACUUM

The outstanding difforence between the vacumm tube and most other electrical deviers is that the electric current does not flow through a conductor but through empty spare - a vacuum. This is only possible when "free" clectrons - that is, electrons that are not attached to atoms - are somehow introdured into the varoum, Free electrons in an evacuated :pace will be attracted to a positivelycharged object within the same spare, or will bo repelled by a regatively-charged object. The mosement of the electrons under the attration or repulsion of such charged objerts constitutes the ement in the vacumm.

The most practioal way to introduce a suffi-ciently-large number of electrons into the evadiated spare is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescener in a varum, electrons near the surfion are given enough energy of motion to fly olf into the surrounding space. The higher the temperature, the greater the number of dectrons emitted. A more general name for the filimucnt is cathode.

If the cat hode is the only thing in the vacuum, must of the emitted electrons stay in its immediato vicinity, forming a "elond" about the "athom. The rason for this is that the electrons in the space, being nerative electricity, form a bequtive dharge (space charge) in the reyinu of the cathore. The spate charge repels

Ropresentative tube types. Transmitting tuber having up (a The tule with the top cap in the middle row is a low. powner transmiting tobe. Whare are receiving thbes, with the exceplimi of the one in the center foregronnd which is a vinf. Iramsmitting type.
those elertrons nearest the cathole, tending to make them fall back on it.

Now suppose a second eonductor is introduced into the vacuum, but not comerted to anything else inside the tulse. If this second conductor is given a presitive charge by comneeting a souree of em, f. between it and the

Fig. 3-1-Conduction by thermionie cmission in a vacuum tube. One lattery is used to heat the filament to a temperature that will canse it to emit electrons. 'I'he' wher hattery makes the plato pasitive with rempert to the filament, thereloy eansing the ranit ted electrons to he attracted to the plate, lilectrons captured by the plate flow back through the battery to the filament,
cathode, as indicated in Fig. 3-1, eleretrons emitted by the cathode are attracted to the positivelychatged conductor. An electric current then Hows through the circuit formed by the cathode, the charged conductor, and the source of em.f. In Fig. : $3-1$ this e.m.f. is supplied by in battery ("B" battery); a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature

The positively-charged conductor is usually a metal phate or relinder (surmouding the (athote) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in ligg, $3-1$ is a two-element or two-electrode tube, one element being the eathode or filament and the other the anode or plate.

Since eleetrons are nerative electricity, they will be attracted to the plate only when the plate is positive with respect to the cathode. If the phate is given a negative charge, the electrons will be repelled back to the eathode and no current will flow. The vacum tube therefore can conduct orly in one direction.

Cathodes

Before electron emission rath ocrur, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fiis. 3.2-Tvors of cathote construction. Directly-heated rathohles or filaments are shown at A, B, and C. The inverted V filament is used in small receriving tubes, the M in both receiving and transmitting tubes, The spiral filament is a transmitting. tulse type. 'The indirectly-heated eathodes at D and F show two typre of heater construction, one a twisted Joop and the other lounched heater wires. Both types tend to cancel the magnetio fields set up by the current through the heater.
ront flow through the actual material that does the emitting: the filament of heater ban be clectrically separate from the emitting cathode. such a cathode is called indirectly heated, white an emitting filament is called directly heated. Fig. : 3 -2 shows both types in the forms in which they are oummon! used.

Murh greater electron emission can be obtained, at relatively fow temperatures, by using sperial cathote materials rather than pure metals. Ghe of these is thoriated tungsten, or tungsten in which thorium is dissolved. still greator oflicioney is achioved in the oxide-coated cathode, a rathonte in which rare-earth oxides form a coating over a metal base.

Athough the oxide-coated cathode has much the highest efliciency, it can le used sueressfulty omly in moles that operate at rather low phate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smatler varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the phate, the number of electrons reaching it will be small beatuse the space chatge (which is negative) prevents those electrons nearest the (athode from being attracted to the phate. As the phate vollage is increased, the effert of the space charge is increasingly overcome and the mumber of clectrons attracted to the plate becomes larger. That is, the plate current increases with incroasing plate voltage.

Fig. :3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type can be oltained with the eireuit shown, if the plate voltage is increased in small steps :und a current reading taken (by means of the current-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and
atmost all the clectrons are groing to tho plate. At higher voltages the phate corrent stays at practically the same value.

The plate voltage maltipliod by the plate current is the power input to the tube. In a circuit like that of Fig, 3 -3; this power is all used in heating the plate. If the power input is large, the plate temperalure mas rise to a very high value the platte mase become red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bull, to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode cath be used to change alternating current into direct curment. It does this by permitting curent to low when the plate is positive with resperet to the cathode, hut by shutting off current flow when the plate is negative.

Fig. 3-4 shows a representative rircuit. Alternating voltage from the seomodary of the transformer, T ', is applied to the diode tube in serics with a load resistor, K. The woltare varies as is usual with ate., but rurment flows through the tube and R onts when the plate is positive with respect to the cathode that is, during the half-eyele when the upper end of the transformer winding is positive. During the negative half-cyele there is simply a gon in the current flow. This rectified alternating current therefore is an intermitient dieret corrent.

The load resistor, R, represents the actuad circuit in which the rectified alternating curent does work. All tubes work with a load of one type or another; in this respert a tulue is much like a generator or transformer. A eircuit that did not provide a load for the tube would be like a short-cireuit acouss a transionmor mo aseful purpose would be aceomplished and the only result would te the generation of heat in the transformer. so it is with vadum tubes: they must cause power to be developed in a load in order to serve a uspful purpose. Alst, to be efficifulmost of the bower must do useful work in the oud and not he used in beating the pate of the tube. This means that most of the voltage should appear as a dropacross the load rather than as a drop between the plate and cathode.

Fig. 3-3-'The diode, or two-lement tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

With the diode ronnerted ats shown in Fig. :3-4, the polarity of the voltage drop arross the load is such that the end of the lead nearest the eathode is positive. If the eonnections to the diode alements are reversed, the direetion of rectified current flow also will be reversed through the load.

Fig. 3-1 - Rectification in a diode. Girrent flows only when the plate is poitive with reapret to the cathodres that only halferycles of current tlow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the cathonle and plate as in Fig. : 3 - $\overline{\text { b }}$, it can be used to control the effere of the space charge. If the grid is given a positive voltage with respert to the rathodr, the positive charge will tend to neutralize the negrative space chatge. The

Fig. 3-.5- Comitruction of an elementary trionde vacumm tube, showing the filament, grid (with an (ond view of the prid wires) and plate. The relative density of the phace charge is indicated romghly by the deot density.
result is that, at any selected plate voltage, mote eloretrons will flow to the plate than if the grid were not present. (On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will add to the spare charge. This will reduce the number of electrons that can reach the plate at any solected plate voltage.

The grid is inserted in the tube to control the space charge and not to attract (remetrons to itwelf, so it is made in the form of a wire mesh or spiral. Flecfroms then coll go through the open spaces in the grid to reach the phate.

Characteristic Curves

For any partirular tube, the effect of the grid woltage on the plate current wan be shown loy a set of characteristic curves. itypical set of furves is shown in lig. 3-6, together with the circuit that is used for getting them. For earh value of plate voltage, there is a value of negrative grid voltage that will reduce the plate current to zoro; that is, there is
a value of negrative gris! voltage that will cut off the plate cument.

The curves could be extended by making the grid voltage positive as well ats negative. When the grid is negative, it repels electrons and therefore none of them reaches it: in other words, no current flows in the gride circuit. However, when the grid is pesitive, it attracts electrons and a current (grid current) flows, fust as current flows to the positive plate. Whenever there is grid current there is an accompanying power loss in the grid circuit, but solong as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. . Irtually, the grid has a much greater effect on plate current flow than does the plate voltage. I small change in grid voltage is just as effective in bringing about a given change in phate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube. 'The many uses of the electromic tube neatly all are hased upon this amplifying featare. The amplified output is not obtained from the tube itself, but from the souree of e.m.f. connected between its phate and cathode. The tube simply controls the power from this sourec, changing it to the desired form.

To utilize the controlled power, a load must be connerted in the plate or "ontput" cirruit, just as in the diode case. The load may be

Figs 3-6 - Criel-voltage-m-plate-ourront curves at varmus fixed values of phate voltage ($F_{i n}$) Cor a typual small triode. Characteristic eurses of this type can be taken by varying the batery voltages in the cirruit at the riglit.
either a resistance or an impedance. The term "impediunce" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construetion of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grin voltage hat just as much effert on the plate rument as a very large change in plate voltage, the tube is said to have a high amplification factor. . Amplification factor is commonly designated by the (ireek letter μ. . In amplification fartor of 20 , for example, means that if the grid voltage is ehanged by 1 volt, the efferet on the plate current will be the same as when the plate volage is changed by 20 wolts. The amplification factors of trionde tubes range from 3 to 100 or so. 1 high- μ tube is one with an amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate ranger δ to $: 30$, and low- μ tubes in the range below 7 or δ.

It would be natural to think that a tube that has a large μ would be the best amplifier, hut to obtain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go though to reach the plate, so it is diflicult for the plate to attract large numbers of electrons, (Quite a large change in the plate voltage must be made to effect a given change in phate curvent. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high, since this resistance acts in series with the load, the amount of current that ean be made to flow through the load is relatively small. On the other hand, the plate resistance of a low $-\mu$ tube is relatively low.

The best all-itround indication of the offectiveness of the tube :ts at :mplifier is its grid-plate transconductance - alsi) (alled mutual conductance. This chatruteristis: takes aroount of both amplification fator and plate resistanere, and therefore is a figure of merit for the tube. Tramsconductanee is the change in plate crurernt divided by the change in grid roltege that canses the plateeurrent change (the phate voltage being fixed at at desired value), sinee current divided by voltage is conductance, transeonductance is measured in the unit of condurtinere, the mho. Practieal values of tramsemductance are very small, so the mieromhe (one-millionth of a mho) is the commonly-used unit. Different typers of tubes have transconductances ranging from a fow hundred to several thousand. The higher the transeonductane the greater the possible amplification.

- AMPLIfiCATION

The way in which a tube amplifies is best shown by a type of graph ralled the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fised at the desired operating value. The difference between this rirenit and the one show in lig. :3-6 is that in liig. $3-7$ a load resistance is connerted in series with the plate of the tube. Fig. 3-7 thus shows how the plate current will vary, with different grid voltages, when the plute current is mode to flow throngh a lowed and thas do useful and

Fis. 3-7 - Dynamio eharacheriztips of a small trionle will various loal resistances from $\mathbf{5 0 0 0} \mathbf{1 0} \mathrm{I}(00,000$ ohmes.

The several curves in ligy. 3-7 are for various values of load resistance. When the resistance is suatl (as in the case of the 2000 -ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the lead resistance is high (as in the 100,000 -ohm (יurve), the change in phate curvent for the same grid-voltage change is relatively small; also, the curve tends to be straighter.

Fig. :3-s is the same type of curve, but with the circuit arranged so that a source of altermating voltage (signal) is inserted hetwoen the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -.j volts, and from the curve it is seen that the plate currest at this grid voltage is 2 milliamperes. This current flows when the load resistance is 00,000 ohms, as indieated in the circuit diagram. If there is no a.ce signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0,00: 2=100$ volts, leaving 200 volts betwen the plate and eathode.
When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid cireuit, the instantaneons voltage at the grid will swing to - 3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate eurrent will ocrur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.6 .5 milliampers. The minimum plate curront oreurs at the instant the erid voltage is -7 volts, and hats a value of 1.3 B ma. At intemediate values of grid voltage, intermediate plate-current values will orecur.

The instantaneous voltage between the pate

Fig, 3-8 - Amplifier operation, When the plate eurrent varies in response to the signal applied to the grid. a varying voltage drop appears aceoss the load, R_{p}, as shown ly the dashed enrve, $E_{p} . I_{p}$ is the plate eurrent.
and cathode of the tube also is shown on the graph. When the phate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.002(6.5=132.5$ volts: when the pate current is minimum the instantancous voltage drop in R_{p} is $50,000 \times 0.00132 \mathrm{z}=(67.5$ volts. The actual voltage betwern plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum phate current and $23^{\circ} .5$ volts at minimum pate current.

This varying plate voltage is an abe. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.e. output voltage is the difference between sither the maximum or minimum platerathore voltage and the no-signal value of 200 volts. In the illustration this difference is $2: 32.5-200$ or $200-$ 167.5 ; that is, 32.5 volts in either case, Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.0 / 2$ or 16.26 . That is, approximately 16 times as much voltage is ontained from the phate cireuit as is applied to the grid cireuit.

As shown by the drawings in Fig. 3-8, the alternating component of the phate voltage swings in the negrtive direetion (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To doso, an operating point on the straight part of the curve must be selected. The curve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the curve that is not straight, as in Fig. :3-9, the shape of the a.c. wave in the phate circuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

I second reason for using negative grid bias is that any signal whose peak positive voltage does not exreed the fixed negative voltage on the grid eannot cause grid current to flow. With no eurrent flow there is no power eonsumption, so the tube will implify without taking any power from the sigmal source. (Ilowever, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output wave shape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effeet of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonies. In other words, distortion from nonlinearity causes the generation of harmonie frequencies - frequencies that are not present in the signal applied to the grid. Hamonie distortion is undesirable in most amplifiers, alt hough

Fig. 3.9- Itarmonie distortion resulting from choice of an operating point on the carved part of the tube elaracteristie. 'The lower half-rycle of plate current does not have the same shape as the upper half-cycle.
there are occasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate eurrent or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.c. output voltare, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.e. is transferred to the lond but the d.c. is not.

Three types of coupling are in eommon use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. :3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits ean be used to couple to other devices than tubes.

In the resistance-coupled rirenit, the a.ce voltage developed arross the plate resistor R_{p} (that is, the voltage between the plate and cathoule of the tube) is applied to a serond resistor, R_{g}, through a coupling capacitor, ('c. The capacitor "blocks off" the d.e. voltage on the plate of the first tube and prevents it from being applied to the grid of tube 13 . The latier tube has negative grid bias supplied by the battery shown. No current flows in the grid eireuit of tube 13 and there is therefore no d.c. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, R_{k}, usually has a rather high value (0.5 to 2 megohns). The reactance of the roupling ratpatitor, (c , must be low enough compared with the resistance of R_{k} so that the a.e. voltage drop in (c is negligible at the lowest frequency to be amplified. If h_{g} is at least $0 . \overline{7}$ megohm, a $0.1-\mu$. capacitor will be amply large for the usual range of audio frequencies.

So far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effertively in parallel (although they are quite separate so far as d.e. is concerned). The rosultant parallal resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effere on the load represented by R_{p}.

The impedance-roupled rircuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for tudio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.e. It thus permits ohtaining a high value of load impedance for a.e. without an excessive d.e. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3-10-ITree hasic forms of coupling lectween vacumm-tube amplifiers.
circuit of the tube and its secondary connerted to the luad (in the circuit shown, a following amplifier). There is no direct connection betwern the two windings, so the plate voltage on tube A is isolated from the grid of tube 13 . The trans-former-ooupled amplifier has the same advantage as the impedance-coupled dircuit with respect to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the tums ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplifieation - or voltage gain - over a wide range of frequencies; it will give substantially the same amplifieation at any frequency in the andiorange, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quito so good over a wide frequency range; it tends to "paak," or give maximum gain, over a comparatively nawow hand of frequencies. With a gool transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the
other hand, transformer eoupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reswon that the primary inductance of a practieable transformer camot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be hamdled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class A_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some urork. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. power supplied to the speaker, the louder the sound it will produce.

Fig. 3-1l-In elementary power-amplifier circuit in which the power-consuming load is compled to the phate cireuit through an impedane-matehing transformer.

Fig. 3-11 shows an elementary power-amplifier eireuit. It is simply a transormer-eoupled amplifier with the load commerted to the secondary. Athough the load is shown as a resistor, it actually would be some deviee, such as a loudspeaker, that employs the powor usefutly. Every power tube requires a specilic value of had resistance from plate to cathoole, usually some thousands of ohms, for optimum operation. The resistance of the aetual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the phate circuit to the power required from the a.c. signal in the grid circuit. There is no power lost in the grid circuit of a Class A_{1} amplifier, so such an amplifier has an infinitely large power-anmlification ratio. However, it is quite possible to operate a Class 1 amplifier in such a way that eurrent flows in its grid circuit during at least part of the rycle. In surch a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashon is known as a Class \mathbf{A}_{2} amplifier. It is necessary to use a power amplificr to drive a (lass I_{2} amplifier, because a voltage amplifier eamot deliver power without serious distortion of the wave shape.

Another term used in comnertion with power amplifiers is power sensitivity. In the case of a Class A_{1} amplifier, it means the ratio of power output to the grid sighal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.
The a.e. power that is delivered to a loat by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output tod.e. plate input is ralled the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be commerted in parailel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier oprates in such a way as to consume power in the grid cireuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also can be secured by connerting two tubes in push-pull. In this rase the grids and plates of the two tubes are comected to opposite ends of a balaneed circuit as shown in Fig. :3-12, At any inst:ant the ends of the secondary winding of the input transformer, T_{1}, will he at opposite polarity with respect to the eathode connection, so the grid of one tube is swang positive at the same instant that the grid of the other is swung negative. Hence, in any push-puli-comerted amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Fig. 3.12 - Parallel and push-pull a.f. amplifier circuits.

In purh-pull operation the even-hammonic (second, fourth, etc.) distortion is halanced out in the plate rireuit. This means that for the same power output the distortion will be less than with parallel operation.

The exditing voltage measured betwern the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tule alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier tud apply it as a signal on the grid of a second amplifier, then take the seeond amplifiers output and apply it to at third, and so on. liach amplifier is called a stage, and stages used suceessively are satid to be in cascade.

Class B Amplifiers

Fig. 3-13 shows two tubes comected in a push-pull cireuit. If the grid bias is set at the point where (when nu signal is applied) the plate current is just cut off, then a signal can cause plate curent to flow in either tube only when the signal voltage applied to that particular tube is positive with respecet to the cathode. Since in the balaneed grid cireuit the signal voltages on the grids of the two tubes always have opposite polaritios, plate eurrent flows only in one tube at a time.
The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induer a half-cycle of voltage in the serondary. In the secondary of 'l'2, the oriminal wave form is restored. This type of operation is called Class B amplification.

The Class IS amplifier has considerably higher plate efliciency than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.e phate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether: therefore the maximum d.e. plate input that can be applied to a Class A amplifier is ergual to the rated plate dissipation of the tube or tubes. Two tubes in a Class 13 amplifier can deliver approximately twelve times as much audio power as the sume two tubes in a (lass A amplifier.

A Class IS amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of phate current, and to ohtain them the signal voltage must completely overome the grid bias during at least part of the eyele, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cyclemeans that the load on the preceding amplifier or driver stage varies in magnitude during the eyrle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Cortain types of tubes have been designed suecifically for Class I3 service and can be operated without fixed or other form of grid hias (zero-bias tubes). The amplification factor is so high that the plate current is small without signal. Becanse there is no fixed bias, the grids start dnawing current immediately whenever a signal is applied, so the grid-curent flow is continuous throughout the cere. This makes the load on the driver much more constant than is the anse with tubes of Jower μ biased to phatecurrent cut-oif.
('lass I3 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3.13-Cliss B amplifier oneration.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. l'ushpull is not required in this type of operation; a single tube can be ured equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class 1 operation, but less than the cut-off bias required for Class 13. At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negotive cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-desigued Class AIB amplifier the distortion is as low as with a Class I stage, but the efficiency and power output are considerably higher than with pure Class I operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. I Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. I Class AB_{2} amplifier is one that has grid-current flow during part of the cyele if the applied signal is large; it takes a small amount of driving power. The Class NB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class. AB_{1} amplifier avoids the prohlem of designing a driver that will cleliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspection of Fig. 3-13 shows that either of the two tubes actually is working for only half the alce. cyole and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In lig. 3-13 carh tube has "1s0-degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree excitation, hecause plate current flows during the whole cycle. In a Class AJ3 amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a halferecte of the signal on its grid. Ising two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore camot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. wave form is relatively unimportant. For reasons deseribed later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such circuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (: amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tumed-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate current reaches its highest value) is just equal to the peak positive arid voltage. C'nder these conditions the operating angle is usually hetween 150 and 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class (; amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as deseribed in the chapter on amplitude modulattion.

- FEEDBACK

It is possible to take a part of the amplitied energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedback is called negative, or degenerative. On the other hand, if the voltage is fedback in phase with the grid signal, the feedback is called positive, or regenerative.

Negative Feedback

With negative feedback the voltage that is fed back opposes the signal voltuge. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feedbaek (when properly applied) the more independent the amplification beromes of tuhe characteristios and circuit conditions. This tends to make the frequency-response characteristic of the amplifior flat - that is, the amplification tends to be the same at all frequencics within the range for which the amplifier is designed. Also, any distortion generated in the plate cireuit of the tube tends to "buck itself out," . Imphifiers with negattive feedback are therefore comparatively free from hamonic distortion. These advantages are worth while if the amplifier ot herwise has enough voltage gatin for its intended use.

Fig, 3-14-Simple circuits for producing feedhach.
In the circuit shown at. in Fig. $3-14$ resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltare will appear across R_{c}. Ifowever, R_{c} also is comected in series with the frid circuit, and so the output voltage that appears arross R_{c} is in series with the signal voltage. The output voltage across R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig, 3-14 can be used to give either negative or positive feedback. The secondary of a transformer is connected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultancously) will reverse the phase.

Positive Feedback

Positive ferdback increases the amplification because the feed-back voltage adds to the original
signal voltage and the resulting larger voltage on the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particular cirenit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsust:ining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid cim be supplied from the plate circuit; no external signal is needed hemase any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Positive feedback finds a major application in such "oscillators," and in addition is used for selective amplification at both audio and radio frequencies, the feedback being kept below the value that caluses self-oscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small (atuatitor, with each element atting as a capacitor "rate," There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small - only a few micromicrofurads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and ace, plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tule as a reference point. However, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate couparitance of the tube.

Is a result, a canacitive current flows around the circuit, its :mplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate raparitance. The source of grid signal must furnish this amount of current. in addition to the caparitive current that flows in the grid-athole capacitance. Hence the signal sourre "sees" an effective caparitance that is larger than the grid-eathode capacitance. This is known as the Miller Effect.

Fig. 3.15- The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the outpot voltage, as shown by this simplified circuit. Instantaneous polaritics are indicated.

The greater the voltage amplifiration the greater the effective input catpacitance. The input rapacitane of a resistathereroupled amplifier is given by the formula

$$
C_{\text {ingut }}=C_{\text {kk }}+C_{\mathrm{g},},(A+1)
$$

where $C_{k k}$ is the grid-to-athode eaparitance, (${ }_{k p}$ is the grid-to-plate eapacitance, and A is the voltage amplification. The input capacitance may be as much as several humdred mieromierofarads when the voltage amplifieation is large, even though the interelectrode eapacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual phate-tocathode capacitance of the tube. The output caparitane usuably need not he considered in audio amplifiers, hat beromes of importance at radio frequencies.

Tube Capacitance at R.F.

At ratio freguencies the reatanes of even very small interelectrodo capacitances drop to very low values, A resisiancereonpled amplifior gives very little amplification at r.f., for example, becanse the reactances of the interelectrode "eaparitors" are so low that the practically shortrireuit the imput and output rirenits and thus the tube is umable to amplify. This is overeome at radio frequencies by using tuned circuits for the grid and plate, making the tube caparitanees part of the thang eaparitances. In this way the circuits can have the high resistive impedances neeessary for sativfortory :mplitication.

The grid-plate rapacitance is important at radio frecturncies berase its reactance, relatively low at r.t., offers at path over which energy ean be fed back from the plate to the grid. In prartically every case the feedbarek is in the right phase and of sufficient amplitude to canse self-oserilation, so the circuit becomes useless as an amplifier.

Sperial "neutralizing" cireuits can be used to provent feedback but they are, in general, not too satisfartory when used in radio receivers. They are, however, used in transmitters.

- SCREEN-GRID TUBES

The grid-plate caparitance can be reduced to a negligible value by inserting a serond grid thetween the control grid and the plate, as indicated in lig. 3-16. The second grid, called the screen grid, acts as an electrostatio shield to prevent capacitive coupling betwem the control grid and plate. It is made in the form of a grid or coarse sereen so that electrons can pase through it.

Because of the shielding action of the sereen grid, the positisels-rharyed plate camot attract electrons from the eathode as it does in a triode. In order to get electrons to the plater, it is necessary to apply a positive voltage (with respect to the cathode) to the sareen. The sereen then attracts electrons much as cloes the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them

Fig. 3-16- Representative arrangement of elements in a saremgrid tule, with front part of plate and surent grid cut away. In this drawing the control-grid connereteon is made through a cap on the top of the tulue, thus eliminating the capacitanee that would exist between the Hatr-anll grid-load wires if both based through the base. "Single-eroded" tubes that have both liads going through the bitie nae zumedal shichdthy alle erobitruction to eliminate illterleal ralparitance.
shoot between the screen wires and then are attracted to the phate, A certain propertion do strike the serem, however, with the result that some current also flows in the sereen-grid cireuit.

To be a growd shield, the sereen grid must he connected to the cathode through a eireuit that has low impedance at the frequener being amplified. A by-pass raparitor from sereen grid to rathode, having a reactane of not more than a few hundred ohms, is genemally used.

A tube having a cathode, control grid, sereen grid and plate (four clements) is called a tetrode.

Pentodes

When an electron traveling at appreciable veloegty through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement spare, This is catled secondary emission. In a triode the neggtive grid repels the secondary electrons bark into the phate and they came no disturbance. In the sreen-grid tube, however, the positively-charged sereen oltracts the semondary certrons, cansing a reverse current to flow hetween sween and plate.

To overeme the effects of serondary emission, a third grid, called the suppressor grid, may be inserted hetwern the sereen and plater. This grid acts as a shied between the sereen grid and plate so the seeondary electrons camot be atterated hy the sereen grid. They are hemee attraved batek to the plate without appreciably obstrueting the regular plates-current flow, A fiverement tube of this type is called a pentode.

Although the sereen grid in either the tetrode or pentode greatly reduces the influence of the plate upon phate-eurrent flow, the control grid still can control the plate current in exsentially the same way that it does in a triode. Consequently, the grid-plate transonductane (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-
responding structure. On the other hand, since a change in plate voltage hats very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltuge amplification possible with a pentole is very much less than the large amplification factor might indicate. A voltage gain in the vieinity of 30 to 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-plate capacitance is only a small fraction of a micromicrofarad. This eaparitance is too small to catuse an appreciable increase in input capacitance as describel in the preceding section, so the input caparitance of a sereen-grid tube is simply the sum of its grid-cathode capacitance and control-grid-to-sereen eapatitance. The output capanitane of a screen-grid tube is equall to the calparitance between the plate and sorcen.

In addition th their applications as radiofrequency amplifiers, pentodes or tetrodes also are usol for atudio-frepuency power amplifieation. In tubes designed for this purpose the chied function of the sereen is to serve as an arederator of the eleetrons. wo that latege values of plate current (an be drawn at relatively low phate voltages. surh tubes have ruite high power sousitivity compared with triodes of the same power output, although harmonie distortion is somewhat greater.

Beam Tubes

A beam tetrode is a fon-element sorren-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overome the effects of secondary emission so that a sup)pressor gid is not needod. The "heam" ronstruction makes it possible to dran large plate currents at relatively low phate voltages, and increases the power sensitivity.

For power amplifiration at both audio and radio frequencies beam tetroles have largely supphanted the pentode type because large power outputs ran be secured with very small amounts of grid driving power.

Variable- μ Tubes

The mutual condurtance of a valcuum tube decreases when its grid bias is made more negative, assuming that the other elentrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bies. This method of gain eontrol is miversally used in radio-frequency amplifiers designed for rereivers.

The ordinary type of tube has what is known as a sharp-cutoff eharacteristic. The mutual condurtance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube ran handle without cansing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are made with a variable- μ characteristic: - that is, the amplification factor decreases with increasing grid bias. The variable- μ tube can handle a much larger signal than the sharp-cutoff type before the signal swings either beyond the zero grid-bias point or the plate-current cutoff point.

INPUT AND OUTPUT IMPEDANCES

The input impedance of a vacuum-tube amplifier is the impedance "seon" by the signal source when eonnected to the input terminals of the amplifier. In the types of amplifiers previonsly discassed, the input impedane is the impedance measured botween the grid and cathode of the tuloe with operating voltitges applied. At audio frequencios the input impedane of a Class A_{1} amplifier is for all pratetical purposes the input capateitance of the stage. If the tube is driven into the gridecurrent region there is in addition a resistance component in the input impedance, the resistance hatving an average value equal to E^{2} / I, where E is the r,m.s. driving voltage and I ' is the power in watts consumed in the grid. The resistance usually will vary during the atre cyde because grid curvent may flow only daring part of the ercle; atso, the grid-voltage/grid-e.urrent charatereistio is seldom linear.

The output impedance of amplifiers of this trpe eomsists of the plate resistance of the tube shouted by the output capareitance.

At radio frequencios, when tuned cirenits are employed, the input and output impedances are usually pure resistaners; any reactive components are "tuned out" in the process of adjusting the circuits to resonance at the operating frequency.

O OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cuthode has been the meeting print for the input and output circuits. I Iowever, it is possible to use any ond of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation cirenit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-17. In both circuits the resistor R represents the load into which the amplifier works; the artual lond may be resistance-capateitanceeoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Aro, in both circuits the batterios that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied botween the cathode and grid, and the output is taken between the plate and grid. The

grid is thus the eommon element. The itere component of the plate current has to flow through the signal souree to reath the cathode. The source of signal is in series with the load through the phate-to-eathode resistane of the tube. so some of the power in the load is supplied ley the signal souree. In transmitting applications this fed-through power is of the order of 10 per erent of the total power output, using tubes suitable for grounded-grid serviere,

The input impertance of the grounded-grid amplifier consists of a capacitante in parallel with ath equivalent resistance representing the power furnished he the driving soure to the grid and to the load. 'This resistance is of the order of a few hundred ohms. The output imperdance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the raser of the grounded-rathode amplifier.

The grounded-grid amptifier is widely used at v.h.l. and u.h.f., where the more conventional amplifier (ircuit fails to work properls. With a triode tube designed for this type of operation, an r.f. amplifier con be built that is free from the type of feellatek that catuses oseillation. This requires that the grid act as a shield bet ween the eathode and plate, reducing the plate-cathode caparitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the emmon clement. The input signal is applied betwern the grid and plate (assuming negligilade impedaner in the batleries) and the cutpul is taken hetweon cathode and phate. This eireuit is degenerative; it tuet, all of the output voltage is fed back into the input circuit out of phase with the grid signal, The input signal therofore has to be larger that the output voltage; that is, the cathofle follower gives a loss in voltage, dhough it gives the same power gain as other circuits under cullivalent arerating conditions.

An important feature of the cathode follower is its low ontput impedance, which is given by the formula (neglecting interolectrode caparitances)

$$
Z_{\text {out }}=\frac{r_{1}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplifieation factor, Low output impedance is a valuable chatateristie in an amplifior designed to cover a wide band of frequencies. In addition, the input rapacitance is only a fraction of the grid-to-athode eapacitance of the tuber, a feature of further lenefit in a wide-hand amplifier. The cathode follower is useful as a step-down impedance transformer, since the input impedance is high and the output impedince is low.

CATHODE CIRCUITS AND GRID BIAS

Nost of the equipment used by amateurs is powered by the a.e, line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rertified and filtered to give pure d.c. - that is, direct current that is constant and without a suprimposed n.e. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.e. supply impracticable.

Filament Hum

Alternating rurrent is just as grod as direct current from the heating standpoint, but some of the a.e. voltage is likely to get on the grid and cause a low-pitched "a.ce hum" to be superimpresed on the output.

Ilum tronbles are worst with directly-heated (athodes or filaments, because with such cathodes there has to be a direet connection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the eonnections shown in Fig. 3-18. In beth cases the grid- and plate-return circuits are conneeted to the electrical midpoint (center tap) of the filament supply. Thus, so far as the grid and phate are concerned, the voltage and current on one side of the filament are bataned by an equal and opposite voltage and eurent on the other side. The balance is never guite perfect, however, so filament-type tubes are never completely hum-

fig. 3 . 18 - lilament center-tapling methods for ue with directly. heated tubes.
free, For this reason directly-heated filaments are employed for the most part in power tubes, where the amount of hum introduced is extremely small in eomparison with the poweroutput level.

With indirectly-heated athodes the rhief problem is the mannetir field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small ate, voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, is in Fig. 3-18.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid biats hats been supplied hy a hattery. However, in equipment that operates from the power line cathode bias is very frequently used.

The cathode-bian method uses a resistor (rathode resistor) (ronnerted in series with the rathode, as shown at R in Fig, 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop

Fig. 3-19-- (Cathode biasing. R is the cathode resistor and C is the cathode by-pass capacitor.
arross R therefore places a negutive voltage on the grid. This negative hias is obtained from the steady de, plate current.

If the alternating eomponent of plate current flows through R when the tube is amplifying, the voltage drop) eaused by the a.e, will be degenemtive (note the similarity between this circuit and that of lig. $3-141$). To prevent this the resistor is hypassed by a rapacitor, (', that has very low reactance compared with the resistance of \dot{R}. Depending on the type of tube and the particular kind of operation, k may be between about 100 and 3000 ohms. For good bypassing at the low atudio frequencies, C should be 10 to 50 microfirrads (elecetrolytic caparitors are used for this purpose). At radio frequeneios, capacitaners of about $100 \mu \mu$ f. to $0.1 \mu \mathrm{f}$. are used; the smatl values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 mogacycles a capacitance of 0.01μ. is satisfactory.
The value of cathode resistor for an amplifier having negligible d.e. resistance in its plate circuit (transformer or impedance eoupled) ran easily be calculated from the known operating conditions of the tube. The proper grid bias and phate current always are sperified hy the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a nequtive arid bias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp.). The required cathode resistiance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \text { ohms. }
$$

The nearest standard value, 680 ohms, would be elose enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.0,06 \text { watt }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.
The eurrent that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a sereen-grid tube the cathode current is the sum of the plate and sereen curents. Hence these two currente must be added when calculating the value of cathode resistor reguired for a screengrid tule.

Exampla: A reeeiving pentale reguires 3 volts negative hits. At this biats and the recommended plate and serean woltares, its plate current is 9 man and its sereon current is 2 math The cathode enrent is therefore 11 mat. (0.011 thmy.). The required resist ince is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \mathrm{ohms}
$$

A 270-ohm resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.0 .33 \text { watt. }
$$

The eathode-resistor method of biasing is selfregulating, beatuse if the tube charmeteristios vary slightly from the published values (as they do in practice) the hias will inerease if the plate current is slightly high, or deerease if it is slightly low. This tends to hold the plate current at the proper vahue.

Calculation of the athode resistor for a re-sistance-coupled amplifior is ordinarily not practicable by the method deseribed above, beeause the phate rurrent in such an amplifier is usatlly mueh smatlor than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistinneerompled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

"Contact Potential' Bias

In the absence of any negat ive bias voltage on the grid of a tube, some of the elertrons in the space eharge will have enough velocity to reach the grid. 'lhis cetuses a small current (of the order of microamperes) to flow in the external circuit between the grid and eathode. If the current is made to flow through a high resistancer - a megohm or so - the resulting voltage drop in the resistor will give the grid a megative bias of the order of one volt. The bias so obtained is called contart-potential bias.

Contact-potential hias can be used to advantage in circuits operating at low signal levels (less than one volt peak) since it eliminates the cath-ode-bias resistor and by-pass capacitor. It is principally used in low-level resistance-coupled audio
amplifiers. The hias resistor is connected directly betwern grid and cathode, and must be isolated from the signal source by a blooking eapacitor.

Screen Supply

In practical rircuits using tetrodes and pentodes the voltage for the sereen frequently is taken from the plate supply through a resistor. A typical circoit for an r.f. amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and C^{\prime} is the screen by-pass capacitor. In flowing through h, the screen current canses a voltage drop in R that reduces the plate-supply voltage to the proper value for the sereen. When the plate-supply voltage and the sereen current are known, the value of R can be calculated from Ohm's Law.

Abstract

Lixample: An r.f. receiving pentode has a rated serest curvot of 2 milliamperes (0.00)2 anp.) att normal operating conditions. The rated sereen voltage is 100 volts, and the plate sumply gives 2.50 volts. To prit 100 volts on the swan, the drop amoss R must be equal to the differener between the plate-supply voltibe and the serem voltage; that is, 250 $-100=150$ voles, Then

$$
R=\frac{F}{I}=\frac{150}{0,000^{2}}=75,000 \text { oims. }
$$

The power to be dissipated in the resistor is

Fip. 3-20 - Screen-voltage supply for a pentode tube through a dropping remiotor. R. The sereen by-pass capacitor, C, most have low enough reactance to liring the sereen to grommi potential for the frequency or frequencies being amplified.

$$
P=E I=150 \times 0.002=0.3 w a t t .
$$

A $1 / 2$ - or 1 -watt resistor would be satisfibetory.
The reactance of the sereen by-pass capacitor, r, should be low compared with the sareen-torathote impedance. For radio-frequency applications a ceapacitance in the vicinity of $0.01 \mu \mathrm{f}$, is amply large.

In some varuum-tube circolits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed at length in the chapter on Power supplies.

Oscillators

It was mentioned earlier in this whapter that if there is enough positive feedback in an amplifier rircuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Owillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resomant circuit tuned to that frequency. For example, in Fig. 3-2ld the circuit $L C C^{\prime}$ is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are connerted to opposite ends of the tuned circuit. When an r.f. current flows in the tumed circuit there is a voltage drop arooss L, that increases progressively along the turns. Thus the point at which the tap is commered will be at an intermediate potential with respert to the two ends of the coil. The amplified current in the plate circuit, which flows through the bottom section of L, is in phase with the current alroady flowing in the circuit and thus in the proper relationship for positive feedhack.

The amount of feedback depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and cathode is too small to give enough feedback to sustain oscillation, and if it is too near the phate end the impedance between the cathode and plate is too small to permit good amplification. Maximum feedback usually is obtained when the tap is somewhere near the eenter of the coil.

The eircuit of Fig. 3-2l. is parallel-fed, (${ }_{1}$, being the blocking raparitor. The value of C, is not eritical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Condenser C_{k} is the grid capacitor. It and R_{g} (the grid leak) are used for the purpose of ob,

Fig. 3-2I - Basic oseillator circuits. Feel-bach voltage is obtained hy tapping the grid and cathode arross a portion of the tumed cirenit. In the Itartley circuit the tatp is on the coil, but in the Colpitts cireviit the voltage is obtained from the drop aerons a capacitor.
taining grid bias for the tube. In pratically all oscillator cireuits the tube generates its own bias. During the part of the eycle when the grid is positive with respert to the cathode, it attracts electrons. These clectrons camoot flow through I, back to the cathode because ('z "hooks"' direct current. They therefore have to flow or "leak" through R_{k} to cathode, and in doing so cause a voltage drop in R_{k} that places an negative bian on the grid. The amount of bias so developed is equal to the grid current multiplied be the resistance of R_{g} (0 hm's Law). The value of gridleak resistance required depends upon the kind of tube used and the purpose for which the ascillator is intended. Values range all the way from a fow thousand to several hundred thousund ohms. The caparitance of ('g should be large enough to have low reartance (a few hundred ohms) at the operating frequency.

The circuit shown at 13 in Fige, 3-2 1 uses the voltage drops arross two caparitors in serios in the tuned circuit to supply the feedhack. Other than this, the operation is the same as just deseribed. The feedback can be varied by varying the ratio of the reartances of C_{1} and C_{2} (that is, he varying the ratio of their capacitames).

Another type of oscillator, called the tunedplate toned-grid circuit, is shown in Fig. :3-22.

Fig. 3-2: - The tuned-plate tuncdogrid nacilator.
Resomant circuits tuned approximately to the same freguency are connected betwoen grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2} are not magnetically coupled. The feedback is through the grid-plate caparitance of the tube, and will be in the right phase to be positive when the plate circuit, ('2 L_{2}, is tuned to a slightly higher frequency than the grid circuit, $L_{1} \%_{1}$. The amount of feedback can be adjusted by varying the tuming of either eireuit. The frequence of oscillation is dotermined by the tuned cirenit that has the higher (). The grid leak and grid caparitor have the same functions as in the other circuits. In this rase it is convenient to use serios feed for the plate circuit, so (b, is a by-pass eapacitor to guide the r.f. current around the plate supply.

There are many oseillator cireuits (examples of others will be found in later chapters) but the hasics feature of all of them is that there is positive feedback in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedback will depend on how heavily the oscillator is loaded - that is, how much power is being taken from
the cirenit. If the feedback is not large enough grid excitation too small - a small inerease in Gad may tend to throw the circuit out of oscillation. On the other hand, too mueh feedback will make the grid current exeresively high, with the result that the power loss in the grid rercuit beromes larger than neressars. Sinee the oscillator itself supplies this grid power, exerssive feedbatek lowers the over-all efficieney beratuse whatever power is used in the grid circuit is not available as useful output.

One of the most important eonsiderations in oseillator design is frequency stability. The principal factors that canse a change in frequeney are (1) temporature, (2) plate voltage, (3) loading, (4) mechanical variations of eireuit elements. Temperature changes will cause vacumm-tube clements to expand or eontract slightly, thus causing variations in the interelectrode caparitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingls: Temperature ehanges in the coil or the tuning rapacitor will alter the inductance or capacitance slighty, again masing a shift in the resonant freguency. These olferts are relatively slow in opration, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect ralled dynamic instability. Dymanic instability can be reduced by using a tuned eireuit of high effertive (). The energy taken fom the eireuit to supply grid losses, as well as energy supplied to a load. represent an increase in the effertive resistance of the tuned "ineruit and thas lower its (2). For highest stability, therefore, the eoupling between the tuned circuit and the tube and load must he kept as loose as possible. l'referably, the oscillator should not be repuired to doliver power to an external eirruit, and a high value of grid leak resistance should be used since this helpe to raise the tube grid and plate resistances as seen by the tuned circuit. Loose coupling can be effected in a variety of ways - one, for example, is ly "tapping down" on the tank for the connertions to the gried and plate. This is done in the "soriow-tumed" Colpitts circuit widely used in variable-frequenery oseillators for amateur transmitters and deseribed in a later chabter. Alternatively, the $/ / C^{\prime}$ ratio maty be mate as smatl as possible while sustaining stable oscillation (high C) with the grid and plate conneeted to the ends of the cireuit as shown in ligs. $3-21$ and $3-20.2$. I'sing relatively high plate voltage and low plate (urrent also is desirable.

In general, dynamie stability will be at maximum when the ferdbark is adjusted to the least value that permits reliable oscillation. The use of a tube having a high value of transcondurtance is desirable, since the highor the transcondurtance the looser the permissible coupling to the tuned circuit and the smaller the feedback respuired.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usuadly caused by
vibration, cause changes in inductance and/ or raparitance that in turn cunse the frequency to "woblle" in strp with the vibration.

Methots of minimizing frequency variations in oseillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and $3-22$ the cathode is connerted to ground. It is not actually essential that the radiofrequency circuit should be grounded at the athode; in fact, there are many times when an r. f, ground on some other point in the circuit is desirable. The r.f. ground can the plated at any point so long as proper prowisions are made for feeding the supply voltages to the tube elements.

Fig. 3-2:3 shows the llartley circuit with the plate end of the cirenit grounded. No r.f. choke is needed in the plate circuit beatuse the plate abready is at ground potential and there is no r.f. to choke off ill that is neressary is a by-pass reaparitor, C_{b}, across the mate sumble. Direct

Fip. 3-2.3-Showing how the plate may be grounded for r.f. in a typiral oncillator circuit (1artley).
current flows to the cathode through the lower part of the tuned-cireuit coil, $/$. An advantage of such a circuit is that the frame of the tuming capacitor can be grounded.

Tubes having indirectly-heated cathodes are more easily adaptable to eireuits grounded at other points than the cathode than are tubes having directly-hated filaments. With the latter tubes sperial prectutions have to be taken to prevent the filament from being bypassed to ground by the caparitance of the filament-heating transformer.

Clipping Circuits

Viwum tubes are readily adaptable to other tepes of operation than ordinary amplification (without substantial distortion) and the genera-

SHUNT
Fip. 3-24-Series and shunt diade cliperes. "Iypical opration is shown al the rizht.
tion of single-frequency oncillations, of particular interest is the clipper or limiter cirenit, because of its several applioutions in recolving and other equipment.

Diode Clipper Circuits

Basie diode elipper cireuits atre shown in Fig. 3-24. In the series type a positive d.e. bias voltage is applied to the plate of the diode so it is nomatly condurting. When as signal is applied the current through the diode will change proportionately during the time the sigmal voltage is positive at the diode plate and for that part of the negative half of the signal during which the instantineous voltage does not exeeed the bias. When the negative signal voltage exceeds the positive bias the resultant voltage at the diode
plate is negative and there is no eonduction. Thas part of the negative half eycle is clipped as shown in the drawing at the right. The level at which clipping occurs depende on the bias voltage and the proportion of signal clipping depends on the signal strength in redation to the bits voltage. If the peak signal voltage is below the bias level there is no dipping and the output wave shape is the sume as the input wave shape, as shown in the lower sketeh. The output voltage results from the current flow through the loud resistor R.

In the shunt-type diode elipper negative bias is applied to the plate so the diode is normally nonconducting. In this case the signal voltage is fed through the series resistor R to the output cireuit (which must have high impedance compared with the resistance of h). When the negattive half of the signal voltage exceds the bias voltage the diode conducts, and herause of the voltage drop in R when current flows the output voltage is rerlued. Isy proper choice of R in relationship to the load on the output rireuit the - lipping ean be made equivalent to that given by the series cireuit. There is no elipping when the peak signal voltage is below the bias level.

Two diode rircuits can be combined so that both the megative and prositive peaks of the sigmal are clipped.

Triode Clippers

The circuit shown at A in Fig. $3-25$ is capable of rlipping both negative and positive signal peaks. (on positive peaks its operation is similar to the shunt diode elipper, the clipping taking place when the positive peak of the signal voltage

Fig. 3-25-Triorle clippers. A-Single triode, using shunt-type diode clipping in the grid circuit for the positive peak and plate-current cut-off clipping for the negative peak. 13 - (;athode-coupled clipper, using plate-current cut-olf clipping for looth mositive and negatise praks.

(8)

CATHODE - COUDLED
is large enough to drive the grid positive. The positiverelipped signal is amplified ly the tube as a resistance-coupled amplifier. Negative peak clipping oreurs when the negative paak of the signal voltage exereds the fixed grid hias and thus cuts off the plate current in the output circuit.

In the eathode-coupled elipper shown at 13 in Fig. $3-25 V_{1}$ is a eathode follower with its output eireuit directly connected to the cathode of $1-2$, which is a grounded-grid amplifier. The tubes are biased by the voltage drop across R_{1}, which carries the d.e. plate currents of both tubes. When the negative peak of the signal voltage ex-
ceeds the d.e. voltage across R_{1} c.lipping oceurs in V_{1}, and when the prositive peak execeds the same value of voltage low phate carrent is eut off. (The bits developed in l_{1} tomels to be constant because the plate current of one tube increases when the plate eurrent of the other deerestass.) Thus the cireuit clips both pesitive and negative peaks. The clipping is symmetrical, providing the d.e. voltage (hop) in R io is small emough so that the oprating conditions of the two tubes are substantially the same. For signal voltages below the rlipping level the eirenit operates as nomal amplifier with low distortion.

U.H.F. and Microwave Tubes

At ultrahigh fregucncies, interelectrode catparitances and the inductance of internal hads determine the highest possible frequener to which a vabum tube can be tuned. The tube usuatly will not ascillate up to this limit, however, bec:anse of dielectrie losses, transit time :und other effects. In low-frequency operation, the actual time of flight of electrons between the eathote and the anode is negligible in relation to the durafion of the cevele. At 1000 ke , for example, transit, time of 0,001 micreserond, which is typieal of conventional tubes, is only $1 / 1000$ cerele. I3ut at I(N) Me., this same transit time represents $1 / 0$ of a cyrde, and a full eyrle at 1000 Mc . These limiting factors establish about 3000 Me. as the upper frequency limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Mc , For higher frequencies tubes of special construction are required. About the only means available for reducing interelectrode capacitances is to reduce the physicab size of the elements, which is practioal only in tubes whith do not have to hatulle appreciahle powire However, it is possible to rednce the internal kead inductance very materially by minimizing the lead length and by using two or more loads in parallel from an electrode.

In some types the clectrodes are provided with up to five separate leads which may he comected in parablel externally. In double-lead types the plate and grid clements are supported by heavy single wires which run entirely through the enveloper, providing temminals al rither and of the
bulb. With linear tank circuits the leads lecome a part of the line and have distributed rat her than lumped constiants.

In "lighthouse" tubes or disk-seal tubes, the plate, grid and cathode are assembled in parallel

Fig. 3-26 - Scctional view of the "lighthothee ralue"s construction. (ilose electrode spacing reduces transit time while the disk electrode comnections reduce lead in. ductance.
planes as shown in lig. 3-2li, instemb of eowxially. The disk-seal torminals pradiably aminate lead induetane.

Velocity Modulation

In conventional tube operation the potential on the grid tends to reduce the electron velocity during the more nemative half of the cerve, while on the other half erele the positive potential on the grid serves to acoclerate the ellectrons. Thus the electrons tend to separate into groups, those lowing the cathode during the nogative halfacle being colledively stowed down, white there
leaving on the positive half twe acedorated. After passing into the grid-plate space only a part of the clectron stratm follows the original form of the oscillation eycle, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-eyde.

This efferet is turned to advantare in velocitymodulated tubes in that the imput signal voltage on the grid is used to change the velority of the electrons in a constant-current electron beam, rather than to vary the intensity of a constantvelority current flow as is the method in ordinary tulves.

The volocity modulation principle maty be used in a number of was, fouding to several tube designs. The major tule of this type is the "klystron."

The Klystron

In the klystron tube the chectrons emitted by the (athote pass through ath electric field estab)lished by two grids in atervity resonator cabled the buncher. The high-freguency electrice field betwen the grids is patabled to the edertron stream. This field adecolerates the eleretrons at one moment and retards them at another, in areordance with the variations of the r.f. voltare abpplied. The resulting velocity-modulated beam tratwels through a field-free "drift spate," where the slower-moving electrons are graduably overtaken les the fistar ouss. The reretrons ennerging from the patir of grids therefore are separated into groups or "hunded" atong the direction of motion. The velocity-modulated dedron stream then gexs to a catcher cavity whore it again pusses through two paralled grids, and the r.f. current created by the buncling of the elec-

Fig. 3-27- Cirruit diagram of the klystron oscillator, showing the ferd-hack loop coupling the frequensy aon-
tron beam induers an r.f. voltage between the grids. The eateher cavily is made resonant at the frequency of the velority-modulated alectron beam, so that an oscillating field is set up within it be the passage of the electron bunches through the grid arperture.

If a feed-back loop is provided betweon the two cavities, as shown in Fig. 3-27, oseillations will orcur. The resonatht frepuence depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the cavitics. Although the bunched beam current is rich in hatmonies the output wave form is remarkably pure lecause the high of of the cateher cavity suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentiatly a diode with celindrieal electrodes placed in a uniform magnetic fick, with the lines of magnetic force paralled to the axes of the elements. The simple evelindrical magnetron consists of a cathode surrounded be a coneentric cylindrical anode. In the more effi-

Fip. 3-28-Conventional mannetrons, with cquivalent schematic sumbols at the right. A, simple cylindrieal magnetron. $\mathrm{B}_{\text {, sple }}$ shadenegative-resistancemagnetron.
eient split-anode matgnetron the cylinder is divided lengthwise.

Magnetron oscillators are operated in two different ways. Electrimally the cireuits ate similar, the differcnee being in the relation botween eletron transit time and the frequency of oscillation.

In the negative-resistance or dyatron twpe of magnetron oscilhator, the clement dimensions and anode voltage are such that the transit time is short compared with the period of the oseillation frequency. Flectrons mitted from the cathode are driven toward both halves of the anote. It the potentials of the two halves are mequal, the effect of the magnetie field is such that the majority of the electrons travel to the half of the anode that is at the lower potential. That is, a decrense in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnet ron consequently exhibits negat ive-resistance characteristies. Nega-tive-resistanre magnetron oscillators are usefin heween 100 and 1000 MI . Under the best operating conditions efficiencies of 20 to 25 per cent may he olstained.

In the transit-time magnetron the frequeney is determined primarily by the tube dimensions and by the aloctric and magnetic field intensities rather than by the tuning of the tank circuits. The intensity of the magnetic ficld is adjusted so that, under statice conditions, electrons leaving the cathote move in curved paths which just fail to reach the anode. All electrons are therefore deflected bank to the cathode, and the anode current is zero. An alternating voltage applied between the two halves of the anode will cause the

Fip. 3.29-Split-anode magnetron with integral resonant anode cavity for Hise at u.h.f. potentials of these halves to vary about their average positive values. If the period (time required for one evole) of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some clectrons will lose energy to the electric field, with the result that they are unable to reach the cathole and continue to rotate about it. Meanwhile other elcetrons gain energy from the field and are
assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into 4 to 16 or more segments, the resonant cavities for each anode being coupled to the common cathode region by slots of critical dimensions.
The efficiency of multisegment magnetrons reaches 65 or 70 per cent. Slotted-anode margnetrons with four segments function up to 30,000 Me. (1 cm.), delivering up to 100 watts at effiriencies greater than 50 per eent. Csing larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gains as high as $2: 3 \mathrm{db}$, over a bind width of 800 Me , at a center frequency of 3600 Mc . have been obtained through the use of a travelingwave amplifier tube shown schematically in Fig, 3-30. An electromagnetie wave travels down the helix, and an electron beam is shot through the holix parallel to its axis, and in the direction of propagation of the wave. When the electron velority is about the same as the wave velocity in the absence of the electrons, turning on the electron beam causes a power gain for wave propagation in the direction of the electron motion.
The portions of Fig. 3-30 marked "input" and
returned to the eathode. Since those electrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effeet is a transfor of energy from the efectrons to the clectric field. This energy can be used to sustain oscillations in a resonant tramsmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a ravity resonator built into the tube structure, as illustrated in Fig. 3-29. The

"output" are wave-guide seetions to which the ends of the helix are coupled. In pratetice two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other a solenoid ruming the length of the helix.

The outstanding features of the traveling-wave amplifier tube are its great bandwidth and large power gain. However, the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as good insulators, hut is still high compared with the resistivity of common metals, are known as semiconductors. These materiats, of which germanium and silicon are examples, have an atomie structure that normally is associated with insulators. However, when small amounts of impuritios are introdured during the manufacture of permanium or silieon crystals, it is possible for free dectrons to exist ard to move through the erystals under the infucone of an electric ficld. It is also possible for some of the atoms to be deficiont in an electron, and these eleetron deficiencies or holes san move from atom to atom when urged to do so by an applied electric force. (The movemont of a hole is actually the movement of an electron, the electron becoming detached from one atom, making a hole in that atom, in order to move into an (existing hole in another atom.) The holes can be considered to be equivalent to partiches carrying a positive eloctrie chatre, whild the electrons of conars have negative charges. Holes and eleetrons are called charge carriers in semiconductors.

Electron and Hole Conduction

Material which conducts ! P virtue of a defiriency in electrons - that is, hy hole conduction - is called P-type material. In N-type material, whirh has an exerss of electrons, the conduction is termed "electronic." If a piece of 1'tope material is joined to a piece of X-type material as at A in Fig. $4-1$ and a voltage is ap)plied to the pair as at 13, current will flow aeross the boundary or jumetion between the two (and also in the external cireuit) when the battery has the polarity indicated. Electrons, indieated by the minus symbol, are attracted ancoss the junction from the N material through the I' material to the positive terminal of the battery, and holes, indicated be the plus symbol, are at tracted in the oppesite direction across the junction by the neqative potential of the lattery. Thus carrent flows through the dircuit by means of
electrons moving one way and holes the other.
If the battery polarity is reversed, as at C , the exoess electrons in the N material are artracted away from the junction and the holes in the !' material are attracted by the negative potential of the battery away from the junction. This leaves the junction region without any rurrent carriers, consequently there is no conduction.

In other words, a junction of P - and N-type materials ronstitutes a rectifier. It diffors from the tube diode rectifier in that there is a measurable, although comparatively very small, reverso current. The reverse current results from the presence of some carriers of the type opposite to those which princigally characterize the material. The primeipal ones are called majority carriers, while the lesser ones are minority carriers.

The process by which the earriers rooss the jumetion is essentially diffusion, and takes place comparatively slowly. This, toget her with the fact that the junction forms: al capacitor with the two plates separated by practically zero spacing and heme has relatively high raparitame, baces a limit on the upper frequence at which semiconductor devices of this construetion will operate, as compared with vacuum tubes. Also, the numher of excess electrons and holes in the material depends upon temperature, and sine the conductivity in turn depends on the number of exress holes and elertrons, the device is more temperature sensitive than is a vacuum tube.

Capacitance may be reduced be making the contact area very small. This is done by moans of a point contact, a tiny l^{\prime}-type region being formed under the contact point during manufacture when N-type material is used for the main body of the deviee.

SEMICONDUCTOR DIODES

Diodes of the print-rontart type are usiod for many of the same purposes for which tube diones are used. The construction of such a diode is

Fig. 4-1 - 1 P. $\$ junction (A) and its behavior when conducting (b) and nonconducting (C).

SYMBOL

Fig, 4-2 - finstruction of a germanium-point-contaet diode. In the cirenit symbol for a contact rectifier the arrow points in the direction of minimum resistane measured by the comentional method - that is, going from the positive terminal of the voltage source throngh the reftifier to the negative terminal of the source. The arrow thus corresponds to the plate and the har to the cathoule of a tulee diode.
shown in Irig. 4-2. Germanium and silicon are the most widely used materials, the latter prineipally in the u.h.f. region.

As compared with the tube diode for r.f. applications, the crystal diode has the advantages of very small size, very low interelectrode cat pacitance (of the order of $1 \mu \mu \mathrm{f}$. or less) and requires no heater or filament power.

Characteristic Curves

The germanium restal diode is characterized by relatively large current flow with small applied voltages in the "forward" direction, and small, although finite, current flow in the reverse or "hark" direction for much larger applied voltares. A typical characteristic curve is shown in Fig. $4-3$. The dynamic resistance in either the forward or back direction is determined by the change in current that occurs, at any given point on the curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltages, but the curve is for the most part quite straight, indicating fairly constant dynamie resistance. For small applied voltages, the forward resistance is of the order of 200 ohms in most such diondes. The back resistance shows considerable variation, depending on the particular voltage chosen for the measurement. It inay run from is few hundred thousand ohms to over as megohm. In applications such as meter rectifiers for r.f. indicating instruments (r.f. voltmeters,
wave-meter indicators, and so on) where the load resistance maty be small and the applied voltage of the order of several volts, the resistances vary with the value of the applied voltage and are considerably lowar.

Junction Diodes

Junction-type diodes made of germanium are employed principatly as power rectifiers. Bring useful for applications similar to those in which solenium rectifiers are used. I opending on the design of the particular diode, they are catpathle of rectifying currents up to soveral hundred milliamperes. The safe inverse peak voltate of a junction is relatively low, so ath appropriate number of rectifiers must be eomerted in serios to operate safely on a given abe. input voltage.

Ratings

Crystal diodes are rated primarily in terms of maximum safe inverse voltage and maximum average rectified current. Inverse voltage is a voltage applied in the direction opposite to that which canses intximum current flow. The averauge eurrent is that which would be read by a d.e. meter commerted in the current path.

It is also customary to speeify standards of performanere with respert to forward and back current. A minimum vablue of forward eurrent is usually sperified for one volt applied. The voltage at which the maximum tolerable back curent is specified vatries with the type of diode.

Fig, 1-3-Typical point. contact germanium diode chararteristic curve. Becanse the bark current is much smaller than the forward current, a differ. ent recale is used for back voltage and current.

Transistors

Fig. 4-4 shows a "sandwich" made from two tavers of l'type semiconductor material with a thin laver of N-type between. There are in affect two ${ }^{\prime}-N$ junction diodes back to back. If a positive bias is applied to the P'type material at the left as shown, current will flow through the left-hand junction, the holes moving to the right and the electrons from the N-type material moving to the left. Some of the holes moving into the N-trpe material will combine with the electrons there and be neutralized, but some of them also will travel to the region of the right-
hand junction.
If the P^{-N} combination at the right is biased negatively, as shown, there would normally be no current flow in this rircuit (see Fig. $4-1(1)$. However, there are now additional holes available at the junction to travel to point B and electrons can travel toward point . 1 , so a current can flow even though this section of the sandwich considered atone is biased to prevent conduction. Most of the current is hetween A and B and does not flow out through the common comection to the N-type material in the sandwich.

Fig, 4.4 - The basic arrangement of a transistor. This represents a junction-type I^{\prime}-N-l' unit.

A semiconductor combination of this trpe is called a transistor, and the three sections are known as the emitter, base and collector, respectively. The amplitude of the collector ruprent depends principally upon the amplitude of the emitter current; that is, the collector eurrent is controlled by the emitter current.

Power Amplification

Because the collector is biased in the back direction the collector-to-base resistance is high. ()n the other hand, the emitter and collector currents are substantially equal, so the power in the collector circuit is larger than the power in the enitter cireuit ($I^{\prime}=I^{2} R$, so the powers are proportional to the respective resistances, if the current is the same). In practical transistors emitter resistance is of the order of a few humdred ohms while the collector resistance is hundreds or thousands of times higher, so power gains of 20 to 40 (l). or even more are possible.

Types

The transistor may be either of the pointcontact or junction type, as shown in Fig. 4-5. Also, the assembly of P^{\prime} - and N-type materials may he reversed; that is, N-type material may he used instad of P-type for the emitter and collector, and 1 -type instead of N-tipe for the base. The type shown in Fig. $4-4$ is a $\mathrm{P}-\mathrm{N}-\mathrm{P}$ trinsistor, while the opposite is the N-P-N.

Point-Contact Transistors

The point-contadt transistor, shown at the
left in Fig. 4-5, has two "cat whiskers" placed very close together on the surface of a germanium wafer, usually N-type material. Small P-type areas are formed under each point during manufacture. This trpe of construction results in quite low interelectrode capacitances, with the result that some point-entact transistors have been used at frequencies up to the v.h.f. region.
The point-contatet transistor was the first type invented, hut is now prabticably superseded by the junction type. It is diffieult to manufacture, since the two contact points must be extremely close together if good characteristios are to be secured, particularly for high-frequency work.

Junction Transistors

The junction transistor, the essential eonstruction of which is shown at the right in lig. $4-5$, has higher capacitances and higher powerhandling capaseity than the point-rontaret type. The "electrode" areas and thickness of the internodiate laver have an important effert on the upper frequence limit. Ordinary junction transistors may have cut-off frequencios (see next sertion) up to 20 Me. or so. The types used for abdio and low radio frequencies usually have cut-off frequencies ranging from $5(0)$ to 1000 kc .

The upper frequency limit is extonded considerably in the drift transistor. This type has a particular form of distribution of impurities in the base material resulting in the creation of an internal electric field that acelorates the carriers abross the jumetion. Typical drift transistors have cut-off frequencies of the order of 30 Mc .

Another type of transistor useful in high-frequeney work is the surface barrier transistor, using plated emitter and collector electrodes on a wafer of N-type material, Surfare barrier transistors will operate at frequencies up to t5 or 50 Mc as amplifiers and oscillators.

TRANSISTOR CHARACTERISTICS

In important characteristic of a transistor is its current amplification factor, usually designated by the symbol α. This is the ratio of the

Fig. 4-5 - Point-contact and junction-type tramistors with their circuit symbols. The plus and minos signs associated with the symbols indicate polarities of voltages. with respert to the hase, to be applied to the elements.
change in eollector current to a small change in emittor current, measured in the rommon-base dircuit described later, and is comparable with the volage amplification fartor (μ) of a veucuum tube. The current amplification factor is almost, but mot quite, 1 in a junction transistor. It is larger than 1 in the point-rontart tope, values in the meighborhood of 2 being typiad.

The α cut-off frequency is the frequence at which the current :mplification drops 3 dlb. below its low-frectuency value. Cut-off frepuencies range from 500 ke. to freguencies in the $v . h . t$, region. The cut-ofif frepuences indicates in at general way the frepueney sparad overe which the tramsistor is usoful.

Lath of the three dements in the transistor has at resistanee assoriated with it. The emitter and eolloctor resistances were discussod earlier. There is also at eretain amonnt of besistanee assoriated with the base, a value of a few hundred to IOOO ohms being typiral of the base resistance.

The values of all three resistances vary with the type of transistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating charactoristics of transistors cam be shown by a series of charameristic curves. One such set of rurves is shown in Fig. 4-6. It

Fig, 1-6- A typial collemor-current es. collectorwoltane eharacteristic of a junction-type transiator, for varion- cmitter-current values. The circuit shows the setup for taking such measuremonts. Since the emitter resintance is low. at corrent-limiting resistor, R, is eonmected in series with the source of current. The emitler rurrent dan lie set at a desired value by aljustment of this resistance.
shows the collector current is collector voltage for a number of fixed values of emitter current. Practically, the collector current depends almost ontirely on the emitter current and is indepeadent of the collector voltage. The separation between curves representing equal steps of emitter courent is quite uniform, indicating that almost distortionless output ean be obtained over the useful operating range of the transistor.

Amother type of curve is shown in Fig. 4- $\overline{6}$, together with the circuit used for obtaining it. This also shows collector current is. collector voltage, but for a mumber of different values of hase current. In this aase the emittor clement is used as the common point in the rireuit. The collector current is not independent of collector voltage with this type of connection, indicating that the output resistance of the deviee is fairly low. The base current also is quite low, which

Fig. 4-7 - Collector current es. collector voltage for various values of hase current, for a junction-type transistor. The values are determined ly means of the circonit shown.
means that the resistance of the base-emitter circuit is moderately high with this method of connection. This may be contrasted with the high values of collector current shown in Fig, 4-(i),

Ratings

The principal ratings applied to transistors are maximum collertor dissipation, maximum collertor voltage, maximum collector eurrent, and maximum emitter current, The voltage and current ratings are selfeexplanatory.

The collector dissipation is the power, usually expressed in milliwatts, that can safoly be dissipated ber the transistor as heat. With some types of transistors provision is mate for transforring heat rapidly through the container, and such units usually require installation on a heat "sink," or mounting that ("an alsoorb heat.

The amount of undistorted output power that can be obtained depernds on the collector voltage, although the collector current is priaticably independent of the voltage. Inereasing the collector voltage extends the range of linear operation with a given swing in collector current, but camnot be carried berond the point where either the voltage or dissipation ratings are exceeded.

TRANSISTOR AMPLIFIERS

Amplifier cirenits used with transistors fall into one of three types, known as the groundedbase, grounded-emitter, and grounded-collector circuits. These are shown in Fig. $4-8$ in elementary form. The three circuits correspond approximately to the grounded-grid, gromided-ewh hode and cathode-follower circuits, respectively, used with varcum tubes.

The important transistor parameters in these circuits are the short-circuit current transfer ratio, the cut-off frequency, and the input and output impedances. The short-cireuit current transfer ratio is the ratio of a small change in output current to the change in input current that canses it, the output circuit being shortcircuited. The cut-off frequeney is the fregueney at which the amplification decreases by 3 db . from its value at some frequency well below that at which frequency afferts begin to assume importance. The input and output impedances are, respectively, the impedance which a signal souree working into the transistor would see, and the internal output impedance of the transistor
(corresponding to the plate rosistance of a vac(unu tube, for example).

Grounded-Base Circuit

The input circuit of a grounded-hase amplifier must be designed for low impedance. since the emitter-to-base resistame is of the order of $25 / I_{e}$ ohms, where I_{e} is the emitter current in milliampers. The optimum output load imperdance, $R_{\text {L }}$, may range from a few thousand ohms to 100,000 , depending upon the requirements.

The current transfer ratio is α and the cut-off frecuenery is as defined previonsly.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) aurrent. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regenerative and will oscillate if the current amplification factor is greater than 1. A junction tramsistor is stable in this circuit since α is less than 1 , but a point-contart transistor will oscillate.

Grounded-Emitter Circuit

The grounded-emitter circuit shown in Fig. 4-8 corresponds to the ordinary grounded-eathode varumatube amplifier. As indioated by the curves of Fig. 4-7, the base cument is small and the input impedaner is therefore fairly high several thousand ohms in the avorage case. The eollector resistanee is some tens of thousands of ohms, depending on the signal soure impedanere. The current transfer ratio in the common-emitter circuit is equal to

$$
\frac{\alpha}{1-\alpha}
$$

Since α is elose to 1 (0.98 or higher being representative), the short-circuit current gain in the grounded-emitter cireuit may be 50 or more. The cut-off frequency is equal to the a cut-off frequency multipliod by $(1-\alpha)$, and therefore is relatively low. (For example, a transistor with an α eut-off of 10 M0 ke . and $\alpha=0.98$ would have a cut-off frecurney of $1000 \times 0.02=20$ ke . in the grounded-emitter cireuit.)

Within its frequency limitations, the groundedemitter cireuit gives the highest power gain of the threer.

In this cireuit the phase of the output (collector) current is opposite to that of the input (base) current so such feedback as orecurs through the small emitter resistance is negative and the amplifier is stable with either junction or pointcontact transistors.

Grounded-Collector Circuit

Like the vacuum-tule rathode follower, the grounded-eollector transistor amplifier has high input impedanere and low output impedanere. The latter is approximately equal to the impedance of the signal input source multiplied by $(1-\alpha)$. The input resistance depends on the load resistance, being approximately equal to the load resistance divided by $(1-\alpha)$. The fact that input resistance is directly related to the load

Fig. 4-8- Basie transistor amplifier circuits. $R_{\text {L, }}$ the load resistance, may be an artual resintor or the primary of a transformer. The input signal may he supplied from a transfortner secondary or by resistancereapacitance coupling. In any case it is to be understond that a d.c. path must exist between the base and emitter.

PN' transistors are shown in these cirmits, If NPN tymes are used the battery polarities must be reversed.
resistance is a disadvantage of this type of amplifier if the load is one whose resistance or impedance varies with frequency.
The courent transior ratio with this rireuit is

$$
\frac{1}{1-\alpha}
$$

and the rut-off frequener is the same as in the grounded-emitter circuit. The output and input currents are in phase.

Practical Circuit Details

The transistor is essentially a low-voltage device, so the use of a battery power supply rather than a rectified-a.c. supply is almost universal. Usuatly, it is more convenient to employ a single battery as a power source in preference to the two-battery arrangements shown in Fig. 4-8, so most circuits are designed for singlebattery operation. Provision must be ineluded, therefore, for obtaining proper biasing voltage for the emitter-hase circuit from the battery that supplies the power in the collector circuit.

Coupling arrangements for introducing the ioput signal into the circuit and for taking out the amplified signal are similar to those used with varcuum tubes. However, the artual component values will in general be quite different from those used with tubes. This is berause the impedances associated with the input and output circuits of transistors may differ widely from the comparahle impedances in tuhe circuits. Also, d.e. voltage drops in resistances may require more careful attention with transistors because of the
much lower voltage available from the ordinary battery power source, Battery economy hecomes an important factor in cireuit design, both with respect to voltage required and to overall current drain. I bias voltage divider, for example, easily may use more power than the transistor with which it is associated.

Typical single-battery grounded-emitter cirenits are shown in lig. $4-9 . R_{1}$, in series with

Fis, 1.9- Practical gromoded-cmitter circoits using transformer and resistance coupling. I combination of either also catn be used - erg., resistance-compled input and transformer-couplad antput. 'Tuned transformers may be used for r.f. and i.f. cirenits.

With small transistors used for low-level amplifieation the impot impedance will be of the oreler of 1000 ohms and the imput rironit should be designed for an impedance step-lown, if meressary. 'This ran be done by appropriate choiere of turns ratio for T_{1} or, in the case of tuned cirenits, by tapping the base down on the tuned secondary cirenit. In the resistance-coupled circnit R_{2} shonld lie large compared with the input impedance, ralaes of the order of $1(1,0$, 10 ohme heing used.

In low-level cireuits R_{1} will the of the order of 1000 ohms. R_{3} shendil he chosen to bias the transistor to the dexired no-signal collector current: its value depends on K_{1} and K_{2} (were text).
the emitter, is for the purpme of "swatmping" out the resistanere of the emitter-hase diode: this swamping helps to statilize the emitter currem. The resistance of R_{1} should the large compared with that of the emitter-base diode, which, as stated earlier, is approximately equal to 25 divided by the emitter current in ma.
since the current in R_{1} flows in such a direction as to bias the emitter hegatively with respect to the base (a PND transistor is assumed), a baseemitter hias slighty greater that the drop in h_{1} must loc supplied. Ther poper operating peint is arhiored thomgh adjuathent of voltame divider
$h_{2} R_{3}$, the constants of which are chosen to give the desired value of colleretor current at the nosignal operating point.

In the transformer-coupled circuit, input signal currents flow through R_{1} and R_{2}, and there would be a loss of signal power at the base-emitter diode if these resistors were not bypassed by C'1 and ('2. The eapacitors should have low reactance compared with the resistances across which they are comerted. In the resistance-ouphed circuit R_{2} has the duad function of acting as part of the bias voltage divider and as part of the load resistame for the sighal-input souree. Also, as seren by the signal source, R_{3} is in parallel with Reand thus becomes part of the input load resistanee. (${ }_{3}$ must therefore have low reactance compared with the net resistance of the parallel combination of R_{2}, R_{3} and the base-to-emitter resistance of the transistor. The reactance of (is will depend on the impedance of the load into which the circuit delivers output.

The output load resistane in the transformereoupled case will be the actual load as reflected at the primary of the transformer, and its proper value will be determined by the transistor characteristics and the type of operation (Class A, 13 , ete.). The value of K_{L} in the resistance-eoupled (ase is usually such as to permit the maximum a.ce. voltage swing in the collector cirenit without undue distortion, since Class a operation is unual with this type of amplifier.

Bias Stabilization

Transistor currents are rather sensitive to temperature variations, and so the operating point tends to shift as the transistor heats. The shift in oprating point unfortunately is in such a direction as to increase the heating, leading to "thermal runaway" and possible destruction of the transistor. The heat developed depends on the amount of power dissipated in the transistor, so it is obviously advantageous in this respect to operate with as little internal dissipation as posible: i.c., the d.e. input should be kept to the lowest value that will permit the type of operation desired, and in any event should never experl the rated value for the particular transistor used.

A contributing factor to the shift in operating point is the collector-to-hase leakage curcent (usually designated I_{co}) - that is, the current that flows from collector to hase with the emitter comeretion open. This current, which is highly womperature selsition, has the effect of itherasing the emitter eurrent by an amount much Aarger than $I_{\text {co }}$ itself, thus shifting the operating print in such a way as to increase the eollector current. This effect is redued to the extent that I_{co} can be made to flow out of the base terminal rather than through the base-emitter dione. In the cireuits of Fig. f-!, bias stabilization is improved by making the resistance of R_{1} as large as 1 mesibla and both R_{2} and R_{3}^{3} as small as possihore, monsistent with other ennsiderations such as gain and lattery condman:

- TRANSISTOR OSCILLATORS

Since more power is available from the output eircuit than is necessary for its generation in the input circuit, it is possible to use some of the output power to supply the input eireuit and thus sustain self-oseillation, Representative oscillator circuits are shown in Fig. 4 -10. Their resembance to the similarly-named vacuum-tube circuits is evident.

The upper frequency limit for osidlation is principally a function of the cut-off frequency of the transistor used, and oseillation will cease at the frequener at which there is insufficient amplification to supply the energy required to overcome circuit losses. Transistor oscillators: usually will operate up to, and sometimes well leyond, the α cut-off frequency of the particular transistor used.

The approximate osellation frequency is that

Fix. 4.10-' Yypical transistor oscillator circuits. Com. ponent values are disenssed in the text.

Fige. A-II - Transiatur miver rireuit with emitter injertions, Citnd Care r.f. Hocking and by -bate caparitors and may le 0.01μ f. for operation at high frequencies. I_{1} will toe a coil of a fout turns coumbed to the lecal oscillator tank coil in the ordinary ease: injertion volaage may be adjusted by varying the coupling between L_{1} and the tank coil, and if meoessary by varying the number of turns in L_{1}.
of the tuned circuit, $L_{1} C_{1} . R_{1}, R_{2}$ and R_{3} have the same functions as in the amplifier circuits given in Fig, f-9. Capacitors ('2 and ('s are by-pass on blocking capacitors and should have low reactance compared with the resistances with which they are associated.

Feedthack in these cireuits is adjusted in the same way as with tule osoblators. ha the lartley circuit it is dependent on the position of the tap on the tank roil: in the tirkler riment, on the number of turns in L_{2} and degree of roupling between L_{1} and L_{20} : and in the colpitts rireuit, on the ratio of the tank raparitane between hase and emittor to the tank caparitance betwen rollertor and emitter.

Transistor Mixers

Transistors can be used as mixers or frequeney converters in superheterodyne-type receivers, by suitable choice of operating conditions, The voltage from a local oscillator can be injected in either the hase, emitter, or collertor circuit to the mixed there with the incoming r.f. signal to produce a difference frequency (i.f.). A representative circuit using emitler injection is shown in Fig, 1-11.

The ronversion gain of a tramsistor mixer depends failly eritioally on the operating hias (emitter rurrent) and thr value of injection voltage. A no-signal value of emittor current of 250 microamperes is typiral. The injertion voltage from the lowal usillator should he atjusted to give maximum gain for the particular transistor and operating frequency used. The optimum voltage depends on the frequeney, and a compromise may the necessary in a receiver working over a wide band of frequencies on a single tuning range.
R_{1}, R_{2} and R_{3} have the same purpose as the corresponding resistors in Fig. $4-9$, With R_{1} and R_{2} chosen, R_{3} should be selected to give the nosignal emitter current that results in satisfactory gain under full operating conditions. The conversion gain shoukt be of the order of 20 dt. , under optimum conditions, in the frequency range for which the particular transistor is suitable.

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediore contacts and solid (exios, and its importance camot be overemphasized. In the uncrowded v.h.f. hands, sensitivity (the ability to bring in weak signals) is the most important fartor in a receiver. In the more arowded amatour bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated be only a small frequency difference). To receive weak signals, the reveiver must furnish enough amplification to :mplify the minute signal power delivered be the antema up to a usefulamount of power that will operate a loudspaker or set of beudphomes. Before the amplified signal ean operate the speaker or phones, it must be converted to audio-frequener power by the process of detection. The sequence of amplification is not too important - some of the amplification can take plave (and usually does) hofore detertion, and some (an be used after detertion.

There are major differences between receivers for phone recoption and for code reception, An atm, phone signal has side bands that make the signal take up about 6 or 8 kr . in the band, and the audio quality of the received signal is impaired if the bandwidth is less than half of this, A code signal occupies only a few hundred cereles at the most, and consequently the bandwidth of a code receiver ran be small. A single-side-band phone signal takes up 3 to $+k$ e., and the andio quality can be impared if the bandwidth is much less than 3 kr. although the intelligibility will hold up down to aromad 2 kr . In any case, if the handwitth of the receiver is more than ner-
essary, signals adjaeent to the desired one can be heard, and the selectivity of the recoiver is less than maximum. The detection process delivers directly the audio frequencies present as modulation on an atm, phone signal. There is no modulation on a code signal, and it is neressary to introduce a second radio frequency, differing from the signal frequener by a suitable audio frequener, into the detector circuit to produce an audible beat. The frequency difference, and henre the beat note, is gencraily made on the order of 500 to 1000 eveles, since these tones are within the range of optimum response of both the ear and the headset. There is no carrier frequence present in an ss.s.h, signal, and this fredueney must be furnished at the receiver before the audio can be reedevered. The same souree that is used in code reception can be utilized for the purpose. If the source of the locally-gencrated radio frequency is a separate owillator, the system is known as heterodyne recpption: if the detertor is made to oscillate and produce the frequence, it is known as an autodyne detector. Modern supmeterodone receivers generally use a separate osidlator (beat oscillator) to supply the locally-generated frequency. Summing up the differences, phone recoivers ean't use as much solectivity as code receivers, and rode and s.s.b. receivers require some kind of locally-generated frequener to give a readable signal, Broadeast receivers can receive only atm. phono signals berause no beat ose illator is included. Communications receivers include beat oscillators and often some means for varying the selortivity. With high selertivity ther often have al slow toming rate,

Receiver Characteristics

Sensitivity

In commercial circles "sensitivity" is defined as the strength of the signal (in mierovolts) at the input of the receiver that is reguired to produce a sperified andio power output at the suaker or healphones. This is a satisfactory definition for broadeast and commonieations receivers operating below about 20 Mc ., where atmospheric and man-made clectrical noises normally mask any noise generated by the receiver itself.

Another eommereial measure of sensitivity defines it as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 (db.) above the noise output of the receiver. This is a more useful sensitivity meawne for the amateur, since it indicates how well a weak signal will be heard and
is not merely a measure of the over-all amplification of the receiver. However, it is not an absolute method for comparing two receivers, because the bandwidth of the receiver plays a large part in the result.

The random motion of the moleules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the noise exists across the entire radio spectrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antema and first stage of a receiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which is accepted by the receiver, so the
noise apporing in the rereiver output is less when the bandwidth is redueced. Noise is also generated by the eurrent flow within the first tube itself; this effert can be combined with the thermal noise and called receiver noise.

The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the receiver, the limit to reception would be the thermal noise. (Atmospheric- and man-made noise is a pructical limit below 20 M(.) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is hased on the noise power that must be introduced at the input of the receiver to indrease the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the bandwidth, the figure shows how far the reeciver departs from the ideal. The ratio is generally expresed in db, and runs around (6 to 12 dh , for a good receiver, although figures of 2 to + dh, have heon ohtained. Comparisons of noise figures can be made by the amateur with simple equipment. (See QsT, August, 1949, p. 20.)

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such cireuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in Fig. ;-1. The bandwidth is the width of the resonance curve (in eycles or kilocerles) of a recoiver at a specified ratio; in Fig. $\overline{\mathrm{j}}-1$, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 db. down" and " 20 db . down").

The handwidth at 6 d b, down must be sufficient to pass the signal and its sidehands if fathful reproduction of the signal is desired. However, in the erowded amateur bands, it is generally advisatble to sacrifice fidelity for intelligibility. The ability to rejeet adjacent-channel signals depends upon the skirt selectivity of the recoiver, which is dotermined by the bandwidth at high attenuation. In a receiver with good skirt selectivity, the

Fis. 5.1- - Iypical selectivity curve of a modern superheterolyne receiver. Relative response is plotted ayainst deviations above and below the resonance frequency. 'The seale at the left is in terms of voltage ratios, the corresponding decihel steps are shown at the right.
ratio of the $6-\mathrm{d} b$. bandwidth to the $60-\mathrm{db}$. bandwidth will be about 0.25 for code and 0.5 for phone. The minimum usable bandwidth at ($;$ dh. down is about 150 recles for code reception and about 2000 cycles for phone.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying eonditions of gain-control setting, temperature, supplyvoltage rhanges and mochaniral shock and distortion. The term "unstable" is also applied to a receiver that breaks intooseillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, in amateur communaration the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats"). Any device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired
detector output to the input. Detector linearit y is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power,
and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at $5-2.1$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. anergy is fed to $L_{2} C_{1}$, and the diode, I), with its load resistance, R_{1}, and bypass capacitor, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation

Fig. 5-2 - Simplified and practical diode detector cirenits. A, the elenemtary half-wave diode detector; 13 , a practical circuit, with r.f. filtering and andio output coupling; (:, full-wave diode oleteetur, with output coupling indicated. The circuit, $L_{2}(i$, is tuned to the signal frequency; typical values for C_{2} and R_{1} in A and (: are $250 \mu \mu$. and 250,000 ohms, respectively; in $B,(i 2$ and C_{3} are $100 \mu \mu f$. caeh: $R_{1}, 50,000$ ohms: and $R_{2}, 250,000$ ohmis. C_{4} is 0.1μ. and R_{3} may be 0.5 to 1 megohm.
causes corresponding variations in the value of the d c. voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectifiedecurrent flow.

The progress of the signal through the detector or rectifier is shown in Fig. i-is. A typical modulated signal as it exists in the tuned

Fif. 5.3-Diagrams showing the detection process.
circuit is shown at A. When this signal is applied to the rectifier tube, current will fow only during the part of the r.f. cyole when the plate is positive with respect to the cathode, so that the output of the rectifier consists of half-cercles of $\mathrm{r} . \mathrm{f}$. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of ('2 being so proportioned that (i2 charges to the peak value of the rectified voltage on each pulse and retains emough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. ('2 thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling capacitor (C_{4} in Fig. 5 -2l3), only the motutions in voltage are transferred, so that the final output signal is a.c., as shown in I).

In the cireuit at $5-213, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is importint to prevent the appeatance of any r.f. voltage in the output of the detector, because it may rause overloading of a succeeding amplifier tube. The atudiofrequency variations can be transferred to amother circuit through a coupling eaparitor, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the atudio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a capacitor also avoids any fow of d.e. through the control. The flow of d.c. through a high-resistance volume control often
tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at 5 -2C differs in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that r.f. filtering is casier than in the half-wave circuit. As a result, less attenuation of the higher audio frequencies will be obtained for any given degree of r,f. filtering.

The reactance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large eompared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally ruming around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handing capalinity is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate

(A)

Fig. 5.4 - Cirenits for plate detection, 1. triosle; 13, pentode. The input circuit. $L_{1} C_{1}$, is thmed to the signal frequeney. l's pical values for the other eomponents are:
Com-
Circuit A
Circuit 13

12	$0.3 \mu \mathrm{f}$, or lar	0.5μ f, or larger,
C3	0,001 to 0,002 μ f.	250 to $500 \mu \mu$ f.
C_{4}	$0.1 \mathrm{\mu f}$.	0.1μ.
C_{5}		O.is μ f. or larmer.
\mathbf{R}_{1}	2.5000 to 150,000 ohmes.	10.000 1020.000 ohms,
\mathbf{R}_{2}	50,000 to 100,000 ohms.	100,000 to $2.30,000$ ohms.
l_{3}		50,000 whms.
H_{4}		20,000 ohnis.
RHC.	2.3 mh ,	2.5 mh .
Plate voltages from 100 to 250 volts may be used. Effective sereen voltage in B should be about 30 volts.		

circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit canses an increase in average plate current. The avorage phate current follows the changes in signal in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. i-f. C_{3} is the plate by-pass caparitor, and, with RFC, prevents r.f. from appearing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and ('2 is a bypass for both radio and audio frequencies. R_{2} is the plate load resistance and (${ }^{4}$ as the output coupling capacitor. In the prentode circuit at $13, R_{3}$ and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pass riputcitor. (ca and ('s must have low reactante for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, becouse the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Impedance coupling may be used in plate of the resistance coupling shown in Fig. ö-l. ('sually 100 henrys or more indurtance is required.

The plate detector is more sensitive than the diode because there is sone amplifying artion in the tube. It will handle lange signals, but is not so tolerant in this respect as the diode. Lincarity, with the self-biased circuits shown, is good. Ip to the overload point the dotector takes mo power from the tuned circuit, and so does not affect its Q and selertivity.

Infinite-Impedance Detector

The rircuit of Fig, i-is ambines the high signal-handling capabilitios of the diode detector with low distortion and. like the plate detector, does not load the tuned virenit it comerts to. The cireuit resembles that of the plate detector, exeept that the loid resistance, R_{1}, is commerted between cathode and ground and thus is common to both grid and plate circuits, giving nogative ferellawe for the audio frequeneries. The rathode resistor is bypassed for r.f. but not for audio, while the plate circuit is bypassed to

Fig. 5.5 - The infinite-impedance detector. 'The input sirenit, $L_{2} \mathrm{C}$, is tuned to the siznal frequeney, Typieal values for the other components are:
 Ci4-0. $\mu \mathrm{f}$. $\mathrm{R}-0.2$, megrom volume control.
A tuhe having a medium amplification factor (ahout 20) should be used. I'late voltage should be 250 volts.

ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the " B " supply" An r.f. filter, comsisting of a sumber.f. choke and ab shmont cupacitor, can be eomected between the rathode and C_{4}^{\prime} to eliminate any r.f. that might otherwise appear in the output.
The plate emment is very low at mo signal, increasing with signal as in the ease of the plate detector. The voltage drop aceross R_{1} consequently increases with signal. Beanse of this and the large initial drop across h_{1}, the grid usually camot be driven positive by the signal, and no grid current can be drawn.

Product Detector

The product detector armits of Fig, 5-6 are usoful in s.s.b. and eode reception beoanse they minimize intermodulation at the deteetor and don't require a large b.f.e. injection voltage. In Fig. $\overline{0}$-(6A, two triodes are used as eathode followers, for the signal and for the b.f.o., working into atemmon cathode resistor (1000 ohms). The third triode also shares this cathode resistor and consefurbitly the same signals, but it has an andio load in its plate cirenit and it operates at a higher grid bias (by virtue of the $2700-0$ hm resistor in its cathode eirenit). The signals and the b.f.o. mis in this third triode. If the b.f.o. is turned off, a modulated signal running through the signal cathode follower should yield little or no :udio output from the detector, up to the overload point of the signal cathode follower. Turning on the l.f.o. brings in modulation, becanse now the detector output is the product of the two signals. The plates of the eathode followers are grounded and filtered for the i.f. and the $4700-\mu \mu$, caparitor from plate to ground in the output triode furnishes a bepass at the i.f. The b.f.o. voltage should be about 3.5 r.m.s.

The eireuit in Fig. 5 -6B is a simplification requiring one less triode. Its principle of operation is substantially the same except that the auddi-
tional bias for the output tube is derived from rectifiod b.f.o. voltatge across the 100,000 -ohm resistor. More elaborate r.f. filtering is shown in the plate of the output tube (2-mh. choke and the $2=0-\mu \mu$ f , eapacitors , and the degree of plate filtering in aither circuit will depend upon the frequencios involved. At low intermediate frequencies more elaborate filtering is required.

- REGENERATIVE DETECTORS

13y providing controllable r.f. feedback (regenoration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, therehy greatly increasing the sensitivity of the detector. Regeneration also increases the effertive Q of the rircuit and thus the selectivity, The grid-leak type of dotector is most suitable for the purpose.

The grid-lak detertor is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig, ion, the grid corresponds to the diode plate and the rectifying ation is exactly the same as in a diode. The d.e, voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the phate circuit, T_{1}, L_{4} and L_{3} are the plate load resistances, (fit is a by-pass catpacitor and $R F^{\prime}$ ' an r.f. choke to eliminate r.f. in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a sereen-grid tube instead of a triode, as at $5-7 \mathrm{I} 3$ and C . The operation is equivalent to that of the triode circuit. The sereen bypass capacitor, C's, should have low reatance for both radio and andio frequencies. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper sereen voltage. In both circuits, C_{2} must have low r.f. reactance and high a.f. reactance compared to the resistance of R_{1}.

Although the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling eapability is limited. The sigmal-handling capability can be improved by reducing l_{1} to 0.1 megohm, but the sensitivity will the decreased. The degree of antema coupling is often critical.

The circuits in Fig. 5-7 are regenerative, the fredthack being oltained by feeding some signal to the grid back from the plate circuit. The amount of regeneration must be controllable, because maximum regenerative amplification is serured at the critical point where the circuit is just about to oscillate. The critical point in turn depends upon cireuit conditions, which may vary with the frequency to which the detertor is tuned. In the oscillating eondition, a regenerative detertor ean be detuned slightly from an incoming c.w. signal to give autolyne reception.

The cirenit of lig. $\mathrm{b}-\mathrm{ta}$ nses at variable bypass cupacitor, ('f, in the plate cirerait to cont rol regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient ferdback to cause oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" eoil, I_{3}, when the grid comnection is to the outside of L_{2}.

The circuit of $5-7 \mathrm{l} 3$ is for a pentode tube, regeneration being controlled by adjustment of the sereen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is bypassed by a large mpacitor (0.5 $\mu \mathrm{f}$. or more) to filter out seratching moise when the arm is rotated. The feedtack is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Circuit (C is identical with 13 in principle of operation. Since the sereen and plate are in parallel for r.f. in this circuit, only a small amount of "ticklor" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no cffect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In prartiere, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overome. Likewise, the regeneration is usually affected by the frequency to which the grid cireuit is tuned.

In all circuits it is best to wind the tickler at the ground or eathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oseillate easily over the whole
tuning range at the plate (and sereen, if a pentode) voltage that gives maximum sonsitivity. Should the tube break into oseillation suddenly as the regeneration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and screen voltage are also frequent canses of lack of smoothness in going into oscillation.

Fis, $\pi-\overline{-}$ - Trionde and pentode regenerative detector rirenits. The input cirenit, $I_{2} \mathrm{C}_{\mathrm{t}}$, is tuned to the signal frequency. The krid rapacitor, Cos should have a valat of alout $\operatorname{loN} \mu_{\mu \mu}$ f. in all eirenits: the grid leak. R_{1}, may range in value from 1 to $\overline{3}$ megohms. 'The tickler coil, I_{3}, ordinarity will have from 10 to 25 per cont of the momber of tirns on L_{2} : in (: the cathorle tap is atonit 10 per cent of the number of turns on I_{2} athove ground. Regeneration-control capacitor Ca in A shond have a maximum capacity of $100 \mu \mu$, or more: by-pass raparitors C_{3} in $\$$ and C are likesise $100 \mu \mu \mathrm{f}$. Cs is ordinarily 1μ f or more: R_{2}, a $50,($ OOO-ohm potentiometer;
 henry induetanee, C_{4} is $0.1 \mu \mathrm{f}$. in both cireuits. T_{1} in A is a conventional andio transformer for coupling from the plate of a tube to a following grid, $R F^{\circ}($ is 2.5 mh. In A, the plate voltage should be about 50 volts for best sensitivity, Pentode circuits reduire about 30 volts on the sereen; plate potential may he 100 to 250 volts.

Antenna Coupling

If the detector is coupled to an antenua, slight changes in the antenna (as when the wire swings in a brease) affect the frequency of the oscillations generated, and thereby the beat frequency when code signals are being received. The tighter the antenna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If caparity coupling to the grided end of the eoil is used, generally only a very small amount of capacity will he needed to couple to the antenna. Increasing the capacity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages. The remedy for these "dead spots" is to bosen the antenna coupling to a point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detector ocasionally shows a tendency to change frequeney slightly as the hand is moved near the dial. This condition (body capacity) can be corrected by better shiclding, and sometimes by r.f. filtering of the phone leads. A good, short ground connection and loosening the coupling to the antema will help.

Hum

Ilum at the power-supply frequency, even when using battery plate supply, may result from the use of are. on the tube heater, bffects of this type normally are troublesome only when the rireuit of lig. $5-\overline{5}$ (is used, and then only at 11 Mr, and higher. Connecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will rechuce the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and latk are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. recoption, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detertor starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of code signals is where the detector just starts to oscillate. Then
code signals can lo tumed in and will give a tone with each signal depending on the sotting of the tuning control. As the recoiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in lig. 5-8. A low-pitehed beat-note cannot be ohtained from a strong signal because

Fig. 5-8-As the luning dial of a receiver is turned past a code signal, the beat-note varies from a high tone down through "zero lwat" (now audible frequency difference) and hack up to a high tone, as shown at \mathcal{A}, B and C. ' ' 'he eurve is a mraphical representation of the action. The beat exist- past 8000 or 10,000 eycles but usually is not heard becanse of the lintitations of the andiosystem.
the detector "pulls in" or "blocks"; that is, the signal forces the detector to oscillate at the signal frequency, even though the circuit may not be tuned exactly to the signal. This phenomenon, is also called "locking in"; the more stable of the two frequencies assumes control over the other. It usually can be corrected by advaneing the regeneration eontrol until the beat-note is heard again, or by reducing the input signal.

The point just after the detector starts oseillating is the most sensitive condition for eode reception. Further advancing the regeneration control makes the receiver less suscoptible to blocking by strong signals, but also less sensitive to weak signals.

If the detector is in the oscillating condition and a phone signal is turned in. a steady audible beat-note will result. While it is possible to listen to phone if the receiver can he tuned to exact zero beat, it is more satisfactory to reduce the regencration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Single-side-band phone signals can be received with a regenerative detector by advancing the regeneration control to the point used for code reception and tuning carefully across the s.s.b. signal. The tuning will he very eritical, however, and the operator must he prepared to just "creep" aeross the signal. A strong signal will pull the detector and make rereption impossible, so either the regeneration must he advaned far enough to prevent this condition, or the sigmal must be reduced by using loose antennat coupling.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a sperial problem in the design of amateur reecivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning capacitor cammot be used for, say, 14 Me. to 3.5 Me., beratuse of the impracticable maxi-mum-to-minimum caparity ratio reguired, and also berause the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning capacitor usually is retained, but new coils are inserted in the circuit for each band.
One method of changing inductances is to use a switch having an appropriate number of contacts, which comnerets the desired roil and disconnects the others. The unused coils are sometimes short-circuited by the switeh, to avoid the possibility of undesirable self resonances in the umused roils. This is not necessary if the roils are separated from each other by several coil diamoters, or are mounted at right angles to cath other.

Another method is to use coils wound on forms with contacts (usually pins) that can be plugged in and removed from a socket. These phug-in coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, beatase they are easier to work on than eoils clustered around a switeh.

Bandspreading

The tuning range of a given coil and variable rapacitor will depend upon the induetaner of the eoil and the change in tuning caparity. For ease of tuning, it is desirable to adjust the tuming range so that practically the whole dial scale is orcupied by the hand in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the corrert maximumminimum caparity ratio on each hand. several of these methods are shown in rig. $\overline{5}-9$.
(A)

(B)

Fig. 5.9- Esemtials of the three baide bandspread turing syatems.
(C)

In A, a small bandspread capacitor, $C .2$ ($15-$ to $2 \bar{j}-\mu \mu$. maximum caparity), is used in par-
ablel with a capacitor, C_{2}, which is usually large enough (100 to $140 \mu \mu \mathrm{f}$.) to cover a 2 -to- 1 frequency range. The setting of (2 will determine the minimum "apacity of the cireuit, and the maximum raparity for bandspread tuning will be the maximum capacity of (1 plus the setting of C_{2}. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate handspread. It is almost impossible, becimse of the nonharmonic relation of the various hand limits, to get full bandspread on all bands with the same pair of caparitors. ('2 is variously ralled the band-setting or main-tuning capactitor. It must be reset each time the bund is changed.

The method shown at B makes use of caphatitors in series. The tuning capacitor, (i, maty have a maximum caparity of $100 \mu \mu \mathrm{f}$. or more. The mininum caparity is determined principally by the setting of ('3, which usuatly has low capacity, and the maximum caparity by the setting of co, which is of the order of 25 to $00 \mu \mathrm{f}$. This method is capable of close adjustment to practically any desired degree of handspread. Wither ('z and C_{3} must be adjusted for each hand on separate preadjusted "alpacitors must be switched in.

The circuit at C also gives complete spread on each hand. ('1, the handspread capacitor, maty have any convenient value: $50 \mu \mu \mathrm{f}$. is satisfactory. C_{2} may be used for contimuons frequency coverage ("general (overage") and as a handsetting capacitor. The effective maximum-minimum capacitance ratio depends upon Ces and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the eoil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if (\% is set at higher caparitance. (2 may he connected permanently across the individual indurtor and preset, if desired. This requires a separate rapacitor for cach band, but eliminates the necessity for resetting \subset each time.

Ganged Tuning

The tuning caparitors of the several r.f. circuits may be coupled together mechamically and operated by a single control. However, this operating convenience involves more romplicated construction, both elertrically and mechanically. It beromes neressary to make the various circuits track - that is, tume to the same frequency at euch setting of the tuning control.

True tracking can be obtained only when the inductance, tuning caparitors, and rircuit inductances and minimum and maximum eapacities are identical in all "ganged" stages. A small trimmer or padding capacitor may be connected across the coil, so that variations in minimun) (aparity can be compensated. The fundamental circuit is shown in rig. $\overline{\mathrm{j}}$-10, where C_{1} is the trimmer and ces the tuning calpacitor. The use of the trimmer necessarily inereases the
mininum circuit capacity, but it is a necessity for satisfartory trarking. Midgot capacitors having maxinum capacities of $1 \overline{\mathrm{j}}$ to $30 \mu \mu \mathrm{f}$, are commonly used.

Fig. 5-10-Showing the use of a trimmer capacitor to set the minimum sirenit cat perity in order so olnain true tracking for gang-tuning.

The same methods are applied to bandspread circuits that must he tracked. The eircuits are identical with those of Fig. io-9. If both gencral-coverage and bandspread tuning are to be available, an additional trimmer capacitor must be comberted across the coil in each circuit shown. If only amateur-hand tuming is desired, however, then C_{3} in Fig. $\overline{5}-913$, and (${ }_{2}$ in Fig. $\overline{5}-9 \mathrm{C}$, serve as trimmers.

The coil inductance can be aljusted by starting with a larger number of turns than
neeessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil.

Another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted tum, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The () of the coil is not affected materially by the use of the brass slag, provided the brass shag has a clean surface or is silverplated. The use of the powdered-iron core will raise the Q of a coil, provided the iron is suitable for the frequency in use. (iood pow-dered-iron cores can be obtained for use up to about 50 Mc .

The Superheterodyne

 cally the only trpe of reeceiver to be found in amateur stations comsisted of a regenerative deteretor and one or more stages of atdio amplification. Receivers of this type an be made quite semsitive but strong signals book them easily and, in our prosent crowded bands, they are seldon used exerept in emergencios. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superhetorodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (ahbereviated "i.f."), then amplified, and finally detected. The frequeney is changed by modulating the output of a tumable wieflator (the high-frequency, or local, oscllator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate fresuenery. The other side frectueney is rejected by selective cirenits. The audiofrequency signal is whained at the second detector. Conde sigmals are made audible by autorlyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 4 m ke, is chosen and that the incoming signal is at 7000 ke . Then the high-frecuency oseilhator frequeney may tre set to $\overline{\text { minn }}$ ke, in order that one side frequency ($\overline{-253}$ minus 7000) will be 4.5 ke. The high-frefuency oseillator could also be sot to 6.55 ke , and give the same difference froquener. To produce an andible eode signal at the second detector of, say, 1000 ercles, the autodyning or heterodyning oseillator would be set to either 454 or 45 ta k.

The frequency-conversion process permits
r.f. amplification at a relatively low frequency, the i.f. High selectivity and gain can he obtamed at this frocuroncy, and this selectivity and gain are comstant. The separate owillators can be dexigned for good statility and, sine they are working at frequencios sonsiderablas removed from the signal freduencios (berentage-wise), they are not normally "pulled" by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 7.4 i) ke, to tune to a 7000-ke. sigual, for example, the receiver can respond also to a signal on 7910 ke., which likewise gives a forme. beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't climinated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.') nommally ane timeal to the desirod signal, so that the selectivity of the cirenits redures or eliminates the response to the image signal. The ratio of the recelver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned eircuits proceding the mixer tube. Nso, the higher the intermediate frequence, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a eompromise between economy (fen r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Itarmonies of the high-frequency osseillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses cam be redured by adequate selectivity lefore the miser stage, and by using sufficient shielding to prevent signal piek-up, by any means other than the antemat. When a strong signal is received, the harmomics generated by rectification in the seeond detector may, by stray coupting, be introduced into the.r.f. or mixer circuit and converted to the intermediate frequeney, to go through the receiver in the same way as an ordinary signal. These "birdics" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frepueney of the inconing signal is not greatly different from the intermediate frequency, The cure is proper circuit isolation and shielding.
Harmonies of the beat oseillator also may be converted in similar fashion and amplified through the receiver; these responses can be redured by shielding the beat oscillator and operating it at a low power level.

The Double Superheterodyne

At high and very-high frectuencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 455 kc . To reduce image response the signal frequently is converted first to a rather high (1500,5000 , or even $10,000 \mathrm{kc}$.) intermediate frequency, and then-sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. such a receiver is called a double superheterodyne.

frequency converters

A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance loal for the i.f. voltage thatt is developed. The signal- and oseillator-fremueney voltages ipplearing in the plate cireuit are rejected by the selectivity of this circuit. The i.f. tuned circuit should have low impedtance for there frequencies, a condition easily met if they do not approath the intermediate frecuency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate cireuit to r .f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tule in the receiver.

A change in oscillator frequency caused by tuning of the miser grid circuit is called pulling. Pulling should be minimized, because the stability of the whole receiver depends criticeally upon the stability of the h.f. oseillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is calused by regulation in the power supply, Strong signals cause the voltage to change, which in turn shifts the oscillator frequency.

Circuits

If the first detector and high-frequency oseillator are separate tubes, the first detector is called a "mixer." If the two are combined in one cnvelope (as is often dome for reasons of cemomy or efficieney), the first detertor is called at "converter." In either case the function is the same.
Typical mixer circuits are shown in Fig. it-11. The variations are chicfly in the way in which the oscillator voltage is introduced. In $2-11.1$, a pentode functions as a plate detertor; the oscillator voltage is eapacity-eoupled to the grid of the tube through ('2. Indurtive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as

 cre. Grid injortion of a pontonle miser is shown at 1 , cathode injection at 13 , and separate cacitation of at pentagritl converter is gisen in C.. Typical salues for C © will te found in Table $\bar{\sigma}-1$ - the values below are for the pentote miser of A and B .
$\mathrm{C}_{1}-1020.50 \mu_{\mu} \mathrm{f}$.
$\mathrm{N}_{2}-1.0$ merohm.

$R_{1}-6800$ olmes.
lositive supply soltage can lo 2.00 volts with a 6AC:C, 150 with a 6.1K5.
the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desimable to make the oscillator voltage as high as prsible without exceeding this limitation. The oscillator power recpured is negligible. If the signal frequency is omly 5 or 10 times the i.f., it maty be difficult to develop enough oscillator voltage at the grid (beause of the selectivity of the tumed input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high-transconductance
 sertion). A good triode also works well in the eirenit, and tubes like the $6 . J$ fis (one seretion), the $12 \mathrm{ST}^{7}$ (one section), and the 6.J. worls well. When at triode is used, the signal frequeney must be short-eirenited in the plate cirenit, and this is done by connerting the tuning cabacitor of the i.f. transformer direstly from plate tos cathode.

The rireuit in Fig, oi-11I3 shows rathode injection at the mixer. (opration is similar to the grial-injertion case, and the same eonsiderations aply.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typical arcult is shown in Fig. j-11(, and tubes like the
 oscillator voltage is introduced through an "injection" arid. Measurement of the rectified eurrent flowing in Re is used as at cherk for proper oscillator-voltage amplitude. Tuning of the signal-grid dircuit ran have little offect on the oscillator fregnency beranse the injertion grid is isolated from the signal grid by a sereen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, hat its isolating characteristies make it a vory useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. 5-12. The cireuit shown in Fig. \%-12. 1 , which is suitable for the blis, is for a "triode-hexode" converter. A triode oscillator tube is momed in the same envelone with a hevode, and the control grid of the oscillator portion is commerted internally to an injection wrid in the hexole. The isolation betweon oseilator and converter tube is reasonably good, and very little pulling results, exept on signal fremumeres that are quite large compared with the i.f.

The pentagrid-eonverter circuit shown in Fig.

Fig. 5-12 - 'Jypical circuits for triode-hevode (A) and protagrid (13) comwrters. Values for R_{1}, R_{2} and R_{3} can be foumd in T'able 5-I; others are given below.

$$
\begin{array}{ll}
(: 17 \mu \mu \mathrm{f} . & \mathrm{C}_{3}-0.01 \mu \mathrm{f}, \\
\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C} & 0.001 \mu \mathrm{f} . \\
\mathrm{R}_{4}-1000 \text { ohms }
\end{array}
$$

5-12l3 ein be used with a tube like the 6S.17, 6Si371, 613.17 or fiBE6. Gencrally the only care neressary is to adjust the feedbaek of the oseillator cirenit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.e. current flowing in grid resistor R_{2}.

A more stable receiver gencrally results, particularly at the higher frequencies, when separate tubes are used for the miver and oseilkator. Practieally the same number of eircuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the eost standpoint.

Typical circuit eonstants for converter tubes are given in Table 5-I. The grid leak referred to is the oseillator grid leak or injection-grid return, R_{2} of Figs. 5-11C and :-12.

The effectiveness of eonverter tubes of the type just deseribed becomes less as the signal frequency is increased. Some oscillator voltage will

he compled to the signal grid through "spacecharge" coupling, an effert that increases with frequency. If there is relatively litale frequency difference between oseillator and signal, as for example a $1 \cdot \mathrm{f}$ or '2S-Me, signal and an i.f. of tion k - , this voltage cam beromo considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not retumed directly to ground, hut instead is returbed through a resistor or part of an a.v.e, system, considerable bias can be developed which will cut down the gain. For this reasm, and to reduce image response, the i.f. following the first converter of a receiver should be not less than $\overline{5}$ or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. 5-12 can be used to advantage in the recoption of code and singlo-side-hand suppressed-earried signals, by introducing the lowal oscillator on the No. 1 grid, the sigmal on the No. : Br grd, and working the tube into an adolo load. Its oneration wan be visuatized as heterodyning the incoming signal into the andio range. The use of such rinenits for audio conversion has been limited to selective i.f. amplifiers onerating below 500 ke. and usually below 100 ke . . Th ordinary a.m. signal camot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the ineoming carrier.

Since the beat oseillator modulates the electron stream completely, a large beat-oscillator (omponent exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter mast be used in the outpat of the converter.

The "product detector" of liig. \bar{j}-f jis also a comverter cirruit, and the statements above for audio eonverters apply to the produrt detector.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oseillater, and particular care should be given this part of the reaciver. The trequency of oseillation should be insonsitive to mechanical shork and changes in voltage and loading. Thermal effects (slow change in fromueney beranse of tube on circuit hoating) should be minimized. They ran be reduced by using eramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat, minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not monnting the oscilator coils and tuning condenser tow close to a tube. I'ropping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.
Sensitivity to vibation and shores ean be minimized by using good mechanieal support for coils and tuning capacitors, a heavy chassis, and by mot hanging any of the oscillator-rirenit components on long leads. Tie-puints should be used
to avoid long leads. Stiff short leads are excellent because they can't be made to vibrate.

Smooth tuning is a great comvenience to the operator, and ran be obtained by taking pains with the mounting of the dial and tuming caparitors. They should have good aligmment and no back-lash. If the capacitors are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The (:aparitors should be solected with good wiping contacts to the rotor, since with age the rotor

F'ig. 5-I3 - Iiyh-frembeney oseillator cirenits. 1, pen-

 pline to the mixermay be taken frompmints X amel \rangle In A and Ib, compling from) will reduce pulling efleqts, lut pives Ires voltage than from X; this ty pe is hest alapted to mixer cirenits with small oseifator-voltage rentirements. Typical values for components are an follows:

	Circuit A	C.irctail 13	Circuit C
Cil	$100 \mu \mu \mathrm{f}$.	$100) \mu \mu f .$	$100 \mu \mu \mathrm{f}$.
12	$0.1 \mu \mathrm{C}$.	$0.1 \mu \mathrm{f}$	$0.1 \mu \mathrm{f}$.
C_{3} -	0.1μ I.		
l_{1} -	45,000 ohms.	47.000 oluns.	17.000 ohms.
$\mathrm{H}_{2}-$	47,000 ohms.	10.60\% to	100.000110

The alate-supply voltare -homid tre 2.71 wolta. In circuits 13 and (: \dot{R}_{2} is used to drop the sumply voltage to for)-1.50 volts: it may lom omitted if voltare is obtained from a voltage divider in the power supply.
contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, because a loose comection or "rosin joint" ean develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its hamonie output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.ensoillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VR tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. 5-13. Cireuits A and B will give about the same results, and require only one abil. IIowever, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Me . and higher frequencies when a.ce-heated-rathode tubes are used. The circuit of lig. is- 13 C reduces hum beause the cuthode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feedback to obtain optimum results. Too much feedback may eanse "squegging" of the oscillator and the generation of several frequencies simultamously; too litile feedback will cause the output to be low. In the tapped-coil eireuits (A, 13), the ferdback is increased by moving the tap tow:urd the grid end of the coil. In (', feredmatek is obtained by inereasing the number of turns on L_{2} or loy moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflieting fartors. The lower the i.f. the higher the selertivity and gain, but a low i.f. brings the image nearer the desired signal and hence derrobses the image ratio. A low i.f. also increases pulling of the ascillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the gatin is lowered and sedectivity is harder to obtain by simple moans.

An i.f. of the order of 455 ke . gives good selectivity and is satisfactory from the standpoint of image ratio and osrillator pulling at frequencies up to 7 Me . The image ratio is poor at 14 Mc . when the mixer is connected to the antenna, but adequate when there is a tuned r.f. amplitier between antenna and mixer. At 28 Me. and on the very high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad without very loose coupling between miser and oseillator.

With an i.f. of about lifo ke., satisfactory image ratios can be secured on 14, 21 and 28 Me. with one r.f. stage of good design. For frequencies of 28 Me, and higher, the best solution is to use at double superheterodyne, choosing one high i.f. for image reduction (5 and 10 Me. are frequently used) and a lower one for gain and seloctivity.

In choosing an i.f. it is wise to atvoid frequencies on which there is considerable activity by the various radio services, since surh signals maty be picked up directly on the i.f. wiring. Shifting the i.f. or better shiclding are the solutions to this interference problem.

Fidelity; Side-band Cutting

Modulation of a carrier causes the generation of side-band frequencies numeriably equad to the arrier froquency plus and minus the highest modulation frequency present. If the roceiver is to give a fathful reproduction of modulation that eontains, for instanee, audio frequencies up to 5000 cycles, it must at last be atpable of amplifying equally all frequencies contained in a band extending from 5000 eycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, the i.f. amplification must be uniform over a band 5 ke . wide, when the carrier is set at one edge. If the "arrier is set in the center, a 10-ke. band is required. The signal-frequency aircuits usually do not have enough over-all selectivity to affert materially the "adjacentchamnel" selectivity; so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies ocreupied by the modulated signal, some of the side bands are "eut." While side-band cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications offectiveness.

The selectivity of an i.f. amplifier, and hence
the tendeney to rut side bands, inereases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, side-band cutting is never serious with two-stage amplifiers at frequences as low as 4os ke. A twostage i.f. amplifier at 8.3 or 100 ke . will be sharp enough to cut some of the higher-frequensy side bunds, if good trinsformers are used. However, the cutting is not at all serious, and the gain in seleetivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 ke . two stages gemerally give all the gain usathle, and also give suitable selectivity for phone reception.

A typical circuit arrangement is shown in Fig. 5-1-4, A second stage would simply duplicate the reirenit of the first. The i.f amplifier practically always uses a remote entoff pentode-type tube operated as a Class 1 amplifier. For maximum solertivity, double-tumed transformers are used for interstage roupling, although single-tumerl circuits or transformers with untuned primaries can be used for eoupling, with a eonsequent loss in selertivity. All other things lowing equal, the selertivity of an i.f. amplifier is proportional to the number of tuned cirenits in it.

In Fig. $5-14$, the gain of the stare is reduced by introducing a negative voltage to the lead marked " $1 V^{\prime} C$ " or a positive voltage to R_{1} at the point marked "mamaal gain control." In either case, the voltage increases the bias on the tube and redures the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally ohtaned from common sources. The deroupling resistor, R_{3}, helps to prevent unwanted interstage coupling. ('2 and h_{4} are part of the automatie volumecontrol circuit (deseribed later) ; if no :a.v.e. is used, the lower end of the i.f.-transformer seeondary is comected to chassis.

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifice stages, since grid-bias gain control is pratically always applied to the i.f amplifior. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatost gain. The choire of i.f. tubers normally has no effect on the

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	Plute Volts	Screen Volts	Cuthode Resistor	Screen Resisior
6A135 ${ }^{\text {\% }}$	300		200 obus	33,000 ohms
$6.1 \mathrm{Cl}^{1}$	300		160	62,000
gillic ${ }^{2}$	300	150	160	62, 1100
fiak 5^{2}	180	120	200	27,000
6Al'6 ${ }^{2}$	250	150	68	33,000
6ibAG2*	250	100	68	33,000
$613116{ }^{2}$	250	150	100	33,000
613J6\%*	250	100	82	47,000
$6^{613} / 66^{2 *}$	200	150	180	20,000
$6 \mathrm{Ca}^{-1}$	250	100	1200	270,000
$6 \mathrm{Ki}^{\circ}$	250	125	240	47,000
6SM ${ }^{\text {a }}$	250	125	68	27.000
$6 \mathrm{SH7}$	250	150	68	39,000
685\%	250	100	820	180,000
6SK「**	250	100	270	5f,000
I Octal base, metal. ${ }^{2}$ Miniature tube - lemonte cut-off type.				

signal-to-moise ratio, since this is determined by the preerding mixer and r.f. amplifier.

Typical values of cathode and soreen resistors for common tubes are given in Table or-Il. The GK7, GSK7 and bl3.J are recommended for i.f. work becanse they have dewirable remote ent-off chamateristios. The indieated sereen resistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig . i -14.

When two or more stages are used the high gain may tend to catuse instahility and owillafion, so that good shiclding, bypassing, and careful circuit arrangement to prevent stray roupling between input and output arenits are meessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to monnt the soreen bepass capacitor direetly on the bottom of the socket, croswise between the plate and grid pins, to provide additional shiclding. If a paper mapacitor is used, the outside foil should be grounded to the chassis.

I.F. Transformers

The tomed cireuits of i.f. amplifiers are built up as transformer units consisting of a metal shiedd container in which the eoils and tuning capacitors are mounted. Both aireore and powdered iron-core universal-wound eoils are used, the latter having somewhat higher (os and henee greater selectivity and gain. In universal windings the roil is wound in layers with each turn traversing the length of the eoil, back

Fig. 5.14-Typical intermediate-fregurney amplifier circuit for a superheterodyne receiver. Representative values for romponents are as follows:
 $0.01 \mu_{\mu}$ at $10,00 \mathrm{ke}$ and higher.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.
$\mathrm{H}_{1}, \mathrm{H}_{2}$ - See Table B_{2} - II .
$\mathrm{H}_{3}, \mathrm{R}_{5}-1.500$ olims.
$\mathrm{H}_{4}-0.22$ megohti.

and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight moltihayer winding, a fairly large eapacitance can exist between layers. Cniversal winding, with its "eriss-crossed" turns, tends to reduce distributed-capacity effects.

For tuming, air-diefoctric thong capacitors are preferahbe to mica rompresion types because their (alpanity is pactically unaffected by changes in temperature and humidity. Iron-core transformers may be tuned by varying the inductance (fermeability tuning), in which ease stability comparable to that of variable air-capacitor tuning c:an be obtained by use of high-stability fixed mica or ceramic capacitors. Such stability is of great importance, since a circuit whose frequeney "drifts" with time eventually will be tuned to a different frequeney than the other circuits, therebe reduring the gain and selectivity of the amplifier. Trpical i , f.-transformer construction is shown in Fig, 5-15.

The nomal interstage i.f. transformor is loosely roupled, to give good selectivity consistent

Fig. 5.15- Representative i,f-transformer construc. tion. Gonla are supported on insulating tuhing or (in the air-thoel 1 (pe) on watimpregnated wooden dowels. 'Ihe shield in the air-tmed transformer prevents caipacity coupling leetween the tuning capacitors, In the permeability-lumed tranaformer the cores eonsint of finely-disided iron particles supported in an insulating binder, formed into eslindrical "plugs." The tuning capacitance is fixed, and the inductances of the coils are varied los mosing the iron pluge in and out.
with edequate gitin. A so-called diode transformer is similar, but the roupling is tighter, to give sufficient transter when working into the finite load presented by a diode detector. Using a diode transformer in phace of an interstage transformer would result in loss of selectivity; using an interstage transformer to couple to the diode would result in loss of gain.
besides the type of i.f. transformer shown in Fig. :-15, sperial units to give desired selectivity chararteristics are available. For higher-than-ordinary adjacent-channel selertivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to
the over-all selectivity of the transformer.
A method of varying the selectivity is to vary the coupling between primary and secondary, overcoupling being used to broaten the selectivity eurve. Special circuits using single tuned circuits, coupled in any of several different ways, are used in some advanced receivers.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be expected with goodquality transformers in anmplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Bandwidth in Kilocycles		
	6 db .	20 db .	40 db .
	doun	down	down
One stage, $\mathbf{0} 0 \mathrm{ke}$, (iron core)	0.8	1.4	2.8
Onestage, 45.5 kc ((air core)	8.7	17.8	32.3
Onestage, 45 5 ke. (ironcorn) ,	4.3	10.3	20.4
Twortages, tionc. (iron core)	2.9	6.4	10.8
Twostages, $1600 \mathrm{kc} .$.	11.0	16.6	27.4

- THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detector of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively great amplifieation ahead of it. Therefore, the ability to handle large signals without distortion is proferable to high sensitivity. late detection is used to some extent, but the diode detector is nost popular. It is especially adapted to furnishing automatic gain or volume control. The basic circuits have been deseribed, although in many cases the diode elements are incorporated in a nultipurpose tube that contans an amplifier section in addition to the diode.

Audio-eonverter cireuits ind product detectors are often used for code or s.s.b. detectors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Spectal beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. $5-13 \mathrm{~A}$ and B , with the output taken from Y. A variable capacitor of about $25-\mu \mu \mathrm{f}$, capacitunce can be connected between cathode and ground to provide fine adjustment of the frequency. The beat oseillator usually is coupled to the seconddetector tuned circuit through a fixed capacitor of a few $\mu \mu \mathrm{f}$.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its harmonics from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest

Fig. 5-16- Delayed autonatic volume control rircuits using a twin diode (A) and a dat-diode triode. The rircuits are cesentially the same and differ only in the method of biasing the a,ver. rectifier. The a,ve, co:itenl volage is applied to the controlled stages as in (6). Fror these eirenits, typical values are:
(\%) C $2, ~\left(C_{4}-100 \mu \mu \mathrm{f}\right.$.
($3, \mathrm{C}, \mathrm{C}, \mathrm{C}-0.01 \mu \mathrm{f}$.
(S_{6} - i- m . electrolytie.
K_{1}, Ro. $K_{10}-0.1$ megohm.
$R_{2}-11.27$ meqohm.
$R_{3}-2$ mepohms.
$R_{4}-0.17$ meqohem.
$R_{5}, R_{6}-$ Ioltage divider to give 2 to 10 volts bias at 1 to 2 ma. drain.
$\mathrm{K}_{7}-0 . \overline{\mathrm{T}}$-megolim volame control.
K_{8} - Correct bias resistor for triede section of dual-diode triode.
of the signal, the galin is reduced as the signal strength beeomes greater. The eontrol will be more complete and the output more eonstant as the number of stages to which the a.v.e. bias is applied is increased. Control ol at least two stages is advisable.

Circuits

Although some receivers derive the a.v.c. voltage from the diode detector, the usual partice is to use a separate a.v.c. rectifier. TYpical cireuits are shown in Figs, $5-16 \mathrm{~A}$ and $5-16 \mathrm{~B}$. The two rectifiers can be combined in one tube, as in the 6IIt and gals. In Fig. $\tilde{5}-16 \mathrm{~A} \mathrm{~V}_{1}$ is the diode detector; the signat is developed aross $R_{1} R_{2}$ and coupled to the audio stages through $C_{3} . C_{1}, R_{1}$ and ('z are included for r.f. filtering, to prevent a large r.f. emmponent being coupled to the audio cireuits. The a.v.e. reetifier, V_{2}, is eoupled to the last i.f. transformer through C.4, and most of the rectified voltage is developed across R_{3}. V_{2} does not rectify on weak signals, however; the fixed bias at h_{a} must le execeded before rectifieation can takeplare. The developed negative a.v.e. bits is fed to the controlled stages through R_{4}.

The circuit of Fig. $\mathrm{j}-16 \mathrm{~B}$ is similar, exeept that a dual-diode triode tuibe is used. Since this has only one common cathode, the circuitry is slightly different but the primeiple is the same. The triole stage serves as the first andio stage, and its bias is developed in the athode rircuit across R8. This same bias is applied to the a.v.c. rectifier ber returning its load resistor, R_{3}, to ground. To avoid placing this bias on the detector, l_{1}, its load resistor $R_{1} R_{2}$ is returned to cathode, thus avoiding any bias on the detector and permitting it to respond to weak signals.

The developed negative a.v.e. bias is applied to the eontrolled stages through their grid circuits, as shown in lig. $\overline{5}-16 \mathrm{C}$. $C_{7} R_{9}$ and (' ${ }_{8} R_{10}$ serve as filters to avoid common (roupling and possible feedthack and oseillation. The a.v.e. is disabled by elosing switeh S_{1}.
signals. Ilowever, if the beat-mscillator output is tool low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC VOLUME CONTROL

Automatic regulation of the gain of the recoiver in inverse proportion to the signal strength is an operating convenience in phone reception, since it tends to keep the output level of the recoiver emstant regardess of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detertor circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. since this voltage is proportional to the average amplitude

The a.v.e. rectifier bias in Fig, 5 -1til3 is set by the hias required for proper operation of V_{3}. If less hias for the a.v.e. rectifier is required, R_{3} ean be tapped up on R_{3} instead of being returned to chassis ground. In Fig. $\overline{5}-16 \mathrm{~A}$, proper choice of bias at R_{5}^{*} depends upon the over-all gain of the receiver and the number of controbled stages. In general, the bias at R_{5} will be made higher for receivers with more gain and more stages.

Time Constant

The time constant of the resistor-capacitor combinations in the a.v.e. circuit is an important part of the sustem. It must be high enough so that the modulation on the signal is completely filtered from the d.e output, leaving ouly an average d.e. component which follows the rela-
tively slow carrier variations with fading. Audiofrequency variations in the av.e. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too great or the a.v.e. will be unable to follow rapid fading. The raparitance and resistance values indicated in Fig. :-16 will give a time constant that is satisfactory for average reception.

C.W. and S.S.B.

A.v.e. can be used for c.w. and s.s.b. reception but the cireuit is more complicated. The a.v.e. voltage must bederived from a redifier that is isolated from the beat-frequency oscillator (other-
wise the rectified l, fo. voltage will redure the reeoiver gain even with no signal coming through), This is generally done by using a separate a.v.c. channel commected to an i.f. amplifier stage ahead of the second detertor (and l, f.o.). If the selertivity ahead of the a.v.e. rectifier isn't good, strong adjacent signals will develop a.v.re voltages that will reduce the receiver gain while listening to weak signals. When chear chamels are arailable, however, e.w. and s.s.b. a.v.e. will hold the recoiver output constant over a wide range of signal imput. A.v.e. systems designed to work on these signals must have failly long time constants to work satisfactorily, and often a selection of time constants is made available.

Noise Reduction

Types of Noise

In addition to tube and rircuit noise, much of the nowe interference experienced in reception of high-frequener signals is catused by domestic or industrial electrical equipment and by atomohile ignition sustems, 'The interferene is of two types in its cherts. The first is the "hiss" type, consisting of overlapping pulses similar in nature for the receiver moise. It is largely reduced by high seleetivity in the reweiver, especially for rode reception. The serond is the "pistol-shot" or "machine-gun" typo, consisting of separated impulses of high amplitude. The "hiss" type of interferenee usually is caused hy commutator sparking in d.c. and sorics-wound ate, motors, while the "shot" type result: from separated spark dischatges (a.c. power leaks, switch and key dirks, ignition sparks, and the like).
'The only known approach to reducing tabe and circuit noise is through better "front-ond" design and through more over-all selectivity.

Impulse Noise

Impulse noise, beratuse of the short duration of the polses compared with the time between them, must have high amplitude to contain mueh average anergy. Henme, moisa of this type strong emough to cobuse much interfercone goncrally has an instantaneons amplitude much higher than that of the signal being recoived. The general primeiples of devies intended to reduce such noise is to allow the desired signal to pass through the reseiver unaffereded, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.
. nother approarh is to "silence" (render inoprrative) the rereiver during the short duration time of any individual pulse. The listener will not hear the "hole" bereause of its short duration, and very effertive moise reduction is ohtainod. surh devices are called "silencers" rather than "limiters."

In passing through selective rederer circuits, the time duration of the impulses is increased, beramse of the Q of the circuits. Thus the more solectivity ahead of the moise-reducing device, the more difficult it becomes to secure good pulse-type noise suppression.

Audio Limiting

Λ considerable degree of noise reduction in oode rereption gan be arermphishod by am-plitude-limiting arrangements applied to the audio-output cirenit of a receiver. Such limiters also maintain the signal output nearly constand during liading. These output-limiter systems are simple, and adaptable to most recervers. However, they cannot prevent noise peaks from overlouding previous stages.

 with an infinitr-impedaner defertor: B, with a diade detedor. Typical values for componentare ata follows:
$\mathrm{R}_{1}-0.27$ megohm, $\quad \mathrm{R}_{4}-20,000$ to 47,000 ohnts.
$\mathrm{R}_{2}-47.000$ ohms. $\quad \mathrm{C}_{1}-2.0 \mu \mu \mathrm{f}$.

All other diode-circuit constants in B are conventional.

Fig, 5-18-Self-adjusting series (A) and shunt (B) moise limiters. The functions of V_{1} and V_{2} can be combined in one tube like the ollo or 0.dis.

$\begin{aligned} & (1-100 \mu \mu f \\ & \left(R_{2}, C 3-0,05, \mu f .\right. \\ & R_{1}-0.2=\text { meg. in } A ; 47,000 \\ & \text { ohms in } 13 . \end{aligned}$

$\mathrm{R}_{2}-0.27$ mes. in $\mathrm{A} ; \mathbf{0 . 1 5}$ meg. in 13.
R_{3} - 1.0 megohm.
$\mathrm{R}_{4}-11.82$ megohm.
$R_{s}-6800$ ohms.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The circuit of Fig. 5-17 "chops" moise peaks at the second detector of a superhet receiver by means of a biased diode, which beromes nonconducting above a preatetermined signal level. The audio output of the detertor must pass through the diode to the grid of the amplitier tube. The diode normally would the noncondurting with the connections shown were it not for the fact that it is given positive bias from a 30 -volt source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio.

The audio signal from the detector an be considered to modulate the steaty diode current, and conduction will take place so long as the diode plate is positive with respoct to the cathode. When the signal is sufficiently large to swing the rathode positive with respect to the plate, however, conduction ceases, and that portion of the signal is cut off from the audio :mplifier. The point at which cut-off orours can be selected by adjustment of R_{3}. By setting R_{3} so that the signal just passes through the "valve," noise pulses higher in :mmplitude than the signal will he cut off. The circuit of Fig. 5-17A, using th infinite-impedance detector, gives a positive voltage on rectification. When the rectified voltage is negative, as it is from the usual diode detertor, the cirenit arrangement shown in Fig. 5-17B must be used.

An audio signal of ahout ten volts is required for good limiting artion. The limiter will work on either e.w. or phome signals, but in either case the potentiometer must be set at a point determined by the strength of the signal.

Second-detector noise-limiting circuits that automatically adjust themsolves to the received carrier level are shown in Fig. 5-18. In either circuit. V_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. bypass. A negative whtage propertional to

 of moise limiters. Neither cirenit is useful for (e.w, or s.s.b. reeception, but they are both quite effective for a.m. phone work. The series eirenit (A) is slightly botter than the shant eirenit.

SIGNAL-STRENGTH AND TUNING INDICATORS

The simplest tuming indicator is a milliammeter commerted in the d.e. plate lead of an at.v.e.controlled r.f. or i.f. stage. Nine the phate courrent is reduced as the a.v.e. voltage beromes higher with a stronger signal, the phate current is a measure of the signal strength. The meter ean have a (0-1. 0-2 or (1-5 ma. movemont. and it should be shunted by a $2 \overline{5}$-ohm rheostat which is used to set the no-signal reading to full seate on the meter. If a "forward-reading" moter is desired, the meter can be momed upside down.

Two other S-meter areuits are shown in Fig. 5-19. The system at 1 inses a milliammeter in a bridge circuit, arranged so that the moter readings inerease with the a.v.e, voltage and signal strength. The moter reads approximately in a linear deribel seale and will not be "erowded" at some point.

To adjust the system in Fig. 5-19A, pull the tule out of its socket or otherwise break the cathode rireuit so that no plate current flows, and adjust the value of resistor l_{1} ateross the meter until the sale reading is maximm. The value of resistanee reguired will depend on the internal resistance of the meter, and must be determined bey trial and error (the current is approximately 2.5 ma.). Then replace the tube allow it to warm up, turn the ar.e. switeh to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter eurrent. When the a.v.r. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's pate current. This will oerorin the meighthorhood of 15 volts with

Fig. 5.19- 'Tuning indicator or S-meter circuits for suberheterodybe receisers
MA-0.1 or 0.2 millianmoter. $R_{1}-R_{4}$ - Sor text
a 6.J5 or 6SN7(iT, and represents a rather high-amplitude signal.

The circuit of Fig, 5 -19I3 requires no atditional tubes. The resistor R_{2} is the normal eathode resistor of an a.v.c.econtrolled i.f. stage; its eathode resistor should be returned to chassis and not to the manual gain eontrol. The sum of R_{3} phas R_{4} should equal the normal eathode resistor for the audio amplifier, and they should be proportioned so that the arm of R_{3} ran pick off a voltage equal to the normal cathode voltage for the i.f. stage. In some rases it may be meeessary to interehange the positions of R_{3} and R_{i} in the eireuit.

The zero-sert eontrol R_{3} should be set for no reading of the meter with no incoming signal, and the $[500$-ohm semsitivity rontrol should be set for at full moter reading with the i.f. tube removed from its socket.

Neither of these s-meter eirouits can be "pinmed", and only severe misadjustment of the zero-set control ran injure the meter.

Improving Receiver Selectivity

- INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned carlior in this chapter, one of the big advantages of the superheterodyne recober is the improved selectivity that is possiber This selectivity is obtamed in the i.f. amplifier, where the lower frequency allows more selertivity per stage than at the higher signal frecuency. For phone reception, the limit to useful soloctivity in the i.f. amplifier is the point where so many of the side bands are cut that intelligibility is lost, although it is possible to remove completely one full set of side bands without imparing the quality at all. Maximum recenver solertivity in phone reception requires good stanility in both transmitter and recoiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 rycles for hand-key speeds, but this much solectivity requires good stabilaty in both transmiter and recoiver, and as slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable adodo-frequency beat note when the ineoming signal is converted to the intermediate frequency. For example, the beat oscilator may be set to 456 ke . (the i.f. being 45 ke. to give a 1000 - cyele beat note. Now, if an interforing signal appears at tion kc , or if the receiver is tuned to heterodyne the incoming signal to tio ke., it will also be heterodyned by the beat oseilator to produce a $1000-$ eyole beat. Ilence every signal ran be tuned in at two places that will give a 1000 -cycle beat
(or any other low :udio frepuency). This audiofrequency image effect call be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 ke ., is attemuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero leat characteristic of less-selective reception, hence the name: single-signal reception.

The neressary solectivity is not obtained with nonregenerative amplifiers using ordinary tuned eireuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, partioularly when the i.f. is tij ke. or lower. The resonance curve of an i,f. stage at critical regeneration (just below the oscillating point') is extremely sharp, a band width of 1 ke . at 10 times down and 5 kc . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -eycle beat note (image 2000 eycles from resontance).

Regeneration is casily introduced into an i.f. amplifier by providing a small amount of camaty coupling between grid and plate. Bringing a short length of wire, comnerted to the grid, into the vicinity of the plate lead usually will suffice. The feedtack maty controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bits) and depend on regeneration tolving up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration re-

Fig. 5-20-Typical response curse of a crystal filter. The noteh can twe moved to the other side of the ri-- ponse peak by adjustment of the "phasing" controt. With the ahove curve, setting the b.for, at 45 F he . would give good single-signal cow. rateption.
duces the over-all rexponse to moise generated in the earlier stages of the receiver, just as dow high selectivity produced by other monds, and therefore improves the signal-to-noise ratio. Howerer, the regenerative gain varies with signal strength, being less on strong isgnals.

Crystal-Filters; Phasing

Probably the simplest means for obtaining high seloctivity is by the use of a piezoclectrio quartz erystal as a selective filter in the i.f. amplifier. Compared to a good tumed circuit, the ($)$ of subh a erystal is extremely high. The crystal is ground resomant at the i.f. and used as a selective coupler between i.f. stages.

Fig. 5.2l-A varialide-aplertivity crystal filter (A) and a hath-pasa crystal filter (b).

Fig. 5-20 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image (an be reduced by a 50 (th. or more. Besides practioally eliminating the a.f. image, the high seleretivity of the erystal filter provides good diserimination against adjacent signals and also reduces the noise.

Two ervstal-filter circuits are shown in Fig. 5-21. The circuit at A (or a variation) is found in many of the current communications receivers. The crystal is comeneted in one side of a bridge eirenit, and a phasing eapacitor, ${ }^{(1)}$, is connected in the other. When (${ }^{\prime}$ is set to batane the arstal-holder caparitance, the resonance curve of the filter is practieally symmetrical: the erstal ants as a series-resonant rifenit of very high (and allows signals over a narrow band of frequencies to pass through to the following tube.

Fip. 5-22 - 'Typical radio-frepuency amplifier circuit for a sumerhoterodyne recriver. Representative values for components are ass follows:
C. 10 (4 - $0.01 \mu \mathrm{f}$. below 15 Mc., $0.001 \mu \mathrm{f}$. at 30 Mc .

Ra-180k ohms.
Nore or hess capacitance at C_{1} introdures the "rejection notch" of Fig. $5-20$ (at 453.7 kc , as (drawn). The Q of the load cireuit for the filter is adjusted by the setting of R_{1}, which in turn varies the bandwidth of the filter from "sharp" to a bandwidth suitable for phone reception. Some of the components of this filter are sperial and not generally available to amatemes.

The "band-pass" aryat filter at 13 uses two erystals soparated slightly in frequency to give a band-pass wharacteristie to the filter. If the frequeneics are only a fow humdied ceres apart, the characteristic is an excellent one for cew. recention. With ergstats about 2 ke. aphart, a good phone chatacteristie is ohtaimed.

Additional I.F. Selectivity

Many commereial communieations receivers do not have sulficient selertivity for amateur use, and their performance can be improved by additional i.f. selectivity. Ome method is to loosely comple a $13 C^{\prime}-453$ aireraft reveiver (war surplus, tuning range 190 to 550 ke .) to the tail end of the 455-ke. i.f. amplifior in the rommunieations receiver and use the resultant output of the 13C-453. The aircraft receiver uses an 85 -ke, i.f. amplifier that is sharp for voice work -
(6.5)ke, wideat - (30dh. -and it helps considerably in separating phone sigmals and in backing up ervatal filters for improved ew, reception. (See QSTM, January. 1948, p. 40.)

If a BC-tion is not avaibable, one can still enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequeney the thorke, signal existing in the rereiver i.f. amplifier and then rectify it after bassing it through the sharp low-frecuencey amplifier. The Ilammarlund Company and the J. W. Miller Company both offer 0 ()-ice, transformers for this applieation.

Q $S T$ references on high i.f. selectivity include: Mreaughlin, "selectahle Single Sideland," April, 1!18; (iithens, "sumer-selective C.W. Receiver," Aug., I! 48.

RADIO-FREQUENCY AMPLIFIERS

While solectivity to reduce andio-frequency images can be built into the i.f. :mplifier, discrimination agamst radio-frequence images can only be oltained in circuits ahoad of the first detector. These tunced cireuits and their associated vacum tubes are called radio-frequency amplifiers. For top performane of a communications recoiver on frequemies above -Mc , it is mandatory that it have one or two states of r.f. amplifation, for image rejertion and improved semsitivity.

Reveivers with an i.f. of 40, ke, can he expected to have some r.t. image response at a signal freguency of 14 Mc . and higher if only one stage of rit. amplifaction is used. (Recreneration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of 40.5 ke ., no images shoula be apparent at 14 Me., but they will show up on $2 s$ Me and higher. Three stages or more of r.f. amplification, with an i.f. of $+5 \pi^{5} \mathrm{kr}$, will reduce the images at 2 s . Me., but it really takes four or more stages to do a good johs. The hetter solution at 28 Me, is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke. or higher, A nomal receiver with an i.f. of 45.5 ke . can be converted to a triple superhet by "ontreriner a "ronverter" (tu be deacribod bator) ahead of the receiver.

For best solectivity, r.f. amplifiers should use high-() cireuits and tubes with high input and output resistance. Variahle- μ pentotes are practically always used, although triodes (nentralized or otherwise eonnered so that they won't (oseillate) are often used on the higher frepuenries berause the introduce lass noise. Pentodes are bettor where maximum image rojection is desired. beanse they have less loading effect on the tuned circuits.

FEEDBACK

Joedback giving rise to rogenoration and oscillation can ocour in a single stage or it may appear as an over-all foedback through several stages that are on the same frequency. To avoid
feedbark in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling betwern the two dircuits. An oseillation can be ohtained in tur r.f. or i.f. stare if there is any undue capacitive or indurtive coupling between output and input circuits, if there is too high an impedance between rathode and ground or serem athd ground, or if there is any appreriable impedance through which the grid and blate currents can low in common. This means good shielding of coils and tming capacitors in r.f. and i.f. circuits, the use of good by-pass capacitors (micat or eramie at ref., paper or ceramie at i.f.), and returning all by-pass ("apacitors (grid, cathoole, phate and screen) for a given stage with short leads to one spot on the chassis. If singlemended tubes are used, the sereen or cathode by-base caparitor should be momed across the sucket, to serve as a shield between grid and phate pins. Less care is required as the frequency is lowered, but in high-imperdane circuits, it is sometimes necessary to shield grid and plate leads and to be areful not to run them close tongether.

To amod ower-all fedback in a multistage amplifier, attention must be paid to avoid running any part of the output circuit batek near the input dircuit withont first fiftering it carefully. Sinee the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an ref. amplifier might run along a chassis in a straight line, rum into a mixer where the frequency is changed, and then the $\mathrm{i} . \mathrm{t}$, amplifier conted be rum back parallel to the r.f. amplifier, provided there was a very large frequence difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would the better to rum the i.f. amplifier off at right angles to the rof.amplifier line, just to be on the safe side. Cood shiclding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it beromes less important when the stage gain drops to a low valuc. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and the can provide the over-all compling if they aren't properly filtered. (hood hevassing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a hand width measured in hundreds of ke. at 14 Mc . or higher, strong signals will be amplified through the r.f. amplifier aven though it is not tuned exactly to them. If these signals are strong cnough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an underired signal is strons enough after amplification in the r.f. stages to
shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effert is called cross-modulation, and is often encountered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to ohtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver. The 6I3.JG, 613.16 and 6I)CG are reommended for r.f. amplifiers where cross-modulation may be a problem.

A receriver designed for minimum crosi-modulation will use as little gain as posible ahoud of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the mixer and r.f. stages, the gain of the r.f. stages is usually made adjustable, This is accomplished by using variable $-\mu$ tubes. and varying the d.e. grid bits, either in the grid or cathode circuit. If the gain control is atomatic, as in the case of a.v.e., the bias is rontrolled in the grid circuit. Manual control of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two typers of gatin control is shown in sehematic form in lig. 5-22.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oseillator and the miver circuit independently, berause the mixer tuning is broad and requires little attention over an amateur band. Ilowever, when r.f. stages are added ahead of the mixer, the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. eircuits, and when this condition is achieved the circuits are said to track.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuning (equal frequeney change for earh dial division), and then adjusting the oscillator and mixer tuned circuits so that both cover the sime total number of kilocycles. For example, if the i.f. is 405 ke and the mixer circuit tunes from 7000 to 7300 kc . between two given points on the
dial, then the oscillator must tune from $74 \mathrm{~m}_{\mathrm{j}} \mathrm{m}$ to 73:5 ke. between the same two dial readings. With the bandipread armangement of Fig. 5-9A, the tuning will be pratically straght-line-frequency if C_{2} (bandset) is 4 times or more the maximum capacity of (heandspread), is is usually the case for strictly amateur-band coverage. ('1 should be of the straight-line-eramaity type (semicircular plates).

Squelch Circuits

An audio squelch circuit is one that cuts of the reveiver output when mosignal is coming through the recoiver. It is useful in mobile or net work where the no-signal reociver moise may be as

Fig. 5-2:3- A practical stureleh circoit for cutting off the receiver output when no signal is present.
loud as the signal, causing undue operator fatigue during no-signal periods.

A prate ieal squeleh circuit is shown in Fig. 5-23, When the a.v.e. voltage is low or zero, the Gis.j7 draws plate carrent. Voltage drop amoss the 47,000 -ohm resistor in its phate circuit ruts off the dob5 and no reoriver signal or noise is passed. When the a.v.e. voltage rises to the cut-oll value of the $6 \boldsymbol{s} . \mathrm{J}$, the pentode no longer draws rurrent and the bias on the $6 . J 5$ is now only the operating bias, furnished by the 1000 -ohn cat hode resistor. The triode now functions as an ordinary amplifier and passes signals. By varying the sereen voltage on the tis.l throigh R_{1}, the pentode's cut-off bias can be varied, so that the relation between at.v.c. voltage and signal cut-off point of the amplifior is adjustable.

Comnections to the receiver consist of two a.f. lines (shielded), the a.v.e. lead, and chatsis ground. The squeld cireuit is nomally inserted between detector output and the audio volume control of the receiver. Since the circuit is msed in the low-level audio point, its plate supply must be free from a.c. or ohjertionable hum will be introduced.

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is dependent upon the band width of the re-
ceiver and the noise eontributed by the "front end" of the receiver. Neglecting the fart that image rejection may be poor, a receiver with no
r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5 - and 7 -Me, bands. However, as the frequency is increased and the atmospheric noise becomes less, the advantage of a good "front end" becomes apparent. Hence at 11 Me, and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for hest sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f, amplifier is to improve the receiver noise figure at it Me, and higher, a high- g_{m} pentode or triode should be used. Among the pentorles, the best tubes are the $6.1\left(7,6.155\right.$ and the $6 S^{\circ} \cdot 7$, in the order named. The 6.1K5 takes the lead around :30 Mr. The 6. $4,6.16$, 7 lis and triode-connected 6, NKis are the best of the triodes. For best noise figure, the antenma circuit should be compled a little heavier than optimum. This camot give best seleetivity in the antenna circuit, so it is futile to try to maximize sensitivity and sele tivity in this circuit.

When a receiver is satisfactory in every respect (stability and selectivity) exerpt sensitivity on It through 30 Me., the best solution for the amanterir is to add a preamplifier, a stage of r, f. amplitieation designed expresily to improve the sonsitivity, If image rejertion is lacking in the receiver, some sclectivity should be built into the preamplitier (it is then ralled a preselector). If, however, the receiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "eonverter" is the best solution.
some commercial recoivers that appor to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenata, This cat be aeromplished by changing the antemna feed line to the right value (as determined from the receiver instrution book) or by using a simple mateling device as deseribed
later in this chapter. Overcoupling the input circuit will often improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matching to the antenna through tighter coupling. However, accurate ganging becomes a problem, because of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handedtuming device. Regeneration should not be overlooked as an expedient, however, and amateurs hatre used it with considerahle suceress. High $-y_{m}$ tubes are the best as regenerative amplifiers, and the feedback should not be controlled by changing the oporating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-l)atek coupling. This is at tricky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-moise ratio, it is advantageous in the reception of weak signals to eliminate the gain eontrol from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gain controls, one for the first radio-frequency stage and another for the i.f. and other r.f. stages.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequence, first tune in a mondeately-wak but steady carrier with the beat wioillatom turned off. Adjast the reereiver tuning for maximmotignat stitongth, as indicuted by maximm hiss. Then turn on the bat uscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.for, may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reception of
code signals will have the first r.f. stage running at maximum gain, the following r.f,, mixer and i.f. stages operating with just enough gain to maintain the signal-to-moise ratio, and the audio gain sot to give comfortable headphone or speaker volume. The audio volume should be controlled by the audio gatu eontrol, not the i.f. gatin eontrol. Whaler the above conditions, the stleetivity of the receiver is Ixing used to lest advantage, and aross-modulation is minimized. It preeludes the use of a receiver in which the gains of the r.f. and i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a erystal filter the thang instructions in the preceding parat:raph still apply, but more care must be used
both in the initial adjustment of the beat oscillator and in tuning. The beat oseillator is set as described above, but with the erystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by areful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. imare can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the erystal filter in reducing interference, it is necessary to do all tuning with it in the eircuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switched in on!y when interference is present.

Phone Reception

In reception of phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switeh on the a.v.c., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal chose to the frequency of a weaker desired station maty take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.e. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When receiving an anm. signal on a frequeney within 5 to 20 ke . from a singlo-side-hand signal it may also be necesstry to switch off the a.v.e. and resort to the use of manual gain control, unless the receiver has exrellent skirt selectivity. No ordinary a.v.c. cireuit can handle the syllabic bursts of energy from the s.s.b. station, but there are special cireuits that will.

A erystal filter will help redure interferenee in phone reception. Although the high selectivity cuts side-bands and reduces the adudio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in code reereption, it is advisable to do all tuning with the filter in the circuit. Variableseleativity filters permit at choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat mote equal to the frequency difference. Such a heterodyne san be reduced by adjustment of the phasing control in the erystal filter.

A tone control often will be of help in relucing the effects of high-pit ched heterodynes, side-band splatter and noise, by cutting off the higher audio frequencies. This, like side-band cutting with high selectivity circuits, reduces naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequeney assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized lyy its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the boat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response ran be recognized by the "tuning rate," or movement of the tuning dial recuired to give a sperified change in beat note. Signals getting into the i.f. via high-frequency oscilator hamonies tume more rapidly (less dial movement) through a given ehange in hat note than do signals received by normal means.

Harmonies of the beat oscillator can be reco ognized by the tuning rate of the heat-oscillator pitch control. I smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate siguals. In poorlyshielded receivers it is often possible to find b, fo. harmonics below 2 Me., but they should be very weak at higher frequencies.

Alignment and Servicing of Superheterodyne Receivers

[^2]meter, its indications will serve. Lacking an S meter, a high-resistance voltmeter or a vacuumtube voltmeter can be conneded across the sed-ond-detector load resistor, if the seromd detector is a diode. Alternatively, if the signal generator
is a modulated type, an a.c. voltmeter can he connected across the primary of the transformer feeding the spaaker, or from the plate of the last audio amplifier through a $0.1-\mu \mathrm{f}$. blocking e:tpacitor to the receiver chassis. Larking an a.c. voltmeter, the audio output can he judged by ear, although this mothod is not as accurate as the others. It the tuming moter is used as an indication, the a.v.e. of the receiver should he turned on, but any other indieation requires that it be turned off. Lacking a test oscillator, a steady signal tuned through the input of the receiver (if the job is one of just touching up the i.f. amplifier) will be suitable. However, with no oscillator and tuning an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a difficult task if the transformers are badly off resonance, as they are apt to be. It would be much better to haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifier tube. 'The trimmer capacitors of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating devier being used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be neecssary to reduce the output of the test owillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the phate eirenit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit foeding the mixer grid may have a very low impedance at the i.f., it may be neressary to boost the test generator ontput or to discomnect the tuned circuit temporarily from the mixer grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, sotting the test oscillator as closely as possible to the erystal frequency. When this is completed, the erystal should be swit ched in and the oscillator frequency varied back and forth over a small range either side of the crystal frequeney to find the exact frequency, as indieated hy a sharp rise in output. Leaving the test oseilator set on the crystal peak, the i.f. trimmors should be realigned for maximum output. The necossary readjustment should be small. The oscillator frequency should be checked frequently to make sure it has not drifted from the crystal peak.

A morlulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaecurate if the audio output is used as the tuning indication. Lacking the a.v.c. tuning meter, the transformers may be conveniently
aligned by ear, using a woak unmodulated signal adjusted to the crystal peak. switeh on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oseillator. One's $100-k c$. standard makes an excellent signal source for "touching up" an i.f. amplitier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include alignment details, and any little special tricks that are peculiar to the receiver will also be described in detail.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your 100 -ke. standard or other known oseillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be conmected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer capacitor in the receiver to give maximum response on the test-oscillator sigmal, then reset the receiver dial to the low-frequency end of the rame. Set the test-oscillator frequency near the frequency indicated by the receiver dial and tune the test oseillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oseillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking capacitor) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the recoiver oscillator. Most commervial receivers provide some means for varying the inductance of the coils or the eapacity of the tracking eapacitor, to promit aligning the receiver tuning with the dial calibration. Set the test oscillator to the frequency indicated by the receiver dial, and then adjust the tracking caparity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, reeheck the high-frequency end of the scale as previously deseribed. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and capacity is secured. In many cases, better over-all tracking will result if frequeneies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the miver trimmer capacitor for maximum hiss or signal. then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be neesesary. If it is necessary to increase the trimmer capacity in any circuit, more inductance is neded; conversely, if less eapacity resonates the circuit. less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation will be small, however, and it will suffice to bring the cireuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performanere in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oseillation in high-frequency amplifier and mixer circuits show's up as squeals or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to e:tuse the a.v.c. system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or dofective by-pass capacitors in cathode, plate and screcn-grid circuits also can cause such oseillation. A metal tube with an ungrounded shell may cause trouble. Improper screen-grid voltage, resulting from a shorted or too-low sereen-grid series resistor, also may be responsible for such instability
Oscillation in the i.f. circuits is independent of high-frequeney tuning, and is indicated by a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits. Inadequate screch or plate by-pass capacitance is a common cause of such oscillation.

Improving the Performance of Receivers

Frequently amateurs unjustly ariticize a rereiver's performance when actually part of the trouble lies with the operator, in his latek of knowledge about the receiver's operation or in his inability to recognize a readily-turable fault. The best cexample of this is at complatint about "lack of selertivity" when the receiver contains an i.f. (erystal filter and the operator hasn't bothered to learn how to use it properly. "Lack of sensitivity" may be nothing more than poor alignment of the r.f. and mixer tuning. The cures for these two complaints are obvious, and the details are treated both in this chapfer ind in the rereiver instruction book.

However, many complaints about selcetivity, sensitivity, and other points are justified. Inexpensive, and most second-hand, receivers cannot be expected to measure up to the performance standards of some of the current and toppriced receivers. Nevertheless, many amateurs overlook the possibility of improving the performance of these "bargains" (they maty or maty not De bargains) by a few simple additions or modifications. From time to time articles in QST' deseribe improvements for specifie receivers, and it may repay the owner of a newlyatequived second-hand reeciver to examine past issues and see if :un applicable atidele was pultlished. The :ummal index in cubh Derember issur is a help in this respere.

Where no applicable article can be foumd, a few general principles can be laid down. If the complant is the inability to separate stations, better i.f. (and oreasionally andio) selertivity is indiented. The subjeet has been treated eartior in this chapter, and several constructional articles follow. The answer is not to be found in fretter bundspread tuming of the dial as is sometimes arromeonsly concluded. However, with the audition of more i.f. selectivity, it moty be
found that the receiver's tuning rate (number of ke. tuned per dial revolution) is too high, and consequently the tuming with good i.f. selectivity beeomes too rritical. If this is the case, a 5 -to-1 reduction planctary dial drive mechanism may be added to make the tuming rate more favorable. These drives are sold by the larger supply houses and can usually lie added to the receiver if as suitable mounting bracket is made from sheot metal. If there is abrady some batkish in the dial mechanism, the addition of the planetary drive will magnify its effeet, so it is neressary to minimize the backlash before attempting to improve the tuning rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Replacing a small tuming knob with a larger one will add to ease of tuning.

In many of the inexpensive receivers the frequency calibration of the dial is not very accurate. The receiver's usefulness for determining bind limits will be greatly improved by the addition of a $100-\mathrm{ke}$. errstal-controlled frequency standard. These units can be built or purchased complete at very reasonable priees, and no amartear station worthy of the name should be without one.

Some recejvers that show a considerable fro(puency drift ats they are warming up can be improved be the simple expedient of furnishing more ventiation, ley propping up the lid or by drilling extra ventilation holes. In many cases the warm-up drift can be cut in half.

Roceivers that show frequeney changes with line-voltage or gain-control variations can be greatly improved by the addition of regulated voltage on the oseillators (high-frequencr and b.i.o.) and the sereen of the mixer tube. There is usually room in any reveiver for the addition of a lla tube of the right mating.

A One-Tube Regenerative Receiver

The reeeiver shown in Figs. 5-24, 5-26, and 5-27 represents close to the minimum requirements of a useful short-wave receiver. Under suitable conditions, it is capable of receiving signals from many foreign countries. It is a good rereiver for the begimner, because it is

Fig. 5-2.1 - Front view of the one-tuhe regenerative receiver and power supply. The control at the upper left is the gemeral-overape tuning, eenter is bandspread, lower left the regeneration control, and the hottom renter the antenta trimmer.
etsy to build and the eomponents are not expensive.

With this receiver it is possible to hear amateur and commercial stations in the 2 - to $20-\mathrm{Me}$, range. This tuning range will enable the buikder to listen to the two low-frequency Novice bands. Also, if one is interested in ohtaining code practiee, WliW, the ARRL, Ha, station, ean be tuned in for its nightly code-pratice sessions.

While the title indicates that the receiver has one tube, actually it uses two tubes in one envelope - envelope maning the glass enclosure. The $6 l^{\circ} 8$ is a triode-pentode, and in this receiver the pentode section is used as a regenerative detector and the triode as an audio amplifier.

Referring to Fig. 5-25, the antenna coil, L_{1}, comples the signal to the detector tuned cirvuit $L_{2} \mathrm{C}_{2} \mathrm{C}_{3}$. Tho cat patitor, (${ }_{2}$, is larger than ('s and is used is the "hambset" capacitor once C_{2} is set for a particular frequency range, C_{3} is used as the "handspread" tuning control. To farcilitate using manufactured eoils, the coil L_{2} is tapped to ohtain a foedback or "tiekler" winding. Rogenoration in the detector is controlled by changing the sereen voltage ohtained at the potentiometer R_{1}. An r.f. filter, using two caparitors and an r.f. choke, is placed in the plate circuit of the pentode detector to reduce r.f. arppearing at the gricl of the triode audio amplifior. Still further attemuation of r.f. at the grid is olbtained through the use of at seribs resistor and at shunt capacitor right at the grid of the audio stage. The :undio coupling choke, L_{33}, is madr from an interstage audio transformer with the two windings comnected in series. A high-inductanee choke could be used here, but the series-conneeted transformer is less expensive.

The headphones are conneeted directly in the plate circuit of the audio stage, and consequently the plate voltage appears at the terminalsyou can get an clectrical shock here if bou aren't careful. Some receivers eliminate this hazard by feeding the plate through an audio choke and

Fig. 5.25-Circuit diagram of the one-tube regencrative receiver and poner supply. See parts list for further information.

Parts List for Regenerative Receiver

$2100-\mu \mu \mathrm{f}$. midget variables (. Itillen 20100) (C_{1}, C_{2}) 1 1.5- μ f. midget variable (Millen 20015) (C_{3}^{\prime}) $1100-\mu \mu \mathrm{f}$, mica or ceramic capacitor $1.000-\mu \mu \mathrm{f}$. mica or ceranic capacitor
$30,001-\mu \mathrm{f}$. disk ceramic capacitors
$10.01-\mu$ f. disk erramic capacitor
10.1- $\mathbf{\mu}$. 20) (0)-volt papher capacitor

I $10-\mu$. 2.5 -volt chertrolytic eapacitor
$216-\mu \mathrm{f}$. 2.0)-volt electrolytic (or dual 16- $\mu \mathrm{f}$.)
$1470-6$ han $1 / 2$-watt carbon resistor
1 (88,000)-olnu 1-watt carbon resistor
10.1-megohm $1 / 2$-watt carion resistor
10.5 -megohm $1 / 2$-watt carbon resistor

1 1.0 -merohm $1 / 2$-watt carbon resistor
I 50,000 -0han botentionster
2 1-mb, r.f. whokes (National R-50)
S0-, 4()-, and 20-meter Barker de Williamson Baby Inductors MEL (L_{1}, L_{2})
1 interstage transformer (stancor A-53-C) ($L, 3$)
2 (0-tenry 40-ma. filter chokes (LTPC R-55) (L_{4}, L_{5})
1 [nower transformer, $12(0$-volt seoondary at 50 ma.;
0.3 wolt at I amp, (Derit I'3045 or P'3046)

1 dry roetifier, 130 volts, "Oma. (Federal 1159) ($C R_{1}$)
1 ahmamma chassis, $7^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$
1 aluminum panel, $7^{\prime \prime} \times 6^{\prime \prime}$
1 [iere of aluminum for power-supply chassis, $3^{\prime \prime}$ by [0 " (the pranel and this piece are obtainable at any shect-metal shon)
1 !-pin miniature tube socket, bakelite or mica filled
1 S-bin sorket for coils L_{1} and L_{2}, bakelite orisolantite
4 3-terminal tie points
7 3/x" rubber grommets
1 Fanel bearing assembly, over-all length $6^{\prime \prime}$
1 insulated shaft coupler
1 terminal strin, 6 turminals
2 bin jacks, insulated tyrue
Miscellancous (i-32 machine screws and nuts
6 ground lugs
2.5 foet of hook-ap wire

4 knobs for controls
1 fl'S tulbe
1 lengtly of spathetti wire covering
Line cord and plug
(oupling to the headphones through a capacitor, but in the interest of saving a few dollars this protertive feature was not induded. Be sure to use "high-impedance" headphones with this reseiver - the low-impedane headphones that have ben atvatiable in surplus will not work well in this particular mivent.

The recoiver is built on a $7 \times 7 \times$ 2 -inch ahminum rhassis, with the power supply mounted on a separato dhassis. In ordor to minimize ham pirkup and vibration from the power transformer, it is not advisible to mount the power
lig. 5-26- Rear view of recciver and poncer supply showing the phasernent of parts. The variable capacitor on the left is for hand. spread and the one on the right for general roverage. The leads from the two caparitors are runt through rublier grommets to avoid shorting to the chamsis top.
supply on the same chassis as the recociver. An ahmimm chassis is easy to work; a $1 / 8-$ and $1 / 4-$ inch drill, phas a small rat tail filo amol hark-saw blate are all the tools nereded for the job, att hough two soeket punches will save some work.

The first step is to mount the coil and tulse sonkets. They are spared 2 inches from the sides at the conter of the chassis. Ground lugs should be momented under the muts that hold the tube sorkot and also under the war mut holding the coil sorket. Next, the panel holes are drilled.
looking at ligy, $\tilde{0}-2$ f, fromt, the knob at the lower left is the regemeration control, lowere enter is the antemmatrimmer, and the headphone tips are at the lower right. The knob at the upper loft is for the general-eoveruge rajaritor, and the one at the right the band speread tuming. The dial shown in the photograph is the National trpe \mathfrak{K}.

After the holes are drilled in the pathed, it is held in phare against the chassis abl the four holes atong the bottom are used as at temo plate for the datsis holes. I small right-angle bracket to hold the antemnt-timmer atpacitor is made from a piecee of ahminmm. The hole in the bracket should be large cmough to elrar the rotor of the capacitor, sine looth the roter and stator are insulated from the chassis. The trimmer is monented to the bracket by serews and the insulated muts on the raparitor frame. The bracket, tio points, and audio choke L_{3} call now be monnted in plater.

The I wo caparitors, C_{2} and ($: 3$, should then be installed on the pand. When the potentionteter R_{1} and the pin jacks are mounted in place, they will hold the panel to the rhassis. Bo sure to insulate the pin jacks from the pand and chassis With fiber washers. The through-shatt bushing is then measured and cut to size, making allowabe for the insulated coupher.

If this is your first construction project, see the chapter on Construction l'ractions for tips on wiring and soldering before starting this joib.

It is important that a separate ground lead be connected to the rotors of Ceand C^{\prime} ? and the lead brought below the chassis to a common grounding

point at the tuln sorket. This will help make the receiver stable and reduce hand capoucty.
Thare are five leads coming from the interstage transformer: red, blue, back, and two greon. The red lead and green lead that are directly opposite each other are commeded togethore. After the loads are soldered and taped, the and of the black learl is also taped. These leats are then rolled up and tucked in the comer of the chassis. The rematining bue and green leads then berome those used for wiring the seriesconnected transformer into the eireuit. One is connered to the junetion of the $0.01-\mu$. disk capacitor and the 1-mh. r.f. choke and the other lead is comected to the $B+$ voltage terminal.

The Barker \& Williamson coils are mounted on five-prong plugs, although only four of the contacts atre used. The link mounted at one end of the coil is L_{1} and the coil proper is L_{2}. To make the tiokler tap, a short piere of hook-up wire approximately's inches long is soldered to the fifth prong on the plug. The piece of wire is then run through the middle turns of the eoil and soldered to the tap point. For the 80-meter coil, the tap is comerted to the 8 th turn in from the link end. To get the tap wire through the middle turns of the coil, it will be neerssary to bend two or three turns of the eoil in towards the eronter of the eoil. This will provide sufficient seatancer lor the tap) lead. It is also neressary to bend in the sth turn to make the tap remmertion. Be sure that none of the bent turns touches adjacent turns.

For maximum bandspread on 40 meters, it is neressary to remove nine turns from the fometer eoil. The turns are taken from the end opposite the link end of the coil. The tickler tap is made on the th there end from the link end.

To bandspreat the 20-moter coil, two turns are removed from the end opposito the link end. The tat, is plaved on the th turn from the link cud. In all three coils, the tap lead should be insulated where it passes through the eoil turns.

The power-supply components an now be wired. There are two important points that begimers should keep in mind when wiring the
supply. The first is that the electrolytic capacilors should be wired with the leads marked with a minus sign, or negative, comereded to the chassis. The plus sign, or positive, comnerts to the choke loads. Likewise, the seldenium rectifier is marked with a plus sign, and this lead is comereted to the choke lead. Four leads are brought out from the power supply to conmert to the rereciver: the two heater leads, the $13+$ lead, and the 13 - lead.

When the power supply is wired and the leads connerted to the rereiver, the unit is realy to test.

If you already have an antoma strung up, eonnect the end of it to Terminal 2 - the one commerted to the rotor of C_{1}. If you don't have and antema, any wirr, 20 to 40 fert long or longer, "an be strmy up. An outside antemna will perform better than one indoors, atthough you'll hear many signals with just a wire in the room.
Commert your headphones to the tip jacks and plug in the 80 -moter coil. llug the power eond into the 115 -volt a.e. line and wateh the 6U8 to see if the heater lights up. If it donsn't, turn off the power and cherk wiring from the power supply to the hater pins on the ©t'8 sorket.
The recoriver will only take a minute to warm up. Turn the regeneration control and, at one point, you shoud hear a change in the ehatacteristic of the noise. This is the point where the recoiver starts to weillate. Tune the generalmoverage (apacitor slowly and you should hear signals. Leave the capacitor set at or near one of the signals and then tume the band-spratel catparitor. This eapabitor gives a slower thang rate, making it much casior to the in sigmats.
With a signal tumed in, rotate the antemnatrimmer control and the signal should get louder at one point. If it doesn't, change the antermat to torminal number 1 and short terminals 2 and 3 together with a short piere of wire. Try the antenna trimmer again, and you should find that the signal will peak up. The regeneration eontrol sotting may have to be changed to maintain oscillation.
Inocating the amateur Novide bands is simple. Tune the reeciver until you find an amatear phone station. The Novice band on both 80 and 40 meters is immerliately below the phone bands. To tume lower in frequeney than the phone bands, the band-spread capmeitor is turned so that the plates mesh more.

Fig. 5-27-Buttom view of the two units. It the lower left in the receiser is the intorstage transformer Las 'lon the ripht of $L a$ is the antenna-trimmer rapacitor momnted on a right-angle thracket. Immediately in front of the lorachet is the insulated shaft coupler whish connect: the throngh-shaft bushing to the antenna trimmer.
'The seleninm rectifier it the power supply is visible betwern the two electrolytic capacitors.

A Two-Band Three-Tube Superheterodyne

The three-tube supertheteroctye shown in Figs. 5-28. $5-30$ and 5 --:" might be called a " minimum" recejver. since if probably represents the minimum in recoiving equipment that will give a good arcount of itself under present bind eonditions. By using an i.f. of 1700 ke . it is possible to use :th incillator that tumes 5.2 to 5.7 Me. and provides receiver covcrage of the sol and fo-meter hands without switching. To listen on higher fremumeis, a erystalcontrolled comvertor can be used ahead of the sot, working into it at 80 meters.

Raferring to the circuit in Fig. $5-29$. it "an be sern that adjustable input coupling is provided (varialbe rompling between L_{1} and Loe). While the signal level ran be redued by detuning the 14(1)- $\mu \mu$). ANT rapaciter, (1 , the adjustable compling is casy to consisuct athe permits reducing the input lavel without detuming. The high-feretrency oseillator output is compled to the cathode of the pentome mixer. to provide a low-hnose mixer and a minimum of "panling." Changing the setting of the ANT ("bracitor deres not pull the oscillator frequency appreriably unless the mixer input circuit is thmed rlose to the oscillator frequency,

Fig. 5.28 - This two-hand suproheterodyne receiver uses an autodyne seromd detectur and alluztable antema roupling, The dial pointer and black trim strips are made of hack scoteh 'J'ape. 'The control marked "Feedbach" is the regeneration contral.

 All caparitances in $\mu \mu f$. unless otherwise noted. Ill fixed caparitors except two aeross $L_{\text {fo }}$ me across $L_{\text {a }}$ and the electrolytive (pelarity marked) are ceramic. lixed capacitors arrows L_{4} and L_{6} are silver mica.
C_{1} - $1.10-\mu \mu \mathrm{f}$. midert variable (H ammarlund $\mathrm{HF}-140$). (2) - $1 . \overline{3}-\mu \mu \mathrm{f}$. midget variable (H ammarlum 111-15).
R_{1} - INOMO- ohm - watt wire-wound potentiometer (Cl arostat A-13-10K).
$L_{1}, 1,2, L_{-3}, L_{4}-B \mathbb{B} \mathbb{W} \mathrm{~N}_{\mathrm{o}}, 3016$ Miniductor, 1 -inech diam., 3: turns per inch, No. Iㅡㄴ wire.
1.1 - 12 turns.
$12-2$ (turns.
$\mathrm{L}_{3}-8$ turns.

that have become popular reerently. They have the twin virtues of low cost and guite adequate Q for this jol). The regemerative detector uses the Colpitts arenit to eliminato the need for
L_{4} - 21 turns, separated from L_{3} by one (removed)
Adjarcent turns on I_{3} and I_{4} qo to $0.001 \mu \mathrm{f}$, and ehassis resprectively.
L.5. L_{6} - Graylurne Vari-Loopstick. (80 ${ }_{\mu} \mathrm{h}$., approx.) S_{1} - Mounted on $5(0) \mathrm{K}$ whme control.
l'ower transformer is Knight (1 lified Radio) 62.C.0.33, filter choke is K night $6 \mathbf{2}-\mathbf{1}-13$, filter eapactor is Mallory 2 N -537.
tapping the eoil or adding a tiekler winding. An electrolytic capacitor across the regeneration control eliminates the noise produced by varying the wire-wound potentiometer. With any significant current flowing, a wire-wound potentiometer usually has longer life than does the more common composition control.

The two-stage audio amplifier is conventional, exeept that a cathode by-pass capacitor is omitted from the second stage bectuse there is already sufficient gain in the amplifier. Switeh S_{1} is mounted on the audio volume control.

An $8 \times 12 \times 3$-inch aluminum chassis phas a 7×13-inch panel provides enough metal for the receiver, with the single exception of the scrap of aluminum needed for the bracket that supports the $15-\mu \mu$ f. tming capacitor, ('s. The panel is held to the chassis by the two shaft harings and the regeneration-control potentiometer, as ran be seen in lig. $5-31$. It will pay off to take a little care in the loration of the holes for the National type \mathfrak{k} dial, in the interests of ab smooth-tuning peceiver. Build the tuning-tapacitor bracket first, then line up the capacitor shaft argainst the panel to mark the dial bushing hole, and finally loeate the drive bushing hole Replace the small knoh that comes with the TYo K dial with a larger one and use atoople of drops of oil to labricate the drive bushing.

Practically everything else in the rereiver can be lowated from the photographs. The adjustable antenna-conpling roil is momed on the and of a length of $1 / 4$-inch diameter lucite rod by entting the end of the rod at to degrees and cemonting a small scrap of polystyrone sheet to this face. The serap is then filed to fit inside the eoil and serured with a few drops of Duco ement. Four small holes are drilled through the rod: two for the eoil ends (which also serve as tie points for the flexible antematand ground leads), one through which the antenna and ground leads are threaded and cemented, and the fourth through which a piece of No. 20 wire is pushed and bent baek around the rod. This last
wire serves as a shoulder that bears against a fiber (or metal) washer that in turn hears against a large rubber grommet with a $1 / 4-\mathrm{inch}$ hole, as shown in Fig. $5-32$. The other side of the grommet has another washer between it and the panel bushing. The rod is pushed through the bushing, two more washers are added, and then the knobs is put on. By pushing the rod out through the pand as the knob is tightened, the rubber grommet is left in compression, and it serves as at simple frietion lock for the control.

The two coils L_{5} and L_{6} are momented on 1-inch separated centers. The "phomes" jark is insulated from the chassis by fiber washers. Plate voltage will apmar at this point, so always use an insulated phone plug. Both C_{2} and C_{1} (eapacitors are insulated from the chassis - the former by mounting it with short bushings on the mounting bracket, and the latter by fastening it to the chassis with a machine serew through small extruded fiber washers. Clearance holes for leads from both stators and rotors of these caparitors are provided, as can be sem in Figs. $5-30$ and $5-31$.

To minimize hum, shield the loads to and from the volume control. These pass through a grommet in the chassis and make conneetion to the chassis only at the $12 A N 7$ chassis, Also shicld the lead from the arm of the regeneration eontrol.

Assuming that the wiring is correret, that the tube heaters light when you turn on the set, and that the power supply delivers 250 to 300 volts, the first step is to chere the detertor. This is conveniently done with the GL8 out of its socket - then if something is wrong in the "front end" it won't confuse the deteetor checking. With headphones plugged in and the reeceiver (less 6U8) warmed up, advancing the volume control should give a hissing somed in the headphones. Advaneing the regenemation control (in(reasing the voltage on the (iblet sereen) you should find a point where the hiss inereases appreciably and perhaps a very slight hum is heard. This is the point where the detector "oscillates" - below this point you
 won't get a beat note with c.w. signals, and beyond it you will. The detector works - the next step is to get it on 17 ouke. (If iu doosn't work,

Fig. 5.30 - The miniature tubes, from left to risht, are (1)8, 6B196 (in shield) and 12AX. 'The lefthand variable caparitor tunes the mixer input kircuit, and the small one in the cernter thmes the high-freturney oscillator. Note the phono-jaitk antenna terminal and headphone output jack on the wall of the chasis. The tuning eapacitor at rear center is mounted on an aluminum brachet.

Fig. 5-3I - The mixer input and high-frequency aspillator coils are monnted on tie points, as shown heres. The: anteana coil, L_{1}, is monnted on the enal of a piece of lucite rod, at shown here and in lify. 5-32. The leads to it are wrapped several times around the rot, lo proside a"pig tail" conmection.
(hork your wiring and the voltages at the (bibl); and 12.1×2 pins.) If yon com beg, borrow or steal a test generator, put the detector on 17 (k) ke, by adjust-
 nat is head. The test signal need only
be loosely coupled to L_{6} - at wire placed a foot from the coil and commeted to the test generator should suflice. lacking the test gencrator, you may be able to use a browdeast reecerver by toming it to around 1245 ke . If the reeceiver hats a 455 -ke. i.f., the asoillator will tre close to 1700 ke ., and if the 13C set is placed within a few feet of the recedver under test, there will be conough ratdiation from the set to act as the test signal. I Bon't go

Fip. $5-32-1$ - Ctails of the adjustable antenna coupling coil. l'art of the coil has leen cut away to show the sulport.
by the rallibration on the BC receriver; make a new one from known stations.

When the autorlyne detector is working satisfactorily and you have acguainted vourself a little with its operation, plug in the gi's and het it warm up. Trim L_{5} until you find a point where it pulls the detector out of osidilation, and detume it slightly until regeneration starts about 10 or 15 degreos farther along the regenemation control, R_{1}. than it dis! whell L_{5} was tuned woll off the frempencs. (Cherk again to make sure that you are still on or close to 1700 ke .

Now eonned an antemna (any wire 20 foet long or more) and swing the Axre caparitor, ('s, across its range. The recoiver noise should incrase at two points - one near minimum on the rapacitor (40 moters) and one around $3 / 4$ moshed (80 meters). The $3-30-\mu \mu$ f. compression oseillator trimmer should be set at about $1 / 2$ turn back from its tightest setting. leaving the axt (alpacitor on 80 or 40 meters, tune atround with the TCNE capacitor, ('a, until fon locate some amateme signals. If you lack a frequencer standard or the ability to borrow one, you have no altermative but to identily the bands by the limits of phone or cow, sigmals in tha various subbands.

In any event, once you have found the signals, you can move the bands on the tuxe scale by changing the setting of the mica compression trimmer. However, unless the i.f. is exactly on 1700 ke., the 7.0 - and 3.6 - Xle points, 7.1 and 3.7 Me., ete., won't roincide ats they do on the homemade seale shown in Fig. $5-28$. Ohsorving the error, however, you can bring the i.f. to 17(0) ke easily, The homemade scale is simply a sheet of white patper held down with blarek Seoteh Tape, with a sliver of tape on the dial to serve as a pointer. The pointer laps over the "(0)" end. and the 0-100 scale of the dial (an still be used for logeging the reforing it to the upper odge of the lower back strip on the right-hand side.

For the reception of ce.w. signals, the regeneration control is alvaned far enough for the detertor to oseillate, as indieatod hy the sudden increase in hiss. It may be motied that on strong signals it is impossiblo to tume in at sighal at a low beat note (200) to 300 erades). This indieates that the signal is too strong and is "pulling" or "blocking" the detector. 'To overeome this, increase the regencration control or reduce the antema coupling. After you have used the rereiver for a while, you will get used to the "feed" of it and you will find the settings that work best for various (Qla 1 l levels.

When reeriving a.m. phone, the regeneration control is matintained just below the osedilation point. This is the most sensitive point for phone reception, since the gain of the detertor dererases as you back off the regeneration wontrol still more. The selectivity of the receiver for phone reception is not as great as can be expered from a small superhetrodyne using soveral tuned direuits in a $455-\mathrm{k}$ e, i.f. amplifier. However, you can make up a lot of this selectivity ber derreasing the antenna coupling and rumning the detector just under the oseillation point. A strong signal decreases the selectivity of the regenerative detector, hence the need for reducing the signal be decreasing the antema compling. A.s.b, phone is received the same as a cow, signal, he advameing the regeneration control past the oscillation point and tuning carefully about the sigmal until it beromes intelligible. (Jverload is again the enemy here, so rum the antenna coupling at a value consistent with good signal/noise ratio.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodylue shown in Figs.
 tuning the :3,5- and $\overline{\mathrm{T}}$-Mre amateur hands. It is not difficult to build, and it has stability and soleretivity not surpassed by factory-built receivers erosting much more.
As can be seren in Fig. 5 -3t, the circuit diturem, the rearever uses intermediate fredueneles of 1700 and 100 kr . The $1700-\mathrm{ke}$, first i.f. permits using an oseilator that tumes only one mange for the two bathes. Tuning the osciliator from 5.2 to $\overline{5} . \overline{7}$ Me. gives an i.f. of 1700 ke for the 3.in- to $\ddagger .0-\mathrm{Me}$. range and the stme i.f. for the (i.9- to $\overline{7} .4-\mathrm{Mc}$. range. The oscillator components ate soldered in plare (no switehing or plug-in coils) and the dial calibration is mate one and am then be redied upon. To change bands, it is only neressary to swing the input eapacitor. C_{1}, the the 80 - or 40 nutur hamd. Tha $1700-\mathrm{ke}$. i.f. climinates any palling on the osseilator, in cither range.

With no r.f. stage, the receivers signal-tonowe ration is dotermined by the mixer. The 6 ted is the best tube available for the purpose. To minimize spurions responses, two thed circuits atre used in the input hotweon antennat and converter grid. The stator plates of the dual cat patitor, ('1. are shielded from ("ah other, as are the two coils: L_{2} and $L_{3,3}$, and the eongling loe weren circuits is obtatined ley the 0.001- $\mu \mathrm{f}$. calpatcitor.

The $1700-\mathrm{ke}$. signal from the first eonvertar is romberted in the (ilis serond anverter to 100 kc .
 this point permits using an r.f. gais control that hats no effert on the frepuency. No frequeney chatuge with gatiecontrol setting is a desitathe (hatrateristic of any good reediver, so the 1600ke. cerstal at s2.75 is not a lusury. While the lion-ke oscillator could be made self-controlled,
it would be almost certain to "pull" with gaincont rol changes.

Instend of a commercial unit, a homomade 1700)-k' , i.f. transformer is used at T_{1}. It is made from two "V:uri Joopsticks" (high-(Q broadcast antemats) shunted bev $10(0)-\mu \mu$, fixed cabacitors. This works woll and is cheaper than any eom-mercially-available unit.

The 100 -ke, output from the 6 K 8 is filtered throngh three tumed riments and fereds a triode
 generative, but the regeneration is fixed and doesn't have to be bothered with bey the operator unlews he changes tubers and the new tube hate eomsiderably different chatrateristios. The regemeration in the booke. detertor gives the reediver its single-signal (\cdot w. rereption charateristic, since there arent emough tund eireuits to give it ot herwise. The bito uses the other triode in the dis, 7 envelopr, and straty compling is used for the b, foo. injoction, No pamel eontrol of b.l.o. piteh is available, beratuse the solectivity is not adjustable and the variatherpiteh feature is not essential.

Up to this point the getin of the rereiver is not too high, and two stanes of andio amplification are usod, Omitting the cathode bu゙-pass capacifors still leaves more than enough atadio for any patir of high-impedame beadphones.

By kerping the signal bevel low up to and through the selective stages, there is aminimum opportunity for overlowding and cross-modalattion, and the gain noed be kept only high enongh to prevent degrading the signal-to-noise ratio. Further, a regemerative stage hats a tomdency to "flatten out" with st rong signals, so the regenerative detector is somewhat proterened hy holding the gatin down. However, the receriver has quite aderquate sensitivity - in any normal location

Fig. 5-3.3-"the ine-tulie damble-donversion sumphetrembine tunes the $3 . \bar{s}$. and Mr. bands without bathe witahing, 'The controls on the left are abdies solume (upher) amd lif.on, switelh, and those on the riafit are attitana tusimg (apper) and i,f. gain.

Fig. 5.34- Wiring diagram of the five-tube receiver.

All capacitances in $\mu \mu f$. unless apecified otherwise. All resistors $1 / 2$ watt unless spereified otherwise.
Cu_{3} - 140. $\mu \mu \mathrm{f}$ - per-faction dual variable (IVammarlund MCD)-140-M).
$\mathrm{C}_{2}-35 \cdot \mu \mu$ f. midget variahle (IIammarlund IIF-3.5)

R_{5} - 1000-ohm wire-wound potentionster (Mallory NMI').
$\mathrm{L}_{1}-8$ turns No. 30 d.c.e. dowe wound over gromad end of I_{2}.
$\mathrm{I}_{2}, \mathrm{~L}_{3}-35$ turns No. 30 d.c.e. close-wound on National XR. 50 slugtuncd form.
$\mathrm{L}_{4}-23$ turns No. 24 hare spacc-wound 32 turns per inch, $5 / 8$-inch
diam. Tickler is $1 \frac{3}{4}$ turns spaced 1 turn from L_{4}. Sce text. (Made from IS \& $\mid 13008$ Minidnetor.)
L_{5} - $20 \cdot \mathrm{mh}$. (approx.) slug-tuned eoil ($\mathrm{KC} \backslash 205 \mathrm{R1}$).
$\mathrm{I}_{6}-20$ henry, 15 ma. ehohe (staneor (:1515).
'I' - ITOI.ke, i.f. transformer (made from two Vari Loopsticks shonted by $100 . \mu \mu$ f. mica capacitors. see text).
$\mathrm{T}_{2}, \mathrm{I}_{3}$ - 100-kc. transformers made from ' I V components (IRCA -35.6 or Merit 'I'V.l(o2). See text.
T4 - Small 3:1 audio transformer (Stancor A-63-C).

The lo00-ke, crystal is a Peterson Radio type Z.-2.

Fig. 5-35 - A tor view of the fise-tule superferterodyne shows low an aluminum and a steel rhasziw are combined for greater weight and atrenth. 'The o6.4 owrillator and 6.10 .7 mixer are at the $\mathrm{l}_{\mathrm{e}} \mathrm{ft}$, and the two (bN is are at live pxtreme right. Note the shield tretween the stator seetions of the capacitor on the left.
and with a fair to good antenna, any signal that can be hared hy a large receiver rat he heard hy this one, except in rate cases where the large receiver's suphrior sellectivity makes the differenore.

Construction

The construetion of the recorver is uneonventional in that two chassis aro used, as shown in ligs. 5-3:3 and $\overline{0}-3 \overline{3}$, and the pand is momeded away from the chassis. All of the rectridal romponents are mounted on the aluminum $7 \times 11 \times$ 2 -inch chassis, and this sitson an inverted 7×11 $\times 2$-inch sted chassis that sorves as a base and bottom cover. The loot tom chassis has rubber fect (grommets) at its comers that prevent its slipping on the table. The 8×12-iwh panel is supported away from the aluminum chassis on $1 / 2$-inch-long brass rollars, serured by suitable washers and 6 - 32 serews, as shown in Jig. 5 -36. The panel is supported by two such collars at each end of the chassis and by two more that make up to two of the monnting serews of the National ACN dial at the renter. The two renter collars atd to the strength of the assembly he furnishing additional support for the panel and dial. and they should not be omiterd.

The alumimum chassis is bolted to the steel chassis hy two $12 / 4$-inch longths of $1 / 8$-inch diameter brass rod, threaded $i-32$ at each end. These rods pass through holes in the top and lip of cach chassis. The only holes that are reduired in the steol chatsis are those for the two tie rods, the four holes for the rubber feet, and a 11 -inch diameter hole to clear the headphone jack.

In the oscillator circuit, the $: 3 \overline{\mathrm{j}}-\mu \mu \mathrm{f}$. tuning caparitor, ''2, is supported by a small aluminums bracket. The correct loeation of the eapacitor

The $100-\mu \mu$ f. trimmer, ('3, is motunted under the chassis with its shaft extending throngh to the top, so that the capacito is adjustable from above the ehassis. Neither ('z nor (3 is gromathed to the chaseis through its momnting - leads from the rotors are grouncled to the chassis at one point near the bill't tulse socket. The oscillator coil, L_{4}, is mounted liy its leads on a multiple tie point.

The shield between the input coils, L_{2} and L_{3}, is made of thin aluminum. It has a motch in the edge that goes against the chassis side, to clear the antenna-roil leats, and it has a hole through it for the lead bet ween the bottoms of L_{2} and L_{2}. The dual raparitor, (Cy is fastened to the whasis by a single 6-32 screw, and the head of this serew has a copper shield soldered to it for minimizing eoupling between ('iA and Cins. The shiold is easily cut out from ropper flashing and soldered to the screw head. The rotor assombly of ('1 must be removed to pht the shimblii julace, but this is just a matter of loosening four screws. I On't touch the statom plates. The sarew with the shiold on it, which holds C_{1} to the chassis, also holds the eoil shied in place underneath the chassis.

The 1700 -ke, i.f, transformer is mate by monnting the two "Loopstieks" 1-ineh tupart on the ehassis, as shown in Figs. $5-3: 3$ and $5-35$. The $1(0)-\mu \mu$ f. eapacitors are mounted on the eroils.

The loo-ke. eireuits use a TV eomponent, a spectial Ilorizontal ()scillator coil. As purchased, they have the soldering lugs and tuning sorew out of the top of the cam, but they are easily reversed by unerimping the can and reversing the assembly. Before reassembly, however, there are a few things to be done. The large coil is used for the 100 -ke. tuned circuit by connecting a 100 -
$\mu \mu$. mica capacitor botwern Pins A and F and lifting the center-tap, from Pin C. Don't break the ronter-tap - the easiest way is to scrape the two wires finst to remove the insulation, flow it drop of solder on the seraped portion, and then eut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tiekler in T_{3}. The primary in T_{2} an be tuned from the top, because there is also an iron shug in this smatler coil.

In wiring the set, use tie points liberally so that no componente will he floppy. The only shiedded wires are the one ruming from the volume control to l'in 1 of the audio amplifier and the leads from T_{3} to Pins 4 and 5 of the detertor. The shidels are grounded to the whassis at the ends and any other conveniont points.

The wedlator coil, L_{d}, is made from 13 d ${ }^{W}$ Miniductor. To soparate the two coils of L_{4}, push the 3 ed or the turn from one end of the piece of Miniductor through toward the renter of the coil. Snips this wire with a pair of cutters suad push the two ends back out. Fach oud is then perded around for $1 / 2$ turn. The two coils are adjusted to the right number of turns by working in from the outside ends.

The rotor of C_{1} is rommerted undermath the chassis to the $0.001-\mu \mathrm{f}$. coupling apacitor by rumning a wire from the front support of the rotor through a 1 -inch clearance hole in the whassis. The $0.001-\mu$ f. (outh ling capacitor and L_{2} and L_{3} are grounded to the lug under L_{2}.

Adjustment

There are two types of adjustment that must be made to get the reeciver working: adjusting the eircuits to the proper frequencies and adjusting the oscillators and the regenerative detedor to the proper amplitudes. To this latter end, leave the cathode end of R_{1} disconmected in the original wiring, and lightly solder (so that it cath be changed latere) the lead from lin 5 of the detector to Torminal (' of T'3. Resistors Rea and Ramay require changing, so don't solder them too well at first.

Connet a power supply to the recejver and see that the tubes light and that the power-supply voltages are approximately correct. The 250 volts can be anything 25 volts either side of 250 , and the 10 volts, coming from a VR tube, witl be nothing to worry about if the VR tube lights.

Next eonned a low-range milliammeter between h_{1} and cathode (+ lead to cathode) and apply power again. The grid curent should read ahout 0.05 mat. ($50 \mu \mathrm{at}$), If it reads muth more than this, try a slightly larger resistor at R, or a smatler one if the grid current is too low. Make these adjustments with the rotor arm of the r.f. gain control at the grounded end.

Next where the oscillation of the ef't highfrequency oscillator. To do this, comert a 0-10 voltmeter ateross the fotohom resistor in the plate eircuit of the $6 \mathrm{C} \cdot \mathrm{t}(+$ terminal to

+105 side, - terminal to the $0.001-\mu$ f. mpacitor). Ohsorve the voltage reading and then touch your finger to the stator of C2 or C_{3}. If the oscillator is working, the voltmeter reading will increase. If you get no change, it means the oscillator isnt working. With both coils of L_{4} wound in the same direction (as they will be

3650 ke., you know that the first $100-\mathrm{kr}$. harmonic you hear on the high-frequeney side will be 3 Boo ke., and the first one on the low side will be 3600 ke. The second harmonie of the $3650-\mathrm{ke}$. signal will furnish a check point at $7: 300 \mathrm{ke}$. ($2 \times 36 \mathrm{mo}$), so swinging C_{1} to about $1 / 3$ meshed (where it will peak the $7-\mathrm{Mc}$. signals) will allow you to locate

Fig. 5-37-Suggested eirenit diagram for the receiser power supply. T's - Stancor [PM - 8.107 or equivalent. $S_{1}-$ S.p.s.t. toggle switel.
if Miniductor is used), the stator of the tuning eapacitor should be comneded to the outer end of the larger coil, and lin 5 of the (jC 4 should be commected to the outside turn of the smatler coil.

If you can borrow a serviceman's test oscilator that will give a modulated signal at 1700 ke ., this signal com be introduced at the grid of the (6)8 and the 100-ke, i.f. cireuits can be peaked (b,fo. turned off), listening in the houdphones for maximum response. 'The $1700-\mathrm{kr}$. signal can then be transferred to the grid of the didc7 and the slugs praked on T_{1}. Lacking the signal gencrator, the altemative is to provide a modulated signal in the 80 - or 10 -metter hand and rouple it to the stator of Cins. If the signal is from a erystal
 ning from an untiltered power supply to furnish the modulation. set the tuning dial vertical. If the signal is at 3500 ke ., se the tuming capacitor C_{2} at almost full caparity. Rock ('3 slowly until the signal is heard. Them peak the 100 -ke transformers T_{2} and T, reducing the signal input as neerssary to avoid overloading. Next turn on the b.f.o. and adjust the slug in L_{5} until a beat note is heard. 'Thern peak the slugs in T1.

With the initial tuming of the $100-\mathrm{ke}$, chamel dow, the slugs of L_{2} and L_{3} can be adjusted for maximum signal, with no antemna connerted. Set
 and adjust the iron slugs for maximum in the headphones. If a v.f.o. or erystal oscillator is furnishing the sigmal, there will probably tre conough pick-up without any apparent coupling, lout at short (i-ineh wire combereded to the antenna terminal may be refuired to pick up the output from a low-powered signal sourere.

It is not likely that the 100 -ke. cirenits will be tumed to the exart frequemey that makes the calibrations coincile on 80 and 40 meters. While this isn't neressary, of course, it does make the dial look elenther. To bring the calibrations into lime, beg or borrow a frefueney stamdam that will give signals at 100-ke, intervals. First locate the 4.0- and $7.0-\mathrm{M}$ (e points on the rereiver dial, by reforring the harmonies from the $100-\mathrm{ke}$. standerd to the original signal you used for aligmment. If, for example, the 80 -meter signal you used was at
the 7-Mc. points. Thus you will have 100 -ke. intervals on the dial from 3.5 to -4.0 Mc . and from 6.9 to 7.4 Mr , but not necessarily coinciding. To make them coineide, some slight retuning of the 100-ke, transformers is required. If, for ceample, the $7.0-\mathrm{Me}$. point oceurs to the right of the 3.6 b Mc. point, the $100-\mathrm{ke}$, amplifier is tuned low, and the slugs should be turned out slightly. A few trials will bring the circuits into place.

Now check the regeneration of the detertor by eonnereting the lead from Pin 5 of the detector to D on T'3. If a steady beat is heard, indicating that the detector is oscillating, tume both rircuits of T_{2} and see if they will kill the oseillation. Their artion is to load the regenerative detertor to where it won't oscillate - if the action persists, try a $47(0)$-ohm resistor at R_{3} as a last resort. These eireuits should be peaked on a modulated signal, with the b.f.o. turned off.

After the detector has been made regenerative, the calibration ean again be chereked as in a preceding paragraph, and any minor changes in tuning mate as are found necessary. Onee the 100-ke. circuits have been aligned they ean be teft alome, and if the 3.5- and 4,0 - λ le, points don't eome where vou want them on the tuning dial, a slight adjustment of C_{3} will correet it.

Conneet a $1 \nmid 0-\mu \mu \mathrm{f}$. varialle in sories between antenna and the antenna post. On 80 meters,
 of L_{2}, If it tunes fairly sharp, the antenna coupling is not too tight on that hatad. swing (es out unt il you are listoming on 40 (10 a signal) and again roek the slug on L_{2}. If it tumes broad, reduce the (alparity of the $1.40-\mu \mu$ f antenna caparitor until L_{2} shows a definite peak. Note the settings of the capacitor for the two bands.

The input capacitor, (1 , will tune sharply on either band, and it should always be peaked when listening to a woak signal. It can be detuned slightly when reeriving abnormally loud signals.

The power-supply requirements for the reeriver are slight: ahout 15 ma at 250 volts and 25 mat. at 105. A 60 -ma. power supply will take care of this and the extra 10-12 mat for a Vid-10:. A circuit diagram with suggested values is shown in Fig. 5-37.

A Selective Converter for 80 and 40 Meters

Miny inexpensive "eommanic"tions" receivers are lacking in seleetivity and bandspread. The 80 - and $\mathbf{1 0}$-meter pertormatmee of such a receriver can be improved ronsiderably by using abead of it the converter shown in figs. $\overline{5}-38$ and $5-40$. This eonverter is not intended to be used ahead of at brotedeast roceiver except for phome reception, beratuse the BC set has no b.f.o. or mamual

 to 1700 kr ., this contrrier will add tuning ease and selectisity on the 80-amil No-meter lamets. 'The inpme eapacitor is the dual section mit at the unper left-hamd corner. 'I'lue crystal and the tuning slug for L fi are near the center at the foreground eolge.
grate eompol, and both of these features are neressary for gool ew. reception. The comberter math be built for less than $\mathbf{\$ 2 0}$, and that eost catn be cut apprexiably if the power can be "torrowed" from another soneres.

The converter uses the tuning principle emploved in the two-hand superheterodyes described earlier in this chapter. A double-tumed in-
put cireuit with large capacitors covers both 80 and 40 meters without switching, :nd the osedilater tumes from 5.2 to 5.7 Me . Consequently with an i.f. of 1700 ke . the tuning riange of the converter is 3.5 to 4.0 Me, and 6.9 to 7.4 Ne. Which band is being heard will depend upon the setting of the input cirruit thning (C_{1} in figs. D-36), The converter output is amplified in the recoiver, which must of course be set to 1700 ke. To add selectivity, a boo-ke quatt erystat is used in sorios with the ontput eommetions. A smatl power supply is shown with the eonverter, and some expense can the eliminated if 300 volts d.e. at 15 mat. athe 6.3 volts atce at 0.45 ampere is availahle from an exist ing supply.

Construction

The unit is built on : $7 \times 11 \times 2$-inch alumimum chassis. The front panel is made from a © $\times 7$-inch piece of ahminum. The power supply is mounted to the reate of the chisssis and the converter components are in the center and fromt. The hayout shown in the bottom view should bo followed, at least for the platement of L_{1}, L_{2}, L_{3} and L_{A}.

The input and oscillator coils are made from a single length of $13 \& W$ Minidurtor stork, No. 3016. Come off 31 turns of the coil stork and bend the 32 nd turn in towated the axis of the eopil. Cut the wire at this point and then unwind the 32ud turn from the support bats, (sing at hateksum bode, rarefully cut the polvistreme sumpert hars and separate the $31-$ turn enil from the miginal stock. Next, count off ! turns from the 31 -turn eoil and eut the wire at the ! th turn. At the eat muwind a hablf turn from eath eroil, and also unwind a hatlf turn at the outside ends. This will

(it - 36, $-\mu \mu \mathrm{f}$, datal variable, t.r.f. type.
($2-3-30-\mu \mu \mathrm{f}$. trimmer.
 Millen - (01]. $)$.
 diameter, 32 turns per inch, No. 29 wire, cut as below.
It -8 turns scparated from I_{2} by one turn (see text).

Ia, I.a-19turns.
I4 - 21 turna separated from I $_{5}$ by one turn.
10 - 8 turns.
$1.6-105-200-\mu \mathrm{h}$, slug-tumed coil (North Ilills lilectric 1?011).
I. - See text.

Crystal - 1700 ke. (E. B. Iewis Co. 'lype FIL-3).

Fig. 5-7n - Buttom view of the converter showing placement of parts. 'The coil at the lower left is I_{3}, and the input coil, $L_{1} L_{2}$, is just to the right of L_{3}. The oscillator coil, $1.4 / .5$, is at the left near the eenter. The output coil, $L_{\text {G }}$ is near the top center.
leave two coils on the same support bars, with half-turn leads at their ends. One coil has 21 turns and the other has 8 turns, and they are separated by the space of one turn. These coils are L_{4} and L_{5}.

The imput coils L_{1} and L_{2} are made $u p$ in the same manner. Standard bakelite tic points are used to mount the coils. Two 4-terminal tie points are needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and a oneterminal unit is required for L_{3}. The plate load inductane L_{6} is at $10 \overline{3}-200 \mu \mathrm{~h}$. variable-inductance coil (North Hills 1201I). The coupling coil L_{7} is 45 turns of No. 32 d.e.c. seramble-wound adjacent to L_{6}. If the constructor should have difficulty in obtaining No. 32 wire, any size small enough to allow 45 turns on the coil form can be substituted.

The input capacitor, C_{1}, is a 2-gang t.r.f. variable, $365 \mu \mu$ f. per section. As both the stators and rotor must be insulated from the chassis, extruded fiber washers should be used with the screws that hold the unit to the chassis. The panel shaft hole should be made large enough to clear the rotor shaft.

A National type () dial assembly is used to tune C_{3}. One word of advire when drilling the holes for the dial assembly: the template furnished with the unit is in error on the 2 -ineh dimension (it is slightly short) so use a ruler to measure the hole spacing.

In wiring the unit, it is important that the output lead from the crystal socket be run in shielded wire. A phono jack is mounted on the back of the chassis, and a piece of shielded lead comerts from the jack to the crystal socket termimal. The leads from the stators of C_{1} and C_{3} are insulated from the chassis by means of rubber grommets.

Testing and Adjustment

A length of shielded wire is used to connect the converter to the receiver: the inner conductor of the wire is connceted to one antenna terminal; the shield is connected to the other terminal and grounded to the recoiver chassis. The use of shielded wire helps to prevent pickup of un-
wanted 1700 -ke. signals. Turn on the converter and receiver and allow them to warm up. Tune the receiver to the $5.2-\mathrm{Mc}$. region and listen for the oscillator of the converter. The b,f.o. in the receiver should the turned on. Tune around until the oscillator is heard. Once you spot it, tume C_{3} to maximum rapacitance and the receiver to as close to 5.2 Me . as you can. Adjust the oscillator trimmer capacitor, C_{2}, until you hear the oscillator signal. D'ut your receiving antema on the converter, sot the receiver to 1700 ke , thind tune the input capacitor, C_{I}, to noar maximum capacitance. At one point you'll hear the baekground noise come up. This is the 80 -meter tuning. The point near minimum eapacitance - where the noise is loudest - is the 40 -meter tuning.

With the input tuning set to 80 moters, turn on your transmitter and tume in the signal. By spotting your crystal-controlled frequency you'll have one sure calibration point for the dial. By listening in the evening when the band is crowded you should te able to find the band edges for calibration points. If you have access to a signal generator, it is a simple matter to calibrate the dial.

You'll find by experimenting that there is one point at or near 1700 kc . on your receiver where the backgronnd noise is the loudest. Set the receiver to this point and adjust the slug on L_{6} for maximum noise or signal. When you have the receiver tuned exactly to the frequency of the ervstal in the converter, you'll find that you have quite a bit of selectivity. Tume in ace.w. signal and tune slowly through zero beat. You should notice that on one side of zero beat the signal is strong, and on the other side you won't hear the signal or it will he very weak (if it isn't, off-set the b.f.o. a bit). This is known as single-signal c.w. reception, because the "audio image" of the c.w. signal is reduced.

When listoning to phone signals, it maty be found that the use of the cuartz crystal destroys some of the naturalness of the voire signal. If this is the case, the crystal should be unplugged and replaced by a 10 - or $20-\mu \mu \mathrm{f}$, capacitor.

Converters for 7, 14, 21 and 28 Mc.

The rrystab-montrolled eonverters shown in Figs, 5-41, 5-13 :und 5-46 are intended to be used ahead of a receiver or recoiving system that will tome 3.5 to 4.0 Me, except the 28 - Mc. converter which reguires that the reroiver tune 3.5 to 5.2 Ne, if the contire 10-meter band is to be tumed. The 1.t-and 21-Me. converters fan be used to (xterd the tuning ranges of the two 80 ' 40 -meter reenivers deseribed earlioe in this chapter. While many erystabeontrolled anworters use bandpass r.f. rireuits that noed no tuning other th:u the initiabl adjustment, the r.f. circuits of threse converters are manuably tumed, to give the best selectivity and image rejection. Adjustable intemm coupling is abso provided, to ficilitate matching to the antemmand also to extend the signal-handling (:ap)abilities.

With two exceptions, the cireuits for these converters are the same, differing only in the tuming range of the signal eirenits and the frequancy of the restab. The exophtions (ath be found in the 7 - and 28 -Mre converters. In the former, the 3 booke. erystal is fairly close to one limit of the miser output runge, so at trap is inChuded to attemate the 3.00)-ke. signal that appprats in the mixer output and might tend to overloud the following rereiver. The other exeeption com be found in the 28 - Me. unit, where a switch and additional erystal were added to permit covering the $2 \overline{-}$-Me. hand. It would not he neressury if the following receiver could tune as low as 2.5 Mr., and could be omitted in such a case.

The hasic eirenit is shown in Fig. 5-42, with the mixer platerecireuit tratp (L_{6} and $15 \mu \mu \mathrm{f}$.) in place but not the s.p.d.t. "rystal switch for the highest-frequeney converter. Following the adjustable coupling between L_{1} and L_{2}, the signal goes to the 6 BJ Ji r.f. amplifier and then to at sero ond indurtively-eoupled areuit and to the grial of the mixer. The miser is the pentode sertion of a GANS: the erystal oscillator is the triode seretion of the $6 . . N 8$, and part of its output is applied to the mixer eathode via a eapowitance divider, $C_{5} C_{6}$. By using high-frequeney erystals that are
now available, no overtone oseillator circuit is required. Sime the 1500 -ohm cathode resistor of the mixer is the load for the oscillator, the capatitance divider, $C_{5} C_{6}$, is required to avoid overloading the oseillator and consequent nonoscillation. In the oscillator in the $10 / 11$-meter converter, at single satting of the ascillator eobil, Los suffices for the two crystals. In the r.f. stage, provision is included for introducing ab.v.e. voltage as well as mamablyonotrolled cathode bias.

Construction

Althongh these convertors ate shown is sep-
 chassis, they might also be built th ont large unit with sub shielding. In the thesign shown, and it is important in any design, particular attention was paid to see that the chatsisis grounds for the r.f. stage were all at one point, next to the socket. Since rat her large diameter (for recemers) high-() coils are used, at shich was used botworn the eoils to minimize the chances for strety coupling. The shided struddles the diblli socket. The toming capateitors, ('1 and (${ }_{3}^{2}$, are ganged mochanically by a length of $1 / 8$-inch diameter rod and two of the Millen Moos miniaturized shatt
 has as standard $1 / 4$-ineh shate at the front and a $1 / 8$-inch shatle at the rear. To matke remen for the shatit couplers, two motor and two stater phates were removed from rewh MAP(--3:- $13 ; 35-\mu \mu$. v:uriable.

Dimensions for the sub-chassis are shown in lig. 5-44, ats well as the lowation of most of the holes. Partitions A and 13 are hedd to the chassis by ti-32 hardwate: partition I hats mometing holes for the variabe rebpureitor similar to those in the front view except that the two small holes are on the horizontal center line P^{2} artition A als, carries the erystal socket and two elentane holes for the stator and rotor leats from the variable eatpantor. Patition IS hats a clearatnee hole for the variable capabitor shaft. The dashed hole on the front view is for the erystal switeh shaft on the 10 -meter converter; this switch mounts on

Fig. 5 . 11 - 17 -Mc, erys-tal-emontrolled comverter. The two shafts extemding to the right are (lower) adjustable antema eonpling and (upper) signatcirenit tuming. 'The crystal lolder is the dark object in the center setction, just behime ther tails.

Fig. 5-42 - Selematie diagram of a crystal-eontrolled converter. The plate trap. L_{6} and the $1 .-\mu \mu \mathrm{f}$. capacitor, is used only in the $7-\ 1$. converter, The 10 -meter converter uses two crystals. switched by a s.p.d.t. rotary in the "cold" lead from chassis ground.

All fixed capacitors are ceramic; all resistors are $1 / 2$-watt.
$\mathrm{C}_{1}, \mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. midget variable (IIammarlınd $\mathrm{L}_{6}-105-200 \mu \mathrm{~h}$. (Vorth Hills Electric 120-II). MA1'C-35-13 with 2 motor and 2 stator plates X_{1} - See Table 5-III. (International Crystal, Type removed).

$$
\begin{aligned}
& X_{1} \text { - See Table 5-III. (International Crystal. Type } \\
& \text { FA-9). }
\end{aligned}
$$

partition A and is turned by the lacite "crankshaft" shown in liig. $\overline{\mathrm{j}}-\mathrm{4}$. It is a simple matter to soften at length of $1 / 4$-inch dimmeter lucite rod byy rolling it on a soldering iron. When it is suitably soft, it is then bent and held in position until cool. The insulating crankshatt is used to cscape rumning metal near or through the eoil. As mentioned above, it isn't neressary to switeh crestals if the tuning range of the receiver following the converter includes 2.5 Me .

The variable antenma coupling is made by rumning a piece of $1 / 4$-inch Lucite rod through at shaft bushing and using it rubler grommet between fiber washers ats a friction lork. A serew through the shatt serves as a stop for the washer on one side of the grommet, and the shaft bearing serves as the stop on the other. Compression is maintained by using as solid shaft coupler on the other side of the bearing. Using along set-screw on the solid shat coupler provides an arm that (an hit either of two stops (small screws) and thus limit the travel of the eoil.

In wiring a convertor. shielded wire was used for the heater and d.e. leads that ran past partition A up toward the r.f. stage. The antennat lead is a length of R(i-5!) (' coasial cable. Input and output connections are brought to phono jacks at the rear of the unit ; power and control leabls are terminated in a (inch-Jones l'-304-A13 plug.

Coils L_{2} and L_{4} are supported by No. 14 wire leads extending from the tuning cababitors. The 13+ end of L_{3} is cemented to the ground end of L_{4} with l Huro or Ambroid cement. This gives an improvement in minimizing spurious responses over that obtainable with mounting L_{3} over L_{4}. but on the two lower-frequency ranges it requires the use of padding capacitors, C_{2} and ('a, berause otherwise the $L_{3} L_{4}$ assembly becomes too long. The 3- to 30- $\mu \mu \mathrm{f}$. compression capacitor arross C^{\prime}, is mounted on the leads of the variable capacitor.

Wires from the rotors of C_{1} and C_{3} are brought to the grounding lugs at the sockets, in keeping with the "single stage grome" poliey mentioned earlier. The lead from the stator of C_{3} to Pin 8

Fif. 5-43-1'he 10-11. meter converter removed from its case. The I ucite "crankshaft" for switehing erystals can lie seen in the right-hand compartment.

Component Values for the Crystal-Controlled Converters

Band	L_{1}	La, I.4	L_{3}	\boldsymbol{I}_{10}		6.	18	(i)	R_{1}	Ni
7 Mc .	$12 t^{1}$	28.1	$18 \mathrm{t}^{1}$	$\begin{gathered} 9-16 \mu 1 \\ (1 \geq(1)-13)^{3} \end{gathered}$	$2.5{ }_{\mu} \mathrm{P}$	5010 \% f	$1.500{ }_{\mu \mu} \mathrm{f}$	$1.50{ }_{\mu \mu} \mathrm{f}$	1:K	3.4 Mc .
14	$5 \mathrm{t}^{2}$	$19 \mathrm{t}^{2}$	$15 t^{1}$	$\begin{aligned} & 3-5 \mu \mathrm{~h} \\ & (120 . \mathrm{B})^{3} \end{aligned}$	$15 \mu \mu \mathrm{~T}$	$25^{-5 \mu}$	$3360 \mu \mu$	$3: 3 \mu \mathrm{f}$	27 K	10.5 Mc
21	$12 \mathrm{t}^{1}$	$17 \mathrm{t}^{2}$	$15 t^{1}$	$\begin{aligned} & 2-3 \mu \mathrm{~h} \\ & (120-1)^{3} \end{aligned}$	-	-	$330 \mu \mu \mathrm{f}$	$33 \mu \mu \mathrm{f}$	33 K	17.5 Me
28	$8 \mathrm{t}^{1}$	$10 t^{2}$	$10 t^{1}$	$\begin{aligned} & \frac{2-3 \mu h}{(120 \cdot 1)^{3}} \end{aligned}$	-	-	$1.50 \mu \mu \mathrm{f}$	$1.7 \mu \mu \mathrm{f}$	18 K	11 meters: 23.1 Mc. 10 meters: 24.5 Mc .

${ }^{1} 32$ t.p.s. No. $24,5 / 8$-ineh diam. (B \& W 3008).
${ }^{2} 16$ t.p.i. No. 18,58 -ineh diam. (B \& W 3007).
${ }^{3}$ North IIills Electric Co. designation.
of the 6AN8 is brought through a small hole in partition A.

In wiring the oscillator portion of the 6AN8, it is convenient to rum a lead from L_{5} to Pin 1 of the 6AN8 socket, and then mount $C_{5}{ }_{5}, C_{6}$ and the 1500 -ohm cathode resistor on the socket pins and the chassis grounding lug. There are two unused soldering lugs on L_{5}, and one of these is used as the junction point for the 68.000 -ohm resistor, the $2200-o h m$ resistor, the $50-\mu \mathrm{h}$. r.f. choke and the . $01-\mu \mathrm{f}$. capacitor.

Adjustment

The first step in checking a converter, after the wiring has been cheeked and a power supply and receiver have been comected, is to check the oscillator and miver. With only the GAN8 in its socket, turn on the power and look around the erystal frequency with your receiver to see if the erystal oscillator is working, as indirated by a strong signal. If the oscillator doesn't work, tume L_{5} until it does. Then put the receiver in the range 3.5 to 4.0 Mr , and thue ('3. At some setting you should hear an increase in noise, indieating that the mixer input eircuit is tumed to resonance. If the increase in noise is quite sharp, it indicates regeneration in the mixer, and the value of R_{1} should be reduced. This mixer-oseillator combination is basically regenerative, and with l_{1} re-
moved the mixer will oscillate.
Under normal operation of the mixer and oseillator, the voltage at Jin $\overline{7}$ will run around 50 to 60 volts, and around 3 volts at Pin! 9.

When the $\overline{\mathrm{T}}$-Mc. converter is being tested, the following receiver can be tuned to 3.4 Me , where the loud signal from the crestal oseillator will be reerived. The slug in L_{6} is then tuned for minimum signal in the receiver. Don't expect this minimum to be around S_{1} or S_{2} - it may still he enough to "pin the meter" with the reaiver gain wide open.

Leave the ganged eaparitors C_{1} and ('3 at the setting that gave the noise peak, comneet a 2500 ohm wire wound potentiometer in the manual gatin circuit to chassis ground, short the AVC connection to rhassis, and plug in the 6BJ(j) Connect an antemmand, with the gan control at maximum gain (minimum resistance), adjust the compression trimmer across C_{1} for maximum noise. The two circuits are now tracking and should tume together over the band. Tuning 3.5 to 4.0 Me. with the receiver shonld now bring in signals from the band for which the eonverter is designed. Loosening the antemna roupling loy swinging L_{1} away from L_{2} should reduce the strength of incoming signals. If it deresn't, or if the shampess of C'1C3 tuning ehanges with the gatinecontrol setting, it indieates that the r.f. stage is ragencrative. You shouldn't have any trouble with a regenerative r.f. stagr, however, if the stage grounds are brought to one point on the

Fig. 5-4.1 - Details of the sub chassis and partitions. The bottom lips of the front and of piece 13 rest on $1 / 4$-inch bars at the bottom.

SIDE
FRONT

Fip. 5.4s - Solsematic of a power supply for the erystal-controlled converters, If the power supply is to be used with onlv one converter. the awiteles can be eliminated from the cirmit.
 S_{1} - 2-eeretion t-pole rotary switeh. Sections not shown switch antema inpots and converter outputs

mole mot iseet

T_{1} - Replacementiype transformer, 32-0.32.5 v.
(Knight (02 (; 0) 2).

 the two arystals are on the sane frequener no retuning of the following reeriver will be reduired.

These ronverters have very low response to the r.f. imate frepuldery, and no trouble with imanges should tre enconntered. It is possible that under some riremmstanmes you mas hear 80meter signals when you are using ib converter. and this is usuatly an indiotion of at poorlyshielded receriver or a liunlty instablation. The recoiver should have no respenise to 80)-meter signals when no antemmat is commerted to it if it has, it indieabtes that better shiolding is requined - and it should hatve no response to 80-moter signals when the rable used for conneeting the converter to the reeceiver is connected to the receiver and left open at the eonverter end. (ionod shichded wire or enaxial eable (IRG-58/C or R(i-5!)/[') should be used betweon convorters and receoivors, and it minimum of inmer eonductor should be exposed at the receiver antenus posts. The outer conductor or shield should eomert to the ground terminal at the rocriver ind to one of the antenna posts, and the inner conductor should connect to the other antemint pust.

Fig. 5-fo-seneral cryatil-contrelled courerters ran he installd on a ehasois with a common powar supply. Here the 20- and 15 -meter converters ari shown in place. On the panel, the lower lett-hand knote is the common gain control. and the right-hand kmol, controls the switeh that selects the eonvertur to be used. The

Variable-Coupling Antenna Tuning Unit

A variable-eoupling antemat tuning unit connected betwern antemna and reerever is usetul for threr reasons. In many instances it will imporer reception slightly bey providing a better matth between antemat and remiver. Where trouble from ref. images is encountered, as is often the

 tuning unit.
(:) - It0- $\mu \mathrm{f}$. midget variable (Hammarland IIF-140), $s_{1}, s_{2}-{ }^{2}$-phe miniature rotary switch (Cientralab P1-2(413).
I.1-ie turns ($21 / 4$ inclies),
1.2. 1 - -20 turns ($5 / 8$ inchen).
1.a-4 turns ($1 / \mathrm{s}$ inches).

15-12 turns ($3 / 8$ inches).
\mathbf{I}_{6} - 2 turns.
AII coils I-inch diameter 32 turns per inch (1 \& W 3016).
case on the higher frequeneios with simple rereivers, an antenna mit will provide additional solectivity. The unit shown on this page improved imager rejection 15 dh) at 10 Mt , and 12 dt , at 25 Mr . in at typial wase. The third useful foature of this unit is the variable coupling, which provides an auxiliary gatin control that is useful on strong loral signals as well as permitting a wide range of matrehing.

Fig, 5-48-View inside the case of the antenna tuning unit. 'The input terminals are a National l'W II strip, and the output jack is a shiclded phono jack.

As can be seen in Prig. $\mathbf{5}-1 \overline{7}$, the unit provides for series or parallel tuning of the tuned rireuit, bithdwitching over the range 1.8 to 30 Mr . B:and I tumes 1.8 to 4.9 Mc ., biand 2 rovers 4.9 to 13 Mr.. and band 3 tumes 12 to 30 Mc .

The antemm tuning unit is built in a $3 \times 10 \times$ 5 -inch aluminum chassis. To ad in shielding, at side plate for the box is made from a piece of flat aluminum stock. The four operating controls are mounted on one end of the box with the antenna terminal and output jack on the other. Three coils, L_{1}, L_{2} and L_{3}, are bonded to a lucite bar with Duco cement, and the bar is in turn supported by three ceramic cone insulators. The three coils should be spaced about one coil diameter from each other and from the ends of the box. Three variable eoupling links, $L_{4} L_{5} L_{6}$,

Fig. 5-49 - Front view of the antenna tuner.
are soldered to smatl mathine sorews that have been bolted to a length of $1 / 4$-inch diametor lumite rent. The rod extends the full longth of the box and is supported at the ends by a hushing and a pathel bearing. An insubated compling is used to join the panel hearing shatt and the larite rod. Comertions to the links are made hy soldering the leads to the mardime serews in the rod. "The "panel" end of the box "an be finishad off with deats indieating the knob functions.

In operation, the tuner is commected betweren the antemat and the receiver. With some antemat systems the parable? commertion will give the better results, while with other antennas and other frefurmeres the opposite will be true. It is a simple matter to switeh between the two conditions and see which gives the sharper peak or louder signabs at resonamee

An Antenna-Coupling Unit for Receiving

It will often be foumd adrantageous ont the 14-and 28- Jle. bands to tume (or mateh) the reeroving-antenna fered line to the receiver. in ordar to get the most ont of the antemma. One way to do this is forne in reverse, any of the lino-coupling dovices advocated for use with a transmitter. Nilfurally the components can he small, berause the power involved is negligri-

ドig. ib. 50 - Circuit diagran of the rompling unit.

 I inch on l-ingh diamber form (Villen 1.5000), tapped at 3. 7.12 and 18 turns.
$s_{1}-2$-tircuit \bar{T}-position single-section ceramic wafer anith (Vallory 1:34:).
ble, and small reweiving ratparitors amd coils aro quite satisfartory. Some provision for adjustable coupling is reeommended, as in the transmitting rase, beratuse the signat-to-noise ratio at 14 and 28 Ma. is dependent, to at late externt, on the demper of compling to the anternat systom. The tuming unit can bo built on at small chassis located noat the reereiver, or it cath bu monnted on the wall and a piece of le(i-5) / / run from the unil to the rerovive input, is the matanor of at lank lime in tramsmiting pratioe Fion ease in chatgenger bands, the roils catn be switchad or plugered into a suitable sucker, . Mjustabla compling not only offers ato opportunity to abljust for hest signablo-noise ratio, but the eompling ean bo derretsed when a strong loeat
signal is on the atir, to climinate "blocking" and eross-modulation efferts in the rereiver.

One convoniont type of antronna-compling notit for reverivers uses the familiar pi-section filtor courenit, and ean be used to mateh a wide range of antenna impedances. The diagram of a compatet unit of this type is shown in ling. $\overline{\mathrm{j}}$-jo . Through proper soldetion of raj)atcitors and indurtances, a match ran be obtitinod over a wide range of values. 'I'lue deviee cond be placed close to the reoeviver and left conmeded all of the time. sinco it will have little or wo rifert on the lower frequenerios. A short loneth of 300 ohm ' Twin- I atal is convornient for connmerting the shternat coupler to the mereivir.
'The anterman (oup)lor is built in a $5 \times 7 \times 2-$ inch motal rhassis. All of the components exropt the two roils are monnted on the front amd rear faces. The capacitors are momoted off the pancel by the spacers furnishod with the eat pacitoms amd at charance hoole for the shaft prevents any short-arenit to the panel. IThe
 fastomed to the chassis with brass serews, athd the coils should be wound on the forms an far away is persible from the mounting rme. "Fhe switeh should be wimed so that the switehing serpucure puts in, in cath coil, 3 turns, 7 tumse, 12 tums, 18 and en turns.
'The unit is adjusted for maximum sigmal by cwitrhing to different coil positions and adjusting ('t and ('on. It will not be nerersiary turetrim the rapacitoms except whon groing from one cond of a band to the othor, ame when the unit
 shoulal be set at the minimum mumber ol foms

 The woil in the grominded side should lxe shorted if comxial-line ferd is used.
 conplitg n'tworh for matrhing a hatameral line to Her rececicer on it amd $\therefore 8 \mathrm{Mr}$.

The "Selectoject"

The selectojeet is at reeriver andjunct that ean be used as a sharp amplifier or as a single-frequency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knols. The degree of selectivity (or depth of the null) is rontimuously adjustablo. and is independent of tuning. In phone work, the rejection notch can be used to roduce or eliminate a heterodyne. In c.w, reception, interfering signals may be rejected or, alternatively, the desired signal may be picked out and amplified. The Selectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifire frefuency-response measurements, modulation tesis, and the like, by advancing the "selectivity" control far enough in the selectiveamplifier condition. The selectojeet is connerted in a receiver between the doteetor and the first andiostage. Its power requiremonts are 4 mat at lof volts and 6.3 volts at 0.6 ampere. For proper operation, the 150 voltes should be obtained from across a V'R-150 or from a supply with an output capatcity of at least $20 \mu \mathrm{f}$.

The wiring diagram of the Solpetoject is shown in lig. $\tilde{0}$-52. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 per rent of the nominal value but
they should be as close to earh other ats possible. An ohmmeter is quite satisfactory for doing the matching. One-watt resistors are used because the larger ratings are usually more stable ower a long period of time.

If the station receiver has an "accessory sorket" on it, the cable of the selectoject can be made up to match the connections to the socket, and the numbers will not necessarily mateh those shown in Fig. 5-52. The lead between the seeond detector and the receiver gain control should be broken and run in shielded leads to the two pins of the socket corresponding to these on the plug marked "A.F". Input " and "A.F. Output." If the receiver has a VR-150 included in it for voltage stabilization there will be no problem in getting the plate woltage - otherwise a suitable voltage divider should be incorporated in the receiver, with a $20-$ to $40-\mu \mathrm{f}$. electrolytice raparitor connerted from the +150 -volt tap to ground

In operation, overload of the receiver or the Solertoject should be avoided, or all of the possible selectivity may not be realized.

The solectoject is useful as a means for ohtaining much of the performance of a crystal filter from a receiver lacking a filter.

$\mathrm{C}_{1}-0.01-\mu \mathrm{f}$, mica, (10) volts,
C.2, ($3-0.1-\mu \mathrm{f}$. paper, 200 wolts.
($4, \mathrm{C} 8-0.002-\mu \mathrm{f}$. paper, 400) volts.
($: 5-0,05-\mu \mathrm{f}$, paper, 100 volts.
(:6-16- \mathbf{f}, 150 -volt electrolytie.
(. 8 - $0.000 \mathrm{O}-\mu \mathrm{f}$. mica.
R_{1} - 1 megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}$ - 1000 ohms, I watt, matclied as closely as possible (see text).
$\mathrm{K}_{4}, \mathrm{R}_{5}-2000$ ohms, I watt, mateled as closely as possible (sec text).
$\mathrm{K}_{6}-20,(6)($ olmms. $1 / 2$ watt.
R_{7} - 20010 ohms, $1 / 2$ watt.
$R_{s}-10,1000$ ohms, 1 wat
$R R_{9}$ - (0)OOI ohms, $1 / 2$ watt.
$\mathrm{R}_{10}-20,000$ ohms, $1 / 2$ watt.
R_{11} - 0. 0 -menohm $1 / 2$ watt potentiometer (selectivity).
R_{12} - Gameed 5-megohm potentiontetrer, standard andin taper (tuning control).
$R_{13}-0.12$ megohm, $1 / 2$ watt.
$\mathrm{s}_{1}, \mathrm{~s}_{2}-1$).p.d.t. toggle (can be ganged).

A Clipper/Filter for C.W. or Phone

The elipper/filter shown in Fig. $5-54$ is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work reguired on the recoiver. The limiter will cht down serious noise on phonc or cow. signals, it will keep the strength of rew. signals at a constant bevel, and it will add selertivity to your rereiver for cew. reception. It will do much to relieve the operating fatigue caused hy long hours of listening to stat ic "rashes, key chicks comountered on the air and with break-in operation, and the like.

There are times when the best results are soctred with the selective atudio circuit following the rlipuer. On other ocasions it is hetter to have the seleetivity precede the clipper. Since it is a simple matter to provide a switching arrangement so that either combination, elipper-to-filter or filter-to-clipper, can be used at will, this has been done in the unit deseribed here.

The frequeney response of the selective circuit reaches a peak it about 900 cyeles and has a null at about 1800 cyeles. The peak frequency is determined by the combined values of L_{1}, C_{1}, and (2 , while the noteh frequency is that of the parallel-resonant eircuit $L_{1} C_{1}$. If different peak and null frequencies are desired the values of C_{1} and C_{2} ran be changed; for raising the notch frequeney the capacitance of C_{1} should be made smaller; to raise the peak freguency reduen the capacitance at Cu.

The rotary switeh S_{1} (Fig. 5-53) is used to
provide different combinations of the elipper and filter. To simplify the wiring diagram the switehing eircuit is shown separately in the diagram.

The filter-clipper is built on a $5 \times 51 / 2$ inch aluminum chassis with a two-inch lip. This is secured to the front panel by the two potentiometers and rotary switch S_{1}. A $6 \times(6 \times(j$-inch steel cabinet encloses the unit. Steel is preferable to aluminum berause L_{1} is sensitive to stray magnetic fields (which would show up as hum at the output) and the steel cablinet aids in shielding. The aluminum chassis is mounted in a vertical position with the transformers and tubes on one side and rotary switch and small components on the other. One lavout precantion should be observed: Place the filter inductor L_{1} as far as possible from the power trinsformer, and mount the 1 wo units with their cores at right angles. This will minimize hum pickup by the inductor.

I3efore mounting L_{1}, it will be necessary to remove the mounting frame and the "l" laminations. The frame is removed easily by prying out its two legs and then lifting it from the core. The "I" laminations are in the form of a bar lying aeross the top of the "E" core.

Isy mounting the choke with a nonmetallic strap the ($)$ will remain high. L'se a strip of heavy (ardhoard cut to the same width as the core, about $5 / 8$ inch, as a clamp for mounting the inductor. The cardboatd rlamp is fastened to the chassis with two $5 / 8$-inch square aluminum

Fïg. 5-53-Sehematie diagram of the elipper-filter. Switch powitions are: 1. Pilter-elipper. 2. Clipper-filter, 3. Clipper. 4. Straight through. Resistors are $1 / 2$ watt unlese onhern ine sperified; capacitances are in $\mu f . ; 0.01-\mu$. capacitors not listed below are ceramic.

Cis - 0.01 plastic tubular capaeitor (Sprague 'Telecap).
$\mathrm{C}_{2}-0.03$ plastic tuhular capacitor (Sprague Telecap).
C:- Dual section $30-30 \quad \mu$. $\quad 1.50$-volt electrolytic (Sprague TV $12+34$).
(H_{1}-selenium rectificr, $\mathbf{5 0}$ ma. ((Yederal 1224).
1 - 0.3 -vole pilot light, 60 ma.
J_{1} - Open-cirenit phone jack.
I_{1} - V̈ilter chake, 5 hy. 6.5 ma. (Thordarson 20C59). Modified; see text.

I' - Phone plag.
s_{1} - 6-pole, 1-position, 3 -section rotary switeh (Centralab l'A-1020).
S_{2} - S.p.s.t. toggle.
' I_{1} - Uutput transformer 7000 -10,000 ohm pri., 3.2. ohm sec. (Thordarson 245:2).
' I_{2} - lower transformer 120 v. 50 ma.; 6.3 v. 0.7 amp . ('Thordarson 261832).

Washers that wan he fout from a piere of serap. It is very important that the elample bommetallie. If aluminnm or wher nommanotio materials are used the (f will the adversely alfoeded and the sedertivity of the filter will sulfore.

The switeh wiring shown at the bottom of the schematic diagram san be done before mounting x_{1} in platere After the switeh is mounted the wiring betwern it and the other components ram be completed.
 reediver phome jack and turn swith s_{1} to the "out" or straight-through pasition. Tune the reociver until ar c.w. signal is fonnd and adjust the reereiver controls for eomfortalbe copring.

Now turn s', to the "elipper" pusition. In orter to berome familiar with the ate tion of the eripper thesersteps should he followed: Adjust the "elipping" rontrol so no colipping aecurs (miximum positive bias on the diode plates). Set the "level"

Fit. 5-5t-A view of the filteredipher remoned from its case, Pluy l^{\prime} is in the foreground, Dote the method of monating choke 1 , whioh is placerd at right angle- to the powar transorner I?
control on the mit so that there will be no :ppatent change in the strength of the r.w. signal when switching from "clipper" to "ont" and batek to "elipper." "Then turn the "rlipping" eontrol until the positive bias is low enough to rame limitag to start; the point at which limiting berins ran be rerognized be the faed that the signal strength bergins to derverse. IBark off slightly with the "elipping" rontrol so that the signat strength in the phones is just at the originat level.

Toning the reereiver without the nse of the limiter shows signals of all strengelas, some suloud as folme car-hreaking: but switrhing to "elipper" will make these big ones drop down to the "comfortable" preset level.

It should not take long to beeome fimmiliar with use of this unit. However, there are many applirations for the clipper-filter which ran only le diseovered hy athat use. The "clipher-to-filter" position is hest suiterl where the atudio seleet ivity is required and a high level of ignition moise is encombered. However, where impulse mose is not a factor the "filtar-torelipper" position is best. Becanse of the sathention chataterist ic of limitors, a strong signat being rocotived along with a weak one has the tencleney to take command, making it impossible to copy the weaker one. By using the selective andio filter first, peaking up : weak desired signal and attemuat ing strong interfering ones, the lesired signal takes command in passing through the limiter, and can be copied over the interference.

In order toe peak a desired signal the
 receiver b.f.o. or tuming control should be adjusted so the piteh of the sigmal is (9)O rarles. Sine the selectivity curve is rather sharp, any adjacent andesired signals will fall short of the peak and ber attembated. If the rearever b,for. has sufficiont tange to tume mot reveldes or more on both sides of zero beat, the andesired signal can always be placed on the noteh side of the peak.

Rif. 5-5.5-Side view of the mit. Swite: sit is located at the front eenter with the filter caparion (iz almoe it. Leads rumning away from the mit are the ade. line cord and the cord for phas $/{ }^{\prime}$.

A Regenerative Preselector for 7 to 30 Mc .

The performance of many recoivers begins to drop off at If Mc. and higher. The signal-tonoise ratio is reduced, and unless double conversion is used in the receiver there is likely to be increased trouble with r.f. images at the highor frequencies. The preselector shown in ligs. 5-56 and 5-58 con be added ahead of any receiver without making any changes within the receiver, and
through the use of the preselector.
A 6.N.N8 triode-pentode is used in the preselector, the pentode as a band-switch regenerative r.f. stage and the triode as a cathode follower. The conventional screen-grid neutralizing circuit is used; by upsetting this circuit enough the stage cam be made to oscillate. Smooth eomtrol of regeneration up to this point is obtained
 lector for 61030 Mr. This unit can le ued aheal of any receiser (o) add gain and image rejection: its efferet will he most marked wilh receivars that fall off in performance at the higher freduencies, Aljonstable antenna compling is obtained by surporting the antenna coils on on an insulated rod that is eontrolled from the panel.

a selfecontained pewer supply riminates the problem of furnishing heater and plate power. The poorer the rereiver is at the higher frepuenries, the more it will benefit by the addition of the preselector. A truly geod receiver at 28 Mr. would show little or no improventent when the preselector was added, but a mediocre receiver or one without an r.f. stage will be improved greatly
hy varying one of the capacitances in the netrtratizing direnit. To handle a wide range of antemat impedances, adjustable antenna coupling is included, while cathode hias rontrol of the pentode allows the gain to be reduced if and when it becomes neecssary to do so. (he position of the bandswiteh permits straight-through operation, so the preselector unit can be left connerted to

Fig. 5 -57-Sehematie diagram of the regeneratise preselector. Capacitaners are in $\mu \mu \mathrm{f}$, undess otherwise specilied, Resistors are $1 / 2$-watt unless otherwise spercilied.
($: 1-140$ - $\mu \mu$. variable capacitor (I ammarlund IIF-140)
 1001-13).
$\mathrm{C}_{3}-50-\mu \mathrm{f}$. mica (sere text).

(: H_{1} - -01 -ma selenium rectilier (International Reetilier RS(0)O).
L_{1} throught L_{4} mathe of No. 30 . 3 inch diam., 16 turns per inch (13 \& 11 30ll Minidactor)
I. 1 - 2 turns.
1.s-. 5 turns.

1. ${ }_{\text {a }}$ - 19 turns.

h_{1} - 2500-ohm potentiometer (Nallory 1\%).

Sic-10 2-pole 3-pesition wafer (Sentrabah l'A-3), So text for witheh asiembly instructions on indexing head (Centralah P'S-301).

 1³-811.5).

 are bunctual armand the tulue socket. I'ower supply componemtis are supported by acrews and tie points.
the receiver corn dumg low-frequency reception.
The preselector is built on a $\overline{5} \times 10 \times 3$-inch
 patmel is held to the chassis be the regencration and handswitch controls. (oils L_{2} and L_{4} anv suppertedon a smath staging of $11_{i} \times 3$-inch chate plastie. (It can be made from the lid of the box
 (aparitors come in, All coils can be made from a single length of Betll :3011 Miniductor: L_{4} is brought to the proper hoight ber removing turns but retaining the phastic support bars. The coils are remented to the plastie staging with Duco rement. The links L_{1} and L_{3} are moved by means of : 6 -ineh length of , -inch diameter lueite rod; the rod is supported at rach end by pand bushings, and a friction lock is provided by washers and a rubber grommet. A screw through the lucite shaft and two others in the end bracket provide stops that limit the antema coil rotation to 45 degrees.

The reter of (') must be insulated from the chassis, and its shaft is extended through the use of an insulated extender shaft (Alliod Radio No. (60 11 35.5). The bandswite s_{1} is made from the sperified seetions (see Fig, i-it). The first seetion is spared $3 / 4$ inch from the indexing head, there is 1 -inch separation between this and the bext
 spaced 2t inches from sim.

The regeneration contmol, \boldsymbol{c}_{2}, is monnted on a small aluminum bracket. Its shaft does not have to be insulated from the chassis, so an insulated or solid shaft commector can be nsed. The small moutralizing capacifor, ('s, is supported he soldering one lead of it to a stator bat of Co and ruming a wire from the other leat to pin if of the tube $^{\text {a }}$ socket. The rotor and stator comeretions from ('1 are brought through the ehassis deck through suall rubber grommets.

Power supply romponents, resistors and ratparitors are supported by suitable lugs and tio points. The selenium rectifier is held ber the same serew that secures the link supporting bracket. Phono plugs are used for the input and output. jacks.

The leats to R_{1} are run up through the deck in shielded wire. Switeh k_{2}, part of the R_{1} assemWy, ram be commeded with ordinary wire.

Adjustment

Issuming that the wiring is correct and that the roils have been constructed properly and cover the required latuges, the only preliminary adjustment is the proper setting of Ca, Comert an antenna to the input jack and connert the reeceiver to the entput jacelk through a suitable longth of R(i-id!/[. Tum on the rereiver b.i.o. and ture to 28 Me. with sit in the orrerasion. Now turn sit to the 21-10 28-Me, range, and set the gais and antexia colphing eontrols to maximum (R_{1} arm at ground end and L_{2} colose to L_{4}). Swing the revive (atpatitor and listen for at lond rough signal which indieates that the preselector is oscillating. If nothing is heard, advance the regeneration control ton:urd the minimum rabatitance (and and repeat, If no oscillation is heatd, it maty be necessary to change the setting of ('4. Wure the ossillating rondition has been found, set the regeneration control at minimum (:up):utitance and slowly adjust C_{4} until the preselector oscillates only when the regeneration control is set at minimum capacitance. You can now swing the receiver to 21 Mr . and peak the proselector tuning caparitor. It will be found that the regeneration raparitane will have to be inereased 10 avoid oscillation.

Cherk the performane on the lower range by foning in signals at 14 and 7 . Wre and peatking the preselector. It should the possible to set the regeneration eontrol in these two ranges to give both an oscillating and a non-oscillating rondition of the presclecetor. If it is not possible, a different value maty be required at C_{3}.

A little experience will be required before you rath get the best performance ont of the preselector. It will he fomm, for example, that loosening the antemat coupling when the preselector is close to oscillation will bring it into osaillation, which will then require hadeking off on the regeneration control. This is perfectly normal, laeducing the lube gain by changing the setting of R_{1} will also reduce the regeneration, and the gain control will probably onty require touching in the presence of extremoly strong sighals, strong signals can also be beld down by reducing the antemna coupling, but this will reguive hateking off on the regenerattion rontrol.

A Selective I.F. Amplifier for Phone and C.W.

The i.f. :unplifier shown in Figs. 5-59 and 5-(i2 operates at a frequency of 2.215 Mc . High selectivity is obtained through the use of commer-cially-avaidable hand-pass crystal filters that have selectivity chararteristios smilar to lower-frequenery deviees. A high-frequencer i.f. amplifier of this type retains the advantage of a high-frequency first i.f. (good image rejection), overcomes some of the disadvantages of multiple conversion (spurious signals, (ross modulation) and retains the advantages of high adjarentechamel solertivity heretofore obtatined only through maltiple conversion. An anv, ce circuit that works well on s.s.b. and r.w. is included, together with an andio limiter for noise reduction.

The i.f. amplifier is designed for both pheme and code reception; you can save the pried of one filter if you're a phone or code spectalist he using just one filter. The broad filter is the first element in the i.f. (following a coupling deviero), and this is followed by the sharp filter, which can the switched in or out. Following the filters there is a two-stage i.f. amplifier that feeds a product detector for heterodyne reception or a diode detertor for a.m. work. The dotector output is then amplified after passing through an adjustable elipper cirruit. The a,vec. amplifier is taken of through a soparate i.f. amplifier after the first stage berause it was found that getting any rloser to the deteedor allows a lit the b, f.o. voltage to kak into the a.v.e. cirenit. A buffer stage is used between the b.f.o, and product detector so that the b.f.o. can be run at low input and eonseruent low drift.

The broad filter has a band widt hof 2800 cercles at -6 d) and 9.5 ke, at $-(00 \mathrm{dh} .$, giving it an excellent characterist ic for phone work. The shard) filter has a band width of 220 cereles at -6 d). and just over 1 kr . at -60 db ., whirh is about as sharp as can be used for code.

The schematic diangam of the i.f. amplifier up) to the atudio amplifier is shown in Fig. \bar{j}-if). The intent is to take the imput signal from the plate circuit of a mixer stage (high impedanee) into the broad filter at $\mathbf{t}(0) 0$ ohms. The input tuning coil, L_{1}, is adjusted to rowonate at 2.215 Ma . with the fixed capacitor C_{1} and the rapabitance of the kength of comereting eowxial line connected to J_{1}. Since the imperlance of this resomant circuit (in shunt or not with the miser output circuit, depending upon how you utilize the amplifier) maty not he known with derent ace urace, provision for imperance matching is induded be using the 3 to $30-\mu \mu$ f. adjustable trimmer. To go from 1000 to 300 ohms between the t wo filters, an I seretion is used, consisting of the $68-\mu \mu \mathrm{f}$. capacitor and the Tor-uhh, inductor. (The computed value of c:tparitance is $6: 3 \mu \mu$., but (i8 $\mu \mu \mathrm{f}$. is close enough.) To step up the impedance level at the grid of the first i.f. stane, a tapped circuit is used. The catpacitance divider uses 150 and $1200 \mu \mu \mathrm{f}$. These values ate based on a coil Q of 60 , the measured Q of the coil specifiod. The larger capacitor cat(rulates to $1350 \mu \mu$ i. but 1200$) \mu \mu$ f. is chase cnough. If it is derided to eliminate one crestal filter, or to instatl it later, you cam simply add a jumper where the filter terminals would have bern.

It is worthwhile to use as good a first i.f. tube

Fig. 5-59 - This i.f. amplifier nses cascaded band-pass crystal filters at 2.2 Mc. The filters are at the left of the chassis. Moving from left to right near the front of the chassis. the tubes are 6 Allo i.f., 613 J 6 i .f., two 12 AL 7 detector

 on the top of the chassia rum to the s meter.
 audio volume, b.for, pitch and aroaker/headphomes switche The b, for. Irimmer shaft is in fromt of the 608.
as possible, because if the gatin ahead of this stage isn't high congh there can be some degrading of the ower-all noise figure. This js the reason at 6AHt is used in the first i.f, stage instemat of a GBJG. Siane the selectivity has abready beron detemaned by the ersatal filter(s), there is no nered for additional selectivity the the if. amplifier, and a single thand cireuit is used for compling betwern first and serond i.f. stages. The switeh that shifts the signal to either of the detectors, \check{S}_{3}, also switehes the b.i.o. on (N_{3}), seleets the output (Nabe $^{\prime}$), and shilts the aw, the "hang" trpe for heterodyne reception to the mone conventional type for atm. (x) (x) .

In the "hang" a.v.e. circuit, an incoming signal will be rectified by $V_{4 a}$ and develop a voltage ateross the b. k -megohm resistor. This voltage is applied to the gride of $V_{\text {ab }}$. A voltage is atso doreloped arross the fogl load resistor of las: this is the voltage used for at.v.e. control. Through $\mathrm{I}_{5 k}$, the as.e. voltage is used to (harge up, the 0,0:- - l. (atpacitor in the a.v.e. line; this can be done quidk! becanse l'sus has relatively little
resistance. When the signal is removed, the only discharge path for the 0.0is- μ l. wapator is through Vab. l3y virtue of the $0.1-\mu \mathrm{f}$. capacitor arros the 6,8 -megohm load for $V_{4 A}$, $\mathrm{V}_{4 \mathrm{~B}}$ will remain at cut-off potential for a motiecable portion of a serond, and the a.v.e. will "hang" at a given value until ${ }^{4}$ an beromes conductive and starts to discharge the 0.(0i- μ I. "apareitor,

In the a.v.e. cirenit, switch sion turns the a.v.e. on or off, sea opens the s-meter cirenit when the as.e.e. isn't used, and sere takes the cathode return off the gain control so that the s-meter reading isn't abferted by the gatin setting. The s-meter ritrouit meters the voltage differenere between a reference and the cathode voltage of an it.v.e.eontrolled stage. It helps to show which sigmats are stronger when a.v.e. is being used. If you have a signal generator som can calibrate the meter in dh. ahove some arbitrare level. With the constants shown, the moter has a range of about (0 dh. The no-signal point will be lower on atm. that on s.s.b. bey a few divisions, berause of eontamepotential effect in the hang-a.v.e. cirenit.

Caparitances in μ f. unless otherwise noted, limiators are $1 / 2$ watt unhess otherwise noted.

 wide at - 6ill), (Iyeon Eiastern *"ype 2.2 Morled 1.シ9-(P).

FH2-2.215- Me, hamd-pass cryatal tilter. 220 cyeless wide at -6 dh. (IIycon I'datcro 'l'ype 2.2 Model 1.59-101).

JI - Photio jark.
J_{1} throurh l_{4} - $36-61-\mu h_{2}$, adjustable roils (North Hills 'Tybe 1201' coil mounted in North Hills S. 120 (hiold can).

* Hyeon Viastern. Inc., $\overline{-j}$ ('ambridge P'arkway, Cambridge 4:2, Mass.
 3011 stork).
 3011 stoek). $1 / 8$ inch between $l .4$ abd $/ 4$.
 turns removed.
$\mathrm{X}_{1}-0-200$ mieroanmeter ('I'riplrtt Dodel 32こ.-P1.),

s_{1} - Two-pole 2 -position $2-$ soction rotary switeh (Centralab P' 1 - 31 sections on PA. 301 assembly).
S_{2} - Three-pole 2-position rotary switch (Centralab) P1-100:).
S_{3} —Six-pole (5 used) 2-position 2-section rotary switeh (Centralab PA-LOI9), Ser l'igs o-6l.

Fig. 5.6I - Schematic diagram of the audio portion of the amplifier.
J_{2} - () men -cirnuit phone jath.
J_{3} - Phono jack.
Sh-see Fig. 3.
 tion is conventional, with the exereption of the threeposition switeh sis, which permits feeding output to headphones, loudspeaker or both. This is a convenience when visitors are in the shack. The circuit is shown for low-impedance headphones that work at voice-coil impedance level: a constructor with high-impedance phones might take the headphone output from the plate of the

Construction

The chassis is an $8 \times 17 \times 3$-inch aluminum one, and the panel is a standard relay rack panel 7 inches high. The panel is held to the chassis by the mounting muts of the switehes and potentiometers; the shaft bushing of the Hammarlund HF-15N b, fo. caparitor isn't long mough to be used in this way, and eonsequently a clearanece hole is required in the panel large enough to clear the nut that holds the capacitor to the chassis. Fig. 5 -62 shows that eeramie switehes were used in this unit; there is no need for them, and the captions show phenolie switehes sperefied. Coramic capacitors can the used for any of the values up to $0.01 \mu \mathrm{f}$, with the exeretion of those associated with the b.f.o., where silvered mica and air capacitors are reoommended. The $150(1-\mu \mu \mathrm{f}$. eaparitors shunting the i.f. coils can be mica, since the circuits aren't sharp enongh to justify silvered mica.

Figs, 5-60 and 5-6i show that a number of shielded leads are used, in the audio between tubes and switches and for some of the other keads. Artually, the shielded leads in the audio rircuit are pieces of coasial line; this is done to carry the grounds back to the audio tubes and not depend upon the chassis for a return. In some cases this latter procedure can introduce a.e. hum when one side of the heaters is grounded as in this case. The other shielded wires are inchuded to minimize the chances for feedback and b.f.o. leakage into the "front end." A shield partition masks the input tube and s_{1} from the rest of the amplifier; this is done to knock down some slight
S_{4} - Two-mole 3-pmition rotary switch (Centralab
 watt- (Stancor A-3822).
b.f.o. encrgy that otherwise might leak into the grid of the first tube.

Most of the remainder of the unit follows standard practioes and requires no elaboration. The b.f.o. coil, L_{8} and L_{99}, is supported hy its leads on a long tie point. The ItNO- $\mu \mu \mathrm{l}$. caparitor shown shunting the It() $-\mu \mu \mathrm{f}$. trimmer is made up) of two bi80- and one $17-\mu \mu \mathrm{f}$, silvered mica cat pacitors; with tolorames ruming the way they do you may have to use something other than a 17- $\mu \mu$ f. capacitor to bring the b.f.o. close emough to 2.215 Me. to be set by the Hammarlund MAP'C-1 0 (trimmer. The $15-\mu \mu$ f. hifor, pand control tumes ower more than 8 ke ., and some buikders might want to pull off a plate or so to bring this range down to about of ke , although the tuning rate is quite adequate.

The power-supply repuirements are 95 ma . at around 280 volts for the plates, a few ma. at regulated +105 (from a VR tube), $31 / 4$ amperes at 6.3 volts for the heaters, and -15 volts at negligible current for one terminal of $\mathrm{S}_{3 \mathrm{E}}$ (Fig. j-61). The latter voltage ban be obtained from the same power transformer through a I-V rectifior and an $B C^{\prime}$ filter.

Alignment

There is nothing ummsual about the alignment of the amplifier. If you have a signal gemerator (or grid-dip) meter) you can use the output tw tume the cireuits L_{2} through L_{5} close to 2.215 Me. This portion of the amplifier is broad, so if you get in the vicinity of 2.21 . Me, you will be able to hear a signal passed through the cerystal filters, after which you can again peak the coils, The a.v.e. cireut can be aligned initially beonneeting a voltmeter from ground to the cold ends of L_{6} and L_{7}, after which the S meter will serve as an indicator. It will require some further juggling, which will be described later. The b.f.o. is brought into tune with the $100-\mu \mu \mathrm{f}$. trimmer; if you can't hit because the silvered-mica eapacitors are at the edges of tolerance you may have to add capacitance or else remove a turn from L_{8}. If you have a v.t.v.m. and r.f. probe, the

Fig, 5-62 - The andio output transformer is mounted on the side wall of the chassis, and the rear wall of the chassis has the input and output jacks, the power phug and the s-meter zero set. Audio leads between limiter and andio stage and panel controls are carried in small coaxial cable. The shicld at the left hamd side of the chasis is held in place by the mounting serews of the shimld can.
voltage at the grid of l'za should be adjusted to about 5 volts peak, by changing the value of the 22K resistor between S_{31} and L_{99}.

With a steady signal coming through the amplifier, its amplitude should be adjusted to give about -6 volts at the grid of V_{413}. You will need a v.t.v.m. for this joh, Then measure the voltage at the cathode of $l_{5 B}$ and detume L_{7} until it gives a reading of about 40 per cent of the other reading, or $21 / 2$ volts. Don't try to measure the voltage on the a.v.e. line, because even the high input resistance of the v.t.v.m. (11 megohms) will impair the a.v.e. performance. When you get the a.v.e. completely aligned, as mentioned a little later, L_{6} will be peaked for maximum signal through $V_{4 A}$ and for something less than this through $V_{5 A}$.

The i.f. should now be in a condition suitablefor the reception of signals, but it requires at "front end." The NC-300 can be used, Deceause it has a first i.f. of 2.215 Mc , or you cou build or revise a converter for the job. Lise a kength of R(i-59)/ U to connect from J_{1} to the plate of the mixer tube, with a $100-\mu \mu f$. caparitor betwern plate and inside conductor of the coas to avoid short-circuiting the plate supply in the receiver. If a home-built converter is used, the plate voltage to the mixer can be fed through L_{1}, by lifting the bottom of L_{1} and feeding the plate voltage to it through a 1000 -ohm resistor. Bypass the bottom of L_{1} with a $0.01-\mu$ l $^{\prime}$, capacitor to chassis.
Tune around until you find a signal or, better yet, feed in a stable signal from a signal generator or lo0-ke. erystal-oscillator harmonic. Peak L_{2} for maximum signal: then "rock" L_{1} and the 3 -to- $30-\mu \mu \mathrm{f}$, trimmer for maximum signal. If you are using both filters, do these jolss with both filters switehed in. You should now be able to
thene around the bands and get aceristomed to the i.f. and its operation. You will need a slow tuning rate when the sharp filter is used, because the signals come in and out rather fast with this much seleretivity. You also need at slow tuning rate with s.s.b. reception, as any onerator knows. lou can get a line on the a.v.e. action by tuming in at few code signals. On slow sonding around 12 or 15 words a minute the s moter will start to drop batk betwern words, while at speeds of 20 w.p.m. or more the s meter should "hang" steady and only follow fading. If it doesn't hang in long enough, detume L_{7} a little.

As you familiarize yourself with the operation of the amplifier, you maty notice that the broad filter "haratereristic isn't as "smooth" as one might expert for a band-pass filter. (lf it is, it's just blind luck.) You won't notice this in operating in a ham land; it will show up when you tume slowly through a steady medium-strength signal (as from a loo-ke. cabibration oscillator harmonie) with the selertivity in Broab, the at., e. on, S_{3} in the a.m. position and with no :antemna on the reeriver front end. As you thene slowly through the signal, the is meter may rise to a maximum, fall off slightly, rise again and then fall off. The slight falling off at the center may be $\overline{5} \mathrm{db}$. or so; it hat no obvious effert on signals, but it indicates that the filter isn't looking into and back to the correct terminations. When the renter dip (or dips) is minimized, the terminations will be correct. You do this be tuming to the dip and giving the 3 - to $30-\mu \mu \mathrm{f}$, capacitor and L_{1} both a slight adjustment to make the S meter rise slightly. Now tume across the signal again and see if the dip has been reduced any. By trying this several times you will he able to bring the "ripple" at the top of the pass hand of the filter down to a low value.

Conelrad

Effective January 2, 1957, the "Conelrad" rules became part of the amateur regulations. Essentially, compliance with the rules consists of monitoring a broadeast station - standard band, f.m. or TV - either contimuously or at intervals not exceeding ten minutos, during poriods in which the amateur transmitter is in use. (hn recoipt of a Conelrad Alert all transmitting must cease, excopt as anthorized in 12.193 and 12.191 of the FCC' regulat ions.

The existence of an Alert may be determined as outlined in $12.192(b)$ (3). (operation during hours when local broadeast stations are not on the air will require tming through the standard boadeast band to determine if operation appears to be normad. The presence of any U. S. broad ast stations on frequencies wher than 6 ilo and 1210 ke. indicates nomal operation.

Perhaps the simplest form of compliance is bey means of a simple eonverter working into the i.f. amplifer of the regular station receiver. A typical rireut is shown in Fig. 5-6:3. The converter can be built in a small metal case and monted at a convenient spot on the recerver so that stan be closed at regular intervals for checking the

Fig. 3-6.3-Converter cirenit for monitoring loradeast stations in comnection with a commmatrations receiver. Capacitances are in μ f.
Cia, Cib - 'I wo-gang broadeast capacitor, oseillator sertion acoording to intermediate fromeney to tre used.
I. 1 - Loop stick.
' T_{1} - B.e. oscillator transformer (lor i.f. to lee used).
T_{2} - If. coil and trimmer. This can be taken from an i.f. transformer, or the transformer can be used intact. the output being taken from the sece onlary.
Note: If only one broadeast station is to lue monitored CiA and Cib can be padder-type capacitors (or a combination of parding and fixed capacitance as required) adjusted for the desired siation and intermediate- frequencies. Wher types of converter tuhes may be suhstituted if desired.

Power for the unit can be tahern from the reativers "arowsiory" sockro.
broadeast station. As an alternative, the converter can be mounted out of the way at the rear of the recoiver and the switch leads brought out to a convenient spot.

A "FAIL-PROOF" CONELRAD ALARM

The Conelrad alam shown in Fig, 5-64 uses a small I3C receriver to furnish both audible and visible indications of a Conelrad Alert (the rereiver may still be used for normal broadeast recoption).

With the receiver tuned to a broadeast carrier and the alam riveuit in operation, a green "safe" light indicates that all is well on the broadeast band. When the broadeast carrier goes off, as it will in a Conclrad Radio Alert, the green light goes out, a red "danger" light comes on, a buzzer sounds, and the $11 \overline{5}$-volt ate line to the transmitter is apened up. In other words, the devire puts you off the air! The audible and visible warnings also are given in the event of a component failure in either the control receiver or the alarm. Jeven the disappearane of the 11% volt supply will not go munticed, since in that case the green "saffe" light will go ont, indicating that the alarm is inoproative.

The alarm requires a minimum of 0.7 volts (negrative) from the receiver's a.v.e. cirenit for dependable operation. Rereivers having one stage of i.f. amplification will develop at least this much ad.v.c. voltage when tuned to a signal of reasonable strength. But wateh out for the "ruperhets" that do not have an i.f. stage; they are of little value as a source of eontrol voltage for the alarm. You can usually find out if the refedver hat an i.f. stage by looking at the tube list pasted on either the chassis or the inside of the (abinet.

The circuit of the alarm is shown in section B, Fig. or-it. Sertion A is a typical a.v.c.-detectorfirst audio stage of an a.c--dic. receiver, and shows how the alarm circuit is tied into a rereiver.

Although a $12.1 \mathrm{~V}^{\prime} \mathrm{B}$ is shown as the detector, other tubes maty be used in some receivers. However, the basie dircuit will he the same or very similar.

Finding the a.v.e. line in the jumble beneath the chassis of the ordinary a.e.-d.e. receiver is not always casy. Here are a fer hints:

Using section A, Fig. 5-64, as a guide, locate the detector tube socket. Trane out the leads going to the serondary of the last i.f. transformer, r_{1}. This transformer usually will be adjacent to the detector tube. The lower end of the secondary winding will be connected to several different resistors, one of these being the diode-load filter resistor (approximately 50 K in most eircuits) and another the as.v. filter resistor, R_{1}. The value of the latter resistor is ordinatily above one megohm. Trace through k_{1} in the direction of the arow (Fig. $\overline{\text { b-fib }}$), antil vou locate the fairly high

Fig. 5.64 - (ircuit of the Conelral alarm (B) connected to the a.v.c. circuit (A) of a typical a.c-d.c. broalcast receiver. Resistors are $1 / 2$ watt miness otherwise sperificd. C, K_{t} and T_{1} in section I are components in the broadrast receriver.
 $12,1_{3}-6$ volt pilot lamp, \o. 1:.
h_{1} - D.p.lt. sensitive relay, 5 (日N-ohum coil, 5 amp. contact (Potter \mathbb{N} Brumfield CBIID).
H_{2} - 5 -megohm potentismeter.

Now you have the a.v.e line clearly identified and the tap for the alarm cirenit maty he made.

Notice that the cathode of V_{1} and the cold side of C_{1} are both returned to a common bus or -13 line, not direetly to the chassis. Also ohserve that the return for the alame circuit is made to the common bus in the receiver, not to the chassis of the set. Do not ground this lead to the chassuis or connert it to any exposed metal partw. If there is any difficulty in locating the common bus in the vicinity of the detector stage, wherk bark from the negative side of the power-supply filter raparitors, as this point is always attached to the rommon bus.

The monitor should be built in an insulated box of some kind and not in a metal case. The box can be made of plywood, or a bakelite instrument rase (e.g., ICA type 8202), The bakelite case is ideal for the application, but it must be handled with care during construetion, to avoid scratching, chipping, or breakage. Ihe espercially careful when drilling large hotes such as those used in mounting the pilot-lamp assemblies and switches, hecause a large drill temde to hind and crack the case.
S_{2} - Momentary-contart switch (Switcheraft 101).
T_{2} - Replacement-lype power tramsformer. I 50 volts, 2.5 ma; 6.3 volts, 0.5 amp. (Nerit P. 3016 or equivalent).

Testing and Operating

The chances are pretty good that right after the receiver and the monitor have been turned on the red lamp will light and - if you haven't had the foresight to open st to prevent the noise the buzzer will sound. Tune the reeciver to at broudeast station and see if the red light goes out and the green light comes on. If this happens, Wose sa and vou're all set for (Conelrad compliance. If the "salfe" light does not come on, tune aromed for a signal strong enough to aetuate the alarm. Should the signal of greatest apparent strength fail to trigger the monitor, leave the rereiver tuned to this signal and then momentarily press s.e. The alarm should now lock on "sate," provided the a.v.e, circuit delivers 0.7 volt or more to 5 as.

The only d.e. measurements of any consequence that need br made in checking through the alarm circuit are the output voltage of the power supply and the voltage at the cathode of Fens. The proper voltages at these two points are given on the cireuit diagram. If the alarm fails to respond properly, it may be advisable to cherek the at,v.e, voltage with a v.t.v.m.

A Transistorized Q Multiplier

A "Q multiplie" is an clectronie deviec that horsts the Q of a thed circuit many time beyond
its normal value. In this condition the single luned areuit has much greater solectivity than

 in any comsonient spont en or aromed the requiser．
normal，and it asa ber utilized to rojeed or amplify
 thle versions of the（ - －multiplien cirenit．Int the transistorizod（ multiplior shown in loigs，is（ib）
 is very complet．

Circuit and Theory

L＇arallel－tuned cirenits have beren used for wars as＂suck－out＂trat＂irentits．I＇roperly complizes ： parallel－tumed virenit loosely to at varumbinaly ：mplifier stage，it will be fond that the amplifier stage has no gatin at the freduemer to which the trap eirent is thened．The additional thmed rimenit pats at＂noteh＂in the response of ther amplifier． The primeiple is need in＇TV and other amplifiers to minimize response to a narow band of lre－ （queneies．lnereasing the（ 8 of the trap）（inenit

 combinal in one small Winibos．The single transistor is vinible near the top right carner．
redueres the width of the rejeetion noteth．
T’he 1 ratsistorized（！multiplior makes use of the atove elleret for its operation，Atomed rimetit is matle regonerative fo iucorease its（ ℓ athe is
 ing the fredneney of the regenerative ciratit，the sharp motela can be moved atront aleross the pass－ bathel of the reecever．The width of the noteh is rhanged by eontrolling the amount of regen－ eqation．
．It homgh it serms paratoxional．the transistor－ i\％ed（）multiplier with no change in cironitry will atoo promit＂preaking＂an incoming signal the Way a vacomm－t ule（）mult iplier cloces＇The mode of opreation is selected ly a mblustment of the regemeration control，athd this then usually re－ quires at slight readjusinuent of the frequenery control．The peaking refoet is mot quito as pro－ monmerd as the moteh．hut it is still adequate to give faidly gond siugle－sigual rew．reception with a rereiver of ot herwise inaderpate selecetivity．

The regremerative eimenit builds up the signat amod lereds it tatek to the amplifier at a higher lever atul in the proper phase to add to the original signal，The noteh elfee deswribed earlior works in at similat mammer exerept that the tuming of the rexemberative circoit is surb that it leerds betek the shrat ont of phase．

The sotermatio diagemm of the（）multiplier is

r゙ig．B－fon－（inquit diantam of the 45．5．Ke tramsi－turized Q multipliar．Unlers othrewise indiented．capariatancreare in $\mu \mu$ f．， ravi－lantere are in ohme．resiotors are 1_{2} wall．
（．1－ $1 \bar{\pi}-\mu \mu \mathrm{f}$ ．sariabla，caparitar （Hammarhund｜｜リ゙・ $\overline{5}$ ）．
 coil（Vorth Hills low． Sorth Ililhs lilcuetric Co．． Mistoola．1．Y．）
 roil（Norih IIIls I2（0－J）．
 si＝tor．
 58 I valike．
coupling from the recoiver to the Q multiplier, and C_{4} is required to prevent short-rireuiting the reciver's plate supply. The multiplier proper consists of the tunable cireuit $C_{1} C_{3} C_{2}$ comnected to a transistor in the collector-tuned eommonbase oscillator circuit using caparitive feedback via C_{2}. Regeneration is controlled by varying the d.e. operating voltage through dropping resistor R_{1}.

Layout

The unit and power supply are built in a smatl aluminum " Minibox" measuring $5 \times 21 / 4 \times 21 / 4$ inches (Bud ('l'-300t) and the operating controls are monnted on a lucite or aluminum subpanel. All parts of the unit are built on one half of the box. This feature not only simplifies construetion but makes a battery change a simple job, even if this is required only a couple of times a year.

All major components, such as the two slugtuned coils, tie point, battery holder, regeneration and tuning controls, are mounted directly on the box and subpanel. The remaining resistors, (apacitors and the single transistor are supported by their comertions to the above parts.

The two slug-tuned coils, L_{1} and L_{2}, we rentered on the box and spaced one inch apart on centers, ()perating cont rok (${ }_{1}$ and R_{1} are placed $11 / 4$ inthes from the ends of the subpanel and rentered. The tie point mounts directly behind tuning control \boldsymbol{C}_{1}.

Power for the unit is supplied by four pernlight rells (type 912) which are mount ed in the battery holder (Lafayette Radio ('o. Stock No. MS-170) directly behind regeneration control R_{1}. Total drain on the battery never exereds 0.2 ma.

Connertion to the recelver is made with a threefoot length of lati-58/L cable brought through the rear wall of the Dinibox. A rubber grommet should be placed in the hole to prevent chafing of the cable insulation.

When soldering the transistor in plare, be sure to take the usual precaut ions against heat damage.

Alignment

After completing the wiring (and double-ehecking it) comect the open and of the three-foot cable to the plate eirenit of the reederer mixer tube. This can be done in a permanent fashion by soldering the inner conductor of the eable to the plate pin on the tube socket or any point that is comerted direetly to this pin, and by soldering the shield to any convenient nearly ground point. If you are one of those people who is afraid to take the bottom plate off his receiver, and you have a receiver with ortal tubes, a "chicken connection" can be made by removing the mixer tube and wrapping a short piece of small wire around the plate pin. Reinsert the tule in its socket and solder the center conductor of the coas to the small wire coming from the plate pin. Now ground the eoas shield to the receiver chassis. It is important to keep the lead from the tube pin to the coax as short as possible, to prevent stray pickup.

Cherk the sthematic diagram of the receciver for help in locating the above receiver comecttions.

Turn on the receiver and tune in a signal strong enough to give an S-meter reading. Any decent signal on the broadeast band will do. Next, tune the slug on L_{1} until the signal peaks up. You are tuning ont the reatance of the connecting cable, and effortively peaking up the i.f. If the receiver has mo i meter, use an are, voltmeter arross the andio output. When this step has beren sucerssfully completed the () multiplier is property connerted to the receiver and when switehed to "off" will not affeet normal receiver" operation.
The next step is to bring the multiplier into oseillation, and to adjust its frequeney to a useful range. Set the tuning control to half capawity and advance the regeneration control to about half open. This latter movement also turns the power on. Tune the receiver to a clear spot and set ther receiver b.fo. to the center of the pass-band. Now adjust the slug of L, 2 . The multiphier should be oseillating, and somewhere in the adjustment of L_{2} a beat note will the heard from the receiver. 'This indieates the frequency of oscillation is somewhere on or near the i.f. Swing this into zero beat with the b,f.o.

Final Adjustment

One of the best ways to make final alignment is to simulate an unwanted heterodyne in the receiver and adjust the () multiplier for maximum attemuation of the unwanted signal. To do this, tume in a moderately weak signal with the b.f.o. on. A broadeast station received with the antenna disconnerted will do. The b.f.o, will beat with the incoming signal, producing an andio tone. Adjust the b.f.o. for at tone of about 1 ks . or so.

Back off on control R_{1} until the oscillator becomes regenerative, By altemately adjusting the tuning control, C_{1}, and the regeneration control, R_{1}, a point can be found where the audio tone disappears, or at least is attemuted. Some slight retouching of L_{2} may have to be done in the above aligmment, since the movement of any one control tends to "pull" the others. The optimum situation is to have the thming control c_{1}^{\prime} set at ahout half caparity when the noteh is in the center of the passband.

If you happen to get a super active tamsistor and the regeneration control does not have the range to stop oscillator action, inerease the value of the series resistor $R 2$. Conversely, if the unit fails to oseillate, reduee the value of R_{2}.

When making the above adjustments, you should notice that the andio tone can be peaked as well as nulled. If it can not be peaked, a little more practice with the controls should produce this condition. In the unit shown here, the best null was produced with the regeneration control turned only a few degrees. Optimum peak position was obtained with the regencration eontrol almost at the point of owillation.

CHAPTER 6

High-Frequency Transmitters

The principal requirements to be met in c.w. transmitters for the amateur bands between 1.8 and 30 Nc . are that the frequency must he as stable as good pratice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or reduced to the point where they do not cause interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. A simple oscillator with satisfartory frequency stability may be used as a transmitter at the lower frequencies, as indieated in Fig. 6-1A, but the power output obtainable is, small. As a general rule, the output of the oscillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, ats shown in 13 .

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifier stage to indieate that its primary purpose is one of isolation, rather than power gain.

Because it becomes increasingly difficult to maintain owillator frequency stability as the frequency is inereased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exeiting frequency. . 1 doubler is a multiplier that gives output at twice the exciting frepurnery; a tripler multiplies the expiting frequeney by three, etc. From the viewpoint of any partieular stage in a transmitter, the preceding stage is its driver.

As it general rule, frequeney multipliers should not be used to feed the antenma system direetly, but should feed a straight amplifier which, in turn, feeds the antema system, as shown in Fig. 1-C, D and le. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply.

Good frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency), A self-controlled oscillator or v.f.o. (variable-frequeney oscillator) may be tuned to any frequeney with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a erystal oseillator.

In all types of transmitter stages, sereen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exater, the problem of harmonie reduction is made casier. Most satisfactory oseillator cirenits use a sereen-grid tube.

Fif, 6-1- Block diagrams showing typical combinations of oseillator and amplifiers and power-supply arrangements for transmitters, A wide selection is mossible, depending upon the number of bands in which nperation is desired and the power output.

Oscillators

CRYSTAL OSCILLATORS

The frequency of at erystal-emitrolled oscillator is held constant to a high degree of areuraley by the use of a quart\% erystal. The frequency dopends almost entirely on the dimensions of the erystal (essentially its thickness); other circuit values have comparatively negligible effect. However, the power obtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amomet of ieedback reguired to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent deponding upon the way the aystal is cut. Fxatation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplest crystal-oscillator circuit is shown 111 Fig . 6 -2 A. An engivalent is shown at 13 . It is a Coppitts circuit (sere chapter on varmum-tuln. primeiples) with the tube tapped across part of the thened cirenit. The crystal has beren repaced ly its equivalent - a series-tuned circuit $L_{1} \mathrm{C}_{4}$. (See chapter on deectrival haws and circuits.) ('5 and C_{6} are the tulve grid-eathode and plater-
circuit in the aetual plate circuit. Athough the uscillator itself is not cotirely independent of adjnstments made in the plate tank cirenit when the latter is tuned near the fundamental freyueney of the erystal, the cffects can be satisfactorily minimized he proper chowe of the oscillator tube.
The circuit of Fig. (i-3A is known as the Tritot. The oseillator cirruit is that of Fig. 66-20. Excitation is cont rolled by adjustment of the tank $L_{1} \mathrm{C}_{1}$. which should have a low $L_{\text {/ }} /($ ratio, and be tuned ronsiderably to the high-frefuener side of the erystal frequeney (atproximately 5 . Ace. for a 3.5-Ale, ersstal) to prevent over-excitation and high erystal current, (hoce the proper adjustment for average erystals has beon found, ci may be replaced with a fixed caparitor of equal value.

The oscillator eirenit of lige :3-13 is that of Fig. (i-2A. Wexcitation is controlled by ('g.
The oscillator of the grid-plate circuit of Pig. (6-3C ') is the same as that of Fig. 6-3313. cxerept that the ground point has loeen moved from the cathode to the plate of the ascillator (in other words. to the serecon of the tuber). Fxatitation is adjusten by proper proportioning of C_{6} and C_{7}.

When most types of tulles ane used in the circuits of Pige (6-3, oscillation will stop, when the output plate circuit is tuned to the erystal fre-

cathode capacitances, mespectively. In hest practical form. ('5 or C'b, or both, would be amgmented bex external capacitors from grid to cathode and plate to cathede so that fordback romald be adjusted properly.

The circuit shown in Fig. 1 -2C is the equivalent of the tuned-grid tuned-plate cireuit disensed in the chapter on vacumm-tube principles, the cerstal replaceing the tuned grid arenit

The most commonly used erystal-oscillator eircuits are based on onie or the other of these two simple types, and are shown in Fig. 6-3. Although these circuits are some what more complicated, they combine the functions of oscillator and anplifier or frequeney multiplier in a single tube. In all of these rimuits, the screen of a totrode or pentode is used as the plate in at triode oscillator. Power output is taken from an separate tuned tamk
fueney, and it is meressary to operate with the plate tank circuit eritionlly detuned for maximum output with stability. Howerer, when the
 with proper abljustment of exitation, it is possible to tume to the erystal frequener withont stopping oscillation. The plate tuning charateristic should then tee similar to Fig. 6-4. These tubes also operate with less cerstal curvent than most other types for a given power output, and lass fredueney change oecurs when the plate circuit is tuned through the erystal frequenery (less than 25 (eveless at 3.5 Mc.).

Crystal current may be estimated by ohserving the relative brilliance of a 60 -mad dial hamp connerted in series with the ervistal. Current should be held to the minimum for satisfactory output by eareful adjustment of axditation. With the
operating voltages shown, satisfactory output should be obtained with erratal currents of 40 mat. wless.

In these cireuits, output may be obtained at multiples of the crystal froquenery her tuming the plate tank eirenit to the desired hammonic, the output dropping off, of course, at the higher har-

MODFIED PIERCE

Fig. 6.3- (iommonly-nsed erystal-romtrolled oseillator cirenits. Values are hose reeommencied for a $0 \mathrm{AC} \mathrm{A}^{7}$

 approx. $150-\mu \mu \mathrm{F}$, mica.
 -imgle-land lanh; 2.0-mul, variable for lwoband tank.
($: 3-$ Errecon bwasa $0.001-\mu$ f. dish coramic.

 100- 10 f. for : 5603.

(4 - Fixcitation-control rapacitor - 200 - $\mu \mu \mathrm{f}$. mida,
Cio - Ileater bypazz- $0.0901-\mu$ f. diak ceramic.
R_{1} - Crial leak - 0.1 meqohm, $1 / 2$ walt.
K_{2} - Scetn resistor - $17,0(0)$ ohms. I watt.
I_{1} - Exitation-control inductanee-3.s- Mc. erystats - approx. 1 hh.: T-Mc. erystals - approx. $2 \mu \mathrm{~h}$.
I_{2} - Ontputerircuil roil-single band:-3.5 Me. -
 -I μ h. I'wo-hand operation: 3 . N T Mc. -

monies. Lesperially for hamonic operation, a lewC plate tank rircuit is desirable.

For best performane with a bill it or sobia, the values givern under Fig. ($\mathrm{i}-3$ should I_{a}. Followed elosely. (Fior a disaussion of values for othere

VARIABLE-FREQUENCY OSCILLATORS

The fremueney of a v.f.o. depends contirely on the values of inductane and caparitance in the direuit. Therefore, it is neressary to take careful stejs to minimize changes in these values not under the control of the uperator. As examples, even the minute chames of dimensions with temperature, particularly those of the eoil, may result in a slow but moticrable change in frequency called drift. The effertive input capacitance of the oscillator tube, which must be commerted arross the circuit, changes with variations in elertrale voltages. This, in tum, caluses a change in the fregueney of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the osellator. and variations in the lome may refleer on the frequency: Very slight merehamieal movement of components may result in at shift in frequenes, and vibration can canse modulation.

V.F.O. Circuits

ligig. (i-5 shows the most commonly used rirruits. They are all designed to minimize the elferes mentioned above. All are similar to the arystal osciltators of Fig. 6 -3 in that the serem of a tetronde or pentode is used as the oseillator plate. The oscillating circuits in Figs, 6-is. 1 atul B are the Hartley tope: those in (${ }^{\prime}$ and II aro
 principles.) In the cireuits of A and $($, all of the abovermentioned efferts, except changes in inductancer are minimized by the use of a high-(? tank rimenit obtaimed though the use of large tank rapacitauces. Auy uncontrolled chauges in rapacitane thas become a very small percentage of the total cireuit caparitanere.

In the series-luned Colpitts eireuit of Fig. (i-ib) (sometimes (athed the (lapp riwuit), a highter) vicuit is uhatimed in a differot mather. Thee tabe is tapped across only a smatl portion of the osedlating tank direuit. resulting in very lowse compling betwern tube and cireuit. The tapsamporided by a sorios of threr capacitors arroses the eoil. In addlition, the tube capacitanes are shmoted hy large capacitors, so the efferts of the tube - fhanges in clecetrode voltages and loading - ate still further reduced. In contrast

Fig. 6.4- Plate tuning Wharacteristic of eircuite of Fig. 6.3 with preferred tyines (see lext). The plate-current dip at resomance broadens and is lese promounced when the circuit is loaded.
to the preceding circuits, the resulting tank rircuit has a high L / C ratio and thercfore the tank current is much lower than in the circuits using high-C tanks. As a result, it will usually be found that, other things being equal, drift will be less with the low- C circuit.

For best stability, the ratio of ('11 $+C_{12}$ to ('13 or C ${ }_{14}$ (which are usuatly equal) should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the ($)$ of the coil and the mutual conductance of the tube. If the circuit does not oscillate over the desired riange, a coil of higher (Q must be used or the caparitance of ('13 and C_{14} redued.

Load Isolation

In spite of the precautions already diseussed, the tuning of the output plate circuit will cause a
noticeable change in frequeney, particulanly in the region around resoname. This effert ran be reduced eonsiderably by designing the owillator for half the desired frequency and doubling fregueney in the output eirenit.

It is desirable, although not a strict necesity if detuning is recognized and taken into accomit, to apporach as clusely as possible the rondition where the adjustment of tuning controls in the transmitter, beyond the v.ion. frequeney control, will have negligible effert on the frequener. This can be dome ber substituting a fixer-tumed "irenit in the output of the oscillator, and adeling isolating stages whose tuming is fixed between the osedlator and the first tunable amplifier stage in the transmittor. Fig. 6 - 1 i shows such an arragement that gives good isolation. In the first stage,

 capacitaner and inductater, all toming eapacitanes and C_{13} and Cis should be doubled; for 7 Mre, they should be
cut in half.
C_{1} - Oseillator bandspreal tuming capacitor - 1.00 . ${ }_{\mu} \mu$ f. variable.
C: Output-circuit tank capacitor - lint- $\mu \mathrm{f}$.
(is- Oseillator tank capacitor -,$(0)-\mu \mu \mathrm{f}$. zero-tem-perature-coefficient mica.
C_{4} - Grid coupling eapacitor-100)- $\mu \mathrm{ff}$. zaro-tem-perature-coefficient mica.
C_{5} - Heater bypass - 0.001 - μ f. disk ceramic.
C: 6 - Sereen bypass - 0.001 - μ f. disk ceramic.
(:7 - Plate bypass - $0.001-\mu$ f. disk ecramic.
C_{8} - Output coupling capacitor -50 io $100-\mu \mu$ f. mica.
C_{9} - Oscillator tank capacitor - $680-\mu \mu \mathrm{f}$. zero-tem-perature-corfficient mira.
C_{10} - Oscillator tank capacitor - $0.002 \geqslant-\mu \mathrm{f}$, zero-

C.2-Ostillator bandspreal thaing capacitor-2.0-- $\mu \mu \mathrm{f}$, variable.
$\mathrm{C}_{13} \mathrm{Ci}_{14}$ - Tluberompling capacitor - $0.001-\mu$ f. zero-temprerature-crefficient mica.
$\mathrm{R}_{1}-47,000$ ohms, $1 / 2$ watt.
L. 1 - Oscillator tank coil - 1.3 ph., tapped about one-third-way from grounded end.
I: Ontput-circuit tank coil - $2 \boldsymbol{2} \mu \mathrm{~h}$.
I. 3 - Oceillator tank coil - $-1.3 \mu \mathrm{~h}$.

$\mathrm{RFC}_{1}-\underline{y}-\mathrm{mh}$. o() mal r.f. choke.

I_{2} - oASt, 5.63 or 6All required for feed-hatek capactitaces shown.
drives as $\overline{3}$ (it: bulfor amplifier whose input circuit is fixed-tuned to the approximate band of the vifo. output. For best isolation, it is important that the GCt dows not draw grid eurrent. The output of the vifor, or the cathore resistor of the efe th should be adjusted until the voltage areses the rathode resistor of the 60 (as mentsured with a high-resistanee d.r. voltmeter with an ref. (rhoke in the pesitive leat) is the same with or without exeitation from the v.f.o. L_{1} should be adjusied for most constant output from the 5763 over the band.

Chirp

In all of the circuits shown there will be some change of frequeney with changes in screen and phate voltages, and the use of regulated voltages for both msually is neressary. One of the most serious results of voltage instability ocurs if the oscillater is keyod, as it oftem is for break-in operation. Athough voltage regulation will sapply a steady voltane from the power supply and therefore is still desirable, it ramot alter the fact that the voltage on the tube must rise from zero when the key is upen, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp each time the key is opened or chesed.
eliminate changes in frequency cansed by movement of nearby objects, such as the operator's hand when tuning the v.f.o. The circuit of Pig. $6-51)$ lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have negligible effect on frequency because of the large shunting capactances. The grid, cuthode and ground leads to the tube can be hunched in a cable up to several feed lome.

Variable caparifors should hatve reramic insulation, good beating coutads and should preferably be of the double-bearing type, and fixed catpabitors should have zero temperature coedficient, The tube soeket also should have eerame insulation and spereial attention should be patal to the selection of the coil in the oseillating section.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the circuits under discussion should be as high as circumstances (usially spare) permit, since the losses, and therefore the heating, will be less. With rerommended care in rearad to other factors mentioned previously, most of the drift will originate in the coil. The roil shoutd be well spaced from shiedting :und other large metal surfaces, and be of a type that radiates heat well, such as a rommerrial air- unless the time constant in the kering rircuit is reduced to the point where the chirp lakes place so mpidly that the rereiving operator's eare cammot detert it. Unfortumatelyans explatined in tha rhapter on keving, a certaia minimum time constant is ner(ssary if key celicks are to be minimized. Therefore it is evident that the measwres meressary for the reduretion of

Fip, orn - Cironit of an isolating amplifier for use between v.for and firat tunable stage. All capacitances below 0.1011 μ f. are in $\mu \mu$ f, 111 resistors are $3 / 2$ watt. I_{1}, for the 3.5 - Me. hand. conti=ts of 93 turns $V_{0}, 36$ enam., $15 / 32$ inch long. $1 / 2$ inch diameter, chose-wound
 ceramis.
"harp athed elioks are in opposition, and a eompromise is neressury. For best keving chataeteristies. the oseillator should be allowed to run romtimumsly while a subsequent amplifier is keyed. Howerer, a keyod amplifier represents a widely variable load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keving pharacteristics may be little better than when the oscillator itedf is keyed. (see keying chater for other methods of hreak-in keying.)

Frequency Drift

Frequency drift is further reduced most casily by limiting the power input as much as pusithl. and by mounting the components of the tumed aircuit in a separate shielded compartment, so that they will be isolated from the dirent heat from tubes and resistors. The shieldine atso will
wound type, or should be wound tighty on a threaded eeramic form so that the dimensions will not change readily with temperature. The wire with which the eoil is wound should be as large as practimble, esperially in the high-C cireuits.

Mechanical Vibration

To eliminate mef hanical vibration, components should be mounted securely. I'articularly in the rirenit of Fig. 6-abl), the caparitor should preferably have small, thick plates and the coil braced. if necessary, to prevent the slightest mechanical movement. Wire comections between tank-cireuit componemt: should be as short as possible and flexible wire will have less tendeney to vibrate than solid wire. It is advisable to cushion the entire waillator unit by mounting on sponge ruhber or other shork mounting.

Tuning Characteristic

If the cirruit is oscillating, touching the grid of the tube or any part of the circuit connected to it will show a change in plate current. In tuning the phate output rirenit without load, the phate current will be relatively high until it is tuned near reananee where the plate current will dip to a low value, as illustrated in Fig. 6-1. When the output circuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not he lowded beyond the point where the dip is still recognizable.

Checking V.F.O. Stability

A v.f.o, should be cheaked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristies, final tests should be made with the complete transmitter in operation, Amost any v.f.o. will show signals of good quality and stability when it is running free and not connerted to a load. A well-isolated monitor is a nocessity. Perhaps the most conveniont, as well as one of the most satisfactory, woll-shieded monitoring arrangements is a receivor combined with a crystal oscillator, as shown in Fig, (i-7. (Sre "(rystal Oscillators," this chapter.) The (rystal frequency should lie in the band of the lowest frequency to be checked and in the fro quency range where it: harmonies will fall in the higher-frequeney hands. The receiver b.f.o. is thrned off and the vef.o. signal is tuned to beat with the signal from the reystal oscillator instead. In this way any receiver instahility caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in tha recoiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not
atfere the reliahility of the cherek. Most erystals have a sufficiontly-low temperature conffienont to give a check on drift as well as on chirp and signal quality if they are not overloaded.

Harmonics of the erystal may be used to beat with the transmitter signal when monitoring at the higher froquencies, Sine any chirp at the lower frequencios will be magnifiod at the higher frequencies, accurate checking ean best be done by monitoring at a harmonic.
The distance between the crystal oscillator and receiver should le adjusted to give a good beat betwen the crystal oscillator and the transmitter signal. When using harmonics of the crystal oscillator, it may be neressary to attach a piece

Fig. 6. $\bar{\sigma}$ - Setupfor cheching v.f.o. stahility. 'I'le receiver should be tuned preferably to a harmonic of the vilo. frequency, The crystal oncillator may operate some. where in the band in which the v.f.o. is operating. The receiver b.f.o, should be turned off.
of wire to the oseillator as an antenna to give sufficient signal in the recedver. Cherks may show that the stability is sufficiently good to permit oscillator keying at the lowrer frogurnedes, where break-in operation is of greater value. but that ehirp becomes objectionable at the higher frequeneias. If further improvement does not seem possible, it would be logical in this case to use oscillator keying at the lower frequencies and amplifier keving at the highor frequencies.

R.F. Power-Amplifier Tanks and Coupling

R.f. power amplifiers used in amatrur transmitters usually are operated under Class Conditions (sere chapter on vacuum-tube fundamertals). Fig. (i-10 shows a sereen-grid tube with the required tuned tank in its plate cirenit. Equivalent cathode connertions for a filamenttope tube are shown in Fig. (i-8 It is assumed that the tube is boing properly driven and that the various dectrode voltages are appropriate for Class C operation.

- PLATE TANK Q

The main objective, of course, is to deliver as much fundamental power as possible into a load. R. without exreeding the tube ratings. The load resistance l may l_{n} in the form of a transmission line to an antenna, or the grid circuit of another amplifier. A further objertive is to minimize the harmonie energy (alwaty genorated by a (lass (" amplifier) fed into the loard circuit. In attaining these objeetives, the (b of the tank cirentit is of importaner. When a load is roupled inductively, as in Fig, (i-1), the Q of the tank circuit will have an effert on the coefficient of roupling nero-
esary for proper loading of the amplitior. In respeect to all of these factors, a tank Q of 10 to 20 is usually romsidered optimum. A much lower Q will result in lese efficient operation of the amplifier tuhe, greater harmonic output, and greater difficulty in compling inductively to a lowd. A murh higher (Q will result in higher tank rourrent with inereased lose in the tank coil.

The d is determined (see chapter on electrical laws and (ireuits) by the L / C^{\prime} ratio and the load resistane at which the tube is operated. The tube load resistaner is related, in approximation, to

Fig. 6.8-Pilament centertap connections to be substituted in plate of cathode connertions shown in diagrams when filament type tubes are substituted. T_{1} is the filament transformer, Pilament ly-pasees, C: whould be 0.0011 enf. disk ceramic capacitors. If a self-biaking (cathode) resistor is used, it should be placed betwern the eenter tap and gromme.

Fig. (0-9- Chart showing plate tank capacitance required for a () of 10. To nse the chart, divide the tube plate voltage by the plate eurrent in milliamperes, seleet the vertieal line corresponding to the answer abtamed. Follow this vertiral lime to the diagonal lite for the band in question, and thence horizontally the left to read the rapacitance. lior a given ratio of platevoltage/plate corrent, dombling the capacitance shown doubles the 0 ete. When a split-stator raparione is used in a batanced cirruit, the capacitane of each section may be one half of the value given loy the chart.
the ratio of the d.e plate voltage to d.e. plate current at which the tube is operated.
'The amount of (' that will give a (ℓ of 10 or varions ratios is shown in Fig. (b-9), For a given phatr-voltale, blate-curpent ratio, the (α will vary diverotly as the tank rapacitance, twice the (abbubitatore doubles the Q ete. For the sitme Q, the rapacitathe of each sectuon of a split-stator capabitor in ab babaneed eirenit should be hatf the value shown.

These values of rapateitather include the oulput (atpatitaner (plate-rathode) of the amplifier tube. the input rapacitane (grid-cathode) of a following amplifiev tube if it is coupled eatuatively, and all other straty rapacitances. At the higher plato-voltage plate-current ratios, the rhart may show values of cappacitable, for the higher freguenoces, smabler than those attainable in pratelioe. In sumh a rase, atank (higher that 10 is unavoidable.

In low-power exeiter stages, where cilpanditive coupling is used, very low- (ℓ (ireuits, tuned only by the tube and strity cirouit eapacitances are
sometimes used for the purpose of "broadhanding' to avoid the necessity for retuning it stage arooss a band. Higher-order hamonies gencrated In such a stage can usuably be satisfactorily attenmated in the tank cireuil of the final output amplifier.

INDUCTIVE-LINK COUPLING

Coupling to Flat Coaxial Lines

When the loud R in lig. (6 - 10) A is located for convenioner at some distance from the anmplifier, or when maximum harmonic redaction is desimed, it is advisable to feed the power to the load through a low-impordaner coaxial rable. The shiobled eonstruetion of the eable prevents radiation and makos it possible to install the line in any romveniont mannor without danger of unwathed roupling to othor eireuits.

If the line is more than a small fratetion of a
 cod shombld be adjusted, hy a matrhing circuit if meressistre to mateh the impedane of the coable This reduers lossus in the eable and makes the compling adjustments at the trinsmitter independent of the wable lemgth. Matching reircuits for use betwern the cable and amother transmission line are disenssed in the chathter on tramsmission lines, while the matehing adjustments when the loat is the grid eirenit of it following amplifier are doseribed elsewhere in this rhapter.

Issuming that the cable is propery terminated, proper loading of the amplifier will be assured, using the eirenit of Fig. $\mathrm{f}-\mathrm{ILC}$, if
a) The pate tank reirenit has reasomably high value of $(\ell$. A value of 10 is usually suflieriont.
2) The inductance of the pick-up or link eoil is close to the optimum value for the fredueney and type of line used. The optimum eoil is one whose self-indurtanere is sum that its reatetance at the operating frequency is eepual to the charace-

Fig. 6-II-Inductive-link output coupling eirenits. C 1 - Plate tank eapacitor -see test and lïr. 6-9 for capacitance, Fig. fo-33 for voltage rating.
(:2 - Heater bonasi - 0.001- mf , disk ceramie.
 method of sereen supply. See section on serern considerations. Voltake rating same as plate voltage will lie safe under any condition.
C. - I'late bypass - 0.00l-mf. disk reramie or mica Voltage rating same as C.l, plus safety factor.
1.1 - I'o resonate at operating frequency with Ci. Sere IC: chart in miscedlaneoms-rlata chapter and inductance formula in electrical-laws chapter, or use INRI, Lightning Calculator,
I_{2} - Reactance equal to line impedance. See reactance chart and indnctance formula in electrical-laws chapter, or use IKRI, Lightning Calculator.
K - lepresenting load.

fig. 6-11 - Wish flat transmission lines power trantsfer is ohtained with looser eompling if the line inpmit is tumed to resonance. Ci and L_{1} shond resonate at the operating frequency. Sce table for maximum usable value of Ci. If circuit dons not resonate with maximum Ci or less, inductance of f_{1} must be increased, or added in series at L_{2}.
teristic impedance, Z_{0}, of the line.
3) It is possible to make the coupling between the tank and piek-up coils very tight.

The serond in this list is often hard to moet. Few manufactured link coils have adequate inductance even for coupling to a 50 -ohm line at low frequencies.

If the line is operating with a low s.w.r., the system shown in Fig. 6-11C will require tight coupling between the two coils. Since the secondary (pick-up coil) circuit is not resonatht, the leakage reactance of the pick-up coil will catuse some detuning of the amplifier tank eircuit. This detuning effect increases with increasing coupling, but is usually not serious. However, the amplifier tuning must be adjusted to resontace, as indieated by the plate-eurrent dip, each time the roupling is changert.

Capacitance in $\mu \mu$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit		
Frequency	Characteristic	Impedance of Line
Band	52	75
Mc.	ohms ${ }^{1}$	olims ${ }^{1}$
1.8	900	600
3.5	450	300
7	230	150
14	115	75
28	60	40
${ }^{1}$ Capae	values are	inum usable.

Notp: Inductance in circuit must be adjusted to resonate at operating frequency.

Tuned Coupling

The design difficultices of using "untuned" piek-up eoils mentioned abowe, ean be awoided by using a coupling circuit tuned to the oprating frequency. This eontributes additional sohertivity as well, and hence atids in the suppression of spurious radiations.

If the line is flat the input imperlance will be essentially resistive and equal to the Z_{0} of the line. With comaial catble, a circuit of reasomathle (d) can be obtained with prate ticable values of induetance and capacitanere connered in serias with the line's input terminals. Nuitabhe eireuits are given in Fige (6-11 at A and 13. The (o) of the coupling circuit often may be as low as 2 , whout munning into difficulty in getting aderquate eompling to a tank circuit of proper design. Larger values of (Q aun be used and will result in inmeated ease of coupling, but as the ($)$ is inereased the frequency range over which the eiredit will operate without readjustmont bromes smaller. It is usually good prantice, therrefore, to use a couplingcircuit () just low enongh to permit operation. over as murh of a banel as is nomatly used for a particular type of communication, without requiring retuning.

Capacitanere values for a $(0$ of 2 and line impedances of 52 and 75 ohms are given in the aceompanying table. These are the maximmm values that should be used. The induetanee in the seircuit should be adjusted to give rosonamee at the operating frequenos. If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance may be connected in series as shown in Fig. (i-113.

Characteristics

In practice, the amount of indurtance in the circuit should lee chosern so that, with somewhat loose coupling between L_{1} and the amplifior tank coil, the amplifier plate rurrent will increase when the variable capacitor, C_{1}, is tumed through the value of capacitance given by the table. The coupling between the two coils should then be increased until tho amplifier hoads normatly, without changing the setting of C_{1}. If the tratismission line is flat over the entire frepuency band under consideration, it should not be neressary to readjust C_{1} when changing frefuency, if the values given in the table are used. Howover, it is unlikely that the line antually will he fiat over such a range, so some readjustment of (1 may lo needed to compensate for changes in the input impedance of the line. If the input impedture variations are not large, (i may be usod as a loading control, no changes in the coupling betwern L_{1} and the tank eoil being noeressary.

The degree of coupling botween L_{1} and the amplifier tank coil will depend on the couplingcircuit (Q. With a Q of 2 , the coupling should be tight--emparable with the coupling that is typieal of "fixed-link" manufactured coils, With a swinging link it may be necessary to incrouse the Q of the coupling circuit in order to get suffieient power transfer. This can be done by increasing the L / C ration.

PI-SECTION OUTPUT TANK

A pi-sertion tank (rircuit may also bo used in coupling to an antema or tramsmission line, as shown in Fig. (i-12. The values of capacitance for ('1 and C's, and inductance for L_{1} for any values of tuixe load resistance and output load resistance may be calenatad from the formulas in the chajter on clectrical lans.

Frig. 6-12 - I'i-section output tank circuit.
(C_{1} - Input rapacitor, see text or Fig. 6-13) for react. anere Soltage rating should tre equal to d.c. mate boltage for $\begin{aligned} \text { mas.: doubla this value for }\end{aligned}$ plate modulation.
(iz-Ontpat raparitor. Sete text or lify, 6-1, for reactance, see text for whane rating.
(B_{3} - Ileater hig pata - (O.001- $\mu \mathrm{f}$, disk reramic.
(4-Screell hypas. See Fٌix. b-II).
(:5 - Pate lypass, see riz. 6-|II.
Cie- Plate boncking caparitor- $0.001-\mu$ f. dish ceramic or mira. Joltage rating same as Co.
I_{11} - See text or Fitis. 6-14 for reactance.
RIVCi - See later sedtion on r.f. chokes.
RFCX - 2..n-mh, receising type (esinential to reduce peak voltage acroos looth input and output capacitors).

Values of reactance for $\mathrm{C}_{1}, \mathrm{~L}_{1}$ and C_{2} may be taken directly from the charts of Figs, 6-13, 6-14 and $6-15$ if the output lond resistanee is 52 or $i 2$ ohms. It should be borne in mind that these ralues apply only where the output load is resistive, i.e, where the antematand line have locen matehed.

Output-Capacitor Ratings

The voltage rating of the output raparitor will depend upon the s.w.r. If the load is resistive. receiving-type air caparitors should be adequate for :mplifior input powers up to 1 kw , with plater modulation when feeding 52- or 72 -ohm bads. In obtaining the larger eapatitatees required for the lower frequencies, it is common practige to switch fixed capareitors in parallel with the varriable air catpatcitor. While the voltage rating of a mica or ceramic capacitor may not be exereded in a particular ease, capacitors of these thpes are limited in current-carrying eapacity. The type of rapacitor to be selected depends upon the frequency as well ats the amplitier power. Postage-stamp silver-miea (etparitors should bee adequate for amplifier inputs over the ratuge from about 70 watts at 28 Me. to 400 watts at 14 Me. athd lower. The larger mica capacitors (C.M-t5 (ease) having voltage ratings of 1200 and 2500 volts are wethally satisfactory for inputs varying fromabout 3 bol watts at 28 Me to 1 kw at $1+\mathrm{Mc}$. and lower. Because of these current limitations, particularly at the higher frequencies, it is ad-

PI-NETWORK DESIGN CHARTS FOR FEEDING 52- OR 72-OHM COAXIAL TRANSMISSION LINES

Fia. 6-13 - Reattance of input capacitor, C_{1}, as a funetion of tube load resistance, R_{1}, for pi networks.

Fig. 6.14 - Reartance of tanh coil, $I .1$, as a function of load resistance. R_{1}, for pi net works.

Fig, 6.15 - Reactance of Ioading capacitor, C_{2}, as a function of tube load resistance, \mathcal{R}_{1}, for pi networks.

Fig. 6-16- Multiband tuner cirrnits. In the unbalanced rircuit of $1 . C_{1}$ and C_{2} are sections of a single splitatator capacitor. In the balanced rircuit of D. the I wo split-stator capacitors are panged to a single control with an insulated shaft coupling hetween the two. In I). the two sections of L_{2} are wound on the same form. with the imer ends ronnected to C.2. In A. wach section of the caparitor shomid have a voltage rating the same $a=$ Fig. $6-3.3 \mathrm{~A}$. In [), Co should have a rating the same as Fix. (0-33II (or Fig. 6-33IV if the ferd syitem corre. sponds). Ca may have the rating of F ig. $6-33 \mathrm{E}$, so long as the rotor is not grounded or hypassed to ground.
visable to use as large an air capacitor as pracetieable, using the micas only at the lower frequendies. Broadeast-reediver replacement-type caparitors ean be obtaned very reasonably. They are available in triple units totaling about $1100 \mu \mu f$., or dual mins totaling about $900 \mu \mu$ f. Their insul lation should be sufficiont for inputs of sol watts or more. dir capacitors have the additional advantage that they are seldom permanently damaged by a voltage break-down.

Neutralizing with Pi Network

Sereen-grid amplifiers using a pi-network ontpat circuit may be noutralized by the system shown in Figs. 6-2:313 and C.

MULTIBAND TANK CIRCUITS

Multiband tank cireuits provide a conveniont means of covering several bands without the nered for changing coils. Tunors of this type consist essentially of two tank circuits, tumed simultaneously with a single control. In a tuncer designed to cover so through 10 moters. Gach rireuit has a sulficjently large capmeitance variation to assure an approximataly $2-t o-1$ frequeney range. Thus, one circuit is designod so that it covers :3.5 through 7.3 Mr ., whik the other covers 11 through 29,- Me.

A single-ended. or umbalimered. rireuit of this type is shown in Fig. 6 -16A. In principle, the reactance of the high-frequeney eoil, L_{2}, is smatl enough at the lower frequencies so that it can be largely negleoted, and C_{1} and C_{2} are in parallel arross L_{1}. Then the riteuit for low frequencies beromes that shown in fier ti-16ils.

At the high frequencies, the reatime of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequeney areuit is essontially that of Fig. ($\mathrm{i}-16 \mathrm{C}, \mathrm{La}$ boing tuned by C'1 and C_{2} in series.

In practice, the effert of one rimuit on the other (amot be neglected entirely: La tends to increase the effertive capacitanere of ('2, while L_{1} tends to decrease the effertive caparitaner of ri. 'lhis effect, however. is matively small. Pach circuit must rover somewhat more than a 2-to-1 frequency range to permit staggering the two ranges sufficiontly to avoid simultameous responses to a frequener in the low-frequene range, and one of its harmonirs lying in the range of the high-frectuener eireuit.

In ang "ircuit covering a frequeney range as great as 2 to 1 by capawitance alone, the eireuit Q must vary rather widely. If the circolit is designed for a (6 of 12 at 80 , the (0 will be 6 at 40 , 24 at 20 . 18 at 15 , and 12 at 10 meters. The inromese in tank current as a result of the inerease in () toward the low-fregueney end of the highfrequeney range may make it necessary to design the high-frequencer eoil with care to minimizo loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling coils for cach circuit.

Fig. (i-16i) shows a similar tank for balaneed cireuits. The same principles apply.

Serios or parallel feed may be used with either Dalaneed or unbabanced cireuits. In the balaned *ircuit of Fig, 6-1til), the serios feed point would be at the center of L_{1}, with an ref. choke in sulies.
(For further disonssion soc (2バT, July, baid.)

R.F. Amplifier-Tube Operating Conditions

In addition to proper tank and output-roupling circuits discused in the preceding seretions. an r.f. amplifier must be provided with suitable cheretrode voltages and an r.f. driving or excitat tion voltage (sce vacuum-tube chapter).

All r. f. amplifier tubes require a voltage to operate the filament or heater (ate. is usually permissible), and a positive d.e. voltage lotwern the plate and filament or cathode (plate woltage). Most tubes also require a negative d.e voltage (hiasing voltage) betweon control grid (lirid No. 1) and filament or athode. Nereon-grid
tuhes require in addition a pesitive voltage (seren voltage or (irid No. 2 voltage) between soreen and filament or athede.

Biasing and plate voltages mat he fod to the tube cither in sories with or in parallel with the assoriated r.f. tank circuit as diseussed in the dhapter on clectrical laws and rireuits.

It is important to remember that true pata. sereen or hasing voltage is the voltage betwern the partieuhar cheretrode and titament or cathode. Only when the eathode is directly grounded to the ehassis may the electrode-to-ehassis voltage
be taken as the truc voltare.
The required r.f. driving voltage is applied between grid and cathode.

Power Input and Plate Dissipation

Plate power input is the d.e. power input to the plate circuit (d.e. plate voltage \times d.r. plate current. Screen power input likewise is the d.e. sareen voltage \times the d.e. screen current .

Plate dissipation is the difference between the r.f. power delivered by the tube to its lowded plate tank circuit and the d.ce plate power input. The sareen, on the other hatnd, does not deliver any output power, and therefore its dissipation is the same as the screen power input.

TRANSMITTING-TUBE RATINGS

Tulse manufacturers sperify the maximum values that should be applied to the tubes the y produce. They also publish sets of typical operatting values that should result in good efficeney and normal tube life.

Maximum values for all of the most popular trinsmitting tules will be found in the tables of transmitting tubes in the last chapter. Also included are as many sets of typical operating values as space permits. Howerer, it is recommended that the amateur secure a tramemittingtube manual from the manulaturer of the tuloe or tuber he plans to use.

CCS and ICAS Ratings

The same transmitting tube may have different ratings depending upon the manner in which the tule is to be operated, and the serviee in which it is to be used. These difforent ratings are based primarily upon the heat that the tube can safely dissipate. Some types of opreation, such ase with grid or sereen modulation, are less efficient tham others, meaning that the tube must dissipate more heat. Wther types of operation, such as cow. or single-side-band phone are intermittent in nature, resulting in less average heating than in other modes where there is a centinuous power input to the tube during tramsmissions. There are also different ratings for tubes used in transmit-
 Continuous Commercial serviere), and for tubes that are to be used in transmitters that average only a few hours of daily operation (ICAN Intermittent Commercial and Amatear Sorvice). The latter are the ratings used by amateurs who wish to ohtain maximum output with reatsomabla tube life.

Maximum Ratings

Maximum ratings, where they differ from the values given under typical operating values, are not normally of significanere to the amaterer exeept in spercial applications. No singla maximum value should be used unless all other ratings can simultaneonsly be hedd within the maximum values. As ath example, a tube may have a maximum plate-voltage rating of $20(1)$, a maximum
plate-current rating of 300 mat., and a maximum plate-power-input rating of 400 watts. Therefore if the maximum plate voltage of 2000 is used, the platte current should tre limited to $2(0)$ ma. (instead of $3(0)$ ma.) to stay within the maximum power-input rating of 400 watts.

- SOURCES OF ELECTRODE VOLTAGES

Filament or Heater Voltage

The filament voltage for the indirectly-heated rathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reduring the life of the tube. But the voltage of the hisher-power fita-ment-type tubes should be held closely between the rated voltage as a minimum and $\overline{5}$ per cent above rating as a maximum. Make sure that the phate power drawn from the power line does not caluse a drop in filament voltage below the proper value whon plate power is applied.

Thoriated-type filaments lose emission when the tube is overloated appreciably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Plate Voltage

D.e plate voltage for the operation of r.f. amplifiers is most often ohtanod from a trans-former-rectifier-filter swism (ser power-supply (hatpere) designed to dediver the required plate voltuge at the reguired eurrent. However, latteries or other der-generating deviees are sometimes used in ertain typers of operation (see portable-mmbile (haider).

Bias and Tube Protection

several methods of oltaining hias are shown in Jig. 1 - 17 . In A, bias is oltatined be the voltage drop ateress a resistor in the gridi d.e. return circuit when rectified grid current flows. "The proper value of resistance may be determined by dividing the reguired biasing voltage by the dee grid current at which the tube will be operated. Then, so long as the r.f. driving voltage is adjusted so that the d.e. gride current is the recommended value, the biasing voltage will be the proper value. The tube is bitserl only when ex(itation is applied, sinee the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zoro. At zero biat most tubes draw power far in execes of the plate-dissipation rating. so it is advisable to make provision for proterting the tube when excitation fails bey areident, or by intent as it dees when a preereding stage in a cow. trathemitter is keyod.

If the maximum ${ }^{\text {a }}$ N. ratings shown in the tube tables are to be used, the input should be cut to zoro when the key is opern. Aside from this, it is not mecessaty that plate courent be cut off completely but only to the point where the rated

Fip. 6.17 - Varims systems for obtaining protective and operating hias for r.f. amplifiers, A - Cridleah. Is - Bat. tery. C. - Combination battery and gridl leak. 1) - Crid leak and adjusted-voltage hias pach. E: Combination grid leak and voltage-regulatell pack. F - Cathode bias.
dissipation is not exreeded. In this ease platemodulated phome ratings should be used for e.w. operation, however.

With triodes this protection ean be supplied by ohtaining all hias from a souree of fixed voltage, as shown in Fig. (i-1/7l. It is preferatble. however, to use only suffieient fixed bits to proteet the tube and obtain the balance needed for operating bias from a grid leak, as in C. The gridleak resistance is calculated as above, exerept that the fixed voltage is subtracted first.

Fised bias may be obtained from dry batteries or from a power pack (sec power-supply (hapter). If dry batterios are used, they should be checked periodically, since even though they may show normal voltage, they eventually develop a high intemal resistance. (iridecurrent flow through this battery resistance maty increase the bias considerably above that anticipated. The life of batteries in bias servie will be approximately the same as though they wore subjert to a drain equal to the grid current, despite the fact that the grid-current flow is in sueh a direction as to charge the lattery, rather than to discharge it.

In Fig. 6-17F, bias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is obtatined by the voltage drop acros: R_{5} as a result of plate (and sereen) current How. Since plate eurrent must flow to ohtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained. When excitation is ap-
plied, phate (and screen) current increases and the grid current also contributes to the drop armss R_{5}, therehy increasing the bias to the operating value. Since the voltage between plate and eathode is redued by the amonit of the voltage drop ateross R_{5}, the over-all suphly voltage must be the sum of the plate and operating-bias voltages. For this reason, the use of rathode bias usually is limited to low-voltage tubes when the extra voltage is not diffieult to obtain.

The resistance of the cathode biasing resistor R_{5} should be adjusted to the value which will give the correct oprating bias voltage with rated grid, plate and screen currents flowing with the amplifier loaded to rated imput. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tubre, at least for the period of time required to remove plate voltage. A disadvantage of this biasing sustem is that the mathode r.f. connection to ground depends upon a by-puss capacitor. From the ronsideration of v.h.f, harmonies and stat bility with high-pervance tubes, it is preferable to make the cathode-to-ground impedance as - lose to zero as possible.

Screen Voltage

For ew, operation, and under certain conditions of phone operation (ere amplitude-modulation chapter), the screen may be operated from a power supply of the same typo used for plate supply, except that voltage and current ratings
should $1 x$ appropriate for sereen reguirements. The sereen may also be operated through a saries resistor or voltage-divider from a source of higher voltage, such as the mate-voltage supply, thus making a separate supply for the soreen mmeressary. Certain precations are necessary, depending upon the method used.

It should be kept in mind that sereen current varics widely with both excitation and loading. If the screen is operated from a fixed-voltage soure, the tube should never be operated without plate voltage and load, otherwise the screen may be damaged within a short time. Supplying the sareen through a series dropping resistor from a higher-voltage source, such as the plate supply, alfords a masure of protection, since the rebistor causes the sereen voltage to drop as the current incrases. thereby limiting the power drawn by the sereen. However, with a resistor, the screen voltage mas vary considerably with excitation, making it nocessary to check the voltage at the srren torminal under actual operating conditions to make sure that the sereen voltage is normal. Reducing excitation will cause the sereen current to drop, increasing the voltage; increasing excitation will have the opposite effert. These changes are in addition to those caused by changes in bias and plate loading, so if :s screcongrid tube is oprated from a series resistor or a voltage divider, its voltage should be checked as one of the fimal adjustments after excitation and loating have been set.

An approximate value for the sereen-voltage dropping resistor may be obtained bey dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated screen current in decimal parts of an ampere. Some further adjustment may be neressary, as mentioned above, so an adjustable resistor with a total resistance above that calculated should he provided.

Protecting Screen-Grid Tubes

Serecn-grid tubes cannot be cut off with hias unless the sereen is operated from a fixed-voltage supply. In this case the cut-off bias is approximately the sereen voltage divided hy the amplification factor of the sereen. This figure is not always shown in tube-data shects, but rut-off voltage may be determined from an inspection of tube curves, or hey experiment.

When the sorcen is supplied from a series dropping resistor, the tube can be protected by the use of a clamper tube, as shown in Fig. 6-18. The grid-leak bias of the amplifier tube with excitation is supplied also to the grid of the clamper tube. This is usually sufficient to cut off the clamper tube. However, when excitation is removed, the clamper-tube bias falls to zero and it draws emough current through the screen dropping resistor usually to limit the input to the amplifier to a safi value. If complete sereenvoltage cut-off is desired, a VIR tube may be inserted in the serven lead as shown. The VRtube voltage rating should be high enough so that it will extinguish when excitation is removed.

Fig. 6.18 - Screen clamper circuit for proteet ing screengrid power tubes. The Wh tube is needed only for complete cut-off.
$\mathrm{C}_{1}-0 .(\mathrm{K}) \mathrm{I}-\mu \mathrm{f}$. disk ceramic. $\mathrm{R}_{1}-1(\mathrm{~K})$ ohms.

- FEEDING EXCITATION TO THE GRID

The reguired r.f. driving voltage is supplied by an oscillator generating a voltuge at the desired frequeney, wither directly or through intermediate amplifiers or frequency multiplicrs.

As explained in the chapter on vatcuum-tube fundamentals, the grid of an amplifier operating under Class C eonditions must have an extiting voltage whose peak value exerds the negative biasing voltage over a portion of the exeitation recele. During this portion of the cevele. current will flow in the grideathode direuit as it does in a diode eircuit when the plate of the dionde is positive in respect to the eathode. This requires that the r.f. driver supply power. The power required to develop the required paak driving voltage arross the grid-athode impedance of the amplifier is the r.f. driving power.

The tube tables give approximate figures for the grid driving power required for each tube under various operating conditions. These figures, however, do not include circuit losses. In general, the driver stage for any Class C amplifier should be capable of supplying at least three times the driving power shown for typical operating conditions at frequencies up to 30 Ma., and from three to ten times at higher frequencies.

Since the d.r. grid corrent relative to the biasing voltage is related to the peak driving voltage, the d.e. grid current is commonly used as a convenient indicator of driving eonditions. A driver adjustment that results in rated d.e. grid eurrent when the d.e. bias is at its rated value, indieates proper exatation to the amplifier when it is fully loadeal.

In coupling the grid input eireuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid exeitation is obtained without exceeding the plate-input ratings of the driver tube.

Driving Impedance

The grid-eurrent flow that results when the grid is driven positive in respeet to the eathode

 tion to the krid of an r.f. moner amplifier by means of al low-imberdaner ceasial line,

1.2 - Tor remater at oprating frequency with Ca, see LCC chart in miseellaneons-data dapter and inductance formula in electrisal-laws chapter, or use Alkht. Liphumg Culrulutor.
 or use 1 RRR1, Lightuing Calculator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such ats a resistanee
 while line is male llat.
over a portion of the exeitation eyele represonts an awerage resistance across which the exeiting voltage must be developed by the driver. In other words. this is the lowd resistance into which the driver phate "ircuit must be eompled. The approximate grid imput resistanee is given by:

$$
\begin{aligned}
& \text { Input impedance (ohms) } \\
& =\frac{\text { driving power }(\text { watts) }}{\text { d.r. grid rurrent (ma.) })^{2}} \times 622 \times 10^{3} \text {. }
\end{aligned}
$$

For normal operation, the driving power and grid current may be taken from the tube tables.

Since the grid imput resistane is a matter of a few thousand ohms, :ll imperathee step)-down is neerssaly if the grid is to be fed from a lowimpedance transmission line. This ean be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier :s shown in Figg 6-19. This coupling system may he considered cither as simply a means of ohtaining mutual inductance between the two tank coils, or as a low-impedance transmission line. If the line is louger than a small fration of a wave length, and if a s.w.r. bridge is available, the line is more easily handled by indjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a hand of freguencies as possible so that power can be transferred over this range without retuning. It is assumed that the output roupling considerations discussed earlier have been ohserved in comnertion with the driver plate nircuit. so far as the amplifier grid eireuit is concerned, the controlling factors are the Q of the tuned grid eircuit. $L_{2} C_{2}$, (sere IFig. $f=2(0)$ the inductance of the eoupling coil, L_{4}, and the dogree of coupling betwern L_{2} and L_{4}. Variable coupling betwern the eroils is convenient, but not strictly necessity if one or both of the other factors can be varied. . In s.w.r. indicator (shown as "slle" in the drawing) is cesontial, An indi"alor'such as the "Mieromatch" (a commereially available instrument) may be conneeted as shown and the adjustments made under actual operating
conditions: that is, with full power applied to the amplifier srid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respect to Le2, and adjust Cor for the lowest sw.r. Then change the coupling slightly and repeat. Continue until the sw.r. is as low as possible; if the cireuit constints are in the right region it should not be diflicult to get the s.w.r. down to 1 to 1 . The Q of the tumed grid circuit should be dosigned to be at loast 10 . and if it is not possible to get a very low s.w.r. with such a grid cireuit the probablid reason is that L_{4} is too small. Maximum roupling, for a given degree of phasi-

Fig. 6.20 - Chart showing required grid tank capacitance for a ! of 12 , 'To use, divide the driving power in watts ly the spuare of the d.e. urid curront in milliamperes and prowed as deacribed under l'ige, 6-9. Driving power and prid furrent may the taken from the thbe tables. When a splitestator eapacitor is used in a halanced prid circuit, the capacitance of each section may be half that slown by the chart.
cal compling, will oecur when the inductance of L_{4} is such that its reactancer at the operating frequency is equal to the characteristic impedance of the link line. The reactance can be calculated as described in the chapter on electriaral fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or measured as described in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1, the frequency should be shifted over the band so that the variation in s.w.r. can be olserved, without changing (2 or the coupling betweon L_{2} and L_{4}. If the s.w.r. rises rapidly on either side of the original frequency the circuit can be made "flatter" by reducing the () of the fumed grid circuit. This may be done hy dereasing f_{2} and correspondingly increasing L_{2} to maintain resonancer and by tightening the coupling between L_{2} and L_{4}, going through the same adjustment process again. It is possible to set up the system so that the s.w.r. will not exered 1.5 to 1 over, for example, the entire 7 -Me. hand and proportionately on other bands. Cuder these cireumstanees a single setting will serve for work anywhere in the band, with asseutially constant power transfor from the line to the power-amplifier grids.

If the coupling between $/$ a and $/ 4$ is not adjustable the same result may be secured by varying the L / C ratio of the tumed grid cireuit - that is. bev varying its (Q. If any difficulty is encountered it can be overeme bev changing the number of turns in L_{4} mitil a match is secured. The two coils should be tightly coupled.

When a resistance-bridge type s.w.r. indicator (ser monsuring-equipment chapter) is used it is not possible to put the full power through the line when making adjustments. In such case the operating eonditions in the amplifier grid circuit ratl be simulated by using a carbon resistor ($1 / 2$ or I watt size) of the same value as the calculated amplifier grid imperdanere, comneeted as indicated be the arrows in Fig. (i-1!). In this case the amplifier tule must be operated "cold" - without tilament or heater power. The adjust ment process is the same as described above, lat with the driver power reduced to a value suitable for operating the s.w.r. Bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as deseribed under the carlier seetion on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without rogard to transmission-line effects, the link line must not offer appreeiable reactance at the operating frequency. Any appreciable reactance will in effect reduce the coupling, making it impossible to transfer sufficient power from the driver to the amplifier grid circuit. Comial cables esperially have considerable paparitane for even short lengths and it may be more desirable to
use a spaced line, such as Twin-Lead, if the radiation can be tolerated.

The reactance of the line can be nullified onlyby making the link resonant. This may require changing the number of turns in the link eoils, the length of the line, or the insertion of a tuning eapacitance. Since the s.w.r. on the link tine may be quite high, the line losses increase becanse of the greater eurrent, the voltage inerease may be sufficient to cause a breakdown in the insulation of the eable and the added tuned cireuit makes adjustment more critical with relatively small changes in frequencer.

These troubles may not be encountered if the link line is kept very short for the highest frequeney. A length of 5 feet or more may be tolerable at 3.5 Mc ., hut a length of a foot at 28 Mc . may be enough to cause serious effects on the functioning of the system.
dijusting the coupling in such a system must necessarily the largely a matter of cut and try. If the line is short enough so ats to have negligible reactanes, the eoupling hetween the two tank cireuits will increase within limits her adding turns to the link coils, or be coupling the link coils more tightly, if possihle, to the tank coils. If it is impossible to change either of these, a variable capacitor of $300 \mu \mu \mathrm{f}$, may be conneded in serids with or in parallel with the link coil at the driver end of the line, depending upon which ronnection is the most effective.

If coasial line is used, the eapacitor should be connected in series with the inner conductor. If the line is long emough to have appreciable reactance, the variable capacitor is used to resonate the entire link cirenit.

As mentioned previously, the size of the link coils and the length of the line, as well as the size of the capacitor, will affer the resonant frequence and it may take an adjustment of all three before the capacitor will show a pronounced effeet on the coupling.

When the sustem has been made resonant, coupling may he adjusted by varying the link (aparitor.

Simple Capacitive Interstage Coupling

The capacitive system of lig. (i-21A is the mimplest of all ooupling sustems. (We Fig. (i-8 for filament-type tubes.) In this circuit, the plate tank eircuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifier. Although it is used more frequently than any other system, it is less flexible and has certain limitations that must be taken into consideration.

The two stages camot be separated physically any appreciahle distance without involving loss in transferred power, radiation from the eonpling lead and the danger of feedback from this leat. Since both the output capacitance of the driver tube and the input capacitance of the amplifier are arross the single circuit, it is sometimes diffirult to ohtain a tank circuit with a sufficiently low Q to provide an efficient circuit at the higher frequencies. The eoupling can be varied by altering the capatitance of the coupling

Fig. 6.21- Capacitive-coupled amplifiers. 1 -Simple capacitive coupling. $\mathbf{B}-\mathrm{Pi}$. section coupling.

(1 - I Oriver plate tank raparitor - see tevt and Jig. $6-9$ for eaparitance, F"ig. $6-3.3$ for voltage rating.
C_{2} - Compling capacitor - . 0) to $1.50 \mu \mu$, misa, as necessary for desired compling. Voltage rating rum of driver plate and amplitior hiasing voltages, plus safety factor.
(3_{3} - Iriver plate by-pass capacitor - $0.001-\mu f$. dish ceramie or mica. Voltage rating same as plate voltage.
(44 - Grid hypass - 0,00)- μ f. disk ceramic.

Cs - Pi-section mutput capacitor - $100-\mu \mu f$, mica, Doltage ratims same as driser plate voltage plas safety factor.
 mula in electrical-laws ehapter, or use IRRI, hightning Calculutor.

$1 \mathrm{HPC}_{1}$ - Grid r,f, choke- $2.5-\mathrm{mh}$.
R $\mathrm{F}^{\circ} \mathrm{C}_{2}$ - Driver plate r.f. chose - $2 . \overline{\mathrm{i}} \mathrm{mh}$.
capacitor, C_{2}, but no impedance transforming is possible, The driver load impedance is the sum of the amplifier grid resistance and the reartance of the eoupling capacitor in series, the coupling capacitor serving simply as a series reactor. Driver load resistance increases with a decrease in the eapacitane of the coupling capacitor.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended beeause it invariably eauses an increase in v.h.f. harmonies and sometimes sets up a parasitic circuit.

So far as coupling is concerned, the Q of the circuit is of little significance, However, the other considerations discussed earlier in connection with tank-circuit Q should be observed.

Pi-Network Interstage Coupling

A pi-section tank circuit, as shown in Fig. (i-2 IIS, may be used as a coupling device between screen-grid amplifier stages. The circuit is actually a capacitive coupling arrangement with the grid of the amplifier tapped down on the eircuit hy means of a capacitive divider. In contrast to the tapped-eoil method mentioned previously, this system will be very effective in reducing
v.h.f. harmonics, because the output eapacitor, C_{8}, provides a direct capacitive shunt for harmonics across the amplifier grid circuit.

To be most effective in reducing v.h.f. harmonies, C_{8} should be a mica caparitor connected directly aeross the tube-socket terminals. Tapping down on the eircuit in this manner also helps to stabilize the amplifier at the operating frequency because of the grid-circuit loading provided by (${ }_{8}$. For the purposes both of stability and harmonie reduction, experience has shown that a value of $100 \mu \mu \mathrm{f}$. for ('8 usually is sufficient. In general, C_{7} and L_{2} should have values approximating the capacitance and inductance used in a conventional tank circuit. A reduction in the inductanee of L_{2} results in an increase in coupling because C_{7} must be inereased to retume the circuit to resoname. This changes the ratio of C_{7} to C_{8} and has the effect of moving the grid tap n p on the cirenit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power eapability of the driver stage. If sulficient exeitation camot be obtained, it may be neerssary to raise the plate voltage of the driver, if this is permissible, ()therwise a larger driver tube may be reduired. As shown in Fig, (-21 B , parallel driver plate feed and amplifier grid feed are necessary,

STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circoits tumed to the same frequeney. Tharefore, unless the coupling leet weren these two (ireuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-phate tuned-grid rircuit. Care should be used in arranging components and wiring of the two circuits so that there will be negligible opportunity for coupling external to the tube itself. Complote shielding betwern input and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank cireuits to cathode. In general, the best arrangement is one in which the eathode (or filament cenfor tap) comoction to ground, and the plate tank rircuit are on the same side of the chassis or other shidding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shiclding. Then when the grid tank eapacitor or bypass is grounded, a return path through the hole to cathode will be concouraged, since transmissionline characteristies are simulated.

A chack on rexternal coupling between input and output rireuits can be made with a sensitive indirating deviere, such as the one diagrammed in Fig. 6 -22. The amplifier tube is removed from its socket and if the plate terminal is

Fïg. 6-22 - Cirenit of sensitive nentralizing indicator. Xtal is a 1 V 31 erystal detector, MA a-1 direct-current millianmeter and (: a $0,(101-\mu \mathrm{f}$, mica by-pass caparitor.
at the sorke't, it should be disconnerted. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank roil and the output tank caipabitor tuned for any indication of r.f. foedthrough. Wxperiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Screen-Grid Neutralizing Circuits

The plate-grid caparitance of serem-grid tubes is reduced to a fraction of a micro-microfarad by the interposed grounded serecth. Nevertheless, the pown sensitivity of these tubnes is so great that only a very small amount of ferd-back is neressary to start oscillation. 'To assure a stable amplifior, it is usually memsaty to load the grid circuit, or to use a neutralizing eircuit. A neutralizing circuit is one external to the tube that balances the voltage fed back through the grid-plate capacitanee, by another voltage of opposite phase.
Fig. (i-23A shows how a screen-grid amplifier may be neutralized by the use of an inductive link line coupling the input and output

Fig. 6-23 - Sereen-grid natutalixing circuits, A-Inductive neutralizing. $B-C$: - Capacitive neutralizing.
C_{1} - (;rid by-pass capacitor - appros. (0.001-mf. mica, Voltage rating same as biasing voltage in 13 , same as driver phate voltage in C.
C_{2} - Neutralizing capacitor - approx. 2 to 10 m f. - see text. Voltage rating same as amplifier plate vollage for e.w., twire this value for plate modulation.
I_1, I.2 - Veutralizing link - usually a turn or two will be sufficiont.
tank circuits in proper phase. The two coils must be properly polarized. If tho initial eonnection proves to be incorrect, commertions to one of the link coils should be reversed. Noutralizing is adjusted by changing the distance betwern the link coils and the tank coils. In the rase of cat paritive reouphing betwerolstages, one of the link coils will be coupled to the plate tamk coil of the driver statge.

A capacitive neutralizing system for sereengrid tubes is shown in Fig. 6-23B. (2, is the neutralizing capacitor. The capacitance should be chosen so that at some aljustment of $\ell, 2$,

$$
\frac{C_{2}^{\prime}}{C_{1}^{\prime}}=\frac{\text { Tube grid-plate caparitance (or (}{ }^{\prime}{ }_{\mathrm{kg}} \text {) }}{\text { Tube inpul capacitance (or CiN) }}
$$

The tube interelectrode capacitancos ('gp and C'is are given in the tube table's in the list chapter. The grid-cathode capacitance must include all
strays directly across the tube rapacitanee, including the capacitane of the tuning-raparitor stator to ground. This may amount to $\overline{5}$ to 20 $\mu \mu$. In the case of capacitance coupling, as shown in Fig. (i-23C, the output caparitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of Cg. If (ez works out to an impractically large or small value, ('a can be changed to compensate by using combinations of fixed mica rapacitors in paralled.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube should be lighted and excitation from the preceding stage fod to the grid cirenit. Both sereen and plate voltages should be discomerted at the transmitter terminals.

The immediate objocetive of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is done low adjusting rarefully, bit by bit, the moutralizing rapacitor or link coils until an r.f. indicator in the output eircuit reads minimum.

The deviee shown in Figg, 6-22 makes a sensitive neutralizing indicator. The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the roupling is loose enough at all times to prevent burning out the meter or the rectifier. The plate tank raparitor should be readjusted for maximum reading after each change in neutralizing.

A simple indicator is alashlight bulb, (the lower the power the more sensitive) (onnerted at the center of a turn or two of wire coupled to the tank roil at the low-potential point. However, its sensitivity is poor compared with the milliam-meter-rectifier.

The grid-current moter may also be used as a neutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid current as the plate-tank tuning passes through resoname. This dip redues as mentralization is approached until at exact meutralization all change in grid current should disuppoar.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zero, but a minimum proint in the adjustment of the noutralizing control should be found where higher readings are obtained on either side.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. doading by tapping the grid down on the grid tank eoil (or the plate tank coil of the driver in the (case of eaparitive coupling), or by a resistor from grid to cathode is effective in stabilizing an amplifier, but either deviee may increase v.h.f.
harmonies. The best loading system is the use of a pi-section filter, as shown in Fig. (i-21 3. This rircuit places a eapacitame direetly between grid and cathode. This not only provides the desirable loading, but also a very offertive mapacitive short for v.h.f. harmomies i $1000-\mu \mu$ f. mica raparitor for ('s, wired diredty betwern tube terminals will usually provide suflicient loading to stabilize the amplifier.

V.H.F. Parasitic Oscillation

Parasitio oscillation in the v.h.f. range will take place in almost every r.f. power amplifier. To trest for v.h.f. parasitie oscillation, the grid tank eoil (or driver tank roil in the case of catparitive coupling) should be short-circuited with a clip lead. This is to provent any posible t.g.t.p. oscillation at the oprating frequeney which might lead to confusion in identifying the partasitic. Any fixed bias should be replaced with a wrid laak of 10,000 to 20,000 ohms. All load on the output of the amplifier should be diseonmected. Jlate and sarem voltages should be rodured to the point where the rated dissipation is not exereded. If a Variaw is not available, voltage maty he reduced by a 115 -volt lamp in series with the primary of the plate transformer.

IVith power applied only to the amplifier under test, a search should he made ber aljusting the input capacitor to several settings, inchading minimum and maximum, and turning the plate raparator through its range for carh of the grid(apacitor settings. Any grid current, or any dip or flicker in plate current at ans point, indi(:ates oscillation. This can be confirmed by an indi(ating absorption wave moter tumed to the fregurney of the parasitio and held dose to the plate lead of the tuber.

The heave lines of fige fi-2 AA show the usual parasitic tank circuit, which resonates, in most cases, between 150 and 200 ME . For each type of tetrode. there is a region, usually below the paratsitie frequener, in which the tube will be selfneutralized. By adding the right amount of indurtance to the parasitic circuit, its resonant frequency a an be brought down to the frequeney

Fis. 6-24-A - 1 sual parasitir circuit. 3 - - Resistive loading of parasitio circtit. (: - Inductive coupling of loading resistance into parasitio eircoit.
at which the tule is self-neutralized. However, the resonant frequeney should not be brought down so low that it falls close to 'TV' Chamel ((88 Me .). From the consideration of TVI, the cirruit may be loaded down to a frequency not lower than 100 Me . If the self-nentralizing frequency is below 100 Me., the circuit should be loaded down to somewhere between 100 and 120 Me . with inductance. Then the parasitic can le suppressed be loading with resistance, as shown in Fig. (6-2t. A eoil of 4 or 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank ceuparitor turned to maximum caparitance, the circuit should be checked with a g.d.o. to make sure the resonance is aloove 100 Mc . Then, with the shortest possible leads, a moninductive 100 -ohm l-watt resistor should be connected across the entire eoil. The amplifier should be tuned up to its highest-frequeney band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns recpuired to suppress the parasitic. Then voltage should be increased until the resistor hegins to foel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the pouer rating of the resistom inereased by this proportion: i.e., if the power is half normal, the wattage rating should tre cloubhed. This increase is hest made by connerting l-watt curbon resistors in parallel to give a resultant of about lo0 ohms. As power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made certain that the parasitic is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. so long as the parasitic is suppressed, the resistors will heat up only from the operatingfrequency current.

Since the resistor can be placed across only that portion of the parasitic circuit represented by L_{p}, the latter should form as large a portion of the eireuit as possible. Therefore, the tank and bypass capacitors should have the lowest possible inductance and the leads shown in heaver lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maximum size without tumine the circuit below the 100-Mc. limit.

Inother arrangement that has been used sucassfully is shown in Fig. (i-2tC, A small turn or two is inserted in plate of I_{2}, and this is conpled to a cireuit tuned to the parasitio frequeney and loaded with resistane. The heave-line cirenit should first be chereked with a g.d.o. Then the loaded cireuit shoukd be tumed to the same frequency and coupled in to the point where the parasitic ceasces. The two eoils can be wound on the same form and the eoupling varied by sliding one of them. slight retuning of the loaded circuit may be required alter coupling. Start out with low power as before, until the parasitic is suppressed. Since the loaded circuit in this case canries muth less operating-frequeney curront, a single 100 -ohm 1 -watt resistor will often be suffieient and a $3(1-\mu \mu f$. miera trimmer should serve
as the tuning eaparitor. C_{p}.

Low-Frequency Parasitic Oscillation

The screening of most transmitting sereen-grid tubes is suflicient to prevent low-frequeney parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate cirruits. Should this type of osiflation (usually between 1200 and 200 ke.) orcur, sce section under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The cireuits for parallel-tube amplifiers are the same as for a single tube, similar terminals of the tubes being connected together. The grid impedance of two tubes in parallel is half that of a single tubre. This means that twice the grid tank eapactitanee shown in Fig. 6 - 20 should be used for the stime ($)$.
The plate load resistance is halved so that the plate tank capacitance for a single tube (Fig. (i-10) also should twe doubled. The total grid curront will be doubled, so to maintain the same grid bias, the grid-loak resistanee should be half that used for a single tube. "The reguired driving power is doubled. The capacitance of a neutralizing capacitor, if used, should be doubled and the value of the sereen dropping resistor should he rut in half.

In troating parasitic oscillation, it may be nerossary to use a choke in each phate lead, rather than one in the eommon lead. Input and output capacitanees are doubled, which maty be a factor in ohtatining efficient operation at higher frequenicies.

PUSH-PULL AMPLIFIERS

Ibasie push-pull eircuits are shown in Fir. (i-26(C and 1). Amplifiers using this circuit are considerably more difficult to construct athel adjust than those using the parallel arrangement, and have little if any advantage. Also, the pushpull arrangement does not lend itself well to pi-metwork output.

TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-20. Neglecting references to the sereen, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must he neutralized, as Fig. $6-26$ indicates. From the tube tables, it will be seen that triodes require considerably more driving power than sereengrid tuhes. However, they also have less power somsitivity, so that greater fredback can he tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate eircuits of a triode amplifier, the splitstator tank caparitors combine with the r.f. chokes to form a low-frequency parasitic cireuit, unless the amplitier cireuit is arranged to prevent it. In the cireuit of Fig. (i-26iB, the amplifier grid

Fig. 6.25 - When a pi-nctwork outjut eirenit is nsed with a triode, a laalanced grid eircuit mast be provided for neutralizing. A - Induetive.link input. 13Capacitive input porphing.
is series fed and the driver plate is parallel fed. For low frequencies, the r.f. choke in the driver plate circuit is shorted to ground through the tank roil. In Figs, 6-26(Cand I), a resistor is sub). stituted for the grid r.f. choke. This resistane should be at least 100 ohms. If any grid-leak resistance is ured for biasing, it should be substituted for the 100 -olim resistor.

Triode Amplifiers with Pi-Network Output

l'i-network output tanks, designed as desoribed earlier for sereen-grid tubes, may also bo used with triodes. However, in this case, a halanced input circuit must be provided for neutralizing. Fig. fi-25A shows the arcuit when inductive-link input coupling is used, while 13 shows the circuit to be used when the amplifier is coupled capacitively to the driver. Pi-network circuits comnot be used in both input and output circuits, simee no metus is provided for neu(ralizing.

GROUNDED.GRID AMPLIFIERS

Fig. 6 -27 A shows the input circuit of a groundedgrid triode amplifier. In configuration it is similar to the conventional grounded-rathode circuit except that the grid, instead of the cathode, is at ground potential. An amplifier of this type is chanacterized by a comparatively low input im-

Fig. $0+26$ - Trionle amplifier virnits. A - Iinh coupling, single tube. 3 - Caparitive emafing, single tube. (: - Iinh compling, push-pull, I) - Cipavitive conpling, push-pull. Aside from the neutralizing eireuits, which are mandatory with triodes, the circuits are the same as for screen-qrid tubes, and should have the same values throughout. The neutralizing 'apatitor, C_{1}, should have a capacitance somewhat greater than the grid-plate "apacitance of the tube. Voltage rating should the twice the d.e. plate voltage for c.w., or four times for plate modulation, plus safets factor. The resistance R_{t} should he at least $l(0)$ ohms and it may consint of part or preferably all of the grid leak. For other eomponent values, see similar screentgrid diagrams.

(A)

(B)

(C)

Fig. 6.27 - A Cronnded-grial triode input circuit. B - Tetrode input rircuit with grid and screen directly in parallel. C - 'Tetrode circuit with dec. voltage applicd to the sereen. Plate circuits are conventional.
pedane and a relatively high driver-power reguirement. The additional driver power is not consumed in the amplifier hut is "fed through" to the plate circuit where it comhines with the normal phate output power. The total r.f. power output is the sum of the driver and amplition output powers less the power normally required to drive the tube in a grounded-eathode circuit.

Positive feedlark is from plate to cathode through the plate-cathode, or plate-filament, raparitance of the tube. Since the grounded grid is interposed hetween the plate and cathode, this rapacitance is very small, and neutralization wathally is not neressary.

I disulvantage of the grounded-grid circuit is that the cathode must be isolated for r.f. from ground. This presents a practical difficulty, especially in the case of a filament-type tuhe whose filament eurrent is large. Another disadvantage in plate-modulated phone operation is that the driver power fed through to the output is not modulated.

The chief application for grounded-grid amplifiers in amateur work at frequencies helow 30 . Me. is in the case where the available driving power far exceeds the power that ean be used in driving a conventional grounded-cathode amplifier.
I).e. electrode voltages and currents in grounded-grid triode-amplifier operation are the same as for grounded-eat hode operation. Approximate values of driving power, driving impedance, and total power output in Class C operation can he calculated as follows, using information normally provided in tube data sheets:

```
\(E_{p}=\) r.m.s. palue of r.f. plate voltage
    \(=\) d.e. plate volts + d.e. bias volls - peak r.f. orid volts
        1.41
\(I_{p}=\) r.m.s. balue of r.f. pintrecurremt
    \(=\) rated poter output walls
\(\boldsymbol{E}_{\mathrm{g}}=\) r.m.s. malue of grid driving vollape
    \(=\frac{\text { peak r.f. arid molts }}{1.41}\)
\(I_{\text {R }}=\) r.m.s. palue of r.f. orid current
    \(=\) rated drivino monrr watts
        \(\boldsymbol{E}_{\mathrm{R}}\)
```

Then,
Driving powr (maths $)=E_{R}\left(I_{\mathrm{B}}+I_{k}\right)$
Driving impedtuce (ohm.) $=\frac{\boldsymbol{E}_{\mathrm{g}}}{\boldsymbol{I}_{\mathrm{R}}+I_{\mathrm{L}} \text {, }}$
lourer fed llirnutgh from driver sfage (matl*) $=E_{R} I_{\mathrm{p}}$
Total power output (waths) $=I_{1}\left(E_{10}+E_{10}\right)$
Sereen-grid tubes are also used sometimes in grounded-grid amplifiers. In some cases, the screen is simply connected in parallel with the grid, as in Fig. $6-2713$, and the tube operates as a high $-\mu$ triode. In other cases, the sercen is loypassed to ground and operated at the usual d.e. potential, as shown at C. Sinee the sereen is still in parallel with the grid for r.f., operation is very. much like that of a triode exrept that the positive voltage on the screen redures driver-power requirements. Since the information usually furnished in tube-data sheets does not apply to triode-type operation, operating conditions are usually determined experimentally. In general, the hias is adjusted to produce maximum output (within the tube's dissipation ratimg) with the driving power available.

Fig. $6-28$ shows two methods of coupling a grounded-grid amplifier to the 50 -ohm output of an existing transmitter. At A an I, network is used, while a conventional link-coupled tank is shown at 13. The values shown will he approximately correct for most triode amplifiers operating at 3.5 Me . Values should be cut in hatl eath time frequency is doubled, i.e., $250 \mu \mu$ f. and 7.5 $\mu \mathrm{h}$. for 7 Mc., ete.

Filament Isolation

Since the filament or eathode of the groundedgrid amplifier tube operates at some r.f. potential above ground, it is necessary to isolate the filament from the power line. In the ease of lowpower tubes with indireetly-heated cathodes, it is sometimes feasible to depend on the small capacitance existing between the heater and cathode, although it is preferable to provide additional isolation.

In Fig. (6-2!), isolation is provided by a special low-raparitance filament transformer. $R F C_{1}$ carries only the eathode curront. However, since transformers of this type are not generally avail-

(A)

(B)

Fig, $\quad 0.28$ - 'T"wo methods of coupling a low-imped. ance driver to a grounded-grid input. I - 1 , net. work. 13 - link. coupled tank circuit.
able, other means must usually be employed.
In lig. (-29013 , chokes are used to isolate the filament from the filament transformer. The reartance of the chokes should be several times the input impedance of the amplifier and must be wound with conductor of sufficient size to carry the filament current. It is usually necessary to use a transformer delivering more than the rated filament voltage to compensate the voltage drop arross the chokes. In Fig. (i-290, r.f. chokes are placed in the primary side of the transformer. This reduces the current that the chokes must handle, but the filament transormer must be mounted so that it is spaced from the chassis and other grounded metal to minimize the capacitance of the transformer to ground. $R F^{\prime} C_{1}$ earries cathode current only:
In the case of the input circuit of Fig. (i-2813, it is sometimes feasible to wind the tank inductor with two conductors in parallel, and feed the filatment voltage to the tube through the two conductors, as shown in Fig. (6-2!)1). This arrangement does not lend itself well to bandehanging, however.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exeiting frequeney instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc., output at 7 Me., 10.5 Me., It Me., ette, may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplior efficiency.

Efficieney in a single- or parallel-tube multiplier comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube

Fis. 6-29 - Methods of isolating filament from x rommil. A - Speria! low-capacitance filament tranoformer, BR.f. chohes in filament circuit. (: - R.f, chohes in ? rans. former primary. I) - l-ilament fed through input tank inductor.

(B)

ratings is reached when the multiplier is operated at maximum permissible phate voltage and maximum permissible grid euremt. The plate current should be reduced as neeressary to limit the dissipation to the rated value by increasing the bias. High cfliciency in multipliers is not often required in practice, sinee the purpose is ustatly servod if the frequeney multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Me. from a lower-frequency erystal, hut in the majority of fower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practi(ably obtainable cllicionery as the multiplication factor is increased. sereen-grid tubes make the best fregueney multipliers bermuse their high power-sensitivity makes them rasior fo drive property than triodes.

Since the input and output cireuits are unt tunced close to the same frecurney, neut ralization usually will not ine required. Instaness may be encombered with tubes of high transconductance, however, when a doubler will oseillate in t.g.t.p. Fashiom, requiring neatmatization. The link mentalizing system of rig. (i-2:3 A is convoniont in sum at contingence.

Push-Push Multipliers

A two-tube rircuit which works well at even harmonies, but not at the fomdamental or odd harmonies, is shown in ligg. if-30. It is known as

Fig. 6.30-Cirenit of a push-push frequency multiplicr for even harmonics.
$C_{1} l_{1}$ and $C_{2} I_{2}$-Sie text.
 Voltage rating colnal th plate volage plus safety fartor.
RFC-2.E.mh. r.f. chuke.
the push-push cireuit. The grids ate comuered in push-pull while the pates are connereded in parallel. The effieioncy of a doubler using this circuit may approach that of a straight amplifier, berause there is a platereurrent pulse for each erele of the output frequmer.
This arrangement has an atvantage in some applications. If the heater of one tube is tumed off, its grid-plate rapacitance, being the same as that of the remaining tube, sorves to nout ratize the cireuit. Thus provision is made for either
straight amplifieation at the fundamental with a single thbe, or doubling fredureney with two fubes ats desited.

The ged tank rirenil is tuned to the freguenes of the driving stage and should have the same constants as indieated in loig. ti-20 for batanerel grid cimuits. The phate tank rirruit is tumen! to an even multiple of the exeting fregueney, and should have the same values as a straight amplifier for the harmonie frepueney (sore Fig. (i-10), bearing in mind that the total plate emrent of both tubes dotermines the ('to be used.

Push-Pull Multiplier

A single- or parallel-tube mult iphier will deliver output at rither ceven or odd multiples of the exciting frequency. A push-pull multiplier dos's not work sat isfactorily at even multiphes beratme (ren hammones are latgely canceled in the output. On the other hand, amplifiers of this type work well as triplers or at other odd hamonics. The operating requirements are similar to those for single-tube multipliess, the phate tank cireuit being tuned, of eourse, to the desired odd harmonic frequents.

METERING

Fig. (i-3I shows how a voltmoter and milliammeter should be commeded to reitl various voltagres and rurrents. Voltmeters are seldom int stalled permanently, sine their primeipal use is in proliminary cherking. Aks, milliammeters are mot normatly installed permamently in all of the positions shown. 'Those most often used are the ones reading grid current and phate current, or grid eurrent and cathode current.
Milliammeters come in varions current ranges. Current vahues to be experted can be taken from the tube tables and the meter ranges solected areordingly. To take caro of normal oworloads and pointor swing, a moter having a eurront range of about twie the normal current to be expected should the sellectad.

Meter Installation

Grid-current meters connered as shown in Fig. (i-31 and meters comected in the rathode (ircuit noed no sperial precautions in memating on the transmitter panel so far as safety is conrerned. However, milliammetors having zoroadjusting serews on the face of the moter should be recessed behind the panel so that aredental contact with the adjusting serew is not possible. if the metar is connceted in any of the other positions shown in Fig. (i-31. The meter ain be mounted on a small subpancl attached to the front panel with long serews and spacers. The metcr opening should be covered with glass or relluloid. Illuminated meters make reading easier. Reforence should also be made to the TVI chapter of this Ilandbook in regarel to wiring and shiclding of meters to suppress TVI.

Meter Switching

Milliammeters are expensive itoms and there-

Fig. 6-31 - Diagrams showing placement of voltmeter and milliammeter to obtain dexired measurements. A -Scries prid fred, parallel plate foed amd serios sereen voltage-dromping rosistor. W-I'arallill grid feed, seriom plate feed and screen voltage divider.

AMPLIFIER ADJUSTMENT
barlier seetions in this chapter have dealt with the design and adjustment. of inpout (grid) and output (plate) coupling systems, the stabilitization of amplifiers, and the mothods of obtaining the required electrode voltages. Refarence to these sections should be made as neressary in following a proredure of amplifier :uljust ment.

The objective in the adjustment of an intermediate amplifier stage is to secure adequate exritation to the following stage. In the case of the output or final amplifier, the objective is to obtain maximum power output to the antenna. In both cases, the adjustment must be consistent with the tube ratings as to voltage, current and dissipating ratings.

Adequate drive to a following amplifier is normally indicated when rated grid earrent in the following stage is obtained with the stage operating at rated bias, the siage loaded to rated plate current, and the driver stage tumed to resonamere. In a final amplifier, maximum output is normally indicated when the output roupling is adjusted so that the amplifier tube draws rated plate rument when it is tuned to resonance.

Resonance in the phate cirenit is normally indicated by the dip in platocurrent reading as the plate tank citparitor is tunced through its range. When the stage is unlouded, or lightly
fore it is seldom feasible to provide even gristcurrent and plate-rurrent meters for all stages. The expiter stages in a multistage tranmitter often do not require metering after initial adjustments. It is common practice to provide a meterswitching system by which a single milliammeter maty be switched to read currents in as many circuits andesired. such at meter-switehing circuit is shown in lëg, 6-3\%. 'The resistors, R, are mothnoerted in the various eireuits in plawe of the milliammeters shown in Fig. ti-31. Sine the resistance of R is several times the internal resistane of the millammeter, it will have no prame tieal effere upon the reading of the meter.

When the meter must read currents of widely differing values, at meter with at range sufficiontly low to areommodate the lowest values of current to be measured maty be selected. In the circuits in which the current will be above the seale of the meter, the ressistanec of f ean be adjusted to at lower value which will give the meter reading it multiplying factor. (riee chaptor on moasurements.) Care should be taken to observe proper polarity in making the emone tions botwern the resistors and the switch.

Fig. 6-32-Switehing a single milliatmoter. The resintors. R, should be 10 to 20 times the internal resist. ance of the meter: tion ohs will usually be satisfactors. x is a ${ }^{2}$-section rotary switeh. Its insulation shmold he ceramie for high voltages, and an insulating rompling *hondal alwas he used hetwern whaft and rontrot.
loaded, this dip in plate aurent will be quite pronounced. As the loading is increased, the dip will become less notiseable. Ser Fig. 6-4. However, in the case of a sereen-grid tube whose sereen is fed through a series resistor, maximum output may not be simultancous with the dij) in plate eurrent. The reson for this is that the sereen current variss widely as the plate eirenit is tuned through resonamere. This variation in sereen courrent callses a corrosponding variation in the voltage drop ateross the sureerll resistor, In this (aser, maximum outpat nay oseur at an adjustnent that results in an oftimum combination of sreeen voltage and nearnees to resonatuee. This (ellie will seldom be ol)served when the sereen is oprated from a fixed-

(B)

(F)

(C)

Fig, 6-3.3-1 Diagrams showing the prak voltage for whell the plate tank capacitor should twe rated for e,w. opreration with :arions "ireuit arrangements. If is equal to the dere blate soltake. The values should be dombed for plate modulation. The circuit is asisumed to be fully loaded. Cir. cuits $1, C$ and lid remine that the tank rapacitor lar insulated from $^{\text {a }}$ chassio or kromod, and from the control. voltages sourer.

The first step in the adjustment of an amplifer is to stabilize it, both at the operating frequency by meutralizing it if nesessary, and at parasitic frequencies by introducing suppression (ircuits.

If "Hlat" transmission-line coupling is used, the wutput end of the line should be matched, as described in this chapter for the cave where the amplifier is to feed the grid of a following stage, or in the transmission-line chatper if the amplifier is to feed an antemai systom. After proper match hats been ohtained, all adjustments in roupling should he made at the inpult end of the line.

Until preliminary adjustments of excitation have been made, the amplifier should be operated with filament voltage on and fixed bias, if it is required, but sareen and plate voltages off. With the exciter coupled to the amplifier, the coupling to the driver should be adjusted until the amplifier draws rated grid current, or somewhat above the rated value. Then a load (the antemat grid of the following stage, or at dummy load) should be coupled to the amplifier.
lioth sreren and plate voltages (preferably reduced) applied, the plate tank caparitor should be adjusted to resonance as indicated by a dip in phate current. Then, with full sereen and phate voltages applied, the coupling to the load should he arljusted until the amplifier draws rated plate current. Changing the coupling to the load will usuatly detune the tank "ircuit, so that it will be neressary to readjust for resonathere cach time a change in coupling is mate. An amplitior should not he operated with its phato rirenit of ress-
namer for any exeph the bricfest meeressary time. since the phate dissipation increases greatly when the plate circuit is not at resonamere. Also, a sarcen-grid tube should not be operated without normal load for any apperiable length of time, since the screen dissipation increases.

It is normal for the grid current to decrease when plate voltage is applied, and to derrease again as the amplifior is loaded more heavily. As the grid current falls off, the eoupling to the driver should loe incrowed to maintain the grid courent at its rated value.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Capacitor Voltage

In selecting a tank capacitor with a sparing betwern plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.e plate voltage. If the d.e. plate voltage also appears across the tank cabueitor, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.c. plate voltage, because both d.e. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages. it is desirable to choos a tank eirenit in which the d.e and modulation voltages do not appear across the tank ripacitor, to permit the
use of a smaller capacitor with less plate spaceing. Fig. 6-3:3 shows the peak voltage, in terms of d.c. plate voltage, to he expected across the tank caparitor in varions direuit arangements. These peak-voltage values are given assuming that the amplifier is louded to rated phate current. Without load, the peak r.f. voltage will run much higher.

The plate sapuing to be used for a given peak voltage will depend upon the design of the variabe caparitor, influencing factors being the mechanical construction of the mit, the insulation used and its placement in respeet to intense fields, and the caparitor plate shape and degree of polish. Capacitor manufinturers usially rate their products in torms of the peak voltage betwen plates. Typical plate spacings are shown in the following table.

Typical Tank-Capacitor Plate Spacings					
śpacing (In.)	reak Voltage	sipuring $(I n .)$	lieak Voltage	Nimuing (ln.)	J'eak Vollage
0.015	1000	0.07	30000	0.17\%	5000
0.02	1200	0.08	3.300	0.25	\$1000
0,03	1500	0.12.	4.700	0.3.)	$11(0 x)$
0.0.;	200	0.1.5	\% 600	0.51	1:3006

Plate tank capacitors should be mounted as close to the tube as temperature eonsiderations will permit to make pessible the shortest capacitive path from phate to cathode. Espercially at the higher frequencies where minimum eireuit a:pacitance beromes important, the eapacitor should be mounted with its stator platers well spaced from the chassis or other shielding. In areuits where the rotor must be insulated from ground, the capacitor should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of salety to the operator -a well-insulated coupling should be used hetween the capatitor shaft and the dial. The section of the shaft attasherl to the dial shoull be well grounded. This am be done convenienlly through the use of panel shafthearing units.

Grid Tank Capacitors

In the circuit of Fig. (i--34, the grid tank ratpacitor should have a voltage rating approximately equal to the biasing voltage plas 20 per cont of the phate voltage. In the balaned circuit of B, the voltage rating of each serlion of the eapacitor should be this same value.

The grid tank capacitor is proferably mounted with shielding bet ween it and the tube socket for isolation purposes. It should, however, be mounted elose to the socket so that a short bad can be passed through a hole to the sorket. The rotor ground lead or by-pass lead should be rim directly to the nearest point on the chassis or other shielding. In the circuit of Fig. $6-3+1$, thes same insulating precautions mentioned in connere tion with the plate tank capacitor should be used.

Fis. o-34 - 'The voltage rating of the srid tanh capacitor in I should be equal to the biasing voltage phas about 20 per cent of the plate voltage.

Plate Tank Coils

The inductance of a manufactured coil usually is hased upon the highest plate-voltage/ plate-rurrent ratio likely to be used at the maximum power level for which the coil is designod. Therofore in the majority of cases, the (apacitance shown by Figs, (i-9 and (i-20) will be greater than that for which the eoil is designed and turns must be removed if a $($) of 10 or more is needed. At 28 Mr., and sometines 14 Mr., the value of caparitaner shown bey the chart for a high plate-voltago/plate-rurrent ratio may be lower that that attainable in praction with the components available. The design of manufartured coils usually takes this into eonsideration also and it may be found that values of caparitance greater than those shown (if stray capacitance is included) ate required to the these roils to the band.

Manufactured coils are rated acerording to the plate-power input to the tube or tubes when the stage is loaded. Since the circulating tank current is much greater when the amplifier is unloaded, care should be taken to oprate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.

Tank roils shoud be mounted at least their diamoter away from shielding to prevent a marked less in (?. Vixeropt premaps at 28 Mr., it is not important that the eoil he mounted quite (lose to the tank (ampacitor. Lads up to 6 or 8 inches atre permissible. It is more important to kepp the tank eaparitor as well as other compoments out of the immediate field of the coil. For this reason. it is preferable to mount the coil so that its axis is parallel to the capacitor shaft, either alongside the capacior or alove it.

There are many factors that must be taken into consideration in determining the size of wire that should be used in winding atank coil. The considerations of form factor and wire size that will produce a coil of minimum loss are often of less importanee in pratetier than the coil size that will fit into avaibable space or that will handle the required power without exerssive hating. This is particularly true in the "ase of sereen-grid tubes where the relatively small driving power required ran be easily ohtained even if the losses in the driver are quite high. It may be considered preferable to take the power loss if the phesical
size of the exciter ean be kept down by making the coils smatl.

The accompanying table shows typical conductor sizes that are usually found to be adequate for various power levels. For powers under 25 watts, the minimum wire sizes shown are largely a matter of obtaining a coil of reasonable Q. So far as the power is concerned, smaller wire could be used.

Wire Sizes for Transmitting Coils		
Power Input (Watts)	Band (Mc.)	Wire size
1000	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$
500	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 14 \end{array}$
150	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	12 14 18
75	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	14 18 22
25 or less*	$\begin{gathered} 28-21 \\ 14-7 \\ 3.5-1.8 \end{gathered}$	$\begin{aligned} & 18 \\ & 24 \\ & 28 \end{aligned}$
* Wire size limited principally by consideration of Q.		

Space-winding the turns invariably will result in a coil of higher Q, especially at frequencies above 7 Mc., and a form factor in which the turns spacing results in a coil length between 1 and 2 times the diameter is usually considered satisfactory. Space winding is especially desirable at the higher power levels because the heat developed is dissipated more readily. The power lost in a tank eoil that develops appreciable heat at the higherpower levels does not usually represent a sorious loss percentagewise. A more serious consequence, especially at the higher frequencios, is that coils of the popular "air-wound" type supported on plastic strips may deform. In this case, it may he necessary to use wire (or copper tubing) of sullieient size to make the coil self-supporting. Coils wound on tubular forms of ceramic or mica-filled bakelite will also stand higher temperatures.

Plate-Blocking and By-Pass Capacitors

Plate-blocking capacitors should have low inductance; therefore capacitors of the mica or ceramic type are preferred. For frequencies between 3.5 and 30 Mc., a capacitance of 0.001 is commonly used. The voltage rating should be 25 to 50% above the plate-supply voltage (twice this rating for plate modulation).
small disk ceramic caparitors (approximately $1 / 4$ inch in diameter) are to be preferred as by-pass capacitors, since when they are applied correctly (see TVI chapter), they are sories resonant in the 'l'V range and therefore are an important measure in filtering power-supply leads. Capaciors of this
type are rated at 600 to 1000 volts. At higher voltages, disk ceramics with higher-voltage ratings, or capacitors of the "IV "doorknob" type are recommended. Voltage ratings of by-pass capacitors should be similar to those for blocking capacitors.

R. F. Chokes

The characteristies of any r.f. choke will vary with frequency, from characteristics resembling those of a parallel-resonant circuit, of high impedance, to those of a series-resonant circuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reactance.
In series-feed circuits, these characteristics are of relatively small importance because, in a correctly-operating (ireuit, the r.f. voltage across the choke is negligible. In a parallelfeed circuit, however, the choke is shunted across the tank cireuit, and is subject to the full tank r.f. voltage. If the choke does not present a sufficiently high impedance, enough power will be absortbed by the choke to cause it to burn out. With chokes of the usual type, wound with small wire for compactness, a relatively small amount of power loss in the choke will cause excessive heating.

To avoid this, the choke must have a sufficiently high reactance to be effective at the lowest frequency, and yet have no scries resonances near the higher-frequency bands. This is not difficult to accomplish for a frequency range of 2 to 1 or less. But the design of a choke that meets requirements over a range as wide as 3.5 to 30 Mc. at the higher voltages is quite critical.

Universal pie-wound chokes of the "receiver" type (2.5 mh ., 125 ma .) are usually satisfactory if the plate voltage does not exceed 750. For higher voltages, a single-layer solenoid-type choke of correct design has been found satisfactory. The National type R-175A is a representative manufactured type. An example of a satisfactory homemade choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spaced to a length of $37 / 8$ inches on a 1 -ineh ceramic form (Centralab stand-off insulator, type X3022H). A ceramie form is advisable from the consideration of temperature. This choke has only one series resonance (near 24 Mc.), and exhibits an equivalent parallel resistance of 0.25 megohm or more in all of the amateur bands from 80 through 10.

Since the characteristics of a choke will be affected by any metal in its field, it should be checked when mounted in the position in which it is to be used, or in a temporary set-up simulating the same conditions. The plate end of the choke should not be connected, but the power-supply end should be connected directly, or by-passed, to the chassis. The g.d.o. should the coupled as close to the ground and of the choke as possible. Series resonances, indicating the frequencies of greatest loss, should be checked with the choke short-circuited with a short piece of wire. Parallel resonances, indicating frequencies of least loss are checked with the short removed.

A Three-Band Oscillator Transmitter for the Novice

The novire transmitter shown in Figs. 6-3:-(i-3s, inclusive, is casy to build and get working. It is a revstal-eontrolled, one-tube osiallator (apable of rumning at 30 watts input on the 3.5 - , $\overline{7}$, and $\because \underline{2}$ Mre. Novice bands, A sperial feature of the transmitter is a built-in keying monitor which permits the operat or to listen to his own semding.

Regulated voltage is used on the sereen of the oscillator. This minimizes frequene? shift of the oscillat or with keying, which is the caluse of chirp. In addition, a smatl amount of cathode bias (R_{4}) is used on the oscillator. This also tends to improve the kewing charactoristies in a cathodekeyed simple-ascillator transmittor.

Circuit Details

The oscillator circuit used is the grid-plate type, and the tube is a bilowid pentode. The power output is taken from the phate cirruit of the tuhe. (On 80 meters, an 80 -moter erystal is needed. On 40, either 80- or 10-metere irvatals (an be used, although slightly more output will be obtained by using to-meter revstals. To oproate on 15 meters, a 40 -meter ervestal is used.

Ther tank circuit is a pi notwork. The plate tank caparitor is the variable (6, and the tank indurtanere is $L_{2} L_{3}$. ('s is a two-seretion variable. approximately 36 in $\mu \mu \mathrm{f}$. per soertion, with the stators connered together to give a total capari-
 is adrumato for coupling to 20 or $\overline{\text { on }}$ ohms on $\overline{7}$ and 21 Me. Whern operating on $3, \overline{\text { an }}$. Me., atn addilional $1(M O) \mu \mu f^{\circ}$. (σ_{7}^{7}) is added to furnish tho treded rather of capaciatance, L_{1} and R_{2} are cesemtial for suppressing v.h.f. parasitic oscillat ions.

The keving-monitor cirelit uses a moon bulh, (tyon Ni:-2) atudio-frequency oscillator ronneeted to the eathonde of the (i) (exid at the key jack, I_{1}. The headphones are phugged into J_{2}, a
jack mounted on the batek of the transmitter chassis, Dnothor jack, J_{3}, is used as a terminal for the leads that go to the headphone jack on the receiver.

Power Supply

The power supply uses a $5 \mathrm{C} 4(\mathrm{i}$ in a full-wave circuit. A capacitor-input filter is used and the output voltage is approximately 370 volts with a cathode current of 90 milliamperes. A 0-150 milliammeter reads cat hode eurrent. The sereen and grid eurents are approximately 4 mai. when the oscillator is loaded.

Construction

Ill of the components, including the power supply, are mounted on a $\because \times \mathbf{-} \times 1: 3$-inch aluminum chassis that is in tume enelosed in a $7 \times 9 \times 1$-inch aluminum box. (Premiur A (1597). One of the removable covers of the box is used as the front panel, as shown in lig. 6 - 3 on, The box has a $1 / 2$-inch lip around both openings, so the bottom edge of the chassis should be plared one inch from the bottom of the pancl. The sides of the chassis are also one inch from the sides of the pand. The chassis is held to the panel by S_{2}, J_{1}, alld the mounting sorews for the ervital socket, so both the front edge of the chassis and the pamel must be drilled alike for these components. S_{1}, at the left in the fromt view, is one inch from the edge of the chassis (that is, Iwo inches from the edge of the pathel) and centered vertically on the chassis edge. Thas it is one inch from the bottom of the chassis edge and two ine hes from the bottom edge of the panel. The hole for J_{1} is centered on the chassis edge and the holes for the ersstal socked are drilled at the right-hand end of the chassis to correspond with the position of S_{1} at the left.

Fig. 6.35 - This 30-watt threv-land Xow. ire 1 ramsmitter is enclosed in a $\div \times 0 \times$ 1.5 -imeh aluminum box. 1 group of $1 / 4$ -inch-diameter hedes should he drilled in the tor of the hos wer the ose illator tube, as shomn. to prosiale ventilation. A similar met of hales ahomild be drilled in the back eoner behind the oseillator circuit.

Fig. (o-36- (Brenit diagrant of the three-hand transmitter. Unloss otherwise sproified, capacitances are in $\mu \mu \mathrm{f}$. Resistances are in ohms ($K=1000)$.

C 1 - 3-30- $\mu \mathrm{f}$. (rimmer.
(i2- $1000-\mu \mu \mathrm{f}$. mica.

C $6-365-\mu \mu \mathrm{f}$, variable capacitor, single section, broad. cast-replacement type.
$\left.\mathrm{C}_{7}-0.00\right) 1-\mu \mathrm{f}$. 600 - volt mica.
Ci_{8} - $30.5-\mu \mu \mathrm{f}$. variable caparitor, dual sertion, luroad-cast-replacement type.
$\mathrm{C}_{12}-500-\mu \mu \mathrm{f}$. mica or ceramic.
C13-0.01- C f. dish ceramic.
C.14-8/8- μ f. 450 -volt dual electrolytic cajuacitor.
$\mathrm{J}_{1} . \mathrm{J}_{2}-\mathrm{Opm}$-cireuit phone jack.
J_{3} - Phono jach, IRC:A type.
J_{4} - Coanial chassis ponmertor, SO-239.
I. - 10 turns I_{0}. 18 wire spaced in a 100 -ohm 1 -watt resistor.

There is nothing eritioal about the placement of the meter or the shafte for (${ }_{6}$, ('x and S_{1}. As shown in Fig. 6-38, C_{6} is mount ed directly above J_{1} and approximately two inthes from the top of the panel. ('x similatly is above the erystal sorket and on the same horizontal line as C_{6}. S_{1} is about at the middle of the sipuate formerd by these four components.

The holes on the reare edge of the chassis for the coaxial connertor J_{4}, phone jaek J_{2}, receiver connector J_{3}, and for the a.e. cord are drilled at the same height as those on the front edge. Acerss holes should be cut in the rear cover of the box at the corresponding positions; these holes may the large enough to chear the eomponents, lut not larger than is neecessary for this purpose. The cover fits tightly against the rean colge of the chassis and thas maintains the shiclding for preventing radiation of harmonies in the television hands. Howerer, it is atrisable

1. -6 turns Vo. 16 wire. 8 turns per inell, $1 \frac{1}{4}$ inches diam. ($B_{\text {S W W }}$ 3018).
I.3-23 turns No. 16 wire, 8 turne pre imbl, $11 / 4$ inches diam. (3 \& ${ }^{(1)} 30 \mid 8$). The \mathbf{T}-Me. tap is 18 turns from the junction of L_{2} and L_{3}.

$\mathrm{M}_{1}-0-1 \mathrm{NO}$ ma. (Shurite 950).
$R_{1}-R_{s}$ ine. - As specified.
$\mathrm{RFC} \mathrm{C}_{1}, \mathrm{RFC} \mathrm{C}_{2}, \mathrm{RFC} \mathrm{R}_{3}-2.5-\mathrm{mh}$. r.f. choke (National 1R-30).
S_{1} - Single-pole 3 -position switch (Centralab 1-461).
S_{2} - Single-pole single-throw togyle switch.
' 1 't - Power transformer: : $360-0-360$ volt $s, 120$ ma.; 6.3 volts, $3 . \overline{3}$ amp.: 5 volts, 3 amp. (Atancor I'M. 8.110).
Y_{1} - Cirystal (see text)
to fasten the cover to the chassis edge with a few sheet-metal serews, in order to insure good clece trical contact.

There aro several difierent types of broadeastreplarement variable caparitors on the market. Some of these have holes tapped in the front of the frame, and this type can be monnted directly on the panel using machine serews and sparers. Others have mounting holes only in the bottom. In this case, the caparitor can be monnted on a pair of L -shaped brackets made from strips of aluminum.

Both L_{2} and L_{3} are supported by their leads. One end of L_{3} is connected to the stator of C_{8} and the other end is connected to a junction on top of a onc-inch-long steat ite stand-off insulator. L_{2} hats one end comected to the stator of C_{6} and the other end to one of the terminals on s_{1}.

The voltage-dividing network consisting of R_{6} and R_{7} provides the corred voltage for oper-

Rige o. 37 - Rear vicw of the tramimither showing the platecment of compontents alowe chassix, The loading caparitor. Cix. is at the left. La is the wervieal roil and Ia tlen horiantal bice. Dindurer prommela are nsed to prewert rhatime annl to furnish udditional iosenlation on the leads roming from below ehasisis.
ating the keving monitor, l_{6} is 1.65 megohms, it value obtained be using two :3.3-megohm 1 -wat resistors in parathel. These resistors and other small eomponents maty be mount ed on insulating Iug strips.

Adjustment and Testing

When the mit is ready for testing, a 15 - or 2-watt eleetrie light will serve as a dummy load. One side of the lamp, should be commeeted to the output lead and the ot her side to chassis qromed. I crustal appropriate for the band to be used should be plugged into the ervstal sooket, and at key comerted to the key jack. S_{1} shondel be set to the proper band. se may then be closed and the transmitter allowed to wam up.
set C_{8} at maximum capacitance (plates completely meshed) and close the key. (Quiekly tuno C6 to resonanere, as indieated bey dip in the cathode-enment reading. (iradually derease the capacitance of ('s, while retouching the funing of C_{6} as the loading increases. Incroased loading will be indieated by inereasing hamp brightness
and by larger values of cathode current. Tune for maximum lamp brilliance. The cathode current should read botwern and 100 milliamperes when the oscillator is fully loaded.
C_{1} should be adjustod for the best keying chatacteristics consistent with rasomably good power output. It is not advisable to attempt to adjust C'1 with a lamp dummy load, since tho lamp resistane will change diang the heating and cooling that take place during keving, and this will affere the keving shatateristie of the oscillator. I'se a regular antomat, with or without an antemata conpler or matching notwork as the antomat systom mas reduire, and listen to the kexing on the station receiver. Remove the anterma from the receiver to prevent overloading, aud adjust the r.f. gain control for a signal level comparabla with that at which signals on that hand are nomally heard. Further details on rhereking keying will be found in the chapter on keving and break-in.
(Originally deseribed in QS'T Decomber, 105\%.)

Fig. 6-38-Brelow-chazsis view. Pow. er-supply components are monnted in the left-hand side and the uscillator sedion is at the right-hand side. Donnted on the loack wall of the chassis is the keying monitor. A!thomme not visible in this view, the monitor component a arr monnted on a four-tasminal tie point.

A Single-Tube 75-Watt Novice Transmitter

Figs. (i-39 through 6-43 show a ro-wat ec.w. transmitter using a 6146 in a crystal oscillator. The power supply uses an ordinary rephacementtype transformer in a bridge cireuit. In the cirenit diagram, lige (i-41, the transformer rating is 360 volte exth side of eenter tap. but the supply will deliver 300 volts at 140 mat. For tune-1p parposes, the output of the power supply san be switehed from high to low voltage. The low potential output is 280 volts.

In order to limit the imput to 75 watte, the sereen voltage is held to 12.5 volts lay $/ R_{1} / 2$. With the supply output switehed to low voltage, the sereen drops to 80 volts for tune-up purposes.

The ervstal eurrent is monitored by at 2-voll (i)-ma. bulb connected betwern the erystal and whassis ground. 'The bulb also serves as a fuse in the event the crastal current should amedentally. rise aboye a sate value.

To avoid roil chamging a portion of the plate coil is shorted out for 40 -mater operation.

Construction

The transmitter is built on an $11 \times 7 \times 3-$ inch ahminum ehassis and the filfo and r.f. components abowe deck are shielded by a $\$ x$ is \times 6-inch aluminum box.

The power transformer, T, and rectifiers arre monated on the chassis top at one end. The other power supply components, T_{1}, $/ 4$, the $X-\mu$, Fectrolstie capacitors and the 20,000 -ohm 10 Watt resistors, are mounted helow deck.

The 6146 socket is mounted 1 '吕inehes in Prom the front of the chassis and $41 / 2$ ine hes from the and. Two I -inch isolantite standoffs are used to support $L_{2} L_{2}$. and they are mounted $2 \frac{1}{4}$ inelues apart. The rear one is $21 / 8$ inches from the chassis
back and 2 inehes from the righthand omb. A row of $1 / 4$-inch holes is drilled mear the bottom on both sidas of the wover bex to permit ventilation. Soveral $\frac{1}{4}$-ineh holes are also made in the box top directly owe the titat

Wiring

The power supply is wired first. The center taps of T_{1} and the high-voltage winding of T_{2} are commerted together and soddered to the lowvoltage terminat of s. A head is commeeted from one of the 5 lacid filament terminats to the highvoltage terminal on sis, whe lead from L_{4} is eomneeted to the arm of c_{3}.

Next, the below-ehassis pertion witing of the ril. section is empleted. No socket should be used for the 2 -volt forma. dial lamp in series with the cerstab. A ${ }^{\text {a }}$-ineh rubber grommet is used to hold the dial hamp in phate. Connections are made to the hamp bey soldering leads to the hase point and to the motal shell, The leid from the shell eommeres to the chassis.

Standard roil stork (13 \& 11 B!00), 2-inch diam. Sturns per indh. Sor 14 wire) is used for $L_{2} L_{\mathrm{o}}$. 1 total of 38 thrns is rut from the original stork. At one end of the pierer, a single turn is unwound from the support bats. From this end, count up Tre turns and rut the seventh thra. The ent should be made at the support har opposite the hare from whieh the lirst lead extemes. The leads from the cut paint are separated from the side support base and hrought aromed to the same bar :s the first hatel. At the othere end of the eoil, which will le 2 the (op), at lead is unvound from the suphort hars and extended from the bat opposite the one with the three leads. This roil is shown in ote of the photographs.
liad. 6.39 - Pietured is the comb pleted 6146 rip. The plate-current indicator lamp is to the left of the tuning hmol. In areas where 'I'I is likely to lee a problem, a metal bottom plate shoult be used on the rhasuis in addition to the $6 \times 6 \times 6$ aluminum box shown.

Fig. 6-40-13ottom vien of the one-tible transmitlor. 'Ilıre 6.3volt filament tramsformer is mounted on the side of the chasis at the upper right. hand corner. "lo the left of the transformer is the filter choke and nure of the $8 . \mu f$. clec trolytirs; the other chectrolytie is not visiblo. being mounted behind the power-supply choke coil.

Connting from the top, the 15 th and $17 \mathrm{th}^{2}$ furns are bent in, allowing ameress to the loth turn. This is for the formeter tap. I four-inch length of wire can be soldered to this point. The other cond
should be connected to the switch terminal on S_{4}.
The coil is sumperted on the isolantite standolfs bey two soldering lugs. The small ends of the lugs atre first bent around the bottom turn. Before

Fig. 6./l - (irrenit diagram of the 61 16 oacillator.

It - $1.8 \mu \mathrm{~h}$. (Ohmite $/ \mathrm{Z}$-141) chohe.
I.2, I_{3} - Siee text and photokraph.
1.4 - 10.5 henrys, 110 ma., 2e5 ohms.
$S_{3}-1$-pole 6 -prosition (\because used) wafer switch, nonshorting (Centralab 1 101).
$\mathrm{S}_{4}-1$-pole 6-position (2 need) steatite wafor switeh, nonshorting (6entralab eñol).

T1 - Filament transformer, 6.3 volt, $1: 2$ amperes.
T_{2} - P'ower transformer. $36(0)-(0)-36(1)$ voles, $1=0$ mat, 6.3 volts 3.5 amperes, 5 volts 3 amperes (Staneor P(8:810).
I nless otherwise spercified, all capacitor values are given in microfarals, lixed capactors except 8 -uf. electrolyties and fit are disk ecramie.
soldering them in place, the large lables in the lugs shombl be located over the holes in the standofls for proper alignment.

A roax reecptanle is momented on the barek of the shied hox and positioned so that the terminal is opposite the ungrounded end of link L_{3}. The switch atm capacitor can be monnted in the box first and then wised. However, it will probably be asior for the begimer to wire all the components first, and then mount them in the box. Three holes are neoded in the front of the shiold box. The caparitor and switeh holes are 1 de inches in from the side of the hos and 21 ind $11 / 2$ inches from the botom, resperetively. The hole for the F-inch grommet is 2 inehes to the left of the capacitor hole. With the holes cut in the box, it is ease to fit the has overi the wired pats.

When monting the glass bulb of the plate (arcuit (i-volt dial lamp in its grommot, be careful that nome of the metal parts of the bulb hase come in coutare with the metal of the bow. If the Imidder desires, a 2000- or 250-mat. milliammeter catn loe sulstituted for the bulls.

Testing the Transmitter

The r.f. chokes athl caparitors at the key comprise at elick filter, which should be eommerted direetly at the key terminals (not the plug).
for testing purposes, a dommy antenma should be commeded to the output terminal. ['se a
 lowd. The key pheg is inserted in its jack and the key is left open. With the 1 tiovolt line commerted to the rige, s_{1} is furmed on and the tiN: filuments are allowed to warm up for a mimute or so. Thern
 up fio another fere mimutes. The powar supply is switched to the low-voltage output. The key is

Fig. 6-42 - Chne-up vicw of the cail construction.
then relosed and the plate caparitor tumed for resontancer as indie:ated be minimum brilliance in the plate dial lamp. The dammy lamp should also light up at this point.

For f(1-meter operation, at to-meter cristal should be inserted in the erystal socket and s $_{4}$:witched to shart ont the unused protion of the plate eool, Tuneup proeredure is the same ats on 80 metres.
(From (0s7, Aug., 1950.)

6: Fis. 0.83 - Bomhing down int" the oscallator compartment.

75 Watts on Four Bands

Fig. $6-45$ shows the eireuit of at simple hathe switching transmitter that can he operated at imputs up to $\overline{5}$ watts on the 80 -, $40-, 20$-and $15-$ meter bands. A 6.ACī grid-plate erystal oscillator drives a pair of 6 L (iGIBs. Either 80 - or 40 -meter crystals may be used for t(ometor output, and to-meter crystals will supply aderpate drive to the amplifier on the 20 - and 1 bemeter bands.

The pi network in the output of the amplifier is designed to ferd a 50 - or 7 (0 -ohm load. (5 is a triple-gang 13C-type variable (ICA \quad;isl, Miller 2113, Philmore 904- or similar), having a capacitance of $36{ }^{3} \mu \mu$ f. or more jer seretion. The seetions are wired in parallel. L_{3} and L_{4} are v.h.f. parasitic suppressors. Euch consists of $6 \frac{1}{2}$ turns of No, 18 wire wound around a 10 ohm 1 -watt carbon rexistor arross which the coil is comnected.

A single millitmmeter, $1 / 2$, may be switehed to read cither : implifior grid rurrent or amplifior cathode current. A combination of series resistor h_{3} and shunt resistors R_{1} and h_{2} provides fullseale moter readings of 20 mat, for grid current and 300 ma. for ceithode current.

A power supply is included, and ample space remains on the chassis for adding a modulator. The power supply as desoribed should be adequate for powering the modulator in addition to the tranmitter. If e.w. operating only is contemplated, as similar transformor and ehoke hatving curront ratings of 20 ma. may be substituted.

Construction

Most of the comstructional details are apparent in the photographs. A $12 \times 17 \times 3$-inch alumi-
num chassis surmounted liy a $12 \times 7 \times 6$ inth aluminum box (I'remier A(${ }^{\circ}-1276$) is used as a shiedding enclosure. Two ortal tube sockets, placed between S_{1} and the 6 iacia socket, are used as crystal sockets. Each will aceommolate two FT-24:3 crystal holders. On ewd soded, Pins 1 and 3 should be wired together anol grounded to the chassis. Pins 5 and 7 should earh he connerted to a terminal on S_{t}. The ervstals should be plugged in between Pins 3 and 5 and betweon Pins 1 and 7.
The shaft of (2 must be insulated from the chassis. This is done by drilling a celearance hole for the shaft, and using insulating washers both inside and outside the chassis.

Coil dimensions are given in the table. Taps are most easily made by bending in toward the center of the eoil one or two turns on cither side of the turn to which the tap is to tre soldered. Make sure that no turns are shorted by the solder.

Adjustment

The amplifier must be neutralized first. For this it is necessary to diseonneet the high-voltage lime to the amplitier plates and sereens at the point marked " X " in the diagram. With a $\mathrm{F}-\mathrm{Mc}$ ". crystal plugged into the crystal socket. power turned on and the key elosed, turn S_{2} to the 21-Me, position, and adjust (${ }_{2}$, for maximum grid current to the amplifier. 'The meter should read half seale or more. Listen to the signal on a receiver and adjust Cil for best keying charateristico.

Fip. 6. H- A त- watt 4. hand transmitter. 'The shafts of S_{4} (helow the meter) and Cs (siee Fig. (0-16) are placed symmetrically. $\overbrace{3}, C_{5}$ and h_{1} are cerntered on the same vertical line, as are the meter, s_{4} and S_{1} at the opposite end. (i) is at the evinter of the panel, with sa diriecty below, Ce and S_{5} are spaced evenly on pither side of S_{2}. A series of $1 / 4$-inch verntilating holes is drilled in the box eover, above cach of the tubes. and along the bach of the box, toward the bottom, The power transformer, filter chohe and rextifier tube are srouped in the left rear corner of the chassis.

 0.01- μ. capacitors are di-k coramic, Capacitors marhed with podarity are electrolytic. Other fixed capacitors should
 resieturs in parallin.
(: $-30-\mu \mu$ f, mira trimmer.
(: $100-\mu \mu \mathrm{f}$. midget variable (Bual vic:-1885).

(it - $3(0)-\mu \mu \mathrm{C}$. varialle (Bud IIC. 18(0)).
(is-3-4ame BC variable (see text).
1_{1} - (torolt dial lamp.
, O Oprnecircuit hey jarh.
I_{2} - Coaxial receptacle ($\mathbf{8} 0-239$).

1. - In-see text and table.
1.7-10.h. 200 -ma, filter claoke (Triad (:Io- 1).

$\mathrm{RFC}_{4}-2.5$ mht. (National R-.00).
RH: $.5-2.5$ mh. (National R-300).
\therefore - 1-pole (6 -position rotary (Centralab 1401).
$\therefore_{2} 5_{3}-1$-pole (6 -powition rotary (Centralal) 2501).
S_{4} - - - polde - -position rotary ((entralab 161).
S_{5}-S.p.s.t togale suith.
Ti - 8 80) volts c.t., $3(0)$ ma.: 5 volts, 3 anmp.; 6.3 volts. 1 amps, ("'riad R21-1).

Vig. 6. $16-1.0$ iñ momented on the righthamd end of the box by soldering lags to the end turn and fastening the lugs to l-inels conte insulators which are centered 2 inclues down from the toin, lis is soldered directly lentween the 21-Me. witch terminal allid the atator terminal of C.4. C.s is fastened directly to flar charain, nith it. shaft 2 inches from the riphthand end. St in placed symmetrically at the opposite end of the panel.

Now turn S_{3} to the 21-. Dre pesition and turn ('s through its range. At some point there should be a kick in the grid-current reading. Adjust $r_{\text {B }}$ to the point where this kick is reduced to a minimum. Once this adjustment has been made, it should require no further attention.

Now turn off the power supply, and reconnert the high voltage to the amplifier. Comert a bo-watt lamp across ./2. sot r_{5} a at maximum capacitance, turn S_{4} to road cathode current. turn on the power and clowe the key. Adjust $($'s for a dip in cathode current (resonamere). Then
 resetting C_{4} ath time for resonthere As these adjustments are contimued alternately, the current at the dip, will inerease atiod the dip will hecome less promonted (see Figg, (i-1), Simultaneously, the load lamp should increatse in Brillianere Continue these adjustments until the highest reading is obtamed with ('i aldusted to resonamere. Howerer, do not allow the equrrent at this puint to rise above about $2: 30$ mat.

The trammiter am le tosted on the other bands in a similar mannor. first tuming ("ofor maximum grid current, and then adjusting the cutput circuit. Be sure that the swithes are

	Turns	Wire Size	Diam In.	Lgth. In.	Tap * Turns	Approx.	B \& W No.
I. 1	3 i	21	1	11/8	22,30	19	36119
Le:	.	20	:	\% 1	-	0.5	3011
L. 3	(i)	11	1	$11 / 4$	-	0.5	--
J.c	14	$11 ;$	2	$13 / 8$	71/2,11	8.5	3307-1
* Froma 3.jo. Mr. mond of coil.							

turned to the proner band, and that the promer crostal is in use.

A simple antemas system for multiband operattion is the paralled-dipole system dewribed in QST for July, lase Other types of antenmas may he fied through abn antemna coupher. Adjustment when fereding an antenna is similar to that deseribed for the dummy load. An output indi-

With the power supply shown, the output voltuge with the implifier lully lowed should be. about 40%. The amplifier sereen voltage should bu appoximately 200 . Ender fully-fonded conditions, maximum outpat should be obtainad with a grid current of about 6 ma . If the grid eurrent exeeds this value, it can be redued hy slighty detuning e.

 soldering its stator rods w insulated comtacto on a terminal atrip. Li is remented lo al ined eone insulator. L is

 is aet in the rear enlae of the eharesio.

A 7-Band 90-Watt Transmitter

Figs fi-18 through 6-i,t show photographe and rircuit diagrams of a ! (1)-watt bandswitching transmitter covering all hands from lat (if: a lfio)meter oscillator is provided, of course) through 10 meters. The r.f. cibeuit is shown in lig. (i-19. A string of four multiphior stages drives a 61 fi final amplifior. A well-sorermed tube (6.AN(i) is used in the first stage, whose output is in the so-meter hand, so that the stage will be stable when driwen hy an oscillator operating in the same hand. For simplieity, triodes (6CHs) are used in the remaining multiplier stages. The thim stage of this sertion operates either as a doubler ta) 11 Me:, or as a tripler to 21 Mc., the chame boing made as the band switch opens or closes a short across a portion of the tank inductor: Tuning adjustments are simplifiod by ganging the tuning eaparitors of all four multiplier stages to a single eontrol. The 80 -meter tank "ireuit, Cista, is desigued to cover only the re(phired tuning range - $3 \mathrm{~B}(\mathrm{~K})$ to - toro ke . However. When the band switeh is tumed to the $7-\mathrm{M}$ (e, ame higher-fredueney positions, the $\overline{7}-\mu \mu \mathrm{f}$. (eapawiter acrose the input of the first ide adds comugh rapacitane to shift the tank eireuit's lowest frequeney to about $333^{3} 0 \mathrm{ke}$, so that the harmonies will indude the 11 -moter band. This is promissible, of contse, since the frequencies at the high end of the 8i-meter hand are not meeded for multiplying into the other hands.

A pi-section tank circuit is used in the output of the billi. It is designod to work into lowimpedane coaxial rablde. In orther to ohtain heiter operation on 10 moters, and to rover Hiol moters, the lank inductor, L_{6}. is brokern up into three sertions. $L_{6,8}$ is the only inductane in the rirent when operating on 10 moters, the roller eontact on $L_{6 i}$ being run all the way to one ond to short $L_{6 B}$ out. In its hast position,
 ductance for 1 for meters.
L_{5} is a v.h.f. patasitio supprosshe. L_{0} amb ('s comprise a serics-resonant cireuit that may be adjusted to attenuate 'TVI in the most susceptible chanmel. RFict provides a d.e. short

:uproximately hatf the voltage rating that might otherwise be refuired.

The milliammeter, M / A, may be switehed to read total exciter plate current, amplifior grid rurrent, or amplificr cathode current. H_{3} and R_{4} aro shunts that multiply the meter reading hy 10 when reading exciter current, and he 20 when reading amplifier cat hode rurrent.

Construction

The shiclding malosure is made up of two $8 \times 17 \times 3$-inch aluminum chassis, fastemed together with top surfares one agatinst the othere At the right-hand end, the chassis tops are cut away to provide an opening 7 inches deep by 8 inches wide. Into this oproning the "dish" of lige (o-st is fastened to provide a well for the final-implifier components. A series of $1 / 4$-inch ventiat ing holes should be drilled in the hottom of the well, and in both top and bottom wowe in the areat above and below the 6 it 16 .

The eomponents should tre monoted so that the six control knols on the panel cone at the same hevel, using sparers under the compone onts wher neressary to areomplish this. The there controls at the left, and the theree at the right are grouped with equal spacing. The meter is mounted at the center line, and the tuning chat is centered ower the expiter tuning control. A combination of gears (see lig. (i-ite), operating from the shaft of the rotary induetor, was used to drive a surplus turns-eomuter diall, hut the (iroth (R. W. (iroth
 III.) pomitor should lxe equally compact.

In the expiter section, the four tube sorkets are lined up betwen the tuning-apacitor gang and the hathd switch. The G.JK6 is toward the fromt, with the eict multipliers following in logical serpuener to the rear.

The eapasitor gang, ('1, is mate up of two Hammarlund HIFI)-IOO duat units whose shaft: athe joimed with a Mille.n 3 3okn: rigid brass roupling Since the 1atil shaft of the Hammarlund unif is rather shom, it may be neesesary to grind down the from end of the Millen rompling almost to the set-seres hole to allow the sot serew to
 liff to rixht. are for hamed switeh, exciter tuming, moter switch, pi-action tank eatpacitor, rotary inductor abd turns comater. and outputcaparitor switch. 'I'ho panel is 7 ly 19 inches. The top cover (a chat-xin himtom coner) is in place in this view.

bear on the tail shaft.
The capacitor sections must be modified as follows: (1a - remow the last 5 rotor plates; ('13 - remove the first 9 rotor plates; ('iceremove all rotor plates except the first four. and remove the fourth stator plate; $C_{1 n}$ remove all rotor plates exeept the last four. After the modification is complete, test earh soction to make sure that no phates are shorting. (ve an ohmmetcr, or use a lamp in series with the ace. line.

The bend switeh, S_{1}, is mate up of ('entratab) Swithbit perts. The index assombly is trane
$l^{\prime}-123$; the ermmic wafers are type \mathcal{N}. For short leads, the wafers are spaced out so as to come approximately half-way between the tube sockets. lertically-mounted r.f. chokes are used, simer they occupy a minimum of chassis space.
L_{1} is wound on a Millen 4 ofol form, 1 inch in diameter. It is mounted to the loft of Cis, amd c:un be seell in the bottom-view photograph. Tha other multipher roils are supported by their leads, soldered to the capacitor terminals. The tap lead on L_{3} should be a pieer of wire about 3 inches long. The lemgth of this tap is adjusted later for tracking over the 21-Me, hand.

AMPLIFIER

Fig. 6.50 - Toll view of the amplifier compartment, showing the pi-section tank capacitor, the rotary inductor with
 normally is momed betwern the stand-off insulator off the right rear corner of the rotarv inductor and the rear rotary-inductor terminal. Fariter tulne are to the left.

The misa trimmer calateitors are mounted in surh positions that they can be adjusted through holes drilled in the chassis and in the bottom eover.

The socket for the 6116 is mounted narar the inside wall of the wedl by means of an L bracket attached to the rear wall of the ehassis. Holes are drilled in the wall of the wedl for wires comereting to the socket terminals. Sine working spatere is limited, all meressary bymasing and other wiring at the 6146 socket should be done before the soeket is mounted.

The output raparitor switeh is assembled on a Centralabl' 121 index head.

The rear of the meter is shideded with an ICA type $15-10$ shicld can rut down to a depth of 2 inches. Shielded leads are brought out through
notehes in the wall of the cam. close to the pancl. The moter shunts, R_{3} and R_{4}, are wound with copper wire as deseribed in the measurements chapter. R_{3} should be adjusted to increase the full-scale reading to 100 mas., and R_{4} to increase the range to 200 ma.

Following standard practice (ser chapter on BC'I and TVI) atl d.e. and filament wiring is done with shiedded wire.

The diagram of a suitable power supply is shown in Fig. (6-53.3. A pair of voltagerregulator tubes regulates the voltage (lrof) across the fono-ohm, 25-watt series resistor that drops the voltage to 300 for the exriter. The (0.AQ is a sereen clamper which, in combination with the 22 volts of battery hias, heeps the input to the 61 16 at zero when exeltation is removerd.

Fig. 6.-19 - 11 iring diagram of the 7 -hand 90-natt transmitter. All resistors $1 / 2$ watt unless othernise specified. Capacitor values below (0.(0) $\mu \mathrm{f}$, are in $\mu \mu$ f. $\mathrm{M}=$ micat. SMI $=$ siver mica. T ' $=$ mica trimmer. All other lixed rapactors are alish erramic.
Cis - Aprox. 6.5 $\mu \mu$ f. (sce text).
Cis- Ippron. $35 \mu \mu$ f. (see text).

6: $300-\mu \mu$ f. 0.026 -inch plate sparing (Xatimal TMS.300).
R_{1} - I'wo 4700 -ohm I-wall resistors in parallel.
R_{2} - 4600 - and 330 K -oblim I-wat resistors in paralled.
R_{3}, R_{4} - Heter shmets (wee text).
$\mathrm{L}_{1}-12$ нh. - 24 turus No. 22 d.e.n, 1 inch diam., flose-wound.
La-4:2 mh. 17 turns, inn diam., 17/32 inch long (13 \& 11 301E Miniductor).
$\mathrm{L}_{3}-1.8 \mu \mathrm{~h}$. -12 curns, $3 / \mathrm{a}_{6}$ inch diam., $3 / 4$ inch long,
tapped $6 \frac{1}{2}$ turns from ground end ($B \& W$ 3011 Miniductor).
 (13 \& 43003 Miniductor).
$\mathrm{I}, 5-8$ turns No. 18, $1 / 4$ inch diam., $5 / 8$ inch lonk.
LoA - $0.3 \mu \mathrm{~h}$. - 4 curns, $3 / 4$ inch dian., I inch lonk (B) \& W 3009 Vinidactor).
$\mathrm{L}_{613}-10-\mu \mathrm{h}$, variable (Johnson $229-201$).
 inches lang (18 \& W 390 inductor).
1.7-Sice text.
$\mathrm{J}_{1}, \mathrm{I}_{2}$ - Coas connector.
11A-3-inch, 10-ma, meter.
s_{1} - Ceramic rotary switch, 5 sections, of positions (sect text).
$\mathrm{s}_{2 A}-($ Centralah PIS seetion (see text).
s_{21} - (ientralah $\sqrt{\text { section (nee text). }}$
S_{3} - Bakelite rotary.

Fig. 6-5I - The "dish" for the final amplifier. It is bent from aluminum sheet.

Adjustment

Until the exciter has been tuned up, sereen and high-voltage lines should be disconnected from the transmitter, and the 6AQ5 clamp tube should be removed from its socket. The meter switch should be turned to its grid-current position, and the 6146 heater turned on.

If an oscillator with 160 -meter output is available, turn the band switch to the 160 -meter position, and adjust the coupling to the oscillator until the meter reads a grid current of 3 ma .

Then with an oscillator delivering output on either 160 or 80 meters, turn the band switch to the 80 -meter position, and adjust (' 1 for maximum gride current, This should be at least, 3 mat. If it is less, try readjusting the coupling to the oscillator. If a v.for is used, the multiplier should be chereked at both 3500 and 1000 ke. to make sure that it is covering the proper frequeney range. It may be necessary to spread out the last fow turns on L_{1} to get the cirruit to hit both ends of the band. If the output from the v.f.o. is reasomably constant, the grid current should remain essontially constant over the band.

With the 80 -meter stage working properly, the switch should be turned to the 40 -meter position. Set the v.f.o. to 3500 ke , and adjust (1 , for maximum grid-current reading. If there is no indica-

Fig. 6-52-Sketch of drive and indicator for the final-tanh variable inductor. The gears are standard Boston Gear Works items.
tion of drive to the amplifier, it may be necessary to adjust the 7 -Me, trimmer, fer a little bit at a time, retuning C_{1}, until an indication of output is obtained. Is an aid, the meter, when switehed to read exeiter phate current, should show a slight dip when ('2 is tumed through resonanere. When an indication of grid current is obtained, tune ('1 for prak drive, and then roadjust ('2 to increase the paak. The corredt aldustmont is the one whare no radjustment of either ('1 or fis will increase the drive. Now tune the oscillator to 3750 kc . (half this frequency, of course, if the oscillator output is in the lion-meter band) and retune (${ }^{2}$. The drive to the (6146 should remain essentially unchanged.

Now tune the oscillator back to 3500 kr , and retune ('i for maximum drive. Leate the oscillator and C_{1} at this point, and turn the band switch to 14 Mr. Adjust first ${ }^{\prime} 4$, and then C_{3} for maximum grid current. It may take a little juggling back and forth betwere these two before a maximun reading is ohtained. The metor, when turned to read exciter current should show a dip when C_{4} is tumed through resomance.

Leaving all tuning adjustments fixed, turn the switch to the 21-Me position. Adjust ('4 carifully, and note whether an inerease or a decrease in capacitance causes an increase in drive to the 6146. If it is an increase, lengthen the tap wire slightly. Thon turn the switch back to 1if Me. and readjust C_{4} for maximum drive. Then switeh back to 21 Me, and chock carofully again. By adjusting the length of the tap wire carofully, it should be possible to arrive at a condition where maximum drive is obtained at both 14 and 21 Mr. at the same setting of (${ }_{4}$. Remember, after each adjustment of the tap length, first go back to 1 If Me. and retune, then switch to 21 Me.

Adjustment for 28 Mr. is similar to that for 1t Mre, although it will be more eritical. Careful adjustment of C_{5} and C_{6} will the necessary for maximum drive. The 11 -meter band is covered by tuning f_{1} to resonanee with the switch in the 2*-Mr: position. The various riments should be chereked with an absorption wavemeter to make sure that they are tuming to the right multiple.

Whan the above adjustmants for the lowfrequency ruds of the various bands have been completed as described, it should be found that the ontput will be essentially the same at any point within any selerted batnd. Although such arcurary in lining up is mot neerssary, it should be possible to resonate (1 for maximmm drive at $70(6) \mathrm{ke}$, and then, without retuning, switch to 11, 21 and 28 Mr. and find that the stages are dolivering maximum drive. As montioned previously, a different frequency range is used for 80 meters, so it is always necessary to retune C_{1} when changing to this band.

The harmonic trap, $L_{-1}-C_{8}$, is adjusted to resonate at the frequency of the TV chanmel most susceptible to TVI, with the coax-connector terminals shorted. The frequeney should be cherened with a grid-dip meter. As an example. 3 turns of No. 18, $1 / 4$ inch diameter for L_{7} and $100 \mu \mu$ f. for C_{8} resonates in Channel 6, by proper

Fig. 6-5.3- Power-supply and clamp-taloc circuit.

C. 311).
1.2 -Smoothing (hoske, 10 h., 200 mal. ('Iriad Ci-lod).
 tralab 2.50).
T_{1} - Pate trandormer Meril P'-3159).
$I_{2}-V$ ilamert tratioformer: is volte, 3 amp.; 6.3 volt-. 6 amp. (Stancor I'-3(MO)).
adjustment of the turns spareing of L_{i-}.
The so-meter bind is tumed with all of L_{6613} in the cireuit. 10 is tumed with about 12 turns in the rimuit. 20 meters with about -1 urms, and 15 meters with about is turns. For 10 meters, $L 66$ is shonted out antirely hy ruming the contator all the way to the end of the eroil. In wath case.
the inductor is sot, and the eireuit resomated by means of C_{7}. Then the loading is adjusted by siz, re-resonating with (ra for cach position of s. s_{2}. The output eireuit is designed to couple into at matchod low-impedame line feeding an antema thaner or coalx-fed antemat.
(Originally demeribed in Qs'T for May 1955.)
 switch, The r.f. chohe near top center is the amplifier krill choke. Fientidating holes; in the bottom of the amplifier "disla" are duplicated in the bottom phate which wats removed for this pieture.

75 to 300 Watts with V.F.O. Control

Figs, 6 -in through $6-133$ show circuits and construetional details of a v.f.o. band-switching transmit ter that covers all bands from 80) through 10 meters. Depending on the plate voltare used, the final may be operated efficiently at inputs from $\overline{\mathrm{J}}$ to 300 watts. A differential break-in keying system is included.

The cirenit of the r.f. section is shown in Fig. 6-57. The v.f.o. follows the serics-tuned Colpitts, or Clapp, circuit. It is remotely tuned through a length of cois catble to minimize frequence drift. Output from the oscillator is in the 80 -moter band. A switch, sis changes the frequency range. One range covers approximately 3.5 to $3 . \overline{6}$ Na. This range is used to cover the (ew. portion of the 80-meter band, and to drive multipliers covering the higher-frequency hands. The second range is from 3.75 to 4 Me., and is used only for covering the 80-meter phone band.
(aood isolation between the v.f.o. and following stages is provided by a $6 \mathrm{C} \cdot \mathrm{t}$ cathode follower and: GAK6 buffer.

The ontput of the buffer may be switehed $\left(S_{2 A}\right)$ to drive rither the $57(i) 3$ driver stage or a series of three multiplier stages using 6CHs, and covering the $7-$ - 14 -, and $21-$ - 1 e. bands. The isfo3 is used as a doubler from 14 to 28 Mc . for output on 10 meters. Band-pass couplers are used between stages in the multiplor sortion. After initial adjustment, no tuning of these stages is required. A multiband tuner in the output of the 5 ofici covers all bands by adjusiment of its tuning capacitor, ('us. Wexitation to the final amplifier may be controlled by R_{1} which varies the $5763: 3$ screen voltage.

A forind is used in the finat amplition. It. characterisitios are such that it operates offiriently over a wide range of plate voltages, extending from 600 to 2000 volts. By proper choice of tank capacitor, a Novice naty limit the input to $\overline{0}$ watts by using low phate voltage, and later increase the power input up to 300) watts loy raising plate voltage. A pi network is used in the out put of the final stage. It is designed to work into a low-impodance coas line. C C_{15} is the input rapacitor. L_{14} is a variable inductor, used for all hands exerpt the $10-m e t e r$ band. On 28. Ie., L_{1} is sherted ont by ruming the shorting contact to the end of the coil, and L_{13} alone supplies the nowssary inductance. The output rapacitanere is furnished ly a group of fixed micot caparcitors that may be commeded in paratled acoording to the ned for wath band, or oprating condition, hy st, L_{15} and f_{16} form a soriesresonant cirmit that maty adjusted to resonate at the freduency of the television chamel most likely to be intorfered with in a given locatity. It consists of a $100-\mu \mu$ f. mie:a caparitor in series with a frew turns of wire.

Keying

The v.f.o. and the 5 diti: stage are keyed. A 6W6GTV clamper, and a Ol32 voltage-regulator tube (the latter used here as an electronie switch) hold the input to the f-6ist to at low level during keying intervals. The of her unkeyod stages are protected by cathode bias.

A differential keyer provides elean amplifier keying with all the convenionces of oscillator keying for break-in work. The aireuit consists of a 12 AU t twin-triode vacumm-tube switeh for

Fí, 6-5.5-The +.6.5i transmitterol 11 81' 1 ' in a rack calhiset with romote sif.o. and control unit to the risht. Along the hotom of the main pane! are the handswitch, the grid meter and the eariattion control. those are the conerols for the maltiband tumer, the plate tank capacions, the rotary inductor, and the output-capate. itor switel. 'The plate milliammoter is at the top.
turning the v.f.o. on and of as the key is operaterl, a GBLäd'T win-tronde vacumm-tube kever in the rathode of the $5 \mathbf{5} 63$. and a simple power supply to provide biasing voltuges for the sustem. The a.c. voltage for the selenium rectifier is supplied bra small 6 -volt filament transformer, werating in reverse from the 6 -volt transformer that supplies filament voltage for the 4 - 6 ad, willocit and (il3Lädil. The primary, used here as a serondary, delivers 1 It volts r.m.s.

When the key is open, a blocking voltage is applied to the grid of the v.f.o. tube so that it
 also biased to cut-off so that it will not pass the a7dis eathode emrent. When the key is closed, blowking bias is removed first from the v.f.o., and then, atn instant later. from the keyer tuber Although the v.f.o. maty chirp when it is turned on. the chirp does not appeat on the output signal beeduse of the delay in the keying of the 5 (tis be the keyer tube.

The reverse artion takes plate when the key is opemod. The amplifier is turned off first, and
then the v.f.o., masking any oscillator chimp. The values of R_{3}, R_{4} and C_{17} determine the keving chatanteristie of the 5 -603. With a fixed value for r_{17}, R_{3} controls the make characteristic, and R_{1} the break characteristic. Inereasing resistane softens the keying. The interval hotwere ose illatfor and amplifier keying is controlled by R_{2} The farther that the tap is adyanced towatd the ground end, the faster the wseillator will turn of after the key is opened. However, if it is allvanced too far, the break keying characteristio. may be clipped because the oscillator is tamed off too quickly.
Separate milliammeters are used in the grid and plate eirenits of the final amplifier. This is the only metering required.

Construction

The r.f. section of the transmitter is ansembled on : $1: 3 \times 17 \times 3$-inch ahminum chassis fitted with a $101 / 2 \times 19$-inch ratek panel. The amplitier is onelosed in a box constrmed of angle stoek and ahminmm sheet. P'erforated sheet will pro-

 the 5.03 is enelosed in the box fastened against she final-amplifier enelosure. 'The tank capacitor is placed so that its shaft is central ou the panel, and the rotary inductor is located, so that its control and the comerol for the multiband thuer are symmetrical in respect to the tank-capacitor eontrol. The turns connter for the rotary induedor is geared to the coil trive shaft. $\dot{\$}_{3}$ and the mica output capactors are off the left rear corner of the induetor. 'The v.h.f. seriesresonated eirenit is mounted against the rear wall, adjacent to the out put comeet.

Ci-Milget variathe.

Ch - Midget dual sariable. $110 \mu \mu$. bur sertion.
C. Ste text and lable 11.

1.3-1 10 see Table (0-I.
 1.12 - 8 turn- Vo. 18 enama.. 1 inch diann.. I inch lone.

1.15-Sere text.
D.16-P'ara-itio appremory- Ipprox. iturn- Vo. 16.
 remishor (are sertion on parasitio supprosion).
CR1-Sidronm rectiliar.

M1 ——"-ind mplarer metwr.
111_{2} - 3 -ind minare meter.
RFO - Aational R.RS:

\therefore_{2} - Ceranice ratary -witcha; aretions 1 diratit per artion. 1 moition- (6 contralah $2.3+1$).

 'Ti-6,3-wht obalo lilament tran-former.
T2-6.3-wolt 1.2 -amp, tilanemt transformer.

C'uil	TABLE 6-I				
	Band-pass Coupler Data				
	Band	Tu'us	Il ire	spacing	B W W No.
L.3	80	44	30 enam.	$1 /{ }^{\prime \prime}$	
L. 4	80	37	30) enam.		
L. ${ }_{5}$	40	21	30 enam.	7/16"	
1.8	40	10	26 conam.		
L. 7	20	15	24 timmed	9/16 ${ }^{\prime \prime}$	3012
1.8	20	10	2.4 timned	$9 / 10^{10}$	3012
L.9	15	9	24 tiuned	1/2"	3012
1. 10	15	6	24 tinned	$1 / 2$	3012

TABLE 6-II						
Approximate Pi-Section Values for Resistive 50- or 70ohm Loads (80 -meter band)						
Input		$\begin{gathered} \operatorname{Tin}_{1} k \\ Q \\ 10 \end{gathered}$	C_{15}		$L_{\mu / L^{2}}^{L_{14}}$	Output $\mu \mu s$:
$\sqrt{\text { unls }}$	Ma		$\mu \mu S^{2}$	loolts		
(i0)	140		200	(50)	12	1000
(60)	12.81	10	2101	(\%)	12	1000
11000	150	11	1.31	1000	17	1000
1.500	1:\%)	10	100	1.00	23	[10)
2000	1.50	14	100	2000	23	700

1 sugqested for Novice operation.
2 One half this value for 40 miters. one quarter for 20 meters, one sixth for 1.5 meters, and one eighth for 10 meters.

Fif. 6-58 - Bottom vew of the main hassis shoming the gromping of the handpase complers aronnd the bandswite h

 Fillament ant lian tratsformers are to the rizht. All pewer wiring is done with shichledl wire.

vide bedter vemilation. The dimensions of the chelostre are approximately 10 inches stuatre by 7 inches high, but may be varied somewhat to aterommodate the components seleroted.

The multibated tumer in the output of the ista3 is built into a $3 \times+\times 5$-inch ahmminum
 to the amplifier enclosume, A vernier mechanism, surh as the National AN or Alols or a tyon A.M dial, is rexommended. The components are latid wat so that, on the panel, the rontrol for the multibund tumer is balanced by the eontrol of the variable inductor, with the control for the imput rapacitor, (*5. rentral. A turns comator is geared to the shatt of the rotary inductor. (A control with a built-in turns counter, such

Fig. 0.54 - The multiband turer used between the Iriver and final amplifier is housed in a $3 \times 4 \times 5$. inch box fartened to the side wall of the amplifier enclosure. The 536.3 and fillal: have brea remored th this -inn.
as the Groth - IR. W. Groth Mig. Co., 10000) Framklin Ave., Franklin I'k., III., may Ise substituted.) In Fig. 6-isf, the $1-6.5 \mathrm{~A}$ is in the lower right-hand corner of the amplifior endosure. with the plate r.f. choke betwern it and the rear of ("15. The mica output caparitors are starked in the opposite eorner, close to the selector switeh. \grave{S}_{3}. L_{45} and ("16 are agatinst the rear wall, dose to the roas output emmedtor.

L'uderneath the chassis, the band switeh is plaed so as to allow room between it and the and of the chassis for the dikit and the 20 -meter (6C) and their bandpass complers. The fo-meter and 15 -meter 6 Ct , and their couplers are similarly placed on the other side of the switch. L_{2} and the Gallo v.fo. tube are forward from the

 mupply, sig turns on the 860 rectilier tilaments, and s_{3} dome rols the high-voltage transformer.
6. Wif6. The cathode follower is in front of the 40 -meter 6 C 4 , with the 12 AU to the left in Fifg. 6-50. In this view, the 570 (33 is in the rear left-hand eomer, with the GBLaGT kever the in front. The 6 ll GGT elamper tube is betwern the amplifier enclosure and the panel, near the inductor turns counter. The olB2 VR tulx is placed underneath the chassis, on a bracket to the rear of the grid milliammeter. The expitation control, R_{1}, is phaed so as to babane the eontrol for the hand switch on the panel. T_{1}. To, the selenium reetifior, and the components for the keyor hias-supply filtor are assembled against the right-hand end wall of the whassis in lig. (i-i) 8 .

All power wiring is done with shielded wire. by-passed as described in the chapore on BCI and TVI.

Band-Pass Couplers

The hand-pass complers shown were ormstimeted bsing the air tuming ceipanitors amb momtings from discarded i.f. transformers. The armangment shown in the detail photogetaph of Fig. (i-(i) may be duplicated elosely using a polyst yrene-strip hase and midget air trimmers. The coil forms shown are polystyme, 1 ineh in diameter and 19 inches long. but Millen type 150kO may be substituted. A hole is drilled through the bottom of the form so that it can be mounted on as spacer or bracket botwern the two capacitors.

Winding dimensions are shown in Table ($;-1$. The primary windings of the 80 - and to-meter coils are woind at the bottom ends of the forms, and remonted in place with coil dope. After the dope has dried, the rest of the coil form should be sprinklod with taldom powder, and a layer of collophate tape wound aronad it, with the :uthesive side out. On the stieky side. the secondary turns shond bre woumd firmly. thit not so tightly that the winding camot he slid along the form for adjustment. The ernds of the seesondary winding are hold in plate with cail dope applied carefully su that the serondary does not become atritited lo the fom so that themnot be moved. The ends of the windings shond wow be soldered oo dio capabitor termmals, completing the assombly.

The 20- and 15 -metor couplers are mathe from Barker and Williamson Minideretors, Ifrugths of which are slid inside the coil forms. The forms should first be slit with a fine saw to permit the conds of the windings to come out radially. The primary witdings shomal be inserted in the form first, and the serondarios slid in and out as needed for adjust ment.

V.F.O. Construction

The remote tumed aircuit for the v.f.o. is assombled in it $5 \times 0 \times 9$-ineh aluminum box. The National ACN dial is centered on one of the covers. The inductor is cemented to at strip of polystyrene, and the strip is supported on sections of polyst yrene rod that have beren tapped for marhine sorews at earh end. Dir trimmers
C_{2} and C_{3} are monnted on a panel so that they may be adjusted with a screwdriver through holes in the end of the box. The frequency-range switch, si, and the coas output eomector, J_{1}, are mounted at this cond.

The box is fitted with shock mountings attached to a hase made of two $7 \times 9 \times 2$-inch chassis, bottom to bottom, and fitted with an aluminum panel. The base is used as a control box, and contains the switches and indicator lamps shown in the power-supply diagram of Fig. 6 -fio. The main power switch is an atomobile ignition switeh. With the key romoved, the transmitter camot be turned on, A terminal strip at the rear provides commetions to power suphly and transmitter. A tength of IR(i-22,U t wo-conductor cable is used between the output connector of the tuning rmit, and the imput connector at the transmitter.

Fig. (i-60) shows the circuit of the power supply used with the transmitter. It was assembled on :a $1: 3 \times 17 \times 3$-inch steel chassis.

Pi-Section Values

Table 6-II shows approximate values for maximum rated plate current for c.w. operation at plate voltanes ranging from (60 to 2000 volts on $8(0$-maters. The (i0k)-volt, 120-mat. rating provides $\overline{5}$ watts input for Novice opration. To maintain the same values of () at the higher frequencias, the values of capacitance and inductanee shown in the table should be cut in half each time frequency is doubled (16 for 10 , $1 / 4$ for 20 , $1 / 6$ for 15 and $1 / 8$ for 10), (0n 28 Ite, and possibly on 21 Mc , minimum cirenit capacitance may make it impossible to reduce the $(a$

lig. 6-6I - This photograph shows the method of assembling the band-pass couplers as deseribed in the text.
to the vathes indiated ber the table．This will moan that less inductanco and greator output capacitance will be reguined．

If 80 －meter operation over the complete ratage of inputs shown in Table（ $\mathrm{i}-\mathrm{IL}$ is desired，the input capacitor C＇15 must have a voltage rating for the highest voltage（ 2000 volts）and sufficient capacitance for the lowest voltage（200 $\mu \mu \mathrm{f}$ ．）． （．Johnson 250bret has suitable dimensions．）（ Ot her－ wise，a capacitor of voltage and caparitame ratings shown in the table maty be used．

The output rapaceitance seloctor switeh，S_{3} ． has 10 contarts．The output caparitance required over the voltage range of（bol to 2000 volts for all bands will he sat isfactorily approximated if $5(0-\mu \mu \mathrm{f}$ ，capacitors arre eomeroded to earh of the lirst six positions． $100-\mu \mu$ f．mits to the next two positions，and $250-\mu \mu$ f．units to the last two pesitions．It shombla be pesithle to compensate for minor departures from the nereded values by readjustment of the other two edements，（＇is and Lats．To take catre of operation at maximum power input，the outpat caparitors should be mirai units rated at $25(\mathrm{~K})$ volts，surh as Sprague tyか・9Fい。

Tuning U_{P}

After all wiring is cherket，the oserillator tabe and rathode follower arre plagered into their sockets，and the exater power turned on．If all is well．the signal will be heard in a reereiver，in the vicinity of the R（）－meter batmed．Next，x_{1} is openoed，＂is sot at minimmom caparitance and C_{2} atlusted matil the signal is heard slighty above 4 Me．When C_{1} is set at maximum raparditanere．
the signal should be fomm in the vicenity of 3.75 Me．x_{1} should now be closed，and C_{3} adjusted until the signal is heard at slightly below 3.5 Ne． Some slight proning of the tuned circuits may be necossary，hat it should be possible to get the oscillator to operate from below 3.5 Me to over 4．0 Me．，with a slight overlap around 3.75 Mc ．

Now the bund－pass couplers can be tuned．Sot the handswit ch in the 80 －meter position，the exei－ tation control at zoro，and plug in the rest of the tubes in the exriter sertion．Temporarily ground the cathode of the 5763 ，and connect a high－ resistance voltmeter across the $576: 3$ grid－leak resistor．All band－pass－roupler secondary windings should be pulted as far away from the primaries as possible．The v．f．o．is bow set at 3.75 Mre， and C_{6} and C_{7} tuned for maximum indication on the voltmeter．The secondary winding，／4， should now be moved toward／a．until the spacing is that given in the coil table．This spaeing should be sot very carofully in all cases，since a small deviation will result in a change in the band－pass characteristic．It is also to be noted that the coupler tuning（apacitors are to be adjusted only when the windings are at the maximum spacing．

Next，move the high－resistance voltmeter to read the drop arross the 6Alif grid－leak resistor and set the v．f．o．frequency at 4 Mc．Now adjust L_{2} for maximum grid voltage，and swing the vef．o． through its entire range．If the grid voltage in－ ereases when the fregurney is lowered，decrease the inductance of L_{2} ．Corree adjustment of $L_{2}:$ will result in nearly constant drive to the diAlit throughout the entire v．f．o．range．

The rest of the band－pass couplers can now

Fig． 6.62 －The v．f．r．remute tuning unit and control box．＇the tming unit is enclosed in a $i \times 6 \times 9$ ．inch alumi－ mum lwa mounted on shock absorbers． The control－mit enclosure is made up of two $: \times 9 \times 2$－inch aluminum chas． sia，bottom to bottom，＇the range－ control swith and remote calble ron． nector are mounted on one end of the tuning unit．A fuse holder projects from the end of the control unit．
be adjusted, following the procedure deseribed above for the $3 . \bar{z}$-解e coupler, and with the voltmeter once again reading driver grid voltage, The f0-meter coupler should be adjusted with the v.f.o. set at 3.6 if Mr. the 20 -meter roupler should be adjusted at 3.6 Ale, and the 1 is-meter eotupler at 3.55 Me. It should be possible to tune through any of the bands with less than ten per cont variation in drive to the 5 adis.

The Multiband Tuner

The multiband tuner can now be ehecked, with the 4 -65. in its sorket, and hoater voltage applied. It is suggested that a grid-dipper be used to ascertain that the grid circuit is tuning to the proper frequency and not to athomia. (irid tuning-dial settings should bo logged for future reference, and noto taken if two bands resonate at the same dial setting. If, for example, the 80 and 20 -meter resonance points orenur at or near the same dial setting. pruning of one of the coils will be neeessary. For best separation lotwoen the two frequency ranges, the low-frequency inductor, L_{11}, should be adjusted so that $7: 300 \mathrm{ke}$. comes close to the minimum caparitanere of $\mathrm{r}^{4}{ }^{14}$, and the high-frequeney inductor, L_{12}, adjusted so that 14 Mc , comes rlose to maximum caparitance. The dial settings in this unit were $95,2: 3,82,15$, and 5 , respectively for the $80-$, $10-, 20-$, $15-$, and 10-meter hands.

Adjustment of the keyor can now he made after removing the ground from the $576: 3$ rathode. Re is advaned toward its positive and (ground) until the voltage at l^{\prime} in 1 of the 12.117 is -15 volts. The kering charaberistim cam be adgusted
to individual taste later bey adjusting the value of C_{17}.

Pi-Tank Adjustment

The final :mplifier is best testerl at reduced plate voltage. lith har a 5 ()-ohm dummy load or an antenna known to present a resistive load of 30 ohms should be used for initial tume-up. Adjustment of the exatition control. K_{1}, will provide the corred grid current of 15 mat. to the final. With the handswitch set in its 80 -mener position, and the grid tank resomated. the plate tank capacitor, ("L5. should be set at about 90 per erent of its maximum value, and the rotion inductor sot at near-maximum indurtanes. A grid-dipper could be used here to astablish a near-resonamee point. The plate voltage should be applied, and (${ }_{15}$ (quickly thened for a plate-rument dip. If an appreciable chatuge in raparitanere is neressaty to astathlish resomatere, a now sotting of the varriable inductor should tre tried, antil the plate ciremit resomates at 3.5 Me. with almost all of the caparitame of (${ }_{15}$ in the "ineolit. Full plate voltage cans now he appliod, and loading adjustod for a plate current of 1 bo ma. Now is a good time to cherk the + -hioh sereen voltige, whirh should be 2 and volts.

Adjusting the final amplifier on the other bathels is carried on in much the sume manner, sotting the final tank aupacitor to apmoximately the correct value (sue Table (i-II), adjusting the rotary inductor for resoname with a grid dipper, and finally resonating the eimenit with power on, All settings shomd be logend for futare reference.

Fig. 6.6.3- Kear siew of the thming unit showing the mounting of the inductor on polystyrime wett and ruds and the arrangement of other eomponents. Ceramie trimmers, monmed on the insulating panel at the lefo. were later replaced with air trimmers (C_{2} and (i3).

A 500-Watt Multiband V.F.O. Transmitter

ligs. (i-6t through (i-i2 show the eireuit and other details of a 500 -watt transmitter with v.f.o. frequeney control, capable of operation in any hand from 3.5 to 28 Mc . It is completely shielded and all tuming adjustments, including band changing, may be done with the panel controls.

As the cireuit of Fig. (i-67 shows, the v.f.o. uses a 5 of f : in a Clapp circuit operating over a range of $3: 370$ to 4000 kc ., split into three handspread ranges, tuned by C_{1} which is fitted with a caliluated dial. These ranges, solected by proper setting of $(2$, are 3500 to 3750 ke , $3: 370$ to 3405 kc . (for 11 -meter operation) and :3750 to 4000 ke . for Tis-meter phone work.

The oscillator circuit is followed hy two isolating stages. The first is a 6 C 1 connected as a cathode follower, which is very effective in reducing reartion on the oscillator by subsequent stages. Sine the ontput of the cathote follower is quite smatl, it is followed low at ation in amplifier fixed-tumed in the 3.5-Me region.

Frequency multiplying to reach the higherfregueney hands is done in the next two stages, the first usinge as arti.), while the second emploss the latreer 6 if 4 to drive the final amplifier. These two stages are umed with multiband tuners (irenits which have a thoning range that includes all urecsary hamds. Thus noswitahing or phag-in mils are beceded. Neither of these two stages is oproaterl as a straght amplifier, exerept on 80 moters. Frembency is doubled in the fillis stare for output on 10,20 and 10 meters, and tripled for
output on 15 meters. The 50 tii3 stage is operated at 3.5 Me . for $80-$ and 40 -moter output, doubles to 7 Me . for 20 -and 15 -meter output, and quadruples to 14 Me. for 10 -meter output. Exeitation to the final is adjusted by the potentiometer in the screen cireuit of this stare.

The 813 in the fintal amplifier also uses a multiband tuner to cover all bands. This stage is always operated as a straight amplifier and a noutralizing circuit is provided. The only switching neressary is in the output link cirenit in changing betwoen high- and low-frequeney bands. Laading is adjusted bey C_{10}.
I_{8} and V_{9} are used in a differential break-in keying swstem whid atomatically turns the v.f.o. on Wefore the sidi.3 cathode is closed by the kever tube V_{9}, and turns the v.f.o. off after the 5itia3 wathode cireuit has beed opened. This prevents any chirp in the oseilator from appearing on the out put signal of the transmitter.

A 50 -ma. meter may be switeled to read plate eurrent in the exciter stages, grid current in the driver and final-amplifior stages, or screen current to the $81: 3$. The $1 / 2$-ohm resistor in the 6146 highvoltage lead mult iples the moter-scale reading by three, while the 1 -ohm shunt in the 813 sereen lead increases the full-seale reading to 100 mat. I soparate 500 -mat. moter is used to check plate current to the 81:3.

The two-direnit rotary switeh, S_{1}, is used to bias the serems of the 6146 and 813 negative while (aning up the preceding stages and setting

Fig, 6.6.t-1he stambarthack pathel is $121 / 4$ inches high. (ontrols (National IIRS) along the hottome eenters

 for C_{l} is at the center, with the exdation control to the loft. and the dial for Cof the right (both Vational type

 twatom plate), and shect-metal sore" a.

Fir, 6-6.5-The - romponents are assembled orn a 1 : $\times 12 \times 3$ 3inh almminum rhawio. The melers are homed in $1 \times 1 \times 2$-ind lomes. the vifor endownre is $0 \times 6 \times 0$

 201) $-T$ is mounted on a matal lorachea fastoned th a xator terminat of Co, Cop fa Johnson V.e.01) eommet- io (cis via feralthrough i. I.h.f. parasitic chohe l. 10 comdiste of 6) turns Vo. 16, $1 / 4$ inch diameler. $1 / 4$ imeluer lomp. R_{1} is made ap of five lionothon l-wute rarlum reninturn in parallel. It in com-

 cotlets. low-seltati imput twrminals. has comecolor. and R_{4}.

the wifo. to frequener. lla the first pesition, both sereens are biased: in the serond position, ouly the 813 serem is hiased, while pheitive voltage is applied to the sereen of the (61-46 so that this sagre may be tunced up, In the thited and foutth positions, pasitive voltare is appliad to both seremen, hot in the hast position it is applied 10 the sl:3 sereen through an athedio rlogen sen that the stage maty be sereen-phate modulated.

Two hias ree tifioms are ineluded to suphly fixen bias to the 6146 and 813, so that the phate courmonts will be cout off during keying intorvals. Xegative borking voltage is also provided bor the keving system. Both revetifers operate from:
 reverse. 'The bias thasformer T is operated from the di.3-volt windines of the filament transtormer Γ_{1}.

Two the waters are provided for rommering the primates of extemal high- and how-voltare
 three thagla switrhes. B_{1} is a ventilatimg bowar that oprates when the filament switrh is dosom.

It is highly impertant that the willo. Wox make Fere contact with the chassis: otherwise the s.f.o. mas he adversely afferod hy ferethark hom the adjacent fital tank when woking on so metars. Momatine serms spared an inchatomet the hottom lipen the low and correspondinaly in the top wate should eliminate his rompleteds.
$\left.I_{1}(3,3) \mu h_{1}\right)$ is a Bdell s(0)-BCL coil with the link

 amsists of II mans of No. 16, 3/4-ineh diameter,

 of $1 /$-inch menper luhing, 21: inches insite diameter, $23 / 4$ inches lomg.

 its fromt wall $1^{3 / 6}$ inedes liach of the pamel, central on the ehatsois. I is monated on ${ }^{3}$-inch remes lo center it in the low. 'The shaft of fo (tardwall ilimond mimn last rotor polate) is eentral on the hos fromt, at a heixht to mateh that of Co . C_{2} (C ard)
 the coil, shaft downotral, wemper the right-angle drivelelow. Ca (ardmell Pl. (0009) is similarly mometed, to, the left of (s. fironaped to the laft ard li, l.2. amd J_{3} in fromt, with ! amil / lo the rear, and J_{2} in
 of the mil lows to the rear combert l_{3} and L.4 to Cit blow, "lbe wotilating holos are
 plaved with it- whaf $2^{\prime}{ }_{4}$ inchess from the end of the whassis. atml its rear end plate

 'This photograple was made hefore die installation of (f2. the R-1-it whohe. I's and J ?

Fig, 6-67-All eapacitances less than $0,001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All unmarked by-passes are disk ceramie. All 100 - $\mu \mu \mathrm{f}$.

 R_{1} is the ventilating-fan motor.

Fig. 6.68-Circuit of a suitable power supply for the 813 transmitter.

 full turn from one emit. Then count off 9$)^{\frac{1}{4}}$ turns, clip, the wire without breaking the support bats. Bomd the last quarter turn out. This pertion is L_{i}. Remove the next $3 / 4$ hurn to mate a 1 -inch spate bet ween $L_{\text {a }}$ and L_{s}. (ount off 10 turns mome, cut the remainder of the coil stork off. Unwind the last turnom L_{8}. Tap L_{8} at the 8 th turn from L_{i}.

Adjustment

The diagram of a suitable pewer supply is shown in lig. (6-tis. The low voltage supply should deliver a full 400 volts undor koad, and R_{3} should be adjusted eventually so that the voltage to V^{1}, V_{3}, V_{4} and V_{5} is 300 under load.
The v.for tuning ranges should be adjusted first. Set s, to the first position. Sljust Re to zero and turn on the filaments and low-voltage supply. Set ('1 at $!5$ degrees on the diad (near minimum capacitance). Set ('2 aredurately at midscale. Listening on a calibrated recoiver, adjust ('3 until the v.f.o. signal is heard at 3 bono ke. Tune the recoiver to 3500 ke , turn ('1 toward maximum capacitanere until the v.f.o, signal is heard. This should be chose to the lower end of the dial. By carefally bending the reamost stator phate of C_{t} backwatud, it should be pessible to adjust the
 10: 15 degrees on the dial. some slight readjust ment
of C_{3} maty be neerssary during the phate-hending prowess to kerp the hand contered on the dial.

Now set ('a at about 1 adegrees. Sot the reveiver
 until the v.f.o. sigual is heard. Then tuming the reerover to HOO ke., the v.f.o. signal should be heard when its dial is set at about 85 degrees. Mark this selting of Ca aceurately. If it is desired to center the 11 -moter hand on the dial, set C_{1} at midscale. Increase the caparitanere of C_{2} until the v.f.o. signal is heard at 33387 ke. Mark this setting of ('2 also aceurately.

When the v.f.o. frequeney ranges have been set, tume the v.f.o. to 3.6 Me. and adjust the sher of L_{2} for a maximum voltage reading atoross the $22 \mathbb{K}$ grid leak of V_{4}. A high-resistance voltmeter should read about - 2\% volts.

Readjust ('2 to midscale and turn the meter switeh to read 6146 grid current, and turn up the

T'uning Chart for the 819 Transmitter					
$\begin{gathered} \text { Oupput } \\ \text { Bund (Mc.) } \\ \hline \end{gathered}$	Jial 1	$\begin{aligned} & \mathrm{C}_{4} \\ & \text { Bind (Mc.) } \end{aligned}$	Diald	$\begin{aligned} & C_{b} \\ & \text { Band (Mc.) } \end{aligned}$	$\frac{e^{\prime \prime}}{\text { mial }^{2}}$
3.5	8.8	3.5	6.1	3.5	\square
\%	8.8	3.5	0.5	7	9
14	1.5	-	9.5	14	82
21	1.5	i	3.7	21	26
2\%-28	1.7	14	18	28	7
1 10 -division dial - 10 max, raparjance. ${ }^{2}$: 00 -livision dial - 100 mas, calacitance.					

exeitation comtrol to give a reading of 2 or 3 ma ． Resonate the outpot tank cirenit of the 57 an 3 frequency multipher at 80 meters（near maximum rapacitane（o）as indicated by maximum 6146 grid －urrent．Tum sis to the second pesition so that sereen voltage is applion to the 6116 but not to the 81：3．Turn the moter switch to read 6146 plate current and resonate the $61 / 6$ ontput tank circuit as indicated by the phate courent dip near maximum capacitance．Turning the meter switeh to read sla mrid rurrent，adjust the exeitation control to give a reading of ahout 25 ma ．

Before applying power to the $81: 3$ ，the nen－ tralizing should be adjusted as doseribed in an catier section of this chapter．After nentraliza－ tion，medued phate voltage should be applied． Plate voltare（an be reduced bey inserting a 150－watt lann］in series with the high－voltage－ transformer primary．A 3 （））－watt lamp comered arouss the output connector rath be used as a dummy load for testing．Make sure that N_{2} is farmed to the low－frequeney position．This posi－ tion is used for 3．5－and 7 －Mte operation．The other pusition is used for＇11， 21 and 28 Mc．Turn x_{1} to the thind position to apply sereen voltage to the $81: 3$ ，apply plate voltage and resonate the output tank cirenit（near maximum capacitancere） as indicated bex a dip in phate courent．Full phate voltage may now be appliod and（ ${ }_{10}$ a adjusted to give proper loading（220 mas．maximum）， Adjust the exeitation control to give an $81: 3$ grid current of 15 to 20 ma．Tuning up on the other bands is cone in a similar manuer，by adjusting the tumers in eareh eirenit to the eoprerel band to obtain the desired multiplication．The tuming chart shows the approximate dial setting for eath bathel，but eath should be wherked with an alsorption wave meter and the setting logged for future reforence．The voltagerement chat shows typiral values to be expertod．The output －irenit is designed for a 50 －or 70 －ohm resistive load．For other loads，a link－coupled antemat tumor （see transmission－line（hapter）should be used．

In the kever circuit，turning R_{4} toward gromed ＂anses the escillater to cont off more guickly after the key has been opened．
（Originally deseribed in QSTV for Jantary，

 Ls and Ls．＇The stator reds of（sare tapmed 6－32 for theraded atuls loy which the l－inch rome insolatore are attaehed．＇The lorachet attaching（ix to the stator of for is at the lower ripht．

I！！ 1 ；with montifications in the jssues for Jume，

Tulue	Band （．Mc．）	Girid （roles）	$\begin{aligned} & \text { Cirid I } \\ & \text { (ma.) } \end{aligned}$	ririd （rolts）	$\begin{aligned} & \text { lirid? ? } \\ & \text { (iman. } \end{aligned}$	＇inthode （rolta）	I＇late （wolis）	$\begin{aligned} & \text { Mate } \\ & \text { (mur. } \end{aligned}$
\checkmark	35	－1ij		1.20	－	11 f	3104	
V_{3}	3.5	－	－		－	$3!$	3014	
1	3.5	－18	－－	1919	$\underline{\square}$	$!$	3010	35
1.	35	－ 131	－	115	－	27	3100	5
$\stackrel{1}{ }$	7	－ il	－	115	－	275	3010	5
$1:$	11	－5x	－	170	－	34	300	8
15	3.5	－7		171			4110	55
リ＇	－	－iti		170	－		400	13
1 ＇，	11	-80	＊	18.5	－	－	1190	＊
1.	21	－ 910	＊	145	－	－	1010	（19）
V_{6}	ご	－75	＊	175	－	－	190	105
$1:$	3.5	－ 1685	17	110	40	－	2000	220）
$1:$	－	－185	$1 \times$	1010	10	－	21000	220
$1:$	11	-190	19	110	3.5	－	2060	220
\because	21	－190	20	100	35	－	2000	220
$1 \cdot$	24	－1！00	$1!$	110	41	－	21900	220

[^3]

Fig． $6-\tilde{\sigma} 0$－Detail view ef the ewiter sere tion．＂The nentralizing lead from Gi2 comes through the chassis at feed－through ．A．R_{4} in the keyre riremit is in the lower right entrer．R_{3} in near the lower left rormer． Lacadk to the 61 to socket pase through at large ilfarance bole in the brackel．

ドiд．6－ス̈－Tlor chat frame，the pand and the aluminum low are helld together，as show in 1 ，by the hard． ＂aresupplied with the CH＇A． 3 shows a me－ ter（Triplett Model 32－： \mathbf{I}^{\prime} ），its imsulated monating ring，and the rear cover of the lno．The meter assem． hly is slipmed into the metal how after the latter has heen at－ tached to the rear of the panel．shievled meter leads enter the lowtom of the lox througha mubergrom－ met．＇The shield liraid slamidel lre bonded to the outside of the alnminum case at the paint of entrs

 ehassis，and the eorresponding components monted so that their shafts line up with the controls．I＇anel bushing－ shond le provided for the shafts of Cio（Cardwell PL－ $\mathbf{7 0 0 6}$ ），and the right－angle drise；panel－bearing shaft units
 $5 \times 21 / 4$－inelabracket between Cand C_{5} ，whose shafte are fitted with insulatingemplings，C 5 is monnted on spacers．
 Hracket at the center．I， and $L_{\text {f }}$ ，at right angles，are soldered between the terminals of Cis and I＇in 4 of the 813 soeker，

 the seren brewern the shaft of 6 sand the shielded jower wires to the left．All power wiring is done with shielded wire
 S_{3}（Centralab $1 / 11$ ），is a National XR－50 slug－tuned form close－wound with 93 turns No． 30 enameled wire．

A Remotely-Tuned V.F.O.

The v.f.o, shown in liges. (i-73 through $\mathfrak{6}-\overline{\mathrm{a}} 7$ is a series-tumed Colpitts (Clipy) (ireuit built in two seetions. The large compartmont eontants only the tuned aircuit (Fig, ($;-7 \mathrm{ti} \mathrm{A}$), whike the other eontains the 50 (i) tube and at pair of 0132 voltage regulators (Fig. (i-7tl), The two are eonneeded with a piece of double-conductor cosixial cable that may be of athe length up to 10 feet or so. The alviontimes of such it system itre, first, that the tuned cireuit is wedl removed from heatgenerating equipmont, including the oseillator tube itsolf, and serond, that it forms it comveniont masans of remote frequeney control. While this arrangement was designed primarily as a driver for a frequencemoltipliar unit, in many cases the existing erystab-oseillator tube of at tranmitter fan be substituted for the serond section of ligg. (i-7413, if the tule is at 6. Acit or 57 (i3.3. If the grid-phate restald-nsoillator circuit is in use in the trimsmitter, it should he possible to foed the thand arenit diredty through the 2 eometurtor eable to grid, athonde and ground without motifying the reystal ascillator ciremit in : thy way. laci-22/U shiedded /win combluetor is recommended for the comereting cable.

The oscillater operates in the 3.5 - Me eregion and the bandspread tuning system, consisting of ('1, C'2 and C_{3}, is designed to fower the desimed frequeney ranges in three stepr, when \boldsymbol{C}_{1} and C^{\prime} 。 ate altered as deseribed under Fig. 6-7. With one setting of $\mathbf{C}^{\prime 2}$, the thaing capheitor ("1 spreads the range of 35010 to 3750 ke . out over 3 per erolt of the Nittional ACN dial. Nine this fundimental range avers the most-used si-moter e.w. frequencies, and harmonies of this rathere wover all of the higher-frequency bands, exerpting only
the 11 -meter biand, this tage will usuatlys suffier for 30 prer eent of all oprating. By shifting the sedting of ('2. the ringe of :370 to $1(H 0)$ ke. is spread out overe about $\overline{6}$ pere rent of the diabl. The 11-meter band is powided for be a third setting of ${ }^{2}$ ".

Tuned-Circuit Unit

 atuminum box. An enclosure of this size is nereded not only to provide mounting for in aldecputte diat, but also to permit sparing the coil well awity from the sides of the box so that its () will not be dratstically reduced bey the shielding in its fiedd.

The dish is first mounted eentratly on one of the 5×6-inch sides of the box. The thange caparitor'. (${ }_{1}$, is then compled to the dial and the momating step at the resur of the eapsuitor is supported against the bottom of the box with a he:ty metal
 is shatthole monated I inelh in from the left side and brottom of the brox. This meressitater drilling the shatit hole through the edge of the dial fratme ${ }^{\prime}{ }_{3}$ is sublered directly arows the terminats of ("\%. The knoh is a National Mlks-

The B \& W coil is removed from its mounting be first drilling out the rivets in the plag-in base, leatwing the metal angle pieros at eath end attiwhed to the roil, fand unsoldering the leads from the pins. The link winding is cotrefully removed by snipping the turns :und proing the spateing blocke lonse with it knife. ()ne them is removed from the coil itsilf. The coil is them mounted on National (is-1 pillar insulators so that it will be rentrably located in the box in beth direetions.

The three-contare jack for the remotertuning

 nector is at the end opposite the cable connection.

in one of the rovers, below the shelf level, and the power connertor is mounted at one end and the jack for the coan rableat theother. Theadjustablle resistor is mounted on top of the shenf, alongside the tubes, on the same side of the box as the keying and output. jatcks. This makes it possible to remove the tubes and add just the slider by removing the blank cover of the box. The resistor is supported tetwere two smatl :ngle pirees

III raparitames lews than $0.001 \quad \mu$ f. are in $\mu \mu$ f. Ill

 - oncrified.

 rotar plater- remened.
\mathbf{R}_{1} - |djuntable -lider.

 ramened).

As her jach - ohano input jack.
S. Thanlathed phome-tip jack.
I. I-erentact malre connector ($6:-1$ P-301-1B).

 tos fit $/ I_{1}$ and,$/ 2$.
("able is sit in the batek of the box, and ('a and ('s are soldered to its terminals.

Tube Unit

The photegraphts show the essential details of the assembly of the tube unit. The enclosure is : standard $2 \times 2 \times 4$-inch aldminum box. The
 inches from the top of the twe. 'This dimension is (ritical if the tabes are to bremoved without dittieulty. The keying and output jarks are mounted
joinced with a piere of throaled rod (or a long 6 - 32 sarew) through the resistor form.

III wiring, with the exception of the connecbints to the keving and output jarks and the rable comeredor, ath be done before the shelf is plamed in the box. This includes conneretions to the power commedor which mounts from the inside. In the frottom view of Fig. (i-77, the pate whoke, R'fere is to the lower left, soldered between
 of the limst 0)32 regulator. The eathode choke, RF' ('1, is atrose, with one ond fastened to l'in 7 of the $\overline{6}$ and sumet, while the other end is left free until the cover plate carrying the key jack is
 soldereddivertly:uross J3. Latals of proper length atre mate for the jarks and cathle commeretor, and these eommertions satn he made ater the shelf hats been put in place and just before the cover is put on. ('are should be used in phaterg the tubes in their somekts, sine there is little height to spate. If neressumy, the tips of the tubes ean be run up through the vertilating holes in the top of the box to atlow the pins to chatr the serekets.

Power Supply

Any power supply dolivering between 3(k) and fol volts at jol mat. or more maty be used to operate this v.for

Adjustment

Adjustmont of the frequeney range for maximum bandepread is quite simple. Set ('t to a dial reading of $\overline{5}$. Then adjust (2 until the oscillator signal is heard on the receiver at $35(0)$ ke. Set the receiver to 3750 ke and adjust C_{1} until the signal is heard. If this orcurs with the dial set at less than 100, earefully bend the rearmost rotor plate of C_{1} away from the adjarent stator plate, making sure that the plates do not touch and short the capacitor in any position of the rotor. 'Turn C C_{1} again to a dial reading of 5 , reset f'2 for 3500 kr ., and check again for the point where C_{1} tunes to $3 \pi \overline{0} 0 \mathrm{kc}$. By proper adjustment of the rotor plate on (C_{1}, the 3 B (0)-to-3750-ke, range can be made to cover the entire diat, or as much of it as desired.

Phone Band

After this initial range has heren sot, tune the receiver to $3 \times 5 \mathrm{ke}$. Set C_{1} to midseale and adjust ('2 until the v.f.o. signal is heard. Then the range of 3 a 50 to 4000 ke . should be approximately rentered on the dial with a coverage of about $\overline{5}$ divisions. The range can be shifted one waty or the other by simply shifting C_{2} slightly.
 pleted tule section with the tules in plate. Vatr tilation holes are drilled in the top of the low and in the plate covering the freceside.

Fig. 0.75-Buttem view of the tube-unit slielf. $K F C_{1}$ is above, $R F C_{2}$ beloн. A 0,001- f . capaciton is soldered to J_{3} on the cover plate. The two leads koing to the left solder to the cable connoctor. The orte to the left above sones (1) J_{4}, the lead to the right (1)./3.

A Single 6146 Amplifier

 show views of ath amplifier using a single 6146 . It is actually arevision of the $\overline{5}$-wat Noviere oscillator tramsmitter desoribed in an earlier sedtion. The cirenit is shown in Fig, 6-79), The input cirenit is a conventional parallel-tuned tank with link compling. However, the inductor is made up in two sections to avoid the inefficioncies of shorting turns on a single large eoil in switehing to the higher frequencies. A separate link coil is used with rach of the two grid coils.

A pi-section tank eircuit is used in the ontput. The amplifier is keyed in the cathode eirenit. The single milliammeter maty be switehed to read eit her erid eurrent or eathode eurrent. The bobwhm sories resistor and the 22 -ohm paratled resistor form a meter shmet that inereases the full-seale reading to 200) mat. When checking rathode rument.

Construction

The layoul of romponemts is shown in the
photographs. Tu the low, the tube sonek should be placed far enongh back on the chassis so that the tube will clear the meter. C_{7} is plated to the rear to spare it abont an ind from the tube. It is mounted on an alumimm bracket so as to bring its shaft up to the proper level. A parel beiring is compled to the shatt.
$R P C_{3}, C_{8}$ and ('9 are monnted on an insulated terminat strip to the left of the tube socket
 is comnected to $R P C_{3}$ and ('s at this strip. The v.h.f. parasitie suppressor L_{5} is connected between this lead and the platerennertor.

To the rear of the tube surket is another strip with two insulated torminals. A pierer of No. $1 t$ wire about 2 inches long is soldered vertically to (rath of the insulated terminals. Then a piere of "spetghett" is slid over each of the wires. The capacitance betwem these wires provides the rapatitance shown in lig. $6-79$ as C_{3}.

If this is a modification of the ossillater tramsmitter (Fig. $\mathrm{t}-\mathrm{-39}$), the erystal socket may be nsed as the input comnertor J_{1}, as shown in Fig.

Fig. $6-78-$ The bave for the 616 amplifice is a $11 \times 7 \times 3$-ineh aluminum rhazis. $16 \times 6 \times 6$-inch aluminum

 akong the sides of the bex, near the hotom, 'The perwer supply is a duplicate of the one shown in Figs, 6-4l.

 - homald ber xielded ase indiatrod.

(:3 - Voutralizing ratariter (ane leva).

(:- - $1010-\mu \mu \mathrm{C}$. variable eapacitor (hroallast replatasmint typre).
('s - (\% - Dish ceramic.
J_{1} - Soe tent.
de- (inasial receplatle (st) -239).
J_{3} - lomedrentit kry jach.
$\mathrm{I}_{1,}$ - I.- - Sere coil datat opposite.
$\mathrm{H}_{1}-0$-0-9-ma. d.e. milliammeter. 21/2-inch square (Shurite).

RFC: RFC: I- or 2.
S_{1}, In Donble-pole (o-position rolary switeh (Cen(ralab 1'1-2(H3).
See Fig. 6-10 for mitable power supply.

COIL DATA

The eroils $L_{1} L_{2}$ ari made from an single lengets of 13 \& W Minchator stomb. Conwime 8 burns frem the support bars and hising side cutters. smin off the projereting bars. Natp the unuchud piece of wire of athent one inth from the con stock.
 the axis of the coil and ent the wire at this paint. At the cot. nowim! $1 / \frac{1}{2}$ wris from cach mil. This leases two moils on the

 provedare is followerd in making l.3 4 .
 (13 d W :301ti)
I. 2 - tisurns of No, 21. I-inch diatm.. :32 tums per inth (B 心 W:3016)
 of lozlob.
 (13 心 W W : 305:
 (13 \& W 3007

 (t)-meter taps is matle $+1 / 2$ turns from junction of $L_{2} L_{4}$.
1.5-t turns of No. 14. '1-inch diam.. thrns spaced wire diam.
1.6-.i's turn of No. 13. 1-inely diam.. turns spared so that coil is t -ineh long.

 (13 d W 3: $3010-11$

Fig. 6.80-Yooking into the anowlifier box before monnting the output coils and handiwitch. The meter switeh is between the of to and the panel. The ottpont eipracitor is momeded on a bracket and is turned by the evtension haft. "Inisted wires the the right of the lomeling rapacitor form the sumbalizing rapacitor.

Hig. 6-81 - Jhin view shows the arrangernent of cenmpmonte in the lui. L_{7} in supported by two luge soldered to the end turn and fastomed lo l-inch some insulators rentered $13 / 4$ inches down from the top of the tex. L_{6} is supported at right angles to $/, 7$ ly soldering its top end to the inmer end of $I \bar{a}$. The twisted insulated wires forming ospar inmediatcly in front of fiz near the eenter.

3)

6-79. Ohtorwise, a maxial reerptache similar to I_{2} maty be mounted at the rear.

Adjustment

The amplifier requires a driver delivering at least 2 watts. The usual v.f.o. will not drive it without an intermediate amplifier, such as a (i.iQ5. However, most erystal useillators operating at 300 volts should be adeguate.

The first step in the adjustment is to neut ratize the amplifier. The high-voltage line to the plate and screen should he disconneeted temporarily at the high voltage terminad in figg. 6-79. The exeiter should be tumed up out the highest-frequeney bamd available.

With the heater voltage only applied to the (i)fte, excitation should be applied, and r_{1} adjusted to give maximum grid current. Then, with s_{2} set to the same band as the gride rircuit, and r_{6}^{\prime} sot at maximum capacitance, r_{4} shoula be turned through its range. Cnless the amplifier is neutralized, there shoukd be a kiek in the grid current at some print within the rathere of (a, When this point has leren found, the two insulated wires representing (${ }_{3}$ should be twisted forether a bit at a time until the grid-emrent kiek is brought to at minimum.

The high-volage connection to the phate and sereen may now be replaced. A (i)-wat lamp maty be comected across J_{2} to serve as a dammy load during testing. With power and exatation atpplied, and \boldsymbol{C}_{7} at maximum catpacitance, adjust ${ }^{6} 4$ for a dip in cathode current. Then reduce C^{2} : at little at at time, each time readjusting C_{4} for the dip, in cathode current. is (" is redued, the dip), in cathode current should become less pronounced and the load lamps should inerease in hrillianere. Comtinue these allermate aljusments until the cathole current at the point of dip is maximum, but do not allow it to exered 1.80 mat.

The ontput circuit is designed to foed obl- or forohm matehed antemat systems. For other antenna systems, an antemat huner shoulad be used between the amplifier and the antemat. With ath antema replating the dummy load, the adjustment procedure should be similar.
(Originally deseribed in QST', August, 1!90n.)

3

[^4]
-
-

A Parallel 807 Amplifier

The :mplifier shown in Figs. (i-S3 through 6 686 was dosigned to cover all hands from 3.5 to 30 Me . It cim be operited at an input of 150 waths on e.w., or 120 watts on phone. However, it will operate efficiently at $\overline{6}$ watts input for Novice use.

A pair of 807 s in parallel is shown in the eirenit diagram of lig. 6-8is. I pair of 162is may he sub stituted if a 12.6 -volt filament transformer is provident. The amplitier is capanditively coupled to the driver through the 100)- $\mu \mu$. mica catpacitor. ($1_{1} . L_{1}$ and L_{2} arre small inductors which, in conjunction with R_{2} and R_{3} in the sereon louds, are used for the suppression of v.h.f. parasities.

A combination ol hattery and grid-leak bias is used. Sime the sereens are operated from a lowvoltage souree, the fixed bias provided by the battery will ent the input to the 80ts to zoro when exritation is removed, an in keying preceding stages for row. operation. When the sereens are supplied through a dropping resistor from the plate supply, as required for plate-sorem modulattion, the battery will hold the input to a safe kevel in case of excitation fathere, although the input will not be roduced to zero.

A pi-sertion timk cirenit is used in the output. and paraillel phate foed is therefore necessaty Wither a rotiry inductor from a surphas 13(--375 - -:untenat-inning unit or a Johnson type 229-201 inductor may be used as the variable induetor, L_{4}. $L_{\text {a }}$ is at separate imbuetor for H-meter operattion. This eoil will not be meded if the Johnson valiable inductor is used, or if the sumplus indue-
for is used athed 10 -meter operation is not reguired.
The required output captatitane is furmishod by it combination of a variable capatuitor, C_{5}, and several fixed capacitors that maty be switched in parallel with the variable. A total of about $2000 \mu \mu$. should be provided. For a contimuous range of raparditance, earh of the fixed rapanitors should have a caparitance not greater than the maximum of the variable, . As ath example. a ofor $\mu \mu \mathrm{f}$. variathle and three $\overline{5}(0)-\mu \mu \mathrm{f}$. fixed catparitors maty be used. . $250(-\mu \mu f$. variable, on the other hand, will reguire seven 2 and- $\mu \mu$ f. fixed (ablumitors and a swith to atrommodate them.
r_{6} may be useful in localitios where TVI is bothersome on one particular v.h.f. chamel. In this ease, the caparitor can be series-resomated to the particular channel be adjusting its lead length (represented hy L_{5}). It should be connerted direetly areoss the outpat eons annector.

Plate and grid milliammeters are not included in the unit. but are momed externally on anwher panel to keep them out of r.f. fields. , J_{2} is provided for plugering in a cord from the grid milliammeter whilo chereking grid courent. The plate meter is wired in permanently through terminals at the roar of the chassis, If desired, the jack coul le omitted and the grid milliammeter wired in permathently, also.

Construction

In incortal $10 \times 17 \times 1$-ind aluminum chassis is used ats a shielding emelosure lor the amplifier. A standitrel hottom cover is used as the
 fixed mica capacitor- and wwiteh in the corner. 'Ihe variable input caparitor $\mathrm{i}=\mathrm{to}$ the rimht of the ariable imdnetor. The r.f. choke and by-paze fastened to the rear wall of the chas-is are in the plate circoit. Ilhe biasing hattery can be seen in the compartment to the right which also houses the input-circuit eomponents.

Fig. 6-8. - Panel view of the $150-w a t t$ amplifier showing the grid-meter jaek. and eontrols for the pi-sertion input capacitor, variahla indactor, variable oulpus raparitor and liwd-eaparitor switch.
fob cover. The chassis and the enver are perforated in the areat near the fodes to provide ventilation. IIoles in addition to those provided are drilled in the eover and along the lipes of the chassis so that the cover mat be serured tightly to the rhassis with No, fheremetal serews, The chatssis is centered behind a standard $51 / 4-\mathrm{inch}$ ahuminum rack panel.

The 80is are mounted horizontally from a partition spaming the chassis. This partition is made from a piere of athminum wht 4^{3} 's inches wite he 10 inches long. Malf-inth lips are bent wer at the front end and along the bottom edge for fastening it with marhine serews to the front wall and bottom ol the chassis. 'The partition is spateed 2 inches from the and of the chassis. The fobes ate provided with ahmamum shied aths, and the sockens phaterel sulliciently far to the reat to leave spate for the input catpacitor. © '4,

Most of the assembly and wiring to the sockets ran be dome hefore the partition is fastened permanmoty in bare. I'ins 4 and 5 of earh sorkot should be groumded right at the soeker. The No. 2
pins are joined be the two resistors P_{2} and h_{3} in sentos. RFC is a National R-GONs. or similar model. with ath insulating mounting. It is platerd rentrally betwern the two sorkets and betwern the partition and the end of the chassis. It is reventaally fastened arainst the hottom of the chatsis. However, until the assembly is rady to tre fistoned in plater, it is suspended by its lesuls. The two parasitio suppressor choker, $/ A_{1}$ and $/ 2$, are romeneted between the No. 3 phins on the sorkets and the top of RP'('I If C' 1 is used, it should the comeeded between the top of the ref. choke and the excitation input emmertor, J_{1}. ()therwise, a short piece of wire should ler substithend. The grid leak, h_{1}, is momed bef weon the bottom end of $R P C_{1}$ and an insulated tio point, and the grid by-pass. ('2, is commered lowtwern the botome eme of the choke and at ground on the partition. The negative terminal of the hasing battery is also comnerted to this tio point, while the positive terminal goes to I_{2}.

Three shiodded and bey-passed lobds are prepared as deseribed in the chapter on 'TVI and

Fig. 6.85 - (ircuit of lla parallol 80- amplifier.
Ci_{1} - Dot nevoleal if driser has omput counting capacitor.
 'INS-300. But (Ex-200\% or similar, 0,03-imeh plate spacings). Sre text.
 output, recsibing spacing adequate. (Inhonon

 325-11).
I.1, I.2 - 20, turns Vo, 30 enam., $1 / 4$-inch diam., 7/is inch long.
 text).
Ia- Rotary inductor- $1.5 \mu \mathrm{~h}$. (see trxi).
If - Sice text.
J - IRC: itspe shielded phono jack.
Iz - Cload-rircuit phone jack.
J_{3} - Cown connector.
St-I'rogresibrly-shorting rotary switch (Centralat, P-121 index lead, Pls wafer).
Sll eapacitances les- than $0.001 \mu \mathrm{f}$, are gisen in $\mu \mu \mathrm{f}$. All fixed caparitors dish reramie umless otherwise specified. All resintors l_{2} wall unless otherwise intioated.

13CI. One lead is comereted to the junction of R_{2} and R_{3}. The other two leads are fastened to the No. 1 pins of the sockets. After the partition has been fastened in plater, the lead from the junction of the resistors should be connected to the screon-voltage input terminal, The other t wo leads both are run toget her to the ungrounded heater input terminal. The shields of these three leads are grounded at both ends, to each other, and to the chassis at several points.

The plate blocking capacitor, C_{3}, is mounted with one of its terminals central in respect to the two 807 plate caps to permit plate leads of equal length. The $1-\mathrm{mh}, 300 \mathrm{ma}$, parallel-feed plate choke is mounted off the rear wall of the rhassis, with its cold end close to the high-voltage input terminal. The plate bypass, 77 , is fastened against the rear watl of the ehassis, and is connected between the cold end of the r.f. choke and the high-voltage input terminal with the shortest possible leads.

The variable inductor camot be mounted centrally in the chassis without interfering with the removal of the 805s. It is placed an ineh or so away from the plate caps of the tubes, and the input and variable output rapaciors are spaced symmetrieally on cither side. The fixed eapacitors in paratlel with ('s are stacked up and fastened to a grounding bracket attarched to the lefthand end of the chassis. The front terminals of these caparitors are comnered to the terminals of s_{1} monnted immediately in front.

Adjustment

The values of input and output capacitance and the value of the indurtance to be used in the pi net work will depend upon the voltage and enrrent at which the amplifier is operated. For full input on c.w., a voltage of 750 at 200 mat, is required for the plates, and 250 volts at 12 ma . for the screen grids, In this rase, screen voltage is hest obtained from the exciter phate supply, For full input on phone, a supply delivering 600 volts at 200 ma, is nereded, and $2 \overline{7} 5$ volts at 1.3 ma . for the screens. For phone work, the screen voltage should the taken from the plate supply through at 25,0 ()) (0hm 20 -watt resistor.

For Novice operation, the amplifier ran be operated. for instance, at 500 volts, 150 ma .

Fip. 6-86 - The amplifier is enclosed in an inverted alumimum chassis in which the bottom plate serves as the top coner. Nony the rear edge are the output coal connector, ground best, tip jacks for heater, sereen and plate voltages, and r.f. inpul jach.

OUTPUT-CIRCUIT VALUES						
Band (Mc.)	3.5	3.5	7	14	21	28
750 volts, 100 ma . 3750 ohms)						
$C_{\text {in }}(\mathrm{uuf}$)	150	2301	75	38	25	20
Cout (uuf.)	910	1700	450	225	150	110
L (uh.)	14.8	10.0	7.4	3.7	2.5	1.8
750 volts, 200 ma . (1875 ohms)						
Cin (uuf.)	300	2502	150	75	50	37
Cout (uuf.)	1570	1160	785	390	260	195
L (uh.)	7.9	9.3	4.0	2.0	1.3	1.0
500 volts, 150 ma . (1660 ohms)						
('iv (uuf.)	340	250:3	170	85	55	40
Cout (uuf.)	1680	1100	840	420	280	210
I. (uh.)	71	43	35	18	1.2	0.9
609) woldx, 200 ma . (I500 ohme)						
$C_{\text {IN }}$ (uuf.)	380	2504	190	95	63	47
Cout (uuf.)	1820	1000	910	455	300	227
L (uh.)	6.4	9.3	3.2	1.6	1.1	0.8
$1 Q=19$	$=10$	${ }^{3} Q=9$	${ }^{+}+$	8	others	$=12$

with both tubes in use, or at 750 volts, 100 mat. with one of the tubes removed.

An accompanying table shows the values of input and output capacitance and the inductance required for a tank-circuit (Q) of 12 and 50 -ohm output under the four operating conditions described above. The Johnson inductor does not have sufficient inductance for a Q of 12 under the 750 -volt 100 -mat, condition. In this case. with maximum inductance in use, the Q will run around 17 or 18 . Also, the values of input capacitime shown in the table include tube output capacitance and other stray eapacitances, so that input eapacitances of less than about 50 $\mu \mu$. will probably be umattamable. Where the table shows loss than $50 \mu u \mathrm{f}$. input eapacitance. (C_{4} should be operated as close to minimum capuritane as practicable.

An exeiter should be romneeted to J_{1}, and the compling adjusted to give about 7 ma, of grld current. With a 50 -ohm load eonnected, the input and output capacitaners should be set as closely ats possible to the values indicated in the table, and the variable inductor should be adjusted for resonance as indicated by the customary dip in plate current. Decreasing the output capacitance or the inductance while maintaining resonance with the input capacitor should in(rease lomating.
(From QSTV, Iugust, 1!255.)

A Medium-Power Tetrode Amplifier

Fig. 6.89-This medium-power tetrode amplifier is assembled on a 1" © 12×3-lnch alumisume clatanim with a 19×1214 inch rack panal. (iontrole ulong the bottom of tho panel are for the grid hand switeh, grid tuning capacitor, meter switch. a.c. power, and pistretwork loading eaparitor. Shove are the controls for the plate tank caparitor and plate hand switch. The sides and back of the shielding enclosure are a single piece of Reynolds imerforated aluminum sheet "wraplumd" around the chassis. A I-inch lip is toent along the three tope edzer so that the tor cower tan the faxtened on with shertmetal serewis.

Figs. (6-89) through 6-92 show photographs and circuit diagram of an amplifier using an RCD 709.4 tetrode that will handle up to 500 watts input on cew. or 3330 watte with platerscreven modulation. Construetion has beron simplified be the use of manufactured subassemblies - a Harrington Electronias (il-50 multiband grid tank and a 13 \& 11 type 851 bandswitching pinetwork induetor. The amplifior is neut ralized by the capacitive-bridge method. R_{1} and L_{5} atre adjusted to suppress v.h.f. parasitio oscillation. The single milliammeter M_{1} may be switched to read either grid or plate carrent. The shunt Re multiplies the original 50 -ma. seake be 10, giving readings up to b00 mat. when the meter switeh s_{3} is in the plateramrent position. Forered-air ventilation is provided by a small blower B_{1}.

Shiolded wire is used in all powar cirenats and terminal leads are bepassed for v.h.f. as they enter the ehassis.

Construction

The phate blocking caparitor is thereded onto onn of the plate tank-mapacitor stator rooks
 strip. sideen and filament bypasses are connereted direetly betwern the tuberoseket terminals and the perforated sheed. Jiath of the three sereen turminals is hepassed with a 1000 - $\mu \mu \mathrm{f}$. 1600 -volt disk ceramice caparitor, The grid-tank mit is spated from the front wall of the chassis on 1-ineh pillar insulators to provide spare for an insulating shatt cooppling.

Aong the rear wall of the chassis are the coas

Fig. o-9/1- Kear view of the mediumpower amplifier. 'I'ho shafte of the plate hand swith and plate tming caparitor are $23 / 4$ and $61 / 4$ inehes from the left -hand enel of the chasxis in this. view. A ventilating hole somewhat largor than the tule sooket is censtered $6 / 2$ inehes liom the right -hand end of the ehassis and o inches from the rear. A piesc of perforated aluminum covers the hole and support- the thbe socket monnted on l-inch ceramie eones. Ferd-through insulators carry connections to the lontom terminals of the plate tankeocil unit, the plate r.f. chothe and the neutralizing capacitor. The meter is enelosed in a $4 \times 1 \times 2$-inch aluminum low.

 components of the $13 \mathbb{N} 8$ sil pi-metwork inductor.

(i_{1} - $2.0(0-\mu \mu$ f. midget variable (apuecial).
(iz- Mentralizing capacitor - $11 \mu \mu$. max. (Johnson N125).

 placement type. $36 .{ }^{-3} \mu \mu$. (or more) per section, sections connected in paralled.
$1_{1}-6.3$-volt dial limp.
$J_{1}, J_{2}-$ Coax receptacle (SO)-2;30).
l.1-2 turns Xo. 16, 1 inch diam., over ground end of I. 2.
1.2 - I 1 turns No. $16,3 / 4$ inch diam., 2 inches long.
1.3-3 turns No. 16,1 inch diam., ower ground end of I_{4}.
L_{4} - 38 turns Vo. $20,3 / 4$ inch diam., $11 / 2 \mathrm{im}$ hers long.
L.5-3 turns Vo. 12, $3 / 8$ ineh diato., 1 ined long.
$\mathrm{I}_{6}-\frac{1}{}$ turns ${ }^{3} 16 \times{ }^{3}$ 16 indell copper stripe $13 / 8$ inches diametur. $2 \frac{1}{2}$ inches lomg.

output rommertor, ace power romector, fuse, sereen-voltage, bias and ground terminals, highvoltage connector (Millen) and the coax input romnector. Strips of $1 / 2$-inch aluminum angle fastened to the panel provide a means of fasteming the shielding endelosure to the panel. Paint should be removed where the angle rests against the panel so that there will be good electrical contact between the two.

Preliminary Adjustment

To maintain at tank Q of 10 at + and 7.3 Me., f turns should be removed or shorted out at the front end of the Bd \mathbb{I} unit, and the 40 -meter tap should be moved one turn toward the rear. (For operation at less than maximm ICAS ratings, see pi-network charts in an earlier section of this (hapter.)
tapped at 3 turns from the L_{8} end.
$\mathrm{L}_{8}-91 / 2$ turns ${ }^{2} \mathrm{o} .12,21 / 2$ inches diam., $11 / 2$ inches long, tapped at 6 turns from the ouput end (see text).
Note: I_{7} and I_{s} are mounted close tokether on the same axis; $L_{\text {fi }}$ is mounted at right angles.
M_{1} - D.e. milliammeter, 0 - 30 -ma. sale - $33 / 8$-inch rectangular ('Triplett Moodel $33 \overline{6}$-PL).

R_{2} - Approx. 32 turns Vo. 21 on a $\frac{1 / 4}{4}$-inch diam. form (see measurements chapter for method of adjustment).
1hPC $C_{1}-7.5()-\mu h$. r.f. choke (National R-33).
RFC2 - llate r.f. choke (Raypar RL.. (0)2).
RFC3-2.5-ml. r.f. choke ($\mathrm{National} \mathrm{R}-50$).
S_{1}-Two-wafer $\overline{5}$-position ceramic rotary switch.
s_{2} - Special heav-duty 5 -position rotary switch (component of B \& Q inductor unit).
I_{1} - Filament transformer: 6.3 valta, 3.5 amps. mininum (Thordarson 2lt1).

Before applying excitation, the amplifier should be chereked for v.h.f. parasitic oscillation as described in an carlier section of this chapter. A resistor of about 20,000 ohms should be connected between the bias terminal and ground. Full plate voltage may be applied, but the sereen should be operated from an adjustable $50,000-$ ohm 50-watt series resist or connected to the plate supply: The grid band switch should be turned to the 10-meter position and the plate switch to the 80 -meter position. With the meter switehed to read plate current, the sereen resistanee should be redued unt il the plate power input is about 100 watts. The meter should then be swit ehed to read grid current and the recommended procedure followed. The objective is to suppress the parasitic uscillation with the smallest possible coil to keep the parasitic-circuit resonant frequency

Fig. 6-92 - Buttom , ien of the Fogt amplitier. The prid-tank asscmbly in the upper Ioft-hamd comer and the ontput loading eapacitor in the lower ripht-hand cormer are placed so that the shaft of the latter and the shaft of the wrid band switeh are 112 inches from the emp of the chaseis. Spaeres between the ehassis and the outpat capacitor bring its shaft level with these of the prid-tank unit. "'he meter switeh is at the center. "Ihe filament transformer is mounted on an almomm loracket. The venting fan is holted agatinst the rear wall of the chastis.
betwern the two v.h.f. TV hands, If oscillation is detected, additional lomding resistors should bo tried first. If this does not work, another tum should be idded to the coil, or the turns squeezed closer together. With the parasitic eoil deseribed, the resonant frequeney of the eirenit is about 100 megaryeles.

Neutralizing

Neutralizing should be done with excitation applied to produce rated grid eurrent. The input and output eireuits should be tuned to the same frequency. Plate and sereen voltages should be disconnected at the transmitter terminals. The neutralizing capmetior should then be adjusted until a point is found where there is no change in grid eurrent as the plate tank cireuit is tuned through rosonames. The out put capacitor should be set at maximum caparitance for this check. After plate and sereen voltages have berom applied and the amplifier loaded, the neutralizing capacitor should be given a final adjustment to the point where minimum plate current and maximum grid and sereen currents oreur simultaneously,

Power Supply

Maximum ICAS ratings on the 7004 are 1500 volts, 3:30 mat, on e.w., 1500 volts, 200 mat. (max.) (Class $A 3_{1}$ s.s.b), and 1200 volts, 275 ma, for a 1 m , phone. However, the tube will work well at plate voltages down to at least 700 volts, provided appropriate values are used in the pi network as mentioned previously, The recommended scren voltage is 400 for all classes of operation at sereen
currents up to 30 mat, depending on the type of onseration. Therefore a regulated serem coltage (an be obtained using a pair of 0t 03s and one oc:3 in series, If serern voltage is obtained from the plate supply, an adjustable 100 -wat $75,000-0 \mathrm{hm}$ sorios resistor should be used and the value adjusted to obtain the desired operating plate curront after initial tuning adjustments have been made.

Biasing

A fixed biasing voltage of 50 is recpuired for s.s.b. operation. Batteries should last indedinitely. The biasing voltage may also be obtained from a voltage divider across a VIR tube with suitable. series resistor. A biasing voltage of $1: 30$ is rerommonded for plate-modulated Chass (servier, and 100 volts for ew, operation, Rerommended grid current is 5 ma. If the sereen is operated from a fixed-voltage source, a source regulated by an 0.A:3 should provide plate-current cut off. The balance of the required operating bias may be obtained from a grid leak (5000 ohms for esw, or 11,000 ohms for phone). In case the sereen is supplied through a dropping resistor from the phate supply, fixed biasing voltages of 100 for c,w. or I:30 for phone (no grid leak) should provide reasonable protection for the tube in case of failure of excitation.

The rated driving power is 5 watts, casily furnishod by a 2 E :2 6 without pushing it. Vxisting transmit ters using a $6 L 6,6146$ or 807 in the final may be used if provision is made for controlling the output of these units by adjustment of sereem voltage.

4-250-A's in a 1 -Kw. Final

The amplifier shown in the aroompanying photographs uses two f-250.As in parallel and covers 3.5 to 28 Mr. with complete band-switching. The output eireuit is a pi network designed for working into reasonably well-mateched 52- to 7itohm roaxial lines. The amplifier can hande a kilowatt input in Class ((operation on cither phone or cew. without, pushing the tubes to their limits. It ran also be opreated as a linear amplifier for single side hand.

The various components are mounted on a $17 \times 13 \times 4$-inch aluminum chassis at tached to a standard 19-inch relay rack panel $153 / 4$-inches high. The aboverehassis seretion is enclosed in : $11^{1 / 2}$-ineh high shield made from $\frac{1}{16}$-inch shoet aluminum. An aluminum bottom plate completes the below-chassis shidding. Finclosing the amplifier in this way, plus the neo of shiolded wirn and filters in the supply leads, takes care of the hatmonic TVI question.

The t-250ds are coold hy foremg aid into the chassis and thence up past the tubes be means of a 21 ru. ft. per minute blower. The air is exhatusted through two 3 -inth diameter cirealar openings over the tutnes in the top eover. Tos maintain the shidding intact, these are rovered with perforated aluminum.

A Barker and Williamson Model Siro bandswitching pi-tank inductor is used in the output cirenit. It is lumed by a varmun variable eat
pacitor operated through the counter dial (Groth TC--3) shown in the panel view.

Circuit Details

The circuit, Fig. ($6-92$, is eloctrically the more-or-less standard arrangoment of a parallel-tumed grid circuit and a pi-nct work ontput eirenit. The amplifier is nentralized by the catpacitive bridge method. A filament transformer is ineluded, but all other voltages come from external supplies.

The grid input eirenit of the amplifier uses a slightly modified IB\& IV turret assembly. The grid
 and lo-moter eoils each must have a fow turns romoved for proper grid tuning on these lands.

The cirenit includers: $2($ (N)-ohm grid leat and has provisions for extermal bias, which should be nsed in combination with the leak. The hy-pass (eapabitors on the serero leads all carry a rating of loun volts. This rating is neerssary to avoid rapacitor brakdowns when operating the amplifier serrems at their rated voltages for $A B_{1}$ opreration, and also with phate-modulated Class C ofreration where the (i)()-volt rat ing of the smather cramic capacitors would be exeected on moder lation praks. All of the $0.001-$ and $0.00: 3-\mu$ i. . atparitors are the disk type, and aside from the sareen by-passes are used manly for filtoring 'TV harmonies from the supply leads.

The her-pass raparitors in the high-voltang lead

Fifs, 6.91 - A l-hw. final using a pair of $1-250-$ A's in parallel.

are the TV high-voltage cormmic type, as is atso the bocking eaparitor in the tank cireuit. The lowding capacitor, C_{4}, in the output eircuit of the amplifier is at viable having enough range ($1500 \mu \mu$. total raparitance) to give adequate loading on 80) through 10 meters when working into a 52 - or $\mathbf{7}$-ohm resistive lowd.

Plate current is motered be a $0-1$ ammetor shunted arorss a resistor in the negative highvoltage lead. As shown in Fig. (i-92, this resistor is incorporated in the power supply, not in the amplifier unit. A 50 -watt rating represents an ample satety factor, since the power dissipated would not exreed a few watts should the ammoter opers up.

Separate milliammeters are provided for the grid and screen rireuits. The sereen meter is quite essential since the soreen current, and hence screen dissipation, is very semsitive to grid driving voltage and plate tuning.

Layout Details

Fig. $\mathrm{f}-93$ is a view looking into the amplifier with the top eover removed. The variable rapari-

14 Mc.: 8 turns No. 18, $11 / 4$ inches diam., $3 / 4$ inch long, link 2 turns No. 18.
21 Ve.: \ddagger turns No. $16,11 / 4$ inches diam., $1 / 2$ inch long, link 1 turn No. 18 .
28 Mc.: $21 / 2$ turn* No. $16,11 / 4$ inches diamn., $1 / 2$ inch loug, link 1 turn No. 18.
L_{2} - V.h.f. paravitic suppressor. 1 turns Vo. $12,1 / 4$ inch dia., turns spaced wire diancter.
$\mathbf{1}_{3}$ - Di-tank inductor (BNW Model 8.in). Inductances ats follows: 3.5 Mc., $13.5 \mu \mathrm{~h}$, ; 7 Mc., $6.5 \mu \mathrm{h.;}, 11$ We. $1 . \pi$, $\mu \mathrm{h} .: 21$ Me. $1 \mu \mathrm{~h} .: 28 \mathrm{Mc}, 0.8 \mu \mathrm{~h}$.
RPC: - National type R1\%i.i r.f. choke.
$\mathrm{BF}(2-2 \mu \mathrm{~h}$. $\mathrm{SO}(\mathrm{O}$-ma. r.f. choke (National type R-60). RFC. -2.5 mh. r.f. chohe.
' I ' - Filament transformer, 5 volts, 29 amp. (Thordar. son 1 '-21F07-A).
tor at the right is the output loading eontrol, C_{4}. To the left of C_{4} is the Model 850 inductor unit. immediately to the rear (below, in the photograph) of the inductor is the output lead, connected to a coaxial receptarle mounted on the reat cover. The vacuam variable, C_{3}, is mounted between the inductor and the +-250 As . It is supported by an aluminum bracket 6 inches high and t inches wide. The neutralizing rapacitor (2 is between the $4-250 \mathrm{As}$ and the front panel.
The grid turret and tuning eapacitor are mounted underneath the chassis to take advantage of the shielding afforded thereloy. To fit under the chassis the turret is mounted with the switeh shaft vertical, necessitating a rightangle drive to the panel control. The shaft approasches the panel at an angle, so a flexible coupling of the ball type (Millen 3OMO) I) is used between the shaft and panel bearing.

The meters are in a separate enclosure measuring $11 \times 3 \times 3$-inches. It is mounted to the front of the box by countersunk flat-head screws. The top lips of the moter box are drilled to take sheetmetal screws when the lid is in plate.

Fig. 6.93 (aloose)
Fig. 6.9) (helow)

Fig. 6.95

Connertions to the tube phates and nent ralizing (apacitor are made from flexible brass strip) $1 / 2$ inch wide. A piece of $3 / 4$-inch wide brass strip is used for the conned ion betwern the stator terminal of the vacoum variable and the tank induetor. The borking eaparitor is mounted on this strip.

Fig, 6-9.4 shows the amplifier with the top and back pands removed. The bower assembly is mounted on the rear ehassis wall. To the right of the motor is the high-voltage terminal, the 115 volt eomertor, the grid and sereen terminats, and the high-voltage negative comertor. Lads from these last thre terminals run haw rhassis in shiclded wire and then up to the meter box. These leats are visible in front of the loading atpatitor. Bedden 8885 shiched wire is used for the leads. The inner conductor is bypassed to the shield braid at cach end. The $2,5-\mathrm{mh}$. "satety" whoke, RPC'3, shunting the output and of the pi network is mounted on the back of the tank roil between the output lead and chassis gromed.

The isolantite fered-through imsulator to the left of the inductor is used to bring the high voltage through the chassis. Adjacent to it is the hypass at the bottom of the plate chanke, $R F^{\prime} C_{1}$.

Moming details of the right-angle drive assombly for switching the grid ciredit are clearly visible in Fig. (i-35. A $1 / 2$-inch square rod $23 / 4$ inches long is drilled and tapped at both ends to support the drive.

The sorkels for the $4-2$ onds are mounted on onc-inch isolantite pillars. The sereern and filatmont terminals are bepassed directly at the socket terminals. The grid terminals on the sockets face earh other, and a small feedthrough is used to bring the grid load ap though the chassis.
Fig, $6-16$ is a bettom view of the amplifien and Fig, $(\mathrm{i}-97$ is a chose-up) view of the grid circuit, A short length of $\mathrm{RRF}-\mathrm{B} 8 / \mathrm{U}$ is used to commed I_{1} on the rear chases wall to the link terminals on the turret assombly. The high-voltage lead is fittered by the $000-\mu \mu t$ ceramio bypass and $R P C_{2}$. The we two eomponents are visible on the inside of the rear wall above the blower assombly. Twoterminal tie-points are used for the a.ce comertions to the filament transformer and bower motor, shielded leads are used botweren the tiepoints and the 11 in-volt connedor.

Fig. 6-97 shows the grid-eirenit wiring in a bit more dotail, particularly the grid choke, grid resistor and ('s clustered just above the tuming (raparitor, The modifieations to the 10- and 10moter coils also are somewhat more casily sem in this photograph.

Adjustment and Operating Data

The amplifier should be nentralized with the plato and sorecn supply leats disommerted and the bandewiteh set to 28 Me. An indieating wave meter should be compled to the tank cirevit and drive applied to the amplifier. Resonate the grid
and plate tatnks and adjust the neutralizing cababiter for minimum r.f. in the tank cirenit as indicated by the wave metor. The same neattralizing adjustment should hohd for all thats. Bon't attempt to neutralize with the plate and sween sumply leads robtereted - i.e., with it complete eirenit for der. - beratuse even with the power turmed alf this permits alectrons to flow from the cathode to the plate and sereen, ambl r.f. will be present that camot be meatralized 1941 .

The parasitire rhoke will, in general, resenatte the plate lead in one of the bow v.h.f. TV rhanmels, and will tend to increase hatmonio output in that ehamol. Mewsure the resomant frequenes of the plate lead at L_{2} with a grid-dip meter, and if it is in one of the chanmels recejeed in soun lowatity, either pull the furms apart, or squereze them together to move the fregurney to an mo used ahmad. Any frequenty from folo 100 Ma . should be sadisfaterys.

Power Supply

For I kw. imput, a plate voltage of at least 2000 is required. serem voltate is ohtaned preferably from a separate (l0)-volt suphly. Fion Class © opration, an cextemal bias supply requlated by a VR-1:0n, phas a grid leak of 20 on ohms is reamimonded. With this rombination the grid rarment
 (i) mat, with the amplifier fally lowded.

Bome sort of r.f. chtput indieator, such as a
Fت̈g. 0.0 (
 "ant handle ath s.w.r. in the eorax lime of atrout '2 to 1 , but with higher s.w.r. values it maty mot la possible to get the desimed loadinge. Also, although the eomstruction is sueh that the amplition is "rleath" insumar as dieret madiat ion and leakage of harmonies in the TV bends aro commoned, a dand low-pass filtor will be required in most instadiations. I
 rephirement if exerssive build-an of currents or voltages in the filter is to ber avoided. If the line ramot be matrhed at the antermas, an anxiliary antemas compler will have to be wed.

For plate modulation at choke roil maty be commerted in the die serern lead so the sereen voltage will follow the andio variations in plate voltage. Ther rhoke should have :th inductincere of ahout 10 laneres, and must be catpalbly

 bring to sidply the proper oprating Poltuges from suitahly well-ragulatel supplies. If the amplifier is to be oprotated in ABe on s.s.h. The grid-leak resistor should be shorted out; also, suitabla lowding should be apmbed to the grid tank to maintabughed requlattion of the ref. driving voltige.
(From (0゙7 T, June, 1956.)

Power Supplies

Essentially pure direct-current plate supply is required to prevent serious hum in the output of recoivers, speech amplifiers, modulators and transmitters, In the ease of transmiters, d.c. phate supply is also dictated by goverment regulation.

The filaments of tubes in a transmitter or modulator usually may be operated from a.c Ilowever, the filament power for tubes in a receiver (excepting power atudio tubes), or those in a specech amplifier may be ate only if the tubes are of the indi-reetly-heatederathode type, if hum is: to le avoided.

Wherever commereial are lines are available, high-voltage d.ce plate supply is most cheaply and conveniontly ohtained be the use of a transformer-rectifier-filter system. An example of such a systom is shown in lig. $7-1$.

In this rireuit, the plate transformer, T_{1}. stops up the a.re line voltage to the reguired high voltage. The a.ce is changed to pulsating d.e. by the rectifiers. In and 1 'e. Pulsations in the dere apparing at the output of the reetifier (puints A and B) are smoothed out by the filter composed of L_{1} and (${ }_{1}$. R_{1} is a blecter rexistor. Its chief fumetion is to discharge C_{1}, as a safety measure, after the supply is turned off. By proper selertion of value, h_{1}
also helps to minimize changes in output voltage with changes in the amount of current drawn from the supply. TY is a step-down transformer to provide filament voltage for the rertifier tubes. It must have sufficient insulation betwern the

Hí, 7.1-A typical transfurmer-rectifierfilter system. In this instamer the circuit is that of a full-wave rece tifier with a chokeinput filter.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectifier circuits rovering most of the common applications in amateur equipment. Fig. $\overline{7}-2 \mathrm{~A}$ is the rircuit of a half-wave rectifior. During that half of the a.c. crole when the rectifier plate is positive with respect to the cathofe (or libament), current will flow through the reetifier and load. But during the other half of the corcle, when the plate is negative with reseet to the rathore, no courent (an flow. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitule.

The average output voltage - the voltage read hy the watul d.e. voltmeter - with this - ircuit is 0.45 times the r.m.s. value of the ane. voltage delivered be the transfomer secondary. Because the frequency of the pulses in the output wave is relatively low (one pulsation per cyele), considerable filtering is required to
provide adequately smooth d.e. output, and for this reason this rircuit is usually limited to applications where the current involved is small, such as in supplies for cathote-ray tubes and for protective bias in a transmitter.

Another disadvantage of the half-wave rectifier circuit is that the transformer must have at considerably higher primary volt-ampere rating (approximately 40 per cent greater), for the same d.c. power output, than in other reetifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectitier circuit is shown in Fig. 7-2 B. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.c. cycle. A transformer with a center-tapped secondary is required with the circuit. When the plate of V_{1} is positive, eurrent flows through the load to the center tap. Current cannot flow through V_{2} berause at this
instant its rathode (or filatment is positive in mespert to its phate. When the polarity reverses, I_{2} conducts and rurrent again flows through the load to the ernter-tip. this time through V_{2}.

The average output voitare is 0.15 times the rem.s. voltage of the entire trans-former-serondary, or 0,! times the voltage arross hatf of the transformer secondars", For the same fotal serendary voltage, the average outpul voltage is the same the that delivared with a half-wame metificer However, sk call la seroll from the sketelles of the output wave form in (B to the right, the frepucury ol the output pulses is fwion that of the half-wave rectilier. Therefore much lass filtering is ropured. Sine the reetifiers work altermately, such hamdles hati of the average load edrrent. Therefore the baderurment rating oll "atch reetifior need beonly hatl the taial loarl current drawn from the supply,
Two sepatate thats formers. with their primaries comberted in parallel and seondaties commentod in sorides (with the proper polarity masy he nesed in this cirsatit. Howcever, if this substitution is made, the primats volt-impreve rating must be reduced to about 10 ber rent less that fwioe the rating of one 1 natheformer.

Full-Wave Bridge Rectifier

Another full-wave reetifice dircuit is shown in Fig. -20 : In this aramgement, two rectifiers opreate in suries on each hatf of the evele, one rectitior being in the leat to the load, the other being in the retum lead. Over that portion of the cevele when the upper end of the translommer sedondary is positive with respert to the other end current fows through 1_{1}°, through the load and thence through les. Dariug this period current camot tlow through ree ificer I'4 Decanse its plate is megative with resperet to its cathode (or filament). ()wer the other hadf of the eyole. current flows through V_{3}, through the load and thenere through I_{z}. There filament trathomers

(B)

(C)

OUTPUT WAVEFORMS

are neded - one for V_{1} and V_{3} and one catch for I_{2} and V_{4}. The output wave shape (C), to the right, is the same as that from the simple renter-tap rectifier circuit, The output voltage ohtainable with this cireuit is 0.9 times the r.m.s, voltage delivered by the transformer serondary. For the same total transformerserondary voltage, the average output voltage when using the bridge rectifier will be twice that ohtatinable with the conter-tap reetifier rireuit. Ilowever, when comparing reetifier circuits for use with the same trassformor, it should be remembered that the pouer which a given transformer will handle remains the same regardless of the rectifier circuit used. If the output voltage is doublad by sutstituting the bridge ciredit lor the eenter-tap reetifier circuit. only hatl the rated load current ean be taken from the transformer without exereding its normal rating. liach rectifier in a bridge cireuit should have a minimum load-current rating of one half the total load current to be drawn from the supply.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general classifications as to type. The cold-cathode type is a diode which requires no cathode heating. Certain types will handle up to 350 ma, at 200 volts dere output. The internal drop in most types lies befwern 60 and 90 volts. Rertifiers of this kind are
produced in both half-wave (single-tiode) and fill-wave (double-diode) types.

High-Vacuum Rectifiers

Iligh-vacoum rectifiers depend entirely upon the thermionic emission from a heated filament and are chatractorized bey a rolatively high
internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for modium and high power in cases where the relatively high internal voltage drop nay be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electribal noise sometimes associated with other types of rectifiers.

Some rectifiers of the high-varcuum full-wave type in the so-called receiver-tube rhass will handle up to 250 mat at 400 to 500 volts d.c. output. Those in the higher-power class can be used to handle up to 500 ma at 2000 volts dic. in fullwave circuits. Nost low-power high-vacuum rectifiers are produred in the full-wave type, while those for greater power are invariably of the halfwave type, two tubes being reguired for a fullwave rectifier circuit. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voltage rating.

Mercury-Vapor Rectifiers

The voltage drop through a mercury-vapor rectifier is paretically constant at approximately 15 volts regardless of the load current. For high power they have the advantage of cheapners. Rectifiers of this type, however, have a tendency toward a type of oscillation which produces noise in nearby receivers, sometimes diflicult to climinate. Re, f. filtering in the primary circuit and at the rectifier plates as woll as shielding may be required. As with high-vacoum rectifiers, full-wave types are available in the lower-power ratings only, For higher power, two tubes are required in a full-wave circuit.

Selenium Rectifiers

Selenium rectifiers are available which make it possible to design a power supply eapable of delivering up to 100 or 150 volts, 200 ma. These units have the advantages of compactness. low internal voltage drop (about 5 volts), and the fart that no filament transiormer is needed. Lowever, to limit the charging corrent with caparitive input, a resistance of 5 to 50 ohms should be used in series with the rectifier (sce table at the (nd of this ehapter). They may be substituted in : my of the basid circuits shown in Fig, $7-2$, the terminal marked " + " or "cathode" eorresponding to the filament in these rireuits. Circuits in which the selenium rectifier is purticularly adaptable are shown later in Figs. $7-7$ through $\overline{7}-9$. Since they develop little heat if operated within their ratings, they are especially suitable for use in equipment requiring minimum temperature variation.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breakdown voltage and current-hanriling capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or caparitiveinput filter is used. Others, particularly mercury-
vapor types, are rated areording to maximum inverse peak voltage - the peak voltage between plate and cathode while the tube is not conducting, In the circuits of Fig. 7-2, the inverse peak voltare across each rectifier is 1.4 times the r.m.s, value of the voltage delivered by the entire transformer secondary.

All rectifier tubes are rated also as to maximum d.c. load curront and many, in addition, carry peak-current ratings, all of which should be carefully olserved to assure normal tube life. With a capacitive-input filter, the poak current may run several times the d.c. current, while with a chokeinput filter the peak value may not run more than twice the d.c. load current.

Operation of Rectifiers

In operating rectifiers repuiring filament or cathode heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage cam eanse excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse pak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier soeket should be firmly soldered, particularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contact surfare but also as to insulation, since the filament usually is at full output voltage to ground, Bakelito sockets will serve at voltages up to joll or so. but ceramie sockets, wrll spared from the chassis, always should be used at the higher voltages. Sperial tilament transformers with high-voltage insulation betwen primatry and secondary are required for rectifiers operating at potentials in exess of 1000 volts inverse peak.

The rectifier tubes should be placed in the equipment with adequate sparesurrounding them to provide for ventilation. When mereury-vapor tubes are first placed in servico, and each time after the moreury has beon disturbed, as by removal from the socket to a horizontal position, they should be run with filament voltage only for 30 minutes before applying high voltage. After

Fig. 7-3-Connerting mercury-vapor rectiliers in parallel for heavier currents. R_{1} and R_{2} shomed have the same value, between 50 and 100 ohms, and corresponding filament terminals shonld be connected together.

that, a delay of 30 seconds is recommended each time the filament is turned on.

Rectifiers may be connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. With mercuryvapor types, equalizing resist ors of 50 to 100 ohms should he comected in series with each plate, as shown in Fig. $7-3$, to help maintain an equal division of eurent between the two peetifiers.

Filters

The pulsating d.e. waves from the rectifiers shown in Fig, $7-2$ are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are required between the rectifier and the load to smooth out the pulsations to an essentially constant d,c, voltage. Also, upon the design of the filter depends to a large extent the vollage regulation of the power supply and the maximum load current that can be drawn from the supply without exceeding the peak-current rating of the rectifier.

Power-supply filters fall into two classifications, depending upon whether the first filter element following the rectifier is a capacitor or a choke. Caparitive-input filters are characterized by relatively high output voltage in respect to the transformer voltage, but poor voltage regulation. ('hoke-input filters result in much better regulation, when properly designed, but the output voltage is less than would be obtained with a capacitive-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only because of increased voltage drops in the transformer, filter chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the transformer voltage as a result of charging the first capacitor. l3y proper filter design the later effect can be eliminated. The change in output voltage with load is called voltaye regulation and is expressed as a percentage.

$$
\begin{aligned}
& \text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} \\
& \text { Fxample: No-load voltage }=E_{1}=1550 \text { volts. } \\
& \text { 1'ull-load voltage }=E_{2}=1230 \text { volts. } \\
& \text { P(ercotage regulation }=\frac{100(1550-1230)}{1230} \\
& =\frac{32,000}{1230}=26 \text { per eent, }
\end{aligned}
$$

Regulation may be as great as 100% or more with a capacitive-input filter, but by proper design can be held to 20% or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keved stage or a ('lass B modulator, because a large change in voltage may increase the tendency toward koy clicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a receiver, speech amplifier or unkeyed stages in a transmit ter, does not require good regulation so long as the proper voltage is obtained under load conditions. Another consideration that makes good voltage regulation desirable is that the filter eapacitors must have a voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless
of current variation is required (for stabilizing an oscillator, for example), special voltage-regulating circuits described elsewhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is sometimes convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, ineluding the current drawn by the bleeder resistor.

Input Resistance

The sum of the transformer impedance and the rectifier resistance is called the input resistance. The approximate transformer impedance is given by

$$
Z_{\mathrm{TR}}=N^{2} R_{\mathrm{PRI}}+R_{\mathrm{sEC}}
$$

where N is the transformer turns ratio, primary to secondary (primary to $1 / 2$ secondary in the case of a full-wave rectifier), and Reri and $R_{\text {sec }}$ are the primary and secondary resistances respertively. $R_{\text {sec }}$ will be the resistance of half of the secondary in the case of a full-wave circuit.

Bleeder

A bleeder resistor is a resistance connected across the output terminals of the power supply (see Fig. 7-1). Its functions are to discharge the filter capacitors as a safety measure when the power is turned off :and to improve voltage regulation bey providing a minimum load resistance. When voltage regulation is not of importance. the resistance may be as high as 100 ohms per volt. The resistance value to be used for voltageregulating purposes is discussed in later sections. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since : burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shonting capacitors which short-circuit the a.c. component while not interforing with the flow of the d.c. component, and sories chokes which pass d.c. readily but which imperde the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cont ripple, which is the ratio of the r.m.s. value of the ripple to the d.c, value in terms of percentage, For c,w, transmitters, the output ripple from the power supply should not exceed 5 per cent. The ripple in the output of supplies for voice transmitters should not exceed 1 per cent. Class 13 modulators require a ripple reduction to about 0.25%, while v.f.o.'s, high-
gain speed amplifiers, and recovers may require a reduction in ripple to 0.01%.

Ripple frequency is the frequency of the pulsations in the reetifier output wave - the mumber of pulsations per seeond. The frequency of the ripple with half-wave rectifiers is the same as the frequeney of the line supply - 60 eveles with 60)evele supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 eycles with 60 -evele supply.

The amount of filtering (values of inductance and eapacitance) required to give adequate smoothing depends upon the ripple frequener, more filtering being required as the ripple frequeney is lowered.

CAPACITIVE-INPUT FILTERS

Capacitive-input filter systems are shown in Fig. 7-4, Disregarding voltage drops in the chokes, all have the same characteristice except

Fig. 7-4 - Capacitive-input filter circuits. A - Simple capacitive. B - Single-section. C - Wouble-section.
in respect to ripple. Better ripple reduction will be ohtained when $L C$ seetions are added, as shown in Figs. 7-413 and C.

Output Voltage

To determine the approximate d.e. voltare output when a caparitive-imput filter is used, reference should be made to the graph of Fig. $7-\overline{\text { in }}$.

```
Fxample:
    Transformer r.m.s. voltage - 3:50
    Input resistanee - 200 ohms
    Maximum load eurrent, including bleeder eur-
        rent - 175 ma.
    Load resistance }=\frac{3.00}{0.175}=2000 ohms apy,rox.
```

From Fig. 7-5, for a load resistance of 2000 ohms and an imput resistance of 200 ohms, the d.e. output voltage is given as slightly over 1

Fig. 7.5 - Chart showing aporoximate ratio of d.e. output voltage across liftr input capacion to transformer r.m.s. secondary woltage for different load and input resistances.
times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bleeder resistance of 50,000 ohms is used, the d.e. output voltage, as shown in lig. $7-5$, will rise to about 1.35 times the transformer r.m.s. value, or about 470 volts, when the extemal load is removed. For greater accuracy, the voltage drops through the input resistance and the resistance of the rhokes should be subtracted from the values determined above. For best regulation with a capacitive-input filter, the bleder resistance should be as low as possible without excceding the transformer, reetifier or choke ratings when the external load if comerted.

Maximum Rectifier Current

The maximum eurrent that can be drawn from a supply with a capacitive-input filter without exceeding the peak-current rating of the reetifior may be estimated from the graph of Fig. $7-6$. I'sing values from the proceding example, the ratio of peak reetifier current to d.c. lead current for 2000 ohms, as shown in Fig. 7 - $\mathbf{6}$ is 3 . Therefore, the maximum load eurrent that can be drawn without exeeding the reetifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma., as above, the reetifier peak current rating should be at least $3 \times 175=525$ mat.

With bleder current only, Fig. 7 - 6 show: that the ratios will increase to over 8 . But since the beeder draws less than 10 ma. d.e., the reetifier peak current will be only 90 ma, or less.

Fig. 7-6 - Graph slowing the relationship between the dic, load current and the rectifier peak plate current with capacitive input for various talues of loan and infut resistance.

Ripple Filtering

The apmoximate ripple pereontage after the simple capacitive filter of lig. $\overline{\mathrm{F}}$ - 1.1 may be determined from Fig. 7-7. With a load resistance of 2000 ohms, for instanee, the ripple will be approximately 10 ,, with an 8 - $\mu \mathrm{f}$, capacitor or 20% with a $4-\mu$. (apacitor. For other capacifances, the ripple will be in inverse proportion to

Fip, 7-7-Shnwing approximate lot-eycle percentage ripple across filter input caparitor for various loads.
 2μ f., and so forth.

The ripple can be reduced further by the addition of $L C$ sections as shown in Figs, 7-413 and C. Fig. 7-8 shows the factor by which the ripple from any preceding section is reduced depending on the product of the capacitanee and inductance added. For instance, if a section composed of a choke of 5 h . and a capacitor of 4μ. were to he added to the simple capacitor of Fig. $7-4.1$, the product is $+\times 5=20$. Fig. $7-8$ shows that the original ripple ($10^{\circ} \%$ as above with 8μ f. for example) will le reduced by a factor of about 0.08 . Therefore the ripple percentage after the new section will be

Fiiz. 7-8 - Ripple-rednction factor for varions values of I, and C ins liltersection. Output riphle $=$ input ripple X ripple factor.
approximately $0.08 \times 10=0.8 \%$. If another section is added to the filter, its reduction factor from lig. $7-8$ will be applied to the 0.8% from the preeding section; $0.8 \times 0.08=0.064 \%$ (if the second seretion has the same $L C$ product as the first).

CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-input filter, as shown in lig. 7-9, is used. ('hoke input also permits Inetter utilization of the rectifier, since a higher load current usually can be drawn without exceeding the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to act as a capaci-tive-input filter unless the input choke has at least a rertain mininum value of inductance callod the critical value. This aritical value is given by

$$
L_{\mathrm{L}}=\frac{E_{\mathrm{vontr}}}{I_{\mathrm{MA}}}
$$

where E is the output vollage of the supply, and I is the current being drawn from the supply.

If the choke has at least the critieal value, the output voltage will be limited to the average value of the reetified wave at the input to the

Fif． 7.9 －Chohe－input filter virmits，A－Singlevece－ （ion， B －I moublicesertion．
＂hoke（see liz．$\overline{\mathrm{F}}-2$ ）when the current drawn from the supply is small．This is in contrast to the capacitive－input filter in which the ontput volt－ agre tends to some toward the peak value of the rectitied wave at light loouds．．Nso，if the input rhoke has at heast the aritical value，the wertilier peak phate carrent will be limited to abment wiee the d．ce．carrent drawn from the supply．Most reedifier tabes have peak－roment ratings of three Wo four times their maximum d．e output－rument ratings．Therefore，with an input choke of at least ritical budactane e，current uf to the maximum output－coment rating of the reetifior may be drawn from the supply without execeding the peak－anrent rating of the rectifier．

Minimum－Load－Bleeder Resistance

Frum the formula alowe for erilical induetanere， it is obviens that if no rument is drawn from the supple，the ceritical indur－aner will be infinite．so that a pratical value of indurtane maty be used， some curtent must be drawn from the supply at all times the supply is in use．From the formula we find that this minimum value of entrent is

$$
I_{\mathrm{MA}}=\frac{L_{\mathrm{VOH}}}{L_{\mathrm{H}}}
$$

Thus，if the rhoke has an inductance of 20 h．， and the out put voltage is 2000 ，the minimum load Furrent should be 100 mat．This load may be pro－ vided，for example，by tramsmitter stages that draw earent continuously（stages that are not kevod）．However，in the majority of aises it will be most eonvenient to adjust the bleder resist－ ance so that the bleeder will draw the required minimum current．In the above example，the heoder mesistane should be $2000 / 0.1=20,000$ ohms．

From the formala for aritical inductance，it is sern that when more rurrent is drawn from the supply，the reritical indurtance beromes less． Thus，as an example，when the total current，in－ duding the 100 mat．drawn bey the bleader rises to fox ma．，the choke nered have an inductance of only 5 h ．to matintain the rritical value．This is fortunate，beecuse chokes having the required in－ ductanee for the beeder load only and that will matintain this value of indurtance for much larger currents are very expensive．

Swinging Chokes

Less eostle chokes are availatbe that will main－ tain at least eritical value of inductance over the range of current likely to be drawn from prati－ cal supplics．These chokes are called swinging chokes．Is an example，a swinging choke may have an inductancer rating of $\overline{5} / 2 \overline{5}$ h．and at cur－ rent rating of 225 mat．If the supple delivers（o）o volts，the minimum load rurrent should be $1000 / 25=40 \mathrm{ma}$ ．When the full lead current of 225 mat．is drawn from the supply，the inductance will drop to 5 h ．The eritical induetance for 225 mat at 1000 volts is $1000 / 225=4.5 \mathrm{~h}$ ．Therefore the $5 / 25-h$ ，choke mantans at least the eritiaral inductance at the full current rating of 225 mat． At all load currents between 40 mat．and 225 mat， the choke will adjust its inductanee to at least the appowimate reritieal value．

Table T－I shows the maximum suphly output voltage that com be used with commonly－atvail－ ahle swinging chokes to maintain eritical indur－ taneo at the maximum current rating of the choke．These rhokes will also maintain reritical inductance for ans fourer values of voltage，or eur－ rent down to the required minimum drawn by a proper bleeder as diseoussed above．

TABLE 7－1				
Lih	Mar．ma．	Max．molta	Max．R^{1}	Min．mar ${ }^{2}$
3．3／13．5	1.80	．32\％	13．．3\％	39
i／2i）	17.5	87.5	2．5に	3．；
2／12	200	400	12に	3：3
5／2i	200	10 HO	2．）に	40
i／25	22.5	1125	2．）に	4.5
2／12	2.80	． 300	12に	42
4／20	300	1300	$20 に$	（i）
5／2i	300	1.500	2．）に	（6）
3／17	400	1200	17K	71
4／20	400）	1 FinO	20 K	80
is／2．5	400	2ヶ¢）	2．）	80
4／16	\％10	2000	16K	12.3
5／2．）	ion	2.00	2．） 5	100
is／2．）	．350	27.50	25 KK	110

${ }^{1}$ Maximum beeder resistance for critical inductance．
2 Minimum current（bleder）for eritieal induetance．
In the case of supplies for higher voltanges in particular，the limitation on maximum load resist－ ance may result in the wasting of an appreciable portion of the transformer power capacity in the bleder resistance．Two input shokes in sories will permit the use of a bleder of twise the resistance，cutting the wasted current in half． Another alternative that com be used in a c．w． transmitter is to use a very high－resistance bleeder for protective purposes and only suf－ ficient fixed bias on the tubes operating from the supply to bring the total current drawn from the
supply, when the key is open, to the value of current that the required bleoder resistance should draw from the supply. Operating bias is brought back up to normal hy increasing the grid-leak resistames. Thus the entioe current cat parity of the supply (with the execention of the small drain of the protertive blewter ean he used in operating the trammitter stages. With this system, it is advisable to operate the tubers at phone, mather than e.w., rating, since the average dissipation is increased.

Output Voltage

Provided the input-choke inductance is at least the writical value, the output voltage mas be calculated quite closely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{B}}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; $E_{\text {t }}^{*}$ is the rims. voltage applied to the rectifior (r.m.s. voltage between center-tap) and one end of the serometary in the ease of the center-tap rectifier): I_{13} and l_{1}, are the beeder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and serond filter chokes: and E_{r} is the drop betwern rectifior plate and cathode. The various voltage drops are shown in Fig. 7-12. At no load I_{1} is zero, hemee the no-load voltage may be ealeulated on the basis of bleeder curront only. The voltage regulation maty be determined from the no-load and full-lwad voltages using the formula previonsly given.

Ripple with Choke Input

The pereentage ripple output from a singlesection filter (Fig. 7-9, 1) may br determined to a close approximation, for a ripple frequeney of 120 cycles, from löig, $7-10$

$$
\text { Example: } L=5 \mathrm{~h}_{\mathrm{L} . .} C^{\prime}=1 \mu \mathrm{f} ., L C^{\prime}=20
$$

From Fig. $\mathbf{7}-10$, percentage ripple $=5$ ver cent.

Fif. 7-10-Grabh slowinge combinations of inductance and capacitance that may be wed to reduce ripple with a single-section choke-input filter.

Example: $L=5 \mathrm{~h}$. What eamacitaner is meeded to reduce the ripule to 1 per "ent"? Following the $1-p e r e+e n t$ lime to the right to it: intersertion with the diagonal, thenere downward th the $L . C$ seate, read $/ C=1(0) .1(\mathrm{~N}) / \overline{5}=$ $20 \mu \mathrm{f}$.

In selecting values for the first filter section, the inductanere of the choke should be determined by the considerations diseused proviously. Then the raparitor should be selected that when eombined with the ehoke inductance (minimum inductance in the ease of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a second section (ant be added, as shown in Fig. 7 - 913 and the reduction factor from Fig. $7-8$ applied as discusised under capacitive-input filters. The second choke should not be of the swinging tyre, but ond having a more or lese constant indurtane with changes in current (smoothing (hoke).

OUTPUT CAPACITOR

If the supply is intended for use with an audio-frequency amplifer, the reatance of the last filter capacitor should be small (20 per rent of less) empared with the other athdiofrequeney resistance or impelane in the virenit, usually the tule plate resistane and load resistance. On the basis of a loweratid. limit of IOO (yerdes for sperech amplification, this condition usually is satisfiod when the output eapacitance (last filter rapacitor of the filter has a capacitance of 4 to 8μ f., the higher value of caparitater being used in the rase of lower tube and load resistances.

RESONANCE

Resonance affects in the saries cireuit armoss the output of the rectifior which is formed be the first rhoke $\left(L_{1}\right)$ and first filtor (atpacitor ((i) must be avoided, siber the ripple boltage would build up to large values. 'This not only is the opposite action to that for which the filter is intended, but also maty catue reessive reetifier peak eurrents and ahommally-high inverse peak voltages. For full-waw rectification the ripple frequency will be 120 eveles for a (iotexele supply, and resonance will oreme when the prodwet of choke inductance in henrys times caparitor capacitame in mieroliarads is eghal to 1.77. The corresponding figure for iol-cecle supply (100 -cevele ripple frequency) is 2.53 , and for 2\%-cycle supply (zo-cyele ripple frequency) 13.5 . At least twied these producte of induetance and capacitance should be used to emsure against resonimee efferets. With at swinging choke, the mininum rated induetance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filter capacitors in a choke-input filter are subjected to smaller variations in d.c. voltage tham in the cabaritive-input filter, it is
advisable to use capacitors rated for the pak transformer voltage in case the bloeder resistor should burn out when there is an load on the power supply, sinee the voltage then will rise to the same maximum value ats it would with a filter of the e:tpachitive-input type.

In ar rapacitive-input filter, the caparitors should have a working-voltage rating at least as high, and proferably somewhat higher, tham the peak-voltage ratines of the framsormer. 'lhus, in the cese of at entor-tap reetifier hatiang at transorme delivering mato volts cateh side of the eenter-tap, the minimum sale rapacitor voltage rating will be jand $\times 1 .+1$ or $7 \overline{5}$ volts. An 80) -volt capacitor should the used, or prefarably a 1000 -volt unit.

Filtere captuitoms are mate in several different
 - thle for peak voltages up to about som. combine
 trice is an extremely-thin tilm of oxide on alumimum foil. Caparitors of this type maty be comneeted in series for higher voltages, although the filtering capacitance will be reduced to the reo sultant of the two raparitaneres in serises. If this arrangement is used. it is important that puch of the rapmeitors be shunted with a mesistor of about low ohms per colt of supply vollage. with a pewer rating adeptatte for the total resistor - Murent att that voltage. These resistors mas sarve as all or part of the blemdor rexistance (soe (hoke-input filtors). ('ibuteitors with highorvoltage ratinge usually are mate with a dieloctrid. of thin patere impregated with oil. The working voltage of at capacito is the voltage that it will withetand continumbly.

The input choke maty be of the swinging tope, the required minimum moterd and full-hath inductane valum being calculated as deseribed ablowe for the secome rhoke (smoothing choke) values of 1 to 20 hentrs ordinarily are used. When filter chokes are placed in the pesitive kads, the negative bring gromuded, the windings should lae insulated from the eore to withetand the full d.e. output voltage of the supply and be capable of handling the required load current.
filtar chokes or iaductances are wound on iron cores, with a small gap in the core to prevont magnetic satumation of the from at high curronts. When the iron becomes satheated its promeability deremses, conseguently the inductthee also decreases. Deppite the air gap, the in-

Fig. 7-11 - In mont applications, the filter chokes may Lee placell in the negative instead of the positive side of the circuit. This redues the danger of a voltage hreakdown betwen the choke wimbing and eare.
durtane of a choke usuall varies to some extent with the direct current flowing in the winding; henore it is neressary to sperify the inductane at the current which the choke is intended to (arms. Its inductance with little or no direct auront flowing in the winding may be considarably higher than the value when full load (ourront is flowing.

NEGATIVE-LEAD FILTERING

For many years it has bern almost universal pratetice to place filter chokes in the positive Feads of plate power supplies. This means that the insulation betweren the choke winding and its come (whioh should be gromuded to chassis as a saffety measure) must be adequate to withastand the output voltage of the suppls. This volture reghirement is removed if the chokes are plated in the negative lead as shown in Fige $7-11$. With this connerdion, the calpacitance of the transformer secomdary to ground appears in paralled with the filter chokes temding to hepass the whokes, Howerer, this affert will be negligible in pratical applatation exerpt in rases where the output ripple must be reduced to a very low figure. Such applications are usually limited to low-voltage devires such as redovers, spereh amplifiors and v.f.o.s where insulation is no problem and the chokes mas be plated in the positive side in the romventional manmer. In higher-voltage applieations, there is no reason why the filter chokes should not be placed in the negative lead to reduce insulation reguirements. Choke terminals, negative capacitor terminals and the transformer center-tap) terminal should be well protered agrainst arededental contant, since these will assume full supply voltage to chassis should a choke burn out or the chassis connection liail.

Plate and Filament Transformers

Output Voltage

The output voltara which the plate transformer must dediver depends upon the reopuired d.c. load voltage and the trepe of filtor "iment.

With a choke-in?ut filter, the rempired t:mas. secondary voltage (each side of conter-tap) for a econter-tap rectifier) ean be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+\frac{I\left(B_{1}+B_{2}\right)}{10000}+E_{\mathrm{r}}\right]
$$

Where E_{0} is the required d.e. output voltage, I is the lowd eurrent (indaring hededer current) in milliamperes, R_{1} and R_{2} are the d.c. resistaneos of the chokes, and k_{r} is the voltage drop in the rectifier, E_{t} is the fiall-load rim.s. secondary voltage; the open-circuit voltage usually

Fig. 7.12 - Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired outpul voltage.

will be 5 to 10 per cent higher then the full-load value.

The approximate transformer output voltage required to give a desired d.e. output voltare with a given load with a capacitive-input filter system can be ealeulated with Fig. 7-12.

Example:

Required d.e. output volts - sho
Load current to be drawn - 100 ma.

$$
\text { Tooud rosistance }=\frac{\text { inm }}{0.1}=50010 \text { ohme. }
$$

If the rectifier remistamee is 200 ohmos. $\begin{aligned} & \text { Fig. } \\ & \text { T-I }\end{aligned}$ shows that the ratio of ile. volts to the respired

The rembend transormer torminal voltage under lowi with chokes of $2(0)$ and 300 ohus is

$$
\begin{aligned}
E_{t} & =\frac{E_{0}+I\left(\frac{h_{1}+R_{2}+R_{\mathrm{r}}}{1000}\right)}{1.15} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
& =\frac{5 \pi 0}{1.15}=405 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-impere rating of the transformer depends upon the type of filter (capacitive or choke input). With a caparitive-input filter the heating effect in the socombary is higher because of the high ratio of paak to arerage current, consequently the volt-amperes consumed hy the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the eritical inductanec, the secondary volt-amperes can be caleulated quite closely be the equation:

$$
\text { Sec. } V^{\ulcorner } . A=0.00075 E I
$$

where E is the ofal r.m.s. voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.c. output current in milliamperes (load eurrent plus bleeder current). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Broadcast \& Television Replacement Transformers in Amateur Transmitter Service

Smiall power transformers of the type sold for
replarement in broadeast and tedevision reedivers are usually designed for sorvier in terms of use for soveral hours eontinuonsly with rapacitorinput filters. In the usual type of amateme tramsmitter service, where most of the power is drawn intermitently for periods of several minutes with equivalent intervals in between, the published ratinge ean be exeeded without exoessive transformer heating.

With cappacitor input, it should the safe to draw 20 to 30 per erot more current than the rated value. With a choke-input filter, an increase in eurrent of about $\overline{3} 0$ ger cont is permissible. If a bridere rectifier is used (with at choke-input tiltor) the output voltage will be approximately doubled. lo this rates, it should be pessible in anmator tramsmitaer sorvice to draw the rated earyont. thas ohtaining alout twier the rated outpot power from the tratisformer.

This dors not apply, of rourse, to amatour tramsmitter plate tramsormers which are usually rated for intermittent serviee.

Filament Supply

lixerpt for tubes designed for battery operation, the filaments or heaters of vacuam talos used in both transmittors and perecivers are universally operated on altornating current atotained from the power lime through a stopdown transformer delivering a secondary voltage equal to the rated voltage of the tabse used. The transtomer should be designed to carry the current taken by the number of tubes which may be eonneeted in parallel arross it. The filament or heater transformer generally is center-tapped, to provide a halaned cireuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power atudio stages, it is desirable to use a separate filament tramsformer for each section of the transmitter, installed noar the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, espectiolly with thoriated-filament tubes, since under- or over-voltage may reduce filament life.

Typical Power Supplies

Figs. 7-13 and $7-14$ show typical powersupnly circuits. liig. $7-13$ is for use with trans-
formers commonly listed as broadcast or television replatement power transformers. In addi-

Fig．7－13－1ypical a．c． pmer－supply circuit for re－ erisers，exriters，or low－ powser tramsmiters．Repre－ sentative values will be foume in＇rable－－11．The B－sole winding of T_{1} shouald have a current rating of at heiat 2 amp．for tymes 5 Y＂30＇l and Sitc，and 3 amp，for $5 \mathrm{~L} 4 \mathrm{G}(\mathrm{GA}, \mathrm{Bl})$ ．
tion to the high－voltage winding for plate sup－ ply，these transformers have windings that supply filament voltages for both the redifier tube and the 6．3－volt tubus in the receiver or low－power transmitter or exciter．Transformers of this type may be obtained in ratings up to bot volts rim．s．cuch side of center tap， 200 d．e．mat． output．

Fig． － $\mathrm{t}: 3$ shows a two－sertion filter with capari－ tor input．However，depending upon the maxi－ mum hum level that may be allowathe for a particular application，the last cabawitor and choke may mot be needed．In some low－remrent applications，the first capacitor alone may pro－ vide adequate filtering．Table $\bar{i}-11$ shows the approximate full－load and bleoder－load output voltages and atre ripple percontages for several represontative sots of components．Voltage and ripple valuas are given for three points in the （ifenit－Point 1 （first ratpacitor only used）， Point 13 （last capacitor and choke omitted），and loint（＇（romplate two－section filter in use）．

In each ease，the beeder resistor R should be used arcoss the output．

Table $\overline{-}-11$ also shows approximate output volt－ ages and ripple peremtages for choke－input filters （first filter catpacitor omitted），for Point I3（last rapateitor and choke omitted），and Point（C（com－ plete two－section filter，first（aparitor onitted）．

Actual full－load output voltages maty be some－ what lower that those shown in the table，since the voltage drop through the resistance of the tramsformer semodary has not bem included．

Fig．$\overline{-1} 4$ shows the conventional rirenit of a transmitter plate supply for higher powers．A full－wave rertifier circuit，half－wave rertifier tubes，and separate transformers for high voltage， reetifior filaments and transmitter filaments are used．The high－voltage transformers used in this circuit are usually rated directly in terms of d．c．output voltage，assuming rectifiers and filters of the type shown in Fig．$\overline{\mathbf{T}}$－14．Table $\overline{\mathrm{T}}$－111 shows typioal values for representative supplies，based on commonly－idvaidable eomponents．Transformer

TABLE Z－II																
Capacitor－Input Power Supplies																
Tı Rating		$\stackrel{r_{1}}{\mathrm{~T}_{1}}$	C		L		n		Approrimate F＇ull－lond d．c． bolla at			Approrimate Ripple \％ at			Approx． output loles． Bliceder loond	Uscful Output ． Va ．
$\begin{gathered} \text { Yolls } \\ \text { R.,W.s. } \end{gathered}$	$\begin{gathered} \mathrm{Ma} . \\ D . C . \end{gathered}$		μf.	Folls	II．	Ohmes	Ohms	Walls	A	B	C	A	B	C		
32\％	40	5136：T	8	600	8	400	90k	5	37.5	360	31.5	2.5	0.08	0.002	450	36
32.5	40	5 C 41	8	（0）0	8	400	90 K	5	410	39.5	37.5	2.5	0.08	0.002	4.50	36
350	90	$5 \mathrm{Y}^{\prime} 30$	8	（10）	10	22.5	46 K	10	370	3.50	3：30	6	0.1	0.002	460	82
350	90	5140	8	900	10	225	46 F	10	410	390	370	0	0.1	0.002	460	$8:$
375	1.0	564；	8	700	8	145	2 F K	10	37：	350	3330	9	0.2	0.006	500	136
375	1.50	514\％；	8	700	8	145	2.5 K	10	425	400	380	9	0.2	0.006	500	136
400	200	50	8	700	8	120	22 K	20	37.5	3.0	32.5	12	0.3	0.008	550	18.4
					Cho	oke－In	nput P	Power	Supp	lies						
325	40	5Y317T	8	4.50	1.7	420	181	10	－	240	22.7	－	0.8	0.01	26.5	25
325	40	5゙も！	8	4.50	1.5	420	18K	10	－	25．5	240	－	0.8	0.01	280	2.
3.50	90	5y3a＇1	8	4.80	10	22.5	11 K	10	－－	240	220	－－	1.25	0.02	2.50	68
350	90	5ソ4；	8	4.50	10	225	11 N	10	－－	270	$2 \overline{5} 0$	－	1．2．5	0.02	280	68
37．5	1.80	5y3u＇1＇	8	4.50	12	150	13K	20	－	26.5	245	－	1	0．01．5	325	125
375	1.50	SV4，	8	4.50	12	150	13 K	20	－－	280	200	－	1	0.01 .5	310	12.5
400	200	5C゙4C	8	4.50	12	110	14 K	20	－	27.	2.50	－	1	0.015	3．50	175
＊Balance of transformer current capacity consumed by bleeder resistor．																

Fif. T-H-Comentional power-supply circuit for higher-pmeer trintanittera. (i, 6 $2-1 \mu$ f. for approsimalely 0 In' $_{6}$ ontput ripple: : $\mu \mathbf{f}$. for aprosimately $1 .=$ c output ripgle. Ciz should be $4 \quad \mu \mathrm{f}$, if suphly is far morlaIator.
$\mathrm{R}-2.5,190$, hims.
L_{1} - Swinging phoke: : 25 h.. current ralling :amme al $\%_{2}$
L_{g} - Smonthing ehoker: carrint rating same :1s T_{2}.
$\mathrm{T}_{1}-2.5$ volts, 1 amp. for type $816 ; 2.5$ volt $=10 \mathrm{amp}$. for 8601.

'I'3 - Voltage and eurront raling to suit transmitter.

tulw riduiruments.
V_{t} - 'Yype 816 for $100 /$ /oth-voh supply; 866A for others shomon in 'I:able - [II.
Sec "rable ${ }^{-1 / l l}$ for ollur values.
voltages shown are reppreseatatice for umits with dual-voltare serondaries. The beomerload voltages shown may be somewhat lower thatn antuatly found in praticer. her canse transformer resistance hats not berm inchaded. Ripple at the output of the first filter soetion will he approsimately \% pre cent with at- 4 f. catacilor, or 10 per exint with at $2-\mu$. (atpateitor. Transionmers mader for amater service are designed for choke-input. If a cat-pacitor-input is used rating should be reduced about : $30^{\prime \prime}$.

TABLE 7-1II							
$\begin{gathered} \text { Approx. } D . C . \\ \text { Outped } \end{gathered}$		$\begin{gathered} T_{2} \\ \text { Rating } \end{gathered}$		$\begin{aligned} & I, 2 \\ & i l \\ & \end{aligned}$	Tollouge Ratin! $\mathrm{C}_{1}, \mathrm{C}_{2}$	$\stackrel{R}{n}$	Appror. Blerolere fond ()uljul l"ulls
Volts	. $1 / \mathrm{ar}{ }^{1}$	$\begin{gathered} \text { A ppror. } \\ \text { B.R.M/. } \end{gathered}$	Ma.				
$400 / 500$	230	$320 / 615$	00	4	700	20	$410 / 510$
(6)0/7.30	200	7.0/0/9.5)	300	8	1000	5)	(0.30/800
12.30/1.800	240	1.900/17.50	300	8	2000	1.50	1300/1660)
$12.50 / 1.000$	410	$1.000 / 17.50$	(10)	i	$\because 000$	1.50	131.5/16i1.
$3000 / 2.200$	200	$2100 / 2900$	3001	8	3000	330 3^{2}	$20.30 / 20.50$
$2000 / 2.500$	100	$2.400 / 2900$	800	f	3000	3:012	$2066.5 / 2 \cdot 16.5$
20,00/3000	380	$20.00 / 3.4 .50$	\%00\%	6	(\%)	$500{ }^{3}$	2.96.0/306.5
Bhane of transformer current ratiog romsumed by bleeder resistor. 							

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and screons of the various tubes in at tranmitter or recoiver often require a variety of operating voltages differing from the output voltage of an ataibable power supply. In most eases. it is not eronomically leasible to provide as spatate power supply for euth of the reguired voltages. If the eurrent drawn bey atn electrode, or combination of electrodes operatimg at the same voltare, is reasomathy ronstant under normal operating conditions, the reguired voltage maty be obtained from a supply of higher woltage liy means of a voltagedropping resistor in series. as shown in ligg. 7-15.1. The value of the sarios. resistor, R_{1}, maty be ohtaned from Ohm's $\mathrm{Law}, \mathrm{K}=\frac{E_{\mathrm{a}}}{I}$, where E_{d} is the voltage drop required from the sup)-
ply volture to the desired voltage and I is the total rated carrent of the leand.

> Fiampla: The phate of the ther mone stage and the sereedis of the thloes in two other staners recuite an onerating voltage of 2.5o. The nearest available sumply voltatue is too and the total of the rated plate and sereen currents is 7.5 ma. The recuired resistance is

$$
R=\frac{400-2.00}{0.075}=\frac{1.00}{1.05 \%}=2000 \text { ohthes. }
$$

'The power rating of the resistor is obtained from $\mathrm{P}^{\prime}($ watts $)=I^{2} R=(0,07.5)^{2}(2000)=11.2$ watts. A 3() -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage oltatined in this manner obviously is poor, sime any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop across the resistor. The regulation can be im-

Fig. 7. 15 -- 1 - Surics voltaze-lrophing resistor. B Simple voltake divider. $(:-$ Muhtiphe divider cireat.

$$
R_{3}=\frac{l_{1}}{I_{1}} ; R_{4}=\frac{l_{2}-I_{1}}{I_{1}+I_{1}}: R_{5}=\frac{l_{3}-I_{2}}{I_{1}+I_{1}+I_{2}}
$$

proved somewhat by connerting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. $\overline{\mathrm{t}}-\mathrm{B} \mathrm{B}$. Wurh an arrangement constitutes a voltage divider. The second resistor, R_{2}, iuts as a constant load for the first, R_{1}, so that, ally variation in current from the tap becomes a smatler pererentage of the total current through R_{1}. The heavier the current drawn be the resistors when they alone are connected across the supply, the better will be the voltage regulation it the tap.

Such a voltage divider may have more than a single tap for the purpose of obtatining more thath othe value of voltage. 1 thpieal arrangement is shown in lig. $7-15 \mathrm{C}$. The terminal voltage is $l:$, and two taps are provided to give lower voltages, L_{1}^{\prime} and E, at currents I_{1} and I_{2} respectively. The smaller the resistance betweon taps in proportion to the total resistance,

the smaller the voltage between the taps. For convenience, the voltase divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} catrios only the bleeder current, I_{1}; R_{4} carries I_{1} in addition U $_{1} I_{1} ; R_{5}$ carries I_{2}, I_{1} and I_{1}. To calculate the resistances recouired, a bleoder current, I, must be assumed: grenerally it is low compared with the total batd eurrent (10 per cent or so). Then the required values can be caleulated as shown in the caption of lig. 7-15C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistane sedtion being ealeubated by ()hm's Latw using the noeded vollatere droparross it and the total eurent through it. The power dissipated by eateh seetion maty be calculated either be multiplying $/$ and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is fredurnt med for maintaning the voltage applien to a low-voltage low-ertrent cireuit at a practicadly eonstant value, regardless of the vollage regulation of the power supply or vartations in load current. In such applications, gaseous regulator tubes (0)(3.3/ VRlus, (ND: Clikion, etc.) can be used to good advantage. The voltage drop ancoss such tubes is constant orer a moderately wide current range. Tubes are avalable for regulated volt-

The fundamental cirenit for a gaseous regulator is shown in Fiy. $7-16$. . The tube is con-

(A)

Fig. 7-16 - Volage estabilizing circuits using Vh tubes.
nected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 to 40 per eont higher than the operating voltage. The load is commeeted in parallel with the tube. For stable operation, a minimum tube current of $\overline{5}$ to 10 mat. is requlred, The maximum permissible current with mosit types is 40 ma.; consequently, the lowd curvent emmot exeeded 30 to 3.5 mat, if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tabe current to flow and that which just pases the maximum permiswhle tube eurrent when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the sourere andess which the tabe and resistor are connerted. E_{r} is the rated voltage drop across the regulator tube, and

 bater cirmain.

k_{1} - 1600 .nhm 10 -walt wotentiame. ter (balance).

K_{s} - 10.10010 -ahm potrolionctar (onamat romitol).

I is the maximum tube current in milliamperes (usually 10 mes).

Fig. 7 - 16 bl shows how two tabes maty be used in veries to give a highor regulated voltage than is obtamable with ore, and also to give two values of regulated voltage 'The limiting resistor may be calculated as above, using the sum of the voltage drops anders the two tubes for $E_{\text {re }}$ since the upher tuhe must carry more current than the lower, the load romneated to the low-voltage tap must takesmall current. The total eurrent taken by the loads on both the high and low taps should not exreed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per eent can be obtained with these regulator cireuits.

A single Vor tube maty ano be used to regulate the voltage to a load current of almost any value
so long as the variation in the current does mot exeed 30 to 35 mat. If, for eximple, the averuge lowd current is I(k) mat, a V'la tube may be used to hode the voltage constant provided the current does mot fall below sis mat. or rise above 11 , mat. In this casie, the resistance should be caternlated to drop the voluage to the Vif-tabe rating at the maximum load current to be expected plas: about os ma. If the load resistance is comstant, the efferts of variations in line voltage maty le chiminated be basing the resistane on the lowed cherent phas 15 mat. Voltageregolator tulnes may also le rommerted in paralled as desoribed hater in this chapter.

Electronic Voltage Regulation

Several cireuits have been developed for regulating the voltare output of a power supply eleco-

(3 - $0.015-\mu$ l' papr.

$1 \mathrm{~h}_{1}-0.3$ me mothm, 1 watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-1001$ ohms, I_{2} watt.
B_{4} - 510 olmis. ${ }^{1}{ }_{2}$ watt.
$185.18 \times-30,000$ ohmas. 2 watt 5.
$\mathrm{K}_{6}-0.2 .1$ mergolam, $^{1} 2$ watt.
$\mathrm{I}_{7}-0.15$ meqohm, $\frac{1}{2}$ watt.
$169-9100$ ohms, 1 watt
K_{10} - 0.1 -mexohimi pobentiometer.
K_{11} - $+3,3,006$ ohmes, $1 \frac{1}{2}$ watt.
I_{1} - K-hy., (0)-mat filter rhoke.
S_{1} - S.post turele.
T1 - power traw former: 37:-3:5 volts r.m,s., 160 ma.; 0.3 volts, 3 amps,; 5 volts, 3 amps.
(Therr 292 1333).
tronically. While more complicated than the Vlktule circuits, the will handle higher voltages and currents and the output voltange maty be varied continuonsly over a wide range. In the cirenit of Fig. $7-17$, the 5651 regulator tube supplies the grid (4) of the 6SL ${ }^{-}$with a constant reference voltage. When the lowd eomected across the output terminals increases, the output voltage temels to deerase. This derreases the phate (z) voltage. Since grid (1) is commerted direetly to plate (i), grid (1) beromes less positive and that triode draws less plate cument. The voltage drop abross
 is reduced, derreasing the voltare drop across the b. Wsia and therehy mantaning the original output voltarge.

For a maximum regulated voltage output of $2 \overline{5} t$, the filtered d.e. input voltage should be 325 volts at 225 mal. For a constat line voltage the output voltage will remain constant within 0.2 volt over a lowlecurrent range of 0 to 225 mat. With a linc-voltage variation of plas or minus 10 per cent. the output voltage will vary less than 0. I volt.

Another similar regulator circuit is shown in loig, $\overline{-}$-18. The primeipal difierence is that sereengride regulator tubse are used. The fatet that a sorem-ghid tube is relatively insensitive to changes in plate voltage makes it possible to ohtain a reduction in ripple voltage adequate for mamy purposes simply bex suplying filtered d.e. to the screcons with a consequent saving in weight and eost. The acomp:mying table shows the performance of the arenit of Fig. $\overline{\text { - }}$-18. Column I shows varioms output voltages, while Column II shows the maximum current that can be drawn at that voltage with negligible variation in output voltage. Columa III shows the meswured ripple at the maximum current. The second part of the

I	II	[/I	Output coltage - 300
4.30 v .	22 ma .	3 mv .	1.50 ma .2 .3 mv .
12.5	45 ma .	4 mv.	125 ma. -8.8 mv 。
100 v .	근a.	6 mv .	100 ma .2 .6 mv .
35 v	${ }_{\text {9, ma }}$	$8{ }^{8} \mathrm{mv}$.	-5ma. $\quad-5 \mathrm{mv}$.
3.50 v .	İ\% mia.	9.5 mv.	50 mat. 3.0 mv.
38 y	1.30 ma.	, 3 mv	$\because \overline{7}$ ma. 3.11 mv.
301)	1.50 mia.	2.3 muv.	10 mat. 2.5 mv.

table shows the varianion in ripple with lowd eurrent at 300 volts output.

High-Voltage Regulators

lacgulated screen voltage is recquired for sereengrid tubes used as linear amplifiors in singlo-side band operation. Figs. $7-19$ through $7-22$ show various different circuits for supplying regulated voltages up to 1200 volts or more.

In the eirenit of Fig. 7 -1!), gas-filled regulator tubes arre used to establish a fixed reforence voltage to which is added ann electronicallyregulated variable voltage. The design can be modified to give any voltage from 22 解 volts to 1200 volts. with cach design-emter voltage variable bey plas or minus fol volts.

The output voltage will depond upon the number and voltage ratings of the VR tubes in the string between the ! ! 01 :and ground. The total Vli-tube voltage rating neoded ratn be determined by subtracting 2 wolts from the desired output voltage. As examples, if the desired output voltare is 3 3os) the total VRtube voltage rating should be 3 300 $-250=100$ volts. In this case, a Vli-105 would be used. For an coutput voltage of lo(k), the Viz-tul)e voltage rating should be $1000-2.00=850$ volts. In this case, five Vli-150s would be used in series.

Fig. 7.19 - Highevoltage regulator circuit by WIPllM. Resiators are I watt unless indicated otherwise.
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - I - f . paper, voltage rating above peak-voltage outpul of T_{1}.
C.3-0.1- 1 f. paper, GiNO whts.

C
C_{5} - $10 \mu \mathrm{f}$, voltage rating above do, ontput voltage. Cian be made up of a combination of electrolytios in series. with runalizing resistor. (See section on ratings of filter eomponents.)
Co - 4- μ f. papre, volage rating above soltage rating of

If string.
R_{1} - 50.000 -ohm. $4 \cdot w$ att potentiometer.
 (not needed if equalizing resistors mentioned above are usid).
'li-Sor text.
H_{2}^{2} - Fiament transformer: 5 volts, 2 amp.
' ${ }_{3}$ - Falament transformer; 6,3 volts, 1.2 amp,
V_{1}, V_{2}, V_{3}-Sce text.

Fig. 7-20, a type 211 or 812 A is used, the control tube being a 6.10 .5 . With an input voltage of $18(k)$ to $20(0)$, an output voltage of 500 to 700 can be obtanaed with a regulation better than 1 por cent over a current range of 0 to 100 ma .

In the (ircuit of Fig. $7-21$, a V - 70 O) (or 80005) is used as the regulator, and the control tube is an 807 which can take the foll output voltage. making it unnecessary to raise it above ground with VIR tubes. If taps are switched on R_{1}, the output voltage can be variad over a wide range. Increasing the sereen voltage ilecreases the output voltage. For cach position of the tap on h_{1} d doreasing the value of R_{3} will lower the minimum output voltage as R_{2} is varied, and decreasing the

Fig. 7-21 - This resulator circuit used by WISLX operates from the plate supply and reguires no Vh string. I small supply provides sereen voltage and reference hias for the control thate.
l nles otherwise marked. resistances are in ohms ($K=10001$). Capacitors are electrolytic.
R_{1} - $\mathbf{5 0 , 0 0 0}$ - oflm, $\mathbf{5 0}$-watt aldjustalle resistor.
R_{2} - 0.1 -mesohm シ-walt potentiometer.
ka - 1.5 megohme, 2 watts.
$\mathrm{R}_{4}-0.1$ megolim, $1 / 2$ watt.
T_{1} - Power transformer:
T_{2} - Filammi ransformer: 7.5 vols, 3.25 amp. (for V-(01).
(as. 7.20 - secn regulalor circalt dexismed by Wooh 1 . Resistamesare in ohmis ($K=1000$).
K_{1} - Gomo ohm: for 211: 2.300 ohms for 8121. 20 watt.
R_{2} - Output voltage control. O.1merolim. 2-watt potentimoncter.
' ${ }^{\prime}$ - laiament transformer: 10 volts, 3.2 .5 amp. for $211: 6.3$ volt $=$ 1 amp, for 8121 .
T_{2}-lrilament transformer: 6.3 volt s , 1 a!口.

The maximum voltage output that cam be olltained is approximately edual to 0.7 times the r.m.s. voltage of the transformer T_{1}. The current rating of the translommer must he somewhat above the load earment to take care of the roltage dividers and bleoder resistances.

A single 6 L 6 will handle a current of 90 ma . For larger currents, fLess may be added in parallel.

The hoater circuit supplying the GILG and 6s.Jt should not be gromuded. The shatt of R_{1} should be prounded. When the output voltage is above 300 or 400 , the potentiometer should be provided with an insulating mounting, and should be controlled from the panel by an extension shall with an insulated coupling and gromuded control.

In some cascs whore the plate transformer has sufficiont current-hadling catpatity, it may be desimble to operate a sereen regulator from the plate supply, rather than from a separate supply. This can be done if a regnlator tube is used that can take the reguired voltage drop. In

value of R_{6} will ratise the maximum output voltage. However, if there values are minde too smath, the $80-6$ will lase control.

At 8 80) volts output. the variation over a current change of 20 to 80 ma, should be negligible. At hano volts output with the same eurent (hamge, the variation in output voltage should be less than three per cent. Up to 88 volts of grid bias for a Class A or Class ABI amplifier may be taken from the potentiometer adross the referencevoltare sourer. This bias camot, of course, be used for biasing at stage that is drawing grid corrent.

A somewhat different type of regulator is the shunt regulator shown in Fig. $7-22$. The Viz tubes and R_{2} in serios are aboses the output. Nince the voltage drop arms the VR tubes is constant, any change in output voltage appers armos R_{2}. This canses at change in grid bias on the 811-A grid, (ansing it to draw more or less current in

Fip, 7-22-Shunt serven requator uzed by $\mathbb{I N}, \mathbf{W} N$. Rewistancers are in ohms ($K=$ 1 $1 \%(\%)$.
C_{1} - $0.01{ }_{\mu}$ f.. fin volts if needed to suppress $n=$ epillat ion. 2
M_{1} - Sie trvi.
K_{1} - Adjustable: wire-womd resistor, resistance and wattage as relpuired.
inverse proportion to the current being drawn by the amplifier sereen. This provides a constant load for the series resistor R_{1}.

The output voltarge is equal to the sum of the VR drops plus the grid-to-gronad voltage of the SII-A. This varios from is to 20 volts between full load and no bowl. The initial adjustment is made by placing a milliammeter in the filament renter-tap lead, as shown, and ialjusting h_{1} for a reading of 15 to 20 mat. higher than the normal pak serven current. This adjustment should be made with the amplifier comered but with no exditation, so that the amplifier draws idling current. After the adjustment is complete, the meter may be removed from the cireuit and the filament center tap eonnerted directly to ground. Aljustment of the tap on R_{1} should, of course, be made with the high voltage turned off.

Ange number of VR tubes maty be used to provide a regulated voltage near the desired value. The maximum eurrent through the 811-A should be limited to the maximum plate-current rating of the tube. If langer currents are neresary, two 811-As may be comnected in parallel. Weer a curent range of is to (i) mas, the regulater holds the output voltage constant within 10 or 15 volts.

Bias Supplies

As discussed in the chapter on high-freduency tramsmitters, the chad function of at bias supply for the r.f. stages of a tramsmitter is that of providing protective biats, athough under certain pircumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-23A shows the diarram of a simple bias supply. R_{1} shonld be the recommended grid leak for the amplifier tube. So grid leak should be used in the transmitter with this type of supply. The output voltate of the supply, when amplifier grid current is not flowing, should be some value between the bias re-
quired for plate-enment cut-off and the recommended operating bias for the amplifior tube. The transtormer peak voltage (1.4 times the r.m.s. valur) should not exceed the recommended operating-bias vatue, otherwise the output volage of the pate will suar above the operating-bias value with rated grid eurent.

This soaring can be redued to a considerable extent by the use of a voltage divider amoss the tramsformer serobdary, as shown at B. Such a system can be used when the transformer voltage is higher than the operating-l) ias ralue. The $t:(p)$ on $R 2$ should be adjusted to give amplifier cut-off bias at the output temimals. The lower the total value of $R 2$, the less the soming will be when grid current flows.

Fig, 7.23-Simple hiaz-anpuly circuits. In A, the peak transformer voltage must not exred the operating value of hase 'The circuits of IS (half-wave) and C: (lull-wave) may be used to reduce transformer voltage to the recti. fier. R_{1} is the recommended srith-leak re-istance.

(B)

(C)

Fig. 7-24 - Illustrating the use of V'll tubes in staliliz. ing protective-hias supplies, h_{1} is a resistor whose value is adjusted to limit the current through each VR tulie to 5 ma. Inefore amplifier expitation is applied, R and R_{2} are current-efualizing resistors of 50 to 1000 ohms.

A full-wave circuit is shown in Fig. 7-23C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. $7-23$ and the difficulty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-24.A. A VIR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the VIR tube ignites and draws about 5 ma. Additional voltage to bring the bias up to the operating value when excitation is applied can be ohtained from a grid leak resistor, as discussed in the transmitter chapter.

Each VR tube will handle 40 ma. of grid current. If the grid current exceeds this value under any condition, similar VI? tubes should be added in parallel, as shown in Fig. $7-24 \mathrm{~B}$, for cach to man, or less, of additional grid current. The

Fig. 7-2.5-Circuit diagram of an electronically-regulated bias supply.
$\mathrm{C}_{2}-30$ - f . $1 . \mathrm{N} 1$-volt electrolytic.
B_{3} - 68.080 ohmes. $\frac{1}{2}$ watt.
R_{4} - 0.02 merchnt, ${ }^{2} \frac{1}{2}$ watt.
$\mathrm{R}_{5}-3010$ olmms, 3 watts.
R_{6} - $\mathbf{0 . 1} 12$ mequhm, $1 / 2$ watt.
resistors R_{2} atre for the purpose of helping to maintain equal corrents through rach VR tube, and should have a value of 50 to 1000 ohms or more.

If the voltage rating of a single Vhe fobe is not sufticiently high for the purpose other VR fobes mat be used in sorios (or sorios-paralled if required io satisfy grid-(urrent reguirements) ats shown in the diagrame of Fig. $7-2.2 \mathrm{C}$ and 1 l .

If a single value of fixed bias will serve for more than one stage, the biasing torminal of wach sueh stage may be connected to a single apply of this type provided only that the total grid curront of all stages so eonnected dow not execed the curpent rating of the l'l tube or fubos. Ahernatively, othor sparate Vletube brathebes may be added in any desired combination to the same supply, as in Fig. $--24 \therefore$, to adap them to the ureds of areh stage.

Iroviding the Vli-tube current rating is not exeroded, at series arrangement may be dapped for lower voltage, as shown at $\mathrm{l}^{\text {a }}$.

The eireuit diagram of an olectronicallyregulated bias-supply is shown in Fig, 7-2\%. The output voltage may be adjusted to any value berwoen 20 volts and 80 volts and the unit will hamde grid currents up to 200 mat. wore the range of 30 to so volts, and 100 mas. over the remainder of the range. This will take care of the bias requirements of most tubes ased in Class B amplifier sorvico. The regubation will hold to about 0.001 volt per milliampere of grid aurvont. The regulator operates as follows: Since the voltare drop across I_{3} and l_{4} is in parallel with the voltage drop across V_{1} and R_{5}, any change in voltage acoross V_{3} will appear areross R_{5} becaluse the voltage drops ancoss both VIR tulus remain constant, R_{5} is a cathode biasing resistor for l_{2}, so amy voltage change arross it appears as a grid-voltage change on $\mathrm{l}^{\prime} \mathrm{g}$. This change in grid voltage is amplified by V_{2} and appars arross R_{4} which is connceted to the plate of 5^{2} and the grids of 1.3 . This change in voltage swings the grids of V_{3} more positive or
R_{i} - 0.1-megohmpmentiometer.
$13_{8}-27,000$ olums, $1 / 2$ watt.
1, - 20.hy. .00-ma, filter chone.
T_{1} - Power transformer: $\mathbf{3 . 0}$ volts r.m.s. eath side of center, 50 ma.; 5 volts, - amp.; 6.3 volts, 3 amp .
negative, and thus varies the internal resistance of V_{3}, maintaining the voltage drop across V_{3} pratetically eonstant.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a sourer other than a sematate supply. A half-wave rectifier may be comected with reversod polarization to obtain biasing voltage from a lan-voltage plate supply, as shown in lig. 7-26A. In an-

Fig, -26 - Convenient means of ohtaining biasing voltage. A - From a low-woltake plate supply. 13 From spare filament winding. T_{1} is a filament transformer, of a voltage outpat similar to that of the spare filament winding, connerted in reverse to give $11 . \overline{\text { volts }}$ r.m. $=$ output. If cold-rathode or selenium rectiliers are used, no additional filament sapply is required.
other arrangement, shown at 13, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a Vilias or Vllag regulator tube.

A bias supply of any of the types disentsed requires relatively little filtering, if the out putterminal peak voltage does not approaeh the
operating-bias value, beratuse the offeret of the supply is cntirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the eireuits shown in Figs. 7-27, 7-28 and 7 -2?! may be used with any type of rectifier, they find their greatest advantage when used with seldenium rectifiers which require no filament transfomer. These rirouts must be used with cation, olserving line polarity in the cireuits so marked, to avoid shorting the line, sine the negative output temmat should always be grounded. In cireuits showing isolating transformers, the transomer is a requirement, since without the transformer, the nogative output terminal canoot be grounded in following good practice for safoty without shorting out part of the rectifier cirabit. In the eirenits which do not show a transformer, the transformor is preferable, since it avoids the necessity for comerely polarizing the connection to the power line to prevent a short cirenit.

Fig. $7-27$ is a straightforward half-wave rectifier circuit which may be used in applications where 115 to 130 volts d.e. is desired. It can be used for bias supply, for instanee.

Fig. 7.27 - Simple half-wave circuit for splenium rectilier.
C. 1 - 0.05- μ f. 600 -volt paper.
C_{2} - 10 - $\mu \mathrm{f}, 200$. volt ilectrolytic.
$\mathrm{R}_{1}-2.5$ to 100 ohms.

Fig. 7-28 shows several voltage-doubler cireuits. Of the three, the one shown at A is the most desirable since there is no series ratpacitor. It is a full-wave ripenit and there will be very little ripple voltage appoaring at the output. The arrangement of eirenit 13 is such that one side of the output masy be grommed without using an isolation transformer. In cirouit C, the point X is common to both capacitons: in the rectifior and filter, and a singlemuit 3-section capacitor can be used to save spare. If the loand current is less than 100 mat this is the best circuit.

Fiig. 7 -2! 1 shows a voltage tripler, and B and C quadruplers.

All components are standard. A (0.0.a- μ f. finn-volt-working eapacitor shoulal sorve. All other eapacitors should be $40-\mu$ l. 20) (0-volt mits, exarpt those in the tripler and guadrupler eirenits. Those in the cirerit of lig. $\bar{i}-29$ should have : rating of tiol volts working. In the voltage multipliers and in other cirenits where a capacitor is passing the full current, good capacitors should be used beramse the a.e ripple mentioned above apporas amoss the rapuritor and inereases as the load increases. If the current is allowed to berome too high, it will ratuse heating and deterioration of the raparitor. This ean be kept to a minimum hy using a rapacitor of high value and making sure it is of good make. R_{1} should be 25 ohms, but if it is foumd that the rectifier units are rumning a little tow warm, this value may be increased to as high as 100

Fig. 7-28 - Voltake doubling circuits for usc with selentutn rectifires.

(33- Vilaer rabamitor.

I_{1} - Vilter thoke.
T_{1} - Iselation transformer.

Fig. 7.29- 1 - Tripler circuit. 3 - Ifalf-wave quadrupler. C: F Full-wave qualrupler.

($\because 2$ - 10 - 4 f, $1: 10$-alt elererolytie.

$\mathrm{K}_{1}-25 \mathrm{E} 100$ ohms. K_{1} - Isolating trans. former.

"

ohms, with a corresponding drop in output voltage, of courser, d single-section filter. as shown in Frig. J-2!C, will provide sutlicient smonthing for most applications.

(A)

(B)

Power-Line Considerations

POWER-LINE CONNECTIONS

If the fratnsmitter is rated at much more than 100 watto, spoedial considerat ion should be given to the ace line rumaing into the station. In some residential systems, three wires are brousht in from the outside to the distribution board, while in othor sustems there are onty two wires. In the three-wire system, tho third wire is the neutral which is groumded. The voltage between the othor two wires mormally is 230, while half of this voltato (115) appears betwern catch of these wires and neutral, as indicated in lig. 7-30. 1 . In systems of this typue, usuatly it will be found that the 115volt household load is divided as evenly as possible hefwern the two sides of the rireuit, half of the load being eonmered betwern ond wire and the neatral, while the other hatlf of the load is commected befwern the other wire and neutral. IIeavy appliances, such as electric
stoves and heaters, normally are desirned for 230-volt operation and therofore are commered atrouss the two ungrounded wires. While both ungrounded wires should be fused, at fuse shoulal nevor be used in the wire to the neutral, nor should a switeh be used in this side of the line. The reanon for this is that opening the neutral wire does not discomnert the equip ment. It simply leaves the equipmont ois one side of the 230 -volt rircuit in series with whatever load may be arrosa the other side of the rircuit, as shown in lig. 7 - 30 I . Furthermore, with the nextral open, the voltage will then be divided letween the two sides in inverse proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the ot her side, unless the loads happen to the equal.
'lola usual line rumning to baseboard outlets is rated at $1 \overline{5}$ amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other atuxiliary equipment, it is not

Fig, $7-30$ - Three-wire power-line cirenits. A - Vormal 3-wire-line termination. No fuse should be used in the grombled (noutral) lime. Is - Shovimg that a switch in the neutral does not remove voltane from either side of
 from the 230 -wolt line to avoid light blinh ing. T_{1} is a $2-10-1$ step-down $\begin{gathered}\text { ransformer. }\end{gathered}$
unusual to find this 15 -ampore rating exceeded bey the requirenents of atation of only moderate power. It must also lo kept in mind that the same brameh may be in use for other household purposes through another outlot. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution batar to the station whemerer posible. (A three-volt drop in line voltage will c:unse noticeable light hinking.

If the system is of the thres-wire type, the three wires should be brought into the station so that the load ean lo distributed to keep the line balaned. The voltage arosos a fixed load on one side of the circuit will inerease as the load eurrent on the other side is inereased. The rate of increase will depend upen the resistanere introdued by the nedtral wire if the resistance of the neutral is low, the inerease will be correspondingly smatl. When the currents in the two eireuits are halaneed, no current flows in the neutral wire and the system is operating at maximum effie ioner.

Light blinking aan be mitumized by using transformors with 2 : 30 -volt primaries in the power supplies for the keved or intermittent part of the load, commerting them arross the two ungrounded wires with no conturetion to the noutral, ats shown in Fig. 7 -30C', The same can be aremplished by the insertion of a stendown transformer whose primary operates at 230 volts and whose secondary delivers 115 volta. Conventional 115 -volt transformers may be operated from the secondary of the step-down tramsformer (ser Pig. 7-301)).

When a sperial heavertuty line is to be installed. the local power company should be eonsulted as to lowal recpuiremonts. In some localities it is necessary to have such a jols done by a lionsed elentrician, and there mas be special requirements to bo mot in regard to fittings and the manner of installation. Some amateurs terminate the spercial line to the station at a switch box, while others may use electric-stove rereptacles as the tormination. The power is then distributed around the station by means of eonventional outlets at convenient points. All circuits should bo properly fused.

Fusing

All transformor primary direlits should in properly fused. To determine the approximate current rating of the fuse to be used, multiply each eurrent being drawn from the supply in amperes by the voltage at which the current is being drawn. Include the current taken be bleeder resistances and voltage dividers. In the case of series resistors. use the source voltage. not the voltare at the equipment end of the resistor. Inelude filament power if the transformer is supplying filaments, After multiplying the various voltares and currents, add the individual products. Then divide be the line voltage and add 10 or 20 per cent. Use a fuse with the nearest largor current rating.

LINE-VOLTAGE ADJUSTMENT

In errtain communiters trouble is sometimes experienced from fluctuations in line voltage. T'sually these fluetuations are caused by a variation in the load on the line and, since most of the variation comes at rertain fised times of the day or night, such as the times when lights are turned on at evening, they maty be taken care of by the ust of a manuallyoperated compersating device A simple arrangement is shown in lig. 7-31A. A toy transformer is used to boost or buek the line voltage

Fig. $7-31$ - Yuo methods of tran-fommer primary control. At A is a tapped toy transeformer which may low comented at at to lomst or burk the line voltage ate refuired. It B_{s} is indiated a variable tramsformer or
 primarics.
as required. The framsiomare should have a tappod secomdary varying betweon 6 and 20
 thould be camable of carrying the full load current of the ontire transmitter, or that portion of it fed bey the toy transformer.

The secondary is conmerted in serise with hla line voltage and, if the phasing of the windings is correet. the voltage appliod to the primatres of the transmitter transformers call be brought up to the rated 11.5 volts bey setting the tos-tramsformer tap switeh on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be redaced instead of incerased. This commertion may be used in ceases where the line voltage may be above 115 volts. This method is proterable to using a resistor in the primary of a power transformer since it doses not affer the voltage regulation ats armousty. The cirenit of - -31 B illustrans the use of a variable autotransformer (Variac) for adjusting line voltage.

Another seheme be which the primary voltage of wath tramsormer in the 1 ransmither mas be adjusted to give a desired serondary voltage, with a master control for compensating for changes in line voltage, is shown in Fïg. $\overline{\mathrm{t}}$-32.

This armangement has the following foblures.

1) Adjustment of the switch s_{1} to make the voltmoter read 105 volts atutomatically adjusts all transformor primaries to the predetermined correct volt:age.

2) The necessity for having all primaries work at the samb volatge is climinated. Thus, 110 volt - cath be applacel to the primary of one
 obtain the desired output voltage.
3) Indepemdent control of the pate transformer is aftorded by the tap switeh Ne, This permita power-impat control and does not reguire the extra allotransformur.

Constant-Voltage Transformers

Although comparatively expensive, special
transformers: ralled constant-voltage transformers are abailable for use in ceases where it is noeressary to hold line voltare and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 vat. at 6.3 volts output, for small tube-heater demands, up to several thonsand volt-amperes at 115 or 230 volts. In arerage figures, such transformers will hold their outpat voltages within one per cent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is umimportant, so that the arrangement of components from this considaration is mot a factor in eonstruction. More important are the points of good high-voltage insulation. adergate eomenetor size for filament wiring, proper vomilation for metifier tabes amelmont importatht of all - safony to the oprerator. Fxpusod high-boltagr terminals or wiring which might be humped into acedemally should not be permitterl to exist. Ther should be coserad with adoquato insulation or plated intaresilhe to contant durime normal operation and adjust ment of the transmitter. Power*upply units should In liawal iambidually. All maratibe Iorminals of plate supples and positive Lemainals of lisas supplies shotuld be seromely groumbel to the rhas sis, and the rhasis commed to : watappipe or radiator ground. . Il transformer, choke, and rablumitor rases should also be grounded to ther chassis. A.r, perior eonds and whasse combertors should be arratuged so that exposed rontarts are never" "live." Starting at the comventional ats. Watl out let which is female, one end of the comel should be fitted with a male phag. The other end of the rord should have a female reveptable. The input monnertor of the power supply should have a male receptachle to fit the female receptarle of the rome The power-ontput comed or on the power supply should be a fermate sonket. A mate phag to fit this sowket should the comerted to the cable going to the equipment.

The opposite end of the rable should be fitted with a fermate eonmertor, and the series should ferminate with a malle comnedor on the equipment. If romertions are made in this manner, there should be mo "live" exposed contate at athy point, regardless of where a diseonnertion maty be made.

Fectifier filament leads should be kept short

Fis. 7.33- A typical simple receiver power sumply. Filament and plate voltages are taken from the multicontaet tube soeket whieh serves as an outlet.
to assure proper voltage at the rectifier socket, through a motal chassis, grommet-lined chatrance holes will serve for voltages up to 500 or Tiso, but ceramic feed-through insulators should be used for higher voltages. Bleeder and voltage-dropping resistors should be plated where they are open to air circulation. Placing them in confined space reduces the rating.

Fig. 7.3.f- Bottom view of the simple recciver power supply slawing the cut ont for the flash-monnting transformer.

It is highly preferable from the standpoint of operating eonverience to have soparate filament transformers for the remifier tubes, rather that to use mombination tilament and pate transformors, such as those used in rerebvers. This permits the transmitter plate voltage tube swituhed on without the neressity for wating for recelfier filaments to eome up to temperature after earh time the high woltage has beem turned off. When using a sombinatiom power transormer, high voltage maty be turnend off without turning the filaments of by using a swith betwern the trateformer renter tap and chassis. This switch should be of the rotary
type with good insulation botwern contames. The shaft of the switeh must he grommed.

SAFETY PRECAUTIONS

. 11 power supplios in an installation shoud the fed through a single matn power-line switeh so that all power maty be cut off quickly, wither before working on the empipmont, or in case of an aceident. Spring-operated swithes or relats ate mot sufficiontly reliathe for this important servire. Foolproot deviers for eutting ofit all power to the transmitter and othere equipment are shown in Fig, $\mathbf{i}-37$. The arranements shown in Fig. 7 -B-A and 13 are similar circuils for two-wire (11)volt) and throe-wire (2:30)-volt) systems. 犬' is an enchesed double-throw knile switeh of the somt usuatly used as the cotranere swith in house installations. $/$ is a standard ater. ontlet and I^{\prime} a shorted plug to lit the outlet. Ther swith shouht be located prominently in plain sight and mem-

Fig. 7.30 - Bettom virw of the transmitter power anply showing the cut etnte for the trminals, separatc prower phas-are wend for the ratifier filament and mate transformeres that they may be switohed independcntly from the control position.

Fig. 7.3.5-A typical high. voltage transmilter power supply. 'The tram-formers, Moves and capacitors are inverted sothat no terminals are exposed to aceidental contart. The capsof the 86\% rectiliers are llue insulated ty m. A wafty terminal (Willen) is used for thr pus. itive high-voltage connec. tion.

Fig．7．37－Reliable arrangemonts for cutting off all
 knife－type switelo，J a standaral ase，outlet．I＇a shorted phar to fit the outlet and／a redlamp．

1 is for a two－wire 115 －volt line， 13 for a three－wire 230－balt system，and C a simplified arrangement for low－power stations．
bers of the household should be instructed in its foc：ation and use．I is a red lamp located alongside－ the switch．Its purpose is mot so much to serve as a warning that the power is on as it is to help in identifying and quickly locating the switeh should it berome neressary for someone else to rut the power off in ath emergener．

The outhet d should be pheted in some comer out of sight where it will not be a temptation for children or others to play with．The shorting plug can be removed to open the power＂irenit if there are others around who might inadvertently throw the switch while the operator is working on the rig．If the operator takes the plug with him，it will prevent someone from turning on the power
in his absence and cither injuring themselves or the equipment or perhaps starting a fire．Of ut－ most importanee is the fact that the outlet J must be placed in the ungromuled side of the line．

Those who are operating low power and feel that the expense or complication of the switch isn＇t warranted can use the shorted－plug idea as the main power switch．In this case，the outlet should be loc：ated prominently and identified by a signal light，as shown in Fig．7－37C．

The tent beurh ought to be fed through the natin power switch，or a similar arrangement at the bench，if the bench is located remote from the transmitter．

A bleeder resistor with a power rating giving a considerathe margin of safety should be used across the output of all transmitter power sup－ plies so that the filter capacitors will be dis－ charged when the high－voltage transformer is turned off．

Selenium－Rectifier Table

All tyes listed below are rated as follows：Max． ingut r．mis．volts－130，Max．peak inverse volts － 380 ．Nerias resistors of 17 bhms are recom－ mended for units rated at less than（i．5 ma， 2.2
 units，athed ohus for all higher－eurrent units．

$\begin{gathered} D . C . \\ .1 / a . \\ \text { ohutput } \end{gathered}$	Manufacturer					
	A	B	C	D	E	F
20	1159	．．．	850		\cdots	\ldots
30	．．．．	．．．		8 Y 1	．．	．．．．
$3{ }^{3}$	．．．		8835	．．．．	\cdots	\cdots
50		RNG．SQ	．．．．		50	
（6．）	1002． 1	Risi．j	GN0．5	8.11	（6）	NA－5
7.5	1003．1	12＊\％．	6＊5．3	5 M 4	7.5	N13－5
100	1004.1	RSN100	Gsilot	5， 1	100	N（－5）
150	100．3．${ }^{\text {d }}$	Rssi．jo	6s：130	H1	1．0）	N（1）－i
200	10068.1	Rss200	（5）200	．312	200	NB－5
2.0	11028.1	RSさ．\％	（282．30	） O_{1}	2.0	NF－5
300	10960．1	RS：300	（6）300）	6（2）	300	
3.50	11023	RS＊350	6＊350	こくご1		Nに゙5
400	1130	RE100	6x．40）	－n	400	N11－5
4.00		RSiso	6， 6.50			NJ－5
．30）	1179	18s．500	65.500	iscl	500	
800			．．．．		600	
1000		12S1000	．．．			

[^5]
Keying and Break-In

Sfection 12.133 of the pec regithatons says ". . . The frequency of the emitted... wave shall be as constant as the state of the art permits." It also stys ". . . spurions rablittion shall not bo of sufficient intensity to catuse interference in reveiving equipment of good engineering design including adequate solectivity charactoristies. which is tuned to a freguency or freguencies outside the freguency band of emission normatly required for the type of emission boing employed by the amateur station."

If the JCC ever decided to enforce these regulations to the strict letter of the law, citations would be receded ley a large perentane of the current erop) of stations. The state of the art is such that an emitted wave can be mighty stable, yot many code (and phone) stations show f.m. and chirp that leaves them open to a citation by the Commission. Key clicks (and splatter) represent violations of the spurious radiation clatuse. and it isn't hard to find evidences of them in any of the ham bands.

There are four factors that have to be considered in the kexing of a tramsmittor. They are r.f. clicks, envelope shape, (hirp and backwave.

R.F. Clicks

Whenever any circuit carrying d.e. or a.e., is elosed or broken, the small or large spark (ilepending upon the voltage and current) genorates at small amome of r.f. during the instant of make or brata. This r.f. covers a frequeney range of many megacereles. A typieal example of this type of miniature transmitter is when a lamp or other appliance is switched off in the house: at that instant a click may be heard in the broadeast or short-water radio. When a trimsmitter is keyed, of nerensity some current must be handled be the key (and relay, if one is used), and the minute spark at the contarts usually ceunes a click in the receiver. This click has no effert on the tremsmitter. although many amateurs think it hats. Since it oceurs at the same time that at eliek (if any) appears on the trmsmitter output. it is not possible for one to judge the clicks on his own transmitted signal hy obsorvation within the shatek unless he has first removed the efferets of these r.f. dicks. Fortunately. this is usually a simple matter, involving only a smatl r.f. filter at the contaces of the key (athd relay, if used). Typical eireuits and values are shown in Fig. 8-1. The effertiveness of the filter can be easity checked hy interrupting the normal amount of current with the key and listoning to observe if any dick can be heard. In other words, if your key normally handles, for example. 50 mat. of current, the effectiveness of the filter can be cherked hy keving that amount of current, without the transmitter ruming. The current can be
obt:ined from your power supply through a suitable resistor (eomputed by (Ohm's Law). If you don't care to go to this trouble and often it isn't necessary, listen on a lower frequency band thatn your tramsmitter and see if applying an r.f. filter at the key reduees the clieks. Jo this with the gain control of the receiver backed off and only a short length of wire connereted to the receiver antemat terminal. This rheek will work if your transmitter keving is already fairly "soft." but it is not a sure-fire test like interrupting the normal amount of eurrent with no radio transmitter rumning.

Envelope Shape

The key clicks that go out on the air with your signal, and which make up one of the forms of spurious radiations mentioned in the opening paragratph (the other two are harmonies and

B

C

Fig, 8-1 - Typical filter circuits to apply at the key (and relay, if used) to minimizer r.f. click s. The simplost circuit (i) is a small capacitor monntel at the kry. If this proves insufficirnt. an r.f. choke can le added io the ungromeded lead (B) or in tmoth learls (C). 'The value
 mh., with a carrent-carrsing ability sufficient for the current in the keyed circuit. In diffienlt cases another small eapacitor may he required on the other side of the r.f. chooke or chokes. In all cases the r.f. filter should be momed rizht at the key or relay terminals: sometimes the filter ran lee concealed under the key. When rathode or center-tap keving is used, the resistance of the r.f. choke or ehokes will add cathole bias to the keyed stake, and in this case a high-current low-resistance choke may be reguired. or compensating reduction of the grid-leak hias (if it is used) may tre meeded.

1 visible spark on "make" can often be reduced by the addition of a small (10 on 100) ohms) resistor in series with (G_{1} (inserted at point "x"). Tio high a value of resistor reduces the are-suppressing effect on "lareak."
parasitic oscillations), are controlled by the shape of the envelope of the signat. The envelope is simply the outline of the oscilloseope pattern of your transmitter output, but you don't need an oseilloscope to observe the effeets. Fig. 8-2 shows representative scope patterns that might be obtained with a given transmitter under various

Pig. 8-2 - Typical oscilloseope displays of a code transmitter. The' rectangular-shaped dots (i) have serions key elieks extending many he, either side of the transmitter frequency. I sing proper shaping eirewits inereases the rise and decay times to pive signals with the envelope form of B. This signal would have pratetically no hey clicks. Carrying the shaping process too far. as in C, result in a signal that is too "soft" and is, not easy to eopy.
conditions. The pattern at Fig. $8-2.1$ is the transmitter output with no envelope-shaping provisions. A sigmal like this has horrible crieks on the air, whichare the inescapable result of turning the transmitter on and off too rapidly. The clicks cam be reduced by providing circuits that catuse the trimenitter output to rise to full output and drop off to zaro output relatively slowly each time the key is closed and opened. The pattern of such a transmitter might look like Fig. 8-213, and it would be found that surh a signal shows little if any clieks outside of the narrow receiver range over which the code signal can be heard. If the shaping process is carried too far, and a signal like Fig. 8-2('is obtained, it may be found that the keving is too "soft" and, while it shows no clicks anywhere, it is not too eas, or pleasunt to copy under weak-signal conditions.

At the moment it is sufficient to appreciate that the on-the-air relicks are dotermined by the shaping, while the r.f. clicks coused he the spark at the key cein only be heard in the station reeciver and possibly a broadeast receiver in the same house or apartment.

Chirp

The frequenter-stability reference in the opening paragraph refers to the "ehirp" observed on many signats. This is caused by a chathge in frequency of the signal during a single dot or dash. Chirp is an easy thing to detect if you know how to listen for it, although it is amazing how some operators will listen to a signal and say it has no chirp when it actually has. The easiest way to detect chirp is to tune in the code signal at a low beat note and listen for any change in frequency during a dash. The lower the beat note, the easior it is to detect the frequency
change. Listening to a harmonic of the signal will accentuate the frequency change.

The "state of the art" is such that code transmitters can be built with no ehirp, and it is fortunate that the FCC hasn't seen fit to anforee the regulation. Actually, ia small amount of chirp, while noticeable, does not prevent sopy even under the sharpest selectivity conditions, although it is sometimes said that high-selectivity receivers can't hold chirpy signals. This just isn't true, unless the chirp is so bad that the signal shouldn't be on the air anyway. The main reason for minimizing chirp, aside from complying with the letter of the regulations, is one of pride, since a properly-shaped chirp-free signal is a pleasure to cope and is likely to attract attention by its rarity. Chirps cannot be observed on an oscilloseope patitern of the envelope.

Backwave

The last factor is "hackwave," a signal during key-up conditions from some amplifier-keved transmitters. It isn't a very important factor these days, since most amateurs are aware of it, although some operators listening in the shack to thoir own signals and hearing a harkwave think that the backwane is heard on the air. It isn't nerersarily so, and the best way to cheek is with

Fig. 8-3 - 'The hasie tathode (A) and center-tap (B) keying circuits. In either tase (i) is the r.f. retnrn to gromml, shonted ly a larger capacitor for shaping. Voltage ratings at least equal to the cut-off voltage of the tube are required, T_{1} is the normal filament trans. former. Ca can be about $0.01 \mu \mathrm{f}$.

The shaping of the signal is controlled thy the values of L_{1} and C_{1}. Inereased capacitance at C_{1} will make the signal softer on break: inerased inductance at L_{1} will make the signal softer on make. In many cases the make will be satisfactory without any inductanee.

Values at C1 will range from 0.5 to 1μ., depending upon the tube type and operating conditions. The value of L_{1} will also vary with tulu type and conditions, and may range from a fraction of a henry to several henrys. When tetrodes or pentodes are keyed in this manner, a smaller value ean sometimes be used at Ci if the sereenvoltage supply is fised and not ofstained from the plate supply through a dropping resistor.

Oseillators keyed in the cathode cirenit cannot be softened on break indefinitely by inereasing the value of Ci beanse the grid-eircuit time constant enters into the action.

Fig. 8. 1- "lae havic circuit for holocked-grid keving is =lawn at 1. R_{1} is the normal wrid leah, and the hloeking voltare must be at least peveral times the mormal srid hias, "the chiok on make san be redued by making (a larerer and the click on hreak ran lur redured ly making R_{2} larger. I anally the value of h_{2} will he 5 to 20 times the resistance of R_{1}. The wower supple enrrent repuirement demends
 the blowking voltage supplys.
An allied circuit is the vacum-tulue keyer of B. The tule 1 is is comereded in the cathode rireuit of the stake to lo keved. The values of C_{1}. R_{1} and R_{2} determine the keving concelope in the same way that

 hut the eurrent drain is very low. The GBt-C or other law mater rexistance triode is suitable for 1% To inerease the currenterarssing ability of a tulve kever. several tules can loe comberted in parallel.

A vanumbinhe keser adde rathorle hias and drops the suphly voltages to the keyed stage and will reduce the ontpat of the stike
stag(s) has no offeret on the oscillator frequener. This ran be cherked by listening on the oseilator frequency while the amplifier stage is keved. Be sure to liston for chirp on cither size of zero beat to celiminate the possible offoed of a dharpererever eaused by limevoltage changes or pulling. If no chirp of the steadily-ruming asedilator can be detereded, sou know that the transmitter ean be keyed without rhirp in the stage or stages fou used for the test. You hater no asumame that the tratmsmitter eam be keyed in ath carlier stage without charpuntil you make the same test with the earlier stage. Be proud il your transmitterean be:ampli-fier-kieged without chisp, but don't lx surprised to lind that it ran't. Minny trinsmitters, including some commeredial dexigns, won't pass the test. They just don't hawe sufficient isolattion and bulfer action.

An amplifier can be keyed by any mother that redueses the output to zero, Nautralized stages rath be keved in the cathore cirenit, although where powers over al of 品 watts are involved it is often desirable to use a keying relay or varum thbe keyer,
an amaterur a mile or more antio. If he can't hear a backwatue on your sat sigmal, you san be sure that it isn't there when rour signal is watare. bancwawe is undesirathe on your signal beramse it makes your signal a little harder to copy, even with acceptable shapping and no chirp.

Amplifier Keying

You can look at keying an amplifier cither as turning it on and off with the key (and shaping properly) or as: "modulating" the "arrier with the proper envelope. ('line proper covelope might be something rasembling lige. S-2 3.) Using the latter approwh you recogrize immediataly that the applied modulation must have no effere on the oscillator frequency if chirp is to be avoded. In a phone trasmitter this means having adequate isolating stapes between modulated stage and useillator, and it motas exartly the samme thing in : code transmitter. Many two-, three- and even four-stage tramsmittors are uttorly incoustble of completely chirp-free amplitier keying beeanse the severe "modulation" of the output stabe hats an elfieet on the oscillator frequener and "pulls" through the several stages. This is partieularly true when the oseilator stage is on the stme frepueney the the keyed output stage, but it (an also happen when freguoney multiplying is involved. Another souree of reatetion is the variattion in oscillator supply voltage under keving conditions, althongh this c:u usually be hamdled by stabilizing the oseillator supply with is VR tube. If your objective is a (ompletely chirp-free transmitter, the very first step is to make sure that kering the contemplated amplifier stage (or
to minimizo the chances for elertrical shork. Tube kering drops the supply voltapes and adde rathode bias, points to lo romsidered where maximum output is reguirexl. Blorked-

Fip. 8-5 - When the driver stage pate voltase is rought, the same as the sereen voltage of a tetrode final amplifier, combineal serect and drier keving is an "xecllent satem. The enselope shaping is determined hy the values of l_{1}, C, 4 , and R_{3}, althomgh the ref. by-pats
 arves as an excitation control for the linal amplifier. by emontrolling the sereen voltake of the driver stake. If a trimbe driver is used, its phate voltake can le varied for excitation comerol.

The inductor $t, 1$ will not be tew eritieal, and the seres ondary of a spare filament transformer can loe used if a low-induetance choke is not as ailable. The values of C_{1} and R_{3} will droend nimom the inductame and the voltage and current levela, but somed starting values are $0.1 \mu \mathrm{f}$ and B 0 shans.

To minimize the bosesibility of electrival shoch, it is reommenembel that a kevine relay he used in this cirenit, since louth sides of the circuit are "hote" is in any transmiller, the signal will be chirp-free ouly if keying the driver stage hats no effeet on the osecillator frequeney.
grid keving is applicable to many neutrolized stinges, but it presents problems in high-powered anplifiers and requires a source of negrative voltage. Output stages that aren't neutralized, surh is many of the tetrodes and pentodes in widespread use, will usually leak a little and show some backwave regardless of how they are keyed. In at case like this it may be necessury to key two states to oliminate backware. They ean be keyed in the eathodes, with blocked-grid keying, or in the sarems. When soreen keying is used, it is mot always sufficient to reduce the sereen voltage to zero: it maty have to be pulled to some negrative value to bring the key-up plate current to zero. muless fixed nogative eontrol-grid hias is used. It should be apparent that where two stages are keved, keving the earlier stage must have no effect on the oscillator frequency if completely chirp-free output is the goal.

Shatping of the keving is obtained in several ways. Blocked-grid and vacumm-tube kevors ged suitable shaping with proper choice of resistor and cupacitor values. while eathode and sereengrid keving cou be shatped be using inductors :and eaparitors. Nample cireuits are shown in Figs. $8-3,8-4$: mad $8-5$, together with instructions for their adjustment. There is no "best" adjustmont, since this is a matter of personal preference :und what you want your signal to somed like. Most operators seem to like the make to be heavier than the lareak. . 1 ll of the eireuits shown here are (atpable of a wide ramge of adjustment.

Oscillator Keying

The reader may wonder why oscillator keying hasn't been mentioned earlior, sime it is widely used. The sat fied of life is that exerellent oscillator keying is infinitely more difficult to oltain than is exeellent amplifier keying. If the objeetive is no detertable chirp, it is probably impossithe to ohtain with oseillator keying, partieularly on the highor frequencies. The reasons are simple. Any keyod-osifilator trimsmitter requires shatping at the oseillator, whieh involves changing the operating conditions of the oscillator over at signifie:nt period of time. The output of the aseilator doesne't rise to full value immediately, so the drive on the following stage is changing. "hioh in turn maty reflect a variable lowed on the oscellator. No oseillator has bern devised that has no change in frequeney over its entire operating voltage range and with a changing load. Furthermore, the shatping of the keved-oseillator envelope usually has to be exugherated, breatuse the following stages will tend to sharpen up the keying :und introduce clicks unless they are operated as linear :mplifiers (as deseribed in detail later).

Acceptable osedlator keying can be oltained on the lower-frequency bands, and the methods used to key amplifiers can be used, but chirp-free celickless oscillator kexing is probably not posithle at the higher frequencios. Oecasionally some additional shaping of the signal will be introduced on make through the use of a elamp tube (and associated time constants) in the output stage, but it is no help, on break.

Break-In Keying

The usual argument for oscillator keying is that it permits break-in operation, which is true. If break-in operation is not eontemplated and as near perfeet keying as possible is the objertive, then keving an amplifier or two by the methods outlined earlier is the solution. For operating convenience, an athomatie transmitter "turneronner" (see Camphell, (2ST, Aug., 1956), which will turn on the power supplies and switeh antemat relays and reereiver muting devices, can be used. The station switehes over to the complete "transmit" condition where the first dot is sent, and it holds in for a length of time dependent upon the setting of the delay. It is equivalent to voiceroperated phone of the type eommonly used by s.s.b. stations. It does not permit hearing the other station whenever the key is up, as does full break-in.

Full break-in with excellent keying is not easy to come by, but it is casior than many amateurs think. Many use ossillator keying and put up with a secomd-best signal.

Three solutions to chirp-free break-in keying hive bren developed. One is the "silent v.f.o.," which consists of a well-shiclded oscillator athd buffer stage ruming continuously at a low frequener. The output is keyed before it gets out of the shicleded compartment, and in some applications several subseguent stages are also keved. The system is still subjeet to sharpening by fol-

Fig. 8-6 - When satisfactory Whocked-krid or tuhe keying of an amplifier stake has been obtained, this Wi-tube break-in cirenit can lic applied to the transmitter to furnish differential keying. The eonstants shown here are suitable for blockedegrid keying of a 61.6 amplifier: with a tube keyer the 650 and VIR tube circuitry would be the same.

With the key up, sufficient current flows through R_{3} to give a voltage that will ent off the oseillator tule. When the key is elosed, the cathode voltage of the 0.5 hecomes elose to ground potential, extinguishing the If tulve and permitting the oseillator to oprate. Too murela shunt capacity on the leads to the VIf tule, and tom large a value of gride capacitor in the oseillator, may slow down this action, and best performance will be oltatined when the osellator (turned on and off this way) sounds "clicky." The output envelope shaping is ohtained in the amplifier, and it can be made softer by inereasing the value of Ci. If the keyed amplifier is a tetrode or pentode, the sereen voltage should be obtained from a fixed voltage source or stiff voltage divider, toot from the plate supply through a dropping resistor.

A switeh connected in series with the VR cube will, when opened, turn on the oscillator for "frequeney spotting."
lowing stages, but it is quite satisfactory and is used in at loast one commerdial tramsmitter.

A serond approach is to use a comversion ex-- (itor, in which two owillators (ome erystal-onttrolled, one v.f.o.) run contimuonsly and their outputs. with suitable buffer stages intorvening. are fod to a mixer stage. The mixer stage output is the sum or clifference freguencer of the two oseillator frequencies, which hawe beron soleceted to give at sum or difference in an amateur band. When the mixer stage is turned off bey keving, no output appears in the amateur hatid. and the offere is the same as keying an oseillator stage that eatmot possibly ehirp. The oseillator froquencios mast be seloceded (atrefully so that wome of their harmonies lall within atm amateur batod. and sufficiont seloctivity must he present in stages following the mixar to insure that no spurions signals are amplified. If the mixar alone is keverd, its envelope is sulgoet to sharponing be later stages unhes they are linear amplifiors.

A third approwh is to turn the oseillator on fast before a keved amplifier stage ratu pass ang signal and turn off the oscillator fast after the keved amplifior stage has cut off. The principhe is called "differential keving" and a number of dircuits have heren devised for weomplishing the atetion. One of the simplest eath be atpplied to :my grid-honek keyod implifior or tubrekeyed stage be the addition of a triode and a VIR tulne. as in Fig. X-fi. The triode is used as at cathode follower: with the key up a megative bias is applied to the osedlator grid through the V'R fubse and the 10 , (x) (0) ohm resistor. When the key is closed, the (6.5) eathode gons immediately to ground potential. the VR tulne is extinguished and the bias is removed from the asailator. The wasillator turns on quickly. In the meantime. the amplifior bits. the voltage to which (", is charged, is dis(harging through P_{1}. the amplifier grid leak. The osedilator is turned on before the amplifier bias hats been rodured to at value low anough for comduetion through the tube. When the key is opened. the osajlator rontinues to run until the grid of the eathode follower has reached at voltage of more than - lis volts, he which time the amplifior hats stopped eonducting. I'sing this keving writem for break-in, the keving will he dhirp-free if it is chirp-free with the VR tube removed from its sorket, to permit the oweillator to run all of the
time. If the transmitter cin't pass this test, it indicates that more isolation is required between kered stage and oseillator.

Clicks in Later Stages

It was montioned curlier that key clicks can lo generated in amplifior stages following the keved stage or stages. This is ofton a puzzling problem to an operator who has spent considerable time adjusting the keving in his expiter unit for clickless keying, only to find that the elieks are bat when the amplifier unit is added. There are two possiblo catases for the elieks: low-freguener parasitio oseillations and amplificr "eripping."

Inder some ronditions an amplifior will be momentarily triggered into low-frequeney parasitio oseillations. and clicks will be gromerated when the amplifier is driven by a keved exeiter. If these elicks are the result of low-frequenes parisitic osdillations, they will be found in "groups" of elicks: oceurring at 5 ti- to 5 bll-ke. intervals wither side of the tramsitter frequeney. Of rourse low-frequence parasitio oscillations ran be gencrated in a keyed stage, and the oparator should listen carefully to make sure that the output of the exeiter is clean before he bames a later amplifier. Low-frequence parasitice oscollations are usuatly eatusd by poor choice in r.f. choke values, and the use of more induetanere in the plate choke than in the gride choke for the same stage is recommended. (See Chapter Six and "low-frefueney parasitic osillations.")

When the elieks introdued her the addition of an amplifier stage are found only near the transmitter $\operatorname{froqueney}$, :mplifier "clipping" is indicaterd. It is quite eommon when fixed bias is used on the amplifier and the bias is well past the "rut-olf" value. The effere can usually be minimizad or eliminated by using at eombination of fised and grid-leat bias for the amplifier stage. The fixed bias should be sufficient to hold the key-upp plate current only to a low level and not to zaro. In a triode amplifier, overdriving the amplifier (ean allso result in relipping that will add key elieks. and the cure is to reduce the drive. The output won't sutfer appreceiably.

A linear amplifior (Class AB_{1}. $\mathrm{AB} 3_{2}$ or 13) will amplify the exatation without adeling ans clicks, and if elicks show up a low-frequency parasitic oscillation is probathly the reasom.

Testing Your Keying

The choice of a keying cireuit is not as important as its complete testing. Any of the rireuits shown in this sertion can be made to give satisfartory keying, but they must be adjusted properly.
The easiest way to find out what your keyed signal sounds like on the air is to trate stations with a nor-by ham friend some evening for a short (Qso). If he is a half mile or so away, thats fine, but any distance where the signals are still sul will be satisfactory.

Ifter you have found out how to work his rig, make contart and then have him send slow dashes, with dash sparing. (The letter "I"" at about \bar{j} w.p.m.) With the crystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. linowing the tempo of the dashes, you can readily identify any elicks in the vicinity as

Fig. 8.7-Representations of a clean c.w. sisnal as a receiver is tmed throngh it. (1) shows a receiver with ne eryatal filter and the h.for. set in the center of the pa-shand. and (B) dhows the crystal filter in and the reweciver arljusted for single-sinnal receptinn. The variation in thicknose of the lines represents the relation aignal internsty, The athdie frequency where the signal disappears will depend apmon the receciser selectivity elaratelariatic and the * (roneth of the *igua!.

Fours or sombone chsers. A grood sighal will have a thump on "make" that is pereeptible only where wou can alsa hear the beat note, and the elick on "break" should be practically negrigible at any point. Jig. 8-7. 1 shows how it should sommed. If your signal is like that, it will sound good, provided there are no dhips. Then have him run off a string of :3) or 40-w.p.m. dots with the bug - if they are casy to cops, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. If the receiver hats porm selectivity with the crystal filter out, make one last rheck with the filter in (Fig. s-73), to see that the clicks off the signal are nogligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little mone rareful. The first step is to get rid of the r.f. eliek at the key, as deseribed earlier, beeause if you don't you cannot make further ohsorvations. Locally (meaning in your own recriver) this eliek will eoincide in time with rlicks that maty or may not be on your signat, so there is just no way to ohserve your signal without first climinating the r.f. chick.
so far you haven't done a thing for your sigual on the air and you still din't know what it sounds like, but you may have cleaned up
 antenat from your receiver and short the antematerminals with a short piece of wire. Tune in vour own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Dotune any athtematrimmer the rereiver may have. If you can't avoid overload within the r.f. gain-eontrol range, pull out the r.f. amplifier tube and try agran. If you still can't aboid overload, listen to the seromd harmonie as a last rewort. Ninee an overloaded rewiver can generate clicks, it is easy to rablize the impertance of ciminating overload during any tests or ohsorvations.

Describing the vohume level at whirh you shouk sot your reariver for these "shack" tests
is a little diflicult. The r.f. filter should be effertive with the rereiver running wide open and with an antenna rommertad. When bou turn on the transmitter and take the other steps mentioned to reduce the sigual in the rexerer, run the audio up and the r.f. down to the point where vou rath just hear a little "rushing" sound with the b.i.o, wif and the receiver tuned to the signal. This is with the rrystal filter int. It this leved, a properly-adjusted keving rircuit will how no elieks off the rushing-sound range. With the b.f.o. on and the same gatin setting, there should tre no clicks outside the beat-note range. When observing dicks. make the skow-dash and fast-dot tests outlined previonsty.

Now you know how your signal sounds on the air, with one prosible expotion. If keving your transmittor makes the lights blink, you maty mot be able to tell too accurately about the ehirp on your signal. However, if gou are satisfied with the :hsence of chirp when tuning either side of zero beut. it is safe to :assume that rour receiver isn't chirping with the light flicker and that the ohsorved signal is a true representation, No chirp either side of zero beat is fine. I)on't try to make these tests without first getting rid of the r.f. rlick at the ker, beotuse clicks ata matsk a charp,

Exchanging sathons temperarily with another interested amatemr is probably the lest way to rherek your keving. The setrond-hest motherd is to cherek it in the shack as outlined athove. The least satisfactory way is to ask another ham on the air how your keving sounds, although this serms to be a very popular method. The reason it is the least satisfuctory is that many hams, for reasons of etiquette or (2simeard colleding, atre reluctant to be highly eritical of another amatear's signal. In a great many cases they don't artatly know what to look for or how to deseribe ang aberations they may ofserve. Many can deseribe what they like to hear in the way of a rlean rode sigmal, but the little factors that soil at signal are indistinguishable. However, they ean all he summed up as chirps and airks on make and break. A signal ran have nome or all of these.

Vacuum-Tube Keyers

The praetical tube-keyer cireuit of Fïg. 8-8 ean he used for keying any stage of any transmitter. Depending upon the power level of the kexed stage, more or fewer Type 6l3t-(itulnes cimn be connereted in parallel to handle the nerossaty eurrent, The voltage drop, through a single 6B1-6; varies from about 70 volts at 50 mat. to 30 volts at 20 mar. Tubes added in paratlel will reduce the drop in proportion to the number of tubes used.

When conneating the output terminals of the kever to the circuit to be keved, the grounded output torminal of the keyer must be comeded to the transmitter gromed. Thus the kever fan be used only in negative-leal or cathode keying. When used in cathode keying, it will introduce
associated resistors and capacitors, since they are incorporated only to allow the operater to soleet the eombination he prefers. But onere the values hate bere solected, they ean be soldeped permanently in plate. The rule for adjusting the keying whatuteristic is the same ats for bockerd-grid keving.

A Low-Power Keyer

If a low-level stage rumning only a fow watts is to be keyod, the tube-keror cireut of Fig, K-9 offers as simple solution. By using a $11 / \mathrm{Cl}$ type tubre, which incorporates its own reptifier, it is only neressary to eommert to some existing power

Fig. 8.8-Wiring diagram of a practical vacumentube keyer.
cathode hian to the stage and redure the output. This ean ine compensted for bey ar reduction in the grid-leak hite of the stage.
The negative-voltage supply ean be diminated if a negative voltagn is available from some other sonree, such as at hits suphly. A simplified version of this eirenit eould eliminate the switehes and

Fig. 8.9 - Simble low-power vacumetube keyer.
Comeret keyer to a low-voltare power supply at point "X".
their supply at the point marked " $\mathrm{N}^{\prime \prime}$. The kesing
 the values of R_{1} and h_{2} only represent stating points for experimentation.

When the key or kering lased has pook insulation, the resistame maty feromb low romgh (particultarly in humid wather) to reduere the blowking voltage and thlow the keyer tube to priss some curreat. This may cubuse a slight backwave, but it rath le rured by better insulation. of ly redued valwes of resistors and inerrassed vablues of capaceitors.

Monitoring of Keying

In general, there are two common methouls for monitoring one's "fist" and signal. Ther first, and prohaps more common treke involves the use of an andio oscillator that is keyed simultaneonsly with the transmitter.
The serond method is one that permits reereving the signal through one's reveriver, and this generally requires that the receiver be tuned to
the fransmitter not always ronvenient unless Working on the same freguence) and that some mothod the provided for prevating overtoading of the receiver, so that a good replicat of the transmitted signal will be reerived. Dixeret where quite low power is uson, this usually involves a relay for simultaneonsly shorting the receiver input terminals and reducing the recoiver gain.

"Little Oskey" - A Monitoring Oscillator and Keyer

Without moxifying a rexober or rathodekeyod transmittor in :my way, the unit shown in
 injerts as sidetone in the heradphomes when the key is down. It cour also be used ats a rode-pracefice ascillator. So changes awe reguired when frequence or bind is changed.

Reforming to the sohematio in Fig. S-11, the fofthathd seretion of the 12.11^{7} : amplifier mixer handes the receriver output and delisers it to the phones jatek. Its grid return is the 4.7 -magohm resistor and the $0,27-m$-mahm resistor. When the
 the 0.27 -megolm resistor, ithd this hits cuts off the signal from reseriver to phones juak. It the stume time the voltage is abplied to the inedio osedlater sertion of the lower 12.10^{-7}, and :my desired amoment of the developed towe is :yppliod to the phones jask via the right-hand suretion of the 12.117 :mplifier-mixer. 'l"he desires tmonnt
 oseillator gath control. Two power supplies atre used: plate vollatye for the osedillator-mixer is prorided bey a soldonium rectifor in at half-watve reetifore riment, and the mative supply for the hias and oseflator is furnishod bey a voltage tripher nsing at sertion of at $12.1 \mathrm{~L}^{7}$ a and 1 wo orystal diodes. Two smatl (i-volt filament transformers romureted "hatok to hatek" arre used for obtatiming the merossiby aprobling voltarges. A switch, N2, permits keying the trimsmitter without banking the receiver or introducing the :udio sidetone, should this be reguired for frecturney spoting or monitoring.

No sperial prexations are neressaty in lawing out the mit. In fact, the monito misy be built in at coblbined and phawed alemgside of the recerver. When wiring the unit, it is a goorl iden to keep the leibls correving ate, awsey from the implifier input to prevent hum. Cire should also be tatken
when soldering the errstal diodes. Molding the diocle leids with a pair of lomg-nose pliers while soblering is good insurande agatinst ruining at (rystal. Trerminal strips cabl be used convoniont for momenting parts such as the seldenium reetifier and to sorve as tie points for resistors, cetpuitors, etr.

The freguenery of the sidetone andio oseillator (abl be adjusted he changing the grid catpaitor, ('1. If the atudio oscillator fatils ta oscillate. the primary leals of the interstare transformor should be reversed.

It is a rery simple mather to insert the monitor into an existing station. The cable from the unit is plugged into the kered eirenit and the reerever ontput and head-phones are plugged into the unit. Switeh sis is used to turn the unit off and on. If for some reason it is desired to operate temporatrily without the mit (such as when zerobeating the toggle switeh, si, maty be opened and the unit beenmes inoprotitive.

With sig chsed, everything is ready. When the key is up, the reedorer is hourd: when the key is down it sidetone is heard and the transmitter is keved. The osedhater tone level eath be adjusted with the gite control on the mit, while the reariver locel is controlled at the reeriver. If the station being worked wishes to break in, his signals catn bo hated botwon the chatruters being trinsmitted.

Siner the recedver is actually on during keydown conditions (even though in the headphones it appears to be off), (atre should be taken mot to dimange the receiver he r.f. overloinding. The monitor hat here used sureresfully with at eathode-kerod transmiter ruming is high is 200 watt input but sopartate tramsmitting and rereiving thtemnts wre used. The unit cammot bo used with grid-block keyed transmitters - it is designed for cathoode-keyed rigs only: How-

Fig. 8.10-1 combination c.w. momitor and remb-pratetiere waillator that rant be need withont modilication of the reediet or trathsmither.

 and T_{2}.
S_{1} —S..p.s.t. on oseillator gain control,
' T_{1}, 'T'2-6.3-solt l.2-amp. filament transformer

Slk - Inowerment selonimm rectilier (ferderal loniz), 'T3-Interiate abilio transormer, secomdaryeto-

ever, it is usually a simple matter to chature the krying circuit of a tramsmitter, "Little (Oskey" does nothing to the keying of the transmitior, and that must still he shatred by the methods outlined elsewhere in this rhapter. In some instathat tions it may not be possible to work full break-in beratuse the recoiver does not recover fist enough from the overlowd the transmiter places on it. In such cases it maty be helpful to use a
smatler receiving athtemat or one that is farther from the transmitting antennth. to reduee the transmitter piek-up and the receiver overlowd that is cousing the long recovery time.

If the transmitter and recoiver are turned off the monitor catn be keyod and used as a codepratetiee oscillator. The sidetone will abpeat in the heouphones as the unit is keyed.
(From (2s'T, October, 1955.)

Fin. 8.12-Inder-rlasis view of the monitor, showing the plug and cord that ron to the transmitter key jach, the monitor key jallek, and the planom jack where the receiver ontput is applied.

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antemat change-over rolays is fast enough to follow kering. The receiving antemnt should be instabled as far as possible from the transmitting antema. It shoukd be mounted at right angles to the transmitting antemat and fed with low pick-up lead-in material surh as eoaxial (able or 300 -ohm 'lwin-Lead, to minimize pick-up.

If a low-powered tramsmitter is used, it is often quite satisfactory to use no sperial equipment for break-in opration other that the separate receiving antenna, since the transmitter will mot blowk the reeciver too seriously. Even if the transmitter keys without elicks, some dicks will be heard when the receiver is tuned to the transmitter frequeney beomuse of werload in the reweiver, An outpent limiter, as deseribed in Gapter Five, will wash out these (licks and permit good brak-in operation oven on your trimsmitter frequenery.

When powers above 25 or 50 watts are used, special treatment is required for quiet break-in on the transmitter frequener. A means should be provided lor shorting the input of the rereiver when the conk characters are sent, and at nu:ths for reducing the gain of the receiver at the sume time is often neessary, The system shown in Fig. S-1:3 permits quied break-in opcration for higher-gowered atations. It reguires at simple operation on the receiver but otherwise is prefeetly straightforward. R_{1} is the regular remiver r.f. and i, i. gain eontrol. The ground lead is lifted on this control and run to a rheor stat. Re, that goes to gromed. I wire from the jumetion roms outside the receiver to the kering relay, K_{1}. When the key is up, the ground side of R_{1} is commeded to ground through the reliey arm, and the receiver is in its normal operating eondition. When the key is closed, the rolay doses, which breaks the pround ronneretion from R_{1} and applies additional bias to the tubes in the recoiver. This bias is controlled by R_{2}. When the rolay closes it alse doses the dircuit to the trimsmitter oseillator. A filter at the key suppresess
the rlicks caused by the relay current.
The keying relay should be mounted on the receiver as close to the antenna terminals as possible, and the leads shown heavy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used.

A fow of the recent communications receivers bring the return lead from the r.f. gain control to a normally-shorted terminal at the rear of the receiver. The preceding break-in system can be readily applied to a receiver of this troe, and it will repary the receiver owner to study the instruction book and determine if his receiver already has this connection made in it. Other receivers have provision for reducing the gat or for blanking the receiver; one popular model hat provision for bringing in nogative bias from at transmitter grid laak to cut off an audio stage during transmit periods.

Full desariptions of systems for break-in operation can be found in the following QST articles:

Cruwfis, "Simplified 'Break-In with One Antemna,' " Nov, 195\%.
Goodman, "V'IR Break-In Koying," Fels, 1954.
IIays, "Solenium Break-In Keving," July, 1955.
Miller and Moichner, "TVG - An Aid to BreakIn," Matrch, 1953.
I'uckett, "'I)e Luxe' Keving Without Relays," Septomher, 1953; P'urt II, Dee, 195̄3.
I'uckett, "C.W. Man's Control Unit," Feb., 1955.

- ELECTRONIC KEYS

Wectronic kers, as contrasted with mechanical automatio kers, use vacmum tubes or relays (or both) to form automatie dishes as well as automatic dots. Jull descriptions of electronic keys can be found in the following $2 S T$ atticles:
Brimn, "In Search of the Ideal Electronic Key," Feb., 1951.

Fig. 8-1.3- Wiring diagram for smooth breah-in operation. The lead slown as a heavy line and the lead from
 post on recciver should be hept as short as possible for minimum pickup of the trans. mitter signal.
h_{1} - Recreiver manual gain control.
$\mathrm{K}_{2}-5000$ - or 10,000 -ohim wire-wonnd potentiometer.
$\mathbf{K}_{1}-$ S.p.d.t. Keving relay, Althourh battery and d.c. relay are shown, any suitable a.c. or d.c. relay and power source can be used.

Turrin, "Debugging the Electronic Bug," Jan., 1950.

Montromery, "'Corkey" - A Tubeless Automatic Liey," November, 1950.
Bartlett, "Compact Automatic Key Design," D(er, 1951.
Turrin, "The 'Tur-Key"", December, 1952. Cor-
rection, Pebruary, 1953.
K゙ayr, All-Electronic "Ultimatie" Keyer, April, May, 19\%.\%.
Bram, "A Dot Inticipator for the Electronic Key," July, 1! $5: 3$.
Turrin, "The 'Tur-Fey' in Miniature," September, 105%

Electronic Transmit-Receive Switches

No antemat relity is fast conough to switeh an antoma from transmiter to reecoiver and batk at normal keving speeds. As a conseguener, when it is desired to use the same antemat for transmitting and receiving (at "must" when directional antennas are used) and to operate e.w. break-in or voice-eontrolled side band, an electronice switeh is used in the intenna. The word "switch" is a misnomer in this ense: the transmitter is connected to the antemit at all timos and the t.r. "switch" is a deviee for preventing burnome of the receiver by the tramsmitter.
on frequencies or batnds to which the transmitter is not tunel, this switch will not permit much reredver response at frequencies removed from the tramsmitter frefuency. In most cases this is no problem. sinue most oporation is around onces tramsmitter frequenes. The 2.2 K resistor armoss the phate cireuit brombers the frequency response athd reducos the need for retuning over a hand. In a commercial version of this switch, a broad-band output transformer replaces L_{1} and the variable eatladeror, and no coil changes are required in the range 3.5 to 30 M :

Fig. 8-14-Schematic diagram of cathodefollower t.r. switch. Resistors are , matt. The unit should be assembled in a small rhassis or shield can amd mounted on or very close th the receiver antenna terminals. The transmitter transmission line can be connected at $/ I_{1}$ withan M-3.38 lee adapter.
'The heater and plate power san lwe "! morrowrol"
 19.6)
J_{1} - SO-2:39 coaxial chamis receptacle.

One of the simplest approaches is the cireuit shown in Fix. 8-14. The BCt cathode follower couples the incoming signal on the line to the receriver input with only a slight reduetion in gain. When the tramsmitter is "on." the grid of the $6 \mathrm{C} / \mathrm{t}$ is driven positive and the rectified current biases the 6 C 4 so that it con pass vers little power on to the receiver. The factors that limit the r.f. voltage the cireuit ean handle are the voltage break-down rating of the $4 \bar{i}-\mu \mu \mathrm{f}$, capaeitor and the voltage that may be sately applied between the grid and eathore of the tabe.

To avoid stray piek-up on the lead between the cathode and the antemna tominal of the receiver, this lead should be kept as short as possible. The entire unit should be shiedded and mounted on the receiver near the antemat torminads. In wiring the tube sorket. input and output cireuit components and wiring should be separated to reduee feed-through by stray conpling.

The t.r. switeh of Fig. 8-15 differs in two ways from the preceding example. By using a grounded cathode and at tumed plate cireuit, a voltage gain is obtained through the tulne. The input is taken from the plate of the transmitter output stage instead of from the transmission line, and as a result the voltage build-up in the transmitter tank is utilized. Unlike the preceding t.r. switch, which permits listening

The switch of Fig. 8-15 (:m be built in a small metal box and moment in the tramsmitter - Close to the outpuit stage. The plate and heatere power ean be "horrowed" from the tramsmitter: the plate power will be less than lab mat at 100 $t_{0} 150$ volts. The coaxial line to the receiver can be any combeniont longth.
The eaparitive voltane divider for fereding the t.r. switch is composed of the t.r. switeh input (apmetance (atmot $10 \mu \mu \mathrm{f}$.) and a serios capacitor for connection to the plate tank. I conservative value of the series capabitor for an ath. platemodulated final can be caldenated by the following formula:

$$
\left(C_{1}(\mu \mu \mathrm{l} .)=\frac{2 \mathrm{~B})(0)}{\text { d.c. plate rolls }}\right.
$$

The serios eaparitane as cableulated above maty be doubled in value when the final is not modulated, as in e.w., grid modulation or in a linear power amplitior.

The series capacitance is gemorally less tham 20) $\mu \mu \mathrm{f}$. The capacitor should he of the low-loss varriety and shoud be capable of withatanding the tank voltage. For plate voltages of 800 volts or less, the disk type ceramic eapatitors have been found to be adeguate. For greater voltages, an inexpensive capacitor may be fabricated from R ($\mathrm{i}-8 / \mathrm{L}$ coaxiab eable. This cable hats a rating of approximately boto peak r.f. volts, and in the laboratory it withstands in

Fig. 8-15-A t.r. switch that mounts in the transmitter. Resistors are $\frac{1}{2}$-watt.
C_{1} - Depende upon tramsmither. See tevt.
 end of l_{1}.
excess of 20,000 volts of d.e. Actually, in normal use it is usually limited by eurent rather than voltage. The expacitance of the eable is $30 \mu \mu \mathrm{f}$. per loot, so that ond maty measure off the reepuired capacitance by the incha and end up with a reably low-loss and practical unit.

The t.r. switch iupht is a high imperdanere for fow freguencios. It is advantageous, therefore, to have the tank cirruit at d.e. ground potential so that crosstalk at power-line freguencios will be eliminated. Fortmately, this is the case in practically all modem transmitters. A type of nowe customarils pieked up with eleretronic t.r. switches is that camed by plate current flowing in the power amplifier. It is necessary. therefore.
to bias the tubes beyond cutoff when receiving.

TVI and T.R. Switches

The preceding t.r. switehes generate harmonies When their grid eireuits are driven positive, and these hamonies can canse TVI if steps are not tiken to provent it. The switch of Fig. 8-1 4 should be well-shielded and used in the antemuat transmission line between transmitter and lowpats filter. The switeh of Fig. 8-15, when mounted in a transmifter that was TVI-free, should not introduce any TVI beramse the filtering that is sumersful for the tramsmitter should be suecessful for the hammices generated by the t.r. switel.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlimed carlior in this book in the chapter on varuum tubes. The design requirements are determined primeipally by the type of modulation system to be used ind hy the type of microphone to be employed. It is necessary to have a chear understanding of modulation principles hefore the problem of laying out a speech system can be approached suceresfully. Those principtes are discussed under appropriate chapter headiags.

The prosent chapter deals with the design of audio amplifior systems lor communication purposes. In voice communication the primary objective is to obtain the most effer live transmission: i.e., to make the message be understood at the reopiving point in spite ol adverse conditions created by noise and interleremee. The mothods used to aceomplish this do not neessarily conneide with the methods used lor
other purposes, such as the reproduction of musie or other program material. In other words, "naturahness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particularly fortunate, because the width of the chamnel oceupied by a phome transmitter is directly proportional to the width of the audio-frequency band. If the chamel width is reduced, more stations can oceupy a given band of freguencies without mutual interferenes.

In sperech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importane in rommmateation bies almost wholly in the lace that many ol the adodoprequency hammones catued by such distortion lie outside the chamel noeded for intedligible spereh, and thas will reate ammeressary interference to other stations.

Speech Equipment

In designing spereh equipment it is noeressary to know (1) the amount of audio power the moduation system must furnish and (2) the output voltage developed by the mierophone when it is spoken into from normal distanco (a few inches) with ordinary loudness. It then beromes possible to choose the number and trepe of amplifier stages needed to generate the required audio power without overloading or distortion anywhere in the system.

MICROPHONES

The level of a microphone is its clectrical output for a given sound intensity. Level varies greatly with miorophones of different types, and depends on the distanee of the speaker's lipes from the microphone. Only approximate values based on averages of "normal" speaking voices can be given. The values given hater are based on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ahbility to convert sounds of different frequencies into alternating current. For understandable speceh transmission only a limited frequency range is necessary, and intelligible speech can be obtained if the output of the mierophone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 eveles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the miorophone is stid to be flat botweren thowe limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm plated ageimst an insulating cup) (onttaining loosely-parked cathon granules (microphone button). Current from a battery flows through the ganules, the diaphagm boing one comection and the metal backplate the other. Fig. 9-1. shows connections for carbon micerophones. A variable resistor is included for adjustfing the button eurrent to the value as specified with the microphone. The primary ol a transformer is comnected in series with the bat tery and mierophone.

As the diaphragm vibuates, its pressure on the gramules alternately increases and decreases, catusing a corresponding increase and decrease of current flow through the circuit, since the pressure chatnges the resistance of the mass of gramules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intonsity, to be set up in the transformer seeondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the steq-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the
amplifier tube. The usual button current is 50 to 100 ma .

Piezo-electric Microphones

The crystal microphone makes use of the piezoeleretrie propertios of Rombelle salts crestals. This type of midrophone requires no batters or transformer and can be comnered direetly to the grid of an amplifier tube. It is a popular type of mierophone among amateurs, for these reas ons as well as the fart that it has grod frequency response and is available in inexpensive models. The input eirenit for the erystal mierophone is shown in rig.! !-IB.

Although the level of cerstal microphones varios with different models, an output of 0.03 volt or so is representative: for communieation types. The level is affered by the length of the eable connecting the microphone to the first amplifier stage; the above figure is for lengths of (\% or 7 feet. The frequence characteristic is unafferted by the cable, but the load resistame (amplifier grid resistor) doos affect it ; the lower frequencies :ure attenuated as the value of load resistaner is lowered. A grideresistor value of at least I megohm should be used for reasombly flat response, 5 megohms being a customary figure.

The ceramic microphone utilizes the piezoelectric effert in certain types of ceramic mat terials to arhieve performance very similar to that of the rersta! microphone. It is less affereded by temprature and humidity, (Jutput levels are similar to those of erystal miorophones for the same type of frequency response.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element aded upon by the sound wave is a thin corrugated metallie ribhon suspended between the poles of a magnet.

Velocity microphones are built in two types, high impedane and low impedanee, the former being used in most applieations. A high-impedance microphone eath be direcely connereded to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (Fig. 9-1(). Lowimpedanere mierophones are used when a long connecting (able (i , feet or more) must be emplosed. In such a mase the output of the miorophone is coupled to the first amplifier stage through a suitahle step-up transformer, as shown in Fig. (1-11).

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies direetly to the high-imperdaner type, and to the low-imperlance type when the voltage is measurel aross the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dyamie loudspoaker, A light-woight voice poil is rigidly attached to a diaphragm, the coil boing suspended between the poles of a permanent magnot. Sound causes the diaphragm to vibrate, thus moving the eoil back and forth between the magnet poles and generating an alternating voltage,

The dynamie microphone usually is huilt with high-impodance output, suitable for working direetly into the gride of an amplifier tube. If the connerting cable must be unusually long, a lowimpedance type should be used, with a step-up transformer at the end of the cable.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that causes the r.f. carrier output to be variod is called the modulator, amb all the amplifior stages prereding it comprise the speech amplifier, Depending on the modulator used, the speech amplifier may be called mon to deliver a powor output ranging from practically zero fonly voltage required) to 20 or 30 watts.

Before starting the design of a speech amplifier, therefore, it is neressary to have solected a suitatble modulator for the transmittor. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as deseribed in other chapters. With the modulator pioked out, its driving-power requirements (audio power required to exeite the modulator to full output) can be determined from the tube tables in a later chapter. Generally speaking, it is athvisible to chonse a tube or tubes for the last stage of the speceh amplifier that will be eapable of

Fin. 9-2-Rr-i-tancerompled whas-amplitier rimcuits. A, pentodr: B, trinder, De-aiphation-are as follows: C.t - Cathode by - base capacitor.

C: - Plate ly -pass vapacitor.
(:3- Output compling capacitor (bloching eapaeitor). Cat-Sereen hy-pass capaditor.
R_{1} - Cathode resistor.
R_{2} - Grid resistor.
I_{3} - Plate resistor.
R_{4} - Vext-stage grid resistor.
l_{s} - Plate decempling resistor.
R_{6} - Screeth resistor.

 be alomi 10^{\prime} of R_{3} : an 8- or 10 - μ. chectrolstie capacitor is unatly large cmonghat fo.
developing at last jol per eront more power that the rated driving power of the modulator. This will provide a factor of satedy an that losese it compling transformars, wes, will mot upset the calculations.

Voltage Amplifiers

If the last stage in the sperech amplifier is at Class $1 \mathrm{H}_{2}$ or (lass 3 B amplifier, the stage atheal of it must be capable of suffiefent power output to drive it. However, if the last stage is a Chass $A B_{1}$ or Class S^{2} amplifier the proeding stage can be simply a voltage amplifier. From there on back to the mierophene, all stages are voltage amplifiers.
The important characteristies of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and it: frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum af. voltage that can be secured from the stage without distortion. "The amplifier froquener response should be adeduate for wice reproduction; this recturement is casily satisfied.

The voltage gatin and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in suecoh amplifiers are given in Table $9-\mathrm{I}$, for resistance-coupled amplification.

The output voltage is in terms of peak voltarge rather than r.m....; this makes the rating indeperndent of the waveform. lexereding the peak value "atuses the amplifier to distort, so it is more usefinl to consider only paak values in working with amplifiers.

Resistance Coupling

Resistance coupling gencrally is used in volt-age-amplifier stages, his rebativery inexpensive, good frequency response can be sereured, and there is little danger of hum pick-up from stay matgnotie fiedes associated with heater wiring. It is the most satisfactory type of coupling for the output rireuits of pentodes and high- μ triodes, becamse with transformers a sufficiently high load imperdance camot be obtained without comsiderable frequency distortion. Typical rircuits are given in Fig. !i-2 and dexign data in Table !-I.

Transformer Coupling

Transformer couphing between stages ordinatrily is used onty when power is to be tramsforred (in such a case rexistature coupling is very inefiefent), or when it is neeresary to couple between a single-ended and a push-pull stage. Triodes having am amplifiation factor of 20 or less are used in transformer-eoupled voltage amplifiers. With transformer compling, tube should be operated under the Clase it conditions givere in the tube tables at the eme of this brok.

Ropresentative rimuits for coupling singlemuled to push-pull stages are shown in lig. ! ? 3 . 'The rireuit at 11 comblimes resistanco and tramsformer coupling, and may he used for exciting the

Fis. 9.3-'Tran-fomer-eoupled amplitier cireuits for
 former eompling: If for trab-formor compling. Designations corrobrond to those in Fís. 9 -2. In 1 , values can he taken from 'Vable ().I. In B, the cathode resistor is calculated from the ratcal plate emrent and grid bias as given in the tube tables for the particular type of tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the ratio of the new voltage to 300 volts．Voltage gain is measured at 400 cycles．Capacitor values given are based on 100 －cycle cutoff．For increased low－frequency response，all capacitors may be made larger than specified（cut－off frequency in inverse proportion to capacitor values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen Bypass $\mu \mathrm{f}$ ．	Cathode Bypass μ ．	Blocking Capacitor μ f．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7，12SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	0.25 0.5 1.0	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{gathered} \text { 6J7, 7C7 } \\ \text { 12J7.GT } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	0.25 0.5 1.0	1.18 1.18 1.45	1100 1200 1300	0.04 0.04 0.05	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
$\begin{aligned} & \text { 6AU6, 6SH7, } \\ & \text { 12AU6, 12SH7 } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{array}{r} 500 \\ 600 \\ 700 \end{array}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 122 \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \end{aligned}$
$\begin{gathered} \text { 6AQ6, 6AO7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7GT. } 6 \mathrm{SZ7}, \\ \text { 6T8, 12AT6, } \\ \text { 12Q7GT, } \\ \text { 12SL7. GT } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	二－	$\begin{aligned} & 4.4 \\ & 3.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{array}{r} 34 \\ 38 \\ 41 \end{array}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	二－	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \end{aligned}$	三－	$\begin{aligned} & 2.5 \\ & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 48 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	二二	$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	－	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{gathered} \text { 6AV6, 12AV6, } \\ \text { 12AX7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	－	4.6 4.0 3.6	$\begin{gathered} 0.027 \\ 0.013 \\ 0.006 \end{gathered}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	$\begin{aligned} & 45 \\ & 52 \\ & 57 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2200 \\ & 2800 \\ & 3100 \end{aligned}$	二二	$\begin{aligned} & 3.0 \\ & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \\ & 68 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	二－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 62 \\ & 77 \\ & 92 \end{aligned}$	$\begin{aligned} & 69 \\ & 73 \\ & 75 \end{aligned}$
$\underset{\text { (one triode) }}{6 \mathrm{SCC7}, 12 \mathrm{SC7}}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	二	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	二－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	－	二－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 39 \\ & 42 \\ & 45 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 3230 \\ & 2980 \\ & 3280 \end{aligned}$	－－	－－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 30 \\ & 62 \\ & 72 \end{aligned}$	$\begin{aligned} & 45 \\ & 48 \\ & 49 \end{aligned}$
6J5，7A4， 7N7，6SN7－GT， 12J5－GT， 12SN7－GT （one triode）	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二二	$\begin{aligned} & 1300 \\ & 1580 \\ & 1800 \end{aligned}$	二－	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.032 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 59 \\ & 73 \\ & 83 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$	二二	$\begin{aligned} & 1.9 \\ & 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 68 \\ & 82 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－－	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	二二	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 68 \\ & 85 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
$\begin{gathered} \text { 6C4, } \\ \text { 12AUU7 } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二二	870 1200 1500	二二	$\begin{aligned} & 4.1 \\ & 3.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二二	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	二二	$\begin{aligned} & 1.9 \\ & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.22	0.22 0.47 1.0	二二	5300 8800 11000	二二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$

[^6]grids of a Class A or AB_{1} following stage. The resistance coupling is used to kerp the d.e. plate rurrent from flowing through the transformer primary, thereby preventing a reduetion in primary inductance below its no-current value; this improves the low-frequency response. With low- μ triodes ($6(5,650$, cte.), the gain is equal to that with resistance coupling multiplied by the ser-ondary-to-primary turns ratio of the transiomer.

In 13 the transformer primary is in sories with the plate of the tube, and thus must carry the tube plate current. When the following amplifior operates without grid current, the voltage gain of the stage is practically cqual to the μ of the tube multiplied by the transformer ratio. This rircuit also is suitable for tranferring power (within the capabilities of the tube) to: following Class AB_{2} or Class I3 stage.

Phase Inversion

Push-pull output may he secured with resistance coupling by using phase-inverter or phasesplitter circuits as shown in Fig. !-4.

The cireuits shown in Fig. 9-4 are of the "selfbalaneing" type. In 1 , the amplified voltage

Fig. 9-4-Self-balancing phateinverter circuits. I', and 12 may be a domble triode surh as the 1211 : or 12.1X7. 13 may he any of the trinder listed in "able O-I, or ome section of a domble trionde.
B1 - Crid resistor (1 mexohun or laso).
liz - Cathode recistor: use ome-half value kiven in Table 9.1 for tube and "rerating conditions chometr.
$\mathrm{H}_{3}, \mathrm{H}_{4}$ - Plate re-istor: select from Table 9-I.
l_{5}, H_{6} - Froilowing-atage grid resitor (0.2 .2 to 0.47 megahm).
$\mathrm{B}_{5}-0,2: 2$ megohm.
Hs - Cathode resistor: select from Table o.I.
$1_{9}, \mathrm{~K}_{12}$ - Wach onn-half of plate loal resittor given in Table 9.I.
C. $-10-\mu$ f. alectrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{0} .01 \mathrm{t}$ - $\mathbf{1 0} 0.1-\mu \mathrm{f}$, paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from l_{1}, thus giving push-pull output. The part that appears arross h_{7} from V_{2} opposes the voltage from V_{1} arross R_{7}, thas reducing the sigmal applied to the grid of ly. The negative feedbark so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slighty less than twiee the gatin of a single-tube amplifier using the same operating conditions.

In the singletalue circuit shown in lig. ! !-413 the phate load resistor is divided into two equal parts, Rand R_{10}, one being connerted to the plate in the nomal way and the other between cathode and ground. Since the voltages at the plate and eathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of F_{3} is made to the junetion of $l_{\text {is a }}$ and h_{10} so nomal bias will be applied to the grid. This cireuit is highly degenerative becaluse of the way R_{10} is connected. The voltage gain is lass than 2 even when a high h triode is used at V_{3}.

Gain Control

A moans for varying the over-all gain of the amplifier is necessary for kerping the final output at the proper level for modulating the transmitter. The eommon method of gain control is to adjust the value of ace. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentioneter.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is solow there is no danger that the stages aheal of the gatin control will be overloaded lye the full mierophone output. With rarbon mirrophones the gatin coutrol maty be placed directly across the microphonetransformer secondary. With other types of microphones, however, the gatin control usually will affert the frequency response of the microphone when commerted directly across it. Also. in it high-gain amplifier it is better to operate the first tube at masimum gain, since this gives the best signal-to-hum ratio. The control therefore is usually placed in the grid cireuit of the second stage.

designing the speech AMPLIFIER

The steps in designing a speech amplifier are as follow:

1) Determine the power neded to modulate the tramsmitter and solect the modulator. In the case of plate modulation, a (lats: 13 amplifier may be required. selece a suitable tube type and determine from the tube tables at the end of this book the grid driving power reguired, if any.
2) As a safoty factor, multiply the required driver power by at least l.j.
3) Select a tube, or pair of tubes, that will doliver the power determined in the second step. This is the last or output stage of the speechamplificr. Receiver-type power tubes ran be used (beam tubes such as the 61,6 may be noeded in some (ases) as determined from the recoiving-tube tables. If the specrh amplifier is to drive a Class 13 modulator, use a (lass A or $.13_{1}$ amplifier.
4) If the speech-amplifier output stage is also the modulator and must operate (\%ass Al3z to develop the required power output, use a merli-un- μ triode (such as the b('t or corresponding types) to drive it. In the extreme ease of driving (il) is to maximum output, two triodes should be used in push-pull in the driver. In cither cotse transformer coupling will have to be used, and transformer manufaturers' catatogs should be (onsulted for a suitable type.
5) If the speech-implifier output stage oprerates Class A or $\mathrm{A} \mathrm{B}_{1}$, it may bedriven be a voltage amplifier. If the output stage is push-pull, the driver may be a single tube couphed through a transtormer with a balanced socomdary, or maty Ine a dual-triode phase inverter. Detormine the signal voltage required for full output from the last stagu. If the last stage is a simghetube (lates A amplifier, the prak signal is cequal to the grial-hias voltage: if push-pull (Class A, tha peak signal voltage is repual to twier the grid hias: if Class AB B_{1} twiee the bias voltage when fixed hias is used; if cathode bias is used, twier the hists figured from the cethode resistance and the maxi-mum-signat cathode current.
(b) From Table !a-I, seleet at tube capable of giving the refuired output voltage and note its rated voltage gain, A double-triode phase inverter (Fig. ()-1A) will have approximately twice the output voltage and twire the gatin of one triode operating as and ordinary amplifior. If the driver is to the tramiommeroupled to the last stage, solect a medimm- μ triode and caleulate the gain and output voltare as desoribed ramber in this chapter.
T) Divide the voltage required to drive the output stage be the gain of the preveding stage. This gives the patak voltage reguired at the grid of the mext-to-the-last stage.
6) Find the output voltage, under ordinary enntitions, of the mierophone to be used. This information should be oltained from the manufacturer's catalog. If not available, the figures given in the section on mierophones in this chapter will sorve.
(1) Divide the voltage found in (5) be the outgut voltage of the microphone. The result is the aver-all gain required from the mierophone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
7) From Table !-I, select a combination of tulses whose gains, when multiplied together, give approximately the figure arrived at in (!). These amplifiers will be used in cuscade. If high gain is required, a pentorle may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility of feed back and self-oscillation. In most eases at
triode will give enough gain, as a second stage, to make up the total gain required. If not, a medium- μ triorle, may be used as a third stage.

I high- μ double triode with the sertions in cascule makes a good low-level anmplifier, and will give somewhat greater gatin than a pentode followed by a medium- μ triode. With resistancecoupled input to the first soction the cathode of that section mas be grounded (contart potential hias), which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit hats bern selected for a speech amplifier, the construction problem resolves itsolf into avoiding two difficulties exersive hum, and unwanted feedbad. For reasonathly humbes operation, the hum voltage should not exeed about I per cent of the maximum andio output voltage -- that is, the hom should be at least 10 dth . bedow the output level.
l"nwated feredhack, if megative, will reduce the gain below the calculated value: if positive, is likely to catuse self-oscilhation or "howls." Feredback ran be minimized by isolating cach stage with "derouphing" resistors and cupacitors, hey avoiding layouts that bring the first and lasit stagres hear each othor, and hy shiedding of "hot" points in the rirruit, such as grid leads in lowlovel stages.

Spereh-amplifier equipment, apercially voltage amplifiers, should be constructed on stablehassis, with all wiring kept below the chassis to take advantage of the shielding afforded. lixposed leads, particularly to the grids of low-level high-gain tubes are likely to piek up hum from the cheetric fichl that usablly exists in the virinity of house wiring. liven with the chassis, additional shieding of the input cireuit of the first tube in a highgain amplifier usually is neressary. In addition, such circuits shouk be separated as much as possible from power-supply transformers and chokes and also from any andio transformers that operate at farly-high power levels; this will minimize magnetic coupling to the grid circuit and thus roduce hum or atudio-freguence feedback. It is: always saffe, although not absolutely neressary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the erystal type is usal, the microphone, its connecting eable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are eonstructed with suitable shieding: this should tee connerted to the speech-amplifier chassis, and it is advisable - as woll as usually neressary - to connert the chassis to a ground such as at water pipe. With the top)-(tup tubes, complete shielding of the grid luad and grid cap is a nereseity.

Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connceted to the chassis. If the center-
tap is grounded, the heater leads to carli tube should be twisted together to reduce the magnet ie field from the hater current. With either type of eommertion, it is advisable to hay heater leads in the eomer formed by a fold in the chassis, bringing them out from the corner to the tube sockiet by the shortest possible path.
When metal tubes are used, always ground the shell comnertion to the chassis, Ghass tubes used in the low-level stages of high-gain amplifiers must be shieded; tube shields are obtainable for that purpose. It is a good plan to cuclose the entire amplifior in a metal hos, or at least provide it with a cane-metal eover, to a void feed-back difticulties caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leats or tube elements catases overloading, distortion, amd self-oscillation of the amplifier.

When using paper capacitors as bypasses, be sure that the terminal marked "outside foil" is comered to ground. This utilizes the outside foil of the caparitor as as shiold around the "hot" foil. When paper capacitors are used for coupling between stages, always comeet the outside foil terminal to the side of the rircuit having the lowest impedance to ground. Ceually, this will be the plate side rather than the following-grid side.

INCREASING THE EFFECTIVENESS OF THE PHONE TRANSMITTER

The effectiveness of an amateur phone transnitter can be inereased to a considerable extent by taking advantage of sued chametoristics. Masures that may be taken to make the modulation more effertive include band compression (filtering), volume compression, and suered clipping.

Compressing the Frequency Band

Most of the intelligibility in spereh is contained in the medium hand of frecuencies; that is, betwern about 500 and 2500 cerles. On the other hand, a large portion of spereh power is mormally found below 500 actles. It these low frequenceres are attenuated, the frequencies that carry most of the actual commmaication cath bo incrased in amplitude without exeeding 100 -per-ent modulation, and the offertiveness of the transmitter is eorrespondingly inereased.

One simple way to redure bow-ireduchery response is to use smatl values of couphing caparitance between resistanceroupled stages, as shown
 the coupling capawitor and following-stage grid resistor will have little effect on the amplification at 500 cereles, but will practically hatue it at 100 eyeles. In two eascaded stages the gain will be down about 5 db , at 200 (ycles and $10(\mathrm{db}$, at 100 eycles. When the grid resistor is $1 / 2$ megohn a coupling rapacitor of 0.001μ. will give the reguired time constant.

The high-frequeney response ean be reduced by using "tone control" methods, utilizing at citpacitor in series with a variable resistor conned ed across an audio impedance at some point in the

Fije. 9-3) - A, u* of a small rompling rabacitor to

 are typical.
sperech amplifier. The hest ipot for the tone control is aross the primary of the output transformer of the speed amplifier, as in lige ?-ibl. The (atpabitor should have a reatetane at 1000 cereles about equal to the load resistance rectuired by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted white listonine to the amplifier, the object boing to cut the high-frequency response as much as possible without unduly satrificing intelligibility:

Restriating the frequencer response not only puts more modulation power in the optimum fre(quency band but also reduces hum, beenuse the low-freguency response is reduced, and holps reduce the width of the chamed orempied by the tramsmission. becaluse of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is obvionsly desibable to modulate the tramsmitter as completely ats possible it is difiealt to maintain constant voire intensity when speaking into the mierophone To orereone this variable output level, it is possible to use automatio gain control that follows the aremage (not instantaneous) variations in spereh amplitude. This can be done ley rectifying and filtering some of the audio output and applying the reetified and filtered d.e. to a control electrode in an early stage in the amplifior.

A practical cireuit for this purpose is shown in Fig. ! $1-6 . V_{1}$, a modium- μ trionke, has its grind commered in parallel with the srid of the last speech amplifier tuln (the stage preceding the power stage) through (he gata montion i_{1}. The amplified output is coupled to a full-wave recti-
fier, I_{2}. The rectified audio output develops a negative d.e. voltage across $C_{1} h_{3}$, whieh hats a sufficiently long time constant to hold the voltage at a reasonathly steady value betwern syllathles and words. The negative de, voltage is applied as control bias to the suppressor of the first tube in the speech amplifier (this eircuit repuires a peattode first stage), (ffecting at reduction in gain. The gain reduction is substantially proportional to the microphone output and thas tends to hold the amplifier output voltage at a constant level.

An adjustable bias is applied to the cathodes of In to cut off the tube at low levels and thus prevent rectification until a desired output level is reached. R_{2} is the "threshold eontrol" which sots this level. R_{1}, the gatn eonted, determines the rate at which the gatin is roduced with int (reasing signal level.

The hodd-in time can be increased by increatsing the capacitance of ('s. Ciz and R_{4} maty not be necossary in all cases; their function is to prevent too-rapid gain reduction on a sudden voice peak. The "rise time" of this circuit can be increased by inreasing (2and or h_{4}.

The over-all gain of the system must be high mough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In speed wave forms the arerage power coutent is considerably less than in asine wave of the same peak amplitude. Sinee modulation percomatge is based on peak values, the modulation or side-band power in a tramsmitar modulated 100 per ent be at ordinary veder wave form will 1or romsideraldy less that the side-mand power in the sitme transmitter modulsted 100 per erent by a sime wave. In other wodds, the modulation prorentage with voiere wave lorms is dotermined ly. praks having relatively low average power rontont.

If the low-oturgy peatis are elipped off, the remaining wave form will have a considerably higher ratio of average power to peak amplitude. More side-band power will resalt, themefore, when such a clipped wave is nsed to modabate the tramsmitter 100 per eent. Although elipping dis-

Fig, 9-6 - Spereh-amplifier outpat limitias cireat.

T_{1}^{2} - Inter-tare andios, single plate to pop, yrid:
torts the wave form and the result therefore dors not sound exactly like the original, it is possible to secure a worth-white increase in modulttion power without sacrificing intelligibility. (Once the system is properly adjusted it will be impossible to overmodulate the transmitter because the maximum output amplitude is fixed.

Bre itself, clipping generates the stme highorder harmonics that overmodulation does, and therefore will rause splatter. To prevent this, the audio frequencias above those neded for intalligible sperech must be filtered out, after colipping and before modulation. The filter required for this purpose should have relatively little attemation at frequeneies below about $2 \bar{z} 00$ eveles, but high attenuation for all frequencies above 3000 cyeles.

It is possible to use as much as $2 \overline{\mathrm{j}} \mathrm{db}$. of elipping lefore intelligibility suffers; that is, if the origimat peak amplitude is 10 volts, the signal can be clipued to sueh an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that (etused IOS-per-cent modukation on peaks, the cripued and filtered signal can then be amplified u, to the same 10 -volt peak level for modulatime the tramsmitter.

There is a loss in naturalness with "deep" (rip)ping, even though the voire is highly intelligible. With moderate celipuing levals (6 to it dh.) there is amost mo change in "guality" but the voice power is incroasiod ronsiderabls.

Bofore drastic elipping can be used, the speech signal must be amplified several times more than is nerersary for normal modulation. Also, the hum and noise must be much lower than the tolorable level in ordinary amplification, because the noise in the output of the amplifier increases in propertion to the gatin.

One type of elipper-filter system is shown in blork form in liga, 9-7. T. The elipper is a peaklimiting rectifier of the same gencral type that is usod in receiver noise limitors. It must clip both positive and negative peaks. The gain or clipping control sets the amplitude at which elipping starts. Following the low-pass filter for eliminating the hamonie distortion frequencies is a serond gain control, the "level" or mothatation control. This control is sot initially so that the amplitude-limited output of the clipper-filter cemmot modulate more than 100 per eent.

It should the noted that the peak implitude of the audio wave form artually applind to the modulated stage in the trinsmitter is not neeressurily held at the same relative level as the peats amplitude of the signal coming out of the clipper stage. When the clipped signal groes through the filter, the relative phases of the various frequency components that pass through the filter aro shifted particularly those components near the cut-off freguencr. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the clipped signal applied to the filter input terminals. Kimilar phatse shifts ean orcur in amplifiers following the filter, especially if these amplifiers, including the modulator, do

Fig. 9.7 - (1) Block diagrann of sperheclipping and filtering amplifier. (B) J'ractical speech eliporer circuit with low-pass filter. Ciapacitances below 0.001μ f. are in $\mu \mu$. Revistors are $1 / 2$ watt.
1,1 - 20 henrys, 900 ohms (Stancor (..151.i). s_{1}-I.p.d.t. toggle or rotary.
not have good low-frequency response. With poor low-frequency response the more-or-less "square" waves resulting from clipping tend to Ine changed into triangular waves having higher pata amplitude. Best pratice is to cut the lowfrepucney response before alipping and to make all amplifiers following the clipurefilter as flat and distortion-free as possible.
The best way to set the modulation control in such a system is to check the actual modulation percentuge with an oscillosenpe connorted as described in the chapter on modulation. With the gain control set to give a desired dipping level with normal voice intensity, the level control should be adjusted so that the maximum modulation does not excerd 100 per rent no matter how much sound is applied to the microphone.

A practical clipper-filter circuit is shown in Fig. 9-73. It may be inserted betwern two speechamplifier stages (but after the one having the gain control) where the level is normatly a few volts. The rathode-coupled rlipper rirenit gives some overall voltage gain in addition to performing the rlipping function. The filter eonstants are such as to give a cut-off chatacteristic that combines reasonably good fidelity with adequate high-frequeney suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high lovel - that is, at the point where the modulation is applied to the ref. amplifier - instead of in the low-level stages of the speech amplifier. In one rather simple but effective arangement of this type the clipping takes place in the Class-B modulator itself. This is acomplishod by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents 100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-
current ratio of the modulated r.f. amplifier. It is best done be extmining the output wave form with an oscilloscope.
The filter for such a system eonsists of at rhoker roil and captritors as shown in Fig. !-8. The values of L and C should be chosen to form : low-pass filter section having a cut-off freepuency of about 2500 eveles, using the modulating impedane of the r.f. :mplifier as the load resist:unce, For this eut-off freguency the formulats are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

where R is in ohms, L_{1} in henrys, and ('1 and C_{2} in microfarads. For example, with a platc-modulated amplifior operating at 1500 volts and $2(0)$ ma. (modulating impedane 7 (50) ohms) L_{1} would be $7500 / 7850=0.96$ henry and C_{1} or C_{2} would be $63.6 / 7000=0.0085 \mu \mathrm{f}$. By-pats capacitors in the plate circuit of the r.f. amplifier

Fig. 9-8-Splatter-suppression filter for use at high level, shown here connected between a (Class 13 modu. lator and plate-modulated r.f. amplificr. Values for L_{1}, C_{1} and (.2 are determined as described in the text.
should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when ronnerted arshown must be the same as for the plate blorking cabanaitor - i.e, at least twiee the d.e. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without soriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components of the atudio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in clipping, Also, the undesirable effeets of poor low-frequencer response following clipping and filtering, mentioned in the preceding section, are avoided. Dhase shifts gan still orrur in the high-level filter, however, so adjustments preferably should be made be using an oseilloseope to cherk the artual modulation pereentage under all conditions of speech intensity. (For further discussion see Brucne, "High-Level Clipping and Filtering", (SS'T, November, 1951.)

Speech Amplifier with Push-Pull Triode Output

Fig. 9-9 is the "ircuit of a spech amplifier that is well suited to use as a driver for a push-pull triode Class B modulator: An output of about 13 watts cau be realized with the power supply (irenit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving most of the power triodes commonly used ats modulators. The output stage uses pushpull GBths. which are experially suitable as (lass Is drivers because of their how plate resistance The eibluis are operated Class AB_{1}. The circuit provides several times the voltage gair needed for commmications-type arystal or reramic microphones.
The two seretions of a 12.1 .78 tube are used in the first two stages of the amplifier. These are rusist:ance coupled. the gain control being in the grid cirenit of the seromed stage. Although the cat hode of the first stage is grounded and therer is mio separate biats supply for the gride the grial
 tacy potential." The compling abparitanees betwern stages are when to cut off the lower
 in this thapter. The higher frepurmoies are not attromated in this amplifier sines it is assumed that this will be done at the medulattion transformer as recommended later in em-
nertion with the design of Class 13 modulators.
The third state uses it modium- μ triode which is coupled to the $6 B 4 \mathrm{G}$ grids through a transformer having a push-pull sereondary. The ratio may be of the order of 2 to 1 totatal secemdary to primarry) or higher: it is not eritical since the gain is sufficiont without a high stepp-up ratio.
The output transformer. T_{2}, should be selected to couphe bet ween push-pull (bi3t(is (or 2.1.3s) and the grids of the particular modulation tubes used.

The power supply has a capacitor-input filter the output of which is applied to the GBbG: plates through T_{2}. For the hower-level stares, alditional filtering is provided ber sueressive Pe' filters which alsuserve to prevent andio feed1auck through the plate supply
(irid hias for the biBtGs is furnished by a separate supply using a small selenium reetifier and at TV "hnuster" transformer, Ta, The bias maty be adjusted by meats of h_{1}, and should be set to - 62 volts or to ontain a total plate current of 80 mat. (as measured in the leat to the primary (enter tap of Tin) for the ($63+6$ (is.

In building an amplifier of this type the comstructional procautions outined carlier should bue ohservend. The (lass AB modulators describeel sulseoppently in this chaptor are representative of gonel constructional practice.

Fig. $9-9$ - Speech-amplifier driver for $\mathbf{1 0 - 1 5}$ watts ontput. Capacitanes are in μ. Resistors are $1 / 2$ watt un-

CR_{1} - Edenium rectitier, 20 ma.

'1'1-1 interstage audio transformer. single plate to push-pall grids, turns ratio 2 to I or 3 to I, total serondary to primary.
T_{2} - Class-13 driver iransformer, 3000 ohms plate-to.

Matt: scoondary impedame as required by Clasw-13 tuluse u*ed: 1.5 watl rating.
T_{3} - P'ower transformer, ion wols e.t., 110 ma.; 5 volts, 3 amp.: 6.3 volts. 1 amp.
T_{4} - Power transformer, 12.5 volts, 20 ma.; 6.3 volts, 0.6 amp.

Low-Power Modulator

A noodulator suitable for plate modulation of low-powor transmitters or for sarem or controlgrial modulation of high-power amplifiors is pictured in Figs. !-10 and !-12. As shown in Fig. 9-11, it uses a pair of (i.l(e)'s in mush-pull in the output stage. These are driven be a 6Ct phase inverter. I two-stage preamplifier using a $12 A X 7$ brings the output voltage of a crastal or ceramic microphome up to the proper level for the $6 \mathrm{C} t$ grid. A power supply is included on the satme chassis.
The undistorted andio ontput of the amplifier is $7-8$ watts. This is sufficient for mondulating the plate of an r.f. amplifier rmming 10 to 15 watts input, or for modulating the control grids or soreens of rel'. amplifiers using tubes having patadissipation atings up to 2 20) watts. When serern modulation is used the sareon power for the modulated :mplifier (IIp to 200 volts) ain be taken from the modatator pewer supply. The wiring shown in lig. ! I-It provides for this, through an adjustable tap on the $2 \overline{5}, 0$ onotohnm bleoder resistor, R_{5} in the powor supply. If a sopatate sereon supply is nesed, on if the momblator is used for grid-hias or plate modulation of an r.f. amplifier, the d.e. cireuit should be opened at point " x " in F"ig. ! 1 l I.
The amplifier uses resistamee eompling un th the output-stage grids. The first sertion, $V_{1 A}$, of the 12ANT has "contatepotential" biass. Thar watin control, R_{1}, is in the gride wirenit of the serend
 from the serondary of the ont pat masformer, T_{1}, is introndured at the rathorde of this thite sertion. 'The ferel-hate voltage is clependent on the rat io of h_{2} to h_{3}, approximately, and with the
constants given is sufficiont to result in a considerable wedurtion in distortion along with improwed regulation of the audio output voltare. The latter is important when the unit is used for modulat ing a sererom or cont rol grid, as deseribed in the ehapter on amplitude modulation.

The phase inverter is of the split-lond type describod carlier in this chapter. It drives the push-pull di.los's in the power amplifier. The output transiomer used in the power stage is a mallitap modulation transfomer saibable for any of the types of modulation mentioned above.

Capamito ('1 arross the secombary of the output transformer, T_{1}, is used to reduce the high-frectuency response of the amplifier. Without it, selfersallation is likely to oerur at a high atudio fremuency (usually alove amdibility) Decalase phats shift in the output transformer at the end ol its useful frequency range causes the ferednatek to beremme pesitive.

The power supply uses a replacement-type transformer and choke with a capardor-input filter. Voltage moder the modalator and sperehamplifier lead is $2 \overline{0} 0$, The deroupling resistancer rapacitance networks in the plate cireuits of $V_{\text {ia }}$ and $V_{\text {ins }}$ comtribute additiomal smoothing of the der for these low-level stages.

The mit includes provision for send-recerve switching, š being nsed for that purpose. Sis ran be used to eontrol the ref. section - for ex:mple, he being eomnerted in parallel with the key used for raw. operation. Simultaneously $N_{1 A}$ shoterimenits the seromblary of T_{1} so the transformer will not be damaged by being left withont load. If sims is comereme anems the transmitter key, S_{1} also can be used as a phone-

Fip. 9-10-Sperph amplifior and low-penwer mombatar suitalle for arever or cometrol-grid modulation of high-power amblifiors. or for plate modulation of an ref. stare withupto $\overline{\mathrm{S}}$ watt: plate ingut. It is arsemililad on as $-\times 9 \times \because$ inch nderel chasis. with the pemer simb ply oroupsing the kefthatad seretion and the andian circuits the risht. 'IThe 1: 1 \7 preamplitior is all the lower right-hamd cormor, the of.t phase interter is to its left. and the 6 IV: power amplifiera are lobhind the iwo. Comereds alemer the chasais alpe ares. Jeft to risht. the power switch. Endodreceive switeh. zain control, and microphene jack.

Fïg. 9-11 - Circuit of the sprech amplifier anm modulator. Sll rapacitaners are in μ f.: caparitors with pularities marked are electrolytio. others are erramie. Ahexishors are l 2 wath exerpt as noted helow. Woltages maraneed to ehasis with v.t. woltmener.
J_{1} - Microphone connector (Amphenol in-P(:1M).
L. -10 henryn, 90 ma. (Triad C-6N).
s_{1} - D.p.d.t. toggle.
s_{2}-S.p.s.s.t. togale.
T_{1} - Modulation transformer, tapped secomlary, pri-
c.w. switeh, being laft in the position that represents "olf" or "receive" in phome operation.

The teminats marked " 13 switeh" should be short areuited (indieated by the dashed line) if s_{1} is used as a semd-receme switeh. If a switeh on the trimsmitter is used for send-receive, these terminats may be used for turning the plate voltage in the modulator on and off through all extra pair of contacts on the transmitter send-
mary WOMKN) ohme plate to plate ('Whordarson $21 \mathrm{M}(68)$
T_{2} - Iower transformer. 5 , 5 v.c.t. 90 mal: 6.3 v., 5 amp: $\overline{7}$ ソ.. こ amp. (Triad li-10A).
H_{2} - 1.5010 ohms. $1 / 2$ wall.
 resistors in parallell).
rereive switeh. ha that case sit should be left in the "send" pasition for phome opreration.

The proper secomdary taps to use on T_{1} will depend on the imperdane of the load to which the amplifioe is commeded. Dethends for determining the modulating impedane with various types of modulation are given in the chapter on amplitude modulation, together with information on comecting the modulator to the r.f. stage.

25-Watt Modulator using Push-Pull 6BQ6GTs

The sperech amplifier-modnlator shown in liggs. 0-1:3 to (9-15, indusive, can be used for plate modulation of low-power transmitters rumning 2is to 50 watts input to the final stage. The eirenit as shown is capable of :un adodo output of 25 watts, but this cam be increased to 30 watts ly a simple modification. The filseris in the output stage are operated in Class AB_{1}. Lhexpensive rereiver-type replacement components are used throughout, except for the modulation thansformer.

Circuit

The spreech amplifier usis a pentode first stage resistanceroupled to a triode serond stage. This combination gives sufficiont gain for a erystal miarophone. The pantode and triode are the two
kevod, Siga may be used to eontrol the tratusmitter plate voltage, usually by heing commeded in the 115 -volt circuit to the plate-supply transformer.

The "phone-c.w," switch, S_{3}, shortecircuits the secondary of the modulation transformar, T\%. when the transmitter is to be keyod, and also operns the center-tap of T_{1} so plate voltage cimmot be applied to the modulator.

The power supply uses a receiver replacementtype transformer with a capacitor-input filter. Additional filtering for the speech-amplifier stands is provided by the $10-\mu$ f, capacitors and the sories resistors in the plate circuits. Hum is also redued by the VR-150 used to regulate the modulator sereen voltage. Note that the regulator

Fif. 9.73 - A mondulator for transmit ters operating at plate input up 10.50 watts. The sperd amplifier and modnfalor are at the left int this view; phower mupply emomonents are at the right. 'I'le chassis is $\div \times 11 \times 2$ inches.
sections of a dual tulxe, the filN8. Tr:unsformer coupling is used between the triode and the modulator fubes, in order to get push-pull voltage for the bl3egici grids. Cathode bias is used on the final stage.

A coupling capacitance betwen the first and seeond stages is purposely mate smatl to reduce the low-freduency response, and the primary of the output transformer is shanted by ("e to reduce the amplification at the high-frefuchery and. ('1, on the first stage, also tends to reduce highfrequeney response in addition to bypessing any ref. that might be pieked up on the mierophone cord. These masures eonfine the frequenery response to the most useful portion of the voice range.
S. is the "send-reccive" switch. One section opens the power transormer center tap, thus cutting off the plate voltage during reeciving poriods. The other seetion ean he conneeted to the key terminals on the trimsmitter, as indicated in the cireuit diagram, to turn the transmitter on and off along with the modulator. If the transmitter is one in which the uscillator is not
tube is eomerted between the sermens and cathodes so that the actual serem voltage is 150 and is not reduced by the drops in the eathorle biats resistor. Maintatining full screen voltage is important if the rated output is to be secured.

Operating

The bibqgat amplifier requires at plate-10plate lond of 4000 ohms, and the output transformer ratio must be chosen to reflect this lowd to the plates (see later section on matehing a modulator to its load). For most small tratismitters ruming 30 to 50 watts input to the final stageat-to-1 transformer ratio will he sat isfintory, sume the modulating impedance of such transmitters usually is in the neighborhood of 4000 olmes. The secondary of T_{3} is connerted in series with the d.e. lead to the plate (and screen, if a screen-grid tube) of the Class (C amplifier to be modulated. For further details, see the chapter on amplitude modulation.

For checking the modulator operation a millianmeter ($0-200$ range satisfactory) maty be connected in the 'ead to the center-tap of the

Fig. 9-14 - Circuit diagram of the 25-watt modulator. Capacitances bulow 0.001 ff. are in $\mu \mu$. Cabatitors up to 0.01μ. are ceramic. Resistors are $1 / 2$ watt unless otherwise specified.
$\mathrm{L}_{1}-8$ henrys, 150 ma.
S_{1}-S.p.s.t. togrle.
s_{2} - I .p.d.s. 1ogerle.

' 1 ' - Power transformer, 6.50 volts c.t., 150 ma. 5
volts, 3 amp.: 6.3 volts, 5 amp.
'J'2 - Interstage athdio. single niate to p.p. grids, pri. to total sect ratio I 10.3.
T_{3} - Modulation transformer, multimateh type (UTC S-19).
primary of T_{3}. Without voire input to the micerophone the plate ctrrent should be approximitely so mas. When modulating the transmitter, the current should "kick" to (60 or 70 mat. ; this will usually represent 100 per cent modiatation. If the amplifior cetn be tested with a single-tone signal replating the miarophones, the plate eurrent will be about 165 ma . at full output.

The audio power output ean be increased to
about 30 watts, sufficient for modulating an 807 at its full phone rating, if the GBQu(i'l rathooles aro groumded amd bits of about 30 volts firom : fixed sonmer surh ats amedl battery is appliod to the grids. Whe battery mar be sulustituted for the e:thode resistor if the ground eommertion is moved from thr eronter titp of the secondary of T_{2} to the eathones of the il 13 Q (in'Ts.
(From (2S'T, December, Iழ5゙.)

Fig. 9-15 - Under-chassis view of the GBO (6, 'l' modnlator. 'The two large capacitors at the risht are the filter capacitors in the power supply. The modulator bias rosistor and hyopas= dapacitor ($h_{1}(3)$ are at lower left. lavil- from the modulation tran-former so lhrotgh the three holes in the chas-ia, Shielded wire is used for heater, microphone input, and gainecontrol leads.

40-Watt Class AB $_{1}$ Modulator

The morlulator nuit shown in Frigs. !l-16 to 9-18. indusiver, hats an matistorted power output of somewhat better thath 10 watts. It hess a pair of 80 ors an Class $A B_{1}$ powar amplifiors and is complete with :ll ine pensive type of power supher It may ho used to modulato ibyy (lass (C amplifier oferating ate at d.e. plate power input of sol watts or less.

Speech Circuit

The spered amplifier uses at high- μ dual trionde ats a two-stage resistancororppled amplitior. followed by a medium- μ triode. The batter is transformer-erompled to the modulatom grids. The getin from the miorophone inpat to the sot grids is more than ample for arystal :umb other mierophones of similar output level. Lattery hias is used for the modulator grids since it is the simplest method and a suatl battery such at thone made for hearing-atids eath be used. Since to furent is taken from the battery, its lifo is the semme as the normal shole life.

The fregueney response of the amplifier is adjusted to put maximum enorgy in the range where it contributes most to sumerohintelligibility: that is. the output is highest betwern Fif) :und 1200 erales and drops off grablually on cither side. The lowe freduencies are redured by low values of coupling raturetano between the resistane coupled stages. and the high-frequeney and is attenuated hy C_{1}. Further high-freduester attemation, with pationar reforeme to subh components arencrated in the modulato it self. is provided by cabpacitor ('s commered aroses the output terminals of the modnlation tramsiomar.

Power Supply

The power supply uses a replacement tope thatstormer with ab hidgererefifier to ohtan duab output voltuges, mominitlly $2 ; 00$ and (600 volts. The bridge recuives four rectifiof elements but makes it possible to obtatin twier the d.e. output

Foltatge that would be sereured from it simple renter-tap rextifier. The power transformer is not overlowded. however, partly berebses of the choke-input filter and patly bereuluse of the low arorage current drain of the modulator in mormal voice operation.

I spobater filament tratheformer is used for the two dixodit reetifiers, with its serondary commerted to the erenter tap of the high-volt:uge wimding of the prowe tratusiormer. With this artangement the prak heatere-athoule voltage on enth lube is about alo volts. slightly owe the rating for these habes hat wot excessivedy so

The higher output voltare from the bridge rectifier neressitates using filter caboutors having higher working ratings than the ordinary chere frolyties so two foro-volt mits are romberted in suries lor the high-voltage filter. I simglo-sedtion filter is used for this voltuge. The homeder consists of two desistors comueded as shown in order to divide the voltage equally betwern the two deretrolvite capateitors.
'The dee voltage at the erenter tap of the highvoltenge winding of the power transiomer is appoximately hatf the de. output voltage from the bridge reetifier (with the 1 iNise iTs the tramsformer scomatary forms ath "inverted" econtertatp rectifier system) :und so offers ib conveniomt ment for taking off a low voltane to orerato the spered amplifior, the driwer, and the modulator soreens. This tib) is more extensively filtered than the high-voltagesupply, sine het ar smoothing is needed for the low-ferel stiges. (m)y the S-hanes, 100-mat choke is common to both filters.

With the vabues shown in Fig. 9-17 the hum level (mewned in the absemee of signat) is about 40 dib, below the full mutput of the mondulator.

Control Circuits

With this trepe of power supply arenit it is important that the bijolir heaters be permitted

Fig. 9.16- Class $A B_{1}$ mondulator using 80\%: for to watts andio outpol. 'The poworenpply transformer and remifier tubes oreupy the left-liaml seretion of the phazio. 'The sperech amplifier is in the renter and the nombater thlows and misput transformer are at the right.

The controls, left to ripht, are the power switehes, siand \dot{S}_{3}. the semd. rective switeh. Si. microphome input conneretor. J_{1}, \&ain control, h_{1}, and at the far right, the pilat light.

Fig. 9.17 - Circuit diagram of the 40 -watt mohelator. Caparitances betow $0.001 \mu \mathrm{f}$. are given in $\mu \mu \mathrm{f}$; capacitors
 indicated.
 lower Class (: load resisiances.
(3- I Daal electrolvic. 10.10 pf . 4.50 volts.
Ca- Wial edectrolvice. 8.16 af., 1.80 volis.
ha_{1} - Carlon mulentiometer. andia tapar.

'li' - Interstage andion transformer. plate to pushopull grids: (0)ma, primary: 3 to 1 turns ratio, total secondary to primary.
to come up to full operating temperature before plate voltage is applied. l'ower (an be applied to the $\mathbf{0} \mathbf{N} 5 \mathrm{G}$ T heaters by means of s_{2}; then after 10 or 15 seconds s_{3} may be closed. Both switches are then left closed during the operating period.

Send-receior switching is accomplished by S_{1}. During reeceiving. s_{1} is open so that $s_{I A}$ removes the plate voltuge from the speceli-amplifier stanes and the screen voltage from the 807 s . This makes the modulator inoperative. Sis ran be used to control any suitable circuit in the transmitter; for example, it ean sulstitute for the key, or cam be used to turn the 115 -volt circuit of the trimsmitter plate supply on and off.

Construction

The modulater is built on a $4 \times 17 \times 3$-inch steel chassis, the 17 -inch length being selected so
T_{2} - Modulation tramafomer, aljustable ratio, app. 30-wat rating (l 'lC CVM-1).
T_{3} - Filament tran-former. 6.3 wolts at 1.2 amp.
' l_{1} - I'ower tratheformer. 350 wolts cach side e.t., 90 ma.: $\overline{5}$ volte at 2 amp,: 0.3 wots at 3 anp. s_{1} - D.p.d.t, torgule.
$\mathrm{S}_{2}, \mathrm{~S}_{3}$-S.p.s.t. toggle.
[3T1 - 22.5-volt battery (hearing-aid type satisfactory)
that a standud 19 -inch relay-rack panel can be used for mounting the unit if desired. Other chassis sizes and layouts may be used if the builder prefers.

The principal constructional precaution to be observed is that the output transtomer, T, should not be too chose to the low-level speed amplifier circuits. Adequate separation will reduce freedback through stray coupling and thas reduce any possible tendency toward self-oseillation. The interstage trinsformer, T_{1}, should be kept well separited from the power transformer, to minimize hum pick-up.

The power trinstormer is mounted on top of the chassis with its leads rumning through holes with rubber grommets. The two chokes and the filament transformer are secured to the bottom and sides of the chassis, with the small (4.5-

Fig. 9.18 - Botom view of the do-watt modulator. 'Whe 8 -henry inmut choke of the power supply is at the evtreme

 has-i= wall.

 menming comector at the right-hand end of the rear chazeis wall.
herny) (hoke held in plater bey two of the serens that monent the pewer transiomer. It is neressatry to cut al large hode - about 3 inches in di:m-ator-for momating the mothatation transformor: all of the conmeting lugs on this transformer are on the bettom of the rases so the hole must la latrge arough to :bllow the lauds to be commertad.

When monnting the two series-atomereded filtor
 ing resistors. ("bre should be taken to kerep the resistors from physiab contitet with other eomponemts. These resistors operate at matively high temperature and could datanage other compenents hẹ direct ront:
The he:urig-atid hatitery that furnishes the 22 ! $2-v a l t$ bias for the sots is fistromed emer the (hatssis be at small stratp, nath from brass or aluminum. hedd in plare hey the s:me serews thate hold the sot tube soments.
In wiring the spereh-ithoplifier seretion, leads to grids and plates should be kept short and sepatrated as murh as possible from heater wiring. The heatere leads should be run abong the chatsis eernere exerpt where they mast be brought out to reath the tube sockets. Shideded wire should be used for the lead from $/ I_{1}$ to the first grid, and also for the gatinecont rol leates. All these measures help reduce stray hum pickup in the low-level stages.

Operating Values

The optimum plate-to-plate lowd resistance for sots oprerating Class AB1 with 600 volts on the plates and 200 volts on the soreens is abproximatedy 12.0500 ohms. At full drive - peobl vablue of signal between the gerids erpuab to twier the bits voltage - the peab power output hats a sinewave equivalent of 48 watts. Sot all of this can be realized, since there is some loss in the modula-
fion transformer, but the moninabl to-watt rating is comservative.

The modnlation-t tansformer tal) mumbers indis ated in lig. ! $1-17$ atre revommunded (assuming that the type of trinsformer surerified is to be used for use with tramsmitters having dither ab

 the modulater phates is a little high in the ease of dither tube, the power output is still :mmple for platre-ibud-sereen modulation of aither the fiffe or 807 at their matximum phone ratings.

Foor other r.f. tubes or differest voltigers and curbents. or for a difiosent tye al modulation trimsionmer, the lowd resistame should be cebleulated :as desoribed in the datpter on amplitude modulation and the trimsionmer taths chosen atecordingly:

The di.e. power supply voltuges in the modulator unit (line voltarer 120) shomid measure (jolo and 2fol for the high and low supplies with no audio input. The voltages at full outurat atre indieated on the diatgrimm. 'The modulator idtling current is about 50 mat with a new 22. .j-volt (artath voltuge 24.5 volts) battery for bias. With tone input and the gatin adjusted for matximum undistorted output, the modulator phate courrent is alout 100 mat. (This current mar be measured by inserting a millitmmeter at point X in the diatgr:tm. However, with spereh the modulator plate (arrent should not kiek beyond 6il) to $6 \overline{5}$ mit. on voice perths; this represents full output on modulation peaks beeatase of the lowe average power content of voice waveforms ats eomphed with : pure tolle.

If c.w. ats well as phone operation is to he mploved, it is desirable to make provision either in the modulator or the i,f unit for shortcircuiting the modulation transformer seeondary when the transmitter is being keyed.

SPEECH AMPLIFIERS AND MODULATORS
 6146 Modulator and Speech Amplifier

The modulator shown in the areompanting photographes usts at pair of 6iffis in. AB , athd with the exception of the preauphifior unit is completer with power and hias supplies on : $7 \times 17 \times$ 3-inch chassis. The preamplifier is a separate unit so that the microphone input and gain control can be within easy reach at the operating position.
the plate to get at the wiring. Rubber foet ate mounted on the other removalble side of the box, which beremes the bottom when the unit is in use.

The pre:mplifier is connereded to the mondulator through a 10 -foot length of cathle (. Aphat Wire Co. No. 1212 having one shichded and two unshieded conductors. The shinded wire, commeted

 is eomplete with all supplipe. I sing two 61 los , it is caprable of athdio outputs ath to 120 watts, depmoting on the plate voltage selereted. 'I'he first two stakes of spered amplifieation are buite into a small lons that mat he used at the oprerating position while the main ehassis is installed is ans romvement lowation.

Cinmponents on the ehassis are. left to risht, jower transfermar and 816
 plate filier chooke, follom and VR cultes, mombatation transformer and, in the right formgrommel, the 6C dinal spreeth amplifier stame.

The modulator and power supply have no controk that noed be manipulated. so can ber installed in any comvernient apot. The modulater-power supply unit incluales one stage of spereh :mmplifiation. and also is equipund with at shatter filter and :an matio take-off for seope monitoring.

The audio pown that cem be ohtained (bateed on metarurements is : a follows:

Vomitinl		I'hitw-lo-I'late
flate looltoge	Power Output	Lond liexistance
inco volts	7.5 watts	12(M) whans
fim) vost :	(1.) watts	
7 SO vislts	120 watts	fi゙(M) olitis

suitable sats of componemts for all thre of the voltages listed abowe are readily available. so the poner leved e:n be selected to suit the Class C amplifier to be mondulated. The mondalator shown in the photogretphe is set up for wolo-wolt operattion, but sufficient chassis: atea hate beron atsiggned to the power and modulation transomers to ato commodate the next langer sizo of the same style, Other than these two thansformers, all other components are the same regurdless of the voltage level.

Preamplifier

The preamplifier cireuit, shown in Fig. !1-22, is built in a 2 by f by f aluminum hox. lt uses at $12 \mathrm{AN} /$ in two resistancerouphed triode stages. The $12 . A \times 7$ is mounted on a matl biacket fastened to one removable side of the box. With the exereption of the microphone connector and gatin control, which are on one edge of the hox, and the connertor, J_{2}, on the opposite edger all components are on this same plate, mounted between appropriate tubersocket pins and tie-point strips. binough lead length is allowed from the eomponents on the hox iterlf to promit taking off
to Pin 3 of J_{2} in fing. 9-2:2, is used for the :atho output. The shidd is the emmong groume eonneedion through the cathle. Gne of the ather two wires is used for plate current and the last for filament current. The eapacitance of the shiched

Fig. 9-20 - The preamplifier removell from its 2 by 4 by 1 bos.
wire shunts the output cirenit and thas reduces the high-frequeney response. This is compensated for in the modulator unit.

Modulator and Power Supply

The circuit diagram of the modulator and power supply sution is given in lig. 9-2:3. The "high-boost" circuit, consisting of the two resistors and $2 \bar{z}(0-\mu \mu f$, capmeitor asooriated with the grid of the tiCt sperech amplifier, compensates for the drop in highs in the cable coming from the premplifier. The modulation transformer is a multimateh type delivering output to the load through a splatter filter. The three 1 -megohm resistors form a voltage divider for delivering about $1 / 3$ of the total audio output voltage direct to the horizontal plates of a monitoring scope for

 sulater filter chohe is monnted on the lefthand chaseis wall, using small rone stamdoffa as tie points for the high.
 circuit: the lilter capacitor is supporterl from the rear (lower, in this pieture) chassis wall. The 60.1 speerh amplifier circnit is at the upher ripht, with a shidded lead carsying the andio ingut to it from the four-prong socket, $/ 3$, mombed on the rear wall of the ehassis. T_{1}, the interstape audio transformer, is to the left of the bC: 1 socket.

Bias-supply eomponents, with the exception of the output potentiometer, h_{1}, arp mombed on the right liand chassis wall. R_{1} is on the rear wall, near the lowrel of the four sockets in a vertical line. 'The seope take off reireuit is at the lower ripht.
forming a traperoidal pattern without amplifiers in the seope. The resistor values can be varied, if necessary, to secolte the proper pattern width, although the total resistance should be maintained in the neightorhood of 3 megohms for a $0.005-\mu \mathrm{f}$. coupling eapacitor. This capacitor should have a voltage rating equal to at least twion the dee. plate voltage on the modulated amplifier; (i000)volt paper catpacitors in this rapacitane are reatily available and inexpensive.

Plate power for all tubes is supplied from one trinsiormor. A single-seretion chokr-input filter is used for the high voltage applied to the plates of the 61 lis. This is dropured through a resistor and a pair of VR-105s ($0(3)$ in series to provide ar regulated voltage of 210 for the 6116 serems. This voltage also is applied to the plate of the

 lathere in μ l

Ja - Four-phong enthertor, charsis monnting, mate.

GC. spereth :umplifier :und, with further filtoring ly the folotohm resistor and 8 - μ l. caparitor, to the pre:mplifier tube phates through l'in 2 of J_{3}. The dropping resistor, R_{2}, should be adjusted to approxintately 5000 ohms wilh a 500 -volt supply, 7000 ohms for 600 volts. and 10,000 ohms for 750 volts. This auljustment e:an be eherkend when the mombator is in opration hy observing "hether the VR tubes go out on voire peaks. linough current should be bled through theregulators so that they stay ignited at all voice levels.

A pair of terminals is provided for connecting a milliammeter in series with the phate lean to the (il 16s, The meter itsolf can be plared in any eonveniont spot. If it is not used, a jumper must be comered across the terminals. This cirentit fused to protert the meter.

The bias supply uses a smatl filament transformer, ' ${ }_{4}$, operating from the regular filament transformor, T_{3}, to provite 115 volts for the bias rectified and filtor. Bias is adjusted to the proper value ley means of h_{1}.
Separate ase input comectors are used for the filament and plate supplies: when siand siowe elosed these can be controlled ley remoterwitehes. The bias selply goes om wih the fil:uments, and Fince there is so time lar in the shenium rerefifier the if lis are always protereded.

Splatter Filter

The splatter filter ronstants should
bebasedon the modulating impedance of the Class C amplifier as destribed earlier in this chapter．

The ehoke is a＂tedevision＂power supply filter choke modified to ohtain the desired inductances ly widening the atir gatp，using papor and cated－ board spateres．Masamed values of inductance with various air gaps are shown in＇Table 9－II． In reasembling the choke do not use the＂finish－ ing＇laminations that overlap the I sections on ewh side of the core＇The choke in the photo－ graph is held together her clamps made from tom－ pered Presdwood．The prestwood mometing also serves to insulate the core from the whasis．

Operating Data

With sime－wate input，the phate current at full output is 240 mat．When the load is adjusted to the appropriate value for the plate voltage in use，as listed carlior．This maximum eurrent is prati－ cally the same at all phate voltages listed，simer the plate dissipation rating of the（i）lf does mot permit using a hias value that gives a vere latge value of no－signal plato rurront．The grid hias

TABLE 9－II

Measured inductatere balues for varions air－maj sparings，＂1－horny soth－ma，＂filtor rhoke（Stamon
 of turus）removed

－liramp．iurhes	Inductume．henrys
0.003	11.71
0.010	1）． 02
0.020	1）． 48
0．02．）	0． 16
0.0 .50	（1） 319
0．07．5	（1）．31
0.100	0． 28
0.125	6． 2 O
0．1．j	0.24

should be adjusted for a total plate chrrent that represonts a no－signal input of slightly under 50 wattes at the particular plate voltage used．

The voltage gain from the mierophone input to the modulator grids is sureh that full output com he sectured with an input voltage of athout 3 millivolts，r．m．s．
（Originatly described in QST for Deeember， 1951．

Fig．9－23－Mondalator and power suphly，Caparitames in μ f．unless atherwise suenilied．Jived resistors are 1， watt exeell at moted．
＂${ }_{1}$－Intorstage andio，coro／pri，ratin 3：1，puili－jult

 albl wire－wound．
$\mathrm{R}_{2}-10,000$ chamiza 50 walts，atjustable
l． 1 －Sre text．

J_{3}－Fiontr－prong eonnector，dhassir monnting，female．
$\mathrm{J}_{4}-\mathrm{P}$ hinno monnector．

$\mathrm{s}_{1}, \mathrm{~s}_{2}$ —－－p．s．t．togyde switrll．
J_{2}－Maltimatah monlalation tramsformer（ 1 MC

${ }^{\prime \prime}{ }^{4}$－Vilament transformor， 6.3 volta at 1 白 amp， （＇Iriad ド－II】）．
P_{5}－Plato Iransformer，For JoO whts d．c．： 123 s v．

Modulators and Drivers

CLASS AB AND B MODULATORS

Chass AB or B modulator circuits are basically identical no matter what the power output of the nodulator. The diagrams of Fig. 9-24 therefore will serve for any modulator of this type that the amateur may elect to buidd. The trioke cireuit is given at A and the eireuit for tetrodes at B . When small tubes with indirectly-heated cathodes are used, the cathodes should be connected to ground.

Modulator Tubes

The audio ratings of various types of transmitting tulnes are given in the chapter eontaining the tube tables. Choose a petir of tubes that is capable of delivering sine-wave audio power equal to somewhat more than half the d.e input to the modulated Class \mathbf{C} amplifier. It is sometimes convenient to use tubes that will operate at the same plate voltage as that applied to the Class C stage, because onc power supply of adequate eurrent capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not include out-put-transformor losses. To be adequate for modulating the transmitter, the modulator should have

Fig. 9-2.4 - Modulator circuit diagrams. Tubes and circuit considerations are discussed in the text.
a theoretical power capability 15 to 25 per cent greater than the actual power needed for modulation.

Matching to Load

In giving audio ratings on power tubes, manufacturers sperify the plate-to-plate load impedance into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating impedance of the Class C r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{m}}=$ Modulating impedance of Class C r.f. :mplifier
$Z_{\mathrm{p}}=$ Plate-to-plate load impedance for Class B tubes

Example: The modulated r.f. amplifier is to operate at 1250 volts and 250 ma . The power input is

$$
P=E I=1250 \times 0.25=312 \text { watts }
$$

so the modulating power required is $312 / 2=$ 156 watts, Increasing this by 25 ; to allow for lossis and a rebsonathe operating margin gives $156 \times 1.25=145$ watts. The modolating impedanee of the ('lass ('stage is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{1250}{0.25}=5000 \text { ohms. }
$$

From the tube tables a pair of Class 13 tubes is sclected that will wive 200 watts output when working into a beob-ohm load, plate-to-plate. The primary-to-secondary turns ratio of the modulation transformur thercfore should be

$$
N=\sqrt{\frac{\%_{p}}{\%{ }_{u}}}=\sqrt{\frac{6000}{5000}}=\sqrt{1.38}=1,175: 1
$$

The required transformer ratios for the ordinary range of impedances are shown graphically in Fig, ()-25,

Many modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meet the requirements of particular tube combinations.

It may be that the exact turns ratio required cannot be secured, even with a tapped modulation transformer. Small departures from the proper turns ratio will have no serious effert if the modulator is operating well within its capabilities: if the aetual turns ratio is within 10 per cent of the ideal value the system will operate satisfartorily. Where the diserepancy is larger', it is usually possible to choose a now set of operating conditions for the Class C stage to give a molulating impedance that

Fig. 9.25 - Transformer ratios for matching a Class C modnating impedance to the required plate-to-plate load for the Class 13 modalator. The ratios given on the eurves are from total primary to secondary. Resistance values are in kilohms.
ean be matehed by the turns ratio of the available transformer. This mity require operating the Class C amplifier at higher voltage and less phate current, if the modulating impedance must be increased, or at lower voltage and higher current if the modulating impedance must be decreased. However, this process cannot be carried very far without exceding the ratings of the Class C tubes for either plate voltage or plate eurrent, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in either the driver or Class 13 modulator will cause a.f. harmonies that may lie outside the frecpency band needed for intelligible spech transmission. While it is almost imposible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequency harmonics.
The purpose of eapacitors C_{1} and C_{2} aeross the primary and secondary, respectively, of the Class B output transformer in Fig. 9-21 is to reduce the strength of harmonics and unnecessary highfrequency components existing in the modulation. The capacitors aet with the leakige inductance of the transformer winding to form a rudimentary low-pass filter. The values of capacitance required will depend on the load resistance (modulating impedance of the Class C amplifier) and the leakage inductance of the particular transformer used. In gencral, capacitances between about 0.001 and 0.01μ. will be required; the larger values are neecsary with the lower values of load resistance. The voltage rating of each capacitor should at least be equal to the d.c. voltage at the transformer winding with which it is associated. In the easc of C_{2}, part of the total capacitance required will he supplied by the plate by-pass or
blocking caparitor in the modulated amplifier.
A still better arrangement is to use a low-pass filter as shown in Fig. 9-9, even though elipping is not deliberately enployed.

Grid Bias

Certain triodes designed for Class 13 audio work can be operated without grid bias. Besides eliminating the grid-bias supply, the fact that grid current flows over the whole audio cycle meins that the load resistance for the driver is more constant. With these tubes the grid-return leat from the center-tap of the input transformer secondary is simply connected to the filament center-tap or cathode.

When the modulator tubes require bias, it should always be supplied from a fixed voltage source. Cathode bias or grid-latk bias cannot be used with a Class 13 amplifier: with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the hias voltage be unvarying no matter what the strength of the signal. When only a small amount, of hias is required it can be obtained conveniently from a few dry cells. When greater values of bias are required, a heavy-duty " 13 " battery maty be used if the grid current does not exceed 40 or 50 milliamperes on voice peaks. liven though the batteries are charged hy the grid current rather than discharged, a battery will deteriorate with time and its internal resistance will increase. When the increase in internal resistance becomes appreciable, the battery tends to act like a gridleak resistor and the bias varies with the appliced sigual. Batteries should be ehecked with a voltmeter oceasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation the battery should be replaced.

As an alternative to batteries, a regulated bias supply may he used. This type of supply is described in the power supply chapter.

Plate Supply

In addition to adequate filtering, the voltage regulation of the plate supply should be as good as it can be made. If the d.c. output voltage of the supply varies with the load current, the voltage at maximum current determines the amount of power that can be taken from the modulator without distortion. A supply whose voltage drops from 1500 at no load to 1250 at the full modulator plate current is a 1250 -volt supply, so far as the modulator is coneerned, and any estimate of the power output available should be based on the lower figure.

Good dynamic regulation-i.e., with sud-denly-applied loards - is equally as important as good regulation under steady loads, since an instantaneous drop in voltage on voice peaks also will limit the output and eause distortion. The output capacitor of the supply should have as much capacitance as conditions permit. A value of at least 10μ. should be used, and still larger values are desirable. It is better to use all the available caparitance in a single-section filter
rather than to distribute it between two sections.
It is particularly important, in the ease of a tetrode Class I3 stage, that the sereen-voltage power-supply soure have exedlent regulation, to prevent distortion. The sereen voltage should be set as exactly as possible to the recommended vatue for the tube. The audio impedance betwern screen and cathote also must be low.

Overexcitation

When a Class B amplifier is overdriven in an attempt to secure more than the rated power, distortion increases rapidly. The high-frequeney harmonies which result from the distortion modulate the transmitter, producing spurions side hands which can caluse serious interference over a band of frequencios several times the chames width required for speech. (This can hapmen even though the modulation pereentage. as defimed in the chapter on amplitude modulation, is less than 100 per cent, if the modulator is incapable of delivering the adio power required to modulate the transmitter.)

As stated carlier, such a condition may be reached by deliberate dexign, in ease the modulator is to be adjusted for peak clipping, but whether it happens beyecident or intention, the splatiter and spurious side bands can be climinated by inserting a low-pass filter (Fig, !-9) between the modulator and the modulated amplifier, and then taking care to see that the artual modulation of the r.f. amplifier does not exered 100 per cent.

Operation Without Load

Excitation should never be applied to a Class B modulator until after the Class C amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to ahsorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, a resistance of the sume value as the modulating imperance, and eapable of dissipating the full power output of the modulator, should be connected across the secondary.

DRIVERS FOR CLASS-B MODULATORS

("lass 1 13e and Chass 13 amplifiers ate driven into the gridcurrent region, so power is ron-
sumed in the grid (ireuit. The preathing stage or driver must be capable of supplying this power at the required peak audio-frectuency grid-to-grid voltage. Both of these quantitios are given in the manufacturers tabe ratinges. The grids of the Class B tuber represent a varying load resistance over the atho-frequency rerle. because the grid curvent does not increase directly with the grid voltage. To prevent distortion, therefore, it is neressary to have a driving source that will maintain the wave form of the signal without distortion even though the load varies. That is, the driver stage must have good regulation. To this cud, it should be capable of delivering somewhat more power than is consumed by the Class 13 grids, as previously deseribed in the discussion on speech amplifiers.

The driver transformer, T or T_{2} in Fig. 9-20, may eouph direetly between the driver tubes and the modulator grids or maty be designed to work into a low-imperlance (200- or 500 -ohm) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage.
 the driver must be at a considerable distane from the modulator: the second transfomer not only introdures additional losser but also impatire the voltage regulation of the diver stage.

Fig. 9.26 - Trinde driver cireuit: for Class 13 modulators, A, resistance coupling to arids: B, Irandomer coupling, R_{1} in A is the plateresistor

 and grid resistor, repertioly: values alan may he tahen from lable 9-t.
 turns ratio (o) eomple betwern the driver tulee ant the Claze IS urids,
 resistor, shombla catentated for the particular tule used. The value of C, the rathome hypass is determined as described in the text.

Driver Tubes

To serure good voltage regulation the internal impedance of the driver, as seon by the modulator grids, must be low. The principal component of this impedance is the plate resistane of the driver tube or tubes as reflected through the driver transiformer. Hence for low driving-soure impodance the effective plate resistance of the driver tabes should be low and the turns ratio of the driver transformer, primary to secondary, should be as large as possibla. The maximum turns ratio that can be used is that value which just permits developing the modulator grideto-grid a.f. voltage required for the desired power output.

Low- μ triodes surh as the dibla have bow plate resistance and are therefore good tuber to the ats drivers for Clats AB2 or Class 13 modulators. Tetrodes buch as the $6 V 0$ and 6 ded make very poor drivers in this resperet when used without negative feedlack, but with such feedback the effective plate resistance ran be reduced to a value somparable with low- μ triodes.

In selecting a driver stage always shoose (lase A or A B_{1} operation in proference to (Cla :s A A3. This not only simplifies the aprech-amplifier dexign but also makes it easier to apply negative : oredback to tetrodes firr reduction of plate reFistance. It is posible to obtain a tube power output of approximately 25 watts from Gilfis without going beyoud (lass $\ 1 B_{1}$ operation: this is ample driving power for the popular Class I3 modulator tuber, even when a kilowatt transmitter is to be modulated.

The rated tule output as shown by the tube tables should be reduced by about 20 per cent to allow for losses in the (lass 13 input transformer. If two transiommers are ased, tube-to-line and line-to-grids, allow about 35 per cent lor transformer lowes, Another 2^{5} per cent should be allowed, if posible, as a safety factor and to improve the voltage regnation.

Fig. 9-26 shows repremtative circuits for at push-pull triode driver using cathode bias. If the amplifier operates (lass A the cathote resistor need not be bepassed, becomes the af. coments from earh tube flowing in the eathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true: considerable distortion will be generated at high sigmal levels if the athode resistor is not byassed. The by-pas: capacitance requited can be caledlated by a simple rule: the rathode resistince in ohms multiplied by the hy-pass capouitance in microfarads should equal at least 25,000 . The voltage rating of the capacitor should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Fig. 9.27 - Vegative-feedhack circuits for drivers for Class B mondalator- A - Sinsterended treameletrode driver. If I_{1} and t_{2}

 G1.0-, the fotlowing valuc are zumprited: R_{1}, 0.1 megohn; R_{2}, 22, 000 ohms: Ra, 250 ohme; Ci, 0.1 uf.: C.2. 100μ.
Example: A pair of Gbutis is to be used in
Chass A131, wolf-biased, from the tube tables, the
cat hode resistance shomhl he 780 ohtos and the
maximma-signal pate eurrent 120 mat. Jrom
Ohun's Law,
$E=h^{\prime} I=780 \times 0.12=0.3,6$ volts
From the rulde mentioned provionsly, the by-
pase raparitance redrimed is
$C=2.5,000 / R=25,000 / 780=32 \mu \mathrm{f}$.
A 40 - or $50-\mu \mathrm{f}$. 100 -volt deetroly tic rapacitor
would be sativinetory

Negative Feedback

Whenever tetrodes or pentodes are used as drivers for (lass 13 modulators, negative feedback should be used in the driver stage, for the reason diselassed atrove.
suitable cireuits for single-ended and push-pull tetroles are shown in Fig. 9-27. Fig. 9-27 A shows resistance cotpling between the preceding stage and a single tetrode, such as the (i) 6 , that operates at the same plate voltage as the preceding stage. Part of the a.f. voltage across the primary of the output tramsomer is fed back to the grid of the tetrode, F_{2}, through the plate resistor of the preceding tule, V_{1}. The total resistance of R_{4} and R_{5} in serices should be ten or more times the rated load resistance of log. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feed-back voltage, if such a tap is available.

The amount of feed-hack voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as by the rela-
tionship between R_{4} and R_{5}. Circuit values for a typiral tube combination are given in detail in Fig. ()-27.

The push-pull circuit in Fig. 9-27l3 requires an audio transformer with a split serondary. The feed-hack voltage is obtained from the plate of each output tube be means of the voltage divider, R_{1}, R_{2}. The blocking capacitor, (${ }_{1}$, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$: the reactance of this eapacitor should be low, compared with the sum of R_{1} and $l_{\text {ne at }}$ at the lowest audio frequency to be amplified. . Nso, the sum of R_{1} and R_{2}^{2} should lo_{s} high (ten times or more) compared with the rated load resistance for V_{2} and V_{3}.

In this rircuit the feed-hack voltage that is developed aeross h_{2} appears at the grid of V_{2} (or V_{3}^{*}) through the transformer secomdary and gridecathode circuit of the tube, provided the tubes are not driven to grid current. The per cent feedback is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-hanck pererntage, and R_{1} and R_{2} are connerted as shown in the diagram. The higher the feed-batek pereentage, the lower the affertive plate resistance. However, if the perrentage is made too high the preverling tube, l°, may not be able to dovolop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itsolf gencrating harmonic distortion. Distortion in V_{1} is not compensated for hy the feed-back circuit.

If F : and V_{3} are dilds operated self-hitased in Clats $A 3_{1}$ with a load resistance of 9000 ohms,
V_{1} is a 60J5, and T_{1} has a turns ratio of 2-to-1, total secondary to primary, it is possible to use over 30 per cent feedback without going beyond the output-voltage capabilities of the (6.Jis. Twenty per cent feedbark will reduce the effertive plate resistance to the point where the output voltage regulation is better than that of 613 1Gs or 2.13 s without fered-hatek.

If the grid-rathode imperiance of the tubes is relatively low, as it is when grid current flows, the ferd-hack voltage derreases beraluse of the voltage drop through the transiomer secondary. The (rircuit should not be used with tubes that are operated Class Al_{2}.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEEDBACK

A rircuit for al spereh amplifior suitable for driving at Cass 13 mondulator is given in Pig. ! 28. In this amplifier the didis are operated (hass . $\mathrm{B} B_{1}$ and will deliver up 10,20 watts to the grids of the Class B amplifier. The fored-hack eirent reguires no adjustment. but does require an interstage transformer with two soparate secombary windings (eplit secondery).

Any comveniont chassis layout may lx used for the amplifier provided the prineples outlined in the section on serech-amplifier construedion are observed. The over-all gain is ample for a dom-mumications-t ype arastal microphome.

The output transiomer, T_{2}, should low selected to work betwern a mo00-ohm plate-to-plate toad and the gride of whateror Class 13 tuhes will be used. The power-supply requirements for this amplifior are 145 mas. at 3 bot vols and 2.7 amp. at 16.3 volts.

Fig. 9-28 - Cirront diagram of speed amplifer using 6L64 with negative feedback, suitable for driving Class B inodulators up to 500 watts notput.
$\mathrm{C}_{1} \mathrm{C}_{5,5} \mathrm{C}_{s}-20-\mu \mathrm{f}$. 25-volt cledtrolytie.
$\mathrm{C}_{2}, \mathrm{C}, \mathrm{C}_{19}-\mathbf{0}, 1-\mu \mathrm{f}$. $\mathrm{t}(\mathrm{K})$-volt paper.
Ci, $6,6-0.01-\mu \mathrm{f}$. (1) (0-volt paper.
$\mathrm{Cis}_{4} \mathrm{C},-\mathrm{C}_{12}-10-\mu \mathrm{C}$. 150 -wolt electrolytie.
$\mathrm{C}_{11}-100-\mu \mathrm{f}$. 50 -volt electrolytic.
$11_{1}-2.2$ mexohms, $1 / 2$ watt.
$R_{2}, R_{7}-1500$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-1.5$ megolims, $1 /$ watl 2
$\mathrm{H}_{4}-0.22$ megohm, $\frac{1}{2}$ watt.
$\mathrm{H}_{5}, \mathrm{HR}$ - 4 -, (MOO ohms, 3 , watt.
H_{c} - 1-megohm volume contrul.

Ro- $0 . \mathrm{I}_{\mathrm{T}}$ megolm, $1 / 2$ watt.
$\mathrm{R}_{10}-1,000$ ohme, 1 watt.

$\mathrm{K}_{12}, \mathrm{R}_{13}-0.1$ megohm, I watt.

11_{16} - 2.010 ohms, 10 watts.
H_{17} - 2000 ohms, 10 watts.
T_{1} - Interstage audin with split secondary winding (*uch at Thordirson T20A25).
T_{2} - Clasial B input transformer to anit modulator tutbes.

Class B Modulator with Filter

Representative Class 13 modulator comstruwtion is illustrated by the unit shown in Figs. 9-2! and 9-31. This modulator includes a splatter

Fig. 9-29 - A typieal Class IB modulator arrangement. This unit uses a pair of 811 As, capable of an andio power output of 310 watte, and ineludes a splatter filter. The modulation transformer is at the left and the splatter choke at the right. Ill high-woltage terminals are eovcred sen they cannot be toushed arcidentally.
filter, $C_{1} C_{2} L_{1}$ in the cirent diagram, Fig. ()-30, and also has provision for short-rireuiting the nodulation tramsformer serondary when erw is to be used.
The aurio input transformer is not built into this unit, it being assumed that this tremsiomer will be included in the driver assembly ats is customary. If the monlubator and speech amplifier-

Fig, 9-30- Circuit diayram of the Class 13 modulator. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{~L}_{1}$ - See text. (L_{1} is Chicago 'I'ransformer type S13-300.)
K_{1} - l)p.d.t. relay, high-voltage insulation (Advance tyin 100).
II-0-500 d.e. milliammeter, hakelite case.
\mathbf{I}_{1} - Variahle-ration modulation transformer (Chicago Transformer type CMS.1).
\mathbf{T}_{2} - Filament transformer, 6.3 r., 8 amp. I_{1} - 6,3 -wolt pilan lishat.
$\mathrm{X}_{1}, \mathrm{X}_{2}$ - Chatsis-tyne ils-sult plugs, male. \boldsymbol{X}_{3} - Chassis-tym $11.5-s$ olt receptacle, female. St -S.p.s.I. toggle.
driver are mounted in the same rack or eabinet, the length of leads from the driver to the modulator grids presents no problem. The bias required by the modulator tubes at their higher platevoltage ratings should be fed through the renter tap on the secondary of the driver transformer. At a plate voltage of 1000 or less no hias is needed and the center-tap connertion on the transformer can be grounded.

The values of C_{1}, C_{2} and L_{1} depend on the modulating imperance of the (Class (r r.f. amplifier. They can be determined from the formulas given in this chapter in the section on high-level clipping and filtering. The splatter filter will be effective regardless of whether the modulator operating conditions are chosen to give high-level clipping, but it is worth while to design the sesstem for elipping at 100 per cent modulation if the tube curves are available for that purpose. The voltage ratings for C_{1} and C_{2} should at least equal the d.e. voltage applied to the modulated r.f. amplifier.

A relay with high-voltage insulation (aretually an antenna relay) is used to short-circuit the

Fig. 9-31 - The filament transformer is monnted lefow the ehassis. The relay is used as described in the text. Ci and Ciare mounted on small stamb-off insulators on the ehassis wall.
serondary of T_{1} when the relay eobl is not energized. I normally-closed contate is used for this purpose. The other arm is used to close the primary rimuit of the modelator pata supply when the relaty is energized, whorting the transformer secondary is neeresary when the r.f. amplifier is keyed, to prevent an inductive discharge from the tramformer winding that would put "tails" on the keyed characters and, with cathode keying of the amplifier, would cause exersive parking at the key contates. The control cirenit should be armaged in such a way that K_{1} is not energized during e.w. operation but is enorgized by the send-receive switeh during phone operation.
(areful attention should be paid to insulation since the instantancous voltages in the serondary circuit of the transformer will be at least twioe the d.c. voltage on the r.f. amplifier. stand-off insulators are used in this mait wherever neressary, including the mounting for the relay.

Checking Amplifier Operation

An adequate job of checkng speed amplifiers can be done with equipment that is neither elaborate nor expensive. A typical setup is shown in Fig. 9-32. The construction of a simple atudio oscillator is described in the chapter on measurements. The audio-frequency voltmeter can be either a varuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a rectifier-type a.e. range. The healset is included for aural cherking of the amplifier performance.

An audio osidlator usually will have an output control, but if the maximum outpat voltage is in execos of a volt or so the output setting man be rather eutical when a high-gain speech amplifier is being tested In such cases ant attemuatom such as is shown in Fig. !-.32 is a convenionee. bach of the two voltage dividers reduces the voltage lyy a factor of roughly 10 to 1 , so that the over-all attemutaon is about 100 to 1 . The relattively low value of resistance, R_{1}, armoss the input terminals of the amplifior also will minimize stray hum pickup on the romereling leads.

As a proliminary chares, eover the microqhone input terminalk with a motal shicld (with the audio oseillator amd attemuator diseomereded) and, while listoning in the headset, note the hum level with the amplifier gain control in the off position. The hum shoulal he very bow under these conditions. Then increase the gatn-comtrol setting to maximum and observe the hem; it will no dombt increase. Next eonneet the audio oseillator and attonuator and, starting from minimbum signal, increase the aulio inpat voltage until the voltmetar indicates full power output. (The voltage shoukd equal $\sqrt{ }{ }^{\prime} R$, where ρ 'is the experetol power out put in watts and R is tho lowd resistanee - $R_{\text {ti }}$ in the diagram.) While inereasing the input, listen carefulte to the tome to see if there is any change in its character. When it begins to soumsl like a musical ortave instead of a single tome, distortion is berinning, Assuming that the tone is substantially without audible distortion at full output, substitute the miscophone for the audin oseillator and speak into it at moderate level whilo watching the voltmeter. Reduee the gain-contmol setting until the meter "kicks" nearly up to the

 not necosary that the frequeney range of the andio necillator be continuousfy sariablar: one or more "spot frequencies" will l_{s} watisfartory. Snitalle resistor valaes ar: : $R_{!}$and R_{3}. 10,000 ohms: R_{2} amd
 R_{5}. Ietermine ly trial for comfortahle headphene lewe (25 to low) ohms. ordinarily); tae two or more resistors in parallel as a safely precaution. $I^{\prime \prime}$ is a high-resistance ade. volmeter.
full-power reading on voice peaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exceed one or two per cent of the voltage at full output.

If the hum level is too high, the amplifier stage that is eaming the trouble can be located by temporarily short-cireniting the grid of each tube to ground, starting with the output amplifier. When shorting a particular grid makes a marked decrease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid rincuit. If shorting a grid dow not derrease the lum. the hum is originating either in the plate rimenit of that tube or the grid direuit of the next. Aside from wiring errors, a defective tuloc, or

 for diatortion. These eonmertions will result in the tyone of pattern shown in fix. ". 31 , the horizontal swerploring provided bs the audio input dignal. Fior wave form pattterns, ont the emmertion between the audio owrillator and the larizontal amplifier in the soope, and tose the horizontal linear sweep.
inaterquate plate-supply filtering, objectionable hum unally originates in the first stage of the amplifier.

If distortion occurs below the point at which the experted power output is sorured, the stage in which it is oecurring can be locatod hey working from the last stage toward the front end of the amplifier applying a signal to each grid in turn from the antio ospillator and as justing the signal voltruge for meximum output. In the cease of pustipult stares, the signal may be applied to the primary of the interstage transformer - after diseomerting it from the platr-voltage soutere Asuming that normal design principles have bern followed and that all steges are theoretieally working within their (alpabilities, the probable cuses of distortion are wiring errors (such as aceidental short-circhit of a mathode resistor), defective eomponents, or use of wrong values of resistance in cathode and phate cireuits.

Using the Oscilloscope

Sperech-amplifier checking is facilitated considerably if an oscilloseope of the type having amplifiers and a linear sweep circuit is available. A typical setup for using the oscilloscope is shown in Fig. !)-33. With the commertions shown, the sweep circuit is not required but horizontal and vertical amplifier are neerssary. Audio voltage from the oscillator is
fed dircetly to one oscilloscope amplifier (horizontal in this ease) and the output of the speech amplifier is eonnected to the other. The seope amplifier gains should he adjusted so that each signal gives the same line length with the other signal shut off.

Cinder these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in lige, ?-3.t, making an angle of about 45 degrees with the horizontal and vortieal ases. If there is no distortion but there is phase shift, the pattern will be a smoth ollipse, as shown at the upper right. The greater the phase shift the greater the tendeney of the ellipse to grow into a cirele. When there is evenharmonic distortion in the amplifier one end of the tine or ellipse beromes rurved, as shown in the serond row in Fig. 9-31. With odd-hamonie distortion such as is characteristic of overdriven push-pull stages, the line or ellipse is eurved at both ends.

Patterns such as these will be obtained whon the input signal is a fairly good sine wawe. They will tend to berome complieated if the input wave form is eomplex and the spoerch amplifior introdues appreciahle phase shifts. It is therefore alvisable to tost for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequency in the $\mathbf{3 0} 0$ - 1000 (evele range, sinere improper phase shift in the amplifier is usually least in this region. Jhase shift in itself is not of great importance in an atudio amplifier of ordinary design because it does not change the character of speech sof far ats the eat is concerned. However, if a complex signal is usod for testing, phasos shift muse make it difficult to detere distortion in the oscilloscope pattern.

In amplifiers having negative fordback, excessive phase shift within the ferd-hack loop may caluse self-oserillation, sine the wignal feel baek maty arrive at the grid in phase with the applied signal voltage instad of out ol phase with it. Such a phase shift is most likely to he asomented with the output transformer. ()erillation usually oweurs at some frequence above 10,000 eydes, although orcasionally it will oreur at a very how frequence. If the pass band in the stage in which the phase shift oceurs is deliberately restricted to the optimum voier range, as cleseribed earlicr, the gain at both very high and very low frequencies will be so low that self-oscillation is unlikely, evon with large amounts of feedlatek.
(ienerally speaking, it is casior to detere small amounts of distortion with the type of pattern shown in Fig. !-;3t than it is with the watce-form pattern ohtained by feeding the output signal to the vertical plates and making use of the linear swep in the soope. However, the waverorm pittern can be used satisfactorily if the signal from the admo oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator atome and trace the patterm on a shect of trampatrent paper. The pattern

Fig. 9.3.1-Typioal patterns ohtaneal with the connections shown in fis. "-3.3. Depenting on the ntmber of xtapes in the amplilier, the pattern may shope apward to the risht, as shown, or ubwarl to the left. Also, deperdiger on where the diatortion eriginates, the eurvature in the sedond row may appear either at the top or loot tom of the lime or elligue.
given by the output of the amplifier ean then be compared with the "standard" pattern by adjusting the oscilloseope gain to make the two patterns eoninede as closely as possible. The pattern diserepancies are a measure of the disturtion.

In using the oseilloscope care must be taken to avoid introducing hum voltages that will upset the measurments. Ham piokup on the soope leads or othrer exposed parts such as the amplifier load resistor or the voltmoter can be detected by shutting off the audio oscillator and sueech amplifier and connecting first one and then the other to the vertieal plates of the seope, setting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertieal gain control is sot at the position used in the actual measurements. Waviness in the line indicates hum. If the hum is not in the seope itself (cherk by diseonnerting the leads at the instrument) make sure that there is a good ground connection on all the equipment and, if necessary, shield the hot leads.

The oscilloseope can be used to good advantage in stage-hy-stage testing to cherk wave forms it the grid and plate of each stage and thus to determine rapidly where a sourec of trouble may be located. When the seope is comereded to eirenits that are not at gromud potential for d.e., a ratpacitor of about $0.1 \mu \mathrm{f}$ ". shoudd be comereted in series with the hot oscilloseope lead. The probe lead should be shiehded so that it will not piek up) hum.

Amplitude Modulation

As desmibed in the chapter on cireuit fundamontals, the procres of modulation sets up groups of frequencies called side bands, which :uppear symmetrically above and below the frequence of the mmodulated signat or carrier. If the instantaneons values of all these frequencies are added together, the result is called the modulation envelope. In amplitude modulation (a.m.) the morlulation envelope follows the amplitude variations of the audio-frequemes signal that is being used to modulate the water
loor example, modulation by a 100 orevelo tone will result in a mohalation envelope that varises in amplitude at a lo0aterele rate. The acoual r.f. signal that proluces such an envelope consists of three frequencies - the carrier, a side fredueney 1000 eveles higher than the carrior, and as side frequeney 1000 ereles lower than the earicer. These thre frequencies casily can be soparated by a recoiver having high soledivity. In order to reproduee the original modulation the receiver must have enough hand width to acerept the carrier and the side bands simultameously. This is becanse the eomentional detertor (at diode, for instane (e) responds to the modulation enverome rather than to the individual signal emmonents. and the envelope will be distomed in the reereiver umbes all the frequeney components in the sigmal go through without change in their relative amplitudes.

In the simple cane of tome modulation the two sield frequencies and the carrior are constant in amplitude - it is onty the anvelope amplitude that vartes at the modulation rate. With mone complex modulation surh as voire or musire the amplitudes and frequencies of the side firequencies vary from insiant to instant. The amplitude of the modulation renvelope sarios instantaneonsly in the same way as the complex audio-frequences signal ratusing the modulation. Nevertheless, ceven in this case the corrier amplitude is constant if the transmitter is properly mortulated.

A.M. Side Bands and Channel Width

Speedh ran be aretrically reprodued, with high intolligibitity, in a hand of frequeneves lying betwern appoximately 100 and 3000 (eques. When these frefuencies are eombined with a radio-frequency carrior, the side bands oreupy the frequence spertrum lion about 3000 ceres bedow the carrior frequency to 3000 eveles abowa total hand or "chamole" of about if kiloe eveles.

Aetual spereh frepuemeios extend up) to 10,0 , 6 eveles or more, so it is pussible to ocrupy a 20-kr. chamel if no provision is made for reducing its width. For communication purposes surh a rhamel witth represents a waste of valuable spertrum space, siner a b-ke. chammel is fully adeguate for intelligibility. Oreupying more than
the minimum chamel creates umberessary interference. Thus sperech equipment design aud tramsmiter adjustment and operation should be printed toward maintaining the chamel width at the minimum.

- THE MODULATION ENVELOPE

In Fig. 10-1, the drawing at A shows the unmodulated r.f. sighal, atsumed to be a sine wave of the desired radio frequences. 'The graph can be taken to represent ather voltage or earrent.

In 13, the signal is assumed to be mondulated her the andio-freguencer shown in the smatl drawing above This freequency is much lower that the carrior frequener, a merossary condition for good modulation. When the modulating voltage is "positive" (alowe its axis) the (envelope :mplithde is incroased aboer its ummodulated amplithele: when the modulating voltage is "negative" the envelope amplitude is afereased. Thus the (יnvelope grows larger and smaller with the polarity and amplitude of the modulating voltage.
Tho drawings at C shows what happens with stronger modulation. The envelope amplitude is doubled at the instant the modulating voltage rearhes its positive peak, (on the megative peak of the modulating voltage the envelope amplitude just reathes zero: in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detectod in a rereiver, the deterem output follows the modulattion envelope. The stronger the modulation, therefore, the greater is the useful receiver output. Ohviously, it is desirable to make the mondulation ats strong on "heavy" as possible. A wawe modulated as in Fige. 10-1C would produee eonsiderably more usoful audio output than the one shown at l3.

The "depth" of the modulation is expressed as a pereontage of the ummodulated carrier amplitude. Lu cither 13 or (C, Fig. 10-1, 1 I represent: the ummodulated earrier amplitude, Y is the maximum envelope amplitude on the modulation up-pak, and \% is the minimum envelope amplitude on the modulation downerak.

In a property-operating modulation system the modulation envelope is an acedrate reproduction of the motulating wave, as can be seed in lige 10-1 at 13 and (1 ley comparing ome side of the outline with the shape of the modulating wave. (The lower outline duplieates the upper, but simply appears upside down in the drawing.)

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or \% Mod. $=\frac{X-Z}{X} \times 1$ Mo (dommatad modedation $)$

 cotlime on the modalated wave.
If the wave shape of the modubation is sueh that its perak powitioe and negative amplitudes are mpall, then the motulation pereentage will be the same both up and down. If the two pereremtages rifter, the larger of the two is customatily surefied.

Power in Modulated Wave

The amplitude valuess shown in Fig. lo-1 eorrespond to current or voltage, so the drawings may be taken to represent instantanoms values of either. The power in the wate variose as the sequme of cither the corrent or voltare, so st the prak of the modulation up-swing the instiantancons pewar in the onveloge of lige. 10-1(' is fone times the bumodalated rarrier power (berause the (ourent and voltage both are doubled), At the peate of the down-swing the power is zero, sine the amplitude is zoro. "Wherstatements ate true of 100 per rent modulation no matter what the watve form of the modutation. The instathtamedse duvelope pewer in the mokhated signal is propertional to the spuare of its envelope amplitude at cevery instant. This fiat is highly important in the operation of avery mothod of amplitude modulation.

It is comveniont, and customary, to deseribe the operation of modulation spotems in terms of sinc-wave modulation, Athough this wave shape is soldom anthatly wed in prowtice (voice wave shapes depart very considerathy from the sine form) it lomets itself to simple calculations ame its use ats a stataded permits comparison betwern shatems on at common hasis. With sime-wave modulation the averuge power in the modulated signal over athy number of full cerides of the modulation fresuency is found to be 1 dimes the power in the unmodulated camior. In other worls, the power output increases $\mathbf{- 1 0}$ promerot with 100 per cout modulation by a sine wave.

This relationship is very useful in the design of molulation systems and modulators, lwe:eatuse any such srstem that is capable of increasing the orerage power output by so per cent with sinewave modulation atumaticelly fulfills the requiremont that the instantancous power at the modulation up-pak be four times the carrior power. Conserpently, systems in which the additional power is supplied from outside the montulated rill, stage (c.er, plate modulation) usually are dexigned on a sine-wave hasese as a matter of convenience. Modulation systems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are more conveniantly designed on the basis of peak envedope pewer rather than average power.

The extra power that is contaned in a modulated signat goes entimely into the side bands, half in the upper side lathd and hatl in the lower. As a numerieal example, full modulation of a 100 watt carmor be a sinte wate will add jo watts of sidn-lathed power, es in the lower and 25 in the upper side hand. Supplying this additional power for the side batuls is the objeer of atl of the varions systems devised for amplitude modulation.

No such simple mationslij) exists with complex wave forms. Complex wity forms such is sperch do mot, as a ruld, contain as muth averame power ats a sine wave. Orditary spereh wawo forms have about half as much average power as at sine wave, for the sime peak amplitude in beth water forms. Thus for the sathe modulation prorelltane, the side-tand power with ordinatry spereh will average only about half the power with situ-wave modulation, since it is the poak envelope amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary chectrie circuit it is pessible to increase the :mplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less thath zero. The same thing is true of the amplitude of an r.f. sigmal: it can be modulated "purard to ang dexired extent, but it camot be modulated domenearl more than 100 pror cont.

When the modulating wate form is unsymmetrical it is pusible for the upwamland downwad modulation pereentages to be different. A simple (etse is shown in lig. 10-2. The pesitive prak of the modulating signal is about 3 times the amplitude ol the negative peak. If, as shown in the drawing, the modulating amplitude is athjusted so that the peak downward modulation is just 100 pre eent $(\%=0)$ the prak upwad moxhlation is 300 per cent ($y=4 N$). The carricr amplitude is represented by X , as in Fig , 10-1. The modulation envelope reprodueds the wate form of the modalating signal acerarately, henee there is modistortion, In sueh a modulated signal the increase in power ourput with modulation is considerably greater than it is when the modulation is symmetrial ath therefore hats to be limited to 100 per cent both up and down.

Fig. J0.2 - Modulation by an misymmetrical wave form. This drawing slowa low C_{o} downourd nodula. tion along with $30 \% / \mathrm{c}$ upwaral modolation. 'There is no distortion, singe the modulation rondopre is an acerarate reproduction of the wase form of the modulating voltage.

However, the peak envelope amplitude, Y^{\prime}, is fond times the rerrier :mplitude, λ, so the peakanvelope power is 16 times the carvier power. When the upwated modulation is more than \log per erent the power caparity of the modulating sustem obviously must bre incrased suffiriently to take care of the murla larger peat amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing beromes too great, there will be a period of time during whelh the r,f. output is entirely cot off. This is shown in lig. IO-3. The shape of the downward hatf of the modulating wave is no longer aremately repmodured by the modulation envelope, eonsequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulattion envelope ratuses new frequeneies (hamonies of the modulating frequenes) to be generated. These combine with the carrior to form new side frerfuencios that widen the chamel oreupied by the modulated sigmal. These spurious frequencies are commonly called "sphatter."

It is important to realize that the chamel

Fig. 10.3 - An overmodulated signal. The modulation "nveloge is mot an acourate reproshection of the wave form of the modulating voltager This or atry type of diaturtion octurring during the modulation process gencrater mpurious side bands or "oplatter."
oecupied by an amplitude-modulated signal is dependent on the shape of the molulation entrelope. If this wave shape is complex and can be resolved into a wide band of andio frembencies, then the chamed oecupied will be comespondingly large. An overmodulated signal splatters and orerupies at murh wider chatomel that is neressary leceatuse the "clipping" of the mondulating wave that oreurs at the zero axis changes the envelope watre shape to one that contains highorder harmonies of the original modulating fre-
 (ides semburated hy many kilocyeles from the carrior fregurney:

Beranse of this rlipping antion at the zeron axis, it is important that care be taken to provont applying too large a modulating simmal in the downward direction, Overmodulation downward results in more splatter than is caused by most other types of distortion in a phone transmitter.

General requirements

For proper opration of an amplitude-modulated tramsmiter there are a few gemeral reguirements that must be mot no matter what particular mothod of modulation may be used. Frahlure to med these requirements is aterompamien hes distortion of the modulation chvelope This in turn increases the chammel width as compateal with that required hey the hegitimate freguencies contained in the original modulating wiver.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequeney must be contirely unatfered by modulation. If the applacation of molulation ratuses a chatuge in the carmer frequener, the frequener will woble back and forth with the modulation. This eatuses distortion and widens the chammel taken by the signat, Thus umenessary interforenoe is eatused to other transmissions.

In pratice, this undesirable frerpurney modubation is prevented be applying the modulation to an ref. amplifier stage that is isulated from the frepuemer-controlling weillator by a buffer amplifier. limplitude modulation applied directly to an oscillator abway is arompanied by fremener modulation. Inder existing le 'C regulations amplitude modulation of an oseillator is permitted omly on frequencies above 144 Mc . Below that frequeney the regulations require that an amplitude-modulated tramsmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modalating wave. ligg. $10-1$ is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. ampli-

Fig, 10-4 - The modulation chararteristic shows the relationship betwen the instantanequs ampelome amplitude of the r.f. output current (or voltage) and the instantaneous amplitude" of the modulating voltage. 'The ide al eharacteristic is a straight lint, as shown bo curse A.
tude bark and forth along the curve A, as the modulating voltage alternately swing positive and megative. Assuming that the negative poak of the modulating wave is just sutidient to reduce the ref. output to zero (modulating voltage equal to -1 in the drawing, the same modulating voltage peak in the prestior dirertion $(+1)$ should canse the r.f. :mplitude to reach twice its unmodulated value. The ideal is a straight line, as shown by curve A. Such a modulation charactoristic is perfertly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude dons not rearh twice the ummodulated carrior amplitude when the mondulating woltage reathow its positive pak. A modulation chameteristio of this trge gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation convelope is not ann exact reproduction of the modulating wave. It is therefore distorted and harmonios are gemerated, causing the transmitted signal to
ocupy a wider chamel than is necessary. . nomlinear modulation characteristic can casily result whon a transmitter is not properly designed or is misadjusted.

The modulation capability of the trinsmitter is the maximum percentage of modulation that is possible without objectionable distortion from nomlinguity. The maximum capability can never exced 100 per cont on the down-peak, but it is pussible for it to be higher on the up-peak. The modulation a apability should be as close to 100) per cont an posible, wo that the most effective signal cam lie transmitted.

Plate Power Supply

The d.e. power supply for the plate or plates of the modulated amplifier should be well filtwerd; if it is not, plate-supply ripple will moduhate the arrior and eause anoying hum. The ripple voltage should not be more that abont 1 per erent of the d.e. output valtage.

In amplitude modulation the plate current of the modulated r.f. amplifier vations at ath andiofrequency mate; in other words, ath athernating current is superimposed on the die. plate current. The output filter capacitor in the plate supply must have low reatetune, at the lowerst audio frequeney in the modulation, if the transmitter is to modulate erpailly well at all audio frepuebeies. The eapacitane required depents on the ratio of d.e. plate current to plate voltage in the modulated amplifier. The requirements will be met satisfartorily if the capanitame of the output capacitor is at least equal to

$$
C=2 i \frac{l}{E}
$$

where $C=($ 'apatitance of output rapabitor in $\mu \mathrm{f}$.
$I=$ De.e. plate eurrent of mondulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: I meshalated amplitior operates at lean volts and 27.5 mat 'Whe rapacitather of the outpht rabacitor in thu hate-suphls filur should br. at lats:

$$
C=2.5 \frac{I}{E}=2.5 \times \frac{275}{12.50}=2.5 \times 0.22=5.5 \mu \mathrm{f}
$$

Amplitude Modulation Methods

MODULATION SYSTEMS

As cxplated in the proceding sorelion, amplitude modulation of a barrier is acompaniod by an increase in power outpen, the additional power bering the "useful" or "talk power" in the side bands. This additional powror mas he supplied from an external somere in the form of audiofrequency power, converted inter radio-frequency power, and then added to the ummodabited carrier power. This is the mothod used in phate modulation. It has the advantage that the ref. power is gemerated at the high efficioney chamacteristic of Class C'amplifiers - of the order of 65

10 75 per erent - but has the acempanying disadvantage that the additional power (ati.) is a rather cexpensive form to gemerate.

An alternative that does mot require relatively barge amonnts of atudio-frequency power makes use of the fact that the power ouf put of an amplifier can be cont wolled by varying the potential of a tube clement - such as at control grid or a screern grid - that does not, in itself, consume appreciable power. In this case the additional power during modulation is secored by sarrificing carricr power: in other words, a tabe is rapable of delivering only so much tot al power winhin its ratings, and if more must be delivered

Fig. 10-5 - I'late modulation of a Citass C r.f. amplifier. The r.f. plate lis-pares matation, $(\therefore$ in the amplifier stage shomid hame reatomally hizh reactance at andin frequentias, I value of the order of 0.0111 af. to
 chapter on moshatators.)
at full modulation, then less is avaitable for the
 of mecessity work at rather low efficiencey at the mmolulated carrior lowel. As a practical working rule, the efficioney of the modulated rif. amplifier is of the order of 30 to 35 prorent, and the unmodulated carrier power output obtamable with such swiem is only about one-fourth to one-third that obtainable from the same amplifier with phate modulation.

It is well to apprereiate that no simple modulattion seheme that purports to get around this limatation of grid modulation aver has actually done so. Methods have beobl devised that have resulted in modulation at high over-all cflicioney without requiring athdio power, but have acomplished it by obtainimg the neeressary additional power from an anxiliary r.f. amplifere. This teads to eireuit and operating complexities that make the sysiems unsuitable for amateur work, where rapid frequence change and simplicity of operattion are almost ahays essential.

The methods aliscrised in this sedion are the basic ones, Variants that from time to time attain passing popularity ran readily be apprased on the hasis of the precoding paragraphs. I simple grial modulation sustem that claims high reffirioney should be looked upon with suspicion, since it is atmost eretain that the high efficienc?", if actually abhered, is obtaned be samificing the linear relationship bet ween modulating signal and modulation envelope that is the first essentiad of a good modulation method.

PLATE MODULATION

Fig, 10-5 shows the most widely-used system of plate modulation, in this case with a triode ref. tube. A badanced (push-pull Class . 1 , Class AB or ('lass 13) modulator is transformer-coupled to the plate eireuit of the modulated ref, amplifier, The audio-frequency power generated by the modulator is combined with the d.e power in the modulated-amplifier plate cireuit by tramsfor through the eoupling transformer, T^{\prime}, For 100 per cent modulation the adudio-frequeney power output of the modulator and the turns ratio of the coupling trameformer must be sueh that the voltage at the plate of the modulated amplifier varies between zero : und twiee the d.e. opreating phate voltage, thus causing corresponding vabiat tions in the :mplitude of the ref. output.

Audio Power

As stated earlier, the average power output of the modulated stage must inerease during modulation. The modulator must be capable of supplying to the morlubated r.f. stage sinc-wave audio power equal to 50 per cent of the d.e. plate imput. For example, if the d.e phate power input ts the ref. stage is 100 watts, the sine-wave adio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is ergual to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $l i x=1$). . plate voltage

$$
I_{p}=\text {).e, plate current (ma.) }
$$

Eb and I_{1} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantancous plate voltage (the r.f. output voltage must be proportional to the plate voltag(e) for the modulation to be lincar. This will be the ease when the amplifior opromtes under ('lass (' couditions. The linearity depends upon having suffieiont grid excitation and proper bists, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating eonditions for ('lass C' operation are deseribed in the chatper on transmitter\%. The grid bias and grid current reguired for plate modulation uabally are given in the operating data supplied by the tube manufacturer; in gencral, the bias should be such as to give an operating angle of abont 1 '20 degrees at the d.ce plate voltage used, and the grid excitation should be great enough so that the amplifieres pate coflionery will stay ronstant when the plate voltage is variad over the range from zoro to twire the ummodulated value. For best linearity, the grid hias should be obtaned from a fixedbiass source of about the cut-off value, supplemonted by a rough grid-leak hias to bring the total up to the required operating bias.

Fig, $10-6$ - Plate and sereen modulation of a Class \mathbf{C} r.f. amplifier using a sureen-grid tube, The plater r.f. by-pases capacitor. (i. Ahould have reasonably hiow reatance at all ambiof froquencies: a value of 0.00) to $0.00, \mu \mathrm{f}$. is gencrally satiffactory, 'The sereen bypares,

II hen the madulated amplitior is a beam tetrode the suppresor comeretion shown in thia diagram may be iphored. If a bata terminal is provided on the tulue for the Deam-forming plates, it ahonld be comene tad as recommended by the tule manufacturar.

The maximum permiswible d.e. plate pown imput for 100 per cent modulation is twire the
 alble from the mondalator. This input is ohtainmed be varying the loading on the amplifier (kemping its tank (ifreuit tuned to resonamere) until the product of d.e. plate voltage and plate curvent is the devired penere. The modalatiag impedance under these eonditions must be transformod to the proper value for the motulator be using the eorecet ontput-transomer turns ratio. This point is eonsidered in detatil in the chaptere on modulator design.

Neutralization, when triodes are used, shonal be as nearly perfert as pessible, situe regemeration may canse monlinarity. The amplifior also must be completely frow from parasitic oserilat tions.

Athough the total power input (d.e. plas atudio-freguencs are.) increases with modulation, the d.e. plate carrent of a plate-mutulated amplifier should mot change when the stare is moduhated. This is berause wath increaso in plate voltage and plate eurront is batituced by an equiatlent decrease in voltage and current on the next

Fig. 10.7- Pate modulation of a beam tetrode. using an audio imbedance in the serven rirent. The value of
 pass capaciturs 6 a and (en
half-cicle of the morlulating wave. D.c. instruments cannot follow the a, fo variations, and since the average de. plate eurrent and plate voltage of a property-operated amplifier tho mot change, noither to the meter remblines. A change in plate curvent with mondalation imdieates monlimearite. On the other hand, a thermocouple r.f. :ammoter conmeded in the antemat on transmission line will show an inerease in r,f, current with modulation, because instruments of this typerespond to powar father thath to current or veltage.

Screen-Grid Amplifiers

Serecon-grid tuhes of tha pentode or beamtetrode type call be usent as ('lass ('phatemondalated amplifiers be applying the modulation to both the plate and sermen prid. The natad method of ferding the seremgrid with the ueressary dae. and modulation voltages is shown in Fig. $10-1 \mathrm{i}$. The dropping resistor, l, shoull be of the promer
 uncher stady camier conditions. Its salue can be caldentad be taking the difteremer berweren plate and sereon voltages amd dividing it bey the rated scroert eurrent.

The modulating impertaner is found be dividing the d.e. plate voltare by the sum of the plate and serem currents, Fhe plate voltage multiplied by the sum of the two currents gines the power ingut to be usod ats the |asis for detarmining the audin mower reguired from the modulator.

Mondatation of the sarem along with the plate
 grealere athere on the plate coment than the plate voltage dose The modelation chatamerist ie is nonlinear if the plate alome is modalated. However, beam tetrodes an be mondalated satisfactorily be applying the morlulating power to the plate rirecuit alone, provided the sereen is "floating" at andio freguemeios - that is, connerted to its d.e. supply through an atudio impedanere. Under these conditions the sereen beeomes self-modulating, Deceaze of the vatriations in s.reem courent that occur when the plate voltage is varied. The rircuit is shown in Fig. 10-7. The choke eoil L_{1} is the adudio impedance in the sereen eirevit; its inductatuee should be latege enough to have at reaterane (at the ionerst desired andio frequeney) that is mot less thatu the imperfanere af the serewor The sereen impedance eat be taken to be approximately equal to the d.e. sereen voltage divided be the dic. sereen current in amperes.

Choke-Coupled Modulator

The chokerouphed ('lass . 1 moduhtor is shown in Fig. 10-s. Beratus of the redatively low pown output and plate dificioney of a (class 1 amplifier, this methond is sddem used cxeront for at few sperial applications. The andio prower ouput of the modulator is combined with the d.e. power in the plate rimenit, as in the rase of the trans-former-couplad modulator. But there is considerably less freedom in adjustment, since no transformer is available for matching impedanes.

The medulating impedance of the ref. amplifier must be adjuated to the value of load impedance
required by the partiendar modulator tube used, and the power input to the r.f. stage should not exered twice the rated af.f. power output of the modulator for 100 per cent mordulation. A complication is the fact that the plate voltage on the

Fip. 10.8 - Cloke compled Class A modulator. 'The cathode resistor, K_{2}, should have the normal value for operation of the molulator tathe as al (lass inower amplifier. The modulation dooke, hi, should tre ohenrss or more. I value of 0.001 to $0.001 . \bar{p} \mu$. is satisfartory at Cis, the r.f. amplifier plate by-pass capacitor. See text for diseussion of C_{1} and R_{1}.
modulator must be higher than the plate voltage on the r.f. amplifier, for 100 per cent modulation. This is beeanse the a.f. voltage devoloped by the modulator camot swing to aroo without a great deal of distortion. R_{1} provides the neressary die. voltage drop between the modulator and r.f. amplifier, but its value camot bo calculated without using the published plate family of curves for the modulator tule used. The d.e. voltage drop through h_{1} must equal the minimum instantaneous phate voltage on the modulator tube under normal oprerating conditions. (1, an andiofrequency hepass aross h_{1}, should have a (alparitance such that its reactanee at 100 cyeles is not more than about one-tenth the resistaner of R_{1}. Without $R_{1} e_{1}$ the pereentage of modulation is limited to 70 to 80 per cent in the average case

GRID MODULATION

The prineipat disadrantage of plate motulattion is that aconsideratble amount of adio power is necessary: This requirement cam be avoided by applying the modulation to a grid element in the modulated amplifier. However, the emvenience and economy of the low-power modulator must be paid for, since no modulation system gives something for nothing. The inereased power output that arompanies motulation is patid for, in the case of grid modulation, by a reduction in the
carrier power output obtainable from a given r.f. amplifier tube, and hy more rigorous operating requirements and more eomplicated adjustment.

The term "grid modulation" as used here applies to all types - control grid, sereen, or suppresson - since the oprating principles are exactly the same no matter which grid is actually modulated. With grid modulation the plate voltage is constant, and the inerease in power output with modulation is obtabned by making both the plate cument and plate efficomer vary with the modulating signal as shown in ligg 10-9. لor

Fig. 10.9 - In a perfect grid-modulated amplifier looth plate current and plate effieieney womld vary with the instantanesus modnlating voltake as shown. When this is an the modulation chararteristic is as given hy earve A in Fig. 10.1, and the peak envelope output power is four times the ummodulated carrier power. 'lhe variations in olate current with modulation. indicated ahove, do not register on a dee meter, so the plate meter shows no change" when the signal is modulated.

100 per cont modulation, both phate current and efficiency must, at the peak of the modulation up-swing, one twiee their earrier values. Thus at the modulation-envelope peak the power input is doubled, and since the phate afficieney abso is doubled at the same instant the peak envelope output power will be four times the carrier power. The effiepeney obtainable at the envelope paak depends on how carefully the modulated amplifier is adjusted, and somotimes rath be as high as so per eobl. It is generally less when the amplifier is :adjusted for good linearity, and under average conditions a round figure of $\frac{2}{3}$, or tif per cent, is representative. The efficience without modulat
 per cent. This low average officiency reduces the permiswible carrier output to about one-fourth the power obtainable from the same tube in c.w. operation. and to about one-third the carrier output obtainable from the tute with plate modulation.
The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. A sperech amplifier eapable of dolivering 3 to 10 watts is usually sufficient.

Generally spoaking, grid modulation does not give quite as linear a modulation characteristic as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with careful adjustment it is capable of satisfactory results.

Plate-Circuit Operating Conditions

The d.c. plate power input to the modulated amplifier, assuming a round figure of $1 / 3$ (33 per (ent) for the plate efferency, should not exceed 13 times the plate dissipation rating of the tube or tubses used in the modulated stage. It is generally best to use the maximum plate voltage permitted by the manufacturer's ratings, beeause the optimum operating conditions are more easily achieved with high plate voltage and the linearity also is improved.

Pxample: T'wo thbes having plate diwsipation ratings of 5 5) watts coleh are to be used with prid modulation.
The maximum permassible power input, at 33% eflicienes, is
$I^{\prime}=1.5 \times(2 \times 5 i 5)=1.5 \times 110=10.5$ witts The maximum recommended plate voltaze for thase tubes is 1500 volte. Insing this figure, the average plate curront for thr two tubse will be

$$
I=\frac{P}{E}=\frac{16.5}{1500}=0.11 \mathrm{amp}=180 \mathrm{mat} .
$$

At 33% eflicieney, the carrire output to be expertod is $\overline{3}$ watte.

The plate-voltagn/plato-curront ratio at trice carrier plate currobt is

$$
\frac{1.500}{2.20}=6.8
$$

'The tank-eireuit L / C ratio should be elrosen on the hasis of twice the arerage or carmer phate current. If the L / C^{\prime} matio is hased on the plate voltage/plate eurrent ratio under earrier eonditions the Q may be too low for good coupling to the output circuit.

Screen Grid Modulation

Sereen modulation is prohably the simplest form of grid modulation and the last critical of adjust ment. The most sat isfactory way to apply the modulating voltage to the screen is through a transomer, as shown in Fig. 10-10. With practical tubes it is neressary to drive the sereen somewhat negative with respect to the cathode to get complete cut-off of r.f. output. For this reason the peak modulating voltage required for 100 per cent modulation is usually 10 per cent or so greater than the d.e screen voltage. The latter, in turn, is approximately half the rated screen voltage recommended under maximum ratings for ew. operation.
The audio power required for 100 per cent modulation is approximately one-fourth the d.c. power input to the screen under c.w. operation, but varies somewhat with the operating conditions. A receiving-type atudio power amplifier will suffice as the modulator for most transmitting tubrs. The relationship between screen voltage and screen current is not linear, which means that the load on the modulator varies over the

Fig. 10-10 - Screen-grid modulation of beam tetrode. Capacitor (: is an r.f. by-pass capacitor and should have high reactance at andio fregucncies. A value of 0.012 zf . is satisfactory. The srid leak can have the same value that is used for c.w. operation of the tule.
audio-frequency eycle. It is therefore highly advisable to use negative feedback in the modulator cireuit. If exerss andio power is available, it is also advisable to load the modulator with a resistance (h in Fig. 10-10) its value being adjusted to dissipate the excess power. Enfortunately, there is no simple way to determine the proper resstance (except experimentally, by obsorving its effert on the modulation envelope with the aid of an oscilloscope.

On the assumption that the modulator will be fully loaded by the sereen plus the additional load resistor R, the turns ratio required in the coupling transformer may be calculated as follows:

$$
N=\frac{E_{\mathrm{d}}}{2 . \overline{ } \sqrt{P^{2} R_{\mathrm{L}}}}
$$

where S is the turns ratio, secondary to primary; h_{1}, is the rated sercen voltage for cow, operation; P is the rated audio power output of the modulator; and R_{L} is the rated load resistance for the monlulator.

Adjustment

A screen-modulated amplifier should be ardjusted with the aid of an oseilloscope connerted as shown in Fig. 10-11. A tone soure for modnlating the tranmitter is a convenience, since a steady tone will give a steady pattern on the oscilloscope. A steady pattern is easier to study than one that flickers with voice modulation.

Having determined the permissible carrier plate current as previously deseribed, apply rit. excitation and d.e. plate and screen voltages. Without modulation, adjust the plate loading to give the required plate eurrent, kerping the plate tank rireuit tuned to resoname. Next, apply modulation and increase the modulating voltage until the modulation characteristic shows curvature (sece later section in this chapter for use of the oscilloscope). If (rurvature occurs well below 100 per cent modulation, the plate efficiency is too high at the carrier level. Inerease the plate loading slightly and readjust the expitation to maintain the same plate current: then apply moxlatation and check the characteristie again. Continue until the chatracteristic is as linear as possible from zero to twice the carrier amplitude.

In general, the amplifier should be heavily

Fin. 10.11 - I sing the ospillosenge for adjustment of a sereen-monatated amplifier.
I. and C: should thme to the operating frequenes, and may be conpled th the Iransmitter tanh circuit throngh at
 voltage th the horizontal blates of the owilloseope hombl hase a voltage rating equal to at leat twice the dae voltage on the prid that is bring modulated.
lowded. ['nder proper operating ronditions the phate-anment dip as the amplifior phate eirenit is funed through resomane will be litthe more tham just diseremible. It is desirable to operate with the grid current ans low as possibles, since this reduees the sereren eurrent and thus redues the amoment of power required from the modulator.

With proper adjustment the linearity is good up) to about 90 per rent mondation. Whas the serecol is driven negative for 100 per rent modulation there is a kiak in the modulation charattorisife at the zoro-voltage point. This introduces a small amonat of envelope distortion. The kink cant le wemoved and the over-all linearity improved hy applying a small amount of modulat ing vo'iage to the control grid simultaneonsly with serean modulation.

In an adternative adjustmont mathod mot requiring ath weillosenpe (har r.f. amplifior is first tumed up for masimum output widhout modelattion and the rated d.e. seren voltage (fiom a fixed-voltage supply) for (e.w. opration appliod.
 until the output ju-t stares to fa! ofï, at which point the resomance dip, in plate emerent shomble the small. Note the plate eurrent :mm, if posible,
 the d.e. sereen veltage until the phate charent is
 rent should alko be one-half its previous value at this swern volatge The amplifier is :hen reads for monduation, and the modulating voltage may be inereased until the pathe current just stathe to shift umand, which indicates that the amplifier is modulated loan per cont. Wibh voier modulation the phate current should remain steady, or show fust an oreasiona! smatl upward kick on intermitterit peaks.

"Clamp-Tube'" Modulation

A mellox of serem-qrid mundatation that is
 protective tube ("elamp" tubc) is shown in Fig.

10-12. An atudio-fremenery signal is applied to the grid of the elamp, tube, which then beromes a modulator. The simplicity of the cirenit is somewhat dereptive, sinere it is considerathy more diffieult from a design standpoint than the transformerecoupled arrangement of Fig. 10-10.

For proper modulation the clamp tabe must be

 tion with the ehoke-coupled ('lass A plate mondulator of Fig. 10-8 exerpt that a mesistanere. Re is substituted for the ehoke. Re in the usual case is the sereen dropping resistor normally used for (e.w. operation. Its value should be at loast two on three times the kod resistaner required by the (lass a modulator tube for optimum andiofregueney out ght. Lafortumatoly, relatively little

Fí. 10.12 - Sorren mondulation liy a "clamp" tulor The erial leat is the mor:nal value for rew. opreration and

 for Clate Inaration of the modubator tube, but camot be calinalatid unless triode curves for the tube are available.
information is available on the triode operation of the tubers most frequently used for sereenprotertive purposes.

Like the chowe-compled modulator, the champtube modulator is incabable of mondulating the r.f. stage 100 per cont unkess the dropping resistor, f_{1}, and audio bypass, f_{1}, are incorparated in the cirenit. The samedesign consideratioms hohl, with the addition of the fact that the sereen must be driven negative, mot just to zoro woltare, for 100 per eent modulation. The modulatom tube must thus be wherated at a woltager ramging from 20 to to per eent higher than the serem that it modulates. Proper design requires knowledge of the soren charactoristics of ther r.f.amplitier and an wot of phate-voltage plate-emrent curve on the modulator tube as at trionle.

Adjustment with this sistem, once the dowign voltages hate bed dotermined, is carried out in the same way as with tramsformer-coupled serem matuhation, preferably with the ascilhacope. Without the wedloseoper, the amplifier mase first be adjusted for ew. operation ate doweribed barioer, but with the modulator tule remowed from its socket. "Ihe modulator' is then rephamb, amb the cathode resistanco, K_{3}, olljusted to reduce the amplificr plate current to one-hati its c.N. value. Tho amplifier plate current shomlat remain constant with modulation, or show just a smatl upWart flicker on oreatiomal voice peaks.

Controlled Carrier

As explained earlim, a limit is pland on the output ohtaibathe from at grid-mondalation systom loy the low r.f. amplifer phate eflemene (appoximately :3:3 per cent mular mommhalatel carrine
 modulation, siner the output incrasis whike the d.e. input remains onostant, and rawhere maximum in the neighborhoud of ato pre cent with 100 per cent sime-wave moxhbation. If the power input to the :mmplifier catn be redured during perionts when there is litthe or no mondubation, thes redueing the platere loss, whantage can le taken of the higher effiremoney at fulf modulation to ohtatin higher efferetive output. This cath be done he varying the power input to the modulated stage , in aroordanor with average variations in voice intomsity, in sum a way as to mantain gust suffiriont carrior power to kerp the modulation high, hut mot exeereding 100 per cont, under all comditions. Thus the carrior amplitude is controlled hy the voire intensity. Iroperly utilized, controlled carrow permits ineroasing the offoctive carrice output at maximum level to a value abont equal to the rated plate dissipation of the tube or twier the output ohtaimable with constant carrier.

It is desirable to control the power input just enourh so that the plate loses, without modulation, is safely bolow the tube rating. Fxaswive conteol is disadvantageous beowase the distant recoiver's anve. system must continually follow the variatons in average signal level. The cirenit of Fits. 10-1:3 permits adjustment of both the maximum and minimum power imput, and although somewhat more complicated than some

Fig, $10-13$ - (imenit lor carrier control with serean
 ats the control amplifier and a blof is suitalile ats at carrine-control tubr. Ti is an intor-tage andio transformor having a l-fo-l or lares thrns ralios. Ris is a
 resistor for the modulator. A permaninm ersalal may for tued as the rectilier. Other values are discussed in the text.

- irenits that have berom used is ate tuatly simpler to operate becentise it separates the finctions of modulation and carrier control. A portion of the audio voltage at the modulator grid is applied 10 a (lans A "control amplitier" which drives a rectifier cirenit to produre a d.e. voltage megative with respere to gromend. © filters out the andio variations, loaving a d.e. voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to cont rol the doe screen voltage and thas the det. camier level. Aaximam ontput is obataned when the carriorconimol tube grid is driven to antoff, the voire level at which this oreurs being dotermined by the setting of R_{4}. Minimum input is sot to the desired level (asually about equal to the plate dissipation rating of the modulated stage bey adjusting R_{2}. $R_{i z}$ may 1_{x} the nomal soreco-dropping resistor for the modulated buam terrode, but in cotse a soparate sorech supply is used the resistanere need be just harge enough to give sufficient. voltage drop to redure the no-modulation power ingut to the desired value.
$r_{1} h_{1}$ shombld have at time constant of atmout 0.1 socomel. The time comstant of tolis should tre no latger. Fiurthor dedals may be foond in deve for April, 19\%1, page (it. An oseilleseope is required for proper alljustment.

Suppressor Modulation

Pontole-type tubers do not, in qencral, modulate woll when the modulating voltage is appled to the sereen grid. However, a satisfactory modulation charateristic can be ohtained by applying the modulation to the suppreserser grid. The cirenit armagemont for suppresoor-rrid modulation of a pentonde tule is shown in Fig. 10-1t.

The methor of adjustment closely resembles that used with serven-grid modulation. If an oseilloseope js not available, the amplifier is first :uljusted for optimum c.w. output with gero bias

Fig. 10-14-Suppressor-grid modulation of an r.f. amplifier using a pentodetype tube. 'The suppressorgrid r.f. by-pass caparitor, C, should he the same as the grid by-pass capacitor in control-grid modulation.
on the supprossor grid. Negative bias is then applied to the suppressor and increased in value until the plate current and r.f. output current drop to half their original values, When this condition has leen reached the amplifier is ready for modulation.

Since the suppressor is always negatively biased, the modulator is not reguired to furnish any power and a voltage amplifier can be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will be of the order of -100 volts, The peak a.f. voltage required from the modulator is equal to the suppressor hias.

Control-Grid Modulation

Although control-grid modulation may be used with any type of r.f. amplifier tube, it is seldom used with tetrodes and pentodes because sereen or suppressor modulation is generally simpler to adjust. However, control-grid modulation is the only form of grid modulation that is

Fif. $10-15$ - Control-grid modulation of a Class C annplifier. The r.f. urid by -pase capacitor, C., shonld have high reactance at andio frequencis: ($0.00 \mathrm{~B} \mu \mathrm{f}$. or less).
applicable to triode amplifiers. A typical triode eireait is given in Fig. 10-15.

In control-grid modulation the d.e. grid bias is the same as in normal (lass (amplifier service, but the r,f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.c. bias changes the instantaneous grid bias at an audio rate, thus varying the operating conditions in the grid circuit and controlling the output and efficiency of the amplifier.

The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier to vary, which places a variable load on the modulator. To reduce distortion, resistor R in Jig. 10-15 is conneeted in the output circuit of the modulator as a constant load, so that the over-all load variations will be minimized. This resistor should be equal to or somewhat higher than the load into which the modulator tube is rated to work at normal audio output. It is also recommended that the modulator circuit incorporate as much negative feedback as possible, as a further aid in reducing the internal resistance of the modulator and thus improving the "regulation" - that is, reducing the effect of load variations on the audio output voltage. The turns ratio of transiormer T should be about 1 to 1 in most cases.

The load on the r.f. driving stage atso varies with modulation. This in tum will canse the excitation voltare to vary and may cause the modulation characteristie to be nonlinear. To overcome it, the driver should be capable of two or three times the r.f. power ontput actually required to drive the amplifier. The excess power may be dissipated in a dummy load (such as an incandescent lamp of appropriste power rating) that then performs the same function in the r.f. circuit that resistor R does in the audio circuit.

The d.e. bias souree in this system should have low internal resistance. Batteries or a voltageregulated supply are suitable. (irid-leak bias should not be used.

Satisfactory adjust ment of a control-grid modudated amplifier requires an oscilloscope. The scope eomections are similar to those shown for sereen-grid modulation in Fig. 10-11, with audio from the modulator's output transformer secondary applied to the horizontal plates through a blocking capacitor and volume control, and with r.f. from the plate tank circuits coupled to the vertical phates. The adjustment procedure follows that for screen modulation as previously described.

CATHODE MODULATION

Circuit

The fundamental circuit for cathode modulation is shown in Fig. 10-16. It is a combination of the plate and grid methods, and permits a carrier efficiency midway between the two. The andio power is introduced in the cathode circuit, and both grid bias and plate voltage are modulated.

Because part of the modulation is by the

fig. 10.16 - Cireuit arrangement for aathode modulation of a Clazs C: r.f. amplifior. Vahme of b-pass rapacitors in the r.f. cireuits shombla be the same ats for other modulation methods.
control-grid method, the plate efficioncy of the modulated amplifier must vary during modulation. The earrier efficioney therefore must be lower than the efficience at the modulation woik. The required reduction in efficioney depends upon the propertion of grid modulation to plate modulation; the higher the pereentage of plate modulation, the higher the permissible carrier efficioney, and vies versa. The audio power required from the modulator also varies with the pereentage of plate modulation, being groater as this peremtage is ineroased.

The way in which the varions quantities vary is illustrated by the curves of Fig. 10-17. In these curves the proformane of the wath-ode-modulated r.f. anyplifier is ploted in terms

Fig. 10-17 - Cathode-modalation performanee corves, in terms of purernaze of plate modulation plotted agatimat prowntage of Class (: telephong tube ratinga. Win - I.cr. plate input watts in terms of percentage of plate-modalatinn rating.
Wo - Carrier outpat watts in per cent of plate-modula.

Wa - Andin fower in fer cernt of ine, wati- intunt.
Xp - llate e?ficienc! of the amplifior in peremtate.
of the tube ratings for plate-modulated telephony, with the perrentage of plate modulation as a base. As the proventage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per ernt phate modulation and no grid modulation, is at the right (.1): pare grid modulation is represented by the left-hand ordinate (B and C^{\prime}).

Fixample: Assume that the r.f. tube to be used has a 100 , ,late-modulation rating of 250 watts input and will pive a corriar power output of 190 wats at that input. ('athode modulation with 40'o plate modulation is to be used. From Fig, 10-17, the earricr efliciency will be 56^{\prime}; with 40^{\prime} c plate modulation. the permissible d.e ingut will be 65° : of the phate-modulation rating, and the r.f. output will be 48 of the plate-modulation rating. That is,

$$
\text { Power input }=2.50 \times 0.65=160,5 \text { watts }
$$

1'ower output $=1!\% \times 0.48=91,2$ watts
The reguired andio power. from the ehart, is equal to 20 ; of the d.e. inpat to the modulated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts
The modulator should supply a small amount of exter power to take care of hosses in the grid cirenit. These should not exaed four or five watts.

Modulating Impedance

The modulating impedance of a cathoxtemodulated amplifior is approximatery repual to

$$
m \frac{E_{1}^{\prime}}{I_{1}}
$$

where $m=$ l'erentage of plate moxhatation (exprossed as a docimal)
$\mathscr{E}_{1}=\underset{\substack{\text { D.e. plate } \\ \text { amplifior }}}{\text { l }}$ voltage on modulated
$\left.I_{1}=1\right), c_{\text {, phate }}$ current of modulated amplifier
Example: Issume that the modulated amplifier in the wample above is to operate at a plate potential of 12.50 volts, Then the d.e. plate current is

$$
I=\frac{I^{\prime}}{E^{\prime}}=\frac{162.5}{12.50}=0.13 \mathrm{amp} \cdot(130 \mathrm{ma})
$$

The modulatiner impedance is

$$
m \frac{E_{1}}{I_{1}}=0 . \frac{12.20}{10.13}=3846 \text { ohms }
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matehed to the load required be the modulator tubes by proper choice of the turns ratio of the modulation transformer, as described in the chapter on spereh equipment.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. More exatation is required as the pereontage of plate modulation is inereased. Grid bias should be considerably beyond cut-off; fixed bias from a supply having good voltage rogulation is preferred, especially when the prerentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher per-
centages of plate modulation a combination of fixed and grid-loak bias can be used. since the variation in reetified grid eurrent is smaller. The grid leak should be bypased for andio frecuencies. The pereentage of grid modulation maty be regulated be choice of a suitable tap on the modulat ion-t tansformer serondars.

The eathode cirenit of the modulated stage must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be suppliod from a separate translormer, The filament hy-pass raparitors shoud not be larger than alout 0,002 μ f., to a void bypassing the andio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most resperts, the aljustment procedure is similar to that for grid-bias modulation. The eritioal adjustments are antema loading. grid bias, and excitation. The proportion of grid-hias to plate modulation will determine the operating conditions.

Adjustments should be mate with the aid of an oscilloseope connered in the same way as for grid-bias modulation. With proper antemat loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modulation, As in the case of grid-hias modulation, too light antema loading will cause Hattening of the nuward peaks of modulation as also will too high exatation. The cathote current will be practically constant with or without modulation when the proper operating conditions have been cstablished.

LINEAR AMPLIFIERS

If a signal is to be amplified after modulation has taken plare, the shape of the modulation envelope must be preserved if distortion is to be avoided. This reguires the use of a linear amplifier - that is, one that will reproduce, in its
output cirenit, the exact form of the signal envelope applied to its grid.

Linear amplifiers for amplitude-mondalatedr.f. signals camot be operated with the grid hias bevond cut-eff. To do so would mean that the part of the modulation envelope near the zero axis (ser lig. $1(1-1 \mathrm{C}$) would be elipped. since there would be times when the instantaneous signal voltage would be below the minimum value that would canse plate-current flow. The result would be overmodulation of the trpe shown in lig. 10-3.

Hownery, the grid bias maty be sot at any value less than cutoff, ('sually, such amplifiers are operated at or near the Class 13 condition - that is, with the grid hias at or somerohat less than cutoff. Dthough Class B operation results in considerable distortion of the individual r.l', cereles applied to the grid, the modulation arudope is not distorted if the operating conditions are chosen property, The r.f. distortion probluers only r.f. harmonies, and these ean be climinated by the selectivity of the output tank cirenit.

A limetr amplifier used for atm. has the same diswdyantages with respert to efficioney that grid modulation dors. The reason also is much the same: since the amplifier must hande a peakanvelope power four times as great as the unmodulated carrier power, it camot be operated at its hall capabilities whon it is amplifying only the ummodulated carrier. The plate affieveney of the amplifier varies with the instantaneons value of the modulation envelope in the same way that it varios with the instantaneons modulating voltage in grial modulation (Fig. 1(1)-9). Hence the efferency at the momodulated carrier level is only of the order of $30-35$ per cont. Berause of this low efficience, linear amplifiers have had little or no application in amateur am. tramsmitters. If the low efficieney cam be tolerated, it often is simpler to use grid modulation of the same amplifier and thus avoid the romplications in design and adjustment that usuably aceompany the operation of a linear :mplifier.

Checking A.M. Phone Operation

USING THE OSCILLOSCOPE

lroper adjustment of a phome tramsmitter is aided immeasurably by the oscilloseope, The seope will give more information, more acenrately, tham almost any collection of other instruments that might be named, fouthermore, an oscilloscope that is cutirely satisfactory for the purpose is mot mecessarily an exponsive instrument: the eathone-ray tube and its power supply are about all that are needed. Amplifiors and linear sweep circhits are by no monas necesary.

In the simplest seope cirenit, radio-frequency voltage from the modulated amplifier is applied directly to the wrical deflection plates of the tube, and audio-fremoney voltage from the modulator is applied to the horizontal deflection
plates. A : the instantameons amplitude of the audio signal varies, the r.f. output of the transmitter likewise varies, and this proluces a wedgeshaped pattern or trapezoid on the sereen. If the oscilloseope has a built-in horizontal sweep, the r.f. voltage is applied to the vertical plates as bofore (never through an amplifier) and the sweep will produce a pattern that follows the modulation envelope of the trinsmitter output, provilad the swerp frequeney is lower than the modulation frequeney. This proluces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The comections for the wave-rmelope pattern are shown in lige, 10-18A. The vertical deflertion plates we coupled to the amplifier tank eoil (or

Fig, 10.18 - Methorls of commecting the ascilloseone for modulation checking, I - conncelions for wave-envefobe battern with any modulation method; B - conmections for trapezoidal pattern with pate modalation. Se Fig. IO-Il for soom connections for trapezoidal pattern with sereen modalation.
an antenna coil) through a low-impedance (coax, twisted pair, etc,) line and pick-upeoil. As shown in the altemative drawing, a resonant cireuit tuned to the operating frequency may be connected to the vertical plates, using link coupling between it and the transmitter. This will elimimate r.f. hammonics, and the tuning control provides a convenient means for adjustment of the pattern height.

The position of the pick-up coil should be varied until an ummodulated carrier pattern, Fig. 10-1913, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of tho pattorn somewhat moro tham half the cliameter of the sereen. When voice modulation is applied, a rapidly-changing pattern of varying height will be obtained. When the maximum height of this pattern is just twiee that of the carrier alone, the wave is being modulated 100 per cent. This is illustrated by Fig. 10-191), where the point X represents the horizontal swep line (reference line) alone, $Y Z$ is the carrier height, and $P(Q$ is the maximum height of the modulated wave.

If the height is greater thim the distance $P(Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the soreen. Overmodulation in either direction may take place even
when the modulation in the other direction is less than 100 per cent.

The Trapezoidal Pattern

C"mmections for the trapezoid or wedge pattern as used for checking plate modulation are shown in Fig. 10-18B. The vertical plates of the e.r. tube are coupled to the transmitter tank through a pick-up loop, preferably using a tuned circuit, as shown in the upper drawing, aldustable to the operating frequencr. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width call be obtained; a 0.25 -megohm volume control can be used at R_{2} for this purpose.

The resistance required at R_{1} will depend on the d.c. plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in series should be about 0.25 megohm for each 100 volts of d.e. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.75 merohms, 0.25 megohm at R_{0} and the remainder, $3 . \overline{0}$ megohms, in R_{1}, R_{1} should be composed of individual resistors not
(A)

(F)

(G)

(I)
100% MODULATION

(J)

Fig. 10.19-Wave-envelope and trapezoidal patterns representing different conditions of modulation.

Jarger than 0.5 magrohm eath, in which ease 1-watt resistors will be satisfactors.

For grow low-frequency compling the capacitamer, in miorofatals, of the blowing capacitor, (', should he approximately $0.001 / R$, where R is the total resistane ($R_{1}+R_{0}$) in megohms. In the example above, where R is :3.an mexohms, the caparianer should bo $0.00+/ 3 . \bar{a}=0.001$ μ., approximately: The volture rating of the caparitor shombld be at least wioe the d.e. woltage appliod to the modulated amplifiere. The caparitanere can le made upod two or more similar units in sorices, so long as the total cabacitanere is equal to that rergurend, in case a simgle unit of sufferiont roltager rating is not abablable. Two or mome units may be hased in paralled if eaparitoms havine adequate wolage rating but insuffiemont caparitance are available.

The eorrexponding seope eomeretions for serem modulation were given in lige, 10-11. This cirenit will be satistadory for das sorem voltages up to 200 volis or so, which will inehude most beam tetromes. If the die. sereen voliage, adjusted for proper modutaion, axerels 200 volis a voltare divider similar to that showa in Fig. 10-Is should lo used, the values being calenlated as deseribed above using the serem voltage instad of the late vollage.

Trapazoilal pattoms for varions conditions
 cach alongside the eorresponding wave-rmes lope pattorn. With no sigmal, omly the eathomeray spot appeats on the sereon. When the unmodulatod carrior is applied, a bertieal line appears; the lengeth of the line should be allusidet, bey means of the pick-up eoil coupling, to a conwonient value. When the carrier is mondalated, the wedge-shaped pattern appears; the highor the modulation perentage, the wider and more pointed the wedge bromus. At 100 por emat modulation it just makes a print on tho axis, \boldsymbol{N}, at one (ond, and the height, $P^{\prime}()$ at the other ombl is collat to twier the carriot hoight. F\%. Overmodulation in the upward dieretion is indicated by indeased height over $I^{\prime}()$ and downwarl bex an extension along the axis \bar{V} at the pointed end.

Checking Transmitter Performance

The trapmondal pattern is fat more usoful thath the wave-ancolope patteralor cheroking the oprotation of at phome tramsmittor. The latter type of pattorn is of use principatly lon chereking mombat
 is ferl with a sine-wave tone for elose examination of the matlom it is diffieult to tell with sufliement arearace whether the framsitare is operating limeary. Asw, wen when disturtion is exident in the waveromedope pattem thore is no dere as to whother it js oreurbing in the modulated amplifier or is catased by a defore in the spereh agnipmont.

On the other ham, the traperoidal pattern is artually a graph of the medulation charatemist ie of the modulated amplifer". The sloping sides of the wodge shew ther.f. amplitude fon evory vale of instantanmous mumbating voltage, exartly the type of curve plotted in ligg. 10-1. If these sides

/iz, 10.20 - Top - a typical trapezoidal pattern ohtained with sercen modulation adjusted for optimum romblitions. The sudern chang in slope wear the proint of the wedge acens when the suren wollage pasises thromgh nero. Center - If there is me abdio distortion, the unmodulated catrier will have the heright and position slown by the white line sumerimposed on the sinewave modulation pattern, Bothom- Eiverh-harmonic distortion in the andio swiem, whon the andio simal appliod to the spred amplitier is a sithe water, is indirated by the fact that the modulation pattern doee not rextend equal distanors either side of the unmodulatid carrier.
are werfectly straisht limes. as drawn in Pig. 10-19 at Il and I, the modulation chatacteristie is linear. If the sides show earsature, the chatare toristic is nonlinear to an extent that is shown bey the degree to which the sides depart from perfect straightness. This is true regardless of the watve form of the morkabating voltage.
lf the spereh sysom can be driven by a good audio sint-wave signal instead of a microphone, the traperomal pattern also will shew the presence wif exen-hammaic distontion (the most common type, epereially whon the moxdatato is werloaderl) in the sperech amplifior or mohalator. If there is no distortion in the andio system, the trapezoid will exteme horizontally ergal distanes on cateh side of the vortionl line reprementing the mamedulated cartier. If thore is crom-harmonic distortion the tratpeasid will externd farther to one side of the umoklalaternatricer pasition that to the other. This is shown in Fige. 10-20, The prothable eatuse is inadornate power oupht liom the modulator, or incorrect load on the modulator.

An audio oscillator having reasomably good sine-wave output is highly desirable for testing both speech equipment and the phome transmitter as a whole. A very simple audio oscillator such as is shown in the chapter on measuremonts is quite adequate. With such an oscillator and the seope, the pattern is steade and ean be studied elosely to determine the effects of various oprerating adjustments.

The patterns shown in Figs, 10-20 and the top four groups of fig, $10-21$ show both eorecet and incorrect transmitter adjustments. The object of modulated-amplifior adjustment is to obtain a pattern closely resembling that in Fig. 10-2?A, which shows excellent limearity (sides of wodge pattern quite straight) ower the whole chamateristic at 100 per cent modulation. Since ao modulated amplifior is perfect, the sides will never be perfectly straight, but a close approach is possible, Different mothods of modulation give different characteristie results. Fig. $10-21 \mathrm{~A}$ is trpical of correctly-operated plate modulation. With control-grid modulation the sides usually are somewhat concave, particularly near the point of the traperoid, while sereen moxlulation gives the charactoristic pattorn shown in Fig, 10-20. As mentioned marlier, it is necessary to drive the sereen somewhat nerative in order to reach eomplete phatcocurrent cut-off and thas modulate 100 per cent downward.

Aside from overmodulation downward, Fïr. 10-21B, which is easily cured by kerping the specech amplifier gain or sperech intensity below the point that auses it, the most common type of improper operation is shown be the pattern of Fig. 10-21(, The flattening at the large end of the trapezoid results from the inability of the modulated amplifier to deliver sufficient power output on the modulation up-poak, With plate morlulation the most likely canse is insufficiont grid excitation or incorreet grid hias or both. With grid modulation this flattening is the result of attempting to operate the amplifier at too-high carried afficience. In this case the remedy is to inerease the loading on the output circuit and reduce the grid excitation, or both in combinattion, until the pattern sides are straight.

In this conmertion, it should be noted that while the trapezoidal pattern of Fig. 10-21(: shows nonlinearity in the modulated amplifier, the corresponding wave-envelope pattern of the same figure eould result either from this cause or from modulator overloading, With the traporesidal pattern, modulator overloading will be evident be the fact that the position of the vertical line representing the ummodulated carrior will not he at the center of the pattern (when the modulating voltige is (rut off); however, modulator overloading will not affert the shape of the traperoid. This assumes that the audio signal is a sine wave.

Outward eurvature near the point of the trapezoid, rausing it to approach the horizontal axis more slowly than would orcur with straight sides, indicates that the output power does not cherease rapidly enough in this region. It may be caused by r.f. leakage from the exciter through the final
stage. This can be checked by removing the voltage from the morlulated stage, when the carter should disappar, leaving only the beam spot remaining on the sereen (Fig. 10-19F). If a small vertical line remains, the amplifier should be carofully noutralized; if this does not eliminate the line, it is an indication that the scope is getting r.f. from lower-power stages, by eoupling through the final tank or via the pick-up loop.

Faulty Patterns

Figs. 10-19, 10-20, and $10-21 \mathrm{~A}$ through D show What is normally to be expected in the way of pattern shapes when the oscilloseope is used to check modulation, If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter.

It is important that r .f. from the modulated stage omly be coupled to the oscilloscope, and then only to the vertical plates. The effect of stray r.f. from other stages in the transmitter has been mentioned in the precoding section. If r.f. is presemt also on the horizontal plates, the patten will lean to one side instead of boing upright. If the oseilloseope camot be moved to a position where the unwanted piek-up disappeirs, a smatl by-pass (:upacitor ($10 \mu \mu \mathrm{f}$.) should be ommectod across the horizontal plates as close to the cathoder-ray tube as possible. An r.f. choke (2,is mh, or smaller) may also be connected in serios with the ungromoded horizontal plate.
"Folded" traperoidal patterns, and patterns in which the sides of the traprooded are elliptical instead of straight, Fig. 10-2lF (loft), oceur when the audio swep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stage. such pattorns are caused by a phase difference betwern the swerp voltage and the modulating voltage. The connections should always be as shown in Fig. 10-11 and 10-1813.

MODULATION CHECKING WITH THE PLATE METER

The phate milliammoter of the modulated amplifier provides a simple and fairly reliathe means for checking the performanee of a phone transmitter, although it does not give nearly as definite information as the oseilloseope does. If the modulated amplifior is perfeetly linear, its plate current will not change when modulation is applied if

1) the upward modulation percentage does not excecol the modulation capability of the amplifier,
2) the downward modulation does not execed 100 per cont, and
3) there is no change in the d.e. oporating voltages on the transmitter when modulation is applied.

The plate curent should be constant, ideally, with any of the methods of modulation disenssed in this chapter, with the single exception of the controlled-atricer system. The plate meter (amot give a reliable cherk on the performance of the latter system beeause the plate current increases

A
I'roperly-operated phone tramemitter mandalated Jot per eent.

I

F Overmenhlulation of a trans. mitter having high modulation capability. Di-kurtion ac. ctots only on the down-peaks.

C
Nonlinearity in modnlated r.f. - baje Frequently callead Ly in-ufliciant exilation of a platermondalatom amplifior or orrexatation of a grid-Dia- medulated amplilier. 'the: amplilier modulates linaraly in the downwart direwtion but the wr-peah are latturned.

1)

Overmmalalation and mone linear eneration lin-uminemt mouludation (amability). 'I Mese patterne are similar to those dirembly atmer. bur with the mesdadation arariad hesomal I (10) per reent in the downuard direrelion.

E

Owromomlulalion amel paratsitic waillations in the modntated amplitier. 'luw trape. maidal pattern alon shoms phatan diecturlien ransed by incoriert coupling between the useilloseope and audio s) stem.

F

Inoft - Phase distortion cansed by incerreret coupling betwren audien eyrtem and sacilloseroper Kizh - Multi. ghe pattern canded by inter. rent setting of owillowerone time lave comert. In lenth easers the wave is modalated 1/10 por cont.

These phonographa show varions comditions of mohblation ats diaplayed hy the wedge or trapezoidal patterns in the left-hand colums and the waveenvelope patterns in the right-hand colame. (1'hotographa reproduced through erourtés of the Allen 13. Dullont I.aboratories, Inc., I'assaic, N. J.)
with the intensity of modulation. With this swaten the platereurrent variations should be corredated with the tramsmitter performane as observed on atn ascilloseope, il the plate meter is to be used for cherking modulation

Plate Modulation

With mate mudulation, a downward shift in plate curment may indicate one or more of the followitg:

1) Insuffieiont excitation to the modulated r.f. :amplifier.
2) Insufficient grid bists on the modulated stame.
:3) R.f. amplifier not loaded properly to present the reguived valtue of modulating imperdanere to the modulator.
3) Insuflicient output caparitanere in the fitter of the modulated-amplifier phate supply.
4) D.e. input to the r.f. amplifier, under carrier emolitions, is in execso of the manaliacturers ratinge for pata modulation, Altormativels. the cathode emission of the amplifier tubes may ha fow
(i) In phata-imd-sirememodulation of tetrodes or pentodes, the sereen is not being sufficiontly modulated alones with the plate. In systems in which the d.e, sereen voltage is obtamed through a droppling resistor, a downward dip in plate earrent maty ocour
 ernogh lo bepass: andio fropucmers
5) Poor voltage regulation of the mondalatertamplifier plate supply. This maty tre amsend ha woltagre drop in the supply itsolf, when the modulated amplifier ath a (Ca ass 13 amplifior are operaterl fom the samu suphs, or mats be eatased bey volatge drop) in the primary supply from the power lite when the modulator ford is thrownom. It is madily chereked hy mestaniag the voltage with and withoat modulation. Pow line regulation will be shown by a drop in filament voltagre with modulation.
Any of the lollowing maty calles an unatad shift in phate curvent:
 :udio gain too high)
6) Incomphate mentratization of the mondelated amplifier.
7) Parasitic ascillation in the modulated amplificr.

Grid Modulation

With any type of grid modukation, any of the following maty catus : downwad shift in modu-lated-amplifier plate ceurent:

1) 'loo much r.f. excitation.
2) Insufficiont grid bias particularly with control-srid mondulation. (irid hits is usually. not critical with semen and suppmesesor modulation, the value of grid leak rerommended for c.as: opreration being satiofactory:
3) With control-mrid moklation, excrssive resistance in the biat supply.
4) Insufiement output capacitance in patasupply filter.
5) Platerafieiones too high under carrier eonditions; amplifier is not hoated heavily forough.
Berame grid modulation is not perfeetly linear (always laseso that plate modulation) a properlyoforating amplifior will show a small upward plate-entront shilt with moxdulation, 10 per cent or less with sinc-wate modulation and amounting to an oreanional upware flicker with voice. An upward plate current shift in cexess of this may be callused by
6) Orermodulation (exemsive modulating voltaly (0)
7) Rexroneration (incomplete nentralization).
8) With control-grid or suppreseor modulation, bias toongreat.
9) With seren modulation, d.e. sereen voltage too low.
In grid-modulation systems the monlulator is not mesessarily operating linearly if the plate current stats constant with or without modulation. It is roudily possible to arrive at as set of oberating conditions in which flattening of the un-puaks is just hataneed hes owermodubation downtard, mesulting in practically the same phate current as when the tramsuituer is ummendulated. 'The useillosapo provides the only eertain cheok on erid nuedulation. Whike the same tope of improper operation is possible with plate modulation, it occurs only rame.

COMMON TROUBLES IN THE PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum mass be detected hy listening to the signal on a receiser, provided the recoiver is lat conoush ansay from the thammitter to sooid weremading. The hum level should be low compated with the voire at 100 per eent modalation. Llam may eome either from the speech amplifior and modatator or from the r.f. section of the transmither. Hum from the ef. section ean bededered be exmpletely shat ting of the modulattor: if ham remains when this is dome, the powresupply filters for ane or more of the r.f. stages have insuflicient smoothing, With a humfree cardior, hum introduced by the modulator can be chereded by turning on the modulator but leatring the sperch amplifier off; power-supply filterimg is the likely souree of such hum. If earrier and modulatom are both deam, commed the speech amplifior and ohserve the increase in hum level. If the hum disappeare with the gain control at minimum, the ham is being introduced in the stage or stages preceding the gain control. The microphome also may pick up hum, a condition that can be ehocked bey removing the microphone from the cireuit but leaving the first spereh-amplifior arid eireuit otherwise unchanged, A good ground (to a cold water pipe, for example) on the microphome and surech system usually is csabitial to hum-free operation,

Spurious Side bands

A superheterodyne receiver having a crystal filter is needed for checking spurious side bands outside the normal communication channel. The r.f. input to the reeeiver must be kept low enough, by removing the antenna or by adequate separation from the transmitter, to avoid overloading and consequent spurious receiver responses. An " s "-meter reading of about half scale is satisfactory. With the crystal filter in its sharpest position tune through the region outside the normal chamel limits (3 to 4 kilocyeles each side of the carrier) while another person talks into the microphone. Spurious side bauds will be observed as intermittent "clicks" or crackles well away from the carrier frequency. Nide bands more than 3 to 4 kiloeycles from the carrier should the of negligible strength, compared with the carrier, in a properly-modulated phome transmitter. The causes are overmodulation or nonlinear operation.

With sine-wave modulation the relative intensity of side bands can be observed if a tone of 1000 cyeles or so is used, since the crystal filter readily can separate frequencies of this order. The " s "-meter will show how the spurious side frequencies (those spaced more than the modulating frequeney from the carrier) compare with the carrier itself. Without an " s "-meter, the a.v.c. should be turned off and the b.f.o. turned on; then the r.f. gaiin should be set to give a moderately strong beat note with the carrier. The intensity of side frequencies can be estimated from the relative strength of the beats as the receiver is tuned through the spectrum adjacent to the carrier.

R.F. in Speech Amplifier

Λ smah amount of r.f. current in the speech amplifier - particularly in the first stage, which is most susceptible to such r.f. pickup - will cause overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an audio-frequency oscillation or "howl" to be set up in the audio system. In such cases the gain control camot be advanced very far before the howl builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shielding of the microphone, mierophone cord, and speech amplifier is necessury to prevent r.f. pickup, and a ground connection scparate fron that to which the tramsmitter is connected is advisable.

MODULATION MONITORING

It is always desirable to modulate as fully as possible, but 100 per cent modulation should not be exceeded - particularly in the downward direction - because harmonic distortion will be generated and the chamel width increased. This causes unnecessary interference to other stations. The oscilloseope is the best instrument for continuously cherking the modulation. However, simpler indicators may be used for the
purpose, once calibrated.
A convenient indicator, when a Class B modulator is used, is the plate milliammeter in the Class 13 stage, sinee the plate current of the modulator fluctuates with the voice intensity. C'sing the oscilloseope, determine the gain-control setting and voice intensity that give 100 per cent modulation on voice peaks, and simultaneously observe the maximum Class 13 plate-milliammeter reating on the peaks. When this maximum reading is oltatined, it will suffice to adjust the gain so that it is not excreded.

A high-resistance (10)(O-ohms-per-volt or more) rectifier-type voltmeter (copper-oside or germanium type) also can be used for modulation monitoring. It should be comected across the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloscope to determine the reading that represents 100 per cent moolulation.

The plate nilliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained carlier, the d.c. plate current stays constant if the amplifier is lincerr. When the amplifier is overmodulated, eapecially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken as an indieation of overmodulation or nonlinearity. However, since it is possible that under some operating conditions the phate current will remain constant cven though the amplifier is considerably overmodulated, an indicator of this type is not wholly veliable unless it has been checked against an oscilloscope.

Overmodulation Indicators

Overmontulation on negative peaks is usually the worst type, as explained eartior in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-22 will show a reading on each peak that carries the instantaneous voltage on a

Fig. 10.22-N゙egative-peak overmodulation indicator. The milliammeter MA may be any low-range instrn. ment (up to 0-50 ma. or so). The inverse-peak voltape rating of the rectilier, V, must be at least twice the d.e. voltage applied to the plate of the r.f. amplifier. The alternative meter-return circuit can le used to indicate modulation in excess of any desired value below 100 per eent. The reactance of the by-pase capacitor, C, at 100 ereles shoule! he small eompared with the resistance arross which it is connerted. In $8-\mu$ f. electroIutic eapacitor will be satisfactory if the resietance it shunt is llow ohus or more.
plate-modulated amplifier" "helow zero" - that is, negative, 'The rectifier, V, camnot conduct if the megative hall-cerle of audio output voltage is less than the d.e voltage applied to the r.f. tuber.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.e. plate voltage of the modulated amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.e. plate voltage. Fither mercury-vapor or high-vacuum rectifiers can be used. The 1.j-volt breakdown voltage of the former will introduce a slight error, since the plate voltage must go at least 15 volts nogative
before the reetifier will ionize, but the error is inconsequential at plate voltages above a few hundred volts.

The effectivenoss of the monitor is improved if it indicates at somewhat less than 100 per cent modulation, as it will then warn of the danger of overmodulation before it actually oeeurs. It ean be adjusted to indicate at any desired modulation perentage by making the meter return to a point on the power-supply bleder as shown in the alternative diagram. The by-pass eapacitor, C, insures that the full audio voltage appears across the indicator eireuit.

Suppressed-Carrier and

Single-Side-Band Techniques

A fulls-modulated a.m. simnal has two-thirds of its power in the carrior and only one-third in the side hands. The side hands carry the intelligence to be treusmitted: the carrier "goes along for the ride" and sorves only to demodulate the signal at the recoiver. By eliminating the carrier and transmitting only the side hands or just one side band, the available transmitter power is used to greater advantage. The carrier must be reinserted at the receiver, but this is no great problem, as explatined hater under "Rereiving suppressed-Courier Signals:"

Assuming that the same final-implifier tube or tubes atre used either for normal am. or for single side boud, carrier suppressed, it can be shown that the use of s.s.b, can give an effertive gain of up to ! (lb) over a.m. - equivatent to increasing the transmittor power 8 times. Eliminating the carrier also eliminates the heterodyne interterence that so often sporils communication in eongested phone bands.

SUPPRESSING THE CARRIER

The earrier can be suppressed or unarly diminated by an extromely sharp filter or be using a balanced modulator. The basic principle in any balaned modulator is to introduee the carrier in such a way that it does not appear in the output but so that the side bunds will. This reguirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and commerting the output (plate circuit) of the tubes in push-puth, as shown in Fig. 11-1A. Balanced modulators can also be comected with the r.f. drive and audio inputs in push-pull and the output in parallel (Fig. II-II3) with equal effertiveness. The choide of at balanced modulator cirenut is generallys determined bey constructional considerations and the method of modulation preferred by the builder, sicreen-grid modulation is shown in the extmples in Fig. 11-1, but antrol-grid or plate modulation cam le used equally as well. Babancedmodulator cirenits using four rectifiers (germat nium, "opper oxide, or thermionic) in "bridge" or "ring" circuits are often used, particularly in commereial applications, Tworertifier cireuits are also atvailable, and they are widely used in thateur s.s.b, equipment. Rectifior-trpe balaneed modulators are shown in Figs, 11-2 and $11-3$.

In :my of the varum-type direuits, there will be no output with no audio signal. When pushpull andio is applied, the modulating voltages are of opposite polatys, and one tube will conduct more than the other. Since any modulation process is the same as "mixing" in rereivers, sum and difference freguencies (side bands) will be gen-
erated. The modulator is not batianced for the side binds, and they will tupear in the output.

The amount of currier suppression is dependent upon the materhing of the two tuless and their assoreisted cireuits. Normally two tubes of the stme type will hatane closety rough to give at least 15 or 20 (d), (arrier suppression without any adjustment. If further suppression is required, trimmer eapacitors to balane the grid-plate capaceitios and soparate bian adjustments for setting the oprating points com be used.

Fig. $11-1$ - 'lwo exatmples of balamed-modulator aircuit using sercen-qrid momblation, In A the ref. ovitation is in pari.llel in both labes, and the audin and out-
 in pusian-inll, the ontput in in parallel. In wilher rases the earriar fremberes. fo dowe mot abmear mothe output eir. enit - only the two side-band frequencier, $f+f$ aml $f-f$. will apmear. The bias on the wrens is a practioal requirement with all sereernerrid tuloce for low-divtortion oprotion, and is not a speciat rergitroment of halamad mordulators.

Fige. 11-2- "Ypiral reelifier-type balanerel modulators. The cirront at 1 is ralled a "loridge" balanerd modnlator and has leerol widely used in commerecial work.

I'be Dalamed mondalator at $13 \mathrm{i}=$ show n with eonstants witatble for owration at fino he. It is nsefful for worhing into a ersstal hamdpases filier. Ti is a transformer designed to work from the audio source inter a folktobim losud, and I_{2} is an urdinary i,f. transformer with the trimmer reoonnected in wries with a $0,001-\mu \mathrm{f}$. caparibor, for impedancremateling purposes from the monhalator. 'Ithe catbacitor Cis is for carrier badance and may be foumb unneresiary in some instancos - it should be tried commeted on either sinle of the carrier input eircoit and used where it is more effertive. 'Vhe 250-shm potentiometer is normally all that is required for carrier halance. The carrier input shomblar salficiont to dewelop several whe arross the resintor string.
'lilie latanced modulator circuit at (: is slown with embstants suitable for oprration at 3.9 Me. T_{3} is a small
 to climinate dor. from the windings. It can lee a small eompling coil womad on the "eold" end of the carrieroscillator tank rail. with auflicient coupling to kive two or three wolts of r.f. arrese its output. L_{2} is a shas-tumed evil that resomates to the carrier frecpurney with the effertive $0.001{ }_{\mu} f_{\text {, a }}$ aroses it. The 1000-ulan potentiometer is for carrier balance.

In the rectifier-type balaned modulators shown in Fig. 11-2, the diode reetifiers are conneered in surh a manner that, if they have equal fonward resistaneos, no r.f. can pass from the carrier souree to the output circuit via either of the two pessible paths. The net coffere is that no r.f. energy appears in the output. When audio is applied, it unbabanes the circuit by biasing the diode (or diodes) in one path, depending upon the instantaneous polarity of the andio, and hence some r.f. will appear in the output. The r.f. in the output will appear as a double-side-hand sup-pressed-carrier signal. (For a more complete description of diode-modulator operation, see "Diode Molulators," QST, A pril, 1953, 1. 39.)

In any diode modulator, the r.f. voltage should be at least 6 or 8 times the peak audio voltage, for
minimum rlistortion. The usual operation involvers a fraction of a volt of audio and several volts of r.f. The diodes should be matched as closely as possible - ohmmeter measurements of their forward resistanes is the usual test.
(The cireuit of Fig. 11-213 is described more fully in Weaver and Brown, "Crystal Lattice Fillors for Transmitting and Rereiving," QST, August, 1951. The circuit of Fig. 11-2C is suitable for use in a clouble-balanced-modulator cercuit and is so described in "SiSB, Jr.," (icneral Electric Ham Vens, Sptember, 1950.)

Vacumm-tube diodes (an also be used in the two and four-diode balanced-modulator circuits, and many opraters consider them superior to the dry rectificr circuits. A typiral balaned modulator rirenit using a twin diode (6AL5, GLIG, etc.) is shown in Fig. 11-3. In phasing-type s.s.b. generators (deseribed later) two of these modulators atre reguired, and they are usuatly worked

Fig. H-3- I twin dionde balaneed mondulator cirenit.
 and differs only in that a twind disele is nsed instead of dry rectiliers. 'lowe heater cirenit for the twin diesde ean be connerted in the usual way (one side grounded or center tap grominded).
into a common output circuit. (For a description of a complete s.s.b. exciter using (bild $\overline{5}$ balanced modulitors, sore Vitale, "Cheap and Easy S.S.B.'", (2N'T, March, l950.)

SINGLE-SIDE-BAND GENERATORS

Two basia systems for pencrating s.s.b. sigmals are shown in Fig. 11-4. One involves the use of : bandpass filter having sufficient selectivity to pass one side band and reject the other. Filters having such chatracteristies can only be constructed for relatively low frequencies, and most filters used by amatenars are designed to work somewhere between 10 and 20 ke . Good sidc-hand filtering ean be done at frequencies as high as $\overline{\text { ofo }}$ ke by using multiple-arystal or elentromerhanical filters. The bow-frectuency oseillator output is rombined with the andio ontput of a speech amplifier in a batanced modulator, and only the upper and lower side bands appear in the output. (One of the side bands is passed by the filter and the other rejected, so that an s.s.b. signal is fed to the mixer. The signal is there mixed with the output of a high-frequeney r.f. ossillator to produce the desired output frequence. For additional amplification a linear r.f. amplifier (Class A or Class B) must be used. When the s.s.b. signal is generated at 10 or 20 ke ., it is generally first heterodyned to somewhere around 500 ke . and then to the operat-
ing frequency. This simplifies the problem of rejecting the "image" frequencies resulting from the heterodyne process. The problem of image froquencies in the frequene? conversions of s.s.b. signals differs from the problem in recoivers boealuse the beating-oseillator frequency becomes important. Wither balanced modulators or sufficient selectivity must be used to attenuate these freguencies in the output and hence minimize the possibility of unwanted radiations.

The second system is based on the phase relationships between the carrier and side bands in a modulated signal. As shown in the diagram, the audio sigmal is split into fwo components that are identidal exept for a phase diffrence of : 9 degreas. The output of the r.f. oseillator (which may

Properly aljusted, either system is capable of good results. Arguments in favor of the filter system are that it is somewhat easior to adjust without an oscilloseope, sime it requires only a reeriver and a v.t.v.m. for alignment, and it is more likely to remain in adjustment over a long period of time. The chidef argument against it, from the amateur viewpoint, is that it requires quite a fow stages and at least one frequency y conversion after modulation, The phasing system requires fewor stuges and an be designed to require no frequeney conversion, hut its aligmment and adjustment are often eonsidered to be a little "trickior" than that of the filter system. 'This probahly stems from lack of familiarity with the sustem rather than any athal difficulty, and now that

Fig. 11-4-Two basie systems for generating single-side-hand suppressed-carrier signats. Represernations of a
 recciser) are shown almeve and helow the conneeting links.
be at the operating ferpueney, if desired) is likewise split into two separate components having at ob-degree phase difference. Gue ref, and one andio component are combined in each of two sepatrate halanced modulators. The earrier is suppressed in the modulators, and the redative phases of the side bands are such that one side band is hataneed out and the other is areentuated in the combined output. If the output from the balanced modulators is high enough, such an s.s.b. exciter can work directly into the antenna, or the power level ratn be increased in al following anylifier.
commercially-availathle preadjusted atudio-phasing networks are available, most of the aligmment difliculty has beon climinated. In most aases the phasing systom will cost loss to apply to ath existing transmitter.

Ragatdass of the mothod used to genmate :a s.s.b, signal of $\overline{5}$ or 10 watts, the minimum cost will he found to be higher than for an am. transmitter of the same low power. However, as the power level is increased, the s.s.b. transmitter becomes more economical than the a.m. rig, both initially and from an operating stampeint.

AMPLIFICATION OF S.S.B. SIGNALS
When an s.s.b. signal is gencrated at some frequency other than the operating fregueney, it is neressary to change frequency by hoterodyne methods. These are exactly the same as those used in receivers, and any of the nommal miver or comverter eircuits can be used. One exception to this is the ease where the original signal and the heterodyning oseillator arr mot too different in fredueney (as when heterotuning a 20)-ke signal to sof ke.) and, in this ("tse, a balaned mixer should be used, to eliminate the heterodyning oscillatom frepuency in the ontput.

To increase the power lewel of an s.s.b, signal, a linear amplifier must ln used. A linear amplifier is one that operates with low distortion, and the low distortion is ohtained hy the propere choice of tube and operating conditiens, Physically there is little or no difference betwern a linear amplifier and any other type of r.f. amplifier stage. The simplest form of linear amplifier (r.f. or audio) is the Class 1 amplifier, whieh is used almost without exerption thromghat recoivers and low-lewel spereh ergipment, (Nere Chaptor There for ath explatation of the (rasses of amplifior opration.) While its linemity ran be mate rebatively good, it is indiciont. The theormieal limit of efiedeney is al per cent, alld most pardicall amplifiers run 2i-35 per cont efficiont at full output. It low kevels this is not worth worving about, but when the 2- to 10 -watt level is exereded something ase mast be done to improwe this effie iencey and redure tube, pewor-supply and operating costs.

Class 13_{1} :mplifiers mathe exeedlent linear amplifiers if suitable bubse are selected. D'rimary advantages of Class $A B_{1}$ amplifiers are that they give muth greater omput thatn straight Clatss it amplifiers using the sume tubes, and ther do mot reguire ally grid driving power (on grid curront drawn at any time). Athough triodes cian be used for Class 13_{1} operation, fot rodes or poutodes are usually to be preforred, sine Class $A B_{1}$ operation requires high peak phate rurrent without grid current, and this is casiar to oltain in tetrodes and pentodes than in most friodes.

To obtain maximum output from tetrodes, pentodes and most triodes, it is nerossary to operate them in Class AB3. Although this produecs maximum peak output, it increases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to maintain wave fom under varying load) be good or exeellent. The usual mothod to improve the driver regulation is to add fixed resistors across the grid circuit of the driven stage, to offer a load to the driver that is modified only slightly by the additional load of the tube when it is driven into the grid-rurrent region. This inereases the driver's output-power requirements. Further, it is desirabe to make the grid cirenit of the Class AB3. stage a high-C cireuit, to improve regulation and simplify rompling to the driver. A "stiff" bias souree is also required, since it is important that the bias remain constant, whether or not grid current is drawn.

Class B amplifiers are theoretically capable of 78.5 per cent efliciency at full output, and practical amplifiers rum at 60 -70 per eont efficiency at full output. Tubes normally designed for Class 13 audis work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of opration at the radio frequeners. The operating eonditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers arreplaterd by suitable r.f. tank cireuits. Further, i_{1} r.f. circuits it is readily possible to oprate only one tube if only half the power is wanted - pushpull is not a neressity in Class 13 r.f. work, However, the r.f. harmonies may be higher in the case of the single-onded amplitior, and this should be taken into consideration if TVI is a problem.

For proper opreation of Class B amplifiers, and to reduce harmonies and facilitate coupling, the input and output rirenits should not have a low C-to-L ratio. A good guide to the proper size of tuning rapacilor will be found in Chapter Six; in rase of any doubt, it is well to be on the highcapareitanceside. If zero-bias fubse are used in the Class B stage, it may not be neroessury to add much "swamping" resistanoe arross the grid cireuit, Breamse the gride of the tubes load the cirenit at all times. However, with other tubes that reduire bias, the swamping resistor should be sueth that it dissipales from five to ten times the pewser reguirel hey the grids of the tubes. This will insure an almost comstant load on the driver stage and goond mgalation of the r.f. grid voltage of the Class B stage.

Before going into detail on the aljustment and loating of the linear amplifer, a few general ronsiderations should loe kept in mind. If proper operation is experted, it is cssential that the amplifier be so constructed, wired and neutralizad that no tace of regoneration or parasitie instability remains. Neodless to say, this also applies to the stages driving it.

Tho bias supply to the Class B linear amplifier should be quite stiff, surb as batteries or some form of voltage regulator. If nonlinearity is notied when testing the unit, the bias supply may be choreded by means of a large electrolytie capatitor. Simply shant the supply with loo μ for or so of caparity and see if the lincarity imporoves. If so, rebuild the bias supply for better regulation. Do not rely on a large capacitor alone.

Where tetrodes or pentodes are used, the screen supply should have good regulation and its voltage should remain constant under the varying current demands. If the maximum screen current does not excerd :30 or 35 mat, a string of VR tubes in serios can be used to regulate the screen voltage. If the current demand is higher, it may be necessary to use an electronically-regulated power supply or a heavily-bled power supply with : current eapacity of several times the current demand of the serren circuit.

Where VIR tubes are used to regulate the screen supply, they should be selected to give o.

TABLE 11－I－LINEAR－AMPLIFIER TUBE．OPERATION DATA FOR SINGLE SIDE BAND

Tube	Clas：	Plate Voltage	Screen Voltage	D．C．Grid Voltage	Zero－Sig． D．C．Plate Current	Max．Sig． D．C．Plate Current	Zero－Sig． D．C．Screen Current	Max．－Sig． D．C．Screen Current	Peak R．F． Grid Volfage	Max．Sig． D．C．Grid Current	Max．－Sig． Driving Power	Max．－Rated Screen Dissipation	Max．－Rated Grid Dissipation	Avg．Plate Dissipation	Max．－Sig． Useful Power Output
$2 E 26$	A	250	200	－ 14	35	42	7	10	14	0	0	2.5	－	10	5
6146 6883	$A B_{1}$	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & -50 \\ & -\quad 50 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \end{aligned}$	$.6$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	\bar{Z}	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	$A B_{2}$	$\begin{array}{r} 600 \\ 750 \end{array}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & -\quad 30 \\ & -\quad 32 \end{aligned}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & .4 \\ & .3 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 39 \\ & 46 \end{aligned}$	－	$\begin{array}{r} .1 \\ .1 \end{array}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	—	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$
811－A	8	$\begin{array}{r} 1000 \\ 1250 \\ 1500 \end{array}$	$\underline{ }$	$\begin{array}{r} 1 \\ 0 \\ 0 \\ -\quad 4.5 \end{array}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 157 \end{aligned}$		$=$	$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{aligned} & 3.8 \\ & 3.0 \\ & 2.2 \end{aligned}$	\bar{Z}	——	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 124 \\ & 155 \\ & 170 \end{aligned}$
4．65 A	AB：	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & -\mathbf{5 5} \\ & =80 \\ & =105 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 2000^{2} \\ & 270^{2} \\ & 230^{2} \end{aligned}$		$\begin{aligned} & 45^{3} \\ & 65^{3} \\ & 45^{3} \end{aligned}$	$\begin{aligned} & 150 \\ & 190 \\ & 165 \end{aligned}$	$\begin{array}{r} 15 \\ 20 \\ 8 \end{array}$	$\begin{aligned} & 2.3^{3} \\ & 3.8^{3} \\ & 1.3^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{array}{r} 150 \\ 300 \\ 325 \\ \hline \end{array}$
813	$A^{\text {B }}$	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \end{aligned}$	（ -90 -90 $-\quad 95$	$\begin{aligned} & 20 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \\ & 180 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .6 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & 28 \end{aligned}$	$\begin{array}{r} 115 \\ 115 \\ 118 \end{array}$	$=$	$\begin{aligned} & 1 \\ & .1 \\ & .2 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 228 \\ & 258 \\ & 325 \end{aligned}$
4．125A	$A B_{1}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 615 \\ & 555 \\ & 510 \end{aligned}$	$\begin{array}{r} 10 \\ -105 \\ -\quad 100 \\ -\quad 95 \end{array}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 135(100) \\ 120 \\ 105(75) \\ 200 \\ 150 \\ 130 \\ \hline \end{gathered}$	－	$\begin{gathered} 14(4.0) \\ 10 \\ 6.0(1.0) \\ (1.5) \end{gathered}$	$\begin{array}{r} 105 \\ 100 \\ 95 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	－	二	$\begin{aligned} & 150 \\ & 180 \\ & 200 \end{aligned}$
	AB_{2}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \\ & 350 \end{aligned}$	－ 411 $=451$ -431	$\begin{aligned} & 44 \\ & 36 \\ & 47 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \\ & 6 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \\ .5 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
$\begin{aligned} & 7034 / \\ & 4 \times 1504 \end{aligned}$	AB_{1}	$\begin{aligned} & 1000 \\ & 1500 \\ & 1800 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	－ 50 $=\quad 50$ $-\quad 50$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \\ & 225 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	－	－	$\begin{aligned} & 115 \\ & 200 \\ & 250 \end{aligned}$
4－250A	$A B_{1}$	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \end{aligned}$	$\begin{aligned} & 660 \\ & 600 \\ & 555 \\ & 510 \end{aligned}$	$\begin{array}{r} -115 \\ -110 \\ -105 \\ -100 \end{array}$	$\begin{aligned} & 65 \\ & 55 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 230(170) \\ & 210(150) \\ & 185(130) \\ & 165(115) \end{aligned}$		$\begin{aligned} & 15(3.5) \\ & 12\left(\begin{array}{l} (2.5) \\ 9.5(2.0) \\ 7.5(1.5) \end{array}\right. \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 335 \\ & 400 \\ & 425 \\ & 450 \end{aligned}$
	AB：	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	-48 $=481$ $-\quad 511$ $-\quad 531$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 63 \end{aligned}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \\ & 17 \end{aligned}$	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 150 \\ & 185 \\ & 205 \\ & 190 \end{aligned}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \end{aligned}$
304 TL	$A B_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$=$	$\begin{array}{r} -118 \\ -1701 \\ -2301 \\ -290 \end{array}$	$\begin{array}{r} 135 \\ 100 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & 286 \\ & 273 \\ & 242 \\ & 222 \end{aligned}$	－		118 170 230 290	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			－	$\begin{aligned} & 128 \\ & 245 \\ & 305 \\ & 365 \end{aligned}$
PL－6569	B ${ }^{5}$	$\begin{aligned} & 2500 \\ & 3500 \\ & 4000 \end{aligned}$	－	$\begin{aligned} & =60^{1} \\ & =901 \\ & =105^{1} \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \\ & 250 \end{aligned}$			$\begin{aligned} & 180 \\ & 220 \\ & 205 \end{aligned}$	$\begin{aligned} & 80 \\ & 68 \\ & 42 \end{aligned}$	$\begin{aligned} & 70^{8} \\ & 758 \\ & 60^{8} \end{aligned}$	$=$	－	－	550 760 800 60
PL－6580	B^{3}	$\begin{aligned} & 2500 \\ & 3500 \\ & 4000 \end{aligned}$	——	$\begin{aligned} & =50 \\ & =85 \\ & =100 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 300 \end{aligned}$	$=$	二	$\begin{aligned} & 195 \\ & 210 \\ & 230 \end{aligned}$	$\begin{aligned} & 95 \\ & 65 \\ & 65 \end{aligned}$	$\begin{array}{r} 758 \\ 68 \\ 726 \\ \hline \end{array}$	－	二		$\begin{aligned} & 610 \\ & 765 \\ & 910 \end{aligned}$
PL－172	$A B_{1}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 500^{-} \\ & 500^{-} \\ & 500^{7} \end{aligned}$	$\begin{array}{r} 110 \\ -110 \\ -110 \\ -115 \end{array}$	$\begin{aligned} & 200 \\ & 220 \\ & 220 \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ 800 \\ 780 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 48 \\ & 43 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	＝	－	$\begin{aligned} & 1020 \\ & 1280 \\ & 1540 \end{aligned}$
${ }^{1}$ Adjust to give stated xero－signal plate current． 2 Single－side－bond suppressed－carrier ratings，voice signal． ${ }^{3}$ Approximate value． 4 Volues in parentheses are with two－tone test signal．										${ }^{5}$ Grounded－grid circuit． BIncludes bias loss，grid dissipation，and feed－through power． －+75 v ．suppressor grid．					

regulated voltage as close as possible to the tube＇s rated voltage，but it does not have to be exact． Minor differences in idling plate current can tee made up by readjusting the grid bias．

One should bear in mind that the same ampli－ fier c：un be operated in several rlasses of operation by morely ehanging the operating conditions （bias，loading，drive，screen voltage，etc．）．How－ ever，when the power sensitivity of an amplifior is increased，as by changing the operation from Class I3 to Class A，the stability requirements for the amplifier become stringent．

From the standpoint of ease of adjustment and availability of proper oprating voltages，a linear amplifier with Class $A B_{1}$ tetrodes or pentodes or one with zoro－bias Class 13 triodes would be first rhoice，The Class 13 amplifier would require more driving power．（For examples of Class AB_{1} tet－ rode amplifiers，see Russ，＂The＇Little Firo－ reacker＇Linear Amplifier，＂QS＇I＇，Sopt．，190\％3． Vekhardt，＂The single side－saddle Linear，＂ QSTC，Nov．，195：3．Wolfe and Romander．＂AlS－
 Grid Tetrode Kilowatt．＂QN＇T，April，19：7．and Rinatudo，＂Compact $A B_{1}$ Kilowatt，＂（QST＇，Nov．， 1957．）

Trable 11－1 lists a fow of the more popular tubes commonly used for s．s．b．lincour－amplifier opert－ tion．lixerept where of herwise moted，these ratings are those given by the manufarturer for andio work and as sum are based on at sine－wave signal．These ratings are adeduate ones for use in sw，b，amplifier design，but they are consorvative for such work and heme do not neressatily rep－ resent the maximum powers that cath be obtained from the tubes in voiremignal s．s．b．sorvice．In no rase should the arerage plate dissipation be ex－ coeded for any eonsiderable length of time，but the nature of a s．s．b．signal is surh that the arer－ age phate dissipation of the tube will run well below the peak－plate dissipation．
（idting the most out of at linear amplifier is done be inureasing the patk power without ex－ reeding the average plate dissipation over any appreriable lengt of time．This can be done by raising the phate voltage or the peak current（or both），provided the tube ran withstand the increase．Ilowever，the manufacturers have not released any data on surla operation，and any ex－ trapolation of the audio ratings is at the risk of the amaterar．A 35－to jo－per ent increase alove plate－voltage ratings should be perfeetly safe in most cases，In atetrode or pentode，the pak plate current can be boosted some by raising the sereon voltage．

When rumning a linear amplifier at eonsiderably higher than the audio ratings，the＂two－tone test signal＂（deseribed later）should never be applied at full amplitude for more than a few seronds at any one time．The above statements about work－ ing tubes above ratings apply only whon a voice signal is used－a prolonged whistle or two－tone test signal may damage the tube．（For a method of ：udjusting amplifiers safoly at high input．see Goodman，＂linear Amplifiers and Power Rat－ ings．＂（2バT＂，August，195̄．）

VOICE－CONTROLLED BREAK－IN

Although it is possible for two s．s．b，stations operating on widely different froquencies to work＂duplex＂il the＂arrior suppression is great enough（inadequate carrior suppression would be a violation of the lCCC rules），most s．s．b． operators prefer to use voicerontrolled break－in and operate on the same frequeney．This over－ eomes any possibility of violating the FCC rules and permits＂round table＂operation．

Many various sytems of voico－controlled break－in are in use，but they are all hasically the same．Some of the andio from the speech amplifier is amplified and rectified，and the resultant d．e． signal is used to key an oscillator and one or more stages in the s．s．b，transmitter and＂blank＂the recover at the time that the transmitter is on Thus the transmitter is on at any and all timos that the operator is speaking but is off during the intervals between sontences．The voicerantrol circuit must have a small amount of＂hold＂ built into it，so that it will hold in letween words， but it should be made to turn on rapidly at the slightest voire signal coming through the spereh amplifier．Both tulne and relay keyers have been used with good sucerss，Some voirerontrol sustems reguire the use of hadphones by the operator，but a londspeaker can be used with the proper eirenit．（Sre Nowak，＂Voicr－Controlled Braak－In ．．and a Loudspeaker，＂（QN＂I，May， 1951，and Ilantor，＂Simplifiod Voire Control with a Landspeaker，＂（2N゙T＂，（）ctoher，105：3．）

Restriction of Audio Range

In either type of s．s．b．generator，it is good praetice to restrict the fregueney range of the ：undio ：mplifier．In the filter－type exerer，redu－ ing the response below 300 or too eyeles makes it easier for the filter to climinate the mawanted side frequencies below this range．In the phasing－ type exeiter，restrieting the range of the andio amplifier to the freguencies at which the net－ work gives its best performanco（usually about 300 to 3000 ofrlos）reduess the possibility of gonerating mwanted side frecuencies outside this range．High－frequeney andio cut－off is not as important in the filter－type exeiter berause the filter takes care of the higher frequeneies．

When a restricted andio range is used，it is a good idea to make a mumber of ehecks on the sustem，in an effort to ohtain the best eompro－ mise hetween maturaluess and intelligibility． Voice characteristies differ from operator to operator，and it is sometimes proferable to ar－ erntuate the＂highs＂slightly to give better intelligibility．No standards can be given here－ it is a subjert for experimentation and ehecking under varied conditions，

The simplest meins for reducing the low－ frectuency response in the audio amplifier is to reduce the valucs of the compling eaparitors． High－frequener response can be reduced be add－ ing eapacitunce arross grid resistors．More chabo－ rate moms require the use of filters using in－ ductane and caparitance combinations．

Phasing-Type S.S.B. Exciters

It should he obvious that a phasing-type s.s.b. exedtor ran take many forms. but in general it will ronsist of a sperch amplifier, atulio phaseshift network, andio amplifier, balatherd modulators, r.f. sourco, rif. phaso-shift motwork, and r.f. amplifier. If operation on a band other than that of the ref. souree, a mixer stage will also be required, for heterodyning the signal to the desired frequence. Since there are several balathedmoblulator, andio- and r.f. phasing cirenits, it is apharent that many different rombinations are availathe. (he of the simplest of all combinations is that shon'm in ligg, 11-it.

Raforing tor Fig. $11-i$, the spereh amplifier builds up the signal from a crystal mierophone
to a useful lovel. The audio sigmal is then fed to an antio phase-shift metwork, PSN, whidh applies equal-amplitude audio signals ! : ot degrees out of phase to the grids of the 12ATt andio amplifier'. 'The two atudio signals, ion degrees ont of phase, are applied to two balaneed modulators that have their outputs in parallel (L_{3}). The r.f. exobation to the balamed modulators is atso (0) degrees out of phase, obtained be compling from the two tumed eirenits at L_{1} and L_{2}, A 6Alit linear amplifior, oprorating Class . $1 B_{1}$, follows the balameremodulator stage and provides ahout swatts peak envelope output.

The gain control in the sureeh amplifier sets the gain to the proper level, depending upon the

Fig. 11-5 - Schematic of a phasing-tyme s.s.b. exeiter. Capacitance in μ f. miless wherwise noted - resistors are $1 / 2$-watt unless otherwise noted. Chassion krounds marked * should be the same.
$\mathrm{C}_{1}-5$ or $10 \mu \mu$. if inductive conpling bet ween I_{1} and L_{2} not sufficient.
T_{1}-Single plate to pushopull grid, 1:3 ratio (Stancor 1536.).
$T_{2}, T_{3}-6$ watt unisersal output transformer, 30 ohms output (UTC(: R.38.1).
$\mathrm{L}_{1}, \mathrm{I}_{2}-32$ turns No. 2e enam. doweround on ! diameter irmocore tuned form (Millen 600 66). liak turn is 6 turns hook-up wire wornd adjacollt to cold emi.

1 A_{3} - 16 turns No. 22 emamo. spaced to menpy I.ineh lenath on $1 / 2$-inch dianeter iron-core-tuned form (Millen 6\%046), tapped at eenter. One-turn link wound at center.
I_{4} - same as $\mathrm{L}_{1} ;$ no link.
I.s- 2.5 turns No. 22 enam. elomewound on $\frac{1}{2}$-ineh ironcore - tuned form (Millen 600:16). Dink of 1 turns at cold end.
S_{t} - D.jpid.t. togkle or rutary.
1SN - Audio phase-xhift network (Millen 75012). See Fiz. 11-6.
mierophone and how the oferator uses it, Since the atudio phase-shift notwork, PS'V, has m(equal gains through its two channels, unequalamplitude :udio is required at the input to

Fig. 11.6 - Schernatic of the phasenhift metwork marked I'SN in fig. II-in. Resintors amol capactors slould be within l per cent of ahues shown.
ohtain equal sigmals in the output. This is ohtaned through proper adjust ment of the loo-ohm imput audio batanere control. To eompensate for lack of uniformity in audio-amplifier gains, a of0-ohm adudio balanere control is providen in the fathode of a 12.1 Th sertion. R.f. carrier Inalance is obtatined by proper setting of the lok orohm ratrier balance controls. The side hand in use (upper or lower) is solocten! by S_{1}, which reverses the audios signal in one of the chamels. The r.f. phasing adjustment is oltatined by the tuning of L_{1} and L_{2}.

Construction

There are a few eonstructional precantions that should be olserved in a unit of this type. Transformers T_{2} and T_{3} should preforably be mounted at right angles to cach other. (1) minimize stray coupling. The 1 Ni) 2 germanium diodes used in the balanerd modulator should be cherked for forward and back resistance with an ohmmoter, and the forward resist:anes (the lower readings) shond agree within 10 per cent. The leads from the coupling loops at L_{1} and L_{2} should return to the balaneed modulator stage in twisted pairs, and the grounding precaution mentioned in lig. 11-5 should be observed. Coils L_{1} asind L_{13} slowuld ine mounted parallel to bach other and with a separation of about $1 \frac{1}{2}$ diameters - L_{3} and L_{4} should be mounted to minimize coupling between them and L_{5} and the oseillator eoils. This can be aroomplished by providing shielding or using the chassis deck to separate them.

Although slug-tuned coils atre shown in the sehematic, capatitaneretuned rimenits cath of rompe the used. Approximately the same $L / /^{\circ}$ ratios should be retained, howewer, if opratation on another amateur band is desired, the funcel cirenits ean be modified aceordingly, retaining the same L / C^{+}ratios,
or the output of this unit can be heterodyned to the different band.

Adjustment

If v.f.o. operation is to be used, the v.f.o. signal should furnish at least 10 volts r.m.s. at the terminals. With erystal control, plug in a ervatal and tune L_{1} until the circuit oscillates, as indicated by a signal in a receiver tumed to the proper frocuenery, and then tune the circuit to a slighty higher frequency. With v.f.o. operation, the rircuit is resonated in the usual mamer, as indicated by a plateredrrent minimum.

The output from the 6.1(i) stage can be checked on an oscilloseope or on a receriver. The method of coupling an oscillosmope or reeciver to the exeiter is shown in Fig. 11-7. When eonnerting to an oseilloseope, a tuned circuit is required, and the r.f. voltage developed arross the tuned cirruit is appliod directly to the vertical deflection plates. The receiver is connected be coupling loosely through a loop and length of shieded rable; when further attenuation is required it is oltained through the use of resistors at the receiver input terminals.

With the oseillator running, tume the babanced modulator and fialia cireuits for maximum output - this resonates these eircuits. Next adjust the earrier balance potentiometers for minimum output. Then introduce a single audio tone of around 1000 eveles at the mierophone terminal. Hore again it may be neeressary to use a resistance voltage divider to hold the signal down and prevont overload. Alvance the gain control and check the voltage at Pins 2 and 7 of the 12AT7 andio amplifier with a v.t.v.m. If they are not

Fia, $11-7$ - Fundamental arrankement for using ant oscilloseope and/or recever when testing an s.s.l. eveiter or transmitter. In aurion oneillator is reruired to furnish the audiosignal, and its ontput is best controlled by the external control K_{1}. The audio volume control in the s.s.l. exciter shomld not be turned on too far, or it should be sat at the normal position if you hoon that position, and all volume eontrolling should then be done with R_{1} and the outpat attemator of the atadio os-illator, "lhis wil! redure the chamees of ower-leading the autio and othor amplifier stame in the eveiter, a common catse of disturtion.
 Iengelt of coaxial line, and an I.- circuit tuned to the operating fre: rueney. It is neressary tor ge diredety to the vertical deflection plates of the ospillosonve rather than throunh the vertieal amplifier.

The receiver is coupled to the dummy load throngh a loop and a length of shielded line. If too moch signal is ohtained this was, an attemator, R2Ra. can he added to the input trminals of the recriver. Small values of R_{2} and laree watues of R_{3} sive the mont attennation; in some cases R_{2} might lee merels a few inches of solid wire.

 phasing but unbalane between outputs of two babanerel modulators.
equal, adjust the lo(0)-ohm andio balane erontrol until ther are. listening to the signal, from the 6At it, or locking at it on the seope, should give a modulated signal. Try various sottings of L_{2} until the modulation is minimized, as well as touching up the exo-ohm andio batanere eontrol. With the v.t.v.m. cherek the r.f. voltares at the arms of the boonehm carrior balance potentiometers - there should be about the sime. If not, they can be brought into this condition by readjustment of the tuning conditions which, howcever, must be kept consistert with minimum modulation on the cutput signal.

The s.s.b. signal with singlo-tone andio input is a steady umonhated signal. While it may not be possible to climinate the modulation entirels, it will be powible to get it down to a sat islartorily low level. Conditions that will prevent this are improper r.f. phaking, latek of catrior batane (suppression), distortion in the andiosignal (at the souree or through overlomel in the eprereth
amplificr), and lack of andio balance at the $12 . \mathrm{IT}^{\mathrm{T}}$ andio amplifier. Of these, the r.f. phasing is perhaps the most ritical.

I linal chere on the signal can be made with the rereciver in its most selertive romdition. The spertrum testing deseribed below rathot be donce with thoad reerever. Fixamining the spertram near the signal, the side signals of her than the main once (earrior, unw:ated side bands, and side bands from audio hamonies) shombl be at least 30 dh, down from the desired signal. This rhereing ean he done with the s-meter and the asere. on - in the earlier tests the acver. should be off but the r.f. gain redued bow enough to avoid rereiver overload.
lixamples of the proper and improper seope patterns are shown in Fig. 11-8.
(For an extensive treatment of the aligmenent
 Fhrlich, "How to Adjust Phasing-Type S.s.l3. Fxaters," (QNT, November, 1!\%t.)

Filter-Type S.S.B. Exciters

The hasie comfiguration of a fillen-lype s.s.b. exder was shown cartior in this chaptor (lig. 11-4). Suitable filters, sharp mough to rejocet the umwanted side hand aloove a fow humdred (eveles, (an be built in the range 20 (0) 0 (H) ke. (In Fongland a fow amaterus have used arstal filters at $\overline{5}$ Mr.) The low-frequener filters generally use iron-cored inductors, and the new toroid forms find considerable lavor at frequen(ries up to 50 or 60 ke . These filters are of nomal hand-pass constant-k and m-derived configuration. In the range 450 to 500 ke , either erystallattice or electromerhanical filters are used. laowfrequency filters are mambatured by barker of Williamson and by Burnall de (o., and clectromerhanical filters are made bey the Cullins Radio (\%) Crystal-lattere filtors available from Hyeon E : stern in the megaryele range; homemade filters generall: utilize crestals from war-surphus.

The frequency of the filter determines how many convensions must be made before the operating frequancy is reached. For example, if the
filter frequeney is 30 ke . or so, it is wise to convert
 3.!- Ale, hamd, to avoid the image that womld almost surely result if the comversion from 30 to 3 3:mo ke . were made without the intermediate step. When a filter at ono ke, is used, only one conversion is neressary to oprote in the 3.? . We. band, hat 11-Ale. and higher-frequeney operation would reguire at least two conversions to hold down the images and make them casy to climinatt.

The choie of comverter eitenit depends langely on the frequeneies involved and the impedanere hevel. At low frequencios (up to 5 (x) ke.) and low
 are often used for mixers, beremse the batamed mondalator does not show the beraboseillator frequeney in its ontput and one sourere of spmions signal is minimized. At frequencies at high impedance levels, and at the higher frequencies, vacuum tubes are gomerally used, in straght converted or balanced-modulator cirenits, de-
pending nom the nerd for minimizing the locatuseillator frequence in the ontput.

Law-frequeney side-hand filters in the $30-10$
 amd reatifir-tyo balanced modulators are common pratelice. side-hand filters in the i.f. range
this ran be nothing more elaborate than a shideded b.for, unit. The signal shomld be introdured at the halimered modulater, and an output indieatore rommereen to the plate airenit of the vacuan tube following the filter. With the erystals out of the cirenit, the transfomers ean be

Fig. $1 /-9-$ One tyme of balanced-modulator circoit that can ber med with a

 pend umon the ty an of litier selereted.

are highor-impedanere circhits and vacumm-tube balaned modulators atre the ruld in this retses. An example of one that coun be used with the high-impedance (1.).(MO) ohms) mechaniad filter is shown in ligg. 11-10. The filtere cath be followed hy a eonvarter or amplitier tubre, depronding upon the signal level, some models of the merhamieal filters hatre a $2: 3$ - 1 th, insertion leses. while others have only 10.
 the inwathed side bund. These filters can be
brought alose to frequener by phyging in smadl
 in buth stage and thent thing the transommers for prok omput at one of the two ervital from guenoios. Thu sumatl rabuedors rath then he removed and the rerystals replated in their sockets.

Tuning the signal sumper slowly amoss the pass hand of the filtor and watehing the output indicator will show the soleretivity eharaterist ic of the filter" The obgertive is a faidy flat response for about two ke, and a rapid dropobff outsidu

 i.f. tratleformers.
mate from erystals in the i.f, range - mane of these ate still atvailable from stores selling military surphs. The most popular configuration is the "easemberl half lattiere" shown in Fig. 11-16. The ervatals med in this filter eatn be obtathed at frequencies in the i.f. range, and ones that are within the ranges of the modified i.f. transformens
 comered edeross the sereondery winding of two of the transformers to give pushi-pull output. The crestaks should le obtained in paiss I. k ke, apout The i.f. trasionmers rath be ather eather itorbuned as shown, or they ean be slug-tumed.

A variablor frequeney signal generator of some kind is required for atigmment of the filter, hat
this rimge. It will be foume that small changes in the tuning of the transformers will change the shatme of the selectivity chatamomistie, so it is wise to make at small adjustment of one trimmer, wing the frequeney arross the band, and observe the eharateristic. After a little experimenting it will be found which way the trimmers must be moved to componsate for the peaks that will rise when thefilier is ont of adjustment.

The (suppressed) carrict frequeney must be adjusted so that it talls properly on the slope of the filter whitatereristice. If it is tao chose to the filter mid-freguener the side-babd rejertion will be poor; it it is too far away there will be a lack of "lows" in the signal.

A Class AB ${ }_{1}$ Linear Amplifier

The amplifier shown in Fige. 11-11, 11-12 and $11-14$ is designed to utilize the advantages of Class AB_{1} operation. It requires very little driving power, the bias supply is simple, and the grid-current meter is a positive "overmodulation" indicator. A low-cost power supply permits a peak power input of 280 watts to the amplifier in s.s.b. service. Under these conditions the indicated d.c. input is about 150 watts.

As an be seen from lig. 11-13, the amplifier uses four tetrodes in push-pull paralled, with shunt feed to remove the dre from the plug-in plate coils. A fixed-tune grid eircuit is used and gives substantially uniform response over a $200-\mathrm{ke}$. Dand centered at 3900 ke . K_{1} and h_{2} are not "swamping" resistors - while they lowd the driver to about 1 watt, they are for the purpose of "broad-banding" the grid circuit. Since the load is constant, it is possible to adjust L_{2}, the coupling coil, to offer a definite input impedance to the connerting line from the exciter. This can be done quite rasily with a s.w.r. bridge (the amplifier tubes do not have to be lit). The inductances of the coils were adjusted to give rlose to a 1 -to-1 s.w.r, in To-ohm line at the hand center. This method of coupling is a great convenience, since the exator and amplifier ean be connected by any length of Thohm line with no change in the roupling conditions.

Parasitic oscillations were eliminated by L_{3}, L_{4}, L_{5} and L_{6}. The cireuit is aross-neutralized by means of C_{3} and C_{4}, although the amplifier is stahle under most conditions without the neutralization.

One disadvantage of operating tubes in pushpull in a linear amplifier is the neressity for very good balanee in the driving voltages applied to earch side of the circuit. If the driving voltage is higher on one side than the other, the tube or tubers on that side will be driven to peak output before those on the other side, and will start saturating or "flattening" before the full output of the amplifier is realized. The capacitors in the grid tank circuit, C_{1} and C_{2}, should be matehed in capacitance within a pereent or two, and the usual preautions as to maintaining circuit bal-
ance should be observed. The r.f. voltage balane can be checked with an r.f. probe and v.t. voltmeter,

An "economy-type" power supply is used with the amplifier, as shown in lig. 11-15. (See "More Lifferetive Litilization of the Simall Power Transformer," (ぶTC, November, 1!52.) The r.f. tubes should not be biased beyond eut-off during receiving periods but should continue to run at

Fig. 11-12 - Close-up view of the plate circuit with the tank coil removed to fow the blocking capacitors, parallel-fred phate chokes and parasitie-suppressor coils, The double lead through the grommets runs from the ontputserenit coil to the congling capacitor and coax connertor molerneath the ehasis.
normal operating bias, berause their itlling current of 110 mat, plus the $40-\mathrm{ma}$. drain through the VR tubes, serves as the only "bleed" on the power supply, and the voltage would rise too high if this drain were removed.

The plate efficiency obtainable with Class AB1 operation under the deseribed conditions is such that the total plate loss at peak output is well under the maximum plate dissipation rating of

Fif. $1 /-11-$ The power supply occupies the ripht-
 tion the lefthand half int this vien. The power trans. former and filter caparitor are near the pame! and the filter cleoke is at the edge of the ehassin mext to the volt. age-regulator tubes. The panel is $101 / 2$ hy 10 inches.

The four r.f. tubes are mounted ori an elevated subchassis so that the cathodes can loe directly grounded to the top, of the main chassis. The plomeingrid circuit is ine the can to the riuht of the tuhes. The small reramic stand-offs visible tencath the sulnehassis support the metal tabs which form sone of the neutratizing ede pacitors. I similar pair, hidden ly the slielded grid eifenit. shpports the wher nentralizine rapanitor.

12" … (rlitl.

(8 - $3010 \mu \mu$.. row iviog spacing.
 high values ate farm, tapued at center.

L_{2} wouml ower f_{0} at center on 3,5 and 7 Ne: inter-

$I_{.7}$ aml $h_{\text {as }}$ mate from IS \mathbb{N} W coil stock. $I_{7}{ }^{2}$-inch
 simbly monded on Willen 1030.

The arid tomed arcuit, emelesed by dashed line. i-

120 watts for the four tubes. With the bias sut for near-maximum dissipation with no signal. the tubes run eooler when driven. Howevor, in selecting the resting phate current by alljustment of the biats voltage it is alvisiblle to make sure thit no one tube is overlonded. This rith orrour even though the total input is less that 120 witts. simere there is some variation in the plate enormens taken by various tulnes at the same hias voltage. T'est the tubes individually and, if anderetion is possibla, dhoose four that take sulstantially the situme plate current,
 chasisis are the someket for the yrid tank, yrid loarling re. sistors, and the variahbe capacitor for ontput compling adjustment. "libe bias atpoly is the group of exmponents in the lawer center in this vies. The I2. (2-volt filament transformer is mometed on the Ieft chassis wall and the libamont tramformer for the 83 rectifiers projecels throngh the Watsi* noar the ernter. 'Vhe latter trancformer is a homewomed johb, but transformers of similar ratiners are available reaty-made.

The preforable method of aljusting the amplifier tuning for optimum output and lincarity is of course to use an oscilloscope with the two-tone test. If the audio oseriiator generaters a good sine Wave and the distortion in the exciter itself is low, the optimum conditions should be serured with :a plate current of 180 to 190 mat. when the driving voltage is just at the point where a trace (a few microamerere) of grid current shows. A f:airly good job of adjustment can be done without

Fip. 11-15-Power and bias supplies. Caparitance values are in μ f. umless otherwise spreified.
T_{1} - Fibament tramsformer, I2.6 volts, 2 anı.
T_{2} - Rectifior filament transformor, thrce 3-wolt 3-amp, nere ombaries.
' T_{3} - 600). ont 200 -mat. rem pacement-tyme transformer, viblament windings not used except for pilot lisht.
If - Vilament transform. er, 0,3 volts, 1 amp.
the scope, provided the two-tone test can be used and there is indejoment assurame that the distortion in the exriter is low. Simply mantain the driving voltage just at the gridedurvent point and adjust the antemat coupling, kereping the plate circuit at resonance, for about 180 ma. plate current. The offresonance plate current should be only 10 ma . or so larger than the "intune" current. some sort of r.f. output indicator, such as an antematammeter, is helpful: therouput should start to drop immediately on even a slight reduction in driving voltage. If the output temeds to stay up when the driving voltag is cut slightly, the amplifier is saturating on the peaks and is not loaded heavily enough. The trick is to get the loading just right so that the maximum output is obtained (too-heave loading will redue both the output and plate efficieney) at exarely the point where a bit more drive will cause flattening.
. Ithough the usual constructional prateliae of shieded wiring with disk bypasses was followed as a matter of course, the amplifier was not shiedted for TVI. Shiolding is not neressatry for 75 meters, but is likely to be required for If-Me. -and perhaps $\overline{\text { - M M }}$, - operation in localities where a harmonic falls directly in a chamed hatving a weak TV signal. Class Al3, opreation does help - it is only neressary to look at the 'TV screen while the driving voltage is mudged into the grid-curent region to see that - but it is not at complete panatea for the tough cases. Should shielding be needed, it should not be much of a constructional problem to add it around the r.f. sertion, both top and bottom.

The amplifier should be neatralized by the usual method of adjusting for minimum r.f. in the plate cireuit with r.f. voltage on the grids but with plate and serem voltages off. I semsitive indicator such as a reystal detertor and lowrange milliammeter should be used; they may be

commerted to the r.f. output terminals for convenience. ('3 and ('4 are adjusted by bending the metal tabs from which they are constructed, to vary the spacing, This should be done with an insulating tool; one ran easily be devised in such a way as to permit getting at the plates.
(Originally described in April, 1954, QST.)

Fig. 11-16 - Construction of the plug-in grid tanks. The inductances of the two coils are adjusted for an inpmt impedane of in 3 ohms at the eenter of the band. F'inal proming of the erid coil can be bey adjesting the spacing of an end turn as in thia T-Mr. assembly. The coil form is mounted on a thin insulating strip which is mounted on the studs at the sides of the phag-in basc.

A Grounded-Grid Linear Amplifier

Grounded-grid amplification in linear service has several advantages over conventional cireuits. The amplifier is degenerative, which adds to the stability. It has been found that it produees slightly better linearity than conventional rircuits using the same tubs. The greater part of the power required to drive the grounded-grid
pacitors to the plate. This couples the input and output cirents and causes instability. It is possible, however, to stabilize an amplifier with these tubes by grounding the beam-forming phates directly, since this helps to isolate the imput and output cireuits. In some makes of 1625 s the bam-forming plate lead is attached
lig, 11.17-This linear amplifier uses four parallel-emonerted tetronles in a proumbed-erid cirenit. It ran ho Ariven by an mis.l. extitur cupable of 20 watt peak enselopr power ontput. The calbinet is $1+1 / 2$ by 9 by 10 inches deep.

amplifier appears in the output along with the amplified sigual. The disadvantage of using the sot or 1625^{-5} in this type of operation is that the beam-forming plates are reonnected to the ratthode. The signal appeats on the cathode, and the beam-forming phates form good coupling ca-
1 The modified tubes ran be obtained from P \& It Eleco tronics. is N. Warl Awe., Lafayette, Ind. ('ement for doing the job can be obtained from the same souree.
to the rathode lead in the cathode pin. Such tubes a:m be modified by first removing the old base he applying heat from a large toreh, separating the cathode and beam-plate leads, and reinstalling the base or a new one. Tube-hase cement can be used to secure the base to the tube, and the assembly can then be baked in an oven at 90 degrees C, to harden the seal. ${ }^{1}$

Fig. 11-18-Schematic diagram of the grounded-grid amplifier. Capaeitor values in $\mu \mu \mathrm{f}$, unless otherwise specified. ($\mathrm{C}_{3}, \mathrm{C}_{4}$ - 60(0.volt silvered mica capacitor.

RFC. ${ }_{1}$ - National R-1-5. 1.

Fig. 11.19 I top vien of the lincar amplifier shows the r.f. tulies at the left, elustered armand the r.f. rhoke. 'Tlise two small tulnes are the 816 rectiliers used in the 120f-iolt power supply. 'The variable inductor is the anterna loading coil from a BC. 158 Command transmitter.

The schomatie of an amplifier using these modified tubos is shown in Fig. 11-18 with photegraphs of the unit in Figs, 11-17. 11-19) and 11-20. Since the input eirenit of the groundedgrid amplifior is a low-impodance lated for the driver, it is possible to do away with any input thened ciretuit; the d.e. roturn for the It 25 s is made through the exciter output tap or link. I wowd of eation here - be sure there is no d.e. on the exater liak, beremse the fono-ohm resistor would shont it to the chassis.

Nob bias or sereren voltage is required at 1200 wolts on the plate. bach tulne datws about 10 mat., so the powre supply is constantly bled with 40) ma., thus climinating the noed for a blecedere.

With no serreon and bias supply and no input thmed circonit, it is possibte to build a comparet
amplifier. The unit in Fig. 11-17 uses the pinotwork ontput circuit with variable inductor to cover 75.40 and 20 meters. (Operation on 15 and 10 meters is impraticeal becamse of the high output capacitanere of the four tubes used in parallel.

Construction

The unit is consmotere on a $10 \times 14 \times 3$-inch Chassis, and a 5 ! \times 5!-iach subchassis on Which are momented the plater ret. choke atmed four fi-pin tubre sockets. This sulrchassis is monnted $1!$ inches below the matin rhassis derk. The eobld end of the ref. choke is bepassed through a 0.0 (0)t- μ f. capatitor to at soldoring hag at the renter of the subsissembly. The lug is monnted bromath a 1 -inch stand-off insulator,

Fig. $/ 1-20$ - 'Ihis hultom virw khena hew the four r.f. tulue arosk rita aro mounted son amall prlat-
 the motpul rimotit is to prown arwidental wereh from tho ato. trona asollom in the voront that the plate- blowhing vapacion thould shorl eirentit. Filaneme tranmarm. ers are monutided on the mille of the chatain.
and a single stud serew hotds the choke and stand-off to the subchassis. A feed-through insulator on the subchassis feeds d.e. to the choke and also serves as a tie point for the "hot side" of the by-pass capacitor. The sereen grid. grid, and beam plate are grounded to the subehassis as close as possible to each tulx socket. The rat hodes are comereded at the central stand-off insulator. which is also the tie point for the r.f. input lead.

The cabinct is 10 by $141 / 2$ by $83 / 4$ inches with a panel to fit. The rotor indicator of the inductor and input caparitor are mounted on the pand and the pand seremed bey the ontput rotor switch, meter and toggle switches. The (0.0() $+-\mu$ f. d.c. blocking capacitor mounts on the rear of the imput-tuning (cap)alcitor, ('1.

An r.f. choke is included arross the output of the pi-network, so that in the event of a shorted d.e. plate horking ceaparitor the power supply fuse will blow. This kereps 1200 volts d.e. off the antemat system.

If plate voltage were applied with no input connection for the cathode return, full phate voltage would appear between cathode and filament. A 1000 -ohm resistor is connected from cathode to ground to prevent this from occurring.

Operation

The then-up procedure is the same as for any pi-not work amplifier. The whole coil is used for 75 meters, aloout half for 40 metors, and onefourth for 20 meters. Initial tuning adjustmonts arr make with about half the available ref. drive power. Twente watts of drive will put a good signal on the air.

The input and output rireuits in this design are well shideded by the grounded grid. sereen, and beam-forming plates, and no trouble with fundamental or v.h.f. instability should be experionered. Athough this amplifier is elesigned primarily for s.s.l), it may also be used to amplify a low-powored a.m. or (., w. signad.
(From June, $1955, Q^{2} 5^{\circ}$.)

Grounded-Grid Amplifiers With Filament-Type Tubes

It is mot meressary to use indirectly-heated cathode type tulnes in the groumded-grid cirenits, and filament-tye tubes cam be usod just as efforetively. Howerer, it is neressary to ratise the filament above ref, ground, and one way is shown in Fig. 11-2 I. Hore filament chokes are mised lnet we m the filament transformers and the tuhe socket. The induetance of the ref. chokes dows not have to be very high, and 5 to $10 \mu \mathrm{~h}$. will usually suffice from 80 meters on down. The aurenterarying

Fig. 11-2I - When filament-1:ge tulnes are used in a grounded-grial rircoit, it is necossary to nse filament chokes to keef the filament atowe rif. grownd. In the portion of a typical circuit shown larer, the filament chohes, $R M_{a}^{\prime}$ and $R P^{\prime} C_{2}$ (an be a mamfactured unit (e.g.. BAN [P: : S or P(30) or homemade as described in the text. Total plate and grid curront can be read on a milliammeter inmerted att x.
apacities of the r.f. chokes must be adequate for the tube or tubes in use, and if the resistance of the chokes is too high the filament voltage at the tube socket may be too low and the tube life will be endangered. In such a caise, a higher-voltage
filament transformer can be nsed, with its primary voltagerelt down until the voltage at the tube sorket is within the proper limits.
pilament chokes can be wound on ceramie or wooden forms, using a wire size large enough to ratry the filament current without undue heating. Large evlindrical ceramie antema insulators ran he used for the forms. If enameled wire is used, it should be spaced from half the diameter to the diameter of the wire; heave string can be used for this purpose. The separate rhokes indicated in lig. $11-21$ are wot essential; the two witulings can be wound in parallel. In this rase it is not neressary to spate all windings; the two parallel wires can be treated as one wire, winding then together with a single piece of string to space the turns. Enameld wire can be used berause the enamel is sufficiont insulation to handle the filament voltage.

When ronsiderable power is available for driving the grounded-grid stage, the matching between driver stage and the amplifier is not too important. However, when the driving power is marginal or when the driver and amplifier are to be comnerted bey a long length of coaxial cable, at pi network matching rirenit can be used in the iuput of the grounded-grid amplifier. The input impedance of a grounded-grid amplifier is in the range of $1(0)$ to 400 ohms, depending upon the tube or tubes and their operating ronditions. When data for grounded-grid (peration is available (as for one tube in Table 11-I), the input imperdance can be computed from
$Z_{\text {in }}=\frac{(\text { peak r.f. driving roltage })^{2}}{2 \times \text { driving poter }}$
From this and the equations for a pi network, a suitable not work can be devised.

Adjustment of Amplifiers

The two eritical adjustments for obtaining proper operation from the linear amplifier are the phate loading and the grid drive Nine these adjustments are preferahly made with power on, it is a matter of ronveniane to have both eontrols readily available during initial thar-up.

The seope man show misadjustment at a glatmer and will groatl fadilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, onero used, is likely to berome the most nearly essential insimment in the sharek. It can be rompled to the amplifier ats in lFig. 11-7.

With single side lamal, 100 per eont modalation with it single tone is a pare rif. output with no modulation enveloper, and the point of amplifier overlond is diflicult to ohserve. However, if the input signal consists of two sine waves of different frequencios (for example, 1000 e.p.s. differemere) but equal amplitudes, the output of the simgle-side-band transmitter should have the envelope shown in Fig. 11-22. This is called a "twotome" test signal to dist inguish it from other test signals. lts first advantage lies in the fact that any flattenting of the mative peaks is readily discornible, which makes the adjustment of the linear-amplifier drive and output coupling ats simple a procedure as that for a.m. sustems. Flateming of the peabs (to lo avoided) is illustrated in lig. 11-2:3.

Those who use the filter mothol for obtaining single side band can olata"ol such a test signal bey feeding a single audio tone to the balaneed mondufator and jumping the filter. Those using the phatsing mothod of single-side-hand signal gencration will recognize the pattern as that ohtained when a single test tone is applied to one of the balaned modulators. For this latter group a two-tone test signal may be readily ohtained by disabling one of the balaned modulators in the exciter and applying at single-frequency atudio tone at the input.

Suppese that the linear amplifier has heen (roupled to a dummer low and the single-side-hand exciter has been comented to its imput. By ob serving the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone
test signal wave form are on the verge of flaterning. The peak input power may now he ehorked. This is readily possible, for with the t wo-tone tost signal appled, the peak input power will be 1.ist times the dire pewer ingut to the linear amplifier. Should this le different from the design value for the partirular linear amplifier, the drive and lowding adjustments can be quiekly changed in the proper direetion (always adjusting the lowding so that the peaks of the coivelope ate on the varge of flatteningy and the proper value reached.

As a final ehoek, lefore eoopling the lineat amplifier to the antemat, the single-side-band ofreator will do well to cherek the linearity of the sistom, since distortion in the linear amplifier probably will result in the generation of sithe bands on the side that was suppressed in the exeiter. Here again the two-tome test signal will be of great help, sime distortion of the signal will be readily reengnized. A chare of the has suphly has already beern reommended. (Sere": Amplifirattion of S.s.B. Nignals"). The next most likely form of clistortion will be caused by curvature of the thbe chatateristic near cut-off, and will the reeognizahble from :t twotome test pattern that looks like Figg. 11-2-t. A slight madjustment oil has (or applying a fow volts of positive or negative bias, in the case of zero-bias tubes) will usuatly st raighten out the kink that exists where the pattern crossos the zero axis, Make this ate justment with sperial rame, howerer, berause the dissipation of the tubes with no input signal will he very semsitive to this aldjustment. There are a few tubes that will not permit this adjustment to be carried to the point where the kink is cmtirely eliminated without exereding the rated phatt dissipation.
The ant man may now be eompled to the linear amplifer until the plate input with the exeritation as determined atove is the same as that obtatherd with the dummy loud. The system has now been adjusted for optimum performanee, although it is well to monitor it with a socope.
(loor further reading on linear :mplifiers, sere Lang, "Sugar-Coated Linear-Amplifior Theory,"
 and Align a Linear Amplifier,' (2s'T', May, 1952.)

Fip. 11.22-0 0.cillogram of atwotome lest simbal through a limear amplifier.

Fig, 11.23- Flattening cansed by overdrive or insufliciont plate loatling.

Fig. 1/-24-The distorted pattern oldatined when the hian voltage is incorrect.

Frequency Conversion

Fig, 11-2.5-Two examples of "high levol" mixer
 6 (10. and 6) 6 ispe tubes. Will 306 wolta an the plate the itling current is aloont $1 . \overline{0}$ ma.. hiohior as high a* 30 ma. with the s.s.b. signal.

The cirouit in B oproters with a peritive sureen
 what more notbut than the circuit shown in 1.

In either rater the sutput rirmait. Cilaz is tumed to the sum or dieference frequens of the mecillator and s.a.b. signal. Compling roils I_{1} and $\mathrm{I}_{3} 3$ will usually be: three or four turns conphal to their respertina driving somrces.

The proferred s.s.t. transmitter is probably one that gencrates the ssob. signal at some suitable fregueney and then heterodymes the signal into the desired amateur bands, although a few desigme exist that gemerate the sos. he signal at the operating frepuener and eonserpuently eliminate the ned for heterodyning. When the heterodyning is done at low level (involving an sw. Is. signal of not more than a few volts). standard reociving terhaiques are satisfatory. The converter tubes operated at manufaeturer's ratings leave litthe to be desired.

When high-level hoterodyning is required. as when an expiter delivering from 5 to 20 watts on a single hathd is available and multiband operat tion is desired, a high-level converter is used. Sina the efficioney of a eonverter is only about ome-fourth that of the same tube or tubes used in Class AB2. using at converter stane as the output stage is not very eromomical, and the high-level converter is generally used to drive the output sticke.

Roforence to tube manuals will disclose no information of the operation of small transmitting tubus as mixers. Iowerer. it has bern found that mosit of the terodes in the 15 - to 35-walt phatedissipation elass make acerptahld mixers, and
 used surerssfully, The usual procedure is to feed mat of the signals (nsidlator or s.s.b.) to the control grid and the other to the cathode or sreon grid. 'lypieal direnits are shown in Fig. 11-25.

Receiving Suppressed-Carrier Signals

The reception of supperesol-catrier signals requires that the cerrier he aremately reinserted at the receiver. In addition, the recertion of a double oside-band suppressed-earriar signal requires that one side-bend be filtered off in the rereiver before demodulation or that a sperial trep of converter be used. Beratuse litthe or mo carrier is tramsmitted the usual a.s.e. in the rereiver has nothing that indiates the average signal level, and this lant requires either mannal variation of the r.f. gatin eontrol or the use of a sperial i.v.e. sustem. (As, for example, Luick, "Improved A.V.C. for side band and C.V..." (2S゙T: (Betober, 19月5.)

A suppersed-carrier signal cam be identitied be the absence of a strong carrier and by the sevore variation of the st moter at a sellabine rate. When sumbitsignal is emoontered, it should first the peaked with the main tuning dial. (This renters the signal in the i.f. pass band.) . Weter this operation, do not tourl the main tuming dial. Then sot the r.f. gatin control at a very low hevel and switeh off the a.v.e. Increase the audio volume eontrol to maximum, and bring up the ref. gatin control until the sigual can be heard wakly. Switeh on the beat oscillator, and carofully adjust
the frequener of the beat owillator until proper sporelh is hearal. If thore is as slight amount of carricr prosent. it is only nexessatry to zero-heat the beat wesillator with this weak carrier, It will be notied that with incorrect tuning of an s.s.b. signal. the equech will sound high- or low-pitehed or (evol inverted (very garbled), that no trouble will be had in getting the correet setting onee a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the rereiver. It mave reguire ab readjustment of your tuning hathits to tume the remeriver slowly enough during the first few trials.

Once the proper setting of the b.for. has beern established br the procedure above, all further tuning should be done with the main tuning control. Howerer, it is not unlikely that s.s.b. stittions will be emoontered that are transmitting the other side band. and to recerive them will require shifting the b.f.o. setting to the other side of the receiver i.f. pass band. The initial tuning procedure is exartly the sume as outlined above, except that you will end up with a considerably different b, fo, setting. The two bifo. set tings should be noted for further reference, and all tuning of
s.s.b. signals can then he done with the main tuming dial. After a little experience, it becomes a simple matter to determine which way to tune the receiver to make the received signal sound lower- or higher-pitched if the receiver (or trimsmitter) drifts off.

When a double side-hand suppressed-carrier signal is received, suffiemt selectivity will be reguired in the recoiver to climinate one side hand and convert the signal into a single-sideband signal before detection, where it can be received by the method outlined above. Receiver burdwidths of 3 ke . or less will be required for this purposes. or the use of a "signal slicer," a selertivity device that uses the phasing principle. (See (GE Ham News, Vol. 6, No. 4, July, 1951.)

Newromers to single side band often wonder if there is any device that can be added to a receiver
that will make the tuming of side-band signals less critical. At the present time there is no device that will "lock in" automatically. However, if the receiver is lacking in selectivity, an apparent improvement can be obtained by using an adapter that adds selertivity to the receiving system. No improvement in case of tuning will be noticed on good side-band signals (good suppression of unwanted side band), but fair or modiocre signals will be easier to tune. The reason is that the adapter makes a better side-hand signal out of the incoming signal he removing the vestiges of the umwanted side band, and a good side-band signal will tume easier than a fair one. The sideband adapters also usually have detertors dosigned for best detection of side-band signals, a point that was overlooked in some of the older receivers.

Specialized Communication Systems Frequency and Phase Modulation

Abstract

It is possible to ronver intelligenee by moclulating any property of a carrier, including its frequeney and phase. When the frequener of the carrore is varied in acoombane with the variations in a modulating signal, the result is frequency modulation (f.m.) Similarly, varying tho phase of the earrior eurrent is called phase modulation (p.m.).

Frequency and phase modulation are not independent, sinee the fremener canmot be varied without also varuing the phase, and viere versa. The difference is Iargely a matter of definition.

The efferetiveness of f.m. and p.m. for rommunication purposes dependes almost antiredy on the pereiving methods. If the receriber will respond to frequency and phase changes hat is insemsitive to amplitude changers it will diseriminate agrainst dust forms of noise, particularly impulse mone such as is sot up by ignition systoms and other aparking devioes, sperial mothods of dotertion are recuired to ateromplish this result.

Nodulation mothods for f.m. and p.m. arro simple amd require practically no andio power. There is alse the and vantage that, sinere there is no amplitude variation in the signal, interference to broadmat reception of the type resulting from rectification in the andio cireuits of the BC : recover is sulbstantially eliminated. These two points represent the primeipal reasons for the use of f.m. and p.m. in amate mor wor

Frequency Modulation

Fig. $12-1$ is a representation of frequency
(A)

(B)

(C)

Fias. 12.1 - Grahhical ropresmation of frequeney modulation. In die cmmondalated narrier at I. carla r.f. evelo eweupios the abme anmont of time. Whent the mendatatinus -ismat. Is. is appliod, ther radion froquctues is incraderd and drerra-ed ateordinge to the ampliftude and perarity of the mondulationg ignal.
modulation. When a modulating sigmal is applied, the earrier freguency is increased dating one half-revele of the mod lulating signal and derereased during the half-ryele of opposite polarity. This is indicated in the drawing he the fied that the r.f. - celas oreapy less time (highere fregurney) when the modulating signal is positive, and more time ((ower freguency) when the modulating signal is nogative. The chatuge in the fation frecturney (frequency deviation) is proportional to the instantaneons: amplitude of the modelating signal, so the deviation is small when the instantaneons amplitude of the moclulating signal is small, and is greaters when the modulating sigmal reathers its peak, rither positive or negative.

As shown ley the drawing, the amplitude of the signal dons not change during modulation.

Phase Modulation

If the phase of the curvent in a cirenit is changed there is an instantaneons frequeney change during the bime that the phase is boing shifted. The amount of fropueney ehange, or deviation, deproms on how rapidly the phase shift is accomplished. It is also depeoment upon the total anount of the phase shift. In a properyopreating patm. sistom the amount of phese shift is proportional to the instantancoos amplitude of the modulatiag signal. The rapidity of the phase shilt is directly proportional to the frequener of the modnating sighal. (onsequently, the frequenes deviation in p,m. is proportional to beth the amplitude and frequener of the modnlating signall. The latter represents the outstanding difference bet wern f.m. and p.m. sincer in f.m. the frequener deviation is proportiomal only to the amplitube of the modalating sigmal.

Modulation Depth

Perentage of modalation in f.m. and p.m. has to le define diff wently then for am. Iractically, "10" per remt mondation" is rearhed when the thanmitted signal oreuphos a chamed just equal to the bandwitth for which the recerer is dosigned. If the frequeser deviation is geveter that the revelver can acopt, the reresiver distorts the signal. However, on another reedver desigmed for a different batwidth the same signal might the equivalent to only 25 per emp modulation.

In amateme nork "narrow-land" f.m. or p.m. (ferquently abbreviated n.l.m.) is defined as having the same chamel width as at popertymondutad am. sigmal. That is, the offective "hamel width dors not exered twier the highest

Fig. 12.2 - How the amplitulde of the pairs of side bands varies with the modulation index in an f.m. or l.m. signal. If the curves were ex. temded for greater values of modulatien index it would tee seen that the rarrier amplituld goes through zero at sesaral proints. The same statement also applies to the side bands.
andiofrepurner in the modulating signal. N.f.m. triusmissions bensed on ath upper andio limit of 3000 eredes therefore should oceupy a chammel not significuntly wider thath oke.

F.M. and P.M. Side Bands

The side bands set up be f.m. and p.m, differ from these resulting from at.m. in that they oredr at integrad multiples of the modulating frequency on either side of the carrier rather thath, as in at.m. consisting of a single set of side frequencios for cach modulating frequency. An fim. or pom. signal therefore inherently occupies a wider chamed that a am.

The number of "extra" side bands that oerur in f.m. and p.m. depends on the relationship between the modulating frequeney and the frequener deviation. The ratio betwern the froguency deviation, in cyeles per serond, and the modulating frequency, also in cereles per second, is called the modulation index. That is,

Modulation imbex $=\frac{\text { Carrior frequenc! derintion }}{\text { Modulating frequency }}$ Example: The maximum frequeney deviation in an f.m. transmitter is $30(1)$ cerces either side of the earrier fremuence. The modalation index when the modulating frequener is 1 ooo cyelos is

$$
\text { Morlulation index }=\frac{3000}{10000}=3
$$

At the same deviation with $3000-\mathrm{e}$ ere modulation the index would be 1; at 100 cycles it would be 30 , and so on.
In p.m. the modulation index is constant regardlas of the modulating frequance: in f.m. it varies with the modulating frequency, as shown in the above example. In an fim, system the ratio of the maximum carrier-frequeney deviation to the highest modulating frequeney used is called the deviation ratio.
lig. $12-2$ shows how the amplitudes of the carrier and the various side bands vary with the morlulation index. This is for single-tone modulattion; the first side band (actually a pair, one above and one below the carrier) is displaced from the carrier be an amount equal to the modulating frequener, the serome is twier the modulating frepuency away from the carrior, and so on, for example, if the modulating frequeney is 2000 eveles and the carrier frequency is $39,500 \mathrm{ke}$, the first side band pair is at $29,198 \mathrm{ke}$. and 29 , 502 kc ., the serond pair is at $29,490 \mathrm{kc}$. and $29,50.4 \mathrm{kc}$., the third at $29,+49+\mathrm{ke}$, and $29,506 \mathrm{ke}$, cte. The amplitudes of these side hands depend on the
motulation index, not on the frequency deviation.
Note that, as shown hy Fig. 12-2, the earrier strength varies with the modulation index. (In amplitude modulation the rarrior strength is ronstant; only the side-hand amplitude varios. At a modulation index of approximately 2.1 the carrior disuppars entirely. It then beromes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In f.m. and p.m, the energy that gees into the side bands is taken from the carriers. the total power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no ehange in amplitude with modulation, an f.m. or p.m. signal am be amplified without distortion he an ordiname Class (C amplifier. The modulation can take plate in a very low-level stage and the signal citn then be amplified be either frecuenes multiplioss or straight amplifiors.

If the modulated sigmal is passed through one or more frequency multipliers, the modulation index is multiplied be the same factor that the carrier frequence is multiplied. For example, if modulation is applied on :3.5 Me. and the final output is on 28 Me. the total frepuener multiphication is 8 times, so if the frequenery deviation is 500 cerles at 3.5 Mr . it will be 1000 eveles at 28 Me. Frequency multiplication offers a means for obtaning practically any desired amount of frequeney deviation, whether or not the modulator itsedf is capable of giving that much deviation without distortion.

Narrow-Band f.m. and p.m.

"Narrow-hand" f.m. or p.m.. theonly type that is authorized by FCC for use on the lower frequeneies where the phome hands are crowded, is defined as f.m. or p.m. that dons not oremper at wider chamel than an atm. signal having the same andio modulating fremuencors.
If the modulation index (with single-tone moluation) does not exered about 0.0 the most important extrat side band, the seemed. will be at least 20 dt . below the ummodulated carrier level, and this should represent an efferetive chamed widthabout equivalent to that of an a m.m. signal. In the case of spereh, a somerbhat higher modulat tion index ean he used. This is beramse the energy distribution in a complex wave is suleh that the modulation index for any one frequency com-
ponent is redued, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chicf advantage of narrow-hand fim, or prom. for frequences bolow 30 . Mr is that it climimates or reduces certain trpes of interference to broadeast remeption. Also, the modulating equipmont is redatively simple and inexpensive. However, assuming the same umodulated carrier power in all cases, hatrow-band f.m. or p.m. is not as effertive as a.m. with the mothots of rereption used be most amateurs. As shown by Fig. 12-2, at an index of 0.6 the amplitude of the first side band is about 25 per eront of the am-modulated-carrier amplitude; this compares with a side-band amplitude of 50 per cent in the case of at 100 per cent modulated am. transmitter. So far as effertiveness is comerned, a narowband f.m. or p.m. transmitter is about equivaldent to a 100 per rent modulated atom. tramsmitter operating at one-fourth the carrier power.

Comparison of f.m. and p.m.

Frequencer modulation cannot le applied to an amplifier stater, but phase modulation ean; p.m. is therefore readily adaptable to tramsmittors emplowing osidlators of high stalbility such as the erystat-controlled twpe. The amount of phase shift that ean be obtained with good linearity is such that the maximum praticable modubation index is about 0.5. Because the phase shift is proportional to the modulating frequeney, this index can be used only at the highest frepuency present in the modulating signal, assuming that all frequencies will at one time or another have
equal amplitudes. Taking 3000 eveles as a suitable upper limit for voier work, and setting the modulation index at $0 . \overline{5}$ for 3000 curles, the frequener response of the speech-amplifior system above 3000 apeles must be sharply attenuated, to prevent side-band sphatter. Also, if the "tinny" guality of p.m. as received on an f.m. receiver is to be atvoided, the p.m. must be changed to f.m., in which the modulation index dereases in inverse propertion to the modulating frequence. This reguires shaping, the sperehamplifier frequency-response curve in such a way that the output voltage is inversely proportional to frequeney over most of the voier range. When this is done the maximum modulation index can only be used at some redatively low audio froquener, perhatps 300 to 100 eveles in voive transmission, and must derpease in proportion to the increase in frequences. The result is that the maximum linear frogumes doviation is only one or two hundred cerdes, when p.me is changed to f.m. To increase the deviation for n.f.m. requires a frequeney multiplication of 8 times or more.

It is redatively easy to secure a farly large frequency deviation when a self-controlled osrillator is frequenco-modulated directly. (True frequency modulation of a arystal-rontrolled oscillator results in only very small deviations and so reguires a great deal of frequency multipliestion.) The chiof problem is to maintain a subisfactory degree of ratrior stability, since the greater the inherent stability of the oscillator the more diffienlt it is to secure a wide frequeney swing with linearity.

Methods of Frequency and Phase Modulation

The simplest and most satisfactory device for amateur f.m. is the reartatue modulator. This is a vacuum tube connerted to the r.f. tank cirenit of an oscillator in such a way as to act as a variable inductance or capacitance.
fig. 12-3 is a representative rimuit. The rontrol grid of the modulator tube, V_{2}, is commerted arross the oscillator tank cireuit, $C_{1} L_{1}$, through resistor R_{1} and blocking raparitor f's. F's represents the input eaparitance of the modulator tube. The resistance of h_{1} is made large compared to the reatetance of $(8$, so the i.f. current through $R_{1} C_{8}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. Howevor, the voltage arross ('8 will lag the current by 0 degrees. The r.f. current in the plate circuit of the modulator will be in phase with the grid voltage, and ronsequently is (0) degrees behind the current through ('s. or 90 degrees behind the r.f. tank voltage. This lagring current is drawn through the asillator tamk, giving the same effert as though an inductane wore comered arross the tank. The fregueney increases in proportion to the amplitude of the lageing plate corrent of the modulator. The audio voltage, introduced through a radio-freguency choke, RFC: varios the tramseondurtance of the
tube and thereby varies the r.f. pate current.
The modulated oscillator usually is operated on a relatively low frequeney, so that a high order of carrier stability ran be serured. Frectuency multipliers are used to raise the frotuency to the final freguenery desired.

A reactance modulator can be connected to a ervital oscillator as well as to the sell-eontrolled tape. However, the result ing signal is more phasemodulated thatn it is frequence-modulated, for the reason that the frequener deviation that ean bo secured by varying the tuning of a crystal oscillator is quite small.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transconductance of the modulator tulve. It increases when R_{1} is made smaller in comparison with ('s. It also increases with an increase in $L^{/ C}$ ratio in the osillator tank circuit. Since the carrier stability of the owillator depends on the L ('ratio, it is hesirable to use the highest tank raparitanere that will permit the desired deviat ion to be secured while kerping within the limits of linear operation.

A change in any of the voltages on the modu-

Ris, 12-3 - Reactance meadalater nsing a high.
 (:1 - R.f. tanh raparitamer (mere toad).

(is-lo- fincetrolytie:
© - " 'lube input eapacitance
$1 \mathrm{~h}_{1}-\mathrm{F}^{-} .0010$ shms.
$1 R_{2}-10.47$ mexohm.
K_{3} - Scremon dropping resistor: solent to wive pronmor sereere waltage ons type of mombe latar tabe used.
K_{4} - Cathude bias resistor: select ats in atse of κ_{3}.
L_{1} - Jh.f. tank inductance.

lator tube will canse a changre in r.f. plate curront,
 it is aldisable to use a regulated plate power supply for both modulator and oscillator. At the low voltage usod (25.) volts or less) the reguired stabihzation cath be secored by moans of gatsous regulator tules.

Speech Amplification

The spered :mplifier preceding the modulator follows ordinaty design, exeept that no power is taken from it and the at.f. voltage reoguired the the modulator grid usuatly is small - not more that 10 or 15 volts, even with latge modulator tubes. Beanse of these modest requirements, only a few speed stages are neoded: at two-stage amplifier consisting of a pentode followed low a triode, both resistane-eoupled, will more than suffiee for arystal microphones.

- PHASE MODULATION

The same tupe of reamiance-tule circuit that is used to vary the tuning of the oscillator tamk in f.m. can he used to vary the tuning of an amplifier tank and thas vatry the phase of the tank current for prm. Hene the modutator reircuit of Fig. I2-3 rat be usad for prm, if the reatctane tabe works on an amplifier tank insteat of dired fly on a selfecontrolled osedilator.
The phase shilt that oreurs when a reireuit is detuned from resonance depends on the amount of detuming and the Q of the circuit. The highor the (), the smatler the amomet of dotming needed to sereure a given number of degrees of phase shift. If the () is at least 10 , the relationship betwern phatse shift and detuning (in kilocerles either side ol the resonant frequency) will be sub-
stantially limear over a phateshift ramge of atonat 25 degrees. From the standpoint of modulator semsitivity, the () of the tumed cirmit on which the modulator operates should be as high as possible. (On the other hathe the affertive () of the cirenit will not be very high if the amplifier is dedivering power to a loal sinee the load revistand reduces the (). There must therefore the a compromise botwern modulator sensitivity and r.f. power output from the modulated amplifier. An optimm figure for () appears io be about 20; this allows reasonable leading of the modulated amplifier and the meressary thang variation can be serured from a reatatare modulator without difliculty. It is advisable to modulate at a very low power level-preferably : in a state where reeriving type tubes are used.

Reartance modulation of an amplifier stago usually also results in simultameous :mpplitushe modulation because the modulated stane is dethamb from resumane as the phase is shilted. This muse the eliminated bey foeding the modulaterd signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated Class (and driven hatrd enough so that variations in the amplitude of the grial excitation produre no apprediable variations in the finsal output amplitude.

For the same tree of reatance modulator, the sporfh-amplifier wain required is the same for p.me ats for fim. However, as printed out marlior the fact that the actual frequency deviation in(rostses with the modulating adudio frequency in p.m. makes it neeresary to cut of the frequencies alowe about 3000 evedes before motulation takes plow. If this is not dome mumeressury side bands will bo genorited at frequeneios considerathly away from the carrier.

Checking F.M. and P.M. Transmitters

Decurate checking of the operation of an f.m. or b.m. transmitter reguires different mothods than the corresponding checks on an anm. Aot. This is beranse the eommon forms of measuring devices either indieate amplitude variations only (a d.e. milliammeter, for exampley, or berame their indications are most (at-ily interpueted in toms of amplitude. There is uo simple measuring instrument that indicates freduency deviation in a modulated signal
directly.
However, there is one favorable feature in f.m. or prom, whereking. Thue motulation takes phate at a very low level and the stages following the one that is modulated do not affeect the lincarity of modulation so long as they are proporly tamed. Therefore the modulation may he chocked without putting the transmitter on the air, or even on a dumme antenna. "The power is simply eut of the amplifiers following the
modulated stage. This not only avoids unnecess:ary interference to other stations during testing periods, but also keeps the signal at such a low level that it may be observed quite easily on the station receiver. I good receiver with at (rystal filtor is an essential part of the checking equipment of an f.m. or p.m, transmittor, partirularly for narrow-band fim. or p.m.

The guantitios to be cherked in in f.m. or p.m. tranmitter are the lindarity and frequency deviation. Because of the essential difference hetween f,m. and 1 , m. the mothots of ehoreking differ in detail.

Reactance-Tube F.M.

It is possible to calibrate a reatimere mondatator by applying an adjustable d.e. voltage to the modulator grid and noting the ehange in oweillattor firequencey as the voltage is varicol. I suitable rireuit for abplying the adjustathe voltage is shown in Fig. 12-1. The battery should have :

Fif. 12-1-1 - M. method of checking fremoency deviation of a reactance-tube-mudulated omillator, A $\overline{\mathrm{s}}(1)$.

voltage of 3 to ti volts (two or more dry cells in series). The armows indieate elip comeretions so that the battery polarity can le peversed.

The oscillator frequence deviation should be measured by using a receiver in conjunction with an accurately-calibrated freguency meter, or by any means that will permit aecurate measurement of frequency differences of a few hundred cyeles. One simple method is to tunc in the oscillator on the recerver (discomereting the receiving antenna, if necessary, to keep the signal strength well bolow the overload point and then set the receiver b.f.o. to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about 1,2 volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by romparison with a ealibrated audio-frequency osciltator. Note that with the battery polarity positive with respert to ground the radio frequeney will move in one direetion when the voltage is increased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be ploted to demonstrate the relationship betweon grid voltage and frequency deviation.

A sample curve is shown in lig. 12-5. The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indieates that the modulator is no longer linear; this departure from linentity will caluse harmonie distortion and will broaden the chamel occupied by the signal. Lu the ex-

Fiд. $12+, j-$ Itpical curve of frequency deviation ts. mondulator grid voltage.
ample, the characteristie is linear 1.5 ke . on either side of the center or earrier frequeney.

I good modulation indicator is a "magieeye" tube sueh as the 615. 'This should be conneeted across the grid ressistor of the reactance modulator as shown in Fig. 12-6. Note its deflection (using the d.e. voltage method as in Fig. 12-4) at the maximum deviation to be used. This deflection represents " 100 per cent modulation" and with speech input the gain should be kept at the point where it is just reathed on voice peaks. If the transmitter is used on more than one hand, the gain control sloould be marked ot the proper setting for

Fis. $12-6-6 \mathrm{~F} 5$ inolulation indieator for f.m. or p.m. modnators. To insure sufficient arid voltage for a good deflertion, it may the necersaty to pommeet the gain comtrol in the modalator grid circuit rather than in an carlier speech-amplitier =tage.
ench band, because the signal amplitude that gives the correct deviation on one band will be either too great or toosmall on another. For narrow-hand fim. the proper deviation is approximately 2000 cycles (based on an upper a.f. limit of 3000 cycles and a deviation ratio of 0.7) at the ouf queney is in the 29-Me. hand and the oscillator is on $\overline{-}$. Mre., the deviation at the oscillator frequency should not exeend $2000 / 4$, or 500 cereles.

Checking with a Crystal-Filter Receiver

With p.m. the d.e. method of checking just described cannot be used, because the frequeney deviation at zero frequeney (d.e.) also is zoro. For narrow-hand p.m. it is nevessary to cherek the actual width of the chamel oceupied by the transmission. (The stme method also can be used to chorek f.m.) For this purpose it is necessary to have a crystal-filter receiver and
an and. oseillator that gemerates a 3000 -crove sine wave.

Keeping the signal intensity in the recoiser at a medium level, tume in the carrier at the ontput frequence. Do not use the als.e. Swite on the beat oxcillator, and set the erestal filter at its sharpest position. Peak the signal on the erysal and adjust the b.f.o. for any emsemient beat note. Then apply the 3000 -eyele 1one to the speech amplifior (through an attemuator, if neessary, to awoid owrloading; ser chapter on atudio amplifiers) and increase the audio gain until thore is a small amount of modulation. Tuning the receiver near the camber fregueney will show the presence of side hands 3 kc . from the carrier on both sides. With low audio input, these two should be the only side bands derectable.

Xow incrase the audio gain and tune the recoiver over a range of about 10 kc , on both sides of the carrier. When the gain beromber high enough, a seoond set of side banuls spareod of ke. on either side of the carrier will be detereted. The signal amplitude at which these side hamds become dotertable is the maximum sperel amplit mete that should be used. If the fibe modulattion indicater is ineorporated in the modnater. its deflection with the 3000 eevele tont will be the " 100 per cent modulation" defleetion for speech.

When this method of checking is used with a rewtimes-thbemodulated f.m. (not p.m.) transmitter, the limearity of the syotem can be eheeked by ohserving the carrier as the at. gain is slowly increased. The beat-mote fregucher will stay ronstant so long as the mondabator is linear, but nonlinearity will be acompanied by a shift in the average barion fremuency , hat will callse the beat mote bo chathge in frequence. If such a shift orcurs at the same time that the b-ke. side bands appeat, the cexta side bonds may in comsed hy modulator distortion rather than bean exerosive modnlation
index. This means that the modulatom is not capable of shitting the frequener oner a wideemough range. The foke. side bands should ant pear before there is any shife in the carrior frequeney.

R.F. Amplifiers

The ref. stares in the tamimiter that follow the moelulated stare mate be dewigned and adjusted as in ordinary uperation. In fate thew are wo perial requirements to be mot exedpt that all tank eirecuites should be carcibully tumed torewnance (to prevent unwanted rit. phase *hifte that might interact with the modulation and thereby introduce hum, noise and dis(antion). In neutralized stares, the noutralization should be as exact as posible, ako to minimize unwanted phase shifts. With f.m. and p.m.. all rif. stages in the transmitter can be operated at the manufaturers maximum c. w.-telegraphy rating:, sine the average power input does not var? with modnlation a* it does in a.m. phone operation.

The output power of the transmitere should low chareked for amplitude modnatation. It should mon -hange from the mmodulatederatior value when the trimsmitter is modulated. If mo output indiator is avaibable, a flashlight lamp and lowir ram be coupled to the final tank roil to serve as :t current indieator. If the aurior amplitude is ronstant, the lamp hrilliance will not rhange with mondulation.

Amplitude modulation aroompathing fim. or prom. is just an murh to bre avoided as frequency or phase modulation that acompanioatm, A misture of atm. with exither of the other two shatems results in the gemeration of spurious side hands and romserguent widening of the -hannel. If the preserme of at.m. is indiented by variation of antenna current with modulation. the catha is almost cortain to be nonlinearity in the modulator.

Reception of F.M. and P.M. Signals

Roceivers for f.m. and p.m. signals differ from those for acm. and ses.h, principatly in 1 wo forttures - thare is moned for linearity in the amplitier stages proceding detection (in lacet, it is advantageous if the amplitude variations in the signal and batekground moise ("un be "washed out"), and the detector must be capablo of eonverting the frequeney varibtions in the incoming signal into amplitude vartiations. These amplitude variations, combined with reetification, produce an indio voltage corresponding to the frequency or phase modulation on the signal.

Frequener- or phase-modulated signals can be reereved atter a fiwhion on any ordintur reerever that hate a seloctivity curve with sloping sides. Is shown in Pig, 12-iA, the reerever is tuned so that the carrier frequence is phened part-way down on one side of the sedertivity corve so that the amplitude is less than the maximum that would be
possible with normal luning. When the frequence of the signal varies with modulation it swiug betweron some surh limits as are indieated in Fig. 12-7 A resulting in an amplitude-nuodulated ontput varving betwern X and r. Ifter this f.m.-to-itm. conversion the signal geos to at comverntional deteotor (usually a diode) and is reretified in the same way ats ath atm. signal.

With most receivers, particularly those having sterp-sided selertivity rurves, the method is mot very sit isfectory beceuse the distortion is quite sovere unlass the frequence deviation is smatl, becouse the relationship between frequenes deviation and output amplitude is linear ower only a small part of the selectivity raver.

A detector designed expressly for f.m. or p.m. will have at chatateteristice similar to that shown in fig. 12-iB. The output is zero when the unt modulated carrier is tumed to the renter, 0 . of

ドig. 12-7 - Fr.m. or f.m. Aetcelion tharacteristics. A "Sope detectione" using the shopios side of the recerisers selectisity rume to converı f.m. or p.m. to a.m. for subsequent rectilieation, B - 'Iypioal diseriminator "harateristic. The traikht portion of this curve betwern the two preahs is the mefoll resion. 'lote peaks: should ilwas lie out side the pass bated of the receiver ${ }^{-1}$ selnctivity curve.
the (hatrateristic. When the frequeney swings higher, the rectifed output amplitude inereases in the positive direction (as shown here), and when the frepurner swings lower the output amplitude increases in the nogative direction. Over the range in which the chatarteristic is a straght line the eonversion from f.m. to at.m. is lincar and there is no distortion. One type of deteretor that opreaters in this way is the fre-
quency discriminator, which combines the f.m.-to-a.m. conversion with reedification to give an andio-frequency output from the frequencymodulated r.f. signal.

Limiter and Discriminator

A practical discriminator circuit is shown in Fig. 12-8. The f.m.-to-a.m. conversion takes place in transformer T, which operates at the intermediate frequency of a superheterodyne receiver. The voltage indued in the tranformer secendary, δ, is 90 degrees out of phase with the primary current. The primary voltage is introduced at the erenter tap on the serondary throngh C_{1} and combines with the secondary voltages on eateh side of the exenter tap) in such a way that the resultant voltage on one side of the secondary loads the primary voltage and the voltage on the other side lags by the same phase angle, when the (ircuits are resonated to the ummolulated carrier frecuency. When redified, these two voltages are equal and of opposite polarity. If the frequeney changes, there is a shift in the relative phase of the voltage components that results in an inreotse in output amplitude on one side of the secondary and a corresponding decrease in amplitude on the other side. Thus the voltage applied to one diode of V_{2} inereases while the voltage applied to the other diode deere:sess. The differrence betwern these two voltages, after rectificat tion, is the andio-frequency output of the detector.

The output amplitude of a simple diseriminator depends on the amplitude of the input r.f. signal, which is undesirable bectuse the noise-reducing Trenefits of f.m. are not sereured if the receiving syatem is sensitive to amplitule variations. I diseriminator is always preceded be some form of amplitule limiting, therefore. The ronventional type of limiter also is shown in Fig. 12-8. It is simply it pontode i.f. amplifier, !', with its operathen conditions chosen so that it "saturates" on a relatively small signal voltage. The limiting action is aded by grid roctification, with grid-leak

 ath":adaptor" for commanieations receivers. for reception of narrow-band f.m. signals.
 frequencie's.
' ${ }^{\prime}{ }_{3}$ - Jiscriminator transformer for intermediate fres. 'fueney used. l'uah-pull dionle tramsformer may
I_{1} - 6 dt 6 or equivalent. be aubstituted.
hits developed in the 50,000 -ohm resistor in the grid rirenit. Another contrilouting factor is low sereen voltage, the sereen voltage-divider constants being chosen to result in about 50 volts on the sareen.

Receiver Tuning with an F.M. Detector

In tuning at signal with a reereiver having a diseriminator or other type of f.m. detertor the turing controls should be adjusted to center the
carrier on the detector characteristic. At this point the noise suppression is most marked, so the proper setting is easily recognized. An am-plitude-modulated signal tuned at the same point will hatve its modulation "washed off" if the signal is completely limited in amplitude and the diseriminator aligmment is symmetrical. With either f.m. or atm. signals, there will be a distorted :undio-frequency output if the receiver is tumed "off center."

Radioteletype

ladiotcletype (ablereviated RTTY) is a form of tregraphie commanieation emplosing type-writer-like machines for 1) generating a coded set. of electrical impulses when a trpewriter key corresponding to the desired lettor or symber is pressed, and 2) converting a recoived set of such impulses into the corresponding printed charabter. 'lhe messange to be sent is typed out in mueh the same way that it would be written on a typerwriter, but the printing is done at the distint reeriving point. The teletepewtiter at the sending point also prints the same material, for chereking and roference.

The mathines used for RTTY are far too comphex merhanically for home eonstruction, and if purehased new would be highly expensive. However, used toletypewriters in good meehamieal condition are atatilable at guite reasonable priaes. These ate mathines retired from commerefial service but capable of entirely satisfadtory operattion in amateur work, They may be obtaned from a number of soures (latest information on this maty be oldained from ARRRL, West Hirt ford, Conn, on condition that they will be used purely for amaterur purposes and will not be pesold for eommerrial inse.

Types of Machines

There are two general types of mathines, the page printer and the tape printer. The former prints on a patper roll athout the same width as at business letterherd. "The latter prints on paper tape, usually gummed on the reverse side so it maty be cut to lettor-size width and pasted on a sheet of paper in at series of lines, The page printer is the more common trpe in the equipment available to mataters.

The oprating spered of most mathines is such that chatacters are sont at the rate of about tio words per minute. Ordinary teletypewtiters are of the start-stop variety, in which the pulse-forming mechanism (motor driven) is at rest until a trpewriter key is depressed. At this time it legeins oprating, forms the proper pulse seruener, and then comes to rest akain lefore the next key is depressed to form the following chatrater. The rereiving mechanism operates in similar fashion, being set into operation by the first pulse of the sequence from the transmitter. Thus, although the artaid transmission sperd rammot excerd abont 60 w.p.m. it can be considerably slower,
depreming on the treping speed of the operator. It is also possible to transmit ber using perforated tape. This hats the advantuge that the complete message may be typed out in advance of athat trinsmission, at any comvenient speed: when transmitted, however, it is sent at the matchines normal maximum sperd. A sperial transmitting head and tape perforator are reanired for this process, A reperforator is a devier that maty be comereted to the conventional teletyprwriter for punching tape when the mathine is operated in the regular way. It may thas be used either for an original message or for "taping" an incoming messuge for retransmission.

Teletype Code

In the sperial rode used for teletrpe every whatacter has five "clements" sent in sequenec. Biah erlement has two possible states, either "matk" or "space," which are indieated by different types al chectrical impulses (i, re, matrk might be indieated bey angative voltare and spare bey a positive voltage . In customary practiere cach element oreupies a time of 22 millisecomds. In addition, there is an initial "start" alement (space*), ilso 22 milliseronds long, to set the trunsmitting and reeriving merhatisms in operation, and at terminal "stop" clement (mark) 31 milliseronds long, to shut down the operation and ready the machine for the noxt chatarer.

This sequenere is illustrated in lig. 12-9, which

Fin, $12-9$ - Pule sequonce in the teletspe code. Viach character hexins with a *tart pulse, always a "space," and ends with a "stop" pulse, always a "marh." The distribution of marks and spaces in the five clements hetween start and stop determines the particular ehararler transmithed.
shows the letter (i with its stat and stop clements. The letter code at it would appear on perforated tape is shown in Fig. 12-10, where the Wack dots indiate marking palses. Figures and arhitriny signs - punctuation, otr, -use the

Fig. 12.10 - 'Veletype letter code as it appears on perforrated tame. Start amd stop elo. ment. do not appear on tape. Flements ate mamberid from top to tettom, and slots indicata marhing pulares Numerals, pmethation signs. and other arhitrary symbols are serured by carriage shift.

Fhere are no lowerecase letters on a teletypewriter. Where blanks appear in the abowe chart in the "PIGS" line, eharaters may eliffer on different marhines.
sume set of conde impulses as the atphatret, athd are seloreted be shifting the "arriage as in the rase of an ordintry typewriter. The carriog shift is areomplished hy tramsmitting either the "I, TRS" or "FItis" conk symbol ats required. There is also a "carriuge retura" conde chatrueter to bring the ratriage batek to the stating position after the rend of the litue is reathed on a pate printer, athd a "line fered" chatrater to :ulvane the page to thre next line after a line is comploted.

Additional System Requirements

Ton he used in radio emmmunication, the pmises (d.e.) geturated be the teletypewriter matst be utilized in somu waty to kere at radio transmitter so they maty be sont in proper segumane and usathle form ion adistant point. It the prexiving end the indoming signal must the cotwormed into d.e. pulses suitahle lor operating the printer. These functions, shown in block form in Fig. 12-11, are

Hig. 12.11 - Kalioteletype system in block form.
proformed by electronice units known respectively :ts the keyer and receiving converter.

The radio transmitter and reerejur are quite conventional in design. leatetieally all the spercial peatures nexded call lxe incorporated in the keyer and ronverter, so that any ordinary anatear cquipment is suitable for Rer"' with little modification.

Transmission Methods

It is quito possible to transmit teletype signals by ordinary "on-off" or "make-break" keying such as is used in regular hand-keyed e.w. trimsmission. In pritetice, however, frequency-shift keying is preferred bec:use it gives definite pulses on both mark and space, which is an advantage in printer operation. Also, since f.s.k. can be received hy methods similar to those used for f.m. reeeption, there is eonsiderable discrimination against noise, both natural and man-made. distributed uniformly arross the receiver's pass band. when the received signal is atoove the f.m. threshold lavel. Both fartors matke for increased reliathility in printer oprations.

Frequency-Shift Keying

(ieneral pratione with f.s. k. is to use a frequency whift of 8iol cescles per second, although FCC regulations permit the use of any value of frequeney shift up to !oo eyres. The smatler values of shift have been shown to have a signall-to-noiseratio advantage in commercial eireuits, and are currently being experimented with be amateurs. At present, however, the major part of amateur RTTY work is done with the 850 -eyele shift. This figure also is used in much commercial work. The nominal tramsmitter frequence is the mark condition and the frequeney is shifted 850 cycles (or whatever shift maty be chosen) lower for space.

On the v.h.f. hands where 12 transmission is permitted audio frequency-shift keying (a.f.s.k.) is generatly used. In this case the r.f. eurrier is triusmitted continuously, the pulses loeing transmitted hy frequence-shifted tone modulation. The atudio frequencies used have been more-orless standardized at 2125 and 2075 eycles per second, the shift being 800 eveles as in the case of straight f.s.k. (These frequencies are the 5 th and 7th harmonics, respectively, of 425 eyeles, which is half the shift frequeney, and thus are convenient for eabibration and alignment purposes.) Witha.f.s.k, the lower audio frequency is customarily used for mark and the higher for spatee.

The Receiving Converter

In receiving an f.s.k. teletype signal, the reccivers beat-fraguency oscillator is turned on as for ordinary rew. reception and the receiver tuning is then adjusted so that the mark and spare signals produre audio beat tones of 2125 and 2975 eveles. Fither frequency ean be used for
cither mark or space, but no matter which may be used at the triansmitter, the mark and space frequencies can be reversed at the reediver simply by tuning to the "other side of zerob beat." (This c:mot be done with a.f.s.k., of course, hut the reversal can be accomplished quite simply, if

 values may be paper. Capacitorn with pobaritiex indieated are electrolytic.
C.i - 0.IT- f . paper.
$\mathrm{C}_{2}-\mathbf{0 . 1 - \mu}$. paper.
$\mathrm{CH}_{1}, \mathrm{CR}_{2}-1 \mathrm{~N} 3 \mathrm{H}$ or equivalent.
K_{1} - Polar relay, to operate on 20 ma.
l.t - 36 mh . (I' width control, (;if type 1 III)-019). $1,2-29 \mathrm{mh}$. ('I'V widtl contral. (;F, ype RI, I).11!1).
M_{1} - Zero-center d.e. milliammeter, 응 ma. or more full seale (may be a $100-10$ - jo0 microammeter

$$
\begin{aligned}
& \text { appropriately shanted). } \\
& \mathrm{H}_{1} \text { - } 50,(0010 \text {-nhom volume control, lincar taper } \\
& \mathrm{K}_{3} \text { - } 1000 \text { ohms, } 1 \text { watt. } \\
& \mathrm{S}_{1} \text { - S.p.s.i. tugale. }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { amp. } \\
& V_{1}, V_{2}-6: 1.7 \text { (or IOMN). }
\end{aligned}
$$

The two tones, thus limited in amplitude, are applied to two simple filter circuits, $L_{1} \mathrm{C}_{1}$
 tively. The two tones are thas separated, whe being applied to the grid of lies and the other to the grid of Vos. Vas and Vos operate as grid-leak detertors, and when a signal is applied to, say, $F_{2,}$ the flow of grid current callases the grid to be driven practically to platerourent cutoff. As a result the plate voltage on 1 ina, normally 15 volts with mosignal, rises to 50 volts. This is sufficient to ignite the neon lamp connerted betwren the phate of lias and the grid of \dot{F}_{3}, and a positive bias of about 25 volts is applied to the grid of V.3a. Vas then takes: phate current of about 20 ma . and a bias of 20 volts is developed artoss the common rathode resistor, h_{2}. This is suflicient to cut off the platecurrent of lew, hence the left-hand magnet of the polarized rolay, k_{1}, is inoperative while the right-hand magnet closes the contacts on its side. A similar artion takes phace when a signal is applied to the grid of V_{23} but not to $V_{2 a}$; in this: ease the relay contarts are pulled to the left. The relay thus keys the mark and space voltages applied to the printer.

Potentioneter R_{1} is adjusted so that ineoming nows (which will affert both channels equally) is Balaned out and does mot cause K_{1} to operate. The neon hamps improve the operation of the circuit be acting as switches, thus making a

Fig. 12-1.3 - Modification of converter circuit for use with single-magnet printers. Undess otherwise indicated, capacitamors are in μ f.. resiatances in ohms, resintors are $\quad 2$ wall.
M_{1} - Zero-renter d.e. milliammeter, joll ma, full scale (maty low microammeter with appropriate shunt).
$R_{1}-50,000$-ohm volume control.
sharp demarcation betweon mark and space pulses.

The zero-center moter, M_{1}, is not aneressity but is a conveniene in making aldustments. R_{1} should be adjusted on receiver noise for zero reading. With a 2125 -excle tone the pointer will swing to the left and L_{1} should be adjusted for maximum deflection. With a 29 an-cere tone the pointer will swing to the right and h_{2} should he adjusted for masimum deflertion. Equal defler-
tions should be obtained from both chamnels.
The keving circuit shown in Fig. 12-12 is for use with the Model 12 machine which requires an external power supply. For machines having a single selector magnet the modification shown in Fig. 12-1:3 may be used so the printer may be operated directly. These machines usually require a current of 60 ma ., which will be furnished by this eireuit and may be adjusted to the correct value beg means of R_{1}.

Frequency-Shift Keyers

The kerboard contats of the teletpewriter acthate a direc-curront circuit that operates the printer magnets, and a pair of terminals is provided at which a keved d.c. signal of the order of 100 volts is available. (Bome machines, such as the Model 12, require an external d.c. power supply for this purpose; others have self-contaned power supplies.) In the "resting" or nonopreating condition the contacts are closed (mark) and the voltage at the terminals, which are in parallel with the contarts, is zero. In operation, the contarts open for "space" and the full voltage appears across the terminals. As nommally comected, the sparing signal is of positive polarity.

This keyed d.e. voltage may be used to operate a kever circuit for the radio transmitter, provided it is not "loaded" to such an extent that it affects the operation of the printer. . Itternatively, the keved current, rather that the voltage. may be used for external keving. This can be done by using an andiany keying relay with its enil connected in series with the printer magnet or relay (ircuit. A fast-ating relay must be used, and the coil must be one that will operate satisfactorily on the current available in the printer circuit. This will usually be either 20 or 60 milliamperes, depending on the type of matchine.

F.S.K. with Variable-Frequency Oscillators

Perhaps the simplest satisfactory circuit for frequencr-shift kering a v.f.o. is the one shown
in Fig. 12-1 A. This operates from the voltage available at the kerbourd contact terminals and uses a reactance tube to olstain the required frequence shift.
The frequency shift is obtaned by changing the phate resistance of the reatance tube, V_{2}, so that in effect the variable capacitor C_{2} is atternately diseonnected or connected in parallel with the tuning caparitor in the v.f.o. tank circuit. With no voltare applied to the grid, V_{2} is bitsed so that the plate current is low and the effect of C_{2} on the osidlator frequency is small. When a positive voltage from the kevorard contacts is applied to the grid the plate resistance is low and the oscillator frequency beromes lower because of the greater effect of ('2. The amount of frequence shilt depends on the capacitance of C_{2} and the amplitude of the positive voltage applied to the grial of V. The latter can be eontrolled by h_{1}.
C_{1}, the associated 20,000 -ohm resistor, and the neon bulb, V_{1}, constitute a filter for removing clicks generated at the kevolard contacts. The value of C_{1} depends somewhat on the marchine, and values up to $0.25 \mu \mathrm{f}$. cam be used, if nevessary, without objectionable distortion of the keving pulses. The counucitance should be adjusted for clickless kering.

The frequency-shift circuit should be initially adjusted at the lowest radio frequenco to be used, since the shift will be smatlest in this ease. If C_{1} is set so at shift of 850 cycles is obtained at this

(B)
frequeney, further adjustment of the shift mat he made be means of R_{1}. If the tramsmitter output is on a higher-frequency land than that on whioh the v.f.o. operater, the shift at the v.f.o. fundamental frequence must he reduced aceordingly.

F.S.K. With Crystal Oscillators

Fig. 12-1413 is a circuit which has been found to give a frequency shift of sind eveles or more with erystals of the type ordinaty used for frequencios of the order of 3.5 Mc , and higher. This is an oscillator of the "grideplate" type discossed in the ehapter on transmitters, with the addition of a variable capacitor, C_{3}, in series with the crystal. Co reduces the total caparitance across the crestal and thas ratises the osidation frequener. When it is shorted out the caparitance across the crystal is higher and the resulting frequency is lower.

Although relay contarts could be used for shorting the eaparitor, the diode arrangement shown in Fig. 12-1413 is more reliable in pratice. With the eontacts of K_{1} open there is no d.e. path through (${ }^{4} / L_{2}$ and it atets simply as a small caparitance (about I $\mu \mu \mathrm{f}$.) in parallel with (3. When the contaets of k_{1} are closed there is a d.e. circuit through (W_{1}, CRe and the 1000 -ohm resistor. Thas there is a path for direct current flow ats a result of reetification of the r.f. voltage across ('he. Because of the d.e. bias the resistance of $6 / R_{2}$ drops to a low value and (${ }_{3}$ in effectively shorted out.

Adjustment of the eireuit comsists simply of determining the setting of ${ }^{3}$ at whid the operat-
 higher with the contarts of K_{1} open than the frequeney when the relay contarts are dosed, A normally-rdesed relay is used in order to make the matk frequency lower than the space frequence, in acoordare with usual practice.

Frequency Adjustment

The frequency shift, whatever the trpe of circuit, should be made an nearly exaet as available equipment will permit, sume the shift must match the frequeney differme between the filters in the receiving converter if the signals are to be usable at the rereiving end. An areurately-caliGrated andio oseillator is useful for this purpose. Torherk, the mark frequeney should be tumed in on the station receiver, with the b.f.o. on, and the reseiver set to exact zero beat (see chapter on measurements for identification of exact zero beat). The spare frequency should then be atjusted to exartly the desired shift. This may be done by adjusting for an auditory zero beat between the beat tone from the receiver and the tone from the audio oscillator. If an oscilloseope is available, the frequency adjustment maty be acomplished by feeding the receiver tone to the vertical pates and the audio-osmillator tone to the horizontal pates, and then adjusting the spare frequency for the elliptical pattern that indicates the two frequencies are the same.

Transmission Lines

The place where r.f. power is generated is very frequently not the place where it is to be utilized. . 1 transmitter and its antemat are a good example: The antema, to ratiate well, should be high above the ground and should be kept claw of trees, buildings and other objeets that might aboorb energy, bat the trammither itself is most conveniently installed indoors where it is readily areessible. There are many other instances where power must bedelivered from one point to another.

The means by which power is tramsported
from point to proint is the r.f. transmission line. At ratio frequencies a line exhibits entioly different characteristics than it does at commereial power freduencies. This is becatuse the speed at which electrical energy travels, while tremendonsly high as compared with mochanical motion, is mot infinite. The peculianities of r.f. transmission lines result from the fied that a time interval compatrable with an r.f. cevele must elapse bofore energy leaving one point in the circuit can reach another just a short distanec away.

Operating Principles

suppose we hate a battery and a pair of parablel wires extending to a very great distance. It the moment the battery is comected to the wires, electrons in the wire near the positive terminal will be attrated to the battery, and the same number of electrons in the wire near the negative battery terminal will be rapelled outward along the wire.

Thus at current flow: in eath wire netr the battery at the instat the battery is emmeded. Howeres, a definite 1 ime intervab will elabsic before these currents ate evident at at distance from the batery, The time interval mas be very small. For example, one-millionth of at seomed (one microseond) atter the eonnection is made the eurrents in the wires will hatve traveled 300 meters, or nearly 1000 feet, from the battery terminals.

The current is in the nature of ab charging current, flowing to chatge the eapabejtance between the wo wires. But undike an ordinary capacitor, the comductors of this" "linear" "apacitor have appreciable inductance. In fate

Fig. 13-I - Liquivalent of a transmission line in lumped circuit constants.

We maty think of the line at being componed of at whole serios of small inductanees and capacitances connected as shown in Fig. 1:3-1, where each coil is the inductance of a very short secetion of one wire and eath catpacitor is the e:tumeit ane bet ween two such shart sections.

Characteristic Impedance

An infinitely long chain of coils and capacitors comnected as in Fig. 13-1, where each L is the same ase all others and abl the ('s have the
same value, haw an important property. To an electrical impulse applied at one end, the eombination appears to have an impedance - called the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{L / \sqrt{5}}$, where L and (${ }^{\text {ane }}$ we the inductane and capacitinnee per unit length. This impedinne is purely resistice.

In defining the ehatracteristide impedance as $\sqrt{L / C}$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power lons in the dielectric survouding the condurtors. In other words, it is assumed there is mo power loss in or from the line no mater how great its lengith. This does not seem consistent with calling the characteristice impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an in-finitely-long line the effeet, so fiar ats the source ol power is eoncerned, is exatetly the same at though the power were diswipated in a rewistance, because the power leaves the source and travels out ward forever along the line.

The chataterist is impedance determines the amount of current that can flow when a given volt:ge is applied to th infinitely-long linc, in exatly the same way that a definite value of actual resistance limits current flow when at given voltage is applionl.

The inductance and capateitance per unit longth of line depend upon the size of the conductors and the plabeing between them. The closer the two conductors and the greater their diameter, the higher the eapacitance and the bower the inductance. A line with large conductors closely spared will hatse low impedance, while one with small conductors widely spaced will have relabively high impedane.

"Matched" Lines

Actual trinsmission lines do not extend to infinity hat have a definite length and are connected to, or terminate in, aload at the "output"
end, or end to which the power is delivered. If the load is a pure resistane of a value equal to the chatracterist ic impedance of the line, the current traveling along the line to the load does not find condidions changed in the least when it meets the load: in ficte, the lowd just looks like still more transmiswon tine of the same elatracterist ie impedance. Comsequently, connect ing such ab lowd to a short transmission line allows the current to trewel in exatelly the stme fashion as it would on ath infinitely-long line.

In other words, a short line terminated in a purcly-re istive load equal to the chatacteristioc imperlane of the line arts just as though it were infinitely long. such a line is said to be matched. In a matheded mansmiswion line, power tawels outward abong the line from the source until it reaches the load, where it is completely absorbed.

R.F. on Lines

The disensison aboese, although based on directcurrent flow from a battery, abo hodets when an r.f. voltage is applied to the line. The difference is that the aldemating voltage eames the amplitude of the courent at the input 1 erminads of the line to vary with the voltage, and the direction of current flow abseperiodically reverses when the polarity wh the applied voltage reverses. In the time of ome evele the energy will travel a distane of one wave lengthatong the line wires. The current at it given instant att ang point abong the line is the result of at voltare that was applied at some endier instant at the input terminals. Hemer the instantimenos amplit ude of the current is different att all points in ano-wave-lengh section of line: in fiet, the current flows in opposite directions in the same wire in adjacent half-wavelengh soctions. However, at any given point along the line the current goes through similar variations with time that the current at the imput perminats did.

The result of all this is that the current fand voltane trawels abong the wire as a series of waves having a length equal to the velocity of travel divided the the frequener of the ate voliage. On an infinitely-lomg line, or one properly mat ehed at the lowat, in :mmeter inserted anywhere in the line will show the same current, sine the ammeter aberates out the variations in current daring a eycle. It is only when the line is not properly mat ched that the wave motion beromes apparent. This is diseussed in the next section.

- STANDING WAVES

In the infinitely-long line (or its mutched eonnterpart) the impedance is the same at any print on the line beranse the ration of voltage to current is alwase the same. However, the impedance at the end of the line in Pig. 1:3-2 is zero - or at least extremely smatl - because the line is short-circuited at the end. The outgoing power, on meeting the short-circuit, reverses its direction of flow and goes batek along the transmission line towated the input end. There is a large current in the short-rireuit, but substantially no voltage
areross the line at this point. We now have a voltage and current reprevent ing the power going outward (incident power) toward the shom-cirruit, and at second voltage and current reprementing the reflected power traveling back toward the souree.

The refleeted eurrent travels : the the same speed as the outgoing current, so its instantaneous value will be different at every print along the line, in the distane represented bey the time of one evele. At some puints along the line the phase of the outgoing and reflected currente will be such that the eurrents eaneel each other while at others the implitule will be doubled. It inbetween points the amplitule is bolwen these two extremes. The points at which the currents are in and out of phase depend only on the time reguired for them to travel and so depend only on the distance abong the line from the perint al reflecelion.

In the short-eirevit at the end of the line the two durent components are in phave and the total eurvent is latge. At a distanee of one-half wave length back along the line from the shoutcirevit the outgoing and refleefed components will agran be in phase and the resultant courent will arain lawe its maximum value. This is also

Fig, 13-2-Standing wave of whtage amd current along flart-circuited transmisaien line.
true at any point that is a multiphe of a hatiwave length from the shom-cireuted and of the line.

The ontgoing and reflected burrents will cancol at apoint one-quarter wave lengh, along the line. from the short-cirenit, It this print, then, the current will be zero. It will also be zero at all points that are an ofld multiple of one-quateres wave length from the short-citrout.

If the eurrent abous the lime is measured at sureessive points with an ammeter, it will be found to vary about as shown in Fig, 1:3-2l3. The stme result would be whatined by meswaring the courent in either wire, sine the ammeter cammot meature phate. Howerer, if the phase could be checked, it would be found that in eade sueressive half watve length sect ion ol the line the currents at any given instant are flowing in opposite directions, as indieated by the solid line in lig. 1:3-2 (\% Furthermore, the current in the secend wire is flowing in the opposite direction to the current
in the adjacent section of the first wire. This is indiented by the broken curve in Fig. 1:3-2C. The variations in current intensity along the framsmission line are referred to as standing waves. The point of maximum line curvent is ralled a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the emd of the line is whort-cincuited, the voltage at that poist has to be zero. This (an only be so if the voltage in the outgoing wave is met, at the end of the line, by a reHected voltage of equal amplitude and opposite polarity. In other words, lase phase of the voluage wave is mersed when reflemtion takes phace from the short-cireuit. This reversal is equivalent to an extra half cyele or half wave length of travel. Is a result, the outgoing and returning voltages are in phase a quater wave length from the end of the line, and again ont of phase a half wave length from the end. The standing waver of voltage, shown at D in frig. 1:3-2, are therefore displaced be one-quarter wave lemgth from the standing waves of current. The drawing at lis hows the voltages on both wires when phase is taken into arcount. The polarity of the voltage on each wire reverses in cath half wave lengith section of transmision line. I voltage maximum is called it voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-cireuited instead of short-circuited, there cat be no current at the end of the lime but abuge voltage cam exist. Agatin the incident power is reflected batek loward the seture. In this case, the incident and reflected components of rurreat must be equal and opposite in phase in order for the wotal curvent at the end of the line to be zero. The incident and refleceded components of voltage ate in phate and abld thgether. The result is that we agath have standing Watres, but the comditions are reverad are compated with a short-ciretited line. lig. 13-3 shows the open-circuited line colse.

fig. $13-3-S_{t a n d i n g ~ w a r s ~ o f ~ c t u r r e n t ~ a n d ~ v o l t a g e ~}^{\text {and }}$ along an open circuited transmi-sion linc.
(A)
(B)
(C)

Fig. 13.4-Standing wases on a tranmission line termi. mated in a resintise load.

Lines Terminated in Resistive Load

Fig. 1:3-f shows at line terminated in a resistive loand. In this case at least part of the incident power is abowhed in the lowd, and son is not avatilabie to be reflected batek toward the soture. Berame only part of the power is reflected, the reflected components of woltage and current do not have the same magnitude as the ineident eomponents. Therefore neither voltage nor current cancel completely at any paint along the line. Howeser, the speed at which the incident and reflected components thavel is not atfected by their amplitude, so the phase relationships are similar to those in open- or short-e irenited lines.

It was poined out eatilier that if the load resistance. Z_{12}, is equat to the chatateristic impedance, $Z_{\text {al }}$, of the line all the power is absorbed in the loand. In such at ease there is no reflected power and therefore no stimding waves of current and voltage. This is a special cave that represents the change-over mint between "shot-cifruited" and "open- incuited"lines. If Z_{1} is less ham Z_{0}, the current is largest at the load, white if $/$ R is greater than Z_{n} the volage is largest at the load. The two conditions are shown at 13 and 6 , respectively, in Fig. 1:3-1.

Tha resistive fermination is an important pratical case. The termination is seldom an athat resistor, the most common lemmations being remonat circuits or resonant antemat spo tems, both of which have essentially resistive impedaness. If the load is reative as well as resistive, the operation of the line resembles that slow'n in Fig. 1:3-1, but the presence of reactance in the load canses two modifieations: The loops and mulls are shifted howat or away from the load; and the amount of power reflected back toward the souree is increased, as compared with the amount refleced by a purely resistive load of the same lotal imperianer. Both effects become more pronounced as the ration of reatance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum (urent to minimum current along a line, lig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum woltage. It is a measure of the mismatch between the load and the line, and is equal to I when the line is per-
fectly matched. (In that case the "maximum" and "minimm" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load. the standing-wave ration is

$$
\begin{equation*}
S . W^{\gamma} . R .=\frac{Z_{\mathrm{R}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{R}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line
Example: A line having a characteristic impedance of 300 ohms is terminated in a resistive load of 25 ohms. The s.w.r. is

$$
\text { S.W.R. }=\frac{Z_{0}}{Z_{\mathrm{R}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{R} or Z_{0}, in the numeritor of the fraction so that the s.w.r. will be expressed by a number larger than 1.

It is easier to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13-5-Measurement of standing-wave ratio. In this drawing, $I_{\text {mas }}$ is 1.5 and $I_{\text {mis }}$ is 0.5 , so the s.w.r. $=l_{\text {nus }} / l_{\text {minin }}=1.5,0.5=3$ to 1 .
impedance of an intenna) that enter into trans-mission-line computations. Consequently, the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismateh betwem line and load. In practieal lines, the power loss in the line itself increases with the s.w.r.

- input impedance

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminats; it is the impedince into which the source of power must work when the line is connected. If the load is perfectly matched to the line the line appeats to be infinitely long, as stated earlier, and the input impedance is simply the chanateristie impedance of the line itself. However, if there are standing wates this is no longer true; the input impediance may have a wide range of values.

This can be understood by referring to Figs. 13-2, 13-3, or $13-4$. If the line length is such that standing waves cabuse the voltage at the input, terminals to be high ind the current low, then the
input impedince is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. (omversely, low voltage and high current at the input terminals mean that the input impedance is lower thatn the line \boldsymbol{Z}_{0}. Comparison of the three drawings also shows that the range of input impedance values that may be encountered is greater when the fir end of the line is open- or short-circuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the virlition in the absolute value of the input impedince with line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, even though the load itself may be a pure resistance. The only exceptions to this occur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: It all other distances along the line the current either leads or lags the voltage and the effect is exatly the same as though a eapacitane or inductance were part of the input imperdanere.

The input impedance cat be represented either by a resistance and a eapoceitance or by a resistince and an inductance, as shown in Fig. 136. Whether the impedance is inductive or capate $i-$ tive depends on the characteristics of the loud and the lengt h of the line. It is pussible to represent the input impedance bey an equivalent eirruit having resistance and reactance either in series or parallal, so long as the total impedance and phase angle are the same in either rase. For a given impedance and phase angle, different values of resistance and reactance are reguired in the series: circuit as compared with the parallel equivalent cireuit.

The magnitude and character of the input impedance is quite important, since it determines the method by which the power soure must be coupled to the line. The calculat ion of input impedance is rather complicated and its measurement is not feasible without special equipment. Fortunately, in amateur work it is merecsary either to calculate or measure it. The proper coupling ean be achieved by relatively simple methods desrribed later in this chapter.

Unterminated Lines

The input impedince of at short-circuited or open-eireuited line not an exact multiple of onequarter wave length loug is pratically a pure reactance. This is because there is very little power lost in the line. Such line are frequently used as "linear" inductances and capacitances.

If a shorted line is less than a quarter wave long, as at X in Fig. 13-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approathed. It then alternates between inductive and capacitive in successive
(fuarter-wave sections. Just the reverse is true of the open-circuited line.

It exact multiples of a quarter wave length the impedance is purely resistive. It is apparent, from (xamination of 13 and 1) in lige 1:3-2, that at perints that are a multiple of a half wave lengthi.e., 1.2. 1. 1'2 wave lengths, etc. - from the short-rircuited end of the line the current and

Fig, 13-6-Scries and parallel equivalents of a line whose input imperdance hat luth reactive and resistise components, " he eeries and parallel "fuic alente do not
 and R dows not "qual K.
voltage have the same values that there do at the short circuit. In other words, if the line were an exact multiple of a hate wave length long the generator or source of power would "look into" a short circuit. On the other hand, at points that are an odd multiple of a quarter wave length i.e., $\frac{1}{4}, 3_{1}^{3}, 1 \frac{1}{4}$. ete. - from the short circuit the voltage is maximum and the current is zero. Since $Z=E / J$, the impedance at these points is theoretically infinite. (Actually it is very high, but not infinite. 'lhis is bectuse the current does not at ually go to zero when there are losess in the line. Losses are always present, but usutilly are smatl.)

Impedance Transformation

The fact that the input impedance of a line depends on the s.w.r. and line length can be used to advantage when it is necossary to transform a given impedance into another value.
Study of Fig. 13-4 will show that, just as in the open- and short-circuiter cases, if the line is onehalf wave length long the voltage and current are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wave length. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{0}, that is a multiple of a half wave length long is exately the same as the load imperlance. Such a line can be used to transfer the impedance to a new location without changing its value.

When the line is a quarter wave length long, or an odd multiple of it quarter wave length, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impedance will be such as to require high
current and low voltage. The relationship between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{Z_{0}^{2}}{Z_{12}} \tag{13-B}
\end{equation*}
$$

where $Z_{\mathrm{S}}=I_{\mathrm{Im}} \mathrm{med}$ ance looking into line (line lengith an odd multiple of oncquarter wave lemgth)
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$\boldsymbol{Z}_{0}=$ Characteristic impedance of line
Example: A guarter-wave-longth line having a characteristic impedance of soo olms is terminated in at resistive load of 7.5 ohms. The impedance looking into the input or sending end of the line is

$$
Z_{\mathrm{s}}=\frac{Z_{0}^{2}}{Z_{\mathrm{R}}}=\frac{(500)^{2}}{75}=\frac{250,000}{75}=3333 \mathrm{ohms}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{ } Z_{i} Z_{12} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedanee that we wish to "matrh," we can do so if we comed them together by a quaterewave transmission line having a chatactoristic impedance equal to the square root of their product. A quarter-wave line, in other words, has the eharacteristies of a transformer.

Resonant and Nonresonant Lines

The input impedance of a line operating with a high s.w.r. is critically dependent on the line length, and resistive only when the length is some integral multiple of one-quarter wave length. Lines eut to such a length and operated with a high sw.r. are called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedince is close to the $\%$ of the line and does not vary a great deal with the line length. such lines are catled "flat," or "untuned," or "nonresonamt."

There is no sharp line of demarcation between tuned and untuned lines. If the s.w.r. is below 1.5 to I the line is essentially flat, and the same input coupling method will work with all line lengths. If the s.w.r. is above 3 or 4 to 1 the type of coupling system, and its adjustment, will depend on the line longth and such lines fall into the "thaned" aitegory.

It is always advantageous to make the s.w.r. as low as possible. A resonant line becomes nevessary only when a considerable mismatch between the load and the line has to be tolerated. The most important pratetical example of this is when a single antenna is operated on several harmonically-related frequencies, in which case the antemma impedance will have widely-different values on different harmonics.

RADIATION

Whenever a wire carries alternating current the electromagnetic fieks travel away into space with the velocity of light. It power-line frequencie's the field that "grows" when the current is
increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. But at radio frequencies fields that taved only a relatively short distance do not have time to get bate to the comductor before the next cyele commences. The consequence is that some of the electromanetic emergy is prevented from bering restored to the conductor: in other words, energy is radiated into space in the form of electromagnetic waves.
The amount of energy radiated depends, among other things, on the length of the conductor in relation to the frequency or wave length of the r.f. current. If the conductor is very short compared to the wave length the energy radiated (for a given current) will be small. However, a transmission line used to feed power to ath antomat is not short; in fatt, it is almost ahways an apprectable fration of a wave lemgth long and may have a length of several wave lengths.

The lines previously considered have consisted of two parallel comductors of the same dianeter. Provided there is nothing in the system to destroy semmetry, at every boint along the line the eurrent in one conduetor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This
was shown in ligs. 13-2C and 13-3C. It means that the fields set up about the two wires have the same intensity, but opposite directions. The consequence is that the total fied set up about such a tramemission line is zero; the two fields "eancel out." Hence no energy is madiated.

Actually, the fields do not completely cancel out beeanse for them to do so the two conductors would have to oecupy the same space, whereas they are slighty separated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wave length. Transmission line radiation will be negligible if the distance betwern the conductors is 0.01 wave length or leses provided the currents in the two wires actually are balanced as described.

The amount of radiation also is proportional to the eurrent flowing in the line. Because of the way in which the eurrent varies along the line when there are standing waves, the effertive euremt, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the madiation is least when the line is flat. However, if the conduetor spaceing is smatl and the cuments are batine the ridation from a line with even a high s.w.r. is inconseguential. I small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of tramsmission lines has been based on a line consisting of two parallel conductors. Actually, the parallel-conductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line consists of a conductor placed in the center of a tuise. The inside surface of the tube and the ontside surface of the smatler inmer conductor form the two conducting surfices of the line.

In the coasial line the fields are entirely inside the tube, bectuse the thibe acts as a shield 10 prevent them from appearing outside. This reduecs radiation to the vamishing point. so far as the elecetrical behavior of roasial lines is conerned, all that has previonsly been said about the operation of parallel-conductor lines applies. There are, however, practical differenes in the construction and use of parallel and coaxial lines.

- PARALLEL-CONDUCTOR LINES

Atype of parallel-couluctor linesomelimes used in amatere installations is one in which two wires (ordinaril: No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spaters," The spacings used vary from two to six inches, the smaller spacings being neeessary at freguencies of the order of 28 Mc . and higher so that radiation will be minimized. The construction is shown in Fig. 1:3-7. such a line is said to be air-insulated. Typical spacers are shown in Fig. 13-8. The chatacteristic impedance of such "open-wire" lines is between 100 and 600 ohms, depending on the wire size and spacing

Parallel-ronductorlinesalso areoceasionallyeonstructed of metal tabing of a diameter of 1 to 1 2 inch. This reduces the eharacteristic impedanee

Fig. 13.7-Typical ron-truction of open-wire line. The line comductor fit- in a wrowe in the and of the -pacer, and is luld in phace loy a tie-nire amelored in a hole near the zrowse.
of the line. such lines are mostly used as quarterwave transformers, when different values of impetance are to be matched.

Prefabrifated parallel-enduetor line with air insulation, developed for television reception, can the used in transmitting applications. This line consists of two conductors scparated one-half to one inch by molded-on spacers. The characteristic impedance is 300 to 450 ohms, deprending on the wire size and spacing.

A convenient type of manfactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a charac-

Fig. 13-h - Ty pical manufactured trancmission lince and sparera.
teristie impedance of 300 olms. It is sold under vatious names, the mosi common of which is "Twin-Lead." This type of line hats the advantagesol light weight, close and miform conductor paring, flexibility and neal apheathere. However, the lowes in the stid dieleedrie ate higher than in ail, and dirt or moisture on the line temels to change the chatactorist ie interdanee Moist ure dfeets can be reduced be roating the line with silicone quetwe. I spectial hom of 300 -ohm TwinLead for transmiting uses a polyechelene tube with the conductors moded diametreally opposite: the longer dielectris path in such line reduces moisture troubles.

In addition to 300-ohm line, Twin-Lead is ob1atiable with a chameteristie impedane of 75 ohms for transmitting purposes. Light-weight 75 and 100 -ohm Twin-Iead alon is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor liow is given by:

$$
\begin{equation*}
\%_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ (haracteristic impedance
$b=C$ Cutor-to-renter distance between conducters
$a=$ Radius of conductor (in same units :(s b)
It does not matiter what, units are used for c and b so long as they are the same units. Both quantit ies may be metsured in centimeters, inches, ete. Since it is necessaly to have a table of eommon logarithms to solve practial problems, the solution is given in graphical form in lig. 13-9 for a number of common conductor sizes.

In solid-dielectric parallel-conductor lines such as Twin-Lead the characteristie impedance cannot be calculated readily, because part of the electric field is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken 10 avoid introducing electrical unbalance into the system. If for some reason the current in one conductor is higher than in the other, or if the currents in the two wires are not
exactly out of phase with each other, the electromagnet ic fields will not cancel completely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requites, first of all, a balaneed load at its end. For this reason the antemat should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. I sually this means that the antenna sysem should be fed at its electrical center. Went though the antenna appears to be symmetrical, phwically, it can be unbalanced electrically if the part connected to one of the line conductors is intulvertenty coupled to something (such as house wiring or a metal pole or root) that is not duplicated on the other part of the antenna. Were effort should be made to keep the antemna as far as possible from other witing or sizable

Fig. 13-9- Chart showing the rharacteristic imped. ance of spacedeconductor parallel transmission lines with air dieleetrie. Tuhing sizes given are for outside diameters.
mamallic objects. The transmission line itself will eanse some unbalance if it is not brought away from the antenna at right angles to it for a clistance of at least a quarter wave length.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be a least four or five times the conductor spacing. The shumt capacitance introduced by close proximity to metallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. I shant capacitance of this sort also constitutes a reactive load on the line, causing an impedance "hump" that will prevent making the line actually flat.

coaxial lines

The most fommon form of coaxial line consists of either a solid or st randed-wite inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the
outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in Irig. 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms.

Air-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" placed at regular intervals.

Characteristic Impedance

The charateristic impedance of an air-insulated coaxial line is given by the formula

$$
\begin{equation*}
Z_{0}=1: 38 \log \frac{b}{n} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ (hatractaristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inmer conductor (in sime units as b)
Curves for typical comlurtor sizes are given in lïg. 1:3-10.
The formalat for coaxial lines is approximately cormert for lines in wheh bead spacers are used, provided the beads ate not too dowely spared. When the line is filled with a solid diedectric, the chatacteristic imperdance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

- electrical length

In the disurssion of line opration earlier in this chapter it was assumed that cuments traveled along the conductors: the the seed of light. Actually, the velority is somewhat less, the reasom being that electromagnetic fields travel more

Fig. 13-10 - Chart showing eharacteristic impedance of various air-insulated concentric lines.

TABLE 13-1 Transmission-Line Data				
Type	Description or T'y ine Number	Characturistic Imbedance	Volocity Fiactor	$\begin{gathered} \text { Capaci- } \\ \text { tance } \\ \text { per foot; } \\ \mu \mu f \text {. } \end{gathered}$
Coaxial		$\begin{gathered} 50100 \\ 5: 3 \\ 53 \\ 75 \\ 73 \\ 73 \end{gathered}$	$\begin{aligned} & 0.8 .5^{1} \\ & 0.66 \\ & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
l'arallel-Conductor	Air-insulaten $211-080^{3}$ 211-02:3 3^{3} $211-079^{3}$ $211-0.96^{3}$ $21:-076^{3}$ $211-0: 23$	$\begin{gathered} 2006000 \\ 3.5 \\ 35 \\ 1.50 \\ 300 \\ 300 \\ 3(0) \end{gathered}$	$\begin{aligned} & 0.9-5^{2} \\ & 0.68 \\ & 0.71 \\ & 0.15 \\ & 0.82 \\ & 0.8 .4 \\ & 0.8 .8 \end{aligned}$	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$
${ }^{1}$ Average figure for small-diameter lines with ceramic beads. ${ }^{2}$ Averace figure for lines insulated with eeramie spacers at intervals of a few fect. ${ }^{3}$ Amphenol tyje numbers and data. Line sinilar to $214-056$ is made by several manufacturers, hut rated loss may differ from that given in lig. 13-11. Typers $214-123,214-066$, and 214-022 are made for transmitting applications.				

slowly in material dielectrics than they do in free space. In aid the velocity is practically the same as in empty space, but a pratical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down: the currents travel a shorter distance in the time of one cercle than they do in space, and so the wave lengthatong the line is less than the wave length would be in free space at the same frequency.

Whenever reference is made to a line as bring so many wave lengthe \{uch as a "half ware length" or "quarter wave length") lome, it is to be understood that the clecticel length of the line is meant. Its actual phesical longth as measured by a tape always will be somewhat less. The physical length comesponding to an electrical wave length is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ Frequency in megacyeles

$$
V=\text { Velocity factor }
$$

The velocity factor is the ratio of the actual velority along the line to the velority in free spire. Values of V for several common types of lines are given in Table 1:3-I.

Exatnple: A 7.5-foot lesurth of 300 -ohm TwinLead is used to carry power to an antema at a frepuenty of 71.50 he . From Table 13-1, V is 0.8 ? At this frequency (7.15 Mc .) a wave length is

$$
\begin{gathered}
\text { Length (feet) }=\frac{984}{f}, V=\frac{98 t}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wave length.
Because a quarter-wave length line is frequently used as a linear transformer, it is con-

Fig. 13-11 - Attenuation data for common types of transmission linea. Curve A is the nominal altelnation of 600 -8hth opern-wire line with \o. 12 conductors, not including dielectrie losw in spacers nor poswible radiation losses. Idditional line data are given in Table 13-I.
venient to calculate the length of a quarter-wave line direetly. The formula is

$$
\begin{equation*}
L e n g t h(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by whieh power may be lost in a tramsmission line: by radiation, by heating of the conductors (I^{2} / R loss), and by heating of the dielectris, if ans: Radiation losses are in general the result of "antenna currents" on the line, resulting from undesired coupling to the radiating antemna. 'They camot radily be estimated or measured, so the following diseusssion is based only on conductor and dielectric losses.

Heat losses in both the conductor and the dielectric incrase with frecuency. Conductor losses also are greater the lower the eharacteristie impedance of the line, because a higher eurrent flows in a low-impodance line for a given power input. The converse is true of dieleetrie losses beeause these increase with the voltage, which is greater on high-impedance lines. The dielectrie loss in air-insulated lines is negligible (the only loss is in the insulating spacers) and such lines operate at high efficieney when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in (l). is directly proportional to the line length. losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the charaeteristie imped-
ance of the line) are given in graphical form in lig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases as shown in lig. 13-12. Whether or not the inerense in loss is serious depends on what the original loss would have been if the line were perfectly matched. If the loss with perfect matehing is very low, a large s.w.r. will not greatly affect the efficiency of the line -i.e.,

Fig. 13-12 - Effert of standing-wave ratio on line loss. The ordinates gise the additional loza in decibels for the loss, under perfectly-matehed conditions, khown on the horizontal scale.
the ratio of the power delivered to the load to the power put into the line.

Example: A \sin-foot length of RG-11/U cable is operating at 7 Mr. with a 5 -to- 1 s.w.r. If perfectly matched, the loss from Fig. 13-11 would be $1.5 \times 0.4=0.6 \mathrm{~d} b$. From Fig. $133-12$ the additional loss berause of the s.w.r. is 0.73 dlh . The total loss is therefore $0.6+0.73=1.33 \mathrm{dl}$.
An apprectiable s.w.r. on a solid-dielectrie line may result in excossive loss of power at the higher frequencies. Such lines, whether of the
parallel-conductor or coaxial type, should be operated as mearly that as prosible, particularly When the line length is more than 50 leet or so. As shown by Fig. 1:3-12, the inerease in line loss is not too serious so long as the s.w.r. is below? to 1 , but increases rapidly when the sull rises above 3 to 1. Tuned transmission lines such as are used with multibamd anternas ahwas should be air-insulated, in the interests of highest efficiency.

Loads and Balancing Devices

The most important pratical load for a thansmission line is an antemat which, in most rases, will be "balaned" - that is, symmetrically constructed with respect to the feed point. Aside from considerations of matehing the actual impedance of the antemna at the feed point to the characteristic impedance of the line (if such matehing is attempted) a balanced antenna should be fed through a balanced transmission lime in order to preserve symmetry with respeet to ground and thus avoid difficulties with unbalanced currents on the line. Such curremts, as pointed out earlier in this chapter, will result in undesirable radiation from the transmission line it self.

If, as is often the case, the antenna is to be fed through coaxial line (which is inherently unbalanced) some method must be used for connecting the line to the antenna without upsetting the summetry of the antemmat it self. This requires a circuit that will isolate the balanced load from the unbalanced line while providing efficient power transfer at the same time. Deviees for cloing this are called baluns. The typers used between the antematand transmission line are generally "linear," consisting of transmissionline sections as deseribed in Chapter it,

The need for baluns also arises in coupling a transmitter to a balanced transmission line, since the output circuits of most transmiters have one sitle grounded. (This type of construction is desirable for a number of reasons, ineluding TV1 reduction.) The most flexible type of ballun for this purpose is the inductively-coupled matehing network described in a subsequent section in this chapter. This combines impedance matching with balancedi-to-umbalanced operation, but has the disalvantage that it uses resonant circuits and thus can work over only a limited band of frequencies without readjust ment. Howerer, if a fixed impedance ratio in the balun can be tolerated, the coil balun described below can be used without adjustment over a frequency range of about 10 to $1-3$ to 30 Mc ., for example. Alternatively, a similarly wide band can be covered by a properly designed transformer (with the same impedance limitation) but the design principles and materials used in such transformers are quite specialized. Their construction is beyond the scope of this Mandbook.

Coil Baluns

The tyje" of balun known as the "eoil balun" is based on the principhes of a linear transmissionline batun as shown in the upper drawing of figg 13-1-4. Two transmission lines of equal length having a chatacteristic impodance $/ 0$ atre connected in series at one cond and in parablel at the other. At the series-emmeted end the lines are balaned to ground and will match an impedance equal to $2 \%_{0}$. At the parallel-commered end the lines will be matched hey an impedame equal to $Z_{0} / 2$. One side maty be comected to ground at the parallel-conmerted end, provided the two lines have a length such that, ronsidering each line as a single wire, the batanced end is effertively deroupled from the patallel-connected end. This reguires at length that is an odd multiple of $1 / 4$ wave length. The impedance transformation from the series-connected ened to the paralletconmected end is 410 .

A definite line length is required only for decoupling purposes, and so long as there is adeguate decoupling the system will :ut as a t-to-1 impedance transformor regardless of line length. If earh line is wound into a coid, as in the lower drawing, the inductanes so formed will act as choke roils and will tend to isolate the seriescomected end from anys ground connection that may be placed on the parallel-monected end. balun coils made in this way will operate over a wide frequency range, since the choke indurtance is not eritical. The lower frequeney limit is where the coils are no longer effertive in isolating one line from the other: the length of line in each coil should be ahout equal to a quarter wave length at the lowest frequeney to be used.

Fig. 13-14 - Hahurs for matching lwetween puzh-pull and single-ended circuits. The impedance ratio is 4 to I from the push-pull side to the wnhalanced side. Cioiling the lines as shown in the lower drawing increases the frequency range over which eatisfactory operation is obtained.

TRANSMISSION LINES

The principal application of such coils is in going from a 300 -ohm balanced line to a 75 -ohm condial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms. Design data for winding the coils are not arailable: however, Equation 1:3-1) can be used for determining the approximate wire spacing. Allowance shond the made for the fare that the efferetive dielectric constant will be somewhat greater thatn 1 if the roil is wound on a form. The proximity effort between turns can be reduced by making the turn spacing somewhat larger than the conductor spacing. For operation at 3.5 Me , and higher freguences the length of cach combluctor should be ahout tio) fect. The conductor spacing can be adjusted to the moper value be terminating each line in a monindurtive 150 -ohm resistor and adjusting the spacing until ato impedane bridge at the input end shows the line to be matehed to 150 olims.

A balum of this type is simply a fixerl-ratio transformer, when matched, but camnot compensate for inatecurate matehing elsewhere in the stistem. With a ".30)(ohm" line on the bataneed end, for example, a $\overline{\text { Beohm rows cable will not }}$ be mattered unless the $3(0)$ oolm line act mally is terminated in a 300 -ohm load.

NONRADIATING LOADS

Typical examples of nonradiating loals for a transmission line are the gride eirenit of a power amplitier (eonsidered in the chapter on transmitters), the input circuit of a receiver, and another transmission line. This hast case inchudes the "antenna thacr" - a misnomer berathse it is actually a device for coupling a tansmission line to the iramsmitter. Becanse of its importance in antheur installations, the antema coupler is ronsidered separately in a later section of this (hatpter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guaranter a low stand-ing-wave ratio on the lime when the antena systom is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receivers antena-input terminals. For minimum s.w.r. the receiver input circuit must be matehed to the line. The rated input impedance of a receiver is a nominal value that varies over a considerabled range with frequency. Methods for bringing about a proper match are discussed in the chapter on receivers.

It should be noted that if the recriver is matehed to the line, then it is desirable that the antema and line also be matched, since this results in miximum signal transfer from the antema to the line. If the receiver is n it matched to the line, the imput impedance of the line (at the terminals of the antemat itself) in turn ramot mateh the antenna impedance. In whel a caso the signal input to the receiver depends on the coupling system und betwem the line and the recerver. for greatest signal strength the coupling system has to be adjusted to the best compromise betwen receiver input impedance and load appearing at the input (antemna) end of the line. The proper adjustments must be determined by experiment.

I similar situation exists when the receiver input impedance inherently mate hes the line $Z 0$, hut the line and :untennat are mismatched. Inder these conditions perfere matching at the reveiver does not result in greatest signal strength: a deliberate mismateh has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in which the reeceiver is matehed to the line Z and the line in turn is matched to the antemba. 'lhis transfers maximum power from the antema to the receiver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The trpe of coupling system that will be needed to transfer power adequately from the final r.f. amplitier to the transmission line depends almost entirely on the input imperdane of the line. Is shown entiere in this chapter, the input impedane is determined by the standing-waveratio and the line length. The simplest case is that where the line is terminated in its chatracteristie impedane so that the $\mathrm{s} . w .1$. is 1 to 1 and the input impedance is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. Por all pratical purposes the line can be considered to be flat if the s.w.r. is no greater than about 1.8 to 1 . That is, a coupling system dexigned to work into a pure resistance equal to the line Z_{11} will have enough leeway to talke care of the small variations in input impedance that will oceur when the line longth is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Current pratice in transmitter design is to provide an output circuit that will work into such a line, usually a coaxial line of 50 to 75 ohms charateristic impedance. The design of such output riveuits is discussed in the chapter on high-frequency transmitters. If the input impedance of the transmissio n line that is to be connerted to the thansmitter differs appreriably from the value of impelance into which the tranmitter output cirruit is designed to operate, an impodancermatching network must be inserted hee ween the transmitter and the line input terminals.

IMPEDANCE-MATCHING CIRCUITS FOR PARALLEL CONDUCTOR LINES

As shown earlier in this chapter, the input impedance of a line that is operating with a high standing-wave ratio can vary between wide

Fig. 13.15-Matehing circuits asing a coavial link, for use with parallel-ronductor tram-mis-ion linea. Adjustment selup u-ing an s.u.r. bridge is shown in the lower drawing. Design considerations and method of adjunt ment are discusmed in the trxt.
limits. The simplest type of circuit that will mateh such at range of impedanes to 50 to 75 ohms is a paralledtumed circuit approximately resonsunt at the operating frequener. In its ordinary form, such a circuit will be connected to a short length of cowxial line or "link" ber inductive coupling as showis in Fig. 13-15, the other end of the cable being attacherd to the output terminals of the transmitter. The cable may be any convenient length if the impedance that it "sers". at the matching circuit is equal to its own charateristic impedance. This mothod has the further advantage that the coaxial link offers an ideal spot for the insertion of a low-puss filter for preventing hamonic interference to television and f.m. reception.

The constants of the tuned circuit ('1 L_{1} are not particularly eritical; the principal refuirement is that the circuit must be capable of being tumed to the operating frequency. Constants similar to those used in the plate tank circuit will the satisfartory. The construction of L_{1} must be such that it can be tapped at least every tum. L_{2} must he tightly coupled to L_{1}, and the inductance of L_{2} should be approximately the value that gives ar reactance equal to the Z_{0} of the commecting line at the frequency in use. An average reactance of about (6) ohms will sulfice for either 52 - or 75 -ohm coaxial line.

The most satisfactory way to set up the system initially is to comect a coaxial s.w.r. bridge in the link as shown in Fig. 13-15. "The "Monimatch" type of bridge, which can handle the full transmitter power and may be left in the line for continuous monitoring, is excellent for this purpose. However, a simple resistance bidge such as is described in the chapter on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overlosted. Take a trial position of the line taps on L_{1}, kereping them equidistant from the center of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tap
positions and adjust C_{1} agatin, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference. It this point, check the link s.w.r. over the frequency range normally used in that hand, without changing the sotting of C_{1}. No readjustment will be required if the s.w.r. doos not exeend 1.5 to 1 over the range, but if it goos higher it is advisable to note as many settings of (y) as may be necessaty to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main tramsmission line with frequency, and relatively little by the compling circuit itself. A single setting of C_{1} at midfrequency will suffice if the antemnat itself is broad-tuning.

If it is impossible to get a I-to-1 s.w.r. at any settings of the taps or (1 , the s.w.r. on the main tramsmission line is high and the line length is probably unfavorable. Orelinarily there should be no difficulty if the tramsmission-line s.w.r. is not more thath about 3 to 1 , but if the line s.w.r. is higher it may not be possible to bring the link *.w.r. down except bey using the methods for reactance compensation describerl in a subsequent section.

The matehing adjustment can be considerably facilitated by using a variable capacion' in serios with the matehing-cireuit coupling coil as shown in Fig. 13-16. The additional adjustment thus provided makes the tap settings on L_{1} much less critical since varying ('2 hats the effert of varying the coupling betwen the two eitruits. lor optimum control of coupling, L_{2} should be someWhat harger than when C_{2} is not used - perhaps twiee the reactane recommended above - and the reactance of (4, at maximum capacitance should be the same as that of L_{2} at the operating frequency. L_{1} and C_{1} are the same as before. The method of adjustment is the same. except that for (each trial tap position ('1 and ("2 are alteruately adjusted, a little at a time, until the s.w.r. is brought to its lowest posible value. In general, the adjustment sought should be the one that keeps (C_{2} at the largest possible capacitance, since this broadens the frequency response. Also, the tap)s on L_{1} should be kept as far tupart as possible, while still permitting a mateh, sinere this also broadens the freguency response of the eireuit.

Once the matching circuit is property adjusted. the s.w.r. bridge may be removed, if necessary. and full power :applied to the transmitter. The input should be adjusted by the coupling or loading control built into the transmitter, never

Fig. 13.16-I'sing a series eapacitor for control of coupling between the link and line circuits with the coal-coupled matching circuit.
by making any changes in the matrhing-circuit adjustments. If an amplifier having a paralleltuned tank cireuit will not load properly, tumed coupling should be used into the coas link.

It is possible to use a circuit of this type without initially setting it up with the s.w. r. brielge. In such a case it is a matter of eut-and-try until adequate power transfor between the amplifier and main transmission lue is secured. However, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is eritical with frequenc: The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

Untuned Coupling

I simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop neat the point where it connects to the pick-up (onil. The coupling will be maximum, for a given degree of separation bet ween the pick-up coil and the amplifier tank coil, if the line is pruned to at length such that the input impedance is just sufficiently capacitive to cancel the inductive reactance of the pick-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it beromes to load the amplitier with loose coupling between the fwo coils. The sharper the antema and the higher the line sw.r. the more diflicult it becomes to operate with this system over a band without progressively changing the line length.

Series and Parallel Tuning

Lines classified as "tuned" or "resonant" i.e., cut to lengths approximately equal to integral multiples of one-quarter wavelength. and operating withat high standing-wave ratio - are characterized by hating either very high or very low input imperdanes. Niso, the input impedances of such lines are esentially resistive.

Linder these conditions the circuit arrangements shown in Fig. 13-17 will work satislactorily.

Fig. 13-17.- Link-coupled series and parallel tuning.

Their advantage over the circuit of Fig. $1: 3-15$ is that it is not necessary to provite for taps on the matching-circuit coil, L_{1}. "Serics" tuning
is used when a current loop oecurs at or near the input end of the line; i.e., when the input impedance is low. "Parallel" tuning is used when there is a voltage loop at or near the input end; i.e., when the input impedance is high.

In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-rireuited should tune to the operating frequency. C_{1} and C_{2} should be maintained at equal capacitunce. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line disconnected.

The $L^{\prime} C$ ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuming, a low L C ratio must be used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the $L C$ ratio becomes less critical when the s.w.r. is high. Is a first approximation, coil and capacitor values of the same order as those used in the plate tank circuit may be tried. The coupling coil. Le, should have a reactance about equal to the Z_{0} of the coasial line. just as in the case of the cireuit of Fig. 1:3-15. The coupling between L_{1} and L_{2} should be continuously adjustable.

Two capacitors are used in the serics-tuned circtit in order to keep the line balanced to ground. This is berause two identical capacitors, both connected with either their stators or rotors to the line, will have the same capacitance to ground. A single unit would be perfeetly usable so far as the operation of the coupling circuit is concerned, but will slightly unbalance the circuit because the frame has more capacitance to ground than the stator. The unbalance is not especially serious unless the capacitor is mounted near a large mass of metal, such as a chassis or shichd assembly.

A balaneed rapacitor is used in the parallel circuit, in preference to a single unit, for the same reason. In alternative scheme to matintain balance is to use two single-ended capacitors in parallel, but with the frame of one connected to one side of the line and the frame of the other connected to the other side of the line. The same two capacitors may be switehed in series when series tuning is to be used.

As an alternative to adjustable coupling betwern L_{1} and L_{2}. fixed coupling may he used and it variable capacitor connerted in series with L_{2} as shown in lig. 1:3-16.
These eircuits should be set up and adjusted in the same waty as the tapped matching circuit, lig. 13-15. That is. ath s.w.r. bridge should be used, to indicate the impedance match, which is brought about by alternately adjusting C_{1} and the coupling between L_{1} and L_{2} until the bridge shows a null.

In the event that there is difficulty in bringing the s.w.r. down to 1 to 1 in the coaxial liuk, the probable eanse is that the input imperdince of the transmission line is neither very high nor very low. In such a case, if series tuming does not
work it may pay to try parallel tuming, and vice versa. If a match camot be secured with either, the eireuit should be changed to that of Fig. 13-15.

Adjustment Without the S.W.R. Bridge

Use of the s.w.r. bridge with the eircuits described ahove is the only certain waty of arriving at optimum adjustments. However, if a bridge is not available, the fansmitter usually ean be made to take the proper load by a cut-and-try method of adjustment. In the case of Fig. 1:3-15, take a trial position of the taps fairly close to the eenter of L_{1}. With loose coupling between L_{1} and L_{2} (this may be controlled either by adjustment of the mutual inductance or by means of the series capacitor $\left(r_{2}\right)$ and with the amplifier plate tank circuit tumed to resonance as indieated by the plate-current dip, vary C_{1} until a setting is found that cuses the plate current to rise to a peak. This peak should be less that the expected normal loaded plate rurrent. Then increase the coupling between L_{1} and L_{2}, readjust C_{1} for maximum plate current, and readjust the amplifier tank for the plate-curment dip. Continue until the amplifier is fully louled at the plate-cument dip, increasing the eoupling between the transmitter tank and the coas line if necessary to olotain full loading. Then spread the taps on L_{1} a little farther apart and go though the same procedure. The objeet is to use the widest sprad between taps that will permit proper loading of the transmitter.

The procedure with serics or parallel tuning is similar except that there are no taps to adjust. If full loading cannot be secured with either, the cireuit should be changed to Fig. 13-1.5.

Although this cut-and-try method generally will leat to alequate transmitter loatding, the adjustments seddom :are optimum from the standpoint of low s.w.r. in the roax link. This may lead to exeessive power dissipation in the link. with overheating the result. Aso, the loading maty change more rapidly with small frequency changes than would be the case with a matehing circuit adjusted for optimum performanee with the aid of the s.w.r. bridge.

Lines of Random Length

Series or parallel tuning will always work satisfactorily with lines having a high standingwave ratio so long as the electrical length of the line is approximately a multiple of a quarter wave length. However, it is not always possible to couple satisfactorily when intermediate line lengeths are used. This is beeanse at some lengths the input impedanee of the line has a considerable reactive component, and because the resistive component is too large to be connected in series with a tured cireuit and too low to be connected in parallel.

The coupling system shown in lig. 13-15 is eapable of handling the resistive component of the input impedanee of the transmission lines used in most amateur installations, regardless of the standing-wave ratio on the line. Conse-
quently, it can generally be used wherever either series or parallel tuning would normally be called for, simply by sotting the taps properly on the coil. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance may he only a few ohms, which is difficult to mateh by means of taps on a coil.)

Within limits, the same eircuit is capable of being adjusted to compensate for the reatetive component of the input impedance; this merely me:ms that a l-to-l s.w.e. in the link will be oltained at a different setting of ('1 than would be the case if the line "looked like" a pure resistance. Sometimes, however, C_{1} does not have enough range available to give complete compensation. particularly when (as is the catse with some line lengths when the s.w.r. is high) the input impedance is principatly reactive.

Conder such eonditions it is neerssary, if the line length camot be changed to a more satisfactory value, to provide addlitional means for compensating for or "ranceling out" the reative component of the input impedance. As deseribed earlier in this chapter (lig. 1:3-6) the input impedance can be considered to be equivalent to :a circuit consisting either of resistance and inductance or resistance and eapacitance. It is generally more convenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig. 1:3-6, it is apparent that if we combert a capacitance of the right value across L^{\prime} the cirenit will become resonant and will appeat to be a pure resistance of the value R^{\prime}. Similarly, connecting an inductance of the right value across $C^{\prime \prime}$ in ligg. 1:3-613 will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily be matehed to the coax link bey means of the cireuit of Fig. 1:3-15.

The practical application of this principle is shown in Fig. 13-18, where L and C are the react-

Fig. 13-18 - Reactance cancellation on random-length lines having a high standing-wave ratio.
ances reçuired to eancel out the line reactance, I, for cases where the line is capacitive, (' for lines having induetive reactance. The amount of either
inductance or capacitance required is casily determined by trial, using the s.w.r. bridge in the coas link. First disconuert the main transmission line from L_{1} :und conmed in moninductive resistor in its plate. 1 1-watt carbon resistor of about the same resistance as the line \boldsymbol{Z}_{0} will do, if a low-power bridge of the resistance type is used. With the "Monimateh" bridge, a suitable load may be made be connecting carton restistors in parallel: for example, five 1500 -othm 2 -watt resistors in parallel will make a 300 -ohm load (:apable of handling 10 watts of r.f. Aljust the coil taps and C_{1} for at 1-to-1 standing-wave ratio in the link, as described carlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and conmert the line. again adjusting the taps and C_{1} to make the s.w.r. as low as possible, and compatre the new setting of C_{1} with the original setting. If the capactance has inereased, the line reactame is inductive and a capacitor must be comeded at C it Fig. 13-18. The amount of capacitance needed to bring the proper setting of C_{1} neat the original setting can le determined be trial. On the other hand. if the rapacitance of C_{1} is less than the origimal, an inductance must be comnected at L. Trial values will show when the proper tuning conditions have been reatred.

It is not neressary that C_{1} be at exactly the original setting after the compensating reactanee has been adjusted; it is sufficiont that it be in the same vicinity.

I sing this procedure practicatly any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. l'nfortunately, no sperifie values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular coupling circuits at the same frequency.

MATCHING TO COAXIAL LINES

Coaxial transmission lines usually are (or at least should be) operated at a low-enough stand-ing-wave ratio so that no perial matching earruits are neoled: the line simply may be connerted to the transmitter ontput terminals. A properly-tesigned transmitter output cirruit (see chapter on high-frequeney transmitters) will be capable of handling variations in s.w.r. that are acreptable from the standpoint of line losses.

However, there are eases where it becomes necessary to provide some frepueney selertivity betwern the transmitter and antema system in order to prevent undesirable radiation of harmonics. A matching circuit of the same gemeral type as those diselused above can provide a considerable degree of selectivity in addition to matching the input impedince of the transmission line to the Z_{0} of the coaxial link. The difference in the circuit arrangement is simply that the secondary or output side need not be balanced with respeet to ground.

Fig 13-19 shows a typical circuit. Except lor

17. 13.19 - Inductively-coupled matrhing circuit for coupling butwern coavial lines. The principles are the satme as in Fize. 13.15: the secondary cirenit is simply made single-ended for use with a coasial transmission line.
the fact that there is only one coil tap, the design considerations and adjustment procedure are the same as deseribed for Fig. 13-15. Also, the series capasitor, (2_{2}, shown in Fig. 1:3-16 may be used with this cireuit for fine variation of the effertive coupling between L_{1} and L_{2}. Constants for the circuit $L_{1} C^{\prime} 1$ are not critical; any convenient values hat will tune to the operating frequency mas be used. The Q of this eirenit, and hence the solertivity, is eontrolled principally ber the position of the line tap. As the tap is moverl farther up the coil the Q and selectivity decrease.
The practical matching circuits described in the following section may be used with coaxial line simply by comerting the outer conductor of the line to the center of the coil and tapping the imer conductor along one side. The balanced circuit may still be used, although if the coupler is to be used only with coaxial line the circuit may be made single-ended as shown in Fig. 13-19.

Fig. 13.20 - IValf-wave fitter for harmonic supprescion. The two aection of the filter should the shielifed from each other at indicated by the dashod line. and the whole filter shonld be connirueted in a shield enolosure to insure effretive oprabion. A separate filter is required for rath anmateur hamb. All rapactitore latre the same value. ats do all inductors. for a given band. Sugested comstants are as follows:

Inand	Capucitunce	Inductunce
3.5 ll .	820) ¢, $^{\text {, }}$	$2.2 \mu \mathrm{~h}$,
i Me.	390 н 2 f.	$1.3 \mu \mathrm{l}$.
11 Vc	$290 \mu \mu$ 亿.	0.57 ¢ ${ }^{\text {a }}$
21 Me	$1.50) \mu \mu$?	$0.375 \mu \mathrm{~h}$.
28 Hc .	(01) $\mu \mu \mathrm{f}$.	$0.3 \mu \mathrm{l}$.

Dexizst is babed onftamedard capacitance valaes. I arger capacitancus mat be made up live using smatler-eapacitance unita in paratlel. if mecessary. Ser text for whage ratings. Inductaneers may be adjusted to promer value loy resonating to center of hand with the capacitance valle given.

"Half-wave" Filters for Harmonic Suppression

If impedanee matehing is not a consideration -i.e., the tramsmission line to the antemar is operating at a low s.w.r. - but harmonic sup-
pression is desirable, the circuit of Fig. 13-20 may be used as an alternative to lig. 1:3-1!). This is a "half-wave" filter circuit, so called hecause it has similar properties to a hatl-wave transmission line. When inserted in a line, the impedance at the input terminals of the filter is the same imperdance that the filter "sees" at its output terminals. Thus if the line input impelance is a pure resistance of 50 ohms, the impedance at the filter input terminals also will be 50 ohms.

Just as in the half-wave line case, the chatracteristic impedance of the filter can be ans value without altering its pertormance with resued to input and output impedance. However, it is desirable in the interests of broad-band operation to make the filter eharacteristie imperdance approximately the same as the Z_{0} of the line The constints given in Fig. 1:3-20 will serve for either 50 or $\overline{0}$-ohm line. The filter can be used without adjustment at any frequency within
the amateur band for which it is designed.
The eapacitance values required are farly large, but under the assumed conditions (low s.w.r. on the line, filter Z_{0} approximately equal to line $\%$) the voltages across the capacitors are low. Diea capacitors having a voltage rating suitable for the power level are satisfactory. The peak rating required is equal to $\sqrt{2 \rho \%}$, where P is the r.f. power and $\%_{n}$ is the chatacteristic impedance of the line. This value should be doubled for 100 per cent amplitude modulation, and it is advisable to allow a safety factor in addition. A rating of 1.000 volts cl.c. will be sufficiont for a kilowatt a.m. transmitter if the line is well matched bey the antennat.

The attenuation of a filter of this type is about 30 dbs. at the serond harmonic and greater at higher harmonies, until limited by selfresonanecs at high frequencies that oceur in the inductors. These usually are not important at hamonies below the fouth.

Coupler or Matching-Circuit Construction

The design of matching or "antenna coupler" circuits has been covered in the preceding section, and the adjustment prodedure atwo has been outlined. Since cireuits of this type are most frequently used for transferring power from the transmitter to a parallel-conductor transmission line, a principal point reguiring attention is that of maintaining good balance to groumd. If the coupler cireuit is appreciably unbalanced the currents in the two wires of the tranmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chatsis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assembled with other units of the tramsmitter in a rack or cabinet. The components used in the coupler, therefore, should be placed so that they are electrically symmetrical with respect to the chassis and to eatch other.

In general, the construction of a coupler cireuit should physically resemble the tank latyouts used with push-pull amplifiers. In parallel-tumed eircuits a split-stator capacitor should be used. The eapacitor frame should be insulated from the chassis becanse, depending on line length and other factors, harmonie reduction and line balance may be improved in some cases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the same reason. The coil in a parallel-tuned circuit should be mounted so that its hot ends are symmetrieally placed with

Fis. 13.21-A coax compled matehins cirenit of simple constraction. The entire cirent is mounted on at 3 hos by 5 bov. Cl is imidr: (2 and the plug-in eoil aswembly are monnted on top.
respect to the chassis and other components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that can be shifted to series or parallel tuning as required, two separate single-ended capacitors will be satisfactory. As described earlier, they should be connected so that both frames go to corresponding parts of the cireuit - i.e., either to the coil or to the line - for series tuning, and when used in parallel for parallel tuning should be connected frame-to-stator.

I coupler designed and adjusted so that the connecting link acts as a matehed transmission line may be placed in any conveniont location. Some amatteurs prefer to install the coupler at the point where the main transmission line enters the station. This helpe maintain a tidy station layout when an air-insulated petrallel-conductor transmission line is used. With solid-dielectric lines, which lend themselves woll to neat installation indoors, it is probably more desirable to install the coupler where it can be reached easily for adjustment and band-changing.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in Fig. 13-21 is constructed :ecording to the design primeiples outlined earlier in this chapter. It uses a patallelfuned cireuit with laps for matching a parallelconductor line through a link coil to a coaxial line to the transmitter. It will handle about 500 watts of r.f. power and will work, without modifieation, into lines of any length if the sw.r. is below 3 or 4 to 1 . If the s.w.r. is high, it may be necessary to compensate for the reactive part of the input impedanee of the line, at certain line lengths, by using an additional coil or capacitor as disenssed carlier. The neessity for such eompensation can be avoided, on lines havine a high s.w.r. by making the electrical length of the line a multiple of a quarter wave-length.

As shown by the cireuit diagram, Fig. 1:3-22, the link circuit is adjusted by means of a variable eapacitor, C_{1}, to faceilitate matehing the main transmission line to the cons link. The coils are constructed from commercially-available coil material, and the link inductances are chosen to provide adequate coupling for flat lines. The link

Fig. 13.22-Circuit diagram of the coax-coupled matching circuit.
$C_{1}-300-\mu \mu$. rariable, approximately $0.024^{\prime \prime}$ spacing. C_{2} - $100{ }_{\mu \mu \mathrm{F}}$. per section, 1.500 volts. J_{1} - Chassis-type coas connector. $\mathbf{L}_{1}, \mathbf{L}_{2}$ - See tible.
coil, of smaller diameter than the tank coil, is mounted inside the latter at the center. Duco cement is used 10 hold the coils together at their bottom tiestrips. The coils are mounted on Millen type 40305 phags and require no other support than the stiftiess of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leads to the link coil where they go between the tank coil turns to reach the plug.

Taps on the tank coil for connection to at paral-lel-conductor transmission line are made by hending ordintry soldering lugs around the wire and soldering them in place. The rlips are Johnson type 2:35-860, adjusted so that they fit snugly over the taps when pushed on sidewise. Used this way, the clips provide an easy and rapid method of connecting and discomecting the line. The proper positions for the laps may be determined by first using the clips in the normal fashion.

The maximum length of coil that can be mounted satisfactorily on the plugs is about 4 inches. Alternative eoils of this length for 3.5 Me. are shown in the coil table; one requires the addition of $75 \mu \mu$ f. fixed capasitance across the circuit.

The matehing circuit should be adjusted with the aid of an s.w.r. bridge, as described earlier in this chapter. In gener:l, the tuning will be less critical, and the circuit will work over a wider frequency range without readjustment, if the taps are kept as far towat the ends of the coil as possible and C_{1} is set at the largest capacitanee that will permit bringing the s.w.r. in the coan link down to 1 to 1 .

Coil Data for triy. 13-22								
Band, M/c.	L_{1}				L_{2}			
	Turns	$\begin{aligned} & \text { Hire } \\ & \text { Size } \end{aligned}$	Dia., \ln	$\begin{gathered} \text { Tuins/ } \\ \text { In. } \end{gathered}$	Turns	Wire Size	Dia., In.	$\begin{gathered} \text { Turns/ } \\ \text { In. } \end{gathered}$
3.5	44	16	21/2	10	10	16	2	10
$3.5 *$	21	12	21/2	6	10	16	2	10
7	18	12	21/2	6	6	16	2	10
14	10	12	21/2	6	3	16	2	10
21-28	6	12	212	6	2	16	2	10

[^7]
A "UNIVERSAL" MATCHING CIRCUIT

The matching cireuit shown in Fig. 13-2:3 and 13-2 1 offers considerable flexibility in that it can be used as a tapped-coil matehing net work of the same type as that just described, and also can be used as cither a series- or parallel-tuned "antenna coupler." It can also be adapted to other types of coupling by simple changes in the plug-comnection arrangement of the coils.

Fig. 13-23-Circnit diagram of the "uni ersal" coaxcompled matching networh. For nase as a tapurd matehing cirenit. remert the lime to tapson 1 , as at A- 1 , and comber the jumper. \. to C.I): Hue jumper is also used for paralle teming low with the line emoneted to E.F. For series thning, ramone the jumper and comeet the line to (-I). The ground connection to the midsle prong of the coil sorket is providet for eases where it is desiralle to sromme the wemer of L_{1}.
$\mathrm{C}_{1}-300-\mu \mu \mathrm{f}$. , ariable. appresimately $0.021^{\prime \prime}$ spacing. $\mathrm{C}_{2}, \mathrm{C}_{3}-300$) $-\mu \mu \mathrm{f}$. variable. I 1000 volis (National 'l'MS. 300)
J_{1} - Chassis-lype coav connetor. Coil Ditha

Band	$L_{1,}$, urris	I.2, turns
3.5- - Me.	20 (11 $\left.1 \mu_{1}.\right)$	10 (3 $\mu \mathrm{h}$.)
-11 l1e		6 ($2.5 \mu \mathrm{l}$.)
$14-28$ \1c.	4 (1..) μ h.)	2)

\mathbf{L}_{1} - No. 12 tinued "ire, 21_{2} inchers dia., 6 turne per inch (13 \& 11 300.5.1).
\mathbf{L}_{2} - Vo. 16 wire 2 incles dia., 10 turns per inch (13 \& 11 3907 or $390 \begin{gathered}\text {-1) }\end{gathered}$

Two capacitors are used in the tank circuit. Their rotors are insulated from each other but are turned simultaneously by a right-angle drive unit. When used rither for parallel tuming or the tapped-eoil method of matching, the rotors are comered together to form a split-stator capacitor having a maximum (apancitance of 150 $\mu \mu f$. When used for series tuming the capatcitor frames commet to the paralleleconductor tramsmission lime, the jumper that comeets the rotors together being removed
The unit is built on a 7 by ! by 2 aluminum chassis and has at 7 by 10 panel. The tank eabparitors are mounted on suath aluminum plates supported on ${ }_{3}^{3}$-inch stand-off insulators, to intsulate the frames from the chassis: this method is preferable to monnting the eapacitors directly on the insulators as it lessens the mechamical strain on the latter. Soldering lags projeeting from the eapacitor frames provide means for connecting the line elips for series and parallel tuning. The jumper for comnecting the rotors togel her is in the foreground; it uses bamana plugs that fit into jacks mounted on the capacitor mounting plates. The link capacitor is located
underneath the chassis.
The coils shown are designed primarily for use in the tapped matching circuit or for parallel tuning, but will also be satisfactory for series tuning if the transmission line length is such as to bring a current loop near the input end. ('oil taps are made in the same way as in the coupler previously deseribed. Because of the fairly large value of maximum capacitance available when the tank capacitors, (ozad (${ }_{3}$, are used together as a split-stator capacitor, it is possible to cover a 2-to-1 frequency range. Consequently, only three coil assemblies are needed to cover the 3.5to 30-Mle, range, and eath one can the used for two (in the case of the smallest coil, three) aljacent amateur bands.

Is a tapperl matehing circuit, adjustment is the same as for the unit just deseribed. When using either series or parallel tuning, the s.w.r. bridge should be used as before, aldusting C_{1} and Co-(${ }_{3}$ for minimum s.w.r. in the coas link.
(Originally deseribed in Mareh, 195:3, QST.)

- MATCHING CIRCUIT WITH MULTIBAND TUNER

The coupling net work shown in Fig. 1:3-2.5 uses a multiband tuner (ser chapter on transmittens for other examples) to rover the 3.5-30 Me. range without coil changing or switching. The matching circuit is shown in Fig. 1:3-26, and consists of the multibund circuit (1, $L_{1} L_{3}$, the coupling coils I_{2} and L_{4}, and the series eapaceitor r_{2}. The input impedance of a balanced (parallelconductor) line commeted to the output terminals. 1 or B, can be matched to a cotwial lime commeded to the trimsmitter through I_{1}. Proper mateling can be achieved over the usual range of impedances encomentered with practical antemmat systems.

In the average calse, the transmission line will be eonnerted to the ". 1 " terminats on 3.5 and Mc., and to the " B " terminals on $1+$ through 2s Me. However, there maty be andial cases where : better match can be obtained. on a given band. be using the other set of terminals in proference to the one mentioned above. This must be determiated by trial.

The operation of this circuit can be resolved into the equivalent of : the "L," network (sere chatp)ter on (iercuit fundamentabs). "We multibund circuit is equivalent to a parablel-resomant cireuit hatring shunted across it a load resistance reflered to it through the compling coil from the atetual foad. F^{2} is then the series arm of the " L " metwork and the multibsund rercuit is slightly detumed to the indurtive side of resonance to provide the necessary value of shunt reactance for matehing.

Construction

The principal members of the supporting framework in the unit shown in Fig. 13-25 are two sheet-aluminum brackets, $3 \frac{1}{2}$ inches wide,

Fig. 13-24- I cotupler or matrlaine network that can al*o be u*ed for zerios or parallel thning of resonatit lines. The circuit is that of litg. 13-23.
with lips at both ends. The front lips are bolted to the panel and those at the rear ate tied together by a third 3^{1} e-inch wide piece of alluminum 11 inches long. The over-all depth is 8 inches. The top and bottom shiclds are matde of "do-it-youself" perforated aluminum arailable at most hardware stores. These covers have hentover edges fitting atround the support frame athed maty be hell in phace with seli-tapping screws, or (i-is? mathine serews threaded into the supports.
('y is mount ed on small ceramic cone insulat ors from the left-hand support. This capacitor must be insulated from the support, and is furned through an insulated coupling. (t) is mounted directly on the right-hand supporting member. The roanial comertor and ont but terminals the latterare standard binding-post assmblies are monter on the rear piece.

The multiband cirenit coils ate supported by

Fig. 13-26 - Cirenit diagram of the mobthand matehing circuit.
 $3001: 1) \geq 0$)
 $3.30120)$
h_{1} - Coastial connector. chassis-mounting ispe.
$L_{1}-3.2 \mu \mathrm{~h} .: 11$ tura- Vo. 12. diameltr 2 inches, longth 2^{23} istere (lir |
$L_{2}-2.1$ pha: 6 turns to. I2. diametar 212 inches,
 with $/$.

 aluminum. 'The commonents in this unil are suitahle for ahout 5 mots.

Fig. $13-27$ - Adjustment setup using the "Monimatel." This setup applies with any type of matehing cirenit designed to match a coaxial line from the transmitter.
the wiring connecting them to the capacitors and terminals. This method of support requires the use of heavy conductors (No. 14 or larger) and short leads. The coupling coils, which are mounted around the centers of the tuned-circuit coils, may be cemented to the latter. This will stiffen the assembly. The two pairs of coils should be mounted with their axes at right angles in order to minimize coupling between them.

Adjustment

Proper adjustment of the matching circuit calls for using an s.w.r. indicator such as the "Monimatch" shown in the chapter on measurements. The setup is as given in Fig. 13-27.

Connect the transmission line to one of the two
pairs of terminals, apply power from the transmitter, and adjust C_{1} and C_{2} for minimum re-flected-voltage indication on the s.w.r. bridge. The two controls will interlock to some extent, but after a few trials a good null should be secured. If the meter reiding cannot be brought down to zero, try connecting the balanced line to the other pair of output terminals.

When the null is obtained the system is ready for use. With the "Monimatch," the meter switeh can then be thrown to the "forward" position and the transmitter tuned for maximum output as shown by the "Monimatch" meter. Output adjustments should be made only at the transmitter, not at the matching cireuit after it has once been adjusted for minimum reflected voltage.

CHAPTER 14

Antennas

An antenna system can be considered to inelude the amtenna proper (the portion that radiates the r.f. energy), the feed line, and any coupling devices used for transfering power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antenna proper, and in many eases will show pepular types of lines, as well as line-toantemat couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the type of antemna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. operation where the small space requirements make the use of multielement beams readily possible. This chapter will consider antennas for frequencies as high as 30 Mc . - a later chapter will desribe the popular types of v.h.f. antenmas. However, even though the available space may be limited, it is well to (onsider the propagation characteristics of the frequeney band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristies of the amateur-band frequencies are deseribed in Chapter Pifteen. In general, antenna construction and location become more critical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Mc .) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Me. they may lx all-important.

Definitions

The polarization of a straight-wire antenna is determined hy its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains components
of both horizontal and vertical polorization.
The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the mature of the ground. The angle is measured in a vertical plane with respert to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertieal antenna. The horizontal angle of maximum radiation of an antemat is determined by the free-space pattern of the antenna.

The impedance of the antema at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antennat is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated " 1 ," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antema. The fiold is measured in the optimum direction of the antema under test. The comparison antemm is generally a half-wave antenna at the same height and having the same polarization as the antema under consideration. Gain usually is expressed in devibols.

In undirectional beams cantennas with most of the radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in decibels.

The band width of an antema refers to the frequency range over which a property falls within aceeptable limits. The gain band width, the front-to-back-ratio band width and the standing-wave-ratio band width are of prime interest in amateur work.

Ground Effects

The radiation pattern of any antenna that is many wave lengths distant from the ground and all other objects is called the free-space pattern of that antema. The free-space pattern of an antenna is almost impossible to obtain in practice, execpt in the v.h.f. and u.h.f. ranges. Below 30 Mc ., the height of the antema above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified ber reflection of radiated waves from the ground, so that the artual pattern is the resultant of the free-space pattern and ground reflections. This renultant is dependent upon the height of the antema, its position or orientation with respect to the surface of the ground, and the electrical charaeteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14.1 - Fffect of ground on radiation of horizontal antemas at vertical angles for four antenna heights. This chart is bused ong perfectly-condueting gromed.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wave length it occurs at a rertical angle of 15 degrees. It still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies. It is advantageous, therefore, to ereet the antema at a height that will take advantage of ground reflection in such a way as to reinfore the space radiation at the most desirable angle. Since low angles usially are most effective, this generally means that the antenna should be high - at least one-half wave length at if Me, ancl preferably three-quaters or one wave length, and at least one wave length, and preferably higher, at 28 Me . The physieal height required for at given height in wave lengt the decreases as the frequeney is increased, so that good heights are not impracticable; a half wave length at 14 Mc . is only 3.5 feet, ap proximately, while the same height represents a fall wavelength at 28 Mc . At 7 Mc and lower frequencies the higher radiation angles are effective, so that again a useful antema height is not diffienlt of attainment. Heights bet ween 35 and 70 fect are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is hased on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaceurate at the lowest angles; appreciable high-frequeney radiation at angles smaller than a few degrees is practically impossible to oltain over horizontal ground. Ahove 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expeeted at angles between atand 15 degrees .

The effective ground plane - that is, the plane from which ground reflections can he considered to take plare - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the an-

Fif. 1.1.2-Theoretical curve of varialion uf rathation resistance for a very thin half-wave horizontal antenna. as a function of height in wave length above perfectly. rellecting ground.
tenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antema. For the same power input to the antema, an increase in eurrent is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of ratiation resistance for a very thin halfanave antemat above perfectly-reflecting ground is shown in Fig. 14-2. The impedance appouches the free-space value as the height bocomes large, lut at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Mc . However, the question of whether the antenna should be installed in a horizontal or verticul position deserves consideration for other reasons. I vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antema will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antema would be preferred because it would concentrate the radiation horizontally:

The Half-Wave Antenna

A fundamental form of antenma is at single wire whose length is approximately equal to hatf the transmitting wave length. It is the unit from which many more-complex forms of antennas are congtructed. It is known as a dipole antenna.

The lenglt of a half-wave in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{\operatorname{lreq} .(M(c)} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antemat will not be exactly equal to the half-wave in space, but depends upon the thickness of the fonductor in relation to the wave length as shown in Fig. 14-3, where K is a factor that must he maltiplied by the hali-wave length in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance adiled to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc .:

$$
\begin{align*}
& \text { Length of half-uave antenna } \text { (feet) }= \\
& \qquad \frac{492 \times 0.95}{\text { Freq. }(\mathrm{Mc})}=\frac{468}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 ke . (7.15 Mc) is $\frac{468}{7.15}=65.45$ feet, or 65 feet 5 inches.
Above 30 Mc. the following formulas should be used, particularly for antennas constructed from rod or tuhing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-uave antenna }(\text { feet })= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. (Mc.) }} \tag{14-D}
\end{gather*}
$$

Exumple: Find the lengt of a half-wave length antenna at 29 Me., if the antennu is made of 2 inch diameter tubing. it 29 Mc ., a half-wave length in space is $\frac{492}{29}=16.9 i$ feet, from Eq. 14-A. Ratio of half-wave length to conductor diameter (ehanging wave length to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. 14-3, $K=0.963$ for this ratio. The length of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained direetly in inches by substitution in Eq. 14-D: $\frac{5905 \times 0.963}{29}$
$=190$ inches.

Fig. 1/-3-Effert of antenna diameter on length for half-wave resonamce, shown á a multiplying factor, K, to be applied to the fre-space half-wase lonuth (Lisuation II-I). The effert of eonduetor diameter on the eenter impedance alro is shown.

Current and Voltage Distribution

When power is fed to an antenna, the current and voltage vary along its length. The current is maximum (loop) at the eenter and nearly zero (node) at the ends, while the opposite is true of the r.f. voltage. The current does not artually reach zero at the current notes, becuase of the end effect; similarly, the voltage is not

Fig. 144- The above scales. based on Fiq. 14-13, can be used to determine the lengrth of a half-wate anterna of wire.

Radiation Characteristics

The radiation from a dipole antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the

Fip. 14.5 - The free-space ratiation pattern of a half-wave anterna. The antenna is -hown in the bertical presition. 'This is a croses-section of the solid pattern deseribed by the figure when rotated on itvertical axis. The "domphmi" form of the solid pat. tern ean be mere easily visualized by imavining the drawing shered to a piecer of cardmarrl, with a short length of wire fastened on it to remesent the antenna. Twirling the wire will give a visual reprearntation of the solid radiation pattern.
zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistunce) and the radiation resistance. The radiation resistance is an equibalcut resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antema radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wave length antenna is ordinarily small enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antena in free space is 33 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhood of 60 to 70 ohms, although it varies with height in the manner of lig. 1t-2. It inereases toward the ends. The actual value at the ends will depend on a number of fartors, such as the height, the physical construction, the insubators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wave length, as indiated in fig. 1-1-3. If the diameter of the conductor is increased the eapacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased $L /(\cdot$ ratio causes the \mathcal{Q} of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wave length is small.
wire, with intermediate values at intermediato angles. This is shown by the sketch of lig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the jerimeter. If the :untenna is vertieal, as shown in the figure. then the field strength will be uniform in all horizontal

Fig. 14-6 - Illu-trating the importance of vertical angle of radiation in determining antema direetional effects. Off the end, the radiation is greater at higher angles, Ground refiection is nexlected in this drawing of the freespace pat. tern of a horizontal antenna
directions: if the antema is horizontal, the relattive fied strength will depend upen the direetion of the reeeiving point with respect to the direetion of the antema wire. The variation in radiation at various vertical angles from a half wave lenglh horizontal antenna is indicated in Figs. 14-6 and 14-7

FEEDING A DIPOLE ANTENNA

Direct Feed

If possible, it is advisable to locate the antennat at least a half wave lengeth from the transmitter and use a transmission line to carly the power from the transmitter to the antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three example of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $1: 50 \mu \mu$. earh for the $3.5-\mathrm{Ml}$. band, $75 \mu \mu \mathrm{f}$. each at 7 Mc., and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Mc. with about 60 or $70 \mu \mu$ f., for the $80-$ meter band, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{f}$, and so on. The circuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and

Fig. 14.7 - 1 lorizontal pattern of a horizontal halfwave antema at three vertival radiation anglo.. The solist line is relation radiation at 15 degrero. Dotted lines show deviation from the 15 - $/$ egrer pattern for angles of 9 and 30 degrees. The minterns are use ful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle con-indered. The patturns for all thrta angles have heen proportioned Io the same scale. but this does not mean that the maxianum amplitudes necessarily will lee the same. The arrow indirater the direction of the horizontal antema sire.
adjusting C_{1} and C_{2} until resonance is indirated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It maty be necessary to re-resonate the transmitter tank circuit as the coupling is increased, but the ehange should be small.

The circuits in Fig. 14-8I3 and C are used when only one end of the antenna is accessible. In I3, the eoupling is adjusted by moving the

Fig. 14-8 - Methods of directls exctiting the halfowave antenna. A, burrme ford, series tuning; B, wotag" ferd, rapacition enopling: C , voltage frod. with induetiomy couphed antrona taink. In A, the compling circuit is not inelueled in the effertive eleetrical length of the antema-y stemproper. linh emopling can be used in 1 and C .
tap toward the "hot" or plate end of the tank coil - the series capatcitor may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antema tuned circuit ($(6$ and the antenna coil should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tuhe is
then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at. d is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no protection against the radiation of harmonies, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vicinity of 70 ohms , it offers a good match for 75 -ohm two-wire transmission lines. Several types are available on the market, with different power-handing capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as

Fig. /f-9-Construction of a dipole fed with 75 -ohm line. 'The length of the antenna is ealeulated from Equation 11.13 or Fig. 14.4.
convenient. In either case, the transmission line should be run away at right angles to the antema for at least one-quarter wave length, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 14-B, for a half wate length antemna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenua in a special manner, called the two-wire or folded dipole, a grod match is offered for a 300 -ohm line. Such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fig. 14-10 - The constrution of an om-wire folded dipole fed with 300 -ohm line. The length of the alltenna is calculated from Fiquation 14-13 or Fig. 14-4.

360

lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating material), and the spacing ean be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequeney is. At 14 Me., 4 -inch separation is satisfactory, and 8 -inch spacing can be used at 3.5 Nc.

The half wave length antenuat cat also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. After the wires have been soldered together, the joint ran be strengithened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight elamp of two pieces of Lucite ean be devised.

Fig. 14-11 - The construction of a 3-wire folleal dipole is similar to that of the $2-w$ ire folded dipole. "'he emal sodacers may have to be -lighty atrouser that the others leccaller of the zreater comprestion force on them. "I'he length of the antenna is ohtained from liguation I $1-13$ or Fig. 11.1. A smitahle line can be made from Io. 14 wire spaced 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig, 14-11 offers a good mateh for a 600-ohm line. It is favored by amateurs who prefer to use an open-wite line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another methol for offering a mateh to a $60(0)$-ohm open-wire line with a half-wave length antenn is shown in Fig. 14-12. The system is ealled a delta match. The lime is "fammel" as it approaches the antema, to have a gradu-ally-inereasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. The length of the antenna, L, is caleu-

Fig. 1/-12 - Delta-matcheil antenna system. The dimensions $C, D_{\text {a }}$ and E are found ly formula - pisen in the tevt. lt is important that the matching sertion, E, contestraight away from the antenna without any hemds.
lated from Equation 14-B or Fig. 14-4. The length of section C is eomputed from:

$$
\begin{equation*}
C(\text { feet })=\frac{118}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, k, is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. (Mc.) }} \tag{14-F}
\end{equation*}
$$

Example: For a frequency of 7.1 Me., the length

$$
L=\frac{468}{7.1}=65.91 \text { feet, or } 65 \text { feet } 11 \text { incles. }
$$

$$
C=\frac{118}{7.1}=16.62 \text { feet, or } 16 \text { feet } 7 \text { inthes. }
$$

$$
E=\frac{148}{3.1}=20.84 \text { feet, or } 20 \text { feet } 10 \text { inches. }
$$

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. "this requires 5 -ineh spared No. 14 wire, 6 -inch spaced $\boldsymbol{\text { No }} 12$ wire, or $33 / 4$-inch spaced No. 16 wire.

If a half-wave length antemat is fed at the center with other than 75 -ohm line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkwad for some line lengths, as deseribed in the preceding chapter, However, in many eases it is not convenient to feed the half-ware antenna with the correct line (as is the case where multiband operation of the same antemna is desired), and sometimes it is mot convenient to feed the antemmat the center. Where multiband operation is desired (to be disensied later) or when the antenna must be

Fig. 14.13 - The half-wave antenna can le fed at the center or at the end with an open-wire line. The anternat length is ohtained from Equation 14-13 or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. "the impedance at the end of a half-wave length antemat is in the virinity of several thonsand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the lowses in the line as low as posible. This requices the use of ceramic or Miealex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood sparers boiled in paraffin are satisfactory. Mechanical details of half-wave length antemnas fed with open-wire linss are given in Fig. 11-13. Regardless of the power level, solid-dielectric TwinLat is not rerommenderl for this use.

Long-Wire Antennas

An antenna will be resonant so long as an integral mamber of standing waves of current and voltage can exist along its. length; in other words, wo long ats its length is some integral multiple of a hatl-wave length. When the antema is more than a half-wave long it usually is called a long-wire antenna, or a harmonic alltema.

Current and Voltage Distribution

Fig. 14-11 shows the eurrent and voltage distribution along a wire operating at its fundanental frequency (where its length is

2ND HARNONIC (FULL-WAVE)

D
4 TM HARMONIC (2.WAVE)
Fig. 14-14-Standing-wave current and voltage distribution along an antenna when it is operated at varions harmonics of its fundamental resthant frequency.
equal to : halli-wave lengit) and at ins seromel, third and fourth harmonics. For example, if the fundamental frequeney of the antema is 7 Me., the current and voltage distribution will be as shown at . The same antemna excited at If Mc. would have current and voltage distribution ats shown at B. At 21 Mc., the third harmonic of 7 Mc., the current and woltage distribution would be as in C; and at 28 Me., the fourth harmonic, as in D. The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency

The polarity of current or voltage in each standing wave is opposite to that in the adjarent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antemat (taken as a zero reference line), to indicate that the polarity reveres when the current or voltage goes through zero. Currents

Howing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antemma may be used for harmonically-related frequencies, such as the various anateur bands. The long-wire or harmonic antemna is the basis of multiband operation with one antema.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antema bectuse the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }\left(\mathrm{Mc}_{\mathrm{c}}\right)} \quad 14-\mathrm{G}
$$

where A is the number of half-waves on the antenaa.

$$
\begin{aligned}
& \text { Example: An antenna } 4 \text { half-waves long at } 14.2 \\
& \text { Me. would he } \frac{492(4-0.05)}{14.2}=\frac{492 \times 3.95}{14.2}
\end{aligned}
$$

$$
=136.7 \text { feet, or } 130 \text { feet } 8 \text { inches. }
$$

It is apparent that an anteman cut as a halfwave for a given frequency will be slightly off resmance at exartly twice that frequency (the second harmonic), because of the decreased influence of the end effects when the antenna is more than one-hali wave length long. The effect is not very important, except for a posible unbalance in the feeder system and consequent

Fig. 14.15 - Curve A shows variation in radiation resistance with antenna length. Curve B shows power in loher of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna,

Fig. 14-16 - Horizontal patterns of radiation from a full-teare antenna. The solid line shows the pattern for a vertical angle of 15 degrees: doted lines thon destation from the $15-\mathrm{d}$-grec pathern at 9 and 30 degrees, All three patterns are drawn to the same relatise acale: actual amplitudes will depend upon the height of the antenna.
radiation from the feedline. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance on all but one frequency in each harmonic range.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Ilso, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14.17 - Horizontal patterns of radiation from an antenna three half-wates long. The solid line shows the pattern for a vertical angle of 15 degrees: dotted lines show deviation from the $\overline{15}$-degrec patternat 9 and 30 degrees. Minor lobes eoincide for all three angles.
directions. Fig. 14-15 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half wave lengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the lengt hof the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristies for antemas one wave langth, three half-wave lengths, and two wave lengths long are given in Figs. 14-16, $14-17$ and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 14-18 - Horizontal patterns of radiation from an antenna two reavelenghs long. The solid line shows the pattern for a vertical angle of 15 degrees: dutted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles.
creases, the radiation along the line of the antenna becomes more pronounced. Still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 14-14. The feeder system must not upset this phase relationship. This is satisfied by feoding the antenmat aither end or at any current loop. A two-wire feeder camot be inserted at a current node, however, bectuse this invariably brings the currents in two adjacent half-wave sections in phase. A long wire antenna is usually made a half wave length at the lowest frequency and fed at the end.

Multiband Antennas

As suggested in the preceding section, the same antenna may he used for several bands by operating it on harmonies. When this is done it is necessary to use tuned feeders, since the impedance matching for nomesonant feeder operation can be arcomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

A dipole antema that is center-fod ber a soliddielectrie line is useless for even hamonie operation; ou all even harmonics there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatch cuuses a large standing-wave ratio and consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its even harmonics a half-wave antemat renter-fed with coaxial cable. On odd harmonies, as betwen 7 and 21 Me.. a current loop will apperer in the center of the antenna and at firir mateh can be obtained. High-impedance solid-dielocetric lines such as 300 -ohm Twin-Lead may be used in an omergenes, provided the power does not excerel a few hundred watts, but it is an inefliciont fered method.
When the same antemna is used for work in several bands. the directional characteristies will vary with the hand in use.

Simple Systems

The most practical simple multiband antemma is one that is a half wave longth long at the lowest frequency and is fed either at the center or one end with an open-wire line. Athough the standing wave ratio on the feedline will not approatch 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a renter-fed system is superior to one that is end-fed, but the end-fed arrangemont is often more convenient and shoukd not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencios where the length of the antemat is a half wave length. The endefed antenna acts like a long-wire antenna on all bands (for which it is longer than a half wave longth), but the center-fed one acts like two antemats of half that length fed in phase. For example, if a full-wave length antemm is fed at one end, it will have a radiation pattern as shown in Fig. 14-16, but if it is fed in the center the pattern will be somewhat similar to Fig. 1-7-7, with the maximum radiation broadside to the wire. Either abtenna is a gond radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Sinee multiband operation of an antenna does not permit matching of the feedline, some attention should be paid to the length of the feedline if convenient transmitter-coupling ar-
rangements are to be obtained. Table 14-I gives some suggested antenna and forder lengths for multiband operation. In gencral, the length of the feredine can be other than that indieated. but the type of coupling circuit mate change.

Open-wire line feed is recommended for an antemat of this tepe, since the losses will run tom high in solid-diclectric line. For low-power applications up to a fow humed watte, open-wire TV line is convenient and satislidery to use. However, for high-power installations up to the kilowatt limit, an open-wire line with No. $1:$ or So. 12 conductors should be used. This can be built from soft-drawn wire and ceramic or other suitable spawers, or it can be bought ready-made.

Antennas for Restricted Space

If the space avalable for the antenna is not large enough to aceommodate the length neeessary for a half wave at the lowest frequency to be used, quite satisfactory operation can be serured by using a shorter antemata and making up the missing length in the feeder systen. The antema itsolf may be as sholt as a guarter wate length and will radiate faily well, although of course it will not be as effertive as one a half wave long. Nevertheless. such at system is useful where operation on the desired band otherwise would be impossible.

Tuned foeders are a practical necossity with such in antenma system. and a renter-fod antennat will give best all-around pertormance.

TABLE 14-I Multiband Tuned-Line-Fed Antennas			
Antemma Lenyth (F't.)	Fecter Length (Ft.)	Band	Type of Coupling Circuit
With end fud:			
13.5	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Series Parallel
67	45	$7-21$ 28	Series Parallel
With center feed:			
135	42	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Parallel Series
135	771/2	3.5-28	Parallel
67	421/2	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Series Parallel
67	$651 / 2$	$\begin{array}{cc} 3.5, & 14,28 \\ 7,21 \end{array}$	Parallel Series
Antenna lengths for end-fed antennas are approximate and shonld be cut to formula length at favorite ojerating fres lueney. Where parallel kuning is specified, it will be neressary in some cases to tap in from the ends of the coil for proper loading - see Chapter 13 for examples of antenna couplers.			

quency, but is not so desirable for multiband operation because the ends play an increasingly important part as the frequeney is raised. The performance of the system in such a case is difficult to prediet, esperially if the ends are vertical (the most convenient arrangement) bectunse of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional characteristics. However, the faet that the radiation pattern is inc:ububle of predietion does not detrawt from the general usefulness of the antennat. For one-band operation, end-louding with coils (5 feet or so in from each end) is pratioual and efficiont.

"Windom" or Off-Center-Fed Antenna

A multiland antenna that enjoyed considerable popularity in the 1930s is the "offerenter feed" or "Windom," named attor the amateur who wrote a comprehensive article about it Shown in lig. 1 t-2l. , it consists of it half wate length antemas on the howest-feguency band to be used, with a single-wire feeder connerted it'i off center. The antennat will operate satisfatorily

Fig. If-21-Two version - of the off-center-fed antenna.
(i) Single-wire feed how- aprovimately 600 ohms impedanee to promed and is mozt comsenients compled to the transmitter as zhown. 'The pi-network conpling will remuire more capacity at C_{1} than at C_{2}, L_{1} is best found by expriment - an inductance of ahout the same size as that lused in the output stage iz a cood slarting point. The parallel-thned circuit will he a tuned cirenit that resonatew at the operating frefuency with I and C elose to those rised in the outpuls atage. The tap is found by experiment. and it should he as near the top of l, in it can and still give good loading of the transmitter.
(B) 'I'wo-wire off-center feed them 300-ohm 'TV' line. Although the 300 -ohm line can lwe counded directly to some transmittre. it is common practice to step down the impedance level to 75 ohms through a pair of "balun" coils.
on the even-harmonic frequencies, and thas a single antennil can be made to serve on the 80), $40-, 20$-, and $10-\mathrm{met}$ er bands. The single-wire feeder shows an impedance of approximately 600 ohms to ground, and conseguently the antema coupling system must be capathe of matehing this value to the transmitter. A tapped parallel-taned circuit or a properly-proportioned pi-network coupler is peneratly used. Where TVI is a protlem, the antennat compler is required. so that a low-pass filter can be used in the connecting link of coatxial line.

Although theoreticully the feed line can be of any length, some length will tend to give trouble with "too much r.f. in the sharek," with the consequence that r.f. sparks ran be drawn from the transmitters metal cabinet and/or v.f.o. notes will develops serions modulation. If such is found to be the case, the feeder length should be ch:uged.

A newer version of the off-center-feed antenna uses 3(k)-ohm 'TV Twin-Lead to feed the antemat, ats shown in Fig. 11-21B. It is clatimed that the anternat oflers a groad mateh for the 300 -ohm line on four bands and. although this is more wishful thinking that anetual truth, the system is widely used and dores work satisfactorily. It is subjere to the same feed line length and "ref.-in-the-shat k " froubles that the single-wite version enjoys. However, in this catise a pair of "balum" coils catn be used to step down the imperdance level to 75 ohms and :th the same time alleviate some of the fered line troubles. This antenat system is popular among amateus using multiband transmiters with pi-network-tumel output stages.

With ather of the offerenter-fed antemat systems, the foed line shotd run awiy from the antemnat right amgles for as great a distance as possible before bending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of coaxial line requires that the standing-wave ratio be held to a low value. preferably below $2: 1$. Since the impedance of in ordi-

Fig. $1 \% 22$ - An effective "all-band" antenna fed wiht a single tengily of coasial line can be constructed by joining seseral half wase length antennaz at their centers and feeding them at the common point, In the cample abose. a low s.w.r. will lie ohtained on 80, 41), 20 and 15 meter-, (The $\overline{-}$ - Ile, antenna aloon works at 21 Vc.) If a 28 . Ve. antemna were added, 10 -meter operation could atoo be included.

The antenna lengths can be computed from formula 1/-13. The shorter antennas can le suspended a foot or two below the longest one.
nary antenna changes widely from bund to band, it is not possible to leed it simple antenna with coaxial line and use it on a mumber of bands without lricks of some kind. The single exception to this is the use of 75 -ohm coaxial line to feed : 7-Mc. half-wave antenna, ats in Fig. 14-19; this antennat ran also be used on 21 Mc. and the s.w.r. in the line will not run too high.

One approach to a solution is the use of parableltuned circuits installed in the antema at the right points to "divore" the remainder of the antena from the center section (part led by coaxial line) ats the transmitter is changed to a higher-f feguener band. The support and adjustment of these tuned circuits presonts a problem, but the method has been used. The same prin(iple hats ako bem applied to a vertical antenna. (See Pemberton, Qs'T, December 1955, for an example of both horizontal and vertical antennas using this principle. For information on the construction of the traps. see" (ireenberg, "Simple Trap Construction for the Multilamd Antema," QS'T. O(t. . 1956i.)

The principle of the "divoreing" circuits is utilized in a commercial "all-band" vertical antennat, and at 5 -band kit for horizontal antemas using the mothod is also available commere ially.

The divoreing riteuits are also used in sevemal rommeredial multiband beams for the $14-$, 21-and 28-Mc. bands. The design and adjustment of these cireuits is diflieult without suitathle equipment and assistance, and the protuned commerrial versions atre recommended to antone who lacks the time and equipment for the experimenta! work.
(One multhand antemat system that ean be used by inyone without much tronble is shown in Fig. 1+-22. Here sepamate dipoles are conneeted to one feedline. The $7-$ Ile. dipole also serves on 21 Me. A low s.w.r. will appear on the feodline in eurh band if the dipolas are of the proper length. The antemas sistem can be built by suspending one set of clements from the one ahove, using insulator-terminated wood spreaders ahout one foot long. An atternative is to let one antema droop several fone under the other, bring ropes attanhed to the insulators !atek to a common support point. It has been found that a separation of only an unch or two between dipoles is satishartory. By using a length of the TwinLead used for folded dipoles (one (opperweld condator and one softedratin), the strong wire ath be used for the low-frecheney dipole the soft-drawn wire is then used on a higher band, supported by the solid diclectrie.

Anot her approwh to maltiband operation with coasial line feed is the use of a vertical antenna (at maximum length of 0.6 wave length at the highest frequency band) and the use at the base of suitable matching serctions for eath band. The matching sections can be housed in it weatherproof box amd changed manually or by stepping relays: their form will vary from parallel-tuned circuits to I, sections. (Sere Mr Coy, QST'. Derember, 1955, for a description of the L-section coupler.)

Vertical Antennas

A vertical quarter wave length antenna is often used in tho low-frequency amateur bands to obtain low-angle radiation. It is also uscd when there isn't enough room for the supports for a

Pig. If-23 - A quarter wave lengeth antenna can lue fed directly with . obohm comial lime (1) with al lon stand-ing-wave ratio, or a compling metworh (can he nsed (B) that will permit a line of ans impedance whe wad. In (13), I_{1} and (it should re-enate to the opperating fre-
 in a plate tath sirmit at the same fropuenes.

B, wing multiwire antomat, the fuarter-wate vertical ram le fed with (() 150 or (1)) 300 -othon line.
horizontal antenna. For maximum ellectiveness it shoulat be lowated free of nethey objerets and it, should be operated in conjunction with a good ground system. but it is still worth trying where these ideal eonditions canmot be obtatined.

Four typical examples and suggested methods for feeding a vertical antematare shown in ligg. $1+23$. The :utemat may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the antema, or when guy wires (boken up by insulators) : we wed to reinforce the structure, the length given by the formula is likely to be long by a few per cent. A check of the standing-wave ratio on the line will indieate the frequeney at which the s.w.r. is minimum, and the antema length can be adjusted accordingly.

A good ground comnection is necessiry for the most effective operation of a vertical antema (other than the ground-plane type). In some (ases a short comertion to the cold-water system of the house will be adequate. But maximum performance usuatly demands as separate ground system. A single 4 - to 6 -foot ground rod driven into the earth at the bise of the antemat is usually not sufficient. unless the soil has exceptional conductivity. A minimum ground system that
(ath be depended upon is if to 12 quarter wave length radials latid out ats the spokes of : wheel from the base of the antenna. These radials catn be made of heavy ahminum wire, of the type used for grounding 'TV antemas, buried at least 6 inches in the ground. This is normally done by slitting the earth with it spade and pushing the wire into the slot, after which the earth ran be t:mped down.

The examples shown in Fig. 1-2:23 all reguire an antemat insulated from the ground, to provide for the feed point. A grommed tow or or pipe catn be used as a radiator be emphoving "shumt feed," which consists of t:ppping the inner conductor of the eroxial-line feed up on the tower until the best match is obtained, in much the satme manner its the "gammat match" (deseribed later) is usod on a horizontal element. If the antmma is not ath electrical quarter wave lengeth long. it is necessary to tune ont the reactance by adding (:u): wity or inductane betweon the consial line and the shunting conductor. A metal tower supporting a TV antemat or rotitry beat can be shumt-fed only if all of the wires and leads from the supported antemat run down the center of the tower and underground aw:y from the tower.

- THE GROUND-PLANE ANTENNA

A ground-plane antenna is a vertieat guarter wave length :utemat using an artificial metatlic ground, usuably eonsisting of four rods or wires

Fig. 14-2 - Ratiation resistance of a (fuarter-wave antentia (with ground plane or grounded) as a function of M. The value- apply onls when the antenna is of the resomant length.

Fig, $11-25-$ - Ihe uroundpane antenna with shunt matching. The antenna length, L, matching stith Irngth, $L_{\text {a }}$, and radial length, lif, are determined as dezeribed in the text, for matching a tran*mizsion line of kiven characteristic impedance. As shown in the insert, the radials allol the malside eondmetors of the stub and line are all ron. nerted together.

perpendicular to the antenna and extending radially from its base. U"alike the quarter wave length vertical antennas without an artificial ground, the ground-plane :untenna will give low-angle radiation regardless of the height alove actual ground. However. to be a true ground-plane antenna, the plane of the radials should be at least a quarter wave length alowe ground. Despite this one limitation. the antenna is useful for 1)X work in :ny band below 30 Me.

The vertical portion of the ground-plane antema can be made of self-supported aluminum tubing, or a top-supported wire, depending upon the neressary length and the available supports. The radials are also made of tubing or heavy wire, depending upon the aratilable supports and neressary lengths. They need not be exactly symmetrical about the base of the vertimal portion.
The radiation resistance of a ground-plane antemar varies with the diameter of the vertical element, as shown in Fige 14-24. Since the radiation resistance is usually in the vicinity of 30 to 32 ohms, the antenna ran be fed with $75-0 \mathrm{hm}$ coancial line if a quartor wave length matehing section of 50 -ohm coaxial line is used between the tine and the antemail. (See "Quater-llave "Transformers" later in this chapter.)

For multiband operation, a ground-plane antemat can be fed with tuned open-wire line.

It is also possible to feed the ground-plane antenta with coasial line and at "shunt" matching section, as shown in Fig. 14-25. The various values required for proper matching will depend on the particular type of line used, as wedl as on the radiation resistance, resonant length, and reactance per unit longth of the antenna. The necessary information for design purposes is given in Figs. 14-2-1, 11-26 and 14-27.

Determining the antenna dimensions can be reduced to a series of steps, as follows:

First determine $.1 /$, the ratio of a free-space half wave length to the conductor diameter. The following formula may be used:

$$
M=\frac{5906}{F D}
$$

where $F=$ frecuency in megacyeles,
$D=$ condurtor diameter in inches.
I sing this value of 11 , read the length factor $\left(K_{a}\right)$ from lig. 14-26, the reartane change per 1 per cent rhange in length (K_{x}) from Fig. 14-2 ${ }^{-}$, and the radiation resistance (R_{r} from lig. 14-24.

Since the antena is to be shortoned, these values must he modified appropriately. The actual radiation resistance, after the antenna is properly shortened, will be

$$
R_{\mathrm{o}}=R_{\mathrm{r}}-\frac{Z_{\mathrm{l}}}{4 R_{\mathrm{r}}} \text { ohms, }
$$

where $R_{0}=$ ratdiation resistance after shortening,
$Z_{1}=$ characteristic impedance of transmission line to be matched.

Fig. 14.26 - The antenna-length factor as a function of the ratio of a free-space half wave lenuth to the condintor diampter. The length factor multiplied by a free-space quarter wase lenth is the length of a fuarterwase radiator resonant at the selected frequency.

Beams with Driven Elements

By combining individual half-watve antennas into ath array with suitatherpucing betwern the antonnas (callod elements) and ferding power to them simultaneously, it is possible to make the ratiation from the elemonts add up atong at single direction and form it beam. In other direetions the radiation temds to councel, so at power gain is obtanod in otw diroction at the expernse of radiation in other dire etions. There are several mothods of arranging the clements. If they ane strung and to (end, so that all lie on the same straight line, the eldments are said to be collinear. If there are parallol and all lying in the seme miane, the eloments atre satid to be broad-side when the phase of the current is the same in all, and end-fire when the currents are not in phase.

Collinear Arrays

Simple forms of collineur arratys, with the eurrent distribution, are shown in ligig, 14-29. The two-edoment array at.λ is popularly known as "two half-waters in phase." It will be reengnized as simply a center-fed dipole operated at its second hatmonie. The way in which the number of eloments may be extonded for increased directivity :und gain is shown in Figg. 14-29B. Quarter-wave phatsing soctions are used between elements to give the nerossury reversal in phases. It is best to fored at the center of the array, so that the energy will be distributed uniformly anong the elements.
'The gathe and dirertivity depend upon the number of elements and thoir sparing. cobter-to-center, as shown in Table 14-II. Although three-quarter wave spacing gives greater gain,

TABLE 14.II Theoretical Gain of Collinear Half-Wave Antennas					
Spacing betreen centers of adjacent half-retres	Number of halfotcores in arras vs. adin in db.				
	2	3	4	5	6
$\frac{1}{2} 2$ wave	1.8	3.3	4.5	5.3	6. $\frac{1}{8}$
${ }^{3}+$ wave	3.2	1.8			- 8

it is diflioult to construct a suitable phase-reversing system when the ends of the antema clements are widely separated. The half-wave spacing is most generally used in actual practice.

Collomarr arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the satme as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles.

 tem at $\$ is senerally known ats "two half-waves in phase." Is is an extension of the system: in theory the number of clement may be carried on indefinitely, lyit practical considerations usually limit the elements to four.

Broadside Arrays

Parallel antenna elements with currents in phase may be combined as shown in Fig. 14-30 to form a broadside array, so named because

Fig. 14-30-1Broadside array using parallel half-wave elements. Ir rows indicate the direction of current flow. "liramonosition of the feeders is neecsary to bring the antenat currents in phase. Iny reasonalise number of clements may be osed. 'The array is bidircetional, with maximum radiation "broadside" or perpendieular to the antenna plane (perpendicularly through this page).
the direction of maximum radiation is broadside to the plane containing the antemas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 14-31. Malf-wave spacing gencrally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table 14-III gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertieal or with them horizontal and one above the other (stacked). In the former ("ase the horizontal pattern becomes quite sharp, while the vertieal pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivatent to that of one element while the vertioal pattern is sharpened, giving low-angle radiation.
Broadside arrays may be fed either by resonant transmission lines or through quart er-wave matching sections and nonresonant lines. In liig. 1-4-30, note the "crossing over" of the feeders, which is necessary to bring the elements into proper phase relationship,

Combined Broadside and Collinear Arrays
13roadside and collinear arrays may be eombined to give both horizontal and vertical directivity, as well as additional gain. The

fize. 1.1-31- Gain es. sparing for two parallel half-wave elements combined as cither hroadside or emd-fire arrays.
general plan of eonstructing such antennas is shown in Fig. 14-32, The lower angle of radiation resulting from stacking clements in the vertical plame is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 d b.. depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the hroadside or eollinear type.

The arrays in Fig. 14-32 are shown fed from one end, but this is not especiatly desirable in the case of large armas. Better distribution of energy between doments, and hence better over-all performance, will result when the feeders are attached as mearly as possible to the center of the array. Thus, in the eight-element armay at A, the feeders could be introduced at the middle of the transmission line between the serond and third set of elements. in which case the comerting line would not be transposed between the second and third set of elements.

A four-element array, known as the "lazy-H" antema, has been quite frequently used. This arrangement is shown, with the feed point indirated, in Fig. 14-33. For hest results, the bottom section should he at least a half wavelength above ground.

TABLE 14-III Theoretical Gain vs, Number of Broadside Elements (Half-Wave Spacing)	
No. of elements	Gain
2	4 dh.
3	5.5
4	8
6	9

Fig. 14.32-Combination brosdside and collinear arrays, A, with vartical elements; 13 , with horizontal elements. Hoth arrays give low-angle radiation. 'Two or mure sections may be usell. The tain in db, will be requal, approximately, to the sum of the pain for one set of broadside elementa ('Valle l1-IN) wha the main of one set of collinear elements ('Vable 11-IJI). For example, in A cach broadside set has four clements (main 7 dlo.) and cath collinear set two elements (sain 1.8 db.), giving a total gain of 8.8 dh. In 13 . earh broadside set has two elements (kain \mid dh, and rach eollimear set three elements (main 3,3 , dho.), making the total gain 7.3 dh, 'The result is not strietly acemate, becanse of mutual coupling tretween the elements, but is good enough for practical purposes.

End-Fire Arrays

Fig. 14-3. shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array because it radiates best along the phane of the antemats, as shown.

The end-fire array may be used either vertically or horizontally (oloments at the same height), and is well adapted to amateur work because it gives maximum gain with relatively elose element spacing. Fig. 14-31 shows how the gain varies with spacing, End-fire elements may be combined with additional eollinear and hroadside elements to give a further increase in gain and directivity.
bither tuned or untuned lines may be used with this type of array. I'ntuned lines preferably are matehed to the antemat through a quarterwave matehing section or phasing stub.

Phasing

Figs, $14-32$ and $14-34$ illustrate a point in eonnection with feeding a phased antema system which sometimes is confusing. In Fig. 14-34, when the transmission line is comeneted as at A there is no erossover in the line connerting the two antennas, but when the transmission line is connected to the center of the connerting line the crossover hecomes necessary (13). The same thing is true of the untransposed line of Fig. 14-32J3. Note that, under these conditions, the antemna elements are in phase when the line is not transposed, and out of phase when the transposition is made,

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it
will usually suffice to make the length of each element that given by Equations $14-13$ or 14-C.

Fif. $14-33$ - A four element combination broadsidecoilinear array, popularly known as the "lazy-11" antema, I closed quarter-wave stub, may be used at the feed point to mateli into an untuned transmission line, or tuned feeders may be attached at the pmint indieated. The gain over a half-wave antemua is 5 to 6 db .

The phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

Length of half-wave line (feet) $=$

$$
\begin{equation*}
\frac{480}{\text { Freq. (Me.) }} \tag{14-H}
\end{equation*}
$$

Example: A half-wave length phasing line for 28.8 Mc . would $\mathrm{le} \frac{4.50}{25.8}=16.66$ feet $=16$ feet 8 inches.

The spacing between elements ean be made equal to the length of the phasing line. No special adjustments of line or clement length or spacing are needed, provided the formulas are followed closely.

Fig. 14-34- End-fire arrays using paralle] half-wave elements. The elements are shown with half-wave spacing to illustrate feeder connections. In practice, closer spatings are desirable, as shown by Fig, 1/-31. Direction of maximum radiation is shown by the large arrows.

With collinear arrays of the type shown in Fig. $14-29 \mathrm{I}$, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

$$
\begin{gathered}
\text { Length of quarter-wave line }(\mathrm{feet})=(14-\mathrm{I}) \\
\frac{240}{\text { Freq. (Mc.) }}
\end{gathered}
$$

Example: A quarter-wave length phasing line
for 14.25 Mc . would be $\frac{240}{14.25}=16.84$ feet $=16$
feet 10 inches.
If the arraty is fed in the center it should not be necessary to make any adjustments, although,
if desired, the whole system can be resonated by connecting an r.f. ammeter in the shorting link of each phasing section and moving the link batk and forth to find the maximum-etrrent position. This refinement is hardly necessary, however, so long as all elements are the same length and the system is symmetrical.

The phatsing sections ean be made of 300ohm Twin-Lad, if low power is used. However, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas above.

Example: The half-wave-length Iine for 28.8 Mc. would become $0.84 \times 16.66=13.99$ feet $=$ 14 feet 0 inches.

Using Twin-Lead for the phasing sections is most uscful in arrays such as that of lig. 14-2!13, or any other system in which the element spacing is not controlled by the longth of the phasing section.

Simple Arrays

Several simple direetive-imentenat systems using driven elements have achieved rather wide use among amateurs. Four of these systems are shown in lig. 14-35. Tuned foeders arro assumed in all cases: however, a matehing section readily can be substituted if a nonresonant transmission line is preforred. Dimensions given are in terms of wave length; actual lengths ean be calculated from the equations for the antenna and from the equation above for the resonant transmission line or matching seetion. In cases where the transmission line proper eomerets to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quatererwave point.

It A and 13 are two-clement end-fire arrangements using close spacing. They are electrically equivalent; the only difference is in the method of comnecting the feeders. 13 may also be used on the second harmonic, althongh the spacing is not optimum (Fig. 11-31) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 db . more gain than the two-element array.

The antenna at D, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gain possible with eollinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complications, The elements are made longer than a half-wave. The gain is 3 db . over a single half-wave antema, and the brotudside directivity is fairly sharp.

The antronas of A and B may be mounted either horizontally or vertically; horizontal suspension (with the edements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C, when mounted horizontally; will have a sharper horizontal pattern than the two-element arrays

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antenna arrays previously deseribed are bidirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antenna system. If radiation is wanted in only one direction, it is necessary to use different elementarrangements. In most of these

F'ig, 1-1-36-Gain 2 's. element spacing for an antema and one parasitic element. The reference point, 0 db. is the fied strength from a half.wave antenna alone. The greatest gain is in direction A at spacings of less than 0.14 wave length. and in direction R at greater spacings. 'I'he front-to-hack ratio is the difference in db. between curves A and $/ 3$. Variation in radiation resistance of the driven element also is shown. These curves are for a self resonant parasitic element. At most spacings the gair as a reflector can be inereased by slight lengthening of the parasitic clement: the gain as a director ean the inereased hy shortening. This also improves the front-to-lack ratio.
arrangements the additional elements receive power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic-element tuning, which usually is adjusted by changing its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the elements, and thus for any given spacing there is a tuning condition that will give maximum grin at this spacing. The maximum front-to-back ratio seldom, if ever, occurs at the same condition that gives maximum forward gain. The impedance of the driven element also varies with the tuning and spacing, and thus the antennasystem must be tuned to its final condition before the match between the line and the antenna can be completed. However, the tuning and matching may interlock to some extent, and it is usuilly necessary to rum through the adjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element beam is useful where space or
other considerations prevent the use of the larger structure required for a 3 -element beam. The general practice is to tune the parasitie element as a reflector and space it about 0.15 wave length from the driven eloment, although some successful antennas have been built with 0.1-wave-length spacing and director tuning. Gain m. element spacing for a 2-clement antenna is given in Fig. 14-30, for the sperial ease where the parasitic element is resonant. It is indirative of the performance to be expected under maximumgain tuning conditions.

Three-Element Beams

Where room is available for an over-all length greater than 0.2 wave length, a 3 -element beam is preferable to one with only 2 elements. Once the over-all length has been deeided upon, the curves of Fig. 1+-37 ean be used to determine the proper spacing of director and reflector. If, for example, the distance between direetor and reflector can be made 0.4 wave length, Fig. $14-37$ shows that a spacing of $0.15 \mathrm{~J}-0.25 \mathrm{R}$ gives a gain of 7.8 db ., and a spacing of 0.25 I - 0.1 . F R gives a gain of 8.2 dh. Obviously the latter is the better choice, although the practical difference might be difficult to measure, and practieal (meehanical) eonsiderattions might call for using the more halaneed $0.2 \mathrm{D}-0.2 \mathrm{R}$ construetion and a gain of 8.1 db .

Fig, 14-37-Gain e's, element spacing for 3-element beams using a driven element and a director and a reflector. The 0-dh, reference level is the field strength from a half-wave-length antema alone. These eurves are for the system tuned for mavimum forward gain.

The element spacing shown is the fraction of a wave. length determined by $\frac{98 t}{f\left(M c_{0}\right)}$. Thus a wave length at 14.2 Mc. $=98411.2=69.3$ feet. A spacing of 0.15 wave length att 14.2 Me. would be $0.15 \times 69.3=10.4$ feet $=10$ feet 5 inches.

When the over-all length has been decided upon, and the element spacing has been determined, the element lengths can be found by referring to Fig. 11-38. It must be remembered that the lengths determined by these charts will vary slightly in actual practice with the element diameter and the method of supporting the ele-
ments, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be elose to correct in practically all eases, and they can be used without checking if the beam is difficult of areess.

Fig. 14-38-Element lengths for a 3 -element beam, These lengths will hold closely for tuthing elements sup. ported at or near the eenter. The radiation resistance (I) is nseful information in planning for a matehing system, but it is subjeet to variation with height above ground and must be considered an approximation.

The driven-element length (C) may reguire modification for tuning out reactance if a or ganma-mateh feed syatem is used, as mentioned in the text.

A 0.21 -. 0.21 l beam cut for 28.6 Mc . would have a director length of $4.5228 .6=15.8=15$ feet 10 inches, a reflector length of $490 / 28.6=17.1=17$ feet 1 inch . and a driven-element length of $470.5 / 28.6=16.45=16$ feet 5 inches.

The preferathe method for cheeking the beam is by means of a field-strength meter or the S-meter of a rommmaications reecoiver, used in conjunction with a dipole antemat located at kotst 10 wayo lengths ansuy and as high as or higher than the beam that is being cherked. A few watts of power fed into the antemma will give a useful signal at the ohservation point, and the power input to the transmitter (and hene the antenna) should be held eonstant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning crrors and camot be depended upon. The impedance of the driven clement will vary with the height ahove ground, and good practice dietates that all final matehing between antenna and line be done with the antemat in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3-clement systems are popular for rotary-beam antennas, where the entire antema system is rotated, to permit its gain and direcotivity to be utilized for any compass direction. They may be mounted either horizontally (with the plathe contaming the eloments parallol to the earth) or vertically.

A terkment beam will give still more gain tham a 3 -element one, provided the support is suflicient for about 11.2 wavolength spacing hotwern dements. The tuning for maximum gain involves many variables, and eomplete gain and tuning data are not available.

The elements in elose-spaced (less that onequater wavolongth element spacing) arrays proferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has lower Q; both these factors are important in closespaced arras because the impedance of the driven element usuatly is quite low compared to that of a simple dipole antennat. With :3- and t-element chose-spaned arrats the rudiation resistame of the driven element may be so bow that ohmie losses in the conductor can consume an appreciable fraction of the power.

Feeding the Rotary Beam

Any of the usual methods of feed (edeseribed later under "Matehing the Antemat to the Line") cath be applied to the driven elenent of a rotary beam. Puned feeders are not recommended for lengths greater than a half wavelength unless opern lines of expurer-tabing comaluctors are used. The popular whices for fereding at beam are the gammat mateh with series ceupuritor and the T match with serics capacitors and a half-wavelongth phasing section, as shown in Fig. l-f-3!. These mothods are prefered ower any others because the permit aljustencont of the mateling and the use of coaxial line feed. The variable capacitors cath be housed in small plastio cups for weatherpoofing: recoiving types with close spabing can be used at powers up to a fow hundred natts. Maximum capacity required is usu-

cemten or raiven elemint

Fig. 14-39 - The most popular methods of feeding the driven element of a heam antematare (A) the gamma matchand (13) the ' l ' matth. 'The aluminum tubing or rom used for the matehing section is astally of smaller diameter than the antenna dement; its l-ngth will vary somewhat with the spacing and number of elements in the leam. The coakial line in the phasing seection can be coiled in a $き$ - or 3 - fowt diameter coil instead of hanging as shown.
ally $1.40 \mu \mu \mathrm{f}$, at 14 Mc . and proportionately less at the higher freepumeises.

If physically possible, it is better to adjust the matehing deviere after the antemath has bern installed at its ultimate heright, sinee a mateh made with the antemma near the ground may not hold for the same antemat in the air.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the ease of close-spaned arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 por cent of tho resonant frequency, or up to about 500 ke . at 28 Me . However. the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered. and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, hat maintains more uniform gain over a wider frequency range.

The use of large-diancter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the ease with wire conductors,

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements, and combination broadside-collinear-parasitie ele-
ments. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. I broadside-collinear aray can be treated in the same fashion.

Matching the Antenna to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of had is an antenna. When a transmission line is conneeted between an antematand a receiver, the receiver imput cireuit (not the antenna) is the load, hecanse the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and whly the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the chameteristic impedane of the line, there will be no standing waves. If the load is not purely resistive, and or is not equal to the line $Z_{\text {a }}$, there will be standing waves. No adjustments that cam be made at the input end of the line ean ehange the s.w.r, now is it affected by changing the line length.

Only in a few speedal cases is the load inherently of the proper value to match a practieable tramsmission line. In all other cases it is necessaty either to operate with a mismateh and aceept the s.w.r. that results, or else to take steps to bring about a proper mately between the line and load by means of transformers or similar deviers. Impedance-matehing tranformers may take a variety of physical forms, depenting on the circumstances.

Note that it is cssential, if the s.w.r. is to be made as low an posible, that the load at the point of connection to the tramsmission line be purely resistive. In general, this requires that the load be tuned to resonamee. If the load itself is not resonant at the operating frequener the tuning sometimes can be aceomplished in the matehing system.

The antenna as a load

livery antema system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this antenna input impedance to the proper value to match the line. In this respert there is no one "best" type of line for a particular antemna system, hecause it is possible to transform impedances in any desired ratio. Consequently, any type of line may be used with any type of antemna. There are frequently reasons other tham imperlance materbing that dictate the use of one type of line in preferener to another, such as came of installation, inherent loss in the line, and so on, but these are not considered in this section.

Nthough the input impedance of an antema system is seldom known very accurately, it is often possible to make a reasonably elose estimate of its value. The information in the chapter on antennas can lo used as a guide.

Matching eireuits maty be constmated using ordinary coils and condensers, hut are not used very extensively beramse they must be supported at the antema and must be weatherproofed. The systems to be described use linear transformers.

The Quarter-Wave Transformer or " Q " Section

As deseribed earlier in this chapter, a quarterwave tranmission line may be used as an impedanee transformer. Knowing the antema impedanee and the characteristic impolanee of the

Fig. If. $\left.40-{ }^{\circ}\right)^{* *}$ matching section. a quarter-wate imperdance transformer.
transmission line to be matched, the required characteristic impedance of a matehing section such ats is shown in loig. 1:3-1:3 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristic impedance of the line to which it is to be matehed.
Example: To match a $600-0$ hm line to an an-
tenna fresenting a $\overline{-2}$-ohm low, the anarter-
wave matching section would requite a chatrace
teristic impedance of $\sqrt{i 2 \times 0 \times 00}=\sqrt{43,200}$
$=20 \mathrm{~s}$ ohms.

The sparings between condurtors of various sizes of tubing and wire for different surge impedances are given in graphical form in the ehapter on "Transmission Lines." (With le-inch tubing, the spacing in the example above should he 1.5 inches for an impedance of 2188 ohms.)

The length of the quarter-wave matching section may be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246!}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor
$f=$ Frequener in Mr.
Example: A quarter-wave transformer of $18 \mathrm{G}-11 / \mathrm{C}$ is to be used at 28.7 Mc. From the table in Chapter

Thirteen, $V=0.66$.

$$
\begin{aligned}
\text { Length }=\frac{246 \times 0.66}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The antema must be resonant at the operating frequency. Setting the antemna length by formula is amply aceumate with single-wire antennas, but in other systems, particularly close-spaced arrays, the antemas should be adjusted to resonance before the matehing sertion is eommected.

When the antenns input impedance is not known aredrately, it is advisable to construct the matehing section so that the spacing between conductors ean be changed. The spacing then may le adjusted to give the lowest possible s.w.r. on the transmission line.

Folded Dipoles

A half-wave antemai clement can be made to match various line impedances if it is split into two or more parallel rondurtors with the transmission line attacherd at the renter of only one of them. Virious forms of such "folded dipoles" are shown in ligg. 14-11. ("urrents in all conductors are in phatse in a folded dipole, and sinee the comductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-eonductor dipole. However, the current flowing into the imput terminals of the antematron the line is the current in one conderetor only, and the entire power from the line is delivered at this value of rurrent. This is equivalent to saving that the imput impedanee of the allomathas bern rased hy splitting it up into two or more conductors.

Fin. 1.4.41-The folded dipole, a method for using the antrona element itself to frovide an imperlance transformation.

The ratio by which the input impedance of the antenna is strpered up depends not only on the number of conductors in the folded dipole but also on their relative diameters, sine the dist ribution of current between eondurtors is a function of their diameters. (When one conductor is larger

 ronductor folded dipole, 'The dimensions d_{1}. d_{2} and s are shown on the inset Irawing. (iurves show the ratio of the impedance (resiztise) seen by the transmission lime to the radiation resistane of the resonant antema ysterm.
than the other, as in ligh. 1+41C, the larger one (arries the greater current.) The ratio also depends, in general, on the spacing between the conductors, as shown by the graphs of Figs. 14-42 and 11-43. . In important sperial case is the 2-conductor dipole with conductors of cquad diameler: as a simple antema, not a part of a divective arraty, it hats an input resistance elose enough to 300 ohms to afford a good match to 300-ohm Twin-Lad.

The required ratio of conductor diameters to give a desired impedance ratio using two conductors maty be olstained from Fig, $1+-12$. similar information for a 3 -rondurtor dipole is given in lig. $1+\frac{t}{2} 3$. This graph applies where all threre eombuetors are in the same plane. The two conductors not connerted to the trinsmission line must be equally spaced from the fed eonductor, and must have equal diameters. The fed conductor maty have a different diameter, however. The unequal-conductor method has been found particularly useful in matehing to low-impedance antemas such as directive arrats using elosespaced parasitic clements.

The length of the antemna clement should be such as to be approximately self-resonant at the medianoperating frequency. The length is usually not highly critiecil, berause a folded dipole tends to have the charucteristies of a "thick" antema
and thus has a relatively broad frequeney-response curve.

Fig. 14-43-Impedance transformation ratio, threeconductor folded dipole, '1he dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission liae to the radiation resistance of the resonant antenna system.

'T'" and 'Gamma'" Matching Sections

The method of matehing shown in lig. $14-44 \mathrm{~A}$ is based on the fact that the impedanee between any two points along a resonant antema is resistive, and has a value which depends on the spacing between the two points. It is threrefore possible to choose a pair of points between which the impedance will have the right value to mateh a transmission line. In practice, the line camot be connected dirertly at these points because the distane between them is much greater than the conductor spacing of a practicable transmission line. The " T " arrangement in lig. 14-4. l) overeomes this difficulty by using asecond conductor paralleling the antenna to form amateling section

Fig, 1.f-h - The "j"" match and "yamma" match.
to which the line may be connerted.
The " T " is particularly suited to use with a parallel-conductor line, in which case the two points along the antemat should be equidistant from the center so that elecetrical balance is maintained.

The operation of this system is somewhat complex. Fiach " T " conductor (ℓ in the drawing) forms with the antenna conductor opposite it a short section of transmission line. Leach of these transmission-line sections can be considered to be terminated in the impedance that exists at the point of connection to the antenna. Thus the part of the antenna between the two points carries a transmission-line current in addition to the normal antenna current. The two thansmission-line matching sections are in series, as seen by the main transmission line.

If the antenna by itself is resonant at the operating frequency its impedance will be purely resistive, and in such case the matehing-seretion lines are terminated in a resistive load. Ilowever. since these sections are shorter than a quarter wave length their input impedance - i.e., the impedance seen by the matin transmission line looking into the matehing-section terminats - will be reactive as well as resistive. This prevents a perfeet mateh to the main tramsmission line, sinee its load must be a pure resistame for perfert matehing. The reative component of the input imperlance must be tuned out before a proper match ean be secured.

One way to do this is to detune the antemna just enough, be changing its length, to canse reactance of the opposite kind to be refleeted to the input terminals of the matehing section, thus cancelling the reactane introduced bey the latter. Another method, which is considerably easior to adjust, is to insert a variable raparitor in series with the matching section where it conmeets to the transmission line, as shown in Fig. 1.4-39). The caparitor must be protected from the weather.
The method of adjustment commonly used is to cut the antema for approximate resonance and then make the sparing x some value that is convenient construetionally. The distance ! $/$ is then adjusted, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission tine is as low as posibible. If the sw.r. is not helow 2 to 1 after this adjustment, the antemat length should be changed slightly and the matching-section taps adjusted again. This process mar be continued until the swir. is as close to 1 to 1 as possible.

When the series-aparitor method of reactance eompensation is used (F:̈g, $1+3-39)$ the antenna should be the proper length to be rewonant at the operating frequener. Trial positions of the mateh-ing-section taps are taken, cach time adjusting the eapacitor for minimum s.w.r., until the standing waves on the transmission line are brought down to the lowest possible value.

The unbalanced ("gammat") arrangement in Fig. $14-4+1 \mathrm{~B}$ is similar in principle to the " T ," but is adapted for use with single coan line. The method of adjustment is the same.

The 'Delta' Match

The matching system in Fig. $14-45$ is based on the variation in impedane between two points symmetrically located with respect to the center of the anternat, as in the rase of the "T" mateh, but uses a different matehing socetion. If the two conductors of a tranmission line are fanned out, the triangular section thus formed will art as an impedance-math ching transformer if the proper dimensions are used. The system is not as readily adjustablo as the " Γ " or "gamma" but is more conveniont constructionally when used with a wire antemas. A certain amount of radiation takes place from the "delta" because the two conductors are not sufficiently close together for (:ancellation of the fieds set up be the eurrents fowing in them.

Dimensions a and bin Fig. 1-1-15 depend on the antenna impedance (whether it is a simple half-

Fig. 1.1. $\%$ - The "delta" matching setcion.
Wave antenta or the driven element of a multielement beam), the size of the conductors in the delta, and the Zof the transmission line to be matched. Dethods for calculation are given cartior in this chapter.

- balancing devices

An antemna with open ends, of whieh the halfwave tepe is an example, is inherently a bataned radiator. When opened at the enter and fed with a parableleonductor line this balance is maintained throughout the system, so long as the causes of unbatance disenssed in the transmissionline dapter are a moided.

If the antenna is fed at the center through a roaxial line, as indicated in lig. 1-4-46.A, this balanere is upset because one side of the radiator is rennected to the shiedd white the other is connected to the inner conductor, On the side connected to the shidd, a current can flow down over the outside of the coaxial lime, and the fields thus set up cannot be canceled by the fields from the inmer conductor becanse the fields inside the line cannot escape through tho shielding afforded by the outer conductor. llenee these "antenna" currents flowing on the outside of the line will be resfonsible for radiation.

Linear Baluns

Line radiation can be prevented by a number of devices whose purpose is to detune or decouple the line for "antenna" currents and thus greatly reduce their amplitude. Such devies, generally are known as baluns (a contraction for "balanced to

Fig. 14-46 - Radiator with coaxial feed (A) and methods of preventing unbalance currents from flowing on the outside of the transmission line (B and C), The halfwave phasing section shown at D is used for coupling between an unbalanced and a balanced cirenit when a 4-to-1 impedance ratio is desired or can be aceepted.
unbalanced"). Fig. 14-46B shows one such arraugement, known as a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section. As described earlier in this chapter, the impelance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxial line is effectively insulated from the part of the line below the sleeve. The length is an electrical quarter wave, and may be physically shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effert on the impedance relationships between the antenna and the coaxial line.

Another method that gives an equivalent effect is shown at C. Since the voltages at the antennat torminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and second conductor. Beyond the shorting point, in the direetion of the transmitter, these currents combine to cancel out. The balaneing section "looks like" an open circuit to the antennal. since it is a quarterwave parallel-conductor line shorted at the far end, and thus has no effect on the normal antennat operation. However, this is not essential to the line-balaneing function of the device, and balums of this type are sometimes made shorter than a quartor wave length in order to provide the shant inductive reactance required in certain types of matching systems.

Fig. 14-16i) shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conduetors of the main transmission line and half-wave phasing section. Since the voltages at the balaned end are in series whild the voltages at the unbalaneed end are in parallel, there is a 4 -to- 1 step-down in impedance from the balanced to the unbalaneed side. This arrangement is useful for coupling between a balaned 300 -ohm line and a 75 -ohm consial line, for example.

- RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstracts from the wave. Becaluse of the high sensitivity of modern receivers, sometimes only a short length of wire strung aroutd the room is used for a receiving antenma, but such an antenna cannot be expected to give good perform:unce, although it is adequate for loud signals on the 3,5 - and $7-\mathrm{Mc}$. bands. It will

Fig. 14-47-Antenna ehangeover for receiving and transmitting in two-wire line (1) and comxal line (13). The low-pass filter for 'IVI reduction should be conneeted between switch or relay and the transmitter.
serve in emergencies, but a longer wire outdoors is always better.

The use of a tuned antenna improves the operation of the receiver, because the signal strength is greater than with a wire of random length. Where loeal electrial noise is a problem, as from an eleetrical appliance, a measure of relief can often be obtained by locating the antenna as high above and as far as possible from the noise source and power lines. The lead-in wire, from the center of the antennat, should be at consial line or shielded twin-eonduetor cable (IRG-62 U). If the twin-conductor cable is used, the conductors connect to the antenna binding posts and the shield to the ground binding post of the receiver.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. 14-47. If coaxial line is used, a coaxial relay is recommended, although on the lower-frequeney bands a regular switch or changrover relay will work almost as well. The relay or switch contacts should be rated to handle at least the maximum power of the transmitter.

An additional refinement is the use of an eleetronic transit-receive switch, which permits full break-in operation even when using the transmitting antenna for receiving. For details and circuitry on t.r. switches, see Chapter Light.

Antenna Construction

The use of good materials in the antenna system is important, since the antenat is exposed to wind and weather. To keep electrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielectric loss and surface loakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enamoled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-elad sted wire should be used. It is best to make feeders and matching stubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, sinee harddrawn or copper-clad steel wire is difficult to hatade unless it is under considerable tension at all times. The wires should be all in one pieee; where a joint cannot be avoided, it should be carefully soldered. open-wire TV line is excellent up to several hamderd watts.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic apacers are advisable. Wooden dowels boiled in paraflin may be used with untuned lines, but their use is not reeommonded for tuned lines. The wooden dowels

Fig. 1.1-18 - Details of a simple 40 -foot "A"-frame mast suitable for erection in lorations where space is limited.
can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage, insulation is most important, and Pyrex glass or ceramie insulators with long leakuge paths are recommonded for the antemnt. Insulators shouh be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antomat clear of surrounding buildings, although in some locations the antema will be suffieiontly in the clear when strung from one chimnoy to anothor or from a house top to a tree. Small trees usually are not satis. factory as points of suspension for the anterma because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antomna wire must be strung from one of the smatler bramelos, it is best to tie a pulley firmly to the branch and rua a rope through the pulley to the antenna, with the other end of the rope attached to a combterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope lightens and stretehes with varying climatic ronditions.

Tolephone poles, if they can be purehased and installed reonomically, make excellent supports because they do not ordinarily require gusing in heights up to to feet or so. Mang low-oost tolevision-antomat supports, are now avaitable, and they should not be oworlooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $1+48$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be protered by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should the driven to keep, the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanont berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using 2×3 s or $2 \times$ tri, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at sueh heights.

- SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-49 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 s$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two,

Fig. 14-19 - A simple and eturly mast for heiphts in the vieinity of 10 feet, pivented at the hase for wans errectien. The height can he extemed tu 50 fere or more ly using $2 \times$ 4 s instead of 2×3.
legs are bolted to a length of 2×4 which is set in the ground. I short length of 2×3 is phaced between the two legs about halfway up the bottom section, to maintain the saring.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section bad on the ground. bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section cath turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the jol). As the mast goes up, the slack in the guys ean be taken up so that the whole structure is in some measure continually supported. When the mast is vertieal, bolt B should be slipped in place and both A and B tightened. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antema is pulled up, when the y should be adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory huy-wire material. Ileavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is likely to be high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antema is to be supported, two guy wires in the top set will be suffieiont in most cases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antema. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, white the other two are spared 120 degrees either side. This keaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from wertical before the antema is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the avalable facilitios, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying ean then be fastened temporarily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotennse." la other words, the distane from the base of the pole to the anchor should be measured and squared. 'To this should be added the square of the pole length to the point where the gry is fastened. The square root of the sum will be the kength of the grap.
(iuy wires should the broken up by strain insulators, to avoid the possibility of resonance at the transmitting fregueney. Common prace tiee is to insert an insulator mat the top of each guy, within a few fret of the pole, and then eut each section of wire between the insulators to a length which will not be resonant either on the fundamental or harmonies. An insulator every 25 feet will be satisfactory for frequencios up to 30 Me . The insulators should be of the "agr" type with the insulating material under compression, so that the gay will not part if the insulator breaks.
Twisting guy wires onto "egg" insulators maty be a tedious joh if the guy wires are long and of large gatuge. A simple time- and linger-sitwing

Fig. 14-50 - U'sing a lever for twisting heavy guy wires.
device (piece of heavy iron or steel) can be made by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insuhator, given a single turn by hand, and then held with a pair of pliers at the point shown in Fig, $1450.13 y$ passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.
(iuy wires maty be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice.

HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Partienlar attention should be directed toward the choice of a palley and hatyards for a high mast since repharement, once the mast is in position, may he a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only

Fig. 14-51 - An antenna lead-in panel may be placed over the top sath or under the lower sash of a window, Substituting a smaller heizht ansh in half the window will simplify the weatherproofing problem where the sashoverlaps.
a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood bloeks and bronze wheels and bearings should be used.
For short antennas and temporary installations, heavy clothesline or window-sash cord may be used. IIowever, for more permanent jobs,
$3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should he used. Even this should be replaced about once a year to insure against breakage.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope back down.

- BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. $1+-52$, to remove strain from the lead-in insulators. Holes eut through the walls of the building and fitted with feed-through imsulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Ilate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length sereen, the seheme shown in lig. 14-5213 may be used.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in I'ig. 14-5!, or by using weatherstrip material where necessary.

Coaxial line can be brought through clearance holes without additional insulation.

Fig. 14-52 - A - Amohoring feeders takes the strain from feed-through insulators or window glass, 13 - Going through a full-length serven, a eleat is fastened to the frame of the screen on the inside. Clearance holes are cout in the cleat and also in the screen.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus securing the benefits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of such rotatable antennas is usually limited to the higher frequencies -14 Mc . and above - and to the simpler antennat-element combinations if the structure size is to be kept within practicable bounds. For the 14-, 21-and 28-Me. bands such antennas usually consist of two to four elements and are of the parasitic-array type described carlier in this chapter. At 50 Mc. and higher it becomes possible to use more claborate arrays becaluse of the shorter wavelength and thus obtain still higher gain, Antemas for these bands are deseribed in another chapter.
The problems in rotary-beam construction are those of providing a suitable mechanieal support for the antema clements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.
Aluminum alloy tubes are generally used for the elements. The elements frepuently are constructed of sertions of telescoping tuling making length adjustments for tuning quite easy. Eleat rician's thin-walled conduit also is suitable for rotary-beam elements. Regardless of the tubing used, the ends should be plugged up with corks

Fig. 14-5.3-- Details of telescoping tubing for heam elements.
sealed with glyptal varnish.
The element lengths are made adjustable by sawing a 6 - to 12 -incll slot in the ends of the latyer-dianeter tubing and elamping the smaller tubling inside. Homemade clamps of aluminum can be built, or hose clamps of suitable size can be used. An example of this construction is shown in Fig. $11-53$. If steel elamps are used, they should be cadmium- or zine-plated before installation.

Supports

Metal is commonly used to :upport the elements of the rotary beam. For 28 Ne, a piece of 2 -inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or speeial elamps and brackets can be fashioned to support the elements. Fittings for TV antennas can ofton be used on 21-and 28-Mc. Meams. "Irrigation pipe"" is a good sorree of aluminum tubing up to diameters of 6 inches and lengths of 20 feet. Muffler clamps can be used to hold beam elements to a broom.

Most of the TY antema rotators are satisfactory for turning the smaller beams.

With all-metal construction, delta, "gamma" or "T"'match are the only practical matching methods to use to the line, since anything else requires opening the driven element at the center, and this complicates the support problem for that element.

"Plumber's-Delight" Construction

The lightest beam to build is the so-calted "plumber's delight", an array construeted entirely of metal, with no insulating members between the elements and the supporting structure. Some suggestions for the constructional details are given in ligs. $14-54,14-5.5$ and $14-56$. These show portions of a 4 -element 10 -meter beam, but the same prineiples hold for 15 - and 20 -meter leams.

Boom material can be the irrigation pipe suggested carlier (available from Sears Roebuck). Tuffler clamps and homemade brackets (aluminum or cadmium-plated steel) can be used to hold the parasitic elements to the boom, as shown in Fig. 14-5t. The muffler elamps and all hardware should be cadmium-plated to forestall corrosion; the plating can be done at a plating shop and will not be very expensive if it is all
done at the same time.
Muffler elamps and a steel plate can be used to hold the boom to the supporting mast, as shown in Fig. 14-55. For maximum strength, the mast section should be a length of galvanized iron pipe. The plate thickness should run from $3 / 1$ is inch for a 10 -meter beam to $1 / 2$ inch or more for a 20 -meter beam. Sted plates of this thickness are best cut in a welding shop, where it can be done quickly for a nominal fee. After the plate has been cut and the muffler-clamp holes drilled, the plate, elamps and hardware should be plated.

The photograph in Fig. 14-56 shows one way a T-matehed driven elenent can be assembled with its half-wave balun. Three coaxial chassis receptacles are fastened to a ${ }^{1}$-ineh thick slient of phenolie that is supported below the driven

Fig. 14-54 - Mnfler elamps can be used to hold heam clements to the boom. The angle can lie aluminum angle or angle iron: if iron is used it shomld loc calminm phated. This example shows a ${ }^{3}$ - - inch-diameter element herld to a e-inch diameter beom.
element by three abuminum straps. The two T rods are also supported by the phomolie sheet at the inner ends and by suitable straps at the outer ends where they make up to the driven element.

Rotation

It is convenient but not essential to use a motor to rotate the beam. If a rope-and-pulley arrangement can be brought into the operating room or if the pole can be mounted near a window in the operating room, hathd rotation will work.

If the use of a rope and pulleys is impracticable, motor drive is about the only altemative. There are several complete motor driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. Generally speaking, light-weight units are better because they reduce the tower load.

A Compact 14-Mc. 3-Element Beam

A 20 -maner heatm bow latger thath the ustat 10-meter be:m rath be made by using renterfoaded elements amblelose spacines. such ath alltemat will show good directivity and can be rotated with a TV-athemat rotator.

Constructional details of the elements are

 typial clomone. TV -antrona "t " Hampe hold the supmort armo to the berom. Birnbarlt 11 if insulators support the elements. B - Tiop plan

 coile and adjustment of the edrments are disernsed in the levt. End seretion lengithe of 11 imelhe for the rellowhr, 10 inches for the driwen dement, and 10 inderes for the dieretor will be alces to aptimum.
ramps cat be used for this purpose. The hoom is a 12 -foot length of $11 / 2$-ineh od. fist aluminum tubing, with $0,12 \overline{\text { on}}$-inch wall.

The line is erouphed and matehed at the eonter of the driven element through adjustment of the link wound on the out side of the Lacite tubing. Tor cheek the adjustment of the elements. first resonato the driven element to the dexired freduenes in the $11-$ Mr'. band with a griddip oscillators. 'Then resomate the director to approximately 11.8 Me., and the reflector to apporoximately lis.6 Me. This is moteritical and only server as a morkh point for the final thang, which is done by use of a eomventional fieddstrength indicator. ('heck the transmitter boading amd readjust if neressarys. Dijust the direetor for maximum forward gain, and thern adjust the reflector for maximam forward gain. At this point, charek the driven element for resonance and readjust if necessary. Turn the reflector toward the field-strength indieator and adjust for batck cut-off. This must be dome in smatl stepme. Jo not cexpere the attenutation ofif the sides of a short beam to be as high as that ohtainad wiblull-lemeth clements. The s.w.r. of the line feeding the antennar dall lo eherden! with : bridge atod after the cloments have been tunced. at final adjustment of the s.w.r. "ath he made bev adjusiing the compling at the anternat loading coil turns and spating. As in any beam, the s.w.r. will depend upon this adjustment and not on any that cath be made at the transmitter. Transmitter eompling is the

shewn in lïgs. $14-5 \overline{5}$ and $14-58$. The loadimer coils are spare-wound los interwinding planh, lince (eometimes komwo as chatle line) with the No. 12 wire coils, The roil emble are serelared by drilling small holes through the potystereme hat, as shown itl lifir. 11-6it. The eoils should tre spraved of painted with kerylon hefore installing the proterpore La(ite tubes.

The beam will rempire $4-$ fort lengths of the labings indicated in liog. 11--7. 1. For grod telescoping, element wall thicknos of 0.0ive inch is recommathed. "The ends of the tubing sections sheuld be slotted to permit adjustment, and secured with clampe, so that the joints will not work loose in the wind. Perforated ground

Fip. 14-i8 - Intailed sheth of the loading and conpling poils at the center of the driven mement, and its mounting. Sinilar loading roile (ac. test) are used at the ernters of the direstor and reflecter.

A "One-Element Rotary" for 21 Mc.

The directional properties of a simple half-watve-length anteluat beome more apparent at higher frequencies, and it is possible to take advantage of this faet to build : "one-element rotary" for 21 or 28 Me. To take advantage of the directional properties of the antema, it is only neressary to rotate it 180 degrees. It ean be rotated by hand, as will tee described, or by a small TV antema rotator.

The antema is made from two pieces of $1 / 2$-inch diameter electrical thin-wall steel tubing or conduit. This mbing is readily available at any electric supply shop. It comes in 10 -foot lengths and, white 20 feet is short for a half-wave antenna at 21 Me., with loading the length is just about right for 5 tohm line ferd. (A half-wave-length antenna would normatlly be fod with 72 -ohm cable, since the antemat offers a good match for this impedance value. In this antemat sustem, the shorter elements, plus the small coil, offer : good match for 52 -ohm (able, If aluminum tub)ing is availahle, it can he used in place of the conduit, and the antemat will he lighter in weight. As shown in Figs, I 1 -5! and It-60, the two piopes of tubing are supported by four stand-ofi insulat tors on a four foot long 2 be 2 . The conx fitting for the feed line is momed on the end of one ot the lengths of tubing. I mounting point is made by thatening the end of the tubing for a length of thout $1 \frac{1}{2}$ inches. The tubing eat be flattened hes squeezing it in a vise or be lating the end of the tubiner on at hard surface and then hammering it flat. This will provide enough space to accommodate the coax fitting (. Imphenol type 8:3-1 IR). Is-inch hole will he needed in the flat section to clear the shell of the coax litting.

The coil, L_{1}, is made from $1 / 8$-inch diameter
copper tuling. It consists of 5 tums spaced 1/4 inch apart and is 1 inch inside diameter. The coil is connected in series with the inner eomdurtor pin on the cobs titting and the other hatf of the antenna. To serure a good comne tion at the coax fitting, the eoil lead shoud be womad around the inner-conductor pin and soldered. The other end of the coil can he connected with a serew and nut.

Mounting

The antenna can be mounted on a 1 -inch tloor flange and held in place by two 2-inch bolts, as shown in Fig. 14 -ibl. The floor thange can be connected to a 12 -foot length of 1 -inch pipe which will serve as a mast. Television antemat wall mounts cian be used to support the mast.

In the instablation shown in Fig. 14-61, 19-inch watl mounts wre used in orter to clear the maves of the house. A 2 -ineth long piece of $11 / 4$-inch pipe was used as as sleeve, and it was clamped in the U bolt on the bottom wall momet. A $\frac{1}{4}$-inch hote was drilled through the mast pipe approsimately (6 inches from the bottom. Then a $11 / 2$-inch bolt was slipped through the hole and the mast was then mounted in the sleeve on the bottom wall mount. The bolt acted as ab beating point against the top of the slenve. Another $1 / 4$-inch hole wats drilled throngh the mast about three feet alowe the bottom wabll mount. A piece of $1 / 4$-inch metal rod, six inches long. wats formed through the hole so that the rod projected on carbla side of the mast. To turn the mast, a piece of rope was attached to earh end of the rod and the rope was broughinto the shark. so that the antenna could be rotated by the "arm-strong" mothod. Oloviously, one could spend more money for a "de huxe" version and use a TV antenna rotator and mast.

Fig, 14-59-(A) liagram of the $\boldsymbol{2} /-\mathrm{Ne}$ antemmand momming. The I boles that hold the 2 by - to the floor flange are standard 2-inch 'l' mast type Iolts. (B) A more detailed draw. ing of the coil and coas-litting mountings, The $1 / 4$-ineh spacing fretween turns is not critical, and they can vary as much as 1/16 inch without any apparent harm to the mateh.

Fif. 14-60 - A clowe-115 of the coil and ruax fittink monntings. Be surn that tho coil docesit shent ont to her outer condlactur when sablibering the croil and to the inmer comblactor pint tan the cons fitting.

I: $i-8$ U 52 -ohm coax cabla is serommendad to
 watts, the smaller and less expensive JRG-98 U (ath be used. However, whot you thy ha-is I". tre sure that the line is made loy at reputabla manufactures (such as Amphernol or Bolden) some of the line made for TV installations is of inferier quality and is likely to have higher losses. The feedline was fed up, through the mas! pipe and therogit is $3 / 4$-inch hole in the 2 be 2 . An Amphenol 8:3-15l' fitting on the cend of the rowx line conmets to the femate fitting on the antemat.

Coupling to the Transmitter

It mat be found that, when the feed line is eotuled to the transmitter, the amenna won't take power. Since the lime is terminated at the

antemat in its charapteristic impedance of 52 ohms, the output of the final r.t. amplifier must the adjusted to comple into at $52-$ ohm load. Where the output coupling deviere is a variable link, all that maty be needed is the correct setting of the link. If the link is fixed, one end of the link ean be grounded to the tramsmiter ehassis and the other and of the link romnerted in series with it smatl varialble cabacito to the inmer romdurtor of the feed line. The outer comductor of the erow is groumded to the tramsmitter chassis. The eat pacitor is tuned to the point where the final amplihior is proporly loaded. For transmitters haviog at pi-network output cirenit, it is merely a matter of adjusting the network to the point where the amplifier is properly loated.
(From QST, Janutry, 1!55.)

Fig. lf-(i) - (Hur-all view of the anterna and mombting. Tha' feed line comes out of the bothom of the mast and thromsh the wall into the shack.

CHAPTER 15

Wave Propagation

Murh of the appeal of amateur commonicaltion lies in the faet that the results are not always prodictable. Tramsmission eonditions on the same frequency vary with the yoar, season and with the time of day. Although these variations usually follow certain establishod patterns, many prouliar efferts ean be observed from time to time. Livery radio amateur should have some understanding of the known facts abont radio wave propagation so that he will stand some chanere of interprating the unusual conditions
when they oerur. The observant amatere is in an exedlent pasition to make worthwhile contributions to the seinome, provided he hats suffielent batkground to understand his results. He may diseover now farets about propagation at the veryhigh frequeneries or in the miceowave region, as amateurs have in the past. In firet, it is through :amateur fiforts that most of the extended-range possibilitios of varions radio frequencies hate been disenvered, both by aredent and by long and careful investigation.

Characteristics of Radio Waves

Radio waves, like other forms of electromagnetic radiation such as light, trivel at ab speed of $3(k),\left(\begin{array}{ll}(0), 0(0) \\ \text { meters per second in free spatere, }\end{array}\right.$ and can be reflected, refracted, and diffracted.

An chertromagnetic wave is composed of moving fields of eleetrice and magnotic forere. The lines of fore in the electric and magnetio fields are at right angles, and are mutually propendicular to

fig. $1.5-1$ - Representation of electroztatio and eleatromagneric lines of foree in a radio wase. Arows indirate intantanemo dirertion = of the field-for at wave traved. ing toward the realler. Revorsing the direction of one set of lines would reverse the direction of travel.
the direction of travel. I simple representation of a wave is shown in Fig. 15-1. In this drawing the deredide lines are prependicular to the carth and the maguetie lines are horizontal. They conld, hownerr, have any position with respert to carth wo long as they remain perpeoblientar to cach other.

The plane containing the contimoms lines of dendrid and magnetie forer shown be the grid- or mesh-like drawing in Fig. 1.5-1 is called the wave front.

The medium in whide ele fratom has a matked induence on the aperd with
which they move. When the medium is empty space the sperd, as stated above, is $300,000,0000$ meters per serond. It is almost, but not quite. that great in air, and is much less in some other substaneres. In dielartries, for example, the speed is inversely proportional th the diebertrie eonstant of the material.

When a wave mots a good conductor it cannot penetrato it to any extont (although it will trawel through a diedectric with ease beratuse the clectrid limes of foree are practionlly shortrimuited.

Polarization

The polarization of a radio wave is taken as the direetion of the lines of force in the electric field. If the ele etric lines are perpendicular to the earth, the wave is said to he vertically polarized; if paralled with the carth, the wave is horizontally polarized. The longer waves, when traveling along the ground. usually maintain their polarization in the same plame as was generated at the anterma. The polarization of shorter waves may be altered daring travel, however, and sometimes will vary fuite rapidly.

Spreading

The fiold intensity of a wave is inversoly proportional to the distane from the sourere. Thus if one reotwing point is twier as far from the trammittor as another, the fied strength at the more distant point will be just half the fiold strength at the nearer point. "This result: from the face that the ebregy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is based on the assumption that there is mothing in the medium to absort energy from the wave as it travels. which is true in free spate hat not in practiral eommanieation along the ground and through the atmosphere.

Types of Propagation

Aceording to the :ltitudes af the pathe along which they are propargated, radio waves may
be wassified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions io that region, as well as upon transmitting wave length, the bomspherie stave maty or maty not be retumed to earth be the effeets of refraction and reflection.

The tropospheric wave is that part of the total radiation that umdergoes refraction and meflertion in regions of abmupt change of diedectric ronstant in the troposphere, such is the brundaries between air masses of differing temperature and moisture rontent

The ground wave is that part of the total radia-

Fig. 15.2 - Showing how both direct and reflected waves may be reveived simultaneously.
tion that is directly afferted by the presence of the earth and its surfine foatures. The ground wave has two components Gne is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, is shown in Fig. 1i-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Wxecpt for distanmes of a few miles, nearly all amateur communiation on frequencies below 30 Ma. is by moans of the sky wave. ljon leaving the transmitting antenat, this wave tavels upwat from the earthes surfare at sub an angle that it woud continue out into spare were its path not bent sufficiontly to bring it back to carth. The modium that comses such berding is the ionosphere, a region in the upper at mosphere, above a height of atoon bil miles, where free ions and (lectrons exist in sufficient quantity to have an a!prectiable effer on wave trated.
The ionization in the upper atmosphere is thelieved to be ratused be ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization oceurring at different heights. lamh laver consists of a contral region of pelatively dense ionization that tapers off in intensity: both above and below.

Refraction

The greater the intensity of ionization in a laver, the more the path of the wave is bent. The bending, or refration (often abse cabled reflection), also depends on the wave length: the longer the wave the more the path is bent for at given degrene of ionization. Thus low-frequeners Waves are more rodily bent than those of high frequenes. Fior this reason the lower frequencies - :3.̄ and - Mr. are more "reliable" that the higher freduemeics - It to $2 s$ Me: there are times when the ionization is of such low value that waves of the lattor frequency range are not bent enough to return to earth.

Absorption

In traveling through the ionosphere the wave gives up some of its chorgy ber setting the ionized particles into motion. When the moving ionizad partiches happent to collide, this energy is lost. The absorption from this cause is greater at lower frequencios. It atso increases with the intensity of
ionization, and with the density of the atmosphere in the ionized region.

Virtual Height

Athough an ionowheric laver is a region of considerable depth it is conveniont to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual bend-

Fig, 15-3-Bending in the ionosphere, and the echo or reflection method of detarmining virtual height.
ing that actually takes phace, as illustrated in ligg. 15-3. The wave travoling upward is bent back over a path having an appreciable radius of turning, and a mestarable interval of time is consumed in the turning process. The virtual beight is the height of a triangle having equal sides of at total longh proportional to the time taken for the wave to travel from l to R.

Normal Structure of the Ionosphere

The lowest usoful ionized layer is ralled the E layer. The average height of the region of maximun ionization is about at miles The air at this height is sufficionty dense so that the ions and electrons set free by the sun's radiation do not travel fat before they meet and recombine to form neutral particles, so the laver com maintain its normal intensity of ionization only in the presence of comtaning ratiation from the sum. Hence the ionization is greatest around locat noon and pratetically disappears aftor sundown.

In the daytime there is a still lower ionized

WAVE PROPAGATION

areat the D region. D-region iomization is proportionall to the height of the sum and is greatest at noon. The lower amateur-band frequencies (1.8 and $3,5 \mathrm{Me}$, abe abmost completoly abortoed by this latror, and only the high-ingle radiat ion is reflereded by the E layer. (Lawer-angle radiation travels farther through the H region and is absomed.)

The second principel laver is the F layer which has a height of about $17 \overline{5}$ miles at night. It this altitude the air is so thin that recombination of ions and electrons takes place very slowly. The jonization dererases aftore sumdown, reaching it minimum just bofore sumrise. In the ditutime the F lituor splits into two pithe, the F_{1} :ind $F_{\text {: }}$ layers, with average virtual lacights of, respertively, 140 miles and 200 miles. These lavers arc most highly ionized at about local noon, and morge agran at sumset into the F herer.

SKY.WAVE PROPAGATION

Wave Angle

The smallor the angle at which a wave leaves the rarth, the lese the beroding required in the ionosphere to bring it harek. Nso, the smaller the angle the greater the distatere lxetwern the point whore the wave leavers the eithth and that at which it returns. Whis is shown in loig. 15-1. The vertioul anglo that the wate makes with at tangent lo the rorth is rilled the wave angle or angle of radiation.

Skip Distance

More bending is reguired to return the wave to eath when the wave angle is high, and at times the bending will mot be sufticient matess the wave angle is smaller than some critical value. This is ilhustrated in Fige. 10-4, where 1 and smatler angles give usoful signals while waves sent at higher angles peneftate the layer and are not returnod. The distemer betwern T 'and R_{1} is. therefore, the shortest posible distaneer, at that particular frequenery, over which eommunication bex innspherie reftation can be areommbished.

The area botweon the end of the usetul ground wave athe the beginning of bonspheriew:ave reception is called the skip zone, and the distane er from the tramsmitter to the nearest point where the ske wave retums to arth is called the skip distance. The extent of the skip) zone dejerods upen the frequeney and the state of the jonosphere and also upen the height of the laver in which the refration takes plate. The higher layers give longer skip distances for the same wave agyle. Wave angles at the transmitting and receiving pints are usually, although not alwase apmoximately the same for ally given wave pith.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the iono-
sphere will be reflected back down to the transmitting point. If the frequeney is then gradually increased, eventually a frequeney will be reached where this vertical reflertion just fails to ocrur. This is the critical frequency for the layer under consideration. When the operating frequence is below the eritical value there is no skip zone.

The eritionl frequency is a usoful index to the highost frequency that can bo used to transmit over a sperified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in lig. $15-1$ is, for example, at a frequeney of 14 Mre, and if a higher freguency would skip, over the recoiving point R_{1}, then $1 /$ Me. is the m.u.f. for the distance from T ' to R_{1}.

The greatest posible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle, Cuder average conditions this distane is ahout fofo kilometers or 2500 miles for the F_{2} layer, and 2000 km , or I2JO miles for the E layer. The distances vary with the layer height. Frequencies above these limiting m.n.f.'s will hoo be returned to earth at any distance The 40 (O)km. m. m.f. for the f_{2} laver is appoximately 3 times the aritical frequener for that layer, and for the E layer the 2OC(O)-km. motu.f. is about 5 times the eritical frequenc:

Absorption in the ionosphere is least at the maximum usathe frequenery, and increases very repidly as the freguenery is lowered brelow the m.u.f. ('onsocquontly, in'st results with low power alw:ys are secured when the frequence is as close to the m.lu.f. ats posibible.

It is readily possible for the ionospherie wave to pass through the E laver and be refine ted back to carth from the F, \dot{F}_{1} or F_{2} lavers. This is beranse the eritioal frequencies are higher in the latter layers, so that a signal tor high in frequenery to be returned by the E' layer can still come ban from one of the others, dopending upen the if 11. of day and the existing conditions

Multihop Transmission

()n returning to the earth the wave rath bo rolleced upwated and travel agan to the ionoshere. There it may oneo more be refracted, and

Fig. 1.3-4- Refraction of sky waves, showing the critical wave angle and the skif zonte. Waves leaving the transmitter at angles above the critical (greater than i) are not bent emongh to be returnel to earth. li= the angle is devereacel, the wave return io earth at increasingly groater distances.
again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances becanse of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceding section. However, ground losses athsorl, some of the energy from the wave on each reflertion (the :mount of the loss varying with the tope of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hener the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the rereiving point, in which case the difference in path lengths will cause a phase difference to exist between the wave components at the recoiving antenma. The total field strength will be the sum of the components and may be larger or smatler than one component alone, since the phases may be such as either to aid or oppose. Since the pathe change from time to time, this causes a variation in signal strength called fading. Fading can also result from the rombination of single-hop and multihop waves, or the combination of a gromd wave with an ionospheric or tropospheric wave.

Fading may le either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voice-modulated transmission, involving side bands differing slightly from the carrier in frequency, the carrier and various sido-band components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, causes severe distortion of the signal.

Back Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phemomenon, called back scatter, is caused by reflections from distances beyond the skip, zone. Such reflertions can oreur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the receiver. Such scatter signals are weaker than those normally propagated, and also have a rapid fade or "Hutter" that makes them easily recognizable.

A certain amount of scattering of the wave also takes place in the ionosphere because the ionized region is not completely uniform. Scattering in the normal propagation direction is called forward scatter, and is responsible for extending
the range of transmission beyond the distance of a regular hop, and for making communication possible on frefuencies greater than the actual m.ı.f.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher eritical frequencies in the E layer in summer, averaging about 4 Mc. as against a winter average of 3 Ne. The F layer eritical frequency is of the order of 4 to 5 Mc . in the evening. The F_{1} layer, which has a critical frequency near 5 Mc . in summor, usually disappears entirely in winter. The daytime maximum critical frequencies for the F_{2} are highest in winter (10 to 12 Mc .) and lowest in summer (around 7 Mc.). The virtual height of the F_{2} layer, which is about 185 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphere, and are subject to considerable variation in other parts of the world.

Very marked changes in ionization also occur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot activity and critical frequencies on a given day, there is a definite correlation between average sunspot activity and critical frequencies. The critical frequencies are highest during sunspot maxima and lowest during sunspot minima. During the period of minimum sunspot activity the lower freauencies - 7 and 3.5 Mc . - frequently are the only usable bands at night. At such times the 28-Mc. band is seldom useful for long-distance work, while the $14-\mathrm{Mc}$. band performs well in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain types of sunspot activity cause considerable disturb:nces in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in absorption, so that radio conditions herome poor. The critical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 2 sh days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inactive in the meantime, Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization occasionally appear at heights approximately the same as that of the E layer, for rea-
sons not yct known. This sporadic- E ionization is most prevalent in the equatorial regions, where it is sulstantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fair percentage of the time the vear 'round. It arcounts for a good deal of the night-time short distance work on the lower frequencies (3,5 and 7 Mc.) and, when more intense, for similar work on 1t to 28 Mc . Fxceptionally intense sporadie- E ionization is responsible for work over distanes exceeding 400 or 500 miles on the $50-\mathrm{Me}$, band.
There are indications of a relationship between sporadic- E ionization and average sunspot aetivity, but it does not appear to be directly related to daylight and darkness since it may orcur at any time of the day. However, there is an apparent tembency for the ionization to paak at mid-morning and in the carly evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than nomal ground-wave distances on ${ }^{2} s$ Nt and higher frequondies. The effect catn be olserved on 2s Me., but it is generatly more marked on an and lit Me. The subject is treated in detail later.

PREDICTION CHARTS

The Central Radio fropagation Laboratory of National Bureau of Standards offers prediction chates three months in advance, in means of which it is possible to predict with considerable areuracy the maximum usable frequence that will hold over any path on the earth during a monthly period. The chates can be obtained from the superintendent of Doruments, C. S. (iovernment Printing Offier, Washington 2a, D. C. for 10 cents a eopy or $\$ 1.00$ per vear. They are called "CRI'L-I) IBasic Radio lropagation Predietions."

PROPAGATION IN THE 3.5 TO 30-MC. BANDS

Tho 1.x-Me., or " 160 -meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to several thousand malles are not impossible. Only small sections of the band are eurrently available to amatrars, becauso of the presence of the loran service in that part of the spectrum. The pulsetype intorference sometimes cansed by loran can be readily climinated by using an audio limiter in the receiver.

The 3.5-Me., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distanes up to several thousand miles are not unusual, and transoceanic contarts are regularly made during the winter months. During the summer, the statie level is high in some pats of the world.

The $\mathbf{T - M c}$, or ".40-meter," band has many of the same characteristics as 3.5, except that the distances that ean be covered during the day and night hours are inereased. During daylight, distances up to a thousand miles can be eovered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropieal zones.

The 11-Me., or "20-meter," band is probably the best one for long-distance work. During the high portion of the sunspot cyele it is open to some part of the word during pratically all of the 24 hours, while during a sunspot minimum it is generally usoful only during daylight hours and the dawn and chask periods. There is practically always a skip zone on this band.

The 21-Mc., or " 15 -meter," band shows highly variable characteristies depending on the sumspot eprele. During sumspot maximat it is useful for long-distance work during a large part of the 2.4 hours, but in years of low sunspot aetivity it is almost wholly a daytime band, and sometimes unusable even in davtime. However, it is often possible to maintain eommunication over distances up to 1500 miles or more by sporadie- E ionization which may oceur either day or night at any time in the sumspot eyele.

The $27-\mathrm{Ml}$. ("Il-meter") and ' 28 -Me. (" 10 meter") bands are generally considered to be IXX bands during the daytight hours and good for loeal work during the hours of darkness. for about hali the sunspot evele. At the very peak of the sumspot eycle, they masy be "opon" into the late evening hours for 10 d rommomication. At the sunspot minimum these bands are usually "dead" fot long-distance communication, by means of the F_{2} lityer, in the northern latitudes. Nevertheless, sporadic-E propagation is likely to oceur at any time, just as in the case of the 21-Me. band.

Propagation Above 50 Mc.

The importance to the amaterer of having some knowledge of wate propatgation wats stressed at the beginning of this chapter. An understanding of the mans by whieh his signals reach their destination is an even greater aid to the v.h.f.
worker. I:arh of his bands shows different characteristies, and knowledge of their perenliarities is as yet far from complete. The observant user of the amateur v.h.f. assigmments has a good opportunity to contribute to that knowhedge, and
his enjorment of his work will be greatly rot haned if he knows when to expert umusual propagation conditions.

CHARACTERISTICS OF THE V.H.F. BANDS

An outstanding fature of our bands from $\begin{gathered}0\end{gathered}$ Me. up is their ability to provide consistent and interference-free communicetion within : limited range, All lower frequencies are subjedt to varving conditions that impair their effertiveness for work over distaners of 100 miles or luss at least part of the time and the heave ocenpaney they support results in severe interfereme problems in areas of dense population. The v.h.f. bands, bering murh wider, ran handle many times the amateur population without roweding. and their charareteristics for local work are more stable. It is thens to the advantage of amateour ratio as at whole to make use of ato Me, and higher hands for short-range rommunisation wherever possible.

In addition to reliable laeal eoverage, the v.h.f. bands also exhibit sevoral forms of longdistance proparation at times. and use of 50 and 1Ht Me. has bern taken up in reerent vars by many isolated amaterurs who must depend on these propagation pereuliarities for all or most of their contacts. It is particularly important to these operators that they understand rommon propagation phenomena. The material to follow supplements information prosented carlier in this chapter, but dals with wave proparation only as it afferets the orropaints of the world ahove B0 Mr. First let as ronsider the bands individually.

50 to 5 d. Mc.: This band is borderline territory betwen the DX frequencios and those nomally employed for local work. Thus just about every form of wave propagation found throughout the radio spectrum appears, of oceasion, in the o()Me. region. This has contributed greatly to the popularity of the a0- Mc: hand.

Shring the peak years of a sumspor rexde it is oreasionally possible to work io-Mc. D. world-wide proportions. In reflection of signal: from the F_{2} layer Sporadie- E : kip provides contacts over distaneres from 400 to 2.500 miles or so during the early summer months, regardless of the solar eyele. Refleetion from the atrora regions allows 100)-10 1000-mile work haring pronouned ionospherie disturbances. The ever-rhanging weather pattern ofters extension of the normal (ooverage to as much as 300 to 50 miles. This develops most oftern daring the wamer monthes, but maty owedr at ally seasom. In the athemere of any favorable propagation. the average well"quipped oto-Mre, station should be able to work regularly over a radius of $\overline{7}$ to 100 miles or more, deponding on loral tormain.

 common, but signals are generally weaker than on 50 Me. Tropospheride affocts are more pro-
nounced than on :0 Mre, and distances covered during favorahle weather comditions are greater thath on lower bands. Dir-mass boundary bending hat beren resomsible for communisation on 144 Mr. over distaneres in exeess of 2 mot miles, and 500 -mile work is fairly common in the warmer months. The reliable range under normal conditions is slightly less than on 50 Me., with comparable equipriont.
220.Mc. and Higher: Ionospheric propatation is unlikely at 220 Ma. and up. but tropospherikbending is more prevalent than on lower hands. Amaterur experiener on 220 and 420 Mr. is showing that they can he as usful as Itt Ma., when comparable equipment is used. Ither minimum conditions the range may be slightly shorter, hat when signals are good on 1/t Me., they may be better on 220 or 420 . Even above 1000 .lic. there is evidener of tropospheric IN.

- PROPAGATION PHENOMENA

The various known means by which v.h.f. signals may be propagated over umbsual distances aro disensed bolow.

Fg-Latyer Refletion: Most contints made on 28 Mr. and lower frequencies are the result of refleetion of the wave by the F_{2} haver. the ionization density of which varius with solar artivity. the highest frequencies being redered at the peak of the 11-vear solar cerle. The maximum usable frequency (m.u.f.) for f_{2} refloction also follows other well-definod ereles, daily, monthy, and seasonal. all related to ronditions on the sun and its position with respert to the earth.

At the low point of the I1-vear evele, surh as in the early 'onos, the mu.t. may reath 28 Me. only during at short period wath spring and fall. whereas it may go to tio Me. or higher at the peak of the everle. The fall of 1904 saw the first atuthentie instaneres of long-distamer work on 50 Mc. by Fa-layer rellection, and an late as 1950 contact: were mate in the more favorable ateas of the world ley this medium. The rising entrve of the current solar evelo again made f_{2} WN on 50 Me. pessible in the low latitules in the winter of 1925-6. ISN was worked over much of the earth in 1906i-7 and maty be expered through 1958. lows of the sol-Mc. hand to television in Burope and Australia will limit the seope of 50-Na. I) X in verrs to come.

The f_{2} m.an.i. is reatily dotermined by olservation, and it maty le estimated quite acentratoly for any path al any time. It is predietable for months in advance, anabling the v.h.f. worker to arrange test sohodules with distant stations at propitious times. As there are mumpors eommereial signals. both harmonios and fundamental transmissions, on the air in the range betwern 28 and EO Mr... it is possible to determine the appoximate m.n.f. hy atrefol listorning in this range. Daily ohsorvations will show if the min.f. is rising or fitling and mere the prak for a given mombla is determined it ean be assumed that another will exerur atrout 25 days later, this ayele coinciding with the turning of

Fig. $15-5$ - ' 'lue prineipal means by wheh v.h.f. sipnals may be returned to earth, showing the appoximate dis-
 the beak of the ll-gear sumpot corlo. Su'h commonication may be worlowide in sophe, Sporadie ionization
 late berember. Imt mat owour at any time, recardles of the sumpot ryde. Refraction of v.lof, waves also takes pato at airmass hombarica in the lower atmosphere, making poseible communication over distances of several lhmalred miles on all vilif. lamds. Vormally it exhibite no ship \%one.
the sun on its axis. The working range, via F_{2} skip, is roughly eomparal)le to that on 28 Me., though the mimimum distane is somewhat longer, Two-way work on 50 Xer, be refleetion from the f bayer has bern aromplished over distaneres from 2200 to 12,000 miles. The maximum frequeney for F_{2} reflection is believed to be about $\overline{7} 0 \mathrm{Ma}$.

Sporudic-E Skip: Patehy concentrations of ionization in the E-latyer region are often responsible for reflection of signals on 28 and 50 Me. This is the popular "short skip" that provides fine eontarts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during morning and early evening hours, but it may ocrur at any time or season. Multiple-hop effects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than 2:00 miles.

The upper limit of frequency for sporadic- E skip is not positively known, hut scattered instances of $14.4-$ Me. propagation over distances in excess of 1000 miles indieate that E-hayer reflection, possibly aided by tropospherie efferts, may be responsible.

A urora Effect: Low-frequency commumieation is oceasionally wiped out by ahsorption in the ionosphere, when ionospherie storms, assoriated with variations in the carth's mannetic field, orcur. During such disturbances, however, v.h.f. signals may le reflected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnetie storms may le accompanied by an aurora-horealis display, if the disturbance oreurs at night and visibility is good. Aiming a directional array at
the aturoral curtain will bring in signals strongest, regardless of the true direction to the transmitting station.

Aurora-reflected signals are eharacterized by a rapid flutter, which lends a "dribbling" sound to 28 -Me. carriors and may render modulation on 50 - and 144 -Me, signals eompletely unreadable. The only satisfactory means of communieation then becomes straight e.w. The effect may be notiecable on signals from any distance other than purely local, and stations up to about 1000 miles in any direction may be worked at the peak of the disturbance. Unlike the two methods of propagation previously deseribed, aurora effect exhibits no skip zone. It is observed frequontly on 50 and lat Mc. in northeastern U.S. A. usually in the carly evening hours or after midnight. The highest frequency for auroral reflentiun ia not yot known, but pronounced disturbances have permitted work by this medium in the $220-\mathrm{Mc}$, hand.

Tropospheric Bending: The most common form of v.h.f. 1)X is the extension of the normal operating range assoriated with easily observed weather phenomena. It is the result of the change in refractive index of the atmosphere at the boundary betwern air masses of differing temperature and humidity charactoristies. Such airmass boundarios usually lie along the western or southern edges of a stable slow-moving area of high barometric pressure (fair calm weather) in the period prior to the arrival of a storm.

A typieal upper-air sounding showing temperature and water-vapor gradients favorable to v.h.f. I)N is shown in Fig. 15-6. An increase in temperature and a sharp drop in water-vapor
gradient are seen at about $f(x) 0$ fred, in romparison to the ['S. Standard Atmosphere eurves at the left.
Such a favomable eondition develops most often in the late summer or early fatl, along the junetion botworl air masses that may have come tongether from such widely-sparated points as the Gulf of Mexico and Sorthern Canada. Under stable weather conditions the two air masses may retain their original charactor for several

Wave range, and there is good cuidene to indieate that our assignments in the u.h.f. and s.h.f. portions of the frequency suectrum may someday support communication over distanoes far in execss of the optical range.

Scatter: Forward scattor, looth ionospherice and troposphe ie, may be used for marginal communication in the v.h.f. bands. Both provide very woak but consistent signals over distances that were onere thought impossible on frequencies

Fig. 15.6 - Upperair conditions that produce extended-range commonication on the v.h.f. hamds. It the left is shown the I. .. Standard Atmosphere temperature corse. The hamidity curve (olotted is that which would result if the relatise homidits were $\overline{0} 0$ per rent from the pround lesel to 12.000 feet elovation. Where is only alight refraction onder this standard condition. At the right is shown a somoding that is typical of marhed refraction of v.h.f. waves. l"igures in parentheses are the "mixing ratio" - qrams of water vapor per kilogram of dry air. Xote the sharp break in both eurses at about 4000 feet. (From Collier, "L pper- lir Conditions for 2 -Meter I) X," OST, Soptember, 1955.)
days at a time, usually moving slowly eastward arross the eomatry. When the path between two v.h.f. stations separated be fifty to several humdred miles lies along such a boundary, signal levels rum far ahove the average value.

Many factors other than air-mass movement of a continental character provide increased v.h.f. operating range. The convertion along coastal artas in wam weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more stowly, is another, producing a rise in signal strength in the period around sumdown. The warly-moming hours, when the sum heats the air aloft, before the temperature of the earth's surface begins to rive. may be the best of the day for extended v.h.f. range, particularly in clear, calm weather, when the harometer is high and the humidity low.

The v.h.f. anthusiast suon learns to correlate various weather manifestations with radiopropagation phenomenal. By watehing temperatture, barometric pressure, changing cloud formations, wind direction, visibility, and other casilyoloserved weather signs, he can tell with a reasonable degree of aceuracy what is in prospect on the v.h.f. hands.

The responsiveness of radio waves to varying weather conditions increases with frequener. The 50 Me. band is more semsitive to weather variations than is the 28-Me. band, and the $1+1$ - Mc. band may show strong signals from far beyond visual distanees when lower frequenaies are relatively inative. It is probable that this tendeney continues on up through the micro-
higher than about 30 Mc .
Tropospherie scatter is prevalent all through the v.h.f. and microwave regions, and is usable over distances up to about $f 00$ miles. Ionospheric scatter, abgmented he meteor bursts, brings in signals over 600 to 1300 miles, on frequencies up to about 100 Me . lither form of scatter requires high power, large antemnas and (ew. Technigur to provide affertive communicttion.

Back seatter, of the type heard on lower hands, is also heard oceasionally on 50 Ml , when F_{2} or sporadic- E skip is present.

Reflections from Veteor Trails: Probably the leat-known means of v.h.f. wave propatation is that resulting from the passare of meteors across the signal path. Reflections from the ionized meteor trails may be noted as a Doppler-effect whisthe on the carrier of a signal atready being rereived, or they may caluse bursts of reception from stations not nomally reeseivable. Ordinatrily surh reflections are of little value in communietition, sime the inereases in signal strength are of short duration. but meteor showers of considerable magnitude and duration may provide fluttery signals from distaneres up to 1500 miles or more on both 50 and 144 IIc.

As meteor-burst siguals are relatively weak, their detection is greatly aided if high power and high-gain antemas are used. 'Two-way' eommunication of sorts has been carried on be this modium on 50 and $1+1+$ Mr, over distances of 600 to $1: 300$ miles, through the use of short e.w. transmissions and frequent repetition.

CHAPTER 16

V.H.F. Receivers

(Good receiving facilitias are all-important in v.h.f. work. Iligh sonsitivity, ideduate stability and good signal-to-moise ratio, nererssary attributes in a receiving sustem for of Mro and highor froduencios, are most roadily attained through the use of a converter working into a communications rerover designod for lower froguencies, Though recoivers and converters for the w.h.f. bands atre available on the amateur natrket, the amateur worker san build his own with fully as good results. usually at a coonsiderable saving in cost.

Baxically, modern v.h.f. reeroving equipment is little different from that employed on lower frequeneios. The same order of seleretivity masy bo used on all ambateur freguencios up to at least tion Ale. The greatest practical selectivity should be amployed in v.h.f. recoption, as it not only allows more stations to opratato in a given band. hat is an important fartor in improving the signal-to-moser ratio. The effective sensitivity of a rewiver having "rommanication" selectivity" ata ln made much better than is possible with hroadhatud systems.

This rukes out converted radar-type recoivers and others using high intermediate frequencies. The superregenerative recoiver, a simple but broalland devier that was popular in the earlydays of v.h.f. work. is now used principally for portahla operation, or for other applications where high semsitivity and selectivity are not of prime importance. It is capable of surprising performance, for a given number of tubes and components. but its latek of selectivity, its poor sighal-to-noise ratio, and its temdener to radiate a strong interfering sighal have eliminated the superregemerator as a lixed-station receiver in areas where there is appreriable v.h.f. activity.

R. F. AMPLIFIER DESIGN

The noise grenerated within the reeceiver itself is an important factor in the efferetiveness of v.h.f. receiving gear, it lower frequemies, and (1) a considerable extent on 50) Mre. external noise is a limiting factor. At 1.41 Mc . and higher the receiver noise figure, gatin and solectivity determine the ability of the system to respond to weak signals. I'roper sidection of r.f. amplifior tubes and approprite circuit design aimed at low noise figure are more impertant in the v.h.f. receiver "front end" than mere" gain.

Triode or Pentode?

Certain triode tubes have been developed with this end in view. 'Their superiority over pentode types is more pronounced as we go
higher in frequency. Beratuse of the limitation on sensitivity imposed by external noise at that frequencry, triode or pentode r.f. amplifiers give ahout the same results at 50 Mr. Thus the peot tode topes, which offor the advantages of better seloctivity and simpler circuitry, are often used for $\overline{5}(0-\lambda 1$, work. But at $1+4 \mathrm{Me}$, the mewor triodes designed for r.f. :mplifior service giwo fully as murh gain as the pontodes, and with lower intermal moise. With the exereption of the simplest unit, the equipment described in the following pages incorporates low-noine r.f. amplifirer terhatigues.

Neutralizing Methods

When triodes are used as r.f. amplifiers some form of neutralization of the grid-phate capacitane is rerguired. This can be capacitive as is commonly used in transmitting applications, or inductive the alternative to montralization is the use of grounded-grid terhnigue. Circuits for v,h.f. triode r.f. amplifier stages are given in Figs. 16 i - through $16 \mathrm{i}-1$.

A dual triode operated as a neutralized push-pull amplifier is shown at ll (i-1. This ar-

Fig, 16.1-Schematic diagram of a push-pull r.f. amplifice for v.h.f. applieationts. This rirenit is wellsuited to was with antemna sestems hav ing balaneed lines. Cobil and raparitor salues not wiven drownd ont the frequens: at which the amplifier is to be nsed. Seutralizing capactamee (C , may be built mp ly twisting emds of insulated leads together.
rangement is well adipted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a babanced transmission line such as the popular 300-ohm Twin-Lend is used. It is relatively sedertive and mase reguire resistive loading of the plate direuit, when used as a preamplifier. Tho loading chere of the following circuit may to sufficient to give the reguired band width, when the push-pull stage is inductively coupled to the miser.

A triode amplifier having exerellent noise figure and broadband characteristics is shown in ligg.

Fis. 16-2- Cirenit of the razerole r.f. amplifier. Coupling cabacitor, fis may be omited if surious recoiver responses are not a problem. Nentralizing winding, $I_{\text {, }}$, should resonate at lhe signal frequeney with the gridplate capacitance of the lirst thbe. Base connertions are for 11 IS and 6.N. 1 , but other small triodes maty le used.

16-2. Commonly ealled the eascode, it uses a triode or triodreconnerted pentode followed hy a triode grounded-grid stage. This rircuit is extremely stable and uneritioal in adjustment. At 50 Me. and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is acomplished by the roil L, whose value is such that it resonates at the signal frequener with the grid-plate (apaceitanee of the tube. Its inductance is not critioal; it may be omitted from the cireuit without the stage going into oseillation, but nentralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the caseofe circuit. 'The example shown in lrig. Ifi-2 uses the 47 A . followed be a bidy. 'liwo tiAJts would work almost equally well, as would the
 16-2 should be changed to suit the tubes selereted.

A simplified version of the easeode using at dual triode tube designed esperially for this application, is shown in lige l6-3. By reducing stray rapacitanee, through direet coupling between the two triokle seretions, this circuit makes for improved performance at the frequencies above 100 Ma. The two sections of the tube are in series, as far as plate voltage is concerned, so

Fig. 16.3 - Simplifued catsonle circuit for nse with dual triodes having separate eathodes. Coil and rapacitance valus not given deternd on frequency, Isitiar r.f. chokes are occasionally used in theater leads.
it requires highor voltage than the other circuits shown.

The noutralization process for the caseodo and neutralized-triode amplifiors is somewhat similar. With the cireuit operating normally the
 Fig. 16-1; inductance of L_{∞} in Figs. 16-2 and 16-3) can be set for best signal-to-noise ratio. The best results are obtained using a moise generator, adjusting for lowest moise figure, but careful adjustment on a weak signal provides at fair approximation. Noise gencrators and their use in v.h.f. receiver adjustment are treated in July, 1953, QST, p. 10.

Grounded-grid r.f. amplifier technique is illustrated in Figss, $16-4$ and 16 - $1 \cdot 4$. Here the imput is in the cathode lead, with the grid of the tube grounded, to inet as a shield between cathode and plate. 'The grounded-grid rircuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages may be required.
Thues well-suited to grounded-grid amplifier
 6BC4, 417 A and 416 B . Disk-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 500 Me., and the new eramic tubes show great possibilitios for r.f. amplifier service in the u.h.f. range.

Great care should be used in adjusting the r.f. portion of a v.h.f. receiver, whatever circuit is used. If it is working properly it will control the noise figure of the entire sustem.

Reducing Spurious Responses

In areas where there is a high level of v.h.f. activity or extensive use of other freguencies in the v.h.f. range, the ability of the receiver to operate properly in the presence of strong signals may Ie an important consideration. Spercial tube types, othorwise similar to older numbers, have been develoned for low overload and rossmodulation susceptibility. The filsc's, which may be used as a replatement for the 613027 A or $613 \% \pi$, is one of these.

Modification of the converter design can also improve performance in these resperts. In general, the gain thead of the mixer stage should be made no more than is neressary to athere good noise figure charateristics. The phate voltage on the r.f. amplifier should be kept as high as pracetieal, to prevent easy overloading.

Iejection of signals outside the desired frequeney range can he improved by the use of high-(Q tuned circuits ahead of the first r.f. amplifier stage. Tolevision transmitters are partioularly troublesome in this respert, and one or more coaxial-type circuits inserted in the lead from the antemat to the converter may be necessary to keep such signals from interfering with normal reception.

A common catuse of unwanted signals appearing in the tuning range is the preseme of oscillator harmonios in the energy being fed to the miver of a crystal-controlled converter. This may be prevented by using a high oscillator frequency, to

Fif. 16-4- Grounded-grid amplifier. Position of tap on plate coil shonlal be adjusted for lowest noise figure. Low gain with this circuit makes two stapes necessary for most applications. If.f. choke and eoil values depend on frequency.
voltage. When a good r.f. amplifier is used the mixer plate current may be run higher, for better operation with strong signals.

Occasionally oscillation near the signal frequency may be eneountered in v.h.f. misers. This usually results from stray lead inductance in the mixer plate circuit, and is most common with triode mixers. It may be corrected by connecting a small caparitance from plate to cathode, direcfly at the tube socket. Ten to 25 $\mu \mu \mathrm{f}$, will be sufficient, depending on the signal frequency.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in v.h.f. reerption, the stability of the oscillator is extremely important. Wlight variations in oscillator frequency that would not be notiend when a broadband i.f. amplifier is used become intolerable when the passtand is reduced to crystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-controlled oscillator, with frequency multipliers if needed, to supply the injeretion voltage. Such a convertor usually employs one or more browdband r.f. amplifior stages, and tuning is done be tuning the receiver with which the converter is used to cover the desired intermediate frequency range.

A

Fig. 16.5 - Typisal v.h.f. mixer rircuit: for trinde (1), pentore (B) and pushopush trione (C). Cimbits tand IS may lac need with one fortion of varions duatnurpose tulnes. Plate current of pentode (B^{\prime}) shomblat he held at lowest usable value if nor.f. stage is used.

Fig, 16.6-Recommended oscilbator circuits for tumable vh.f. converters. Ihal-t rionle-version (B) is roommended for 220 or 420 Me. R.f. chohe roil and vapacitor values not given depend on freducncs.

(A)

When a tunable oscollator and a fixed intermediate frequeney are used, sperial attention must be paid to the oscillator design, to be sure that it is mechanically and cleetrically statble. The tuning capacitor should be solidly built. proferably of the double-bearing type. Splitstator capacitors sperifically designed for v.h.f. serviec, usually having bath-bearing end plates and special construction to insure short leads, are well worth their extrat cost. deads should be made with stiff wire, to reduce vibration effects. Merchanical stability of air-wound eoils ran be improved be tying the turns together with narrow strips of household cement at several points.

Recommended oseillator circuits for v.h.f. work are shown in Fig, 10-6; The single-ended oscillator may he used for 50 or 144 Me, with good results. 'The push-pull version is reeommended for higher frequencies and mas also be used on the two lower hands, as well. Cireuit A works well with almost any small triodr, or one half of a $6, \mathrm{~J}$ (or $12 . \mathrm{A}^{\prime}$-. The $6 . \mathrm{Jt}$ is well suited to push-pull applications, as shown in (ireuit 16-6B3.

THE I.F. AMPLIFIER

superhetorodyne rocoivers for 50 Me. and up should have fairly high intermediate froquencios, to redure both oseillator pulling and image response. Approsimately 10 per cent of the signal frequence is commonly used, with 10.7 Me. heing set up as the standard i.f. for commereially-huilt f.m. recerivers. This particular frequeney has a disadvantage for 50-Mr. work, in that it makes the receiver subject to image response from $28-$ Mhe, signals, if the oscillator is on the low side of the signal frequence. A spot around 7 Ne, is favored for amateur converter sorvicre as practically all communioations rereivers are cotbable of tuning this range.

Forr selertivity with a reasomable number of i.f. stages, double conversion is usuatly emplowed in complete receivers for the v.h.f. range, A $\overline{\mathrm{T}}$-Mce intermediate frequencer for instance. is changed to 45 k ke. by the addition of a second mixer-oscillator. This prosedure is, of course, inherent in the use of a $\mathrm{v}, \mathrm{h}, \mathrm{f}$. converter athead of a eommunications reeciver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-reocejver combination may be inadequate. 'This can be corrected by huiding an i.f. amplifier stage into the convertor itself. Nuch a stage is useful even when the gain of the system is adequate without it, as the gain control ean be used to permit operation of the converter with receivers of
widely-different performance. If the receiver has an S-moter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band f.m. or unstable signals of modulated oscillators is dowired, a converter may be used ahead of an f.m. broadeast recoiver. A superregenerative detertor operating at the intermediate frequence. with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals. By using a high i.f. (10 to 30 Mr , or so) and ber resistive loading of the i.f. transformers, almost any desired degree of band width fan be sereured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the mierowave region, where stabilized transmission is extremely difficult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the suberregenerator, It affords fatir sensitivity with few tubes and elementary cireuits, but its weaknesses, listed earlier. have relegated it to applications where smath size and low power consumption are important considerations.

Its sensitivity resulte from the use of an alternating guenching voltage, usually in the range between 20 and 200 ke ., to interrupt the normal oscillation of a regenerative detectar. The regeneration can thas be increased far levond the amount usable in a straight regenerative eireuit.

Fig. 16-7 - Superregenerative detector circuit for selfquenched detertor. Perntode tube may be used. vary ing screen voltage by means of the potentioneter to control rementrations.

The delector itwedf ran he mate to furnish the quenching voltage, or a separate owillator tube (ath be used. Regeneration is usually controlled by varsing the plate voltage in triode detectors, or the sereen voltage in the bese of pentodes. I typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 50 , 144 and 220 Mc .

The there eonverters and their power supply, shown below. were designed to meet the special requirements of eath of the v.h.f. bends, insolat as possible. They offor high stability and reasomably how monse figure and speriad attention was paid to the reduction of spurions responses. partioularly in the converters for 50 and 220 Ma . bach unit plugs into the power supply, which also includes the i.f. output circuitry, Anyone interested in one or two of the bind ean thus Ionila for his own purposes and omit the other band or hands. The i.t. tuning ramge is $\overline{5}$ to 11 Me for on () and 1+1-Mc. coverage, and $\overline{\mathrm{T}}$-12 Me. for the 220-Ma. band.

- THE 50-MC. CONVERTER

I pentoder r.f. amplifior stage is used in the
 moner design and :adjustment such a stage will hate a moise figure suificionty low that it will mapond to the weakest sigats that can be heard with other :und more complex stages. The tube shown is a fiCBti. hut other pentodes such as the (i.\K゙5 may lo sulsetituted.

I wain control is included in the eathode circuit. Normally this is run all-ont, for optimum noise figure and gatin, but in the presence of strong local signats it can be cut in to reduce overlouding. This causes some imparment of the noise figure but may still make possible recep)tion of distant signals through the locets.

Note the double-tumed coupling circuits in the r.f. input and betwere the r.f. amplifier and the mixer. The caparitors f_{1} and C^{2} atre kept as small as posibibe, and the coils are not coupled together ontherwise. A value of 1 to $2 \mu \mu \mathrm{f}$, gives sufficient compling at the desired frecuence. bat the systom responds only very slightly to kwer freguencios. This halps to provent interference from signals on the intermediate freguenery.

The misarer is also as (id 'Bli. Itsoperatinge conditions are set up for resistance to overloading and rross-modulation from strong signals, rather than for optimum noise figure as the latter is taken care of he the r.f. amplifier. Note that the plate arcuit of the mixer is omitted from the converters. It is lmilt into the pewer mit, and thus only one coil need he made for all the converters.

The oscillator is a diAFt triode. Any other small triode combd be substituted. Input is hedd to a low bevel (note 57.000 ohem resistor in sories with L_{i}) in the interest of stability. The oscillator circuitry is isolated from the rest of the converter, so that ingeetion ean be controlled readily. Buncry from the oscillator is arried to the miser grid circoit through a shiokded link.

Mechanical Features

Fitch converter is built on a flat plate, which screws onto a standard aduminum chassis. Con-
nertion to the power mit is made through a t-pin plug mounted on the side of the resse. This carrics the heater voltage, the plate voltates, the mixer plate lead and the common chassis conneretion. The plag on the converter is the male type. It maty be fiastened to the ehassis conveniontly by soldering $4-40$ muts to the bate of the flanges used for mounting the plug. Flat-head machine serews in countorsunk holes. in beth the eonverter and the power supply anit allow the two to fit smagly together. This is important in preventing piekup of signals in the i.f. range.

In the bottom viow, Fig. Hit?, the antemat comector is seem at the lower right. Just to the left, separated by a small shiedd. are the two fof.
 of two wires twisted together. is on the low side of the shieda, its le:ul to $L_{\text {e }}$ ruming through at hole in the shied.

The lead from L_{2} to the amplifier erid pin runs through the main lengthwise shidd. This lead wats made of shiolded wire, with the shiedding romoved from the part of the le:ud that is in the coil compertment. The pertion of the wire in the tube compartmont mast be shichded to prevent feredtanek hetwern the plate coil. L_{3} and the griel circuit. The coupling capaciter. ('上. the gatin control. the pate roil and all other amplifior eomponents ate in this section, upper right.

Dixare components: are at the upper left, with the oscillater section below. The coupling link between L_{5} and L_{6} is made of shichted wire, roming throngh the matin shicld partition.

The leads from the mixer to the plag. J_{2}. and all power leads, are made with shideded wire. The common rombertion for ground and heater lead is the shidding over the wther there wires. These leads should be long anough so that the eonverter (cun be lifted from the low without removing the phug. A length of vingl sleeving slipped over the leats will help, to prevent shorts, Transparent slonving was usad. so it doe's not show in the
Fig. 16.8 - Comerters for the three v.l.f. bands, with their power supply and i.f. output unit. The 2e20- \1c. converter is shown phaged into the power anit. At the Left is the 30 -Nc. comserter. The one for H1/ Me. is at the right.

Fig. 16.9 - Bottom view of the $\mathbf{3 0}$ - Me, converter, R, f. input eireait is at the lower risht, with the amplifier itself ahowe. Cirystal ordillator cemponents at lewer leff: miver and output cable abose.
photographs.
The matin shied is 6 by 1^{15} /t; inches in size. withat $1 / 1$-inch lip folded wer for mounting to the plate. The two shiedds perpendicular to it are $17 / 8$ be 15 is inches. with lips folded ower on the bottom and me end. The isolation shiedd bet wern the r.f. coils is $13 / 4$ by $115 / 1$ f inches. and is mounted 3_{-1} inch in from the lower edge of the cross shield.

The placing of the parts otherwise is not particularly eritical, exerpt that hy-pass capacitors should be comerefed with the shortest possible leads. Cese of the smallest size disk ermanie tyon is recommenderl.

Adjustment

Tuning up, the converter is at simple matere Cherk the wiring to be sure that wo errors have been made. Apply ace and see il all heaters come on. Then apply plate voltage by closing se on the power supply unit. If the converter output is

CHAPTER 16
 the F-Me range how shomld he a eonsiderahle
 with eirenits oll of thme.

First cherek the oscillator. This cam be dome bex listening in the $43-$ - Afe range, if a receiver is available for that frequency or a gridedip meter may he hased as a wavemeter. Output should appear on 43 Mr, and on that freguency only. Adjust L_{7} for maximum output indieation. with the grid-dip coil coupled to L_{7}. Cheek around 14.3 and 28.6 Me. to be sure that no output is in avidence on these frequencias. Should there he emergy on these frectuencies it means the the crystal is osedlating on its fundamental froquency and showing output on its various hatrmonics. (Jseillation on the fundamental indieates that the plate circuit is not property tumed.

If the converter is wired correctly it should now be possible to reeceive strong signals, even before the circuits have been resomated. A calihrated signal gemorator is helpful, but it is ber no means neeressary. A test signal should be fed into the antemna connertor and the core serews in all coils adjusted for maximum signal strength.

The respense of the converter will not be flat arross the entire 1000 ke . of the $50-\mathrm{Mc}$. bend, but it will work over a wider frequency range than most directive anternat systems. The setting of the cores in L_{3} and L_{4} can be variod to give uniform response arross the desired passhand. The input cireuit should be adjusted for best signal-to-moise ratio at the middle of the desired frequency range.

The value of the small coupling (eaparators, ('1 and ('s. will have some effeet on the bandwidth of the ref. portion of the convertere few directive antemas will work over more than about lato

Fig. I6.IO - Sehematic diayram of the 50- Me. comberter. Capacitors are ceramic: valurs . 001 and up are in $\mu \mathrm{f}$. Resistors ! watl unlexe sperified.
C. $1, \mathrm{C}_{2}$ - Approx. I to 2 , $\mu \mathrm{f}$. Nake from two piecers of phatior-conered No. 18 wire twisted together alabat I inch.
C.3-10-1 C , wramic. Commet at plate terminal.
1.1, $\mathrm{L}_{3}, \mathrm{~L}_{4}-11$ turns Co. 24 enam. at top end of $1 / 4 \mathrm{inch}$ iron-xlug form (D_{1} tapped at 3 turns.
1.2-Sime as Las hut 9 turn*.
1.5-2 turne insulated hookup, wire at low and of $I .5$.
1.6-Same as l.fo but at low rend of $L_{-\bar{\sigma}}$.
$L_{17}-$ Same as L_{3}. bint Ih thma.
J_{1} - Guavial connectur, female.
$\mathrm{J}_{2}-1$-pin power comector, male. Mnst mount flash with chassis surface.
ke . of the band, so there is seldom much point in making the front end of the converter broader than this. If optimum performance is needed at the opposite end of the band it is merely neressary to repeak the core studs for best results at the desired frequency. Adjustment of the i.f. coil in the power unit also affects the bundwidth. It ram be peaked somewhat above the middle of the tuning range if it is desired to extend the coverage of the eonverter-antenna combination.

When the converter is tuned for best results it may be desirable to cheek the oscillator injeetion. This is lest done with the aid of a noise generator, though a signal gencrator or weak signals may be used if care is taken to observe opt immom signal-to-noise ratio, rather than mere gain. The value of the dropping resistor in sorios with $L_{\text {a }}$ can be variod, the idea being to use the highest value that will not affect the signal-to-noise ratio adversely.

A simple check on performance that can be mate in a location free of manmade noise is as follows: Connere a 50 -ohem resistor in place of the antemat coax. Ohserve the mose level, cither by ear or as indicated on an output meter or the receiver s-moter. Now put the antenna back on. If the r f. stage is free of regeneration, a rise in noise level when the antemat is connerted shows that external moise cean be heard. This noise is the timiting factor in weak-signal reception, and further reduction in receiver noise figure will serve no useful purpose.

THE 144-MC. CONVERTER

In the converter for $1+4$ Me., Figs. $16-11$ and 1(i-12, triode r.f. amplifiors are usod, as they give better noise figure tham pentodes at this frequeney and higher. The tubes shown are dBCts, but comparathe results ran be achieved with the
 sion of the pin cooneretions. Noise figure obtainable with any of these tubes is alout 5 db), which is about the level at which extemal nowe begins to limit recoiver sensitivity, A noise figure of 3 d). or lower can be had with 417 As , or even one 417 A and one less expensive tube, but there may be no observable difference in weak-signal performance.

The (ascode rircuit (see beginning of chapter) is used, with the rircuit of Fig. 16-2 in preference to that of $16-3$. The latter, operating at lower plate voltage per stage may be slighty more susceptible to overlouding. The 6CB6 mixer is also oprorated under conditions designed to keep down overloading and cross-modulation troubles.

The erystal oseillator is operated at the highest frecuency that is possible with simple areuitry. This holds down the number of unwanted froquencies appearing in the multiplier output, which could beat in signals from outside the infonded freduency range. The erystal oscillates on his.i6t Me., using the triode portion of a diUS. The perntode pertion is a tripler to $1: 37$ Ma.

The oscellator-tripler portion is isolated from the rest of the converter by a copper shind rumning down the middle of the 5 by 5 -inch plate.

The grid circuit of the first r.f. amplifier stage is adjacent to the tripler. but is as far away from it as possible, and the coils are positioned for minimum coupling. The lower sertion of the conveter, as shown in Fig. 1(i-11, is the portion in question, the antenna conmection and grid coil being at the lower right.

Above the shiedd may be seren the first r.f. stage, right, the serond stage, with a shiold down through the middle of its sorket, eenter, and the mixer at the far left. To provide offertive isolation and bypassing. feodthrough caparitors are mounted in the copper shield to carry power leads from one compartment to the other. Three are used for the 13 -plus line and two for the heater leads.
R.f. eireuits and the tripler plate circuit are tuned bey means of small TV-type trimmers. Four of these are shown in the photograph, but the one that is comereted to the first r.f. plate coil, L_{3}, maty be omitted, as the circuit tuncs very broadly. The ref. plate eoil, L_{4}, and the mixer grid coil, L_{5}, are ${ }^{3}{ }^{-1}$ inch apart, conter to center. Coupling betwern the two stages is mamly through the qwisted-wire calpatitor, (co. The r.f. imput coil. L_{1}, is commected to the grid pin of the I_{1} be a loud that rums through a $1 /$-inch hole in the shield.

Both shields are made of flashing copper. The larger is $5^{3 / 4}$ by 13_{4} inches, with foldedeover rdges for mounting, and for rigidity. The smaller is $11 / 2$ be $13 / 4$ inches. It is held in phace by soldering to lugs under the momeng sarews of the Gil3c't socket. This shied turned out to be reguired to prevent oseillation in the grounded-grid stage. It crosses the middle of the tube sorket.

Comnertions for the power are mate in the same manner as for the so-Mc. converter, and leads should be long enough to permit removal of the converter from the hox without unsoldering any leads. The shiedds are bonded together and anchored to a lug bolted to the main shied, near the left end.

Note that wafor-type sockets are used. This is

Fig. 16.11-Bottom view of the 1 H.Me. converter. (irystal occillator and tripler occupy lower left side of the assembly. Antena input circuit is at the riyht. Alouve the partition, right io left, are the cathode trimmer, the first r.f. amplifier socket, the r.f. plate coil, the second amplifier sochet, with shicld aeross its center, the plate coil, mixer grid coil and mixer tube socket.

Fig. 16.12-Wiring diagram and parts information for the 14t-Mc, converter. Parts speqified as in litg. 16-10,

(i4-3.3H- 3μ f. micat trimmer, set at tight prosition initialls.
 (Cemeralah N|"T -ano).
 Io inch longs tapped at 1 thens.
 long.
J.3-Iturni- No. 18 tinned. 1_{1}-imeh diam.. ${ }^{1}{ }_{2}$ inch lomg.

$1.5-31: 3^{1}$ turns like L as.

[^8]more than an economy measure': shorter yround trads are possible with this type of socket. Where soeket terminats are to be grounded. they ato bent down thash with the bottom of the plate. Then a hold is drilled adjacent to the lug and it and then be serered to the plate moder a washer and mut. This mothod of grounding is superior. at these freduencios. to the more commonly used lead-and-lug arrangement.

Adjustment

The first step in putting the 11t- Ml converter into servier is to be sure that the oscillator is working enorevely, as deseribed in connection with the ou-Me. consorter. This may be done with the phate and sereen woltages disconnerted from the pentode pertion of the bit'8 if desired. loy lifting tripler plate eoil and the serem resistor from the Sb-phas lime temperarily. Be sure that the oseilator is on the right frequences. and mo other, ase deseribed carliore.

Now emonert the tripler phate coil and serem resister to the 13 -phe line and whork the tuming of the tripler capacitar, ('s. sod it for maximum ontput on 1:37 No.. as indeated by a mededip moter couphed to las. The antput remined from the tripler mase be checked after ther rif. sertion is tumed properly. It may be controlled has vatrying the vadia of the sorern dropping resistor.
 may be run at the lowest input that will give
satisfactory signal-to-moise matio. Wbote that point the injoction is not critieal.

The r.f. circuits may now be adjusted. sed the trimmer, ('s, across the r.f. cathode resistor, at maximmon at first. Then on a test signal thate (i) and ("2 for maximum response. The spacing between the fums of the r.f. plate coils, has and La. shonld also be adjusted for highest signal hum.

If a moise gencrator is available, it should be nsed to set up the r.f. input eirenit. the inductance of the mentralizing coil, and the value of the rathode hypass. ("4. If signals or a signal generat for are used. the critarion should be greatest rise over moise for a given signal, rather than maximum st-moter reading or londest volume. Adjustment of the montratizing eoil. and sotting of the (eathode hypase value arre all but imposible withont a moise gemerator. Jacking one it is hest to use at fixed hypass of about $100 \mu \mu$ l. For ('s. and leave the ne utralizing winding at the speceliaction given in the cot label. (Manges in the nemtratizing eoil affert the feming of the grid rivenit. Berherk the setting of f^{\prime} a after altering $L_{\text {a }}$.

The compling catpacitor. ('yo, is mot ritical. hat for hest rejection of i.f. signats it shonlal he as low as will give satistactory pertomanere on I It-Xre signals. Insulated wires twisted together provide at conveniont andustment mothot

As the hand is nearly there times as high ith

V.H.F. RECEIVERS

difficulty in getting uniform response arross the entire band. Tuning of the second r.f. and mixer circuits can be staggered to develop the desired bandwidth, and the value of C_{10} will have some uffect on it as well.

THE 220-MC. CONVERTER

In the converter for 220 Me. Figs. 16 - 13 and 16-14, an additional r ,f, amplifior stage is used ahead of the cascode-and-mixer combination, This is required becomse the gain per stage is lower at this frecuroner. It is also desirable because of the addod solectivity it affords. This may be very helpfal in areas where interformer from othor sorviocs adjacent to the band may be bothersome.

The additional stage is a grounded-grid amplifier, using a modified comaial-line plate eirenit for high " $(\}$ " and soleotivity. It is not a broadband deviee and must be retuned in covering the hand. The tube shown is a fillt. Similar results were arhieved with the eiBC 4 , and nearly identieal performance is possible with other u.h.f. triodes. The 417.1 and 41613 should be superion'. Noise figure is about tidh.

A sorids cascode using a (iBC 8 dual triode follows. This type of amplifior is cosily adjusted and tends lo doliver superior results as the upper limit of ireguency is approached. The mixer is a 6. NK5. Its outpuit cirenit is, of course the coil assembly in the power mit.

The rif amplifier is similar to the one deseribed separately later in the chapter, exept that the output is taken off through the hottom of the assembly, with a tumed link, instead of through a coasial fitting on the side. In the diagram, Fig. If-14, the plate line and coupling loop are shown as if they were coils, it being rumbersome to express a trough-line direuit schematioally.

Mechanical Details

A somewhat different method of construction is emplowed in the 220-Me, converter, in order to insure the most effective grounding and bypassing. A plate of aluminum is used, as in the other converters, but only for appearance and rigidity. The plate used for actual electrical grounding is a shect of flashing copper. Wafor sockets are used, and wherever a terminal is grounded it is bent down flat and soldered directly to the eopper phate. This makes for less lead and more offective grounding than where socket mounting serews and lugs are used ground connections. It also allows shield partitions of copper to be soldered directly to the base plate.

The 220 - Al e converter repuires more space than the others, so a 7 by ! 1 -ineh chassis and plate are used. The lengthwise partition $1 \frac{1}{8}$ by 7 inches in size after folding over $1 / 8$ inch on cach side for monnting and rigidity. The smaller is $11 / 8$ by t inchess The large shied is centered on the plate 23 is inches in from the long edge. The smatler is $1 \frac{1}{4}$ inches in from the left edge.

The oseillator is similar to the $141-\mathrm{Dl}$ e unit, execpt that an air-wound coil and a variathe catpareitor are used instead of a slug-tuned coil. The pentode section of the dil-8 is a quadrupler to 21:3 We. from a crystal frequencr of 53.25 Me. A series-tumed link feeds energe to the mixer grid circuit through a shicdded-wire line. Osidlatormultiplier components are in the left portion of Fig. 16-13.

At the rightare the mixer (uppor socket) and the sories cascote r.f. amplifior, bolow. Note that power wiring is made with shiolded wire, lat close to the shields. Plate voltage is fed into the oscillator-multiplier and r.f.-mixar compartmonts on feed-through bypasses. Heater voltage for the r.f. amplifier goes through the plate on shieded wire at the lower left, and plate voltage at the

Fig, Io-I.3-Interior of the 220.Me converter. Bottom pate and partitions are of thashing copper. for offerting eroumding. On-cillator-multiolier circuitry in at the loft: miver and eascoold r.f. amplifier at the right. Groundedgrid amplifier is above the chassis.

 Me: converter.
lower right. The micat trimmer at the lower right is r^{\prime}, in series with the low site of the roupling loop, L_{2}. The other end of the loop comes ont on a foed-through bushing, National TVpe 'TPls. Its lead to L_{3} is shielded wire, ramning through the partition.

In working with flashing copper parts the metal work should tre compheted. up to the peint where the parts are ready to aswomble. The ropper patts may then be polishod with sterel wool and given a fine spmay doat of chear lampury. This will hedp to keep them clean and bright, and it will not aftee the soldering operations to be dome later.

Adjustment

Thar owcillator and mult iplier stages should bre adjusted as out lined for ther other converters, making sure that the
C_{1} - i- $\mu \boldsymbol{\mu}$. mimiature variable (H ammarlund 11 ($\left(-\frac{-1}{7}\right)$.

(s) - 2() $-\mu \mu \mathrm{f}$. miniature sariabll (IIammarlund 11AC-20).
 marlund 11 (C.-10).
 tralat 822-13N).

L_{1} - Imaer condurtor of tromph lise-1/4-inch cepprer tuliny. 6 $/ \frac{1}{4}$ inelus toms, $1 / 4$-inch diatio. © comberes
 la-2:2 and text.
I_{2} - Coupline hopp insulated henokup wire 3 inches long. Laop portion laty a rose to cold and of l_{1} for 2 inches. llot end comes thromph
 fred-through lomising,
I.3-3 turns No. 18 timed. 1/4-inch diam. 1/4 ineh lemes center-tapped.
I_{4} - 4 turne like l_{3}. B_{x} ined lonk.
15-81/2 tarne lite las. "x imeh long, cunter-tapined.
Lab-2 turns insulated laoknp wire at center of l.s.
 3/2 ind long. (13 \& 112 No. 3003).
Is - 2 turne \o. I8 timem, 3.inch diam. spared 18 imeh.
1a-2 turns inematert huohthr wire hetwen turns of I.
$J_{1}-$ Cemarial fittime. firmald.
 munn thas with zurlane of chan-si-:

V.H.F. RECEIVERS

 shidded line to L Las. 'lhis maty be diseomereted
 otorhm signal gractator termanation max be comnected acruss it. Now adjust the spacing of the turns in L_{a} and L_{5} for hest priformancre. Maximum gain will be a good-rnongh indiation here, Eo a moise generator is not werded.

Sow the (i.d.Xt amplifier maty be hooked up and tuned. It will be guite seldetive and will have to be retuned several times arress the bond. With the plate haning cataceitor tapped down the line as it is. the tuning ramge in mogacyeles is mot great. Bo sure. the pelore that it arthatly does tune the entire way, and does not hit maximum ur minimum capateitance inside the band.

Adjustments may be male all along the line using maximum signal hevol as the hasis for achioving the optimum setting, but only a nowe gencrater will show if the comberter is delivering the best somsitivity of which it is capable. It should be possible fo get the noise figure down to about 6 dh. using the $6.1 .1 / 4$, if everything is workiteg properly:

If any doubt cexists that the coils L_{3} and L_{5} are tuning properne smatl twisted-wire eapacitors masy be contereted from the gride end of L asand the plate end of L_{5} to gromme, and gradually increased in valuce. If the gatn drops when the (atpateitor is commerterd, the coil is too large. If it small amount of atded caplumitance increases the gain, squecze the eril turns doser tongether and try again. The inductance of L_{4} should not be particutarly critical. It should be as latge as can be used without rausing instability.
lajection from the quadrupler maty he controlled bey varring the pesition of rither link winding, L_{6} or \dot{L}_{29}, with resuert to its coil, and by adjusting C $_{5}$. Couphing should be incrased until

Fig. J6-15-Botrom , iew of the power supply and i.f. output circoitry for the v.h.f. converters. A.f. switch is abowe power transformer, risht. Next ary the filter capacitor and the rectifier surket. The switeh at the lower left erets off ther high voltage. 'The i.f, plate coil and the output fitting are in the upper left of the picture.
there is no improvement in signal to noise ratio. lnjection bevond that print is not critical, though it will alferet the overall gatin somewhat. Fairly low injeetion is desimable as it will kerp down the level of spurious responses.

POWER SUPPLY AND I.F. OUTPUT

Though it may be possible to run a v.h.f. converter from the pewer supply of the recoiver with which it is to be used, a supply for the eonverters is desiralble. The one shown in lige. 16i-15 and $16-16$ is inexpensive and eonvenient. It delivers the heater and pate power required by the converters, and in addition carries the mixer phate circuit and the provision for coupling into the reveiver.

Construction is not critical. Parts are assemWed on a $\overline{5}$ ber $\overline{\mathrm{F}}$-inch phate and this fastens to a similarly-sized chassis that matches the converters. The 5 ()- and $1+1-$ - Ite. units plug into the

 mark ed are clectrolstie: wheres weramic.

 resistors ill parallel).

1,2 - Vo. 28 enam. dasewomal on $3 / 4-\mathrm{inch}$ ironoshas form. Wind near upper rud.
J_{1} - Comaxial fittink frmalc.
$J_{2}-1$-pin power combector. frmate. Must moment flush with surface of chassin.

T_{1} - P'oner transformer. 180 , ance. e.t. IIN ma. is $\%$
 P_{1}-A.c. plug on cord.
power unit through matching fittings on the sides. The larger 220-Me, converter has the plug monnted on the end wall of the chassis, so that its $\overline{\mathrm{r}}$-inch dimension is aligned with that of the suppls.

Arrangement of parts should be clear from the photographs, and parts location is in no way rritical. Note that the a.e. commertion is byassed on both sides of the line. The caparitors (' 12 and ('2 aro a dual unit dexigned for this purpose. The Bepass on the B-plus line, (3 . should be at the phug end of the cable, with as short leads as possible. It is important in preventing piekup of signats in the i.f. thang range, as are (' and re?
switches are provided for tuming on the are. . and bor hraking the fow of pate carront. This feature is helphul during adjusiment when it maty be desirable to remove the converter from its case. Plate voltage maty be colt off for safety in handling, and then turned on again without loss of the time needed to warm up, the tubes.

Condat fotweren the converter ease and the power supply case may be important in preventing sigual piekupat 7 IIC. If i.f. signals are botharsome, try putting a sping clip under one of the serews that holds the power supply plate down. Platere this so that it will make rontact with the converter caseor topplate when the two units are plugged together. It also may be neressary to lond the converter and power supply combinattion to the frame of the eommunieations receiver with which they are to be used. This shoud be
rlone with a short heavy copper strap or bratil.
Gonnection betwern the i.f. tunt and the rewive shomld he with comxial line, and it is highly dosirable fo install a conexial fitting on the receiver in plate of the usual terminal strip. The comneretions should be removed from the bate of the strip, of the terminals maty still allow some i.f. pirkup.

Using Other Intermediate Frequencies

The i.f. tuning range bogimning at 7 Me. wats selected as the most desideble for most recerivers. Other ranges maty la preferred, and the i.f. can be altered easily enough. The injertion frequeney is lower than the signal frequenerg whatever i.f. gon intend to use. For example, a atolle, converter with a $1+$-童ce. i.f. would have a crystal and injertion frequener of on-1t. or 36 \ic. The 1H-Me. convorter would have a 1:30-Ma. injere tion frequences, and the arystal would be onethird of this, or 43.33 Mc .

Conerally speaking, single-conversion eommanieations recervers (most inexpensive types. and all ofder reecivers) work best with low intermediate fropucneides, such as 7 Me. or lower. Donde-conversion reedivers will be satisfactory in the $1+-\mathrm{Mc}$, range in almost every ease, and some are stable enough to do well around 30 . The. At least one commmaidations reocover. the $N(-300$, has a range designed apecially for v.h.f. eonverter use, starting at 30.5 Me.

A One-Tube Converter for 21, 28, 50, 144 or 220 Mc.

The erystal-controlled converters deseribed on the previous pages are tepieal of the trpe of equipment that must be ised in w.h.f. reception if optimum rosults are to be experted. It is pessible to stary in with simpler deviers, howevor, and still do an areceptable johs. The one-tube converter shown in Fige. 16-1\%. 16-18 and 16 - 19 is designed for the bogimnor or easual v.h.t. operator who wants the simplest thing that will give usable reception.

Provision is made for any amateur band from

21 to 220 Mr., but the converter should not be thought of as a multiband device in the usual sense. To keep its construetion as simple as possible, and to make it work sutisfaetorily on 111 or 220 Me., the roils are not made plag-in. To ehange from onte bath to anothor the eoils must be tusoldered and another pair installed in their place. The 21-and 28-Mc. Bands are covered with a single patir of coils by resetting the assoriated trimmer caparitors, but separate sets of coils are needed for 50,144 or 220 Mc .

Fig. 16.17 - One-tube camverlet, with 1t1-Ve. weillator tumed circtnit in plare, sedeninm rectifior power supplo, *hown plugged onto retar of the comerter, may he omitted if power is taken from the receiser.

Fig． 16.18 －Sehmatic diamram and parts information for the simple converter．

 for easil hame romirad）．

 and I \＆ator plater remoned（romberl sertion）．
C．8－0．001－$\mu \mu$ f，reramic．

K_{1}－I mernhm ！＇2 watt．
$\mathrm{H}_{2}-10.10$（0）olims． $1 / 2$ watt．
R_{3}－I IOOO ohms，${ }^{1}$ ，watt．
$\mathrm{K}_{4}-33.0101$ ohmo ${ }^{-1}{ }_{2}$ watt．

$\mathrm{K}_{6}-2.2$ ，dims．${ }^{2} 2$ watt．
 diath．I inch long．tapped 1 turn－from wromed

 ${ }^{\top}$ in ind lons．tapped 2 turse from aroumd（ond． （ 18 \＆ $\mid 1$ 300－．）

 ground end．

A single（ide fube serves as mixer ant ostillator． The input rireuit，$L_{1} \mathbf{C}^{\prime} 1$ ，tumes to the signal fre－ queney．binergy from the aseillator，thand ber $L_{0}\left({ }_{5}{ }_{5}\left({ }_{6}\right.\right.$ ．beats with the signal to produre the intermediate freculence，approximatele 7 Me．， in the plate cireuit of the mixer stage．The eoil $L_{, 3}$ is tumed to this frequency．and the output is fed intost communications reecoiver through L_{4} and areaxial cable attarhed to J_{2} ．The oseillator tumes $\overline{7}$ Me．lower than the signal fresueney．
The converter power can be taken from the communications receiver in most eases．Reperivers usually have an ateressory sorket on the rear wall for this purpose．Consali the receiver instruction book for the type of plug ：med commertins ine edond． An ate．voltage of $(6.3$ at 0.45 amp ．and 75 to 1.00 volts d．c．at about 12 ma ．will be required．A simple selenium－rectifier supply ran be built for the convertor，as shown，if the neressary power camot be taken from the recoiver．

Construction

The converter was designed with an absolute minimum of parts．Note that it is shown without a panel，for instanee．（One ran be added if the builder wishes，but it is by mo means a neressity． A standard is $\times 7 \times 2$－inch alumimum chatssis （premier ACH－126）is used，and no bratkets or other matal parts noed be made．Fig．1ti－20 shows the locations of all holes．The front－ view photograph shows the thoing capareitor，C＇ 6 ， on top of the chassis with the trimmer（ $\left({ }_{5}\right.$ ）and

22011 c － 1 turn $1 / 1$－inell diam．No． 12 timed ＂ire．lappel mar cemer．
 as in phose．
 phot＂．
111 Ur．－－Haitpin how of Xo．1：timmed wire 1 iach henc．I inch wide．w．t．Commed Cos to C_{6} termina！－

 c．e．Coment（ ${ }^{3}$ a inch from cabacitor termi－ mal－：are moto．
 （ \atienal \18－91）．

$\mathrm{J}_{1}, \mathrm{~J}_{2}$ Ihoow jach－（Cinh 31 B or two Cinch 81 A －inely jach－）．

 I_{1}－ $11 . ⿹ 勹 巳$.

T_{1}－I＇ower tran－former．lion what at 2.9 ma．； 6.3 volts at 0.3 amp．（Mcrit $\left.I^{\circ}-30 / 6\right)$ ．

14t－Mc．coil soldered in phare．The feed－through bushing near the edge of the chassis serves as a tie point for R_{3} and holds the coil rigidly in position．Immediately behind C_{6} the didt and the tuning indjust ment for L_{3} are visible．The dial is a National type \mathbb{R} ．Note that a large knob （Nitional tripe HRT＇M）is substituted for the one that ermes with the dial to smooth out the tuning．The dial index is mounted below on the front wall of the chatssis instead of above，for obvious reasons，The 0 to 100 scale maty be used for dogging，or a catibration may be drawn on stiff white paper and cemented to the dial surface． The small knob to the left is the mixer grid ritrolit trimmer，C_{1} ．

A power supply is shown plugged into the batek of the converter，If the power plags are positioned so that this is possible，it will save making up a connerting rable．The supply is built in at $4 \times 2 \times 2$－inch utility rabinet．The lavout is not important，and it can be built in some other form if desired．

The various components visible in the bottom viow are latered for ease in identification．Most of the small parts are grouped around the tube sorket near the conter of the chassis．There is vere little wiring to be done other than solder－ ing in these resistors and（apaceitors by their leads．Below the tube soreket are the slug－tumed L_{3} and a fwo－terminal tie point supporting R_{4} ． L_{0} is held in place loy passing its leads through holes in the plastic rings supplied with the XIR－91
coil form. L_{1} is womd anomed the ber-pasidel emb
 are then twisted and run over to the outpat eouncertor on the batek of the chassis. If the duat rommertor shown is not availabte, two standard phono jacks ean le substituted.

The mixer grid direuit is visible above and to the left of the tube socket. (') is mounted on the front wall of the chatsis and L_{1} is solderod aceross its torminals. A short piecer of roas (R(i-58/U or R(i-5! (i) is run from the input connector to the grid rirenit. Here the braid is grounded to the rotor of C_{1} and the immer conduretor is tapped onto L_{1} in the proper place. Note the two 3 -ined holes drilled betwern the tube socked and the tuning raparitor. These are for the lads from ('4 and l'in 1 of the 6iJti, which pass through the chassis near the centers of the holes. The tube sorket should be monnted as shown with l'in 1 adjacent to the large hole nour the middle of the chassis.

The third photograph shows the coils for 15, 10, 6 and $11 / 4$ meters, the 2 -meter coits being on the converter when the pietures were made. The oseillator eoils with their trimmers (('s) and deroupling resistors (R_{8}) arre in the bark row, and the mixer grid eoils are in the front row. It is not necessary to use separate trimmers for each ascillator eoil, but doing this eliminates the noed for readjustment when changing coils. The use of separate deroupling resistors does away with repeated soldering to the coil renter tap. The coils for 50 Mc , and below are made of sertions of $13 \& W$ Miniductor. It will be easier to solder to these if the turns cad side of the desired one ire bent toward the renter of the coil. The higher frequency coils are made from

No. If wire as deseribed in tha parts list.
The weillatom raparitor, ('s, was modified slighty to secure more bamkeread on the higher ranges. The end stator phate and the last fow rotor plates of each sertion shond be removed by twisting carefully with long-nosed pliors. This leaves four stator and there rotor plates in each seation. If the convertor is to tre used on $1+1$ or 220 Me. only, the handsprend may be inereased be removing more plates, but it is advisable to leater them on until the proper frequmbide are found.

Adjustment

The mixer has the best moise figure with a plate voltage of about $\overline{7}$, so R_{4} should foe made a suitable value to provide this drop. If a different supply voltage is used it may he advisable to change the value of R_{4} to reduce the mixer voltage to about $\mathbf{7}$. This is not aritical, though, and anything 20 volts or so either side is perfectly satisfactory. liven a 90 -volt " B " battery will do for a plate supply.
linst apply filament volfage and see that the (6.J heater lights up. Now apply plate voltage. Cherek to see that the oscillator is working. If a millitumeter is available (10 to 100 mat full seale) commert it in sories with R_{3} to measure oscillator plate rarrent. This should he about of mat. and should rise when the aspillator coil, L_{2}, is touched with a pencil lead. It it is much higher. and does not change, the tube is not osrillating. Rerherk the oscillator wiring for a mistake, or try another (iJd.

The frequeney of the oscillator may be cheremed with a cablibrated receiver, if one is availathle. or use a grid-dip meter or an ahsorption-type

Fig. I6.Jo- IButiom view of the comborter showing the principal parta nombluered ats thes appratr ont thos sohemathe: diagram.

Fig. 16-20- I ayma drawing of the conserter chassis, sthow ing size athe horation of all holes.
wavemeter with faily aceurate cablibation, The grisd-dip moter will show output when coupled ta Latad thend to the frecureney of the oseillation. Tuming ath absoption wate metor compled to L_{2} to the aseillator frequency will catuse a flicker in oscillator phate current. At 220 Afe it is also possible to use a daeher wire system to measure the frequener as outlined in the metsurements chapter.

The useillator should be adjusted (hỵ ('s) to tune Welow the desired signal fremeney by the amount chenem as the i.f. For the 2l-Me. band the oscilator tumes at least $1+$ to $1+15$ Mo. For 28 Mr . it should rover at least 21 to 22.7 Me . For the fi-meter hand it must tume 43 to 47 Afe,
and so on. The trimmer capacitor, ('s, and, if necersary, the coil, La, are adjusted to set the oscillator to the proper range. Actually roverage will be somewhat more thatn the width of the band. and the desired range should be centered on the dial liy varring ('s. The covorage mentioned above is ohtained by rotating (6 , of course.

Now connect the converter outpuit to the rereiver antenna terminals. The eonverter is normatly operated on top of the commmications receiver. or close alongside it, in a convemient operating position. A coasial cathe is mate up with a male phomotype eroxial litting on one end, with emongh cable to reach from the eonverter to the recerver antenna terminals. Most recoivers have a theresteminal anternat connertion block. One of these ferminals is gromeded. The middle one and the one at the opposite end from the grounded one are normatly used for doublet antemat commetions. Commert the middle one and the gromded terminal together, and make this combination the point of comertion for the outer conductor of the coasial cable. The inmer conductor goes on the remaining antenna terminal.

The mixer plate coil, La may be tuned to abont 7 Me, with at gridedip meter. or it ran he praked on mise with the rereviver set at this frepueney athe the converter ruming. The grid ribenit, $L_{1} f_{1}$, may be cherked with a gridedip meter. It may also be peaked for maximmon response to a signal gemerator comuered to the input, or it ran bre peaked on noise or signals with the antenna rommered to the converter. Some improvement on wak signals may be possible through adjustment of the position of the tap on the gride eoil. and the mixer plate voltare should the chereked to soer that it is some-
 (') will shift the ascilator frequeners. so that refuning the signal as this adjustment is made maty be required.

The exat frequency used for the i.f. is not important. so it can be set tor suit two requiremonits. First, it should wit tw at surd at spot that a strong local 7 - A ac. signal will ride through. should interference develop at any time on the

Fí. 16-ㄹ] - Caile for the one-lube' comsertor. 'lop row are the raisilialtor goils, with trimmers (is) attamberl, Gorrexionding miver coils brlow. Ieft to riplit nots for 21 io 28 Nr., $\overline{01}$ Mr. and 220 Vor. Tlo 111 . Il coraila aprear in the conserter plootograplis.
intermediate frequence, the setting of the main reerever dial maty he changed slighty to clear the trouble. It is also usuably easier to shift the i.f. slightly thatn to reset the oscillator, in order to make the diabl calibration rome out right. With a signal of known frequence atvailable, the converter dial can be set for that spot and the matin receiver retuned to make the signal rome in at the desired spot.

The $15-, 11$-, and 10 -meter bands are covered bey one pair of roils. It is necossalys. of courser, to reset the oscillator trimmer, ('s. for eath hand to the proper range. An alternative would be to use separate coils and trimmers for each band as is done on the higher ranges. Bandspread obtained with the original converter using a 7 -Mc. i.f. was
 27.2:3 Mc. - 12 divisions: 28.0-29.7 Me.- (i7
 Mr, - 6ij divisions: and 220)-225 Mc. - 30 divisions. More bandepread ram be oltained on the higher ranges beremoving more plates from the tuning ababitor, but this will not permit full
coverage on the lower hands.

Performance

On 21 and 28 Mc., at least, this simple converter will usually provide all the sensitivity that c:un be used, as external noise is normally the limiting farcur in weak-signal reception on these bends. At 50 Me. and higher the noise generated within the eonverter tends to limit the overall sensitivity. Thus the addition of a low-noise r.f. amplifior may make a considarable improvement in recoption in the v.h.f. ranges.

I cascode-tpe premplifier, such as that
 ath the sume basic cirouit maty be used for so and 220 Me. amplifiers ats well.

The greatest difficulty with tumable convertors is instability in the oscillator. For most v.h.f. opreators the only satisfactory solution to this prohlemist the use of errstal-entrolled eonverters such :s has. shown chewhere in this chapter.
(1)riginabliy deseribed in Oetober, 1955, (2.s'I', pitge $2 \mathbf{2}$.)

Preamplifier for 220 Mc.

The amplificr shown in Figs. 1(i-22 to 1(i-2.4 will improve the gain and hoise figure of a 220-Me. converter that is not operating at maximum effertivenoss. It also provides some additional selectivity, which may be helpfol in areas where signals from outside the hand are troubtesomer The plate circuit has high (2, so it must be retumed in covering the bend.

The sehematie diagram is the same as the first stage of the 220-Me, converter. Fig, Iti-1 I. The signal is fed into the eathorde of the gromeded-grid amplifier. The pate cireuit is a trough line. Any of the small u.h.f. triodes may be used, though a fiAMt is shown. ('herek pin connertions and cathode resistor values for other types.

Construction

The outer eonductor of the line, which also serves as the rhassis, is made of flashing ropper.

If the details of Fig. If-22 are followed, it may be made from a single pieres. A small copper shied is plaed areross the tube socket to isolate the input and phate cerreuits, Just where this shield is located depends on the tube used, as various tubes have different grid pin arrangements. All grid terminals are bent flat against the eopper case, and soldered in plate.

The left and (bottom view, Fig. 16-2t) contains the coasial fitting for the antenna connertion, the r.f. chokes and other eomponents of the input circuit. The phate line. tuning capacitor, output eotpling loop and (ooax fitting, and the b-plus ferd-through caparitor monnt in the large portion. A bottom cover for the line, similar to the one shown with the :mplifier, Fig. 1(6-22, can be made of copper 8 inches long and 21 inches wide. Bend over a quarter inch on each side, and slip the evver over the edges of the ease.

Fig. 16-22-220-M © trough-line preamplifier. Construction is similar to that used witt the 200 . Ne convertor, leig. 16.8, exerpt that provision is made for cable eonnertion to a remote receiver or converter.

Pig. 16.2.3-Details of the outer conductor and chassis for the 220. Me. preamplifier.

The inner conductor is 1 i-inch copper tubing. stant with a piere 7 inches long. Saw the conds lengthwise to depthe of ${ }^{1} \frac{1}{2}$ and $\frac{1}{2}$ indh. Cut off one half at cateh end. The remaining pertions are nsed to make comuertions. The halfineth end is bront down to solder to the plate lugs of the sooket. The quarter-inch fond solders to the feredthrough capacitor.
The thange capacitor. C^{\prime}, is mounterl with its stator hats toward the tube end of the line. "The inner conductor will rest butwern these hars and they ean be soldered to it readily. Plate voltage is fod through $f_{\text {f. }}$ heater voltage through $e^{\prime} 9$. Wutput is taken off through the conpling lowp. La. visible in lige. If-24. The serics (eapateitor. Cow wanted from the pramplifior, though it might be useful if the amplifier works into a converter with an untuned input cireuit.

Adjustment

The preamplifier may be eomereded to the converter through a coaxial line of any eomvenient length, but the convertor input should be a coasial fitting. To put the preamplifier into service, adjust the plate line for maximum signal strength. Then chack the position of the eoupling loop, adjusting for maximum response. Readjust the tuning of the line as the compling is changed.

The taning range of f is is not wide, so be sure that it actually tunes the line at bothends of the band. Fome adjustment of tuning range wan be had by rotating the monnting of the caparitor 180 degreecs. If this does not bring the tuning within range, the mounting hole can be clongated and the position of the trimmer adjusted as required.
 virw of the preatioplifier.

Receivers for 420 Mc .

Fror best signal-to-mone ratio. recoivers for any frequener should have the highest Jogree of soleretivity that ran be used suceresfully at the frequenery in curestion. With erystal control or its equivalent in stability areopted as standard pracfice on all bands up through 148 Mr ., there is litthe peint in using more bandwidth in revoivers for these freguencies that is meersary for satisfartory voice reoreption, a maximum of about 10 ke . such rommmination solectivity is now hoing usend suceresfully hemost workers on 220 and 420 Mc., fow, hat it imposes suveral problems not encourtreed on lower bands.
first is the matter of oscillator instability in
the comwerter. Wen the best tumable owillator at 420. We, suffers from vibration and hand-ctupacity offerets sufficiently to make it diffieult to hold the signal in a lo-ke, i.f. band width.

Then, there are still some unstable tramitters being used in work on 220 and +20 Me. It is out of the question to copy these on at seteretive reeceiver.

Lats, searehing a band 30 mogenereles wide is exersivaly timeronsuming when rommumia-tions-renofer seledivity is used in the i.f. system.
There is no single solution to these problems: hut the best approach appeats of be that ol breaking ups of the band into segments for different typers of operation. This is being done by mu-

Fig. 16.25 - A highly effertive r.f. amplifier for 420 Mc. The tank cirenit is a hatf wave line made of flashing copucr. Coasial fitting are for input and output comnections. Heater and plate voltages are bronght in on feed-through by-pans capacitors just visihle on either side of the 6, I,It tube.
tual agreement among 420 - Me operators at present, as follows: 120 to $\mathbf{4} 32 \mathrm{Mr}$. - modulated oseillators and wide band f.m., 432 to 436 Me . -crystal-controlled r.w., a.m. and narrow-land f.m.: 436 to 450 - television.

The first segment can be covered with a superregenerative recoiver, a superheterodyne having a widehand i.f. system, or a converter used ahead of anf.m. broadeast reeriver. The high selectivity required for best use of the middle portion makes a crystal-controlled or othorwise highly stable converter and commmications receiver combination almost mandatory. Amateur TV is usually. received with a comverter ahoad of a standard Tireceiver, tuned to some chamnel that is not in use locally.

Many of the tubos used on the v.h.f. bands are useless at 420 Me., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventionatl cireuit technifue to produce satisfactory results.

Crystal diodes are often used an mixers in 120Me. receivers, as in this frequency range they work nearly as well as vacuum tubes. The over-all gain of a converter having a copstal mixer is about 10 (ll). lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a cristal mixer and no r.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. amplifier employ low-moise teehnigues discussed earlier in this chapter. If the i.f. is 50 Me . or higher it is particularle important that a low-noise triode be used for the first i,f, stage.
(rystal diodes of the type used in radar misers, such as the 1×21 series, are well suited to +20 - Me. mixer service, though rare must be taken to avoid damage from transmitter r.f. energy. (Ither types
 will stand higher values of crystal current, and their use is recommended.

Fiew conventional vacuum tubus work wod as mixers at 420 Me , and higher. The 6.th is usoful where a babanced input circuit is desired, as in Fig. 16 -5C $\%$. For single-ended cireuitry the 6.A.It and bilN4 are recommended. They maty be used

CHAPTER 16

in grounded-grid or grounded-cathode civenits.
For high-solectivity coverage of the 4:32- to 436-Me. segment of the hand, a common practiee is to use a crystal-controlled converter working into another converter for either the 50 - or $144-$ Mc. band, tuning the latter for the four-megacycle tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in ligs. 16-25 through $16-2 \overline{3}$ is capable of a sain or more than 15 d . and its noise figure can be as low as 6 d (h) with careful adjustment. It will make a large improvement in the sensitivity of any converter or recoiver that has no r.f. stage, or one that is working poorly:

The design shown is for either the 6.JJt or GAMI, but with suitable socket and pin-conneretion changes the 417A, 6BC.t or 6.NXt will work equally well. It is a grounded-grid amplifier with a hatf-wave line in the plate cirenit. The antema is connerted to the cathode of the tube through a coupling capacitor. As the input impedance of the grounded-grid stage is low, nothing is gained by the use of a tuned rircuit in the cathode lead. Output is taken off through a coupling loopat the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of Hawhing copper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $1 \frac{1}{4}$ inches square, exeept for the bottom, which is about $1 \frac{3}{4}$ inches wide. Edges are folded over with lips $1 / 4$ inch wide which slide into a bottom cover made from copper sheet $2 \frac{1}{4}$ by 10 inches in size, with its edges bent up $1 / 4$ inch wide on earch side.
The plate cireuit is made of $\frac{1}{4}$-ian $\begin{gathered}\text { coppor }\end{gathered}$ tubing tumed $\begin{aligned} & \text { on a copper-tab caparitor at the }\end{aligned}$ far end from the tube. Plate voltage is fed in at the point of minimum r.f. voltage, which in this

Fig. 16.26 - Schematic diakram of the 420 . Me. r.f. amplifier.
$C_{1}-\overline{\mathrm{O}}(\mathrm{O})-\mu \mu \mathrm{f}$. ceramic.
(2 $_{2} \mathrm{C}_{3}-1000$. $\mu \mu \mathrm{f}$. ceramic feed-through (Firie style -101).
C_{4} - Copper tabs, is-inch diam.; see text and photo. praphs.
R_{1} - 150 ohms, $1 / 2$ watl.
11_{2} - 1 in ohms, 1_{2} wat.
 23, indues from plate cond.
 J_{1}. J_{2} - Inmaial fitting.
 spaced one diam.

V.H.F. RECEIVERS

mstano is atomat in inders from the onen ond. The ammenat is commeded to the attherde through a rounling raparitor. The imput imperance of the groumed-grid amplifier is so low hat mothing is gained hy using a luned diretuit at this point. The sathode and heater are maintained above ground potential bey small air-wound r.f. chokes.
The tube sorket is two inders in from the end of the trough, and is so orionted that its plate combertion, l'in \bar{i}, is in the proper position to conned to the line with the shomest posible lowd. A copper shielding fin is mounted armoss the interion of the trough $2 \frac{1}{8}$ inches from the cond, dividiar the sorked so that Pins 3, 4, 5 and bare on the plate side of the partition.

Minimum grid-lead inductaner is important. This was insured by bending all the grid prongs down against the ceramie body of the sorket, and then making the monting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.

Input and output comeretions are coaxiald littings mounted on the side watl of the trough. B-plus and heater voltare are brought into the assembly on leod-through rathewitow mounted on the same side of the trough as the tule. Conneetion to the inmer ronductor of the line is made with a gride rlip. so that the point of comeretion can be adjusted for optimum results.

The eopper tubing is shoterd at the plate end with a hack saw to a depth of about $1 / \frac{1}{4}$ inch, and a strip of flashing copper soldared into this slot to make the phate connertion. 1 ropper tahathout the size of a one-rent piere is soldered to the other cond of the tubing to provide the stationary plate of ('a. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polsstyrene. This is centored at a point $5 \frac{1}{4}$ inches in from the tube end of the trough assemblys. The hole for the B-phus feed-through is $4 \frac{1}{4}$ inches from the same elul.

The movable plate of ("4 is soldered to a sorew ruming through a 1 nut soldered to the upper surface of the trough at a point 3 inch in from the opern end. If a line-thread somew is avaibable for this purpose it will make for rasior tuning. thourh at $6-32$ thread was used in this model. This made a wohbly contart, so a eoil spring was installed betwern the top of the trough and the knoh to kerp some tension on the adjusting sarew.

Aljustment of the f20-Mc. amplifier is made casior if : moise genmator is weed. though it is not as important an in the rase amplifions with tuned inpur cireuits. If the amplifier is working property there will be an appreciathle rise in nowe as the phato circuit is tuned through resomane, athel it may brat into aseillation if operated without losad. When commered to a following stage, with a reasomably -matehed antemathugred into J_{b}, the amplifier should not oseillate unk ess the coupling loop, L_{2}, is much too far from the immer conductor.

When the amplifier is operating stably and tund to a tost sigmal (or to a peak of response to a moise gemerator, the next step is to locate the optimum position for feeding the plate volt-

Fig. $16-27$ - Bothom view of the 190. Me. r.f. amplifier, with the slip-on rover remoned. The inner comdantor of the tank sircoit is held in place by a hlack of poly-

 loop may loe areol at the laft of this sulport. Heater, rathode and antemad-rircuit eomponents are in a separate compartment at the tule end of the assembly. The line is tumed at the opmosite end liy a handmade coppertabe eapacitor.
age inte the line. This maty be done by running a pencil lead slowly up and down the immer conductor, until an sot is found where touching the lead to the lime has lit the or no efle er on the operation of the amplifier. The plate voltage elip should be placed at this point and the process repeated, moving the elips slightly until it is at the minimumvoltage point precisely. This adjustment should be made at the midjoint of the tuming ramge over which the amplifier is to be used.

The pesition of the rouphing loogs should then be adjusted for hest signal-to-molise matio. This will probabley turn out to be with the insubated wire lying agatinst the inner conductor for a distance of ahout 3^{3} to \mid inch, starting at the minimum-voltage point just located.

A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The converter shown in Figs. 16-28 through $16-31$ is designed to provide high sensitivity and

Fig, 16-28-A erystal-controlled eonverter for 432 to 436 Mc , $\mathrm{H} . \mathrm{f}$, and miser stapes are in copper subassemblies at the risht. Oseillator, multiplier and i.f. amplifier are on the left side.

fifs, 16.29 - Jnterior view of the r.f. amplifier and mixar asomblies, 'The r.f. cirenit is a half-wave line. 'The shorter assmbly is the quarter-wate lime using a crstal dieute mixer.
signal-to-moise ratio in rereption of signals in the
 r.f. amplifier satge similar to the one shown in Fig, li-2in, workiag into at ervitat-diode mixer. The intermediate iremenes, with the dexign eromstants given, is :0) to in Me., though lower fro-
 of the injertion chatu.
(ivetat-rommolled ingeetion on 382 Mr . is provieded by two diJes operating as ofertome oseillat-tor-tripher and tripherdoubler, respertively: As
 this line-up) is not difficult to huiled or adjust. An inexpmise - Alde erstal is used. An i.f, preamplifier stage follows the ervatal mixer. This may or maty not be needed, depemeling on the performane of the rexember or converter that will sorve as the tumathe i.f. Low-monse amplifieation in the i.f. stage is a fartore in the over-all performance of the sytem. sul use of the built-in i.f. stage is recommended.

Construction

The comberter is built on a $7 \times 11 \times 2$-inch aluminum chasis, with the r.f. and mixer porthons in a copper sulatsembly that mounts on the top of the ehassis, at the right side as som in Figg. It-2x. 'The aswillator-tripler and tripherdoulaler thlos ane at the left front, with the fil3e-. i.f. anplifer at the reat. 'The mixer line is the short portion of the eopper assembly, with the r.f. amplifiow line at the right. In the bottom view, Fig. 16-30, the injection-chain and i.f. amplifier compoments are visible.

Fig. $16-2!$ is an interior view of the r.f. and mixer lines. These are mate as two separate atssemblies, joined by short length of copper tubing

Fis. 16-30-Bottom view of the 132-Ve, converter. slmwing the oseillator, multiplier and i.f. amplificr circuits.

that is visible in the top viens. Both tank cimenit: are ${ }^{1}{ }^{1} 4$ iuches square, with 1 - t imp moper
 shente of thashing copper If inches wide. The mixer eompartment is 5 it inches fong athe tho r.f. prombon is 10 inches long.

The r.t. amplifier is similar strueturalle to the owe deseribed previously, except for the method of mopling between it and the ervatal mixer. This is dome with a grid elip on eam line and a ceramie coupling wateritor. The lead from the capacitor, inside the amplifier line, is brought through a hatf-inch length of copper tubing that is soldered into the walls of both lines. The leat is insulated with spaghetti sereving.

The b-plus feed to the ref. stage should be at the print of minimum r.f. voltage, $17 / 8$ inches from the plate end of the eopper tubing. The coupling tit) is one inch out from the 13 -plus ferdpoint. 'The compling point on the mixer line is 1 inch from the ground end. The erestal diote is inserted in a smath holfe in the mixer imer comductor, $13 / 4$ inches from the ground end. Tha immer conductors of the r.f. and mixer lines are $73 / 10$ and $\overline{5}$ inches long, resperetivels. Nixar tuning is done with a smatl patatio trimmer, $C_{1,1}$, while the ref. phate reremit is tumed whin a hame mate tal, coapacitor, C_{9}, similat (o) C_{4} in Fig. 16-26.

Note the ref, bypass, ('8, on the ontside of the mixer line. This is made from a pieere of copery 7/8 inch in diameter, insulated from the line herusing be a piere of vingl plastic. Two thieknessers of the material commonly used for small parts envelopes are satisfactory. The rerstal, which maty be any of the o.h.f. diondes, is slipped through a close-fit hole and is held in phare he the wire soldered to its outside terminal.

Plate and filament voltares are fed into the assemblay on ferd-through by-pass ratacitors. visible in the top-view photograph. Antembat connoertion is mada through a enaxial fitting on the end of the ref. assombly. I arsial-ebrent jack, at-pin power fitting and two i.f. comberotors are on the end wall of the ehatsis. The serened coaxial comerter wats installed so that tosts combld be made with and without the i.f. amplifier stage.

Wiring in the power cirelits is done with shiedded wire, in case that TVI might result from the oscillater or multiplier stages. The addition of a bottom plate and power-lead filtering would then be eftertive. Injerem and i.f. coupling leads are also made of shiolded wire, this serving in plame of erax tine that sh harder to hatode.

The output of the injerelion chatin is compled into the mixer line he means of al loop, L_{4}, that is not visihb in the photogataphe This leop) 1 s mounted on the copper hase phate that is under the mixer and r.f, assembly, Its size and proximity to the mixer imner comductor are not partionlarly critical, as there is a surplus of injection umber ordinary conditions of operation.

Adjustment

The first step in putting the converter into opcration is to the up the oscillator and multiplier

Fig. 16-31 - Wiring diagram and parts list for the 432-Mc. crystalcontrolled eonvarter, Values given are for an i.f. of 50 to is Mc.
 (i.).
$\mathrm{C}_{2}, \mathrm{C}_{3} \mathrm{C}_{4}-20-\mu \mu \mathrm{f}$, miniature trimmer (Johnson 20111).
 2.5.
 111"|-300).
(is - Handmade coppor-talb bypasis: see lost.
(\% - Wandmande coper-tab, variable sere text.
 (1R.).
 lomp. tanpod at $1 \frac{1}{2}$ turns: (B N W Vimiduetor No. 300 ${ }^{-}$).
I. 2 - $\overline{5}$ turns Vo. 20 tinned. $1 / 2$-imeh diam., $3 / 8$ inchlong (13 \& 11 Minidator No. 30033).

$1.4-2$ thrns Do, 12 tinmed, $1 / 4$-ineh diam., $1 / 4$ inch long.
1.5-1 turn ins, wire luetweren turns of L_{1}. Way be inner condendar of shimded wird, with baid removed.

Lo - Halfowave line, $1 / 4$-inch copper tulting, $73 / 16$ melnes long.
 long.
Ls - Iamp of insulated wire 1 imeh long and $1 / 2$ inch high projecting throuph base plate on which line assemblies are momoted. Way be malue from inner eondmetor of shiddiol wire, with brad removed from last iwo inches.

1.n - 6 turns similar tor $l_{\text {a }}$.
 Alar-tumed form (Vational \R.91)
 end of lis.
J_{1}, J_{2} - Conxial fitting.
J_{3} - C loned-cirenit jack.
It - 1 -pin malle chatisis filtung.
 turns diam. of wire.
stages. This process is similar to the adjustment of at tramsmitter and will not be detailed here. Cherek to see that the proper frequeneies appear as indicated on the sehematic diagram. (only enough powar at 382 Mr, is needed to develoj about 0.5 ma. of aryat current. Anything from 0.2 to 1.0 mat is satisfactors. Adjustments should be made with no plate voltage on the r.f. stake.

Now comect the eonverter to a $50-$ We, receiver or comverter and peak the i.f. :mplifier
 plate voltare and feed a signal into the r.f. stage. Peak the rif. and mixer catpaniturs for maximum remonse at ahout 434 Me. There aljustments
(an be made on moise also, if the cirruits were -lose to resoname originally. If a moise generator is not available, the margin of signal over receiver noise that is obtaned on a reerived signal is also usable, if aljustments are math with cares.

The points of comertion for the 13 -phes and the coupling taps on the r.f. and mixer lines are aritical adjustments, but if the dimensions given alowe are followed catofulle the points should be Close to optimum. Adjust ments can be made and chereked readily if the r.f.-mixer atsimbly is motmed in plate temporatily with a few selftapping serews. (Originally deseribed in Jatnaty,

V.H.F. Transmitters

Transmitter stability regulations for the 50 Mc. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Mc., but incorporation of 144 Mc , and higher in the usual multiband transmitter is generally not feasible. Rather, it is usuatly more satisfactory to combine 50 and 144 Mc., since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Mc. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using erystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and receivers having the minimum band width necossaty for voice commmication make it possible for humdreds of stations to operate without undue interference in a band that would appear crowded if occupied by a dozen or less stations using broad-band receivers and unstable transmitters.

The use of narrow-band communications systems also pays off in improved efficieney in both transmitter and receriver. It is this factor, perhaps more than the interferener potentialities of the wide-band systems, which makes it dosirable to employ advaneed techniques at 220 and even 420 Mc . Stabilized transmitters for these bands are not too diflicult to build, and their use is highly recommended.

Choice of tubers suitable for this type of work is quite limited, but the advanced amateur who is
interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing loss. The 420-Mic. band is much wider than our lower v.h.f. assigmments, however, and interference is not likely to berome a limiting factor in this band for a long time to rome. Thus it may be more important, in some localities, to get activity rolling with any sort of gear, leaving perferetion in design to come along as the need develops.

At 420 Mc . and in the higher amateur assignments most standard tuhes camot be used with any degree of success, and special tubes designed for these frequencies must be employed. These types have extremely close chectrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Me, but best preformance is ohtained with the "lighthouse," "pencil tube," or coaxial-eleetrode types built espereially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 50.5 Me and narrow-band f.m, anywhere. Where suitable receivers are available to make best use of such emissions, either wide-band or narrow-band f.m. can provide affertive v.h.f. communication. Their use is particularly advantareous in congested areas where the freedon from interference to broadeast and trlevision reecption they enjoy naty permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be gratly different in design from those used for lower bands, and many of the ideas in Chapter six may be used to good advantage in the initial stages of the v,h.f. rig. The constructor has the choice of starting at some lower frequeney, usually around 6,8 or 12 Mc., multiplying to the operating freguency in one or more additional stages, or he can use a high initial frequeney and thus reduce the number of multiplier stages required or climinate them entirely. The first approach has the virue of emphying low-rost crystals, and it usually results in Ineter stability, but high-frequeney crystals may (effeet a considerable economy in power consumption, an important factor in portable or emer-gency-powered gear.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. tratnsmitters may make use of any of the circuits shown in Chapter 6, when crystals up to 12 Mc , are employed, but certain variations are helpful for higher frequencies. Crystals for 12 Mi . or higher are usually of the overtone variety, "lheir frequeney of oscillation is an approximate multiple of some lower frequeney, for which the crystal is actually ground. Thus 24-Me crystals commonly used in H4-Mc. work are S-Mc. cuts, specially trated for overtone characteristics. Vatil recent, yeats sueh crystals were tricky in operation and subject to excessive drift if oproted at high crystal current. The overtone erystals now being supplied are nearly as stable as those
designe: for fundaumat operation, and they ate casy to handle in properly designed circuits.

Best resulte: are usually obtained with overtone crestals if some regeneration is added. This makes for basy starting undor load and greater output than would be obtainable in a simple triode or tetrode circuit. Regenerative circuits, with constants for 8- or $2+$-ale crestals, are shown in ligs. 17-20 and 16-10. Triodes are shown, but the same arrangement maty be used with tetrode or pentorle tubers. The important point in either case is the amount of regeneration, controlled by the number of turns below the tap in L_{9} of Fig. 16-10 or the catpanitance of the smatler of the two bypasses in the $13+$ lead to the oscillator in Figs, $1 \overline{7}-20$:and $17-23$. There should be only enough feedback to assure casy orvstal starting and satisfactory operation under load; too much will result in random oscillation not under the control of the ervistal.

Overtone opreation is possible with standard fundamental-tyee erystals, using these circuits. l'ractically all will oscillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more critieal, however, if the crystals are not ground for overtone eharateristies, It should also be noted that the frequenery may not be an exact multiple of that marked on the erystal holder, so rave should be used in working with erystals that are near a band edge.

Crystals ground for overtone service can be made to oseillate on other overtones that the one marked on the holder. A 2t-Me. crystal, antually an 8-Mr, cut, may be made to oscillate on 40, 50, 72 Mc. or even higher odd multiples of its $8-\mathrm{Me}$. fundamental frequence. The circuits shown in the constructional material hater in this chapter may be used in this way, but there are several circuits that have bern doveloped especially for use with high-order overtones that matyerve the purpose botter. For a more complete discussion of overtond osedlator terhmiques, sie Qs'l for April, 1951, patge 56, and March, 1955, page 16,

Crystals are now available for frequencies up to atrand 100 Me. They are somewhat more expensive and more critical in operation than those for 30 Me and lower, however, so they have not been used widely in amateur work, exerpt where a saving in power is important. Use of 50-Mc, erystak is mate oceasionally as a means of preventing radiation of the harmonics of lower frequence crystals that might cause interference to television reception.

FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal precatation being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 144 Mc, and higher. 'To reduce the possibility of radiation of oscillator harmonies on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used.

Low-powered stages are casier to shicld or filtor, in case such steps become necessary.

Common practice in v.h.f. exciter design is to make the tuned cireuits capable of operation wor the whole range from 18 (1) int Mc., so that the: output stage ean drive dither an amplifier at 50 to 54 Me, or a tripler from 48 to $1+1$ Me, Tripling is often done with pash-pull stages, particularly when the output frequency is to be 144 Me, or higher. The output capacitaneses of the tubes in such push-pull eircuits are in series, permitting a better L / \mathcal{C}^{\prime} ratio than is possible with single-ended circuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Me., bat for 144 Me , and higher the tube types are limited to those having low input and output capacitances and compact physical structure. Leads must be as short as possible, and soldered ronnertions should be aroided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.

Plag-in coils and their associated sockets or jatek bars are generally unsatisfatory for use at 144 Mc , and higher because of the stray inductanee and capacitance they introduce. One way around this trouble is the dual tank direuit shown in Figs, 17-24 and 17-2i). Here the tank cireuit for 14 Me, is a eonventional tuned line, with its shorting bar made as a removable plug. When the stage is to be used on another band the short is removed and a coil is plugged into the jark, the line then serving as a pair of plate leads, Such an arrangement will operate as afliciently on 144 Me. as if it were designed for that band alone, yet it can be made to work properly on any lower band.

At 220 Mc. and higher it may be necessary to employ half-wave lines as tuned circuits, as shown in Fig, 17-29 (1 ' in place). Were the tuning eapacitance, insteat of being connected directly in parallal with the output ceipareitance of the tube, is at the far end of a haulf-wave line. I'late voltage is fed into the line near the middle, at the point where the ref. voltage is lowest. The proper point ean be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for 220 Me, and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. 16-14, modified for trimsmitting use. Driving power is applied to the cathode circuit, with the grid acting as a shicld, (irounded-grid amplitiers are stable, but they require high driving power. Some of the drive appears in the output, so both
the driver and amplifier must la modulated when amplitule modulation is used. For this reason the grounded-grid amplifior is used manly for f.m. applications.
Totrole and pentode amplifiers may operate without neutralization, hut it is advisable to plan for it in the original layout. With such tubes as the S29 or 832 mough nevtralizing capacitance can be ohtained by ruming short lengt hs of stiff wire up through the chassis alongside the tube plates, crossing them over to the opposite grid terminals below the chassis, Neutralization is adjusted by trimming or bending the wires.

Instability shows up frectuently in tetrode :mplifiers as the result of ineffertive sereon byphasing. in which case conventional emseberer meutralization will aneomplish little or nothing, The solution lies in series-resomating the sereen (irrouits to ground, as shown in lig. 17-25. The r.f. choke and calpariter valuses vary with frequency, so serem neutralization is essentially a one-hand deviere.

FREQUENCY MODULATION

Though f.m. has not ajoyed great popularity in rih.f. operation, probably because of lack of suitable recolvers in most v.h.f. stations, its possibilities should toot be overlooked, particularly for the higher bands. At 420 Me., for instance, the efficiency of most amplifiers is so low that it is ofton diflicult to develop sufficiont grid drive for proper a.m. sorvice. With f.m, any amount of grid drive may be used without affereting the atudio quality of the signal, and the modulation proeces adds mothing to the plate dissipation. Thas emsiderably higher power ean be run with f.m. than with atm. before damage to the tubes develops or the sigual is of perer quality.

Frequence modulation alsu simplifies transmittor design. The principal ohestade to greater use of f.m. in v.h.f. work is the wide variation in solectivity of v.h.f. remencors, making it difticult for the operator to ant up his deviation so that it will he sutisifutory for all listencrs.

- TVI PREVENTION AND CURE

Interforence to television recoption is not ordinarily so serious a problem with v.h.f. gear as with equipmont for lower amateur bands, where more hamoniss of the operating frequency fall within the television chamels, The principal ratuses of TVI from v.h.f. tramemiters are as follows:

1) . Ajacent-chamel interference in Chamel 2 from 50 Mc .
2) Fourth harmonic of 50 Mr . in Chamels 11 , 12 or $1:$, depemang on the operating fregumer.
3) Radiation of unused hammonies of the owillator or mattiphier stages. Dxamples are ath harmonie of 6 Ne., and 7 th harmonie of 8 Me, in Chatmel 2; 10th barmonie of 8 Me. in Chamel 6 ; 7 th hammonic of 25 - Me. stages in Channel 7; th harmonic of 48-Mc. stages in

Channel 9 or 10; and many other combinations. This may inelonde i.f. piokup, as in the eases of
 i.f. systems, and 48 - Dic, trouble in ho-Mc, i.f.'s,

1) Fundamental borking efferts, imoluding modulation hars, usuatly foumd omly in the fower channels, from $\mathbf{5 0}^{(0)}$ - Mc, equipment.
2) Image interference in Chamel 2 from 144 Me, in receivers having at $+5-\mathrm{M}$ \%, i.f.
(i) Sound interfereme (pioture clear in some cases) resulting from r.f. pickup by the andio cirenits of the TV receiver.
There are many other possibilities, and u.h.f. TV in gemeral use will add to the list, but nearly all can be corrected completely, and the rest can be sulstimtially reduced.

Items 1, 4 and are reveiver fatals, and nothing can be done at the tramsmitter to reduce them, exrept to lower the power or inerease separation betwern the transmitting and TV antemat sustems. Item 6 is also a receriver fatult, but it can be alleviated at the tramsmitter by using f.m. or c.w. instead of atm. phone.

Treatmont of the varous hamonie troubles, Items 2 and 3, follows the standard mothods detailed olsewhere in this Mamblook. It is suggested that the prospertive builder of now v.h.f. equipment familiarize himself with TVI prevention terhniques, and incorporate them in new construction projerts.
Ise as high a stating frequency as possible, to reduce the number of harmonies that might eatuse trouble. sideet arystal frequencies that do not hatve harmonies in T'V chamels in use locally. Jxample: The 10th harmonic of \& Mre restals used for operation in the low part of the sio- Me. band falls in Chamed 6 , hut ti-Me. arystals for the same frequence range have no harmonic in that chammel.
If TVI is a serious problem, use the lowest transmitter power that will do the job at hamed. Mach interesting work can be done on the v.h.f. bumbs with but a few watts output, particularly if a good antemat system is used.

Neep the power in the multiplier and driver stares at the lowest pratetical level, and tase link roupling in preference to cotparitive eouphing, particularly in the later stages.

Plan for completo shielding and filtering of the r.f. sections of the transmitter, should these steps beerome necerssary:

Use roaxial line of feed the antemat system, and locate the radiating portion ats far ats possible from TV receivers and antemata sustems.

Some v.h.f. TV tunces have removable strips that retu be replated with double-conversion inserts for uhaf. recoption. For a number of chanmels the first conversion frequeney maty then fall in or near the $H+-A(x$, band. Whare this mothod is amplosed for u.h.f. recoption the recoliwe is very sonsitive to $1 H-M E$, interferonere. The cure for this receiver fath is to replate the strips with others having it different conversion frequency, or use a conventional uhif. converter for reception of the channels from 14 up .

High-Power Transmitter for 50 and 144 Mc.

The gand described in the next sumeral pages shows how transmitting equipment for 1 wo wh.f. bands ean be comedinated in design so as to work from a single exeiter. If the buidere so desires, the station maty be oprated from one set of power supplies and sperech equipment, with a single sot of meters measuring the important currents in both transmitters. Farh item can be used be itself, on they rombine readily to rover looth 50 and $1+4 \mathrm{Mc}$., at a power level approwhing the legal limit.

In order of their description they are an exeiter (:apable of delivering up to 40 wat woutput at 48 to $5 \neq M \mathrm{c}$., a companion amplifier for the 5 ()-Ma. hand, a tripler-drivor-amplifier for $1 / 1$ Mre, and a dual antemat coupler for fording ano- and ItIMe. antemas having halanced lines. Their physical appearamer is such that they combine neatly for rack mounting, as seen in lig. 1/-1.

OTHE EXCITER

Thongh it is shown nomited on the same panel as the 50 -Mc: amplifior in Fig. $17-2$, the exriter unit might well be used aldone, as a versatile sol)Me, transmitter capable of rnnning up to about

tion watts imput. Provisiom is mate bor taking off
 of I_{2}, the lather labing userd for driving the $1.4+$ Mre, trijule to be deseribed later.

The mexiter is completely shiedded, and its power leads are filtored to prewent radiation of harmonics he the power cable la addition, there are built-in raps to aboorb buwanted oscillator harmonies that might otherwise be passed on to the amplifier, or to the antemma. Harmonies of this kind are particularly troublesome when they fatl in Chamel 2, which is so close to the operating frequenery that a filter in the antenna line is relatively ineffeetive against them.

The interstage coupling cirenits are of bandpass design. One they are properly adjusted they regnire no further tuning, when the frequency is changed over it t- Mc. range. Thus only the erystal switch and the ontpont plate circuit need be adjusted when changing frequency.

Circuit Details

The useillator is a aidis, using (erystals above (0 , 8, 12, or 24 Mc. for 14t-Ma. operation, or 6.25, $8.34,12.5$ or 25 Me. for 50 Mc . Its plate cireuit tunes 2 it 2^{7} Ite, quadrupling, tripling or douWhing the erystal fremumer. (Crystals at 24 to 27 Sire are overtone cuts that oweillate at one-thind the marked frefueney in this cirenit.) A series-tumed tratp, $L_{1} r^{\prime \prime}$, in the oseillater plate evirenit alosorls the third harmonie of (b-Mre. ervistals, "This 18-Me. enorgy otherwise would pass on to the next stage, where it would be tripled to a frecuenery in Chamel 2, This harmonie has been found to be a common caluse of bo-Me. TVI in (hamel 2 areas.

The doubler is also a babia. A sereond trap. ('4 $/ 4$, in the grid circuit, is tuned to the th harmonie of 8-Mte, cerystals, The two traps thas prevent radiation of emergy in Chamel 2, the most eritical transmitter problem a 6 -meter man is likely to encounter in correcting TVI, They rem be modified for other fre-

Fig, $17-1$ - A high-pwer r.f. sertion for
 clables a lamel-pase reviter for looh bable,
 panel, a tripler-driber-amplitier for IIt Br... and a dual antomat roupler for looth fremencies. I nit- can levererated with a single set of power suphli'\%, and with eom-mon-prech erpuipment and meters.
 Earder, left purtion on the assembly, alto servers on ||t Me. Amplifier utilizéa a -1-2. A, $4-2.00 \mathrm{~A}$ ar 1-f00.

quencies to suit loceal problems. An example is the 10th harmonic of 8-Mc, arsatals, that falls in Chamed 6. A trap for the sth harmonic of the erystal frequeney should take care of this.
'The 6140 amplifiev stage has a shunt-fed pinetwork plate rimenit. For best stability over the entire operating range the stage is nentralized. The choke, RF' ${ }_{4}$, is provided to short out the d.ce, voltage that would appear on the output eirenit if ('g shonld break down. The choke in the pate lead, $R P^{\prime} C_{5}$, is for parasitio oseillation suppression. Sote that rath of the there eathode loads is bypassed separately at the socket. The (exriter may be keyed in the 6i-46 cathode jark, J_{4}.

Double-tuned band-pass circuits betwem the oseillator and doubler, and Ixtwern the doubler and final, provide essontially that response from 48 to 52 Mr , or 50 to 54 Me A potentioneter in the doublar semen cirait provides exatation control for the (if 46 , and maty be used to compensate for variat ions in drive that may appear at some spots in the band.

The link winding on the doubler plate cirenit, $L_{\text {f }}$, is for the purpose of taking off low-lever 48Mre ontput to drive the tripler in the $1+1+$ Me. ref. unit. Note that the kering jack in the bitis athode rimuit is the open-eirenit type. Removing the key thas disables the $61+6$ stage, when the first two stages are being used in this way. Geparate heater and filament switches on all units allow them to be operataed separatoly. Highvoltage supplies may be keft commeded to all r.f. units, conergizing only the filaments and heaters in the ones being used.

Construction

The exciter is built on a $5 \times 10 \times 3$-inch aluminum wassis, with a bottom plate and a perforated aluminum cage to complete the shideling. The small knobs at the lower left of the front view are for the crystal switeh and the expitation control. The crystal switch has 12 positions. Ten are for the crystals on the multiple erystal socket
(Johnson No. 126-120-1). One more crustal position is provided on the front pand (at convenionere if you want to use a frequency not cobered by the 10 (rystals in the maltiphe sorked), athe the 12 th switch position is for an extemal v.l.o. It commerts the 5 atge grid to the coaxial s.for, input fitting, and shorts out $R F C_{1}$ and its marallel capacitor. The stage then functions as a froqueney multipher. The output frepturney of the v.f.o. could thus be in the $6-$ - 8 - or $12-\mathrm{Mc}$. range. Above the exatation control may be seen the knobs for the $61 / 46$ plate and output roupling eapacitors.

Three coasial comeretors are on the rear wall of the exelter. The one at the outside edge is for v.foo, input, The others are the doubler and fitti output fittings, Two t-torminal steatite strips handle the various power and motering leads, Adjarent to cach terminal exerpt the ground connection is a feed-through by-pass rapacitor to take the power lead through the ehassis.

TVI that might result from radiation of harmonics by the power leads is prevented by filtering of eath lead. The foed-through bypasses are ronnected to the exciter circuits through r.f. chokes, the inner ends of which are again bypassed with small disk ceramic eapacitors, ill power leads are made with shielded wire, bonded at intervals to the chassis.

The side virw shows the multiple crystal socket at the front of the chassis. Separate crystal sorkets may be used if desired. The oscillator and doubler tubes are in the foreground. The tratp rapacitors, (${ }^{\prime}$ and (${ }^{\prime}$, are adjacent to these tubes, while C_{2} and C_{3} are between them, a bit of their center line. To the rear of the 5 an 63 doubler are (5 and C_{3}. The grid tuning capatitor for the 6146 , (6 , is just visible inside the amplifier eompart ment.

I separate lead is provided for "ach power mipeuit, Fixed bias for the 6146 is brought in from the bias supply that is part of the high-power amplifior assombly. This bias is desirable to prevent the phate current from rising too high when
the exeftation is backed off. If the exeriter is used abone, fixed hias is umeecessary. Wxternal meters ran be comected in any of the circuits at the forminal strips

The sides, back and top of the amplifier eage are Kesonolds "Io-lt-Yourself" perforated ahominum sheret, now availahke in many hardware stores. The piedes are joined together at the corners with lengthe of ${ }^{3} 8$-inch aluminum angle which ran be bought or bent up from sheet stork. The toming and lowding eapacitors are momented on the frome of the cage, so this part should be at bieere of solid sheet storet rather than the periorated material. The dimensions of the cage are not -ritical. The original is $53 / 4$ inches deep, $25 / 8$ inches ampes, and 41 inchos high. Make provision for removing the top and out side sheets of perforated stork fer ronvenieree in serviedus, when the expiter is mounted against the amplifier unit. Wextension shatte and complinge brimg out the :mplifier controls to the pancl.

Inside the cage, the 6ilft can be seen with its seket mounted ahove the chassis on 1 , -iturh
 should comere to separate gremed lugs on the (og) of the chassis, with the shortast possible leads. This wising (ath be dome comveniontly bofore the serket is momented on the chassis if nuts are neod temperamily to hold the ground lugs in mare cove the sorket mounting serews. The nenmalizing adjustment, f_{s}, is monnted on the rear Wall of the catge, and wired to the dillip pate elip. and the feredthrough bushing with $3 / 8$-inch wide strips of thin copper, A eeramic insulator mometed on the wall mear the 61 fo plate (ap) supports the junction of $R P C_{5}^{\prime}, R F{ }^{\prime}$ 3, and C_{9}. An ordinary tis point supports the other end of RP'es and the shiedded perwer lead. The platere roil, Las, catn be seren in bark of the satias doublor tube, wired hetweon the statows of rin and
 Fin and hooked belwern its stator bar and a ground loge. A shom length of R(i-ăs IV roas runs down through a hale in the ehassis from ('11 over to J_{3}.

Most of the parts visible in the "hasenim vien ratu the iddutifed from our description of the pand, war, and topside layouts, The oscillator cathode dhoke. MFe's. am be som mounted upright mear the oscillator tube and erystal soments. Buth \quad Jati.3 sorkets should low oriouled so that loins 1 and is are adjacont to the outside chassio wall. A_{1} is visible betwern r_{1} atud the oscillator thbe sooked. Is and L_{3} run betwern this

 for erystal switch amd sulpul stape laning.
socket and that of the doubler. These mots are made from a single length of Minidector stock with the specified mumber of turns removed to provife spacing betwern them. The same applios to L_{5} and L_{i}. These atre to the left of the 6 titis
 The trap coils are mounted with their axes vertical, to minimize coupling to the hamd-pass mils, L_{6} is wound aromed and ermentod to the bypassed and of L_{5}.

The power load r.f. Whokes atre mounted hetweren singe-terminal tio peints on the rear lip, of the chassis and the fered-through capacitors. The disk coramic bypasses atre then applied to the tio boints. A single-terminal tio point monnted umer RFC' holds one and of the 3300 -ohm doubler sereen resistor and the land over to the terminal strip at the reatr. A double tie print is moment betwern the two artiz sockets to support the bypassed conds of L_{2} and L_{3}. Another over nearer the rear of the chassis supports the cold and of Ls and the bottom of the doublere grid resistor.

Wiring will he simplified by the following proardure Before mounting the arystal switeh, ground one terminal of cach ersestal socket through a bus wire. Conneret short lengths of timued wire to the other terminal of each socket. that will be under the switeh. Then when the latter is installed. the wires ean be rem to the proper contacts and soldered in place. Note that the front wafor of the switeh is used for shortinge
 are made to the rear water, which is more atrressible. The v.f.o. input socket is comeneted to the proper switch contact with a length of 1RG-58/U coas.

Fis. 1 - 6 - Interior of the (a. Wr. limal amplifiar. Plat lominge raparitor is mordilied meutralizink unit, left.

nut provided on the stator of C_{8}. The other is bolted to the short lemeth of copper strap previnusty fastomed to the stator of " $\%$. I lengeth
 Jes. At the ratamitor and, this rable is commered to lugs under the stator and frame mounting sorews.
solid sheet aluminum is used for the emelosure of this unit, as it must he reasomalby aitight exrept for holes direetly above the tube itself. The side that suppots f'z must he of fairly heary stock for sigidity. Home-bent $3 / 4$-inch angle stock was used to hold the assembly together. If the over-all height of the unit is kept to just about that of the $10^{1 / 2-i n d e h}$ ratek patnel, there will be emough clearame athere the tabe plate eomeretor.

Nost of the umderomassis components are visible in the bottom view. The grid cireut is near the front alge of the chassis. Copper strap conmerets the thbe soeket grid pin with the stator of ('o. In then is soldered hetween this strat) and at tie point. L_{1} is slid inside the cold end of L_{2}, and cemented lightly in phare.

The cooling fan sucks air in from the side of the amplifier near the back comer. The motore is monnted ont all aluminum brateket. The fatm as suplied will blow, rather lhith sump, so the hates must to thent lauk to meverse their piteh. I smatl piero of abminum window serecting shiedds the hole cut in the ehassis side for the fant. dias supply components ocoupy the lower left
quarter of the bottom view, Lavout and wiring of this pert ion of the rig is anything but aritional. Shiedded wire was used for all power leads. Bropassing at the power eomeretor should for dome with very shore leads, and (it should be monoted as close as possible to the high-voltage comertor.

Adjustment and Operation

An initial setting of the exciter eomtrols can la made before power is appliod, if a grid-dip moter
 introduce varying amonnts of geartaner arows the tumed cirouits when they ate adjusted, so some further adjusiment will be needed after these are sed up finally, but the following procedure will result in a chose approximat ion.

Disemmed one end ail Laz. Fig, 17-t. Comple the
 24.5 Mr. Watring the setting of (es at that posi-
 ('3 L_{3} to abont 2-9.5 Mr. Remonnere L_{2}, and the cirenits shomblat bot for operation on is to
 25.5 and 24,5 Ma.

Procedure for the seemod hamd-patse cirenit is similar exerpt for the fremenerios involved. For
 Me. Rewomed L_{i} amb disombert L_{5}, thaing
 $5-\mathrm{Mr}$, ratge these fredueneries would be atome 51 and 0.3 Me.

Fig． $17-7$－Schematic diagram and parts list for the $1-2.00 \mathrm{~A}$ amplifier，All capacitors marked ． $001 \quad \mu$ 个．are o（m）－adt disk ceramis．

 marlond IIド・1．i ），

 Dnlilier WM120才シ）．
（：－Disk－tyme capamitor with 3 －inch diam，phates （manle from Willon 1．3011）．
 F20）．

J_{1}, J_{2}－Coanial chaseis litting（Amphenol 83－1 lk）．
13－Chesed－cirenit phome jack．

（ KH_{2}－20－ma，allonimm rowilier（Federal II．59）．
I．－ 5 turns \o．2．1．，－imeh diam．， 32 t．p，i，（13 \＆W Minidurlor Vo．3（101）．
 Minidurtor No．301（0）．
 or more betwern the ground and heater termi－ nals，and a low－range meter from the doubler grid return terminal to ground．Insert reystals for the desired frequency range．Apply about 200 volts dee to the oscillator plate－screon terminal through a $5(0$－or 100 －mat，meter．Current should be 20 to 30 mat ，and grid current in the following stage should be about 0.5 ma ，when the voltage is increased to the normal 300 volts．Tourh up the tuming of the band－pase cireuit，if necessary， to get uniform response across the desired range．

The tralp（ireuits can be adjusted at this point， tuming for minimum signal at the frequency to be attenuated in earch case．A receiver tuning to the hamonic frequenceres is helpful．These will be about 18 to 20.2^{-}） 116 ．for the first t rits and 56 to（ $; 0$ ） Ic．for the serond，if they are for Chamel 2. A IV receiver on the ehammels to be protected maty also be used，merely tuning the traps for minimum TVI．Some slight readjustment of the

L：3－6 thms No，I2 tinned wire，l－imeh diam．，spaced wice wire diam．
I． 1 －Viltar choke，about lo－hy．low－mal．（＇Iriad （：－10 X）．

R_{1}－20，0010 ohms 10 watts．
 parallel）．

KNG：Colenoill choke，42 turns No．241 d．e．e．close－ wound on $1 / 2$－inch diam．， $21 / 2$－inch long insulator （ \ational（six－2）．
$s_{1}, s_{2}-$ single－pula single－throw toggle mitrh．
 （ $\mathrm{H}-30 \mathrm{~N}$ ）．
I_{2}－F̈̈lament transformer， 6.3 volts at 3 amp．（＇Triad （fi－16N）．
${ }^{\prime} \mathrm{I}_{3}$－Filament transformer， 5.2 volts c．t．at 15 am ． （Triad ${ }^{\prime}$－Ill）．
hand－pass cirenit maty be needed after the final trinp tuming is donc．
－ the motering terminal in the donblergrid rircuit． Connert a moter（0 to $\overline{\text { a }} \mathrm{ma}$ ．or more）bet ween the terminals provided for measuring the 6146 grid eurrent．Sot the sereen potentiometer，R_{1} ，to about the middle of its range and appl！about 200 volts to the doubler phate－sereen input termi－
 neatrly uniform resuonse acoses the desired range， using the 6 fif grid current as the outpont indiac－ tion．There should be at loast 2 mat．acouss a $4-$ ．Mc． rituge when the doubler plate voltage is raised to 300．Note that the sereen potentiometer controls the input to the doubler，and through it the exatation to the $61+6$ ．

The 48－Mc．output eompling adjustment，$L_{6} C_{7}$ ， may be rhecked at this time．The lime to a $141-$ Me，tripler stage should be ronnected to J_{2} ，and the series eapacitor，（z，uljusted for maximum grid current in the driven stange．lieetneek the
adjustment of the band-bass rireuit after this is done.

The $61 / 16$ amplifier stage hatd to be neutratized for stable operation. Its adjustment was not eritical, however, and C_{8} could be set anywhere near minimum capacitance with good results. Start out with its plates meshed about $1 / 8$ inch. With grid drive applied but no plate or screen voltage, tune the 6146 plate circuit through resonance, trying various settings of C_{8} until there is no grid current dipat resonamere.

A load for the $61+6$ output circuit is now required. This can be a 40 - or 60 -watt lamp, with a $50-\mu \mu \mathrm{f}$. capacitor in series to tume out its reactance. Adjust it for minimum reflected power, as indicated on an s.w.r. bridge. With the load connected and grid drive on, apply 300 to 400 volts to the amplifier plate and sereen terminal. Tunc C_{10} for maximum indicated output. Loading can be adjusted by varying ('11, retuning Cofor after each movement of C_{11}.

Reeheck for neutralization at this point, working for a setting of C_{8} at which minimum plate current, maximum grid current, and maximum output all oceur at the same setting of the phate tuning capacitor, C_{10}. The input can be run up to about 65 watts with plate modulation and 35-40 watts output should be obtained. Higher input can be run on c.w. Plate voltage should not exceed about 400 with plate modulation, though it can be somewhat more for e.w.

Now make a final check on the trap eireuits, if necossary. In case TVI is experienced, adjust the traps while someone watehes the TV screen, and see whether any improvement is possible. Remember that the traps shown were fesigned primarily to reduce Channel 2 interference. Where the trouble is with other channels, the traps ean be modified to reduce the offending harmonic as required. A low-pass filter or a 4 th harmonic trap will be needed if there is hamonic interference in Channels 11-13.
The amplifier as shown furnishes heater voltage and protective bias for the exciter. Hook together the 6,3-volt and ground terminals of the two units, and comnect the bias output pin on the amplifier to the 6146 grid return in the exeiter.

Apply 115 volts a.e. to the appropriate pins on the amplifier power plug. When s_{1}, Fig. 17-7. is closed, the exeiter heaters and the bias supplits are energized. The bias voltages are about 50 and 150 negative for the driver and amplifier, respertively. Closing S_{2} lights the amplifier filament and starts the fan motor.

For the initial testing of the amplifier disconnect its fixed bias supply, by lifting the connection between R_{1} and R_{2}, so that instability will be more evident. Conneet the output of the exeiter through a length of coaxial cable to J_{1}. Hook a 0-25-or 0-50-ma, meter to the terminals provided for measuring grid current. Turn on the exciter and adjust the driver output and amplifier input for maximum grid current. Set this current between 10 and 15 ma. with the excitation control, R_{1}, in the exciter. To insure proper adjustment of the amplifier grid circuit, insert ans.w.r. bridge unit such as a Mioromateh in the coax connecting the driver and amplifier, and tune ('1 and C_{2} in the amplifier alternately for minimum reflected power, Adjust the driver tuming for maximum forward power.

Never apply sereen voltage withont having the plate voltage on also, and do not operate the amplifier without load. Dither will result in exressive screen dissipation, and almost certain tube failure if continued for any length of times, A usable chummy load for testing can le made by connecting two or more l(N)-watt lamps in parallel, A variable serios capacitor, $50 \mu \mu \mathrm{f}$. or more, will be helpful in making the lamp load something like jo ohms, resistive, at this frequenc:

It is well to start with something less than maximum voltages in testing. If the plate voltage is under 1000 and the serreen voltage about 200 to 300 volts, little harm can result if something is not quite right. With the dummy load commeted, apply plate and screen voltages. sict Cow near the mitdle of its range and tune C 7 for maximum out put. If this occurs at or close to the end of the tuning range of C^{7}, adjust the spacing of the turns in the plate eoil accordingly. Aljust C's for maximum output, returning \dot{C}_{7} as required. If the grid current dropped below 10 ma . under load,

Fis. 17.8 - Bottom view of 50. Mc. exciter and amplifier. Note that the two units are huilt separately, though they mount together on a single panel. Amplifier unit inclades bias and filament supplies for both.

increase the drive with the doubler sereen potontimmeter in the exeiter.

Cherek now for stabilits: Briofly ant off the drive and ser if the amplifier gride current dops to zoro. If it doesu't, the amplifier either needs neutralization, or it has a parasitic ose illation. If no grid current shows with drive removed, note whether, when drive is :upplied and the :mplifier is tuned properly, maximum output, minimum plate current and maximum gride current all oerour at the same plate tuning. If they do, the amplifier is operating satisfactorily.

If oseillation doos show up, check its frequeney. If it is mush higher than the operating frequency (probably ower 150 Me.) v.h.i. parat sitic suppression measures are in order. If it is in the so-Mre. region, neutralization will be required. These troubles are most common in multibund dexigns, and unlikely in a lavout of this solt. Neut matization of the ceapacity-bridge trpe, like that in the exeitere, wan be incorporated roadily, and parasitio suppression is covered in detall elsewhere in this Hambook, Neutralization maty require additional grideplate raparitaner in some layouts. I'rovision was made for mentralizattion in ther original lagout (exphaning the phaged hole in the front painelf, but it was found to be umberessary.

When the amplifier is operating stather, the plate and sorecn voltaigs may be inereased in ancordane with the tube mandiacturers ratings. for the trpe of operation intended. Gperating ronditions are different for the there tules which can lo used and they should follow the mannfarturen's reommendations. This is not to saty that variations from the published data are unsate or undesirable. Any of the values can be varied ower quite at range if the maximum rating for eath tube clement conerned is mot exereded. In this commertion, it is highly desiatable to provide continuous motering for the grid, soreon, and plate currents. This, with a knowledge of the applied voltages, will helpinsure proper operation and make correct adjustment a simple matter.

A 144-MC. DRIVER-AMPLIFIER

The unit shown in Figs, 17-9 through 17-11 is a threr-stage triphr-driver-amplifier that mas be uned with the exeiter just deserihed. Driving power at 48 Me, may be taken from the choulser stage (by connerting to Γ_{2} in ligig. $17-4$) or from the output stagr, rumning it low power. Almost any $\mathbf{2 0} 0$-Mc. transmitter of 3 to 5 watts output could be used hy substituting a suitable erystal and rotuning the stages for operation at is to
 able, the tripler stage may be dispensed with, in which case about 5 watts drive on IIf Me. is required.
This sertion of the station is built in two parts. The tripler athd driver stages are in the smatl portion at the right of Fig. $17-9$, with the final stage at the heft. All are push-pull stages, the tripler and driver using dual teterodes. The tripler is an Amperex (i360), followed low an Red 6in24 straight-through amplifier. This drives at pair of 4-125As in the final stage.

Input to the $4-125$ as (an be up) to 600 watts on a.m. phone. wr sol watts om c.w. or f.m. By suitable :adjust ment of sereen and plate voltages the pewer eat be dropped as low as 1 and wat th input and still matintatin good officionery. Some mealls of reducing power is highty desirable, as most opration on 1/4 Mr. ciun be carried on satisfactorily with how power.

The Driver Portion

The tripler and driver stages, Figs, 17-11 and 17-12, both operate well below their maximum ratings. Self-thued grid rirouts are used in eath stage. This simplifics construction, and in the ease of the driver stinge, reduees the pessibility of self-oscillation. With a surplus of drive available, the grid cireuit of the $600^{2} 1$ may he resonated as low as 1330 Me . There is little tendeney to tumed-plate tumed-grid ossillation, therefor, and nentralization is not requied.

Tripler and driver are built on a standard $5 \times 10 \times 3$-ituch aluminum rhassis, with the ripler at the back. Its patare cirentit is thmed from the front patmelby and extension shatht. Omission of the screen bepass on the tripler is intentional ats the stage works satisfactorily without seremb hepossing.

The diad is cisily over driven. This may be corrected by squcezing the driver grid eoil turns

Fis. 170-Tho hish-power 2. neter rig, with shideling enclomiters in place. The small unit at the risht honses the tripler and driver stages.
closer together, lowering the resonant frequency until the desired 2.5) to 3.5 ma . is obtained across the band. The farther it can be resonated below 144 Mc. the less likelihood there is of self-oscillation in the driver stage.

The (ij2t is mounted horizontally, and holes are drilhed in the chassis under the tube to allow for air circulation. Plate leads are made of thin phosphor bronze or copper, bent into a semicirele, comereting the huterfly eapacitor and the heatdissipating romerotors. This allows the latter to be removed for changing tubes, without putting undue strain on the plate pins. The connectors have to be sawed or filed down on the insides to fit on the bio2t pins. The eoupling link at the driver plate circuit is tumed, to provide efficient transler of enorgy to the amplifier grids.

Small feed-through hepassos are used in the driver sereen circuit. C_{5} is monnted in the alominum plate that supports the 652.2 socket, and C_{6} is in the chassis surface.

Amplifier Features

Design of the $4-125.1$ grid eireuit is important in arheving efficient transfer of energy from the driver stage. 'The input capacitance of the large tetrodes is so high that a tumed grid eirenil of conventional design camot be used at $14 /$ Me, so a half-wave line is substituted, as shown in ligs. 17-1:3 and 17-1t. The input coupling link is series tuned, permitting adjustment for minimum standing wave ratio on the coaxial line ronnecting it to the driver stage output link. The grid line, $L_{1} L_{\mathrm{s}}$, is made of $1 / 4$-ineh eopper tubing, to reduce heat lesses.

Maintaining the +125.1 screens and filamont leads at ground potential for r.f. is necessary for stability. To this end, the tube sorkets are mounted above the chassis, rather than below. They are elevated only enough to allow the socket contares to clear the chassis, and are mounted eormer to cormer, with the inner corners almost touching, The grid line is brought up through lexinch chassis holes and soldered directly to the grid contarts. 'This determines the line spacing, about 11%-inches renter to center.

The inmer filament terminals on each socket are grounded to the chassis. The ot hers combere (o) feod-through bypasses with the shortess possible leads. These are joined under the chassis with a shielded wire and tied to the filament transformer. The r.f. whokes in the soreen leads are under the chassis, their wire leads coming up) through Millen trpe $32 t 50$ feed-through bushings inserted in chassis holes under the sereen torminals. The two sereon terminats on eath sooket are strapped fogether with a ${ }^{3}$ g-inch wide strip of flashing copper, The screen nemtratizing rapacitor is mounted as close to the sockets as possible and still leave room for the shaft roupling on its rotor. Leals to its stators are about one half inch long.

More compact and symmetrical design is possible if a modified single-sertion capacito is used for C_{6}. It should be the trpe having supports at hoth ends of the rotor shaft. The Millen 19140 and Hammarlund $\mathbf{M C}(1 \cdot 10$ aro suitable units for the purpose, "lhe stator bars are sawed at each side of the ernter stator phate. The front rotor plate is removed, making a split-stator variable with 4 phates on cach stator and 8 on the rotor. This proeedure may not be applicable to all $1+0$ - $\mu \mu \mathrm{f}$. eaparitors, but any mothod that results in a balaneed unit having about $50 \mu \mu \mathrm{f}$. per sere ion should do.

Construction of the final plate circuit shoutd be elear from Fig, 17-10. Timing is donc will parts of a disk-type neotralizing capacitor (Millen 15011) monnted on ceramie stand-ofis 31.2 inches high. These are made of one 1 -inch and one 2^{1} z-inch stand off earh, lastened together with a threaded insert. Commection to the lines is made with eopper or silver strat), t^{1} 关 inches lrom the plate cond. Silver phating of all tank circuit parts is a worth-while investment, though it should not be considered a neerssity. A shalt roupling designed for high-voltage servier is attached to the threaded shaft of the movable plate, and this is rotated with a shat ol onsulating material brought out to the front panel.

A word about the extension shafts is in orden at this point. If they are of motal they may have a serious detuning effect in some ribeuits, aron though they are comented through insulating coupdings. Bakelite rod is fine. but since the insubating qualitios ane of no impor-
 will do the jol, just as well. Lurite or polystyrene rod will

Fig. 1 -IO - Bear view of the 4-12.54
 notar the mididle of the picture is , the gereen neutralizing allymunent. The pate line is tuned with a capacitor made from parts of a neutralizing unit, mumed on ceramic stand offs.

 zon [01.引!
($3-25-\mu \mu$. arrendriver-aljustment sariable (IIam. marhmel \P(.-2.

 . $\mathrm{x}(\mathrm{m}) \mathrm{I}$.
 re-i=for- in parallef.
 reaintor- in (harallat).
 Inal- In I_{1} and $(\%$
 ter tapped (B N $\mid I$ Vinidmetor Vo. 30N:).
1.3-3 turni Vo. 11 rotamel. 3_{4}-inch diam, spared 11 is inell. conter-lipurd.
not stand the heat and should not be used.
The final chatssis is ahmmom, 10 by 12 by 3 iuches, matehing up with the driver chassis to fit into a standard 10^{2}-inch ratek pancl. Comphete emelosure is a must for TVI prevention, and it pays dividends in imporeved stability by providing effertive isolation of rimenits that tend to give trouble in open latyonts.

The enclosures were madeby mounting $\frac{1}{2}$-inch aluminum :ugle stock around the edges of the rhassis of both units and cutting the sides and covers to fit. It was mot intended to cool the driver unit originally, so the enclesure wats made of perforated aluminum. The blower for the final provided plenty of air, however, so three holes atre made

Fig. 17 -12 - Sitle virw of the tripler and driver stagres. Cail adjacent io the 6360 tripler tuhe is the grid eail for the 6idi driser, I'late loads for the drimer lute are lloxithe empner -trapa, to permit remosal of the tube from its sonchet, Serewdriser adjustment at the lower right is the reate athe tuning capacitor for the tripler ingut link.

The somewhat random appearance of the front panel is the result of the development of the unit in experimental form. A slight rearrangement of some of the noneritical eomponents could be made to achieve a symmetrical panel layout readily enough.

Operation

The two units have their own filament transformers. Plate supply requirements are 300 volts at 50 mat. for the tripler, 400 volts at $1(0)$ ma. for the driver, $3(0)$ to 400 volts at 75 ma . for the final screens and 1000 to 2500 volts at $4(0)$ ma. for the final plates. The driver plates and final sereens may be rum from the same supply, but more flexibility is possible if they are supplied separately. A variable-voltage supply for the final screms is a fine way to control the power level.

In putting the rig on the air the stages are fired up separitely, begimning with the tripler. A jack (J_{3}, in Fig. 17-11) is provided on the front panel for measuring the $\mathbf{b i 3 6 0}$ grid current. . Drout 1 mat through the $150(0,0$ (0)-ohm grid resistor is plenty of drive. The series capacitor, C_{3}, in the link can be used as at drive adjustmont, if more than neressary is available.

Next plug the grid meter into the 6524 grid current jack, J_{4}, and tune the $6: 360$ plate cireuit for maximum grid current. If it is higher than 3 to 4 mas. increase the inductance of the grid coil, L_{6}, by squeezing its turns eloser together. Now apply plate and screen voltage to the 652.4, and check for signs of self-oscillation. If the plate circuit is tuned down to the sime frequency as that at which the grid coil resonates with the tube eapacitance, the stage may oscillate, but if it is stable across the intended tuning range there should the no operating difficulty resulting from a tendency to oscillate lower in frequency, and no neutralization should be needed.

Conneet a coaxial line hetween the driver output and the final grid input preferably with a standing-wave bridge connected to indicate the standing-wave ratio on this line. Tume the driver plate circuit and its series-tuned link for maximum grid current in the final amplifier. Adjust the final grid tuning, C_{1}, for maximum grid current, and the series eabucitor, C_{3}, in the link for minimum reflected power on the s.w.r. bridge, Adjust the coupling loop position for maximum transfer of power, using the least coupling that will achieve this end.

Adjust the screen neutralizing capacitor, C_{6},

 lund $1(\mathrm{FO}$
C_{2} - Plate tuning capacitor made from Villen l.0011 nentralizing mit: see text and photo.

$\mathrm{C}_{4}, \mathrm{C}_{5}-\boldsymbol{O}(\mathrm{H})-\mu \mu \mathrm{f}$. feed-throngh by-pass (Centralab) FTC.(1)

Make from Villen 19110 or Hammarlund MC:I10; see text.
(7 - $2.5-\mu \mu$. variable (Johnson 2.5L1.i).
(is - 0.2 in- μ f tubular.

 112 inchre erenter to evter. Bend arennd 112. inch radia= I inch from krid end.
1.3- I.orp made from 5 inches Xo. 111 enamel. D'ortion coupled to line is 1 inch long each side, about $3 / 8$-inch from line.
$14, L_{5}-1 / 2$-inch copper tubing 12 inches long, spaced $11 / 2$ inches eenter to center. Bend around 3 -ineh radins to make line t inches high. Attach (iz $41 / 2$ inches from plate end.
I_{6} - Loovp made from C inches No. 11 enamel. Sides spaced $11 / 4$ inehes.
1.7 - 5 -hy, (min.) 100 -ma. rating filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female ($\mathbf{I m p h}$ henol 83.1 Hi),
$\mathrm{MA}_{1}, \mathrm{MA}_{2}, \mathrm{MI}_{3}$ - External meters, not shown; 100, $2(0)$ and $5(0)$ ma.
M - Motor-hlower assembly, 17 r.f.m. (Ripley Inc., Middletown, Conti, TYy y 8133).
 ynired.
s_{1} - Toggle switeh.
s_{2} - Rotary jack-type switch (Mallory 2:0).
T_{1} - Filament transformer, $\overline{3}$-volt li3-amp. (Chicago FO-513).
for maximum final gride eurrent, with the plate and sereen voltages off. I wo wot attempt to min the linal stage withont lawd. With a fixed sereern supply the screen dissipation groes very high when the plate load is removed or made too light. It is important to meter the sereen current at all times. With 4 -125.is danger to the plates f:un be detected by their color, but the sereen current is the only indication of possible damange to that clement.

There is no suitable inexpensive dummy loud for testing it v.h.f. rig of this power level. The best load is probably an antenna. This oan be an indoor Lammatmatched dipole, fed with coas. Its series capacitor should be adjusted for a standing-wave ratio close to $1: 1$. The Micromatch can be used in this operation, but adjustments should le made at less than full power. Wateh for any sign of heating in the bridge unit.

The position of the (roupling loop, $L_{6 \text {, }}$, should be adjusted for maximum transfer of energy to the antema, keeping the coupling as loose as possible. The series caparitor, C_{7}, ath be used an a loading adjustment thereafter. If the sareen voltage is continuously variable it will be found that there is an eptinum value around 32 to Bis) volts.

Below are some conditions under which the rig has been operated experimontally:

Nage	E_{1}	$I_{\text {r }}$	$E_{\text {во }}$	I_{60}	I_{g}
Tripler	300 v	3.5 ma.	-	-	1.5 ma.
Jriver	4000	12 ma	-	$8 \mathrm{ma}$.	3-4 ma.
Jinal	1000 v.	300 ma.	400 v .	$(50 \mathrm{ma}$.	22 max
lunal	2000 v.	3350 ma.	350	45 ma.	20 ma.
Jinal	2.000 v	100 ma.	320 v	40 ma.	18 ma.

The first and third conditions given for the final stage represent extremos, both exceeding the tube's ratings in some way, so they are not preommenderd. At low plate voltages the sereen hats to be run above reeommended ratings to make the tubes dratw their full rated phate current and operate efficiently. It high plate voltages the screen dissipation drops markedly. The use of t-125is at a full kilowatt input excerels the manufacturer's maximum ratings and is done at
the user's risk. 'To "purate safoly, the maximonn plate voltage for voice work at Itt Wa. shoutd probably wot go ower 20kh. At his leved the tubes will handle bion watts input on voise, and $\begin{gathered}\text { and } \\ \text { Watts on e.w. easily. }\end{gathered}$

Modulation and Keying

Keying is done in the sereen cireuit of the driver stage, and in the screen and plate circuits of the tripler. Cathode kesing of the driver was attempted, but it caused instability troubles, so wits abandoned. The sereen method makes the key hot, so an insulated key or at keving releyr must be used in the interest of safety. The keying jark must be insulated from the panel.

Fixed bias for the fimal amplifier is provided by the VR-tube metherd. When the tube ignites at the appliation of drive. the eapacitor C_{8} charges. Removing exritation stops the flow through the V'l tube and leaves the negative charge in the capacitor applied to the amplifier grids. The effectiveness of this sustem requires a low-leakage eaparitor for ('s.

Modulation is applied to the plates only. A ahoke of about 10 hemrys is comected in the sereen lead, or the modulation ran be supplied through a sereen winding on the modulation transformer. The by-piss value in the sereen eircuit should be low enough to avoid atfereting the higher audio frequmeres. Ocoasiona!ly abdio resonance in the sareon choke maty ramse a simging reffect on the modulation. If this develops, the choke may be shumed with a resistor. Use the highest value that will stop the simging.

In neutralizing the $4-125$ As it maty be found that what appears to be the best sotting of the sereen rapacitor will result in a very large drop in grid current when plate voltage is applied. The setting maty be altered slightly, raising the full-load gride current, without adversely affecting the stability of the amplifier. The final cheek for neutralization is twofold. There should be no oscillation when drive is removed; and maximum grid current, minimum phate current and maxi-

Fip. 17-14- Undererhassix viow of the e-meter transmitter. Tripler grid and plate ciremis are at the wher Left. Only two of the three jacks on the front panel show in the lower arft, "The half-wave line used in the 1-12.7A prid circuit is the matin item of interest in the amplifior section. lhoth mite are titted with botom cowers. to provide ahieldink and confine the flow of coroling air to the desired areas.

F̈g. $17-15$ - Antenna couplers for 50 and 141 Mc. designed for use with the high-power transmitters on the previous pages.
mum output should all show at one setting of the plate tuming caparitor. The latter condition may be observed only when the amplifior is operated without fixed bias.

- ANTENNA COUPLERS FOR 50 AND 144 MC.

The antoma romplers shown in Figs. 17-15, and at the top of Fig. 17-1, cim be used with :2-
 lines of any impedance from 200 to 600 ohms or more. They were designed for use with the highpower transmitere doscribed previously, but may be used at any power level.

Construction

The two couplers are identical circuitwise. They are built inside at standard 3 by thy 17 -inch aluminum chatssis, with a bettom plate to complate the shodding. The mand is $31 / 2$ inches high. If only one compler is required, a 3 by 4 bey 6 -ineh utility box a an be used. Terminats on the bark of the ehassis include a coaxial input fitting and a two-post output fitting for carch coupler. The rincuit diagram, lig. 17-I6, serves for beth.

The 50- 11 e, roils are rut from commerciallyavailable stork, though the ean be made by hand if desired. The couphing winding, L_{s}, is insorted inside the tuned cireuit. The polvethyene strips on which the coils are wound keep the two coils from making elertrical contact, so no support other than the wire leads is moded.

Leads to L_{1} are brought out betwen the turns of L_{2}, and are insulated from them by two sleeves of spaghett i, one inside the other. bo not use the soft vinyl tape of slecring, as it will melt too rewdily if, through an accident to the antemat ssistem, the coil should run hot. In the $14+-$ lle. coupler the positions of the coils are reversed, with the tunced circuit, L_{2}, at the center, and the roupling roil outside it.

Similar tuning capacitors are used in both eouplers, but some of the plates are removed from the one in the $144-\mathrm{Mc}$ e. cirenit. This provides easior tuning, though it has little effect on
the minimum caparitance, and therefor on the size of the coil.

Adjusting the Couplers

An :untemat coupler can be atjusted properly only if some form of standing-wave hridge is comberted in the line between the teansmitter and the compler. If it is a power-indieating type, so much the bettar, as it then "ath he used for adjusting the transmitter loading, and the work can be done at normal transmither power.

With the bridge set to reat forward power, adjust the coupler capacitors and the transmitter tuning roughly for maximum indiation. Now set the bridge to read reflertod power, and adjust the antenna coupler capacitors, first one and then the other, until minimum reflereded power is

F̈ん. 17-76- Circonit and parts information for the v.h.f. antemana couphers.

 4 stator and 1 rotor plates in earh sertion in 141-Ma, coupler for pasier tuning: sere text.
J_{1} - Conial tittink female.
\mathbf{J}_{2} - 'Twopost lerminal assembly (D atimal folll).
$L_{t}-50$ Mc: 1 turni $V_{0,} 18$ timed. I inch diameter,

141 Mr: 2 turns No. II enam.. 1 inchi diameter, 1/6-inch sparing. Slip oure La liefore mombing.

 turns from cach end.
H1 We.: 5 turns No. IO timed, $\frac{1}{2}$ inch diancter, inch long. Tip $1 \frac{2}{2}$ burn from each end.
arhieved. Couless the line input imperdane is very highly reactive, it should be possible to get the rethected power down to zero, or wery close to it, Adjustment of the roupher is now complete. Tuning for maximum transfer of power from the transmitter is done entirely at the transmitter.

Progressive Station for 50 and 144 Mc.

The three units shown in Figg. $1 \overline{7}-1 \overline{7}$ are designed to serve several purposes. The two smaller ones are complete r.f. sertions for use on So and $1+1 \mathrm{Me}$, at the 15 - to 25 -watt level. The wher is an amplifier capable of ruming up to 125 watts, phone or (c.w., on both bands. The exeiteres may be keyed or modulated also, and their low power consumption makes them ideal for mohile servire or home-station operation at moderate power.
The splatate 25 -watt rigs are as similar as pussible, meehanimally and cheotrically, the tubes and many of the parts being interchangeable. ('ireoutry is similar, and their design is amed at moderate duplication cost and rase of construction. Both are assembled on 5×10-inch ahminum ph:tes that fasten to standiard 3 -inch thassis of the stme size. Covers of perforated aluminum $3^{1 / 2}$ inches high provide shichding and prevent damage to components when the rigs atre used for mobile sorvice.

Circuitry

The oscillators use a thimbovertone circuit, with 8- or 24-2te, ervatals for 144 Mre, and $8 . t-$ or 2.)-Me. (exstals for 0 () Me. in one half of a 12415 duad triodes. The other triode doubles to 50 Me. or triples to 72 Me. The $50-$ Me, doubler drives a $21: 26$ amplifier. An extra stage is noeded in the $11!-\mathrm{Al}$ e, rig. This is another 12.17 T , with its triodes romereted in parablel, doubling to 1.1! Me. The amplifier is a 2E26, Neutralization and interstage coupling mothots diffor in the two amplifier stages, but operating conditions are gencrally similar.

The :mplifier for higher power has a pair of Gilti tetrodes, with changeable tank circuits for operation on both bamls. Input and output capacitances of such tubes are too high to promit use of ordinary plug-in coil arrangements on $1+4$ Me, so a quarter-wave line for 144 Me. and at plug-in coil for 50 Me, are used in the phate circuit. No tuning eapacitance is used in the
grid circuit, the plug-in indurtances being resonated by the input capacitance of the tubes alone.

Figs. 17-2 1 and 17-25 show how the plate circuit works. I 141 -Mc. line of strips of flashing copper is completed at the far end from the tubes by means of a combined plug-in short and 13 -plus connection, $P_{2}-L_{4}$. The tuning capacitor, (${ }_{2}$, is tapperl down the line 2 inches to minimize its loading effert on the line at $1+1+\mathrm{Mc}$, At 50 Me , the line is merely the pair of connereting leads to the phug-in coil assembly, $L_{4}-L_{25}$. separate output coupling arrangements are provided for the two bands, but these are tuned by a common series caparitor, (3. The 14-ALe couphing loop is fitted with :a 300 -ohm-line plug, fitting into the crystal sockrot, J_{4}, visible in Fig. 17-24. It is removed when the $50-$ Mc, coil is plugged into the coil socket, I_{3}.

Of special interest is the protertive circuit used to keop the 6146 plate current within bounds when drive is removed. A 12AC7 surves as a combined cathode follower (right in Fig. 17-25) and d.e. amplifier (loft). Normally the d.e. amplifier is cut off by the bias eleveloped across the amplifier grid leak. Voltage applied to the rathode follower is determined hy the voltage divider. Its cathode follows the voltage on its grid, so adjustment of the potentiometer allows the desired voltage to be applied to the 61 16 screens, Loss of driva removes bias, catusing the dee amplifier to comduet heavily. Voltare drops arross the 1 -megohm resistor in its phate cireuit, and this low voltage is applied to the 6146 sirens through the cathode follower.

This simple device not only protects the amplifier tubes in cose of drive falure, but it serves as a convenient means oi coutrolling input, for tuning up or for local work where lews than full power may be desirable. With a 100 -volt supply, input to the $61 / 16 \mathrm{~s}$ can be varied from 20 to more than 125 watts without changing loading adjustments.

Fig. 17-17 - A 190-wath transmillor for 30 athl 111 Me. 'The top anit is the amplifier, the two lower units are r.f, seretions for drising the amplifier on either band.

- BUILDING THE EXCITERS

Parts layout for the low-power rigs is not particularly eritiond, exempthat 1At-Me r.f. leads must be kept extremely short. All parts exeept the output and power connercors are mounted on the alaminum platers. Latats to the connectors

Fig. 17.18 - Top view of the 50. Me, rig, with cover removed.
are made long enough so that they can be fastened in place on the back wall of the chassis and still permit the plate to be lifted for adjustment or sedviding. Witing of all power leads is done with shiolded wire ats an atd to TVI provention.
Oweilator components are arranged identically in the two units. Looking at the top view of the s0-Mc. rig. Figg. 17-18, we sere, laft to right, the arystal, oseilator-doubler tube, doublar plate tuning, $21: 26$, final plate thning (front) and antemat suries trimmer (rear). The screw adjustmont in the lower left comer is the oscillator plateroil slug.

The 2-meter rig is photogratphed the other way around, to show the power connector and coaxial fitting. The 12.17\% paralled doubler is in the midelle. Just in batek of it is the adjust ment for Ce. The 2 Fot grid trimmer. C_{3}, is to the right and in batk of the amplifier tube. The plate coil. upper loft, partially hides its trimmor. In the foreground is the antenna series trimmer. C_{5}.

The 50-Me, hottom view, Fig. 17-1!), shows the oscillator-doubler parts at the right. Doubler plate and amplifior grid coils are mear the middle. The 2 P2t plate coil is to the laft of the tubers sorket: the tuning rablemer below. The smaller roil is L_{5}, with ('3 :thoye, The / 1/-Mre bottom view is mome open, and repuires liftle explatattion. Note the differenere in the mounting of the interstage coupling roils in the two units.

Testing the 50-Mc. Rig

Cherking the ourextion of the tranmitters is made ebsy hey the power eonnertion mothod shown in Fig. 1-20. Bateh power leod is brought out to a sumatate tominal on the power fitting.
 in eath ripotat. A pown supple dolivering 6 bi; volts atce. or d.c. at 1.5 amp, athed 200 to $3(0)$ volts iat 100 mat, is suitable for test work.

Apply plate voltage through a $50-$ or $100-\mathrm{ma}$. meter and lin 3, and cheok for oscillation, tuning the slug in L_{1} for a kick in plate current. ('urrent will be 10 to 15 mat. Listern to the note in a recoiver tuned to the frequeney of oseillation (25 to $2 \overline{7}$ Me.) or a harmonic thereof. If the oscillator is erystal controlled, there should be no more than a slight shift in frequeney as the hand or a metal object is moved now the plate coil, L_{1}.

Noxt connert the supply directly to l'in :3 and loed Pin 4 through the test meter. If a lowrange meter, $0-10 \mathrm{mat}$ or so, is availathle, commert it between lin $\overline{5}$ and ground to measure the $21: 26$ grid current at the same time. Tune the doubler plate circuit, C_{1}, and the oscillator plate coil slug for maximum grid current. It should be possible to develop 2 mat or more with these circuit peaked. Plate current in the doubler will be 15 mat or less.

The position of the doubler plate and amplifier grid eoils (sere Fig. 1-19) is not critical, but they should not be fond to end as in the 111 -Mre. unit. Rasonance in the 2 E 26 grid circuit can be chocked with brass and powderedirom slugs, Inserting cither should cause the grid current to drop. A rise with a brass slug indieates that L_{0} a is too large. A rise with the iron slug shows that it is too small.

Neut ralization is the next step. The mounting clip of the plastie-shereve trimmer, \boldsymbol{r}_{4}, is soldered to the stator post of (e2. It should be adjusted to the point where tuning the plate circuit

Fig. $7 \mathbf{F}-19$ - Bottom of the $\overline{30}$. Me, r.f. seretion. Dote that power and ontput connedors are wired to their respretive cables, for monnting in the chassis.
through resonance with drive (but no plate voltag(applied cables no kiek in grid current. A change in the value of the grid bepass is recuired if neutralization is not complete within the range of adjustment on ('4. If ('f is sot att minimum when noutralization is approuthing. increase the value of the grid by-pass to about $500 \mu \mu$. and try again.

Now connert the plate supply to Pins 3, 4 and $\overline{7}$, and run the motered lead to l'in 8 , to measure final plate current. Isio al 1)- or $2 \overline{5}$-wate tamp for at lowd, tuning ('y for minimum plate current. Tune (${ }_{3}$ for greatest lamp brilhanese, checking C_{2} again for minimum plate current. If neutralization is exartly right, minimum

Fig, 17-20 - Sohematic diagram and parts information for the SO. Me. transmitter.
C_{1} - $1 \overline{\mathrm{~B}}-\mu \mu \mathrm{f}$, midset variable (IIammarlund IIF-15).
C $2-15-\mu \mu \mathrm{f}$, midget variable, double spaced (Hammarlumd IF:-ISX),

(4 - $1-8-\mu \mu \mathrm{f}$. plastic trimuner (liric $\mathbf{3} \mathbf{3}$)-10).
$\mathrm{R}_{1}-33.0 \mathrm{HN}$) ohms, 3 watts (3100,000 .ohm 1 -watt resistors in parallef).
L.1-2t turns No, 30 mam. closewenand on $3 / 8-i n c h$ shotumed form (National XR-91).
I. $2-53 / 4$ turus No. $20,5 / 8$-inch diam., $3 / 8$ inch long
plate current and maximum grid current will show at the sanue selting of C_{2}, Fialing to athieve this exactly, set ('s so that no grid current appears when drive is removed and phate and serern voltages are loft on. (Cherek this only briefly, as the plate eurrent will be exeresive under this comdition if the tube is not oscillating.

The rig is now ready for operation. For voice work, apply modulated voltage to the plate and sereen through lins 7 and 8 . For e.w., the transmittor may be keyed in the cathode lead. lin if to ground, directly, or in the sereen lead, P'in 7 to 13-plus. with a rolaty or shock-proof kees. should soreen keving not wht the 2 F 2 i off completely, the doubler plate lead can be kevol at the same time, provided both are fed from the same supply, The owillator and doubler, or the doubler alone, rat be keyed if fixed bias is conneected between l'in and ground.

Approximate operating sonditions follow. With $3(0)$-volt plate supply, input will be about 15 watts at best loading, Off-resonance phate current - 70 mat. (irid current -2 mat. Soreen curront - 4 to 5 mat. Plate current, $12 \mathrm{~A}^{\prime} \mathrm{T}^{7}$ stabere - $1 \bar{s}$ mat eath or loss. Plate and soreen mas be fed from separate souree of 400 to 500 volts. Maximum input should then not exceed about 35 watts.

The 144-Mc. Transmitter

Fixeept for the extrit doubler staue and the differences made neeressiry by the higher frefurenes, the $2 t 20$ rigs atre Buit, testend and operated guite similarly. straght inductive coupithg is ned betwern the doubler plate and 2 2iet grial rirenits in the 2 -meter tramsmitter, and the spaceing of the two coils must be aljusted
(BXW Miniductur Vo, 300\%).
La - Same as l_{2}, but $61 / 4$ Curns,
 II Vo, 3010).
L.5-6 turns No. 20, $1 / 2$ diam., $3 / 8$ inch long (B \& W No. змм 3).

J_{2} - 8-pin male power fitting (1 mphenol 86-R(:P'8).

for maximum anergy transfer. The amplifier plate circuit is motunted above the deck, for short plate leads. The $21: 26$ is neutrabized by inserting a small inductance in series with the sereen lead (L_{5} in lig. 17-2:3).

The amplifier tank circuits are sories tuned, Output coupling is done with a single-turn loop, L_{5}, made of the inner conductor of the coar used to complete the circuit to the output ronneretor, J_{1}.

The oscillator cireuit is identical to the $\mathbf{5 0}$-Mc. rig, exeept that both oscillator and tripler plate rireuits arre fed from a single pin on J_{2}, The cable connections for the $50-\mathrm{Me}$. rig still apply, exeept that the 4000 -ohm resistor in the tripler plate lead must be disconnected temporarily to measure the oseillator phate current alone.

Testing the osidlator, tripher and doubler stages is routine otherwise. Adjust the sparcing between L_{3} and L_{4}, and check neutralization before applying plate voltage to the 21:26. Check

Fig. 17-21 - Top rear view of the 114-Mc. cxeitertransmitter, showing power and output connectors on hack of the rhassis,
for neutralization as in the 50-Me. rig, altering the number of turns or turn spacing in L_{5}, if nccessary.

The amplifier may be keyed in the sereen lead, but no provision is made for opening the

Fig, 17 -22 - The 2-meter rig is laid out in similar fashion, except that the linal plate circuit is above the chassis.
cathode lead as this often leads to instability at 144 Me. Note here a stability precaution that may be needed is the addition of external grounding clips on the 2 220 shicld ring. These are visible in the photograph, lïg. 17-21. If sereen keying dores not complotely rut off the 2l:26 plate current, additional stages may be keyed simultancously. Fixed bias connerted between l'in 5 and ground maty also be used if eotlier stages than the sereen wre keved.

Best-sounding c.w. will be had if the 12AT7 doubler plate and amplifior sereen are keved and the oscillator is run from asporate souree, preferably regulated. The power cable setup shown allows the power supply problem to be
solved in any of several ways, to suit one's own requirements. A convenient operating setup) for two bands is to leave both rigs connected to a common power soure energizing the heater circuits of the one to be used at the moment.

All $1 / 4$-inch shafts are fitted with knols for adjustment when the covers are removed. The top surfince of earch knols is sloted with a hark stw, to a depth of about 16 inch, to allow for screwdriver adjustment with the covers in place. Holes fitted with rubber grommets are placed over each adjustment.
(This equipment origimally described in October, 1954. (S゙T, page 16.)

- THE 2-BAND 125-WATT AMPLIFIER

The exciters just described were designed as separate rigs so that anyone interested in just one of the bands can make his low-powered rig for that band only. The convenience and performance obtainable with the two rigs more than offsets the small extra cost.

In going to a higher power level, however, the investment in tubes and parts needed is great cnough so that building for both hands in a single unit beromes attractive eroncmieally. The amplifier shown in Fig. 17-21 salerifiers little in performane to achieve its two-band operattion, and the cost is only slightly more than for a similar setup for either band alone.

Construction

The amplifier is built on a $6 \times 17 \times 3$-inch aluminum chassis, with sides of perforated ahuminum fastened in plare by aluminum angle stock brackets in a manuer similar to thre exciters, except that controls are brought out through the

$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable (Hammarlund IIF-15).
(:2, $\mathrm{C}_{3}-1-8-\mu \mu$. plastic trimmer (Firie $332-10$).
C4- $1 . \overline{-}-\mu \mu$ f. domble-spaced variahle (Hammarlund I 1F-I.B).

 (\aticural \i-91).
 wire diam. (B N W No. 3103).
$\mathrm{I}_{3}-2$ turns No. $3 \boldsymbol{1} \%$ 。
$\mathrm{L}_{4}-4$ turns No. 30 on, center-taphed.
$\mathrm{L}-\mathrm{O}-\mathrm{tarns}$ No. 30 enam. on 1 -watt resistor (Ohmite K-23.5).
 diam. . anter-tapmed.

RHCO Ohmite K-1 11 .
J_{1} - Comial output fitting, femate (1 mplamel 833-1li).
J_{2} - 8 -pin power fitting, male (Amphenol i8-PF8).

Fig. J7-24-The push-pull 6146 amplifier for 50 and 144 Me. The so- Ite coils are in bace. On the cover in the foregromme are the uride enil, the antemar compling loos and the phate-line shorting plus, all for 1/1/. Me. operation.
front on insulated flexible couplings. A gridcurrent jack, a filament switch and the screenvoltage eontrol are on the front wall of the chassis. On the back are coaxial fittings, power comector and the 12.10^{-7} socket. Underside are the filament transformer, sereen aulio choke, a few resistors and the power wising.
Two aluminum mounting brackets are required. These are $41 / 2$ inches wide and $23 / 4$ inches high when folded as shown in Fig. 17-24. Dimensions otherwise are not important. The 6146 sockets are $21 / 2$ inches apart, centered $11 / 2$ inches above the chassis. Note that they are on the tube side of the bracket. Three $3 / 8$-inch holes under canch sorket pass the screen, control grid and heater commertions. The eathode and the cold side of the heater circuit are grounded directly to the bracket on the tube side.

The sereen meutralizing caparitor, ('t, is held in plate hy the same serews that hold the sockets. The grid coil socket, J_{2}, the two screen r.f. chokes and their $0.001-\mu$. bypass are hidden from view by (${ }_{1}$. This whole assembly should be made and wired before mounting it in place. It is 5 inchess from the end of the chassis, and the other brimket, with J_{2}, J_{1} and C_{3} is $71 / 2$ inches to the right of the first one. Note that the plate tuning capacitor, C_{2}, is mounted on a polystyrene plate with its rotor above ground. A grounded rotor at this point maty introduce stray resonances and cause parasitic oscillations higher than the operating frequency.

Though shielding may not be too important in the operation of the exciters, other than for mechanical protection and for TVI prevention, use of a cover is definitely recommended for the amplifier. Tests with and without the shielding have slown that stable operation is attaned much more readily with the shiedding in place.

Testing and Use

A single supply of 400 volts or less may be used on both plates and screens of the 6140 s for
testing. ITigher than 400 volts may be applied to the plates alone, if a separate supply of 300 volts is available for the screens. Higher than foo volts should not be applied to both elements as the clamp tube will not hold the phate current within safe limits if drive is removed.

Without plate or sereen voltage on the amplifier, cherk the gride circuit to see that drive (an be obtained on either 50 or 144 Me. There should be at leasit $\overline{5}$ to 6 mas. gride current with either 2 E 26 driver ruming at 300 volts on the plate. There will be a surplus of drive on 50 Me , ordinarily, so if the grid circuit is not exactly resonated it may not be too important. The 144-Me. grid circuit ean be resonated for maximum grid current by changing the shape of the loop, L_{2}, Spreading its sides farther apart lowers the resonant freguency; bringing them closer together raises it. The position of the roupling loop, L_{1}, should be adjusted for maximum grid current as this is done.

With grid drive applied, tune the plate cireuit through resonance and watch for variation in grid current. Adjust the sereen nemtralization trimmer, C_{1}, until there is no kick in grid eurrent at plate resonatnce. The required setting may be different for the two bands.

Next test the clamp circuit operation. Apply plate and sareen voltage as shown in Fig. 17-25 and measure 6146 phate current with no drive applied. With the potentiometer arm sot at the ground cad, the plate current should be 125 mat. or lese with no excitation. At +60 volts this is 50 watts input, the maximum safe plate dissipation for at parir of 61.46 s The tubes should not be operated in this way for long perionls, but it is sufe for c.w. keying or normal short tests.

Now conmect a 100 -watt lamp across the output coaxial fitting. Apply drive and plate and screen voltage. Tune C_{2} for minimum plate current or maximum lamp brilliance. Adjust C_{3} for greatest output, retuning C_{2} for minimum plate eurrent me:nwhile. Set the couphing so

Fig. 17.25 - Schematir diagram and parts list for the two-hand v.h.f. amplifier.
C_{1} - loth- $\mu \mathrm{f}$.-ber-aretion split-stator variable (llammarlind IIFI)-100),
$\mathrm{C}_{2}-30-\mu \mu \mathrm{f},-\mathrm{per}$-wection, domble spaced (Hammarlund 1111)-30X).

 hop $1 / 2$ imehes lemg. $1 / 2$ inch wide. Marle frem $51 / 2$ inches Io, If timned. Gover with insulating sleeving. Sodder into P_{1},
L_{2} - 50 I/c.: 8 turns No. 14 timmed, 1^{1} - -inch diam., 2 inches long, center-tappeds S-pin base (13 N W 10J(:L), 144 Vras same as L_{1}, hut rentere tapped amb mo insmlatien.
L_{3} - Shown as heavy lines. Flashing eopper strips 1 名 inch wide, 3 inches long. Inner edges are 1314 inch apart. Bend over $1 / 6$ inch for soldering to plate caps. Conmort 622 inche from tulne ond.
that the phate current is no more than 300 ma . with a 400 -volt plate supply when the antemat sories capacitor is tuned for maximum output. This is the maximum rating for $(\cdot, w$, operation. For plate-mondulated phome 250 mat, would be advisable, particularly at 111 Mc. Rechoek neutralization by removing drive. Cirid current should drop to zero. If it does not, reset ('i carefully until there is no sign of grid current.

Once the amplifier is working corroctly it may be operated in several ways. At 50 Me. inputs as high as 180 watts cam the run on (e.w. if the screen voltage is held low enough so that the plate input will be no more than 50 watts with the drive removed.

Fig. 17-26- Bottom view of the v.h.f. amplifier. I'ower eonnector, coax fittings and clamp tube are mounted on the rear wall. Filament transformer is at the right and the soreenderad choke near the middle.

La - 50 Mc.: 2 turns No. 11 cach side, $13 / 4$-inch diam., spared $1 / 4$ inch. 1, eate 34 -inch space at center,
 It - each and.) 141 Wr.: Short l'ins 2,3 and t of P^{\prime}.
 Hairpin loop made from $51 / 2$ inches No. io tinned. Cover $3^{1 / 2}$ inderes with insulating sherv-
 plate lime is 3 line lems.

$J_{2}, J_{3}-\overline{-}$-pin reramic seckie? ((Imphenal w-RSS:).
J_{4} - Cirystal socket (Millen 3alo2).
 Jz - Closed cirmit jach.

P_{3} - 31k-ohnn line plug (Willen 3:112).
PA- -pin cable comnectar (1 mphened -8-PF:).

13H:3- Ohmite $\%$ - 1 H .
A foo-volt suphly will be most romveniont for two-band oprotion. Plate furremt will be 300 ma,., maximum; sereell curent about 15 mas: grid current 3 to 6 mata . If sereen voltage is held constant there will be little variation in plate current with increased phte voltage. Output is about b0 to 00 watts maximum with 120 watts input. Lower power can be run, as desired, by adjustment of the ramperireuit potentiometer, the amplifier operating efliciently at inputs as low as 25 watts when controlled in this way.

Simple Transmitter for 220 and 420 Mc.

The tratismittor in Figs. 17-27-17-30 is for the neweomer who wants to start with simple gear, going on to something better when he has gained construction and operating experience. It is built in two units, with the idea that the modulator can be retained when the r.f. portion is discarded.

The r.f. section is a simple oscillator with two 6.DF4 or G.JT't tubes in push-pull. Its plate
pending on the plate voltage and whether a (iVt; or GLA; tube is used. It may be considered as a long-term investment that will be suitable for use with any r.f. section of up to 20 watts input that may be constructed at a later date.

Construction

The two units are built on identical 5 by 7 by 2 -inch aluminum chassis, connecting by

Fig. 17-27-The simple transmitter for 220 and 420 Mc is made in two parts. The modu. lator. leff, may be retained for use with more advanced r.f. sections than the simple oseri]. lator shown at the right. The two units may be pligged together or connected hy a cable.

cireuit is changed from a quarter-wave line at 220 Mc . to a half-wave line at 420 . Me. by plugging in suitable terminations at the end of the tuned circuit,
Because the osedilator is modulated direetly it will have considerable frequency modulation, and the signal will mot be readable on selective reeceivers unkess the modulation is kept at a very low level. Where a broader receiver is in use at the other end of the path a higher modulation level ean be employed.

The modulator is designed for a crystal microphone. It delivers 3 to 10 watts output, de-
means of a plug on the oscillator and a socket on the modulator. Power is fed through a similar plug en the back of the modulator, Arrangement of parts in the modulator is not critical, but the oscillator should be exactly as shown.
Sookerts for the tubes are one inch apart center to center. $23 / 6$ inch in from the end of the chassis, C_{1} is at the exact center of the chassis, with,$\frac{1}{2} 11 / 2$ inches to its left, as seen in Fig. 17-28. It the far left is a crystal socket, used for the antenna terminal, J_{1}. One-inch ceramic standoffs are mounted on the screws
 that hold J_{2} in place. These support the antenna coupling loop, L_{2}.

Testing and Use

A power supply delivering about 200

Fig, 17-28-Rottom view of the oscillator unit, showing the twobland tank circuit. The line terminations, with their protecting caps removed, are in the foreground. At the left is the 220. . 1 c. phig, with the $420 \cdot M c$. one at the right.

 for the twe-band oseillator and modulator.
$\mathrm{C}_{1}-10.5-\mu \mu \mathrm{f}$ - - er - section lutturlly variable (Johmon 101.В15).
 Bend down 3^{4} inch at tutre and and le ind at
 berol at tube rod. Connoert C_{1} at I ineh from lumd at -rohet emd.
 So, I6, wowed with in-ndating stowing.
J_{1} - Crsial suchet wed for anternal lerminal.
Volts d.e, at ind mat. or more and 6.3 volts at 1 amp. or more is needed. Plug the units together or connect them bey a cable. Wibl a cable, a milliammeter maty be comeded between the No. 1 pins to moasure the useilator plate current. Otherwise the meter should be comected temporatily between Pin 4 of J_{3} and $P_{\text {in }} 33$ of J_{2}, in place of the wire shown in Fïg, $1-29$.

Plate curment should be about 25 to 30 ma. If the stare is osedilating there will be a fluctuat tion in current as the plate line is touched with an insulated metal objeret. I oo not hold the metal in the hands for 1his test! The frequeney is best chereked hy means of Lechor wires, at terhnigue that is covered in the rhatiter on monsurments.

With the dinamsions niven the range with P_{1} pluged in should be athent 105 to tho Me. With Papluged in the frequency should fall within the 220-Me,

Fif. $1:-30$ - Loohing at whe under-ide of the modulator.

A Tripler-Amplifier for 432 Mc .

Only tubes designed esperially for u.h.f. service will work satisfactorily at 420 Me , and higher. The various small roceiving triotes made for u.h.f. TV use will work well in low-powered frequencer multipliers and r.f. amplifiers for transmitting, but the trend is totetrodes, Several of the latter are now available.

The tripler-amplifier shown in Figs. 17-31 to 17-3:3 delivers up to 20 watts output on 432 Ne

Fig. 17.31-1 tripler-amplifies for 432 Me , using dual telroder. Shieladed construction amil forced. air cooling are employed.
holes in the top cover. Holes are drilled in the chassis under the amplifier tube, and in the cover over it. With a bottom plate fitted to the chassis there should be enough air flowing through both top vents to lift a paper briskly when the fian is started.
llalf-wave lines are used in atl d:32-Ne. circuits. The grid circuit of the :mplifier is capuritively coupled to the tripler phate line, the two over-

lapping about $11 / 4$ inches. The spacing between them must be adjusted carefully for maximum gered drive Pate voltage is fed to the limes through smatl resistors. These should be conmerted at the point of lowest rel, voltage on the lines. The amplifier grid r.f. chokes are comected at the tube sockert.

Note that the plate lime capacitors, C_{1} and C_{2}, have their rotors floating. This is important. Grounding the rotors, or use of catpacitors having motal end plates, may introdure multiple r.f. pathe and circuit unbalanee. The capacitors have small metal mounting brackets that are not comerted directly to the rotors. but even so it Was neressary to resort to polystyrene momenting plates for bost eirenit babane and efficiency. Holes $3 / 4$ ind in diameter atre punched in the front wall to pass the rotor shafts.

Testing

The tripler-amplifier is designed to operate in conjunction with a $1+4-$ Ne. transmitter such as

Fig, $\quad 17-32$ - Lookiny into the tripler-amplitior with the top eover and front plate removed,

Fig. 1:-33-Sthematic diagram for the 432. Ne. tripheramplifier.
 (Buid 1, (-1 (6, 1). Do not nse metal cat-plate or gromended-rotor typers.
 resistors in parallel).
$1_{1}-2$ Urns No. 20 enam., $1 / 2$-ineh diam. Insert het ween turns of t_{2}.
1.2 - 4 lurne No. 16 enam., $1 / 2$-inch diam., $1 / 2$ ineh long, center-tapped.
1.3-Gpper strap on heat dissipating connectors, $31 / 2$ inches long. Twist 90 degrees 名 inch from plate end. Spater $3 / \frac{1}{2}$ inch.
I_{4} - Copmer stral $2 \sqrt[3]{8}$ inches long, soldered to grid terminals. Space about $1 / 2 \mathrm{in}$ h.
the 2 l:26 rig shown in Fig. 17-2:3. A plate supply of 300 volts at 200 mat. is needed ($f(0)$ volts may be used with 58! ta). Apply power to the $1 / 1-\mathrm{M}$ driver stage and adjust the spacing of the turns in L_{2} and the degree of conpling between L_{1} and J_{2} for maximum tripler grid arrent. This should be about 3 mit.

Xext apply plate and serem voltage to the tripler and tune (' for maximam grid current in the amplifier, with no plate or sereer voltare to the latter. Aljust the position of the grid lines with respect to the plate circuit, readjusting C_{1} whenever a chamge is made, until at Joast 1 mat. grid enrrent is obtained.

Now (onnect a lamp load across the output temminal, J_{2}. Orelinary house lamps atre not suitable. A fatir load can be made by conneting of or more blue-bead pilot lamps in parallel. This can be done by wrapping a $1 / 4$-inch eopper strap

15 - Coppor strap $37 / 8$ inches Iong, fastened to heatdissibating commectors. Sparer $3, \frac{4}{4}$ inch. All tank circuits of flashing eoppor $1 / 2$ inch wide.
La - Compling lomp, No. 20 enam. U-shaped portion is 1 inch long and $3 / 8$ inch wide. Mount on 3 -inch ceramic standooffo.
J_{1} - (omaxial ingut fitting (Amphenol 83-1II).
J_{2} - (irystal soeket ined for antenna terminal.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$ - Closed-efreuit jath.
$\mathrm{J}_{5}-5$-pin mate elansis connector (Amphenol 86 . RCP:
M - Motor-hower assembly, 17 ef.m. (Ripley Ine., Middletown, Comn., Type 8133.)
around the brass bases and soldering them all together. "Then another strap) should be soldered to the lead terminals. Apply plate and sareen voltage and tune ('y for maximum bamp brilliance. It should be possible to develop a very bright glow in the (i-lamp load with a plate current of about $1(k)$ mat. at $3(k)$ volts.

Cut drive very bridely to check for oscillation in the final stane. Grid current should drop to zoro. 'The sereen and grid rosistors shown are for operation with plate modulation. More input can be run if the screen or grid resistance is dereased. but this should be done only when the rig is to be used for f.m. or c.w. service.

Operating conditions are abont as follows: tripler grid current - 2 to 3 mat.; amplifier grid current - 3 to 4 mat: tripher plate and sereen current - 90 ma. ; amplifier phate and screen current - 110 mas; output - 12 watts.

Fig. 1:-3.4- Bottom view of the $4 ; 3$-Mc. transmitter.

Exciter-Transmitter for 220 Mc .

Construction of a stable transmitter for 220 Me is not diffirult, and while simple oscillatortype rige such as the one shown in Fig. 17-29 may suffice for short-range work, a erystal-eontrolled or otherwise stabilized rig is highly worth while. A low-powered transmitter of stable design need not be costly, as inexpensive tubes ran be used throughout. I further economy can be made by selecting a erystal frequency in the lower part of the band, so that the same reystal may be employed for the upper portion of the 2 -meter band as well.

The transmitter shown in Figs. 17-35, 17-36 and 17-37 dolivers is to 10 watts output. The final stage mat be modulated for voice work, or the unit may be usod as an exoiter to drive higher-powered stages. Four tubes are reguired. The first two are 0 (OLbs, serving as oscillatormultiplier and single-ended tripler. The third stage is a push-pull tripler using an Amperex (i3360 dual tetrode. This drives a similar tube as a straight-through amplifier on 220 Me.

Crystal frequencies should lie between 8.15 and $8.3: 3$ Me., or 12.22 to 12.5 Mc . If the same arystal is to be useful for 2 -meter work it must to between 8.15 and 8.22 Me. or 12.22 and 12.33 Mr.

A balaned plate rircuit is used in the multiplier, so that its output can be capacitively coupled to the (i330) tripler grids. In case of insufficient grid drive to the 6.360 tripler, try putting a small phastic trimmer between the low side of L_{2} and ground, to balance up the caparitances on either side. It was not needed in the original, but it would be well to remember the suggestion.

The (i3si0 push-pull tripler to 220 Me . is inductively coupled to the push-pull final stage. No neutralization is shown in Fig. 17-36. Should neutralization be needed, a mothod for achieving it is given later. Output from the linal 6:360 plate cireuit is taken off through coas, and provision is made for tuning out the reactance of the link, with C_{4}.

Construction

The transmitter is built on a flat plate of sheet aluminum 5 by 10 inches in size. This is screwed to a standard aluminum chassis of the same dimensions, that serves as both ease and shielding. If more complete shielding is required, a perforated metal cover may be made to go over the top, as was done with the 6 - and 2 -meter rigs in lïg. 17-17. All parts except the power and coasial output romectors are mounted on the top plate. The two connertors mount in holes in the rear wall of the chassis. The mounting screws are held in place on the fittings with nuts and other muts on the outside of the chassis hold the fittings in position.

The tulo sockets are along the conterline of the plate, two inches conter to center, with the oseillator sorket $13 \frac{3}{8}$ inch in from the right end, as seen in the photographs. The crystal socket and the oscillator phate coil, L_{1}, may be seen at the lower and upper right, respertively, in the bottom view. The tripler plate tuning eapacitors are midway betwen their respective sockets.
lixerpt for the power leads, there is no "wiring" in the usual sense, as all r.f. leads should be extremely shom 'The decoupling resistors and r.f. chokes in the various power circuits are supported on tie points. Three single-lug strips and two doublo-lug enes are meded. All the power wiring is done with shielded wire, as an aid to TVI prevontion. The coils L_{2}, L_{3} and L_{4} are soldered directly to the stator support bats of their trimmers, with the shortest possible leads.

Adjustments

The power supply should deliver at least 3 amperes at 6.3 volts, a.e. or d.e., and 200 to 300 volts d.e., at 200 m a. If a $3(00$-volt supply is used for the testing, the tubes rean be protected from execssive clrain by connecting a 5000 -ohm 10 watt resistor in sories with the power supply lead. The power comectors, J_{1} and I_{1}, make provision for metering all plate rirenits except those of the oseillator and first tripler. The power

Fig. 17-35 - The 2: ().Me. tetrode transmitter. It the right are the bxil. 6 erystal oseillator and moltiplier stages, with the 6360 tripler and amplifier in the center and left, rexpectively. The rig is huilt on a sheet of aluminum which is serewed to an inverted :hasmis.

 11M131!).
(i2, Ci3-5- μ f , miniathe hutherfly variathe (Johnson 5 \1311).

I.1 - 14 turns Vo. 28 enam, on :3n-ind iron-slug form (Xationlal \R.01).
 tapped ($\mathrm{B}_{\mathrm{N}} \mathrm{II}$ Miniderear Vo. 30033).
$\mathrm{I}_{23}, \mathrm{~L}_{5}-1$ turns No. 18 ,nam., "in-ineh diam, eroutertap!eel. Sbare twide diameter of wire, except for $1 / 8$-inch pate at center. sparing and degree of coupling to L_{3} for maximum zrid current
 al center al l a for maxinum ontput.

I_{2} - Coasial litting, femalo (Amphemel 8:3-1 ${ }^{\text {(}}$) .
I's - 8-contart power rable comeretor, female (Am. phenol :8-18:8).

RHC. $2, \mathrm{KPC} 3-17$ turns No. 23 enam. on high value l-watt resistor, or nee Ohmite \%-2.35.
leads to these are shown conneded together, to lin 2 of J_{1}, but during testing they should be fed separately through a milliammeter, as deseribed below.

Connect a (0-50) or 0-100 milliammetor between lin 2 of J_{1} and the oseillator plate-sereen eirenit, at the low side of the 22.0 (0)-ohm sereen-dropping resistor, point ion the schematio, Be sure that the tripler plate and sereen resistors are diseonneeted for the time being. to prevent this stage from drawing eurrent. Apply 200 to 300 volts d.e. through l'in 2 of P_{1}, and tume the plate direnit of the oscillatore to the third harmonic of the erystal frequeney. Listming on this frequeney (21.45 to 25 Me., depending on choier of erystal) a large inerease in signal strengh should be moted an the eoil is tunal through resonance. A double cherk on frecquency with a catibrated gridedip or absorption wave meter is recommended. Oseilbator plate-sereen (atrent will be alout 20 mat.

Now ronner the os illator plateserern power loud directly to l'in 2 on J_{1}, and insert the meter in the lead to the tripler phatereseren riment, point B on the diagram. Ipply voltage and tane the tripler plate cirenit for maximum output
 with a singlo-turn loop of insulated wire, about a half inch in diameter, may be conpled to L_{2} to serve as an output indicator. The to 'Li; tripler phate-sereme current will be about the same as the oscillator, around 20 mat at 300 volts.

Now wire the power leads th these two stages as shown in the diareram. Latave the Bent)-volt lead
 moter betwern lins 2 and 4 , to mansure the biabio tripler platr-screcon curvent, A low-range milliam-
moter, about $0-10$ mai., should be comnected botween Pin 5 and Pin 1, to measure final grid curvent, Tunc ('2 for maximum indication on this meter. With no plate voltage on the final stage. there should be at least 3 ma, grid coment. Adjust the spacing bet wern L_{3} and L_{4} carefully, retuning ('2 cath time, for maximum grid current.
solder a jumper betwern lins 2 and I on J_{1}. so that voltage will be supplied to the bi3kio tripler. Comert a temporary jumper between l'in 2 and Pin 7 , to fered voltage to the final serem, and conned the $0-100$ milliammeter between l'ins 2 and 8, to measure final plate current. A 10- or 15-watt light bulb may be used as a temporary dummy load, commerted to J_{2}. Apply voltage and tume C_{3} for minimum phate current, or for maximum output as indicated in the lamp load. Adjust C'4 for best output, The setting of C 4_{4} and the degree of coupling between L_{5} and L_{6} will be different for an antemat, howerer, as the lamp is not a good load at this frequenery.

If the stage is complately stable, maximum output, maximum grid corrent and mininum plate emrent should all orexur at the same setting of the plate tuming capacitor, (3 . Anothor wherk for neatratization is to ent the drive for a brief period by removing plate and sereon voltage from the tripler. Grid rurvent should drop) to zero when this is done. If it does mot, the final
 the original model, there was no acomal self aseillation, but the stage wats not completedy stable until a small amount of montralization was addeal.

This is done very simply with the ti:360, The foads are so arranged within the fube that atl that is required for meltradization is a very

Fip. 17.37-13ntom vien of the $2=0$ - Vle. transmiter, showing all parts except the tubes and crystal. Note the method of attarhing the power and coavial fittings. Nuts hold their monnting screws in place so that they can he fastened to the rear wall of the chatssis.
small capacitance betwern Pins 3 and 6 , and between lins 1 and 8 . A stub of No. 18 wire about $3 / 8$ inch long is soldored to Pin 6, with its opposite and "looking" at l'in 3. A similar stub) is soldered to l'in 8, with its free end adjacent to lin 1 . The ends can then be bent toward or away from the grid pins to give the required cat paritance.

When all stages have berol adjusted correctly, the plate voltage may be increased to 300 on all stages, to run the maximum power of which the thbes are capable. Curent dains indicated on the sehematic diagram are for :300-volt operattion. Staying at 250 volts or less allows more conarvative operation, and maty be well worth while, in the interest of longer tube life. There is no great advantage to be gatined from pushing the tubes excessively, as doubling the power output will not less than one s unit improvement in signal level at the receiving end.
In foeding power to an antenna system using coaxial line, it is merely necessary to connect the coax to the outpat fitting, J_{2}, and adjust the coupling and ${ }^{\prime}$ f for maximum radiated power. If $300-\mathrm{ohm}$ Twin-Lead or open-wire line is used to feed the antennat, coupling to the transmitter is done with a coaxial balun. An antenna system
designed for 300 -ohm balanced lines may be fed with 75 -ohm coas similarly.

If the rig is to be used as at eomplete transmitter r.f. section, the final plate and screen will prohably be modulated. This is done by running the lead to l'in ${ }^{6}$ on the power phag to the secondary of the output thansformer of the modulator. Any modulator unit capable of supplying about 10 watts of audio power may be used.

One or more amplifier stages may be added to build up the r.f. power level is interstage coupling efliciency is likely to be poor at this frequency the following stage shoudd not operate at as high a power level as would be arcepted practice on lower frequencies. Suitable tubes for 220-Me. :mplifier stages following this exeiter are the $8: 32.1$. the 6252 and the 5894 A or 9903. An amplifier using the (3252 was described in Qs'l' for May, 1954, page 18. Other Qs゙T referconces that may be of interest to 22()-Mc. workers are listed below.
"Comxial Tank Amplifier for 220 and 420 Me." - May, 1951, page 39.
"220-Nu. Station for the Beginner," - October, November and Inecember. 1953.
"Crystal Contiol on 220 Me." (All-triode transmitter, 10 watts) - Fehruary, 1954, page 16.

V.H.F. Antennas

While the basie principles of antenna design remain the same at all frequencies where conventional dements and transmission lines are used, certain aspeets of v.h.f. work ratl for changes in antemat technigues above 50 Me . Here the physical size of arraty is reduced to the point where some form of antenna having gain over a simple halfwave dipole ram be used in amost any location, and the rotatable high-gain directional array has become a standard feature of all well-equipped v.h.f. stations. The importance of antenna gain in v.h.f. work cannot be over-emphasized. By no other moans can so large a return be obtained from a small investment as results from the crection of a good direetional array.

- DESIGN CONSIDERATIONS

At 50 Mt . and higher it is usually importint to have the antema work well over all or most of the band in question, and as the bands are wider than at lower frequencies the attention of the designere must be focused on broad frequeney response. This may be attained in some instaners through sacrificing other qualitios such as high front-toback ratio.

The loss in a givon lougth of transmission line rises with frequency. Vh.f. feedlines should be kept as short as possible, therefor. Matohing of the impedances of the antematand transmission line should the done with rare, and in open lowations a high-gain antennat relatively low height may be preferable to a low-gain system at grat height. Wherever possible, however, the v.h.f.

Fig. 18-1 - Combination tuning and matching atul for v,h.f. arrays. Sliding short is used to tome out reactance of the driven element. Tramsmisaion lime. either hal. anced or coax, is connected at the point of lowest stame ing-wave ratio. Adjustment procedure is outlined in text.
array should be well above heavy foliage, buildings, power lines or other obstrutions.

The physical size of a v.h.f. array is usually more important than the mumber of elements. A 4-ement array for 432 Mr. may have as much gain over a dipole as a similarly-designed array for 144 Mc., but it will intereept only one-third as
much energy in receiving. Thus to be equal in communiation, the $4: 32-$. We array must equal the $1+4-\lambda$ en antonna in rapture area, requiring three times as many chements, if similar element configurations are used in both.

Polarization

Eatly v.h.f. work was done with simple antemmas, and since the vertical dipole gave as good results in all directions ats its horizontal comberpart offered in only two directions, vertical polarization beeame the aneeptad standard. Later when high-gain intenntas came into use it was only natural that these, too, were put up vertical in areas where v.h.f. activity was ahreadywell established.

Whon the discovery of various forms of longdistane propagation stirred interest in v.h.f. operation in areas where there was no previous experience, many newomers started in with horizontal arrays, these having been more or less stundard pratide on frequencies with which these operators were familiar. As use of the same polarization at looth ends of the path is neerssary for best results, this lack of standardization resulted in a conflict that, cern now, has not bern eompletely resolved.

Tests have shown no large difference in results over long pat has though evidener points to a slight sumeriority for horizontal in certain kinds of terrain, but vertical hats other factors in its favor. Horizontal arrass are generally easior to bmidel and rotate. Where ignition noise and other forms of man-matle interference are present, horizontal syistems usually provide better signal-to-moise ration. Simple 3 - or 4 -element arrass are more effecetive horizontal than vertioal, as their radiation patterns are broud in the plane of the clements and sharp in a plane perpendicular to them.

Vertical systems ran provide uniform coverage in all directions, a feature that is possible only with fairly complex horizontal aranse Gain can be built up, without introducing dirertivity, :u important feature in not operation, or in locattions where the installation of rotatable systems is not possible. Mohile operation is simpler with vertical antemmas. Fear of increased TV'l has kept v.h.f. men in some densely-populated areas from adopting horizontal as a stamdard.

The factors favoring horizontal have boen predominant on 50 Mc .. and today we find it the standard for that band. exerept for emergeney net operation involving mobile units. The stight advantage it offers in I)X work has acrederated the trend to horizontal on 144 Mr. and highor bunds, though vertical polarization is still widely used. The pieture on 144.220 and 420 M e, is still confused, the tendency bring to follow the lowal
trend. The neweomer should eheek with local amateurs to see which polarization is in general use in the area he expects to cover. Eventual standardization should be a major objertive, and to this end it is recommended that horizontal polarization be established in areas where activity is developing for the first time.

- IMPEDANCE MATCHING

Because line losses increase with frequency it is important that v.h.f. antemat systems be matehed to their transmission lines rarefully. Lines commonly used in v.lı.f. work include opern-wire, usually 300 to 500 ohms impedance, spaced $1 / 2$ to two inches; polyethylenc-insulated flexible lines, available in 300, 150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance.

The various methods of matehing antema and line impedance are described in detail in Chatpter 14. Matching devices commonly used in v.h.f. arrays fed with balanced lines include the folded dipole in its various forms, lig. 14-41, the "T" Match, Fig. $14-44$, the " Q " section, Fig. $14-40$, and the adjustable stub, Fig. 18-1. The gamma mateh, useful for feeding the driven element of a parasitic array with coasial line, is shown in shematic form in Fig. 14-44, Balanced loads such as a split dipole or a folded dipole ran be fed with coax through a balun, as shown in Fig. 14-46. Practical examples of the use of these devices are shown in the following pages. The principles upon which their operation depends are explained in Chapter 14, with the exception of the adjustable stub of Fig. 18-1.

The Corrective Stub

The adjustable stub shown in Fig. 18-1 provides a means of matching the antenna to the transmission line and also tuning out reatance in the driven element. It is, in effect, a tuning device to which the transmission line may be connected at the point where impedances mateh. Both the shorting stub) and the point of comeretion are made adjustable. though once the proper points are found the connections may he made pormanent.

For antenna experiments the stub may be made of tubing, and the connertions made with sliding clips. In a permanent installation a stub, of open-wire line, with all connections soldered, may be more satisfactory mechanically. The transmission line may be open-wire or 'Twin-L ead, connected directly to the stub, or coaxial line of any impedance, which should be connected through a balun.

To adjust the stub start with the short at a point ahout a quarter wave length below the antemas. moving the point of conneretion of the transmission line up and down the stul, until the lowest standing-wave ratio is adhered. Then move the shorting stub a small amount and radjust the line connection for lowest s.w.r. again. If the minimum s.w.r, is lower than at
the first point cheeked the short was moved in the right direction. Continue in that direction, readjusting the line connertion each time, until the s.w.r. is as close to $1: 1$ as possible. When adjustments are completed the portion of the stub below the short can be cut off, if this is desirable merhanically.

TYPES OF V.H.F. ARRAYS

Directional antenna systems commonly used in amateur v.h.f. work are of three general types, the eollinear, the Yagi, and the plane refleetor

Fig, 18.2 - Innerts for the couls of the elements in a v.h.f. array provide a means of adjustment of length for optimum performance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
array. Collinear systems have two or more driven elements end to end, fed in phase, usually backed up by parasitic reflectors. The Yagi has a single driven element, with one or more parasitic elements in front and in back of the driven element, all in the same plane. The plane-reflector array has a large reflecting surface in back of its driven element or elements. This may be a sheet of metal, a metal screen, or closely-spaced rods or wires. The reflector may be a flat plane, or it can be bent into several forms, such as the corner and the parabolat.

Examples of all three types are deseribed, and earh has points in its favor. The collinear systems such as the 12-and 16 -element arrays of Figs. 1814 and $18-15$ require little or no adjustment and they present few feed problems. They work well over a wide band of frequencies. Yagi, or parasitie arrays, Figs. 18-5 to 18-10, depend on fairly precise tuning of their elements for gain, and thus work over a narrower frefuency range. They are simplo mechanically, however, and usually offer more gain for a given number of elements than do the collinear systems. Planeand corner-reflector arrays are broadband devices, having broad forward bobes and high front-to-back ratio. They are casily adjusted, but somewhat cumbersome mechanically.

ELEMENT LENGTHS AND SPACINGS

Designing a v.h.f. array presents both mechanical and electrical problems. The electrical problems are basic, and their solution involves rhoosing the type of performane must desired. Aechanical design, on the other hand. can be subject to atmost endless variations, and the form that the array will take can usually be decided by the materials and tools available. One common
$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { TABLE 18-I } & & \\ \hline & \text { Dimensions for V.H.F, Arrays in Inches }\end{array}\right]$
source of materials for amatedur artas is com-mercially-built 'l'V antemats. They can often be revamped for the amateur v.h.f. bands with a minimum of effort and expense.

I limensions for Yagi on collinear arrals and their matehing devieres ran lo taken from Tablo 18-1. The driven element is usuatly eut to the formula:

$$
\text { Length (in inehes) }=\frac{52.60}{\text { Fred. (Me.) }}
$$

This is the basis of the lengths in Tablob 18-1, which are suitable for the tubhine or rod sizes commonly used. Arrays for so Mr. usuatly have
 stock is common. Rod or tubing lo to ${ }^{3}$ inch in diameter is suitable for 220 and 420 Me. Note that the cloment lemgthe in the lable are for the middle of the band coneroned. For peaked performance at ot her frequencies the element lengt hs
should be altered areording to the figures in the thind line of the table.

IReflewtor elements arre usually about is pereent longer than the driven element. The dievetor nearest the driven element is a peroont shorter and others are progressivel! shorter, as shown in the table. Parasitic elemmons should also be adjusted aceording to line 3 of the tathle, if poatk performance is desired at some fregueney other than midhand.

Parasitio cement lengths of Table 18-1 are based on dement spacings of 0.2 wave longith. This is most often used in r.h.f. arratys, and is suitahle for up to + or 5 elements Other spanings can be used, however. If the edement bengths ate adjusted properly there is litthe differener in gitin with reflertor sumengs of 0.15 to 0.25 wive length. The chaser the reflector is to the driven element,

Figs 18.3- Ommidireotional wertiral array for 111 Ile. bile-ment- of alumimum roblowline wire are momated on examic - tandaff inaulators sarewoel lo a wouten prald- Preedline shown is. ix-ohm enals. with a hallu", at the freedprist. 'I'vin-l abal or othor 3oll-athom halanced line may also be used. lout it sheruld be hresphit away lorizontalls from the enpporting pulde amb elements for al loast at luarter wavelongth. © inamay loe taloed to the support.

the shorter it must be for optimum forward gatin, and the greater will be its elfeet on the driven element imperdace.

Directors maty also be spated over a similar range. ('loser spacing that 0.2 wave lengith for artuss of two or three elements will reguire a longer direetor than shown in Table 18-1. Thas it ran be seen that chose-spated amatys temel to work wer a narrower frequencer range than widespaced ones, when they are thed for best performance. They also result in lower drivenalement impertinere making them more diflientt to ferd properly. spacings lase thim 0.1.5 witve length are not commonly used in v.h.f. arrives for these reasons.

Practical Designs for V.H.F. Arrays

The antema systems pietured and desoribed horewith are examples of ways in which the information in Table. IS-1 can be used in arays of proven performanee. Dimensions can be taken from the table, exerpt where otherwise noted. If
the buidue wishes for experiment with clement. adjustment, : sinupe methoul is shown in Fig. 1S-2. With clements 1_{2} inch or larger diametor at pieere of the element material cath be used. It is sawed lengt hwise and then compressed to make

Fip, 18 -1 - Dimen-ions and supporting method for the 14-3le, vertical array.
a tight fit inside the end of the element.
A roadily-availathle matoriat oltern used for clements in arrats for 114 Vre sund higher is aluminum reothestian wire. 'This is a stiff hatreddrawn wire about ${ }^{1}$ 名 inch in dianeter. It should be nsod in proferoner to a similar-apperaring wire commonly sold for 'TV gromading purposes. The lattor is too solt to make sutisfartory olements if the length is more than about two fret.

A Collinear Array for 144 Mc.

Where a vertically-polarized array having some gatin over a dipole is noeded, ret direerivity is umbesirable, collinear halfwave coments may be mounted ventically and forl in phase, as shown in Figs. 18-3 and 18-1. Surh an array maty have 3 eldements. as shown, or $\bar{\sigma}$. The impedance at the enotor is uploximanlely : $3(k)$ ohms, permitting it to be fed dieretly with l V-tree line, or through a coaxial balun, as in the model shown. Wit her 22- or 72 ohm line may be employed without serious mismatch.

The array is made from two piecos of aluminum clothesline wire about !at inches long overall. These arw bent to provide a 3 B-inch ton) section, at folded-betck 10-inch phasiage loop, and a 19)-inch crenter secelon. These elements are monnted on cramic pillats, which are fastented to a round wooten pole. Simatl elamps of shoot aluminum
 the stand-olis. A cheapor but somewhat less desirable mothod of mounting is to use 'TV sereweye insulators to hold the celonemts in plane.

Fereding the ansay at the conter with a roaxial balum makes an neat arrangement. The balum loop may be taped to the vertiad support, and the
coaxial line likewise taped at intervals down tho mast. The same type of construction can be applied to a 220-Ale, vertical collinear array, using tho lengths for that band given in Table 18 -I.

PARASITIC ARRAYS

Single-bay arrave of 2 to 5 elements are widely usol in 50-Mc. work. These may be built in many diflerent ways, using the dimensions given in the table. Probably the strongest and lightest st rueture results from use of alluminum or dural tubing (nstally $1^{1 / 4}$ to $1 \frac{1}{2}$ inches in diannoter) for the boom, though wood is also usable. If the clements are monnted at their midpoints there is no need to use insulatiner supports. Esuatly the cloments are run through the boom and elamped in place in a matnmer similat to that shown in Fig. 18-12. Where at metal boom is usul the joints beveren it and the elements must be tight, as any movement at this point will result in noisy reception.

2-Element 50-Mc. Array

The 2-element intennal of lig. 18-5 was designed for portable usa, but it is also suitable for tixed-station work with minor morlifation, The 2 metor array abowe it is deseribed later. The clements are made in there suretions, for portability, usimg inserts similat (o) that shown in Fig. IS-2. The driven element is grammat matched for coas feed, and the patrasitio elemont is a $0.1 \bar{j}$-wave length spaced director. Details of

Fig. $18-5$ - Two-element 50-Me. and four-element 144 Wi. arrays designed for portable we. Support is sectional T'V mastinge damped to car donr handle. Vilemu'nts of au-Me, array are made in thrue sections, for stowing in back of car. Antoma for 111 Mc. is cut-down 'T' array. Both use gamman match, as shown in b'ig. 18-6.

Fig. 18.6 - Details of the gamma matelt for the .50. Ne. pertable array. In a permanent installation the variable caparitor should he monnted in an invertal platia copp or other elevier to protect it from the weathor. The yamma arm is about 12 inches lonr for ind Me. 5 inches for Itt Me.
the gammat sertion. the hoom and its supporting clamp are shown in Fig. 18-6. The am is athont 12
 Clean, tight comeretions between the arm and eloment are important. Where the array is to be monnted permanently outdoors the eapacitor may be protered from the weather bex monting it in an inverted plastia cup, More datails on this artay are given in August, 195:, Q心.T.

3-Element Lightweight Array

The 3 -dement $50-\mathrm{Dle}$ armay of lig. $1 \mathrm{~s}-\mathrm{T}$ weighs only 5 pommes. It uses the elosest spacing that is practical for v.h.f. applieations, in ordar to make an anterma that could be used individualty of stacked in pairs without requiring a cumbersome support, The clements are half-inch aluminum tubing of $1 / 16$-inch wall thieknes, attached to the $1 / 1 /$-inch dural boom with ahminum fastings made for the purpose. (Willard Radeliff, fostoria, (Ohio, Type H.NSL.) By limiting the element spacing to 0.15 wave length the boom is only (6 frot long. Two booms for a starked array (Fig. 18-11) can thus ber from a single 12 foot length of tubing.

The folded-dipole driven element has No. 12 wite for the fed portions. These are monnted on $3 / 4$-inch cone standoff insulators and joined to the outer emds of the matin portion be means of metal pillare and $6 / 32$ serews and muts. When the wires atre pulled up tightly and wrapped around the serew, solder shoudd be sweated over the nuts and serew ends to seal the whole against weather eorrosion. The sime treatment should be used at euch stamdoff. Mount it soldering lug on the ceramie cone and wrap the end of the lug around the wire and solder the whole assembly together. These joints and other portions of the arraty maty be spatyed with clear latequer as an additional protection.

The inncy ouds of the folded dipole are $11 / \underline{\text { inches }}$ apart. slip the dipole into its abominum casting, and then
drill through both olomont atme rasting with
 able insorts for monnting the stand-ofls can loe made by rutting the heods off 6 -32 acrows. 'Taper the eut and of the sorew slightle with a file and it will serew into the standoff readily.

Cut the dipole length aceording to Table 18-J, for the midalle of the frequeney range you expert to use most. The reflertor and diredor will be approximately 4 percent longer and shorter, respectively. The eloser spacing of the parasitic elements 0.15 wave lengeth makes this deviation from the dimensions of the table desirable.

The single 3 -element atray has a feed impedane of about 200 ohms at its resonamt fregumber. Thus it may be fed with so-ohm coax and a bahun. A gamma-matehed dipole may also low used, as in the 2 -edement arraly. If the wammat match and $\mathbf{7} 2$-ohm coax are used, a balun will ronvert to 300 -ohm bataneed foed, if Twinderd or $300-$ ohm operowire 'TV line fored is desierd. If the dimensions are sedered for optimum performance at 50.3 Me, the arraty will show good performance and lairly low stimding-wave ration over the range from bo to $51 . \overline{\mathrm{a}} \mathrm{M}$.

A closeup of a mounting method for this or any other arrat using a round boom is shown in Fig. IS-X. bour TV-type bolts atamp the horizontal and vertieal members together. The
 shere atuminum is avalable it maty be used atome, though the photograph shows a sheot of 1 biinch stork backed up by a pioce of wood of the stme size for stiffening.

High-Performance 4-Element Array

The telement array of fig. IK-9 was dewigned for maximum forward gain, atod for dirert foed with 300 -ohm bataneed tranmission lites. The parasitie elements may be any diamoder from 36 to 1 inch, but the driven dement shond be matde as shown in the sketch. The same general arrangement may be used lor a 3 -element array, exerpt that the solid portion of tho dipole should

Fig. $18-7$ - I.ightweight 3 -element 50 -Mc. array. Feedline is 52. ohm coax, with a halun for connection to the folded-dipole driven element. Bahm may be coiled as shown, or taped to supporting pipe.

V.H.F. ANTENNAS

453
be $3 / 4$-inch tubing instead of 1 -inch. With the element lengthe given the armay will give nearly uniform mesonse from an to 5 i. 5 Me., and usable gain to above 52 Me. It may be peaked for any portion of the band by using the information in Table 18-I.

If a shorter boom is desired, the reflector spaeing can be reduced to 0.15 wave length and both

Fig. 18-8 - Closeup photograph of the boom mounting for the $\mathbf{5 0}$ - Me. array. A sheet of aluminam 6 inches sumare is bareked up by a pieer of wood of the same size, Thetye I dampe hold the bomm and vertical support together at rizht angles. At the left of the mounting ansembly is one of the aluminum canting for holding the lueam elements.
directors spaced 0.2 or even 0.15 wave length, with only a slight reduction in forward gain and bandwidth.

5-Element 50-Mc. Array

As aluminum or dural tubing is usually sold in 12-foot lengths this dimension imposes a pratieal limitation on the construction of a 50 -Me, beam. A 5 -clement array that makes optimum use of a 12-foot boom may te built aecording to Table 18-I. If the aluminum easting method of mounting elements shown for the 3 -element array is employed the weight of a 5 -element beam ean be held to under 10 pounds. The gamma mateh and coasial line are reeommended for feeding such an array, though a balun and 72 -ohm eoax ean be used for the rotating portion of the line, converting to balanced feed at the anchor point.
l:lements should be spaced 0,15 wave length, or ahout 36 inches. With 5 or more elements, good bandwidth can be secured by tapering the element lengths properly. A dipole 110 inches long, with a 116 -inch reflector, and directors of 105,103 and 101 inches respectively will work well over the first two megacycles of the band, provided that the s.w.r. is adjusted for optimum at 51 Me .

Long Yagis for 50 Mc .

With boom lengths greater than about 12 fert and with more elements than 4 , somewhat

Fig. 18.9 - 1 Detaik of a 4 -element 50. Mc. array designed for 300 -ohm halanced feed. Nitement lengthe and spacings were derived exprimentally for optimum performance over the first 1.5 megaeyeles of the band,
better performance ean be obtained by using gradually increasing spacing botween the direetors. The (betement array in Fig. 18-10 is an example of this approach. It also emplows a varriation of the gamma mateh that has mechanieal advantages. The long hoom and wide-spaced elements give a sharpness of horizontal pattern that is not ohtainable with the same number of elements in a stacked array.

The long Yigi is not a broadband deviee. This one works well over the first megacycle of the band with the following dimensions, Subtract 2 inches from each element for each megateyele

Fig. 18.10-A 6.element long Yagi for 50 Mc, and a 16 -clement collinear array for 141 Mc. loth are all. metal construetion. Efach has its own vertical member. which is clamped to the rotating vertieal pipe that runs down through the tower bearing.

higher. Reflector - 116 inches. Driven element - 110.5 . Finst director - 10.5.5. scound director - 104. Third director - 102.75. Fourth director - 101.0. Spacings are, from tack forward: :36, :3t, 42. 59 and 70 inches. If a longer array is to be built cencla additional director should be 70 inches from the last.

Construction

The long lagi is built similar to the berement :array of Fig. 18-7 and 18-8, using the Raddiffe castings for mounting the elements. The gusset plate for fastening the hoom to the vertical support is made larger, and four U bolts are used on each member instead of two. The armay is mounted at its renter of gravity, mather than at its physical renter. The boom is braced to prevent drooping, at points about 5 feot out from the mounting point. Braces arr aluminum tubing, flattened at the ends, and clamped to the hoom and the vertical member. Suspension bracing, as shown in Fig. 18-10, provides strength with lightweight supports.

The dimensions given require a hoom slightly more than 20 feet long. This was made up by splicing, but if a 20 -foot length is available in one piece the spacings of the two forward directors can be made slightly less, in order to avoid splicing. Vilement spacing is not particularly critical, but lengthe are fairly sor

The Gamma Match

The gamma mateh is iteal for matching arrats fed with cons. The arrangement shown in lig. 18-11 combines the adjustable arm with the sorios rapacitor. and provides a rugged assembly that can be weather-proofed readily. The main arm is cut from the same material as the elements, 15 inches long. It is supported paralled to the driven element by means of t wo 1 -inch ceramie standuffs and sheet-iluminum clips. Its inner end is commected to the inner conductor of a coasial fitting. mounted on a small bracket screwed to the boom.

The serios cupacitor, for tuning out the reabtaner of the matrohing arm and making conneetion to the driven element, is 1 -ineh rod or tubing it inches long. It is maintained cobasial with the main arm be two polystyrene bushings. One is force-fitted to the end of the rod and the
other is fitted tighty inside the main arm to art as a bearing. These can be made from 3-inch rod stock, or National Type PIRC-1 forms can be adapted readily to the purpose. A (lip) of sheet aluminum connects the rod and the driven element. Be sure that it clean tight cont tact is made at this point.

Adjustment

Matching requires an s.w.r. bridge. It can be done properly in no other wats. Mount the beam at least a half wave length above ground and clear of trees and wires by at least the sume distance, set the trinsmitter at a frequeney in the middle of the range you want to work (50.3 is a grood spot for low-end operation) and adjust the position of the clip and the length of the rod outside the main arm for minimum s.w.r. Nove first one variable and then the other until zoro reflected power is indicated. Tighten the rlip solidly, tape over the junction between the arm and the rod with waterproof tape, and the array is ready for use.

144-MC. PARASITIC ARRAYS

The main features of the armes deseribed above can be adapted to $144-\mathrm{Me}$. antennas, but the small physieal size of arrays for this frequeney makes it possible to use larger numbers of elements with case. Fow 2-meter antemas have less than 4 or 5 elements, and most stations use more, either in at single bay or in stacked systems.
darasitic arrays for 114 Me, can be made readily from TV antemas for Chammels 4,5 or 6 . The relatively elose sparing normally used in TV arrays makes it possible to approximate the reommended 0.2 wave length at 1 it Me., though the element spacing is not a critical factor. A -evement arraty for 14 Mc , made from a Chamel ${ }_{6}$ TV Yagi is shown in Fig. 18-5. It is fed with al gamma matioh and 52 -ohm eoas, and was designed primarily for portable work. As most TV' antennas are designed for :300-ohm feed the same feed system can be employed for the 2 meter array that is made from them.

If one wishes to build his own Y'agi antenmas from available thating sizes, the boom of at 2 meter antemna should be $3 / 4$ to 1 inch aluminum

Fig. 18-1/ betails of the gammat match used on the 6-element 50. Me, array, Series capacitor is formed by sliding a rod or tube inside the main arm.
or dural．Elements ean be $1 / 4$ to $1 / 2$－inch stoek， fastened to the boom as shown in Fig．18－12． Recommended spacing for up to（i）elements is 0.2 wave length，though this is not too critical． Gamma match feed is recommended for coas， or a foldod dipole and balun may be used．If batanced line is to be used the folded dipole is

Fig．18－12－Volel showing method of assembling all－ metal arrays for If I Mr．and higher framencies．Dimen－ sions of clampo are kiven in Fig．18－1．s．
recommended，the 4 to 1 ratio of comductor sizes being about right for most devigns．

Vore high gain can be ohtained with tong lagi－ type armes for 141 Me．and higher frequencies， though the bandwidth of such antemas is con－ siderably narrower than for those having up to f or 5 dements．The first two directors in long Yagis are usually spaced about 0.1 wave length． ＇The third is spared about 0.2 ，imereasing to 0.4 wave length or se for the forward directors． Highest gain is obtained when all directors are made the sime length，but better front－to－tarek ratio and lower side lobe content results if the director lengths are tapered ${ }^{1 / 8}$ to ${ }^{1 / 1}$ inch por director．＇Tapering the edement lengethe atso widens the effertive bandwidth．There is more on long Yagis in（がす for January and September，19b6．

STACKED YAGI ARRAYS

The gatin（in power）obtainable from a single loug array can be more than doubled bes stacking two or more of them vertically and feeding them in phase．This refers to horizontal sistems，of course．Vertioally－polarized hays are usually stacked side be site．The principles to follow apply in cither eane．
The sparing between hays should be at least one hadf wave length，and more is desimabe．For dipoles or Yagis of up to three elements optimum spacing botwern hays is athout $5 / 8$ wave longth， bat with longer lagis the sparing ean low int Freased to one wave longth or more Batys of is Wements or more，spared one wave length，are ammonly used in antennas for III Me and higher frequencios，optimum spateing for long Yagis is about two wave lengths．

Where half－wave stacking is to be employed， the phasing line botwen bays can be treated as a double＂$($＂＂section．If two bays，each de－ signed for 300 －ohm feed，are to be stacked a hatf wave lenget apart and fod at the midpoint be－ tween them，the phasing line should have an impedance of about 380 olims．No． 12 wire spaced one inch will do for this purpose．The midpoint then can be fed either with ：300－ohm line，or with 72 －ohm coax and a bathon．

When at spacing of $5 / 8$ wave lengeth betwe en bays is emploved，the phasing lines catn be coax．（The velocity factor of coax makes a finl wave length of line actually about 5 ／8 waw lengh phesieally， The impedance at the mideoint botwern two bays is slightly less than half the imperdanere of either bay alone，due to the conpling betwen bays．This offect derreases with inereased spating，

When twe bass are spared a full wave length the coupling is relatively slight．The phasing line can be any open－wire line，and the impedanee at the midpoint will beappoximately half that of the individual bays．Predieting what it will be with a given sot of dimemsions is differalt，as many factors come into play．It will usuatly be of a value that can be fed through the combination of a＂（Q＂section and at transmission line of ：300 to d50 ohms impedimere．An adjustable＂（Q＂ soetion，or an adjustable stub）like the one shown in Figg．18－1，maty be used when the antenna impedance is not known．

Fís．18－1：－Stacked array for 30 Me，maing two of the
 aretion for rotation are of coavial line $1{ }^{-2}$（1＂section
 station．
dement array for 420 Mc. are shown mounted bark-to-barck in Fig. 18-18. The 220-3Ire. portion follows the 16 -clement design :dready deseribed. It is fed at the center of thesestem with :300-ohm tubutar "Twin-Lead, matehed to the renter impedance of the array through a "()" sertion of 71 b-inch tubing, spaced about $1 / \frac{1}{2}$ inches center to center. This spacing was adjusted for minimum standing-wave ration on the line.

Eloments in the arrat shown are of 7_{10}-ineh aluminum fuel-line tubing. which is very light in weight and easily worked. The supporting structure is dural tubing, using the clamp assembly methods of Iig, 18-1ti.
The t20-Mc, armay uses 1 wo 12 -element assemblies similar to Fig. 18-14, monted one above the other, about one half wave lengeth separating the bottom of one from the top of the other. The two sets of phasing lines are joined be means of one-wavelength sections of 'Twin-dad at the midele of the array. This junction, which hats an imperdanee of around 150 ohms. is fed with 300ohm tubular Twin-Latal through an adjustable "Q" section,
Elements in the $420-M \mathrm{M}$. array are cut from thin-walled $1 / 4$-inch tubing. Their supports are the 7 /f-inch stork used for the 220 - Mte. elements. Slots were cut in the ends of these supports to take the elements, and at, 40 serew was run through both pieces and drawn up tightle with a nut. The horizontal supports were fastaned in holes drilled in the vertical members, and were also hold in place with a (β-32 sorew and nut. The small size and light weight of the $42(0-$ Me, arraty did not require the use of clamps to make a strong assombly.

The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long. taking the pronaration
 convenient sizo tuhing. $1 / 4$ to 1,2 inch diameter. It should be made adjustable, as matching is important at this frequeney. Dimensions for both arrays can be takem from Table 18-I.

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest possible radiation angle is cssential, and the coasial antemna shown in Fig. 18-1!) was developed to eliminate ferder radiation. The center conductor of a 7 (0)-ohm concentric transmission line is extembed onequarter wave beyond the end of the line, to atet as the upper half of a half-wave antemat. The lower hatt is provided bey the quater-wave shene the upper end of which is conneeted to the outer conductor of the eoneentrie line. The slenve anets as a shied about the tramsmission lime and very little ecurrent is induced on the outside of the line by the antema field. The lime is nom-resonam, since its chatacteristio impedance is the same as the center impedance of the half-wave antemat. The sleeve may be made of copper or brase thating of suitable diameter to clear the tramemission line. The coasial antemat is somewhat difirult to
construct, but is superior to simpler systems in its performance at low radiation angles.

Broadband Antennas

Certain tupes of antemnas used in television are of interest heratuse they work anoss a wide band of frequencies with relatively uniform response At very-high frequencies an antemata mate of smadl wire is purely resistive only over a very smatl frequeney range. Its Q, and therefore its solectivity, is sufficiont to limit is optimum performance to at harow frequency range, and realjustment of the length or tuning is regutred for each narrow sliee of the spectrum. With funed transmission lines, the effective length of the antenna can be shifted by retuning the whole system. However, in the case of antemnas fed by matched-impuedance lines, any apperiabla frequency change requires an actual mechanieal adjust ment of the system. Otherwise, the resulting mismatch with the line will be sufficiont to catuse significant reduction in power input to the antembat.

I properly designed and construeted wideband antemat, on the other hand, will exhibit very nearly constant input impedance over several megacereles.

The simplest method of obtaining a boathand chavacteristie is the use of what is termed a "eylindrical" antemna. This is no more than a conventional doublet in which large-diameter tubing is used for the chements. The use of a rdatively latge diameter-to-length ratio lowers the Q of the antenat, thus broadening the resonance characteristie.

Is the diameter-to-length ratio is increased, end effects also increase, with the result that the antema must be made shorter than thin-
wire antema resonating at the same frequencer The reduction fatetor may be as much as 20 per' cont with the tubing sizes commonly used for amateur antennas at v.h.f.

Plane-Reflector Arrays

At 220 Me, and higher, where their dimensions brome practionble, phate-reflector armass are widely used. Exarpt as it affects the impedanee of the serstem, as shown in Fig. 18-20, the spacing betweth the driven elements and the reflereting plane is not particularly eritical, Maximum gain oceurs around 0.1 to 0.15 wave lengith, which is also the region of lowest imperdanere. Highest imperdance appears at about 0.3 wave lemeth. . plane reflector spaced 0.22 wave length in bark of the driven dements has no dffect on their fered imperdanee . Ss the gain of a plane-reflector array is nearly eonstant at spatings from 0.1 to 0.25 wave length, it may be seen that the spacing may be varied to arhieve am impedance match.

An advantage of the phane reflector is that it maty be used with two driven dement systems, one on eath side of the plane, providing tor twoband operation, or the incorporation of horizontal and vertical polarization in a single strusture. The gain of a plamereflector armay is slightly higher than that of a similar mmber of driven momentslacked up be parasitio reflectoms. It also hats a broader freguencer response and higher front-to-back ratio. To achieve these ends, the reflecting plane must be larger than the area of the driven clements, extemding at least a quaterer wave length on all sides, (Chicken wire on a wood or metal frame makes a good phane reflector. (Closely-spared wires or rods maty he substituted, with the spacing bet ween them running up to 0.1 wave length without appreciable reduction in effeetiveness.

Cone Antennas

From the cylindrical antenna vatrious spocialized forms of broadly-resonamt radiators have been evolved, inclading the ellipsoid, spheroid, conc, diamond and double diamond. Of these, the conical anternat is porhaps the most interesting. With large angles of revolution, the variation in the characteristic impedance with changes in fregueney can be reduced to a very low value, making such an antemat suitable for extremely wide-hand operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of conieal antemna is widely used in TV reception.

Corner Reflectors

In the corner reflector two plane surfanes are sot at an angle, usually betwern tà and !00 degrees, with the antema on a line bisereting this angle. Maximum gain is obtained with the antenna 0.5 wave length from the vertex, but compromise designs ean bo built with closer spacinges. There is no focal point, as would be the case for at parabolic reflector. Corner angles greater that ! 90 degrees can be used at some sacrifiee in gain. At
leses than ! 10 degrees the gain increases, but the size of the refleeting sherts must be increased to mali\%e this gain.

At a spacing of 0.5 wave length from the vertex, the impedanere of the driven dement is approximately twiee that of the same dipole in fire spare. The impedande decreases with smaller spacings and comber angles, ats shown in Fig. 18-20, The gatio of a comer-reflector array with a 90 -degree angle, 0,5 wave length spacing and sides 1 wavelength long is approximately 10 dt , l'rincipal advantages of the corner reflector are broad frequeney response and high front-to-bark ratio.

Fig. 18-20-Vied impedance of the driven element in a corner-reflechor array for corner anghes of 180 (flat
 spacing.

Parabolic Reflectors

A plane sheet maty be formed into the shape of a parabolice corve and used with a driven radiator sit uated at its focus, to provide a highlydirective antema system. If the parabolie rethertor is sufficiontly large so that the distance to the focal point is a number of wave lengths, optical conditions are approwhed and the wave arross the mouth of the refleceror is a plane wave. Howerer, if the reflemtor is of the same orter of dimensions as the operating wave length. or less, the driven raliator is appreciably coupled to the refleceting shent and minor lobes oceur in the pattern. With an aperture of the order of 10 or 20 wave lengeths, siges that may be practical for microwave work, a beam-width of appoximately万 degrees may be achicuod.

A reflecting paraboloid must be carefully dosigued and eonstructed to obtain ideal performanere. The antemat must be located at the focal point. The most desirable focal length of the parabola is that which phares the radiator along the plane of the mouth; this length is egual to ono-half the mouth radius. At other focal distances interference fields may deform the pattern or caned a sizable portion of the radiation.

Tracing Noise

To determine if the receiving antenna is picking up all of the nowe, the shiched leat-in should be disconnerted at the print where it romects to the antemat. The motor should be started with the recoiver gain control wide open. If mo moise is heard, all moise is being picked up via the antemat. If the noise is still hoard with the antemna disoonnerted, evon though it may be reduced in strength, it indicates that some signal from the ignition system is being pieked up by the ant enan transmission

fig. 19.3 - Diagrams howine addition of mosist limiter to car receiver. 1- (ziad circuit. Is - Alosilitication.
(1. C C 3 - 100 ($-\mu \mu \mathrm{f}$. mira.
$\mathrm{Ci}_{2}, \mathrm{C}_{4}, \mathrm{C} 8-\mathrm{O}, 01-\mu \mathrm{f}$. paprer.
Cis - $0.1-\mu \mathrm{f}$. paper.
$181-47,000$ ohims.
$\mathrm{R}_{2}, \mathrm{R}_{10}-1$ megohim.
h_{3} - $1 / 2$ megohm.
$\mathrm{R}_{2}, \mathrm{R}_{8} \mathrm{R}_{9}-0.47$ megohm.
R_{4} - 10 megohms.
$\mathbf{R}_{5}-1 / 4$ megohm.
$\mathrm{R}_{6}-0.1$ megolim.
T_{1} - I.f. transformer.
Ni - Second detector.
line. The lead-in maty mot lxe sufficiontly-wall shiched, or the shidd mot properly grounded. Noise may also be pieked up through the bat tery (ircuit, although this does mot normally happen if the receiver is provided with the usual r.f.choke-and-bypars capacitor filter.

In case of noise from this source, a direct wire from the "hot" battery terminal to the recerion is recommended.

Ignition noise varies in repetition rate with rugine sperd and usuatly can be recognized by that characteristic in the early stages. Later, howerer, it may resolve itself into a popping noise that does not always correspond with 'rngine spered. In such a case, it is a good idea to remove all leads from the generator so that the only soure beft is the ignition system.

Ragulator and generator noise maty be dotertod by racing the engine and cutting the ignition switch. This eliminates the ignition noise. (ienorator mose is chataterized by its musicul whine contrasted with the ragged raspy irregular noise from the regulator.
llith the motor ruming at idling speed, or slightly faster, choceks should be made to try to determine what is bringing the noise into the field of the antema. It should be assumed that any control rod, metal tube, steering post, ete., passing from the motor compartment through an insulated bushing in the firewall will earry noise to at point where it can be radiated to the antemat. All of these should be homed to the firewall with heaw wire or braid, lnsulated wires can he stripurd of r.f. ly bypassing them to ground with $0 . \overline{0}-\mu \mathrm{f}$. metal-case capacitors. The following should not be overlooked: battery lead at the ammeter, gasoline gatuge, ignition switch. houdlight, hackup and taillight leads and the wiring of any accessorias rumning from the motor compartment to the instrument panel or outside the car.

The firmall should the bonded to the frame of the car and also to the motor block with heavy braid. If the cxhaust pipe and mutfler are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible coppor braid.

Noise Limiting

Fig. 19-3 shows the alterations that may be made in the existing car-receiver circuit to provide for a moise limiter. The usual diodetriode sorond detector is replaced with a type having an extra independent diode. If the car
 be substituted. The 7×7 is a suitable replacement in recoivers using loktallype tuber, while the bTs may be used with miniatures.

The switel that ruts the limiter in and out of the circuit may be located for convenience on or near the converter pand. Regardless of its parement, however, the leads to the switeh should be shiclded to prevent hum pick-up.
several other noise limiter circuits are described in ARRL's publication. The .Mobile .Vannal For Rudio . 1 mateurs. The - Mobile Manual also dencribes an audio sulueldeh system. The latter is a simple circuit designed to suppress reeceiver batckround noise in the absence of a signal. It does not, however. function as a noise limiter when the receiver is tuned to a signal.

At least one manufacturer (Gonset) produees it complete noise limiter unit. The unit is mounted extermal to the main chassis and takes operating voltages from the receiver.

A Mobile Converter for 3.5 through 28 Mc.

Figures 19-4 throngh 19-7 show a restal-comtrolled ronverter eovering 3.5 through 28 Me . without complex band switching or gang-tumed cirenits. Plug-in roil asemblies provide rapid band ehanging and allow construction for either single-band or multiband operation. The converter uses the car broadeast receiver as a tunable i.f. amplifier.

Plate power requirements for the converter are approximately 20 milliamperes at 200 to 250 volts. This means that the mit can be supplied from the car-reeciver power patk without overloading it,

The Circuit

The circuit diagram of the converter is shown in Fig, 19-5. A bliz6 is used in the r.f. amplitior. and a $12 \mathrm{AT}^{-7}$ oproates as a mixer-oscillator. The oscillator is crystal-controlled and works on the low-freguency side of the signal fregueney. J_{1}. J_{2}. and J_{3} are the antema-input, mixer-output and power jacks, respectively. x_{1} porforms the switching in changing over from ham-band to broadeast input. $S_{1 A}$ and $S_{\text {In }}$ shift the antemat from the converter input circuit to the car rectiver, and S_{tc} is the beater on-off switeh.
Since the tuning of the converter is fixed, the cireuits of the r.f. amplifier and the miser must be broadhanded to pass all fredueneios in any ham hand. A shug-tuned coil, L_{3}. is used in the amplifice plate circuit, and $R P^{\prime}{ }_{1}$ provides a broad-hand plate load for the mixer tube $V_{2 A}$. The grid eireuit of the amplifier alfo uses a slugtumed coil and includes a trimmer capacitor, (C_{t}, that permits peaking the input for the antenna in use, or in tuning completely arross a bathe A slug-rored coil is used at L_{4} to farcilitate resonating the cirenit near the erystal freguence:

The frequency of the oscillator must differ from the frequency of the received signal by the frequeney of the tunable i.f. amplifier. With the car broaddast receiver following the converter, the i.f. range will be from appoximately inso to $15 \overline{5} 0 \mathrm{ke}$. Sinee the tunable i.f. range is thus limited to a band 1000 ke . wide, the tuning range of the system with any single crystal will be restricted to 1 Mr . This is sufficient for all exeept the 28-Me. band. Two erestals are required to

Fis. 19.4. The alumitum case for the eonverter measure $3 \times 1 \times 5$ inches (Bud (:1-3005 or Premier AllC. 100.3). Imphenol type 86-C:SA male jach- mounted on the front of the loox mate with MIP 4 -prong sockets motinted on the rear of the coil compartment shown in the foreground. Kinolis for C_{1} and S_{1} are to the left and rikht, respertively, of the pilot lamp. 'l'he coil hox measures $21 / 4 \times 21 / 4 \times 5$ inches (13ul Cl .30) 4 or Premier AMC;-1004), Sharadjustment serews for La, L_{3} and L_{4} protrude throuph rulher arommets monnted on the front wall of the plug. in coil assembly.
cover the entire 10-meter band. The first of these gives a tuning range of 28 to 28.9 Mc. and the second promits tuning 28.8 to 29.7 Me. An acompanying frequency chart lists the crystal frequencies and the ranges over which the broadcast receiver must be tuned to cover the amateru bands.

Construction

The input-tuning capacitor, C_{1}, the pilot lamp) and the switch are in line across the pancl of the converter as shown in Fig. 19-4. Bach of these components is centered $3 / 4$ inch down from the top of the ease and each is separated from the other in horizontal plane by $13 / 4$ inches. The male jacks for the grid. plate and oscillator cosils are below f_{1}. I_{1} and s_{1} in that order. Wach jack is centered $1 \frac{1}{8}$ inches up from the bottom of the cabinet.

The chassis, shown in Fig. 19-7, may be made of thin aluminum sheet and should be fastened to the side walls of the cabinet with homemade batakets, or angle stock. The sockets for V_{1} (at the right as soen in the rear view) and V_{3} are erontered $15 / 8$ inches in from the right and Weft edges of the chassis, respertively, J_{3} is centered on the rear wall of the chassis with J_{1} and J_{2} to the right and left.

A bottom view of the converter elearly shows the components mount ed bolow deck.

The exterior and the interior of the coil box atre shown in Figs 19-4 and 19-7. Wind the antenna coupling coils, L_{1} in Fig. 19-5, around the ground ends of the gride coils before the latter are soldered in plate. Wind the coupling coils rather snugly but not so tightly as to prevent adjustment of the coupling to I_{2} during testing of the converter.

Fig. $19 . \overline{3}$ - Circuit Jiagram of the rrostat-romorollad mobile renserter. I mbos otherwise indicated. caparilatere are in $\mu \mu$ f., rraintances are ill ohmes. resistors atre石 watt.
 $35-(3)$.

Ci, Ci. (if. ©-: Iento- $\mu \mu$ f. lisk ceramie.
(s- 0.OI- μ f. dish reramio.
 (b-3olt) or No. 181.5 (I2-3ola) lamp!

J3-4-prons mate chasis emoneator (finch-Jones P.30!-.113).
$I_{A}, I_{2}, I_{3} . I_{A}-$-see moil mart.
All ace transformor maty be used for the filatments white testing the eonwerter. The phate sup) ply should deliver 20 milliamperes at 200 to 250 volts. A modulated-signal genmator covering the hands for which the eomerter has been constructed is extremely haptinl. To be most affertive, the gencrator should have a botohm output termination. A grid-dip moter for proliminary adjustment of the shag-tuned exils is useful, beit not asontial to aligmment. If at all possibles. the car remerer that is to be used as the tumable i.f. should be used during the testing.

Cting roasial-cable leads, commet the signal generator and the boondeast reeriver to J_{1} and I2. refuretively. Switch sis to the ham-hand position, and apply hator power. The reseiver need not be turned on at this time, and plate
$18_{1}-1800_{\text {ohms, }}^{1 / 2}$ wat1.
H_{2} - 22.000 ohms. $\frac{1}{2}$ watt.
R_{3} - 2000 ohms. $1 / 2$ watt.
$\mathrm{R}_{4}-1$ megolim, ie watt.
$\mathrm{R}_{5}-0.1$ mercoltm, $1 / 2$ watt.
Kn-33,000 whms. 16 watl

S_{1}-3-mole 3-position (treed as 3 prol.t.) solector switeh (Centralah P1.10に.).
Y_{1} - Are pext and frofurney elart (International

power for the ronverter does not have to be applied. Now, rotate Cit to approximately half eaparitanee and then adjust L_{2} to resonamere (nse the grid-dip) meter as the indicator) at the low end of the lamd. Sove the grid-dipper over to the plate cirenit of the amplifier and peak L_{3} at the center of the bami. Next. couple the meter to L_{4} of the oreillator and tume the eoil to the frequener of the erystal in use.

After these initial adjustments, plate power may he applied to the ronverter and a freguenerindicating devier used to detect oscilation of V_{213}. If the griderdip moter is the solf-rectifying tepe it may be hered for the eherek. An absorptiontope wavemeter with indieator or a reesiver tumed to the erystal frequeney (with the b.f.o. on) maty also be used for the purpose. In any

Com，（ihalt for the Mobile Converthr							
Bund Mc．	$\begin{gathered} T_{u r n \prime s} \\ L_{1} \end{gathered}$	Int．Rungr，μ h．					
		L_{2}	L_{43}	L_{4}	L_{2}	L_{3}	L_{4}
3．5－4	14	36－64	64－105	105－200	120－F	120－G	120－II
7－7．3	7	9－18	18－36	36－6．4	12（0－1）	$120-\mathrm{E}$	120－F
14－14．35	4	3－5	5－9	9－18	1：20－3	$120-\mathrm{C}$	120－1）
$21-21.45$	3	2－3	3－5	3－5	120－A	120－B	120－13
$26.96-27.23$	3	1－1．6	1．（i－2．7	2．7－4．5	$1000-\mathrm{A}$	1000－B	1000－C
28－289	3	1－1．6	1．6－2．7	2．7－4．5	$1000-\mathrm{A}$	$1000-\mathrm{B}$	1000－C
28．8－29．7	3	1－1．6	1．6－2．7	2．7－4．5	1000－A	1000－3	1000－C

Note：L_{1} is wound with No． 28 d．c．c．wire at gromed end of $L_{2} . L_{3}, L_{3}$ and L_{4} are slug－

event，L_{4} should be tumed through resoname to the high－frequency side of the erystal frequeney motil the rerstal oscillates reliably as indicated by rapid starting when pate power is turned ont．

With the converter and the i．f．amplifier both turned on，and with the signal generator tumed to the eenter of the band．tune the receiver until the tost signal is heard．Peak L_{3} and L_{4} for bost response and then peak L_{2} with Ch set at half （a）atitance．The compling between L_{1} and L_{2} may now be adjusted for optimumperformance．

If the aforementioned test equipment is not available．the converter may be aligned while using a strong local of kown frequency as the signal souree．Of comse，the signal frecuency must be in the band for which the converter is to be aligned．In using this system，first set the broadeast receiver as closely as possible to the proper i．f．frepurney（see the frequeney ehart） and then tume L_{4} until the crystal oseillaters．It is advisable to tume the reecover through a namrow ramge as the oscillator coil is being adjusted to assure that the test signal will be heard as soon as the crystal break into oseillation．Difer the signal is detereded．the grid．plate and oseillator cirenits may be adjusted for maximum over－all gain．

The mobile antemas should be resonant and tightly compled to the converter．＇Traps for sup－ pressing interference canse bestrong local broud－ cast siguals that ferd in through the converter tas the tumble i．f．have not bern inchaded in the converter because the need for them will be entirely dependent on local broadeast－station power athd freguency asiguments．
（1）riginally described in（ぶTV，Nov．19：5\％）．

Fig．19－－Hommenale L．shaped chassis，mounted on small brackets fastened to the side walls of the converter
 deep．I 1 is mometed on the chassis to the right of I_{2} as seen in this rear view，$/ 1, / 3$ and $/ 2$ are in line in that order from risht to left aceross the rear wall of the chassis． An interior view of a eobil compartment is shown in the foregroumb．＇Terminals of the coils are soldered directly to the socket terminals，lotice that the erystal for the oscillator is momed adjacent to $h a$ ．

Fhequency Chart foh the Mobile Converter		
$\begin{gathered} \text { Bend } \\ 1 / r . \end{gathered}$	$\begin{gathered} \text { ('rosklenl } \\ \text { Fireq.. } 1 / \text { r. } \end{gathered}$	I．F．Rerife K゙。
3． 3 － 4	29	（3i） $0-1104)$
773	（i） 4	（60）－900）
14－14．35	1：3 4	（600）－920
21－21 15	2014	（i0） $0-10$ ） 0 ）
2696027.23	$26: 3$	（660－4） 30
28－28 1	274	（300－150）
28 8－29 7	28.2	（ $000-12000$

Note：l．f．range indicates booddeast recefer toming range nocerssary for cover－ ing the associated amatemer fromences．
（For a deseription of a bandswitching arystal－ controlled eomverter，see（ぶT，January，19ジす。 or The Vobile 1 Mamual for Rertio 1 mateurs．）

A Crystal-Controlled Converter for 50 Mc .

The jo-Me. mobile converter shown in Figs, 10-8 through $19-12$ combines simplieity with up-to-date v.h.f. design praction, Athough omly three tubes are usod, the convertor includes at stage of r.f. amplification plus dual eonversion with erystal-controlled oscillators. The choiee of i.f. results in a high order of imatge rejection. A car hroadeast reediver is used as the tumable i.f. for the unit and ako supplies the neecssary plate power.

An antenna peaking capacitor is the only operating-type control on the convertar. Fonir low-freguency erystals, any one of wheh may be plugged into the front of the unit, provide silection of 1-Me. segments of the (i-nuter range. With this arrangement. a tuning range of 1 Me . is olstaned with each full swing of the broadeast recover tuning dial.

The circuit diagram is shown in Fig. 19-9. A GDCCti is used as an r.f. amplifier. (1 is the gridcircuit peaking capacitor. Output from the (ib)Ci is coupled through a simple band-pass
 hatf of the 12.17' is oprated as a crestal osciltator at 43.5 J Me to provide injection voltage for the mixer. Thus, the i.f. output for the mixer is set be the frequency of the incoming 50-Mt, signal and will fall within the $6 . \overline{5}-10.5$ - Mc, range.

A sceond hand-pass circuit, (${ }_{8}{ }^{\prime}{ }_{10} C_{11}{ }_{11} L_{5} L_{6}$, is conneded betwern the plate of the mixer and the grid of a Type 6B.at converter tube. 'The oscillator section of the ghat uses erystals ground for $5.95,0.95,7.95$ and 8.95 Me . These crystals, in the order listed, provide 1-Me. i.f. ranges (from the (iBAT) beginning at $0.5 \overline{5}$. Ie. L_{7} is a slug-tuned plate coil for the converter tube.

A resistor, R_{6}, is comented betwern the control grid of the tiB.it and ground. Its purpose is to flatten out the response of the low-frequency (6.5 to 10.5 Mc .) coupling circuit. S_{1} performs the switching necessary in shifting from 50 Mc. to
broadeast imput. Heater circuits for both bi.3-and 12.(i-volt are shown in lig. 1!)-9

Construction

The converter is built into a $2 \times 5 \times 7$-ineh aluminum chassis. 'The top cower (atuatly abottom plate for the ehassis, and not shown in the photographes is a flat piece of aluminum measuring 5 to 4 inches. The extrat ineh of overlap on cath side provides lipes for fastoning the convertor to the bottom of the brodedest reeciver bey mens of mathine serows and motal spacers.

The subassembly is shown rentered in the (hassis in Figs 1!-8 and 1!1-10, and in two detail photographs. figs. 19-11 and 19-12 identify the components in the subasembly. When the bracket has beron bent and drilled. plater it against the inside bottom surfare of the chassis and mark the mounting holes in the chassis. Then plare the bracket against the rear wall of the chassis and use it as a tempate to mark the position of the 1 -ineh holes that permit removal of the tubes.
The positions of J_{1}, J_{2} and the cable grommet may now be marked on the rear wall of the chassis and mounting holes for f_{1}. S S_{1} and the revial sorket for Yg maty he spotted on the front wall. Mount ('a with the shaff hardware and with the throaded mounting foot faring toward S_{1}.

When mounting compononts in the subassemble, orient the tule sockets in the following mamer: l'ins 3 and 4 of V_{1} facing toward the top of the bracket; P'in $\overline{7}$ of V_{2} and lins 1 and 5 of V_{3} pointing toward the bottom of the bracket. One-t rminal tir-point strips, held in plate he the sorket hardwatre, should be mounted at the botom of F_{1}, to the right of F_{2} (as sem in Fig. 19-12) and at the top of V_{3}. A 2-torminal tiepoint strip should be mounted to the right of V_{1}.
The 1_{2}-ineth clearanere holes for L_{5} and L_{66} are spaced $7 / 8$-inch hetween centers and are bocated in between the sockets for V_{2} and V_{3}. A rubber grommet mounted in the bracket just above the socket for ${ }^{5}$ passes a load botweren Ping of the GBS.5 and the plate coil. L_{7}.

Fig. 19-11 shows the soreket for y_{1} mounted alowe the 12.17%. Adjustment surews for C's. C6. ('s and r 'is are also visible in this view. A 3 -terminal tio-pmint strip to the right of V_{a} support. He

Fig. 19-8. The infult tuming raparitor
 and tho low-frequency rryat (12) are in line from left to risht on the front wall of the chasic. A metal partition, mounted alonse the erenter lime of the rhasis. supports the tubes. the s.lif. erystal () 1 , and most of the r.f. components.

Hip. 19.9 - Cirunt diaram of the 50 - Me. crystal-controlled mohile converter, All resistors $\frac{1}{2}$ watt. * Indicates a mica caparitor: all other fixed capactors di-k ceramic, \alles helow $0,001 \mu \mathrm{f}$. are in $\mu_{\mu} \mathrm{f}$.

C 5 , Co, (i, Cin - 1.5-10- $\mu \mu$ f. tubular trimmer (Centralat 8:0)-10).
(10 - 3-30- $\mu \mu \mathrm{C}$, ceramic trimmer (a ational V - 31).
 wound oner aroumded end of $\mathrm{l}, \mathrm{2}$.
 inch diam. (15 \& 11 3m03), Eve texa.
 12(0-1)). (Minewla, I. 1.)
 1-(0-11).
wutput end of ('15 shad the assoreiated coan lead, the grounded sides of the cosxial ceable and cat pacitor C $_{34}$, and the $13+$ end of R_{11}.

To assure mechanical stability, the coils for the first hand-pass circuit ($/ /_{3}$ and $/ 4$), and those of the 4:3.5-Mc. oscillator (L_{x} and L_{y}) are matue up as follows: $L_{3} L_{4}$ is mado from an 18 -turn lengeth of type : 3nt: Minductor hatving t turns removed at the exatet emter. Do not break the support hars when romoving the turns, and be sure to leave leads apporoximately $3 / 4$ iuch long ar both ends of anch winding: $L_{n} L_{9}$ is mate from a 12-turn lenet hof Trje $3001: 3$ Niniduelog having the tenth turn removerl (without breaking the supports), thus leaving at !-turn coil for the oscillator plate "irenit (L s) and a 2-1urn (L_{9}) for coupling injection voltage to the mixar grid.

Fize, 19-10. Commertors J_{1} and J_{2} are mountal in that order, from rixht 1 (1) lefl. om the reatr wall of the comerarer, sthidhod power leads pass throuph at rubloce prommer at the lowner eight-hand conder. Gmoinhly holes. conered with -nap-in womilaling phuse, permit the remenal off tubers, A corpmophate, lowated in-ide the winit at the urper righthand corner, brosides shiedding between the erid and plate coila for the r.f. amplifier.
 ($13 \& \mathbb{I}$ 3013).
 (BS II 300:3). Sor (ext.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - RCA-1ype phono jack.

$S_{1}-3$-pole $\overline{3}$ prastion (used as 3 p.d.t.) selertor switch (Centralah, I'V-2015 or P' I.5 wafer mounted on 1PA-304 indes).
Y_{1}, Y_{2} - Cirystals. See text (International Cirystal type $1: \lambda-9)$.
When the subassembly has been completed, it may he mounted and the interehassis wiring completed. However, the alignment of the tumed circuits is more eonveniently handed if the subassembly is worked on out in the open. This procerlure necessitates that the input circuit, (${ }^{1} L_{1} L_{2}$, be mounted temporarily at one eorner of the bracket (adjacent to V_{1}).

Testing

The converter requires 0.9 ampere at 6 volts - or 0.45 ampere at 12 volts - for the heaters,

Fig. 19-11 - The subasiembly hrachet me:äures $17 / 8$ by $61 \frac{1}{4}$ inches and had a ${ }^{3} \mathrm{n}-$ inch mounting lif at the botom. "The sul!port mate for $1 . \operatorname{land}$ L_{0} butaturen ós loy i , ineho and is monnteil OII a latinch motal
 throush ${ }^{1}$ geincth borlon pumelard in the suh. a*antuly brachet.
and approximately $1: 3$ mat at 150 volts for the phate supply. If the cer radio delivers mueh in (xases of lab volts, it is desirable to limit the imput of the converter beverans of a dropping resistor.

If flat responso of the band-patse circuits is to be obtained a signal gemorator for alignment should he on hatad The gememator should rower (6.5) to 10.5 as well as the orol-Me. hand. ()n the other hathd. a generator is not neressamy if the comberter cirenits are to be poaked for masimum respense in ome sedion of the fi-moter tand. It is advisable to ohtain a gridedip meter for use during the alignment.

The simphest alignment (for peaked response at one ond of the band is areomplished be first chorking all tumed rivents for resomane as indicated by a gridd-lipper. Resonate ' $_{5} L_{3}$ and (${ }_{6} I_{4}$ at albout 0.5 Mre. inside the hand limit of interest, and then adjust the mixer-comvertor complat for resomanme at rither $\overline{7}$ or 10 Ma . depending on which end of the go- Ma band is
 Me., respertively if most of the aperation is to take place at the center of the ti-metere band.

A 50-Mr. signal should now le lod to the convertor and a means for making relative output measurements should be provided. The over-all response of the converter will be broadened
if the varions tmod cireuits are stager tumed.
Aligmment of the interstage coupler for bandpass charatoristios is a sumewhat more complex task. Wiath hatf of rach compler must be indepemdently resomated at the center of its ramer. This means that ${ }^{\prime}{ }_{5} L_{3}$ and $r_{6} L_{4}$ must couth be peaked at 52 M Me and that ('s L_{5} and L_{60} must both Ine resomated at 8.5 Me. Resomant frequeno ios may be cherked with at arid-dip metor providing one half of a coupler is not athowed to intoract on the other half daring the measurements.

After the complers have beobl resonated. the emoretter should be spot dherked through the
 response is failly flat. Vory slight aljustmont of ('5 and C_{6} maty improve the response curve of the Bo-Mr. coupler and the sapacitamer of ' ('0 will determine the speated of the 6.5- to lo-MId. band-pases circuit. A raparitance of approximately 2.) $\mu \mu$ l. is opt immon for the circuit.

After the alignment has breme emmpleted. the sulassombly may be mounted in the chassis and the permanent wiring complefed. The small copper shigld shown in the rater vies of the converter may now be hent into shap and mounted on the mounting font of (${ }_{1}$. In making a final brom test of the unit, Fige 19-! may be refored to for typical voltages.
(Originally deseribod in Q心T, Nov., 19\%\%.)

Fis. 14-12-'This view identilies lhe component- monnted on the fromt of the Fuhazembly, Sparing betwern the tube sock. * acontersia 212 inchor. 'The enamel-convored Itatd leasimes the unit at the left and the right connert to Ciloz and lo. romertiony, The calder at llo. lowir laft is trmimated at ノ'1 and No.

A Simple Mobile Converter for 144 Mc.

The 1/t-Mc. mobile embertor shown in Figs. 19-1:3 through $1!-15$ maty be operated from the recedver power supply. The output frequency of the eonverter is $1 . \overline{3}$ Me., promitting it to be used with an antomobile broadeast receiver.

Two 12 IT' $^{-1}$ twintriodes are used, each as a mixer-oscillator, the first converting the signal fregueney to 11.4 Inc.. the serond working from this frequency to 1500 ke . Plate voltage for all cireuits is stabilized by an 0132 regulator tube. The sensitivity of the converter is quite good, and satisfactory image rejoetion is obtained through the double conversion.

Circuit Details

The first mixer has a tuned grid coil :und its plate wireuit is tumed to 11.4 Me. by (e2 and L_{3}. The uscillator tumes from 1:32.6 to $1: 36.6$ Me. It uses the second seetion of the first $12.17{ }^{-1}$ and, beating with the incoming signal, produces an i.f. of 11.4 Mc. Which is then capacitance coupled to the gride of the second mixer. (${ }_{6}$ is the hand-set eapacitor and ${ }^{*}{ }^{*}$ is the bandspead rapacitor. Stray couphing betwern grid pins at the sockel gives adocquater injection.

The serond 12.1 Th serves as another mixeroscillator rombination, converting the 11.t-Ane. i.f. to 1 馬($)$ ke. for working into at car radio. A trap $\left(C_{3} L_{4}\right)$ is comberted in series with the conpling eaparitor betwen the two mixer direnits. This trap is tumed to 14.4 Mo. and attenuates image response at a frequency removed from the signal freguency by 3000 ke .

The plate circuit of the mixer is tuned to 1500 ke. by L_{5}, and a fixed capacitor, ('5. A short length of coaxial cable is used bet ween the output jatek, J_{2}, and the recolver.

The oseillator for the second mixer is crystal controlled at 12.9 Mc. and has its plate dircuit tuned by means of $\left(\begin{array}{c}8 \\ 8\end{array}\right.$ and L_{i}.

Construction

Figs. 1!)-1:3 and 19-15 illustrate how the eonverter is built into a HAMC:AB (Prefect Mfg. Co., Norwalk, Conn.) Type A-l0-I chassis-

Fif. 19.1.3-T'Te chassis for the HF-De, converter meatiores $1 \frac{1}{2}$ by 4\% by $6 \% / 8$ ine hes and the panel is 5 inches square. The cover for the unit (not slmown il the photomaph) meas. ures $\overline{5}$ by 5 by 7 inches. A Vational All vernier dial, mounted on the panel, is used for taning the bandspread raparitor, C:. Control kmols for Cit and x_{1} are at the bottom of the
 small almminmm strip to the left of $V^{\prime} 2$. I_{1} is located at the front of the chas. sis, just to the left of $C-$. The obse regulator tube is at the rear of the eonverter, I_{1} and L_{-7} are located to the right of I_{2}.
cabinet assembly. The photographs dearly show the arrangement of parts and the only real preceantions to he olsorved is that of providing adequate isolation between L_{0} a turd the rest of the coils.

A threcterminal tic-point strip, mounted to the rear of the 0132 socket (Fig. 19-15), provides torminals for the d.e- iuput leads and support for $\mathrm{li}_{\text {? }}$. A two-terminal tic-point strip is mounted betweren the socket for liz and the front panel and is used for the support and termination of $R_{1}, R_{2}, C_{9}, C_{10}$ and R R' 'r Many of the other components are mounted direetly on the terminals of the slug-tuncd coil forms. (C_{6} is mounted directly above ('z her means of leads made with 3 -inch copper strap.

The rear wall of the chassis (ser Fig. 19-15) must be added to the commeredial ehassis.

Testing

Power refuirments for the converter are 150 volts at 16 ma, and 6 volts at 0.6 ampre (or 12 wolts at (0.3 ampere). I reeciver catpable of tuning to 1500 kr . should be coupled to the converter by a short length of eoaxial cable and the recoiver adjusted for normal operation at this freguenery. If a signal gonerator is to be used, it is connected to the input jack, J_{1}, and if a generator is not available, the converter should be coupled to a low-impedanee antenna system.

If proliminary testing is to lo done with noise, the converter and the recoiver are turned on and the converter output coil, L_{55} adjusted until the noise level is at maximum, The low-frequenery oscillator should now be adjusted by means of L_{7} until a further increase in noise level is hard.

Now introduer a test signal at 146 Mc . With C_{7}^{\prime} set at half capacitanere, C_{6} is adjusted until

Fig. I9-I4 - Sehematic diagram for the 141- Te. mohile converter. All resi=tors ${ }^{1}$ 名 watt unleas otherwise sprefied. C.apacitor values thelow $0.001 \mu \mathrm{f}$, are in $\mu \mu \mathrm{f}$. Al 0.001 and 0.011 rabacitors are disk ceramic. "Indinates a silver-miea eaparitor. © ther fixed rapaciows are fubular reramie.
 dused to 2 stator and 1 rotor blates).
($\mathrm{C}_{\mathrm{f}}-9-\mu \mu$. miniature varialbe (Johmson e) IIII).
C_{i} - 8- $\mu \mu \mathrm{f}$ - per-aretion variable (Bud LC.-16.59).
$\mathrm{L}_{1}-\frac{1}{}$ thrias So. $2 \boldsymbol{2}$ enam, interwound lietween tirns at cold end of 12 .
$\mathrm{I}_{2}-1 / 2$ turns No. 16 tinned. $3 / 8-\mathrm{inch}$ diam., $1 / 2$ incls long.
 (North Hills Eklectric type 120-1). (Wineota, I., I.)
the test signal is heard. Check the high-Frequener oscillator at this point to make sure that it is adjusted to the low-frequency side of the 144-Me. bind. C1, $L_{3} . L_{5}$ and L_{7} should now be tuned for maximum converter sensitivity.

It - Slus-tuned: inductance range 61-10. $\mu \mathrm{h}$. (Vorth

 P' P -300 inela-x).

The comvertor handspread catn be adjusted hy -hanging the $L_{\sim} \boldsymbol{r}^{+}$ration of the first ascillator, by altering the spateing betweon turns of L_{6}. ' $_{6}$ mant be reset exelh time the induedane of the eoil is varied. The coupling betweon I_{3} and $L_{a 2}$ should be aldinted for maximum responser.

The 1f. I-Me. tray is :udjusted hy tuning to the high side of the signal fregurome y mentil the imacere is heard. and by then adjusting L_{4} until the image response is attenuated. (Originally deseribed in QST, Dee, I!ajo.)

Fif. 19.I.5-Holes of beineh diam. eter, punched in the rhaseis to the Left of the sorket for 12 elocar the formo for $L_{\text {a }}$. La and /a, Fered-thromals foushinsen mounted in the ehasaio to the rizht of $\mathrm{J}^{\text {b }}$, carrs rif. leads between Jis and (:- i iwn-terminal tie-point strip. -upported lyy the monnting fort of C_{i}. is used io terminate the Jeade for L_{1} and the srommited poot of I_{2} 。 J_{1}. J_{2} amd a prommet for the d.e. ingmt rable are leveateden the rear wall of the whasis.

Conelrad Monitoring

The conelrad rules disensed in the chapters on high-frequencer reocivers and operating a station must be observed by amateurs who operate mobile. Gue comvenient form of compliance is ly means of a separate thatabe comverter covering the broadeatsi hand, and converting to the same i.f', as the i.f. used bey the ham-hand converter. This type of converter maty also be used when the rar radion is used as the tumable i.f. for a hroad-l)and converter. providing that the remedver is tumed to the converter i.f. at tenminute intervals. This can be aceomplished most conveniently be setting one of the push buttons to tunc the revedier to the monitor output freghemer.

The cirenit of a broadeast-bathd converter is shown in Fig. 19-16, The input circuit (istas covers the broadeast hand. The oseillator circuit C 13 , L_{3} tunes the range of 2050 to 3000 ke , to

Power for the converter may be taken from the BC-receiver supply since the eurront requirement is negligible. With 150 volts at the positive 13 terminal of the converter, the converter draws approximately 4 mat. and the drop aross R_{2} is about 100 volts. The converter will work well at supply voltages up to 330 or more without change in the resistance value of R_{2}. The current drain will, of course be higher at the higher supply voltages, and the wattage rating of the resistor may have to be increased. If current drain is an important consideration, the resistance value of R_{2} can be increased in proportion to the increase in supply voltage.

The oscillator can be eheeked for proper frequency range by the use of a grid-dip meter before power is applied or, after power has been turned on, by listening on at communications reeciver eovering the $2-t o-3 \mathrm{Mc}$. range.

Fig. 19-16 - Cirenit of the conelrad converter for mobile use.
C_{1} - 1 nal variable capacitor, broadeast. replactment type for suprerhet receivers. Cin altered as described in the text (approx. $90 \mu \mu f$.).
$\mathrm{C}_{2}-1 \overline{-}-\mu \mu \mathrm{f}$. mica.
(C_{3} - $0.1-\mu \mathrm{f}$, 100 -volt paper.
C4 - 181. $\mu \mathrm{\mu f}$. mica trimmer (Areo type 46.3).
I_{1} - Sce text.
$\mathrm{L}_{2}-\mathrm{BC}$: ferrite core loopstich (approx. $230 \mu \mathrm{~h}$.).
1_{3} - See text (approx. $65 \mu \mathrm{l}$.).
L_{4} - National XR-50 iron-slug form wounl full with No. 32 cnam. wire (approx, $8.5 \mathrm{~m}_{1}$.).
$L_{5}-15$ turns No. 28 wound over cold cud of L_{4}.
produce an i.f. of 1500 ke . A type 6 k at may he used in the eirenit and, of eonrese cither at $12 \mathrm{BF} \boldsymbol{6}$ or a $12 \mathrm{~S}^{2} \mathrm{ta}$ should be used for 12 -volt operation.

Plates mast be removed from ('ias to provide the reguired tuning range. The ascillator seetion of the dual unit is the one having the smather number of plates, starting at the rear, all rotor plates except five should be removed. It isn't necessary to remove the untued stators. Be very careful to make sure that there are wo shorted plates after the modification is complete.

Le is a ferrite-eore loopstick. This coil usually comes with a length of wire attached to the ungrounded end and wound around the loopstiek. When mwound. the shont length of wire is intended to provide additional piekup if noeded. Disconnere this wire from $L_{\text {a }}$ and, withont unwinding it, use it for L_{1}.
L_{3} is close-wound with b0 turns So. 30 enameded, and either tapped at about one third of the way up from the ground end, or with a separate cathode coil consisting of about one third the number of turns on L_{3}. wound over the ground end of L_{3}. and wound in the same direction. The bottom end of this winding should be grounded.

Now eonnect an antema to the input of the converter and commect the eonverter to the 13 C receiver. sot the $B C$ receiver at 1500 kc . (or to the frequener mormally nsed with the ham-band converter). Turn on the power and adjust ('4 and the slug of L_{4} for a peak in noise (if you cen't find a signall). Then adjust the slug of L_{2} for maximum response.

Fig. 19-17 shows how the converter can be commorted into a convenient switch system. (Originally described in QS'T', June, 1457).

Fig. $19-17$ - Block diagram showing a switching system for the conclrad converter. K_{1} represents a spare set of contacts on the change-over relay. s_{1} is a s.ped.t, togyle. With K_{1} in the receiving position as shown, power from the BC receiver may be applied to either the 13C converter or the ham-hand converter. With K_{1} in the transmitting position, power is applied to the BC: converter for conelrad monitoring during trans* mitting periods.

A 20-Watt High-Frequency Mobile Transmitter

Figure 19-1s through l! 121 ilhustrate at comphete 20 -watt tramitter that mas be oprated on any hand from so to 10 moters. The dosign awoids the eomplication, expense and diffentt construetion associated with the average multibend tramsmitter, but does not eonfine its appli(eation to any one band. Changing from one hand to another as operating interest varies is a simple matter of msoldering a pair of readily-aneressible moils and repacing them with others for the new beind.

Circuits

The cirenit of the transmitter is shown in Fig.
 final amplifior. (Quadrupling frequeney in the ontput of the griel-plate oscillator from : $\overline{\mathrm{F}}$ - Ma . arystal will provide aderuate drive for the final on 10 moters. sumberont sapateitance is provided in the plate tank of the 2 PSti for a () of 10 or mome on all bands aserpt 80 meters. On someters. the tank () will droj) to about (6, but there is little danger of appreciable harmonic ontput when fereding a high-() antemati such as the usual loaded whip. Aderpate output compling on this bend is :asured be tuning the output link line. laralled plato fered is used in both stages.

The andio cirenit is crually simphe. Ghe trionle unit of a $12.40^{\circ} 7$ is usod as a gromeded-prid amplifier. This provides low-impedance input for a (atbon mierophone without the need for a microphome transformer. The semend triode mit of the 12.0^{-7} is used in conventional fashion to drive a 1635 Class 13 mondulator. This tube opretates at zoro bias with an idling cument of only 10 mat. 1). c. voltage for opreating the earbon microphome is whtaned be connereting the microphone in suries with the two sperech-amplifior cathotes and ground.

The I-mit, meter $1 I_{1}$ mate be switehed atoress appropriate multiplier shunts to rad amplifier grid or phate eurrent. or modulator plate eurrent. A d.p.d.t. changermer relay, K_{1}, adated be the micempone push-to-talk switch, is alsu provided. One pole shifts the antemat from recedver to tramsmitter. while the other mutes the receriver by shorting the voier coil of the speaker. Ns removes sereen voltage from the $21: 24$ and dis-
ables the relay so that the osidlator may he tuned up, before the amplifier is put on the air.

Construction

A $5 \times 0 \times 3$-inch ste ed utility box (Middatown Mlfg. Co.. Middlotown. (omm.) is usid as the cabinet for the transmitter. The dhassis is bent up from aluminum sheet appoximately ${ }^{\frac{1}{15}}$ inch thick. The ehassis is $\mathbf{S}^{3}{ }_{4}$ inches wide. if inches derep and has 2 -ineh lips atong the front and reat educs.
(${ }_{3}$ and C^{\prime} atre mounted on the front wall of the purtition with their shaft eenters 1388 inches abowe the chassis. "The shaft of r " is centered 14inches from the opern edge of the shidel, while the shaft of r_{3} is centered $\mathrm{s}^{\text {inches inf The shafts }}$ wh these capacitors are romered to pathel-bearing units beg rigid metath shalt complers.

The sorket for the $21: 26$ is submomented on 3/2 inch spaters, bemeath a 1 r-inch deatratere hole exntered 1 inch from the reate edede of the whassis and 2 inches in from the side. RPC, is mounted horizontally from the front wall of the partition, below and heotwern ${ }^{2}$:3 and C_{4}.

The output tank coil. Laz, is cemented to : 1-inch cone insulator and soldered between a rear stator turminal of (3 and a gromeding lug on the chassis. The hottom emb of L_{3} is connereted to it rear stator termital of 8 a, white the other and guse through a small feed-through point in the chassis to a retay terminal immediately bolow: The s-atis is centered between the partition and
 and C_{4}.

Fig. 19-21 shows the modulation trathsformor in the upper right-hand eomer of the chassis.
 whes. The 12.11^{7} and hias sockets are erotered on a line about hallway between the reat of the moter and the modulation transformer. The sorket for the $12 \mathrm{Al}^{7}$ is centered 洛 inch from the end of the ehatsis. Then the sorket for the
 socket so that the driver tramshomer, T_{1}, eat be monnted betwern the two sorkets, underneath the chatsis.

The two robixial connertors. J_{1} and J_{3}, are mounted on the rear lip of the chassis, spaced to

[^9]

Cit Mira or ereramie trimmer.

($\%$ - Iir sariable (Johmson 16:-1).

(i)- l'apmer erramie.

I - 6, 3-bolt 2.50-ma, dial lamp,
J. Jz- Conaial conmertor (s0.0.39),

J_{1} - Powser comomeror (wetal thbe soeket)
 suries 200).
$1_{1}, 1_{22} \mathrm{l}_{23}$ - Sere coil talle.
 the power-simply connector J_{4}. and the changoower relay is erontered betwern this socket and the newerst comial eomenetor.

Testing

The unit wild ofrrate from any suphly delivering 300 to 400 volts at 125 ma . or more.

 meter.)
 metrer.)

S. - S.p.a.t. togyle witch.
 10103).

T' - I riser transformer, 2..i:1 primary to 1名merondary (Merit A.2920).
${ }^{\prime} \mathrm{T}_{2}$ - I 10 -watt mosln!ation transfarmer (Verit A-3008).
While the $21: 26$ might be used as at doubler if necessary: straight-through operation is recommemded. (rystals in the sol-meter land will provide aderpated drive for the final on all bands up to and including the 1 H-Xle hand. (rystals in the 7 -Me. hand are needed for 21- and 28-Me. output. Coils should be selected from the coil table to suit the bind desired.

Fig. 19.20 - Bottom view of the 20-watt mobile transmitter. The Jriver transformer is blaced betwere the lwo andio-thle soekets. Werge the fremt lif, of the rhazis. from left to right, are the midrophome jach, meter switid.
 tor tank capacitor (iz and the ersstal sorket. Ciz is spared batk of the panel, and monntad loh hind the 5 in, worket. l_{1} is adderad acros the terminals of the cabaritor. Nll power and control wirits in done with ihielded wire.

The osedlator is adjusted with sit in the fome position. and the metere switeh thmed to read
 should low adjustend for maximum gride earemet. Ther thanges shoud he ehoeked with a wave moter to make sure that the oscillatom output aimat is tumerl to the desired frempeners. Thent 6 should
 ing should bu at laist is or 1 mat.

A pair of (i,f: type 1s20, 2R-volt, 1-itmp,
 demme lened for testing the finall. With sithenw to the uprerate pesition, the metor swite hed to
 adjust 's for at dip in plate comerolt. (harek the inequences with a wavemeter compled to the output tank. 'Thentaljust 6 'f intil the meter reads FO) ma. Rothan ('s for the plateranment dip. It

 The lowd lamps will wot light to full brillianere. but it shand lo pessible formamine the adjustment that gives maximmon onturt. With the

Fig. 1% - 21 - Interior view of ther simelo-land monile tran=milur, Thr" ounput vomponents are separated from the other emponent by an I...haped alaminum

 lips along the lwothom colyes for faztuing to the chasis.
amplifier fully loated, the arial denrent should still rumain ut 3 to 1 mata.

Thue meter should mow the thenced th read modiatator plate coment, Without voire, tho meder should read alout to mat. Whan ematiang into the microphones, a kiek of the meter reading
 per amt modulation. The ref. amplifier plate
 modulation. but the lamps in the dumme load sunth show some incerase in brilliatues.

Adjustment when all antomat is sulstituted for the dumme load should be done in a similar manmer. The atitematmost, of eromser, be cherked for resentaner in allyanere with at g.d.o. or be other
 (For at deserpition of a beandewitehing mobila
 Sopter (1950).

Table of Coil Dimensions							
1.1							
Rind	I. $\mu \mathrm{h}$.	Turn*	fitm. in.	Le moth $\ln .$	$\begin{aligned} & \text { Hire } \\ & \text { Nizr } \end{aligned}$	$\begin{aligned} & \text { Rid }{ }^{\prime} \\ & \text { So. } \end{aligned}$	lirdur No.
80	$2 \cdot 9$	11	,	$1^{3} \times$	21	3014	83:
410	$1{ }^{1} .3$	$\underline{3}$		${ }^{\circ} 8$	21	31018	5:\%
20	2.8	$11 i$		1	211	3010	510 i
1.5	0.11	$!$		'16	20	3007	316
10	0.5	i		3^{8}	20	$3(11)$	314
811	32	81	$3:$	24	21	3012	mist
11	8	+1	,	$21 / 2$	\cdots	3011	615
20	3,5	(1)	3	1'i	$\because 1$	$30!1$	bil
1.5	1.19	1 fi	3 i	\because	19	$30: 0$	fil8
10	1.1	12	$3 \cdot$	${ }^{112}$	18	:010	lins

A 10-Watt 50-Mc. Mobile Transmitter

The erystal-rontrollod mobile tramsmittor shown itr Figs, 1!1-22 throurh 19-20 is complote with exeroch amplifier and modulator dircuits. The ref. amplificr aperates with a d.e. input of 10 to 12 watts, and the antire framsmither loads the car hathery only slightly mome hath dexs at

A metor-switching circuit is included and provision is: made for push-10-1 : alk cont rol of external antemat and power relays. An inexpensive vibrator-type supply rated at 300 volts and 100
mas. will pewer the ernmpete transmitter.
The cexeler and the adion thlese may he wired for aithor io or 12 -rolt operition. A 12 -volt "puivalent (type (itlo) may be sulstitutad for
 aation of the cirmil.

Circuits

'I'hn usillator-thubler section of the tramsmitter uses a type 12.AT't dual triode an shown in the (eirouit diarram, lig. 1:1-21. ()to lalf of the

lulne, lias opreates in an overtone oscillator
 resomated at 2.5. Mr. and ont put irman the statge is

 the parallel-tumed pate liank. (\% Satpot from
 amplifior tulx. 1 .

Ther r.f. antulifier works straight through at

 ing capacitor. Gutput from the amplifier is coupherl to the athternat fordinar wiat at suics-tumed

Oha hatf of a tepe 12. $11^{\circ} \mathrm{F}$ is used in the ground-od-grid impat rirenit of the epered amplifier.
 (lass A driver slage whith is in turn, tramsorm-(r-omplar io a Clas: 15 modulator. The modu-
lator tuber, ${ }_{4}$, is a tope 12AN- D. De voltage for
 Ging the microphone in saries with the e:thoules of the $12 \mathrm{Al} \%$.
 current of the r.f. stages, gride current of the ref. amplifier. ar moduhator plater current.
 hoth (i- and le-volt operation are shown in Fig. 1!日-21. The push-to-talk contiut of the miorophone maty In returned through J_{1} to torminal No. 1 of I : for the entatol of external antemata and power relays.

Construction

l:igs. $1!1-22 . \quad 1!7-2: 3.1!1-25$ athl $1!9-26$ show (elearly the arrangement of all componemts. Bafore the parts are monnted on tha sulnasemblies. it is awisathe for we the brackets ase templaters for Lociating athd marking the bratidet-mounting holes in the main chatsis.

Fis. 19.2:3-1n intrriou viro uf the Bo. V1s mohile tram:mutter with the - x. Il-meh ixulomin aomer ranmora!. I. -rn in thi- titw. thor r.f. ful.
 in : 3 indere down lrom the tor of the unit. "Itare Jraschel suphurt. ing the atndio some. monemt= at tha latit is 4 inchos dowel from the tor $\begin{gathered}\text { dige. } \\ I_{2} \\ \text { and }\end{gathered}$ fa are mensated wan the: wall to the rear af the r.f. tulues.

 electrolytio capacitor. * Indieates a thbular ceramic. All other rapacitors mol identibed belos are disk eramic. IIl resistors rewht K_{2} are 1_{2} watt.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{1}$ - $\mathrm{I} . \mathrm{i}-\mu \mathrm{f}$. mideret tariable (IIammarlund \I(:-1.)
$\mathrm{C}_{3}-11-\mu \mu \mathrm{f}$ - - mer-saretion Intterlly sariable (llammarlund 11 (10:13F-11).

J_{1} - "Ilrereerenit mierophone jack.
J_{2} - 8-comtart (is used) male romector (imphenod 8(oR(:P'8).
I3-Coaxial eable connector (So-2'39).
 lomg ($\mathrm{BE} \mathrm{E}_{\mathrm{W}} \mathrm{B} 300^{-}$).
 lour (BEXII 30N2).
 diam., $3 / 4$ inch long (BNOU 300:).

The tubular trimmer, Can, used as the neutralazing capacitor has a rated minimum caparitance of $1 \mu \mu \mathrm{f}$. The minimum is reduced to approsimately $0.4 \mu \mu$. (suitable for neutralizing a 5 atia or 6+17) by sliding the tubular stator plate out and away from the tuning-slug end until only half of the plate rests on the plastic form.

Leads between the r.f. subassembly and the pand-mounted components should be made with No. 14 tinned wire. Ordinary hookup wire is used for all other wiring except for the coasial lead (R(i-58/L') between L_{4} and J_{3}.

Meter shunts $R_{3}, R_{4}, R_{7}, R_{9}$ and R_{13} are mountad directly betwern sotions of S_{1}. A 5-terminal (l torminal unused) tie-point strip, mounted above ('1 and ('2 as shown in Fig. 19-2:3, is used to support the coaxial-cable end of L_{4} and the $B+$ ends of $R_{2}, R F^{\prime} C_{1}$ and $R P^{\prime} C_{3}{ }_{3}$.

Testing

A standard a.e. power supply that will deliver 300 volts at 100 ma. may be used during testing

J- Ontput link, 3 turns Vo, 20 insalated wire, clowe-w ound ower renter of 1.3

 lah lill or 2 'I'yme If wafers mometed on l-lizl inder).

T_{1} - Driver transformer. ingle plate to Ciasa 13 grids (Thordar-on 201)-6).
Tr2- Il watt modalation transfornmer. variable ratith, primary rating 70 mat. seondary rating 60 ma. (Mrerit 1-30108).

of the transmitter. Heater- u urent requirements are 1.65 amp, for 6 -wolts operation and 0.825 amp. for the l2-volt cireuit. Io nat comeret the plate supply to the r.f. amplifier power terminal (Pin t of δ_{2}) at this time. An overtone erystal ground for 25 Me, must be placed in the crystal socket and a dummy load shoudd be available. Five No. 44 pilot lamps connerted in parallel with short leads provide a good load for testing.

To test the exeiter (remember that plate power is not to be fed to the amplifier at this time), turn on the heater supply. close se and switch the meter to read oseillator phate current. After a few seconds of warm-up, apply plate voltage to V_{1} and, as quickly as possibile, tunc ('a for minimum plate current. To repast, perform this operation rapidly lecatuse lis rums without bias unless the oscillator is delivering output. Switch the moter ancoss R_{4} and then tune ('2 for minimum doubler-stage plate current. Now swith the meter to the amplifier gride circuit and retune C_{1} and C_{2} for maximum grid cur-

Fig．ハリーシ5—ブMe lirathet for the r．f． whbasembly meanares 2\％ly 1 imphe aml ha：a eoinch moumt． inne lip at the beltome end．＇The tinterl wires evernling away from the umit abould be alont 2 ！ 2 imelna long， alad the inmolatiod leads． at the lower lefthand corner should he ap． proximately 1.7 imedera bomg．I＇in＇ 9 of rach seseket facese loward the hotlom of the avembly．

rent．Current readings now arailable should show owillator and doublerphate comrents of 10 mat．each and an amplifier gride eurrent of 3 mat．or wo．

Now，showly rotate the amplifier plate capate－ itor，（＂3．through its full range while observing the grid－current reading，If the current sud－
mately 25 mat．Simultancously inerease the catpari－ tance of（＇s and readjust r_{3} for platererenit res－ onatre until the phate reurrent is 35 jo to 40 mat ． and the lamp lowd indieates maximum output，

Viere signals applied to the mierophone should catue the lamplow to show increased brilliance，

Fik．10－26－The zis \times beinch bracher for the audios seretion hats a ${ }^{1}$－inch mombing lip alonge the bottom ralge．Tube wochets for Jand Iare mountad with f＇ill of rach farins toward the top of the assombly．Wires for womertion to ${ }^{13}+$ ． J_{1} anil so should be 9 ar 10 inclues lomg．

denly fluctuates during the tuning of r_{3} ．adjust the neutralizing eapatitur，fin，until this effect is eliminated．

Turn off the plate supply and eonneet a jumprer trotwen lins 3 and 4 of J_{2} ．Conneret the dumme load to I_{3} ．adjust r_{4} to minimum eapacitaner，switeh the meter across Rg，and then turn the plate supply on，Adjust（＇a for minimum ：mplifior plate current－approxi－
and the modulator plate current should rise 20 （1） 25 ma abowe the no－signal value of 6 ma ．

Either a $50-\mathrm{Mt}$ ．Whip or a 5 －inch broadeast antenna may be coupled to the transmitter in the mohile installation．

If the microphone hats mu pusito－tolk switch， the relays may be operated by means of a s．p．s．t． toggle switeh commerted between．J_{1} and ground．
（Originally deseribed in（SST，Dee．，1956．）

A Band－Changing Transmitter for 50 and 144 Mc．

Figs．19－2］through 19－31 show eireuits and constructional details of a compact transmitter covering the 6 －and 2 －meter bands．Band－chang－ ing is done entirely by the patel controls．The unit is only 3 inches derp，and therefore is suit－ able for instrument－pand mounting．

Output on either hand may be obtained using crystals in the 8－，12－，or 25－Mr．Manges．Although it is possible to operate the 21226 output stage at
higher voltage，the unit is designed primarily to work from a 300 －volt 100 －mil．supply．A single 200 －mat．supply should take care of both this unit and a modulator in the latter case．Changing from one band to the other is accomplished through the use of wide－range tanks in the ex－iter， and a multicireduit tuner in the output．Metering circuits are included．

 menanted alowe the mettre -with (1) the leaf of the amplitier gerid. tuming combral. 'The tuning hmot, for the wasillator in at the lowser left-hath sude of the oulpolt switdh. Ni. (omerol- far the colt. put and amplilier phate cirenitm are at the riaht. 'Ihe unit mas be used wertiablly Worimetange the motur. Sentibating luoles shomld Le drille il it lla emd nad am the top.

Circuit

The reirenit of the unit is shown in Fig. 1!)-29.
 the driver stage. The ose illator has a fixed cathode
 sulliciont rathge to tance the ossiliatom output cirruit from 21 through 36 M . This cirwit is tuned
 and may be tuned to mither 2 or 30 Xl . for final output at III Me.

The multiplier output circuit, $\boldsymbol{C}_{12} L_{3}$, covers the

 pending on the oseflator onpat frecturnes) to

 This stage operates stmaight through at in Me. and as at doubler to 111 Mc. I comblination of fixed hase and errid larak is used. The value of fixed hits is not (ritical-22 to to volte The 220 K somen resistor gives proper samen woltare over at supply-voltage range of :300 to 100 volts.

The pate funer lam the amplition consists of a
 from the amplifien is tramsinered to. J hes a seriestuncel circuit consisting of (${ }^{1} 1, L_{6}$ and S_{1}, L_{6} is

Fís. 19.20 - (©irant diagram of the v.h.f. mobila tran-mitter. !uless

 $15.1)$
 flo-r.artuld.

segment. P'osition this bushing so that Chen $_{12}$, which is mountor on it, will be at the right level, and elear of the partition sexment to the rear.

 F: should bereturnod diroctly to grounel on the sorket side of the partition. I 2 -trominal tic point fo the reatr of the sorket supports the heater lead and the h.v. end of the seremeresistor, R_{11}.

In romstructing tho multieireuit tumer, lirst reduce the :300t 33 d 17 Miniductor to atotal of Ifly turta. Without howking the supporting bats, clif the winding at points that will late \bar{b} full turns at ond and and $3 \frac{1}{4}$ turns at theopposite
 are used as the output eoupling indurtance,L_{6}. Shore leads of No. 16 wire should now be soldered to the frerernds of the threre windings. Nlso, solder at short leand $1^{1}+$ furns int fom the Ift-Na. end of the roupling roil. This should plare the tap at the top of the eroil when it is mounted.
 imbers and supperts most af the eomponent- for the "weiter tanes, Cis, with one end forating frees, is at the npper right-hand romer. "lize wire hadere at the bettom of the plate conneet (1) Ho ordillator tank. meter switeh and power connector, as shown by fig. 19-29.

1.: $0:-\mu h_{1}$ (ievert).

Ior -sornt.

In mounting patts on the chassis, wenter J_{2} on the rear wall $4 \frac{1}{4}$ inches from the exater end of the "hassis, and J_{1} in the lower comer of the amplifior emel. Wha the panel side, the shate for
 rentered $27 / 8$ ine hes from the right equl, while the
 bearing is neodenf for C_{12}, which is fitterl with an insulating shaft compling. Tha remaining two controls are fiss 5 ind hes from the right-hand end. The meter is at the lelt-hand end.

The subascemblies may now be pritioned while the motioting holes are morked. The

bracket for the artions is phacel $31 / 4$ inches from the left-hand end of the chassis, whild the rear end of the Z-shatped partition for 2 l2ticomes at istr inches from same end.

Testing

For 50-Mr. operation. the reystal frequency must lie within one of the following ranges: 8.33:3 to ! ! 0 M . Me, : 12.5 to
 Me. With a small IS battory for tixed biats and : 300-volt supply conneeded to the exciter, but not the :mmplifier. tuning of the exciter at a Mo. Meguires only that the ascillator and the multiplier he resonated

Before testing the amplifier, furn the supply ofi and eonned a jumper betwern lins: 3 and : of J_{2}, and conmeat al $11 \overline{\mathrm{~B}}$-voll 111 -watt latme to the output comentor. S_{1} should be set at the sol- A e. position Apply power and resonate ('s, indieateol by a dip in plate rument. This should come wall toward minimum capacitance. Sot Cis bear full
 amplifier datal in the chart were taken with the dummy lowed In operation, the currents will depend upon loading.) If biasing voltages are SPEECH AMP 12AX7

	Voltage and Current Chart for the V.H.F. Mobile Transmitter											
	O-cill				Mul	plier				mpli		
$\begin{gathered} \text { Crystal } \\ \text { Froin., NC. } \end{gathered}$	E_{3}	$\begin{aligned} & I_{\mathrm{p}}, \\ & M_{n}, \end{aligned}$	Friq. Mc	E_{g}	E_{3}	$\begin{gathered} I_{\mathrm{p}} \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & \text { Friq. }^{M r} \end{aligned}$	E_{g}	$\begin{aligned} & I_{\mathrm{E}}, \\ & \mathrm{Ma}, \end{aligned}$	$F \cdot{ }_{\text {c }}$	$\begin{gathered} I_{p}, \\ M a . \end{gathered}$	Friq. Mc.
8.3	210	20	2.5	-80	210	2.3	30	-1!4)	4	135	45	50
12.5	23.5	1.5	"	-120	29.	27	،	-210	45	120	"	\cdots
250	210	20	"	-60	241	2.3	"	-145	4	11.5	"	\cdots
80	211	21	21	-8is	25	2.3	72	-15%	32	171	50	141
12.0	221	If	21	-110	25%	27	.	-194	1	15.5	17	"
-•	22.5	18	36	-115	21.5	${ }^{\prime}$	"	-215	15	1.01	"	*
21.0	211	21	21	- 18 i	$\underline{150}$	"	"	-1811	3	1 NO	3)	-

cherked. use a v.t.v.m., or a gemeral-purpore test instrument with a radio-fiequency rhoke in-

In tuning up for $1 / 1$ - Mc. ontput, work with the expiter stage only at first, using a erystal in any one of the following frequeney ramses: x.0 to 8.222 Mr.: 12.0 to $12.3: 33 \mathrm{Mr}_{6}$: 21 to $21 . \mathrm{Bitit}$ Mr. If a 12-Mt. arrsal is seleroted, the ascillator maty be tuned to rither 21 or :3i Me. In aither

 restals in the 8 - and $21-$ Me. rames.

Fig. $1!1-31$ shows the circuit of :an apmonniate mondulator.
(R.I. section originally deseribed in QSTR, Nov., 1953.)

DRIVER MODULATOR 6N7

Fig. 19.31 - Cirsuit of a modulator for the 50- and 111 -Mc. molide transmitter. Pin mumbers on modulation trimeformer leado refor to J_{2} in lize, 19-29.

MOBILE MODULATORS

 tors in amateur radio is in mobile erguipment where compartness and power-supply loading are of more than ordinary importanes, The practical possihilities have become definitely signilirant since trasistors capable of handling 10 watts of audio power were made available. In
 andia sedion is altatued dire efly from the antomotians 12 -volt storage battery fetving the standad fewer unit frem to supply the ref. section mals. Basic tamsistor eirroits are disenssed in Chapter 4 , and a complete transistor modulator is illustrated in Fig. 19-32 and 19-34.

Vacum－tabe type modulators for mobile opreation are in gemeral similar to those used in fixed－station instathations，sperehtimplifier and modulator cirenits surh as those shown in Chap－

fied for wion with ahmost any moble transmittor． Is in fixed－station work，the motile modelator must be capable of supplying to the plate modu－ lated ref．stage sinc－wave atudio power equal to E0）per ernt af the d．e．plate input．

A 10－Watt All－Transistor Mobile Modulator

The tramsistor modulator shown in Figs．1！）－32 to 19－3t．inclusive has a power output of 10 watts．lower for the unit is oltatined from the car＇s 12 －volt stomase batters，thas relieving the mohile power supply of the usual audio－equip－ ment power drain．The total drain imposed on the battery be the modulator is less than 2 amperes． The unit is not critical as to parts lavout and construetion．

Circuit

The cirenit of the modnlator is shown in Fig．1！－3：3．

The speoch amplifier，which has two statues using transistors（ Q_{1} and Q2．has enough gatin for a crestal or high－impedance dymame miero－ phene．I_{1} is the input connector for either tope of microphone．A rathon microphone may be used with the eirenit be plugging it into．J_{2} ．

The gain control is commeeted in the input side of the third state．Qs： is operated in a promeded colleretor rirenit to mateh the low－impedance input of the 2ペ20う driver transistor．
bither 2×2 2̈ti or 2N：301A transistors may be nsed in the Class－l3 modulator．R3．shown in Fiz，19－3：3 ats an ordinary 100－ohm $\frac{1}{2}-$ watt resistor．should be meplaced with a Thermistor （Western belectrie 4．available from（iraybar Distributors．or（ilohar thitl）if the modulator is to be subjerted to excessive temperature as it might well be if mounted in the trunk of the car or adjaternt to the emgine．
It is advisable to provide for turning off the 12－volt supply whe trimsistors during stand－b， periods so that the transistors will have an oppor－ tonity to cool．Fig．I！－3：3 shows how a d．p．d．t． togeg switch．x_{1} ，may be wired to eontrol the on－olf fimetion of the modulator and assonciated oguipment．

Construction

To assure maximum cooling，the power tran－
sistors ℓ_{4} ．Q_{5} and（ Q_{6} are momented on tof of the $2 \times+\times$（i－inch alhminmm chatsis ats shown in lig．19－32．This same view shows the 12 －volt frominals：ontput terminal stri］，and finse holder monnted at the left cond of the chatssis．The gain eontrol is located on the frout wall of the chassis． and leads to s_{1} and the antemat relay may be pasised through a rubber grommet or to at terminal strip mounted at the most conveniont spot on the chatsisis．

It is neressary to insulate the collecetor（mount－ ing flange）of each power transistor from the chassis and from each other to provent shont circuiting the collector load．The itleal mometing has no electrical contact between eollector and chassis，but provides maximum transfer of heat from the transistor to the chassis．

Mannfacturers recommend the use of 0．002－ inch miea insulators or tr－inch anodized alomi－ num insulators between the collertor and chassis． If these somerhat sereial items are unavailable． suitable washers maty be cut from polyethyone bages suchas used for packaging varions kinds of foods and small radio parts．C＇arefully dehure the $5 / 8$－inch monating holes for the transistors sinere any sharp point or motal particle is likely to pone－ ture the polvothylene．Cse insulating fiber wash－ crs to prevent contant between the transistor monnting screws and the chassis．Batse and emitter combertions are made with the aid of mip pins removed from a $\overline{7}$－prong miniature tube socket，solder the neressary leads to the pins be－ fore the latter are slipued over the transistor terminals．

Fig．19－34 shows how（Q3 is monnted underneath the chassis with the capacitors and the resistors for the modulator stages．R_{1} for the speech ampli－ fier is supperted at one cud（it floats at the other end）by J_{1}（at the right end of the chassis）．J_{1} and J_{2} must both be insulated from the chassis by using at phastio mounting plate and fiber washeres， respectively．

Fig．19．32－The Class－13 power tran－ sistors are to the rightit of the modula－ tion transformer．Fe as seen in this view of the lon－nall all－transi＝tor modulator．The drioer transistur．O a $_{\text {，}}$ is in bretween T_{1} and the right end of the chassis．

Fig. 19.33- Cirrnit diatram of the 10-watt all-transitor power supply. Capacitors are electrolytie, liesiztances are ill ohms. rexi-tors are ${ }^{16}$ watt.
J_{1} - Phome jark.
$]_{2}$ Vidmet closerl-eircuit jach.

R_{1} - Sere text.
H_{2} - 5 OH NH -ohm potentiometer.
H_{3} - See text.
s_{1} - I.p.d.t. torale swith
T: - Tramsistor driwer tramaformer: 1manal. 100-ohth
 $6.1 \mathrm{~N})$.
' $\mathbf{2}_{2}$ - Moxlulation transformer, transistor typer, arljustable ratio, 10 -watl rating: seromdars tapped for $30 \% 0,10 \%$ and 6000 ahms ('Iriad I'Y-6.5\%).

Specela-amplifier components other than J_{1}, J_{2} and R_{1} are supported by a pair of $\overline{0}$-terminal tiopoint strips monnted on the $+\times$ i-inch bottom cover for the chassis. () is in the forcground as sorn in lig. 19-3t, and (0) is at the upper righthand cormer of the assemblys. Leads about is inches long, comered between the sperech-amplifier components and the modulator chassis, permit removal of the bottom plate for inspertion or sorvicing.

Testing

Although the modnlator should be given the complete test recommended for a newly constructed audio unit (see "Checking Amplifier

Opration," Chatpter 9), it is probable many will wish to commed the unit to the transmitter as soon as possible. Howevor. a quick and simple on-the-air test should be followed immediately: by measurement of the Class-13 modulator current. This stage should draw an idling current of approximately 10 milliamperes and about 1 ampere on voice peaks.

A value of 220,000 ohms for R_{1} of the input rirenit worked woll with the partienlar crestal microphone used during testing of the modulator. It maty be atvisable to experiment with the value of this resistor to assure optimum performance with the microphone on hand.

Fig. 19.34-A bottom view of the transistor modulator. Suced-amplifier components, imeluding Q_{i} and Q_{2}, are monnted on the bottom plate shown in the forogroumd. 'The enmplote unit weighs only 23 pounds.

The Mobile Antenna

For mobile operation in the range between 1.8 and 30 Me., the vertical whip antenna is almost universally used, Since longer whips present merhanimal difficulties, the length is usuatly limited to a dimension that will resonate as a quarterwave antema in the 10 -meter band. The car body serves as the ground comertion. This antema length is approximately 8 feet.

Fig, 10-35-1'ie quarterwale whip at resemance will show a pure resistance at the ferd point X.

With the whip length adjusted to resonanee in the 10 -meter band, the impedance at the feed point, X, lig. 1!--35, will appear as a pure resistance at the resonant frequency. This resistanee will be composed almost ent irely of radiation resistance (sere index), and the dficiency will be high. However, at frequencies lower than the resonant frepueney, the antenna will show an increasingly large caparitive reactanere and a deereasingly smatl radiation resistance.

Fig, 19-30 - At freptomeies below the restumant frev truenes, the whif anterna will show eapacitive react amere as well as resistancer. K_{12} is the radiation resistance, and Cis represents the capmetise reatetance.

The equivalent cirenit is shown in Fig. 19-36, For the avorage 8-ft. whip, the reactance of the
 at 21 Me. to as high as 8000 ohms at 1.8 Mc ., while the radiation resistance, h_{h}, varies from ablout lis ohms at 21 Ma , to as low as 0.1 ohm at 1.8 Me. Nince the rexistance is low, considerable current must flow in the cireuit if any appreciable power is to be dissipated as radiation in the resistamer. Yot it is apparent that little current can be made to flow in the cirenit so long as the comparatively high series reartance remains.

Eliminating Reactance

The caparitive rantance can be canceled out by connerting :n equivalent inductive reartance, $L_{\text {L. }}$, in sorice, as shown in Fig. $1!$-ish, thus tuning the system to resonanee.

Cinfortunately, all coils have resistance, and this resistance will be added in sorios, as indicated at Re in Fig. 1!-38. While a large coil may radiate some conergy, thus adding to the radiation resistance, the latter will usually be negligible compared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit,

Ground Loss

Another element in the rircuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antenna. Little information

Pif, 11 -38 - Equivalent ciremit of a haded whip antemat. Ca represents the capacitive roantance of the
 the loadine-coil resietaner, hi: the premud-tuss resistance, and has the radiation resistaner.
is available on the values of resistance to be expected in pratide, but some measurements have shown that it may amount to as much as 10 or 12 ohms at 4 Ne. At the lower frequencies, it may constitute the major resistance in the eircuit.

Fig. $1: 1-38$ shows the circuit including all of the clements mentioned above. Assuming ('A lossless and the loss resistance of the coil to be represented by Lic, it is sern that the powser output of the transmitter is divided among three resistances R', the coil resistance; R_{i}, the ground-loss rosistance: and h_{10}, the mutiation resistance. Only the power dissipated in $h_{\text {ie }}$ is radiated. The power

 tance of short vertical antentas for arions dianeters and longeths. 'Ithese valoes shmald be approximately halved for a eenter-lemded anterma,

Approximate Values for 8-ft. Mobile Whip						
Base Loading						
f_{k}.	$\begin{aligned} & \text { Loonding } \\ & \text { L. }^{2} \mathrm{~h} \text {. } \end{aligned}$	$\begin{gathered} \operatorname{Rc}(0,50) \\ 0 \mathrm{hms} \end{gathered}$	$\begin{gathered} R \mathrm{c}(\Omega: 300) \\ \text { Ohms } \end{gathered}$	R_{1} (lhms	Ferd R* Ohms	$\begin{gathered} \text { Matching } \\ L_{\mu \mathrm{l}} * \end{gathered}$
1800	31.7	77	13	0.1	23	3
3800	77	37	6.1	0.3.)	16	1.2
7200	20	18	3	1.35	1.)	0.6
14.200	4.5	7.7	1.3	5.7	12	0.28
21,250	1.2.)	3.4	0.5	11.8	16	0.28
20.000		. \cdot.		\cdots	36	0.23
Center Loading						
1800	700	1,88	23	0.2	34	3.7
3800	1.50	72	12	0.8	22	1.1
7200	40	36	0	3	19	0.7
14.200	8.6	15	2.5	11	19	0.35
21.250	2.5	6.6	1.1	27	24	0. 24
$R_{\mathrm{C}}=$ Loalingoroil resistame; $\boldsymbol{R}_{\mathrm{H}}=$ Radiation romistance: * Assuming loarling coil $Q=300$, and inchuding estimated grond-lows resistance. Surgested coil dimensions for the reroired loading inductances are shown in a following table.						

8 -ft. whip, and the resistances of loading coils - one group having al () of 50 , the other a (2 of 300 . A comparison of radiation and eoil resistances will show the importance of reducing the coil resistance to a minimum, esperially on the three lowerfrequeney bands.

To minimize loadingcoil loss, the coil should have a high ratio of reactance to resistance, i.e., high Q. I t-Mc. louding coil wound with small wite on a small-diameter solid form of poor quality, and conclosed in a metal protector, may have a Q as low as 50 , with a resistance of 50 ohms or more. Itigh-() coils require a large conductor, "airwound" construction, turns spaced, the best insulating material available, a diameter not less than half the length of the coil (not always merhan-
developed in R_{c} and R_{1} is dissipated in heat. Therefore, it is important that the latter two revistances be minimized.

MINIMIZING LOSSES

There is little that can be done about the nature of the soil. However, poor electrical contact between large surfaces of the car bodys and esperially betwern the point where the feed line is grounded and the rest of the body, can add materially to the ground-hoss resistance. For example, the feed line, which should be grounded as close to the hase of the antenna as possible, may be connected to the bumper, while the bumper may have poor contart with the rest of the body because of rust or paint.

Loading Coils

The accompanying table shows the approximate loading-roil inductance required for the various bands. The graph of lig. 19-39 shows the approximate caparitance of whip antemas of various average diameters and lengths. For 1.8, t and 7 Me., the loading-coil inductance required (when the loading coil is at the base) will be approximately the inductance required to resonate in the desired hand with the whip apalditance taken from the graph. For 11 and 21 Mr., this rough caldulation will give more than the reguired inductanes, hut it will serve as a starting point for final experimental adjustment that must always be made.

Also shown in the table are approximate values of radiation resistance to be expected with an
ically feasible), and a minimum of metal in the field. Such a coil for 4 Mc, may show a () of :300 or more, with a resistance of 12 ohms or less, This reduction in loading-roil resistaner may be equivalont to increasing the transmiter power by 3 times or more. Most low-loss transmitter phug-in coils of the 100 -watt size or larger, commereially produced, show a () of this order. Where larger indurtance values are required, lengthe of lowloss spare-wound coils are available.

Suggested Loading-Coil Dimensions					
Req'd $L_{\mu \mathrm{l}}$,	Turns	$\begin{aligned} & \text { W'ire } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Diam. } \\ \text { In. } \end{gathered}$	$\begin{gathered} \text { Lenull } \\ \text { In. } \end{gathered}$	Form or IS \& IV Type
700	190	22	3	10)	Pongstyrene
845)	13.5	18	3	10	Polystyrane
150	100	16	$21 / 2$	10	Polywtyrne
7γ 7γ	75 29	11	$31 / 2$ 3	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & \text { 1'olystyrene } \\ & \text { l601 } \end{aligned}$
40	28 31	$\begin{aligned} & 16 \\ & 19 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	80) less 7 t. 80 T
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	17 22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$21 / 2$ $21 / 2$	$\begin{aligned} & 11 / 4 \\ & 28 / 4 \end{aligned}$	8013 less 18 t . 80^{\prime} less 12 t .
$\begin{aligned} & 8.6 \\ & 8.8 \end{aligned}$	16	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4013 \text { less } \& t \\ & \text { for' loms is } \text { t. } \end{aligned}$
4.5	110	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$11 / 4$	$\begin{aligned} & \text { H1013 less } 10 \mathrm{t} . \\ & \text { 410T } \end{aligned}$
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	8	12	$\underline{2}$	$211 / 2$	$\begin{aligned} & 1.513 \\ & 1.51 \end{aligned}$
1.25 1.25	${ }_{6}^{6}$	12	$\begin{aligned} & 13 / 4 \\ & 23 / 8 \end{aligned}$	28	$\begin{aligned} & 1013 \\ & 10 \mathrm{I} \end{aligned}$

Center Loading

The radiation resistance of the whip an be approximately doubled by placing the loading coil at the center of the whip, rather than at the base, as shown in Fig, 19)- 10. (The optimum position varios with gromd resistance, The eenter is optimum for average ground resistance.) However, the indurtance of the loarling coil must be

approximately doubled over the value required at the base to tune the system to resonance. For a eoil of the same (), the coil resistance will also tre doubled. But, even if this is the case, center lowding represents a gain in antemat efficiency, esperially at the lower frequencios. This is because the ground-loss resistance momans the same, and the increased radiation resistane beromes a larger portion of the total areuit resistance, aven though the roil resistance also increases. However, as turns are added to a louling coil (other factors boing equal) the inductance (and therefore the reactance) inderases at a greater rate than the resistance, and the larger coil will usually have a higher (?.

Top Loading Capacitance

Since the eroil resistance varies with the inductance of the louding coil, the coil resistance can be reduced by reducing the number of turns. This cun be done, while still matintaning resonance, by adding capacitance to the portion of the antenmabove the coil. This caparitance ean be provided by attaching a capacitive surface

Fig. 19.12 - " The top-loaled f. Ne, antenna designed by II GSCX. The loalling eoil is a 13 X 11 transmitting coil. I'ie roil can the tuned by the variatbe link which is connectod in series with the two hatves of the coil.
as high up on the antenna as is mechanically feasible. Caparitive "hats," as they are usually

Fig. 19.11 - Capacitanes of spheres, disks and cylintlers in free space. 'These salues are approximately those to be expected when used with top-loaded whip antennas. 'l'herevinder length is assumed to be equal to its diameter.
called, may consist of a light-weight metal ball, cylinder, disk, or wheel structure as shown in Fig. 1!-12. Fig. 1!-41 shows the approvimate added capacitance to be experted from toploading deviers of various forms and dimensions. This should be added to the capacitance of the whip above the loating coil (from Fig, 19-39) in determining the approximate inductance of the loading coil.

When center loading is used, the amount of capacitance to be added to permit the use of the same lowding inductance required for base loading is not great, and should be seriously considered, since the total gain made by moving the coil to the center of the antenna may be quite marked.

Tuning the Band

Esperially at the lower frequencies, where the resistance in the circuit is low compared to the coil reactance, the antenna will represent a very high-Q eircuit, making it necessary to retune for relatively small changes in frequency. While many methods have been devised for tuning the whip over a band, one of the simplest is shown in Figs. 19-43, 19-44, and 19-45. In this case, a standard B \& W plug-in coil is used as the loading coil. A length of large-diameter polystyrene rod is drilled and tapped to fit between the upper and lower sections of the antenna. The assembly also serves to clamp a pair of metal brackets on each side of the polystyrene block that serve both as support and connections to the loadingcoil jack barr.

A $1 / 8$-inch sterl rod, about 15 inches long, is brazed to each of two large-diameter washers with holes to pass the threuled end of the upper sertion. The rods form a loading eapacitance that varies as the upper rod is swang away from the lower one, the latter being stationary. Enough variation in tuning ean be oldained to cover the 8 (ometer band. Fig. 1! -13 shows the top washer slightly smather to facilitate marking a frequency seale on the stationary washer, after tho uper

Fig. IV-43- Details of rod construmion. Dimensions rand be varied for suit the whip diameter and the buidere
 the text.
washer hat heon marked with an index. Witer the movable rod hats beot sut. it is solamped in prosition bey tightening up the uphor antennsation.
 ber, 105%.

REMOTE ANTENNA RESONATING

Figs. 19-16 through 19-4s show cirenits and constructional details of two remote-control

Fig. I' $1 t$ - Comstruction details of the monnting for the rouk and plus-in cesil.
rewotating sostoms for mobile antomats. As whown, they make use of sumplus 2t-volt d.e. motors driving aloading coil remoned from at surWhes Ale(-.) tranmiter. A standard moil and motor maty be used in either installation at increased expense.

Many of the 2t-volt surplus motors will run on if volts d.e. with suldieient forgue to drive the coil. Nome of the motors are erpuiperd with gears that mesh periectly with the fiber gear on the loading coil.

The control cironit shown in Jiig. 19-17. D is a

Fig. 11)-55- 11811 N* al. justable qabarity hat for turl. mat No whip andomat oner a land. Ithe roil is a 13 ix 11 type 13 lot-melare roil, with a thern ar lwormone rel. Siread. ithe the romb abart incereaters ther raparitamere. 'Ilifos simple top lader hax allifiairnt rio paritamer to permit the use of approvimately the samme loatinderoil indintamme at the couter of the anternat as whind mormally le required for lasio loading.

Fig． 74 －46－The roller contact on KGI）Y＇s tuning cail artates microswiteher，placed at either end of the coil， to reserse the motor．
threc－wire system（the car fratme is the founth conductor）with a double－pmed double－throw switeh and a momentary（momadly off）singla－ pole single－throw switeh．sig is the moter reversing switch．＇The motor rums so long als sit is chosed．
 ing redily：in conjunction with mioroswitehers，to automatieally reverse the motor when the roller reaches the and of the coil．sis and s．an onate the rolay．K_{1} ．Which reverses the motor．sis is the motor on－off witch．When the tuning a ail roller reaches one emb or the other of the eail，it closes S_{6} or sta ats the mase may operating the relay and reversing the motor．

Fig． 19.48 － 11601 © NKC：－5 roller coil is driven by a small pinion wear on the shaft of the surplas motor． The binion fits the original filuer gear on the eoril．

The proecolure in setting ill the sustem is to prome the renter leatisig coil to resomater the ：antrona on the highest frepurney used withous
 is used tormonate at the lower frememeses．What the circuit shown in Fig．I！－－17．is used for con－ trol， S_{t} is used to start and stop）the motor，and Sac．sot at the＂up，＂or＂down＂presition，will do－ termine whether the resomat freguene is rased or lowered．St the eirentit shown in lig．19－17B．
 tarily elosed（to ativate the batehing relay）for raising of lowering the resonant frequence．The b．ce antemata is used with at wave moter（see lögs． 1！－51 through（！ $1-5: 3$ ）to indente resomatuce．

Fig．IOf：（irouits of the remete motile－whip thaing－s stems．

s_{1} ，sis．S．Sis Womentary－contact，s．p．s．t．，normatly वパリ．
S：－I）p．div．iogate．
SG．S－－S．po．t．Homentary－contat mieroswiteh，nor－ mally afho．

Sevarat companics offer motor thang for get－ ting optimmon performace ower a low－frogheney hand．（For a complete deseription of the eommer－ cially avaibable remotcly－tuned systems．soer （oodman，＂Frequency Changing and Mobile

Automatic Mobile Antenna Tuning

A somowhat more complex antemat tming
 matically funes the antemat as the tramsmiturer freguency is shifted．Altor initial abljustments， the radiator is kept in resonanere withont atten－ tion from the operator．（For at deseription of the antomatie system．ECe Hangrave，＂Antomatie： Mobile Autemat＇Tuning，Qs＇T＇，May，1！955．）

FEEDING THE ANTENNA

It is usually found most wetivenient to leed the whip antennat with roax line．Cnless very low－（）louding coils aro used，the feed－point im－ pedance will alwaty be ：appreciably lower than 52 otms－the whartuteristic imperdane of the
 Since the length of the tramsmission line will seldom exreed 10 ft．，the losses involved will be Hegligible，＂ven at 2！）Me．，with at failly－high s．w．r． However，unless a line of this length is mate reasonably flat，dilliculty may be eneonmered in obtaining sulficient eonpling with a link toload the transmittor output stage．
（ ）ne mothond of ohtaining a mateln is shown in Fig．1！I！I A small imburtanoe，Lat，is imserted at

Fis． 19. －29－A meiliod of matching the loaded whip in 5 －colim coax cable．L_{1} ，is the loading coil and lis ilae matrhing coil．

the base of the antenna，the loalingereil induel－ ance being reduced comersondingly to maintain resonance．The lime is then tapped on the coil at a point where the desired loading is obtained．The table（page fist）shows the approximate in－ ductanere to be used betwern the line tap and ground．It is advisable to make the experimental matching eoil larger thatn the value shown，so that there will be provision for varving ather side of the proper position．The matching eoil can also be of the plug－intype for changing bands．

Adjustment

For operation in the bands from 29）to 1.8 Mr ．， the whip should first be resonated at $2!\mathrm{M} \cdot$ ．with the matching coil inserted，but the line diseon－ nerted，using a gridedip osillator coupled to the matching coil．Then the lime should he attarhed， and the tap varied to give propor loading，using a link at the tramsmitter end of the line whose reactance is approximately 52 ohms at the oper－ ating frequence，tightly coupled to the outpat tank rircuit．After the prourer position for the tap， has been foumd，it may he necessary to readjust the antenna length slightly for resonange．This， ean be checked on a ficld－strength metor soveral feet away from the rar．

The same procedure should be followed for each of the other bands，first resonating，with the g．d．o．compled to the matehing coil，by adjusting the louding roil．

After the position of the matching tay，hats been found，the size of the matching coil can be re－ duced to only that portion between the tap and ground，if desired．If turns are removed here，it
will be necessary to reresonate with the loading coil．
If an entirely dat line is desired，a s．w．r．indi－ cator should be used while adjusting the line tap． With a good match，it should not be neressary to readjust for resoname after the line tap has been set．
It should the emphasized that the figures shown in the table are only approximate and may be altered considerably depending on the type of （ar on which the antemna is mounted and the spot at which the antenna is placed．

ANTENNAS FOR 50 AND 144 MC．

A common type of antenna employed for mohile operation on 50 and 144 Me ，is the quarter－wave radiator which is fed with a coasial line．The antenna，which may be a flexible telescoping＂fish pole，＂is mounted in any of several plates on the catr，Quite a good mateh may bo obtained hy this method with the oto－ohm coaxial line now avalable；how－ ever，it is well to provide some means of tun－ ing the system，so that all variables can be taken care of，The simplest tuning arrange－ ment consists of a variable capacitor＂on－ nerted between the low side of the tramsmit－ ter coupling coil and ground，as shown in Fig． 1！－50），This rapacitor shouhd have a maximum rapacitance of $7510100 \mu \mu \mathrm{f}$ ．for 0 （0）Me．，and should be adjusted for maximum loading with the least coupling to the transmitter．Nome

method of varying the coupling to the trans－ mitter should be provided．

Bibliography

swafford，＂Improved coax leed for Low－l＂rerueney No bile Anternas，＂（Q心T，Dee．，19．51．
Roberge \＆Mrc onnell，＂let＇s（io High Hat！，＂QsiT，Jan．， 10.2.

Belrose，＂Short Antennas for Mobile Operation，＂Q心7＂， sept．， 1483.
1）insmore，＂The＇Ilot－Rod＇Mubile Antenna，＂QsT，Sept．， 10．23．
Dicken \＆Waubsganss，＂Reurote Mobile－Intenna Reso－ nating．＂QN゙ 7 ＇，Dee．，193；3．
Webster，＂Mohile Loop Intennas，＂QsT＂，June， $1!1.54$.
＇Tilon，＂Have lou Tried V．HIF．Mobile？＂QNT，Sept．， 19．3．
Hargrave，＂Automatic Mobile Antenna Tuning，＂Q．T ． May， 1955.
Morgan，＂Tuning the Mobile Antenna from the Driver＇s Seat，＂（NTT，Oct．，19\％\％．
IBraschwitz．＂Ifirectional Antennat for the Transmitter Hunter，＂Q．＇ 7 ＇，April， 19.54 ．
＇Iilton，＂Polarization liffeets in V，II，F，Mobile，＂QNT． December，19ist，
Breetz，＂A Simple llalo for 2 －Meter Mobile L＇se，＂$Q .>T$ ， August， 1957 ．

A Signal/Field-Strength Meter for Mobile Use

Soparate meters for measuring signal and field strength are used in many mohile finstallations. The unit shown in Figs. 1!-ibl through 1!--53 permits a single 1-mat metor to be used for making both typus of measurements. The eost of the dualpurpose indiestor is were little more than that of either instrument atome.

The unit is small amough for mounting either above or ander the dashboard of a car, or it may be stored in the glove eompartment when not in use. It is housed in at $+\times 5 \times 3$-ind quay hammertone box. A simple togyle switeh ehathges from one function to the other. Power drawn from the broadeast pereiver for the s-meter cirenit is less than $21 / \frac{1}{4}$ watts.

The field-strength motere catn be used installed in the calr as an antembatesonamere indicator or as an output indieator for tramsmitter adjustments, or it can casily be pemosed for antemat pattern plotting, adjust ment of other mobile installations or evern for use in the home station, The sensitivity adjust ment makes the indieator useful oser a wide range of field strengths.

One hathe feature of the s-meter arrangement is the sensitivity eontrol. This rontrol can be adjusted to provent atmenely strong signals from pinning the meter, When working with watk siguals, the remerol may la adjusted to provide a motiocable meter deffertion.

The eirenit of the indicater is shown in leig. 1!-id2. A $12 . \mathrm{N}^{2}$ is used in the s-meter seetion. One grid is returned direetly for chassis and the seroml grid is conmeetend to the semsitivity comtrol. R_{1}. The imput and of R_{1} is returmed, via I_{2} and at shieded rable, to the a, v.e. line in the broadeast reeeiver. The phates of the 12 AN 7 are comeered in paralled and then, through a single loald, to $/ 2$, lijg. [!-5 2 shows heater wirmg for both if and 12 -volt operation. Pin! of the tube is not usel in the 12 -volt eirenit.

For s-moter operation, the moter and R atre swithed across the eathode terminals of the tube be s_{1}. The ofothon potentionmeter, L_{2}, beromes a zero-adjust control. Waro reading is obtained with R_{2} adjusted for equal voltage at l'ins 3 and 8 of the 12.1N7. Siter an initial zero adjustment, the applieation of a, ver voltage through l_{1} will drive the cathode of $V_{1 A}$ negat tive with resperet to the cathode of V_{23}, thus upsetting the babance and cousing an upward deflection. For a given a.v.e, voltage, the amplitude of the deflection will be controlled be R_{1}.

Fig. 19-5/ - I front view of the signal/field-strength meter. 'The zero-adjust control is to the ripht of the togkle switilh, s. 'l'lio aneter registera cither signal or field strength, depending upon the setting of the toggle switeh.

The rimait of the fiold-strongth seretion is made atot jue low wwitching the metar and live into the cireuit and be atplying r.f. through I_{1}. The amonat of $\mathrm{r} . \mathrm{f}$. fod to the eirecuit maty be controlled he adjusting the tength of the pick-up antema attached to. $/ 1$. ta $_{2}$ is a shant to present off-seale readings when matauring strong r.f. fields.

Construction

is shown in Fig. I:-ibl, the Triplett model $22 \pi-\mathrm{T}$ molor is mountend on the fromt panel of the utility box. sis and he are below the meter with a $1^{1}{ }_{2}$-ineh ware hetwern monating centers. Fach conter is centered ${ }^{3}$'s inehes up from the bottom of the parme.

The frotom view shows the ('-shaped chassis mate from ! 1 i-inch thick alluminum stork. The width. depth ath height of the ehassis are $27 / \mathrm{s}$. 3 and 11_{10} inehes, respertively. l'anel-monnted rontrols (h_{2} and s_{1}) (lamp, the chassis against the rear of the front pand as shown in Fig. 1!1-5:3.
The sorket for the 12.1 .57 is ementerel 1 ineh in from the rear edge of the ehassis. L_{1} is lowated just to the front of the fulbe socked as six.ll in
 tor having ath inductather ramge of 10- to $2(6) \mu$ h. However, any doil that will resonate abound 3.9 Me. (and still fit into the chassis) with the

circuit caparitance may be used. A hole in the front of the sorket, fitted with a ruhber grommet, passos the leak hetwern the meter and the loggle switeli. h_{1}. I_{1} and I_{2} are monnted on the rear wall of the chatwis.
Fig. I!-ois shows the ref. dhoke and the disk rapacitors for the field-strength eirenit monted on at 2-teminal tie-point strip at the right side of the unit. The extra lerminals on the slugtuned coil are used for mounting the IN:3t arystal dionle.

Installation

Heater, plate and a.v.e. voltages for the Smeter are obtained from the ear broadeast reeriver and should be brought to the imbieator through shielded leads. The heater lead may the taperd onto the hot side of any receiver tube (it is a good idea to stay clear of the reetifier tube) close to a hole or rereptade provided for the output cable. The plate lead may be connerted to the serven pian of the adio output tulx socket or to any other puint delivering approximatoly bol volts (higher voltages merely increase the (aurent drain unneressarily). I series resistor may also be used to drop the voltage.

It is frequently possible to spot the a.v.e. line by tracing hack from the eontrol grid of either the r.f. amplitier tule or the converter. The grid of each tube is usually returned to the a.ver has through al ${ }^{2}-2$ - 101 -mogehm resistor. If you test a jumetion for acs.e. voltage, just eommere a highresistanee d.e. voltmeter between the point and ground and watch for a negative reating that increases with increased signal input. Local broadeast stations calt supply the test signals.

After the intermit calling has been completed. the reeceiver may be returned to the dash of the catr. The performane of the S-meter maty now be chereded ley tuning in signals - eithor amateur or broadrast - and olserving the defleretion of the meter. If broadeass station signals catuse only a small deflection, it indieates that R_{1} is adjusted toward minimum sensitivity. In that case, readjust R_{1}, zero the meter lowe mans of R_{2}, and try again. It is neeresary to rese the zero-adjust control wach time that the sensitivity control setting is altered. If siguals tend to pin the meter, the sensitivity can be redured be adjustment of P_{1}.
The field-strengeth meter rian he most quidkly tested the using the molile tramsmittor as the sourer of signal. Either a short length of wire, the brondeast antemas, on : in insulated fonder guide maty be used ats the r.f. piek-up. Just terminate the piek-up antema at J_{1}. throw S_{1} to the proper position, aljust R_{2} for maximum rexistance across the milliammeter, turn on the transmitter and wateh the noedle. Lengthen the piok-up antenna if the meter deflection is not great

Fig. 19-5.3- h_{1} is at the rear of the unit, just below the I-mil. r.f. chohe. $/$, on the rear wall of the chasis, is a miniature mslon tiy janh. 'The bach cover for the metal hox that normally enoloses the meter is pumbed to clear the components mounted on the rear wall of the chasis.

\because ig. 19.52 - Circuit diagram of the signal/field. strength meter.
(Mough. or regulate the shont, R_{2}, if the reading is too high.
L_{1} should ordinarily require adjustment only if the indicator is used for cherking at ith meters. lo that rase, it is advisable to increase the sensitivity to maximum by resonating the eoil. (Originally described in QST', Sept., 1955.)

Mobile Power Supply

By far the majority of amateur mohile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters maty be operated directly from the battery. lligh voltage may be ohtained from as supply of the vibrator-transformer-rectifier type, a small moter generator or a transistor-transformor-rectifier system operating from the car battery.

Filaments

Beeause tubes with directly-heated cathodes (filament-type tubes) have the advantage that they ean be tharned off during reeciving periods and thereby reduce the average foad on the hattery, they are profered bes some for transmitter applications. However, the ehoice of troes with direct heating is limited and the saving may not always be as great as antieipated, because direetly-heated tubes may require greater filament power than those of equivalent rating with indirectly-hested cathodes. In most casos, the power required for thansmitter filaments will be quite small eompared to the total power consumed.

Plate Power

Cuder steady rumning eonditions, the vi-brator-transformer-rectifier system and the motor-wencrator-type plate supply operate with approximately the same efliciones. However, for the same power, the motor-generator's over-all effeciency may be somewhat lower berease it draws a heavier starting current. On the other hand. the output of the generator requires less filtering and sometimes trouble is experionerd in eliminating interference from the vibrator.
'Transistor-transformer-rectifier phate supplies currently available oprate with an efficieney of abperoximately 80 per cent. These compatet, light-werght supplies use no moving parts (vibrittor or armature) or vacuum tubes, and draw no starting surge current, Most transistorized supplies are desigued to operate at 12 volts d.e. and some units deliver 125 watts or more

Converter units, both in the vibrator and potating types, are also avalable, These operate at of or 12 volts d.c. and deliver 11% volts ace. This promits operating standard ace--powered equipment in the car. Although these systems have the advantage of flexibility, they are less efficient than the previously-mentioned systems berause of the additional losses introduced by the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battory is a low-voltage source, this means that the current drawn from the battery for even a moderate amount
of power will be large. Therefore, it is important that the resistance of the battery cirenit, be hedd to a minimum by the use of heavy eonductors and good solid eomeretions. A heavduty reday should be used in the line between the battery and the pate-power mit. An ordinary togyle switeh. located in any eonvenient position, maly then be used for the power eontrol. Λ second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instanco) the 6- or 12 -volt cable should be of the heavy military type.

A complete mohile installation may draw 30 to 10 amperes or more from the 6 -volt hatters or better than 20 amperes from a 12 -volt battery. This rednires a considerably inereased demand from the car's battery-charging generalor. The voltageregubator systems on cars of reeont years will take care of a moderate increaso in demand if the car is driven fatir distances regularly at a speed great enough to insure maximum charging rate. Howerer, if murh of the driving is in urbath areas at slow speed, or at night, it may be neressary to moulify the charging system. Special commu-nirations-type gromerators, such as those used in polierear instablations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits bey tightening up slightly on the voltage-regulator and currentregulator springs. This should be done with catution, however, checking for excessive gencrator temperature or abmornal sparking at the commutator, The average i-volt cat gemerator has a rating of 35 amperes, but it may be possible to adjust the regulator so that the generator will at least hold ceren with the transmitter, receiver, hights, ete., all operating at the stme time.

If higher transmitter power is used, it may be necessary to install an a.e. charging system. In this sistem, the generator delivers a.c. and works into a rectitior. A charging rate of 75 amperes is easily obtained. Commatator trouble often experieneed with d.c. generators at high current is avoided, but the cost of such a system is rather high.

Some mobile operators prefer to use a separate battery for the radio (rquipment. Such it system can be arranged with a switch that cuts the auxiliary batcery in parallel with the car battery for charging at times when the car battery is lighty loaded. The andiatry battery can also be charged at home when not in use.

A tip: many mobile operatoms make a habit of carrsing a patir of haver cables five or six foret long. titted with elips to make at enthertion to the battery of another rat in case the operatore battery has been allowed to run too far down for starting.

The Automobile Storage Battery

The sucerss of any mobile instathation depends to a large extent upon intelligent use and maintemane of the cars battery.

The storage battery is made up of units consisting of a pair of coated lead plates immorsed in a solution of sulphurie acid amd water. Cells, rach of which dedivers about 2 volts, can be connected in series to obtain the desired battery voltage. A i-volt battery therefore has three rells, and a 12 -volt hattery has $i \mathrm{i}$ cells. The average stock car battery has a rated capacity of 600 to 800 watt-hours, regardless of whother it is a 6 -volt or 12 -volt hatters.

Specific Gravity and the Hydrometer

As power is drawn from the battery, the acid content of the dectrolyte is reduced. The adid content is restored to the alectoble (moming that the battery is recharged) by passing a current through the battery in a direction opposite to the direction of the diseharge emerent.

Sine the adid content of the dedrolyte varies with the charge and diseharge of the batery, it is possible to dotermine the state of chatge by mo:suring the sperife gravity of the electrolyte.

An inexpensive devier for chereking the s.g. is the hydrometer which can be obtained at any automobile supply store. In ehoreking the s.g., enough electrolyte is drawn ont of the redl and into the hedrometer so that the calibrated bulb floats froely withont leaning against the wall of the glass tube.

While the readings will vary slightly with hatterios of different manufarture, a reading of $1.2 \overline{5}$ should indicate full charge or nearly full charge, white a reading bolow 1.150 shond indicate a battery that is close to the diseharge point. More sperific values can be ohtaned from the car or hattery deader.

Readings taken immodiately after adding water, or shortly after a heavy discharge period will not to reliatbe, becanse the ederetrolyte will not be uniform throughout the rell. Charging will speed up the erqualizing, and some mixing ean be done by using the hodrometer to withdraw and return some of the electrolyte to the coll several times.

A battery should not be left in a diseharged condition for any appreciathle length of time. This is riperially important in low tempratures when there is danger of the electrolyte freezing and ruming the battery, A battery discharged to an seg. of 1.100 will start to freere at abont 20 degrees li., at about 5 degrees when the s.g. is 1.150 and at 16 below when the s, g, is 1.200 .

If a battery has been run down to the point where it is nearly discharged, it ran ushatly be fast-charged at a hattery station. lastedarging raters may be as high as 80 to 100 amperes for at (i-volt battery, Any (i-wolt battery that will accept a charge of 7 it amperes at 7.75 volts during the first 3 minutes of charging, or any 12 -volt battery that will accept a charge of 40 to $1 \overline{0}$ amperes at 15.5 volts, may be safoly fast-charged
up to the point where the gassing becomes so exessive that chertrolyte is lost or the temperature rises above 125 degres.

A normal battory showing an s.g. of 1.150 or kess may be fast-charged for 1 hour. One showing an s.g, of 1.100 to 1.175 may be fastcharged for 45 minutes. If the s.g. is 1.175 to 1,200, fast-charging shouhd be limited to 30 minutes.

Care of the Battery

The battery tominals and mounting frame should be kept free from corrosion. Any corrosive areumulation may be removed by the use of water to which some household ammonia or baking soda has been added, and a stiff-loristle brush. Care should he taken to prevent any of the corrosive material from falling into the rells. Cell cenps should be rinsed ont in the same solution to keep the vent holes free from obstructing dirt. battery terminats and their cable clamps should be polished bright with a wire brush, and coated with mineral grease.

The hold-down damps and the battery holder should also be rhereked oceasionally to make sure that they are tight so that the battery will not be damaged ly pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal battery, the noeresity for frequent use of the hydroneter is an ineonvenience and will not abwas serve as a condusive cherk on a doferetive battery. (colls maty show normal or almost mormal s.g. and vot have high internal resistance that ruins the usefulness of the battery under load.

Whon atl erells show satistactory s.g. roadings and yet the battery output is low, sorviec stations chere each cell be an instrmment that measures the voltage of eath erell under a heary load, Ender a heavy load the rell voltages should not differ by more than 0.1:5 volt.

A load-voltage test can also be made by measuring the voltage of eath coll while elosing the starter switch with the ignition turned off. In many cars it is neressary to pull the central distributor wire out to prowent the motor starting.

Electrolyte Level

Water is evaporated from the electrolyte, lut the abid is not. Therefore water must le added to earh coll from time to time so that the plates are always completely covered. The level should be cherked at beast onere per wook, esuecially during hot weather and ronstant operation.

Distilled wator is preferred for replenishing, but eloar drinking water is an ancerptable substitute. 'Too much water should not be added, since the gassing that arrompanies charging may force clectrolyte out through the vent holes in the eaps of the colls, The eldetrolyte expands with temprature (From (2NT, Jugust, 1!55.)

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individual amateur is one that operates from a car storage battery. Such a supply may take the form of a small motor generator (often called a genemotor), a rotary converter, or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature winding. One winding verves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6-, 12-, 23- or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reference to a dynamotor designed especially for aut omobilereceiver, soundtruck and similar applications. It has good regulation and efficiency, combined with economy of operation. Standard models of genemotors have ratings ranging from 250 volts at 50 ma, to 400 volts at 375 ma. or 600 volts at 250 ma . The normal effieioney averages around so per cent, increasing to better than bo per cent in the higher-power units.

Successful operation of dynamotors and genemotors requires heavy direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked ocrasionally to make certain that no looseness has developed.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanically. The frame of the genemotor should be grounded through a heavy flexible conncetor. The brushes on the high-voltage end of the shaft should be bypased with 0.002-mf. miea rapacitors to a common point on the genemotor frame, preferably to a point inside the end cover close to the brush holders. Short leads are essential. It may prove desirable to shied the entire unit. or reven to remove the unit to a distance of three or four feet from the reeciver and antenna lead.

When the genemotor is used for receiving, a filter should be used similar to that described for vibrator supplies. A $0,01-\mu$, (0 (0)-volt (d.e.) paper eapatitor should be commeted in shunt arross the output of the genemotor, followed by a $2.5-\mathrm{mh}$. r.f. choke in the positive high-voitage lead. From this point the output should be run to the recoiver power terminals through a smooth-
ing filter using 4 - to $8-\mu \mathrm{f}$. capacitors and a 15- or 30 -henry choke having low d.c. resistance.

D.C.A.C. Converters

In some instances it is desirable to utilize existing equipment built for $115-v o l t$ a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuilding. This can be obviated by using a rotary converter capable of changing the d.c. from 6-, 12-on 32-volt batteries to 115 -volt 60-cycle a.c. Such eonverter units are built todeliver out puts ranging from 40 to 250 watts, depending upon the battery power available.

The conversion efficieney of these units averages about 50 per cent. In appearance and operation they are similar to genemotors of equivalent rating, The over-all efficiency of the converter will be lower, however, because of losses in the a.e, rectifier-filter circuits and the neeossity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The cireuit is made and reversed rapidiy by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting spuarewave d.c. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is rectified, either by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.e., which may be filtered by ordinary means. The smoothing filter can be a single-scetion affair, but the output capacitance should be fairly large - 16 to $32 \mu \mathrm{f}$.

Fig. $19-54$ shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is diseonnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing eurrent to flow through the lower half of the transformer primary winding. Simultaneousty. the magnet coil is short-cireuited, deefuergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point. calusing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synelronous circuit of Fig. $19-5+B$ is
provided with an extra pair of contacts which rectily the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary eonter-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connertions may be determined by experiment.

The baffer eapacitor, (2, across the transformer seoondary, absorbs the surges that oecur on braking the current, when the magnetie field collatpers practically instantaneously and hence catuses very high voltages to be induced in the secondars. Without this capateitor excessive sparking ocenrs at the vibrator eontimets, shortening the vibrator life. Correct
 and for 2.50-300-volt supplies the eapacitor should be rated at 1500 to 2000 volts d.r. The exact rapacitance is critiocal, and should be dotormined exporimentally. The optimum value is that which results in least battery current for a given reatified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the caparitane is changed. When the system is operatine properly there should be practablly no sparking at the vibrator (ontacts. 1 5000-ohm resistor in series with ('2 will limit the secondary current to a safe value shomat the capacitor fail.

Vibrator-t ratheformer units are available in a variety of power and voltage ratings. Ropresentative anits vary from one delivering 125 to 200 volts at 100 mata to others that have a 400-volt output rating at liol ma. Most units romo supplied with "hash" filters, lat not all of them have built-in ripple filters. The requirements for ripple filtors are similar to those for a.e. supplies. The usual officionery of vibrator packs is in the vicinity of 70 per cent, so a 300-volt 200-mat. unit will draw approximately I_{s} amperes from a f -volt storage
 a valable from transformor mantifuturers so that the amateur may build his own supply if he so desires. These have d.e. output rating.s varsing from 150 volts at 40 ma . 10330 volts at $13 \overline{5}$ ma.

Vibrator-type supplies are also avaibable for operating standard ace expipment from a \mathfrak{i} - or 12-volt storage battery in power ratings up to 100 watts contimots or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibmator contants cames r.f. interlerence ("hash." which can be distinguished from hum by its hash, sharpor piteh) when ased with a recoiver. To minimize this, r.f. filters are incorporated, consistime of $R F C_{1}$ and Q_{1} in the battery eirouit, and $R F^{\prime} \mathrm{C}_{2}$ with C_{3} in the d.e. outpot circuit.
bigually as important as the hash filter is thorough shedding of the power supmly and its connecting leads, sime even a small piece of wire or metal will radiate conourh ref. to caluse
interference in a sensitive amateur receiver.
Testing in connection with hash climination should be carried out with the supply operating a recoiver. since the interforence usually is picked up on the recerving-antemna leads by radiation from the supply itself and from the battery leads. it is advisable to keep, the supply and battery as far from the reecoiver as the connereting cables will promit. Threr or four fere should be ample. The mierophone cord likewise should to kept away from the power supply and its leads.

The power supply should be built on a motal chassis, with all unshiclded parts underneath. A bottom plate to complete the shieding is alvisable. The transformer ease, vibrator cover and the metal shell of the tube atl should be grounded to the chassis. If a ghase tube is used it should lo. enclosed in a tube shiedd. The battery lauds should be evenly twisted, since these leads are more likely to radiate hash that any other part of a well-shiolded supply. Vixperimenting with different values in the hash filters should come after

Fig. 19.54- Basic tybre of vihrator phwer-sumply

radiation from the battery leads has beob roduced to a minimum. shiclding the leads is not witen found to be particularly helpful.

PRACTICAL VIBRATOR-SUPPLY CIRCUITS

A vibrator-type power supply maty be dosigned to operate from a stomge battery onls, or in a combination unit which may be operated interchamgealdy from either battery or 115 volts a.e.

An example of the latter-tepe rirenit is
 two trathemmer-rectifier systoms - one for 115 volts as.e. and the other a vibrator system to operate from a f -volt storage battery. A common filtur is used for the two ststems. In intorehanging fot wern a.e and d.e. operation, the reetifier tube is shifted to the apmopriato sorker, whild the filament ammertions :are made to the propxor output teminals. If desired, iwo rectifier tubses may be used and the changeower made through suitahle switehes.

Fig. 19. 55 - Cireuit of a combination a.c.d.e. power supply fur emengeney work.

Ct - $0.01-\mu \mathrm{f}$. w(1)-wh paper.

13-32-4f. 450-wat electrolytic.

$\mathrm{R}_{1}-4$ tow ohms. 1 wat
La - 10- to IP-hy. filtar chohe, 100 ma. (not over 106) ohms) (Stancor C-2303 or equivalent).
RFC_{1} - e.
 close-womnd.
S_{1}, S_{2}-Topgle switch.
T' - Power transormer: $2 \overline{5}$ to 300 wolts r, ma,s, earh side of center tap, 100 to 1.50 ma.. b.3.ond filament winding.
' T_{2} - Vibrator transformer (Stancor P'-6131 or similar).
V113-Vibrator mint (Wathery 301P, 29 1 , etc.).

R.f. filters for reducing hash are incorporated in both primary and secondary circuits. The secondary filter consists of a $0.01-\mu$. paper capacitor directly across the rectifier output, with a 2.5 -mh. r.f. choke in sories ahead of the smoothing filter, In the primary cireuit a low-inductance choke and high-capacitance capacitor are neded because of the low impedance of the circuit. A choke of the specifications given should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured chokes such as the Nallory RFis8 are more compact and give higher induetanee for a given resistance because they are bank-wound, and may be substituted if whathable. ('s should be at least $500 \mu \mathrm{f}$. ; even more eapacitaner may help in bad eases of hash

The compactness of selenium roctifiers and
Piд. 19.56 - A typical combinatien ato.-d.e. power pach lour low power emergency worh. The zwo transformer ary monmed at cither end of the chassis. 'The filter capacitor is at the left, the two rectifier sockets at the renter and the vibrator to the rear. 'The circuit is shown in Fig. [9-.55.

the fact that they do not require filament voltage make them particularly suited to compact lightweight power supplies for portable emorgeney work.

Fig. 19-57 shows the cireuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma . It will work with either 115 -volt ac. or 6 -volt batery input. The circuit is that of the familiar vollage tripler whose d.c. output voltage is, as a rough approximation, three times the peak voltage delivered hy the transformer or line, An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when operating from 6 -volt d.c. supply and as the filament transformer when operating from an a.c. line.

The vibrator transformer, T_{1}, is a dualsreondary 6.3 -volt filament transformer con-

Fig. 19-57 - Circuit diarram of a compact vibrator-a.c. portable power supply using selenimm rectifiers.

1:2-(6)- μ f, 1010 -volt electrolytic.
$\mathrm{C}_{3}-60-\mu \mathrm{f}$, 0(0)-adt electralytic.
C4-25-af. 2.5-wolt eleerolytic.

$R_{1}-2 \overline{5}, 0$ Mnt ohma. 10 watts.

s_{1} - 115 -solt towne $=$ witelt.

$\mathrm{S}_{3}-25$-amp. s.p.s.t. *witch.
' V_{1} - See text (T (: S-63),
V - Heavy duty vibrator (Cornell.Dub. H23).
noeted in reverse. The filament windings must have a rating of 10 amperes if the full load current of 200 mat. is to be used. The vilmator also mast be eapable of hamding the curront. The hash-filter choke, L_{1}, must (arry al curront of 20 amperes.

The following table shows the output voltage to be expeeted at various load currents, doponding upon the size of capacitors used at C_{1}, C_{2} and C_{3}.

C_{1}, C_{2}, C_{3}	Output Voltage at			
(μ F.)	60 ma .	100 ma .	1.50 ma .	200 ma .
00	4.\%	430	41.5	$3!5$
40	42:	$3!0$	360	3:30
20	400	340	28.5	23

In oprating the supply from an ater. line, it is always wise to determine the plug polarity with resperet to grotud. Othorwise the rectifing part of the circuit and the transformer cireuit cannot be connerted to actual ground exeept through bypass eaparitors.
(Originally deseribed in QST by WoOC.)

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most pratical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt (i)-reve supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or big mough to handle the highest-power amateur rig. Most are arranged to charge automatioally an anxiliary 6 - or 12 -volt battery used in starting. Fitted with self-starturs and adequate mufflers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuousty at full had.

The output frequency of an engine-driven generator mast fall between the relatively narrow limits of 50 to 60 eyches if stamdard (60-revele transformers are to operate efficiently from this soures, A forcyele electric clock provides a means of checking the output froguency with a fair domere of accuracy. The cloek is connected across the output of the generator and the secoond hand is checked chosely against the second hatud of a wateh. The speed of the engine is adjusted until the two second hands are in synchronism.

Output voltage should be chereked with a volt metur since a standard 11 y-volt lamp bulb, which is sometimes used for this purpose is very inaccurate.

Noise Elimination

Electrical moise which may interfere with recoivers operating from engine-driven ate genarators may be redued or eliminated by taking proper procations. The most important point is that of grounding the frame of the
generator and one side of the output. The ground lead should tee short to be effective, otherwise grounding maty actually increase the moise. A water pipe maty be used if a short conneetion can be mate near the point where the

Fig. 19-58-Connections used for eliminating inter. ferener from gasedriven generator mants, fishould be 1
 volt age rating of twice the ile ontput voltage deliverad by the gencrator. I indicates an added connection betwern the slip ring on the groumled side of the line and the evererator frame.
pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes whike checking for moise with the recoiver. Wsually a point will be found (almost alwars difforent from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, bepass capacitors from various brush holders to the frame, as shown in lige. 10-iss, will bring the hash down to within 10 to 1.5 per cent of its original intensity, if not entirely climinating it. Most of the remaining noise will be reduced still further if the high-power atudio states are cut out and a pair of hoadphones is eonnereded into the seeond detector.

- POWER FOR PORTABLES

Dry-rell batiories are the only practical source of supply for equipment which must be transported on foot. From cortain eonsiderations they may also be the best source of voltage for a rocoiver whose filaments may be operated from a storage battery, since no problem of moise filtering is involved.

Their disadvantages are woight, high eost, and limited rurrent capability. In addition, they will hose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneoonomieal if not used more or less continuously.
I)ry " B" batteries are made in a variety of sizes and shapes, from a to-volt unit weighing about 1 ll . that has an intermittent scrvice rating of 20 hours at at drain of 20 ma , to a 12-1b, unit rated at 130 hours at 40 ma . "A" batteries for filament service range from a 6 -volt unit weighing $1!2$ Hos. delivering in intermittent service an avorage of 60 ma. for 150 hours, to a $6 \frac{1}{4}-1 \mathrm{lb}, 1$. i -volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tools available. by taking a little thought and care it is prossible to turn wat a fine piece of equipment with only a few of the common hand tomk. I list uf torls which will be int dispensable it the construction of radio equipment will he found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

1.0ng-nome oliers. i-inuch.

Diagonal cutting bliers, fi-iuch.
Wirestripur.

surewlyiver, t-tos-inch, $1 / 8$-inch blade.
Srateb awl or wriber for marking lines,
('ombinations sumare, 12-inch, for lasing out work.
11turl drill. ' G -inch chuck or firger, "-speed tyge preferable,
1:hectrie soldering irom, 100 wat ts, $1 / 4-i n$. tip.
Hack saw, 12-inh hades.
center punch for marking hole centers.
11ammer, hatl-peen, 1-lh, head.
Heary knife.
Yardisiek or other st raightedge.
('armenter's hrame with adjustable hole cutter or sorkethrife pumphes (sertext).
1,arge, coarse, flat file:
harae resuld or ratt-tail file, $1 / 2$-inch diameter.
Three or four small and medium files-flat, round, half-round, risugular.
1)rills, particularly ! i-inch and Nos. 18, 28, 33, 42 and 50.
('ombination oil stone for sharpening tools.
Sulder atul suldering baste inullotroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bencli vise, t-inelı jaws.
Tin sherars. IO-inch, for cotting thin sheet metal. Traper reamer, $1 / 2$-inch, for enlaraing small holes. fiaper remuer, 1 -inch, for enlarging holes.
Countersink for trace.
Carpenter's planc, 8- to 12-inch, for woolworking. ('arpenter's saw, "rosssut.
Motor-driven emery' wheel for prinding.
Long-shank serewdriver with serew-holding elip for tizht places.
Sut of "spintite" socket wrenehes for hex muts. sot of mall, flat, open-end wrenehes for hex nuts. Wood ehisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-inch,
Wing dividers, 8 -inch, for acribing circles.
Set of nachine-serew taps and dies.
Justing brush.
Sucket punches, cesp, 5/8", $8 / 4^{\prime \prime}, 11 / /^{\prime \prime}$ and 11/4".
panels and metal chassis for assembly and wiring, It is an execllent idea for the amateur who does ronstructional work to add to his supply of tools from time to time as finames permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, hand and cireular sats, and joiner. Although mot essentiat, they are desirable should you be in a position to arguire them.

Twist Drills

Twist drills are made of either high-speed sted or cabon sted. The latter type is more common and will usually be supplied unless sperifir recquest is made for high-speed drills. The carbon drill will suffice for most ordinary eguipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table 20-I will be most commonly used in construction of amateur equipment. It is usatally desirable to purchase several of ach of the commonly-used sizes rather than a standard set, most of which will be used infrequently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. Je also realizes the energy which may be saved and the annoybuce which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to mantain the rather critioal surface angles required for best cutting with least wear. Occasional bilstoming of the cutting edges of a drill or reamer will extend the time between grimdings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After earh perind of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while
hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smonth and bright, and then tinned immediately by dipping it in solder.

Useful Materials

Small stochs of various miserelaneous matorials will be required in constructing radio apparatus, most of which are avalable from hatrdware or radio-supply stores. I representit tive list follows:

Sheet aluminum, solid and parforated. 16 or 18 gatuge for hrackets and shied eling.
$12 \times$! - -inch alumimum angle stork.
1/4-inch ditmeter round brass or aluminum rod for shiff extensions.
Machine serews: Round-head and flat-head, with nuts to fit. Most usoful si\%os: $4-36$, 6-32 and \& 32 , in lengthe from 14 ind to 116 inches. (Nickel-plated iron will he foum satisfactory except in strong r.f. fields, where bratss should be used.)
Bakelite, lucite and polystyrene saraps.
Soldaring lugs, pathel bearinge, rubber grommets, ferminal-lug wiring strips, vatr-nished-emmbrir insulating tubing.
Shiedded and unshichlded wire.
Tinned hatre wire, Nos. 22, 14 and 12.
Machine sorews, nuts, washers, soldering luns, ete., are most reasonably purchased in quantities of a gross.

CHASSIS WORKING

With a few esential took and proper procedure, it will be found that building radio gear on a metal chassis is no more of al chore than buidding with wood, and a more satisfartory jol results. Aluminum is to be preferred to steol, not only beramse it is a superior shedeling material, but heratuse it is much casior to work and to prowide good chassis contacts.

The placing of component: on the ehassis is shown quite elearly in the photegraphs in this Hamdbook. Aside from ertain essential dimensions. whid usually are given in the text, exact dunliation is mot neressary.

Murh trouble and enorgy rath be saved by spending sufficiont time in paming the job. When all details are worked out beforehand

Fig. 20.1 - Mathol of moanaring the heights of raparitor shafts, etc. If the spare is adjustable, the end of the scale should lee set flush with the face of the head.

Number	TABLE 20-I Numbered Drill Sizes		
	Diameter (mils)	W'ill Clear screw	Drilled for Tappiny Iron, Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0		14-24
4	209.0	12-20)	-
5	$20 \mathrm{B.0}$	-	-
6	201.0	-	-
7	201.0	-	-
8	169.0	-	-
9	I!M.0	-	-
10	193.5	10-32	-
11	$1!01.0$	10-24	-
12	18.10		-
13	185. 0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-32	-
19	1 16ic. 0		12-20
20	161.0	-	-
21	15! 10	-	10-32
22	135.0	-	-
23	1.54 .0	-	-
24	152.0	-	-
25	119.8	-	10-24
26	147.0	-	-
27	$1+1.0$	-	-
28	140.0	6-32	-
29	138.0	-	8-32
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	436, 4-40	-
34	111.0	-	-
35	110.0	-	6-32
36	166.5	-	-
37	104.0	-	-
3 K	(1)1. 5	-	-
34	0193. 5	3-48	-
411	(mis. 0	-	-
41	016.0	-	-
42	093.5	-	4-36, 4-40
43	0 Sa 10	2-56	-
4	1181i.0	-	-
45	11820	-	3-48
46	0×1.0	-	-
47	078.5	-	-
48	076.0	-	-
49	1173.0	-	2-56
50	070.0	-	
51	0667.11	-	-
52	01683.5	-	-
53	1039.5	-	-
54	Ois. r	-	-
*Use one sizat lager fol larping bakelite and hard rubber.			

the actual construction is greatle simplified.
Cover the top of the chassis with a piece of wrapping paper or preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assomble the pats to be mounted on top of the chassis athd mowe them about until a satisfartury arrangemont has beon foumal, kerping in mind any parts which are to be mounted mulernoath so that interferemes in mounting mas be a midod. Plame rathacitors ame other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front, lorate any partition shichds and paned brackets next, and then the tube suckets and any other parts, marking the mounting-hole erntern of ead aceramately on the paper. Wateh out for caparitors whose shalis the off centere and do not line an with the mounting holes. Do not forget to mark the centers of socket holes and hales for leads underi.f. transformers. ate., as well as holes for witing leads. Ther small holes for socket-mounting serews are best located and renter-punched, using the soreket itself as at template, after the matin ernter hole has been rut.

By means of the square, lines indieating aecurately the ernters of shafts should be extended to the front of the ehassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the whassis with the conter punch. After drilling. the parts which require momating maderneath may be lorated and the monntine holes drilled, makingesure be trial that no interforenees exist with parts monated on top. Mounting holes along the front odge

Fig. 20.2 - To cut rectangular holes in a chas*is corner, fooles may be tiled out as shown in the shaded portion of B, making it possible tostart the hack-saw thade alone the rutting line. A shows how a single. embed handle way be constructed for a hach-saw blade.
of the ehassis should be transfered to the panel. hy once igran fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the capacitors and any other parts with shafts extending to the pand, and measure aceurately the height of the renter of each shatf above the ehassis. as illustrated in Fig. 20-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displatement abla be measured from this lime. The shaft centers may now be marked on the bate of the pandel. and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, ath the remainder of the apparatus mounted. Holes for terminals ete., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top,

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch. so that the drill point will not "walk" away from the center when starting the hole. Whan the dirill starts to brealis through, special rate must be used. Often it is an adrantage to shift a two-speod drill to low gear at this point. Holes more than $1 / \frac{1}{4}$ inch in diameter may bestarted with a smaller drill and reamedout with the largerdrill.

The chuek on the usual type of hand drill is limited to $\frac{1}{4}$-inch drills. Although it is rather tedions, the $1 / 4$-inch hole may be filed out to larger diamoters with round files. Another method possible with limited took is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be kineked nut with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the earpentersobrace will make the jub casier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterdorekwise.

Four socket holes and othor large round hotes, an : adiustable cutter designed for the purpose may be nsed in the brace. Oncasional application of matehine oil in the retting groove will help. The chatere first shouth be tried out on a block of wool, to make sure that it is set for the ermert dianoter. The most comwemient device for cutting sorket holes is the sorket-hole punch. The best tupe is that which works by turning a takr-up serew with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously desribed, but is more easily done by drilling a ${ }^{2}$-ined hole inside path eorner, as illustrated in lig. 20-2, and using these holes for starting and tuming the harlk saw. The sockethole punch and the square punches which are now a vailable also may be of considerable assistanee in cutting out large lectamgular openings. The burrs or rough edges which usually result after drilling of cutting holes may be removed with a file. or sometimes more eonveniently with a sharp knife or chisel. It is a good idea to kecep an old wood ehisel sharpened and arailable for this purpose. A burr reamer will also he nesful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal pancl bearing made for the purpose. Never use panel bearings of the nonmoual type undess the rapacitor shaft is grounded. The metal bearing should be connected to the chass is with a wire or grounding strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramie insulation and metal brackets, serews or nuts will prevent the eramic parts from breaking.

STANDARD METAL GAUGES			
Gauge No.	$\begin{aligned} & .1 \text { merican } \\ & \text { or } B . \text { its. } \end{aligned}$	$l . s$. Standard ${ }^{2}$	Birminyham or Ntubs ${ }^{3}$
1	. 2×103	.2812-7	. 304
2	. 2.66	. 30.812 .5	.184
3	.2304	.2.)	.2.0)
4	. 2043	. 234.37%	.238
5	. 1819	.21875	.220
6	.1620	.203125	.20:3
7	.1413	. 1875	. 180
8	.128;	.17187.	.16.5
9	.1144	.1.84\%	. 118
10	.101!	. 1401025	. 134
11	.030) ${ }^{4}$.12-	.120
12	.08081	. 109375	. 109
13	. 18.7106	.0437.5	.09\%
1.4	.0ti408	.07812.5	.083
15	.05307	.0703:25	.072
16	.0,5082	.060.5	.06\%
17	. 01.856	.0.762.	.0.88
18	.01030	. 0.	. 019
19	.038.89	. 04375	. 012
20	.031996	.0.37.)	.035
21	.02846	.03437.)	.032
22	.03-3.3)	.0312.5	.028
23	.022.77	.0281:-	. 02.5
21	.02010	.02.5	. 023
25	.01790	.02187.5	.020)
26	. 01.094	.0187.5	.018
27	. 01120	.017187.)	. 016
28	.01264	. 01.0182 .5	. 014
29	.01126	. 0140 (i2.	. 013
30	.01003	. 012.5	. 012
31	. 008128	.0100037.5	. 010
32	.0070.90	. 010150102.5	. 0100
33	. 007080	. 009037.5	. 0108
31	.0063.30	.008.9437.	. 007
3.5	.00.561.)	.007812.9	. 005
36	. 00.0000	. 00703818.5	.00.4
37	. 0044.23	
38	. 0003465	.000:35	\ldots
39	.003-31	
40	.00314.) \cdot

${ }^{1}$ C'sed for atuminam, ropper, hrass and nonferrous allog sheets, wire and rexls.
$2{ }^{2}$ sed for iron, sterl, nickel and ferrous alloy sheets, wire and raxds.
${ }^{3}$ ['sed for seamless tubes; also, by some mantufacturers for eopper and brass.

Cutting and Bending Sheet Metal

If a shere of motal is too large to be cut conveniently with a hack saw, it mas be marked with saratehes as deep as possible along the line of the cut on both sides of the shert and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may berome bent. A pair of iron hars or pieces of heary angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job casier." (")-clamps may be used to kerep the batw from sprouding at the
ends. The rough edges may be smoothed up with a file or by phang a large piece of emery doth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.
bends may be made similarly. The sheet should be seratched on both sides, but not so derply as to caluse it to break.

Finishing Aluminum

Aluminum chassis, pathels and pats may be given a shern finish by treating them in a canstic bath. An emamelled contaimer, surh as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary houschodd lye in rohd water in a proportion of $1 / \frac{1}{4}$ to $\frac{1}{2}$ can of lyo per gallon of water. The stronger solution will do the joh more rapidly. Stir the solution with a stick of wood until the lye ersatals are complete dissolved. Be very comeful to awid any skin contate with the solution. It is also harmful to clothing. Suffirient solution should be prepared to eover the piece complotely. When the aluminum is immersed, a very pronouned bubbling takes place athd ventilation should be provided to disperse the eseaping gas. A half hour to two hours in the solution should be sulticiont, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the selution with sticks and rinse thoroughly in cold water while swabling with a ratg to remove the hatek deposit. Thern wipe off with a rag soaked in vinegatr to remove any stubhorn stains or fingerprints. (Nere May, 1950, (0sT for a mothod of coloring and anolizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain suflicient temperature. Whough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron. Nwats use rosin-core solder, never arid-rore bexept whereabsolutely neeressury, solder should never be depented upon for the merhanical strength of the joint: the wire should he wrapped around the terminals or champed with soldering terminals.

When soldering erystal diodes or earbon re-

DECIMAL EQUIVALENTS OF FRACTIONS				
1 '32.	.0312.)	17	32.	. 53125
116.	. 0632		16	. 8 (62. ${ }^{\text {a }}$
332.	. 013835	19	32.	.5437.)
18	.12\%		\% S.	.025
532.	. 1562.5	21	32.	.(i562.)
316	.187.		1116.	. 687.3
732.	.21875	23	32.	. 71875
14.	. 25		34.	
93 2).	.2812\%	2.$)$	32.	.7812.7
516	. 3125		1316.	. 812.
1132.	. 34.37 .5	27	32..	. 81375
38.	. 375		78.	.875
1332.	.4062.5	29	32.	. 1 Hies
716.	. 437.		1.) 16	.933.5
1532.	. 46575	31	32.	. 96875
12.	. 5		1...	

Fig. 20-3 - Cable-stripuing dimensions for Jomes Type P-101 phuse, smaller dimernions are for $1 / 4$ inch phuss, the larger dimemsions for 2 -inch phase, As indieated in C. the remaining copper hratid is wond with bare or timed wire to make a snug fit in the sleeve of the plag.
sistors in plare, esperially if the leads have been cut short and the resistor is of the small! !-watt size, the resistor lead should be gripped with at pair of pliers up efose to the resistor so that the heat will be conducted away from the resistor. Overheating of the resistor while soldering can ratuse a permathent resistanere chatge of as much
 at similar afferet, so that a small resistor should be mounted so that there is no appreciable merhamieal strain on the leads.

Trouble is sometimes experieneed in soldering to the pins of coil-forms or male cable plugs. It helps first to tin the inside of the pins by applying soldering paste to the hole, and then flowing solder inte the pin, Then immediately clear the solder from the hot pin by a whipping motion or be howing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the nieked plate from the tip. After soldering, round the solder tip off with a file.

When soldering to sockets, it is a good ideat to have the tube or coil form inserted to prevent solder ruming down into the socket prongs. It

Fig. 20-4 - 1 imensions for stripping $1 / 2$-inch calle to fit Amphenol 'l'ype 83-1SP' (PL.259) plig.

Fig. 20.5 - Method of assembling $1 / 4$-inm cable, Amphenol 'Type 83-1s' (I'I.-259) plug anel adapter.
afore helps formduct the heat :way when soldering to polystyrene sockets, which often soften under the heat of the iron.

Wiring

The wire used in connerting up amsteur equipment, should be selected considering both the maximum curvent it will be eatled upon to hander and the voltage its insulation must stand without breakdown. Also, from the eonsideration of TVI, the power wiring of all transmitters should be done with wire that has a braded shielding eover. IReceiver and andio circuits maty also require the use of shielded wire at some points for stabilit.: or the elimination of hum.

No. 20 stranded wire is commonly used for most receiver wiring (excent for the high-

Fí. 20.6-Stripping dimensions for Amphenol 82.830 and 83-832 plug-in coumetors. The longer exposed braid is for the lirst type.

Fig, 20.7 - Mrihorla of laring rahles. 'Vle method shomb at f : is more sesture, lout tahem more lime thatn the methoul of b. 'lhe latter is u-badly adequate for mont amathor riduirimant-
frequeney rircuits) where the current does not exeed 2 or 3 : amperes. lon higherewornt heater rireuits, No. 18 is available. Wire with cemblose aretate insulation is good for volatres up to about 5olo. For higher voltages, thermoplastic-insulated wire should be used. Incxpensive wire strippers that make the removal of insulation from hook-up) wire an easy job are available on the market.

In cases where power leads have saveral bramehes in the chassis, it is comvenient to use fiber-insulated tie points or "lug strips" as :thehorages or junction pooints. strips of this type are also useful as insulated suphorts for resistors, r.f. chokes and rapacitors. High-voltage wiring should have exposed points held to at minimum, and those which cannor be avoided should be rendered as inareresible as pessible to aderdental contact or short-rireuit.

Where shiedded wire is called for and cabati-

 must be minimized, it maty he neressary to nse at piece of ear-sadio low-raparitance lead-in wire, or comxial calle.

For wiring high-frequency cireuits, rigid wire is often used. Bare soft-dram timed wire, sizes 22 (a) 12 (depending on merh:nical reguirements), is suitable. Kinks can be remuved by stretching a pieve 10 or 15 feet long and then cuthing into shout lenget the that can be hamdled convenientle. R.f. wiring should be run dired $\begin{aligned} & \text { from point to }\end{aligned}$ point with a minimum of sharp bends and the wire keph well spared from the chassis or other
grounded metal surfares. Where the wiring must pass though the chassis or a partion, a clearatue lowle should be rolt and lined with a rubhem grombut. In case insulation beromus meressary, varmished tambrice tohiog (spaghelii) rath be: slipped over the wire.

In tramsmitters where the peak voltare does mot exeded 2 gho volts, the shielded grid wire mentioned above should be satisfactory for power rircuits. For higher woltages, Bedmentore stioti, 13imbach type 1820, or shanded ignition cabhe can In used. In the case of filament cimuits carroing heavy current, it maty be necessary to use No. 10 or 12 bare or enameled wire, slipped through sp:urhetti, and then eovered with copper brad pulled tightly over the sparhetti. The chatpter on 'l'll shows the manner in whid shideded wire should be applied. If the shichding is simply stid batk over the insulation and sodder flowed into the end of the braid, the braid usathey will stay in place without the nererssity for cuthing it batk or binding it in phace. The brat shouhd be burnished with samdpatrer or a knife su that solder will take with a minimum of heat to protere the insulation underneath.
R.f. Wiring in transmitters usually follows the mothod doseribed abose for rowners with due respert to the voltages involved.

Power and emonol wining external th the transmitter whasis preferably should be of shiedded wire bound into a cathe. Figs. 20-7 shows the correct monhonls of liucing mahles.

Coaxial Plug Connections

Considerable time and trouble can la saved in making cabla commetions to coavia! plugs by starting out with the correx stripping dimensions: lige $20-3$ shows hew the end of the eable should be prepated for commeding to dones 'Type P'-101 phags, After the expmed braid hats bero wond, it should be carefully timed, applying no more hat than is neressary, to amod motting the inner insulation. A small ammont of solder also should tre flowed into the slevere of the plug. Thern, when the cable is inserted in the sherere, the comection cat be made secture by bolding the iron against the showe until the solder inside melts. Whils joining the two, the pher may be hold be inserting it in a hode drilled in a board. lijgs. 2(0-t, 20-5 and 20-fi show detaiks of rommer tions to difforent lypes of Amphomol phages and
 to the wire with at shap knife at a distame of $18 j_{6}$ inch from the end of the wire and remove the insulation and shiglding in one pieere. Then
 maty bestid bate onto the wire

Alter the braid in Fig. 20-5 has beon frated hate, it will be uecessary to tike the hatid down as much as possible to make it fit the plug.

- COMPONENT VALUES

V Values of comusuition resistors and small (apateitors (micat and eramier are sperified throughout this I/andonols in terms of "preferrad values." In the woferred-mamber sys-

TABLE 20-II		
Standard Component Values		
$\begin{gathered} 20 \text { i } \\ \text { Tinlurunce } \end{gathered}$	10' Tollerature	Tineraince
10	11)	111
		11
	12	12
		13
15	15	1.7
		10
	18	18
		90
22	22	$2 \times$
		21
	27	27
		30
33	33	338
		34
	39	3:10
		13
17	47	17
		51
	56	20;
		(12)
18	tis	is
		7.5
	8:	x
		! 1
160)	1(3)	100

tem, ail values represent (approximately) a constant-pereentage increase over the next lower value. 'The base of the system is the mumber [0. Only 1 wo significant figures are used. Table 20-II shows the profered salues heased on toleratuce steps of 20,10 and 5 per cont. All wher values are expresed by multiplying or dividing the base figures given in the table by the appropriate power of 10. (For example, resistor values of 33,0000 ohms, bisto ohms, and lato ohas are ohtained by multiplsing the hase figures by 1000 , loo, and 10 , respertively.
"Tolerance" means that a variation of plas or minus the percentage given is eonsidared satisfactory, Jorexample, the achan resistance of a " 4700 -ohm" 20 -perecont resistor can lie abswhere betwern 3700 and 5600 ohms, approximately. Tlae permisible variation in the same resistance value with $\overline{\mathrm{j}}$-pererent tolerance would be in the range from 4.500 to 4000 ohme, approximately.

Only those values shown in the first columm of Table 20-II are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent wherance; still more values ean be obtained in 5-pererent tolerance.

In the component sperifications in this Ilambomk, it is to be understood that when no tolerane is speefified the largest tolerane e available in that value will be satisfactory

Values that do not fit into the prefermednumber system (such as $500,2,0,000$, ato.) easily bath be substituted, It is oldomas, for ceample, that a bolotohm rexistor falls well within the tolerance range of the 1700 -ohno 2(0-per-eent resistor used in the example above.

It would not, however, be usable if the tolerance were specified as $\overline{5}$ per eent.

color codes

Standardized color codes are used to mark values on smatl components sueh as comporition resistors and miea capbedors, and to identify leads from tramsformers, ete. The resistorecapacitor number color code is given in Table 20-1II.

Fixed Capacitors

The mothods of marking "positage-stamp" miva capanitors, molded paper capacitors, and tubatar reramic capacitors are shown in Fig. 20-8. Capacitors mato to Ameriean Wiar Stamfards or Joint Army-Niavy suecilications

 'lable - 0 - 1 V gives the eolor come for tubular aeramie capacitors.
are marked with the f-dot code shown at the top. D'ractioally all surplus raparitors are in this category. The 3-dot bila code is used for capacitors having a ratiog of 560 volts and $\pm 20 \%$ toldrance only; other ratings and tolerances are covered by the fi-dot lilit code.

Examples: A capacitor with a bi-dot code has the following markings: 'Top, row, left to right, black, sellow, violet ; botton row, right to left brown, silver, red, Ninee the first color in the top row is black (wignifieant fizure zero) this is the AWS code and the capmeitor has mica diclectric. The significant figures are 4 and 7 , the decemal multiplier 10 (brown, at right of second row), so the caparitance is $470 \mu \mu \mathrm{f}$. The tolerance is $\pm 10^{\circ}$, 'The final color, the chararteristie, deals with temperature coctiacients and methods of testing, and may be ignored.

A raparitor with a 3 -dot corde has the followine colors, left to right: brown. 'black, red. The significant figures are 1,0 (10) and the multiplier is 106), "Ihe eapaeitance is therefore $1000 \mu_{\mu \mu}$ f.

A capacitor with a ifdot codr has the following markings: Top row, heft to risht, hrown, baek, hatek: hottonn row, risht to loft, black, gold, blew, sinee the firet ecolor in the top row is neither black nor silver, this is the lill conde. The significant figures are 1. 0. 0 ($(1(\mathrm{~K})$) and the dectimat moltiplier is 1 (black). 'Whe rapacitanec is therefore $100 \mu \mu$. The gold dot shows that the toleraner is $\pm 5^{6} / 8$ and the blue dot indicates 6OO-volt rating.

Ceramic Capacitors

Conventional markings for remame eapacitors are shown in the lower drawing of Fig. 20-8. The colors have the meanings indicated in Table 20-1). In practiece dots may be used instead of the marrou hands indieated in Fig. 20-8.
lixample: A coramie capacitor has the following tharkings: Broad hand, violet: narrow bands or dots, areen, brown, back, green, The simnifieant fixures are $\bar{i}, 1$ (51) and the decimal maltiplior is 1 , so the caparitance is $51 \mu \mu f$. The temperature coedticiont is - $\mathbf{- 5 0}$ parts per million per degren ($\%$., as given by the hroad band, and the eaparitane toleranere is $\pm \therefore$ ' i.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identieal with the composition trpe are color-coded as shown in Fig. 20-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the

Cobler	TABLE 20-III Resistor-Capacitor Color Code			
	Significant Fipure	l Jpcinul Multimier	Tultrance 1.1	「ollatre Ratinu*
Black	0	1	-	-
Brown	1	10	I*	1(9)
Red	2	100	2*	2 H
Wrange	3	1000	;3*	301
Sellow	4	$10,0 \% 0$	4*	400
Gircen	5	101,(1)0	5*	-0\%
[314.	6	1, (\%M, (\%M)	1;*	dim
Violet	7	11, он)., \%\%	**	Tin)
Gray	8		8^{*}	Sims
White	91	1,000,000,000	3^{*}	$1 \% 00$
Gold	-	0.1	5	1000
Silver	-	(1). 11	11	$2 \mathrm{OM})$
No color	-	-	20	. 000
* inplies to eapacitors only				

Fixed composition resistors

Fís, 20.0-Color combing of fined composition resistors. The rolor rombe is riven in "Iahle 20-11I. 'I'he eotored arsas have the fallowing signifieanme:
A - Fïrst significant figure of resistance in ohms.
B-Serond simniticant figure.
(: - Verimal multiplier.
() - Rexi-tance tolerance in per cent. If no color is slewn. the worance is $\pm 20 \%$.
colors are phaced as shown in the drawing. When bands are used for color coding the body folor has no signifieance.
lixamples: A resistor of the trope shown in the
fower drawing of l-ig, 20-9 has the following
rolur hands: 1. red; B. red; C, orange; D, no
color. The significant figures are $2,2(2,2)$ and the
decimal multiglier is 1000 . The value of resist-
ance is therefore $2 \underline{2},(0)$) ohuns and the toleranee
is $\pm 20^{\prime}$.
A rosistor of the type shown in the upper draw-
ing has the following molars: body (1) bluc:
and (3), gras: dot. red; end (I), goled. The
simifieant figures are 6.8 (68) and the decina!
multiplier is $1(0)$, so the resistanne is 6800 ohme.
The toleraner is $\pm 5 \%$,

I.F. Transformers

Blue - plate lead.
herl - "B" + lead.
Green - grid (or diode) lead.
Bluck - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

TABLE 20-IV Color Code for Ceramic Capacitors					
			('apacilance	Tolerance	
Color	Significant Figure	Decimal Ihultiplier	More than $10 \mu \mu f$. (in' ${ }^{\prime}$)	liess than $10 \mu \mu f$. (in $\mu \mu f_{v}$)	$\begin{gathered} p, p, m_{2} / d e y \\ C . \end{gathered}$
Blark	0	I	± 20	2.0	0
Bruwn	1	10	± 1		-30
Red	2	tin)	± 2		-80
Orange	3	1000			-1.00
Yellow	4				- 200
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				- 730
(itay:	8	001			310
White	9	01	± 10	1.0	500

COPPER－WIRE TABLE

	$\begin{gathered} \text { Diam. } \\ i n \\ 1 / 1 l_{8} \end{gathered}$	$\begin{gathered} \text { Circular } \\ \boldsymbol{M i l} \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				T＇urns per Square Inch ${ }^{\text {a }}$			Feel per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 20^{\circ} \mathrm{C} . \end{gathered}$	C＇urrent Carrying （＇apacily ${ }^{3}$ at $700{ }^{\circ} \mathrm{C} . \mathrm{M}$. per Amp．	Diam． in $m m$ ．	Nearest British S．W．G． No．
			Enamel	S．S．C．${ }^{4}$	$\begin{gathered} \text { D.S.C } C^{5} \\ \text { or } \\ S . C^{\prime} . C^{\cdot 6} \end{gathered}$	D．C．C．${ }^{7}$	S．C．C．	Enamel S．C．C＇．	D．C．C．	Bare	D．C．C．				
1	284.3	83600	－	－	－	－	－	－	－		－				
2	23．7．6	6，63\％0	－	－	－	－	－	－	－	3.947 4.977	－	1264 1593	119.6 94.8	7.348 6.544	$\begin{aligned} & \mathbf{1} \\ & \mathbf{3} \end{aligned}$
3	23614		－	－	－	－	－	－	－	6.276	－	． 2009	7.5 .2	5.827	4
4	20.4	＋1740	－	－	－	－	－	－	－	7.914	－	2：33：3	59.6	－5．189	5
5	181.9 16.3	38300 -6620	－	二	－	二		－	－	9.980	－	． 3105	17.3	4.621	7
6 7	1812.0 14.8	26250 20820	－	－	－	－		－		12．88	－	． 4028	37.5	4.115	8
8	128.5	14.510	7.6	－	7.4	7.1		二		1.8 .87 20.01	14． 10	． 5080	－9， 7	3． 180	9
9	111.4	13090	8.6	－	8.2	7.8	－	－	－	25． 23	21.6	． 640.5	23．6	3． 2164	10
10	101.9	10380	9.6	－	9.3	8.9	87.5	84.8	80.0	31.8	21.6	1．818	18.7 14.8	3.906 2.888	11
11	90.74	88.34	10.7	－	10.3	9.8	110	103	97.5	40.12	38.8	1.018	14.8 11.8	2.888 2.30%	12
12	80.81	15330	12.0	－	11.5	10.9	1：31	131	121	501． 39	48.9		11.8 9.33	2.305 2.053	$\begin{aligned} & 13 \\ & 14 \end{aligned}$
13	71.96	5.178	13.3	－	12.8	12.0	170	16is	1：10）	（63．80	61.5	2.042	3.48 7.40	2.053 1.828	$\begin{aligned} & 14 \\ & 15 \end{aligned}$
14	64． 08	4107	15.0	－	14.3	13.8	211	198	183	80.44	77.3	2.375	5.87	1.828 1.628 1.4	$\begin{aligned} & 15 \\ & 16 \end{aligned}$
15	57.04	32.7	16.8	－	15.8	14.7	202	250	283	101.1	97.3	3.247	3.87	1.628 1.450 1.4	$\begin{aligned} & 16 \\ & 17 \end{aligned}$
16	50． 82	2583	18.9	18.9	17.9	16.4	321	3016	$\because 71$	127.9	119	4.094	3.169	1.450 1.291	17
17 18	45.26 40.30	2048 16.4 1248	21.2 23.6	21．2	19.9	18.1	397	37.2	3：3	161.3	150	5.103	2.43	1．150	18
19	40.30 35.89	1624 1288	23.6 26.4	21.3 26.4 26.4	22.0 24.4	19.8 21.8 2.8	193 59%	4．i4	3193 190	203.4	188	6．510	2.32	1.024	19
20	31.96	1022	29.4	20.4	27.0	21.8 23.8	878	50.3 72.3 78.	17.3 0.9	2，\％6．5	237	8．210	1.84	，911t	20
21	28.46	810.1	33．1	32.7	29.8	26.0	910	8	7.9	4078	298	10.35	1．46	． 8118	21
22	25．35	612.4	37.0	38.5	34.1	30.0	$11: 0$	10.0	910	407.8 -14.2	370 461	13.05 16.46	1.16	． 7230	22
23	22.57	－199\％	＋1．3	40.6	37.6	31.6	140%	1369	1080	618.4	88.	16.46 20.76	． 918	． 61.38	23 24
24	20.10	10．4．0	46.3	45.3	41.5	3．5． 6	17 m	150	1360	817.7	745	20.16 26.17	.728 .787	． 5738	24 25
25	17.90	320.4	31.7	50.4	4 ta （ 6	38.6	2060	19111	1510	10318	103	33.00	$\begin{array}{r}.677 \\ .458 \\ \hline\end{array}$	． 51048	25 26
26	15． 34	$2 \mathrm{FH.1}$	58.0	5is．${ }^{\text {a }}$	50.2	41.8	2.500	2300	17.51	1：300	1118	＋1．6i2	－	.8 .547 .4049	26 27
27	14.20	201.5	61.9	61.5	55.0	45.0	$30: 30$	2780	2020	16389	$14: 2$	82.48	． 288	． 3646	27 29
28	12.64	150.8	72.7	fix． 6	60.2	48.5	31570	33.0	2310	2067	17.6	686.17	228	． $3: 11$	29 30
29	11.26	126．7	81.6	74.8	65.4	51.8	4300	3：100	2761	$\because 6 \mathrm{te} 7$	2207	83.44	． 181	．28：9	
30	10.03	100.5	90.5	83.3	71.5	5 5 .5	53040	$4 \mathrm{ti60}$	3020	3287	2.34	10．）． 2	． 14	．2516	31 33
31 32	8.928	$7!3.70$	101	92.0		519.2	5980	5280	－	＋145	2768	1：32． 7	． 114	． 2268	34
32 33	7.950 7.080	63.21 50.13	113	101	83.6	62.6	70660	68.50	－	5227	3137	167.3	． 010	． 2019	36
34	6.305	39．85	1．473	110 120	90.3 97.0	fifi． 3 70.11	$81: 0$ 9160	7340 8310 8360	二		4697	≥ 11.0	． 072	． 176	37
35	5． 615	31.50	$1: 8$	132	10.4	73.5	109060	8310 8700	－	8310 10480	6168	296.0	．087	． 1601	38
36	5． 000	25.00	175	143	111	77.0	12：00	10700	－	10.480 $1: 3 \geqslant 10$	6737 787	335．0	． 045	． 1126	38－39
37	4.453	119.83	198	1：4	118	80.3	－－00	10.00	二	13210 16869	7876 9309	423.0 5.33 .4	$\begin{array}{r}.036 \\ 0.8 \\ \hline\end{array}$	． 1270	39－40
38	3.065	15．72	224	166	126	83.6	－	二	－	168969 ≥ 1010	18309 106696	533.4 882.6	.028 .022	.1131 .1007	$\begin{aligned} & 41 \\ & 42 \end{aligned}$
3！	3．531	12.47	$\underline{218}$	181	133	86.6	－	－	－	26.500	11907	818.1	． 018	． 08017	42 43
40	3.145	9.88	282	19.4	140	89.7	－	－	－	33.410	14222	1096	． 014	．0709	43 44

[^10]| PILOT－LAMP DATA | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Lamp } \\ \text { So. } \end{gathered}$ | Bend Color | bane
 （Miniature） | $\begin{aligned} & \text { Bull } \\ & \text { Tupe } \end{aligned}$ | RATING | |
| | | | | Volls | Amp． |
| 40 | Brown | sirew | T－31／2 | 6－8 | 0．1．5 |
| $40 A^{1}$ | Brown | B：ayonet | 「－31／4 | 6－8 | 0.15 |
| 41 | White | ה．rew | 7－31／1 | 2.5 | 0.5 |
| 42 | （ireen | sicrew | $7-3{ }^{1 / 4}$ | 3.2 | ＊＊ |
| 43 | White | 13：yonet | T－31／4 | 2.9 | 0.5 |
| 44 | 1314e | Mayonet | 19－31／4 | fi－8 | 0.25 |
| 45 | ＊ | Bayonet | 「 $5-31 / 4$ | 3.2 | ＊＊ |
| 462 | 131ue | Arrew | T－31／4 | 6.8 | 0.25 |
| 471 | Brown | Bayonet | T－31／4 | 6－9 | 0.15 |
| 48 | l＇ink | A．rew | T－31／4 | 2.0 | 0.06 |
| 49^{3} | Jink | bayonet | T－31／4 | 2.0 | 0.00 |
| 4 | White | Nirew | T－31／4 | 2.1 | 0.12 |
| $49 A^{3}$ | White | Bayonet | 「－31／4 | 2.1 | 0.12 |
| 50 | White | Nicrew | （ $3-31 / 2$ | 68 | 0.2 |
| 512 | White | Bayonet | （ $i-311 / 2$ | 68 | 0.2 |
| － | White | Sirew | （i－41／2 | f－8 | 0.4 |
| 55 | White | Bayonet | （i．41／2 | 6－8 | 0.4 |
| 2923 | White | s．rew | T－3114 | 2.9 | 0.17 |
| 292A ${ }^{5}$ | White | Bayonet | T－3！ | 2.9 | 0.17 |
| 1455 | Brown | s．rew | （i－i） | 18.0 | 0.25 |
| 1455A | Brown | 13ayonet | （i－i） | 18.0 | 0.25 |

[^11]
A．F．Transformers

Blue－plate（finish）lead of primary．
Red－＂ 13 ＂+ leal（this applies whether the primary is plain or center－tapped）．
Brown－plate（start）lead on center－tapped primaries．（Bhae may be used for this lead if polarity is not important．）
Green－grid（finish）load to secondary．
Black－grid return（this applies whet her the secondary is plain or（eenter－tapped）．
Fellow－grid（start）lead on conter－tapped secondaries．（Cireon may be used for this lead if polarity is not important．）

Note：These markings apply also to line－to－ grid and tube－to－ine transformers．

Loudspeaker Voice Coils

Green－finish．
Black－start．

Loudspeaker Field Coils

Bluch and lienl－start．
Yellor and Red－finish．
Slate and Red－lap）（if any）．

Power Transformers

1）I＇rimary Lacats．．．．．．．．．．．．．．．．．．Mlack
If tapped：
Common．．．．．．．．．．．．．．．．．．．Black
Tap．．．．．．Black anil bellow N゙triper Finish．．．．．．．Black and Red S゙triped
2）High－Voltage Plate Winding．．．．．．．Red Center－Tap．．．Red and Yellow striped
3）Rectifier Pilament Winding．．．．．．Vellow Center－Tap．Vellow and Blue striped
1）Filament Winding No． $1 . \ldots . .$. ．．．．Green Center－Tap）．Green and Yellow Striped
j）Filament Winding No，2．．．．．．．．．．Brown Center－Tap．Brom＂ und Yellow Striped
6）Filament Winding No．3．．．．．．．．Slate Center－Tap．．．slate and Bollow Striped

Measurements

It is practically impossible to operate an amateur station withont making measurements at one time or another. . Wthough quite croude measuremonts often will suffice, more refined ©duipment and methods will vidd more and better information. With adequate information at hand it beromes possible to adjust a piocer of equipment for optimum performance quickly and surely, and to design "ireuits along (stab)lished prineiples rather than depending on cut-and-try:

Moasuring and test equipment is valuable during eonstruction, for texting components brfore installation. It is practically indispensable in the initiad adjustment of radio gear, not only for establishing operating values but also for trateing possible arrors in wiring. It is likewise nowded for locating breakdowns and deferetive romponents in existing aguipmont.

The basid mosasumemen ate those of curment. voltage, and frecturney. Detarmination of the values of circuit clements -resistance, inductande and caparitaner - are almost equally im-
portant. The insperetion of wave form in audiofrequency circuits is highly useful. For these purposes there is available a wide assortment of instruments, both complate and in kit form: the batter, particularly, compare very favorahly in most with strictly hommobuilt instruments and are frequently more satisfactory both in appearance and ratibration. The home-buitt instruments described in this chapter are ones hatving features of particular usefulnces in amateur applirations, and not ordinarily available commerrially.

In using any instrument it should always be kept in mind that the acerorace depends not only on the inherent accuracy of the instrament itsolf (which, in the case of commerrially built units is usually within a fow per eront, and in any evont should be sperified by the manufacturer) but also the comditions mider which the measurement is made. Latge errots wan be introdued by latiling to rerognize the existenere of eonditions that alfert the instrument reatings. This is particularly true in rertain types of r.f. messurements, where stray effects are hard to eliminate.

Voltage, Current, and Resistance

D.C. MEASUREMENTS

A direct-rurvent instrument - voltmeter, anmmetrer, milliammeter or microammeter - is a devior using matgetice means to defleet a pointer over a cealibrated soable in proportion to the current flowing. In the D'Arsonval type a coil of wire. (1) which the pointer is attached, is pivoted betwen the poles of a permanent magnot, and when current flows through the coil it causes a magnetie fied that interames with hat of the magnet to catuse the coil to turn, The design of the instrument is usually such as to make the pointer deffection directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted soft-iron vane is pulled into at cobl of wire by the magnetic field set up when current flows through the coil. The farther the vane extends into the coil the greater the magnetic pull on it, for at given change in eurrent, so this tepe of instrument dees not have "lincar" deflection - that is, the seate is remmped at the low-rarrent and and spread out at the high-rument end.

The same baside instrument is used for measuring either curront or voltage. Good-chality instruments are made with fairly high sensitivity -
that is. they give full-scale pointer deflection with very small curronts - When intermed to be used as voltmetors. 'Thar semsitivity of instruments introuled for mestaring large curronts ram be fower, but a highly sensition instrument can be, and frequently is. used for measurement of currents much greater than neaded for full-seale Arflowlion.
Pamel-mounting inst ruments of the D'A Asonval type will give a sumaller defleetion when mounted on iron or stmel patmels than when monnted on nonmangetie materiab. Readings may be as muth as ten percent low. Sperially cabibrated meters should be obtained for mounting on such pancls.

- VOLTMETERS

Only a fraction of a volt is required for fullseate dellection of a semsition instrument (1 mil liampere or less full seale) so a high resistance is connered in sories with it, Fig. 21-1. For measuring voltage. Kinowing the current and the resistance, the voltage can casily be calculated from Ohm's Law. The moter is calibrated in terms of the voltage drop, aross the saries resistor or multiplier. Iractically any desired full-scale

Fig. 2l.1- Ilow voltmeter multipliers and milliam. meter shumts are connected to extend the range of a d.c.meter.
voltage ranger eat be obtained by proper choiece of multiplier resistancer and voltmoters froquently have several rauges selected by a switeh.

The sensitivity of the voltmeter is usually expresed in "ohms por volt." I sensitivity of 1000 ohms per volt means that the resistance of the voltmeter is 1000 times the full-scale voltage, and hy (ohms Law the current reguired for fullseale deflection is 1 milliampere. 1 sensitivity of 20.000 ohms per volt, another commonly used value, means that the instrument is a sob-microampere moter. The higher the resistance of the voltmeter the more arcurate the measurements

Fig. 21.2-Fifat of voltmeter roxistance on accuracy of roadings. It is asimmed that the doe resistance of the soreen cirruit is comstant at lot kilohms. 'Tha' actaal current and whtage without the whtmeter canmerted are 1 ma. and 100 wolts. The voltmeter readings will differ becanse the diflerent tepes of metera draw differcut amounts of current through the l.allhilohm resistor.
in high-resistane eircuite This is beenter the current flowing through the voltmeter will catuse at change in the voltage between the pronts aress which the meter is eomededed, eompared with the voltage with the meter :losent, as show in lig. 21-2.

Multipliers

The required multiplior resistane is found by dividing the desired full-sate wollage by the eorrent, in amperes, reguired for full-scahe de ile ertion of the meter alone. Strictly, the intermal resistanee of the meter should be subtracted from the value so found, but this is sehtom neressary (exrept perhaps for very low ranges) beratuse the meter resistane will he megligibly small compared with the multiplier resistance. An exception is when the instrument is abrealy provided with an internal multiplier, in which rase the multiplier resistanere required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistmee, R_{m} is the total resistane of the instrument itself, and n is the fartor by which the saralle is to be multiplied.
 hatving a calibrated range of 0-10 volts is to be extended to 1000 volts, h_{10} is $1000 \times 10=$ 10,000 olms, n is $1000 / 10=100$, and $K=$ $10.000(100-1)=990,000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Law:

$$
K=\frac{1000 E}{I}
$$

Where E is the desired full-scale voltage and I the full-scale reading of the instrument in milliamperes.

Accuracy

The aceuracy of a voltmeter depends on the calibration aceuracy of the instrument itself and the anemary of the multiplier resistors. Coodquality instruments are gencrally rated for an arcurbey within plas or minus 2 perernt. This is also the usual areuracey rating of the basie moter movement.

When extending the range of at voltmeter or converting a low-range milliammeter into at voltmeter the rated aceuracy of the instrument is retained only when the multiplier resistane is precise. Preceision wire-womed resistors :rre usad in the multipliers of high-quality instrmments, These are relatively expensive, hut the home constructor "an do quite well with 1^{\prime}; tolderamer romposition resistors. "Thes sheuld be "derated" When used for this purpose - that is, the athat ponere dissipated in the resistor should not bo more thath $1 / 4$ to $1 / 2$ the rated dissipation - and catre should low used to avoid owerheating the bedy of the resistor when soldering to the leads. These preautions will help prevent permanent change in the resistance of the unit.
()rdinary composition fresistors are gomeratly. furnished in $10^{\circ}{ }_{6}^{\prime}$ or 5 \% $\%$ tolerance ratings. If possible errors of this order cin be acrepted, resistors of this type maty be used as multipliers. They should be operated below the rated power dissipation figure, in the interests of long-time stahility.

MILLIAMMETERS AND AMMETERS

A microammetre or milliammeter can be used to measure rarrents lager than its full-seale reading by rommerting a resistance shunt arross its terminats ats shown in Fig. 21-1. 1'irt of the current flows through tho shant and part through the metor. Kinowing the moter resistane and the shment resistanee, the relative eurrents ran casily In calleulated.

The value of shunt resistanere reguired for a given full-scale curvent range is given by

$$
R=\frac{R_{m}}{n-1}
$$

were R is the shant. h_{n} is the intermal resistane of the meter, and n is the factor by which the
original meter seale is to be multiplied. The intopaal resiselane of a miltiammetere is preferably
 if this infurmation is mot awalathle it can be determined by the method shownin Fig. 21-3. Do mot aftempt to wise an chmmeter to measure the internal resistane of a milliammeter ; the instrument maty be runed bụ doing so.

Homemade milliammeter shunts can be constructed from athy of the various special kinds of resistance wire, or from ordinary eopper wire if no resistance wire is ataibable. The Copper Wire Table in this Itarulbook gives the resistance per 1000 fere for various sizes of copper wire. After computing the resistance reguired. dotermine the smallest wire size that will earry the full-scald rument (20n0 cireular mils per ampere is a satisfactory figure for this purpose).

Fip. 2/-3-1)atermining the internal resistance of a milliammeter or miorommetor. R_{1} is an aljostable resistor having a masimum value ahont infore that meresary for limiting the current to full scall- with liz disconncoted: adjust it for evactly full-arallo reating. Then commed h_{2} and adjust it for exambly half-aciale reading. 'The resistance of h_{2} is then equal to the intternal resistanee of the metor, and the resistor may be remosed from the eirenit and measured separalely, Internal resiatances sary from a faw ohms to soreral hamered olms. Invending on the sensitisity of the instrument.

Mexsure off enough wire to provide the required resistance. Acrurate can be rhoeked by cansing chough current to flow through the motor to make it read full scalle without the shumt; conneeting the shunt should then give the correct reading on the new range.

Current Measurement with a Voltmeter

A current-measuring instrument should hatve very low resistance rompared with the resistance of the eireuit lowing measured: otherwise, inserting the instrument will rause the corvent to differ from its value with the instrument out of the cirruit. (This may not matter if the instrument is loft permanently in the cerruit.) How(ever, the resistance of many (eirenits in radio equipment is quite high and the erereuit operation is affereded little, if at all, by adding as much as a fow hundred ohms in sories. In such cases the voltmoter mothod of measuring current, shown in Fig. 21-4. is frequently converient. A voltmeter -or low-range milliammeter provided with a multiplier and operating as at voltmeter - having a full-seale voltage range of a few volts, is used to meature the voltage drop aeross a comparat-

Fig. 21-4- Voltmeter metbod of measuring current. This method permits using relatisely large values of resistance in lhe shomt, standard salues of fixed resistors freguently heing usathe. If the moltiplier resistanee is 20 (or more) times the shant resistance, the error in assuming that all the current flows through the shume will not be of consequence in most practical applieations.
tively high resistance acting as a shunt. The formula previously given is used for finding the proper value of shunt resistance for a given scalr-multiplying factor, h_{m} in this case being the multiplier resistance.

D. C. Power

Power in direct-cument dircuits is determined by moasuring the curront and voltage. When these are known, the power is equal to the voltage in volts multiplied be the current in amperes. If the current is measured with a milliammeter, the reading must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of dac. resistance is based on measuring the current through the resistance When a known voltage is applied, then using Ohm's Law, A simple circuit is shown in Fig. 21-5.

Fig. 2I-5 - Veasuring resistance with a voltmeter and milliammeter. If the apposimate rexistance is hnown the soltage can le selected to ratuse the milliammetar, MA, to read about half stale. If Hor, adiditional rosistance shomid the lirst enmeeted in serves with K to limit the current lo a safe salue for the milliammetar. The set-up then measures the total resistance, and the valace of K can be foumd by subtracting the known additionad resistance from the total,

The internal resistance of the ammeter or milliammoter, M.A, should be low compared with the resistance, R, being measured, since tho voltage rad he the voltmoter, V, is the voltage arross . $/ A$ and K in series. The instruments and the d.e. voltage should be chosen so that the readings are in the upper half of the seate. if possible, since the percentage arror is less in this region.

An ohmmeter is an instrument consisting
fundammataly of a coltmeter (or milhammetror. depersting on the circuit wed) and a smatl dry battery as a source of dos, voltages calibrated so the value of ath unknown resistane eath be read directly from the scale. Typical ohmmeter ritruits ate shown in Fig . $2 \mathrm{t}-\mathrm{t}$. In the simplest toper shown in Fig. 21-tid, the moter :und hattery are connered in series with the unknown resistance. If a given defledion is ohtained with terminals A- B shorted, insorting the resistaner to be mansured will canse the motar reading to decrease. When the resistaner of the voltmeter is known, the following formula (ath be applied:

$$
R=\frac{e R_{m}}{E}-R_{\mathrm{n}}^{2}
$$

where R is the resistame under monaremont, e is the voltatge applied (A-B shorted), f is the voltmeter reading with k conneeted. and
$R_{\text {tu }}$ is the resistance of the voltmoter.
The rimenit of Fig. 21-ti, is not suited to meaturing bow valume of resistaner (brlow a hundred ohms or sol with it high-resistance vollmoter. For sudh measurements the rivenit of tig. 21 -ibl con be used. The millitmmeter should be a 0 (1 mat. instrument, and h_{1} shombd be equal to the hattery voltage. e. multipliond by bum. The unknown mesistathe is

$$
R=\frac{I_{2} R_{m}}{I_{1}-I_{2}}
$$

where R is the unknown.
$R_{\text {m }}$ is the internat resistance of the milli:mmelor
I_{1} is the reurent in ma. With h discontnoeted from terminals. $1-3$, and
I_{2} is the current in mat. with $/ i$ rommerted.
The formulat is approximate, but the error will be negligible if r is at loast is volts so that h is at leati : $3(4)$ oluns.

A third cirenit for measuring resistane is shown in lig. 21-6if\%. In this case at high-rexishathe voltmoter is used to masasure the voltage (drop) acress a referemor resistor, R_{2}, when the unknown resistor is comnereded so that current flows through it. lion and the hattery in serios. By suitable choice of R (low values for low resistance, high values for high-wsistane unknowns) this cireuit will give ergally good results on all reestanee values in the range from one chm to several megohms, provided that the volmeter resistance, $h_{\text {m }}$, is always very high (o) times or more) eompared with the resistance of he. A $20,(x)$ (o) hams-per-volt instrument (50)-дamp. movemont) is generally usod. Lssuming that the current through the voltmeter is negligible compared with the current through he, the formula for the unknown is

$$
R=\frac{e R_{2}}{E^{2}}-R_{2}
$$

(A)

(B)

(C)

Fig. 21-6 - Ohmmeter cirenits. Values are disenssed in for text.
where R and R_{2} are ats shown in Fig. 21-6C, c is the voltmeter reoding with $1-13$ shorted and
f is the voltmoter reading with R connertord.

The "zerou :udjuster." R_{1}, is used to sit the voltmoter reading exartly to full seale when the moter is catibuated in ohms. i 10,0 ontorm variable resistor is suitable with a $20,000(1)$ whms-per-volt meter. The hattery voltage is usually : volts for ranges up to iou,0010 whms or so athe 6 volts for higher ranges.

A. C. Measurements

Sereral types of instruments are available for measurement of low-frequency altemating currents and voltages. The better-grade pandel instraments for power-line frequenems are of the dynamometer type. This rompares with the bidrsonval movemont used for d.e. measurements, but instead of a permanent magnet the dynamometer movement hats a field roil which, thgether with the moving asil, is eonnereted to the ate sonver Thus the moving eoil is urged to turn in the same divertion on both hatlees of the a.s. cerche.

Moving-wate tipe instruments, despribed earlier, also are used for a.ce measurements. This is pessible berause the pull exerted on the rane is in the same direretion regardless of the direetion of corrent through the eoil. The calibration of a moving-vane instrument on ate. will, in general, differ from its d.r. calibration.

For measurements in the andio-frequenery range, and in applications where high impedance is required, the rectifier-type a.c. instrument is
generally used. 'This is essentially a sensitive d.e. meter, of the type previously deseribed, provided with a rectifier for converting the a.e. to d.e. A typical rectificr-type voltmeter circhit is shown in Fig. 2l-7. The half-wave meter rectifier, (${ }^{\prime} R_{1}$, is frecuently of the eopper-oside type, but erystal diodes can be used. Such a reetifier is mot "perfect" - that is, the application of a voltage of reversed polarity will result in a small current fow - and so C che is used for eliminating the affect of reverse curent in the metor cirenit. It dows this by providing a low-resistance path arross $C h_{1}$ and the metor during the a.e. alternations whon ("his is conducting.

Fif. 21-7-Meritier-tyine ase voltmeter circuit, with "lionarizing" resixtor and diode for hatek-current correction.

Resistor h_{2} shanted across $1 / 1$ is used for improving the linearity of the rirenit. The offeretive resistaner of the reetifier dererases with inmeaning current, leading to a callibration sate with nonumiform divisions. This is overeome to a ronsiderable extent bye "hlerding" several times as much courront through R_{2} as thows through $.1 / 1$ so the rectifice is alwats corrying a fairly large current.

Beratuse of these expedients and the fart that with half-wave reetification the average courent is only (0.15 times the r.m.s. vathe of a sine wate producing it, the impedance of a rectifier-type voltmoter is rather low eompared with the resistanee of a d.e. voltmeter using the same meter. Vatues of 1000 ohms per volt are representative, when the d.e. instrument is a $0-200$ mieroammeter.

The d.e. instrment responds to the average value of the reetified alternating curent. This average current will vary with the shate of the atr. Wave applied to the rectifier, and so the meter reading will not be the same for different Wave forms having the same maximum values or
the same r.m.s. values. Hence a "wave-form error" is alwates present unless the ate. wave is vary reosely simusoidal. The atual ralibration of the instrument usually is in terms of the r.m.s. value of a sime wave.

Modern rectifier-type ace voltmeters are capabe of good aceuracy, within the wavo-form limitations mentioned above, throughout the andio-fregueney range.

COMBINATION INSTRUMENTS THE V.O.M.

Since the same basic instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Various models of the "v.o.m." (volt-ohm-milliammetor) arre availahle eommerecially, both eompletely assembled and in kit form. The less expensive ones use a 0-1 milliammeter as the basie instrument, providing voltmeter ranges at 1000 ohms per volt. The more chaborate metors of this type use a microammeter - (0-50 mirroampers, frequently with voltmeter resistaneres of 20,000 ohms per volt. With the more sensitive instruments it is possible to make resistanere measurements in the mogohms range. A.c. voltmeter seakes also are frequently included.

The vor.m., exen a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it can to used for chereking contimuty in circuits, for finding defeetive components before installation - shorted rapacitors, open or otherwise defective resistors, ete. - shorts or opens in wiring, and many other cheeks that, if applied cluring the construction of a piece of equipment, save much time and trouble. It is equally useful for servicing. when a component fatils during operation.

THE VACUUM-TUBE VOLTMETER

The usofuluess of the vacuum-tube voltmeter (v.t.v.m.) is based on the ficet that a varoum tube can amplify without taking power from the source of voltage appliod to its grid. It is therefore possible to have a voltmeter of extremely high resist-
$\mathrm{C}_{1}-0.002-$ to $0.00 .5-\mu \mathrm{f}$. mica.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$, 1000 to 2000 volts, paper or mica.
R_{1} - 1 megolam, $1 / 2$ watt.
 sired voltaze ranges, totaling 10 memolams.
$\mathrm{H}_{6}, \mathrm{R}_{7}-\boldsymbol{2}$ to 3 menehms.
R_{8} - 10,000 orohn varialile.

 tiometer.

 A 50, (2)0., oham siderotybe wircowound can be mised.
R_{5} - 10 megothons.
$\mathrm{R}_{16}-3$ mereatims.

Al - Viacroammetor, ranke from

V_{2} - Dual diode, 6116 or 6.1 LJ

Fig. 21.8-Vacum-tube voltueter circuit.
ance, and thas take negligible eurrent from the circuit under measurement, without using a d.e. instrument of exemptional semsitivity.

The v.t.v.m. has the disadvantage that it requires a soure of power for its operation, ats compared with a regular d.e. instrument. Also, it is susereptible to r.f. pick-up when working around ath operating tramsmitter, unless well shiodded and filtered. The fiuct that one of its terminals is grounded is also disudvantageous in some (asese, since a.r. readings in particular may be inatererate if an attempt is made to measure a circuit having hoth sides "hot" with respect to ground. Nevertheless, the high resistance of the v.t.v.m. more than compensates for these disudvantages. especially since in the majority of measurements they do not apply.

While there arr several possible rircuits, the one commonly used is shown in Fig. 21-8. A dual triode, V_{1}, is arranged so that, with no voltage applied to the left-hamel grid, equal currents flow through both sections. Linder this condition the two cathotes are at the same potential and no current flows through d/ The currents can le addjusted to balance by potentiometer R_{11}, which takes care of variations in the tube sections and in the values of rathoule resistors R_{9} and R_{10}. When a d.e. voltage is applied to the left-hamd grid the current through that tube sertion changes but the current through the other seection remains unchanged, so the halanee is upset and the meter indicates. The sensitivity of the meter fis regulated by R, which serves to idjust the ealibration. h_{12}, eommon to the athodes of both tule seretions, is a foed-hack resistor that stahilizes the system and makes the readings linear. R_{6} and (at form a filter for any are component that may be present, and h_{6} is balaned by R_{7} connered to the grid of the sereond tube seetion.

Tos stay well within the limear range of operation the sacile is limited to 3 volts or less in the average commereiad inst rument, Higher ranges are obtained by means of the voltage divider formed by R_{1} to R_{5}. inclusive. As many ranges as desired can l_{x} used. Common practice is to use 1 megoltm at R_{1}. and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resistanere of 11 mogohms. comstant for all voltage ramges. R_{1} should be at the probe end of the d.e. lead to minimize apabeitive lowding offerts.

Values to be used in the aireuit depend considerably on the supply voltage and the sensitivity of the meter, . $/$. R_{12}, and $R_{13}-R_{14}$, slould be adjusted so that the voltmeter circuit eath be brought to balather. and to give full-seale deflection on $1 /$ with abreut is volts applied to the grid. The meter combertions am be reversed to read voltages that are negative with respect to ground.

A.C. Voltage

For meatsuring are voltages the reretifer cirent shown at the lower left of Fig. 21-8 is used. One section of the doulde diote. I', is a half-wave
 device, aljustable by R_{13}, to eliminate contart
potent ial effects that would cause a residual d.e. voltage to appear at the v.t.v.m. grid.
The reetifier output woltage is proportional to the peak amplitude of the ate. wase, rather than to the averuge or r.m.s. values. Sine the positive and negative peaks of a complex wave may not have cqual amplituders, a different roading may br obtimed on such wave forms when the voltmeter probe terminals are reversed. This "turnover" effert is inherent in any peak-indicating dovier, but is not neressarily a disadrantage. The faret that the readings are not the same when the voltmeter comertions are reversed is an indication that the wave form under measurement is unsymmetrical. In some measurements. as in audio amplifiers, a poak moasurement is more usoful than an r.m.s. or average-value measurement because amplifier capabilities are based on the peak amplitudes that must br. handled.

The scate calibration usually is based on the r.m.s. value of a sine wave, Rebeing set so that the same seale can be used wither for a.ce or d.e. The r.m.s. reading can easily be converted to a prak rading by multiplying by 1.41 .

INSTRUMENT CALIBRATION

When extending the range of a d.e. instrument, rablibation usually is neressary -although resistors for voltmeter multiphers often cath be purwhased to close-mough toloraneres so that the now range will be accumately known. However, in calibratimg an instrument such ats a v.t.v.m. a kiown voltage must be available to provide a starting point. Fresh dry cells have an open-dircuit terminal voltage of approximately 1.6 volts, and one or more of them may be connerted in series to provide several calibration points on the low range. (ias regulator tubes in a power supply.
 sourer of voltage whose value is known within a few per cent, Once a few surh points are determined the voltmeter ranges may be extended readily by ind ding multipliors or a voltage divider as appropriate.

Shunts for a milliammeter may be idjusted by first using the moter alone in series with a soure of voltage ind a resistor selected to limit the current to full sale. For example, a $10-1$ milliammeder may be comected in series with a dry cell and a 2000 -ohm variable resistor. the latter being adjustod to allow exatly 1 milliampere to flow. Then the shunt is added arross the meter and its: resistane adjusted to reduce the moter reading by exactly the seale factor, n. If n is 5 , the shunt would be adjusted to make the moter read 0.2 millimpere, so the full-scale current will be 5 ma. Cisimg the new scale. the second shunt is added to give the next range, the same procedure being followed. This can be earried on for sureral ramges, but it is advisable to check the meter on the highest ramgagainst a separate meter used as at stemdard, since the erors in this proeres temd to be cumulative.

Measurement of Frequency and Wave Length

ABSORPTION FREQUENCY METERS

The simplest possible frequener-measaring devier is a resonant cirenit, tumatile over the desired frequenerg range and having its tuning dial calibated in terms of frequener: It operates bextrating a small amonat of energy from the arillating cirenit to to measured, the frequency being determined be the tuning setting at which the energy absorption is maximum (Fig. 21-9).
Surh an inst rument is mot capable of very high

Fig. 21-9 - Nomphtion froquelles meter and a expiral applieation. 'The sueter comists simply of a calibrated resomant rirenit $1 . C$. When eoupled to ant amplilier or oncillater the tuler plate courrent will rime wher the frequenry metor is tumed to reanotare, I llashlisht lamb may be ennmeded in sorios at Itorive a visual indication, hot it derrase the aderetivity of the instrment and makesit neressary tonse rather elose coupling to the circuit heing measural.
aterurace, beretuse the Q of the tuned circuit (ammot he high enomgh to avoid uncertatinty as to the exact diad setting and beeause any two coupled dircuits interact to some extent and fhange rach others' runing. Xevertheless, the absorption wavemeter or frequelley meter is at highly use finl instrument. It is compatet, inexpensive, and requires no power supply. There is no ambiguity in its indieations, as is frequently. the case with the heterodye-tye instruments described later.

When an abowpion moder is used for checking a trinsmitter, the phate current of the tube connected to the rirevit being checked can provide the necessary resonance indieation. When the fregueney meter is loosely conpled to the tank circuit the plate current will give ab slight upward flicker as the meter is tuned through resoname. The acreurace is greatest when the tooserst passible compling is used.

A receiver oseillator may be checked by tuning in at stady signal and heterodying it to give a beat mote ats in ordinary e.w. rereption. When the frequency meter is coupled to the oscillator coil and tunced through resonance the beat mote will change. Again, the coupling should be made lowe enough so that a justperreptible change in beat note is ohserved.

In approximate calibnation for the wave meter. adequate for most purposes, maty be oftained be comparison with a ealibrated receiver. The nsual receiver dial calibration is
sufficiontly arcomate. A simpho wailator circhit. rovering the same ratuge as the frequene weter will be useful in ababration. set the reeriver to a given frequency, tume the oweillator to zero beat at the same frequencer, and adjust the frequency meter to resonanee with the aseillator as deseribed above. 'This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequencer m, dial settings on the frequentry meter.

INDICATING WAVEMETERS

The plain absorption meter reguires fairly rlose conpling to the oseillating cirenit in order
 give a visual indieation. Howerer, ly adding at reatifier and de. mieroummeter or milliammeter, the sensitivity of the instrument ceth be inereatsed to the point where very loose compling will sutfiee lor a good reading. A typicab rimuit for this purpose is given in Fig. 21-10, and Figs. 21-11 and 21-12 show how such an instrment con be construeted.

The rectifier, at arestal diode, is coupled to the tomed cirenit L_{1} ('1 through at coupling coil, L_{2}, having a relatively small number of turns. The stap-down transformer action from L_{1} to L_{2} provides for eflicinat energy transfor from the highimpedane tuned cirenit to the low-impedance rectifior circut. The number of tarns on ha cath to adjusted for maximum reading on the d.c.

Fís. 21-10-Circuit diagram of indicating wasemeter.
 C: 0.00$)_{-\mu f}$. disk ceramic.
C:I R_{1} - General purpose xermanium diode (N 3.4, ete.) J_{1} - Phono jach.
J_{2} - Closed-circuit phone jack.
M_{1} - I.c. microammeter or 0.I milliammeter.

	Coil Hata		Coil
Freq. Renge	Turns, L_{1}	Turns, L_{2}	Lengh, Th.
3-6 Mc.	60	5	close-woumd
6-12 Mr.	29	5	11/4
12-5 V18.	13	2	1
23.31 Mc	51/4	1	1/2
. 0 (104) Me.	$11 / 2$	1/2	$1 / 4$
	Sce hiclow		

All excent on-2.5-Me, coil wound with No. 24 enam. wire on l-inch diameter 4-prong forms (Nilleol 1.3104). L_{2} internomind at lothom of L_{A}, using smallar wire where necessars. The (0)-22. Me coil consiots of a hatirpin lomp of Var $^{\text {. It tinned wire just rearing the bottom of }}$ the coil form, which is cut to 5 ofinelt length. L. 2 is a similar hairpin of No. 16 wire bent over so it almost tenalaris Lit.

Fig. :'l-11- 'The indiealines wabro melor, plug-in evilm. and pich-ap cublow. The meter is built in a bakelite meter eato ma asurims $01 \times 3^{3} \times 2$ imfles. The 3-ine h dial is rat from at pince of allommum and hat a paper hame. calibrated soale wemented om, Jairline molsators are dear plastie monmbed on small melal pillars i e.ineh dice
 one turn of Va. It. sparthetti covered. suldered to the ends of the catbers. 'The
 Mr: the shorter (13 inches) can be nared for the full frequaney ratume. Benth are 16C:-.is/l
milliammetor: when doing this, use a fixed value of conting beotwern L_{1} and the sonme of anerys. 'The proper number of turus for this purpesse will depend on the sensitivity of $1 / \frac{1}{}$. The eroil dimensions given in lig. 1 the for a 0 -j00 mierommmoter but will also be satisfintory for at (0) milliammetor. Las that optimum roupling is
 lowers the (f) of the temed airenit $L_{1} f_{1}$ ind makes it loss soldetive. The roupling is redured by reducing the mumber of turns on L as.

The wavemeter satn be used with a pirk-up) loop and ramial line comereded to $/$. Bincory pieked up he the loon is fed through the cathle to L_{2} and ilumex compled io $L_{1} f_{1}$. This is a convenient method of rompling the wive metore
 to serome induetive coupling to i_{1}. The pick-up calde should wot be self-resonant, as a trams-mission-line sertion, at any fregremer within the ramge in which it is to ine used, so two cable lengthe are provided. The longer one is useful ap to :30 Me, abd the shertor at all frequenemes up) to the maximme useflat ferelueney of the wave metrer (225 Mr.)

By plugging a headsat into the output juck (phones having 2000 ohms or greater resistance
should be used for greatest sensitivity) the wave meter fan be used as a monitor for modulated transmissions.

The batkelite ease is at desirable feature sine the instrument cath be brought close to cirenits bring eheeked without the dimgor of shortcircuiting any of thoir wiring. This ronld corour with a metal-cased unit.

In addition to the uses mentioned carlior, a meter of this type maty be used for final atlontment of neutratization in r.f. amplifiers. For this purpose the pirk-uj, loop man be lowsely eoupled to the phate tiank eoil. In this case L_{1} maty be removed from its sorket atm the meter used as :th momed reetifior. This medues the somsitivity and insures that the r.l. pioknp is only from the tank coil to which the loop is closely eompled.

LECHER WIRES

At very-high and ultrahigh frequencios it is pussible to determine freopueney by actually mensuring the length of the waves genemated. The measurement is mate by observing stambing waves on at twowire paralled fransmis. sion line or Lecher wires, such a line shows pronounced resonance effocts, and it is pos-

Fig, 2/-12 - lnsinle the wave aneter. Ginly the milliammeter and plonne jack are monmted on the remosalole panel. 'The tming rapacitor is memmitiol bertically an an alumimant bracket fatemed to the heotom of the cave. The crystal aliode i.s mounted leetwern a coilsochet prons and a tir peint. 'Tliter phense jutk fors we piok-ub sable-s is at the lesser risht.

Fig.21-13 - One rond of a typical lecher-wire eystems. The wire is No. Ioharesolid-ropprerantema wire (hard-lrawn). The turnbueklow are held in place by a ${ }^{3}$ io $\times \because$-ind bolt throngli the anchor hock. "The ather end of the lime, whinh is rommered to the pick-up hoops shoulal be insulated.

sible to determine quite accuratoly the current loops (points of maximum current). The physical dist:me between two conserutive rarrent foopes is equal to one-half wate length. Thus the watve length ean be read directly in meters (30. 3 , inehes $=1$ meter: 0.3903 inch $=1 \mathrm{~cm}$.), or in erntimeters for the very short wate longths.

The Leedor-wire line should be at least a wave length long - that is, \bar{z} feet or more on IIt Me. - and should be cotirely ar-insulated exeept where it is supperted at the conds. It may be made of eopper tuthing of of wires stretched tightls. The spacing hetweroll wires should not exceed about? per cent of the shortast wibe length to be measured. The pasitions of the current loops are found bex moans of : "shorting har." whieh is simply it metal strip or knife edge which ram the slid atong the line to vary its effertive longth.

Making Measurements

For measuring the freguency of at tranmitter, a eonvenient and fairly sensitive indicator can be made bex whdering the conds of a one-turn loop of wire of about the same diametor as the transmitter tank coil, to a low-current flashlight bulb. The lemp, should te compled to the tank ewil to give a monderately bright glow. A (ompling loop) should be commerted to the ends of the Lecher wires and brought near the tank eoil, as shown in Jig. 21-1 . Then the shorting bar should be slid along the wires outward from the tramsmitter until the lamp, gives a sharp dip in hrightness. This point should le darked and the shorting bar moved out matil a second dip, is obtatued. The distance betwern the two points will beepual to half the wave length. If the measuremest is made in inches, the frequent? will be

$$
F_{\mathrm{Mc}_{\mathrm{c}}}=\frac{590.5}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}}=\frac{150}{\text { lemplh } \left.^{(m e t e r s}\right)}
$$

In charking at sumpernemive reotiver, the Laether wires may be similaty eoupled to the receiver equil. hat this cotse the resonance indieation may be whtained bey setting the reeciver just to the point where the hise is ob taned, then as the har is slid along the wires
a spot will be found where the reveiver goes out of ascillation. The distance between two such spots is equal to a half wave length.
'The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is

 mittor tank rait, lypat -tamting-wave di-trihution is shawn los the dathed lise. The diatame S betwern the po-ition- wh the Aherting lare at the corrent longe equals obe-half wave leneth.
desirable, sinee it not only helps make grood (rontan but also definitele locates the point of contaret.

Readings are most awemate when the boosest presihle coupling is used lootwen the line and the tank roil. ('areful mosisurement of the distance betwern two ement hops also is exsential.

- HETERODYNE METHODS

Hetoromyene mothods of frequeney metisuremont make use of a stable oscillator generating either a known frequence or one that is variable over a known range. Measurement consists in companing the unknown frequency with the known frequency of the uscillator. using :an ordinory receriver for detecting both. This method is more acrumate than others, berame freduchery differemes of hess that a cuale com be observed by atural (heat-not(1) mothorls, and the oscillator can be calibated to pratically any degrex of precision by comparisun with standard frequencios transmitted from WIVT and WVVII.

Coile must be used in heterodyne frequency measurement beramer in most cases hamonics are used and the moxsured frequency can be in arror be a large factor if the wrong harmonic is pieked, Dlso, a superthetreodye receiver will give mant shmions responsw it the presence of a strong signal and hammonies, so these must be rerognized and ignored in making measurements. In wemeral, hoterodine methods are most usdul in measuring fregueney to a high degree of act
curacy after the frequency is known approximately from other methods. The absorption Wave meter is useful for making the first approximation and thus eliminating the possible gross errors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elements needed for frequene measurement. Its dial readings must be calibrated in terms of frequency, of course, before measurements can be made. Manufactured receivers are generally so calibrated: the aceuracy of the calibration will vary with the recoiver model, but if the receiver is woll made and has good inherent stability, a handspread dial catibration can be relied upen to within perhaps 0.2 per cent. For most aceurate measurement. maximum response in the receiver should be determined by means of a carrier-coperated tuning indicator (such as an s-meter), the reeciver beat oscillator heing turned off. If the receiver has a crystal filter, it should the set in a fairly "sharp", penition to increase the areuraces.

When checking the freculuene of your own tr:usmitter, the reeceiving antennis should be disconnected so the signal will not overload or "bloek" the reeciver. Also, the r.f. gain should be reduced as a further preaution against overlowding. If the receiver still bloeks without an antemat the frequency may be cheeked by turning off the transmitter's power amplifier and tuning in the oscilhator alone. It is difficult to avoid blocking under almost any conditions with a regenerative recoiver, and so this type is not very suitahle for cherking the frequeney of one's own transmitter.

THE HFTERODYNE FREQUENCY METER

The heterodyne frequency meter is an oscillator with a precise frequence calibration. The oscillator must be so designed and constructed that it can be aecurately calibrated and will retain its calibration over long periods of time.

The aseillator used in the frepuency meter must be very stable. Nechanical considerations are most important in its construction. No matter how good the instrument may be olectrically, its accuracy camot be depended upon if the mechanieal construction is Himsy. Frequency stability can be improved by avoiding the use of phenolic and thermoplastie insulating materiabs (hakelite, polystyrene, ete.) in the oscillator cireuit, employing only high-grade ceramies instead. Plug-in coils ordinarily are not acceptable; instead. a solidy-built and firmly-mounted tuned circuit should be permanently: instatled. The oscillator pand and chassis whould be as rigid ats possible,

For amatelur purposes the most useful type of meter is one covering the amateur bats onls, The v.f.o.s deseribed in the chapter on transmitters are trpical of the cireuits and construction since they are designed with the same con-
siderations in mind - i.e., to be highly stable both electrically and mechanically. Hence a good v.f.o., if areurately calibrated in frequencer, is also a good heterolyne frecuency meter.

Calibration must be done by comparing the oscillator frequence at various points in its range with signals of known frequeney. The best method is to calibrate from a secondary frequener standard, described in the next section, at intervals of, say, 100 kc . and fill in the calibration curve by interpolation. The oscillator usually works over the approximate range $1750-2000$ ke., harmonies being used for the higher amateur bands. If the calibration is done on the highest range-28-32 Me. - at intervals of 100 kc . it is equivalent to having calibration points at intervals of $100 / 16$ $=6.25 \mathrm{ke}$. on the fundamental-frequency range.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highlystable oscillator generating a fixed frembency. usually 100 ke . It is nearly always arystat-ontrolled, and inexpensive loo-ke, arytals are available for the purposes. Since the harmonies are multiples of 100 ke . throughout the speetrum. some of them can be compared direrely with the standard frequencies transmitted by $W W T$.

Fik. 21-15 - Cirsuit for arystal-controlled frequency
 are suitable.
Ci - itر- $\mu \mu$ f. variable.
$\mathrm{C}_{2}-150-\mu \mu \mathrm{f}$. mica.
C $3-0,0022-\mu$ f. mica.
C.
(5 - $2 \boldsymbol{2}-\mu \mu \mathrm{f}$, mica.
$R_{1}-0,4 \frac{7}{4}$ megohnn, $1 / 2$ watt.
$R_{2}-1000$ ohms, $1 / 2$ watt.
R_{3} - 0.1 megohm, $1 / 2$ watt.
$\mathrm{R}_{4}-0.15$ megohn, $1 / 2$ watt.
The edges of most amateur bands also are exact multiples of 100 ke , so it becomes possible to determine the band edges very accurately. This is an important consideration in amateur frequency measurement, since the only regulatory requirement is that an amateur transmission be inside the assigned hand, not on a sperific frequener:

Intervals of 100 kr . are sometimes too small for accurate identification of a given harmonie. so sperial crystals that operate at hoth 1000 and 100 ke . are available. Intervals of 1000 ke . are sufficiently far apart to atoid confusion, sines the average receiver calibation is good enough to provide prsitive identification. Once the $1000-\mathrm{ke}$. hammonies are spotted, it is easy to

MEASUREMENTS

Fig. 21.10 - A low-ke frequeney standard and harmonic amplifier. The crystal in this unit is in the metal-tule type envelope. Power and r.f. output connections are taken through the rear ehassis lip.

count off the 100 -kc. intervals from the known $1000-\mathrm{ke}$. points.

Simple 100.kc. Crystal Standard

Manufacturers of $100-\mathrm{kc}$. crystals usually supply cireuit information for their partieular crystals. The circuit given in Fig. 21-15 is representative, and will gencrate usable harmonies up to 30 Me . or so. The variable capacitor, (1 , provides a means for adjusting the frequency to exactly 100 ke . Harmonic output is taken from the circuit through a small eapabitor, C5. There are no particular constructional points to be observed in building such a unit. Power for the tube heater and plate may be taken from the supply in the recoiver with which the unit is to be used. The plate voltage is not critical, but it is recommended that it be taken from a VR-150 regulator if the receiver is equipped with one.

Sufficient signal strength usually will be secured if a wire is run between the output terminal comected to C_{5} and the antemna past on the recoiver. It the lower frequencies a metallic connection may not be necessary.

Frequency Standard with Harmonic Amplifier

The frequency standard shown in Figs. 21-16 through 21-18 includes a tunod amplifier to increase the strength of the higher hatrmonies, and ineorporatesa erystal-diode satwooth generator to make the harmonie strength reasonably uniform throughout the usible frequency spectrum of the instrument. It will produce useful calibration signals at 100 -ke. intervals up to about 60 Mc. The strength of a particular harmonic may be peaked up by selecting the proper amplifier tuning range with S_{2} and adjusting C_{4} for maximum output. A gain control, R_{2}, is included for

Fig. 21-17 - (iircuit of the 100-ke. cryatal calibrator, Itnless otherwise indicated, capacitances are in $\mu \mathrm{f}$, resistanes are in ohms, revistors are $\frac{1 / 2}{}$ watt.
 (1)).
(4)-I01- $\mu \mu \mathrm{f}$, variahle (Hammarlund IFF-100).
$\mathrm{CH}_{1}, \mathrm{CH}_{2}-1 \mathrm{~N} 34 \mathrm{~A}$.
I_{1} - Phomo jack.
L.1-3.i-: Mc., $10-\mu$ h. (National R. 33 r.f. choke).

1.4-30-0.1) Mc., 0,2, μ h.: 1 turn Nor 20 plastic-insulated wire, \%-im-h diam.

Σ_{1} - s p.s.t., momited on h_{2} (1 allory Ls-20).
s_{2} - l-sertion. l-pole, t-position miniature plamolie rotary witch (Centralal, DA-1000).
I_{1} - 100 -ke. cryatal.

STANDARD FREQUENCIES AND TIME SIGNALS

Ntandard radio and audio frequencies are broadeast continuously from WW'V, operated by the Central Radio Propatation Laboratory, National Bureau of Nitundards, Washington, D. C., on the following radio frequencies: $2.5,5,10,15,20$ and 25 megareydes per second. Nimilar broadeasts are given from WTVVII, I'uunene, 'T. H., on 5, 10 and 15 Me. The modulations consist of $1-e . p, s$ pulses and $4+0$ or 600 e.p.s. tone.

Tramsmissions are as shown above, with the following exceptions: 'The WWV' trinsmissions are interrupted for a 4 -minute period herinning at approximately 45 minutes after the hour; the IIIVVI transmissions are interrupted for 4 minutes following earh hour and half hour, and for periods of 34 minutes beginning at 1900 Chiversal 'Time.

Time Signals

The l-e.p.s. modulation is a 5 -millisecond pulse at intervals of precisely one second, and is heard as a tick. The pulse transmitted by W'IVV eonsists of a reveles of 1000 erele tone: that transmitted by WWVII consists of 6 cycles of 120 oreycle tone. ()n the WWY trimsmissions, the 440 - or (in) (onele tone is blanked out beginning 10 milliseconds bofore and ending 25 milliseconds after the pulse. On the WWVT trinsmissions, the pulse is superimposed on the tone. The pulse on the 50 th serond is omitted, and for additional identifieation the zero-serond pulse is followed by another 100 milliseromds later.

Accuracy

Transmitted frequencies are aceurate within 1 part in 100 million.

Propagation Notices

During the ammomement intervals at $191 / 2$ and $4991 / 2$ minutas alter the hour, proparation notices applying to transmission paths over the north It lantie are transmitted from WWV on $2.5,5,10,15,20$, and 2.5 Mc . Similar fore colsts for the North Parifie are tramsmitted from IV'IV'II during the amoumemont intervals at 9 and 39 minutes after the hour.

These notieres. in telegraphie corle consist of the letter N, W, or U followed by a number. The letter designations apply to propagation conditions as of the time of the broadeast, and have the following signifieture:

$$
\begin{aligned}
& \text { W - Ionosphoric disturbance in progress or ex- } \\
& \text { C - - nstabhe conditions, but conmmunication } \\
& \text { S - No warning. }
\end{aligned}
$$

The number designations apply to experted propagation conditions during the subserfuent 12 hours and have the following significance:

Higit	Furecast
1	Imuosiblele
2	Very Poor
3	Poor
4	Fair to Poor
5	Fair
6	Fair to Good
7	Ciood
8	Very Good
9	Excellent

Special Transmissions During the International Geophysical Year

Until December 31, 1958. WWV broadeasts will include information on I(iY" Alerts" and
 mimutes past the home, These torms desoribe periods in which intensified ohservational activity by scientists engaged in the IGI is requested. Fach such transmission is preceded by the letters "Acil". The code is as follows:

5 A 's - State of alert.
5) F's - Nostate of alert.
 $0001 / 2$ the following dat.
5 T"s - Spectial World Interval terminates at 2350 Z .
3 long dashes - Special World Interval in progress.

Fï，2l－I8－－ 1 midurath the frequency standard elassis．The salw－tooth harmonit－ penerating notwork is oll the strip at the upper rikht，The small trimmer－typ capaci－ tor at the left is Cis．Whare emmonents are mounted whire consenient．
adjusting the output signal to the desired level．

The 100－kre asdillator usas the triode sertion of a $6 . A N 8$ ，while the amplifiom uses the pentorle sertion of the same tube，Power required for the anit is tion volts at 10 ma，and 6,3 volts at 0.45 amp．This may be taken from the ato－ ＂eswory woket oll a receriver，or a sperial supplo easily can be made using a TV＇ ＂booster＂transormer（surch as the Merit P－sotfo we equivalent

The standard is huitt in a $1 \times 5 \times 6$ inch chassis－type box（ $1(1.1$ 381！）．ha and so are monnted on the panel，with the amplifier tank roils mounted on se． The remaining components are monnted on the chassis，C_{4} heing insulated from it beraluse its phates arre above ground for die． For the same reason，an insulated shaft extension is used for front－pathel wontrol of ${ }^{\circ}{ }^{\circ}$ ；

Connertion betwern the standard and the reeciver can be made through a wire from the hot terminal of J_{1} to the antemate input post on the receiver．bepending on how well the receriver is shielded，such a wire may not be meded at the lower－frequeney and of the range

Adjusting to Frequency

In rither Fig，21－15 or 21－17 the frequency cam be adjusted exactly to 100 ke ，hy making use of the WIV＇V transmissions tabulated in this chap－ ter．Sellect the WWV frequency that gives a gool signal at your lowation at the time of day most convenient．Tunce it in with the receiver bifo，off and wait for the period during which the modu－ lation is absent．Then switeh on the loo－ke． oseflator and adjust its frequency，by means of（ 1 ，until its harmonic is in zoro beat with W＇WV．The exact sodting is（asily found by ob－ serving the slow pulation in background noise as the harmonic comes close to gero beat，and adjusting to where the pulsation disappears or orcurs at a very slow rate．The palsation can be observed cern more readily by switching on the receiver＇s b．f．o．，after approximate zero beat has been sereured．and observing the rise and fall in intensity（not frequences）of the la a at tone． For best results the WWV signal and the signal from the l（O）－ke，owillator shoud be about the sime strength．It is indvisable not to try to set the loo－ke，asedibator during the periods when the WWV signal is tome－modulated，sine it is difficult to tell whether the hamonic is being adjusted to zero beat with the carrier or with a side hame

Frequency Checking

The secondary standard provides signals of known frequency that can be tuned in on the station reereiver．Determination of the freguenes of a tramsmitter is then carriod out be the method deseribed earlier under＂Frequency Weasumement with the Rereiver，＂using these points as positive identifieation of band edges．By using the known to（O）－ke．pints the receiver calibration can be corrected so that，by interpolation，the freguency of a signal lying betwern the calibration points cath be detormined with grod arenracy

More Precise Methods

The methods deseribed ahove are quite ade－ quate for the primary purpose of amateur fre quenes measurements－that is，determining whether or not a transmitter is operating inside the limits of an amateur band，and the approxi－ mate froqueney insidd the band．For measure－ ment of an unkown frequence to a high degree of atecurary more aldanced methods can be used． Acrurate siguals at choser intervals cam be ob－ tained by using a multivibrator in conjunction with the $100-\mathrm{ke}$ ．standard，and thus ohtaining signals at intervals of，say， 10 kr ．or some other integral divisor of 100．Temperature control is frequently usod on the $100-\mathrm{ke}$ ，oscillator to give a high order of stability（Collier，＂What I＇rice Prexision？＂，（ぶた＂，september and（octomer，1952）． ．Wso，the serondary standard ran be used in conjunction with a variahbefrequency intorpola－ tion oseillator to fill in the stamedid intervals （Woodward，＂ 1 Linear Janat－Frequence（）scillator
 An interpolation oweillator and standard can be
combined in one instrument, one application of this type having been described in (eS'I for May,
 Meter").

Test Oscillators

THE GRID-DIP METER

The grid-dip meter is a simple varcuum-tube oscillator to which a microammoter or low-range milliammeter hats frem added to read the osedifator grid current. A 0-1 milliammetar is sonsitive romugh in most cascs. The pridedip meter is so callod berause if the oscillator is couphed to a thened cirruit the grid current will show a doerease or "dip" when the oseithator is tuned through resoname with the unknown areuit. The reason for this is that the external circuit will athent enorgy from the weillator when both are tumed to the same frequeney; the loss of ronerg from the oscillator eiment catases the feredbark to derease and this in turn is areompanied by at dervase in grid current. The dip in mrid curvent is quite sharp when the aireut to whieh the osciltator is coupled has reasomably high (o.

The gridedip meter is most useful when it cosers a wide fregueney range athel is comparty constructed so that it can be compled to cirenits in hard-torearh plamesurd as in at transmitteror recoiver chassis. It ain thas be used to wherk tuning ramges and to lind unwanted resonammes of the erpe described in the ehapter on T'I, Sinee it is its own souree of ref. chergy it dows not, liko the atsorption wave moter, require the cirenit heing ehereked to be energized. In addition to resonanee cheeks, the gridedip meter also can the used ase at signat soure for reediver abigmant and. ats described lather in this chatpor, is useful in motsurement of inductance and "atp:ceitane in the ratnge of values used in r.f. cirenits.
Figs. 21-19 to 21-21, inclusive, show a grid-dip meter of quite compart construction using plug-in

Fig. 21-19-I compact and light-weipht grid-dip meter for one-hand operation. It is built in a $15 / \mathrm{x} \times$ $2!\times 4-\mathrm{in} \boldsymbol{d}_{1}$ "Chamelowh" Imx and uses six plug-in roiks to conser the range lotol ke. 10 Iot Vo. Ithe puwer suphly and milliammerter for valing arial rurront are in a separate mit.
roiks to eover a continuous fregucmey range of 1600 ke . to 160 O Mr., and thus usoful in all amat teur hands up through 14t Ne. as well as for

Wherking for fesonathers in the low \&roup of v.h.f. 'TV chammels. the most important from the stamelpoint of harmonie TY' It is small and light, amd com be held and tomed with one hand sinee the dial extemeds slightly over the enfers of the lox so it can be onerated with the thomb. The millianmeter is not contained in the oscillator itsedf hut can the mounted soparately in any convonient spot for viewing. lig. 21-22 shows the milliammoter mounted in at stamberd motor case whid also contains the power supply for the oseillatom: The cable emmereting the two mits can be any desired langeth.

The uscillator cireuit, shown in Fig, 21-20, is a grombed-phate liather, with the cathode tap auljusted for maximum susitivity - that is, for greatest change in grid aurent when thaing through resonamer with a couphed ritcuit rather than for maximum grid current. For satis-

 C 2 - $|(W)-\mu \mu|$, weramis.

(1)-0.01- 1 fidish earamic.

Cuil Lata, L_{1}

Fireq. Ronue	Turns	11%	liamilir	Turns/inch	Tup*
1.50- \% 5 y \%	$1 \% 11$	Qamm.	${ }^{3}$! 11	(losi-wound	32
3.40-7 * M6.	111	332	${ }^{3}+11$.	(17xicwound	12
7.55-17.5 Mc.	10	24 timul		32	14
17.2-411. Al c.	1.$)$		2/2ill. \ddagger	111	5
$38-8.5 \mathrm{Mr}$	\dagger	2"thlued	L/2 in, :	11.	11 ¢

 includinge il from tins. Tanmel? $11 / 2$ in, from sround "mil.
*Turns irom gramod emd.

lactory opration at the highest frequency, the
 as passible, and the tuning capacitor, f_{1}, is momeded so that its rotor and stator terminals are practically touching the eorresponding pins on
 bracket made from alumimum and plated at an ahgle so that the tube cat be removed. The eathorle comaedion betwem the tulse sorket and the coil socket is matle of fat compere strip to redure its inductaner as murh as possible.

Fig, 21-21-I'lu pridalip mexillator is built on the I shatreal prorliont of the loon. (:3. Catate (.6 are grounded to a solderimg lag at the left of the suchert. Wiras in fac fower amd ander rable hermatate at a 1 -point twrminal strib at the left.

Coils for the two low-frequency ranges are wound on the outsides of the forms in mormal fashion, but with the exception of the highest range the remaining coils are lengots of 13 N Miniduetor monnted inside the forms. I hairpinshaped coil is used for the highest ramge. As the mil forms arm polystyrone. Which seftems at relstfively low tompratures. care must be used in soldering to the pins. It is huphol to drill a metal plates a lew inchessogare amd $\frac{1}{16}$ inchorso thick. so the eroll pins will fit smugly: then if the plate is pressed firmly agatist tha bottom of the form daring solderimg the heat will be comdurted atway from the polyotyrene rapidly enough to prewent solteming, if the soldering oprotation is not profonserd.

I tramsument dial but from a phere of ? \%ind Plexiglas (obtainable at hobhy stomes) is used so the ralibration cam be placed on top of the box, where there is more rom for lettering, A hairline indicator is scratehed on the dial, which is also provided with a standard small knoh, fastomed to

 pls amd milliammeter lar ha. wrid-dig meler are contained ill at mellar
 is for varsing the plate volaage tos maintain the grisl carrant in lie propen reximi.
it be small marhine screws threaded in from the bottom.

The power supply shown in Foig, 2l-22 uses a miniature power transformer with at selonium rectifior and a simple filtor to give apperoximately. 120 volts lor the oscillator plate. The potentiom(etur shown in Figg, 2J-2:3 is for :ulfustmant of plate voltage. In athy ervidedip meter the grial current will he different in different buts of the fro(fumber ramen, with fixed plate voltare, so it is ordinarily meressary to choose a phate voltage that will keep the reading on sathe in the bast of the range where the grid "ument is highest. This usually results in rather low grid current at some
of her part of the range. With variable phate voltage this compromise is maneressaty

The instrument maty im catibnated bey listoning to its cutput will at citiluated rexiver. The calibation should lo as aceurate as possible, although "frexturncr-metor aterurace" is not required in the appuiations for which a gridedip) metor is usthul
The grid-apometor may be used as an indiat-ing-type alsomption wate moter by shatiag of

Fis, 2l-23- Ciman diayrant of the bewar supply for the prid-dip meter.

K_{2} - 0 I 1 -max
 Warit P-30thor capmisalemt.)
CH_{1} - 20 -mat. selmium metiliar.
$\mathbf{3}$ - - 0)- 1 d.c. milliammenter.
the plater voltage and using the grid and cathorle of the tube as a dionle. Howerer, this tyen of wirrut is mot as sensitive as the ervatal-therector type shown carlier in this ehapter, meathse of the highresistance grid latak in suries with the meter.

In using the grid-dip metor for chereking the resomant frequense of at ricuit the compling should be set to the point where the dipe in grid current is just peremtible. This reduens inturadtion betwen the two direuits fo a minimum and gives the highest acolvato. With tor-chose
 by the cireuit being checked, in which case differbot readings will la obtained when resenamer is appoaded from the high side as compared with appoaching from the low side.

AUDIO-FREQUENCY OSCILLATORS

 amplifiors and modulators is an audio-fregurney

Fif. 21.2f - Bottom view of the audionecillator, show. iny the power-supply componenta abd amplitudrecolle trol tamp. \boldsymbol{l}_{1}. The lamp is momoted liy wires soldered to its hase. Thar seleonimur rectilier is supported by a tie. puint strip. Placement of remistora, which are hidhlen by the other componemta, is nut erilieal. 'Ihe amit lits in a $1 \times \therefore \times 6$ ind $\bar{\circ}$ lox.
signal gomerator or oscillator. ('lureks for distortion, gain, and the trouldes that ocrou in such amplifiers do not rectuire claborate equipment: the principal pequirement is a soure of ome or more andio tones having a good sine wave form. at a voltage level adjustable from a fow volis down to at few millivolts so the seseillator wath be substituted for the typerof mierophone tobe bed.
 is shown in Figs, 21-21 to 21-26, inchusive. Three andio frequemes are avatiahle, appoxi-

Fig. 21-26-Inside view of the audio oseillator. The a.c. *widl. So. is memented on the omput comerol at ther left on the pande "The meramic eapacitors in the fregurnesArtermining cirroit are moneted on the rotary switeh. S_{1} at the rixht. Sis atheve the tuthe and T_{1} is on the Hear wige of the ehasis, which is a 1 .xhaped piece of aluminum $3^{1} \frac{1}{2}$ inches deep with $11 / 2$ ind lism. K_{1} is menmed ont the near lip at the left.
mately 200) :000 and 2500 ayeles. These three frequencios arresticiont for testing the frequency response of atn amplifier over the rather nerded for vict commmatation.

Fig. 21.25-Cirenit diagram of the andios sodillator. Cafmatarnes belono

I_{1} 3-watt. I

$\mathrm{K}_{1} . \mathrm{K}_{2}$ Violumse erontrok.
S_{1} - Z̈ple isposition (3 used) rotary switch.
S_{2} - I).p.d.t. togele.

'I - Power transformer. lít selta, 25 ma.; 6.3 volts (1,.) an!r. (Iterit $\mathrm{P}^{\prime}-3016$).

The circuit nses a donble triode as a cathodocoupled escillator, the second section of the tube providing the fredhaw nercssury for oscillation through the common rathode comention. The 3-watt latmp in this ferd-hack loop ants as a variable resistance to control the oscillation amplitude and thus maintain the operating conditions at the point where the best wave form is gencrated. This operating point is set by the "oseillation control." R_{1}. The frequeney is dotermined by the resistance and capacitance in the eongling rireuit betwere the first-seretion plate and seeond-section grid. Vimbus values of eapacitance cath be solected by moans of s_{1} to set the frequence: The abthat frequencies meatiured in the unit shown in the photographs are given on the diagram. They may be either
increased or decreased he using smabler or labger ceparitancers, respectively.

Output is taben from the cathode of the second triode section. Wither the full output, 1.5 volts. or appoximately one-tenth of it can be selected by siz. (Hn either of these two ranges smooth control of output is provided by R R.

The selferontained power supply uses at smatl transformer and a selenium rertifier to develop, approximataly 1.00 volts. Hum is redued to a negligible level by the filter consisting of the S-heary choke and 20 (- μ f. capatritors.

An ascilloscope is usefind for preliminatry rherking of the ospilator simere it will show wave form. R_{1} should be set at the point that will ensure osedlation on abll three freduencies when switehing from one to the other.

R.F. Measurements

R.F. CURRENT

R.f. current-mbasuring doviere use a thermocouple in conjumetion with an ordinary d.e. int strument. The thermocouphe is made of wo dissimilar motals which, when heated. gemorate a small the voltage The thermoerouple is heated by a resistaner wite through which the r.f. current flows, and since the d.e. voltage developed is proportional to the heating, which in turn is prot portional to the power used by the heating olement, the deflections of the d.e. instrument are proportional to power rather that to current. This caluses the catibrated scate to be compresed at the low-rurrent end and spread out at the highceurrent end. The usefinl range of such an instrument is about 3 or + to 1 ; that is, an r.f. ammetor having a full-scale reading of 1 ampere can bo read with satiefactory arecuracy down to about 0.3 :mpere one havinur a full state of 5 amperes can be read down to about 1.5 amperes, and so on. Nosingle instrument can be made to handle a wide range of currents. Neither ran the r.f. ammeter be shanted satisfactorily, as ean be done with d.e. instruments. because even a very small amount of reactance in the shatht will canse tho readings to be highly dependent on frequenes.

Fig. $21-27$ - R.f. ammeter mountad for comartong into a chavial line fur measurink bower. 1 "on-inche" inatrument will fit into at $2 \times \pm \times 1$ mital luex.

Fig. 21-27 shows a convenient way of using an r.f. ammeter for measuring courrent in a coaxial line. The instrmment is simply mounted in a
metal box with a short lead from each terminal to a coasial fittimg. The shmet capacitame of an ammeter monnted in this way has a negligible offect on arouracy at frofuchobes as high as 30 Me. if the instrument has a bakelite cane. Matalcased moters should be momated on a bakelite patmel which in turn can be monated behind at coutout that clears the meter case by lif inch or so.

R.F. VOLTAGE

An r.f. voltmeter is a rertifir-type instrument in which the r.f. is converted to dice., which is then meatured with a d.c. instrument. The best type of reatifior for most applications is a arvatal diodes, surh as the 1×34 and similar types, heramse its capacitane is so low as to have little effert on the behatvior of the r.f. cireuit to Which it is connerted. Ther principal limitation of these reectifiers 1 s the ir rather bow value of safe inverse peak voltage. Vacuum-tube diodes are (onsiderably better in this respect. but their size. shunt capacitancer. and the fare that power is required for heating the eathode constitute serious disadvantapes in many applications.

Ohe of the principal uses for such voltmeters is as mull indieators in r.f. bridges. as described later in this ehapter, Another usefulapplatation is in meaturemant of the voltage betwern the conductors of a coaxial line. to show when a tramsmitter is adjusted for optimum output. In rither case the voltmeter imperlanee should be high compared with that of the eircuit under measurement. to avoid taking appreciable power, and the relationship between r.f. voltage and the reading of the d.e. instrument should be as linear as possible - that is. the d.e. indiration should be direetly propertional to the rif. voltage at all points of the state.

All reetiliars show a variation in resistaner with applied voltage, the resistance being highest when the appled voltage is smatl. These variations cam be failly well "swamped out" by using
a high value of resistance in the der eirenit of the rectitier. A resistance of at least 10,000 ohms

Fig. 21-28-18.f. voltmetor cirmit using a arystal rectilier and d.c. microammeter or (0-1 milliammeter.
is necessary for reasomably good lincarity with a 0-1 milliammeter. High resistance in the d.e. rireuit also raises the impedane of the r.f. voltmeter and reduces its power consumption.

The basie voltmeter eireuit is shown in lig. 21-28. It is simply a hatf-wave reetifier with a meter and an mistor. R_{1}, for improving the linearity. The time ronstant of $r_{1} R_{1}$ should be barge compared with the perion of the lowest ratio frequency tobe measured - at combition that can easily be mot if h_{1} is at least 10,000 ohms and C_{1} is $0.001 \mu \mathrm{f}$. or more - so (3, will stay chatged near the peak value of the r.f. voltage. The radiofrequency choke maty be omitted if there is a low-resistance d.e bath through the rimenit being measured. fag provides additional r.f. filtering for the d.e, vireuit.
The simple areuit of lige, 21-2s is useful for voltages up to about 20 volts, a limitation imposed by the inverseperak voltage ratings of aryatal diondes. I dual range voltmeter airait. $(1-20$ and (1 -100) volts, is shown in Fig. 21-2!), A voltage divider. R_{1} / R_{2}, is used for the higher range. An instrument using this rimenit is shown in 1-ig. 21-29. It is dexigned for conneretion into a coaxial line. The frincipal comstractional prerations are to kerp leads short, and to momet the eomponents in such a waty as to minimize stray coupling betwern them and to kerp them fairly well separated from metall surfaces.

 tancers are in $\mu \mu \mathrm{f}$: ' 'apalitors are dish ceramiar.
($\mathrm{R}_{1}-\mathrm{I}$ \} 3 1 or equis alent.

For acerata calihation (the pown method do-
 be selaction of resistons or using two in suries
to obtain the desired value, so that the meter reads full sate, with s_{1} set for the low range, with 20 volte rems. on the line. A frectueney in the vieinity of 14 Me, should be used. Then. with Sta sot for the high ramge, various resistors should le I ried at R_{1} or R_{2} until with the same voltage the meter reads 20 per cent of full sale. The resistance varrations buatly will be within the range of 10 -pe cent tolerance resistors of the values sperified. The roadings at various other voltages should be observed in order to check the lincarity of the scale.

Fig. 21-30- Dual-range r.f. voltmeter for use in coaxial line, using a 0 -l il.e, milliammeter. 'flet voltagedisidor resistors, K_{1} and $K_{2}\left(\vdash^{\circ} \mathrm{ig}, \underline{2} 1-29\right)$ are at the center in the lower compartment. The by-pase capacitors and R_{3} are monntol on a tie-print stripat the right. 'The unit is lonile in a $4 \times 6 \times 2$ imeh alumimun chasis, with an ahominnm partition connecoling the two sides of the box to form a shiplded sparee. I lottom plate, not shown, is used to complette the shielding.

Calibration

Chalibnation is not meressary for purely comparative meatsurements. A catibration in atotal voltage repuires a known resistive load and an r.f. ammeter. "The setup is the same as for r.f. power measuroment as deseribed latere, and the voltage ralibration is obtained by caleulation from the known pown and known load resistanco, using Ohm's I aw: $E=\sqrt{ }{ }^{\prime} h$. Is maty points as possible shombld te ohtained, hy varying the powe outpat of the tramsmitter, so that the linearity of the voltmeter can be checked.

R.F. POWER

Measurment of r.f. power reguires a resistive loal of known value and eitherandef ammeter or a calibated r.f. voltmetar. The power is then aither $I^{2} R$ or $R^{2} R$, where R is the lond resistance in ohms.
'The simplest method of obtatining a load of known resistance is to use an antemat system with roax-rouphed matehing areuit of the terpe deseribed in the chapter on tramsmission lines. When the eirevit is adjusted, by means of an s.w.r. bridge, to bring the s.w.r. down to I to 1 the load is messtive and of the value for whinh the hrigg was desighed (82 or or ohms).

Ther rif. anmeter shand be inserted in the lite in place of the s.w.r. bridge after the matchang has heen completed, and the tramsmit ter then andjusted - without tomehing the matching eirenit - lor maximum euryat, $\AA 0-1$ ammetor is useful
for measuring the approximate ratuge 5-50 walls in 52 -ohm line, or $\overline{7} .5$ - $\overline{5}$ watts in $\overline{5} \overline{5}$-ohm line; ab ()-3 instrument can be used for 13-450) watts in 52 -ohm line and $20-6 \mathrm{i} 5 \mathrm{5}$ watts in $\overline{\mathrm{T}}$-ohm line. The ancurary is usually greatest in the upper half of the seale.
(A)

(8)

Fig. 21-3I-Srtups for measuring inductance and eapacitance with the grid-dip meter.

An r.f. voltmoter of the type described in the precerling section also can he used for power measurement in a similar setup, It has the advantage that, because its scole is substantially linear, a much wider range of powers can be measured with a single inst rument.

- INDUCTANCE AND CAPACITANCE

The ability to mosusure incluctance and capatritance frecucotly saves time that might otherwise be spent in cut-and-try, A convenient instrument for this purpose is the grid-dip ascillator, deseribed earlier in this chaptor.

For measuring inductance, the coil is eon-

Fig, 21-32 - A convenicnt mounting, using lindingphet plates, for L and Cistandards made from commer. cially-available parts, 'The papacior is a $100-\mu \mu \mathrm{f}$. silver mica unit, momeded so the lead lengit is as nearly zero as posible, 'The indoctame stamdaral, $\overline{5} \mu \mathrm{~h}$., is 1% turns of No. 3015 IS \mathbb{N} U Miniductor, I-inch diameter, lG turns per inch.
nocted to a capabeitance of known value as shown at A in Fig. 21-31, With the mbinown coil eonnereted to the stambard caparitor, rouple the grid-dip meter ta the coil and adjust the osidiator frequener for the grib-current dip, using the bosest coupling that gives a detertable indication. The indurtance is then given hy the formula

$$
L_{\mu \mathrm{lV}}=\frac{25.330}{C_{\mu \mu \mathrm{f},} r_{\mathrm{se}}^{2}}
$$

The reverse procedure is usid for measuring capabitane - that is, a coil of known inductance is used as a standard as shown at I3. The unknown eapacitane is

$$
C_{\mu \mu i_{v}}=\frac{2 \overline{5}, 330}{L_{\mu \mathrm{h}, ~} f_{\mathrm{M}}^{2},}
$$

 using standards of $100 \mu_{\mu}$ f. ambl $\mathrm{a} \mu \mathrm{h}$,

The acruray of this method depends on the accuracy of the gridedip meter calibration and the arecuracy with which the standard values of L and (' are known. P'ostago-stamp silver-mica capabitors make satisfactory catpatembere standards, since their rated toleramer is ± 5 per ernt. bigually good inductance standitrds ain be made from commereial marhinewound roil materiab.

A single pair of standards will serve for measuring the L and (' values commonly used in amaterar equipment. A goon choire is 100 o $\mu \mathrm{f}$. for the catpacitor and $5 \mu \mathrm{~h}$. for the coil. Baserl on these values the chart of Fig. 21-333 will give the unlknown directly in terms of the ressonant froguener registered bey the griddedipmeter. In measuring the frequency the coupling between the gridedip, moter and resomant rifeuit should be kept at the smallest value that qives a definite indication.

I coneretion shond be applied to mataturements of very small values of L and C' Wo inelude $^{\prime}$ the efferets of the shmet capacitance of the monntting for the coil, and for the intuctance of the leads to the capacitor. The se amount to approximately $1 \mu \mu$. and 0.003μ h.. rospertively, with the method of monnting shown in lige. 21-32.

Coefficient of Coupling

The sume "ruipment can be used for measurement of the remeficient of coupling bet ween two coils. This simply requires two measurements of inductance (of ore of the coils) with the compled coil first open-cireuited and then short-rimented. Conneret the 100 - $\mu \mu$ f. standard caparitor to one coil and measure the indereane with the terminals of the seromel roil open. Then shore the terminald of the serond eobl and again meatare the inductance of the first. The coeflicient of coupling is given by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ cooflicient of coupling
$L_{1}=$ inductance of first coil with terminals of second coil opern
$L_{2}=$ inductance of first coil with terminals of secomel coil shorted.

R.F. RESISTANCE

Aside from the bridge methonls used in trans-mission-line work, described later, there is relat tively litale nerd for measurement of r.f. resistance in amateder pratice. . Iso, masempoment of resistance by fundamental methods is not pratticable with simple equipment. Where such moensurements are mande, they are usually based on known thatacteristies of avaibabe resistors used as standards.

Most types of resistoms have so murh inherent reartanere and skin offere that they do not ant like "pure" resistance at radio frequencoses, but instead their effective resistance and impedane vary with freguency. This is esperially true of wire-wound resistors. (omposition (carbon) resistors of 2 , ohms or more ats a rule have negligible inductance for frequederes up to 100 Mr . or so, The skin effert also is small, hut the shunt raparitance camot be noglerted in the higher values of these resistors, since it reduces theis impedance and makes it reactive. However, for most purposes the caparitive effects am be considered to be negligible in compesition resistors of values up to 1000 ohms, for frequencies up to ato to $100 \mathrm{Mc} \cdot$, and the r.f. Mesistance of such units is mationally the same as their dae resistamen Hence they ean be considered to be practically pure rexistance in surh applications as r.f. hridges, ate., provided they are momented in wheh a was as to avoid magnetio rompling to other airenit components, and are not so elose to grounded metal parts as to give an appreciathe increase in shunt calpacitance.

Antenna and Transmission-Line Measurements

Two principal types of mencurements are made on antermat swimes: (1) the standing-ware ratio on the transmission line as a means for dotermining whether or wet the athtenna is property matched to the line catternativelse, the ingut wo sistane of the line or antemnamabe be measured); (2) the comparative radiation fiold atrongh in the vicinity of the antemmas, ats atems for rhorking the dirertivity of a bram antemmatal as ath aid in adjustment of element tuming and phasing. Both type of measurments can be natule with rather simple cenipment.

FIELD.STRENGTH MEASUREMENTS

Ther ratliation intmenty fom ath antomata is
 simple recoiver cquiperd with an indicator to give at visual reprematation of the companative signal strongth. Nuch at field-strength meter is
nsod with a "pick-n! antemat" which should alWays have the same plarization as the antenta broinge mereked - o.g., the piek-up antemat should be homizontal if the hamsmitting antema is herizontal. Care should be taken to prewent stray pickup by the field-wength moter itself or hy any tramsmission line that may comere it to the pickup :antomat.

Fiodd-imength mesturements preferably should be made at at distanere of screral wave lengths from the transmitiag antemat being testere Measurements made within a wave length of the anternat may be miskouling, beratowe of the possibility that the masuring empmont may be requoding to the combined induction and ratiation fiedls of the antema, rather than to the
 has dimensions romparable with those of the antemat under test it is likely that the coupling between the two antemase will be great enough
to cause the pick-up antenna to tend to berome part of the radiating system and thus result in misleading field-strength readings.

A desirathe form of pick-up antematis a dipole installed at the same hoight as the antoma boing tested, with low-imperdance line such as $\overline{0}-$-ohm Twin-Lead eonnected at the center to tramsfer the r.f. signal to the field-strength meter. The length of the dipole need only be great enough to give adequate moter readings. A half-wave dipole wili give high sensitivity, hut such length will not be needed unless the distance is several wave lengthe and a relatively insensitive meter is used.

Field-Strength Meters

The arystal-detertor wave meter dascribed earlier in this chapter may be used as a fieldstrength moler. It may be eoupled to the transmission line from the pick-up antema through the eoaxial-cable jack, J_{1}.
The indications with a crystal wave meter eonnected as shown in Fig. 21-10 will tend to be "square law" - that is, the meter reading will be proportional to the square of the r.f. voltage. This exaggerates the effect of relatively small adjustments to the antenna system and gives a fakse impression of the improvement secured. The moter reading can be made more linear hy commeting a fairly large resistance in series with the milliammeter (or microammeter). About 10,000 ohms is required for good linearity. This considerably reduces the sonsitivity of the meter, but the lower sensitivity can be compensated fo: by making the piek-up antema sufficiently large.

Transistorized Wave Meter and Field-Strength Meter

A sensitive field-strength meter can be made by using a tramsistor as a d.e. amplifier following the erystal rectifier of twave meter. A circuit of this tipe is shown in Fig. 21-34. I epending on the characteristics of the particular transistor used, the amplifieation of current may be 10 or more times, so that a $0-1$ milliampere d.e. instrument becomes the equivalent of a sensitive mieroammeter.

The circuit to the left of the dashod line in

Fig. 2I-34-'Iransiotor d.e. amplifier applied to the wave meter of Fify. 21.10 to increase mencitisity. (iomponents met listed belon are the satre ats in liig. 21-10.
13_{1} - Simatl Marhlight cell.
H_{1} - $10.1 \mathrm{I} . \mathrm{C}$. milliammeter (see text).

K_{1} - 10.000-olim eontrol.
$R_{2}, R_{3}-1.100$ ohmes, $12 w a t t$.
S_{1} - S.p.s.t. togkle (on-off switeh).

Fig. 21-34 is the same as the wave-meter cirnit al Fig. 2l-10, and the transistor amplifier ran rasily be aceommodated in the rase shown in Figs. 21-11 and 2l-12.

The transistor is eomeneted in the e:ommonemitter circuit with the rectified d.e. from the arestal diode flowing in the base-emitter cirenit. Since there is a small residnat carrent in the eodlector circuit with no current flowing in the haseemitter circuit, the d.e, meter is connected in a bridge arrangement so the residual current can be balanced out. This is aceomplished, in the absence of any signal imput to the transistor base, by adjusting R_{1} so that the voltage drop across it is crual to the voltage drop) from collertor to emitter in the transistor. R_{2} and R_{3}, being of the same resistance, have equal voltage drops across them and so there is no difference of potential across the meter terminals until the eollector current increases because of current flow in the tase-emitter circoit.
The collector current in a cireuit of this type is not strictly proportional to the base current, particularly for low values of base current. The meter readings are not directly proportional to the field strength, therefore, but tend toward "square law" response just as in the case of a simple diode with little or no resistance in its d.e. dircuit. For this reason the d.e. meter, $1 / 1$, should not have tor-high sensitivity if reasonably linear response is desired. A $0-1$ milliammeter will be satisfaetory:
The zero balame should be checked at intervals while the instrument is in use, since the residual eurrent of the transistor is sensitive to temperature changes.

- IMPEDANCE AND STANDING-WAVE RATIO

Adjustment of antenma matching systems requires some means cither of measuring the input impedance of the antemm or transmission line, or moasuring the standing-wave ratio. "Bridge" methods are suitable for either mosurument.

There are many varieties of bridge cirenits, the two shown in lig. 21-35 being among the most popular for amateur purposes. The simple
(A)

(B)

Pig.21-35- Basic bridge circuits. (A) Resistance Iridue; (B) resistance-rapacitance bridge. The latter cirenit is used in the " Mieromatelh." with R_{s} an wery low renistance (I ohm or lesa) and the ratio $\left(i_{1} / \delta_{2}\right.$ adjusted accordingly for a desired line impedance.

Mrisiathe bridge of Fig. 21-35A monsista exsent bially ol two vollage dividers in patallal arross a souree of voltage Whan the voltage drop
 Re and ho abr likewise agual and thore is mu difference of potential betwere points A and B. Henere the voltoneter reading is zero :und the bidge is said to be "batitneed." If the drops adross R_{1} and R_{s} atre not equal, points A and B are at different potentials :und the voltmeter will read the difference. The operation of the riverit of Fig. 21-35) is similar. except that one of the voltage dividens is capactitive insted of resistive.

Beratuse of the chataturisties of prametical components at radio frequerneins. the rimat of Fig. $21-3$-3 is best suited to ipplications where the ratio R_{1} / R_{2} is fixed: this type of bridge is partioularly well suited to musarement of sandingwave ratio, The rimuit of lig. 2l-3igh is well adapted to appliablions where a variable voltage divider is essont iald (sinere ('a and C'g maty readily be mate variablon as in mosurement of miknown values of h_{L}.

S. W.R. Bridge

In the circnit of Fig. 21-3ind, if R_{1} and h_{2} are made cqual, the bridge will be hatanered when $R_{\mathrm{L}}=R_{\text {s. }}$. This is tome whether R_{L} is : wn :uthat resistor or the imput resistance of at perteretly matehed trimsmission line, provided R s is chosen to equal the chatra teristice imperdane of the lime. leven if the line is not property matehed the bridge will still be batanced for power traveling outward on the line, since outward-going power sees only the Z_{0} of the fine until it remehes the lowd. However, power reflected batek liom the load dons not "soce" a bridge rivenit and the reffected voltage registers on the volmmeter. From the known melationship between the outgoing voltage and the refleerted voltage, the s.w.r. is catsily cobleulated:

$$
\therefore H^{\circ} R=\frac{V_{0}+1_{r}}{V_{0}-r_{r}}
$$

where I° is the outgoing voltage and I_{r} is the refleeted voltage. The outgoing voltage is equal to $E_{2} 2$ since R_{s} and R_{1} (the K_{0} of the line) are cqual. It may be measured either by diseonnecting R_{L} or shorting it.

Measuring Voltages

For the s.w.r. formula above to apply with rousomable aceuracy (particularly at high stand-ing-witve ratios) the current taken by the voltmetor must he inappreriable rompared with the eurrents through the bridge "umes." The voltmeter used in bridge cireuits employs a erystal diode rectifier (sere discussion earlier in this (-hatpter) and in order to meet the ahowe requirement - as well as to have linear response. which is equally moersatry for cabibration purposes should use a resistiance of at least 10,000 ohms in sorises with the milliammeter or mieroammeter.

Siuce the voltane atpplied to the line is masured by shonting or discomerting h_{1} (that is, the line input terminals), while the reflected voltage is measured with $R_{\text {L }}$ commeted, the load on the
sourere of voltage E is different in the two measurements. If the regulation of the voltage somere is wot perled, the voltage E will not remain the same under these f wo comditions. This can lead to latge errors. sum errors rath be avoded he using a serond voltmeter to matintiln at chere on the voltage applied to the bridge, rewdjusting the

ドiд. 21-36-Bridge circuit for s.w.r. mrasurements. This eirenit is intended for this will a d.r. whtmeter, range 5 to 10 volts, laving a re-istance of lo. 10 mo ahms per volt or wrealter.

$\mathrm{K}_{1}, \mathrm{~K}_{2}-1$ - ohbur oompositions. $1 / 2$ or I watt.
 compmition, '2 or \& watt: precision type preferred.
$H_{4}, R_{5}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coavial connectors.
Weter connects to either "input" or "Irridge" position as required.
coupling to the voltage source to maintain constant applied voltage during the two measuremonts. Since the "input" voltmetor is simply. used as a referencer, its linearity is not important. nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter. exeret that its range hats to be at least iwie that of the latter.

A practical circuit incorporating these features is given in Fig. 21-36.

Fig. 21-37 - A simple bridge rircuit useful for imped-ance-matehing in coasial limes.
(i, C C_{2} - $0,010 \mathrm{O}$ - or $0,01-\mu \mathrm{f}$. diak ceramic.
$\mathrm{R}_{1}, \mathrm{~K}_{2}-\mathrm{i}^{-}$-olinn composition, $1 / 2$ watt.
 rommenition, $1 / 2$ watt: predision tyme preferred. $\mathrm{R}_{4}-\mathrm{I} 0$ (0)-ohmin composition, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{I}_{2}$ - Cosavial connertor.
The meter mats be a () I milliammeter or d.c. voltmeter of any type hawiug a semilivity of low ohms per wh or mreater, and a full-rimale range of is to 10 volts. Negative sile of meter commecto to ground.

If the brigge is to be used mordy for antemnat adjustment, where the object is to secure the lowest possible s.w.r. rather than to measure the s.w.r, aredutaly, the voltmeter rextrirements atre not stringent. In this case the ohjere is to get as relose to at "null" or balance (that is, zero reading) as pussible, At or mear exabet hablane the voltmoter impedane is not important. Neither is it merssary to matintan constant input voltarge to the bridge. This simplifies the bridge circuit ponsiderably. Fig. 21-37 being atpratical example. The ronstruetion of a bridger of this type suitable for antennat and transmission line adjustments is shown in Fig. 21-38.

Bridge Construction

A principal peint in the construction of an s.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and between the arms and the voltmeter cirenit. This an be done by kepping the resistance arms separated and at right angles to Guch other, and hey plateing the erystal and its connerting leads so that the loop so formed is not in inductive relat-

Fig. $2 /-38$ - An inexpensive bridge for matching adjustments n-ing the cirenil of fix, $2 l-3 \%$, It is built in a
 resintor, R_{3}. liridges the ewo colan combectore, I pill jack is prosideal for commetion to the die, meter, 0 l mat, or $0-300$ mat; the meter nogatise can be conmedted to the case or to one of the coat fittings.
tionship wath :ay loops formon by the bidge arms. Shied dius bet weon the bridge arms and the restal cirouit is helpfal in reduring such monplinge although it is not abways moresary The two wistors forming the "ratio arms." h_{1} and lie should havo identimal mhationships with metal pirts, to keep the shunt capacitanees equal, and also should have the same lead lengths
so the inductanees will tralance. Ideads should be kept as short as possibhe.

Testing and Calibration

In a bridere intembed for s.w.r. measurement (Fig. 21-36) rather thatn simple matehing, the first check is to apply just chough r.f. voltage, at the highest frequeney to be used, so that the bridge voltmeter reads finl seble with the lowd terminals opern. Ohserve the input roltare, then short-circuit the load terminals and readijust the input to the same voltate. The bridge voltmeter should again register full satr. If it does not, the ration ams, h_{1} and h_{2}, probably are not exartly equal. These two resistors should be carefull. matehed, although their arotuab value is not

Fig. 21-30-standing-wane ration in terms of meter reading (relatis to full saber) after setting outgoing voltage to full sedale.
critical. If a similar test at a low frequency shows hetter halamee the probable catuse is stray inductancer or caparitance in one arm not balaned by equal strays in the other.

After the "short" and "open" readings have bern equalizerl, the bridge should be cheeded fore null batanere withat "dummy" resistaner, equal to the line impedane, fonmered to the loud torminals. It is comvenient to mount a half- or l-watt resistor of the proper value in a coax connector, kerping it centered in the comertor and using the minimum lead length. The bridge voltmeter should rad zero at all frequencies. A reading above zero that remains constant at all frequencios indieates that the "dummy" resistor is not mate hed to R_{3}, while readings that vary with frequency indicate straty reactive offeets or stray coupling tretweren parts of the bridere.

When the opreation is satisfictory on the two points just dese ribed. the mull shoulia be cherelert with the dummy resistow commeded to the hritge through sexaral different longthos of transmission lime to ensure that Ravetually matehns the lime impedance. If the mull is net romphere in this test buth the dummer resistor and h_{i} w ill have to loo adjusted until a good matel is obtained. With care, composition resistors can be filed down to
raise the resistance, so it is best to start with resistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give a good mull when connereted dirertly to the bridge. then try it at the end of sueral different length of line, contimning until the mull is satisfactory under all eonditions of line length and freguency.

With a high-imperdance voltmetor, the sw.r. readings will closely approsimate the theoretieal curve of lig. 21-33!. The (abibation ran be ehareked by using composition resistors as loads. Adjust the transmitter eoupling so that the bridge voltmeter reads full scale with the output termimals open, and then cherek the input voltare. Connect various values of resistance aross the output terminals, making sure that the input voltage is readjusted to be the same in each case and note the reading with the meter in the bridge position. This cherk should he made at at low frequency such as 3.5 Mr. in order to minimize the effect of reactance in the resistors. The s.w.r. is given by

$$
S . I^{*} . R .=\frac{R_{\mathrm{L}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

where R_{0} is the line impedanere for which the bridge has been adjusted to mull, and R_{L} is the resistance usid as a logd. Tise the formula that plates the larger of the two resistances in the numerator. If the readings do not correspond exactly for the same s.w.r. when appropriate resistors above and below the line impedance for whirh the bridge is designed are used, a possible reason is that the curvent taken bey the voltmoter is afferting the measuremonts.

Using the Bridge

The operating prowedure is the satme whether the bridge is used for mat ching or for s.w.r. meatsurement. Apply power with the load terminals (ither opere or shorted, and aldust the input unt il the bridge volemetor reads full seale. Because the bridge operates at wery low power leved it may he neressary to eouple it to a low-power driverstage
rather than to the final amplifier. Aternatively, the plate voltage and excitation for the final amplifior may he reduced to the point where the power output is of the order of a few watts. Then connect the load and olserve the voltmeter reading. For matrhing, iuljust the matehing network until the best possible null is ohtamed. For s.w.r. measurement, note the r.f. input voltage to the bridge aftor adjusting for full-scale with the load termmals open or shorted, thern comeret the load and readjust the transmitter for the same input voltage. The brige voltmeter then indieates the standing-wave ratio as given by lig. 21-39.

Antemat systems are in gemeral resomant systoms and thes oxhibit a perely-resistive impedanee at only one freguchey or over at smath hand of frequencios. In making bridge measurements. this will canse errors if the r.f. energy used to operate the bridge is not free from hatmonics and other spurious components. such ats freguencios lower that the desired operating frepueney that maty be ted through the final amplifier from a frecturnex-dombler stare. When a good mull amnot be secured in, for example, the course of adjusting : matching soction for $1-t o-1$ s.w.r., a cherek should be made to ensure that only the desired measurement frequeney is present. A restal wave meter coupled to the load usually will show whether energy on undesimed frequencies is present in significant amounts. If so, additional selectivity must be used between the source of power and the measuring circuit.

Bridge for Monitoring S. W.R.

The low power level at which resistance-type bridges must operate is a disadvantage when the bridge is used as an operating adjunct - o.g., for the adjustment of matrhing eirenits when thamging hands, or for readjustment of such circuits within a band. For this purpose a bridge is neded that will carry the full power outpot of the transmittor without absorbing an appreciable fraction of it.

Fi弓. 2/-f1t-Bridue for indirating forward and rellerted voltage on at transmission line. 'This bridge', the" "Monimateh." may be left in the line since it can operate at hish power levels. The box is a slip-rover type (IC:A plexiMoma) measuring $21 / 4$ ly 2l.g liy is inches. The eopper etripe and conper tubing forming the line section dhould be cut to fit leetween the emaial commotors, Ib, ontput for the meter is taken throuph tho pitu jacks on the right. hand end.

The bridge shown in Figs. 21-10 to 21-12, inrlusive, is sumber atoriore. It makes use of the combined affects of inductive aml raparitive roopling botwern the renter conductor of a coaxial line and a lengith of wire paralled to it. Whan the couphed wire is propery tarminated in at resistande, the voltage indured in it by power traweding along the line in one direetion will be balamed out in the revstal-reettiter ref. voltmeter direut, but power aravelling along the line in the opmosite direction will cause a voltometar indieation. If the bridge is adjusted to mateln the Z_{0} of the reaxiad lite being used, the voltmeter will respond omly to the refleceded voltarg, just as in the case of the resistancertyperbidges. The power ronsumed in the bridge is below one watt, even at the maximam pewer permitted amaterar tramsmitlers.

The sensitivity of this trpe of hridge is proportional to frequency, so higher power is roguired for a given voltmeter deflertion at low than at high frequeners. 'Typical values of reetified conrent arre as follows, with a bridge adjusted for a chantuteristic impedance of 52 ohms:

Fig. 21-12-Insulating spacers used to support the compling wires at a fixed distance from the line-section innere conductor.

F"iz. 2l-H- Cirenit of the "Monimatela" s.n.r. and power indicator.
C.1. (2 - Wish reramic.
(: h_{1}. $: h_{2}$ - (irsmal dionte, keneralparposer tspre(1 \31, atr.)
 ing tsm.
J_{3}, J_{4} - Insulaterd tip jacks.
$\mathrm{M}_{1}-\mathbf{0}-100 \mathrm{mic}$ roammetar or (0-1 milliammeter. dependimg on eneitivity desireri: are table.
 I-watt rompesition: for -i.rohm line: 100 ohms. 1-watt romposition.
 S_{1} - S.p.d.t. togyle.

Band
1.8 Mc .
3.5 Mc .

7 Mr.
$1+$ Me.
$21-28$ Mr

10 W'alts R.F. $\quad 50$ Wratls R.F.
2i) $\mu \mathrm{it}$.
$70 \mu \mathrm{it}$.
$200 \mu \mathrm{t}$.
$750 \mu \mathrm{t}$.
Over 1 mat.
$100 \mu \mathrm{t}$. $250 \mu \mathrm{it}$ 1 ma.
Over I ma.
Over 1 mat.

A current of 1 mat. on 3.5. Mre can be ohtained with a power level of somewhat over 200 watta. These currents are for R_{2}, the variable resistor in sories with the do meter, set to zero resistane.
The circuit of Figg. 21-41 has two surh bridge rircuits so cither the incident on reflected voltage (atm be measured.
The essential construmbion dotails are given in Figs. 21-10 ath 21-12. The line section consists of two $5 / 8$-inch strips of thin copper for the outer conductor, with an inner ronductor of t/4 -inch copper tubing. The strijs are supported by being sobldered to lugs fastened under the swrews for monnting the roaxial fittings, as shown in Fig. 21-10. The ropper-tubing inner condurtor is soldered to the ferrule comertions of the coaxial fittings.

The bridge pick-up wires are four-inch lengths of No. 14 hare wire. These fit into slots in insulating spacers made as shown in Fig. 21-42. The spacers maty be made of any suitable r.f. phastir, such as polystyrene or bakelite. that is easily worked. 'The rathode ends of the diodes and the "hot" ends of the be-pass (:upucitors (ath be sup)perted by ordinary tie points.

A damme antemat of the sume resistatue ats the Z_{0} of the line should be used to adjust the bridge. A suitable dummy maty he made hy connereting four 2ey-ohm 1-watt rompersition resistors in parallellor \mathbf{a}^{2}-ohm line (or four 300-ohm resistors for $\overline{\text { a }}$)-chm line), kepping the eomerting leads as short as possible. The transmitter may ! x e used as a source of power providing its output can be reduced to ahout 4 watts, or a 10 -watt lamp may be connected in suries in the line from

Fig. 21-13-An RC liridge for measuring unkmown value of impolamere. The liridige operates at an r.f ingul voltape level of about is volts. "Plar aluminum low is 4 by 5 by 6 incher.
the trimsmitter to the bridge if the tramsmitter power eamot be redued below on wates. With power applied (preforably at 28 Mc.) through J_{1} tud the dummy comberted to J_{2}. adjust the spacing betwem the immer conductor and the roupling wire that eommerts to $1 / R_{1}$ and R_{1} until the moter reating is gero with s, in the "refleded" position. The spacing should be about 3 后 inch. Then apply power through . I_{2} with the dummy eromerted to J_{1} athd make a similar alljustment to the pasition of the ather wire with the moter switeh in the "fomard" pesition. The britge is then reaty for use with the normal commertions (r.f. imput to. $/ 1$, line commeded to $/ I_{2}$).

With s_{1} in the "forwsud" position the meter gives a relative indieation of power outpat, and thus is useful for trimsmither duning. With S_{1} in the "reflereted" position the meter reading will be zerow when the line is properly matched.

Impedance Bridge

Tho lmidge shown in liges. 21-4.3 to 21-4.5, inClusive, uses the hasice eirenuit of Fig. 21-35ls and
incorporates at "lifferential" "apauritor to obtain ant aljustable ratio. When at rasistive load of tur-

 can be catibrated in terms of resistance at his, so the unkmown value can be read ofr the calibration.

The differential catburitor consists of two ithenticable reblewitors on the same shatit, arramged so that when the shatt is rotated to inerease the rapacitance of one unit, the retpereitathere of the other derreases. The prewticebl areait of the bridge is given in lige 21-11. Satisfactory operattion hinges on ofserving the same construetionat preerations as in the aase of the s.w.r. bridge. Although at high-impeditnce voltmeter is not essential, since the bridge is ablwiss indjusted for a matl, the use of surh a voltmeter is advisable beranse its better linetrity (particulaty at the low readings) matere the wethat null settings more areurately observathe.

With the eircuit arrangement and capacitor shown. the useful retuge of the bridge is from alout 5 ohms to $f(x)$ ohms. The catimation is such that the poreentage aceuraty of reabing is approximately constant att atl patets of the soale. The midscale value is in the range of - -is ohms, to correspond with the Z_{0} of cosxiat cable. The redialble frecueney range of the bridge includes all ambteur lotheds from 3.5 to is Me.

Checking and Calibration

A bridge conntructed as shown in the photogratphes should show ab complete mull at abl freguencies within the range nentioned above when at ot-ohm "dumme" lout of the tepe described eation in comertion with the s.w.s. bridge is comered to the lowd terminals. The bridge maty be calibrated be using ab momber of $1 / 2-$ watt amposition resistors of different values in (har io fon ohm riange as foads, in eath "alse batimeng the bridge by adjusting C_{1} for a mull reading on the meter. For highest aceurbey, the test resistors should be moisured on at preeision resistanee bridge, if possible, sine the best toleramee nor-
 The leats betwen the test resistor and I_{2} should be as short as possible, athel the catibration pref-
 stras inductane and euparitane will have the least effect. The ratibration should be chereked

Fia. 21-1t-Circuit of the imped.

 caparitore are coramic.
(.)- Diflerential raparitor. $11-161$ - μ f. wer wellon (Millen 298011).

CR R_{1} - Cermanium diode (1×31,
 t? 140
M_{1} - 0 -imo microammeter.

Fig. 21-45- All components except the meter are mounted on one of the removable sides of the box. The variable capacitor is mounted on an 1 -shaped piece of ahminum (with half-inch lips on the inner edge for bolting to the box side) 2 inches wide, $21 / 4$ ineles high and $23 / 4$ inches deep, to shicld the eapacitor from the other components. 'The terminals project throuph holes at shown, with associated eomponents momented diectly on them and the losad connector, J_{2}. Since the rotor of Col must mot be grommled, the capacitor is operated by an extension shaft and insulated compling.

The lead from J_{1} to (is should go directly from the imput commector to the capaeitor terminal (lower right) to which the 68 -ohm resistor is attached, The 1.00 -ohm resistor is soldered arrose $/$ / .
cat the highest-frequency band to be used and the diat readings should be identical with the lowfrequencer calibation. It 30 to 50 Me , the mull maty not be quite eomplete at the extremes of the resistance range becamse at these frequencies straty inductance and capancitance in the test resistor and its leads are not negligible. However, the current indicated by the meter at the minimom point should not be more thin about 5 per cent of the curvent indieated when the bridge is thrown as far out of batiance as possible by varying ('s.

Using the Bridge

Strictly speaking, a simple bridge can measure only purely resistive impedanes. When the load is a pure resistance, the bridge c:un be batanced to a grood null (meter roading zero). If the lowd has at reatance eomponent the null will not be romplete; the higher the ratio of reactance to resistance in the low the poorer the mall reading. The operation of the bridge is surh that when an cxat null cannot be sectured, the readings approximate the resistive component of the load for very low values of impedanere, and approximate the total imperdance at very high vablues of impedanere. In the mid-range the approximation to either is poor, for louts having ronsiderable reactance.

In using the bridge for adjustment of matching networks C_{1} is set to the desired value (usuably
the Z_{0} of the coaxial lime) and the matching network is then adjusted for the best possible mull.

- PARALLEL-CONDUCTOR LINES

Bridge measurentents made directly on paral-leb-comductor lines are fremuently subjeret to eomsiderable error because of "antemma" currents flowing on surh lines. These currents, which are either incued on the line by the fied around the antenm or roupled into the line from the transmitter by stray capacitance, are in the same phase in both line wires and henee do not balance out like the true transmission-line eurents. They will nevertheless abtuate the bridge voltmeter, causing an indication that has no relationship to thre standing-wave ratio.

S.W.R. Measurements

The effect of "antenna" curents on s.w.r. measurements can be largely overome by using a coaxial bridge and compling it to the paralle!conductor line through a property-designed impedance-matching cireuit. A suitable circuit is given in Fig. 21-4f. An atntennt coupler cimb be used for the purpose. In the balamed tank rivenit the "antenna" or paralled components on the line tend to batane out and so are not passed on to the s.w.s. bridge. It is essential that L_{1} be coupled to a "cold" point on L_{2} to minimize ratparcitive coupling. and also desirable that the center of L a be gromeded to the chassis on which the circuit is mounted. Vabues should be such that L_{2} ('2 c:an be tumed to the operating frequency and that L_{1} provides sufficient compling, as described in the trans-mission-line chapter. The measurement procedure is as follows:

Commett a noninductive (16- or 1-watt carbon) resistor, having the same value as the characteristic impedance of the parallelerondurtor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (kerping them equidistant

Fig. 21-16 - Cireuit for using coaxial s.w.r. bridge for neasurements on parallel-condactor lines. Valucs of circuit components are identical with those naed for the similar "antenna-couple" eireuit discussed in the chap. ter on transmission lines.
from the center), while varying the caparitance of C_{1} and C_{2}, until the bridge shows a mull. After the mull is obtained, do not touch any of the circuit adjustments. Next, short-rimuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full scale. Remove the shortcircuit and test resistor, and eomeret the regular transmission line. The bridge will then indicate the standing-wave ratio on the line

The circuit requires rematching, with the test resistor, whenever the frequency is changed appreciably. It can, however, be used over a
portion of ant amatome hand withont readiustment, with negligible error.

Impedance Measurements

Mansurements on parallel-anduchor limes and other bublamed loads sath be math with the impedance bridge previousty doweribed by using it hablun of the type shown schomatioally in lig.
 turns ratio athd thes provides at 1-to-1 stop-lown

 halanced and umbalameed lines. I_{1} annil I_{2} should be Imilt a- a bilibar winting lo enel an tipht compling as

28	3 เ ! formberqualls fitaral wer" wimed. codal.	$1 \mu \mu \mathrm{f}$.	$420 \mu \mu \mathrm{f}$.
11	Sameas ${ }^{\text {a }}$ Me.	3) $\mu_{\mu} \mathrm{f}$.	$11.0015 \mu \mathrm{f}$
7	8 turn of lion-olim spacias lorlwern dia. form.	None	$0.001 \mu \mathrm{f}$.
3.7	same ar - Mre.	$62 \mu \mu \mathrm{f}$.	0.001. $\mu \mathrm{f}$.

Cabaciture in unit shown in Fiy, 21.18 arre Nim disk ceramio. I nits may lee paralleleal to ehtain proper caparitanere.
in imperdane from abshane bed lowl to the output eirenit of the brider, one side of which is grommed. L_{1} thed L_{2} nutust be as tightly contpled as possible, :und so should the eonstructed :cx ab bifian winding. 'The rimenit is resonatod for the oprotitige fre-

 the roupling betwern the two coils is mot gute porfert.
lige 21-48 shows one mothod of constructing such ab balme The two interwound roik are mate as ne:bly identioal as possihle. the "finish" end of the first heing comereded to the "start" "nd of the serond through it shout leat rumbing und or the winding inside the form. The renter of this leal is tapped to give the combertion to the shall side of the eostx commedtor. ('1 should be chosen to resonatte the cireuit at the renter of the band
 © should mesumate the riment to the samme fer

 for lugust, (!ñ.)

With the bratun in use the bridge is operated in the sitne wity as previnusly deseribed. exerpt that atl imperdace reatinge mast be multipled by f. The bablun abso maty he used for s.w.r. mansurements on Botohan dine in conjunction with at

The "Twin-Lamp"

A simple and inexpensive standing-wave indicentor for 300 orom line is shown in lig. 21-49. It consists only of two flashlight lamps and a short piere of 300 -ohm line. When latid flat against the line to be checked, the coupling is

Fig. 21-19- 'The "twin-lamp" standing-wave indicator monnted on 3(M) ofhm 'liwin-dianl. Sooteh tape is used for fastrring.
surh that outering pewor on the lime cathes the lamp bearest to the tmanmither forgh, whige reflered perwer lights the latap nearest the load. The pewer input to the line should be adjusted to make the lamp meatest the tramsmiture light to full billiance. If the lisu is properly matelued and the reflewtal powor is sory low, the lathe tonard the athtomat will be dark. If the sw.r. is high, the 1 wo lamps will glow with practically equal brilliance:

The length of the piere of 300 -ohm line needed in the twin-lamp will depend on the transmitter

Piis. $2 / .18$ - Balum con-truction
 mes! low uad for the loifilar wind ine in playe of the ordinary wire *⿴囗wn. Esmmetrical cometrumion with lifht ompling luetween the
 formatioe.

Fig. 21-50-Wiring diagram of the "twin-lamp" standing-wave indicator.
power and the operating frequency. A few inches will suffice with high power at high frequencies, while a foot or two may be needed with low power and at low frequencies.

In constructing the twin-limp, cut one wire in the exact center of the piece and peel the ends back on either side just far enough to provide leads to the Hashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the math transmission line at some convenient point. Ise the lowest-current fashlight bulbs or dial hamps available. Solder the tips of the bulbs together and comert them to the bare point in the transmission line, then solder the ends of the eut portion of the short piece to the shells of the bulbs.

Figs. 21-49 and -50 should make the construction clear.

Installing the twin-lamp on a line introduces a discontinuity in the line impedance which canses the s.w.r. from the twin-lamp back to the trimsmitter to differ from the s.w.r, existing between the antemat and twin-lamp. For this reason it is desirable to remove the twin-lamp after s.w.r. checks have been made. It is convenient to mount the twin-lamp on at short length of line fitted with a 300 -ohm plug at one end and a mating sorket at the other. If similar plugs and ${ }^{-}$ sockets are used on the transmitter and regular transmission line, the whole test unit can be inserted and taken out at will.

The twin-lamp will respond to "antemas" currents on the transmission line in much the same way as the bridge circuits discussed earlier. There is therefore always a possibility of error in its indieations, unless it has been determined by other means that "antenma" currents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and radio frequencies and can therefore be used for many types of measurements that are not possible with instruments of the types discussed earlier in this chapter. In amateur work, one of the principal uses of the seope is for displating an amplitudemodulated signal so a phone transmitter can lx adjusted for proper modulation and continuously monitored to keep the modulat ion percentage within proper limits. For this purpose a very simple circuit will suffice, and a typical circuit is described later in this section.

The versatility of the scope eam be greatly increased by adding amplifiers and linear deflect ion (ireuits, but the design and adjust ment of such (ireuits tends to be complicated if optimum performance is to be secured, and is somewhat outside the field of this chapter. Special components are generally required. Oscilloscope kits for home assembly are available from a number of suppliers, and since their cost compares very favorably
with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who hase need for or are interested in the wide range of measurements that is possible with a fully-equipped seope.

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocity, then formed into ab beam, and finally allowed to strike a special translucent screen which fluoresces, or gives off light at the point where the beam strikes. A beam of moving electrons can be moved lat erally, or deflected, by electric or magnetic fields, and since its weight and inetia are negligibly small, it can be made to follow instantly the variations in periodically-changing fields at both audion and radio freguencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun.

Fig. $21-\bar{n}$ - Typical ronstruction for a cathode-ray tube of the electrostatio-dellection type.

In the simple tube structure shown in Fig. 2l-al, the gun consists of the cathode, grid, and anodes Nos. I and 2. The intensity of the clectron beam is regulated by the grid in the same way as in an ordinary tuhe. Anorde No. 1 is operated at at positive potential with respect tu) the cathode, thas aceclerating the electrons that pass through the grid, and is provided with small apertures through which the electron strean passes. On emerging from the apertures the electrons are traveling in practi(ailly patallel straight-line paths. The electrostatid fielde set up by the potentials on anode No. 1 and anode No. 2 furm an electron lens shisem which makes the electron paths converge or forus to a point at the flareswent sereen. The potential on anode So. 2 is usually fixed, while that on anole No. I is varied to bring the beam into focus. Anode No. I is, therefore, called the focusing electrode.

Electrostatic deflection, the type generally wed in the smatler tubes, is produced be deflecting plates. Two sets of plates are placed at right angles to cach other, as indicated in fig. 21-51. The fields are created bey ablying suitable vollages between the 1 wo plates of each pair. Cabally one plate of eah pair is comected to anode No. e2, to entablish the polarities of the vertical and horizontal fields with respect to the beam and to cach other:

Formation of Patterns

When periodically-varving voltapes are applied to the 1 wo sets of deflerting plates, the path traced by the fluoresent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltares remain unchanged. Fig. 21-00 shows how such patterns are formed. The horizontal sweep voltare is assumed to have the "swowooth" wave:hape indicaled. With no voltage applied to the vertical plate the trace simple sweeps from left to right across the sereon along the horizontal axis $X^{*}-X^{\prime}$ until the instint H is rethech, when it reverses direction and returns to the starting point. The sinc-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y^{\prime}-Y^{\prime \prime}$ in the absence of any defleaing woltage on the horizontal plates. However, when both voltages are presant the position of the spot at iny instant depends upon the voltages on both sets of plates at that insiant. Thus at lime $l 3$ the horizontal voltage has moved the spot at short distane 10 the right and the rertical voltarge hat similaty moved it upward, so that it reathes the actual position B^{\prime} on the sareen. The resulting trace is easily followed from the other indieated powitions, which are taben at equal time intervals.

Types of Sweeps

A sawtorth swerp-voltagn wave shathe, such as is shown ill life, 2l-52 is called a linear sweep, becamee the deflection in the horizontal direction is directly pruportional to time. If

the sweep were perfect the fly-back time, or time laken for the sumt to return from the end ($I I$) to the begiming (I or A) of the horizontal frace, would be zero, so that the line $H /$ would be perpendicular to the axis $Y^{\prime}-Y^{\prime}$. Althourh the fly-huck time camot be made zero in prabeteable swep-voltage penerators it cou be made quite small in comparison to the time of the dexired trace $A I I$, at leasit at most frequencies within the audio range. The line $/ I^{\prime} I^{\prime}$ is called the return trace; with is linear sweep it is less billiant than the pattorn, because the spot is moving much more rapidly during the fly-hack time than during the time of the main tribe.

The linear sweep shows the shatpe of the wave in the sime way that it is usually represented graphically. If the period of the ate. voltatge applied to the vertical plates is considerably less than the time taken to sweep horizontally teross the sereen, several reycles of the vertical on "signal" voltage will appear in the pattern.
loor many amateur purposes a satisfactory hori\%ontal sweep is simply a bio-evele voltage of adjustable amplitude. In modulation monitoring (deseribed in the chapher on amplitude modulations atudio-frequency voltuge an be taken from the modulator to supply the horizontal sweep. For examination of adio-frequency wave forms, the linear swep is exsential. Its frequency should be adjustable over the entire range of andio frequencies to be inspected on the oscilloseope.

Lissajous Figures

When simusoidal ace voltares are applied to the two sets of dellecting plates in the oscilloseope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratin between the two freduencies is constant and can be expressed in integers at atationary pattern will be produred. This matres it passible to use the uscilloseope for determining an unknown frequency, provided : variable frequency standard is available, or for

Fig. 21-n.3- Jiseajous fipures and corresponding frequency ratios for a © © elegrier phase relationship liet weren the voltages applied to the two sets of deflereting platers.
detemining calibutbon points for a variablefreguency oscillator if at lew known irequencies are available for comparison.

The stationary patems obtained in this Way are called Lissajous figures. Fixamples of some of the simpler liseajous figures are given in lig. :2-is), The frequence ratio is found by eounting the mumber of loops along two adjatcoms edges. Thus in the third figure from the (op) there are three loops abong a lorizontal edge and onty one abong the vertical, so the

 and of R_{z} to the tep entl of h !.

$\mathrm{K}_{7} . \mathrm{K}_{3}-1$ I Watt.
 inch. sow tube tablyw for hater connertions anel heater ratinges of type chossom.
ratio of the verical frequencer to the horizontal frequeney is 3 to 1 . Similarly, in the fifth figure from the top there are four loops atong the horizontal edge and three along the vertical edge, giving ar ratio of + to 3 . Assuming that the known frequenery is applied to the horizontal plates, the minnown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

whore $f_{1}=$ known frequeney applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plater.
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.
An important application of Jissajous figures is in the calibration of andio-frequency signal generators. For very how frequencies the borecole power-line freduchey is leld areduately anough tobe used as a standard in most lueatilies. The medium atudio-frequency range con be coyced by comparison with the fin)- and boto-cyele modulation on the W WIV tramsmisuons. An aweillowenpe hatving both horizontal and vertical amplifiers is desitable, since it is combenient to have at menns for ablusing the volnages applied

 voltares to orailloseope dellection plates for modulation monitoring.
Cil - 100- $\mu \mu$ f. variable, recwising typr.
1.1-1.5 $\$ 1$-: 31 cham, close-wonmi on 1 -inch form, roil longth 3_{4} ineh.
 incll form.
 on l-inch form.
 at colde riml al 1 at.
R_{1} - Volames control. 0.25 me:gohm or mare.
\therefore - 10,pr!t. =witeh.
 ondary-lo-primary turns ratio of l-lo-I toe-to-1.
to the deflection plates to seeure a suitable pattern size. It is possible to callibrate over at 10-to-1 riange, both upwards and downwatds, from each of the latter frequencies and thus cover the audio range useful for voice communication.

Basic Oscilloscope Circuit

The essential oscilloscope cireuit is shown in Fig. 21-it. The minimum requirements are supplying the various chet rode potentials, phas emo trols for focussing and rentering the spot on the face of the tube and adjusting the spot intensity. The circuit of Fig. 21-5. t em be used with electro-statie-deflection tubes from two to five inches in fice diametor, with voltages up to 2500. This includes pratically all the types popular for smatl oscilloscopes.

The circuit has provision for int roducing signal voltages to the two sets of deflecting platess. Either set of deflecting abectrodes $\left.(1)_{1} /\right)_{2}$, or $I_{3} I_{4}$) maty be used for either horizontal or vertical deftection, depending on how the tube is mounted.

The high voltage maty be taken from at transmitter power supply if desired. The current is only a milliampere or wo. The voltage preferably should be constant. such as is obtained from a supply having at constant load - (0, g. . the supply for the Class (C amplifier in an atm. transmilter.

In the circuit of Fig, 21-ist the centering controls are at the full supply voltage above ground and therefore should be carefully insulated by bring mounted on bakelite or similar material rather that directly on a metal pand or chatsis.

Insulated couplings or extension shafts should be used. The focussing eontrol is also several humdred volts above groumd and should be similarly insulated.

The tube should be proterted from stray marrnotic fields, cither loy colosing it in :m iron or stere box or by using one of the special e.er. tube shiclds available. If the heater transiormer (or other transformer) is mounted in the same cabinet, care must be used to phace it so the stray field around it does not defleet the spot. The spot emmot be focusiad to a fine point when influenced by a transformer field.

Modulation Monitoring

The addition of Fig. 21-55 to the basice circuit of Pig. 21-5t provides all that is necessary for modulation chereking. The ref. from the transmitter is applied to the vertical phates through a tumed cireuit $L_{1} \mathrm{C}_{1}$ and link L_{2}. When idjusted to the transmitter operating frequeney the tund circuit furnishes ample deftertion voltage even from a low-power transmitter, athd ('i can be, used to control the pattern height.

Deflection voltage for the horizontal platess can be taken from the modulation transformer secondary of an in.m. transmitter. or tite-e yelo deflection can be used to give a waverenvelope type patterin. In cither case a maximum of about 200 volts r.m.s. will give full-width defleretion. This voltage is almost independent of the size of c.r. tube used. Methoods of using such a seope for modulation checking are deseribed in the chapter on amplitude modulation.

Assembling a

Station

The actual lowation inside the honse of the "shatel" - the room where the tramsmitter and reeriver are located - depends, of contane. on the free space availathle for ansatementivilies. Fiontumate indeed is the amateme with a soparate room that he cat reserve for his hother, or the fere whe can have a sperial smatl building separate from the main homse. Howerer, most amateurs must share a room with othor domestic abtivitios, atd amateme stations will be found wated atway in a corner of the living romm, at bedroom, a large eloned, or arom under the kitehen stove! A spot in the cerlar of the at tic call almost. be classed as at soparato rown, ahthough it maty back the "finish" of a normal room.
liegardlese of the location of the station, however, it should be designad for maximum operating commonience and saffoty. It is feolish to have the station armanged son that the throwing of sererald switches is required to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an uncomiortable and eramped position daring his operating hours. The reatson for loulding the station as safe as possible is obvious, if you arte intorested in spending a number of years with youm hobby!

CONVENIENCE

The first ponsideration in athy amaterur station is the operating position, which includes the operator's table and chair and the pieres of equipment that are in constant use
(the recoiver, send-refeive switch, and key or nicrophon(o). The table should be as large as posible. to allow sufficient room for the re-
 ment. monitoring agnipment, control swit ches. and kegs and microphones, with enough space left over for the logibook, a pad and pencila amd perhaps a large ash tray. Suitahle space should be indeded for radiguram blanks and at call
 If the table is small, or tha nomber of pieces of ("quipment is lange, it is often neensary tobuilat a shelf or rack for the anxiliary equipment, or to mount it in sume less conveniont location in or umber the table. If whe has the farilitias, : semicircular "console" (:an be built of wowl, or a smpler whation is to use two shatll womber cabincta to suphert at table top of wood or Masonite. I flush-type door will make an exerollent tabla top. Home-built tahles or consoles can be finished in any of the arailable oil stams, varnishos, paints or lamquers. Many operators use at lage pieere of plate glass over part of their table, sime it furnishes a good writing surface and can roser miscellaneons rhats and tables, prefix lists, uperating aids, ralendar, and similatracressurios.

If the mano interests never require frequent band changing. or froefuency changing within a band, the transmitter can be located some distance from the operator, in : lowation where the meters can be ohserved from time to time fand the color of the tube plates noted!). If frequent band or frequency changes are a part

Here's one way to build a comsole. I se al fonh x fofort by ${ }^{1}$ eineh piece of plywonl for a cremer seretion. and a comple of 3-1rawor phents for the end aretions. This pives menty of operating elpare in a mall areat. (II.)Kste, Eil l'asm, 'lexas)

of the masul operating procedure, the tratmsmitter shombl be momented chose to the aperattor, eithor along whe side or atowe the reraver. so that the rontrols are easily ancessible without the need for leaving the opratting position.

A compromise arrangement would phare the v,f.o, or erystad-switched oscillator at the opeating position and the tramsmitter in some convenient location mot adjacmit to the operator, since it is manally possible to operate over a portion of a band without retming the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a change in frequency.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the recriver tuning dial and the send-receive switch, The receiver tuming dial should be loeated four to eight inches above the operating table, and if this requires mounting the receiver off the table, at small shelf or bracket will do the trick, With the single exception of the ambteur whose work is almost entirely in traffic or rag-ehew nets, which require little or no attention to the receiver, it will be formed that the operator's hand is on the receiver tuming dial most of the time. If the tuming knob is too lighor too low. the hand gets reamped after an extended period of operating, hence the importance of a properly-located receiver. The majority of e.w, operators tume with the left hand, preferring to leave the right hand free for copying messages and hamding the key, and so the recoiver should be momed where the knob can be reached by the left hand. Phone op-
erators aren't tied down this way, and tune the communications receiver with the hand that is more eonvenient.

The hand key should be fatemed soreurely to the table, in a line just ontside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good loration for the semiantomatic or "bug'" key is right next to the handkers, although some operators prefer to monnt the antomatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The hest location for the microphone is directly in front of the operator, so that he doesn't lave to shout across the table into it, or run up the speech-amplifier gain so high that all manner of external sounds are pirked up. If the microphone is supported lig a boom or by a flexible "gonse neek," it can be planed in front of the operator without its hase taking up valuable table space.

In any amatenr station worthy of the name, it should be necessary to throw mo more than one switch to go from the "receive" to the "tramsmit" condition. In phone stations. this switch should be forated where it can be easily reached by the hand that isn't on the receiver. In the case of (c.w, operation, this switch is most couveniontly located to the right or left of the key, althongh some operatoms prefer to have it momated on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. Rither location is satisfactory, of comras, amb the choice depends upon personal proference. Some operators use a foot-coutrolled witch. which is a convenience but doesn't allow tow much freedom of position during long operating periods,

If the microphone is hand-held during

Here's an oproting consele that was dreipned with operating eronveniemee in mind. 11 FERS; lanilt it
 with strip of 2×2 along the hottom edgen for catotor supporta. It is assembled will boltos so that it ran be readily dixmanded for shipping. Grer-all dimensions are $188^{\prime \prime}$ wide,
 top, $10^{\prime \prime}$ wide and the mhoping onetion 15" wiole.
phone operation, a "push-to-talk" switch on the microphone is convenient, but hand-held mierophones tie up the use of one hand and are not too desirable, although they are widely used in mobile and portable work.

The location of other switches, such as those used to control power supplies, filaments, phone/c.w change-over and the like, is of no particular importance, and they can be located on the unit with which they are associated. This is not strictly true in the rase of the phone/e.w. DX man, who sometimes has ned to change in a hurry from c.w to phons. In this case, the change-over switeh should be at the operating table, although the actual change-over should be done by a relay controlled by the switch.

Fitg. 2:-1 - In a station assmbled for manimum case in frequency or band changing, the transmittor shond be located nest to the operating perition, as shonn above On the operating talle. the reeciver is in fromt of the operator and vafor or erystal-switehing oncillater on the lift. (The v.f.g or ersstal osedilator comald the part of the tramsmitter proper, but most operators seem to prefer a separate b.los.)

The fredumey stamdard and other anxiliary equipment ean be monnter on a shelf abowe the receiver. The operating tahe ran the an ofld dook, or a top supported by two small wement rabinets "The "send-riective" switels is to the right of the telegraple kess- other swithhes are on the transmitter or the individual units.

The above arrangement can be mate to look cleaner by arranging all of the equipment on the table behind a single panel or a set of pancls. In this ease, provision must be made for getting behind the panel for servicing the inits.

If a rotary beam is used the control of the beam should be convenient to the operator. The direction indicator, however, can be lowated anywhere wit hin sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a v t.o. is used, or where a number of crystals is available, the operator should be able to turn on only the oscillator of his tramimiter, su that he can spot arearately his location in the band with respect to other stations This allows him to see if he has anything like at chatr channel, or to sere what his frequency is with respect to another station such a provision can be part of the "send-receive"
switch Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator only, and a "lock" position on the other side for turning on the transmitter and antenna relays. If oscillator keying is used, the key serves the same purpose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillat or frequency.

For phone operation, the telegraph key or an ansiliary switeh can eontrol the transmitter oscillator, and the "cend-receive" switch can then be wired into the control system so as to control the oscillator as well as the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatigue. It may be that the ehain is too soft or hasn't a straight back or is the wrong height for you. The key or recoiver may be located so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at fault (Or you may need sleep!)

- POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control cirenits will make it an easy job to change mits in the station. If the station is planmed in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is meater and safer to run a single patir of wires from the sutlet over to the operating table or some central point, rather than to use a mumber of adapters at the wall outhet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-3. The circuit for the recciver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an ineonspicuous point on the operating table, where it terminates in a multiple outlet large enongh to handle the required number of phigs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything che that is not switched on and off during transmit and recerive periods. The eoil power for control relays should also be obtained from this cirenait The power for this arcuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes

power to the plate-supply transformers for the r-f. stages and for the modiators. (See chapter on Power Supplies for high-pow er considerations.) When it is opemed, the tranmitter is disabled except for the filaments, and the transmitter should be safe to work on. However. one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three cireuits established, it beeomes a simple matter to arrange the station for different conditions and with new units. Anything on the operatine table that runs all the time ties into the first cireuit. Iny new power supply or r.f. unit gets its filament power from the second cirenit. Sine the third cirenit is controlled by the send-recere switeh (or relay) any power-supply primatry that is to be switehed on and off for send and teceive eomnects to circuit (${ }^{\prime}$.

Fig. 22.2 - When little space is avaibable for the amateur station, the equipment has to be spotted where it will fit. In the above arrangenmont, the tramimiter, modulator and power supplies (separate units) are sandwiched in alongside the oprating table athe on a shelf above the tahle- The anternat tuning unit is monated ower the feed-throngh in-alator- that bring the anteman line into the "shart,- and loudzeraker and small power supplies are mounted umber the table. 'The operating
 heys at table Iracl. The taning hmob of this reereiser would be ancountortably lew if the receriver werent raised loy the wooten arth, and the "semb-raceive" switch is mounted on the right-hand side of this areh, next to the hand key. Interconnecting leads should be cabled along the back of the table and table legs, to keep them ineonspirnous.

This weat "buitt-in" installation features scparate finals and exciters for each haml, along with ramom foreciver, frequeney meter, oscillosompe. Q mbltiplier and w.h.f. converter. All units are mounted on the three larke panels: the panels are hinged at the lostom so that they can be lowered for service work on the individual units. I common power supply is had. and band-changing consists of turning on the filaments in the desired r.f. see-

Break.In and Push-To-Talk

In r.w. "poration, "break-in" js amy system that allows the tramsmitting operator to hear the other station's simual during the "ker-up" perionds botwern chatrateres and lottors. 'lohis allows the sending station to be "bomken" bev the recoiving station at any time, to shorton calls. ask for" "fills" in mossigges, and spered (1) queration in genmoil. With present teche
 ing antemat or" a "TR box" allad, with high poworr, some means for protereting the reeriver from the transmittor whern the key" is "down." Sevoral mothods, atppleable to high-power stations, are doseribed in ($h a t$ oter liight. If the transmittor is low-powered (\%) watts or so). no sperial equipment is required exrept the separate reraiving antenna and a receiver that "rerovers" fast. Where break-in operation is used, there should be a switeh on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, althomgh during all break-in work this switeh will be elesed.
"Push-tu-talk" is an exphession derived from the "push" switeln on some mispophones. and it moans a phone station with a single eontrol for all change-over functions. sitrietly rpeaking, it slould apply only to a station where this single send-rereive switeh must be held in place daring tramsmission periods, but any fast-acting switrh will give pratetieally the same effect. A control switch with a center "off" pusition, and one "hold" and one "lock" position. will rive more flexibility than at straight "pntsh" swit ch. 'The one switeh must control the transmitter power supplies, the receiver "om-oft" rirernit and, if one is nsed, the antemat chathgeovor relay. The recoivar eontrol is neressary to disable its output during transmit prionds, to aroid acoustic fordhack.

Switches and Relays

It is dangerous to use an overloaded switeh in the power cireuits. After it has been used for some time, it may fail. leaving the power on the circuit even after the switeh is thrown to the "off" position. For this reason, large switehes. or relays with adequate ratings. should be used to control the plate power. Relays are rated by coil voltatacos (for their control rirenits) and by their eontace rurrent and voltage ratings. Any switch or relay for the powereontrol cirenits ol an amatour station shonald le emservativaly rated; overloading a switelh or meday is very poon eronombly. Switches rated at 20 amperes at 12 , volts will hamdle the switehing ol rireuits at the kilowatt level. but the small toggle switehes rated 3 amperes at 125 volts should be used only in circuits up to abont 150 witts.

When relays are used, the send-receive switch
closes the eireuit to their eoils, thas closing the relay contacts, The relay contacts are in the powir eimolt being controlled, and thus the switeh handes only the relay-eoil euremt. As a consequenore, this switeh ebon have a low eurrent rating.

SAFETY

()f prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are smatl children in the house, evory step must be taken to prevent their accidental contart with power leads of any voltage, A locked room is a fine idea, if it is possible, otherwise housing the trianmitter and power supplies in metal cabinets is an exerflent, although expensive, solution, lacking a metal cabinet, a wooden cabinet or a wooden framework covered with wire sereen is the nextbest solution. Many stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone bat the operator. The power leads are rum through conduit to the transmitter, using ignition cable for the high-voltage leads, If the power supplies and tramemiter are in the same rabinct, a lock-type matin switch for the incoming line power is a good precoution.

A simple sulstitute for a lock-type main switch is an ordinary line plug with a short eomerting wire betwern the two pins. By wiring a female receptacle in series with the nain power line in the transmitter, the shorting plag will act as the main safety lock. When the plug is removed and hidden, it will be impossible to cnergize the transmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

An essential adjunet to any station is a shorting stick for diseharging any high voltage to ground before any work is done in the transmitter. Wven if intorkocks and power-supply bleders are used, the failure of one or more of these components may leave the transmitter in a dangerous condition. The shorting stick is made by mounting a
small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or eommon ground of the tramsmitter, and the stiok is hamg alongside the transmitter. Whenever the power is turned off in the transmitter to promit work on the rig, the shorting stick is first used to touch the several high-voltage leads (plate r.f. choke, filter eapacitor, tube plate connection, ete.) to insure that there is no high voltage at any of these points. This simple device has satved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the fature of a component. If the failure is complete and the component is large, the house fuses will gencrally blow. However, it is unwise and ineonvenient to depend upon the house fuses to protert the lines running to the radio equipment, and every power suppheshould haveits primary eireuit individually fused, at about 150 to 200 per cent of the maximum rating of the supply, Circuit breakers can be used instead of fuses if desired.

Wiring

Control-circuit wirs ruming botween the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done be rumning the wires under the floor or behind the base molding, bringing the wires out to terminal boxes or regulay wall fixtures. such construction, however, is generally only possible in elaborate installations, and the average amateur must content himself with trying to make the wires as inconspicuous as possible. If several pairs of heads must be rum from the operating table to the transmitter, as is generally the case, a single piece of rubber- or vincl-covered multiconductor cable will always look neater than several pieces of rubber-covered lamp cord, and it is much easior to sweep around or dust.

The antenna wires always present a problem, unless comxial-line feed is used. Open-wire tine

A modern home-made cabinet can le used to house the entire station if it is designed closely around the transmitter and receiver. This cabinet is made of $3 / 4$-inch plywood and, with the foors cilosed, conceals the ham station. At least one-ineh air space should be left aronnd cach unit for air circulation and, for the same reason, the hacks of the rompartments should lee left open. The receiver compartment also houses the microphone, key, Q5-er and switeh control pancl. ($\mathrm{H}^{\prime} 4 \mathrm{KZFF}$, Ludlou, Ky.)

from the poind of contry of the antema line shoulal
 for supper it at several points. Mans opraters profer to momitan alllomat-funing assemblios right at the point of entry of the feredines, toge the with an antemat changeover relay (il ome is used), and then the link from the tuning assembly to the tramsmitter can be made of inconspicuons cooxial lime. If the tramsmiter is mounted near the point of catry ol the lines, it simplities the problem of "What to do with the fereders?"

Lightning Protection

The antemat system usually assoriated with amateur radio equipment is most vulnerable to lightning due to its height and length. To validate one's insurance, the antenna installation must comply with the Natiomal Board of lire Cunderwriters lilectrical Code which says:

Laightning . Lerrstirs - Transmitting Nhations. Exeregt wherepmotered by a contimuous metallic shield (erats) which is permanently and affertimely kromaded, or the antemat is permanemty and effertively srounded, wach rondurtor of a lead-in for onteror antenna shall be provided with a lightning artester or other suitable means which will drain static charges from the antenna sy'sterm.

If coaxial line is used, compliance with the above is readily arhered by grounding the shield of the eose at the point where it is nearest to the ground outside the house. I'se a heaby wire the ahominum wire sold for grounding TV antenmats is good. If the caible cam he rum underground. at grounding stake should be foeated at the point where the cable enters the gromed. The grounding stake, to be effective in soils of average conductivity, should be not less than 10 feet long and, if possible, phated with a metal that will not cor-
rode in the local soil. Making eonnertion to the mutside of the outer cobductor of the coasial lime will nomarly have mo blient on the s.w.r. in the
 print or points.

Open-wire or Twin-Lend transmission lines cun be protected hy installing at surk yap such as the one sketched in Fig. 22-4. The renter contact should be grounded with a No. 4 or larger wire. The watps ("an be made from $1 / 8 \times 1 / 2$-inch that hrass rod shated as shown and the gaps should be sed sufficiontly far apart to prevent thashower during normal operation of the tramsmitter. D opernding upon the power of the tramsmitter and the swer. pattern on the line, the gap may run :anthing from $1 / 32$ to $: 3 / 1 t i$ inch. It will spark intermittently when at thunderstorm is buideng up or is in the general areat.

Rotary beams using a ${ }^{2}$ or gamma mateh and with each element eommeded to the boom will usually be grounded through the supporting motal tower. If the antemat is mounted on a wooden pole or on the lop of the house. at No. 4 or targer wire should be comereted from the beam to the gromed by the shortest and most direet route possible, using insulators where the wire comes close to the building. brom at lightningprotection standpoint, it is desimble to run the coaxial and control lines from a beam down a metal tower and underground to the shack. If the tower is well grounded and the antemna is higher than any surrounding objeets, the combination will serve well ats a lightning rod.

Underwriters' Code

The National lelectrical Satety Code, Pamphlet 70 , Standard of the National Board of Fire Conderwriters, deals with clectride wiring and

Although the operating consold pictured lndow is a pretty large item as it stambs. the method of cometruetion is sueh

 sampraper and a good paint job). topether with a formica top and some chome trim, produces a bery strihinge connole. Setups such as this can make your ham operating a real pleasure.

Fig. 22-3 - Power eircuits for a high-power station. I shows the nutlets for the reeciver, monitoring equipment,

 " ${ }^{*}$ slmuld comert to the mentral" or eommon. A heavyduty switele can be used instead of the relay, in which case the anteman relay wond be rommeeted in rirenit d.
 suitalite windinge on trameformera.
 the "on-nff" eiremit of the recelver.
apparatus. The ('ode was set up to proteet persons and buildings from the electrical hazards arising from the ase of electricity, radio, ete. Article 810 is entitled "Radio Bquipment." The scope of this article, suction 8101, sats, "The article applies to radio and television receiving eguipment and to amatrur radio transmitting equipment, but not to the equipment used in carrier-aurent operation."

The Board of Fïre Underwiters sets up the code as a minimum standard for good practice. Most eities adopt the code, or parts of it, either entirely or with eertain amendments which may apply to that particular city. It is ap to the city to enforce these rules. When a violation is reported, periodic chocks are made by an inspector until a correction is made and to insure against future reeurrence. The National Dilectric Code is only a minimum standard, and compliance with its rules will assure less operating failures and hazards, and groater saffets.

A roper of the pamphlet is available ber writing the National Board of Fire Conderwriters in your eity, or at 85 John Street, New York 38, New York, Ask for pamphlet No. 70.
l'arts of the Cnderwriters' Code deal with power wiring and, in addition to the requirement of the use of Underwriters Laboratory approved materials and fittings, have the following to say of direer interest to amateurs:
"All switehes shall indicate clearly whether
they are open or closed.
"All (switch) handles throughout a sustem . . . shall hate uniform open and closed positions.
". . . supply circuits shatl not be designed to use the groumels nomally as the sole conductor for any part of the cirenit."

The latter motas that wire conductor should be used for all parts of the power cireuit. Dependence should not be placed on water pipes, etc., as oure side of a circuit.

Fig. $22-1$ - I simple lightning arrester made from three stamdeoff or feed-thromph insulators and seretions of brass or copper strap. It shomid be installed in the open-wire or 'I'win-tat line at the mint where it is mearest the prouml motside the homese. "The heavy gromed lead should be as short and direet an possible,

BCI and TVI

livery amater has the ohligation to make sure that the opreration of his station does not, berause of any shorteomings in equipment, callse interforence with other radioservies. It is unfortunately true that mush interferener is direetly the fault of broadeast and TV reeciver construction. Nevertheless, the amateur can and should help to alleviate interforemer evon though the responsibility for it does not lie with him.

Sucessful hamding of interference cases requires winning the listeners cooperation. Here are a few pointers on how to go about it.

Clean House First

The first step ohvionsly is to make sure that the tramsmitter has no radiations outside the bands assigned for amateur use. The best check on this is your own am, or "T' reeciver, It is always eonvineing if you can chemonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be experted to change the interfereme situation, cherk with your neighbors. If wo one is experiencing interferenere, so mueh the better; it does no ham to keep the neighborhood aware of the fact that you are operating without lrothering ancone.

Should you change location, announce your presence and conduct ocrasional tests on the air, reguesting ancone whose reception is being spailed to let sou know about it so steps may be taken to eliminate the trouble,

Act Promptly

The average person will tolerate a limited
amount of interference, but the sooner you take stepe to eliminate it. the more agreeable the listemer will be: the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfore, it is natural for the complaibant to assmme that your tramsmitter is at fanlt. Il you are ererain that the trouble is not in sour tramsmitter. explain to the listemer that the reason lies in the recoiver design, and that some modifications may have to be made in the receiver if he is to expect interfermer-free reception.

Arrange for Tests

Most listeners are not vare competent observers of the various aspects of interference. If at all posible, enlist the help of another amateur and have him operate vour transmitter while you see for youself what happens at the affected receiver.

In General

In this "public relations" phase of the problema great deal depends on your own attit ude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if rou as a person make a good impression. Your personal appearance is important. So is what you say about the recolver - no one takes kindly to hearing his possessions derided. If you discuss your interference probleme on the air, do it ia a construetive way one calculated to increase listemer cooperation, not destroy it.

Interference With Standard Broadcasting

Inturference with a.m. brombasting usually fatls into one or more rather well-defined categories. An understanding of the gencral types of interference will avoid much cut-and-try in finding at cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmiter. Parasitic oscillations are a frequently unsuspected source of such radiations, and no transmitter ean be considered satisfactory unt it has been thoroughly checked for both low- and highfrequeney parasities. Very often patasities show up only as transients, cousing key clicks in cew, transmittersand "aplashes" wi "burps" on modulation peaks in a.m. transmitters.

Methods for doteoting and eliminating parasitics are disensed in the transmitter chapter.

In c.w. transmitters the sharp make and brate that oceurs wit h unfiltered keving catuses transients that, in theory, contain frequency components through the ent ire radiosuect rum. Pratically, they are often strong enough in the immediate viedits of the transmitter to carse serious intarference to broadeast reception. Key dieks can be climinated by the methods detailed in the ehapter on keying.

A distinetion must be made between clicks generated in the tramsmitter itself and those set up by the mere opening and dosing of the key contacts when curvent is flowing. The latter are of the same nat ure as the clicks heard in a receiver when a wall switeh is thrown to
turn a light on or off, and may be more troublesome nearby than the clicks that actually go out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts.

Overmodulation in a.m. phone transmitters generates transients similar to key elicks. It ean be prevonted either by using automatic systems for limiting the modulation to 100 per cent, or by continuously monitoring the modulation. Methods for both are described in the chapter on amplitude modulation.

BCl is frequently made worse bey radiation from the power wiring or the r.f. transmission line. This is berams the signal eansing the interference, in such cases, is ratiated from wiring that is nearer the broadeast receiver than the antema itself. Much depornds on the method used to couple the transmit ter to the antemat, a subjeet that is diseused in the chapters on transmission lines and antemas. If it is at all possible the antennat itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Most present-day broadeast reerivers use a built-in loop antemiat as the grid circuit for the mixer stage. The seleetivity is not esperially high at the sigmal freftiener, Furthermore : an appe(iable amount of signal piek-up usinally occurs on the a.e. line to which the reeciver is commected, the signal so pieked up being fed to the mixer grid ber stray means.

As a result, strong signals from noarbe tramsmitters, even though the transmitting frequence is far removed from the broadeast hand. can force themselves to the mixer grid. They will normally be eliminated by the i.f. selectivity, exeret in cases wher the transmitter fregueney is the image of the broadeast signal to which the receiver is tuned, or when the transmitter frectuence is so related to a harmonic of the broadeast reeriver's local oscillator as to produce a beat at the intermediate frequenery

These image and oseillator-harmonie responses tune in and out on the broadeast receiver dial just like a liroadenst signal, except that in the case of hamonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighborhood of 455 ke , the interference is a true image only when the amateur transmiting frequenes is in the 1800-ke. band. Oscillator-hamonic responses oreur from 3.5- and $7-\mathrm{Me}$. transmissions, and sometimes even from higher frequencies.

Since images and harmonic responses occur at definite frequencies on the recoiver (lial, it is possible to choose operating frequencies that will a void putting suchar response on top of the broadeast stations that are lavored in the vieinity. While your sigual may still be heard when the reerover is tuned off the local stations, it will at least not interfere with program reception.

There is little that can be done to most re-
ceivers to cure interference of this type exeept to reduce the amoment of signal grotting into the set through the ac. line. I line filter such as is shown in Fig. 2:3-1 often will help accomplish this. The values used for the coils and capacitors are in gencral not critiond. The effectiveness of the filter may depend considerably on the ground connection used, and it is advisable to use a short ground lead to a cold-water pipe if at all possible. The line eord from the sot should be bunched up, to minimize the possibility of piek-up on the cord. It maty be neressary to install the filter inside the receiver. so that the filter is conneeted between the line cord and the set wiring, in order to get satisfactory operation.

Cross-Modulation

With phone tranmitters, there are occasionally eases where the voice is heard whenever the broadeast reeriver is tuned to a BC station, but there is no interference when tuning between stations. This is cross-modulation, a result of rectification in owe of the carly stages of the reeciver. Receivers that are susceptible to this trouble usually also get a similar type of interference from regular broadoasting if there is a atrong local BC station and the receiver is tuned to some other station.

The remedy for aros-modulation in the reeriver is the sume as for imatges and oscillatorharmonic response-reduce the strength of the amateme signal at the receiver be means of a line filter.

The trouble is not always in the receiver, since cross modulation can oceur in any nearbe rectifying circuit - such as a poor contact in water or steam piping. gutter pipes, and other conductors in the strong field of the transmitting antennat - external to both recoiver and tramsmitter. Locating the canse may be difficult, and is hest attempted with a battery-operated portable broadrast receiver used as a "probe" to find the spot where the interference is most intense. When such a spot is located, insperetion of the metal structures in the vicinity should indicate the cause. The remedy is to make a good electrical bond betwen the two conductors having the poor contact.

Audio-Circuit Rectification

The most frequent ealue of int erference from operation at the higher freguencies is rectification of a signal that by one means or another gets into the andio system of the reeciver. In the milker cases an amplitude-modulated signal will be heard with reasombly good quality, but is not tumable - that is, it is present no matter what the freguence to which the reeceiver dial is set. An ummodulated carrior maty have no observable affert in such cases bevond cousing a little ham. Howerer, if the sigual is very strong there will be a reduetion of the andio ont put level of the peceiver whenever the cartier is thrown on. This (antses an ammoying "jumping" of the program whel the interfering signal is keyed. With phone transmission the change in audio level is not
so objectionable because it oceurs at less frequent intervals. Rectification ordinarily gives no andio output from a frequeney-modulated signal, so the interferenee can be made almost umoticeable if f.m. or p.m. is used instead of a.m

Fig. 23-1 - A.c. line filter for receivers. The values of C_{1}, C_{2} and C3 are not generally eritical; eapacitances from 0.001 to $0.01 \mu \mathrm{f}$, can be used. L_{1} and La $_{2}$ can be a 2 -inch winding of No, 18 enameled wire on a half-inch diameter form. In making upsuch a unit for use external to the receiver, make sure that there are no exposed conductors to offer a shoek hazard.

Interference of this type usually results from a signal on the power line being coupled by some means into the audio circuits, although the piekup also may occur on the set wiring itself. A line filter as described above may or may not be completely effertive, but in any event is the simplest thing to try. If it does not do the joh, some modification of the receiver will be neressary This usually takes the form of a simple filter conneeted in the grid circuit of the tulse in which the rectification is occurring. Usually it will be the first audio amplificr, which in most receivers is a diode-triode type tube.

Filter cireuits that have proved to be effective are shown in Fig. 2:3-2. In A, the value of the grid leak in the combined detector/first audio tube is reduced to 2 to 3 megohms and the grid is bypassed to chassis by a $250-\mu \mu$ f. mica or ceramic capacitor, A somewhat similar mothod that does not require changing the grid resistor is shown at 13 In C, a $\mathbf{7 5}, 000$-ohm (value not critical) resistor is connected between the grid pin on the tube socket and all other grid commections. In combination with the input eapacitance of the tube this forms a low-pass filter to prevent rf . from reaching the grid. In some cases, simply bypassing the heater of the detector/first andio tube to chassis with a $0.001-\mu \mathrm{f}$. or larger capacitor will suffice In all cases, check to see that the a.c. line is bypassed to chassis; if it is not, install bypass capacitors (0.001 to 0.01μ f).

Handling BCI Cases

Assuming that your transmitter has beon checked and found to be free from spurious radiations, get another amateur to operatc your sta-

tion, if possible, while you make the actual check on the interference yourself. The following procedure should be used

Tune the recoiver through the broadeast band, to see whether the interference tuncs like a regular BC station If so, image or oscillator-harmonic response is the caluse. If there is interference only when a BC' station is tuned in, but not between stations, the cause is cross modulation If the interference is heard at all settings of the tuning dial, the trouble is pickup, in the audio circuits. In the latter case, the receiver's volume control may or may not affect the strength of the interfrence, depending on the means by which your signal is being rectified.

Having identified the cause, explain it to the set owner. It is a good idea to have a line filter with you, equipped with enough cord to replace the set's line cord, so it can be tried then and there. If it does not eliminate the interforence, explain to the sot owner that there is nothing further that can be done without modifying the recoiver Recommend that the work be done by a competent service technician, and offer to advise the service man on the cause and romedy Don't offer to work on the set yourself, but if you are asked to do so use your own judgment about eomplying; set owners sometimes complain about the over-all performance of the receiver afterward, often without justification If you work on it, take it to your station so the effeet of the changes you make can the observed, and return the recoiver promptly when you have finished.

Miscellaneous Types of Interference

The operation of amateur phone transmitters occasionally results in interference on telephone lines and in audio amplifiers used in public-address work and for home music reproduetion. The cause is rectification of the sigmal in an andio circuit.

Telephone interference can be cured by connecting a by-pass eapacitor (about 0) $001 \mu \mathrm{f}$.) across the microphone unit in the telophone handset. The telephone companies have capacitors for this purpose. When such a case occurs, get in touch with the repair department of the phone company, giving all the particulars. Do not attempt to work on the telephone yourself.

In interforence to public-addross and "hi-fi" installations the principal sourees of signal pick-up are the a.e line or a line from the power amplifier to a speaker. All amplifier units should be bonded together and connected to a good ground Make sure that the a.e line is bypassed to chassis in each unit with capacitors of about $0.01 \mu \mathrm{fat}$ the point where the line enters the chassis The

> OETECTOR - Ist. AUDIO

Fig. 23.2- Brolhuls of elime inating r.f from the prif of a
 stager. It R. the: value of the prid boak is reduced to 2 ar 3 mekolnus, and a by pas eapacitor is added. At B both grid and cathode are by passed.
speaker line similarly shonld be hapased to the amplifier chassis with atwout 0.001μ f. If thase measures do not suffice. the shielding on the amptifiors mas be inadergate. A shiold rower and bottom pan shoulal be installed in such
cases. The spot in the system where the reetifieation is oreurting ofton can be localized hes areing if the interference is alferted be the volume rontrol sotting: if mot, the camse is in at stage following the volume control.

Television Interference

Interference with the reception of television signals usually presents a more difficult problem than interforence with a.m. broadeasting. In BCI cases the interforence almost always can be attributed to defiemont selectivity or spurions responses in the BC' reecejer. While similar deficiencies exist in many television recovers, it is also true that amateur transmitters generate harmonies that fall inside many or all television
channels. These spurious radiations eause interference that ordinarily camot be eliminated hy anything that may be done at the recoiver, so must be prevented at the transmitter itself.
'The over-all situation is further complieated hy the fact that television broadcasting is in three distinct hands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies below 30 Mr the TV band of principal interest is the low v.h.f. hand between 51 and 88 Mre. If harmonic radiation can be reduced to the point where no interference is ramsed to (hammels 2 to 6, inclusive, it is almost certain that any harmonic troublese with chamels above 17.4 Me . will disappear also.

The relationship betweren the v.h.f. Welevision (hammels and hamonios of amatelur hands from 1 through 2s Mr. is shown in Fig. 2:;-3. Harnonies of the $\overline{-}$ - and $3 . \overline{0}-\mathrm{Mh}$. bands are not shown because they fall in every urlevision channel. However, the hamonies above is I Me. from these hands are of such high order that they are usually rather low in amplitude, athough they may be strong enough to interfere if the television reeriver is guite close to the amateur tramsmitter. Low-order harmonies - up to about the sixth are usually the most difficult to - diminate.

Of the amateur v.h.f. bands, only 50 Mr , will have harmonics falling in a v.h.f. television channol (chamels 11, 12 and 1:3). However, a transmitter for any amateur v.h.f. hamd may rause interference if it has multiplior stages either tuncd to or having harmonies in ond or more of the v.h.f. TV ehannels. The r.f. enorgy on suth frequencias ram be radiated directly from the transmitting circuits or compled by stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation artually in the TV chamel must be supperesed depends principally on two fartors, the strength of the 'TV signal on the channel or chanmels
affected, and the relationship between the frequeney of the spurious radiation and the frequenries of the TV pieture and sound carrices within the chamel. If the TV signal is very strong. interference ran be eliminated by comparatively simple methods. However, if the 'TV signal is very weak, as in "fringe" areas where the rereived pioture is visibly degraded he the aperarather of sot noisc or "snow" on the sereen, it masy le neressary to go to extmone measurs.
In either ease the intensity of the interference depends very greatly on the exact frequeney of the interforing signal. Fig. 2:3-t shows the placement of the picture and sound carriers in the stamdard TV channel. In Channel 2, for example, the picture rarrier frequency is ist $+1.25=$ 35.2. Mr. and the sound carrier frequency is $60-19.25=59.75 \mathrm{Mc}$. The second harmonic of $28,010 \mathrm{kc}$. $(56,020 \mathrm{kc}$. or 56.02 Mc.$)$ falls $50.02-$

 relative intenaty of interfermer as the lacation of the intorfering signal within the chandel is saried wihoul changime its strength. The three rexions are mot arthally sharply defined as shown in thi- drawing, hat meree into one amother pradually.
$5 t=2.02 \mathrm{Mr}$: above the low edge of the chamed and is in the region marked "severe" in Fig. 2:3-4. (W) the other hamd. the serond hamomic of
 Me. from the low odge of the ehaned and faths in the region marked "Mild." Interferener at this frequeney has to be about lot times ass strong as at $56,020 \mathrm{ke}$. to cature offeres of cqual intemsity. Thus an oprating frequeney that puts a hamonic near the picture carrior requires abont fll (l). more hamonic suppresion in order 10 avoid interforonce, as compared with ath oprrating frequence that puts the hamenic near the upper cdge of the chammed.

For a region of 100 ke or so cither side of the sound earrier there is another "siovere" region Where as sparions radiation will interfore with recoption of the somad program, and this region also whoud be awoded. In gencrat, a signad of internity equal to that of the picture carrior will not canse moticeable interterence if its frequenes is in the "Mild" region shown in Fig. 2:3-1. but the same intensity in the "sovero" region will utterly destrow the piefure.

Interference Patterns

The wisible effect: of interforence vary with the trpe and intensity of the interterence. Comphere "hatakout," where the pieture and sound disappear eomplenty, heaving the somern dark, oceurs only when the trammitere and reevioer are equite close together. Strong interdenene ordinatily eauses the pieture to be broken up, lataing a jumble of light and dark lines, or turns the pieture "nogative" - the nommally white parts of the pioture tum batek and the nomally black parts turn white, "(ross-hatehing" - diagomal bars or lines in the pieture - accompanies the

 tweon the pheture carrier and an interfering signal inside the 1 ' ${ }^{\prime}$ bamel.
latter, usuallys amel alsa represents the most common type of less-sovere interferenes. The bars are bere result of the beat betweren the harmonice fresumenes and the pioture carrier frequence. They are brod and refativoly few in number if the beat frequener is comparatively low - noar the pieture carrier - and are nomerous and very fine if the beat froqueney is very high - loward the upper end of the chanme. Trpieal crosshateding is shown in Fig. 2:3-i). If the frequency falls in tho "Mile " region in Fig. 2:3-t the crosshatehing maty be so fine as to be visible ondy on close insperetion of the pictures. in which case it may simply catuse the appatent brightaess of the sween to thange when the transmitter carrier is thrown on and offi.

Whether or not reoss-hatehing is visible, an amplitude-modulated transmittor may cause

Fig, 23-6 - "somud bars" or "monlulation latre" arcompansing amplitule modulation of an interfering signal. In this rase the interfering varrier is strong enongh to deatros the pietures lat in mild rases the pirture is sisibte througlt the horizontal hars, somed hars may
 carrier gives no bisible (cross-hathehing.
"souncl hars" in the pirture. These look alwout as shown in lig. e2:3-ti. They result from the variations in the intensity of the intertering signat when modulated. Cindor most rircumstanes modulation hatre will mot oreme if the amsterer transmitter is freoumene or phasemodudated. With these treper of motulation the erose-hatehing will "wiggle" from side to side with the mondulation

Fixerpt in the more serere eases, there is soldom any defere on the sound reception when inter-
 is quite chose to the sound carrior. In the lateme event the sound mas be interfered with even thotroh the picture is clean.

Raferenee to Fig. 2:3.3 will show whether or not harmoniss of the frequener in use will fall in any television channels that can be rederiod in the locality. It should be kopt in mind that not only harmonies of the final frecguence may interfore, but also harmonis of any frevuencias that mate be present in buffer or froquonev-multiplier stager. In the case of 111-Me tramemitters, fre-quenes-multiploing combinations that rerpuire a doubler or tripher stage to operate on a frequency actually in a low-hand w.h.t. channel in use in the locality shouk be avoided.

Harmonic Suppression

Effertive harmonic supprossion has three separate phases:

1) Reduring the amplitude of hamonies generated in the tramsmitter, This is a matter of "ireuit dexign and operating comditions.
2) Preventing stray radiation from the transmittor and from assuciatod wiring. This requires adequate shimding and filtering of all circuits and lats from which radiation ean take phate
3) Proventing hamonies from being ferl into the ant ennat.

It is impossible to huikd at transmitter that will not gencrate some harmonics, but it is ohsiously advathtageous to reduce their strength, be eirruit design and choice of operating conditions, hy at large a fater as posible before attempting to present them from being radiaterl. Harmonic radiation from the transmitter itede or from it: asociated wiring ohviously will caluse interference just as realily as radiation from the antema, so motsures taken to provent harmonirs from reaching the antomat will mot reduce TVI if the tamsmittor itsolf is radiating harmomfes. But one it has beren found that the transmitter itsolf is free from harmonic rauliation, devices for preventing hamonics from reaching the antema can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasomably-rfficiont operation of r.f. power amplifiers always is arcompanied bey harmonic gencration, good judgment catls for operating all freguencr-multiplier stages at a vory low power level - plate voltages not exreeding 2:0 or 300 . When the final output frequency is reached. it is desirable to we as fow stages as possible in buidding up to the final output power level, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Itarmonic curronts of considerable amplitude flow in both the grid and plate circuits of r.f. power amplifiers, but they will do relatively little harm if they can be effectively bypassed to the cathote of the tube. Fig. 2:3-t shows the paths followed by harmonic eurrents in an amplifier aircuit: because of the high reactance of the tank coil there is little harmonic current in it, so the
harmonic currents simply flow through the tank rapatitor, the phate (or grid) bloching capacitor, and the tule capacitances. The lengths of the leads forming these pathe is of great importance, since the inductane in this circuit will resonate with the tuloc capacitanee at some frequencer in the v.h.f. range (the tank and blocking caparitances usually are so large compared with the tube capacitance that ther have little effect on the resonatht frequencer). If such a resonance happens to oredrat or now the same frequence as one of the transmitter harmonies, the effect is just the same as though at hamonie tank cireuit had beendeliberately introdued; the harmonic at that frequency will be tremendously increased in amplitude.

Fifs. $23-7$ - A v.h.f. resonant circuit is formed by the there raparitance and the leads through the tank and bowhing capacitors. Regular tank moils are not slawn, sime they hawe litile effert on abd resonatures. C_{1} is the erid tuning eapacitor and Cis is the phate tuming calpatitor. Cia and Cis are the wrid and plate hotohing or loy-pase capacitors, respectively.

Such resonaners are unavoidable, but be keeping the path from plate to cathode and from grid to cathode as shot as is physicatly posithle, the resomant frefuency watly can be raised abose 100 M (. in amplifiers of modium power. This puts it botwern the two groups of tele wision chammels.

It is calsier to place grid-cireuit v, h.f. resomaness where they will do no harm when the amplifier is link-eoupled to the driwer stage, sine this genarally permits shorter leads and nore fatorable conditions for bepassing the harmonies than is the case with capacitive roupling. Link coupling also roduces the coupling botween the driver and amplifier at harmonic fregumencs, thus preventing driver harmonis from being amplified.

The inductance of leads from the tube to the tank capacitor can be reduced not only low shortening but bevering flat strip instead of wire eonductors. It is also better to use the chassis as the roturn from the blocking capacitor or tumed circuit to "athode, since al chassis path will have less inductance than almost any other form of connertion.

The v.h.f. resonance points in amplifice tank circuits can be found be coupling a grid-dip moter covering the $50-250 \mathrm{Me}$, range to the grid and plate leads. If a resonance is found in or near a TV chammel, mothods surh as those deseribod above shoukd be used to move it woll out of the TV :ange. The grid-dip meter atso should be used to check for v.h.f. resomances in the tank coils, beatuse coils made for it Mre and below usually will show such resonatmees. In making the chock, disconnet the coil entirely from the tranmittor and move the grid-dip meter coil along it while
(exploring for a dip in the 5-1-88 Me. band. If a resoname falls in a TV chamel that is in use in the localite, changing the number of turns will move it to a frequency where it will not he troublerome.

Operating Conditions

Grid bias and gridel current hatre an important efferet on the hammenie content of the ref. currents in both the grid and plate cirruits. In general, harmonic output inceretses as the grid bias and grid current are incraved, but this is not necessarily true of a perticular harmonie. The third and higher harmonics, (especialls, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic at compared with a low value of grid current. This characteristic can be used to adrantage where a partieular harmonie is camsing interference, keeping in mind that the opreating conditions that minimize one harmonic maty freatly increase another.

For equal operating conditions, there is little or no difference betwern single-rnded and pushpall amplifiers in respert to harmonic generation, Push-pull amplifiers are frequently trouble-makers on even harmonies becoltse with such amplifiers the even-harmonie voltages are in phase at the conds of the tank cireuit and hemere appeat with equal amplitude alerose the whole tank coil, if the center of the coil is not grounded. Inder such diremmstances the even harmonies can be coupled to the output cireuit through stray capacitance bertwere the tank and coupling eroils. This does not oredr in a single-ended amplifier if the coupling coil is placed at the cold rom of the tank.

Harmonic Traps

If a harmonie in only one TV chamol is partieularly bothersome - frerguently the case when the tramsmitter operates on 28 Me. - a trap, tuned to the harmonic frefurnoy may be installed in the plate lead as shown in Fig. 2:3-8, At the hatmonic frequence the trap represents a very high impedane and hence reduecs the amplitude of the harmonic current flowing through the tank cireuit. In the push-pull cireuit both traps have the same remstants. The L / C ratio is not eriticell but at high-(cireuit usuatly will have least effeet on the perfomance of the pate circuit at the mormal operating frequency.
since there is a comsiderable harmonic voltage arross the trajp, ratiation may oreur from the trap unless the transmittor is well shiched. Traps should be placed so that there is no compling between them and the amplifier tank cirenit.

A trap is a highly-selective devien and so is useful only over a small range of frequencies. A eecond- or thied-harmonic: trap on : 2s-הle, tank cireuit usually will not be effective over more than 50 ke . or som at the fumbamemat frequenes, depending on how serious the interference is without the trap. Becatuse theo are eritical of :aljustment, it is botter to prevait TVI by ot her intams, if posible, and use trats only as a last resort.

Fig. 23:8-Harmomic traps is an amplifine mate circmit. L and C Phould resomate at the froqueney of the har. monic to lwe suppresed. (C may lue a midget, and L usually consists of 3 to 0 turns about $\frac{1}{2}$ inch in diameter for © :hannels 2 throngh t. The inductaner should le adjusted so that the Irap resomates
 the transmitter. It may be checherl with a srid-dip metir. When in place, is is adjusted for minimuminter. ference to the "TV pieture.

- PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be catused by direct ratiation of spurious signals depends on the operating froquener, the transmitter power level, the strength of the television signat, and the distanee betwern the tramsmiter and TV rereiver. Transmitter radiation can be a very serious prohlem if the TV signal is wat, if the TV recoiver and amataur tramsmittor are close together, and if the tramsmitter is operated with high power.

Shielding

Direct ratiation from the transmitter cireuits and components can be prevented by proper shielding. To be effertive, is shield must completely enclose the cireuits and parts and must hate mo operings that will permit f , f. energy to escape. Unfortunately, ordinary motal boxes and eabinets do not prowide grool shiedding, sine such openings as lourers, lids, holes for running in comeretions, and so on, allow far too much leak:age.

A primary requisite for good shielding is that all joints must make a good clectrical commertion along their cutire length, 1 small slit or artek will hot wat at surprising amomet of r.if, metgy: so will wemthating louwers and latur holess such as those used for mounting meters. Wh tho other hatno, small holes do not impair the shidding very gratly, and a limited mumber of ventilating
holes may be used if they are small - not over $1 / 1$ inch in diameter. Also, wire sereen makes quite difertive shidding if the wires make good oleretricat domertion at bach roswover. Perforated ahaminum such as the "do-it-woursolf" sold at hardware stores also is good, althongh not very strong mechamically, If perforatod material is used, cheoses the variety with the smallest oponinge. The lakage through latge openinges ran be very much reduced by covering such operninge with sereming or perforated ahminum. well bonded to all edges of the opening.
 tors, tubes and wiring decreases very rapidly with distaner, so shichling is more effertive from : pratical standposint, if the components and wiring are not tor close to it. It is advisable to havera separation of several inches, if possible, betwern "hot" proints in the cirruit and the nearest whichling.

For at given thickness of metal, the greater the condurtivity the better the shiolding. Copper is best, with aluminum, brass and stere following in that order. Howerer, if the thickness is adecpate for structural purposcs (over 0.02 inch) and the shied and a "hot" point in the cirenit are not in Cose proximity, ang of these metals will he satisfactory Greater separation should be used with sted shideling than with the other materials mon only berame it is ronsideratbly poorer as a shided but also beramse it will canse greater losses in near-here revats than would copper or alumimm at the same distance. Wier sereen or perforatel metal used as a shiold should also be kept at some distanere from high-voltager or high-eurrent r.f. points. sinere there is considerably more loakage through the mesh than through solid netal.
Where two piocers of medal join, ats in forming : (eormer, they should overlap) at heast at half ind and be fistened together firmly with serews or bolts spued at rloseromough intervals to matistain firm contart all along the joint. The comtant surfincos should be clean before joining, and should twe checked oce: wionally - expecially sted, which is almost rertain to rust after a period of time.
The leakage through a given size of aprerture in shiedding increases with fremuener, so such points as good continuons contact, sereening of large holes, and so on, berome even more important when the radiation to he suppressed is in the high band - 17-2 216 Mr. Hence 50- and IItMe, transmitters, which in gencral will have frequemer-multiplier harmonies of relatively high intensity in this region. require spectal atfention in this respere if the possibility of interfering with a chamel received locally exists.

Lead Treatment

liven very good shichding can be made comphetely useless when comertions are run to external power supplies and other equipment from the cirenits inside the shield. Every such comductor heaving the shielding forms a path for the escape of r.f., which is then ratiated by the com-
necting wires. Ifence a step that is essential in every case is to prevent hamonic curronts from flowing on the leads leaving the shimded andosure.

Hatmonie currents always fow on the dee or a.c. leads commerting to the tuln eireuits. I very - ffective means of preventing stoch currents from being colupled into other wiring, and one that provides desibable bepassing as wefl, is to use shiclded wire for all such leads, maintanimg the shiclding from the point where the lead comerets to the tube or ref. eireuit right through to the point where if leates the chassis. The shield braid should be groumded to the ehassis at both couls and at fremuent intervals ahong the path.
(iend bypussing of shiedded lewts also is essontial. Bearing in mind that the shied! braid ahout the conductor confines the harmenie currents to the inside of the shielded wire, the ohject of berpassing is to prevent their escape. Figs. 2:3-! and 2:3-10 show the proper way to hepass. The smatltype (I.10)1-mi. reramie disk eapecitor, whon mounted on the and of the shiededed wire as shown in Fig. e2:3-9, athatly forms a sorics-resonant
 sonts practically a short-circuit for low-hand 'TV harmonids. The exposed wire to the comention terminal shombel be kept as short as is physieally. possible, to prevent any pessible hatrmonie piek-
 tors of this capaciandere ate availdhere in several woltage ratings up to 3000 volts. For higher voltares. the maximum capacitance avaitathe is : 1 pproximately 50 ot $\mu \mu \mathrm{l}$. Which is large enough for good bypassing of harmonios. Altornatively, mical (athacitors may he used as shown in fig. 2:3-10, mounting the eapumber flat aminst the Whassis athed grounding the end of the shichd braid direatly to thassis, kemping the exposed part as
 ($000 \mu \mu \mathrm{f}$.) (eapacitors shoulal be used. The harger (apamitane is sorios-resonant in Channel 2 and the smatler in Chamel 6 .

Fip. 23-9 - Proper method of leypassing the end of a shielded lead using alisk caramic capacitor. 'I'he $0 .(001$ μ f. sige shombl be usad for Ifoto volts or less; $5000 \mu \mu$. at highor voltages. "The leads are wrapped around the inner and outer conductors and soldered, so that the lead lenglh is negligible. 'Ihis photograblis is alrout four times actual =iza.

Fis, 23.10-13ypassing with a mira rapacitor the end of a high-soltake lead, 'Ther end of the shiml lratal is soblered to a lus fastuned to the chamix directly under. Weath. 'The other terminat of the capacitor is similarly belted diractly to the remesis. When tha ligpase is need at a terminal womeroison black the "hot" leat sheuld be soddered diredty to the trminal. if posisible, lout in ans event commeded to it lis a wrs shert liad.

These bypases atre cesential at the ernmertionbloek terminals, and desirable at the fobe ands of the leats also. Installed as shawn with shideded wiring, they have been found to be so effertive that there is usuatly no need for further harmonic. filtoring. Howewer, if a test shows lhat additional filtering is required, the arrangement shown in Fig. 23-11 may be used, surh an r.f. filter shombld be installed at the tulse cond of the shieded leat, and if mowe that one eirenit is filtered care should he taken to lemp the r.f. chokes separated from eathother and saoricnted as to minimize roupling between them. This is necessary for preventing harmonies present in one aitedit from boing compled into amother.

In difficult cases involving ('hamels $\overline{\mathrm{T}}$ to $1: 3$ i.e., chase proximity betwen the tramsmitter and reorover, athd a woak TV' signal - additional leadfiltoring mosures may be beeded to prevent radiation of interforing signalshy ato and Itt-Mr. transmitters. A recommended method is shown in Fig. 2:3-12. It uses at shiclded lead bypassed with a ceramice disk as deseribed above, with the adtition of a low-indurtane feed-through type capacitor and a sumall r.f. choke. the apmetor being used as a terminal for the external comeretion. For voltages above f10), a (abpacitor of compart construction (as indicated in the (ap)tion) should tre used, monnted so that there is a very minimum of exposed lead, inside the chassis, from the eapaceitor to the eonneretion terminal.

As an alternative to the series-resonant bypassing deserilodabove, feed-through type capacitors such as the Suragne "llypass" type may
be used as terminals for external connertions. The ideal method of installation is to mount them so they protrude through the chassis, with thorongh bembere to the chateris all around the hole in which the eapenitor is monted. The primeiph is illust rated in Fig. 2:3-13.

Meters that are mounted in an r.f. unit should be enclosed in shielding covers, the conneretions being made with shieded wire with earh lead bypassed as described above. The shiald brame should be gromaded to the panel on chassis immediately outside the moter shiold, as indicated in lig. 23-14, A hypass may also be connerted across the meter torminals, prineipally to prevent any fundamontal current that may be present from flowing throngh the meter itself. As an alternative to individual meter shideling the meters mave be monted ontirely behind the paned, and the panel holes noved for obsorvation may be revered with wire sereen that is carefully bonded to the pated all around the hole
(':are should be used in the selection of shielded wire for transmitter use. Not only should the insulation to conservatively rated for the d.c. volt-

Fís.2.3.12 - Additionallead filtering for harmonios or other spurions froguencies in the high v.h.f. TV haud (15:-216 Mc)
(1 - $1,001-\mu$ f. dish reramic.

HFC - 14 inches No. 26 emamel close-wound on 3ío inch diam. form or resistor.
age in use, but the insulation should be of material that will not casily deteriorate in soddering. The r.f. charateristics of the wire ate not esperially important, exerpt that the attemation of harmonis's in the wire itself will be greater if the

Fig. 2:3-1/ - Additional r.f. filtoring of supply leads may le required in rekions where the TI signal is wry wak. The rif. choke should the physieally small. and may comsist of a 1 -imeh winding of to, 20 wnameled wire on a 3 -imeh form, close-wouml. Mambactured single-laver chokes having an indnetance of a few microhenrys alan may lue nead.

Fif, 23-13 - The hest method of using the "ll wase" type feed-through capacitor. Capacitances of 0,01 to $0.1 \mu \mathrm{f}$. are sati-factory, Caparitors of this type are useful for hikh-current cirruits, such as filament and 115 -volt leadr, as a substitute for the r.f. choke shown in lig. 2:3-11, in eases where additional lead filtering is needed.
insulating material has high loses at radio frequermes: in other words, wire intended for use at d.c. and low frequencios is proferable to eables dosigned expessly for carruing r.f. The attenuation also will increase with the length of the wire: ingeneral, it is better to make the leads as long as circumstane permit rather than to follow the more usual practiee of using no more lead than is artually necessary, Where wires cross or rum parallel, the shields should be epot-soldered together and connected to the chassis. For high voltages, atomobile ignition cable covered with shielding braid is recommended.

Proper shidding of the transmitter requires that the r.f. circuits be shidded entirely from the external comecting leads, A situation such as is shown in Fig, 23-15, where the leads in the r.f. chassis have been shieded and properly filtered but the chassis is mounted in a large shiold, simply invites the harmonic currents to travel over the chassis :and on out over the leads outside the chassis. The shichling about the r.f. circuits should make complete contact with the chassis

Fis. 23-l4-Meter shielding and bypasing, It is cosential th abed the meter monnting hole since the meter will earry r.f. through it to the radiated. Suitable shields can ber made from $21 / 2$ or 3 -ineh diameter metal cans or small metal chassis boxes.
on whinh the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devios for prewenting harmonics from reaching the antemat system. The only really satisfactory indicating instrument is a television recoiver. In regions where the TV signal is strong an indicating wavemoter such as one having a crystal or tube detector may be uscfut; if it is possible to get any indication at all from hamonies either on supply leads or around the transmittor itself, the hamonies are probathy strong enough to cause interforence. However, the afsence of any such indication does not moan that harmonie interference will not be catused. If the terhnigues of shidding and kad tiltering deseribed in the

Fís. 2.3-1.5-A metal calinet can lo an adequate shimb, bint there will still be radiation if the leads inside can pieh up r.f. from the transmitting cirenits.
precoding section are followed, the harmonie intensity on any external leads should be far below what ans such instruments can deted.

Radiation cheeks should be made with the transmitter delivering full power into a dummy anterana, such as an incandescent lamp of suitable power rating, preferably installed inside the shiclded enclosure. If the dummy must be external, it is desirable to commer it through a coaxmatching circuit such as is shown in lig. 23-16. Shielding the dummy antenna cireuit is also desirable, although it is not always neressary.

Make the radiation test on all frequencies that are to be used in tramsmiting. and note whether or not interferenee patterns show in the received picture. (These tests must be mate while a TV' signal is boing reroved, sinco the beat patterns will not be formed if the 'TV pieture carrier is not present.) If interforenee exists, its source can be deterted by grasping the various extermad leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape

 monie radiation from ibe tramaniter and leade. The
 of the transmittor from flowing hach oner the tramsmitter iscelf, which may meor if the lamplonad is simply comerted to the outpit coil of the linal amplifior. Se transmissiondinw chapter for detailo of the matehing cirenit. 'lumine must be aljusted be cht-and-try, as the bridge methond deacriderd in the tran*mixaion-line chapter will not work with latup loads loreanse of the change in resistame when the lampsare hot.
from the transmitter. If any of these tests cantis a change - not neeressarily an increase - in the intensity of the interderene: the preseme of harmonies at that perint is imdeated. The location of such "hot" spots wedalle will point the way to the remedy. If the TV reerever and the tamsmitter (an be operated side-hs-sithe, a longh of wire commerted to one antemat terminal on the reenem can be used as a probe to go over the transmither endosure and external leads. This dovice will very quackly expose the spots from which surious leakage is taking plame

As a final test. conneret the tramsmitting antemat or its tramsmission line temminals to the outside of the tamsmitter shideling. Interference ereated when this test is applied indicates that weak currents are on the outside of the shielid and can be conducted to the antema when the normal antemat connertions are used. (iuremas of this mature represent interferener that ran be conducted over low-pass fillers, etre, and which therefore camont be eliminated by such filters.

PREVENTING HARMONICS FROMi REACHING THE ANTENNA

The third and hast step in reducing harmonie TVI is to kerp, the spurions energy generated in or passed through the final stage from traveliag over the transmission line to the emommat. It is seddom worthwhile even to attempt this until the radiation from the transmitter and its comerting leads has been redured to the point where, with the tramsmiter delivering full pown into a dummer antemat, it has lxen doterminel by artual testing with a television receiver that the radiation is below the level that can camse interference. If the dumme antenna tost shows onough radiation to be seen in a TV pieture, it is a practical certainty that harmonices will be coupled to the antema sistem no matter what preventive measures ate laken.

In inductively-eouphed mutput systrms, some harmonic enorgy will la transferred from the final
 the tank coil and the output compling coil. Itatmonics of the outpon frectueney transfered in this way can be greally reduced l,y providing
sufficient selectivity betwern the final tank and the transmission line. A good deal of selertivity, amounting to 20 to 30 db , reduetion of the second harmonie and muth higher reduction of higher-order harmonics, is furnished by a matehing cirenit of the type shown in Fig. 23-16 and deseribed in the chapher on transmission lines. An "antenna coupler" is therefore a worthwhile addition to the tramsmitter.

In 50 - and 14-Ne. transmitters, particularly, harmonics not direetly assoriated with the output frequency - such as those generated in low-frequency early stages of the tramsmitter - maty get roupled to the antema bey stray means. For example, a $14+$ - Ife transmitter might have an oscillator or frequency multiplier at 18 Mc . followed be a tripter to 1tt Mc. Some of the 48-Me. energy will appar in the plate circuit of the tripler, and if passed on to the grid of the limat amplifier will appear as a 4 A - Me modulation on the $1+1-\mathrm{M}$ (e, signal. This will cathe a spurious signal at 192 Me., which is in the high 'TV' band, and the sele tivity of the tank circuits may not be sufficicut to prevent it:: being coupled to the antema. Spurions signals of this type can be reduced by using link conpling between the driver stage and linal amplifier (and between entier stages as well) in addition to the suppression aflorded by using an antemat coupler.

Capacitive Coupling

The upper drawing in fig. 2:3-17 shows a parallel-conductor link as it might be used to (couple into a parallel-conductor line through a matching circuit, luamuch as a coil is a sizable metallie objert, there is capacitance between the final tank coil and its associated link coil, and between the matehing-cirenit coil and its link. Finergy coupled through these eapmomances traw over the link cireuit and the transmission line as though these were merely single conduetors. The tuned circuits simply ant as mases of metal and offor no selectivity at all for capaci-tively-coupled energy, Although the actual capacitanese are small. they offer a grood coupling madium for frequencies in the v.h.f. range.

Capacitive coupling can be reduced by coupling

Fig. 2:3-1" - 'iln' atrat eaparitive coupling letwern coils in the upper cirenit leads to the equivalent ciremit shown below, for w, b,f. harmonies.

Fig. 23-18 - Mrthonds of coupling and sronuding link circoits to rerluee ${ }^{-}$ caparitive compling belweren the tank and link coils. Where the link is wound over ond end of the tank coil the sille toward the hot end of the tank shoulal be grounded, as shown at B.

to a "cold" point on the tank coil - the end connerted to ground or cathode in a single-rnded stage. In push-pull circuits having a split-stator capacitor with the rotor grounded for r.f., all parts of the tank woil are "hot" at even harmonies, but the center of the coil is "rold" at the fundamental and odd harmonies. If the center of the tank coil, rather than the rotor of the tank capacitor, is grounded throngh a bepass capacitor the center of" the coil is "cold" at all frecumenes, but this arrangement is not very desirable berause it rabses the harmonic currents to flow through the coil rather than the tank capacitor and this increases the harmonie transfer by pure inductive coupling.

With rither single-ronded or balanced tank circuits the eoupling coil should be grounded to the chassis by a short, direct connection as shown in Fig. 23-18. If the coil feeds a balaneed line or link, it is preferable to ground its center, but if it feeds a coax line or link one side may be grounded. Cousial output is much preferable to balanced output, because the harmonies have to stay inside a properly installed coax system and tend to be attonuated by the cable before reaching the antennat coupler.

It high freguencios - and possibly as low as 14 Ne, - capacitive coupling can be greatly redaced he using a shichled roupling coil as shown in rig. 23-19. The inner conductor of a length of coaxial eable is used to form a onc-turn coupling coil. The outor conductor serves as an open-eirenited shield around the turn, the shield being grounded to the chatsis. The shimbling has no effere on the inductive coupling. Because this construction is suitable only for one turn, the coil is not well adapted for use on the lower frequencies where many turns are recguired for good coupling. Shiclded coupling eoils having a larger number of turns are available commerecially. A shiched coil is particularly useful with push-pull amplifiors when the suppression of even harmonics is important.

A shiedded coupling coil or conxiad output will not prevent stray eapacitive coupling to the antoma if hamonic currents can flow over the outside of the comx line. In l"ig. 23-20, the arrangement at wither A or C will allow r.f. to flow over the outside of the cable to the antenna system. The proper way to use roaxial cable is to shiold the transmitter completely, as shown at 13, and make sure that the outer combuctor of the eable is at continuation of the transmitter shichling. This prevents r.f. inside the tramsmittor from getting out by any path exeept the inside of the cable. Itamonics flowing through a coax line can be stopped from reaching the antenna system by an

Fig. 2:3-19 - Shielded compling coil constructed from coaxial cable. Thesmallersizes of rable such as $160-59 / \mathrm{C}$ are mont convenient when the coil dianter is 3 inches or less. because of preater flexibility. For larger eoils 1RG-8/U or RGG-11/L can be used.

Fig. 2:3-20 - Wight (B) and wrong (1 and C.) ways to emmert a coasial line to the transmitter. In riture A ar C, Darmonie enerey couplod by stray raparitame to the outside of the calile will flow without hindrance to the antenna system. In B the energy cannot leave the shield and hence can flow out only through, not over, the cable.
antomat coupler or by a iow-pass filter installed in the line.

Low-Pass Filters

A low-pats filter properly installed in a maxiad line, foeding wither at matehing eircuit (antenna (coupler) or ferming the antenna divertly, will provide very great attembation of harmonics. When the matin tratminission lime is of the paralle l-conductor type, the coas-roupled matehing-rimuit arrangement is highly recommenderl as a means for using a coax low-pass filter.

A property-dasigned low-pass filter will mut introduce apporeciable power los: at the fundamental frepueney if the coasial lime in which it is inserted is terminaterl so that tho s.w.e. is low. (The sw.s. catr catily be measured be means of a simple bridge as described in the chapters on measuremonts and transmission lines.) such at filtor has the property of passing without loss all frequencies bedow its "cut-olf" frequences, but simultamonsty hat large attenation for all frequencios alove the eut-off frequency.

Low-phis filters of simple and inexpensive construchion for use with trammitters operating below 30 Me. ate shown in liges. 2:3-21 and 23-2:3. The formor is dosigned to use mira rapacitors of readily-atvailable capacitance values, for comparemess and bow eost. Both use the same rircuit, liig. 2:3-22, the onty differemere being in the L and 6 values. "hochnically, they are three-seetion filters having two full constant-k sertions and two m-derived tominating half-sedtons, and their atternation in the 5 t-88-Ne range varies from over 50 to nearly 7 () (dh., depending on the frequencer and the particular set of values used. Whove 17 il Me, the theoretical attenuation is better than 85 db., but will depend somewhat on internal resonant conditions associated princi-

Fig. 23-2I - An inexpensive low-pass filter using silvermiea perstare + stamp rapacitors. The box is a 2 by 4 by 6 alumitume ehassis. Auminum shicloks, bent and foldal at the sides and lowtem for fasioning bo the chassis. form shiehds leetween the filter swetions. The diagonal arrangement of the diedde prosides extra room for the rosils and makes it easier to fit the shimbs in the bown simere bending to exact dimensions is not essential. The bottom plate, made from shart aluminum, dextends a half ineh leyound the emds of the chassis and is provided with mounting holes in the extensions. It is held on the chassis with sheet-metal serews.

Fig, 23-22-Tow-pass filter rirenit for attemating harmonirs in the I'V bands. J_{1} and J_{2} are eltassist ype eoasial enmertors. In the table below the letters refer to the following:
 tors in parallal for C. 2 and C:3.
 prarallel for C. C_{2} and (C_{3}.
(: - I sins 100. and Blo- 10 f. mica capacitore, 1200 - oolt (cast-st vle (:N1-15) in parallel for (iz and C3.
 volt rating, adjusted to values given (are measure. ments chapter for data on measuring capacitance)

	A	13	(I)	E	
Z_{0}	52	75	52	52	7.5	ohms
$f_{\text {c }}$	36	35.5	41	40	40	Mr.
f_{∞}	44.4	17	54	50	50	Mr .
f	25.5	25.2	2)	28.3	28.3	Mc.
f_{2}	32.5	31.8	37.5	36.1	36.1	Me.
$\mathrm{Cl}_{1}, \mathrm{Ca}_{4}$	50	40	50	16	32	$\mu \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{Ci}_{3}$	170	120	1.50	151	100	$\mu \mu \mathrm{f}$.
$L_{1}, L_{\text {S }}$	51 \%	6	4	5	01/2	turis*
I_{2}, L_{4}	8	111	7	7	91/2	turns*
L_{3}	9	13	8	$81 / 2$	$111 / 2$	turns*

* No. 1: or Vo. 14 wire, $1 / 2$ inch inside diameter, 8 thrns per ineh.
T ()-turn roil with eloser turn -pacing to give the same inductance is alown in lig. 23.21
pally with the lead longthe to the rapacitors. These loads should be kept as short as is phusically possible.

The power that filters using misa capacitors can handle safcly is determined by the voltage and curent limitations of the caparitors. The power caparity is loast at the highest fredueney. The unit using postage-stampsilver mica caparitors is capable of handling appoximately 50 watts in the 28-Mc. land, when working into a prop-arly-mat ched line. but is good for about 150 watts at 21 Mr, and 300 watts at $1+$ No, and lower froquencios. A filter with larger mica capacitors (cast
 28 Me., this rating increasing to 500 watts at 21 Me. and a kilowatt at $1+$ Me. and lower. If there is: an appreeriblle mismat ch betwern the filter and the line into which it works, these ratings: will be considerably decreased, so in order to avoid caparitor failure it is highly essential that the line on the output side of the filter be carefully matched by its load. This can be done with an s.w.r. bridge,

Fig. 23.2.3-I.Ow-paca filter using variable air capacitors. The box is a 2 ly 5 hy \bar{T} ahmmum chassia, fitted with a bottom plate of sinilar construetion to the one used in Fig. 23.21 .
and the matrhing is easy to control if the line from the filter terminates in a matehing circuit of the type described in the chapter on transmission lines.

The power capacity of these filters can be inereased considerably by substituting r.f. type fixed capacitors (such as the Centralah 850) series) or variable air capacitors, in which event the power capability will be such as to handle the maximum amateur power on any band. The construction can be modified to aceommonate variable air capacitors as shown in Fix. 2:3-23.

L'sing fixed caparitors of standard tolerances, there should be little diffienlty in qetting proper filfer operation. A grid-dip meter with an accurate calibration should be used for adjustment of the cuils. First, wire up the filter without L_{2} and L_{44}, Short-cireuit J_{1} at its inside end with a serewdriver or similar conductor, eouple the grid-dip meter to L_{1} and adjust the inductance of L_{1}, by
varying the turn spacing, until the eireuit resonates at f_{8} as given in the table. Do the same thing at the other end of the filter with L_{55}. Then couple the meter to the cirenit formed $b_{1} y L_{23}$, C_{2} and $C_{3}{ }^{3}$, and adjust I_{23} to resonate at the froqueney f_{1} as given by the table. Then remove L_{3}. install L_{0} and L_{4} and atjust L_{2} to make the rircuit formed bey L_{1}, L_{2}, ('1 and ('z (without the short arross \dot{J}_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the eireuit formed $b_{y} L_{4}, L_{5}, C_{3}$ and C_{4}. Then replare L_{3} and cherk with the gridedip metor at any eoil in the filter: a distinet resonames should be found at or very elose to the cut-off frequeners, f_{c}. The filter is the ready for use.

The filter eonstants suggested at I) and Ein Fig. 2:3-22 are based on the ontinum dexign for good impedance chataderisties - that is, with $m=0.6$ in the end sections - and a cut-off frequency below the standard i.f. for thevision re-
 rier at $45.5 \overline{3} \mathrm{Mr}$.). This is to avoid possible harmonic interferenere from 21 Mr, and below to the reecoiver's intermediate amplifier. The other dosigns similarly cut off at 41 Mc . or below, but m in these cases is neressarily based on the rapacitanes avalable in standard lixed caparitors.

Filters for 50- and 144-Mc. Transmitters

Nince a low-pass filter must have a cut-off froquency above the frecquency on which the transmitter operates, a filter for a v.h.f. tramsmitter cammot be derigned for attemation in all television chammets. This is tom hamelieap for v.h.f. work hut means that the filtor will not be effective when wied with lower-fregueney transmitters, unless it happens that no TV (hammels in use in the locality fall inside the pass-band of the filter.

Fig. 23-2 4 shows a filter for 52-ohm coax suitable for a 50 - Me, transmitter of any power up to the authorized limit. The cireuit diagram is

Figs. 23.2. - Low-pass filter for ianc with 50.N1c. transmitters and 5 Denhm lline. It uses variathe air capacitors adjusied to the broper crapacitame values and is suited to powers up to a kilowatt.

given in Fig. 23-25. If the values of inductance and capareitanee rean be measured (see chapter on measurements) the (omponents ran be preset and asemblad without further adjustment. Dternatively, the grid-dip moter mothod deswribed Garlior maty be used. The irsontat frequencios are:

The cut-ofl frequency is approximately (iā Me.

Figs. 23-25- (irreuit diakram of the low-pass filters for 50) and 144-Mr. Transmitters. Values on the drawing are for the so- Vle, filter. Partitions are mot ned in the 11f. Mc. unit.
Ci, (is - 50 Mc.: $50-\mu \mu$. variable, shaft-momedt, set to middla of tuning ran*e (Johmson 501.1.5). 144 Dc:: $11-\mu \mu$ fal ceramie ($10-\mu \mu \mathrm{f}$, usable).
$\mathrm{C}_{2}, \mathrm{C}_{3}-50 \mathrm{Mc} \cdot: 100-\mu \mathrm{ff}$. variable, shaft-mounted, sel with rotor $\frac{1}{4}$ inchout of stator (Bud NIC. $\%$ O5). 111 Nc.: $38-\mu \mu$ f. stand-off hypast (Erie Style $7211)$.
50. Wer coil data:
$1,1,16-31 / 2$ turns $5 / 8$ inch long. Top lrads $3 / 4$ inch, lontom lead- $1 / 4$ inch tonk.
$1.2,1.4-41 / 2$ turns $5 / 6$ indi long. $1.0 \mathrm{ads} 1 / 2$ inch long rach "wil.
1.3 - $\overline{0} 1 / 2$ turns $7 / 8$ inch long, Leads 1 inch long cach.

III MO. Mr. wils No. I2 tinned, $1 / 2$-inch diam., woil longth measured letween rightangle bund where leads begin.
144- V1e coil data:
L., $\mathrm{I}_{5}-3$ turn* $1 / 4$ inch loms. Leads $1 / 4$ inch long cach - ml .
I.2. IA -2 lurns $1 / 8$ inch long. Leads 1 inch long earh and.
1.3 - 5 turns $3 / 4$ inch long. Leads $5 / 8$ inch long each end.

All ItI-Mc. eoils No. 18 tinned, $1 / 4$-ineh diam., lengths measured as for $50 . \mathrm{Mc}$ c coils.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coavial fitting.
The rase for the $50-$ Me. filter is a standard box (IC. Slip-rover, No. $2!100$) measuring $31 / 8$ by $1: 3$ be $25 / 8$ inches. The two end cuparitors, C_{1} and C_{4}, are mounted with their two stator posts to-
ward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the midille. The top leads from coils L_{1} and L_{5} are wrapperl around the Atator terminals of C_{1} and $C_{\text {s. }}$ and the bottom leade fit direetly into the coaxial input and omput fittings. The outer ends of eoils l_{2} and lat are soldered to the coaxial fitting terminals, and their inner ends are soldered to lugs supported on oneinch ceramie stand-off insulators. Leads from the stand-offs go through holes in the partitions to the bottom stator lugs on ('2 and $\mathrm{C}_{3} 3$. L_{a} is soldered to the two upper lugs on these two capacitors, thus completing the filter circuit. Lead lengthe for the coils given in the parts list are the totat lengthes to be left when the winding is completel, including the portions that will be used in soldering operations.

This filter will give high attenuation in Channels $4-6$ and all the high-band chamels, and thus will take care of most of the spurions signals gernerated in atolare tranmitter.

A filter for low-rower 14-AC. tramsmitters is shown in Fig. 2:3-26. It is designed for maximum attenuation in the $190-215$ Me. region to suppress the spurious radiations in that range that froquently ocrur with $1 H-\mathrm{M}$. fransmitters, hat also has good at tenuation for all frequeme ies ahove 170 Mc. Optimum repareitance values are given in Fig. 2:3-25. If possible, several units of the nearest standard values available should be measured and those having values closest to the optimum used. The inductance values are too small to be measured with sufficiont aceraracy. so the filter should be adjusted by the following method:

Fibst. mount L_{1} and ${ }^{\prime}{ }_{1}$, short J_{1} temporarily at its imere terminals, and adjust L_{1} until the combination resomates at 200 Ne. as shown by a griddip meter. Next, remove the short from J_{1} and
 formed $\mathrm{L}_{\mathrm{y}} L_{1} L_{2} \mathrm{C}_{1} \mathrm{C}_{2}$ resonates at 1 H . He . Then discomert L_{2} and mount L_{3} betweren (ex and $C^{\prime} 3$. Adjust L_{33} until the rirruit $L_{33}{ }^{\prime}{ }_{2} C_{3}$ 'rewnates at 112 Me . Next, diseonne $\mathrm{I} / \mathrm{I}_{3}$ and follow a similar procedure starting from the other end with L_{5} and C_{4}. Finally, reconnert all coils and a chork at any point in the filter should show resonamee at lat) Me., the approximate cut-off frequency.

The case for the $1+4-$ - Ice filter is made from flashing eopper and is $1 \frac{1}{4}$ inches square by $71 / 8$ inches long. The main portion of the case is cut

Fig. 23-26-1 52-oham low-pass filser for 144- We. transmitters.

from a single piece with the end tats folded down and soldered to the sides. Flanges are folded over at the bottom, and a cover is made to slip, over these.

Filter Installation

In order to give the harmonic attenuation of which it is capable, a low-pass filter must be installed in such a way that all the output of the tramsmitter flows through it. If harmonic currents are permitted to flow on the ontside of the connerting coaxial cables, they will simply How over the filter and on up, to the antemat, and the filter does not have an opportmity to stop them. That is why it is so important to reduce the radiation from the tramsmiter and its leads to negligible proportions.

Fig. 23-27 shows the proper way to install a filter betwern a shiedded transmitter and a matehing eircuit. Note that the coax, together with the shiclds :bout the transmitter and filter, forms a continuous shied to keep all the r.if inside. It is thus foreed to flow through the filter and the harmonics are attenuated. If there is no harmonic chergy left after passing through the filter, shielding from that point on is not neressary: consequently, the matehing circuit or antema couplor does not need to be shichded. However, the antemna-coupler chassis arrangement shown in Fig. 23-27 is desirable because it will tend to prevent fundamental-frequener energy from flowing from the matching circuit back over the tramsmitter; this helps eliminate feed-back troubles in audio systems.

If the antenna is driven through coaxial line the matching circuit shown in Fig. 23-27 may be omitted. In that ease the line goes directly from the filter to the anterna.

When a filter doses not seem to give the harmonicattenuation of which it shouhd be capable, the probable reason is that harmonits are bypasing it heratuse of improper installation and inadequate transmittor shiclding, inelading lead filtering. However, oreasionally there are e ses where the rireuits formed by the rables and the apparatus to which they connee berome rexonathtat a harmonic: frequeney. This greatly inerasers the harmonic output at that frequeners. Such troubles ran be completely overoome low sub)stituting a slightly different rable length. The most ritical length is that commeding the transmitter to the filter. Chereking with a yrid-dip meter at the final amplifier output coil usually will show whether an unfavorable resonamee of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have beon proved beromd doubt to be effective even under highly infavorable conditions. It must be emphasized onere more, however, that the problem must be solved one
step at a time, and the procedure must be in loginal order. It cannot be done properly without two items of simple equipment: a grid-dip meter and wavemeter covering the TV bonds, and a dummy antenna.

The proper procedure maty be summatized as follows:

1) Take a critieal look at the tramsmitter on the basis of the design considerations outlined under "Reducing larmonic (iencration".
2) Chock all eircuits, particularly these connerted with the final amplitier, with the grid-dip) meter to determine whether there atre alde resionatness in the TV bamds. If so, rearrange the circuits so the resonames are moved out of the eritical frequaner regrom.
3) Connect the transmitter to the dummy antemat and check with the wavemeter for the prosence of harmonies on leads and around the tramsmittor enelosure. Seal off the woak soots in the shiedding and filter the leads until the wavemeter shows no indication at any harmonic frequones.
4) At this state, check for interference with a 'TV receiser. If there is interference, determins the eause by the methods deseribed previousls and apply the recommended remedies until the interference disappears.
5) When the transmitter is completely clean on the chumme antenna, connect it to the regular antenna and chere for interference on the TV receiver. If the interferenee is not had, an antemat conpler or matching cireuit installed as previously deseribed should elear it up. Alternatively, a lowpass filter may be usod. If neither the antenna coupler mor filter makes ang difference in the interforence, the avidence is strong that the interference, at least in part, is loming caused by receiver overloading because of the strong funda-

Fig, 23-27 - The proper method of installing a low-pass filter between the transmitter and antemna coupler or matching circuit. If the anterma is fed through wos the matching rircoit may be omittel but the same eonstruction shoulal le used betwoen the transmitter and filter. The filser shoulal be thoroughly shiclded.
mental-frequenos fied about the $T \mathbb{T}$ antemna and receiver. (Noo later section for identification of fundamental-frequeneve interference.) A cont pler and or filter, installed as desoribed abowe, will invariably make a difference in the intensity of the interferenere if the interference is ceused by transmitter harmonios alone.
6) If there is still interferener aftor installing the coupler and or filter, and the evidenere show: that it is prohably caused hy a harmonic, mome attenuation is needed. A more elaborate filter may he necessary. Howerer, it is woll at this stage to aseme that part of the interferene may he coused be recomer overkoding, and take steps to alleviate such a condition before trving highlyelaborate filters, traps, ete., on the tramsmitter.

HARMONICS BY RECTIFICATION

Eeven though the trammitter is completely free from harmonic output it is still possible for interferene to oremur herause of harmonies generated outside the tramsmitter. These result from reetification of fundamental-frequency currents indured in conductors in the vicinity of the tramsmitting antemas. Rertification gan take place at any point where two conductors are in pror wectrical eomata, a eondition that frequently exists in phumbing, downspouting, B.X cahbe crossing each other, and numeroms other plame in the ordinary residener. It alko can onecur in any exposed sachum tules in the station, in
 not be enchesed in the shielding :about the r.f. circuits. loore joints anywher in the antemat system are experially bat, and rectification also may take plawe in the contacte of antemat changeover relays. Another commom s:use is overloading the front end of the communications receriver when it is used with a sepmathe antemat (which will radiate the harmonics genmated in the first tube. for brak-in.
Rentification of this sort will not only cause harmonic intericerone but also is frequently responsible for cross-montulation cfferes. It cim he deterected in grater or hess degree in most lowations, but fortunately the harmonics thus generated are not usually of high amplitude. Ilowever, they can callas considerable interferenere in the immediate vicinity in fringe areas, ceperially when opration is in the 28 -Ms: band. The :mplitude dererasest rapidfy with the order of the harmonic, the seromd and third being the woss. It is ordinarily foum that cron in cases where
 ation the interference is comparatively mild from 11 Mc., and is negligible at will lower fremencer.
There is mothing that coul lue done at either the transmitter or receiver when reetification owe urs. The remedy is 10 find the surnere and eliminate the pore contare either lys separating the comductors or honding them together. A erystal wave motere (tuned to the fundamental frequeney) is usefful for hunting the sourere, be showing which conductors are carrying r.f. and, comparalively, how much.
Interference of this kime is fremuently intermittent sinee the rertifieation efficiens will vary with vibration, the weather, and so on. The pasibility of cenromed centacts in the TY re-
 previally if it has lwerth up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a tolevisien remiver is quite close to the transmither, the intonse r.f. signal from the transmitter": fundamental may owerload one or more of the reeceiser "irenits to pronlace spurious responses that canse interforence.
If the werdend is moderate, hae interlerenee is
of the same nature as harmonie interference: it is cansed by hamonias generated in the carly stages of the rereiver and, since it oceurs only on channels harmonically related to the transmatting frequency, is dificuit to distiaguish from harmonios artually radiated by the transmitter. In such cascos additional harmonice suppression at the transmitter will do no good, but any means taken at the receriver to reduer the strength of the amaterur signal reaching the first tube will effere an improvemont. With very severe overloading. interference also will ocerur on chamels not harmonically related to the tramsmiting frequence, so such cases are casily idontibied.

Cross-Modulation

Under some eiremmstances overlonding will result in eross-modulation or mixing of the amatteur signal with that from a local f.m. or 'TV stattion. For example, a 1 t-Me signal can mix with a 62-Mc. f.m. station to produce abeat at 78 Me. and cause interference in (hammel 5 , or with at TV station on (hammed at ocause interferonere in Chammel 3. Neither of the whands interfered with is in harmonic relationship to it Mc. Both signals have to be on the air for the interference to oreur, and eliminating either at the $T \overline{\text { re- }}$ ceiver will climinate the interforenes.

There are many combinations of this teper, depending on the band in use and the lowal freguency assigmments fo f.mb and 'T' stations. The interfering frequency is equal to the amateme fundamental frequency either added to or subtracted from the frequeney of some loral station, and when interferener orenss in a 'TV' ©hamel that is not harmonically related to the amatene transmitting frequency the possibilitios in surh frequency combinations should be invertigated.

I. F. Interference

Somb 'TV' redivers do not have suticient shectivity to prevent strong signals in the internedi-ate-freguency range from forcing their way through the front end and gotting into the i.f. amplifier. The onesestandard intermediate frefuchey of, roughly, 21 to 27 Me ., is subject to interference from the fundamental-frequenes output of transmitters operating in both the 2iand $27-\mathrm{Ac}$, hands. Trimsmitters on 28 Mc . sometimes will canse this type of interference as well.

A form of i.f. interfareme peraliar to $50-$ Me.

 "H-MG." i.l., whish has the somme earioy at
 I 50-Me. signal that forees its way into the i.I. sestem of the reereiver will beat with the i.f. pheture carrier to give a spurious signal on on nowr the i.f. sound carrier, cern though the interforing signat is not athally in the nominat passband of the i.f. amphifier.

There is a tupe of i.f. interformere unigue to the 1th-Me. hand in lowalitios whore wertain uh.f. TV chamels are in opration, atherting only those Th receriors in whicla doutheronversion
type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequeney that varios with the TV chamel to be received and, depending on the particular strip design, this first i.f. maty be in or close to the 14-Me. amateur band. Since there is comparatively little solectivity in the TV signalfregueney cireuits ahead of the first i.f., a signal from a 1/1-Mc. transmitter will "ride into" the i.f., even when the receiver is at a considerable distance from the transmitter. The channels that call be affected by this type of i.f. interference are as follows:

> Receirers with
> $21-.1 / r$.
> second i.f.
('hanmels 11-18, ine.
('hammels 11-48, ine.
('hammels (99-77, ine.

$$
\begin{aligned}
& \text { Receivers with } \\
& 41-1 / c \text {. } \\
& \text { second if. }
\end{aligned}
$$

Chamels $21-2 \mathrm{i}$, inc. Channels ol-i) K , ine. Channels 82 and $8: 3$.

If the recejver is not close to the transmitter, a trap of the type shown in Fig. 2:3-30 will be offeretive. Howerer, if the separation is small the 1+t-Me. signal will be pieked up directly on the receiver cireuits and the best solution is to readjust the strip oscillator so that the first i.f is moved to a frequency not in the virinity of the 14.t-Mc. hand. This has to be done by a competent technician.
I.f. intertorence is casily identified since it occurs on all chamels - athough sometimes the intensity varies from chamel to channel - and the cross-hateh pattern it causes will rotate when the receiver's fine-tuning control is varied. When the interference is caused by a harmonie, overloading, or eross modulation, the structure of the interference pattern does not change (alt hough its intensity may change) as the fine-tuning control is varied.

High-Pass Filters

In all the above cases the interference can be eliminated if the fundamental signal strength can

Fia, 2:3-28- Wimh-pase filters for instatlation at the '1'V receiver antenna terminals, A - balanced filter for 300 ohm line, 13 - for Tin-ohm conaial line. Immortant: Do not use a dirert ground on the chassis of a transformerless receiver. Ground through a $0.001-\mu$ f. mica capacitor.
be reduced to a level that the receiver can handle. To accomplish this with signals on bands below 30 Me., the most satisfactory deviee is a highpass filter having a cut-off frepuency between 30 and 54 Me., installed at the tuner input terminals: of the receiver. Cireuits that have proved effertive are shown in Figs, 2:3-24 and 2:3-2!, Fig. $2: 3-2$) has one more section than the filters of Fig. 23-28 and as a consequence has somewhat better cut-off charanteristics. All the circuits given are devigned to have little or no efferet on the TV signals but will attenuate all signals lower in frequency than about 10 Me. These filters preferably should be constructed in some sort of shied ding container, although shideting is not always necessary. The dashed lines in Fig. 23-2!) show how individat filter coils ean be shielded from each other. The capacitors can be

Fig. 23-29 - Another type of high-patiss filter for 300.
 platie knitting needles. Important: Do not use a dircet mronnd on the ehassis of a transformerless receiver. Ground through a $0.001-\mu$ f. mica eapacitor.
tubular ceramic units centered in holes in the partitions that separate the coils.

Simple high-pass filters cannot ahways he applied successfully in the cuse of $50-\mathrm{Me}$. transmissions, because they do not have sufliciently-sharp cutoff characteristics to give both grod attenuation at $50-54 \mathrm{Mc}$. and no attentation above 5 t . Me. A more elaborate design eapable of giving the required sharp) cut-off has been deseribed (Ladd, "50-Mc. TVI - Its Causes and Cures," (QsT, June and July, 195-4). This article also contains other information useful in coping with the TVI problems peculiar to $50-$ Me. operation. As an alternative to such a filter, a high-() wave trap tuned to the tramsmitting frequeney may be used, suffering only the disadvantage that it is quite selective and therefore will protect a receiver from overloading over only a small range of transmitting frequencios in the $50-\mathrm{Mc}$. band. A trap of this type using guarter-wave sections of Twin-Lead is shown in Fig. 2:3-30. These "suck-out" tritps, while absorbing energy at the frequener to which they are tuned, do not affect the reediver operation otherwise. The assembly shoukd be slid along the TV antenna lead-in until the most effective position is found, and then fastened securely in plare with Scotch Tape. An insulated tuning tool should he used for adjustment of the trimmer capacior, since it is at a "hot" point and will show considerable body-capacitance effert.

I Iigh-pass filters are available commercially at

Fig. 23.30 - Nhampion-1 yne wat trap using seretions of 30\% ohm line tumed to have an electrical lengethof lat we lengh at the tramsmither froparbey, Apronimate phosioal hemgtha (dimension d) are 10 istehes for in VI_{a} and 11 inches for 111 Vro.. allowiny for the hading elleet of the capario. tame at the roper emd. 'I wo traps are used in parallel, one on earh side of the line to the receiver.
moderate priers. In this connertion, it should he understome low all parties comermen that while an amatour is responsible for hermomic radiation from his (ransmitter, it is no part of his responsibility to pay for or install filtors, wave traps, ofer. that may he required at the reeriver to prevent interforenereausod hy his fundamental frequener. The set owner should be alvised to get in tourh with the organization from which he purchased the receiver or which servieres it, to make arrangements for proper installation. Proper installation usablly requires that the filter be installed right at the input terminats of the r.f. tumer of the TV' set and not merely at the extemal antenna terminals, which may be at a comsideratble distance from the tumer. 'The question of eost is sue to be settled betwere the sot owner and the organization with which he deals. some of the larger mambathers of 'TV reedions have instituted arrangements for cooperating with the set dealer in instabling high-pass filters at no eorst to the reremer ownor. F ('-sponsored TVI, Committors, now orrating in many eitios, have all the information necessary for effertatating surh arrangements.

If the fundamental signal is getting into the recerver by way of the line cord a line filter sum as that shown in Fig. 2;3-1 maty help. To be most defective it should be installed inside the reeremer chassis at the point where the cord enters, making the ground eombertions direetle to chassis at this point. It may mot be so helpful if placed betwem the line plug and the wall socket unkess the r.f. is actually pieked up on the house wiring rather than on the line cord itsolf.

Antenna Installation

Many tolevision recoivers will respond strongly to paralled currents on the receiving tramsmission lime. Disully, the transmission line pieks up a great deal more comerg from a near-by transmitter than the television recoiving antemna itsolf, eansing parallel eurrents that should be, but are not, rejerted ber the receiver's input circuit. This situation atan he improved by using shielded transmission line - coas or, in the balanced form, "twinax" - for the recobing installation. For best results the line should terminate in a coas fitting on the resedver chassis, but if this is not possible the shield should be grounded to the chassis right at the antema terminals.

The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonics actually being radiated from the (ransmitter or transmitting antenna. In most
recerving installations the transmission line is very much fonger that the anterna itself, and is eonsequently far more exposed to the hatrmonic fields from the tramsmittor. Murh of the harmonis pirkup. therefore, is on the reereiving transmission line when the transmitter and reseiver are quite elose together. shideded lime, plus relocation of either the transmitting or recoiving antomat to take advallatage of directive offects, often will result in reducing overloaling, as wedl as harmonic piekup, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far lese troublesome than in the v.h.f. hand. Hatmonies from transmitters operating below 30 Me. atre of such high order that they would normatly be experted to be quite weak: in addition, the emmonents, rireuit ronditions and ronstruction of low-frequeney transmitters are such as to tead to prevent very strong harmoniss from bring generated in this region. However, Hhe is not true of anmatemr v.h.f. trimsmitters, partieularly those working in the $1 / 1-\mathrm{M}$ - and higher bands. Here the problem is quite similar to that of the low v.h.f. TTV bamd with resperet fo tramsmit ters operating below 30 Me .

There is one highly favorable fartor in u.h.f. TY that dowe wot exist in the most of the v.h.f. TV' bamd: If harmonics are radiated, it is possible to move the transmitter frequence sufficiently (within the amaterer band being used) to avoid interfering with a chammel that may be in use in the locality. By restricting operation to a portion of the amateur band that will not result in harmonic interference, it is possible to avoid the necossity for taking extraordinary prectutions to prevent harmonic radiation.

The frequeney assigmment for u.h.f. television (omsiste of seventy (i-megacyele channels (Nos. 11 to 8 :3, inclusive) begimning at 170 Mc. and emding at 800 Mr . The harmonics from amateur hands above 50 M(. span the u.h.f. chamels as shown in Table 2:3-1. Since the assignment pan calls for a minimum separation of six chamels bot weon any twostations in one locality, there is ample oplortunity to choose a fimbamental froquency that will move a harmonic out of range of a local TV frequency.

COLOR TELEVISION

The color TV signal includes a subearrier spaced 3,58 megacycles from the regular picture

Amateur lsand 144 Mc .	Harmo	c Relationship-	$\begin{array}{r} \text { TAB } \\ \rho-\text { Amateur } \end{array}$	3-I F. Bands	d U.H.F.T	Channels		
	//amonic$4 t h$	ドundimental Frove. Riang	$\begin{aligned} & \text { I.\\|IF. TV } \\ & \text { rhuniml } \\ & 1 \text { Ifertid } \end{aligned}$	Amiteur finnid	Harmenie :3rll			
			$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	220 $1 / 1$.			$\begin{aligned} & 4 i \\ & 16 \\ & 17 \\ & 15 \end{aligned}$	
	Sth			$420.1 / c$	4 th	2010201	s2	
		$\begin{aligned} & 14.0-144.4 \\ & 114.4-145.6 \end{aligned}$	85			22120.5	83	
		14.5.6-146.8	5		2 nd	120421	75	
		146.8145	:8			$121+4$	76	
						$124+127$	77	
	dith					$427 \quad 430$	78	
		111-114.3:3	79			1304433	74	
		114.3:3-115.33:	80			4:33-4:36	so	
		14.3.33-1.17.33	81			4:3i-439	81	
		147.33-148	82			13:4-412	X 2	
						$112+18$	83	

earrier (or $4.8: 3$ Me, from the low colge of the channel) for tramsmitting the rolor informattion. Harmonies which fall in the color sub)earrior region can be expected to calmse break-up of eolor in the rereived pieture. Thes modifies the ehart of Figs. 2:3-3 to introduco :unother "severe" region centering around 4.8 Ne . mosared from the low-frequency edge of the chamed. Hence with color trelevision reception there is less opportunity to avoid harmonic interference be whome of operating frequency. In other resperts the problem of eliminating intorference is the same as with blak-and-white television.

- INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally hy the chectron beam 15,850 times per seeond, using a wave shape that has very high hamonic comtont. The harmonies are of appreriable amplitude even at frequencies as high as 30 Mr ., and when ratliated from the receiver can cather considerable interferenee to reception in the amateur bands. While measures to suppress radiation of this nature are required by deCC in currently mamufactured receivers, many older sets have had no such treatment. The interforence take the form of rather unstable, a.ce-molulated signals spaced at intervals of $15 . \overline{5} 5 \mathrm{kc}$.
Studies have shown that the radiation takes phace principatly in three ways, in order of their importance: (1) from the ace line, through st ray coupling to the sweop (irenits; (2) from the antema system, through similar coupling; (;3)
directly from the picture tube and sweep-circuit wiring. Lithe radiation often can be reduced by bepasing the a, e. line cord to the chassis at the point of entry, although this is not comphetely effertive in all resess sine the coupling maty take phate outside the chassis beyond the point where the by-passing is done Radiation from the antemna is usually suppresed by installing a high-pases filter on the reecever. The direct ractiation reguires shachling of high-potential leads amo, in some reereivers. additional bypassing in the swerp) circuit; in severe coses, it may be neressary to lime the cabinet with sereening or similar shichding material.

It is usually possible to reduce interference very considerahly, without modifying the TV receiver, simply by having a good amateur-hand recerving installation. The principles are the same as those used in reducing "hatsh" and other noise - use a goxel antomat, such as the transmitting antemma, for reception; install it as far as possible from ace. riperuts: use a good feeder system such is a properly hatanced two-wire line or coax with the outcre conductor grounded; use cond input to the recoiver, with a matching circuit if meressary; and "heck the recoiver to make sure that it does mol piok up signals or noise with the antemat diseonmeted. These measures not only reduer interfereme irom swerp radiation :and ace. line noise, but also buikl up the strength of the dexired signal, so that the owrall improvemum in signal-to-interference ratio is very much worth-while.

Operating a Station

The enjoyment of our hobly usually comes from the operation of our station onee we have finished its construction. Wemen the station amd its operation depend the commaniation records: that are made. Thr standing of individuats as amaterus and respere for the ratabilitios of the whole institution of amatener radio depend to at ronsiderabla extern on the pracelial communterations established by amateurs, the aggregate of all our station offorts.

An operator with a slow, stamery, rembernt method of somding has a hig adramtuge wer the poore operator. 'The tedntigue of spabking in connered thonghts and phatises is equally important for the voico oprotator. Cood sombling is partly a mattor of praterer but patienee and judgment are just as important qualitios of ath oprerator as a good "fist."

Oprating knowlodge (embraning standerd procedures. development of skill in momering e.w. to expathl the station rangeat operating affere ivemess at minimum power levels and some net know-how arw all essontials in achiowing a trimmphant amateme experionere with top station roseords. personal results athed demonstrations of what our stations can do in pratioal commonieations.

OPERATING COURTESY AND TOLERANCE

Normal opreating intorests in amatemr radio vatry eonsiderablys. Some profer 10 ratgenew, others handle traffie, others work INX, others concentrate on working eretain atests, countries or states and still others ger on for an oreasional contact only to check a new transmitter or antenna.

Interforence is one of the things we amateurs have to live with. Howner, we can comduct our oproting in a way designed to alloviate it as much as possibse. Before pulting the tramemiller on the nir, listen on !your men frequene?. If you hear stations engaged in commanication on that

fropuency, stand by until you are sure no interforence will be catused by your operations, or shift to another frequency. 犬 © amatemer or any group of amateres has any exchasief clam to any frequency in any band. We must work together, rach respereting the rights of others. Remember, those other chaps can canse you as much interforempe as you catus tham, somotimes more!
In this chapter wedl wecount some fundamentats of operating sureress cover major proverlures for surerestul gemeral work and inelude proper forms to use in mossage hatudling and other fields. Note also the sertions on sperial atotivitios. awards and organization, These permit us all to develop through our organization mor suress together that we rould dever attain by separate maroordinated efforts that owrlook the preecents. establisherd through operating experienee.

C.W. PROCEDURE

The hest operators, both those using voice and cow., whserve rertain operating procedures reLurded as "standard practice."

1) Calls. Calling stations may call officiontly be transmitfing the call signal of the station ratled three times, the beters laf, followed by one's own station call sutht there times. Whort (alls with frecuent "breaks" to liston have proved to be the bost mothord.) Reprating the call of the station catled four or five times and signing not more than two or three times has

CQ. The general-inguiry call ((Q) should be sent not more than five times without interspersing one's station identification. "The length of repated calls is carefully limited in intolligent amatrur operating. (C' () is not to be used when testing or when the sender is mot expecting or looking for an answer, Never send a (Q "blind." Aways be sure to listen on the triansmitting frequeney first.)

The directional CQ: To redue the number of useless answers and lessen (2liM, wery ('O call should be made informative when possilme.
E.camples: A I'nited states station laoking for

 Western station with tratfic for the Bant Coant When lowking for an inturnerdiate relay vation

 messages for points in Massarhmsetts calls: (C) MASE ('(2 MAE ('() MAES DE WOCOM

Itams who do not raise stations readily may find that their sonding is poor, their calls ill-timed or judgment in error. When conditions are right
to bring in signals from the desired locality，you can call them．Remsomably short calls，with atp－ propriate and bride breaks to liston，will raise stations with minimum time amd tromble．

2）Ansurering a Call：Call throe times（or less）； sernd DE；sign three times（or less）：alter contact is established decrease the use of the call signals of hoth stations to onre or twice．When a station recerives a call but does not reeceive the call letters of the station calling，QRZ？mity be usod．It meaths＂By whom am I being called？＂（Q12\％ should not be used in phater of C＇（2）

3）Ennling Signals and Sign－（）ff：The proper
 as follows：
$\overline{A R}$－End of transmission．Recommended after call to a specifie station before contact has been established．

Example：WgabC Wgabl Whabl Wgabl Wgabc De wolmin wham AR，Aiso at the end of transmision of a radiogram，immediately following the signature，preceding identification．
K－（io ahead（any station）．Rovommendad after（ () and at the end of each transmission during（2sid）when there is no objection to others breaking in．

> Erample: CQCQCQ ME WABC WIABC K or WaxT\％De WiABC K．

K゙N－（io ahnead（xperific station），all others kerp out．Racommended at the and of mach tramsmission during a QSO，or after a call，when ralls from other stations are not desired and will not be answered．

Example：W\＆RGH DE XLGGRL KN．

$N \vec{K}$－End of QN（）．Recommended before signing last tramimission at end of a Qio

Example：．．．$\overline{\mathrm{SK}}$ W8LaN DE W5BCl）．

（ L －I am dosing station．Rerommonded when a station is going off the air，to indicate that it will not listen for ：my further ealls．

Example：．．．．SK W7IIJ DE W゚．JKI．（CL．

f）Test signals to permit another station to adjust reediving ergipment may consist of a series of V s with the call signal of the transmitting shation at frefurnt intorvals．Remomber that a test signal can be a totally unwarmated cause of （ RRM，and always listen first to find a clear spot if posisible．

5）Receipting for conversation or traflic：Never receipt for a transmission until it has berot en－ tirely preceived．＂R＂meams＂tramsmission ro－
 arreatly．
6）Repents．When most of a tramsmission is lost，at call should be followed by coneret abbre－ viations to ask for repeats．When a few words on the cond of a tramsmission are lost，the last word receited correct！！is given after ？．．．A，meaning＂all after．＂Whow a few words at the beginning of a tramsmission are lost，＂AB for＂all before＂a stated word should he used．The guickest way to ask for a fill in the middle of a tramsmission in to send the last word reonived corredly，a ques－
tion mark，thon the next word recrived eorrectly， Another way is to sond＂？ $13 . \times$［wort］and［word］．＂

Wo not send words twior（ON゙\％）unless it is requested．send single．Ino not fall into the had habit of semding domble withont a iefuest from follows you work．Hon＇t say＂（）RA＂or＂（0RN＂ when you mean＂（QRS，＂I）on＇t CQ unless there is dofinite reason for so doing．When sending C（2，use judgment．

General Practices

When a station has recoiving trouble，the oprer－ ator asks the tratmemitting station to＂（2s）＂，＂ The letter＂le＂is oftem used in phace of a decimal point（ $0 . g^{g}$, ＂ 3 Rs Me．＂）or the colon in time dowignation（ 0 ．g．，＂2ll30 IPM＂）．A long dash is sometimes sent for＂zaro．＂

The law eoneroning superfluous sigmals should be noterl．If you must test，disconnect the antennat system and use atn equivalent＂dummy＂an－ temata．sond your call frequmtly when operating． Piek a time for atjusting the station apparatus when few stations will he bothered．

The uptotedate amaterur station uses＂break－ in．＂For best results sernd at a modium speed． send evenly with propere spacing．The standard－ type tolagraph key is best for all－round use． Regular daily practide protioks，two or three periods a day，are best to acequire real familiarity and probicioneney with code．

No exeluse rath be made for＂gatbled＂copy． Oprators should copy what is sont and refuse to acknowledge a whole transmission until every word hats hern remedived cormedly．Giowl operators do not guess．＂swinge＂in a tist is mot the mark of a good oprerator．［＇nusual words are sent twice， the word repeaterl following the transmission of ＂？＂．If not sure，a good operator systematically aske for a fill or repeat．Sign your eath frequently， interspersed with calls，and at the end of all transmissions．

On Good Sending

Assuming that an operator hats learned sending properly，and comes up with a precision＂fist＂ －not fast，but ckean，stearly，making well－ formed rhythmical eharactors and spacing heau－ tiful to listen to－he then loccomes subjeet to outside presures to his own posstble dedriment in evervalay oprrating．He will want to＂spered it up＂＂heratue the oprator at the other end is going faster，and so he begins，uneonseiously，to run his words toguther or devolops a＂swing．＂

P＇rehapse one of the Pasiest ways to get into bad hathits is to do foo mumb plating around with speciad kows Too many operators sonend only conough time with a straight key to acequire ＂passable＂sending，then subject their newly－ developed＂fist：＂to the antirely different mover ments of bugs，side－swipers，flectronic kers，or what－haverous．All too oftern，this results in the ruination of what may have become a very good ＂fist．＂

Think about your sending a little．Are you satisfired with it？Vou should not he－rver． Nobody＇s sending is perfent，and therofore every
operator should continually strive for improvement, Do sou ever run lodters together - like Q for MA, or P for AN - experially when you are in a hurry". Praetieally aberbody does at one time or another. Do you have a "swing". Any rocognizathe "swing" is a deviation from perfection. Strive to semal like fape sending: copy a Wi.SIV Bulletin and try to som! it with the same spating using a local oscillator on a subseduent trathemission.
Cherk vour spacing in chatarters, betwoen characters and between words oreasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Praetice the correction of faults.

USING A BREAK-IN SYSTEM

Broak-in avoids umberesarily long ralls, prevent: QRM, gives more commmiteation per hour of operating. Briof calls with freguent short patuses for roply can approach (but not equal) break-in efficionery.

A separate rexiving antemna facilitates breakin operation. It is only neecsary with break-in to prase just a moment with the key up (or to cot the carrior momentarily and patuse in a phone conversation) to listen for the other stat tion. The elick when the carrier is cut off is as (ffective as the word "hreak."
(',w. tetegroph! broak-in is usually simple to arrange. With brak-in, ideas and messages to le transmitted can be pulled right through the holes in the QIRMI. Suapper, difient amateur work with brak-in usually requires a separate recoiving antematand arrangement of the transmitter and recoiver to eliminate the neressity for throwing swithes betwern transmissions

In calling, the transmitting operator sends the lettors "BK" at intervals during his rall so that stations hearing the call masy kow that break-in is in use and take advantage of the fact. Ile puneses at intervals during his call, to listen for a moment for a reply. If the station being called dors not answer, the eall can be continned.
With a tap of the key, the man on the receiving end can interrupt (if a word is missod). The other operator is constantly monitoring, awating just sumb directions. It is not necossary that you have perferet facilities to take advantage of hrak-in when the stations you work are break-inequipped. After any invitation to break is given (and at cach pause) press your key - and contact can start immediately.

VOICE OPERATING

The use uf proper procedure to get lest results is hust as important as in using eode. In tolegraphy words must be spedled out letter he lettor. It is therefore hat natural that aboreviations and shorteuts should have como into widespread use. Ta voice work, however, aldneviations are not moerssary, and should have less importane in our oprotatiag prosedure.

Voice-Operating Hints

1) Listen before ealling,
2) Make short catls with breaks to listen. Avoid long CQs; do not answer any.
3) l'se pushto-talk or woico control, (ive assential data coneisely in first transmission.
4) Make reports honest. I'se definitions of strength and readability for reference. Nake vonr reforts informative and usefoll. Honest repurts and full word descrigtion of simals stive amateur perators from FC(' tronble.
i) Limit transmission length. Two minutes or less will ronver much infermation. When three or more stations converse in round tables, brevity is ressential.
b) Display sportsmanship and courtess. Batheds are mongested . . . make transmissions meaningful Live others a break.
5) Cherk transmitter adjustment . . avoid a, me, wermodnlation and sphatter, (Hn s.s.b. check carriar balance carefilly. Do not radiate when mos. ing vifo. fremberey or ehecking n.f.nt, swing. I'se receiver b,fo. to check stability of signal. Complet. teminu before busy hours!

The letter "IS" has been agreed to in telegraphie pactice so that the operator will not have to pound out the soparate letters that spell the words "go ahead." The voice operator can say the words "go ahead" or "over," or "come in please."

One laughs on c.w. by spelling out III. On phone wese a latigh when one is called for. Be natural as you would with your family and friends.
The matter of reporting readubitity and strength is as important to phone operators as to those using eode. With telegraph nomenchature, it is nerossary to spell ont words to describe signals or use abbreviated signal reports. But on voirere we have the abibity to "say it with words." "Reatability four, strength eight" is the best way to give a quantitative report. Reporting ean be done so much more meaningfulty with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahowd," or "Your signal is strong but you are bunded under local interference." Why not say it with words?

Voice Equivalents to Code Procedure		
Voice Go aheitd; over	K	Menninu
Wait: stand by	$\overline{\mathrm{AS}}$	Selferemanatory
Receised	R	Reectipt for : 1 cor-
		rectly-transcribed
		message or for
		"solid" transmission
		tions

Phone-Operating Practice

Eflaciont vore communiation, like good e.w. commanisation, demands goond oprrating. Adherener to erertain points "on getiong results" will go at long way toward improving our phoneband operating conditions.

Une mush-to-talk technique. Where [mssible ar ramge on-off switcluse controls or voiceseontrolled brakk-in for fisest back-amblorth exhanges that emalate the peratiodity of the wire talephone.

This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Listen with care. Kerp noise and "hackgromads" out of your operating reom to facilitate good listening. It is natural to answer the strongrest sigmal, hut take time to listen and give some consideration to the best signals, regardless of strength. Every amateur canmot run a kilowatt, but there is no reason why every amateur eamot have a signal of good quality, and utilize uniform operating practices to ad in the understandability and case of his own communications.

Interpose your call regularly and al frequent intervals. Three short calls are better than one long one. In calling ('Q, one's call should certainly appear at least once for every five or six C(Os. (atls with frequent breaks to listen will save tine and be most productive of results. In identifying, always thansmit your oun call last, Dom't say "This is W1AB('standing by for W2I)EF"; say "W21)EF, this is W1ABC', over." FC(' regulations show the call of the tramsmitting station sent lust.

Include country prefix before call. It is not cor-
 legal use is "W!?RRX, this is W'HBDI)" FCC regulations require proper use of calls; stations have been eited for failure to comply with this requirement.
Monitor your oun frequency. This helps in timing calls and transmissions. Tramsmit when there is a chance of being ropied suecessfully - not when you are merely "more (olkM." Timing transmissions is an art to coltivate.

Keep modulation constant. By turning the gain "wide open" you are subjeeting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of formalik. echor cha to poor acoustirs, and modulation exerssers due to sudden loud moises. Spak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your sperch amplifier; at the sane time, keep far enough from the miorophone so your signal is not modulated by sour heathing. ('hange distanco or gain only as ueressary to insure uniform transmithor ferformance without overmodulation, splater or distortion.

Ihate comuated thoughts and phrases. Don't mis diseonnerted subjects. Ask questions comsistently. Pause and get answers.

Have a pad of paper harely. It is convenient and desirable to jot down guestions as they come in the conurse of discussion in order not to miss any. It will holp you to make intelligent to-t hepint replics.
steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal repuation as surous commumiations workens deprod on us.

Avoid reptition. Don't repeat back what the other fellow has just said. Too often we hear a "omversation like this: "Okay on your new antemas there, waty on the trouble youre having
with your recoiver, okay on the company who just came in with some iee cream, okay . . . [otcol," Just say rou received everything O.K. Hon't try to prove it.
lise phonetios omly as required. When elarifying gemmimely doubtul expressions and in gettimg your call identifiod positively we suggest use of the AlRIRI. Whometic List. Limit such use to really-acessary clarification.

The sperd of radiotelephone transmission (with perfect accuracy) depends almost cutirely upon the skill of the two aperators involved. One must leam to spak at a rate allowing perfeet understanding as well as promitting the reoriving operator to copy down the message text, if that is neressary. Because of the similarity of many linglish speech somods, the use of alphabetical word lists has been found neressary. All voiecoperated stations should use a vandard list as needed to identify call signals or unfamiliar expressions.

ARRL Word List for Radiotelephony

ADAM	JOIIN	SCSAN
13.1に以\%	KING	THOM.AS
Cllishate	LEWIS	[N10.
1).171)	MARY	VIC'IOR
EIMWARI	N.ANCY	WHLLIAM
FR.INK	OTTO	X-K. ${ }^{\text {Y }}$
(iborrce	PETMER	YOl'NG
HENRY	QUEEN	ZEBRA
It)A	ITOBER'1	

Example: WiAW . . W 1 ADAM WILLIAM . . W1AW
Round 'Iables. The round table has many advantages if run properly. It clears frequencies of interforence, repecially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and interesting, giving rach station operator ample opportunity to participate without waiting overlong for his turn.

Round tables ean become very unpopular if they are not conducted properly. The monologuist, off on a long spid about not hing in particular, camot be interrupted; muke your transmissions short and to the point. "Butting in" is discourteons: and unsportsmanlike; don't enter a roment table, or an!! contact between two other amatemes, wiless you are imiled. It is lat enough trying to cops throngh prevailing interforenere withent the added differulty of poor voier quality: check yener transmitter uljustments frequentl!. In general, follow the procepts as hereinbofore outlined for the most enjoymont in round tables as well as any wher form of radiotelephone communication.

WORKING DX

Most amateurs at one time or another make "working I)N" a major am. As in every other phase of athatour work, there are right and wrong ways to go about getting hest results in working foreign stations, and it is the intention of this serelion to outline a few of them.

The ham who has trouble raising 1). $\mathrm{I}_{\text {stations }}$
readily maty find that poor thamsmitur efliciency is not the reason. He may find that his semting is poor, or his calls ill-timed, or his judgment in aror. When conditions are right to bring in the DSA, and the reediver sonsitive onough to bring in several stations from the desired locality, the Wity to work DX is to use the appropriate frequanoy and timing and call these stations, ans against the common practice of catling "(O) Jふ."

The call (Q D)N means slightly different things to amatenam in different bands:
a) On v.h.f., CQ DN is a gemeral call ordinarity used only when the band is open, under favorathle "skip" conditions. For v.h.f. work such a call is used for looking for new states and countries, atso for distanes beyond the customary "linc-of-sight" range on most v.h.f. bands.
b) (Cl D) may be taken to moan "(General call to any foreign station." The torm" foreign station" usually. refors to any station in a foreign continent. (Experiencel amateurs in the C.S.S. A. and Canada do not use this call, but answer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amatours interested in LDX work have "alused considerable confusion and (212.M in their efforts to work 1NX stations. The points befow, if whsurved by all $\mathrm{W}^{\circ} / \mathrm{V}$ bamateurs, will go a long way toward thaking I) X more enjovable for everybody.

1. (all I)X only after he ralls CQ, QRZ?, signs sk, or phone equisalents thereof.
2. 1ho not (all a IXX station:
a. On the fremeney of the station he is working until you are sure the (2SO) is over. "lhis is indicated by the ending signal $\overline{\mathrm{SK}}$ on c,w, and any indication that the operator is listenitug, on phone.
b. Beoause you hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AR}}, \mathrm{CL}$, or 'phone equivalents.
d. Exactly on his frecusency.
e. After he calls a directional (Q. unless of "ourse you are in the right direction or area.
3. Kenp within frequenes-band limits, some IDX stations oferate outside. I'erhaps they can get away with it, but son cannot.
4. Observe calling instructions of 1 X stations. "101"" means call ten ke, up from his frequeney, "151) " means 15 ke . domn, cte.

- (Giva lomest repmets. Mang forvign stations
 station and amiphome.
b. Kerp your sighal chath, kiey elioks, whips. hum or splatter give sou a bad reputation and mas get you a citation from FCC.

7. Listen for and call station you want, Calling CQ 1 X is not the best assurance that the rare ID X will raply.
8. When there are several IV or VE stations waiting to work a INX station, asoid asking him to "liston for a friend." Let your friend take his chances with the rest. Also a void engaging INX stafions in rag-rhenes against their wishes.
 eonditions may be used in this same matmer. At other times, under average 3.5-Me. propagation conditions, the call maty be usad in domestic work when looking for mew states or countries in one"s own comtinent, usually applying to stations lowated over lown miles distant from you.

The waty to work I)X is not to use a C() call at all (inl our rontiment). Instead, use your best tuning skill-and listen - and liston-and listen. You have to hear them hefowe you com vork them. Hear the desired stations first: time your calls well. Lise your utmost skill. A semsitive roeriver is often more important than the power input in working foreign stations. If you can hear stations in a partieular country or areat, chaneres are that you will be able to work someone there.

One of the most effertive ways to work INX is to know the operating habits of the JX stations: sought. Doing too much tramsmiting on the DN bands is not the wayy to do this, Agatin, listpmin! is effective Gnece you know the operating habits of the DX station sou atre after you will know When and where to eall, and when to rematin silent waiting your chaner.

Some DN stations indieate where they will
 point t of the DS (operating (orde.) In voire work the overseats operator maty say "listoning on $11,225 \mathrm{ke}$." or "tuning पрман from 28,500 ke." Nany a I)X station will not reply to a call on his exact frequency.

ARRL, has recommended some oprating brocedures to DN stations aimed at controlling some of the thoughterss onerating prationes sometimes used by $W / V 15$ amateurs. A enpy of these recommendations (Operating Aid No. 5) can be ohtained free of charge from AIRRL I Ieatquarters.

In any band, particularly at lintorof-sight frequencies, when directional antomas are usod,
 Whe, is the preforathle iype of call, Mature athat tous agen that ('() DX is a wishful rather than a practical type of call for most stations in the North Americas looking for foreigu contarts. Ordinarily, it is a comse of unmeressary (QRD.

Conditions in the transuission medium make all fied strongths from a given region more nearly equal at a distather, irrespertive of power used. In gemeral, the higher the frequeney band, the less important power considerations berome. This aceounts ili bat (om the molative proularity of the $14-$, 21 -and 28 - Mr. bands among amateurs who like to work IN..

\%	\#utam	c.uro	哭笠	-	,	7e	\%	2m	\%	arn
		\times	3.65	589	$569 x$	$\times 3.5$	A1	250	6:43	Ic-recd 6 , sent 10
- 15 PruW W TQ		\times				7				1 ,
$\frac{7120}{7.21}$		+TW1			579					VY, heary QRM
9:25 WYUKS			3.83	59		3.9	A3	100	10.05	dtam
7: $05 \mathrm{MMVK} 4 E L$ 7:09 ZL2ACV		x	14.03			14	A1	250		Answered a W6
			14.07	339	$559 x$				7:20	
$\begin{aligned} & 7.21 \\ & 7.36 \\ & 7.37 \end{aligned}$		KA2KW	14.07	$769 \times$	349				7:33	Firet KA
	CQ	W6T1	14.01	589	5890				8:12	

KEEP AN ACCIBATE AND COMIDEIE STATION LOG AT ALI, TIMES: F.C.C, REQUHES ITS.

Abstract

 records. Bumal ligs made win aceord with the atome form ean be ehtained from Iteadeparters for a nominal sum or you ean propari your own, in whirh rave we offor hinform as a shggestion, 'ihe IRRI, log has a special wire bindine amd lies perferely flat on the taliter

KEEPING AN AMATEUR STATION LOG

The fece requires every amateur to kere a complete station operating record, It may also rontain reeords of cxperimental tests and adjustmont data. A stomgeraphers motebrok ran be ruled with vorideal lines in any form to suit the user. The Fidderal ('ommunications Commission meruinements ame that a log be maintained that shows of the date and time of each transmission, 2) all calls and transmissions mate (whether two-way contarts resulter or not), (3) the input
power to the last stage of the transmitter, (t) the frequency band used, (5) the time of ending rach (2NO and the operator"s identifying signature for responsibility for earh session of operating. Messages may be written in the log or separate records kept - but reeded must be retained for one vear as required by the FC (C. For the monvenionee of amateur station operators Allil. stocks both loghooks and message hanks, and if one use the official log he is sure to emply fully with the (invernment requirements if the preeations and suggestions included in the loge are followed.

Message Handling

Amatene operators in the ["nited states and a fow other countries enjoy a priviloge not availahbe to amatmes in most combtrics - that of hathelling thind-party message tratfe. In the eatly history of amatcur radio in this country, some amathers who were among the first to take advantage of this privilege formed an extensive relay organization which beeame known as the

Thus, amateur mesage-handling has had as long and fomorable history and, like most services, hats gone through many pariode of developmont and dhage. Those amatomes who handed trattie in 1! ! ! would hatrily reeognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Drogress hats been made and new methods have lwen developert in step with advandement in communic:ation terchnifules of all kinds. Amattours who hamded a lot of traffie found that organized operating schedules were more effertive than ramdom relays, and as terhnigues advanced and messages indroased in number, trank lines wore organized, spot freguencios begen to bo usod, and there spoang into cxistence a mumber of traflic nets in which mathy stations operated on the same frequency to effect wider cov-
rage in less time with fewer relays; but the old methods are still available to the amateur who hatudes only ath oecasional message.

Athough message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to hamdle a message and have never done so. As rach amatemr grows odder and gains experience in the amateur sorvife, there is bound to come a time when he will be catled upon to hatade a written massagr. during a communications emergence, in casual contart with one of his many acquaintanes on the air, or ats a result of a request from a monamateur friond. Regardless of the occasion, if it comes to you, you will want to rise to it! ('onsiderable embarrasmont is likely to he experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message onee it has been filed or received in his station.

Traffic work need not be a complicated or timb-consuming artivity for the exasual or ocrasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized tratfic systems.

This ehapter explains somo principles so the reader may know where to find out more about the subject and may exereise the message-handhing priviloge to best offeret as the spirit and opportunity arise.

Responsibility

Amatents who originate messages for transmission or who reedive messages for relay or delivery should tirst eonsider that in doing so they are acopting the responsibility of elearing the message from their station on its way to its destination in the shortest possible time. Fortycight hours after filing or reereipt is the generallyaccopted ruke among tradic-hathding amatours, but it is obvious that if evory amateur who rolayed the mossage allowed it io remain in his station this long it might be a long time reathing its destination. Traffie should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and acecpered, handling the message beeomes a matter of following gemerally-areepted stamdards of form and transmission. For this purpose, wath message is divided into four parts: the promole, the address, the text and the signature. Nome of these parts themselves are subdivided. It is meccosary in preparing the message for transmission and in actually transmitting it to know not only what cach part is and what it is for, but to know in what order it should be tratsmitted, and to know the various procedure signals used with it when sent by ew. If you are going to send at mossage, you may as well send it right.

Standardization is important? 'There is a great deal of room for exprossing originality and individuality in amateur ratio, but there are also times and places where such expression eat only cause confusion and incfficieney. Recognizing the need for standardization in message form and message transmitting procedures, ARIRL, has long sinee recommended such stamdateds, and most traffie-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the reaumest of amat

Here is an cxample of a plain-languaze message in correct $A K M L$ form. The preamble is always sent as shown: number, station of orikin, check, place of origin, time filed, date.
teurs participating in this activity, and they are eompletely outlined and explained in Operating an Amateur Redio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experionerd in message handling should depend on the experieneed messagehandler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled dither through a local traffie net or by free-lancing. The latter may be areomplished by careful listening for an amateur station at desired points. directional ('Qs, use of the National Calling and Emergency frequencies, or by making and kerping a schedule with another amateur for regular work between specitiod points. He maty well aim at learning and rojoving through doing. The joy and aromplishmont in thus developing one's operating skill to top perfection has a reward all its own.

The best way to elear a mossage is to put it into one of the many organizod traffie networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffie their primeipal operating artivity, and many more still who participate in this artivity to a greater or lesser cextent. The rosult is a system of traflic nets which spreads to all corners of the Enited States and covers most L'. S. possessions and C'anada. Once a message gets into one of these nots, regardless of the net's size or coverage, it is systematically ronted toward its destination in the shortast possible time.

If you deeide to "take the bull by the horns" and put the message into a traffie net yourself fand more power to you if you do!), you will noed to know something about how traffie nots operate, and the spocial (2 signals and procedure they use to dispatel all traffic with a maximum of efficiency. Reference to net lists in QS'T (usually in the November and January issues) will give you the frequeney and operating time of the net in your section, or of other nets into which your mossage can go. Listening for ti few minutes at the time and frequency indicated should arquaint you with enough fundamentals to enable you to report into the net and indicate your iraflic. From that time on you follow the instruedions of the not control station, who will tell you when and to whom (and on what frequency, if different from the net frequeney) to sond your message. Since most nets use the special "()N" signals, it is usually very helpful to have a list of these before you (list available from AIRRL $1 \mathrm{Iq}_{\mathrm{q}}$).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it and inerease your proficiency, Many amateurs are happily "addieted" to traflic handling after only one or two brief exposures to it. Much traflic is at present being conducted by e.w., since this mode of com-
munication seems to be popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized sperifically for the slow-spered amateur, and most of the so-colled "fast" nets are usually glat to slow down to acrommodate slower operators, esperially those mots at state or section level.
The significant facet of net operation, however, is that code speed alone does not make for efficiency - sometimes quite the contrary! A high-speed operator who does not know net procedure can "foul up" a net much more completely and more quickly than can a slow operator. It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation cannot accomplish as much during a specified period as an equal number of slow operators who know net procedure. Don't ket low code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the best of them. Concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

Much traffic is also handled on phone. This mode is exeptionally well suited to short-range tratfie work and reguires knowledge of phonetios and prodedure pecular to voice operation. l'rocodure is of paramount importance on phone, since the public may be listening. The major proble m , of course, is (QRM.
Termuork is the theme of net operation. The net which functions most efficiently is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not oceupy time with extrancous comments, even the exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffic is cleared. Before or aftor the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amateur Radio Station, mentioned earlier, but the whole story cannot be told. There is no substitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system by means of which originated traffic will normally reach its destimation area the same day the message is originated. This system uses the local section net as a basis. Each seetion net sends a representative to a "regional" net (normally covering a call area) and each "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of connecting schedules between the area nets, traffic can flow both ways so that traffic originated on the West Coast reaches the East Coast with a maximum of dispateh, and vice versa. In general local section nets function at 1900 , regional nets at 1915 , area nets at 2030 and the same or different regional personnel again at 2130 . Some section nets conduct a late session at 2200 to effect traffic delivery the same night. Local standard time is roferred to in carh case.

The NTS plan somewhat spreads traffic opportunity so that casual traffie may be reported into nets for cfficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both carly and late groups and in between to roll up impressive totals and speed traffic reliably to its destination, Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone can participate. The National Traffic System has vast and intriguing possibilitios as an amateur service. It is open to any amateur who wishes to participate.

The above is but the briefest resume of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARIRL Headquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a mational asset, is by his preparation for and his participation in communications emergencies. Every amateur, regardless of the extent of his normal operating artivities, should give some thought to the posibility of his being the only moans of communication should his community be cut off from the outside world. It has happened many times, of ten in the most unlikely places; it has happemed without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

ment which can readily be transported to the scene of disaster. Mobile 'quipment is especially desirable in most emorgency situations.
surh equipment, regardless of how elaborate or how modern, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emorgeneies, by no means less important than the first, is to learn to operate afficiently. There are many amateurs who feel that ther know how to operate efficiently but who find themselves considerably handicapped at the crucial time by mot knowing proper procedure, by being unable due to years of casual amateur operation, to adapt theinselves to snappy, abbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect; it is far better to assume that you have much to learn.

Ia general it can be said that there is more emerenney equipment availathe than there are oprators who know properly how to operate during emergency conditions, for such conditions require elipped, terse procedure with complete break-in on cow, and fast push-to-talk on phone, The casual rag-chewing aspecet of amateur radio, however enjoyable and worth-while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practicing it. During an emergency is no time for pratice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergency organization and preparedness. ARIRL has long recognized this necessity and has provided for it. The Section Commumeations Manager (whose
address appears on page 6 of every issur of QS'T) is empowered to appoint certain qualified amateurs in his section for the purpose of (coordinating emergency communcation organization and preparedness in sperified areas or communities. This appointere is known as an Limergency Coordinator for the eity or town. One is sperified for cach community. For coordination and promotion at section level a Section Energency Coordinator arranges for and recommends the appointments of various Emergency Coordinators at activity points throughout the section, Emergency Coordinators organize amateurs in their communitios aceording to local needs for emergeney communication facilitios.

The community amateurs taking part in the local organization are members of the Amateur IRadio Emergency Corps (AREC). All amateurs are invited to register in the AREC', whether the y are able to play an aetive part in their local organization or only a supporting role. Application hanks are available from your EC, SW\%, SCAI or direct from ARRL Headpuarters. In the event that inguiry reveals no Emergency Coordinator appointed for your community, your sc.Al would welcome a recommendation cither from vourself or from a radio club of which you are a member. IBy holding an amateur operator license, you have the responsibility both to your community and to amsateur radio to uphold the traditions of the service.

Among the League's publications is a booklet entitled Emergency Communications. This booklet, while small in size, contains a wealth of information on AREC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to ARLC members and should be in every ama-

Before Emergency

PREPARE yourself by providing a transmitter-receiver setur, together with an emergency power source upon which you can depend.

TEST hoth the dependability of your emergency equipment and your own operating ability in the annual ARIRL Simulated Emergene, Test and the several annual on-the-air contests, especially Field Way.

REGINTER your fachitios and your avalability with your local ARRI. Emergency (oordinator. If your eommomity has no EX ' contact your local civic and relief agencies and explain to them what the Amateur Service offers the commmity in time of disaster.

In Emergency

LISTES before you transmit. Never violate this principle.
RFIPORT at once to your Emergancy Coordinator so that he will have up-to-the-minute data on the facilitics available to him. Work with local civic and relief agencies as the EC suggests, offer these agencies your services directly in the absenere of an EC.

RESTRIC"F all on-the-air work in accordance with FC' 'regulations, See, 12.156, whenever FCC "declares" a state of commanications emergency.

QRRR is the oflicial ARRL, "land SOS," a distress call for emorgeney only. It is for use omly by a station seeking assistance.

RLSPWCT the fact that the suceess of the amateur effort in emergency depends larzely on cirenit discipline. The established Net Control Station should be the subreme anthority for priority and traffic routing.

COOPFRATE with those we serve. Be ready to help. but stay off the air unless there is a specific job to be done that you can handle more efficiently than any other station.
COlV all bulletins from W1AW. During time of emergency special bulletins will kepp you posted on the latest developments.

After Emergency

REPORT to ARRL. Headuarters as soon as possible and as fully as possible so that the Amateur Service can receive full credit. Amateur Radio has won glowing public tribute in many major disasters since 1919. Maintain this record.
teur's shark. Dropa line to the ARIRI, Communications I Dopartment if you want a eopy, or use the roupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, F(C and the Pederal (ivil Defornse Administration (FCDN), in collaboration with ARRLA, have promulgated the Radio Amateur (ivil Emergemey sorvice. RACLS is a temporary poacetime servier, interded primarily to serve divil defense and to continue operation during any extreme national comergency, such as war. It shares certain segments of frequencies with the regular Amateur sorvier on a nonexclusive basis. Its regulations have been made a sult-part of the familiar amat terur regulations; that is, the present regulations have berome sub-part A, the new R.AClis regulations boing added as sub)-part B. (oppios of hoth parte are included in the latest edition of the ARRRLLAcense Mamual.

If erery amateur participated, we would still be far short of the total operating personmel requirel properly to implement RACLSA. As the serviee which bears the responsibility for the sucerssinl implementation of this important function, we fine not only the task of installing (and it seme (ases buidding) the neressary equipment. but also of the training of thomsands of additional perople. This can and whold be a function
of the local unit of the Amaterar Radio Vmergoney Corps under its EC and his assistants, working in close rollathoration with the loeal civil defense organization.

The first stop in orgamizing RACES locally is the appointment of a Radio Officer by the local aivil defense director, possibly on the recommendation of his commumirations oflieer. A complete and dotailed rommumications plan must In approved sucerssively by local, state and FCDA regional directors, by the FCDA National offere, and by FCC. Once this has bern atcomplished, appliations for station athorizations under this plan catn he submitterd direet to F ($\mathrm{C}=$ QS'T will carry further information from time to times and ilRRI, will keep its fiell oflicials fully informed be bulletins as the situation requires. A complete bibliography of (ぶT articles dealing with the suljeret of civil defense and R.DCH is available upon request from the ARlRI, Communications I Pepartment.

In the event of war, civil defonse will plare great reliance on RACPis for radio communirattions. R.AClis is an Amatedur servier. Its implementation is logically a function of the Amateur Rarlio Emergoncy Corps - an arditional function in peacotime, hut probably an exclusive function in wartime. Therefore, your best opportunity to be of sorvice will be to register with your focal ded, and to participate actively in the ional ARES:/RACHS program.

ARRL Operating Organization

Amaterur upration must have wint and constructive purpuse to win publie respect. Wach individual atmatemer is the ambassador of the ontire fraternity in his public rolations and attitude toward his hobby. ARRL field organization adds print and perposie to amatrour operating.

The Communications Department of the league is concerned with the practical operation of stations in all brameles of amateur artivity. Appointments or awards are available for rals-chewer, traflie enthusiast, phone operator, DX man and experimenter.
There are seventy-three ARRRL Sections in the League's field wranization, which embraces the lonited states, (anada and certain other territory. Operating affairs in each Section are supervised by a Seetion Communieations Manager nowed hy members in that seretion for a two year term of "flice. Oryanization apminturnts are made ley the sertion managers, wereded as provided in the Rules and Regulations of the Communications Department, which accompans the League's By-Laws and Articles of Association. Siection communications managers' addresses for all sertions are given in full in rach issue
 purts from all amateur stations in their jurisdiction.

Whether yomr activity ombrawe phome or (d) Wraphy, or theth, there is a plate for you in League organization.

LEADERSHIP POSTS

To : advanee carl type of station work and group interest in amateur radio, and to develop practieal eommunications plans with the greatest sucecss, appointments of leaders and organizers in particular single-interest findds are made by scas. Fatch leadership post is important. Each provides artivitios and assistance for appointe groups and individual members along the lines of natural interest. Some posts further the general athility of amateurs to communicate efficichtly at all times, by pointing activity toward networks and round tathes, others are aimed specifically at establishment of provisions for organizing the amateur serviee as a stand-by eommunications group to serve the publie in disaster, rivil defense need or emerkeney of any sort. The scmapmonts the followithe in acerolanee with section beeds and individual qualitications:

PAMI Ihone Artivitien Manager Organizes activities for OPSs and voice operators in his section. Promotes phone nets and recruits OPSs.
RXI Route Manager, Organizes and coordinates r.w. traffic activities. Supervises and protnotes nets and recruits ORS.
\&EC Fuction Emergeney ('oordinator. Dronotes amb whministers soction emerganey radio organization. Fimergency Coordinator. Organizes amateurs of a conmmuity or other area for emergency radio servios; maintains liatson with ofliojuls and agetorits sorval: allow with ether lueal cummanication facilitic...

STATION APPOINTMENTS

ARRI's field organization has a place for every active amatur who has a station. The Communications Department organization exists to increase individal emporment and station offertiveness in amatedr radio work, and we extend a cordial invitation to every amatere to participate fully in the artivities and to apply to the SCM for one of the following station appointments. ARRRI Membership and the Gemeral
 appointments, except (OESis available to Novice/ Terhnician grades.

OPs Official Phome station. Sots high voice operating standards and procedures. furthers phone nets and trallie.
ORS OHicrial Relay station, Traffic service oberates c.w. nets: moted for 15 w. watm, and procedore ability:
OHS Official 13ullatin Station. Transmits ARIRL and
FC'(' lnhbetin information to amateurs.
Ol:S Official Exprimental station. Experimental opcratinge. collorets and reports v.h.f.-m,h.f.-s.h.f. prome agation data, maty engag' in faceinile, 'TY, TV'
 oflocial Ohserver. Sember congerative notiens to amatherss to assist in fregu-ncy observance, insure" hightuality sigmals and prevonts FCC trouble.

Emblem Colors

Members wear the emblem with black-enamed background. A red background for an emblem will indicate that the wearer is Sc'M. SE's. EC, R Ms, amp PAMs may wat the cmblem with grean bekgreund. Ohservers and all stetion alpprintere are entilled to wear blue emblems.

SECTION NETS

Amaturers wan add mueh experionere and phatswe to their "wn amateur lives, and substanere and acomplishment to the credit of all of anatteur radio, when organizad into effertive interconnertion of ritines and lowns.

Thu suedessulal aperation of a med depemes: a lot on the Net Control station. This station should be chosen earefully athd be one that will not hesitate to enfinere weth and every reb rule and set the example in his own operations.

A progressive not grows, obtaining new members both divertly and through other mot members. Bulletins may be issued at intervals to kerep in direct contact with the members regarding
general net artivity, to keep tabon net procodure, make suggestions for improvement, keep track of antive members and weed out inative ones.

A National Traftic system is sponsored by ARRL, to farilitate the over-all expeditious refaty and delivery of messuge traflic. The system reerognizes the need for handling traflie beyond the section-level networks that have the popular support of both phome and c.w. groups (olp and (ORS) throughout the Lague's fich organization. Area and regional provisions for NTS are furthered by Ifendquarters correspondence. The ARIRL Not Dirertory, revised in Derember adm year, includes the frequencies and times of operation of the hundreds of different nets operating on amateur band frequencies.

Radio Club Affiliation

ARRI is pleased to grant affiliation to any amaterur soriety hatving (1) at least 51% of the voting club membership as full members of the Lague, and (2) at least 51% of members govern-ment-licensed radio amateurs. In high sehool ratio chubs bearing the sohool name, the first above reequirement is modified to reguire one full member of ARRL, in the club. Where a soriety hats common ams and wishes to add strength to that of other clabgroups ath st renghen amateder radio by affiliation with the national amaterar organization, a request addressed to the Commundeations Manager will bring the necessary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and sperial information at intervals for posting on club bulletion boards or for relay ${ }^{\text {for }}$ their membershipes A travel plan providing communimations, terhnieal and secretarial contant from the Hewduarters is worked out somsomaly to give maximum bendits to as mang a possibla of the several hundred ative affimed radio clubs. Papers on elub work, suggestions for orginizing, for constitutions, for rulio courses of study, ete., are available on request.

Club Training Aids

One section of the ARRRL. Communications I hepartment handles the Training Aids Program. This program is an service to ARRRL atfiliated duts Material is amed at education. training:undentertaimment of club members. Interesting quiz material is available.

Training dids include such items as motionpieture films, filmstrips, slides, and heoture outlinges. Also, code-profieichey training equipment such as recoders, tape transmitters and tapes will he loand when surh items are a a ailable.

All 'Traming dids materials are lomed frem (except for shipping charges) tw ARRL, affiliated clubs, Numerous gromps use this ARRSL servion to good advantage. If your chlub is affiliated but has mot yet taken advantage of this servirer, you are miswing a grod chance to add the available foatures to your monting programs and gemeral (dub) activities. Wateh chub bulletius and QST or write the ARPL Communications Depart ment for full details.

OWIAW

The Maxim Memorial Etation, WiAlW, is dodicated to fratornity and surviore. Operated by the laggue hemdguaters, WIAW is fomatod about four miles samth of the Jeadguators nffices on : seven-atere site. The station is on the air daty, exerpt holidays, and available beme is divided between different bands and modes.
 Telagraph and phone tramsmittors are provided for atl bands from 1.8 to $1 /$ Ne. The normal frequencias in each band for (:N: : thl wion transmissions are as follows: 1885, 3507, 394. $\mathbf{3}(180,2255,14,100,1+280,21,010,21.3330$,
 visiting hours and the station scheduld are listemb wery other month in QSTM.

Operation is roughly proportional to amateur interest in different hands and moder, with one $k W$, (xcep) on 160 and v.h.f. hands. WiAlW"s daily bulletins : and exde pratetere aim to give oferational hefp to the largest number.

All amatums are invited to visit WIAW, as well as for work the station from their awn shacks. The station was established to be a living memorial to lliram Perey Maxim and to carry on the work and traditions of amatear radio.

OPERATING ACTIVITIES

Within the ARRL, fiold organization there are sweral pereial artivitios. The first saturday and Sumday of each month is set aside for all ARRR officials, officers and directors to get towether over the air from their own stations. This adetivity is lemon to the gang as the 60 ports. For all appointers, quarterly (V) partios are sheduled todevelop operating ability and a spirit of iraternalism.

In addition to those for appointees and officials, ARRL sponsors various other activitios open to all amateurs, Tha ()N-minded amateur may participate in the Ammal ARRI, International 1 N ('ompetition during Fobruary and Mareh. This popular contest may hring you the thrill of working new rountries and building up your 1) $\mathrm{C}(\%$ totals: eretificate awads ane offered to top seorers in each country and ARRR, seretion (see page " of any (2, \boldsymbol{F}) and to chat teaders. Then there is the ever-popular Swerpstakes in Novemtrer. Of domastie soope, the sis affords the opportunity to work new states for that W As award. A Novise activity is plammed anmmally. The interests of v.h.f. enthusiasts are also provided for in contests held in Jantary, June and September of earh year.

As in all our operating, the idea of having a good time is combined in the Annual Field lay
with the more serinus thought of preparing ourselves to render publie servier in times of omergetory A promiom is placed on the use of erpipment whathat ramertion to commereial power soures. (hubs and individual groups always anfoes themsedves in the "Fl)." and learn much about the reduirements for operating moder knockatrout conditions afichd.

ARRI, eontest adivities are diversified to appeal to all operating interests, and will bo foumd ammonered in detail in issues of QST proweding the difforent events.

- AWARDS

The leaguc-sponsored operating activities heretofore mentioned have useful objectives and provide much enjoyment for members of the fraternits. Achoovement in amatener radio is reonghized hy various cortificates offered through the Lagur and detailed below:

WAS A ward

WAS means $"$ Worked All states." This award is available regardess of atfiliation or nonatfiliation with any organization. Here are the simple rules to follow in going after your IVA:

1) I'wo-wty combumication must be established on the amateur bands with each of the states; any and all amatemr

bands may be ned. A card from the Distriet of Columbia may te submitted in lien of one from Marylathd.
e) (ontarto with all states most be mado from the same focation. Within a given enmmunity one beation may be defined as from plares no two of whieh are more that 2.3 milow alart.
2) Contacts may be made over any period of years, and may have hern made any number of yware ago, provided only that all contacts are from the same location.
i) (2sh cards. or of her writton rommanioations from stations worked eonfirming the nereseary twoway eomtacts, must be submited be the apmimant to WRIRL, hend-- Muarters.
i) Euficient pastage must be sent with the eonfirmations to finanme their return, No eorrespondenee will be ruturned unless suffiement postage is furnished.
(i) The Wiss award is available to all amateurs.
3) Address all aphlications and condirnations to the Commmications Department, ARRL. 38 La salle IRomd. West IIartford, Conn.

DX Century Club Award

Here are the rules under which the INX Century ('lub) Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period.

1) The DX Century Club Award Certificate for confirmed contacts with 100 or more countries is available to all anmatents everywhere in the world.
2) Confirmations must be submitted direct to ARIL headetuarters for all countries claimed. Claims for a total of 100 combtrics must be included with first application. Confirmation from foreign contest logs may be requested in the case of the ARRL International DX Competition only, subjeet to the following conditions:
a) Sulficient confirmations of other types must be submitted so that these, plas the DX Contest confirmations, will total 100, In every case, Contest confirmations must not be requested for any countries from which the applicant hats regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations,
b) Look up the contest results as published in QST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest. date and time of QSO.
d) In future IDX Contests do not request confirmations until after the final results have been published, usually in one of the early fall issues. Requests before this time must be ignored.
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." "This chapter contains the Postwar Countries List.
4) Confirmations nust be accompanied by a list of claimed countrics and stations to aid in checking and for future reference.
5) Confirmations from additional countries may be submitted for credit cach time ten additional confirmations are available. Endorsements for affixing to eertificates and showing the new eonfirmed total ($110,120,130$, etc.) will be awarded as additional credits are granted. ARIRL DX Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2)
(i) All contacts must be made with amateur stations working in the authorized amateur bands or with other stations licensed to work amateurs.
6) In cases of countrics where amatcurs are licensed in the normal manner, credit may be claimed only for stations using regular government-assigned call letters. No credit may be claimed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amateur licenses were fornerly issued in the normal manner.
7) All stations contacted must be "land stations" contacts with ships, anchored or otherwise, and aircraft, cannot be counted.
8) All stations must be contacted from the same call area, where such areas exist, or from the same contritry in cases where there are no call areas, One exception is allowed to this rule: where a station is noved from one call area to another, or from one country to another, all contacts must be made from within a radius of 150 miles of the initial location.
9) Contacts may be made over any period of years from Noventer 15.1045 , provided only that all contacts be made under the provisions of Rule 3, and by the same station license; contacts may have been made under different call letters in the same area (or country), if the lieensee for all was the same.
10) All confirmations must be subnitted exactly as received from the stations worked. Any altered or forged confirmations submitted for CC eredit will result in disqualification of the applicant. The eligibility of any DXCC applicant who was ever barred from 1 NXCC to reapply, and the conditions for such application, shall be determined by the A wards Committee. Any holder of the Century Club A ward submitting forged or altered confirmations must forfeit his right to the eonsidered for further endorsements.
11) Operating ethics: Fair play and good sportsmanship in operating are required of all amateurs working toward the D) ('entury (Club Award. In the event of specific objections relative to continued poor operating ethies an individual may be dispualified from the DXCC by action of the ARRL, Awards Committec.
12) Sufficient postage for the return of confirnations must be forwarded with the application. In order to insure the safe return of large batches of confirmations, it is suggested that enough postage be sent to make possible their return by first-class mail, registered.
13) Decisions of the ARIRL Awards Committee regard-
ing interpretation of the rules as here printed of later amended shall be final.
14) Address all applications and confirmations to the Communications Department. ARR1.. 38 La salle Road. West Hartford 7. Conir.

WAC Award

The International Amatcur Radio Union issues W'AC" (Worked All (ontinents) certificates to members of member-societies who submit proof of two-way eommunication with one station on each of the six eontinents. Foreign amateurs submit their proof direct to member-societies of the IARU. U.S. and Canadian amateurs must be members of the League, and should make application to AIRIRL, headquatrters society of the Union. Amateurs residing in countries not represented in the Union may apply to AIRRL, and enclose 50 , or 6 IRC's. A c.w. and a phone certificate are available. The c.w. certifieate will be issued for all c.w., or a combination of phone and c.w. confirmations. Special endorscments are availabld for 3.5 Mc., and s.s.h.

Code Proficiency Award

Many hams can follow the general idea of a contact "by ear" but when pressed to "write it down" they "muff" the copy. The Code Proficiency Award invites every amateur to prove himself as a proficiont operator, and sets up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficiency, to better that proficiency, and to receive a certification of his receiving speed.
This program is a whale of a lot of fun. The League will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plain-language Continental code at $10,15,20,2 \overline{5}, 30$ or $3 \overline{5}$

words per minute, as transmitted during special monthly transmissions from $W 1.1 W$ and Wo(0)P.

As part of the ARIRL, Code Proficiency program W1AW transmits plain-language practice material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase their corle-copying ability. Non-anateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$., which are transmitted for the benefit of persons studying the code in preparation for the amateur license
examination. Refer to any issue of QST for details of the practioe schedule.

Rag Chewers Club

The Ray Chewers (lub) is designed to encourage friendly contacts and diseourage the "hello-good-hy" type of (2SO). It furthers fraternalism through amateur radio. Nembership certificates are awarded.

Ilow To fiet in: (1) Chew the rag with a member of the club for at least a solid hualf hour. This does not mean a half hour sum in trying to get a message over through bad QRD or QRN, but a solid half hour of convensation or message handing. (2) Roport the convorsation by eard to The Rag (hewors ('luh, AIRIRL, Communications Department, We:t llartford, Conn,, and ask the membor station you talk with to do the same. When both reports are received you will be sent a membrahip certificate entiting you to all the privilegos of a lag ('hewer.

How To Stay in: (1) Be a convervationalist on the air instead of one of those tongue-tied infants who don't know any words cexerpt "chaga" or "cul," or "(2RI" or "nil," Talk to the follons you work with and get to know them. (2) Operate your station in aecordane with the radio laws and ARRL ןractice. (3) observe rules of courtasy on the air. (1) Sign "Re'('" after each call so that others may know you can talk as well ats call.

A-1 Operator Club

The A-1 Operator Club) should include in its ranks every good operator. To berome a member, one must be nominated by at least two operators who atready belong (ieneral keying or voice terhnigue, procedure, copsing ability, julgment and courtesy all count in rating candidates under the clubs rules detailed at length in operating an Amateur Ralio Station. Aim to make yoursolf a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-i Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Wyery inclividual reporting more than a specified minimum in official monthly traffie totats is given an honor place in the (d.5'T listing known as the 13rass Pounders League and a certificate
to recognize his performance is furnished by the SCM. In addition, a BPL Traffe Awarl (medalhon) is given to individual amatemrs working at their own stations after the third time they "make BPL" provided it is duly reported to the SCM and recorded in QSTT.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternity, Fun, enjoyment, and the freling of having done somothing really worth while for one's fellows is arentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Ofd Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20 -or-more vears ago. Lapses in activity during the intervening yars are permitted.

If you can qualify as an "Old Timer," send an ontline of your ham carerer. Indicate the date of your first amateur license and your present cati. If eligible for the orC, you will be added to the roster and will receive a membership, certificate.

INVITATION

Amateur ralio is eapable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amater puts into his hoblys. All amateurs are invited to become ARRRL members, to work toward awards, and to arcept the challenge and invitation offered in field-organization appointments. Drop a line to ARRL, Headcuarters for the booklet Operating an Amateur Ratio Station, which hat detailed information on the field-organization alppointments and awards. Acerpt today the invitation to take full part in all League aetivities and organization work.

CONELRAD COMPLIANCE

The FCC rules for the Imateur Service concerned with requirements in the event of anemy attark are contained in the AlRILL License Vamal as part of the amatenr regulations, Sections 12.190 through 12.196. These are the rules for control of electromagnetic ratiation, condrad, to minimize radio navigational aids to an enemy. Read and follow these rules. They roncern you. Amateurs are required to shat down when a Conelrad Radio Alert is indieated. FCC reguires monitoring, by some means, of a broadeast station while you operate. By use of proper equipment, each amateur can make his conctrad rompliance routine and almost antomatic. You will find descriptions of surh devicers, most of them quite simple, in this Handbook and in (QN'T.

Operating Abbreviations and Prefixes

Q SIGNALS

Given below are an number of（）signabls whme meanings most often need to be expressed with brevity and clearness in amateur work．（（）ab）－ beviations take the form of questions only when each is sent followed by a question mark．）

Will you tell we my exact frepuency（or that of．．．．．．．）？Your exact frembericy（or that of ．．．．．）is．．．．．．ke．
QRII Docs my frequercy vary？Your frequency varies．
How is the tone of my transminsion？The tone of your transmission is．．．．（1，Combl：2，Viriable： 3．Hadd），
QRK What is the readability of my sigmals for those of．．．．．．）？＇The roatability of vour signals（or those of．．．．．）is．．．．．（1．L＇nrestable：2．Read－ athen now and then：3．Rematahle but with dif－ firulty：4．Readahle：5．Perferetly readahbe）．
QRL，Are you busy？I ath busy（or I and busy with ．．．．．．）．I＇lease do not interfere．
QRM Are youbeing interfered witle？I an interfered with．
QRN Are you tronbled by static？I am being troubled by static．
ORQ Siall I send faster？Send faster（．．．．．words per min．）．
QRS Shall I send more slowly？Send more slowly（．．．． w．p．in．）．
（QR＇T Shall I stop semding？Stop sending．
QRL Have you anything for tue？I have nothing for you．
QRV Are you rendy？I am ready．
QRW Shall 1 tefl．．．．．that you are calling him on ．ke．．Please inform．．．．．that 1 am calling him on，．．．．ke．
（QRX When will you call me again？I will call you again at ．．．．．．hours（on．．．．．．．．ke．）．
QRZ Who is cealling me？You are being called by．．．． （on．．．．．．ke．）．
QSA What is the strength of my signals（or those of ．．．．．．）？The stren⿰亻 of your signate（or thene of ．．．．．）is．．．．．．．（I，Scarenly pereeptible； 2. W＇ak；3．latirly mood；4．（iood；is．Very good）．
QSl3 Are my signals fading？＇our wignals are fading．
（2s）Is my keying defective？Your krying is defective．
QsG shall I send．．．．messages at a time？Rend．．．． mussures at a time．
Qsi．Can you acknowhenge receipt？I am acknowlodging recejpt．
QSM Elall I reprat the last message whioh I spot yom． or somue previous meswage？Rejesat the last thessage which you sent me for message（s） number（s）．．．．．J．
QHO Can yon eommunicate with．．．．direct or by relay？ I can commmicate with．．．．．direct（er lisy relay through ．．．．．）．
QsP Will you relay to．．．．．？I will relay to．．．
Q：V shall I samd a series of ths on this fremumey for ke ．）？Send a series of V＇s on this fremberney （or．．．．．ke．）．
Qtill Will you semd on this freduernes（or on ．．．ke．f？ 1 ann going to send on this frecouency（or on ke．）．
QSX Will vull Ifsten to．．．．．on ．．．．．ke．？I am listenimg to．．．．．．．on．．．．．．．kc．

QSY Shall I chanke to transmission on another fre－ quency？（hange to transmission on another frequeney（or on ．．．．．ke．）．
QSZ Shall I send cach word or group，more than once？ Send each word or group twice（or．．．．times）．
QTA Shall I cancel message number．．．．as if it had not been sent？Cancel message number．．．．as if it had not been sent．
QTB Do yon agree with my counting of words？I do not agree with your counting of worts；I will repeat the first letter or digit of cach word or group．
QTC Ilow many mensages have you to send？I have．．．． thessages for you（or for．．．．．）．
QMI What is your loration？My location is．．．．．
QTR What is the exact time？The time is．．．．．．
Special abbresiations adopted by ARRL：
QST General call preceding a message addressed to all anateurs and $A[R R 1$ ，members．This is in effeet ＂C＇Q ARKL．。＇
QRRR Official ARRL，＂land sos．＂A distress call for emergency use only by a station in an emergency situation．

THE R－S－T SYSTEM READABILITY

1 －Unte：dalde．
2 －Rarely readathe，oreasionall words distinguish－ able．
3 －Readable with consilerable ditliculty．
4－Readable with practically no diffienlty．
5 －Perfeetly readable．

SIGNAL STRENGTH

1 －Fiant sigmals，barely perceptible．
2 －Vers weak signals．
3 －Weak signals．
4 －Pair signals．
5 －l＇airly good signals．
6 －（iomen sigmals．
7 －Moderatelys strong signals．
8 －Strong signals．
9 －Extremely strong signals．

TONE

I－Extremely rough hissing note．
2 －Vers rough ace，note，no trace of musirality．
3 －Koudh low－piteled ase，note，wightly musical．
4 －Rather rough a．c．note，motherately musieal．
5－• Musically－modul：ted note．
6 －Molulated note，slight trace of whistle．
7 －Near die，note，smooth ripple．
8 －Good d．c．note，just a trace of ripple．
9 －I＇urest d．c．note．
If the signal has the characteristic steadiness of arystal eontrol，add the letter X to the Rs：report． If there is a chirr，the letter（ $:$ may be added to so indirate．Simidary forr at alieh，datal K．Tha alowe reporting system is used on lonth bat．and voico． leaving out the＂tone＂repart on woice．

A．R．R．L．COUNTRIES LIST－Official List for ARRL Postwar DXCC

sikkim	KHG．．．Baker，Ilowland \＆Anserican	V12． deeward Islamds
Tibet	［＇horrnix Istands	V12．．．．．．．．．．．．Windward Islands
C：5．．．．．．．．．．．．．．．．．．．Bhutan	IRC4．．．．．．．．．．．．．．．．．（sere（E9）	
1P²．．．．．．．．．．．．．．．．Prakistan	KC4．．．．．．．．．．．．Nuvassa Island	114．．．．．．．．．．．${ }^{\text {a }}$ l＇rinidud \＆l＇ohago
	LC6．．．．．．Wasturn Caroline Islands	V15．．．．．．．．．．．．Cayman Islands
C（unotlicial）．．．．．．．．．．．．．．（hina	K（6．．．．．Western（aroline Isiands	Vlo．．．．．．．．．．．．．．．．．．．．．．Janaica
C3．．．．．．．．．．．．．．．．．．．（nee 3 ）		V15．．．．．．．Turks \＆Caicos Islands
Ca．．．．．．．．．．．．．．．Manclaria	E（i4．．．．．．．．．．．（inantanamo Bay	Mrb．．．．．．．．．．．．．．．．．．Marbades
CE ．．${ }^{\text {a }}$	K（i6．．．．．．．．．．．．Mariana Islands	V17．．．．．．．．．．．．．Bahama lslands
crinct，i－\％以к，	K（ifil ．．．．．．．．．．．．－（sere kidy）	V18．．．．．．．．．．．．．．．．．（nee（E®）
VP8．\％L： 4 te．．．．．．．Antaretica	KII6．．．．．．．．．．Itawaian Islatds	V1＇8．．．．．．．．F Falkland lislands
CE\％．．．．．．．．．．．．．．．Paster Island	K．Jt．．．．．．．．．．．Johnnston 1sland	V18．LU－\％．．．．．．．．South（ieorgia
	F1．7．．．．．．．．．．．．．．．．．Alaska	VP＇，LE－Z．．．South Orkney Islands
CX2．．．．．．．．．．Tangier \％one	FM6．．．．．．．．．．．．Midway Islands	VP＇S．Li＇－／siouth sindwiel lstands
C×8 ．．．．．．．．．French Morueco	KP4．．．．．．．．．．．Purtor Rico	VP＇s，LC＇－\％．．．South shethand Islands
CP．．．．．．．．．．．．．．．．．．．Bolivia	KPf．Palmyra（iroup，Jarvis 1 sland	Vp．．．．．．．．．．．Bermadalslande
CRi ．．．．．．．．．－ape Verde Islands	F12f．Ryukyi lsands（e．g．Okinawa）	V（2I ．．．．．．．．．．．．．．．／anzibar
CR．）．．．．．．．．．．．Portugnese（iumea	list ．．．．．．．．．．．．swan ！stand	Y（2 ．．．．．．．．．Northern Rhodesia
CR－）．．．．．．．．．Principe，sau Thonme	にvij．．．．．．．．．．．Ammericansamom	VC3．．．．．．．＇Tunganyika Territory
CRti．．．．．．．．．．．．．．．．．Angola	KV ．．．．．．．．．．．．Virgin Islands	V（24．．．．．．．．．．．．．．．．．．Kienya
CR7．．．．．．．．．．．．．．．．．．Mozambique	KW0．．．．．．．．．．．．．．．．Miakelsland	V（25）．．．．．．．．．．．．．．．．Ukanda
CR8．．．．．．．（ioa（bortuguese India）	KX6．．．．．．．．．．Marshall Istands	V（26．．．．．．．．．Mritish Somaliland
CR9．．．．．．．．．．．．．．．．．．．．．Macau	К̌／5．．．．．．．．．．．．．．．．（＇anal \％ome	V（28 ．．．．．．．．．．．．（hages Islands
CR10．．．．．．．．．．．Portuguese Timor	L．1．．．．．．．．．．．．．．．．．${ }^{\text {an Maven }}$	V68 ．．．．．．．．．．．．．Mauritius
C＇11．．．．．．．．．．．．．．．．．Portumal	L．1．．．．．．．．．．．．．．．．Norway	Y（28．．．．．．．．．．．Rodriguez lsland
C＇2．，．．．．．．．．．．．．．．．．．．．．．Azores	L．1．．．．．．．．．．．．．．．．．Svalbard	Y（29．．．．．．．．
C＇I3．．．．．．．．．．．．Madeira falands	LIV．．．．．．．．．．．．．．．．Argentina	Ykl．．．．．．．British Phenenix lislands
CX．．．．．．．．．．．．．． 1 ruguay	L1－\％．．．．．．．．．．．（See（＇169，V188）	VR1．．．．．．．．．（illsert \＆Villice Islunds
［．I，DL，DM．．．．．．（iermany		＊Oecan Island
I）${ }^{(1) ~}$ Philippine Islands	L／7．．．．．．．．．．．．．．．｜luggaria	VR2．．．．．．．．．．．．iti lslands
E．h．．．．．．．．．．．Malearic Spain	M1，．．．．．．．．．．．Man Maring	FR3．．．Fanning \＆Ciristmas islands
E．1t ．．．．．．．．．．．．．Batearic Islands		ph．）．．．．．．．．．．．．．．．${ }^{\text {Pongma lislands }}$
EA9．．．．．．．．．．．．．．．．．．．．． 1 Ifni	MP4．．．．．．．．．．．．．．．．．．．．．．．（batar	rkt．．．．．．．．．．．．．liteairn Island
19．．．．．．．．．．．．．Riode Oro	\P4．．．．．．．．．．．．．Travial（man	V®1 ．．．．．．．．．．．．．．．．singapere
EA9 ．．．．．．．．npanish Morveco	ОА．．．．．．．．．．．．．．．．．．．l＇ern	V＇2．．．．．．．．．．．．．．．．．．．．
E．18．．．．．．．．．．．．sumish（iument	OD5．．．．．．．．．．．．．．．．．．I．ehbanon	Vst．．．．．．．．．．．．．．．．Sarawak
E1．．．．．．．．．Republic of lreatad	OES．．．．．．．．．．．．．．．．．．．．dustria	Ls．．．．．．．．．．．．．．．．．．Brunei
EI，．．．．．．．．．．．．．．．．．．．． Libleria	OHI．．．．．．．．．．．．．．．．．．．．．Finkand	Vs6．．．．．．．．．．．．．．．．．．Ilong Kung
HQ ．．．．．．．．．．．．．．．．．．．．	O1I0．．．．．．．．．．．．．．Aland Islands	Š9．．．．．．．．．．．Adden de socotra
12．．．．．．．．．．．．．．．．．．．．．．．rritrea	OK．．．．．．．．．．．．．．（zechuslowakia	ISY．．．．．．．．．．．Maldive Islands
1：3 ．．．．．．．．．．．．．．．．Ethioplia	ON4 ．．．．．．．．．．．Brlgiun	Vis．．．．．．．．．－inltanate of Oman
．Frane	OQ5，明 ．．．．．．．．．Mengian（ongo	リ［2．．．．．．．．．．．．．．．．．．．．．India
FA．．．．．．．．．．．．．	OX，K（il．．．．．．．．．．．diremland	Vじ\＆．．．．．．．．．．．．latermive lshamas
FR8 ．Ansterdan if sit．Panl Islands	OY ．．．．．．．．．．．．．．．．．．．．． 1 －aterons	C．S．Andatuan and Nieobar slands
F138．．．．．．．．．Cunurn Islands		 （nee K） Mexiro
F138 ．．．．．．．．Kierguelon Islamds	P．J6．I＇It ．．Netherlands Werst Indies	XE4．．．．．．．．．．．．．．．．Revilla（iigedo
F188 ．．．．．．．．．．．．Madagascar		X118．．．
F138．．．．．．．．．．．．．Tromulin lisland	PVi，2，3．．．．．．．．．．．．．．．．．．．．．．	X72．．．．．．．．．．．．．．．．．．．．．．Киива
	Pr4．．．．．．．．．．．．．－mmatra	i．A．．．．．．．．．．．．．．Afghanistan
FES ．．．．．．．．French＇ameroons	1－5．．．．．．Netherlants Bornew	1I．．．．．．．．．．．．．．．．．．．Iray
Fr8．．．．．．．．．．reneh West Africa	IR6．．．．Celebes \＆Molucrat Islands	Y．J．．．．．．．．．．．．．．．．．（see Fl ${ }^{\text {8 }}$ ）
F6i7．．．．．．．．．．．．	1＇X．．．．．．．．．．．．．．．．Andorra	YK．\because ．．．．．．．．．．．．．．．．Syria
F18．．．．．．．．．．Frunch Indo－china	PY．．．．．．．．．．	¢人，ソ®．．．．．．．．．．．Nicaragha
Fk8．．．．．．．．．．－${ }^{\text {cw }}$（abedonia	P＇Z1 ．．．．．．．Netherlands Giniama	YO．．．．．．．．．．．．．．．．R⿴囗 Rounania
F18．．．．．．．．．lireneh Somaliland	Sp，sil ．．．．．．．．．．．．．．Sweden	
FM 7 ．．．．．．．．．．．．．Martinimue	SP ．．．．．．．．．．．．．．．．．I＇oland	IC．．．．．．．．．．．．．．． －uposlavia
FN．．．．．．．．．．．．．French India	ST2 ．．．．．．．．．．．．．．．．．．sumand	YVb．．．．．．．．．．．．．．．．．．．dves Islands
FO8 ．．．．．．．．．（lipperten Island	Sy ．．．．．．．．．．．．．．．．．．．．reme	
FO8 ．．．．．．Frenels Oreania		Z 131
Fols ．．St．liorre\＆Mivielon lslands	SV irerre	Z，132．．．．．．．．．．．．．．．．．．．． Bibralar $^{\text {a }}$
F88 ．．．．．lirench liquatarial ．frica	T \qquad Tarkes	\％C3．．．．．．．．．．．．．Claristhas Island
rax^{187} ．．．．．．．．．．．Renmion Islamd	TF．．．．．．．．．．．．．．．．．．．．．．．．Iceland	7C．4．．．．．．．．．．．．．．．．．．．（sprus
．saint Martin F！8 VJ1	TG．．．．．．．．．．．．．．．．．．．．．inatemata	
F゚イ8，1．Jl．．．．．．．．．．．．．．．．ew hebrides Flle wallis forman Eslands	TI ．．．．．．．．．．．．．．．．．．．．custa Riea	ZCb ．．．．．．．．．．．．．．．．Patestime
Fll $8 . .$. Watlis of futuna mands	T19．．．．．．．．．．．．．．Cocos Island	71）1．．．．．．．．．．．．．．．Sierra 1 ，eume
FY7．．．．．．．French（itiana de inimi	UA1，2，3，4，6．．Marmman Russian	ZDD2．．．．．．．．．．．．．．．．．Nigeria
（iC．．．．．．．．．．．．．．．．．．Channel Islands	Sorialist l＇ederatedstovict Republice	ZID3．．．．．．．．．．．．．．．．．． （ ianmbia
（iI）．．．．．．．．．．．．．．．Isle of Man	UA1．．．．．．Franz losef Lame	70．．．．．．．Gold Cuast Tosoland
（iI ．．．．．．．．．．．．Northern Ireland	U．A9， 0 ．．．Astatic Russums Mrangel Island	ZD）fi．．．．．．．．．．．．．．．．．．．Nyasaland
（ial ．．．．．．．．．．．．．．．．Seotland	UB5．．．．．．．．．．．．．．．	zDi．．．．．．．．．．．．．．．．．．．－St．Ilelena
（ill ．．．．．．．．．．．．．．．．．．Wates	UC2．．．．．．．．．White Russian Soviet	Z138．．．．．．．．．．．．Ascension Island
11．A．．．．．．．．．．．．．．．Mungars	LC2．．．．．．．． Sucialist Republic	7Du ．．．．．．．．．．．．Tristan dat cunha d
IIB．．．．．．．．．．．．．．．． witzerland $^{\text {a }}$	LD6．．．．．．．．．．．．．．．．． Izırbaijan	Giough Islands
IIC．．．．．．．．．．．．．．．．．Wemartor	LF0．．．．．．．．．．．．．．．．．．．．．．．．． deorgia $^{\text {a }}$	ZE．．．．．．．．．．．．Nouthern Rhodesia
IIC8．．．．．．．．．．ialapages islands	［G6．．．．．．．．．．．．．．．．．．．．．．Ammmia	ZKi．．．．．．．．．．．．．．．．（ook Islands
HE．．．．．．．．．．．．．．．Licehtenstein	t118．．．．．．．．．．．．．．．．．．．．．．．． Turkoman $^{\text {a }}$	そに゙2．．．．．．．．．．．．．．．．．．Niue
III．．．．．．．．．．．．．．．．．．．．Itaiti	［18．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {rzabok }}$	7／L．．．．．．．．．．．．Kermader Islands
III．．．．．．．．．．Dominican Rppublic	UJ8．．．．．．．．．．．．．．．．．．．．．．Thdahik	71．．．．．．．．．．．．．．New \％ealand
	KL7．．．．．．．．．．．．．．．．Kazakh	
IIKQ．．．．Archipelatgo of San indres	1．18．．．．．．．．．．．．．．．nyhiz	VM17．．．．．．Tokelau（t＇nion）Islands
IIL ．．．．．．．．．．．．．．．．．．．．．${ }^{\text {andicrea }}$	［＊1 ．．．．．．Karelo－Finnish Republic	ZP ．．．．．．．．．．．．．．．．．aragitay
IIP．．．．．．．．．．．．．．．．．．．．．．${ }_{\text {Panama }}$	COS．．．．．．．．．．．．．．．．Mbidava	7s1． $2,4,5,6$. crion ot conth Afriea
IIR ．．．．．．．．．．．．．．．．．．Honduras	（P2．．．．．．．．．．．．．．．．．．ithmarna	
HS．．．．．．．．．．．．．．．．．．Thailand	R02．．．．．．．．．．．．．．．．．．．	／ais．．．．．．．．．．．．．．．．．．．Swaziland
IIV ．．．．．．．．．．．．．．Vatican（ ity		／a8．．．．．．．．．．．．．．．．．．Basutoland
II\％ino．．．．．．．．．．．Saudi Arabia		7x9．．．．．．．．．．．．．．Berchuanaland
［1．III ．．．．．．．．．．．．．．．．Italy	Vkı Mastrala	： $1 . .$. ．．．．．．．．．．．．．－．
11．．．．．．．．．．．．．．．${ }^{\text {aricste }}$		
Is．．．．．．．．．．．．Italimn somaliand	Vkh．．．．．．．．．．．．．．Meatri matma	： 1 ¢．．．．．．．．．．．．．．．．．Vietnan
Isi ．．．．．．．．．．．．．．．sardinia		4si ．．．．．．．．．．．．．．． （eylon
J．KA ．．．．．．．．．．．．．．．．hapan		4W1．．．．．．．．．．．．．．．．．．Yromen
JT1 ．．．．．．．．．．．．．．．．．Mungodia	Vk！．．．．．．．．．．．．．－aturnis liand	4X4．．．．．．．．．．．．．．．．．．．．．Israc］
． 1 Y ．．．．．．．．．．．．．．．．．．．．lordan	VK：！．．．．．．．．．．．．Nurfolk Istand	万1．．．．．．．．．．．．．．．．．．．． lib ysa
174．．．．．Sotherlamds Now Ciumea	Vk：9．．．．．．．．．．．l＇apha Territory	9s4．．．．．．．．．．．．．．．．．．．．suar
K．W．．．．．（＇nited states of America	Vk9．．．．．．Territory of New Siuinea	Aleabra lslames
Ki．．．．．．．．．．．．．．．．．．（see．JA）	V0．．．．．．．．．．．．．．．．．．．．．．（sue \E）	Cambodia
F．do，K（itil．Bonin d Volano lsands		

INTERNATIONAL PREFIXES

AAA－ALZ	United States of America	SSN－ST\％	Sudan
AMA－AOZ	Spain	SぜA－SC゙\％	Ligypt
A P＇A－AS\％	Pakistan	SVA－s\％\％	Greere
ATA－AW\％	India	TAA－TC\％	Turkey
AXA－AX\％	Commonwealth of Australia	TDA－Tuz	Guatemala
AYA－AZ\％	Argentine Republic	TE．A－TE\％	Costa Kica
BAA－BZZ	China	TrA－TF\％	Leceland
CAA－CE\％	Clite	TGA－TG\％	Ciuatemala
CFA－CLZ	Camada	THA－1H\％	France and Colonits and Protertorathe
CLA－CM\％	Cuba	TIA－T1\％	Costa Kica
CNA－CN\％	Morocco	TJA－T\％\％	France and Colonies and Protertorates
COA－COZ	Cuba	UAA－C（2\％	Cinion of Soviet Sucialist Requblirs
CPA－CPZ	Bolivia	URA－L＇1\％	［＇kraminan Soviet Sorialist Rapul，ic．
CQA－CRZ	Portuguese Overseas Provinces	UUA－L゙ZL	Union of soviet Socialist Republirs
Csidclz	Portugal	VAA－VC\％	Canata
CVA－CXZ	Uruguay	Vlla－V＇\％	（ onmmonwealth of Anstralia
CYA－CZZ	Canada	VOA－VOZ	Canarla
DAA－1）MZ	Germany	VPA－Vi\％	I3ritish Colonies and I＇rotectoratis
DNA－1）${ }^{\text {d／}}$	Belgian Congo	VTA－VW\％	India
DRA－1）T\％	Bielorussian Soviet Socialist Republic	VXA－VYZ	（ anada
DUA－1）2Z	liepublic of the I＇hilipjones	VZA－VZ\％	Commonweath of Australia
EAA－EHZ	Spain	WAA－W\％\％	United States of Amerieat
ELA－EJZ	Ireland	NAA－XI\％	Mexico
EKA－Eん\％	Union of Soviet socialist Republics	－JA－XO\％	Canarla
ELA－HLLZ	Liberia	－${ }^{\text {P }}$ A－XP\％	1 Jenmark
E．AIA－1：OZ	Union of Soviet Socialist Republies	XQA－XR\％	Chile
EPA－EQZ	Iran	入゙SA－Xッ\％	China
ERA－ERZ	Union of Soviet Sucialist Leprablies	XTA－NT\％	France and colonies and l＇rotectorates
ESA－ES\％	listonia	NUA－N゙\％	Cambodia
ET＇A－E＂＇	Ethiopia	入VA－XV\％	Viet－Nam
EUA－EZZ	Linion of soviet socialist Republics	XWA－XW\％	daus
FAA－FZZ	France and Colonies and Protectorates	NX．1－XX\％	Portuguese Overnas Provinces
GAA－（i\％\％	（ircat Britain	X1：1－X\％\％	Burma
HAA－IIAZ	Itungariun P＇ople＇s Republic	YAA－YA\％	Afghanistan
11BA－1132	Switzerland	YBA－Y1I\％	Republic of Indonesia
11C．A－110\％	Eeuador	Y1A－Y＇\％	Iracl
HWA－115\％	Switzerland	I＇J．A－I＇s\％	New Ilebrides
11FA－11F\％	P＇eople＇s Repablic of Puland	リビィ－「バ\％	Syrian Republic
H（AA－IIG\％	Hungarian I＇eople＇s Republic	YLA－İ．\％	Latria
1111A－111\％	Republie of Haiti	Y＇MA－Y゙M\％	Turkey
111．1－112	Dominican Republic	VNA－YNZ	Nicararua
1．JA－HK2	Republie of Columbia	VOA－YR\％	Roumanian Propple＇s Republic
11LA－11M\％	Kurea	ISA－Y\％	Republir of Ei Salvador
INA－HNZ	I rac	1TA－YC\％	Yurusalvia
110A－111＇\％	Republic of Panama	1VA－1\％\％	Fonezaela
11QA－H12\％	Republic of Honduras	Y\％．A－Y\％\％	lugoslavia
HSA－HSZ	Thailand	\％AA－\％A\％	Albania
HTA－HT\％	Nicaragua	\％BA－\％．JZ	British Colonies and Protertorates
1UA－11し2	Repablic of lel Salvador	ZKiA－Z．1\％	Now Yealand
115A－11 ${ }^{\text {ch }}$	Vatican City State	ZNA－ZOZ	British Colonin＇s and Irotectorates
11WA－11\％\％	Firance and Colonies and Protectorates	\％1＇A－ZIP\％	Paraguay
11ZA－11\％Z	Saudi Arabia	\％QA－ZQ\％	British Colonies and I＇rotertorates
1AA－1Z\％	ltaly and Colonies	\％RA－\％じ\％	Union of South Africa
JAA－JS\％	Japan	ZVA－ZП\％	Brazil
JTA－JV\％	Mongolian People＇s Republie	2．AA－2\％\％	Great Britain
JWA－JX\％	Norway	3．1A－3AZ	Monaco
JYA－JY\％	Jurdan	313A－3F\％	Cunada
J\％A－JZ\％	Netherlands New Guinea	3GA－3G\％	Chile
KAA－K゙\％	United States of America	311A－3L\％	China
LAA－LN\％	Norway	31．${ }^{\text {a }}$ \％	Tunisia
LOA－LW\％	Argentine Republie	3WA－3W\％	Viot－Niam
LXA－LXZ	laxenibourg	$3 \mathrm{Y}^{5} \mathrm{~A}-3 \mathrm{Y} \%$	Norway
LYA－LIZ	lithuania	3\％A－3\％Z	People＇s Repuldie of l＇oland
1．\％A－L\％\％	Reople＇s Republic of Bulgaria	4AA－4CZ	Mexico
MAA－M\％\％	Great Britain	41）A－4IZ	Republic of the Ploilipmines
NAA－NZZ	United States of America	4．JA－4L\％	Linon of sowiet Socialist Repmblits
OAA－OC\％	J＇eru	＋．11．4．1\％	Venczuela
ODA－OIZ	Lebanon	4N．1－10\％	Turoslavia
OEA－OFZ	Austria	41＇A－4， 2	Ceylon
OFA－O．J\％	Finland	4TA－4T\％	Peru
OK゙d－OM\％	Czechoslovakia		United Nations
ONA－OT\％	Belmiunand Colunies	4VA－4\％	Republic of Itaiti
OUA－OZ\％	Denmark	4 W － $4 \mathrm{~W} \%$	Yemen
1＇AA－PI\％	Netherlands	4NA－4N\％	State of Israt
PJA－PJ\％	Netherlands Antilles	$4 \mathrm{CA}-1 \mathrm{C} \%$	International C＇ivil Aviation Organization
1 PA －POZ	Republic of Indonesia	5． 1 A－i． 1%	Liby＇a
PPA－PY\％	Brazil	5（｀A－5C\％	Morocco
P＇A－P＇KZ	Surinam	5L，A－5L／Z	Liberia
QAA－Q\％\％	（Service abbreviations）	SPA－5QZ	Denmark
RAA－RZZ	Union of Soviet Socialist Republics	9A．A－9AZ	San Marino
SAA－SMI\％	Sweden	9 KA 9 KZ	Kuwait
S．NA－SRZ	People＇s Republie of I＇oland	9NA－9N\％	Nepal
SSA－SSMI	Egypt		Samr

ABBREVIATIONS FOR C．W．WORK

W／K CALL AREAS BY STATES

Alah：amat 4 Yolmaska ． 1
Arizon：a 7 Neviulas 7
Arkans：as 5 New limmpshire 1
Califormia ． 6 New Jerser 2
Colomado New México 5
Comberticut 1 New York 2
｜helamata 3 North Carolinis 4
I ）istrich of Columbia ． 3 North ！）ikkota 1
Fiorida 4 Ohio 8
Georgiat 4 （）klahoma 5
llatho 7 （）regon 7
lllinois． ！）Pemnsvivania ． 3
Indianat （）Thode Island 1
low： （）South C：urolina 4
R゙ロクロ： （）South Dakotia． 1
K゙entucky 4 Tennessee 4
（0）1181：b1： 5 Texas 5
Maime Utah． 7
Maryimel 3 Vermont 1
Nassu•husetts ． 1 4
Michigan 8 8
Minnesotia
Wishington 7
Mississippi West V̈rginia 8
Missomri （）Wiseonsin 9
Nontana .7 Wyoming 7

- Operating an Amateur Radio Station covers the details of practical amateuroperating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
- Emergency Communications is the "bi. ble" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a table of RACES frequencies on the front cover.

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road West Hartford 7, Connecticut, U. S. A.

Please send me, without charge, the following:

$$
\begin{aligned}
& \text { OPERATING AN AMATEUR RADIO STATION } \\
& \text { EMERGENCY COMMUNICATIONS }
\end{aligned}
$$

Name

(Please Print)

Address

Vacuum Tubes and Semiconductors

For the convenience of the designer, the re-eriving-type tubes listed in this chapter are groumed by filament voltages and construction types (glass, motal, miniature, otco). For example, all miniature tubes are listed in Table I, all metal tubes are in Table II, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed arcording to rated plate dissipation. This permits direret comparison of ratings of tubes in the same power rlassification.

For quick reforence, all tubes are listed in numerical-alphathetical order in the index. Types having no table reference are bither obsolete or of little use in amate eur equipment. Base diagrams for these tubse arr listed, however.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodas, based on inherent limiting fartors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmitting-tube tables, maximum ratings for electrode voltage, comrent and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the rerediving-tube tables, beramse of space limitations, ratings and operating data are combined. Where only one set of operating eonditions appears, the positive electrode voltages shown (plate, sercen, ete.) are, in general, alsa the maximum rated voltages.

For certain air-rooled transmitting tuhes, there are two sots of maximum values, one designated as CCS (Continuous Commercial sorvior) ratings, the other ICAS (Intermittent Commerdial and Amateur Sorvice) ratings. Continuous Commercial servier is defined as that type of servier in which long tube life and reliahility of perfommane under continuous operating
conditions are the prime consideration. Intermittent Commereial and Amatear Sorvice is defined to include the many applieations where the transmitter design factors of minimum size, light weight, and maximum power ontput are more important than long tube life. ICAS ratings are ronsiderably higher than (CN ratings. Thery permit the handling of greater power, and although such use involves some samerifice in tube life, the preved over whish tabes give satisfactory performance in intormittent serviere cath be extremely long.

The plate dissipation values given for transmitting tubes should not be exereded during nomad operation. In plate modulated amplifier applieations, the maximum allowable carrice-eondition plate dissipation is approximatoly if pereent of the value listed and will rise to the maximum value under 100 -percent simusoidal modulation.

Typical Operating Conditions

The typical operating conditions given for transmiting tubes represent, in generat, maximum ICAS ratings wher such ratings have been given by the mambaturer. They do not represent the only possible mothod of operattion of a particular tube type ' Wher values of plate voltage, plate current, grid bias, etre, may be neod so long as the maximum ratings for a partioular voltage or curvent are mot exereded.

Equivalent Tubes

The equivalent tubes listed in Trable VIII are used occasionally in amateur service. In addition to the types listed. other equivalents are available for special purposes such as sorics-heater string operation in TV recoivers. These tybes require unusual values of heater voltage (3.15. 4,2 , ete.), and have controlled wam-ule time characteristies to minimize voltage matabance during starting. Except for heater design, these types correspond electrically and mechanically to 6 -volt prototypes.
I - Miniature Receiving'Tubes V15
II - (6.3-Volt Metal Rereiving Tubos. V1!
III - 6,3-Volt Calass Tubes withoreal Bases V20
IV - 6.3-Volt Lock-In B:we Tuhes 「20
V-1.5-Volt I3attery Tubers. 「21
VI - High-Voltage IUeater Thbes V21
VII - Special Ikeceiving Tubes. V21
VIII - Ľ\&uivalent Tubes V22
IN - Control and Rragulator Tubes. V'23
X-Rectifiers V24
XI - Triode Transmitting Tubers. 125
XII - Totrode and l'ontode Transmitting Tubes. 128
XIII - EElectrostatie Cathodr-lany Tuhos 1:30
NIV - Transistors. V:31
XV - Germanium Crystal I iodes V32

INDEX TO VACUUM-TUBE TYPES

SEMICONDUCTORS

VACUUM-TUBE BASE DIAGRAMS

 Botton views are shown throumhont. 'Terminal designations are as follown:

E.I.A. (R.E.T.M.A.) TUBE BASE DIAGRAMS

2AG

20

2N

$2 T$

3C

3G

3N

$3 T$

4AA

4AC

4AB

22

$4 A D$

4AH

4AJ

4AM

4AT

48

48B

4BC

4BJ

4AQ

4C

(3)

4CK

480

48 U

40

4E

$4 F$

4G

4 H

$4 J$

$4 K$

4M

4P

$4 R$

4S

4V

$4 \times$
(3) (4) (3)
4Y

42

5A
(2) (3) (3)
5AA

5AB
(2) (3)

TUBE BASE DIAGRAMS

lhottom viewt are shown. Terminal designations on sockets are given on page 15.

				$5 A Z$	58

TUBE BASE DIAGRAMS

Bottom viens arr shown. 'Jerminal designations on sockets arc given on page V 5.

		68			

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given om page 1.5.

			7AV		
		7BB			
		78 J			
	7BZ				
70					

TUBE BASE DIAGRAMS

Bottom views are shown. 'lerminal designations on sockets are given on page V5.

TUBE BASE DIAGRAMS

Bottom views are shown. 'lerminal designations on sockets are given on page 15.

80

BR

BS

BT

BU
(2) (4) (3)

BW

BX

BY

9A

9AA

9AJ

9AK
(4) (5) ${ }^{(3)^{N C}}$
GAM
(3) (5) (5) ${ }^{14}$
$9 A Q$
(3) (3) (5) ${ }^{(3)}$
9AR
(3) (4)
9AS

TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sockets are given on page VS.
l

TUBE BASE DIAGRAMS

llattom views are shown. Terminal designations on sockets are piven on page 15 .

$9 F$
(2)
9FA

9FC

9FE

9F G
(3) (5) (6) (3) (3)
9FH

9FJ

9FN

9F T

9GF
G(4) (5) (6)
9 HF
(9) (5) (6)
9 J
NC(3) (3) 1
$9 K$

9L

9M
(3) (5) (6)

$9 V$

$9 \times$

$9 Y$

92

912

1/A

IIB

11 C

$11 F$

IIJ

11 L

HM

114

113

11 T

IIV

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on soehets are given mpage V.

FIG.2

(2):
(2) (4)
FIG. :
(3):(4):
FIG 6

FIG. 7

FIG. 8

FIG.10

FIG II
(3):- (3):
FIG.I2

FIG. 13
GIG. G $_{2}^{2}$

FIG. 20

FIG 30
(2)
FIG. 31
(2)

Bottom views are shown. Terminal designatioms on sochets are given on page V5.
(3)
table i-miniature receiving tubes

Trpe	Name		Base	Fil. or Heafer		Capacitances $\mu \mathrm{Hf}$.			$\frac{>}{\frac{2}{4}}$	픈		霛	$\frac{\square}{2} \frac{0}{2}$			\&			
			v.	Amp.	c.	C_{n}	C_{8}												
143	H.t. Diode			5AP	1.4	0.15	-	$\stackrel{-}{-}$	-	Max. a.e. valtage per plate -117. Max. output current - 0.5 ma.									
IAB6	Pantagrid Conv.		70H	1.4	0.025	7.6	8.4	0.36	64	0	64	0.16	0.6	900K	275	-	-	-	
IACS	Pontogrid Canv.		70H	1.4	0.05	7.5	8.4	0.36	63.5	0	63.5	0.15	0.7	900 K	-	-	-	-	
IAE4	Shorp Cut-off Pent.		GAR	1.25	$0 . i$	3.6	4.4	0.008	90	0	90	1.2	3.5	500k	1550	-	-	-	
IAF4	Sharp Cul-off Pent.		6AR	1.4	0.025	3.8	7.6	0.009	90	0	90	0.55	1.8	1.8 meg.	1050	-	-	-	
lafs	Diode-Pentode		6AU	1.4	0.025	2.3	2.8	0.17	90	0	90	0.4	1.1	2 meg .	600	-	-	-	
IAR5	Diode A.f. Pent.		SAU	1.4	0.025	2.1	2.9	0.3	85	10 meg. 8.	35	0.015	0.05	1 meg .	-	62	-	-	
1ad	R.f. Pentode		6AR	1.4	0.025	3.3	7.8	0.01	64	0	64	0.55	1.65	1 meg.	750	-	-	-	
$1{ }^{1} 3$	Triode		SCF	1.4	0.05	0.9	4.2	1.8	90	-3	-	-	1.4	19K	760	14.5	-	-	
1DN6	Diode-Remote Cut-off Pent.		jBW	1.4	0.05	-	-	-	67.5	0	67.5	0.55	2.1	600 K	630	-	-	-	
153	U.h.i. Triade		98G	1.25	0.22	1.25	0.75	1.5	150	-3.5	-	-	20	-	3500	14	-	--	
114	Sharp Cut-dif Pent.		6AR	1.4	0.05	3.6	7.5	0.008	90	0	90	2.0	4.5	350 K	1025	-	-	-	
116	Pentogrid Conv.		7DC	1.4	0.05	7.5	12	0.3	90	0	45	0.6	0.5	650k	300	-	-	-	
1R5	Penlogrid Conv.		7AT	1.4	0.05	7.0	12	0.3	9	0	67.5	3.5	1.5	400K	280	Grid	No. 1100		
154	Pentogrid Pwr. Amp.		7AV	1.4	0.1	-	-	-	90	-7.0	67.5	1.4	7.4	100k	1575	-	8K	0.270	
155	Diode-Pentode	A Amp.		1.4			-		67.5	0	67.5	0.4	1.6	600k	625	-	-	-	
		R.f. Amp.	oav	1.4	0.05	-	-	-	90	0	90	Scre	n Resisi	r 3 meg.,	grid 10		1 meg.	0.050	
174	Variable. μ Pent.		6AR	1.4	0.05	3.6	7.5	0.01	90	0	67.5	1.4	3.5	500K	900	-	-	-	
144	Sharp Cut-off Pent.		GAR	1.4	0.05	3.6	7.5	0.01	90	0	90	0.5	1.6	1 meg.	900	-	-	-	
105	Diade Pentode		68W	1.4	0.05	-	-	-	67.5	0	67.5	0.4	1.6	600 K	625	-	-	-	
106	Pentagrid Conv.		7DC	1.4	0.025	7	12	0.5	90	0	45	0.6	0.6	500K	300	-	-	-	
$2 \mathrm{C51}$	Medium-es Dual Triodelo		${ }^{8 C J}$	6.3	0.3	2.2	1.0	1.3	150	-2	-	-	8.21	6.5 K	5500	35	-	\cdots	
$2 \mathrm{E30}$	Beam Pwr. Pent.	A Amp.	7 CO	6.0	0.65	9.5	6.6	0.2	250	$450{ }^{\circ}$	250	3.3/7.4	44^{2}	63 K	3700	40^{5}	4.5 K	4.5	
		Al Amp.?							250	225*	250	6.6/14.8	882	-	-	80^{3}	$9 \mathrm{~K}{ }^{\circ}$	9	
		$\overline{A B_{1} A_{\text {Amp }}{ }^{3}}$							250	-25	250	3/13.5	82^{2}	-	-	48^{5}	$8 \mathrm{~K}^{4}$	12.5	
		AB_{2} Amp 3							250	-30	250	4/20	1202	-	-	40^{3}	3.86	17	
$3 A 4$	Pwr. Amp. Pent.		7BB	1.4	0.2	4.8	4.2	0.34	135	-7.5	90	2.6	14.92	90K	1900	-	8K	0.6	
			2.8	0.1	150				-8.4	90	2.2	14.12	100k	0.7					
$3 A 5$	H.f. Dual Triade'0			$78 C$	1.4	0.22 0.11	0.9	1.0	3.2	90	-2.5	-	-	3.7	8.3K	1800	15	-	-
$3 \mathrm{C4}$	Power Pentodo		68 X	1.4	0.05	4.9	4.4	0.3	85	-5.2	85	1.1	5	125K	1350	-	13K	0.2	
3E5	Pwr. Amp. Pent.		$68 x$	1.4	0.05	-	--	-	90	-7	90	1.6	8.0	100k	1550	-	8K	0.25	
			2.8	0.025	90				-7	90	1.4	6.8.	120k	1450	-	9 K	0.225		
304	Pwr. Amp. Pent.			7BA	1.4	0.1	5.5	3.8	0.2	90	-4.5	90	2.1	9.5	100 K	2150	-	10k	0.27
			2.8		0.05	1.7							7.7	120k	2000	10K		0.24	
354	Pwr. Amp. Pent.		7BA	1.4	0.1	-	-	-	90	-7	67.5	1.4	7.4	100k	1575	-	8K	0.27	
			2.8	0.05	1.1							6.1	1425		0.235				
6AB4	U.h.I. Triode			5CE	6.3	0.15	2.2	0.5	1.5	250	200^{*}	-	-	10	10.9K	5500	60	-	-
6AB8	Triode -Pentode		94 T	6.3	0.3	4.6	4.7	0.2	100	-2	-	--	4	-	1350	18	-	-	
			-			-	-	200	-7.7	200	3.3	17.5	150 K	3400	-	IIK	1.4		
6ADA	Dual Diode \rightarrow Pent.			97	6.3	0.3	4.0	4.6	0.002	250	-2	85	2.3	6.7	1 meg.	1100	-	-	--
	U.h.f.	A Amp.	7DK	6.3	0.225	2.2	0.45	1.9	80	150*	-	-	16	2.27 K	6600	15	-	--	
6aFta	Triode	Osc. 950 Mc .							100	10 K 18	-	0.49	22	-	-	-	-	-	
$6 A G 5$	Sharp Cut-ofl Pent.								250	180*	150	2.0	6.5	800 K	5000	-	-	-	
GAGS			7BD	6.3	0.3	6.5	1.8	0.03	100	180°	100	1.4	4.5	600 K	4550	-	-	-	
6AH6	Sharp Cur-offPent.	Pent. Amp.	7BK	6.3	0.45	10	2.0	0.03	300	160^{*}	150	2.5	10	500k	9600	-	-	-	
		Triode Amp.							150	160^{*}	-	-	12.5	3.6 K	11 K	40	-	\cdots	
6AD4	U.h.f. Triode		$98 \times$	6.3	0.225	4.4	0.18	2.4	125	$68{ }^{*}$	-	-	16	4.2 K	10k	42	\cdots	-	
			780	6.3	0.175	4.0	2.1	0.3	28	-1	28	1.0	2.7	100k	2550	250	-	-	
6AJS	Pent.	AB Amp ${ }^{\text {a }}$							180	-7.5	75	-	-	-	-	-	$28 \mathrm{k}{ }^{\circ}$	1.0	
6AJ8	Triode		9 CA	6.3	0.3	-	-	-	-100	-2	-	3.8	6.5	700K	2400	-	-	-	
	Heptode								250	0	102	-	13.5	5.9K	3700	22	-	-	
6AK5	Sharp Cut-off Pent.		7BD	6.3	0.175				180	200°	120	2.4	7.7	690k	5100	-	-	-	
			4.0			2.8	0.02	150	330°	140	2.2	7	420K	4300	-	-	--		
			120					200°	120	2.5	7.5	340 K	5000	-	-	-			
GAK6	Pwr. Amp. Pent.			78K	6.3	0.15	3.6	4.2	0.12	180	-9	180	2.5	15	200 K	2300	-	10K	1.1
6AK8	Triple Diode Triode		$9 E$	6.3	0.45	1.9	1.6	2.2	250	-3	-	-	1	58k	1200	70	二	-	
6AL5	Dual Diode ${ }^{10}$		685	6.3	0.3	-	-	-			. r.m.s.	valtage	117. M	x. d.c. ou	put curr	-9 m			
6AM4	U.h.f. Triode		98 x	6.3	0.225	4.4	0.16	2.4	150	$10{ }^{\circ}$	-	-	7.5	10K	9000	90	-	-	
6AM5	Pwr. Amp. Pent.		SCH	6.3	0.2	-	-	-	250	-13.5	250	2.4	16	130 K	2600	-	16K	1.4	
GAMS	Sharp Cut-off Pe		708	6.3	0.3	7.5	3.25	0.01	250	-2	250	2.5	10	1 meg .	7500	-	-	-	
6AM8	Diode-Sharp ${ }^{\text {C }}$	Cut-ofl Pent.	9 CY	6.3	04.5	6.0	2.6	0.015	200	120°	150	2.7	11.5	600k	7000	-	-	-	
GAN4	U.h.f. Triade		70K	6.3	0.225	2.8	0.28	1.7	200	100°	-	-	13	-	10K	70	\cdots	\square	
GANS	Beam Pwr. Pent.		78 D	6.3	0.45	9.0	4.8	0.075	120	120°	120	12	35	12.5K	8000	-	2.54	1.3	
GAN7	Triode \rightarrow Mexade	Conv	90	63	023		Sc.	K!	250	-2	85	3	3	1 meg	750	Osc.	-250	V12	
	Medium- μ Triode					20	27	1.5	200	-6	\cdots		13	5.75K	3300	-	-		
6ans	Sharp Cut-aff Pe		90 A	63	045	70	2.3	0.04	200	180°	150	28	9.5	30 K	6200		\cdots		
$\triangle A_{04}$	High- μ Triode		707	6.3	03	85	02	2.5	250	-1.5	-	-	10	12K	8500	100			
									180	-8.5	180	3/4	30^{2}	58K	3700	293	5.5k	2.0	
8405	Beam Pwr. Pent.		782	63	0.45	8.3	82	0.35	250	-12.5	250	4.5/7	472	52K	4100	45^{5}	5K	4.5	
									100	-1	--	-	0.8	61 K	1150	70	-	-	
6406	High- μ Triode		7 BT	6.3	0.15	1.7	1.5	1.8	250	-3	-	\cdots	1	58K	1200	70	-	\cdots	
									250	-16.5	250	5.7/10	352	65K	2400	$34{ }^{5}$	7 K	3.2	
GAR5	Pwr. Amp. Pent.		6CC	6.3	0.4	-	-	-	250	-18	250	5.5/10	332	68K	2300	32^{3}	7.6 K	3.4	
6ARE	Sheet 8 eam		9DP	6.3	0.3	-	-	-			TV Co	or Ckis.	Synchro	nous Dete	1or-8	Gote			
6AS5	Beam Pwr. Amp.		7 CV	6.3	0.8	12	62	0.6	150	-85	110	2/6.5	36^{2}	-	5600	355	4.5 K	2.2	
6AS6	Sharp Cut-off Pe		7 CM	63	0.175	4	3	02	120	-2	120	35	5.2	110K	3200	-			
6ASE	Diode - Sharp C	Cut-off Pent.	9DS	63	0.45	7	2.2	004	200	${ }^{180}{ }^{*}$	150	3	95	300K	6200	$-$	-		
GAȚ̄	Duplex Diode-	High, μ Triode	7BT	6.3	0.3	2.3	11	2.1	250	-3	-		1	58K	1200	70	-	$-$	
	Medium. μ Triod					2	0.5	1.5	100	100^{*}	-	-	8.5	6.9 K	5800	40	-	\cdots	
6 A.78	Sharp Cur-off Pe		w	8.3	0.45	4.5	0.9	0.025	250	200^{*}	150	1.6	7.7	750 K	4600	-	-	-	
$\overline{6 ¢ 156}$	Sharo Cut-off Pe		7BK	6.3	03	5.5	5	00035	250	49°	150	4.3	10.6	1 meg .	5200	-	-	\rightarrow	

Type	Name	Base	Fil．or Heater		Capocitances ر $\mu \mathrm{ff}$ ．				릉			䢂立			$\frac{\dot{2}}{\dot{E}}$		
			V．	Amp．	C_{m}	Cond	C ${ }_{\text {b }}$										
SCK6	Pwr．Amp．Pent．	9AR	6.3	0.71	11.2	6.6	0.1	250	－5．5	250	5	36	130k	10k			
$6{ }_{6} 6$	Pwr．Amp．Pent．	98V	6.3	0.65	11.	5.5	0.12	250	－3	150	7／7．2	31^{12}	150K	IIK	30^{5}	7500	2.8
6C1E	Triode	9 FX	6.3	0.45	2.7	0.4	1.8	125	56＊	－	－	15	5 K	8000	40	－	－
	Tetrode				5	2	0.028	125	－1	125	4	12	100k	5800	－	－	－
6CM6	Beam Pwr．Amp．	9 CK	6.3	0.45	8	8.5	0.7	315	-13	225	2．2／6	35^{2}	80K	3750	345	8．5k	5.5
6CM7 \ddagger	Medium－μ Triode No． 1	9 ES	6.3	0.6	2	0.5	3.8	200	－7	－	－	5	11 K	2000	20	－	－
くcm	Dual Triode Triode No． 2				3.5	0.4	3	250	－8	－	－	10	4.1 K	4500	18	－	－
SCME！	High－μ Triode	$9 F Z$	6.3	0.45	1.6	0.22	1.9	250	－2	－	－	1.8	50k	2000	100	－	－
	Shatp Cut－off Pent．				6	2.6	0.02	200	180^{*}	150	2.8	9.5	300k	8200	－	－	－
CCNT \ddagger	Dual Diode－High μ M Triode	9EN	6.3	0.3	1.5	0.5	1.8	100	－1	－	－	0.8	54 K	1300	70	－	－
			3.15	0.6				250	－3	－	－	1	58k	1200	70	－	－
6CO6	Remote Cut－otil Pent．	7DB	6.3	0.2	7	4.5	0.01	250	－2．5	200	2	7.8	－	2500	－	－	－
6 COSt	Medium－μ Triode	9GE	8.3	0.45	2.7	0.4	1.8	125	56°	－	－	15	5K	8000	40	－	－
	Diode－Remote Culooff Pent．				5	2.5	0.019	125	－1	125	4.2	12	140 K	5500	－	－	－
6CR6		7EA	6.3	0.3	－	－	－	250	－2	100	3	9.5	200 K	1950	－	－	－
6CR8！	Triade	9 GJ	6.3	0.45	2	1.4	1.6	125	－2	－	－	12	5.5 K	4000	22	－	－
	Pentode				6	2.8	0.018	125	56°	125	3	13	300\％	7700	－	－	－
6 655	8eam Pwr．Pent．	9 CK	8.3	1.2	15	9	0.5	200	180^{*}	125	2.2	472	28k	8000	－	4K	3.8
6 656	Pentagrid Amp．	7CH	6.3	0.3	5.5	7.5	0.05	100	－1	30	1.1	0.75	1 meg．	950	$\mathrm{E}_{63}=0 \mathrm{~V}$ ．		－
6C57 \ddagger	Medium－μ Dual Triode $\frac{\text { Triode No．} 1}{\text { Triode No．} 2}$	9EF	6.3	0.6	1.8	0.5	2.6	250	－8．5	－	－	10.5	7.7 K	2200	17	－	－
ccs +					3.0	0.5	2.6	250	-10.5	－	－	19	3．45K	4500	15.5	－	－
6CUS	Beam Pwr．Pent．	7CV	6.3	1.2	13.2	8.6	0.7	120	－8	110	48.5	50^{2}	10K	7500	－	2.5 K	2.3
${ }_{6 C X 7}$	Medium $\mu \mu$ Dual Triode ${ }^{10}$	9 FC	6.3	0.4	2.4	1.37	1.27	150	220^{*}	－	－	9	－	6400	39	－	－
6 Cx 8	Medium－μ Triode	9DX	8.3	0.75	2.2	0.38	4.4	150	150^{*}	－	－	9.2	8．7K	4600	40	－	－
6 ¢8	Sharp Cut－off Pent．				9	4.4	0.06	200	68^{*}	125	5.2	24	70K	10K	－	－	－
6 6－Y5	Sharp Cul－off Tefrade	7EW	6.3	0.2	4.5	3	0.03	125	－7	80	1.5	10	100k	8000	－－	－	－
$6 \mathrm{Cr7}$	Dissimilar－ Dual Triode	9EF	6.3	0.75	1.57	0.37	1.87	2507	-3^{37}	－	－	1.27	52 K 7	13007	687	－	－
6cr					$5{ }^{5}$	10	4.48	1500	$620 * 8$	－	－－	308	9208	54008	$5{ }^{\circ}$	－	－
6CZ5	$\text { 8eam Pwr. Amp. }-\frac{A_{1} \text { Amp. }}{A B_{1} \text { Amp. }{ }^{3}}$	9HN	6.3	0.45	8	8.5	0.7	250	－14	250	$46 / 8$	482	73K	4800	46^{5}	5K	5.4
								350	－23．5	280	3.13	1032		－	46^{5}	7．5K＊	1.5
6D85	Beam Pwr．Amp．	9GR	6.3	12	15	9	0.5	200	180^{*}	125	2．2．85	4647	28 K	8000	－	4 K	3.8
60B6	Sharp Cut－oll Pent．	7 CM	6.3	0.3	6	5	0.0035	150	－1	150	6.6	5.8	50k	2050	$\mathrm{E}_{63}=$	－3v．	－
60.8	Semiremote Cut－off Pent．	7CA	6.3	0.3	6.5	2	0.02	200	$180 *$	150	3	9	500 K	5500	－	－	－
60E6	Sharp Cut－off Pent．	7 CM	6.3	0.3	6.3	1.9	0.02	200	180°	150	2.8	9.5	600 K	6200	－	－	－
60E7	Dissimilar－ Dual Triode	9HF	6.3	0.9	2.27	0.52^{7}	47	2507	-11^{7}	－	－	5.57	8.75 K ？	20007	17.5	\because	－
					5.50	18	8．5	1508	－17．5	－	－－	35^{6}	9258	${ }^{65008}$	64	－	－
6055	Beam Pwr．Amp．	7BZ	6.3	0.8	9.5	6.3	0.19	250	－8．5	200	3／10	32^{2}	28 K	5800	32^{5}	8 K	3.8
								250	$270{ }^{*}$	200	3／9	252	28K	5800	27 s	8 K	3.6
6076	Sharp Cur－off Pent．	7EN	6.3	0.3	5.8	－	0.02	150	560^{*}	100	2.1	1.1	150k	615	－	－	－
$60{ }^{6}$	High－μ Dual Triode ${ }^{10}$	90E	6.3	0.3	2.7	1.6	1.6	250	$200 *$	－	－	10	10．9k	5500	60	－	－
60W5	Beam Pwr．Amp．	9 CK	6.3	1.2	14	9	0.5	200	－22．5	150	2	55	15K	5500	－	－	－
64	Grounded－Grid Triode	780	6.3	0.4	7.5	3．9，	0.12	150	$100 \cdot$	－	－	15	4．5k	12K	55	－	－
6．6	Medium－4 \quad Al Amp．${ }^{10}$	7BF	6.3	0.45	2.2	0.4	1.6	100	50^{*}	－	－	8.5	7.1 K	5300	38	－	－
65	Dual Triode Mixer							150	810^{*}	－	\cdots	4.8	10.2 K	1900	Osc．peak voltoge $=3 \mathrm{~V}$ ．		
6M5	Pwr．Amp．Pent．	SN	6.3	0.71	10	6.2	1	250	170^{*}	250	5.2	36	40K	10K	－	7K	3.9
$6 \mathrm{6N4}$	U．h．f．Triode	7CA	6.3	0.2	3	1.6	1.1	180	－3．5	－	－	12	5．4K	6000	32	－	－
$6{ }^{6088}$	Dual Diode－Pent．	91	6.3	0.3	4	4.6	0.002	250	$295 *$	85	1.75	5	1.6 meg	2200	35	－	－
604	H．I．Triode	95	6.3	0.48	5.4	0.06	3.4	250	-1.5	－	－	15	－	12K	80	－	－
6 64	H．f．Triode	9 R	6.3	0.2	1.7	0.5	1.5	150	－2	二	－	30	－－	5500	16	\cdots	－
688	Triple Diode－Triode	$9 E$	6.3	0.45	1.5	1.1	2.4	250	－9	－	－	9.5	8．5K	1900	16	10K	0.3
654	Medium－μ Triode	9AC	6.3	0.6	4.2	0.9	2.6	250	－8	－	－	26	3.6 K	4500	16	－	－
674	U．h．f．Triode	70K	6.3	0.225	2.6	0.25	1.7	80	$150 *$	－	－	18	1．86K	7000	13	－	－
678	Triple Diode－High－j Triode	$9 E$	6.3	0.45	1.6	1	2.2	100	－1	－	－－	0.8	54 K	1300	70	－	－
		$9 E$	6.3	0.45	1.6	1	2.2	250	－3	－	－	1	sek	1200	70	－	－
608	Madium μ Triode	9AE	6.3	0.45	2.5	0.4	1.8	150	56^{*}	－	－	18	5K	8500	40	－	－
	Sharp Cut－oft Pent．				5	2.6	0.01	250	68°	110	3.5	10	400 K	5200	－	－	－
6VE	Triple Diode－Triode	9AH	6.3	0.45	－	－		100	－1	－－	－	0.8	54 K	1300	70	－	－
		9An	6.3	0.45	－	－		250	－3	－		1	58K	1200	70	－	－
6x8	Medium $-\mu$ Triode	9AK		0.45	2.0	0.5	1.4	100	100°			85	6.9 K		40	－	－
	Sharp Cut－off Pent．		6.3	0.45	4.3	0.7	0.09	250	200.	150	1.6	7.7	7501			－	－
12A4	Medium－μ Triode	9AG	$1 \overline{2} .6$	103	4.9	0.9	5.6	250	$\underline{-9}$		－	23	$2 \overline{5 k}$	8000	20	二	－
		gAG	6.3	0.6	4.9	0.9	5.6	250	－$\overline{12} 5$		－．	4.4	－		－	－	－
12AB5	Beam Pwr．Amp．$\frac{A_{1} \text { Amp．}}{\text { A8\％Amp．}{ }^{3}}$	$9 E U$	12.6	0.2	8	8.5	0.1	$\underline{250}$	－12．5	250	$4.5 / 7$	972	50\％	14160	$4{ }^{45}$	5k	4.5
								250	－ 15	250	5／13	792	$60 \mathrm{~K}^{1}$	$3 \overline{750}$	70^{5}	$10 \mathrm{k}{ }^{6}$	10
12AC6	Remote Cut．off Pent．	78K	12.6	0.15	4.3	5	0.005	12.6	0	12.8	0.2	0.55	500k	730	－	－	－
12AD6	Pentagrid Conv．	7 CH	12.6	0.15	8	8	0.3	12.6	0	12.6	1.5	0.45	1 Meg．	260	Grid No． 1833 K		
12AD7	Dual Migh－μ Triode ${ }^{10}$	94	12.6	0.225	1.6^{7}	0.57	1.87	250	－2	－	－	1.25	62．5K	1600	100	－	－
			6.3	0.45	$\frac{1.68}{1.8}$	0.45°	1.88		－2	－	－	0.75	150	－1000	15	－	－
12AFb	Rf．Pent．	78K	12.6	0.15	55	4.8	0.006	126	0	12.6	0.35	075	300 K	1150	Is	－	－
12AH8	Triode－Heptode Converter	98 P	12.6 6.3 126	0.15 0.3	$\begin{aligned} \text { Osc. } I_{\mathbf{1}} & =0.2 \mathrm{ma} \\ \text { Osc. } & =47 \mathrm{~K}! \end{aligned}$			250	－3	100	4.4	2.6	1.5 meg．	550	E_{bb} Triode Osc．$=100 \mathrm{~V}$ ． 1．Triode $=5.3 \mathrm{mo}$ ．		
124．6	Dual Diode－Migh－μ Triode	78 T	12.6	0.15	2.2	08	2	12.6	0	－	－	0.75	45K	1200	55	－	
12AL8	Medium－μ Triode	9 GS			1.5	03	12	12.6	－0．9	－	－	025	27K	550	15	－	
	Telrode		12.6	0.45	8	1.1	0.7	12.6	－0．8	$120^{\circ 0}$	50＊＊	25	\％	8000			
12405	Beam Pwr Amp．A Amp．							250	-12.5	250	45／7	472	52K	4100	45^{5}	5K	4.5
12a0s	Beam Pwr Amp．$\overline{\text { AB，Amp．}{ }^{3}}$	782	126	0225	83	82	0.35	250	－15	250	5／13	792	60k＇	37501	70^{5}	10 K 6	10
12417			12.6	0.15	$2.2 .2^{7}$	0.57	$1.5{ }^{7}$	100	$270 *$	－	－	3.7	15 K	4000	60	－－	－
$12 \mathrm{Al7}$	Migh－μ Dual Triode ${ }^{\text {a }}$	94	6.3	0.3	$2.2{ }^{\circ}$	$0.4{ }^{8}$	1．5＊	250	200^{*}	－	－－	10	10.9 K	5500	¢	－	－
124U7A			126	0.15	$1.6{ }^{7}$	0.57	$1.5{ }^{7}$	100	0	－	－	11.8	6.25 K	3100	19.5	－	－
12auza	Medium－μ Dual Triodelo	94	6.3	0.3	1.60	$035{ }^{\circ}$	1.50	250	－85	－	－－	10.5	7.7 K	2200	17		－

[^12]4 Uniess otherwise noted.

[^13][^14]TABLE II-METAL RECEIVING TUBES
Characteristics given in this table apply to all tubes having type numbers shown, including metal t tobes, glass tubes with " G " suffix, and bantam tubes with "GT" suffix.
For " \mathbf{G} " and "GT" tubes not listed (not having metal counterparts), sees Tables III, V, VI and VIII.

V20

TABLE III-6.3-VOLT GLASS TÜBES WİH OCTAL BASES
(For "G" and "GT"-type qubes not listed here, see equivalant type in Tables II and Vill; characteristics and connections will be similar)

'Гуре	Nome	Base	Fil. or Heater		Capacitances $\mu \mu \mathbf{f}$.			$\begin{aligned} & > \\ & \frac{2}{2} \\ & \frac{0}{a} \\ & \frac{1}{2} \end{aligned}$	号号			$\frac{0}{0} \frac{0}{2}$			E		$\begin{aligned} & \text { N } \\ & \frac{5}{5} \\ & \frac{0}{3} \\ & 30 \end{aligned}$
			V.	Amp.	$\mathrm{C}_{\text {in }}$	Cow	C_{80}										
2822	Disc-Seal Diode	Fig. 22	63	075	-	22	-	Average Cathode Ma $=5$ Ouput Volts $=50$ d.c.								10K	-
$2 \mathrm{C22}$	Triode	4AM	63	03	22	0.7	3.6	300	- 105	-	-	11	66 K	3000	20	-	-
6A5GT	Triode Pwwr. Amp. ${ }^{\text {a }}$ A Amp. ${ }^{4}$	67	63	125	-	-	-	250	-45	-	--	60°	0.8K	5250	42	25 K	3.75
								325	-68	--	-	80°	-	-	-	3K	15
6ACSGT	Triode Pwr. Amp. AB Amp. ${ }^{4}$	60	6.3	04	-	-	-	250	0	-	-	56	36.7K	3400	125	10ks	8
6AD76	Triode -Pwr. Amp. Pent. $\quad \frac{\text { Trio }}{}$ Pent	8AY	6.3	085	-	-	-	250	-25	-	-	4	19K	325	6	-	-
6 6076								250	-16.5	250	6.510 .5	3436	80K	2500	-	7K	3.2
6AH4GT	Medium- μ Triode	8 EL	63	075	7	1.7	4.4	250	-23	-	-	30	178K	4500	8	-	-
6AH7GT	Medium. μ Dual Triodel	8 BE	63	0.3	-	-	-	180	-6.5	-	-	7.6	8.4 K	1900	16	-	-
6ALTGT	Electron Ray Indicator	8CH	6.3	0.15	-	-	-	Outer edge of any of the three illuminated areas displaced $1 / 18$ in. min. Outword with +5 volts to its eleztrode. Similor inward disp. with -5 wolts. No pattern with -6 volts grid.									
6AO7GT	Dual Diode \rightarrow Hight μ Triode	8CK	63	03	2.8	32	3	250	-2	-	\|	2.3	44K	1600	70	-	-
GAR6	Beam Pent.	680	63	12	11	7	055	250	-22.5	250	5	77	21K	5400	-	-	-
6AR7GT	Dual Diode - Remote Pent.	70E	6.3	0.3	5.5	7.5	0.003	250	-2	100	1.8	7	1.2 meg .	2500	-	-	-
6A57G	Low- μ Twin Triode-D.C. Amp. ${ }^{1}$	8BD	6.3	2.5	6.5	2.2	7.5	135	250*	-	-	125	0.28 K	7000	2	-	-
6AU5GT	Beam Pwr. Amp. ${ }^{\text {a }}$	6CK	6.3	1.25	11.3	7	0.5	115	-20	175	6.8	60	6 K	5600	-	-	-
6AV5GT	Beam Pwr. Amp.	6CK	63	1.2	14	7	0.7	250	-22.5	150	2.1	55	20k	5500	-	-	-
6BDSGT	Beam Pwr. Amp '	6CK	63	0.9	-	-	-	310	-2007	310	-	90°	-	-	-	-	-
6BG6GA	Beam Pwr Amp.	SBT	63	0.9	11	6	08	250	-15	250	4	75	25K	6000	-	-	-
6BL7GT	Medium $\mu \mu$ Dual Triode ${ }^{1}$	8BD	6.3	1.5	5	3.2	4.2	250	-9	-	-	40	2.15 K	6200	15	-	-
6BQ6GA	Beam Pwr. Amp. ${ }^{\text {b }}$	6AM	6.3	1.2	15	7	0.6	250	-22.5	150	2.1	57	14.5K	5900	-	-	-
6BX7GT	Dual Triode ${ }^{\text {I }}$	8BD	6.3	1.5	5	3.4	4.2	250	390*	-	-	42	1,3K	7600	10	-	-
6CB5A	Beam Dwr. Amp. ${ }^{\text {B }}$	8 80	6.3	2.5	22	10	0.4	175	-30	175	6	90	5K	8800	-	-	-
6CD6G	Beam Pwr. Amp. ${ }^{\text {a }}$	5BT	63	2.5	24	9.5	0.8	175	-30	175	5.5	75	7.2 K	7700	-	-	-
6CL5	Beam Pwr. Amp.	8GD	6.3	2.5	20	11.5	0.7	175	-40	175	7	90	6 K	6500	-	-	-
$6 \mathrm{CU6}$	Beam Pwr. Amp.	GAM	6.3	1.2	15	7	0.55	250	-22.5	150	2.1	55	20K	5500	-	-	-
6DG6GT	Beam Pwr. Amp.	75	6.3	1.2	-	-	-	200	180*	125	8.5	477	28K	8000	-	4K	3.8
6DN6	Beam Pwr. Pent.	5BT	6.3	2.5	22	11.5	0.8	125	-18	125	6.3	70	4K	9000	-	-	-
6DO5	Beam Pwr. Amp.'	8JC	6.3	2.5	23	11	0.5	175	-25	125	5	110	5.5K	10.5K	-	-	-
6DO6A	Beam Pwr. Amp. ${ }^{\text {c }}$	6AM	6.3	1.2	15	7	0.55	250	-22.5	150	2.4	75	20 K	6600	-	-	-
6EF6	Beam Pwr. Amp. ${ }^{17}$	75	6.3	0.9	11.5	9	0.8	250	-18	250	2	50	-	5000	-	-	-
6G6G	Beam Pwr. Amp. $\frac{A_{1} \text { Amp. }}{A_{1} \text { Amp. }{ }^{2}}$	75	6.3	0.15	5.5	7	0.5	180	-9	180	2.56	156	175K	2300	-	10K	1.1
								180	- 12	-	-	11	4.75K	2000	9.5	12K	0.25
6H8G	Dual Diode - High- μ Triode	8 E	6.3	0.3	-	-	-	250	-2	-	-	8.5	650k	- 2400	-	-	-
6K6GT	Pwr. Amp. Pent.	75	6.3	0.4	5.5	6	0.5	315	-21	250	4/9	25/28	110K	2100	-	9 K	4.5
6M7G	R.I. Pentode	7R	6.3	0.3	-	-	-	250	-2.5	125	2.8	10.5	900 K	3400	-	-	-
6P9G	Triode. Hexade Conv.	8K	6.3	0.8	-	-	-	250	-2	75	1.4	1.5	E_{bb} Tric	de $=100$	V. Ib	de $=2$	ma.
656GT	Remote Cut-off Pent.	5AK	6.3	0.45	-	-	-	250	-2	100	3	13	350K	4000	-	-	-
658GT	Triple-Diode - Triode	8CB	6.3	0.3	1.2	5	2	250	-2	-	-	-	91K	i100	100	-	-
6507GT	Semi-Remote Pent.	8N	6.3	0.3	9	7.5	0.0035	250	-2	125	3	9.5	700k	425	-	-	-
6517GT	Migh- μ Dual Triode!	880	6.3	0.3	3.4	3.8	2.8	250	-2	-	-	2.3	44 K	1600	70	-	-
6SN7GT	Medium- μ Dual Triode ${ }^{\text {I }}$	880	6.3	0.6	3	1.2	4	250	-8	-	-	9	7.7K	2600	20	-	-
GU6GT	Beam Pwr. Amp.	75	6.3	0.75	-	-	-	200	-14	135	3/13	55/62	20K	6200	-	3 K	5.5
6V5GT	Beam Pwr. Amp.	6 AO	6.3	0.45	9	10	0.6	315	-13	225	2.2/6	34/35	77K	3750	-	8.5 K	5.5
6W6GT	Beam Pwr. Amp.	75	6.3	1.2	15	9	0.5	200	180**	125	2/8.5	46/47	28K	8000	-	4K	3.8
$6 \times 6 \mathrm{G}$	Electron-Roy Indicator	7AL	6.3	0.3	-	-	-	250	0 v for $300^{\circ}, 2 \mathrm{ma} .-8 \mathrm{v}$. for $0^{\circ}, 0 \mathrm{ma}$. Vane grid 125 v .								
6Y6G	Beam Pwr. Amp.	75	6.3	1.25	15	1	0.7	200	-14	135	2.2/9	61/66	18.3 K	7100	-	2.6 k	6
717A	H.I. Pentode	8BK	6.3	0.175	-	-	-	120	-2	120	2.5	7.5	250 K	4000	-	-	-
1635	Migh- μ Dual iriode	BB	6.3	0.6	-	-	-	300	0	-	-	6.6/54	-	-	-	12 K 3	10.4
5694	Medium- μ Dual Triode	8C5	6.3	0.8	Sections in parallat			300	-6	-	-	7	11k	3200	35	-	-
- Cathode resistor-ohms. 1 Per section. 2 Screen tied to plote.		3 Values are for single fube. 4 Values are for two tubes in push-pull. 5 Plate-to-plate value.							No signol Mox, volu Horz. De		mp.	${ }^{\circ}$ Coth ${ }^{10} \mathrm{Micr}$ 11 Vert	de curre mhos. Deflection				

TABLE IV-6.3-VOLT LOCK-IN-BASE TUBES
Far other lock-in-base types see Tables $V, V I$, and VII

TABLE V－l．S．VOLT FILAMENT BATTERY TUBES
See also Table VII for Special 1.4 －vall Tubes

TABLE VI－HIGH－VOLTAGE HEATER TUBES
See also Table VIII．

TABLE VII－SPECIAL RECEIVING TUBES

Type	Nome	8ase	Fil，or Heater		Capacitances $\mu \mu$ f．			$\begin{aligned} & > \\ & \frac{\lambda}{2} \\ & 0 \\ & \frac{0}{2} \frac{1}{3} \end{aligned}$	苞萢	$\begin{gathered} c \\ \frac{n}{6} \\ \stackrel{n}{0} \\ \hline \end{gathered}$	$\stackrel{c}{6}$	$\text { 흘 } \frac{0}{2}$			$\begin{aligned} & \text { io } \\ & \text { E } \\ & \text { < } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 若 } \\ & \frac{\pi}{5} \\ & 30 \end{aligned}$
			V．	Amp．	$C_{\text {in }}$	$C_{\text {out }}$	C_{00}										
3 C 6	Medium－μ Dual Triode	7BW	288	005	－	－	－	90	0	－	－	4.5	11．2K	1300	14.5	－	－
305 GT	Beam Pwr Amp	7 AP	28	005	8	6.5	0.6	90	－4．5	90	1.3	9.5	90 K	2200	－	8K	0.27
4 AGG	Qual Triode？	81	43	0.06	－	－	－	90	-1.5	－	－	1.2	28 K	900	25	－	－
$6 \mathrm{BY4}$	Ceramic Un \＆Triode	－	6.3	0.25	2	0.007	0.7	200	200°	－	－	5	16．7k	6000	－	－	－
6 F4	Acorn friode	7BR	63	0.225	2	0.6	1.9	80	150°	－	－	13	2．9K	5800	17	－	－
614	Acorn Triode	78R	6.3	0225	18	0.5	1.6	80	$150 *$	－	－	9.5	4．4K	6400	28	－	－
7E5／1201	H．f．Triode	BBN	6.3	0.15	36	2.8	1.5	180	－3	－	－	5.5	12K	3000	36	－	－
954	Depecior Amp－As Amp Pentode Acornl Detector	588	63	015	3.4	3	0.007	250	－3	100	0.7	2	1 meg．+	1400	－	－	－
								250	－6	100	1_{6} adiusted 100.1 mo ．with no signal．					250 K	－
955	Medium－M Triode（Acorn）	5BC	63	0.15	1	0.6	1.4	250	－7	－	－	6.3	11．4K	2200	25	－	－
	Nedium－M Triode lacom	SBC			1		1.4	90	－2．5	－	－	2.5	14．7K	1700	25	－	－
956	Remole Cut－offPent（Acorn） \quadA 1 Amp Mixer	5BB	63	015	3.4	3	0.007	250	－3	100	2.7	6.7	700K	1800	－	－	－
								250	－10	100	Oseillator peak volts -7 min ．					－	－
958－A	Medrum－μ Triode（Acorn）	580	125	0.1	06	0.8	2.6	135	－7．5	－	－	3	10K	1200	12	－	－
959	Sharp Cul．off Pent（Acornt	58 E	125	0.05	18	2.5	0.015	135	－3	67.5	0.4	1.7	800K	600	－	－	－
1609	Amplifier Pentode	5B	1.1	025	7	7	1	135	－1．5	67.5	0.65	2.5	400K	725	－	－	－
5731	Pwr Amo Triode（Acorn）	58C	63	015	1	0.4	1.3	250	－7	－	－	6.3	11.4 K	2200	25	－	－
5768	Uhf＂Rccker＂Trode	Fig． 21	63	04	12	0.01	13	250	－1	－	－	9.3	－	4500	85	－	－
6173	Urf＂Percil＂Dode	Fig． 34	63	0135	Plate to $K=1.1$			Peak inverse－ 375 Volts．Peak $\mathrm{I}_{\text {p }}$－ 50 Ma ．Max．d．c．output－ 5.5 Ma ．									－
6299	low Nose Uk＇Trode	－	63	035	35	001	17	175	200－oh	var．so	res．	10	Opera	n at 12	0 Mc ．	－	－
9004	Un＇t Diode｜Acorn！	48J	63	015	Plope to $K=13$			Max．a．c．voltage－ 117 ．Max．d．c．output current -5 ma．									
9005	Uht D cale（Acornl	5BG	36	0165	Plate $10 \mathrm{~K}=0.8$				Max．oc．voltoge－ 117 Max．d．c．output current－1 ma，								
－Cathode resistor－phms． 1 Each section．			${ }^{2}$ Center－tap filament permits 1.4 －volt operation． ${ }^{3}$ Center－ap f ament perm ts 2－volt cperoion． World Radio History						4 Mieromhos．								

V22

TABLE VIII-EQUIVALENT TUBES
The equivalent tubes listed in this table are, in general, designed for industrial, military and other speciol-purpose applications. These tubes ore generolly not directly interchangeable with their protolypes becouse of mechonicol ond/or electrical differences involving basing, heater

Type	Prototype a	Toble	Base	E, ${ }^{1}$	14^{2}	Type	Protatype and Table	Base	E. ${ }^{1}$	$1{ }^{2}$
1 F 3	153	V	4AA	14	005	12Cs5;		9CK	126	0.6
ILH4	$1+5 G 1$	V	SAG	1.	005	12 Cs 6	${ }^{6} \mathrm{C}$ S ${ }^{\circ}$	7 CH	126	015
31F4 ${ }^{\text {a }}$	3QSG 1	$V 11$	6BB	28	005	12CT8:	6AU8 - 1	90A	126	03
3V4 ${ }^{3}$	3Q4	1	$68 \times$	28	005	12 Cus	6C̄US -	7 CV	126	06
5V4GA	5 V 4 G	\times	51	50	30	İ2Cü	6C̄U6 - 11	6AM	126	06
6A6	6N7	II	78	6.3	08	12DE5	$60 \mathrm{H5}$	9GR	126	06
$6 A^{7}$	6A8	II	7 C	63	03	12DF7 ${ }^{\text {a }}$	$12 \mathrm{~A} \times 7$	9 A	126	015
GAE8	6 K 8	11	8DU	63	0.3	12006A	6DQ6A Iil	6AM	126	0.6
6AMBA:	6AM8	1	9 CY	63	045	12018	6 D 18	9DE	126	015
6AN8A:	${ }^{\text {CANAN }}{ }^{+}$	1	9DA	63	045	120ws	6D:15	9CK	126	0.6
6AOSA ${ }_{\text {- }}$	SAQ ${ }^{\text {S }}$,	782	6.3	045	12EF6:	6 EF6 ${ }^{\text {6 }}$	75	126	0.45
6ASTGA	6AS7G	III	BBD	63	25	12G4	615	68 G	126	0.15
GATBA:	6 6, ${ }^{\text {d }}$	1	90w	63	18	$12 \mathrm{H6}$	$6 \mathrm{H6}$-11	70	126	0.15
6AU6A:	GAU6	1	78k	63	03	12J5GT	615 - 11	60	126	015
6AU7:	12AU7	1	94	315	06	12J7GT	617 H1	7R	126	015
6AUBA:	6 6U8	1	9 DX	63	06	12K7GT	6 K 7 —— 11	7R	126	0.15
6AV5GA	GAVGGI	111	6CK	6.3	12	12 ks	6 k 8 ——n	8 K	126	015
6AX77 ${ }^{+3}$	$12 \mathrm{~A} \times 7$	1	9 A	63	03	1258GT	658GT III	8 CB	126	0.15
6BE8A	6RE8	1	9EG	63	045	l25A7	6 SA7 - 11	8R	126	0.15
6806GTA		11	GAM	63	12	125C7	$6 \mathrm{SC7}$-11	85	12.8	0.15
$\overline{6806} \overline{G T B / 6 C U 6}$	$6 \mathrm{BCO} \overline{\mathrm{GA}}$	111	GAM	63	12	125F5	6S 55 - 11	$6 \overline{A B}$	126	0.15
$6{ }_{6} 6$	617	11	6 F	63	03	125F7	6SF7 11	$7 A Z$	12.6	0.15
6CB6A:	6C 86	1	7 CM	63	03	125G7	6SG7 11	88K	126	0.15
6CD6GA	6CD6G	III	5BT	63	25	125H7	$65^{\text {¢7 }}$	8BK	126	015
6CG8A:	${ }_{6 C} \overline{6} 8$	1	9GF	63	$0 \overline{45}$	125.7	6517	8 N	126	015
6C58 ${ }^{\text {¢ }}$	6CR8	1	9 FZ	63	0.5	125K7	65 K 7 ll	8N	126	015
$6 \mathrm{CU8}$	6AN8	1	9 GM	63	0.4	12517GT	$6 S 17 G T$	88D	126	015
6J6A:	616	1	785	63	045	125njog	6SÑTGT M	8 BD	126	0.3
616GA	616	11	75	63	09	12 SNTGTA		8BD	126	03
$\mathrm{Cl}_{6}^{6 \mathrm{~GB}}$	616	11	75	63	09	12507	6S $\overline{07}$	80	126	015
$654 \mathrm{~A}_{4}$	65.4	1	9 AC	63	06	125R7	6SR7 II	80	12.6	0.15
6SN7GTA	6SN7G1	III	8BD	63	06	12W6GT	6\%6GT III	75	12.6	0.6
6SNTGT8:	6SNTGTA	. III	8BD	63	06	$14 A^{\prime}$	6SK 7 - II	8 V	12.6	0.15
6SU7GTY	6SI7GT	III	$88 \overline{0}$	63	03	14AF7	74.97 - IV	BAC	126	0.15
6TEA:	678	1	$9 E$	63	C45	1486	6SO7 - 11	BW	126	015
GUBA	648	1	9AE	63	045	14 F 7	6SSTGT III	BAC	126	015
	6 V 6	11	75	63	045	14×7	OSNT $\overline{\text { CI }}$ - 11	BAC	126	0.6
$\overline{\mathbf{6} \times 8{ }^{+}}$	6×8	1	9AK	63	045	$14 \mathrm{Q7}$	65AT - II	BAL	126	015
GY6GA	${ }^{6 \times 6 G}$	111	75	63	125	25AV5GA	6AVSGT ${ }^{\text {Cr }}$ III	6CK	25	03
GYGGT	6Y6G	III	75	63	125		SAVSGI III	6CK	25	03
7 744	615	11	5AS	63	03	$258 \overline{0} 6 \bar{G} A$	68Q6G A III	6AM	25	0.3
7 FAG	6 H 6	I	7AJ	63	0.15	$2580 \overline{6 G T}$		GAMM	25	03
7 A 7	6SK7	II	BV	63	03	${ }^{2} \overline{5} \mathrm{~B}$ O 6 GTB	ASQ6GA III	GAM	25	03
$\overline{7}{ }^{\text {B4 }}$	6 SF5	11	SAC	63	03	$25 \overline{5}$	50C5 -1.	TCV	\%	03
785	6K6GT	III	6AE	63	04	$2 \overline{S C} \overline{G G A}$	50 CaGA . 11	75	25	03
786	65Q7	11	8W	63	03	$2 \overline{5 C A} \bar{S}^{\text {a }}$	OCA5	7 CV	25	0.3
788	648	11	$8 \times$	63	03	$25 C D 6$	6CD6G 111	5 ST	25	06
$\overline{\overline{7}} 5$	6V6	1	GAA	63	045	25CDGGA:	6CD6G- II	581	25	06
9F7	6ST7GT	III	BAC	63	03	25CD6GB:	6CD6G IV	5BT	25	06
7H7	65 G 7	11	8V	63	03	2 SCu6	6CUO- III	GAM	26	03
7N7	65 ${ }^{\text {V7GT }}$	III	BAC	63	180	25DN6:	CDNG ${ }^{\text {CNO }}$	5 CT	25	06
707	6547	11	BAL	63	02	2SECG	$2 \overline{5 C O G G H}$	5BT	25	06
T2A8GT	6 A8	1	BA	126	015	2516 GT	12 İ 6 G	75	25	03
12AL5	6 A15	1	6BT	126	015	25W6GT	OWGGT Iil	75	25	03
$\overline{12} \overline{A T G}$	GATO	1	781	126	015	35 C 5	3585	7 CV	35	015
12AU6	GAU6	1	7BK	126	015	3516 GT	$3585-1$	75	35	015
12AV5GA:	6AVSGT	111	6CK	126	03	41	OK66' ${ }^{\text {¢ }}$	68	63	04
12AVG6	GAVG	1	7BT	126	0 右	42	6 Fb - 11	68	63	0.7
T2B4A:3	1284	1	9 A G	126	03	5045	$1216 \mathrm{G}^{\prime}$	6AA	50	0.15
128A6	6BAB	1	78 C	126	015	508 kS	$6 \overline{\mathrm{EK} 5}$	980	50	015
128A7	$6 \bar{B} \bar{A} \overline{7}$	1	$8 \overline{C T}$	126	015	50 C 5	$5 \overline{0 B 5}$ -	7CV	50	015
$\overline{12806}$	6806	!	$7 \overline{8 k}$	126	013	50C6GA	$5 \overline{O C O C}$	75	50	0.15
12BE6	6866	1	${ }_{7} \overline{\mathrm{CH}}$	126	015	5016GT	1216 GI VI	$7 \overline{A C}$	50	015
128F6	6856	1	7 BT	126	015	75	6507 -11	6 G	6.3	0.3
128K5:	$6 \overline{\mathrm{~B} \times 5}$	1	9 BO	126	06	78	6k7 !	6 F	63	0.3
$128 \overline{6 K 6}$	6 BK 6	1	7 BT	126	015	417A	$5842 \ldots$	9 V	63	0.3
12 BN 6	68 NV	1	7DE	126	015	1221	617	6F	63	0.3
12BO6GA:	6BQ6GA	117	GAM	126	06	1223	$6{ }_{6}^{7} \ldots$	7R	63	0.3
12B96GT	ABCOGA	111	GAM	126	06	1631	$51 \times$ -	7 AC	12.6	त" 45
12806GT8*		III	6AM	126	$0 \times$	1632	Intuón	Ts	126	0.6
12876	$6 \overline{1} 18$	1	$7 \mathrm{BT}{ }^{-}$	126	015	1634	85C7 - - 11	85	126	0.15
128U6	6 BU5	1	7 BT	12 系	015	5591	6 AK5	780	63	0.15
128 W 4	6B. 6^{4}	r	9 DJ	$12 \times$	0.45	5654	OAK5	780	63	0.175
128Y7 ${ }_{4}$	128×7	i	9 BF	120	03	5670	$2 \mathrm{C} 51-1$	8 BCJ	6.3	0.35
12 C 5	5085	1	7 CV	126	06	5679	6116 ... 11	7CX	63	0.15
12C8	688	11	8 E	12.	015	5691	6SITGT - III	880	6.3	06
12CA5:	${ }_{6} 6$ CA5	1	7CV	126	0.6	5692	$65 N 7 \mathrm{CT}$ - III	BED	63	06
12CM6	6 C 16	1	9CK	12.6	0.225	5725	6AS6	7CM	63	0175
12CR6	CR		7EA	126	015	5726	6ALS	6BT	63	0.3

TABLE VIII-EQUIVALENT TUBES-Continued

Type	Prototype and Table		Base	E, ${ }^{\prime}$	11^{2}	Type	Protolype and Table	Base	$\mathbf{E F}^{1}$	\mathbf{H}^{2}
5749	6BAG	1	7 BK	63	03	6136	6AU6	78 K	63	03
5750	6BE6	1	7 CH	-3	03	62013	12×17	9 A	126	015
$5751{ }^{3}$	12A×7	1	9 A	126	0175	6265	OEFO	7 CM	63	0175
$5814 A^{3}$	$125 \wedge .7 \mathrm{G}^{\text {T }}$	Viil)	9 A	1.0	0175	$6350{ }^{3}$	128H7A	9 CZ	126	03.
5871	6.6	It	7AC	- 3	Ca	6485	c^{-3-6}	7BK	63	045
5881	616	11	7AC	-3	9	6660	$00^{2} 6$	7CC	63	C 3
5910	$1 \mathrm{~J} / 4$	1	6AR	14	C\%	6661	$68 \cdots 0$	7 CM	63	015
5915	6RY6	1	7 CH	63	03	6662	9816	7CM	63	015
5963	12AU7A	1	9 A	126	015	6663	OA15	6 BI	C 3	03
5964	616	।	78 F	63	0.5	6669	6AQS	787	63	045
5965	12AJ7	1	9 A	124	0225	6677	-C16	98 V	63	0.65
6046	1216GI	VI	7 AC	25	$\bigcirc 3$	6678	$0 \cup 8$	9AE	63	045
$6057{ }^{3}$	$12 \mathrm{~A} \times 7$	I	9 A	12A	015	6679	12477	9A	128	015
6058	6A15	I	6BT	≤ 1	03	6680^{3}	12~U7A	9 A	126	0.15
6059	617	II	9 BC	63	0^{16}	6881	124.7	9 A	26	015
$606{ }^{3}$	12AT7	1	9 A	126	015	6829	5965 . 111	9 A	2.6	0225
6061	6.6	I	9AM	63	045	6897	2 C 39	-	63	10.5
6064	6AM96	I	70 B	63	¢ 3	7000	6.97	7R	63	03
6065	68 ${ }^{\text {H6 }}$	I	70B	63	02	7700	617 - 11	$6 F$	6.3	0.3
6066	6AT6	1	7 BT	63	03	EEC813	$12 \mathrm{mi7}$	94	128	0.15
60673	12AU7A	1	9 A	120	015	EEC82	12407	9 A	128	0.15
6080	6 657G	III	880	¢ 3	25	EEC83	124×7	9 9	126	015
6101	616	1	$78 F$	t 3	014	KT.66 ${ }^{4}$	8i6	$7 A 6$	63	$12 i$
6132	$6 \mathrm{CH}_{6}$	1	98A	63	03	XXD	74.7 IV	8AC	12.6	0.15

Controlled heater warm-up characteristics.
Heater center-tapped for operation
at half voltage shown
Filomant or heoter volrag.
British version of 6L6.
TABLE IX-CONTROL AND REGULATOR TUBES

TABLE X-RECTIFIERS-RECEIVING AND TRANSMITTING
5ee Also Table IX-Control and Regulator Tubes

	Maximum Ratings						Cathade		Capacitances			Bose	Typical Operatian							
Type							$\frac{\vdots}{\overline{0}}$	$\begin{aligned} & \text { E } \\ & \frac{0}{0} \\ & \frac{\square}{E} \end{aligned}$	$\underset{\mu \mu \mathrm{f}}{\substack{\mathbf{C}_{\text {. }} \\ \hline}}$	$\underset{\mu \mu \mathrm{f}}{\mathbf{C}_{\mathrm{g}}}$	$\begin{gathered} \mathbf{C}_{0, ~}^{\prime \prime} \\ \mu \mu \mathbf{f} . \end{gathered}$				$\begin{array}{r} 8 \\ 0 \\ 0 \\ \hline \frac{8}{5} \\ \hline 0 \\ \hline \end{array}$	惑				
958－A	0 O	1.15	－	10	400	12	124	0	n6	26	08	580	C 10	135	－20	7	10	0035	－	0.6
$6.16{ }^{2}$	15	3×0	．k）	16	250	32	6.3	045	22	16	04	7BF	C．T	150	-10	30	16	035	－	3.5
9002	16	245	8	20	250	25	63	015	12	1.4	11	7BS	CTO	183	－35	7	15	－	－	0.5
955	16	180	8	20	250	25	6.3	0.15	10	14	06	SBC	CTO	180	－35	7	1.5	－	－	0.5
HY1148	18	180	12	30	300	13	1.4	0.155	10	1.3	10	21	C． 10	183	－30	12	20	02	－	1.43
HY148		180	12	30	500	1					10	21	CP	180	－35	12	25	0.3	－	1.43
654	2.0	150	20	80	500	17	63	0.225	2.0	1.9	0.6	7BR	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	150	$\begin{gathered} -15 \\ 550 * \\ 20004 \end{gathered}$	20	7.5	0.2	－	1.8
12AU7A 2	2.756	350	120	3.56	54	18	63	0.3	1.5	1.5	0.5	9A	CTO	350	－ 100	24	7	－	－	6.0
6 W4	3.0	189	12	－	500	32	63	02	3.1	2.35	0.55	TCA	C．T．O	183	－	－	－	－	－	－
6026	30	150	30	10	400	24	63	02	2.2	1.3	038	Fig． 16	C．TO	135	1300°	20	95	－	－	1.25
HY615	35	300	20	40	300	20	6.3	0175	1.4	16	1.2	Fig． 71	C．IO	300	－35	20	2.0	0.4	－	$4.0{ }^{3}$
HY－E1148	3.5	300										Fig． 71	C^{P}	330	－35	20	3.0	0.8	－	3.53
$6{ }_{6} 4$	50	350	25	8.0	54	18	6.3	015	1.8	1.6	1.3	6BG	Cro	350	-27	＇25	7.0	0.35	－	5.5
$2 \mathrm{C36}$	5	1500^{5}	－	－	1200	25	63	04	14	2.4	0.36	Fig． 21	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}^{10}$	$1000{ }^{\text {s }}$	0	9005	－	－	－	2005
2 C 37	5	350	－	－	3300	25	63	04	1.4	1.85	002	Fig． 21	C．T．O ${ }^{12}$	150	32004	15	36	－	－	0.5
5764	5	1500^{3}	11.5	－	3300	25	63	04	1.4	1.85	002	Fig． 21	C 1.016	1000^{5}	0	1330^{5}	－	－	－	2005
5675	5	165	30	8	3000	20	63	013.5	23	1.3	009	Fig． 21	G．GO	120	－8	25	4	－	－	0.05
$6 \mathrm{NT}^{2}$	556	350	30^{6}	5.06	10	35	63	08	－	－	－	88	C．TO＇1	350	－100	60	10	－	－	14.5
$\underline{2 C 40}$	65	500	25	－	500	36	6.3	075	2.1	1.3	0.05	Fig． 11	C．T．O	250	－5	20	0.3	－	－	0.075
5893	80	400	40	13	1000	27	6.0	0.33	2.5	1.75	0.07	Fig． 21	C T	350	－33	35	13	2.4	－	6.5
5893	80	400	40	1	1000	2						Hg． 21	C．P	330	－45	30	12	2.0	－	6.5
G1－6442	8.0	350	35	15	2500	47	6.3	0.9	5.0	2.3	0.03	－	C 1	353	－ 50	35	15	－	－	－
61．6442	8.0	35		is	250	4							C．P	275	－53	35	15	－	－	－
$\begin{aligned} & .2 \mathrm{C34/} \\ & \text { RK342 } \end{aligned}$	10	300	80	20	250	13	6.3	0.8	3.4	2.4	0.5	Fig． 70	C．TO	300	－36	83	20	1.8	－	16
$\underline{2 C 43}$	12	500	40	－	1250	48	6.3	0.9	2.9	1.7	0.05	Fig． 11	C．r．o	470	－	38^{7}	－	－	－	97
6263	13	4 CO	55	25	500	27	6.3	0.28	2.9	1.7	0.08	－	C．${ }^{\text {c }}$	359	－58	40	15	3	－	10
													C．P	320	－52	35	12	2.4	－	8
6264	13	400	50	25	500	40	63	0.28	295	1.75	0.07	－	C． 1	350	－45	40	15	3	－	8
10Y	15	450	65	15	8	8.0	7.5	1.25	4.1	7.0	3.0	40	C． 1.0	453	－100	65	15	3.2	－	19
													C．P	359	－ 100	53	12	2.2	－	12
HY75A	15	450	90	25	175	9.6	63	26	1.8	2.6	1.0	21	C． 1	455	-140	90	20	5.2	－	26
HY75A	15	450	9	25							1.0	21	C．${ }^{\text {P }}$	430	－143	90	20	5.2	－	21
													C．T	600	－150	65	15	4.0	－	25
801－A／801	20	600	70	15	60	8.0	73	1.25	4.5	6.0	1.5	4D	C^{P}	530	－190	55	15	4.5	－	18
													B^{\prime}	600	－75	130	$32{ }^{\circ}$	$3.0{ }^{\circ}$	10K	45
													C． 1	750	－85	85	18	3.6	－	44
120	20	750	85	25	60	20	7.5	1.75	4.9	5.1	0.7	3 G	$C^{\text {P }}$	750	－140	70	15	3.6	－	38
													C．T	750	－40	85	28	3.75	－	44
TZ20	20	750	85	30	60	62	7.5	1.75	5.3	5.0	0.6	3G	C．${ }^{\text {P }}$	750	－100	70	23	4.8	－	38
													B^{7}	850	0	40136	160°	1.88	12K	70
155^{18}	20	二	－	二	600	25	55	4.2	1.4	115		Fig． 51		2000	－130	63	18	4.0	－	100
											0.3		C．to	1500	－95	67	13	2.2	－	75
$3-25 A 3$	25	2000	75	25	60	24	63	3.0	27	15	0.3	36		1000	－70	72	，	1.3	－	47
													B^{7}	2000	－83	1683	270°	0.79	55．5K	110
					100				2.1	18	0.1	Fig． 31		2000	－ 170	63	17	45	－	100
3C3418	25	2000	75	25	60	23	6.3	3.0	2.5	1.7	0.4	3 G	C．TO	1500	－110	67	15	3.1	－	75
3-25D3	25	200	75	25					20	16	02	20		1000	－83	72	15	2.6	－	47
					150				17	1.5	03	20	B^{7}	2000	－85	1683	$290{ }^{\circ}$	1.18	55．5K	110
	25	2000	75										C．T	2000	-130	63	18	4	－	100
3 C 24	17	1600	60	73	60	24	6.3	3.0	1.7	1.6	02	20	C．${ }^{\text {P }}$	1600	－170	53	11	3.1	－	68
	25	2000	75										$\mathrm{AB}_{7}{ }^{7}$	1250	－42	24130	270°	3.44	21．4K	112
									2.5	1.7	0.4	3G	C． 7	2000	－140	56	18	4.0	－	90
HK24	25	2000	75	30	60	25	6.3	3.0	2.5	1.7	0.4		C．\cdot	1500	－145	50	25	5.5	－	60
	30		65										G．M．A	1000	－135	50	4	3.5	－	20
8025	20	1000	65	20	500	18	6.3	1.92	2.7	2.8	0.35	4AO	C－P	830	－105	40	10.5	1.4	－	22
	30		8.	20									C－T	1000	－90	50	14	1.6	－	35
							63	3.5					C．T	500	－45	150	25	2.5	－	56
HY12312？	30	500	150	30	60	45	12.6	1.7	5.0	5.5	1.9	Fig． 60	C－P	400	－100	150	30	3.5	－	45
316A	30	450	80	12	500	6.5	2.0	3.65	1.2		0.8		C．${ }^{\text {P }}$	450	－	83	12	－	－	7.5
VT－191	30	450	80	12	500	6.5	2.0	3.65	1.2	1.6	0.8	－	C． P	400	－	83	12	－	－	6.5
													C．T	1000	－7．5	100	25	3.8	－	75
809	30	1000	125	－	60	50	6.3	2.5	5.7	6.7	0.9	36	C．P	750	－60	100	32	4.3	－	55
													B^{7}	1000	－9	40200	155°	2.78	11．6K	145
													C．T．O	1000	－90	100	20	3.1	－	75
1623	30	1000	100	25	60	20	6.3	2.5	5.7	67	0.9	36	C．P	750	－125	100	20	4.0	－	55
													B^{7}	1000	－40	30200	$23{ }^{\circ}$	$4.2{ }^{\text {a }}$	12K	145
													C．T．O	1000	－90	50	14	1.6	－	35
8012	40	1000	80	20	500	18	6.3	2.0				Fig． 54	C^{-P}	830	－105	40	10.5	1.4	－	22
Gl－8012－A									2.7	2.5	0.4		G．M．A	1000	－135	50	4.0	3.5	－	20
								25			0.8	36	C．T．O	1500	－140	150	28	9.0	－	158
T40	40	1500	150	40	60	25	7.5	2.5	4.5	4.8	0.8	36	C．P	1250	－115	115	20	5.25	－	104
													C．IO	1500	－90	150	38	10	－	165
TZ40	40	1500	150	45	60	62	7.5	2.5	4.8	5.0	0.8	36	C^{-p}	1250	－100	125	30	7.5	－	116
													${ }^{8}$	1500	－9	$250{ }^{\circ}$	$285{ }^{\circ}$	6.00	12K	250
$\begin{aligned} & 3-50 \mathrm{~A} 4 \\ & 35 \mathrm{~T} \end{aligned}$									4.1		0.3	3G	C．T	2000	－135	125	45	13	－	200
3 3－5004	50	2000	150	50	100	39	5.0	40		1.8			C．P	1500	－150	90	40	11	－	105
3576									2.5		0.4	20	B7	2000	－40	4／167	255＊	$40{ }^{\circ}$	27．5K	235

[^15]| | Maximum Ratings | | | | | | Cathode | | Capaeitances | | | Base | Typical Operation | | | | | | | |
| :---: |
| Type | | | 萢 | | | | $\begin{aligned} & \frac{2}{\circ} \\ & > \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \frac{6}{E} \\ & 4 \end{aligned}$ | C $\mu \mu \mathrm{F}$ ． | $\begin{gathered} \mathbf{C}_{\text {日p }} \\ \mu \mu \mathrm{fi} . \end{gathered}$ | Cout $\mu \mu$ ． | | | $\frac{8}{6}$ | 苞 | | | | | |
| HK54 | 50 | 3000 | 150 | 30 | 100 | 27 | 50 | 50 | 19 | 19 | 02 | 20 | C．T | 3000 | －290 | 100 | 25 | 10 | － | 250 |
| | | | | | | | | | | | | | CP | 2500 | －250 | 100 | 20 | 8.0 | － | 210 |
| | | | | | | | | | | | | | 87 | 2500 | －85 | 20150 | 3609 | 5.0 | 40 K | 275 |
| T55 | 55 | 1500 | 150 | 40 | 60 | 20 | 75 | 30 | 50 | 39 | 12 | 36 | CT | 1500 | －170 | 150 | 18 | 6.0 | － | 170 |
| | | | | | | | 75 | J | so | 3 | | | C^{-P} | 1500 | －195 | 125 | 15 | 5.0 | 二 | 145 |
| | 55 | 1500 | 150 | 50 | 60 | 160 | 63 | 40 | 5.5 | 55 | 0.6 | 36 | C T | 1500 | －113 | 150 | 35 | 8.0 | － | 170 |
| | | | | | | | | | | | | | C． P | 1250 | －125 | 125 | 50 | 11 | － | 120 |
| | | | | | | | | | | | | | B^{7} | 1500 | －9 | 20200 | 1500 | 3.00 | 176 K | 220 |
| 812 | 55 | 1500 | 150 | 35 | 60 | 29 | 63 | 40 | 53 | 53 | 08 | 36 | C T | 1500. | －175 | 150 | 25 | 6.5 | － | 170 |
| | | | | | | | | | | | | | CP | 1250 | －125 | 125 | 25 | 6.0 | － | 120 |
| | | | | | | | | | | | | | ${ }^{87}$ | 1500 | －45 | 50200 | 2320 | 4.78 | 18K | 220 |
| 826 | 55 | 1000 | 140 | 40 | 250 | 31 | 75 | 40 | 3.0 | 2.9 | 1.1 | 780 | C．T．O | 1000 | －70 | 130 | 35 | 58 | － | 90 |
| | | | | | | | | | | | | | C．P | 1000 | －160 | 95 | 40 | 115 | 二 | 70 |
| | | | | | | | | | | | | | G M•A | 1000 | －125 | 65 | 9.5 | 82 | － | 25 |
| $\begin{aligned} & 8308 \\ & 9308 \end{aligned}$ | 60 | 1000 | 150 | 30 | 15 | 25 | 10 | 20 | 5.0 | 11 | 18 | 3 G | CTO | 1000 | －110 | 140 | 30 | 7.0 | － | 90 |
| | | | | | | | | | | | | | $C^{\text {c }}$ | 800 | －150 | 95 | 20 | 5.0 | － | 50 |
| | | | | | | | | | | | | | ${ }^{87}$ | 1000 | －35 | 20，280 | 270° | 6.09 | 76 K | 175 |
| 811－A19 | 65 | 1500 | 175 | 50 | 60 | 160 | 63 | 40 | 5.9 | 56 | 07 | 36 | C I | 1500 | －70 | 173 | 40 | 71 | － | 200 |
| | | | | | | | | | | | | | C^{P} | 1250 | -120 | 140 | 45 | 10.0 | － | 135 |
| | | | | | | | | | | | | | ${ }^{\text {B }}$ | 1500 | －45 | 32313 | 1709 | 4.48 | 124 K | 340 |
| 812－A | 65 | 1500 | 175 | 35 | 60 | 29 | 63 | 40 | 54 | 5.5 | 0.77 | 36 | C． 1 | 1500 | －120 | 173 | 30 | 6.5 | － | 190 |
| | | | | | | | | | | | | | CP | 1250 | －115 | 140 | 35 | 76 | － | 130 |
| | | | | | | | | | | | | | B^{7} | 1500 | －48 | 28／310 | 270^{9} | 5.0 | 13.2 K | 340 |
| 5514 | 65 | 1500 | 175 | 60 | 60 | 145 | 75 | 30 | 7.8 | 7.9 | 10 | 480 | C $\overline{1}$ | 1500 | －106 | 175 | 60 | 12 | － | 200 |
| | | | | | | | | | | | | | C．P | 1250 | －84 | 142 | 60 | 10 | － | 135 |
| | | | | | | | | | | | | | 87 | 1500 | －4．5 | 350° | 888 | 659 | 10．5K | 400 |
| $\begin{aligned} & 3-75 \mathrm{A3} \\ & 75 \mathrm{TM} \end{aligned}$ | 75 | 3000 | 225 | 40 | 40 | 20 | 50 | 625 | 2.7 | 2.3 | 0.3 | 2 D | C．T | 2000 | －200 | 150 | 32 | 10 | － | 225 |
| | | | | | | | | | | | | | C^{P} | 2000 | －300 | 110 | 15 | 6 | － | ${ }^{170}$ |
| | | | | | | | | | | | | | B^{7} | 2000 | －90 | 50225 | 3509 | 30 | 19．3K | 300 |
| $\begin{aligned} & 3-75 A_{2} \\ & 75 \mathrm{TL} \end{aligned}$ | 75 | 3000 | 225 | 35 | 40 | 12 | 5.0 | 625 | 2.6 | 2.4 | 0.4 | 20 | C．T | 2000 | －300 | 150 | 21 | 8 | － | 225 |
| | | | | | | | | | | | | | C．${ }^{\text {P }}$ | 2000 | － 500 | 130 | 20 | 14 | － | 210 |
| | | | | | | | | | | | | | $\mathrm{AB}_{\mathrm{y}^{\text {P }}}$ | 2000 | －190 | 50250 | 6009 | 50 | 18 K | 350 |
| 8005 | 85 | 1500 | 200 | 45 | 60 | 20 | 10 | 3.25 | 6.4 | 5.0 | 1.0 | 3G | C．T | 1500 | －130 | 200 | 32 | 7.5 | － | 220 |
| | | | | | | | | | | | | | ${ }^{\text {C }}$－ | 1250 | － 195 | 190 | 28 | 9.0 | － | 170 |
| | | | | | | | | | | | | | ${ }^{87}$ | 1500 | －70 | 40／310 | 3109 | 4.0 | 10k | 300 |
| V－70－D | | | | | | | | | | | | | C．T | 1750 | － 100 | 170 | 19 | 3.9 | － | 225 |
| | 85 | 1750 | 200 | 45 | 30 | － | 7.5 | 3.25 | 4.5 | 4.5 | 1.7 | 3G | \cdots | 1500 | －90 | 165 | 19 | 3.9 | － | 195 |
| | | | | | | | | | | | | | C．P | 1500 | －90 | 165 | 19 | 3.7 | － | 185 |
| | | | | | | | | | | | | | | 1250 | －72 | 127 | 16 | 2.6 | － | 122 |
| 3-100A4 100TH | 100 | 3000 | 225 | 60 | 40 | 40 | 5.0 | 6.3 | 2.9 | 20 | 0.4 | 20 | C．\cdot T
 C \cdot P | 3000 | －200 | 165 | 51 | 18 | － | 400 |
| | | | | | | | | | | | | | 8^{7} | 3000 | －65 | 40／215 | 3350 | 5.08 | 31 K | 650 |
| | | | | | | | | | | | | | $\frac{C . T}{\text { C．P }}$ | 3000 | －400 | 165 | 30 | 20 | | |
| 3－100A 2 100 TL | 100 | 3000 | 225 | 50 | 40 | 14 | 5.0 | 6.3 | 2.3 | 2.0 | 0.4 | 20 | C．${ }^{\text {P }}$ M | 3000 | －400 | 165 | 30 | 20 | － | 400 |
| | | | | | | | | | | | | | GM－A | 3000 | －56C | 60 | 2.0 | 7.0 | － | 90 |
| | | | | | | | | | | | | | B | 3000 | －185 | 40／215 | 840° | 8.08 | 30K | 450 |
| VT127A | 100 | 3000 | － | － | 150 | 155 | 50 | 104 | 27 | 23 | 035 | Fig． 53 | $\text { C. } 7$ | 2000 | －340 | 210 | 67 | 25 | － | 315 |
| | | | | | | | | | | | O3s | Fig． 33 | 87 | 1500 | －125 | 242 | 44 | 7.3 | 3 K | 200 |
| 211 | 100 | 1250 | 175 | | | | | | 6.0 | 14.5 | 55 | | C T | 1250 | －225 | 150 | 18 | 70 | － | 130 |
| 311 | 100 | 1250 | 175 | 50 | 15 | 12 | 10 | 325 | 60 | 825 | 50 | 4 E | ${ }^{\text {c }} \cdot{ }^{\text {P }}$ | 1000 | －260 | 150 | 35 | 14 | － | 100 |
| | | | | | | | | | | | 5 | | 8^{7} | 1250 | － 100 | 22320 | 4109 | 8.08 | 9 K | 260 |
| | | | | | | | | | | | | | $\frac{C \cdot T}{\text { C．}}$ | 3000 | －245 | 165 | 40 | 18 | － | 400 |
| 254 | 100 | 4000 | 225 | 60 | － | 25 | 5.0 | 75 | 25 | 27 | 04 | 2N | C^{-9} | 2500 | －360 | 168 | 40 | 23 | － | 335 |
| | | | | | | | | | | | | | B^{7} | 2500 | －80 | $40 \quad 240$ | 460° | 25 | 252K | 420 |
| | | | | | | | | | | | | | C． 10 | 1350 | －180 | 245 | 35 | 11 | － | 250 |
| 8003 | 100 | 1500 | 250 | 50 | 30 | 12 | 10 | 3.25 | 58 | 117 | 34 | 3 N | CP | 1100 | －260 | 200 | 40 | 15 | － | 167 |
| | | | | | | | | | | | | | ${ }^{87}$ | 1350 | －100 | 40＇490 | 4839 | 10.58 | 6 K | 460 |
| 3 Cx 100 AS 5 | 100 | 1000 | 12514 | 50 | 2500 | 100 | 6.0 | 1.05 | 7.0 | 2.15 | 0.035 | | GGA | 800 | －20 | 89 | 30 | 6 | － | 27 |
| $3 \mathrm{x} \times 100 \mathrm{Al}$ | 70 | 600 | 10014 | 3 | 2500 | 100 | 6.0 | 1.05 | 7.0 | 2.15 | 0.035 | － | CP | 600 | －15 | 75 | 40 | 6 | － | 18 |
| $\begin{aligned} & 3 \times 100 \mathrm{~A} 11 \\ & 2 \mathrm{C} 39 \end{aligned}$ | 100 | 1000 | 60 | 40 | 500 | 100 | 63 | 1．1 | 65 | 1.95 | 003 | － | GHC | 600 | －35 | 60 | 40 | 5.0 | － | 20 |
| Gl2C39A ${ }^{\text {／}}$ | 100 | 1000 | 12514 | 50 | 500 | 100 | 63 | 10 | 65 | 19 | 0.035 | | C．TO | 900 | －40 | 90 | 30 | － | － | 40 |
| Gl2C398 ${ }^{\text {／}}$ | 70 | 100 | 12514 | 50 | 500 | 10 | 63 | 10 | 70 | 19 | 0035 | － | C^{P} | 600 | － 150 | 10014 | 50 | － | － | － |
| $3 \mathrm{C22}$ | 125 | 1000 | 150 | 70 | 500 | 40 | 63 | 20 | 49 | 24 | 005 | Fig． 17 | CTO | 1000 | －200 | 150 | 70 | － | － | 65 |
| | | | | | | | | | | | | | CTO | 1250 | －150 | 180 | 30 | － | － | 150 |
| Gl146 | 125 | 1500 | 200 | 50 | 15 | 75 | 10 | 3.25 | 7.2 | 92 | 39 | Fig． 56 | CP | 1000 | －200 | 160 | 40 | － | － | 100 |
| | | | | | | | | | | | | | ${ }^{87}$ | 1250 | 0 | 34320 | － | － | 84 K | 250 |
| | | | | | | | | | | | | | C．T 0 | 1250 | -150 | 180 | 30 | － | － | 150 |
| Gl152 | 125 | 1500 | 200 | 60 | 15 | 25 | 10 | 3.25 | 7.0 | 88 | 40 | Fig． 56 | CP | 1000 | －200 | 160 | 30 | － | － | 100 |
| | | | | | | | | | | | | | ${ }^{8} 7$ | 1250 | －40 | 16320 | － | － | 8.4 K | 250 |
| | | | | | | | | | | | | | C．T | 1500 | － 105 | 200 | 40 | 8.5 | － | 215 |
| 805 | 125 | 1500 | 210 | 70 | 30 | 40.60 | 10 | 325 | 85 | 65 | 105 | 3N | C^{P} | 1250 | －160 | 100 | 60 | 16 | － | 140 |
| | | | | | | | | | | | | | B^{7} | 1500 | －16 | ． 84400 | 280° | 70 | 82 K | 370 |
| | | | | | | | | | | | | | C T | 2500 | －200 | 200 | 40 | 16 | － | 390 |
| 586615 | 135 | 2500 | 200 | 40 | 150 | 25 | 6.3 | 5.4 | 5.8 | 5.5 | 0.1 | Fig． 3 | C^{-p} | 2000 | －225 | 127 | 40 | 16 | \leftarrow | 204 |
| | | | | | | | | | | | | | B7 | 2500 | －90 | 80330 | $350{ }^{\circ}$ | 148 | 1568 K | 560 |
| | | | | | | | 50 | 125 | | | | | C．7 | 3000 | －300 | 250 | 70 | 27 | － | 600 |
| $152 \mathrm{TH}$ | 150 | 3000 | 450 | 85 | 40 | 20 | | | 5.7 | 4.8 | 0.4 | 4BC | CP | 2500 | －350 | 200 | 30 | 15 | － | 400 |
| | | | | | | | 10 | 6.25 | | | | | B^{7} | 2500 | － 125 | 40340 | 3900 | 16° | 17K | 600 |

[^16]| Type | Maximum Ratings | | | | | | Cothode | | Capocitances | | | Base | Typicol Operation | | | | | | | |
| :---: |
| | 高 | $\begin{array}{r} \circ \\ \frac{0}{2} \\ \frac{0}{2} \frac{2}{9} \\ \hline \end{array}$ | \sum_{2}^{0} | | | | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & > \end{aligned}$ | $\begin{aligned} & \text { た } \\ & \frac{0}{2} \\ & \text { E } \end{aligned}$ | C $\mu \mu \mathrm{f}$ ． | C° $\mu \mu \mathrm{f}$ ． | Cow $\mu \mu \mathrm{F}$ ， | | | $\frac{8}{\frac{0}{2}}$ | $\text { 롱 } \frac{\stackrel{0}{0}}{\stackrel{0}{0}}$ | | $\begin{aligned} & \text { 믄 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | | | |
| $\begin{aligned} & \hline 3-150 A 2 \\ & 152 \mathrm{It} \end{aligned}$ | 150 | 3000 | 450 | 75 | 40 | 12 | 5 | 12.5 | 4.5 | 4.4 | 07 | 4BC | C．T | 3000 | －400 | 250 | 40 | 20 | － | 600 |
| | | | | | | | 10 | 6.25 | | | | | B^{7} | 3000 | －260 | 65335 | 6750 | 3.04 | 20.4 K | 700 |
| HF201A | 150 | 2500 | 200 | 50 | 30 | 18 | 10－11 | 4.0 | 8.8 | 7.0 | 1.2 | Fig． 15 | C．T | 2500 | －300 | 200 | 18 | 8 | － | 380 |
| | | | | | | | | | | | | | C．P | 2000 | －350 | 160 | 20 | 9 | － | 250 |
| | | | | | | | | | | | | | ${ }^{8} 7$ | 2500 | -130 | 60360 | 4809 | $8{ }^{8}$ | 16K | 600 |
| | | | | － | － | 8 | 10 | 5.2 | 5.6 | 8.8 | 3.3 | Fig． 15 | A_{1} | 1500 | －155 | 107 | － | － | $8.2 \mathrm{~K}{ }^{3}$ | 55 |
| Gl－5C24 | 160 | 1750 | 107 | － | － | 8 | 10 | 5.2 | 5.6 | 8.8 | 3.3 | Fig． 15 | $A B_{1}$ | 1750 | －200 | $320{ }^{\circ}$ | 3909 | － | 8 K | 240 |
| 810 | 175 | 2500 | 300 | 75 | 30 | 36 | 10 | 4.5 | 8.7 | 4.8 | 12 | 2N | C． 1 | 2500 | －180 | 300 | 60 | 19 | － | 575 |
| | | | | | | | | | | | | | C．${ }^{\text {P }}$ | 2000 | －350 | 250 | 70 | 35 | － | 380 |
| | | | | | | | | | | | | | G．M．A | 2250 | －140 | 100 | 20 | 40 | － | 75 |
| | | | | | | | | | | | | | ${ }^{8}$ | 2250 | －60 | 70450 | $380{ }^{\circ}$ | 138 | 11.6 K | 725 |
| 8000 | 175 | 2500 | 300 | 45 | 30 | 16.5 | 10 | 4.5 | 5.0 | 6.4 | 3.3 | 2N | C．T．O | 2500 | －240 | 300 | 40 | 18 | － | 575 |
| | | | | | | | | | | | | | C．P | 2000 | －370 | 250 | 37 | 20 | － | 380 |
| | | | | | | | | | | | | | G．M．A | 2250 | －265 | 100 | 0 | 2.5 | － | 75 |
| | | | | | | | | | | | | | 8 | 2250 | －130 | 65450 | 5609 | 7.90 | 12K | 725 |
| | | | | | | | | | | | | | C．${ }^{\text {c }}$ | 2500 | -280 | 350 | 54 | 25 | － | 685 |
| T200 | 200 | 2500 | 350 | 80 | 30 | 16 | 10 | 5.75 | 9.5 | 7.9 | 1.6 | 2N | C．${ }^{\text {P }}$ | 2000 | －260 | 300 | 54 | 23 | － | 460 |
| $\begin{aligned} & 592 / 15 \\ & 3-200 A 3 \end{aligned}$ | 200 | 3500 | 250 | 2513 | 150 | 25 | 10 | 50 | 3.6 | 3.3 | 0.29 | Fig． 28 | C．T | 3500 | －270 | 228 | 30 | 15 | － | 600 |
| | 130 | 2600 | 200 | 2513 | | | | | | | | | C．${ }^{\text {P }}$ | 2500 | －300 | 200 | 35 | 19 | － | 375 |
| | 200 | 3500 | 250 | 2513 | | | | | | | | | B^{8} | 2000 | －50 | 120500 | 520＊ | 204 | 8.5 K | 600 |
| $\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$ | 200 | 3000 | 275 | 60 | | 23 | 1112 | 4.0 | 6.0 | 6.5 | 1.4 | 2 N | C．T | 3000 | －400 | 250 | 28 | 16 | － | 600 |
| | | | | | 60 | | | | | | | | C．\cdot | 2000 | -300 | 250 | 36 | 17 | － | 385 |
| | | | | | | | | | | | | | B^{3} | 3000 | －115 | 60360 | $450{ }^{\circ}$ | 138 | 20K | 780 |
| T－300 | 200 | 3000 | 300 | － | － | 23 | 11 | 6.0 | 6.0 | 7.0 | 1.4 | － | C．T | 3000 | －400 | 250 | 28 | 20 | － | 600 |
| | | | | | | | | | | | | | C．P | 2000 | -300 | 250 | 36 | 17 | － | 385 |
| | | | | | | | | | | | | | ${ }^{87}$ | 2500 | －100］ | 60 450 | － | 7．58 | － | 750 |
| 806 | 225 | 3300 | 300 | 50 | 30 | 12.6 | 5.0 | 10 | 6.1 | 4.2 | 1.1 | 2N | C．T | 3300 | －600 | 300 | 40 | 34 | － | 780 |
| | | | | | | | | | | | | | C．P | 3000 | －670 | 195 | 27 | 24 | － | 460 |
| | | | | | | | | | | | | | ${ }^{8}$ | 3300 | －240 | 80475 | 930° | 354 | 16 K | 1120 |
| $\begin{aligned} & \text { 3-250A4 } \\ & 250 \mathrm{TH} \end{aligned}$ | 1250 | 4000 | 380 | 40^{13} | 40 | 37 | 5.0 | 10.5 | 4.6 | 2.9 | 0.5 | 2N | C．T．O | 2000 | －100 | 357 | 94 | 29 | － | 464 |
| | | | | | | | | | | | | | | 3000 | －130 | 333 | 90 | 32 | － | 750 |
| | | | | | | | | | | | | | | 2000 | －160 | 250 | 60 | 22 | － | 335 |
| | | | | | | | | | | | | | C．${ }^{\text {P }}$ | 2500 | －180 | 225 | 45 | 17 | － | 400 |
| | | | | | | | | | | | | | | 3000 | －200 | 200 | 38 | 14 | － | 435 |
| | | | | | | | | | | | | | $A B r{ }^{7}$ | 1500 | 0 | 220／700 | 4600 | 46^{8} | 4．2K | 630 |
| $\begin{aligned} & 3-250 \mathrm{~A} 2 \\ & 250 \mathrm{TL} \end{aligned}$ | 250 | 4000 | 350 | 3513 | 40 | 14 | 5.0 | 105 | 3.7 | 30 | 0.7 | 2N | C．T．O | 2000 | － 200 | 3.50 | 45 | 22 | － | 455 |
| | | | | | | | | | | | | | | 3000 | －3．50 | 335 | 45 | 29 | 二 | 750 |
| | | | | | | | | | | | | | | 2000 | －520 | 250 | 29 | 24 | － | 335 |
| | | | | | | | | | | | | | C．P | 2500 | －520 | 225 | 20 | 16 | － | 400 |
| | | | | | | | | | | | | | | 3000 | －520 | 200 | 14 | 11 | － | 435 |
| | | | | | | | | | | | | | $\mathrm{AB}_{2}{ }^{\text {P }}$ | 1500 | －40 | 200／700｜ | 780° | 388 | 3.8 K | 580 |
| $\begin{aligned} & 5867 \\ & A X-9901 \end{aligned}$ | 250 | 3000 | 400 | 80 | 100 | 25 | 5.0 | 14.1 | 7.7 | 5.9 | 0.18 | Fig． 3 | C．T | 3000 | －250 | 363 | 69 | 27 | － | 810 |
| | | | | | | | | | | | | | C．P | 2500 | －300 | 250 | 70 | 28 | － | 482 |
| | | | | | | | | | | | | | B^{7} | 3000 | -110 | 5708 | 4659 | 32 | 14．2K | 1280 |
| PL．656919 | | | | | | | | | | | | | | 2500 | －70 | 300 | 85 | 7520 | － | 555 |
| | | | | | | | 5.0 | | 76 | 3.7 | 10.1 | Fig． 3 | G．G A | 3000 | －95 | 300 | 110 | 8570 | － | 710 |
| | 250 | 4000 | 300 | 120 | 30 | 45 | 5.0 | 114.5 | 76 | 3.7 | ． 1 | Fig． 3 | GGA | 3500 | －110 | 285 | 90 | 8570 | － | 805 |
| | | | | | | | | | | | | | | 4000 | －120 | 250 | 50 | 70^{20} | － | 820 |
| | | | | | | | | | | | | | CTO | －1500 | －125 | 665 | 115 | 25 | － | 700 |
| | | | | | | | 5.0 | 25 | | | | | | ， 2000 | －200 | 600 | 125 | 39 | － | 900 |
| | | | | | | | | | | | | 4BC | | 1500 | －200 | 420 | 55 | 18 | － | 500 |
| $304 \mathrm{TH}$ | 300 | 3000 | 900 | 5013 | 40 | 20 | | | 135 | 102 | 07 | 4 BC | CP | 2000 | －300 | 440 | 60 | 26 | － | 680 |
| | | | | | | | 10 | 12.5 | | | | | | 2500 | －350 | 400 | 60 | 29 | － | 800 |
| | | | | | | | | | | | | | $\mathrm{AB}_{2}{ }^{\text {？}}$ | 1500 | －65 | 1065 | 330° | 25^{4} | 2.84 K | 1000 |
| | | | | | | | | | | | | | C．T．O | 1500 | －250 | 665 | 90 | 133 | － | 700 |
| | | | | | | | | | | | | | c．o | 2000 | －300 | 600 | 85 | 36 | － | 900 |
| | | | | | | | 5.0 | 25 | | | | | | 2000 | － 500 | 2.50 | 30 | 18 | 二 | 410 |
| | | | | | | | | | | | | | C．P | 2000 | － 500 | 500 | 75 | 52 | － | 810 |
| 304TL19 | 300 | 3000 | 900 | 5013 | 40 | 12 | | | 12.1 | 86 | 08 | 4BC | C． | 2500 | － 525 | 200 | 18 | 11 | － | 425 |
| | | | | | | | | | | | | | | 2500 | －550 | 400 | 50 | 36 | － | 830 |
| | | | | | | | 10 | 12.5 | | | | | | 1500 | －118 | 270／572 | $236{ }^{\circ}$ | 0 | 254 k | 256 |
| | | | | | | | | | | | | | $A B_{1}{ }^{\prime}$ | 2500 | －230 | 160／483 | 480° | 0 | 8.5 K | 610 |
| | | | | | | | | | | | | | $\mathrm{AB}_{2}{ }^{\prime}$ | 1500 | －118 | 1140 | 4909 | 398 | 2.75 K | 1100 |
| | | | | | | | | | | | | | CT．O | 2250 | －125 | 445 | 85 | 23 | － | 780 |
| | 350 | 3300 | | | 30 | | | | | | | | cro | 3000 | －160 | 335 | 70 | 20 | － | 800 |
| 833 A | | | 500 | 100 | | 35 | 10 | 10 | 123 | 63 | 85 | Fig． 41 | C ${ }^{\text {P }}$ | 2500 | － 300 | 335 | 75 | 30 | － | 635 |
| | | | | | 2015 | | | | | | | | | 3000 | －240 | 335 | 70 | 26 | － | 800 |
| | 45013 | | | | | | | | | | | | 87 | 3000 | －70 | 100／750 | 4009 | 200 | 9.5 K | 1650 |
| | istor in o | | | | | | | $C=C$ | d－15010 | | | | | | Class． B | data in Tab | able II． | | | |
| I KEY TO | ASS．OF． | SERvice | AbBr | viatio | | | GM | $A=G$ | | ated | | | | | 1000．Me | C W．Osc | | | | |
| A_{1} | Class．A_{1} | Af modulin | ulator． | ， | | | ${ }^{2} \mathrm{Twin}$ | Iriode. | Values． | except | interels | cirode co | | | Max grid | d dissipatio | tion in | | | |
| $A B_{1}$ | Class．AB， | push－pull | ull AF | modula | | | | ces，ar | for bo | sectio | ns in pu | sh－pull． | | | Max cal | thode curr | rent in | | | |
| ${ }_{A} B_{2}$ | Class． AB_{2} | push．pul | ull AF | modulat | | | 3 Out | ut at 11 | Mc ． | | | | | | forced－o | arr cooling | g requir | | | |
| B | Class－8 pu | ush．pull | AF mo | dulator． | | | - Grid | leak re | （in | huns． | | | | | Plote－pul | $\text { Ised } 3300 \mathrm{~A}$ | Mc. Os | | | |
| C．M | Frequency | $y \text { multiph }$ | ier． | | | | speak | volves． | | | | | | | 1900 Mc | CW．osc | sc． | | | |
| $C \cdot P$ | Class.C | late－mo | dulate | teleph | ane． | | - Per | section． | | | | | | | No Clas | S． B data o | availab | e． | | |
| CT | Class-C | elegrap | h． | | | | $7 \text { Valu }$ | es are | rwo th | bes in | push．pu | | | | linear．a | mplatier | tube－op | eration | data | for single |
| $\mathrm{C} \cdot \mathrm{~T} \cdot \mathrm{O}$ | Class.C | amplifier | osc． | | | | - Max | signol | alve． | | | | | | sidebo | and in Cha | hapter 1 | 2．Table | $121 .$ | |
| $\begin{aligned} & G \cdot G \cdot A= \\ & G \cdot G \cdot \end{aligned}$ | Grounde Grounde | d．grid c d－grid o | loss-C | amp． | | | －Peak 10 Plote | o．f．gr pulsed | $\begin{aligned} & \text { to-grid } \\ & 000 \text {-Mc } \end{aligned}$ | volts． osc． | | | | | includes power． | bias loss， | grid d | sspation， | ，and fee | d．through |

	Maximum Rotings					Cathode		Capceitancor				Typical Operation										
Type		曼晨				$\frac{\ddot{\prime}}{\frac{1}{0}}$		C． $\mu \mu$ ．	C $\mu \mu$ ．	$C_{\mu \mu i \prime}$	Base		$\begin{array}{r} 8 \\ \frac{8}{2} \frac{0}{6} \\ \hline 0 \end{array}$	$\begin{aligned} & c: \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		苞	家	䨗	${ }^{2}$			
69393	7.5	275	3	200	500	6.3	0.75	6.6	0.15	1.55	Fig． 13	C．T	200	200	－	－20	60	13	2	1	－	7.5
	5	200	2									C．P	180	180	－	－20	55	11.5	1.7	1	－	6
	7.5	220	3			12.6	0.375					C－M	200	190	－	68 K,	46	10	2.2	0.9	－	－
RK25	10	500	8	250	－	2.5	2	10	0.2	10	6BM	C．T	50	200	45	－90	55	38	4	05	－	22
						6.3	0.9					$\mathrm{C}^{-\cdot}$	400	150	0	－90	43	30	6	0.8	－	13.5
1613	10	350	2.5	275	45	6.3	0.7	8.5	0.5	11.5	75	C．T	350	200	－	－35	50	10	3.5	0.22	－	9
1613	10	35	2.5	2	4	6.3	0.7	8.5	0.5	1.5	7	$\mathrm{C}^{\text {C }}$－	275	200	－	－35	42	10	2.8	0.16	－	6
$2 \mathrm{E30}$	10	250	2.5	250	160	6	0.7	10	0.5	4.5	7C0	C．T	250	200	－	－ 50	50	10	2.5	0.2	－	7.5
												$\mathrm{AB}^{\text {c }}$	250	250	－	－30	40／120	4／20	2.37	0.2	3．8K	17
837	12	500	8	300	20	12.6	0.7	16	0.2	10	68M	C．${ }^{\text {C．}}$	500	200	40	－70	80	15	4	0.4	－	28
												$\mathrm{C}^{\cdot} \cdot$	400	140	40	－40	45	20	5	0.3	二	11
$\frac{5763}{6417}$	13.5	350	2	250	50	6.0	0.75	9.5	0.3	4.5	9 K	C．T．	350	250	－	－28．5	48.5	6.2	1.6	0.1	－	$1 ?$
												C．P	300	250	－	－42．5	50	6	2.4	0.15	－	10
												C．M ${ }^{2}$	300	250.	－	－75	40	4	1	0.6	－	2.1
												C．M4	300	235	－	－ 100	35	5	1	0.6	－	1.3
392	13	600.	6	250	30	6.3	0.9	12	0.15	8.5	6BM	C．T	600	250	40	－120	55	16	2.4	0.30	－	23
					125							C．P	500	245	40	－40	40	15	1.5	0.10	－	12
$2 E 24$	13.5	500	2.3	200		8.35	0.65	8.5	0.11	6.5	7CL	C．P	500	180	－	－45	54	8	2.5	0.16	－	18
		600	2.5	200								C．T	600	195	－	－ 50	66	10	2.	0.21	－	27
2126）	13.5	600	2.5	200	125	6.3	0.8	12.5	0.2	7	7CK	C．T	600	185	－	－45	66	10	3	0.17	－	27
6493		500	2.3	200		$\frac{12.3}{}$	0.4					C．P	500	180	－	－ 50	54	9	2.5	0.15	－	18
649		500	2.3	20			0.4					$\mathrm{AB}_{2}{ }^{\text {b }}$	500	125	－	－15	22／150	$3{ }^{7}$	－	0.367	8 K	54
63600	14	300	2	200	200	$\begin{array}{\|c\|} \hline 6.3 \\ \hline 12.6 \end{array}$	$\frac{0.82}{0.41}$	6.2	0.1	2.6	Fig． 13	C．T	300	200	－	－45	100	3	3	0.2	－	18.5
												C．${ }^{\text {P }}$	200	100	－	15 K 1	86	3.1	3.3	0.2	－	9.8
												C．M ${ }^{\text {H }}$	300	150	－	－ 100	65	3.5	3.8	0.45	－	4.8
												AB_{2}	300	200	－	－21．5	30／100	1／11．4	644	0.04	6.5 K	17.5
2E25	15	450	4	250	125	6	0.8	8.5	0.15	6.7	58．	C．T．O	450	250	－	－45	75	15	3	0.4	－	24
												C．P	400	200	－	－45	60	12	3	0.4	－	16
												$\mathrm{AB}_{2}{ }^{\text {b }}$	450	250	－	－30	44／150	10／40	3	0.97	6 K	40
832）	15	500	5	250	200	$\frac{6.3}{12.6}$	1.6	7.5	0.05	3.8	73P	C．T	500	200	－	－85	72	14	2.6	0.18	－	26
－32	15	500	s	250	20	12.6	0.8	7.5	0.05	3.8	70	C．${ }^{\text {P }}$	425	200	－	－60	52	16	2.4	0.15	－	16
832A ${ }^{\text {a }}$	15	750	5	250	200	$\frac{6.3}{126}$	1.6	8	0.07	3.8	78P	C．T	750	200	－	－65	48	15	2.8	0.19	－	28
												C．\cdot	600	200	－	－65	36	16	2.6	0.16	－	17
1619	15	400	3.5	300	45	25	2	10.5	0.35	12.5	Fig． 74	C－T	400	300	二	－55	75	10.5	5	0.36	－	19.5
												C．P	325	285	－	－ 50	62	7.5	2.8	0.18	－	13
												$\mathrm{AB}_{2}{ }^{+}$	400	300	0	－16．5	75／150	6．5／11．5	－	0.47	6 K	36
5516	15	600	5	250	80	6	0.7	8.5	0.12	6.5	7CL	C．T	600	250	－	－60	75	15	5	0.5	－	32
												C．P	475	250	－	－90	63	10	4	0.5	－	22
												$A B_{2}{ }^{\text {b }}$	600	25	－	－25	$36 / 140$	1／24	47	0.16	10．5K	67
$\begin{aligned} & 6252 / \\ & \mathrm{AX} 9910 \end{aligned}$	20	750	4	300	200			8.5	－	2.5	Fig． 7	C．T	600	250	－	－60	140	14	4	20	－	87
						$\frac{6.3}{12.8}$	0.65					C•P	500	250	－	－80	100	12	3	4	－	40
												B	500	250	－	－26	$25 / 73$	0．7／16	52^{4}	－	20K	23.5
6907	25	750	3	300	600	6.3	1.3	6.5	－	2.5	Fig． 7	C．T．O	400	250	二	－50	100	5	1.4	3	－	25
	16．6	600	3	300								C．P	300	250	－	－ 50	80	6	2	－	－	13
	25		4	250		12.8	0.65					C．M	350	250	－	－175	110	5	3.6	6	－	11.5
	20		3	250		12.8	0.65					8	500	250	－	－26	25／73	0．7／16．2	521	－	20 K	23.5
1614	25	450	3.5	300	80	6.3	0.9	10	0.4		7AC	C．T	450	250	－	－45	100	8	2	0.15	－	31
										12.5		C．P	375	250	－	－ 50	93	7	2	0.15	－	24.5
												$\mathrm{AB}^{4}{ }^{\text {a }}$	530	340	－	－36	60／160	20^{7}	－	－	7．2K	50
815）	25	500	4									C．T．O	500	200	－	－45	150	17	2.5	0.13	－	56
				200	125	12.6	0.8	13.3	0.2	8.5	${ }^{3} \mathrm{BY}$	C．${ }^{\text {P }}$	400	175	－	－45	150	15	3	0.16	－	45
												$A B_{2}$	500	125	－	－15	22／150	327	－	0.367	8K	54
												C．${ }^{\text {P }}$	800	300	－	－60	90	10	5	0.43	－	35
1624	25	800	3.5	300	60	2.5	2	11	0.25	7.5	Fig． 66	$C^{\cdot} \cdot$	500	275	－	－ 50	75		3.3	0.25	－	24
												$\mathrm{AB}_{3}{ }^{\text {b }}$	600	300	－	－25	42／180	5／15	1068	1.27	7．5K	72
													500	170	－	－66	135	9	2.5	0.2	－	48
614613						6.3	1.25					C． 1	750	160	－	－62	120	11	3.1	0.2	－	70
												C．T ${ }^{12}$	400	190	－	－54	150	10.4	2.2	3	－	35
6033	25	750	3	250	60	12.6	0.625	13.5	0.22	8.5	7CK	C．P	400	150	－	－87	112	7.8	3.4	0.4	－	32
		50	\bigcirc	20	∞	12.6		is．s	0.22	8.5	\％ck	C．P	600	150	－	－87	112	7.8	3.4	0.4	－	52
													600	190	－	－48	28270	1．2／20	${ }^{27}$	0.03	5K	113
6159						26.5	0.3					$A^{2}{ }^{6}$	750	165	－	－46	22／240	0．3／20	2.67	0.04	7．4K	131
													750	195	－	－ 50	23／220	1／26	1001	0	8 K	120
						6.3	1.25					C．T	800	200	－	－44	120	8	3.7	0.2	－	56
6050	25	800	－	300	100	12.6	0.625	7	0.11	3.4	Fig． 76	${ }^{\text {C }} \cdot{ }^{\text {P }}$	500	200	－	－61	100	7	2.5	0.2	－	40
												AB_{2}	500	200	－	－26	$20 / 116$	0．1／10	2.6	0.1	11．1K	40
3E223	30	560	6	225	200	$\frac{6.3}{126}$	$\frac{1.6}{0.8}$	14	0.22	8.5	8 Cl	C．T	600	200	－	－55	160	20	7	0.45	－	72
						12.6	0.8					${ }^{\text {C }} \cdot{ }^{\text {P }}$	560	200	－	－ 50	160	20	6.5	0.4	－	67
											5AW	C．T	750	250	二	－45	100	6	3.5	0.22	－	50
$\begin{aligned} & \text { 507W } \\ & 5933 \end{aligned}$	30	750	3.5	300	60	6.3	0.9	12	0.2	7	SAW	$\mathrm{C}^{\text {C }}$－${ }^{\text {c }}$	600	275	－	－90	100	6.5	4	0.4	－	42.5
											5AZ	$\mathrm{AB}^{6}{ }^{6}$	750	300	\cdots	－32	60／240	5／10	924	$0.2{ }^{7}$	6.95 K	120
						12.8	0.45					810	750	－	－	0	15／240	－	5550	$5.3{ }^{7}$	6.65 K	120
	30	750	10	250	－	6.3	1.5	13	0.2	8	51	C．T．O	750	250	22.5	－60	100	16		0.55	－	53
$\underset{99035}{ }$	40	600	7	250	150	6.3	1.8	6.7	0.08	2.1		C． T	600	250	－	－80	200	16	2	0.2	－	83
	4	∞	7	250	150	12.6	0.9	8.7	0.06	21	Fig． 7	C．P	600	250	－	－100	200	24	8	1.2	－	85
												C．${ }^{\text {c }}$	500	200	－	F－45	240	32	12	0.7	－	83
3E293	40	750	7	240	200	$\frac{6.3}{12.6}$	$\frac{2.25}{1.125}$	14.5	0.12	7	78P	C．${ }^{\text {P }}$	425	200	－	60	212	35	11	0.8	－	63
			7									B	500	200	－	－18	27／230	－	56	0.39	4．8K	76
						6.3	3.5					C．T．O	750	300	－	－70	120	15	4	0.25	－	63
HY1269	40	750	5	300	6	12.6	1.75	16	0.25	7.5	Fig． 65	$\mathrm{C}^{\cdot} \cdot{ }^{\text {A }}{ }^{\text {d }}$	600	250	－	$1-70$ -35	100 200	12.5	5	0.5	－	42 80

	Maximum Ratings					Cathade		Capacitances			Base	Typical Operation										
Type		$\begin{array}{r} \text { 品 } \\ \text { 曹 } \\ \frac{0}{0} \\ \hline \end{array}$				$\stackrel{ \pm}{⿳ 亠 丷 厂 彡 口}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{8} \\ & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	$\begin{gathered} C_{1 n} \\ \mu \mu \mathrm{f} . \end{gathered}$	$\begin{gathered} C_{s p} \\ \mu \mu f . \end{gathered}$	Cout $\mu \mu \mathrm{f}$ ．			$\begin{array}{r} 8 \\ \frac{80}{8} \\ \frac{0}{2} \end{array}$				$\begin{gathered} \frac{8}{2} \\ \frac{0}{2} \\ \frac{0}{2} \\ \hline \end{gathered}$		$\begin{array}{r} \sum_{0}^{\circ} \\ 0.5 \\ 0.5 \\ 5 \\ \hline \end{array}$			
$\begin{aligned} & 83 / \\ & : 9909 \end{aligned}$	45	1000	7	300	60	12.6	135	225	0.1	11	Fiy． 5	CTO	1000	250	0	－120	177	28	5	065	－	132
	50		6									C．P	1000	250	0	－125	200	16	8.5	14	－	150
	45		7									B	1000	250	0	－34	52／268	10／56	848	0.677	8．8K	194
													2000	375	－	［－300］	90	20	10	4	－	140
24	45	2000	10	400	125	6.3	3	6.5	0.2	2.4	Fig． 75	C．TO	T500	375	二	$[-300]$	90	22	10	4	－	105
												C．T	2000	450	30	－145	110	2	1	0.15 ！	－	166
－57	50	3000	25	500	200	5	5	7.29	0.05	3.13	8ig． 33	C．P	2000	450	30	－145	88	2	1.5	02	－	135
												C．T	1500	300	45	－100	100	35	7	195	－	110
4	50	1500	15	300	15	7.5	3	16	0.01	14.5	Fig． 61	C．P	1250	250	50	－90，	75	20	6	0.75	－	65
22	50	750	14	350	60	12.6	1.6	28	0.27	13	Fig． 26	C．T	750	300	－	－100．	240	26	12	1.5	－	135
						25.2	0.8						600	300	－	-100	215	30	10	1.25	－	100
						6.3	3.75				Fig． 27	C．P	600	－	－	－100	220	28	10	1.25	－	100
32													550	－	－	－100	175	17	6	0.6	－	70
												$\mathrm{AB}_{2}{ }^{\text {b }}$	600	250	－	－25 1	100／365	26^{7}	70^{*}	045	3 K	125
												$C \cdot T$	1500	300	－	－90	150	24	10	15	－	160
4	65	1500	10	300	30	10	3.25	13.5	0.1	13.5	Fig． 64	C－P	1250	300	－	-150	145	20	10	3.2	－	130
55A ${ }^{13}$	65		10		150	6	3.5	8	0.08	2.1	Fig． 25	C．T．O	1500	2501	－	－85	150	40	18	3.2	－	165
		3000		400									3000	250	－	$-100\rfloor$	115	22	10	1.7	－	280
												C P	1500	250	－	-125 ｜	120	40	16	3.5	－	140
		2500		400									2500	250	－	－135i	110	25	12	2.6	－	230
		3000		600								$\mathrm{AB}_{2}{ }^{\text {d }}$	1800	250	－	-50 ！	50／250	30^{7}	1808	2.67	20K	270
27／												C T	2000	500	63	-200 j	150	11	6	14	－	230
01	75	4000	30	750	75	5	7.5	12	0.06	6.5	78M	C P	1830	400	63	－130	135	11	8	17	－	178
257					75							C T	2000	500	60	－200	150	11	6	1.4	－	230
257B	75	4000	25	750	120	5	7.5	138	0.04	67	78M	C．P	1800	400	60	－130	135	11	8	1.7	－	178
． 6549	75	2000	10	600	175	6	3.5	7.5	0.09	3.4	Fig． 14	C．${ }^{\text {P }}$	2000	420	70	－125	150	12	5	08	－	270
												C．P	2000	600	70	－ 140	125	15	4	07	－	200
												$A^{\text {B }}{ }^{\text {b }}$	2000	400	70	－85	30／225	01／10	180°	0.051	19 K	325
8	80	2000	23	750	30	10	3.25	13.5	0.05	145	5.	$C \cdot T$	$1500 \mid$	400	75	-100	180	28	12	2.2	－	200
												C－P	1250	400	75	－ 140	160	28	12	2.7	－	150
												$A B_{1}{ }^{\text {d }}$	2000	750	60	－ 1201	$50 / 270$	2／60	240	0	18．5K	385
$\begin{aligned} & 16^{9} \\ & 84 \end{aligned}$	115	1000	45	300	400			14	0.085	0.015	Fig． 77	C．T．O	900	300	－	－30｜	170	1	10	3	－	80
	75	800	3			63	2.1					C．P	700	250	－	－50］	130	10	10	3	－	45
												$A B i^{\circ}$	850	300	－	－13	80／200	$0 / 20$	$30 \cdot$	0	7 K	80
	115	1000	4.5			26.5	0.52					$A B_{2}{ }^{\text {d }}$	850	300	－	－15	85／355	0／25	46°	03	396 K	140
313	125		20		30	10	5	16.3	0.25	14	5BA		1250	300	0	－75．	180	35	12	17	－	170
		2500		400								C．TO	2250	400	0	－155	220	40	15	4	－	375
													1250	300	0	－160，	150	35	13	2.9	－	140
		2000		400								C．P	2000	350	0	－175	200	40	16	43	－	300
		2500		800								$A^{3}{ }^{\text {d }}$	2000	750	0	－90	40／315	15／58	2308	017	16 K	455
													2500	750	0	－95	35／360	$12 / 55$	2358	0357	17 K	650
$\begin{aligned} & 1251^{3} \\ & 21 \\ & 55 \end{aligned}$	125		20		120	5	6.5	10.8	0.05	3.1	5BK		2000	350	－	－ 1001	200	50	12	28	－	275
		3000		400								C．TO	3000	350	－－	－150t	167	30	9	2.5	－	375
													2000	350	－	－2201	－150	33	10	38	－	225
		2500		400								C．P	2500	350	－	－210！	152	30	9	33	－	300
		3000		400								$A B^{6}{ }^{6}$	2500	350	－	－431	93／260	0／6	1788	107	22k	400
				600								$A B_{1}{ }^{\text {d }}$	2500	600	－	－961	＋50／232	0．3／85	192^{8}	0	20.3 K	330
27A／	125	4000	20	750	75	5	7.5	10.5	0.08	4.7	7BM	C．T	3000	500	60	－200	167	5	6	16	－	375
125B	125	4000	2	750	75	5	7.5	10.5	0.08	4.7	7 m	CT	1000	750	0	－ 170	180	21	3	06	－	$1: 5$
			30	600			5	17.5	015	29	51	C．T	2000	500	40	－90，	160	45	12	2	－	210
3	125	2000	30	600	20	10	5	17.5	0.15	29	5	C．P	1600	400	100	－80	150	45	25	5	－	155
$\begin{aligned} & 150 \mathrm{~A} \\ & 150 G^{15} \end{aligned}$	$150{ }^{\circ}$	1250	12	300	500	6	2.6	15.5	0.03	4.5	Fig． 75	C．TO	1250	250	－	-90	200	20	10	08	－	195
		1000		300								C－P	1000	250	－	－105	200	20	1.5	2	－	140
		1250		400			625	27	0035	4.5	－	$A B_{2}{ }^{\text {b }}$	1250	300	－	－44	475	0／65	100	0.15	5.6 K	425
$\begin{aligned} & 250 A^{13} \\ & 122 \\ & 56 \end{aligned}$	$250{ }^{\circ}$		35	600	110	5	14.5	12.7	0.12	4.5	58K	C．T．O	2500	500	－	－150］	300	60	9	1.7	－	575
		4000										C．TO	3000	500	－	－180］	345	60	10	2.6	－	800
												C．P	2500	400	－	－200	200	30	9	2.2	－	375
		3200										CP	3000	400	－	－310｜	225	30	9	3.2	－	510
												$A B^{3}{ }^{6}$	2000	300	－	－48	5107	$0 / 26$	1988	5.9	8K	650
		4000										$A B 1^{\circ}$	2500	600	－	－ 110	4307	0．3／13	1808	0	114 K	625
：250B	$250{ }^{\circ}$	2000	12	300	175	6	2.1	18.5	0.04	4.7	Fig． 75	C．＇TO	2000	250	－	－90	250	25	27	28	－	410
		1500		300								C．P	1500	250	－	－100．	200	25	17	21	－	250
		2000		400								$A B,{ }^{\circ}$	2000	350	－	－ 50	500^{7}	307	100^{3}	0	8.26 K	650
$\begin{aligned} & 134 / /^{\circ} \\ & : 150 A \\ & 135 / 13 \\ & : 150 \mathrm{D} \end{aligned}$	250	2000	12	300	150	6	26	16	0.03	4.4	Fig． 75	C．T．O	2000	250	－	－88	250	24	8	2.5	－	370
	165	1600	10									C．P	1600	250	－	－118	200	23	5	3	－	230
						26.5	058					$A^{4} 8^{6}$	2000	300	－	－50	100／500	086	1069	02	8 IK	630
	250	2000	12	400		26.5	0.50					$A B 1^{\text {b }}$	2000	300	－	-50 ．	100／47C	d 0／36	1008	0	876 K	580
$\begin{aligned} & X- \\ & 100 A \end{aligned}$	$300{ }^{\circ}$	2000	12	300	500	6	275	295	0.04	4.8	－	C． 1	2000	250	－	－901	， 250	25	27	2.8	－	410
		1500		300								$C \cdot p$	1500	250	－	$=100$ ！	！ 200	25	17	21	－	250
		2000		400								$A B^{\prime}{ }^{\circ}$	2000	350	－	－ 50	＋ $500{ }^{\prime}$	$30^{\prime \prime}$	1008	0	8.26 K	－650
400A	400°	4000	34	600	110	5	145	125	012	47	5BK	C．I．C．P	． 4000	300	－	－170	270	22.5	10	10	－	720

${ }^{3}$ Forced－alr conling required．
10 Two tubes triode connected，is to G_{1} through 20Kgl．Input to
12 Typical operation at 175 Mc ．
is Linear－amplitler tubeoperation datat for single sideband in（＇hapter 12，＇rable 12－1．
$14 \mathrm{~K} \%$ TO CLASS－OF－SERV゙1CE ABIBREVI－ ATIUNS
$A B_{1}=$ Class－Alst pusti－pull a．f．modulator． $A B_{2}=$ Al32 push－phill it．f．mosiniator．
$13=$（lass－13 push－pull a f．modulator．
$\cdot \mathrm{M}=$ Frequency mutipler．
$C \cdot l^{\prime}=\left({ }^{\prime}\right.$ lass－（＊plate－modulated telephone．
（•＂）＝（＂lass－${ }^{\prime}$ telegrapl）．

15 No Class 1$\}$ data arailable．

Type ${ }^{6}$	Heoter		Bose	Anode No. 2 Voltoge	Anode No. 1 Volsoge	Anode No. 3 Voltoge	Cul-off Grid Voltage ${ }^{2}$	Deflection Avg. Volis DC/Inch	
	Volts	Amp.						Di D_{2}	$\mathrm{D}_{3} \mathrm{D}$ 4
IDP1-4-7-11	63	0215	9 Cu	600	150	-	-100	280	280
1EP1-2-11	63	06	11 V	1000	100/300	-	$-14-42$	210310	240350
2API-11	63	06	118	1000	250	-	-30,-90	230	196
2APIA			111						
28P1-11	63	06	12 E	2000	300560	-	-135	270	174
3ACP1-7-11	6.3	06	14J	2000	545	4000	-45-75	18220	133,163
3AP1-4-906-P1-4-5-11	25	21	TAN	1500	430	-	$-25 /-75$	114	109
3APIA			TCE						
3BP1-4.11	63	06	14A	2000	575	-	-30-90	200	148
3BP1A			14G						
3 CP 1	6.3	06	11 C	2000	575	-	$-30-90$	124	165
3DP1	63	0.6	14C	2000	575	-	$-30-90$	220	148
3DP1A-3DP7			14H						
3EP1-1806-P1	6.3	0.6	IIN	2000	575	-	$-30-90$	221	165
3 3FP7	6.3	06	148	2000	575	4000	$-30,-90$	250	180
3FP7A			14J						
3GP1-4-5-11	8.3	0.6	IIA	1500	350	-	$-25-75$	120	105
3GPIA-3GP4A	6.3	0.6	IIN	1500	245.437	-	-25-75	96,144	84,126
3JP 1-2-4-7-11-12	6.3	0.6	14J	2000	400690	4000	-30-90	170,230	125, 270
3JP1A-7A-11A	6.3	0.6	14J	2000	400690	4000	$-45-75$	180,220	133,163
3KP1-4-11	6.3	0.6	11M	2000	$320 / 600$	-	-0-90	100136	76, 104
$3 \mathrm{MPI}{ }^{3}$	6.3	0.6	12F	2000	400700	-	-126	230290	220,280
30P1	8.3	0.6	90	1200	240480	-	-31-74	214290	133,181
3RPI-4-3RP1A	6.3	0.6	12 E	2000	330620	-	-135	146198	104,140
35P1-4-7	6.3	0.6	12E	2000	330620	-	-28-135	148198	104,140
3UPI	6.3	0.6	12F	2000	320620	-	$3^{3}-126$	240310	232,296
3WP1-2-11	6.3	0.6	121	2000	330820		$-60-100$	83, 101	5770
SABP1-7-11	6.3	0.6	14J	2000	400690	4000	-52, - 87	26,34	18,24
5ADP1-7-11	6.3	0.6	14J	1500	300515	3000	- $34 .-56$	4050	305,37.5
SAJP1	8.3	0.6	Fig. 78	500	400900	6000	-30/-60	230	230
SAMP1	6.3	0.6	140	2500	$\bigcirc 300$	-	$-34-56$	40, 50	20,25
5AP1-1805-P1	6.3	0.6	11 A	1500	430	-	$-31,-57$	93	90
5AP4-1805-P4	6.3	0.6	11A	1500	430	-	- 17.5 , -57	93	90
SAQPI	6.3	0.6	14 G	2500	0,300	-	$-34,-56$	40,50	31.5,38.5
SATP1-2-7-11	6.3	0.6	14V	6000	0,700	-	$-34,-56$	94, 116	34,42
5BP1-1802-P1-2-4-5-11	6.3	0.6	11A	2000	425	-	$-20^{\prime}-60$	84	76
$5 \mathrm{SP1A}$	6.3	06	IN	2000	450	-	$-20 /-60$	84	76
5BP7A	6.3	0.6	IIN	2000	375,560	-	-20/-60	7098	63,89
5CP1-2-4-5-7-1)	63	0.6	148	2000	575	4000	$-30 /-90$	92	78
SCP1A			14J						
5CP18-28-78-118	6.3	0.6	14J	2000	400690	4000	$-45-75$	83101	7086
5 CP7A-11A-12	6.3	0.6	14J	2000	575	4000	$-30 \%-90$	92	74
5 SPI	6.3	0.6	11A	2000	425	-	$-24-56$	36	72
SHPI-4	6.3	0.6	11A	2000	425	-	-20-60	848	77
5 SPPIA	63	0.6	IIN	2000	450	-	$-20 /-60$	84	76
5JP1-2-4-5-11	6.3	0.6	11E	2000	520	4000	$-45 i-105$	96	96
SJPIA-4A	63	0.6	115	2000	333630	4000	-45-105	77115	77115
SLP1-2-4-5-11	6.3	0.6	115	2000	500	-	$-30,-90$	103	90
5LP1A-4A	63	0.6	117	2000	376833	4000	$-301-90$	$83 \quad 124$	72108
$5 \mathrm{MP1.4-5-11}$	25	2.1	7 AN	1500	375	-	$-15-45$	66	60
5NP1-4	6.3	0.6	11A	2000	450	-	- $20-60$	84	76
SRP1-2-4.7-11	6.3	0.6	14F	2000	528	20000	$-30 /-90$	140210	131/197
5RPIA-4A	6.3	0.6	14P	2000	362695	20000	$-30 \cdot-90$	140/210	131,197
5SP1-4	6.3	06	14K	2000	363695	4000	$-30 /-90$	74110	62,94
SUP1-7-11	6.3	08	12E	2000	340360	-	-90	$56^{\prime} 77$	4662
5VP7	6.3	0.6	11N	2000	315562	-	$-20^{\prime}-60$	7098	6389
5XP 1	6.3	0.8	14P	2000	362895	20000	$-30 /-90$	140/210	4668
5XP1A-2A-11A	6.3	0.6	14P	2000	362695	12000	$-45^{\prime}-75$	130/159	4252
5 YPP	6.3	0.6	140	2000	5411040	6000	$-45^{\prime}-135$	108162	36, 54
7EP4	6.3	0.6	IIN	3000	546858	-	$-43-100$	106158	91,137
$7 \mathrm{GP4}{ }^{3}$	6.3	06	14G	3000	810,1200	-	$-36 /-84$	$93^{\prime} 123$	75102
7JP1-P4-P7	6.3	0.6	14R	6000	18202400	-	$-72-168$	188/246	150/204
7VPI	6.3	0.6	14R	3000	8001200	-	-84	$93 / 123$	75/102
24XH	6.3	0.8	Fig. 1	600	120	-	-60	0145	0.16^{3}
902-A	6.3	0.6	8CD	600	150	-	$-30 /-90$	139	117
905	2.5	2.1	58P	2000	450	-	-17.5/-525	115	97
905-A			5BR						
907			58P						
908-A	2.5	2.1	7CE	1500	430	-	-25-75	114	109
912	2.5	2.1	912	15000	3000	*2 Grid 250	$-30-90$	915	750
913	6.3	0.6	913	500	1000	-	$-20-60$	299	221
2001	6.3	0.6	4AA	500	1000	-	$-20-60$	299	221
2002	6.3	0.6	Fig. 1	800	120	-	-	0165	0.175
2005	2.5	0.6	Fig. 1 .	2000	1000	200	-35	$0{ }^{3}$	$0.56{ }^{3}$
1 Bagey value for focus. Volroge should be adjustable obout value shown. 2 Bras for visual extinction ol undeflected spot. Voltage should be adjustable from 0 to the higher value shown. a Discontinued. - Cothode connected to Pin 7. 5 In mm . /roit d.c. - Phosphor characteristics (see next column).									

No.	Type	Maximum Rating:				Characteristics			Typical Operatian Common Emitter Circuit					
			Collector		Emitter	Noise Figure Db.	Input Res. Ohms	Frea. Cutoff Me.	Use	Callector		Power Gain Db.	Oulput Lood R. Ohms	Power Output Mw.
		Diss. Mw.	Mo.	Volts	Ma.					Mo ,	Volts			
2 N 34	P7.p	50	- 10	-26	10	18	1000	0.6	Audió	-10	-6	40	30K	125
2N35	- PT	50	10	$2{ }^{2}$	-10	16	1000	08	Audio?	10	6	40	30K	125
2N43	P-P	14.5	- 50	- 44	40	6	-	13	Audio	-10	-5	39	-	-
2N44	Prup	155	- 50	-45	50	6	-	10	Aucto	-10	-5	43	-	-
2N45	FNP	150	-50	-45	50	-	-	10	Audio	-10	-5	30	-	-
2N63	PNP	125	-20	-25	-	16	1000	. 06	Audro	-10	-6	38	30K	-
2N64	PNP	125	-20	-25	-	16	1000	08	Audio	-10	-6	39	30 K	-
2N68	PN. P	2500	- 1500	-25	1500	-	-	04	Audio	-150	-12	23	100	600
2N78	NPN	75	20	15	-20	12	-	60	1F. R $^{\text {F }}$.	-	-	30	-	-
2N94A	NPN	50	50	20	-	15	-	60	1F.RF	05	6	25	100K	-
2 N 104	PNP		- 50	-30	50	12		07	Audio	-10	-15	32	-	-
2NIOS	PNP	35	-15	-25	15	4.5	2300	014	Audo	-07	-4	42	20 K	-
2 N 107	PNP	50	-10	-12	10	22	700	06	-	-10	-5	38	30 K	-
2N109	PN ${ }^{\text {P }}$	50	-35	-12	35	-	750	-	Audo ${ }^{2}$	-35	-45	30	200	75
2N111	PNP	-	-	-	-	-	-	30	1.F.RF	-10	-6	-	-	-
2N112	PNP	-	-5	-6	-	25	600	50	IF. RF.	-1.0	-6	-	25 K	-
2N113	P\P	-	-5	-10	5	-	600	100	I.F-RF.	-1.0	-6	33	25 K	-
2N114	$P \backslash P$	-	-5	- 10	-	25	600	200	R.f.	-1.0	-6	-	25 K	-
2 N 123	PNP	100	-150	-20	150	-	-	75	Switch	- 5.0	-15	-	-	-
2NI30A	PM P	130	- 10	-22	-	15	-	06	Audio	-	-	-	-	-
2 N 131	PNP		- 10	-15	.	22	-	08	Audio	-1.0	6	-	-	-
2N132A	P\P	130	-10	-12	-	2	1000	12	Audio	-1.0	-6	42	30k	-
2N133A	PNP	130	-10	-15	-	6	-	08	Audio	-	-	-	-	-
2N135	PNP	100	- 50	-20	50	-	-	45	I.F .R.F.	-1.0	-5	29	-	-
2N136	PNP	100	-50	-2	50	-	-	65	IF -R.F.	-1.0	-5	31	-	-
2 N 137	PNP	100	- 50	-10	50	-	-	100	I.F.R F.	-1.0	-5	33	-	-
2N139	PNP	35	-15	-16	15	45	500	-	1.F.	-1.0	-9	30	30 K	-
2N140	PNP	35	-15	-16	15	-	700	70	IF-R F.	-0.4	-9	27	75 K	-
2N141	PNP	1500	-800	-30	-	-	100	04	Audio	-75	-24	26	400	600
2N143	PNP	1000	-800	-30	-	-	100	04	Audio	-75	-24	26	400	600
2N155	PN ${ }^{\text {P }}$	8500	-3000	-30	-	-	20	0.3	Audio ${ }^{2}$	-360	-14	30	-	93
2N156	PNP	8500	-3000	-30	-	-	20	03	Audio ${ }^{\text {a }}$	-360	-14	33	-	93
2N167	NF'V	65	75	30	二	-	-	80	IF.-R F .	-	-	-	-	-
2N168A	NPN	t5	20	15	-20	-	350	80	IF.RF.	1.0	5	30	15 K	-
2N169A	NPN	55	20	25	-20	-	500	50	1.F.-R.F.	1.0	5	27	15K	-
2N170	NP\	25	20	6	-20	-	800	40	I.F.	-	-	22	15K	-
2N175	PNo	20	-2	-10	2	6	3570	-	Audio	-0.5	-4	43	-	-
2N180	P'P	150	-25	-30	-			0.7	Audio?	-	-	37	-	300
2N186	PNP	75	- 200	-25	-	-	1200	08	Audio ${ }^{2}$	-	-12	28	-	300
2N186A	PNP	180	-200	-25	-	-	-	08	Audio ${ }^{\text {a }}$	-	-12	30	1 -	750
2N187	PMP	75	-20	-25	-	-	2000	1.0	Audio ${ }^{\text {a }}$	-	-12	30	-	300
2N187A	PNP	180	- 200	-25	-	-	2000	10	Audio ${ }^{2}$	-	-12	32	1 -	750
2N188	PNP	75	-200	-25	-	-	2600	1.2	Audio ${ }^{\text {a }}$	-	-12	32	-	300
2N188A	PNP	180	-200	-25	-	-	2600	1.2	Audio ${ }^{2}$	-	-12	34	-	750
2N189	PMP	75	- 50	-25	-	15	1000	08	Audio	-	-12	37	-	-
2N190	PNP	75	- 50	-25	-	15	1400	10	Audio	-	-12	39	-	-
2N191	PNP	75	- 50	-25	-	15	1800	12	Audio	-	-12	41	-	+
2N192	PNP	75	- 50	-25	-	15	2200	1.5	Audio	-	-12	43	-	-
2N193	NPN	50	50	15	-	-	-	3.0	IF.R.F.	-	-	-	-	-
2N194	NPN	50	50	15	-	15	-	4.0	I.F.-R.F.	-	-	-	-	-
2N206	PNP	75	- 50	-30	50	9	-	0.7	Audio	0.2	-3	30	-	-
2N211	Non	50	50	10	-	-	-	3.0	I.F.-R.F.	-	-	-	-	-
2N212	P.SPN	50	50	10	-	15	-	6.0	I.F. -R.F.	-	-	22	-	-
2N222	PNP	70	-10	- 12	10	24	700	-	-	-1.0	-5	36	30K	-
2N241	$P \backslash P$	100	-200	-25	-	-	4000	1.3	Audio ${ }^{2}$	--	-12	-	-	300
2N241A	Pr, P	180	-200	-25	-	-	4000	1.3	Audio ${ }^{2}$	-	-12	35	-	750
2 N247	PN, P	35	-10	- 35	10	8	-	30.0	R.f.	-1	-9	24	-	-
2 N 255	PV P ${ }^{\text {P }}$	1500	-3000	-15	-	-	-	02	Audio ${ }^{\text {a }}$	500	-6	27	-	53
2N256	PNP	1500	-3000	-30	-	-	-	02	Audio ${ }^{\text {a }}$	500	-12	27	-	10^{3}
2N270	PR.P	150	-75	-12	-75	\rightarrow	-	-	Audio ${ }^{\text {a }}$	-	-12	32	-	500
2N274	PAPP	35	-10	-35	10	8	-	30	R.F	-1.0	-9	45	-	-
2N301	PNP	7500	- 1000	-20	1000	-	-	-	Audio?	-	-14.4	30	-	123
2N301A	fr.sp	7500	- 1000	-30	1000	-	-	-	Audio ${ }^{2}$	-	-14.4	30	-	123
2N320	PNP	200	-200	-20	-	6	-	2.9	${ }^{4}$ udiaz	-	-9	29	-	100
2N384	PNP	120	- 10	-30	10	-	-	100	RF.	1.5	-12	-	-	-
AO-1	58	10	-5	-4.5	-	-	-	30	R.F.	-	-	-	-	-
CK722	PNP	-	-10	-22	10	25	850	-	-	-1	-6	39	20 K	-
CK768	PNP	-	-5	-10	-	-	-	3.5	I.F -R.F.	-1.0	-6	-	-	-
$\overline{\mathrm{CO}} \mathrm{l}$	PNP	150	-10	-40	10	33	-	05	-	-1.0	-6	30	-	-
0.70	PVP	125	-10	-15	-	-	-	0.3	Audio	-	-	30	-	-
$00^{0.71}$	PNP	125	-10	-15		-	-	0.3	Audio	-	-	40	-	-
$\overline{0672}$	PM ${ }^{\text {P }}$	167	-125	-16	-	-	-	0.35	Audio	-	-	34	-	-
58100	SB	10	-5	-45	-	-	-	30	R.F.	-0.5	-3	-	25K	-
58102	SB	20	-5	- 45	-	-	-	75	R.F.	-0.5	-3	-	-	-

PNP NPN

Could for identifing junction Iransintora. The leada arr marked C-collector, B-base and E-emitter.
table xv-GERMANIUM CRYSTAL DIODES

Catalog Section

$$
\dot{H} \dot{z} \dot{3}
$$

In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

35th EDITION 1958

INDEX OF ADVERTISERS

* CATALOG SECTION *

The Radia Amateuri Handlook

Page	Page
Advance Relays. 106	Lampkin Laboratories, Inc. 77
Allied Radio Corp. 67	Lockheed Aircraft Corp. 95
Amperex Electronic Corp.. 56, 57	
Amphenol Corp. 105	
Arrow Electronics, Inc. 91	Master Mobile Mounts, Inc. 80
Automation Electronics, Inc. 92	Measurements Corp.. 78
	Mierotran Co., Inc. 83
Barker \& Williamson, Inc. 58, 59	Millen Mfg. Co., Inc., James 10-18
Belden Manufacturing Co.. 72	Mosley Electronics, Inc. 66
Birtcher Carparation, The 82	Moss Electronic Distributing Co., Inc...... . 109
Bliley Electric Co. 104	
Burstein-Applebee Co................. 89	National Co., Inc. 33-39
	Newark Electric Co.. 101
Cameradio Co., Inc. 93	
Centralab. 32	
Collins Radio Co. 27-30	Ohmite Manufacturing Co.. 19
Communications Co., Inc. 88	
Eitel-McCullough, Inc. 46, 47	Par-Metal Products Corp. 107
Eldica Electronics Div. 69	co Carp. (Lansdale Tube Div.).,.... 75
Electro-Vaice, Inc. 76	
Elmar Electronics 79	
Erie Resistor Corp. 84	Radio Shack Corp.. 71
E-Z Way Towers, Inc. 74	RCA Internationa!. 111
Ft. Orange Radio Distributing Co, Inc..... 81	
	Shurite Meters........................ 103
General Electric Co.. 65, 70	
Gonset Division . 85	Technical Materiel Corp. 62, 63
	Terminal Radia Corp. 96
Hallierafters Co., The. 3-9	Tri-Ex Tower Corp. 102
Hammarlund Mfg. Co., Inc. 87	Triplett Electrical Instr. Co... 94
Harrisan Radio Carp................... 112	
Harvey Radio Co. 54, 55	
Heath Co.. 42-45	United Transformer Co................. 26
Henry Radio Stores 73	
Hy-Gain Antenna Products Co.......... 31	
	Vibroplex Co., Inc.. 48
Illumitronic Engineering 86	
Instructagraph Co.. 68	Ward Products Co.................... 108
International Crystal Mfg. Co., Inc. 49-52	Waterman Products Co., inc. 60, 61
International Rectifier Carp......... 64	Western Gear Corporation. 90
	Wile, Eugene G....................... 110
Johnson Co., E. F.. 20-25	World Radio Labs, Inc. 53

The
New
in communications
ake born at

- In the limitless world of communications, new ideas are the real measure of leadership.

Ower the past quarter-century, Hallicrafters engincers have brought to amateurs, novices and listeners more than 100 major communications designs-over five times as many as any other manufacturer.
That is why Hallicrafters is the unchallenged leader in the design and manufacture of communicationsequipment . . . acknowledged by more than $1,000,000$ satisfied users.
the hallicrafters company

New heavyweight champion!

MODEL $S X-101$ is all amateur and as rugged as they come! It is the first complete answer to ham reception ... incorporating every essential feature nceded for today and wanted for the future.
FREQUENCY COVERAGE: Band $1-1.795$ 2.01 Mc. Band 2-3.48-4.02 Mc. Band 3-6.99-7.3। Mc. Band 4-13.98-14.415 Mc. Band 5-20.99-21.52 Mc. Band 6-26.929.8 Mc. Band 7-10 Mc. WWV

FEATURES: Complete coverage of seven ham bands- $160,80,40,20,15,11-10$ meters. Large slide rule dial. Band-in-use scales individually illuminated. Illuminated S-meter. Dual scale S-meter. S-meter zero point independent of sensitivity control. S-meter functions with AVC off. Special 10 Mc position for WWV. Dual conversion. Exclusive Hallicrafters upper-lower side band selection. Second conversion oscilhators quartz crystal controlled. Tee-notch filter. Full gear drive from tuning knob to gang condensers-absolute reliability. 40:1 tuning knob ratio. Built-in precision 100 ke evacuated marker crystal. Vernier pointer adjustment. Five steps of selectivity from 500 cycles to 5000 cycles. Precision temperature compensation plus Hallicrafters exclusive production heat cycling for lowest drift. Direct coupled series noise limiter for improved noise reduction.

Sensitivity-one microvolt or less on all bands. 52 ohm antenna input. Antenna trimmer. Relay rack panel. Heaviest chassis in the industry-. 089 cold rolled steel. Double space gang condenser. 13 tubes plus voltage regulator and rectifier. Powerline fuse.
FRONT PANEL CONTROLS: Main tuning knob with 0-100 logging dial. Pointer reset, antennat trimmer, tee-notch frequency, tee-notch depth, sensitivity, band selector, volume. selectivity, pitch (BFO), response -(upper-lower-side band and tone). AVC on'off. BFO on'off. ANL on'off. Marker on/off. Rec./standby
TUBES AND FUNCTIONS: 6CB6. R.F. am-plifier-6BY6, ist converter-12BY7A. high frequency oscillator-6BA6, 1650 kc i.f. amplifier-12AT7, dual crysial controlled 2nd conversion oscillator-6BA6, 2nd converter-6C4. Ist 50.5 kc . i.f. am-plifier-6BA6. 2nd 50.5 kc . i.f. amplifier6BJ7. detector. A.N.1.. A.V.C.-6SC7, 1st audio amplifier \& B.F.O.-6K6, audio power output-6BA6. S-meter amplifier6AU6. 100 kc . crystal oscillator-OA? voleage regulator-5Y3. rectifier.
PHYSICAL DATA: $20^{\prime \prime}$ wide, $10 \frac{1}{2} 2^{\prime \prime}$ high and $16^{\prime \prime}$ deep-Panel size $8^{3} 4^{\prime \prime} \times 19^{\prime \prime}$ weight approximately 74 lbs. (Conforms to F.C.D.A. specifications.)

Cleanest signal on the air!

MODEL HT-32 is a new complete table top, high efficiency amateur band transmitter providing S.S.B. AM or CW output on 80 , $40,20,15,11$ and 10 meter bands. This unit incorporates two new exclusive features in S.S.B. generation techniques. First, a piezo electric filter which cuts unwanted sideband 50 db . or more. Second, a newly developed bridged-tec modulator which makes the HT- 32 extremely stable.
FEATURES: New piezo clectric sidcband filter-rejection 50 db . or more. Bridged-tee sideband modulator. C.T.O. direct reading in kilocycles to less than 300 cycles from reference point. 144 watts plate input (P.E.P. two-tone). Six band output (80, 40, 20, 15, 11-10 meters). All modes of transmissionCW, AM, S.S.B. Unwanted sideband down 50 db . or more. Distortion products down 30 db . or more. Carrier suppression down 50 db . or more. Both sidebands transmitted on AM. Precision gear driven C.T.O. Exclusive Hallicrafters patented sideband selection. Logarithmic meter for accuracy tuning and carrier level adjustment. Ideal CW keying and break-in operation. Full voice control system built in.

FRONT PANEL CONTROLS, FUNCTIONS AND CONNECTIONS: Operation-power off, standby, Mox., Cal., Vox. Audio level $0-10$. R.F. level $0-10$. Final tuning 80, 40 20, 15, 11-10 meters. Function-Upper side band, lower side band, DSB, CW. Meter compression. Calibration level 0-10. Driver tuning $0-5$. Band sclector- $80,40,20,15$, 11-10 meters. High stability, gear driven V.F.O. with dial drag. Microphone connector. Key jack. Headphone monitor jack TUBES AND FUNCTIONS: 2-6146 Power output amplifier. 6CB6 Variable frequency oscillator. 12BY7 R. F. driver. 6AH6 2nd Mixer. 6AH6 3rd Mixer. 6AB4 Crystal oscillator. 12AX7 Voice control. 12AT7 Voice control. 6AL5 Voice control. 12AX7 Audio Amplificr. 12AU7 Audio amp and carrier Oscillator. 12AU7 Diode Modulator. 12AT7 Sideband selecting oscillator. 6AH6 1st Mixer. 6AH6 4.95 Mc. Amplifier. 6AU6 9.00 Mc. Amplifier. 5R4GY HV Rectifier. 5 V4G LV Rectifier. OA2 Voltage Regulator. REAR CHASSIS: Co-ax antenna connector. Line fuse. Control connector, AC power line cord.

Brand new version of
 famous S-38 series!

S-38E. Redesigned and restyled throughout -a brilliant new model of the best known. most dependable short wave set in the world!
FREQUENCY COVERAGE: Standard broadeast (540) 1650 kc) plus three shortwave bands ($1650 \mathrm{kc}-32 \mathrm{me}$.) Inter. freq. 455 kc .
FEATURES: Vernier-driven slide rule dial, easy to read; two section tuning gang with electrical bandspread: oscillator for code reception; built-in $5^{\prime \prime}$ speaker: universal output and switch for headset; phone'tip jacks.
TUBE COMPLEMENT: Four tubes plus one rectifier. 35 W 4 rectifier: 50 C 5 audio output; 12AU6 amplifier: 12BA6 IF amplifier and B.F.O.; 12BE6 converter.
POWER SUPPLY: I watt power output. $105 / 125$ volts. $50-60$ cycle $\mathrm{AC} / \mathrm{DC}$: line cord (S7D 1566) available for 220 -volt AC/DC.
PHYSICAL DATA: Gray steel cabinet. silver trim. Size: $127 / 8^{\prime \prime} \times 7$ " $99^{1 / 4}$ ". Shipping weight: approx. 14 lb .

The New Ideas in communications are

The thrill of emergency radio!

MODEL S-94 AND S-95

FREQUENCY COVERAGE: S-94: 30-50 mc-S-95: 152-173 mc.
FEATURES: Super sensitive, greatly increased audio power output plus adjustable built-in relay squelch system. Low noise grounded grid r-f amplifier, separate high gain d.c. amplifier for squelch system, wide impedance range antenna input system for excellent performance with any antenna. Low oscillator radiation, greater frequency stability, sensitivity under $1 / 1 / 2$ micro-volts, 2 i-f stages and built-in 5" PM speaker. Phone tip jacks and terminals for single or twin lead antenna, switch for speaker/ headphones on rear. External antenna provided.
CONTROLS: Tuning with special logging scale assuring accuracy in logging or relo-
cating stations. On-off/volume, squelch/off. INTERMEDIATE FREQUENCY: 10.7 mc .
TUBE COMPLEMENT: Eight tubes plus one rectifier; 6AB4, Grounded grid low noise r-f amplifier-12AT7, High frequency oscil-lator/mixer-(2) 12BA6, Ist and 2nd i-f am-plifier-12AL5, Ratio detector-6BH6, Audio amplifier-50L6GT, Audio output-12AU7, Squelch-Selenium rectifier.
AUDIO POWER OUTPUT: 1.5 watts maximum.
POWER SUPPLY: 105/125 V., 50/60 cycle AC/DC. Mobile operation possible with external power converter.
PHYSICAL DATA: Gray steel cabinet with silver trim panel and red pointer. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 71 / 4^{\prime \prime}$ deep. Shipping weight approximately 13 lbs .

converter-6SK7, 1st i-f amplifier-6SK7, 2nd i-f amplifier-6SC7, BFO and audio amplifier- 6 K 6 GT , a adio output- -6 H 6 , ANL, AVC, and detector-5Y3GT, Rectificr. S-86 substitutes 25L6 for 6K6 and $25 Z 6$ for 5 Y 3 and add ballast.
EXTERNAL CONNECTIONS: Terminals for single or doublet antenna on rear. External antenna provided. Headphone jack on front.
AUDIO POWER OUTPUT: 2 walls.
POWER SUPPLY: Model S-85: 105/125 V., $50 / 60$ cycle AC. Model S-86: 105-125 V., AC/DC.
PHYSICAL DATA: Gray-black steel cabinet with brushed chrome trim and red pointers, Piano hinge top. Size $18^{1} 2^{\prime \prime}$ wide $\times 8^{7} 8^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep. Shipping weight approximately 32 lbs.

New swifch on emergency band receivers!

MODELS SX-104 AND SX-105 supplement the Civil-Pat rol Models S-94 and S-95. Model SX- 104 covers 25 to 50 megacycles. Model SX-105 covers 152 to 173 megacycles. In addition, they provide quartz crystal control. Both receivers have an AC transformer.
FEATURES: Both tunable and crystal controlled. 6 db greater sensitivity than S-94 or S-95. Slide-rule dial with service assignments. Dual-edge lighted dial. Headphone connections provided. Low-drifi tunable, no Arift crystal. Built-in adjustable squelch. Greater audio power output. Headphone output with speaker disabling. Nine tubes plus rectifier.
TUBES AND FUNCTIONS: 6AB4 grounded grid r.f. stage. 12AT7 tunable oscillator and converter. 2-6AB6 i.f. amplitiers. 6AL5 ration detector. 6BH6 ist audio amplifier. 12AU7 squelch amplifier. 6BH6 quariz crystal oscillator. 6 K 6 power output amplifier. 5 Y 3 rectifier.
QUARTZ CRYSTAL: Type CR-23 third overtone. Unit may be used without crystal as a tunable receiver. Crystal not supplied. FRONT PANEL CONTROLS: Tuning Function switch-tunable crystal. Squelch on/off-sensitivity. Audio volume-ACon/off.
PHYSICAL DATA: Size: $12^{7} 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 7^{3}$ " Hinged top for easy insertion of crystal. Speaker in top. Shipping weight: Approximately 18:2 lbs .

Everyathing for the DX enthusiast?

MODEL SX-99

FREQUENCY COVERAGE: Broadcast Band 540-1680 kc plus three short-wave bands cuvers $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Over 1000° of calibiated electrical bandspread over the $10,11,15,20$, 40 and 80 meter amateur bands. Separate bandspread tuning condenser, crystal filter, antenna trimmer, " S " Meter, one r-f, two i-f stages.
INTERMEDIATE FREQUENCY: 455 kc .
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has 0.100 log. ging scale.
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms.
TUBE COMPLEMENT: Seven tubes plus one rectifier: 65G7, r-f amplifier-65A7, Con-verter-6SG7, Ist i-i amplifict-6SK7, 2nd i-f amplifier-6SC7, BFO and audio ampli-fier-6K6GT, Audio output-6H6, ANL. AVC-detector-6Y3GT, rectifier.
AUDIO POWER OUTPUT: 2 watts.
POWER SUPPLY: 105/125 V. 50/60 cycle AC. PHYSICAL DATA: Gray black steel cabinet with brushed chrome trim and piano hinge top. Size $181_{2}^{\prime \prime}$ wide $\times 8^{12^{\prime \prime}}$ high $\times 11^{\prime \prime}$ deep. Shipping weight approximately $321 / 2 \mathrm{lbs}$.

Incomparable value!

MODEL SX-100

FREQUENCY COVERAGE: $540 \mathrm{kc}-34$ Mc. Band 1: $538 \mathrm{kc}-1580 \mathrm{kc}-$-Band 2: 1720 $\mathrm{kc}-4.9 \mathrm{Mc}-$ Band 3: 4.6 Mc-13 Mc-Band 4 $12 \mathrm{Mc}-34 \mathrm{Mc}$. Bandspread dial is calibrated for the $80,40,20,15$ and $11-10$ meter amateur bands.
TYPE OF SIGNALS: AM-CW-SSB.
FEA TURES: Selectable side band operation.
"Tee-Notch" Filter-provides a stable nonregenerative system for the rejection of unwanted heterodyne. Also produces an effective steepening of the already excellent 500 Cycles i-f pass band and further increases the effectiveness of the advanced exalted carrier type reception. Notch depth control for maximum null adjustment. Antenna trimmer. Plug-in laboratory type evacuated 100 kc quartz crystal calibrator-included in price. Logging dials for both tuning controls. Full precision gear drive dial system. Second conversion oscillator crystal con-trolled-provides greater stability and additional temperature compensation of high
frequency oscillator circuits. Phono jack. Socket for D.C. and remote control.
INTERMEDIATE FREQUENCY: 1650 kc and 50 kc .
AUDIO OUTPUT IMPEDANCE: 3.2/500 ohms: AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion. POWER SUPPLY: $105 / 125$ V., $50 / 60$ cycle AC.
TUBE COMPLEMENT: 6CB6 R.F. amplifier; 6AU6, 1st converter; 6C4, H. F. oscillator; 6BA6, 2nd converter; 12AT7, Dual crystal second converters; (2) 6BA6, 50 kc and 1650 kc i-f amplifiers; 6BJ7, AVCnoise limiter; 6SC7, Ist audio and BFO; 6 K 6 , Power output; 5 Y3; Rectifier; OA2, Voltage regulator; 6C4, i-f amplifier-(50 kc); 6AU6, 100 kc XTAL marker.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $18^{3} 8^{\prime \prime}$ wide $\times 8 \frac{1}{2}{ }^{\prime \prime}$ high x $105 / \mathrm{g}^{\prime \prime}$ deep. Shipping weight approximately 42 lbs.

MODEL R-47. Brand new, and especially designed for superior SSB and other voice applications. This compact. handsomely styled speaker has essentially flat response from 300 to 28.50 c.p.s.. drops off rapidly in output beyond cut off points. Perfect match for SX-99, SX-100 and SX-101 receivers. Input impedance: 3.2 ohms. Dimensions: $5 \frac{1}{2}$ "x $514^{\prime \prime} \times 31 / 2^{\prime \prime}$-ideal for mobile installations, too. Shipping weight: approximately $21 / 2 \mathrm{lb}$

MODEL S-53A. Standard Broadcast from $540-1630 \mathrm{kc}$ plus 4 short wave bands over 2.5-31 and 48-54.5 mc. Intermediate frequency: 455 kc . Scparate electrical bandspread with $0-100$ logging scale plus mc . calibration for $48-54.5 \mathrm{mc}$ band. Sensitivity control, noise limiter, two-position tone switch. Separate 2 -section tuning capacitor assemblies for main tuning and bandspread tuning. Slide rule dial. Phonograph jack, headphone tip jacks. Five inch PM speaker. Seven tubes plus one rectifier: 6C4, Osc.-6BAG, Mixer - (2) 6BA6, i-f amplifier-6 6 H 6 , Det., AVC and ANL-6SC7, BFO and AF amp. 6 K6GT, Output-5Y3GT, rectifier. Audio power output, one watt. Power Supply, 105/125 V., 50/60 cycle AC. Sturdy satin black steel cabinet with brushed chrome trim. Piano hinge top. Size $1278^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 73 / /^{\prime \prime}$ deep. Shipping weight approximately $181 / 2 \mathrm{lbs}$.

MODEL S-53A

MODEL R-46B. Precision-built communications speaker. This $10^{\prime \prime} \mathrm{PM}$ speaker is the matching unit for any Hallicrafters or other receiver having a 3.2 ohm output. Featuring an 80 to 5000 cycle range and 3.2 ohm speaker voice coil impedance. Gray black stee! cabinet measuring $15^{\prime \prime}$ wide $\times 10^{7} s^{\prime \prime}$ high $x \quad 10^{7} x^{\prime \prime}$ deep. Shipping weight approximately 15 lbs .

hallicirafters

Company

4401 W. Fifth Ave., Chicago 24, Ill.

JAME S \mathbb{E} MILIEN M ALDEN M M ASSSACHUSEETYS

INSTRUMENTATION OSCILLOSCOPE

Miniafurized, packoged panel maunting cathode ray ascillascope designed for use in instrumentatian in place of the conventianal "painter type moving cail meters uses the $1^{\prime \prime}$ fube. Ponel bezel matches in size and type the stondard $2^{\prime \prime}$ square meters. Magnitude, phase displacement, wave shope, etc. ore canstontly visible an scape screen. No. 90901 , 1CPI, less tube
No. $90911,1 E P I$, less tube

POWER SUPPLY FOR OSCILLOSCOPE

750 valts d.c. at 3 mo . and 6.3 valis o.e. of 600 mo. 117 volis $50-60$ cycle input. Designed especially far use with No. 90901 and No. 90911 ane inch instrumentation oscilloscopes. 5 in . high $\times 2^{13 / 32} \times$ 2 in . Octol plug far input ond output. Entire assembly including rectifier is encopsulated.
Na .90202 Pawer Supply (complete)

GRID DIP METER

The No. 90651 MIILEN GRID DIP METER is compoct and campletely self canained. The $A C$ power supply is of the "transformer" type. The drum dial hos seven calibroted unifarm length scales fram 1.7 MC to 300 MC with generous aver lops plus on arbitrary scale for use with special application inductars. Internal terminal strip permits battery aperation far antenno measurement.
No. 90651 , with tube
Additional Inductars for Lower Frequencies No. 46702-925 to 2000 KC No. $46703-50 \mathrm{a}$ to 1050 KC No. 46704-325 10 600 KC No. 46705-220 to 350 KC

LABORATORY SYNCHROSCOPES

The $5^{\prime \prime}$ laboratory synchrascopes are available with and without detector-video striDs.
Model P.4-2, with fubes.
Model P-4E-2, with tubes.

MINIATURE SYNCHROSCOPE

The compoct design of the No. 90952, measuring only $71_{2 \prime \prime}^{\prime \prime} \times 55 / 3^{\prime \prime} \times 13^{\prime \prime}$, and weighing only 17 lbs., makes ovailoble for the first time o truly OESIGHED FOR APPLICATION "field service" Synchroscope
No. 90957 with pulees. .

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and Na. 90905 Rock Ponel Oscilloscopes, for two, three and five inch pubes respectively are inexpelisite bosic units comprising power supply, brilliancy ond centering controls, safety feotures, mognetic shielding, swithes, etc. As a tronsmitter monitar, no odditional aquipment or ascessciles are requited, The well-known tropezoidal manitoring patterns are secured by feeding modulated corrier voltoge from o pickup loop directly to vertical plates of the cathode ray tube and audio modulating voltage to horizontal plates. By the oddimion of such units as sweeps, pulse generofors, amplifiers, servo sweeps, ets., oll of which con be conveniently and neatly constructed on componian rack punels, the original bosic 'scope unit may be exp serve any conceivable industrial ar laboratory applisotion.
No. 90902 , less fubes
No. 90903 , less tubes
No. 90905 , less lubes

'SCOPE AMPLIFIER - SWEEP UNIT

Vertical and horizantal amplifiers olong with hordtube, saw taath sweep generator, Complete with power supply mounted on a standard $51 / 4^{\prime \prime}$ rock panel.
No. 90921 , with lubes

FLAT FACE OSCILLOSCOPE

90905-B 5-inch Rack Mounting Bosic Oscillascope features include: balanced deflection, front panel input terminals, rear parel input terminats, ostigmoism control, blanking input terminals, flat foce precision tolerance Dumont 5ADPI tube, 1800 or 2500 volts occeleroting, goad sensitivity. shorp facus, horizontal selector switch, 00 cycle sine wore sweep available, power supply availoble to operate external equipment, minimum contral interaction rugged construction, light filter. $7 \times 19 \mathrm{in}$, ponel. No. 90905-B Oscilloscape, less tubes

[^17]
JA
 M
 E
 S
 (옹
 MULEN
 M A S S A CH USETTS

STANDING WAVE RATIO BRIDGE

0711

2811

The Millen S.W.R. bridge provides eosy and inexpensive measurement of stonding waverotio on antennos using co-ox cable. As ossembled the bridge is set up for 52 ohm line. A colibrated 75 ohm resistor is mounted inside the cose for sub stitution in the circuit when 75 ohm line is used. No. 90671

BALUNS

The No. 46372 (1 for eosh omatreur hand) wound Bolun is an accurote 2 to 1 turns rutio high Q outo tronsformer with the residual re actances funed out and with very fight coupling between the two halves of the totol winding. The points of serles und porallel rasanonce are selected so that eoch Balun provides on accurate 4 to 1 impedance ratio over the entire band of frequencies for which it was designed. Suitable for use with the No. 90672 Antenno Bridge of medium power tronsmitters.
No. 46672-80/40/20/15/10.

ANTENNA BRIDGE

The Millen 90672 Antenno Bridge is on occurote ond sensitive bridge for meosuring impedonces in the ronge of 5 to 500 ohms for 20 to 2000 ohms with balun) of rodio frequencies up to 200 mc . The vorioble element is an especiolly designed differentiol voriable copacitor capable of high occurocy and permonency of colibrofion. Reodily driven by No. 90651 Grid Dipper No. 90672

50 WATT EXCITER-TRANSMITTER

 Modern design includes feolures and shielding for TVI reduction, bondswitching for 4-7-14-21-28 megocycle bonds, circuit metering. Conservatively roted for use either os otransmitter or exciter for high power PA stoges. 5763 oscillator-buffer-multiplier and 6146 power omplifier. Rock mounted. No. 90801 , less tubes.
VARIABLE FREQUENCY OSCILLATOR

The No. 90711 is o complete tronsmitter control unit with 6SK7 temperoture-compensoted, elec fron coupled oscillotor of exceptional stobility and low drift, a 8 SK 7 brood-bond buffer or frequency doubler, O SAG7 funed omplifier which trocks with the oscillofor tuning, and o reguloted power supply. Output iufficient to drive 06146 is ovoiloble on 160,80 and 40 meters and reduced output is ovoilable on 20 meters. Since the output is isoloted from the meters. Since the output is isoloted from the oscillotor by two stoges, zero frequency shift occurs when the output lood is voried from open circuit to short circuit. The entire unit is unusuolly solidly built so that no frequency shift occurs due to vibrotion. The keying is cleon and free from onnoying chirp, quick drift, iump, ond similar difficulties offen encountered in keying voristle frequency oscillafors

No. 90711 , with fubes

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltoge power supply hos o d.c. output of 700 volts, with moximum current of 235 ma. In oddition, a.c. filament powar of 6.3 volts of 4 omperes is also avotloble $s 0$ thot this power supply is on ideol unit for use with tronsmitters, such os the Millen No. 90801, os well os generol loborotory purposes. The power supply iwoNo 816 rectifiers The ponel is stondord 8% " $\times 19^{\prime \prime}$ rock mounting. No. 90281 , less tubes.

HIGH FREQUENCY RF AMPLIFIER

A physicolly smoll unit copoble of a power output of 70 so 85 wotts on "Phone or 8710110 watts on C-W on 20, 15, 11, 10, 6 or 2 meter omoteur bands. Provision is mode for quick bond shift by meons of the No. 48000 series VHF plug-in coils. The No. 90811 unit uses either on 829.B or 3 E29.
No. 90811 with 10 meter bond cails
less tube

RF POWER AMPLIFIER

This 500 woll omplifier moy be used os the bosis of o high power omoteur tronsmitter. The No 90881 RF power omplifier is wired for use with the populor "B12A" type tubes. Other popular tubes moy be used. The omplifier is of unusuolly sturdy mechonicol construction, on o $101 / 2^{\prime \prime}$ reloy rock ponel. Plug-in inductors ore furnished for operation on $10,20,40$ or 80 meter omoteur bands. The standard Millen No. 90801 exciter unit is on ideol driver for the No. 90881 RF power omplifier.
No. 90881 , with one set of coils, but
less tubes

90671

REGULATED POWER SUPPLY

A compost, uncased, regulated pawer supply, either for fable use in the laboratory or for incorporation as an integral part of larger equipment. 250 v v.d.s. unregulated of 115 ma .105 v.d.c. regulated at 35 ma. Minus 105 v.d.c. regulated bias at 4 ma 6.3 v . o.c. of 4.2 omps .

No, 90201 , with fubes

INSTRUMENT DIAL

The No, 10030 is on extremely sfurdy instrument type indicotor. Control shaft has 1 to 1 rotio. Veeder type counter is direst reoding in 99 revolutions and vernier scole permits reodings to 1 port in 100 of o single revolution. Has bulitin diol lack and $1 / 4$ drive shaft coupling. May be used with multi-revolution transmitter contrals, etc., or through gear reductian mechonism for cantrol of fractionol revolution copacitars, etc., in receivers or labarotory instruments. No. 10030

PHASE-SHIFT NETWORK

A complete and labaratary aligned pair of phase shift networks in a single campoct $2^{\circ} \times 1$ K": $\times 4^{\prime}$ cose with characteristics so os to provide a phose shift between the two networks of $90^{\circ} \pm 1,3^{\circ}$ over a frequency range of 225 cycles ta 2750 cycles. Well adapted for use in either single sidebond tronsmitter or receiver. Passible ta obtain a 40 db suppression of the unwonted sideband. The Na. 75012 precisian adiusted phose-shiff netwark eliminates the necessity of camplicoted lobaratory equipment for network adjustment No. 75012

DELAY LINES

No, 34751 -Sealed flexible distributed canstants line. Excellent rise fime. 1350 ahms, 22 inches per micrasecond or 550 ohms, 50 inches per mu.-sec. Deloy cut to specifications,
No. 34700 -Hermeticolly sealed ençased line Gaad rise time. 0-0-45 mu.-sec, 1350 ohm line or 0.22 mu.-sec. 500 ahm line in $1^{\prime \prime} \times 1^{\prime \prime} \times 5 \frac{1 / 2^{\prime \prime}}{}$ in cose. Also larger standard cases and cases made to order, Special impedonces 400 to 2200 ohms. No, 34600 -Lumped delay line built to specifico tians. Delays 0.05 mu,-iec, ta 250 miv-sec, Im pedonce 50 ohms to 2000 ohms.

PHOTO MULTIPLIER SHIELDS

MU-METAL

The photo multiplier tube aperates most effectively when perfectly shieldad. Coreful stualy has proven that mu-metal pravides superiar shielding. Millen Mu-Metol shields are available fram stack for the Mu-Metol shields a
most papular fubes.
No. 80801B for the 1 P2
No. 808018 for the 1P21
No. 80802B far the $5819,8217,6292$ 6343.

No. 80802 C for the $6199,6291,6497$
No. 80802 E for the 6866
No, 80803J for the 6363
No, 80805M for the 6364

BEZELS FOR

CATHODE RAY tubes

Stondard types are of satin finish block plastic. 5 size has neoprene support cushion and green lucite filter, $3^{\prime \prime}$ ond $2^{\prime \prime}$ sizes have integral cushianing No. 80075-5
No. 80073-3'
No. 80072-2
No. 80071-1

CATHODE RAY

TUBE SHIELDS

For mony years we have specialized in the design and manufocture of magnetic metal shields a icalai and mumetal far cathode ray fubes in our ewn complete equipinent, as well as for applico ions of a! sther frincipal complete equipmen manufacturers. Stack types as well as special designs to customers" specific otions pramptly available. No, 80045-Nicalai for 5BP1 No, 80055 -Nicalai for 5CPI
No. 80043 -Nicoloi for $3^{\prime \prime}$ tube
No, 80042 -Nicolai for 2 "fube

Shield Cases

aluminum

Effective RF shielding for cails and tronsformers can be provided by Millen Aluminum cans. Available in several sizes from stack,
No. 80003-13/8" $\times 13 / 6^{\prime \prime} \times 4^{\prime \prime}$
No. $80004-11 / "^{\prime \prime} \times 17 / 16^{\prime \prime} \times 41 / 2$
Na. $80005-2^{\prime \prime} \times 2^{\prime \prime} \times 4 \%$
$\mathrm{Na}, 80000-21 / 9^{\prime \prime}$ round $\times 4^{\prime \prime}$ No, $80007-21 / 4^{\prime \prime}$ round $\times 23 / 9^{\prime \prime}$ apen ends

JAMESMMIULEN MALDEN L M A S S A CH USET T S

DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with transmitting fubes, 866 rectifiers, etc. Long leakage path between contacts. Contacts are type proven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in standord size chossis hole. All types have barrier between contacts and cliassis. All but octal and crystal sockets also have barriers between individual cantacts in oddition.

The No. 33888 shield is for use with the 33008 octal socket. By its use, the electrostatic isalation of the grid and plate sircuils of single-ended metal tubes con be increased to secure greater stability and goin.

The 33087 tube clamp is easy to use, easy to instoll, effective in function. Available in special sizes for gll types of tubes. Single hole mounting. §pring sleel, cadimlum plated.
Cowity Sccket Cantoct Discs, 33446 ore for use with the "Lighthouse" ulira high frequency tube. This set consists of three different size unhordened beryllium copper multifinger contoct discs. Heat treating instructions forworded with eoch kit for hordening after spinning of forming to frequency requirements.

Voltage regulator dual contact bayonet socket, 33991 black phenolic insulation and 33992 with low loss high leakage mica filled phenolic insulation.

No. 33004-4 Pin Tube Socket
No. 33005-5 Pin Tube Socket
No. 33006-6 Pin Tube 5ocket
No. 3300 - 8 PIn Tube Sockep
 No. 33888-Shield for 33008
No. 33087 -Tube Clamp
No. 33002-Crystal Socket $3 / 2^{\prime \prime} \times .125^{\prime \prime}$.
No. 33102-Crystal Socket . $487^{\prime \prime} \times .095^{\prime \prime}$
No. 33202-Crystal Socket $1 / 2^{\prime \prime} \times .125^{\prime \prime}$.
No. 33302 -Crystol Socket $.487^{\prime \prime} \times .050^{\prime \prime}$
No. 33446 -Contoct Discs
No. 33991 -Socket for 991
No. 33992-Socket for 991
No. 33207-829 Socket.
No. 33305-Acorn Socket
No. 33307-Miniature Socket and Shield, ceramic.
No. 33309-Noval Socket and Shield, ce
romic
No. 33405-5 Pin Socket Eimoc.
No. 33407-Miniafure Socket only, ceramic No. 33409 -Novol Socket only, ceromis

STAND-OFF INSULATORS

Steatite insulators are available in a voriety of sizes-Listed below are some of the most populor No. 31001 -Stand-off $1 / 2^{\prime \prime} \times 1$
No. 31002 -Siand-off $1 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$
No. 31003 -Stond-off $1 / 4^{\prime \prime} \times 2^{\prime \prime}$
No. 31004-Stand-off $11^{\prime \prime} \times 312^{\prime \prime}$
No. 31006 -Stond-off ${ }^{\circ} 32^{\prime \prime} \times 7 /$
No. 31007-Stond-off $1 / /^{\prime \prime} \times 1^{\prime \prime}$.
No. 31011 -Cone $3 / 7^{\prime \prime} \times 1 / 2^{\prime \prime}$ (box of 5).
No.31012-Cone $1^{\prime \prime} \times 1^{\prime \prime}$.
No. 31013-Cone $1^{1 / 2^{\prime \prime}} \times 1$
No. 31014-Cone $2^{\prime \prime} \times 1^{\prime \prime}$
No. 31015 -Cone $3^{\prime \prime} \times 1 / 2^{\prime \prime}$

MALDEN, MASSACHUSETTS

04000 and 11000 SERIES

 TRANSMITTING CONDENSERSAnother member of the "Designed for Applicotion" series of tronsmitting varioble oir copocitors is the 04000 series with peok voltoge rotings of 3000,8000 , and 9000 volts. Right ongle drive, 1-1 rotio. Adjustoble drive shoft ongle for either verticol or sloping panels. Sturdy construction thick, round-edged, palished aluminum plotes with $13 / 4^{\prime \prime}$ rodius. Constont impedonce, heovy current, multiple finger rotor contactor of new design. Available in all normol capacities.
The 11000 series hos $16 / 1$ rotio center drive ond fixed ongle drive shoff.

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heovy chonneled oluminum end plotes. Isolonttie insulation, polished or ploin odges One piece rotor contoct spring and connection lug. Compoct, eosy to mount with connector lugs in convenient locotions. Some plote sizes os 11000 series obove.
The 18000 series luas same plote sives as 04000 series. Also hos constont impedonce, heovy current, multiple finger rotor contoctor of new design. Both 12000 and 16000 series ovoiloble in single ond double sections and mony copocifies ond plote spocing.

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS
"Designed for Applicotion," double beorings, steotite end plotes, codmium or silver ploted bross plotes. Sirgle or double section $.022^{\prime \prime}$ or .068'' oir gop. End plote size: $19 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$. Rotor plate rodius: $3 / /^{" 1}$ Shaft lock, reor shof extension, special mounting trockoif, etr, ho meet your requirements. The 28000 selifes hos sempl-circular rator plota shade. The 29000 series hos opproximotely stroight frequency line rotor plote shape. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originolly for use in our own No, 90881 Power Amplifier, the No. 15011 disc neutrolizing copocitor hos such unique feotures os rigid chonnel frome, horizontol or verticol mounting, fine threod over-size leod screw with stop to prevent shorting ond rotor lock. Heovy rounded-edged polished oluminum plotes ore $2^{\prime \prime}$ diometer. Glozed Steotite insulotion.
No. 15011 ..

PERMEABILITY TUNED CERAMIC

 FORMSIn oddition to the populor shielded plug-in permeobility funed forms, 74000 series, the 69040 series of ceramic permeobility, tuned unshielded forms are ovoiloble os stondord slock items. Winting diometers ovoiloble from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ ond winding spoce from $1 / 32$ to $1 / 2$
No. 89041-(Copper Slug).
No. 89042-(iron Core).
No. 69043-(Copper Slug).
No. 69044 -(Iron Core).
No. 69045-(Copper Slug)
No. 89048 -(Iron Core).
No. 89047-(Copper Slug).
No. 89048-(Iron Core)
No. 89051 -(Copper S!ug)
No. 69052-(Iron Core).
No. 69054 -(iron Core).
No. 69055-(Copper Slug).
No. 69056 -(iron Core).
No. 89057-CopperSlug)
No. 69058-(iron Cure)
No, 89081 -(Copper Slug).
No, 69062-(Iron Core).

MALDEN: MASSSAGAUSETTS

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Application" flexible coupling units include, in addition to impraved versions of the canventional types, als such exclusive oriainal designs as the Na. 39001 insulaled uni,ersal izint and' the No 39000 'slldeaction" coupling (in both steatio and bakelite insulation)
The Na. 39006 "slide.actian" caupling permits longitudinal shaft mation, eccentric shuft mation and out-ot-line aperation, as well as ongular arive without backlash.

The No. 39005 and 39005-B (high farque) are similar ta the Na. 37001 , but are nat insulated The steatite insulated No. 39001 has a special antibacklash pivat and sacket grip feature. All of the above illustrated units are for $1 / 4^{\prime \prime}$ shafp and are standard praduction type units. The No. 39016 incarporotes features which have lang been desirea in a flexible caupling. No Back Lash-Migher Flexi-bility-Higher Breakdawn Voltage-Smaller Diam-eter-Sharter Length-Aigher Alignment Accurocy -Higher Resislance to Mechanical Shack-Salid Insulating Barrier Diaphragm-Malded as a Single Unit.

CERAMIC PLATE OR

 GRID CAPSSoldering lug and contact one-piece. Lug ears annealed and salder dipped to focilitate each cambinatian "mechanical plus saldered" cannection of cable
No. 36001 - $9 / 6^{\prime \prime}$
No. 36002 - $3 /{ }^{2}$
Na. 36004 - $1 / 4$

SNAP LOCK PLATE CAP

For Mabile, Industrial and other applications where tighter than normal grip with multiple finger 360° low resistance cantact is required. Cantact selflocking when cap is pressed into position, Insulated snap button at top releases contact grip for easy removal without damage to lube. No. 36011 - $\%$ No.36012-1/6

SAFETY TERMINAL

Combination high valtage terminal and thru-bushing Tapered contact pin fits firmly into canical sacket providing large area, law resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire.
No. 37001, Black or Red
No. 37501 , Low lass

THRU-BUSHING

Efficient,compact, easyla use and neat appearing Fits $1 / 4^{\prime \prime}$ hale in chassis. Held in place with a drop of salder or a "nick" from a erimping tool. No. 32150

POSTS, PLATES, AND PLUGS

The No. 37200 series, ineluding both insulated and non-insulated binding posts with associated plates and plugs, provide variaus combinatians to meet most requirements. The posts have captive heads and keyed mounting.
The No. 37291 and Na. 37223 are standard in black or red with other colors on spesial order. No. 37201, No. 37202 , and No. 37204 and No. 37222 are arailatle in blask, •ed, or low lass. The Na. 37202 is also o ailuble in steatite.

No. 37201 -Single plotes, pr
No. 37291 -Single plates (iapered), pr.
No. 37202 -Dual plotes, pr
No. 37204 -Double duol plotes, pr
No. 37212-Dual plug.
No. 37222 - Nan-insuloted binding post, eo. Na. 37223 Insilated binding potte, AC.

STEATITE TERMINAL STRIPS
Terminal and lug are one piece. Lugs are Navy turrel rype and ure free floating so as not to strain steotite during wide temperature variations. Easy o mount with series of round holes for integral thassis bushings.

MINIATURITEID

DESIGNEI) for APPLICATION miniaturized components developed for use in our own equipment such as the 9090) (Oscilloscope, are now available for spparate sale. Many of these parts are similar in most details except size with their equivalents in our standard component parts group and in cerlain devices where complete ininiaturization is not paramount, a combination of standard and miniature components may possibly lie used to advantage. For convenience, "e have also listed oll this paye the extremely small sized coil forms from our standard ratalogue. Additional miniature and subminiature components are in process of design and will he announced shortly.

CODE

DESCRIPTION

A006
Matches standard knabs in style. Black plastic with bross insert. For $1 / /^{\prime \prime}$ shaff. Overall height $1 / 2^{\prime \prime}$. Diameter $1 / 4^{\prime \prime}$.
A007 Same as A018 excapt for 5/8' diameter plastic dial with 5 index lines.
AOI 2 Right angle drive. "1/" diameter shafts. Single hole mounting bushing $1 / 4^{\prime \prime}-32$ diameter.
A018 $1 / 4^{\prime \prime}$ diameter black plastic knab with brass insert far $1 / /^{\prime \prime}$ shaft. Skirt diameter $1 / /^{\prime \prime}$. Overall height $3 / 3^{\prime \prime}$. Unique design has screwdriver slat in tap.

CDMPDNENTS

CODE

A019
A061 Shaft lack for $1 / 0^{\prime \prime}$ diameter shaft. $1 / 4^{\prime \prime}-32$ bushing. Nickel plated brass.
A066 Shaft bearing far $1 / 2^{\prime \prime}$ diameter shafts, Nickel plated brass, Fits " $7 / 4$ " diameter hale,
EOO1 Steatite standaff ar tie-paint integral mounting eyelel .205 averall diameter. Bax of five.
J300-500 Iran core RF chake 500 uh.
1300-1000 Iran care RF chake 1000 uh.
1300-2500 Iran care RF chake $21 / 2 \mathrm{mh}$.
M003 Salid caupling for $1 / \mathbf{s}^{\prime \prime}$ diameter shaft. Nickel plated bross.
M006 Universal joint style flexible caupling. Spring finger, Steatite insulation. Nickel plated brass far $1 \mathbf{1}^{\prime \prime}$ diameter shafts.
M008 Insulated caupling, with nickel plated brass inserts far $1 /{ }^{\prime \prime}$ diameter shafts.
Insulated shaft extensian far maunting sub miniafure patentiameter with $1 / 0^{\prime \prime}$ diameter shafts and $1 / 4^{\prime \prime}-32$ bushing.
69043 Steatite cail tarm, Adjustable care. Tap tuned. Tapped 4-40 hale in base far mounting. Winding space $1 / 4$ diometer x $13 / p^{\prime}$ " length.
69044 Steatite cail form, Adjustable brass care. Battam tuned. Maunting by No. $10-32$ brass base. Winding space .187 diameter by /w" length,

CO..
INO

RHEOSTATS-Insure permanently smooth, clase control. All-ceromic, vitreous-enameled: $25,50,75$, $100,150,225,300,500,750$, and 1000 -walt sizes.

OHMITE RELAYS-Faur slack mad-els-DOS, DO, DOSY, and CRU, in 65 different types. At 115 VAC or 32 VDC, noninductive laad, Madels DOS and DOSY have a cantact rating of 15 amp ; Madel DO. 10 omp; Madel CRU, 5 amp. Wide range of coil aperating valtages.
LITTLE DEVIL (8)RESISTORSMolded compasition resistors each marked with resistance and watlage- $1 / 2,1$, and 2 -watt sizes, $\pm i 0 \%$ or $\pm 5 \%$ ral. 10 Ohins 10 22 megohms. Also $1 / 10$ watt sub. miniature Little Devils.

POWER RESISTORS-Wire-wound, vitreous-enameled resistors. Stack sizes: $25,50,100,160,200$ watts; values 1 to 250,000 ahms. "Brown Devil" fixed resistars in 5,10 , and 20 -watt sizes; values from 0.4 to 100,000 ohms. Adjustable pawer resistors; quickly adiustable to the value needed. Adjustable lugs can be altached for multi-top resistors and valtage dividers. Sizes 10 to 200 watts, to 100,000 ohms.
R. F. CHOKES-Single-layer-waund on low pawer foctor cares with maisture-proaf coating. Seven stock sizes, 3 to 520 mc . Two units rated 600 ma , others 1000 ma .

QE RIGHT WITH

TAP SWITCHES - Compoct, high. current rotary selectors for a-c use. All-ceramic. Self-cleaning, silver-to-silver contacts. Rated at 10,15 , 25, 50, and 100 amperes.

PRECISION RESISTORS - Three types available; vitreaus-enameled, vacuum-impregnated, or encapsulated. Tolerances ta $\pm 0.1 \%$ in $1 / 4,1 / 2,3 / 4$, and 1 -woll sizes, from 0.1 to $2,000,000$ ohms.

VARIABLETRANSFORMERS Model VTIR5 has a rating of $11 / 2$ amperes representing a continuous rating af any brush setting. Input voltoge is: $120 \mathrm{~V}, 60$ cycle; output valtage is: 0.120 V 0.132 V Mounted by $3 / 8^{\prime \prime}-32^{\prime \prime}$ bushing and nut.

VIKING "ADVENTURER" 50 WATT TRANSMITTER—Used to corn first Novice WAC! (Worked All Continents.) Self-contoined, effectively TVI suppressed, instont bondswitching $80,40,20,15,11$, and 10 meters. Operates by crystal or external VFO. An octal power receptacle located on the rear apron provides full 450 VDC of 150 mo . and 6.3 VAC of 2 amp. output of supply to power ouxiliory equipment such os o VFO, signal monitor, or modulator for phone operation. This receptacle olso permits using the full output of the supply to power other equipment when the transmitter is not operating. Wide range pi-network output hondles virtually any ontenno without separate ontenno tuner. Breok-in keying is cleon ind crisp. Designed for cosy assembly. With tubes, less crystals ord key. Dimensions: $103 / 8^{\prime} \times 81 / 8^{\prime \prime} \times 73 / 3^{\prime}$. Shipping Weight: 19 lbs .
Cot. No. 240-181.1. .Kit. Amateur Net $\$ 54.95$
SPEECH AMPLIFIER/SCREEN MODULATOR—Designed to provide phone operation for the "Adventurer". High gain - use with either crystal or dynamic microphones. Simple instollofion-only minor wiring changes necessary in "Adventurer". With tubes.
Cot. No. 250-40 . . Kit.
$\$ 12.25$

VIKING "NAVIGATOR" TRANSMITTER/EXCITER-This compact, flexible CW tronsmilter has anougli RF po\%er to excite moas high powered final amplifiers on CW and $A M$. 40 wotts-bondswitshing 160 through 10 meters. Highly stable, buill-in VFO is temperapure compensated and voltage reguloted-moy also be operated crystal control. Timed sequence keying - effectively TVI suppressed. Pi-network antenna lood matching from 40 to 600 ohms. With tubes, less crystals and key. Dimensions: $131 / 4^{\circ} \times 91 / 8^{\circ} \times 101 / 15^{\prime \prime}$. Shipping Weight: 27 lbs .
Cat. No. 240-126-1 . . Kit.
. Amateur Net $\$ 149.50$
Cat. No. 240-126-2. . Wired and tested. Amateur Net $\$ 199.50$

VIKING "RANGER" TRANSMITTER—This outstanding amoteur transmitter will also serve as an RF and oudio exciter for high power equipment. As an exciter, it will drive any of the popular kilowatt level tubes. No internal changes necessary to switch from tronsmilter to exciter operation. Self-contoined, 75 watts $C W$ or 65 wats phone input... instant bandswitching $160,80,40,20,15,11$, and 10 meters. Extremely stable, buils-in VFO or crystal control-effectively TVI suppressed-high gain oudio-timed sequence (breok-in) keying-odjustoble wove shoping. Pi-network ontenno load matching from 50 to 592 alms. Easily assembled -with tubes, less crystals, key and microphone. $151 / 2^{*} \times$ $95 / \mathrm{t}^{\prime \prime} \times 14^{\circ}$. Shipping Weight: 54 lbs.
Cat. No. 240.161-1. . Kit. Amateur Net $\$ \mathbf{2 2 9 . 5 0}$
Cat. No. 240-161-2. Wired and tested. Amateur Net $\$ 329.50$

VIKING "VALIANT" TRANSMITTER -Designed for outstanding flexibility and performance. 275 wats input on CW and SSB (P.E.P. with ouxiliary SSB exciter), 200 wats AM. Instant tandswitching 160 through 10 meters-operates by built-in VFO or crys:e control. Pi-network tank circuit will moth ontenno bods from 50 to 600 ohms-fins: tank coil is silver-ploted. Other features: TVI suppressed-timed sequence (breok-in) keying -high gain push-to-tolk oudio system-low level oudio dipping-built-in low poss oudio filter-self-contoined power supplies. With tubes, less crystols, key, and mi :cophone. Dimensions: $21^{\prime \prime} \times 115 / 4^{\prime \prime} \times 11^{1 / 4^{\prime}}$. Shipping Weight: 83 lbs .
Cat. No. 240-104-1. . Kit. Amateur Net $\$ 349.50$
Cat. No, 240-104-2. Wired and tested. Amateur Net $\$ 439.50$

VIKING "PACEMAKER" TRANSMITTER -This exciting transmitter offers you the ultmate in single sidebond . . 90 watts SSB P.E.P. and CW input . . 35 wats AM. Self-contained-effectively TVI suppressed. Instant bandswitching on 80, 40, 20, 15, and 10 meters. Excellent stability and suppression. Temperature compensated builtin VFO . . separate crystal control provided for each bond. VOX and anti-trip circuits provide excellent voice controlled operation. Pi-network output motches antenna loads from 50 to 860 ohms. More then enough power to drive the Viking Kilowatt or grounded-grid kilowatt amplifiers. (Requires use of Cat. No. 250-34 Power Divider when used with Viking Kilowatt.) With tubes and crystals, less key and microphone. Dimensions: $21^{\circ} \times$ $11 \frac{1}{3^{\circ}} \times 16 \frac{w^{\prime}}{}{ }^{\text {. S Shipping Weight: } 74 \text { lbs. }}$
Cot. No. 240-301-2 . Wired and tested
Amateur Neil
$\$ 495.00$
20

VIKING "FIVE HUNDRED" TRANSMITTER — Rated a full 800 watts CW . . . 500 watts phane and SSB. (P.E.P. with auxiliary SSB exciter.) All exciter stages ganged to VFO tuning. Twa compact units: RF unit small enough ta place on your aperating desk beside receiver-power supply/modulatar unit may be placed in any canvenient lacation. receiver-power supply/modulatar unit may be placed in any canvenient
Crystal ar built-in VFO conlrol-instant bandswitching 80 through 10 meters.. TVI sup-pressed-high gain push-to-talk audio system-law 'evel audia clipping. Pi-nelwark output eireuit with silver-plated final pank coil will laad virtually any antenna system. With tubes, less erystals, key, and mieraphane. Dimensians: RF Unit- $21^{\prime \prime} \times 115 / 5^{*} \times 161 / 2^{*}$. Power Supply- $20 \% \%^{*} \times 153 / 4^{*} \times 107 /{ }^{*}$. Tatal Shipping Weight: 200 lbs .
Cat. No. 240-500-1 . Kit. Amateur Net $\$ 749.50$
Cat. No. $240-500-2$. . Wired and tested. Amateur Net $\$ 949.50$

VIKING "THUNDERBOLT" AMPLIFIER - The hattest linear amplifier an the marketdelivers over 2000 watts P.E.P.* input SSB; 1000 watts CW; 750 watts AM linear; in a campletely self-contained desk-tap package. Cantinuaus coverage 3.5 to 30 mes.instant bandswitching. May be driven by the Viking "Navigatar", "Ranger", "Paceinstant bandswisching. May be driven by the viking Navigatar, Ranger ' 10 watemaker", or other unit af camparable output. Drive requirements: approximately 10 watts
in Closs $A B=$ linear, 20 watts Class C continuous wave. With tubes and buils-in pawer supply. Dimensians: $21^{\prime} \times 115 / 8^{\circ} \times 16^{7} / 6^{*}$. Shipping Weight: 140 lbs .
Cat. No. 240-353-1. . Kit. Amateur Net $\$ 524.50$
Cal. No. 240.353-2 . Wired and tested. Amateur Net $\$ 589.50$

VIKING "COURIER" AMPLIFIER-Rated a solid ane-half kilawatt P.E.P. input with auxiliary SSB exciter as a Class B linear amplifier; ane-half kilowatt input CW ar 200 watts in AM linear mode. Campletely self-contained desk-top paekage-may be driven by the Viking "Navigatar," "Ranger," "Pacemaker," or ather unit af camparable autput. Continuous coverage 3.5 to 30 mes. Drive requirements: 5 ta 35 watts depending upan mode and frequency desired. Pi-netwark output designed to motch 40 ta 600 ohm antenna laads. Fully TVI suppressed. Complete with tubes and built-in pawer supply. Dimensians: $151 / 2^{*} \times 95 / 8^{*} \times 14^{*}$. Shipping Weight: 68 lbs.

VIKING "6N2" TRANSMITTER — Instant bandswitehing on 6 and 2 meters, this campact VHF transmitter is rated at 150 watts CW and 100 watts AM phone. Completely shielded and TVI suppressed, the " 6 N2" may be used with the Viking "Ranger," "Viking l," "Viking II," or similar power supply/modulator combinations copable of at least 6.3 VAC at 3.5 amp., 300 VDC af 70 ma., 300 ta 750 VDC at 200 ma . and 30 ar more watts audio. May be operated by built-in erystal contral or external VFO with 8.9 me , output. With tubes, less crystals, key, and micraphane. Dimensians: $131 /{ }^{*} \times 8 \%{ }^{*} \times 81 /{ }^{*}$. Shipping Weight: 14 lbs.
Cat. No. 240-201-1 . . Kit. Amateur Net $\$ 129.50$
Cat. No. 240-201-2. . Wired and tested. Amateur Net $\$ 169.50$

VIKING "MOBILE" TRANSMITTER-This power-packed mabile is :ated at 60 watts moximum PA input. Ins ant bandswitching 75 through 10 meters. Coupling system engineered far maximum power transfer to antenna - all stages ganged to a single funing knob. Powerful PP807 modulator is designed for extra oudio punch! Under-dash mounting - all controls readi'y accessible. Specify 6 or 12 volt aperation. Less tubes, crystols, microphane, and power supply. Dimensions: $67 / 16^{\circ} \times 71 / 8^{\circ} \times 10^{3} / 10^{\circ}$. Shipping Weight: 16 lbs.
Cat. No. 240-141-1. .Kit. Amateur Nef \$107.00 Cat. No. 240-141-2. Wired and tested on special order only.

The F.C.C. permits a moximum one kilawolt overoge pawer input far the omateur servite. In SSB operotion under normal conditians this results in peok envelope power inputs of 2000 wolts or more depending upan individuol voice chorocleristics.

VIKING '"KILOWATT"' AMPLIFIER — Boldly styled, effectively TVI suppressed-contains every conceivable feature for safety, operating convenience, and peak performance. 2000 watts P.E.P.* on SSB- 1000 watts CW and AM. Continuous tuning 3.5 to 30 mc .-na coil change necessary. Campast pedesta contains complete kilowatt-rolls out for adjustment or main enance. Excitation requirements: 30 watts RF and 10 watts audio for AM; 2.3 watts peak for SSB. Completely wired and ested with tubes. Dimensions: $291 / 2 \times 193 / 4 \times 32 \%$. With accessory desk top, back, and three drawer pedestali 291/2" $\times 631 / 2^{" \times} \times 327{ }^{\prime \prime}$.
Caf. No, 240-1000. . Wired and tested.

Amateur Nef \$1595.00
Cat. No. 251-101-1.. Matching accessory desk, fop, bock and three drawer pedestal.,FOB Corry, Pa, $\$ 132.00$

The E. F. Johnson Compony reserves the rizht to change prices and speci* fications without notice and without incurring obligation.

E. Fi etolimesora Comipanay

123 second avenue s. W. - waseca, minnesota

Your best buy!
 Johnson Station Accessories - E FOr Outstanding PERFORMANCE!

VIKING AUDIO AMPLIFIER -A self•cantained 10 -watt speech amplifier complete with power supply. Speech clipping and filtering designed to raise overage modulated carrier level... improves the performance and effectiveness of your AM transmitter. Inputs provided for microphone, phone patch, ar line. Complete with tubes. Dimensions: $1373^{*} \times 8^{\prime \prime} \times 5 \% 3^{*}$. Shipping Weight: 22 lbs.
Cal. No. 250-33-1 . . Kit . Amateur Net $\$ 73.50$
Cat. Na. 250-33-2 . Wired and tested. Amateur Net $\$ 99.50$
POWER REDUCER - Provides up to 20 watts continuous dissipation when used with 100-150 watt transmitters such as the Viking II, Calling 32 V , ar others, permitting them ta serve as exciters for the Viking "Kilowatt." Completely shielded-equipped with $50-239$ caoxial connectors. Dimer.sions: $31 / 2^{\prime \prime}$ lang $\times 21 / 4^{\prime \prime}$ diameter.
Cot. No. 250-29. \qquad $\$ 13.95$
POWER DIVIDER - Provides up ta 35 walls continuous dissipation. Designed to provide the proper output loading of the "Pacemaker" SSB Transmitter when used ta drive the Viking Kilowatt Amplifier.
Cat. No. 250-34. Amateur Net $\$ 25.50$

TWO METER VFO-Designed to replace 8 mc . crystals in mast twa meter equipment, including types using overtone oscillators. Temperature campensated-exceptianally stable. Output range: 7.995 mc . to 8.235 me .-edge-lighied, lucite dial is calibrated 144 to 148 mc . Power requirements: 6.3 volts of .3 amp . and $250-325$ volts at 10 ma .may be easily obtained from transmitter. Power coble and actol power plug furnished. With tubes and pre-calibrated dial. Dimensions: $4^{\prime \prime} \times 41 / 2^{\prime \prime} \times 5^{\prime \prime}$.
Cat. No. 240-132-1. . Kit. Amateur Net $\$ 29.50$
Cat. No. 240-132-2, Wired and tested...................... . . Amateur Net $\$ 46.50$
MOBILE VFO-Diminutive variable frequency oscillator designed specifically for mobile use. Rugged construction minimizes frequency shift due to road shack and vibration. small size permits steering past mounting. Temperature compensated and voltage regulated. Calibrated 75 through 10 meters, ,. 3.75 to 4 mc . output for 75 meters and 7.05 to 7.45 for 40 to 10 meters. 10.5 mc . output also available far doubling ta 15 meters. With tubes. Dimensions: $4^{\prime \prime} \times 41 / 4^{\prime \prime} \times 5^{*}$.
Cot. No. 240-152-1.. Kit.
Amateur Net $\$ 33.95$
Cot. No. 240-152-2. Wired and tested
Amateur Net \$52.50
DYNAMOTOR POWER SUPPLIES - Supplies plate valtoges for Viking "Mobile" and VFO. Rated: 500 volts, 200 ma , intermittent, Base kits accommodate PE-103, Carter, and others.
Cot
Amateur Net
239-102 Dynamotor Power Supply, 6 vat Wired and tested............. . $\$ 98.50$
239-104 Dynamatar Power Supply, 12 volt Wired and tested..... 99.50
239-101 6 volt base kit only. 19.65
239.103 12 volt base kit only. 21.20
"WHIPLOAD-6"-Pravides high efficiency base loading for mobile whips with instant bandswitch selection of $75,40,20,15,11$, and 10 meters, On 75 meters a special capacitor with dial scale permits tuning entire band, Covers other bands without tuning. Air-waund call provides extremely high "Q." Fibre-gloss housing protects assembly, Mounts an standard mobile whip.
Cat. Na, 250-26. . Wired and tested \qquad Amateur Net $\$ 16.95$

VIKING KILOWATT "MATCHBOX"-8andswitching 80, 40, 20, 15, and $10-11$ meters -sel f-contained, Use with transmitters up to 1000 wats input -handles unbalanced line impedances from 50 to 1200 ohms and balanced line impedances from 50 ta 2000 ohms. Na coils to change, no "tapping dawn" on the inductor. Transmit receive relay grounds receiver antenna terminals in "transmit" position. Adjustment far matching antenna to receiver input. Fully shielded. Provision for RF probe. Dimensions: $171_{4} \times 107 / 9^{\circ} \times 121 / 8^{\circ}$. to receiver input. Fully shied
Shipping Weight: 24 lbs .
Cat, No. 250-30. . Wired and tested. Amateur Net $\$ 124.50$ VIKING 275 WATT "MATCHBOX"-Perfarms all antenna loading and switching tunetians required in medium power amateur stations. Bandswitching 80, 40, 20, 15, and 10-11 meters. Matches bolansed antennas from 25 ta 1250 ohms and unbalanced or single wire antennas from 25 to 3000 ohms. Input impedance, 52 ohms, rated 275 watts. Built-in transmit/receive relay grounds receiver antenna terminals in "transmit" pasition. Independent adjustment far matching antenna to receiver input. Fully shielded. Provision for RF probe. Dimensions: $97 / \mathbf{"}^{*} \times 7^{\prime \prime} \times 101 / 2^{*}$. Shipping Weight: 11 lbs ,
Cat. Na, 250-23. . Wired and tested Amateur Net $\$ \mathbf{5 4 . 9 5}$
SWR BRIDGE-Measures standing wave ratios far effective use af a law pass filter and antenna coupler, 52 ohms impedance can be changed to 70 ohms ar other value. S0-239 connectors and polarized meter jocks. Dimensions: $41 / 2^{\prime \prime}$ long $\times 25 / b^{\prime \prime}$ diameter.
Cat. No. 250-24. Wired and tested
. Amateur Net
$\$ 9.75$
"SIGNAL SENTRY"-Monitors CW or phone signals on all frequencies to 50 me. without funing. Energized by transmitter RF. Mutes receiver audio for break-in. May be used as code practice oscillator with simple circuit modification. Requires 250 VDC of 5 ma. ; and 6.3 VAC at .6 amp , from receiver or other source. With tubes. Dimensions: $35 / 4^{\prime \prime} \times 31 / 4^{*}$ $\times 33 / 4$ ". Shipping Weight: 3 lbs.
Cat. No. 250-25. . Wired and tested \qquad Amoteur Net $\$ \mathbf{2 2 . 0 0}$
CRYSTAL CALIBRATOR-Provides accurate 100 kc . sheck points to 55 mc . Requires 6.3 volts at .15 amps . and 150.300 volts at 2 ma . With tube, military-type crystal, power cable and extension leads. Dimensions: $15 / 9^{\circ} \times 21 / 2^{*} \times 11 / 2^{*}$. (Over-all height to top of tube is $3 \% 2^{\circ}$.)
Cat. No. 250-28. . Wired and tested \qquad Amateur Net \$17.95

LOW PASS FILTER-Hondles more than 1000 watts RF-provides 75 db or more attenuation above 54 mc . Insertion loss less thon .25 db . Reploceoble Tefion insuloted fixed capacitors. SO-239 coaxial connectors. Wired ond pre•tuned. Dimensions: 9^{\prime} long $\times 25 / 4^{\prime \prime}$ diometer.
Cat. No. 250-20. Wired and pretuned 52 ohms. Amoteur Net $\$ 14.95$ Cat. No. 250-35. . Wired and pre-funed 72 ohms........... Amateur Net $\$ 14.95$

INDUCTORS - Johnson monufactures o complete line of high power vorioble, rofory, edgewise wound "HI-Q" ond swinging link inductors for commersial ond omoteur use. For complete informotion write todoy.
KEYS AND PRACTICE SETS-Johnson olso manufactures o complete line of semioutomotic, high speed, stondord, heovy duty ond proctice keys; code proctice sets and buzzers. See your distributor for complete information.

CLAMP PLATE ASSEMBLY - for clomping a horizontal boom to a vertical mast.
Cat. No. 138-115-1.
Amateur Net \$17.70
PRE-TUNED BEAMS-Rugged, semi-wide spoced pre-funed beoms with bolun matching sections. For 20,15 and 10 meters. Approximotely 9.0 db gain over tuned dipolegreoter than 27 db front-to-bock ratio with low SWR. Pattern is uni-directionol, beam width is 55°. No odjustments required. 800 m ossemblies are of $2^{\prime \prime}$ golvonized steel fubing, elements are aluminum alloy tubing. No loading devices needed for flutter dompening or corono dischorge.
Caf. No. (With 3 elements, beam and balun) Amateur Net
138-420-3 20 Meter Beam-20' Boom. 84 lbs. Nel Weight........... . . $\$ 139.50$
138-415-3 15 Meter Beam- $13^{\prime} 7^{\prime}$ Boom. 53 lbs. Net Weight........... 110.00
138-410-3 10 Meter Beam-10' Boom. 42 lbs. Net Weight. 79.50
ROTOMATIC ROTATOR-Supports beom ontenna weighing up to 175 pounds even under heony icing enditions or high wind looding. Rototes $1 / / 4$ RPM-over-all gear reduction, 1200 to 1 . Rototor housing is cost aluminum, with $5 / \mathrm{m}^{*}$ steel rotating tuble. Unit hinged to tilt 90°. Includes desk top control box with selsyn indicotor.
Cof. No. Amoteur Nel
138-112-51 With limit switches for 370° rotation - coaxial line........ $\$ 354.00$ 138-108 Beam switching relay.. 22.00
144-16 8 conductor cable for rotator. Per ft........................ . . . 26
"MATCHSTICK"- Fully outomotic, pre-tuned multi-bond vertical ontenno system. 8ondswitching 80 through 10 meters. Remotely motor driven from operoting position. Eosily mounts on roof top or in limited spoce locotion. Low SWR (less than 2 to 1) oll bonds. mounts on roof top or in limited spose locotion. Low SWR less than 2 to 1 oll bonds.
Impedonce: 52 ohms. Complete with 35^{\prime} most, bose, funing network, relays, control box ond 6 nylon guy ropes. Shipping Weight: 38 lbs.
Cal. No. 137-102..Pre-funed
. Amoteur Net \$129.50

T-R SWITCH—Provides instontoneous high-efficiency electronic ontenna switching. Excellent receiver isolation. Goin: 0 db of 30 mcs ; 6 db of 3.5 mcs, Rated of 4000 wotts peok power. Instontoneous breok-in on SS8, DSB, CW or AM. Will not affect tronsmission line SWR-provides on effertive impedonce match to most receivers through 3 to 30 mc . range. With tube, power supply, ond provision for RF probe, etc. Dimensions: $43 / 4^{\prime \prime} \times 43 / 3^{4}$ $\times 55 / 4$. Shipping Weight: 5 lbs.
Cat. No. 250-39. . Wired and tested \qquad . Amateur Net
\$25.00*
DIRECTIONAL COUPLER AND INDICATOR -Provides continuous reoding of SWR ond relative power in transmission line. Coupler may be permonently installed in 52 hm soaxial line-handles maximum legol power as specified by FCC. Stondord tip jocks permit use of commercial multimeter os indicoting instrument-reference sheets showing permit use of commersial multimeter os bupplied for populor multimeter bosic ronges. Indicotor is $00-100$ micro-ammeter curves supplied for populor multimeter bosic ronges. Indicofor is o $0-100$ micro-ammeter
calibrated in SWR and relotive power. Monitors incident or reflected power quickly with calibrated in SWR and relotive power. Monitors incident or reflected power quickly with
flip of a switch. Coupler dimensions: $61 / 4{ }^{*}$ long $\times 25 / 4{ }^{2}$ diometer. Shipping Weight: 2 lbs. Indicator dimensions: $4^{\prime \prime} \times 4 \frac{3}{/^{\prime \prime}} \times 4 \frac{1}{4^{\prime}}$. Shipping Weight: 4 lbs.
Cat. No. 250-37. . Coupler, Wired ond rested. Amoteur Net $\$ 11.75$ Cat. No. 250-38 Indicator, Wired and tested. Amateur Net \$25.00
*Tentotive price-subject to chonge.

The E. F. Johns on Compony reserves the right to change prices and specifications without notice and without incurring obligation.

The E. F. Johnson Company also manufactures a complete line of electronic components for those of you who prefer to design and build your own transmitting equipment and accessories. The complate line is covered in Catalog 977a ... write for your free copy today!

KNOBS AND DIALS-A distinctive line of matching knobs and dials, derived from a new basic knob design and suitable for the finest electronic equipment. Available with phenolic skirts, etched and anodized aluminum skirts with markings, or flat dial scales engraved and filled. All plastic is tough phenolic meeting MIL-P-14 specifications, with heavy brass inserts for $1 / 4^{\prime \prime}$ shafts.

INSULATORS -High quality steatite and porcelain insulators. Heavily glazed surfaces and heavy nickel-plated brass hardware suitable for exposed application. May be supplied with screws and nuts or with jacks to accommodate standard banana plugs. Through-panel and stand-off types. Also antenna insulators, bushings, and feeder insulators.

PILOT LIGHTS —A complete selection of standardized pilot lights. Faceted jewel or wide-angle lucite lens types; enclosed or
 open body styles; standard bayonet, candelabra, or miniature screw types, and a wide variety of mounting brackets and assemblies. Jewels available in clear, red, green, amber, blue, and opal. All Johnson pilot lights are described in detail in Pilot Light Catalog 750 - send for your copy!

CONNECTORS-A complete line of new nylon connectors is available in addition to standard banana jacks and plugs. Nylon components include insulated solderless tip and banana plugs, tip and banana jacks, tip jack and sleeve assemblies, metal-clad tip jacks, and a δ-way binding post. In thirteen bright colors-nylon components are designed to operate through an extremely wide temperature range and high relative humidity conditions. (Voltage breakdown up to 11,000 volts.) Solderless nylon plugs are easy to assemble-both plugs and jacks require a minimum amount of mounting space.

VARIABLE CAPACITORS

TYPE "M"- These diminutive capacitors provide the perfect answer to problems encountered in the design of compact radio frequency equipment. Bridge-type stator terminal provides extremely low inductance poth to both stator supports. Soldered bearing ond heavily anchored stator supports insure extreme rigidity.
TYPE " S " - Midway between types " M " and " K " in size, design is compact and construction rugged. Equipped with DC- 200 treated steatite end frame and nickel-plated brass plates-an excellent choice where higher capacity values than provided in " M " types is required in small space.
TYPES "C'" AND "D"—Funetional favorites built to exacting standards for medium power RF equipment. Dual types have centered rotor connection for balance. End frames tapped for panel mounting. Brackets furnished for chassis mounting.
TYPES "E" AND "F"—Rugged units provide a large amount of capacity per cubic inch and extremely low capacity to the chassis. Panel or chassis mounting.
TYPE "G"-Neutralizing capacitors for medium and low-powered stages constructed on the rotor-stator principle. Panel or chassis mounting.
TYPE "J" -Heavy-duty miniature type has wider spacing than most small air variables, yet occupies little more space. Useful for small space plate tank circuits and low power stages where standard miniatures have insufficient plate spacing.
TYPE "K"- Widely used for military and many commercial applications, the Johnson type "K" features DC. 200 impregnated steatite end frames, slotted stator contacts, and extra-rigid soldered plate construction.
TYPE "L"—A superior quality general purpose capacitor embodying important advances in design and construction. The rotor bearing and stator support rods are actually soldered directly to the ceramic (steatite) end frames, making the capacitor virtually vibration-proof.
TYPE "N" - Extremely high voltage rating in proportion to size requiring a small mounting area. Constant voltage rating throughout full capacity range. These are of the aluminum cup and cylinder type of construction and are supported by a steatite frame with cast aluminum mounting bracket.
TYPE "R" - The rugged Johnson version of a popular standardized capa. citor. Featuring extra heavy steatite stator support insulators and soldered . $023^{\prime \prime}$ thick brass plates; all metal parts heavily nickel-plated for corrosion. resistance.

TUBE SOCKETS

Johnson steatite and porcelain tube sockets are available in three grades: Standard, Industrial, and Military. All are manufactured to rigidly controlled specifications, and all are made of only the highest quality materials.
Bayonet Types-include Medium, Jumbo, and Super Jumbo 4 pin models.
Steatite Wafer Types-available in 4, 5, 6, 7, and 8 pin standard sockets as well as Super Jumbo 4 pin, Giant 5 and 7 pin models and VHF transmitting Septar base types.
Miniature Types-are steatite insulated and avail. able in Miniature 7 and 9 pin models. Matching miniature shields also available.
Special Purpose Types-include sockets for tubes such as the 204A and 849, the 833A, 304TL, 5D21, 705A, and other special types.

New! Two new tube sockets have been recently added to the Johnson line. A new shielded base septar socket (Cat. No. 122-105) for tubes such as the 5894, 6524, and 6252, and a new Kel-F insulated actal socket (Cat. No. 124.110 for $4 \times 150 \mathrm{~A}$ and similar tubes. For complete information on this new socket or any other Johnson sockets-write for your copy of Tube Socket Standardization Booklet No. 536.

The Transformer for Your Application ..FROM STOCK

Thres hundred hermetic thems proved to MIL-T.27A. Filtern, hich 0 enils, povier, plate, filsment, pulse, audio trifisformer). Eliminater cus ind delaph of initial MIL.T-27A testung. Seven hundres et ch ithim ier virailiy mery applicition in the remetrinic fiild. . . Fach with UTC Reliability, higheat in the field.

VARIABLE INDUCTORS Standard. Hermetic Mil-T.27A

LOW FREQUENCY TNDUCTORS INDUCTAMCE DECADES

PERMALLOY DUST TOROIDS Highest Q, accuracy and stability

Write for your Copy of Latest Catalog.

VOLTAGE ROJUSTORS, SIEPDOWN and ISOLAPION TRANSFORMERS

3
SUB and SUB.SUB OUNCER
TRANSFORMERS TRANSFORMERS Audio and
Iransistor

Units for every amateur applica*lon.

UNSURIPASSEI) STABILITY
Collins 7.⿹勹A-t Receiver is designed expressty for Amatenr operation on the seven HF bands - $160,80,40,20,15,11$, and 10 meters. The Receiver retains the time-proven features of the carlier 7.5A Series; notably, excellent image rejection through the use of clouble conversion; precise dial calibration and high stability provided by the permeability tuned, hermetically sealed Collins $\triangle P($ and the erystal controlled first injection oscillator; and ideal selectivity produced by Collins Meehanical Filters.
Amateur activity on Single Sidelband reveals the need for a receiver designed especially for this type of emission without sacrificing efficiency when receiving AM. CW or RTTY. The new $7.5 \mathrm{~A}-1$ assures best SSB reecption in addition to conventional CWV and AM.

75A-4

SPECIFICATIONS

FREQUENCY RANGE - BAND
(Meters) 160
$160 \ldots . .$. . 1.5 to 2.5 80....... 3.2 to 4.2 40........ 6.8 to 7.8 20. 14.0 to 15.0 15........ 20.5 to 21.5 11........ 26.5 to 27.5 10........ 28.0 to 29.0 10.......... 29.0 to 30.0

SIZE - $101,2^{\prime \prime}$ high $\times 17 \frac{1}{\prime \prime}$ wide $\times 15 \frac{1}{2}{ }^{\prime \prime}$ deep.
WEIGHT - 35 pounds.
RACK MOUNTING - Angle mounting kit available.
NUMBER OF TUBES - 22 , including rectifiers.
AVC TIME CONSTANTS - Rise Time - . 01 second
Release Time - 0.1 second (fast),
1 second (slow).
AVC CHARACTERISTICS - Audio rise less than 3 db forinputs of 5, to 200,000 uv.
SENSITIVITY - SSB/CW - 1.0 microvolt for 10 db signal-to-noise ratio with 3 kc bandwidth.
IMAGE AND IF REJECTION - Image rejection at center of each band is 50 db or better. IF rejection at center of each band is 70 db or better.
AUDIO CHARACTERISTICS - Output - .75 watts with a 3.0 uv signal, 30% modulated. Oupput impedance 500 ohms, 4 ohms. Response of audio circuits - ± 3 db 100 cps to 5000 cps. Distortion - Less than 10%. MUTING - Provisions for muting the receiver during keydown operation is provided. A muting voltage of +20 volts must be supplied by the transmitter.
FREQUENCY STABILITY (at 14 mc) - Temperature - Less than 1200 cycles drift from 0 to $\pm 60^{\circ} \mathrm{C}$. Warm.up drift - Less than 300 cycles affer 15 minute operation. Line Voltage - less than 100 cycles for $\pm 10 \%$ change. Dial Accuracy - Within 300 cycles after calibration.

27

BIG AND CLEAN

The most advanced desigu features ever offered in an Amateur transmitter are incorporated in the KWS-I. Unprecedented compactness is achieved without crowding; the exciter and RF power amplifier are housed in a single receiver-size cabinet which can be placed on the operating clesk or mounted on top of the power supply cabinet.
Collins engineering plus extensive on-the-air aperation acconnt for the KllS-1's reliability and optimum performance in CW . $A M$, and SSB operation. Circuit applications and components which have been proved in preceding Collins cumipment aro retainct in the design of the KWSS-1 -a 0 OE VFO. Pi-L output network, extremely acenente VFO dial and the Collins Mechanical Filter, to mention a few. The frequency generating system provides stable output on the desired frequencles with minimun low orter maxer crossover products and spurious responses. VFO opreration is provided in amateur bands from 3.5 to 30 megatyckes, with a dial calibration of 1 ke per division on all bands. Single comversion is used on the 80 meter band and dual conversion is used on all higher bands. Maximum overall stability is obtained by using an extremely stable variable oseillator and crustal controlled high-frequency oscillators and BFO. A permeability tuned, hermetically sealed VFO is used to provide a stable and accurately calibrated signal source.
By using the Mechanical Filter, the Single Sidehand generator provides more than 50 dth rejection of the unwanted sideband and limits the audio passland to 3000 eps. By use of the balanced modulator in conjunction with the Mechanical Filter, the carrier can be reduced more than 60 dtb . The third order distortion products are down approximately 35 db .

SC-101 Station Control

The SC-10) provides the necessary control functions which, with the necessary antemas and the KWS-I $7 . \overline{3} A-1$ eomhnan tion, will eqump a complete, weat amateme station. In addition to providing the necessary interconuecting harness, the SC-101 contains a beam direction indicator, beant rotation control, phone patels, directional RF wattmeter and remote control tor antenna sclection. The SC-lol has there mitn:
The 312.1-2 inchudes a 10 " spather, beam direetion indicat for, directional watmeter, 21 hour mumeral diek, I, omilime latop, whomp patdo, power staply for operating relays and terminal board for intereomecting anits. Controls on the

 Artenat Salebtor - X, 80, 44, 20, 15, 10; Directional W:attmeter Control - Form,ard 100, 10mom, HeWertad 100, 1000:
 Selector will proside control of ath three antemnas. Three uddational atatemas may be controlled with the addition of tharee relays for whith spate has been prosided. One or two rotators may abo he selected in combination with the ath temans. Oae syishoro transmitar for tower momiting to feed the bean direction indicator is inchaded with the SC-101. Sunchro receiver is an interial part of direction indicator. The $65 \mathrm{y}^{-}-1$ mounts in any comsenient position. It contains the antema transfer relay, two coid relays for antemba selection. monnting brackel for the directional wattmeter compler and mounting three additiontal cona relays.
The 53 AA-1 inchades a metal duct which mounts on the rear of the desk or table and houses all interconnecting cables. Utility AC outlets are provided along the top of the duct. Included is a cable harness for interconnecting the 75A-4/KWS-I. 685. 1 and 312. -2 . Additional standard conduit will be neoded in lengthe depending on the individual station installation.

SPECIFICATIONS

POWER AMPLIFIER INPUT - 1 kw peak envelope power on SSB, 1 kw CW operation. Equivalent to 1 kw on
AM when using narrow bandwidth receiver.
RF OUTPUT IMPEDANCE - 52 ohms.
MAXIMUM PERMISSIBLE STANDING WAVE RATIO 2.5 to 1.

AMATEUR BANDS COVERED - 80, 40, 20, 15, 11, 10 meters.
FREQUENCY RANGE - BAND RANGE
80................ 3.0 - 4.0
40.............. . . $7.0-8.0$
20.............. . $14.0-15.0$
15.............. . 21.0-22.0
11............... . $26.4-27.4$
10. $28.0-29.0$
10............... . $29.0-30.0$

EMISSION - SSB, AM carrier plus one sideband, CW. FREQUENCY CONTROL - 70E-23 Master Oscillator.
HARMONIC AND SPURIOUS RADIATION - (Other thall 3rd order distortion products.) Intrachannel radiation is at least 50 db down. All spurious radiation is at least 40 db down at the output of the exciter. The second harmonic is at least 40 db down and all other harmonics are at least 60 db down.

FREQUENCY STABILITY - Affer 15 minutes warm-up, within 300 cps of starting frequency. Dial Accuracy: 300 cps after calibration.

189. -2 Phone Patela

"This mit provides the necessany apparatus for phome patela operation with the KilS-1 and $75.1-4$ (or KWM-1). It utilizes hybrid circuitry to insure no interaction betwern the recover and the telephone for proper VOX operation. Output and inpot inmedances are fot ohms. Terminal connection are provided on the KW'S-1 75A-t (and KWMS-l), Only two comections to phome line are necessary, Space for monnting is prosited in the 312.1-1.

35C-2 Low l'ass Filter

Collins 3.5C-2 1.ow leass Filter is a 52 -ohm there-section bow pass filter with approsimately 0.2 db insertion loss below 29.7 me and approsimately 7.5 d attemation of hamonic emissions al TV Irembercits.

Mechanical Filters

Collins F4.5.j Sories Mechanical Filters ate avalable as
 bandwidth of 500 cycles, is recommended for CW recep-
 $\mathrm{ks})$ for $\mathrm{A} M$ whers interterence is not at problem; and the F $4.551-21(2.1 \mathrm{kc})$ ancl F54.5.5-31 (3.1 kc) for SSB. The F455J-31 is supplied as standard equipment in the Receiver.

307E-I (Gear Reduction Tuning Kınol)

Operates on a 4 to 1 ratio, poviales new ease and accuracy in tuning SSB signals, and has no detectable backlash. Simple installation on KW'S-I and all 7.5λ models. Standard equipment on later models of $75 \mathrm{~S}-4$ and KWS- 1 .

AUDIO CHARACTERISIICS - Response: $\pm 3 \mathrm{db}, 200$ to $3,000 \mathrm{cps}$. Noise and hum: 40 db or more below reference output level. Input: . 01 volts for rated power output.
DISTORTION — SSB, 3rd order products approximately 35 db down at 1 kw PEP input.
MICROPHONE INPUT - Will match high impedance dynamic or erystal microphone.
PHONE PATCH INPUT IMPEDANCE - 600 ohms, unbalanced to ground.
WEIGHT - 235 pounds (both units).
DIMENSIONS - 40 $1 / 2^{\prime \prime}$ high, $171 / 4^{\prime \prime}$ wide, $151 / 2^{\prime \prime}$ deep (both units).
RACK MOUNTING - Angle bracket kits available for RF unit and power supply.
TUNING CONTROLS - Bandswitching, frequency selectc., PA tuning, PA loading.
OTHER CONTROLS - Filament power, plate power, filament adjust, PA bias adjust, tune-operate, multimeter switch, VOX speaker gain, VOX speech gain, band change, audio gain, sideband select, emission selector, dial lock, zero set.
ACCESSORIES REQUIRED - High impedance microphone, telegraph key, 52 ohm antenna.
POWER SOURCE - 230 v, 3 wire, $50 / 60$ cycle, single phase, grounded neutral; or $115 \mathrm{v}, 2$ wire, $50 / 60$ cycle, single phase. 1500 w for 1 kw input CW .

312.1-1 Speaker/270G-3 Speaker

The 312A-I Speaker Unit includes londspeaker and has space for the extra control functions necessary in a complete installation. L'nit is furnished with removable perforated sted tront pancl insert with no entouts; operator ean remove pancl and install any control functions such as beam direce tion indicators, elocks, switches, ete. A $10^{\prime \prime}$ speaker is submounted behind the front panel and a Lemiline lamp above. Rear of the mit is open and across the bottom is a terminal strip. The $270 \mathrm{O}-3$ cabinet and 10 "PM speaker assembly is attractively finished to match the $75 \mathrm{~A}-\mathrm{t}$ Receiver.

302C. 1 and C-2 Directional RF Watmeter

This wattmeter measures forward and reflected power in a 52 -ohm comal tranmission line over the frequency range of $2-30 \mathrm{mc}$. Scale rances of $0-100$ and $0-1000$ watts are providerl. The $302 \mathrm{C}-1$ consists of indicator unit and coupler mit. the 302C-2 of compler and ummounted meter and seleclor switch for custom installation.

KWM-1

TRANSCEIVER

for mobile or fixed station

 tion with a built-ite monitor. 'The bands arce conered in loo ke segments with atotal of 10 such seomments. A bot that
 crestals. I seatedirel enatal complement is thanished an detailed in the arecifiestions. Fior other weletioms such as
 the proper ersuth complement com le obtancel. The bront
 moter on trammit. Froquency stability. receiver semstorts and selectivity are outstandine.
 fimed station is loult in. For mobile installation the unit phag into the monating rack. The posser phag anteman coan
 matienth. "Fon knols tiathen to hold the wat securels in place. For fixed imstallations a separate abeaker biash in prossided. P'ower comections and antemnt erons commetion would fre made throush thue some plug used for mobile installation.
A 100 he crestal colibrator is inchued.

KWM-1
 ACCESSORIES

$516 \mathrm{E} \cdot 1$
Power Supply

The $516 E^{-1}$ Power Supply operates from 12 vide. A cable connects directly to the monnting tray from a terminal strip on the tront of power supply. The Transeciser power is antomatically comected as it plage into the mombtine tras The joble:-1 ntilizes siv power transistom as switehing elemonts at 600 cps , elimimating vibrators and rotating machincr:
A similar supply is awablaber for 28 -voll operation, using 4 transistors.

$516 \mathrm{~F} \cdot 1$ Power Supply

The $516 \mathrm{~F}-1 \mathrm{C}$ Power Suphly operates from 115 vac, $50-60$ cass and provieles all neecessary voltases for operation of the Кいง1.

39913-1 IDX Convernion Adapter

This unit rephaces the crystal box and atutomatically changes Transceiser operation to separate transmittins and receiving Irepuencies, This enables thang of the receiver outside the band for DX and provides a choiece of seven erystal-controlled transmitter freduencies in the band. The adapter can be nsed on athy one band in the $14-30$ inc range. Transmitting and receiving freunencies can be separated by as much as 150 kc .

SPECIFICATIONS

RF POWER INPUT - 175 walts SSB PEP or 160 wolts CW. OUTPUT IMPEDANCE - 52 ohms.
POWER SOURCE - 115 vac $50.60 \mathrm{cps}, 12 \mathrm{vdc}$, or 28 vde with proper power supply.
POWFR INPUT -- Filoments: 5.25 a of $12 \mathrm{v} ; \mathrm{B}$ and Bias: Transmit: 800 v of $200 \mathrm{ma} ; 265 \mathrm{v}$ at $210 \mathrm{mo} ;-50$ to -80 v at 3 mo ; Receive: 290 v of 170 mo . Heaters may be connecled for 6,12 or 24 volts.
SIZE: - Transceiver - $6^{\prime \prime} 4^{\prime \prime} \mathrm{h}, 14^{\prime \prime} \mathrm{w}, 10^{\circ \prime} \mathrm{d}$ AC Power Supply - $6^{1} 4^{\prime \prime} h, 75,8^{\prime \prime} w, 10^{\prime \prime} \mathrm{d}$ DC Power Supply - $7.1932^{\prime \prime} \mathrm{h}, 10^{\prime} 8^{\prime \prime} \mathrm{w}, 5^{\prime 3} \mathrm{~A}^{\prime \prime} \mathrm{d}$ Speoker Cabinet - $6^{\prime} 4^{\prime \prime} \mathrm{h}, 758^{\prime \prime} \mathrm{w}, 10^{\prime \prime} \mathrm{d}$
WLIGHT - Yransceiver - 15 lbs .
AC Power Supply - 25 lbs .
DC Power Supply - 15 lbs .
Speoker Cobinet - 5 lbs.
FREQUENCY RANGE - 14.30 me continuous. Choice of ony ten 100 ke bands by crystal switch. Stondard complement of crystals - $14.0 .14 .1 \mathrm{mc} C W, 14.214 .3 \mathrm{mc} \mathrm{SSB}, 14.9-15.0$ me calibration with WWV, 21.0-21.1 me CW, 21.3.21.4 mc SSB, 21.4-21.5 me SSB, 28.0.28.1 me CW, 28.1.28.2 mc CW, $28.5 \cdot 28.6 \mathrm{mc}$ SSB, $28.6 \cdot 28.7 \mathrm{mc}$ SSB.
FREQUENCY CONTROL - 70K-1 Permeobility Tuned VFO.
HARMONIC AND SPURIOUS RADIATION - Carrier Suppres. sion -50 db , unwanted sidebond -50 db , oscillators and mixer products -50 db , second harmonic $-50 \mathrm{db}, 3 \mathrm{rd}$ order products 30 db .
FREQUENCY STABILITY - AFTER 10 -minute warm-up, withen 100 cps . Reset within 1 kc throughout range.
AUDIO CHARACTERISTICS - Response $300-3,000 \mathrm{cps}$; noise 40 db below one tone corrier; transmitter input designed for high impeciance crystal or dynamic mike
PHONE PATCH IMPEDANCE - 600 ohms unbalanced to ground.
CIRCUIT PROTECTION - Primary fuses.
ACCESSORIES REQUIRED - Hi-Impedance Dynomic or Crystal Microphane and or telegraph key, antenna, loudspeoker and or headphones, $516 \mathrm{E}-1$ for 12 v dc and 516 E .2 for 28 vdc and or $516 \mathrm{~F}-1$ ac power supply.
POWER SOURCE - 115 vac $50.60 \mathrm{cps} ; 12$ vdc; 28 vdc.
RECEIVER SENSITIVITY - SSB, CW - 1.0 uv for 10 db S N ratio with 3 ke bondwidth.
NUMBER OF TUBES - 24 plus 2 rectifiers in ac power supply. NUMBER OF TRANSISTORS -6 in de power supply.

31213-2 Sprater Console

 phone pateh and 302b-1 directional RF' wattmeter (with 200 "att seale . all monter in a matching cabinet for fived stittion lise.
 in matchang eabinet like the $31213-2$. Space behine patmel provides for installation of controls, switches. ctc.

351I-I Mobile Mount

This device will greatly facilitate mounting the KWM-1 under an antomobile dashbord. providine slide-in and slide-onat installation and removal of the Transeciser. The cantilever arms fold out of the way after removal of the KIVM-1. L nisersal momoting harefvare is inchaded.

13C-1 Cinstal Plug-in I'nits

Thene fill wqurements for other than the 10 basic 100 kc bands supplied with the KWMM-1. Theve mite plug into the front panel. and (an comtan up to 10 CR-18 MF ascillator crystals and a rotary tap swited for erystal selection.

2 metep 5 element \qquad $\$ 6.95$
2 neter 10 element $\$ 10.95$

- neter 5 element .$\$ 12.35$

6 metep 10 element $\$ 24.95$

10 meter 3 element $\$ 19.95$

15 meter 3 element $\$ 29.95$

20 meter 3 element $\$ 49.95$

4-band doublet traps $\$ 12.50$

4-hand doublet kit
(less traps) .$\$ 12.00$

5-hand doublet traps $\$ 12.50$
S.hand doublet wit
(Iess traps) $\$ 15.00$

2 \& 6 meter vertical $\$ 16.95$
10. 15 \& 20 meter
trap vertical $\$ 19.95$
rostep mount hit for
$10,15, \$ 20$ meter
trap vertical $\$ 8.95$

10-40 mettr Irap vertical $\$ 27 .{ }_{6}$
reoftop mount kit for 10-40 meter tran vertical$\$ 9.85$
10-80 meter trap vertical 569 .50

1 element trap tribander (10, 15, 20M)

2 element trap tribander
(10, 15, 20M)

3 eiement trap tribander (10, 15, 20M) \qquad

5 element trap trimander
(10, 15, 20M) \qquad
rotobrake, rotator Indicator \qquad
rotobrake, dual rotator \& indicator $\$ 179.95$
hy-gain's research and profuction facilities available for special conmercial design prontems.

32

KNOWN THE WORLD OVER FOR QUALITY COMPONENTS, NATIONAL'S FULL LINE OFFERS OVER 300 PRECISION ITEMS FOR PROFESSIONAL AND AMATEUR USE.

bushings
chokes
coils and coil forms
condensers
couplings
dials
drives
insulators
knobs
multiband tanks
plate caps and grid grips
plugs
sockets
spreaders
terminals

National Company's components division has the trained personnel and complete facilities to handle all special requests.
Discuss your components problems with us. You'll find the service excellent, prices right.

luned to tomonowe Nationalts. HRO-60

Latest and greatest of a great series featuring the widest frequency coverage of any receiver currently available (50 kc to 54 mc). Voice CW, NFM (with adaptor). Dual conversion on all frequencies ahove 7 mc .

- Twelve permeability-tuned circuits in the three 455 kc IF stages for sharp selectivity.
- Current-regulated heaters in the high frequency oscillator and first mixer.
- lligh frequency oscillator and S-meter amplifier are voltage regulated.

FEATURES:

FCDA opproved

- Extra coil sets available to provide additional frequency coverage on special ranges.
- Crystal filter provides several degrees of selectivity with phasing notch to reject heterodyne interference.
- Has double-ended automatic noise limiter
which is equally effective on both voice or code reception.
- Has two KF stages for better sensitivity and selectivity (image ratio).
- Single knob controls reception of CW, AM, or NBFM signals or connects audio amplifier to Phono input
- Adjustable CW oscillator control for CW reception.
- Panel-controlled antenna input trimmer.

Panel switch for choice of 100 kc or 1000 ke calibration marker signals.

COVERAGE

COIL SET GENERAL COVERAGE A
B
C
$* \mathrm{E}$
$* \mathrm{~F}$
$* \mathrm{G}$
$* \mathrm{H}$
$* \mathrm{~J}$
$* \mathrm{AA}$
$* \mathrm{AB}$
$* \mathrm{AC}$
$14.0-30.0 \mathrm{mc}$. $7.0-14.4 \mathrm{mc}$. $3.5-7.8 \mathrm{mc}$. $3.5-7.3 \mathrm{me}$. 900-2050
$480-960 \mathrm{kc}$.
$180-430$ ke.
$100-200 \mathrm{ke}$. $50-100 \mathrm{kc}$.

25-35 mc.

*Oplional acressories.

TUNING SYSTEM
PW knob has worm gear drive box. Large dial with changing numbers gives a logging scale from $0-500$, equivalent to a scale length of 12 feet. In addition, a slide-rule direct-reading scale is ganged with the PW dial to show frequency setting directly. The seale drum can be rotated to change scales. Plug-in coils for separate ranges.

AUDIO SYSTEM

A push-pull audio output stage delivers 8 watts at less than $10{ }_{6}^{\circ}$ disiortion. Output impedance is 8 and 500 ohms. A high impedance phono-jack is located on the chassis, and a phone jack is provided on the receiver panel.

SENSITIVITY

1.5 microvolts from 2 to 30 mc (with 300 -ohm dummy antenna and 10 db signal/noise ratio.)

SELECTIVITY

Normial (Crystal off)
CRYSTAI. IN POSITION 5

BANDSPREAD
27.0-30.0 nic. (11, 10 meters) $14.0-14.4 \mathrm{me}$, (20 meters) $7.0-7.3 \mathrm{mc}$, (40 meters) $3.5-4.0 \mathrm{mc}$. ($80 \mathrm{met} \mathrm{m}^{2}$)
27.0-30 mc. (11, 10 meters)
$21.0-21.5 \mathrm{mc}$, (15 meters) $50-54$ me. (6 meters)

troned to lomowaw Nationale NC-183D

Incorporates every feature you want in a truly modern receiver! Dual conversion on the three highest ranges (including 6, $10,11,15,20$, and 40 meter ham bands). Complete coverage from 510 kc up to 30 me, plus $50 \quad 54$ mc 6 -meter ham band. Voice, CW, NFM (with adaptor).

\checkmark
FEATURES:

Two stages of RF provides exiremely high inage ratio.

- Dual conversion on all bands abover 4.4 nec.
- Bandspread on all amateur bands hirough six meters.
- T

Three stage sharp IF (12 permoabilityluned circuits) no sarcrifice in noise selectivity, high degree of skirt selectivity.

- I'ush-pull audio output.
- Indirectly lighted Jucite dial scales.
- Rack and table models available.
- HF oseillator voltage regutated.
- Crystat filter provides several degrees of selectivity with phasing notch to reject heterodyne interferenere.
- Nex bi-metallic temperature - compensated tuning condenser for drift-free operasatred
lion.
- New miniature tubes.
- FCDA Approred.

COVERAGE

BAND	GENERAL COVERAGE		BANDSPREAD	
A			47-5\%	mc. (6 meters)
13	12-31	nuc.	26.5-30	mra. 11.10 meters)
			20.0-21.5	mc, 115 meters)
			$14.0-14.4$	mc. 120 meters)
C	$4.4-12$	me.	6.9-7.3	me. (40 meters)
b	$1.55 \quad 4.4$	me.	3.5-4	mc. (80 meters)
E	0.54-1.5.5	nic.		

IUNING SYSTEM

'The main tuning and handspread tuning capacitors are connected in parallel on all bands. This arrangement permits bandspread tuning at any frequency within the range of the receiver. Two RF stages are employed on all bands, and the trimmer for the first RF stage is controlled from the front panel.

AUDIO SYSTEM

A push-pull audio output delners 8 watis at less than 10 Cif distortion, A high impedance phono-jack is located on the chassis and a phone jack is provided on the receiver panel.
image Rejection (at high end of band)
BAND
A
B
C
D
E
image ratio
40 db
65 db
80 db
80 db
80 db
80 db

SENSITIVITY

Better than 3.5 microvolts (with 300 -ohm dummy antenna and 10 db signal/ noise ratio).

SELECTIVITY

NORMAL (Crystal off)
CRYSTA!, IN POSITION -5
$6 \mathrm{db}-3.5 \mathrm{kc}$
$60 \mathrm{db}-12.5 \mathrm{kc}$
$6 \mathrm{db}-100$ cycles
$60 \mathrm{~d} \mathrm{~b}-7 \mathrm{kc}$

CONTROLS

CW Switeh; CWO control: Tone Control; Iimiter Control; Main Tuning: Bandspread Tuning: Band Switch; RF Gain: AC ONOFF; AF Gain: Send Recolve Switch; AVC' 11 I'C Suriteh; Radio/ Phono Suritch: Ihon" Jack; Phasing Control; Selectivity Switch; Antenna T'rimmer.

TUBE COMPLEMENT

Antenna Input:

Size:

Finish: Smooth gray enamel.

Shipping Weight: 65 lbs.

Optional Accessories:
NFM-83-50 Adaptor NC-183DTS Table Speaker. NC゙-183DRS Rack Speaker.

towed to tomorras National|e. NC-300

National's famous "Dream Receiver." An extremely sensitive, highly stable receiver with exceptional calibration accuracy. Has eight electrical bands. 160 through 10 meters, plus a special $30-35 \mathrm{mc}$ range used as a tunable IF for 6,2 , and $11 / 4$ meters.

HAM RECEIVER

FEATURES:

- Ten dial scales for coverage of 160 to Il4 meters with National's exclusive new converter provision with the receiver scales calibrated for 6, 2, 11 meters using a special $30-35 \mathrm{mc}$ tunable IF band.
- Longest slide-rule dial ever! More than a foot lonk! Easily readable to 2 kc without interpolation up to 21.5 mc .
- Three-position IF selector-. $5 \mathrm{kr}, 3.5$ $\mathbf{k c}, 8 \mathrm{kc}$-provides super selectivity, gives optimum band width for CW, phone, phone net or VHF operation.
- Separate linear detector for single sideband . $\mathrm{c}^{\text {decreases distortion by allow- }}$ ing IVC "on" with single sideband. will not block with RF gain full open.
- Hi-speed, smooth inertia tuning dial Hi-speed, Smooth ineria tuning dial
with 40 to 1 ratio! Provides easier, more accurate tuning. Smoothest dial you've ever used.
- Exclusive optional RF gain provision for best CW results allow's independent control of IF gain!
- Giant, easy to read "S" mever!
- Provision for external control of RF gain automatically during transmitting periods.
- Muting provisions for CW break-in operation.
- Calibration resct adjustable from front panel to provide exact frequency setting!
- Dual conversion on all bands!
- Crystal filter with phasing control and three-position bandwidth control!
- Wide range tone control, for control of both low frequency and high frequency end of response curve!
- Socket for crystal calibrator plus accessory socket for powering converters and future accessories!
- First IF frequency-2215 kc.
- Second IF frequency - 80 kc .
- Selectivity at 6 db down 500 cyeles, 3.6 kc and 8 kc . Selectable from the front pane! without additional accessories! Nothing extra to buy!
Crystal filter at 2215 kc provides notching plus three bandwidth positions in addition to the three IF selectivity positions. No other receiver has this versatility.

COVERAGE

BAND DESIGNATION AND LENGTH

TUNING SYSTEM

Combination gear pinch for smooth inertia tuning.

AUDIO SYSTEM

The audio amplifier \cdot ans a single $6 A Q 5$ output tube delivering 1.0 watts at less than 10 ; distoction. Has front panel phone jack. Output impedance is 8 ohms.

SENSITIVITY

Under 1.5 microvolts (with 300 -ohm durnmy antenna and 10 db signal/noise ratio).

SELECTIVITY

SHARP	MEDIUM	BROAD
6 db 0.5 ke	3.5 kc	8.0 ke
60 db	3 kc	12 kc

IMAGE REJECTION

BAND
160 80 40 20 15 10

MAGE RATIO
80 db
80 dis
60 dh
7.5 db

55 db
50 db

CONTROLS

IRF Gain and AC ON OFF; AF Gain and RF Tube Gain Switch; Tone Control; AM-CW-SSB-ACC Switch; CW Pitch; Main Tuning; Calibration Correct; Antenna Trimmer; Crystal Calibrator ONOOFF; Limiter; IF Selectivity; Crystal Selectivity;
Crystal Phasing; Band Switch; Phono-Jack.

TUBE COMPLEMENT

1st RFF Amp.	6B76
1 st Mixer	61.17
1 st Ose.	6.1116
2nd Mixer	6BE6
1 st IF Amp.	613J6
2nd IF Amp.	613 J 6
ANL and Det.	6AL5
CWO/SSI3 Det.	6BE6
-Isthudio and S Meter Amp.	12ATt
Audio Output	6.125
Current Regulator	4114-C
Voltage Regulator	OP2
Ractitier	5 Y 3

OTHER SPECIFICATIONS

Antenna Input: 50300 ohms , balanced or unbalaned.
Size: $191 / 2^{\prime \prime}$ wide $\times 111^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep ($19^{\prime \prime}$ rack out of cabinet)
Finish: Two-tone gray enamel.
Shipping Weight: (Legal) f4 lbs.
Optional Accessories:

Converters

NC-300-CC Converter Cabinet
NC-300C6 for 6 -meter band. NC-300TS Speaker.
NC-300(2 for 2-meter band. XCU-300 Plug-in Crystal
NC 300 Cl for $11 / 4$ meter band.

FINEST AMATEUR RECEIVER IN ITS PRiCE CLASS

The accent is on value . . . with features found only in more expensive receivers.

The lowest-priced general coverage receiver available today with exclusive "Microtome" crystal filter, separate product detector for CW and SSB reception. Has big " S " meter. Covers 540 ke to 40 mc in four bands including broadcast band. Voice, CW or SSB. Features smart, new styling.

FEATURES:

* Calibrated bandspread for $10,11,15,20,40$ and 80 meter amateur bands. Separate tuning capacitors, knobs, and scales for general coverage and bandspread.
* Large 12 inch indirectly-lighted lucite slide rule dial.
* Adequate over-all selectivity with eleven miniature tubes including rectifier and voltage regulator.
* Has exclusive "microtome" crystal filter providing five degrees of sharp selectivity in addition to normal bandwidth for voice, has sharp phasing notch over 60 db deep for interference rejection.
* Separate product detector for excellent reception of CW and SSB Signals.
* Has " S " meter on front panel for signal strength indication and more accurate tuning.
\star Accessory socket for external adaptors, and other accessory devices including phono input or crystal calibrator.
* Has gang-tuned RF amplifier stage, two IF and two AF stages.
* Has separate antenna trimmer and tone control on front panel.
* Separate high frequency oscillator tube increases stability. Has ceramic oscillator coil forms and is temperature compensated for exceptional stability.
* Separate RF and AF gain controls.
* Series type automatic noise limiter.
* Conelrad (CD) irequencies clearly marked on dial.
\star Mode selector switch for ANL, AM, CW, SSB and accessories.
\star Smartly designed two-tone cabinet.
coverage:

BAND	GENERAL COVERAGE	BANDSPREAD
A	$.54-1.6 \mathrm{mc}$	-
B	$1.6 \cdot 4.7 \mathrm{mc}$	$3.5-4.0 \mathrm{mc}(80 \mathrm{~meters})$
C	$4.7-15.0 \mathrm{mc}$	$6.9-7.3 \mathrm{mc}(40$ meters $)$
D	$14.0-40 \mathrm{mc}$	$14-14.35 \mathrm{mc}(20$ meters $)$
		$20.4-21.5 \mathrm{mc}(15$ meters $)$
		$27-30 \mathrm{mc}(10: 11$ meters $)$

TUNING SYSTEM: Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Bandspread, used primarily for tuning the amateur bands, can be used as a vernies for general coverage use. Antenna trimmer is on the front panel.

AUDIO SYSTEM: Two-stage audio amplifier with single 6A05 output tube provides 1.5 watts at less than 10% distortion. A handsomely styled accessory speaker is available. Output impedance 3.2 ohms. Has phone jack.

DRIFT: $.01 \%$ or less.
SENSITIVITY: Under $1-2$ microvalts (10 db signal/noise ratio).
Selectiviry: 6 Positions. Constant Gain.

	NORMAL	SHARP
6 db	5.2 kc	200 cycles
60 db	29.5 kc	10 kc

plus four additional intermediate degrees of sharpness.
CONTROLS: Main tuning; bandspread tuning; antenna trimmer; band selector switch; RF gain control; AC ON/OFF and AF gain control; stand-by switch; mode selector switch for ANL, AM, CW. SSB and ACC; tone control switch; BFO pitch control; selectivity control; phasing control.
TUBE COMPLEMENT:

RF Amp.	6BA6	AF Output	6AQ5
Freq. Conv.	6BE6	Rectifier	5 Y3GT
HF Osc.	6 CA	Voltage Regulator	082
1st IF Amp.	6BA6	Product detector	$6 B E 6$
2nd IF Amp.	6BA6	Det, AVC and ANL	6AL5
1st AF and BFO/S meter amp.	12AT7		

OTHER SPECIFICATIONS:

Antenna Input: 50-300 ohms, balanced or unbalanced.
Size: $1613 / 16^{\prime \prime}$ Wide $\times 10^{\prime \prime}$ High $\times 107 / /^{\prime \prime}$ Deep.
Finish: Handsome Two-tone gray wrinkle finish.
Shipping Weight: Approx. 35 lbs .
Optional Accessories: Matching Speaker, XTAL calibrator.
Only $\$ 19.95^{*}$ down
Up to 20 months to pay at most Receiver Distributors.
*Suggested Price: \$199.95**
\because Prices slightly higher west of Rockies and outside U.S.A.

THE ACCENT IS ON VALUE... A LOW PRICED GENERAL COVERAGE RECEIVER

A new low-priced general coverage receiver featuring smart, modern styling.

Receiver is directly calibrated for the four general coverage ranges and five bandspread ranges for the amateur bands (80-10) meters).
Covers 540 KC to 40 MCS . Voice or CW.

FEATURES

* Calibrated bandspread for 10, 11, 15, 20, 40 and 80 meter amateur bands. Separate tuning capacitors, knobs, and scales for general coverage and bandspread.
* Large easy-to-read 12 inch slide-rule dial with combination edge and backlighting. Has large tuning knobs with two pointers for two scales; general coverage and bandspread.
* Adequate over-all selectivity with nine miniature tubes including rectifier.
\star Has gang-tuned RF amplifier stage for increased sensitivity and image rejection.
* Covers 540 KC to 40 MC in four bands.
* Two IF amplifier stages and two audio stages with tone control.
* Separate antenna trimmer on front panel.
* Separate High Frequency oscillator tube for increased stability. Oscillator is temperature compensated and ventilated for increased stability.
* Separate RF and AF gain controls.
* Series type automatic noise limiter.
\star Receives AM, CW and SSB signals. BFO provided for CW and SSB.
* Has " S " meter on front panel for signal strength indication and more accurate tuning.
* Provision for balanced or unbalanced antenna input at 50 to 300 ohms.
* Handsome two-tone gray cabinet.
coverage:

BAND
A
B
C
D
general coverage
.54-1.6 MC
1.64.7 MC
4.7.15 MC
14.0-40 MC

BANDSPREAD

3.5-4.0 MC (80 meters) 6.9.7.30 MC (40 meters) 14.0-14.35 MC (20 meters) 20.4-21.5 MC (15 meters) 27.0-30 MC ($10^{1} 11$ meters)

TUNING SYSTEM: Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Bandspread, used primarily for tuning the amateur bands, can be used as vernier for general coverage use. Separate antenna trimmer control.
AUDIO SYSTEM: Two-stage audio amplifier with single 6AQ5 output tube provides 1.5 watts at less than 10% distortion. A handsomely styled accessory speaker is available. Phone jack.
SENSITIVITY: Under 2.5 microvolts (10 DB signal/noise ratio).

SELECTIVITY	NORMAL
6 DB	5.2 kc
60 DB	22 kc

CONTROLS: Main tuning; bandspread tuning; antenna trimmer; band selector switch; RF gain control; AC ON/OFF and AF gain control; stand by-reccive switch; noise limiter switch; tone control switch; BFO pitch control; AM/CW switch.

TUBE COMPLEMENT:		2nd IF Amp.	6BA6
RF Amp.	6BA6	Det, AVC and ANL	6AL5
Freq. Conv.	6BE6	Ist AF and BFO	12AT7
IIF Osc.	6C4	AF Output	6AQ5
Ist IF Amp.	6BA6	Rectifier	$5 Y 3 G T$

OTHER SPECIFICATIONS:

Antenna input: 50-300 Ohms, Balanced or unbalanced.
Size: $16.13 / 16^{\prime \prime}$ Wide $\times 10^{\prime \prime}$ High $\times 10.7 / 8^{\prime \prime}$ Deep.
Finish: Handsome two-tone gray wrinkle finish.
Shipping Weight: Approx. 35 lbs .
Optional Accessories: Matching Speaker.
Only \$15.95* down
Up to 20 months to pay at most Receiver Distributors.
*Suggested Price: 159.95**
Prices slightly higher west of Rockies and outside U.S.A.

NC-66 is shown with RDF-66 Direction Finder Accessory

PORTABLE RECEIVER for home and away-indoors and outdoors

World's most versatlle receiver! . . a a ham receiver, a 3 -way portable, a marine receiver, and an SWL receiver.
For home and away-indoors and out.
National's new NC-66 offers you AC/DC-battery operation, five-band coverage from 150 kc to 23 mc , electrical bandspread with logging scale, plus a fixed-tuned CW oscillator. Housed in a handsome, rugged metal cabinet with a carrying handle, National quality is evident throughout this great new portable. You'll find it attractively functional with a long "Full-Vue" slide rule dial, a quality $5^{\prime \prime}$ PM speaker, and a phone jack. It also has two antennas: whip and loop stick.
For boat owners a special marine band from 150 kc to 400 ke covers maritime DF beacon service. And. of course, CD positions are clearly marked.

FEATURES:

* Continuous coverage of DF beacons, AM broadcast, amateur and world.wide shortwave bands. $150-400$ $\mathrm{kc}, .5$ to 23 mc .
* Operates on 115 volt AC or DC or self-contained batteries, or 220 volt AC with accessory adaptor.
\star Full electrical bandspread.
\star Provisions for external direction finder for marine use.
* Salt spray tested.
* Built-in ferrite loop antenna for DF and $B C$ bands.
\star Built-in whip antenna for shortwave bands.
* Receives voice or code. Has CW oscillator; and provision for phones.
* "Full-Vue" slide-rule dial with easy-to-read scals. Amateur and principal shortwave bands as well as CD positions clearly marked.
\star Logging scale provided.
* Complete with built in speaker.
* Separate switch for stand by operation.
\star Handsome, modern styling: two-tone metal cabinet, chrome trim, with carrying handle, and enclosed back.
BAND
DF
BC
1
2
3

> COVERAGE 150-400 KC
> $.50 \cdot 1.4 \mathrm{MC}$ 1.40.4.05 MC 4.0.11.4 MC 11.0-23 MC

TUNING SYSTEM Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Three gang capacitors tune antenna, RF and oscillator circuits. Bandspread knob can be used as a vernier on all frequencies.
AUDIO SYSTEM: Two-stage audio amplifier with 3 V 4 output tube. Has speaker and phone output jack.
CONTROLS: Main tuning; bandspread; volume control; band selector switch; AM-CW switch; stand-by. off - receive switch.

TUBE COMPLEMENT:

RF	IU4	Audio output	$3 V 4$
Converter	$1 L 6$	Rectifier	Selenlum
CW on-IF Amp. 1U4			
2d Det. - AVC - 1st audio 105			

OTHER SPECFICATIONS:

Antenna input: 50.300 ohms, unbalanced.
Size: $12.5 / 16^{\prime \prime}$ wide $\times 9.11 / 16^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep overall).
Finish: two-tone gray.
Shipping weight: 16 lbs . less batteries.
Optignal accessories: RDF.66 Loop, 220V. adaptor.

Only \$12.95* down

Up to 20 months to pay at most Receiver Distributors. *Suggested Price: \$129.95** RDF. 66 Direction Finder Accessory available at additional cost
**Prices slightly higher
west of Rockies and outside U. S.A.

40

BEAM POWER TUBE 4 U wafis input CW; 37.5 warts SSB; 27 watts AM. Full imput to 125 Mc. RCA-6893 is identical to the 2526, but has $\mathbf{1 2 . 6 V}$ heuler. RCA-2E24-a quick-henting-filament version of the 2E26-has identical input ratings.

POWER TAIODE 150% walis input CW; 1300 warts SS:; 1000 watts AM. Full inpur to 30 Mc .

BEAM POWER TUBE 75 walts input CW; 90 wathe SSB; 60 watts AM. Full input to 60 Mc .

TWIN BEAM POWER TUBE 120 watts inpul CW; 110 watts SSB; 90 watts AM. Full input up to 200 Mc . 500 watts input CW and SSB; 320 watts AM. Full input to 150 Mc .
 ways to

Pictured across these pages are some of the sweetest power tubes ever designed and built for amateur transmitter service. High-perveance tube design-an original RCA advancement-makes it practical to get full power at relatively low plate voltages. Great reserve of cathode emission carries you through the power peaks. Conservative tube ratings assure long-life performance.

RCA high-perveance triodes and beam power tubes are available to you in a wide choice of powers to meet every amateur transmitter requirement-whether the application is 'phone or CW , HF, or VHF.

For more watts for your "transmitter dollar", it will pay you to design around "RCA's"-the power tubes that leading transmitter designers specify. Your RCA Industrial Tube Distributor handles a complete line of RCA power triodes and beam power tubes.

put out a "solfd" signal

RCA TRANSMITTING TUBE MANUAL-TT4. 256 fact-filled pages covering 108 power tubes and 13 rectifier tubes. Includes theory, data, installation, application, and useful circuits. See your RCA Industrial Tube Distributor. Or send $\$ 1.00$ to RCA Commercial Engineering, Section A-11-M, Harrison, N.J.

RCA HAM TIPS . Written by radio amateurs for radio amateurs, this regular publication carries up-to-the-minute tube and circuit information, how-to-make-it articles, and latest "tips" for the ham shack. Free from your RCA Industrial Tube Distributor. Or write RCA Commercial Engineering, Section A-1l-M, Harrison, N. J.

RADIO CORPORATION OF AMERICA

ROGER MACE (W8MWZ)
SENIOR HAM ENGINEER
HEATH COMPANY

HEATHKIT 50-WATT CW TRANSMITTER KIT

MODEL DX-20
\$35. ${ }^{9 .}$

If hioh elficiency at low cost in a CW traremiltur anter he ;ou you should be using a DX-20! It employs a sin jle 6DQ6A tube in the final Amplifier sta je for plate power input of 50 watts. The oscillator sta se is a 6CL6, and the rechifier is a $5 \cup 4 G B$. Sirm ale. knob band-switchings is featured to cover $80,40,20,15,11$ and 10 meters, and a ni netwark sufput circuit muflles antenina impedances between 500 and 1000 ohms in medre harmume output. Dest jned for the novice as woll as the ad maced class CW operator. The transmitter is actually pin to bull, tver for a beginner, with complete step-by-step instructio"s ard potorat diaupams. All the parts are top-qualit, and well rated for their application. "Potted" tran,former, copper"plated chas-1", ard ceramic switch insulation are typical. Mecharii al ar delectric al construction is such that TVI problems are mimmized. If you desire a good clean CW signal, this is the transmitter for youl Shpg. Wt. 18 lbs .

HEATHKIT DX-100 PHONE \& CW TRANSMITTER KIT

MODEL
 DX-100

hipped mo otherwise specifled. $\$ 50.00$ deposit required on C.O.D. orders.

You get more for your transmitter dollar when you docide on a DX'. ICO for your ham shack! Recognized as a leader in its power class, the DX- 100 offers such features as a built in VFO, built in modulator, TVI suppression. Pi network output coupling to match a variety of antenna impedances from 50 to 600 ohms, Pi network interstage coupling, and high quality materials throughout. Copperplated No. 16 gauge steel chassis, ceramic switch and coil insulation, silver-plated or solid silver switch contacts, etc., are typical of the kind of parts you get, to use in assembling this fine rig. The DX- 100 covers $160,80,40,20,15,11$, and 10 meters with a single band switch, and with VFO or crystal operation on all bands. RF output is in excess of 100 watts on phone and 120 watts on CW, with a pair of 6146 tubes in parallel for the final Amplifier, modulated by a pair of 1625 tubes in parallel. Other tubes featured are: 6AL5 bias rectifier, 5V4 low voltage rectifier, 2.5R4GY high voltage rectifiers. OA2 voltage regulator, 12AX7 speech amplifier, 12BY7 Audio driver, 6AV6 VFO, 12BY7 crystal oscillator-buffer, 5763 r.f. driver, and a 6AQ5 clamp tube. VFO tuning dial and panel meter are both illuminated

for easy reading, even under subdued lighting conditions. Attractive front panel and case styling is completely functional, for operating convenience. The DX- 100 was designed exclusively for easy step-by-step assembly, and no other transmitter in this power class combines high quality and real economy so effectively. Listen to any ham band between 160 meters and 10 meters and make a mental note of how many DX transmitters you hear! This kind of acceptance by the amateur fraternity testifies to the performance and quality of the rig. Its the kind of a transmitter you will be proud to own, and one that will give you a very respectable signal on the air. Time payments available! Shpg. Wt. 107 lbs.

top quality at lowest prices!

NEW HEATHKIT PHONE \& CW TRANSMITTER KIT

The new DX-40 incorporatos the same hinh nuality and stability as the DX-1C0, but is a lower powgred rig, for crystal operation, or for use with an external VFO. Plate power input is 75 watts on CW, permitting the novice to utilize maximum power. An efficient, controlled-carrier modulator for phone operation peaks 'up to 60 -watts. so that the rig has tremendous appeal to the general class operator also. Single-knob switching covers $80,40,20,15,11$ and 10 meters. Pi network output coupling makes for easy antenna loading, and Pi network interstage coupling between the buffer and final amplifier improves stability and attenuates harmonics, A line filter is incorporated for power line isolation. The efficient oscillator and buffer circuits provide adequate drive to the 6146 final amplifier from 80 to 10 meters, even with an 80 meter crystal. A drive control adjustment is provided, and the function switch incorporates an extra "tune" position so the buffer stage can be pretuned before the final is on, and so

the operator can locate his own signal on the band. Tubes used are a 6CL6 Colpitts oscillator, a 6CL6 buffer, a 6146 final amplifier. a $12 A X 7$ speech amplifier, a 6DE7 modulator, and $5 U 4 G B$ rectifier. The modulator, incidentally, has plenty of "punch" for clear, strong phone operation. A switch selects any of three crystals, or a jack for external VFO. A high. quality meter with D'Arsonval movement mounts on the front: panel for tuning. Whether you are a newcomer or an oldtimer, you will find the DX-40 an ideal rig in its power class! Shpg. Wt. 26 Ibs.

ALL-BAND RECEIVER

ELECTRONIC VOICE CONTROL

"Q" MULTIPLIER

HEATHKIT ALL-BAND COMMUNICATIONS. TYPE RECEIVER KIT

Ideal for the short wave listener or beginning amateur, this Keceiver covers 550 KC through 30 MC in four bands. It provides good sensitivity and selectivity, combined with fine image rejection. Amateur bands are clearly marked on the illuminated dial scale. Features transformer type-power supply-electrical band spread-antenna trimmer-separate RF and AF gain con. trols-noise limiter-internal $51 / 2$ " speaker-head phone jack and AGC. Has built-in BFO for CW reception. An accessory power socket is also provided for connecting the Heathkit model QF. 1 Q Multiplier. Will supply 250 VDC at 15 ma MODEL AR. 3 and 12.6 VAC at 300 ma . Shpg. Wt. 12 lbs .
Cabinet: Fabric covered cabinet with aluminum panel as shown part 91-15A. Shpg. Wt. 5 Ibs. \$4.95

HEATHKIT ELECTRONIC VOICE CONTROL KIT

Here is a new and exciting kit that will add greatly to your enjoyment in the ham shack. Allows you to switch from Receiver to Transmitter merely by talking into your microphone. Lets you operate "break-in" with an ordinary AM transmitter. A terminal strip is provided for Receiver and speaker connections and also for a 117 volt anfenna relay, Unit is adjustable to all conditions by sensitivity and gain controls provided. Easy to MODEL VX-1 build with complete instructions provided. Requires no transmitter or Receiver alterations to operate. Shpg. Wt. 5 lbs.

HEATHKIT "Q" MULTIPLIER KIT

This fine Q Multiplier is a worthwhile addition to any communications, or Broadcast Receiver. It provides additional selectivity for separating signals, or will reject one signal and eliminate a hetrodyne. Functions with any AM Receiver having an IF fre. quency between 450 and 460 KC that is not AC-DC type. Oper. ates from your Receiver power supply, and requires only 6.3 VAC at 300 ma (or 12.6 VAC at 150 ma), and 150 to 250 VDC at 2 ma . Simple to connect with cable and plugs supplied. MODEL QF. Effective Q of approximately 4000 for sharp "peak" or "'null'". A tremendous help on crowded phone or CW bands. Shpg. Wt. 3 Ibs.

59!

more fine ham gear from the pioneer

GRID DIP METER

HEATHKIT GRID DIP METER KIT

A Grid Dip Meter is basically an RF Oscillator used to determine the frequency of other Oscillators, or tuned circuits. Numerous other applications such as pretuning, neutralization, locating parasitics, correcting TVI, adjusting antennas, designed procedures, etc. Features continuous frequency coverage from 2 MC to 250 MC , with a complete set of prewound coils, and a 500 ua panel meter. Has sensitivity control and a phone jack for listening to the "Zero-Beat". It will also double as an absorptiontype wave meter. Shpg. Wt. 4 lbs .

MODEL GO.18
Low frequency coil kit: two extra plug-in coils extend frequency coverage down to 350 KC . Shpg. Wt. 1 lb. No. 341-A $\$ 3.00$
$\$ 795$

HEATHKIT VARIABLE FREQUENCY OSCILLATOR KIT

Enjoy the convenience and flexibility of VFO operation by obtaining this fine variable frequency oscillator. It covers 160-80-40-20. 15.11 and 10 meters with three basic oscillator frequencies. Better than 10 volt average RF output on fundamentals. Requires 250 volts DC at 15 to 20 ma , and 6.3 VAC at 0.45 a, available on most transmitters. It features voltage regulation for frequency stability, and has illuminated frequency dial. VFO operation allows you to move out from under interference and select the portion of the band you want to use without having to be tied down to only 2 or 3 frequencies through the use of MOOELVF-I crystals. "Zero in" on the other fellows signal and return his $C Q$ on his own frequency! Shpg. Wt. 7 lbs .

HEATHKIT REFLECTED POWER METER KIT

A necessity in every well equipped ham shack, the model AM-2 lets you check the match of the antenna transmission system, by measuring the forward and reflected power or standing wave ratio. Handles up to one kilowatt of energy on all bands from 160 to 2 meters, and may be left in the antenna system feed line at all times. Input and output impedances for 50 or 75 ohm lines. No external power required for operation. Meter MOOEL AM-2 indicates percentage forward and reflected power, and standing wave ratio from 1:1 to 6:1. Shpg. Wt. 3 lbs .

HEATHKIT BALUN COIL KIT

This convenient transmitter accessory has the capability of matching unbalanced coax lines, used on most modern transmitters, to balanced lines of either 75 or 300 ohms impedance. Design of the bifilar wound Balun Coils will enable transmitters with unbalanced output to operate into balanced transmission line, such as used with dipoles, folded dipoles or any balanced antenna system. Can be used with transmitters and mooel B.1 Receivers without adjustment over the frequency range of 80 through 10 meters. Will handle power inputs up to 200 watts. Shpg. Wt. 4 lbs.

VARIABLE FREQUENCY OSCILLATOR

REFLECTED POWER METER

BALUN COIL

Wozfolf Easiest and best Way tosem

Famous
Easy-Working
Semi-automatic

VIBROPLEX

Does all the hard, arm-

 tiring work for you- That's because its semi-automatic action actually denes all the tiring arm work for you
- Vibroplex also gives fast relief from nervols and monsular tension citused by continued use of old fashioned keys
- Rednuires no special skill
- Idju-table to your own speed

Pruisitm built lor long lite and rough usage

- Enels sending fatigue forever
- Provides lifetime keying ease and enjoyment

PRESENTITION - Made to fine instrument standards with exclusive feaGutes deatmed to make krying not only eatior but better, inchuting an superspeed control manspring for greater speed ramge and to bermit slowest sending without additional weights. Has poliohed chrominm barts. 24-K゙ gold-plater? base top, red trim and jewnel mosement. Tho most attratise and easient work ing key ever buite. Jou'll be proud to own this key. With circuit clower, \$29.95.*

ORIGINAL - Famous the world over for sigmal cuality, ease of opration and all aromed keving excellence. by thousands of the workl's finest operators and anbtroms. Built for long life and rough usage. This key can take it. With $\$ 2.95$, closcr. Standard, $\$ 19.95$; DeLuxe,

CaRRYING CASE: - Black, simulated morncco. Cloth lined. Reinforced cormers. Flexible leather handle. Irotect: kev from dust dirt and moisture and insures safekeeping when not in nse. With lesk nom ber $\$ 6.75$.

Aroid imitations!
" 131 G" I rade Mark iclentifies the Gemuine \'ibromex Accept no subititute

LIGHTNING: BIG - Handsome, rugend. reliable. Wieh many excluwise feathtes contributing to erasier operation and better signals, incluid tur at flat peftelulum bar sloweal weighte rant work locose: brilged damber frame to protect kes from thanage, and many other., I strong favorite with thousands. With circuit closer. Standard, $\$ 18.95$; DeLuxe, \$22.95,

BI ITE RACER - Small, compace, handy to carry. Built extra sturdy like the Original, but only half the size. W't. 2 lbs. 80% Ilats all the tratures of the famons ()riginal kes: If your preference is for a smaller key thats TOl'S in keving performance - this is it. With circuit clasar. Standard, $\$ 19.95$; Delatese. $\$ 23.95$.
With Cord and Wind)e \$1.75
thoris.
NEW SPECIAL ENLARI:ED Edition of PHILLIPS CODE, $\$ 2.75$ Postpaid

Also inc lucles:
Kation Cote Siguals International Storge American Morse Turkiwh and lanabic Turkish ind lapanuse
Worse time col

Cumplistates 7 ime Chart
Commercial " 2 Code leromamical "O" Coxle ifiscollanticmus Abbrevia tions. l"sel on imernacalte and ratio chearaph calbe and radio telegraph
Ciet your copv tod:y!

Don't be a slave to old arm-tiring keys. Sencl with the easier, semiallomatic Vibromlex! Saves the arm and nerves. Provides a lifetime of sending inleasure. It's trouble-proof. At dealers or direct. FREE folder.

Prices subject to change without notice
THE VIBROPLEX CO., INc., 833 Broadway, New York 3, N. Y. w. w, Alaricht, Prenidow
if You sañ you shoulo use the viaroplex

COMMERCIAL CRYSTALS $200 \mathrm{KC}-100 \mathrm{MC}$

International's four mosi popular wire-mounted, plated precision crystals, for use in commercial equipment where close tolerances must be

Pin dio. .050; Pin length .238; width 750 ; height .765

Pin dia. .093; Pin length .445; width .750; height . 765

Pin dia. .125; Pin length .620; width .750; height .765

Pigtail dio. .030; Other dimensions same as dimen
F-605. observed. Where circuit is not specified, crystal is calibrated into a load capacitance of 32 mmf . In most cases, correlation data is on file for all major two-way equipment.

DESCRIPTION AND DATA

Low drift AT-cut blanks are used in units above 500 KC , and low drift DT and CT-cut blanks in units below 500 KC ; any crystal can be supplied for operation with or without an oven.
Holders: Metal, hermetically sealed. Pin spacing . 486
Temperature Tolerance: AT - $\pm .005 \%$ from -55° to +90 C . $\pm .002 \%$ from -30 to +60 C . DT-CT - $.01 \%$ from -40 10 70 C .
Calibration Tolerance: AT - . 002% of nominal at - $30^{2} \mathrm{C}$. DT-CT - $.01 \%$ of nominal at : 30 C .
Drive Levels: Maximum, AT - 10 milliwatts 500 KC to 9999 KC 4 milliwatts $10,000 \mathrm{KC}$ to $24,000 \mathrm{KC}$ 2 milliwatts 25 MC to 100 MC
DT-CT - 2 milliwatts
Circuit: As specified by customer.

ONE DAY Processing - HOW TO ORDER!

For fastest service, crystals are sold direct. Shipments made on open account where credir has been approved, terms F. O. 8. Oklahoma City. On C. O D. orders of $\$ 25.00$ or over, $1 / 3$ rd down payment with order is required.

Sufficient information must be supplied with order for occurate processing. Specify quantity, channel frequency, crystal frequency: equipment make and model and equipment manuiac. iurer's crystal type number. Gerrelation dato for most ntwer equipment is on fite.

Amateur Crystals 1500 KC—90 MC

Wire-maunted, plated crystals far use by amateurs and experimenters where talerances af $.01 \%$ ore permissible and wide-range temperalures are nat encauntered. Designed to aperate inta a 32 mmf laod an their fundamental between 1500 KC and 15 MC . Operate at anti-resanance an 3rd overiune. 5th overtane crystals designed to aperate of series resanance.

Halders: Metal, hermetically sealed. FA. 5 is .050 pin diameter. \&A. 9 is .093 pin diameter.

Frequency Range: 1500 KC to $15,000 \mathrm{MC}$ an fundamental; 15 MC ta 58 MC an 3rd avertane. 59 MC to 90 MC on 5 th avertone. Overtane crystals, calibrated an their overtane frequency, are valuable far receiver-canverter applications and are NOT NORMALLY UTILIZED IN TRANSMITTERS, since anly a small amaunt af pawer is available under stable operating canditions).

- Calibration Talerance: $\pm .01 \%$ af naminal at $30^{\circ} \mathrm{C}$.
- Temperature Range: -40° ta $70^{\circ} \mathrm{C}$: $\pm .01 \%$ af frequency at $30^{\circ} \mathrm{C}$
- Drive Level: Recommended, maximum 3 milliwalls for avertanes; up to 80 milliwatts far fundamentals, depending on frequency. NOTE: for low frequency crystals, refer to FX-1 type.

PRICES Amateur Crystals - ONE DAY Processing!

Frequency Range

Fundomental Crystal 1,500-1,799 KC 1,800-1,999 KC 2,000-9,999 KC
$10,000-15,000 \mathrm{KC}$

Price Frequency Range Overtane Crystals
$\$ 4.50$ (for 3rd Overtane Operation)
$\begin{array}{rl}\$ 4.50 & 15 \mathrm{MC}-29.99 \mathrm{MC} \\ 4.00 & \$ 3.00\end{array}$
$3.00 \quad 30 \mathrm{MC}-58 \mathrm{MC}$
4.00 (far 5th Overtane Operation) $59 \mathrm{MC}-75 \mathrm{MC}$
$76 \mathrm{MC}-90 \mathrm{MC}$
4.00

FO-1L 100 кс OSCILLATOR

Printed circuit oscillator for band edge calibrotor and frequency standard use. Additionol requirements: Power 6.3 volts $A C$ @ 150 ma- 150 volts $D C$ @ 8 ma .

Kit, complete with tube and crystal........ $\$ 12.95$ Wired and tested.. 15.95 100 KC Crystal only...... 8.50

FMV-1 10 кc MULTIVIBRATOR

Used in conjunction with the FO.1L 100 KC Oscillator to form a complete secondary frequency standard. When the FO. 1 L 100 KC Oscillator is accuralely tuned to zero beat with WWV transmissians, precise frequency measurements to 30 MC can be made. Additional requirements: Tube-12AT7. Dower- 6.3 volts AC @ 300 ma; 150 volts DC @ 15 ma.

Kir, less tube \qquad .$\$ 5.95$

Wired and Tested, with tube..
.$\$ 8.95$

FO-6 OSCILLATOR and BUFFER ASSEMBLY

For stable crystal contral with High Frequency Crystals. Midget 6 Meter Transmitter-Provisions are made for separate B connections to the buffer stage for modulation
Driver Unit for higher power 6 meter transmitter. Will work into 5763 tube which will provide ample drive for a 6146 final. For 2 meter operation, the unit can operate strsight through on 48 MC and drive a 5763 tube as a tripler. Size $2^{\prime \prime} \times 23 / 4 \times 23 / 4$

Kit (Less pube and crystal)
.$\$ 5.95$
Complete Wired and Tested with tube (less crystal)...................... 9.95

C-12 ALIGNMENT OSCILLATOR

Makes 12 Most Used Frequencies Inspantly Availablel 200 KC to 60 MC !

Crystal controlled, for generating standard signals in alignment of IF and RF circuits! Has 11 internal crystal positions and 1 external, for quick selection. Accom. modates $F X-1$ erystals fram 200 KC to $15,000 \mathrm{KC}$. Special oscillators avoilable for use at higher frequencies to 60 MC . Built-in Attenuator has both coarse and fine controls. Signal can be reduced to a level of approximately 10 microvolts. Maximum output is .6 volt.

The C. 12 is a compaci, self-contoired unit complete with power supply, for operotion on 15 volts $A C, 60$ cycle. Oscillator
(Less Crystols)
In Casa,
less Cover........ $\$ 59.50$
In Case with Cover and Carrying Handle as Shown $\$ 69.50$

T-12 TRANSMITTER 12-WATT 3500-4000 KC 7000-7300 KC

Pi-network output enables operator to couple into almost any type antenna. Low drive oscillator with International FA or F-6 crystals; may be used in close tolerance applications. 12BH7 Oscillator-buffer and 5763 final. Power requirements: Filaments 6.3 YAC @ 1.35 amp . Plate supply 350 volts dc @ 50 mils . Separate B+ input connection to final for addition of modulation. Crystal frequency same as output frequency; uses straight through operation!
r-12 Wired with tubes and one 80 or $\mathbf{4 0}$ meter crystal (Specify KC)
(Kits for assembly also available)

FCV-2 CONVERTER

\author{

- Model 50-6 Meters
}
- Model 144-2 Meters

A oU8 lube is used for oscillator-mixer. Cascode r-f amplifier using 6BQ7A. IF outputs ovailable from broadcast band through 30 MC. Designed to mount in a slandard $3^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ minibox.
Kit with crystal (less tubes)
.$\$ 12.95$
Wired with crystal and tubes....................................... $\$ 17.95$

VFA-1 CASCODE PREAMPLIFIER

For 2 Meters or 6 Melers, using the 6BQ7A in a low noise circuit. Designed to mount in a standard $3^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ minibox. Kit, less tubes. $\$ 4.75$

Wired, with tubes. 6.95

IFA-10 IF AMPLIFIER

For use between converter and receiver. Uses 6AH6 type tube. Available for $1-F$ ranges from broadcast band through 30 MC . Designed to mount in a standard $3^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ minibox.

HOW TO ORDER

PRINTED CIRCUIT UNITS and KITS

Please supply sufficient information with order to facilitate accurate processing. Shipments are made on open account F. O. B. Oklahoma City when credit has been approved. On C. O. D. orders of $\$ 25.00$ or over, $1 / 3$ down payment with order is required. Kindly include in check or money order sufficient postage and insurance for your Parcel Post Zone. Shipping weight of Printed Circuit Units, 1 pound.

Tome-Tedted WRL TRANSMITTERS!

 too 'woerteson "The Natural Choice of Most Hams!"
Thic Clabe Chief 90 Kit

onl $\$ 500$

\$7.45 Down: \$6.15 per mo.

A compact, completely hamdswitching, no watt Smetr. for $10 \cdot 1603$. With well-filtered, lsuits-m powel suphly, bi-net Grid How-h Kevdry is usod for masimun safety lroulvions for vio anjut ant
 put and ofnerazimb. Meter and cahbinet are shifelded for Till reduction. The kit form consouns all parsa. wre-punched chassis. and detalled matuol for cons struction

Sereen Modulater Kit SM-90

Only $\$ 1995$
nesigned espechally for use with the folote Chief. butt contains instructions for use with similar CW Nmitr lermits randiotele plone operation of CW Nimttr, at mioimmin cout, solf rontainerd. boart. all parts and connections for Mublu'vens to ximty

NEW FROM WRL
 Four Famous Products

Grounded Grid Lillear Amplifier LA-1 Complete with welt-fittered Power simply Wtred is rectral \$124.50 kit: $\$ 99.50$ Universat suecti, Modelatar UM. 1 Complere wish tuines: $\$ 49.95$ Kit (le...
Globe Matcher 5 F .
Antenna Tuner with tullt-in vSWr Wired \& Te-ted: $\$ 79.50$; Kit; $\$ 69.50$ Clobe Matcher Jr.
Antenta Thuer, wimnel \& trstan; $\$ 15.95$ Kit: \$11.95

SAVE up to 50\%

On Reconditioned Equipment

 Hundreds and hundreds of reconditioned lems with is cutuplete. factory. new Euarantee - different each month.
AT WORLD RADIO .

\sim ONLY 10\% DOWN
\sim TOP TRADE-INS
\sim PERSONALIZED SERVICE
\checkmark FAST SHIPMENT
tris Cobbe Scout 680 onvs $\mathrm{S}_{\mathrm{M}}^{90}$

Here's a self.contained, bandswitching Xmetr. for 6-80M: - 65 watts $C W$ nnd 50 watts Fone. Has buits-in power supply. A high level modulation is malntained. Pinnet output on $10-80 \mathrm{~s}$: 11 nk . coupled on fis, matching into low impedanee heats. New type, wise-view, shlielded meter, and TVI-suppiressed cabi. net. Kit emmplete witls all parts and detalled manual. Gione scout fis is identieal to Ggo, but for bandewitehing 10.160M. Avablable wired anti testet. only.

THE Clabe King 500B only $\$ 4572$ per mo.

Most watts for the least, the King is a bindswlteher for $\overline{3} 40$ watts Fone \& Cw, 5) watt: SSA (PFiP) with lige watt some eabinct. spmectally depiened for TVI-sumpresslon. Features hulli-ll antenna relay, bult-in 'ITO, sepnrate power supply for nandulator aljowline better overail voltage regulation. grideblock keytary for signal clarity and commercial type commession circuit, keeping modulation at high level. Pi-net matelies most antennas. $52-600$ ohms. Provisions for erystal operation, and ssn input and operation with external exciter. Certifled by the FCDA for crystal controlled operation

FREE $\begin{gathered}1958 \\ \text { CATALOG }\end{gathered}$

Dear Leo... Please Rush Me Your New free CATALOC \square And Info On
 \square Clobe Chief \square Clobe Scout Modulator KitReconditioned Equipment \square Four New WRL Products

NAME: \qquad

ADDRESS:

CITY \& STATE: \qquad

HRRUEY (1.6) :

RGA Tubes and Harvey Service... For Double Dependability!

HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . . right from stock . . . and deliver at almost a moment's notice.

This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Amateurs, and Service-Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

Write, Wire or Phone for PROMPT HARVEY SERVICE

J isit Ilareeve Vou Ham Radin Comtor. The latosi amal lopst in hom gear is alucose on displas:

54

SEMICONDUGTORS - INDUSTRIAL - ELICTRO-MEDICAL

COMMUNICATION

6977

RECTIFICATION

E1.84

6693

HELPFUL CHARTS \& LITERATURE FREE:
Write far CONOENSEO TUBE CATALOG, informa. tion of a glance, rapid lube dota peference tables, 28 pages of can densed informalion arranged for quick refer ence. Address your distrib ulor or Amperex direct

| $: X E N O N ~ R E C T I F I E R S$ | 7.60 |
| :--- | :--- | :--- |
| $: 3828$ | 12.00 |
| | |

 THYRATRONS

3 C 23	\$11.98
4×260	150.00
632 B	28.00
HYOROGEN THYRATRONS	
+6268/AX9911	32.50
\$6279/AX9912	45.00
INERT GAS JHYRATRONS	
2D21	2.00
5727	2.90

1	MERCURY THYRATRON	
I	FG17/1701/	
1	967/5557	8.
1	AX105/FG105	49.
,	678	47.
1	5559	22.
1	5560 'FG95	28.
1	5869/AGR9950	25.
1	5870/AGR9951	100.
1	6786	200.

XENON THYRATRONS	
2050	2.55
5544	27.00
5545	29.40
5685/C6J	26.40
TRIODES	
2C39A	22.50
604	3.25
684	2.50
HF200	35.00
HF201A/468	28.50
250TH	33.00
250 TL	33.00
HF300	35.00
450TH	77.00
450 TL	77.00
501R/5759	225.00
502/5760	210.00
502R/5761	235.00
504R	245.00
508/6246	500.00
750 TL	137.50
805	15.90
810	19.50
811 A	5.65
812 A	5.65
833A	49.00
834	14.50
838	16.00
845	15.95
849	145.00
849A	145.00

Type No.

 TRIODES \{cont'd)| 1 | - TRIOOES (romid | |
| :---: | :---: | :---: |
| I | 880 | \$545.00 |
| , | 889 A | 210.00 |
| 1 | 889RA | 330.00 |
| 1 | 891 | 260.00 |
| 1 | 891 R | 410.00 |
| 1 | 892 | 255.00 |
| 1 | 892R | 405.00 |
| , | 283200 | 350.00 |
| i | 5604 | 570.00 |
| 1 | 5619 | 410.00 |
| I | 5658 | 545.00 |
| 1 | 5666 | 250.00 |
| 1 | 5667 | 330.00 |
| , | 5736 | 160.00 |
| 1 | 5771 | 540.00 |
| 1 | 5866 ' AX9900 | 20.00 |
| I | 5867/AX9901 | 30.00 |
| 1 | 5868/AX9902 | 50.00 |
| 1 | 5923/ A 9904 | 150.00 |
| 1 | S924/Ax9904R | 210.00 |
| 1 | 5924A | 240.00 |
| 1 | 6077/AX9906 | 1675.00 |
| 1 | 6078 | 1900.00 |
| 1 | 6333 | 245.00 |
| I | 6445 | 390.00 |
| 1 | 6446 | 290.00 |
| 1 | 6447 | 430.00 |
| 1 | 6617 | 360.00 |
| 1 | 6618 | 495.00 |
| 1 | 6756 | 388.00 |
| 1 | 6757 | 535.00 |
| 1 | 6758 | 173.00 |
| 1 | 6759 | 206.00 |
| 1 | 6800 | 350.00 |
| I | 6960 | 150.00 |
| 1 | 6961 | 210.00 |

GLOW OISCHARGE TRIOOE

 Miniature| 5823 | |
| :--- | ---: |
| HIFI TWIN TRIOOES | |
| ECC8I/12AT7 | 2.50 |
| ECC82/12AUT | 2.85 |
| ECC83/12AXZ | 2.30 |

TWIN TRIOOES

ECCB5/6AO8	2.60
$\$ E 88 C C / 6922$	4.75
$\$ E 92 C C$	1.75
$\$ 5920$	2.00
$\$ 6085$	3.75

TRIGGER TUBE
28040

RAOIATOR CREOIY FOR forceo air-cooleo tubes
rUBE TYPE USERS ALLOWANCE

889RA	\$20.00
891R, 892R	20.00
5604	75.00
5667	20.00
6445	30.00
6447	30.00
6757	75.00

PRODUCTS of the YEAR

5100-B

515B-B/51SB
*All prices subject to change without notice

1 KW Grounded Grid Linear Amplifier-Model L-1000A

- Outstanding performance on all bands 80 through 10 meters - Peak envelope power 1 KW SSB, 875 watts CW - Heavy duty pi-network output circuit allows precise adjustment and loading on all bands - Broadbanded input requires no tuning - Contains own power supply - All power switching operations controlled hy a single fiont panel switch - Ideal for use with $5100-\mathrm{B}$ or $51 \mathrm{SB}-\mathrm{B} / 5100-\mathrm{B}$ combinations and other commercial or home built transmitters - Full output with r-f excitation of only 80 watts. Power Source 117 VAC 60 cycles.
NET PRICE
. $\$ 195.00$

Medium Powered Transmitter 5100-B

- Completely self-contained including power supply and VFO - Bandswitching on the 80-40-20-15-11/10 meter bands. Peak envelope power 180 watts CWSSB; 145 watts AM. Excellent SSB when used with the 51SB-B described below. - Stable VFO accurately calibrated for all amateur bands including 10 meters. Bias system provides complete cutoff under key-up conditions • Excellent TV1 suppression • Pi-network output - Output receptacle on the back for powering other units including the 51 SB-B. Plenty of audio for 100% AM modulation at all times. NET PRICE
. $\$ 525.00$

Single Sideband Generator 51SB-B/51SB

Excellent SSB with your present transmitter - Provides push-to-talk, speaker deactivating circuit, TV1 suppression - Complete bandswitching on 80-40-20-15-11/10 meters - Utilizes frequency control method of your present rig - R-F portion has 90° phase shift network, double balanced modulator, and two class "A" r-f voltage amplifiers. - All operating controls on the front panel - Input impedance 50 ohms resistive; input voltage $1.5-2.0$ RMS on all bands.

MODEL 51SB-B-For use with B \& W 5100-B from which it derives all operating power.
NET PRICE \qquad . $\$ 26.5 .00$
MODEL 51 SB —Similar to 51SB-B, but contains own power supply. For use with other commercial or home built rigs.
NET PRICE
$\$ 279.50$

MODEL qualify 851 Medium Powered Bandswitched Mi-Network Inductor Assembly
 An ultra-compact, highly efficient, integrally

 bandswitched pi-network inductor assembly for single or parallel tube operation 80 through 10 meters. Rated for 2000 VDC at 250 ma input SSB-CW ... 1250 VDC at 200 ma input for AM. Minimum measured " Q " of 300 .NET PRICE
......

R-F Plate Choke-Transmitting Type

Ideal for parallel or series fed circuits. High quality grooved steatite form. Operates 80 through 10 meters. Rated for 2500 VDC at 500 ma .
NET PRICE
$\$ 3.75$

Microphone Adapter Unit

Provides all necessary circuitry for switching a single microphone and push-to-talk features on transmitter-SSB generator combinations.
Use Model 51 MCA with R\&W 5100-5/51SB-B Use Model 51 MCA-B with B\&W 5100/51SB UseModel51MCA-C withCollins32V/B\&W51SB NET PRICE
$\$ 16.50$

Tuning Knobs

Satin-etched, machined aluminum knobs dress up any piece of equipment . . . give it a professional appearance. Four sizes available, one plain, three skirted. Models 900-903.

1-KW Pi-Network Assembly

A high-power, integral bandswitched tank coil for 80 to 10 meter operation. Ideal for class C or linear operation using triodes or tetrodes in conventional or grounded grid circuits. Minimum " Q " of 300. Model 850.
NET PRICE
. $\$ 35.00$

T-R Switch

Fully automatic electronic antenna switching from transmitter to receiver and vice-versa. For power applications up to the legal limit. Ideal for fast break-in operation on SSB, AM, or CW. Receiver gain 6 db at 3.5 mc . Broadbanded . . . no tuning required. Madel 380B.
NET PRICE .. $\$ 23.70$

Grid Dip Meter

A highly accurate, sensitive instrument. May be used as a grid-dip oscillator, signal generator, or absorption wavemeter. Five colorcoded plug-in coils cover 1.75 to 260 mc . Colorcoded dial easily read. Operates from 110 VAC. Easy to use in hard-to-get-at places. Model 600. NET PRICE \qquad

Multi-Position Coax Switches

For 75 or 52 ohm line. Instantly switches coax lines . . . no screwing or unscrewing coax connectors. Handles up to 1 KW modulated power. Max. cross-talk - 45 db at 30 mc . Model 550 A 5 -position switch. Model 551A 2-pole, 2-position switch.
NET PRICE 550A.

Prices subject to change without notice.

$\sqrt{\text { atanmar }}$ пロッグ

pRoducts

S－14－C COMPUTER POCKETSCOPE is a portable oscilloscope，especially designed for computers and business machine service．Lightweight and small size together with simplicity of operation makes this instrument IDEAL for field servicing．In addition ．．．signal amplifier with 0.35μ s pulse rise from dc，with signals of 1 mv observable ．．．calibrated fixed sweeps and continuously adjustable linear time base from $20 \mu \mathrm{~s}$ to 2 seconds ．． $5 x$ stable time base expansion with complete parading for accurate pulse position．．．sync limiting．．．special intensification circuits permits observation of pulses shorter than $10 \mu \mathrm{~s}$ at repetition rates slower than $1 \mathrm{pps} .$. accessory attenuating and amplifying probes ．．．make this instrument a MUST for com． puter type service．

S－4－C SAR PULSESCOPES are improved JANized equivalents to the Gov＇t Model AN／USM－25． These portable instruments（only 31.5 lbs ．each）are for precision pulse time measurements in radar，TV and all electronics equipment．Portray all attributes of the pulse ．．．internal crystal controlled markers of 10 and $50 \mu \mathrm{~s}$ available for self－calibration．．．，in R operation a small segment of the A sweep is expandable for detailed observa－ tion with a direct－reading calibrated dial accurate to 0.1% ．Video amplifier band－pass up to 11 mc ．．．optional video delay $0.55 u s \ldots$ pulse rise time better than $0.05 \mu \mathrm{~S}$ ．．．R pedestal（ $\mathrm{s} . .2 \mathrm{zp}$ ） 2.4 to $24 \mu \mathrm{~S}$ ．．．video sensi－ tivity of $0.1 \mathrm{v} \mathrm{rms} / \mathrm{in}$ ．Easily convertible from μ s to yards．Operates from 50 to $\mathrm{iCJ} \mathrm{c} ;$ cles at 115 volts．

S－5－C LAB PULSESCOPES are JANized equivalents to the Gov＇t Model AN／USM－24C．These portable，AC，wide band－pass laboratory oscilloscopes are ideal for pulse as well as general purpose measurements． Internal delay of 0.55 us permits observation of pulse leading edge．Includes precision amplitude calibration， 10 X sweep expansion，internal trace intensity time markers，internal trigger generators and many other features． Video amplifier ． $06 \vee$ RMS／inch ．．．pulse rise time of 0.07 us or response to $11 \mathrm{mc} \ldots 5$ to $50,000 \mathrm{us} / \mathrm{in}$ ．triggered or repetilive sweep ．．．internally generated markers from 0.2 to 500 us ．．．trigger generator from 50 to 5000 pps ． for internal and external triggering．Operates from 50 to 400 cycles at 115 volts AC．

S－11－A INDUSTRIAL POCKETSCOPE is a small，compact，and lightweight instrument for observing electrical circuit phenomena．The flexibility of the POCKETSCOPE permits its use for ac measure－ ments as well as for dc．The vertical and horizontal amplifiers are capable of reproducing within 2 db from dc to 200 kc with a sensituvity of $0.1 \mathrm{v} \mathrm{ms} / \mathrm{in} .$. repetitive time base from 3 cycles to 50 kc continuously variable throughout its range ．．．variations of input impedance，line voltage or controls do not＂bounce＂the signal－the scope satalilizes immediately．

S－14－A HI－GAIN POCKETSCOPE provides the optimum in oscilloscope flexibility for analysis of $10 \mathrm{w}-$－level electrical impulses．Vertical and horizontal channels： $10 \mathrm{mv} \mathrm{rms} /$ inch with response within
2 db from dc to 200 kc and pulse rise of $1.8 \mu \mathrm{~s}$ ．．non －frequency discriminating attenuators and gain controls with internai calibration of trace amplitude ．．．repetitive or trigger time base with linearization from $1 / 2$ cycle to 50 kc with \pm sync or trigger．

S－14－B WIDE BAND POCKETSCOPE is ideal for investigations of transient signals， de signals，aperiodic puises or recurrent waveforms．Vertical channel： $50 \mathrm{mv} \mathrm{rms} / \mathrm{in}$ ．within－ 2 db from dc 10700 $\mathrm{kc} . .$. pulse rise tume of $0.35 \mathrm{\mu s}$ ．Horizontal channel： $0.15 \mathrm{v} \mathrm{rms} / \mathrm{in}$ ．within－-2 db from dc to $200 \mathrm{kc} \ldots$ ．pulse rise of $1.8 \mu \mathrm{~s}$ ．Attenuators and gain controls are non－frequency discriminating．．．trace amplitude calibration． repetitive or triggered time base from $1 / 2$ cycle to $50 \mathrm{kc} \ldots \pm$ sync or trigeer ．．．．trace expansion，filter graph screen and many other features

S－15－A POCKETSCOP E is a portable，twiritube，high sensitivity oscilloscope with two independent vertical as well as horizontal channels．It is indispensible for investigation of electronic circuits in industry．school and laboratory．Vertical channels 10 mv rms ＇in．with response within－ 2 db from dc 10200 kc and pulse rise ume of $1.8 \mu \mathrm{~s} \ldots$ horizontal channels $1 \mathrm{v} \mathrm{ms} / \mathrm{in}$ ．with $\mathrm{n}-2 \mathrm{db}$ from dc $0150 \mathrm{kc} \ldots$ non－frequency discriminating controls ．．．internal signal amplitude calibration ．．．linear time base from $1 / 2$ cycle to 50 kc ，triggered or re－ pettive，for both horizontal channels．

S－12－B RAKSCOPE admirably fills the need for a small oscilloscope of wide versatility．With all the features of the S．11－A POCKETSCOPE，the RAKSCOPE is JANized（Gov＇t Model No．OS－11），and has many addi－ tional advantages；the sweap，from 5 cycles to 50 kc ，is either repettive or triggered．vertical and horizontal amplifiers are 50 mu ims／rich with band－pass ftom 0 to 200 kc ．．．special phasing circuitry for frequency comparison．

Write for your complimentary copy of＂POCKETSCOOP＂－Official Waterman publication．

POCKETSCOPES

SYSTEMS GONGEPT

RAKSCOPE S-12-C
e Waterman SYSTEMS RAKSCOPE, S-12.C series is a rack mounted :illoscope with SYSTEMS CONCEPT. Systems concept is a basic means rapid monitoring of desired signals with minimum operative effort and hout the use of auxiliary switching or jack panels. S-12-C series provide following:

3ASIC UNIT-The basic S-12.C SYSTEMS RAKSCOPE is a complete com ation systems monitoring and trouble-shooting oscilloscope with outsland. physical and electrical characteristics. The RAKSCOPE Occupies but 7 hes of a standard 19" rack and extends only 10 inches behind the front iel. Identical vertical and horizontal amplifiers are DC type having rise ies better than 0.35 usec, and 50 or 71 millivolts rms per inch of deflection pectively. Signal calibration method uses a direct reading accurate meter. re base sweeps are from $1 / 2 \mathrm{cps}$ to 50 KC in trigger or repetitive operation. ic from internal or external sources provide stable operation by means of * sync lockout circuits. Special plug-in elliptical sweep circuit for easy ise and frequency checks greatly increase is systems utility. Construction ruggedized throughout. Tube type options include standard commercia!, gedized commercial or ruggedized military. Operable from 50 to 400 cycles.

CUSTOM MODIFICATION-Desired flexibility is obtained with the ional signal input selector. For the first time it is possible to select up to ven different signal sources with the necessary built-in attenuation pplied by us or by you) for each source. Thus the entire switching panel be omitted from an overall system resulting in circuit and space economics. ndard elliptical sweep is 60 cycles, but plug-in units for other frequencies be supplied. Accessories such as attenuating, direct, and amplifying bes are available.
rove your existing or contemplated systems by including the S-12-C ;TEMS RAKSCOPE as an integral part. Your local Waterman representais ready to assist you in determining specific requirements.

The Waterman PANELSCOPE is a custom-built cathode ray tube oscilloscope, with simplified operation, and yet available at a !ow price. The PANELSCOPE concept provides for the following
(1) MINIATURIZATION--Panel space required is only $51 / 4^{\prime \prime} \times 5.3 / 16^{\prime \prime}-$ depth is $10^{\prime \prime}$ and the weight is less than 7 lbs . The PANELSCOPE can be installed in practically any equipment -mobile or stationary-air, sea, or land-military or commercial.
(2) SIMPLICITY OF OPERATION -Twist of a single rotary switch provides a synchronized pattern of desired incoming signal (up to 11 circuits) against proper linear tıme base. This is ideal for monitoring and trouble shooting, as it removes the need of fiddling with knobs as is done now on general purpose oscilloscopes. The static controls, such as beam, focus, positioning, and graticule brightness are located in tube escutcheon.
(3) CUSTOM DESIGN-A wide variety of signal amplifiers with response from dc to megacycles and sensitivittes from 5 millivolts synchronized or triggered linear time base generators from $1 / 2$ cycle (and lower if need be) to 2 microseconds-can be specified by you to fit your needs for particular equipment.
(4) PARTIAL KIT FORM-the PANELSCOPE comes fully wired and tested with chosen signal amplifier, linear time base generator and attendant sync. amplifier. The desired signal attenuators, frequency and amplitude determining components, and method of synchronization can be installed either by us or by you.
(5) POWER REQUIREMENT-Less than 10 watts of line power for built-in high voitage supply-The required $\mathrm{B}+$ and heater current as selected by your requirements. For those cases where $B+$ and heater power is not avalable, auxiliary power pack can be supplied.
There is a place in your equipment for Waterman PANELSCOPE, a custom built oscilloscope at production prices, although your needs may be but one or two. Ask for specification sheets either from our representatives or direct from the factory.

RAYONIC CATHODERAY TUBES BY WATERMAN

rube	PhYSICAL Data		Static voltage		deflection*		IIGHT OUTPUT:•
	face	IENGTH	43	A 2	vert	nor	
$3 . \mathrm{Pl} 1$	$3^{\text {r" }}$	$10^{\prime \prime}$	3000	1500	111	150	40
3 MPI	3"	$8^{\prime \prime}$		750	99	104	4
3RPt	$3^{\prime \prime}$	9.12 ${ }^{\text {² }}$		1000	61	86	5
3 SPI	$1.5 \times 3^{\prime \prime}$	$9.12^{\prime \prime}$		1000	61	86	5
$3 \times \mathrm{PI}$	$1.5 \times 3^{\prime \prime}$	8.875 ${ }^{\prime \prime}$		2000	33	80	22

The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitıvity, unit line brightness, line width, stalic voltage requirentents and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table ad. joining. These tubes are avalable in P1, P2, P7 and P11 phosphors. 3JP1, 3JP2, 3JP7, 3RP1, 3SP1 and 3XP1 are available as JAN tubes.

[^18]** light oulput of a fin in millifool lamberts per millimeter af line width not to enceed .65 mm .

All the equipment described on these pages has just been added to the TMC line of fine Communications Equipment. And, although they have but recently been introduced, they have all been thoroughly field tested in land based, shipboard, mobile, and air transportable installations.

COMMUNICATIONS RECEIVER

MODE SELECTOR TRANSMITTING

The Model SBE-1 Mode Selector Transmitting is a universal exciter permittina the transmission of ony inteltigence Single or Double Sidebond, with or without corrier. This exciter may be used for simultoneous or independent transmission of intelligence on either upper or lower side band. For example: A voice chonnel can be transmitted on the upper sidebund while tone multiplex is being transmitted on the lower sideband.

MODES OF OPERATION: Canventional Double Side Band, AM with the advantage of corrier level control, Canventianal Single Sideband with adjustable carrier insertion. Conventional Interrupted Corrier CW or Sideband Tone CW or Independent Side. band transmission with adiustable carrier insertion. FREQUENCY

BULLETIN 195

LINEAR POWER AMPLIFIER

The TMC Model PAL 350 is a conservotively rated general purpose amplifier providing 300 waits PEP output over the trequancy tulige 2 to 32 n:cs. The PAL-350 occupies $101 / 2^{\prime \prime}$ of rack space or moy be mounted in a cabinet for toble top use. The Amplifier is provided with a Pi Output network, interlocks, overlood and fuse protection, forced filfered blower system and o very effective ALDC system.

FREQUENCY RANGE: 2 to 32 mes. POWER OUTPUT: 300 wots 2 tone PE?, 400 wots key down CW or FS. TUNING: Front panel bandswliched. INFUT REOUIREMENTS: 100 milliwatts 3 3rd order. DISTORTION: 40 db from PEP.

BULLETIN 204A

general purpose Transmitters

TMC is currently producing a complete line of Single Sideband Trantmifters in the 2 to 30 mc range. Thegg transmitters hive been designed to proved continuous 24 hour service with special emphosis on serviceobility. Particulur altention hot heen given to the suppression of distartion products, and harmonics, amplifier stability and ease of operation. All Power Ratings are based on conservative 2 tone tests.

GPT 150	AN/URT-17	750 watts PEP	SSB 174
GPT 5000	AN/FRT-39	5000 watts PEP	SSB 207
GPT 17.000	AN/FRT-40	17,000 watts PEP	SSB 206

All above provide SSB, DSB, ISB, AM, CW, MCW, FS

BULLETIN 174C

We, here at TMC, have been increasingly pleased with the amount of TMC equipment which has been given military nomenclature and accepted by our Government without any major changes.

YOU CAN DEPEND ON IT-TMC MEETS ITS PUBLISHED SPECIFICATIONS.

Write for complete detailed up-to-date information on all TMC Products. Address your inquiry to:

THE TECHNICAL MATERIEL CORPORATION
Fenimore Road, Mamaroneck, New York. In Canada: TMC (Canada) LTD., Ottawa, Ontario

International Rectifiers SELENIUM - GERMANIUM SILICON

Developed for use in limited space at anhi. ent temperatures ranging from $-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Encapsulated to resist adverse environmental conditions. Output voltages from 20 to 160 volts; output currents of 100 microanperes to 11 MA. Bulletin 50.1 B

Designed for long life and reliability in HalfWive Voltage Ioubler, Bridere, Center-Tap Circnits, and 3-Phase Circuit Types. Phenolie' Cartridge and Hermetically Sealed types wailable. Operating temperature range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Specify Bulletin $\mathrm{H}-2$

The answre to tough minitturization problems! Ratings for high temperature applications: from 10 on volts PIV at 100 ma half-wave IC: output to 16,000 volts PIV it Ama. Hermetically scaled, metallized ceramic housing. Reguest Bullotin SR-1398

The widest range in the industry? Designed for Radio, Tillevision, TV booster, U1IF converter and experimental applications. Input ratings from 25 to 195 volts $A C$ and up. IDC output eurrent 10 to $1,200 \mathrm{MA}$. Write for application information. Bulletin ER-178-A

For all IDC power needs from mierowatts to kilowatts. Features: long life; compact, light weight and low initial cost. latings: to $250 \mathrm{KW}, 50 \mathrm{ma}$ to 2,300 amperes and up. 6 volts to 30,000 volts and up. Efficiency to 87%. Power factor to 95%, Bulletin C-349

Hundreds of typers in threc hasic styles, for operating temperatures from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Up to $800_{\text {ina }} 1 \mathrm{C}$ output current per junction over a voltage range of 50 to 1,000 l'IV: Ilarmetically sealed. For complete information on all types. Bullatio SR-A.

A direct anel monsersal replacement for all existing selconiun stacks up to 500 ma. Eyclet (e)nstruction, No "spectial socket," conversion kit or drilling required. Espectially suited to the elevated operating temperatures inherent in must '1'V' sols. Bullatin IV-500.

Self-generating photocells available in standard or custom sizes, mounted or unmounted. Optimun load resistance range: 10 to 10,000 ohms. Output from .2 MA to 60 MA in ave, sunlight. Ambient teniperature range $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Bulletin PC 649

Bulletin SPR-1
For bulletins on products described write on your letterhead

Best source for all your component needs -your General Electric tube distributor!

L"ine Ward Hinkle above, he may be a licensed amateur himself. He is anxious to serve you well. and his cooperation often includes personal counsel, based on experience, which can save you both time and money.

Your G-E tube distributor stocks a wide range of eomponents that are pace-setters in quality. His establishment is supply headquarters for television and other electronic technicians whose livelihood requires that tubes and parts perform well and dependably.

Your General Electric tube distributor is a good man to know-a responsible man to deal with-can serve. in many cases, at your "one-stop" source for everything you need in electronic components and ham gear. See him today! Distributor Sales. Flectronic Components Division. Gencral Electric Company; Onensboro. Kentuchy.

Progress Is Our Most Important Product GENERAL ELECTRIC

YOU GET FAST, FRIENDLY SERVICE ON G-E QUALITY COMPONENTS SUCH AS...

Receiving tubes
5-Star high-reliability tubes
Special-purpose fubes
Cathode-ray tubes
Transmitting and other power tubes
Transistors, rectifiers, other semi-conductor products

Resistors, speakers, other paris and accessories 65

INCOMPARABLE is the word for TRAP TMRSTEP

EXCLUSIVE TRAP DESIGN - LIFETIME WEATHERPROOFED! ANTI-SAG CONSTRUCTION!
LOW SWR - REMARK ABLY FLAT ACROSS BANDS!

$64 \sqrt{1 / 2}$

Al so: W'orld famous "Vest Pocket" and "Super" Amateur Beams, Commercial Arrays and other fine products.

Model TA-33

Beautifully constructed 3 element beam for operation on 10 , 15 or 20 meters. Forward gain is 8 db , front-to-back is 25 db , and SWR is $1.5 / 1$. Maximum element length is 28 ft . and weighs only 47 lbs . Boom is just 14 ft .
\$99.75
Model TA- 32
Similar to Model TA-33, but has 2 elements operatíng on 10,15 and 20 meters. Forward gain is 5.5 db , front-to-back is 20 db and SWR is $1.5 / 1$. Featuring a short boom of just 7 ft , and max. element length of 28 ft . Weight is 34 lbs . Converts to Model TA-33.
$\$ 69.50$
Model V-4-6
This low cost, high performance vertical antenna covers all bands from 10 thru 40 meters. liequires little space and may be mounted on ground or roof-top. L.ow SW: and band switching is automatic. Loading coil available for 80 M .
$\$ 27.95$

Write for free Cotalog, $\mathrm{H}-58$.

Ci.

WEST COAST BRANCH
1406-08 South Grand Avenue
Los Angeles 15, California

EXPORT DEPARTMENT
15 Moore Street
New York 4, New York

MAIN OFFICE AND PLANT 8622 St. Charles Rock Road

St. Louis 14, Missouri

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial ex. aminations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card WILL BRING FULL PARTIC ULARS IMMEDIATELY

THE INSTRUCTOGRAPH CO.

Engineered RIGHT for

all three... SSB, AM, CW, . . by EDICO

ELDICO SSB-1000

ELDICO SSB-100F

ELDICO SSB-100F

Type of Emission: C.W. - A.M. - SSB
Power Ratings: DC average input SSB. 100 watts: A.M. input (two tone test) -60 watts. Peak en. velope power input SSB-144 watts. Peak envelope power output SSB-100 watts.
Keying: Grid block, full break-in.
Harmonics and 'Spurious Responses: Spurious mixer products -50 db or more down. Third order distortion products-35 db or more down. TV interference suppression-40 db or more second harmonic. 60 db or more higher harmonics.
Unwanted Sideband and Carrier Suppression: 50 db minimum attenuation, through low frequency crystal lattice filter.
Frequency Stability: Control Oscillator-(800 to $1300 \mathrm{kc}) \pm 100$ cycles after two minute warm up period. Output frequency-within 300 cycles after five minutes warm up period. Dial accuracy $\pm 2 \mathrm{kc}$ after calibration.
Tube Lineup: 22 tubes, including two rectifiers, two voltage regulators, one oscilloscope and one 5894 power amplifier.

There's a lot of good commercial equipment on the market today. And some home-brew gear rivals the best of the factory built rigs. But if you stop and take a critical look at virtually all of these handsome packages you find they are the work of "specialists." Manufacturer "A," convinced that SSB is the panacea for ham work has virtually forgotten that a lot of us still like to pound brass or work AM. W2XXX, who never heard that you can modulate a rig, has a gargeous c. w. station that can't be employed for anything else. And so it goes, making the selection of a well-rounded design more difficult than might appear at first.
Eldico, long-time ploneers in designing completeness into transmitters, spent a lot of time over the coffee pot and drawing boards to produce the newest and finest package, that's as much at home on the SSB frequencies as in the midst of trunk line A or a 75 -meter $A M$ roundtable. What does this mean to you? For one thing you'll get a chance to really enjoy ham radio at its fullest and richest . . . you can find out what the other man likes and you can compete on even terms. Price? For $\$ 795$ you start with the 100 watt SSB-100F transmitter exciter. With it you drive ANY final amplifier, or you can add, for $\$ 745$, the SSB- 1000 kilowatt amplifier. Look over the specs, compare with anything on the market, and then get together with your Eldico distributor to find out what terms can be arranged to put this "Years ahead" gear in your shack.

AVAILABLE NOW
at your local distributors

ELDICO SSB-1000

Low Drive Requirement: 3 watts P.E.P. will drive to full kilowatt. Pi-network Output: Single knob bandswitch. High-efficiency silver-plated Pi-network output circuit. Matches wide range of antenna impedances.
High Harmonic Attenuation: High.Q plate and grid circuits and Pi-network output circuit provide maximum harmonic-attenuation.
Power Rating: DC Input C.W. 1000 watts, A.M. 700 watts
Peak Envelope Power:
Input SSB. 1000 watts
Output SSB. 625 watts
Frequency Range: 10 thru 80 meters
Tube lineup: 9 tubes; two 866 , two OA2, one OB2. one 6AU6, one LCP1, two $4 \times 250 \mathrm{~B}$.

MORE AND MORE HAMS ARE PUTTTMG THER SKILL to WORK SERVICING MOBILE RADIO SYSTEMS

SAM SEMEL, W2SHE, servicing the mobile two-way radio of an ambulance, just one of the 200 mobile units he maintains regularly as a General Electric Communication Equipment Authorized Service Station. A ham for 12 years, Sam has been a General Flectric Service Station for four years.

SERVICING A MOBILE UNIT in his lilmira. N. Y. shop. Sam utilizes his years of radio knowledge and basic test equipment. He is kept up-to-date on all latest techniques by General Filectric Product Service Section, which provides constant flow of information based on experiences in all parts of the country. as well as from General Electric engineering laboratories.

Hundreds of hams are now helping to keep public safety agencies, transportation companies and industrial companies "on the air." Hams are finding an increasing call for skilled service men to maintain the many thousands of mobile radio units now used in police cars, fire engines, light delivery cars and trucks, heary tractor trailers, and an expanding variety of industrial vehicles.

Thousands of new mobile radio systems are installed every year, and manufacturers as well as users have turned to tho amatour ranks as a source of well-trained communications service specialists. And it's not always a full time job, either. Some hams maintain a few systems in their spare time. Others have taken on additional systems until today, they operate highly successful service stations specializing in mobile radio maintenance. Nearly all of the many hundreds of stations servicing G-E communication systems, are operated by licensed amateurs.

G-E 2-way radio equipment is designed with the serviceman in mind. Take G.E.'s new Progress Line of 2 -way radio, for exam. ple. The transmitter. recciver, power supply and optional chassis are individually rackmounted in a new triple-rigid case. Rapid inter-changeability is provided by this rack construction and true plug-in chassis comections. You change either a transmitter or receiver plug-in chassis right in the vehicle in five minutes-using onl! a screwdriver!

To hams interested in G-E 2-way mobile units, we will gladly send typical bulletins, and a booklet, normally given to new users, "How to Operate Your Two-Way Radio."
(ieneral lilectric Company Communication Products Mept. 34, Vilectronics Park. Syrachse, Dicu lork

Progress is Our Most Important Product GENERAL (36) ELECTRIC

RADIO SHACK SALE! KEYS, BUGS, BUZZERS, MIKES AT LOWEST PRICES

Imported and guaranteed by Radio Shack to save you money

Deluxe High Speed Brass Key!

- Solid Polished Brass Base
- Solid Siluer Contacts
- Quadruple Ball-Bearing Pitots
- Circuit Closing Surith

REG. $\mathbf{S 6 . 8 5}$ NET VALUE! In addicion to the features listed above, the SKILIMAN HIGH SPEED KEY is fully adjuscable to proper spacing and spring tension. Chrome-plated brass binding posss. Really a Wow of a buy addition to any man's shack. Ship. wt. $11 / 2 \mathrm{lbs}$. Order No. Q. 1200.

Lowest Cost Telegraph Key at Radio Shack is excellent for beginner and code practice! W'ell-buils, smoorhacting key has brown molded hakelite base and knob Spring bearings, simple adiustments. All machine $1 / 2 \mathrm{lb}$. Ordirk No. Q. 51135 .

Archer Dynamic Hi-Imp. Microphone:

$50-12,000 \mathrm{cps}$
$\mathbf{\$ 8 . 9 5}$
Order No. Q. 6800 .
Radio Shack's new quality microphone for BC and T'V use where full fidelity is required: 30,000 ohms at 1000 cps. High output -56 db . Swivels down full 90°. Equipped with $8 \cdot \mathrm{ft}$, of shelded cord. Standard mouns. ing thread. Ship. wr. 1 lb .

Archer Crystal Mic. With Desk Stand!

$80-7000$ cps Response Imp: 50,000 obms at 1000 cy .

$\$ 2.95$

All purpose microphone with wide range. Compact,
firs desk or held in hand. With 6.ft. cable. Ship. wt, $3 / 4 \mathrm{lb}$. Order Q -6600 .

Archer 'Lipstick' Crystal

Exceptionally high quality! Size is only $47 / 3^{\prime \prime}$ long with $3 / 4^{\prime \prime}$ average dia. Weighs only 3 ozs. Hi-fi response $50-10,500$ cps. Includes $10-\mathrm{ft}$. of cable. Has aztachment for 180° from straight up to straight down. 100% detachable. Less stand. Ship. wi. 2 lbs. Order No. Q. 9950.

High Frequency Code Practice Buzzer

- Kums off $11 / 2$! baplasOthers require 31' onl)
- Somad amal steals sigmal et eht at $11 / 2$ tonles
- Loness price on C'.S. -

U'se with R:idio Shack's Skill man hand keys. Ample vol. ume for several listenters. Screw adjustment for variable tone. Ship. wi. 5 oz. Order No. Q-6278.

$\$ 1.19$

Novice, Advance Code Courses Now on Tape

2. separate courses on tupe: No. vice $i-8$ wpm and Advanced $9-18$ wigs. Self-inseruction: designed by a Ham. L'se wish dual track head recorder it 31, ips. $1 / "$ wide onide basc platicic tape $\underset{2}{2}$ hrs, of full instruction on each tape Ship. "t. ${ }^{2} \mathrm{Ib}$ Order Nos: N" tite (2-45-09l h.tpe course as $\$ 5.95$ Adianced Q.451193. \$4.95

$\$ 5.95$
 \$21.00 Value

RADIO SHACK corp.
 167 Washington St. Boston 8, Mass.

Name
Street
Town_ Stote

Belden has been a supplier of wire and cable to the Ham Fraternity since 1902.

Complete Stocks
Henr: has everything in the amateur equipment field, new or used transmitters or receivers, and Henry has the NEW equipment FIRST.
Long Trades
Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.
Low Terms You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. 10% down (or your trade-in accepted as down payment). 20 months to pay.
100\% Satisfaction 10 Day Trial

Fast Delivery

Low Prices Henres large purchasing power means low prices to you. You just can't beat our wholesale prices.

[^19]
HERE＇S YOUR CHRISTMAS TREE！ The Heavy Duty E－Z WAY＂Z＂Series

4 Heights．． 40 Ft ．． 50 Ft ．． 60 Ft ．． 80 Ft ．Plus 17 Ft ．of Mast

Especially designed to withstand heary－wind－loads，these are full crank－up and tilt－over towers for stacking the multiple band arrays． four models，each of which will adequately support a＂Christmas Tree＂installation at full height in 60 MPH wind without guy wires．
The rotating mast，designed to support these heavy arrays，is $2^{\prime \prime}$ OD－ $1 / 4^{\prime \prime}$ wall cold drawn＇ seamless tube（1025 tensile） 20－4t．long．When installed in the top section，the antenna mast will nest down into the tower so that，with the beams stacked $8=\mathrm{ft}$ ． apart，the top beam will be just 17－ft．above the tower．Two adjust－ able self－aligning bearings spaced 3 ft ． apart at the top of the tower make it easy to plumb the rotating mast．

CRANKS UP \＆DOWN

In one minute for easy erection and maintenance．

TILTS OVER

In two minutes to the horizontal making both the installation and odjustment of the orray a simple matter．

NO GUY WIRES

Takes less than 4 square feet of space in yard（except 80 －ft．）．

NO CONCRETE

when sef in hard clay or com－ parable soil（except 80 －ft．）．

SAFETY REST

permits tower to stop of $1-\mathrm{ft}$ ．infervals for any desired elevation without strain on the lifting cable．

WINCHES

both are 1500 lb ．capacity with spur wheels． The filt over winch also has a brake in it．

ROTOR MOUNTING PLATE

drilled for either a Telrex R 200 Rotator or the heavy－duty type Prop－Pitch Motor．Towers are available Hot Dip Galvanized or Dip Coat （rubber base）Aluminum Enamel．

The E－Z WAY GROUND POST is the secret of our quick，guy－less installation． Heavy－welded on plates as cross－fins below the ground level resist movement sideways when dirt is firmly tamped around them．Top of post has big， welded－on steel plate with full $3 / 4$－inch diameter steel pin．Just below the hinge on the ground post is a big husky re－ tainer plate，matching a cross plate on the tower itself．When erected，two $5 / 8-$ inch diameter bolts slip through these two plates，to reinforce the hinge．Full－ width $5 / 8$－inch rod locks bottom to ground－post，too，relieving tilt cable and winch of strain until put into actual use．

TOWERS
 are our

＂．．．from conception thru erection！＂

By modifying Standard Tower Units，we can quickly develop the specific tower for your needs．

MIC⿱⿴囗⿱一一八⿱⿴囗⿱一一八刂土 OWAVE

E－Z WAY TOWERS，INC．
 P．O．Box 5491 － 5901 E．Broadway－Tampa 5，Florida－Phone 4－2171 Cable address：E－Z Way Tower ＂TOWERS ARE OUR BUSINESS＂

New PHILCO SBT Family

Simplifies Transistorization for

Communications Engineers

HERE is the new complete line of Philco Surface Barrier Transistors for low voltage communications circuitry (1.5 volts). Now you can select the best high-frequency transistor for each application ... RF ... IF . . . video. amplifiers, converters, oscillators . . . and for high-speed. switching circuits.

The low cost of Philco Surface Barrier Transistors extends their usefulness to many new applications. Low collector capacitance and low leakage current make them highly desirable for critical circuitry. Performance of hermerically sealed Philco SBT's is precise and dependable. Circuit specification is simple ... accurate!

	SB10 1			S8102			S8103		
	Min	Typ	Max	Min	Typ	Max	Min	Typ	
Current Amplification Factor, hie	11		33	25		110	10		
Maximum Frequency of Oscillation, fos max	30	50		30	50		60	75	me

Make Pbilco your prime source of information for bigh-frequency transistor applications! Write to Dept. RAH for complese transistorspecifications and prices.

Get the facts on the Philco SBT Family . . . test . . . compare . . . specify Philco!

PHILCO, CORPORATION

LANSDALE TUBE COMPANY DIVISION

COMPARE THEM ALL AND YOU'LL FIND THAT RME HAM EQUIPMENT GIVES YOU MORE

...in quality
in performance
in longer-life

It's NEW! RME 4350A RECEIVER with DUAL CONVERSION

You get everything you want and need in the RME 4350A Receiver Dual conversion, 2 -speed tuning for easy, smooth operation, high selectivity and rejectivity, 100 kc . crystal calibration. Adjustable calibration of dials on front for precision settings. Designed for hams by hams, it is laboratory-engineered for maximum performance on SSB,
 CW and Phone. Ideal for contests, IDX, traffic and rag chewing under all receiving conditions. Yet it's yours for just \$249, Amateur Net!

RME 4301 Sideband Selector An אvellionl companion for the kME, 4850. Provides cansy s.lection of rither sions or AM pheme signals. Adrls up to 1.5 (I) of sensitivity to the receriver. ('an br conmerted lomy commmications reveriver using 15.5 KC IF or plugs direetly isto 1 h.

RME 4302 Speaker
Sivlerd ant finistseof to complomuent the Monded dis:nd. Howsed in starily stael ense With cati aluminum from brad. Geraths

BIME

GE:T TME: FACT'S about RME'-a respected name in communications Write for Bulletin 244. See your R.ME Distributor!

RADIO MANUFACTURING ENGINEERS, INC.

LAMPKIN 105-B MICROMETER FREQUENCY METER
FRIOUENCY RINCE on local transmitters 0.1 to 175 MC - to 3000 MC by measuring in multiplier stages. ACCLI. RICY conservatively guaranteed better than $0.0025^{\prime \prime}$-actually 9 out of 10 results come within $0.001{ }^{\prime} \%$. C.ILIBRA'TION table for cach meter; charts show percentage off-frequency from $l^{\prime} \mathrm{CC}$ assignment. DIAL $4^{\prime \prime}$ diameter, 40 turns, totals 8000 divisions spread over 42 fect-resettable better than 5 parts per million. CRYSTAL themometer on pancl automaticallv indicates dial checkpoint. SIGNAL GENFR-ATOR-a pinpoint CW source for mobilereceiver final alignment.

LAMPKIN 205.A

FM MODULATION METER

FREQUENCY RANGE - Continuous 25 MC to 500 MC. No coils to change. Rough and vernier tuning controls. PINK $1 \$ swing shows directly on indicating meter-calibrated $0-12.5$ or $0-25.0$ peak KC, positive or negative. No charts or tables. ACCURATE-within 10 at full scale. l'Il'LD STRENGTH METER Reads relative transmitter output. PROTHCTED - Pancl components recessed behind edges of the case. PORTABLE Just a 2 -finger load.

JUST THESE TWO METERS - - WITH NO ADDITIONAL GRYSTALS OR FACTORY ADJUSTMENTS - - ARE ALL YOU NEED TO MAKE FCC REQUIRED CHECKS ON ANY NUMBER OF COMMERCIAL MOBILE TRANSMITTERS ON HUNDREDS OF DIFFERENT FREDUENCIES. LAMPKIN METERS ARE USED by many municipalities - - by agencies of 41 States - by the service organizations of most twa.way radio manufacturers - AND BY HUNDREDS OF INDEPENDENT MOBILE-SERVICE ENGINEERS. THEY ARE GUARANTEED TO PLEASE YOU, TOD, OR YOUR MONEY WILL BE REFUNDED.

To learn about contract rates and service arrangements, send for YOUR free copy of HOW TO MAKE MONEY IN MOBILERADIO MAINTENANCE!
time payment plan AVAILABLE
| Measurements Section
| Lampkin Laboratories, Inc. | Bradenton, Florida
| At no obligation to me, please send
\square "How To Make Money in Mobile-Radio Maintenance!"
$1 \square$ Technical data and prices on Lampkin Meters

MODEL 80 STANDARD SIGNAL GENERATOR

FM STANDARD SIGNAL GENERATOR

MODEL 210 SERIES FM STANDARD SIGNAL GENERATOR

PEAK-TO-PEAK VOLTMETER

STANDARD SIGNAL GENERATORS	
MODEL	FREQUENCY RANGE
$65-\mathrm{B}$	75 Kc to 30 Mc
80	2 Mc to 400 Mc
$80-\mathrm{R}$	5 Mc to 475 Mc
82	20 Cycles 10200 Kc 80 Kc to 50 Mc
$84-\mathrm{R}$	300 Mc to 1000 Mc
$84-\mathrm{TVR}$	400 Mc to 1000 Mc
95	50 Mc to 400 Mc
$210-$ Series	25 Mc to 200 Mc

SQUARE WAVE GENERATORS

MOOEL	frequency range
71	6 to 100,000 Cycles
72	5 Cycles 105 Mc

PULSE GENERATOR

MODEL	FibOUENGY RANGE
$79 \cdot 8$	6010100,000 pulses per second

VHF FIELD STRENGTH METER

MOOEL	FREQUENGY RANGE
$58-A S$	15 Mc 10 150 Mc

HIGH FREQUENCY BARRETTER

MODEL	FREQUENCY RANGE
$202 . C$	2 MC 10 1000 MC
VACUJM TUBE VOLTMETERS	
MODEL	FREOUENCY RANGE
62	30 cPs to over 150 MC
67	5 to 100,000 sine-wave cps.

MEGACYCLE "GRID-DIP" METERS

MODEL	FREQUENCY RANGE
59 LF	0.1 Mc to 4.5 Mc
59	2.2 Mc to 420 Mc
59 UHF	420 Mc to 940 Mc

CRYSTAL CALIBRATORS

MODEL	FREQUENCY RANGE
111	250 Kc to 1000 Mc
$111 . \mathrm{B}$	100 Kc to 1000 Mc

MODEL 71
squarc wave generator
 SQUARE WAVE GENERATOR

MODEL 84-TVR STANDARD SIGNAL GENERATOR

MEGACYCLE "GRID-DIP" METER

MODEL 111
CRYSTAL CALIBRATOR

CENTRAL ELECTRONICS
COLLINS
EICO
ELECTROVOICE
ELMAC
EIMAC
GENERAL ELECTRIC
GONSET
HAllICRAFTERS
HAMMERLUND
HUGHES
JOHNSON
LITTELFUSE
MASCO
MASTER MOBILE
MILLER
MORROW
NATIONAL
Big Store...
Big Stock

- Over 200 nationally advertised brands...

OHMITE
PENTRON

- An excellent time-payment plan... RCA
- Liberal trade-in allowances...

RME
RAYTHEON SANGAMO SHURE BROS.

SIMPSON SYIVANIA

TELREX
TRIAD TRIPLETT UTC VIBROPLEX WELLER WEBSTER WESTON

Serving the entire Western Region...
Alaska... and the
Pacific Area...

electronics 140 Eleventh Street, Oakland 7, Calif. HIgate 4.701

NEW! . SILVER - PLATED ROLLER WITH POSITIVE ACTION, STAY-PUT CONTACT

HY " Q " consirustion with wider spocing of furns for high frequency bonds. Use os center or bose loaded
with $60^{\prime \prime}$ whip.

No. 750
the highest " Q " consistent
with good design. Compact, extremely rugged. yef lightweight, its optuning with the new odjustoble silver-ploted roller thot stoys puil Perlect for 40 . 20.15-11.10 meters. "Get 5 Bands Plus on I Coil."

Amoteur net

MASTER ALL-BANDER

- Covers 10 thru 75 and oll intermediote frequencies.
- Silverploted single furn contert, positivespring.
- Eccentric cam contact. eosy selection of furn. Automolic lock prevenls domoge to coil.

- Ruggedized construction - Greater efficiency
- Precision made - $21 / 4^{\prime \prime}$ Diameter Mater
Ultra-High "e" ${ }^{\text {" COILS }}$
For 80-40-20 \& 15 Meters
After many years of experimentation, here is the coil with the highest " Q " ever obtained. Tested and found to have a " Q " of well over 515. \$525 Use with $36^{\prime \prime}$ base section, $60^{\prime \prime}$ whip.

GROUND

PLANE

(Drooping Type) FOR 6 METERS No. MGP-6

Aluminum alloy fubing, coax cable connector. for medium or low pow ered trans. Amatcurs Net \$\$4.95
\qquad
GROUND PLANE ANTENNA WITH NEW X-HEAVY DUTY CHAINS

No. 444 \$17.8
8 No. 445 \$7.95 No. 446 \$13.45 to attoch High bumper. No holes ta drilf, eosy to aftoch. High.polished Chrome Ploted $1 /{ }^{\prime \prime} \cdot 24$
thread, to fit oll ontennos. Presision engineered.

Net \$12.95

MASTER MATCHER \& FIELD STRENGTH METER
Automatically funes the entire band from the drivers seoll
6 or 12 volt models $\$ \mathbf{2 4 . 9 5}$

Specify Birtcher tube cooling and retention devices

85% of all electronic equipment failures are caused loy tube failures, the main causes being heat and vibration. The Birtcher Corporation is currently solving tough reliability problems for both govermment and private industry through the use of its tube and component cooling and retention deviees-specially adapted where necessary to fit customers' special needs.

KOOL KLAMPS

Birtcher KOOL KLAMPS perform iwo important functions, they reduce miniature and sub-miniature tube temperatures by as much as $40^{\circ} \mathrm{C}$, while retaining against shock and vibration.

TRANSISTOR CLIPS

TRANSISTOR CLIPS are made in a range of sizes and shapes to retain nearly all currently used transistors and carry off much of the heat to insure greater life and performance.

TUBE CLAMPS

Available in more than 6,000 modifications, Birtcher TUBE CLAMPS hold tubes and components securely in olace, under severe shock and vibration.

TYPE 2 TUBE CLAMPS
Birtcher TYPE 2 TUBE CLAMPS hold miniature tubes and plug. in components securely in place even under high G shock, white allowing easy access for serv. ice and tube replacement.

JAN SHIELD INSERTS
The Navy Electronics Research Laboratory developed these Birtcher-manufactured corru. gated JAN shield inserts to combat the high rate of tube failures due to excessive heat.

TOP TAINERS
These new Birtcher designed TOP TAINERS retain tubes and components in the military ap: proved manner. The unique " u " shape serrated edge post holds cap and tube up to 50 G 's.

THEBIRTCHER

CRYSTAL CLIPS

CRYSTAL CLIPS are avaitable in several shapes and sizes to retain mounted crystals and other miniature components. The spring-loaded clip slides up and swings out of the way for easy access.

[^20] from stockb

MICROTRAN transistoried transformers are ruggedized, military-type components developed to meet the growing demand for minia. turization. Design and performance meets or exceeds all applicable commercial and government specifcations including MIL-T. 27A, ML-E5400, CAA-R.777, etc. Write T0DAY for catalog and price list of the complete MICROTRAN line.

MINIATURE TRANSISTOR

 TRANSFORMERSAvailable in 8 case types (see catalog) Hermetle (M) $15 / 16^{\prime \prime} \times 1.3^{\prime} 8^{\prime \prime} \times 1.7 / 8^{\prime \prime}$, wt. 1-1/4 oz. molded (M) $7 / 8^{\prime \prime} \times 7^{\prime} 8^{\prime \prime} \times 1 \cdot 15 / 32^{\prime \prime}$, wt. 1-3/4 or. Open Frame (f) $3 / 4^{\prime \prime} \times 1^{\prime \prime} \times 1316^{\prime \prime}$, 中t. 102.

part Na ,	Application	$\underset{\substack{\text { Pri. } \\ \text { Imp, }}}{\substack{\text { an }}}$	Sec. Imp.
MT1*	LIne to emitter	600	600
MT3*	Coll to emit. or line	50,000	600
MTE*	Collestor to speaker	50,000	5
MT6*	Collector to P.P. emitter	100,000	1200 C.T.
MT7*	Collector to P.P. emitter	25,000	1200 C.T.
MT8*	P.P. Coll. to P.P. emit.	50,000 С.т.	1200 C
MT9*	Llne to P.P. emitter	$600 \mathrm{C.T}$.	1200 C
MT10*	Collector to emitter	25,000	600
MTIL*	P.P. Collector to P.P. emilter or line	4,000 С.t.	600 C.T.
MT12*	Output coll. to speaker	2,000	3.4
MT13*	Output P.P. coll. to sphr.	4,000 С.т.	3.4

SUB-MINIATURE TRANSISTOR TRANSFORMERS

Avalable in 5 case typos siee cataliont
MIL Case (AF) $1-18^{\prime \prime} \mathbb{1} 34^{\prime \prime}$ I $34^{\prime \prime}, \mathrm{wt} 118 \mathrm{oz}$
Hermetie (M 1516^{\prime} dia $\times 1516>1$ in

Part	Application	Pri.	sec.
No		Imp.	10.
SMT1*	Line to emitter	500	\%00
SMT3*	Collector to emitter or line	50,080	80¢
SMTS.	Coliector to spaster	Stomo	6
SMT7.	Coll to P P emit	25,000	2)
SMT10*	Collector to emitter	25,000	600
SMT12*	Oulput collettor 10 speather	2.000	3.1
EmT13*	Output P P tollector to speaker	S,au0 C T	$3 \sqrt{1}$

TRANSISTOR

DRIVER TRANSFORNERS See catalot for Irequency response, firt and can thpt.

$\begin{aligned} & \text { Part } \\ & \text { nembla } \end{aligned}$	Typical Application Cal to PP [mit	$\begin{aligned} & \text { Pri. } \\ & 1 \mathrm{mp} \\ & 100 \end{aligned}$	Sec. Imp. 10 CI.	Pri. D.C.Ma 100	Part No. M2182	Typical Application P.P. Output Auto.	$\begin{aligned} & \text { Pri. } \\ & \text { Imp. } \\ & 9 \mathrm{ct.} . \end{aligned}$	$\begin{aligned} & \mathrm{Sec} . \\ & \mathrm{Imp} . \\ & 4 \end{aligned}$	Level
10才126	Cot. 10 PP	560	400 ct	18	M2576	Output 2 N156,	25	3.4	3 w
$\begin{aligned} & \pm 121111 \\ & \mathbf{M 2 5 0 5} \end{aligned}$	Col. to P.P Emit Cos to P P Emit 2N43, 951	$\begin{aligned} & 625 \\ & 5 \$ 000 \end{aligned}$	$\begin{aligned} & 100 \text { C I } \\ & 000 \text { C } . \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	M2313	P.P. Output 2N156, 2N68 2N95	$48 \mathrm{C.T}$.	3.2/8	5w.
					M2577	${ }_{\text {P. }}^{\text {P. P. S. Sutput }}$ SN188A	125 C. 140	$\begin{aligned} & 3.4 \\ & 500 \end{aligned}$	1.5 w6 w.
\$42429	$2 \mathrm{~N}_{4} 3,951$ Emitier 953	,000	320 Ct .		M2578				
- 251					M2251	P.P. Audio Output 2N43, TS161	250 C.T.	3.4	250mw.
					M2158	P.P. Servo Output 2N43, TS161	$250 \mathrm{C} . \mathrm{T}$	1,000	Iw.
*Hdd either AG, H, $M, \cdot F,-F B, F P B, A$ of $-P$ 10 Part No to designate construction See catalot tor whthlis informition					M2579	Collector to Spkr. 2N179	4no	10	300 mw .
					M2326	P.P Audio Output 2N180, 2N108	$400 \mathrm{C.T}$.	11	300 mw .
					M8127	P.P Servo	500 CT .	210	2.5w
					M2430	P.P. Servo	1600 c.т.	800	25 w .
					M2580	Output 970 50 2 M2 Output 2N109	2550 C.T	12	100mvs,

TRANSISTOR

OUTPUTTRANS FORMERS
See calalog for frequency response, size and case type.

ULTRA-MINIATURE TRANSISTOR TRANSFORMERS

wt. . 08 oz. size $3^{\prime \prime} 8^{\prime \prime} \times 3,8^{\prime \prime} \times 11,32^{\prime \prime}$ Nylon Bobbin, Nickel-Alloy Core $4^{\prime \prime}$ color coced leads, resin Impregnated.

Part No.	Application	Primary Impedance	Secondary Impedance
UP121.F	Input	100.000	1,000
UM22-F	Driver	20,000	1,000
UM23.F	Driver	20,000	1,200 C. T.
UM24.F	Output	1,000	50
UM25-F	Output	400	50
UM26.F	Output	400	11
UM27-F	Output	$400 \mathrm{C} . \mathrm{T}$,	11
UM28-F	Choke	$10 \mathrm{hy} \mathrm{(0} \mathrm{dc)}$	

FRANCHISED STOCKING DISTRIE UTORS

Dean's Electronic: 2310 American nvenut ach, California
Graypar Electric Co
210 Anderson $5 t$
Lit Angoles Californi
${ }^{4} \mathrm{D}$ Brill Co
610 E 10 th Street
Oakland, Calltormid
Peeries: Radio Divtributors Oakland, Calltornid Jamaica. New Yorts
Arroiv Electronles inc 525 Jericho Turnpike Mineola, New Yort

Moses Radio Elictionies New Yorh City, N
330 Locust st Co Wolmar Distributors 330 Locust st .
Hartiord, Connecticut Utica. New York
Kenyon Radro Supply Co $\quad 0.1$ Capitol Electronics Cerio 202014 m St NW 923 East 4th St.
Electrical Supply Corp Harole h Potrell Co 205 Alewhe Brook Parkway 2102 Market St. Cambridge, Massnchusetts

I1 Suth 12 th St
Minneapolis, Minnespia
Peteral firthaser ity
ito it RWY?

All From One Source

These four quality lines of Electronic Components may be obtained quickly and conveniently from Distributors who stock ERIE RESISTOR CORPORATION products.

ERIE Electronic Components enjoy the reputation of having the highest quality and make up the most complete line of Ceramic Replacement Capacitors, Distributor Stock items are representative of the most common types used by dealers, servicemen, experimenters, amateurs, laboratories, project engineers, and industrials.

CORNING Glass Electronic Components include the complete line of Fixed Glass Capacitors, Direct Traverse and Midget Rotary Glass Trimmer Capacitors, and various types of Low Power, Precision and High Power Glass Resistors.

ERIE-Chemelec Teflon Electronic Components are made of the most nearly perfect insulating material available, and are ideally suited to withstand high humidity, high or low temperatures, high altitudes, high voltages, and high frequency operation. It is serviceable at any temperature from -110° to $550^{\circ} \mathrm{F}$ for long periods with negligible change in critical electrical characteristics.

GRIGSBY-ALLISON Switches are known throughout the industry for dependable quality and smooth performance. They include a complete variety of styles for all types of applications.

G O NS ET ©IIH. Communications Cquipment
 DIVISION OF L. A. YGUNO
 SPRING A WIRE CORP.

The Gonset "Communicator" family

COMMUNICATOR III 2 and 6 METER MODELS

Now. a completely new series of Communicator lil models 10 meet fully the varied requirements of omateur Civil Defense, CAP, Airport and many other services operating on VHF.

Each model is a complete station, has ransmitter, receiver and power supply. Latter is self-contained, operates on 6 and $12 \mathrm{~V} D C$ and 115 V AC (all three). Only one vibrator used. Simple interior sfrapping speeds DC valtage changes. Silicon diedes eliminate rectifier tubes in power supply, sove current drain.

Availoble models cover amateur 2 and 6 meter bands. Eoth has a funoble, calibrated receiver, utilizes low-noise X-155 RF lube in sensitive "cascode" circuit, AVC is opplied to avoid possibility of blocking by very strong locols. Speciol gang tuned circuits give high image rejection. I.F selectivity is im proved, All models have noise limiter, adiustoble squelch, earphone provisions. Tuning dial is fullvision, slide-rule type Switchoble ponel meter reploces "green eye," indicates excite or final output or relative receiver signal level.
2E26 in transmitter delivers 6.8 wotts output. New 6L6GB modulotor tube gives heovier $A M$ modulotion. All iunable circuits hove adiustment knobs on ponel. Gang tuned circuits reduce spurious responses to negligible values. Tronsmitter has provisions for 6 erystals selectable by switch. (Also operates with external VFO.)
Cabinets ore $103 / 4^{\prime \prime}$ wide, $10^{\prime \prime}$ high, $81 / 4^{\prime \prime}$ deep, are finished in Alpine White. Knobs are in Gunmetal Blue.
2 meter Communicator III (6-12V DC, 115 V AC) $+3133$
.269 .50
6 meter Communicutor III ($6-12 \mathrm{~V}$ DC, 115 V AC) \$3136

Net . 269.50
Zipper carrying bog. (Blue color) w3217. ... Nei. . 14.95

C-D COMMUNICATOR III

2 and 6 METER MODELS

 Sperial Communisotor 111 and Linear Amplifier models which meet applicble FCDA specifications ore now available. These new units are similar to their 2 and 6 meter commercial counterparts, are the same size and general appearonce but ore finished in bright yellow with appropriote C.D markings. The some high performonce is obtained when operoting power is supplied by 6 or 12 V car batteries or from 115 V AC mains.Receiver is a sensitive superheterodyne, vilizes X-155 low-noise RF tube in "cascode" circuit. Receivers of both models are unable, the 2 -meter model covering $144 \cdot 148.3$ mcs, the 6 -meter model 49.54 mes. Eoch model hos noise clipper, adjustoble squelch, pilot light on-off switch, eorphone jack with speoker muting. Tronsmitier utilizes 2E26 delivering about 6 watts of carrier, AM moduloted by a 6L6GB.
IMPORTANT FCDA CERTIFICAIION INFORMATION:
Each of these C.D models has individual FCDA certification. The 2 -meter model is under U. 16 Utility Portoble. The 6 -meter model is under U. 14 Utility Portable.
Note that C-D linear omplifiers are not certified individually but rather as a part of a complete "package" which includes the Communicator. In ordering, bear in mind that the C-D Gonsel Communicator Ifl has on individual Gonset port number, the linear Amplifier has on individual part number and the two together as o "package" have a separate Gonset part number.
2 meter C-D Communicator Ill. (6-12V DC, 115 V AC) \# 3133 -CD \quad Net. . 329.50

6 meter C-D Communicator IIt. (6-12V DC, 115 V AC

2 meter Communicator 111,2 meter Linear Amplifier. FCDA certified "package". $\$ 3230$.
6 meter Communicator 113 , 6 meter Linear Amplifier. FCDA certified "package". "3231.

C-D, RF LINEAR AMPLIFIERS, 2 and 6 METERS

New Lineor RF Amplifier to match new Communicator III C-D models. Same characteristics as Gonset commerciol version limeors. (Models 3063 and 3065.) Cobinet is finished in yellow color and has appropriate C.D morkings.

Refer to "FCDA Certification" comment in descriptive copy of Communicator 11 .

2 meters. . $\mathbf{\pi} 3211$ C.D. 6 meters. . 3212 C.D Either, 209,50

FIXED FREQ. COMMUNICATOR 25-300 MCS .

A new Communicator for all VHF-AM applications on fixed requencies from 25 to 300 megacycles. Unit is compact, 7 high, $13^{\prime \prime}$ wide and $10^{\prime \prime}$ deep, includes speaker and dual power supply for 12 volt DC or 115 volt AC operation.
Transmitter is fixed, xil con trolled, uses Type 6360 iwin tetrode in P-P, plate modulated by 2-12ABS's. Integral speech clipping prevents modulotion in excess of 100%. Spurious irans mitter emissions down more thon 60 db at 230 mcs . Power output is 10 wolts corrier with A3 emission of 150 mcs, 7 watts of 300 mss. Operotion is P-T.T. Price includes microphone, $2-x: 1 / 5$ Model «3111, (Specify frequency).
395.00

GROUND-TO-AIR COMMUNICATOR III

A highly effective, 2.way VHF station in a convenient, portoble ockage. New three-way power supply permits operation from 6 or 12 volt vehicular storage battery or from 115 V AC noins. Xtol controlled transmitter supplies full 6.7 watts outpu power with AC or DC power sources. Superhet receiver has low noise X-155 RF in "cascode" circuit, selective l-F, noise clipper adjustable "squelch". Receiver is continuously tunable from 112 to 132 mcs. Operation is simple, non-technical. Unit is same size and weight os other comparable Communicator ill models. Can be used with integral whip or remote ontenna and 52 ohm coaxial line. Size and appeorance same as Madel \#3133.
. \mathbf{n} 139-GA (6-12V DC, 115 V AC) . Net. . 379.00

AIRPORT COMMUNICATORS

A new Communicator, ideally suited for airport use. Identical in size and generol appearance to Model 3111. Available for operation on any fixed frequency from 25 to 300 mes. Price includes microphone and crystals.

Airport Communicator $\mathbf{3} \mathbf{3 2 2 7}$
Net . . 349.00

C-D COMMUNICATORS FOR

FIXED FREQUENCIES 25-250 MCS,
A new Communicator for C.D opplications on fixed frequencies from 25 to 250 mcs. Standard models are currently avoilable for amateur 0,2 and $1 / 4$ meter bands. Receiver is fixed, $x+1$ rentrolled, utilizes double conversion. Excellent noise figure assured by X-155 Cascode RF tube. Spurious responses are down more than 60 decibels.

Equipment is certified by monufos turer, meets applicable FCDA spe cifications for mobile AM Receivers and Transmitters above 25 mcs .

Prices include tubes, microphone crystals.

6 meter model z3112-50., Nei 395.00
2 meter model. . . $\# 3112.144$
Net . 395.00
$11 / 4$ meter model. $=3112-220$
Net . 395.00

RF LINEAR AMPLIFIERS for 2 and 6 METERS

RF linear amplifiers for 2 or 6 meter Communicatars to increase corrier aut. put to 50.60 watts. No olterations re. quired on Communicotor. Tune up is eosy, foolproof, with no donger to lubes. Switthing the Communicotor to transmit automatically activates the amplifier including the internol ontenno reloy. Amplifier uses 2.826 VHF triodes with forsed air cooling. Heovy duty power-supply uses 2.5 UAGB rectifiers.

2 METERS.. ${ }^{2}$ 3063..159.50 6 METERS..\#3065..159.50 ALSO AVAILABLE ..
EXCELLENT 2 and 6 METER GONSET BEAM ANTENNAS

air
 (B)

Illumitronic Engineering has developed o complete, versotile series of air core inductors designed especiolly for the omoteur rig, or for prototypes of RF tronsmission equipment. These coils moy be used for pi output circuits, conventionol IC output circuits, interstoge and oscillotor circuits. The series consists of a stondard cail type, o varioble pitch type, and an indented type, in o range of diameters from $1 / 2$ inch to 3 inches. All Air Dux coils ore constructed of tinned (silver or formvor) capper wire wound on large low lass polystyrene pods for the highest mechonical strength and lawest electrical losses.

alr dux ${ }^{\star}$

Indented air dux ${ }^{\text {(}}$

vari-pitch air dux ${ }^{\text {(1) }}$

There's no trick to it just down-to-earth facts Hammarlund receivers are designed to incorporate batter circuitry and components in such a manner that labor is held to a minimum. The result is a better performing, longer lasting receiver at a lower price Compare - and see for yourself. .

Ha-100 GENERAL COVERAGE RECEIVER. Continuously tunable from 540 KCS to 30 MCS Electrical bandspread 10 -tube superheterodyne with noise limiter Q-multiplier Exclusive Auto-Response for optimum listening under ali conditions
\$16900*

HQ-110 AMATEUR RECEIVER. Full coverage of 6. 10. 15, 20. 40,80 and 160 meter amateur bands 12 -tube dual conversion superheterodyne. Separate linear detector for SSB and CW. Q-multiplier. Separate stabilized beat. frequencs oscillator for SSB and CW reception. Built-in 100 KCS crystal calibrator 2 nd conversion oscillator crystal controlled

HC-10 SSB/CW or AM/MCW CONVERTER. Completely self-contained with own power supply and audio system. Works with any receiver having IF between 450 KCS and 500 KCS. Connects in seconds. Tuned IF with seven selectivity positions Vernier type tuning. Razor-sharp
$\$ 149^{00}$ filter, adjustable over passbano

HQ-150 GENERAL COVERAGE RECEIVER. Continuously tunable from 540 KCS to 31 MCS. 13 tube superheterodyne Q-multiplier. Crystal fitter. Electrical bandspread. Built-ín 100 KCS crystal calibrator. Extra stable BFO for SSB and CW reception
$\$ 294^{00}$

KQ-140-XA GENERAL COVERAGE RECEIVER. Continuously tunable from 540 KCS to 31 MCS 11 tube superheterodyne. Crystal filter. Electrical bandspread Extra stable BFO for SSB and CW reception.
$\$ 249^{00}$
*Telechron clock-timer \$10 extra.

HAMMARLUND

HAMMARLUND MANUFACTURING COMPANY, INC., 460 W. 34th ST., N. Y. 1, N. Y.
Export: Rocke international, 13 E. 40 th St., N. Y. 16, N. Y. Canada: White Radio, Ltd., 41 West Ave. N., Hamilton, Can.

- COMPACT... Case size $14^{\prime \prime}$ $\times 111 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$

- IIGHT . . . 22 lbs. (without antenna and speaker)
- POWERFUL . . . 25 walts outpu*
- UNIVERSAL . . . instantly changed from 12 volt to 24 volt operation
- EFFICIENT . . low battery drain: on 12 volt-total standby, 4,5 amps, transmitting 10 amps. on 24 voli-total standby 2.5 amps, transmitting 5 amps.
- LOUD . . . 1 wall minimum with less than 8% distortion.
- PERFORMANCE ... identical with ground systems.
- Qualify . . exceptional value/price ralio.

CONIUNICATOES COUPANY. Inc.
8

- Complete selection of everything in Ham equipment, electronic paris, tools and supplies right at your fingertips in this one big, handy book.
Save $\$ \$ \$$ with B-A's EXCLU5IVE "Free-Finance Plan"! Take a full year to pay for your receiver or transmifter . . . the total you pay equals no more than the net cash price. No inferest or finance charges, no hidden extras . . . it's purely a B-A accommodation!
- B-A ships only factory-fresh, spanking new merchandise, Never will your equipment have been out on lriul. Every cet is fully guaranteed by the maker and backed by B-A's 30 years of square-dealing.
- Check the 21 big pages of special money-saving buys in parts and equipment, not found in any other catalog,
- Count on B-A for fastest, most complete shipment available anywhere . . . at always lowest prices,

Here they are! electrical equipment problems...

Pictured above are only a few of Western Gear's complete miniature motor line, rangug from 1 500th to 4 HP . Choose from cycle ranges of 50 to 400 at any voltage required Furthermore, if our basic designs do not meet your particular requirements, our engineers will be glad to work with you on your rotary electrical problems WITHOUT OBLIGATION!

LABORATORY.TYPE POWER SUPPLY -

New from Western Gear, Electro Products Division, is this lab-type. voltage-regulated power supply, available in either cabinet or rack type mounting. Input voltage is 105 10125 volts at 50 to 60 cycles per second. Three output voltages are available ... continuously variable 0 to 300 V DC at 150 MA ; continuously variable 0 to negative $150 \mathrm{~V} D \mathrm{DC}$ at
5 MA ; and 6.3 VAC at 8 amperes For full information, use the coupon below.

STROBOSCOPE UNIT - Now available a reasonably priced, compact. true-color stroboscope for viewing rotary, reciprocating or repetitive notion, as designed and manufactured by Western Gear's Electro Products Divisıon. SPECIFICATIONS. Flash duration 10 microseconds; IIght output, 5 Lumen seconds per flash; repettition rate, 0 to 100 pulses per second; dimensions, $6^{\prime \prime}$ wide. $5^{\prime \prime}$ high, $5^{3} 4^{\prime \prime}$ deep For complete information, mail the coupon below.

TRANSISTORIZEO VOLTAGE REGULATOR - Rugged conditions are made to order for this precision unit. especially where performance, space and weight are of extreme importance.
The circuitry employs a shunt power transistor and a temperature-compensated Zener diode reference voltage. Input voltage is 31V DC plus or minus 4 V . Output of the TVR12 is $5 V$ DC at 100 to 200 MA. Regulation less than plus or minus 1 per cent for oombined variations of mput voltage. load current, temperature, drift and vabration. Dimensions $2 \times 2 \times 2$. Weight 8.5 ounces. For more of the story, check and mail the coupon below

MULTIPLE CHANNEL STRAIN GAGE POWER SUPPLY - Model 7PO1 single or multiple channel strain gage power supply. $115 \mathrm{~V}, 60$ cycle input, loV DC output. adjustable from 9-1IV DC with a 10 -turn potentiometer. Output voltage changes less than plus or minus $.05 \%$ due to temperature change from 0 to 45 C ; output voltage changes less than $.1 \%$ due 102% change in load current. Output ripple is less than 300 microvolts RMS isolated from ground as follows: insulation resistance to ground. 10,000 megohms; $A C$ pickup voltage to ground, 5 microvolts peak (Six channel unit shown.) For complete information, mall coupon below.

Glenn Malme - WESTERN GEAR CORPORATION • P.O. Box 182, Lynwood, California

Data sheet on Strain Gage Power Supply Datd sheet on Lat-type Power Supply Oata sheet on Stroboscope Unit

Name.
Title
Company
Address
City

ARROW .. . First With Everything

in HAM EQUIPMENT

OUR
HAM DEPT. W2IEK

K2DWL

W2HCZ

W2HYF

W2SME

W2UUE

K2LGY

FRAE

Send your QSL cord for your free Amareur bond frequency allocation chart in color.

Complete Stocks Of All Standard Brands.

Same Day Mail Order Service.

Quick Personalized Service.

hallicrafters

和 Fisher SCHEADY HAMmARLUND UUALITY TripLET Simpson Belden

EXPORT DEPT.

World Wide Service For Everything In Industrial Electronics, Amateur Equipment \& High -Fidelity.

Just a letter or cable will bring you a fast quotation for all your electronic needs. All export orders get fast per. sonalized service regardless of how large or small.

Western Union FAX Mineala, N. Y. Teletype G CY N. Y. 460 Coble Address "AROLECTRO-N.Y."

ARROWLAECcrooncs, we.

65 Cortland St., New York 7, N. Y. - Dlgby 9-3790 525 Jericho Turnpike, Mineola, N. Y. • PIoneer 6-8686

new, improved PIERSON KE-93

communications receiver

A Full-Fledged 12-Tube All-Band Communications Receiver In A Small, Mobile Package!

Built to outperform existing mobile receivers, the Pierson KE-93 equals and surpasses many reccivers of the large console variety. Extremely small and compact, the KE-93 Receiver is designed for either mobile or fixed station operation. It delivers high over-all performance on seven bands; $10,15,20,40,80$, 160 meters, and broadcast band. In addition, it features a new functional design and simplified control operation. Best of all, it bears the name of Pierson, whose more than 25 years of radio-engineering know-how have produced many outstanding receivers familiar to veteran hams the world over.

- Dual conversion, crystal second mixer, virtually eliminates image responses
- Dial displays only the band in use. Indirect lighting provides non-glare readability of large legible lettering.
- Plated satin finished panel styled to match the most luxurious car interior.
- Each ham band spread over entire length of dial.
- Extreme selectivity and sensitivity.
- Size: $6^{\prime \prime}$ wide, $5^{\prime \prime}$ high, 9" deep.
- Rigid construction, die cast panel and turret housing.
- Highly effective noise silencer and squelch circuits of new design.
- Provisions for external S meter.
- Controls in most practical and convenient operating panel position for mobile operation.
- Function switch provides ideal settings for A.M., C.W. and
S. S. B. operation. Excellent
S. S. B. reception even in "mobile in motion" operation.
- Versatile, 7 position turret band switching.
- 6 or 12 V.D.C. or 110 V.A.C. power packs permit mobile, fixed, or portable operation.
- Competitively priced.

INDUSTRE

RESERRCFI

EDUCRTION

Cameradio, with over 250
Nationally Advertised lines, is recognized as one of the Nation's leading suppliers of electronic equipment and parts. Over 39 years of experience have earned us a reputation for prompt and efficient service. The next time you need anything electronic . . . call on Cameradio.

Featuring:

Nationally Recognized Products
Write at once for our FREE 1958 catalogue showing the complete Cameradio line.

1121 Penn Avenue, Pittsburgh 22, Pa. Express 1-4000

VOLT-OHM-MILLIAMMETERS

for your every need MODEL 310
 MIGHTY MITE the only complete miniature V-O-M (AC-DC)

The same valuable tool professionals use for:

- current measurements . . . voltage measurements . . . resistance measurements
- checking for defective components (shorted condensers, open resistors, etc.) both before and after installation
- checking for shorts or opens in wiring

Tells all about everything electrical and electronic-all essential ranges.

- 20,000 ohms per volt. D.C.
- 5,000 ohms per volt. A.C.

TRIPLETT

 MODEL 630- Large $51 / 2$ Inch Meter in special molded case un. der panel
- Resistance Scale Markings from . 2 Ohms to 100 Meg ohms: Zero Ohms control Aush with panel.
- Only one switch. Has extra large knob $21 / 2^{\prime \prime}$ long, easy to furn flush with panel surface.
- New molded selector switch, contacts are fully enclosed
- All resistors are precision film or wire wound types, all sealed in molded compartments.
- Unit construction-Resistors, Shunts, Rectifier, Bafteries all are housed in a molded base built right over the switch. Provides direct connections without cabling. No chance for shorts.
- Batteries easily replaced-New Double Supended Contacts.
- Ranges: DC Volts 0 to $6,000,20,000$ Ohm/Volt; $A C$ Volts 0 to $6,000,5,000 \mathrm{Ohm} /$ Volt; $D B:-30$ to +70 ; Direct Current from 0.60 Microamp. to 0.12 Amps; Resistance: 0-1,000-10,000 Ohms. 0-1-100 Megs.

A COMPLETE LINE OF METERS

Triplett panel and portable meters are available in more than 26 case styles-round, square and fan-2' to $7^{\prime \prime}$ sizes Included are voltmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo-ammeters, DB meters, VU meters and electrodynamome. ter type instruments

Address all inquiries to Dept. RAH-58

MODEL 666-R

For your $A C$ and $D C$ Voltage, Direct Current and Resistance analyses to 3 Meg ohms. Enclosed selector switch and molded construction keeps dirt out. Retains contact alignment permanently Unit ConstructionAll Resistors, shunts, rectifier and batteries housed in a molded base integral with the switch. Eliminates chance for shorts. Direct connections. No cabling. All precision film or wire-wound resistors, mounted in their own
 POCKET SIZE compartment-assures greater accuracy. Easy to read scales. Precalibrated rectifier unit. Self-contained batteries.
RANGES: AC-DC Volts: 1-10-50-250-1000-5000, 1000 Ohms/Volt; Direct Current: 10-10-100 Ma., 0.1 Amp; Resistance: $0-3000-300,000$ Ohms, 3 Meg. Black molded case, completely insulated, $3-1 / 16^{\prime \prime} \times 57 / 3^{\prime \prime}$ $\times 2-9 / 16^{\prime \prime}$. White panel markings.

MODEL 3256 ABSORPTION

A bund-switching. tuned obsorption type irequency meter that covers five omoleur bonds. Hos Germonium crystal and o DC Milliammeter indicator for greoter sensitivity Direct calibration on panel-no bond chonge. Audio jock provides for monitoring of phone signols-onother new feoture Colibrotion is in Megignoles in foll New bonds. $35-4 \mathrm{MC} 7-7{ }^{\prime \prime}$ $\mathrm{MC}, 14-144 \mathrm{MC}, 20-21.5 \mathrm{MC}, 28-30 \mathrm{MC}$ Coil is removoble and other coils mor be substituted for speciol bonds. Useful for checking Fundomeniol tre quency of oscilloting circuits: Presence, order ond relotive omplitude of hormonics. Porositic oscillo tions, ete Size: $7^{1 / 2} \times 2 \frac{1}{2} 21 / 4$ Merol cose with gray enamel finish black trim

ENGINEIERA AND SCIEN'NISNS NEEDDED FOR

ADVANCIED MINSHILE PIRO.JEC'NS

The continuing expansion program at Lockheed Missile Systems' California facilities creates many new positions for those who qualify. The challenge -exciting work on the air weapons of tomorrow. The rewards - good salary and the opportunity to advance with a growing company. Assignments are in

COMPUTERS
 SYSTEMS ENGINEERING
 RADAR
 TELEMETERING
 ELECTROMECHANICAL DESIGN
 COMMUNICATIONS
 TEST EQUIPMENT DESIGN
 INSTRUMENTATION
 STRUCTURES ENGINEERING
 NUCLEAR PHYSICS
 MECHANICAL ENGINEERING
 ANTENNA DESIGN
 AERONAUTICAL ENGINEERING
 OPERATIONS RESEARCH
 STRESS ENGINEERING

If you feel qualified in any of the above categories, you are invited to address your inquiry to the Research and Development Staff, Sunnyvale 38, California.
nationan hallicrafters

BEST BUYS ON (arg ofurn
 ELMAC

BEST BRANDS

 for Amateur and IndustryLICEN RADIO AMATEUK QUESTIONS \& ANSWERS LICENSE GU1DE, A "nust" if preparing for Novice. Technician or general class exans. Approz. 200 questions 8 answers

DELUXE CODE PRACTICE OSCILLATOR

In Kit Form or Wired

The AMECO Code Psactice Oscillator, for 110 volts AC or DC, with a built-in 4 inch speaker, produces a pure, steady tone with no clicks of chirps. It can take a large number of headphones or keys. Afer the code has been learned, the AMECO code practice oscillator is easily converted to an excel. lent c.w. monitor.
Ohher feafures include:

- Vorioble tone control
- Volume control
- Siurdy grey hommerione cobinet
- Lowest prices

In Kit Form, with Instruction, less tubes (Model CPS.KL) . \$1 ${ }^{75}$ Completely Wired \& Tested, less tubes (Model (PS-WL) $\$ 1295$

Write for Quotations Prompt Service Mail Orders Filled Anywhere in the World

QST

QST has been the radio amateur's own journal since 1915 . Although primarily a ham magazine, it is found on the desks and library shelves of engineers, technicians and others in the electronics field who wish to keep in touch with the development of the art. There is something for everyone in QST, from the Novice to the Old Timer.

QST and ARRL membership $\$ 4.00$ in U.S.A., $\$ 4.25$ in Canada, $\$ 5.00$ elsewhere

THE RADIO AMATEUR'S HANDBOOK

 Internationally reccgnized, universally consulted. The all-purpose volume of radio. Packed with information useful to the amateur and prefessional alike. Written in a clear, concise manner, contains hundreds of photos, diagrams, charts and lables.$\$ 3.50$ U.S.A., $\$ 4.00$ U.S. Poss. and Canada, $\$ 4.50$ elsewhere; Buckram Edition, \$6.00 Every. where.

HOW TO BECOME A RADIO AMATEUR

 Tells what amateur radio is and how to get started in this fascinating hobby. Special emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 CTHE RADIO AMATEUR'S LICENSE MANUAL Study guide and referance book, points the way toward the coveted amateur license. Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50 C

LEARNING THE RADIOTELEGRAPH CODE

For those who find it difficult to master the code, this publication s mpplies the key to the problem. Designed to help the beginner overcome the main stumbling block to a ham license. Contains practice material for home study and classroom use. 50 d

SINGLE SIDEBAND FOR THE RADIO AMATEUR

A digest of the best SSB articles from QST. The newcomer to Single Sideband as well as the experienced SSB user will find it indispensable. Includes discussions of theory and practical "how-to-build-it" descriptions of equipment. Covers both reception and transmission.
$\$ 1.50$ U.S.A. proper, $\$ 1.75$ elsewhere

THE ARRL ANTENNA BOOK

Containing 16 chapters and profusely illustrated, the Anfenna Book includes all necessary information on theory and operation of antennas for all amateur bands; simple doublets, multielement arrays, rolaries, long wires, rhombics, mobile whips, etc.
$\$ 2.00$ U.S. A. proper, $\$ 2.25$ elsewhere

A COURSE IN RADIO FUNDAMENTALS

A complete course of study for use with the Radio Amateur's Handbook, enables the student to learn the principles of radio by following the principle of "learning by doing." Applicable to individual home study or class use.
$\$ 1$ U.S.A. proper, $\$ 1.25$ elsewhere

HINTS AND KINKS

If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas.
$\$ 1$ U.S.A. proper, $\$ 1.25$ elsewhere

THE MOBILE MANUAL FOR RADIO AMATEURS

This manual is a useful and informative guide to mobile radio. It is a collection of articles on tried and tested equipment that have appeared in QST. Contents include a section on receivers, iransmitters, antennas and power supplies. A "must" for the bookshelf of anyone interested in

the installation, maintenance and operation of mobile stations.
$\$ 2.50$ U.S.A. proper, $\$ 3.00$ e/sewhere

ARRL WORLD MAP

Printed in eight colors on heavy map paper with 267 countries clearly outlined. Continental boundaries, time zones, amateur prefixes, plainly marked. Size: 30×40 inches. $\$ 2.00$

QST BJNDERS

No need to let your copies of QST rest in a disordered pile. A QST binder will keep them neat and orderly. Each holds a one-year file.
$\$ 3.00$ (available in U.S. and Possessions only).

LIGHTNING CALCULATORS

Quick and accurate answers with ARRL Lightning Calculators! Type A for problems involving frequency, inductance, capacity. Type B for resistance, voltage, current and power. $\$ 1.25$ each

SUPPLIES

Active amateurs need these supplies: ARRL Logbook, 50c U.S.A., 60c elsewhere. Minilog, $30 c$ U.S.A., 35 c elsewhere. Radiogram blanks, 35 c per pad postpaid. Message delivery cards, $4 c$ each stamped, 2 c ecch unstamped. Members' stationery, 100 sheets $\$ 1.00 ; 250$ sheets $\$ 2.00$; 500 sheets $\$ 3.00$.

American Radio Relay League

Administrafive Headquarfers: West Hartfard, Connecticup, U. S. A.

19

Abstract

American Radio Reiay League, West Hartford, Conn., U. S. A.

Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a sulbscription to QST for the same period. [Subscription to OST alone cannot be entered for one year for $\$ 2.00$, since membership and subscription are inseparable. 1 Please begin my sulscription with the issuc.

The call of my station is

The class of my operator's license is.
I belong to the following radio societies

Send my Certificate of Membership \square or Membership Card \square (Indicate which) to the address below:

Name \qquad
\qquad
\qquad

A bonofle interesp in omateur radio is the only essenfial requirement, but full
voing membership is granted anly oo licensed radio amateurs of the
United States and Canada. Therefore, if you have a license,
please be sure to indicafe fit above.

> \$ $\$ 4.00$ in the United States and l'ossessions.
> $\$ 4.25$, U. S. funds, in Canada.
> $\$ 5.00$, U. S. funds, in all other countries.

NEWARK

 ELECTRIC COMPANY

 ELECTRIC COMPANY}

Generous Trade-In's on All-New World Famous HAMMARLUND

Check today... see your dollar go further at Newark!

HQ-110 RECEIVER-A twelve-tube amateur band meters receiver with dual conversion. Full dial coverage- 160 thru 6 Linoar detoctor for optimum reception of SSB and CW signals. Q-multiplier permits continuously variable selectivity to meet all operating conditions. Has sensitivity of $11 / 2$ microvolts for 10 to 1 SN ratio. Crystal control 2nd conversion oscillator. Temperature compensation. Voltage regulator ... built in 100 kc callbraior...adjusiable dial callibation from front pariel antenna trimmer. Highly stable BFO for SSB. $161 / 4^{\prime \prime} 1 \times 9 \pi / 4 i^{\prime \prime} h$ x 91/6"d. Shippiny wt., 30 pounds.
97F427. NET.
229.00

97F429. HQ-110C. Receiver with clock timer. NET.... ... 239.00
HQ-100 RECEIVER-An all new popular-priced receiver that maets the requiromente of novica and seasamed amateur alike Turnable from 540 kc to 30 mc , dial markings every 10 kc on 80 thu 20 meter bands, every 20 kc on 15 meter band, and evary 50 kc on 10 meter band. Q-multiplier permits continuously variable selectivity to meet all operating conditions. Voltage regu lated and temperature compensated high-frequency oscillator for extra stability. Automatic noise limiter minimizes static bursts and ignition interference. 10 tube superheterodyne circuit. 1.75 microvolts produces $10-1$ SN ratio. Electrical bandspread uses 2 capacitor section for optimum performance. Ruqged diecast cluminum front panel and heavy-gauge chassis and cabinat. $1614^{\prime \prime} \mathrm{L} \times 9^{\prime \prime} 16^{\prime \prime} \mathrm{W} \times 91 / 3^{\prime \prime} \mathrm{D}, 30 \mathrm{lbs}$. 97F415. NET.
169.00

HQ-150 RECEIVER-Designed for the selious amateur! Extremely good eignal to noise ratio. A 1 microvolt signal produces $10-1$ SN ratio. This means better readability under the most adverse conditions! Tunes 540 kc to 31 me in six bunds, with bandspieud calibratiun makinga evciy 10 kc to 15 meters and every 20 kc on 10 . Euilt-in Xtal calibrator provides check puints every 100 kc . Nine tuned circuits in 3 IF tages, plus 5 ztal filter pesitions for sazor sharp seloctivity. Q-multiplier for peaking desired signal or to null interference. Highly stable oscillator zircuit. Fully temperature compensated, including bimetallic plate in oscillator funing gang. Drift is less than $.01 \%$. 12 tubes, plus rectifier. Two-tone cabinet, 11×20 "tin $\times 1352$ Shpg. wt., 80 lbs .
97F420. NET
294.00

97r421. Matching $8^{\prime \prime}$ apeuker. $101 / 2 \times 101 / 2 \times 7^{\prime \prime}$ Shys. wht, $121 \mathrm{lbs}^{\circ}$
HC-10 SUPER IF --A super IF and audio system for finest AM and SSB/CW reception. Entirely self-contained with its own power supply. Supplied with plug-in adapter for miniature or octal tubes. Seven selectivity positions slice out the exact portion of passband from 5 to 6 KCS . Unit incorporates $3-60 \mathrm{KC}$ IF amplifiers; fast, medium or slow AVC positions; combination noise limiter or squelch. Tube complement: 6BE6 mixer; 2-6BA6 IF amplifiers; 6BV8 third IF, det. and AVC; $12 A \cup 7$ product detector; 6AL5 noise limiter squelch; 6C4 BFO; 6AV6 first audio, AVC'clamp; 6AQ5 audio output; 5 YЭ rectifier. Size: $91 / 4^{\prime 2} \times 91 / 2^{\prime \prime} \mathrm{H} \times 71 / \mathrm{B}^{\prime \prime} \mathrm{D}$. Shpg. Wt. 15 lbs . 97 F428 NET.
149.00

WANT A GENEROUS TRADE-IN ALLOWANCE?

Then write to Treger W9IVJ today at Newark-223 W. Madison St. Chicago. We will air-mail your Trade-In Allowance and FREE Log Book. Ask about Newark's Convenient Time Payment Plan. Your trade-in can serve as down payment, balance in easy monthly payments.

Midwest: Dept. HB-8 223 W. Madison Street, Chicago 6, Illinois

Dow a TRI-EX fower for every purpose

fi-Ex
 HAM and INDUSTRIAL

 Self Supporting TOWERS extra large deluxe Crank-up HZ seriesTRI EX now presents the ultimole in CRANR.UP Tower design, engineered to support the heoviest and lorgest mulliple orroys of 10,15 . and 20 meter "HAM" Beoms Self-supporting when installed with our occessory Tripod Bose Mount. The HZ 237 and 354 Models ore olso self-supporling when using

Heary ongle formed steel horizomiol members; plus full X sway brocing used throughout for moximum strength and rigidity Entra lorge 13 \%, cross section diometer on top section to accam modote all Prop Pitch ond other lorge Rotor Morors inside top section

Heouy duyy enclosed geop box, with 35101 worm geor reduction; plus earro lorge $41 / 2^{\text {"0 }}$ diomeler coble drum, used for Tower Winch on all Models. As tower is cronked either up or down, all ses. hons roise or lower together, under full control of roising cables of oll times. permitting complete motorizing of Winch when using hil BMP.61. You moy operate of ony height from 20 ff . Minimum size poising coble used is $3 / 16,7$ m 19 construction golvonized Aireroft Coble.

All Models shipped complete with cronk ond bose. and full engineering dota and colculotions are ovolloble on request.
Model No. Height Weight Not Price HZ-237....... 371.... 270\%..... \$219.45 Hz - $354 . \ldots . . .54^{\prime} \ldots 420 \ldots . . .324 .50$ H/.-471.......71'...625..... 467.50 H/.-588...... 88^{\prime}... 950..... 874.50

(Bripul Supart
50.
50...... 43.95

fi-Ex Extra large

 CRANK-UP MS SERIES
GUYED MOOELS

ri-Ex "Constellation" HZR SERIES

 Rotating Self Supporting TowersThe. Tri.Ex HZR Rololing Tower is a dream come true for the Hom and Industrial User. This Tower has oll the Deluxe Feotures of the HZ Series. plus mony more.
The complele lower and Antenno rolotes on six large sealed precision boll bearings of the 20 fi. level, ond on o heovy duty, flonge type, self. oligning boll beoring of the bose. You con 10 ote the entre lower with the tip of the fingep. A Prop Pitch or other Gearheod Moior moy be sed os o

No guying is necessary as this dependoble HZR Model comes complete with tripod support rods. extending to onchor points within 5 foot rodius rom the base Engineered to supporl lorge orroys of 10,15 , and 20 meler beoms Entro orroys of 10 . 15 , and 20 meter beoms Entro large top section hos o erosss section diometer of
13% Hecyy formed steel horzontal members: 13%. Hecry formed steel hoizontal members:
plus full X swoy brocing: electric welded for moximum strength ond rigidity
Equipped with o 35 to 1 Timken roller beoring. seoled worm geor drive roising Winch. This per mits roising ond lowering your lower with little efforl: enobling you to opepote with your on lenno of ony height yow con motorize for full emote control with the ond of our occessory Model BMP 61 his
All HZR Models ore shapped complete wath Rotating Base. 2 roller Chain Sprochets and drive Chain, Crank, and 3 concrete anchor Rods and Braces Full engineering calculations and dato, ovaloble on request

Model	Height	Weight	Net Price
H2R 237	37	$310=$	$\$ 318.45$
H2R.354	34^{\prime}	$460 \#$	428.45
H2R.471	71	$870=$	577.50

Fri-Ex Crank-up

LARGE " Y" SERIES

GUYEO MODELS

Designed and engineered to support lorge mul. tiple orroys of 10,15 and 20 meler 'HAM' Beoms, when properly guyed
11% cross section diometer on lop section. lorge enough to occommodote most Prop Pitch and other hotor Motors inside top section.

Choice of removoble top most onchor plote or predrilled Prop pitch mounting plote.
Roising Winch includes rotchet for eosy cronlting up during instollotion. Provision olso provided for podloching Winch for sofely
All roising coble of 7x19 construction, golvo. nized oircroft grode. Minimum size used is $3 / 16^{\prime \prime}, 4200$ pound test
Eoch lower shipped complete with cronk, base, and 3 sotely stops for each section. This elimi. notes oll weight on coising coble when guying is complete.
Full engineering detoils and colculations ovoil. able on request

Model	Height	Weight	Net Price
H.237	37^{\prime}	$150 \equiv$	$\$ 131.97$
$H .354$	$\$ 4^{\circ}$	$250=$	184.77
$H .471$	71°	$365=$	254.10

Write for literature sbout our complete line of TRI-EX TOWERS ACCESSORIES

NOW... YOUR CHOICE OF CLEAR PLASTIC OR METAL CASED Shurite. METERS

Shown actual size, zero adjusters avallable

NEW CLEAR-PLASTIC CASES: One look will moke you enthusiastic obout the modern, expensive-looking 850 series... and you will be pleosed to find the meters cost only $20<$ more. Equally good news will be the longer, more visible scale ore the removoble front... ond the ovoilobility of zero odjusters on all $A C$ or $D C$ ranges. See Bulletin 75 listing the populor ranges avoiloble in this case.

ATTRACTIVE METAL CASES: You moy continue to select from the long-time favorites, the bosic Models 550, 650, or 950 as illustrated. Although oll hove been modernized in oppearance recently, eoch continues to fit $25 / 32^{\prime \prime}$ mounting hole. See Bulletin 63 covering metol-cosed types, including mony with zero odjuster.

CHOICE OF MANY TYPES: AC ond DC Ammeters, Milliameters, Voltmeters ond Resistance Meters. AC meters ore double-vone repulsion type with jeweled beoring. DC ore polorized.vone solenoid type, or moving mognet construction. Well over 200 ranges ond types. Among the most populor are 00.3 DC Milliommeter with 500 ohms internol resistonce ond built-in zero adjuster, and a 0.1 DC Milliommeter with 1,000 ohms internal resistonce and zero odjuster, both many times more sensitive than previous models in this price closs.

DEPENDABLE PERFORMANCE: By for the best torque-fo-weight ratio in its field gives you o sturdy meter with fast responses ond obility to duplicate reodings. Molded inner units with internol and externol locking nuts assure moximum rigidity. Dials ore lithogrophed on metol so they stoy good-looking ond eosy to reod in spite of oge ond moisture. Accurocy well within the stondard 5%
REASONABLE PRICES: Typicol of the exceptionol volues are the meters illustroted.
Model 550 0-150 DC Mo $\$ 1.85$
Model 6500.150 DC Volts $\quad 2.35$
Model 950 with zero odjuster 0.1 DC Ma $\quad 3.50$
Model 850 0-150 AC Volts
3.80

Other meters ore correspondingly low in price. You get the benefit of low costs made possible by lorge quantity production.

- Some models include zero-odjuster in price; others ore 35 ¢ extro.
GUARANTEED: For one yeor ogainst defective workmonship ond moteriol. Will be repoired or replaced if sent postpoid to the factory with 40 s handling charge.
WIDELY AVAILABLE: Stocked by leading electronic parls distributors for prompt deliveries.

BLILEY CRYSTALS • BLILEY OVENS

You can dopend on स्यमसइत्र Quality

The amphenol Amateur Antenna has been designed to meet your need for a simple, effective folded dipole antenna system. The efficiency of the amphenol Antenna for both transmitting and receiving has been demonstrated by years of satisfied amateur use. The Amateur Antenna is available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included.

Amphenol twin-lead, flat or tubular, is made of the finest materials available, manufactured with constant and rigid inspection. The brown pigmented virgin polyethylene assures a minimum of signal loss and constant impedance.

Amphenol flat twin-lead is available in a variety of types and sizes. AIR-CORE Tubular twin-lead (U.S. Pat. No. $2,543,696$) is a must for UHF television lead-in purposes.

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.
Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric, including Teflon.

Amphenol R F connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical R F circuits with little or no impedance change or increase in voltage standing wave ratio.

Amphenol R F connectors are available in every popular Series. New Solderless R F plugs 83-850 and 83-851 are ideal for amateur use, being completely re-usable; both eliminate braid soldering-the $83-850$ eliminates contact soldering also.

AMATEUR ANTENNA KIT

FLAT and TUBULAR TWIN.LEAD

Four separate series of microphone connectors are manufactured by amphenol. Newest of the new are the sensational QWIKs. These 3 and 4 contact bullet-shaped connectors add modern efficiency and modern design to every mike application. The $i 5$ series connectors function as either male or female fitting, include jacks. plugs, receptacles, adapters and switches. The 80 series 1 and 2 contact connectors are designed for use with shielded cable. Obtainable in any combination of male or female cable connectors or chassis units. The 91 series include 3 and 4 contact connectors, polarized to prevent incorrect insertion.

MICROPHONE CONNECTORS

FOR GOAXIAL CABLE

CB SERIES

Unsurpassed for coaxial cable swithing. Low standing-wave ratios permit usage on requencies up to 300 megacycles. Designed for 52 -ohm lines. Operate in any position.
Dimensions: H. $-7 / 8^{\prime \prime}$ W. 3-1/19" L. 3-7/8 Iting Data: 2 lapped holes $6-32 \mathrm{NC}-2: 1-7 / 16^{\prime \prime}$ centers

\qquad

Co Resistance $1-$

Type
$\mathrm{CB} / \mathrm{CC} / 6 \mathrm{VD}$ $\mathrm{CB} / \mathrm{C} / 12 \mathrm{VD}$

$\mathrm{CB} / \mathrm{C} / 12 \mathrm{VD}$ $\mathrm{CB} / \mathrm{IC} / 2^{4} \mathrm{VD}$ $\mathrm{CB} / 1 \mathrm{C} / 115 \mathrm{VA}$ 18 ohms
70 ohms

70 ohms CB/1C2C 16 V 280 ohms 18 ohms 70 ohms | Contacts | Net |
| :---: | :---: |
| 1080 | | c8/1cza /12vo 280 ohms SPDDT 5 amps

SPDT 5 amps
SPDT 5 amDs SPDT (int) DPDT (aux) 5 amps (aux) 5 amps
SPDT (Int) DPDT SPDT (int) DPOT $\mathrm{CB} / 1 \mathrm{C} 2 \mathrm{C} / 24 \mathrm{VD}$ 280 ohms (aux) 5 amps SPOT (int) DPDT
(aux) 5 amps
$\mathrm{CB} / \mathrm{IC2C} / 115 \mathrm{VA}$
for antenna changeover

AT SERIES

A heavy-duty RF type for alternating antenna between transmitter and receiver. Primarily designed for lixed. aling. Excellent whith 1 -hilowatt RF assures high efficlency. Ceramic Steatite insulation. Available with uxiliary single-pole, normally-open contacts.
Dimensions: H. 1-11/16** W. 2-13/6/ L. 3-9/16
Mounting Dafa: 4 holes 157 dia ; clearance for $6 / 32$ screws

Type	Coil Resiatance	Contacts	Net
AT/2C/115VA	450 ohms	DPDT 10 amps	13.90

AH SERIES

Application similar to that of AT Series, but designed for rigs where the load doas not oreeed $1 / 2 \mathrm{~kW}$.

FOR POWER CONTROL

FOR POWER TRANSFER

PV SERIES

Designed for very heavy duty induc ive or non-inductive loads. Twin $5 / 16$ " silver-cadmium oxide contacts minimize pitting.
 hly embody an important adsance in functional design and adaptability of this type of unit.

Featured in our latest (atalog lo. 5,8 are Par-Metal universal type Cabinet Racks. They are available in a wide range of practical sizes; with open or closed sides; with or without front doors. They may be used singly or grouped, as illustrated.
PAR-MLTAI universal type Cabinet Racks offer a highly styled, engineered product of custom-built quality at a considerably lower cost. They are made f ir $19^{\prime \prime}, 21^{\prime \prime}, 30^{\prime \prime}$, wide panels, are $18^{\prime \prime}$ or $24^{\prime \prime}$ deep, and are listed in various heights and models. These Racks have provisions for attaching chassis support brackers, fixed or sliding shelves, without drilling or fitting.

For your copy of our 28-page catalog write today 10:

PAR-METAL PRODUCTS CORPORATION

32-52 49th STREET, LONG ISLAND CITY 3, N. Y. - Telephone: AStoria 8-8905

Complete top-quality line serves every mobile frequency and application

Each WARD antenna has been built with rugged reliability for dependable day-in, day-out service in every installation

ROOF-TOP ANTENNAS-in : $\}$ efficiem moodels wath barying megacyele ranges for all flowt meeds.
HEAVY-DUTY MOBILE BASES - hoth standard and cosaxial, in chotere of blath or ehromium suivel basw tu fit asy contour. GROUND PLANE ANTENNAS AND ADAPTERS -general-purpos, fixed-stations, nondirecthonal and wertically polarized. 144.174 me range: will hander up to 3 kw of power. food amped.nere Dimimum Viller: radiate equal pewer in all horizontal diraetions. Built-in lightning arrestor.

See your distributor or wrife for new catalog now ready

A division of The Gabriel Company
DEPT. RAH8-1148 EUCLID AVENUE CLEVELAND 15, OHIO
In Conodo, Atlos Rodio Corp., 50 Wingold Ave., Toronto, Ontorio

TESTING TUBES - EMPLOYS IMPROVED TRANS.CONDUCT ANCE CIRCUIT. An in-phase signal is imi pressed on the input section of a tube and the resultant plate current change is measured. This provides the mos suitable method of simulating the manner in which tubes actually operate in Radio \& TV receivers, amplifiers and other circurs. Ampor athode emission are all correlated in one meter reading - NEW LIME VOLTAGE ADJUSTING SYSTEM. A tapped transformer makes it possible to compensate for line voltage variapossible to compensale for better than 2% SAFETY BUTTON - protects both the tube under test and the instrument meter against under test and the instrumen merm of improper switching. - NEWLY DESIGNED FIVE
position leyer switch assembly. Permits application of separate voltages as required for both plate and grid of tube under test, resulting in improved Trans-Conductance circuit.

TESTING TRANSISTORS

A transistor can be safely and adequately tested only under dynamic conditions. The Model TV-12 will test all transistors in that approved manner, and quality is read directly on special "transistor oniy" meter scale. The Model TV. 12 will accommodate all transistors including NPN's, PNP's, Photo and Tetrodes, whether made of Germanium or Silicon, either point contact or junction contact types.
Model TV. 12 housed in handsome ruged portable cabinet sells for only

CROSS HATCH GENERA. DOT PATTERN GENERA. TOR: The Model TV-50 TOR (FOR COLOR TV): AIGenometer will project though you will be able cross-hatch pattern on any TV picture tube. The pattern will consist of non-shifting, horizontal and vertical lines interlaced to provide a stable cross-hatch effect.
ular standard equipment for servicing Color TV, the one addition which is a "must" is a Dot Pattern Generator. The Dot Pattern projected on any color TV Receiver tube by the Model TV. 50 will enable you to adjust for proper color convergence.

A versatile all-inclusive GENERATOR which provides ALL the outputs for servicing:

A.M. Radio - F.M. Radio - Amplifiers Black and White TV • Color TV

7 Signal Generators in One!

- R. F. Signal Generator for A.M. V Bar Generator
\checkmark R. F. Signal Generator for F.M. Cross Hatch Generator Audio Frequency Generator
\checkmark Color Dot Pattern Generator
- Marker Generator
R. F. SIGNAL GENERATOR: The Model TV-50 Genometer provides complete coverage for A.M. and F.M. alignment. Generates Radio Frequencies from 100 Kilocycles to 60 Megacycles on fundamentals and from 60 Megacycles to 180 Megacycles on powerful harmonics.

MARKER GENERATOR:

 The Model TV. 50 includes all the most fre. quently needed marker points. The following markers are provided. $189 \mathrm{Kc} ., 262.5 \mathrm{Kc} ., 456$ $\mathrm{Kc} ., 600 \mathrm{Kc} ., 1000 \mathrm{Kc}$. 1400 Kc., 1600 Kc., 2000 Kc., 2500 Kc., 3579 Kc. 4.5 MC. 5 Mc. 10.7 Mc . (3579 Kc . is the color burst frequency).Variable audio frequency GENERATOR: In addition to a fixed 400 cycle sinewave audio, the Model TV-50 Genometer provides a variable 300 cycle to 20,000 cycle peaked wave audio signal.

BAR GENERATOR:
The Model TV. 50 projects an actual projects an actual Bar Pattern on any Pattern will sist of 4 conhorizon 4 to 16 7 to 20 vertical bars.

THE MODEL TV. 50 comes absolutely complete with shielded leads and operating instruc. tions.
$\$ 47^{50}$

SHIPPED ON APPROVAL NO MONEY WITH ORDER - NO C.O.D.

Try any of the above instru. ments for 10 daya before you buy. If completely satisfied then sen pay balance as indicated on coupon. No Interent or Finonce Charget Added! if not comcharyen Added If not com letely satisfied return unit to

Madel TV. 12 ... Total Price $\$ 72.50$
$\$ 22.50$ within 10 days. Aalance
$\$ 22.50$ within 10 days. Bal
$\$ 10.00$ monthly for 5 months.

Name
Address
City
 All prices net. F.O.B., N.Y.C.
D Model TV-50...Total Price $\$ 47.50$
$\$ 11 . \$ 0$ within 10 days. Balance $\$ 11, \$ 0$ within 10 days. 8 mo

Complete Outfitters

FOR THE

- Ham
 - Communications

- Electronic Engineers

Eugene G. Wile

218-220 South 11th St.
Philadelphia 7, Pa.
WAlnut 3-1343
Distributors of
Nationally Advertised Lines of
RADIO, TELEVISION and ELECTRONIC Parts

NEW RCA AUTOMATIC ELECTRON
 TUBE TESTER
 ...RCA WT-110A provides
 simplicity, accuracy, and speed
 never before possible
 ... pays for itself in one year -
 by saving testing time

H
Here is tube testing with no wasted motion-no time-consuming searching and setup of old-fashioned roll charts or socket panels, no dial twisting, no fumbling. It's truly automatic testing with speed and simplicity that will amaze you!
Here is virtually an obsolescent-proof design - no roll charts to constantly maintain or replace. All data and setup are supplied on the 241 prepunched cards provided with the instrument. These cards cover most of the currently active TV tube types. In addition, accessory cards and punch are available for punching your own cards, enabling you to keep your instrument current as new tube types are released.
See it at your RCA Distributors, or write to Dept. TE-33-A at the address below for complete information.

ACCURATE AUTOMATIC ANALYSIS

- automatically sets up all socket connections and all operating voltages.
- meter protected against burnout.
- checks tubes for transconductance, gas, and shorts between elements.
- provides all combinations of heater voltage, 10 bias voltages, 11 values of cathode resistors, and 50 sensitivity ranges.
- tubes such as rectifiers can be tested
under heavy load currents, up to 140 ma per plate.
- leakage test with high and low sensitivity ranges.
- 12 -volt plate and screen supply for testing new car radio tubes.
- calibration card for checking instrument.
- 350 active card magazine capacity with storage capacity of 350 ... a total capacity of 700 cards.

SIMPLE AS A-B-C!

C. press calibrate lever and adjust calibration control

Index

Charts and Tables

JWiE
Abroviations for（．W＇，Work
Ambiteur lorequence－Rabls 14
Amatemers（＇orlo．The
Intemat and Ferder Langths
Antomba Diammetar is．Sengeth
Sntental（iailu

2．7
$37: 3,371$
Xitembar Length Fiactor
Attemation of Transmission Lines
3.5

Bamal－Paso loiltors
Mand W＇irth，＇lopical I． l^{\prime} ．
buann lijemont Lempths
（10． 10 x
37
Isroakdown Violatam 2：3
（：all ．Dreas
か心1，ふ心；
1a3
（：apacitame of Short Vertioal Vatemass
（：apheitanere Fiop－latrans
is
（：apatitive Resatanco
（imparitor Color Conde

 $\because 23,24$
 1R．1＇．and 1．V＇，Amplifiers

（＇haracteristio lapedather
$3+1,3!2$
（＇lookr－Itami Powrrs supplies
285
（＇ircuit and Operating Values for C＇onvorter Tinhos

（＂oixial Lium I）ata 312
（ （oils，Dimensigons of
（ooils，Wire sizos for Transmittine
Coblor（＇alde for Ratlio Parts
（0．3．5）
（＇onstruetion＂lowls $+11^{2}$

Comtinmatal Corlo 1：3
（＇omvorsion of Fracliomal and Multiphe［＇nits $\because 11$
 505
 1
（＇ommtrios I，ist．IRIRL． $4!$

（ritical Imbuctance，Bleroder Rexistamer and （＇urmat for
2.05
（rastall lionden
$1-32$
1）（raty Voltax
：3：
1）Mojber
$4: 3$
Worimat liduivalemts of lrations ．．．．．．．．．\quad bot

I）rill sizas
I）N Oprating（ixac
49

Bifere of（iromma on Horizontal Antemats．．Sisti

Fintrrimery Ponts．5.

Fillars
Fobled Dipole Nomorram

（ianmes．Standard Metal
： 10
（iormanium（rastial Dieders
－3
Half－W：ave Anternat Langths
3.5

Index，Monhulation．3：． 32
 tion
$2 \because i$

Inductors，Limensions of

Intornational Smatemer Profixes	$\begin{aligned} & \text { Puit } \\ & \overline{j x i} \end{aligned}$
International Morno（iodo．	$1: 3$
haternational Profixes	ぶっ
L－C＇Computation	525
	：31
	30%
	$1 \times$
Lom，station	5
	361
Low－l＇ass Filter J ita	$5 \mathrm{5N}$
Metals，Relative Rexistivity of	1s
Mobile－Sntembar leata	N．
Momalation ladex	3： 1
Moxdulator（＇harameristice（hart	1，2！1，
Nommenclature of Frospleneies	18

 Ratior
：3－1

$-2-1$
Mronetic
5614
Dilot－Lamm，I ）：ttal ionti

I＇refixes 5x1，5x：5x：
I＇unture Voltages．Dioleatria ．．．．．．．．．．．．

Radiation Ansles ．．．

Radiation Resistatmer ．．．．35ti，3fil，3tit

Resistivity of Matals，Relative ．．．is

R．F．and I．F．Implifiors
10：

stamdard C＇omponent Valuse ．．．．．．．．．．

$153,1.57$

Time，（insatitur（＇harme and l）isehtreo．．．31，32

「＇ime（＇onstant，L／R ．．．．．．．．．．．．．．．．．．．．．．．．． 31

Transformer Ration．．．．．．．．．．．．．．．．．． 2.7
Tratsistors．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1-31$

Transmission－Line Lasses ．．．．．．．．．．．．．．．．． $31: 3$

V＇atomm 「ubes and semicoudurdurs（Index to Tables）．．

V－1

	Plick	110
Lines，Coaxial	311	Milliamprere．．．．．．．．．．．．．．．．．．．．．．．．
Lines，Matrhed	33\％	Millihenry ．．．．．．．．．．．．．．．．．．．．．．．．
lines of Force	15	arillivolt．
Lines，Nouresontut and Resonant	33：3！	Milliwatt
Lines，Parallel Conductor．	3111	
Lines，Transmission	335－354	Mixers ．．．．．．．．．．． $88,9 x-1010,321,397,399$
Lines，Conterminated	338	Mohile：
，ink Coupling	50－51，100，344i	Antenals ．．．．．．．．．．．．．．．．．．．．． $4 \times 3 \times 4 \times 8$
Link Neutralization	－16：3	Power Suphl
Lissajous F゙imures	5336	Receivers：
＂Little（）skey＂．		Mobile Converter for 3．5－2x Me．．．．．．．． 4133
Lasid	23，65－666， 376	（ rystal －Coutrolled（omverter for 50 Me．flif
Load Impedance	－7	Simple Mobile Comverter for 144 Me ．．．． 4 i 9
Laxd 1solation，VFO	150， 151	Transmitters：
Land lesistor	22，（6i3，（6i5－6if	Band－Changing Tramsmitter for 50 and
Lamed（＇ircuit（）	4	$14 . \mathrm{Mr}$ ．．．．．．．．．．． 7 －
Lamal Oscillator	97．1010－101	20－Watt High－l＇requency Mobile Trans－
Larkinu－1n．		mitter．．．．．．．．．．．．．． 77 ？
L．on，sitation	51	10－Watt 50－Mc．Mobile Transmitter．．．． 474
Lonw－W ire Antennas	$361-363$	10－Watt All－Transistor Mobile Moxdula－
Lomp－Wire Directive Irras	3169	
Lanips，（urrent and Voltage	357	Signal Field－strength Meter ．．．．．．．．．．．twa
Losses．Hesteresis．	29	
Lasses in Transmission lines	34，	Mostulation，Heterodyming and Beats ．．．．．．fil－til
Landspeaker（oil Coblur Conde	5\％	Mondulation：
Low－r＇		Amplitude Modulation ．．．．．．．．．．．．． 000 ，2xt
Law frequencies	17^{-18}	（apability ．．．．．．．．．．．．．．．．．．．．．．． $\boldsymbol{2 x 7}_{7}$
Low－l＇ass l－ilters	53，260， $5.5 \times$	Cathode Modulation ．．．．．．．．．．．．．．．．．． $29+1$
しくが（1）	464	（＇haracteristic ．
Low－r Tubes．		Choke－Counded Modulation ．．．．．．．．．．．es：
M．L｀．F．（see＂Maximum I＇sable Freq	quencr ${ }^{\text {＂}}$ ）	
Magnetie storms	312.309	Controlled－（＇arricr Sistoms ．．．．．．．．．．．． 293
Mametizing Curre：at		lepth．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$
Maphetroms．	（1）－81	1riving Power ．．．．．．．．．．．．．．．．．258，2ix
Majority（＇arriers．	s：	1：nvelope ．．．．．．．．．．．．．．．．．．．．． 2 est
Marker Premuencies．		Frequeney Modulation ．．．．．．．．．．．．． 3233,407
Masts		（irid－Bias Modulation ．．．．．．．．．．．．．．．．${ }^{\text {a }}$（0）
Matched Lines	3：3\％	Impedance ．．．．．．．．．．．．．．．．．．．． 2 ¢x， 290
Matching．Autema	376，449，48：3	Index ．．．．．．．．．．．．．．．．．．．．．．． 3 ： $\mathbf{2} \mathbf{4}$
Matching－Circuit Construction		
Maximum Average Rextified（urrent		
Maximum Inverse Peak Voltage．		Monitoring．．．．．．．．．．．．．．．．．．．． 3102 L ，538
Maximum Kafe luverse Voltame		Narrow－lhand lirequeney ．．．．．．．．．．．．． 3 ： 3
Maximum（＇sable lirequency．	361，34，	Percentage of．．．．．．．．．．．．．．．．．．．．． 2×4
Masarements：		Phase Modulation ．．．．．．．．．．．．．．．．．．． 3 ． 23
Antenna．	52：3，526	Plate Modulation．．．．．．．．．．．．．．．．．． 288
Caparitance	525	Plate Suphly ．．．．．．．．．．．．．．．．．．．．．．
Current	5108， 5 2\％	Power ．
Firld Strength	4x\％， 529	Screen－Girid Amplifiers ．．．．．．．．．．．．．．． 291
Frequency	513	Suppressor－（irid Modtalation ．．．．．．．．．．${ }^{\text {a }}$ 293
1mperdance	5332， 5.34	
Inductance		
Modulation	2x－2，2！ 6	Wave Forms ．．．．．． $2 \times 3,2 \times 8,280,296-301$
Phais ${ }^{2}$		Mondulator Tubes ．．．．．．．．．．．．．．． 2 en
Power．		Modulators（sere＂Radiotelephony＂）．．．．．${ }^{\text {a }}$－${ }^{\text {a }}$
Resistance		＂Monimatch＂${ }^{\text {a }}$ ．．．．．．．．．．．．．．．．．． 342 2， 3 30
Standing－Wave lation		Monitors ．．．．．．．．．．．．．．．．．．．．．．．．250，30： 312
Voltage	507，511， 5×3	Motorthating ．．．．．．．．．．．．．．．．．．．．．．．．116
Measuring Instruments		Moving－Vane Instrument ．．．．．．．．．．．．．．．
Medium of Propasation	3 s 9	
Medium－- Tubes		Mu，Variable．．．．．．．．．．．．．．．．．．．．．．．．．． T3 $^{\text {a }}$
Mevacerde ．．．．．		Multiband Antennas ．．．．．．．．．．．．．．3633－363
Meqohm．	20	Multiband Tank（ircuits ．．．．．．．．．．
Mercury－Vapmer Rectifiers．		
Message Form．		
Message Handing	$5-1-583$	Multimeters．．．．．．．．．．．．．．．．．．．．．．．．． 111
Metal（iaumes，staudard		Multipliers，Frequency ．．．．．．．．．．147，168， 419
Meteror Trails	3！6；	Multipliers，Voltmeter ．．．．．．．．．．．．．．．ind
Metaring	$16: 1$	Multirange Meters．．．．．．．．．．．．．．．．．．．． ill
Metors，Volt－Ohm－Milliampere		Mutual Conductance ．．．．．．．．．．．．．．．．．．．．．． 7.3
Meter Switching	1619	Mutual Inductane
Mho．	19， 65	
Microampere		N－Type Material ．．．．．．．．．．．．．．．．．． 8 \％
Microfarad and Microm		N．F．M．Reception ．．．．．．．．．．．．．．．．． 32.5
Mierohenry		Narrow－l3and l－requency Mowhation ．．．．．． 3 3：3
Micromho	1910．03	National Electrical safety Cosde ．．．．．．．． 544 － 545
Microphones		National Traffic sxstem ．．．．．．．．．．．．．．．．． 57.3
Microvolt．．．		
Microwaves		Neqative Feedhack ：．．．．．．．．．．．．．．．．．71， 27 9
Millar Effect	71	Neqative－Lead Filtering．．．．．．．．．．．．．．．．．．． 2.27
	63， 5108	Negative－Resistance Oscillators．．．．．．．．．．．．． 80

1.23

19:3
2:3: 1.4, 4! $21!$ $\cdot 4 \cdot 9$ --10 1!14319:3

30:3
111
40 $8, .0 \times 3$ 3 4-395 (), 311 \% 3! $14-3!11 ;$ $3!13,3!14$ 1 157
-11
3 Si .3
(ii) (i)
 \cdots OX0

Receivers Jigh-Jrequmency (sem Aso
"V.ll. F", 16
(onnstrmetional:
Antentar ('ondpling ITnit for Rereiver .. 1:3:3

(${ }^{11}$,
Selertwjert". $1: 3!$
Transistorized () Multiplicer

Two-1Band Three-Tuhes 太uperhet 118 120
-'Tube TRemenerative Keceiver … .115-117

Improving Performance of 114
Soise leduction 10.5
Folerotivity . 1117-110
Crnsitivity . 110-111

Rectifiors21!, 23s, 2.4:3
Rentifiers, Mercury-Viןor 221

			ratie,
Rectifiers, Selenium	$221,238,243$	Selectivity	(00, 10x-109
Rectifier-Tipe Voltmeter	510	Selectivity Control	108
Refleeted Power	336	Selertivity, Rereiver	(0), 105 109
Reflected Waves	3:36, 394-396	Selenium Rertifiers	$221,238,243$
Reflection of Radio Wives	. $3336,394-3!16$	Nelf-Bias 157
Reflection from Meteor Trails	396	Self-Controlled Oscillators	1.17
Reflection, Groumd	356, 34\%	Self-Inductance	$\because 6$
Reflector, Antenna	-37:3	Self-Oscillation	72
Refraction of Radio Waves	3010, 395-396	Self-Quenching	400
Regeneration	$107-108,111$	Semieonduetors	82-88
Reqenerative I Metectors	9:3-05	Sending ...	
Reqenerative I.F. ...	107	Sensitivits, Receiver	89-90, $110-111$
Regenerative R. ${ }^{\text {r }}$. Stuge, Receiver	109,111	Series Antenna Tuning	… 317
Lregulation, Driver	307	Scries Cinnacitathes	25-26
Regulation, Voltage	$2202,203,2: 31$	Sories Cireuits...	25-26, 29-30
Regulations, Ambiteur	. .1:3-14,599	Neries Feed. 55
Regulations, (onelrad	143, 579	Scries Inductances	29-30
Reculator Tubes	$2: 31$	Neries-Parallel Resistances	21-23
IRequlator, Voltare	$2: 31$	Nerjes Resistameres	20-21
Relays	542-5.4:3	Series IResomance	4.4
Leperforator	3331	Series Voltage-Dropping Resistor	2:30
Resistance	18-23	Servicing Superhet Receivers	12-114
Resistance, Mack	N:3	Shary Cut-Off Tubes	
IResistance, Porward	8:3	Sheet Metal Cutting and Bendi	$5(0)$
Leistance-Bridge Standing-Wive	ator ... 527	Shielding.	57, 72, 552
Reistance- (anacitance Time (onst	$30-31$	Shields	
Reistance-(Rupled Amplifier 1)ata $^{\text {a }}$	1) .. 2.50	Short Skip	3!\%
Resistanme in teries and Parallel.	. $20-28$	Shortingstiok	5413
Resistivity	18	*hort-(ircuiting	
Resistor	$1!$	Shot Noise	105
Resistor color corde	\%)!	Shunt Matrhing, (iround-Patne A	11a.... 367
Resistor Wittage	$\underline{2}$	shunts, Meter............ ${ }^{1 / 7}$
Resoname	$44-17,49-50$	Side-I3and Couting	101-102
Resonance (burse	.44, 45, 50	Side-I3and Interference	2 Ca
Resonance, Filter	226	Side IBands	5)!, 284
Resonamee, Sharpmess of	44-45, 375	Side Bands, F.M. and P.M.	3: 24
Resonant-Line Cireuits	. $\overline{57}$-58	side Firequencies	61, 284
Resonant Transmission Lines	3:39	Signal Envelope Shape	- 244
IResomator, (avity	59! 1 -60	Signal Generabors	520
Resjonse, Flat) 0,71	Signal-Ilandling (apabilits	
Response, Freguency	71,254, 258	Signal-to-Image Ratio...	97
Restricted-S゙pare Antennas	. . $361-364$	Signal Monitor. ...	248
Restrietion of Firequeney Response	262, 309	Nignal Monitoring	247
Retura Trace.	5:36	Simal-Strenth Indieators	106-107, 15:
Rhombic Antenna	3691	Simal-strenth Seale 580
" Ribhon" Miarophone	257	Signal Voltare ...	
Ripple frequency and Voltage	224,236	Silencers, Noise	105-10i
RMS Voltare	17	silicon I Diodes.	
IRochelle Siths ('rsista	52.257	Side l3and T'eehniepues	31.4
IRotary Antemmas	. 375	Sine Wave	17, 3:3
Rotary Antemmas, Foedlinas for	375	Single-Fonded (ircuits	20-57
Rotary-l3cam ('onstruction . . .	384	Single side l3and (see also - 1Rard	(10ny ${ }^{\prime \prime}$):
Route Manamer	- 375	Adjnstment	
		Amplification.	3117
S-Meters	106-107, 489	Exaters....	3111
STeale	. 5×0	Generators	3115
S.s.13. Exelters	335	Mixers	$3: 1$
Safety	$242,543-5.45$	Signal Reecption	107-114
Safety Code, Nitimal Electrie	. . . 544-545	Transmission..	1in 3(1)
Situration29, 227	Single-Nignal Reception	. 117-108
Saturation Point	(ii)	Skin Iffect	
Sawtooth Sweel	5:3 ${ }^{\text {d }}$	Nkip Distance	.301, 345
Schenatie Sxmbols	fromtispirce	Skip Zone	-3!11
Sercen 13y-Pass Condenser		Skirt Selectivity	
Acreen Circuits, Tumed	420,440	Nky Wave	301
Srren Dissipation. .	. . 157	Slag-Tuncel Inductance	
Sureen Dropping IResistor	76	Amoothing (hoke	227
Areen-Girid Amplifiers.	163, 291	Solar (yele	302, 3195
Areen-Girid Keving.	- 246	Soldering .	$5(0)-501$
Screen-Girid Modulation	$\because 91$	Spare Charge	. $62-6.3$
Screen-Grid Scutralization	163	Space Wave	890
Suren-Girid Tube Protedtion	159	Spark Plug Suppressors	461
Screcn-Grid T'ubes.		Syerific Inductive (${ }^{\text {Supacity }}$	23
Srreen-Voltage Supply		Spertrim, Frequency . .	17,18
siecond Imetertor....	97, 10:3-10.4	Sucerh Amplifiers	256
Serondary 'oil	40	Supreh-Amplifier (bintructions	261
Serondary limission.	72	Speech Amplifier Design	200
Secondary Frequenes Standard	$\therefore 516$	Sueeeh (lipping and Filtering	26.3
Section Conmmmications Manager	.574, 575	Speech Compression	262
Eretiom Emorkency Coordinator		Speerh Equipment	256
Section Nets	576	Splatter	2 St
Selective loading	392	Splatter-iuppression Filter	

	PMat			
Tube Ratings, Tramsmitting	154	High-Power Transmitter for 50 and 14		
Tubes, Modulator	27	Als.	+121-42!	
Thucd (onpling	1.54	For-Ale Amplifier	$12412!$	
Tuned screell (ircuits	(1), 4.41	Prouressive 'station for 0 (and lit Ma, 433 410		
Tuned-Line Tank ('irsuit	5x, 413	Buidsing the Exerters.	1366135	
Tuned Transmission Limed	33:3	\because-hand $1 \because 5$-Walt Amplifier	r a 138111	
Thaners, Antemat (${ }^{\text {anistuction of: }}$		Simple 'ramsmitter for 290 and 420 Me. 441442		
Comx-Coupled Mat ching ('irruit	330	Transmitter-tixeiter for $2: 00 \mathrm{M}$	Me..... 145 147	
Matehing Circuit with Multiband Tumer	33 y			
Receiver (ompler	132. 13:			
	352			
Tuning Indicators		trolled Tramsmitter		
Tuning R.F. Amplifiers	171	14t-Ale. Driver-Amplifier	129)-4:3	
Tuming Reveivers 9\%,	97,111	Propagation Remiver Considerations	3391-3301	
Tombing slug			3!	
Tuning Transmiters	117	Remiver Considerations Superregenerative Reveiver	101	
Turns Radio	41	Transmitter I)esign	120	
TVI	420, 5 4t	- M.11.F. Reeciver Desimu	397	
TV Rereiver Daficiencios	50, 2.505	Vibo.	149-152	
			493	
	5:34	Sibrator Power Virtaal Ileight		
T'win-Lead	3410:311		306	
			$x-569$	
('Itra-High-Frequencios:		Voice Operating Violt		
(atity Remmators	5!-(i)		37, 3!	
klystrous		Volt-Amprores Volt-Ampere Rating		
"Lixhthonse" Prubes.	3!1, $41 \times$	Yoltare ${ }^{\text {Smplification }}$	-7ifi, 2 Sa	
Magnetrons	sil 81	Yoltare Xmplitier.		
Pencil Toubes	368		3, 3	
Tank ('irenits	5\% (ii)	Yoltage Deray.	2	
Tramsmission-Line Tamks	53-4i1	Soltage Dividers	1	
Traveling-Wave Tumes		Volnge Distribution, \atema		
Trulues	7! - -	Voltage Drop.	21, 230	
Yelocity Medulation	$7!18$	Vintaze Fied for Matemats		
Wawe Cuides	-x-6is	Yoltage (ainin.........	(i7, 2.5	
Tubatame in . Amplifiers	$16: 3$	Foltare Loop		
Cubalance in Tramsmission Litues	311	Voltage-dmplification Ratio	ifi	
'nderwriters Cowlo	544-545	Yoltage Multiplier ('ircuits.		
	332	Voltage Xode	334	
Cosimmmetrical Madulation	20is	Yoltaze Ranio		
Vontuned 'Iramsmission Lines	33:39		r 111	
C'pward Madulation			220, 22:3031	
		Voltage-kagulator Interferchace		
" ${ }^{\text {co }}$ Antemuas	369	Voltame, Ripple	209, 29.4	
YR Tube Break-In Sistem	247	Voltago Rise Voltagn-stabilizerl Power supplies Volimerars	. 4.5	
	2311		\cdots 231	
Vamum Tubresand somicouductors			$517.511,53$	
(himex to Tables)	$\backslash 1$	Vohnme Comuression	26	
V:ammo-Tuhe Revers		W1 Profixen by states		
	12. x	W1.1W	87.5\%	
	311	W:IC Award		
Variable Capameitor	29			
	$14!15$	W:11	2	
V:ariablo-m Tubs	7:3	W:ill-Ilour W:11-- (romal		
Variable solmelisits	10s 10!		2:	
Vabocity Fictor		W:ase Varde	355. 350, 358. 391	
Valowity Micruban	25		4. 29.1	
	N10	W:are liromt	: 3 ¢	
Valserity Modulation	\%x	Wave, (iremul	30\%	
Crlocity of Radio Wixses	18,380	Wave (inides Wave Meters	8 -im	
Vertieal Amplifiers	:233;		513	
Yertical Ingle of Radiation	3.3 .5	W:are Propagation	:359) 394i	
Vיretical dutemats	346i, 4\%	Wave, Sue . .		
Vortical Polarization of Radio Winces	3x9, 4 s	Watse, Sky Waye Form	3411	
			17	
Sutema (oupler	434	Wave Form	7-15	
Iutemma Sistems An	4.54, +6\%	Wavelenght-Frernetug (omversion	4-... 18	
Reroivers:		Wavelength Performatire	39:3-394	
(rystal- ${ }^{\text {coutrolled (}}$ (onverter for 4.3 ± 1	Ic. 41.5	Wavelogrths, Smatemr	14	
(rystal-(ontrolled (omwerter for sol			34	
Mobile 1"se	46 if	W゙aves, Disturted	ifi	
(rystal-(ontrolled Comverters for 50)		Wives. Electromametic W:ave Traps	15	
and $2 \times 0 \mathrm{M}$	411		553. 84	
1.F. Amplifier :md Power supply	4117	W:ave Traps Wheel static	4111	
Preamplitier for	412	Wide-Band Vateanat	44	
One-tube (omserter for $21,28,50,144$ or $2: 0$ Ne.		"Winelom" Anterua Wiring Dingrams. Simbols for	336.4	
		fromispier		
Receivers for ter Mrs.			Wiring, station	54, 514
R,F\% . Anplifier for teo Me.	111	Wiring, Tramsmitter	5015	
Simple Molvile (omverter for 1/1 Me			$51: 9$	

	Plif：		put
Working DX	201930，	＂「゙ı上i＂Autenmas	（1），
Working Voltage（abracior	11）$\frac{10}{}$		
	A！\％	\％（Impxatatare）	37－3！
		\％ora Beat	8
I（Ranctance）	．337－37	\％ers－Mias Trabus	69

[^0]: Standard cirenit symbols (ISA Y 32.2 - 19.5). In cases where identifitation is necessary or desirable, the eurved line in the capacitor symbol represents the out ide electrode (marked "outside foil" or "ground") in paper-dielectrie capacitors, and the neqative electrode in electrolstic capacitors. In variable capacitors the curved line usially represents the movalse phate or plates.

 In a number of cireuits in this Handbook, prepared before adoption of the stambard, some symbols are not guite identical with those above. However, in practically all cases the intent of the symbol will be easily recognized. In the older circuits the gromend symbol is generally uad to indicate a eonncetion to chasis.

[^1]: Example: A transformer has a prinary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a load of 3000 ohms is connected to the sccondary, The impedane looking into the primary then will be

 $$
 Z_{1}=Z_{8} N^{2}=3000 \times(0,6)^{2}=3000 \times 0.36
 $$

 $$
 =10 \times 0 \text { ohms }
 $$

[^2]: I.F. Alignment

 A calibrated signal menerator or test oscillator is a useful device for alignment of an i.f. amplifier. Some means for measuring the output of the receiver is reduired. If the receiver has a tuning

[^3]: ＊Approxinately 2 nat．Drpemds on selting ol expitation rontrol．

[^4]: Hia. 6.82 - The mrid tank ebils $/ .2$ and 1.4 are supported on soldering-lag strips to the rear of S_{1} and C_{A}. Power-sungly filter eomponmens are gromped in the lower right-hand cormer.

[^5]: A－Pederal．B－Internathonal．（＇－Mallory． I）－Kadio Receptor． \mathbf{E}－Sarkes－Tarzian．F－ Sylvania．

[^6]: 1 Voltage across next－stage grid resistor at grid－current point．
 2 At 5 volis r．m．s．output．
 3 Cathode－resistor values are for phase－inverter service

[^7]: *. Alternate coil; requires addition of $75 \mu \mu \mathrm{f}$, total in parallel with C_{2}.

[^8]:

 lurne of $I_{\text {- }}$.
 Ia - Bathe as Iox insertod in I.f.
 J_{1} - Coavial commetor, fimale.
 with surface of rhatsis.s.
 \%-111).

[^9]: Fí, 19.18, 1 panal-illuminating lamp is monutere tos the risht of the meter. alome with the amplifier-tamh and anterna-linh
 lofl th right, are tho miserophome jach.
 switch. oscillator taning romtrol and the (ry-tial.

[^10]: 1 A mil is $1 / 1000$（onc－thousandth）of an inch． 2 The figures piven are approximate only，since the thichness of the insulation varies with different manufacturers． 3 foo circular
 column）by 1000 ；for $500 \mathrm{C}, \mathrm{M}$／amp．divide cireular mil areaby $500 .{ }^{4}$ Single silk－covered．${ }^{5}$ Double silk－covered． 6 Single cotton－covered． 7 Double cotton－covered．

[^11]: 140 A and 47 are interfhangrahle．
 s Have frosted bull，
 349 and 19A are interchangeable．
 4 Replace with No． 48.
 too frequentlv．
 ＊White in（i．E．and Eytwana；green in National U＇nion，Raytheon and loug－siol．
 ＊＊ 0.3 B in（i，F，and Sylvatia； 0.5 in National Union， Ravthoon amd Tune－Nol．

[^12]: \$ Controlled heater warm-up charocteristic
 \$0scillotor gridleok or screen.dropping resistor ohms.

 - Cathode resistor ohms.
 - Spoce-charge grid.

[^13]: s No signol plat ma.

 - Effoctive plate.to-plate

 7 Triode No. I.

 - Triode No. 2.

[^14]: - Oscillator grid curtent mo
 - Values for each section.

 I Mieromhos.
 12 Through 33*.

[^15]: See page V27 for Key to Class of．Service obbreviations．

[^16]: See poge V27 for Key to Class－of－Service obbreviations，

[^17]: 90905-B

[^18]: *Deflection in rolfs per inch.

[^19]: "World's Largest Distributors of Short Wave Receivers."

[^20]: 4371 Valley Blvd., Los Angeles 32, California Telephone: CApitol 2.9101

