The Iocio

amateurs's

 handbookTHE STANDARD MANUAL OF AMATEUR RADIO COMMUNICATION

THE AMERICAN RADIO RELAYLEAG YF

Ned H. Hockensmith

The Radio Amateur's Handbook

Ned H. Hockensmith

STANDARD SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

For convenience and simplicity, sehematie wiring diagrams emploving conventionalized symbols which represent varions componems, as shown above, are used to show the circuit connections in assembilies of radio apparatus. 'The symbols used in thi- Handbook follow the standardized forms adopted by the radio industry noder the ASA standardization program in 19.4. Alternative symbols marked with an asterisk are conventional forms used prior to mid-19.4, included for referener where the original symbol has undergone appreciable change.
${ }^{1}$ Where it is neerssary or desirable to identify the electrodes, the curved element represents the outside electrode (marked "ontside fail," "groum," ete.) in fixed paper- and ceramic-dielectric condensers, and the negative electrode in electrolytic condensers:
2In the modern symbel, the curved line indieates the moving element (rotor plates) in variable and adjustable airor mica-diclectric condensers. To dintinguish trimmers, the letter " T " should appear adjacent to the symbol,
In the case of switehes, jackn, relays, etc, only the basie combinations are shown. Any combination of these sym. bols may be assembled as required, following the dementary forms shown.

TWENTY-THIRD EDITION

BY THE HEUDQUARTERS STAFF OF THE AMERICAN RADIO RELAY LEAGUE

PUBLISHEI) BY
the american radio relay league, inc. WEST IIARTFORD \quad, CONNEC.IICU'I, U. S. A.

COPYRIGHT 1946 BY

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

This work is Publication No. 6 of The Radio Amateur's Library, published by the Leaguc. All rights reserved. No part of this work may be reproduced in any form except by written permission of the puhlisher. All rights of translation are reserved. Irinted in U. S. A.

Twenty-Third Edition

First Printing, November, 1915, $\mathbf{5 5 , 0 0 0}$ copies
(Of the previous twenty-two editions, $1.398,250$ copies were published in forty-six printings.)

This book is produced in full eompliance with government regulations for conservation of paper and all other essential materials.

Foreword

Twentry years ago - in 1926 - the first edition of The Radio Amateur's Handbook was presented to the amateur world. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, its publication was eagerly greeted by the radio enthusiasts of that day. Subsequent editions have earned ever-increasing acceptance not only by amateurs but by all segments of the radio world, from students to engineers, servicemen to operators.

This wide dependence on the Handbook, evidenced by a total printing of nearly a million and a half copies, primarily is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion and abstruse formulas.

But there is another factor as well: dealing with a fast-moving and progressive science, sweeping and virtually continuous modification has been a feature of the Handbookalways with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual rewriting is a major task of the headquarters group of the League, participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

In contrast to most publications of a comparable nature, the Handbook is printed in the format of the League's monthly magazine, QST'. This, together with extensive and usefullyappropriate catalog advertising by manufacturers producing equipment for the radio amateur, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusity of illustration surpasses most available radio texts selling for several times its price.

When war cane to this nation it was discovered by the military and other agencies that the IIandbook was precisely what was needed to help make practical radiomen for the Army and Navy and to help those who were training thenselves for wartime radio work. Not only was the IIandbook used as a text or reference in many training prograuns, but it also provided source data for many service-written special courses. During the war years the training aspects have been given increasing emphasis - not, however, to the detriment of other long-established features, but rather by increasing the size and scope of the book.

The United States was still at war when work on the present edition was begun. With most forecasters placing the probable end of the conflict in the summer of 1946, it seemed wise to carry the wartime structure of the IIandbook through this edition. August, 1945, found most of the revision completed and a great deal of the book actually printed. But with V-J Day bringing the imminent prospect of resumption of amateur operation, part of it in newlyassigned bands calling for revamping or complete redesigning of prewar equipment, it was apparent that to maintain the high standard of practical usefulness set by previous editions a new treatment of the v.h.f. section of the book was urgently needed. Although it meant re-doing much of the work and delaying the appearance of the Handbook beyond the anticipated publication date, this revision has been completed. In the Principles and Design section, which already had been through the presses, the occasional reference to prewar v.h.f. assignments should be read in the light of the new frequencies; revised formulas and charts for the new bands appear on the back of this page, together with references to the Handbook page and (where applicable) figure number they replace.

A word about the reference system: It will be noted that each chapter is divided into sections and that these are numbered serially within each chapter. The number takes the form of two digits or groups separated by a hyphen. The first figure is the chapter number, the second the section number within the chapter. Cross-references in the text take such a form as ($\$ 4-7$), for example, which means that the subject referred to will be found discussed in Chapter Four, Section 7. Throughout the book, illustrations are serially numbered within each chapter. Thus Fig. 1107 can be readily identified as the seventh illustration in Chapter Eleven. There is a carefully-prepared index at the rear of the book.
To a long-established reputation of indispensability in the amateur station of prewar days the Handbook now has added a proud record of participation in the national war effort. With the coming of a new peace and the opening of a new era in amateur communication, we earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

Kenneth B. Warner
Managing Secretary, A.R.R.L.
West Hartford, Conn.
November, 1945

Frequency Changes

Occasional references will be found in Chapters 2 to 10 , inclusive, to the $56-$ and $112-\mathrm{Mc}$. bands. These bands are now $50-54$ Me. and 144-148 Me., respectively, and the new figures should be substituted wherever encountered.

On page 194, formulas (3) and (4) can be used without change for computing antenna lengthe in the so-Me. band.

On page 205, the following chart should be substituted for the lowermost one in Fig. 1016:

The table below shombld be substibuted fore Table V', pare 226, giving dimensions for square-comer reflectors:

TA13ISV					
Frequeney Band	Tength of side	Lengthof Refleretor Flenuents	$\begin{aligned} & \text { Sumber } \\ & \text { of } \\ & \text { Refieretor } \\ & \text { Filctuents } \end{aligned}$	Spacing of Refluctor Liloments	Sparing of Drivert Dipale to Vertix
	$4^{\prime} 2^{\prime \prime}$	$\because^{\prime \prime} \mathrm{s}^{\prime \prime}$	20	$5^{\prime \prime}$	$2^{\prime} 3^{\prime \prime}$
144-145. Hc . (2 metors)	$6^{\prime} 8^{\prime \prime}$	$3^{\prime} 11^{\prime \prime}$	20	s "	$3^{\prime}{ }^{\prime \prime}$
145-14* Mc. (: meters)	$5^{\prime} 4^{\prime \prime}$	$3^{\prime} 11^{\prime \prime}$	16	$3^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$
:10-j4 Ste. (tif 13:(ers)	$18^{\prime} 4^{\prime \prime}$	$11^{\prime} 4^{\prime \prime}$	20	$1^{\prime} 10^{\prime \prime}$	$9^{\prime} \mathrm{b}^{\prime \prime}$
.11-5i M6.* (1i meltrs)	$11^{\prime \prime}$	$11^{\prime} 4^{\prime \prime}$	16	$1^{\prime} 10^{\prime \prime}$	$7{ }^{7 \prime \prime}$

Dimensions of syuare-corner refleretor for the 220-, 14-, and 50-Me hands. Alternative desipn are listed for the 1.14 - and 50 . We, hands. Theree dexigns, marhed (*), have fewer reflertor elements and shorter sidera but the effretiveness is only slightly redured. 'There is me rellector element at the vertex in any of the designs.

$\stackrel{r}{ } \times$ TABLE OF CONTENTS

[^0]
The Amateur's Code

$\overrightarrow{\boldsymbol{u}} \overrightarrow{\boldsymbol{u}}$

1. The Amateur is Gentlemanly

He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

2. The Amateur is Loyal

He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

3. The Amateur is Progressive

He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

4. The Amateur is Friendly

Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

S. The Amateur is Balanced

Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

6. The Amateur is Patriotic

His knowledge and his station are always ready for the service of his country and his community.

Amateur Radio

Countless thousands of persons all over the world have enjoyed the thrills and pleasures of a mateur radio. This is a brief account of how it grew into the magnificentlyuseful institution it is today.
Amateur radio is as old as the art itself. There were amateurs before the present century. Shortly after the late Marconi astounded the world with his experiments proving that wireless telegraph messages actually could be sent, "amateurs" were attempting to duplicate his results. But amateur radio actually began when private citizens discovered this means for personal communication with others, and set about learning enough about "wireless" to build home-made stations. Its subsequent developrnent may be divided into two phases, the period before 1917 and the years between that war and December 7, 1941. Plus, of course, the new phase now opening.

Amateur radio of pre-World War I bore little resemblance to radio as we know it today, except in principle. Transmitting and receiving equipment was of a type now long obsolete. No U. S. amateur had ever heard a foreign one nor had any foreigner ever reported an American signal. The oceans were an impenetrable wall. Cross-country communication could be accomplished only by relays. "Short waves" meant 200 meters; the entire spectrum below that was a vast silence undisturbed by any signals. By 1912, however, there were numerous Government and commercial stations and hundreds of amateurs; regulation was needed; and Ifws, licenses and wavelength specifications for the various services appeared.
"Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out bow, and DX jumped from local to $500-$ mile and even occasional 1,000 -mile two-way contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiram Percy Maxim, AREL was formally launched in early 1914. It
had just begun to exert its full force in amateur activities when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6,000 amateurs. Over 4,000 of them served in the armed forces during that war.

Today, few amatcurs realize that World War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over conmmunications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silenee. . . . The League's offices had been closed for a year and a half, its records stored away. Most of the former amateurs had gone into serviee; many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old board of directors. The situation was discouraging: amateur radio still banned by law, former nembers scattered, no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth B. Warner as the League's first paid secretary, floated a bond issue among old League members to obtain moncy for immediate running expenses, bought the magazine $Q S T$ to be the League's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush to get back on the air.

From the start, amateur radio took on new aspects. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. A mateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

As DX became 1,000 , then 1,500 and then 2,000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, in what has been called the
greatest sporting event of all time, ARRL sent abroad an expert anateur, Paul F. Godley, $2 Z \mathrm{E}$, with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superleterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARIRL-sponsored tests on wavelengths down to 90 meters wore successful. Reports indicated that as the wanclength dropped the results were betler. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur trans-Atlantic communication was aecomplished, when Sehnell, 1 MO , and Reinartz, 1XAM (now W9UZ and W3IBZ, respectively) worked for several hours with Deloy, 8 AB , in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a scries of national and international radio conferences partitioned off various bands of frequencios for the different services. Although thought still centered around 100 meters, Learue oflicials at the first of these conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, 10 and even 5 meters.
Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters? This new band revealed entirely unexpected possibilities when 1NAM worked 6Ts on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX: was finally true.

From then until "Pearl Harbor," when U. S. amateurs were again closed down "for the duration," amateur radio thrilled with a series of unparalleled accomplishments. Countries all over the world came on the air, and the world total of amateurs passed the 100,000 mark. . . . ARRL representatives deliberated with the representatives of twenty-two other
nations in Paris in 1925 where, on April 17th, the International Amateur Rarlio Union was formed - a federation of national amateur radio societies. . . . The League began issuing certificates to those who could prove they had worked all six continents. By 1941 over five thousand WAC certificates had been issued!

Amatcur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as was given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "public service."

About 4,000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in the establishment of the Naval Conmmunications Roserve and the Army-Amateur Radio System. In World War II thousands of amateurs in the Naval leserve were called to active duty, where they served with distinction, while many other thousamels served in the Army, Air Foreces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the Cnited sitates. Other thousands were engaged in vital civilian electronic research, developmant and manufacturing.

The "public service" record of the amateur is a brilliant tribute to his work. These activities ean be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in ' 23 when a Learue member, Don Mix, ITS', of Bristol, Conn. (now assistant technical editor of QSTT'), accompanied MacMillan to the Aretic on the sehooner Bowdoin with an amateur station. Amateurs in Canada and the United States provided the home contacts. The success of this venture was such that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many eases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 eastern states flood, the 1937 Ohio River Valley flood, and the Southern Califormia flood and Long Island-New England hurricane disaster in '38 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major rôle in the relief work and carned wide commendation for their resource-
fulness in effecting communication where all other means had failed. During 1938 ARRL inaugurated a new emergency-preparedness program, registering personnel and equipment. in its Emergency Corps and putting into effect a comprehensive program of coöperation with the Red Cross.

Throughout these many years the amateur was careful not to slight experimental development in the enthusiasm incident to international DX. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the anateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for DX. Nonctheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (hater QST"s editor), developed the theory of v.h.f. wave-bending in the lower atmosphere and led amateurs to the attaimment of better distances; while oceasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely-erratic performance. By Pearl Harbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand mikes - transcontinental 5meter DN had been accomplished! lt is a tribute to these indefatigatble amateurs that today's concept of v.h.f. propagation was developed largely through amateur rescareh.

The amateur is constantly in the forcfront of technical progress. Many amateur developments have come to represent valuable eontributions to the art. The complete record would fill a book! From the ARRLI's own laboratory in 1932 came James Lamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver - and, in 1936, the "noise-silencer" eireuit for superheterodynes. During the war, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment.

Emergerey relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance
of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

IT The American Radio Relay League

The ARRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRL and QST'.

The League is organized to represent the amateur in legislative matters. It is pledged ro promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. One of its principal purposes is to keep amateur activities so well conducted that the amateur will eontinue to justify his existence.

The operating territory of ARRL is divided into fourteen U. S. and six Canadian divisions. The affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of each U. S. division, and a Canadian General Manager is elected every two years by the Canadian memberslip. These directors then choose the president and vice-president, who are also members of the Board. The managing secretary, treasurer and communications manager are appointed by the Board.

ARRI, owns and publishes the montlly magazine, QST. Acting as a bulletin of the League's organized activities, QST also serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subscription to QST.

ARRL maintains a nodel headquarters amateur station, known as the Hiram Percy Maxim Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred to the ARRL station by a special FCC action. Scparate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world.

Among its other activities the League maintains, at its headquarters offices in West Hartford, Conn., a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the country's seventy-one sections. There are appointments for qualified members as Official Relay Station or Official 'Phone Station for traffic-handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and
'Phone Activities Manager for the establishment of trunk lines and networks; as Emergency Coördinator for the promotion of amateur preparedness to cope with natural disasters. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill and thereby add to the ability of amateur radio to function "in the public interest, convenience and necessity." A special section is reserved each month in $Q S T$ for amateur news from every section of the country.

C. Amateur Licensing in the United States

The Communications Act lodges in the Fedcral Communications Commission authority to classify and license radio stations and to prescribe regulations for their operation. Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Ainateur operator licenses are given to U.S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code at 13 words per minute. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noncommereial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are available for radio-telephony by any amateur, while others are reserved for radiotelephone use by persons having at least a year's experience and who pass the examination for a Class A license. The input to the final stage of amateur stations is limited to 1,000 watts and on frequencies below 60 Mc . must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with speeified data. The station license also authorizes the holder to operate portable and portable-mobile stations on certain frequencies, subject to further regulations. An amateur station may be operated only by an amateur operator licensee, but any licensed amateur operator may operate any amateur station. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to
anyone who successfully completes the examination. When you are able to copy 13 words per minute, have studied basic. transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination at a local district office, through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and a study guide for those preparing for the examination, are to be found in an A.RRL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 25\&, postpaid.

(C. The Amateur Bands

During May, 1945, FCC announced its final determination of postwar frequency allocations above 25 Mc . in which certain alterations and additions to prewar amateur frequencies were made. Similarly, the Commission announced proposed changes below 25 Mc . and these changes are still under consideration as this is being written in October, 1945. The Commission's final recommendations for the region below 25 Mc . are then subject to further consideration at the next international conference. Since further changes may be instituted, it is suggested that the reader consult subsequent issues of $Q S T$ or write ARRL for the latest information.

As of our press date, the prospective postwar amateur bands are the following:

3,500-4,000 kc.	$50-$	54 Mc .	2,300-2,450	
7,000-7,300 "	144-	148	5,250-5,650	.
14,000-14,400 "	220.	225	10,000-10,500	${ }^{\prime}$
21,000-21,500	420-	450	21,000-22,000	,
28,000-29,700	1,215-1	,295		

In addition it is expected that the amateur, along with other services, will be given nonexclusive rights to operate in the frequencies $1750-1800 \mathrm{kc}$. solely for the maintenance of emergency networks and the necessary tests and drills incident thereto; and the right to make such use as is possible of the frequencies $27,185-27,455 \mathrm{kc}$., assigned to scientific, industrial and medical uses.

It must be understood that the proposed $21-\mathrm{Mc}$. band is not likely to be made available until after the agreement of the next worldwide conference, possibly effective in 1947.

Finally, it should be carefully noted that, as of this writing, the position of amateur radio is that of being gradually released from wartime restrictions, band by band. These are the amateur bands, but our rights to operate on them are being restored band by band, as our frequencies are released to us by the military services. Also, certain portions of these bands are normally open to 'phone operation and the portions so allocated are customarily varied from time to time in accordance with changes in amateur operational habits. Hence each amateur must keep himself currently informed on what bands are authorized.

Electrical and Radio Fundamentals

© 2-1 FUNDAMENTALS OF A RADIO SYSTEM

Tee basis of radio communication is the transmission of electromagnetic waves through space. The production of suitable waves constitutes radio transmission, and their detertion, or conversion at a distant point into the intelligence put into them at the originating point, is radio reception. There are several distinct processes involved in the complete chain. At the transmitting point, it is necessary first to generate power in such form that when it is applied to an appropriate radiator, called the antenna, it will be sent off into space in eleciromagnetic waves. The message to be conveyed must be superimposed on that power by suitable neans, a process called modulation.

As the waves spread outward from the transmitter they rapidly become weaker, so at the receiving point an antenna is again used to abstract as much energy as possible from them as they pass. The wave energy is transformed into an electric current which is then amplified, or increased in amplitude, to a suitable value. Then the modulation is changed back into the form it originally had at the transmitter. Thus the message becomes intelligible.

Since all these processes are performed by electrical means, a knowledge of the basic principles of electricity is necessary to understayd them. These essential principles are the subject of the present chapter.

(1) 2-2 THE NATURE OF ELECTRICITY

Electrons - All matter - solids, liquids and gases - is made up of fundamental units calied molecules. The molecule, the smallest subdivision of a substance retaining all its characteristic properties, is constructed of atoms of the elements comprising the substance.

Atoms in turn are made up of particles, or charges, of electricity, and atoms differ from each other chiefly in the number and arrangement of these charges. The atom has a nucleus containing both "positive" and "negative" charges, with the positive predominating so that the nature of the nucleus is positive. The charges in the nucleus are closely bound together. Exterior to the nucleus are negative ch:arges - electrons - some of which are not so closely bound and can be made to leave the vieinity of the nucleus without too much urging. These electrons whirl around the nucleus like the planets around the sun, and their orbits are not random paths but geometricallyregular ones determined by the charges on the
nucleus and the number of electrons. Ordinarily the atom is electrically neutral, the outer negative electrons balancing the positive nucleus, but when something disturbs this balance electrical activity becomes evident, and it is the study of what happens in this unbalanced condition that makes up electrical theory.

Electrons are exceedingly small particles so small that many billions of them must act together before measurable electrical effects are observed.

Insulators and Conductors - Materials which will readily give up an electron are called conductors, while those in which all the electrons are firmly bound in the atom are called insulators. Most metals are good conductors, as are also acid or salt solutions. Among the insulators are such substances as wood, hard rubber, bakelite, quartz, glass, porcelain, textiles, and many other non-metallic materials.

Resistance - No substance is a perfect con-ductor-a "perfect" conductor would be one in which an electron could be detached from the atom without the expenditure of energy - and there is also no such thing as a perfect insulator. The measure of the difficulty in moving an electron by electrical means is called resistance. Good conductors have low resistance, good insulators very high resistance. Between the two are materials which are ncither good conductors nor good insulators, but they are nonetheless useful since there is often need for intermediate values of resistance in clectrical circuits.

Conduction - Under the influence of a suitable force - that is, an electric field electrons tend to move. If the substance is one in which electrons can be detached from atoms as explained above, these electrons will move through the substance. This is the process of conduction, and the moving electrons constitute an electric current. The intensity of the current depends upon the amount of force exerted on the electrons, and also upon the rosistance of the material through which they are moving.

Strictly speaking, this description applies only to conduction through solid substances. However, conduction in liquids and gases, although different in detail, is similar in principle. These cases are treated later in chapter.

Circuits - A circuit is simply a complete path along which electrons can transmit their charges. There will normally be a source of energy (a battery, for instance) and a load or portion of the circuit where the current is made to do work. There must be an unbroken path
through which the electrons can move, with the source of energy acting as an electron pump and sending them around the circuit. The circuit is said to be open when no charges can move, because of a break in the path. It is closed when no break exists - when switches are closed and all connections are made.

(1) 2-3 Stafic Electricity

The electric charge - Many materials that have a high resistance can be made to acquire a charge (surplus or deficiency of electrons) by mechanical means, such as friction. The faniliar crackling when a hard-rubher comb is run through hair on a dry winter day is an example of an electric charge generated by friction. Objects can have cither a surplus or a deficiency of electrons - a surplus of electrons is ralled a negative charge; a lack of them is called a positive charge. The kind of charge is called its polarity. A negatively charged object is frequently called a nogative pole, while a positively charged object similarly is called a positive pole.

Auraction and repulsion - Unlike charges (one positive, one negative) exert an attraction on each other. This can be demonstrated by giving charges of opposite polarity to two very light, well-insulated conductors. such as bits of metal foil suspended from dry thread (Fig. 201). Pith ba!ls covered with foil frequently are used in this experiment.

When the two charged objerts are brought close together, it will be observed that they will be attracted to earh other. If the charges are equal and the charged bodies are permited to touch, the surplus clectrons on the negatively charged object will transfer to the positively rharged object (i.e., the one deficient in elertrons) and the two charges will neutralize,

Fig. 201 - Attraclion and repulsion of charged objects, as demonstrated by the familiar pith-ball experiment.
leaving looth bodies uncharged. If the charges are not equal, the waker charge neut ralizes an equal amount of the stronger when the two bodies tourh, upon which the exress of the stronger eharge distributes itself over both. Both bodies then have charges of the same polarity, and a fore of repulsion is exereised between them. Consequently, the bits of foil tend to spring away from rach other. l'nlike charges attract, like charges repel.

Electrostatic field - From the foregoing it is evident that an eledtric eharge can exert a force through the space surrounding the charged object. The region in which this force is exerted is considered to be pervaded by an
electrostatic field, this concept of a field being adopted to explain the "action at a distance" of the charge. The field is pictured as consisting of lines of force originating on the charge and

Fig. 202 - Lines of force from a charged object extend outward radially. Although only two dimensions are shown, the field extends in all directions from the charge, and should be visnalized in three dimensions.
spreading in all directions, finally terminating on other charges of opposite polarity. These other charges may be a very large distance away. The number of lines of force per unit area is, however, a measure of the intensity of the field.

The general picture of a charged object in isolated spare is shown in Fig. 202. This is an idealized situation, since in practice the charged object could not be completely isolated. The presence of other charges, or simply of insulators or conductors, in the vicinity will greatly change the configuration of the field. The direction of the field, as indicated by the arrowheads, is away from a positively charged object; if the charge were negative, the direction would be toward the eharge.

It should be understood that the field picture as represented ahove is merely a convenient method of explaining ohserved effects, and is not to be taken too literally. The electric force ches not consist of separate lines like strings or rods; instead, it completely pervades the medium through which the force is exerted. With this understanding in mind, it is conreniont to talk of lines of force and to measure the field intensity in terms of number of lines per unit area.

The intensity of the field dies away with distance from the charged object in a namor deternined by its shape and the circumstances of itss surroundings. In the case of an isolated charge at a point (an infinitesimally small object). the field strength is inversely proportional to the square of the distance. However, this relationship is not true in many other cases; in some important practical applications the field intensity is inversely proportiomal to the distance involved, and not to its :quare.

Electrostatic induction- If a piece of conducting material is brought near a chinged object, the field will exert a forer on the elertrons of the metal so that those free to move will do so. If the object is positively charged. as indicated in Fig. 203, the free electrons will move toward the end of the conductor nearest the charged body, leaving a defiriency of electrons at the other end. Hence, one end of the
conductor becomes negatively charged while the other end has an equal positive charge. The lines of force from the charged body terminate on the conductor, where sufficient electrons accumulate to provide an electric intensity equal and opposite to that of the field at that point. Because of this effect, the electrostatic field inside the conductor is completely neutralized by the induced charge; in other words, the field does not penetrate the conductor. In radio work this principle provides the means by which electrostatic fields may be excluded from regions where they are not wanted.

Charges induced in a conductor as shown in Fig. 203-A are held in existence by the field from the charged object. On taking the conductor out of the field the electrons will redistribute thenselves so that the charges disappear. However, if the conductor is connected to the earth through a wire while under the influence of the field, as shown in Fig. 203-13, the induced positive charge will tend to move as far as possible from the source of the field (that is, electrons will flow from the earth to the conductor). If the grounding wire is then removed, the conductor will be left with an excess of electrons and will have acquired a "permanent" charge - permanent, that is, so long as the condurtor is well enough insulated to prevent the charge from escaping to earth or to other objects. The polarity of the induced charge always is opposite to the polarity of the charge which set up, the original field.

Energy in the electrostatic field-The expenditure of energy is necessary to place an electrical charge upon an object and thas establish an electrostatic field. Once the field is established and is constant, no further expenditure of energy is required. The energy supplied to establish the field is stored in the field; thus the field represents potential energy (that is, energy available for use). The potential energy is acquired in the same way that potential energy is given any object (a 10 pound weight, for instance) when it is lifted against the gravitational pull of the carth. If

Fig. 203-Electrostatic induction. '1he field from the positively charged body attracts electrons, which accumulate to form a negative charge. The opposite end of the eonductor consequently acquires a positive charge. This charge may be "drained off' to earth an rhown at B.
the weight is allowed to drop, its potential energy is changed into the energy of motion. Similarly, if the electrostatic field is made to disappear its potential energy is transformed into a movement of electrons; in other words, into an electric current.

The potential energy of the lifted weight is measured by its weight and the distance it is lifted; that is, by the work done in lifting it. Similarly, the potential energy (called simply potential) of the electrostatic field at any point is measured by the work done in moving a charge of specified value to that point, against the repulsion of the field. In practice, absolute potential is of less interest than the difference of potential between two points in the field.
Potential difference - If two objects are charged differently, a potential difference exists between them. Potential difference is measured by an electrical unit called the volt. The greater the potential difference, the higher (mmerically) the voltage. This voltage exerts an electrical pressure or force as explained above, and is often called electromotive force or, simply, e.m.f. It is not necessary to have unlike charges in order to have a difference of potential; both, for instance, may be negative, so long as one charge is more intense than the other. From the viewpoint of the stronger charge, the weaker one appears to be positive in such a case, since it has a smaller number of excess electrons; in other words, its relutive polurity is positive. The greater the potential difference, the more intense is the electrostatic field between the two charged objects.

Capacity - More work must be done in moving a given charge against the repulsion of a strong field than against a weak one: hence, potential is proportional to the strength of the field. In turn, field strength is proportional to the charge or quantity of electricity on the charged object. so that potential also is proportional to charge. $B y$ inserting a suitable constant, the proportionality can be changed to an equality:

$$
Q=C E
$$

where Q is the quantity of charge, E is the por tential, and C is a constant depending upon the charged object (usually a conductor) and its. surroundings and is called the capacity of the object. Capacity is the ratio of quantity of charge to the potential resulting from it, or

$$
C=\frac{Q}{E}
$$

When Q is in coulombs and E in volts, C is measured in farads. A conductor has a capacity of one farad when the addition of one coulomb to its charge raises its potential by one volt.

The farad is much too large a unit for practical purposes. In radio work, the microfarad (one millionth of a farad) and the micromicrofarad (one millionth of a microfarad) are the units most frequently used. They are abbreviated $\mu f d$. and $\mu \mu f d$., respectively.

The capacity of a conductor in air depends upon its size and shape. A given charge on a small conductor results in a more intense electrostatic field in its vicinity than the same charge on a larger conductor. This is because the charge distributes itself over the surface, hence its density (the quantity of electricity per unit area) is smaller on the larger conductor. Consequently, the potential of the larger conductor is smaller, for the same amount of charge. In other words, its capacity is greater because a greater charge is required to raise its potential by the same amount.

Condensers - If a grounded conductor, A (Fig. 204), is brought near a second conductor, B, which is charged, the former will acquire a charge by electrostatic induction. Since the charge on A is opposite in polarity to that on B, the field set up by the induced charge on A will oppose the original field set up by the charge on B, hence the potential of B will be lowered. Because of this, more charge must be placed on B to raise its potential to its original value; in other words, its capacity has been increased hy the presence of the second conductor. The combination of the two conductors separated by a diclectric is called a condenser.
The capacity of a condenser depends upon the areas of the conductors, as before, and also becomes greater as the distance between the conductors is decreased, since, with a fixed amount of charge, the potential difference between them decreases as they are moved closer together.

Fig. 20.t-The principle of the condenser.
If insulating or dielectric material other than air is inserted between the conductors, it is found that the potential difference is lowered still more - that is, there is a further increase in capacity. This lowering of the potential difference is considered to be the result of polarization of the dielectric. By this it is meant that the molecules of the substance tend to be distorted under the influence of the electrostatic field in such a way that the negative charges within the molecule are drawn toward the positively charged conductor, leaving the other end of the molecule with a positive charge facing the negatively charged conductor. Since the electrons are firmly bound in the atoms of the dielectric, there is no flow of current and the total charge on each atom is still zero, but there is a tendency toward separation which causes a reaction on the electrostatic field. The dielectric of a charged condenser thus is under mechanical stress, and if the potential difference between the plates of the condenser is
great enough the dielectric may break down mechanically and electrically.

The ratio of the capacity of a condenser with a given dielectric material between its plates to the capacity of the same condenser with air as a dielectric is called the specific inductive capacity of the dielectric, or, probably more commonly, the dielectric constant. Strictly speaking, the comparison should be made to empty space (i.e., a vacuum) rather than to air, but the dielectric constant of air is so nearly that of a vacuum that the practical difference is negligible. A table of dielectric constants is given in Chapter Twenty.

Condensers have many uses in electrical and radio cireuits, all based on their ability to store energy in the electric field when a potential difference or voltage is caused to exist between the plates - energy which later can be released to perform useful functions.

Fig. 20.5-A simple condenser, consisting of two metal plates separated by dielectric material.

11 2-4 The Electric Current

Conduction in metals - When a difference of potential is maintained between the ends of a metallic conductor. there is a continuous drift of electrons through the conductor toward the end having a positive potential (relative polarity positive). This electron drift constitutes an electric current through the metal (§2-2). The speed with which the electron movement is established is very nearly the speed of light ($300,000,000$ meters, or approximately 186,000 miles, per second), so that the current is said to travel at nearly the speed of light. By this it is meant that the time interval between the application of the electromotive force and the flow of current in all parts of a circuit, even one extending over hundreds of miles, is negligible. However, the individual electrons do not move at anything approaching such a speed. The situation is similar to that existing when a mechanical force is transmitted by means of a rigid rod. A force applied to one end of the rod is transmitted practically instantaneonsly to the other end, even though the rod itself moves relatively slowly or not at all.

The magnitude of the electric current is the rate at which electricity is moved past a point in the circuit. If the rate is constant, then the current is equal to the quantity of electricity moved past a given point in some selected time interval. That is,

$$
I=\frac{Q}{t}
$$

where I is the intensity or magnitude of the current, Q is the quantity of electricity, and t is the time. If Q is in coulombs and t in seconds, the unit for I is called the ampere. One ampere of current is equal to one coulomb of electricity moving or "flowing" past a given point in a circuit in one second.

The currents used by different electrical devices vary greatly in magnitude. The current which flows in an ordinary 60-watt lamp, for instance, is about one-half ampere, the current in an electric iron is about 5 amperes, and that in a ratio tube may be as low as 0.001 ampere.

When a current flows through a metallic conductor there is no visible or chemical effect on the conductor. The only physical effert is the heat developed ($\$ 2-2$) as the result of energy loss in the conductor. Under normal conditions the rate at which heat is generated and that at which it is radiated by the conductor will quickly reach equilibrium. However, if the heat is developed at a more rapid rate than it can be radiated, the temperature will continue to rise until the conductor burns or melts.

Experimental measurements have shown that the current which flows in a given metallic conductor is directly proportional to the applied em.f., so long as the temperature of the conductor is held constant. There is no e.m.f. so small but that some current will flow as a result of its application to a metallic conductor.

Fig. 206 - Illustrating conduction through a gas at low presure. Positive ions are attracted to the neqative electrode, while electrons are attracted to the positive electrode. This takes place only after the gas is ionized.

Gaseous conduction - In any gas or mixture of gases (such as air, for example) there are always some free electrons - that is, clectrons not attached to an atom - and also some atoms lacking an electron. Thus there are both positively and negatively charged particles in the gas, as well as many neutral atoms. An atom lacking an electron is called a positive ion, while the free electron is called a negative ion. The term ion is, in fact, applied to any elemental particle which has an electric charge.

If the gas is in an electric field, the free electrons will be attracted toward the source of positire potential and the positive ions will be attraeted toward the source of negative potential. If the gas is at atmospheric pressure neither particle can travel very far before meeting an ion of the opposite kind, when the two combine to form a neutral atom. Since a neutral - atom is not affected by the electric field, there is no flow of current through the gas.

However, if the gas is enclosed in a glass container in which two separate metal pieces called electrodes are sealed, and the gas pressure is then reduced by pumping out most of the gas, a different set of conditions results. At low pressure there is a comparatively large distance between each atom, and when an electric field is established by applying a difference of potential to the electrodes the ions can travel a considerable distance before meeting another ion or atom. The farther the ion travels the greater the velority it acquires, since the effect of the field is to accelerate its motion. If the field is strong enough the ions will acquire such velocty that when one happens to collide with a neutral atom the force of the collision will knock an electron out of the atom, so that this atom also becomes ionized. The process is cumulative, and the freed clectrons are attracted to the positive electrode while the positive ions are attracted to the negative electrode. This movement of charged partieles constitutes an electric current through the gas.

Since an ion must acquire a certain velocity before it can knock an electron out of a neutral atom, a definite field strength is required before conduction can take place in a gas. That is, a certain value of potential difference, called the ionizing poiential, must be applied to the electrodes. If less voltage is applied, the gas does notionize and the current is negligible. On the other hand, once the gas is ionized an increase in potential does not have much effect on the current, since the ions already have sufficient velocity to maintain the ionization. The ionizing potential required depends upon the kind of gas and the pressure. Ionization is usually accompanied by a colored glow, different gases having different characteristic colors.

Current flow in liquids - A very large number of chemical compounds have the peculiar characteristic that, when they are pat into solution, the component parts become ionized. For example, common table salt (sodium chloride), each molecule of which is made up of one atom of sodium and one of chlorine, will, when put into water, break down into a sodium ion (positive, with one electron deficient) and a chlorine ion (negative, with one excess electron). 'This can only occur so long as the salt is in solution - take away the

Fig. 207 - Electrolytic conduction. When an e.m.f. is applied to the clectrodes, negative ions are attracted to the positively charged plate and positive ions to the neg. atively charged plate. 'The hattery, which is the sonrce of the e.m.f., is indicated by its customary symbol.
water and the ions are recombined into the neutral sodium chloride. This spontaneous dissocialion in solution is another form of ionization. If two wires with a difference of potential between them are placed in the solution, the negative wire will at tract the positive sodium ions while the positive wire will attract the negative chlorime ions and an electric current will flow through the solution. When the ions reath the wires the electron surplus or deficiency will be remedied, and a neutral atom will be formed.

In this process, the water is decomposed into its gaseous constituents, hydrogen and oxygen. The energy used up in decomposing the water and in moving the ions is supplied by the source of potential difference. The energy used in decomposing the water is equivalent to an opposing e.m.f., of the order of a volt or two. If this constant "back voltage" is subtracted from the applied voltage, it is found that the current flowing through a given solution, or electrolyte, is proportional to the difference between the two voltages.

Current flow in racumom - If a suitable metallic condurtor is heated to a high temperature in a varoum, electrons will be emitted from the surface. The electrons are freed from this filmment or cathode because it has been

Fig. 208 - Combluction ly thermionic emis-ion in a sactum tube (lme bathers is uand only to luat the filamen! to a tomprathem where it will rmit rher trons. "the wher hathers plares a pertential on the plate which isproilise will respert to the lilament, and ans a result the eleotrons are attracted to the plate. The electron thow from filament to prate completes the circuit.
heated to a temperature that gives them sufficient energy of motion to allow them to broak away from the surface. The process is called thermionic electron emission. . Now, if a metal plate is placed in the vacumm and given a positive charge with respect to the rathome, this plate or anode will attract a number of the clectrons that surround the cathode. The passage of the electrons from cathode to anode constitutes an electric current. All thermionic varuum tubes depend for their operation on the emission of clectrons from a hot cathode.

Since the electrons emited from the hot cathode are negatively charged, it is evilont that they will be attracted to the plate only when the latter is at a positive potential with respert to the cathode. If the plate is negatively charged with respert to the cathode the electrons will be repelled back to the cathode, hence no current will flow through the vacumm. Consequently, a thermionic varoum tube condurts current in one direction only. When the plate is positive, it is found that (if the poten-
tial is not too large) the current increases with an increase in potential difference between the plate and cathode. However, the relationship between current and applied voltage is not a simple one. If the voltage is made large enough all the electrons emitted by the cathode will be drawn to the plate, and a further increase in voltage therefore cannot cause a further increase in current. The number of elertrons emitted by the cathode depends upon the temperature of the eathode and the material of which it is constructed.
Diroction of current flow - Use was being made of electricity for a long time before its electronic nature was understood. While it is now clear that current flow is a drift of negative electrical charges or electrons toward a source of positive potential, in the era preceding the elactron theory it was assumed that the current flowed from the point of higher positive potential to a point of lower (i.e., less positive or more negative) potential. While this assumption turned out to be wholly wrong, it is still customatry to speak of current as flowing "from positive to negative" in many applications. The practice often causes confusion, but this distinction between "crurent" flow and "clectron" flow often must be taken into account. If clectron flow is sperifically mentioned thore can lwe of course. no doubt as to the mo:aning; but when the direction of current flow is sporifiod, it may tre taken, by convention, as being opposite to the direetion of elect.ron movernent.

Primary cells - If two electrodes of dissimilar metals are immersed in an electrolyte, it is formad that at small differeno of potential exists between the electrodes. Such a combination is called a cell. If the two clectrodes are commeded together by a comductor external to the cell, an electric current will flow between them. In such a coll, chemical energy is convorted into electrical energy. The difference of potential arises as a result of the fact that matrerial from one or both of the electrodes goes into solntion in the electrolyte, and in the promes ions are formed in the vicinity of the electrodes. The electrodes acquire charges becanse of the eleretric field assoriated with the charged ions. The difformene of potential between the clectrodes is principally a function of the metals used. and is more or less independent of the kind of electrolyte or the size of the cell.

When current is supplied to an external circuit, two principal effects oreur within the cell. The negative elertrole (negative as viewed from outside the cell) lowes weight as its material is used up in furnishing energy, and hydrogen bubles form on the positive electrode. Sime the gas bubbles are nom-condueting, their accumulation tends to reduce the affective area of the positive elootrode. and ronsequently reduces the current. 'line effert is cumulative, and eventually the electrode will be completely rovered and no further current can flow. This effect is called polarization. If the bubbles are
removed, or prevented from forming by chemical means, polarization is reduced and current can flow as long as there is material in the negative electrode to furnish the energy. A chemical which prevents the formation of hydrogen bubbles in a cell is called a depolarizer.

In addition to polarization effects, a cell has a certain amount of internal resistance because of the resistance of the electrodes and the electrolyte and the contact resistance between the electrodes and electrolyte. The internal resistance depends upon the materials used and the size and electrode spacing of the cell. Large cells with the electrodes close together will have smaller internal resistance than small cells made of the same materials.

A collection of cells connected together is called a buttery. The term battery also is applied (although incorrectly) to a single cell.

Dry cells - The most familiar form of primary cell is the dry crll. Like the elementary type of cell just described. it has a liquid electrolyte, but the liquid is mised with other materials to form a paste. The cell therefore can be used in any position and handled as though it actually were dry.

Fig. 200 - Comstruction of a dry cell.
The construction of an ordinary dry coll is shown in Fig. 209. The container is the negative electrode and is made of zine. Next to it is a section of blotting material saturated with the electrolyte, a solution of sal ammoniac. The positive electrode is a carbon rod, and the space between it and the blotting paper is filled with a mixture of carbon, manganese dioxide (the depolarizer) and the electrolyte. The top is filled with sealing compound to prevent evaporation, since the cell will not work when the electrolyte drys out. The e.m.f. of a dry ecell is about 1.5 volts.

Dry cells are made in various sizes. depending upon the current which they will lee called upon to furnish. The construction frequently varies from that shown in Fig. 209, althourh in general the basic materials are the same in all dry cells. Batteries of small cells are assembled together as a unit for furnishing plate current for the vacuum tubes used in portable receiving sets; such " B " batteries, as they are called, can supply a current of a few hundredths of an ampere continuously. Larger cells, such as the common "No. 6" cell, can deliver currents of a fraction of an ampere con-
tinuously, or currents of several amperes for very short periods of time. The total amount of energy delivered by a dry cell is larger when the cell is used only intermittently, as compared with continuous use. The cell will deteriorate even without use, and should be put into service within a year or so from the time it is manufactured. The period during which it is usable (without having been put in service) is known as the "shelf life" of the cell or battery.

Secondary cells - The types of cells just described are known as primary cells, because the electrical energy is obtained directly from chemical energy. In some types of cells the chemical actions are reversible; that is, forcing a current through the cell, in the opposite direction to the current flow when the cell is delivering electrical energy, causes just the reverse chemical action. This tends to restore the cell to its original condition, and electrical energy is transformed into chemical energy. The process is called charging the cell. A cell which must first be charged before it can deliver electrical energy is called a secondary cell.

A simple form of secondary cell can be made by immersing two lead electrodes in a dilute solution of sulphuric acid. If a current is forced through the cell, the surface of the electrode which is connerted to the positive terminal of the charging e.m.f. will be changed to lead peroxide and the surface of the electrode connected to the negative terminal will be changed to spongy lead. After a period of charging the charging source can be disconnected, and the cell will be found to have an e.m.f. of about 2.1 volts. It will furnish a small current to an external circuit for a period of time. This discharge of electrical energy is accompanied by chemical action which forms lead sulphate on both electrodes. When the lead peroxide and spongy lead are converted to lead sulphate there is no longer a difference of potential, since both electrodes are now the same material, and the cell is completely discharged.

The lead storage batiery - The most common form of secondary rell is the lead storage cell. The common storage battery for antomobile starting consists of three such cells connected together clectrically and assembled in a single container. The principle of operation is similar to that just described, but the construction of the cell is ronsiderably more complicated. To obtain large currents it is necessary to use electrodes having a great deal of surfare area and to put them as close together as possible. The clectrodes are made in the form of rectangular flat plates, consisting of a latticework or grid of lead or an alloy of lead. The interstices of the latticework are filled with a paste of lead oxide. The electrolyte is a solution of sulphuric acid in water. When the coll is charged, the lead oxide in the positive plate is converted to lead peroxide and that in the negative plate to spongy lead. To obtain high current capacity, a cell consists of a number of positive plates, all connected together,

If a bar magnet is cut in half, as in Fig. $213-1$, it is found that the cut ends also are poles, of oppositc kind to the original poles on the same piece. Such cutting can be continued indefinitely, and, no matter how small the pieces are made, there are always two opposite poles associated with earh piecc. In other words, a single magnetic pole cannot exist alone; it must always be associated with a pole of the opposite kind.

To explain this property of a magnct, it is considered that each molecule of a magnetic substance is itself a miniature magnet. If the material is not magnetized, the molecules are in random positions and the total magnctic effect is zero since therc are just as many molccules tending to set up a magnctic field in one direction as there are others tending to set up a field in the opposite direction. When the substance becomes magnctizch, however, the molecules are aligned so that most or all of the N poles of the molecular magncts are turned toward one end of the material while the S poles point toward the other end.
Magnetic induction - When an unmagnetized piecc of iron is brought into the field of a magnet, its molecules tend to align themselves as described in the preceding paragraph. If one end of the iron is near the N pole of the marnet, the S poles of the molecules will turn toward that end and an S pole is said to be induced in the iron. An N pole will appear at the opposite end. Because of the attraction between opposite poles, the iron will be drawn toward the magnet. Since the iron has berome a magnet under the influence of the field, it also possesses the property of attracting other pieces of iron.

When the magnetic field is removed, the molecules may or may not resume their random positions. If the material is soft iron the marnetism disappears quite rapidly when the field is removed, but in some types of steel the molccules are slow to resume their random positions and such matcrials will retain magnetism for a long time. A magnet which loses its magnetism quickly when there is no external magnetizing force is called a temporary magnet, while onc which retains its magnetism for a long time is called a permanent magnet. The tendency to retain magnetism is called retentivity. The process of destroying magnetism can be hastened by heating, which increases the motion of the molccules within the substance, as well as by mechanical shock, which also tends to disturb the molecular alignment.
Electric current and the magnetic field Experiment shows that a moving electron generates a magnetic field of exactly the same nature as that existing about a permanent magnet. Since a moving electron, or group of electrons moving together, constitutes an electric current, it follows that the flow of current. is accompanied by the creation of a magnetic field. When the conductor is a wire the magnetic lines of force are in the form of concentrio

Fig. 214 - Whenever electric current passes through a wire, magnetic lines of force are set up, in the form of concentric circles, at right angles to the wire, and a magnetic field is said to exist around the wire. The direction of this ficld is controlled by the direction of current flow, and can be traced by means of a small compass.
circles around it and lie in planes at right angles to it, as shown in Fig. 214. The direction of this field is controlled by the direction of current flow.

There is an easily remembered method for finding the relative directions of the current and of the magnetic field it sets up. Imagine the fingers of the right hand curled about the wire, with the thumb extended along the wire in the direction of current flow (the conventional direction, from positive to negative, not the direction of elcetron movement). Then the fingers will be fonnd to point in the direction of the magnctic field; that is, from N to S.

Magnetomotive force - The force which causes the magnetic field is called magnetomotive force, abbreviated m.m.f. It corresponds to electromotive force or e.m.f. in the electric circuit. The greater the magnetomotive force, the stronger the magnetic field; that is, the larger the number of magnctic lines per unit area. Magnetomotive force is proportional to the current flowing. When the wire carrying the current is formed into a coil so that the magnetic flux will be concentrated instead of being spread over a large area, the m.m.f. also is proportional to the number of turns in the coil. Conscquently magnetomotive force can be expressed in terms of the product of current and turns, and the ampere-turn, as this product is called, is in fact the common unit of magnetomotive force. The same magnetizing effect can be secured with a great many turns and a weak current or with a few turns and a strong current. For example, if 10 amperss flow in one turn of wire, the magnetizing effect is 10 am -pere-turns. If there is one ampere flowing in 10 turns of wire, the magnetomotive force also is 10 ampereturns.
The magnetic circuit-Since magnetic lines of force are always closed upon themselves, it is possible to draw an analogy between the magnetic circuit and the ordinary electrical circuit. The electrical circuit also must be closed so that a complete path is prcvided around which the electrons or current can flow. However, there is no insulator for the magnetic field, so that the magnetic circuit is always complete even though no magnetic material (such as iron) may be present.

The number of lines of magnetic force, or flux, is equivalent in the magnetic circuit to current in the electric circuit. However, it is
removed, or prevented from forming by chemical means, polarization is reduced and current can flow as long as there is material in the negative electrode to furnish the energy. A chemical which prevents the formation of hydrogen bubbles in a cell is called a depolarizer.

In addition to polarization effects, a cell has a certain amount of internal resistance because of the resistance of the electrodes and the clectrolyte and the contact rexistance between the electrodes and electrolyte. The internal resistance depends upon the materials used and the size and electrode sparing of the cell. Large cells with the electrodes close together will have smaller internal resistance than small cells made of the same materials.

A collection of cells connected together is called a buttry. The term battery also is applied (although incorrectly) to a single cell.
Dry cells - The most familiar form of primary cell is the dry foll. like the elementary type of cell just described, it has a liquidelertrolyte, but the liquid is mixed with ot her materials to form a paste. The cell therefore can be used in any position and handled as though it zetually were dry,

Fí. 20\% Cimstrumion of a dry will.
The construction of an ordinary dry cell is shown in Fig. 209. The container is the nerative electrode and is made of zine. Next to it is a section of blotting material saturated with the electrolyte, a solution of sal ammonise. The positive electrode is a carbon roed, and the space between it and the blotting paper is filled with a mixture of carbon, mangallowe dioxide (the depolarizer) and the electrolyte. The tup is filled with sealing compound to prevent evaporation, since the cell will not work when the electrolyte drys out. The e.m.f. of a dry cell is about 1.5 volts.

Dry cells are made in various sizes, depenting upon the current which they will be called upon to furnish. The construction frequently varies from that shown in Fig. 209, although in general the basic naterials are the same in all dry cells, Batteries of small erilis are assembled together as a unit for furnishing plate current for the vacuum tubes used in portable receiving sets; such " 13 " batteries, as they are ralled, can supply a current of a few hundredths of an ampere continuously. Larger cells, such as the common "No. 6"' cell, can deliver currents of a fraction of an ampere con-
tinuously, or currents of several amperes for very short periods of time. The total amount of energy delivered by a dry cell is larger when the cell is used only intermittently, as compared with continuous use. The cell will deteriorate even without use, and should be put into service within a year or so from the time it is manufactured. The period during which it is usable (without having been put in service) is known as the "shelf life" of the cell or battery.

Secondury cells - The types of cells just described are known as primary cells, because the electrical energy is obtained direetly from chemical energy. In some types of cells the chemical actions are reversible; that is, foreing a current through the cell, in the opposite direction to the current flow when the cell is delivering electrical energy, causes just the reverse chemical artion. This tends to restore the cell to its original condition, and electrical energy is transformed into ehemical energy. The process is called charging the cell. A cell which must first be charged before it can deliver eleetrical energy is called a secondary cell.

A simple form of secondary cell can be made by immersing two lead electrodes in a dilute solution of sulphuric acid. If a current is forced through the cell. the surface of the electrode which is connected to the positive terminal of the eharging e.m.f. will be changed to lead peroxide and the surface of the electrode connected to the negative terminal will be changed to spongy lead. Aiter a period of charging the charging source can be disconnceted, and the cell will be found to hatve an e.m.f. of about 2.1 volts. It will furnish a small current to an external cirenit for a period of time. This discharge of electrimal energy is accompanied by chemical action which forms lead sulphate on both electrodes. When the lead peroxide and spongy lead are converted to lead sulphate there is no longer a difference of potential, since both electrodes are now the same material, and the cell is completely discharged.

The lead storage batlery - The most common form of secondary celi is the lead storage cell. The common storage battery for automobile starting consists of three surch cells connected together chectrically and assembled in a single container. The principle of operation is similar to that just described, but the construction of the cell is considerably more conplicated. To obtain large currents it is neressary to use electrodes having a great deal of surfare area and to put them as close together as possible. The elertrodes are made in the form of rectangular flat plates, consisting of a latticework or grid of lead or an alloy of lead. The interstices of the latticework are filled with a paste of lead oxide. The electrolyte is a solution of sulphurie arid in water. When the cell is charged, the lead oxide in the positive plate is eonverted to lead peroxide and that in the negative plate to spongy lead. To obtain high current capacity, a cell consists of a number of positive plates, all connected together,
and a number of negative plates likewise connected together. They are arranged as shown in Fig. 210, with alternate negative and positive plates kept from touching by means of thin separators of insulating material, generally treated wood or perforated hard rubber. The separators preferably should be porous, so that the electrolyte can pass through them freely; thus they do not impede the passage of current from one plate to the next. There is always one extra negative plate in such an assembly, because the active material in the positive plate expands when the cell is being charged and if all the expansion took place on one side the plate would be distorted out of shape.

The e.m.f. of a fully charged storage cell is about 2.1 volts. When the e.m.f. drops to about 1.75 volts on discharge, the cell is considered to be completely discharged. Discharge beyond this limit may result in the formation of so much lead sulphate on the plates that the cell cannot be recharged, since lead sulphate is an insulator. During the charging process water in the electrolyte is used up, with the result that the sulphuric acid solution becomes more concentrated. The higher concentration increases the specific gravity of the solution, so that the specific gravity may be used to indicate the state of the battery with respect to charge. In the ordinary lead storage cell the solution is such that a specific gravity of 1.285 to 1.300 indicates a fully charged cell, while a discharged cell is indicated by a specific gravity of 1.150 to 1.175 . The specific gravity can be measured by means of a hydrometer, shown in Fig. 211. For use with portable batteries, the hydrometer usually consists of a glass tube fitted with a syringe so that some of the electrolyte can be drawn from the cell into the tube. The hydrometer float is a smaller glass tube, air-tight and partly filled with shot to make it sink into the solution. The lower the specific gravity of the solution, the farther the float sinks into it. A graduated scale on the float shows the specific gravity directly, being read at the level of the solution.

Storage cells are rated in ampere-hour capacity, based on the number of a mperes which can be furnished continuously for a stated period of time. For example, the cell may have a rating of 100 ampere-hours at an 8-hour discharge

Fig. 210 - Details of typical lead storage-battery construction.
rate. This means that the cell will deliver $100 / 8$ or 12.5 amperes continuously for 8 hours after having been fully charged. The ampere-hour capacity of a cell will vary with the discharge rate, becoming smaller as the rated time of discharge is made shorter. It also depends upon the size of the plates and their number. In automobile-type batteries the dimensions of the plates are fairly well standardized, so that the ampere-hour capacity is chiefly determined by the number of plates in a cell. It is, therefore, common practice to speak of "11-plate," "15-plate," etc., batteries as an indication of the battery capacity.

Lead storage batteries must be kept fully charged if they are to stay in good condition. If a discharged battery is left standing idle,

Fig. 211 - The hydrometer, a device with a calibrated scale for measuring the specific gravity of the electrolyte, used to determine the state of charge of a lead storage battery. lead sulphate will form on the plates and eventually the battery will be useless. When the battery is being charged, hydrogen bubbles are given off by the electrolyte which, in bursting at the surface, throw out fine drops of the electrolyte. This is called "gassing." The sulphuric-acid solution spray from gassing will attack many materials, and consequently care must be used to see that it is not permitted to fall on near-by objects. It should also be wiped off the battery itself.

A lead battery may be charged at its nominal discharge rate; i.e., a 100-ampere-hour battery, 8-hour rating, can be charged at $100 / 8$, or 12.5 amperes. The charging voltage required is slightly more than the output voltage of the cell. The preferred method is to charge at the full rate until the cells start to "gas" freely, after which the charging rate should be dropped to about half its initial value until the battery is fully charged, as indicated by the hydrometer reading. Alternatively, the battery may be charged from a constant-potential source (about 2.3 volts per cell), when the rise of terminal voltage of the battery as it accumulates a charge will automatically "taper" the charging rate.

The solution in a lead storage battery will freeze at a temperature of about zero degrees Fahrenheit when the battery is discharged, but a fully charged battery will not freeze until the temperature reaches about 90 degrees below zero. Keeping the battery

Fig. : 12 - Series, parallel, and series-parallel consec. tion af cells. Series connection increases the total voltagewithout changing current capacity; parallel connection increases current capacity without iucreasing voltage.
charged therefore is the best way to insure agairst damage by freezing.

Cells in series and parallel -- For proper operation, many electrical devices require higher voltage or current than can be olbtained from a single cell. If greater voltage is needed, cells may be connected in serics, as shown in Fig. 212-A. The negative terminal of one coll is connected to the positive terminal of the next, so that the total e.m.f. of the battery is equal to the sum of the e.m.f.s of the individual cells. For radio purposes, batteries of 45 and 90 volts or more are built up in this way from 1.5 -volt dry $:$ ells. An automobile storage battery consists of three lead storage cells in series, totalling 6.3 volts - or, in round figures, f volts. The surrent which may be taken safely from a battery composed of cells in series is the same as that which may be taken safely from one coll alone; since the same current flows through all cells, the current capacity is unchanged.

When the device or load to which the battery is to be connected requires more current than can be taken safely from a single cell, the cells may be connected in parallel, as shown in Fig. 212-B. In this case the total current is the sum of the currents contributed by the individual cells, each contributing the same amount if the cells are all alike. When cells are connected in parallel it is essential that the e.m.f.s all be the same, since if one cell generated a larger voltage than the others it would force current through the other cells in the reverse direction and thus would take most, if not all, of the load. Also, if one eell has a lower terminal voltage than the others it will take current from the others rather than carrying its fair share.

Cells may be connected in series-parallel, as in Fig. 212-C, to increase both the voltage and the current-carrying capacity of the battery.

(2-5 Electromagnetism

The magnetic field - Everyone is familiar with the fact that a bar or horseshoe magnet will attract small pieces of iron. Just as in the case of electrostatic attraction (§2-3) the concept of a field, in this case a field of magnetic force, is adopted to explain the magnetic action. The field is visualized as being made up of lines of magnetic force, the number of which per unit area determines the field strength. As in the case of the electrostatic field, the lines of force do not have physical existence but simply represent a convenient way of describing the properties of the force.

Magnetic attraction and repulsion - The forces exerted by the magnetic field are analogous to electrostatic forces. Corresponding to positive and negative electric charges, it is found that there are two kinds of magnetic polcs. Instead of being called "positive" and "negative," however, the magnetic poles are called "north" (N) and "south" (S) poles. These names arise from the fact that, when a magnetized steel rod is freely suspended, it will turn into such a position that one end points toward the north. The end which points north is called the "north-seeking," or simply the "north," pole.

Unlike electric lines of force, which terminate on charges of opposite polarity (§ 2-3), magnetic lines of force are closed upon themselues. This is illustrated by the field about a bar magnet, as shown in Fig. 213-A. The lines extend through the magnet, the direction being taken from S to N inside the magnet and from N to S outside the magnet. If similar poles of two magnets are brought near each other, there is a force of repulsion between them, while dissimilar poles are attracted when brought close togetlier. As in the case of electric charges, like poles repel, unlike poles attract.

Fig. 213 - (A) The field about a bar magnet. The magnetic lines of force are continuous, part of the path being inside the nagnet and part outside. (B) Cutting a magnet produces two magnets, each complete with \mathbf{N} and S poles. With the magnets in the positions shown, some of the lines of force are common to both magnets.

If a bar magnet is cut in half, as in Fig. $213-\mathrm{B}$, it is found that the cut ends also are poles, of opposite kind to the oricinal poles on the same piece. Such cutting can be continued indefinitely, and, no matter how small the pieces are made, there are always two opposite poles associated with each piece. In other words, a single magnetic pole cannot exist alone; it must always be associated with a pole of the opposite kind.

To explain this property of a magnet, it is considered that each molecule of a magnetic substance is itself a miniature magnet. If the material is not magnetized, the molecules are in random positions and the total magnetic effect is zero since there are just as many moleeules tending to set up a magnetic field in one direction as there are others tending to set upa field in the opposite direction. When the substance becomes magnetized, however, the molecules are aligned so that most or all of the N poles of the molecular magnets are turned toward one end of the material while the S poles point toward the other end.

Magnetic induction - When an unmagnetized piece of iron is brought into the field of a magnet, its molecules tend to align themselves as described in the preceding paragrapli. If one end of the iron is near the N pole of the magnet, the S poles of the molecules will turn toward that end and an S pole is said to be induced in the iron. An N pole will appear at the opposite end. Because of the attraction between opposite poles, the iron will be drawn toward the magnet. Since the iron has berome a magnet under the influence of the fichld, it also possesses the property of attracting other pieces of iron.

When the mannetic field is removed, the molecules may or may not resume their random positions. If the material is soft iron the matsnetism disappears quite rapidly when the field is removed, but in some types of stecl the molecules are slow to resume their random positions and such materials will retain magnetism for a long time. A magnet which loses its magnetism quiekly when there is no external magnetizing force is called a temporary magnet, while one which retains its magnetism for a long time is called a permanent magnet. The tendency to retain magnetism is called retentivity. The process of destroving magnetism can be hastened by heating, which increases the motion of the molecules within the sub)stance, as well as by mechanical shock, which also tends to disturb the molecular alignment.
Electric current and the magnetic field Experiment shows that a moving electron generates a magnetic field of exactly the same nature as that existing about a permanent magnet. Since a moving electron, or group of electrons moving together, constitutes an electric current, it follows that the flow of eurrent. is accompanied by the creation of a magnetic field. When the conductor is a wire the maguetic lines of force are in the form of concentric

Fig. 214-Whencver cleetric current passes through a wirc, magnetic lines of force are set up, in the form of concentric circles, at right angles to the wire, and a magnetic field is said to exist around the wire. 'The direction of this field is comtrolled by the direction of current flow, and can be traced by means of a small compass.
circles around it and lie in planes at right angles to it, as shown in Fig. 214. The direction of this field is controlled by the clirection of current flow.
There is an easily remembered method for finding the relative directions of the eurrent and of the magnetic field it sets up. Imagine the fingers of the right hand eurled about the wire, with the thumb extended along the wire in the direction of current flow (the conventional direction, from positive to negative, not the direction of electron movement). Then the fingers will be found to point in the direction of the magnetic field; that is, from N to \mathcal{S}.
Matnetomotive force - The force which causes the magnetic field is called magnetomotire force, abbreviated m.m.f. It corresponds to elertronotive force or e.m.f. in the electric circuit. The greater the magnetomotive force, the stronger the magnetic field: that is, the larger the number of magnetic lines per unit area. Magnotomotive force is proportional to the current flowing. When the wire carrying the current is formed into a coil so that the magnetic flux will be concentrated instead of being spread over a large area, the m.m.f. also is proportional to the number of turns in the coil. Consequently magnetomotive force can be expressed in terms of the product of current and turns, and the ampere-turn, as this product is called, is in fact the common unit of magnetomotive force. The same magnetizing effect can be secured with a great many turns and a weak current or with a few turns and a strong current. For example, if 10 amperss flow in one turn of wire, the magnetizing effect is 10 am-pere-turns. If there is one ampere flowing in 10 turns of wire, the magnetomotive force also is 10 ampereturns.
The magnetic circuil - Since magnetic lines of force are always closed upon themselves, it is possible to draw an analogy between the magnetic circuit and the ordinary electrical circuit. The electrical circuit also must be closed so that a complete path is previded around which the electrons or current can flow. However, there is no insulator for the magnetic field, so that the magnetic circuit is always complete even though no magnetic material (such as iron) may be present.
The number of lines of magnetic force, or $f u x$, is equivalent in the magnetic circuit to current in the electric circuit. However, it is
usual-practice to express the strength of the field in terms of the number of lines per unit area, or flux density. The unit of flux density is the gauss, which is equal to one line per square centimeter, but the terms "lines per square centimeter" or "lines per square inch" are commonly used instead.

Corresponding to resistance in the electric circuit is the tendency to obstruct the passage of magnetic flux, which is called reluctance. The reluctance of good magnotic materials, such as iron and steel, is quite low.

The permeability of a material is the ratio of the flux which would be set up in a closed mangnetic path or cireuit of the material to the flux that would exist in a path of the same dimensions in air, the same m.m.f. being used in both cases. 'The permeability of air is assignod the value 1 . The permeability of stecls of various types varies from about 50 to several thousand, depending upon the materials alloyed with the steel. Very high permeabilities are attained in cortain special magnetio materials, such as "permalloy," which is an alloy of iron and nickel.

The permeability of magnetie materials depends upon the density of magnetie flux in the material. At very high flux densitios the permeability is less than its value at low or moderate flux densities. This is berame the flux in mannetic materials is proportional to the applied $\mathrm{m} . \mathrm{m} . \mathrm{f}$. only over a limited range. As the m.m.f. increases more and more of the molecular magnets within the material berome aligned, until eventually a point is reached whore a very great increase in m.m.f. is required to canse a relatively small increase in flux. 'This is called maynetic saturation. In this region of saturation the permeability decreases, since the ratio between the number of lines in the matorial ind the number in air, for the same m.m.f., is smaller than when the flux density is below the saturation point.

Energy in the magnetir field - Like the electrostatic field ($\$ 2-3$), the magnetic field represents potential energy. Consequently the expenditure of energy is necessary to set up a magnetic field, but once the field has beon established and remains constant no furthor energy is consumed in maintaining it. If by some means the field is caused to disappear, the stored-up magnetic energy is converted to energy in some other form. In other words the energy undergoes a transformation when the magnetic field is changing, being stored in the fied when the field strength is increasing and being released from the field when the field strength is decreasing.

When a magnetic ficld is set up by a current flowing in a wire or coil, a certain amount of energy is used initially in bringing the field into existence. Thereafter the current must continue to flow, if the field is to be maintained at steady strength, but no expenditure of energy is required for this purpose. (There will be a steady energy loss in the circuit, but only
because of the resistance of the wire.) If the current stops the energy of the field is transformed back into electrical energy, tending to keep the current flowing. The amount of energy stored and subsequently released depends upon the strength of the field, which in turn depends upon the intensity of the current and the rircuit conditions; i.e., it depends upon the relationship between field strength and current in the cireuit.

Induced voltage - Since a magnetic field is set up by an electric current, it is not surprising to find that, in turn, a magnetic field can cause a current to flow in a closed electrical circuit. That is, an e.m.f. can be induced in a wire in a magnetic field. However. since a change in the field is required for energy transformation, an c.m.f. will be induced only when there is a change in the field with respect to the wire.

This change may be an actual change in the field strength or may be caused by relative motion of the field and wire; e.g., a moving field and a stationary wire, or a moving wire and a stationary field. It is convenient to consider this induced e.m.f. as resulting from the wires "cutting throngh" the lines of force of the field. The strength of the e.m.f. so induced is proportional to the rate of cutting of the lines of force.

If the conductor is moving parallel with the lines of force in a field, no voltage is induced since no lines are cut. Maximum cutting results when the conductor moves through the field in wuch a way that both its longer dimension and direction of motion are perpendieular to the lines of force, as shown in Fig. 215. When the conductor is stationary and the fied strength varies, the induced voltage results from the alternate increase and decrease in the number of lines of force cutting the wire as the m.m.f. varies in intensity.

Fig. 215 - Showing how e.m.f. is induced in a conductor moving through a stationary maqnetic field, cutting the lines of force. Converscly, a current sent through the conductor in the same direction by means of an external c.m.f. will cause the conductor to move downward,

Lenz's Laur - When a voltage is induced and current flows in a conductor moving in a magnetic field, energy of motion is transformed into electrical energy. That is, mechanical work is done in moving the conductor when an induced current flows in it. If this were not so the induced voltage would be creating electrical energy, in violation of the fundamental principle of physics that energy can neither be created nor destroyed but only transformed.

THE RADIO AMATEUR'S HANDBOOK

It is found, therefore, that the flow of current creates an opposing magnetic force tending to stop the movement of the wire. The statement of this principle is known as Lenz's Law: "In all cases of electromagnetic induction, the in-duced currents have such a direction that their reaction tends to stop the motion which produces them."
Motor principle - The fact that current flowing in a conductor moving through a magnetic field tends to oppose the motion indicates that current sent through a stationary conductor in a magnetic field would tend to set the conductor in motion. Such is the case. If moving the conductor through the field in the direction indicated in Fig. 215 causes a current to flow as shown, then, if the conductor is stationary and an e.m.f. is applied to send a current through the conductor in the same direction, the conductor will tend to move across the field in the opposite direction.

This principle is used in the electric motor. The same rotating machine frequently may be used either as a generator or motor; as a generator it is turned mechanically to cause an induced e.m.f., and as a motor electric current through it causes mechanical motion.

Self-induction - When an e.m.f. is applied to a wire or coil, current begins to flow and a magnetic field is created. Just before closing the circuit there was no field; just after closing it the field exists. Consequently, at the instant of closing the circuit the rate of change of the field is very rapid. Since the wire or coil carrying the current is a conductor in a clanging field, an e.m.f. will be induced in the wire. This induced voltage is the e.m.f. of self-induction, so called because it results from the current flowing in the wire itself.
By the principle of conservation of energy (and Lenz's Law), the polarity of the induced voltage must be such as to oppose the applied voltage; that is, the induced voltage must tend to send current through the circuit in the direction opposite to that of the current caused by the applied voltage. At the instant of closing the circuit the field changes at such a rate that the induced voltage equals the applied voltage (it cannot exceed the applied voltage, because

Fig. 216 - When the conducting wire is coiled, the individual magnetic ficlds of each turn are in such a direction as to produce a field similar to that of a bar magnet. The schematic symbols for inductance are shown at the right. The symbol at the left in the top row indicates an iron-core inductance; at the right, air core. Variable inductances are shown in the bottom row.
then it would be supplying energy to the source of applied e.m.f.), but after a short interval the rate of change of the field no longer is so rapid and the induced voltage decreases. Thus the current flowing is very small at first when the applied and induced e.m.f.s are about equal, but rises as the induced voltage becomes smaller. The process is cumulative, the current eventually reaching a final value determined only by the resistance in the circuit.

In forcing current through the circuit against the pressure of the induced or "back" voltage, work is done. The total amount of work done during the time that the current is rising to its final value is equal to the amount of energy stored in the magnetic field, neglecting heat losses in the wire itself. As explained before, no further energy is put into the field once the current becomes steady. However, if the circuit is opened and current flow caused by the applied e.m.f. ceases, the field collapses. The rate of change of field strength is very great in this case, and a voltage is again indueed in the coil or wire. This voltage causes a current flow in the same direction as that of the applied e.m.f., since energy is now being restored to the circuit. The energy usually is dissipated in the spark which occurs when such a circuit is opened. Since the field collapses very rapidly when the switch is opened, the induced e.m.f. at such a time can be extremely high.

Inductance - As explained above, the strength of the self-induced voltage is proportional to the rate of change of the field. However, it is also apparent from the foregoing that the voltage also depends upon the properties of the circuit, since, if a number of similar conductors are in the same varying field, the same voltage will be induced in each. By combining the conductors properly, the total induced voltage in such a case will be the sum of the voltages induced in each wire. Also, the rate of change of field strength depends upon the strength of the field set up by a given amount of current flowing in the wire or coil, and this in turn depends upon the ampere-turns, permeability, length and cross-section of the magnetic path, etc.

For a given circuit, however, the field strength will be determined by the current, and the rate of change of the field consequently will be determined by the rate of change of current. Irence, it is possible to group all of these other factors into one quantity, a property of the circuit. This property is called inductance. When this is done, the equation giving the value of the induced voltage becomes:

Induced voltage
 $=L \times$ rate of change of current

where L is the value of inductance in the circuit.

Inductance is a property associated with all circuits, although in many cases it may be so small in comparison to other circuit properties (such as resistance) that no error results from neglecting it. The inductance of a straight wire

Fig. 217 - Mutual inductance. When the switch, S, is closed current flows through coil No. 1, setting up a magnetic field which induces an e.m.f. in the turns of coil No. 2.

respect to each other. Maximum coupling exists when they have a common axis, as shown in Fig. 217, and are as close together as possible.

If two coils having mutual inductance are connected in the same circuit, the directions of the respective magnetic fields may be such as to add or oppose. In the former case the mutual inductance is said to be "positive"; in the latter case, "negative." Positive mutual inductance in such a circuit means that the total inductance is greater than the sum of the two individual inductances, while negative inductance means that the total inductance is less than the sum of the two individual inductances. The mutual inductance may be made either positive or negative simply by reversing the connections to one of the coils.

(1) 2-6 Fundamental Relations

Direct current - A current which always flows in the same direction through a circuit is called a direct current, frequently abbreviated d.c. Current flow caused by batteries, for example, is direct current. One terminal of each cell is always positive and the other always negative, hence electrons are attracted only in the one direction around the circuit. To make the current change direction, the connections to the battery terminals must be reversed.

Work, energy and power - When a quantity of electricity is moved from a point of one potential to a point at a second potential, work is done. The work done is the product of the quantity of electricity and the difference of potential through which it is moved; that is,

$$
W=Q E
$$

In the practical system of units, with Q in coulombs and E in volts, the unit of work is called the joule. Energy, which is the capacity for doing work, is measured in the same units.

Since $I=Q / t$ when the current is constant (§2-1), $Q=I t$. Substituting for Q in the equation above gives

$$
W=E I t
$$

where E is in volts, I in amperes, and t in seconds. One ampere flowing through a difference of potential of one volt for one second does one joule of work. Power is the time rate at which work is done, so that, if the work is done at a uniform rate, dividing the equation by t will give the electrical power:

$$
P=E I
$$

The unit of electrical power is the watt.

In practical work, the term "joule" is seldom used for the unit of work or energy. The more common name is watt-second (one joule is equal to one watt applied for one second). The watt-second is a relatively small unit; a larger one, the watt-hour (one watt of power applied for one hour) is more frequently used. Again, for some purposes the watt is too small a unit, and the kilowatt (1000 watts) is used instead. A still larger energy unit is the kilowatt-hour, the meaning of which is easily interpreted.
Fractional and multiple units - As illustrated by the examples in the preceding paragraph, it is frequently convenient to change the value of a unit so that it will not be necessary to use very large or very small numbers. As applied to electrical units, the practice is to add a prefix to the name of the fundamental unit to indicate whether the modified unit is larger or smaller. The common prefixes are micro (one millionth), milli (one thousandth), kilo (one thousand) and mega (one million). Thus, a microvolt is one millionth of a volt, a milliampere is one thousandth of an ampere, a kilovolt is one thousand volts, and so on.

Unless there is some indication to the contrary, it should be assumed that, whenever a formula is given in terms of unprefixed letters (E, I, P, R, ete.), the fundamental units are meant. If the quantities to be substituted in the equation are given in fractional or multiple units, conversion to the fundamental units is necessary before the equation can be used.
Ohm's Law - In any metallic conductor, the current which flows is directly proportional to the applied electromotive force. This relationship, known as Ohn's Law, can be written

$$
E=R I
$$

where E is the c.m.f., I is the current, and R is a constant, depending on the conductor. called the resistance of the conductor. By definition, a conductor has one unit of resistance when an applied e.m.f. of one volt causes a current of one ampere to flow. The unit of resistance is called the ohm.
Ohm's Law does not apply to all types of conduction, particularly to conduction through gases and in a vacuum. The law is of very great importance, however, because practically all elecitrical cireuits use mefallic conduction.

By transposing the equation, the following equally useful forms are obtained:

$$
R=\frac{E}{I} \quad I=\frac{E}{R}
$$

The three equations state that, in a circuit to which Ohm's Law applies, the voltage across the circuit is equal to the current multiplied by the resistance; the resistance of the circuit is equal to the voltage divided by the current; and the current in the circuit is equal to the voltage divided by the resistance.
Resistance and resistivity - The resistance of a conductor is determined by the material of which it is made and its temperature, and is
directly proportional to the length of the conductor (that is, the length of the path of the current through the conductor) and inversely proportional to the area through which the current flows. If the temperature is constant,

$$
R=k \frac{L}{A}
$$

where R is the resistance, k is a constant depending upon the material of which the conductor is made, L is the length and A the area. For the purpose of giving a specific value to k, L is taken as one centimeter and A as one square centimeter (a cube of the material measuring one centimeter on a side); k is then the resistance in ohnis of such a cube at a sperified temperature. It is called the specific resistunce or resistivity of the material. If the resistivity is known, the resistance of any conductor of known length and uniform crosssection readily can be determined by the formula above. The length must be in centimeters and the area in square centimeters.
The relationships given above are true only for unidirectional (direct) currents and lowfrequency alternating currents. Modifications must be made when the current reverses its direction many times each second ($\$ 2-8$).
Conductance. and conductivity - The reciprocal of resistance is called conductance, and has the opposite properties to resistance. The lower the resistance of a circuit, the higher is the conductance, and vice versa. The symbol of condurtance is G, and the relationship to resist:unce is

$$
G=\frac{1}{R} \quad R=\frac{1}{G}
$$

The unit of conductance is called the mho. A circuit or conductor which has a resistance of one ohm has a conductance of one mho. By substituting $1 / G$ for R in Ohm's Law,

$$
G=\frac{I}{E} \quad I=E G \quad E=\frac{I}{G}
$$

The reciprocal of resistivity is called the specific conductance or conductivity of a material, and is measured in mhos per centimeter cube. It. is frequently useful to know the relative conductivity of different materials. This is usually expressed in per cent conductivity, the conductivity of ammealed copper being taken as 100 per cent. A table of per cent conductivities is given in Chapter Twenty.
Poucer nsed in resistance- If two conductors of different resistances have the same current flowing through them, then by Ohm's Law the conductor with the larger resistance will have a greater difference of potential across its terminals. Consequently, more energy is supplied to the larger resistance, since in a given period of time the same amount of electricity is moved through a greater potential difference. The energy appears in the form of heat in the conductor. With a steady current, the heat will raise the temperature of the con-

Fig. 218 - Two common typers of fixed resisturs. The wire-wound type is used for dissipating fower of the order of 5 watts or more. "Pigtail" resistors, ustially made of carbon or other resistance material in the form of a molded rod or as a thin coating on an insulating tube, rather than being wound with wire, are small in size but do not safely dissipate much power. Schematie symbols for fixed and variable resistors are shown at lower right.
ductor until a balance is reached between the heat generated and that radiated to the surrounding air or otherwise carried away.

Sime $P=E I$, substituting for E the appropriate form of Ohm's Law $(E=I R)$ gives

$$
P=I^{2} R
$$

and making a similar substitution for I gives

$$
P=\frac{E^{2}}{R}
$$

That is, the power used in heating a resistanee (or drssipated in the resistance) is proportional to the square of the voltage applied or to the square of the eurrent flowing. In these formulas P is $\mathrm{i}, \mathrm{watts}, E$ in volts and I in amperes.

Fuither transposition of the equations gives the following forms, useful when the resistance and power are known:

$$
E=\sqrt{\prime} r \quad I=\sqrt{\frac{P}{R}}
$$

Unless the eircuit containing the resistance is being used for the specific purpose of generating heat, the power used in heating a resistanre is generally considered as a loss. However, there are very many applications in radio circuits where, despite the loss of power, a useful purpose is served hy introducing resistane deliberately. Resistances made to specified values and provided with comereting terminals are called resistors. They are frequently wound on ceramic or other heat-resisting tubing with wire having high resistivity.

Temperature roeffirient of rosistanceThe resistance of most pure metals increases with an increase in temperature. The resistance of a wire at any temperature is given by

$$
R=R_{0}(1+u t)
$$

- where R is the required resistance, R_{0} the resistance at $0^{\circ}\left(^{\circ}\right.$. (temperature of molting ice), t is the temperature (Centigrade), and a is the temperuture corfficient of resistance. For copper, a is about 0.004 ; that is, starting at $0^{\circ} \mathrm{C}$., the resistance increases 0.4 per cent per degree above zero.

Temperature coefficient of resistance becomes of importance when conductors operate at high temperatures. In the case of resistors used in electrical and radio circuits, the heat developed by current flow may raise the temperature of the resistance wire to several hundred degrees F. Thus the resistance at operating temperatures can be very much higher than the resistance at room temperature. Consequently such resistors are wound with wire which has a low temperature coefficient of resistance, so that the resistance will be more nearly constant under all conditions.

Resistances in series - When two or more resistances are connected so that the same current flows through earh in turn, as shown in lig. : 219 , they are said to be connected in series. Then, by Ghin's Law,

$$
\begin{aligned}
& E_{1}=I R_{1} \\
& L_{2}=I R_{2} \\
& E_{3}=I R_{3}
\end{aligned}
$$

etc., where the subseripts $1,2,3$ indicate the first, seoond and third resistor, and the voltages E_{1}, E_{2} and E_{3} ate the voltages appearing arrose the terminals of the respertive resistors. Adrling the three voltages gives the total voltage arross the three resistors:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=I R_{1}+I R_{2}+I R_{3}= \\
I\left(R_{1}+R_{2}^{\prime}+R_{3}\right)=I R
\end{gathered}
$$

Fing 219-Rexiat ances in series.

Thist is. the voltage arross the resistors in series is equal to the current multiplied by the sum of the individual resistances. In the above equittion. R, which denotes this sum, maty be called the equiralrut resistance or total resistance. The equivalent resistame of a number of resistors connerted in series is, therefore, equal to the sum of the values of the individual resistoms.
Resistances in parallel- When a number of rosistances are commerted so that the same voltage is applied to all. as shown in Fig. 220,

lig. 220-Resistances in parallel.
they are sulid to be connerted in parallel. By Ohin's law,

$$
I_{1}=\frac{E^{\prime}}{R_{1}} \quad I_{2}=\frac{E^{*}}{R_{2}} \quad I_{3}=\frac{E}{R_{3}}
$$

so that the total current, I, which is the sum
of the currents in the individual resistors, is

$$
\begin{aligned}
I= & I_{1}+I_{2}+I_{3}=\frac{E}{R_{1}}+\frac{E}{R_{2}}+\frac{E}{R_{3}}= \\
& E\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)=E \frac{1}{R}
\end{aligned}
$$

where R is the equivalent resistance - i.e.. the resistance through which the same total current would flow if such a resistance were substituted for the three shown. Therefore,

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

That is, the reciprocal of the equivalent resistance of a number of resistances in parallel is equal to the sum of the reciprocals of the individual resistances. Since the reciprocal of resistance is conductance,

$$
G=G_{1}+G_{2}+G_{3}
$$

where G is the total conductance and G_{1}, G_{2}, G_{3}, etc., are the individual conductances in parallel.

To obtain R instead of its reciprocal the equation above may be inverted, so that

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}^{\prime}}+\frac{1}{R_{3}}}
$$

The number of terms in the denominator of this equation will, of course, be equal to the actual number of resistors in parallel.

For the special case of only two resistances in parallel, the equation reduces to

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Serics-parallel connection of resistors is shown in Fig. 221. When circuits of this type are encountered the equivalent or total resistance can be found by first adding the veries rosistances in each group, then treating each group as a single resistor so that the formula for resistors in parallel c:m be used.

Fig. 221 - Series-parallel connection of resistaners. Voltage and current relationships are given at the right.

Voltage dividers and potentiomptersSince the same current flows through resistors connected in series, it follows from Ohm's Law that the voltage (termed vollage drop) across each resistor of a series-connected group is proportional to its resistance. Thus, in Fig. 222-A, the voltage E_{1} across R_{1} is equal to the applied voltage, E, multiplied by the ratio of
R_{1} to the total resistance, or

$$
E_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Similarly, the voltage, E_{2}, is equal to

$$
\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Such an arrangement is called a voltage divider, since it provides a means for obtaining smaller voltages from a source of fixed voltage. When current is drawn from the divider at the various tap points the above relations are no longer strictly truc, for then the same current does not flow in all parts of the divider. Design data for such cases are given in $\$ 8-10$.

(B)

rïg. 222 - Voltage divider (A) and potentiometer (B).
A similar arrangement is shown in Fig. $22: 2-13$. where the resistor, R, is equipped with a sliding tap for fine adjustment. Such a variable resistor is frequently called a potertiometer.

Inductances in series and parallel-As explained in $\S 2-5$, inductance determines the voltage induced when the current changes at a given rate. That is, $E=L \times$ rate of change of current. This resembles Ohm's Law, if L corresponds to R and the rate of change of current to I. Thus, by reasoning similar to that used in the case of resistors, it can be shown that, for inductances in series.

$$
L=I_{1}+L_{2}+L_{3}
$$

and for inductances in parallel.

$$
L=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}}
$$

where the number of terms in cither equation is determined by the actual number of inductances connected in series or parallel.

These equations do not hold if there is mutual inductance ($\$ 2-5$) between the coils.

Condensers in series and parallel - When a number of condensers are in parallel, as in Fig. 2.23-A, the same c.m.f. is applied to all. Conserquently, the quantity of electricity stored in each is in proportion to its capacity. The total quantity stored is the sum of the quantities in the individual condensers:
$Q=Q_{1}+Q_{2}+Q_{3}=C_{1} E+C_{2} E+C_{3} E=$

$$
\left(C_{1}+C_{2}+C_{3}\right) E=C E
$$

where C is the equivalent capacity. The equivalent capacity of condensers in parallel is equal to the sum of the individual capacities.

(A)

Fig. 223 - Condensers in parallel (A) and in series (B).
When condensers are connected in series, as in Fig. 223-B, the application of an e.m.f. to the circuit causes a certain quantity of electricity to accumulate on the top plate of $C^{\prime} 1$. By electrostatic induction, an equal charge of opposite polarity (negative in the illustration) appears on the bottom plate of C_{1}. and, since the lower plate of C_{1} and the upper plate of ('2 are cormected together, this must leave an equal positive charge on the upper plate of ('2. This, in turn, causes the lower plate of C_{2} to assume an equal negative charge, and so on down to the plate connected to the negative terminal of the source of e.m.f. In other words the same quantity of electricity is placed on each condenser, and this is equal to the total quantity stored. The voltage across each condenser will depend upon its capacity, and the sum of these voltages must equal the applied voltage. Thus,

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=\frac{Q}{C_{1}^{\prime}}+\frac{Q}{C_{2}^{\prime}}+\frac{Q}{C_{3}^{\prime}}= \\
Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}^{\prime}}+\frac{1}{C_{3}^{\prime}}\right)=\frac{Q}{C}
\end{gathered}
$$

where (' is the equivalent capacity. This leads to an expression similar to that for resistances in parallel:

$$
C=\frac{1}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}}
$$

where the number of terms in the denominator should be the same as the actual number of condensers in series.

Time constant - When a condenser and resistor are connected in series with a source of e.m.f., such as a battery, the initial flow of current into the condenser is limited by the resistance. so that a longer period of time is required to complete the charging of the con-

denser than would be the case without the resistor. Likewise, when the condenser is discharged through a resistor a measurable period of time is taken for the current flow to reach a negligible value. In the case of either charge or discharge the time required is proportional to the capacity and resistance, the product of which is called the time constant of the circuit. If C is in farads and l in ohms, or C in microfarads and R in megolims, the product gives the time in seconds required for the voltage across a discharging condenser to drop to $1 / e$, or approximately 37 per cent of its original value. (The constant e is the bise of the natural series of logarithms.)

lig. 22ij - Ieft - The d'Arsonval or moving eroil meter for d.c. current measurement. Current llowing throngh the rotatable coil in the fild of the permanent magnet canses a force to act on the coil, tending to turn it. 'The turning tendeney is comerated by furings (not shown) so that the amount of movement is proportional to the value of the current in the coril. Risht - In the simpler mowing-iren-vane type, a lipht-weight soft-iron plunger is attracted by current flowing in a fixed coil. As the phanger moves the monter to which it is linked also moves, until the mapurtic force in the eooll is balanced hy the spiral spring restraining the plunger movement.

In a circuit containing inductance and resistance in series. Whe offere of the resistance is to shorton the period required for the current to reach its final value (s) 2 - 0) after an e.m.f. is applied to the circuit. The time constant of such a eirenit is equal to L / R, where L is in henrys and R^{2} in ohms. It gives the time in seconds required for the current to reach $1-1 / e$, or approximately 63 per cent of its final steady value when a constant voltage is applied.

By proper appliation to ansociated circuits and devires such th varuum tubes, it is possible by suitable selection of time constant to create almost any desired wave or pulse shape. This is of practical importance in many circuit applications in amateur transmission and reception, as in electronic keyers, automatic volume control, resistance-capacity filters and remote control. Apart from these applications, many of the techniques employed in television and specialized electronic deviees are based on this principle.

Measuring instruments - Instruments for measuring d.c. current and voltage make use of the force acting on a coil carrying current in a magnetic field ($\$ 2-5$), produced by a permanent magnet, to move a pointer along a calibrated scale. The magnetic field may be produced by a permanent magnet acting upon a moving coil, or by a fixed coil acting upon a moving iron vane or plunger.

The first type of instrument, based on what is known as the d'Arsonval moving-coil movement, is shown at the left in Fig. 225. The mov-ing-iron vane instrument shown at the right is less arrurate and requires higher energizing current, making it relatively insensitive as compared to the moving-eoil type. ()nly the cheraper measuring instruments available to amateurs are based on this principle.

Fig. 220-Circuil commedions for meanaring curront
 value of the eurrent which the instrument wan matures. by providing an alornate path through which some of the eurrent ean llaw. The series multiplier limits the carrent when the instrument is used to meatare whate.

In such instruments the current refuired for full-seale chefleettion of the pointer varies from several milliamperes to a fow micosamperes, according to the sensitivity requiral. If the instrument is to read ligh currents. it is shomted (paralleled) by a low resistance through which most of the eurrent flows. leaving only emough flowing through the instrument to give a full-wate deflection correspmoding to the total current flowing through both moter and shant. An instrmment which reads microamperes is called a microammeter or gabanometer; one calibrated in milliamperes is called a milliammeter: one ralibrated in amperes is an ammeter. A voltmeter is simply a milliammeter with a high resistance in serios so that the current will be limited to a suitable value when the instrument is romere ted aross a voltage sourere; it is calibrated in terms of the voltage which must appear arross the terminals to caluse a given value of purrent to flow. The series resistance is called a multiplier. A uattmeter is a combination voltmeter and ammeter in which the pointer deflertion is proportional to the power in the ciredit.

An ammeter or milliammoter is comereted in series with the cirenit in whieh emrent is being measured, so that the current flows through the instrument. A voitmeter is ronnected in parallel with the circuit.

(1) 2-7 Alternating Current

Description - An alternating current is one which periodieally reverses its direction of flow. In adelition to this alternate change in direction, usually the amount or amplitude of the current also varies continually during the period when the current is flowing in one direction. These variations are accompanied by corresponding variations in the magnetic field set up by the current, and it is this feature which makes the alternating current so useful. By means of the varying field, energy may be
continually transferred (by induction) from one circuit to another without direct connection, and the voltage may be changed in the process. Neither of these is possible with direct current because, execpt for brief periods when the circuit is closed or opened, the field accompanying a steady direct current is unchanging, and hence there is no way of inducing an e.m.f. except by moving a conductor through the field (\$2-5).

Alternating currents may be generated in several ways. Rotating electrical machines (a.c. (frnerators or alternators) are used for developing large amounts of power when the rate of reversal is relatively slow. However, such machines are not suitable for producing currents which reverse direction thousands or millions of times each second. The thermionic vacuum tube is used for this purpose. as described in Chapter Three.

The simplest form of alternating current (or voltage) is shown praphically in Fig. 227. This chart shows that the current starts at zero value, builds up to a maximum in one direction. comes back down to zero, builds up to a maximum in the opposite direction and comes batek to zero. The rurve follows the sine law and is known as a sine urue, beratuse of the wavelike nature of the curve which results when sine values are photed on rectangular coindinates as a function of angle or time.

Frequeney - The eomplete wave shown in Fing. $2 \mathscr{2}$ is called al c!ele, and the length of time required to eompleto one eyrele is rallent the periond. Fotch hadf of the eycle, during which the corrent is flowing in one direction, although its strengih is varving. is known as ath alteration. The momber we eveles the wave gees through e:the semom of time is called the frequency. In ratio work, where frequencies are extromely large, it is comvenient to nse two oher units, Filow, athd weracyedres per serond (ryeres per serond $\div 1,000,000)$. These are usially abbreviated ke. and Mc., respectively. Oceasiomally these abhreviations are written kes. and Mes. toindirate "kilocyeles per second" and "merarycles per serond" rathor than simply "kilocycles" amd "sicmacules." but it is understood that "per serome" is meant when the shonter forms are nised.

Fig. 227 - Sine wave of alternating current or voltage.

Electrical degrees - If we take a fixed point on the periphery of a revolving wheel, we find that at the end of each revolution, or cycle. the point has come back to its original starting place. Its position at any instant cam be expressed in terms of the angle between two lines, one drawn from the center of the wheel to the point at the instant of time considered, the other drawn from the wheel center to the starting point. In making one complete revolution the point has travelled through 360 degrees. a half revolution 180 degrees, a quarter revolution 90 degrees, and so on. The periodic wave of alternating current may be treated similarly, me complete rycle equalling one revolution or 360 degrees, one alternation (half cy(cle) 180 degrees, and so on. With the corde divided up in this way, the sine curve simply means that the value of current at any instant is proportional to the sime of the amgle which corresponds to the particular fraction of the csole considered.

The concent of angle is miversally usod in alternating currents. Generally, it is expresed in the fundamental form, using the ratian rather than the degree as a mit, whenor a cycle is equal to 2π radians, or a half rever to π radians. The expression $2 \pi f$. for whith the symbol ω is often used, simply meats eleentreal degrees per ryole times freguence, and is called the arember relocitg. It gives the lomal number of electrical radians passod through by a current of given frequeney in one serond.

Peak, instantancons. affertioeand aterage values - The highest value of eurrent or voltage during the time when the current is flowing in one direction is called the maximum or peak value. For the sine wave, the prak has the same absolute value on both the positive and megattive halves of the rycle. This is not neressarily true of waves having shapes other thath the true sine form.

The value of eurent or voltage existine at any particular point of time in the eyole is called the instantancous value. The instath for which a particular valuc is to be found catn be sperified in turms of time (fraction of the period) or of angle.

Nince both the woltage and current are swinging continuously between their positive maximum and negative maximum values, it might be womdered how one can spatk of so many amperes of alternating current when the value is changing contimously: The problem is simplified in praetical work by eonsidering that an alternating current has an offertive value of one ampere when it produces heat, in flowing through a given resistance, at the same average rate as one ampere of contimous direct current flowing through the same resistame. This effective value is the square root of the moin of all of the instantancous rurrent values squared. In the case of the sine-wave form,

$$
E_{\mathrm{eff}}=\sqrt{1 / 2 E_{\max }^{2}}
$$

For this reason, the effective value of an alter-
nating current or voltage is also known as the root-mean-square, or r.m.s., value. Hence, the effective value is the square root of $1 / 2$, or 0.707 , times the maximum value.

In a purely a.c. circuit the average current over a whole cycle must be zero, because if the average currenton, say, the positive half of the cycle were greater than the average on the negative half, there would be a net current flow in the positive direction. This would correspond to a direct (although intermittent) current, and hence must be exeluded because a purely alternating current was assumed. The "average" value of an alternating current is defined as the average current during the part of the cycle when the current is flowing in one direetion onle. It is of particular importance when altermating current is changed to direct current hy the methods considered in later chapters. For a sine wave, the average value is equal to 0.636 of the peak value.

In the sire wave the three voltage values, peak, effertive and average, are related to each other as follows:

$$
\begin{aligned}
& E_{\text {max }}=E_{\text {rff }} \times 1.411=E_{\text {ive }} \times 1.57 \\
& E_{\mathrm{eff}}=E_{\mathrm{natx}} \times 0.707=E_{\mathrm{ilym}} \times 1.11 \\
& E_{\mathrm{ave}}=E_{\text {max }} \times 0 . \mathrm{i} 36=E_{\mathrm{eff}} \times 0.9
\end{aligned}
$$

The relationships for current are equivalent to those given above for voltage.

Plase - As the next fow paragraphs will show, the current and voltage in an altemat-ing-rurrent circuit naty nol pitss through their maximum and minimum values at the same time, even though both are sine waves of the same frequenter 'The time at which a particular part of the curle (sulh as the positive peak) ocours is called the phase of the wave. If two waves are not cexactly in solp) there is a phase differme betwern them. 'lhe phase difference e:th be expresed in toms of the atual difference in time between the two instants at which the two waves reach corresponding parts of their creles, but it is generally more conveniont to measure it in angular units. A phase differenero of 90 degrees, for example, means that one wave reathes its maximum value one-quarter eycle before the other wato reaches its maximum value in the same direretion.

The phase relationships between two eurrents (or two voltages) of the same frequency are defineal in the same way. When two surh curvents are eombined the resultant is a single current of the same frequency, but having an instantaneous amplitude equal to the algebraie sum of the amplitudes of the two components at the same instant. The amplitude of the resultant current hence is determined by the phase relationship belween the two currents before combination. Thus if the two currents are exalotly in phase, the maximum value of the resultatit will be the numerial sum of the maximum valucs of the individual currents; if they are 180 degrees out of phase, one reaches its positive maximum at the instant the other reaches its negative maximum, hence the resultant current is the difference between the
two. In the latter case, if the two currents have the same amplitude the resultant current is zero.

Current, vollage and pouer in an inductance - When alternating current flows through an inductance, the continually varying magnetic field causes the continuous generation of an c.m.f. of self-induction (§ 2-5). The induced voltage at any instant is proportional to the rate at which the current is changing at that instant. If the current is a sine wave, it can be shown that the rate of change is greatest when the current is passing through zero and least when the current is maximum. For this reason, the induced voltage is maximum when the current is zero and zero when the current is maximum. The direction or polarity of the induced voltare is such as to tend to sustain the current flow when the current is decreasing and to prevent it from flowing when the current is increasing (\$2-5). As a result, the indured voltage in an inductance lags 90 degrees behind the current.

By Lenz's Law, the indured voltage must always oppose the applied voltage; that is, the induced and applied voltages must be in phase opposition, or 180 degrees out of whase. Consequently, the applied voltage leads the current by 90 degrees. Or, using the voltage as a reference, the current in an inductance lags 90 degrees, or one-quarter cycle, behind the voltage. These relationships are shown in Fig. 228.

When the current is increasing in either direction, energy is being stored in the magnetic fied. At such times the voltage has the same polarity as the current, so that the product of the two, which gives the instantaneous power fed to the inductunce, is positive. When the current is decreasing energy is being restored to the circuit and the applied voltage has the opposite polarity, so that the product of current and voltage is negative. 'This is also shown in Fig. 228. Positive power mems power taken from the source (i.e., the source of the applied e.m.f.), while negative power means power returned to the source. Power is alternately taken and given back in each quarter rycle, and, since the amount given back is the same as that taken, the arerage power in an inductance is zero when considering a whole cycle. In a practical inductance the wire will have some resistance, so that some of the power supplied will be consumed in heating the wire, but if the resistance of the circuit is small compared to the inductance the power
consumption is very small compared to the power which is alternately stored and returned.

Current, voltage and power in a condenser - When an alternating voltage is appiled to a condenser, the condenser acquires a charge while the voltage is rising and loses its charge while the voltage is decreasing. The quantity of electricity stored in the condenser at any instant is proportional to the voltage across its terminals at that instant $(Q=C E)$. Since current is the rate of transfer of quantity of electricity, the current flowing into the condenser (when it is being charged) or out of it (when it is discharging) consequently will be proportional to the rate of change of the applied voltage. If the voltage is a sine wave, its rate of change will be greatest when passing through zero and least when the voltage is maximum. As a result, the current flowing into or out of the condenser is greatest when the voltage is passing through zero and least when the voltage reaches its peak value.
This relationship is shown in Fig. 229. Whenever the voltage is rising (in either direction) the current flow is in the same direction as the applied voltage. When the voltage is decreasing and the condenser is discharging, the current flows in the opposite direction. The energy stored in the condenser on the charging part of the cyele is restored to the circuit on the discharge part, and the total energy consumed in a whole ryole therefore is zoro. A condenser operating on a.c. takes no average power from the source, except for such atctual energy losses as maty occur as the result of heating of the diclectric ($\$ 2-3$). The energy lows in air condensers used in radio circuits is negligibly small except at extremely high frequencies.

As shown by Fig. 229, the phase relationship between current flow and applied voltage is such that the current leads the voltage by 90 degrees. This is just the opposite to the inductance case.

Fig. 229 - Voltage, current and power relations in an alternating-current circuit consisting of capacity only.

Current, voltage and pouer in resistance - In a circuit containing resistance only there are no energy storage effects, and consequently the current and voltage are in phase. The current therefore always flows in the same direction as the applied voltage, and, since the power is always positive, there is continual power
dissipation in the resistance. The relationships are shown in Fig. 230.

Strictly speaking, no circuit can have resistance only, because the flow of current always is accompanied by the creation of a magnetic feld and every conductor also has a certain amount of capacity. Whether or not such residual inductance and capacity are large enough to reguire consideration is determined by the frequency at whieh the cireuit is to operate.

The a.c. spectrum - Alternating currents of difforent frequencies have different properties and are usctul in a variety of was. for the transmission of power to light homes, run mo-

Fig. 237 - Voltage, current ithl peswer relations in an atcornat-ing-rurranl qirruit comsintiant of rodiat. ance conls.
Fiब $2: 7$ - tors and perform familar avoryday tasks by clecbrial means, low freifuencies are most suitahle Frecquencies of 25 , 50 and 60 rycles are in common use, the latter being most widely used in this comutry, 'The range of frequencies be-

Frequencies above : gate ared for radio eommanication, becatse at frequencies of this or are it is posible to convert eleatrical energy into ratio waves which ean be radial ed over lanig diatames.

For convenience in reference, the following classifications for radio frequencos have been recommented by an international terhnical conference and are wow increasingly in uso:

10 to 30 kilocyrdes
30 to 300 kilorydix
300 to 3000 kiloevelis
3 to 30 meqatercles
30 to $3(6)$ megaryeces
300 to 3000 megacyeles
3000 to 30,000 negacy

[^1]Sujeragh frequeneies
T'mtil recontly. other terminology was usod; for example, the region abuve 30 mexatereles formerly was eonsidered the "ultrahigh" frequencics.

Waceform. harmonios - The sine wave is not only the simplest but for many purposes is the most desirable waveform. Many other waveforms are met in practice, howreer, and they may difier considerathly from the simple sine case. It is possible to show by antalysis that any such waveform can be resolved into a number of components of differing frequencies and amplitudes, but related in frequency in such a way that all are integer multiples of
the lowest frequency present. The lowest frequency is called the fundamental, and the multiple frequencies are called harmonics. Thus a wave may consist of fundamental, 3rd, 5 th, and 7 th harmonies, meaning, if the fundamental frequency is say 100 cyeles, that frequencies of 300,500 and 700 cycles also are present in the wave.
Fig. $2: 31$ shows how a fundarnental and a second harmonic might combine to form a nonsinusoidal wave. An infinite number of waveforms could be obtained from the combination of two such waves, since the shape of the combined wave will depend upon the amplitude and phase of the two component waves.

The square wave, also shown in Fig. 231, consists of a fundamental and an infinite number of harmonics. This type of wave is useful in a virrety of applications.

(1) 2-8 Ohm's Law for Alternating Currents

Rosistance - Sinco current and voltage are always in phase through a resistance, the instantanmons relations for a.c. are equivalent to there in d.e. circuits. By definition, the effective units of current and voltage for a.c. are made equal to those for d.c. in resistive circuits ($-2-7$). Therefore the various formulas exprosing Ohm's Law for der circuits apply without any change to ace circuits containing resistance only, or for purdy resistive parts of complex a.c. circuits. sco siz-6.

In applying the formulas, it must be remembered that consistent muits must be used. For example, if the instantaneous value of eurrent is used in finding voltage or power, the voltage found will be the instantourous voltage and the power will be the instantaneous power. Likewise. if the offertive valte is used for one quantity in the formula, the unknown will be expresised in effertive vallue. l'nless olherwise indirated. the effertive value of cument or voltacer is always miderstoorl to be meant when reference is mate to "current" or "voltage."

Reactance -

In the preceding section it was shown that energy-storage efferts in inductance and capacitance rause a phase difference to exist between the applied voltage and the cur-

Fig. 231 - Combination of a fundamonta! and second harmonic with th. amplitude and phate relatiomships shown gives the non-sinumbidal resultant. '] he stuare wave, lnelow, contains an infinite number of harmonics.
rent that flows as a result. Because of this, Ohm's Law cannot be applied in its entirety to a.c. circuits containing inductance and/or rapacitane partioblarly for the calculation of prower romsumed. However, the amplitude of the current that flows in such eireuits is directly proportional to the voltare applied, just as it is in purely resistive eireuits. In other words, both inductance and caparity offer opposition to eurrent flow, alld this apposition can be measured in ohms just as it is in the cane of resistance. But the opposition is called ractance to indicate that it does mot consume power and t.hereby distinguish it from resistance.

Ohm's Law fommas extended to include reactance are quite similar to the formulas for resistive cireuits:

$$
I=\frac{E}{X} \quad E=X I \quad X=\frac{E}{I}
$$

Where X is the symbol for reatenne.
Reactance diffors from resistante in another resport - its value, for a piven amoment of inductance or capmoity, varies with the freguency of the current flowing, whereas resistance is not inherently affocted by frequency. However. the reabtame of at given inductance or capabity is constant for all values of applied voltage so long as the frequency is constant.

Inductire rearlance - When alternating current lows thrmagh an inductance it mast take just the rishlt walue to make the indured voltage equal the appliod voltare (s 2-7). Since lhe indued volatise is equal to the inductamere mulapled hy the rate of ehatuge of the current, it is evident that the bareme the value of indurtatere amsidered, the smatler the
 given voltare li the irepueney is fixed. The rate al which the allemathar elarrent chathges is simply proportiontal to the amplitude of the curreat. Hence:a suall entrent will suflice if the
 be required if the imbutane is smatl, assumingr that the applied voltare is the same in both cases. In other words. the reatember of an inductan, is direraly properional to the value of the inductance, at a fixed frequency.

Itowever, the rate of ehange of corrent is proportional an frequenely as well as to amplitude. berathee the sreater the mumber of eveles per second the more rapully the current goes through its remular variations. Comsequently, increasing the freguency will have the same effeet as increasing the amplitule of the eurrent insofar as the induced voltage is comerned; or, to put it another way, if the frequency is increased the amplitude may be decreased in the same proportion to mantain the same indured voltagre in a given indurtanee. Simaller current amplitude throurh a fived value of inductance meathe that the reatianme is higher. so it is atpparent that the realathere of an inductance increases with increasing frequency.

Thus three farfors, imburtance, current amplitude, and frecpuency (angular volority) de-
termine the induced voltare. Combining them, we have, for sine-wave current,

$$
E=2 \pi f L I, \text { or } \frac{E}{I}=2 \pi f L
$$

Since $X=E / I$, then

$$
X_{L}=2 \pi f I
$$

where the subscript L indicates that the reactance is inductive.

The fundamental units (ohms, cycles, henress must be used in the above equation. or appropriate factors inserted if other units: are employed. If inductance is in millihenrys, the frequeney should he stated in kilow yeles; if inductance is in miderohemrys. the frequenery should be given in meqacyedes, to bring the answer in ohms.

Capacilire rearlance - 'lhe quantity of electricity stored in a comslemser depends upon the raparity and the applied roltage (()$=C^{\prime} E$) and if losses ate nerligible the satme guantity of reerdricity is taken out of the mondenser on dise charge. (iurreat mast flow into the rondenser to eharge it, amd must flow out of it to discharge it: the value of the erarent is the rate at which the ganatity of cleatrioite is put into the condenser or taken ont (2 - 4 . When ath a.c. voltage is applied to a condensire the aldernate movement of a chantity of elen ricity hor charge and dischamere it as the applad voltane rises and falls and reverses pularity. constiates current flow "thromgh" the condenser.

The amplifule of the current at any instant is proportionall the thate of change of the voltage at that instath: the ereater the rate of chame the faver the given ghamity of electribity is moved. The amplitude is also proporthonal to the capacitance of the romdenser,

 the rate of ehature of voltage is propertional to the atmplitule of the voltatre and ins frequeney, then for a sine-wave voltage

$$
I=2 \pi f \prime^{\prime} E, \text { or } \frac{E}{I}=\frac{1}{2 \pi f C^{\prime}}
$$

Nine $X=E / I$, then

$$
X_{C}=\frac{1}{2 \pi f t}
$$

Where the subseript (indicates that the reactance is raparitive. Capacitive reactance is innersely proportional to caparity and to the applied frequeney. For a given value of caparity, the roustance decreases as the frequency incronses.
liundamental units (farads, eycles per seeond must te used in the right-hand wille of the equation to obtain the reactance in ohms. Conversion fictors must be used if the freduency and raparity are in units wher than eycles and farads. If C is in microfarads and f in megaryedes. the eonverion fators rathere.

Imperdance - In any series circuit the same current flows through all parts of the circuit. If a resistance and inductanco are comberted in series to form an al.e. circuit they both rarry
the same current, but the voltage across the resistance is in phase with the current while the voltage across the inductance leads the rurrent by 90 degrees. In a d.c. cirruit with resistances in serics. the applied voltage is equal to the sum of the voltages across the individaal resistances (\$2-6). This is ako true of the ana. cirenit with resistance and inductance in series if the instantaneous voltages are added algebraically to find the instantaneous value of applied voltagre. But, because of the phase difference betwern the two voltages, the maximum value of the applied voltane will not be the sum of the maximm values of the two vollages, so that the effertive valuss ramot be added direetly. The same eonsiderations hold in the case of resistame and maparity in series.

In cither atse the total voltage is given by the following expressions:
where E_{X} indiates the voltage anoss the reattance. which maty be either inductive or caparitive and E_{h} is the voltage aroses the resistance.

Since $E_{R}=/ R$ and $E_{X}=/ X$. substitution gives:

$$
L^{*}=l \sqrt{R^{2}}+l^{\prime \prime} \cdot \text { or } \frac{E}{I}=V R^{2}+\overline{X^{2}}
$$

E / I is called the impurdance of the cirenit and is designated by the letter $\%$. Hanme.

$$
Z=\sqrt{R^{2}+} \sqrt{2}^{2}
$$

The impedaner dedermines the voltago whinh must late:pplied to the cireutt to ranse a given current to fows. The unit of impodame is, therefore, the whm, just as in the ease of resistance and rearlance. Which also determine the ratio of voltage to current. Ohmis Law for alternating current rirents then beomes

$$
I=\frac{E}{Z} ; Z=\frac{E}{I} ; E=I Z
$$

It should be moted that the equivalent Ohm's Law mhationship for pouer in a d.e. cirmit does ment apply directly in the case of an a.c. rircuit where Z replaces R. As will be explanel, the power factor of the circuit must be taken inte eonsideration.

In summary. impodance is a generalized quantity : 1 phying to ace or d.e. cirruits. simple or - omplex. ln a d.e. cirenit or in an a.e. cirruit matainitug resistame only the phase angle is \%oro (eurront and voltage are in phase) and the impedance is erpual to the resistanne.

In an acre. cirruit mataining reateme only the phase angle is 90 degrees, with current lagging $t^{\text {ine }}$ voltage if the reactance is indactive and eurrent beading the voltage if the reactance is caprative. In cither case, the impedance is egual to the reactance.

In an a.c. circuit containing both resistance and reactance the phase angle may have any
value between zero and 90 degrees, with the current lagging the voltage if the reactance is inductive and leading the voltage if the reactance is capacitive. The value of impedance, in ohms, may be found from the equation given aloove.

Power is consumed in a circuit only when the current flow produced by the applied voltage is less than 90 degrees out of phase with that voltage. Power consumption decreases from maximum with in-phase conditions to zero at a 90 -degree phase difference.

Series circuils with I, C and K - When inductance, caparity and resistance all are in series in an a.c. cirenit, the voltage relations are a combination of the sepatrate cases just considered. The voltage across each element will be proportional to the resistame or reactance of that clement. since ther current is the same through all. The voltages arross the inductance and combitite are 180 degrees out of phatse, since one leads the current by 90 degrees and the other latg the current by 90 degrees. This means that the two voltages tend to rancel; in fart, if the voltage arross only the indurtance amd caparity in se:pes is comsidered (leaving out the resistames). the total voltage is the difference between the two voltages.

The total readance in a series rimenit is, therefore, the difforence between the individual inductive and raparitive reantanes; or

$$
X=X_{L}-X_{C}
$$

If more than ome indurtance dedment is prescolt in the cireuit, the total indurtive reactance is the sum of the individual reatances; similatly the samb is true for rapacitive reactathers. Inductive reactance is conventionally taken as "posidive" (+) in sign and rapacitive reactanee as "nugative" (- . With this ronvention, algelraice aldition of all the reatomes in a sories circuit gives the total reactance of the cirmit.

Parallel circuits winh L, C: amd $R-T h e$ equivallent resist ance of a mumber of resistances in parallelinana.e. arenit is found by the same rules as in the ease of der rirenits ($\$ 2-6$). Parallel reatances of the same kimd have an equivalent reactance given by a similar rule:

$$
X=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}} \cdots \ldots
$$

This formula applies to reactances of the same sign; it camot be used if both intuetive and eapacitive reactance are in parallel.

When both resistame and reabtance are in parallel the same voltage is applied to both, but the current in the resistance branol will not be in phase with the current in the reamive branch. The phase difference will be 90 degrees if each branch contains only resistance or only reactance, so that the total current may be found by a rule similar to that used for finding

THE RADIO AMATEUR'S HANDBOOK

the total voltage in a series circuit. That is,

$$
I=\sqrt{I_{L^{2}}^{2}+I_{x^{2}}^{2}}
$$

The impedance of the circuit is equal to E / I, so

$$
Z=\frac{E}{\sqrt{I_{R^{2}}^{2}+I_{X}{ }^{2}}}
$$

By assuming some convenient value for the applied voltage and then solving for the curments in the resistance and reactance, the values so found may be abstituted in this equation to find the impedance of the circuit.

The formulas above may be used for ailler inductive or cipacitive reardance. When inductive reactance and capacitive reactance are in parallel. the eurrent through the inductance is 180 degreses out of phase with the current through the rondenser, hence the total curratt is the difference between the two currents. This difference may be substituted for I_{X} in the above equitions.

It is of interest to note that, since the tolal current flowing in a cormit comtaining indurtive and calmative reartano in parallel is the differener herworn the aurents in the two branches, the imperdate of such a parallel combination always is latger than the reactance of either brameh alonce. Any resistance which aloon maty be in parallel is unafferded, since the eurent taken be the resistane is determined woldy by the apoliod voltage.

With sermepa:allel cirenits the solution hecomes emsiderably more complicated. sime the phase relationships in any parallel bramod may not be either 90 degrees or zero. However. the majority of parallel armuts used in radio work ran be solved by the rather simple approximate methods theseribed in \& 2-10.

Pourer fartor - The power dissipatiod in an a.e. cireuit containing both resistance and reactaner is romsumed entirely in the resi*1ance, home is egual to $I^{\prime 2} R$. However, the reartane is also effertive in determining the current or voltage in the circuit, even though it comsumes no energy. Hence the prodact of volts timmes :mperes (whirh gives the pown consumed in d.e. (eiredits) for the whole ciranit may be sermal times the acthal power usod up. The ratio of power dissipatiod (wats:) to the rolt-ampere product is callod the power fitctor of the circuit, or

$$
\text { I'ower factor }=-\frac{\text { I'atts }}{\text { Yolt-amperes }}
$$

Disaribulad capacity and indurtarme-

 It should mot be thought that the rabtance of coils heromes infinitely high as the frequency is incrased to a high value and, likewise, that the reactance of condensers becomes infinitely low at high frequencies. All coils have some rapurity between turns, and the reactance of this capacity can herome low emongls at some high frequencios to tend to canem the high reactance of the coil. Likewise, the leads and plates of condensers will have considerable inductance at very high frequencies, which willtend to offset the capacitive reactance of the condenser itself. For these reasons, coils constructed for high-frequenery use must be designed to have low "distributed" capacity. Similarly: condensers must be made with short. heavy leads so that they will have low self-inductance.

Units and insirummens - The units used in a.e. cireuits may be divided or multiplied to give convenient numerical values to different orders of magnitude, just as in d.c. cirenits (\$ 2-fi). leoranse the rapidly reversing current is aceompaniod bey similar reversals in the matgnetic field, instruments used for measurement of d.c. (\$2-6) will not operate: on a.c.

At low frequencies mitable instruments can be construbted by making the arrent phoduce buth magnetic fields, whe by means of a fixed coil and the other be the batine coil. Instrumonts having movenents of this kitud are variously known as dymamometir. clectrodynamometur and dectrodymmin t.jpes.

Another type of instrmuent suitable for meanuring atheruating curron is less expensive in eonst rut ion and therefore mone widely used. This: is the apmbion-t!fy moving-iron a.c. ammeror shown in Fig. 232. Fundamentally. the movement is based on the same principle as the ine xpensive moving-iron-vane meter for d.e. shown in fris. 235. In the repulsion-lype instrument curveal flowing through the statomary roil magnetizes two iron vanes, one

Pif. 232 - Ammpter batimi on a repulsionlype movitg-iron nusvement used for a.c. measurements.
fised :and llu wher allarhed to the movable pubation suatio. fuasmuch ats the iwo vathes are in the same plane and mannetiaced by the same source, the magnetic effore upon them by the corront through the woil will be identical regardless of it polarity. When the f wo vanus are masmetizad they repel cach ohther (\$ 2-2) and the murable vane moves away from the fixed vane, c:ansing the pointor tor travel along the scale. The degree of travil is cont molled by a spring whieh bringe the pesinter to rest at a point where the clectrical and merbanical fores bilaners and relums the pointer 10 zero on the sate when curroll fow reases.

Surh instruments are used for measurement of either courcent or voltage. However, when emploved for voltage measurement by the use of high-resistame series multipliers, the minimum rurrent drain required by such instruments beraluse of their inferent insensitivity is so great that excessive load is placed upon the measurement source. For this reason, in radio work it is more common practice to convert the a.c. voltage to d.c. by means of a
copper-oxide or vacuum-tube rectifier and then measure the resulting indication on a d.c. instrument, as described in § 2-6.

At radio frequencies instruments of the type described above are inaccurate because of distributed capacity and other effects, and the only reliable type of direct-rcading instrument is the thermocouple ammeter or milliammeter. This is a power-operated device consisting of a resistance wire heated by the flow of r.f. current through it, to which is attached a thermocouple or pair of wires of dissimilar metals joined together and possessing the property of developing a small d.c. voltage between the terminals when heated. This voltage, which is proportional to the heat applied to the couple, is used to operate a d.c. instrument of ordinary design.

(C) 2-9 The Transformer

Principles-It has been shown in the preceding sections that, when an alternating voltage is applied to an indurtance, the flow of alternating eurrent through the eoil ramses an inducex e.m.f. which is opposed to the applied e.m.f. The induced e.m.f. results from the varying magnetic field accompanying the flow of alternating current. If a seoond coil is brought into the same field, a similar r.m.f. likewise will be induced in this coil. 'lhis induced e.m.f. may be used to force a current through a wire, resistance or other electrical device connected to the terminals of the seeond coil.
'low coils operating in this way are said to be coupled. and the pair of eonils ronstitutes a transformer. The coil momerted to the somere of energy is called the primary eoil, and the ot her is callod the secondary coil. Whorgy may be taken from the secondary, being transforned from the primary through the medium of the varying magnetic fick.

Types of transformers - The usefuhness of the transformer lies in the fact that energy can be transferred from one circuit to another without direct connertion, and in the proress can be readily changed from one voltage lavel to another. Thus, if a device to be operated requires, for example. 120 volts and only a $440-$ volt sarre is available, a transformer can be used to change the source voltage to that required. The transformer, of course, can be used only on a.r., since no voltage will be indured in the seeondary if the magnotio field is mot changing. If d.e. is applied t.a the primary of a transformer, a voltage will be inducod in the secondary only at the instant of elosing or opening the primary circuit, since it is only at these times that the field is changing.

As shown in lig. 233, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the imbuctance of the eoble so that a relatively small number of turns may he used to induce a given value of voltage with a small current. A closed core (one having a continuons magnetic path) such as that shown in Fig. 233
also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis, an effect which occurs because the iron tends to retain its magnetism, and hence requires the expenditure of energy to overcome this residual magnetism every time the alternating current reverses in direction, and becaluse of eddy currents, or currents induced in the core by the varying magnetic field.

SYMBOLS
Fig. 23:3 - 'I'he transformer. Power is transferred from the primary coil to the sermendary hy means of the nagnetic field. The upper symbol at ripht indicates an ironcore transformer, the lower one an air-core transformer.

Core losses increasc with frequency to such an extent that they berome exressive at radio frequencics if a transformer is wound on the type of core used for power and audio frequencies. 'Transformers for use at radio frequencies cither are wound on mom-magnetir material ("air core") or on suecial cores made of powdered iron partioles held in an insulating binder. lat the later case the robe is not used as a means of carrying the mannetie field from the primary fo the secondary, but simply to give a larger inductance with a fixed number of turns. In radio-frequency transformers relatively litale of the magnetic flux set up by the primary euts the turns of the secondary. The diserssion in this section is confined to lowfrequency iron-core tramsformers, where practically all of the primary flux cuts the secondary. Radio-frequeney transformers are considered in \$2-10.

Voltage and turns ratio - For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field, it follows that the induced voltages will be proportional to the number of turns on cach coil. In the case of the primary, or coil commected to the source of power, the induced voltange is practically equal to, and opposes, the applied voltage. Hence, for all practical purposes,

$$
E_{s}=\frac{n_{s}}{n_{p}} E_{p}
$$

where F_{s} is the secondary voltage, E_{p} is the primary voltage, and n_{s} and n_{p} are the number of turns on the secondary and primary, respectively. The ratio n_{s} / n_{j}, is called the turns ratio of the transformer.

This relationship is true only when all the flux set up by the primary current cuts all the turns of the secondary. If some of the magnetic flux follows a path which does not make it cut the secondary turns then the secondary voltage is less than given by this formula, since this reduces the number of lines of force (and thus reduces the effective strength of the magnetic field affecting the secondary) by causing the rate of change of flux to be less in the secondary than in the primary. In general, the equation can be used only when both woils are wound on a closed core of high permeability, so that practieally all of the flux can be confined to definite pathis.
Effect of secondary current - The primary current which hat been diseussed above is usually called the magnetizing current of the transformer. Like the current in any inductance, it lags the applied voltage by 90 degrees, neglecting the small energy losses in the resistance of the primary coil and in the iron core.

When current is drawn from the secondary winding, the secondary current sets up a magnetic field of its own in the core. 'The phase relationship between this field and that camsed by the magnetizing current will depend upon the phase relationship between current and voltage in the secondary circuit. In every case there will be an effert nown the oriminal fieda. To maintain the indured primary voltage equal to the applied voltage. however, the original field must be maintaneti. Consequently, the primary marent must change in such a way that the effert of the field set, up by the seeondary current is completely canceled. This is acomplished when the primary draws additional current that sets up a field exactly equal to the field set up by the secondary current, but whieh opposes the secondary field. The additional primary current is thas 180 degrees out of phase with the seromdary current.

In rough calculations on transformers it is convenient to noglect the mannetizing curront and to assume that the primary current is caused entirely by the socondary lomal. This is justifiable, because in any wollodesigned tramsformer the magnetizing current is quite small in comparison to the lead cument when the latter is near ther rated valur.

For the fichls sod up bey the primary and secondary fome murents to be equal. the mumber of ampere turns in the primary most, elmal the mumber of ampere turns in the secombary. That is,

$$
n_{s} I_{s}=n_{p} I_{p}
$$

Hence,

$$
I_{p}=\frac{n_{s}}{n_{p}} I_{s}
$$

The load amrent in the primary for a gisen load current in the secondary is proportional to the turns ratio, secondary to primary. This is the opposite of the voltage relationships.

If the magnetizing current is neglected, the phase relationship between current and voltage
in the primary circuit will be identical with that existing between the secondary current and voltage. This is because the applied voltage and induced voltage are 180 degrees out of phase, and the primary current and secondary current likewise are 180 degrees out of phase.

Energy relationships: efficiency-A transformer cannot ereate energy; it can only transfer and transform it. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied c.m.f. Since there is always some power loss in the resistance of the coils and in the iron core, the power talien from the source always will exceed that taken from the secondary. Thus,

$$
P_{o}=n P_{i}
$$

where P_{n} is the power taken from the secondary, P_{i} is the power input to the primary, and n is a factor which always is less than 1 . It is called the efficiency of the transformer and is usually expressed as a percentage. The efficiency of small power trinsformers such as are used in radio receivers and transmitters may vary between about 60 per cent and 90 per cent, depending upon the size and design.

Lenkage reactance - In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux which cuts one coil and not, the other is only a small percentage of the total flux. This leakaye flux acts in the same way as flux about any coil which is not compled to amother coil: that is, it gives rise to self-imbution. (bmsequently, there is a small amonnt of leataye inductarice assoriated with both windings of the tramsformer. but not eommon to them. Leakage indurtance aets in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therofore, a certain reactance, depending upon the amonent of inductanceand the frequency. This reactance is called lewlinge rewctance.

In the primary the practical effert of leakage reartame is equivalont to a reduction in applied voltage, siuce the primary current flowing through the leakage reactance causes a voltage drop, This voltage drop increases with inreasing primary curment, hence it increases as more current is drawn from the secondary. 'The induced voltage consequently dereases. sine the applied voltage (which the indurd voltage must equal in the primary) has been effertively redured. The secomdary induced voltage also decreases proportionately. When current flows in the secondary circuit the secondary leakage reactance catises an additional voltage drop, which results in a further reduction in the voltage avalable from the secomdary terminals. Thus, the mreater the secondary current, the smaller the secondary terminal voltage becomes. The resistance of the primary and socoudary windings of the transformer also causes voltage drops when current is flowing, and, although these voltage
drops are not in phase with those cansed by leakage reactance, together they result in a lower seeondary voltage umder load than is indicated by the turns ratio of the transformer.

Hig. 2:3:- The onuivalent eirenit of a transformer in. elutes the effects of leahate inductance and rexistance of hoth primary and secondary windinge. The resintatere R_{c} is an equivalent resistance representing the constant core loses. Since these are comparatively small, their ef. feet may be neglected in many approximate calculations.

At power frequencias (60) eycles) the voltagreat the secondary, with a reasomaloly well-deximed transformer. should not arop more than about 10 per cent moder foad. The drop in voltare may be considerahly more thath this in at 1 ramsformer operating at andiofrequetwer, however. since the leakage reactamee in atransformer increases direetly with the frembency.

Imperdatice ratio - In an ideal transformer having no losese or leakane reatature. the primary and seromdary volt-amperes are equal: that is.

$$
E_{n} I_{p}=E_{s} I_{s}
$$

On this assumption, and hy making use of the relationships between voltare, curront and turns ratio previously given, it ran be shown that

$$
\frac{E_{p}}{I_{p}}=\frac{L_{n}}{I_{n}}\binom{I_{r}}{n_{q}}^{2}
$$

Since $Z=E / I, E_{s} / I_{s}$ is the impredanere of the load on the serondary circuit, and E_{p}, l_{p}, is the impedamo of the loaded tramsormer as viened from the line. The ergutans states that the impedane presented by the primary of the tramsformer the the line or souree of phwer, is equal to the secombary latad imperdame multiplied by the sulutur of the primars-tu-semendary turns ratio. This primary impename is
 The reffected impedaner will have the same phase angle ats the secomdary load impedance, as previomsly explained. If the seomdary load is resistive ondy, then the input terminals of the transformer primary will appear to the sonrce of e.m.f. as a pure resistanere.

In pratice there is always some lakage reactance and power loss in the transormer. so that the relationship above does not hold exactly. However. it gives results which are adequate for many practic:al eases. 'lhe imperance ratio of the transformer consetuently is considered to be equal to the splatre of the turns ratio, both ratios being takin from the same winding to the other.

Impedance motrhing - Many devices require a sperifie value of lowl resistance (or impelance) for optimum operation. The re-
sistance of the actual load which is to dissipate the power may differ widely from this value, heuce the transformer, with its impedancetransforming properties. is frequently called upon to rhange the atotual load to the desired value. This is called impedance matching. From the preceding paragraph,

$$
\frac{n_{s}}{n_{p}}=\sqrt{\frac{Z_{0}}{Z_{p}}}
$$

where n_{s} / n_{b} is the required seenndary-toprimary turns ratio. Z_{s} is the impedance of the artual load, and Z_{p}, is the impedance required for optimum operation of the device delivering the power.

Tromsformer construchion - Transforniers are gemerally built so that flax leakage is minimized insofar as posible. The maruetic path is latid out so that it is as short as possible, since this redures its reduetance and hener the mamber of ampere-turns required for a given flux density. and also temds to minimizo flux leakage. 'liwo rore shapes are in rommon use, as shown in Fig. 235. In the shell 1 ype both windinge are placed on the inner ler. while in the core type the primary and sorembary wimdings may be pataed on separate legs. if dexired. This is somotimes done when it is necessary to minimizo caparity efforts betworol the primary and socomblary, or when there is a large difference of potential botworen primary amd socomalars.
(oote matarial for small tramsomers is usually silionn starl. walled "t mansormer iron." There rore is built up of thin sheots, called lemimentions, insulated from eath other (hy at thin co:tting of shednat for (example) to prevent the flow of celd! currents whish are indured in the iron at right angles to the direction of the fied. If aflowed to flow. theno edily amrents would ratuse ronsiderabla loss of enorey in overemming the resistaner of the eore material. The separate laminations are werlapped, to make the magnetic path as contimons as possible and thas reduce leak:ige.
'the mumber of turns reguided on the primary for a wiven :pplied e.m.f. is determined bey the maximum permiseible flav donsity in the

 tion. Core pienes are interleaved to provide a continncus matnetic path with as low rehuctaner as possible.
type of core material used, the frequency, and the magnetomotive force required to force the flux through the iron. As a rough indication, ${ }^{\text {a }}$ windings of small power transformers frequently have about two turns per volt for a core of 1 square incl cross-section and a magnetic path 10 or 12 inches in length. A longer path or smaller rross section would require more turns per volt, and vice versa.

In most transfurmers the coils are wound in layers, with a thin sheet of paper insulation between each hlyer. Thicker insulation is used hetween separate coils and between the coils and the rore.

In power transormers distributed eapacity in the windings is of little consequence, but in audio-frefuencey transformers it may cause undesired resonature offerts (see $\$ 2-10$ for a discussion of resomance). Iligh-grade audiotransformers often have sperial types of windings designed to minimize distributed capacity.

The antotransformer - 'The transformer principle ean be wilized with only one winding instead of two, as shown in lig. 236; the primerples just discussed apply equally well. The autotransformer has the advantage that. since

Fig. 236-The anto-trans. formeris hasel on the 1 ranse former brinciglle. lat uses onls on" winding. "He line amd load rarronts in the common winding (1) How in n甲pritr direqtions. ©s that the resultant rurrent is the diflerreneletworn them. The vollabe across A is profurtionial to thr turns ratio.
the line and load currents are out of phase, the section of the winding common ton both rircuits carries less corrent than the remaimer of the coil. 'lhis advantage is met wery marked untess the primary and somolary woltages do not differ sory greatle. while it is frembently disadvantageens tu habe a direct combection between primary :mal secomdary rivolits. For these reasons, application of the antotransformar is usually limitod to busting or reducing the line voltage by a relatively small amount for purpaios ol voltage correction.

C. 2-10 Resonant Circuits

Principle of resonance - It has been shown (\$2-8) that the inductive reactance of a moil and the raparitive reatance of a comdenser are opucitely afferted by frequency. In ally series combination of inductance amd capasitance, therefore there is whe partiondar froquency for which the indurtive and eapacitive reactances are equal. Nince these two reactances cancel moblothe the not reactance in the circuit hormone zom, leaving only the resistance to impede the flow of current. The frequeney at which this occurs is known :1s the resemant frequency of the cireuit and the cireuit is said to he in resmance at that frequency, or tuned to that frequency.

Series circuits - The frequency at which a series cireuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance ($\$ 2-8$) gives

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

Solving this equation for frequency gives

$$
f=\frac{1}{2 \pi \sqrt{L C^{\prime}}}
$$

This equation is in the fundamental units cerles porsocond, honres and farads and so, if fractional or multiple units are used, the appropriate fartors must he inserted to change them to the fundamental units. A formula in units commonly used in radio circuits is

$$
f=\frac{1}{2 \pi \sqrt{L C}} \times 10^{\mathrm{f}}
$$

where f is the frequency in kilorycles per second, 2π is 6.2 , L, is the inductance in microhenrys (μ h.) athe (e is the capacitance in micro-

The resist unce that may be present does not enter intu the formasa for resumant frequency.

When a ronstant ace voltage of variabla freguency is applied. as shown in Fig. 237-A, the wirent fowing throurh :wheh a rimuit will be masimam at the resonatht frequency. The magnifule of the eurrobt at resonance will be determined hy the resistancein the cirmit. The curves of Fige 2:37 illust mite this, curve a being for low rosistane and curves b and c being for increasingly wreater rexistances.

In the circmits nsed at radio frequencies the reatabee of either the coil or comenser at resonamor is ustally sevoral times as large as the rexi=tane of the cireuit, although the net reantame is zern. As the applied frequency departs from resonamores suy on the low-frequency side. ther reactanco of the comedenser increases and that of the indurande derreases, so that the wet reactane (which is the differener betwoes the two) increases rather rapidly. When it bermmes seromet times as high as the resistance, it beromes the chief fictor in determining the ammunt of current flowing. Hence, for circuits hat ving the same values of inductance and capacity but varying amomits of resistance, the resonance curves temd to coincide at fre-

Fip. 237 - Characteristics of series-resonant and par-allel-resomant circuits with variations in resistance, R.
quencies somewhat removed from resonance. The thee curres in the figure show this tendency.

Paralled circuits - The parallel-resonant circuit is illustrated in Fig. 2:37-B. This rircuit also contains indurtance, rapacitance and resistance in series, but the voltage is applied in parallel with the combination instead of in series with it as in A. As explained in commertion with parallel indurtance and rapacity (\$2-8) the total rument through sheh a combination is less than the current flowing in the branch having the smaller reactance. If the currents through the induetive and capacitive branches are equal in amplitule and exactly 180 derrees out of phase the fotal current, called the line current. will be ero no matter how late the jndividual brameh curments may be. The impedamer $(Z=R / I)$ of surh a circuit. vewed from its parallel terminals, wond be infin ite. In practice the two currents will not be exartly 180 degrees out of phase. because there is always some resistaner in our or both branches. This resistano makes the phase rehationship betwern curment and voltage less than 90 degrees in the beanch contathing it. hence the phase differenco between the carrents in the two bandore is less that 180 dogrees and the twormonts will not caneol comphetely. llowever, the line current mase be very small if the resistance is small compared to the reatance, and thus the parallel imperane at resonance may be very high.

As the applied frequency is increased or decroased from the resonant frembency the reactane of one braneh derereases and that of the other brancla inereases. The brameh with the sumbler reactance takes a latwer marent. is the applied voluge is constant. and that with the lager ractance takes a smathor curment. As :a :esult. the difference between the two $^{\text {the }}$ currents beromes larger ats the freformey is moved farther from resomane Since the line current is the difforence betworn the two currents, the cument increases when the frequener moves away from resomance: in other worls, the paralled impedance of the eifenit docreases

The vatiation of paralled impedature of a parallef-resomant dircuit with frespenery is illustrated by the sane curves of lig. 238 that show the variation in curcont with frequeney for the series-resomat rinenit. The parallent imped mee at rexomance increases as the soribes resistance is made smatler.

In the rase of patallel cirenits. remomate may be defined in three ways: the comdition which gives maximum impedance, that whith gives a power factor of 1 (impedance purely resistive), or (as in series (ircuit) when the inductive and capacitive reactaneres are ergat. If the re istanne is low. the resonstat frembemes obtained on the three bases are praterically identiral. 'This comdition usually is satisfied in radio work, so that the resontat frequenter of a paralled circuit is generally romputed biy dhe series-resoname furmula given abose.

Resistance at high frequencies - When current flows in a conductor a magnetic field is set up inside the comblactor as well as externally. When the rarrent is alternating, the internal magnetic field induces al volage inside the conductor which opposes the applied voltare and becomes larger as the renter of the conductor is appoorched. As a result. the current is forced to distribute isedt so that the greater proportion flows near the surfare and less near the remter. This is known as atim offert.

Skin dfect is negligible at low freguencies but increases with imerasing frequency to sum an extent that at ration frequences the major porion of the carrent flows mat the sarface. In the wh.f. range, all the cursent may be concenprated within one or two thonsandths of an insh of the sufface. su that for all pratical purpeses the comrent flows entirely on the surface.

Since linte current flows in the interior of a combluctor at ratio fremuencios, the effert is the satme as though the carrent were flowing in a thin emblureting tube. This is the same as reducing the cross-sectional area of the conduflor. Which increases its resistance. Comsequenty skin offer inereace theresistane of a solid conductor as compared to its value for d.e. and low-frequenty a.c.
l.ow resistanow at radio frequmades can be acheved by using comductors with large surface areal since the inmer part of the conductor does mon arry emrent, thin-walled thbing may be ued for roils equally as woll as solid wire of thereathe diameter

In the ca-d of inductance coils, the magnetio fiedel elone to the wire calses the current watend to concentrate ia the batt of the conductor where the fieht is wealerst, amin ramsing an efferetive derease in the eondurnor size and raising the resistance. These efferts, plus the efferco of - pay furmen- flowing through the dis-
 the (Tfortive resistane of a coil at radio freformoder lo maty times the d.e. resistance of the wire
sharpmoss of resomomer - As the internal series resistance is increased the resomathe curves berome "flatter" for frequeneies near the resomance fropuenry. as shown in Fig. 237. The relative sharphers of the resomance rarve near resomance frequeney is a measure of the sharphoss of tuming or selectimity (ability to) diseriminate betwern voltages of diferent frequenciexs) in sur harenits. This is an important consideration in thated rimenits for radio work.

Flywherl reffers: $!-$ - A resonant cireuit may be compared to a flywhed in its behavior. Just as such a wheel will contime to revolve after it is no longor driven, so also will oseillations of electrical encrus rontinue in a resonant dirnuit after the source of power is removed. The flywhed continues to revolve because of its stored mechamical emerry; current flow contimmes in a resonamt rireuit by virtue of the energy stored in the magmetic field of the coil and the crlectrie lied of the emodenser. When
the applied power is shut off the energy surges hack and forth between the coil and condenser, being first stored in the field of one, then released in the form of current flow, and then restored in the field of the other. Since there is always resistance present some of the energy is lost as heat in the resistance during each of these oscillations of energy, and eventually all the energy is *o dissipated. 'The length of time the oscillations will continue is propertional to the ratio of the energy stored to that dissipated in cach eyrele of the oserillation. This ration is called the (d) (gnality factor) of the cirenit.
Since energy is stored by either the indurtance or capacity and may be dissipated in either the inductive or capacitive branch of the circuit, a Q can be patablished for cither the inductance or capacity ahone as well ats for the entire circuit. It ean be shown that the energy stored is proportional to the reactance and that the energy dissipated is propertional to the resistance, so that. fur cither inductance or capacity associated with resistance,

$$
u=\frac{d}{l i}
$$

This ralatiomship is useful in a variety of circuit problems.

In resonatht cirenits at frequencies below about 2 s Mr. the internal rexistance is almost wholly in the coil; the condencore resistance may ine neglected. ('misemumbly, the © of the rircuit as a whole is determined by the Q of the coil. (coils for me at frequmenco hatow the wery-high-frequency region thay hawe (as ranging
 their size and construction.
The sharpmess of resonatmee of a thated cirruit is directly prophertiona:l th the () of the cireuit. As an indiration of the effect of (), the current in a series rireuit drops to a little less than half its. resoname value when the applied frequency is changed by an amount equal to 1/() times the resonat frequeney. The parallel impertance of a parallel circuif similarly dereases with change in frequeney. For example, in a cirmit having: \& of loo. chamging tae applied frequency by $1 / 1001 \mathrm{~h}$ of the resonant frequency will iderentse the parallel impedance to less than halli its value at resmane

Dampin!s, decromont-The rate: at which rurent dies down in amplitude in a resomant circuit after the somere of power has been removed is called the decroment or damping of the rireuit. A circuit with high decrement (low (l) is sitid to be highly damped; one with low decrement (high ()) is lightly damped.

Vollage rive - When a voltage of the resonant frequoney is inserted in series in a resonant eircuit, the voltage which appeare acrus either the coil or condenser is considerably higher than the applied voltage. This is because the current in the circuit is limited only by the actual resistance of the csil-rondenser rombination in the eirenat, and hener may have a relatively high value: howrer, the same
current flows through the high reartances of the coil and condenser, and consequently causes large voltage drops (\$ 2-8). As explained above, the reactances are of opposite types and hence the voltages are opmosite in phase, so that the net voltage around the circuit is only that which is applied. The ration of the reactive voltage to the applied voltage is propertional to the ratio of reactane to resistance. which is the Q of the eircuit. Heme the voltage arross either the coil or condenser is equal to \& times the coltage inserted ins series with the cireuit.

If, fur example, the indurtixe reartane of
 is : 200 ohms, the revistance $\overline{5}$ whans, and the applied voltate is 50 . the two reactances cancel and there will be but the 5 ohms of pure resistane (olimit the eurrent flow. Thus the eurrent will be 50/5, ur 10 amperes. The voltare dovelnowd aneres wither the enil or the comdenser will be equal to its reactance times the current, or $200 \times 10=2000$ volt:

The ratio, of reative whatare 16 :aptied vollage is egnal th the ratho of the rearance of the will or the romblemer to the resistance. Siture the latter ratio equals the Q of the circuit. the reative voltage equals the appliod Folage times the $\left(\begin{array}{l}(200 / 5 \\ \text { or }\end{array} 40 \times \overline{5}\right)=2000$ volta.).
Parallel-resoman' cirrmil impernmer The parallef-resomant dimut offers pure resistanes (its reswemt impedance) betwerell its terminals becanse the line current is patereally in phase with the applien wothage. At fregurncies off resomane the current hareases through the brand having the lower reartane (atul vice wesa) so that the dirnit becomes reactive and the resistive component of the impedanee derereater as shown in Fig, 238.

If the circuit Q is $\mathbf{1 0}$ or more, the parallel impedance at resonance is given by the formula

$$
Z_{r}=X^{2} / R=X Q
$$

where X is the reartaner of either the eoil or the condenser and $t i$ is the internal resistance.

0 of loulded circuits - In many applirations, partienlarly in reeciving, the only power dissipated is that lost in the resistaner of the resonant circuit itwolf. Hence the coil should be designed to have as high Q as possible. Since, within limits, inverasing the number of turns raises the reatemer faster than it raises the

 ather cironit is shown here mparaterl into ita reactance and resistance components. 'I he parallel resistather of the -irenit is pual to the parallel impedane at resonance.
resistance, coils for such purposes are made with relatively large inductance for the frequency under consideration.

On the other hand, when the circuit delivers energy to a lowd, as in the case of the resonant circuits used in transmitters, the energy ansumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of wheh a circuit can be represented as shown in lig. 2:39-A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is greater by 10 times or more than the power lost in the coil and condenser, the parallel impedance of the resonant circuit alone will be so high compared to the resistance of the load that the latter may be considered to determine the impedance of the combined rireuit. (The parallel impedance of the tuned circuit alone is resistive at resonance, so that the impedance of the combined circuit may be caldulated from
(A)

(B)

Fig. 239 - The muivalent cirenit of a resonant circuit delivering powne to a lond, 'Theresistor K represents the load resistamer. At (B) the load is tapmed across part of l., whieh by transformer andion is equivalent to using a hipher lobul resintance arrose the whold vireuit.
the formula for resistances in parallel. If one of two resistances in parallel has 10 times the resistance of the other the resultant resistance is practically efoal to the smaller resistance.) 'lhe error will be small, therefore, if the loseses in the tumed dimut alone are noplected. Then, sinee $Z=\mathcal{X} \ell$, the () of a cireuit hated with a resistive impedancer is

$$
Q=\frac{Z}{X}
$$

where Z is the load resistame conneded across the eirenit and X is the reatemane of cither the coil or condenser. Hence, for a given parallal impedance, the efferetive of of the eimenit including the load is inversely proportional to the reactance of either the reil or the wondencer. A cirenit loaded with a relatively low resistance (a fow thousand ohms) must therofore have a large eaparity and rebatively small inductance to have reasonably high (2 .
lirom the above it is evident that comereting a resistance in parallel with a resonant rireuit decreases the impedane of the circuit. However. the reactances in the circuit are unchanged, hence the reduction in impedance is equivalent to a reduction in the 0 of the circuit. 'The same reduction in impodance also could be brought abut by inereasing the series resistane of the cirenit. The cquiraleme series resistance introduced in a resonant cirmit by an actual resistance connected in parallel is that value of resistance which, if added in series with the coil and comdenser, would deerease the circuit Q to the same value it has when the parallel resistance is connected.

When the resistance of the resonant circuit alone can be neglected, the equivalent resistance is

$$
R=\frac{X^{2}}{Z}
$$

the symbols having the same meaning as in the formula above.
'Ihe effect of a load of given resistance on the Q of the circuit can be ehanged by conneating the loul across only part of the cirenit. The most common methorl of accomplishing this is by tapping the load across part of the coil, as shown in F'ig. 239-13. The smaller the portion of the coil arross which the load is tapped, the less the loading on the cirouit; in other words, tapping the load "down" is equivalont to comerting a higher value of load resistance across the whole circuit. 'This is similar in principle to impedance transformafion with an iron-core transformer (\$2-9). However, in the high-frequency resonant eircuit the impedance ratio does not vary exactly as the subare of the turn ratio, because all the magnetic: flux lines do not cut every turn of the coil. A desired reflected impedance usatally must be obtainced by experimental adjustment.

L/C ratio - 'lhe formula for resonant frequency of a cireuit shows that the same frequency always will be obtained so long as the prombet of L and r is constant. Within this limitation, it is cevidont that L can be large and C'small. L small and ("ane ate ' The relation betwern the two for a fixed frequency is called the L / C^{\prime} ratio. A hizh-C areuit is one which has more caparity than "normal" for the frequency : a lou-(' dreuit one which has less than normal eapacity. These terms depend to a considerable extent upon the particular application monsidered, and have no exact numerical meaning.
I.C:constants - As pointed ont in the prereding paragraph, the product of inductance amd raparity is comsatal for any given fregromer. It is frequently monvoriont to use the numeribal value of the $L_{\mathrm{t}} \mathrm{C}$ comstant when a number of caldulations have to he made involving clifferent L, ' ratios for the same frequency. 'lhe romstant for any frequency is given by the following equation:

$$
L C=\frac{2 \pi .330}{f^{2}}
$$

where L is in mierohenrys, C in micromicrofarads. and f is in megaceroles.

C. 2-11 Coupled Circuits

Energy transfer: loaling-- Two circuits are said to be coupled when energy can be transferred from one to the other. The circuit delivering energy is called the primary circuit; that recoiving energy is called the serondary circuit. 'The energy may be practically all dissipated in the secoudary circuit itself, as in receiver circuits, or the secondary may simply act as a medium through which the energy is transferred to a load resistance where it does
work. In the latter case, the coupled circuits may act as a radio-frequency impedancematching device (\$2-9) where the matching can be acommplished by adjusting the loarling on the secondary (\$2-10) and hev varving the coupling between the primary and secondary.

Fig. 240-1 Bave methods of cirnit coupling.
Coupling by a common rircuit ploment One method of rompling between t wo reson:ant eireuits is to have some tope of direnit clement common to both riresits. The threr variations of this tupe of eompling (often malled dirmet couphing) :hown at A, B alld 1 of Fig. zill, utilize a common inductance, ciptoity and resistance, respectively. Curent circulating in one $L C$ branch flows through the eommon element (L_{s}, C_{c}, or R_{c}) and the woltatr devol-
 in the other LS' branch. 'lhe degrere of eompling betwent the two eirendits beomes greater ats the restetance (or resistance) of the common element is inereased in comparison to the remaining reactances in the two bramehes.

If bot l_{1} circuits are resonant to thr s:ame frequency as is usually the case the rommon impedance - reartance or resistance refabrel for maximum energy transfor is gener:by duite small compared to the other reactances in the circuits.
(inparity monpling-The rimuit at 1$)$ shows electrostatic coupling between two resonant rircuits. The coupling increases as the rapatidy of \prime^{\prime} ' is made greater (reactance of c° is alorised). Whan two resomant circuits are coudica by bins means, the capacity required
for maximum energy transfer is quite small if the () of the secondary circuit is at all high. For example. if the parallel impedance of the secondary cireuit is 100,0100 ohms, the reactance of the rompling combenser need not be lower than 10.000 ohms or so for ample coupling. The corrosponding caparity required is only a few micromicrofarals at high feequencies.

Imatuctive compling - Fig. 240-10; illustrates inductive compling, or compling by means of the mannetie field. A circuit of this type resembles the iron-core transformer ($\$ 2-9$) but, beramse ouly a small pererentage of the flux lines set up by one roil cut the turus of the other coil, the simple relationships between turas ration, voltage ratio and impedance ratio in the iron-core tramsformer do not hold. To determine the ofreration of such eitenits, it is neressary to take areonnt of the mutual inductance (

Jinh coupling - A variation of inductive rompling, called linl: conplim! is shown in Fig. 24. 'This gives the effere of inductive coupling betwoen two coils whid may be so separated that they have no mutat indurtaner the tink may he considered simply as a moans of providing the mutual indurtance. Berause mutual indurtance between roil and link is involved at rach end of the link, the totail matinal inductame between two link-ronpled cirait.s cannot be minfe as great as wholl mormal inductive compling is nesed. In pration however, this ordinarily is mot disadvantagoons. link couplate frembently is eomwonient in the design of couppurnt where inductive coupling would be impracticathle for constructional reasoms.
'lobe link coils fencrally have fow turns compared to the resomat-cirmuit coils, sine the roselicirat of eompling is relatively independent of the mamber of turns on either eoil.
coefficient of roupling - 'Ilae dagree of compling betwern two abils is : function of their mutual indurtance and self-induetances:

$$
k=\frac{.1 I}{\sqrt{I_{1} L_{2}}}
$$

where k is called the coffecient of coupling. It is ofton expressed as a percentage The oonflicient of compling camot be greater than 1 , and generally is murh smaller in resonatht cirenits.

Incharticely rompled rircuits - Three types of circuit: with inductive compling are in Leneral use. As shown in Fig. 2.12, one type has a tumed-scondary cireuit with an untunedprimary eobl, the seeond a tmod-primary cirrutit and untumed-secomdary roil, and the third nses thed rireuits in both the primary and

 looh ends of the link are equivalent tombuthalinductance between the tuned circuits, and serve the same purpose.

(B)
 and 13 one circuit is tumed, the other untumed. (: shows the method of coulding betwoen two tumed circuits.
secondary. The circuit at A is freguently used in receivers for compling between amplifier tubes when the tuning of the circuit must be varical to respond to signals of different frequencies. ('ircuit 13 is used principally in transmittere, for coupling a radio-frequency amplifier to a resistive load. (ircolit (' is used for fixed-fregueney amplification in receivers. The same eirruit also is user in transmitters for transferring power to a load which hats both rearetance and resistance.

If the coupling between the primary and secondary is "tight" (eocfliaiont of coupling larges), the effert of indurtive coupling in cir-cuit- A and 13, Fig. 242, is much the same as though the eirenit having the motmed roil were tapped on the tuned rirenit (\$2-10). Thus any resistance in the ciranit to which the unthined ail is conmerted is conduled into the tumed rirenit in proportion to the mutual inductance. This is equivalent to an increase in the :series resistanceof the tumed eireuit, and its Q and seloclivity are redured (\$2-10). The higher the coneflicient of roupling, the lower the Q for a given value of resistance in the compled cirenit. These rirenits may he used for impedance matching by andinstment of the coupling and of the mamber of them in the untumed coil.

If the circuit to which the untumed eoil is consected hats reactance, a rertain amount of reartance will be "coupled in" to the tuned circonit deperding upon the amount of reactance prosent and the degree of coupling. The chide effort of this compled reactance is to reguire readjustment of the tuning when the compling is increated, if the tuncd circuit has first been adjusted to resonance under conditions of very loose coupling.

Coupled resomant rircuits - The effect of a tuned-secondary circuit on a tuned primary is somewhat more complimated than in the sinspler circuits just described. When the secondary is tuned to resonance with the applied frequency, its impedance is resistive only. If the primary also is tuned to resonance, the current
flowing in the secondary circuit (caused by the induced voltage) will, in turn, indure a voltage in the primary which is opposite in phase to the voltage acting in sories in the primary rircuit. This opposing voltage reduces the effective primary voltage, and thus causes a reduction in primary current. Nince the actual voltage applied in the primary circuit has not changed, the reduction in current can be looked upon as being caused by an increase in the resistance of the primary rircuit. That is, the effect of coupling a resonant serondary to the primary is to increase the primary resistance. The resistance under consideration is the series resistance of the primary circuit, not the paralIN impedance or resistance. The paralled resistame derreases, since the incrase in series resistance reduees the Q of the primary circuit.

If the secondary circuit is not tumed to resonance, the voltage induced back in the primary by the secondary current will not he exartly out of phase with the voltage acting in the primary; in effect, reactance is coupled into the primary cireuit. If the applied frequency is fixed and the seromblary cirenit tuming is heing varied, this me:ns that the primary circuit will have to be retuncd to resomance each time the secomdary thming is changed.

If the two direuits are initially tumed to resonanee at a given frequency and then the applied frequency is varied both rirebits berome reartive at all fregumeises off resonance. Vinder these combitions, the reartance coupled into the primary by the secomdary retunes the primary circuit to a new resonant frequency. Thus, at sombe frequency off resonsuce, the primary current will be maximum, white at the actual resonant frequeney the curent will be smaller because of the resistance coupled in from the secomdary at resonance. There is a point of maximum primary rurrent both above and below the true resonant frequency.

These effects are almost negligible with very "loose" roupling (corffirient of coupling very smati). but incroase rapidly as the rompling increases. Bec:anse of them, the selertivity of a pair of coupled resomant circuits can be varied over a considarable range simply by ehanging the coupling betwern them. 'Typical curves showing the variation of selectivity are shown in Fig. 243, lettered in order of increasing co-

Fig. 2.43 - Showing the effete on the output voltage from the steondary circuit of changing the coeffeient of coupling between 1 wo resonant circuits independently tumed to the same frogurney. The input voltage is held constant in amplitude while the frequency is varied.
efficient of coupling. At loose coupling, A, the voltage across the secondary circuit (induced voltage multiplied by the () of the secondary circuit) is less than the maximum possible berause the induced voltage is small with loose coupling. As the coupling increases the secondary voltage also increases, until critical coupling, B, is reached. At still closer coupling the effect of the primary current "humps" causes the secondary voltage to show somewhat similar humps, while when the eoupling is further increased the frequency separation of the humps becomes greater. Resonance curves such as those at (' and D) are called "flattopped," because the output voltage is substantially constant over an appreciable frequency range.

Crifical conpling - It will be observed that maximum secondary voltage is obtained in the curve at 13 in Fig. 243 . With tighter coupling the resonance curve tends to be double-peaked, but in mo ease is surh a peak higher than that shown for curve 1 . The coupling at which the secondary voltage is maximum is known as critical coupling. With this coupling the resistance coupled into the primary circuit is equal to the resistance of the primary itself, corresponding to the condition of matehed impedances. Honce, the energy transer is masimum at critioal coupling. The over-all selectivity of the eoupled rimuits at critical coupling is intermediate between that obtainable with loose coupling and tight coupling. At very loose coupling, the selectivity of the system is very nearly equal to the product of the selectivities of the two circuits taken separately; that is. the effective () of the circuit is equal to the product of the Q.s of the prinary and secondary.

Effect of circuit Θ - Critical coupling is a function of the (2 s of the two circuits taken indepondently. A higher coofficient of coupling is required to reach eritical coupling when the Qs are low; if the (os are high, as in recenving applieations, a coupling erofficiont of a few per cent may give critical coupling.

With lowded circuits it is not impossible for the Q to reach such low values that ritical coupling cannot be obtained evon with the highest practicable coefficient of compling (coils as close physically as possible). In such case the only way to secure sufficient coupling is to increase the Q of one or both of the coupled circuits. This can be done cither by decreasing the L / C ratio or by tapping the load down on the secondary coil ($\$ 2-10$). One or the other of these mathods often must be used with link coupling, because the maximum eoeffecent of coupling between two coils soldom runs higher than 50 or 60 por cent and the net coefficient is approximately equal to the products of the cocllicients at cach end of the link. If the load resistance is known beforehand, the cireuits may be dosignod for a Q in the vicinity of 10 or so with assurance that sufficient coupling will he available; if unknown, the proper (Qs can be determined by experiment.

Shielding - Frequently it is necessary to prevent coupling between two circuits which, for constructional reasons, must be physically near each other. Capacitive coupling may readily be prevented by enclosing one or both of the rircuits in grounded low-resistance metallic containers, called shields. The electrostatic field from the circuit components does not penctrate the shield, because the lines of force are short-circuited (\$ 2-3). A metallio: plate called a buflle shichl, inserted between two components, may suffice to prevent elertrostatio coupling between them, since very little of the field tends to bond around such a shield if it is large enough to make the components invisible to eath other.
Similar metallic shielding is used at radio freguencies to prevent magnetic coupling. In this rase the magnetic: fied induces a current (edd!/ current) in the shield, which in tirn sets up its own magnetic field opposing the original field (\$2-5). The induced eurrent is proportional to the frequency and also to the eomdurtivity of the shield, hence the shiclding effect increases with frequency and with the conduetivity and thickness of the shielding material. A closed shicld is required for good mannetic shichling: in some cases separate shields, one about each coil. may be reguired. The batfe shiold is rather ineffertive for magnetic shielding, although it will give partial shichding if placed at right angles to the axes of as woll as between, the two coils to be shielded from each other.

Cancellation of part of the field of the coil redures its inductance, and, since some energy is dissipated in the shield, the effertive resistance of the coil is rased as well. Henec the () of the ewil is reduced. The offert of shimbling on coil (2 and inductance beromes less as the distance between the eoil and shied is increased. The lossers also dererase with an indrease in the comductivity of the shield material. Copper and aluminum are satisfactory materials. The Q and inductance will mot be great.ly reduced if the sparing between the sides of the coil and the shield is at least half the ewil diameter, and is mot less than the coil diameter at the ends of the eoil.

At audio frequencies the shielding container shoukd be made of magnetice material, preferably of high permeability (\$2-5). to provide a low-rehurature path for the external flux about the roil 10 he shiched. A nommannetic shield is quite incffectual at these low frequencies since the indued current is small.

Filters - By suitable choice of cirruit elements a coupling system may be designed to pass, without undue attenuation, all frequencies below and reject all frequencies above a certain value. called the cut-off frequency. Surh a coupling system is called af filtor, and in the above case is known as a lou-pass filter.

If frequencies above the cut-off frequency are passed and those below attennated, the filter is a high-pass filter. Simple filter circuits of both

Fig. 2.f4 - Basic forms of filter networhs. Trypical frequency response curves for each type are shown at the right.
typers she shown in Fig. 244, along with typical frequeney-response curves. The fundamental circuit, from which more complex filters are constructed, is the L-section. Fig. 244 also shows π-section and T-sertion filters, both construeted from the basie I,-section.

A laml-pass filter: also shown in Fig. 244, is a combination of high- and low-pass filter elements designed to pass without attenuation all frequeneies between two selected cut-off frequencies, and to attenuate all frequencies outside these limits. The group of frequencies which is passed loy the filter is called the pasisbumd. Two resonant cireuits with greater than eritical coupling represent a common form of band-pass filter.

In curves of Fig. 244, A shows the attenuation an high frequencies of a single-seetion lowpass tilter with high- Q components: B illustratme the extremely sharp cut-off obtainable with a more elaborate threeseation filter. ('urve ($)$ is that of a high-pass section having high o, comparable to A. I) shows the attenuation hay a lessereficiont section having some resistane in the induetance branch. Curves E , F and (i illustrate various band-pass characteristiwn, E being a low-(Q narrow-band filter, F' a high-Q narrow-band, and G a wide-band high- 6) two-sertion filter.
lilver eircuits are frequently encountered both in low-frequency and r.f. applications. The proportions of L and C for proper operation deprend upon the load resist ince connected across the output terminals, L boing larger and C smather as the load resistance i: increased. The type of section does not affeet the attemation curve, provided the input and output resistances are correct. In a symmetrical filter the input and output impedances must be equal to the impedance for which the filter is derigned. Assuming these relationships, the
following design equations apply to the sections illustrated in Fig. 244.

Low-puss filter:

$$
\begin{aligned}
L=\frac{R}{\pi f_{\mathrm{c}}} & C=\frac{1}{\pi f_{c} R} \\
R=\frac{\sqrt{L_{1}}}{C_{2}} & f_{C}=\frac{1}{\pi \sqrt{L_{1} C_{2}}}
\end{aligned}
$$

High-pass filter:

$$
\begin{array}{ll}
L=\frac{R}{4 \pi f_{c}} & C=\frac{1}{4 \pi f_{c} R} \\
R=\frac{V}{C_{1}} & f_{c}=\frac{1}{4 \pi \sqrt{L_{2} C_{1}}}
\end{array}
$$

Band-pass jilter:

$$
\begin{gathered}
L_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \quad C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2} R} \\
L_{2}=\frac{\left(f_{2}-f\right) R}{4 \pi f_{1} / \sqrt{2}} \quad C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R} \\
R=\frac{\sqrt{L_{1}}}{C_{2}}=\frac{\sqrt{L_{2}}}{C_{1}} \quad f_{M}=\sqrt{f_{1} f_{2}} \\
f_{M}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}^{\prime}}}=\frac{1}{2 \pi \sqrt{L_{2} C_{2}^{\prime}}}
\end{gathered}
$$

In these formulas, R is the terminal impedanee and f_{c} the design cut-off frequency for low-pass and high-pass filters. For hand-pass filtars, f_{1} and f_{2} are the pass-bund limits and f_{M} the middle frequency. $L_{2}\left({ }_{2}\right.$ the parallel shunt elements.

The resistence-capncity filter, shown in lig. 245 , is used where both d.c. and a.c. are flowing through a circuit and greater attenuation is desired for the a.c. than for d.c. It is usually employed where the direct current is small so that d.e. voltage drop is not excessive, or

Fip. 245-1.spetion and π asection reaistancerapacity filter cir-poit- ideft) and curves showing the attemation in dh. for three different RC: products at varimus frequmenes in the audio-frequenc's range.

6-Section

(10)
when a voltage drop actually is required. The time constant, $R C,(\$ 2-6)$ must be large compared to the time of one cycle of the lowest frequency to be attenuated. In determining the time constant, the resistance of the load must be included as well as that in the filter itself.
(A)

(8)
(c)

(E)

Fig. 246 - Bridge circuits whiging resistance, inductance and capacity arms, both alone and in combinatime.

Brislge circuits - A bridge circuit is a devire primarily used in making mosurements of resistance, reactane or impedane ($\$$ frequency, although bridges also have other applications in radio circuits.

The fundamental form is shown in Fig. 24ti-A. It eonsists of four resistances (ealled armas) connerted in series-parallel to a somber of voltane, E, with a semsitive galvanometer, M, connected between the junctions of the series-eonnected pairs. When the equation

$$
\frac{l_{1}}{R_{2}}=\frac{R_{3}}{R_{1}}
$$

is satisfied there is no potential difference betwoen points A and B, sime the droparouss h_{2} equals that across R_{1} and the drop aneross h_{1} equals that acros: h_{3}. Vuder these conditions the bridge is said to be baldenced, and no current flows through $1 /$. If R_{3} is an mbnown resistance and R_{4} is a variable known resistance, R_{3} can be found from the following equation after R_{+}has been adjustod to balance the bridge (null indication on . 1) :

$$
R_{3}=\frac{R_{1}}{R_{2}} R_{4}
$$

h_{1} and R_{2} are known as the ratio arms of the hridge; the ratio of their resistances is usually adjustable (frequently in steps of $1,10,100$. etce.), so that a single variable resistor. $P_{\text {a }}$, man serve as a standard for mosmang widely different values of unknown rosistance.

Bridges similarly can be formed with arms containing capacity or inductance, and with combinatoons of either with resistance. Typical simple arrangements are shown in Fig. 246. For measurements involving altemating current the bridge must not introduce phase shifts which will destroy the balance, hence similar impedances should be used in cach branch, as shown in lrig. 246 , and the Q es of the coils and condensers should be the same. When bridges are ased at audio frequenoios, a telephone headsot is a suitable null indicator. The bridges at E and F are commonly used in rif. neutralizing circuits ($\$ 4-7$) : the voltage from the sourer. Kar, is balaneced out at X.

[1. 2-12-A Linear Circuits

Stameling urares - If an celectrical impulse is started along a wire, it will travel at approximately the speed of light until it reaches the end. If the end of the wire is oprol circuited, the impulse will be reflected at this point and will tramel back again. When a high-fregueney abtemating voltage is applied to the wire a current will thew toward the nem ond. and reflection will oedur continuousis. If the wire is long emongh so that time comparable to a hatf cycle or more is required for current to travel to the open abla the phaser rolations botween the reflected rurrent and out enomg emrent will vary alomer hifue wire. At one pmint the I.wo currents will ber 180° out of phater ald at amobher in phase. with intermedatle valume betweron. Assuming megligible lossus, lan resulatat current alones the wire. as measured be a cherom-imbicalling instrument surh as it thermo-romple ammerer. will vary in amplimble from zero lo a maximman value. subh a variation is cathed a stambint ware. The voltage ateng the wire also gors through stambing waves, rearehing its maximma value where the current is minimum and vior versal.

Whan the wire is rut to surd a lengel that the remrent traveras it in ofar direrion in exandy the time of one-half rocle : single stamling wave will oresuratemg the wire and the wire is satd whe resohath to the applied fre-
 are distibuted along the wire rather than being comerotrated in at coil and condenser, surh : whe is in mathe wats efuivalent to an ordinary resimalll virelil.

Frounurncy amel uacelenath-It is possible tan dexeribe the constantwo of sudu line cireuits in terms of imductance amd capaciamere, but it is mome comvenient to rive them simply in torms of fumbamental resomant fropleney or of length. sime the velurity at whim the current trabels is 300.000 kilomoters (186,000 miles) per seromd, the "ruedruth, or distame the current will travel in the tine of one eycle, is

$$
\lambda=\frac{300,000}{f_{i-r}}
$$

Where λ is the wavelength in :neters and $f_{k c}$. is the frequency in kilocycles.

$f \circ \mu$ ．－$f \%$－Standing－narr currobt distribution on a wire cerrating ats an ostillatory cireuit，at the fundament tal，swcond harmonic and third harmontic frequ－ncies．

Harmonir resomonce－Although a coil－ condenser combination having lomped ern－ siants（caparitance and inductance）resonates only at one frequency，ciruits such an an－ temas whide contain distributed ronstants resobate readily at frequencies which are very nearly integral multiples of the fundamental frequens？．These frequoncies are，therefore，in harmonic relationship to the fundamental fre－ quenser and hence are refored to as harmon－ ics（ \mathbf{x}^{2-7} ）．In radio prabtiee the fumdamental itself is called the first harmonic，the fregueney twice the findamental is called the secomi har－ momer allal so on．

J゙ir． 247 illustrates the distribution of cur－ ment on a wire for fumdamental，seeond and thiref harmonic exritation．There is one point of maximum current with fundamental opera－ tion，two whon（preration is at the semond har－ mone＇，and three at the thime harmonic：the number of current maxima corresponds to the order of the harmonic and the number of stand－ ing waves on the wire．As noted in the fignre， the moints of maximum current are ralled ami－nomps（also known as＂loops＇）and the points of zabo emrrent arr walled nodes．
 the hatiowave curve atre drawn altemately above and bedow the reforme line lo indicate that the phase of the current reverses in each half wabelongth．In other words，if current in whe half－water section is flowing lo the right． for camule，the curment in the adjacent half－ wave section will be flowing to the left．How－ ever，when the curent is metsured with ：thr．f． ammerer there will simply be a maxmem in－ dication al the renter of each half－ware ser－ tion．simer the ammeter eamot indicate phase．

Rerlation assistance－Since a line cirrout has distributed indurtance amd capacity，cur－

Fig． 248 －Standing wave and instantancous current （shown by the arrows）in a folded resonant－line circuit．
rent flow causes storage of energy in mag－ netic and electrostatic fields（\＄2－3，2－5）．As the fields travel outward from the wire at the speed of light，some of the energy escapes from the rircuit in the form of electromagnetic waves；that is，energy is rutialed from the wire．Such it wire is，in fact，an antenna． Sunce the energy radiated by the line or an－ temna represents a loss，insofar as the line is concorned，the loss of enorgy c：un be considered to take place in an rquiralent resistance．The value of the muivalem revistance is found from the ordmary Ohm＇s law formula． $K^{2}=I^{\prime} I^{2}$ ，where P^{\prime} is the power radiated and I is the current in the wire．R ．the equivalent re－ sisumuce，is ratled rediation resistance．

Tiro－comancor limes－The effective re－ sistance of at resmant straight wire is fatirly high，becithse a large proportion of the power supplied to such a wire is ratiated．In many cases it is nercs：ary to transfor power from one point to another with the least possible loss－ for example，from a transmiter to a radisting athemat which maty be lowathed some distance aw： y ．If the lime is folded so that there are two combuctors insteat of once as shown in Fig． 2fs．the eurreats in aldiacont sertions of the two wires are flowing in opposite directions， consequently the ficlds set up by the two oppose each other and there is very little radiation．

The quarter－wate fohted line in Fig．24s has a lolal length of ome－half wavelongth．hence is resunant to the frepuency corresponding to its lengila．Since the current is lare and the volt－ age is low at the closed end，the impedance at this point is ruite low．On the other hand，the

Folnage is high amd the arrent is very low at the 口и口 end，so at this point the impedance is high．These properties of a quarter－wave two－ conductor line have applieations to be de－ scribed later．

A folded line also may be eonstructed in the form of two coaxial or conrentric conduetors， ass shown in Fig．efle．In effert，this line is di－ rectly comparable with the parallel conductor line，except that one conductor maty be satid to have been rotated around the other in a com－ plete circle．The sonviai lime has even lower radiation resistance than the folded－wire line， since the outer combuctor acts as a shield． Standing watos exist but are confined to the outside of the inner conductor and the inside of the outer condurfor＇since sisin effect prevents the currents from penetrating to the other sides．Thus surd a line will have no radio－fre－ quency potentials on its exposed surfaces，and no radiation ran oreur．Because of the low radiation resistather and the relatively large
conducting surf:ces, such self-enclosed resonant lines can be made to have murh higher Qs that are attainable wibl coils and condensers. They are mos applicable at very high frequenries (very short watvelengths) (\$2-7), where the dimensions are smath.

A modified form of eonstruction for coaxial lines is the "trough" line in which a tubular imner comductor is conclosed within a rectangulate sheet-metal hux or tromgh. ustatly loft open on one side to facilitate tapping or other adjustments. The absomer of shiehling on whe side does not affert the proformance materially and the simplicity ol eomstrumion is an ach antatge.
"lhe term transmiswim lime is gronerally :uphed lo all lines whem her thes are artually used as: a means for tramsforring radio-frequence power hetweren two points or whether they are nsed as replamomonts for coil-amd-ondenser resonant cireuits. "Me lines shown in Figs. 2.48 and 2ly are "shom" lines of the type fre-
 ferring power the line maty he many watelengethis long, depording upon the distame over
 more, : linc userl for this purpose is am nerossarily resomats: in farl, it maty be desirable to avoid rexonather efferts mately.

If a transmissina line eomald bo made infinitely lomge power womld simply travel along it until it was entirely dissipated in the resistance of the lime: there womblte mothing to reflee it
 wonld preselt at consl:mt imperdane in the form of a pare resistame 10 an input at any fredurney, athd hene wouk show no resenance

fies 250 - Characteristie impedaner of uniform lines.
effects. Practionlly, the charareristics of an in-finitely-long line can be simmated by terminating a line of finite longth in a load resistance equall to the characteristiv impetance of the line. This and other general propertices of transmission lines are discussed in the following paragraphs.

Charactorislic impedaner- Whe characteristic impertunce of a tramsmission lime. also known as the surge impertance, is defined as that imperdane which a long line would present to an electrimal impulse induced in the line. In an ideal line having no resistance it is equal to the sifuare root of the ratio of indurtime to caparity per mit length of the line.

The chatateristic impedance of air-insulated tramsmission lines may be calculated from the following formulas:
I'arallel-comluctor line:

$$
\begin{equation*}
Z=2 \hat{2 i} \log \frac{b}{a} \tag{5}
\end{equation*}
$$

where Z is the surge improbance, b the spating, renter to renter, and a the radius of the ronductor. "Ihe quantitios l and a must be measured in the stome units (inhes, cm., cte.).
Coaxial or concentric line:

$$
\begin{equation*}
Z=1.38 \log \frac{b}{a} \tag{6}
\end{equation*}
$$

Where 7 agath is the surge impedatmes. In this l:ase, b is the inside dinmelar (ant radius:) of How outer combluctur amd a is the ombeste diam-- les of the inmer comelatior. The formulat is true forlines having are as thedielectric, amdappoximately so with remanic insulators son spared that the majug part of the insulation is air.
"The surge impedame for hath parallel and patiall limes using vations sizes of emblumbers is given in chan form in loig. 200.

When a sold insulating material is usod heLween the comdurtors, the increasio in line apmoity amses the impedance to domease by
 *atat of the itsulatine matarial.

Ahhough iworomincoor lines have lower radiation, a singre-romductor line ratn be used for transfring power if it is terminated in its Wharatoristie impertaner. I ndor such ciremmstances the emrent in the line will hersmall, and since ranliation is proprombual to curront the
 impedanoe of :a single-wire 1 ramsmission line varies with comaluctor size. heipht above gromed, and orientation with respect togromed. An average figure is about aot ohms.

Standing-uate ralio- The longths of transmission lines used at radio frequoneries are of the same order as the operating wavelengths. and therefore standing waves of current and voltage masy anpmar on the line. The ration of curent (or soltage) at alow to the value at : mode (stamling-wner ratio) depends upon the ratio of the resistane of the load commerted to the output end of the line (its terminution) to the chatrictoristis: imped-
ance of the line itself. That is,

$$
\begin{equation*}
\text { Standing-wave ralio }=\frac{Z_{t}}{Z_{t}} \text { or } \frac{Z_{t}}{Z_{s}} \tag{7}
\end{equation*}
$$

where Z_{s} is the charateristie impedane of the line and Z_{t} is the terminating resistance. Z_{t} is generally called an impedance, although it must be non-reactive and therofore mast worrespord to a pure resistance for the line looperate as described. For example, this moms that if the and or tormination is an amomat it must be resmant at the operating frequency.

The formulat is given in two wats: herame it is cusromary to put the larger mumber in the numenator. wo that the ratio will not be fractional. As an example, a 600 -ohm line terminated in a resistanee of 70 ohms will have a standing wave ratio of (600 70 , or א. B 7 . The ration an a $\overline{7} 0$ - 6 ham line ferminated in a rowistance of tiol ohms would he the same. 'lhus, if the arrent as measured at athode is 0.1 am-

A line terminated in a rexistanceregual to its eharactoristie impedane is equivellent to an infinitely long lime: consequently there is mo reflection. and won standing waves will appar. The standing wave ration therefore is 1 . The input rad of surh a line appeats as a pure resistatmer of a value equal to the chatracteristic impedence of the lime.

Electrical length - 'The efocerical lenglh of a lime is not exacoly he sotme as its physiatl lengil, for reisoms correxponding to the end efferts in amtembax (s 10-2). Sparers haed lo separate the remductors have dieleedrie com-stant- larmer than lhat of air, so that the waves do nos 1 rave ynito as fisi along : line as they Would in air. 'The leng the of edertrical quatere
 lated irom the formula

$$
\text { Langth }(f \operatorname{ced})=\begin{array}{r}
\therefore!t ; \times 1 \\
f i r q .1 / c \cdot)
\end{array}
$$

Whare 1^{-}depends apen the type of line. For lines of ordinary comstruction, 1 is as follows:
Parallol wire line
$V^{\prime}=0.97 \%$
Paralled mhing line
$1^{\prime \prime}=0.9 \%$
Concentric line (air-insulated) $\mathfrak{I}^{\circ}=0.85$
Concentric line (rubher-insulated
Twisted pair
$V^{\prime}=0.560 .65$

Remelance, resistance, impedance - The impat end of a liow may show rearetane as wedl as revietance, and the values of these quantitios will depend upon the nat mre of the load at the output end, the eloetrical length of the line, and the line chametoristice impedance. The reactamee and resistame are important in determining the mothod of coupling to the sourer of power, Assaming that the load at the output end of the lime is purely resistive a line less tran a quarmer wadength long eleatrably will show inductive reactance at its input terminals when the output termination is less than the chameteristie impedance, and capaci-

Charactenstucs of Line Sections tess than a guarter wavelengin With Definite Source-Reststance			Characuristics of Line Sections BeTween one-auaiter ano ometuri maveencin Wrth Definte Source-Resistance		
Relative lengths of Lun seccions		$\begin{aligned} & \text { Open End } \\ & \text { Look, } 5,1 .{ }^{2} \end{aligned}$	Relative Lengitys of L": sections	Rebrenelasues of Tand Rems lancelal	Open End Lookziluke
	$R=2$	$\sum_{\text {Matched) }}$		$\mathrm{R}=\mathrm{Z}$	$\sum_{\text {(Matched) }}^{1}$
	$R>2$	$\frac{1}{1}$	511	$\mathrm{R}>2$	
	$\mathrm{R}<2$	$\text { \}}$		$R<Z$	$\frac{1}{3}$

Fif, 2.51 - Input reactive characteristics of resistance. terminated transmission lines as a function of line length.
tive readtane when the termanation is hither than the characteristic impedance. If the line is more than a quarter wave but loss than a half wave long. the reverse conditions exist. Those propertios are shown in Fig. 251. With still longer longths, the reactance chatacteristies reverse in earh suceeding quarter wave kength. The input impedance is purely resistive if the line is an exace multiple of a quater wate in length. The reactance at intermediate lengthe is higher the greater the standing-wave ratio. being zero for a ratio of 1.

Whother lines are elassified as resomant or nomresomant depends upon the standing-wave ratio. If the ratio is near 1 , the line is said to be nonresonamt, and reartive efferts will be small even when the line length is not an exate multiple of a quarter wavelength. If the standingwave ratio is large, the input reactance must be canceled or "tuncl out" muloss the line is rewonant - i.e., a multiple of a quarter wavelengit.

Impedarice Iransformation - Regardless of the standing-wave ratio, the input impedanere of a line a half-wave long electrically will be equal to the impedance comected at its output end; the same thing is true of a line any integral multiple of a half-wave in lougth. Suela tine can be considered to be a one-to-one tratnsformer. Howerer, if the line is a quarterwave (or an ohl multiple of a quarter-wave) long, the imput impedance will be equal to

$$
Z_{i}=\frac{Z_{t}^{2}}{Z_{t}}
$$

where Z_{n} is the characteristic impedance of the line and Z_{t} the impedince connected to the output end. That is, a quarter-wave section of line will match two impedances. Z_{i} and Z_{t}. provided its charucteristic impedance. Z_{s}, is equal to the geometric mean of the two impedances. A quarter-wave line may, therefore, be used as an imperlanice transformer. By suitable selection of constants, a wide range of impedancematching values can be obtained.
Since the impedance measured between the two conductors antwhere along the line will vary between the two end values, a quarterwave line short-circuited at the output end can be used as a linear transformer with an adjustable impedance ratio. For best operation,

Fig. 252 - Equivalent compling rircuits for paralledline, coaxial-line and conventional resonant dircmits.
the two terminating impodances must he of the same order of magnimble. However, a sorios of quarter-wave sergims can be wised to uhatina step-by-step matrh of two terminal impedances efliciently if they are widely differmt.

Impedance-matrhimg or tratns formation with transmission-line sertions may also he effered by taps on quarter-wave resonant bines emphoyed as coupling ributats in the same manther as eonventional rail-rombenser eircuits. The equivalent relationships beween paralled-line,
 this purpere are show It frig. 252.

Other impedanme-matrhing arrangemonts employ the use of matchangetahs or ardusalent sections so arranged so ats to balance out the reactive component introdured by the compled direnit. These are emplowed primarily in eommedtion with allombal foed sustems and are dexrribed in detail in s. 10 -s.

Transmission limes as cirrait plememts Sertions of transmission lines. togrother with combinations of sum sertoms. fan be used ta

 resomant circuits. impedallocomatrhing transformers, filters, and even as insulators.

When a short-eirnated flatrer-wavelonghth line is connerted betwern: "hot" rimedt atm grommal, the inful and affers an extremely high resistive impedance. In oh her wods. the transmissjon line is vimually an insulator. Insulating lines of thes surt are commondy emploved in ultrahigh frequeney work. Furh insulators can be Hised to provide al d.e. path between the r.f. condardor and chassis, and at the same time effertively bork the flow of r.f. current.

A transmission line (omminated in its chameteristio imporamee affords: pure resistame at high freguenries. and so maty be used ats a mon-reaterive resistor. Énterminatod limes afford at variets of reartive propertios. Lenglas of short-circuited linc less thath a quanter wavelength represent pure inductive reartance, while open-circuited lines have pure raparilive reartance.

Thus the former can be used in lieu of r.f. chokes, while the latter can serve as by-pass condensers.

The reactive rhatateristies of open- and closed-end lines are summarized in ligg. 253.

Resoname lines as tumed circuits-In
 guencies it is possible ton consider eath of the ractance compomonts as a separate entity. A coil is used to provide the required indurdane and a combenser is commerted atoross it to provide the necessary rapacity. The fact that the coil has a certain amomut of self-capateity of its own, as well as some resistance, while the condenser also possesses a small self-inductance, (:an usually be disumarded.

At the very-high amd ultrahigh frequencies, however, it is no longer possible to sparate these eompmonts. The connerting leads which, at lower frequencies, would serve merdy to join the condenser to the coil now mar have more inductance than the coil itself. The required inductance eroil maty be mo more than at single turn of wire, yet even this simgle turn may have dimensions fomparable to a wavelength at the oprorating frequency. Thus the energy in the field surmomding the "coil." mas in part be ratiated. At a sulfariontly hish freguchey the loss hy radiatom may represent a major portion of the lowal energe in the eiment. Nume encrgy which eaturt be utilized as intembed is wasted. regirtloss of whether it is eonsumed as heat bey the resistanere of the wire or simply ratiated imo space, the refoer is :s though the rexistance of the tumed cirenit were greatly incroased and its () greatly redaced.

For this reasom, it is common practice to utilize resmant serfons of transmission line as thand rimpuits at frousuries abowe 100 Mr. A quarter-watelength lime. or ang odi multiple thereof. shorted at one end and open at the other, exhibits large stambing wares. When a voltage of the frequency at whith such a line is resontant is applied to the open end, the response is very similar to that of a paralled resonant circuit; it will have very hirh input impedance at resoname and a large current flowing at the shorterirenited ond.

Charactenstics of OPEN LINE SECTIONS			Characteristics of SHORTEO LINE SECTIONS		
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Reisitive Lergiths } \\ \text { of hine Sortions } \end{array} \\ \hline \end{array}$	Output End Looks Like	Reditance Curve Cor Each sectivn	Hedrave Lengths of Line sections	$\begin{aligned} & \text { Output End } \\ & \text { Loors ine } \end{aligned}$	Fiddelst.cecurve for Edunsection
	$\frac{1}{T}$			$\stackrel{3}{3}$	
¢1	1			$\frac{1}{\tau} 9$	
	3			$\frac{1}{T}$	
	18		\%11	$\frac{1}{5}$	

fï, 2:53 - Open and elosed tranmiswion lines as cirenit clements.

The artion of a resonant quarter-wavelength line can be compared with that of a eoil-andcondenser combination whose eonstants have been adjusted to resonance at a corresponding frequence. Around the point of resomance. in fact, the line will display very nearly the sime charateristies as those of the tuned circuit. The equivalent relationships are shown in Fig. 253. At frequencies off resoname the line displays qualities comparable to the inductive and eapaetive reactances of the coil and condenser cireuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resomat wire or transmission line can be used in much the same manner as coils or condensers.

In v.h.f. circuits operating above 300 Mre, the saacing hetween conductors becomes an appreciable fraction of a wavelength. ' F o keep the radiation loss as small as possible the parallel conductors should not be spated farther apart than 10 per erent of the wavelength. center toconter. On the whor hand, thesparing of harge-diametor romdurtors should not be reduced to murh less twiee the diameter because of what is known as the proximity effert. whereby :mother form of loss is introduced through eddy currents set up lye the adjuent fields. Because the camrellation is mo longer complete, radiation from an open line heomes so great that the Q is greatly reduced. Consequently, at these frequencies maxial lines must be used. The enaxial line is alvantagents at the lower frequencies, as woll. but beranso it is more complicated to romstruct and andins: ments are more dillirult the open type of lime is generally favored at these frequencios.

Trunsmission-lime filler neluorlis - The same groneral equations cean be applied to any type of electrical metwork whether it be an actual section of transmission line, a combinat tion of lumped-cirenit clemonts, or a combination of transmission-line elements. Ordinary electric filters (\$2-11) at lower frequencios use eombinations of coils and comdensers, but ronventomal dironit elements ramot be ased at extremely high frequencies. However, combinations of transmission-lite sections or combintatons of transmission lines and parallelphate condensers may be used for the eloments of very-high-frequency filter net works, instent.

Consirurtion - Practical information concerning the construction of transmission lines for such specific uses ans feoding antomas and as rosonant circuits in radio transmitters will be found in the constructional chapters of this Hardbook. Cortain basic considorations applicable in general to resonant lines used as rircuit elenents may be considered hore, howevor.

While either parallel-line or coaxial sertions may be used. the latter are preforred for higherfrecpuency eperation. Representative methods for adjusting the longth of such lines to resonanee are shown in Fig. 254. At the loft, a sliding shorting dise is used to reduce the effective length of the line by altering the position of
the short circuit. In the center, the same effeet is acoomplished by using a telescoping tube in the end of the inner condurtor to vary its length and thereby the effective length of the

Fig. 254 - Methools of tuminy coaxial resonant lines.
line. At the right, two pussible methods of mountinir parallel phate comelensers, used to tume : "foreshortened" line to resonance, are illustrated. The arrangement with the loading eaparity at the open end of the line has the greatest tuning effer per unit of caparity; the ulternative method, which is equivalent to "tapping" the condenser down on the line, has lese effert on the Q of the circuit. Lines with raparity "loading" of the sort illustrated will the shorter, physically, than an monded line resomant at the same frequence.

The short-cireuiting dise at the end of the line must be designed to make perfere clectrical contart. 'The voltage is a minimum at this end of the line: therofore, it will not break down some of the thimest insulatingr films. ['sually a soldered commection or a tirht (lamp) is used to secoure geod contact. When the length of line must be readily adjustable, the shorting plug is provited with spring collar: which natie confact on the immer and outer condurtors at some distance aw:y from the shorting plug at a point where the voltare is sufficient to break down the film between the collar and conduetor.

F'wo methods of taming parallel-conductor lines are shown in Fige, 2\%. The sliding shortcircuiting strap can be tightened hy means of srrews and muts 10 make good electricad contact. The parallel-phate comdenser in the second drawing may be placed anywhere along the line the tuming reffert becoming less as the condenser is located nearer the shorted end

Fig, 255-Mrthods of tuning paralleltype resonant lines.

of the line. Although a low-capacity variable condenser of ordinary construction can be used, the circular-plate trpe shown is symmetrical and thus does not unbalance the line. It also has the furt her advantage that no insulating material is required.

Fig. 256 - livolution of a wave guide from a two-wire transmission lime.

A serond point of differenee is that the apparent length of a wave along the direction of propagation through a guide always is greater that that of a wave of the same frequentry in free spaces whereas the wavelongth along atwocomductor transmission line is the same:ts the frex-spate wave-length (when the fisulation betwern the wires is air).

Oprouling principles of wave guidesAualysis of wave-guide operation is based on the assumption that the gude material is a profere comductor' of elertricity. 'TYpical distributions of electric and maghetic fields in a reptangular while are shown in ligg. 257. It will he observed that the intensity of the electrib fied is grealest at the emiter along the x dimension, diminishing to zero at the end wallk, 'The latter js a neeresary condition, since any clectric firld parallel to the walls at the surfare wobld catse an infinite current to flow in a perfert ronductor. This represents an impossible situation.

Zero electrie fied at the end walls will result if the wate is considered to consist of two sepatrate wares moving in \%ig- \%ag fathion down the gruide, reflerted batek and fortla from the end walls as shown in ligg 2os. Just at the walls, the positive arest of one wate meets the negra-
 babon of the electrid fickls. 'The angle of refloblion at whirh this eaturellation oremes deproms upon the widnh x of the gride ame the length ol the waves: Fig. 2is-a illustrates the

Fis. 257 - Field distribution in a rectangular wave gruide. 'The 'I'Fi, mone of propagation is depieted.
case of a wave considerably shorter than the cut-off wavelength. while is shows a longer wave. When the wavelengith epmals the cut-off value, the two waves simply bome batek and forth betwem the walls and no energy is tramsmited through the suide.

The two wat es travel with the of perd of light. but since they do mot taved in a stagight line the energy duce moi tavel hromph the gnide as rapidly ats it dow in - mare A further conse-

 lar to the waw frout (rrests) ats shown lis the arrows.

 are separatod motre along the line of pramea-

 the gride is greather that the freserner water

 sente: mbitively smble dintilxtion or the

 as there is bo apyor limit to the fremumey to

 fied in that direrion. The whar type dowig-

 of matmetice fied in the dieredion of propaga-

'The partiontar moda of tramsmiserion is identifed by the gratpledter followed by two

 There is moty ome posible mente coalled the dominatht mode) for the lowest fiergeney that fath be transmited. The domanam monde is the one wenerally used in prantio: work.

Hate-guide dimensioms- It the rertampular whide the ariteal dimmenson is x in
 wavelength at the lawes fremperey to br

ally is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other rross-sertional shapes than the rectangle wan be used, the most, important being the cirmbar pipe. Much the same consideralions apply as in the robangular rase.

Wavelongh formmas for rectangular and rireular guides are given in the following table Where of is the widh of a rectalloular grude and r is the radins of a cormatar gude. All figures are in terms of the clominant mode.

	Rrctanoular	Circular
Cut-uf wavelengh	$2 x$	$3.41 r$
lithle alturntation	.1. $1.6 x$	$3.2 r$
 	$1.1 x$	$2.8 r$

Cariar resomators - At low and medium radiof fropumajos resomant rirouits usually sure
 that i-. he imbutanere is comerotrated in al coil and the raparity concontrated in a comdenser. Howevor, as the fregueney is increased coils :m! condensers mast be redued to imprabticablue small physical dimensions. (p) to a cerlain foint this differnloy mas be overome by
 fail all womenty high frepucmedes. Austher
 lenglas af tho omber of remtitabers is the canit! rammon, Whirl may" be lewked upon as a serelim if : wave guide with the dimensions Fhnsen on ha:n wates of at piven lenghth can be

 for fran an ordinsely lac rimail is shown in
 derivalion, thi- pioture must be arerpume with some reservallobs, alnd for the satme reasons.

Com-idering that evera a stratight piereof wire has: : qumbrios, it may be sern in liyg. 259- A and - B that a direre sharl anolss a 1 wophate comdeonere with air dielee pric is the equivalent of a tuncd direuit with : twpical coiled inductance. With two wires hedworn the plates as shown

 from a eomventional roil-and-romilenser twatod circuit.
a resonant-line sertion. For d.c. or even low frequency r.f., this line would appear as a short areross the two condenser plates. At the ultrahigh frequencies, however, as shown in Frig. 252, such a seretion of line a quarter-wa polength long would appear as an open rireut when viewed from ond of the plates with respect to the other end of the serefion.

Increasing the numine of parallel wires between the plates of the romdenser womblawe no effect on tha equivalent cirmit, ass shown at 1). Eventually, the closed firure at E will be developed. Since each wire which is added in 1) is like comnerting indurtamos in patralled. the total indurtance arross the rombenser beromes inereasingly smaller as the sulid form is approached, and the resonant frequency of the figure therefore beromes higher.

If energy from sombe v.h.f. source now is introduced intur the ravity in a mammer sum has that shown at F, the cirenit will resurnel like any equivalent coil-romensertank oimait at its resonant frequency. I ravity resomator maty therefore be used as a s.h.f. tuming elemont, along with a valdum tube of suitable dexig: to form the main eompoments of ath mesilatar
 frequencies comsiderably larymal the masimum limits possibite when emberntiona! thbes. coils and combensers are emplowed.

Fig. 200 - Forms of ean its resumaturs.
Other shapes tham the exlimber maty be med as resonators, among them the reenamgatar box, the sphere, alld the sphore with re-matant coner, as shown in lig. 260. 'The resontan frequency deponds upon the dimensions of tha cavity and the mode of osallation of hae wates (eomparable to the transmission modes in at wave guide). For the lowest mondes the resonatht wavelengths atre as follow:

Sphere with remontrant rones. 1.717

The resmant wavelogithe of the exlinder and square box are independent of the hright when the height is less than at half wavelength. In other moses of oseilation the height must be a multiple of a half wavelength as measured inside the ravity. Frig. 2-! !-F shows how : rydindrical cavity aan he tumed when uprating
in such a mode. Ot her tuning methods include placing adjustable tuning paddles or "slugs" inside the gavity so that the standing-wave pattern of the elecirie and manetid fields can be varied.

A form of ratity reanatom in wide pratical use is the re-entrath evindrical type shown in lige 261 . It is usoful in comucetion with vae-

 for n.h.f. use in Chapter Three. In comstruction it rementbes at comeontric line closed at both ends with "aparity latading at the torb, but the actual mente of oroilation may diffor comsiderably from that oreming in coasial lines. The resomath frequency of sheh a cavite depends upon the diameters of the two eylindere and the distaner al betwern the emds of the inner amel murrerbimers.

Combared to ordinary resmant rirenits. (abity resolators have extmmely high $($. A value ol 0 of the order of lood or more is readily whatitable and (! values of seweral Hhus:and rath ranlily be serned with gowl Wexign and construction.

Compling to were guiales amd racity res-omotors- linery mas be introluced into or abstraded from : Wave gulda or resomator be meath: of either boe eleetrix or magnetie fiedi. 'The emeres transfer frequently is through : cansial lime. 1 wo methorls fur coupling to which are thom in fig. 2fie. Tho probe shown at A is simply : short extension of the inmer romdurdor of the cosaisal line. su oriented that it is patathel to the deceriv litues of foree. The lonos shown at B is arranged so that it encluses some of the magnelie lines of forre. The point at which maximum rompling will be secured deponds upon the particular mode of propat gation in the gruda or catity: the compling will be maximum when the coupling device is in the most intmone field.

Compling can be varied be thrning either the probe of loop through a (0)-degree angle. When the probe is perpendicular to the electrie lines the compling will be minimum; similatry, whert the plane of the lowe is parallel (1) the matgetie lites the coupling will have its leatst pussible value.

C 2-12-C Lumped-Constant Circuits

V.h.f. resonator circuits - At the veryhigh frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear circuits offer mechanical difficulties in making tuning adjustments over a wide-frequency range.

To overcome these difficulties, special high-Q lumped-constant circuits have been developed in which ronnections from the "condenser" to, the "coil" are an inherent part of the structure. Integral design minimizes buth resistance and inductance and increases the C / L ratio.

The simplest of these eircuits is based on the use of dises combining half-turn indurtance loops with semi-cireular condenser plates. By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns. Both by shielding action and shortecircuited-turn effert, these further redure the inductince.

Another type of high-C circuit is a singleturn toroid, commonly termed the "hat" resmator. Two ropper shells with wide. flat "brims" are mounted facing each other on an axially aligned copper rod. The capacity in the circuit is that behwen the wide sholls. while the central rod comprises the inductance.

Fif. 26.3 - Concentriccylinder or "pot"-1ync tank for v.h.f. 'lhe equivalent circuit diagram is also shown. Commetions are made to the terminals marked T. Formaximum (the ratio of b to c should he hetween 3 and 5 .

"Pol"-lype tank circuits - The lumpedconstant concentric-element tank in lig. 2if3, commonly referred to as the "poot" circuit, is equivalent to a very short coavial line (no linear dimension should exceed $1 / 20$ th wavelength), loaded by a large integral capacity.

The inductance is supplied by the copper rod, A. The eapacity is provided by the concentric cylinders. B and C, plus the raparity between the plates at the bottoms of the celinders.

Approximate values of eapacity and inductance for tank circuits of the "pot" type can be determined by the following:

$$
\begin{aligned}
L & =0.0117 \log \frac{b}{c} \mu \mathrm{~h} . \\
C & =\left(\frac{0.6225 d}{\log \frac{a}{b}}\right)+\left(\frac{0.1775 b^{2}}{e}\right) \mu \mu \mathrm{fl}
\end{aligned}
$$

where the symbols are as indicated in Fig. 263, and all dimensions are in inches. The lefthand term for capacity applies to the concentric cylinders, B and \dot{C}, while the second term gives the capacity between the bottom plates.
"Butterfly" circuits - The tank circuits described in the preceding section are primarily fixed-frequency devices. The "butterfly" "ircuits shown in Fig. 264 are capable of being tuncd over an exceptionally wide range,

Fig. 26.1 - "Butherlly" tank circuits for v.h.f., showing front and crosmanction views and the equivalent circuit.
while still having high Q and reasonable physical dimensions. The circuit at A is derived from a conventional balamed-type variable condenser. The inductance is in the wide cireular band eonnecting the stator plates. At its minimum setting the rotor phate filis the opening of the low p, reducing the inductance to a minimum. Commetions are made to points 1 and 2. This basic structure rliminates all connecting leads and avoids all sliding or wiping electrical contarts to a rotating member. A disadvantage is that the clectrical midpoint shifts from point 3 to point 3^{\prime} :s the rotor is turned. Constant magnetie coupling may be obtained by a coupling loop loc:ated at point 4, however.
In the modification shown at 1), (wo sectoral stators are spaced 180 degrees, thereby achieving the electrical synmetry repuired to permit tapping for balanced operation. Connections to the circuit should be made at point: 1 and 2 and it may be tapped at points 3 and 3^{\prime}, which are the electrical midpoints. Where magnetic coupling is employed, points 4 and 4^{\prime} are suitable locations for coupling links.

The capacity of any butterfly circuit may be computed by the standard formula for parallelplate rondensers given in Chatpter 20. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with usual construction.

Any number of butterfly sections may be connected in parallel. In practice, units of four to eight plates prove most satisfactory. The ring and stator may either be made in one piece or with separate sectoral stator plates and spacing rings assembled with machine screws.

C 2-12-D Piezoelectric Crystals

Piezoelectricity - Proprrly gromul plates or bars of quartz and ereftiin other erystalline materials, such ats Rowholle salts, show a mechanical strain when subjereted to an dedre charge and, conversely, a differene in potential between two fare when subperted to meehamical stress. The redationship, between mehanimal fore and electiond strese moder sumh comblitions is known :s whe piezatedric effert. The tharges apperting on the aratal as a result of mechanial furerapplial to the erystall, or of merhamieal vibathion of the erystal itself, :tre termed pirzow erricity.

Piezopentric erystals may he employed as deviees either for changing mednatical energy. to edertrical energy or for dhaming dertrical energy to merhanial curerg. In the former
 Whones and phanograph piokins: in the tather. rystal hemphones, ryad homd-xpakers and restal remorting homls.

 resomant rireuite are nsed. The wesobat froqueney dopends upor shape, blicknow, lengith and cut.

Natural quart\% mastals are nsually in the form of a hexagomal prism terminated at whe or bith mols bey asx-sided mamial. Jomatime the rertien of the en pramidal and. :lad per-
 seretion, is the optimat on $\%$ asis. The there cher-
 the optieal axis and pasing thraboh onperite corners of the hexagom. The thee mednanial ar Y : axes fir in the same mane but perpendieularly to the sides of the hexagen.

Active plates cat from a raw erystal at
 merhanimal ases hate dimering whatereristios as the thickness, frequene-tromperature coellicient, pewer-hatuling ababilitios. otre The
 respertive ases. !ent at virety of eprematizal cuts, such as the $A T$, are in mare common ar.
Progurney-thickness ratio- At frembulrics above about $\mathbf{5}$ oo ke . Whe thiekness of ita erystal is the priacipal frequener-dalermiang factor, the other dimensims bring of rablavely minor importance. Thickness and frequeney are relaned by a constant, K. whth that

$$
\rho=\frac{k}{t}
$$

 the thickness of the erystal in mils. For the
 $K=666.2,13 T-$ - $14, K=97.3$.

At freduencies atowe about 10 Me . the erystal heromes very thin and eorrespondingly fragile, so that crystals seldom are manufactured for fundamental operation above this
fremency. Direct erystal control on 14 and 28 Mr. is woured by use of "harmonic" crystals, whim are ground to be artive oneillators when exited at a harmonic (usually the third).
Tomperature comficiont of freducricyThe resomant irequeney of a erystal varies with temperature, the variation depending upon the type of ent. The frepurney ehamge is usually exprowed an a reflicient relating the number of cerlos of freguene ehang per megaryede per (a. It may he eithey mation (increasing frequens with inmasing tomperature) or mezalise (derepasing frequeney with indreasing trmperature), Xerut (ryatals have a nerative cow firmen of 15 to 25 eyclow $/ \mathrm{Mc} . /{ }^{\circ} \mathrm{C}$. The coelliciont of S-cut crystals may vary from - 20

Variminns in flequency aused by temperature changes ran bio minimiond by proper catimg of the phate. By ormang the phate thengh varime angas in mbation to itemptical,
 redationsiip ean be derived betwern the dimenसons of the mate, it density and it elastic constants - the rampanemts repmaible for the tomprature enefliciont.

The IT rut is the tyre pername most extensively used bir transmitare irequency emtrol. This plate can be gromed to ahose any fre-

 therame ram to 10.006 kr .

Fin froguencos bew ano kr., CT and DT shealtone wuts have been derehned which
 "idht for determinime fremency. Plater of the ("F and bT type vilnating at a barmonic

The ic whifift types dexuribed above show a gere trapmerature coediciont thengh only a few dergenes of change. Awother twie of eat, the Gif, will drift less than 1 errole/Mc. $/{ }^{\circ} \mathrm{C}$.
 Mate a fare shear vibration is rhanged into two lomgitutimal vilmathas rembent tagether. It a mertall ratio of lomghto widh one mode

 A Fumlamontal (aloore) and harmome (below) of the
 rut: (alwor) and lol' and f"l'cuts (leclow). D) - N'J'eut.

 variation in temprature in ${ }^{\circ} \mathrm{C}$. for varioun restal ents.
hals a zero temperature coollicient, makine it erperially useful as a frequeney stambard. The dTT eut. Which atso viluates fompitudinally. can he used from 50 to 100 ke. The N"T erystal is a flexurally winating cut having a low tompeatare coeflicent in the ratuge from 4 th ion ke. M'T and XT cuts are useful for phasemodulated f.m. tramsmitters.

C. 2-13 Miscellaneous Circuit Details

Combined ore omd da. - Thereare many practical instances of simultameons flow of alternatine and direct rurents in at rimont.
 and it is said that an altemating current is superimpesed on a dirent current. As shown in Fig. 2tio. the maximm value is cumal th the d.e. value phe the are maximm, while the minimum value (on the newative ace. peak) is the differene berwen the d.e. and the manimum are values. The aterage value ($(\underset{2}{2}-7$) of the current is simply wimal to the dirert-rusrent compunent abme. The effertion value ($\$ 2-7$) of the cumbination is equal to the sparare root of the sum of the effertive ace. squared and the d.e. sumared:

$$
I=\sqrt{I_{u c^{2}}+I_{d c^{2}}}
$$

where $I_{\text {ue }}$ is the effertive value of the ane. component, I is the efferetive value of the sombination, and $I_{\text {di }}$ is the average (d.e.) value of the combination.

Brats - If wo or mave allarmating charrats of differon fromberims are prownt in: ammat
 Ghe atother and ean we sematad agath by the proper selaction archit. Howner, if twh (ar more) alternating carrento of diferent fremonriss are present in an eloment having unilateral on one-way abrent flow propertion. one cally will the twer arginal frequenme he present in the ont put hat alse currents having frequenciens cqual to the suma and difieremere. of the originat frequencies, Theres sum amd difterence frembencies are ralled the hral fropuencios. For example, if irequences of 20% and 3 ano ke, are prent in a nomal circuit only these two freguencios exist. hat if they are pased through a
unilateral element there will be present in the rutput not only the two original frequencies of 2000 and 3000 ke . but also currents of 1000 $(3000-2000)$ and $5000(3000+2000) \mathrm{kc}$. suitable circuits ran be used to select the desired beat frequency. The human car has malateral characteristies and is, therefore, capable of haming amblitle beat frequencies. bilectronio devices of this mature are called mixers, converters, and detentors.

Br-passing - In combined circuits, it is frequently necesary to provide al low-impedance path for ace around, for instance, a source of der. voltage. This rata be doue by using a bypass condenser. Whish will mot pass direert current but will radily permit the flow of altermating current. The rapacity of the condenser should be of such value that its reactance is low (of the order of $1 / 10$ th or less) compared to the ace impedane of the device being bypassol. The lower the reantance, the more offectively will the ahtrmating current be confined (1) the 小ereired path.

Similarly. alternating current can be prevented from flowing through a direet-current dirceir to which it may be comencted be inserting an indurtane of high reactane (ralled a choke coil) bet wern the two cirenit.. This will permit the direw rarrent whow withoth hindrather, sine the resistance of the choke eoil
 prexell the allemating current from flowing where it is mer wattert.

If both r.f. :and low-frapueney (audio or mand currents are prent in a cirenit, they may be contined ton dexiren pathe hy similar means, since all inductaber of high reactance for ration frogucherios will have negligible reartance at low frequencios, white a combenser of low reatemace at radio froquencies will have high ratatane at haw frequences.

Gromble - 'The term "gromul" is frequently memmered in disenssions of circuits. Xormailly it means the woltage reforence point
 ine carrant, comproerd of in an alternating current or wits.
 a stady direwt cur. rent or voltare

in the wirnit. There may or maty mot be an acthal (ombertion to carth. but it is understood that :a point in the circuit said to be at ground potential conld be condered to earth without disturhing the uperation of the eireuit in any waly. In direet-current cirenits, the negative side gemerally is gromaded. The ground x ymbol in cirenit diagrams is used for convenience in imbiating common romeredions between varione parts of the rirenit, at through a metal chassis, and, with respect to actual ground, nsually has the meaning indicated above.

Vacuum Tubes

(1) 3-1 Diodes

Rectification - Practically all of the vacuum tubes used in radio work depend upon thermionic conduction (\$2-4) for their operation. The simplest trpe of vacuum tube is that shown in l"ig. 301. It has two elemonts, at rathode and a plate, and is ralled a diomb. When heated by the "A" battery the eathode cmits electrons, which areatracted to the plate if the plate is at a positive potential with resuert to the cat hode.
Berause of the nature of thermionic comduction, the tube is a comductor in one direction only. If a source of alternating voltage is connected between the rathode and plate, then electrons will flow only on the positive halfcycles of alternating voltage; there will be no electron flow during the hatf eycle when the plate is negative with resperet to the eathode. Thus the tube ratn be used as a ratificr, to change alternating current to pulsating direet current. This altermating current ran be antthing from the $60-$ yole kind to the highest radio frequencies.

Rectification finds its rhiof applications in detecting radio signals and in power supplies. These are treated in Chapters seven and Eight, respertively.

Characteristic curres - The performance of the tube can be reduced to easily umberstand terms by making use of tube characteristic curves. A typical characteristio curve for a diode is shown at the right, in liig. 301. It shows the current flowing betworn plate and cathode with difforent d.e. voltages applied between the elements. The curve of Fig. :001 shows that, with fixed cathode temperature, the plate current increasos as the voltage between rathote and phate is raised. For ato actual tube the values of plate curront and pate voltage would be photed along their respective axes.

The power consumed in the tube is the product of the plate voltage multiplied hy the plate current, just as in any d.e. cireuit. In a varumm tube this power is dissipated in heat developed in the plate and radiated to the bulb.

Fig. 301- Thu diode or two-element tulur and a typiral characteristic curve showing plate current vs. voltage.

Spare charge - With the cathode temperature fixed the total number of electrons emitted is alwars the same, regardless of the plate voltage. Fig. 301 shows, however, that loss plate current will flow at low plate voltages than when the plate voltage is large. With low pate voltage, ondy thase elertrons nearest the pate are attricted to the plate. The electrons in the space near the rat thole, being themselves negatively charged, tend to repel the similarly rharged electrons loating the rathode surface and ramse them to fall batek on the cathode. This is ralled the spmer-chargr efferet. As the phate voltage is raised more and more electrons are attracted to the plato. until finally the space charge effect is eomplotely weroome. When this orcurs all the relectrons emitted by the rathode are attracted to the plate, and a farther increase in plate voltange ean ratuse no further increase in mate current. This condition is called suluration.

(1) 3-2 Triodes

Grial control-If a third element, malled the combol ariel, or simply the grid. is inserted betwern the cathode and plate of the diode. the space-charge affect cam be controlled. The tabe then beromes at triwh (three-clament tube) and is useful for more things thath reatificalion. The grid is Hetally in the form of an open spiral or mosh of tine wire. If the grid is commerted externally to the rathonde so that it is at the same potential as the rathoude, and a steady voltage from : d.e. supply is then applied between the cat hode and plate (the positive of the " B " sup)ply is always (ombered to the plate), there will be a constant flow of electrons from cathode to plate through the openings of the grid, murlh :1s in the diode. Hownere, if the grid is given a positive potential with respert to the cathoule. the pare wharge will be partially neutralized and there will he an increase in plate enarrent. If the orid is made megative with respert to the rathode, the space charge will be reinfored and the current will dearease.

This effect of grid voltage ran be shown by enrves in which plate comrent is photted against. prid voltage. At any given value of grid voltage the plate current will still depend upon the piate voltage, so if complete information about the tube is to be secured it is necessary to plot a strise of rurves taken with various values of plate voltage. Such a set of grid voltage vs. plate current curves, typical of a small receiving triode is slown in ligg. 303.

So long as the grid has a negative potential with respect to the cathode, electrons emitted

Fig. 302 - Illustrating the construction of an elementary triode vacuum tube, showing the filament, prid (with an end view of the grid wires) and plate. The relative density of the space charge is indicated roughly by the dot drmsity. Battery symbols follow those of the usual selematidiagranse, white the sehermatic tuhe symbol is shown at the right.

by the cathode are repelled (\$2-3) from the grid, with the result that no current flows to the grid. Hence, under these comditions, the grid consumes m power. However, when the grid becomes positive with respert to the cathode, electrons are attracted to it, and a current flows to the grid: when this grid current flows, power is dissipated in the grid circuit.

In addition to the set of eurves showing the relationship betweon qrid voltage and plate curront at various fixed values of plate voltage, two other sots of curves may be plotted to show the charateristies of a triode. These are the plate voltage ve. pate current characteristic, which shows the relationship between plate voltage and plate current for various fixed values of grid voltage, and the constant-current characteristic, which shows the relationship, bet ween phate voitage and grid voltage for varions fixer values of plate current.

Implificalion - The rrid evidently acts an a value to mond rol the flow of plate current. and it is foumd that it has a much greater elfect on plate current flow than does the plate voltage; that is, a small ehange in grid voltane is just as effective in bringing about a given change in plate current as is a large ehange in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the prosibility of amplificrlion with the triode tube: that is, the generation of a large voltage be a small one, or the generation of a rilatively large amount of power from a small amomit. The many uses of the clecetronir tube dearly all are based upoat this amplifying feature. The amplified power or voltage output from the tube is obtalined not from the tube itself. but from the somere of e.m.f. connered betwernitsplate and cathode. The tube simply controls the power from this source, chamsing it to the desied form.

To utilize the eontrolled pewer, a device for consuming it, or for transierring it to another rireuit, mast be connected in the phate circuit. since no particularly useful purpose would be served in having the current merely flow through the tube and the source of c.m.f. Such a deviee is called the lomf, and may be either a resistance ar an impedance. The term "impedance" is frequendly used even though the load may be purcly resistive.

Amplification factor - The relative effect of the grid and plate voltages on the plate current is measured by the amplification factor of the tube, usually represented by the Greek letter μ. Amplification fartor is defined as the ratio of the change in plate voltage required to produce a given change in plate current to the change in grid voltage required to produce the same plate-current change. Strietly speaking, very smatl chatnges in both grid and plate voltage must be used in determining the amplification factor, beriase the curves showing the relationship between phate voltage and plate current, and between grid voltage and plate current, are not perfectly straight, especially if the plate eurrent is nearly zero. This indicates that the amplification factor varies at different points along the elurves, and different values will be obtainced as larger or smallar voltade diffrences are taken for the purnose of calculating it. The expression for amplitication factor ran be written:

$$
\mu=\frac{\Delta E_{p}}{\Delta L_{y}^{\prime}}
$$

where ΔE_{p} indirates a very small change in plate voltage and $\perp E_{u}$ is the change in grid voltage producing the same plate current chathge. The symbol Δ (the (ireek letter della) indicates a small increment, or small change.

The amplification factor is simply a ratio, and has no umit.

Plane resistance-Since only a limited amount of plate current flows when a given voltage is appliod hetween plate and cathode, it is evident that the piate-rathode circuit of the tube has resistance. Huwever, there is no simple relationship hetween plate voltage and plate current, so that in general the plate circuit of the tube does not follow Ohm's Law. Under a given set of conditions the application of a given plate voltage will cause a certain plate current to flow, and if the plate voltage is divided by the plate current a "resistance" value will be oht:and which frequently is called the "d.e. resistance" of the tube, This "d.c. resistance" will be different for every value of plate voltage and also for different values of grid voltano, sinco the plate current also depends upon the grid voltage when the plate voltage is fixed.

In atpplications of the vacuman tube, it is more

Fig. 303 - Grid voltapd viblate current dorves at various fixed values of plate voltage ($f=i=$) for a typical sinall trionc. Characteristic curves of this type can be tak+n by varying the lattery voltages in the circuit at the ripht.
important to know how the plate current changes with a change in plate voltage than it is to know the relationship between the actual values of plate current and pate voltage. The relationship between plate-current change and pate-voltage chanure dotermines the a.c. phate resintabere of the tuler. "lhis resistaner, whimhusually is designated r_{p}, is significant when there is an ace component in the phate current. It san le foumd from the mate voltage vis. plate reurrent chamatoristic amores. That is,

$$
r_{p},=\frac{\Delta E_{p}}{\Delta I}
$$

Whore $د F_{i}$ is a small change in plate voltage and $\perp I_{p}$ the correspombing smatl change in phate current, the grid voltage being fixed.
late resistance is expresiod in ohms, since it is the ratin of voltage to current. The value of plate resintathe will. in gencral. change with the particular woltages applied to the plate amd grid. It depermes as well upor the structure of the tube: low-a tuber have relatioely low pate resistance and high- μ tuhes hare high plate resistamer.

Transeomblurtaner- The effert of gride voltage upon plate eurrent is cexpressed be the
 comductance is asemeral term giving the relationship Betwoen the voltage applied to one eheefrome allel the morent whid fows, as a result, in at secombleredronto. Is in the previous
 thromgh the serobul mectronto ramsed by a change in voltage on the first. Thus the eridplate tramsombluctance, ermmonly callent the multul comelurtormer, is

$$
g_{m}=\frac{\Delta I_{p}}{\Delta E_{p}^{\prime}}
$$

Where $g_{\text {w }}$ is the mutual condurtanme. $\perp I_{p}$ the change in plate rurrent, and $D E$ the change in grid voltage, the wate voltage being fixed. As before, the sign $د$ imblieates that the changes must be smatl. Tramseombuctance is meationed in mhes, simme it is the ration of current to voltage. The mit usually cmployed in conmeetion with varuan tuthes is the micromhen (one mil-
 smatl. By combinime with the two procoling formulas. it can be shomb that $g_{m}=\mu r_{g}$.

The mutnal comdurtame of a thore is a mough imdication of its merit as an amplilere, sime it

 varions fixed salum of mozation grid woltage for the same trionde as lhat uned to ohtain the curves in lig. 303.
includes the effects of both amplification factor and plate resistance. Its value varies with the voltages applied to the plate and grid. With the plate voltage fixed, the mutual conductance derrases when the grid is male increasingly nogative with respert to the eathode. This chamacteristic frequently can be used to advantage in the control of amplification, since the amount of amplification can be varied over wide limits simply by adjusting the value of a steade voltage applied to the grid.

Static und dynamir rurres - Curves of the type shown in Figs. 301 and 303 are called static rurves. They show the rument which flows whon various voltares arr applied directly to the tube clectrodes, Amother useful set of statice curves is the "plate family," or plate voltage w. pate curment whateristic. A trpical set of curves of this type is shomen in Fig. :30\&.

A curve showing the relationship between grid voltage amd plate romenent when a load resistance is commeeted in the blate rircuit is called a d!!umir rhatateristic rurve. surb a curve inclumes the efle of the load resistatmere and hemee is mome indieative of the performante of the tube as ant amplifior. With a fixed value of paterexpmly sultane the actual value of voltage betwern the plate and cathode of the tube will deperd upon the amount of plate current flowing, silne the bate current ather fluss throurh the latad resistathen and therefore resolds in a boltage drop which must he suhtracterl from the phate-supply waltage. The denamice curve inchades the affere of this woltage drop. Consequmotly, ther fato amrent alwats is lower, for at given value of erid hias and plath-supply voltago with the hoad resistance in the cirenil than it is without it.

Ropmesplation dymanic chatachoristios are shown in loige 30.: 'Thwo were tothen with the sathe 190. of luthe whase statio rave atre shown in lois. Bus3. Iblfirent abrves would be ohtained with difforent values of plallo-suphly

 value of the lasal resisiance redares the pate curroll al a \& Piven biat vollase, and also that the cumverarestaighore with the higher values

 sime al zero plate current there is mo vollage (low in the load resistallere almd the lull supply woltage is : apliod to ther patio.

Fig. Bon show: hom the plate anment responds to all allomating voltage (signol) applied to the grid. If the plate current is to have the same wasersape as that of the signal, it is Heressaty the confithe the operation to the straght seetion of the curve. Tor dor this, it is nowessary to seldect an mproting pmind ne:r the midelle of the staight pertion: this opmating point is detemmend hy the fixel voltage dbina) applien to the grial. 'llar altombather signal voltage then adde to or sulntracts from the grid bias, depending upon whether the instantane-
ous signal voltage is negative or positive with respert to the rathonle, and ratuses a porresponding variation in plate current. The maximum departure of instantaneons grid voltage or plate current from the opreating point is ralled the swing. Tha varving plate current flows through the lame resistanor, causing a varying voltage drop whirh constitutes the useful output woltane of the tuxe.

The print at which the plate current is reduced to zero is rallow therent-ad print. The value of negatice grid voltage at which euteoff orcure depembe upon the amplification factor of the tube abd the plate voltage. It is apmosi-
 vided bey the amplification fartor.

Interslectrome apmailios - Aug pair of elements in a tuhe forms a miniature eondenser (尽 2-:3), and, although the raparitios of these condensers m:sy be only a fow midromicrofarads ur lose they must frequently be taken
 parity from grial to plate (arid-ulute cupurit!) has an impurtant affat in mans appliattions. In triondes. the other reapacities are the griatcathould and plute-altumb. In multi-aloment tubes (s:-6), similar raparitios exist betweron these amb other celectrondes. With sarecti-grid tubes, the forms "input" and "ontput" catparity meath, respertively, the aparity mosasured from grid to all wher chements connereded together and from phate to all wherer elaments eommered trgother. Ther same torms are used with triondes hat are bot sur asily defincol, sime the effertive reparditios existing deprend upon the operating comblitions (s:--: $\%$).

Tube ratings - sumedications of suitable operating voltages amb curents are called tab ratings. Ratings inehule proper values for lilament or heater woltage and carrent, plate valtage and current, ath! similar operating speritications for other elemonts. In important rating in power tuhes is the meriturn"m semp plato dissipation, or the maximum power that rath he dis-

(1. 3-3 Amplification

I'rincigoles - The opreration of a simple amplifier, which was dexrobed hriclly in the preceding section, is shown in more detail in ligg. 307. The lond in the pate cirenit is the resistor, $\boldsymbol{R}_{\mathfrak{p}}$. For the sake of example, it is aswamed that the phate-supply voltage is 300 volts, the megative grid bias is a volts, and the plate courrent at this hists when h_{p} is inoon ohms is "2 milliamperes (0.0002 amperere). If mosignal is applied to the grid eiment. the soltage drop in the luad resistor is $\overline{2} 0,(H 0) \times 0.002$, or 100 volts, leaving 200 volts betwern the plate and rathode.

If a sine-wave sigatal having a peak value of 2 volts is applied in sorios with the bias voltage in the grid rirenit, the instantaneons voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak and to -7 volts at the instant the signal reaches its negative peak. The maximum phate current
will oceur at the instant the grid voltage is -3 volts and, as shown by the graph, will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35

Fip. 30: - I youmic chararteristics of a small triode with varions load resistamees from 5.000 to 100.0000 ohms.
mat. It intermediate values of grid voltage, intermediate phate-eurrent values will occur. The instantaneous voltage between the pate and Mathoule of the tube atso is shown on the graph. When the plate rurent is maximum the instantameons voltage drop in h_{p} is $50,000 \times$ 0.0026 or $1: 32.5$ volts, and when the plate current is minimum the instantaneone voltage drop in K_{p}, is $\left.\overline{2} 0,000\right) \times(0.00135$ or 67.5 volts. The atetaal voltage betworn phate and cathorle is therefore the difference between the platesumply voltage, 300 volts, : and there voltage drops in the lomed resistance, or $167 . \overline{5}$ and $2: 32.5$ volts, respectively.

The varring plate voltage is an a.e. voltage superimposed (s 2-1:i) on the steady platecathode voltage of 200 volts. which was previously dotermined for mo-signal conditions. The peak value of this acr. output voltage is the differenee betwere dither the maximan or minimum plate-cathone voltage amd the nosignal value of 200 volte. In the illustration

 a peak value of 2 volts, the voltane amplificat tion ratio of the amplifier is 32.5 or 16.25. That is, approximately 16 times as much volt-

Fig. 306 - Behavior of the plate current of a vacumm tulve in response to an alternating xignal voltage superimpused on a steady nepative grid voltage or hias.

Fijg. 307 - Implifier opreation. When the phate rurrent varies in respemene to the -iphal applied to the prid, a varying voltage drep aproars acrose the lowd, R_{p}, as diown by the da-hed curvi. lip. I_{j}, is the plate current.
age will be ohtained from the plate rireuit as is applied to the grit cirnuit.

It will be ohserved that only the alternating plate and mrid voltages enter into the caldulation of the amplifeation ratio. The d.e. Mate and grid voltages are of conrse essential to the operation of the thbe, sine they set the operating point, but of herwise their preseners may be ignored. This being the case, it is possible to show that the thbe call be replawed by an equivalent of turator which has an internal resistance equal to the aler. plate resistamer of the
 which gemerates a voltage equal to the amplifieation factor of the tobe multiplied by the signal voltage applied to the grid. The equivalent gromentor, tegrethor with the lomd resistance, R_{j}, is shown in lig. : Bos. This simplifieation enablos ready anlenlation of the amplifieation. If the gemerated volatare is μ li, 1 , then the same rompoll fows thomarh r_{p} and h_{i}. and hence the voltage drop :ueross R_{p}, which is the useful output voltage. is

$$
E_{0}=\mu I_{i y} \frac{l_{1}}{i_{p}}+\overline{l_{j}}
$$

 is given be the output voltage livided he the input vollase herow diviling the abown ax-
 the amplitiantion of the buts:

$$
\text { Amplification }=\frac{\mu R_{p}}{r_{p}+R_{p}}
$$

This expression shows that, to obtain a large voltagreamplifieation ratio, it is merossary to make the plate load resistace, $h_{p,}$, large compared to the phate westanner, r_{p}, of the tube. The maximum possible amplification, obtained when R_{p} is infinitely langer than r_{p}, is equal to the μ of the tube. A tube with a large value of μ will, in wemeral, give more voltage amplitiation than oute with a medium or low value. However, the advantare of the high μ is less than might be experted: becallse a high- μ tube usuatly also has a correspondingly high value of r_{p}, so that a high value of load resistance must be used to realize an appreciable part of
the possible amplification. This in turn not only requires the use of high values of plate-supply voltage, but has some further disadvantages to be described later.

Amplifiersin which the volt:ugeontput, rather than the powre outpit, is the primary considnration are called pollage ampificrs.

Power in zrid circuit - In the operation depicted in Fig. 30t, the grid is: always negative with respect to the wathode. If the peak signal voltage is larger than the bas voltage, the grid will be positive with respert to the cathode during part of the sigmal cyelc. (irid current will flow during this dime, and the signal somere will be called upon tor furnish powor during the proiod while grid current is flowing. In many (atses the signal somere is not capable of furnishiing appreciable powar, so that rare must be taken tor avoid "driving the grid pesitive."

When dealing with small signals the somere of signal voltage fropuently has high internal resistane so that a monsiderable voltage drop ormes in the sumpe itself whenere it is called u!wn to furnish grid eurent. Sinue this voltage drop oceurs mbly during part of the evele, the voltage applied to the grid undergeses a change in waveshape ber:ase of the curment fow. This is shown in Fig. : :b!, where a sine-w:ave signal is generated but, beramie of the internal resistance of the sumere is distortalat the grid of the tube during the time when grid current flows.

If the intermal resistance of the signal source is low, so that the internal voltage drop is megligithe when curvent flows this distortion dare not oeror. With such a somere, it is possible to uperate wer a greater portion of the amplifer charactoristie.

Ilarmonie distorlion - If the operation of the thine is not confined to a straight or linear portion of the dyamme characteristie, the Waverhape of the whtme voltage will mot be exactly the same ats that of the signal voltage. This is shown in ligy :310, whore the operating point is selected so that the sigmal voltage swings into the curved part of the characteristic. While the upper half-evele of phate courrent reproduces the sine-water shape of the punitive half-reve of signal voltagre, the lower hati-erole of phate rurrent is eonsiderably distorted and bears lit the resemblane to the upper halferve of phate current.

As explained in $2-7$, a non-simmondal waveshape can he resolved into a mumber of sinewave eomponents or harmonies which are interaral multiples of the lowest frepuency present. Consequently, this type of distortion is known as harmonic distorthm. Distortion re-

Fig. 3us - Vequivalent cirruit of the vatum.
 thle is replanod by an equivalen! wemerator having an internal rusistancerequal tuthe a.r. plate resistathe of the vicumm tube.
sulting from grid-eurrent flow, described in the preeeding paragraph, also is harmonic distortion. Harmonic distortion from either or both eauses may arise in the same amplifier.
Harmonie distortion may or may not be tolerable in an amplifier. At andio frequencies it is desirable to keep harmonic distortion to a minimum, but radio-frequency amplifier: are frequently operated in such a way that the r. f. wave is greatly distorted.

Frequency disiortion - Another type of distortion, known as frequency disturtion, wrcurs when the amplification varies with the frequency of the a.c. voltage applied to the grid circuit of the amplifier. It is not necessarily accompanied by harmonic distortion. It can be shown by a frequency-respunser curve or graph in which the relative amplification is plotted ag:anst frequency over the frequency range of interest.
Resistance-coupled amplifiers - An amplifier with a resistance load is known as a "resistance-coupled" amplifier. This tybe of amplifier is widely used for amplitication at audio frequencies. A simplifiod circuit is shown in Fig. 311, where the amplifier is coupled to a following tuke. Since all the power output of a resistance-coupled amplifier is consumed in the load resistor such amplifiers are used almost wholly for voltage amplification, usually working into still another :mplifier.

A single amplifier is called a stage of amplifieation, and a number of amplifier stages in surcession are said to be in cascade.
The purpose of the coupling condenser, C_{c}, is to transfer to the grid of the following tube the a.c. voltage developed across R_{p}, and to prevent the d.c. plate woltage on tube 1 from being applied to the grid of tube B. The grid resistor, h_{0}, transfers the hias voltage to the grid of tube B and prevents short-circuiting the a.ce. voltage through the hias battery. sine mongrd current fonss, there is no d.e. voltage drop in R_{u}; conseruently the full bias volrage is applied to the grid. In order to obtain the masi-

Fig. 309 - Distortion of apphied signal hreause of gridcurrent flom. With the operating print at 3 volts urgalive hias, krid current will flow as shown by the curse whencerer the applied signal voltage is more than 3 volts positive. If there is appreriahle internal resi-tance, as indicated in the serond draming, there will he a voltage drop in the resistanere whenever current is flowing hot not during the perion when no current flows. The innal will reach the qrid unchanged so long at the instantaneonvoltage is less than 3 volts positive, but the voltake at the grid will be less than the instantaneous voltage when the latter is above this fipure. The shape of the negative half-cycle is unatered.

Fig. 310 - Harmonic distortion resulting from choice of an operating pint on the curved part of the tube characteristic. The lower half-cycle of plate eurrent does not have the same shape as the grid voltage cansing it.
mum ace voltage at the grid of tube B the reactance of the coupling condenser must be smatl compared to the resistance of R_{v}, so that most of the voltage will appear across R_{σ} rather than across C_{c}. Also, the resistance of R_{d} must be large compared to h_{r}, becaluse, so far as the ac. voltage developed in h_{p} is concorned, R_{0} is in parallel with h_{n}, and therefore is just as much a part of R, as though it were comberted directly in parallel with it. (The impedance of the plate-supply battery is assumen to be negligible, so that there is no a.e. voltage drop between the lower end of R_{p} and the common enmertion between the two tubes.) In practioe the maximum usable value of K_{0} is limited to from 0.5 to about 2 megohms, deprading upon the characteristics of the tube with which it is associated. If the value is made tow hingh, stray electrons collecting on the grid may mot "leak off" back to the cathode rapidly emough to prevent the accumulation of a neg:tive charge on the grid. This is equivalent to an increase in the negative grid hias, and hence to al shift in the operating print.

The equivalent circuit of the amplifier now includes C_{c}, R_{v}, and a shunt capacity, C_{s}, which represents the input capacity of tube B and the plate-cathode capacity of tube A, together with such stray caparity as exists in the rirenit. The reactance of C_{a} will depend upon the frequency of the voltage being amplified, and, since C_{s} is in parallel with R_{p} and R_{v}, it also becomes part of the load impedance for the amplifier. At low frequencies - helow 1000 rycles or so - the reatance of C_{0} usually is so high that it has practically no effect on the amplification, but, since the reactance decrenses at higher frequencies, it is fomm that the amplification drops off rapidly when the reatance of $C_{\text {a }}$ becomes comparable to the resistance of R_{p} and R_{g} in parallel. To maintain the amplification at high freguencies, it is necessary that R_{p} be relatively small if C_{s} is large, or that $C_{\text {s }}$ be small if R_{p} is large.

Under the best conditions, in practice C_{8} will be of the order of $15 \mu \mu \mathrm{fd}$. or more, while it is

THE RADIO AMATEUR'S HANDBOOK

possible for it to reach values as high as a few hundred $\mu \mu \mathrm{fd}$. The larger values are encountered when tube B is a high- μ triode, as doscrihed in a later paragraph. Even with a low value of shant eapacity, the shunt reactance

will derease to a rommaratively low value at the upper limit of the :andio-frepueney range: a shunting eapacit! of $20 \mu \mu \mathrm{fl}$., for example, represents a reartance of about 0.5 megrohm at s , (0) (e) ereses, and hence is of the same order as $h_{\text {f }}$ for the type of tule with which surh a low value of rapurity would he assoriated. In order to seerere the same amplification at high as at low frequencies, therefore it is neressary to sacrifice low-fremuency amplifieation by reducing the value of R_{p} to the peint where the reactance of f_{s} at the highest frecumeny of interest is comsiderably latger than K_{p}.

At ratho frogumens the reatente of C_{s} hofomes sulow that the anoment of amplification it is possible to ratioe is negligible eompared to that whieh can be ohtained in the audiofrequency range. The resistance-coupled amplifier. therefore is nsed principally for adudofrequers. ${ }^{\circ}$ wark.

Imperlance-compled amplifiers - If sither the phate resistor or grid resistar (or both) in the amplifier deseribed in the preeceding paragraph is replared hy an inductance, the amphifier is sad to he i mpedanee-ernuped. 'The inductance or impedanere is commonly substituted for the plate loarl resistor, so that the asmal rimenit for such an amplifier is as given in lizg, $31 ?$.

Considering the operation of the tube from the standpoint of the equivalent cirenit of Fig. 30s, it is evident that a voltage drop would exist across a reareance of suitablab value substituted for the indieated load resistance, R_{p}, so long as the outphit of the gemerator is alternating current. From the physical standpoint, any change in the eurront flowing through the indurtance in ligg 312 would canse a selfinduced e.m.f. having a value proportonal to the rate of change of current and to the indurtance of the eoil. Consequently, if an a.c. signal voltage is applied to the grid of the tube, the rosultant variations in plate durrent rause a corresponding ace. voltage to appear across
the coil terminals. This induced voltage is the useful output voltare of the tube.

The amplitude of the output voltage ean be ralenated, knowing the μ and phate resistance of the tube and the impedance of the load, in mueh the same way as in the case of resistance coupling, excopt that the equation must he modified to take aroount of the fact that the phase relatimship bet ween current and voltage is not the same in an impedane as it is in a resistance. In praction, the plate load induetancer is shanted by the tabe athe stray eapacities of the crirenit as wellats byits own distributed raparity. Since the greatest amplifieation will be secured when the lowd impedance is as high as possible, the coi! usually is made to have sufficiont inductame su that. in eombination with these shmenting mpacities. the circuit as a whole will be parallel-resonant at some frequeney near the middle of the athdio-frequency range. louder these ronditions the load impedanore hats its highest presible value, and is appoximately resistive rather than reactive.

The eqnation for amplification with resistance conpling shows that, when h_{p} is several times the phater resistanee, r_{n}, a further inerease in h_{p}, results in comparatively little inerease in amplifeation. The loan cirenit, of an imped-atoce-coupled amplifier usuatly has an impedane verlue quite high in comparison to the phate resistanere of the thbe with which it is used, so that the load impedane can vary over a considerable range without murh effere on the ampliliation. 'This wives the impedanereeropled amplifier andmplifation ves frequency characteristio which is fairle "flatt" - that is, the amplification is practieally eonstant with chatures in freguency- - were a considerable portion of the amdio-frestueney range. However, the performaner of the impedanereompled amplifior is not as groed in this resperet as that of a well-designod resistance-coupled amplifier.

If the impedanere of the losd rirenit is high compared to the plate resistane of the tube, which will be the ease if the tube is a low- μ triode and normal imductamere values (a fow humded hemrys) are used in the plate circuit,

the amplification in the aptimum frequency range will be pratetically equall to the μ of the tube. At lower frequencies the impuedance deeroases beratise of the deremaing reactance of the erol, while at higher frequeneies the impedanme again decreases becanse of the decreasing reacelace of the shont caparitios. Thus the amplitication drops off at both ends of the range, asually more rapidly that with resistance eoupling.

The frequency-response characteristic of the impedance-coupled amplifier depends considerably upon the plate resistance of the tube. If impedance coupling is used with tubes of very high plate resistance, the response will be markedly greater at the resomant frequeney than at frequencies either higher or lower.
lmpedance complitg can be used at ratio frequencies, since the indurtance can be adjusted to resonate with the shunt capacities at practically any desired frequeney.

Transformer-compled amplifiers - The coupling impedance in Fig, 312 maly be replaced by a transformer, eommered as shown in Fig. 313. A.c. voltage is developed across the primary of the transformer in the same way as in the case of impedance coupling. The secondary of the transformer serves as a means for transferring the voltage to the grid of the following tube, and if the secondary has more turns than the primary the voltage across the secondary terminals will, in general, be larger than the voltage aross the primary terminals.

As in the canse of impedance compling, the effective eapacity shunting the primary of an audio-frequency transformer usially gaves the primary cireuit to be parallel-resonant at some frequency in the middle of the audiofrequency range. At the medium alldio freguencies, therefore, the voltage across the primary is pratically equal to the applied grid voltage multiplied by the μ of the tabe. The voltage across the secondary will be the primary voltage multiplied by the seromdary-toprimary turas ratio of the tramsommer, so that the total voltage amplification is μ times the tums ratio. The amplification at low freguencies depermes upon the ratio of the primary reactance to the plate resistance of the tabe, as in the case of impedame-coupled amplifiers.

At some high frequen'y, usually in the range $5000-10,000$ ceycles with ordinary transformers, the leakige inductance ($\$ 2-9$) of the secondary becomes sories resonant with the affertive capacity shunting the secondary. At and near this resomant frequeney the resonant rise in voltage may increase the amplifiation considerably, giving rise to a "peak" in the frequency-response curve of the amplifier. At frequencios above this resonathe point amplification derreases rapidly, berallse as the reactance of the shonting capacity derreases it tends to act more and more ats a short cirenit aeross the secondary of the transformer. The relative height of the high-frequeney peak depends principally upon the effertive resistance of the secondary circuit. This effective resistance includes the actual rosistance of the secomdary coil and the "reflectod" ($\$ \mathbf{S}-3$) plate resistance of the tonbe, this resistane being in parallel with the primary of the trameformer. (onserpumaty, the height of the peak is affected be the thbe with which the transormer is used. The peak ran bereduced by connerting a 0.2.5 to 1 megohm resistor across the transformer scoondary. While this helps to flatten the fre-
quency response eurve, it also reduces the amplifieation at modium and low frequenceres.

Triusformer coupling is most suitable for triodes of low or mediunn μ and having medium values of plate resistance. This is becanse the primary inductaned required for good amplification at low frequencies is proportional to the phate resistance of the tube with which the transformer is to be used, and in practice it is difficult to ohtain high primary inductance, a large second:ary-to-primary turns matio ("step)up ratio"), and low distributed capacity in the windings all at the same time. Increasing the primary inductane usually means that the turns ratio must be reduced, beanase the increase in distributed cambeity as the coils are made larger tends to bring the resomant peak down to a relatively low frequency unless the secondary inductance is decrased to compensate for the inmease in capacity. The step-up ratio sedum is more than 3 to 1 in transformers designed for good frequency response.

Tramsformer compling can be used at radio frequencies if the tramsformers are properly designod for the purpose. la such transformers cither the primary or secondary (or both) is made resonatate at the lirequency to be used, so that maximum amplification will he secured.

Phase relations in plate and srid circuits - When the exciting voltage on the grid has its maximum pusitive instantaneous value, the plate current also is maximum ($\$ 3-2$), so that the voltage drop arross the resistance connerted in the plate circuit of a resistancecoupled amplifier likewise has its greatest value. The actual instantaneous voltage betweren pate and cathonde is therefore minimum at the same instant, herause it is cyual to the d.c. supply voltage (which is unvarying) mimus the voltage drup a aross the load resistance. When the signal voltage is at its negrative peak the plate current has its least value, with the result that the voltage drop in the load resistance is less than at amy other part of the eryele. At this instant, therefore, the voltage between plate and cathoule is maximum.

These variations in plate-cathome voltage constitute the al.c. output of the tube, superimposed on the mean or no-signal plate-cathode voltagr. Since the alternating plate-cathode voltage is decreasine when the instintaneous grid voltage is increasing (beoming more positive with respect to the athode), the output voltage is less than the mean value, or negative, when the signal voltage is pasitive. Likewise, when the sigmal voltage is negative the output voltage is positive, or greater than
the mean value. In other words, the alternating plate voltage is 180 degrees out of phase with the alternating grid voltage. Thus there is a phase reversal through the amplifier. The relationships should hecome alear from the behavior of the signal voltage and k_{p} in Fig. 307.

The same phase relationship between signal and output voltages holds when the amplifier is impedance- or transformer-coupled, in the frequency region where the load arts like : parallel-resonant circuit. Howewr, if the load is reartive the phase relationship) is not exactly lso degrees hut dopends apon the kind of reactance present and the relative amounts of reactance and resistance. (This is true atso of the resistanerecoupled amplifier at low frequencies where the reactance of the roupling condenser affects the amplification, or at high frequencies where the radatuce of the shantfing eapacities becomes important.) since the reactance varies with the applied signal froquency, the phase relationship Intweon signal voltage and output voltage deponds upon the frequency in such cases.

Inpui capacis. and resistanore - When an alternating voltage is applied between the grid and cathode of an amplifier lube, an alterenating current fows through the small comilenser formed by these eloments ($\$ 3-2$) just as it would in any other condenser. similarly, an alternating current also flows in the condenser formed by the grid and plate, since there is an alternating difference of potential botwoen these elements. Whon the tube is :mplitying. the alteruating phate voltage and sigmal voltage are effectively applied in series aness the gridplate condenser, as indiated in Fig. 314. As described in the preceding paragraph, in the resistance-coupled amplifier the two watages are out of phase with respect to the cathode, but inspertion, of the circuit shows that they are in phase sof far as the grid-phate condenser is concerned. Consequently, the voltage applied to the grid-phate capacity is the sum of the alternating prid and phate voltages, or $E_{g}+b_{p}$. Since E_{i}, is equal to $A \times E,{ }_{B}$ where A is the voltage amplitiontion of the tabe and cireuit, the a.c. voltage leetween the grid and phate is $E_{0}(1+A)$. The curront. I. flowing in the mrid-plate eaparity is $E_{y}(1+1)$ divided by the reactance of the grid-plate comdenser, and thus is proportional to the grid-piate cepacity.

The signal voltage must help in cansing this relatively large current to flow, and, since the reactance as viewed from the input circuit

Vif. 314-The a.t. voltage appearing betwern the wrid and plate of the amplifier is the sum of the signal voltape and the outpht voltage, as shown by this simplified circuit. Inetantancous polaritice are indicated.
is $X_{0}=E_{0} / I$, the input reactance becomes smaller as the current becomes larger. That is, the effective input eapacity of the amplifier is increasel when the tube is amplifying. From the above. the increase in input eapacity is approximately proportional to the voltage amplification of the circuit and to the grid-plate capacity of the tube. The total input capacity is the sum of the grid-cathode capacity and this additional effective eapacity. The total input capacity of an amplifier may reach values ranging from 50 to a few hundred micromicrofarads, if the voltage amplification is high and the arid-plate capacity relatively large. Both usually are true in at high- μ triode.

When the loan is reatetive the a.c. grid and plate voltages still atet in series across the gridplate comedener, bit since they are mot exactly 1 so degrees out of phase with respect to the cathole ther are not exactly in phase with respect to the grid-phate capacity. The lack of exart phase relationship indicates that resistance as well as caparity is introduced into the mput circuit. Analysis shows that, when the reactance of the load circuit is rapacitive, the resistance component is positive - that is, it represents a loss of power in the input circuit - and that when the losad circuit has indactive reactance the resistance eomponent is negative. Negative resistance indicates that power is leing supplied to the grid cirenit from the plate.

Fred-bark - If some of the amplified energy in the plate rircuit of atn amplifier is coupled back into the gride circuit, the amplifier is satiel to have foed-buck. If the voltare fed from the phate rirenit to the gride circuit is in such phase that, when it is added to the signal voltage already existing, the sum of the two voltages is larger than the original signal voltage, the feed-back is said to be positive. Positive feed-tatek usually is called regencration. If regeneration exists in a circuit the total amplifation is increased beanse the feed-back increases the amplitude of the signal at the grid and this larger signal is amplified in the same ratio, giving a greater output voltage than would exist if the signal voltage alone were prosent in the grid circuit. Many types of rircuits can be used to secure positive feedback. A simple one is shown in Fig. 315. The fed-hack coil, L, a third winding on the gridcircuit transformer, is connected in series with the primary of the transformer in the plate circuit. so that some of the amplified voltage appears across its terminals. This induces a voltage in the secondary, s, of the grid-circuit transformer which, if the winding directions of the two coils are correct, will increase the value of signal voltage applied to the grid.

Positive feed-back is accompanied by a tendency to give maximum amplification at only one frequency, since the feed-back voltage will tend to be highest at the frequency at which the original amplification is greatest. It therefore increases the selectivity of the amplifier, and hence is used chiefly where high gain
and sharpness of resonance both are wanted.
If the phase of the voltage fed back to the grid circuit is such that the sum of the feedback voltage and the originat signal voltage is less than the latter alone, the feed-back is said to be negatior. Negative feed-back frequently is called degeneration. In this rase the total amplification is decreased, since the grid sisnal has been made smaller, and hence the amplitied output voltage is smaller for a given original signal than it would be withont feed-batek.

The amount of voltage fed batek will depend mpon the actual amplification of the tube and circuit, and if the amplification ratio tends to change, as it may at the extreme high or low frequencies in the andin-frequenty range, the feed-back voltage will be reduced when the amplification decreases. F'or example, suppose that an amplifier has a voitage gain of 20 and that it is delivering aln output voltage of 50 volts. Without feed-back, the grid signal voltage required to procluce 50 volts output is $50 / 20$ or 2.5 volts. Rut suppuse that 10 per cent of the output voltige ($\overline{6}$ volts) is fed back to the grid circuit in opposite phase tor the applied grid soltage. "Then, sine it is stit necessary to hate a 50 volts output, the applied voltage must be $2.5+5$ or 7.5 volts. Now suppose that at some other frequeney the voltage gain drops to 10 . Then for the sime so-volt output as 5 volt signal is required, but sinme the feed-batek voltage is sill \boldsymbol{i} volts the total required signal is now 10 volts. With frod-back the gatin in the
 second rase 50 l0 or 5 , the gatin in the seerond case being 7 of per cent as high as in the first. Without feed-hatek the grain in the secomd rase was do per cont as high as in the first. The effert of feed-back therefore is to make the resultant gain more uniform, despite the tendency of the amplifier itself to discriminato against certain frequencies.

Negative feed-back also tends to decrease harmonie distortion arising in the plate eirenit of the amplifier. This distortion is present in the amplified output voltage. but not in the original signal voltage applied to the grid. The voltage fed bark to the grid cirenit contains the distortion but in opposite phase to the distortion components in the plate rirenit, hene the two tend to cancel each other. For similar reasons. the over-all amplification is less dependent upon the value of load impedane used in the plate circuit ; in fact, if a large amonnt of negative feed-back is used in an amplifier it is even possible to substitute tubes of rather widely different characteristias without much effert on the over-all prormanme.

Both positive and negative feed-baek may be applice over several stages of an amplitier, rather than being applied dirertly from the plate circuit to the grid circuit of at single stage.

Pouer amplification - In the types of amplifiers previonsly deseribed, the chief consideration was that of securing as much voltage
gain as possible within the permissible limits of harmonic distortion and frequency response characteristic. Such amplifiers are principally used to furnish an amplified signal voltage, which in turn can be supplied to a succeeding amplifier. If the succeeding amplifier is operated in surh a way that its grid is never driven positive with respert to its cathode, grid current does not flow, and hence the power requirements are negligibly small. However, if an amplifier is used to actuate some power-consuming levice, surh as a loudspeaker or a surceeding amplifier in whirh it is permissible to drive the grid into the positive region, the primary consideration is that of obtaining the maximum power output consistent with the permissible distortion. In such a case the voltage at which the power is secured is of little consequence. since a transformer may be used to change the voltage to any desired value, within reasonable limits. Hence, the voltage gat of a power amplifier is of little importanere.

In powror-amplifier operation the grid may or may not be driven into the positive region, depending upon the particular applisation. The present discussion will be confined to the trionle amplifior operating without grid current: other types are considured in $\$ 3-4$. The principles upon which such a power amplifier operates are practically identical with those already desaribed. The chief differemes between a voltage amplifier and a power amplifier lie in the selection of tubes and in the choice of the value of lo:ud resistance. As previously described, if voltage gain is the primary consideration the load resistame shoula be as large as possible in comparison to the plate resistance of the tube. It can be shown that, in any electrical eirruit. maximum pourer output is secured when the resistance of the load is made equal to the internal resistance of the sonare of power. This is true whether the power source is a battery, a generator or a varumm tube. In the ease of the vacuum tube the internal resistance is the plate resistance of the tube, so that for maximum power output the luad resistance should be made equal to the plato resistame. However, when the tube is operated with so low a value of load resistance there is considerable harmonie distortion, and optimum power output. representing an arerptable compromise between distortion and the power obtainable, is seaured when the load resistance is approximately twide the plate resistance.

Pig. 315- In elementary form of feed-back circuit. 'The feed-back may be either positive or negative, depending upon how the coil L is connected in the circuit. This type of circuit illustrates the principle of feed-hack, but it is not practical for use in an actual audio-frefucncy amplifier.

Pouer-amplifier circuits - The plate or output eircuit of a power amplifier almost invariably is transformer-coupled to the powerconsuming device or load with which it is associated. This is because the impedance of the desired load seldom is the proper value for obtaining optimum power output from the amplifier. Consequently, the load impedance must be changed to a value suitable for the plate cirenit of the amplifier tube. This ran be dome hy the use of transformers, as deseribed in § 2-9.

Fis. 316 - An elommary mower amplifier circuit in which the power-emsuming load is compled to the plate circuit through an impedance-matching transformer.

A basic power-amplifier circuit is shown in Fig. 316 . So long as the amplifier is operated entirely in the negative-grid region and no grid current flows, any of the previously described types of coupling may be usod botwern the grid of the power amplifier and the precoding amplifier. If there is no proereding amplifier, the method of compling will depend primeipally on the characteristies of the souree of the signal.

In Fig, 316 the lomd is represented as : resistance. An atotual toad may have a rearmance as well as a resistance eompmont, but only the resistance will (onsume power (s コ-心).

Pouer amplifirntion rutio - The ratio of a.c. output prower the the. power comsumed in the grid eirenit (driving pomer) is called the poner amplificution ratio or simply parar amplificatione of the amplifier. If the amplifier operates without arid current the :ace power consumed in the grid cirenit is negligibly small, so that the power amplification ratio of such an amplifier is extremely large. With other types of operation the power amplification ratio may be relatively small, as desirribed in $\$ 3-3$.

Plate rfficionc- - The ratio of :1.e. witput power to the d.e. power supplied to the phate cirent is called the plate efficioney ol the amplifier. It is expressed as a percentage:

$$
\% \text { plate efficiency }=\frac{P^{\prime} \prime \prime}{E^{\prime} I} \times 100
$$

where I_{0} is the a.e output power, E the phate vollage and $/$ the pate eurrent, the latter two being d.c. values.

The plate efficioncy of amplifiers designed for minimum distortion and a high power amplifieation ratio (operation without grid courrent) is relatively low - of the order of 15 to 30 per cent. For minimum distertion the operation must be confined to the region where the Waveshape of the alternating plate current is substantially identical with that of the signal on the grid, and, as previously explained, this requirement can be met only by limiting the
plate-current variations (that is, the altermating component of plate current) to the straight portion of the (lynamic grid voltage vs. plate current characteristic. Since with a given load resistance the power output is proportional to the square of the alternating eomponent of plate current, it follows that limiting the platecurrent variation aks limits the power output in eomparison to the d.e. plate power input.

Higher plate elficioney ran be socured by inereasing the alternating componomt of phate current. but this is acompanied by increased distortion. Sperial types of amplifiers have been devised to compensate for this distortion, as described in the noxt sertion. In some applications, as in r.f. power amplifiration, the fact that the signal applied to the grid is greatly distorted is of no eonsequenee, so that such amplifiers can have high pate eflicience.

Poucer sensilicity - The ratio of a.c. power output to alternating grid voltage is called the power sensitimily of an amplifier. It provides a convenient measare for eomparing power tabes, esperially those designed for aldio-frequency anplification where the apreation is to be without grid current, since it expresses the relationship between power cutput and the amonat of signal voltage reguired to produce the power.

The term power sensitivity also is used in connection with rabio-irequency power amplifiers, in which cose it has the same meaning as power amplifiration ratio. A tuhe which delivers its rated output powor with a relatively small amount of prower consummed in the grid circuit is said to have high power sensitivity.

Parallol operation - When it is neerssatry to chatain more pewer outpht that whe tube is capathe of giving. two or more tubes may be combereded in marallil. In this rase the simitar eloments in all tubses are commered together. This method is shown in Fig. 317 for a trans-former-coupled amplitier. The power output of a paralled stage will be in proportion to the number of tubes used: the exciting voltage required, however, is the same as lor one tube.

If the amplifier operates in surh a way as to consmme powar in the grid cirenit, the grid power repuired also is in proportion to the mumber of thtues used.
push-pull operation - An increase in power whtput ran be secured by connecting two tubes in posh-pull, the grids and plates of the two tubes being emmerted to opposite ends of the eireuit as shown in Fig. 317. A "balaneed" dircuit, in which the cathode returns are made to the midpoint of the input and output devices, is necossary with pushpull operation. It any instant the muls of the seeondary winding of the ingut transformer, T_{1}, will be at opposite potentials with respeet to the cathonde commestion, so that the grid of one tube is swang besitive at the same instant that the grid of the other is swoug negative. Hence, in any push-pulloconnected stage the voltages and currents of one tube are out of phase with those of the other tube. The
plate current of one tuhe is rising while the plate current of the other is falling. hence the name "push-pull." In push-pull operation the even-harmonic (secomd fourth, cote.) distortion is cancolled in the symmetrical plate circuit, so that for the same power output the distortion will be las than with parallal operation.

The exeiting voltage measured between the two gride must be twice that reguired for one tube. If the grids comsme power, the driving power for the push-pull stage is twice that taken by rither tubre alone.

The decibel - The ratio of the power levels at two proints in al circuit surh as an amplifier can be expressed in terms of a unit called the deciby, abbereviated dh. The mumber of decihels is 10 times the logaritim of the power ratio, or

$$
\mathrm{d} \mathrm{~b} .=10 \log \frac{l_{1}}{l_{2}}
$$

The donikel is a particulatly useful unit becalase it is lagarithmic, and thus correspmons to the respmise of the haman ear to sommels of varying lominess. (ha deabed is approximately the power ratio repuired to make a just notieable difference in sombl intemsity: Within wide limits, chamging the power by a given ratio produces the satme apparent change in loudness regardless of the power level: thas if the power is domblad the ineremes is 3 dh., or three steps of intensity: if it i" dombed agam the increase is again 3 dh., or three further distinguishalhle steps. Successive amplifications expressed in deribels can be added to obtain the over-allamplification.

A power loss alsun can be expressed in decibels. A dererase in power is indieated by a minus sign (c.g., - 7 dh.), ami an increats in power by a plus sisu (e.g., +4 dh.). Negative and pesitive ofatitities ean be added numerically. Zaro db. indicates the reference power level, or a pewer ration of 1 .
Applicritions of amplification - The major uses of vacum-tuthe amplifiers in radio work are fur amplifying at audionad radio fre-
 fior gemerally is used to amplify withont dis-

Fig. 317- larallel and push-puall at. amplifier circuito.
crimimation at all frequencies in a wide range (saty from 100 to 3000 eycles for voice communication), and therefore is assoriated with nomresomant or untuned circuit.s which offer : miform load over the desired range. The radio-frequence amplifier, on the other hand, penerally is used to amplity selectively at a single radio frequency, or ower a small band of frectuencies at most, and therefore is associated with resonant circuits tumable to the desired frequency.

An andio-frequency amplifier may be considered a bromb-bund amplifier: most radiofremueney amplifiers are designed to have relatively narrow bandwidths.
In audio circuits the power tube or output tube in the last stage usually is designed to deliver a considerable amount of audio power, while requiring but negligible power from the input or exciting signal. To get the alternating voltage (grid suing) required for the grid of sucla a tube, voltage amplifiers are used employing high $-\mu$ tuber which greatly increase the voltage amplitude of the signal. Voltage amplifiers are used in the radio-frequency stages of receivers as well as in audio amplifiers; power amplifiers are used in the radio-frequency stages of trammitures.

C 3-4 Classes of Amplifiers

Reasom for rlassification - It is convenient to divide amplifiers into groups according to the work they are intended to perform, as related to the oprating comditions necessary to accomplish the purpose. This makes identification casy and ohviates the necessity for giving a detailed description of the operation when spurific operating thata are not required.

Chass 1-An amplifier operated as shown in Fig. B06 or 307 , in which the output waveshape is a faithful reproduetion of the input waveshape, is known as a (lloss-s amplifier.

As generally haed the gride of a Clans-A amplitior never is driven positive with respect to the cathode be the exciting signal, and never is driven so far negative that plate-current cut-uff is reached. The plate current is constant buth with and withent grid excitation. The chief characteristies of the Class-A amplitice are low distortion, relatively low power output for a given size of tube, and a high poner-amplification ratio. The plate efliciency is relatively low ($(3-3)$.
(lasi-A power :amplifiers find application as output amplifiers in audio systems and as drivers for Clas-13 power amplifiers. Class-A voltane amplifiers are found in the stages preceding the power stage or stages in such applications, and as r.f. amplifiers in receivers.

Class 13 - The Cless- B amplifier is primarily one in which the output current, or alternating component of the plate current, is proportional to the amplitude of the exciting grid voltage. Since power is proportional to the square of the current, the power output of a Class-13 amplifier is proportional to the square of the exciting grid voltage.

In Class-B service the grid bias is set so that the plate current is relatively low without gride excitation: the exciting signal amplitude is made such that the entire lincar portion of the characteristic is used. Fig. 318 illustrates operattion with the tuhe hiased practically to cutoff. In this condition plate current flows only during the positive half-ryele of excitation. No plate rurrent flows during the negative halfcycte. The shape of the phate current pulse is essentially the same as that of the positive swing of the signal voltage. since the pate current is driven up toward the saturation point, it is usually necessary for the grid to be driven positive with respect to the cathode during part of the grid swing. (irid current. flows, therefore, and the driving sondee must furnish power to supply the grid losios.
(lass-B amplifiers are characterized by medium power output, medium plate efficiency (50 to 60 per cent at maximum signal), amil a morlerate ratio of power amplification. It radio frequencies they are used as linear amplifiers to ratise the output power level in radiotelephone transmitters after modulation.

For Class-B andio-frequeney amplification two tubes must he used. the serond tube working alternately with the first so that both halves; of the eycle will be prosent in the output. A typical method of arhioring this is shown in Fig. 319. The signal is fod to a ransformer, T_{1}, whesse secondary is divided into two equal patrts, with the tuhe grids emmereded to the outer terminals and the prid bias fed in at the conter. A transformer, T, , with a similarly divided primary, is commertod to the phates of the tubes. When the simal voltage in the upper half of T_{1} is positive with respect to the center

Fig. 319 - Showing how the outputs of the two tubes in push-pull are combined in the Class-B andio amplifier.
connertion (conter tap), the upper tube draws plate current while the lower tube is idle; when the lower half of T_{1} becomes positive, the lower tube draws plate eurrent while the upper tube is idle. The voltages induced in the primary of T_{2} combine in the secondary to produce an implified reprodurtion of the signal.

Class AB - The similarity between the (lass-A 13 amplifier, lig. 319, and the ordinary push-pull rireuit (ligr. 317) will be moted. Actually, the only dilference lies in the method of operation. If the bias is aljusted so that the tubes draw a moderate value of plate current with no sigual, the amplifier will operate Class A at low signal voltages and more nearly (\%ass 3 at high signal voltages. This methorl gives low distortion at moderato signal levels and high plate efficientey at high signal levels, making pussible the use of relatively small tubes an atudio prower amplifiers.

A further distinetion can be made between amplifiors which draw grid current and those which do not. The C C/ass- $1 / B_{1}$ amplifier draws no grid current and thus consumes no power from the driving source. The ('loss-itha amplitior draws grid current at highor signal levels, and power must twe supplied for it stid cirentit.

Choss C-The ('lnss-C amplifier is one oparated so that the alternating component of the plate current is directly proportional to the plate voltage. The output power is therefore propertional to the sulure of the plate voltage. Other characteristics inherent to Class-C operation are high phate eflicieney, high power output, and relatively low power amplification.

The grid bias is set at a value at least twice that required for phate-current cut-off without excitation. Thus plate current flows during only a faction of the positive expitation exale. The exating sigaal should be of suffirient amplitude ton drive the plate eurrent to the saturation point, as shown in Fig. 320. Since the grid must be driven far into the positive region to calse saturation, considerable numbers of electrons are attracted to the grid at the peak of the eycle, robbing the plate of some that it would normaly attrant. This eauses the droop at the upper bend of the charaeteristic, and alsu may canse the plate-eurrent pulse to be indented at the top. The output wave-form is badly distorted, but at radio frequencies the distortion is largely eliminated by the flywheel effect of the tuned output circuit.

[1 3-5 Cathodes; Grid Bias

Types of cathotes - There are two general types of cathodes, known as directly heated and indirectly hated. In the former the heating current is pased direatly through the electronemitting material. nsitally a fine wire or filament. In the latter the electrons are emited from a sleeve or thimble raised to the proper temperat ure by an clecorically-separate heating element as shown in Fig. 321.

Directly-heated or filament-type caboudes may be of pure lmagsten, tungsten hating a small amount of thorimm dissolved in it. or tungsten coated with rare earlhs (oride-conted type). The latter give the largest amomut of electron emision per watt of heating power. Thoriated tungston filaments are intermediate in electron-rmitting afficioney, and are med maversally in small amd medimm-power tansmitting tuhes. Indiremb-heated cathodes are invariably of the oxide-obated lype.

When directly-heated cathomes are operated on alternating current, the evelia variation of current ramses the pate earrent of the tube to vary at thesupplefrequenes rate produring hum in the wutput, Itum from this source is eliminated in the indireally hated eathode. 'This tope is atsu known as the requ-potential cathode simere all of it is at the same polential. in contrast to the diredty heated filament. Where a voltage drop oreurs along the wire.

The source of filament wower for a directly heated rathode - battery or transformer necessarity is directly commered to the tube circuit. With ath indieretly heated catheme the source of heating power an be entirely intapentent of the thbe dirvait.

The operating temperature of a thomiatom tungsten filament is fairly reritical, and the sperified filament voltage should be mathtatined within a few por cent. 'These filatmonts. as well as waderoated eathonles, erentually "lose rmission": that is. the emission elliciency of the eathode dereaters until sulficient electron emission for satisfactory tube opreation manot be obtained without raising the cathode temperature to an tusafe value.

 heated cathonless or tilaments are shownat A, B, and 1. . The inorered V filament is used in small recrising tules. the M in both rereisine and tranmitiug tuher. The spiral thament is a transinitionetube type. 'the indireatis heated cathodes at 11 and Fo show two tywe of heater construction, one a twisted loop and the other bunched heater wires. Both whes temd to cancel the maguetic fielde set up los the curren throngh the heater.

Cathode circuits; filament center tapWhen a filament-type cathode is heated by a.c., hum can be minimized by making the two ends of the filament have equal and opposite potentials with respect to a conter point, usually groumbed (\$2-13). to which the grid and

Fig. 322 - Filament transformer enter-tap eomnections.
plate return rireuits are commected. The filament transformer winding may be center-tapped for this purpose, as shown in Fig. 322-A. With an untapped winding, a center-tapped resistor of 10 to $\overline{0} 0$ ohms is used, ats at 13 . The by-pass mondensers. C_{1} and C_{2}, are used in r.f. circuits to avoid having the r.f. current How 1 hrough the transormer or resistor.

The heater supply for tubes with indirectly hated rathodess sometimes is renter-tapped for the same furluse: more frequently, howcere whe side of the heater is grounded.

Methods of ohtaining grid bius - Cirid hiats maty be ohtanned from at source of voltage esperially provided for that purpose, such as : battery or other type of d.e. power supply. This is indicated in Frig. : $3: 33$-A. A second method, ntilizing a cothode resistor, is shwon at 13: d.c. plate curront flowing through the resistor cathese a voltage drop which, withothe commertions shown, has the right polarity to bias the grial negatively with resperet to the rethode. 'The vahur of the resistor is determined bey the bias required and the plate courrent whieh flows at that value of bias, as found from the tube characteristic: curves; with the voltage and rurrent known, the resistance can be determined by Ohm's Law (\$ 2-6):

$$
R_{c}=\frac{E \times 1000}{I_{c}}
$$

where $R_{r}=$ eathord bias resistor in ohms
$E=$ dosired bias voltage
$I_{e}=$ total d.e. cathode current in milliampreres.
If the tube is a multi-element type, the screenand suppressor-grid currents should be added t.o the phate current to ohtain the total cathode eurrent. 'The control-grid eurrent also should be indeded if the control grid is driven positive.

The a.c. compoumt of plate current flowing through tibe cathode resistor will eanse an a.e. foltane drop which gives negative ford-back ($\$ 3-3$) into the grid circuit, and thus rednes the :amplitiation. To prevent this, the resistor usually is by-passed (S2-13), (\% boing the cuthomb hy-puss coudensar. To be effertive, the reactance of the by-pass condenser must be smatl compared to R at the frequency being
amplified. This condition gonerally is satisfied if the reactance is 10 percent or less of the cathode resist:uce. In autio-frequeney :mplifiers, the lourst frequeney at which full amplification must be secured should be used in callculating the reguired capacity.

Fig. 323 - 'I'ho three havia merhme of ohtaming grial hias. A, fixed bias; I3, cathme lias; (:, prid-leath hias.

A third biasing mothod i: he use of : grith
 exciting voltage be pusitive with respere tot the cathode during part of the eerele, so that grial current will flow. The flow of grid current through the grid latk canses a voltage drop ateres the resistor. Whidh gives the grid a megat tive hias. The time comstant (\$ 2-ti) if the grid leak and in id undenser shoulah be large in comparison to the time of one cerbe of the exeiting voltage, so that the grid hisis will be subatathtially constant and will mot follow the varia-

$$
R_{v}=\frac{\tilde{E} \times 1000}{I_{0}}
$$

 I' the desired bias voltage and I_{y} the d.e. grid current in mat.

For two tubes opromed in push-pull or patallel with a common rathorle- or mrid-leak resistor, the requived resistance becomes onehalf that for a simgle tulne. In push-pull Clasis-A cireuits operating at andio frequencies, it is unneressary to by-pase the rathode resistor. In this case the a.ce component of cathode rurrent in one thate is out of phase with the a.e. compment in the other, so that the two rancel eall wher.

The choice of a hiasing method depends Hewn the type of operation. Fixed hiat usuatly is rectuired where the d.e. phater current of the amplifier vaniex in oneration, as in Class-B audio-frequency :mplifiers; if cathode bias is used the lisis voltage would vary with the
plate current. Since the plate current of a Class- A amplifier is constant with or without signal. surh amplifiers almost invariably have rathonde hitas. (irid-leak hits eammot be used witl amplifiers oprouten so that the grid is always megative with resperet to the cathode. since in such at case there is mo grid current and heme no voltage drop in the prid leak. Gridleak bias is chiefly used for r.f. power amplifiers and for rertain types of detectors. In power amplifiers, a combination of two or "ven all three typers of hias may be ased on one tube.

(1. 3-6-A Multi-Grid Tubes

Radio-frequoney amplification- Av de-
 rathoule athl phatr-to-tathoule capacities (to-
 vacombt tate hecome very low al ferequences
 realt. ordinaty resistance imperlane or transformar eompling rammor bered at radio

 Pht rimentis. Hemer the lootal imperather in either the patte or the gride rimait is too bow for appreviable voltago to be developerd.
'This siluation ann bo woremme hy using

 the patrallel imberlamere of a resmant cirent
 Yaldes of parallef-resomant imperdane whitable
 abla with reasulably well-alesigned rimats. 'The tube and tray rapacitios herome part of the laning caparity amd thas ame mate do
 have maximum impedaner at the resomant frequency unly, hence the :mplitication will dererase at frepurberes sumewhat momeved from :c: fier mest be dexignen lor :a sperifor fremency.

An clementary eimenil illus mathe the principles al r.f. amplificalion is shown in ligr. 32.

 maximum amplificalion. Bun if the plate cibcuit is tumed slightly to the high-frequeney side of reanallue it will show indurlive reactance, and :as dowribod in $\$ 3-3$ encrey will be transioped from the plate rineuit io the grid eirenit undor sum conditions. If emonerh emergy is transored the the will gemerate a
 satid to be asritatien. When asallation combenters the rivenit reaso to amplify inmoming signals, sime it is memeralling at sixnal of its

own. Cufortunately it is almost impossible to prevent such oreillation in a simple triode amplifier such as is shown in Fig. 324.

Sinecial "uratralizing" "irenits (($4-7$) have been devised to prevent ascillation with triode amplifiers, but most of these are more suitable for use in transmitting applisations, where the amplifier does not have to be tumable wer a wide range of frepuencies, than in reerivers. However, oseillation can be avoided by using a circuit in which the feed-back is negative rather than positive, as indicated in the next paragraph.

Gromaled-arid amplifier - In the circuit of Fig. 325 the grid of the tube is comnected to ground and the eathode is connected to the

Fig. 32: Gromoded-arid amplifier circuit.
high-potemtial side of the input resomatht cirenit, reversing the usual comenedions. The output cirolit is commered in the ansomatry way Selwern plate athel gromed. Sine the altomating eomponemt of blate ebrent mast flow through the tamed insut eirenit to relurn to the cathonde there is feed-back from the platre to the grin! cirerait but it is mestation rather than panitive ferd-bank. II mone this (ouplines bermern the two cirenits will not (:anse axaillalions.

Howror. it is still pessible for the cirenit to ascillate if there is raturity compling betwern the phate atad rathode. 'The eromment wrid prevents this compline her acking as a shichal betwern the wher two (rlements (s 2-11). 'lhe cireut is most sureessibl with tubes having very low plale-torathode adpabity. It is uned principally al ulta-high frequencies (where the soren-grid tubes described in the next paragraph beoome ineffective as amplifiers) with tubes designed esperiatly for the purpose.
'lhe r.f. chooks in the eathode circuit are used to isolate the heater from ground and thas eliminate the effert of the raparity betwern eathode atol heater. 'lhis capacity temets to shorterifenit the bund iuput cirenit and thas prevents the amplifier from operating properly.

Scron-grid lubes - The grid-plate rapacity ran be diminated, or at least redued to a negligible value, by inserting a second grid between the control grid and the plate as indicated in Fig, 326 . The second grid, called the serecen grid or shichl grid, acts as an olectrostatic shield ($\$ 2-11$) between the control grid and plate. It is made in the form of a grid or comerse sereen rather tham as a solid metal sheet, so that electrons can pass through it to the
plate; a solid shield would entirely prevent the flow of plate current. The screen grid is connected to the cathode through a by-pass conclenser, which has low impedance at the radio frequencr being amplified. The electric lines of force from the plate terminate on the sereen grid, very little of the field getting through to the control grid; similarly, the fickl set up by the control grid does not penetrate past the soreen grid. Thus there is no eommon field between the control grid and plate; hence no caparity between these two tube elements.

Since the electric field from the plate does not ponetrate into the region aroupied by the control grid, which is the region in whieh most of the space charge is concentrated, the plate is umable to exert an attration upon the electrons in this region. Consequently, the pate voltage ramot control the flow of plate current as it does in a triode. In order to got elertrons to the plate, it is necessary to apply a positive potential (with respect to the eathode) to the screon. The sereen then attracts electrons mueh as does the piate in a triode tube. In traveling toward the sereen the deretrons arquire veloeioy. an that most of them shoot between the sareen wires into the field from the plate. Those that pass through and are attracted to the plate constitute the plate eurrent of the tube. A certain proportion do strike the sereen, however, with the result that some current also flows to the sareen grid. The soreen eurront will be low compared to the plate eurrent in at herohe. or four-clement tuhe however.
socomary cmission - When an electron traveling at appreciable velocity through a tube strikes the phate it dislodges other clectrons. These "splash" from the plate into the

F̈a. 326- Representative arrangement of celements in a serern-prid tube, with front part of phate and soreengrid cout away. 'The screen grid msually is made longer than cither the control grid or plate, so that the shielding will be as effective as possible. In this drawing the conIrol grid conmetion is made throngh a eap on the top of the tuhe, thus eliminating the caparity which would exist betwen the plate and grid lead wires if foth passel through the hase. Some modern tubes which have hoth leads poing through the base use spocial shielding and construction to climinate capacity. Symhola for pentode and tetrode tubes: H, heater; C, cathode; G, control grid; P, plate; S, screen grid; Sup., suppressur grid.
interelement space, a phenomenon called secondary emission. In a triode ordinarily operated with the grid negative with respect to cathode, seeondary elcetroms are repelled bark into the plate and rallse no disturbance. In the screen-grid tube, however. the positively charged sercen attracts the secondary electrons, causing a reverse current to flow between sereen and phate. The effect is particularly marked when the plate and screen potentials are nearly equal, which may be the case during the part of the a.e. erele when the instantancous plate current is large and the plate voltage low (§ 3-3).

Pentorde tubes - To overcome the effects of secondary emission, a third prid, called the suppressior grid, may be inserted between the screen and plate. This grid, whirh is connerted directly to the cathode, repels the relatively low-velority secondary electrons. They are driven back to the plate without appreciably obstructing the regular plate-current flow.

Although the sereen gride in eit her the tetrode or pentede greatly redures the influence of the plate upm plate-current flow, it is quite obvious that the control grids still can control the plate current in essentially the same way that it does in a trionle, since the control grid is still in the space-charge reqion. Consequatly, the grid-plate transeonductance (or matual conductance) of at tetrode or pentode will be of the same order of value ats in a triode of corresponding structure. On the other hamb, since the plate voltage hats very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high, as is apparent from the definitions of these ronstants ($\$ 3-2$). In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indieate. In resistancecoupled :udio-frequency amplifiers, voltage amplification or gain of 100 to 200 is typical.

A typical set of characteristic curves for a small pentode is shown in Fig. 3:7. That the plate voltage has little effect on the phate current is indicated by the fact that the curves are practically horizontal ome the phate voltage is

Fig. 327 Plate voltagevs. plate current curves for a small receiving pentode. screen-grid voltage, IS.a, is 100 volts and suppressorgrid voltage, Esup, is

F'if. 328Curves showing the relationshin loctwern mutual ronductance vs. neqativegrid biasfor two small receiving imitodes, one being a sharp cut. off type and the othir a vari. able- type.
high enough to prevont the electrons in the space between the soreen grid and the plate from being attracted batk to the soreen. The plate potential at whirh this occurs is Jess than the soreen potential, because the clectrons entering the spare have romsiderable velocity and hence tend to move away from the sereen despite the fart that it has a positive change.

In addition to their applications ats ratiofrequeney ampliliors, pobtomber tet rode sereen grid tuhes aiso rath the constructed for audiofregueney powar amphitation. In tubes desigued for this purguse the shideling effert of the sereen grid is not su important: the chief function of the sereen is to serve ats an accelerator of the eloctrons. su that latre values of plate current ram he drawn at relatively low plate voltares. such tuhes have guite high power sonsitivity ($(3-1)$ (ompared to triodes of the same powar out jut, beratuse the amplification factor of an muivalent triode has to be made quite low in urder to serure the same plate current at the same plate voltage. Beranse of the low μ, the triodo requires a relatively large signal voltage for full output, hence has low power somsitivity. 'The harmonic distortion is somewhat greator with pentodes and tetrodes than with triodes, however.

Iariable-mu and sharp cut-olf tubesReceiving sereen-grid teetrodes and pentodes for radio-frequeney voltage amplification are made in two types, known as sharp cut-off and variable- $\boldsymbol{\mu}$ or "sujer-control" types. In the sharp cut-off tepe the amplification factor is practically constant regardless of grid hias, white in the variable $-\mu$ type the amplifieation factor derreases as the negative biats is inereased. The purpose of this design is to permit the tube to handle large signal voltages without distortion in rirenits in which grid-bias control is used to vary the mutual conductance, and hence the amplification.

The way in which mutual conductance varies with grid hias in two typical small receiving pentodes, similar except in that one is a sharp cut-off type and the other a variable- μ type, is shown in Fig. 328. Obviously, the vari-able- μ type can handle a much larger signal voltage without swinging beyond cither the point of zero grid bias or of plate-current cut-
off (zero mutual conductance), if the bias is properly chosen.

Beam tubes- A "heam"-type tube is a tetrode with grids so constructed as to form the electrons traveling to the plate into concentrated beams, resulting in higher phate efficiency and power sensitivity. Suitable design also overcomes the effects of secondary cmission without the necessity for a suppressor grid. Tubes constracted on the bean principle are used in remivers as both r.f. and alldio amplifiers, and are built in larger sizes for transmitting circuits.

Fig. $329-\mathrm{I}$ 'entode r.f. amplifier rierouit. $I_{1} \mathrm{Cif}_{\mathrm{i}}$ amd $I_{2}\left(2\right.$ are tuned to the same frequenes. h_{1} is the coithorle resistor, by-passed for r.f. by (ia. N2 is the sereen voltage. dropping resistor, by-passed liy Ci. (bis the plate hy-pass.

(C 3-6-B Pentode Amplifiers

R.F. amplification - A fundamental rircuit for radio-frequency amplification with a pentore tube is shown in Figg. 329. The grid and plate circuits may be tuncd to the same frequency, thus obtaining maximum amplifieation, without danger of oseillation provieled there is no foed-batek rompling betwern the tuned cireuits themselves. l'ractieal varialions of this circuit and their application to receivers are discussed in $\$ 7-6$ and $\$ 7-11$.
A.F. amplificution - Rerciving-1spe pentodes frequently are used as voltage amplifiers for audio frequencies, using the cirenit shown in basie form in Fig. 330. In this applatation they are apable of much hisher voltage gain than can be whained from triodes, and have the advantage that since there is no roupling from plate to grid there is no increase in input capacity with amplification (S3-3). For the latter reason it is possible to obtain ligh gatin. in resistance-coupled amplifiers, at consulerably higher frequencies than is possible with a triode.

The discussion of amplification in $\$ 3-3$ applies equally to pentodes and trionles, with the exception that the plate resistance of a pentode is so high that the amplification is

Fig. 330 - Typiral pentode audio-frequeney amplifier.
usually considered to be proportional to the plate load resistance alone. For maximum voltage gain, R_{j} should have as high resistance as possible without calusing too great a voltage drop. Values range from 0.1 to 0.5 megohm. The value of R_{c} depends upon R_{p}, which principally determines the plate current. Values for the screen resistor, R_{s}, may vary from 0.25 to 2 megolims. A sereen by-pass condenser (C_{s}) of $0.1 \mu \mathrm{fd}$. will be aderuate in most cases.

Talble I in Chapter Fourtoen shows suitable values for the more popular types of amplifier tubes. The caldulated stage gain and park undistorted output voltage also are given.

Plato and sereen woltage - Since the d.c. plate current flows through any resistance placed in the plate circuit of a tuhe as a load or coupling medium ($\$ 3-3$), the actual voltage at the pate is less than the supply voltage by the vollage drop arense the total resistanee.

With transformer coupling this effect is not ordinarily of great importance, because the inductance of the transformer primary provides a high-impedance load at atudio frequencies, while the d.e. resistance of the winding eauses onle a small drop in d.c. phate voltage.

In a resistance-coupled or parallel-fed stage the unerating voltage is less than the supply voltage be the drop through the load resistor, R_{p}. Thus, in lig. 331-A, $E_{p}=F_{b}-\left(I_{p} \times R_{p}\right)$.

Foren voltage is determined in the same way, using the sereen eurrent, I_{x}, to calculate the drop tuross the seren dropping resistor, R_{s}.

Fig. 33/ - Calcolation of whate and soresen whages.
In ligg. 331-IS both phate and sereen current flows through a common filtor resistor, so that both eurrents must he added in calculating the voltage drop across h_{j}. Thus

$$
\begin{aligned}
& E_{p}=E_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{p} R_{p} \\
& E_{s}=R_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{s} R_{s} .
\end{aligned}
$$

In Fig. 331-C, the screen voltage, E_{s}, is obtained from at tap on a voltage divider consisting of R_{s} and R_{b}, The screen voltage. E_{s} is equal to the voltage drop across Rh. First assigning a value of bleeder current, $I_{h}(\$ 8-4)$, this value is added to I_{s} to obtain $I_{s r}$. Then $R_{s}=E_{s} / I_{a r}$. The voltage across R_{b} is the difference between the sereen voltage and the supply voltane, or $E_{s}=E_{b}-E_{s} / I_{s r} . E_{p}$ is determined as above.

The resistance-r:apacity filter (§2-11) in Fig. 332, $C_{f} l_{f}$, is a decoupling circuit which isolates the stage from the power supply, to eliminate unwanted coupling botween stages through the common impedance of the power
supply. Although shown in connection with a triode amplifier in the diagram, the same type of filter is used with pentodes.

Histr-band amplifiers - Amplifieation of audio frequencies, which extend from about jo) to $\mathbf{1 5 , 0 0 0}$ eycles, presents no partirularly diffiroult problems so long ats the design points diseussed in $\$ 3-3$ are observed. However, for amplifying signals such as television signals or pulses having a time duration of only a few millionths of a second it is necessary to extend the frequen'y response of the amplifier well beyond the athlio frequency range - and even well into the medium radio-frequenty range. At the same time it is frequently necessary to extend the lower frequency limit of the amplifier as well. "lhis extension of range is mate possible by the use of compensating circuits.

Lou-frequency compensution - While the smplitude response of a resistance-eoupled amplifier usually is satisfactory at low frequencies, the phase angle introdued by the output coupling eondenser and the next-wtage grid resistor is sulficient to prowent proper reproduction of low-frequency square wavers unless very large values are employed. Yet surh large values increase the shunt eaparity to wround, introdure grid-current diflicullies in the following stare, and maty wen induce relaxation asillations (moulorhomting).
'The efferi of the fime eomstant of
Fïg. 332 - Wecompline in a resistanco-coupledanplifier.

Fin. 33:3-Wide-bame frenurney-rompensated amplifier.
ing) inductance in parallel with the eirenit capatrity, as shown in Fig. 333. By resonance efferets this raises the impedance to an extent and ower : frequency range determined by the Q of the ciretit consisting of L, R_{P} and C_{4}. Sinco R_{l}, is relatively latre for a resomant cirmat, the (? is fairly low and the resonamee curve is quite broad. This is desirable for an amplifier intended for wide-band applirations. The design valuces of L and h_{p} are based on the shamf eaparity, ('s, and the maximum required
 3 to $5 \mu \mu \mathrm{fd}$. (for socket and wiring) to the smm of the tube input and output raparities.

The reactance of L is made one-half the reartance of C_{t} at $f_{\text {max }}$. This is erguivalent to making the resunant frequency between L and C_{6} egual to 1.41 times $f_{\text {mas }}$.
Simplified design equations for shunt peaking compensation are as follows:

$$
\begin{aligned}
& R_{P}=\frac{1}{2 \pi f_{m a t} C_{t}} \\
& L_{1}=0.3 C_{t} h_{p}^{3}{ }^{2}
\end{aligned}
$$

Typieal values of R_{P} are from 2000 to 10,0000 ohms: of L, from 25 to $100 \mu \mathrm{~h}$.

Cathorle follower - The cathome-coupler wr cathode follower shown in Fi゙ig. 334, differs from a conventional amplifier in that output is taken from the cathode rireuit rather than from the plate, The eirenil is applicable wherever matehing to a low value of had impedance, (fifty to several humdred ohms) is required and the use of a tramsformer is impractiobble, as in wide-band amplifiors. Hecanse the rathode follower is inherently degenerative, it is particulary usoful whorver equalizod frotueney response and minimum phase shift are important. Power amplifieation comparable to that of an "equivalent plate-coupled stage may be securd, but the voltage gain is alwas less that min!.

Fig. 33.1 - Cathode follower or inverted amplifier circuits. A. dirret-coupled output; C, resistance-capacity coupling in Inad. K_{n} is the usual rathode-bian resintor.

व 3-6-C Special-Purpose Tubes

Multi-purpose types - A number of combination types of tubes have been construeted to perform multiple functions, particularly in receiver circuits. For the most part these are multi-unit tuthes made up of individual tube element structures, rembined in at single bulb, for compactuess and eromomy Among the simplest are full-wate rectifiers, emblining two diodes in one envelope, and twin triodes. consisting of two triodes in one bult, for Class-13 audio amplification. More complex types inchule duplex-diode triodes, duplexdiode pentodes, eonverters and mixers (for superbeterodye receivers) , (rombinat tom power tubes and rectifiers. and on on, ha many coses the nature ean be identified by the mane.
Mercurv-rapor rectifiors-For a given value of plate current, the power lest in a dionde rectifier (\$3-1) will be lessoned if it is persible to decrease the plate-mathonde woltane at which the current is obtained. If a small ammont of mercury is put in the tube. the morentry will vaporize whon the rathode is heated, and, further, will ionize $(\$ 2-1)$ when plate voltane is applied. The pasitive ins nentralize the spare charge and reduce the wat wathente watage drop to a practioally comstant value of about 15 volts, regardhess of the value of plate current. Since this voltagedrop is smaller than ean be attanch with purely thermienie ermburtion. there is less power lass in the rentifier. lintage drop is constant dexpite variatime in had curment. Mercury-vamer tubes are widely used in rectifiers built to deliver targe pawer outmis.
Grid-control rectifiers - If a grid is inserted in a morcher-vapur reetfifier it is fomed that with suflicent mesative grid hias it is masible to prevent phate current from fowing, hut only if the hises is present before plate woltage is applied. If the hias in bowered th the point where plate current can flow, the merbury vapor will imize and the grid will lose control of pate current. sime the spare charge disappears when ionization oweres. It "an atssume control akain only after the plate voltage is reduced below the ionizing potential. The same phemomenon also orcurs in triotes filled with other gases which ionize at low pressure. Grid-control rectifiers of theratrons find considerable aphlie:tion in "edetronicswitching."

- 3-7-A Oscillators

solf-owifhation - An amplifier tube can be made th gemerate a sustained radio-fionturey rurent (s) 3 -i-A) beramis mure energy is developed in the plate circuit than is rempired in the grid "ircuit. If emongh mergy is feal back from the plate to the wride the feed-back process beromes indmembent of any :mplied signal wollate. The mbe supplies its onta grid excitation :thl comtinumbe weillations and generated. The abtual energy required to wercome the grid lasses is, in the end, taken from the d.c. plate supply.

The process of oscillation maty also be considered from the standpoint of negutive resistance. As previonsly destribed (\$3-3), positive feed-back is conivalent to shunting a negative rexistance across the input circuit of the tube. When the value of negative resistance beomes lower than the positive resistance of the cirenit (if the cireuil is parallel resomant the positive resistance will be the resonam impedance of the werent, the net resistance is megative, indicating that the cirenit can be lowked upon ats a source of energy, Wuch a source is capable of maintaining a constant voltage which can be amplified by the tube. The actual energy, of course, comes from the plate cirenit of the tube, su that the two viewpoints are equivalent.

A circuit having the property of generating contimumes oseillations is called an ascillutor. It is mot necessary to apply extermal excitation to such a circuit, since any random variation in enrrent will be amplified to camse nseillation. The frequener of oseillation will be that at which the feed-back voltage hats the proper phase and amplimede. Where resomant cirenits are asuedated with meeilators. the oscillation frequener is wery nearly that of the tunch eirenit.

Excitation and bias - The excitation voltage required depends upon the characteristies of the tuthe and the losese in the gride eirenit. In practiacdly all useillators the grid is driven positive during part of the erole so that pawer is comemied in the grin rirmil ($\mathbf{5} 3-2$). This poner mus be supplied from the plate circuit. With insulticim excitation, the tube will not arillate: with wer-cratithom, the arid loseses (poner consumed in the grid circuit) will be exresive
()weillators cuatomarily are prideleak hased (rent thas and gives better aporation, the bias aljusting itelf th the excitation voltage.

Tank circait - The remomat circuit assoribled with the oscillator is commonly called Whe turnt circuit : name derived from the shorage of chergy asodectad with a resomant circuit ((\$-10). The term is applied to any feconant circuit in transmithing applications, whether in an oscillator or in an amplifier.

Plate efficiency - The phate efficioney (§3-3) of an oscillator depends upon the load resistance. excitation and other operating factors. Usually it is around 50 per cent. It is not as highas in an amplifier, since the oseillator must supply its own grid losses. These may represent 10 to 20 per cent of the oulput power.

Poucer output - The pentir output of an oscillator is the useful ace power consumed in any load conneeted to the useillator. The load may be coupled as deseribed in $\$ 2-11$.

Froquency smbility - The frequency stability of an oscillator is its ahbility to mantain constant freguenc. The mere important fartors which may canse a change in fregmens ate (1) temperature, (2) plate whage, (3) leading, (4) mechamical variations of circuit elements. Temperature changes will caluse vacuum-tube
elements to expand or contract slightly, thus causing variations in the interelectrode catpacities ($\$ 3-2$). Since these are unavoidahly part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condensor will alter thoir inductane or caparity slighty, again camsing a shift in the ressonatit frepu-ncy. These effects are relatively slow in opration, and the frequency change callesd by them is called drift.

Load varbations are in much the same way as plate voltage variations. A temperature ehange in the load may alsi, result, in drift.

Plate-voltage variations will catuse a corresponding instantanems shift in frequeney; this type of frequency shift is callod dynamic instability. Dynamie instability (an be redured by using a tuned direuit of high offertive Q. since the tube and load represent a relatively low resistance in parallel with the cirruit, this means that at low $/$ /(' ratio ("high-(".) must be used ($\$ 2-10$) and that the aircuit should be lightly losaded. Wymmir stahility alsor can be improved by using a high value of grid leak, which gives high grid bias and raises the of fective resistance of the tube :as serm by the tank circuit, and by using relatively high plate voltage and low phate "urent. Drift can be minimized lye keeping the d.e. imput low for the size of tube, be using coils of large wire to prevent undue temperature rise, and beproviding good ventilation to "alery off heat rapidly. A low L / C^{\prime} ratio in the tank circuit is desirable, beranse the interefortrole caparity variations have proportionately less effert on the frequency when shunted by a large combloser.

Mechanical variations, usually ramsed by vibration, cause changes in imductanee and/ or capacity which in turn catuse the fregurner to "wohble" in stepl, with the vibnation.

Mechamical instaldility can be maminized by using well-designed compments :and by insulating the ancillator from merhinial vibat tion.

1. 3-7-B Feed-Back Oscillators

Magnetir fred-back- One firm of feedback is by electromignetie coupling between plate (output) and grid (input) circuits. Two
(A)

(B)

 tor circuits with magnetie feedbaich. A, grid tickler: IS, Itartley. 10!!!!éntilive -ir・ルis of this 1ype are shown in Fig. 33, That. at A is callowhe lictiler rirruit. The :mplified current flowing in the "tickier," La. indures a volange in L_{1} in the proper phase when both coils: are womad in the satue direction and combected as shown in the
diagram. The feed-back can be adjusted by adjusting the coupling between L_{1} and L_{2}.
The I/artley circuit, B, is sinilar in principte. There is omly one coil, but it is divided so that part of it is in the plate circuit and part in the grid circuit. The magnetic coupling between the woredions provides the feed-back, which can be adjusted by moving the tap on the coil.

Capmeity feed-buck- The feed-back can also be ohtained through caparity coupling, as shown in Fig. 336. In A, the Colpitts circuit, the voltage across the resomant circuit is divided, by means of the series condensers, into two parts. The instantaneous voltalges at the ends of the cirenit are opposite in polarity with respect to the cathode, hence in the right phase to sustain mesillation. The tunced-grid tunedplate diruit at 1 butilizes the grid-plate catparity of the tube to provide feed-back coupling. Thre should be no magnetie coupling between the 1 wo
 tuned-cirenit. roils. Peed-back fan be adjustad by varying the laning of either the grid or plate cirmuit. The cir-

(c)

 cillators. A. ©olpitts: B, tumedplate tumed-rind; C, ultraudion. cuit with the higher Q (\$2-10) determines the frequency of usrillation. The phate cirenit must be tumed to : slighty higher frequency than the grid circuit. so that it will have inductive reactance :and hence give positive feedbatk (s 3-3). The amoment of detming is sor small it is chatomary to assumbe that the circuits: are tumed to the same fregueney.

The wilreution circuit at (' is equivalent to the Colpitts, with the voltage division for owillation brought about through the gridetofilament and plate-to-filament caparities of the tube. 1n this sund in the colpitts circuit, the feedback rall be controlled by varying the ratio of the two caparities. In the ultraudion eirenit, this can be done by comecting a small variable condenser between grid and cathode. Feedbatk derpases with inereasing mandy.

Ther electron-couplal osicillutor - The effect: of lowding and coupling to the next stage ran be greatly reduced by use of the electron-compled circuit, in which a screen-grid tube ($\$ 3-\overline{3}$) is so comnected that its screen grid is used as a plate, in conjunction with the control grid and cathode, in an ordinary triode oscillat or cireuit. The sereen is operated
at ground r. f. potential ($(2-13)$ to act as a shield between the actual plate and the cathode and control grid: the latter two elements therefore must be above ground potential. The out-

Fis, 33:- Wilectron-o couplod owrillator circuit.
put is taken from the plate circuit. (nder these conditions the capacity eoupling (\$2-11) between the phate and other ungrounded tube elements is quite small, hence the output power is secured almost entirely by variations in the plate current caused by the varying potentials on the grid and eathode. Since in a screen-grid tube the plate voltage has a relattively small effert on the plate current, the reaction on the oscillator frequeney for different ronditions of loading is small.

A Hartley rireut is used in the firequencydetermining pertion of the aseillator shown in lige. 337. Where $1,1 C_{1}$ is the widilatom tarnk cirenit. The sareen is groumded fore r.f. through a bep-pass combenser (se-13), hat has the nsual d.e. potential. The cathode connerelion is: made to a tap on the tamk eoil lo prowide feed-back. The resomant plate cireuit. I.et'2, is tuned cither to the asiflation frecmeney or to a hamonic. ['ntuned output compling also mat be used: the output voltage and power are considerably lawer, but better isolation between oscillitor and amplifior is serured.

If the useillator tabe is a pentode laving an external suppressor comention the suppresion grid should be gremuded. This provides additional internal shiedding and further isolates the phate from the freguence-thetermining circuit.

Franklinoscillator - The Pramklin oscillator circuit of Fig. 338. popular abroad, has rhararteristices similar to the ceco. A high-gain food-hark amplifier is very loosely coupled to a tank eireuit. LC, via two emodensers. C C_{1} and C_{2}, of extremoly small capacity. so woak is the coupling that the tube rirenit hat megligible effert upen the frepurner-eontrolling tank.

Fig. 338 - Franhlin mablar-oncillator circuit.
 C. $0,001-\mu \mathrm{fd}$.

Crystal oscillators - Since a properly cut quartz crystal is equivalent to a high- Q tuned circuit ($\$ \underline{2}-10$), it mas be substituted for a conventional thaned eirchit in an oscillator to control the freduence of oscillation. A simple crystal oscillator cireuit is shown in Fig. 339. It is similar to the tumed-plate tuned-grid circuit except that a erystal is substituted for the resontant grid circuit. Detailed information on erstal osillators is given in Chapter Four.

Series and parallel ferel-A circuit such as the liekler rireut of FFig. 335-A is sat to be series fred beeanse the souree of plathe voltage and the r.f. phate circuit (the tickler eoil) are ronnereted in serice: hence the d.e. phate current flow through the coil to the plate. A by-patss (\$2-13) condenser. (b, is eonnereded acrosis the phate supply to shamt the r.f. current aromad the power source. Other examples oi saries phate foed are shown in ligs. $3: 33 \mathrm{i}-13$ and 3337.

In some cases the sourere of plate power must be commerted in paralled with the tumed rirevit to provide a direet-enreme path to the phate. Thes is ilhnstrated in ligg. 335-R, where it would be inumsible fored the plate curront through the weil beretuse there is a dired commertion between the coil :mad rathode. Hence the voltage is applied to the plate through a radio-frequenes choke, which prevents the r.f. current

Fis. 339 - Simple ersstal owrillasor reircoit. Mams variations of this hasid: cir. cuit are waral in matione

from flowing to the plate supply athd thus short-cireniting the wacilator. The blocking condenser. ("b, prosides a low-impodinee path for radio-frequency current flow but is an open circuit for direct current (s 2-13). Other examples of parallel feed are shown in ligs. $336-\mathrm{A}$ and $3 ; 3 t-\mathrm{C}$.

Vilues for the r.f. chokes, by-pass and blocking condonsers shown will be determined by the considerations outlined in $£ 2-13$.

4. 3-7-C Negative Resistance Oscillators.

Vesutirr-rosistamor oscillutions-In addition to its ability to simulate nogative resistance by ferobthick (\$3-7-A), a valdulum tabe ratn in italif be mato lo show negative resistamer be a momber of armagements of eleatrode poidentiak. When at tabe so operated is whmered to as parallel-resomant rirenit, ascillation will be extablishod if the negative rexistane is less than the parallel impedance
 cuits are shumin lig. 3lo.

The circuit of fig. BHI-A is that of the dymatron oscillator, which functions beramse of the seromatary emission from the plate ocrurving in certain types of serern-grid wembes. The simplest but also the least sable of the negativeresistance or two-derminal oseillators,
it makes use of the fact that the plate current of a soreen－grid tetrode derrases when the plate voltage is increased at certain values of soreen voltage，giving a hegative pate－resist， ance characterislie．

In the bexative－transondurdane or trans－ itron rircuit shown in lig． 3．10－13，negit tive rewistanme is produced by virtue of the finct that，if the suppresser grid of ：pentode is given Hequive bias，Moctomes which nor－ mally would para throngh to the 川ate are furned hatrk to the serren，thus increasing the seren eurront and rexoring nomal labe an－ tiont（S3－2）．The negative resistathe produred bedwern the sereen and suppresson grids is

C 3－7－D Other Types of Oscillators

Resistamer－apority tuming－It is possible lo replate the le＇reswhalll rirenit in an os－ rillator by a rexistather－apheity rombination having an appoprialte time constant，in which rase $f=1 / 2 \pi / \mathrm{R}^{\prime}$ ．Moronver，by varying either R or C the circuit can be duned over a wide range in the sitho 11： 11 日er atis ：lll 10 rirult．

 mon rir－ ruits of this lype are shown （1）Fír． ：31．The single－ \therefore ：140 MC： Hucd wi－ rillator at A has a threr－sice：－ tion matise －hifling いいいいのば

 excrllont sine－wave form with good frequency stability may be obtained．

The two－tube $R C$－tuned circuit at B is derived from a two－stage casible resistance－ coupled amplifier with pentorle tubes，the second tube constituting the phase－shifting clement supplying a regeneralive signal th the adjustable C, C_{1} amel R_{1} eombination at the desired frequency，while at ath ot her frequencies the rifent is degenerative．

Phase－shift uscillators are most useful at atudio fromuencios ahough they can be made （0）operate up to about 50 kr ．

Relaxation ossillators－There is another basie category of oseillators，the relaration type，in which the oscillation frequency is con－ trolled not by a pesonatht eireuit but be the reciprosating change of a current or voltage through the charging of diseharging of a condenser when a vertan eritical value is reached．Relaxation oscillation requires，first， a meats for charging a comderaner（or whor reative （lement）at a mifonm rate alld．seronti． meaths for rapilly dis－ Tharging this
 uller ：pre－ dermmined voltasm hats herom built up arros it．The action bis clatr－ atotrizad by a promed of rapial rhange on inswiblitity followed by ： proriol of mata－ tive flites－
 bility during whirlt the

 tonderirnit，B，hiph－frequene pent
 stoleal－11p （Hergy 1 rinnsfred of of herwise dissipated in the ejrensit．

Radaxation asallators hawe high hammonie （ontent（monsinusoidal output）and are inher－ ently matable，pomitting randy symohroniza－ timb with an external controlling voltage．

In the circuit of lig． $342-$ ．．the operation is bised on the reversed sercen－current or dyna－ tron characteristic of a pentode tube，the frequency being determined by the rate at which the feed－hack condenser，（＇，discharges through the tube．Apart．from the frequency－ controbling merhanism，this rirruit resembles that of the transit ron osoillator（Fig．3／10－B）．
＇The allemative pentode rimot at 13 hats the
 the plate cerevit．It is calpahle of operation at frequemides up to several humdred kilargeless， and aifords greater control of wave form．

Operation of the squegeing oscillator at \mathbf{C} is based on the tendency of any oscillator with excessive feed-back to produce relatively lowfrequeney intermittent ancillations. controlled by the rate of charge and dischatre of L_{2}, C and l through the tube grid resistane, if the time constant of the combination is large compared to the normal period of oweillation.

The most versatile relaxation oscillator circuit of all, shown in Fig. 313 , is known the the multivibrator. Two tubes are used with resistance coupling. the output of one tube being fed to the input circuit of the wher. The fregueney of the resulting awillation is determined by the time comstants ($\$ 2-2$) of the resistance-rapacity combinations. The principle of uscillation is that of altemately switehing eonduction from one tute to the other, with one grid at cut-off and the other at zero hias, so that continuous oscillation is matintained. the second tube being necessary to whain the proper phase relationship ((3-3) for uscillation when the energy is fed back.

Alt hough the multivibratur is:a very masiable usillator. its frequency an to commolited readily he a small signal of steady frepneney introdued into the airenit. This phomomenon iss called lerking or synchronization. The output waveshape of the multivibrator is highly distorted. hence has high harmonic content ($\$ 2-7$). A useful feature is that the multivibat tor can be hoved at it: fumbamemal frepurney by a frequmen correspanding (1) one of its higher hatmonios (the tenth hammaic is frequently used), and thus the circuit can be used as a frequency dirider.

C 3-8 Cathode-Ray Tubes

Principles - The cathode-ray tube is a vachum tube in which the alectrons emitted from a hot cathode are first aceelemated to give then considerable velocity, then formed into a beam. and finally allowed to strike a special translucent sereen which thureseres, or gives off light at the point where the beam strikes. A narrow beam of moving clectrons is analogous to a wire carrying current ($82-4$) ami, as in the wire, is accomparion be deetrostatie and electronagnetic fields. Hence the tram ran be moved laterally, or deflected, by clectric or
magnetic fields. Such fields exert a force on the beam in much the same way as on charged bodies or on wires carrying current (\$2-3, 2-5).

Since the cathode-ray beam consists only of moving electrons, its weight and inertia are negligibly smalll. For this reason, it can be made to follew instantly the variations in periodically changing fields even at radio frequencies.

Electron gin - The electrode arrangement which forms the electrons into a beam is called the clectron gun. In the simple tube structure slown in Fig. 344, the gun consists of the rathode. grid and anoles Nors. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube (s 3-2). Anole No. 1 is operated at a prositive potential with resper ta the cathorle, thus acederating the electrons which pass through the

Fig. 313 - The mul. tivilorator, or re. laxation oscillator. grid. and is provided with small :lpertures through which the electron stream passes. On emerging from the apertures the eloctrons are traveling in practically paralIel straight-line paths. The electrostatice fieds set up by the montials on anode No. 1 and anode No. 2 form an electron lens system, comparable to ath optical lens, which makes the electron pathe comverge to a point at the fluoresent serem in much the same way that a glass lens takes parallel rays of light and hrings them to a print forms. Focusing of the electron beam is: acomplished by varying the potentials on the :umbes, the ponential in thrn determining the strength of the fied. The potential on anode Nos 2 is usially fixed, while that on anode No. 1 is varied to bring the beam into forus. Anoule No. 1 is, therefore, called the focusing electrome.

Sharpest focus is obtained when the electroms of the beam have high velocity, so that relatively high de. potentials are common with cathonle-ray tubes. However, the current required is sinall, st that the power consumption is negligible. A seromd grid may be plated between the control grid and anole No. I, for additional arceleration of the electrons.

Fig. 3.41 - Typical construction for a modern cathode-ray tuhe of the plectrostatic-defleetion type. The envelope is made of glass, with the fluoreacent screen at one end. Leads for the high-voltage anode, the defiection plates, and other electroder are insulated low-capacity conductors carried ingide the envelope to the hare.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 3.5-Spot diarams showing the position of the rathode-ray bean on the flnoresernt serern for different deflector potentials. A - Both deflectors at zero potential. B - Iositive potential on right horizontal deflector.

Methods of deflervion - When fomsed, the beam from the gun probluces only a smatl spot on the screen, as described ahove. Howrever, if after leaving the gun the beam is dofleoted by either magnclic or mentrostatie fields, the spot will move across the sereen in accordance with the forre axerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a contimuous line.

Electrostatic deflection, the type gencrally used in the smaller tubes, is produed by deflecting phates. Two suts of plates are placed at right angles to each wher, :ss indieated in Fig. 3.4. The fields are cratad by : applying suitathe voltages betweon the two platos of each pair. Fsually one plate of earh pair is combeted to anode No. 2, to (stablish the pulatites (\$2-3) of the vertical and horizont al liedds with respert to the beam and to wach whor.

Tubes for magnadic daldertion use the same type of electron gin. hat have wo defleetion plates. Instead, the deflecting fiohs are sot up by means of coils comesponding to the plates used in tubes having elecetrostatio deflection. The coils are extermal to the tube, as shown in Fig. $34 t$, but are mounted close to the glass envelope in the relative positions occupied by - Nectrostatic deflection plates. Coils A_{1} and A_{2} are connected so their fiolds atd and their axes are on the same fime through the tube. Coils B_{1} and B_{2} likewise are commented with fickeadiding and are aligned along the sume axis through the tube, but perpendicularly to the $A_{1} A_{2}$ axis.

Fluoresceme screens - The flumeseent screen materials used have varying characteristies. arcording to the type of work for whirh the tube is intended. The spot color is green, white, yellow or blue, daponding apon the sereen material. The persistene of the sercen is the time duration of the after-rlow which exists when the excitation of the clectron beam is removed. Sereens are rlassified as long-,

Fip. 3.46-A cathode-ray tube with maynetic difler. tion. The gun is the same as in the electrostatic-deflec. tion tube shown in Fip. 344, but the beam is deflected by mathetic instead of electrie fields. Aetual deflection coils fit closely to the neek of the tule, so that the field will be as strong as mossible for a given coil current.
modium- and short-persistonee types. Small tuber for uscilloscope use usisally have mediumpersistume sareens of gremish flumesernce.

Tubr circuits - A represont:ative cathoderely tube cireuit with clectenstatio deflection is shown in Fig. 347. One phate of each pair of deflooting plates is comectad to amode No. 2. Since the voltages required normally are rather high, the positive terminal of the supply is usually srounded ($52-1: 3$) so that the common deflection plates will be at gromud potential. This plaers the rathode and ot her clements at high potentiak abowe grouml, hene these elemonts must be well insalated. The various cloctrode voltages are whtainod from a voltage
 suphly. h_{3} is a variable divider or "potentiomeder" for aldinsting the negative bias on the control grid and therehy varying the beam current; it is called the infrisitig or brighteress eontroh. The fores, or sharpmess of the luminous spot formed on the sereen by the beam, is controlled by R, which chamges the ratio of the anodo No. Zand anole No. I voltages. The formsing and intensity contmols interlock to some extent, and the sharperst forols is obtained by koping the beam curront low.

Deflecting voltages for the plates are applied to the torminals marked "vertiall" and "horizontal." R_{4} and R_{5} drain off any acromulation of charge on the deflereting plates. lisually some provision is made to plare an adjustable dac. voltage oh eath set of plates. so that the spot ran be "rentered" when straty electrostatic or mangetir fields are prosent ; the adjustable d.e. voltage mentralizes the effect of such fields.

The tube is mounted so that we set of plates produces a horizontal line when a varving voltage is applied to it, while the other set of plates produces a vertical line under similar conditions. They are called, respectively, the "horizontal" and "vertical" plates, but which set of actual plates produces which line is simply a matter of how the tube is momited. It is usually neressary to provide a mounting which can be rotated to some extent., so that the lines will actually be horizontal and vertical.

Pourer supply - The d.c. voltage required for operation of the tube may vary from 500 volts for the miniature type (1-inch diameter sercen) to several thousand volts for the larger tubes. The current, however, is very small, so that the power recquired likewise is small. Becanse of the low current drain, a power supply with half-wave rectification ($\$ 8-3$) and a single $0.5-\mathrm{t} .0 \%$ - ufd . filter eondenser is satisfactory.

(1) 3-9 The Oscilloscope

Description - An oscilloscope is essentially a cathode-ray tube in the basic circuit of Fig. 347 , but with provision for supplying a suitable deflection voltage on one set of plates (ordinarily those giving horizontal deflection). The deflection voltage is the time base or sweep. Oscilloscopes frequently are also equipped with vacuum-tube amplifiers for increasing the amplitude of small a.c. voltages to values suitable for application to the deflecting plates. These amplifiers ordinarily are limited to operation in the audio- or video-frequency range.

Formation of patterns - When periodically varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern which is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 348 shows how such patterns are formed. The horizontal sweep voltage is assumed to have the "sawtooth" waveshape indicated; with no voltage applied to the vertical plates the trace simply sweeps from left to right across the sereen along the horizontal axis $X-X^{\prime}$ until the instant H is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y^{\prime}-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is easily followed from the other indieated positions, which are taken at equal time intervals.

Fig. 347 - Cathode-ray tube circuit. Typical values for a 3-inch (screen-diameter) tube such as the 3API/906: $\mathbf{R}_{\mathbf{4}}, \mathbf{R}_{5}-1$ to 10 megohms. $\mathrm{H}_{3}-20,000$ ohms.
$\mathrm{R}_{2}-0.2$ megohm
$\mathrm{R}_{1}-0.5$ megohm.

Types of suepps - A sawtooth sweep-voltage waveshape, such as is shown in Figs. 348 and 350 is called a linear suef μ, because the defleetion in the horizontal dirertion is directly proportional to time. If the sweep were perfect the "fly-bark" time. or time taken for the spot to return from the end ($/ I$) to the begiming (I or A) of the horizontal trace, would be zero, so that the line $I / /$ would be perpendicular to the axis $Y^{-}-Y^{\prime \prime}$. Although the fly-back time cannot be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace A $A I$, at least at most frequencies within the audio range. The fly-back time is somewhat exaggerated in Fig. 345 , to show its effect on the pattern. The line $H^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the fly-back time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave applied to the vertical plates in the same way in which it is usually represented graphically (§ 2-7). If the time of one cycle of the a.c. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the screen, several cycles of the vertical or signal voltage will appear in the pattern. The shape of only the last cycle (or the last few cycles, depending upon the number in the pattern and the characteristics of the sweep) to appear will be affected by the fly-back in such a case.

Although the linear sweep generally is most useful, other sweep waveshapes may be desirable for certain purposes. The shape of the pattern obtained, with a given signal waveshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the spot moves faster horizontally in the
center of the pattern than it does at the ends. If two sinusoidal voltages of the same freguency are applied simultaneously to both sets of plates, the resulting pattern may be a straight line, an chlipse or a dirche, depenting upon the

Fip. 3.99 - I limear-mwef cocillator uxing a mas trionle. $\mathrm{C}_{1}-0.001$ to $0.25 \mu \mathrm{fd}$. ($\mathrm{S}_{3}-0.1 \mu \mathrm{fl}$.
(. $2-0.5 \mu \mathrm{fl}$.
$R_{1}-0.3$ to 1.5 negohms.
$\mathrm{R}_{2}-20000$, \%hm.
(i4-25 μ fil. 25.volt
$\mathrm{K}_{3}-0.25$ menolim.
electrolytic.

"The "IS" u upply should deliver 300 volt.. A and R_{1} are propertioned to give a whitalile sweep frequeney: the higher the time eomatant (\$ $2-6$), the lowor the frequency. R. limits pridecurrent flow during the deromizing period, when positive ions are attraved to the negative prid.
amplitude and phase relationships. If the frequencies are harmonically related (\$2-7) a stationary pattern will result, but if one frequeney is not an exact harmonic of the other the pattern will show continuous motion. This is also the case when a linear swop circuit is used; the sweep frequency and the frequeney umber ohservation must be hamonically related or the pattern will not be stationary.

The swerp gemerator dees not ordinarily function as a self-controlled aseillator hat rather as an externally controlled or synchronized ascillator which supplies voltage of the remuired waveform at the same frequency as the sigual umaler study, or a sub-multiple thereof.

Suceprormits - A simusodal sweop is casiest to ohtain, since it is possible to apply a.c. voltage from the power line, cither directly or through a suitable tramsformer, to the horizontal plates. A variable voltage divider or potentiometer may be used to regulate the width of the horizuntal trace.

A typical circuit for a linear sweep generator is shown in lig. 349. The tube is a gas triode or grid-rontrol reatifier (\$3-6-C). The striking or brakdown voltage, which is the plate voltage at which the lube ionizes or fires and starts comblucting, is determined by the grid bias.

Fig. 350 -
Condenser charging curves showing how a saw tooth wave is produced by a gaseous-tube linear sweep oscillator.

When plate voltage, $F_{b,}$ is applied, the condenser, ob, acquires a charge through R_{1}. As shown in Fig. 350 , the charging voltage rises relatively slowly, as shown by the solid line, until the breakdown or flashing point, V_{f}, is
reached. Then the condenser discharges rapidly through the comparatively low plate-cathole resistance of the tube. When the voltage drops to a value too low to maintain plate-current. flow. E_{4}, the ioniatation is extinguished and C_{1} oner more charges through R_{1}. If R_{1} is large enough, the voltage across ('1 rises linearly with time, t_{1}, up to the breakdown point. This linear voltage change is used for the sweep, being applied to the cathode-ray tube plates through C. The fly-back time, to, is the time required for discharge through the tube; to kerp this time small, the resistance during diseharge must be low:

To obtain a stationary pattern, the "sawtooth" rate is controlled by varying C_{1} and R_{1} and synchronized by introduring some of the voltage being observed on the vertical plates into the grid circuit of the 88.4 tube. This voltage "triggers" the tube into operation in synchronism with the signal frequency. Synchronization will occur solong as the signal frequency is nearly the same as, or a multiple of, the sweep frequency, provided the cirmit constants and the amplitude of the synchronizing voltage are properly adjusted.

The upjer frequency limit of gaseons-tulse sweep oscillators is in the vicinity of 50.000 cycles, even with the most careful design, hecause of the fly-back time limitations imposed by the gaseous content of the tube.

Fig, 3.5I - Pentode-tuhe high-sperd swerp generator.

To attain a higher-frequency sweep, a "hard"-tube oscillator sueh as that shown in Fig. 351 must be used. This circuit may be recognized as being similar to that of the pentode relaxation uscillator of F ig. 3.32-3. With suitable constants it is eapable of an upper frequency limit of 100 to 200 kc . of more. If a tube is used which has a high ratio of plate current to screen current, the sureen voltage will rise to a very high value during the phate discharge and thus aid in reducing the fly-back time.

A variety of waveshapes may be obtained from this circuit, ranging from the sawtooth or triangular waves which occur at the plate to the rectangular waveform of the screen-grid voltage. The plate-sircuit waveforms are those most often employed for oscilloseope work.

The sweep rate is controlled by R and C, but it is influenced also by the value of $R_{2} . R_{3}$ determines the output waveshape by regulating the ratio of charge to diseharge time, thus determining the part of the cycle occupied by the rectangular-shaped screen-voltage wave.

The blocking-tube oscillator in IFig. 352 is also capable of high-frequency operation,
chiefly because the oscillator portion generates a very short, sharp pulse which charges (alnost instantaneously. Because of its superiority in this respert, this circuit has reccived considerable application in television work. Its operation is distinguished from that of the squegring oscillator (lig. $3.42-\mathrm{C}$) in that the intermittent high-frequency oscillations are almost instintly blocked as the bias built up by the grid-leak and condenser, C and R, goes far beyond eut-off. With suitable constants, the build-up time for this blocking bias can be limited to a single high-frequency cycte, resulting in a vory short, abrupt pulse of plate current (I_{p}). Because of the large time eonstant of $('$ and R, the diseharge time is very murh slower. Until the charge again leaks off through R, the eireuit is paralyzed. When C^{\prime} is dischangel, the erve repeats.
L_{1} :thd L_{2} are tightly coupled and designed to be self-resonant at perhaps ten times the maximum sweep frequener.

In the practical form, shown in Fig. 352, the blocking oseillator itsolf is the left-hind section of the dual triode. The seoond triode section is used ats a fischarge tube, the rate of disehatge being controlled by the ($C_{2} R_{1}$ combination. By giving this combination the proper time constant the output wave an be made to have almost any desired form. R exercises limited control wer the frequency range. While the value of h_{1} determines the output amplitude.

Vacumm-tube suiaching circuits-In contrast to time-base circuits which deliver recurrent output impulses, certain applications in oscillsisope and other electronic work call for what are termed racuum-lube or electronic switehing circuits.

A keying rireuit is a non-locking electronie, switch which closes (or opens) a circuit when a control voltage is applied and returns the circuit 10 normal when the control volage is removed. The keving voltage is usually applied as control-grid bias, although sarcen- and suppressor-grid voltage also are employed.

A trigger circuit. alser called a flip-flop circuit, maty also be operated in this manner, but more strictly it is a type of locking or holding electronic switeh, wherein a second impulse is reguired to restore the cireuit. . Vter the

Fig. 3:3 - Dual-triods hloreking-tube uscillator and dincharge tube, with characteristic waveforms at the right.
(: - 0.001-0.01- fl . mica. $\mathrm{K}-0.25$ megohm variable. $\mathrm{C}_{1} \mathrm{C}: 3-0.005-0.5 \mu \mathrm{fd} . \quad \mathrm{R}_{1}-0.1-2$ negohm.
$\mathrm{C}_{2}-0.1 \mu \mathrm{fd}$.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-$ Sce text.

initiating control pulse the cirenit remains elosid, despite removal of the conten voltare, until a seoond releasing impulse is reccived. Circuits in which values of carrent or voltage chamgn abruptly from one stable condition to another at some reritieal value of voltage or resistanere, and then change batck abruptly at a different critian value of the controlling voltage or masistance are used for this purpose.
lige 3:3-A shows the haside pentorle form of triger cireuit. In this cireuit d.e. compling between the sareen abd suppressor grids causes the suppressor voltige to change with sereen volatge. With a hixh value of resistance in scries with the sereon, ebmut changes in these currents nevur when the suphly voltatere or the seroen-circuit resistame are varied. For example, by proper choice of voltage and circuit constants the plate current corresponding to a given value of simon currobt maty he mate zero. Triggering impulses maty he introduced in series with any of the clectrocles. but the eontrol grid is the mess semsitive. The values of the supply voltages are not aritical, but the proper relation must be mantained betwern them.

In the two-tube trigger eireuit of Fig. 35:3-13, a positive impulse applied to the wrid of the first tube will increase its plate current. This callses an incerased voltage drop atoss Res which in turn makes the bias on the seeond tube more nogative. (omserguently the plate current of the second tube derreases, derveasing the voltage drop :aross $h_{\text {t }}$. This makes the grid bias on the first thbe more positive, wasing a further increase in the plate current of this tube and a resultant further decrease in the plate eurrent of the second tube. The process continues until the srombl lube is cut off, when only the fist thate takes current. This condition will comtinne matil a negative pulse is appliped to the firsl grid. or a posilive polse to the seromed prid, when the atelion will be reversed. The intial oproting point is established by the variable tap on the cathode resistor, l_{7}.

© 3-10 Pulse Technique

In pulse transmission and reception (§ 1-4), specialized means are emploved to generate and shape characteristic pulses on the transmitting end and to rerreate and interpret these puhses on the receiving end. One is a process of waveshaping and injertion: the other of soparation and selertion. (eertain basic circuit clements are common to both; clemontary examples of such eircuits will be diserussed in this seretion.

Waveshaping - The prinary waveforms employed in pulse transmission, apart from the basic sine wave, are the rectangular wave (from narrow pulse tosquare wave). trapezodial wave. triangular wave (from isosceltes to right-angle sawtooth), exponential and sawhoth waves.

The nonsimusoidal waveforms obtaimable from certain oscillators. particularly those of the relaxation type, apuroximate the gemeral shapes required. To trim surh waves to the ideal form roquired, anxiliary waveshaping rir-

Fig. 355 -- 'Triode limiter action in penerating matare or trapezoidal wave by clipping peaks of a simusoidal wave.
with R_{1}. In the diode series limiter at B, emduction can oceur onls when the input is nore positive that the biasing vollage insorted in series with h_{1}. Thus there ran be no increase in output during the mos negative period of the sycle. The sories limiter prohimes a more squarely clipped wave than the paralled tyene. The operation of either type ran be reversed by reversing the diode commerlions and the polarity of the hiasing voltage.

In the donhle-diond paralled limiter at (' , the left-hand diode remmers pessitive peaks while: that at the right clips the megative. The degree of limiting is adjusted by varying the fixed bias by mouns of k_{3} and h_{4}. The double series limiter at I) functions in a similar manner but is more revitad of adjustment.

Triode limiters may be operated at cut-of or at saturation. In Pig. 355, the tube is hiased near the coutur of its chatactoristic. When the signal voltare goes morative. at ent-uff plate current ceases to flow and the bottom of the sime wave is clipped. (On the positive mak the plate current is limitod by saturation athe the top of the sime curve is squated aff. The input signal should he 20 or 30 times the grid bias for the sime wave (o) be sfuntel off shatple.

Limiter rircuits maty also be emploped for generating other tepers of pulses. If the tube in Fig. 35is is biased hevomel eut-off athe at romdenser is commected hetween plate and rround. a pusitive rectangular pulse applied to the grial will produce a sawtooth wave. During the interval betwern pulses the comenser is charged in a relatively slow linear rate through R_{4}. The sharp front of the positive pulse on the grid calses plate courrent to flow and the comdenser diselarges rapidly through the tube. A triamgular waveshape can be obtained by reduring the bias to zoro and applying negative pulars to the grid. Botween punses phate earrent
Fig. 3 .5 - Shapiny of -ine wase to sthare wave ly dioder elipping atelion, 'llhe waveformonat the umper ripht illuntrate, prograsively, the sinusoidal input wave, the mositive mak rliphed hy the diond parallel limiter (A), and the nepative peak elipurd by the diende arese limiter (13). 'Ihese are werformed jointly in the domble-dionle parallel limiter (C) and double-dionle series limiter (!) .
cuits are emploved. The basib ablegorios arm (1) limiter eircuits, which utilize the voltagelimiting action of vachum tubes, and (2) pratking rirelits, which employ $R^{\prime} C^{\prime}\left(o r L^{\prime}\right)$ time- constant cireuits.

Fig. 3̄̈t shows thr nse of biesed-dionde limiters in -lipping a sinc wase b create a sumate of trapomoidal waveshape by limiting ation.

The diode paratiol lisuiter at A does not limit the output until the imput voltage at tains: a value more persifive tham that of the negative hiswing voltage applied in sertr-

Fin. 3iv, - Pulse: miner or injerthor -irenit, illu-ltatiry how twormedt: lar pulorn of different haten atad amplitudes atre
 comples pialat ha' fore transmionion.
will flow. but earh nequtive pulse biases the tube beyond cut-off, making it nonconducting. The condenser charges through R_{4} for the daration of the pulse, then diseharges through h_{4}. The result is a symmetrical triangular pulse.

Pulse selection - Pulse seloretivity is hased on the following characteristics: (1) polarity: (2) amplitude: (3) shape: and (t) duration (including both "mark" and "space" intervals).

The diode separator functions much like the diode limitersof lige 35l. exaept that the aretion is reversed. seleremon bey pulaty is hased on the molateral eonductivity of the diode reetifier, and reguires only that the diode be so ron-

nected as to pass positive or begative putser, ats desired. For amplitude soparation the diombe is so biased that only pulses having :tn amplitude excerding the bias voltage will be passed.

The same resomblamer applies in the case of triode amplitude separators. In the cut-off separator of lige 357, the grid normally is biased beyond mut-off. When a positive voltage of sufficiont amplitude is applied. plato current flows. There will be no response to voltages of lessere amplitude or to negative pulare.

Fig. 3id - Vero-hian or positiv ${ }^{\text {- }}$ prid limiter-apparator.
(.) $-0.1 \mu \mathrm{fd}$.

(. $2-0.5 \mu \mathrm{M}$ I.

$$
\left.\mathrm{K}_{3}-1\right) .1 \text { meprhum }
$$

The positive-grid or hareked-grid separator, Fig. Bisk. operates al saluration amd is characterized be a series resiston in the grid rireat. Positive pulses drive the tube into the positive grid region. where griderurrent flow increases bias and limits plato-rurrent to a sleady value regardless of signal lews. Niner this eireuit passes only megative pulses, it is solertive as 10 polarity.

Differentintion and integration - If the fromt of a rectangular wave is applied to an her rirentit with sortos caparity and shmot resistance, as in lig. 3.e9, the voliage across the load resistor will equal the applied voltage at the instant of application. Then, as the condenser acquires charge the voltage across the resistor will decrease exponentially (\$2-6). If the time

Fig. 350 - With segoare wave input. the voltage waveshanes arross \mathcal{C} and C respretively in an $R C$ circuit have the shapes shown. Vote the variation in waveshapes for different time constants. ('lime ronstant values given are in trms of fractions of the period of the input wave.)
comstant of the circuit is very small, the charging period will be very short. Thus the voltage aroos the resistor will have the shape of a short pulse, sharply poaked at the front.

Following this initial pulse, no current flows through the resistor because the condenser is charged to the maximum voltage of the applied square wave. Hence the voltage across the resistor is zero so long as the input voltage is unchanging. At the trailing edge of the input waw the process is repeated. except that the resultant pulse has the opposite polarity since the condenser is now discharging.

By altering the sterphess of either the ascending or deseroding slopes of the input wave the amplitude of the output pulse ratn be comtrolled. This is the principle upon which pulse selection by waveshape is based, as illusimated in Fig. 3tio. A steep front produces a sharp pulse having an amplitude equal to the applied vollage, while a sloping front produces at pulse of correspondingly greater longth and lesser amplitude. For wharp pulses the time comstant must be considerably shorten than one-half crole of the input wave. With a longer time constant the charging period becomes correspondingle longer. While retaining a log:urithmie shape, and approarhes the duration :und form of the wave. Nueh a network is called at differontiating circmit.

In a circuit with the resistor in series and the comdenser in shunt, also shown in Fig. 359. the action is such that with a very short time constant the output wave resembles that of the inpul exeppt for a slight rumature at the beginning beralse of the exponential charging chatratoristic. The amplitude is, however, greatly reduced because of the voltage divider effect of the readtanceresistance combination. Increasing the time constant to a value comparable 1" the duration of the constant-amplitude protion of the input wave increases the ampliwade hut accentuates also both the ascending and descending slopes of the wave.

Inereasing the time comstant to a value very long compared with the base of the input wave, rewults in what is called an integrating circuit. In this circuit disrrimination or selection is

Fig. 360- Pulse selection based on the discriminating action of a differentiating circuit with inputs of different wavefront shapes. Typical input waves are slown above and the resulting output pulses below.

THE RADIO AMATEUR'S HANDBOOK

based on the duration or frequency of the input wave. For example, if a series of short pulses is applied, the energy stored in the contenser by each individual pulse will be small and will be discharged before the next pulse arrives. If, however, a series of pulses with longer bases and shorter intervals is applico, only a portion of the energy from

fig. 361-Serctional view of the "lighthonse" tube es entrinction. Close clectrode sparing redners transit time while the dise clectrode ronnections rednce lead inductance. each pulse will be discharged before the next begins charging. Energy is therefore accumulated on the condenser until a predetermined amplitude is established. Thus long-base pulses can be reparated from shorter pulses.

(1) 3-11 V.H.F. and U.H.F. Tubes

Nogative-grid tubres - At very high frequencies, interelectrode capacities and the inductance of internal leads determine the highest possible frequency to which a varoum tube c:an be tumed. Tlo tube usually will not osillate up to this limit, however, because of dielentrie lossess, grid emission, and "transittime" effects. In low-frequency operation, the actual time of flight of electrons between the rathode and the anole is negligible in relation to the duration of the cycle. At 1000 kc. , for example. transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ cyole. Butat 100 Me ., this same transit time represonts 1 '10 of a ryede, and a full cyde at 1000 Mr. These limiting factors establish about 3000 Mc. as the upper freguency limit for megative-grid tubes.

With tubes of ordinary construetion, the upper limit of oscillation is about 150 Mc . For higher l'rerquemos, v.laf. tubes of special construction are used.

Fis. 362-Schematie eross-stection of the or-bital-heam secondaryelectron multiplier tube. The "acorn" and "doorknob" types and the speciat v.h.f. "miniature' tubes, in which the grid-cathode spacing is made as little as 0.005 inch, are capable of operation up to about 700-800 Mc. The normal frequency limit is around 600 Mc., although output may be obtained up to 800 Mc .
Very low interelectrode capacities and lead inductance have been achieved in the newer tubes of modified construction. In multiple-
lead types the electrodes are provided with up to three separate leads which, when connected in parallel, have considerably reduced effective inductance. In double-lead types the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the bulb. When a resonant circuit is connested to each pair of leads, the shunting eapacity divides between the two circuits. With linear circuits the leads become a part of the line and have distributed rather than lumped eonstants. Radiation loss is minimized and the effect of the transit time is reduced. In "lighthouse" tubes or megatrons the plate, grid and eathode are assembled in parallel phanes, as shown in Fig. 361, instead of coaxially. The uniform coplanar electrode design and dise-seal terminals permit very low interelectrode capacities.

In the orbital-beam tube, Fig. 362, a small electrode structure i.s used in combination with a secondary-electron emiter to raise the effective transcondurtance. Wlectrons emitted from the cathode, F_{1}, are accelerated through the control grid, G_{1}, by a positive grid, G_{2}, and

Fig. 36.3 - Schematic of the inductive output amplifier.
enter a radial electrostatic field established by the cylindrical clectrodes, J_{1} and J_{2}, causing the electrons to move in a circular path and driving them against the secondary-emitter electrode, K_{2}. About ten secondary electrons are emitted for each primary electron; thus the ultimate electron flow to the plate, I ', is considerably greater than the original current emitted. As a result, high over-all transconductance $(15,000$ at 500 Mc . in an experimental tube) is obtained without increasing transittime losses or internal caparities.

Inductive output amplifier- In the induc-t.ive-output tube shown in Fig. 363 a highvelocity electron beam is intensity-modulated by the control grid (grid No. 1). After being accelerated and focused by the combined action of the first and second lenses in the magnetic circuit and the sleeve electrodes (grids

Fig. 364 - Simple form of rylindrieal-grid velocitymodulated tube with retardinn-field colledtor and coaxial-line output circuit, used as a superheterodyne high-frequency oscillator or as a superregenerative detector. Similar tubes can also be used as r.f. anmplifiers and freguency converters in the $5-50-\mathrm{cm}$. regiou.

No. 2 and 3), the beam moves past a small aperture in the "dimpled sphere" cavity resonator. The potential difference across this gap slows down the electrons and thereby callses the resonant eavity to absorb power from the beam. Electrons passing through the structure are decelerated by a suppressor clectrode (grid No. 4) before reaching the final anode or collector. The control-grid structure gives sharp cut-off and large transconductance. while the high accelerating potentials and small apertures result in very short transit time and consequently low input conductance. The in-ductive-output tube is useful for wide-bind operation above 500 Me., giving efficiencies of 25 per rent or better.

Velocity modulation-In negative-grid operation the potential on the grid tends to reduce the eleatron velority during the more negative half of the aseilation eyrle, while on the other half eyele the positive potential on the grid serves to accelerate them. Thus the electrons tend to separate into groups, those leaving the cathode during the negative half cyrle being rollectively slowed down, while those leaving on the positive half are accolerated. After passing into the grid-plate space only a part of the electron stream follows the origital form of the oscillation ryele, the remainder traveling to the phate at differing volorities. Since these contribute nothing to the powior output at the operating frequency, the ellicience is reduced in proportion to the variation in velority, the output hecoming \%ero when the transit time approachos a half cycle.

This effert, such a disadvantage in conventional tubes, is an advantige in velocit y-modulated tubers in that the input signal voltage on the grid is used to change the velocity of the clectrons in a constant-current electron beam, rather than to vary the intensity of a constant velocity current flow as in ordinary tubes.

A simple form of velocity-modulation oscillator tube is shown in lig. 36t. Flectrons emitiod from the cathode are aceclerated through a megatively hiased cylindrical grid by a constant positive voltage applied to a
sleeve electrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubers, with a small space at each end between the inner tube, through which the electron beam passes, and the disiss at the ends of the larger tube portion. With r.f. voltage applied across these gaps. which are small compared to the distance traveled by the electrons in one half revele, electrons entering the tube will be arecelerated on positive half cycles and decelerated on the negative half cycles. The length of the tube is made equal to the distance covered by the elect rons in one-half cyede, so that the electrons will be further accelerated or decelerated as they leave the tube.

As the beam approarhes the collerome electrode, which is at nearly \%oro potential, the clertrons are retarded. Brought to rest, and ultimately turned back by the attraction of the positive sleeve clectrode. The eullector electrode is, therefore, also termed al reflector. The point at which eleetrons are returned depends on their velocily. Thus the velocity modulation is again transtated into corrent modulation.

Velocity-modulated tubes operate sittisfactorily up to (6000 Mc . (.) (•m.) and higher, with outputs of 100 watts or more.

The klystron - In the Klystron velocitymodulated tube, the eledrons emituad by the cathode are atecelerated or retaded during their passage through an clective liodel establishad by two grids in a ravity resonator. or rhumbetron. called the "buncher." The highfrepuency clectric field between the grids is parallel to the electom stream. This fiold accolerates the electrons at one moment and retards them at another, in aceordance with the variations of the r.f. voltage applied.

Fig. 365 - Cirenit diapram of the klystron useillator, showing the feed-back loop eoupling the frequency-controlling rhumbatrons and the output loop in the catcher.

The resulting velocity-morlulated beam travels through a ficld-free "drift space." where the sowly moving electrons are gradually overtaken by the fatiter ones. The electrons emerif-

ing from the pair of grids therefore are saparated into gront)s or bunched along the direction of motion. The velority-modulated electron stream is passed to it "catcher" rhmmbatron. Again the beam passes through two parallel grids, the r.f. current areated by the bunching of the electron beam indteres an r.f. woltage berwern the grids. The catcher eatit y is made resomant at the frepueney of the velority-modnatsed electron beam. *o that ant oscillating fied is set up within it by the pasisage of the elewtom bumethes through the grid aperture.

If a ferd-batk loop is provided botwen the two rhumbat roms. as shown in Fig. 363. useilat tions will weur. Theremonat frepuoney dopends on the deremode voltatres and on the shapre of the ravitices amb maty be adjustad by varying the supply voluage and allaring the dimensions of the rhumbatmons. The banched bean eurrent is rieh in harmonies. hat the outpat waveform is remarkably pare beanare the high () of the eateher rhambatron suppremess the mawanted harmonies.

Posilime-erial mectron oscillators - A trimate in which the grid ralther thath the plate is pasitive with respert lo the rathonde will oscillate at fremumeros higher thath those at which transit-time efferts calse the tube to be imoperative as a mormal negative-grid asvillator. Oscillathes of the pesitive-grid type are known as "brakefichd" or "electron transittime" oscillators, Surersind performance is most readily achieved with tube strumtures having crolindrioal gride and phates.

This type of operation makes use of the bamsit time of electrons from the rathode in tha grid and plate regions. Fiectrons emitton by the abhode are arrelerated towand the positive grid, some striking it and some passing through. Those that pise through are repelled by the nemative plate and turn around, passing bet ween the grid wires unce more. In the process, the electrons induce acr. voltages in tha grid at a fredueney depending upon the transit time. Some electrons maty pass back and forth between the grid wires several times, while whers may satike the grid after a single round trip. Those which remain free in the tube for several osallations lose energy, but those which make moly one trip gath energy. However, since
the former are free for a longer time there is a net trimsfer of energy which can be used to maintain oseillations.

In this type of oscillator, shown in Fig. 3oiti, the frequeney is controlled primarily by the grid voltage and the tube element spacing. The: rewonant cireuit must be tuned to approximately the oscillation freguency for maximum output.

Positive-grid oscillators ran be operated at frequencies up to 10.000 Mr . (3 cm.). but the rficiency is usually only 2 or 3 por erent. Since most of the pown is dissipated in the grid. the tube is not capable of delivering much powor.

Magnelrons - A magnetron is fundamentally a dione with cerlindrical eleertrodes phaced in at uniform magnetic fied with the lines of chectromagnetic fore parallel to the chements. The simple eylindrial matgetron comsists of a filamentary rathode surroumded by a conrentria revindriabl anode. In the nore effiriom split-amode magnetion the evinder is divided lomgimudinally.

Marnetron wrillators atre operated in two different Ways. Filertrically the riruits are similar, the difference being in the relation between dow oron tramsit lime and the frequency of oscillation.

In the nemative-romiatare or dynatron type of magnemon aseilator. the alemont dimensioms amd amode vollage are sum that the tramsil thate is shont compared with the period of the aseillation frequeney. File trons omitted from the rathode ate driven lowards both halves of the amode. If the potentials of the two hatves are une quat. the offer of the magnetio fied is surth that the majomity of the cleertons travel for that half of the amode whish is att the lower putmitial. In ohther words, a derrease in the poiential of either half of the amode results
 That hati. The magherrot conserpertly exhibits negativerexistamo (hatactoristios (\$3-7). Negative-resistamee maghetron meillators are useful between 100 and 1000 Me . Wnder the best operating conditions: fliciandes of 20 to 25 per cest may be whtatherl. Since the power lose in the tube appers as heat in the atoode, where it is readily dissipated, relatively latge power-handling capatity can be obtained.

Fig. 367 - Comventiomal magnetrons, with equivalent whematie symbols at the right. A. simple rylindriral magnetron. is, "plit-anole nepative-resistance mapmetrom.

In the transit-time magnetron the frequency is determined primarily be its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficieney is much better than that of a positive-grid oscillator and good power output can be ohtained even on the superhighs.
In a monoscillating magnetron with a weak magnetic field. electrons traveling from the cathode to the anode move almost radially. their trajectorius being bent only slightly by the magnetic field. With increased magnetio fielu the electrons tend to spital around the filament, their radial component of velocity being mush smaller than the angular component. Tonder critio:al conditions of magnetic: fieh strength, a clome of electoms rotates about the filament. It extende up to the anode but does not actually reach it.
The nature of these elemton tajectorion is shown in Fig. 3tis. Cases A, B, and (' corraspond to the nom-onsillating comdition. For at

 magnetic field atrongth, $I /$. Below is shown the rorre--qumbing eurve of blate carrent. I. (Serillations commence when II reaches a orisical valus. If : progreasivel hither order momen of omeilation occur besond thin point.
small mannetic field (A) the trajeetory is bont slightly ne:ar the anode. This bemling incteases for a higher magnotie field (B) and the cloctron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge netar the amode. For a strong mannetie field (C) efectrons start radially from the rathode but are soon bont and curl about the filament in the form of a longr spiral before reaching the anode. This means a very long transit time and a vers large space charge in the whole region where the spiraling hakes place. Vindor eritical condilions (D), in) current flows to the anode and an electron is able to move from cablode lasmode, but a lareo space charge still exists betwern the rathode and anode. The spiraling hecomes ase of comcentric rircles. and the contire space-charge distribution rotates about the filament.

Figs. 368-E , F and -G depict higher order (harmonic-type) modes of operation in which the spare charge oseillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a tramsit-time magnetron uscillator the intensity of the magnetie fied is adjusted so that, under statie comditions, electrons leaving the cathode move in rurved paths which just

 B, four-anode type with opposite electrodes paralleled.
fail to reach the anome. All electrons are therefore deflered back t.a the rathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anote eatusing the potentials of these halves to vary about their arerage positive values, the conditions in the tube berome analogous to thuse in a jositive-grid oscillator. If the period of the alt crating woltage is made equal to the time required for an electron to make one complete rotation in the mangetic fiela. the a.c. component of the :mode voltatge reverses direction twice with each electron rotation.
 field, with the result that they are unable to reach the eathode and rontinus to rotate about it. Matawhile other wormons gatu energy from the field and are returned ho the cathode. situe those electrons which lose emergy remain in the interelectrode space longer that those which gain energy, the net offeet is a transfer of encrgy from the electrons to the electric field. This encrgy ean be applied to sustain oscillat tions in at resonant tramsmission line connected belween the twon haters of the amode.
split-anode magnedrons for wh.f. are construtal with a ravisy reantator built into the tube structure, as illatrated in Fig. 370. The assembly is a solid block of coppor which assists it heat disuipation. At extremely high frequencies oprotion is improved by subdividing the atode atructure into from 41016 or more segments. the resonant cavities for each anote compled by slons of critical dimensions to the common cathode region, as in Fig. 371.

The efficieney of multi-segment magnetrons reaches $6 \mathrm{~b}^{5}$ or 70 per cent. slotted-anode magnetrons with four segments function up to $30,000 \mathrm{Me}$. (1 em.) delivering up to 100 watts at efficioncies greater than 30 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

R.-F. Power Generation

11 4-1 Transmitter Requirements

Genrral requirements - 'To minimize interforence when at large number of stations mast work in one frequency bath, the power cutput of a tramsmittor mast be as stable in frequandy athl as free from :purions radiat ions as the state of the art permits. 'The sta aly r.f. output, called the carrier ($5-1$), must be free from amplitude variations at tributahle to ripple from the plate power supply (s s-4) or other a auses, its froquency should be umaffocted by variations in suphly voltages or inadvertent changes in rimuit ronstants, amol there should be no radiation on other than the intended frequency. The dagree to which these requirements wan be met depends upon the operating fregurney.
Design primripless - The design of the tramsmitter depends on the out put frequency, the required power output and the tope of "proation (e.w. telagraphy or 'phome). For c.w. "peration at low power on medium-high frequencies (up to 7 Me. or:o), : simple crystal oscillator dircuit eatm moet the requirements satisfactorily. However, the stable power output which can be taken from an osidlator is limited, so that for highor power the wallator is used simply as a frequency-vontrolling element, the power being raised to the desired level by neatas of amplifiers. Therequisite froquency stability can be obtaimed only when the oscillator is operated on relatively law frequencies, so that for out put frequencies up to about fol Me. it is meressary to increase the oscillator frequency by multiplication (harmonic generation - § 3-3), which usually is done at, fairly low power levels and before the final amplification. An amplifior which delivers power on the frequency applied to its arid cir- $^{\text {a }}$ cuit is known as a wroight amplificr; one which gives harmonir output is known as a frequency multiplier. An :mplifier used principally to isolate the frequencerowtrolling wiscillator from the effertw of changes in lowd or wther variations in following amplifier stagos is ralled a buffer amplifior. A complete tramsmittor therefore may consist of an osidlator followed by one or more buffer amplifiers, frequency multipliers and straight amplifiers, the number being determined by the output frequency and pewer in relation tor the wsillator frequener and power. The last amplifier is ralled the final amplifier, and the stages up to the last romprise the erviler. 'Tramsmitters asaally are designed to work in a number of frequency bands so that means for changing frequeney in har-
monic stops usually is providod, generally by mestus of phag-in inductancers.

The general methon of designing a transmitter is to decide upon the power output and the highest output frequency required, and allso the number of bamd, in which the tramsmitter is to operate. The lateder usually will determine the oscillator frequenery, since it is general practice to sot the waillator on the lowest frequency band to be used. The wsillator frequence soldom is higher than 7 Mr. except in some portable installations where tubes and power must be conserved. A suitable tube (or pair of tabes) should be solereted for the final amplifier, and the required grid driving power determined from the tube manulacturers datat. This sets the power required from the preading stage. From this point the same process is followed batek to the oreillator, ineluding frequency multiplication wherever necessary. The solection of a suitable tube complement. rernires a kowledge of the aperating rhatactoristias of the various typers of amplifiers athe oseillators. These are discossed in the following sections.

Above 100 Mr . and higher frequenoies these medhorls of tamimitter design tend to beromes rather eumbersome, beranse of the necersity for a large mumbre of frequeacy multiplier stages. However, in this fropuency region less severe stability reguirements arre impensed beramse the transmission rathge is limited ($\$(1-5)$ and the pmsibility of interferenee to other commani":ation is reducol. simple ascilator tramsmitters, without fredurney multiplication or buffer amphiliers, are widely wod.

Gacmom tubrs - The type of tube used in the transmitter has an important offect on the ciruit dexign. 'l"ubes of high power sensitivity (\$3-3) such as pentodes and boam tetrodes Libe larger power amplification ratios per stage than do triodes, hemer fewer tubses and stages maty be used to obtain the same output powor. Oti the other hamd triodes have rertain operating advantages, such as simpler power supply cirruits and relatively simplev adjustment for modulation (S.)-3), aml in addition are considerabiy less expensive for the same power output rating. Consequently it is usually more eoomomical to use trixdes as output amplifiers, even though an extra low-power amplifier stane may be heress:ars.

At. frequencios in the region of at Me amd above it is neressary to selenet tubes designed particularly for operation at vory-high frequencies, since tubes built primarily for lower frequencies may work poorly or not at all.

C 4-2 Self-Controlled Oscillators

Adrantages and disaltantages - The chief advantage of a selfecontrolled oseillator is that the frequeney of oscillation is determined by the constants of the tuned cireuit, and honce readily ran be sot to any desimed value. However, extreme are in design and adjustmont are essential to sereure satisfactory frequeney stability ($\$ 3-7$). Since frequeney stability is generatly porrer as the load on the oscillator is incrasied, the self-controlled oscillator shomld be used purcly to controd frequence and not for the purpose of ohtaining appreciable power output in transmitters intended for woking below (io Mc.

Oseillator circmits - The inherent stability of all of the oscillator circuits described in § $3-7$ is about the same, since stability is more a function of choier of proper cirenit values and of adjustment than of the method by which feed-batk is obtained. However, some circuits are more convonimit to use than others, particularly from the standpoint of feed-bank adjustment, mechanimal eonsiderations (whether the tuning condenser rotor plates rat be grounded or not, cte.), and uniform output over a ronsiderable freduelloy rangre. In all simple circuits the power output must be taken from the frecurncr-determining tank rireuit. whind means that, asible from the rffere of loadiner on freguency stability, the fullowing amplifier stare ban reate on the owillator and catuse at change in the frequencry.

Factors influencinge stability- - The muses of frequeney instability and the nocessary remedial steps hase been discussed in s3-7. These apply ta all oseillators. In the case of the clectron-coupled oseiltator the ration of plate to sareen woltage has marked affert on the stability with changes in suphly voltage: the optimum ratio is generatly of the order of $3: 1$, but should be dotermined axprimentally for earh case. Sinee the rathode is atove groumd potential, mosms shoulal he taken to reduce the efferts of heater-to-cithode eaparitance or leakage which, hy allowing at small a.c. voltage from the heator supply to develop between cathode and ground, may cause modulation ($\$ 5-1$) at the supply frembeney
Fig. 1111 - Elec-tron-eoupled oscillator circuit. R_{1} should he [(M),000 shats or more, the grid condenaer 100 $\mu \mu \mathrm{fil}$, and the other fixed eoniensers 0.0NO to $0.1 \mu \mathrm{fil}$.

This effert, which is usually appreciable only at 14 Me. and higher, may be redued hy by-passing the heator as in Figg 401 or hy opcrating the heater at the same r.f. potential as the cathode. The latter may be acoomplished by the wiring arrangement shown in Fig. 402.

Tank-rircuit 0 - The most intportant single fartor in determining frequency stability is the Q of the oscillator tank rircuit. The effective () must be as high as possible for best stability. Since aseillation is aceompanied by grid-current flow the grid-eathode cirenit

Fig. 402 - Method of oprating the heater at cathode r.f. putential in an clectrom-rompled an $^{-}$ cillator. $I, 2$ shombid have the samenumber of turn. as the cathendes section of L, and slaculd be clanely compled (prerferaluly interwound), Condenaer (: may lie 0.01 to $0.1 \mu \mathrm{tal}$.

eonstitutes a resistance load of appreciable proportions, the effertive resistance being low enongh to be the determining factor in establishing the effective parallel imperlance of the tank rircuit. Comsequently, if the eurds of the tank are connectod to plate and grid, as is usual, a ligh effertive Q can be obtained only by derreasing the l, (eatio and making the inherent rosistaner in the tank as low an possible. The tank resistance can he decreased by using low-lase insulation and be winding the mal with harge wirr. With ordinary eonstruetion. the optimum tank capareity is of the order of 500 to $1000 \mu \mu \mathrm{ft}$. at a fredurncy of 3.5 Mc .

The effertive cireuit Q ean be raised by increasing the resjstance of the grid circuit and thas derreasing the loading. This can be aceomphished thromgh reduring the osciltator grid curront, which may he aromplished hy using miniaman ferd-bark for stable oscillation, plus a high value of wrid-leak resistance.

A high-e tank rircuit (an :Meo be ohtained with a higher L (C ratio by "tapping down" the tube commections on the tank ($\$ 2-10$). Thhis is advantageobs in that a moil with higher inherent Q can be used; also, the circulating r.f. current in the tank rireuit is reduced so that drift from roil heating is derreased. Howcrer. under somo comditions parasitie oscillatioms masy be set up (($1-10$).

Plato supply - Since the ascillator froquenery will be afferted to some extent by changes in plate-supply voltage, it is neressary that the latter be froer from ripple ($\$ 8-4$) whieh would canse frequeney variations at the ripplefrequency rate (froqurucy momlulation). It is advantageons to use a voltage-stabilized power supply ($\$ 8-8$). Simer the oscillator usually is "perated at low voltage and current, VR-type gaseous regulator tubnes are quito suitable.

Pourer lerel - The selferontrolled asillator whould be designed purely for frequency control and not to give apprexiable power cutput, hence small tubes of the reroiving type may be used. The power input ordinarily is not more than a watt or two, subsequent buffer amplifiers being used to increase the power to the desired level. The use of recoiving tubes is advantageous mechanieally, since the small elements are less susceptible to vibration and
usually are securely braced to the envelope of the tube.
Oscillator adjustment - The adjustment of an oscillator consists principally in observing the design principles outlined in the preceding paragraphs. Frequency stability. should be checked with the aid of a stable receiver. An auxiliary crystal oseilator may be used as a standard for checking dynamic stability and drift, the self-controlled osciltator boing adjusted to approximately the same fropurney so that an audio-frequency beat ($\$ 2-13$) can be obtained. If it is passibite to vary the owrillatior plate voltage (ani edjustable rexistor of 50,000 or 100,000 ohms in eerice with the phate supply lead will give comdiderathe variation), the change in frequency with change in phate voltage may be observed and the operating conditions varied until minimum fregucher shift results. The primipal iactors affecting dynamic stability will be the tank cirruit L/e ratio, the grid-leak resistance, and the amount of feed-back. In the electron-coupted circuit the fatter may be adjusted by changing the cathode tap on the tank coil: critiana adjustment is required for optimum stability.

Drift may be cherked by allowing the wesillator to oparate continuously from a cend start, the frequmey change being obsorved at regular intervals. Drift may be minimized by using less than the rated power input to the pate of the tube, by construction which prevents tube heat from reaching the tank circuil cloments, and by use of lange wire in the tank roil to reduce temperature rise from internal havating.

In the electron-coupled oscillator having a tund plate exeruit (Fig. 334), resomaner at the fundmental and harmonic freconences of the oseillator portion of the tube will be indiatand hy a decrease in plate current as the plata tank condenser is varient 'This "dip" is less marked at the fumbamental hat on harmomics.

[4-3 Crystal Control

Charartoristies - Piezoclertric erystals (s 2-12-I) are widely used for (ontrolling the frequency of tranmithing oseillators, heratase the extremely high of of the erestal and the neressarily loose rompling between it and the

Fig. 403 - 'Irionde ersstal weillator. The tank condenser, Ci, may be a I 100 - μ fil. variable, with l a proportioneds so that the tank will tume to the erystal frevuency. Ciskould lee 0.001 fifl or targer. "the grid lah, h_{1}, will wary with the ty pe of tulke; hiphim tubes take values of 2500 to 10,000 ohms, while medinm and low- μ types take values of 10,000 to $\mathbf{2 5 , 0 0 0}$ ohms. A small flashilight bulb or r.f. milliammeter (\$4-3) may be inserted at X.
oscillator tube make the frequency stability of a reystal-controlled oscillator very high.

The ability to adhere closely to a known frequency is the outstanding characteristic of a erystal oscillator. This also is a disalvantage, in that a different erystal is recuired for each frequency on which the transmitter is to operate.

Pencer limitations - The temperature of a revisal depends not anly on the temperature of its surroumding but also on the power it most diwipate whike weillating. sime power diapiation calum heatitg (\$2-6, 2-8). Comsequently, the crystal tomperature in operation mas be comsiderably above that of the surroumding air. To minmize hostimg and fregucory drift i\$3-7, the power dissipated must be kept to a minimum.

If the erystal is malle to oscillate toostrongly, as when it is ued in :n oreillator circuit with high plate voltage and exeessive feed-back, the amplitude of the mechanical vibration will become great chomgh to crack or puncture the quartz. An indication of the vibration ampli-
 eonnecting an r.f. curmotindieating devier of suitable ramer in series with the ervstal. Safe r.f. (ave al eurronts ratage from in to 200 milli-
 cun. A fasklight bulbor diad light of equivalent current rating makes a goted curven indicator. By. rhmosing al bulb of hwer rating that the current sperified by the manufaburer as safe for the particular trpe of ervital wed. the bulb will serve as a fuse, buming out hefore a curreat dangorans to the arostal is reathed. The folo-mat and lot-ma. bulles may be used for this purpase.

Crvatal mommines - To make use of the arvital, it must be mounted between two motal clectrodes. "lame are t wo typer of mountings, (1he having :s small air-map botwern the top phaterand the eryotal and the other matintaining both plates in contare with the crystal. It is essential that the surfares of the metal plates in contater with the revstal be porferetly flatt. In the air-gap type of holder, the frequency of asiflation dapends to some extent upon the size of the genp. By using a holder having a top plato with rlosely adjustable spateing. a confrollable frepuency variation can be obtained.
 great variation in power output over a range of about is ke. X- and Y-cut crestals ate not wemerally sulatabe for this type of operation; they have at tondenco to "jump" in frequency with diff(roul air m:!ps.

A holder having a heavy metal bottom pate with a large surface exposed to the air is advantageous in that it radiatos quickly the heat generated in the ervatal, thereby reducing temperature effects. Different plate sizes, pressures, etc., will ause slight changes in frequency, so that if a (rystal is being ground to an exart frequency it should be tested in the same holder and in the same osidlator circuit with which it will be used in the transmitter.

Fig. 404 - Tetrode or pentode erystal oscillator. T'y pical values: $C_{1}, 100 \mu \mu \mathrm{fd}$, , with L wound to suit frequency; $C_{2}, C_{3}, 0.001$ ${ }^{4} \mathrm{fl}$. or larger: C4, 0.01 afl.: R_{1}, 10,0010 to 50 , 000 chmes (valuc deiermined by trial); $R_{2}, 250$ to 400 ohns.

[1 4-4 Crystal Oscillators

Triode oscillators - The triode crystal oscillator circuit ($\$ 3-7$) is shown in Fig. 403. The limit of plate voltage that can be used without endangering the rrystal is about 250 volts. With the r.f. crystal current limited to a safe value of about 100 ma ., the power output obtainable is about 5 watts. The oscillation frequency is dependent to some extent on the plate tank tuning, berause of the change in input rapacity with changes in effective amplification ($3-3$).

Tetrode and pentode oscillators - Since the power output of a crystal oscillator is limited by the permissible r.f. crystal current (§4-3), it is advantageous to use an oscillator tube of high power sensitivity (\$3-3) such as a pentode or beam tetrode ($\$ 3-5$). Thus for a given crystal voltage or current more power output may be obtained than with the triode oscillator, or for a given output the crystal voltage will be lower, thereby reducing crystal heating. In addition, tank-circuit tuning and loading react less on the rrystal frequency because of the lower grid-plate caparity (\$3-3).

Fig. 404 shows a typical pentode or tetrode oscillator cirruit. Pentode and tetrode tubes originally designed for audio power work are excollent crystal-oscillator tubes. 'The sereen voltage is gonerally of the order of half the plate voltage for optimum operation. Small tubes rated at 250 volts for audio work maty be operated with 300 volts on the plate and 100-125 on the screen as crystal oscillators. The screen is at ground potential for r.f. and has no part in the operation of the circuit other than to set the operating characteristics of the tube. The larger beam tubes may be operated at 400 to 500 volts on the plate and 250 on the screen for maximum output.

Pentode oscillators operating at 250 to 300 volts will give 4 or 5 watts out put under normal conditions. Beam-type tubes such as the 6 L 6 and 807 will give 15 watts or more at maximum plate voltage.

The grid-plate capacity may be too low to give sufficient feed-back, particularly at the lower frequencies, in which case a feed-back condenser, C_{s}, may be required. Its capacity should be the lowest value which will give stable oscillation; 1 or $2 \mu \mu \mathrm{fl}$. is generally sufficient. R_{2} and C_{4} may be omitted, connecting the cathode directly to ground, if plate voltage is limited to 250 volts. C_{5} (if needed) may be formed by two metal plates $1 / 2$-inch square spaced $1 / 4$ inch. If the tube has a suppressor
grid, it should be grounded. X indicates where a flashlight bulb may be inserted ($\S 4-3$).

Circuit constants - Typical values for grid-leak resistances and by-pass condensers are given in Frigs. 40:3 and 404. Since the crystal is the frequen'y-determining element, the Q of the plate tank circuit has a relatively minor effect on the oscillator frequency. A Q of 12 ($\$ 4-8$) is satisfactory for average conditions, but some departure from this figure will not greatly affect the performance of the oscillator.

Adjustment of cristal oscillators - The tuning characteristics and procedure to be followed in tuning are essentially the same for triode, tetrode or pentode crystal oscillators. Using a plate milliammeter as an indicator of oscillation (a $0-100$ ma. d.c. meter will have ample range for all low-power oscillators), the phate current will be found to be steady when the circuit is in the nom-oscillating state, but will dip when the plate condenser is tuned through resonance at the erystal frequency. Fig. 405 is typical of the behavior of plate current as the tallik condenser capacity is varied. An r.f. indicator, such as a small neon bulb touched to the phate emd of the tank coil, will show a maximum indication at point A. However, when the oscillator is chelivering power to a load it is best to operate in the region $B-C$ since the oscillator will be more stable and there is less likelihool that a slight change in loading will throw the circuit out of ascillation, which is likely to happen when operation is too near the critical point, A. The erystal current also is lower in the 13 -C region.

When power is taken from the oscillator the dip in plate current is less pronounced, as indicated by the dotted curve. The greater the power output, the smaller the dip in plate current. If the loar is made too great, osailations will not start. Loading is adjusted by varying the coupling to the load cireuit ($\$ 2-11$).

The greater the loading, the smaller the voltage fed back to the grid circuit for excitation purposes. This means that the r.f. voltage across the crystal also will be reduced under load, hence there is less crystal heating when the oscillator is delivering power than when it is unloatled.
Failure of a crystal circuit to oscillate may be caused by any of the following:

1) Dirty, chipped or fractured crystal.
2) Imperfect or unclein holder surfaces.
3) Too tight coupling to load.
4) Plate tank circuit not tuning correctly.
5) Insufficient feed-back capacity.

Fis. 106 - Piarce os. cillator pircuit. K_{1} is 25.000 to 50,000 ohnms. R_{2} is 1000 ohmn; R_{3}, 2. 1000 ohms for a 6 of $6 ;$ (i. 0.001 to $0.01 \mu \mathrm{fll}$: C_{3} and $C_{4}, 0.01 \mu \mathrm{fl}$. For values of C_{2} and CE, nee text.

Pierce oscillator - This circuit, Fig. 40t, is equivalent to the ultraudion cireuit ($\$ 3-7$). with the ergstal replaring the foned cireuit. Although the output is smatl, it has the advantage that no tuning controls are roguired. The circuit requires capaceitive roupling to a following stage. The amount of feed-bark is determined by the condenser, (2; its raparity must be determined by experiment, usual values being betwern 50 and $150 \mu \mu \mathrm{fd}$. To sustain oscillation, the not ratatance (\$2-8) of the plate-rathode circuit must be capacitive: this condition is met so lone as the indurtance of the r.f. choke, tongether with the inductance of any coils associated with the input circuit of the following stige and the tube and stray capacities, forms a dircuit tumed to a lower frequency than that of the crystal.

Tubes sumh as the triode $6\left(\begin{array}{c}\text { (}\end{array}\right.$ and pentode (iFt are suitab) for use in this rircuit. (When a triode is used the sereen-voltage dropping resistor, R_{o} and hy-pass condenser, C_{4}, in Fig. 406 should. of aourse, be omitted.) The applied plate voltage should not exceed 300 , to prevent crystal fracture. The raparity of the outpatcoupling comdenser. f. should be adjusted by experimont so that the oscillator is not overloaded: usimally $100 \mu \mu \mathrm{fl}$, is a satis factory value.

(1) 4-5 Harmonic-Generating Crystal Oscillators

Tri-tel oscillator - 'The Tri-tet omeillator circuit is shown in Fig. 407 . In this circuit the screen grid is operated at ground potential and the rathode at an r.f. potential above ground. 'The screen-grid acts as the anode of a triode crystal oscillator, while the plate or output circuit is tumed to the oscillator frequency or, for harmonic output, to a multiple of it.

Besides giving harmonic output, the Tri-tet rimedit has the "huffering" feature of electeme coupling betweon crystal and ontput rircuits (\$4-2). This makes the crystal frequency less susceptible to changes in loading or tuning, and hence improves the stability.

If the output rircuit is to be tuned to the same frequency as the crystal, a tube having low prid-plate capacity ($3-2,3-5$) must be used. Otherwise there may be excessive feedback with conseguont danger of fracturing the crystal. The eathode tank circuit, L_{1} ('1. is not tuned to the frequency of the erystal, but to a considerahly higher frequency. Recommonded values for L_{1} are given under the diagram. C_{1} should be set to as near minimum capacity as is consistent with good output. This reduces the crystal voltage.

With pentode-type tubes having separate suppressor connections, the suppressor may be either connected directly to ground or operated at about 50 volts positive. The latter method will give somewhat higher output.

With transmitting pentodes or beam tubes operated at 500 volts on the plate an output of 15 watts can be ohtained on the fundamental and neaty as much on the serond harmonic.

Grid-pinte oscillahor-In the grid-plate oscillator, Fijg. 408, the crystal is connected between grid and ground and the cathode tuned circoit. C_{2} and $R F^{\prime}$, is tumed to a frequency lower than that of the erystal. This cireuit gives high output on the fundamental erystal frequener with low arystal current. The output on even harmonics (2nd, the ate.) is not so great as that obtainable with the pri-tet, but on odd harmonios (3rd, sth, etc.) the output is appreciably better.

If harmonic output is not needed, ('2 may be a fixed caparity of $100 \mu \mu \mathrm{fd}$. 'The rathode coil, $R F^{\prime}$, may be a $2.5-m h$. choke, since the inductance is mot critical.

Output powar of 15 to 20 watts at the crystal fundamental may be obtained with a tube such as the blifi at plate and screen voltages of 400 and 250 , resportively.

Tuning and aljustmeni - The tuning procedure for the 'riotet oscillator is as follows: With the cathode tank condenser at about three-quarters seale turn the plate tank condenser until there is at sharp dip in plate cur-

Fig. 40T- 'Iri-t.t omailatur cirmit, using inntodes (A) or leam tetroles (13). ($: 1$ and (2 are $200-\mu \mu \mathrm{fl}$. variable
 their values are not eritical. $R_{1} . \mathbf{\% O}_{0} 0160$ to 100.000 ohms. R_{2} should be 400 ohms for 400 - or 500 -volt operation. 'I'he following specifications for the cathode coils, L_{1}, are based on a diameter of $1 \frac{1}{2}$ inches and a length of 1 inch; turns should be spared eventy to fill the rectuired length: for 1.75. Mc. crystal, 32 turns: 3.5 Mc., 10 turns; 7 He., 6 turns. The sereen should be operated at 250 volts or less. Audio boam tritodes such as the 61.6 and 61.6 G whould he used only for werond-harmonie output. A flashlight hulb may be inserted at the point marked $X(\$ 4-3)$. The $L / / C$ ratio in the plate tank, $L_{2} C_{2}$, should be such that the capacity in use is 75 to $100 \mu \mu \mathrm{fil}$. for fundamental output and about $25 \mu \mu \mathrm{fd}$. for second-harmonic output.

Fig. 108 - Grid-plate ersstal oweillator cirmit. In the cathode eircuit, RFC'is a $2.5 \cdot m h$. r.f. choke. Other reonstants are the same as in lize tot. A ersstalecurrent indicator may be inserted at the point marked X ($\$ 4-3$).
rent, indicating that the plate eircuit is in resonance. The erystal should be oscillating continuously, regardless of the setting of the plate condenser. Set the plate condenser so that plate current is minimum. The load circuit may then be compled and adjusted so that the oscillator delivers power. The minimum plate current will rise: it may be neressary to retune the plate condenser when the load is coupled to bring the phate eurrent to a new minimum. Fig. to9 shews the typical behavior of plate current with plate-condenser tuning.

After the plate circuit is adjusted and the oscillator is delivering power, the cathode condenser should be readjustad to (w)tain optimum power out put. The setting should be as far toward the low-apacity end of the seale as is consistent with good outpun: it maty, in fact. be devirable to sarrifier a little output if so doing lowers the eurrent through the crystal and thus redures heating.

For harmonie output the plate tank circuit is tuned to the harmonic instead of the fundamental of the crystal frequeney. A platereurrent dip will ofeur at the harmonic. If the cathode condenser is adjusted for maximum output at the harmonie, this adjustment will usually serve for the fumbimental ats well. The crystal hould be checked for excessive heating,
the most effective remedy being to lower plate and/or screen voltage or to reduce the loading. Maximum r.f. voltage across the crystal is developed at maximum load, so heating should be checked with the load coupled.

When a fixed cathode condenser is used in the grid-plate oncillat or the plate tank circuit is simply resonated, as indieated by the platecurrent dip, to the fundamental or a harmonic of the output frequency, loading being adjusted to give optimum power output. If the variable cathode comelenser is used, it should be set to give, by observation, the maximum power output consistent with safe erystal current. The variable condenser is useful chiefly in increasing the output on the third and higher harmonics: for fundamental operation, the cathode caparity is not eritioal and the fixed condenser may be used.

Fig. 109 -- Curves showing d.e. bate aurront es. plate-rondenser tuming, both with and without load, for the 'Tri-tet osijllator. 'libe setting for minimam plate earrent may shift with loading.

(1) 4-6 Interstage Coupling

Requirements - The purpose of the interstage coupling system is to transfer, with as lit tle energy lows ats pasible, the power developed in the plate circuit of one tube (the driver) to the grid cirenit of the following amplifier tube or frequeney multiplier. The circuits in practical use ate based on the fundamental coupling arrangements described in $\$ 2-11$. In the process of power transider, impedance transformation ($\stackrel{2}{2}-9$) frempently is necessary that the proper exciting voltage and current will he arailable at the grid of the driven tube.

Fig. 410 - Direct or capacity-roupled driver and amplifier stapes. The coupling capacity may be from 50 mpfd. to $0.002 \mu \mathrm{fd}$; it is not critical exopt where tapping the coils for control of excitation is not possihle. Parallel plate feed to the driver and series grid feed to the amplifier may be substituted in any of these circuits (§3-7).

Capacity coupling - Fig. 410 shows several types of capacitive eoupling. In each casc, C is the coupling condenser. The coupling condenser serves also as a blocking condenser (\$2-13) to isolate the d.c. plate voltage of the driver from the grid of the amplifier. The cirruits of C and D :re preferable when a balanced eircuit is used in the output of the driver; instead of both tubes being in parallel across one side the output rapacity of the driver tube and the input capacity of the amplifier are arross opposite sides of the tank cireuit, theroby prewerving a better circuit balance. The circuits of E and F are designed for coupling to a push-pull stage.

In A, B, E and F, excitation is adjusted by moving the tap on the coil to provide an optimum impedance mateh. In Fand F , the two grid taps should be maintained equidistant from the center-tap, on the ewil.

While caparitive coupling is simplest from the viewpoint of comstruction, it hats ereain disadvantages. The input capacity of the amplifier is shunted arross at least a portion of the driver tank coil. When added to the output capacity of the driver tube, this additional catpacity may be sufficient, in many cases, to prevent use of a desirable L / C ratio in circuits for frequencies above about 7 Mr .

Link rompling - At the higher frequencies it is advantageous in reduring the offerts. of
 tank circuits for the driver plate and amplifier grid, coupling the two circuits beyme of a link ($\$ 2-11$). This method of coupling also has somu comstruetional advantage, in that separate parts, of the tramsmitter may he wonstrueted as sepmatate units without the nomero sity for ruming long leads at high r.f. potential.

Fig. 411 -- I.ink cenpling lurtween driver and amplifier.

Circuits for link coupling are shown in Fig. 411. The coupling ordinarily is by a turn or two of wire elosely coupled to the tank inductance at a point of low r.f. potential, such as the center of the coil of a balanced tank circuit or the "ground" end of the coil in a single-ended circuit. The link line usually consists of two elosely spaced parallel wires; occasionally the wires are twisted together, but this usually causes undue losses at high frequencies.

It is advisable to have some means of varying the coupling between link and tank coils. The link coil may be arranged to be swung in relation to the tiank coil or, when it consists of a large turn around the outside of the tank enil, may he split into twe parts which can be pullend apirt or clused somewhat in the fashion of a pair of calipers. If the tank coils are wound on forms. the link may be wound close to the main coil.
With fixed erils, some adjustment of roupling usually can be ohtained by varying the number of turns on the link. In general, the proper number of turns for the link nust be found by experiment.

(1) 4-7 R.F. Power-Amplifier Circuits

Trirode ami pentorle amplifiers - When the input and output circuits of an r.f. amplifier tube are tuned to the salme frequeney it will mesillate as a tuned-grid tuned-plate oscillator, unless some means is provided to climinate the effects of fred-hack through the plate-to-grid rapacity of the tube ($\$ 3-5$). In all transmitting r.f. tetrodes and pentodes, this eapacity is redured to a satisfintory degrec hy the internal shielding between grid and plate provided by the sereen. Tetrodes and pentodes dexigned for atodio use (surh as the 6L6, G1'G, 616 , etc.) are not sufficiently well sereened for use as r.f. :mplifiers without emploving suitable means for mullifying the effert of the gridpate raparity.

Typiral circuits of tetrome and pentode r.f. amplifiers are shown in lig. 412. The high power sensitivity ($\$ 3-3$) of pentoles and tetrodes, makes them prone to self-oweillate with very small values if feed-back voltage, however, so that particular care must be used to prevent fred-back be means external to the tube itself. This calls for adequate isolation of plate and grid lank circuits to prewent undesired magnetic or capacity coupling between them. The requisite isolation can be serured either by keeping the circoits, well separated and monting the coils so that magnetic coupling is minimized, or thy the use of interstage shiclding (\$2-11).

Triode amplifiers- The feed-back through the grid-phate rapasity of a triode cannot be eliminated, and therefore special circuit means called neutralization must be used to prevent oscillation. A properly neutralized triode amplifier then behaven as though it were operating at very low frequencies, where the grid-plate capacity feed-back is negligible (\$3-3).

single-tube or parallel

 and its associated by-pass cemdenaer are montted.

Neutralization - Neutralization amounts to taking some of the radio-frequeney curent from the output or input cirenit of the amplifier and introducing it into the other wrenit in such a way that it effertively ramoels the current flowing through the grid-pate cap:arity of the tube, thus rendering it impossible fur the tube to supply its own excitation. For complete noutratiation of the amplifier. the two courents must be opposile in phane (s 2-7) and equal in amplitude.

The out-of-phase current (or voltage) man be obtained quite readily by using a baltunced tank rircuit for either grid or plate, taking the neuralizing voltage from the end of the tank opposite that to whirh the grid or plate is commerted. The amplitude of the neutralizing voltage can be regulated by means of a smatl condonser, the meutralizing condenser, having the same order of eaparity as the grid-phate eapacity of the tube. C'ircuits in which the neutralizing voltage is obtained from a balanced grid tank and fod to the phate throurh the nentralizing condenser are grid-neutralized cienuits, while if the neutralizing voltage is obtamed from a balaneed plate tank and fed to the grid the circuit is phate-neutralizetl.

Ilate-neutralized circuits - The rircuits for plate noutralization are shown in Fig. 413 at A, B and C. In A, voltage induced in the extomsion of the tank coil is fed back to the grid through the nent ralizing condenser, (' n, to balane the voltage appearing between grid and plate. In this circuit, the capacity required at C_{n} increases as the tanls coil extension is made smather: in qemeral, nentralization is satisfactors wer omly a small range of frequeneies since the eompling betwern the two sections of the tank coil will vary with the amount of eapacity in use at r°.

In 13 the tank coil is center-tapped to give equal voltates on either side of the center tap, the tank eondenser being across the whole coil. The neutradizing eapacity is approximately equal to the wid-plate capacity of the tube, in this rase. A disadvantage of the cirmit, when used with the single tank condenser shown, is that the rotor of the comdenser is above ground potential, and hence small capacity changes caused be bringing the hand near the tmane control (hand capacit!) cause detuning. In general, neutralization is complete at only one

Vig. 41.3 - Neutralized triode amplifier circuits. Plate neutralization is shown in A. Is and C. whit II, E and ${ }^{\circ}$ stow types of prid neutralization. Fither capacitive or linh conpling nay be used with the eirentit of C , B or C .

THE RADIO AMATEUR'S HANDBOOK

frequency since the plate-cathode capacity of the tube is across only half the tank coil; also, it is difficult to secure an exart center-tap. Both of these factors cause unbalance, which in turn fanses the voltangesacross the two halves of the eoil to differ when the frequeney is changed.

The circuit of C also uses a centcr-tapped tank circuit, the voltage division being secured by use of a balanced (eplit-stator) tank condenser, the two condenser sections being identiral. C_{n} is approximately equal to the gridplate caparity of the tube. In this circuit the upper section of the tank condenser is in parallel with the output rapacity of the tube, hence the circuit can be completely neutralized at only one setting of the tank condenser unless a

fig. 11.4 - Compronsatime for unbabane in the sing!e-tulne neutralizing eircuit. C, the balancing momensir. has a maximum raparity somewhat langer than the ontput caparity of the tube.
compensating capacity (Fig. 414) is comerted across the lowere serion. It is adjusted so the nentralizing eondenser noed not be changed when frequener is shifted. In practiore. if the capacity in twe in the tank riment is lane mompared to the plate- $\begin{gathered}\text { athode capacity the unbal- }\end{gathered}$ ancing effert is not serious.

Grid-neutralized circuits- 'l'ypieal circuits emplowing grid neutralization are shown in Fig. +13 at J), Fand F. The principle of balarding out the feod-back voltage is the same as in plate neatralization. However, in these circuits the neutratizing vollage may be either in phase or out of phase with the excitation voltage on the grid side of the input tank eirenit depending upen whether the tank is divided by meens of a balanered condenser on a tapped eoil.
 by ordinary proedare hempibed belows, will be regencrative when the plate voltage is atoplied; the rivenit at $\mathrm{F}^{\text {will }}$ be degencrative. In addition the normal mbatameing offects previously dearribed are prosent, so that grid neatralizing is las satisfactory than the pate methorl.

Inductive nentralization - With this type of neutralazanom, inductive mopling bet wern the grid and plate cireuts is provided in such a
way that the voltage induced in the grid coil by magnetic coupling from the plate coil opposes the voltage fed hack through the grid-plate capacity of the tube. A representative cireuit arrangement, using a coupling link to provide the motual inductance ($\$ 2-11$), is shown in Fig. 415-A. 'The link coils are of onre or two turns coupled to the grommded ands of the tank coils. Neutralization is adjusten hy moving the link coils in relation to the tank enils. Reversal of comnections to one eoil may be required for proper phasing. Ordinary indurtive coupling between the two eroils also eonld be nsed, bat it is lase convenient. Indurtive neut ralization is complete only at whe frequeney sine the effertive mutual inductance changes to some extent with tuming, but is usefnl in resos where the grid-plate rapacity of the tabe is vory small and suitable cireut halanme wannot be obtaned by using moutralizing romdansers.

Another form of mentralization, known as "coil" or "shunt" neutralization. is shown at B. Its operation is hased on making the indurtanne of $L^{\text {s }}$ sur h that, together with the gride pate caparity of the tube it resomates at the oprating fropuency. ('z is merely a plate-voltage blowking eomolenser. If the (a) of the roil is suffiefently high, the parallel resomant impedinne betwern wrid and plate is mush higher than the griderethode eirenit impedanee. Becallur the system is dificult to adjust and funetions satisfactorily unly at one frequenery it is used chiefly in fixed-frequency transmitters.
 In this artangement the eoil is rephaed by at parallel line. the reffertive length of whirh is adjusted motil it is resomant when loaded by the grid-plate manatity

Pash-pull neutralizalion - With pushpull circuits two neutralizing condensers are usch, as shown in Fig. '116. In theserirmits, the grid-plate raparitios of the tuhes and the neutralizing caparities form a lapacity bridge (\$2-11) which is imdependent of the grid and plate tank cireuits. The nentralizing capacities are approximately the same as the tube gridplate caparities. With clectrically similar tubes and symmetrical construetion (stray capacities to ground equal on both sides of the circuit), the neutralization is eomplete and independent of frequency. A circuit using a balanced condensor, as at B, is preforred, sinee it is an aid in obtaining good eireut balance.

Radio-Frequency Power Generation

Frequency effects - 'The effects of slight dissymmetry in a neutralized circuit become more important as the frequeney is raised, and may be suflicient at the very-high frequencies (or even lower) to prevent good neutralization. At these frequencies the indurtaneres and stray caparities of even short leads herome important elements in the circuit, while input loading efferts (7 -if) may make it impossible to get proper phasing, particularly in single-tube circuits. In such eases the use of a push-pull amplifier, with its general frecdom from the effects of dissymmetry, is not only much to be prefered but may be the only type of eireuit which can be satisfactorily neutralized.
Noutralizing condensers-In most cases the neutralizing voltake will be cqual to the r.f. voltage between the plate and grid of the

Fig. 416 -" ${ }^{\text {(irns-ncutralized" push-pull r.f. amplifier }}$ circuits. Either capacitive or link coupling may he used.

C_{n} - Neutralizing condensers. $C_{1}-0.01 \mu \mathrm{fd}$. $C_{2}-0.001 \mu \mathrm{fd}$. or larger.
tube, so that for perfort balance the eapacity required in the neutralizing condenser theoretically will be equal to the grid-plate capacity. If, in the circuits having tapped tank coils, the tap is more than half the total number of turns from the plate end of the eoil, the required nedtralizing capacity will increase approximately in proportion to the relative number of turns in the two sections of the coil.

With tubes having grid and plate connections brought out through the bulb, a condenser having at about half-scale or less a capacity equal to the grid-plate capacity of the tube should be chosen. If the grid and platc leads are brought through a common base the capacity needed is greater. because the tube socket and its associated wiring adds some capacity to the artual interelement capacities.

When two or more tubes are conneeted in parallel, the neutralizing capacity required will be in proportion to the number of tubes.

The voltage rating of neutralizing condensers must at leant equal the r.f. boltage across the condenser plus the sum of the d.e. plate voltage and the grid-bias voltage.

Neutralizing procerlure-The procedure in neutralizing is essentially the same for all tubes and circuits. The filament of the tube shonald be lighted and excitation from the preceding stage fed to the grid eirenit. There should be no plate voltage on the amplifier.

The grid-circuit milliammeter makes a good neutralizing indicator. If the circuit is not completoly neutralized. tuning of the plate tank circuit throngh resonance will change the tuning of the grid circuit and affert its loading, causing a change in the rectified d.c. grid current. The setting of the noutralizing condenser which leaves the grid current umaffected as the plate tank is tuncd throngh resoname is the correct one. If the circuit is out of neutralization, the wrid current will drop perceptibly as the plate tank is tumed through resonance. As the point of neutralization is approached, by adjusting the neutralizing capacity in small steps the dip in grid current as the plate condenser is swung through resonance will become less and less pronounced. until, at exact neutralization, there will be no dip at all. Further change of the neutralizing capacity in the same direction will bring the grid-current dip back. The neutralizing condenser should always be adjusted with a sorewdriver of insulating material to avoid hand-capacity effects.

Adjustment of the neutralizing condenser may affert the tuning of the grid tank or driver plate tank, so both cireuits should be retuned each time a change is made in neutralizing capacity. In neutralizing a push-pull amplifier the neutralizing condenserss should be adjusted together, step by step, keeping their capacities as equal as possible.

With single-ended circuits having split-stator neutralizing, the behavior of the grid meter will depend somewhat upon the type of tube used. If the tube output capacity is not great enough to upset the balance, the action of the meter will be the same as in other circuits. With high-capacity tubes, however, the meter usually will show a gradual rise and fall as the plate tank is tuned through resonance, reaching a maximum right at resonance when the circuit is properly neutralized.

When an amplifier is not neutralized a neon bulb touched to the plate of the amplifier tube or to the plate side of the tuming condenser will glow when the tank circuit is tuned through resonance, providing the driver hans sufficient power. The glow will disuppear when the amplifier is neutralized. However, touching the neon bulb to such an ungrounded point in the circuit may introduce enough stray capacity to unbalance the circuit slightly, thus upsetting the neutralizing.

Fig. 417 - Inverted amplifier. 'Tle mumber of turns at Lshould be adjuatrd by expremmentorive optimum arid excitation. Hy-pians condeuner C is $0.001 \mu \mathrm{fl}$. or larger.

A flashlight bulb connerted in series with a single-turn loop of wire $2{ }^{1}$ º or 3 inches in diameter, with the loop couplerl to the tank coil, also will sorve as a neutralizing indieator. Capacitive unbalance ran be avoided by coupling the loop to the low-potential part of the tank coil.

Incomplete nentralization - lf a setting of the neutralizing condenser ran be found which gives minimum r.f. current in the plate tank circuit without complotely climinating it, there may be magnetic or caparity coupling between the input and output circuit : external to the tube itwelf. Fhort leads in weutralizing circuits are himhly desirable, and the input and output imductances showhab be polared with respere to each other that magnotic coupling is minimized. Usually this requires that the axes of the coois must be at right angles to ench other. In some cases it may be nevesary to shield the input and output circuit: from earch other. Magnetic coupling can be detected by diseonnecting the plate tank from the remainder of the cireuit and testing for r.f. in it (by means of the flashlight lamp and loop) as the tank rondenser is tuned through resonance. The driver stage nust be oprerating while this is done, of course.

IVith single-ended amplifiers thereare many stray caparitios left unompensated for in the neutralizing process, With large tubes, esperially thow having redatively high interelertrode rapacitios, these commonly neglected stray capacitics can prewent perfect neutralization. Symmetrial arrangement of a push-pull stage is about the only way to obtain practically perfect balanee throughout the amplifier.

The nentralization of tubes with extremely low grid-phate capacity, such as the 6il. 6 , is often diffirult, since it frequently happens that the wiring itself will introluce sulficient eat parity between the right points to "overneatralize" the grid-plate capacity. The use of a meutralizing condenser only aggravates the condition. Inductive or link neut ralization, as shown in Fig. 4 4 , hats bern used successfully with such tubes.

The immeried amplifier - The circuit of Fig. 417 avoids the neressity for neutralization by operating the control grid of the tube at ground potential, thus making it serve as a shield betwern the input and output aireuits. It is particularly useful with tubes of low grid-plate capacity, which are difficult to neutralize by ordinary methods. Excitation is ap-
plied befween grial and cathode through the coupling eoil, L : since this enil is common to both the plate and grid cireuits the amplifier is degencrative with the rireuit eonstants normally nerd, hence more exeitation voltage atul puwer are required for a given out put tham is the rase with a motralized amplifier. The tube used must have low platereathode caparity (of the order of $1 \mu \mu \mathrm{fd}$. or less) since larger values will give sulfieient feed-back to permit it to oscillate, the cirruit then beromfing the ultraudion ($\$ 3-7$). Tuber having sufficiontly low plate-rathode caparity (audio pentodes, for example) ran be used without dabur of oscillabion at frequencies up to perhatis 30 Mr . or so.

C 4-8 Power Amplifier Operation

E:Girione- - An r.f. power amplifier is usually uperated (chass-((\$3-4) to obtain a reatomathly high value of plate efficiency (s) 3 -3). "he higher the plate rfficioney the higher the puwer input that ran be applied to the tuhe without exereding the plate dissipation rating ($83-2$), up) to the limits of other tube ratings (plate coltage and plate current). Patce etliciencies of the order of 7 on per cent are reanlily ohtamable at frequencies up to the :30 ill-Ma. region. The omarall ellimency of the amplifer will bu bown hy the puwer lost in the tank ame compling cireults, sa that the actual efficiency i- less that the plate efficiency.

Operoting anstr-The oprating angle is the proportionate part of the exciting gridvoltage revele ($52-7$) during which plate current flows, as shown in Fig. 418. For Class-C oproation it is asatally in the vicinity of $120-150$ degres. With other opreating comsiderations, this :ngle result - in anoptimum relations hip betwert plate aflicinney :uml grid driving power.

Inod imperlance - The load impedance (s 3-3) for an rif. power amplifier is adjusted, by tuning the plate tank rircuit to rewonance, to repreant a pure recistance at the operating frecpuctury (in the noighturinod of a few thousand ohms, is

Fig. 418 - Instantanemus voltages and currents in a Class-C amplitirr uperating under optimum conditions.
adjusted by varying the loading on the tank circuit, eloser eoupling to the load giving lower values of load resistance and vice versa (§2-11). The load may be cither the grid cireuit of a following stage or the antenma circuit.

For highest efficiency the value of load resistance should be relatively high, but if only limited excitation woltare is available greater power output will be serured he using a lower value of load resistance. The latter adjust ment is accompanied by a derease in pate officiency. The optimum load revistance is that which, for the maximum permissihle prak plate current, causes the minimum instantaneous plate voltare (Fig. 418) to be equal to the maximum instantancous grid voltage required to cause the peak plate current to flow; this gives the optimmm ratio of plate afficiency to required grid driving power.
R.f. grial coltage and grid bias - For most tubes optimum operating comblitions result when the minimm instantanems plate voltage is 10 to 20 per cent of the d.e. plate woltage, so that the naximum instantanembersitive grid voltage must be approximataly the same figure. Since plate current start: flowing when the instantanems voltage rearhes the rateoff value ($\$ 3-2$), the d.e. grid woltage must tre wonsiderably higher that rut-ofl to comber the operating angle to loo degressor less (with grid
 For an angle of 1 ? 0 degrees, the ref. grid wohtage mast reach ion per cent of its peak value ($\$ 2-$ at the cut-off point. The corresponding figure for an angle of 1 10) degress is 2. per cent. Hence, the operating bias required is the cut-off value phas 25 to 50 per cont of the peak r.f. prid woltage. These relations are shown in Fig. HIS. The grid hise should be at least twiere cut-off if the amplifier is to be plate molulated, so that the operating angle will be not less than lan degrees when the plate voltage rises to twiere the steady d.e. value (\$ 5-3). Beramse of their rediltively high amplification fartors, with most modern tuhes (lass-(- peration meanires considerably more than twier "uteof hias to make the oprerating angle fall in the rexion mentioned above. Suitable operating comditions are nsually given in the data accompanying the type of tube used.

Grid bias may be secured either from a bias source (fixed bias), a prid leak ($\$ 3$-ib) of suitable value, or from a combination of buth. When a bias supply is wed, its voltage regulation shomld be taken into consideration ($\$ 5-9$).

Dricing poter - As indicated in Fig. 418, grid current flows only during a small portion of the peak of the r.f. grid voltage escle. The power consumed in the grid airenit therefore is approximately equal to the peak r.f. grid voltage multiphied by the aserage rectified grid current as read by a d.e. milliammeter. The peak r.f. grid voltage, if not included in the tube manufacturer's oprorating data, can be estimated roughly by adding 10 to 20 per cent of the plate voltage to the nperating grid bias,
assuming the operating conditions are as described above.

At frequencies up to 30 Me . or so, the grid boses are practically entirely those resulting from grid-eurrent flow. At the very-high frequencien, however, dielectric losses in the glass envelope and base materials become appreciable, townether with lowes caused by transittime efferto ($\$ 7$-fi), and may necessitate supplying several times the driving power indicated above. At any frequency, the driving stage should be capable of a power output two to three times the power it is expected the grid circuit of the amplifier will consume. This is neecessary because losses in the tank and coupling circuits must also be supplied, and alsis to provide reasomably good regulation of the r.f. grid voltage. Good voltage regulation (see §8-1 for general definition) insures that the waveform of the excitation voltage will not be distorted becaluse of the changing load on the driver during the r.f. cyele.

Grid imperdance - During most of the r.f. grid-voltage cyele no grid current is flowing, as

Fig. 119 - Chart showing tank caprovites requirel for a of 12 with sarions ration of plate voltage $1 / 1$
 If (Fig. 420). the capacities shown in the graph may be divided by four. In circuits (\%, D. F.. 1. J and K , the capacits of rach section of the split-stator combenser may be one half that shown by the graph. 'lle valuw. given hy the grabh should he nsed for circuits A and B.
indicated in Fig. 418, hence the grid impedance is infinite. During the peak of the cycle, however, the impedance may drop to very low values (of the order of 1000 ohms), depending upon the type of tube. Both the minimum and average values of grid impedameo depend to a considerable extent on the amplification fartor of the tube, heing lower with tubes having large amplification factors.

The average arid impedance is equal to E^{2} / P, where E is the rem.s. (\$ 2-7) value of r.f. grid voltage and I ' is the grid driving power. I'nder optimum operating remolitions, values of average grid impodance ranging from 2000 ohms for high- μ tubes to four or five times ts much for low- μ topes are representative. Values in the vicinity of 4000 to 5000 ohms are typical of modern triodes with amplification factors of 20 to 30 .

Beatuse of the harge change in impedance during the rock, it is necessary that the tank rircuit assoriatom with the amplifier grid have fairly high (). 'lhis is cssoutial to provide sufficient storage capacity so that the voltage regulation over the erole will be good. The requisite Q may be ohtamed by adjusting the L / C ratio or by tapping the grid cirenit across only part of the tank ($1-6$).

Tank-circuit (O- Besides serving as a means for transforming the actual load resistance to the reguired value of plate load impedance for the tube, the phate tank circuit also should suppress the harmonices present in the tube output as a rewalt of the mon-sinusombal plate current (\$2-7, 3-3). For satisfactory harnoonie suppresiom, a Q of 12 or more (with the circuit fully lomded) is desirable. A Q of this order also is holpfal from the standpuint of securing adequate coupling to the low or anteman circuit (s 2-11). The proper $(2$ (an be obtained by suitable solection of L^{\prime} (' ration in relation to the optimum plate load resistance for the tube (\$2-10).

For a Class-C amplifier operated under optimum conditions as deseribed above, the plate load impedance is approximately proportional to the ratio of d.c. plate voltage to d.e. plate current. For a given effective Q the tank eilpacity required at a given frequency will be inversely proportional to the paralled resistance (§ 2-10), so that it will also be inversely proportional to the plate-voltage/plate-current ratio.

The tank caparity required on various amateur bands for a Q of 12 is shown in fig. 419 as a function of this ratio. 'The caparity given is for single-ended tank circuits, as shown in Fig. 420 at A and 13 . When a balanced tank circuit is used the total tank caparity required is reduced to one-fourth this valure, beranse the tube is commected across only half the circuit (s 2-9). Thus. if the plate-voltage plate-current ratio calls for a capacity of $200 \mu \mu \mathrm{fl}$. in a singleended circuit at the desired frequency, only 50 $\mu \mu \mathrm{fd}$. would be needed in a balanced circuit. If a split-stator or balanced tank condenser is used each section should have a rapacity of $100 \mu \mu \mathrm{fd}$. the total capacity of the two in serpes being to $\mu \mu \mathrm{fl}$. These are "in use" eaparities; not simply the rated maximum capacity of the eondenser. Larger values may be used with an incre:tse in the effective Q.

T'o reduce energy loss in the tank cirruit., the inherent Q of the coil and condenser should be high. Since transmitting coils usually have (os ranging from 100 to seworal humbed, the tank transfor eflicieney wrometly is !o per cent or more. An unduly large (' \dot{L} ratio is not advisahe sime it will result in large areulating r.f. tank rument and henee relativery large lenses in the tank, with a comsedient reduction in the power atvalable for the load.

Tank constants - When the caparity necessary for a Q of 12 has heen dotermined from Fig. 410, the inductane required to resomate at the given frequency ran be found by means

Fig. 420 - In cirnit $1.13,(.1)$ and li. the peak voltage E will be apmoximately equal to the d.c. plate voltage
 for ew. or fatar tiutes the plate voltane for phone. The cireuit is assmed to be fully loaded. Tuhes in parallel in an y of the circuits will not affect the peak voltage. Cirenits A, C, F, F, G and 17 require that the tank condenser be insulated from chazis or gromond and that it he provided with a suitably insulated shaft coupling for tuming.
of the formula in § 2-10. Alternatively, the required number of turns on coils of various construction can be found from the charts of Figs. 421 and 422 ,

Fig. 421 is for coils wound on receiving-type forms having a diameter of $1 \frac{1}{2}$ inches and ceramic forms having a diameter of $13 / 4$ inches and winding length of 3 inches. Sueh coils would be suitable for oscillator and buffer stages where the power is not over 50 watts. In all cases, the number of turns given must be wound to fit the lengtl indicated and the turns should the everny spaced.

Fig. 422 gives data on eoils wound on trans-mitting-type ceramic forms. In the case of the smallest form, extra curves are given for double spacing (winding turns in alternate grooves). This is sometimes advisable in the case of 14 - ami 28-Mc, coils when only a few turns are required. In all other cases, the specified number of turns should be wound in the grooves without any additional spacing.
Ratings of comimenents - The peak voltage to be experted botween the plates of a tank condenser depends upon the arrangement of the tank circuit as well as the d.e, plate voltage. Peak voltage may be dotermined from Fig. 420, which shows all of the commonly used tankcircuit arrangoments. These estimates assume that the amplifier is fully loaded; the voltage will rise considerably should the amplifier be

Fig. 121 - Coil-winding data for rectiving-type forms, diameter $1!$ inches. Curve A winding lengeth, i inch; Curve 13 - winding length, I/2 inches; Curve C - winding langth, e2 inehes. (urve (is also snitable for coils wound on ${ }^{3}$ i-inch diameter transmittingtype ceramic furms with 3 inches of winding length.
operated without load. The figures inelude a reasonable factor of safety.

The condenser plate spacing required to withstand any particular voltage will vary with the construction. Most manufacturers specify peak-voltage ratings in describing their condensers.

Plate or sercen by-pass condensers of 0.001 $\mu \mathrm{fd}$. should be satisfactory for frequencies as low as 1.7 Mc. Cathode-resistor and filament by-passes in r.f. circuits should be not less than $0.01 \mu \mathrm{fd}$. Fixed condensers used for these pur-

Fig. fi2: - Coil-winding data for erramic tranemit-
 effetive diameter. 26 \&rowes, 7 jer ineh: Curve B same as A, but with thra- wound in allernate proweses
 3) growes. 7.1 turna per inch, approximately: (iurve 1) - wramie form 4-inch effectivedanuter, 28 , romenes

 Coils may be wound with either No. 12 or Vo, 14 wise.
poses should have voltage ratings 2.5 to 50 per cent greater than the maximum d.e. or acr. voltage :wross them.

Interstage roupling condensors should have voltare ratings iol to 100 per eent greater thath the sum of the driver pate and amplifier gride biasing voltages.

1. 4-9 Adjustment of Power Amplifiers

Excitation - The effectiveness of adjustments to the coupling between the driver plate and amplifier grid circuits cam be faluged by the relative values of amplifier rectified grid current and driver plate eurrent, the object being to obtain maximum grid eurrent with minimum driver Ioading. The amplifior grid coreuit represents the load on the driver stage. and the average grid impedature must therefore be transformed to the value for optimmm driver operation (s 4-s).

With colpacity coupling, either the driver plate or amplifier grid must be tapped down on the driver tank eoil, as shown in Fig. 410 at A and I3, unless the grid impedance is approximately the right value for the driver plate load, when it will be satisfactory to ronnect both elements to the end of the tink. If the grid impedance is lower than the required driver plate load, l'ig. 410- A is used; if higher, Fig. 410-13. In either case, the coupling which giver the desired grid eurrent with minimum driver latading should be determined experimentally by moving the tap. Should both phate and grid be connected to the end of the cireuit it iss sometimes possible to control the lowding, when the grid impedance is low, by varying the caparity of the coupling condenser, f, but this method is not altogether satisfiatory since it is simply an expedient to prevent driver overloading without giving suitable impedance matching.

In push-pull circuits the method of adjustment is similar, except that the taps should be kept symmetrically located with respect to the center of the tank circuit.

With link coupling, Fig. 411, the ohject of adjustment is the same. The two tanks are first tuned to resonance, as indicated by maximum grid current, and the coupling adjusted by means of the links ($\$ 4-6$) to give maximum grid current with minimum driver plate current. This usually will suffice to load the driver to its rated output, provided the driver plate and :mplifier grid tank eireuits have reasomable values of Q. If the Q of one or both of the circuits is too low, it may not be possible to load the driver fully with any adjustment of link turns or coupling at either tank. In such a case, the $Q s$ of the tank circuits must be inereased to the point where adequate emupling is sererel. If the driver plate tank is devigued to have a Q of 12 , the difficulty almost insariably is in the amplifier grial tank. The Q ean be increased to a suitable value cither by adjustment of the L / C ratio or by tapping the load across part of the coil (\$2-10).

Whatever the type of coupling. a preliminary adjustment should be made with the proper biat voltage and or grid leak, but with the amplifier plate voltage off; then the amplifier should be carefully neutralized. After neutralization the driver-amplifier coupling should be readjusted for optimum power transfor, after which plate voltage may be applied and the amplifier plate eirruit adjusted to resonance and coupled to its linad. Linder actual operating conditions the grid current decreases below the value ohtained without plate voltage on the amplifier and the effective grid impedance rises, hence the final adjustment is to re-check the compling to take care of this shift.

With recommended bias, the grid current obtained before plate voltage is applied to the amplifier should be 25 to 30 per cent higher than the value required for operating conditions. If this value is not obtained, and the driver plate input is up to rated value, the reatom may be cither improper matching of the amplifier grid to the driver plate or simply insulficient power out put from the driver to take care of all losses. Driver operating voltages should be cherked to assure they are up to rated values. If batteries are used for bias and are not strictly fresh, they should be replaced, since batteries which have been in we for some time often develop, high internal resistance which effectively acte as additional grid-leak revistance. If a rectified a.c. bias supply is used, the bleeder or voltage-divider resistances should be cheeked to make certain that low grid current is not caused by greater grid-circuit resistance than is recommended. In this connection it is helpful to measure the actual bias when grid current is flowing, by means of a high-resistance d.e. voltmeter. There is also the possibility of loss of filament emission of the amplifier tube, either from prolonged serv-
ice or from operating the filament under or ower the rated voltage.

Plate tuning - In preliminary tuning, it is desirable to use low plate voltage to avoid possible damage to the tube. With excitation and plate voltage applied, rotate the plate tank condenser until the plate current dips. Then set the condenser at the minimum plate-current point (resonance). When the resonance point has been found, the plate voltage may be increased to its normal value.

With adequate excitation, the off-resonance plate current of a triode amplifier may he two or more times the normal operating value. With screcn-grid tubes the off-resonance plate current may not be much higher than the normal operating value, since the plate current is primeipally determined by the screen rather than the plate voltage.

Iinder reasomably eflicient operating conditions the minimum plate current with the amplifier unlaaded will be a small fraction of the rated plate current for the tube (usually a fifth or less), since with no load the parallel impedance of the tank circuit is high. If the excitation is low the "dip" will not be very marked, but with adequate excitation the plate current at resonance without loading will be just high enough so that the d.e. plate power input supplies all the lases in the tube and circuit. As all indication of probable efficirne:, the minimum phate current value should not be taken too seriously, because without lowd the Q of the cirruit is high and the tank current reliatively large. When the :amplifier is delivering power to a load, the circulating current drops considerably and the tamk losses correspondingly dearease. Hligh minimum unloaded plate current is chicfly encountered at 28 Mc . and above, where tank lusses are higher and the tank L / C ratio is usually lower than normal bectuse of irreducible tube capacities. The effect is particularly noticeable with screen-grid tubes, which have relatively high output capacity. Because of the decrease in tank r.f. current with loading, however, the actual efficiency under load is reasonably good.

With the load (antenna or following amplifier grid circuit) comnected, the coupling between plate tank and load should be adjusted to make the tube take rated plate current, keeping the tank ahways tuned to resonance. As the output coupling is increased the minimum plate current also will increase, about as shown in Fig. 423. Simultanconsly the tuning becomes less sharp, because of the increase in effective resistance of the tank. If the load circuit simulates a resistance, the resonance setting of the

Radio-Frequency Power Generation

tank condenser will be practically unchanged with loading; this is gencrally the case, since the load cireuit usually is also tumed to resonatnee. A reactive load (such as an antemnat or foeder sistem not thmed exactly to resonance) masy ramse the tank comblenser setting to change with loating, sime reatance as well as resistanee is compled into the tank ($2-11$).

Power output - Λ s a check on the operation of an amplifier, its power output may be measured by the use of a load of known resistance, coupled to the amplifier output as shown in Fig. 424. At A a thermonmmeter, M, and a noninductive (ordinary wire-wound resistors are not satisfactory) resistance, h, are connected across a coil of a few turns coupled to the amplifier tank coil. The higher the resistance of R, the greater the number of turns required in the coupling roil. A resistor used in this way is generally called a "dummy antenna," since its use permits the transmitter to be adjusted without actually radiating power. The loading may readily be adjusted by varying the coupling between the two moils, so that the amplifier draws rated plate current when tuned to resonance. The power output is then calculated from Ohm's Law:

$$
P(\text { watts })=I^{2} R
$$

where I is the current indicated by the thermoammeter and R is the resistance of the moninductive resistor. Sperial resistance units are available for this purpose, ranging from 73 to 600 ohms (simulating antematand transmis-sion-line impedances) at power ratings up to 100 watts. For higher powers, the units may be comnerted in series-parallel. The meter sale required for any expected value of power output may also be determined from Ohm's Law:

$$
I=\sqrt{\frac{P}{R}}
$$

Incandescent light bulbs can be used to replace the special resistor and thermoammeter. The lamp should be equipped with a pair of leads, preferably soldered to the terminals on the lamp base. The coupling should be varied until the greatest brilliance is obtained for a given plate input. In using lamps as dummy. antennas a size corresponding to the experted power output should be selected, so that the lamp will operate near its normal brilliancy. Then, when the adjustments have been completed, an approximation of the power output can be obtained by comparing the brightness of the lamp with the brightness of one of similar power rating in a $115-v$ olt socket.

The circuit of Fig, 424-B is for resistors or lamps of relatively high resistance. In using this circuit, care should be taken to avoid accidental contact with the plate tank when the power is on. This danger is avoided by circuit C, in which a separate tank circuit, $L C$, tuned to the operating frequency, is coupled to the plate tank circuit. The loading is adjusted by varying the number of turns across which the
dummy antenna is connected on L and by changing the coupling between the two coils. With push-pull amplifiers, the dummy antenna should be tapped equally on either side of the conter of the tank when the circuit of lig. $42-13$ is used.

Harmonic sumpression - The most important step in the elimination of hamonie radiation ($\$ 4-8,2-12$) is to use an output tank circuit having a (\% of 12 or more. Berond this it is desirable to avoid ans considerabic amount of over-excitation of a Class-('amplifier, since exritation in excess of that required for normal Class-(c operation further distorts the platecurrent pulse and increases the harmonic rontent in the output of the :mplifier even though the proper tank Q is used. If the antenmasstem in use will acorpt harmonie freduencies they will be radiated when distortion is present, and consequently the antemat coupling system proferathly should be selected with harmonic thansfer in mind (\$ 10-6).

Harmonic content can be reduced to some extent by preventing distertion of the r.f. grid-voltage waveshape. This can be done by using a grid tank dircuit with high effective Q. Link coupling between the driver and final amplifier are helpful, since the two tank circuits provide more altemation than one at the harmonic frequencios. However, the advantages of link coupling in this respect may be mullified unless the (! of the grid tank is high enough to give good voltage regulation, which minimizes harmonia tramsfor and thas prevents distortion in the gride circuit.

The stmy eapacity hetween the antena coupling eoil and the tank coil may be sufficient to couple hamonic morgy into the antenna system. This compliner may be eliminated by the use of elertrostatie shielding (Faraday shicld) between the two coils. Fig. 425 shows the construction of such a shiold, while Fig. 426 illustrates the manner in which it is installed. The construction shown in Fig. 425 prevents current flow in the shicld, which would oceur if the wires formed elosed circuits since the shicld is in the mametice field of the tank coil.

Fig. 12. - "Dummy anlemna" circuits for cherking peweroutput atmil making oneraling adjustment-mender lonal without applyingrower to the actual antema.

-

(C)

THE RADIO AMATEUR'S HANDBOOK

Fig. 425 - The Fraradav elec. trostatic shideld for eliminating raparitive transfor of harmonise emergy. It is made of parallel romductors, insulated from wath oblere exerpt at one *ud where all are joined. Stiff wire or small diameter rod maty be uned. spased ahout the diametur of the wirt or rod. 'l'he shield should be larger than the diameter of the coril.

Should this ocrur, there would be magnetie shielding as well as electrostatic: in addition, there would be a power luss in the shield.

Improper operation - Inexact neutralization of stray coupling letween plate and grin rireuits may result in regenoration. 'lhis effert is most evident with low excitation, whon the amplifier will show at sudden increaso in output when the plate tamk eirenit is tuned slightly to the high-frequormy side of resomanere. It is aceonmpaniod hy a pronounced increase in grid current.

Self-oscillation is apt to ocrur with tubes of high power sensitivity, such as ther.f. pentordes and totrodes. In event of eithor rogenoration or ascollation, rireuit eomoponconts should bo arranged so that those in the phate rireuit are wrell isolatod from those of the grid rejreuit. Plate abd grid leads should be made as short as possible and the soreen should be by-passed as rase to the sorlict ternmal ats possiblele. A cylindrical shicldsurrounding the lower portion of the tube up to the lower edge of the plate is sometimes reguired.
"I Dubble resonamere," ur t wo tuning spets on the plate-tank romblenser, one giving minimum plate eurrent and the other maxinum powor output, may oreur when the tank rireuit Q is too low (s 2-10). A similar efferet also oceurs at times with sroeco-grial amplifiers when the screen-voltage rogulation (8 - 1) is poor, as when the sereon is supplied through a dropping resistor. 'The screen voltage dorreases with a decrease in plate carront. borathe the sereen current increasos umdor the simbe romditions. Thus the minimam phato-rourrent puint ratuses the screen voltage, and henor the jowor out put, to be less thain when a slightly higher plate current is drawn.

A phenomenom known as "grid emission" may orcur when the amplifier tubr is operated at higher than rated power dissipation on either the plate or grid. It is particularly likely to ocrur with tubes having oxide-eonted rathodes, such as tho indireetly heated types. It is caused by the grid ratehing a temperat ure high enough to rause clectron omission (The electrons so emittod are attracted to the plate, further incroasing tho power input atod heating, so that gridemission is reharactarizod by gradually indreasing plate current and heat which eventually will ruin the tube if the power is not removed. (irid emission can be prevented by operating the tube within its ratings.

C 4-10 Parasitic Oscillations

Description - If the circuit conditions in an oscillator or amplifier are such that selfoscillation exists at some frequency other than that desired, the spurions oscillation is termed parasitic. The energy required to maintain a parasitic ascillation is wasted insofar as useful output is conererned, henee an escillator or amplifier having parasitios will operate at redured eflicicmer. In addition, its behavior at the operating frequency often will be erratic. Parasitic oscillations may be either higher or kower in frequeney than the operating frequency.

The parasitic oscillation usually starts the instant plate voltage is applied. or, when the amplifier is biased beyond cut-off, at the instant excitation is applied. In the lattor case, the oscillation frequently will be self-sustaining after the exatation has been removed. At other times the osecilation may mot be self-sustaining, beroming artive only in the presence of excitation. It may be apparent only by the production of abuormal key clicks ($(\mathbf{j}-1$) over a wide fregueney range, or the the presence of spurious siele-bands (($\bar{i}-\frac{2}{2}$) with 'phome modulation.

Lonc-frequency parasilios - Parasitic usrillations at low frequencies (usually sol ke. or less) ate of the tuned-plate tuned-grid type, the tuncel cirecuits being formed by r.f. chokes and asomiated by-pass and coupling condensers, with the ragular tank tuning condensers having only a minor offect on the oscillation. The operating-frequency tank coil has negligible inductance for such low frequencies and may be short-rirenited without afferting the oscillations. The oseillations do not oeceur when no r.f. chokes are usod, heme whenever possible in seriew-fed circuit. such phokes should be omitted. With single-ended amplifiers, it is usually prosible to arrange the cireuit so that either the grid or plate cirevit needs no choke. In push-pull stages having chokes in both plate and grid cirenits. it is helpfith to comert an unbe-passed grid lealk from the choke to the bias suphly or gromal. thus placing the resistance in the parasitice cirenit and temding to prewnt weillation. Whon the driver plate circuit has parallel feed and the amplifier grid -irenit serice feed (\$3-7) this 1ype of oseillation rannot wrur if mo choke is used in the series grid eircuit, sine the grid is grommed through the tank coil for the parasitic frequence.

Parasitics near operating frequency - In (ircuits utilizing a tap on the plate tank coil to establish a ground for a balanced neutralizing circuit, such as Fig. 413-13, a parasitie oscillation may be set up if the amplifier grid is tapled down on the grid (or driver plate) tank cirenit for adjustment of driver-amplifier conpling ((\$-4-(i). In this ce:se the turns between grid and ground and between plate and ground form, with the stray and other capacities present, a t.p.t.g. circuit ($\$ 3-7$) which oscillates at a frequency somewhat higher than the nominal operating frequency. such an oscillation can
be prevented by dispensing with the taps in cither the plate or grid circuit. Balaneing the plate circuit by mans of a split-stator condenser (Fig. 413-C) is reommended.

Very-high-frequency parasilies - Parasitics in the v.h.f. region are likely to occur with any amplifier having a balanced tank circuit, particularly when assuciated with nentralizing connections. 'The parasitic resonant circuit, formed by the leads connocting the various components, may be of either the t.p.t.g. or the ultrandion type.

The frequency of such oscillations may be determined by commecting a tuncd circuit in series with the grid lead to the tube. A variable condenser (50 or $100 \mu \mu \mathrm{fd}$.) may be used, in conjunction with three or four self-supporting turns of heary wire wound into a coil an inch or so in diameter. With the amplifior oseillating at the parasitid frequeney, the condenser is slowly tuned through its range until oscillations cease. If this point is not found on the first trial, the turns of the coil may be spread apart or a turn removed and the proeess repeated. The use of such a tuned circuit ats a trap is an almost certain remedy if the frequency can be determined, and introduces little if any loss at the operating frequency.

An alternative cure, which is feasible when the oscillation is of the t.p.t.g. type, is to detune the parasitice circuit in cither the phate or grid eirenit. Sine this type of oveillation werurs most frequently with push-pull :mplifiers, it may often be cured by making the grid and plate leads to their respective tank circuits of considerably different length. Similar considerations apply to noutralizing ronnections in push-pull circuits. The extra wire longth may be coiled up in the form of a so-called "choke," which in this case is simply additional inductance for detuning the parasitic circuit.

Testing for parasilic oscillations - An amplifier always should be tested for parasitic oscillations before being considered ready for serviee 'lhe preferable method is first to neutralize the amplifier, then apply sufficient. fixed bias to permit a moderate value of plate current to flow without exeitation. (The plate current should not be large enough to datue the power input to axceed the rated plate dissipation of the tube.) If the amplifier is free from self-starting parasities, the plate current will remain steady as the tank condensers are varied; also, there will he no grid current and at neon bulb tomehed eitlier to the plate or grid will show wo ghow. Sixtreme ram must be

Fig. 120-Methods of wsing faraday shitht. 'T'wo are reguired with a pou-h-pull wh bamed tanh rirenit.
used not to let the hand come into contact with any metal parts of the transmitter when using the neon bulb.

If any of these effects are present, the frequency of the parasitic must first be determined. If r.f. chokes are used in both the plate

Fis. 427 - Frequcncy-multiplying circuits. A is for triodes, used rither vingh or in parallel. The pushpush doubler in shown at is. Any tym of coupling may be used betwren the prid circuit and the driver. (it shonld be $0.01 \mu \mathrm{fd}$. or lariar: $\mathrm{C}, 0.001 \mathrm{ffd}$. or larger.
and gride cirenits, one of them shomld be shortcireuited to determine if the oseillation is at a low frequeney: if so, it may be eliminated by the methods outlined above. If the test indicates that the parasitie is not a Iow-frequeney oscillation, the gridtrapeleseribed above should be tried for the wh.f. type. The type which oceurs near the operating frequency will not exist maless the Hate and grid tank roils are both tapped, hemee maty be eliminated from consideration if this is not the case in the circuit used. When such an oscillation is present its existener can be deterted by moving the grid tap to inchate the whole tank eircuit, whereupon the oscillation will coras.

Some indiation of the frequence of the parasitic can be obtained from the eolor of the glow in the neon bulb. I'sually it will be yellowish with low-frequency oscillations and violet with r.h.f. oseillations.

If the amplifier is stable under the corditions described above, excitation should be applied and then removed to ascertain if a selfsustaining oseillation is set up with excitation. If the plate current does not return to the previous value when the exeitation is cut off, the same tests should be appliod to determine the parasitic frequency.

As a final test, the transmitter should be put on the air and a near-by receiver tuned over as wide a frequeney range as possible, to locate
any off-frequency signals associated with the radiation. Parasities usually can be recognized by their poor stability as contrasted to the mormal harmonics of the signal. which will have the same stability as the fundamental signal as well as the usual harmomic relationship. Harmonies should be quite weak empared to the output at the fumdamental frequency, whereas parasitic oscillations may have considerable strength.

C 4-11 Frequency Multiplication

Circuits - A frequency multiplier is an amplifier having its phate tank circuit tuned to a multiple (harmonic) of the frequency applied to its grid. The differemer between a straight amplifier ($\$ 4-1$) and a frequeney nultiplier is in the way in which it is oprated, rather than in the eircuit. However, since the grid and plate tank circuits are tuned to different frequencies a triode frequency multiplier will not self-oseillate. hence dues not nerd nentralization. A typical circuit arrangement is shown in Fig. 42 i- I. For sercen-grid multiplicrs, the cerenit is the same as in Fig. $41: 2-\mathrm{A}$. Under usual eomditions the phate eflicieney of a frequeney multiplier drops off rapidly with an inerease in the number of times the frequeney is multiplied. For this reason monst multiplicrs are used as frequency doublers, giving second harmonic output.

A special rircuit for frequency doubling ("push-push"* doublare) is shown in Fig. 127-13. The grids of the tubes are in mush-pull and the plates in parallel, thas the mate tank receives two pulses of phate rurent for each cyele of excitation fredueney. The rirenit is similar to that of a full-wave rectifier ($\$ 8-3$), where the output ripple frefueney is twies the applied frepuches:
Push-pull amplifices are suitable for frequency multiplasation at odel harmonics, partienharly the third but they are unsuited to even-harmonic multiplieation leceases the evern harmonics are largely halaneed out in the push-pull tank (irronit (\$3-3).
Operating combitions and circuit constants - To olitain good eflicioncy the "perating angle at the harmonic frequency must be 180 degrees or less, proferably in the vicinity of 1:00-120 degrees ($\$ 4-s$). In a doubler, this means that plate current should flow during only half this angle of fundamental frequency. Consequently the r.f. grid voltage, operating bias, and grid driving power must he increased considerably beyond the values obtaining for normal (lass-(amplification. For comparable plate efficenency the hias will ordinarily be four to five times the unrmal Ciass-C hias, and the r.f. grid voltage must be eonsiderably larger to drive the tube to the same peak plate current. Since the plate and grid eurrent pulses under these conditions have the same peak amplitudes hut ouly half the time duration as in a straight amplifier, the average d.e. values should be one-half those for normal Class-C
operation. That is, a tube operated in this way will have the same plate efficiency as a Class-C amplifier but can be operated at only half the plate input, so that the output power also is halved. The driving power required usually is about twice that necessary with straightthrough amplification to obtain the same plate efficiency.

Greater output ran be secured by using a larger operating angle (lower grid bias) or a lower phate load resistance, to inerease the plate current; but this is aceompanied by a decrease in eflicienes. Sine operation of the tube as described in the preceding paragraph is below its maximum plate dissipation rating. the decreased efficiency usually can be tolerated in the interests of securing more power output. In practice, an efficiency of 40 to 50 per cent is about average.

The tank circuit should have reasonably high Q (12 is satisfactory) to give grod output voltage regulation (\$4-9), since a plate-current, pulse oereurs only once for every two pyeles of the output fremuence. A low-() circuit (high $L /($ ration) is helpful chicfly when the operating angle is greater than 180 degrees at the second harmonic. Such a tank circuit will have relatively high impedance to the fundamentalfrequency compenent of plate current which is present with large "perating angles, and thus will aid in reducing the average d.e. plate current.

The grid impedance of a frefuency multiplier is conside rably higher than that of a straightthrough amplifier, because of the hish bins voltage. The average impedance can be calculated as previmusly described ($\$ 4-8$). The L / C ratio of the grid tank circuit may be higher, therefore, for a given (!. Often it is advantageons to use a fairly high ratio, since a large r.f. voltage must be developed between grid and eathode. However, it must not be made too high (Q too low) to permit adequate rompling between the grid tank circuit and the prereding driver stage.

It may prove neeresary to step up the driver output voltage to obtain sufficiont r.f. grid voltage for the doubler: this ran be done by tapping the driver plate on its tank crecuit, when rapacity coupling is used. or by similar tapping down or the use of a higher C / L ratio in the driwer plate tank when the stages are linkroupled ($\$ 4-6$).
Tubes for frequency multiplication There is no essential differenec between tubes of various characteristics in their performance as frequency doublers. Tubes having high amplification factors will require somewhat less bias for equivalent operation but the grid driving power needed is almost independent of the μ, assuming tubes of otherwise similar construction and characteristics. Pentodes and tetrodes will, as in normal amplifier operation, require less driving power than trindes for efficient doubling, athough more power will be needed than for straight amplification.

(A)

(B)
 cirmit as ased in r.h.f. ordilators. The tanh, hemon in crossesction, is mate of concentric chond estinder.

1.4-12 Very-High-Frequency Oscillators

High-0 rircuits uitil hompodromstamts-'lo obtain reasomably high effective () when a low resistance is connerted arms the tank cireuit, it is necessary 10 has : high C $/$ ration and a tank of imherently high o (s 2-10). At low frequencies the inherent of of any welldexigned riment will be high (notugh on that it maty be neglected in comparison to the effere tive \& when loaded, sa that no sperdal percautions have to be taken with respect to the resistanere of eroils and eondensers. At the vershigh iremuencies these intermal resistances ate too lares 10 be ignored, howerer.

Reduction of the L (ration will not increase the effertive Q moses the intermal resistaner of the tank ran be made very smatl. This rexist ance can he redued by use of latere comblucting surfaces and elimination of ratiation. In surb eanes sperial lumped-ounstant tank rirenits (\$2-12) are wisel. The ascillator shown in F"ir. 428-A uses a "pot"-1 ype 1amk in the tiekler (ivenit (s3-7), with the feed-bate enil in the grid diedut: this induetane is the wire /) in the diagmam. ()utpur is taken from the tank by means of a hairpin conpling loop.

Fig. 12S-B corresponds th the shont-fed Hartley rimenit. Such a tank ako may be mand in the int raudion cireuit. A rariable camulenser may be ronnected across the tamk for tumint. although the Q may be redued if a comsiderable portion of the tank r.f. current flows through it.

Limenr Cirruits- A quartor-wave or haliwave lime either of the parallel-condure or oper frope or of the maxial type is equivalent to : resontant circuit (se-12) and can be ased as the tank rirruit (s:i-7) in an oscillator.

The resomath line is watalle constimeded of thin-wallad ropper duhing, rather that wire. since this redueres resistance and mosides at mechanically stable cirmit. particulary at the lower frequencios. At frequmaics abre loo Mc. flat copper strip eonductor of "puivalent cross-section may bo used for para!lel-line cireuits with comparable effierione Firequenes can be changed by moving a shorting bar or condenser to change the effective line length,
or by reducing its length and loading it to resonamee by connecting a low-capacity variable condenser arross the open end of the line. The added eapacity makes it necessary to shorten the line eomsiderably for a given frequency. 'This. togrether with the additional lose in the comdenser. fauses a dervease in Q. These effects will be less if the condenser is connerted down on the line. Tapping down also gives greater bandspread effed (\$7-7).

At very high frequencies an adequate gromud commertion for the eathode circuit becomes a problem because of the inductance of the rathede lead. Special tubes are available
(A)

(C)

(D)

Fig. 129 - Typical single-tube parallel-line oseillators. Comstants and applications are discussed in the text.

fig. 430-- Push-pull parallel-linc uscillator irrouits.
 nerted in parallel, these reature the effective inductance. With owdinary bubes, coils mas he inserted in the filamont rirenit formpensate bor the efferets of the internal indure anere The referetive lenght of the filament ritcuit should be ont-half wablength, to bing the cathoule filament to the same potential as the shorted ands of the tank lines. The added inductance required must be determined by experiment. the eoils being adjusted for ontimum stability and power output.

Another method is to nese: thened line in the filament circuit adjusting its lengeth so that the electrical longth of the line phas that of the
filament is one-half wavelength. A convenient arramentent is the use of a coasial (or trough) line with an initial lengrth of about 3 s wavelengeth. A shorting dise in the form of a movathe phonger equipped with an extension handle maty be provided for atase of adjustment. With filament-type tubes one surh line will be refuired for cath filament lead. In the ease of rathone-tybe tubes only one line is neeresary, the eathode and one side of the filament being conneretel ter the onter condartor and the other filamment rommertion being made by an insulated lead ruming through a hollow-tubing immer eomductor. 'The return lad shomld be by-pased where it anerges from the line.

The anternat of other load may be commerted though borking womdensers direct to the line (the eomeret point being determined experimentally. Altarnattwely, a hatr-pin coupling link or, in the case of an oscillator-amplifier system, divert inductive eonpling to the grid lime of the amplifior maty the used.

Fior highat-frepurny operation separate limes must be used for each eloctrode-grid, plate and cathode. This plames all of the interFlowrode raparities in strios. reducing the hatinge effert. Still higher frequencites (an be rearhed by using clouble-lead tubes (F゙ig. 429-E). in which case the leats form an integral patt of thar line and the interelecterde eaparities are distided fretwern the two quarter-wave sertions.

Purallel-lime owrillators - Typiral parallel-
 A. at sherting comblemerer (which may be eithere a fixed bucking rondenser or a small variable whol will provide a limited toming range) is nered la brilye the lime at the voltage node; the frepuency an aks be dhanged by sliding the sharting remdenser alone the line.

The rireuit at B climinates the need for a blowhing comdenser at the voltage mute. where the r.f. earent rearlees its maximan value. An r.f. cheke may the inserted between the grid and he associated grid resistor, R. This rimat alse cat be reonatod oither by a variable mondenser. C. of hy a sliding bar as indicated be the dashed lime.
 Tho end and plate feed conderetions ate mado at monal prints on the line. As indicated on the diameam. These do wit oreme at the physieal "wister of the line berame of the loarling effert of the tatre. In practice. the position of the taps, :ts well as the werr-all length of the line. are adjusted to obtain maximum grid curcent.
 made to misillate up tu 600 or 700 Me .

Fig. 129-I) is a varistion of the above preferable for we with tubes having grid and plate terminals at opposite ends of the enveloper, The cireuit of tig. 429-E is most useful with double-lead tubes. To attain high output at the maximum operating frequeney. the desimble arrangement is to use two or more double-lead tubes. each in a circuit such as this, with the lines onnmerted end tornd.

Push-pull parallel-line oscillators- It is often advantageous to use push-pull oscillator pircuits at the very-high frequencies, not only : is a means to secure more power output but also for better circuit symmetry. In addition. the interelectrode capareities of the pmsh-mill tuber are in series acrose the point of combertion to the tank eirenit. hene have less baparity-toaling effer than is experienced with a single thate.

Fig. 430 shows typical push-pull cirenits of this tyje. Figs. 4:30-A.-B:and-(:all employ the same circuit - the t.p.t.g. type (s:3-7). The grid line is usablly operated to the frepueneycontrolling rirenit, since it is not ansochiated with the lowd and henee its Q (am be kept high. The same adjust ment considerations apply as in the case of simgle-tube owillatoms. (irid taps in particular should be tapped down as far ats possible. to improwe the frequenery stability.

In Fig. 430-A, a comwentional con-and-romdenser tank is usend in the plate cirenit where the lower (C does mot hatve so great an effert on frequency stability. For maximum efliciency the use of a linear outpout circuit is desirable at the higher frequmbies, however. This is shown at B, and at C with isolating r.f. chokes in the filament cirmit.

Fig. 430-1) shows a mash-pull uscillator having tuned plate and wathode lines, the wathode eireuit being tuned with a quarter-wase line which controls exeitation and to some extent. tuning. The grids are comereded together and grounded through the srid leak. R_{1} : ordinarily no be-pass condenser is monded atross H_{1}. This circuit gives grond power output at wery-high frequencies, but is not esperially stable umbers the plates are tapped down on the plate tank circuit to atogid too great ardation in Q. Tapping on the rathode lime is not feasible for mechanieal reavons. With ordinary thans this oseilater is capable of higher-frequeney operation than the comentional t.e.t.p. type, and it has been fomm partieularly useful on 224 Mr.
The symmetrial cirenit at E is proferable above 200 Mr . Coaxial or muivalent lines maty be used instrad of r.f. chokes in the filat ment circuits for whatish-fremumey operation. With this modifieation, and (assumang the use of double-leal tubes) bey the addition of quarter-wave serlions at rand omd, this circuit may be considered equivalent to the center section of a double linear nexillator as diselused in connection with Fig. 42!)- L':

fik. 132 - Sucrial u.h.f. raxial-line oweillators.

Conxial-line cirruits - At frequemes in the meighberhom of 300 Mc . the radiation loss (2 -12) from open lines greatly redues the Q, bectuse the comductor spacing unavodathy becomes an apprexable fraction of a warength. (omsemuently, these fromuencies and higher coaxial lines. in which the field is confired inside the line st that radiation is negligible, are used. A farther advantare is that the cotside of the lime is "cold"; that is. no r.f. potentials develop betweren points on the chiter surface. While the coaxial line is also adventureous at lower freguencies. it is more complated to construct and adjust than parallef lines.

For case of construation, the concial line sometimes is modified into a "trengrh," in which the erosis-section of the outere conductor is in the shape of a samare U. one side being loft open for tapping and adjustment of the inner comductor. some radiation takes place with this type of construction, although not so mush tw with open lines.

The conventional comial-line oweillator cirmits shown in Fig. 431 illustrate the application of two basie circuits - the Hartley and the t.g.t.p. - to both mathole-type and filamentary tubes. The tube loads the line, as previonsly described; hence the actual lenget is always shorter than a quarter wavelengeth. The length call be adjusted be a short erireuiting aliding plumger, a close-fitting low-resistance contart being neeresary to a arod lowses. The imner conductor may also hatve a short tight-

the ends of the outer conductor in each line constitute one plate of the condensir; a grounded metal sheet serves as the other phatr。
l'ush-pull corxial-line oscilla-tors-The push-pull circuits of Fing li3:3 employ the same basic clements as the arrangements previously described. At A, a haltwitve open-omded line is used in the k!id cirenit, the grids of the tubes being "tapped" down on the linchy coupling thern indurtively through a small balanced loop rumning insiule the outer ronducfor. A conventional parallel line is used in the pate rireuit, with the rathondes babanced to ground by methe of dosed half-wave lines.
fiting extension tube which is slid in or out to change the effective conductor length.

The t.g.t.p. eirenits are somewhat casior to adjust and load as well as to ronstruct. but are not as satisfuctory from the stampoint of frequency stability becanse of reaction on the frequeney-eontrolling grid line by the tuning of the output cireuit. The grid tap should be as far down on the line as will permit reliable escillation umder load. V'mer some romditions the addition of a small adjustable feed-back raparity between grid and phate not only permits a lower tap location bitt also increases the upper frequency limit obtainable by advancing the phase of the grid excitation to compensate partially for transit-time lag in the tube.

In the Hartley circuit at A. an output tap is provided on the imer conductor. At 13 induetive output coupling by means of a half-turn "hairpin" is shown; loading ean be changed to some extent by varying its position.

Fig. 432 show's two types of roaxial-line oscillator circuits designed particularly for operation near the upper fregneney limits for negative-grid tubes. The circuit at A, with quarter-wave grid and plate lines and a halfwave filament line, is comveniont for use with single-lead tubes such as the 955 and $316-\mathrm{A}$. With the three lines arranged in the form of a triangle, so that their inner conductors attach directly to the tube terminals for minimmon load length, this oscillator will function satisfactorily up to $700-800 \mathrm{Mc}$.

The circuit of lיig. $432-\mathrm{B}$ is designed to take maximum advantage of the u.h.f. capabilitiess of double-lead and ring-electrode tube types. Interelectrode capacities are divided betwon each pair of grid and plate lines, and soparate parallel-resonant filament lines complete the isolation. Frequencies as high as 1500-1700 Mc. have been attained with this arrangement.

The by-pass condensers shown in the two circuits of Fig. 432 are made of copper plates insulated by sheet nica. Flanges soldered to

The cathode lines may be small-diameter copper tubing, folded toconserve space, throurh which rubber-insulated wire is run for the return cirenit. These limes may be shiokded from the plate line loy ruminig them anderneath the ehassis or separated hy a shieding partition.

A folded half-wave grid line is used at 13. The copper-tubing inner condurtor is lonat into the shape of a U. The outer conductor maty be cither a square-sertion donble trough of sheert copper or two short sextints of pipe soldered to at reetamgular box of sheet copper which forms the "rlomed" end. Whare aven more eompane construction is rempirel. the dimensions of the grial lime may he still fioftore fodured hy using sertions of foldent cosaxial lane (\$2-12). A conventional coil-and-combensir output cirenit is shown: at the romparatively low freguencies where this type of construction would be advantageous in the intorest of comparthess, such an output circuit should be sat istactory.

The arrangement at C has certain modifications which make it partionlarly suitable for use with hisher-powored tumes. The quarterwave capacity-lomded co:avial line in the grid cirenit is of relatively large dimensions and conseguently has high Q. (oupling to the tube grids, which in made very hose to preserve the Q of the line, is by means of twin harpin loops. The indurtance of the shunt rboke coils, L_{1}, is adjusted for maximum grid current.

To minimize radiation loss amd preserve cirwit symmetry, a co:sial line is used in the plathe tank direnit. If desired this line may be tumed by a balanced split-stator condenser of the type which has 1 bue rotor eomertion at the eenter, commerted amoss the plate terminals.

Parallel resonant virenits in the filament leads, thatid to resonance at the operating frequency by the variable comdensers, C_{1}, isolate the filament from gromed. The fixed by-pass condensers must have low ractance at the operating frequency. The filament coils, which are in parallel for ref., are of copper tubing.

Chapter Jive

Radiotelephony

(1) 5-1 Modulation

The carrier - The steady radio-frequency power generated by transmitting eireuits eannot alone result in the transmission of an intelligible message to a roceiving point. "he continuous wave from the transmitter itwelf serves only as a "carrior" for the message; the intelligence is convered by modulution (a change) of the carrier. In radiotelephony, this modulation reproduces electrically the sounds it is intended to ronvey in a form which can be correctly interperted or demodulated at the recoiving ent.

Sound ant alarmating eurronts - Sumads are caused by vibrations of air particles. The piteh of the sound depends upon the rate of vibration; the more rapid the vibration, the higher the pitch. Most sounds consist of romphex combinations of vibrations of differing rates or frequencies; the haman voice, for instance, generates frequeneies from about 100 cycles per second to several thonsand per second. The problem of tramsmitting speech by radio. therefore, is one of varying the r.f. carrier in a way which corresponde to the air-particle vibrations. The first step in doming this is to change the sound vibrations into alternating electrical currents of the same frequency and relative intensity; the rlectromechanical device which achieves this tramsation is the mirrophone. These atudio-fremuenes currente then may be amplified and used to vary or motulate the normally steady r.f. output of the transmitter.

Methods of monlulution - The carrier may be made to vary in acenrdanee with the sperech current by using the current to whage the phase ($8: 2-7$), frequency or amplitude of the carrior. Amplitude mordatation of a constantfrequency earrier is by fiar the must common system, and is used exelnsively on all frequencies below the very-hish-frequeney region (\$2-7). Frequency modulation of : comstantamplitude carrier, which has special characteristies which make its use desirable under cortain conditions, is used to a considerable extent on the very-high froquencios. Phase morblalion, which is clusely related to frequency modulation, has had little or no direct application in practical eommanication.

Other sperialized varieties of moululation, doveloped for other applications of radio transmission, have been proposed for voice communisation. Thus far none of these has achieved mactical utilization, however.

(1. 5-2 Amplitude Modulation

Carriar requirements - For proper amplitude monlulation, the earrier should be completely free from inherent amplitude variations such as might be caused by insufficient filtering of a rectified-a.c. power supply ($\$ 8-4$). It is also cessential that the carrier frequency be entirely unaffected by the application of modulation. If modulating the amplitude of the carrier also causes a change in the carrier frequency the signal wobbles back and forth with the modulation, introducing distortion and widening the chamel taken by the signal. This causes unmecessary interference to other transmissions. In practice, this undesirable frequeney modulation is prevented by applying the modulation to an r.f. amplifier stage which is isolated from the frequencereontrolling oscillator by a "buffer" amplifier. Amplitude modulation of an oscillator almost always is accompanied by frequency modulation, Under exi-ting regulations it is permitted, therefore, only onfrequencies above $112 \mathrm{Alc}$. , because the
(A)

(B)

(c)

Fig. 501 - Graphical representation of (A) earrier unmodulated, (B) modulated 50%, (C) modulated 100%.
problem of interference is less acute in this region than on lower frequencies.

Porcontase of modulation - In the ampli-tude-modulation system the audible output at the reeriver depends entirely upon the amount of variation - tarmed depth of molulation - in the carriar wave, and not upon the strength of the rarrier alone. It is desirable therefore to whtain the largest permissithe variations in the carrier wave. This condition is reached when the carrier amplitude during modulation is at times reduced to zoro and at other times inereased to twier its ummodulated value. Such a wave is said to be fully moshulinted, or 100 pert crout memlulated. Any desired degree of modulation can be expressed as apercentage, using the ummodulated carrier as a base. Fig. 501 shows, at A, an ummodalated carrier wave; at B, the same wave modulated 50 per cent, and at (, , the wate with 100 per cent modulation, using a sine-wave ($\$ 2-\overline{\text { a }}$) modnlating signal. The outline of the modulated r.f. wave is called the molulution enerlope.

The pereentage modulation can be found by dividing cither Y or Z by X and multiplying the result by 100. If the modulating signal is not symmetrical, the larger of the two (Y or Z) should be used.

Pouer in modulated wate - The amplitude values eorrespond to current or voltage, so that the drawings may be taken to represent instantaneous values of either. Since power varies as the square of wither the current or voltage (solong as the resistance in the cireuit is unchanged), at the peak of the modalation up-swing the instantaneous power in the wave of Fig. Fot-C is four times the unmodulated carrier power. At the peak of the down-swing the power is zoro, since the amplitude is zero, With a sime-wave modulating signal, the arerage power in a 100 per cent modulated wave is one and whe-half times the unmodulated farrier power; that is, the power output of the transmitter inereases so per cent with 100 per cent modulation.

Fig. 502 - An overmodulated r.f. carrier wave.

Linearity - Lp to the limit of 100 per cent modulation, the amplitude of the carricr should follow faithfully the amplitude variations of the modulating signal. When the modulated r.f. amplifier is incapable of meeting this condition, it is sad to be non-linear. The amplifier may not, for instanee, be capable of quadrupling its power output at the peak of 100 por cent modulation. A non-linoar modulated amplifier raluses distortion of the modulation envelope.

Modulation characteristic - A graph showing the relationship botween r.f. amplitude and instantancous modulating voltage is called the molulation characteristic of the modulated amplifier. This graph should be a straight line (linear) between the limits of zere and twice carrier amplitude. (Jurvature of the line between these limits indieates non-linearity in the amplifier.

Modulation rapability- The modulation capability of the transmiter is the maximum pereventage of modulation that is possible without objectionable distortion from nonlinearity. The maximum eapability is, of course, 100 per eont. The modulation capability should be as high as possible, so that the most effertive signal can be transmitted for a given carrier power.

Ocermondilation - If the earrior is modulated more than 100 per cent, a condition such as is shown in Fig. ofle orcurs. Not only does the peak amplitude execed twied the eatrier amplitude, but artually there may be a considerable period daring which the output is entirely cut off. The modulated wave is therefore distorted (s $3-3$), with the result that harmoniss of the audio modalating frequmey appear. The earrier should never be modulated more than 100 per cont.

Sidebards - The combining of the audio frequeney with the r.f. carrier is essentially a heteronlyne process, and therefore gives rise to beat frequeneies equal to the sum and difference of the a.f. and r.f. frequencios involved (s 2-1:3. Therefore, tor cach audio froqueney appearing in the modulating signal, two new ratio froquencies appear, one equal to the carrier frequeney plus the audio frequency, the other "qual to the carrier minus the audio frequenes. These new frequencies are called side frequencies, since they appear on pach side of the carrier, and the groups of side frequencies representing a band or group of modulation frequencies are called sidebands. Hener a modulated signal oecupies a group of radio frequencies, or channel, rather than a single frequeney as in the case of the ummodulated carricr. The channel width is twiee the highest mombuation frequency.
'To areommodate the largest number of transmitters in a given part of the r.f. spectrum it is apparent that the channel width should be as small as possible. On the other hand it is necessary, for speech transmission of reasonably good quality, to use modulating
frequencies up to a minimum of about 3000 or 4000 cycles. This calls for a channel width of 6 to 8 kilocycles.

Spurious sidebands - Besides the normal sidebands required by speed frequencies, unwanted sidebands may be generated by the transmitter. These usually lic outside the normally required channel, and hence canse it to be wider without increasing the useful modulation. By increasing the channel width, these spurious sidebands cansic unnecessary interference to other transmitters. The quality of transmission also is adversely affeeted when spurious sidebands are penerated.

The chiof canses of spurious sidebands are harmonie distortion in the andio system, overmodulation, unmecessary frequency modnattion, and lack of linearity in the modulated r.f. system.

Types of amplitude modulation - The most widely used type of amplitude-modnlation system is that in which the modulating signal is applied in the pate circuit of a radiofrequeney power amplifier (phate mondultion). In a second type the audio signal is applied to a control-grid (grid-bias molulation). A third system. involving variation of both plate and grid voltages, is called cuthorle modulation.

1. 5-3 Plate Modulation

Transformer coupling - In Fig. 503 is shown the most widely used system of plate modulation, A balamed (push-pull Class-A, (Class-Al3 or ("lass-B) modulator is trans-former-coupled to the plato circuit of the modulated r.f. amplitier. The audio-frequeney power generated in the modulator plate cirenit is combined with the d.e. power in the modu-lated-amplifier phate cireuit by transfor through the coupling transformer, \because. F゙いr 100 per cent modulation the atudio-frequeney output of the modulator and the turns ratio of the erompling transformer must be surh that the valtage at the plate of the modulated amplifier varies between zero and twied the der. aperating plate voltage, thus cansing corresponding variations in the amplitude of the r.f. output.

Modulator power - The average power output of the modulated stage mast inerease 50 per cent for 100 per erent momalation (§5-2), so that the modulator must supply the modulated r.f. stage audion power equal to 50 per cent of the d.c. plate imput. For eximple, if the d.e. plate power input to the r,f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modnlating impedance; linearity - The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{E_{b}}{I_{p}} \times 1000
$$

where E_{b} is the d.c. plate voltage and I_{p} the d.c. plate current in milliamperes, both measured without modulation.

Since the power output of the r.f. amplifier must vary as the square of the plate voltage (the r.f. voltage must be proportional to the applied plate voltage) in order for the modulation to be linear, the amplifier must operate under (lass-(' conditions ($\$ 3-4$). The linearity then depends upon having sufficient grid excitation and proper bias. and upon the adjustment of circuit constants to the proper values ($\$+8$).

Fig. 503 - Plate modulation of a Class.C r.f. amplifier. The r.f. plate bs-1 bate condenaer, C, in the amplifier staper shombld have hiph reactance at andio freguencios. A capacity of $0.002 \mu \mathrm{fd}$. or less usually is satisfactory.

Pourer in speroch wares - The complex waveform of a spech sound translated into alternating current does not contain as much power, on the average, as there is in a pure tone or sine wave of the same peak ($\$ 2-7$) amplitude. That is, with speerh waveforms the ratio of peak to averagr amplitude is higher than in the sime wave. For this reason, the previous statement that the power output of the transmitter incroises so per eront with 100 per cent modulation, while true for tone modulation, is nut true for speerh. On the average, spech waveforms will contain only about half as much powor ats a sine wave, both having the same peak amplitude. The averate power output of the transmitter therefore increases only about 25 per cent with 100 per cent speech modulation. However, the instantaneous power output mast quadruple on the peak of 100 per cont modulation ($85-2$) regardless of the modulating waveform. Tharefore, the peak output power eapacity of the transmitter must be the same for any type of modulating signal.

Adjustment of plater-modulated amplifiers - The general operating conditions for Class-C operation have been described (§ 3-4, $4-8)$. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle ($\S 4-8$) of about 120 degrees at carrier plate voltage, and the excitation should be sulficient to maintain the plate efficiency constant when the plate volt-
age is varied over the range from zero to $t w i c e$ the d.e. plate voltage applied to the amplifier. For best limearity. the grid bias should be obtained partly from a fixed sourer of about the cut-off value, supplemented by grid-leak hias to supply the remaimer of the required operating bias.

The maximum permissible d.e. plate power input for 100 per cent modulation is twior the sine-wave audio-fraquence power out put of the modulator. This input is ohtained by varying the loading on the amplifior (kerping its tank circuit tuned to resonatiore until the promurt of deppate voltageand phate current is the desired power. 'lhe modulating impedance under these conditions will be the proper value for the modulator, if the proper untput-transformer turns ratio (\$2-9) is used.

Neutralization, when trioules are used, should be as nearly perfort as pussible, since regencration may cause mom-linearity. The amplifier also should be free from parasitic oscillations (\$4-10).

Although the effective value ($82-7$) of power input increases with modulation, as deseribed above, the arrage mate input to a platemodulated amplifior does not change, since each incroase in plate voltage amb plate rurrent is balaneed bey an equivalent decrease in voltage and eurrent. Consequently, the d.e. plate current to a properly mondulated amplifier is always comstant, with or without modulation.

Siaren-urid amplifiers-Scrent-grid tubes of the pentude or tham totrole type can be uscel as (lass-C phate-modulated amplifars provided the modulation is applied to both the plate and sereong grid. The method of feerling the sereen grid with the neressary d.e. and modulation voltage is shown in Fige, 50t. The dropping resistor, f, should be of the proper valur to apply normal d.c. voltage to the sereon umber steady carrier conditions. Its value can be calculated hy taking the differenere between plate and soroon voltages and dividing it by the rated sereen current.

The modulating impedance is found by dividing the d.e. plate voltage big the sum of the plate and semen currents. The plate voltage

Fig. 504- Plate and -erem momblation of a Clawed r.f. amplifier using a pentode tube. The plate and sereen r.f. by-pass condensers, C_{1} and C_{2}, should have bigh reactance at all audio frequenrios ($0.002 \mu \mathrm{fl}$. or less).
multiplied by the sum of the two currents is the power-input figure which is used as the basis for dotermining the audio power required from the modulator.

Cholie coupling - In Fig. 505 is shown the rircuit of the choke-coupled system of plate modulation. The plate power for the modulator tube and modulated amplifier is furnished from a common swure through the modulation choke, Le, which has high imperlane for audio frequencies. The modulator operates as a power amplifier with the plate ciresit of the r.f. amplifior as its load, the audio output of the modulatar being superimposed on the d.e. power supplied to the amplifier. For 100 per rent modulation, the audio voltage applied to the r.f. amplifier plate circuit across the choke, L, must have a peak value equal to the doe. voltage on the modulated amplifier. To obtain this without, distortion the r.f. amplifier must be operated at a d.e. plate voltage less than the

Fise in 5 - Choke-compled plate monlulation.
modubator plate voltage, the extent of the voltage differnee bring determined by the trpe of modulator tube used. The necessary drop in voltage is provided by the resistor, \dot{h}_{1}, which is by-passed for andio freeromeres hey the bypass cemtenser. Cl,

This type of modulation soldom is used cerpt in very low-power portable sots, because a single-tube (lass-A (is required. The output of a (ilass-A modulator is very low compared to that obtainable from a pair of tubes of the same size nperated ('lass 13, hence only a small amount of r.f. power can be modulated.

Absorption modulation - Absorption or "lose" modulation. in its basid furm the oldest, and simplest method of all, rerently has beren revirad for wide-band modulation (such as television) at ultrahigh frequencies. In the system shown in Fig. 506, the modulating tubes are connected to the antenna ficed line through a quarter-ware stub line, located a quarter-wavelength from the transmitter tank circuit. With no modulation (i.e., no conduc-

tion through the momblating tuber) the stab appears as a short eirenit arross the line and litale or mo power reaches the antennat. When modulating volage is applied to the grids of the modulator tuber, howerer, their condure ance serves to inmease the effective impertane of the quater-wave shant, permiting : proportionate amome of energy to reach the antenna. At maximum modultion the wht anproathes atl opell circuit, allowing maximam r.f. output to the antenmal.

C. 5-4 Grid-Bias Modulation

Circuit - Fig. 507 is the diagram of a typieal armanement for grid-hias modulation. In this system, the secombary of ath auchor frequency output transformer, the primaty of which is comuceted in the phate eireuit of the modulator tube, is commeeted in series with the grid-biats supply for the modulated amplifior. The audin voltage thas introduced varies the grid bias, and thus the power sutput of the r.f. stage, when suitable operating comblitions are chosen. The r.f. stage is uperated ats a Class-(: amplifier, with the d.c. grid bias considerably beyond cut-uff.

Operatinis principles-In this system the plate voltage is constant, and the increase in power output with modulation is obtained by making the plate current and plate effieneney vary with the modulating signal. For 100 per cent modulation. both plate current and efliriency must, at the peak of the modulation upswing, be twiee their carrier values, so that the poak power will be four times the carrier power. Since the peak elficiency in practicable cirents is of the order of 70 to 80 per eent, the carries eflicioncer ordinarily cannot exered about 35 to 40 per ersh. For a givent.f. tube. the carrion output is about onc-fouth the power obratinable from the same tubr phate-modulated. Cirid bias, r.fe exemation, plate lombing and the amdios voltage in series with the grid must be adjusted to give a lincar modulation chatracteristic.

Wodalator poter-Since the increase in average carrier power with modulation is socured by varying the plato oflicioney and d.c. plate input of the amplifier, the modulator need supply only such power losses as may be occasioned by connecting it in the grid eircuit. These are quite small, hence a modulator capable of only a few watts output will
suffiee for transmitters of considerable power. Since the load on the modulator varies over the af. cyele as the rectilied grid corrent of the modulated amplifier ehtheres. the modulator should have good voltager regulalion (s $\overline{5}-6$).
(irid-bius sourer-The change in bias voltage with modulation causes the rectified grid current of the amplitier also to vary, the r.f. exeitation being lixed. If the bias source has apperciable resistance, the change in grid curent also will cause a change in bias in a direction opposite to that eaused by the modulation. It is neeressary, therefore, to use a griol-bias source having low resistance, so that these bias variations will be negligible. Battery bias is satisfactory. If a reetified a.e. bias supply is used, the type having regulated output (s - - 0) should be chosent. (irid-leak bias for a grid-modulated amplitier is unsatisfactory, and its use should not be attempted.

Driver resulation - The load on the driving stage varies with modulation, and a linear modulation characteristic may not beobtained if the r.f. voltage from the driver does not stay constant with changes in load. Driver regulation (ability to maintain monstant out put voltage with changes in load) may be improved be using a driving stagn having two or three times the power out put neerssary for exeitation of the amplitier (this is somewhat less than the power required for ordinary Class- © operation), aml by dissipating the cxta power in a comstant load such as a resistor. The load variations are thereby reduced in proportion to the totalluad.
tiljastmomi of arid-bias modulatod amplifiers - This trpe of amplifier should be adjusted with the aid of an oseilloseope, to obtain optimum operating conditions. The oscillasenpe should be commeted as dereribed in s. $\mathrm{s}-10$, the wedge pattern bering preferable. A tome source for modulating the tramsmiter will he eonvenient. 'The fixed grid bias would be two or three times the eut-off value ($\$ 3-2$). The d.e. imput to the amplifier, assuming 33

Fig. 500^{7-} - Crid-bias modnlation of a Class-C amplifier. 'Ila' r.f. yrid by-pass comdenser, C, should have high reatame at audio freguencies (0.002 ufd. or less).
per cent carrier efficiency, will be $1 \frac{1}{2}$ times the plate dissipation rating of the tube or tubes used in the modulated stage. The plate current, for this input (in milliamperes, $1000 / / \cdot L$, where P is the power and E the d.e. plate voltage) must be determined. Apply r.f. exditation

Fip. 508 - Suppressor-grid nodulation of an r.f. annplifier using a ventode-type tube. The suppresoor-grid r.f. by-pass condenser, \mathcal{C}, should be $0.002 \mu \mathrm{fd}$. or less.
and, without modulation, adjust the plate loading to give the required plate current (keoping the plate tank rircuit tuned to rosonance). Next, apply modulation and increase the modulating signal until the modulation characteristic shows curvature ($55-10$). This probably will oceur wall below 100 per cont modulation. indieating that the plate efficiency is too high. Increase the plate loading and reduce the expitation to maintain the same plate current; then : 1 pply modulation and eheek the characteristic again. (ontinue this process until the characteristie is limear from the axis to twice the arrier amplitude. It is advantageons to use the maximum permissible plate voltago on the tube, sine it is usumlly easior to obtain a more line:ar characteristic with high plate voltage and low current (carrier conditions) than with relatively low plate voltage and high plate current.

The amplifier can be adjusted without an oscilloscope by determining the plate current as described above, then setting the bias to the cut-off value (or slightly beyond) for the d.e. plate voltage used and applying maximum excitation. Adjust the plate loading, kerping the tank cireuit at resonance, until the amplifier draws twice the carrier plate current, and note the antenna current. Deerease the exiltation until the output and plate current just start to drop. Then increase the bias, leaving the excitation and plate loading unchanged, until the plate current drops to the proper carrier value. 'The antenna current should be just half the previous value; if it is larger, try somewhat more loading and less excitation; if smaller, less loading and more excitation. Repeat until the antenna current drops to half its maximum value when the plate current is biased down to the carrier value. Under these conditions the amplifier should modulate properly, provided the plate supply has good voltage regulation ($(8-1$) so that the
plate voltage is practically the same at both values of plate current during the initial testing. The d.e. plate current should be substantially constant with or without modulation (\$5-3).

Suppressor momlulation - The circuit arrangement for suppressor-grid modulation of a pentode tube is shown in F'ig. 508. The operating prineiples are the same as for grid-bias modulation. However, the r.f. excitation and modubating signals are applied to separate grids, which gives the system a simpler operating trehnique since best adjustment for proper exeitation requirements and proper modulating eircuit requirements are more or less independent. The carrier plate efficiency is approxinately the same as for grid-bias modulation, and the modulator power requirements are similarly small. With tubes having suitable suppressor-grid characteristies, linear modulation up to practically 100 per cent can be obtanned with negligible distortion.

The method of adjustment is essentially the same as that deseribed in the preceding paragraph. Apply normal exeitation and bias to the eontrol grid and, with the suppressor hias at zoro or the positive value reeommended for e.w. telegraph operation with the particular tube used, adjust the plate loading to obtain twice the carrier plate current (on the basis of $3: 3$ pror cent carrier efficiency). Then apply sufficiont negative bias to the suppressor to bring the plite current to the earrier value, leaving the Powding unchanged. Simultancously, the antenna current also should drop to half its maximum value. The amplifier is then ready for molulation. Should the plate purrent mot follow the antenna current in the same proportion when the suppressor bias is made negative, the loading and excitation should be readjusted to make them coincide.

(1) 5-5 Cathode Modulation

Cirmii- The fundamental circuit for cathowle or "center-tap" modulation is shown in Fig. s09. This type of modulation is a com-

Fig. 509 - Cathode modulation of a Class-C: r.f. amplifirr. The grid and plate r.f. by-pass condensers, C, should be $0.002 \mu \mathrm{fd}$. or less (for high a.f. reactance).
bination of the plate and grid-bias methods, and permits a carrier efficieney midway between the two. The audio power is introduced in the cathode circuit, and both grid bias and plate voltage vary during modulation.

The cathode circuit of the modulated stage must be independent of other stages in the transmitter; that is, when filament-type tubes are modulated they must be supplied from a separate filament transformer. The filament by-pass condensers should not be larger than about $0.00 \cdot 2 \mu \mathrm{fd}$, to a woid by-passing the atudiofrequency modulation.

Operating principles - Because part of the modulation is by the grid-bias method, the plate effieiency of the modulated amplifier must vary during modulation. The earrier effiejoney therefore must ber lowor than the efficiency at the modulation peak. The required reduction in carrier affieiency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation. the higher the permissible carrior efficiener, and vire versa. The audio powor required from the modulator also varies with the percentage of plate modulation, being greater ats this pereentage is increased.

The way in which the various quantities vary is illustrated by the rurves of Fig. 5lo. In these curves the performance of the eath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the pereentage of plate modulation as a base. As the percontage of plate modulation is dererased, it is assumed that the grid-bias modulation is inereased to make the weer-all pereentage of modulation rearh 100 per cent. The limiting condition, 100 per cent plate modulation and no grid-bias modulation, is at the right (A); pure arid-bias modulation is represented by the lefthand ordinate (13 and (').

As an example, assume that 40 per ean plate modulation is to be used. 'land the modulated r.f. amplifier must be adjusted for a a arrier plate efficiency of inf per erent, the permissible plate input will he bis per cent of the ratings of the same tube with pure plate modulation, the pewer output will be fis per cent of the rated output of the tube with plate modulation, and the atudio power required from the modalator will be 20 per cent of the d.e. input to the modulated amplifier.

Modulating imperdance - The modulating impedance of a rathode-modulated amplifier is approximately erpaal to

$$
m \frac{L_{b}}{I_{t}}
$$

Where m is the promentage of plate modulation expressed as a decimat, E_{6} is the phate roltage and $/ \Delta$ the plate rurrent of the modulated r.f. amplifier. 'l'his figure for the modulating impedance is used in the same way as the corresponding figure for pure plate modulation, in
determining the proper modulator operating conditions (\$5-6).

Condilions for linearity- R.f. excitation requirements for the cathode-modulated amplifier are midway between those for plate modulation and grid-bias modulation. More excitation is required as the pereentage of plate modulation is increased. (irid bias should be considerably berond cut-off: fixed bias from a supply having good voltage regulation (8 - -9) is profored, esperially when the percentage of plate modulation is small and the amplifior is operating more nearly like a gridbiats modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modalation transformer secondary.

Fig. 510 - Cathode-modalation prformaner entres. in brme of percontape of plate modulation plonted
 $W_{\text {in }}$ - I).c. plate input batts in terms of pereentage of plate-modulation rating.
N. - Carrier wutput watts in per cent of plate-monhalation rating (based on plate celliciency of 72.5%). W_{n} - Audio power in per cent of d.c. watts input. N_{p} - Phate efficioney of the amplifier in percentage.

Adjustment of cathode-modulated amplifiers - In most respects, the aldustment procedure is similar to that for grid-hias modulation (\$5-4). The critical adjustments are those of antenna loading, prid bias, and exatation. The proportion of grid-bias to plate modulation wili determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope (\$ 5-10). With proper antenna loading and excitation, the normal wedgeshaped pattern will be obtained at 100 per ceat modulation. As in the case of grid-bias modulation. too-light antemat loading will ratuse flattening of the upward-peaks of modulation (indicating downward modulation), as also will too-high exeitation ($\$ 5-10)$. The cathode current will be pratetically constant with or without modulation when the proper operating conditions have been established (\$5-3).

(4 5-6 Class-B Modulators

Modulator tirlers - In the case of plate modulation, the relatively large audio power necded ($\$ 5,-3$) prartieally dietates the use of a Class-B (\$3-4) modulator, since the power can be obtatined most coonomically with this type of amplifier. A typieal circuit is given in Fig. 511 . A pair of tubes must be chowen which is capable of delivering sime-wave andio power equal to half the rle. input to the modulated Class-C amplifier. It is sometimes eonvenient to use tubes which will nperate at the same plate voltage as that applied to the ('lass-C stage, sinee one power supply of adequate current rapacity may then siffice for both stages. Available componemts do mot allo:ays pormit this, howover, :und better ower-ill performaner and eronomy may result from the use of soparate pestor supplies.

Fig. 511 - (lats-is andio modulator and Iriver circuit.
Matrhing to load-In giving ('lass-B ratings on power tubes, manafaturers sperify the plate-to-plate load impedance (s:3-3) into whiel the tubes must operate to deliver the rated andio power output. This load impedance seldom is the same as the modulating impedanee ($85-3$) of the ('lass-(: r.f. stage, so that a mateh must be brought about by adjusting the turns ratio of the coupling transformer. The requirel turns ratio, primary to secondary, is

$$
\sqrt{\frac{Z_{p}}{Z_{m}}}
$$

where Z_{2} is the (lats-C mordulating impetance and Z_{p} is the pate-to-plate load impedance specified for the (Mass-13 tubus.
(© monereial ('lass-ls output transformers usually are rated to work bretwern specified primary and seomdary impedaneres and are designed for spereifie (liass-13 tubes. In such a case, the turns ration can he foumd he substituting the given impelances in the formula above. Many transformers are provided with primary and scondary taps, so that various turns ratios can be obtained to mont the requirements of varions thbe combinations.

Drivins pourer-Class-13 amplitiors are driven into the grid-curent region, so that power is consumed in the srid circuit (s:3-:3). The preceding stage (driver) must be capable of supplying this power at the required peak audio-frequeney grid-to-grid voltage. Both of these quantities are given in the manufactur-
er's tuhe ratings. The grids of the Class-B tubes represent a variable load resistance over the audio-frequency cyele, since the grid eurrent does not increase directly with the grid voltage. To prevent distortion, therefore, it is neeossary to have a driving souree which has good regulation - that is, which will maintain the waveform of the sigual without distortion even though the bad varics. This can be brought about by using a driver capable of delivering two or three times the aetual power consumed hy the C'lass-13 grids, and hy using an inuut eoupling transformer having : turns ratio giving the largest step-down in the coltage hetween the driver plate or plates and the Class-ls grids that will permit ohtaining the sperifiel grid-to-grid af. voltage.

Driowr compling - A ('lass-A or Class- A 3 (§3-4) driver is used to cxeite a Class-B stage. Tubes for the driver proferably should be triodes having low mate resistaner, since these will have the best regulation. laving chosen a tube or tubes capable of ample poweroutput from tube data sherets, the peak output voltage will be, approximately,

$$
F_{0}=1.4 \sqrt{L^{\prime} R}
$$

where l is the power output and R the load resist:unee. The input transformer ratio, primary to secondary, will be

$$
\frac{E_{o}}{E_{v}}
$$

where E_{0} is as given above and E_{0} is the peak grid-to-grid voltage required be the nomblator tubus.

Commereial transformors momatly are designed for sperific driver-modulator combinations, and usually are adjusted to give as good driwer regulation as the eonditions will permit.

Girid bias - Moblorn Chass-ls audio tubes are intended for operation without fixed bias. This leswens the variable grid-circuit lading effert and clmmates the need for a grid-hias supply.

Whon a grib-bias supply is required, it must have low internal resistance so that the fow of erial current with exatation of the (lass-B tubes does not cause a continual shift in the actual grid has and thus eause distortion. Batterias on a regulatod bias supply (SN-9) shombld be used.

Plate supply - The plate supply for a ('lass-13 modulator shoud be sufliciently well filtered ($\S 8-3$) to provent hum modulation of the ref. stage ($5-2$). An alditional requirement is that the output condenser of the supply should have low reactane (s 2-s) at 100 cyeles or less eompared to the load into which cad tube is working. Which is one-fourth the platc-to-plate load resistance. A $1-\mu \mathrm{fd}$. output condraser with a 1000 -volt sitply, or a $2-\mu \mathrm{fd}$. condenser with a ? ? 0 o o-volt supply, usually will he satisfactory. With other plate voltages, comdenser values should be in inverse proportion to the phate voltage.

Radiotelephony

Ocerexcitation - When a Class-B amplifier is overdriven in an attempt to secure more than the rated power, distnrtion in the output waveshape inereases rapilly. The high-frequeney harmonics which result from the distortion (\$ 3-3) modulate the transmitter, produc. ing spurions sidethands (s. 5 -2) which readily call canse serious interfereme over a band if frequeneies several times the chanmel wilth required for speceh. This may happen even though the transmiter is not being overmerdulated, as in the "ase where the modulator is incapable of deliwring the power repuraed to mendulate the transmitter fully, or when
 the proper modulat ine impedane (s $5-3$).

The tubes used in the (lass-is modulatur should be eapable of some what more than the power output nominally required (on per ent of the d.ce. input to the moselulated :mplifice) is take care of leswes in the omtput transfomer. These usually ran from 10 per ant to 20 per cent of the tube output. In addition, the (Cans-(: amplifier shomald be adjusted to give the proper modulating impedance and the correct output transormer turns ration shombla he used. Sinch high-fremuency damonios as may be generated in these cirmuntanes can be reduced by commeting combensers acrose the primary and secomdary of the output trans-
 to form, with the transtormer leak:qe indurtance (cuts off just above the maximam audio frequene required for apech tramsinission (ahmut 4000 (erelnes. The rondemer woltare ratimes should be adequate for the peak a.f. voltages appearing teross them.

Operation withoul lomd-Exeitation should never be applied to a (lass- 13 modulator untial after the Class-C amplifier is turned on and is drawing the value of plate current required to present the rated load to the mondulator. With mo load to absorb the power, the pimary impedance of the tramsformer rises to a high value and exesesive audio, voltares are developed :aross it - frequently high enough to break down the transiomer insulation. If the modulater is to be tested separately from the transmitter, a lowd resistance of the same value as the modulating impolatore, and capable of dissipating the full pewer output of the modulatom, should be commented aeross the transformer secondary.

C 5-7 Low-Level Modulators

Sielection of thbes - Modulators frir gridbias and suppressor modnlation can be samall andio power tuberes. sime the andin power required usuatly is small. A triode such ats the 2 A 3 is preferable because of its low plate resistance, but pentodes will work satisfartorily.

Watching to lowed-Since the ordinary (lass-A receiving power tube will develop about 200 to 250 peak volts in its plate cirenit, which is ample for most low-level modulator
applications, a $1: 1$ coupling transformer is generally used. If more voltage is required, a step-up ratio must be provided in the transformer. It is usual practice to load the primary of the output-couphing transformer with a resistance equal to or slightly higher than the rated load resistane for the tube, to stabilize the voltage output and thus improve the regulation. This is indicated in Fig. 507.

C 5-8 Microphones

Sensiticity - The leurl of a microphone is its electrical output for a given speech intensity input. Level varies greatly with mierophomes of different basia types, and also varies between different models of the same type. The output is also greatly dependent on the ehnarater of the individual woice (that is, the andio frequencies present in the voice) and the dist:me of the speaker's lips from the mierophone, decreasing approximately as the square of the distance. Hence, only approximate salues based on averages of "normal" speaking wions can be attempted. The values given in the following paragraphis are based on close t:alking; that is, with the microphone less than an inch from the speaker" hips.

Frequmey response - The frequency respense or fidelity of a mierophone is its relative ability to convert soumls of different frequencies into alternating current. With fixed sound intensity :at the microphome, the electrical output maty vary comsiderably as the sound frequency is varime. For understandable speesh transmission only a limited frequency range is neeresary, and matural-sounding speech can be abtained if the output of the microphone does not vary more than al few decibels ($\$ 3-3$) at any frequener within a range of about 200 eycles to 4000 reclos. When the variation expressed in terms of decibels is small between two frequency limits, the mierophone is said to be flat between those limits:

Carbon microphomes - Fig. 512-A and 13 show connections for single- and doublebutton earbon mirrophones, with a theostat included in each circuit for adjusting the button current to the corret value as specified with eath mirrophone. The single-bution mierophone consists of a metal diapharam plaed against an insulating eup containing lonsely. parked carbon granules (microphone button). C'urrent from a battery flows through the granules, the diaphagem being one comnection and the metal back-phate the other. The primary of a transformer is comnected in series with the battery and midrophome. As the diaphragm vibrates its pressure on the gramules alternately ithereases and derreases, rausing a corresponding increase and hecreas of current flow through the circuit, since the pressure changes the resistanee of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer sec-
ondary ($\$ 2-9$). The double-button type is similar, but with two buttons in push-pull.

Good quality single-button carbon mierophones give ontputs ranging from 0.1 to 0.3 volt across 50 to 100 whms; that is, aeross the primary winding of the mierophome transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts ateross 100,000 ohms or so cat be assumed available at the grid of the first tube. '1he usual button eurrent is 50 to 100 mat.

The level of good-quality double-hut ton mi(rophones is considerably less, ranging from 0.02 volt to 0.07 volt acrose 200 ohms. With this type of mirrophome and the usital pushpull input transformer, a peak voltage of $0 .+$ to 0.5 acros: 100.000 , whans of so can be assumed available at the first :perech-amplitier erial. The button current with this type of microphone ranges from is to 50 ma. per button.

Crvseal microphomes - The input cireuit for a piezoelertric or arsstal tye of mierophone is shown in Vig. Ble-F゙, The alement in this terpe consists of a pair of Rowhelle salts ersestals cemonted together, with pated elestrodes. In the moresensitive types. the arystal is mechanioully couphed to a diaphragm. sound waves actuating the diaphragm ranse the crystal to vibrate mechanically and, by piezoelectric abtion ($\$ 2-10$), to genomate a eorresponding alternating voltage betworn the remtrodes, which are comberted to the grid cireuit of a vacuum-tube amplifier, ats :hown. The (rystal type requires no separate source of current or voltage.

Aithough the level of erystal mirrophones varies with difforont models, an output of 0.01 to 0.03 volt is representative for communication types. The level is affered by the length of the cable emonerting the microphone to the first amplifier state: the above tigure is for kengths of 6 or 7 foret. The frequency wher acteristie is maffertod bey the rable, hat the load resistame (:mplifier grid resistor) does affect it, the lower frequencios being attenmated as the shant resistance beromos lass. A
grid-resistor value of 1 megohm or more should be used for reasomably flat response, 5 negohms being a customary figure.

Comilenser microphomes - The condenser microphone of Fig. 512-C ronsists of a twoplate absacity, with one pate stationars. The other, which is separated from the first by abont a thonsamdth of an inch, is a thin metal membrane serving as a diaphragm. This eondenser is romberted in sories with a resistor athe a dee woltage souree. When the diaphragm vibraters, the change in capacity ratuses a small charging current to flow through the circuit. The resulting audio voltage which appears arross the resistor is fed to the grid of the tube through the coupling condenser.

The output of condenser microphones varies with different models, the high-quality type bemge ahout mor-hundredth to one-fiftieth as sensitive as the double-button earbon mierophone. The first speedt-amplifier stage must be hailt into the miorophone, sine the eapacity of :t conmeting cable would impair both output and frequeney range.
lichority and dymamir microphones - In a velocity ur "ribbon" mieraphone, the plement aded umen by the sound waves is a thin "ormated metallir ribom :nspended betwern the poles of a magnet. When vibrating, the ribhan routs the lines of fare between the phles, lirst in one direetion and then the other, thas gemerating an alternating voltaro. The movement of the ribbon is proportional to the veloedty of the sommernorgi\%en air particles. Colocity misrophones are built in two typer, high imperdane and low imperdane the former being had in most applications. A high-impedance mirrophone can be dirertly eonneeted to the grid of an amplifier tube, shanted by a
 1.ow-impedance miorophones are used when a
 beremplowid. Ia surbla ase the ontput of the microphome is ronpleal to the first amplifier stagn throngh a suitable step-up transiormer, as shown in loig. in2-I).

 double-but ton carbon; C, condenser; 1 , low-impedance velocity; k, lifh-impedance velocity; F , crystal.

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies direetly to the high-impedance type, and to the low-impedance type when the voltage is measured across the compling transformer seeondary.

The dynamic microphone somewhat resembles a dynamic loud sueaker in principle. A light-weight voice coil is rigidly attarhed to a diaphragm, the coil being placed between the poles of a permanent mugnet. Sound causes the diaphragm to vibrate, thas moving the coil back and forth between the magnet poles and generating an alternating voltage the frequency of which is proportional to the frequency of the impinging sound and the amplitude proportional to the sound pressure. The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the eonnecting cable must be unusually long a low-impedance type should be used, with a step-up transformer at the end of the cable. A small permament-magnet speaker can be used as a dynamic microphone, although the fidelity is not as grod as is obtainable with a properly designed microphone.

C 5-9 The Speech Amplifier

Descripeion - The function of the spereh amplifier is to build up the weak microphone voltage to a value sufficiont to excite the modulator to the required output. It may have from one to several stages. The last stage nearly always must deliver a certain amount of audio power, especially when it is used to expite a Class-13 modulator. Spereh amplifiers for grid-bias modulation usually rad in a power stage which also functions as the modulator.

The speceh amplifier frequently is built as a unit separate from the modulator, and in such a ease may be provided witll a step-down transformer designed to work into a low impedance, such as 200 or 500 ohms (t ube-t.oline transformor). When this is donte, a st(p-up) input transformer intended to work betwren the same impedance and the morlulator grids (line-to-grid transfornar) is provided in the modulator circuit. The line which eommeets the two transformers may be made of any convenient length.

Gencral design considerations - The last stage of the speech amplifier must be selected on the basis of the power output required from it: for instance, the power necessary to drive a Class- B modulator (\$5-6). It may be either single-ended or push-pull ($\$ 3-3$), the latter generally being preferable because of the higher power output and lower harmonie distortion. Push-pull amplifiers may be cither Class A, Class $A B_{1}$ or Class A $B_{2}(\$ 3-4)$, as the power requirements dictate. If a ('lass-A or AB_{1} amplifier is used, the preceding stages all may be voltage amplifiers, but when a (MassAB_{2} amplifier is used the stage immediately. preceding it must be capable of furnishing the power consumed by its grids at full output.

The requirements in this case are much the same as those which must be met by a driver for a Class-l stage ($\$ 5$ - $-i$), but the actual power needed is considerably smaller and usuatly can be supplied by one or two small receiving triodes. All lower-level speech amplifier stages invariably are worked purely as voltage amplifiers.

The minimum amplification which must be provided ahead of the last stage is equal to the peak audio-frequeney grid voltage required by the last stage for full output (peak grid-to-grid voltage in the case of a push-pull stag(e), divided by the output voltage of the microphone or secondary of the microphone transformer if one is used ($\$ 5-8$). The peak a.f. grid voltage required by the output tube or tubes is equal to the d.e. grid bias in the case of a single-tube Class-A amplifier, and approximately twice the grid bias for a pushpull ('lass-A stage. The requisite information for (Class-A B_{1} and $A B_{2}$ amplifiers can be obtained from the manufacturer's data on the type ennsidered. If the gain is not obtainable in one stage, several stagis must be used in cascade. When the output stage is operated Class AB_{2}, due allowanec must be made for the fact that the next-to-the-last stage must deliver power as well as voltage. In such eases, suitable driver combinations usually are recommended by manufacturers of tubes and interstage transformers. The coupling transformer must be designed especially for the purpose.

The total gain provided by a multi-stage amplifior is equal to the produet of the individual stage gains. For example, when three stages are used, the first, having a gain of 100 , the second 20 and the third 15 , the total gain is $100 \times 20 \times 15$, or 30,000 . It is good pratetiec to provide two or three times the minimum required gain in designing the speech amplificr. This will insure having ample gain available to enpe with varying conditions.

When the gain must be fairly high, as when a erystal mierophone is used, the speech amplifier frequently has four stages, including the power output stage. The first generally is a pentode, berause of the high gain attainable with this type of tube. The seeond and third stages usually are triodes, the third frequently having two tubres in push-pull when it drives a Class-AB2 output stage. Two pentode stages seldom are used consecutively, because of the difliculty of getting stable operation when the gain per stage is very high. With earbon mierophones less amplifiration is needed and hence the pentode first stage usually is omitted, one or two triode stages being ample to obtain full output from the power stage.

Stage gain and roltage output - In voltage amplifiers, the stage gain is the ratio of a.c. output voltage to a.c. voltage applied to the grid. It will vary with the applied audio frequency, but for speech the variation should be small over the range of $100-4000$ cycles. This condition is easily met in practice.

The output voltage is the maximum value which ean be taken from the plate circuit without distortion. It is usually expressed in terms of the peak value of the a.c. wave ($\S 2-7$), since this value is imelependent of the waveform. The peak output voltage usually is of interest only when the stage drives a power amplifier, since only in this case is the stage called upon to work near its maximum capabilities. Low-level stages vory seldom are worked near their full capacity, hence harmonic distortion is negligible and the voltage gain of the stage is the primary eonsideration.

Fip. 513 - Resistance-conpled voltape amplifier cireuits. A, pentode; 13, triode. Jesignation are at follows:
C_{1} - Cathode liy-pass condenser.
C: P Plate hy-pass conderiser.
($\because 3$ - Output coupling eondanser (blowing mondrinser).
Ci - Seren bs-pass condenser.
H_{1} - Cathorle resistor.
H_{2} - Grid resistor.
H_{3} - I'late reaintor.
R_{4} - Next-stage grid resintor.
N_{5} - Plate decoupling resistor.
H_{6} - Screen renistor.
Values for suitable tubes are given in Chapter Fourtern.
Resistance coupling - Resistance coupling generally is used in voltage amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there is little danger of hum piek-up from stray magnetic fields associated with heater wiring. It is the only type of coupling suitable for the output circuits of pentodes and high- μ triodes, since with transformers a sufficiently high load impedance ($\$ 3-3$-3) cannot be obtained withont eonsiderable frequancy distortion. Typical cireuits are given in Fig. 513 and design data in § 3-6.

Transformer compling - Transformer coutpling between stage's ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessury to eomple between a singlecnded and a push-pull stage. Triodes having an amplification factor of 20 or less arc used in transformer-coupled voltage amplifiers.

Representative circuits for coupling singleended to push-pull stages are shown in Fig. 514. That at A uses a eombination of resistance and transformer compling, and maly be used for exciting the grids of : Class- A or.$~ 13_{1}$ followings stage. The resistance coupling is used to keep the d.e. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its nocurrent value (s-is). This improves the lowfreguence response, With low- μ triodes (6Cis, 6.55, ete.), the gain is equal to that with resistaner coupling multiplied by the secondary-toprimary turns ratio of the transformer.

In 13 the transformer primary is in sories with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage ratin of the stage is practically equal to the μ of the tube multiplied be the transformer ratio. This (eircuit also is suitable for transforring powor (within the capabilities of the tube) as in the case of a following ('lass-Al32 stage used as a driver for a ('lass- 13 modulator.

Cinin control - The wver-all gain of the amplifier may be changed to suit the output level of the microphone, which will vary with voice intensity and distance of the speaker from the mierophone, by vareing the proportion of a.c. voltage appliod to the grid of one of the stages.

The gationontrol potentimmeter should be neat the imput end of the amplifier, so that there will he no danger of overloading the stages ahead of the wain control. With carbon microphones the gain eontrol may be placed directly acerss the mierophome transformer secondary, but with other types the gain control usually will afferet the frequency response of the mierophone when eonnereted directly across it. The control therefore usually is plaeed in the grid cirenit of the seeond stage.

Fig. 514 - Transformer-eouphod amplifier circuits for driving a push-pull amplifier. A is for resistance-trans. former couplinp: 13, for transformer compling. Designations correspond to those in Vig. 513 . In A, values ran be taken from 'lable I. In 13, the cathode resistor is calculated from the rated plate current and grid bias as given for the particular type of tule used (§ 3-6).

Fig. 515 - Phasc-inverter circuit for resistaner-ont-

 R_{4} should the taperd as deseribed in the west. "The voltage path of a stige using these constants is 23.

Phase incersion - Push-pull outpat may be secured with resistance compling by using an extratube as shown in fige ifos. There is a phase shift of lao degrees through amy normally gurating resistance-coupled stage (\$3-3), and the extratube is userl purely to provide this phase shiftwithout additionalgain. The outputs of the two tubes ate then added to provide push-pullexcitation for the following amplifier. The fap on h^{\prime} is adjusied to make V_{1} and V_{2} give equal foltage ondmuts son that batamed exditation is applied to the grids of the following stage. 'The wathede resiator. h ? commonly is left m-bypassed simee his temels to hatp balatue the rireuit. For eomvenience, double-triode tubes frequently are used as phase inverters.

Output limitim: - It is desirable 10 modulate as heavily as possible without owermodulating, wetit is difficult to speak into the mierophone at a constant intensity. To mathtain reasonably constant output from the modulattor in spite of varliations in sprech intemsitys it is pussible Po use antomatie gatio contral which follows the areroyr (not. instantanmons) variations in sperela amplitude. This is aceomplished bey reatifying and filtering (s N-2, N-B) some of the amdin output and applying the rectified and filtered d.e. to a control clectrode in an carly stare in the amplifier.

Fig. 516-Sprech amplitior output-limiting dircuit,

A practical circuit for this purpose is shown in Fig. 516. The rectifier must be connected, through the transformer, to a tube eapable of delivering some power output, (a small part of
the output of the power stage may be used) or else a separate amplifier for the rectifier cireuit alone may have its grid comnected in parallel with that of the last voltage amplifier. Resistor h_{4} in sories with h_{5} across the plate supply provides variable bias on the rectifier plates, so that the limiting action can be delayed until a desired mierophone input level is reached, $R_{2}, R_{3}, \mathrm{C}_{2}, \ell_{3}$, and C_{4} form the filter ($\$ 2-11$), and the output of the reetifier is connected to the suppressur grid of the pentode first stage of the speerh amplifier.

A shep-down transformer with a turns ratio such acto give about 50 volts when its primary is combeted to the output circuit of the power stame should he used. A half-wave rectifier may be bed instead of the full-wave cireuit shown, althomgh satisfactory filtering will be more diflientt to athiewe.

Woise - It is important that the noise level in a speoch amplifier be low compared to the lowel of the desired signall. Noise in the speech amplifier is ralused chiofly by hum, which may be the result of insulfienent power-supply filteringe or may be intradued into the grid cireuit of a tube by magnetic or electrostatic means from heater wiring. 'jur phate voltage for the amplifier should be iree from ripple (s s-4), partimularly the voltare applied to the lowlevel stages. I twosection eondenser-input lilter (sisi) usually is satisfactory. The decompling arruits mentioned in the preceding paragraphes abo are helpful in redueing platesupply hums.

Hum from heater wiring may be reduced by kepping the wiring well away from ungromoded emmponconts or wiring, particularly in the vieinity of the grid of the first tube. Completo shidding of the microphone jack is advisable, and whon tubes with grid caps instead of the single-ended types are used the caps and the oxposed wiring to them should be shielded. Heater wiring preferably should run in the comers of a metal chassis, to reduce the magnetic field. A groumd should be made either on one side of the heater circuit or to the ecnter-tap of the heator winding. The shells of matal tubes should be grounded; ghass tubes require separate shields, espereially when used in low-level stages. Heater comnections to the tube sockets should be kept as far as possible from the plate and grid prongs, and the heater wiring to the sockets should be kept close to the chassis. A connection to a grod ground (surh as a cold water pipe) also is atvisable. The speech amplifier always should be constructed on a metal chassis, with all ground connections made directly to the mot:al chassis.

When the power supply is mounted on the same whassis with the speech amplifier, the power transformer and filter chokes should be well soparated from audio transformers in the amplifier proper to reduce magnetic coupling, which would cause lum and raise the residual noise level.

4 5-10 Checking 'Phone Transmitter Operation

Morlulation percentage - The most reliable method of determining percentage of modulation is by means of the eathode-ray oscilloscope (§ 3-9). The oscilloseope gives a direct picture of the modulated output of the transmitter, and hy its use the waveform errors inherent in other types of measurements are eliminated.

Two types of oseilloseope patterns may be obtained, known as the "wave envelope" and "traperoid." The former shows the shape of
 the latter in effeet plots the modulation charaeteristic (s)-2) of the modulated stage on the eathoderay tube sereen. To whtain the wave-rnvelope pattern, the owilloseope must have a horizontal swecpeireuit. The trape\%oidal pattern requires only the ascilleseope, the swepe cireait being supplied be the transmitter itsolf. Fig. 517 shows motheds of connereting the oscillosenpe to the transmitter for both types of patterns. The oseilloseope commeetions for the wave-convelope pattern, lig. Eli-A, are usually simpler than those for the trapezoidal figure. The vertical-deflection plates are coupled to the amplifier tank conil or an anterna coil by means of a pick-up enil of a fow turns connected to the oseilloserope through a twisted-pair line. The pusition of the pirk-up coil is varied until a carrior pattern, Pig. 518-13, of suitable height is obtained. The sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the sereren. It is frequently helpful in eliminating r.f. harmonics from the pattern to conneet a resonant circuit, funed to the operating frequency, betwoen the vertieal arfoction plates, using link eoupling betwen this and the tramsmitler tank eirenit.

Fig. 517 - Methods of eomereting an oscilloscope to the modulated rof amplitior for checking modnation.

With the application of voice modulation, a rapidly changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent (5 (5-2). This is illustrated hy Fig, $51 \mathrm{~s}-\mathrm{I}$), where the point X represents the sweap line (reforene line) : tone, $Y Z$ is the carrier height, and $I^{\prime}()$ is the maximum hoight of the modulated wave. If the hoight, is greater than the distance $I^{\prime}\left(Q\right.$, as ilhustrater! in $l{ }^{\prime}$, the wave is overmodulated in the upward direation. Overmondalation in the downward direction is indicated by a gap in the pattern at the referener axis, where a single bright line appears on the sereen. Gvermodulation in either direetion may take place eren when the modulation in the other difertion is less than 100 per cent. Asemming that the modulation is symmetrical, however, my modulation percentage can be mestared directly from the sereen by metsiming the maximum height with modulation athe the height of the carrier alone: valling these two heights h_{1} and $/$ erespectively, the modulation percentage is

$$
\frac{h_{1}-h_{2}}{h_{2}} \times 100
$$

Connections for the trapezoidal pattern are shown in Fig. 517-13. The vertical plates are similarly eompled to the tramsmitter tank circuit through a pirk-up loop; the tuned input circuit to the oscilloseope may also be used. The horizontal plates are coupled to the output of the modulator through a voltage divider ($\$ 2-6$). $R_{1} R_{2}$, the resistance of R_{2} being variable to promit adjustment of the andio voltage to a suitathe value to give a satisfactory horizontal swoep on the sereen. R_{2} may be a $0,25-m e g o h m$ volume control resistor. The vatue of h, will depend upon the audio output voltage of the modulator. This voltage is "qual to $\sqrt{ } /$ ' k, where l ' is the audio power sutput of the modulator and l is the modulating impodance of the modulated r.f. amplifier. In the ease of grid-bias modulation with a $1: 1$ output transformer, it will be satisfactory to assume that the are output voltage of the modulator is equal to 0.7 E for a single tube or l. $4 E$ for a push-pull stage, where E is the d.e. plate voltage on the modulator. If the transformer ratio is other than $1: 1$, the voltage so calculated should be multiplied by the actual secondary-to-primary turns ratio.

The total renistance of R_{1} and h_{2} in series should be 0.25 megohm for every 150 volts of modulator output; for example, if the modulator output voltage is 600 , the total resistance should be four (600 l 00) times $0.2 \overline{\mathrm{j}}$ megohm, or 1 megohm. Then, with 0.25 megohm at k_{2}, R_{1} should be 0.75 megohm. The blocking condenser, C, should he $0.1 \mu \mathrm{fd}$ or more, and its voltage rating should be greater than the maximum voltage in the circuit. With plate modulation, this is twice the d.e. voltage applied to the plate of the modulated amplifier.

Fis. $5 / 8$ - Wancomolon and trapmondal pathermb encombered under different conditions of menlukations.

The trapezodal patherns are shown in Pig.
 wave-envelope pattern. With no signal, only the cathoderay spot appears on the serem. When the momodutated rarrier is applied, a vertioal line appears; the lengith of the line shomid be adjusted, by me:ms of the piek-up coil eoupling, to a consenient value. Whan the carrier is modnated, the wedge-shapmad pattern appears: the hicher the mendulation pererntage, the wider and more peninted the wedge becomes. At 100 per remt momblation it just makes a paint on the axis, \mathcal{N}, at maneme and the height, P'e, at the other end is equal to twies the carrier height, K \% Owermondatation in the upward direction is indianted by increased height wer $P^{\prime}($) and in the downward direction by an extension along the axis X at the pointed end. The modulation perconare may be foumb by measuring the modnatated and ummodulated carvier haghts, in the same way ars with the wave-envelope pattern.

Nom-symmetricol wareforms-In voice waveforms the average maximum amplitude in one direction from the axis freguently is greater than in the other direction, although
the average energy on both sides is the same. For this reason the percentage of modulation in the "up" direction frequently differs from that in the "down" direction. With a given voice and microphome, this difference in modulation percentage is usually always in the same direction. Sinee owermodulation in the downward direction camses more out-of-chamel interference than overmodulation upward becallise of the steeper wavefront ($s(t-1)$, it is advisable be "phase" the modulation so that the side of the vaice waveform hatving the hagerexemrsions eanses the instantaneous carrier power to incre:se and the smaller exeursioms to callse a power decrease. This reduces the likelihered if avermendulation on the "down" peak. The direction of the latger exarsions can radily be fomad by earefal ohservation of the useillescope pattern. The phatse can be reversed by reversing the connections of one winding of :uny transformer in the speech amplifier or modulator.

Modulation momitorinu - While it is desirable to modulate as fully as possible, 100 per cent modulation should not be exceeded, par*acularly in the downward direction, because hatrmonic distortion will be introduced and the chamed width increased (\$5-2), thus causing unteressary interfereme to other stations. The weilloscope maty be used to provide : emimuons cheek on the modulation, but simpler indicators may be used for the purpose, onere calibrated. A convenient indicator, when a Clasi-13 modulation (Si-fi) is used, is the plate milliammeter in the Chass-13 stage, since plate current fluctuates with the voice intensity. I sing the asillowope, detemine the gatu-control wetting and voice intensity whirh gives 100 per cent modulation on voice peaks, and simultaneonsly ohserve the maximum Chas-is phate-milliammeter reading on the peaks. When this maximum reading is obtainod, it will suffice in regular operation to adjust, the gain so that it is mot exceeded.

A sensitive rertifier-type voltmoter (eopperoxide type also (ram be used for modulation monitoring. It should be commerted arross the output cireuit of an andio driver stage where the power level is a few watts, and similarly (alibrated against the oseilloseope to determine the reading which represents 100 per cent mominiation.
The plate milliammeter of the modulated r.f. stage maty alsio be used ats an imbirater of overmodulation. Sine the average plate current is constant ($\$ 5-3,5-4,5-5$) when the amplifier is linear, the reading will be the same with or without modulation. When the amplifer is owermodulated, especially in the downwatra dirertion, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken ats an indieation of overmodulation or nom-linearity. However, it is possible that the average plate eurrent will remain constant with considerable overmodulation
under some operating conditions, so that an indicator of this type is not wholly reliable unkes it has been checked previonsly against an oscilloscope.

Linearity - The linearity ($\$ 5-2$) of a modulated amplifier may readily be checked with the oscilloscope. The trapezoidal pattern is more easily interpreted than the wave envelope pattern, and less auxiliary equipment is required. The connections are the same as for measuring modulation percentage (Fig. 517). If the amplifier is perfectly linear, the sloping sides of the trapezoid will be perfectly straight from the point at the axis up to at least 100 per cent modulation in the upward direction. Nonlinearity will be shown by curvature of the sides. Curvature near the point, extembing the point farther along the axis than would wour with straight sides, indieates that the whtput power does not decrease rapidly enough in this region; it may also be caused by imperfect neutralization (a push-pull amplifier is reeommended because better neutralization is possible than with single-ended amplifiers) or ber.f. leakage from the exeiter through the final stage. The latter condition can be cherked by removing the plate voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remalining on thescreen (Fig. ह]s-Ti). If a smatil vertical line remains, the amplifier should be re-nout ralized: il this does not eliminate the line, it is an indication that r.f. is being picked up, from lower-power stages, either by roupling through the final tank or via the oscilloscope pick-up loop).

Inward curvature at the large end of the pattern is caused by improper operating conditions of the modulated anplifier. usually improper bias or insuflicient excitation, or both, with plate modulation. In grid-bias and

Fig. 519-Oscilloscope patterns representing proper and improper adjustments for grid-bias or cathode modulation. The pattern obtained with a corrcetly adjusted amplifier is shown at A. The other drawings indicate non-linear morlulation from typical catuses.
cathode-modulated systems, the bias, excitation and plate loading are not correctly proportioned when such curvature occurs, usually because the amplifier has been adjusted to have too-high carrier efliciency without modulation ($\$ 5-4,5-5$).

For the wave-envelope pattern, it is necessary to have a linear horizontal-sweep circuit in the oscilloscope and a source of sine-wave andio signal voltage (such as an audio oscillator or signal generator) which can be synchronized with the sweep circuit. The linearity can be jutged by comparing the wave envelope with a true sine wave. Distortion in the audio circuits will affect the paterm in this case (such distortion has no effect on the trapezoidal pattern, which shows the modulation characteristic of the r.f. amplifier alone), and it is also readily possible to misjudge the shape of the modulation envelope, so that the wave envelope is less useful than the trapezoid for checking linearity of the modulated amplifier.

Fig. 519 shows typical patterns of both types. The cause of the distortion is indicated for grid-bias and suppressor modulation. The patterms at A, although not truly linear, are representative of properly operated gricl-bias modulation systoms. Better linearity can be obtained with plate modulation of a Class-C :mphifier.

Fithly putherns - The drawings of Figs. 518 and 519 show what is normally to be experted in the way of pattern shapes when the oscilloseope is used to rheek modulations. If the actual patterns differ considerably from those shown, it is probable that the pattern is faulty rather than the transmittor. It is important that omly ref. from the modulated stage be coupled to the oscilloseope, and then only to the vertical phates. The effert of stray r.f. from other stages in the transmitter has beon mentioned in the proceding paragraph. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oseilloseope camnot be moved to a spot where the unwanted pick-up disappears, a small by-pass condenser (10 $\mu \mu \mathrm{fl}$.) : sheuld be connected across the horizontal plates as close to the cathode-ray tube as possible. An r.f. choke (2.5 mh . or smaller) may also be connerted in series with the ungrounded horizontal plate.
"Foblad" trapeasidal patterns occur when the andio sweep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stare. Such patterns are caused by a phase difference between the sweep voltage and the modulating voltage. The connections should alw:y: be as shown in Pig. 517-13.

Plar-acurron'shifı - As mentioned above, the d.e. plate current of a modulated amplifier will he the same with and without modulation solong as the amplifier operation is perfertly linear and other conditions remain unchanged. This also assumes that the modulator is work-
ing within its capabilities. Because there is usually some curvature of the modulation characteristic with grid-hias modulation there is normally a slight upward change in plate current of a stage so modulated, but this oreurs only at high modulation percentages and is barely detectable under the usual conditions of woies modulation.

Witlo plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufliciont exritation to the modulated r.f. :mplifier.
2) Insulliciont mein bias on the modnatated st:gro.
3) Wrong load resistathere for the (:lasi-($\mathrm{r} . \mathrm{f}$, amplifior.
4) Lusuffieient output caparity in the filter of the modulated-amplitier plate supply
5) Heary overloading of the (lass-(' r.f. amplifier tuthe or tubes.
Any of the following may cause an upward shift in plate equrent
6) Overmordulation (exerssive audio power, audio gain tow great).
7) luemplete neutralization of the moduLated amplifior.
8) Parasitic oscillation in the modulated amplifier.
When a eommon phate supply in used for botha(lass-l3 (or Class-, 1B) modulator and a modulated r.f. amplifier, the plate curront of the latter may "kirk" downward beatuse of poor power-supply voltage raxulation (SS-1) with the varying additional load of the modulator on the supply. 'lhe same effect may oceur with high-power transmiters ber:use of poor regulation of the a.e. supply mans, even when a separate power-supply unit is used for the Class-B modnator, Fither condition may be detected by measuring the plate voltage applied to the modulated stage: in addition, powr line regulation alsomay the detected by observing of there is any downward shift in filament or line voltater.

With grid-bias modulation, any of the following may be the caluee of a plate cument shift greater than the normal mentioned : thowe:

Downward kick: Too much r.f. exelation; insuffiriont oproating bisa; distortion in modulator or speceh amplifier: too-high resistance in bias supply: insufficient output capacity in plate-supply filter to modulated amplifier; amplifier plate direnit not loaded heavily enough; plate-circuit efficiency too high under carrier conditions.

L'pward kick: Overmodulation (exessive audio voltage) : distortion in andio system: regeneration herause of incomplete neutralization; operatine grid bias too high.

A downward kick in plate current will accompany an oscilloseope pattern like that of Fig. 519-B; the pattern with an upward kiek will look like Fig. 519-A, with the shaded
portion extending farther to the right and above the carrier, for the "wedge" pattern.

Noise and ham on carrior - These may be detected by listening to the signal on a receiver sufficiently removed from the transmitter to avoid overloading. The hum level should be low compared to the voice at 100 per cent modulation. Itum maty come either from the speech amplifier and inodulator or from the r f. section of the tramsmiter. ILum from the r.f. section can be deterted by eompletely shutting off the modulator; if hum remains when this is done. the power-supply filters for one or more of the r.f. stiges have insufficient smoothing ($\$ 8-4$). With a hum-free ratrier, hum introduced by the mondulator ran be checked by turning on the modulator but leaving the speech amplifier off: power-supply filtering is the likely soure of such hum. If carrier and modalator are both rean, comnect the spereh amplifier and observe the inerease in ham level. If the hum disappears with the gatin control at minimum, the hum is being introduced in the stage or stages preceding the gat control. The miserophone also may pick up hum, a condition which can be checked by removing the miorophone from the circuit but leaving the first speed-amplifier grid circuit otherwise unchanged. A good ground on the microphone and speech system usually is (ssential to hum-freo operation.

Hum ean be checked with the oscilloscope, where it appears as modulation on the carrier in the same way as the normal modulation, While the percentage usually is rather small, if the carrier shows modulation with no speceh iuput hum is the likely raluse. The various parts of the tramemiter mat be checked through as desuribed above.

Spurious sidebamds - A superheterodyne receiver having a erystal filter (\$7-N, 7-11) is nowded for cherling spurious sidebsunds outside the normal commanic:ation channel (\$5-2). The r.f. input to the receiver must be kept low enourh, he removing the antema or by adequate separation from the transmitter, to awod overloading and consequent spurions receiver responses ($\$ 7-8$). With the crystal filter in its sharpest position and the beat oscillator turned on, tune through the region outsite the normal chanmel limits (3 to 4 kilocycles each side of the earrier) while another person talks into the microphone. Sipurious sidebatuds will be observed as intermittent beat motes cointiding with voice peaks, or, in bad cases of distortion or overmodulation, as "clicks" or erackles well away from the carrier frequenery. Sidebands more than 4 kilocycles from the carrier should be of nombigible strength in a properly modulated "phone transmitter. The causes are overmodulation or non-linear operation (s 5-3).
R.f. in speech amplifier - A small amount of r.f. current in the speech amplifier - particularly in the first stage, which is most susceptible to such r.f. pick-up - will cause over-
loading and distortion in the low-level stages. I'requently also there is a regenerative effect which causes an audio-frequence oscillation or "howl" to be set up in the audio system. In such rases the gain rontrol amot be advanced very far before the howl builds up, even though the amplifior may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shielding of the mierophone, mierophone cord, and speerh amplifier are necessary to prevent r.f. pirk-up, and a ground conneetion separate from that to which the transmitter is comberted is advisable. ["nsymmetrical or capacity coupling to the antemna (singlewire feed, feeders tapped on final taink cireuit, etce) may be responsible in that these systems sometimes ratuse the tramsmitter chassis to take at ref. potential above ground. Inductive compling to :t two-wire tramsmission line is advisathle. This amtenmat effect ran be rherked hy disommerting the antematand dissipating the power in a dummy antemat ($\$ 4-9$), when it matally will be foumd that the r.f. fered-hatek divappears. If it doess not, the speerh amplitior and microphone shielding are at fault.

© 5-11 Frequency Modulation

Principles - In frequeney modulation the rarrier amplitude is comstant and the output frequency of the transmitter is matce to vary about the rarriow or mean frequency at a rate corresponding to the atudio frequencies of the speech currents. The extont to whish the frequency changes in one direction from the unmodulated or carrior frequeney is called the frequency deciation. It corresponds fo the change of earrier amplitude in the amplitudemodulation sustem (s.i-2). Deviation is usually expressed in lidocycles, and is equal to the difference betwern the rarrier frequency and rether the bighest or lowest frequency reached hy the rarrier in its rexursions with modulation. There is no modulation pereentage. in the wisull same: with suitable cireuit derigat the doviation may be made as large ats desired without emeomatering any effert equivalent towermondalation in the amplitudnmodulated system.

Fig. 520 - 'Trianioular pretrum showing the maise responses in at f.me receiver eompared with amplitnde nowholation. Deviation ratios of 1 and $\overline{5}$ are shown.

Deviation ratio - The ratio of the maximum frequency deviation to the audio frequeney of the modalation is called the deviation ratio. It also is called the modulation index. Lnless otherwise sperified, it is taken as the ratio of the maximum frequeney deviation to the highest audio frequeney to be tramsmited.

Admatuges of f.mi. - The chief advantage of frequency modulation over amplitude modulation is noise reduction at the reaniver. All electrical moises in the ratio spoctrum, including those originating in the receivar, ate r.f. oscillations which vary in amplitude, this, variation camsing the noise response in ampli-tude-modulation reerivers. If the receriver does wot reepond to amplitude variations but only to frequency changes, noise ean affert it only be causing a phase shift which appears as frequency modulation on the signal. The effeet of such frequeney modulation by the notise can be made small by making the frequency change (deviation) in the signal large.

A serond advantage is that the power required for modulation is ineonsequential, since there is no power variation in the modulated output of the transmitter.

Triangular spectram - The waty in which noise is reduced by a large deviation ratio is illustrated hy Fig. 520 . In this ligure the noise is assumed to be evenly distributed over the chammel usad, ath assumptom which is almost always true. It is also assumed that audio frequeneies abowe fool rever (4 kr) are not neressary to voico ennmunication, and that the audio sestem in the roceriom hats no response above this frequency. Then, if an :mplitude modulation recoivor is used and its selectivity is surh that there is no attenuation oi sideband: (\$5-2) helow 4000 eycles, the moise components of all freguencies within the channel will produce equal respomse whon they beat with a carrier enotered in the chamel. The response umber these ennditions is shown by the line DC.

In the f.m. reecerver the output :mplitude is propertional to the froquency sloviation, and noise compment: in the chammel ram be contsidered to frequence-modulate the stady carrior with : deviation proportional to the difference betwern the actual frequene of the component and the frequency of the arrier, and also to give an andio-frequency beat of the same frequeney difference. "his leads to a rising response characteristic. such as the line of', where the noise amplitude is proportional to the audio beat frequency. The average noise power output is proportional to the square root of the sum of the squares of all the amplitude values (\$2-7), so that the nose power with fiequenter modalation having a deviation ration of 1 is only one-thiral that with amplitude mondulation, or :an improvement of 4.7.j dh.

If the deviation ration is inereased t.e 5, the noise rexponse is representod by the line $O F$. Since only frequencies up to doot eveles are reproduced in the output, however, the audible
noise is confined to the triangle $O A B$. These relations hold only when the calrier is strong compared to the meise. For reception of stations with weak signal strength, the signal-t.ionoise ratio is better with a deviation ratio of 1 .

Lincurily-A transmitter in which frequency deviation is direetly proportional to the amplitude of the modulating signal is said to be linear. It is essential also that the carrier amplitude remain constant under modulation, which in turn requires that the transmitter tuned cirenits. as wedl as the antenma, have broad emough response to handle without discrimination the entire range of andio frequencies transmitted. This requirement is easily met under ordinary comditions.
sidelmuds - In frequeney modulation there is a series of sidebands on rither side of the carricr frequency for each audio-frequency component in the modulation. In addition to the usual sum and difference frequencie: ($\$ 5-2$) there are also beats at harmonice of the fumbanment modulating freguency, aven though the latter may be a pure tone. This owcurs beraluse of the necessity for maintaning the proper phase relationships between the carrier and sidebands to keep the power output constant. Hencera freguemer-modulated signal inherently occupies a wider channel than an amplitude-modulated signal. Beranse of the necessity for conserving space in the usual communication spectrom, the use of f.m. by amateurs is comfined to the wery-high fregumcies in the region abowe 28 Ml .

The number of sidebands for a single modulating frequency increases with the frequency deviation. When the deviation ratio is of the order of 5 the sidebatid beyom the maximmon frequency deviation are usually negligible, so that the channel required is approximately twice the frequency deviation.

(C 5-12 Methods of Frequency Modulation

Requirements and methods - At present there are no fixed standards of frequency deviation in amateur work. Since a deviation ratio, of 5 is considered high onough in ang case, the maximum deviation neecssary is 15 to 20 ke . for an upper audio-frequency limit of 3000 or 4000 cycles ($\$ 5-2$), or a chanmel width of 30 to 40 kc . The permissible deviation is determined by the receiver ($\$ 7-18$), since deviation beyond the limits of the receiver pass-band cause distortion. If the transmitter is designed to be linear ($\$ 5-11$) with a deviation of about 15 kc ., it can be used at a lower deviation ration simply be reducing the gain in the specech amplifier. Therehy it caln be made to conform to the requirements of the recoiver in use.
The several possible methonds of frequency modulation include mechanical modulation (for instance, varying condenser plate spacing in accordance with voice vibrations), initial phase-shift modulation which later is transformed into fregueney modulation, and direct
frequency modulation of an asillator by electronic means. The latter, in the form of the re-actance-tube morlulutor, is the simplest s.s.stem.

Fig. 521 - Rractaner mondatar circuit using a 6 L .7 tule. C - Tank capacits. (: $-3-10 \mu \mu \mathrm{ft}$. $\mathrm{C}_{2}-250 \mu \mu \mathrm{fd}$, $\mathrm{C}_{3}-8$ - ff d. plectrolstic (a.f. hy-paws) in parallel with 0.01 -ufd, paper (r.f. hy-pass).
C. 1 - $0.01 \mu \mathrm{fil}$.

1. - Werillator tank inductance. R_{1} - $50.0 \% \mathrm{M}$ ohms. K_{2}. R_{5} - 0.5 megohm, $\mathrm{K}_{3}-30,000$ ohms. $\mathrm{K}_{4}-300$ ohms.

Ther reactance modulutor - The reactance modnlator consists of a valcuum tube connected to the r.f. tank cireuit of an oscillator in such a way as to act as a variable inductance or capacity, of a value dependent upon the instantancous a.f. voltage applied to its grid. Fig. 521 is a representative circuit. The control grid eircuit of the fil, 7 tube is comnected across the small capacity, (${ }_{1}$, which is in series with the rexistor, R_{1}, acrose the oseilator tank circuit. Any type of oscillator sircuit (\$3-7) may be used. R_{1} is large compared to the reactance ($\$ 2-s$) of C_{1}, so the ef. current through $R_{1} C_{1}$ will be practically in phase (($2-7$) with the r.f. voltage appearing at the terminals of the tank circuit. Howewer, the voltage aeross C_{1} will lag the current by 96 degrees ($\$ 2-8$). The r.f. current in the phate circuit of the 6L7 will be in phatse with the grid voltage (\$3-3), and consequently is 90 degree behind the current through C_{1}, or 90 degrees behind the r.f. tank voltage, 'rhis lagging current is drawn through the owillator tank, giving the same effert as though an inductance were comnected across the tank (in an inductance the current lage the voltage by 90 degrees - $\$ 2-8$). The frequency increases in proportion to the lagging plate current of the mondabar, as determined by the af. voltage applied to the No. 3 grid of the 6L7: hene the ossillator frequency varius with the andio signal voltage.
If, on the other hath, C_{1} and R_{1} are reversed and the reatane of C_{1} is made large compared to the resistanere of R_{1} the r.f. current in the 61.7 plate circuit will lead the ascillator tank r.f. voltage, making the reactance capacitive rather than inductive.

Other circuit arrangemente to probluce the same effect may be emplosed. It is combenient to use a tube (such as the til. 7) in which the r.f. and a.f. voltages can be applied to separate control grids; however, beth woltages may be applied to the same prid provided precautions are taken to prevent r.f. from flowing in the external audio circuit, and vire versa ((2-13).
The modulated oscillator usually is operated on a relatively low frequency, so that a high
order of carrier stability can be secured. Frequency multipliers are used to raise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequency is multiplied; for instance, if the oscillator is operated on 7 Mc. and the output frequaney is to be 112 Me., an oscillator frequency deviation of 1000 rycles will be raised to 16,000 cycles at the output frequency.
besign considerations - The sensitivity of the modulator (frequency change per unit change in grid voltage) increases when (1 is made smaller, for a fixed value of R_{1}, and also increases with an income in $L^{\prime} C$ ration in the oscillator tank cirmit, Since the carrior stability of the ospillator depronds on the $I_{2}, 6$ ratio ($\$ 3-7$), it is desirable to use the highest, tank raparity which will permit the desired deviation to be secured while kecping within the limits of linear operation. When the cirenit, of l'ig. 521 is used in commertion with a $7-\mathrm{Mr}$. ascillator, a linear devistion of 20 ono ryala above and below the ararior frogucncy ratn be secured when the oseillator tank rapacity is approximately $200 \mu \mu \mathrm{fll}$. A peak a.f. input of two volts is regnired for full deviation. At 56 Mc. the maximum deviation would be 8×2000, or 16 ke .

Since a change in any of the voltages on the modulator tube will caluse a chathge in r.f. plate current, and consequently a frequency change, it is advisable to use a reablaterl phate power supply for both moblulator and osidlattor. At the low woltages wate! (250) volts), the required stabilization can be soroured by neans of gaseous regulator tubes ($\$ \mathrm{~s}-8$).

Sperch amplification - The speerh amplifier preceding the modulator follows ordinary design (\$5-9), execpt that mo power is required from it and the a.f. voltage taken by the modnlator grid usually is small - not mere than 10 or 15 volts, evern with large modnator tuber. Becanse of these modest remuiremonts, only at few speedh-amplifier stages are noeded; a twostage amplifier consisting of a pentula followed hy: a triode, both resistancerompled, will suffice for crystal mirrophonos (\bar{s})-xi.
R.f. amplifier stages - The frequeney multiplier and output stages following the modulated owillator may be designed and aljustod in accordance with ordinary principles. No special excitation requiremonts are imposed, since the amplitude of the output is constant. Enough frequency multiplication must be used to give the desired maximum deviation at the final frequency; this depends upon the maximum linear deviation avalable from the modulator-oscillator. All stages in the transmitter should be tuned to resonance, and careful neutralization ($\$+7$) of any straight anmplifier stages is neressary to prewent r.f. phase shifts which might gatuse distortion.

Cherking opreration - The two quantities to be checked in the $\mathrm{f} . \mathrm{m}$. transmitter are linearity and frequeney deviation. With a modulator
of the type shown in Fig. 521, both the r.f. and a.f. voltages are small enough to make the operation Class A (§3-4), so that the plate current of the modulatur is constant so long as opration is over the linear portions of the No. 1 and No. 3 grid characteristies. Ifence, non-linearity will be indieated by a change in plate current as the aff molulating voltage is increased. The distortion will be within acceptable limits, with the tube and constants given in Fig. i21, when the plate current does not change more than \bar{b} per cont with signal.

Nom-linearity is acompanied by a shift in the carrier frequeney, so it also am be checked by moans of a selertive recoiver such as one with a crystal filter ($\$ 7-11$). A tone muree is comsenient for the to-t. Set the receiver for high selectivity, switreh on the beat oweillator, and tune th the oweilator carrior fredurney. (T'he check dues nut wed to be mate at the output frequency and the oscillator fremueney usually is more ronsendent. sine it will fall Within the tuning range of at communiations reroivar.) Incrasco the modulating signal until a definite shift in corrier frequenty is wheerved; this indicates the point at which nom-linearity starts. The modulating signal should bo kept below the level at which carrice shift is observed, for minimum distortion.

A selective receiver also can be used to check frequoney deviation, again at the wseillator frequence. A source of tone ol known frequency is required, proferably a contimumsly variable calibrated ambion ospillator or signal generator. Tone in the carrior as described aboure, using the beat oserilator and high selectivity, and adjust the mobhlating signal to the maximum lovel at which linear operation is serured. Starting with the lowest frequency available, sowly raise the tone fremuency while listoming closely to the carrier beat note. As the tone freduency is raised the beat mote first will derrease in intensity, then disappear entirely at a dofinite frequency, and finally rome back and increase in intensity as the thene frequency is raised still more. The frequenere at which the beat note disappears, multipliod be 2.4 , is the froqueney deviation at that lovel of modulating signal; for example, if the beat, note disappears with an sol-eryeld tome the deviation is $2.4 X$ Solo, or 1920 eveles. The devistion at the output irequency is the oscillator deviation multiplied by the anmber of times the frequency is multiplied; in this example, if the oscillator is on $\overline{\mathrm{F}}$ Mc. and the output on iti Mc., the final deviation is 1920×8, or 15.36 ke.

The output of the transmitter can be cherked for amplitule modulation by observing the anteman curront. It should not change from the ummolulated carrier value when the transmitter is modulated. Where there is no antenna anmeter in the transmitter, a flashlight lamp and loop cin be compled to the final tank coil to serve as a current indicator. If the earrier amplitude is constant, the lamp brilliance will not rhange with modulation.

Chapter Six

Keying

1 6-1 Keying Principles and Characteristics

Requiremonts - The keving of a transmitter can be considered satisfactory if the method employed redues the power output to zer" when the key is open, or "up," and permits full power ta reach the antemma when the key is elosed, or "down." Fiarthemore, the keying system should acomplish this without producing keying transients or "dieks," which cause interference with other amateur stations and with lowat broadeast reception, and the keying process should not affert the frequeney of the emitted wave.

Bach-acace - lown wirious canses, some energy maty get throum to the antemat during keying spares. The rffee then is as though the dots and dashes were only louder portions of a continuobs carrire: itu some rases, in fart, the buth-uare, or signal luard during the keying spaces, maty seem to be almost as loud as the keyed signal. I noder these conditions the keying is ham to reat. A pronounced bachwave offen results when the amplifier stage freding the antenna is keyod: it may he present benausi of incomplete neutralization ($\$ 1-7$) of the final stage, allowing some energy to get to the antemas throngh the grid-phate capacity of the tube, or heratuse of masnetir coupling between anterna compling coils and one of the low-power stages.

A batek-wate also may beradiated id the kering sintem does not redure the input th the heyed stage tor zeroduring kestug spares. 'This trouble will not oreur in keying systems whiels rut off the pate voltage whon the key is open, but may be present in grid-blocking systems ($\$ 6-3$) if the blowhing woltage is not grwat enough and in power-supply primary keying systems ($8(6-3$) if only the fimal-stage powersupply primary is hered.

Keving waceform and sidobands-A keyed \because.w. signal can be considered equivalont to a montulated sigmal iss-1), except that, in-

(B)

Figg. 6 I I - Exatrmes of possille heving waveshaters A, rectangular chararters; B, sine-wave characters.
stead of being modulated by simusodal waves and their hamonics, it is modulated by a rectangular wave, as in l'ig. biol-A. If it were modulated hy a simusoidal wrate of single frequenery, as in lige. 601-3, the only sidebands would be those cequal to the carrier frequeney plus and mimus the modulation frequency (§ 5-2). A keving sped of 50 words per minute, sending simusoidal dots, would give sidebands only 20 coren either side of the carrier. However, When harmonics are present in the modulation the sidebands will extend out on both sides of the signal as far as the frequency of the highest harmonic. The reatangular wave form cont tains an infinite numbre of harmonirs of the kering frequency, so a carrier modulated by truly rectangular dots womld have sidebands eavering the antire seefrum. Aetually, the high-ovder hamonies am eliminated because of the solectivity of the tuned circuit: (§ 2-10) in the transuitter, but there still is enough energy in the lower hamonies to extend the sidebands considerably. Considered from another viewpoint, whenewr a pulse of curment hats a steep front (or batk) high frequencies are certain to be present. If the pulse can be slowed down, or cansed to lag, through a suitable filter cirmit, the highest-order harmonies are filtered out.

Kiry rlichis - beraluse the high-order harmonites exist only during the briof intersal When the keving rhatater is stated or ended (when the amplitude of the keyme wave is hailding up) ordying down, the ir effertsoutside the normal commanacation chammel are observed as mulses of very short duration. These pulses ate callod key clichs.

Tests have shown that practically all operators prefer to roper a signal which is "sulid" on the "matre" end of each dot or dash; i,e., whe that does not build up too slowly but gust slowly ehough to hase a slight relirk when the key is closed. The same tosts indicate that the most pleasing and least diffieult signal to eopy, particularly at high speeds, is ohe that has is fairly soft "break" characteristic: i.e., one that has practically no rliek as the key is opered. A signal with heary clicks on both make and break is difficult to copy at high -peds (and also catuse considerable interference), but if it is too "soft" the dots and dashes will tend to run together. It is relatively simple to adiust the keying of a tramsmitter so that for all nommal hand speeds (15 to 10 w.p.m.) the readability will be satisfactory while the keving still will not cause interference to rewertion of other signals near the frequeney of the trimsmitter.

Break-in koving - In code transmission, there arr definite intervals, between dots and dashes and between words, when no power is being radiated by the tramsmitter. It is possible, therefore, to allow the receiver to operate continuously and thas be capable of receiving ineoming signals during the keying intervals.

Fig. (102 A. Nowws plate hevine: B , surem yrid hersing. Wereillatur circuits are shown in looth cases, but the samb kroint mertands can be urod wilh amplifier circuils.

This pratioe facilitates commoniation, becanse the rewoiving operator atin signal the transmitting operator, hy holding down the key of his tramsmitter, whenever he has fated to copy part, of the messatre, allut thas uhtain a repetition of the part that is missing withont wationg until the cond of the message. 'lhis is called break-in operation.

Frequency stability - Keying should have mo effert upon the whtput irequency of a properly designed and adjusted transmitter. However, in many instances keving will catuse a "chirp," or simall frequency (hathge, at the instant of closing or opening the key, which makes the signal dillicult to read. Multistage tramsmitters keyed in a stage subsequent to the oseillator usially are free from this eondition, untess the keving ratuses lino-voltare changes which in turn affere the frequence of the owillator. When the asillator is keyad for break-in operation, sercial care must be taken to insure that the signal does not have keving chirps.

Selpcting the stase to key - it is advamtageous from an operating standpuint to design the c.w. transmitter for beak-in operation. In urdiatary rases this dietates that the oseillater be keved, since a rontinuously rumning oseillator will ereate interference in the receiver and thus prevent break-in pperation on or near the tramsmittor fredueney. On the other hand, it is casier to avoid a chirpy signal by keving a buffer or amplifier stage. In either ease, the tubes following the keyed stage must be provided with sulficient fixed bias to limit the plater currents to safe values when the key is up and the tubes are not being excited (\$ S-9). Complete ent-off reduces the possibility of a back-wave if astage other than the weillator is keved, hut the keying waveform is not as well preserved and some clicks can be introduced even though the keyed stage itself produces
no elicks. It in a good general rule to bias the tubes su) that they draw a key-up plate eurrent equal to about 5 per cent of the normal keydown value.

Keved power - The power broken by the key is an important consideration, both from the standpoint of safety for the oporator and that of areing at the key contants. Keying the owillator or a low-power stage is favirable in both resperts. The use of a keying relay is highly recommented when a high-power eircuit is seyed.

(4. 6-2 Keying Circuits

Plate-circuit heving - Any stage of the transmitter can be keyed by opening and closing the phato power cirenit. Two methods are shown in Fig. 602. In A the key is in series with the negative lead from the phate power supply to the kerod stage. It eould also be placed in the positive lead, although this is to be avoded whenever possible beratuse the key is neressarily at the phate voltage above ground, and there is danger of shock unless a keving relay is usod.

Fig. 602-13 shows the key in the sereensupply lead of an electron-compled resillator. This con be considered to be a variation of pate kering.

Both theplate atolsermen-gridkeying cirenits, A and liof ligg. (i02, respond well to the use of key-flek filters, and are partioularly suitable for use with crystal and salferontralled oseillators which are oprorated at low phate voltage and prower input.
Pouer-supply heving - A variation of plate kering, in whirh the keving is introdured in the power-supplysystemitsinf, rather tham in

 are usad in A. Transfarmir T is a small multiple -seromdars unit of the ty used in rereiver power supplis, and is used in conjunction with lhe full-wave rewtifier tube to develop hias wollale for the wrids of the highvoltage rectilicers. K_{1} limits the !aad on the has smply when the heving relay is eloseds: 50 , wom ohnes is a suitathe value. Ci may he 0.1μ fid. or larger. L and (C emstitute the smoothing filter for the high-voltare supply in both circuits. IS shows direct keying of the transformer primary.
the connections between the power supply and transmitter, is illustrated by the diagrams in Fig. 603.

Fig. 603-A shows the use of grid-controlled rectifier tubes ($\$ 3-i$) in the power supply. Keying is aceomplished by applying suitable bias to the grids to cut off plate current flow when the key is open, and by removing the hias when the key is closed. Sinere in practioe this circuit is used only with high-powered highvoltage supplirs, a well-insulated keying relay is a neressity.

Dirent keving of the primary of the plate power transformer for the keved stauge or stages is shown in Irig. 603-13. This and the method at A inherently have a kering lag berause of the time constant (\$2-6) of the smonthing filter. lf enough filter is provided to reduce ripple to a low percentage ($\$ 8-1$) the lag ($\$(6-1)$ is too great to permit crisp keying at speeds above about 25 words per minute, although this type of keying is very offertive in eliminating key rlicks. A single-sedtion plate-supply filter ($\$ \mathrm{~S}-6$) is about the most elaborate type that can be usod if a reasomably good keving eharacteristir is to he athieved.

Fïs. 60.1 - Blocked-wrid hesing. R_{1}, the current-limiting resistor, shombld have a value of ahout 50.000 ohms. C_{1} may have a capacity of 0.1 to 1μ fil. depending upon the keving charactaristic desirect. Re alow depends on the performane eharateristio desired, values lwang of the order of 5000 to 10,000 whms in most cances.

Blocked-grid keying - Koving may be accomplished by applying sufficiont negative bias voltage to a control or supperesore grial to cut off plate current flow when the ker is open, and by removing this blocking bias when the key is closed. The blocking bias voltage must be sufficient to overeome the r.f. grid voltage, in the case whrere the bias is applied to the control grid, and henee must be considerably higher than thr nominal cut-off value for the tube at the oprating d.c. plate voltage. The fundamental circuits are shown in Fig. 60. 4.

In both circuits the key is connected in series with a resistor. h_{1}. which limits the current drain on the blocking-hins source when the key is elosed. $R_{2} C_{1}^{\prime}$ is a resistanme-capacity filter (§2-11) for controlling the lay on make and break of the key circuit. The lag inereases as the time constant ($\$ 2-6$) of this circuit is made larger. Since grid current flows through R_{2} when the key is closed in Fig. 604-A, additional
operating bias is developed, hence somewhat less hias is needed from the regular bias supply. The operating and blocking biases can be obtained from the same supply, if desired, by

fig. 605-Center-tap and callonde keving, The conden-
 critical, values af 0.001 to $0.01 \mu \mathrm{fl}$. ordinarily being used.
utilizing suitable taps on a voltage divider ($\$$ S-10). For circuits in which no fixed bias is uned h_{2} can be the regular grid leak (\$ 3-ti) for the stage.

With blowked-grid keying a rolatively small direct current is broken as compared to other systems. Thus any sparking at the key is reduced. The keving eharateristic (lag) readily can be controlled by a suitable ehoice of values for C_{1} and R_{2}.

Cathode keving - Opening the d.e. cireuits of both plate and grid simultaneously is called crothone leging. It is usually called conter-tap keying with a directly beated filament-type fube, since in this cane the key is placed in the filament-tramsformer center-tap lead. Typical circuits for this type of keying are shown in F゙ig. 605.

Catheode keving results in less sparking at the key eontacts, for the same plate power, as compared with kieving in the pate-supply lead. When used with in wsillator it does not respond as readily to key-rlick filtering (8 6-3) as does plate keying, but there is little differance in this rempect betwern the two systems when an amplifier is keyed.

(1) 6-3 Key-Click Reduction

R.f. fillers - A suark at the key contacts, even though minute, will cause a damped ascillation to be set up in the keying eireuit which may modulate the transmiter output or may simply be radiated by the wiring in the keving circuit. Interfereme from the latter source is usually confined to the immediate vieinity of the transmiterer, and is similar in nature and effocts to the eliek which is frequently heard in a recoiver when an electric light is turned on or off. It can be minimized by isolating the key from the wiring by means of a low-pass filter ($\$-11$), whirh usually eomsists of an r.f. choke in each key lead, placed as elose as possible to the key, and by-passed on the key-ing-line side by a condenser, as shown in Fig. 606. Suitable values must be determined by experiment. Choke values may range from 2.5 to 80 millihenrys, and condenser capacities from 0.001 to $0.1 \mu \mathrm{fl}$.

This type of r.f. filter is required in nearly every keying installation, in addition to the
lag circuits which are discussed in the next paragraph.

Lag circuils - A filter used to give a desired shape to the keying charater, to eliminate unnecessary sidebands and ronsequent interference, is called alog cirmit. In one form, suitable for the eireuits of figes. 602 and 605, it consists of a condenser across the key terminals and an inductanee in series with one of the leads. 'Ithis is shown in Fig, 607. The optimam values of eapacity and inductanco must be found by expromont, but are not esperially eritieal. If a high-voltage low-ciment cirenit is being keyod a small condenser and large induetance will be neressary, while if a lowvoltage higheourrent eireuit is keyod the capacity required will be high and the induetance

Fige, wori- R.f. filtor used for diminating the efferts of sparking at key conlants. Suitable valurs for best result $=$ with indivilual tramsmitter- mast lor determintad
 rande from es. 5 to 80 millihomies and for © © from 0.1 ol to 0.1 plil.
small. For example, a 300 -volt ti-mat cireuit will require about 30 honres and 0.0.s μ fil., while a 300 -volt 50 -ma. rireuit mods ewout 1 henry and $0.5 \mu \mathrm{fl}$. For any wiven circuit and fixed values of curreot and voltage. increasing the inductance will reduce the elieks on "make" and inereasing the capacity will redure the clicks on "break."

Blocked-grid keving is adjusted by changing the values of resistors and mondensers in the eireuit. In lig. $60 \cdot 4$, the rlick on "make" is reducal by incrasing the rapacity of (is and the click on break is reduced by inerasing ' 1 and/or R_{2}. The values required for individual installations will vary with the amount of blocking voltage and the grid rurrent. The constants given in lig. 60f will serve as a first approximation.

Tube keving - A tube kerer is a eonvenient adjumet to the tramsmitter, becamse it allows the keving charaeteristic to be adjusted easily without urcossitating condomser and inductance values which may not be readily avalable. It uses the plate resistance of a tube (or tubes in parallel) to replace the kere in a plate or cathorle cireuit, the kever tube (or tubes) being keyod by the blocked-griel method ($\$ 6-2$). A trpical cireuit is shown in Fig. 608. Type 45 tubes are suitable because of their low plate resistance and eonsequent small voltage drop betwern plate and cathode. When a tube kever is used to replace the key in a plate or cathode circuit, the power output of the stage will be somewhat rechuced because of the voltage drop across the kever tube, but this can be compensated for by a slight increase in the supply voltage. The use of a tube keyer makes the key itself entirely safe to handle, since the high resistance in scries with the key and blocking voltage prevents possible danger of shock through contact with highvoltage circuits.

C. 6-4 Checking Transmitter Keying

Clichs - Transmitter keying can be checked by listening to the signal on a superheterodyne reroiver. 'The antenna shoukd be diseonneeted, so that the reeojver doess not overload, and, if neeressary, the r.f. gain may he reduced as well. Listeming with the heat oseillator and a.v.e. off, the keying should be aljusted so that a slight eliek is heard as the key is closed but pratically none an be heard when the key is released. When the kering constants have beren adjusted to meet this condition, the clicks will be about optimam for all normal amatebur work. If the elieks are too pronouneed, they will cause interferenee with other amateur framomissions, and possibly to nearby hroudeast reeotvers.

Chirps - lieving chims (instability) may be checked by tuning in the signal or one of its harmonics on the highest frequeney range of the reediver and listening with the b.for. on and the a.v.e. off. The gain should be suffi(ient to qive moderate signal strongth, but it should be low roough to predude the possibility of overlowling. Adjust the tuning to give a low-frequenes beat mote and key the transmittar. day chip intromered by the keving adjustment will be readily apparent. listeniag to : hatmomic will magnify the effoet of :my instability by the areder of the havmonic: amd thas make in more peremptible.

Oscillator leving-The kesping of an amplifier is ralatively stratightorwatal and rembires no sperial treatiment, but a few additional pre-

Figh. 607 - Tag rirruit used for shapiny the kevin! ehararter to eliminate ummecessary sidehands. Actual values for ans given eirenit must le dertermined hy everiment, and mas rante from its :30 herories for I, and from 0.0 .5 io 0.5μ fol. for C, depending on the keyed current.
(antions will be formed neressary with oweillator keroing. Auy owallather, eithor self-excited or erestal, will key well if it will owillate at low wate voltakes (of the onder of one or two volts) and if its chature in fresuency with plate-voltare change is megligible. A crystal osidator will oseillate at low phate voltages if a regenerative type of rirenit surh as the llyitot or gridplate (8 4-5) is med and if an r.f. cloke is connected in series with the grid leak, to redue lowding on the crystal. Crustal oscillators of this trepe generally are free from chilp unless there is a relatively large air-gap between the erystal and top plate of the ervital holder, as is the case with a variable-freguency erystal set at the high-frequeney end of its range.

Self-controlled oseillators can be made to meet the same requirements by using a high C'/L ratio in the tank circuit, low plate and sereen currents, and judicious feed-back adjustment (§3-7). A self-controlled oscillator intended to be keyed should be dewigned for good keying rather than maxinam output.

Stages following keving - When a keying

 filter is being adjusted, the stages following the keved tube should be made inoperative by renoving the plate voltage. 'This facilitates monitoring the keying without the introluction of additional cffects. The following stages should then be added. mie at a time, chereking the keving after cach aldition. . In increase in click intensity (for the same carrier st rength) indieates that the elieks are being added in the stages following the one hwing hersed. The fixed bias on surla stages should be sufficient to reduce the odling plate current (no (excitation) (1) a low value, but not to wero, Under these comditions. any instathility or tendeney toward parasitic oseillations, either of whelh can adversely affect the keving characteristic, usinally will evidence itsidf.Monitoring of keving - Most operators find at keying momitur helpful in developing and mantaning a groxd "fint." esperialle if a "bug" or semi-iutomatic key is used. While several types have heen devised, the must popular consists of an andion oscillator the output of which is compled to the reveriver lomed speaker or headiphomes, and which is keyed simultancously with the trammitar. Fige G 09 shows the circuit diagram of a simple kevime monitore uscillator. The phate voltage, as well as the heater woltage, is suppliod hey a $\begin{aligned} & \text { di.3-volt }\end{aligned}$ filament transformer. Gne section of the 6F8G dual trimede is used as the rectifier tor sup) ply d.e. for the phate of the serond sertion, which is used as the oseillatom. A whange in the vatue of R_{1} will alter the out put tome. Tha output terminal labeled find should be emone eded directly to the receiver chassis, while P_{1} should be conmested to the "hut" side of the headphomes. Shanting of the phones be the arimlator may canse some lose of wohme on received signals, unlese the conpling capareity, C^{\prime}. is made sufliciently small. Jowner, the capac-

Fig. 008 - V'anmatule herer rimuit. 'The valtage

 is 100 milliamperes. Wore thle can be comered in par allel to reduee the drep, Surne-ted valuas are as follow:-
$\mathrm{C}_{1}-2-\mu \mathrm{fd}$. find wolt paper
$\mathrm{C}_{2}-0.00 \mathrm{~B}-\mu \mathrm{fil}$. mical.
$\mathrm{C}_{3}-0.0015-\mu \mathrm{fl}$. mica.
$\mathrm{R}_{1}-0.25$ mer wolm. 2 watt.
R_{2} - 50,000 olms. 10 watt.
$\mathrm{R}_{3}, \mathrm{R}_{4}-5$ mergohme. $1 / 2$ watt.
$\mathbf{R}_{5}-0.5$ megohm. te wat1.

\mathbf{T}_{1} - Power trans former, 325 whls cael side of centertap, with $\overline{5}$ - oht and 2.5 wolt filament windin!s.
A wider range of hay alju-tment rath be obtained hy using additional resistors and combleners. Singerstad values of rapacity, in addition to (8 and (i3s ane 0.010$)$ and $0.002 \mu \mathrm{fd}$. Resistors in addition to H_{2} cinht lie 2.2 .3 and 5 megolms. More switeh pwitions will be refuired.

Fits fag - Circnit diapram of a keying monitor of the

(:2 - 2.51)- $\mu \mu$ (1d. mica
C
$1_{1}-0.15$ meqolm, $\frac{1}{2}$ watt.
liz- Iiprosimately 0.1 megohm, I watt (are text).
'II - 6.3-solt 1-ampere filament transformer.
${ }^{\prime}{ }_{2}$ - Small andio tram-former, interstage type.
ity shomald be made large enough to provide grool tramsfer of the oscillator signal.
If the tramsuitter omeillator is keyed for break-in, the keying terminals of the secillator mas be comacted in parallel with those of the transmitter. With cathode keying, terminals 1 and 2 will be eromeeted across the key, with terminal 2 gring to the ground side of the key. With blocked-grid keying, terminals 2 and 3 ga to the key and a resistance of 0.1 megohm ar wis inserted in series with terminal 3.

Silectronir kevs - Several electronic circuits have heen devised for problucing antomatic dot-and dathes. A tryicall example is shown in Fig. 6ito. The values provide for a maximum spoed of $60 \mathrm{w} . \mathrm{p} . \mathrm{m}$. with a : 300 -volt supply. R_{1} and h_{2} should be of the sime type and ganged to form the speed eontrol. Tor aljust for proper aperation. gromed the right cathode and adjust $h_{\text {; }}$ until the left plate current is zero. Do the satme thing with the sectims reversed, biasing the right section to cut-off temporarily. Adjust R_{5} until the plate voltages are equal. Return the circuit to normal and rherk the average mate voltages with the key on the "dlot" side. If they are mergal, atjust a fixed resistor connerted in series with R_{1} or R_{2} until they are egnal. On dashes, the plate voltage of the right section should drop one-third and that of the left section shomld inerease by one-third. Adjust the sige of C_{3} until this condition is met. (Seo (dst for Mareh, 19.4.)

Fitu, oll - A multisibrator-type dectronic hey.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.005-\mu \mathrm{ff}$. mica.
C3-0.01- μ fil. 400 wolt paper.
C. $-0.111-\mu$ fil., all prosimately:
$\mathrm{R}_{1}, \quad \mathrm{R}_{2}$ - 2-m"世ohm varialle (o.t(x)
R_{3}, R_{4} - 50 , ONK ohms, 1.2 watt.
\mathbf{R}_{5} - 3000 olmis (or resistaner eymal tor rasi=tance of Ry).
$\mathrm{R}_{0}-0.25 \mathrm{megoh}$, $\frac{1}{2}$ watt.
$\mathrm{R}_{7}-75,0100$ ohms, $1 / 2$ watt.
ky-Sensilive relay (bly)

Receiver Principles and Design

(1) 7-1 Elements of Receiving Systems

Basic requiremorus - The purpose of a radio recoiving systom is to ahstract energy from passing radio waves and convert it into a form which conveys the intelligene eontained in the transmitted signal. The reerived also must be able to selort a desired signal and eliminate those mot wanted. The fundamontal processes involved are thuse of amplifiration and detection.

Detection - The high frequencies used for radio signaling are well beyond the atoliofrequency range (s 2-7), and therefore cannot be used to actuate a lomberaker directly. Neither can they be used to operato other devices, such as relays, by means of which a messatge might be transmitted. The process of converting a modulated radio-frequency wave to a usable low frequency, called deterfion or demodulation, is essentially that of rectification (§3-1). The modulated carrier (s.5-1) is thereby converted to a unidirectional comrent, the amplitude of which will vary at the same rate as the modulation. These low-frefuenery variat tions are readily amplified, and ran be applied to the headphones, loudspeaker or other form of electromerhanical deviee.

Coole sigmals - The dots and dashes of come (c.w.) transmissions are rectified as despribed, but in themselves ean produce no :adihle tone in the headphones or loudspaker beramse thes are of constant amplitude. Fior aural reception it is necessary to introduce a seeond radio frequency, differing from the signal frequency by a suitable audio frequency, into the detector cireuit to produce an andible beat (\$2-13). The frequency difference, and hence the beat note, is gonerally of the order of 500 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second radio frequeney is a separate oscillator, the system is known as hetrodybe reception; if the detector itself is made to oseillate aud produce the second frequency, it is known as an autodyne detector.

Amplification - To build up weak signals to usable output leval, modern rercivers employ considerable amplification - often of the order of hundreds of thousands of times. Amplifiers are used at the frequeney of the incoming signal (r f. amplificrs), after detection (r.f. amplifiers), and, in superheterodyne receivers, at one or more intermediate radio frequencies (i.f. amplifiers). R.f. and i.f. amplifirs practically always employ tuned circuits.

Typers of receicers - Receivers may vary in eomplexity from a simple deteretor with no amplifieation ta multi-tuhe arrangements having amplification at sevoral differment radio frequencios as woll as at andin frequeney, A regonerative detector ($\$ 7-4$) with or without audio-frequency amplification (s 7 -io) is known as a regencrution reccior; if the detector is prereded by who or more tamed r.f. amplifier stages (\$7-6). the eombination is known as a l.r.f. (tuned ration frequency) recciper. 'The superhetrodyur recoive (\$7-S) employs r.f. :mplifiration at a fixed intermediate fremuency as well as at the frequency of the signal itsolf, the latter being converted by the heterodyne promes to the intermediate fredueney.

At very-high frequencios the superregenerative detcetor (s $7-1$), usually with atudio amplifiration, is used in the superregenerative receiver or superregruerator, providing large amplification of wak sigmals with simple rircuit arrangements.

[7-2 Receiver Characteristics

smontirit. - sensitivity is dofinod as the strengtlt of the signal (usibally expresserd in microvolts) which must be applied to the input terminals of the rereiver to produce a specified aldio-fropuency power output at the loudsueaker or headplonies (\$7-5). It is a measure of the amplification or gatin of the receiver.

Fig. 701 - Schectivity curve of a modern superhetcrodyne rereiver. lielative response is ploted against deviations above and below the resmance frecureney. 'The scale at the left is in terms of voltage ratios; the corresponding decibel steps are shown at the right.

Receiver Principles and Design

Signal-to-noise ratio-Every receiver generates some noise of a hiss-like character, and signals weaker than the noise camot be separated from it no mattor how much amplification is used. This relation between moise and a weak signal is expressed by the term signal-tonoise ratio. It can be defined in various ways, one simple way being to give it as the ratio of signal power output to moise wutput from the receiver at a suceified value of modulated carrier voltage applied to the input terminals.

The liss-like moise mentioned above is inherent in the cirenits and tubes of the reabiore and its amplitude depends upon the selardivity of the receiver. Whe greater the selectivity the smatler the moise, wther thing being egual ($87-6$). In addition to inherent receiver noise, atmospheric clectricity (natural "statie") and electriad devires in the virinity of the rereiver also ealnse mone which aldversely affects the signal-to-moise ratio.

Solecticity - selectivity is the ability of a recoiver to diseriminate agamst signals of frequencies differing from that of the desimed signal. The ower-all seleetivity will depend upon the selectivity of the individual fancel eirenits and the number of sueh cireuits.
 ically by drawing a courve which gives tole ration of sigmal strengeth requited at vamous freguencies off resonance to the signal strengeth at resonamoe, fogiveromstaht ontpot. A resmberbe curne oil this type taken on atypical eom-munications-tye superheterontyerereiver) is shown in lig. Fol. 'The bam-willh is the width of the resonance enmo (in eycles or kiluercles) of a receiver at a specified ratio; in Jig. 701. the band-widths are indiated for ratios of response of 2 and 10 ("2 times damin" and "10 times (lown").

Solertivity for sirnals withan a few kilorevers of the desired-signal freguener is called aljo-cont-chantol solectivits, to distinguish it from the diseriminatim ageinst sighals comsiderably remowed from the desired freguency
stability - The stability ol a recoiber is its ability for five constant ontput, wer a periond of time, from a signal af eomstant stronget h_{1} and frequency. Primatily, it means the ability to stay tumed to a kivell sithal. Howerer, a recoiver which at some seftings of its controls has a temdeney to brak into ascillation, or "howl," alsw is satial tol he unstable.

The stability of a reativer is afferted prinripally bex temperature variations, supply-valtage changes, and comstmetional features of a merhanical nature

Fidelity - Pidelitey is the relative ability of the reeciver to reproduce in its outpat the modalation (kevinis, phone. ste.) carried hy the ineomine signal. Por exact repoduction the bamd-width mast be great emongh to atocommodate the highest modulation frequenery transmitted. and the relative amplitudes of the various frequency components within the band must not be ehanged in the output.

(A)
(C)

Fis, 702 - Simplilued and printioal dionde detector cirrails. A, the elementary half-wave diode delertor;
 conpling: (:, full-wave dierle deteotor, with outpot com-
 Fredurney: Ispinal values for dis and h_{1} in Λ and 13 are

 ohms. Cit is $0.1 \mu \mathrm{ff}$. and R_{3} may be 0.5 to 1 meqohm.

C 7-3 Detectors

Charactoristirs - The important charactoristics of a detertor are its sensitivity, fidelity or lincarity, resistance or impedance, and sig-nal-hamdling capability.
betector sensitivity is the ratio of audiofrequence output t.e radio-frequency input. limatrily is a measure of the ability of the detector to reproduce, : st an andio frequency, the exatet form of the modulation on the incominges signal. The resistane or imperdure of the detertor is important in rirenit design, sime a relatively low resistaner means that paner is ennsumed in the detector. The signathombling complibity me:ans the ability of the detertor to ateropt signals of as speeitied amplitude withont overloading.

Diode delectors - The simplest aleteetar is the diode reectilier. ('ireuits for both hatf-wave atud full-wave (s s-is) diodes are given in Fig. 70: The simplified half-wave eircuit at $703-$ - 1 indudes the ref. tumed eirenit, I_{2} ' $_{1}$. a coupling coni, L_{1}, from which the r.f. chergy is fed to Lar 1 . and the diode. D. with its load resistance, K_{1}, and hy-pasis eondenser, ('s. The flow of rectified r.f. eurrent through h_{1} couses a d.e. sultage to develop ateres its terminals, and this voltage varios with the modulation on the signal. The - amd + sirns show the potarity of the voltage. 'The variation in amplitude of the rif. signal with modulation ratues comersomoling vatations in the value of the el.e. voltage across R_{1}. The laad resistor, R_{1}, usually

Fig. :03- Diagrams showing the detection masens.
has a rather high rablue of resistanee, su that a fairly large voltare will develop from a smatl rectified-eurrent flow.

The progress of the signal through the detector or reetifier is shown in Vige 703 . A typirad modulated signal ats it exists in the funed rircuit is shown at 1 . When appliod to the rectilier tube. current fows iromplate tarathode only during the pate of the r.t. erele when the plate is positive with respert to the cathode, so that the output of the rectifier comsists of half-cycles of r.f. still modulated an in the original signal. These current "pukse" flow in the load eircuit eomprined of h_{1} amit C_{2}. the resistane of h_{1} and the eapatity of (ta being wo proportioned that C_{2} charges tor the perak value of the rectilied voltage on each pulse and retains cowngh charge betwern pulses so that the voltage acrosis l_{1} is smoothed out, as shown in C. C_{2} thas acts an filtor for the ramerfor quency eomponent of the output of the reectifier, leaving a d.e. component which varibs in the same way as the modulation on the oriminal signal. When this varying der. voltare is applied to a following amplifier through a eonpling condenser (6 i in loig. 7n2-13), wily the nariations in woltage are thansfered, su that the final output sigual is ace.. as shown in D).

In the cirenit at $70 \geq-13, R_{1}$ and (2a havern divided for the purpose of providing a anore reffertive tilter for r.f. It is important to prevent the appearance of any ref. voltage in the output of the detertor, hecallse it may cane wembating of a succealing amplifier tube. The andiofrequency variations can be transformed to another rirenit thromer a compling combenam,
 usually is a "potentiometer" (ss-10) so that the volume can be adjusted to a desired level.

The full-wave diode rircuit at $70-\mathrm{C}$ differs in operationfrom the half-wave cirmatonly in that both halves of ther.f. cyele areatilized. The fullwave circuit has the arlvantage that very litile r.f. voltage appoars across the load resistor, R_{1}.
beranse the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f.

The reactance of C_{2} must be small compared to the resistance of $h_{1}^{h_{1}}$ at the radio frequency being rectilied, but at andio frequencies must be relatively large compared to $R_{1}(\stackrel{2}{2}-x, 2-13)$. This condition is satisfied by the valnes shown. If the espacity of (2) is tom lare response at the higher audio frequencies will be lowred.

Compared with other deteetors, the sensitivity of the dionde is low: Since the diode consumes power, the Q of the tuned cireuit is reduced, hringines about a reduction in seleertivity (amat the sirmal-handing capability is high.

Girid-leah delectors - The grid-leak defertor is a combination diode rectifier and athlio-frequency amplitior. In the rirenit of Fig. \quad OO- 1 , the grid corresponds to the diode phate and the reatifying action is exatotly the sume as just desoribed. 'The d.e. voltage from rectified-aurent flow through the grid leak, h_{1}, biases the grid ongatively with respere tor cathode, alml the andio-frefueney variations in voltage arross h_{1} are amplified through the tuhn just as in a normal af. amplifier. In the plate rircuit, R_{2} is the plate load resistance

 tode. I tetrode may be wand in the cirenit of 13 by
 compling mat fur sulatituted for re-i-hance compline in A, or a hidi-inductance ehohe maty melare the plate resistor in 13. $L_{1} \mathrm{Ci}_{1}$ is a rimpit thmed to the simal fre-

 as Ahows. 'Ithe ciperation with either connection will be the sambe. Sepresentative values for compundits are: Compoment

Cirrmis 1
Cirmitls
(

C.		101) (1) $2.90 \mu \mu \mathrm{ft}$.
C3		25.10 to $500 \mu \mu \mathrm{fol}$.
C.4	$0.1 \mu \mathrm{fl}$.	$0.1 \mu \mathrm{fsl}$.
C		0.f $\mu \mathrm{fl}$. or larser.
R!	1 10, 2 murphims.	
11:	50.000 ،.ыия	100.00\% to 250.000 ohme
13:3		50, 61606 uhtos.
11_{4}		20.000 ohatas.
'T'	Ablin tranmormer	

The plate voltage in 1 should be ahout 50 volta for best semitivity. In IS. The rerean voltage should be ahout 30 volts alld the plate voltage from 100 to 250.
inate r.f. in the output eircuit. C_{4} is the output eoupling condenser. With a triode, the load resistor, R_{2}, may be replaced by an audio transformer, T, in which case C_{4} is not used.

Since audio amplification is added to rectification, the grid-leak detector has eonsiderably greater sensitivity than the diode. The sensitivity can be further increased by using a screen-grid tube instead of a triode, as at 704-13. The operation is equivalent to that of the triode circuit. The sercen by-pass condenser, C_{5}, should have low reactance ($\$ 2-8$, 2-13) for both radio and andio frequencies. R_{3} and R_{4} eonstitute a voltage divider ($\$ 8-10$) from the plate supply to furnish the proper d.c. voltage to the sereen. In buth cireuits, C_{2} must have low r.f. reactance and high a.f. reactance eompared to the resistance of K_{1}; the same applies to C_{3} with respect to R_{2}.
Because of the high phate resistance of the sercen-grid tube ($\$ 3-\overline{5}$), transformer compling from the phate cirenit of a sereen-grid detector is not satisfactory. An impedance (L in lig. 701-13) can be used in place of a resistor, with a gain in sensitivity becalse a high value of load impedince can be developed with little losis of plate voltage as compared to the voltage drop through a resistor. The compling coil, L_{2}, for a screen-grid detector should have an inductanee of the order of 300 to 500 hemess.
The sensitivity of the grid-leak detertor is higher than that of any other type. Like the diode, it "loads" the tuned circuit and redures its selectivity. The linearity is rather poor, and the signal-handling capability is limited.
Plate detectors - The plate detector is arranged so that rectification of the r.f. signal takes place in the plater circuit of the tube, as contrasted to the grid rectification just deseribed. Sufficient negative bias is applied to the grid to hring the plate current nearly to the cut-off point, so that the application of a signal to the grid circuit causes an increase in average plate current. The average phate current follows the changes in signal amplitude in a fashion similar to the rectified current in a dionde detertor.

Circuits for triodes and pentodes are siven in Fig. 705. C_{3} is the plate by-pass comenser, R_{1} is the cathode resistor which provides the operating grid bias ($\$ 3$-ij), and C_{2} is a by-pass for both radio and :udio frepuencies across h_{1} ($\$ 2-13$). $R 2$ is the plate loud resistance ($\$ 3-3$), aeross which a voltage appears as a result of the rectifying action described above. C_{4} is the output coupling condenser. In the pentode eircuit at B, R_{3} and R_{4} form a voltare divider to supply the proper potential (about 30 volts) to the screen, and C_{5} is a by-pass condenser between sereen and cathode. ('s must have low reactance for both radio and audio frequencies.
In general, transformer coupling from the plate cireuit of a plate detector is not satisfactory, because the plate impedance even of a triode is very high when the bias is set near the plate-current eut-off point (\$3-2, 3-3). Im-

Fig. 705 - Circuits for plate detection. A, triode: B, pentode. 'The ingut circuit, $L_{1} \mathrm{C}_{1}$, is tumed to the nipnal frequener. Typical values for the wher constants are:
Component
Cirenit A
Circuit 13

C_{2}	$0.5 \mu \mathrm{ft}$, or larger.	$0.5 \mu \mathrm{fd}$, or largar.
CB_{3}	$0.001100 .002 \mu \mathrm{fd}$.	250 to 500 $\mu \mu \mathrm{ffl}$.
C.4	$0.1 \mu \mathrm{dd}$.	$0.1 \mu \mathrm{fd}$.
Cris		$0.5 \mu \mathrm{fil}$, or Jarger.
R_{1}	2.50000 to 150,000 ohmes.	10,000 to 20,000 ohims.
H_{2}	50.000 to 100.010 ahmes.	100.000 to 250.6001 olums.
H_{3}		50,0100 ohins.
H_{4}		21.160 ohme.

Plate voltages from 100 to 250 volts may be uspd. Effective screen voltage in 13 shonld be about 30 volts.
pedance coupling may be used in place of the resistance coupling shown in Fig. 705. The same order of inductance is required as with the screen-grid detector dencribed previously.

The plate detector is more sensitive than the diode since there is some amplifying action in the tube, but less so than the grill-leak detector. It will hatude considerably larger signals thim the prid-leak detector, but is not quite so tolerant in this respect as the diode. Linearity, with the self-hiased circuits shown, is good. Up to the overload point the detector takes no power from the tuned circuit, and so does not affeet its Q and selectivity ($\$ 2-10$).
Infinite-impedance detector - The circuit of Fig. Tof combines the high signal-handing capabilitics of the diode detector with low distortion (good linearity), and, like the plate detector, does not load the tuned circuit to which it is connected. The circuit resembles that of the plate detector, except that the load revistance, R_{1}, is comected between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The cathode resistor is by-passed for r.f. (C_{1}) but not for audio ($\$ 2-13$), while the plate circuit is hy-passed to ground for both a adio and radio frequencies. R_{2} forms, with C_{3}, an $R C^{\prime}$ filter ($\$ 2-11$) to isolate the plate from the " B " supply at a.f.
The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} similarly increases with signal, because of the
inerensed plate current. Because of this and the fact that the initial drop across R_{1} is large, the grid cannot be driven positive with respect to the cathode hy the signal, hence no grid current can be drawn.

Fif. 706 - The: infinite-imperlaner linear derector. The imput rirenit, liaci, is lumed to the signal frequency. I'ypinal values for the other constantes are:

 A tube having a nodinm amplitioation fartor (abont 20) should be wed. Ilate valtaze should be 250 volts.

11 7-4 Regenerative Defectors

Circuits - lisy providing rontrollable r.f. feed-buck or regeneration ($\$ 3-3$) in a triode or pentode detertor eircuit, the incoming signal can be amplified many times, thereby ereatly increasing the sensitivity of the detector. Regeneration alson inereases the offactive (? of the eireuit, and hence inereases the selertivity ($\$ 2-10$) by virtue of the fant that the maximum regenerative amplitiontion takes pare only at the frequeney to which the eireuit is tuned. The grid-leak type of detertor is most suitable for the purpose. Dexrept for the regenerative commertion, the circuit values are identical with those previonsty deseribed for this type of deteretor, and the same considerations apply. 'Ithe amount of regemeration must be controllable, beanase maximum remenerative amplifeation is secured at the critisal point where the rirenit is just ahout to uscillate ($\$ 3-7$) and the eriticat point in turn depends upen circuit conditions, which may vary with the frequeney to whirlh the detector is tuned.

Fig. 70 shows the rircuits of regenerative detereors ol various types. 'The cirmit of A is for a trioule tube, with a variable by-pass condenser, ('3, in the wate eirenit to control regeneration. When the capacity is smatl the tuhe does mot regemerato, hat as it increases toward maximmm its patetano (各首-s) beromes smatler until a aritionl value is reathed where there is sufferent feed-bends to calluse oscillation. If L_{2} and L_{a} are wombl and-to-end in the same direction, the plate commertion is to the outside of the phate or "tickler" eril, Lo3, when the grid connection is to the ontside of L_{2}.

The cirenit of 13 is for a serern-grid tube, regeneration being controlled by adjustment of the soreon-grid voltage. The tickler, L_{23}, is in the plate circuit. The portion of the control resistor between the rotating eontart and ground is by-passed by a large condenser (0.i) $\mu \mathrm{fl}$. or more) to filter out seratehing noise when the arm is rotated (s-11). The feed-
back is adjusted by varying the number of turns on L_{3} or the eoupling ($\$ 2-11$) between L_{2} and L_{3}, until the tube just goes into oseillation at a sereen voltage of approximately 30 volts.

Circuit (O is identieal with 13 in principle of operation, exerpt that the oseillating eircuit is of the Hartley type ($8: 3-7$). Nince the sereen and plate are in parallel for r.f. in this circuit, only a small amomit of "tickler" - that is, relatively few turns between the cathode tap and ground - - is required for oscillation.

Adjustment for smooth regenoration The ideal regeneration control womld permit the detertor to go into and out of oseillation smonthly, would have no efferet. on the frequency of useillation, and would give the same value of regflemation regardless of frequency and the lowding on the cirenit. In practice, the effects of loading, particularly the loaling that oec:urs when the detector cireuit is empled to an antenna, are diflienlt to overeome. Likewise, the regeneration is afferted by the frequency to which the grid eirenit is tumed.

In all cirenits it is best to wind the tiekler at the groumd or eathode end of the arid coil, and to use as few turns on the tickler as will allow the detertor to ascillate casily wer the whole tuning range at the plate fand sereen, if a pentode) voltage which gives maximum sensitivity. Should the tabe break into wablation suddenly as the regeneration eontrol is advanced, making a diels, the operation often can be made smoother by ehameing the gridleak resistance to a higher or lower value. The wrong grid leak phas tow-high plate and sarcen voltage are the most frequent canses of lack of smonthness in gring into macillation.

Ancmma compling - If the detector is coupled to an antennat, slight ehanges in the antemat constants (ats when the wire swings in a breoze) affert the frergency of the oscillations gemerated, and thereby the beat frequenw when c.w. signtals are being received. The tighter the antenna coupling is made, the greater will be the feed-back required or the highor will be the voltage neressary to make the detertar aseillate. The antenna compling should be the maximum that will allow the deteetor to go into aseillation smoothly with the eorred voltages on the tube. If caparity compling (s e-11) ta the gride end of the coil is used, only a very small amomat of capacity will be neded to comple to the antema. lacreasing the capabity imerases the compling.

At frequencies where the anteman system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may mot be possible to anake the detector asoillate with normal voltagres, riblusing somealled "de:ad spots." The remedy for this is to lowsen the anteman conpling to the point which permits nomat oseillation and smooth regeneration control.
Bowle caparity - I regonorative datertor orcasionally shows a tendenry to change fre-
quency slightly as the hand is moved near the dial. This condition (body capacity) can be caused by poor design of the receiver, or by the antenna if the detector is coupled directly to it. If body caparity is present when the antenna is disconnected, it can be eliminated by better shiolding, and sometimes by r.f. filtering of the 'phone leads. Body capacity which is present only when the antonna is connected is ratused hey resonanee effects in the antemus, which temd to canse a portion of a standing wave (\$2-12) of r.f. voltage to appear on the gromad lead and thas raise the whole detector circuit above ground potential. A good, short ground combection shonld be made to the recoiver and the length of the antenna variod electrically (hy adding a small coil or variable condenser in the antenna lead) until the effert is minimized. Loosening the coupling to the antemna circuit also will help.
Hum - Itumat the power-supply frequency maty be present in a regenerative detector, especially when it is used in an ascillating eandition for cw. reception, even though the plate supply itwelf is free from ripple (\$8-4). The hum may result from the use of a.e. on the tube heater, but coferets of this twpe normally are troublesome only when the cireuit of Fig. 707-C is used, and then only at $1+\mathrm{Mc}$, and higher frequencies. Connecting one side of the heater supply to ground, or grounding the center-tap of the heater transformer winding, is good practice to redure hum, and the heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, will have a rather extensive electrostatic field which may ranse hum if the detector tube, grid lead, and grid condenser and leak ate mot electrostatically shielded. This type of hum is easily recognizable becaluse of its rather high pitch, a result of harmonies $(\$ 2-7)$ in the power-supplysemtem. The hum is caused by a species of grid modulation (\$5-4).

Antenma resomance effects frequently rabse a hum of the same nature as that just deseribed which is most intense at the various resonance points, and henee varies with tuning. For this reason it is called tumable hum. It is prone to oceur with a rectified a.c. plate supply (§ $8-1$) when a standing wave effect of the type described in the preceding paragraph occurs, and is associated with the non-linearity of the rectifier tube in the plate supply. Elimination of antenma resonamee effects as deseribed and by-passing the rectifier plates to cathode (using by-pass condensers of the order of $0.001 \mu \mathrm{fl}$.) usually will cure it.

Tuning - For c.w. reception, the regeneration control is advanced until the detector breaks into a "hise," whirh indicates that the detector is ascillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of e.w. signals is where the detector just starts to oscillate, when it will be found that e w. signals ean be tumed in and will give a tone with cath signal demembling on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high piteh, then will go down through "zoroheat" (theregion where the frequencies of the incoming signal and the oscillating detecetor are so nearly alike that the differene or beat is less than the lowest audible tone) and rise again on the other side, finally disappearing at a very high piteh. This behavior is shown in Fig, Jos. It will he found that a low-pitehed heat-mote canmot be obtained from a strong signal berause the deteretor "pulls in" or "blocks"; that is, the signal tends to eontrol the detector in sum a way that the latem oscillates at the sigmal freguency, despite the fact that the cironit may mot be tunct exactly to resonance. This phenomenom, eommonly observed when an uscillator is conpled to a source of a.c. voltage of approximately the

Fig. 707 - Triode and pentode reboncrative deteetor circuits. 'The input circuit, $L_{2} G_{3}$, in tuned to the sipnal frequeney. The prid condenser, $(: 2$, should have a value of alout $100 \mu \mu \mathrm{fd}$, it all circuits: the grid leak, R_{1}, may range in value from 1 to 5 megohms. The tickler coil, L_{3}, ordinarily will have from 10 to 25 per cent of the number of turns on $L a ;$ in C, the cathode tap is about 10 per cent of the number of turns on L_{a} above ground. Repeneration control rondenser C_{3} in A should have a maximum capacity of $100 \mu \mu \mathrm{fd}$. or more; by-pass condensers C_{3} in B and (6 are likewise 100 , $\mu \mathrm{fd}$. $C A$ is ordinarily 1 ffl. or more: $l 2$, a 50,000 - ${ }^{2} h m$ potentioneter; R_{3}, 50,000 to $100,\left(000\right.$ ohme. L_{4} in $13\left(L_{3}\right.$ in C$)$ is a 500). henry indactance, Cin in $0.1 \mu \mathrm{fd}$, in both circuits. T_{1} in A is a conventional andio transformer for coupling from the plate of a tube to a following grid, RFt $;$ is 2.5 mh . In A, the plate voltage should be about 50 volts for beat aensitivity. Pentode eircuits refuire about 30 wolts on the sercen; plate voltage may be 100 to 250 volts.

Fig. 708 - As the tuming dial of a rervere is turned past a ces. sipnal, the beat-note varies from a high tome down throngh "zero beat" (no audible frequen's difference and back up to a hish toneo as shown at A, 13 and C. The curve is a graphical representation of the action. The leat exists past 8000 or 10.000 enches hut usually is not hrard leceanse of the limitations of the andionsystem.
frequency at which the oscillator is operating, is called "locking-in"; the more stable of the two frequencies assimums eontrol over the other. "Blocking" usually can be corrected by advancing the regencration control until the beat-note occurs again. If the remenerative detector is preceded ty in r.f. amplifier stage, the bowking can be climinated by reducing the gain of the r.f. stage. If the detector is coupled to an antenna, the blocking condition can be eliminated by advancing the regeneration control or loosening the antenna coupling.

The puint just after the receiver starts oscillating is the nost smitive condition for c.w. reception. Further adsancing the regeneration control makes the receiver less prone to blocking by strong signals, but also less eapable of receiving weak sigmals.

If the receiver is in the oscillating condition and a'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive oprating point.
superregencation - The limit to which ordinary regenerative amplification can be carriod is the point at which oscillations commence, since at that point further amplification ceases. The supurrcgencrative detector overcomes this limitation by introducing into the detector circuit an alternating woltage of a frequency somewhat above the audible range (of the order of 20 to 200 kilocycles), in such a way as to vary the detector's operating point (§3-3). As a consequence of the introduction of this quench or interruption frequency, the detector can oscillate only when the varying operating point is in a region suitable for the production of oscillations. Because the oscillations are constantly being interrupted, the regeneration can be greatly increased, and the amplified signal will build up to tremendous proportions. A one-tabe superregenerative de-
tector is capable of an inherent sensitivity approaching the thermal-agitation noise level of the tuned cirevit, and may have an antenna input sensilivity of two microvolts or better.

Because of its inherent characteristics, the superregenerative circuit is suitable only for the reception of modulated signals, and opPrates best on the very-high frequencies. Typieal supnremporative rireuits for the veryhigh frequencies are shown in lig. 709.

The bate regrmorative deloctor cireuil is the ultratulion wicilatar (s:3 7). In Fig. 709-A the quench frequeney is obtaned from a separate uscillator and introdued into the plate circuit of the delortor. Ther quench oseillator, operating at alow ranlio fremumes. alternatuly allows oscillations to haidd up in the regenerallive rireuit and then caluses them to die out. In the absenere of a sighat, the thermal agitation mose in the iaput rirenit produeds the voltage that initiates the buld-up process. Howrver. when an incoming signal provides the initiating pulser it has the offeret of advanceing the starting time of the osedlations. This eanse's the area within the convelope to increase, as indieated in F"ig. 710-C:

If regeneration in an ordinary regencrative rirenit is carried suffiemently far, the cirenit will bratk into a low-frequency wallation simultameondy with that at the operating radio frequency. This low-frequency wisilation has murl the same quenching offere as that from a separate oscillator, hence a cireuit so operated is called a self-quenching superwenenerative deterbor. The frequency of the quench oscillation depends upon the feed-hark and upon tho time comstant of the grid leak and condenser, the oscillation being a "blocking" or "squegginge" in which the grid arcumulates a strong nogative charge which dors not lak off rapidly emough through the wrid la ak to prevent a relatively slow variation of the operating point.

Fis. 709 - (A) Superreqenerative detector circuit using a separate queneh oscillator. (13) Silforpenehed superregenerative detertor circuit. $L_{2} C_{1}$ is tuned to the signal fre'quincy. 'Typieal values for other components are: ($2-50 \mu \mu \mathrm{fd} . \quad \mathbf{R}_{4}-50,000$ ohnms.
(C_{3} - $500 \mu_{\mu \mu \mathrm{fl}} \quad \mathrm{I}$-Audio transformer,
($\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$. plate-to-arid type.
C. $-0.0010 .005 \mu \mathrm{fd}$. RFC-1R.f. choke, value de-
R_{1} - 2-10 megohins.
$\mathrm{R}_{2}-50,000$ olims.
$11_{3}-50,000$ ochmpotentioneter.
pending upon frequency, Small low capacity chohes are required for v.h.f. operation.

Fig. 710 - R.f. oscillation emwerne in a self-pmenched sumerremerative detector. Wishout signal (A at left) oscillatine are completely quenthed after cach perioul, resumisir in ramdon phase deponding ton momentary noise voltares. At rifht, whell the intitating pulses are supplied be a recerised signal the starting time of the oseillations is and anaced cansing the build-up prome to be sin hefore damping is complele. 'Ithis advance is propertional to the cartior amplitude when modulated (B). Sine the tmiding-up period varies in aceredane wish modulation (6). when there ware trans are reetified the averate rectitied current is propertional to the amplinde of the cignal. Amplitude mondulation is therafore reproduced as an audios wave in the output cirenit (1)).

The reater the difforence betwern the quenching amb signal freguencies the greater the amplifieation, bereatuse the signal then hats a longer period in which ta build up during the nonguenching half-eycle when the resisiance of the ribenit is negative. Jhis ration should not exered a certan limit. however. for during the quenched or nomeremerative intervals the input seloctivity is merely that of the (s of the tuncd eireuib alone. 'Phe optimum queturh fre quences is in the neighborhood of l.jo ke. for the 60-Mc. band amd 250 ke. lor 11: Mr.

The superveromerative detector has relatively little selertivity as compared to a regular regenerative detector, hut diseriminates: matinst noise such as ignition interference. It ahso has mathed a.s.c. action, strong signals leing amplified much less than wealk signals.
dijustment of superresenerative detectors - Because of the greater amplification, the hiss nowe when a superreqemerative detector goes into oseillation is much sironger than with the ordinary regenerative detector. The most sensitive condition is at the point where the hiss first becomes marked. When a signall is tuned in, the hiss will disappear to a degree which depends upon the signall strength.

Lack of hiss indicates insufficient feed-b:ack at the signal frequency, or inadequate quench voltage. Antenna loading effects will canse dead spots which are similar to those in regenerative defectors and ean be overeome by the same methods. The self-quenching detector may require critical adjustment of the grid leak and grid condenser values for smooth operation, since these determine the frequency and amplitude of the quench voltage.

C. 7-5 Audio-Frequency Amplifiers

General - The ordinary detector does not produce very much audio-frequency power output - usually not enough to give satisfactory sound volume, even in headphone reception. Comsequently, audio-frecuuency amplifiers are used after the dotector to increase the power level. One amplifier usually is sufficient for headphones, but two stares generally are used where the recoiver is to operate a loudspeaker. A few milliwatts of a.f. power is sufficient for headphones, but a loudspeaker requires a watt or more for good room volume.

In all exerpt battery-operated receivers, the negative grid bias of audiosamplifiers usually is secured from the voltage drop in a cathode resistor ($\$ 3-6$). The cathode resistor must be bypassid hy a condenser having low reactance at the lowest audio frepuemer tor be amplified, compared to the resistance of the cathode resistor (10 per cont or lass) ($2-8,2-13$). In battery-operated recoivers, a separate gridbias battery generally is used.

Headset amal voltage amplifiers- The circuits shown in Figr 711 are topical of those used for voltage amplification and for providing sufficient power for operation of headphones ($\$ 3-3$). Trioules usually are preferred to pentodes beeanse they are better suited to working into an audio transformer or headset, the input impedanees of which are of the order of 20,000 ohms.

In these circuits, R_{2} is the cathode bias resistor and ('1 the cathode by-pass condenser. The grid resistor, h_{1}, sives volume control action ($\$ 5-9$). Its value ordinarily is from 0.25 to 1 megohm. (2 is the input coupling condenser, already diseusiod under detectors; it is, in fact, identical to C_{4} in ligs 704 and 705 , if the amplifier is coupled to a detector.

Poner amplifiers - A popular type of power amplifier is the single pentode, operated Class A or AB; the rireuit diagram is given in Fig. 711-A. The erid resistor, R_{1}. maty be a potentiometer for volume control, as shown at

Fis. 711 - Audio amplifier circuita used for voltare amplifieation and to provide power for headphone out gul. The luben are operaled as Claso-A amplifiers (s 3-4).
R_{1} in Fig. 711. The output transformer, T, should have a turns ratio (\$2-9) suitable for the loudspeaker used; many of the small loudspeakers now amailable are furnished complete with output transformer.

When greater volume is needed, a pair of pentodes or tetrodes may be comuected in push-pull (\$3-3), as shown in Fig. 712-13. Transformer conpling to the voltage-amplifier stage is the simplest method of ohtaining pushpull input for the amplifier srids. The interstage transformer, T_{1}, has a centor-tapped secomdary with a secomdary-to-primary turns ration of about 2 to 1 . An output transformer, T_{2}, with a center-tapped primary must be used. No by-pass condenser is neded across the cathule resistor, R, since the a.f. current does not flow through the resistor as it does in single-tube cireuits (\$3-3).

Tone control-A tone control is a device for (hamging the frequency response (\$3-3) of an audio amplifier; usuatly it is simply a mothod for reducing ligh-frequency response. This is helpful in reducing hissing and crackling moises without disturbing the intelligibility of the signal. R_{f} and ("4, in Fig. 711-1), together form ath effertive tone control of this type. The maximum efferet is secured when the resistance of h_{4} is entirely out of the circuit, leaving (': connected diroctly between grid and ground. Rathould be large compared to the reactance of $\left(\frac{1}{4}(\$ 2-8)\right.$ so that when its resistance is all in cirenit the offect of (ea on the frequency response is negligible.
Ileadphonesand loudspeakers-Twotypes of headphones are in gencral use, the mogretic and ryystal types. They are shown in crosssection in Fir. 713. In the magnetie type the signal is applied to a coil or pair of coils having a great many turns of fine wire wound on a permanent magact. (Headphones having one coil are known as the "single-pole" type, while those having two coils, as shown in Fig. 713, are called "donblo-pole.") A thin circular diaphragm of irom is placed close to

Fig. 712 - I'ower-omtput audio amplifier circuits. Fither Class A or AB auplification ($83-4$) may be used.
the open ends of the magnet. It is tightly clamped by the earpiece assembly around its circumference, and the center is drawn toward the permanent magnet under some tension. When an alternating current flows through the windings the field set up liy the current alternately aids and opposes the steady field of the permanent magnet, so that the diaphragm alternately is drawn nearer to and allowed to spring farther away from the manget. Its motion sets the air into corresponding vibration. Although the d.e. resistance of the coils may be of the order of 2000 ohms, the ato. impedance of a magnetir tepe headset will be of the order of 20,0000 ohms at 10000 eycles.

In the crystal headphone, two piezonelectric reystals (\& $2-10$) of Rochelle salts are cemented together in such a way that the pair tends to be bent in one direction when a voltage of a certain polarity is applied and to bend in the other direction when the polarity is reversed. The crystal mit is rigidly mounted to the earpiece, with the free end coupled to a diaphragm. When ath alternating voltage is appliod, the alternate bending as the polarity of the applied voltage reverses makes the diaphragm vibrate back and forth. The impedanee is several times that of the magnetic type.

Maguetic-type headsets tend to give maximum response at frequencies of the order of 500 to 1000 eycles, with a emsiderable reduction of response (for constant applied voltage) at frequencies both above and below this region. The crystal type has a "flatter" frequenceresponse arve, and is particularly good at reprodueing the higher :udtu frequencies. The praked mesponse curve of the magnetice type is advantageous in code reception, since it tends to reduce interference from signals having beat tomes lying ontside the region of maximum response, while the crystal type is better for the reception of voide and music. Magnetie headsets can be used in eircuits in which d.c, is flowing, such as the plate rircuit of a vacuum tube, providing the current is not too large to be carried saffly by the wire in the coils; the limit is a few milliamperes. Crystal headsets must be used only on a.c. (since a steady d.c. voltage will damage the erystal unit), and consequently must be compled to the tube through a device, such as a condenser, which isolates the d.c. voltage but permits the passage of an alternating current.

The most common type of loudspeaker is the dynumic type, shown in cross-section in Fig. 713. The signal is applied to a small coil (the woice coil) which is free to move in the gap between the ends of a magnet. The magnet is made in the form of a cylindrical coil slightly smaller than the form on which the voice coil is wound, with the magnetic circuit completed through a pole piece which fits around the outside of the voice coil leaving just enough clearance for free movement of the coil. The path of the flux through the magnet is as shown by the dutted lines in the figure.

Fig. 713 - Headphone and londspeaker construction.
The voice coil is supported so that it is free to move along its axis but not in other directions, and is fastoned to a fiber or paper conical diaphragm. When current is sent through the coil it moves in a direction determined by the polarity of the current ($\$ 2-5$), and thus moves back and forth when an alternating voltage is applied. 'The notion is transmitted by the diaphoragm to the air, setting ups sound waves.

The type of speaker shown in $\mathrm{Fig} .713 \mathrm{ob}-$ tains its fixed magnetic field by electromagnetic means, direct current being sent through the field coil for this purpose. Other types use permanent magnets to replace the electromagnet. and hence do not require a source of d.c. power. The voice coils of dynamic speakers have few turns and therefore low impedance, values of 3 to 15 ohms being ropresentative.

(1) 7-6 Radio-Frequency Amplifiers

Circuils - Although there may be variations in detail, practically all r.f. amplifiers conform to the basice circuit shown in F'ig. 714. A screen-grid tube, usually a pentode, is used, since a triode will oscillate when its grid and plate circuits are tumed to the same frequency ($\$ 3-5$). 'The amplifier operates Class A, without grid current ($\$ 3-4$). The tumed grid circuit, $L_{1} C_{1}$, is coupled through L_{2} to the antemna (or, in some cases, to a preceding stage). R_{1} and C_{2} are the cathode biats resistor and by-pans condenser, C_{3} is the screen by-pass condenser, and R_{2} is the sereen dropping resistor. L_{3} is the primary of the output transformer (\$2-11), tightly coupled to L_{4}, which, with C_{5}, constitutes the tuned rirenit feeding the detector or following amplifier. 'The input and output cir-(-nits. $L_{1} C_{1}$ and $L_{4} C_{5}$, are both tuned to the signal frequency.

Shielding - The screen-grid construction of the amplifier tube prevents feed-back (\$3-3) from plate to grid inside the tube, but in addi-
tion it is necessary to prevent transfer of energy from the plate circuit to the grid circuit external to the tube. This is accomplished by enclosing the coils in grounded shielding containers and by keeping the plate and grid leads well separated. With "single-ended" tubes, care in laying out the wiring to obtain the maximum possible physical separation between plate and grid leads is neccssary to prevent capacity coupling.

The shield around a coil will reduce the inductance and Q of the coil ($\$ 2-11$) to an extent which depends upon the shielding material and the distance it is placed from the coil. Adjustments therefore must be made with the shield in place.

By-passing - In addition to shielding, good by-passing (\$2-13) is imperative. This is not simply a matter of choosing the proper type and capacity of by-pass condenser. Short separate leads from C_{3} and C_{4} to cathode or ground are a prime necessity. At the higher radio frequencies even an inch of wire will have enough inductance to provide feed-back coupling, and hence cause oscillation, if the wire happens to be common to both the plate and grid circuits.

Gain control - The gain of an r.f. amplifier usually is varied by varying the grid bias. This method works best with valiable- μ type tubes ($\$ 3-5$), hence this type usually is found in r.f. anplifiers. hn^{2} Fig. $714, R_{3}$ and R_{4} comprise the gain-control circuit. l_{3} is the control resistor ($\$ 3-6$) and R_{4} a dropping resistor of sueh value as to make the voltage across the outside terminals of R_{3} about 50 volts ($\$ \therefore-10$). The gain is maximum with the variable arm on R_{3} all the way to the left (grounded), and minimum at the right. R_{3} could simply be placed in series with R_{1}, omitting R_{4} entirely, but the range of control with this connection is limited because it depends on the cathode current alone.
In a multi-tube receiver the gain of several stages maly be varied simultameously, a single control suflicing for all. The lower ends of the several cathode resistors $\left(R_{1}\right)$ are then connected torether and to the movable contact on R_{3} in lig. 714.

Circuit rulurs - The value of the cathode resistor, R_{1}, should be calculated for the mimimum recommended bias for the tube used. The capacities of C_{2}, C_{3} and C_{4} must be such that the reactance is low at radio frequencies; this condition is casily met by using $0.01-\mu \mathrm{fd}$. eondensers at communication frequencies, or 0.001 to 0.002 mira units ats very-high fre-

Fig. 714 - Basic cirmit of a thmed radio-frequency amplitier. Component valus are discussed in the text.
quencies up to $112 \mathrm{Mc} . R_{2}$ is found by taking the difference between the rerommended plate and sereen voltages, then substituting this and the rated screen "urrent in Ohm's Iaw (\$2-ti). R_{3} must be selectert on the basis of the mamber of tubes to be eontrolled; a resistor mast be chosen which is capable of carrying, at its lowresistance end, the sum of all the tute carrents plus the bleoder current. A resistor of smitable current-carrying capacity being found, the blealer current neressary to produce a drop through it of about so volts can be calculated by Ohm's Law. The same formula will give R_{4}, using the plate voltage less ion volts for E and the bleeder current previonsly found for l.

The constants of the tuned areuits will depend upon the frequency range, or band, to be covered. A fairly high $L_{\text {(}}$ ration (s 2-10) should be used on each band; this is limited, however, by the irreducible minimum capacities. To an allowance of 10 to $20 \mu \mu \mathrm{fl}$. for tube and stray eaparities should be added the minimum caparity of the tuming condenser.

If the input cirenit of the amplifier is comnerted to an antomat, the compling roil. L_{2}, should be adjusted to provide critical coupling ($\$ 2-11$) between the antematand grid circuit. This will give maximum energy transfer. The turns ratio of L_{1} / L_{2} will depend upon the frequency, the type of tube used, the Q of the tuncd circuit and the constants of the anteman system, and in general is best determined experimentally. The selectivity will increase as the coupling is reduced bolow this "optimum" value, a consideration which it is well to keep in mind if selectivity is of more importance than maximum sian.

The output-eirenit coupling depends upon the plate resistance ($\$ 3-2$) of the tube, the input resistane of the sucrecding stage, and the Q of the tumed circuit, $L_{4} f^{\circ}{ }_{5}$. L_{3} usually, is coupled as elosely as possible to L_{4} (atroidines the necessity for an additional tumine condenser acrosis L_{3}) and the energy transfer is naximum when L_{3} has 'ás tu 'a as many turns as L_{4}, with ordinary receiving bentodes.

Tube and circuit noise - ln any eonductor electrons will be moving in ramdom directions simultaneously and, as a result, small irregular voltages are developed adross the eonduetor terminals. The voltage is larger the greater the resistance of the conduetor and the higher its temperature. This is known as the thermatagitution effert, and it produres a hiss-like noise voltage distributed uniformly throughont the radio-frequency speetrum. The thermalagitation noise voltage appearing amoss the terminals of a tuned circuit will be the same ats in a resistor of a value equal to the parallel impedance ($\$ \underline{-10}$) of the thand rircuit, cven though the actual cirenit resistance is low. Hence, the higher the Q of the eireuit, the greater the thermal agitation noise.

Another component of hiss noise is developed in the tube becanse the rain of electrons on the plate is not entirely uniform. Small ir-
regularitics caused by gas in the tube also contribute to the effect. Tube noise varies with the type of tube: in general, the higher the cathode current and the lower the mutual conductance of the tube, the more internal noise it will senerate.

To obtain the best signal-to-noise ratio, the signal must be made as large as possible at the grid of the tube, which means that the antenna coupling must be adjusted to that end and also that the (Q of the grid tuned circuit must be high. A tube with low inherent noise obviously should be chosen. In an amplifier having good signal-to-noise ratio, the thermal-agitafion moise will he greater than the tube noise. This can easily be checked by diseonmecting the antenna so that no outside moise is bering introduced into the receiser, then grommding the grid through a $0.01-\mu \mathrm{fd}$. condenser and ohserving whether there is a decrease in noise. If there is no change the tube nowse is preatly predominant, indicating a porr signal-tonoise ratio in the stage. The test is valid mily if there is no regeneration in the amplifier. The signal-to-noise ratio will derrease as the frequency is raised, because it beromes increasingly dillicult to obtain a tuned circuit of high effective $(9(\$ 7-7)$.

The first stage of the receiver is the important one from the standpoint of sigmal-to-noise ratio. Noise generated in the second and subsequent stages, while comparable in magnitude to that gencrated in the first, is masked by the amplified noise and signal from the first stage After the second stage, further contributions by tubes and eircuits to the total noise are inconsefuential in any normal receiver.

Tubr input resistance - At high radio frequeneies the tube may consume power from the tuned grid eireuit, even thomer the grid is not driven positive by the signal. Ahowe -Mr . all tubes "lowd" the tumed rireuit to some extent, the amount of loading varying with the type of tube. This effect comes about beraluse of the tramsit time necersary for electrons to travel from the eathode to the grid heromes comparable to the time of one r.f. cyele. and beeallse of the dexenerative effert ($(3-3$) of the cathode lead inductance. It becomes more pronounced as the freguency is increased. Certatin types of tubes may have an input resistance of only a fow thousand ohms at 28 Me. and as little as a few handred ohms at very-hish frecurneries. The infut resistance of the salme tubee at 7 Mr. and lower freduencies may be so high as to be considered infinite.

This input-lonaling effect is in addition to the normal decrease in the Q of the tuned cirruit alome. because of increased losses in the coil and condenser at the higher frequencies. Thus the selectivity and gain of the circuit both are affected adversely by increasing frequeney.

Comparison of tribes - At 7 Mc and lower frequencies, the sigual-to-noise ratio, gain, and selectivity of an r.f.-amplifier stage are sulliciently high with any of the standard receiving
tubes. At 14 Mc, and higher, however, this is no longer true, and the choice of a tube must be based on several conflieting considerations.

Gain is highest with high mutual-conductance pentolles, the 6.1137 and $6 . \Delta(7$ being examples of this type. These tubes also develop less moise than any of the others. The imputloading effect is greatest with them, however, so that selectivity is deerased and the tunedcircuit

Pentondes. such as the 6K゙ア, 6.57 and moresponding types in ghass, have lesser inputloading efferts at high freduencies, moderate gain, and relatively high inherent moise.
"Acorn" and equivalent miniature pentades are exeellent from the input-loading standpeint: gain is about the same an with stamdard typer, and the inherent noise is somewhat lower.

Where selectivity is paramomat the aborms are best. the standard pentodes seromd, and the 6AB7-6AC7 types worst. On sigmal-to-moise ratio the latere tubes are first, aroms are serond and stamdard pentodes thied. The same order of preredence holds for ower-all satu.
dt ind Me. the stambard types are usable, but aromens are cetpable of hetter performance because of leserer loading. The !at and andiand the corresponding types. 9001 and 9003 . are examples of types satisfartory for r.f. :mplifieation al 100 Mr . and higher.

C. 7-7 Tuning and Band-Changing Methods

Bamal-ahanging - The resonant circuits which are tmand to the fregurney of the incoming signal eonstitute a sperial poroblem in the desisn of amateme rerpivers, since the amateur fregumery assiguments consist of groups or bambe of frequencos at widely spaced intervals. The same l er combination camot be used for, sals, 14 Mc . to 3.5 Mc , becanse of the imparcticalble maximam-minimum rapacity ration required. and alsa hemanse the toming would be exerssively eritical with such a large frepuency ramge. It is neressary, therefors, to provide a moans for rhanging the circuit constants for varions frequency hambs. As a matter of convenionce the sime tuming condenser usually is retaned, hat new coils are insorted in the circuit for ead band.

There are two favorite methods of changing inductaness. One is to use a switeh having an appropriate mumber of contatets, which connects the dexired eoil and disconneets the others. The secoud is to we roils wombl on forms with contacts (usitally pins) which can be plused in and removed from a socket.

Bambepreading - The tminge range of a given coil and variable combenser will depend upon the inductance of the coil and the change in tuming caparity. For casce of tuming, it is desirable to adjust the tuming range so that practically the whole dial soale is ocropied by the band in use. This is called bamdspreading. Because of the varying widths of the bands, special tuning methods mast be devised to give
the correct maximumminimum capacity ratio on each band. Several of these methods are shown in Fig. 715.

In A, a small bandspread condenser, C_{1} (15) to $25 \mu \mu \mathrm{fal}$. maximum (apacity), is used in parallel with a combenser, (2, which is usually large enough (1.40 to 175) $\mu \mu \mathrm{fil}$.) to cover a 2 -to-l frequency range. The setting of C_{2} will determine the minimum retparity of the circuit, and the maximum caparity for bandspread toming will be the maximum capacit of Ces. The inductance of the coil can be adjusted so that the maximum-minimum ratio will give adequate bandspread. In prateticable circuits it is almost impossible, beralluse of the mon-harmonic relation of the varions bands, to fot full bandspread on all bands with the same patir of condensers. e-perially when the coils are wound to give eontimoms frequency coverage on C_{2}, which is varionsly called the bandselling or main-tuming condenser. C_{2} must be resot earh time the band is changed.

The method shown at 13 makes use of condensers in series. The tuning condenser, C_{1}, maty have a maximum caparity of $100 \mu \mu \mathrm{fd}$. or more. The minimum caparity is determined principally by the setting of \dot{C}_{3}, which usually has low capacity, and the maximmm capacity by the setting of (2 which is of the order of 2π) to $50 \mu \mu \mathrm{fd}$. This mothod is (apable of close adjustment to practically any desired degree of bandspread. Either C'uand Coust be adjusted for each band or separate pre-adjusted condensers must be switehed in.

The rirenit at (' ator rives complete spread on each band. C_{1}, the bandspread condenser, mase have any convenient value of capacity; io) $\mu \mu \mathrm{fd}$. is satisfactory. C_{2} misy be used for contimutus frequency coverare ("general coveragre') and as a hand-setting condenser. The effective maximum-minimum capacity ratio depends upon the raparity of C_{2} and the point at which C_{1} is tipped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given roil and tap, the bandispread will be greater if C_{2} is set at larger eapacity. C_{2} may be mounted in the phor-in coil form and pre-set, if dewired. This requires a separate condenser for cath band, but climinates the necessity for resefting C_{2} each time the band is changed.

Ginged tmming - The tuming condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both
dectrically and mechanically. It becomes necessary to make the various cireuits track that is, tune to the same frequeney at each setting of the tuming control.

True tracking can be ohtained only when the inductance, tuning condonsers, and circuit minimum and maximum capacitics are identical in all "panmed" stapes. A small trimmer or padding eomenner may be comected arross the coil, so that variations in minimum capacity con be compensated. The fundamental rircuit is shown in Fig. 7lis, where Cis is the trimmer and c_{2} the tuning combenser. The use of the trimmer neressarily inereases the minimum circuit caparity. huil it is at moressity for satisfactory trackig. Midger comdensers having maximum capacities of 15 to $30 \mu \mu \mathrm{fd}$ a are commonly used.

The same methods are applied to bandspread circuits which must be tracked. The circuits are identical with those of Fig. 715 . If both generat-owerage and bandspread tuning are to be asailable an additional trimmer condenser must bu connerted acruss the roil in fach circuit shown. If omly amaterar-hand toming is desired, however, then ('3 in lig. 715-13, and C_{2} in Fig. 715-C serve as trimmers.

Fig. 716-Showint the use of at trimmer condenter. to set the minimum tirenit rat pareit! in order to obtain true tracking for zang-tuning.

The coil inductance can be adjusted by starting with a lager mumber of turns than necessary athd remeving at turn or fraction of a turn at a time until the circuits track satisfactorily. An allernative method, provided the inductane is reasomably close to the correct value initially, is to make the eroil so that the last turn is variathe with respect to the whole coil, or to use a single short-cirenited turn the position of which ram be varied with respere to the eoil. The application of these methods is shown in Vig. 717.
V.h.f. circuits - Interdectrode caparities are practically comstant for at given tube resardless of the operating frequeney, and the same is approximately true of stray cireuit capacities. Hence, at very-high froguencies these cat pacities become an inereasingly larger part of the usable tuning compaity, and reasonably high L / C ratios ($\$ 2-10$) are more difficult to secure as the frequency is raised. Because of this irreducible minimum caparity, standard types of tubes camnot be tuned to frequencies higher than alout 200 Mc ., even when the indurtance in the eircuit is simply that of a straight wire between the tube clements.

Along with these caparity effects, the input loading (\$7-fi) increases rapidly at very-high frequencies, so that ordinary tumed circnits have very low effective ()s when comnected to the grid circuit of a tube. The effect is still further aggravated by the fact that losses in the tuned circuit itself are higher, causing a

(A)
(B)

Fis. 717 - Mrthods of adjusting the inductance for Wanging. The half turn in i can he moved so that its magnetic field either aide or opposes the field of the coil. "The shorted loop in IS is not ronmerted to the roil, but operates by induetion. It will have no effert on the coil indurtance when the plante of the lenp is paralled to the axis of the coil, and will pive maximum reduction of the coil inductance when perpendicular to the roil axis.
still further reduction in Q. For these reasons, the frequency limit at which an r.f. amplifier will give any gain is: in the vicinity of bio Mc. with standare tubse. At higher frequencies there will be a loss, instead of amplification. This condition can be mitigated somewhat by taking steps to improve the effective (Q of the circnit, either !ey tapping the grid down on the coil, as shown in Fig. 718-A, or by using a lower L / C ratio (S 2-10). The $(Q$ of the tuned circuit alone can be greatly improved by using a linear circuit ($2-12$), which when property constructed will give (2s much higher thath those attanable at lower frequencies with conventional coils and condensers. The concentric type of line, Fig. 718 -13, is best both from the stampoint of $(Q$ and of adiphtaility to nonsymmetrical circuits such ass are used in receivers. Sinee the capacity and resistanere loading efferets of the tube arestill present, the Q of such a circuit will be destroyed if the gridcathode circuit of the tube is connerted directly across it. Hence, tapping down on the line, as shown. is neressary:
V ery-high-frequeney amplifiers empley tubes of the arorn or miniature type, which have the least loading offect as well as low interedectrode rapacities. The smaller looding effere means higher input resistance, and, for at given loaded Q of the tuned circuit, a higher voltage is doveloped between the grid and cathode. Thus the amplifieation of the stage is higher and the noise level lower.

A concentric cirenit may be tuned by varying the length of the imer combluctor (usinaliy be using close-fitting tubes, one stiling inside the other) or by comecting an ordinary tuning eomdenser across the line. Tapping the condenser down, as shown in Fig. 718-13, gives a bandspread effect, which is advantageous. It also helps to keep the Q of the circuit higher than it would be with the condenser connected directly arross the open end of the line, since at wery-high frequencies most condensers have losses which eamot be neglected.

Ordinary bakelite-based receiving-type tubes will function quite satisfactorily as oscillators
and superregenerative detectors at frequencies where r.f. amplification is impossible with standard tubes (as in the 112Me. bind), since tube losses are compensated for loy energy taken from the power supply. Ordinary moil and rondenser eirenits are prateticable with such tubersat 112 Mc . At higher frequencies, however, the special v.h.f. tubes are essential.

Fig. 719 - Blow diagran of the busie rlonents of the superheterodyne

C 7-8 The Superheterodyne

Principles - In the superhctrodynr, or superhet, receiver the frequency of the incoming signal is changed to a new radio frequency, the intermodiate frequency (i.f.), then amplified, and finally detected. The frequeney is changed be means of the heterodyne process ($\$ 7-1$), the output of an adjustable lecal oscillutor (the h.f. ascillutor) being combined with the incoming signal in a mixer or converter stage (first ditcolor) to produce a beat frequeney equal to the intormediate frequency.

Fig. 719 gives the essentials of the superhetemolym in block form. C.w, signals are made audible by heterodyning the signal at the second detertor bey the hert-frequency oncillator (b,fow.) or beat oscillator, set to differ from the i.f. by a suitable audio frequeney.

As a numerical example, assume that an intermediate frequency of for $k e$. is chosen and that the incoming signal is on 7000 ke . Then the h.f. oscillator frequency maty be set to 7455 ke., in order that the beat frequeney (745 s mimus 7000) will be 155 ke . The h.f. oscillator also could he set to biat5 ke., which will give the sime frequency difference. To produce an audible c.w. signal of, say, 1000 eycles at the second deterter, the beat oscillator would be set to either tin ke. or tint ke.

Charactoristics - The frequency-conversion procrse permits r.f. amplifieation at a relatively low frequency. 'Thus high selectivity can be obtained, and this selertivity is constant regardless of the signat frequency. Higher gatin also is possible at the lower frequency. The soparate oscillators cath be designed for

Fip, $\quad 18$ - Circuits of improvel O for very-high fre'Tu"ncios. A, reducing tule loading hy tapping down on the resonant wircuit: 13, use of a conerntric-line circuit, with the cuber similarly tapped down. The lime should be a guarter-way long, electrically; becanse of the udditional shomt caparity represented hy the tube, the physical length, will be sonewhat tess than given by the formula (\$ 10-i). In peneral, this reduetion in length will be greater the higher the grid tap on the inner conductor. The coupling turn should he parallel to the axis of the line and must be insulated fron the onter conductor.
stability, and, since the h.f. osiellator is working at a frequency considerably removed from the signal frequeney, its stability is practically unaffected by the incoming signal.

Images - Eirch h.f. oscillator frepuency will catse i.f. response at two signal frequencies, one higher and one lower than the oseillator frequency. If the oserillator is set to 7.455 kc , to respond to a $7000-k e$. signal, for example, it will respond also to a signall on 7010 kc . which likewise gives a 45% ke. beat. The undesired signal of the tiro is called the image.

The radio-frequency direnits of the receiver (those used hefore the freguenoy is converted to the i.f.) normally are tumed to the desired signal, so that the solectivity of the eirenits reduces the response to the image signal. If the desired sigmal and image have equal strengths at the input terminals of the receiver, the ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-imuge ratio, or image rutio.

The image ratiodepends upon the selectivity of the r.f. tumed circuits preceding the mixer tube. Also, the higher the intermediate frequeney, the higher the image ratio, sinde raising the i.f. increases the frequeney separation betwoen the sigmal and the image and places the latter fiarther away from the pratio of the resonatnee curve ($\$ 2-10$) of the signal-frequeney input riveuits.

Ohher spuriots responses - In addition to images, other sigmals to which the reeeiver is not ostensibly tuned maty be heard. Harmonies of the high-frequency oseillator may beat with signals far removed from the desired frequeney to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficiont shiclding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics ($\S 2-7$) generated by rectification in the second detertor may, by stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequeney of the ineoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Harmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses rein he redued by shiolding the beat oscillator and operating it at low output level.

The domble sumerhetorodyne - At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequarse is of the order of 45% ke. To redure image respomse the signal ireruently is converted first to a rather high (1500. 5000). or even $10,000 \mathrm{ke}$.) intermediate frequency, and then - sometimes after fur her amplifiestion - recomverted lo a lower i.f. where higher adjacent-chammel selectivity ran be obtatined. Such a receiver is catled a double superhetcrodyme.

(1) 7-9 Frequency Converters

Characteristies - The first detector or mixer resembles an ordinary deteretor. A sircuit tuned to the intermediate frequency is placed in the phate circuit of the mixer, so that the highest possible i.f. voltage will be deseloped. The sigmal- and oscillator-frequeney voltages appearing in the plate circuit are be passed to ground, since they are not wanted in the output. The i.f. tuned cireuit should have low impedance for these frequencies, a condition casily met if they do not approath the intermediate frequency.

Iig. 720 - Mixer or monvortar arcuits. Λ, prid injection with a pentode plate detector: B amd (C, separate injection circuits for converter tubes. Cirruit valuts are:

Component	Circuit A	Circuit 3	Circuit C
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$	0.01-0.1 $\mu \mathrm{ffl}$.	0.01-0.1 $\mu \mathrm{ffl}$.	0.01-0.1 ${ }_{\text {f }} \mathrm{fl}$.
Ci_{4} -	Apırox. $1 \mu \mu \mathrm{ff}$.	$50100 \mu \mu \mathrm{fd}$.	50) (0x) $n \mu \mathrm{fil}$.
H_{1} -	10.000 ohmis.	300 ohims.	5016 charin.
l_{2} -	0.1 megohm.	50, (00) whmes.	15,0100 ohme.
K_{3} -	50,000 ohms.	50,000 olmne.	50,000 ohims.

Plate voltage should the 250 in all ciranits. If a $0 . \mathrm{AB}_{3}$ or o $A C 7$ tube is used in Circuit A, R_{1} should be 500 olime.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High eonversion efficiency is desirable. The mixer tube moise also should be low if a good signal-to-moise ratio is wanted, particularly if the miser is the first tube in the receriver.

The mixer shomld not require too much r.f. power from the h.f. oscillator, since it may be diflienalt to supply the power and yet mantain grood oseillator stahility (version efliciences shoulal not depend too eritically on the oseillator voltage (that is, a small change in oscillatar output should not change the gain). since it is differult to maintain constant output over a wide frequeney range.

A change in oseilator frequeney caused by tuming of the mixer grid circuit is ealled pulling. If the mixer and oscillator could be eompletely isolated, mixer tuming would have no effect on the asedlator frequenery but in practice this is a difleult combliton to attain. Palling should be minimized. beeatuse the stability of the whole receover dopernds aritically upon the stability of the h.i. useilator. Palling decreases with separation of the sigmal and h.f. oscillator frequencies. heing less with high i.f.s.

Circuits - 'rpical frequency-embersion circuits are given in lig. 720. The variations are Chiefly in the way in which the oseillator voltage is introduced. In ligg. $720-\mathrm{A}$. the sereengrid pentade functions: as a plate detector: the oseillator is conparity-coupled to the grid of the tube, in parallel with the tuned input circuit. Inductive coupling maty be used instead. The conversion gatin and input selectivity gencrally are quod, so long ats the sum of the two voltagos (signal and oseillator) impressed on the mixer grid does mot exceed the grid bias. It is desirable to make the oscillator voltage an high as possible withont exceeding this limitation. The oscillator power required is negligible.

A pentarrid-converter tube is usod in tha circuit at K. Although intended for combination oscillator-mixer use, this trpe of tube usually will give more satisfartory performance when used in conjunction with a separate oscillator, the output of which is compled in as shown. The rircuit gives grod conversion efficiency, and, becanse of the electron coupling, aflords desirable isolation betwen the mixer and oscillator rircuits. A small amount of power is required from the oscillator.

Circuit (' is for the 6 L 7 z mixer tube. The oseillator voltage can vary ower a considerable range without alfecting the conversion gain. There are no critical adjustments, and the osedlator-mixer isolation is good. The oseilator must supply somewhat more power than in B.

A more stable receiver cenerally results, particularly at the higher frequencies, when weparate tubes are used for the mixer and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is little difference from the cost standpoint.

Tubes for frequency conversion - Any sharp cut-off pentode may be used in the cireuit of Tig. 720-A. The 6A137 and 6AC'7 give high conversion gain and excellent sigmal-to-noise ratio - comparable, in fact, to the gain and signal-to-noise ratio obtainable with r.f. amplifiers - and in these resperets are far superior to any other tubes used as mixers, particulaty between 14 and 100 Mc. However, this type of tube loads the circuit more (87 -6) and thas decreases the selectivity.
The $6 \mathrm{~K}^{2} \mathrm{x}$ is a good tube for the circuit at 13 ; its oscillator plate connection may be igmored. The GSAT also is exerellent in this circuit, although it has mo anode grid (No. 2 grid, in the diagram). In addition to these two types, any pentagrid converter tube may be used.
I.h.f. and U.h.f. comerters.-At frequencies above the $30-\mathrm{Mc}$. region the performance of the sperial mixer and converter tubes employed on the lower freguencies falls off becanse of greatly redured input resistance which, by loading the twed cirenit comected to the tube and thas reducing its Q. lowers the signal-to-noise ratio. However, the high-transemductance pentodes such as the GAC 7 and 6.1137 will perform fairly offectively in the cirenit of Fig. $220-\mathrm{A}$ up to 100 Me . or so.
Above about 100 Mc . the loading effect, in addition to the relatively late input capacity which limits the amonnt of forduetance that ran be used in the tuned cirruit, makes these tubes narkedly inferime to the sperial histh-freguenes pentodes such as the 9000 and acornseries, The later perform sureessfully up to too Mr.

At still higher frequencies - or. for that matter, anywhere above 200 Mr . - other types of converters are preferred. At these frequencies triode mixers, when operated as platerertifier detectons in suitable cirenits, give the least moise and maximum conversion tramsconductance.
lig. 721-A shows the elementary circuit for a single triode with cathode owcillator-voltane injection. In such an arrangment the cathonde connection usuatly terminates (with as short a lead as possible) in a math link near the osrillator tank, one chal of which is grommed. Athernatively, direct eaparity-coupled grid injection may be used in an arrangement similatr to that of Fig. $720-\mathrm{A}, \mathrm{C}_{4}$ being : wery small coupling condenser of perhaps 1 or $2 \mu \mu \mathrm{fal}$. often merely the free end of the empling lead placed within the fied of the oseillator coil or near the oscillator tube plate or grid.

The balanced triode cirenit of Fig. 721-13 affords the added advantages of symmetry to ground and complete cancellation of both the received-signal and oseillator voltages in the plate circuit. This serves further to improwe the signal/noise ratio as well as to stabilize operation. For optimum performance the os-cillator-voltage input should be carefully adjusted, by means of the coupling bet ween the two coils, to give maximum converter gain. The balaneed converter cireuit is mosi frequently
used with miniature dual triodes such as the 6.JG, with which it performs effectively up to 600 Me . or higher. The wesillator may be operated either on its fundamental or a harmonic. At frequencies above 200 Me . coaxial or "trough"--line circuits are chiefly used.

At still higher frequencies converters employing comentional tubes are inferior to other, basically different tymes, including highly specialized versions of velocity-modulation tubes of varions types. These techniques, however, are berond the seope of the present treatment; information concerning practical tubes and circuits is largely held confiedential by the military services.
For amateur work on these higher frequenries the use of sperial small u.h.f. dionles with

(B)

 mixer with separate owrillator tuler: 3 , halamed squarelaw mixer using a dual rionde tuhe with push-mull input circuit. L and C are tumed to the signal frequency.
$C_{1}-1(0)_{-\mu \mu} f_{1}$, silvered mica.
$\mathrm{C}_{2}-0.005-\mu \mu \mathrm{fl}$.
$1 h_{1}-10,000-50,000$ ol 1 ms.
extromely cose clement spacing as converters is a lugical solution. (rystal detectors have also been used extensively berause of their ready availability and independence of frequency limitations. Crystal detectors are not susceptible to the transit time limitations of chectronic tubes. Silicon is the most popular material for such applications; the erystals are groumd to minute dimensions and permanently mounted in tixed miniature holders with tungsten contacts. Fir. Fon- 1 shows a typical erystal mixer circuit with inductive coupling to a triode oscillator (955) or 90(12).

Beraluse stabilits of a rerstal detector can be achieved only at the expense of sensitivity, diode detecors are preforred up to the limit of frequency at which they ran be made to fumetion. Diodes have the further advantage that, they will function as mixers by using a harmonic of the oscillator voltage, making possible the use of conventional triode oscillafors for receivers operating up to the $2000-\mathrm{M}$ e.

 tal-detertor miver with arn induetisaly compled triode oscillatur: H , diofle miner with rathode-link compling to the awdillator rirt ait. L amd C are tumed to the sienal frequency; $l_{\text {m and }} G_{0}$ to the oscillator frequency.
C1-3 30- $\mu \mu \mathrm{fl}$. mica trimmer.
$C_{2}-2 \cdot \mu \mu \mathrm{fil}$, silured mica.
(3 - I $0-\mu \mu f_{1} \mid$ silured mica.

K_{1} - 50,000 , whm (matalliged carlonn).
$\mathrm{K}_{2}-50000-20.0000$ ohms.
region or higher. While operation of the owillator on a fumdamental is the more efficient method, the lass in ernversion efficioney dows not exced 2 te 1 avon with thiral harmonice operation provided the ascillator imput is sullicient to entablish a diode curreat of 0.2 to 0.5 mat. liode mixers are considerably more tolcrant as eoncerns oseillator voltage and other circuit conditions than the erystal type.

In the rimuit of 1 ing $722-13$ the rathode tuned cireuit, L. C.., is tumed to the ascillator fundamental, (.. is being made large emough so that it is cffertively a cathode hy-pasis condenser for the -igutal lrequenery.

C 7-10 The High-Frequency Oscillator

Design considerutions - Stability of the receiver ($\$ 7-2$) is dependent rhiefly upon the stability of the h.f. uscillator, and particular care should be given this part of the receiver. The frequeney of oseillation should be insensitive to changes in voltage, loading, and mechanical shock. Thermal effects (show change in frequency because of tube or circuit heating) should be minimized. These ends can be attained by the use of good insulating materials and cireuit components, suitable electrical design, and eareful mechanieal construetion.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to reduce spurious response (\$7-8).

It is desirable to make the L / C ratio in the oscillator tuned circuit low (high-C), since this results in increased stability (\$3-7). Particular care should be taken to insure that no part of the oscillator circuit can vibrate mechanically. This calls for short leads and "solid" mechanical construction. The chassis and panel material should be heawy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency. Care in merhanieal construction is well repatid by increased frequeney stability.

Circuits - Several oscillator eircuits are shown in lig. 723. The point at which output voltage is taken for the mixar is indiated in each case by X^{*} or I^{\prime}. Cirenits A and 13 will give about the same results, and require only one coil. However, in these two cireuits the rathode is above ground potential for r.f., which often is a ratuse of ham modulation of the oscillator output at it Mre and higher frequencies when 6.3 -volt heater tubes are used. Hum usually is not bothersome with 2.5 -volt tubes, nor, of course, with tubes which are heated by direct current. The circuit of Fig. 723 -C overcomes hum, since the cathode is

Fig. 723 - IVigh-froquenty oscillatur cirenits. A, servengrid groumdedplate oseillator; IS, triode prommdedplate oncillator: (., triode weillator with tickler eireuit. Complingtothemixaratas hetakonfrompont- \and). In A and B, coupling from Y will rodure palling eflects, hat gives lese voltape that from X; this 1swe is hest adapted to miner circuits with small oseillator-voltage requirements. Tly

	Circuit A	Circuit 13	(ircuit C
$\mathrm{C} 1-$	$100 \mu \mu \mathrm{fd}$.	109) $\mu \mu \mathrm{fl}$.	$100{ }_{\mu} \mathrm{ffil}$.
C_{2} -	$0.1 \mu \mathrm{fal}$.	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fl}$.
C3-	$0.1 \mu \mathrm{fd}$.		
R_{1} -	50.040 ohatis.	50.000 chimes.	50.000 whme.
R_{2} -	50.000 whms.	10,000 t10	10.000 to

The plate-supply voltage should he 250 volts. In eircuits 13 and C, R_{2} is used to drop the supply voltage to $100-150$ volts; it may lee omitted if voltage is obtained from a voltage divider in the power sumply (§8-10).
grounded. The two-coil arrangement is advantageous in eonstruction, since the feed-hack adjustment (altering the number of turns on L_{2} or the coupling between L_{1} and L_{2}) is simple merhanically.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessiary to adjust the feed-bark to obtain optimum results. Too much feed-back will cause the oseilator to "squeg," or operate at sevoral frequencies simultaneousty (\$7-4) : toolithe ferd-back will cause the output to be low. In the tapped-roil circuit.e (A, B), the feed-hatek is inereased by moving the tap toward the grid end of the coil: in r, by inereasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The oscillator phate voltage shoulal be as low as is eonsistent with adequate output. Low plate boltage will cause reduced tube heating and thereby reduce frequency drift. The oscillator and mixer rircolits should be well isolated. proferably by shielding, since coupling other than by the means intended may result in pulling.

To avoid pate-voltage changes which may cause the ascillator frerguency to change, it is good practiece ta use a voltage-regulated plate supply employing a gaseotis Vil tube (\$ S-S).

Trarking - For ganged tuning, there must be a constant difference in frequency between the oscillator and mixer cireuits. This difference must he exactly equal to the intermediate frequency (\$7-8).
Tracking methods for rovering a wide frequency range, suitable for general-owerage recoivers, are shown in lig. 7י4. The tracking eapacity, ('s, commonly consists of two condensers in parallel, a fixed one of somewhat less caparity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. In practice, the trimmer, $\left(\begin{array}{c}\text { dit } \\ \text { is first sat for the high-frequeney }\end{array}\right.$ end of the tuning ramge, and then the tracking condenser is set for the low-frequency end. The tracking raparity beommes larger as the percentage differmee between the usillator and signal freduencies beeomes smaller (that is, as the sigmal frequency heeomes higher). Typical cirruit values are given in the tables under Fig. 72.1

In afmateur-band receivers, tracking is simplified by choosing a bandspread rircuit which gives practically straight-line-frequency tuning (equal frequency (hange for earh dial division), and then adjusting the oscillator and mixer tuned circuits so that both cower the same total number of kilocycles. For example, if the i.f. is 455 ke . and the mixer eireuit tunes from 7000 to 7300 kc . between two given points on the dial, then the oscillator must tume from 7455 to 7655 ke . betwen the same two dial readings. With the handspread arrangement of Fig. 715 -(\%, the tuning will be practically straight-line-frequeney if the capacity actually in use at C_{2} is not too small; the same is true of 71% - A if C_{1} is small compared to C_{2}.

1.7-11 The Intermediate-Frequency Amplifier

Choice of frequency - The selection of an intermediate frequeney is a compromise between various conflicting fartors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio ($\$ 7-8$). A low i.f. also inereases pulling of the oscillator frequeney ($\$ \mathbf{-}-9)$. On the other hamd, a high i.f. is benefocial to hoth image ratio and pulling, hut the selertivity and gain are lowered. The difference in gatin is least important.

An i.f. of the order of 45 k . gives good selectivity and is satisiactory from the standpoint of image ratio amd ascillator pulling at frequencies up to 7 Mr. The image ratio is poor at $1+\mathrm{Me}$. When the mixer is conneeted to the antemon, but aleg口ate when there is a

Fig. 724 - Comerter-circuit rawhing methods. Following are approximate circuil , alues for 450 - to $40.5-\mathrm{kc}$. i.f.s, with thing ranges of apmomatelv $2.15-2,-1$ and Ci having $100 \mu \mu \mathrm{fd}$. maximm, and the total minimum capacitance, including C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{ff}$.

Tuning Range	I_{1}	1.2	C3
1.7-1 Mc.	$50 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.0013 \mu \mathrm{fd}$.
3.-7.5 Mc.	$14 \mu \mathrm{~h}$.	12.2 mh.	$0.0022 \mu \mathrm{fd}$.
7-15 Mc.	$3.5 \mu \mathrm{~h}$.	$3 \mu \mathrm{l}$. ${ }^{\text {r }}$	$0.000 .45 \mu \mathrm{fd}$.
14-30 Mc.	$0.8 \mu \mathrm{~h}$.	$0.78 \mu^{\mu} \mathrm{h}$.	None uned

Approximate values for 450 . to 465 kc . i.f.s with a 2.5-to-1 tuming ranke, Ci and C2 being 350- $\mu \mathrm{ff}$. maximum, minimumincludint C_{3} and C_{4} being 40 to $50 \mu \mu \mathrm{fd}$.

'Tuning Range	1.1	1.3	C_{6}
0.5-1.5 Me.	$240 \mu h_{\text {, }}$	$130 \mu \mathrm{~h} .$	
1.5-4 Nc.	$32 \mu \mathrm{~h}$.	$25 \mu \mathrm{~h} .$	$0.00115 \mathrm{~m}_{\mathrm{f}} \mathrm{~d}$
4-10 Mc.	$4.5 \mu \mathrm{~h}$.	$4 \mu \mathrm{~h}$.	0.0028 mfd.
10-25 Mc.	$0.8 \mu \mathrm{~h}$.	$0.75 \mu \mathrm{~h}$.	None used

tuned r.f. amplifier between antenna and mixer. At 28 Mc. and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. Ahove 11 Me ., pulling is likely to be bad unless very loose compling can be used between mixer and oscillator.

With an i.f. of about ltol k ke. satisfactory image ratios can be secured on $14,2 s$ and 50 Me., and pulling can be reduced to negligible proportions. However, the i.f. selectivity is considerably lower, su that more tuned rireuits must be used to inerease the selectivity. For very-high frequencies, including 28 Me ., the best solution is to use a double superheterodyne (\$7-8), choosing oue high i.f. for image reduction (5 and 10 Mr . are frequently used) and a lower one for gain and selectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio sorvices, since such signals may be pioked up directly on the i.f. wiring. The fregumetes mentioned are fairly free of such interforence.

Fidelity, sidehnol rulting - As deseribed in $\$ 5-2$, modulation of a carrier canses the generation of sidebind frequencies numerically equal to the carrior frequeney plus and minus the highest modulation frequeney present. If the recoiver is to give a faithful reproduction of modulation which contains, for instaner, andio frequencies up to buot eycles, it must be capable of amplifying equally all frequencies contained in a band extending from 5000 cyeles above to 5000 cycles below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequence, this means that the i.f. amplifier should amplify equally well all frequencies within that hand. In other words, the amplification must be uniform over a hand 10 kc . wide, with the i.f. at its center. The sigmalfrequency cireuits usually do not have enough over-all selectivity to affect materially the "adjacent chanmel" selectivity (\$7-2), so that only the i.f. amplifier selectivity need be considered.

A 10-ke. band is considered sufficient for reasonably faithful reproluction of musice, but much narrower band-widths can he used for communication work where intelligibility rather than fidelity is the primary objective.

Fig. 725-Typiral intermediate-frequency amplifier circuit for a muntheterodyne receiver. Representative values for emponerts are tis follows:
$\mathrm{C}_{1}-0.1 \mu \mathrm{fd}$. at $45.5 \mathrm{ke}, ; 0.01 \mu \mathrm{fd}$. at 1600 ke . and hipher. $\mathrm{C}_{2}-0.01 \mu \mathrm{fl}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \mu \mathrm{fl}$. at $455 \mathrm{ke} . ; 0.01 \mu \mathrm{fd}$. above 1600 ke . $11_{1}-300$ ohms.
$1 \mathrm{I}_{3}-2000$ ohms.
$\mathrm{H}_{2}-0.1$ megohm.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, the higher modulating frequencies are attenuated as compared to the lower frequencies; that is, the upper-frequency sidebands are "cut." While sideband eutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of greater selectivity.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of eommunication, sideband cutting is not serious with two-stage amplifiers at frequencies as low as 455 kc .

Circuits - I.f. amplifiers usually consist of one or two stages. Two stages at 455 kc . give all the gain usable, in view of the minimum receiver noise level, and also give suitable selectivity for gool-quality 'phone reception.

A topieal cirait arrangement is shown in
 cate the circuit of the first. In principle, the i.f. amplifier is the same as the tuned r.f. amplifier ($\$ 7-6$). Ilowever, sime a fixed frequency is used, the primary as well as the secondary of the coupling trinsformer is tuned, giving higher selectivity that is obtainable with a closely coupled untuned primary. 'rhe cathode resistor, R_{1}, is commedted to a gain control circuit of the type previously described (§7-6); usially both stages, if two are used, are controlled by a single variable resistor. The decoupling resistor, $h_{3}(\S 2-11)$, helps isolate the amplifier, and thus prevents stray feed-back. C_{2} and R_{4} are part of the autumatic volumecontrol circuit ($\$ 7-13$) ; if no a.v.e. is used, the lower end of the i.f. transformer secondary is simply connected to ground.

In a two-stage amplifier the sereen grids of both stages may be fed from a commonsupply, either through it resistor (R_{2}) as shown, the sereens being conneded in parallel, or from a voltage divider ($\$ x-10$) arross the plate supply. Separates sreen voltage-dropping resistors are preferable for preventing undesired coupling between stages.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, hy-passing, and caroful circuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, is necessary.
I.f. Iransformers - The tuned circuits of i.f. amplifiers are built up ats transformer units (onsisting of a metal-shied container in which the coils and tuning comdensers are mounted. Both air-core and powdered-iron-core uni-versal-wound coils are used, the latter having somewhat higher Qs and, hence, greater selectivity and gain per unit. In universal windings the coil is wound in lavers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer roils. In a straight multi-layer winding, the turns on ad-
jacent lavers at the alges of the coil have a rather latge potential difterence between them as compared to the difference between ans: two adjaent fums in the same layer: hence a fairly late capacity current can flow between layers. Universal wimding, with its "erisscroserl" tums, tends to aroid buidher upsurh potential differenes, ant hence reduces dis-tributed-raparity efferts (\$2-8).

Variable tuming combensers atre of the midget type, ail-diclectric eondeners being preferable heranse their capacity is prate torally unaffected by changes in temperature and hamislity. Iromcore transomers may be tuncd by varing the inductance (permeabilite tuning), in whirh case stability comparable to that of variable aircondenser tuaing can be ohtained by use of high-stability fixed mica condensers. Such st ability is of great importance, sine a direnit whose frequency "drifts" with time eventually will be tumed to a difirerent frequeney than the other cireuits. thereher reducing the wain and selectivity of the :anplifier. Typical i.f. tramsformer construetion is shown in Fig. 726 .

Besides the type of iff transformer shown in
 chatacteristics are available. For higher that ordinary adjarent-chammel selectivity (triplethumed transformers, with a third tumed circuit inserted between the input and output windings, are hed. The energy is tranfermed from the input to the output windinge via this tortiory wimding, thus adding its solectivity 10 the wer-all selectivity of the tramsfomer. Variabl-selletivit! transformers also ran be obtained, These usually are provided with a third (untumed) winding which can be connected to a resistor, therebe loadiner the tumed eircuits and decrasing the (o and selectivits ($\$ 2-10$) to broaden the selectivity eurve. The variation in selectivity is brought about by switching the resistor in and ont of the cirenit. Another method is to vary the eoupling between primary and secondary, overcompling being used to broaden the solectivity curve and undercompling to shanpen it (s 2-11).

Selecticity - The ovel-all selectivity of the i.f. amplifier will depend on the frequeney and the momber of stages. The following figures are indieative of the hand-widths ($\$ 7-2$) to be experted with grod-quality transformers in amplifierssuconstructed as to keepregeneration to a minimum:

Intermediate frequenry	Band-asidth in kilocycles		
	2 times down	10 times down	100 times dou'n
Onewape, tinke. (air core)	8.7	17.心	32.3
Onestage, ti.ske. (irmocre)	4.3	10.3	24.4
Iwostares, ti.ske. (irm core).	2.9	6.4	10.8
T'wo stapes, 16in) ke.	11.0	16.6	27.4
Two stages, \%hut kc.	25.5	46.0	100.0

Tubes for i.f. amplifiers - Variable- μ pentodes ($\$ 3-5$) are almost invariably used in i.f. amplifier stages, since grid-bias gain control ($\S 7-6$) is practically always applied to the i.f. amplifier. Tubes with high plate resistance will

AIR TUNED

PERMEABILITY TUNED

Fig. 72! - Represcntative i.f. transformer consirue-
 air-tumed type) on watimpregnaled wowden dowels. 'Tlat shitd in the atir-thed traneformer prevents capacily compling betwern the toming condensers. In the permoability tumed tramsformar the rores consit of finely divided iron partioles sumported in an insulat-
 tonimg caparity is fisel, and the inductanes of the coils are varied by mosing the iron plags in and out.
have least effect on the selectivity of the amplilier, and thowe with high mutuall condurtance will give greatest gain. The choide of i.f. tules has practieally no ffect on the signal-to-moise ratio, siner this is determined by the preceding miser and r.f. amplitier (if the latter is used).

When single-ended tubes (\$3-5) are used, eare shoulal be taken to kerep the phate and wrid leals well separated. With these tuhes it is advisable to mount the sereen hy-pass condenser directly on the bottom of the socket, cross-wise between the plate and grid pins, to provide additional shiclding. The ontside foil of the emolenser shomld be comerted to ground.

Single-vignal effect-In heterodyne e.w. reception with a superheterollene receiver, the beat oscillator is set to give a suitable audiofrequeney beat note when the inoming signal is converted to the intermediate frequency. Fur example, the heat oseillator mat be set to 450 kc . (the i.f. being 455 ke .) to give a 1000 cycle beat note. Now, if in interfering signal appears at 4 a7 ke., it will aho the heterodyned by the heat oscillator to produce a 1000 -evele beat. This audio-frequincy imnge corresponds to the high-frequeney images alroudy discusised (s $7-s$). It can be reduced by providing enough i.f. selectivity, sine the imare signal is off the peak of the i.f. resomanee rurve.

When this is done, tuning through a given signal will show a strong response at the desired beat mote on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristio of less-selective reception; hence the name, "single-signal" reception.

The necessary selectivity is difticult to ohtain with non-regenerative amplifiers nsing ordinary tund dircuits unless a very low intermediate frequeney or a large number of circuits is used. In practice it is secured either by regenerative amplification or by a crystal filter.

Resurneration - Regeneration can he used to give a pronomored single-signal offed, patticularly when the i.f. is then ke. or bower. The resonamee curve of an i.f. stage at rition regeneration (just below the asoilating print) is extremely sharp, a bam!-width of i ke, at 10 times down :and bke at 1001 thes down hoing
 inage of at wiven signall thass wan hermered bex a factor at meaty ion for a bomberelo heat

Regenmation is maby introducod into an i.f. amplitior by powistag a small amonat of caparity complisas indweren erial atai plate. Bringing athort tength of wire, monnerted to the grid, inta the vicinity of the piate le:ud usually will suffor. Tha lerol-hatk mas j.e controlled be tha rembar rathonderesistor wain control. When the i.f. is regenerative, it is preferable te operate the thtm at reducod main (high hisas) aml dapmalonrerenerationtobring up the signal strength. This prevonts wioldoding and incerosus selortivit?

The higher solertivity with regonmeation re-

 high soledivity produced he wher mo:ans, :md therefore improves the sighal-tomonse ratios. The dis:advantane is that the remenerative wita varies with signa! strengeth, bemg less on stromer signths. amd the selertivity varios areomatigly.

Crystal filurs - The must sulisfinctury method of whaning high soldotivity is hy the
 tive filter in the i.f. :mplitior (s:20). (${ }^{(10 n-}$ parod to : gemel thmed virmit, the (! of sum a erystal is extromely high. The dimemsimes of the crystal :ne made and that it is resonnant at

 selertivity. 'The shaded arrat indieates the owerall band-width, or repion in whide response is ohtainable.

Fig. 727 gives a typieal arstal-filter resoname eurve. For simgle-signall reception, the andio-frequency image can berehned bey a factor of 1000 or more. Besiles pratically diminating the af. image. the high seledivity of the erystal filter provides great diveriminattion agaimst signals very chose to the desired signal in frequener, and, ber redueing the hamtwidth, reduces the respmase of the receiver to mose beth from sources external to the rereeiver and in the r.f. stages of the receiver itadf.

Crwal filmer circoils: phasins - Enveral erystal fiture cirouts atre shown in Fig. Fos. Thase at A and 13 :are promically identioal in performanme, althmuth differing in details. The
 with the socomalars sile of T_{1}, the input tramsformer, balamoded to groumal aither through at bair of romlensers, ('- (A) (A) be a center-tap) on the secomdiry, loe (6). Tha latider is completed ber the arestat, X, ame the phasing comshomir, res, which hass : maximum rapacity sumewhat hixher than the caparity of the erys-

 the rexstal arts as : arrioc-resomaint riment of very hish a amd thas alloms signats of the desired fromuency to be fod through © t.o $L_{2} L_{4}$,

Tho phasibe conten hats an :allditimal func-
 enparits. 'The holder caparity heromes : patt
 parallel-faned mennant riment at a fremberes shaghly higher than its series-resomant frem
 ftumer thas are prowntad from reathing the out put cirenit. 'The phasing cont rol, he var.ong the effere of the holdor caparity, permits shifting the parablem-resonant frepuency oxor a monsudaratole range, providing aljustahberometion of intortornis signals. The effer of mixetion

 control, far below the viluse that would be ex-

Gariable selechirity- In rirenits sumblas:
 bey adjustment of the variable impat imperdanoer, whicl is effortively in sorios with the ersstal resomator. This is acommplished by virreing ('t (the selfativit! cuntrul), which tumes the balamerd semulary direnit of $\%$. When the sermabary is bumed to i.f. resomatmen the parallel imperdance of the L ef a monbination is maximum and is furoly rosistico (se-10). Sine the secomdary dirent is centor-tapped, alpmosimatres ome-fourth of this resistive imperdaner is in series with the erestal throngh ' 3 : :und L_{4}. This lowers the Q oif the orssial cirenit and makes its selertivity minimmm. At the same time, the roltage applied to the erystal circuit is maximmm.

When the input cirmit is detuned from the arystal resonant frequenry the resistane eomponent of the input imperdance derereases, amel so dres the total parallel impedanme. derombingly, the seleetivity of the erystal cirmit becomes higher atm the applied voltage falle olf. It first the resistance deresesses faster than the applied voltage, with the resitt that the r.w. output from the filter inerewses as the soldertivity is ineroased. 'Ithe output falls off gradually as the ingut riment is depmad farther from rese onance, however, and the solectivity lemomess stitl hisher.
 minimum smectivity is still muth greater than that of at urmal two-stage hather amplifion and it is desirable to prowide a wider ramge uf selertivity, partioularly for 'phone reroption. 1 circuit which dore this is shown :st fior. T:S8-('. The primeiple of oureation is smalar, but a mueh higher value of resistamer amble introduced in the arestal ciranit to rednee the selectivity. The wutput tuned rimenit, $L_{3} \mathrm{C}_{3}$, must have high (!) A comprosited condenser is usce at ('2 (phasing) tan mantain circuit batancer, su that the phasing eantrol does not affeet the resonant frequency. 'lhe output cirenit functions as a voltage divider in such at way that the amplitute wi the earrier dedivered to the next grid does not vary appreciably with the velectivity setting. 'The variable resistor, h, maty comsist of a sorios of separate lixed resistors selecterl liy al tip switeh.

1. 7-12 The Second Detector and Beat Oscillator

Defertor circuits - The semond dateenor of a sumerheterodyme reevive performs the same fumetion ats the detertor in the smble reariver. but usually opreates at a higher inpat lewol becamse of the relatiomy great r.f. amplifia: tion. Therefore the ability to hatmelle large signals without distortion is preforable to high sensitivity: Plate detertion is usod to sombe extent, but the dinde detertor is mest pemplatr. It is expecially adapten to furnishing antomatio. gain or volume control (s $\mathbf{7 - 1 3}$). The basio cireuits are as described in $\$ 7-3$, althongh in many eases the dime chements are in ormpated in a multi-purpose tube which eontatins :n amplifier section in :uldition to the diondo unt.

The beat oseillator - Any statabarel weilhator dircuit ($\$ 3-7$) may be bised for the beat oscillator. Special beat-nseillator tramsormers are available, banally consisting of a tapped eoil with adjustable tuming: these are mosit ronveniently used with rirouits such as those

 aithonde amb gromal to provile fine andinst mont. The beat asciltater usually is compled to the seoomb-detertor tuned eirenit through a fixed combenser of a few $\mu \mu$ fid. capacity.

The beat ascillator shouh be well shiohlend. to prevent coupling to anv bart of the direnit
execpt the serond letector and to prevent its harmonico from getting inte the front cond of the reociver and bexing amplitiond like regular signats. Tos this emit, the blate foltage should be as low as is consistent with anflicient andiofrofurney outpat. If the la alt werillatom out put is tom lam. atrong signalis will mot give a proportiontatelys trong andior responase.

An meillatimg seromd lomertor may be used to give the amblo hat mote, hat, sime the defertor must bre detmod liom the i.i., the selere tivity amusignal strongth will be reduced, while
 the high signal kerel at ther serond detector.

1 7-13 Automatic Volume Control

Principlos - Dulomatice requlation of the Lain of the perciver in inverse promertion to
 rishly in 'phone reepption, since it tends to kerp, the whtput herel of the reeriver eonstant regardless of input signal strength. It is readily acomplished in superheterodye reerivers by using tha avorage roctitied de. voltage, developed lig the received signal across a resistance in a deteren cirruit (\$7-3), to vary the hiats on the r.l. and i.f. amplifier tubes.

Fig. 283 - Crsatal filter cirmits of three tybes. All pise variable balld-width, wilh C: laving the preatest range of wheqtists. Ilurir undation is diorused in the toxt. Suitable cireuil sahues arr as follows: (ireuit A, T_{1}, sweial i.f. input transformer wilh hiph-inductance primary, $/$ I, closely conulded to tumed secomdary, $L_{2} ; C_{1}$,

 rimuit A "wept that the meomdary is eroter-tapped;
 A: $l_{3} l_{\mathrm{a}}$ is a transformer with primary, L_{4}, correzpomding
 phat transformer wilh tumed primary and low-impe-
 apmed -tator phasing eothenerer. appoximately 8

Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.e. hias is applied is increased. Control of at least two stages is advisable.

Circuits - A typical circuit using a diodetriode type tube as a combined a.v.c. rectifier, detector and first adudo amplifier is shown in Fig. 729. One plate of the diede section of the tube is used for signal detection and the other for a.v.e. rectification. The a.v.c. diode plate is fed from the detector dinde through the small coupling eondenser, C_{3}. A negative bias voltage resulting from the flow of rectified carrier current is developed across h_{4}, the diode load resistor. This negative bias is applied to the grids of the eontrolled stages through the filtering resistors ($\$ 2-11$), $l_{\text {s. }} R_{6}, R_{7}$ and R_{s}. When S_{1} is elosed the as.e. line is groumded, thereby removing the a.v.e. bias from the amplifier whithout disturbing the detector cireuit.

It does not matter which of the two diode plates is selected for audio and which for a.v.c. Frequently the two plates are connected together and used as a rombined dotertor and a.v.e. rectifier. This could be done in Fig. 729. The a.v.d. filler amd line would comere to the junction of R_{2} and r_{2}. while $\left({ }_{3}\right.$ and R_{4} would be omitted from the cireuit.

Delayed a.b.c. - In liz. 729 the andio diode return is made directly to the cathode and the a.v.e. dionde return ton ground. This places negative bi:s on the a.ver. diode equal to the d.c. drop throngh the eathode resistor (a volt or $t w o$) and thus delays the application of a.v.e. voltage to the amplifier gribs, sibe no rectifieation takes plare in the a. V.e. dionle eircuit until the earrior amplitute is large emough to overeome the hias. Without this delay the a.v.e. Wonlal start working even with a very small signal. This is undesirable, beranse the full amplification of the receiver then could not be realized on weak signals. In the :udio diode circuit this fixed hias would cause distortion, and must be awoided: henere, the return is made direetly to the rathode.

Time conseant - The time ronstant (\$2-(i) of the resistor-eondenser combinations in the a.v.e. circuit is an important part of the system. It must be high enomgh so that the modulation on the signal is eompletely filtered from
the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audio-frequenes variations in the a.v.e. voltage applied to the amplifier grids would reduce the percontage of modulation on the incoming signal, and in practice would cause freguency distortion. On the other hand, the time constant must not be too great or the a.v.e. would be mable to follow rapid fading. The capacity and resist-
 constant which is satisfactory for high-frequency reception.

Signal-strengih and tuming indicutorsA useful areresory to the remeerer is :n indicator which will show relative signal strength. Not only is it an and in giving reports to transmitting stations, but it is helpfulalso in aligning the receiver circuits, in ronjumetion with a test owcillator or other steady sinnal.

Three types of indicators are shown in l'ig. 730. That at A uses an electron-raty tube (\$3-5), several types of which are availathle. 'lhe grid of the trionde section misually is comereted to the a.v.e. line. 'The particular type of tube used depends upon the voltage asailable for its grid; where the a.v.c. valtage is lagre, a remote
 preferonce ta the more sensitive sharp) cut-off trpe (6id5).

In 13, a milliammeter is rommerted in series with the d.c. plate lead to ond or more ref. and i.f. tubes, the gride of whirh ate routrallod by a.v.c. voltage. Simee the plate eurent of sueh tubes varies with the strength of the inooming signal, the meter will indicate relative sigmal intensity and may" he calibrated in "s" prints. The saste range of the meter should be chosen to fit the mmber of tubes in use; the maximum plate carent of the average remote cutoff r.f. pentode is from 7 to 10 milliamperes. The shunt revistor', R. enables setting the plate current to the full-sialle value ("zoro adjustment"). With this system the ordinary meter reads downwards from full seale with increasing signal strength, which is the reverse of normal pointer mowement (dockivise with increasing reading). Fipecial instruments in which the zero-eurrent pasition of the prointer is on the right-hand side of the seale are used in commercial receivers.

The system at C usus a $0-1$ man. milliammeter in a bridge circuit, arranged so that the

Fik. 729 - Antomatice vohme control circuit using a dual-diode-triole as a combined a.v.e. rectifier, serond detector and firat andio-frequency amplitier. $\mathrm{h}_{1}-0.2 .5$ mewhm.
$12_{2}-50.0100$ tw 250,0000 ohms.
$\mathrm{H}_{3}-2(\mathrm{mon}$ shms.
$K_{4}-2$ to $\overline{5}$ incerolims.
18: - 0.5 to 1 meqohm.

R10-0.5-mequhen variable.
$\mathrm{C}_{1},\left(\mathrm{~S}_{2},\left(3-100 \mathrm{H}_{\mu} \mathrm{fd}\right.\right.$.
($\mathrm{i}_{4}-0.1 \mu \mathrm{f}$ I .
(is, (\%, $1 ;-0.01 \mu \mathrm{fd}$.
(\because (: $0-0.01$ to $0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{10}-5$ to $10-\mu \mathrm{fd}$. electrolytir. $\quad \mathrm{C}_{11}-250 \mu \mu \mathrm{fd}$.

Receiver Principles and Design

meter reading and the simal strength increase together. The current through the brameh containing l_{1} should be approximately equal to the current through that containine l_{2}. In sume manufactured receivers this is brought about by draming the sereen woltage-divider rumernt and the current, to the screens of threer r.f. pentudes (r.f. amd i.f. st:uges) themugh R_{2}, the sum of these currents being about equal to the maximum plate current of one a.v.e.eont rolled thixe.

 the resistane of l_{1}. h_{2} amd h_{3}. The intial setthag is made with the manu:d sation control set near maximum. When h_{3} shmoll be adjusted to make the metor read zero with no signal.

C 7-14 Preselection

I'urpose - l'meselection is added signal-frequeney selectivity ineorporated before the mixer stage is reached. An ref. :mpliber frecoding the misergeneratly is catled a prewtertor, its purpose in part at least. being to diseriminate in fatore of the simbal agamst the imare. The preselertom may consint of one or momer if. amplifier stages. When its tuminer control is Fehared with those of the miver and casillator, its cirenite must frark with the miser eireuit.

The riredit is the same as disersed earlier (8 T-ij). Sn external presterfor stage may be used with receivers having inaldequate inatge ratios. In this rase it is hatt as a separate unit, often with a thaed output eirenit which selver a further improvement in soloctivity The wntput rimenit uenally is link-coupled (s 2-11) to the reroiver.

Sigmal moise ralio- In r.i. amplifier will
 a mixer beratue the gath is higher and heranse
 in higher internal tube noise than dows the ordinary pentode stroture. Hemer a preselector is adsamtarembs in increasing the signal-tomoise rationore that obtamable when the miser is fed direrely from the antemma.

Imerse suppression - The imase matios (s-s) olotamable at frequeneion up to and including 7 Ile. with a single preselector stage are high enough, when the intermediate frequence is tis ke., so that for all practical purposes there is mo apprexiable image repomere. Average inatgeratios on 1t Mr. and 2s Me. are $50-75$ and $10-15$, respertively. This is the werall selectivity of the r.f. and mixer thmed cireuits. A secome preselefor stage addiner anwher tumed riruit, will inerease the rations th

On verr-high frepucheres. it is impracticable tor attempt to serure a frood image ratio with at 45a-ke. i.f. Comed preformane ran be memed only by using a high i.f. or a double supertheterodyue (s $7-8$ with a high-frectuener first i.f.

Resenerution- Regeneration may be used in a preselector stage to increase both gain and selectivity. Since its use makes tuning more critiealand inereaser ganging problems. regener-
ation is seldom employed except at 14 Me. and aloove, where adequate ithage suppression is difficult to ohtain with nom-regenerative eiments. The same disulvantages exist as in the case of a reqenerative i.f. amplifier (\$7-11). The effect of regeneration is rourhly equivalent to adeling another nob-regonerative proselector stage.

 are: $R_{1}, 250$ ohms; $R_{2}, 3.40$ ohns; R_{3}, 1000 -ohn variable.

Regracration maty he introduced by the sathe method as used in regenerative i.i. amplifiers ($57-11$). The manual main control of the state will sume as a volume ront rol.

Reareneration in : preselector does not improve the signal-to-moise ratio, sine the tube noise is fed batek to the wrid eireuit along with the signal to add to the thermat-agitation moise migitatly present. This mone alsw is amplified.

4. 7-15 Noise Reduction

Types of moise- In addition to tube and cilcuit move ($\$ 7$-h), much of the moise interferemer expertienced in reeeption of high-frequeney signals is emaned by domestie electrical ergipment and hy automobile ignition systems. The interfermee is of two types in its rflects. The tirst is the "hiss" tepe, consisting of overlapping pulses similar in mature to the receiver moise. It is latrely reduced by high selertivity in the recoiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss"

Fip, äs - Ludionutput-rireuit amplitule-limit-

$(\therefore-0.2-2 \mu \mathrm{l}$.
$(\therefore-11.01) \mu \mathrm{h}$.
($\mathrm{a}-\mathrm{T} \mu \mathrm{fd}$.

l:1-IV-lisirs rathe.
type uf interference usually is coused by commatator sparking in d.e. and series-wnand ace. motors, while the "shot" typeresults from sepatrated park dischargen (a.c. powor kaks, switch and key (licks, ignition spanks, atod the like).

Impulse moise - Impuise maise, berathse of the extremely short duration of the fulses as eompared to the time between them, mast have high make amplitmbe for contain muth aborage encrgy. Hence, mosise of this type st mong emongh to eallow muth interfareme generally has an instantanerous amplitude munh higher then that of the signal being rearised. The general
 noise is that of allowing the signal amplitude to pass thragel the reodiver unafferted, but making the merover imperative for amplitudes greater that that of the signat. The greater the amplitude al the pulse compared to its time of daration the morr sumensitul the moseredar-
 be suppressed.
 the time duration of the impulses is inereased.
 the eirenits. Hener, the mome sedertivits ahe:s! of the nown-italucing leviere, the mone diflient

Aman limirins - A considurable degrere of
 plished by amplitude-limiting arrangements applied to the andion ontput virenit of :1 re(eviver. surh limiturs alkn maintain the signal output manly monstath with fading. Dingrams of topiad witput-limiter vicenits: are shown in fig. 7:3. ('ircuit A emploss a trionde tuhe uner-
 10 volts), so that it saturates at a bow signal Iave The armamemont af 13 hats hotter limiting ehamenteristics. I pentome alldio tatw is oproated at redured sorecol voltage (3.5 rolts or so). \&o that the ontput pown remains pate-
 ramge of mure thath 100 f (1) These outputlimitarerstems arre sumplo. ath! adabtable to mest reabiers. Howerer, they bamot prevent moise peaks from overlonding jrevans airaits.
secomd-detector circuits - The rircuit of Jhir. 7 an "chops" moise peaks at the seroml detectar of a superhet recodiver by meatas of a
 above a predelormined signal level. The :andio output of the deteretor monst pass thanght the diande to the ervid of the amplifier there. The diode mommally would be mon-eomblating with the eomections shown were it not for the fact that it is siven prositive bias from a 30-volt
source thromgh the aljustable poraritiometer,
 value to present lass of : addio signal.

The :undian signal liom the deterten ram be: eonsidered to menhatate (S. 5 - 1) the stealdy diond current, and comduction will take plare so long as the dionde plate is positive with rospere to the cathoser. When the signal is suffi--bontly large to swing the atthode positive with pespert for the pate, howerer, condurtion reatses. and that portion of the signal is cut off from the :mblis :mplifier. The point at which cout-of oreous can be selerted by aljustment of f_{3}. By sotting h_{3} so that the signal just pasions throngh the "valve," moise pubses highuer in amplitude than the sigmal will be cent off. The

 ond rewtileation. Wherl the rextifiod voltage is nesatioe, as it is from the usual dionde detertom
 732-15 must be wed.

An athethesignal of :bhout tern volts is reguired for enmed limiting action. When: beat aseilatiar is land for rew. rewotion the bif.a. voltare shoulat he smatll, so that incoming moisw will hot
 prolume farge : andia wht jut.

A serond-detertar mosise-limitines rirenit. which antmatatially adjusts itndi th the reraiod ramior level is shown in Fig. 7a: The dionde
 (shunted by the high-resistance andin volume (ontm, h_{4}) and R_{5} in sorins. The athonde of the diŇ novise limiter is tapped on the lame resistar att a point such that the average reedified ratrior voltage (mogative) at its arid is : pproximately twire the negative voltage at the eathonde, both measured with releremee to
 the grid direuit, su that the andio modulation

 tialls the rectitiod earmior soltage alome. Tha rathonde, bumerer, is froe to follow the modalation, aml when the modnation is 100 per rent the peak cathonde voltage will just equal the steady grid voltage.

At all momblation perantage below 100 por (ront the grid is megative with respere to cath-
 rathomberimit. A moiso pulso remeding the prak woltage whioly remesolits bot per cont modulation will, hownor, make the grid positive with respert to eathoble. The relatively low plate-rathode resistance of the 6N: then shunte the high-resistance andio output cireuit,
effectively short-circuiting it, so that there is practically no response for the duration of the peak over the 100 per cent modulation limit.
R_{5} is used to make the noiso-limiting tube more sensitive by applying to the plate an audio voltage out of phase with the eathonde voltage, so that, at the instant the grid goes positive with respect to cathode, the highest positive potential also is applied to the plate, thus further lowering the effective plate-cathode resistance.

If. moise silencer - In the circuit slown in Fig. T34, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise amplifier stage, and rectified by the fullwave diode noise rectifior. 'The noise circuits are tuned to the i.f. The rectified noise voltalge is applied as a pulse of negative bias to the No. 3 grid of the fist i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltare. The noise amplifier-rectifior eireuit is biased by means of the "thresbold control," R_{2}, so that rectification will not stant until the noise voltage exceeds the desired-sigmal amplitude. With automatic volumt cantrol the al.v.e. voltage ran be applied to the grid of the noise amplifier, to augment this threshold bias. This sy:tem improved the signal-to-noise ratio some 30 dh. (power ration of 1000) with heavy ignition interforemee, rasing the signal-to-moiso ratio from - 10 (b). without the silenerer to $+2(0)$ dh, with the silencer in a typieal instance.

Fig. 732 - Serieswalve noise-limiler circuits. A, as userd with an infinitr-impedanee detertor; 13 , with a dionde detector. I'spical values for compoments are as follows:
$\mathrm{R}_{1}-0.2 \overline{5}$ mequhm.
$\mathbf{R}_{2}-50,0000$ ohms.
$\mathrm{R}_{3}-10,000$-ohnms.
$1 \mathrm{R}_{4}-20,000$ to 50,000 ohins.
$C_{1}-250 \mu \mu \mathrm{fd}$.
C. $2, \mathrm{C} 3-0.1 \mu \mathrm{fd}$.

All other diode-rirenit constants in \mathbf{B} are eonventional.

Fig. 733 - Automatic nois--linter for superheterodynes. 'I' - I.f. transformer with a balanced secondary for working into a diste rectifier.
$\mathrm{R}_{1}, \mathrm{H}_{2}, \mathrm{~K}_{3}-\mathrm{I}$ mégolim. $\mathrm{C}_{1}-0.1-\mu \mathrm{fl}$. paper.
R_{4} - I-Ine wohm variable. (: C $\mathrm{C}_{3}-0.05-\mu \mathrm{fl}$. paper.
 $\mathrm{R}_{\mathrm{i},} \mathrm{R}_{\mathrm{s}}-1010,000$ ohms. $\quad \mathrm{C}_{6}-0,001-\mu \mathrm{fd}$. mica (for 12:- 2,000 ohms. r.f. filtering, if Siw --S.f.s.t. torylt. (on-iff switeh). needed).
The switch should be mounted close to the circuit clements and contro!led by an extension shaft if necessary.

Cirenit values are normal for i.f. amplifiers (\$7-11), excopt as indicated. The noise-rectifier transformer, T_{1}, has an untuned secondary closely compled to the primary and centertapled for full-wive rectifieation. The eentertap rectifior (§8-3) is used to reduce the possibility of r.f. fecd-back into the i.f. amplifier (noise-siloncer) stage. The time constant (\$2-6) of the noise-rectifier load circuit, $R_{1} C_{1}{ }_{1} C_{2}$, must be small, to prevent disabling the noise-silencer stage for a longer profod than the duration of the moise puls. The r.f. rhoke, $R F^{\prime} C$, must be effertive at the intermediate frequency.

Adequateshichling and isolation of the noiseamplifier and rectifier cireuits from the noisesilancor stige must be provided to prevent pussible self-oseillation and instability. 'This "ireuit should be applied too the first i.f. stage of the receiver, before the high-solertivity eircuits aro reathed. On the other hand, it is most efferelive when the sigmal and noise levels are fairly hidrla (meaning ome or two r.f. stages before the miver) since several volts must be obtatued from the noise rectifier for good siloneing.

[1 7-16 Operating Superheterodyne Receivers

C.w. reception - For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequeney ($\$ 7-8$). To adjust the heatoscillator frequency, first tume in a moderately weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the recoiver tuming unchanged) to give a suitable beatomote. The beat oscillator need not subsequently be tourhed, except for ocrasional cherking to make certain the frequency has not drifted from the
initial setting. The b.f.o. may be set on either the high- or low-ferpener side of zoro beat.

The use of a.v.e. ($\$ 7-13$) is mot generally satisfactory in $6 \boldsymbol{w}$, reception beranse the roreiber fatin rises in the spares between the dots aml dathes, giving an imerease in moise in the same intervals. and because the reetified heat-oscillatore viltage in the secoud detereme
 a constant reduction in wain and prevents utilization of the full sensitivity of the remerer. Ienere, the gain preforably should be manually adjusted to givesuitableadio-fromener output.

To avoid owerlonding in the i.f. cireuits. it is msuably better to contmon the i.f. and r.f. Wain and kerp the audiongan at a fixed vahue than to use the at.f. gain control as a volume comtrol and leave the r.f. gain fixed at its highest level.

Tuning with therrvstal fillar - If the receiver is equiped with a erestal filter the thaing instructions in the preceding paragraph still apply, but more care must be used both in the initial adiastment of the beat oseillator and in tumber. The beat oncillator is set as deseribed abover, hat with the ersstal filtor in umeration and odjusted to its sharpest bosition, if variable selectivity is available. The intial adjustnusut shented be made with the phasing eomiter ($\$ 7-11$) in the intermediate position. After it is completed. the beat oseillator should be left set and the receiver tuned to the otherever of zern beat (atudio-frequence image) out the same carrier to give a beat mote of the same tone. This beat will be considerably weaker thath the first, and maly be "phased wht" almost complotely he reirefal adjustment of the phasinge contonl. Phis is the adjustmont for burmal operation; it will be fommet that ane side of zorn beat has practically dixappeared. leaving maximum repmonse on the desired side.

An interfering signal having a beat note difterine from that of the al imane (am lo

Fig. 73.t - I.f. mois--ilman! circait. The pate suphly

 r.f. f(r.llarh).

$\mathrm{K}_{1}-0.1$ m.wohm. $\mathrm{K}_{4}, \mathrm{R}_{5}-0.1$ mepohm.
1_{1} - surcial i.f. trancformer for nomer revtitior.
similarly phased out, provided its carrier frequency is not too near the desired carrier.

Depenting upon the filter design, maximum solectivity may cature the dots and dashes to lengthen out su that thers seem to "runt together." Phis, plus the fact that tuming is quite critiral with extremely high solectivity, masy make it desimblo to use somewhat less pelectivity it ordinary operation. Howerer. it must he emphasized that . to realize the benefits of the crystill filter in reducing interference, it is necessary to do all thang with it in the circuit. Its selecetivity is so high thate it is almost impmomble to find the desired station quickly, should the filter be switehed in only. when interferenee is present.

- 'Phour rereption - In reeception of 'phone signals. The mormal promedure is to sot the ref.
 :and we the :andias gatin control for setting the volumer 'lhis insures maximam effertiveness of
 allal mathtatiang constant atudio output on either strong or weak signals. On oreasion a strong siental elase to the fremuener of a woraler deximed atation may tatio control of the als.e. in which rane the weaker station will practimally dixappear becalase of the robued gain. In this rase heter reception mas result, if the : S. .c. is swit ched off, using the mamual r.f. wain eontmal to sot the waill at a point which provents "hamking" be the stomere signal.

I erystal filter will do much toward reduring interference it phone reception. Althengh the high solectivity futs sidebomds ($\$ \overline{-}-11$) and thereber redures the andiomatput, esperially at the highor andin frequences, it is possible to use guite high selectivity without dentosing intelligibility "ven though the "quality" of the
 reception, it is advisathe to do all tuning with the filter in the rimuit. Variable-selertivity lilters permit athome oi selectivity to suit ibterferener cunditions.

An umbesired carrier rose in fresurency to a desired earrier will hoterolyone with it to produce a beat mote ergat to the freduencey differenee. sudh a heterodyne an be remaed by adjust ment of the phasing cont rol in the erystal filter. It ramment he prevented in al "simaght" superheterodyon havine no revstal filter.

A tome eontrol often will he of help in reducing the effeets of liggt-pitched heterodyues,
 wft the higher atudio frepuremies. This, like sidebatmed cuthing with high selectivity, canses some reduction in mat uralness.

Spurious rosponsos - Spurious responses can be reoognized wilhout a great deal of difficulty. Ofton it is pmoible th identify an mage be the mature of the tramemittine station, if the frequency atsigmments apmeng to the frequenery to which the recerver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal camses a heterodrne heat note with the
desired sigmal and is actually on the same frequeney. the beat note will not change as the receiver is tuned through the signall; but if the interfering signal is an inage, the heat will vary in pitch as the receiver is tunct. The beat oserilator in the reveiver must he turned ofl for this test. Lsing a crestal filter with the beat oscillator on, an inage will peak on the side of zero hatat opposite that on which the desired signal peahs.

Harmonie response can be rerognized by the "tuning rate," or movement of the tming dial required to give a specefied change in beat note. Signals wetting into the i.f. wial high-ferfueney oseillator hammons tume more rapidly (less dial movement) through a given change in beat mate than to signals received by momal means.

Ifamomies of the beat oscillator can be recognized by the tuning rate of the beat-oseillator piteh control. 1 smaller mowement of the controh will sulfiee for a given change in beat note than is meersary with legitimate signals.

[1. 7-17 Servicing Superheterodyne Receivers

Trombermooting - 'Two basic mothods are employd. One is the "porint-by-pmint" system of static amadys. rempiring chacfly a multirange wolt-ohm-milliammeter. Beginning at the power transormer, the operating woltages at earh point in the cirenit are monsured. Abmematly Iow or high voltases. of the absener of imblation at al given point in the circuit, presumably indiate a defertive womponent at that point. The analysis may then be completed with the aid of the ohmmeter and a little deduction. cudine with repair or replacement of unservideable compment:.

An alternative methex, commombe emphend be profesional radio servermen, is that of "dynamic" or "chammel" analysis. The principle is that of applying it test signal to the r.f. input, and tracing it -tare-hy-stame thomgh the rewiver. The r.f. and i.f. stages are charked be tuned amplifiers fording a linear dene ton which operates an indicatur wheh as vammutube valtmeter, electrom-ray voltmeter. or cathode-ray tube. A probe on the end of a shielded lead with a very small comdenser ($1-2 \mu \mu$ fol.) in series is nowd to pirk up the signal in the ounpot of any stane, and the thand amplifiers are adjusted to the frequener of the stage. Thus the presenee or atsence of the signal at any point in the reeder may be determined, as well an the mation level.

1f. alienmon- 1 ralibated sighal men-
 for initial aligntume of an i.f. :mplifior. Some
 also is mereded. If the reveiver hats at thning meter, its indieations will serve for this purphase. Ahemativels, if the signal generator is of the modulated type. an ace. output metar (high-resistance voltmeter with copper-wide rectifier) can be comected across the mimary of the output transformer, or from the plate of
the last audio amplifier through a $0.1-\mu \mathrm{fd}$. blocking condenser ($\$ 2-13$) to the receiver chassis. The intensity of sound from the loudeneaker can be judged by ear, if no output meter is available, but this method is not as achurate as those using instruments.

The procedure is as follows: The test oseillator is adjusted to the desired intermediate frequeners and the "hot" or ungrounded output lead is clipped on the grid terminal of the last i.f amplifier tube. The gromed head is emmerted to the reecioer chasis. The trimmer condensers of the transformer feeding the seromd detector are then aljusted for maximum signal output. The bot lead from the generator is nest rlipped on the grid of the next-to-last i.f. tube, and the second from last i.f. transformer is brought into alignment by adjusting its trimmers for maximum output. This process is continued, working bata from the second detector, watil all of the i.f. transformers have been aligned. It will be ne essary to reduce the output of the signal gencrator as more of the i.f. :mplifier is brought into use, ber:mse the increasd gain otherwise may caluse ownloading and consennent intaremate results. It is devirable alwaly* to we the minimum signal strength which gives usemblut pat readings.

The i.f. transiomer in the plate eireuit of the mixer is aligned with the signal-generator output lead comberted th the nixer grid. Sinee the thane reirenit fording the mixer grid is thed to a monsiderably higher frequener, it can aftertiony shat-cirnit the signal-generator ontput, and themefore it may be necessary to disemued this rirenit. With tube having a top grid-wap comaediom, this can be done by simply manoring the gride olip from the tube eap.

If the tuning indie: ator is used ats an output moter the als.e. shand be on: if the audiooutput methoed is nased, the ase.e. should be off. The beat oweillater hould be off in either case.

If the i.f. amplifier has a cerstal filter, the filter should be switeledout Alignment is then carriod out ats described atowe, setting the signal generator :as rlomby as possible to the frequency of the erystal. IIter aligment, the erysial sheuld be switehed in and the oseillator frequency varied tame and forth over a small range cither side of the erystal frequeney to find its exat frequence: which will be indie:ated by a sharp rise in outpont. Leawing the sixnall generator set on the erystal prak, the i.f. timmers mas be realigned for maximum output. The meressary meadjust ment should be small. The signal mencrator irmpency shoud be cheremed iregumbly to make sure th has mot drifted from the eryatal puak.
 aligning a erystal-tilter i.f. amplition, since the high selectivity ente sidebands and the results may be inatecurate if the audio output of the receiver is used as a eriterion of aligmment. Lateking :an a.s.e. tuning meter the transformers may be aligned by ear, using a weak momodulated signal adjusted to the erystal
peak. Switeh on the beat oseillater, adjust to a suitable tome, and align the tramsformers for matsillum : andion output.

An :mplifine which is omly slightly ont of alignment, as at rewult of mormal dritt from
 realignod by using :aty stoady signal, such as a loral bromeranting station. in lien of at test usillat.an. Allow the rercion to warm up thormothy (an lome or so), fane in the signal as

R.f. alisnmomt - 'The wjowtive in align-

 ing range. 'The adjustment maty be carriod out with a test wallatur of suitable frequeney
 the heard. Fïrst set the tuning dia! at the high-
 tort axillator to the frequense indiated by

 the remiver for this tast. Adjust the ascillator

 and of the ratuge, fict the test-tarillatior fregueney wat the frequeney indiatard by the recoiver dial atal earefally than the test arallator until dissignal is heated in the resedrer. If the frequence of the sigmal as indicated bey the tasterseillator ralitmation is higher thand that inadiated hy the reximer dial, bume inhurtane (ar more capandy in the trackine condenser) is needed in the rencober osedilator eirmit; if the frequency is hawer. less imductabe (loss trateing rapateity) is reguired in the recoiver oseil-
 means for varying the imbutames of the corle:

 various himde of minaliqument: the lower row -hom- ther

 band f.m. raceiver enrue tahen after atizament los tie

 side wi rembance (top): Latow, the same i.f. comerely aliphod that with the tor- omollator tumed viphty aff lire-

or the eap:ubity of the trateking condenser, to permit aligning the receiver taning with the dial ralibration, Sot the trest werilator the the frememey indicated by the readiver dial, :amb then adjust the tracking ratsabityor inductanme of the recriver cowillator aboil tor obtath maxi-

 band allid forth betwern the ands of the ramge sexeral times herner the proper rombination of
 enses, Indter mer-all tranhiner will result if frefomemen near bat mot artmally at the coms of the thailg range are solereted, instead of taking the caterme dial settings.

Dther the wasilator rathe is propery atjustral, sot the rexomor and test usalator to the
 mixer trimmer comdenser lar maximma hise or signal, then theref. fimmers. Resen the tuming dial amd tas mailator tor the lon-freymoney emel of the rauge, and repmat ; if the cirwits are propery desistued, wo change in trimmer set-

 lese rabmaty resmates dar rimate less indablander in roplimed.

Trameking sehlona is pariat thromphont a
 intermediate pants in the range maty show it tor ler slighty off. Numally the salin variation from this rather will be suall, howners, amb it
 coms of the ranese. If most reerption is in a partioular part of the raugr, such as an amat
 maximum performaner in that regint, exen thongh the ends of the frephemey rathere ats a whole mity le slighty wut of : aligmment.
lisuml alignmurnt - More arcurate and

 or "wohbalator" which tranes ollt the response

 variad were at shtalde ranse at al low athlis

 the tere frepurner. - 0 that thar harizontal dellootion is : fometion of frequenoy. The recti-

 a mave popmetional to the rewiver response in terms of the instantanemas value of the os-

 is pessible with all artinary signal wencoator amd output meter, partioularla in the rate of wide-hand i.f. cimples.

Fig. 736 - A, a typical single-trace response rurve of a selective high-filelits i.f. system. lb, pattern of the amplifier in A made highly regenerative, ilhatrating instability. C, domble trade of a single overcourled i.f. stage with the return trate displaced. A similar knee leseated lower on the skirts wombl indiateremeration.

Apparatus and methols for ohtaining visual curve traces are deseribed in Chapter Nineten. The simplest arrangement is that which employs a reartaner-1 whe modubated oseillator operating on 1000 ke ., the sutput of which is combined with that from an mmodulated variable-tuning r.f. weselifitor in a mixer tube, to provide a heterodyned signall at the desired center freguency.

Kither "double trace" and "single trace" patterns maty he ased. The domble trate pattern is obtained hy applying a triamenar swerep to the f.m. wisillator at a frequeney half that of the salwooth sweep on the horizontal plates of the cathoderay tube. The return sweep produes a reversed pattern superimposed on the first and is useful for cherking symmeny and frequency calibration. The single-trace pathern shows the same two oppo-site-sefurno resoname curves, but with the seend curve displared by a half erele of the andioswep frequency. It is useful in displaying irregulatities in the pattern which might he ohseured be superposition of the trames.

The aligment procelume follows that deseribed for the ossillator-output-meter methowl. Assuminer a diode scomad interetor, run a shielded lead to the wortian input terminals of the oscillescope from the "high" side of the dionde lome mesistor - hasially the andio valume control. With a trione biased detertor. the bias resistor and by-pass comdenser circuit should be opened and the vertiral terminal comerted to the cathonis of the deteretor tube arross a 0.5 -megohm leak to gromul, bypassed with a 2 2at $-\mu \mu$ (id. condenser. The phate load should be shorted out. This will make the resonance patierns appar upside down, but does not change the ir interpretation.

The r.f. output from the miser should conneet direetly to the grid of the last i.f. tube. Add the i.f. frepucney to 1000 kc . and set the unmodulated signal penerator to this frequency. For example, if the i.f. is 465 ke., set the a.m. signal gemerator to 1465 kc . At the usual bandwidth of 30 ke., the signal at the grid of the last i.f. stage will swing from 150 ke . to 480 ke and back. If the signal generator is set wo the exact i.f., a double-trace patitern should appear on the sereen. Center this pattern with the oscilloseope sweep vernier. Adjust the i.f. trimmers until these peaks coincide. For single-trace analysis, the oscilloseopesweep, frequency should be reduced one half.

To align the next i.f. stage, move the r.f. output lead to the grid of the tube and adjust the next i.f. transformer. It may be necessary to readjust the output transformer after this operation. When aligning triple-tuned or highfidelity i.f. eircuits, it is most important that the paaks in the double pattern coincide and have nearly equal amplitade.

To align the r.f. and mixer input circuits, the variable-irequency signal generator should be set t.o a fregurney which, by addition to 1000 ke., produces the desired r.f. signal frequaner. As cach stare is added, the output lewel must be redued to keep the pattern on the sereen. 'To avoid overloading, only enough signal should be used too overcome local interference. Aljust the r.f. trimmers for maximum vertical amplitule of the pattern, as with an output meter. Dial calibration can be chceked by selting the test ascillator on frequency and adjusting the h.f. oscillator trimmer in the receiver to center the pattern on the sercen.

Pif. 73 - Response - Rurves of a wherheterodyne with crystal filter (made at a very low repectition rate). Λ, crystal in "broad" position, phasing control at center. A, phatangeontrol set to place the rejectionslot on lowfrefucticy side. C, with slot on hiph-frequency side.

Oscillation in r.f. or i.f. amplifiers - Oscillation in high-frequency amplifier and mixer eireuits may be evidened by squeals or "birdies" as the toming is varien, or by complote latek of andible output if the ascillation is strong chough to cause the a.v.e. system to reduce the receiver gatin drastically. Oscillation can be cansed by poor connertions in the common groumal ciredits, esperially to the tuningcondenser rotors. Inadequate or defective bypass roudensers in cathoule, plate and sereengrid direuits also catn catuse such oscillation. In some cases it may be alvisable to provide a shield between the stators of pre-r.f. amplifier and first-detector ganged tuning condensers, in addition to the usual tube and interstage shielding. A motal tube with an ungrounded shell will canse trouble. Improper sereen-grid voltage, resulting from a shorted or too-low screengrid series resistor, also may be responsible for such instability.

Oscillattion in the i.f. cireuits is independent of high-frequency tuning, and is indicated by a continuons squeal whieh appears when the gain is advanced with the c.w. beat oseillator on. It can result from similar defects in i.f. amplifier cirenits. Inadequate eathode by-pass copacitance is a common cause of such oscillation. An additional by-pass condenser of 0.1 to $0.25 \mu \mathrm{fd}$. usually will remedy the trouble. Similar treatment can be applied to the screengrid and plate by-pass filters of i.f. stages.

Instability - "Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultaneously at high and low frequencies ($\$ 7-4$). This may be caused by a defertive tube, too-high oscillator plate or screen-grid voltage, excessive feedback, or too-high grid-leak resistance.

A varying leat note in c.w. reception indieates instability in either the h.f. oscillator or beat oscillator, usually the former. The stability of the beat oscillator can be checked by introducing a signal of intermediate frequency (from a test oseillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor commections or defective parts are the likely couse. Instability in the high-frequency oscillator may be the result of poor circuit design ($\$ 7-10$), loose comnections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate and/or sereen supply cireuits. Mixer pulling of the oscillator circuit ($\$ 7-9$) also will cause the beat-note to "chirp" on strong e.w. signals hecause the oscillator load changes slightly.

In 'phone reception with a.v.e., a peculiar type of instability ("motorboating") may appear if the h.f. oscillator froquency is sensitive to changes in plate voltage. As the a.vec. voltage rises the electrode currents of the eontrolled tubes decroase, derreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the osciltator, its frequence changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.c. voltage, thus tending to restore the original conditions. 'Ihe proress then repeats itself, at a rate determined by the signal strength and the time constant of the pewer-supply circuits. This effert is most pronounced with high i.f. selectivity, as when a erystal filter is used, and can becured by making the oseillator relatively insensitive to voluge changes and by regulating the plate voltage supply ($\$ 7-10$).

(1) 7-18 Reception of FrequencyModulated Signals

F.m. receivers - A frequency-modnlation receiver differs in circuit design from one designed for amplitude morlalation chiefly in the arrangement used for detecting the signal. Detectors for amplitude-modulated signals do not respond to frequency modulation. It is also necessary, for full realization of the noise-reducing benefits of the f.m. system, that the signal applied to the detertor be completely free from amplitude nodulation. In pratetice, this is attained by preventing the signal from rising above a given amplitule by means of a limiter ($\$ 3-10,7-15$). Sinee the weakest signal must be amplitude-limited, high gain must be provided ahead of the limiter; the superheterodune type of circuit almost invariably is used to provide the necessary gain.

The r.f. and i.f. stages in a superheterodyne for f.m. recention are practically identical in circuit arrangement with those in an a.m. receiver. Nince the use of f.m. is confined to the very-high frequemeies (above 28 Me) a high intermediate frequeney is employed, usually. between 4 and 5 Mc . This not only reduces image response but also provides the greater band-width necessary to accommodate wideband frequency-modnlated signals.

Receiter rcquirements - The primary requirements sre sufticient r.f. and i, f. gain to "saturate" the limiter even with a weak signal, sufficiont band-width ($\$ 7-2$) to accommodate the full frequency deviation either side of the carrier frequency without undue attemuation at the edges of the band, a limiter circuit which functions properly on both rapid and slow variations in amplitude, and a detector which gives a linear relationship between frequency deviation and amplitule output. The audion cireuits we the same as in other receivers ($\$ 7-5$), execpt that in communications-type recoivers it is desirable to cut off the upper audio range by a low-pass filter (\$2-11) becallise higher-frequency noise components have the greatest amplitude in an f.m. receiver.

The limiter - Limiter circuits generally are of the plite-saturation type ($\$ 7-15$), where low plate and sereen voltage are used to limit the plate-current flow at high signal amplitudes. Iig. $738-A$ is a typical circuit. The tube is selfbiased ($\$ 3-6$) by a grid leak, R_{1}, and condenser, C_{1}. R_{2}, R_{3} and R_{4} form a voltage divider

Fif. 738 - Fim. limiter circuite, A. singletube platesaturation limiter; 13, cascade limiter. 'I'ypical values are:

Receiver Principles and Design

(§ 8-10) which puts the desired voltages on the screen and plate. The lower the voltages the lower the signal level at which limiting occurs, but the r.f. output voltage of the limiter also is lower. C_{2} and C_{3} are the plate and screen by-pass condenscrs, of conventional value for the intermediate frequency used. The time constant (\$2-6) of $R_{1} C_{1}$ determines the behavior of the limiter with respect to rapid and slow amplitude variations. For hest operation on impulse noise ($\$ 7-15$) the time constant should be small, but a too-small time constant limits the range of signal strengths the limiter can handle without departing from the con-stant-output condition. A larger time constant is better in this respect but is not so effective for rapid variations. Compromise constants are shown in Fig. 738.

The cascade limiter, Fig. 738-B, overcomes this by making the time constant in the first grid circuit suitable for effective operation on impulse noise, and that in the second grid ($C_{4} R_{6}$) optimum for a wide range of input signal strengths. 'Ihis results, in addition, in more constant ontput over a very wide range of input sigual amplitudes because the voltage at the grid of the socond stage already is partially amplitude-limited. Resistance coupling ($R_{5} \dot{C}_{4} R_{6}$) is used for simpliesity and to prevent unwanted regeneration, additional gain at this point being monecossary.

The rectified voltage developed across R_{1} in either circuit may be applied to the i.f. amplifier for a.v.c. (§ 7-13).

Discriminator circuits and operationThe f.m. detector commonly is called a discriminator, because of its ability to discriminate between frequency deviations above and those below the carrier frequency.

A rectifier connected to an ordinary tuned circouit adjusted wo that the signal frequency falls on one side of the response curve constitutes an elementary discriminator, because the rectifier output will vary with a change in the carrier frequency. If two such circuits are used with a balanced rectifier, one tuned above and the other below the signal frequency, amplitude variations are balanced out and the combined rectified current is proportional to the frequency deviation.

The circuit most widely used is the "series" or center-tuned discriminator shown in Fig. 739-A. A special i.f. coupling transformer is used between the limiter and detector. Its secondary, L_{1}, is center-tapped and is connected back to the plate side of the primary circuit, which otherwise is conventional, C_{4} is the tuning condenser. The load circuits of the two diode rectifiers ($R_{1} C_{1} R_{2} C_{2}$) are connected in series; constants are the same as in ordinary diode detector circuits (\$7-3). Audio output is taken from across the two load resistances.

The primary and secondary circuits are both adjusted to resonance in the center of the i.f. pass-band. The voltage applied to the rectifiers consists of two components, that induced in the

Fig. 739 - F.m. discriminator circuits. In both circuits typical values for C_{1} and C_{2} are $100 \mu \mu \mathrm{fd}$. each; R_{1} and $K_{2}, 0.1$ megolim each. C_{3} in A is approximately $50 \mu \mu \mathrm{fd}$., depending upon the intermediate frequeney; $R F C$ should he of a type designed for the $\mathrm{i} . \mathrm{f}$. in use $(2.5 \mathrm{mh}$. is satisfactory for i.f.s of 4 to 5 Mc .). In either circuit the ground may be moved from the lower end of C_{2} to the junction of C_{1} and C.2, for push-pull andio output.
secondary by the inductive coupling and that fed to the center of the secondary through C_{2}. The phase relations between the two are such that at resonance the rectified load eurrents are equal in amplitude but flow in opposite directions through R_{1} and R_{2}, hence the net voltage across the terminals marked "andio output" is zero. When the carrier deviates from resonance the induced secondary current either lags or leads, depending upon whether the deviation is to the high- or low-frequency side, and this phase shift causes the induced current to combine with that fed through C_{2} in such a way that one diode gets more voltage than the other when the frequency is below resonance, white the second diode gets the larger voltage when the frequency is higher than resonance. The voltage appearing across the output terminals is the difference between the two diode voltages. Thus a characteristic like that of Fig. 740 results, where the net rectified output voltage has opposite polarity for frequencies on either side of resonance, and up to a certain point becomes greater in amplitude as the frequency deviation is greater. The straight-line portion of the curve is the useful detector characteristic. The separation between the peaks which mark the ends of the linear portion of the curve depends upon the Qs of the primary and secondary circuits and the degree of coupling. The separation beromes greater with low $Q s$ and close coupling. The circuit ordinarily is designed so that the peaks fall just outside the limits of the pass-band, thus utilizing most of the straight portion of the curve. Since the audio output is proportional to the change in d.c. voltage with deviation, it is advantageous for maximum output to keep the frequency separation between peaks down to the minimum value necessary for a linear characteristic.

A second type of discriminator is shown in Fig. 739-B. 'Two secondary circuits are used, one tuned above the center frequency of the i.f. pass-band and the other below. They are coupled equally to the primary, which is tuned to the center frequency. As the carrier fre-

Fig． 7.10 －Character－ istic of a typical f．m． deterter．＇The wertical anis represents the voltase dernloped ancou the load masistor as the fropluatay va－ rics from the exate resonation frequme This delevor would
 （1）：hanul－width of 1.50 h．．．ow．er hae linnar fortion of the rume．
quatry deriates the roltares indued in the
 woltage appearing arrose the somblaty heing nearer resumathe with the instathtane olls fre－ quenter．＇The detection dhatateristix is similar
 prak sepatation is detemmined bex the（es of the rirenits，the ereflaciont of rompliag，ame the tuning of the serombaries．Hixh（os ame lonse

A simple selfothenched stuperegenterative reroiver mat be wed as a fremurney detertor if it is thom so that the colriop frembery falls
 sum deteretors，off－tumed on withor side of the

 lowing a comserter unit．prosides hiort wain

F．in．rocriarer alimument－Nignment of f．m．renervers m，the the limiter is ramion out as described in si－17．For output measumement，
 shombd be emonereted in series with the limiter

 for ：s．v．e and the reocivor is provided with at

 brated sighal wemerstan on tort weillatom is deximble，sime the i．f．shombl be ：limand to be
 reading should he the same lan any fwo to st osellatar settings the same momber of hilo－
 essary to have buiform mesposide ore the whold band tu be reerived，althongh the ompont，at the edges of the ham！（limit of deviation（宗がll） of the（ramsmitted signals）should mot the less
 communia：ations work．a hamewidthof 30kr．or

 cillator set al intervals of al lew kiloweres either side of resotabore up to lare lablal limits．

Altar the i．f．athe front－exmb alightuent．the
 be done hy tomporarily discommeting（＇3，if the diseriminator rirenit of figg．7：3！－A is used， diseomenering h_{1} and 6_{1} an the eathode side， and inserting the milisumbeter or midero－ ammetor in serios with hez at the grounded end． This converts the discriminator to all ordinary
diode rectifier．Varying the signal－generator frequeney ower the rhannel，with the dis－ eriminator transformer adjusted to resmanere， should show mo chamge in output（at the band－
 indicated bo the meditied rument read be the meter．At this puint varions plate and sireren voltages ean le tried on the limiter tube or tubes，to determine the set of eonditions which gives maximum output with adequate limiting （nur rhange in rertiliod rument）．

When the limitar has been ehoeked the disuriminatar rommedions（an be pestored，
 Provision shomd be tande for meroving the comberems the the meter terminals．to take care of the revorial in palarity of the met reati－ fied entrent．Ant the sighat generator th the conter frosumoce of the hand and alloust the dixeriminaton transfumer trimmer combensiors to resumaner，whidh will he indicated hy zorn rectilied emment．＇Then sat the test aseillator at the deviation limit（S．5－11）on wne side ，wit the center freducney，allad mote the meter reading． Reverse the meter terminals and wet the test oxellatom at the deviation limit on the other side．The twor rading－shomlat the the same．If they are uot，they ana low made so be at slight
 newestitate merhorking the responso at reso

 zeporesponse frequener，while the primaty trimmer will have ment offert on the symmetry of the disrminator proks，A detectag curve having satisfactary limanity ran be ohtamal

lia．in（lail－
 C．ля，i．f．aliznmon！． 1－1．f．：wition ropornix． 13 Wrerall charan－ trri－tia thrtush the f．m．demotre．

（A）

（B）

A visual curve tramer is parientary ad－ vantageons in alignimg the wide－band i．f．
 aligned with ther discrmanator rement eon－
 above，the pattern ： 1 peraring as in Fig．7： 1 l －A．

 wive greatest noise mabution when the earmer i：tumed exambly the erenter of the rewemer
 the diswiminator．lereamer of the dereate in moise，this paint is ranlily remgnized．

When ：an ：mplitmatemodulated signal is tumed in it：mombation practio：ally dis：appears at exact resenamere，only those nonsymmetrical modulation compunents which may be present， being dotereted．If the signal is to one side or the other of resomance，hemereer，it is capable of causing interference to ：ul f．m．signal．

Chapter Eight

Power Supply

(1. 8-1 Power-Supply Requirements

Filament supply - lixerpt for tubes designed for battery operation, the filaments or heaters of vacumm tubes used in both transmitters and receivers are universally operated on alternating eurrent obtained from the power line through a step-down transformer (\$ 2-9) delivering a serondary voltage cqual to the rated voltage of the tubes used. 'lhe transformer should be designed to carly the current taken be the number of tubes which may be connected in parallel (\$ 2-(i) across it. 'lhe filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum (s 3-6).

For medium- and high-power r.f. stages of transmitters, and for high-power audio st ages, it is desirable to use a separate filament transformer for each section of the transmitter, installed wear the tube sockets. This avoids the necessity for athormally large wires to carry the total filament current for all stages without appreciable voltatge drop. Maintenance of rated filament voltage is highly important, experially with thoriated-filament tubes, since umber- or over-voltage may reduce filament life.

Plate supply - Divert current must be used for the plates of tubes, since any variation in plate current arising from power-supply causes will be superimposed on the signal being received or transmitted, giving an undesirable
 vecur at an adio-frequency (\$2-7) rate. Unvarying direct current is called pure d.c., to distinguish it from current whid may be midirectional but of pulsating character. The use of pure d.e. on the phates of transmitting tubes is required by FCC regulations on all frequenrios below (i) Mc.

Sources of phate power - D.e. plate prwer is usually obtained from rectified and filtered alternating current, hut in low-power and portable instathations may be secured from battorics. Dry batteries may be used for very low-power portable equipment, but in many cases a storage battery is used as the primary power source, in conjunction with an interrupter giving pulsating d.c. which is applied ton the primary of astop)-11p transformer (s s-10).

Recrified-a.c. sumblies-Since the powerline voltage ordinarily is 115 or 230 volts, a stop-up, tabsionmer ($\$ 2-9$) is used to ohtatin the desired voltare for the phites of the tubes in the squipment. The altermating semodary current is chamged to unidirectional aurent by means of diode reetifier tubes ($\$ 3-1$), and
then passed through an inductance-capacity filter ($(2-11)$ to the load circuit, The load resisfance in whms is equal to the dec. output voltage of the power supply divided by the curront in amperes (Ohm's Law, \& 2-6).

Vollage regulation - Since there is always some resistance in power-supply circuits, and since the filter normally depends to a considerable extent upon the energy storage of inductance and caparity ($82-3,2-5$), the output voliage will depend upon the current drain on the supply. The change in output voltage with change in load current is called the voltage rogulation. It is expressed as a percentage:

$$
\% \text { Regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

where E_{1} is the no-load voltage (no current in the load cireuit.) and E_{2} the full-loud voltage (rated current in load circuit).

(1) 8-2 Rectifiers

Purpose and ratings - A rectifier is a device which will eonduct current only in one direction. The diode tube (\$3-1) is used almust ex.lusively for rectification in d.c. power supplies used with radio equipment. The important characteristics of tubes used as powersupply rectifiers are the voltage drop between plate and cathode at rated eurrent, the maximum permissible inverse peak voltage, and the permiswible peak plate current.

Voltage drop - 'lube voltage drop depends upon the type of tube. In vacuum-type rectifiers it inceresses with the current flowing be(ause of spateretharge effect ($\$ 3-1$), but cam be minimizod by using very small spacing between plate and cathode as is done in some rectifiers for reroiver jowor supples. Mercury-vapor rectifiers ($3-5$) have a constant drop of about 15 volts, regardless of current. This is much smaller than the foltage drops encountered in vacuum-t ype rectitiors.

Inverse prak roltage - This is the maximum voltage developed between the plate and eathode of the redtifier when the tube is not conducting; i.e., when the plate is negative with respeet to the cathode.

Peak phote curront - This is the maximum instantamens curront through the rectifier. It caln mever be smatler than the lowd current in ordinary eirenite, and may be several times higher.

Operation of morcury-rupor roctifiors Becanse of its comstant voltage drop, the mer-cury-vapor reatidier is more suscrptible to damage than the vacuum type. With the latter, the inerease in voltage drop tends to
limit current flow on heavy overloads, but the mercury-vapor rectifier does not have this limiting action and the cathode may be damaged under similar conditions.

In mercury-vapor rectifiers a phenomenon known as "arc-back," or breakdown of the mercury vapor and conduction in the opposite direction to normal, occurs at high inverse peak voltages, hence such tubes always should be operated within their inverse-peak voltage ratings. Arc-back also may occur if the cathode temperature is below normal; therefore the heater or filament voltage should be checked to make sure that the rated voltage is applied. This check shoukl be made at the tube socket, to avoid errors caused by voltage drop in the leads. For the same reason, the cathode should be allowed to come up to its final temperature before plate voltage is applied; the time required for this is of the order of 15 to 30 seeonds. When a tube is first installed, or is put into service after a long period of idleness, the eathode should be heated for a period of 10 minutes or so before application of plate voltage.

4. 8-3 Rectifier Circuits

Inalf-wave rectifirrs - The simple diode rectifier (§3-1) is called a half-wave rectifier, because it can pass only half of each cycle of alternating current. It: circuit is shown in Fig. $801-\mathrm{A}$. At the top of the figure is a representation of the applied a.c. voltage, with positive and negative alternations ($\$ 2-7$) marked.

(A)

(B)

(C)

Fig. 801 - Fundamental vacuum-tube rectifier circuits.

When the plate is positive with respect to cathode, plate current flows through the load as indicated in the drawing at the right, but when the plate is negative with respect to cathode no current flows. This is indicated by the gaps in the output drawing. The output current is unidirectional but pulsating.

In this circuit the inverse peak voltage is equal to the maximum transformer voltage, which in the case of at sinc wave is 1.41 times the r.m.s. voltage (§2-7).

Full-wave center-tap rectifier - Fig. 801B shows the "full-wave center-tap" rectifier circuit, so called because both halves of the a.e. cycle are rectified and because the transformer secondary winding must consist of two equal parts with a connection brought out from the center. When the upper end of the winding is positive, current can flow through rectifier No. 1 to the load; this current camnot pass through rectifier No. 2 because its rathode is positive with respect to its plate. The circuit is completed through the transformer center-tap. When the polarity reverses the upperent of the winding is negative and no current ean flow through No. 1 , but the lowerend is positive and therefore No. 2 passes current to the load, the return comnection again being the conter-tap. The resulting waveshape is shown at the right.

Since the two rectifiers are worling alternately in this circuit, each half of the transformer secondary must be wound to deliver the full-load voltage; hence the tutal voltage across the transformer terminals is twice that required with the half-wive rectifier. Assuming negligible voltage drop in the particular rectifier which may be conducting at any instant, the inverse peak voltage on the other rectifier is equal to the maximum voltage between the outside terminals of the transformer. In the case of a sine wive, this is 1.41 times the total secondary r.m.s. voltage (\$2-7).

Because energy is delivered to the load at twied the average rate as in the case of a halfwave rectifier, earb tube carries only half the load current.

The bridge rectifier - The "bridge" type of full-wave rectifer is shown in Fig. 801-C. Its operation is as follows: When the upper end of the winding is positive, current can flow through No. 2 to the load but not through No. 1. On the return circuit, current flows through No. 3 by way of the lower end of the transformer winding. When the polarity reverses and the lowar end of the winding becomes positive, current flows through No, 4 and the load and through No. 1 by way of the upper side of the transformer. The output waveshape is shown at the right.

The inverse peak voltage is equal to the maximum transformer voltage, or 1.41 times the r.m.s. secondary voltage in the case of a sine wave (§2-7). Energy is delivered to the load at the same average rate as in the case of the full-wave center-tap rectifier, each puir of tubes in series carrying half the load current.

(0) 8-4 Filters

Parpose of filler - As shown in Fig. 801, the output of a rectifier is pulsating d.c., which would be unsuitable for most vacuun-tube applications (\$8-1). A filter is used to smooth out the pulsations son that practically unvarying direct current flows throngh the load circuit. The filter utilizes the emergy-storage properties of inductance and capacity ($\$ 2-3$, 2-5), by virtue of which energy stored in clectromagnetic and electrostatir fields when the voltage and current are rising is restored to the circuit when the voltage and eurrent fall, thus filling in the "gaps" or "valleys" ill the rectified output.

Ripple coltase and frequency-The pulsations in the output of the rectifier can be considered to be caused by ath altemating current superimposed on a steady direct current ($\$ 2-13$). Viewed from this standpoint, the filter may be considered to consist of bypass condensers which short-rirenit the a.c. while not interforing with the flow of d.c., and choles or inductaness which permit d.e. to flow through them hut which have high reactance for the a.c. (\$2-13). The altomating component is called the ripple. The effectiveness of the filter maty be measured by the per cent ripple, which is the rem.s. value of the a.c ripple voltage expresced as a percentage of the de. output voltage. With an effective filter the ripple perentage will be low. l'ive per cont ripple in consideredsatisfactory fore.w. transmitters, but lower values (of the ortler of 0.25 per ent are neessary for hum-free spereh transmission and for receiver plate supplies.

The ripple frequeney depends upon the line frequency and the type of rectifier. In general, it consists of a fundamental plus a series of harmonies ($\$ 2-7$), the latter being relatively unimpertant since the fundamental is hardest to smoth out. With a hallf-wave rectifier, the fundamental is equal to the line frequency; with a full-wave rectifier, the fundanental is equal to t wice the line frequency, or 120 cereles in the case of a for-rycle supply.

Types of filtors - Indurtance-rap:arity filters: whe of the low-pasis type ($\$ 2-11$), using series inductances and shant capacitances. Practical filtors are identified as condenserinput and choke-input, depending upon whether a capacity or inductance is used as the first element in the filter. Resist:unceraparity filters ($\$ 2-11$) are used in applications where the current is wey low and the voltage drop in the resistor ran be tolderated.

Bhereder resistaner-sine the eondensers in a filter will retain their charge for a considerable time after power is remered (provided the load circuit is open at the timen) it is good practice to connert a resistor across the output of the filter to discharge the condensers when the power supply is not in use. The resistance usually is high enough so that only a relatively small percentage of the total output current is consumed in it during normal operation.

Components - Filter condensers are made in several different types. Electrolytic condensers. which atre availathe for voltages up) to about 800 . wombine ligh capacity with small size, since the diclectric is an extremely thin fim of oxide on :luminum foil. Condensers for higher voltages usually are made with a dielectric of thin paper impregnated with oil. The working roltage uf a mondenser is the voltare which it will withstand continuously.

Filter chokes or indurtances are wound on iron cores, with a small gap in the core to prebent manetic saturation of the iron at high currents. When the iron becomes saturated its permeability ($\$ 2-5$) derreases, comsequently the indurtance also decreanss. Despite the airgap, the induetance of a choke usually varies to some extent with the direct current flowing in the wimding: hener it is necessary to specify the inductance at the carrent which the choke is intended to carry. Its inductance with little or no direct current flowing in the wiading may be considerably higher than the load value.

4. 8-5 Condenser-Input Filters

Ripple roltane-The comrentional eon-denser-input filter is shown in Fig . $802-\mathrm{A}$. No simple formulas are avaibable for computing

the ripple wolt:ige, but it will besmaller as both capacity and inductanco are made larger. Adequate smouthing for transmiting purposes can be serured hy using t to s μ fid. at (' 1 and (2 and 20 to 30 heness at L_{1}, for full-wave rectifiers with 120)-recle ripple (8 - -4). A higher ratio of inductancre to capacity may be used at higher Load rexistances ($\mathrm{s} \mathrm{s}-1$).

Por reerivers, as shewn in Fig. 802-13, an additional choke, I_{2} a : mel condenser, (3 , of the same approximate salues, are used to give additional smothing. In such supplies the three condensers gemerally are $8 \mu \mathrm{fd}$. eath, although the input combenser. C_{1}. sometimes is reduced to 4 afd. Indurtancers of 10 to 20 henrys cach will give satisf:ctory filtering with these "apacitis v:lums.
For riphe frequme ie other that 120 cyeles, the inductane and capacity values shond be multiplied by the ratio 120%, where F is the actual ripple frequency.

The blecder resistance, l, should be chosen to draw 10 per eent or less of the rated output current of the supply. Its value is equal to $1000 E / I$, where E is the output voltage and I the bleeder current in milliamperes.

Rectifior peak current - The ratio of rectifier pak current to average load current is high with a mondenser-input filtor. Small rectifier tabes designed for low-voltage supplise (typu 80, ete.) generally carry load-eurrent ratings based on the use of comdenserinput filters. With rectitiors for higher power,
 not exeed 25 per cent of the rated peak phate current for whe tube whon : full-wate rectifire is userl, or omerighth the half-wime rating.

Output rolmar - The de. output voltage from a comdenmer-input supply will, with light loads or no load, approatel the peak transformer voltage. 'lhis is 1.41 times thar r.mas. voltage (in the case of ligm. Nol- A : and C^{\prime}, or 1.41 times the vollagu fanm tha erobler-tap to one cond of the secondary in lig. sol-15. At heave loms, it masy deerease to the arecelge value of sermmary
 age or even lass. beratuse of this wide ramger of output voltage with iand eurrent, the valtage regulation (scis) is inherently poor.

The output voltage obtainable from a given supply ramoot readily be ablalated, sisuce it depends eritiacally umen the lasd earrent and filter comstants. I'mar atreage comblitions it will be approximatoly equal tor or shmerthat
 tap and ome end of the serentalary in the fallwave conter-taj, reetifier cir-uit (S 8-3).

Ratings of commommes - Because the output voltage may rise th tha peak transformer voltage at light loads, the comdensers should have a worling-voltage rating (8 8-4) at least as hagh and proferahly somewhat higher, as a salfety factor. 'Thus, in the atso of : canter-tat rectifier having a tramsformer dolivering iso volts cach side of the ecoler-tap, the minimum safe comblenser valtage rating will be and x 1.11 or 775 colts. An stom-volt, or preferably a 1000-volt. cumbenser simulal be used. Filtser chokes should have the imductaner speeified
 betweren the wimding :and the wore aderpate to withatam the maximum watpat voltage

(C 8-6 Choke-Input Filters

Ripple vollugr - 'Ther riveuit of a singlesertion ehoke-input filum is shown in Fig.
 mation of the ripple to herevperem at theroutput of the filter is given hey 1 ho formula:

$$
\left.\begin{array}{c}
\text { Single } \\
\text { Suption } \\
\text { Filter }
\end{array}\right\} \not / / \text { Ripple }=\frac{100}{L C}
$$

 Lf', mast be equal to ar errator than 20 to reduce the ripplato is per erent or lass. This figure
 for the single-sedion filter. Simallor peremotages of ripple usually are more wommatally ohtatued with the twosection filter of lig.

803-B. The ripple perrentage (120-cycle ripple) with this arrangement is given by the formula:

For a ripple of $0.2 \overline{3}$ per cent or less, the denominator shond be 2600 or greater.
'lthen formulas ata be used lior other ripple frequencies by multiplying each inductance athd caparity valure in the filter bey the ratio $120^{\prime} h$, where F is the adeat ripple frequency.
'The distribution of inductance and caparity in the filter will be determined by the value of input-choke inductaner required (next para(raph), and the prmissible ace output impedance. If the supply is intended for use with an atudio-fraguency amplifior, the reactane (s 2-8) of the last filter combenser should be small (20 per cent or less) compared to the other aff, resistame or impmandee in the cirruit, usially the tutne mater resistance athl hat resistaner (s:3-2, 3-3). On the hasis of a lower a.f. limit of 100 rerles for spereh amplitication (s. 5 - 9), this combition is usually satisford when the out put caparity (last filtor capacity) of the filter is thes μ fil, the higher value being used for the lower tube amb load resistances.

The input rholer - The rectifier patak current amb the fewer-anply voltage regulation depend almost entirely upon the inductane of the input choke in relation to the load resistance ($\$ 8-1$). The function of the choke is to raise the ratio of average to peak current (by its enorgy storage). and to prevent the d.e. output voltage from rising alowe the average value (\$2-7) of the ace voltage appled to the rectifier. For both purposes. its imperdance ((§S-4) must bo high.

The value of input-rhoke indurtance which prevents the d.e. watput bohage from rising above the average of the rewified a.e. wato is the reilical imburlatre. Por 120 orevele ripple, it is given by the approximate formola:

$$
L_{\text {crit. }}=\frac{\text { Load revistance (ohms) }}{1000}
$$

For other ripple frequencies, the inductance required will he the alowe value molliplied by ther ration of 120 to the aretual ripple frequeney.

With indurtanme values less than eritiad, the d.e. output voltage will rise berather the filter tends to art as a comdemser-input filter ($\$ 8-5$). With critical inductance, the peak
plate current of one tube in a center-tap rectifier will be approximately 10 per cent higher than the d.e. load current taken from the supply.

An inductance of twice the critical value is called the optimum value. This value gives a further reduction in the ratio of peak to average plate current, and represents the point at which further increase in inductance does not give correspondingly improved operating characteristies.

Suinging chokes - The formula for critical inductance indicates that the inductance required varies widely with the load resistance. In the case where there is no load except the bleeder ($88-t$) on the power supply, the critical induetance required is highest: much lower values are satisfactory when the full-load current is being delivered. Since the inductance of a choke tends to rise as the direct current flowing through it is decreased ($\$ 8-4$), it is possible to effect an economy in materials by designing the choke to have a "swinging" characteristic such that it has the required critical inductance valne with the bleeder load only, and about the optinum inductance value at full load. If the bleeder resistance is 20,000 ohms and the full-load resistance (inchuding the bleeder) is 2.500 ohms, a choke which swings from 20 henrys to ${ }^{2}$) henrys over the full outputcurrent range will fulfill the requirements.

Resonance - Resonance effects in the series cireuit across the ontput of the rectifier which is formed by the first choke (L_{1}) and first filter condenser (C_{1}) must be avoided, since the ripple voltage would build up to large values (\$2-10). This not only is the opposite action to that for which the filter is intended, but also may cause execssive rectifier pak eurrents and abnormally high inverse pak voltages. For full-wave rectification the ripple frequency will be 120 cycles for a 60 -eycle supply (§8-4), and resonance will occur when the product of choke inductance in henrys times condenser capacity in microfarids is equal to 1.77. The corresponding figure for so-cycle supply (100 -eycle ripple frequeney) is 2.53 , and for 2)-cycle supply (50-ryele ripple frequency), 13.5. At least twice these prorhacts shomld be used to ensure against resonance effects.

Output voltage - Provided the inputchoke inductance is at least the critical value, the output voltage may be calculated quite closely by the equation:

$$
E_{o}=0.9 E_{t}-\frac{\left(I_{t}+I_{I r}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{r}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage hetween center-tap and one end of the secondary in the case of the center-tap rectifier); I_{b} and I_{L} are the bleeder and load eurrents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between rectifier plate and cathode (§8-2). These voltage drops are shown in Fig. 804.

At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and fullload voltages ($\$(\-1).

Fig. 804 - Voltaze drops in the powar-muphly circuit.
Ratings of components - Heaause of better voltage regulation, filter condensers are subjected to smaller variations in d.c. voltage than in the condenser-input filter (§8-5). However, it is advisable to use condensers rated for the peak transformer voltage in case the bleeder resistor should burn out when there is no external load on the power supply, since the voltage then will rise to the same maximum value as with a condenser-input filter.

The input choke may be of the swinging type, the required no-load and full-load inductance values boing calcolated as described above. The second choke (smoothing choke) should have constant inductance with varying d.c. load currents. Vahues of 10 to 20 henrys ordimarily are used. Nimee chokes usually are placed in the positive leads, the negative being gromoded, the windings should be insulated from the core to withstand the full d.c. output voltage of the supply.

11 8-7 The Plate Transformer

Outpul vollase- The output voltage of the plate transormer depends upon the required d.e. load voltage and the type of reetifier circuit. With condenser-input filters, the r.mis. secondary voltage usimally is made equal to or slighty more than the d.e. ontput voltage, allowing for voltage drops in the rectifier tubes and filter chokes as well as in the transformer itself. The full-wave center-tap rectifier requires a transformer giving this voltage each side of the secondary center-tap (\$8-3).

With a choke-input filter, the required r.m.s. secondary voltage (each side of center-tap for a center-tap rectifior) (an be calculated by the equation:

$$
E_{t}^{\prime}=1.1\left[E_{o}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{r}\right]
$$

where E_{0} is the required d.c. output voltage, I is the losul current (including bleeder current) in milliamperes, R_{1} and R_{2} are the resistances of the filter chokes, and E_{r} is the voltage drop in the rectifier. $E_{\text {f }}$ is the full-load r.m.s. (§ 2-7) secondary voltage; the open-circuit voltage usually will be 5 to 10 per cent higher.

Volt-ampere rating --The volt-ampere rating (§2-8) of the transformer depends upon the type of filter (eondenser or choke input).

With a condenser-input filter the heating effeet in the secondary is higher becanse of the high ratio of peak to average current, consequently the volt-amperes consumad by the transformer may be soveral times the watts delivered to the load. With a choke-input filter, provided the input rhoke has at latast the eritional inductance ($\$ 8$ - 6), the secombary volt amperes ean be caldulated quite closely by the equation:

$$
\text { See. V.A. }=0.00075 \mathrm{LI}
$$

where E is the tolal r.m.s. voltage of the serondary (between the outside ends in the ease of a center-taphed winding) abd / is the d.e. output curvent in millianmores (load current plus bleceder current). 'I'he primary woltamperes will be 10 to 20 per eent higher becanse of transformer lusises.

(1) 8-8 Voltage Stabilization

Gaspons rosulator tuhos - There is frequent ned for maintaining the voltare applied to a low-voltage low-ourrent rimuit (such as the oscillator in a superhet receiver or the fre-quency-controlling oscillator in a transmitter) at a pratetically ronstant value, regardless of the voltage regulation of the power supply or variations in load rurrent. In surh applications, fascous regulator tubes (VR10:-30, VR150-30, eta.) rath be nsod to good adviantage. The voltage drop arross such tubes is constant over a moderatoly wide eurrent range. The first number in the tube designation indieates the terminal voltage, the seeond the maximum pormissible tube current.

The fundamontal circuit for a gaseous regulator is shown in Fig. soi-A. The tube is connected in sorios with a limitime resistor, h_{I}, across a soure of voltage whish must be higher than the storting veltage, or voltage required for innization of the gas in the tube. The starting voltage is about 30 per cent higher than the operating voltage. The land is connected in parallel with the tube. For stable operation, a minimum tube current of is to 10 ma. is recuired. The maximum permissible eurrent with most typesis: 30 nit.; consequently, the load current canmot exered 20 to 25 ma. if the voltage is to he stabilized over a range from zero to maximum lo:ad current.

The value of the limiting resistor must lie between that which just promits minimum tube current to flow and that which just passes the maximum permissible tula amrent when there is no lowd current. The latter value is generally used. It is given be the equation:

$$
R=\frac{1000\left(L_{s}-L_{r}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the souree across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 30 ma .).

Fig. 805-13 shows how two tubes may be

used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be caldulated as above, using the sum of the voltage drops areross the two tubes for E_{r}. Since the upper tube must carry more eurrent than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exered 20 to 25 milliampores.

Voltage regulation of the ordar of 1 per cent Gath be obtaimed with rireuits of this type.

Electronic rolluger regulation - A voltage regulator circuit suitable for higher voltages and currents that the gaseous tubes, and also having the feature that the output voltage can be varied over a rather wide range, is shown in Fig. S06. A high-gain voltage amplifier tube (s 3-3), usually a sharp cut-off pentode (\$3-5) is romected in such a way that a small change in the output voltage of the powor supply ratuse a change in grid bias, and thereby a corresponding change in plate current. Its plate current flows through a resistor (h_{5}), the voltage drop across which is used to biats a second tube - the "regulator" tube - whose platerathode cireuit is commeded in series with the load circuit. The regulator tube therefore funetions as an atomatirally variable sories resistor. Should the output voltage inerease Slightly the bisis on the control tube will become more positive, (atusing the plate current of the control tube to incrase and the drop across h^{\prime} to increase correspondingly. The bias on the regulator tube therefore becomes more negative and the effertive resistane of the regulator tube increses, fausing the terminal voltage to drop. A dowrease in output voltage caluses the reverse artion. The time lag in the action of the system is negligible, and with proper eircuit constants the output voltage ran be held within a fraction of : per cent throughout the useful ramge of load currents and over a wide range of supply voltages.

An essential in this sestem is the use of a constant-voltage bias souree for the control tube. The voltage change which appears at the grid of the tube is the difference between a fixed negative bias and a positive voltage which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of bias is a dry battery of 45 to 90 volts, but a gascous regulator tube (VR75-30) or a neon bult of the type without a resistor in the base may be used
instead. If the gas tube or neon bulb is used, a negative-resistance type of oscillation (\$3-7) may take place at audio frequencies or higher, in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected across the tube. A similar condenser between the control-tube grid and cathode also is frequently helpful in this respect.

The variable resistor, R_{3}, is used to adjusi the bias on the control tube to the proper operating value. It also serves as an output voltage control, setting the value of regulated voltage within the existing onerating limits.

The maximum output voltage obtainable is equal to the power-supply voltage minus the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. The maximum current also is limited by the regulator tube; 100 milliamperes is a safe value for the $2 A 3$. Two or more regulator tubes may be connected in parallel to increase the current-carrying capacity, with no change in the circuit.

(1) 8-9 Bias Supplies

Requirements - A bias supply is not ealled upon to deliver current to a load circuit, but simply to furnish a fixed grid voltage to set the operating point of a tube (\$3-3). However, in most applications it is nevertheless true that current flows through the bias supply, berane such supplies are used chiefly in connection with power amplifiers of the Class-B and Class-C type. where grid-current flow is a feature of operation ($\$ 3-4$). In circuit dexign a bias supply resembles the rectified-a.c. plate supply ($\$ 8-1$), having a transformer-rectifierfilter system employing similar circuits. Bias supplies may be classified in two types, those furnishing only protective bias, intended to prevent excessive plate current flow in a power tube in case of loss of grial leak bias (\$3-6) from exeitation failure, and those whirh furnish the artual operating bias for the tubes. In the former type, voltage regulation ($\$ 8-1$) is relatively unimportant: in the latter it may be of considerable importance.

Fig. 806 - Electronic voltage regulator. The regnlator tube is ordinarily a 213 or a number of them in parallel, the control tube a $65 J 7$ or similar type. The filament transformer for the regulator tube must be insulated for the plate voltage, and cannot supply current to other tubes when a filament-type regulator tube is used. Typical values: $R_{1}, 10,000$ ohms; $R_{2}, 25,000$ ohms; $R_{3}, 10,000$ ohm potentiometer; $R_{4}, 5000$ ohms; $R_{5}, 0.5$ megohm.

In general, a bias supply should have wellfiltered d.c. output, especially if it furnishes the operating bias for the stage, since ripple voltage may modulate the signal on the grid of the amplifier tube ($\$ 5-1$). Condenser-input filters are generally used, since the regulation of the supply is not a function of the filter. The constants given in $\$ 8-5$ are applicable.

Voltage regulation - A bias supply must always have a blecder resistance ($\$ 8-4$) connected across its output terminals, to provide a d.c. path from grid to cathode of the tube being biased. Although the grid circuit takes no current from the supply, grid current flows through the bleder resistor and the voltage across the resistor therefore varies with grid current. This variation in voltage is practically independent of the bias-supply design unless special voltage-regulating means are used.

Fig. 807 - Supply for farnishing protective bias to a power amplifier. The transformer, T, should furnish peak voltage at least equal to the protective bias required.

Protective bias - This type of bias supply is derigned to give an out put voltage sufficient to bias the tube to which it is applied at or near the plate-current cut-off point (§3-2). A typical circuit is given in Fig. 807. The resistance, R_{1}, is the grid-leak resistor (§ 3-6) for the amplifier tube with which the supply is used, and the normal operating bias is developed by the flow of grid current through this resistor. R_{2} is connected in series with R_{1} across the output of the supply. to reduce the voltage across R_{1}, when there is no grid-current flow, to the cut-off value for the tube being biased. The value of R_{2} is given by the formula:

$$
R_{2}=\frac{E_{t}-E_{c}}{E_{c}} \times R_{1}
$$

where E_{t} is the output voltage of the supply with R_{2} and R_{1} in series as a load, E_{c} is the cut-off bias, and R_{1} is as described above.

When such a supply is used with a Class-C amplifier, the voltage across R_{1} from gridcurrent flow will normally be higher than that from the bias supply itself, since the latter is adjusted to cut-off while the operating bias will be twice cut-off or higher (§ 3-4). In some cases the grid-leak voltage may even exceed the peak output voltage of the transformer (1.41 times half the total secondary voltage, in the circuit shown). The filter condensers in such a bias supply must, therefore, be rated to stand the maximum operating bias voltage on the Class-C amplifier, if this voltage exceeds the nominal output voltage of the supply.

Voltage stabilization - When the bias supply furnishes operating rather than simply protective bias, the value of bias voltago
should be as constant as possible even when the grid current of the biased tube varies．A simple methorl of improving bias voltage regulation is to make the bleeder resistance Iow enough so that the current through it from the supply is several times the maximum grid rurrent to be expected．By this means．the pror－ centage variation in courment is reduced．＇fhis method recpuies，bowere that a cemside rable amount of power be dis－ipated in the bereder， which in turn calls for at reditedy large power transformer and filtor chooke．
［Bias－voltage variation may also be reduend by means of a regulator tube，as shown in fig． 80s．The regulator fobe usually is a trime having a plate－current rating alequato to carry the experted grid current．It is eathomb－hinserl
fi九．808－Anto－ matic valtaye rog．
 plis．．F゙or boーt ＂peration the tulue used should br one hav ing high mutual condactance（s 3．2．

（\＄3－6）by the resistor，A_{1} ，which is of the order of several humdred thousand ohms or ：a few megohns．so that with to grided curtont the tube is biased practically to cut－off．Berabuse of this high resistance，thar erid rurrent will llow through the plate resistame of the remulator tube，whirh is romparatively low，rather that through h_{1} and h_{2} ；hence the voltape from the supply，arross h_{1} and the cathode－plate circuit of the regulator thbe in series，citn be considered comstant．The bias voltage is eabal to the voltage across the tube alome．When erid eurrent fows the valtage across the tube will tend to increase：home the drop acrosis hil da－ ereases，lowering the hias on the remblator and reducing its paterexistamer．This．in tura． reduces the tuhe voltage drop，and the bias voltare tends to remaia constant over a lairly wide range of grid current values．

At low hias voltakes it may be neeressary tor use a number of tubes in parallel to por sulfi－ cient variation of plater resistather for frod regulating atefon．＇The bist supply must fur－ nish the required bias boltage flus the woltare required to bias the regulator tube to cutaff， eonsidering theout put biats voltage ats theplato voltage applied to the regulator．The current． taken from the bias supply is negligible．Pa may be tapped to provideat range of bias volt－ ages to meet different tube requirements．

Multistage bias supplies－Where several power amplifier tubes are to be biased from a single supply，the various bias circuits must be isolated by some means．If the prid eurrents of all stages should flow through ：single blecder resistor．a variation in grid current in one stage would change the bias on all，a condition which would interfere with rffertive adjustment and operation of the transmittor．

When protective bias is to be furnished several stages，the rifuit arrangement of Fig

Fig． 80%－I（sulat ing dirmit for mus． lijle lisia－－ingly．

S09，using rectifier thenes t．o isolate the individ－ uat prid－heaks of the various stares，maty he omployed．In the diantim．two type so reeti－ fiors are used to farmish bias to four stages． Fowh pair of resistors（ $h_{1} h_{2}$ ）comstitutes a separato bleoder acoses the hias supply．R_{1} is the grid－laak for the biated stage：Res is a drop－ ping resistor to adjust the boltane acrose R_{1} to the＂ut－off value（without grid－corment flow）for the biasod tube．The values of h_{1} and Rem may be calculated as deseribed in the pata－ graph on protective bias．In this case．the biats supply shmald be dexigned to hawe inherently grod voltage resulation：i．e．，a chokr－input filter with appropriate filter and blender eon－ stant：（s S－6）should be used，the heroder being separate from thone asosuriated with the rer－ fifier tubes．When the voltage arross $h_{1} h^{2}$ rises heraluse of grid－current flow through h_{1} ， the load on the supply will vary（home the nerossity for good valtage rerulation in the ＊upply）．hat there is monteraction of grial our－ rents in the separate bleoders bereanse the reatifiers can pass carront only in ame diration．

Whon ：sincta supply is to furnish operatimg bias fur sumeral stages．a spatrato repalator－ tube cireuit（lig．Nos）maty be used for mach one．Individual woltages for the varimas stages fata be obtatined by appopriate taps an／is．

Well－regulated hiats for several stames may be obtathed by the nise of gaseons regulator tubes．when the volatare and current ratings of the tubes permit their use．＇This is shawn in F＇ig．810．A singla thbe or two or more in soride ratil be used tu ative the deximed bias－voltage drop：the hias supply woltage mosis be high （Hobugh to provile starting voltage for the tubes in sorios．R_{1} is the protective resistame （ $8-8$ ）；its vatue should be collculated for mini－ mum stable tube eurrent．＇The maximum grid current that mon he hamded is 20 tor 25 milli－ amperes with avaibable remulator tubes．

Fiz． $810-$ Use of VIR fulmes to stabilize hims voltage．

C 8-10 Miscellaneous Power-Supply Circuits

Vollase dididers - A voltage divider is a
 and tipperl at :ppropriate points (S 2-6). Since the voltage at any tap depends upon the enment drawn fom the tiap. the voltage regnhation (S S-1) is inherontle pror. Henre, a voltare divider is thest = mited to :ppheations where

 formonellate for voltan variations at the t:1|s.

I typiral voltare-dividar armanement is shown in Fig. 811. 'The terminal voltage is E ', and two taps are provited to give lower volt-
 tionly. 'lohe smaller the resistance between tapse in properfion to the total resistame. the suatler the woltare hetwern the tats. Fin eromveniener, the woltage divider in the figure is (onsidered to be made up of separato rexist

 bate the resistames requirel, a bereder warent,

$$
\begin{aligned}
& \text { voltabe-dividerement. } \\
& R_{1}=\frac{L_{1}}{l_{1}} \\
& R_{2}=\frac{I_{2}-I_{1}}{1+1} \\
& R_{3}=\frac{I}{l_{1}+I_{1}+I_{2}}
\end{aligned}
$$

 pared to the tatal lomd rument (10) per eront on
 as shown helow, I boing in amperes.

The method maty be extemded to any desired number ol tar, earbl resistance sertion being ralculated by ()hmis Law (S2-ib) using the woltage drop andoss it and the total curment through it. The penser dis-ipated by enth mortion may be calculated by multiplyinge I am! B.

Tramsfarmorless pluto supplios - lhe lime boltage is reetified direotly, without aster-up
 (: voltage so whatumed is satifitutory. A simple power suphly of this varidy, when ralled the
 fubes for this parpose have heaters aperatines at melatively !igh woltages (12.0, 25, 35, 45, 50,
 the :t.e. line in series with ofther tube filaments
 the cerreat to the rated valure ber the tubses

 quenes (8×1) and hemoe requites more inductance and capacity in the filtor for at given ripple perantang (S S-in) thath the full-w:tro rectifier. A condenser-input filter memerally is used. 'The input condenser should be at least
$16 \mu \mathrm{fd}$. and preferably 32 or $40 \mu \mathrm{fal}$. to keep theontpat voltage high amd toimprove voltage regulation. Freduently a second filter section (s s-b) is =nflacient to proside smonthing.

 rovilior. Wher dilanome are rombered in sorios with R.

No gromad eonnertion ram be used on the power sumply unless the gromaded side of the power lime is rommered to the grounded side
 ply usually : are grombled through a low cat barity (0.05 plat. comdenser, to avoid shortaremitisg the lime should the line phar be inserted in the socket the wrong way.

Follage multiplier circuits - Tramsformerless woltage maltiplier eirenits make it presible to obtain d.e voltame highow than the lise voltage withont ubing step-up transformers. $13 y$ alternattely fharging two or mone condensars to the peak line woltare anm allowing them to diseharge in serites, the thtal output voltage beromes the sum of the voltages apparing aceross the individual comdensers. 'The required switehing operation is performed antomationally by diode rectifiof these assoriated with the eondensers.

A half-w:ar voltage doubler is shown in fig. Nl: i - A . In this cirnuit when the pate of the lown dionde is positive the tuhe passes current. (harging ('i to at voltare equal to the peak line voltaige less the tube drop). When the line pulatity revomes at the emd of the half rever the valtare resulting from the eharge in \dot{C}_{1} is added to the line volt age, the upher diode muanwhile similarly (harging ('2. C?. however, does mot receive its full charge beeathe it be-

(A)
(B)

 voltape thoblier. IB, liall-wave dembler. (i, tripher. I),

Fig. 814-Curre.s showing the d.r. output whaye and the regulation under low for voliage-mulaplier cireuits.
gins elischarging into the load resistance as soon as the upper dionle beromes romdurtive. For this reason, the output is somewhat loss than twiee the line prak voltage. As with ang half-wave rectifier, the ripple frequency comesponds to the line frecuency.

The full-wave voltage doubler at 13 j in more popular than the hatl-wabr trye. One dione charges C_{1} when the polarity betwen its plate and cathode is positive whild the other sertion charges: C_{2} when the lince polarity reverses. Thas eath condenser is charged separately to the same d.c. voltage, and the two discharge in series into the load direnit. "The rippor freanener with the full-wave doubler is twied the line frequency ($\$ 8-1$). The voltage regulation is inherently poor and depends critically upon the capacities of r_{1} and r_{2}. being bettore as these caparities are mate larger. A typanal supply with $16 \mu \mathrm{fl}$, at C_{1} and C_{2} will hatro an ontput voltage of approximately 300 at light loands, ats shown in Fig. 814.

The voltage tripler in Fig. Sl:3-(${ }^{\prime}$ eomprises four dionles in a full-wave doubler and fullwave rectifier combination. 'Ther ripple frequeney is that of the line as in a half-wave riteuit. because of the mobalamed armanement, but the output to the first filter rondenser is wory nearly three times the line voltage, amb the regulation is better tham in other voltage monttiplier arrangements. as shown in F"ir. 811.

Fig. 813-1) is a voltage quadrupler with two half-wave doublers comnerted in sories, discharging the sum of the aromanated voltages in the assoriated comblensers into the filter input. The quadrupler is by mo meates the matimate limit in voltage multiplimation. Partioal power supplias have hern bailt using up, to twelve donbler stages in suries.
 Working voltage rating of : ino volts and \mathbf{C}^{\prime}, of
 shoulal be at loast $16 \mu \mathrm{~d}$. wath. Subeabuent filter condensors must, howrere withstand the peak total output voltage - -450 volts in the case of the tripler and tion for the "padrupler.

Nodirect ground an be used on any of these supplies or on associated equipment. If an r.f. ground is mate through a eondenser the ea-
pacity should be small ($0.05 \mu \mathrm{fd}$.), since it is in shunt from plate to cathode of one rectifier.

Duplex plate supplies - In some cases it may be advantageous economically to obtain two plate-supply voltages from a single power -upply, making one or more of the components arve a double purpose. (ireuits of this type are shown in Figs. 815 and 816.

In Pigr, 815. a bridge rectifier is used to ohtain the full transformer voltage, while a connection is also brought out from the center-tap to obtain a serond voltage corresponding to half the total transformer seoondary voltage. The sum of the currents drawn from the two taps should not exered the d.e. ratings of the rectifier tubes and transformer. Filter values for each tap are computed separately (\$ N-6).

Fig. s16 shows how a transormer with multiple secondary taps may be used to obtain both high and low voltages simultanconsly. A separate full-wave rectifier is used at each tap. The filter chokes are placed in the commen mogative lead, but separate filter condensors are reduired. 'Ihe sum of the currents drawn from earh tap must not exceed the transormer rating. and the chokes must bre rated to carre the total load current, Fiach bleder resistance - Would have a value in ohms: 1000 times the maximum rated indurtance in henrys of the swinging choke, L_{1}, for best rogulation ($\$ 8-(i)$.

Fife 8lo Power supply in which a simple transformet and set of chokemarve for two difierent entiput voltaters.

Rertifirers in parallel-Vacuum-typerectifiers may be rommeetod in parallel (plate to plate and rathonde to rathonte) for higher (eur-ront-rarsing rapacity with mo rimuit changes.

When mereury-valur reetifiers are comber tad in parallel, slight differeneres in tube whatereristies may make one jomize at a slightly lown voltage than the other. Since the ignition voltage is higher thatn the operating voltage the first tube to ionize carries the whole load, is the voltage drop is then too low to ignite the second tube. This can be prevented by connect-
ing 50- to 100-ohm resistors in series with each plate, thereby insuring that a high-enough voltage for ignition will be available.

Jibrator pourer supplies - The vibrator type of power supply comsists of a sperial stepup transformer combinced with a vibrating interrupter (eibentor). When the unit is conmerted to astorage battery platu power is obtained by passing current from the bethery bhough the primare of the transformer. The cireuit is mathe and reversid rapidly bẹ the vibrator condtacts. intersupting the current at regular intervals to give a changime mandetio fiold which
 revulting square-wave d.e. pulses in the primaty of the transiormer canse an alternating voltage whe developed in the suroudary. This high-voltage ace in turn is metified, aithor hy a vacumm-tube rectifier or bé an additional sumchromizad pair of wibator eontares. 'lhe rectified output is pulsating d.e.. which maty be filtored by ordinary mentus (s-in). The smoothing filtor can be a singla-sertion affair, but tha filter oufput raparity shoubl be lairly large 16 t. $0.32 \mu \mathrm{Fil}$

Pig. S17 shows the two trpes of aireuits. It
 tor. When the bathery is diseommeded the reed is mitway betwen the two contacts. touching meither. On a dosing the battere cirenit. the magne eoil pulls the reed into comtant with one contace point, causing current fo flow through the lower half of the transiormer primary wimling, Simultamously, the manet roil is short-rirenited, deemergizing it, and the reed swings batck. Inembat carries the reed inta contare with the upper point. ratusinge fartent to flow through the upper hatl of the trans-
 ersized, and the crede remats itself,
'lhe sunchronomis circoin of lig. 817-13 is provided with an extric pair of contacte whieh reetify the secomdary output of the tramsformer, thus eliminating the nead for st sepalrate reetifier thbe, The sewendary renter-tap furnishes the positive oltput terminal when the relative polarities of primary and secondary windings are corvect. The proper commestions may be determinal hex expriment.

The haffer comelenser, (2, arows the tram:former secomdary athorlse the surges which occur on breaking the current, whent the matynetie field collapsers pratedially instantameonsly and hence ranses very high vollages to he induced in the seromblay (s?-a). Whathout this comdenser execsave sparking ocelors the the vibralor contalds, shomenting the vibatom life. ('urred values usually lia botween 0.00 an and
 denser should the rathed at logo to 2000 volte d.e. The exact capacity is critical, and shombd be determined experimentally: The optimum value is that which results in least bathery earrent for a piven rectified d.e. output from the supply. In practice the value can be determined by observing the degree of vibrator
sparking as the caparity is changed. When the system is operating properly there should be practicatly no sparking at the vibrator contarels. A 5000-ohm rasistur in series with C_{2} will limit the serondary current to a safe value should the combenser fail.

A more exact chert on the operation can be secourd with an oweilluseope having a linear swep eirenis which ":u be syothronized with the vibrator. The vertic:al plates should be conbereded across the whtide phls of the tramsformer primary wimeling to show the input
 ized trate ol the optimum wavefom when the buffer rapacity is adjusted to give proper operation thanghout the life of the vibrator. The horizontal limes in the trace repmenent the voltare during the time the vibrator contares :re dosed, whish should be approximitely 90 per rent of the total time. When the rontarets are open the trace shond be partly tilted and partly vertical. the tilted part beine 00 per cent of the total commerting trace. The ascilloseope will show readily the offert of the buffer eapacity on the percontagu of tilt. In aremal patterns the horizontal sectioms are likely to droop somewhat beroture of the resi-laner drop in the battery heads as the cument builals up) through the primary imduranco (Fig. R1S-D).

Sparking at the vibator contacts couses r.f. interjerence ("hash," which can be distinLutished from hum by its harsh, sharper pitehn whon bed with a rereiber. 'Tos minimize thes. r.f. fillom are inemporatod, consisting of $R P C_{1}$
 in the d.e. output cireuit. C_{1} is usually from
 Rt't consists of about so turns al No. 12 or No. It wemad to about half-inely diameter. large wiru beener reguied to carry the rather hease hatbers raremt withomi undur lose of voltage. I chate of thes sperificatioms should

be adequate, but if there is persistent trouble with hash it may be beneficial tor experiment with other sizes. Bank-wound chokes are more compact and give higher inductance for a given resistance. In the seromdary filter. C_{3} maty be of the ovder of 0.01 to $0.1 \mu \mathrm{fd}$., and $R F C_{2}$ a $2.5-$ millihemry r.f. choke of ordinary design.

A $100-\mu \mu \mathrm{fl}$. mica condenser, connected from the positive output lead to the "hot" side

 load: corront flow rtops in-tants when vilnator com-

 interrupter arm monds acrom for ther nest halforater. 13, idral practical wateform for indertive load (tranzformer primars) with eorreat buffer eapacits ((: pratetical appoximation of B for losoded monsinehrontos vi-

 from voltage drop in the primaty when the weromdary load i c commerted, wot from fands oneration.
 E, effert of insulficiont loffering rapacils fort to bermi=-
 tion- exessive buffering eaparity - in indicaterd by

 "skipping" al worn-ont or mi-adjusted vibrathr. with ine

 (;amd II u-ually rall for replacoment of the vilatator.
of the "A" battore. masy he helpfal in reducent hash in certain power supplies. A trial is moossary to sere whether or mot it is reemired. It should be mometed right at the output sorked.

Bequally as important as the hash filtor is thorumgh shiolding of the power supply and its romereting leats, sime even : :mall pioere
 interferener in asmsition reader.

T'esting in rommedion with hash climantion shomblaratriadout with the supply uprating
 pieked up on the receiving antomtal latas by radiation from the supply itsolf amb form the battery le:uls, it is advisable to kerep the supply

 *hould be ataple. 'l"he miorophome rotel likewis. should be kept aw: from the supply and leads.

The poweresupply should he buit on : metal chassis, with all mashiolded parts moderneath, A bottom plate to complete the shielding is advisable. The transformer case, vibrator cover and the metal shell of the thbe all shombld be gromuded to the ehassis. If a slase tube is used it shomlat be anderal in at thbe shinde. The battery leade shonld be evonly twisted, sime these leads ate more likely tor radiate hash than any other part of a well-shied led supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been redued to a minimum. Shielding ther heads is mot parliculaty helpfal.

Linc-roltage adjustmont - In some localitios the lime voltage may vary considerably from the nomina! 11 solts as the land on the pewer system changes. Since it is desirable to "prate tube equipment, particularly filament: alm heaters, at constant voltage for maximum life, a mostas of aldinting the line woltane to the rated value is desimble. This eath be ateoomplished by the circuit shown in Fire 810, utilizing a step-down transformer with a tapped semondary ponmerted as an abtotramsturmer (s 2-9). The scomendry preferably should be 1:apmed in steps of two or three volts, and should have sulfirinit total voltage to eomprosate for the widost variations comematered. Depremding upen the emel of the seroblatary to which the line is emmerotet, the woltage to the Jo:a fean he mathe eithere higelae or lawer than the line voltage. A seeondary winding rapathe of darring five amperes will serve for loads up to 500 volt-amperrean a 11.5 -volt line.

F゙is. 8/リ- linconaltato. mompera-ition by a latural

C 8-11-Emergency Power Supply

Dry batheries-1 Dry-all batteries are ide:al

 ity. In additions, they will lose their power even
 periods of : y yar or mote. This make them un-

J:
 current drains, based on intermittent servioc simulatine typioal operation. The contimumsservier life will be sumewhat greater at vers fow rament drains amel from one-half to two thirek the intarmittent lifo at highere drains.

The surert of home hattery life at normal morrent drains lies in intermittent aperation. The durattion of "un" perionds should be reduced to a minimum. "lhe more freduent the reste given a dreerell hatery. the longer it will hast. As ant example, whe stamdard type will last in per cent lomen if it is operatorl for periods of one minnte. With fiver-minuto rest intorvals, in 2 bour intermitent aperation than if it is operated enntimomsly for four hours per daty, athough the atotal energy ennemmention the 2 -hent prome is the same in hoth arses.

Storage bateries - The most miversally acompabie solf-contained power source is the storage battory. It has high initial capacity and can be recharged, su that its effective life is practieally indeffite. It can be ased to provide filament or heater power direetly, and plate power through associated deviers such as vibrator-fransformers, dynamotors and penemotors, and a.c. converters. For emorgeney
work a storage battery is a particularly convenient power souree since such batteries are universally available. In a serious emergoney it is possible to whtain ti-wolt stomag batherids
 from, allal for this reasoll the fi-wolt starace battery nakes an cxombent unit aromed which

For maximam ellacieney and usefularss the power dratio on the storage hattery should not excerd 15 or 20 anperes from the ordinary 100) or 120-impere-hour ti-volt hat thery. Ilaivy combeting leachs shobld the used to mintmize the woltare drop: similatly. hearyoluty lowresistance switehes are rembired.
librator poucer supplies - For portable
 power for both filaments and pates is the ${ }^{\text {d }}$ volt : atomobile-t ype storage hattery. boilaments mas he hatad direedly from the hat tery, While plate power is obtamed bey pasing eurrent from the battery thromgh the primary of a suitable tramsonmer, interruphins it at regulatr intersals and rewtifying the seromdary untput (s 2-i) providing out.puts as high as 100 volts at 200 man. 'The high-voltacre filter cileruit usually is inconteal with that of an erquis:alent power sobro oprotating from the a.c. line (\$8. S). Noise suppression tiltors, serving to minimizer.f. introference cansed be the vibrafor, are inmorporated in mambarlured mats:

Although vihrator supplies are ordinarily usod with fowolt tubes, their use with $\quad 2$-wht tubes is quite mathor provided additumal filamont fillration is incorporated. This filtor maty

 signed to njorate on 4 wolts at the total filament rutrent of the rereiver may tre asod. The filaments :ure then connected in parallel. ats usuald, and platerd in series with this wimding armes the (i-volt battery. In both h- and 2-volt recrivers, "hash" ean be redaed he heavily by-passing lam battery at the vibation maply terminals, using fised combensers of 0.25 to 1 μ fid. 'apatity or more, and by inclading an r.f. Choke of have wide in the baltory had mat the combensor. Noise will be mimmizer if :single
 strap, is usind. Thorough shiodeling of the vilrat tor atso will contribute to the mone reduction.
'lable 11 in (haphor fighteen lists stambard commerdeal vibrator suphles suitathe for use
 unts: which inthute a hum filler are indiealod. The vibmator supplies used with atommotile rerobers are sali-iantory for recomer aphlianfions amb for use with tramimillers wher the power whuirement- are - mall.
 twern abont a 60 to 7.5 per cent.

Dynamotors amd semomotors - A lyunmotor is a double-armature high-woltage generator, the additional winding sorving ats a driving motor. Dyomotors usuatly are op-
crated from 6-, 12- or 32-volt storage batteries, :und deliver from 300 to 1000 volts or more.

The senemotor is a refinement of the dynamotor, designed experially for :atomobile reroiver, somad truck and similar applications. It has good regulation and efficieney. combined with eeonomy of operation. Stambard models of gememotors have ratings ramgiag from 135) volts alt 30 mis. f.4 306 solis: at 200 mat, or 500
 laghterin.) The momal efliciones averages ammat 50 per emb, increasing to better than fio per vent in the highor-pmer mits. The voltage regulation af a getamotor is combparable to that ol well-desiguted ace. supplics.

Succespal oproation of dynamotors and genemotors requires healve direct leads, meChanical isolation to roduce vibration, and thorough r.f. and ripple filtration. The shafts :and bearings should be thoroughly "run in" before regular opration is attempted, and therafter the tension of the bearings should be eheeked aceasionally.

In mounting the fenemotor, the support should be in the form of rubber mounting harks, or equivalent, to prewont the transmission of vibration merhanically. The frame of the gemomotor shombl be gromaled through a beave flexible comnector. 'The brushes on the high-boltage end of tha shaft should be bypassend with 0.002- $\boldsymbol{\mu}$ id. mic: comblensers to a common point on the genemotor fr:ume, prefarably to a point insile the comb rover clase to the brush holders. Short leads are exsential. It mas prove dexirable to shiold the entire unit. of even to remove the unit to a distance of threre or four fert from the rereiver.

When the wromonor is nsed for recoiving, a filter should be used similar to that described for vibrator shphlias. A $0.01-\mu \mathrm{fl}$. (200 -volt (1).e. pianer comdenser should be comeneted in shunt across the output of the genemotor, folllowed los a 2.i-mh. r.f. choke in the persitive hightooltame lean. lown this point the output shondil be run through : "hrute force" smouthing filtor using to to s- $\mu \mathrm{t}$ d. electrolytic condensers with a lo- or : 30-honry choke having low d.e resist:lure.
d.c.-d.c. comerrers - In some instances it is deximable to utilize existing equipment built for $11 \overline{\mathrm{~T}}$-volt : ace. operation. T'o operate such equipment with any of the power sources ontlined above would require a considerable amonnt of rebuilding. 'lhis can be obviated hy using a rotary converter eapable of ehanging the d.e. from (i-, 12- or 32-volt batteries to 110-volt fo-ryele a.e. Such ronverter units are buift fo deliver output ranging from 40 to 300 w:atis.
'llue consersion aflicioney of these units averanes almont 50 per cent. lnappearance andoperation they are similar to genemotors of equivalent rating. The wer-all eflicieney of the converter will be lower, however, beeause of losses in the ace, rectifier-filter circuits and the necessity for converting heater as well as plate power.

Chapter Nine

Wave Propagation

4. 9-1 Characteristics of Radio Waves

Relation 10 olher forms of radiation -

 Radio wates differ from other forms of alere tromagnetic matiation primepaliy in the arder of their wavelongth, which ranges from : 1 - of a rentimeter: i.e., their frepurber ramose between about 10 kr . athl $1.000,000 \mathrm{Mr}$. They travel at the same velowity as light waves
 space and ran be similatiy reflected, refracted and diffrarted.

The total energy in at radio wave is randy divided betworn traveling electmotatio amb clectromaghetio fields. The limes af forme of these fields are at right anghes to carh other in a plane promendioular to the direction of travel, as shown in lig. ! 1)!.

Polarization - The polarization of al ration wave is taken as the direetion of the lines of force in the ederetontatic liode. If the Hand of this fied is preprondicular to the eirth. the wave is satid to be ecrticull! polarized; if it is parallel to the arth, the wave is horizondully polarizal. The longer wawes, when traveling along the ground. nemally mantain their polarization in the sathe phate as was generated at the antennat. The polarization of shorter waves may be altered during travel however, alld sometimes will vary quite rapidly.
Keflection - Radio waves maty be reflectad from any sharply definod disombinuity of suitable rharactoristies and dinnonsins ancountered in the meditum in whioh they are traveling. Any comductor (or amy insulator having a dielectra comslabt liffering from that

Fig. 901 - Repromentation of ehetrostatic and clectromagnetic lines of force in a radio wave. Arrows imdicate instantaneous directions of the fickds for a wave traveling toward the reader. Keversing the direction of one set of lines would reveree the direction of travel.
of themedium) off(rs sum a diseontimuity if its dimemsions are at least comparable fo the wavelenglh. The surfare of the carth athd the bombdaries berween jommphoric layors are examples of surh diseontinutiors. Ohjerts as smal! as an airplatme a trea or exen a man's body will reatily refleet the shonter waves.

Refraction - As in the rase of light, a racho wave is bent when it moves oblispely into any mordinm having a difforent refraction mades from that of the medium which it leaves. Since the velocity of propagation or fravel diffars in the two mediums, that part of the watrofrot wheh entere first travels listar or slawer than the part whieh enters last., and so the wave front is tombed or refractand (usually downwand in the vertieal
 ionosphere (ionizal upher almowhere) or the 1/wonshere (fowor almosphere).

Diffraction - Whan : wato grazo thar edge of an objeet in massing. it tembls to be hent atombl that odge 'This effect, called diffraction. results in a diversion of part, of the energy of those waves which nomatly follow a straight or lincof-sight path. so that they may be rexolvel at some distather befow the summit of : th olstruction, or aromal its elges.

Tapes of unores - Iecording to the altitude of the pathes along which they are propagsted. radio waves may be classified as inmenterice uares, tropmestaric mores or gromul wats.

The iomosplaride wave (sometimes called the "sky wave") is that pat of the fotal radiation which is dirested toward the iomosphere. Dopending upon variable comditions in that region. as woll as upon waveloghth (or fre(fueney). the iomespherid wave may or may not. be retarned to earth by the effects of refiaction and reflection.

The tropexpherie wave is that part of the total radiation which matergoses refraction and reflection in region- of abrupt change of didectrie constant in the twpospheres. such as the bombdarion betwern air massos of differing tomprature and moisture eontent.

The gromal wave is that part of the total rantiation which is dimently affereded by the preatnce of the earth amd its surface features. The ground wave has fwo components. One is the surface wore, which is an earth-gnided wave and the other is the spate ware (not to be confused with the ionospheric or "sky wave.") The space wave is itself the resultant of two components - the dirert wore and the groundriflectal ware, as shown in l"ig. 902.

Fige 902 - Showiny linw twoth diret and reflepled waves may he remived simmatamonsly in v.h.f. transmission.

© 9-2 lonospheric Propagation

The ionosphere - Commmication betwern distant points by means of ralio waves of frequencies rangitg betwern 3 and 30 Me . depends principally upon the ionospherie wave. Upon leasing the tomsmitting antemat, this wave trawels upward from the earthes surface at such an angle that it would contima out intospate were its path not bent sullieiently to beine it barek to earth. The medinm which canses sude bemeling is the ionosphere, a region in the upper atmosphere, above a height of about tit miles. where free ions and clertrons exist in suflicient quantity to cause at change in the refrative index. 'This condition is believed to be the effere of altraviolet radiation from the sun. The ionosphere is not a single region but is composed of a sorice of lateres of varying densities of ionization oferuring at different heights. bach laner anosists of a central region of relatively dense ionization whith tapers off in intensity both alone and below.

Refruction, absorphion and reflerdianFor a giver dansity of iomization, the degree of refraction beoomes less as the wavelengeth brcomes shorter (or as the frepurney incerases). The bemding therefore is less at high thatn at low frequencies, and if the frequency is raised to a sullieriently high value, a point is finally reached where the refratetive bending becomes too slight to bring the wave back to carth, evon though it maty enter the ionized lator along a path which makes a very small ange with the boundary of the bonosphere.

The greater the density of ionization, the greater the bemding at any given frequency. Thus, with an increase in conization, the minimum wabelength which can be bents, sutienently for longrdistance commanication is lesserned and the maximum usable frequency is incroased.

The wave meressatrily loses some of its emergy in traveling through the imosphere, this absorption loss increasing with warelength and also with ionization density. Unusually high ionization, esperially in the lower strata of the ionosphere. may cause complete absorption of the wave chergy.

In addition to refraction. reflection may take place at the lower boundary of an ionized layer it it is sharply defined: i.e., if there is an appreciahle change in ionization within a relatively short interval of travel. For waves approaching the laver at or near the perpendieular, the change iu ionization must take place within a difference in height comparable to a wavelength; honce, ionospheric reflection is more apt to occur at longer wavelengths (lower frequencies).

Critical frequency- When the frequency is sufficiently low, a wave sent vertically upward to the ionosphere will be bent sharply enough to ealuse it to return to the transmitting point. The highest frequeney at which such refleetion call oceur. for a grivenstate of the ionosphere is called the criliond frequerey. Although the reritical frequeney may serve as an index of tramsmission comditions, it is not the highest usiful frequency, sine other wases of the same frequeney which chter the iomenghere at anglas smaller than 90 degren (lase than verti(al) will be bent suthicuntly to return to earth. The marimat! uswhe frequenc!, for waves leaving the earth at very small amgles to the horizontal, is in the vie inity of three times the rritical frequency.

Besides being diredy obsorvable, the ritical fregurncy is of more practical interest than the imnzation density beremese it includes the effects of absorptiun as well as refraction.

Virtual heipht- Although all ionospheric layer is a region of comsiderable depth it is convenient to asign to it a definite height, called the rirturl height. This is the height from which a simple reflection would give the same effere as the gradual refaction which actually takes placer. as illustrated in lior. 903. The wave traveling upward is bent back over a path having ath appreriable radius of turning. athd a motatiable interval of time is comsumed in the taming proess. The virtual height is the height of a triangle formed as shown, having equal sides of a total lought proportional to the time taken for the wase to travel from T to F.

Normal structire of tho iomosphereThe lowest normally usemblater is cather the E b:yer. The aramge height of the region of maximum ionization is ahout 70 miles. The ionization density is greatost around local noun; the later is omly weakly ionized at night, when it is mot exposed to the sun's radiation. The air at this height is sulficiently dense so that free ims and edectrons very quirkly meet abd remombine.

The second principal lasor is the F^{\prime} layer, Which hats at height of thout 15 males at might. At this altitude the air is so thin that recombination of ions and electrons takers place very slowly, intamull ats particles can travel relatively great distatmes before meeting. The ionization dereases after sumdown, rearhing a minimum just hofore sumise. In the daytime

Fis. 903 - Showing bending in the ionasphere and the tehe or reflection method of determining virtual height.
the F^{\prime} laver splits into two parts, the F_{1} and F_{2} beters, with average virtatal heightsof, resperetively, 1 do mides and 200 miles. These lavers are most highly ionizad at ahout lowal nom,

Civlie merialions in lhe ionosphore-
 ation, "omditims in the iomophore vary will rhamges it the suns: ratliatom. In aldition 1 or the daily valiathon, se:Bmbal rhanges remblt in higher ribeal frequmomes in the E later in

 the ander of 1 to 5 M . in the exoning. 'late F_{1}
 in summer, मsataly disappar- emirely in win-

 sumbmer (armond 7 Mr.). 'The virlath! hoight of
 atverages 200 miles in summer.

Branomal transition prodods oreme in spring and latl, when iomspheric conditions ate foumel highly variable.

 days. Whalo woreponds with the period of the

 b:thels.

 sumspot artisity. 'lhere rfeet of this roch is to shat upharal or downw:al the values of the

 during sumsor maximat amel lamest during sumspot minims. It is hathe the periond of

 well in the daytima but is mot ordinamily use fal at hixht. Thhe most rearent sumput maximum is considered to have oremmed in lass.

Masurlia storms and oblier disturbamess

companiod be disturbances in the ionowphere, when the lavers apparently braik ap and ex-

 sion is poor and there is a drop in witioal fre-

 several anys.

Cmantally ligh imhzalion in far rexion of the st mesphere below the nomatl iommphere

 ing off af tramsmission eomblitoms al the bequmning emb an orpally gradnal hilaling up at the eul of the perimi. Fadmutes, similan to the

 very rapid iomizalion, with sky-w:ane trans-mis-ion dis: only in daylight, and do mot lase as long ans the dirst type of atsomption.
 by unnsual aturamal displass, creating an ionizod
 at reflember of ration wases. Auraral reflecetion is womsionally oherevol at freguencies as high as (i) Me.

Sporadic E-lawer imizalion- Oremsionally scaltored patiohes ar comen ol rolatively demere imization appear at hoights :uphoximately the same as that ait the E : layer. Whe - flent is tor raise the eritieal frequoney to a value prohaps twior that which is returned frema ally of the regnlar lasers hy nomatl

 amd rewoser, or is of :my very emsidurable - वt in winter, is prevalont during the late spring athd raty smambr, with mo alparent correlation of the comblitur with the time of day.

 mormally sbor dixtature betwon the transmitter and the prom where the wase first is relumed to eath as when, for extmple. ItMr. signals lion a tramsmitter only loo miles distant may andix with an intensity ustally assuriated with dist:ances of this arder on 7 and 3.5 Mc .

Fige onf Refraction of sky waves, showe
 \%ome. Nabs leatsing the trancmilter at

 to rarth at incraningly preater distancem.

U'rare angle - The smaller the angle at which a wave leaves the earth, the less will be the bending repuired in the ionosphere to bring it bark and, in general, the greater the distane betwen the point where it leaves the earth and that at which it returns. This is shown in Fig. 904. The vertieal angle whieh the wave makes with a tangent to the earth is called the ware angle or angle of radiation.

Skip distaner-Since greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the reguired bending unless the wave angle is smaller than a certain angle called the critical angle. This is illustrated in Fige 904, where waves at angles of A or less give useful siguals while waves sent at higher angles penetrate the layer and are not retmoned. The distanee betwern I and l_{1} is, therefore, the shorters posithle distance over which communication by normal ionospheric refraction can be aceomplished.

The area between the emd of the usoful ground wave ath the begimning of ionospheric wave reception is called the ship zame. The extent of skip zone depends upon the frequeney and the state of the ionosphere, and is greater the higher the tramsuitting frequeney and the lower the eritical frequeney. Skip distance depends also upon the height of the layer in which the refaction takes place, the higher layers giving longer skip distances for the same wave angle. Wave angles at the transmitting and recoiving points are usually, although not always, approximately the same for any given wave path.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted batek to arth from the F, F_{1} or F_{2} layers. This is because the critical frequene are higher in the latter lavers, so that a signal too high in frequeney to be returned by the E layer can still eome back from one of the others, depending upon the time of day and the existing comditions. I heponding upon the wave angle and the frequency, it is sometimes possible to carry on communieation via either the E or $F_{1}-l_{2}$ layers on the same frequency.

Multihop transmission - On returning to the carth the wave can be reflected upward and travel akain to the ionosphere. There it may once more be refracted, and again bent back to carth. This process may be repeated several times. Multihop propagation of this nature is neressary for transmission over great distances beramse of the limited heights of the layers and the curvature of the earth, since at the lowest usiful wave angles (of the order of at few degrees. waves at lower angles generally being absorbed rapidly at high frequencies by being in contact with the carth) the maximum oun-hop distance is about 1250 miles for refraction from the E layer and around 2500 miles for the H_{2} layer. However, ground losses absorb some of the enorgy from the wave on each ro-
flection (the amount of the loss varying with the type of ground and being least for reflection from sea water). Thus, when the distance permits. it is better to have one hop rather than several, since the multiple reflections introduce losses which are higher than those caused by the ionosphere alone.

Fadirig - Two or more parts of the wave may follow slightly different pathe in traveling to the reoceiving point, in which ease the difference in path lengthe will cause a phase difference to exist betwern the wave eomponents at the reeciving antemma. The fielel strength therefore may have any value between the numeridal sum of the romponents (when they are all in thase) and zero (when there are only two combonents and they are exactly out of phase). Since the pathes change from time to time, this caluses a variation in signal strength called fading. Fading ran also result, from the combination of singh-hop and multi-hop waves, or the combination of a ground wave with ath ionospherib or tropospheric wave. Such : comulition gives rise to an area of severe fading near the limiting distamee of the ground wave. bettor reception being obtained at both shorter and longer distances where one component or the other is eonsilerably stronger. Fading maty be rapid or slow, the former type usually rowultag from rapidly changing conditions in the iomosphere, the latter occurring when transmission conditions are relatively stabine.

It frequently wemes that transmission conditions are different for wates of slightly different irequencies, so that in the case of voicemodulated transmission. involving side-hands differing slighty from the arrier in ferequency, the carrier and varionse side-band components maty not be propagrated in the same mative amplitudes and phases they had at the transmitter. This effert, known as selective forling, rauses severe distortion of the signal.

1. 9-3 Tropospheric Propagation

lir masses and fromis- In the lower atmosphere wave propasation is affeeted by the changes in refractive index between differing air maseses. A mass of air humdreds of miles in area may remain at rest over one region until it beromes afferted by the surface temperature and hamidity ehararteristid of that rection. Evendnally being moved on by the forees of atmospherie circulation, the mass may travel over regions quite different from its origin and retain for some time its orginal ehataberisties. When it meets a dissumilar air mass, the highter, warmer and drier mase overrms the heavier, cold, moist mass crealing a boundary between the two called a fromt. This fromb, which represents a diseontimuity in the dictedric comstant of the troposphere, serves forefract and refleet the higher-frequencer radio waves in much the same mamer as the fonospheric layens, but at lesser leights and more restrieted ingles. As a result frefuencies above 50 M e, are returned to
carth at distances eonsiderably beyond the ramse of gromul-wave propagation, sometimes up to foo miles.

Temporature intorsions - The femperature of the lower atmenthere mormally derreases at a romstabl rato with inderosime height. When for :lay restan 1 her burmal variation of lapere rate of : 1000 foret of elevation is altered. at lemperature
 chamge in the dielowtrin mastants of the air masese affeeterl rallses refleqtion and refrattion similar to that in the iommephere.

Types of inverson wher than the dymmer trpe despriber in the preading paragraph in-
 sinking of : at air mats whinh has brem hatad by rompression: the traformal insersion, brourhi about bey the latple rewling of sufface atir alfor
 bey the heatine of air ahowe alomel laye bex
 fate of the donds. Raflackion and refleretion of
 to a lesere dogere. be bler presener of shatp

 cristing whern the:ar in "momal" and whon a temperathere invorion is mexat.

4. 9-4 Ground-Wave Propagation

Surfure umor - The surfine wave is comtimumbly in contant with the surface of the carth and in rase whote har dist anme of transmission makes the eurvature wit the earth a factor, extembe itse ramge he diffetation. The surfare viaw is fuartically imberoblent of seasonal aml day and might rifforts at frequencies abmer lotw kr.

The surfare wase must lae wertieally polar-
 tally pularizel wase would bo *lont-ritellited
 the frymoneres for which the surfare wave is of muse interest.

The watwe imlures al atront, in the eromal in traveling along its surfare. If the grommal

Fig. 905 --Illumtrating the effect of a temperature inversion in extending the range of v.h.f. signals.
were a perfert ronductor there would be no loss of cnergy, but actual ground has appremiable rewistame so that the curment fow eatuses some cmeryy diswipation. This loss must be supplied by the wave which is correspondingly weakened. Itemer, the transmitting range depends upon the ground datamenistics. Be-
 will be greater over the ownan thatn over lamb. The lasises increase with frequener, so that the

 importamos, wepert in purely lenal commumiattoon. The range at fregueneres in the vieinity of 2 Mr . is of the meller of 200 miles over average land and portapes two or thro times as far over sal water, for a medium-jower transmitter (soll watts of sor) llaing a pood antembal. At higher frequencies the range drops off ralnilly.

Smere ereres - In the v.h.f. purtion of the spertrum (alowse 30 Na .) the bernting of the Wanes in the momal innosphere is an slight that the monepherin waw (s?-2) is not or-
 of the surtan wave also is extemely limited.

 from the trasmather to the rowivor thromgh the atmosphore ahone a limerol-sight path.

Palt of the spare Natw strikes the groumd

 zome. Which is ont of phase with the dimere Watro, is to reduce the bet liod strongthat the rereivine point. The dereme of rancellation depernde turen the hefohts of the tramsmitting
 reflerions. the ground lasis when reflertion takns plane and the fropurnery - the ratiलllation derreasing with ath increase in any of the:se.

The enovey last in groumd absorptinn bey a
 very rapilly with its lught it torms of waveHongthe atreve that semand. A s.h.f. direet wave, therdere. ant be relatively rlose (in phesieal height) to the gremud without sulferimer the absorption effects which wondel orrob at the same physinal heights with longer wave-k.ngths.

Xormal refradion - There is mermally some "hamge in the reftactive itulex al the air with heright above groumd. its atature being sude as to crathe the wave to beand slightly towards the gromat. Where curvature of the warth must le monsidered, this hats the effed of lengthenimg the distano over which it is possible to tramamit a diree wave. It is ermvenient to comsider the effect of this "normal refraction" as equivalent to an inerease in the earth's radius. in detormining the antennat heights necessiary to provide a dear path for the wave. The equivalent radius, taking refraction into acenumt, is $4 / 3$ the actual radius.

Fig. 906 - Chart for determining line of sight distance for , .h.f. transmisaion. The solid line ineludes effeet of refraction, while the dotted line is the optical distaner.

Kange rs. height - Since the dirert wave travels in practically a stratirht line, the maximum signal strength can be obtained only when there is an unobstracted at mosipheric path betwen the transmitter and receiver. This means that antemass shonld be sufficiently elevated to provide such a path. On long paths the curvature of the earth. ats well as the intervening terrain, must be taken into account

The height reguired to provide a clear line-of-sight path over level terrain from an elevated transmitting point to a receivine point on the surface, not induding the effect of refratetion, is

$$
h=\frac{11^{2}}{1.5 i}
$$

where h is the beight of the transmitting antenna in feet and d the distanere in miles. Conversely, the line-of-sight distather in miles for a given height in feet is determined by

$$
d=1.23 \sqrt{h}
$$

Taking refraction into acount, this equation becomes

$$
d=1.11 \sqrt{h}
$$

Fig. 906 gives the answer directly when either value is known.

When transmitter and receiver both are elevated. the maximum direct-wave distance to ground level can be determined separately for cach. Adding the two distances thus obtained will give the maximum distance by which they can be separated for direct-wave communication. This is shown in Fig. 907.

(1. 9-5 Optimum Wave Angles

One of the requirements in high-frequency radio transmission is 10 send it wave to the ionosphere in such a way that it, will have the best chance of beiner returned 10 earth. 'lohis is chiofly a minter of the angle at, which the wave enters the layer, although in some cases polarization may be of importance. Furthermore, the desirable conditions may change considerably with frequencer.

The desirable ronditions for waves of different frequoncies can be summarized ats follows, in terms of the various amatear bands:
1.7. Mr. - Low-angla radiation is indicated for the longe distances. High-angle radiation may cause farling loward the limit. of the gromed-wate signal, beranse the downcoming waves add in random phase to the ground wave. Vertieal polarization is to be prefered.
3.3 Me - Wiaves at all angles of ratiation 1,sually will be reflected, so that no energy is low by high-angle radiation. However, the lower-angle waves will. in gemeral, give the greatest distances. Polarization on this band is not of great impertance.

- Me. - L'nder most conditions, angles of radiation up to about te degrees will be returned to eath; during the sumspot maximum still highoremges are meeful. Is is hext to concentrate the radiation below to degrees. Polarizatien is not important. exemet that losses probably will he higher with vertiral polarization.

If Mr. - For long-distame transmission, most of the enorgy shombl be concentrated at anmes brlow about 20 derpees. Higher angles are useful for comparatively whor distances (300 - 400 miles), althomgh 30 degrees is about the maximmon urdiul angle, Avide from the prohable higher luses, with vertical polarization, the polarization may be of any type.

28 Mr. - Anslex of (i) degrees or less are most useful. As in the case of It Mc., polarization is not important.

5o We. - the lowest possible angle of radiation is most uscful for all lyper of tramsmission. Yertical polarization has heen chiefly used for line-of-sight and lower almosphere 1 tansmission, although horizomal polatration may be slightly better for long distances. In any event, the same polarization should be used at both transmitter and reacever.

Higher froquoncies - As in the case of 56 Mr. either horizonatal or vertical polarization maty be ased. so long at the same type is employed at both ents of the circuit.

Fig. 907 - Mrehod of determining total line-ofesight distanee when both transmitter and receiver are clevated, based on F"iz. 916. Since only carth curvature is taken into aroount in F"ig. Mot, irreqularities in the gromad betwern the 1 ransmitting and receiving points must be ronsidered when computing each actual path.

Antenna Systems

C 10-1 Antenna Properties

Wace propagation and antenna design For most effective tramsmission, the propagation eharacteristies of the frequeney under consideration must be given due consideration in selecting the type of antennt to use. 'These have been disenssed in ('hapter Nine. On some frequencies the angle of radiation and pularization may be of rehatively little importame; on others they may he all-important. On a given frequeney, the bartionar type of antomat best suited for long-distance transmission may not be as good for shortor-range work as would a different type.

The important properties of an antemm or antemar system are its polarization, angle of madiation, impedanee, and directivity.

Polarization - The polarization of a straight-wire antenna is its pesition with respecet to the earth. That is, : vertical wire transmits vertically polarizal waves amba horizontal antenma gemeratos horizontally polarized waver (\$9-1). The wave from an antema in a alanting prestion contains both bertion and horizontal componemts.

Angle of radiation - lhe wave angle (\$9-4) at which an antemmat radiates best is determined he its polarization, height above ground, and the nature of the eround. Radiation is not all at one well-defined angle, but rather is dispersed over a more or less large angular region, deproding upon the type of antennat. The athgle is mosured in a vertical piane with respect to a tangent to the earth sit the transmitting peint.
Impedance - The impedaner ($\left(\begin{array}{c}\text { 2-x) of the }\end{array}\right.$ antenna at any point is the ratio of voltage to current at that point. It is important in ronnertion with ferding pewor th the antema, wine it constitutes the load resistaner represented by the antemat. At high frequeneies the anterna impedaner eonsists rhiefly of ratdistion resistane (to be measured at a rarment loon, (\$2-1"), unless otherwise merified.

Dirertitity - All antomats madiate more power in certain directions thatn in others. This characteristic, called directivity, must be monsidared in three dimensions, siner directivity exists in the vertical plance as woll as in the horizontal plane. 'Thus, the dirertivity of the antenna will affert the wave angle as well as the actual compass directions in which maximum transmission takes place.

Current - The field strength produced by - an antenna is proportional to the current flow-
ing in it. When there are standing waves on an antenna, the parts of the wire carrsing the higher current have the greatest radiating reffert.

Iower gain - The ratio of power required tw pruduce a given ficld strength, with a "comparism" antemna, to the power required to produce the same fied strength with a sperified type of antennat is called the power gain of the bitter :antennat. The term is tasel in conneetion with antomas intentionally designed to have directivity. and the field is measured in the optimum direction of the antema under test. The comparison antenma ahost always is a half-wave antenna having the same polarizathonathe antemat under consideration. Power gain usuadly is expressed in decibels ($(3: 3-3$).

C. 10-2 The Half-Wave Anfenna

Physical and olectrical lengh - The fundamental form of antorna is a single wire whose length is appoximately equal to half the transmitting wavelongth. It is the unit from which nany more complex forms of antemmats are eonstructal. It is sometimes known as a Marlz or dowhtutantenna.

The length of a hatf wave in space is:

$$
\begin{equation*}
\text { Length }(f \mathrm{fef})=\frac{492}{\text { Freq. }(1 / c .)} \tag{1}
\end{equation*}
$$

The artual length of a half-wave antennat will not be exactly equal to the half wave in spatce, but is usually about is per eent less beramse of caparitanere at the ends of the wire (ent rffect). 'lhe redaction factor increases slightly as the frequeney is increased. I'nder average comditions the following formula will give the length of a half-wave antenna to suffirient areurary for fropucnoies up to 30 Mc .

$$
\begin{gather*}
\text { Length of half-wate antenna }(\text { feet })= \\
\frac{4 \% .3 \times 0.95}{\text { Freq. }(1 / c .)}=\frac{468}{\text { lireg. }(1 / c .)} \tag{2}
\end{gather*}
$$

At bif Mr. and higher frequencies the somewhat larger end efferts cause a slightly greater reduction in longth, so that, for these higher frequencies,

$$
\begin{gather*}
\text { Lingth of half-wave antenna (feet) }= \\
\frac{40 ? \times 0.94}{\text { Fis! }(. M c .)}=\frac{462}{\text { Freq. (./c.) }} \tag{3}\\
\text { or lenglh (inches) }=\frac{5.50}{\text { Froq. (Mc.) }} \tag{4}
\end{gather*}
$$

Current and coltage distribution - When power is fed to such an antenna the current and voltage vary along its length (§2-12). The

Fig. 1001 - Current and voltape distribution on a halfwave antenna. Current is maximum in center, nearly zero at ends. Voltage distribution is just the opposite.
distribution, which is practically a sine curve, is shown in Fig. 1001. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes (§2-12), because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance ($\$ 2-12$). Usually the ohmic resistance of a half-wave antenna is smatl enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance - The radiation resistance of a half-wave antema in free space - that is, sufficiently renoved from surrounding objects so that they do not affect the antema's characteristics - is 73 ohms, approximately. The value under practical conditions will vary with the height of the antenna, but is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends ($\$ 10-1$). The actual value at the conds will depend on a number of factors, such as the height. the physical construction, and the position with respeet to ground.

Conductor size - 'lle impedance of the antenna also depends upon the diameter of the condurtor in relation to its lengt h. The figures above are for wires of practicable sizes. If the diameter of the conductor is made large, of the order of 1 per cent or more of the length, the caparity per unit length incerases and the inductance per unit length decreases. Since the radiation resistance is affected litale, if at all, by the diameter length ratio. the derreased L / C ratio eauses the () of the antemat to derrease, so that the resonance curve beromes less sharp. Hence, the antema is capable of working over a wide frequency range. 'This effect is greater as the diameter/length ratio is increased, and is a property of some importance at the very-high frequencies where the wavelength is smatl.

Radiation characteristics - The radiation from a half-wave antemat is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions at right-angles to the wire and zero along the direction of the wire itself, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 1002,
which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength ($\S 9-1$) will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire.

1 10-3 Ground Effects

Reflection - When the antenna is near the ground the free-space pattern of Fig. 1002 is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. 'Ihis resultant is dependen' upon the height of the antenna, its position or oriontation with respect to the surface of the ground, and the electrical characteristics of the ground. The reflected waves may be in such phase relationship to the directly radiated waves that the two completely reinforce each other, or the phase relationship may be such that complete cancellation takes place. All intermediate values also are possible. Thus, the effect of a perfectly reflecting ground is such that the original free-space firld strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. Since waves are always reflected upward from the ground (assuming that the surface is fairly level), these reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 1003 shows how the multiplying factor varies with the vertieal angle for several representative heights for horizontal antennas. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it oceurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

When the half-wave antenna is vertical the maximum and minimum points in the curves of Fig. 1003 exchange positions, so that the nulls become naxima, and vice versa. In this

Fig. 1002 - The free-space radiation pattern of a halfwave antema. The antenna is shown in the vertical position. This is a eross-section of the solid pattern described by the figure when rotated on its vertical axis. The "doughnut" form of the solid pattern can be more easily visualized by imagining the drawing glued to a piece of cardhoard, with a short length of wire fastened on it torepresent the antenna. 'Twirling the wire will pive a visual representation of the solid radiation pattern.
case, the height is taken as the distance from ground to the center of the antenna.
Radiation angle - 'lhe vertieal angle, or angle of radiation, is of primary import:anes, especially at the higher frequenties (s 9-2, 9-4).

Fig. I00.3 - l:ffer of aronnd on radiation of harizontal antennas at wertiral anplo- for fener antwha herighte. This chart is based on perfertly condheting gromed.

It is advantugeous, therefore, to ereet the amtenna at a height which will take advantage of ground reflertion in such at way as tor reinforee the space radiation at the most dasirable angle. Since low radiation angles usually tredesimble, this generally means that the antema should be high - at least ${ }^{1}$ és wardength at 14 Mr . and preferably $3 / 4$ or 1 wavelengeth: at leant 1 wavelength. and preferably higher, at 28 Mc . and the very-high frequememes. The physional height decreases as the fredueney is incraned. so that good heights are wot inmpraticable: a half wavelongth at 14 Mr . is ouly 35 fect, aphproximately, while the same height repursents a full wavelength at 28 Me. At 7 Mr . and lower frequencies the higher radiation angles are offective, so that arsiin a reasomable antemat height is mot difficult of attainment. Heights between 35 and 70 feet are suitable for all bands, the higher figures generally lecing preferable where ciremmstanes permit their use.

Jmperfert ground - lizg. 1003 is based on ground having perfeed comductivity, wheress the ate tual earth is mot a perfert comburetor. The principal effert of atotual ground is to make the eurves inacourate at the lowest angles: : 1 propeciahle hightrequenty radiation at angles smaller than a fow degres is practiondly impossible to obdain at heights af hess hatn serveral wavelengths. Above bo dewers. however, the curves are abeurate enough for all practical purposes, and may be taken as indicative of the sort of result to be experted at angles between $\overline{5}$ athel 15 deyrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take wlace - seldom is the actual surface of the ground but is a fow feet below it, depending upon the character of the soil.

Impedance - Waves which are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this indueed current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antemna, an inrease in current is equivalent to a decrease in impedance, and vice versa. Hencre the impedance of the antemma varies with height. The theoretical rurve of varistion of radiation resistance for an antenna above perfectly reflecting ground is shown in Fig. 1004. The imperlance approaches the freo-space value as the heisht beomes large, but at low heights maty diffor considerably from it.

Choice of polarization - Polarization of the tramsmitting antemat is genorally unimportant on frequenvies between 3.5 and 30 Mr . However, the question of whether the antenna should be installed in a horizontal or vertieal pesition deserves consideration for other reasons. A vertical half-wave antenna will radiate equally woll in all horizontal direetions, so that it is substantially non-directional, in the nsual sonse of the word. If installed horizontally, however, the antemna will tend to show directional effecte, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points. This can be readily seen by imagining that Fig. 1002 is lying on the ground, and that the pattern is booked at from above.

The vertical angle of radiation also will be affected by the position of the antenna. If it wore not for ground losises at high frequencies, the vertical half-wave antema would be preforred becanse it would coneentrate the radiation horizontally. In practice, howerer, this theoretioal allatatage wer the horizontal antemma is of lithle or no conserfuence, and both types work athout alike at luw angles.

Below 2 Ma.. vertiabl polarization will give more low-angle radiation, athel henee is better for long-distance transmissiont: at this fre-

Fig. 100 A - Theoretical eurve of variation of radiation resistance for a half-wave horizontal antenna, as a function of height above perfectly reflecting ground.
quency the ground wave also is useful, and must be vertically polarized. On very-high frequencies, direct-ray and lower troposphere transmission require the same type of polarization at both recciver and transmitter, since the waves suffer no appreciable change in polarization in transmission (\$9-1). Wither vertical or horizontal polarization maty be used, the latter being slightly better for longer distances.

Effective radiation patterns - In determining the ratiation pattorn it, is necessary to ronsider radiation in bott the horizontal and vertical planes. When the half-wave antenna is vertical, the vertical angle of radiation chosen does not affert the shape of the horizontal pattern, but only its relitive amplitude. When the antenna is horizontal, however, both the shape and anmplitude are dependent upon the angle of radiation chosen.

Fig. 1005 - Inhstrating theimportance of vertical athele of radiation in determining ant+mad direstional effars- (iroumal reflectina is meportod in this drawint of the free-spare fiedd battorn of a horiaontal antenana.

Fig. 1005 illustrates this point. The "freespace" pattern of the horizontal antemma shown is a sertion cut verfically through the solid pattern. In the direction 0.1 , horizontally along the wire axis, the radiation is zero. At some vertical angle, howner, represented by the line ob, the radiation is appreeisble, despite the fart that this line runs in the same geographical diretime as 1.1. At some higher angle, $O C$, the radiation, still in the same genaraphical direction, is still more intense. The effective radiation pattern therefore depends upon which angle of ratiation is most usoful, and for long-distance transmission is dependent upon the conditions existing in the ionosphere. 'lhese conditions may vary not only from day to day and hour to hour, but even from minute to minute. Ohviously, then, the effective directivity of the antenna will change along with transmission conditions.

At very-high frequencies, where only extremely low angles are useful for any but sporadic-E transmission ($\$ 9-2$), the effective radiation pattern of the antenna approaches the free-spane pattern. A horizontal antenma therefore shows more marked directive effeets than it does at lower frequencies, on which high radiation angles are offertive.

Theoretical horizontal-directivity patterns for half-wave horizontal antennas at vertical angles of 9,15 , and 30 degrees (representing average useful angles at 28,14 and 7 Mc . respectively) are given in Fig. 1006. At intermediate angles the values in the afferted regions also will be intermediate. Relative field strengths are plotted on a decibel scale (§ 3-3), so that they represent as nearly as possible the actual aural effect at the receiving station.

Fig. Ifllo - Harizontal pathern of a lorizomal halfwave antemat at three vertioal radiation angles. 'Tho
 show desiation from the 1.5-demere pathern for anyles of
 since the amplitude will deromi upon the larioht of the antenna abost promnd and the vertical ande considered.
 to the samescale, hut this dones not mean that the mavimum amplitudes necesarily will be the same. 'The arrow indicates the dirention of the horizontal antoma wire.

C 10-4 Applying Power to the Antenna

Direct excitation - When power is transfered directly from the source to the radiating antenna, the antemat is said to be directly excited. While almost any coupling method (S2-11) may be used. thrise most eommonl. employed are shown in lig. 1007. Power usually is fed to the antomatu either a current or voltage loop ($\$ 10-2$). If power is fed at a current loop, the coupling method is called current fect; if at a voltage loop, the method is called roltage ferd.

Fig. 1007 - Methonls of dirmenty exciting the half-wive antrma. A, current feed series tuninn: if, voltage foed, capacity compling; \mathbb{C} viltase feed, with an induetively compled antronai tank. In A, the. courling circoit is not intherem in the efferione Wectrical beneth of the anternata stemproper.

Current fred - This method is shown in lig. 1007-A. The antenna is cut at the center and a small coil coupled to the output tank circuit of the traminitter, with :djustable coupling so that the transmitter loating can be controlled. Since the addition of the coil "loads" the antenna or inereases its effective length because of the atditional induetanee. the selies condensers, C_{1} and C_{2}, are used to
provide electrical means for reducing the length to its wiginal unloaded value: in wher words, their caparitive reatathe serves to canrel the rifert of the inductive reatance of the coil (${ }^{5} 2-10$).

Follage ferd - In Fig. 1007, at B and C Whe power io introduced into the antennat at a prent of high roltage. In ls, the end of the anfomat is couplod to the whtut tank ritenit theough at smath combenser, C^{\prime} : in C. as separate tank circuit, ronmeded diently for the anfennat, is used. This tank is tumed to the tramsmitter fremuencs, ablal sholl be grounded at one end or at the erenter of the coil, ats shanw.

Adjastment of comphing - Methents of tuming and adjusthent of direet-fome systems correspond to those used with tratminiment limes, whidh are disenssod in s. 10 - 1 .

Disadramtages of direct cxritation- Inireret excitation seddom is Haed exerph on the lowest anmateur frequencirs, beramse it involves bringing the antematroper into the opreatime wom and hence into (lase relationship) with the house and reetrie wiring. 'lhis usinalts means that some of the pmore is wasted bit freating prow comductors in the field wi the antrana. Alsa, it witen mealas that the shape of the antemman mot be dionted, so that the expeeted dimertumal efferos: mentroli\%erl, and likewise that the horisht will be limited. Fone these reasons, in high-frequotmy work patfically all amateme ase famsmission limes or ineder systoms, which permit parine the antemat in at desimablo bocation.

(1) 10-5 Transmission Lines

 is used tol transtor puner, with : mindmum of lase from the tran-miture the athemata form Which the power is ter be maliatoro. Ab radio tro-
 tomels to radiate conerey in the form of denetro-
 minimize radiation and thas rallee as much of the pewer :ts pasible to be delivared the the rereiving end ol the line.

Radiation can be minimized by using a line in which the curvont is low, atul by notig two (woductors camyeng courrats of edual magnitate: but "phonite phate so that the fiolds about the ewnductors camed abh other. For geod cancedtation of radiation, the two comducfors should be lequt parallel and quite close to e:tch other.

Types - The mont common form of tramsmision lime comsists al two parallel wires, maintaned at a fixed paring of two to six inches by insulating spacers or spreabers phaced at suitable intorsal- (npen-wire lines. A serond typer ansists of insulated wire 1 wistod twedher to form a flexible line. without sule ers (luiskel-pair line). A third uses a wire inside of athe anaxial with a tubing outer conductor, soparated from the outer conductor by insulating sparers or "heads" at rernlat intervals (coaxial or concentric linc). A variation of this
tope uses flexible insulating material between the inner and outer conductors the latter usually being made of metal haid rather that of solid tubing. so that the line will be foxible. still :mother type of line use only a single wire, without :t seond mombutor : single-uirr
 kereping the line curent low.

Spering of two-wire lines - The spacint betwern the wine of an onem-wire line should
 length. to perout apmereable radiation. It is imparticable to make the saring tom small. hewerr, beratuse when the wires swing with rempert to eath other in a wind the line erotstants (s 2-12) will vary, and thas caluse a variation ia thane or lombine on the transmittor. It is also doirable to usc as fow insulations sparers as pusible. An kere the woight of the line to a minimum. In partior. al pacing of about six inches is: used for 14 Mc . and lower frequencios, with form- abd two-imeh sparing twing common on the vers-high frequencios.

Balance to seromol- Fios lsaximum canrellation of the lidhes about the two wires, it is newosary that the current- be equal is anplitude and "pponite in phase. Should the
 wive lifter from that in the ofther this rondition (:anmot be faltilled. Insufar :as the line itself iconcorned, the for wies will have identieal
 the same phrsical redationshaps loground and 10 uther objents in the ridenity. Thus, the line thutal be syametratatly construeted and the two wires should be at the same hoight. Sime anbalatace can be minimized hy kecping the lime as far above the gremod and as far from ather uhjerts as pusiblle.

To wereme untalaner the line sometimes is transpered, whith moathe that the pexitions of the wires are interehabed at regular intersath (Fig. boos). 'Thi- prededure is more helpfu! on loner than on shom lines, amb usiatly need mot lar resimed to for lines lese than a wate length ursulong.

Bosses - Air-insulated lines oprate at quite high chiciomey. Pamallel-enturtor lines average 0.12 to 0.15) dh. (S3-3) lose por watefoneth wi line 'flace figures hold omly if the stamding-wave ratio is 1 . The lonses increater With the standing-wame ratio, rather slowly up to a ratio of 15 te 1 , but rapidly thereafter. For standing-ware ratios of 10 or 1 is to 1 . the increase is inconserguential provided the line is woll batanced.

Comentric lines with air insulation are excellont when dry, but losses increase if there is moisture in the line. Provision shouh be

Antenna Systems

therefore made for making such lines airtight, and they should be thoroughly dry when assombled. This type of line las the least radiation loss. The small lines ($3 / 8$-ineh outer conductor) should not be used at high voltagex; hence, it is desirable to kecp the standingwave ratio down.
Good quality rubber-insulated lines, both t wisted pair and roaxial, atronge about 1 db . loss per wavolongth of line. At the higher frequencies, therefore, such lines should be used only in short longths if losies are important. These lines have the adrantares of eombactness. ease of installation, and floxibility. Ordinary lamp eord has a lossof approximatoly 1.4 dh. per warlenght when it is dry but its: lases berome exessive when wet. The paralled noulded-rubber tepe is best from the standproint of withstanding wot weather. The ehatrateristide impochance of lamp cord is between 120 and 1.40 ohams.
The loss in dit. is direotly propotional to the Jongth of the lime. Thus, a line which hats a lass of I , th. per wavelength will have an ate tual hass of 3 dth. if the line is there wamengthe long. In the ease of lime losies, the length is not exprossed in terms of electrial lengh but in phesioal length; that is. a wavelength of line, in feet, is equal to ast frepuency (Mre) for romputing lows. This permits a dirext eomparison of limes havine the same physial length. The clectrical lengthe, of course, may differ Fansidnerably.

Resomant and nomresonant lines- Lines are rlasified as resomant or nonrewomant. depending upon the stabdine-water ratio. If the ratio is near 1 , the line is said to be monresmant. Reartive efferts will be small, amd monsequently mo serial tuning provisions merd ordinamly be mathe for ranceling them erom when the lime length is mot an exact multiple of a fuarter wavelenght. surf al lime must be ter-

Fig. 1000 - Chart howine the charameristie impedance of typical waced-conductor parallel transmission lines. 'l'uling sizes given are for outside diameters.

If the standing-wave ratio is fairly large, the input reatemeremust be canceled or "tumed out" unless the line is a multiple of a quatrer wavelength, and the line is said to be resomant.

 ohsained with sarams air-im-abathed conmentric limes.

T. 10-6 Coupling to Transmission Lines

Requirements - The coupling system betwern a transmitter and the input cond of a tramsmi-ion line mu-t provide means for adjusting the laad on the transmittor to the proper value (impedance matehing), and for tunimg wht abe reative component that may be present ($82-3,2-10,2-11$). The resistance and reactance considered are thosic prosent at the input oud of the line and hence hatwo nothing to do with the :mincuna it.elf exeept insofar as the antema load may affeet the operation of the litu:

Intmued coil - Onm of the simplest systrems, shown in Fir. 1011-A, uses a coil of a few turns tightly compled to the plate tank roil. since no provision is made for tuming, this sustrm is suitable only for nom-resonant lines which show practionly no reactance at the input end. Lavding on the transmitter may be varied by varying the coupling between the tank inductanere and the picl-up coil, as it is frequently callecl, or be changing the number of turns on the pick-up coil. A slight amount of reartane is coupled into the tank circuit by the pick-up coil, since the flux leakage ($\$ 2-11$) is high, st that some slight retuning of the plate tank rombloner may be necessary when the load is comnerted.

Taps on tank rircuir - A method suitable for use with ofon-wire lines is shown in Fig. 1011-13, where the line is tippeel on a halaned tank cirenit with taps equilistant from the center or ground print. This symmetry is neecosary to maintain line balance to ground (§ 10-5). Loading is increased by moving the taps outward from the center. Any reactance

THE RADIO AMATEUR'S HANDBOOK

present may be tuned out by readjustment of the plate tank condenser, but this method is not suitable for large values of reactance and therefore direct tapping is best confined to use with non-resonant lines.

Adjustment of untuned systems - Adjustment of either of the above systems is quite simple. Starting with loose coupling, apply power to the transmitter, and adjust the plate tank condenser for minimum plate current. If the current is less than the desired load value, increase the coupling and again resonate the plate condenser. Continue until the desired plate current is obtained, always keeping the plate tank condenser at the setting which gives minimum current.

Pi-section coupling-A coupling system which is clectrically equivalent to tapping on the tank circuit, but using a caparity voltage divider in the plate tank circuit for the purpose, is shown in Fig. 1011-C. Since one side of the condenser across which the line is connected is grounded, some unbalance will be introduced into the transmission line. This method is used chiefly with low-power portable sets, hecause it is readily adjustable to meet a fairly wide range of impedance values. A single-ended amplifier, using either a screengrid tube or a grid-neutralized triode (\$4-7), is required, since the plate tank circuit is not balanced. Coupling is adjusted by varying C_{1}, re-resonating the circuit each time by means of C_{2} until the desired amplifier plate current is obtained. In general, the coupling will increase as C_{1} is made smaller with respect to C. Relatively large-capacity condensers are required to give a suitable impedance-matching range while maintaining resonance.

Pi-section filter - The coupling circuit shown in I'ig. 1011-D is a low-pass filter capable of coupling between a fairly wide range of impedances. The method of adjustment is as follows: First, with the filter disconnected from the transmitter tank, tune the transmitter tank to resonance, as evidenced by minimum plate current. Then, with trial settings of the clips on L_{1} and L_{2} (few turns for high frequencies, more for lower), tap the input elips on the final tank coil at points equidistant from the center, so that about half the coil is included between them. A balanced tank circuit must be used. Set C_{2} at about half seale, apply power, and rapidly rotate C_{1} until the plate current drops to minimum. If this minimum is not the desired full-load plate current, try a new setting of C_{2} and repeat. If, for all settings of C_{2}, the plate current is too ligh or too low, try new settings of the taps on L_{1} and L_{2}, and also of the taps on the transmitter tank. Do not touch the tank condenser during these adjustments. When, finally, the desired plate current is obtained, set C_{1} carefully to the exact minimum plate-current point. This adjustment is important in minimizing harmonic output.

With some lengths of resonant lines, particularly those which are not exact multiples of a
quarter wavelength, it may be difficult to get proper loading with the pi-section coupler. Usually antennas of these lengths also will be difficult to feed with other systems of coupling. In such cases, the proper output loading often can be obtained by varying the L / C ratio of the filter over a considerably wider range than is necessary for normal loads as specified on page 204.

Series tuning - When the input impedance of the line is low, the coupling method shown in Fig. 1011-F may be used. This system, known as series tuning, places the coupling coil, tuning condensers and load all in series, and is particularly suitable for use with resonant lines when a current loop appears at the input end. As shown, two tuning condensers are used, to kerp the line balanced to ground. However, one will suffice, the other end of the line being connected directly to the end of L_{1}.

The tuning procedure with series tuming is ats follows: With C_{1} and C_{2} at minimum capacity, couple the antenna coil, L_{1}, loosely to the transmitter output tank coil, and observe the plate current. Then increase C_{1} and C_{2} simultaneously until a setting is reached which gives maximum plate current, indicating that the antenna system is in resonance with the transmitting frequency. Readjust the plate tank condenser to minimum plate current. This is necessary because tuning the antenna circuit will have some effect on the tuning of the plate tank. The new minimum plate current will be higher than with the antenna system detuned, but should still be well below the rated value for the tube or tubes. Increase the coupling between L_{1} and L_{2} by a small amount, readjust C_{1} and C_{2} for maximum plate current, and again set the plate tank condenser to minimum. Continue this process until the minimum plate current is equal to the rated plate current for the amplifier. Always use the degree of coupling between L_{1} and L_{2} which will just bring the amplifier plate current to rated value when C_{1} and C_{2} pass through resonance.

Parallel tuning - When the line has high input impedance, the use of parallel tuning, as shown in Fig. 1011-r, is required. Here the coupling coil, tuning condenser and line all are in parallel, the load represented by the line being directly across the tuned coupling circuit. If the line is non-reactive, the coupling circuit will be tuned independently to the transmitter frequency; line reactance can be compensated for by tuning of C_{1} and, if necessary, adjustment of L_{1} by means of taps. Paraliel tuning is suited to resonant lines when a voltage loop appears at the input end.

The tuning procedure is quite similar to that with series tuning. Find the value of coupling between L_{1} and L_{2} which will bring the plate current to the desired value as C_{1} is tuned through resonance. Again, a slight readjustment of the amplifier tank condenser may be necessary to compensate for the effect of coupled reactance.

Antenna Systems

Link coupling - Where tuning of the circuit connerted to the line is necessary or desirable, it is possible to separate physically the line-tuning apparatus and the pate tank circuit by means of link coupling (s 2-11). This is often conveniont from a construetional standpoint, and has the advantage that there will be somewhat less harmonic transfer to the antenna, wine stray capacity coupling is lessened with the smaller link coils.

Figs. 1011-(: and II show at mothod which can be considered to be a variation of fig. 1011-B. The first ((i) is suitable for use with a single-ended plate tank, the second (H) for a bataneed tank. The anvilaty tank on which the transmission line is tapped maty have adjustable inductance as well as capacity. to provide a wide rame of reactance variation for compensating for line reatance. The contar of the anxiliary tank inductance may be groumded, if desired. The link wintinge shoudd be plated at the grounded parts of the coils, to reduce capacity eoupling and consequent harmonie transfer. With this induetively eoupled system, the loading on the auxiliary tank circuit increases as the taps are moved outward from the conter, but, sime this decreases the Q of the eireuit, the eompling to the phate tank simultancously derreases ($2-11$). Jence, a compromise adjustment giving proper lowding must be found in protetice. Loading atho may be varied by changing the coupline betwern one link winding and its assoriated tank eoil; either tank may be used for this purpose. When the auxiliary tank is proporly tuned to compensate for line reactanes. the plate tank tuning will be practically the same as with no load: hence, the plate tank condenser need be re-
adjusted only slightly to compensate for the small reactance introduced by the link.

Link coupling alwi, may be used with series tuning, as shown in Fig. 1011-I. The coupling between one link and its associated coil may be made variable, to give the sime effert as changing the roupling betweon the plate tank and antenna coils in the ordinary system. The tuming procedure is the same as described above for series tuning. In the case of singleended tank eirenits the input link is compled to the gromuted end of the tank coil, ats in l'ig. 1011-G.

Circuit ralues - The values of inductance and caparity to use in the antenna coupling system will depend upon the transmiting frequancy, but are not particularly critical. With series tuming (ligg. 1011-10, 1), the coil may consist of a few turns of the same construction ats is used in the final tank; average values will run from one or two turns at very-high frequencies to perhaps 10 or 12 at 3 .o Me. The number of turns preferably thould be adjustable so that the inductance can be changed should it not be possible to reach resonance with the condensers used. The series condensers should have a maximum caparity of 250 or $350 \mu \mu \mathrm{fd}$. at the lower frequencies; the same values will serve even at 28 M (., although $100 \mu \mu \mathrm{~d}$. will be ample for this and the l-Me. hand. Still smaller condensers call be used at very-high frequencies. Since sories toming is used at alowvoltage point in the feeder system, the plate spacing of the condensers does not have to be large. Ordinary receiving-type condensers are large enough for phate voltages up to 1000 , and the smaller transmitting condensers have high-enough voltage ratings for higher-power

Fig. 1011 - Mrthods of compling the transmitter output to the trammission line. Application, circuit values and adjustment are discussed in the text. The coupling comblensers, (i, are fixed blocking condensers used to isolate the transmiter plate voltage from the antenna. Their capacity is not critical, $500 \mu \mu \mathrm{fd}$. to $0.002 \mu \mathrm{fd}$. being satisfactory values, but their voltage rating should at least equal the plate voltage on the final stage.
applications. In high-power radiotelephone tranmitters it maty be needssary to use condensers having a plate spacing of approximately 0.15 to 0.2 inch.

In parallel-luned rireuit: (F, G, H) the antemat enil and condenser shomblat be apposimately the same as those wed in the final tamk rireuit. The antennatank rireut must be "apabe of being tuned independently the transmitting frequency, and, if pmsible, provision should he made for tapping the coil, su that the L/C ratio can be varied to the optimum value (\$2-11) as determined experimentally.

In F'ig. 1011-1), ('t and ('s maty br 100) to 250 $\mu \mu \mathrm{fd}$. each, the higher-r:ap:utiy vahus bering used for lower-frequen-y opration (3.б) Mc. and tower). Pate sparing -humblhe. in seneral, at least hatf that of the final-ampliaier tamk condenser. Forr operalion up in 14 Mr .. L_{1} and L_{2} each may donsist of lams, 212 inehes it diameter, suated tw wernp: 3 inehes length, and tapped wery there turns. Approximate sottings are 15 hums for 1.75. Mr.. 9 turns for $3 . \overline{\text { s }}$ Mr... 6 turns for 7 Mac.. ind 3 turns for 1.4 Mr. 'The rails may be wound with No. 14 or $\mathcal{N} 0$. 12 wire. 'This mothod ol coupling is wery seldom wied at very-high freoturnomes.

Harmanic redachion - It is important to prevent, insof:ar as pessible, harmonies in the output of the transmiter from being framsfered to the antomatsom. Fontumed (Fig. 1011-A) and diredty emapled (F'ig. 10!1-13) systems donot diseriminato arsanst harmmairs, and heme ate more !ibely turase hatmonic ratiation that the inductively compled tumed
 those at ($:$ amd 1), lög. 1011 , do diswimamate against hatmomins, but the direet compling frequently is: as sure of trouble in this respert.

In indurtions couphed sostems, care must be taken to prevent apacity complime betwern cooils. Link coils :always should heroupled at, at point of ground potential ($(\underset{S}{2}-1: 3)$ on tho phate tank roil, as also should series- and paralleltuned coils (E and F^{\prime}) Whon pessible. (Stparity coupling ran be praterall! dimanated hy the use of a farmaty shied (s.9) betwern the plate tank amd :antemat conils.

Fig. 1012 - 11 alf-wave antonnas fed from resonam lines. A and B are end-fied systems for nase with quarter and half-wave linos: (and i) aro rember-ford systems. The curront distributien is shown fir all fome cases, arrows indieating the instantaneous direction of eurrent flow.

a. 10-7 Resonant Lines

Turo-uire lines - Because of its simplicity of : idjustment and flexibility with respert to the frequency range over which an antennat system will operate, the resmast line is widely used with simple anternas systems. Construetionally, the spared on "oqu" two-wime line is best suited to resmant operation: rubber-insulated lines, such ate twisted pair, have exeresive foseses when operated with standing waves.

Commertion to antemma-A resmant line
 neoted to the anternatat edither a current or voltage low, 'Thi- is alvaltatrents, esperially when the antemat is to be cperated at harmonic frequencies, sinme it simplifies the problem of determining the coubling system to be used at the input and of the line.

Intf-actre antrona wilh resonant lineIt is often helphul to lowk upon the resomant line simply : Su•h a line may be any whole-number multiple of : quarter wawe in Iength: in other words, any total wire longth whirl, will arommondate a whale number of sambling waves. (The "Ienght" of a two-wire line is, however, alw: taken ats the lemgth of one of the wires.)
(Quarter- and half-waverownant line freding half-wave antennas are shown in lige. 1012. The courent diatrihution on both atutenat :und lime is imdioated. It will be moted that the quartor-w:cor lime has maximum courrent at one end and minimum durent at the wther, determined by the point of ermmertion to the antemat. The latf-wate line heworer, hat the wablae rurrent (and roltagr) values at both ends.

If a quarter-wavelime is connered to the emd of an athentat, ato shown in lige 1012-A, then at the tramamitere cmid of the line the euremt is high and the voltage low (low impedance). su that orric: tuning ($\$ 1(1-6)$ ran be used. Shumb the line be : hall-wave long, as at 1012-13, curvont will he minimum and voltage maximmm (hish imperdane) at the transmitter cond of the line. just as it is at the end of the antemata. P'iballed taning therefore is remuired (s) $10-1$). The line could be compled to at balaneed final tank through small condenser:as in lig. 1011-l', hut tho indurively coupled circuit is preforable. An emd-fed antemat with resontant ferder, ar in 1011-A and B , is known ats the "Zappolin" on "Zapp" antemat.

The line also mat be insorted at the center of the anternat at the maximam-rurrent point.
 are shown at Fig. 1012-(amd 1). In (', the antemna end of the line is at a high-arrent lowvoltage print ($\$ 10$ - 2) : hence. at the transmitter end the current is low and the voltage high. Paralled tunitg therofore is used. The hatiwave line at 1) has high rarrent and low voltage at both mods, so that sories tuning is used at the transmitter end.

The four arrangements shown in Fig. 1012 are thoroughly useful antenna systems, and are

Fig. 1013 - Practical halfewave antenna systems using resonantline feed. In the wenter-ferd sostems, the antenna length. X, dom not inelnde the length of the insinlator at the center. Line length is measured from the antenna to the tuning apparatus; lads in the latter shonld be kept short enouph an their effect can be neqlected. 'The use of two r.f. ammeters, M, as shown is helpful for babancing feeder currents; howevar, one meter is sufficient tomable thanay for maximum outpat, and may he transferred frome one feeder to the other, if desired. 'lhe systums at (A) and (C) are for fecelers an odd number of guarter waves in Fongth: (B) and (I)) are for feeders a multiple of a half wavelength. The detailed drawings shoswn leere correspond electrically to the elementary sehematid half-wave antenna systems shown in lig. 1012 .
 each case the antemna is a half wavologth long, the exact length being calculated from Fquations 2, 3 or $+(\$ 10-2)$ or taken from the charts of Fig. 1016. The line length should be an integral multiple of a quarter wavelength and may be calculated from equation 5 ($\$ 10-\overline{5})$, the result being multiplied by any whole number which gives a total length convenient for reaching from the antemna to the transmitter. If there is an odd number of quater wates on the line in the case of the cond-fed antenna, series tuming should be used at the trimsmitter end: if an even number of quarter wates, then parallel tuning should be used. With the erenterfed antemat the reverse is true.

Practical lime lengths - In general, it is best to use line lengthe that are integral multiples of a quarter wavelength. Intermediate lengths will give intermediate impedance values and will show reatiance (s 2-12-A) as well. The tuming apparatus is capable of compensating for reactance, but it may be diflicult to get suitable transmitter loading hecause simple series and parallel tuning are suitable for only low and high impedances, respectively, and neither will perform well with impedances of the order of a few humdred ohms. Surh values of impedance may reduce the Q of the coupling circuit to a point where adequate coupling cannot be obtained ($\$ 2-11$). However, some departure from the ideal length is possible even as much as 25 per cent of a quarter wave in many cases - without undue difficult tuning and coupling. In such cases the tuning to use, whether series or parath depend on whether the feeder length is 1 . an odd number of quarter waves or neare even number, as well as on the point at wh. the feeder is connected to the antenna - : the end or in the center.

Line current - The feeder current as read by the r.f. ammeters is useful for tuning purposes only; the absolute value is of little im-
portance. When serice tuning is used the current will be high, but very little current will be indicated in a parallel-tuned system. "1\%is is because of the current distribution on the feeders, as shown by loig. 1012. With a given antenna and tuning systom, of course, the greatest power will be delivered to the antenna when the readings are highest. However, should the feeder length be changed no useful conclusions ean be drawn from comparison between the now and ohd readings. For this reasom, any indicator which registers the relative intensity of r.f. current can be used for tuning purposes. Many amateurs, in fact, use flashlight or dial lamps for this purpose instead of meters. Sinch lamps are inexpensive indicators, and. When shanted by short lenglhs of wire so that considerable current can he passed without d:mger of burn-out, will serve very well even with high-power transmifters.

Antenna length and line operationInsofar as the opration of the anternat itself is concerned, tepartures of a few per cent from the exact. length for resonance are of negligible conseduence. However such inacemacies may influence the behavior of the feeder system, and as a result may have an tulverse effect on the operation of the system as a whole. This is true particularly of end-fed antennas, such as are shown in Fig. 1013-A and - 13 .

For example, lig. 101.t-A shows the current distribution on the half-wave antenna and rter-wave feder when the antenna length
"rect. At the junction of the "live" feeder
\because e antenna the current is minimum, so
? currents in the two feeder wires are all corresponding points along their
When the antenna is too long, as in B,
surrent minimum occurs at a poirt on the antenna proper, so that at the top of the live feeder there is already appreciable current flowing, whereas at the top of the "dead" feeder the current must be zero. As a result the

Pig. 10h - Illustrating the effect on feeder balance of incormet antenna length for various typer of antemasystems. In cod-fred systrms, the current minimm shifts abeve or below the feeder junetion, unbalaneing the line. With eenter feed, ineorreet antenna length does not unbalanee the transmission line as it docs with end feed.
feeder currents are not balanced, and some power will be radiated from the line. In C, the antenna is too short, bringing the current minimum to a point on the live feeder, so that again the currents are unbalanced. The more serious the unbalance, the greater the radiation from the line.

Strietly speaking, a line having an umbalanced connection, such as the one-way termination at the end of an antenna, camot be truly balanced even though the antenna length is correct. This is because of the diference in loading on the two sides. The effeet of this difference is fairly small when the currents are balanced, however.

If the antenna is fed at the eenter the undesirable effects of incorrect antenna leugth balance out, son that the line operates properly under all ronditions. This is shown in lig. 1014 at D, Fand F. So long as the two halves of the antenna are of equal length the distribution of current on the fecders will be symmetrical, so that no unbalance exists even for antenna lengt hs considerably removed from the correct value.

© 10-8 Nonresonant Lines

Kequirements - The advantages of nonresonant transmission lines - minimum losses, and elimination of the necessity for tuning make the use of this type of line attractive. The chief disadvantage of the nonresonant line, aside from the necessity for more care in initial adjustment, is that when "matched" to the ordinary antenna the match is perfect only for one frequency, or at most for a small band of frequencies on either side of the frequancy for which the matching is done. Except for a few special systems, such an antenna is unsuitable for work on more than one amateur band.

Adjustment of a nonresonant line is simply a process of adjusting the terminating resistance to match the characteristic impedance of the line. To accomplish this the antenna itself must be resonant at the selected frequency, and the line must then be connected to it in such a
way that the antenna impedance as looked at by the line is the right value. The matching maty be done by connecting the line at the proper spotalong the antenna, by inserting an impedance-transforming device between the antenna and line, or by using a line having an impedance equal to the center impedance of the antenna.

An impedance mismatch of several per cent is of little consequence so far as power transfer to the antennit is concerned. It is relatively easy to get the standing-wave ratio down to 2 or 3 to 1 , a perfectly satisfactory condition in practice. Of considerably greater importance is the necessity for getting the currents in the two wires balancerl, both as to amplitude and phase. If the currents are not the same at corresponding points on adjacent wires and the loops and nodes do not also occur at corresponding points, there will be considerable radiation loss. Perfect balance can be brought about only by perfect symmetry in the line, particularly with respect to ground. This symmetry should extend to the coupling apparatus at the transmitter. An electrostatic shicld between the line and the transmitter coupling coils often will be of value in preventing caparity unbalance, and at the same time will reduce harmonic radiation.

In the following discussion of ways in which different types of lines may be matehed to the antenna, a half-wave antenna is used as an exainple. Other types of antennas may be

Fig. 1015 - Single-wire-feed system. The length, L, (one-half wavelength) and the feeder tocation, D, for various bands are determined from the eharts of Fig. 1016.

Fig. 1016 - Chart, for determining the length of half. wave antennas for use on various amatcur frequencies. Solid lines indicate antenna lenth in fert (lower seale): dotted lines indicate the point of conncetion for a single. wire feeder (upperscale) measured from centerof antenna.
treated by the same methods, making due allowance for the order of impedance that appears at the end of the line when more elaborate systems are used.

Single-wire feed - In the single-wire-feed system, the return circuit is through the ground. There will be no standing waves on the feeder when its characteristic impedance is matched by the impedance of the antenna at the connection point. The principal dimensions (Fig. 1015) are the length of the antenna, L, and the distance, D, from the exact center of the antenna to the point at which the feeder is attached. Approximate dimensions for both antema length and the ferder connection point can be obtained from lige. 101t for an antema system hasing a fundamental froquener in any of the most-used amateur bands.

In ronstructing an antenna system of this type, the feeder must run straight away from the antenna (at a right angle) for a distance of at least one-third the length of the antenma. Otherwise the field of the antenna will affect the foeder and rause faulty operation. There should be no sharp bends in the fecder wire at any point.

(B)

Fis. 1017 - Mestede of compline the fromer to the tranmitter in a singlewire-feed system. Cirmit- are show tor both single-ended and halanced tanh circuits.

With the coupling system shown in Fion. 1017-A, the process of adjustment is as follows: Starting at the ground point on the tank eoil. the tap is moved towards the plate end until the amplifier draws the rated plate current. 'The plate tank condenser should be readjusted each time the tap is changed, to bring the pate current back to minimum. The amplifier is loaded properly when this "minimum" value is equal to the rated current. The condenser, C, in the feeder is for the purpose of insulating the antenna system from the high-voltage plate supply when series plate feed is used. It should have a voltage rating somewhat higher than that of the plate supply. Almost any capacity greater than $500 \mu \mu \mathrm{fd}$. will be satisfactory. The condenser is unnecessary, of course, if parallel plate feed is used.

Inductive coupling to the output circuit is shown in Fig. 1017-B. The antenna tank circuit

should tune to resonance at the operating frequency, and the loading is adjusted by varying the coupling botween the two tanks, both being kept tuncd to resonance.

Regardless of the type of coupling employed, a good ground comnertion is essential with this system. Singlewire feed works hest over moist ground. and compatatively parize over rock and sand.

 pair line. Faming (8) combonsates for lime impedane

Tuisted-pair feed - A 1 wo-wire lime composed of twisted rubber-eoverad wires c:th be constructed to have asurge impedance approximately equal to the 70 orhm inapedanere at the center of the antenma itsoli, thus promitting connecting the line to the anternat as shown in Fig. 1018. Any diserepancy which maty exist between line and antenna impedane (an be compensated for by a slight faming of the line where it connerts to the two halves of the antenma, as indicated at 13 in Fig. 1018.

The twisted-pair line is a cenvenient type to use, since it is casy to install and theref. voltage on it is low berause of the low impedanere. Special twisted line for transmithing [mpores, having lower losses than ordiabry ruhbercovered wire, is available.

The antenma should be one-half watelongth long for the fresueney of operation, as determined by eharts of fige, lolf or the formulas (\$ 10-2). "The amount of "famming" (dimension B) will depend upon the kind of rathle used: the required spating usmally will be betwern of and 18 inches. It may be cherked by insorting ammeters in exw anternat lege at the junction of the feeder and antennat the value of B which gives the largest current is eorrect. Alfernatively, the system mas be operated continuously for a time with fairly high ref. power input, after which the focder maty be

Fig. 1019 - Malf-wave antenna center-fiol by a concentric transmission linc of 70 ohms surqe impedance.
inspected (by touch) for hot spots. These indicate the presence of standing waves, and the faming should be adjusted until they are climinated or minimized. Each leg of the forbor forming the triangle at the antema should be equal in length to dimension B.

Coupling betwern the tramsmiter and the tramsmission line is ordmarily aceomplished by the umtuned coil method shown in Fig. 1011-. 1 (s 10-ti).

Concentrir-line feed - A ennemtrie tramsmission line ean he emstructed to have a surge impedance equall th the 70 -ohm impedance at theremter of a half-wave anteman sum a line eath be commered direatly to the center of the antenuat, therefore forming the systom shown in lig. 1019.

An air-insulated concentric line will have a surge impedance of 70 ohms when the inside diameter of the outer condactor is approximately 3.2 times the outside diameter of the inner conductor. 'lhis eondition ran be fulfilled by using standard 5/16-inch (outside diameter) ropper tubing for the outor combuctor and No. 1-t wire for the inner. Ceramic insulating sumers are avalable commerdially for this combination. Rubber-insulated concentria line having the requisite impedane for connection to the center of the antenna also is available.

The operation of such an antenna system is similar to that of the twisted-pair system just deseribed, and the same transmitter coupling arrangements may be used (\$ 10-(i).

The outer conductor of the line may be groumded, if desired. The fecder systom is sliglatly unbalanced. becaluse the inner and outer conductors do not have the same caparity to groumd. There should be no radiation from a line having a correet surge impedane, howerer.

Delita matching transformer - Beraluse of the extremaly elose spacing required, it is impratticable to construct an open-wire transmission line which will have a surge impedance low enough to work directly into the center of a half-wave antenna. Such wire lines usually have impedanes betwern 400 and 700 whins. 600 whms being a widely used value. It is necessars, therefore to use other me:ns fur matehing the line to the antemat.

One mothoul of matching is illust rated be the system shown in Fig. 1020. The matehing seetion. E, is "fammed" to hate a gradually inreasing impedanec so that its impedance at the antema end will be equal to the impedaner of the antema section. (${ }^{(}$, while the impedance at the lower end matches that of a practicable transmissi:n line.

The antenna length, L, the feeder clearance. E. the spacing between centers of the feeder wires, D, and the couphing length, C, are the important dimensions of this system. The system must be designed for exact impedance values as well as frequency values, and the dimensions therefore are fairly critical.

The length of the antenna is figured from the formula (\$10-2) or taken from Fig. 1016.

The length of section C is computed by the formula:

$$
C(f c e t)=\frac{1 / s}{\text { Freq. }\left(. / 1 c_{2}\right)}
$$

The focder clarance, E, is found from the equation:

$$
E(f e \varepsilon t)=\frac{12.3}{\text { Freq. }(.1 / c .)}
$$

The above equations are for foolers having a rharatoristic impedance of 600 ohms amd will not apply to ferders of any other impedane The proper feeder sparing for : fiol)-ohm transmission line is computed to : sulticiently close approximation by the following formula:

$$
D=75 \times d
$$

where I) is the distance between the centers of the feeder wires and d is the diameter of the wire. If the wire diameter is in inches the spate ing also will be in inehes, and if the wire ditmeter is in millimeters the spacing also will be in millimeters.

Methods of compling to the tramsmitter are discussed in \$10-6, those shown in Figs. 1011C. I), (i and H being suitable.

Fig. 1000 - Ieelta-matrhed anterna sistem, 'The dimensions C, D, and l, are found by frimula pioco in the text. It is importatht that the matehing wretion, E, comestraipht away from the antenna without ans hemds.
"Q"-section transformer - The impedance of a two-wire line of ordinary construction (400 to (600 ohnas) can be matriod to the impedance of the conter of a half-wave antemme by utilizing the impedance-transforming properties of a quarter-wave line ($\$ 10-i)$. The matching section must have low surge impedance and therefore is commonly constructed of large-diameter conductors such as aluminum or eopper tubing, with fairly close spacing. This system is known as the "()" antenma. It is shown in Fig. 1021. The important dimensions are the length of the antenna. the length of the matching section, l, the spacing between the two conduetors of the matching section, C, and the impedance of the untuned transmission line connected to the lower end of the matching section.

The required surge impedance for the matching section is

$$
\begin{equation*}
Z_{\mathrm{s}}=\sqrt{Z_{1} Z_{2}} \tag{9}
\end{equation*}
$$

where Z_{1} is the input impedance and Z_{2} the output impedance. Thus a quarter-wave section matehing a 600 -ohm line to the conter of a half-wave antonat (72 ohms) shoulal have a surge impedance of 208 ohms. The spacings between conductors of various sizes of tubing and wire for different surge impedinces are given in graphical form in Fig. 1009. With $1 / 2$-inch tubing, the sparing should be 1.5 inches for an impedance of 208 ohms.

The length of the matching section, B, should be equal to a quarter wavelength, and is given by

$$
\begin{aligned}
& \text { Length of quarter- } \\
& \text { ware line }(\text { feet })
\end{aligned}=\frac{23.4}{\text { Freq. }(M c .)}
$$

The length of the antenna can be calculated from the formulal ($10-2$), or taken from the chatrts of Fig. 1016.

This system has the advantage of the simplicity of adjustment of the twisted-pair ferder systom and at the same time the superior insulation of an open-wire system. Figs. $1011-\mathrm{B}$, I), (iand II (\$10-6) represent suitable methods of eoupling to the transmitter.

Linear transformers - Fig. 1022 shows two mothods of coupling a mon-resonant line to a half-wave antemat through a quarterwave linear transformer or matching section. In the case of the center-fed antemat, the free end of the matching section, B, is open (high impedtance) since the other end is connected to a low-impedance point on the antonta. With the end-fed antemma, the free end of the matching seetion is closed through a shorting bar or link; this end of the section has low impedanet, since the other end is conneroded to at high-impedance point on the antenna ($810-7$).

When the commection between the matching section and the antenna is unbalanced, as in the end-fed system, it is important that the antenna be the right length for the operating frequenry if a good mateh is to be obtained (\$10-7). The balanced renter-fed system is less critical in this respect. The shorting-bar methond of tuning the center-fed system to resomatre may be used if the matching seetion

Fig. 1021 - The "()" antenna, using a quarter-wave im-pedance-matching section with elose-spaced conductore.

 waveopen-wirelinear impedanes-niatehing trandormers.
is extended to a half wablength, bringing a current loop at the free end.

In the center-fed system, the antemat and matrhing section should be wat to lemethes found from the equations in $\$ 10-2$ and $\leqslant 10-\overline{5}$. Any necessary on-therromad adjustment can be made by adding to or chipping off the open ends of the matehing seetion. In the end-fed system the matrhing seetion ran be adjusted by making the line a little longer than necessary and adjusting the srstem to revonance by moving the shorting link up and down. Resonance can be determined by exating the antenma at the proper frequeney from a temporary antenna mar by and meanuring the current in the shomting bar by a low-rante r.f. ammeter or galvanometer asing ons of the devices of this type deseribed in (hapter Nineteen. The prsition of the har shoulh be adjusted for maximum current reabinis. 'This should be done before the transmission line is attarhed to the matrhiner section.

The position of the line taps will depend upon the impedane of the line as well as on the antenna impedance at the point of romection. The procedure is too take a trial mint, apply power to the tramsmiter, and then cheok the tramsmission line for standing waves. 'This com be done by measuring the current in or voltage along the wires. At any one position along the line the corronts in the two wires should be identical. Readings taken at intervals of a quater wavolength will indiette whether or not standing wawes are present.

It will not usually be possible to obtain complete climination of standine wates when the matching stub is exatly resomant, hat the line taps should be adiusted for the smathest obtainable standing-wave ratio. Then a further "touching ap" of the matching-stuh taning will eliminate the remaining standing wave, provided the adjustments are carcully made. The stub must be readjusted, because when
resonant it exhibits some reactance as well as resistance at all points except at the ends, and a slight lengthening or shortening of the stub is necessary to tune out this reactance.

Since the line impedance is ordinarily between 500 and 600 ohms. the same methods of coupling may be used between the fransmitter and the line as are recommended for the deltamatrhing system and the Q matching transformer.

Matching stubs - The operation of the quater-wave matching transformer of Fig. 1022 may be considered from another - and more genoral - viewpoint. Suppose that sertion C^{\prime} is looked upon simply ats a continuation of the ransmission line. "lhen the "free" end of the transformer beromes a "stub" line, shunting a section of the main transmission line. from this viewpoint, matching the line whe thentena becomes a matter of seleeting the right type and length of stub and attaching it to the proper spot along the line.
lecfermen to lig. 1023, at :my distance (X) from the antemat the line will have an impedance which maty be considered to be made up of reatance (either indurtive or eapacitive) and resistance, in parallel. The reactive romponent can be climinated by shanting the line at distaner X from the antenna with another reactance equal in value but, opposite in sign to the reactance presented by lie line at that point. If distance X is such that the line presents: an inductive reactance, a corresponding shanting capacitive reactance will be required.

The reanired compensating readance maty. be supplied by shanting the line with a stub cut to poper length. W. With the reactances canceled only a pure resistame remains as a termination for the remainder of the line betwren the sending end and the stub, and this resistance can be adjusted to mateh the chatatoristic impedance of the line by adjusting the distance X.

Distances X and Y may be determined experimentallys but sime their values are interdependent the cur-and-try method is somewhat laborious. If the standing-wave rationad the positions of the current loops and nodes atu be measured, the length and position of the stub can be found from Jigs. 1024 amd $102 \overline{5}$.

Fig. 1023 - When antenna and transmission line differ in impedance, they may he matched liy a short length of transmission line, V, called a stab, Determination of the critiral dimensions, X and Y, for proper matehing depeuds on whether the stub is open or closed at the end.

Although the standing-wave ratio can be measured in terms of either current or voltage, measurement of current usually is more convenient. (If the measurements are made with a current-squared galvanometer an appropriate correction must be made, since sate readings with this type of meter are proportional to power.) With the amemna comented to the line but with the stub) diseomereded, the r.f. meter should be moved along the line from the antemat toward the somding end until a current loop or node is tound. Its location should be marked and the value of the current reeordad. 'Then the meter should be moved along toward the sending and until the next loop or mole is lorated (if the first was a lomp the second will be a node, and viec veras), and the current at this point reoorded. As a coossdreck for wavelength. the distame between a lonp and node should be $1 / 4$ wavelength. The standing-wave ratio is the ratio of purvent at a loop to current at a node.

Once the staming-wave ratio is known, the length and position of the stub, in terms of wavelenght ean be found directly from figs. 1024 and 1025 . The wavelength in fere for any frequency can be found from Equation 1.

Fig. 102 t - Craphe for determinine position and lempth of a shorted stab. Dimernionstay be comerted to linear mits after values have been taken from the graph.

Methors of coupling to the line shown in Figs. 1011 -B. D. G and II (\$10-6) ('an be used.

Measuring standing urtes - Fiquipment for measuming the standing-wave ratio along the trammission line is deseribed in (hatper 18. At frequencios below 30 megacerles the thermomilliammeter prothathy is the most reliable instrument and the eatsiest to use. The absolute value of the current in the line is not important; the ratio belween the maximum and mininum currents is what is reguired.

When the stamding-wave ratio is low it may be difficult 10 determine the exact lowation of a mode or loop since the current changes rather slowly at these points. In such a wase the following procedure may be adopted: Measure the minimum curent, then whoose a somewhat higher value and locate two points on either side of the minimum at which the current equals the chosen value. For example, if the minimum current is 0.1 ampere, a value of 0.15

Fis. 1025 - Craphs for determining pesition and length of an eben stah. Dimensions may be eonverted to linear mits after values have been tahem from the graph.
ampere might be chosen and the meter moved first to one side :and then the other of the minimum point until two spots are found Where the reading is 0.15 ampere. Then the node will be just hatf-way hetween these two points and may be determined very casily by me:suring the distane The same method maty be used to locale a current loop with more exaroness than by freing to locate the actual point of maximum current. In this ease, of course a ralue of current slirhtly lower than the maximum value should be chosen.

A crystal-detector probe piek-up measures maximam and minimum volage rather than current. The stamding-wave ratio may be mestured in terms of voltage equally as well as in terms of current. However, in using the charts for the matehing stubsystem it must be kepr in mind that a voltage loop oceurs at the same point as a current node, and vice versa.

C 10-9 Long-Wire Antennas

Definition - An anternat will be resonant so long as at integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half wavelength. When the antenna is more than a half wave long it usually is called a long-wire antenna, or a harmonic antenma.

Current and roltage distribution - Fig. 1026 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is equal to a half wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc , the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at B. At 21 Mc., the thirel harmonic of 7 Mc ., the current and voltage distribution would be as in C ; and at 28 Mc., the fourth harmonie, as in D. The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the ad-

 bution along an antemba when it is oproated al various harmonirs of its fundamental remant frefurney.
jacent standing waves. This is shown in the figure by drawing thr current and valtage curves suressively above and below the antenna (taken as: a zeror referener line), to indieate that the polarity reverses when the current or voltage gues through moro. Curronts flowing in the same direction are in phase; in opposite directions, out of phase.
lt is evident that one antemma may be used for harmonically redated frequencies, such as the various amateur bands. 'The long-wire or harmonice antenna is the basis of multi-band operation with onc: antemat.

Physical lengths - The longth of a lontwire antemat is not an exact multiple of that of a half-wave atemat beraus tho end efferts: (\$ 10-2) uperate only on the end scetions of the antenna; in other parts of the wime these efferts are absent, and the wire length is approximately that of ath equivalent portion of the wave in spate 'lowe formula for the length of a long-wire antenna, therefore, is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{49!(N-(1) .05)}{\text { Freq. }(1 / c .)} \tag{10}
\end{equation*}
$$

where N is the number of half waves on the antenna. From this, it is apparent that an antenna cut as a half wave for a given froquency witl be slightly off resoutane at exartly twice that frequency (on the serond harmomic) because of the different behavior of end effects when there is more than one standing wave on the antenna. For instance, if the antema is cut to have exact fundamental resonance on the second harmonic (full-wave operation) it should be 2,6 per cent longer, and on the fourth harmonic (two-wave), 4 per cent longer. 'The
effert is not very important exrept for a possible unbalance in the feeder sy:tem ($\$ 10-7$). Which may resalt in some radiation from the forder in end-fed systoms.

Impedance and pouer gain - The radiation resistame as mosasured at a current loop becomes larger as the antenma longth is inrerased. Also, a long-wire antenna radiates more power in its most favorable direetion than does a half-w:ve antemat in its most favorable dirertion. '1 his power gain is socured at the expense of radiation in other directions. Fïg. 1027 shows how the radiation resistathe and the power in the lobe of maximum radiation vary with the antema length.

Directional charactoristics - As the wire is mate longer in terms of the number of hatf watelengths, the direetional efferts whane Instead of the "doumhout" pattern of the half-w:ave antoma, the elirettomal charactoristie splits up into "lobes" which make varibus angles with the wire. In general, :s the lengeth of the wire is increased the direction in which maximum ratiation oceurs tends to approath the line of the :ntenna itself.

Directional charactoristios for antennas ome W:selength, three half-wavelengtho and two W: welengthe long ate tiven in Fits. 1028, 1029 and 1030, lar three wertional angles of ratiation. None that, as the wire length inereases, the radiation along the lime of the antoma becomes more pronounced. sitll longer antennas ran the considered to have practically "end-on" direrfonal characteristics, even at the lower ratuation angles.

Methods of feeding - In a long-wiro :ntemat. the eurrents in adjacent half-ware sertions must be out of phase, as shown in fity.

Fig. 1027 - Curve A shown variatiom in radiation resintance with antemal lenpth. (iurve 13 shows power in losbes of maximmm radiation for long-n ire antennas as a ratio to the maximum radiation for a half-wave antenna.

1031 and Fig. 1026. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder eannot be inserted at a current node, however, borause this invariably brings the currents in two adjacent half-wave sections in phase: if the phate in one sedtion rould be reversed. then the currents in the forders neressarily would have to be in phase and the feeder radiation would not be canceled out.

Eit her resomant or nom-resonant feeders may be used. With the latter, the systems employing a matehing seetion ($\$ 10-\mathrm{s}$) are best. The non-resemant line may be tapped on the matching section, as in Fig, 1022 , or a " Q " trpe section, Fizg. 1021, maty be employed. In such case, Fig. 1032 gives the requited surge impedance for the matehing section. It can also be calculated from Equation 9 ($\$ 10-8$) and the radiation resistance data in lojg. 1027.

Mothods of coupling the line to the transmitter are the same as deseribed in \& $10-6$ for the particular type of line used.

Fip. loz - Horizontal patterns of radiation from a full-wave antema. The solid line elows the pattert for a vertical angle of 1.5 dereres; dotted liness show deviation from the lsedeqrer patternat and 30 deerees. All three patterns aredrawn to the samerelativescale: actual amplitndes will depend upon the heipht of the antruna.

(1) 10-10 Multiband Antennas

Principles - As suggested in the premoling section, the same antema maty be used for several bands by operating it on harmonies. When this is done it is nepessary to use resonant feeders, since the impedance mateling for non-resonatht feeder operation can be acromplished only at one frequeney unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it. A mateling seetion which is only a quarter-wavelength long at one frequency will be a half-wavelength long at twice that frequency, and so on; and changing the length of the wires, even by switching, is so inconvenient as to be impracticable,

Fia. loシ9 - Homizontal matterns of radiation from an antenna three halfowares lonie. The solid line shows the pathern for a vertionl ander of 15 dezrees; dotted lines show deviation from the lioderarer pattern at 9 and 30 durers. Ninor lobes coindide for all thre angles.

Furthermore, the current loops shift to a new pesition on the antemna when it is operated on harmonics. further complicating the feed situation. It is for this reason that a half-wave anternna which is renter-fed by a rubber-insulated lime is partieally uselass for harmonic operation; on all ewen harmonics there is a voltage maximum oreurring right at the feed point, and the resultant impordance mismateh is so bad that there is a large standing-wave ratio and consequently high losses anise in the rubber dieleetric.

Fig. 1030 - Horizontal patterns of radiation from an antenna two wavelengths lonp. The solid line shows the pattern for a vertical anple of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles.

Fig. 1031 - Current distribation and forel pmint- for long-wire antwhas, A $3 / 2$ wave antema is wed an an illustration. With two-w ire feed. the line may low amneeted at the end of the antema (on at any current loop (but not at a current node) for lamonic operation.

When the same antenna is used for work in several bands, it must be realized that the directional characteristie will vary with the band in use.

Simple systems - Any of the antenna arramgements shown in \$10-7 may be used for multiband operation by making the antemat a half wave long at the lowest frequency to be used. 'The feeders should be a quater wave long, or some multiple of a quarter wave, at the same frequency. 'Iypical examples, toxether with the type of tuning to be heod, are sivem in Table I. The figures siven represent a emopromise designed to give satisfactory operation on all the bamds considered, taking intes atcount the change in reguired length as the order of the harmonic sues up.

A center-fed half-wave antennal will not operate as a long wire on hamonies, beratuse of the phase reversal at the feeders previousty mentioned ($\$ 10-9$). Un the second hamonie the two antemat sections are cach a half wave long, and, since the currents are in phase. the directional characteristic is different from that

Fig. 1032 - Required surqe impelance of guarter-wave matching sertions for rabliators of various lengths. Curve A is for a transmision-line imbedane of 410 ohms Carve is is for 170 whms. Curve (: for 530 ohme and
 of the repuired imprdane are ohtained from Fig. 1009.

TABLE I
Melthand Resonant-hane-Fed Antinnas

furnna langih (ft .)	Fereler J.encth (j t.)	Band	Type of Tuning			
IV ith ral fred: $2 \cdot 13$	120	1.75-Mc. "phone f- Vc. "phome II We. 28 Mc.	series parallel parallal parallel			
136	6.		s.ries parallel parallel parallel			
$1: 31$	6.7	$\begin{aligned} & 3.5-11 \mathrm{e} . \mathrm{c} . \mathrm{w} \\ & \text { = We. } \end{aligned}$	m. ries parallel			
6.	33	$\begin{aligned} \therefore & \\| c . \\ 1 i & \\| c \\ \vdots: & \\| c . \end{aligned}$	serica parallel parallel			
	135	$\begin{array}{r} 1.2 . \\ 3.5 \\ 3 \mathrm{l} \\ 7 \mathrm{c} \\ 7 \mathrm{c} \\ 1.1 \\ 11 \mathrm{c} \\ 28 \\ 28 \end{array}$	parallel paralle! parally! parallel paralli.l			
13:	$6:$	$\begin{array}{r} 3.5 \text { Ne. } \\ 1 \mathrm{Vlc} \\ 14 \mathrm{Nl} . \\ 28 \mathrm{Vl} . \end{array}$	paralli.l parall+l parallel parallal			
6.3 .5	31		parallel parally parallel			

'I 'he antrmat lengthe given represent compromises for harmonice operation hecanke of different end - Ificts on diffirent hands. The 130-foot end-fed athtrona is biphly lenne for 3.5 Mc.. but will work will in theresion which quadruphes into the |4- गle haml ($3500-3(000 \mathrm{kc}$). Banils not histed are mot rownmmaded for the partionlar antorna. The centrofed systens are less critical as to length; the $\because-i-$ font anteman. for instance. mat he used for both c.u.and phone on cither 1.75 or I Me. without lase of chlicioncy.
On hamonies the end.fed and center-fod antennas will mot have the same directional characturis. tirs, as explained in the text.
of a full-wave antemat even though the over-all length is the same. On the forurth barmonie carh section is a full wave long, and, arain because of the direction of current flow, the system will not operate as a two-wavelength antenna. It should not be assumed that these systems are not effective radiators; it simply means that the directional characteristic will not be that of a long wire having the same over-all length. Rather, it will resemble the characteristic of one side of the antenna, although not necessarily having the same exact form.

Antennas with a few other types of feed systems may be operated on harmonics for the higher-frequency bands, although their performance is some-
what impaired. The single wire-fed antenna ($\S 10-8$) may be used in this way; the feeder and antenna will not be matehed exactly on harmonies, with the result that standing waves will appear on the ferder, but the system as a whole will radiate. A better mateh will be obtained if the proint of connection of the feeder to the antenna is made exaetly one-third the over-all antenna length from one end. While this disagrees slightly with the figures given for a halfwave antenna, it has beenfound to work better on the harmonic frequencies.

The " (${ }^{\prime}$ " antennal system ($\$ 10-S$) also can be operated on hammonies, but the line eannot

Fis. $10.33-$ A simple antenna syst+m for five amateme bands. The anterna is voltage fred on 3.5. 7.14 and 28 Mr., working on the fandamental, serond, fourth and
 is a quarlur-was promment antoma, in which rase series thang must he uned. I'he antenna wire -hould be kept well in the elear and shonld be as highe as pesible. If the landin of the antemat in increased to apronimateIy 260 feet, voltage feed can le uned on all five bands.

Operate as a non-rosonant line except at the fundamental frequencer of the anternat. Fior harmonic operation the line must be tuned, and therefore the feeder length is important. 'The Yuning sostem will depend upon the number of (quarter wimes on the line, including the " (?" pars. The coneentrio-lino-fed antemas (\$10-8) may be used on harmonies if the concentric line is air-insulated. Its operation on harmonios is similar to that of the "()." Phis antemmat is not reeommencled for multi-bund operation with a rubher-insulated line. however.

The delta-matehsystem ($\$ 10-8$) (ran be used on harmonics, althomgh some stamoling waves will appear on tho line. For that mattur. any antenna system can be used on harmonic frequencies by tring the fereders together at the transmitter cind and feeding the system as a single wire by means oi a tuned cireuit coupled to the transmitter

A simple anterna svstem without feeders, useful for operation on five bands, is shown in Fig. 1033. On all bands from 3.5 Me. upward it operates as an end-fod antenna - half wave on 3.5 Ne., long wire on the other bands. On 1.75 Mc. it is only a quarter wave in length, and must be worked against ground (§10-14). On this band, since it is fecl at a high-current point, series tuning ($\$ 10-6$) must be uscd.

Antennas for restricted space- If the space avalable for the antenna is not large enough to accommodate the length necessary for a half wave at the lowest frequeney to be used, quite satisfactory operation can be seeured by using a shorter antenna and making up the missing length in the feeder system. The antenna itsolf may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half wave long. Nowertheless, such a syotem is usaful whare oporation on the desired band otherwise would be impossible.

Resonant fredres are a practioal necessity with such an intennis system, and at center-fed antenna will give best all-around performance. With end ferd the ferder eurrents berome badly unbalanced, and, since lengths midway botween those requiring series or parallel tuming ordinarily must be used to bring the cotime system to rosonance, compling to the transmitter often beeomes diffienlt.

With center ferd prowtirallvany convenient length of antennat rath be macd, if the feeder longth is adjustrad to arrommodate at least one halt wave around the whole system. 'lypionl rases are shown in Fig. 1034, one for an antenna laving a length of one quarter wave (1) and the other for an antenna somewhat lomger (C) hut still not a half wave long. Current distribution is shown for both fundamental amd serond harmonic. From the points marked X, resonant foulers any convenient nomber of quater waves in length maty be extended to the operating room. The sum of the distances on cotch wire from X to the antennai end must equal a half wate. It is sufficirntly arcurate fo usir ligustion 2 (in colleulating this length. Note that $X-X$ is a high-current point on those shortened antennats, corresponding to the center of a half-wave antronat. It is also apparent that the antenna at A is a half-wave antemat on the next higherfrequence band (13).

A practical anterna of this fye can he made as shown in lig. 1035. 'lahbe Il gives a few

Fig. 1034 - Current distribution on short antennas. Thuse at the left are too short fur fundamental operation, our. (1) having an wowtall length of one quarter wave; the other (C) being lonker but not a half-wave long. These systems mav be used wherever space to erect a full half-wave antenna is not availahle. The current distribution for second harmonic-operation is shown at the right of each figure (B and I)). In A and C, the total length around the system is a half-wave at the fundamental. In B and D, the over-all tripth is a full wave. Arrows show the instantancous dircetion of current flow.

The operation is illustrater in Fig. 1036.
Such an antemat will be a somewhat better radiator than the atratagement of Fig. 1034-1 on the lowes frequener. but is not so dewirable for malti-hand aperation beeause the ends play an inereasingly important part as the fregurney is rased. The perfommance of the spostom in such a case is diflicult to predict, esperially if the ends are vertional (the most
 plex combination of burizontal and votical polarization which resulde as well as the dissimilar dirembonal dhatmeristies.

Fig. 103n - Fobland arranmement lor -hertemal anturn-
 foedern. Ther horizental part is made as lomer as rome

C 10-11 Long-Wire Directive Arrays

The "V" arterna - It has hern amphat sizad that, as the antemat length is inereaned, the lobe of maximum radiation makes a more
 wires mave be combined in 1 .he form of : hori-
 wire will rennotere along a line biserting the atmar betwerot the wirns This inereases both gath atod dirertivits, suce the lobses in dimetions other than akong the binerene cancel to a greater or leaner extent. The horizontal " 1 " antentat therefore tramsmits best in cither dit rection (is biditertiontaly along a line bisert ing the "S" made by the two witen. The power gatin depende upon the length of the wires. provided the necessary space is avaibabe, the" "V" is a simple antemua to build and operate. It ran alan be used on harmonics, so that it is - mitable for multi-hand work. The " $\mathrm{V}^{\prime \prime}$ antenma is shomin in Fitr 10:37.

Fig. 10:38 shows the dimetusions that should be followed for an optimum dexign to obtain nusximum puwer win fur differnt-sized " V " automatas. The bonger setems give good pertermance in mattiband opratim. Angle a

Fig. 10.37 - Thir "V"" antenna, made by rombining two long wires in surh a way that earh reinforcers the raiiation from the other. 'lhe important quantities are the length of cach leg and the angle hotween the legs.
is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle referred to in Fig. 1038 is the vertienl angle of maximum radiation (\$10-1). Tilting the white horizontal plane of the "V" will tend to increase the low-angle radiation off the low end and derrease it off the high end.

The gath increases with the fength of the wires, but is not exactly twie the gain for a single long wime as given in Fig. 1029. In the longer lemethe the gain will be somewhat increased, beratse of mutual compling berwen the wires. A " $\mathbf{l}^{\prime \prime}$ right wavelongths on a leg. for instanoe, will have: gatin

Fïg. 1039 - Whe horizontal rhmbic or diamond antema, terminatel. Important design dimensions are indicated; details in text. of about 12 dh. over : half-wave :at tenna, wherets twion the gain of a single S-wavelength wire would be only apmoxmately 9 atb.

The two wires of the ": " must be fed ont of phase, for correct opreation. A resonant line may simply be attached to the ends. as shown in Fig. 10:37. Altamatively, a quarter-wave matching sertion may be comployed and the antenna fod through a mon-rewonant line ($\$ 10-8$). If the antomat wires are made multiples of a half wave in length (use Fquation 10 , § $10-9$, for (omputing the length), the matching sertion will be elosed at the free end.

The rhombic antemma-'lho horizontal rhombic or "diamond" antennal is shown in lig. 1039. Like the " ${ }^{1}$ "," it requires a geond deal of spare for orection, but it is rapable of siving excellent gain and directivity. It. also can be lased for multi-band operation. In the terminated form shown in Fig. Itlise, it uperates like a non-resonant transmission line, without standing waves, and is unidirortional. It maty also be used without the temminating resistor,

Fig. 10.38 - Design chart for horizontal "V" antennas, giving the enclosid anple between sides vs. the length of the wires.
in which ease there are standing waves on the wires and the antenna is bidireetional.

The important quantitios influeneing the dexign of the rhombir antenna are shown in Fig. 1039. While several dexign methods may be used, the one mose iapulirable to the eondithons existing in amateur work is the so-called "eompromise" methond. The chart of Fig. 1040 pives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. ('urves for values of length of 2,3 and 4 wavelongths are shown, and any intermediate values may be interpolated.

Withatl other dimensions correct, an increase in length eanses an incorase in power gain and a slight redurtion in wave angle. An increase in luight also causes a reduction in wave angle and an increase in power grain. but not to the same extent as a propertionate increase in langh. For multiband work, it is satisfactory to devign the rhombir anteman on the basis of 1.t-Ace operation, which will permit work from the 7 - 10 h he 2.N-Mc. bands as well.

A value of Soo whas is correat for the tominating resistor for any properly constructed rhombir. and the system behaves as a pure resistive lasel under this condition. The terminating rexistor mast be c:upable of safely dissipating one-half the power output (to diminate the rear pattern), and should be noninductive. Sucha resistor may be made up from a carbon or graphite rod or from a long 800 -ohm transmission line using resistance wire. If the rarbon rod or a similar form of lumped resistance is used, the device should be suitably protected from weather effects, i.e., it should be covered with a good asphaltic: compound and sealed in a snatl, light-weight box or fibre tube. Suitable nomreactive terminating resistors are also a wailable commercially.

For Eeding the antenna, the antenna impedance will be matched by an 800ohm line, which maty be constructed

Fip. 10.10- Compromise-methorl design chart for rhombicantemas of varinus leg louths and waw. angle. The following wamplos illustrate the une of the chatr: (1) Biven:
langth (L) $=2$ waveleneyhs.
D) sired wase anple ($(\mathrm{A})=$ 30°.
To l"ind: 1I, 4.
Mroliod:
bray vertiaal line thrount point a ($1 .=2$ "ave lenella) and proint bom abseriseat $\left(1=200^{\circ}\right.$.) Reand anyle of tilt (w) forpmint a antl herimat (II) from interserelion of lime wh at point ${ }^{\text {c on curve }} \mathrm{ll}$.

Result:

$$
\phi=60.9^{\circ}
$$

$11=0.7 .3$ wavelength.
(2) Cix+n:
$\underset{\substack{\text { Length } \\ \text { lengtlis. }}}{ }(1)=$.3 wave
Angle of itl (小) $=88^{\circ}$.
To l'ind: 11, د.
Mrthod:

1) raw a vertival line from monind on curse $\mathrm{L}=3$ waveryolle at $D=73^{\circ}$. Read interswhon of this lime our curve 11 (puint e) for heipht, and intaraction at point f on the abserina for $د$.
Result:
$H=0.56$ wasclongth.
$\Delta=20.61^{\circ}$.
from No. 16 wite spared 20 inthes or from No. 18 wire spated if inches. The ROO-6hta line is somewhat ungamly to install. however. amd may be replated by an ordinatry ton-ohm line with only a negligible mismateh. Altarnatively, a matching section may be installed between the antenna terminals and a low-impedance line. However, when surh an arrangrment is used, it will be newessamy to chamge the mateh-ing-section comstants for each different band on which operation is comtemplated.

The same design detaik :uply to the unterminated rhombice as to the terminated type. When used willout a termintating resistoos, the system is bidieretional. Rosonant froders are preferable for the unterminated rhombire. A non-resonamt lime may be usid by incorporating a matching sertion at the antenna, but is not readily adenpable to maltiband work.

Rhombir antemas will give a power sath of 8 to 12 db . or mome for lag lengthe of wo to four wavelenghts. When ronstucted acomeding to the eharts givern. In wneral, the latger the antenna, the greater the power gato.

Fig. 1011 - Collinear half wave antennas in phase. The swom at A is generally known as two half waves in phase." B is an wextension of the gystem; in theory the numbire of clements may be carried on indefinitely, but practical considerations usually limit the elements to four.

Collinear arrays - Simple forms of collinear arrays, with the current distribution, are shown in Fig. 1041. The two-element array at A is popularly known as "two half waves in phase." It will be recognized as simply at center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for increased dirertivity and gain is shown in Fig. 1041-13. Note that quarter-wave transmission lines are used between aach element: these give the reversal in phase necessary to make the currents in

TABLE III 					
$\begin{aligned} & \text { Spacing betucen } \\ & \text { centers of adjecent } \\ & \text { half wares } \end{aligned}$	Number of half turnes in array ts. tain in all.				
	2	3	4	5	0
	18.89	3 3 18	1 1 6.0	5 3 3	${ }^{6} \times 8$

individual antemat elements all flow in the same direction at the same instant. Another way of looking at it is to consider that the whole system is a long wire, with alternate half-wave sections folded so that they do mot radiate. Any phase-reversing section may be used as a quarter-wave matehing section for attaching a nonresemant feeder ($\$ 1(0-8)$, or a resonant tramsmission line may be substituted for any of the quarter-wase sections. Also, the antenna may be end-fed by any of the systems breviously deseribed ($\$ 10-7,10-8$), or athy blement may he center-fod. It is best to feed at the center of the array, so that the energy will be distributed as uniformly as possible among the dements.

The gain and directivity depend upon the number of elements and their spacing, center-to-renter. This is shown by 'rable lli. Although $3 / 4$-wave spacing gives greater gain, it is difficult to construct a suitable phasereversing system whon the ends of the antenna elements are widely separated. For this reason, the half-wave suacing is most generally used in tetusi practice.

Fig. 1012 - Broadcide array using parallel half-wave elements. Arrow- indicate the direction of current flow. Transposition of the feeders is necessary to bring the antenna currents in phase Any reasonalile number of elements may be used. 'The array is bidirectional, with maximum radiation "broadside" or perpendicular to the plane of the antennas(perpendicularly through this page).

 chements combined an rither bromdide or end-fire arrays.

Collinear armas may be monnted either horizontally or vortieally. Horizontal mounting gives increased hori\%ont:al dirertisity, while the vertical directivity rematis the same as for a single element at the same height. Vertical mounting gises the same horizontal pattern as a simgle clement, but comentrates the radiation at low angles. It is sedhom practionble to use more than two elemonts sertioblly at frequencios below 1t Mc. hecause of the excessive height required.

TABIE IV

So. of armems	Guin
\because	4 d
3	5 islb.
t	¢ ${ }_{8} \mathrm{db}$
5	8 dh.
11	9 dh.

Broadside arravs - Parabled antenna elements with currents in phatse may be eombined as shown in Fig. 1042 to form a broadside array, so named because the direction of maximum radiation is broadside to the plane containing the antmans. Again the gain and directivity depend upon the number of elements and the sparing, the gain for different spacings being shown in Fig. 10-33. Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table IV gives theoretical gain tas a function of the number of elements with half-wave spacing.

Broatwide arrays may be suspended either with the dements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element

Fig. 10.t- Combination hroadside and collinear ar. rays. A, with vertiral elemense; B, with horimental ele ments. Both arrays pive low-angle radiation. 'Ino or more sections may be used. 'The pain in di, will bernal, approximately, to the sum of the pain for onte set of broadside clements ("Iable. TV) plus the qain of one ad of collinear elemmes ('lable. Ill). For ceampho, in Arach
 collinear set two clements (orain 1.8 dh .) , giving a total gain of 8.8 d). In I3, each hroadside st 1 has two cloments (gain 4 db.) and carh collintar sel threr element- (pain 3.3 dh.), making the total gain 7.3 dh. 'The rewilt im not strictly accurate, herause of mumal couplite hetween the clements, but is good emouph for bractical purposes.
while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may be foll cither by resonant transmission lines ($\$ 10-7$) or through quarter-wave matching sections and monresonant lines ($\$ 10-8$). In Fig. 10.42, wote the "erossing over" of the freders, which is necessary to bring the elements in proper phase relationship.

Combined broadside and collinear arrays

 - Broadside and coollincar arrays may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antemnas is shown in Fig. 1044. The lower angle of radiation resulting from stacking clements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by starking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collincar type.

Fig. $1045-\mathrm{A}$ fourelement combination liroadside. collinear array, popularly known as the "lazy II" antenna. A closed quarter-wave stabl, may be used at the feed point to mateh into a 600 ochm transtuission line, or resonant feeders may be attached at the point indirated. 'The gain over a half-wave antenna is 5 to 6 db .

The arrays in Fig. 1044 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better all-around performance, will result when the freders are attached as nearly as possible to the center of the array. Thus, in the 8 -element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed. Alternatively, the antema could be constructed with the transpositions as shown and the feeder comected between the adjacent ends of either the second or third pair of collinear elemients.

A foureolement aray of the general type shown in Fig. 1044-13. known ats the "lazy H" antema, has been quite frequently used. This arrangement is shawn, with the feed point indicatell, in Fig. 10.5.

End-fire arrass - Fig. 10.4 fj , whems a pair of parallel hatr-waye dements with currents out of phase. This is knownas an end-fire array, because it radiates best along the line of the antembas, as shown.

The end-fire array may be used either vertically or horizontailly (elements at the same hright), and is well adapted to amateur work beraluse it gives maximum gain with relatively close element sparing. Fig. 1043 shows how the gain varios with spacing. End-fire elements may be combined with additionall collinear amd

Fig. [0.16-Find-fire arrats uning parallel half-wave elements. "I'he elamentm are shown with halfowave spateing to illustrate ferder conmentions. In practice, eloser sparings are desirable, as shown by Fig. lol3. Birection of maximum radiation is shown by the large arrows.
broadside elements to give a further increase in gain and directivity.

Either resonant or nomrsoonant lines may be used with this type of array. Nomresonant lines preferably are mateled to the antenna through a quarter-wave matehing section (\$10-8).

Cheoking phusing-Figs. 1044 and 1046 illustrate a point in connection with feeding a phased antema system which sometimes is confusing. In Fis. 1016, when the tranmission line is commeted as at A there is no crossover in the line connecting the two antennas, but when the transmission line is comnected to the reater of the comenting line the crossover becomes necessary (B). This is because in B the two halves of the connecting line are simply branches of the same line. In other

Fig. ich - Simple directive antwona sintem*. A is a two-tlembat end-fire arras: \mathbb{B} in the same arrat with

 -ide array using extemderd in-phate antemats ("extended

 With (: the gatin is approsimately 0 (Hh.. and with I),

 this comerilmation i- $\frac{1}{s}$ wavelength. Alternativels, the

 age). The line mas be externded in moltighes of quartor wav... if resthant fereler-are to he wiol. S. H. aml C. mats lie suspended on womben spreaders. 'the plane contaning the wires mandii ler parallel to the prembul.
worde, evon thongh the commecting lime in B is at half wave in length, it is not actually a half-w:ave line fut two quarter-uerice lews in parallel. "l"lue sime thing is true of the antranspused line of Fig. 1044. Note that, under these comelitions, the antennat elements ine in phase whon the line is not fransposed, amb ont of phase when the tramspasition is mate. 'rhe opposite is the rase when the half-wave lino simply joins two antennat elomonts and does not hate the ford lime conneetod to its center, as in liin. 10.4.3.

Adjustment of arravs - With arrays of the types just des ribed, using half-wave sparing betweon elomonts, it will usus:lly: sullice to make the length of each eloment that given he the cquation for a hallowaw antenna in $\$ 10-2$, while the hali-wave phasine limes between the parallel eloments can be calculated from the formula:
$\begin{aligned} & \text { Length of half- } \\ & \text { ware line }(\text { jeet })\end{aligned}=\frac{493 \times 0.97 .5}{\text { Freq. }(1 / \bar{c} .)}=\frac{4.80}{\text { Fraq. }(.1 / c .)}$

The spacing between clements can be made equal to the length of the phasing line. No special adjust ments of line or element length or spacing are needed, provided the formulas are followed carcinlly.

With collinear arrays of the type shown in Fig. 10-11-13, the same formula may be used for the clement length while the quarter-wave phaning sertion can be calculated from Equation 7 ((10-3). If the array is fed at its center it should mot be neressary to make any partieular adjust ments, although, if desired, the whole syatem can be resonated hy comecting an r.f. ammeter in the shorting link on ceach phasing soction and moving the link batck and forth tw find the maximum current position. Thix refinement is hardly necessary in practice, however, so long as all elements are the same lengtlis and the eystem iss symmetrial.

Simple arrays - Several simple directive antemal systoms using driven clements have ablieved rather wide use among amateurs. Four of these sustems: are shomin fing. 1047. Tuned feders are assumed in all case; howper, a matohing seetion (\$10-8) readily an be substituted if a monesenatht transmission line is profered. Dimensions given are in terms of wavelength; actual lengthe ram be ealculated from the equations in $\$ 10-2$ for the antenna and from Equation 7 ($\$ 10-5$) for the resonatht transmission line or matehing section. In cises where the transmission-line proper comerets to the mid-point of a phasing line, only haif the lengeth of the lat ter should be added to the line to find the quarter-wave point.

At A and B arre wordement end-fire arrangements using elosespange They are electrically equisalent: the only difference is in the method of emmerting the ferelers. 13 may also be used as a four-dement array on the seeond harmonic, although the sacing is not quite optimum (Fig. 10.tis) fur such operation.

A chase-spared fur-element array is shown at (C. It will give ahout 2 db, more gain than the two-element array.

The antemat at I), commonly known as the "extended doutle Zepp." is designed to take advantage of the greater sain possible with collinear antennas having greater than halfwave center-to-renter spacing, but without introducing feed emplications. The elements are made fonger than a half wave in order to bring this about. The gain is 3 db . over a single half-wave antenma, and the broadside directivity is quite sharp.

The antennas of A and B may be mounted either horizontally or vertically; borizontal suspension (with the clements in a plane parallel to the ground) is recommended, since this. tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C , when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays.

Fis. Iof月 - Gain vs. foment suaring for an antrma
 the hald atrentith from a half-wand antematatore. The

 The froms-to-bach ration the difleremer in dh. Werwaren corves I and B. Iatiation in radiation ro-i-tance ol the

[10-13 Directive Arrays with Parasitic Elements

Purasiticexcilation - The antenna arrays deseribed in $\$ 10-12$ are bidirectional; that is, they will radiate in directions both to the "front" and to the "hack" of the antemasestem. If radiation is wanted in only one direction (for instance, morth only. instcad of northsouth), it is necossisary to nse different element artangements. In mosit of these arrangements the additional clements rearive power hy induction or radiation from the driven clement. generally called the "antomna." and re-radiate it in the proper phatse relationship to athieve the desired elfert. Whese elements are called parasitic elemonts, as contrasted to the drisen clements which receive power directly from the transmitter through the transmission lime.

The parasitic element is catled a dirertor When it reinforece radiation on a line pointing to it from the antema, and a reflector when the reverse is the case. Whether the paranitic element is a director or reflector depends upon the parasitice element tuning (which usually is adjusted by ehamging its longth), and, particularly when the clement is self-resonamt. upon the spacing betwern it and the antemma.

Gain as. spucing - The gatin of an antennareflector or an antematdirector eombination varies shiefly with the spacing between the elements. The way in which gain raries with spacing is shown in Fig. 10t8. for the special case of self-resomant parasitid elements. This chart also shows how the attenuation to the "rear" varies with spacing. The same spacing dors not necesarily give both maximum forward gain and maximum backward attenua-
tion. Backward attenuation is desirable when the antenna is used for receiving, since it greatly reduces interfcrence coming from the opposite direction to the desired signal.

Element lengehs - The antenna length is Liven by the formulas in $\$ 10-2$. The director and reflector lengt has must be determined experimentally for maximum performance. The preforable method is to aim the antema at a receiver a mile or more distant and have an obstrver check the signal strength (on the roeciver "s" meter) while the reflector or direcfor is adjusted af few inches at a time, unt the length which gives maximum signal is found. The attenuation maty be similaty checket, the length being adjust ed for minimum signal. In gemerat, for bext front-to-back ration the length of a director will be about 4 per cent less than that of the antemat. The refleator will be about \bar{s} per eent longer than the antemma.

Simpla systoms: the rotary beam - Four practical combinations of antenna, reflector athd director clements are shown in Fig. 10-19. Sparings which give maximum gatn or maximam front-to-back ratio (ratio of power radiated in the devired direction to power madiated in the opposite direction) may be taken from Fig. 104 s . In the chart, the front-to-back ratio in db . will be the sum of gain and attenuation at the same spacing.

Systems of this tree are popular for rotarybean antemas. Where the entire antematsostem is rotated. to premit its gain and directiv-

Fig. $10.19=$ llalf-waw antemnas with parasitic elements. A, with reflector: B, with director: C, wilh hoth director and reflector: D , twodirectors and one refledor.
 Ino cases. and drpends upon the spacing and length of the parasitic moment. In the thrue and fourerlement arrays a rellector spacing of 0.15 wavelengh will pive sliphtly more gain than 0.l-wavelength spacing. Arrows show direction of maximmm radiation. The array should be mounted horizontally (top views are shown).
ity to be utilized for any compass direction. They may be mounted either horizontally (with the plane containing the elements parallel to the carth) or vertically.

Arrays using more than one parasitic element, such as those shown at C and D in Fig. 1049, will give more gain and directivity than is indicated for a single reflector and director by the curves of Fig. 1048. The gain with a properly adjusted threc-element array (antenna, director and reflector) will be is to 7 db. over a half-wave antenna. Somewhat higher gain still can be secured beadding a second director to the system, making a four-element array. The front-to-back ratio is correspondingly improved as the number of elements is increased.
The elements in close-spared (less, than onequarter wavelongth element spacing) arrays preferably should the made of tubing of one-half- to one-inely diameter, hoth to reduce the ohmic resistane ($\$ 10-2$) of the conductors and to secure mechanical rigidity. If the elements are free to move with respect to each other, the array will tend to show detuning effects under windy conditions.

Feeding close-spaced arrays - While any of the usual methods of feed may be applied to the driven element of a parasitic array, the fact that, with close spacing, the radiation resistance as measured at the center of the driven element drops to a very low value makes some systems more desirable than others. The preferred methods are shown in Fig. 1050. Resionant fecder: are not recommended for lengths greater than a half wavelength.
The quarter- or half-wave matching stubs shown at A and 13 in Fig. 1050 preferahly should be constructed of tubing with rather close spacing, in the manner of the " Q " seetion. This lowers the impedance of the matehing section and makes the position of the line taps somewhat less difficult to determine accurately. The line adjustment should be made only with the parasitie elements in place, and after the correct element lengths have been determined, it should be checked to compensate for changes likely to occur because of element tuning. The procedure is the same as that described in $\$ 10-8$.

The concentric-line matching section at C will work with fair aecuracy into a close-spaced parasitic arraly of 2,3 or 4 elements without necessity for adjustment. The line is used as an impedance-inverting transformer, and, if its characteristic impedance is 70 ohms, it will give an exact match to a fo0 -olm line when the resistance at the termination is about 8 . 5 chms. Over a range of 5 to 15 ohms the mismateh, and therefore the standing-wave ratio, will be less than 2 to 1 . The length of the quarter-wave section may be calculated from Equation 7 ($\$ 10-5$).

The delta matching transformer shown at D is an excellent arrangement for parasitic arrays, and is probably easier to install, mechanically, than any of the others. The positions of
the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.

Sharpness of resonance - Peak performance of a multi-element directive array depends upon proper phasing or tuning of the elements, which in all but the simplest systems can be exact for one frequency only. However, there is some latitude, and most arrays will work well over a relatively narrow region such as the 14 Mc. band. If frequencies in all parts of the band are to be used, the antenna system should be designed for the mid-frequenes: on the other hand. if only one frequency in the band will be used for the greater portion of the time, the antenna might be designed for that frequency and some degree of misadjustment tolerated on the ofrasionally used spare frequencies.

When reflectors or directors are used the tolerance is usually less than in the ease of driven elements, partly because the parasitic-element lengthes are fixed and the operation may change appreciably as the frequeney passes from one side of resenanee to the other, and partly be-

Fig. 1050 - Rerommended methods of ferding the driven antenna clement in closespaced parasitic arraye. 'The parasitic elements are not shown. A, quarter-wave open stub; B , half-wave closed stub: C , concentric-line quarter-wave matching section: D, delta matehing transformer. Adjustment details are discussed in the text.
cause the close spacing ordinarily used results in a sharp-tuning system. With parasitic elements, operation should be eonfined to a small region about the froquency for which the antenna is adjusted if peak performanco is to be secoured.

Combinationarrays-It is possible to rombine parasitid dements with driven dro ments to form arrats composed of collinotar driven and parasitic elemonts and combinatiom broadside-collinear-parasitic elements. Thus two or more collinear elemonts might he provided with a collinear reflector or divertor set, one parasitia eloment to eath driven element. Or both directors and reflectors might be used. A broadsideroollinear array could be treated in the same fashom.

When combination arrays are built up, a rough appoximation of the gata to be experted maty be obtatned by alding the gatns: for each trpe of combination. Thus the getin of two hoordside sets of forar collinear arrays with at sot of reflemers, ome bohind ablh choment, at quarter-wave spacing for the parasitia elements, would be estimated as follows: From Tathe II I, the getin of four colline ar ele ments is 4,5 dh. with hatf-wave spacing: from lig. 10.43 or "Pable ll, the gatu of two broadside elements: at half-wave pareing is 4.0 db .; from Fig. 1048 , the gatin of a parasitio refledenr at quartor-wave spacing is 4.5 dh. The total gain is then the sum, or 13 d . far the sixteren dements, Note that using two sets of elemonts in broadside is equivalent to weing two clements, so far as gain is concermal; similarly with sets of refleotors, as against whe athtenna and one reflector. The atotal gain of the combination array will depend, in practied, upon the way in which the prower is distributed betweren the various clements and upen tho wheret which mutual eropling hetweron memonts has upon the radiation rosistanere of the array, and may be somewhat higher or lawer that the estimate.

A great many directive antenna combinations ran be worked wut by mombing clements andording th these prinoiples.

C 10-14 Miscellaneous Anfenna Systems

Grouniled antenna - The gromuled :antenua is used almost exclusively for 1.7 - b - Me. work, where the length required for at halfwave antenna wombl be exessive for most locations. An antemna workm "against ground" need be only a quater-wave long. approximately. beratuse the carthacts as an elerotrabal "mirror" which supplies the missing quarter wave. The current is maximum at the groumd connertion with: quarter-ware antemat, just as it is at the center of a half-wave antemat.

On 1.75 Mr. the most useful radiation is from the vertisal part of the antenna, sine verticall! pelarized waves are wharataristio of ground-wave transmission. It is therefore desirable to make the down-lead as nearly verti-

Fig. 105 I - Typical grounded antema for 1.75 Me ., consisting of a vertical sertion and a horizntal sertion having a total length (in-- louling the aromand lead, if the latter is more than a few fret lomy) of oncetuarter wavelength. (isil I. shomble hate alosent 20 turns of No. 12 wire on a 3 -inch diameter form, tapped wery two or threr turns for aljustment.
 The compling botwern I and the final tank coil should the variable.

sal as possible, amb also as high as possible. This gives low-angle sk--w ane tramsmission. Which is mast useful ior lomg-distance work at night, in :ddition to a good groumd wave for lecal work. The horizontal portion contributes to high-allgle shy-wave transmission, which is useful for covering shart distanees on this band at night.

Jig. 10:3 shows a grounded antenna with the top folded to make the longth equal to at quartor wase. The antemna oompliner apparatus consists of the eoril. Is. tumed bev the series condemser. r. with L indurtively couphed to the transmitter tank rirmut (\$ 10)-1, 10-6).
lion computation purgmes. the orer-all lengeth of a gromuded systom is giben by

$$
\text { Length }\left(f_{t}+t\right)=\frac{23 n}{f(M c .)}
$$

This is the total length from the far end of the antemat ta the groumal combertion, The length is mot reritioald sine departures of the order of 101020 per reat ran be ammensated by the thming apparatus.

The ground thould preferably be one with comlactors buried deep emmagh to reach natural moisture. In urban loreations. good grounds e:th be made bey commenting to the wator mam: where they enter the honser the pipe should be scraped ratan and a low-rexistance commertion made with a tightly fastoreal groumd $\begin{gathered}\text { atmp. If }\end{gathered}$ no water supply pipes are asalable, several rods or pipes six to eight fent long may be driven into the ground at intervals of six or right fert, all being eonnerted together. The tramsuit ter should he lacated so ats to mathe the ground lead as short as pussible.

In locations where it is impossible to seeure a good ground commertion, bereatuse of sandy soil or other eobsiderations, it is preforable to use a comoterposise or c:apacity ground instead of an antat groumd eommertion. Therounterpoise fomsists of a system of wires, insulated from groumd and rumang horizontally above the earth beneath the antema, The muntronoise should hive a sufficient mumber of wires of sufliciont length to cover well the area immediately umder the antemata. The wires may be formed into any conveniont shape; i.e., they may be spread out fan-shape, in a radial pattern, or as three or more parallel wires sepa-
rated a few feet and running beneath the antenna. The counterpoise may be elevated six feet or so above the ground, so that it will not interfere with persons walking under it. A lowresistance connection shomld be made between the usual ground terminal of the transmitter and each of the wires in the counterpoise.

Fig, 1052 - 'I'he Alford lown anterna for v.h.f. and u,h.f.. made ile of resonant elementef fed in phatse, hats ligaraliationeffideney.

Fip. 10:3 - Varions f.end and phasing arrangements may be nsed with v.h.f. Lompo The ahortedendsof the closed quartor-wave matching stuhs may be pronuled to a metal mast or othersupport.

Ionded antennas - Methods of seruring maximum nsable radiation from at grounded bertical antenna of limited hoight utitize loading roils and capacity tops. The latter may be in the form of a ring or spider or a top-mounted outrigger. Capal"ity cillo.t raises the maximmon rurrent point mearer the top of the antemat.

Another form of top hading which involves the insertion of an imhertance coil near the top. enclosed within a shicld can for protection and to increase the top capacity, is partienampy suited to mobile installations.

The advantage of top loading in short vertiral antemas is that it forees the upper portion of the antemato caury a more substantial courrent. miking the rfiedive height apporabh more alosely to the antual phesiowl height.
b.h.f. Ioop antemans - Althomgh the radiattion resistance of an ordinary low transmitting antemat is very low at the very-high froquentios, the Alford lown shown in lig. 105:3 permits the use of resumant dimensioms of the - reler of $1 /$ s $^{\text {to }} 1$ wavength on eash side, resulting in relatively high radiation efficioney as rompared with ordinary loon antennas for the f wer frequencies.

Various configurations and feed methods are possible, following this general frittern. In the form shown in ligg. 10.5 , the sides of the boop are half-wave resomant sections linked hy quarter-wave tramsmission-line mat ching stuls sa armanged that there is a current loop at the center of each side. With the ruments in the various sections all in phase. Sine the shorted ends of the quarter-wave stubs are at a voltage
node, the system may be directly attached at these points to a grounded metal tower or similar structure.

Center-fed dipoles with low impedance coaxial lines or deltamatehed lines may be used, the correct phasing for each line being arranged at the feed-lino terminals.
". J" antenna - 'lhis tylue of antema, frequently used on the very-high frequenciess When vertimal polarizat tion is desired. is simply a half-wave radiator fed thonugh a quarter-wame materhing section (\$10-s). the whoke being mounter pertically as shown in Fig. Boijt. Adjustment amd tming are as doseribed in Silo-s. Tha

grounded here
Fía, 10.5.t - 'lhe "J" antellna, Hataily romstrueted of harildrawn motal tubiny, 'The "f-ware vertioal metion may ler momated at all extension of a prommed molal mast. 'The matchin" sub may be adjusted by a stinling shorting bar. bottom of the matchine aertion, being at practically zero r.f. potontial can be groumded for lightning protertion.
©inaial antemma- Witly the "J " antenna radiation from the matrhing seretion and the transmission line tends to

Frig. 10.is- Convial antorna. 'The in-ulated inner comburtor of the
 is comberted to iles quarter-wate metal rod which forms the nuper half of the antenna. combine with the radiation from the antema in subh : way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is essential. and the erosxial antemat shown in liig. 10.5 was develoned to diminate fereder radiations. 'l'he ecenter conduc-
 trie tramsmission line is extended one quatter wave breond the and of the lino. to art as the upper hali of a half-wave antemma. The lower half is provided be the quarterwave slowe the upper end of whirh is connected to the outer conductor of the concentrie line. The frewe atots as a shiedd about the transmission line and very little current is induced on the outside of the line by the antenna field. The lide is non-resonant, since its charateteristic impedimee is the same as the center impedance of the halfwave antenna (\$10-2).

The sleeve may be made of copper or brass tubing of suitable diameter to clear the transmission line. The coaxial antenna is somewhat difficult to construrt, but is superior to simpler systems in its performance at low radiation angles.

Turnstile anterna - The turnstile antenna consists of two half-wave radiators crossing each other at right angles and excited 90 degrees out of phase. A number of these are sometimes arranged in an array in which the individual turnstiles in a horizontal pane are spaced one above another at half-wave inter-

Ïд. 10:5\%- A"bazooka" line halancer, used to monnect a halanced renter-fed dipole to a coaxial trans. mision line without unhal. ancing the antenna load.
vals. Such an array gives nearly uniform radiation in all horizontal directions together with dirertivity in a vertiral plane.

Line balancing - A ramial line connertad to the center of a half-wave antemna introdures some unbalance because the outer conductor has higher capacity to ground than the inner. At lower frequencies this unbalamer may mot be important, but at v.h.f. and u.h.f. a small difference in eapacity between the for halves of the antenna may have a considerable effeet upon current distribution.

Proper balanee maty be restored by the use of a quarter-wave line section as shown in l"ig. 1056. The wuter conduetor of the transmission line is duplieated by a quarter-wave section of the same diameter, the two being connected together at the

Fig. 1057 - The "proumd-plan." anterna gives low vortical-angle radiation with a circular horizontal pattern, 'lhe quarter-wave mounting section of large-diameter tuhing may be mounted on a metal mast or other support. bottom. The inner conductor of the line is comnected to the extra tubing section and to the antenna ats shown. This forminates both hatves of the alltenna in tubing of the same caparity. The quarterwave seetion, when ardjusted to resonance by the shorting bar at the bottom, has high impedance when viewed from the antemna terminals and therefore has no effert on the normal operation of the system.

Fig. 1058 - Folded dipoles are an elementary form of broad-band antenna, simply constructed and casily fed.

C. Wide-band Antennas

Cylindrical antennas - Radiators such as are used for talevision and broad-band f.m. are of interest in amateur v.h.f. operation because they work at high efficiener without adjustment throughout the width of an amatem band.

At the very-high frequencies an ordinary dipole or equivalent antenna mate of small wire is purely resistive only over a very small frequency range. lts Q, and therefore its selectivity, is sufficient to limit its optimum per-

Fig. $10: 59$ - The compact circular loop antenna is de. rived from a folded dipole hy bending it inten a cirelec. To reduce lonath and conecntrate eurront distribution, ca-parity-loading end plates are added as in lower view. (ircular loops may be stached at one half wavelength intervals for increased vertical dirwtivity. Circular ar. rays of three or four folded dipolve. lent intor 120° or ${ }^{\circ} 0^{\circ}$ ares and fed in phase are extensively used for u.h.f.
formance to a narrow frequency range, and readjustment of the longth or tuning is required for earh narmow slior of the spectrum. With funed transmission lines. the effertive length of the antenna call be shifted by retuning the whole system. However, in the ase of antemas fed by matched-impedance lines, any appreciable frequency change requires an artual merhatnical adjustment of the system. Otherwise the resulting mismatch with the line will be sufficient to caltse a significant reduction in power input to the antemna.

A properly designed and constructed wideband antemna, on the other hand, will exhibit very nearly constant input impedance over a range of several megacyeles.

The simplest method of obtaining a broadband characteristic is the use of what is termed
a "cylindrical" antenma. This is no more than a conventional doublet in which large-diameter tubing is asod for the elments. The use of a relatively large diamoter-to-length ratiol lowers the Q of the antoman, thas broalening the resonance chataremistic.

As the diamerer-to-length ratio is increased, end offects ako increace. with the result that the amtemat must be madeshorter than a thanwire antenna resomating at the same freduenes. The reduction factor may be as math as 20) per eent with the tubing size eommonly ued for :mateur antembas at v.h.t.

Fobled dipoles- A sistem emmbining the radiation rharacteristios of a half-wiae antennat with the impedame-t ram-forming propertion of a quarter-wave line ($\$ 10-\mathrm{a})$ is shown in Fig.

 tively comstant inpedanere orer a wid. frequenes range. The three-tuarter waveleneth dipule at left and the guarter-wate vertical with wromed plane at riwht hase the same input impedane - appreximatels (65 whms. Sheret-metal or spiut-1ype construction mas be used.

105s-A. Wemetially, it is a center-fed half-wave antenna with another half-wave clement manerted direatly hetweon its ends. The sparime bet wern the two seetions should be quite elose - not more than al few per eront of the wavelength. As used at wery-high fregnemios the spacing is of the order dif an ind of two when the clements are mostrueted of metal tubine The total reguired length around the kup maty be raloulated be Equation 10 ($\$$ (0-0) for a total length of we warchongth.

The impedane at the torminals of the dipole is luat times that of a hatiowave antemata, or nearly 300 whms. When the antenna combuctors wre both the same diameter. A 30t)-whm line will therefore be nonremmant when the antemita is commerted to its output end (\$10-5). while the stamding-wate ration with a boto-ohm lime will he ouly of the orter of 2 to 1

An exat mathe with a font-nhom line can he obtamed by either of two modifieatims. (hme is
to double the size of one of the elementr, as shown in Fig. 10;8-13: the other is to add an additional element in parallel, ats in Fig. 10.58-C.

Come antennas - From the eylindrical antemat varions sperialized forms of broadly resWhat radiators have been ewolved including the ellijsenid, spherod. eomer diamond and double diamond. Of theor. the remieal antemata is perhaps the most interesting. With large anelen of revolation 1 he rhatrateristic impedance can be reduced to a very low value suitable for extremely wide-hand operation. The cone may be made upe either of sheret metal or "f multiple wire spines, as in Fig. 1060.

C. Plane Reflector Antennas

Plameshart reflectors- The small physical size uf v.h.f. :mmonas makes prartiatl many mothods not feasible on bower frequencies. lior example, a plane flat-xheng reflector may be used with a half-wase dipole, ohtaining kains of \bar{i} to 7 dh. Mush highor rains are attainable with a mumber of startiod dipoles. spared $1 / 4$
 -here: -urh an arramement is called a "billbeard arma.

Fland roflateme med mot be emotructed of swlid sheres. Wire mosh or a grid of a closely spared parallel wire spines are mot only more easily rrectod but offer less wind resistame.

Parabolir reflectors- ideets formed into the shape oi a sertion of a marabolie evinder tire usud with at driven rathator situated at the
 the parabulice reflector is rutliciently large so thent lle dixtane (1) the lowal point is a number ut waverenghe. whical ronditions are appromehed and the ware arrose the mouth of the reflector is a platwe ware. However, if the reflerfor is of the same order of dimensions as the aprotithg waverngth, on less, the driven ratliator is apperembly eonpled to the reflecting shem and minor home wern in the patern.

Plate shores shand to a mabolie eurve are und wobtain high dirediwity it at single plane. With :pertures of the urder of 10 or 20 wavelengthes a hean width of j maty be achateved.

A refleding matholoid must he carefully designed :mal comstrudted to whain ideal performatmere. 'Phe antomas must he lenated at the fowal print. 'The mont deximble focal length of

table V					
Fremueny			Number Rufietor		
	${ }^{\prime} 2^{\prime \prime}$	${ }^{4} 7^{\prime \prime}$	${ }^{20}$	$5^{\prime \prime}$	$2^{\prime} 2^{\prime \prime}$
	$8^{\prime}{ }^{\prime \prime}$	$5^{\prime} 2^{\prime \prime}$	${ }^{20}$	$10^{\prime \prime}$	+ ${ }^{\text {+ }}$
隹	$6^{\prime} 8^{\prime \prime}$	$5^{\prime} 2^{\prime \prime}$	16	$10^{\prime \prime}$	$3^{\prime \prime} 6^{\prime \prime}$
	$16^{\prime} 8{ }^{\prime}$	$10^{\prime}{ }^{\prime \prime}$	20	$1^{1} \mathrm{~s}^{\prime \prime}$	$8^{8} 8$
	${ }^{13}{ }^{\prime \prime}{ }^{\prime \prime}$	10'4"	16	$1^{\prime} 8^{\prime \prime}$	$6^{\prime} 11^{\prime \prime}$
Dinensions of square-cornur reflector for the $221 ., 12$ and 56 Mc. hands. Alternative de. sipnhare histed for the (*) and elements and shorter sides, but the effectivences is only slighty reduced. There is no rernectelement at the vertex in any of the designs.					

the parabola is that which places the radiator along the plane of the mouth; this length is equal to one-half the mouth radius. At other focal distances interference fields may deform the pattern or cancel a portion of the radiation.

Corner reflectonanterna - The "corner" reflector consists of two flat conducting sheets which intersert at a designated angle. The comer reflector antemna is particularly useful at v.h.f. where struetures one or two wavelengths in maximum dimensions are more practical to buidd than larger systems.

The plane surfaces are set at an angle of 90°, with the antemna set on a line hisecting this angle. For maximum performance, the distance of the antenna from the vertex should be 0.5 wavelength, but compromise designs can be built with closer spacings (see Titble V). The plane surfaces need not be solid sheets; spines spaced about 0.1 wavelength apart will serve as well. The spines do not have to be connected together electrically.

If the driven radiator is situated on a line bisecting the corner angle, as shown in Fig. 1061, maximum radiation is in the direction of this tine. There is no focus point for the driven radiator, as with a parabolic reflector. and the radiator can be placed at a variety of positions along the bisecting line.

Corner angles larger than 90° can be used, with some decrease in gain. A 180° "corner" is equivalent to a single flat-sheet reflector. With angles smaller than 90°, the gain theoretically increases as the corner angle is decreased. However, to realize this gain the size of the reflecting sheets must also be increased.

At a spacing of 0.5 wavelength from the driven dipole to the vertex, the radiation resistance of the driven dipole is approximately twice the radiation resistance of the same dipole in free space. smaller spacings of driven
dipole and vertex are practical, but at a slight sacrifice in efficiency. The alternative design for the $112-$ and $56-\mathrm{Mc}$. square-corner reflector in Table V has a dipole-to-vertex spacing of 0.4 wavelength. At this spacing the driven dipole radiation resistance is still somewhat higher than its free space value, but is considerably less than when the spacing is 0.5 wavelength.

Horn radiators - On the ultrahigh frequencies a metal horn can he used to guide and concentrate the wave in a sharp beam. Highest directivity is secured when the mouth of the horn has a dimension large compared with the wavelength. Factors governing the gain include flare angle, length and mouth diameter.

Various types of horn radiators include the simple sectoral horn, flared linearly in only one dimension; the pyramidal horn, flared in two dimensions; the conical horn, a section of a eone whose apex is terminated in a rylindrical wave guide or cylindrical coupling section; and the biconical horn. consisting of two cones joined back to back at the apex.

Keceiring antennas - Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behtwior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, a large antenna is not necessary for picking up signals at good strength. An indoor wire only 15 to 20 feet long will serve; although a longer wire outcloors is better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting anteme usually is given the best location, it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional efferts and power gain of directive transmitting antennas are the same for receiving as for transmitting. A change-over switch or relay, connected in the antenna leads, can be used to transfer the connections from the receiver to the transmitter.

In selecting a directional receiving antenna it is preferalle to choose a type which gives very little response in all but the desired direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwanted-signal interference in the smaller lobes may offset the advantage of increased desired-signal gain.

Chapter Eleven

Construction Practice

In contrast to the earlicr days uf amateur radio, when many components were ohtainable only at prohibitive prices or not at all, the ronstruction of a piece of equipment these days resolves itself chiefly into the proper assembly and wiring of manufactured romponents from the wide assortment available.

(1) Tools

While an easier, and perhaps a better, job can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be found indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing panels and metal chassis for assombly and wiring. A few additional tools will make cortain operations easier, so it is a good idea for the amateur who does constructional work at intervals to add to his supply of tools from time to time. The following list will be found helpful in making a selection:

Bench vise, t-inch jaws.
Tin shears, 10 -inch, for cutting thin sheet metal.
Tiper reamer, $1 / 2$-inch, for enlarging smatl holes.
Taper reamer, 1 -inch, for enlarging holes
Commtersink for brace.
Carpenter's plane, \&- to 12 -inch. for woudworking.
Carpenter's saw, cross-cut.
Motor-driven emery wheel for grinding.
Long-shank screwdriver with sarew-holding clip for tight places.
Set of "spintite" socket wrenches for hex nuts.
Set of small, flat, open-end wrenehes for hex nuts.
Wood chisel, $1 / 2$-ineh.
Cold ehisel, $1 / 2$-inch.
Wing dividers, 8 -inch, for seribing circles.
Set of machine-sorew taps and dies.
Folding rule, 6-foot.
Dusting brush.
Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable for anyone in a position to acquire them.

(c) Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the amovance which may be avoided by the possession of well-kept, sharp-edged tools. A few minutes spent with the oil stone or emery whed now and then will maintain the fine cutting edges of knives, drills, chisels, ete.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to mantain the rather reritical surface angles required for best cutting with least wear. Ocasional oil-stoning of the cutting edges of a drill or reamer will extend the time between grindings. Stoned cutting edges also will stand more feed and speed.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any soale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while hot and then wiping it clean with a rag. If the tip beromes pitted, it should be filed until smooth and bright, and then tinned by dipping it in solder.

All tools should be wiped occasionally with an oily cloth to prevent rust.

INDISPENSABIEE TYOIS

L.ong-nose pliers, 6 -inch.

Diagonal eutting pliers, g-inch.
Serewdriver, 6- to 7 -imeh, 1 -inch blade.
screwdriver, 4 - to 5 -inch, $1 / 8$-inch blade.
Scratch awl or seriber for marking lines.
Combination square, 12 -inch, for laving out work.
Hand drill, $1 / 4$-inch chuck or larger, 2 -speed type preferable.
Filectric soldering iron. 100 watts.
lacksaw, 12-inely hades.
('enter pronch for marking hole centers.
Hammer, hall peen, 1-lb. head.
Heavy knife.
Yardstick or other straight-edge.
Carjenter's hrace with adjustable hole eutter or sorket-hole punches (ser text).
Pair of small C-clampo for holding work.
Large, coarse, flat file.
Large romind or rat-tail file, $1 / 2$-inch diameter.
Three or four small and mediun files-flat, round, half-round, triangular.
I) rills, barticularly ${ }^{1}$ 1́-inch and Nos. 18, 28, 33, 42 and 50.
Combination oil stone for sharpening tools.
Solder and soldering paste (bou-corroding). Medium-weight machine oil.

(I) Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio supply stores. A represent:ative list follows:
$1 / 2 \times 1 / 16$-inch brass strip for brackets, etc. (half-hard for bending).
$1 / 4$-inch square brass rod or $1 / 2 \times 1 / 2 \times 1 / 16$ inch angle brass for corner joints.
$1 / 4$-inch diameter round brass rod for shaft extensions.
Mathine screws: Round-head and flat-head, with nuts to fit. Most useful sizes: 4-36, $6-32$ and $8-32$, in lengths from $1 / 4$-inch to $11 / 2$-inch. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite and hard rubber scraps.
Soldering lugs, panel bearings, rubber grommet.s, terminal-lug wiring strips, var-nished-cambric insulating tubing.

Machine screws, nuts, washers, soldering lugs, etc., are most reasonably purchased in quantities of a gross.

(Construction Planning

The construction of any piece of radio equipment requires careful planning. proper coürdination of parts, circuit and layout to achieve the desired result.

Equipment can be divided into three main classifications - experimental, temporary and permanent. Each elass has its own peculiarities and limitations affecting design and constructional details.

Experimental equipment, such as the gear thrown together to investigate the possibilities of some newly published circuit, or an original idea, requires a simpler approach and less work than a unit to be used in the regular station. Experimental equipment may be built "breadboard" style on a board faced with a thin sheet of metal for grounding purposes, or even on an old chassis from the junk box. If the chassis has been previously used the old socket and serew holes may save time and effort. Random parts and a semi-makeshift arrangement can be used. Plenty of space for changes in wiring and components must be available. While temporary equipment such as a power supply built in an emergency, to replace a defective transmitter bias supply, does not require the same amount of plinning and care in assembly as did the original bias supply, it should be attached firmly to the chassis and wired securely to prevent breakdowns. Connections should be soldered and safety precautions taken since it is diflicult to anticipate the exact use or required length of service life of this type of equipment.

Permanent equipment requires the most careful planning and assembly since it must necessarily fit in with other units. Permanent
equipment consists of three main classes fixed station, mobile and portable.

In fixed-station usage, several types of construction are available. For example, take the case of a proposed exciter power supply. Will this unit be made a permanent part of the exciter but not located adjacent to it; will it be removed and used as a source of power for some other equipment such as an experimentad amplifier; or will it be constructed as an integral part of the exciter? The type of construction chosen for any given unit must depend on the foresecable uses that will be made of it. Thus, in the case of the exciter power supply, if it is to be used with but not attached to the exciter, it should be packaged so it can be moved and connected to other equipment. For maximum utility, both serew-type terminals and plug- and socket-type connections should be available. If it is desirable to use the supply in the field such as on Field Day, it must be more sturdily built and should be provided with a protective cabinet or box.

If the exciter supply is made a permanent part of the exciter, its design must be coördinated with the exciter unit as a whole, a chassis of suitable size and form must be selected and a layout made to fit all the components into the available space.

In fixed-station applications, assemblies of small units built to conform with the available space may prove to have more convenience and utility than large masses of assembled parts, such as a cabinet type, in which it is extremely diffecult to replace defective parts or to make changes readily. This type of equipment includes power supplies, volt-ohmmeter units, audio amplifiers and any type equipment which may have more than one use in or around the station. For example, if the speech amplifier were designed to be removed readily it, could perform double duty as a public-address amplifier and used for a club "jam" session. This would be feasible, however, only if provisions were made for quick and easy removal. and connection to the normal gear. Such an amplifier should be built self-contained, with power supply, and terminated with plug-in type connectors to fit both the phonograph pick-up and the 'phone-rig connections. All multi-purpose equipment must be built solidly, readily demountable and with some system of universal connections.

The desirable features of portable equipment combine those of fixed and mobile station apparatus plus lightness and compactness. Portables are usually packaged in at least two mints, one containing the transmitter-receiver (or transceiver) and the other, the power supply or source.

(I) Specialized Construction Technique

Mobile equipment must be laid out and assembled to prevent damage due to vibration and shock. In addition to the standard good practices of construction, mobile equipment
requires additional care in the mounting of components, the placement of parts to prevent detrimental heating effects and in the arrangement of the wiring. Heavy leads should be pre-formed to fit between the connecting points in order to prevent mechanical strain on the components. Fixed resistors and condensers should be fastened at both ends, clipping the wire leads short and attaching them to terminal strips or blocks, and large units should also be fastened at the center. Transformers should be securely bolted to the chassis, using bolts that fill the mounting holes in the transformer. Chassis should be solidly constructed of heavy metal. Ordinary chassis spot-welded in the corners will not be satisfactory for mobile sets. The chassis should be of the type in which the corners are bent over and securely riveted, then welded, and should have a lip at the bottom for rigidity. ('ast chassis are usually excellent for mobile units. Crossbracing of a chassis will strengthen it. Coils should be wound on rigid low-loss forms and securely mounted. For example, the output tank coil of a $50-\mathrm{Mc}$. transmitter can be wound on a solid grooved dielectric rod, which is then mounted vertically on the chassis, adjacent to the plate tank condenser, using one largesize brass machine serew. The antenna coil can be wound also on the same rod.
1)etuning and loss of efficiency might result if, for example, the same coils were mounted directly on the terminals of their respective variable condensers without having a solid support and mounting.

Ground comuections must not be spotsoldered to the chassis. Instead, they should be made to ground lugs or straps provided for that purpose. Lockwashers or locknuts must be used on all screws. Stranded hook-up wire, laced into cables and securely fastened down, has been found highly desirable in mobile sets.

The use of tube locks is almost imperative on any tubes except the smaller metal types (such as $6 \mathrm{C} 5,6 \mathrm{H} 6$, etc.). Certain common types of ceramic sockets require tube locks for all tubes. Fiber wafer sockets should be avoided because of their lack of mechanical strength and holding ability.

Mobile installations are affected by shock and vibration and every effort must be taken to prevent mechanical or electrical damage and to prevent parts from shaking loose. Special components such as variable condensers, coils and transformers are available for such use and should be included in this type of equipment.

In the construction of v.h.f. equipment many familiar practices must be discarded or modified. Actual physical relationships between components becomes extremely important since every inch of wire constitutes a tuned cireuit and every condenser is also an inductance. Stray capacitance and inductance may lead to a loss of gain or sensitivity and
may cause detuning and instability. Grounds must be grouped and connected to definite points rather than indiscriminately to the chassis. Special by-pass technique is required since the condensers ordinarily employed for that purpose will not function in the same mammer as on the lower frequencies. For example, the following table shows the approximate value of the usual postage-stamp condenser capacity which, together with the inductance of the leads, will he approximately self-resonant in the amateur bands shown. At signal frequencies, no greater by-pass capacity should be used (for an indicated lead length) thin the one shown for the highest frequency to be covered.

Symmetry of push-pull circuits is essential in v.h.f., both from an electrical and a mechanical viewpoint.

Copper straps may be utilized for connections in place of straight copper wire, which has considerable induetance at the higher frequencies.

More effective by-pass condensers for v.h.f. may be made by attaching a square inch or so of flat copper or brass strip, insulated by mica or polystyrene, to the chassis, immediately adjacent to the connection to be by-passed.

Allowance must be made for the capacity and inductance of components, such as tube elements, leads, chassis, and metal shielding.

All joints must be soldered, using plenty of heat and rare to ensure a good sweated joint.

Particular care must be taken to provide adequate conductor size where large r.f. currents are present such as in tuned lines.

All vibration and movement of components must be completely eliminated since the slightest change in caparity will affect the critical circuits. The elements in resonant cavities must be rigidly fastened.

Wire-wound resistors must be avoided in any circuit where r.f. is present. Carbon resistor values will not be reliable as the frequeney is increased and the metallized-filament type resistor must be used where critical values are required.

Since the successful performance of v.h.f. equipment largely depends on the absence of stray and undesired caparities and inductance, extrome care must be taken in the mechanical as well as the electrical organization of the chassis. For example, the correct rotation of a socket may shorten an important tube lead as much as an inch - which may have enough inductance to resonate with the tube-element capacity at 500 Me .

(1. Chassis Construction

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory job results.

The placing of components on the chassis is shown quite clearly in the photographs in this IIandbook. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the job. When all details are worked out beforehand the actual construction is greatly simplified.

Cover the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will form the desired pattern on the panel. Be sure. to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of earh accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers, etc., as well as holes for wiring leads.

Fig. 1101 - Method of measuring the heights of condenser shafts, etc. If the square is adjustable, the end of the scale should be set flush with the face of the head.

By means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the renter punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge of the chassis should be transferred to the
panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the condensers and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis. as illustrated in Fig. 1101. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted.

© Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hacksaw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending so far that the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieres of heaty angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. C-clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forthover the sheet.

Bends may be made similarly. The sheet should be scratched on both sides, but not so deeply as to cause it to break.

(1. Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hote. Care should be taken not to use too much pressure with small drills, which bend or break easily. When the drill starts to break through, sperial care must be used. Often it is an advantage to shift a twospeed drill to low gear at this point. Holes more than $1 / 4$-inch in diameter may be started with a smaller drill and reamed out with the larger drill,

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file, Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good
reamer for holes up to the diameter of the file, if the file is revolved counter-clockwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. The cutter should be kept well-sharpened. Occasional application of marhine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. Probably the most convenient device for cutting socket holes is the sockethole punch. The best type is that which works by turning a take-up serew with a wrench.

Fig. 1102 - To cut rectangular holes in a whassis, corner holes may be filed ont as shown in the shaded portion of 13 , making it possible to start the hacksaw hidade along the cutting line. A shows how a single-- mded handle may be constructed for a hacksaw blade.
square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside cuch corner, as illustrated in Fig. 1102, and using these holes for starting and turning the hacksaw. The sock-et-hole punch also may be of considerable assistance in cutting out large rectangular openings.

The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

(1) Crackle Finish

Wood or metal parts can be given a crackle finish by applying one coat of clear Duco or Tri-Seal and allowing it to dry over night. A coat of Kem-Art Metal Finish is then sprayed or applied thickly with a brush, taking care that the brush marks do not show. This should be allowed to dry for two or three hours and the part should then be baked in the kitchen oven at 225 degrees one and one-half hours. This will produce a regular commercial job. This finish, which comes in several different colors. is made by Sherwin-IVilliams Paint Co.

NUMBEREI DRILL SIZES

Number	$\begin{gathered} \text { Diameter } \\ (\text { mils }) \end{gathered}$	Hill Char srrow	Drilled for Tapping Iron. Stest or Brass*
1	228.0		-
2	221.0	12-24	-
3	213.11	-	14-24
4	2096	12-20	-
5	20.5	-	-
6	204.11	-	-
7	201.11	-	-
8	194.019	-	-
9	196.11	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185.0	-	-
14	18:.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-82	-
19	16iti. 0	-	12-20
20	161.0	-	--
21	159.0	-	10-32
22	157.0	-	-
23	154.0)	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	144.0	-	-
28	140.0	6-32	-
29	136.0	-	8-32
30	128.5	-	-
31	120.0	-	-
32	118.0	-	-
33	113.0	4-36 $4-40$	-
34	111.0	-	-
35	110.0	-	6-32
36	106. . 5	-	-
37	104.0	-	-
38	101.5	-	-
39	099.5	3-48	-
40	098.0	-	-
41	096.0	-	-
42	093.5	-	4-36 4-40
43	089.0	2-56	A
44	086.0	-	-
45	082.0	-	3-48
46	081.0	-	-
47	078.5	-	-
48	076.0	-	-
49	073.0	-	2-46
50	070.0	-	-
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	05.5 .0	-	-

*Use one size larger for tapping bakelite and hard rubber.

© Twist Drills

Twist drills are made of pither high-speed steel or carbon steel. The latter type are more common and will usually be supplied unless sperific request is made for high speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high speed type.

While twist drills are available in a number of sizes those listed in bold-faced type above will be the drills most commonly used in construction of amateur radio equipment. It is usually desirable to purchase several of each of the commonly used sizes rather than a quantity of odd sizes, most of which will be used infrequently, if at all.

(1) Cutting Threads

Brass rod may be threaded, or the damaged threads of a screw repaired. by the use of dies. Holes of suitable size (see drill chart) may be threaded for screws by means of taps. Taps and dies are obtainable in all standard machinescrew sizes. A set usually consists of taps and dies for $4-36$. 6-32. 8-32, 10-32 and 14-20 sizes, with a holder suitable for use with either tap or die. The die may be started easily by first filing a sharp taper or bevel on the end of the rod. In tapping a hole, extreme care should be used to prevent breaking the tap. The tap should be kept at right angles to the surface of the malterial, and rotation should be reversed a revolution or two whenever the tap begins to turn hard. With care, holes can be tapped rapidly by clamping the tap in the chuck of the hand drill and using slow speed. Machine oil applied to the tap usually makes cutting easier and sticking less troublesome.

© Cleaning and Finishing Metal

Parts made of aluminum can be cleaned up and given a satin finish, after all holes have been drilled, by placing them in a solution of tye for one-half to three-quarters of an hour. Three or four tablespoonfuls of lye should be used to each gallon of water. If more than one piece is treated in the same bath, each piece should be separated from the others so as to expose all surfaces to the solution. ()verlapping of picces may result in spots or stains.

c. Hook-Up Wire

A popular type of wire for receivers and low-power transmitters is that known as "push-back" wire. It comes in sizes No. 1 fi , 18, 20, ete., which is sufficiently large for all power circuits except filament. The insulating covering, which is sufficient for circuits where voltages do not exceed 400 or 500 , mam be pushed back a fow inches at the end, making

Fig. 1103 - Right and wrong methods of lacing cable. With the right way the leading line is pinched under cach turn and will not hosen if a break oceurs in the lacing.
cutting of the insulation unnecessary when making a connection. Filament wiring should be done with sufficiently large conductors to carry the required current without appreciable voltage drop (see Copper Wire Table in the Appendix). Rubber-covered house-wire sizes No. 14 to No. 10 are suitable for heavy-current
transmitting tubes, while No. 18 to No. 14 flexible wire is satisfactory for reccivers and low-drain transmitting tubes where the total length of the leads is not excessive.
stiff hare wire, sometimes called bus wire or bus bar, is most favored for the high r.f.-potential wiring of transmitters and, where practicable, in receivers. It comes in sizes No. 14 and No. 12 and is usually tin-dipped. softdrawn antenna wire also may be used. Kinks or bends can be removed by stretehing 10 or 15 feet of the wire and then cutting it into small usable lengths.

The insulation covering power wiring which is to carry high transmitter voltages should he appropriate for the voltage involved. Wire with rubber and varnished cambric covering, similar to ignition cable, is available from radio parts dealers. The smaller sizes have sufficient insulation to be safe at 1000 to 1500 volts, while the more heavily insulated types should be used for voltages ahove 1500 .

© Wiring Transmitters and Receivers

It is usually advisable to do the power-supply wiring first. The leads should be bunched together as much as possible and kept down close to the surfare of the chassis. The lacing of power wiring in cable form not only improves its appearance but also strengthens the wiring. Fig. 1103 shows the correet way of lacing cabled wires. When done correctly the leading line is held tightly pinched in place after tension has been removed, and therefore does not loosen readily. When the wrong method is used the turns will loosen up as soon as tension is removed.

Chassis holes for wires should be lined with rubber grommets which fit the hole, to prevent chafing of the insulation. In cases where powersupply leads have several branches, it is often convenient to use fibre terminal strips as anchorages. These strips also form handy mountings for wire-terminall resistors, etc. When any particular unit is provided with a nut or thumbserew terminal, soldering-lug wire terminals to fit are useful.

High-potential r.f. wiring should be well spaced from the chassis or other grounded metal surfaces and should be run as directly as possible between the points to be connected, without fancy bends. When wiring balanced or push-pull circuits, care should be taken to make the r.f. wiring on each side of the circuit as symmetrical as possible. Where it is necessary to pass r.f. wiring through the chassis, cither a feed-through insulator of low-loss material should be used or the hole in the chassis should be of sufficient size to provide plenty of air space around the wire. Jarge-diameter rubber grommets c:an be used to prevent accidental short-circuits to the chassis.

By-pass condensers should be connected directly to the point to be by-passed and grounded immediately at the nearest available mounting screw, making certain that the screw
makes good electrical contact with the chassis. Care should be taken to connect the marked side of tubular paper by-pass condensers to ground. Blocking and coupling condensers should be well spaced from the chassis.

High-voltage wiring should have exposed points kept at a minimum and those which cannot be avoided rendered as inaccessible as possible to accidental contact.

© Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron.

Wartime solder, which has a much smaller ratio of tin to lead, requires considerably more heat, and it becomes especially important to keep the iron clean at all times. More care must be exercised in making the joint because the new solder does not flow as readily, and also has a tendency to crystallize.
Soldering paste, if of the non-corroding type, is extremely helpful when used correctly. In general, it should not be used for radio work except when necessary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the bit of paste which melts from the warmth of the joint should be used. If the soldering iron is clean it will be possible with one hand to pick up a drop of solder on the tip of the iron which can be applied to the joint, while the other hand is used to hold the connecting wires together. The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation, causing leakage or breakdown of the insulation. Except where absolutely necessary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terninals.
Do not attempt to make ground connections to a cadmium-plated chassis by soldering to the surface of the chassis, since the phating may be loosened by the heat and later fall off, breaking the connection. Drill a hole in the chassis and solder the wire in the hole.

(C Construction Notes

Lockwashers should be used under nuts to prevent loosening with use, particularly when mounting tube sockets or plug-in coil receptacles subject to frequent strain.
If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be connected to the chassis with a wire or grounding strip. This prevents any possible danger of shock.

The standard way of mounting toggle switches is with the switch "On" when the lever is in the upward position.
Variable condensers and resistors, having one-hole mountings, should be firmly fastened using the porcial lockwashers provided for shaft nuts.

The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from breaking.

(1) Coil Winding

Dimensions for coils for the various units described in the constructional chapters are given under the circuit diagrams. Where no wire size is given, the power is sufficiently low to permit use of any available size within reason.

Unless a close-wound winding is definitely sperified, the number of turns indicated should be spaced out to fill the sperified length on the form. The length should be marked on the form and holes drilled opposite the pins to which the ends of the winding are to connect. Scrape one end of the wire and pass it through the lower hole in the form to the pin to which the bottom end of the winding is to connect, and solder this end fast. Unroll a length of wire approximately sufficient for the winding, and (lamp the spool in a vise so it will not turn. The wire should be polled out straight and the winding started by turning the form in the hands and walking toward the vise. A fair tension should be kept on the wire at all times. The spacing can be judged by eve. If, as the winding progresses, it becomes evident that the spacing is going to be incorrect to fill the required length, the winding can be started over again with a different spacing. If the spacing is omly slightly off, the winding may be finished, the top end fastened, and the spacing corrected by pushing each turn. When complete, the turns should be fastened in place with coil cement. After a little practice, the job of determining the correct spacing will not be difficult.
Sometimes it is necessary to adjust the number of turns on a coil experimentally. The easiest way to do this is to bring a wire up from one of the pins, extending it through a hole in the form for a half-inch or so. The end of the winding may then be soldered to this extension rather than to the pin itself, and the nuisance of repeatedly fishing the wire through the pin avoided until the correct size of the winding has been determined.

II Coil Cement

Duco cement, obtainable universally at hardware, stationery or 5 -and- 10 -cent stores, is satisfactory for fastening coil turns. For small coils, a better-looking job will result if it is thinned out with acetone (amyl acetate), sometimes referred to as banana oil. If desired, the solution may be made thin enough to permit application with a brush.

Sperial low-loss coil "dopes" are available, including some with a polystyrene base.

Receiver Construction

[1 A Two-Tube Regenerative Receiver

The repernative-detector resiver $^{\text {ren }}$ has long been a favorite with beginners, since it is comparatively easy to construct and adjust. A receiver of this type is shown in Firss. 1201, 1202 and 120.4. It is designed to operate with tubes of either battery or a.c. type, and covers a total frequency range of 550 ke . to 32 Mc. with a series of phug-in coils. Sufficient audio output is available to operato a small permanent-magnet loudspeaker.

The pircuit diagram appears in Fig. 1203. The antenna is coupled to the input cirenit of the detector hy means of the adjustable mira condenser. ('1. The input circuit is tuned to the frequency of the incoming signal by meams of the variable condensers, C_{2} and $C_{3} C_{3}$ is used for general-coverage tuming, while C_{2} is provided for bandspread tuning over a narrow hand of frequencies anywhere within the total recoiver range. C_{3} serves also as the band-set condenser to locate the starting point of the range covered by $C_{2} . C_{3}$ hats sufficient capacity range to cover the entire broadeast band with a single coil when used for gencral-roverage tuning.

Feed-back for regeneration is supplied by L_{2}. The amount of regeneration may be adjusted by means of d_{4} which varies the screen voltage.
The output of the detertor is coupled to the input of the andio amplifier by means of the audio reactor L_{3}, and the coupling condenser. C's. While it is proferable to use a high-inductance (up to 1000 henries) reactance designed for this purpose, an ordinary filter choke of 15 to 30 henrics will make an arceptable substitute. Volume may be adjusted for speaker or headphones by R_{2}, T is the output transformer compling the plate of the audio

Fig. 120:- Rear view of the two-tube regenerative receiver. Near the panel, from left to right are the handspread thing combenser, Co the whg-in coil and the general-coverape tuning comilenser. CS. The audioamplifier tube, the output transformer. T, and the detector tube are lined up along the reare. The 4 -prong socket set in the rear edge of the chassis in for comnerting a sniall p.m. loudspeaker. The antenna terminal is at the ripht. Whe heater switeh is nomuted on the panel.
amplifier to the speaker. When headphones are used they are plugged into the chosed-circuit jack, J. which automatically opens the voicecoil circuit thereby silencing the speaker.
The components for the remiver shown in the photographs were assembled on an $8 \times 61 / 2$ $\times 2$-inch chassis bent up from sheet metal, although a standard sterl chatsisis $7 \times 7 \times 2$ inches will accommodate the parts equally well withont any change in the relative positions shown in the photographs. The two thuing condensers are monated on ceramic

Fig. 1201 - Panel view of the two-tule regenerative riediver. The dial to the left controls the gencralcoverage or hand-set tuning comdenser, C_{3}, while the ome (1) the ripht is the lamelsprod tunins dial which controls C. At the bottom the regeneration control is on the riyht and the andio volume control, R_{2}, at the left. The stand-by switch. s_{1}, is in the lewer left-hand corner and the headphone jack orcupies the opposite corner. The togkle switch at the top of the panel is the heater switeh, S2. Tube-base coils are shown at the ripht. This view shows alme the method of mounting the antenna coupling condenser, C_{2}, the prid conderser, C_{5}, and the grid-leak resistor, R_{1}, on the frame of C_{3}.

Fïg. 1203 - (ircuit diagram of the two-tube regenerative receiver. C $\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fd}$, mica trimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fl}$. minget variable condenser (National F.X. 100).
C.3-365- $3 \mu \mathrm{fd}$. variable (in the unit pietured, one section of a dual b.e. replarement variable, Meissner $21-5211$).
$\mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. mica.
(:s - $250-\mu \mu \mathrm{ft}$. mica.
(ing Cir - $100-\mu \mu \mathrm{fd}$, mica.
(${ }_{x}-0.05-\mu \mathrm{fl}$. paper.
(:9-10- $\mu \mathrm{fd} .25$-volt electrolytic.
C:10-0.1- $\mu \mathrm{fd}$. paper.
$R_{1}-2$ megohms, $1 / 2$ watt.
$\mathrm{R}_{2}-500,000$-ohm volume control.
R_{3} - Cathode resistor, see text.
$\mathbf{R}_{1}-25,0(0)$-ohm potentionteter.
$\mathrm{R}_{5}-\mathbf{1 5 , 0 0 0}$ ohma, I watt.
RFC. 15 -mh. r, f. rhoke.
I.1, I. 2 -See text and coil table.
pillars or metal spacers so that the two shafts are elevated to the same height above the chassis level while their centers are separated by a distance of $4 \frac{1}{4}$ inches.
'The coil socket is located midway between the two variable condensers and also is elevated above the chassis on small metal pillars so that its terminals will be accessible for connections to the condensers. One side of the intenna coupling condenser, C_{1}, is fastened to a stator terminal of C_{3}, while a wire rumning through a small hole in the chassis directly underneath connects the opposite side of \dot{C}_{1} to the feed-through antenna terminal set in the rear edge of the chassis.

The grid condenser, C_{5}, is supported on a sinall fibre lug strip fastened near the top of the frame of C_{3} to bring it up to the level of the grid terminal of the detector tube, while the grid leak. R_{1} is supported by its leads between one terminal of C_{3} and one of the mounting serews in the chassis.

The two tubes and the andio reactor, L_{3} are mounted in line along the rear edge of the chassis. The tube sockets arr submounted by rutting holes to fit in the chassis so that their terminals will rome below the surface of the chassis. Connections between the coil and detector-tube sorkets are made with insulated wire running through a $1 / 4$-inch hole drilled directly underneath the coil sorket.

Most of the small components, such as resistors, by-pass condensers and the r.f. choke, as well as the speaker coupling transformer are placed underneath the chassis as shown in the bottom-view photograph of Fig. 1204. One side of each by-pass condenser is connected as close as possible to the point to be by-passed and the other terminal grounded at the nearest point on the chassis.

Fik. 1204 - Bottom view of the regenerative reciver. At the left above the detector-tube socket are the r.f. choke and the two by-pass condensers, C_{6} (ripht) and C_{7} (left). Above C_{6} are C_{8} to the left and C_{4} to the ripht. Of the two resistors slightly to the right of center, R_{5} is to the left and R_{3} to the right with C_{9} in leetwern. Fo the right are the output transformer and Cio. 'I'he audio-tube sorket is in the lower right-hand carner.

L_{3} - Audio coupling reacter. sep text.
T- Pentode output-to-speaker transformer, universal type.
S_{1}, S_{2}-Single-throw, single-pole toggle switch.
J- Closed-circuit jack.
P - (0)-prong tube socket.
The regeneration control, volume control, stand-by switch, S_{1}, and the headphone jack are mounted along the front edge of the chassis. The latter must be insulated by means of fibre washers when it is mounted.

The wires of the power-supply cable are anchored at an insulated lug strip located underneath the chassis at a point where the cable enters the chassis through a grommetted hole in the rear edge. The 4 -prong socket for speaker connections also is mounted in the rear edge.

The panel is 8×8 inches and is fastened to the chassis by means of three 6-32 machine serews. Holes must be drilled along the bottom edge of the panel to pass the shafts of the controls and the shanks of the toggle switeh and headphone jack. The heater switeh, S_{2}, is mounted in a hole drilled near the top of the panel. Wach dial requires four mounting holes and a half-inch hole to clear the shaft. These holes require careful lining up with the shafts of the tuning condensers.

Coils - Coil dimensions are given in the accompanying table both for standard $11 / 2$ -

Fig. 1205-A close-np view of the tube-hase coils for the regenerative recciver. Band-spread taps are required on only the two highest frequency coils. A spreial air-wound coil is neressary to cover the highost-frequency range of 12.8 to 32 Me .
inch-diameter coil forms and for old bakelite tube bases, as shown in Fig. 1205, which may be used in case standard coil forms are not available. If tube bases are used, it will be necessary to wind the two largest coils in layers, since the base will not accommodate a suffiriently large single-layer winding. After winding the turns of the first layer in the conventional manner, the second layer is wound over the first in zig-zag fashon, taking one-half turn to cross back to the starting edge of the first layer and another half turn to cross back over the first layer to the finishing edge. Each successive turn of the zig-zag winding overlaps preceding turns at each reversal of the cross over. The finished coil actually has more than two layers at some points which explains the larger number of turns given for the "second layer" in the coil table. While an ordinary "scramble-wound" coil is not as neat in appearance, it will work almost as well if the constructor does not wish to bother with the more complicated winding. Connections to the roil-form pins and the coil-sorket prongs are shown in Fig. 1206.

The self-supporting air-core coil No. 5 is made by winding 5 turns of No. 18 wire around a half-iuch form, such as the shank of a drill, and spreading the turns out to the required coil length of $5 / 8$ inch by running a screwdriver or knife between the turns after they have been removed from the form. The tickler winding also should be wound on a half-inch form and the turns should be fastoned together with

Duco waterproof cement or low-loss coil "dope" before removing from the form. After the cement has dried, the coil is inserted inside the "ground" end of L_{1}. Its position should be varied until smooth regeneration is obtained and then it may be fastened in plare with cement. ('are should be taken to make all tickler windings in the same direction as the turns of L_{1}, otherwise the circuit will not regenerate with the coil connertions shown.

Choice of tubes - A wide variety of tubes will work satisfartorily in this receiver. Any of the 6.3 - or 2.5 -volt a.c., or 2 - or 1.4 -volt battery r.f. amplifier pentodes listed in the tube tables of the appendix may be used as the detector, while any of the audio power pentodes or beam tubes listed with a similar filament- or heatervoltage rating may be used in the audio amplifier, providing its rated plate current does not exceed 50 ma. Among the more widely available types are 57,58 and 78 for detector in the old 2.5 -volt a.c. scries, with the 2 A 5 or 59 as the corresponding audio-amplifier type. In the 6.3 -volt series with old-style bases are the 6 " 6 and 6 D 6 as detector and the 4 1, 42 or 89 for the audio stage. In the more noodern octal series are the 6 J 7 or 6 K 7 for detertor and the 6F6 or GV6 for output amplifier. Their glass equivalents are equally suitable, of course. In the loktal series, the 7A7, 7 B 7 or 7 W 7 may be used in the detertor stage, while the 7A5 or 7135 will serve as audio amplifier.

For battery operation, the 1 D 5 GP or 1 F5GP in the 2 -volt-filament class are suitable for

COIL TABLE FOR TIIE 2-TUBE REGENERATIVE RESEIVER

Coil dimensions A and B and socket connections are shown in Fig. 120f. Specifications for standard $13 / 2^{\prime \prime}$ diameter coil forms are also shown. Direction of winding is the same for all coils. All windings are close-wound unless otherwise indicated. Taps are counted from the ground end of the coil.
${ }^{1}$ First layer, 18 turns, elose-wound; scond layer $471 / 2$
turns (see text).
${ }^{2}$ First laver, 12 turns, elose-wound; second layor $171 / 2$ turns (see text).

[^2]4 Spaced to cover $\frac{1}{8}$ inch.
${ }^{5}$ Self-supporting (see text).
detector, while the 1 F5GP or 1G5G of the same class may be used in the audio stage. In the 1.5 -volt octal series there are the 1 N 5 G and 1 P5G for detector and the 1A5G and 1C5G for audio amplifier. The loktal types 1LC5 and 1LN5 will make satisfactory detectors with a 1 LA4 or 1 LB4 amplifier.

When the receiver is to be used for portable as well as home-station operation the selection of a.c. and battery tubes whose sockets and connertions make them irterchangeable is desirable. In the detector circuit the 1D5GP, 1 D5 G'l and the 1 E 5 GP in the 2 -volt battery series, or the $1 N 5 G$ and $1 P 5 G$ in the 1.5 -volt battery series are directly interchangeable with the $6 \mathrm{M} 7 \mathrm{G}, 6 \mathrm{~T} 6 \mathrm{GM}, 6 \mathrm{~L} 7 \mathrm{G}, 6 \mathrm{~W} 7 \mathrm{G}$, $6 \mathrm{~J} 7 \mathrm{GT} / \mathrm{G}, 6 \mathrm{~K} 7 \mathrm{G}^{r} \mathrm{C} / \mathrm{G}$ and the 6S7 in the $6.3-$ colt octal-base series. If loktal-base tubes are preferred, the 1 LC 5 and 1 LN 5 battery tubes are directly interchangeable with the 7V7, 7A7, $7 \mathrm{~B} 7,7 \mathrm{C} 7,7 \mathrm{G} 7,7 \mathrm{H} 7,7 \mathrm{~L} 7$ or 7 T 7 types.

In the audio amplifier the $1 \mathrm{G5G}$ and $1 \mathrm{J5G}$ of the 2 -volt battery series or the $1 \mathrm{~A} 5 \mathrm{G}, 1 \mathrm{C} 5 \mathrm{G}$, 1 Q5G and 1T5G in the 1.5 -volt battery series are directly interchangeable with the 6 AG 6 G , $6 \mathrm{~K} 6 \mathrm{G}, 6 \mathrm{M} 6 \mathrm{G}$ or 6 V 6 with octal bases. The loktal types 1LA4 and 1LB4 also are interchangeable with the indirectly-heated types 7A5 and 7B5 of the loktal series.

It may pay to try different values of gridleak resistance if detector-tube types other than those mentioned in Fig. 1203 are used and some slight alteration in the number of turns in L_{2} may be necessary for best performance. The audio tube selected will require a certain biasing voltage which may be taken from the tube tables. With battery tubes, this means simply selecting the proper "C"-battery voltage. With a.c. tubes, however, bias is obtained from the voltage drop across the cathode resistor, R_{3}. A satisfactory resistance value for any particular audio tube may be easily calculated by adding the rated plate and screen eurrents given in the tube tables and then dividing the required biasing voltage by this sum. If the current value is in terms of milliamperes, the answer from the above operation must be multiplied by 1000 to obtain the required resistance value in ohms. For example, the tube table shows that a 7 C 5 requires a biasing voltage of 12.5 and that the sereen cur-

Fig. 1207 - Circuit diagram of a power supplies suitable for small receivers. The a.e. supply shown at A is sug. gested for the twotube regenerative and the three-tube superheterodyne receivers described in this chapter. The hattery supply shown at B is arranged especially to fit the plag connections of the regenerative receiver of Fig. 1201. 'The low-voltage tap is regulated hy the Vli 55 tube. $\mathrm{C}_{1}, \mathrm{C}_{2}-0.001-\mu \mathrm{fl}, \mathrm{l}, 000$-volt mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-8-\mu \mathrm{fd}$., 450 -volt electrolytic.
R $-10,000$-ohm, 10 -watt wire-wound for the 2-tube regenerative receiver, 5000 ohms , 10 watts for the 3 -tule superheterodyne receiver of Fig . 1213. If the VR-75 is omitted, R, should be increased to 100,000 and 50,000 ohms respectively.
T-Standard replacement ty ye power transformer with 6.3 -volt, 5 -volt, and 600 -volt center-tapped windings, 70 ma . d.e. output rating.
rent averages about 6 ma., while the plate current averages 46 ma. Adding the two currents gives a total of 52 ma. Dividing 12.5 by 52 gives a result of 0.24 . When this is multiplied by 1000 , the answer of 240 ohms is obtained.

Power supply Suitable power-supply diagrams are shown in Fig. 1207. The VIR75 in the a.c. circuit in Fig. 1207-A provides a regulated voltage of 75 for the detector which will help materially in obtaining smooth regeneration. However, if one is not available, it may be omitted, if R is increased to 150,000 ohms, at some sacrifice in smoothness of regeneration control. The small condensers, C_{1} and C_{2} are to help reduce "tunable hum"

Fig. 120% - Sketch showing coil-form and coilsorket connections for the plug-in coils for the two. tube regenerative receiver. 'The bottom sketeh shows the special construction for Coil No. 5 listed in the accompanying coil table. which may occur at certain points in the frequency range of the receiver. Components for the a.c. power supply may be mounted on a $7 \times 7 \times 2$-inch steel chassis or a baweboard made of wood. The placement of parts is not important. If the steel chassis is used, the smaller components may be mounted underneath. The voltage of the filament winding should, of course, correspond to the rated heater voltage of the tubes used (6.3 or 2.5 volts). In Fig. 1207-B is shown the proper connertions for a battery supply. The voltage of the "A" battery will depend upon the rated filament voltage of the tubes selected (1.5 or 2 volts), while the "B" battery should eonsist of two 45-volt "B" batterics connected in series. The voltage of the "C" battery will depend upon the blasing voltage required for the tube in the audio

amplifier as mentioned previously. The 6prong socket for connections to the receiver may be mounted on a board or connected to one end of a short cable, the wires at the other end of the cable being connected to the batteries as shown.

Adjustment - The most diflicult part of adjusting the receiver after it has been constructed and the power supply connerted is that of adjusting the coils for proper regeneration. It is perhaps best to start out with the lowest-frequency coil (b.c. band) and work up through the higher frequencies. One end of a single-wire antenna should be connerted to the antenna terminal and the chassis ronnected to the nearest water pipe or other ground connection. The antemai preferably should be 50 to 100 feet in length. With the antenna connerted, R_{4} should be set for maximum soreen voltage (to the right toward R_{5} in Fig. 1203), (3 should be turned to maximum caparity (plates completely meshed) and C_{2} at minimum capacity. With these adjustments, a dick should be heard in the headphones each time the urid terminal of the detertor tuhe is touched with the finger. If no click is heard, the capacity of C_{1} should be reduced a bit at a time, by loosening up on the adjusting screw, until the click is heard. If no click is heard with C_{1} at minimum capacity, it will be neressary to add a turn or two to L_{2}.

After the click has been obtained, it should be possible to turn R_{4} back and forth with a "plop" in the headphones each time R_{4} passes through a certain point in its range. On the high-voltage side of the "plop" point, the click should be heard when the grid terminal is tonched with the finger, while it will not be heard when R_{4} is turued to the low-voltage side of this point. The detector is oscillating under the condition where the cliek is heard and is not oscillating when the click camot be obtained. With correct circuit adjustments
it should be possible to bring the detector into oscillation with a soft rushing noise and not a loud "plop." For c.w. code reception R_{4} is adjusted so that the detector is oscillating, but very close to the point where oscillation ceases. On the other hand for the reception of modulated siguals ('phone or music) the detector is adjusted to a non-oscillating condition, but very close to the point where it goes into oscillation.

In listening over any band for signals, it is common practice to set the detector into oscillation for both 'phone and c.w. signats. When the steady whistle of a 'phone station is tuned in, the regeneration control is then backed off to stop oscillation when the whistle will disappear, and only the modulation will be heard.
C_{3} is used for general-coverage tuming, while C is used for bandspread tuning. If the coil dimensions given in the table have been followed closely, C_{3} should be set at approximately the following points on the dial for each of the amateur bands: 1.75-Mc. band, 52; 3.5-Mc. band, 39; 7-Mc. band, 34; 14- and 2S-Mc. bands, 93. These dial sottings assume the use of a dial which reads 100 at minimum eapacity. C_{2} then should be used for tuning over the band. Coil No. 5 is used for both the 14and $28-\mathrm{Mc}$. bands. At the higher frequencies esperially, it may be necessary to retune each time the regeneration control is adjusted to keep the signal tuned in.

(1) A Two-Tube Superheferodyne Receiver

Although all the advantages of the superhet-erodyne-type receiver cannot be secured without going to rather elahorate multi-tube circuits, it is possible to use the superhet principle to nveroome most of the disadvantages of the simple regenerative receiver. These are chiefly the neressity for critical adjustment of the regeneration control with thaing, antenna "dead spots." lack of stability (both in the detector circuit itself and because of slight changes in
 frequeney when the antenna swings with the wind). and blocking, or the tendency for strong signals to pull the delector into zero beat. These effects can be largely eliminated by making the regenerative detector operate on a fixed low frequency and designing it for maximum stability. The incoming signal is then converted to the fised detector frequency before being detreoted.

Fig. 1208 - The two-tube superheterodyne slown here has one more operating control than the ordinary regenerative-detector receiver, but it is more stable.

A two-tube receiver operating on this principle is shown in Figs. 1208 (1) 1212.

The circuit diagram is givem in Fig. 1210. A 6 K 8 is used to eonvort the freguency of the ineoming signal to the fixed or intermediate frequenery, and the two triode sections of a to C8(iserve as the regenerative detertor and atulio amplifier resperetively. $L_{1} C_{1}$ is the r.f. circuit, tuncd to the signal, and L_{2} is the antenna coupling coil. C_{7} is a by-pass condenser across the l.in-volt battery used to bias the signal grid of the bk8. The high-frequency oscillator tank eireuit is $L_{3} \mathrm{C}_{3} \mathrm{C}_{4}$, with ('3 for band-setting and ${ }^{4}{ }_{4}$ for handepread.

The i.f. tuned cirenit (or regenerative dotector circuit) is $L_{5} C_{5}$. This must be a high-C circuit if stability better than that of an ordinary regenerative detector is to be secured. The frequency to whieh it is tuned should be in the vicinity of 1 tion ke. ; the exact frequency does not matter so long as it falls on the low-frequency side of the 1700 -ke, band. L_{5} and its tiekler roil, L_{6}, are wound on a small form. and L_{5} is tuned by a fixed misa condenser of the low-drift type. Since these condensers are rated with a eapacity tolerance of 5 per cent, it is sufficient to wind L_{5} as sperified under Jig. 1210. The resulting resonant frequency will be in the correct region. No manual tuning is necessary, and therefore the frequency of this circuit need not be adjusted. C_{2} is the re-generation-control rondenser, isolated from the d.e. supply by the choke, RFC. Only enough turns need be used on L_{6} to make the detector oscillate readily when C_{2} is at half capacity or more.

The second section of the 6 CRC is trans-former-coupled to the detector. The grid is biased by the same battery which furnishes bias for the 6K8.
Looking at the top of the chassis from in front, the r.f. or input circuit is at the left, with C_{1} on the panel and $L_{1} L_{2}$ just behind it, The $60^{\circ} 8 \mathrm{G}$ is directly to the rear of the coil.

 the arrangement of parts on top of the $51 / 2 \times 91: 2 \times 1 \frac{1}{2}$-inch chassis.

The 6h8 converter tube is centered on the chassis. With ('3 and ('f on the panel directly in front of it. ('a is driver: by the vernier dial and C_{3} is towarel the top of the panel. The eoil at the right is $L_{3} L_{4}$. in the oseillator tuned eircuit. 'The regeneration-entrol condenser, C_{2}, is at the right on the panel. The audio transformor. T_{1}, is behind the weillator coil.

Jooling at the bottom of the chassis, the antema-ground terminals are at the left, with a lead going directly to I_{22} on the coil socket. The bias battery is fastered to a two-lug insulating strip by means of wires soldered to the battery. The zinc can is the negative end and the shatl rap the positive terminal. liy-pass condenser C_{7} is mounted on the coil sorket.

The i.f. coil is momed on the chassis midway beiween the socket for the 6C8G and that for the $6 k 8$. In winding the coil the ends of the wires are left long enough to reach to the various tie-in points. 'The grid condenser, C_{9}, is

Fig. 1210-Circuit diagram of the two-tube superheterodyne.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$, variable (Hammarlund SW-100).
$C_{4}-15-\mu \mu \mathrm{fd}$. variable (llammarlumd S.M.15).
$\mathrm{C}_{5}-250-\mu \mu \mathrm{fd}$, silvered miea (Jubilier l'ype $\mathrm{B}-\mathrm{If}$).
$\mathrm{C}_{6}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{7}-0.005-\mu \mathrm{fd}$. miea.
C_{8} Ci9- $100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{h}_{1}-50,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-1$ megohm, $1 / 2$ watt.
RFC. - 2.5-mh. r.f. choke.
' T_{1} - Audio transformer, interstage type, $3: 1$ ratio (Thordarson T-13A34),
$\mathrm{I}_{1}-\mathrm{I}_{4}$, ine. - See coil tahle.
L.5-55 turns No. $30 \mathrm{~d}, \mathrm{sec}$, elose-wound on $3 / 4$-inch diameter form (National PlRF-2); induetance 40 microhenrys.
1.f - 18 turns No. 30 d.s.c., close-wound, on same form as $I_{\text {s: }}$: see Fig. 1212.
s-S.p.s.t. toggle switch.

TWO-TUBE SUPERIET COIL DATA

Coil Grid Winding (I_{1} and $/ I_{3}$) Antenna (L_{n}) or Tickler (L_{4})

All coils wound on $11 / 2$-inch diameter forms (Hammarlund SWF-4). (irid windings on coils B-E., inelusive, are spaced to oocupy a lerugth of $11 / 2$ inehes; grid winting on coil A is closewound. Antennatitickler coils are all clost-wound, spated $1 / 8$-inch from bottom of grid winding. See Fig. 1212.

Frequency Range	Coul ai $L_{1}-L_{2}$	Coil at $L_{23}-L_{4}$
1700 to $3: 00 \mathrm{ke}$.	A	B
3000 to 5700 kc.	B	C
5400 to $10,000 \mathrm{kc}$.	C	D
9500 to $14,500 \mathrm{kc}$.	E	D

supported by the grid terminal on the tube socket and the end of the grid winding, $L_{5} . R_{2}$ is mounted over the 6 C 8 G socket. The i.f. tuning condenser, C_{5}, is mounted by its terminals between the plate and screen prongs on the 6 K 8 socket, the ends of L_{5} being brought to the same two points.

The oscillator grid condenser, C_{8}, is connected between the coil-socket prong and the oscillator grid prong on the tiks socket. By-pass condenser C_{6} is mounted alongside the oscillator coil socket, as shown. The connections to the rotors of the tuning condensers for both coils go through holes in the chassis noar the front edge. (irounds are made directly to the chassis in all cases; make sure that there is an actual connection to the netal.

The " B" switch is a single-pole single-throw toggle. 'Phone-tip jatcks on the rear chassis edge provide moans for connecting the audio output to the headphones.

The method of winding coils is indicated in Fig. 1212; if the romertions to the rircuit are made as shown. there will be no trouble in
obtaining the neressary oscillation. Both coils on each form should be wound in the same direction.

Adjustment - To test the receiver, first try out the i.f. circuit. Connect the filament and " B" supply and place both tubes in their sockets. Put a high-frequency coil in the r.f. socket, but do not insert a coil in the oscillator socket. The only test which need be made is to see if the detector oscillates properly. Advance C_{2} from minimum capacity until the detector goes into oscillation, which will be indicated by a soft hiss. This should oceur at around half scale on the condenser. If it does not occur, eheck the coil ($L_{5} L_{6}$) connections

Fig. 1212 - How the coils for the two-tube superheterodyne are wound. 'The bottom end of the i.f. coil in this drawing is the end mounted adjacent to the chassis. Is and L_{6} are wound in the same direction. On the r.f. sorket, pin 4 eonmects to the No. 3 grid (top cap) of the $6 \mathrm{~K}^{2} 8$ and stator of C_{1}, pin 1 to $C .7$, pin 2 to ground and pin 3 to the antenna post. On the oscillator socket, pin 4 goes to Cos and the stators of C_{3} and C_{4}, pin 1 to ground, pin 2 to " $3 "+$ and pin 3 to the 6 K 8 oscillator plate. Both windings are in the same direction on cach coil.
and winding direction and, if these scem right, add a few turns to the ticklor. L_{6}. If the detector oscillates with very low capacity at C_{2}, it will be advisable to take a few turns off L_{6} until oseillation starts at about midscale.

Aftor the i.f. has been cheeked, plug in an oseillator coil for a range on which signals are likely to be heard at the time. The $54(00-10,000-$ ke. range is usually a good one. The coils are arranged so that a minimum number is needed, even though two are used at a time. With coil C in the r.f. socket and I) in the oscillator circuit, set C_{1} at about half seale and turn C_{3} slowly around midscale until a signal is heard. Then tune C_{1} for maximum volune. Should no signals be heard, the probability is that the oscillator section of the 6 K 8 converter tube is not
working, in which case the same method of testing is used as described above for the i.f. de-tector-check wiring, direction of windings of coils, and finally, add turns to the tickler, L_{4}, if necessary.

The same oseillator coil, 1). is used for two frequenty ranges. This is possible beratuse the oscillator frequency is phamed on the low-frequency side of the signal on the higher range. This gives somewhat groater stability at the highest-frequenes range. Some pulting - a change in beat-note as the r.f. tuning is varied by means of C_{1} - will be observed on the highestfrequency range, but it is not sorious in the region of resonance with the incoming signal frequency.

The receiver will respond to signals either 1600 ke . lower or 1600 ke . higher than the oseillator frequeney. The unwanted response is discriminated against by the selectivity of the r.f. circuit. On the three lowerfrequency ranges, when it is possible to find two tuning spots on C_{1} al which incoming noise peaks up. the lower-frequency park is the right one. The oseillator frequency is ltol ke. higher than that of the incoming signal one these three ranges and liono ke . lower on the fourth range. Bandspread is not needed in the r.f. circuit.

The regencration control may be set to give desired sensitivity and left alone while tuning; only when an exceptionally strong signal is encountered is it necessary to advance it more to keep the detector in oscillation. It should be set just on the edge of oscillation for 'phone reception.

The heater requirements of the set are 0.6 amperes at 6.3 volts, approximately. Either a.e. or d.c. may be used. The "I3" battery current is between 4 and 5 ma ., so that a standard 45 volt block will last hundreds of hours.

C. A Three-Tube General Coverage and Bandspread Superheterodyne

A superhet receiver of simple construction, hatving a wide frequency range for general listening-in as well as full bandspread for amateur-band recephion, is shown in Figs. 1213 to 1217 . The circuit uses only three tubes and gives continuous frequency coverage from about 75 kc . (4000 meters) to 60 Mc . (5 meters'. The receiver is intended for operation from either a 6.3 -volt transformer or 6 -volt storage battery for filament supply, and a 90 volt " B " battery for plate supply.

The circuit diagram is given in Fig. 1214. A 6 K 8 is used as a combined oscillator-mixer followed by a 6sk7 i.f. amplifier. The intermediate frequency is 1600 kc ., a frequency which reduces image response on the higher frequencies and simplifies the design for lowfrequency operation in the region below the broadcast band. One section of the 6 C 8 (i dou-

Fig. 1214 - Wiring diagram for the three-tube general coverage and bandspread superheterodyne recciver. (.1 - 100)- μ fid, variable (Hammarlund M(:-100-11). $\mathrm{C}_{2}-14(0-\mu \mu \mathrm{fd}$. variahle (Hammarlund M($\mathrm{C}-\mathrm{I} 40-\mathrm{N})$). ($: 3-3 \overline{3}-\mu \mu \mathrm{fd}$. variable (Ilammarlumi III- 3.5).
C_{4} - Oscillator padder; see coil table.
$\mathrm{C}_{5}-0.1-\mu \mathrm{fd}$. paper.
(:8-0.002-ufid. nica.
C8-250- μ fid. mica.
$\mathrm{C}_{B}-0.002-\mu \mathrm{fd}$. mira.
$\mathrm{C}_{9}, \mathrm{C}_{10}-\mathbf{0 . 0 1 - \mu \mathrm { fd } \text { . paper. }}$
Ci1-5- $\mathbf{\mu f l}$. electrolytic, 50 volte.
$\mathrm{C}_{12}, \mathrm{C}_{13}-0.002-\mu \mathrm{fl}$. mich.
$\mathrm{R}_{1}-50,000$ ohms, $1 / 2$ watt
R_{2}, $\mathrm{R}_{3}-250$ ohms, $1 / 2$ watt.
R_{4} - 12,000 ohms, $1 / 2$ watt.
$\mathrm{H}_{5}-50,000$ ohme, $1 / 2$ watt.
$\mathrm{T}_{1}, \mathrm{~T}_{2}-1600-\mathrm{kc}$. i.f. transformer (Millen 64161).
$\mathrm{T}_{8}-1600 \mathrm{kc}$. oscillator transformer (Millen 65163).
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}$ - See coil table.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. toggle awitch.
RFC $=2.5-\mathrm{mh}$. r.f. choke.

Fis. 1215- A plan view of the thrae-tube -urerheterodyne with the coils and tubes removed. The chassis measuress $51 / 2 \times 01 / 2 \times$ $1 \frac{1}{2}$ inches and the panel size is $10 \frac{1}{2} \times 6$ ind \times.

No spocial eoupling is needed between the heat oscillator and the socond detertor.

The plates and seroons of all tubes except the heat oncillator are operated at the same voltage - 90 volts. The "I3" current drain is approximately (i) milliamperes. which is about the normal drain for medium-size "B" batteries. The recoiver will operate satisfactorily, although with someWhat reduced volume, using a single
ble triode is used as a secomd detertor and the other section as a beat-frequeney oseillator. Headphone output is taken from the plate rircuit of the serond detertor.

To simplify construction, the antenna and oscillator cireuits are separately tumed. The antenna tuning control, ('i. may be used as a volume control by detming from resonathe The oscillator cireuit, $J_{3} \mathrm{C}_{2} \mathrm{C}^{\prime}$ '3, is tuned 1600 kc . higher than the signal on frequencies up to : Mc.; above 5 Me , the oscillator is 1600 kc . lower than the simal. ('2 is the general coverage or band-setting condonser, C_{3} the bandspread or tuning condenser. C_{4} is a tracking condenser which sets the osicillator tuning range on each band so that it coineides with the tuning range in the mixer grid eireait.

The i.f. stage uses permeabiiity-tuned transformers with silvered-mica fixed padding rondensers. The second detertor is mathote-hiased by R_{4}, by-passed by C_{11} for andio frequencios.

The serond iccici saction is the beat ossillator, using a pormeability-tuned transformer. The grid condenser and leak are built intor the transformer. The plate is fed through the boo. on-off switch and a dropping resistor, R_{5}, the later serving both to reduce the " 13 " current drain and to cut down the sutput of the oscillator to a value saitable for good heterodyning.
to-voll battery for " 13 " supply,

The parts arrangement is shown in the photographs of Figs. 1215 and 1216 . The mixer tuming condenser, (1 , is at the right. The bandspread oscillator tuning condenser, © 3 . is in the renter, eontrolled by the National Type-A 3 - -inch dial, and the bandset condenser, Co is at the left.

Referring to the top view, Fig. 1215, the i.f. section is along the rear edge, with T_{1} at the right. Next is the sorket for the 6SK7, then T_{2}, and finally T_{3} at the extreme laft. The socket for the tocen ; is just in front of T_{3}. The triode section in which the grid is brought out to the top eap is the one which is used for the beat oscillator.

The r.f. section has been arranged for short leads to favor high-frequency operation. The three suckets grouped closely together in the center are, from left to right, the oscillatorcoil sorket, socket for the 6 kis, and the misercoil sooket. All are mounted above the chassis by meaths of mounting pillars, so that practieally all r.f. leads are ahove deck. The oseillatorgridloak, R_{1}, and the high-frequency cathode by-pass condenser, C_{6}, should be mounted directly on the sorket before it is installed. So also should the oscilator grid condenser, C_{7}, which ean be seen extending to the left toward the oscillator-coil socket in Fig. 1215. Power-supply ronnections should be soldered to the 6K8 socket prongs before the soeket is momnted, and these leads brought down through a hole in the chassis.

The penemal-overage condensers. C_{1} and ('2, are mounted directly on the chassis. C_{3} is held from the paned by means of a small bracket mate from metal strip, bent so that the eondenser shaft lines up with
lig. 12l6-Below the chassis of the threp-lutue reveiver. The r.f. ehoke is monnted near the oscillator coil sochet to heep the r.f. leads short. In the i.f. stage, care slould be taken to keep the plate and grid leads from the i,f. transformer short and well separated. A four-wire rable is used for power-supply connections. The headphone-tip jacks may be seen near the upper right-hand corner.
the dial coupling. A baffle shield made of aluminum separates the oscillator and mixer sestions; this shield is essential to prevent coupling between the two circuits which might otherwise cause interaction and poor performance.

The first step in putting the receiver into operation is to align the i.f. amplifier. This should preferably be done with the aid of a test oscillator, but if one is not available the circuits may be aligned on hiss or noise. The beat oscillator can also be used to furnish a signal for alignment. Further information on alignment may be found in Chapter Seven.

The coils are wound as shown in Fig. 1217. A complete set of specifications is given in the coil table. Ordinary windings are used for all oscillator coils, and for all mixer roils for frequencies above 1600 kc . Below 1600 kc ., readily available r.f. chokes are used for the tuned circuits. For the broadeast band and the $600-750$-meter ship-to-shore chamels, the mixer eoil is a Hammarlund $2.5-\mathrm{mh}$. r.f. choke, with the pies tapped as shown in Fig. 1217. The grid end and the intermediate tap are connected to machine serews mounted near the top of the coil form, and a flexible lead is brought out from the grid pin in the coil form to be fastened to either lead as desired. Mixer coils for the two lowest-frequency ranges are constructed as shown. The antema winding in cach case is a coil taken from an old 465 -ke. i.f. transformer, having an inductance of about 1 millihenry. The inductance is not particularly critical, and a pie from a $2.5-\mathrm{mh}$. choke may be used instead.

With the i.f. aligned, the mixer grid and oscillator coils for a band can be plugged in. (3_{3} should be set near minimum capacity and C_{2} tuned from minimum capacity until a signal is heard. Then ('t is adjusted for maximum signal strength. If C_{2} is set at the high-frequency end of an amateur band, further tuning should be done with C_{3}, and the band should be found to

Fiz. 121:- How the coils for the three-tube superheterodsne are constructed. On the hand-wound oscillator and mixer coils, all windings are in the same direction.
cover about seventy-five per cent of the dial. C_{3} can of course be rised for bandspread tuning outside as well as inside the amateur bands. It is convenient to calibate the receiver, using homemade paper seates for the purpose as shown in Fig. 121:3. ('alibration points maty be taken from incoming signals whose frequencies are known, from a calibrated test oscillator, or from the harmonics of a $100-\mathrm{ke}$. oscillator as described in Chapter Nincteen. The mixer calibration need be only approximate, since tuning of the mixer circuit has little effect on the oseillator frequency. It is sufficient to make a

COHL DATA FOR TIE TIIREE-TLBE SUPERIIETEIROIYNE

Range	Turns					C_{4}
	L_{1}	L_{2}	L_{3}	L_{4}	L_{3} Tap	
A - 76-154 kc.	30 mh .	1 mh.$)$				
$166-360 \mathrm{kc}$.	8 mh .	1 mh.	65	12	Top	$300 \mu \mu \mathrm{fd}$.
$400-1500 \mathrm{kc}$.	2.5 mh ,*	*				
B - 1.6 to 3.2 Mc (160 meters)	56	10	42	11	Top	$75 \mu \mu \mathrm{~d}$.
(-3.0 to 5.7 Mc . (80 meters)	32	8	27	9	Top	$100 \mu \mu \mathrm{fd}$.
D-5.4 to 10.0 Mc ((40 meters)	18	8	$\because 2$	9	12	$0.002 \mu \mathrm{fd}$.
$\mathrm{E}-9.5$ to 18.0 Mc ((20 meters).	10	8	12	$31 / 2$	6	$400 \mu \mu \mathrm{fd}$.
$\mathrm{F}-\mathrm{l} 5.0$ to 30 Mc . (10 meters).	6	4		$21 / 2$	21/2	$400 \mu \mu \mathrm{fd}$.
$\mathrm{G}-30$ to 60 Mc . (5 meters). .	3	3	$31 / 2$	1	1	$300 \mu \mu \mathrm{fd}$.

[^3]calibration which ensures that the mixer is tuned to the desired signal rather than to the image.

On the broadeast band, the tuning range is such that, with r'z set at liono ke.. the entire band will be eovered on fis. It is neressary. however. tos change the tap on the mixer coil to make the antema eireuit erover the entire band. Guly one aseillator roil is meded for the range from 75 to 1 gow ke., but a series of coils is meoded to rover the same range in the mixer circuit.

AdAling an autiostage tothe threetube superheterolyne - The threnthber remedor just desmbibed is designed for headphome operation. but readily can be convented to a four-tube set for use with a suraker. For this purpose a tiFt pentode ran be added to the eirenit diagram, as shown in F'ig. 1219. Frigs. $1: 218$ and $1 \geq ? 0$ show the receiver when completed.

For the purpose of driving the audio stage, resistance coupling is used from the plate of the second detertor to the grid of the 6Fti. A volume rontrol is used for the grid resistor of the tiF6, and a jark is installed in the secomd-detecetor plate eireuit so that a headphone plug may

be inserted. The volume control. R_{7}, should be of the midget type so that it will fit in the chassis; it is installed with its shaft projecting under the tuning dial. In the bottom view, lig. 1220, the 6F6 sooket is in the upper left corner, along with the rathode resistor and bepatso enndenser. R_{8} and ('15. The continge eondenser.

C_{14}, and the plate resistor. Re are mounted on an insulated lug strip near the volume control.

The dift will require a plate supply of 2.00 volts at about 40 milliamperes. This may be taken from a regular pewer pack, and a fivewire commertion cable is used to provide an extra lead for the purpose. 'The first three tubes

Pig. 1219 - Circuit diagram of the single-tube pentode audio-amplifier stage which may he added for loudspeater opration of the three-tube superheterodyne. lincept as noted lulow, the value for components corre spond to those hearing the same dexipnationsinfig. I2l4.
(.1s-0.1- ff . paper.
$\mathrm{C}_{15}-2.5-\mu \mathrm{fd}$. electrolytie, 50 volts.
$R_{6}-120.0100$ whms, $1 / 2$ watt.
$\mathrm{R}_{7}-.300,000$ - ohen volume eontrol.
$R_{s}-100$ ohms, I watt.
J-Cloned-circuit jack.
may be operated from a "B" battery, as be fore. Alternatively, the power supply may be eonsturted with a tap giving 90 or 100 volts for these tubes, the tap being connerted to the proper wire in the conncetion cable. For best performanere the output voltage should be regulated by a VR105-30 regulator tube. A suitable power-supply circuit is shown in Fig. 1207-A. In this catice the value of R should be inoto ohams. 10 wills.
'lhe primary winding of the speaker output transformer always should be conneced in the plate circuit of the tifti. Operation without the plate cirruit closed is likely to damage the sereen-grid. Any speaker having a transformer with a primary impedance of 7000 ohms will be satisfactory; a permanent-magnet dynamic is eonvenient, since no field supply for the speaker is neressary.

Fïg. 1220 - The additional parts for the audio output stage can be identified in this sub-thassis vipw of the three-tube receiver.

(1) A Regenerative Single-Signal Receiver

An inexpensive amateur-hand receiver using i.f. regeneration for single-signal reception is shown in Fig. 1221. Fig. 1223 gives the circuit diagram. Regeneration also is used in the mixer circuit to improve the signal-to-image ratio and to give added gain. This receiver is designed to give the maximum of performance, in the hands of a capable operator, at minimum cost; selectivity, stability and sensitivity are the primary considerations.

The mixer, a 6SA7, is coupled to the antenna and is separately excited by a 6.55 oscillator. There is a single $460-\mathrm{kc}$. i.f. stage, using a 6SK7 and permeability-tuned transformers. The second detector and first audio amplifier is a 6SQ7, and the audio output tube for loudspeaker operation is a 6 F 6 . 'The separate beatoscillator circuit uses a $6 \mathrm{C} 5 . \mathrm{A}$ VR100-30 voltage-regulator tube is used to stabilize the plate voltage on the ospillators and the screen voltage on the mixer and i.f. tubes.

To make construction easy and to avoid the necessity for additional trimmer condensers on each coil, the mixer and high-frequency oscillator circuits are separately tuned. Main tuning is by the oscillator bandspread condenser, C_{3}, which is operated by the calibrated dial. C_{2} is the oscillator band-setting condenser. The mixer circuit is tuned by C_{1}^{\prime}. Regeneration in this circuit is controlled by R_{15}, connected across the mixer tickler coil, L_{3}.
R_{16} is the i.f.-amplifier gain control, which also serves as an i.f. regeneration control when this stage is made regenerative. C_{15} is the regeneration condenser; it is adjusted to feed back a small amount of i.f. energy from the plate to the grid of the 6SK7, and thus produce regeneration. If the high selectivity afforded by i.f. regeneration is not wanted, C_{15} may be omitted.

Diode rectification is used in the second-detector rircuit. One of the two diode plates in the GSC7 is used for developing a.v.c. voltage, being coupled through (${ }_{22}$ to the detestor diode. The detector load resistor consists of R_{5} and R_{7} in series, the tap being used for r.f. filtering of the audio output to the triode section of the tube. R_{18} is the a.v.e. load resistor: R_{9}, (14 and ('12 constitute the a.v.e. filter circuit. Siz cuts the a.v.e. out of circuit by grounding the rectifior

Fig. 1221 - A T-tule superheterodyne using regeneration in the i.f. amplifier to give singlesignal reception and improved image ratio. The dial (National ACN) may be directly calibrated for each amateur hand. The chassis is $11 \times 7 \times 2$ inches and the pand 7×12 inches. The comerols along the bottom edpe of the panel are, frem left to right, the mixer re. generation control. R_{15}, the i.f. gain contres, R_{10}, the audio volume control, K_{17}, and thic beat-oseillator vernier condenser, C21. The latter has the corner of one rotor plate bent over so that when the condenser plates are fully meshed the tuned circuit is shortcircuited, thus stopping the b.f.o. oscillation.
output. The headphones are connected in the plate circuit of the triode section of the $6 \times\left(27 . R_{17}\right.$ is the audio volume control potentiometer.

The top and bottom views, Figs. 1222 and 1224, show the layout clearly. The bandspread tuning condenser, C_{3}, is at the front center; at the left is C_{1}, the mixer tuning condenser; and at the right, C_{2}, the oscillator band-set condenser. The oscillator tube is directly behind C_{3}, with the mixer tube to the left on the other side of a baffle shiedd which separates the two r.f. sections. This shield, measuring $41 / 4 \times 4 \frac{1}{2}$ inches, is used to prevent coupling between oscillator and mixer. The mixer eoil socket is at the left behind C_{1}; the oscillator coil socket is between C_{2} and C_{3}.

The i.f. and audio sections are along the rear edge of the chassis. The transformer in the rear left corner is T_{1}; next to it is the i.f. tube, then T_{2}. Next in line is the 6sQ7, followed by the $6(5$ beat oscillator, the boo. transformer, T_{3}, and finally the GF6. The VR 10 - -30 is just in front of T_{3}. The i.f. transformers should be mounted with their adjusting sorews projecting to the rear where they are easily arcessible.

The beat oseillator is coupled to the second detector by the small capacity formed by running an insulated wire from the grid of the 6C.5 rlose to the detector diode plate prong on the $6 S(Q 7$ socket. Very little coupling is needed for satisfactory operation.

In wiring the i.f. amplifier, keep the grid and plate leads from the i.f. transformers fairly close to the chassis and woll separated. Without C_{15}, the i.f. stage should be perfertly stable and should show no tembency to oscillate at full gain.

The method of winding the plug-in eoils is shown in Fig. 1225, and complete specifications are given in the coil table. Ticklers (L_{3}) for the mixer circuit are saramble-wound to a diamoter which will fit roadily inside the coil form and mounted on stiff leats going directly

Hig. 1222 - Top view of the $\overline{\text {-tube sumpheternd! ne with phog- }}$ in coils removed. Ilacement of the parts is diseussed in the text.

Aliknment - Thar oscillator rireuit has been adjusted to make the proper value of rectified grid current flow in the 6sA7 injection-grid (No. I) rireuit on each amateur band. This ralls for a fairly strong value of feedback, with the rosult that when the band-set condenser is set toward the high-frequency end of its range the oscillator may "squeg." This is of no consequence unless the receiver is to be used for listening outside the amateur bands, in which case it may be corrected by taking a few turns off the tickler coil, L_{5}. This can be done only at some sacrifice of conversion efficiency in the amateur band for which the coil was designed, however.

The i.f. amplifier can be aligned most eonveniently with the aid of a modulated test oscillator. The initial aligmment should be made with C C_{10}
to the proper pins in the form. The leads should be long enough to bring the coils inside the grid winding at the bottom. The amount of feed-back is regulated by bending the tickler coil with respect to the grid coil. Maximum feel-back is secured with the two coils coaxial. minimum when the tickler axis is at right angles to the axis of L_{1}. The position of L_{3} should be adjusted so that the mixer goes inte oscillation with R_{10} set at one-half to threefourthe of its miximum rexistance.
discomnected so that the performance of the amplifuer in a non-regenerative condition can be checked. Headphones or a loudspeaker may be used as an output indicator. The mixer and oscillator coils should be out of their sockets, and $R_{\text {rs }}$ should be set at zero resistanee.
Connect the test oscillator output across C_{1}, which should be set at minimum capacity. Adjust the test-oscillator frequency to 460 ke . Then, using a modulated signal, adjust the trimmers on T_{1} and T_{2} for maximum volume.

Fig. 1223 - Circuit diagram of the single-sigual superheterodyne receiver with reqenerative i.f. and mixer stages.
$\mathrm{C}_{1}, \mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$. variable (Hammarluud M(C-50-S).
$\mathrm{C}_{3}-35-\mu \mu \mathrm{fd}$. variable (Natimal LM-35).
$\mathrm{C}_{4}-50-\mu \mu \mathrm{fd}$. miea.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-0.1-\mu \mathrm{fd}$. paper, 600 volts.
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-0.01-\mu \mathrm{fd}$. paper, 600 volts.
$\mathrm{C}_{13}, \mathrm{C}_{14}-0.005-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{13}-3-30-\mu \mu \mathrm{fd}$. trimmer (National M-30); see text.
$\mathrm{C}_{16}-250-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{22}-100-\mu \mu \mathrm{fI}$. mica.
$\mathrm{C}_{19}, \mathrm{C}_{20}-25-\mu \mathrm{fl}$. electrolytic, 50 volts.
$\mathrm{C}_{21}-25-\mu \mu \mathrm{fd}$. variable (Hammarlund S $3-25$).
$\mathrm{R}_{1}-200$ ohms, R_{2} watt.
$\mathrm{R}_{2}-20,000$ olms, $1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{I}_{4}, \mathrm{~K}_{5}-50,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-300$ olrms, $1 / 2$ watt.
R_{7} - 0.2 megohm, $1 / 2$ watt.
$\mathrm{R}_{8}-2000$ ohms, $1 / 2$ watt.
R_{9} - 1 megohm, $1 / 2$ watt.
$1 R_{10}-0.1$ megohm, $1 / 2$ watt.
R_{11} - 0.5 megohm, $1 / 2$ watt.
$\mathrm{R}_{12}-450$ ohms, 1 watt.
$R_{13}-55,000$ olims, 1 watt.
$\mathrm{R}_{14}-5000$ ohms, 10 watts.
$\mathbf{R}_{15}-10,000$-ohm volume control (mixer regeneration).
R_{18} - 25,000 -lhmi volume control (i.f. regencration).
R_{17} - 2-megohm volume control.
R_{18} - 2 megohms, $1 / 2$ watt.
T - $460-\mathrm{ke}$. permeability-tuned i.f. transformer, interstage type (Millen 64456).
${ }^{\prime} \mathrm{I}_{2}-4(9)-\mathrm{kc}$. permeability-tuned i.f. transformer, diode type (Millen 64454).
$\mathrm{T}_{3}-460-\mathrm{kc}$. beat-oscillator transformer (Millen 65456).
RFC $-2.5-\mathrm{mh}$. r.f. choke.
J - Closed-cireuit jack.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-$ S.p.s.t. toggle.
$\mathrm{L}_{1}-\mathrm{L}_{5}$, inc. - See coil table.

Fig. 1225-Mixer and oseillator coil and socket con. nections for the seven-tube superheterodyne receiver.
R_{16} should be set for maximum gain, and the beat oscillator should be off. As the successive circuits are brought into line, reduce the oscillator output to keep from overloading any of the amplifiers, since overloading might cause a false indication.

After the i.f. is aligned, plug in a set of coils for some band on which there is a good deal of activity. Set the oscillator padding condenser, C_{2}, at approximately the right capacity; with the coil speesifications given, the proportion of the total capacity of Co in use on each band will be about as follows: 1.75 Mc., 90 per cent ; 3.5 Mc., 75 per cent; 7 Mc.. 95 per cent; 1.1 Mc.. 90 per cent; 28 Me., $4 \overline{5}$ per rent. set the mixer regeneration control, R_{15}, for minimum
in normal reception. The oscillator in the receiver is designed to work on the high-frequency side of the incoming signal, so that C_{1} always should be tuned to the peak which occurs with most capacity.

After the signal peak on C_{l} has been identified, tme C_{3} over its whole range, following with C_{1} to keep the mixer circuit in tune, to see how the band fits the dial. With C_{2} properly set, the band ederes should fall the same number of main dial divisions from 0 and 100 ; if the band runs off the low-frequency edge, less raparity is needed at C_{2}, while the converse is true if the band runs off the ligh edge. Once the hand is properly centered on the dial, the panel may be marked at the appropriate point so that C_{2} may be reset readily when changing bands.

To check the operation of the mixer regenoration, tune in a signal on C_{3}, adjust C_{1} for maximum volume, and slowly advance the regencration control, R_{15}. As the resistance is inercased, retune C_{1} to maximum volume, since the regeneration control will have some effect on the mixer tuning. As regeneration is increased signals and noise both will become louder, and ('1 will tune more sharply. Finally the mixer circuit will break into osecillation and, when C_{1} is right at resonance, a loud carrier will be heard, since the oscillations generated will go through the receiver in exactly the same way as an incoming signal. As stated before, oscillation should oceur with R_{15} set at from one-half to three-quarters full scale. In practice, it is best always to work with the miver somewhat below the critical regeneration point and never permit it actually to oscillate. On the lower frequencies, where images are less serious, the tuning is less critical if the mixer is made nonregenerative. In this case, always set the regeneration control at zero, since there will be a range on the resistor where, without definite regeneration, the signal strength will be less than it is with \%ero resistance. regeneration - i.e., with no resistance left in the circuit.

Now connect an antenna to the input terminals for La. Switeh the beat oscillator on by turning Cen out of the maximum position, and adjust the trimmer serew on T_{3} until the characteristic beat-oscillat or hiss is heard.

Next tunc C_{1} slowly over its scale, starting from maximum capacity. C'sing the $7-\mathrm{Mc}$. coils as an example, when C_{1} is at about half scale there should be a definite increase in the noise level as well as in the strength of the signals which may be heard. Continue on past this point toward minimum capacity until a second peak is reached on C_{1}; at this peak the input circuit is tuned to the frequency which represents an image

Fig. 1224-The below chassis wiring and location of parts is shown in this botton view of the seven-tube regenerativesingle-signal receiver.

Should the mixer fail to oscillate, adjust the coupling by changing the position of L_{3} with respect to L_{1}. If the two coils happen to be "poled" incorrectly, the circuit will not oscillate. This condition can be cured by rotating L_{3} through 180 degrees. It is recommended that the mixer regeneration be tested first with the antenna disconnected, since antenna loading effects may give misleading results until it is known that L_{3} is properly adjusted to produce oscillation.

After the preceding adjustments have been eompleted the i.f. regeneration maty be added. Install C'15, taking out the adjusting screw and bonding the movable plate to make an angle of ahout 45 degrees with the fixed plate. Realign the i.f. As the circuits are tuned to resonance the amplifior will oscillate, and each time this happens the gain control, R_{16}, should be backed of until oscillations rease. Adjust the trimmers to give maximum output with the lowest setting of R_{16}. At peak regeneration the signal strength should be about the same with this setting, despite reduced gain in the amplifier, as it is without regeneration at full gain. Too much gain with regeneration will have an adverse effert on the selectivity.

For single-signal c.w. reception, set the beat oscillator so that, when R_{16} is advanced to make the i.f. stage just go into oscillation, the resulting tone is the desired beat-note frequency. Then back off on R_{16} to obtain the desired degree of selertivity. Maximum solectivity will be

COII, IATTA FOR 7-TUBE SLDERIET

Band	Coil	llire		Longth	Tap
1.75 Mr ,	I. 1	24	80	(\%osewound	-
	I. 2	24	15		-
	L. 3	22	15		
	1.4	22	42	('losso-wornud	Top
	L.6	24	15		-
3.6 Mc .	L_{1}	2	35	-	-
	L_{2}	22	9		-
	I/3	29	12		-
	1.4	22	25	$\begin{gathered} 1 \mathrm{inch} \\ \text { Close-wound } \end{gathered}$	18
	I, 5	22	10		-
7 Mc.	L_{1}	18	20	1 inch	-
	L_{2}	22	5	(\%) 1 se-wound	-
	I_{3}	2%	9		-
	1.4	18	14	1 inchClose-wound	6
	I/s	21	6		-
14 Mc.	I_{1}	18	10	1 inch	-
	1.2	2	5	Close-wound.\qquad	-
	L/3	20	7		-
	1.4	18	7	1 inch	2.4
	L. 5	29	4	Close-wound1 inch	-
28 Mc.	1.1	18	4		-
	L_{2}	2	4	Close-wound	-
	L/3	22	1.5	5 -	-
	1.4	18	36	1 inch	1.4
	1.6	22	2.4	Close-wound	-

All eoils except $L 3$ are $11 / 2$ inches in diameter. wound with enameled wire on Hammarlund SWF forms. Spacing between L_{i} and $/ 2$. and between L_{4} and L_{5}, is approxinately $1 / 3$ inch, Bandspread tapls are counted from hottoin (ground) end of L_{4}.
L_{3} for 28 Mc . is interwound with L_{1} at the bottom end. L_{3} for all other coils is self-supporting, scramblewound to a diameter of $8 / 1 / \mathrm{inch}$. mounted inside the coil form near the bottom of L_{1}.

Fig. 1226 - Power-supply for the regenerative superhet.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8$ - ffd electrolytic. 450 volts.
(:3-16-4fd. clectrolytic, 150 volts.
$\mathrm{H}_{1}-25,000$ ohms, 10 watts.
1.1, 1.2 - 12 henrys, 80 ma., $\mathbf{t 0 0}$ ohms.
T_{t} - 350 volts each side of center-tap, $80-90$ ma.; 6.3 volts at 2.5 amperes or more; 5 -volt 2 -ampere rectifier-filament winding.
S_{1}-S.p.s.t. togple switch.
Dual-unit electrolytic condensers may be used. This suppls will give 2.5 to 300 volts with full receiver hoad.
secured with the i.f. amplifier just below the oscillating point. The "other side of zero beat" will be much weaker than the desired side.

A useful feature of the bandspread dial is that it can be directly calibrated in frequency for each band. These calibrations may be made with the aid of a $100-\mathrm{ke}$. oscillator, such as is described in Chapter Twenty. ' 'en-kilocycle points can be plotted if a 10 -ke. multivibrator is available, but, since the tuning is almost linear in cach band, a farly accurate plot will result if each 100 -kc. interval is simply divided off into ten equal parts when the dial calibrations are marked.

The power-supply requirements for the receiver are 2.2 amperes at 6.3 volts for the heaters and 80 ma. at 250 volts for the plates. Without the 6r6pentode output stage, a supply giving 6.3 volts at 1.5 amperes and 250 volts at 40 ma . would be sufficient. The circuit of a suitable power supply is given in lig. 1226.

(1. A 12-Tube Crystal-Filter Receiver

The 12 -tube single-signal super heterodyne receiver with crystal filter shown in the photographs of Figs. 1227, 1228 and 1230 was built by W4CBD. It is representative of the more elaborate amateur-constructed receivers. The circuit diagram is shown in Fig. 1229.

The r.f. section consists of two stages of tuned r.f. amplification using 6SK7s, a 6SA7 mixer and a 6.5 J h.f. oscillator. The tuning condensers of these stages, C_{1}, C_{2}, C_{3} and C_{4} are ganged together and operated by the main tuning dial. The two r.f. stages are similar except that the first stage is not tied into the a.v.c. circuit. While the first tube runs at maximum gain all the time, a grid resistor inserted in the ground return protects the tube against strong r.f. fields. A.v.c. is applied only to the second r.f. tube and the mixer. This provides sufficient a.v.c. action while it also produces a greater deflection of the signal meter than would be obtained with more stages tied to the a.v.c. line. The manual r.f. gain control, R_{11}, controls all stages except the second r.f. stage. C_{18} is used to neutralize the
spare-charge coupling betwern No 1 grid and the signal grid of the mixer tube.

For general coverage the thming comdensers in the r.f. and mixer stages are fonnected areoss the entire roil. (5. C_{6} and C_{7} are air trimmers ganged to ome of the small controls along the bower pate of the panel. Since the stray waparities in the mixer stage are sliphty higher than in the r.f. stages. (i, and C_{9} are added to permit eompensation. Two sets of roils are mguised to cover the frequeneries between one amaterer band and the next. Slthough this means quite a frw eoils. it provides a good degree of bandspread for even the generalroverage ranges.

When bandsprad tuning is dosired. the matin tuning comdensers are tapped down on the eotils of the r.f. and mixer stages by a switehing system in the bottom of the enil form, as shown in the detait photograph and the sketch of Pig. lesis. This commeretion womld ratuse eonsiderable non-linearity ita calibration, with reowding at one end of the sacale, were it not for the fixed padder combensers ("1. C ${ }_{16}, C_{17}$ and (10. C_{10} is an air-insulated condenser which is mounted inside the ascillator shield compart-
 no further adjust ment is recpuived. The other condensers are mica units, especially sederemed for equal caparitios.

 meter are the bofoo tuning commot, the power witath, the stand-by swith and the r.f. pain control. The qangul-trimmen control is in the lower lefthand corner of the dial chart. Wo the risht are the befoe
 adjusting holos. 'the a.s.e. witch is in the lower riphthand corner of the dial chart. This viow shows the shichl eatse in plate over the coils.

The mixer output transfarmer fereds the grids of the first i.f. stage ame the ri.to nosise-amplifier stage in paralled whale the erystal filter is coupled to the output of the $3 \mathrm{~L}, \mathrm{~T}$. The 6.IT : amplifies the moise and the difti reetifies the noise and applies the cice impulan to the injeretor grid of the 6La, cattiag is off for the duration of the noise impulse. Kise provides the threshedt adiustment. The output of the arysial filtor is coupled to the input of the seroond i.f. amphifiew w! bich ferels the diode scond detwer

The dillti serend detector is connewted suthat one sedem hatudes the addios sirmai while the onher section suppline a.b. voltase In this arrangement ? !nese of sceral volts is placed on the as. $\begin{gathered}\text { are side since the }\end{gathered}$ cathode of the filli is returned to the ti.J. an for cathecle rather than
 vinsle-signal materthet reveiser. 'Th the left, from frent to reas are the "s" meter, filter cond waspa, b,f o. whe and tank circuit (T_{4}). filuer choter, reetifier tula and power trans. former. 'The liuse ot empts sockete are for the
 the miser and the h.f. osecillator in order from frobt to rear. The parallel line of eorereamending thates is to ther ripht. The haf. oscil. lator tube is lididen by the voltape-requlator tobe monnted on the parrel. The ' (wos whimlded transformers to the riph: near the panel are the crestal-fil:ar input anl output transformer. 'T: and 's In line in back of T_{4} are the 61.6, the firt i.f. transformer, T_{3}, the 0.17 and the ollo tenise reedifier. Along the righthand edper of the ehassis. from fromt to bach. afe the ok - , the tionde coupling transformer. Th. the bille recond detector and the two andio tubes. Hertren the lwo lines are the cry*tal anl misw-silenerr transformer, Γ_{7}.
to ground. Because the 6J5 cathode is above ground for d.c., no a.v.e. action is obtained until the signal level exceeds the bias. Thus a.v.e. artion causes no reduction in sensitivity for weak signals. The delayed a.v.e. effect can be further manipulated by adjustment of the r.f. and audio gain controls.

The beat-oscillator circuit is similar to that used in the h.f. oscillator. It is operated at a fairly low level and the output to the diode detector is taken from the cathode. Thorough shiclding of the lead to the 6H6 is important, since it is about 24 inches long. The tuning condenser, C_{14}, is connected from eathode to

Fig. 1229 - (irruit diagram of the ham-band receiver.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-50-\mu \mu \mathrm{fi}$. ganged tuning condensers.

(:8, (: $-15-\mu \mu \mathrm{ff}$. variable (stray -rapacity equalizer).
(: 10 - $50-\mu \mu \mathrm{fd}$. variable air padder (see text).
(Sil $_{1}$ - Oncillator padder inside l.z (see coil table).
(B_{2} - $50-\mu \mu \mathrm{fl}$. variahle (erystal selectivity control).
(i, 3 - $1 .-\mu \mu \mathrm{fl}$. variable (rejeetion rontrol).
(is-140-m -1 fl , variable (b,o. tuning control).

(is - Aproximately $1 \mu \mu \mathrm{fl}$. (twisted insulated leads).
($10-10-\mu \mu \mathrm{fd}$. nica.
(20, (21, ($22-50-\mu \mu \mathrm{fd}$. mica.

($290-0.001-\mu \mathrm{frl}$. mica.

$R_{1}, R_{2}, R_{3}-250$ olms, 1 watt.
$R_{4}, R_{s}-100$ ohmes, 1 watt.
R_{6} - $\mathbf{.}(0)$ ohans, I watt.
$\mathrm{H}_{7}-5(\%)$ ohms, 10 watts, wire-wound.
$\mathrm{K}_{\mathrm{s}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{10}-1000$ ohms, 1 watt.
R_{11} - 10)(O-dhm r.f. pain control, wire-wound.
$R_{12}-1501$ ohins, 1 watt.
$R_{13}, R_{14}, R_{15}, R_{16}, R_{17}, R_{18}-20(0)$ ohms, 1 watt.
K_{19} - 50000 ohme, 10 watts, wire-womld.
\mathbf{R}_{20} - 5001 -ohn potentiometer (nitencer pain eontrol).
R_{21} - 7000 olms, 10 watts, wire-wound.
$\mathrm{K}_{22}-10,000$ ohms, 10 watts, wire-wound.
$\mathrm{K}_{23}-15,000$ ohms, 10 watts, wire-wound.
$R_{24}-20,000$ shms, I watt.
$\mathrm{R}_{25}, \mathrm{~K}_{2 \mathrm{R}}, \mathrm{R}_{2}$ - $-50,000$ ohms, $1 / 2$ watt.
$R_{2 \times}, R_{29}, R_{30}, R_{31}, R_{32}-100,000$ ohnis, 1 watt.
$\mathrm{R}_{33}, \mathrm{R}_{34}$ - $\mathrm{B}\left(0,000\right.$ ohmes, $\frac{1}{2}$ watt.
$R_{35}-1$ memohm, $1 / 2$ watt.
$R_{36}-1$-meqohm andio qain control.
$\mathrm{R}_{37}-2$ mrgohmes, $1 / 2$ watt.

los - Audio eoupling impetance (primary winding of audio transformer).
l.s - Filter cheoke ('Thortarson 'T.8.19C.f1).
T_{1} - Power traniformer ('lhordarson ${ }^{\prime}$ '-87R85).
T2-Speaker ontput transformer, miversal type.
'T'3 - 16.5 -ke. air-mmed i.f. transformer.
' H ' - $16 \mathrm{~S}^{5}$-ke. i.f. transformer altered (sectext).
' $\mathrm{I}_{5}-10.5 \mathrm{ke}$. b.f.o. unit (ser text).
$\mathrm{I}_{6}-465-\mathrm{kc}$. diode input iransformer.
\mathbf{l}_{7} - 40.5-ke. diofle input transformer (see text).
' ${ }_{8}=465-\mathrm{kr}$. h.f.o. unit.
 ment 175-ke. i.f. cuil).
12FC4, 1 F' Cl_{5} - 2.s-mh. r.f. choke.
S_{1} - S.p.d.t. switeh.
$\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$-S.l.m.t. switch.
s_{5} - Crystal-filter wwitch (see text).
J- Douhle-dircuit jack.
M - Signal-itrebgh meter (7 -ma. movement).
ground to keep the r.f. voltage across it low and thus minimize pickup in neighboring r.f. cireuits. This eonnection makes it necossary to use the unusually large capacity of $140 \mu \mu \mathrm{fd}$. to cover the desired frequency range. The amount of oscillator voltage fed into the detertor is low enough so that good limiting of volwame on (e.w. sigmals is obtained, and the hiss level is low.

A power-supply unit is built into the recoiver. Jigh voltage for the andio section is taken from a tap at the output of the first filter serction. The field of the external speaker is used as the inductance in an additional filtering section for the voltage which supplies the other stages. The VRlso voltage-regulator tube holds the plate voltage for the two oscillators constant.

Comsiruction - The chassis is fromed from 0.050 -inch sheet steel. Reinforeinir leraces wore spot welded in the comers and I-shaped strips are added along the bottom elgas of the chassis for reinforement and to form a shelf to which the bottom cover could be attached with sheet-metal sorews. The cover plate is equipped with rubber mounting feet, one at each corner. The panel is formed from $0.062-$ ineh sheet sted. A $1 / 2$-inch edge with a slight radial bend was formed along the trop. All holes

Fig. 1231 - Pin connettiona for the r.f. and h.f.o. plugin coils for the 12 -tube supertiet.

The bottom views of the coil forms in tha photograph show the bandspread switching arrangememt. The sorew head completes the connection between either pair of pins, depending upon its position (see sketch at riyht).
are drilled first, and later ewerything is of en a thick roat of baked-on cracker mamel.

The tuning control, suilt amound a 入tational Valvet Vernier dial merhanism, is similar to thee A('N model earept then it is larger. 'The A('N) may be substituted if avalable. The bandwhed is a t-inch valverontrol knob.

The general lay-out plat of the receiver is shown quite clearly it the photographs. The main essential is, of course. the close grouping of eomponents in the high-froqueney siages. All parts, especially these forming the various tumed circuits, should be moumed with good nuechanical anchoring to prevent any slight novement. which might cause a noibeable change in frequency. Care shonkd be exercised in lining up the units of the ganged conlensers so that they will not spring when the shaft is turned. All r.f. wiring shouhl be made as short as possible and sept well spaced from the ehassis. Power wiring may he eabled and laid flat against the chassis wherever it is conveniont tu do so.

Coils - All of the roils in each sef shown in the table are wonnd to be as nearly identical nas possible. The r.f. and miver coils are then adjusted to exactly the same inductance by spacing the turns and heavily doping all but one or two turns at one end with clear nail polish. When the dope has set. a further adjustment may be made by moving the free tarns on the end and then cementing them firmly in place. The inductance of the coils ean be checked by interchanging two coils ar a time in the r.f. stages. If there is a difference in inductance, the siray-eapacity equalizers, C_{8} and C_{3}, will have to be readjuted when the
coils are interchanged. When the inductance of the three coils is adjusted correctly, it should be possible to plare the coils in the three positions in any sequence without necessity for readjustment of any trimmer to restore resonance.

The i.f. coupling transformers are modified to fit the rircuits. About one-fourth of the turns should be romoved from the serondary of T_{4}, and C_{20} and C_{21} are mounted inside the shield can. The primary and secondary windings should be pushed a little closer together. T_{5} is a b.f.o. unit. The tiekler winding should be replaced with a 100 -turn coil of No. 34 enameled wire, which becomes the new primary. The two windings are placed close together for tight coupling. A $50-\mu \mu \mathrm{fd}$. fixed condenser, C_{22}, must be added to the secondary to hit resonance at 465 kc . An auxiliary brass contact is added to C_{13}, so that the crystal may be shorted out for straight operation. T_{6} is tuned by a mica trimmer, but may be replaced by an air-insulated trimmer if drift is excessive.

Adjustment-With the minimum and stray caparities in each stage set at the same

COIL TABLE FOR THE 12-TUBE SUPERIIETERODYNE

\begin{tabular}{|c|c|c|c|c|c|}
\hline Band \& Coil \& Turna' \& 11 ire Nize \& \[
\begin{aligned}
\& \text { Colh- } \\
\& \text { ode } \\
\& \text { Tap }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B.S. } \\
\& \text { Tap }
\end{aligned}
\] \\
\hline 1.7-2.4 Me. \& \& \[
\begin{array}{r}
60 \\
4 \\
51
\end{array}
\] \& \begin{tabular}{l}
26 d.e.c. \\
28 enam. \\
26 d.c.c.
\end{tabular} \& \(x\)
x
6 \& \[
\begin{array}{r}
x \\
x \\
47
\end{array}
\] \\
\hline \[
\begin{aligned}
\& 2 . i-4 \mathrm{Mc} \\
\& \text { or } \\
\& 3.5-1 \mathrm{Mc} .
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.2 .1 .4 . I_{6} \\
\& L_{11} .1 .3 .1 .6 \\
\& 1 . i
\end{aligned}
\] \& \[
\begin{array}{r}
42 \\
8 \\
37
\end{array}
\] \& \begin{tabular}{l}
22 d.c.c. \\
28 enam. \\
22 d.c.c.
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x} \\
\& 5
\end{aligned}
\] \& \[
\begin{array}{r}
24 \\
x \\
20
\end{array}
\] \\
\hline 3.4-4.8. Mc. \& \[
\begin{aligned}
\& \text { L.n. lis. In } \\
\& \text { I.1. las.l.s } \\
\& \text { l.i }
\end{aligned}
\] \& \[
\begin{array}{r}
30 \\
1 \\
25
\end{array}
\] \& \begin{tabular}{l}
2n d.e.c. \\
\(2 \boldsymbol{2}\) d.c.c. \\
20 d.c.c.
\end{tabular} \& \[
\begin{aligned}
\& x \\
\& x \\
\& 4
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& x
\end{aligned}
\] \\
\hline \[
\begin{gathered}
4.8-7.2 \mathrm{Me} . \\
\text { or } \\
7.0-7.3 \mathrm{Me} .
\end{gathered}
\] \& \[
\begin{aligned}
\& 1.2, l_{4}, I_{6} \\
\& I .1 . I .3 .1 .5 \\
\& I .7
\end{aligned}
\] \& 19
\[
15
\] \& \[
\begin{aligned}
\& 22 \text { d.c.c. } \\
\& 22 \text { d.e.c. } \\
\& 22 \text { d.c.c. }
\end{aligned}
\] \& \& \[
\begin{gathered}
6 / 4 \\
x \\
\mathbf{x}^{3 / 4}
\end{gathered}
\] \\
\hline 7.0-10 Mc. \& \[
\begin{aligned}
\& L_{1 n}, l_{4}, l_{4} \\
\& L_{1}, l_{3} . L_{5} \\
\& L_{7}
\end{aligned}
\] \& \[
\begin{gathered}
14 \\
4 \\
121 / 2
\end{gathered}
\] \& \[
\begin{aligned}
\& 22 \text { d.c.c. } \\
\& 22 \text { d.c.c. } \\
\& 22 \text { d.c.c. }
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& x
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& 10-14.2 \mathrm{Mc} . \\
\& \text { or } \\
\& 14.0-14.4 \mathrm{Mc} .
\end{aligned}
\] \& \[
\begin{aligned}
\& I .8, I_{4 .} / .6 \\
\& L_{1}, I_{3}, I_{6} \\
\& I .:
\end{aligned}
\] \& \[
\begin{gathered}
101 / 3 \\
4 \\
93 / 4
\end{gathered}
\] \& \begin{tabular}{l}
16 bare \\
22 d.e.c. \\
16 bare
\end{tabular} \& \[
\begin{gathered}
x \\
x \\
x: / 2
\end{gathered}
\] \& 4

\times
3

\hline 22-30 Me. \& $$
\begin{aligned}
& L_{2 .} . I_{6} . I_{8} \\
& L_{1 .} l_{3} . I_{6} \\
& L_{7}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
3 \\
4 \\
41 / 2
\end{gathered}
$$

\] \& 16 bare上e d.e.c. 16 bare \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& 2
\end{aligned}
$$
\] \& 1

\mathbf{x}
\mathbf{x}

\hline
\end{tabular}

Note: All coils are close-wound on $11 / 2$-inch diameter forms except $L_{2}, L_{4}, L_{\text {a }}$ and L_{7} for the $10-$ to $14.2-\mathrm{Mc}$. range, where the turns are spaced the diameter of the wire, and the same coils for the $22-$ to $30-\mathrm{Mc}$. range, where the turns are spared to make the coil length $1 \frac{1}{4}$ inches. Taps are made the sperified number of turns from the botton or ground ends of the windings.
value, it is easy to secure good tracking of the r.f. circuits. It is necessary for them to track accurately, since the over-all selectivity of the three resonant r.f. circuits is high. If one of the circuits is detuned by moving a trimmer 2 or $3 \mu \mu \mathrm{fl}$. away from resonance, the signal meter will indicate a drop of several $d b$.

When the adjustment of C_{18} is correct, there is no observable interaction between the oscillator and mixer tuning. Should there be any, the bias on the signal grid should be checked. It should be at least 5 volts.

If cluring the adjustment of the crystal filter it is found that the rejection control allows rejection of interference on one side of the desired signal but not on the other it may be necessary to add a little capacity, consisting of a pair of twisted wires across the crystal holder, to get the rejertion slot to move to the other side of the signal.

© The Panoramic Receiver

The panoramic receiver incorporates two signal channels, the channel for audio-output signals normal to a communications-type receiver and an additional channel for reproducing the received signal in visual form on the screen of a cathode-ray tube. The effective acceptance bandwidth of the channel for visual signals usually is made much wider than the channel for audio output - 50 to 100 kc . or more, so that it is possible to observe simultaneously signals over a wide frequency range without destroving the high selectivity for signals delivered to the audio amplifier.

The cireuit diagram of an adapter which may be applied to any existing communica-tions-t ype receiver is shown in Fig. 1234. The signal input to the adapter is taken from the output of the mixer in the receiver. It then passes through a broadly-tuned i.f. stage (tS.I7) at the receiver's i.f. and thence into a second mixer (6SA7) whose output is tuned to 100 ke . The tuning of the oscillator section of this stage is varied over a range of 50 ke . either side of 35 f kc. (450 ke., the usual receiver i.f. minus 100 ke .) at a supervisible rate - 2 5 to 30) times per second - by the 6AC7 reactance motulator. The reactance tube and the horizontal sweep of the 902 cathode-ray tube are driven in synchronism by the 7 F 7 saw-tooth oscillator. \dot{C}_{18} is for the purpose of adjusting the phasing between the r.f. plate current and tank voltage of the 6 AC 7 to the desired value of 90 degrees.

Since the tuning of the r.f. circuits at the front end of the receiver is not swept in this system, the first i.f. stage in the adapter is desigued to give a rising characteristic either side of the center frequency to compensate as much as possible for the decreasing characteristic introduced by the selectivity of the r.f. stages. This is done by overcoupling in the input and output transformers of the first $6 \mathrm{~S} . \mathrm{J} 7$ stage.

The 6SA7 mixer is followed by a 6SJ7 i.f. stage tuned to 100 kc . This stage is tuned

Fin. 1232 - A "ommermal panoramis adaptor, 'The vathonleray tuhe is provided with a scale calibrated in he. 'I'he four eontrols are'
 gain $\left(K_{2}\right)$. The contry for vertical positioning $\left(K_{1}\right)$ and focosing $\left(R_{22}\right)$ are mounted in the rear and adjustable bos acrewdrivar.
same voltage should appear between the negative terminal of C_{25} and ehassis. 'The screen voltage on the two fisil7s should be approximately 100 (at full gain).

The cathode-raly tube makes a convenient indicating device in alignment of the r.f. and i.f. stages. The sweep genoratore shoulal give no difficulty, although it will be helpful to cheok the shape of the saw-toot h. A seope having the regular anmplement of amplifiers and a linear sweep is necessary for this. Connect the grounded side of the vertical input of the suoper to chassis and the high side through a condenser (0. 1 $\mu f(\mathrm{~d}$. or so) to the ungrounded side of (10. when a saw-tooth should appear on the oscillosoope sereen, if the oscillosioper sweep frequency is of the order of 30 cevces. With the verdical amplifier conmeded to the grid of the sawtooth oscillator a sharp pulse should aplear oh the sereen, Synehronization
quite sharpiy. Thus, while the preeceding stages are broadly tuned to cover the "swerp" range, the "instantaneous" selectivity is controlled by this fis. 7 stage. This sclectivity coontrols the definition or sharpuness of the individual signal patterna on the sercen.

The signal is rectified and amplified in the 6S()7 and then ipppled too the wertieal deflece tion plates of the eathoderay tube A typieal pattern shawing several signals of different anplitueles is shown in lig. 1:355.

Plate and serecte vitiges for all of the tubes in the adapter as woll as anode voltages for the eathode-ray tube are obtained from a voltigedoubling circuit using a 117 ZB (ir' reetifier. The sereen voltage for the $6 . A$ (.7 is held romstant by the neon voltage-regulator tube. ' Phe various adjusting controls are indicated in the diagram.

The unit shown in Figs. 123:, 1233 and 123 ; is a commereial model, but the amateur may build one following the same genoral lines.

Testing and Alignment - At the positive terminal of C_{22} the voltage to ground should measure 300 volts, approximately, and the
ran be chocked by connecting the scope across R_{34} and adjusting the oscilloscope sweep to include three or unore rycles of the 60 -rycle voltage which appeats across h_{34}. At earch oscillator grid puke a small transient will appear in tho pattern (it maly be only a small gap in the 60 -rycle trace) and when K_{33} is adjusted so that one of these appears at the same point on evory other cyrle the saw-tooth oscillator is synthronized at 30 eyrles.

The saw-tooth shouhl he reasonably straight (make allowance for possible poor linearity of the sweep in the oscillosoope at this low frequency) and the fly-back time, or horizontal duration of the vertical part of the saw-tooth, should be very short. Should the oseillator not operate at all, reverse the leads of the plate winding of T_{6}.

With the saw-tooth oscillator in operation, apply voltages to the oob. The saw-tooth applied to the horizontal defleetion plates should give at horizontal line on the sereen, forusing and intensity being adjustable by means of R_{22} and R_{4}. resperetively. The width of the line ean be adjustad by the horizontal size control,

Fig. 1233 - 'Cop viow of the panoramicadapter. The sorket of the 902 is mountrd on a netal plate providel with slots so that the tube may be rotated to place the sereen in proper position. The power transformer is immediately behind thi flate. Along the top edge, irora left to right, are the filter choke, harizantal size contral (R_{37}), sweep-oscillator transformer T_{n}), the 7F7, sweep-frequency contrml (h_{33}). and the input i.f. transformer (T_{t}). In the line of components below the 902 . from left to right, are the inon voltage-regulator tube, the $6 \mathrm{AC}^{-}$, a sriple condensir unit $\left(C_{21}, C_{22}, C_{23}\right.$), the 6太OT. the mixtr-usuillator transformer (T_{5}) and the fir -6.5 J : i.f. tube. In the bot tom wow from lefi to right. are the power rectifice tulue. the i.f. outpont tranaformer T_{4}), the second 6SJ 6 i.f. tulut, the third i.f. transformer $\left(T_{3}\right)$, whe $6 s^{-2}$ and the second i.f. iransformer $\left(T_{2}\right)$.

R_{37}, and its position on the screen by R_{19}, the horizontal positioning control, and R_{17}, the vertical positioning control.
A test oseillator is prartically a necessity for the preliminary aligmment of the r.f. and i.f. amplifiers, if ouly to get them on the right frequeney. The i.f. should be aligned first, tuning the trimmers in T_{3} and T_{4} for maximum response throughout. As a trimmer is tuned through resonance the line on the cathode-ray tube sereen will move upward, the extent of the movement indiatang the amplitude of the out put woltage from the lis()7.
The r.f. circuits (T_{1} and T_{2}) can be aligned with the help of a test oscillator funed to the intermediate frequency in the receiver. Connect the oscillator output botwern the plate of the 1 s. 57 amplifior and ground, using a blocking condenser in the hot load to isolate the
plate voltage. Then adjust C_{29} in the oscillator transformer, T_{5}, to give a beat of 100 kc ., which will be amplified and give maximum deflection on the cathode-ray tube screen. The sweep control, R_{35}, should be set at zero so that the oveillator will not be frequency modulated Adjust the secondary trimmer in T_{2} for maximum response. Then move the test oscillator output to the grid of the 6S.57 and adjust the primary trimmer of T_{2} to resonance. Align T_{1} similarly with the test oscillator connected between ground and the clip which goes to the receiver mixer plate prong.
The next step is to adjust the oscillator sweep, and for the sake of illustration we will assume that the receiver i.f. is 40 f kr . With the test oscillator at tiok ke, and with the sweep padder. R_{36}, at about half scale, increase R_{35} slowly from zero. As the amplitude

Fip. 12,34 - Circuit diapram of the panoramic adapter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8,}, \mathrm{C}_{15,5,} \mathrm{C}_{20}, \mathrm{C}_{26}$, C.27-0.01- ffl . paper, 910 volts.
$\mathrm{C}_{6,} \mathrm{C}_{7}, \mathrm{C}_{14}-500-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{9}, \mathrm{C}_{13}$ - 0.053- ffl . 400 -volt paper.
$C_{10}-0.1-\mu$ fd. 400 volt paper.
$\mathrm{C}_{11}-0.25-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{12}-0.01-\mu \mathrm{fd}$, mica.
C_{10} - IVO- $\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{17}-30-\mu \mu \mathrm{ff}$, mica.
$\mathrm{C}_{18}-1-10-\mu \mathrm{fd}$, mica padder.
$\mathrm{C}_{19}-250-\mu \mathrm{ff}$. nica.
$\mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}-10-\mu \mathrm{ft}$. 450-volt electrolytic.
$\mathrm{C}_{24}, \mathrm{C}_{25}-4$ - $\mu \mathrm{fd}$. 450-volt clectrolytic.
$\mathrm{C}_{28}, \mathrm{C}_{31}-100 \cdot \mu \mu \mathrm{fl}$, mica (in oscillator unit, 'l's).
$\mathrm{C}_{20}-30-240-\mu \mathrm{ffl}$. mira padder (in oseillator unit, T_{5}).
$\mathrm{C}_{30}-500-\mu \mu \mathrm{fl}$. mica (in oncillator minit, 'Ts).
$\mathrm{K}_{1}, \mathrm{H}_{16}, \mathrm{H}_{27}-0.25$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-\mathbf{1 0 , 0 0 0}$-ohm potentionneter.
$R_{3}, R_{12}, R_{34}-200$ ohms, $1 / 2$ watt.
$\mathrm{K}_{4}, \mathrm{R}_{43}, \mathrm{R}_{44}-50,000$ ohmes, $1 / 2$ watt.
$R_{s}, R_{29}-25,000$ ohme, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{7}, \mathrm{R}_{2 \mathrm{~g}}, \mathrm{R}_{45}-5000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}, \mathrm{R}_{1 \mathrm{~g},}, \mathrm{R}_{21}, \mathrm{R}_{23}-0.1$ megohm, 1/2 watt.
$R_{0}, R_{13}, R_{14}, R_{3 \times}, R_{40}-I$ megohm, $1 / 2$ natt.
$\mathrm{H}_{10}-0.11 \mathrm{moch} \mathrm{mm}_{\mathrm{m}}, 1 / 2$ watt.
$\mathrm{H}_{11}-4.5,(0100$ ohme, $1 / 2$ watt.
$\mathrm{H}_{15}, \mathrm{l}_{32}-0.5$ nucgelim, $1 / 2$ watt.
$\mathrm{K}_{17}, \mathrm{R}_{35}, \mathrm{R}_{4}$ - 0.1 -merohm potentioneter.
$\mathrm{K}_{19}, \mathrm{R}_{22}-0.25$-meqohm potentiometer.
$\mathrm{R}_{20}, \mathrm{H}_{3 n}-2$ merohms, $1 / 2$ watt.
R_{24} - $2.5,000$ ohms, I watt.
$\mathrm{R}_{25}-33,000$ ohmes, $1 / 2$ watt.
R_{26} - Sere note.
$\mathrm{R}_{31}-500$ ohms, $1 / 2$ watt.
$\mathrm{l}_{33}, \mathrm{~K}_{3 \mathrm{C}}, \mathrm{K}_{37}$ - \mathbf{i}-muckohm potentionncter.
$\mathrm{R}_{39}-75,\left(010\right.$ ohms, $\frac{1}{2}$ watt.
R_{41} - 1000 ohme, $1 / 2$ natt.
$K_{42}-0.2$ meqohm, $1 / 2$ watt.
$\mathrm{K}_{40}, \mathrm{R}_{44}-10,000$ ohme, $1 / 2$ watt.
K_{10} - 3000 ohms, $1 / 2$ watt (in os(illator unit, 'Tss).
R_{50} - 25,0100 ohms, $1 / 2$ watt (in oscillator unit, T_{s}).
T_{1} - R.f. input transformer. 456 kc.
T_{2} - R.f. interstage transformer, 456 kc .
T_{3} - I.f. input transformer, 100 kc.
I_{4} - I.f. outpit transfornier, 100 he.
T ' - Oscillator transformer, 356 kc.
T6-Saw-tooth oseillator trans. former (2:1 or 3:1 midget andio).
T7 - l'ower transformer; two 6.3.v. windings, h.v. winding, 300 -v. a.c., 40 ma.
I_{1} - Filter choke, 40 ma., 350 ohms (app. 5-10 henrys).
F-2-amp. fuse.
s_{1} - Topple switeh (on R $\mathbf{4 7}^{\prime}$).
J_{1}-Open circuit jack.
X - $1 / 2$-watt neon hulh without hase resistor.
RFC -30 -mh. r.f. choke (in oseil. lator unit, T_{5}).
Note: l_{26} needed only in case horizontal positioning control $\left(K_{19}\right)$ is critical in adjustment or total plate voltage exceeds 300 , approximately. It may be omitted in this circuit, the jumetion of R_{25} and K_{19} being connected directly to +13 .
Transformers $\Gamma_{1}-T_{4}$, inclusive, are available from Panoramic Radio Corp., New York City.
of the sweep voltage applied to the grid of the 6 AC 7 reactance modulator increases, the pattern on the cathode-ray tube screen should change, showing the signal as a hump on the horizontal base line, which should move downward to the position it had originally when no signal was applied to the vertical plates. A suitable height for the signal trace can be obtained by adjustment of the gain control, R_{2}, or the output of the test oscillator.

Fig, 1235 - Representation of panoramic reception over a 100-kc. band. The cathode-ray tube beam traces the pattern which would result from plotting instantaneous response of the receiver to signals of differing amplitude and frequence, assuming that such a plot could be made instantaneousiy. The signals represented by peakn a and b are so rlose that the i.f. selectivity is not sufficient to make them appear as isolated peahs.

Should the signal trace not be in the center of the screen, or should it move horizontally as the sweep amplitude is increased (either or both probably will be the case at first trial), adjust C_{29} while varying R_{35} until the signal remains fixed in position on the horizontal base line, regardless of the setting of R_{555}. When the proper adjustment is found the signal will not necessarily appear in the center of the screen, but it can be brought to center by readjusting the horizontal positioning control, R_{19}. The phasing control (C_{18}) adjustment is not critical, and this control may be set simply near but not quite at maximum caparity.
With a $456-\mathrm{ke}$, signal centered on the screen, tune the test oscillator slowly toward 506 ke , watehing the signal trace move horizontally on the screen as the oscillator frequency is changed. R_{35} should he set at maximum. With the oscillator frequency at 506 ke . the signal trace should be just at the elge of the soreen; if it is not, it ran be brought there by adjustment of the sweep padder, R_{36}. Tuning in the opposite direction to 406 kc . then should move the trace to the opposite end of the sarem. When this adjustment is made the maximum sweep will be 100 ke . It mily be set at any desired figure between 100 and zero kc. by adjustment of R_{35}.

The next and final step in adjustment is to align T_{1} and T_{2} to compensate for the r.f. selectivity of the receiver. Set
the receiver at about 3 Mc., set the test oscillator to the same frequency and tume the signal to the center of the sereen, using the regular recoiver tuning control. Then move the test oscillator frequency 50 kc . higher or lower, putting the signal at one edge of the eathote-ray tube screen. Note the amplitude as compared to the amplitude at the center, and adjust the i.f. transformer trimmers to make the amplitude approximately equal to that at the center. Then move the test oscillator 50 ke . on the other side of the conter frequency and readjust the trimmers to make the amplitude equal to that at the conter. This will upset the first adjustment, so it will be nocessary to go back and forth, making compromise adjustments which finally result in making the gain as uniform as possible over the whole 100 -kc. band. The desirable condition, of course, is one in which the height of the test signal does not change as the froquency is varied over the 100 -kc. range. Probably it will not be possible to get prerfact compensation, but there should be no diffieulty in coming reasomably close to it. At frequencies higher than 3 Mc . it is to be expected that the signal amplitude will increase toward the edges of the pattern, and that it will decrease at frequencies lower than 3 Mc .

The frequency-modulated oscilator in the unit provides an exeellent means for final alignment of the $100-\mathrm{kr}$, amplifior. Tune in a test signal to the center of the screen and adjust the trimmers in T_{s} and T_{4} to give the sharpest and most symmetrical pattern. The signal on the seroen is artually a trace of the selectivity curve of the $100-k e$, amplifier, and corresponds exactly to the similar type of trace obtained when aligaing an ordinary superhet with the aid of a frequener-momulated test oscillator and oseilloseope.

Fig. 1236 - Bottom view of the panoramic adapter. Condensers and resistors in the r.f. circuits are placed close to associated circuits following usual practice. C_{24} and C_{25} are in the upper left-hand corner. The sucep padder $\left(R_{3 A}\right)$ is monnted on a hrachet in the lower left-hand corner. K_{33} and K_{37} are the two volume controls near the hottom edge. Near the center, over the 6 AC 7 socket . is the phasing trimmer condenser, C_{18}. K_{17} and K_{22} may be seen mounted at the left-hand edge with their shafts protruting in thr rear of the caloinet.

Chapter Jhirteen

Trunsmitter Construction

In the desoriptions of apparatus to follow, not only the clectrical sperifications but also the manufaturer's name and type number have been given for most components. This is for the convenience of the builder who may wish to make an exart copy of some piece of equipment. However. it should be understood that a component of different manufacture provided it is of equivalent quality and has the same electrical specifications, may be substituted in most cases.

Any munsual characteristios in tuning or operation are explaned in the text material in these pages describing the construction of each unit. For information concerning straightforward transmitter adjust ments, such as the foning and neutralizing of standard circuits, the reader should romsult Chapter Foun. (hap)ter 'Ten contains information on the adjustment of antemat thaters for the varions types of antennas. Keving systems are treated in (hapter six. The eomstruetion of meter shants is covered in Chapter Nisetern, while operating data on transmitting tubes not sperifically included in this chapter will be found in the vacumm-tube tables in ('hapter Twenty.

To redree repetition and make possible a treatment of wider soope, liberal reference will be made to material appearing in other chapters in this Iandbook.

(1. A Simple Crystal-Oscillator Transmitter

The init shown in Figs. 1301 and 1302 represents one of the simplest type of amateur transmitters. The various parts are assembled

Fig. 1301 - A simple "breadhoard" erystil-controlled-oseillator tramsmitter which is eapable of a prower output of approximately 10 watts.
on a 9×14-inch board which has been squared up and given a coat of enamel.

The circuit is of the grid-plate owillator type with a tank circuit inserted in the cathode lead tuned to a frequency lower than the

Fig. 1302 - Circuit of the crystal-oseillator transmitter.

$\mathrm{C}_{2}-\mathrm{ION}-\mu \mathrm{ffl}$. miса.
Ci - $0.001-\mu \mathrm{fd}$. mian.

$131-7.06$ olims, $1 / 2$ watt.
$\mathrm{R}_{2}-3(0)$ ohms. 2 watts.
K_{3} - $10,010 \%$ (hams, 2 watts.
$\mathrm{kFC}-9.5-\mathrm{mh}$. r.f. clowhe.
 3.5 Mc. - 32 turn N No. 20 enam., $1 / 2$ inehes long. 7 Mc.- 16 turns Vo. 21 enam., $11 / 2$ inches long. All coits wonnd on 4 -prong 11 ammarland coil forms, $11 / 2$ inches in diameter.
A - Antenna terminal.
K-Key

Xtal - Cirystal for desired frequencs.
erystal frequency. This facilitates tuning adjustments for proper keying under load. Bias is obtained prineipally from the cathode resistor, R_{2}, since the chicf purpose of R_{1} is to eliminate parasitic oseillation as a result of using r.f. chokes in both phate and grid rircuits.

Parallel feed is used in the plate circuit to remove d.e, voltage from the \quad uning condenser. A "pi-section" tank circuit is used to provide a simple means of adjusting the rompling to the antenna. This arrangement will feed power into a wire of almost any random length, although it should be remembered that a good antenna, wherever possible, is still required for maximum results.

The photograph of Fig. 1301 shows most of the ronstructional details. The antenna-coupling condenser, C_{-}, is to the left and the tuning condenser, C_{5}, to the right with the tank coil in between, Above
the terminal strip at the rear are the eathode resistor, R_{2}, its by-pass condenser, C_{1}, and the eathode-circuit r.f. choke with the parallel mica condenser, C_{2}, and the screen by-pass condenser, C_{3}. The r.f. choke below the tube is in the plate circuit with the screen resistor, R_{3}, to the left of the 6L.6. To the right of the 6L6 are the grid r.f. ehoke and resistor, R_{1}, and the crystal. The plate blocking condenser is hidden behind the tube.

Although a 6 L .6 tube is shown in the photographs and diagram, a 6 V 6 or 6 F 6 might be used at a lower plate voltage without circuit alteration. Any available power supply delivering up to 450 volts may be used with the 6L6, the power output obtainable increasing with the voltage applied. The one shown in Fig. 1303 is suitable. The two units may be connected together by a four-wire battery cable and a four-pin plug to fit the outlet on the power supply.

Since the circuit is not designed for frequency doubling, a separate erystal will be required for each frequency desired.

A milliammeter with a scale of 100 or 200 ma. should be connected in series with the key. as shown in Fig, 1302, as an aid in tuming. Wiih a suitable coil and crystal in place, the antennal connected and the high voltage turned on, a rise in plate current should occur when the key is closed. With C_{7} set at maximum capacity, C_{5} should be adjusted until the milliammeter shows a dip in plate current indieating resonance. If no dip is found, the rapacity of C_{i} should he reduced slightly, step by step, rotating C_{5} through its range each time, until the dip is found. The loading may be varied within limits by the same process. first setting C_{7} and then retuning C_{5} to resisnance. As the loading is increased, the value of plate current at minimum dip will increase, indicating that the tube is taking more power. If the loading is made too heavy, the cireuit will not key well, or it may fail to oseillate at all. In this case the loading should be reduced, of course.

The coupling system provided is designed primarily to feed into a singlo-wire antema

Fig. 1303 - Circuit of the t50-volt power suppls.
 $\mathrm{C}_{2}-8$ - $\mu \mathrm{fd} .600$-volt eleetrolytic (Mallory 11 N 693). 1. - Filter choke, 10 hearys, 155 ma,, 100 olms (Liah 4667).

R- 15,000 ohms, 25 -watt.
'I - Type 80 rectifier tube.
T_{R} - Power transformer, 400 volts each side of centertap; rectifier filament winding, 5 volts, 3 amperes: r.f. filament winding, 6.3 volts, 6 amperes' (ltah Y 616).

Fir. 130.4- This power supply delivers 4.50 volts at a full-l ard rurrert of 130 ma,. with 0.3 per eent ripple and measured resulation of 17 per rent. If converted to a choke-input tilser by in erting a similar choke between the rectifier and present filter, the output voltage is redured to abnat 300 volts. The chassis recasures 7×9 $\times 2$ inchos, Filarnent and plate voltares are brought out to a four-prong soeket. The cireuit is given in Fig. 1303.
of random levgth. In general, the wire should be as long as possible, although there is little point in maring it over $2 \overline{5} 0$ feet in length. As much of the total longth as possible should be olevaterl as high as available supports will permit. When restriction in spare makes it neessary, or for lical work, the coupling arrancemont shewn will feed power into a wire only a few fect long.

If the antenna is hobe fed at the center, or if tumed feeuers are used as deseribed in Chapter Tern, a link line muy be conneeted across the (e)upling condenser. ("- and used to couple to a seribs-parallel antemnatuner, such as the one shown in lit. 1317. The tuning condensers spereficed for this t:mer may be of the midget type with smaller plate spacing and the coils may be wound on standard recciver forms.

With a GLA tube and a plete supply delivering 400 volts, the screcn voltage will be about 2; ${ }^{5}$ bolts. The tube will draw about 85 ma . nonoscillating, dipping to about 40 ma, at resoname with the antemna disconnected. It should be possibie to load up the circuit antil the tube draws about 70 ma . at resonance. Under these conditions, the power output on each band should be 15 to 20 watts.

(1) A Two-Tube Plug-In Coil Exciter

In the twa-tube exciter or low-power transmitter pietured in ligs. 1305, 1307 and 1308, a diti oscillator is nsed to drive an 807 as an amplifier-doubler. As shown in Fig, 1306, a Tri-tet circuit, used to obtain harmonie output, is reduced to a simple tetrode circuit for oscillator eutput at the crystal firndamental by skort-circuiting the cathode tant cirenit. Sufficient oscillator ont put at the forrth harmonic

Fig. 1305 - The twotube phag-in coil exciter is built to conserve space in the relas rack. The pand is $31 / 2 \times 19$ inches. A clearance hole is cut in the left end of the pand for the ersstal sowher, whirh is mounted in the chassis directly above the cathode-circuit switeh. The left hand dial controls the tuning of the werillator plate-tank cireuit; the dial to the right tuncs the cutput tank circuit. The switeh at the right-hand end is for the 200 -ma. milliammeter.
of the erystal frequency is obtainable to drive the 807 , which may be operated as citter a straight amplifier or frequency doubler, providing output of 25 to 50 watts or more in four bands from a single crystal.

The entire unit is designed to operate from a single 250 -ma. power supply delivering up to 750 volts (see Vig. 1316), the maximum rating for the 807. Fixed bias of 45 volts, which may be obtained from a dry battery, is required for the 807 . In the system shown, both oscillator and amplifier are keyed simultaneously in the common cathode leat. A single 200-mat. milliammeter may be switched to read the plate eurrent of either stage.

Tuning - Jecause it is possible to double
or quadruple frequener in the phate cireuit of the oseillator and to double in the phate circuit of the 807 as well, there are several possible consbinations of coils and erystals which will produce the same output frequency. Since mush better efficiencies are whainable, it is advisable to operate the sole as a straight amplifer rather than as a doubler. This is possiblo in all rases exeept where it is neressary to obtain output at the eighth harmonic of the crestal frequency-1t-Mc. sutput from a 1.7i-Me. crystal. or 2s-Mc, output from a 3.5-Me. ervatal. Theetatt shewn on page 60 shows the combination reguired for the desired output from any wiven rerystal. This chart also indiaters the position for siun. Be sure that the

Fir. 1306 - Circuit diagram of the two-tube plap-in coil excriter umit.
$\mathrm{C}_{1}-1 \cdot 40-\mu \mathrm{fld}$. variable (Ilammar. lond MC-143).
$C_{2}-150-\mu \mu \mathrm{fd}$ variahle (Cardwell

$\mathrm{C}_{3}-100-\mu \mathrm{ff}$. mica.
C.4-20- μ ffil mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{-1}, \mathrm{C}_{4}, \mathrm{C}_{4} \mathrm{C}_{10}-0.01-\mu \mathrm{f} 4$. (600)-volt paper.

$C_{x}-1(00-\mu \mu \mathrm{fl}$. mica (nsed m): on 3.5 Mc .)

MA - Milliammeter, $0-200$-ma.
$\mathrm{R}_{1}-20,000$ ohmes, $1-n$ att .
$R_{2}-25,000$ ohms, $2-w a t t$.
$\mathrm{R}_{3}-200$ ohms. 2 -watt.
R_{4} - 10,000 ohnie. 25 -watt.
$\mathrm{R}_{\mathrm{s}}-3.300$ obms, 95 watt.
$\mathrm{R}_{6,} \mathrm{R}_{7}-15,(00$ ohnse, 25-wat.
$\mathrm{R}_{\mathrm{R}}, \mathrm{l}_{\mathrm{g}}-1250$ ohms. 50 -watt.
$\mathrm{R}_{10}, \mathrm{R}_{11}$ - 10 ohms, 1 -watt.
REC $-2.5-m h$. r.f. chooke.
Sw_{w} - S.p.s.t. topple swith.
Sw2-1.j.d.t. rotary switch (Matlory 3222J).
$\mathrm{l}_{1}-1.65 \cdot \mathrm{Mc} . \mathrm{crsatals}-32 \mathrm{turns}$ No. 22 d.s.c., elose-wound. 3.5-ile. ervitals - 10 turns No. 22 dis.e.e, 1 inch herap. Note: $C x$ monnted in form.
7-Mc. erystids - $6 \frac{1}{2}$ turns No. 22 d.s.ex.. $3 / 4$-inchl long. All wound on Hammarhond $11 / 2$-inch diam. + -pin forms.
$1.2-1.75 \mathrm{Mc}$. - 56 turns, $1 \frac{1}{4}$ ineh diameter, $13 / 4$ inches long. it $\mu \mathrm{h}$. (National (B (in) - molink).

3.5 Me. - 28 turns. $1 \frac{1}{4}-$ inch diameter, $1 \frac{1}{2}$ inches lomp. 1.5μ h. (National AR.10- nolinh).
7-Mc. - 14 turns, $11 / 1 /-$ ineh diameter, $1 \frac{1}{4}$ inches longe. $4.2 \mu \mathrm{~h}$. (National AR20 - no link).

14 Me. - 8 turns, $1 / 4$-imh diameter, $1 \frac{1}{2}$ infhes lonk, 1.25 ph. (National ARIO - mulink).

28 Mc. - 4 turns, $1 / 4$-inch diameter, $3 / 4$-inch long, 0.5
 turne removed - no linh).
$\mathrm{I} 3-1.75 \mathrm{Mc}$. -50 turns, $1 \frac{1}{2}$-inch diameit, $2!\times$ inches long. $52 \quad$ нh. 3.5 Mc. - 2.5 turns, $11 / 2-\mathrm{im} \cdot \mathrm{h}$ dianeter, $1^{5} x$ inches lemp. 16, ih. (Cito Csoc.01).
7 Me.-16 turns, $11 / 2$-ineh diameter, $17 / 8$ inchers long, $5.7 \mu \mathrm{~h}$ ((Cuto CS60F).
L.t Me. - 8 turns, 11/2-inch diameter, $1^{5} 8$ inches lonp, 1.5 4h. (Cow Cig20F).
28 Mo. - -1 turns, $1 \frac{1}{2}$-inm diameter, $11 / 2$ in heres long. 0.7 uh. (aisto Csolot:)

 for the \ational theods used in the osiflator plate eirenit is fastened on shor: come insulatura, while the soeket for the 807 is submounted in she small wherl partition. The yrid r.f. choke and sereen and cathorde byepare condensere are fastened directly the the soche. Lapede chance holes lined with grommets are provided for passing the connections through the chasis from the oseillator blate coil to the tank comdenser and for the 80 - phate lead. A pair of pin jachs serves as the link output terminals. lower-supply connections are made to a terminal stripat the right.
harmonies of the erssal frequency fall in the

With the proper ceils and crystal in phare, Nu' in the correct position and both eondensers set at minimum rapacity (100 on the (lial), the plate voltage should be applied with the meter reading plate eurrent to the sot. If all resistaneres are (a)reert and the plate voltage is 750 . the plate carrent should rum appoximately 2^{5} mat. With the key closed, tume the oscillator tank contansor for maximum amplifier plate eurrent. (Do not hend the key elosed for long periods meder this high-erurent condition.) As soon as the peak has been ohtamed, tune the amplifier pate tank condenser for resonaner as indieated by a pronounced dip in pate current. Shomlal the points of response on cithe condenser be fonmen at points on the sale difforing appreebably from those given in the aroompanying table, each circuit should be cherefed with an alsoorption frepuency meter to make sure that it is tuned to the correct frequency. since the manes covered by some of the esils indinde obd harmonies falling outside the amateur bands. (Ince checked. the dial settings ran be loged for quick resetting.

When the amplifier has been tuned, the meter switeh may be set to read nscillator plate current and the osillator tank circuit tured for minimum plate eurrent consistent with matisfactory keviug. Active erystals usually will oweillate ementinmosly in the Tri-tet ciruuit, regardless of the setting of the tank condenser. With the tetrode circuit, however, the circuit will oscilate only within relatively narrow limits. Sum must be closed when the oscillator plate cirenit is tuned to the crystal frequency. The oscillator phate current will vary widely, elepending upon whether output is taken at the fundamental, seeond harmonic or fourth harmonic. At the specified pate voltage, it should rum between 40 and 50 mal. with the plate cireuit tuned to the crystal fundamental or second harmonic. When tuned to the formth harmonie. the plate current will normally rm between 85 and 95 ma.

Because the plate and screen of the 6.6 are operated from a voltage divider, their voltages vary with tuning. Plate voltage varies between 400 and 450 , except at the fourth harmonic when it fails to 340 volts or so. The sereen voltage varios from 280 to 210 volts.

Fig. F30日- Botlom viper of the play-in exciber, flace insibe the $4 \times 17 \times 3$-imeh ehasisis hat hren utilized to the greateres extent possible while preserving aceessihility. Voltaye divider remiztors Rxand Ro are to the right of the osicillator tanh convenser, white $K_{4}, R_{\text {-w }} K_{6}$ and K_{5} are monnted wo the rear of the meter. 'Vhe socillator r.f. Whoke and mrid lacah are fasterned to the erystal sonchet. Comnertions between the crystal sochel and rathode switch are made direelly and hopt well *parel. The oxallator cirenit may be arranged for v.f.o. input as shown in frip, I 385 . Meterwhunting restistamedsare fatemed to the meterswitch. Buth tarhecondenser shaft mmst he lites with insu. lated couplings and panel bearings.

The plate current should be limited to 70 mat. at 28 Me , and 80 mat, at 1.4 Mc . When doubling fropuener in the out put stage, and to 90 ma. when operating the 807 as a straight amplifier at 28 . Me. Power output under these conditions should average 40 to 55 wat ts on all hands. When doubling frequency in the output circuit to 14 and 28 Mr... the output will be reduced to alout 27 and 18 watts respertively.
If the exciter is operated from a power supply of lower voltate, the values of resistance speceified for the voltage dividers may be altered to inerrase the voltaces on the ascillator plate and sereen and also the sereen of the 807. With a 600 -volt supply, R_{x} and R_{9} should be 1000 ohms each, $R_{4}, 20,0000$ ohms athe R_{5}, 10,000 ohms. Power output will arerage 30 to $3 \overline{3}$ watts from the 807 as a straight amplifier.

c. Complete 75-Watt All-Band Transmitter with Plug-in Coils

If it is desired to feed the unit of Fig. 130: into an antenna as a complete transmitter, it may be combined with the power-supply unit of Fig. 1316, which will furnish heater and plate voltages, and the antema-tuming mit of Fig. 1318 using the large condensers. A 45 -volt dry battery will be required for hiaw. The three units may be placed in a small table rack with a total lieight of only $171 / 2$ inches.

(1. A Band-Switching Exciter with 807 Output Stage

The exciter or low-power transmitter pirtured in Fixs. 1309, 1310 and 1312 is designed for flexibility, being adaptable for use on all bands from i. 75 to 28 Mc c., with erystals eut for different bands, and also for quick hand changing over three bands. It consists of a 6 C a triode oscillator followed by two triode doubler stages in oue tule, a $6 \times \mathbf{N}$; hy means of a switch. No. the output of any of the three stages can be connected to the grid of the final tube, which is an 807 beam tetrode. The circuit diagram is given in Fig. 1311.

The oscillator coil and the first and second doubler plate roils, L_{1}, L_{3} and L_{2} respectively, need not be changed for crystals pround for a given band. The swit ching circuit is so arranged that the grids of unused stages are automatically disemnected from the preceding stage and grounded, so that excitation is not applied to the idle doubler tubes.
Capacity coupling between stages is used thronghont. The plates of the first three stages are parallel-fed so that the plate tuning condensers can be mounted directly on the metal chassis. The $6 \mathrm{C}, 6 \times 7$, and the 807 sereen all operate from a 250 -volt supply. Sicries feed is used in the 807 plate circuit, the tank con-

Fig. 1309 - An 807 exciter or low. power transmitter combining the flexibility of plag-in coils with the eonsentience of hand-switching. I band-switching plup-in coil assembly changes tank woils in the 80 ? plate rircuit. Crystal switching and meter switching also are provided. Ilate curents for all tubse and sereen current for the 807 are read on a 200 ma . meter whieh ean be switched to any circuit. Keying is in the oscillator rathode circuit, for break-in operation. The panel is $83 / 4$ incless high and of standard rach width. The chassis measures $8 \times 17 \times 2$ inches. The unit reguires two power supplies, one delivering 250 volts at approximately 75 ma. and the other 750 volts at 100 ma.

Fig. 1310 - Top view of the bandswitching exciter with coils removed. At the left rear are the spare crystal socket, the 6C5 and the 6N:. Directly in front of these are the tuning eondensers (monnted directly on the chassis) and the coil sockets (mounted on millars) for the oseillator and doubler stages. Grouped to the right are the 807 , the amplifier tank condenser (which must be insulated fron thechassis) and the switeh assembly. The "hot" leads from the coils are brought through grommeted holdes in the ehassis. The amplifier switch assombly should be monnted far enough hack from the franel no that the coils will clear the side of the relay rack or eahinet. I.eads between the switeh and Cis should be kept as short as possible.

denser being of the type which is insulated from the chassis. Fixed bias of about 75 volts is used on the 807 grid.

Plate currents for all tubes are read by a 200-na. meter which can be switched to any circuit by means of S_{4}. Keying is clone in the oscillator eathode eireuit providing break-in operation.

Since in normal oporation the crystal tank circuit, $C_{1} L_{1}$, is tuned well on the high-frequency side of resonance, there is a tendency for the first doubler section to break into a "tuned-grid tuned-plate" type of oscillation when the key is up; this is prevented by a small amount of inductive neutralization provided by the single-turn coils. L_{5} and L_{6}, wound as closcly as possible to the ground end of each tank coil. The $28-\mathrm{Mc}$. coil does not need such
a noutralizing winding, since it is used only in the second doubler stage. L_{5} and L_{6} should be ao connected as to prevent self-uscillation of the first $6 N^{2} 7$ section when the key is open; the proper connections should be found by trial.

In the hottom view, Fig. 1312, the meter switch with its shurting resistors is at the left, with the 807 plate liy-pass condenser, C_{11}, just above it. The staqe switrh, S_{2}, is in the center. 1R.f. leads to this switch should be kept separated as much as the layout will permit. R.f. junction points are insulated by small ceramic pillars. In this view, the right-hand section of the $6 \mathrm{~N}^{-7}$ is the first doubler. The rutor contact of the section of S_{2} nearest the panel goes to the grid of the first doubler, the nriddle section to the second-doubler grid, and the third section to the 807 grid.

Fig. 1311 - Circuit diagram of the erystal-controlled 807 hand-switehing exeiter or low-power transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mathrm{fd}$. varialle (National $\mathrm{S}^{\prime} \mathrm{T}^{-100}$).
$\mathrm{C}_{4}-150-\mu \mu \mathrm{fd}$, variable, 0.05 -inch plate spacing (llammarlund I1FB-150. ©).
$\mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0}, 002-\mu \mathrm{fl}$. 500 -volt mica.
$\mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}-100-\mu \mu \mathrm{fd} .500$ volt mica.
$\mathrm{C}_{11}-0.002-\mu \mathrm{fd}$. 2500 -volt mica.
$\mathrm{C}_{12}-\mathrm{C}_{17}$, ine. - $0.01-\mu \mathrm{fd}$. 600 -volt paper.
$R_{1}-10,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{2}-300$ ohms, 1 -watt.
$\mathrm{R}_{3}, \mathrm{R}_{4}-25,000$ ohms, $1 / 2$-watt.
$\mathrm{K}_{5}-\mathrm{R}_{\mathrm{y}}$, inc. $-25 \mathrm{ohm}, 1 / 2$-watt.
RFC -2.5 -mh. r.f. chohe.
S_{s} - Ceramic wafer switeh, 6 or more positions.
\mathbf{S}_{2} - Three-gang three-position ceramic wafer switch (Yaxley 16.3C).
S_{3} - Band-switeh in coil assembly (Coto type i00).
S_{4} - Two-gang 6 -position (5 used) ceranic wafer switch.
M $\mathbf{0 - 2 0 0}$ d.c. milliammeter, bakelite case.
$\mathrm{I}_{1}, 1.2, \mathrm{I}_{3}-1.75 \mathrm{Mc} .50$ turns No. 2.2 d ds.c. close-wound. 3.5 Mc.: 26 turns No. 18, length $11 / 2$ inches. 7 Mc : 17 tarns No. 18 , length $11 / 2$ inches. 14 Mc.: 8 turns No. 18 , Length $1 \frac{1}{2}$ inches. 28 Mc.: 3 turns No. 18 , length 1 inch.
All wound on $1 V_{2}$-ineh diameter forms (Hammar. lund SWF.4); turns spaced cvenly to fill specified winding lenkth.
L4-1.75 Mc. 50 turns, $11 / 2$-inch diameter, $23 / 8$ inches long, $52 \mu \mathrm{~h}$. (Coto CI6160E).
3.5 Mc. - 25 turns, $1 \frac{1}{2}$-inch diauneter, $15 / 8$ inches long, $16 \mu \mathrm{~h}$. (Coto Ci680E).
? Me. 16 timens, $11 / 2$-inch diameter, $11 / 8$ inches long, $5.7 \mu \mathrm{~h}$. (Coto Cl640F).
$14 \mathrm{Mc} .-8$ turns, $11 / 2$-inch diameter, $15 / 8$ inches long, 1.5μ h. (Coto CI620F).
$28 \mathrm{Mc} .-4$ turns, $11 / 2$-inch diameter, $11 / 2$ inches long, $0.7 \mu \mathrm{~h}$. (Coto Cl610E).
L_{5}, L_{5}-One inrn at botton of L_{1} and L_{2}. Sce text.

Fig. 1312 - Bottom view of the band. swi ching pexiter, showing the meter switel at the left, the band-switeh in the center and the crystalswith at the right. The multiple ersetal mounting, which holds six crystals, is made of a $3 \times 4 \frac{1}{2}$ inch aluminum plate fitted with Amphenol erystat sockets, the assembly being elevatid from the chassis by metal pillara. A seventh sochet is provided on top of the chassin for a spare erystal or for c.c.o. input. The $\mathbf{8}$. ()-volt lead is brought throush a billen safets terminal, and all other power connections erome to a turminal strip at the rear which has barriere bertwen the terminals to prevent acridental contact. All grounds are made directly to the $8 \times 17 \times 2$-inch ehassis.

Figs. 1313 and 1316 show suitable 250)- and Fion-volt power-supply units for this transmitter. Heater voltage and grid hits are obtained from the 250-volt supply. If de-irod, both these power units may be assembled on one large chassis.

Tuning - To operate the exciter, coils for consecutively higher-frequency bands are plugged in at L_{1}, L_{2} and $I_{.3}$; only five are necessary for operation with any crystal from 1.75 to 7 Mc . and for output from 1.75 to 28 Mr . For example, with $3.5-\mathrm{Mc}$, crystals, the $3.5-7$ and $14-\mathrm{M}$ c. coils would be plugged in at I_{1}, L_{2} and L_{3} respectively. For $1.75-\mathrm{Mc}$. crystals. the $1.75-$ - $3.5-$ ard 7 -Mc. coils would be used. and so on. The plate coils for the 807 shou!d cover the same lathe as the low-level roils.

Preliminary tuning should he done with the plate voltage for the 807 diseonnected. set s_{2} so that all tubes are in use. switeh the milliammeter to the oscillator circuit and close the key. Rotate C_{1}^{\prime} for the dip in phate current which indicates oscillation. The non-mseillating pate current should be between 20 and $2 \overline{5}$ ma, dropping to 15 or 20 when osciliating. Switch the meter to the doubler plate and adjust C_{2} to minimum plate current, or resonance. The off-resonance plate current should be about 30 ma. or more and the reading should be betworn 10 and 15 at resonance. Cherk the seconddoubler plate current and tuning similarly; the off-resonance plate corrent should again be around 30 mis., dropping to 15 or 20 at resonance. At this point the 807 soreen current should be measured; with too much excitation it will be considerably higher than the rated value (about 12 mar.) and the excitation should not be kept on for more than a second or two.

Next, the plate woltage may be applied to the 807. The amplifier should not he operated without load for nore than a few moments at a time, because under these conditions the seren dissipation is excessive Lise a $70-$ ohm dummy antenna or a 60 -xatt lamp eonnerted to the output link. The three bands maty be checked in order by appropriate switching of siz and \aleph_{3}. With the 807 fully loaded, check the sorren current to make sure it does not exceed 10 or 12 ma. If it is too high, reduce the excitation by detuning the crystal oscillator until it reaches the proper value. The 807 grid current
may be metsured with a lower-range milliammeter comered in series with the bias source, if desired. Maximum output will be secured with a grid current of about 3 or 4 milliamperes, a value which also will give about rated screen current. 'The soreen current is, in fact, a very good indicator of exestation. The 807 should show no tendency to oscillate by itself when the key is open.

The current to each section of the GN7 should be 20 ma . With the key open (no excitation). If the two currents are not the same or show changes when (C_{2} and C_{1} are tumed with key open, the first doubler may be acting ats a t.p.t.f. oscillator, as previously mentioned, and the neutralizing circuit should be checked. I) not use more than 250 volts for the low-voltage supply, as higher values will cause excessive 807 sereen dissipation. Care also should be taken to avoid exressive excitation. In normal operation. with C_{1} detuned to reduce excitation to the proper value, the doubler plate currents will show little change between resonance and off-resonance tuning.

Fig. 1.313-A combination power-stupply unit drlivering 2:0 or 3 (h) volts for exciter plate sump and 75 volts of fixed bias. The unit is designed especially to work with the hand-switching exciter, the diagram of which is shown in Fig. 1311. If desired, the compoments may be combined with the components for a high-voltage phate supply on a single chassis. The circuit diagram of the combination unit is shown in Fig. 131t.

With maximum input to the 807 plate (75 watts) the output is approximately 50 watts on all hands except 28 Mc., where groator circuit losses decrease it to about 40 watts. The excitation provided by the $6 \mathfrak{N} \boldsymbol{7}$ doubler is more than ample on all bands.

The oscillator circuit may be arranged for v.f.o. input as in Fig. 138\%.

Cig. 131. - Circuit diagram of the combination plate, sereen and prid-bias power supply shown in Pip. 1313.
($1, \mathrm{C}_{2}$-Sections of 8 - $\mu \mathrm{fd}$. 450-volt dual elcetrolytic. (3-8-дfd. 450-volt paper.
(is - Same as (is (used only for 300 -volt output).
I.t, I_{2} - 6.henr, 80 -ma. 138 -olm filter chohe (Thordarson 1-57(51).
$R_{1}-20.1001$ ohims, lo-watt.
$\mathrm{R}_{2}-20,100$ ohms, 2 -watt.
R_{3} - 25.01010 olms, $\boldsymbol{2}$-watt.
R_{4} - $\mathrm{I}, \mathbf{0}, \mathbf{0 1 0}$ ohms, 2 -watt.
T- 300 wolts rim.. , cach side of arntertap, 90 ma.; 5 volts, 3 amperes; 6.3 volts, 3.5 amperes (Thordarson 1-13R13).
If desired, the hias branch may be omitted, as shewn in the alternative diagram at 13 . All values remain as ahove.

(1. A Combination Low-Voltage Plate or Screen Supply and Fixed-Bias Pack

Fig. 1313 illustrates a combination mack which will deliver 250 or 300 volts, 75 ma., for
supplying plate voltage for receiving-tube exciter stages as well as screen and fixed-bias voltage for a beam-tube driver stage.

The circuit diagram is shown in Fig. 1314-A. In addition to the usual full-wave rectifier circuit employing a type 80 tube, a $1 V$ half-wave rectifier also is connected across one half of the transformer secondary in reverse direction to provide a negative hiasing voltage which is held constant at 75 volts by the VIR75-30 regulator tube. With the dropping resistor shown, the regulator tube will pass a grid current of 25 ma . without overload. The 1 V rectifier is indirectly heated, so that it may be operated from the same 6.3 -volt winding provided to supply the r.f. tubes in the transmitter.

The output voltage at a normal load current of about 75 mat. can be increased from 250 to about 300 by the addition of an input filter condenser, C_{4}, the eomnections for which are shown in dotted lines.

If the bias section is not neoded, plate or sereen voltage may be ohtained with the simplified circuit shown in Fig. 1314-B, eliminating the bias section.

Fïg. 1315 - Circuit of the power supply in Fig. 1316.

$\mathrm{C}_{2}-4$ - fd . 1000 -volt paper (Sprague (OT41).
I, - Input choke, 6-19 henrys, 300 ma., 125 ohns (Kenyon T-510).
L_{2} - Smoothing ehohe. 11 henrys, 300 ma., 125 ohms (K myon 'T- 106).
$\mathrm{R}-20,000$ ohms, 50 watts.
T - I'ype 8o6 Jr. rectifier.
" $\mathrm{Tr}_{1}-925$ or $\mathbf{i t} 10$ volts r.m.s. each side of centertap,

Tr2- 2.5 volts, 10 amperes, 2000 -volt insulation (Ken уои '1-352).
Tr3-6.3-volt 3 -ampere filament transformer.

Fig. 1316 - This power-supply unit delivers cither 620 or $\mathbf{7} 80$ volts at a full-load curremt of 260 ma. with 0.4 per cent ripple and regulation of 22 per cent. Voltage is changed by a tap on the plate-transformer primary winding. The filter chokes are at the 1 foft and the plate power transformer at the rizht on the panel side of the chassis. 'The cat-type 1000volt filter combensers are at the left in front and the recilicer tubes at the right, with the rectifier filament transformer in betwern. All exposed component terminals are umdrentath the chassis. The panel is $83 / 4 \times 19 \times 3$ inches. The 2.5 -wolt 10 -ampere rectifier filament transformer should have 10,000 -solt insulation. A 6.3 -volt filament transformer is included for heating the filaments of r.f. tubes. This transformer is mounted underneath the chassis; its output terminals are brought out to a standard a.e. receptacte in the rear. The circuit diagram is shown in lig. 1315.

Fig. 1317 - A rack-mounting antenna tuner for low-power transmitters. C_{1} is in the center, with C_{2} and C_{-s} on either side. All of the components are mounted directly on the $51 / 4$-inch panel. 'I'he variable condensers are mounted on the assembly rods on National type GS-1 insulating pillars which are fastened to the condenser end plates with machine screws from which the heads have been removed. Small Isolantite shaft conplings are used to insulate the controls. The coil socket is fastened to the rear end plate of the parallel condenser, C_{1}, with spacers to clear the prongs. Clips with flexible leads are provided for the split-stator parallel condenser, $(1$, so that its sertions may be connected either in parallel or in series to form either a high. or low-capacity tank circuit as required.

A Low-Power Antenna Tuner for Rack Mounting

In the rack-mounted low-power antenna tuner shown in Fig. 1317, separate series and paratlel condensers are used. This arrangement, while requiring three variable condensers, has the advantage that no switching is necessary when changing over from series to parallel tuning. It also makes possible the use of the tuner to cover a considerably wider range of antenna and transmission-line conditions, because the series condensers can be adjusted in conjunction with the parallel condenser to shorten the electrical length of the feeders whenever this is required to make parallel tuning effective. In addition, the series condensers also are useful in that they provide a

Fig. 1318-Circuit of the rack-mounting anterna tuncr for use with transmitters having linal amplitiers which are operated at less than 1000 volts on the plate.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$. per section, 0.045 -inch spacing (Vational TMK-10(0.I)) for higher voltages; receivingtype for lower voltages (llammarlund MCD. 100).
$\mathrm{C}_{2}, \mathrm{C}_{3}-250 \mu \mu \mathrm{fd}, 0.026$-ineh spacing (National TMS250) for higher voltages; receiving-type for lower voltages (IIammarlund $11(250)$.
I, - B\&W JVL series coils. Approximate dimensions for parallel tuning for each hand are as follows:
1.75-Mc. band - 50 turns No, 24 ,
3.5-Me. band - 40 turns No. 20.

T-Mr. band - 24 turns No. 16.
14-Mc. band - 11 turns No. 16.
28-Mc. band - 8 turns No. 16.
All coils are $17 / 8$ inches in diameter and $21 / 4$ inches long, with the variable link located at the center. For series tuning, use the coil sperified for the next-higher frequency band, which will be approximately correct.
measure of control over the amplifier loading when parallel tuning is used.

Clips with flexible leads attached are provided for the parallel condenser, C_{1}, so that the sections may be connected either in parallel or in series to form either a high- or low-capacity tank circuit, as required. When the high-C parallel tank is desired, the two stators are clipped together, as shown by the dotted lines in the circnit diagram of Fig. 1318, and the rotor is comnected to the opposite feeder. When the two sections are connected in serics, for low-C operation, the break-down voltage is increased.

Below the circuit diagram, Fig. 1318, two sets of variable condensers are suggested. The smaller receiving-type condensers with 0.03inch air gap should be satisfactory for lowpower transmitters operating at plate voltages of 400 to 450 volts, while the larger condensers with 0.045 -inch spacing will be required for transmitters using plate voltages up to about 750 or 1000 volts.

(1. Complete 75-Watt Multiband Transmitter

If it is desired to use the band-switching 807 exciter unit shown in Fig. 1309 as a complete transmitter feeding the antenna, it may be combined with the power-supply units of rigs. 1313 and 1316 and the antenna tuner of Fig. 1317 (using the large 0.045 -inch spacing condensers) to make a complete 75 -watt transmitter unit.

The combination 250 -volt power supply of Fig. 1313 will supply plate voltage for the oscillator and doubler stages, as well as sereen and bias voltages for the 807. Filament supply also is obtainable from this unit. Plate voltage for the 807 is furnished by the power supply unit of Fig. 1316.

The combined height of all units (assuming the power-supply unit of Fig. 1313 to be mounted on a 7 -inch panel) will be $293 / 4$ inches. The separate filament transformer, $T^{\prime} r_{3}$, shown in the diagram of Fig. 1315 will not be required since the necessary heater power for the transmitter can be obtained from the 250 volt supply.

Fig. 1319 - A 90-watt c.w. transmitter using a 6L6 Tri-tet oscillator and a pushpull 61.6 amplifier. The rack-width panel of the tranmitter is 7 inches high. The single milliammeter is switehed from the oscillator to the amplifier by the rotary switehat the lowerleft. The three remaining controls are for tuning the oseillator plate, amplifier plate and antenna tank circuits. All sockets, except thone for the amplificr- and antenna-tank eoils are submounted. The three insulated terminals just visibe at the riuht rear behind the antenna coil, $/ .4$, are the binding posst out put conncetions for the antenna tuner.

C. A 90-Watt C.W. Transmitter Using Push-Pull 6l6s

In the 90 -watt c.w. transmitter shown in Figs. 1319 and 1320, a 6L6 Tri-tet oscillator drives a pair of 6 L . s in a push-pull inverted amplifier rircuit (also known as cathode coupling - § 3-3 and 4-7). The circuit diagram appears in Fig. 1321.

The sockets for the crystal and the cathode coil are wired as shown in Fig. 1385, to permit feeding with a v.f.o. unit if desired. The plate circuit of the oscillator is parallel-fed to permit grounding of the rotor of C_{2} in mounting. A high-capacity tank condenser is used so that two bands maty be covered with one coil, reducing eoil-changing when shifting from one band to another. The eathode coil, L_{5}, by which the oseillator and amplifier are coupled, is center-tapped to provide push-pull input to the amplifier stage.

While neutralization is not required, a certain amount is introduced through the fixed eondensers C_{9} and C_{10} from plates to cathodes partially to nullify the effects of degeneration inherent in this type of circuit and thereby reduce excitation requirements. Neutralization is not carried to the point where there is danger of instability. All r.f.-wiring leads in the amplifier should be made as short and direct as possible. The individual grid condensers, C_{7} and C_{8}. should be connected directly to the grid terminals at each socket.

The output of the amplifier is link-coupled to an antenna tuner. The lower stator of C_{4} is
fitted with a flexible lead torminated in an insulated banana plug which may be plugged into any one of the antenna terminals, which are jack-top binding posts. These posts are insulated from the chassis by mounting them in National polystyrene button-type insulators which have been drilled out. Series tuning with high capacity is obtained by placing the plug in terminal No. 1 and connceting the feeders to terminals Nos. 2 and 3 , and series tuning with low eapacity by leaving the plug free and connecting the feeders to terminals Nos. 2 and 3. High-capacity parallel tunting is ohtained by placing the plug in terminal 1 , shorting terminals 2 and 3 , and connecting the feeders between 1 and 3 , while parallel tuning with low caparity is obtained by placing the plug in terminal 3 and connecting to 1 and 3 .

Both stages are keyed simultaneously in the cathode return leads. The milliammeter, $M A$, can be switched from the oscillator-cathode circuit to that of the amplifier. switrhing of the meter is simplified by inclusion of the shunting resistances, R_{6} and R_{7}, which are sufficiently high in value to have negligible effect upon the reading of the meter.

The transmitter ean be operated at maximum input from the 450 -volt power supply shown in lig. 130.4, provided a 200 -ma. power transformer (ltah lisOF) and filter choke (C'tah tikis) are substituted for those specified.

Tuning - Tuning of the transmitter is quite simple. It should be borne in mind that output from the oscillator may be obtained at

Fig. 1320 - The three tank condensers are mounted underneath the chassis of the 90 -watt transinitter. The two splitstator condensers are mounted from the rear edge with insulating pillars, and their shafts are fitted with insulating eouplings and panel bearings. They must be mounted so their shafts come level with that of C_{2} to the left, which is mounted directly on the chassis. It eavy harewire leads through grommeted holes connect the amplifier and antenna tank condensers and coils.

either the fundamental frequency of the crystal or at the second harmonic of that frequency, and that the selection of the proper eoil for L_{1} depends upon the erystal frequency and not the output frequency of the oscillator. I'sing the oscillator plate coils listed below Fig. 13:1, the lowest-frequency band will he found near the maximum-capacity end on the dial of C_{2}, while the higher-frequency bands will be found near the minimum capacity end of its tuning range.

With the milliammeter switched to the oscillator circuit, the plate-current reading should be about 40 ma. when the key is closed if a full $3 \overline{0} 0$ volts is used on the plate. As C_{2} is tuned through resonance, the oscillator plate current will dip, to about 25 ma. at the lower frequencies and to about 50 ma . at the higher frequencies.

When the meter is switehed to the amplifier stage, a plate-current reading of about 260 ma . should be obtained with the key closed. A plate-current dip to 50 ma. or less should be obtained when C_{3} is tuned to resonance.

Once these adjustments have been rompleted, the antema may be coupled and tuned. When the plate current of the amplifier under load increases to 200 man. as C_{4} is tuned to resonance, this represontsabout the optimum loading condition. Using a plate voltage of 450 and with proper adjustment of the amplifior, it should be possible to obtain a power output of 50 to 60 watts on all hands.

Becatuse of the oscillator reaction eaused by modulation. resulting from use of the inverted amplifier circuit, this transmitter is recommended for c.w. work only.

(1. Complete 90-Watt C.W. Transmitter

The 90-watt 6L. 6 r.f. unit of Fig. 1319 may be combined with the power-supply unit showing Fig. 1316 (with the separate (i.3-volt filament transformer, T'ra. induded to supply the greater heater power requirements of the 6 L (is)to form a complete c.w. Transmitter. The two units will have a combined height of $153 / 4$ inches when they are mounted in a standard relay rack or cabinet.

Fig. 1.321 - Circuit diagram of the 90 -watt push-pull 61.6 transmitter with buitt-in antenna coupler.

$\mathrm{C}_{2}-250-\mu \mu \mathrm{fd}$. variable (National $\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}-0.01 \mu \mathrm{fl}$. T'MS-250).
$\mathrm{Ca}_{3} \mathrm{C}_{4}-250 \quad \mu \mu \mathrm{fil}$. wror section (Iammarhund DT'CD). $250-6)$.
R_{1} - 0.1 i megohm, $1 / 2$-watt.
$1_{2}-50,000$ ohms, 2 -watt.
K_{3} - $\boldsymbol{\text { non ohms, }} 1$-watt.
R_{4} - $2.5,00 \%$ ohms, l-watt.
R_{5} - 12,000 ohms, 10 -watt.
. 1 : - 0.300 milliammetor.
$s-$ s.d.t. switch.
RFG: - $2.5-\mathrm{mh}$. r.f. choke, 100 -ma. 1 FEC 2 - I-mh. r.f. choke, $300-\mathrm{ma}$. (National R300).
R FC_{3} - I h.f. parasitic choke (Ohmite Z-1).
$\mathrm{C}_{5}, \mathrm{C}_{6}-\mathbf{0 . 0 0 1}-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{7}, \mathrm{C}_{8}-50-\mu \mu \mathrm{fd}$. mica.
13 \& W JVI serica coils, dimensions as follows:

L2* - Hor 75 and 35 whe lunde - 38 turns No. 18 d.c.e. close-wound.

For 3.5- and 7-Mc. bands - 20 turns No. 18, $13 / 8$ inches long.
For 4 - and 14 - Mc. lands -9 turns No. 18, $11 / 2$ inches long.
Ls ** - 13 \& $W \mathbf{W} \mathbf{J C i}$, series coils, dimensions as follows: $1.75 \mathrm{Mc} .-60 \mathrm{urns}$ No. $2 t, 21 / \mathrm{i}$ inches lomp. 3.5 Mc - - 41 tarns No. $20,21 / 8$ inches long. 7 Mc. - 26 turns No. $16,21 / 8$ inches long. 14 Mc . -16 turns No. $16,17 / 8$ inches Iong.

[^4]$\mathrm{L}_{4} 1.75 \mathrm{Mle}$ - 56 turns Vo. 24.
3.5 Me. - 40 turns No. 20.

द. Mc. - 24 thens No. 16.
14 Ne. - 14 turns No. 16.
1.1 Mc. (series)- 8 turns No. 16.
$\mathrm{L}_{5}-1.75$ - and 3.5 - Mc. hands - 20 turns, centertapped, No. 24 e., close-wound, wound close to bottom of $l_{2} \mathrm{on}$ same form.
3.5- and 7-Mc. bands - 14 turns, centertapped, No. 22 e., close-woumd, wound $1 / 8$-ineh from bottom of L_{2} on rame form.
7- and 1.4.Mc. hands - 8 turns, centertapped, No. 20 e., closc-wound, wound $1 / 8$-inch from bottom of $I .2 \mathrm{om}$ same form.
$\mathrm{I}_{6}, \mathrm{I}_{7}-3$ turns at center of L_{3} and L_{4}.

[^5]
(1) A Three-Stage 100-Watt Transmitter for Five Bands

The three-stage tramemitter shown in Figs. 1322, 1324 and 1325 is designed to use a single 1000 -volt 100 -ma. tube surh as the 1623.809 , II 40 , or highervoltage tubes at reduced ratings. in the output stage.

Referring to the circuit diagrant of Fig. 1323, a 6Lit, operating at a plate voltage of +40 but at reduced input, is used in the Tri-tet oscillator circuit. A potentiometer in the screen cirruit provides a means of varying the screen voltage and, ultimately, the excitation to the finalamplifier. The II 165 bufferdoubler cirenit is capacitively coupled to the oscillator. This seeond stage makes it possible to obtain exeitation for the final amplifier in a third band

Fig. 1322-All coptrols for the 100-watt five-hand transmitter are below the chassis level. I'rom left to ripht, they are the oscillator screen-voltage piotentioneter. the oscillator plate-tank condenser, the buffer-doubler plate-tank condenser, the meter switch and the final-amplifier plate-tank condenser. The pancl is of standard rack width and is $8 \frac{3}{4}$ inches high.
from a single erystal, operation in the second band being available by doubling frequency in

Fig. 1323 - Wiring diagram of the threc-stage five-band 100 -watt transmitter for 1000 -volt operation.
C_{1} - $1000-\mu \mathrm{ffl}$. mica.
(2, (3 - 150. $\mu \mathrm{ff}$. variable (Na-tionals"1-150).
C. $-100 \mu \mu \mathrm{fd}$. per section, 0,05inch sparing (Hammarhnd 11F(31)-100.(:).

C:- $100-\mu \mathrm{fd}$. mica.
$\mathrm{Cis}_{\mathrm{s}}$ - 6 . $60-\mu \mathrm{ff}$ d.mira trimmer (two National M-30 in parallel).
C_{6} - Neutralizing condenser (Na . tional J ($\mathrm{C}-800$).
 $\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}$. Ci4, Cis. Ci6, Ci-, Cix, C_{19}, (2n-0.01- ff . mica.
$\mathrm{k}_{1}-0.1 \mathrm{mog}$ ghm, $1 / 2$-watt.
$\mathrm{R}_{2}-300$ ohms, l-watt.
$\mathrm{K}_{3}-20,000$-ohm 10 -watt potentiometer (Mallory F2OM1').
$\mathrm{R}_{4}-25,000$ ohms, 10 -watt.
R_{5} - $\mathbf{5 0 , 0 0 0}$ ohms, 1 -watt.
$\mathrm{R}_{6}-20,000$ olmes, 10 watt
18:- 10,000 ohms, 10 -watt.
$R_{s,}, K_{9}, R_{10}, R_{11}, R_{12}-25$ ohms, 1-watt.
RFC: $-2.5-\mathrm{mh}$. r.f. choke.
$121 \mathrm{C}_{2}-1$ mh., 300 -ma, r.f. choke (Aational R-300I).
S - Double-pang, 5 -pircuit switch (Mallory 3226J).
Ti, T_{2} - Fïlament transformer, 6.3volt, 3 amperes (UTCS-.55).
$\mathrm{L}_{1}-1.75-\mathrm{Mc}$ c crystals - 32 turns No. 24 d.s.c., close. $\mathrm{L}_{4}-1.75 \mathrm{Mc}-40$ turns No. $18,21 / 2$-inch diameter, wound.
3.5-Mc. erystals - 9 turns No. 22, 1 inch tong; 100- $\mu \mathrm{\mu d}$. mica in form, connected across winding. E.Ne. erystals - 6 turns No. $22,5 / 8$-inch long.

All on liammarlund $11 / 2$-inch diameter forms.
$\mathrm{L}_{2}, \mathrm{~L}_{3}-1.75 \mathbf{1 c}$. - 56 mrns, $11 / 4$-inch diameter, $13 / 4$ inches lonp, $54 \mu \mathrm{~h}$. (National AR80, no link).
$3.5 \mathrm{Mc} .-28$ turns, $1 / \frac{1}{4}$-inch diameter, $11 / 2$ inches long, $15 \mu \mathrm{~h}$. (National AR 40 , no link).
7 Mc. -14 turns, $11 / 4$-inch diameter, $11 / 4$ inches long, $4.2 \mu \mathrm{~h}$. (National Alk20, no link).
14 Mc. -8 turns, $11 / 4$-inch diameter, $11 / 2$ inches long, $1.25 \mu \mathrm{~h}$. (ational $\mathrm{Al10}$, no link).
28 Mc.- 4 turns, 1 -inch diameter, $3 / 4$-ineh long, $0.5 \mu \mathrm{~h}$. (National All5, turns close, no link).
 An 80- μ fd. fixell air padder (Cardwell JI).80OS) is placed in right-rear corner of chassis and attached to coil with flexible leads and clips.
3.5 Mc - 32 turns No. $16,21 / 2$-inch diameter, $23 / 4$ inches long, $39 \mu \mathrm{~h}$. (IS \& 1180 BCL).
7 Me. - 20 turns No. 14, 2 -inch diameter, $21 / 2$ inches long, $12 \mu \mathrm{~h}$. (B \& $W 40$ BCL).
$14 \mathrm{Mc} .-8$ turns No. 14,2 -inch diameter, 2 inches long, $2.5 \mu \mathrm{~h}$. ($\mathrm{B} \mathcal{E} W 20 \mathrm{BCL}$). One removed turn from each end.
28 Mc. -4 turns No. 12, 2 -inch diameter, $13 / 4$ inches long, $0.7 \mu \mathrm{~h}$. (B \& W 10 BCL). Oue turn removed from earli end.
$\mathrm{L}_{5}-5$ turns No. $14,1 / 2$-inch diameter, $1 / 2$-inch long.

Fig. 1324 - On top of the chassis of the 100 -watt transmitter, the cathode coil, L_{1}, the 61.6 and the crystal are in line at the righthand end. The 11 Y65 is mounted horizontally on a small panel which also provides mounting space for the filament and screen by-pass condensers, the coupling condenser, C_{7}, the grid leak, R_{5}, and the grid choke. L_{2} is just to the left of the 6 L 6 and to the right of C_{2} underneath. L_{3} is in the center at right angles to L_{2} and L_{4} and just to the rear of Cis underneath. The 1623 socket is submounted to lower the plate terminal. The neutralizing condenser, C_{9}, is directly in front of the tulbe. $R F C_{2}$ is just to the left of L_{4}. The two filament transformers are monnted on the rear edge.
the oscillator itself. Parallel plate feed is used in the second stage to permit series grid feed to the final amplifier, thereby avoiding the probability of low-frequency parasitic oscillations.

The neutralized final amplifier is directly coupled to the driver stage. C_{8} and L_{5} form a trap for v.h.f. parasitic oscillations.

The meter switch, S, shifts the milliammeter to read oscillator cathode current, driver screen current, driver cathode current, finalamplifier grid current and final-amplifier cathode current. The individual filament transformers permit independent metering of the cathode currents of the last two stages.

Power supply-- This transmitter is designed to operate from the combination $1000-$ volt and 400 -volt plate supply shown in Fig. 1327. Both fixed bias of 75 volts for the HY65 and cut-off bias for the final amplifier may be obtained from the unit shown in Fig. 1351. For the 1623 tube; resistors R_{2} and R_{3} should be 6000 ohms and 7000 ohms , respectively.

Tuning - Coils for the desired output frequency, consistent with the crystal frequency, should be plugged in the various stages, bearing in mind that frequency may be doubled in the plate circuit of the oscillator and again in the second stage, if desired. It should also be remembered that the selection of the eathode coil, L_{1}, depends upon the crystal frequency and not necessarily the output frequency of the oscillator, the same cathode coil being used for both fundamental and secondharmonic output from the crystal stage. Since much better efficiencies can be obtained with the H 965 operating as a straight amplifier, it is advisable to avoid doubling in this stage.

The first two stages should be tested first, with all voltages applied except the plate voltage for the final amplifier. Tuning the oscillator to resonance, with the key closed, should cause a slight dip in cathode current accompanied by an abrupt rise in the screen and cathode current of the second stage.

Fig. 1325 - Underneath the $8 \times 17 \times 3$-inch chassis of the 100 -watt transmitter. C_{2} to the right and C_{3} in the center are insulated from the chassis by polystyrene button insulators. C_{4} to the left also is insulated and is spaced from the chassis to bring all shafts at the same level. Leads to the coils imme. diately above the tank condensers pass through large grommeted clearance holes. Mcter-shunt resistances are soldered directly to the switch terminals. R_{3} at the right is insulated from the chassis by extruded bakelite washers. The v.h.f. parasitic trap is suspended in the amplifier grid lead to the left of C3. Insulating couplings are reguired for C_{2} and C_{3}.

volts, and HY65 screen voltage between 210 and 250 volts, exact values depending upon whether the stage is operating at the fundamental or doubling frequency. Excitation should be adjusted to keep the amplifier grid current between 20 and 25 ma., when the grid voltage should measure 130 to 150 volts. Power output of 65 to 75 watts should be obtainable on all bands. The oscillator eircuit may be arranged for optional v.f.o. input as shown in Fig. 1385.

If the output stage is to be plate-modulated, the plate voltage should be reduced to 750 . Operating data for suitable tubes of other types will be found in the tables in the Chapter Twenty.

C. Complete 100-Watt 5-Band Transmitter

The transmitter of Fig. 1322 may be combincd in a standard rack with other units to form a complete transmitter. Plate voltage for oscillator and driver as well as for the finalamplifier stage may be obtained from the duplex power supply shown in Fig. 1327. Bias voltage for both driver and final-amplifier stages may be obtained from the combination unit shown in Fig. 1351, with fixed bias for the II ' 65 being taken from the VR75-30 branch. A suitable antenna tuner is the one shown in Fig. 1317. The larger variable condensers should be used. The total height of the various units combined is $29^{3 / 4}$ inches, allowing a 7 -inch panel for the bias-supply unit.

Tuning the HY65 plate circuit to resonance should produce a good dip in cathode current, with a simultancous reading of maximum grid current to the final amplifier.

The amplifier should then be neut ralized and tested for parasitic oscillation. The latter is done by shifting the final-amplifier platevoltage lead to the 400 -volt tap and turning of the bias supply. No plate coltage should
be applied to the exciter stages. C_{4} is then varied through its entire range for several settings of C_{3}. If at any point a change in the final-amplifier cathode current is observed, C_{8} should be adjusterd to eliminate it. During this process. plate voltage should not be applied long enough to cause appreciable heating of the tube.

Normal operating voltages may now be replaced and the final amplifier tuned up in the usual manner. A plate current of 100 ma. will indicate normal loading of the final amplifier. (Plate current will be the difference between grid and cathode currents under operating conditions.) With all stages tuned and the amplifier loaded normally, the oscillator cathode current should run between 16 and 30 ma., HY65 screen current between 6 and 11 ma., HY65 cathode current botween 45 and 70 ma., H 165 grid voltage between 125 and 260 volts, oseillator screen voltage between 100 and 250

Fig. 1327-This power supply makes use of a combination transformer and dual filter system delivering 1000 volts at 1.25 ma. and 400 volts at 150 ma., simultancously. The circuit diagram is given iu Fig, 1326. The 1000 volt bleeder resistor is mounted on the rear edge of the chassis, with a protective guard made of a piece of galvanized fencing material to provide ventilation, Millen safety terminals are used for the two high-voltage terminals. Ceramic sockets should be used for the 866 Jrs . The chassis measures $8 \times 17 \times 3$ iuches and the standard rack panel is $83 / 4$ inches bigh.

Fig. 1328-Pancl vien of the two-tube medium-power transmitter, The switch shifts the meter from one stage to the other.

Since parallel feed is used in the oscillator plate circuit it is not necessary to insulate the frame of C_{6} from the chassis. This condenser is mounted directly on the chassis. The erystal, 616 and the eathodecoil sockets are in line along the left-hand edge of the chassis. The socket for L_{2} is directly behind C_{6}. Coils for the oscillator are wound on Hammarlund $11 / 2$-inch diameter forms.

On the other side of the shield, the amplifier tube is submounted

C. A Two-Stage Medium-Power BeamTube Transmitter

The simplicity of the 300 -watt tramsmitter shown in Figs. 1328, 1330, and 1331 will appeal to many amateurs. As the circuit of Fig. 1329 shows, a 61.6 Tri-tet oscillator supplies excitation at either the crystal fundamental frequency or its second harmonic for the HK257B in the output stage. Since the lat ter is a screened tube, no neutralizing is required.

The chassis is divided into two sections by a metal baffle shield with the oscillator at the left-hand end of the chassis and the amplifier to the right. The two tuning condensers are plared so that their dials are symmetrical on the panel.
by cutting a large hole in the chassis and spacing the socket on pillars so that it comes abont $13 / 4$ inches below. The ghass envelope should just clear the top of the chassis. A spring contact strip is required so that the base shell of the tuhe is grounded to the chassis when it is plugged into the socket. The plate tank condenser is mounted in an inverted position on National type GS-2 ceramic pillans to bring its shaft up level with that of C_{6}. The plate tank coils are wound on National type XIR-10-A ceramic forms. Since the full form length is required for the 3.5 -Mc. coil. the link winding for this band is preformed and held in phace with y-inch bakelite strips. The link windings for the other bands may be wound on the form itself.

Fig. 1329 - Cireuit diagram of the two-stage medium-power transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{5}-0.001-\mu \mathrm{ff}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{8}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{-1}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.01-\mu \mathrm{fl}$. paper.
(© - $250-\mu \mu \mathrm{fd}$. variable (National lisis-250).
$\mathrm{C}_{14}-100-\mu \mathrm{fd}$. variable, (0.085 -inch plate spaeing (National TMHI-100).
$\mathrm{C}_{15}-0.001-\mu \mathrm{fl} .5000$-volt mica.
$\mathrm{K}_{1}-0.1$ megohm, $1 / 2$-watt.
$1 K_{2}-500$ ohms, I-watt.
$\mathrm{R}_{3}-25$ ohms, 1 -watt.
$\mathrm{I}_{4}-50,000$ ohmes, 10 -watt.
Rs - 50 ohms, 1-watt.
R6- 25 ohms, 10 -watt.
kFC - 2.5-mili. r.f. choke.
MA - D.C. milliammeter, 300-ma. seale.
S—I.I.D.'T. tokgle switeh.
T_{1} - Filament transformer, 6.3 volts, 2 amperes.
T_{2} - Filament transformer, 5 volts, 7.5 amperes.
1.1-Fior 3.5-Me. eryutals - 10 turns No. 22, 1 inch
long, $100-\mu \mu \mathrm{fl}$. mica mounted in form eonneried arross winding.
For $\overline{-}$ - V1 c. eryutals - 6 turna Vo. 22, 5/8 inch long.
I.2 - 3.5 and 7 Ac. - 15 turns No. 18 enameled, $7 / 8$. inch long.
7 and 14 .he. - 6 turns No. 18 enameled, is inch long.
Above coils wound on Hammarlund $1 / 2 / 2 n e h-d i a m e$ ter forms.
$L_{3}-A l l$ coils wound on national XR-10-A $21 / 2-i n c h-$ diameter forms.
3.5 Me. - 25 turns No. 14 enameled, wound in successive grooves.
7 Me. - 14 turns No. 12 enameled, wound in successive grooves.
14 Me. - 6 turns No. 12 enameled, wound in al. ternate grooves.
I.4-Output link winding: 4 turns for $3.5 \mathrm{Mc} ., 3$ turns for $7 \mathrm{Mc}, 2$ turns for 14 Mc . (see texi).

Luft - Fig. 1330 - The nscillator and amplificr stages of the medinm-power heam-tuhe transmitter are divided by a baffle shield. Uscillator components are to the left while the amplifer parts are assembled to the right.

Bolow-Fig. 13.31 - The filament trallsformers for the two-tube medi-um-power transmitter are monnted underneatis the chassis along with all by-pass condensers and resistors. The sorket for the amplifier tube is dropped to bring the glass envelope close to the tup surfare of the ehassio.

FWo filament tratnoformaers are required. 6.3 volt: for the didf and $\overline{5}$ volts for the If will be found underneath the rhassis. By means of the d.p.d.t. toggle switch. N, ther meter may be romberted to read either owillator or amplifier cathode current.

The asillathor : aning condonser. Cbs has at sulticient capabity range tacover buth the erstal fundamental frequencer and the second harmonic. When tuning to the second harmonic, she phate current will show a smooth dip at resonatme, smilar to amplifier tuning. At the erystal fundamental, however, more care must be used in taming the whate circuit, sine if it is luned too done to resonance oscillation will break off entirely or keying will be chirpe.

The amplifier :hould be provided with sufficient fixed bias to cut of plate rurrent with exeitation removed but plate voltage applied. The additional bias required for proper onerating conditions, depending upon the sareoll and plate voltages used. may be obtained from a grid-leak resistane of suitable value.

Fïg. 1332-This power shpoly unit delivers 830, f060) or 1250 voles at 250 ma. The required woltage in selerted by taps on the secondar: Kipphe is only 0.23 per ent and the requlation is about 10 per cent. The transformer torminal batard is covered with a panel momuted on pillars at the four corners. Insulating capy are provided for the tube plate terminals. A Nillen safety terminal protert the highevolaze emnection. The chatsis measures $11 \times 17 \times 2$ inches and the pand sige is $101 / 2 \times 1$ inches. "The cirruit is the sann" as that in Fip. 1350, the following compoments being used:
\therefore - \because - fil. 500 volt (Aerovox II y vol).
($2-4$ mid. 1500 , oft ((Aerowox liy yod).
J. - laput oboke, 5-25 henrys, 300 ma., 90 ohms (ITC:S3:4).
L_{2} - Sumothing choke, 15 honrys, 300 ma., 90 ohms (LTC S33).
is - 25.0no ohms, 100 -watt.
'T, 1500.10.0-1000 volts r.mif. each side, 300 ma. d.e. (ITC 515).
$\mathrm{T}_{\mathrm{r} 2}-2.5$ voles, 10 amp .res, 10,000 -volt insulation (UTC S57).
in parallel when the second pair of clips connects each rotor to the stator of the opposite condenser. The feeders are connected to the two large stand-off insulators mounted on the panel.

Fig. 1333 - Circuit diagran of the link -coupled antennatuning unit for use with medium-power transmitters. $\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mathrm{fil}$. variable, 0.07 -inch spacing (National 'I'MC. $10(1)$).
1.1-22 turns No. 1.t, diameter $23 / 4$ inches, length 4 inches (Coto with variable linh).
$1.2-4$ turns, rotating inside L_{1}.
M - R.f. ammeter, 0.2.5-ampere range for mediumpower transmitters.

(C. A Push-Pull Amplifier for 200 to 500 Watts Input

Figs. 1335, 1337 and 1338 show various riews of a compact push-pull amplifier using tubes of the 1500 -volt $150-$ ma. class, although the design is also suitable for use with tubes of the 1000 -volt 100 -ma. class. With the lower plate voltages, a plate tank condenser with a spacing between plates of 0.05 inch and smaller tank coils may be used.

The eircuit, shown in liig. 1336, is quite conventional, with link coupling at both input and ontput. The tuned circuits, $L_{3} C_{6}$ and $L_{4} C_{5}$, are traps important for the prevention of v.h.f. parasitic oscillations. 'The 100 -mat. meter may be shifted between the grid and cathode circuits for reading either grid current or cathode current. When shifted to read wathode current, the meter is shunted by a ressistor, R_{2}, which multiplies the scale reading by five. This resistor is wound with No. 26 copper wire, the length being determined experimentally to give the desired sable multiplication.

Consiruction - The mechanical arrangement shown in the photographs results in a compact unit requiring a minimum of panel space. The tank condenser is mounted on the

Fig. 1334 - A link-coupled antenna-tuning unit for use with resonant feod systems and medimmower amplifinrs. 'The inductance, with variable link, is monted on the condenser frames. Chips are provided for changing the number of turns and for switehing the condensers from series to parallel. 'The panel is $51 / 4 \times 19$ inches.
left-hand partition (Fig. 1337) at a height which brings its shaft down $25 / 8$ inches from the top of the pancl. The plate tamk-eoil jack bar is mounted centrally with the condenser on sparers which give a $1 / 2$-inch clearance between the strip and the partition. C_{10} is mounted with a small angle on the partition under the center of C_{2}. Leads from both ends of the rotor shaft are brought to one side of C_{10} for symmetry.

The two tube soekets are mounted in a line through the center of the chassis and at opposite ends of the plate tank condenser. They are spaced about one inch below the chassis on long machine screws. The neutralizing condensers are placed botween the two tubes, so that the leads from the plate of one tube to the grid of the other are short. The r.f. choke is mounted just above the tank condenser.

The right-hand partition is cut out at the forward edge to clear the meter. This cut-out can be readily made with a socket punch and a hacksaw. The socket for the grid tank coil is mounted t^{1} : inches behind the parel, just above the chassis line.

The grid tank condensor, C_{1}, is mounted under the chassis without insulation. Large clearance holes, lined with rubber grommets, are drilled for conneating wires which must be run through the chassis or partitions. The parasitic traps are made self-supporting in the plate leads from the tank condensers to the

Fig. $1335-\mathrm{A}$ general view of the compact 450-watt push-pull amplifier, showing the front panel and topof chassis arrangement. Mounted on a standard relay rack, the heipht is only 7 inclese and the depth 9 inches. Grid and plate tank circuits are isolated from each other by the double shielding partitions. On the panel are the $0-100$ ma. milliammeter, which is switched to read current in all circuits, the plate-tank tuning dial, and a chart giving coil and tuning data. Thesmall k nob at the left below is the grid-circuit tuning control, while the one to the right is for the meter switch. The tule sockets are mounted adjacent to the stator terminals of the plate-tank condenser, C_{2}, in the center, with the neutralizing condensers between, providing short leads.

Fig. 13.36-Circuit diagram of the 450-watt push-pull amplifier.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$. per section, 0.03 -inch spacing (IIammarlund IIFAIS-100-B).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{fd}$. per section, 0.07 -inch spacing (Hammarlund 11 FBD-100-E).
($: 3, \mathrm{C}_{4}$ - Ncutralizing condensers (National NC-800). (:5, (:6-3-30- $\mu \mathrm{ff}$. mica trimmers (National M-30).
(:7, C ${ }_{8}, C_{9}-0.01-\mu \mathrm{fd}$. mica.
($10-0.001-\mu \mathrm{fd}$. mica, 7500 -volt rating (Aerovox 1653).
$\mathrm{R}_{1}-\mathbf{2 5}$ ohms, 1 -watt.
R_{2} - Meter-multiplier resistance for 5 -times multiplication, wound with No. 26 wire.
RFC: - 1 -mh. r.f. choke (National R-154C).
MA-Milliammeter, 100 -ma.
1.1-I3 \& W JC:I, nerion, dimensions as follows: * 3.5 Me. - 44 turns No. $20,21 / 8$ inches long. T Mi_{1} - - 26 urns No. $16,21 / 8$ inches long. It Mc. - 14 turns No. $16,17 / 8$ inches long (remove 2 turns from 13 \& W coil).
28 Mc. -6 turns No. $16,1 \%$ inches long (re. move 2 turns from is \& W' coil).
I. $2-13 \& \mathbf{W}^{\prime} \mathrm{T}^{\prime}(\mathrm{l}$, series, dimensions as follows: **
3.5 He -26 turns No. 12, $3 \frac{1}{2}$-inch diameter, $41 / 2$ inches long.
7 M1c. - 22 turns No. 12, $21 / 2$-ineh diameter, $41 / 2$ inches long.
14 Nc. - 10 turns No. 12, $21 / 2$-inch diameter, $41 / 4$ inches long, remove one turn from cach end. $28 \mathrm{Me}-4$ turns $1 / 8$-inch copper tubing, $21 / 2$ inch diameter, $41 / 2$ inches long. Remove one turn from each end.
tube caps. The panel is placed so that the plate tank-condenser shaft comes at the center. The meter switch is mounted to balance the knob controlling C_{1}.
Power supply and excitation - The T 40 tubes shown in the photographs operate at a maximum plate voltage of 1500 for c.w. work. For this, the unit shown in Fig. 1349 is suitable. The supply shown in Fig. 1352, minus the VR-tube brambh, will provide the biasing voltage required for plate-current cutoff. R_{2} should have a resistance of 2500 ohms and R_{3} of 1.500 ohms. A filament transformer delivering 7.5 volts at 5 amperes also will be required. The exciters of Figs. 1305 or 1309 will furnish adequate exciation.
Tuning - After the amplifier has been neutralized, a test should be made for parasitic oscillation. The bias should be reducel until the amplifier draws a plate current of about 100 ma. without excitation. With C_{1} adjusted to various settings, C_{2} should be varied through

L3, 1.4-4turns No. 14, 1/2-inch dianseter, $3 / 4$-ineh long.
*All $11 / 2$-inch diameter, 3-turn links.
** All coils fitted with 2-turn links.
its range and the plate current watched elosely for any abrupt change. Any change will indicate oscillation, in which case C_{5} and C_{6} should be adjusted simultaneousily in slight steps until the oscillation disappears. Unless the wiring differs appreciably from the original, complete suppression will be obtained with the two condensers at full capacity. Changing bands should have no effect upon this adjustment.

With normal bias replaced, the amplifier should now be tuned up and the excitation adjusted so that a gricl current of 60 ma . is obtained with the amplifier fully loaded. Full loading will be indicated when the cathode-current meter registers 360 ma., which includes the 60 -ma. grid current. Under these conditions the biasing voltage should rise to 150 volts, dropping to about 70 volts without excitation when the plate current will fall to almost zero.

If the amplifier is to be plate-modulated, the plate voltage should be reduced to 1250 and the loading decreased to reduce the plate

Fig 13.37-All components of the 450 watt push-pull amplifier are assembled around a small metal chassis $7 \times 2 \times 9$ inches deep. The partitions are standard $61 / 2 \times 10$-ineh interstage shields. The plate tank condenser is mounted on the left-hand partition. The plate tank-coil jack-bar is mounted centraily, opposite the condenser, on spacers which give $1 / 2$-inch clearance between the strip and the partition. C_{10} is mounted with a small angle bracket on the partition under the center of C_{2}. The socket for the grid tank coil is mounted just alove the chassis line. Nillen safety terminals are used for the external high-voltage plate and bias connections.

Fig. 13338 - Bontom view of the 450 -watt push-pull amplifier, showing the grid tank condenser between the two thle sockets.
cut in the pand for cach shaft. Alternatively, metal washers comld be msed between the panel and each pillar to extend the mounting.

Wach coil form is supported on 1 1/2inch cone insulators. 'The two highwoltage blocking condensers, C_{3}, also are mounted on pillars from Citi-1 stand-offs. A eopler relip on a flexible lead, commerted permanembly to one end of earh eoil, bermits adjustmont of the roil inductance by short-cireluting furns.

Outjut connertions are made to the two terminal insulators at the right, while input connections are made to the terminals of the two voltagebloeking coudensers. When singlewire output is desired, the output terminal connerted to the condenser rotors is grounded and the eoil in current to 3 : 0 (nat. The same bias-supply adjustment will be sitisfactory for this type of operation but exaitation may be reduced to give a grid eurrent of 40 ma., bringing the total cithode current to 200 mat. 'lohe antenna tuner shown in Fig. 1334 or the pi-section network of fig. 1340 maty be used.

Operating conditions for tubes of ot her characteristies will he fonnd in ('hapter 'lwenty.

Fig. 1339 -. I Iagram of the pi-seetion antenna rempler. $\mathrm{C}_{1}-\mathrm{C}_{2}-300-\mu \mu \mathrm{fl}$. variahle, 0.07 -jnch spacing (National l' M(:-300).
$\mathrm{C}_{3}-\mathbf{0 . 0 1 - \mu \mathrm { fd } \text { . mida.. }} \mathbf{3 0 0 0}$-volt rating.
1.1, $\mathrm{L}_{2}-26$ turns No. 14, 21/2-inch diameter, $31 / 2$ inches long (National XR10A form wound full).

(1) A Pi-Section Antenna Coupler

The photograph of Fig. 1340 shows the constructional details of a pi-neetion type antenna eonpler. The wiring diagram appears in lig. 1339. All parts are momnted directly on the panel using flathead marhine screws. The eomdensers eath are supported on three ceramic pillars from National type (ix-1 stand-off insulators. A $3 / 4$-inch $6-32$ mitrhine sorew is inserted in one end of eroh pillar and turned tight. Whe head of the sorew is then cut off with a hatrksaw and the protruding quar-ter-inch or so is threaded into the monnting holes in the end plate of the eondenser. The shatf is cut off about $1 / 4$ inch from the frime and fitted with a Johnson rigid insulated shaft coupliyg (No. 252). Since the rompling will extend beyond the stand-off insulators, a $3 / 4$-inch elearance hole should be

Fig. 1340- Piosection type antenna coupler. All parts are monnted on a Presdwood panel 8×19 inches. ' C he circuit is given in Fig. 13.5y.

[. A Compact 450-Watt Push-Pull Amplifier

The photographs of Figs. 1342, 1343 and 1344 show an amplifier designed along the lines of the type of construction often referred to as "dish type." This type of construction has many advantages, although its use normally is confined to components of moderate physical dimensions and weight.
The tank coils may be mounted so that very little metal of the normal rack structure is in the immediate fields of the tank coils - a condition almost impossible to approach in the usual form of construction with metal panels and side brackets. Plug-in coils are made much more accessible for changing and the direction of "pull" in removing coils is outward away from the rack rather than upward into the next rack unit above. Terminals may be mounted so that the wiring between rack

Fig. 1341 - Circuit diagram of the "dish-type" pushpull 450 -watt amplifier.
$\mathrm{C}_{\mathrm{I}}-100 \mu \mu \mathrm{fl}$. per section (IIammarhund MCI) 100 M).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{fd}$. per section (Cardwell MT100CD), 0.07 -inch spacing.
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - Neutralizing condenser, 10 to $15 \mu \mu \mathrm{fd}$. (Lammarlund N10).
$\mathrm{C}_{5}, \mathrm{C}_{6}-500-\mu \mu \mathrm{fd} .600$ volt mica.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}-0.01-\mu \mathrm{fd}$. 600 -volt paper.
$\mathrm{C}_{11}-0.002-\mu \mathrm{fl}$. 5000 -velt mica.
$\mathrm{R}_{1}, \mathrm{R}_{2}-6000$ ohms, 10 -watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}-25$ to 50 ohms, 2 -watt.
$\mathrm{R}_{6}, \mathrm{~K}_{7}, \mathrm{~K}_{8}$ - Cathode-current meter shunts (aer text). $5-2$-gang, 6-position rotary switeh (Mallory).
$\mathrm{T}_{1}, \mathrm{~T}_{2}-6.3$ volts, 6 amperes.
L_{1} - National AK series coils with center link (variablelink type recommended).
Substitute coils may be wound on $11 / 2$-inch diameter forms as follows:
3.5 Mc . -44 turns, 2 inches long.

7 Mc . 22 turns, 2 inches long.
14 Mc . -10 turns, $11 / 2$ inches long.
$28 \mathrm{Mc} .-6$ turns, $1 \frac{1}{2}$ inches long.
L_{2} - Barker and Williamson'TL series with center links.
Substitute coils may be wound as follows on $21 / 2$-inch diameter forms:
3.5 Mc . - 36 turns, 4 inches long.

7 Mc. -18 turns, 4 inches long.
14 Mc . -10 turns, 3 inches long.
28 Mc. -6 turns, 3 inches long.

Fig. 13.42 - The three controls of the 450-watt "dishtype" amplifier are arrankel symmetrically. The meter ${ }^{\text {switeh is at the right, the control for the plate tank con- }}$ denser at the center and the gridecircuit control at the left. The panel which is $83 / 4 \times 19$ inches is fitted with panel bearings for the condenser-shaft extensions. It is fastened to the chassis by flat-head screws after the bottom edges of the chassis have been drilled and tapped.
units may be made inconspicuous and so that the chances of personal injury from accidental contact with exposed terminals at the rear are greatly reduced. Lastly, this form of construction usually reduces the required height of the unit which is a particular advantage in table racks where vertical space is at a premium.

The circuit of the amplifier shown in the diagram of Fig. 1311 is standard in every way except in the method of metering. By means of the two-gang six-position switch, it is possible to measure the individual grid and cathode currents of each tube as well as total grid or total cathode currents. To accomplish this, two small filament transformers are used, one for each tube, instead of a single large transformer. The meter is switched across shunting resistances in each circuit to simplify switching. In the cathode circuits, the shunting resistors should be carefully adjusted to provide a seale multiplivation of ten, giving a full-seale reading of 1000 mat.

In doing the r.f. wiring, care should be taken to keep it as symmetrical as possible. In forming the long wires between the neutralizing condensers and the tank-condenser stators, the lengths should be made identical. The wire connecting to the rear condenser stator should go directly in a straight line, while the one going to the front stator section maty be bent to make up for the difference in distance between the neut ralizing condensers and the two stators. The plate leads to the tubes should be tapped on these long wires at points which will make the wire length between neutralizing condenser and plate and between tank condenser and plate equal on each side.

The positive high-voltage lead, run inside the chassis with high-voltage cable, comes up through a feed-through insulator near the plate choke.

The rotors of the grid tank condenser are not grounded, since experience has shown that

Fig. 13.43- The grid-eircuit components of the "dish-t ype" 4 - 0 -watt amplifier are mounted on this side of the partition which is braeed by standard 5 -inch triangolar brackets. The tank condenser is momnted by means of a srew in the hole which remains when the shield hetween the stators is removed. The ceramic terminal strip is for all external connections except for positive high voltase for which a special safety terminal is provided. A large clearance home should be cut in the chassis for the condenser shaft. 'Ihe shaft, which sould come at the eonter line of the chassis, should be provided with a llexible insulating eoupling.
the panel as the last operation before putting the panel in place.

If the layout and wiring have been followed carefully, no difficulties should be encountered in nentralizing nor with parasities. Both grid and plate currents should check the same within ten per cent.

The meter when switched to read grid current forms a good neutralizing indicator. Both neutralizing rondensers should be kept at equal set tings and adjusted simultaneously until the grid current remains perfeetly steady as the phate tank condenser is tumed through resonance. Neutralizing is always done with plate voltage removed.

The amplifier requires a driver delivering 25 to 40 watts. If the amplifier is to be proterted with fixed bias against failure of excit:ttion, the grid-leak resistance of each tube should be adjusted so the total grid voltage under operating conditions will be not less
an amplifier of this type usually neutralizes more readily without the ground connertion and excitation usually divides more evenly between the two tubes.

The leads from the neutralizing condensers to the grid terminats are crosised over before they pass through small feed-through points mounted in the partition. The grid r.f. chokes are self-supporting between the tube grid terminals and the feed-through points in the chassis which carry the biasing leads inside to the individual grid leaks. Filament wires are run through $3 / 8$-inch holes lined with rubber grommets.

Inside the chassis, the leaks and metershunting resistances are supported on fibre lug strips. 'The leads going to the switch should be soldered in phace. formed into cables and the other ends connected to the switch on
than 125 volts without exceeding the maximum grid-current rating of 25 ma . per tulse when the amplifier is loaded to rated plate current.

(1. A 450-Watt Band-Switching Amplifier

The photographs of Figs. 1345, 1347, and 1348 illustrate a 450-watt push-pull bandswitching amplifier capable of handling a power input of 450 watts at 1500 volts for c.w. operation or 375 watts with plate modulation. While the type T55 is shown, any of the comparable triodes in the 1000 - or 1500 -volt class, such as the 809, 'T40, II 140, RK'35, UH50, 808, 812, RK51 or 35 T , may be used in a similar arrangement.

The circuit is shown in Fig. 1346. Bandswitching is accomplished by short-circuiting turns of both plate and grid coils by means of tap switches. Any three adjacent hands may

Fig. 13.4. - The wate tank-wil jach strip of the 450 -watt push-pull amplifier is fastened to the tank-condenser frame with strip-metal brackets. The assembly, mounted on $5 / 8$-iach stand-off insulators is placed at the center of the chassis as far to the left as possible. The condenser shaft is extended at right angles through the bearing in the center of the chassis by means of two Millen $4 \overline{5}$-degree shaft joints connected together by a short length of bakelite shafting. The sookets for the tubes are sibmonnted on the 6×8-inch partition $31 / 2$ inches ul from the chassis and $17 / 8$ inch from carth edge and are orientated so that the plates of the tubes will be in a vertical plane.

be covered in this manner. By plugging in another pair of coils, a second set of three adjacent bands may be covered. Thus the $3.5-, 7-$ and 14-Mc. bands may be covered with one pair, and 7-, 14- and 28-Mc. bands with another pair. $C_{9} L_{3}$ and $C_{10} L_{4}$ are parasitic traps to eliminate v.h.f. parasitic oscillations. Fixed-link coupling is used at the input, with variable-linkoutputcoupling.

Coils - The phate-tank coils listed under the rirenit, diagram are of a sperial series designed primarily for use with a multisection tank rondenser. They are provided with four extra plugs which are used, in this case, for the short-cireuiting taps. The eoil covering 7, 14 and 28 Mc. requires slight alteration, however. 'I'wo turns on each side of center are cut free from the supporting strips and left self-supporting: otherwise, the roil heating which usuatly occurs at 28 Mc. may be sufficient to ruin the base strip. At the same time, these two turns on carlh side should be reduced in diameter to $17 / 8$ inches. This may be done quite readily by unsoldering the central ends, twisting the turns to the smaller diameter, and cutting off the excess wire. While the lower-frequency taps may be soldered, it is advisable to use clamps on the wire for the 28-Mc. taps. Johnson coil clips are suitable for this purpose.

Grid coils with sufficient mounting pins being unobtainable the taps for the grid coils are brought out to a five-prong Millen coil-

Fig. 13.46 - Cireuit diagram of the 450 -watt amplifier.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$, per section, 0.06 -ineh plate spacing (Hanmarlund II FBS. $100-\mathrm{E}$).
$\mathrm{C}_{2}-0.001$ - $\mu \mathrm{ft}$. 7500 -volt mica (Acrovox 1623). $\mathrm{C}_{3}, \mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{5}, \mathrm{C}_{6}$ - Neutralizing condenser (National VC800).
$\mathrm{C}_{7}, \mathrm{C}_{5}-$ Isolantite mica trimner, 20-100 $\mu \mu \mathrm{fd}$. (Mal. lory CГN954).
$\mathrm{C}_{9}-150 \mu \mathrm{ff}$. 0.05 -inch plate spacing (1lammarlund 11F13-150-C).
$\mathrm{C}_{10}-0.01-\mu \mathrm{fl}$, paper.
RFC 1 - 1-mh. r.f. choke, 600 ma. (National R154).
mounting bar (Type 4020i). A plug-in socket for the bar is sub-mounted in back of the coil sucket.

Wiring - All of the wiring, except for the power wiring underneath the chassis. is done with No. 14 tinned bus wire. Wherever possible. connections are made with short. straight pieces of wire rumning directly from point to point. Of most importance are the leads to the tube grids and plates. The leads to the tank condensers and those to the neutraizing condensers must be kept entirely separate: at no point should these leads be common. This practice helps in the prevention of parasitic oscillations. The grid by-pass condenser is mounted close to the grid-coil socket.
S_{1} - Ganged sections of Ohmite BC-3 band-change switch.
S_{2} - Ganged sections of Mallory 162C Ilamband switch.
$\mathrm{T}_{1}-7.5$-volt 6 -ampere filament transformer (Thordarson (T-19F94).
L_{a} - For $3.5-\mathrm{F}$ - and 14 - Me. bands - 38 turns No. $14,51 / 4$ inches long, $21 / 2$-inch diameter, tapped at the 4 th and 9 th turn each side of center (B \& W TVII-80 $35 \mathrm{\mu h}$., tapped each sidc of center at $2 / 19$ and $9 / 38$ of the total turns in each half).
For $\overline{6}, \mathrm{l}$ 14- and 28-Mc. bands - 24 turns No. 12, $51 / 4$ inches long, $21 / 2$-inch diameter, tapped at 2 nd and 5 th turns each side of center (see text for alterations) (B \& W TVH-10) $13 \mu \mathrm{~h}$., tapped each side of center at approximately $1 / 6$ and $1 / 51 / 2$ of the total turns in cach half.
$I_{2}-F o r 3.5-, 7$ - and $14-$ Me. bands - 26 turns, $11 / 2$ inches long, $1 \frac{1}{2}$-inch diameter, tapped at 5 th and 9 th turns from each side of ewnter. (Coto CSB0C) (17 mh., tapped each side of center at $5 / 13$ and $9 / 13$ of the total turns in each half).
For 7., 14- and 28-Mc. bands-10, turns 17/8 inches long, $1 \frac{1}{2}-$-inch diameter, tapped at lst and 3 rd turns each side of eenter. (Coto CS40C.) ($5 \mu \mathrm{~h} .$, tapped caeh side of enter at $1 / 8$ and $3 / 8$ of the total turns in each half).
$1.3, L_{4}-8$ turns No. $12,1 / 2$-iwch inside diameter, $11 / 8$ inches long.

 fier, showing the coil-nwitehing arrangement and the grid-coil-son-het supurt.

As the next step the amplifier should be neutralized, using the grid-aurent meter ass a neutratization indicator. 'To test the amplifier for parasitie oscillation, the bias should be reduced to a point which will allow a plate current of 100 mat or so to flow without excitation. This maty be dome by moving the biasing tap of the amplifier down toward the positive terminal of the bias supply. It is advisable to lower the plate voltage for this test, aither by inserting a resistance of about 2500 ohms in series with the plate-voltage source or by inserting a 200)waft lamp in series with the primary winding of the plate transformer. The grid tank condensers should be set at various points while the

Fig. 13-46 shows how d.e milliammeters of suitable ranges may be connected for reading the grid and phate currents. These are not included in the unit, but may be mounted in a separate metar panel comstrurted as shown in Fig, 1395. The grid-current meter slombl have it 100 ma. scale, while the plate-current meter should have a range of $\overline{0} 00 \mathrm{ma}$.

Trniog - Any one of the ref. units shown in Figs. 1305, 1309 or 1322 will furnish suffieient exritation for this amplifier, the bandswitching exciter of Fig. 1 b09 being recommended as an exellent companion unit.

Before excitation is applied, the two para-sitie-trap comdensers, Cy and C Co, should be set at maximum eapacity. With excitation applied and phate volage off, grid current to the amplifier stage should rum belwen 60 and 90 ma.
phate tank comdenser is swoug through its range. 'The plate current should remain perfectly stationary while this is done. If a point is found where a sudten change in phate current takes place, (${ }^{\circ}$ and $C_{1 n}$ should be adjusted. bit by bit, until the variation in plate current disappears. C_{0} and C_{10} should be as close to maximum eaparity as it is possible to set them and yot eliminate the parasitie oscillation.

Normal hiasing voltage may now he replated and the amplifier tuned up and loaded. For ew. operation. the output should exced 300 wathe when operated at the maximum rated input of 1500 volts, 300 ma. With plate modulation, the plate carrent should be reduced to 250 mil. and the output shoukd exceed 250 watts. The amplifier will operate satisfatority with a grid carrent of 40 to 70 ma .

Fig. 1348-Rear view of the 1.50. watt amplifior. 'the plate' tanh. coil jack bar at the right is mounted on brackets $2 \overline{3}$ imblhs high so that the variable-link shaft will clear the switwes. Theses are momand on 1 -incl cone insilators after their lirachets have been revamped to bring the shafts $11 / 2$ inches above the chassis. The unit- are mbared an as to he eentral with the jach-bar terminals. The shafts are rompled with a section of $3 / 8$-inch hahelite whaft fitted with brass reducing contplinges at each emol. The tank condenser is momunted on $1 \frac{1}{2}$. inch cone insulators. The plater.f. choke and a feed-through insulator for high-voltake line are placed beneath the jach har. 'The grid swith is monnted on insulators to balance the plate switch. The" grid coil mounting is devated directly over the switch. The tubes and the two nentralizing condensers ate placed symmetrically between the two tanh circuits.

Fig. 1.3 .49 - This power supply delivers lisol or 1250 volts at a full-load current of 425 ma., with 0.25 per cent ripple amb requlation of 10 per cent. Voltages arr selecoted ly taps on the transformer soeondary. 'The sivendary terminal hoard is eovered with a sertion of steel panel supported by trackets fastened noderneath the core clamps and insulating caps are provided for the tube blate terminals. A sperial safery terminal (Millen) is used for the positive high-voltage commere tion. The pand is $10 \frac{1}{2} \times 19$ indhes and the chassis size is $13 \times 17 \times 2$ inches. The cireuit for this supply is shown in lity. I350.

Reference shomid be made to the vacuum-tube tables in Chapter I'wenty for data on the operation of other types of tubes.

(A Simple Combination Bias Supply

Fig. 1352 shows the eiremit dagram of the simple transformertess bias unit, pietured in Fig. 1351, which
 may be used to supply at-off bias voltages up to 100 volts or so. 'Through grictieak artion it will also provide the additional operating bias voltage required, if the resistor values are eorreotly proportioned. The circuit also includes a second brameh, consisting of R_{1} and a VR75-30 voltage-regulator tube, supplying regulated voltage. This branch may not be required in all cases, but will be fotand convenient in many appliations for providing fixed cut-off or protertive bias for a low-power stage independent of the main output voltage.

Fig. 1350-Cirenit diapram of the 1.500 volt 12^{-}-ma. plate power supply for the band-switching amplitior $\mathrm{C}_{1}, \mathrm{C}_{2}-4$ - fd . 2000 -volt praper ($\mathrm{C}_{2}-1$) $1 \mathrm{JJ} 3001(1)$.
L_{1} - 5-20 henrys. 500 ma., i ohms (Staneor (140.5). I_{2} - 8 henrys, 510 ma., 75 ohms (Stancor (1445). $\mathrm{R}-20,000$ olmm, 150 -watt.
'Ir1-1820-1520 volts r.m.s. warh side of center-tap,

Tr2-2.5 volts, in amperes, 10,000 -volt insulation (Stancor type P302:).
This circuit is aliou used for the 1950.volt supply shown in Fig. I332 and the 2500 -volt supply shown in lig. 13.0.

Adjustment - The voltage-divider resistathers, R_{2} and R_{3}, are combined in a single rosistor with two sliding taps. (Ine of these taps alters the total resistance by short-eireniting a protion of the resistance at the negative end, while the other adjusts the cut-off voltage. The method of determining the values of resistance in each section is as follows:

The bias section, h_{3}, is adjusted to equal the recommended grid-leak resistance for the tube or tubes in use. The value of resistance between
the biasing tap and the short-cireliting tap is determined by the following formula:

$$
R_{3}=\frac{160-E_{c o}}{E_{c \jmath}} \times R_{2}
$$

where $E_{r o}$ is the voltage required for platecurrent cut-off. This value may be determined to a close approximation for triodes by dividing the pate voltage by the amplification factor of the tabe. No supplementary grid-leak hias should be used in the stage being supplied by the pack.

The resistince in each section should be first set at the values determined by the formula. The biased amplifer should then lie turned on, without excitation. If the plate erurent is not

Fig. 13:51-1 traneformerless combination bias sunply suitable for auprlyme hias for r.f. tages rectuiring 125 volte or less for cut off. A second branch, controlleal by a VR20. 30 regulator tube, provides $7 \boldsymbol{i}$ volta fixed bias for a second stage whose grid corrent does not exceed 20 ma. The unit above is constructed on a 7×7-ineh chassis, althongh the components may easily be fitted into any spare space on another power-supply chassis. The regulated V'R-tube branch may be omitted if not required. The circuit diagram is shown in Fig. 13.2.

Fig. 1352-Circuit diagram of the transformerless hias supply with voltage-re gulated output shown in Fig. 1351.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electrolytic.
L- $60 \cdot \mathrm{ma}$. replacernent filter choke.
$R_{1}-7500$ ohms, 10 -watt.
$\mathrm{R}_{2}+\mathrm{R}_{3}-15,000$-ohm 50 -watt wire-wound resistor, with two sliders.
See text for details of adjustment and operation.
almost completely cut off, or at least reduced to a safe value, the biasing tap should be moved upward (in the negative direction). With the amplifier in operation and drawing rated grid current, the biasing voltage should be measured, using a high-resistance voltmeter. If the grid voltage is higher than that recommended in the tube operating tables, both the biasing tap and the short-circuiting tap on the upper section should be moved, bit by bit, toward the positive end until the correct operating bias is obtained. The bias voltage should then be measured again. A final adjustment may be necessary to again arrive at cut-off voltage without excitation.

Fig. 1351 shows the components assembled separately on a small chassis. They may, however, be combined with plate-supply components on a single chassis, since little additional space will be required.

It will be noticed in the circuit diagram that only one wire is shown connected to the power plug. The return connection for circuit is made through an actual ground connection to the chassis, to prevent possible short-circuit of the 115 -volt line should the power plug happen to be incorrectly polarized when inserted.

(1) A Wide-Range Antenna Coupler

The photograph of Fig. 1353 shows the constructional details of a wide-range antenna coupler suitable for use with high-power transmitters. Various combinations of parallel and series tuning, with high- and low- C tanks and high- and low-impedance outputs, are available. Diagrams of these various circuit com-
binations possible with this arrangement are given in Fig. 1354.

A separate coil is used for each band, and the desired connections for series or parallel tuning with high or low C, or for low-impedance output with high or low C, are automatically made when the coil is plugged in. Coil connections to the pins for various circuit arrangements are shown in Fig. 1354.

The tuning condenser speeified, together with a set of standard plug-in transmitting coils, should cover practically all coupling conditions likely to be encountered.

Because the switching connections require the use of a central pin, a slight alteration in the $B \& W$ coil-mounting unit is required. The central link mounting unit should be removed from the jack bar and an extra jack plared in the central hole thus made available. The link assembly should then be mounted on a 2 -inch cone insulator to one side of the jack bar.

Correspondingly, the central nut on each coil plug base must be removed and a Johnson tapped plug, similar to those furnished with the coils, substituted. An extension shaft may then be fitted on the link shaft and a control brought out to a knob on the panel.

The split-stator tank condenser is mounted by means of angle brackets on four 1 -inch cone-type ceramic insulators, and an insulated flexible coupling is provided for the shaft.

If desired, the coils may be wound with fixed links on ceramic transmitting coil forms. The links should be provided with flexible leads which can be plugged into a pair of jacktop insulators mounted near the coil jack strip, unless a special mounting is made providing for seven comnections.

The unit as described should be satisfactory for transmitters operating at a plate voltage of up to 1500 with modulation and somewhat more on c.w. For appreciably higher voltages, a tank condenser with larger plate spacing should be used.

(1) Complete 450-Waft Band-Switching Transmitter

The various units shown in Figs. 1309, $1314-\mathrm{B}, 1316$, and 1345 through 1354 , assembled together, form a complete high-power push-pull band-switching trunsmitter for any three adjacent bands selected.

Fif. 1353 - Wide-range antenna coupler. The unit is assembled on a metal chassis measuring $10 \times 15 \times 2$ inches, with a pancl $8 \frac{3}{4} \times 19$ inches in size. The variable condenser is a split -stator unit having a capacity of $200 \mu \mu \mathrm{fd}$. per section and 0.07 -inch plate spacing (Johnson 2001:130). The plug-in coils are the B \& W IV L series. 'The r.f. ammeter has a 4 -ampere scale. If desired, the eoils may be wound with fixed links on standard transmitting ceramic forms. The links will have to be provided with flexille leads which can be plugged into a pair of jack-top insulators mounted near the coil jack strip, unless a special mounting is made providing for the seven plug-in connections required.

Fig. 1354 - Cireuit diagram of the widerange antenna coupler for use with the band-switching amplifier. A-Parallel tuning, low C. B - Parallel tuning, ligh C. C-Series tuning, low (.. D) - Series tuning, high C. E-I - arallel tank, lowimpedance output, low C. F - Parallel tank, low-impedance output, hish C. For single-wire matehed-impedance feeders, the arrangements of E or F would be usid with a single tap instead of the double tap shown. For siniple voltage-fed antennas, the arrangement of A would be used with the end of the antenna conneeted at " X." After the induetance required for each of the various hands has been determined experimentally, the connections to the coils can be made permanent. Then it will be necessary mertly to plug in the right coil for each band, tune the eondenser for resonance, and adjust the link for loading.

Heater, low-voltage plate and the 807 screenvoltage supply for the exciter may be obtained from the simplified 250-volt pack of Fig. $1314-13$, while plate voltage for the 807 is furnished by the unit of Fig. 1316. Bias voltages for both amplifier and exciter are obtainable from the unit of Fig. 1351, while amplifier plate voltage is furnished by the unit of Fig. 1349. The units of Figs. 1314-13 and 1351 may be combined in a single unit with a 7 -inch panel. The addition of a $5 \frac{1 / 4-i n c h}{}$ panel for the amplifier grid and plate incters and the antenna tuner of Fig. 13:53 completes the transmitter.

Fig. 13.55 - Gircuit of the single-tube pentode amplifier
$\mathrm{C}_{1}-1.50-\mu \mu \mathrm{fd}$. variathe (National ITMS-150).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-\mathrm{O} .01-\mu \mathrm{fd}$. paper.
Ciz - $6.5-\mu \mu \mathrm{fd}$. variable, 0.2 -inch spacing (Cardwell X(-65-XS).
C. $-0.001-\mu \mathrm{fl}$. $5000-\mathrm{volt}$ mica.

T - Filament transformer, 5 volts, 7.5 amperes.
1.1 - 3.5 Mc - 36 turns No. 22 enameled, clowe-wound. 7 Mc. - 21 turns No. 20 enameled, $11 / 4$ inclies long.
1.4 Mc. -17 turns No. 18 enameled, $11 / 4$ inches long.
28 Mc. - II turns No. 18 enameled, $11 / 4$ inches long, self-supporting.
Above coils wound on Millen 1-inch-diameter forms, monnted in National P'BIO shields.
1.2 - Inpur link winding, wound over ground end of $L_{1} ; 5$ turns for 3.5 Mc.. 3 turns for \bar{i} and 1.4 Mc ., 2 turns for 28 Mc.
1.3- Barker and Williamson BXI, series. If substitute coils are used, they should have the following approximate values of inductance: 3.5 Mc ., $35 \mu \mathrm{h.;} 7$ Mc. - $13 \mu \mathrm{~h} . ; 14$ Mc. $-5 \mu \mathrm{~h} . ; 28$ Mc. - $1.25 \mu \mathrm{~h}$.
1.4-Ontput link winding - Same number of turns as for L_{2}, wound at ground end of L_{3}.

The most logical arrangement for the units, from top to bottom, is as follows: (1) antenna tuner, (2) final amplifier, (3) meter panel, (4) exciter, (5) low-voltage and bias supplies, (6) 750 -volt power supply, (7) high-voltage power supply. The combined height of all of these units will be $591 / 2$ inches.

Information on a suitable control circuit for Such a transmitter will be found on pages 303-304.

(I) A Single-Tube Medium-Power Pentode Amplifier

A 200- to 300 -watt single-tube amplifier is shown in the photographs of Figs. 1356, 1357 and 1358 . The tube is a Heintz and Kaufman type 25713, a beam pentode which may be operated at power inputs up to 300 watts for c.w. operation or up to 240 watts with plate and screen modulation.

The circuit is shown in the diagram of Fig. 1355. Link coupling is provided for both in put and output. The amplifier requires a driving power of only a few watts,

The grid and plate tuning condensers are placed with their dials symmetrical on the panel. Grid tank-circuit components occupy the left-hand half of the chassis. The tuning

Fig. 1356 - The panel of the single-tube pentode amplificr is $101 / 2$ inches high and of standard rack width, while the chassis measures $8 \times 17 \times 3$ inches.

Fig. 1357 - Rear view of the simgletube pentode amplificr, slowing the plate tank-circuit compments to the left and thome for the srid tank circuit to the risht. The whasis is supported from the pand by means of triankular panel brackets. Power-supply terminals are at the rear.
condenser, C_{2}, is insulated from the chassis by mounting it on reramic button-type feedthrough insubators. The lower insulator shown in Fig. 1358 is used for making the connertion between the stator of (', and the roil-sorket terminal underneath. The eoils are mounted in National IPlsto shielded plug-in units with the sorket submounted direetly behind the tuning condenser. The tube sorket also is submounted and a contant strip fastened to the chassis is required to gromad the base shell of the tube to which all internal shielding is conneeted.

The plate tank-rireuit components are to the right. Both condenser and eoil-mounting strips are supported on $1 \frac{1}{2}$-inch ceramic cone standoff insulators. 'The by-patss eondenser, C_{s}, is fastened between the rear stator plate of the tank condenser and the chassis. A high-volt-

Fig. 1.35% - Cirenit of the sol-watt input amplifirer.
$\mathrm{C}_{1}-250-\mu \mathrm{ff}$ d variable, 0.04 i -inely sparing (National TMK-250).
 tional [WA-1t(1)-1)A).
(3_{3} - Neutralizing condenser (Na atinal $\mathrm{N}(:-800$) .
(4 - Hikh-voltape insulating condenser, 0.001. $\mathrm{\mu f}$ d.
 86).

RFC -1 -mh. r.f. choke, 3010 ma. (National R-300L momed on (SS-1 insulator).
M A_{1}-Grid milliammeter, 100 ma.
$\mathbf{1 1} \mathrm{A}_{2}$ - Plate milliammeter, 300 ma.
' 1 - Filament tramsformer- 5 volts, 8 amperes. (Thordarson 'T'0101'84).
$1.1-3.5 \mathrm{Mc}$. - 2 n turns ho. 16 , $11 / 2$-inch diameter, $21 / 8$ inches lonk, 3-turu link (B \& W JCL-10). 7 Mc - 16 turns No. 16 , 1/2-ind diameter, $17 / 8$ inches long, 3-turn linh (13 is II JCLL-20).
1.4 Mc. - 8 turns lo. I6, 12 -ineh diameter, 178 inches long. 3 -turn link (B \& IN J(:1.-10). $28 \mathrm{Mc}-6$ turns Do. $10.11 / 2$-inch diameter, $11 / 2$ inches lonk, 9 -turn link (BS II , JCL-10, 1 turn renowed from earh rind).
$1.2-3.5 \mathrm{Me} .26$ turns Vo. 12.31_{2}-inch diametor,
age insulating shaft coupling is necessary. The suppressor and sereen of this tube eath is provided with two leads to separate pins. The two pins in carh rase should be commerted together and by-passed close to the socket.

Power-supply and r.f. input and output connections are made at the rear. A filament transformer is induded in the mit.

A fixed soreen voltage, which may be taken from the exeiter phate supply in most instances, is advisable. Suppressor voltage may be taken from a tap on a voltage divider connected across this supple. Suffirient fixed bias to cut off phate current without excitation should he provided. The additional bias neeressary for proper operation maty be oltained by a gridleak rexistance of sulatable size. Maximumplatevoltage ratings are 2000 for $\mathbf{c} \cdot \mathrm{w}$. or 1800 for 'phone. The amplifier maty be loaded until the phate current rises to 150 mat or 135 mat. respertively for each type of service.

Figg. 13.58 - Bottom view of the protode amplifier.

[1 A Single-Tube 500-Watt Amplifier

A single-tube amplifier which may be operated at inputs up to 500 watts at voltages as high as 3000 is shown in Figs. 1360 . 13361 and 1362. 'The cirtult, shown in Fig. 13.09. is strictly conventional, with link coupling for hoth input

7 N10-2 22 turns No. 12. $21 / 2$-inch diameter. 4, 2 -inchrs lonq, 2 -turn link (18 \& W TCL --10) 14 Mr.-12 turn Xo. 12, 21/2-inch diametor. 414 -inches hong, \boldsymbol{Z}-turn link (B \& W TCL -20).
28 Mc. - Oturnt ${ }^{2}$-inch copper tuhing, 212 -inch diameter, H_{2} inches loin, 2-turn link (13 ※ W TC:1.-10).
and output cirenits. While a 'ryme 100'TH tuhe is shown in the photopraphes almost athy other tube of similar physical size and shape which is designed to operate at plate voltages of 3000 or less may be used in a similat cireuit arrangement.

Pomer supply and tuning - 'lhe plate power supply shown in lig. 1370 maty be nsed with this unit. Bias may be obtained from the unit shown in Fif. 1:3.7. For this purpose, the VR7.-30 branch may be onitted and at single rexistor of atolo) whas eont necerd aderose the output of the park. with the has lead eommeded to the extreme negative end of the resistor.

The tramsmitter shown in lig. 1:3:2 should provide sufficiont exatation. Fig. 1359 shows milliammetors conneeted in grid and plate heads. These
moters are not incladod in the unit. They should be mounted on a separate well-insulated pand protected with a glass cover (see ligg. 13(1).

An amplifior operating at high voltage should always, after nebutralizing, be tuned up at reduced phate voltage. This may be obtatined be eommerting a lamp bulb in series with the primary of the plate transformer. Coupling hetween the exater and the amplifer should be adjusted so that the grid current does mot excered 40 to 50 ma, with the amplifier tuned and loaded to the rated plate current of 1 tiz mas. Power output of 2e25 to 30 watts should foe obtainable on all bands at plate voltages from 2000 to 3000 .

The tube tables in (hapter 'Twenty should be consulted for data on the opration of other tubes suitable for use in this amplifier.

 ingut up to 500 wath. The standard rack pand is $12 \frac{1}{4}$ inches high.

(I) A High-Power Push-Pull Tetrode Amplifier

A push-pull amplifier using Fimac type 1-125A totrodes is shown in figs. 1363, and 13(3). It will hamdle a power input of 700 to 800 watts att a plate voltage of 2000 . Driver-power reguimements are very small. 2 watts or so being sufficient for cflicient uperation. Tho cirrait diagram is shown in lige 1364. Adjustment is simplified beranse no nemtralizing is required at the frequencies for which the unit is designed.

Construction is simple and straight forward The grial tank rireuit is at the lefi, with the coil in the shielded phes-in unit. The variable comdenser, (', is fastened directly to the chassis. Simall baffle shiclds of sheet metal are plared botween cach tube and the nearest end

Fig. 1.361 - Rear view of the hiph-power single-tube amplifier. Jhe two tank condollsers are monnted, one almwe the other, in the erenter of the patiel bs means of Imolambite pialars from stamderff ianinlators. Four \ationalty pe G:S-2 insulators are used to stuport the plate tuning condromer, while three type (:心. 1 inculaturs are used for the grial tuning equdenser. Insulated flexible complimes and phote hearings are used on radle shaft to insulate the con-Irol-. (bur of hiph breah -down voltaper ratinge should he nesed for the piate condenser, and the pand betrings must be srounderl:' 'lher sonket for the prid tanh roil is mounted, using insmlatral spacers and a small molal plate ats a bave, on Horerarend plate of Ci. Metal striges alsof fastened to the end Matr. -upport the input-link terminal strip. 'The insulating by-pass condenser, (i, is numented just to the right of C_{2}.

Fip. 1362-13ottom view of the single-tube 500 watt amplifier. In the lower right-hand corner of the panel is fastened a chassis $191 / 2 \times 5 \times 11 / 2$ inches, on whichare monnted, in line, the filament eransformer, the tube socket and the neutralizing eondenser. A chassis of similar size to the left supports the plate tank coil and the outputlink terminals. A large fredthrouph insulator in the rear edge of this chassis serves as the high-voltage terminal. In wiring the amplifier unit, the importance of well-mpaced leads carrying high voltape "amnot be stressell too preatly. It must be romembered that the arcing distances and break-down capahilities of voltages as hiph as 3000 are considerably greater than with the lower wate voltages more commonly used by amateurs.

of the grid tuning condenser to eliminate cat pacitive feed-back from plate (o) grid. Leads between the tank condenser and roil pass through half-inch clearance holes in the chatsis. The glate tank-rireut eomponents ocrupy the remainder of the chassis. The condenser is mounted on $11 / 4$-inch ceramid stathd-off insulators. While those supporting the coil jack strip are 1 inch high. In the rear-view photograph the high-voltage insulating eondenser, Ci, may be seen fastencel between the variablecondenser frame and the chassis. The control shaft of the plate tank condenser must be fitted with a good high-voltage insulating coupling.
'lhe grid tank condenser and the plate tankcoil mounting are placed so that their controls are symmetrical on the panel. Power-supply connections are mate at the rear. The filament transformer, plate-circuit r.f. choke and fila-

Fig. 1363 - The panel of the high-power push-pull tetrode amplifier is $101 / 2$ inches high and of standard 19 -inch rack width. 'The 3 -inch chassis is 13 inches deep and 17 inches wide. The sockets fur the shielded grid coil and the tubes are mounted under the ctiassis.
zuent by-pass condensers are underneath.
It is preferable to obtain the required sereen voltage from a separate supply rather than

Fig. 1364 - Circnit diagram of the high-pener pushpull tetrode amplifier pietured in ligs. 136.3 and 1.305 . ($: 1$ - $150-\mu \mu \mathrm{fl}$. per section variable (IIammarlund HF. (1).151-B).
$\mathrm{C}_{2}-100 \cdot \mu \mathrm{ffd}$ per sention varialle, 0.17 -ineh spacing (National TMAloriDA).
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.01-\mu \mathrm{ft}$. . patior.

(:- $0.001-\mu \mathrm{fd}$. 10,0000 -vole micat.
'1'- filiment tramformer, $\overline{5} .25$ volts, 15 amperes.
I. - Cird coils, all wound on Millen I-inchdiameter forms mounted in तational PB10 shields with 6 -pin Lases; all coils tapped at extere.
3.5 Me. - 46 ursis No. 22 enameled, close-wound.
7 Mc. - 30 turns No. 22 enameled, $11 / 4$ juchers loms.
1.1 Mc. - 16 turns. No. 22 enameled, 11/4 inches long.
28 Me. - 10 tarn: No. 18 enameled, 1 inch long.
1.2 - Input link winding - 5 turns for 3.5 Mc., 3 turns for 7 Mc. and It Mc., 2 turns for 28 Mc .
L_{3} - B \& IV HINI : arerie: coils with variablelink coupling Apropriate inductance values are as follows:
3.今) Mc., - $10 \mu \mathrm{~h} . ;-\mathrm{Mr}$. $1.5 \mu \mathrm{~h} . ; 14 \mathrm{Mc}$. $-5 \mu \mathrm{~h} .: 28$ Mc. - $1.2 \mu \mathrm{~h}$.
L_{3} - Output link winding.
through the use of a voltage divider or series resistances from the plate supply. In many rases, it will be possible to supply the screens from the driver supply. A combination of gridleak and fixed bias is recommended for the grid, with sufficient fixed bias to cut plate current off or to a very-low value when excitation is removed, the additional bias required under operating conditions. being obtained from a grid-leak resistance of proper value, depending upon the screen and plate voltages used.

(1) A Push-Pull 1-Kilowatt Amplifier

The push-pull amplifier using type 810s shown in the photographe of Fige, 1367, 1368 and 1369 is capable of handing a power input of 1000 watts for c.w: operation or 900 watts with plate modulation.

The circuit is shown in Fig. 1366. Phy-in coils with fixed links are used in the grid circuit, while the ontput-coil mounting is provided with variable link coupling. $L_{3} \mathrm{C}_{3}$ and $L_{4} C_{4}$ form traps against v.li.f. parasitic oscillation. Sperial multisection plate tank condenser, C_{2}, provides a low minimum capacity for operation at the higher frequencies and the high maximum raparity needed for operation at the lower frequancies.

Construction - The plate-tank tuning condenser is mounted on $11 / 4$-inch ceramic cone insulators. The rotor is gromoded through a high-voltage fixed condenser at the front end of the variable-condenser frame. The shaft is cut off and is fitted with a large Isolantite flexible shaft eorpling. This is important, since the rotor is at high voltage. A panel-bearing assembly is fitted in the panel. The jack bar for the plate tank coil is mounted on a pair of angle brackets fastened to the condenser end plates. Two 300 -ma. r.f. chokes in parallel are

Fig. I365- Rear virw of the high-power push-pull tetrode amplitier. 'The plate tank condenser is monnted in an inverted prosition ons statheroff insulators hy merans of amall angle pieres. 'lhe terminals at the rear, from left to right are ground, plate voltage, 115 voits a.c., screen voltage, bias and low-impedance link output.
used, one being connected between each condenser end plate and the center connections of the coil jack bar. The positive high voltage comes up through the chassis through is feedthrough insulator at the rear of the condenser.

The grid tank condenser is momed on $5 / 8-$ inch cone insulators topped with spacers which bring its shaft up level with that of the plate tank condenser. The two variable condensers are mounted with their shafts $31 / 8$ inches from the chassis edges. The jack bar for the grid tank coil is mounted on U-shaped brackets made from $1 / 2$-inch brass strip, and these, in turn, are mounted on 2 -inch cone insulators. The rotor of the grid tank condenser is groucded to

Fig. 1:366-Circuit diagram for the hiphpower l-kilowatt input push-pull amplifier.
$\mathrm{C}_{1}-150$ н ffl. per sectiom, 0.05 -inch spacing (Johnson 150F1)20).
C_{2} - Multi-section, maximmm capacity 228 a $\mu \mathrm{fd}$. per section, $0.84-\mathrm{in}$ (h spacing (Carduell XE-16(0)-70-X(1).
$\mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mathrm{fd}$, mica trimmer condensers with Isolantite insulation (Millen 28030).
$\mathrm{C}_{5}, \mathrm{C}_{6}$ - Neutralizing condensers (Johnson N250).
C_{7} - 0.01 - $\mathrm{\mu f} \mathrm{~d} .600$-volt paper.
$\mathrm{C}_{8}-0.001-\mu \mathrm{fl}$. mica, $10,000-\mathrm{vol}$ rating (Aerovox 16:-1).
$\mathrm{Cg}, \mathrm{C}_{10}-\mathrm{O} .01-\mu \mathrm{fd}$. paper.
R R FC C_{1} - 2. 5 -mh. r.f. choke.
RIFC: - 1-mh. 3(\%)-ma. r.f. choke (National R-300).
T_{1} - 10 -volt 10 -ampere filament transformer ('Thordarson T-19F87).
$\mathrm{L}_{1}-3.5$ Mc.- 32 turns No. $16.23 / 4$ incheslong, $21 / 2$ inch diameter ($40 \mu \mathrm{~h}$.) (B \& W 8013 L).
7 Mc . - 20 turns No. $14,21 / 2$ inches long, 2 -inch diameter ($12 \mu \mathrm{~h}$.) (B \& W 40 BL).
14 : Me. - 10 turns No. 14, $21 / 2$ inches long, 2. inch diameter ($3 \mu \mathrm{~h}$.) (B \& W 20BL).
$28 \mathbf{M c}$ - 6 turns No. $12,21 / 2$ inches long, 2 -inch diameter (1 $\mu \mathrm{h}$.) (13 \& 11 ll 10 L).
$\mathrm{L}_{2}-3.5 \mathrm{Mr}$. -32 turns No. $10,63 / 4$ inches long, $31 / 2$. inch diameter ($40 \mu \mathrm{~h}$.) (13 \& W 8011DVI.).

7 Mc. ${ }^{20} 0$ marns No. $8,68 / 4$ inches Iang, $31 / 2-$ ineh diameter ($15 \mu \mathrm{~h}$.) (13 \& W 40HDVL).
14 Mc . -8 turns No. $8,43 / 4$ inches lang, $31 / 2$ inch diameter ($3 \mathrm{\mu l}$.) (B \& W 20III)Vi, with one turn removed from each end).
28 Mc . - 4 turns 3/16-inch copper tubing or No. 4 wire, $51 / 4$ inches long, $23 / 8$-inch inside diameter
 moved from each end).
I.3, $\mathrm{I}_{4}-6$ turns No. $12,1 / 2$-inch inside dianzeter, 3/4inch long.

/ig, $13 \mathrm{Bn}^{-}$- The panel for the l-kilowatt push-pull amplitior is 14 inelues high and 19 inches wide. 'I 'he chassis size is 13×17 inches.
for the positive high voltage and negative bias terminals. A male plag js see in the rear edge of the chassis: for the 11 b-volt line connection to the filament tramsormer.

Poucer supply - A phate-supply unit suitable for this amplifier is shown in Fig. 1370. For bits, the unit. shown in Fig. 13 al is suguested, The branch includiag the VRTV-30 maty be omitted and resistanee values for R_{2} and R_{3} should be approximately 2000 and 2500 ohms, respertively. The fransmitter shown in Firs, 1322 will furnish adequate excitation.

Tuming - 'lhe only departure from ordinary procedure in thming is that of adjusting the parasitic traps.
the ehassis at the eenter. 'The grid ref. whoke is mounted on a feed-thromgh insulator carving the baswing voltage up through the chassis. The grid by-pass combenzer is soldered between the top, of the r.f. choke and the rotor ground comeretion for the comdenser:

The two tubes are monnted centrally with respert to the two tank comdensers, the nentralizing comdensers bemg pland betwern the tubes and the grid ank conderaser'. The sorekets for the tubes are sub-mounted beneath the chatsis on ${ }^{\text {ben }}$-inch spaters to low the pate terminals. The parasitic-trap rombensoms and coils are self-supporting amd are fastemed to the heat-radiating plate connertons.

The filament transformer is momoded underneath the chatsis. and the filament by-pans condensers are wired in directly at the socket terminals. Millen safet terminals are provided

Fig. l.3a8- 'I'he tulne sonkerts in the I-kilowatt amplifier are sub-monnted. 'I'he filament tran-former is mounted close to the sockets.

The trap eondensers, C_{3} and C_{4}, should be set mear maximum cetpacity, but not screwed up tight. After the amplifier has been nentralized. a hias Voltage of about $22^{1} 2$ volts should bes applied to the grid and the plate voltage applied through a $2500-$-ohm series resistanoe. With a pair of coils for any band phaged in, tha plate arrent shomld not vary with ang sotting of the grid or phate condensers. If the plate coment changes sudelenty at any point. the tap) mondensers whould be adjusted equally until the ebatnge disappears. The trap condensers should be sut as near to maximum caparity as is possible consistent with parasitio suppresion. If the r.f. wiring has been

Fig. 1.369 - Rear view of the l-kw. amplilier. showing wiring and the placement of part-.

Fig. 1370 - I'his power supply unit delivers 2025 und 2480 volts at full-load eurrent of 450 ma . with ripple of 0.5 per cent and repulation of 19 jer cent. Voltages are aelected by taps on the serondary. All exposed high. voltage terminals are covered with sprague rubluer *afety caps and the thle plate terminals with monded caps. I'he rectifier tulnes are placed away from the phate transformer waveid induction tronbles. The patmel is 14 $\times 19$ incturs and the chassis $13 \times 17 \times 2$ indims. The "ronsed highevolage terminal shombl be covered with a rubter-tubing slieve. 'The cirenit is the same as that -hown in lig. I350, the eomponents treing as follows:
(i) - I- μ fal. 2500-volt sil-filled (C.F.. I' ramol).

 darson T' 19(:38).
1.2-Smonthing choke. 12 henrys, 500 ma., 75 ohms (Therdarson'I'-19(15).
K - 50.0019 ohms. 200 -watt.
' $\mathrm{I}^{\prime} \mathrm{r}_{1}-3000-2.100$ voles $\mathrm{r} . \mathrm{m} . \mathrm{s}$, each side of center, 500 ma. d.e. ('IThordarson ' 1 '. $19{ }^{\prime}$ ' 68).
'T'r2-2.5 volis, 10 amperes, 10.0 ont.volt insulation (Thordarson T-641"33).
Note: 'The voltage requlation may lie improved lis the Hate of a lower valve of theeder resistance. R. althoush at sonue sacrifice in maximum permissible load current.
rarefally duplicated, the intial adjustment of the parasitir traps as deseribed above should be sufficient.

After the above adjustment is eomplete, exeitation may be applied and the amplifier loaded. The high-raparity sertions of the phate tank condensers are required only for the 3.iMe. bind. If parasitice oscillations ate encountered, C_{3}^{\prime} and ('t should be adjusted, bit by bit, until they are suppressed.

With correct excitation grid current should rum about 100 mas. on all batods. and the amplifier with the antenna connereted may be foaded until the plate current increases io soo mat. The power output with a plate volatge of 2000 should be approximately $\overline{6} 0$ watts.

C Complete High-Power Transmitters

The 100-watt transmittor of Fig. 132:I may he used as a driver for either of the high-power amplifiers in Frigs. 1360 and 1363. In addition to the power-supply units of Figs. $13 \overline{5}$ and 1327 required for the exciter, a separate bias supply for the high-power amplifior will be neetssars. A second bias-supply unit similar to that of Fige 1:3isl, minus the VR-whe branch, will be satisficeory Plate voltage for either amplifier maty be whtained from the latge powersupply unit shown in Fig. 1:370. The antennat thaer maty be the one shown in leig. 1353 with the substitution of a condenser of 0.1 -inch phate spatcing and coils of higher power rating. The same capacity and inductance valuess should be matitained.

For a combination using the singlelube amplifier of Fت̈g. 1360), the combined heights of all units will be $666 \frac{1}{2}$ inches. If the push-pult amplifier of Fig. 13367 is used in the romplete framsmitter, the fotal height will be (ix $1 / 4$ inches.

C. A Four-Band V.F.O. Bandswitching Exciter

A variabla-fresuancy exder wivang ataverage powor outpat of apporimately 2 watts wer the 3.5-, 7-. 14- or 2s-Mc. band is shown in the phosographs of liges. 137I, I373 and 1374. The sitemit diagram is stusm in Jige. 1372.

The oscialator is a (3.J) triode operating at 1.75 Me. with low-power bettery input to mantan maximum frequency stability. The tume 1 circuits are devigned to give pradicatly
 tather is inolated from sumededing stages by the 1853 untumel ("ass-A amplifier. In 18.53. Whose thang is ginured with : hat of the oreillatfor doublex freonency to fhe 3.5-DIr. band witl sufficient pewer ontput to drive the 21:25 3.5- It profuned outprat stage. Suces-
 swit, hed in foilewing the 2 leas to provide out-

 left, handowitelt at the center and ther reonitor-tran=mit switeh

fig. 1372 - Circuit diagram of the handawithing v. f.o. exciter.
C_{1} - 200- μ fld. zero-temp. mica.
$\mathrm{C}_{2}-200-\mu \mathrm{ffd}$. variatile (Bud MC-1858).
$\mathrm{C}_{3}-500$ - $\mu \mathrm{fd}$. zero-temp. mica.
$\mathrm{C}_{4}, \mathrm{C}_{13}-0.002 \cdot \mu \mathrm{fd}$. mira.
$\mathrm{C}_{5}, \mathrm{C}_{7 \overline{7}}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}$, $\mathrm{C}_{26}, \mathrm{C}_{27}, \mathrm{C}_{2 \mathrm{~N},}, \mathrm{C}_{30}, \mathrm{C}_{31}, \mathrm{C}_{32}-0.01$ н fd , paper.
$\mathrm{C}_{6}, \mathrm{Cin}_{10}, \mathrm{C}_{16}, \mathrm{C}_{21}$ - lon- $\mu \mathrm{ff}$. mica.
Ci4 - 50 - $\mu \mathrm{ffl}$. variahle (Cardwell Z/R-50-.1S).
$\mathrm{C}_{15}-35-\mu \mu \mathrm{fd}$. variable (IIammarlond MC-35-S) ganged with C_{2}.
$\mathrm{C}_{25}, \mathrm{C}_{29}-50-\mu \mu \mathrm{fd}$. miea.
$\mathrm{K}_{1}-50,000$ ohms, $1 / 2$-watt.
put in the higher-frequency bands, switch sections being ganged so that the oscillator gives the correct bandspreal range for the band in use. Woublers are cut out simply by opening the cathode and link circuits. With s_{3} thrown to the right, the excitor is ready for transmitting with a key plugged in at J. When S_{3} is thrown to the left, the key is short-circuited and voltage is removed from the doubler stages so that the oscillator frequency may be set without operating the output stage and putting a signal on the air.
$R_{2}, R_{4}-150,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{3}, \mathrm{R}_{5}-500$ ohms, 1 watt.
$\mathrm{R}_{6}-20,000$ ohme, $1 / 2$ watt.
$\mathrm{R}_{7}, \mathrm{R}_{9}, \mathrm{R}_{11}, \mathrm{~K}_{12}-400$ ohms, 1 -watt.
$\mathrm{R}_{\mathrm{n}}, \mathrm{R}_{10}, \mathrm{R}_{13}$ - $100,(00)$ ohens, 1-watt.
RFC: - 2.5 -mh. r.f. choke.
J-Open-circuit jack.
S_{1} - Section of 4 -gang 4-position tap switch, eramic insulation.
$\mathrm{S}_{2}-4$-paint short-rircuiting switch ganged with S_{1} on single control.
$S_{3}-$ 1).p.d.t. toggle switch.
The unit is built on a chassis measuring $12 \times$ 17×3 inches. The panel is $8 \frac{3}{4}$ inches high and of standard 19 -ineh rack width. Referring to the top-view photograph of Fig. 1373, the oscillator and 1852 doubler tuning condensers, (2 and C_{15} are mounted on $1 / 2$-inch metal pillars so that the dial mechanism will clear the chassis. They are enclosed in a shield made from sheet aluminum and are mounted at the center of the chassis. To the right are grouped closely the $2 E 5$ and the $6 L 6$ doubler tubes with their respertive pretuned tank circuits in individual shichds.

Fig. 1373 - Top view of the v.f.o. exeiter behind the pancl. The shield cover for the eondenser gang has been removed. In line from front to rear at the left are the $6 \mathrm{~J} 5,1853$ and 1852 . In the upper right-hand corner from lower left clock wise are the 2 E 25 , the 7 M ल. 6 L 6 doubler, the 11 -Mc, 61.6 doubler and the 28 -Mc. 61.6 doubler.

The tuning dial is a National type ACN which may be hand calibrated. The switch, S_{3}. is to the right and the keying jatek to the loft. An cight-pin terminal is momed in the rear edge of the chassis to provide a connection for the power ceable. A separate pair of small feed-through insulators serves for the low-impedance output terminals.

Emderncath, the band-changing switeh is at the renter. Motal brackets are provided at each corner of the switeh frame so that the assembly may be fastened securely to the chassis to eliminate any distortion of the switch frame or bending of coil leads which might canse a fropuency change. At the front part of the chassis are the four oscillator coils grouped around the switch. Connecting leads from the coils are extonsions of the wire with which the coils are wound. A slight amount of slack should be left in these leads, rather than pulling them tight,

La - 3.5 -Mc. handspread - 26 turns, no tap.
$\mathrm{L}_{2}-7$-Mc. bandspread - 28 turns, tapped 14 turns from ground end.
$\mathrm{L}_{3}-14-\mathrm{Me}$. bandspread - 29 turns, tapped 14 turns from ground end.
L4-28-Me. bandspread - 28 turns, tapped 18 turns from ground end.
All above coils are wound on Millen 1-inch-diancter forms with No. 24 enameled wire, turns spared to an approximate length of 1 inch, then adjusted hy spreading turns to give full dial-scale bandspread.
L_{5}, L.6, 1.7, Ls - 19 turns No. 28 enameled, close-wound.
since this practice helps to eliminate frequency changes with vibration. The leads should be covered with small-diameter spaghetti. The coils to the rear are the 18.52 plate coils. The 1852 padding condenser, C_{14}, is immediately behind the switch gang. Its position may be reversed so that its shaft may be adjusted by screwdriver through a clearance hole drilled in the rear edge of the chassis. The entire unit should be mounted on a sheet of sponge rubber to minimize effects of vibration, or the chassis may be provided with standard shock mountings of the type used with military equipment.

The oscillator operates at 1.75 Mr . regardless of the exciter output frequency. Four separate coils, $L_{1}, L_{2} . L_{3}$ and L_{4}, are provided so that each may be adjusted to give the desired amount of band-spread in covering each of the output-frequency bands. This system eliminates the necessity for separate trimming and padding condensers and also permits the $L C$ ratio to remain essentially constant regardless of the amount of bandspread. The position of the tap and the inductance of each coil may have to be varied slightly by changing the spacing of a few turns near the top of the form to get full-dial bandspread.

If the coil dimensions given are followed closely, it should not be necessary to change the position of the taps on $L 9$ through L_{12} to obtain tracking with the oscillator.

19-28-Me: bandspread 39 turns. tapped at 20 turns fron ground and.
L 10 - 14-Me. band-pread - 12 turns, tapped 18 turns from kround und.
L_{11} - 7 - $11 \mathrm{c}_{\mathrm{c}}$. bandspriad - 11 turns, tapped 19 turns from gromid enind.
L12 - 3.5 - Me. bandspread - 35 turns, tapped 33 turns from ground end.
All above coils wound on Millen l-inch-diameter forms with No. 21 enameled wire, turns spaced to an approximate length of 1 inels, then adjusted by spreading turns to give proper tracking.

Tracking can be chocked by inserting a millianmeter in the plate cireruit of the 1852. With the desired coil oscillator and buffer switched in, the v.f.o. should be tuned to the highfreguenc \dot{y} end of the band and the padding condenser, C_{14}, adjusted for minimum phate current. Then the tuming should be shifted to the low-frequency end of the band and ('14 swung through resonance to make sure that minimum plate current occurs at the same setting as it did at the high-frequency end of the band. If an increase in the capacity of C_{14} is required to regain resomance. the tap on the eoil should be moved slightly foward the plate

Fig. 1374 - Bottom view of the v.f.o. exciter. The panged band switeh is at the center. T'oward the front are grouped the four oscillator coils with the four corresponding 1852 buffar coils and padder to the rear.
l'is. 1375 - (iircuit of a suitalle power supply for the barmiswitehing v.f.o. exciter. $\mathrm{C}_{1}, \mathrm{C}_{2}$ - Sertion of dual $20-\mu \mathrm{fd}$. dectrolytie.
 1.2-15-l. moothing filter choke, 250 nat. ${ }^{\prime \prime}{ }^{\prime}$ - I'late tranformer, 350 volts d.c. (Kenyon l'-6.⿹\zh26灬)
'l'z - 5-wolt reetifier filament transformer.
'13-6.3-volt lilament transformer, 6 amjeres.
$13-22.5$-volt " $\|^{\prime \prime}$ hattery, larke size.
IR - 2500 ohms, 50 watts, with slider for $\mathrm{S}_{1,} \mathrm{~S}_{2}$ - S.p.s.t. toggle adjustment.

end of the winding; if a decrease in the capacity of C_{14} is nemessary, the tap should be moved away from the plate end of the coil.

The pretumed tank cireuits should be adjusted to give as flat output as possible over each band. Toarrive at the best adjust ment it may be necessatry to "stagger" the tunilng. atjusting one cireuit for the high-frequeney end of the band and the next toward the lowfrequeney end.

With such an arrangement, which climinates tuning of the individual circuits for each band. constant output camot be expected. The use of comparatively large tubes for the smatl average output is necossiry to take care of abnormal phate dissipation when operating in portions of the bands to which the stages may not be thated arcurately. This unit should be folluwed by a "power-levaling" stage using a tube, such as the Sol . which will give essentially constant output over a wide range of excitation levels. The platecurrent of the stages with pretuned tank rimuits will vary from about 15 mat. to approximately 80 ma , depending upon the amount of off-resontme tuning required for best average output over the band.

A suitable power-supply circuit is shown in Fig. 1375. A supply delivering 350 volti d.e. at $2 \overline{0} 0 \mathrm{man}$. is required. A $22 . \overline{5}$-volt " B " battery supplies the oscillator. while voltageregulated taps provide 150 volts for the sereens

Fig. 1376 - The variable-frequeney exeiter is enclosed in an $8 \times 8 \times 10$-inch l'armetal calinet. 'The dial is the National type ACN , sitable for calitratiny. The voltage-requlated power supply is mounted in an amplifier-foundation case with a $5 \times 3 \times 10$-inch chassis.
of the 18.52 and 18.53 and 255 volts for the plates of these tubes and the servens of the 2 Viaj and bltos. The regulator tubes are used to prevent a wide flactuation in voltage as doublerstages are cut in and out. The slider on R should be adjusted to the point where the voltage-regulating tubes will just stay ignited with full load applied.

(1. A Variable-Frequency Crysial Substifute

The photographs of Figs. 1376, 1379 and 1380 illustrate the eonstruction of a variablefrequency unit which is designed to take the place of the crystal as a frequency control in most of the common forms of arystal-oscillator rircuits. The power output of the unit is approximately one and one-half watts, which is sullidient for this purpose, or for driving an 807. By means of plug-in coils, output at any frequency in the $1.75-, 3.5-$, or $7-\mathrm{Mc}$. bands may be obtained.

Referring to the circuit diagram of Fig. 1377. a GFF_{6} is used in the e.c.o. circuit. Since the buffer stage provides adequate isolation, the use of a well-seremed tube in the oscillator cireuit is not a requirement. The cathode is connected to a feed-back wimling, L_{2}, rather than to a direct tap on L_{1}, to make adjust ment of feed-hark less difficult. A high-C tank cireuit is obtained by the fixed padders, C_{1} and C_{2}. which are of the zero-drift type lsandspread tuning is obtained by the split-stator condenser, C_{3}.

When coils 1 and 1 A (see coil charts) are plugged in, the two sections of the tuning condenser, C_{3}, are connected in parallel and the output-frequency spread is 1760 to 2000 kc . to cover, through a doubler, the $3.5-\mathrm{Me}$. band. Similarly, with coils 2 and 2 A , the two sections of C_{3} are in parallel and the output-frequency spread is 3500 to 4000 kc . to oover the $3.5-\mathrm{Mc}$. band.

When coils $1 B$ and 1 AB are plugged in, the sections of C_{3} are in series and the output-frequency range is 1750 to 1825 kc . for obtaining, through doublers, the frequency ranges of 7000 to 7300 and 14,000 to $14,400 \mathrm{kc}$. Similarly, when coils 2B and 2AB are plugged in. the output-frequency range is 3500 to 36000 kc. for obtaining, through doublers, the samo frequency ranges of 7000 to 7300 and 14.0000

Fig. 1377 - Cirenit diaqran of the v.for. exciter unit. $\mathrm{C}_{1}, \mathrm{C}_{2}-300{ }_{\mu} \mathrm{ff}$. cach, zero-drift type (Crintralab 3162).
$\mathrm{C}_{3}-140$ н $\mu \mathrm{fd}$. per section (Ilamntarlund M(\%)-110-S).
(4 - $100-\mu \mu \mathrm{fd}$. nica.
(5 - $250-\mu \mu \mathrm{fl}$. mica.
C_{6} - 45-260)- $\mu \mu \mathrm{fd}$. mica trimmer (II amnarlund ('TS-140).
C_{7} - Approvimately $6.5 \mu \mathrm{ffI}$. (Hammarlund MC-100.s with two stator and two rotor plates rethoved).

J-Closed-direnit jack.
R_{1} - 0.1 mequhn,
$\mathrm{R}_{2}-0.1$ megohm, $1 / 2$-watt.
R_{3} - $\overline{\mathrm{s}}$ (h) ohnis, 1 -wath.
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3} . \mathrm{I}_{4}$ - Sce lig. $13: 8$.
to 14.400 kr . The two sertions of C_{3} are also connected in series when coils 3 and $3 A$ are plugged in. and the output-frequency range then becomes 7000 to 7300 kr . This is suitable for covering the 7 - lle band and, through a doubler, the $1.4-\mathrm{Mc}$. hand.

When coils 313 and 3 AB are plugged in, only one section of C_{3} is in use and the outputfrequency range of 7000 to 7500 kc . is useful in ohtaining. through doublers, the range of 28.000 to 30.000 kc .

Proper eonnertions to C_{3} are made automatically when each oscillator coil is plugged in, ass shown in Fig. 1378.

Choke coupling is used between the ascillator and the 6 L 6 isolating stage. This stage is operated very close to Class-A conditions and is tuned to the second harmonic of the oseillator frequency. Thus. the oscillator operates at half the desired output frequeney. The type 6Lif tube is used to take care of the unusually high dissipation resulting from this type of operation. The tuning of the output tank circuit is ganged with that of the ascillator. Tracking taps on the output coil, L_{3}, are required only for spreading the higher-frequency bands. Adjustable mica trimmers, C_{6}. are monuted in each coil form.

 shomld be commeded as shown at II, while roils $3.1, I .113,2 A B$ and $3 A 18$ should be conmerted as shown at bi. Fhows
 r.f. whoke. Coil dimensions are as follows:

Oscillator (It and $\left.I_{2}\right)^{*}$
Coil No. 1 - (875 to 1000 hr .) - 17 turns No. 20 , $1 . \mathrm{sec}$, $7 / 8$-inch long; 6 turns for L_{2}.
Coil No. 2 - (1750 to 2000 kc .) - 23 turns No. 20 d.s.c., $11 / 4$ inches long; 2 turns for L_{2}.

Coil No. $3-(3500$ to 3650 kc . $)$ - 14 turis Nio. 20 d.s.e., $1 / 4$ inches lomp; 2 turns for L_{2}.

Coil No. $113-(875$ to $912 \overline{5} \mathrm{kc}$. $)$ - 57 turns No. 26 d.s.e., $11 / 8$ inches long; 5 turns for L_{2}.

Coil No. 2 B - (1750 to 1825 kc .) - 28 turns No. 20 d.s.c., 1 inch long; 2 turns for L_{2}.

Coil No. 3B - (3500 to 3750 kc .) - $131 / 2$ turns No. 20 d.s.c., l-inch long; 2 turns for L_{2},

[^6]
Buller Coils (L_{3} and $\left.I_{4}\right)^{* *}$

 $13 / 4$ inches long; approximately 12 turns for 14.
Coil No. $2 \mathrm{~A}-(3 \mathrm{~F} 010$ to 40 (1) kr.) - 21 turns No. 18 , $11 / 2$ inches lomg: approximatrly 6 turns for L_{4}.
Coil Co. 3 - (.(10) to 3010 hc) - it turns No. 18 , $11 / 2$ inches hong, taprol at 3 turns from bottom; approximately 4 thrise for L_{4}.
Coil No. 1113 - $(1750$ to 1825 kr.$)$ - 46 turns No. 24, $13 / 4$ inches lonf, tapued at 19 turns from hotom; approximately 12 turns for $/ 4$.
Coil No. 2A13-(3500 to 30.00 kr.$)-24$ turns No. 18 , $11 / 2$ inches lomp, tapred at 01% turns from loottom; approvimately 6 turns for $/ 4.4$.
 $11 / 2$ inches long. tapped at 5 turns from bottom; approximatrly 4 thrns for $I \cdot 4$.

Fig. 1379- Components for the v.f.o. exiter are assembled on a $7 \times 7 \times 2$-itroh ehawis. The dual-section comdenser is monnted tiy removing the shiold between sections and fastening to the chassis with a single machine serew. The smaller rondianser, C i. is mounted on National poisstyrene batton insuktors and metal spacers to insulate if from the chassin and loring its shaft in line with that of the dual combenser. It is reversemounted, with its tail shaftextenson coupled to the tail shaft externion of the dabl condenser to reduce the overall monntine spare. The stop pin mine thaft mast be removed. leads from the tuming condenaers to the submonnted ail sockets pass through the chassis via $1 / 2$-inch humes lined with rubber grommets. The jack for the key, whict must he insulated, and the male power conmetor monnt in the side of the rabinet. 'The chassis is fastened firmly in place with long machine screws running through the chassiz and the lottom of the cabinet. The terminals at the rear are for link-output connections, the binding post for capacity coupling.

To solve some of the difficulties often encountered in key-filtering an oseillator of this type, the oseillator stage is keyed in the sereen circuit. This means that both sides of the key are at a potential of 150 wolts above ground potential. It is, therefore, preferable to use a reliy to isolate the key contacts from this voltage. Otherwise, due cantion should be exarcised. If preferred, athode keying may be used as shown in Fig. 1378-F, but it is more diflicult to obtatin soft keying without iatroducing chirp with this system. With cathode keying, the
screen connection will go directly to pin No. 2 on the power plug, eliminating the jack in the screen circuit.

A link winding, L_{4}, is provided for coupling the output of the exciter unit to the input of the amplifier stage which it is to drive.

Coils - Coil dimensions for several oscillator runges are given in the coil table below Fig. 1378. Only those which suit the conditions under which the unit is to be operited need be constructed. This will depend upon the type of transmitter with which the unit is to be used. To begin with, only coils need be provided giving output in bands for which crystals, formerly used, are ground. For instance, if the oscillator stage to be driven is designed for $1.75-\mathrm{Mc}$. crystals only, coils need be wound for this band only. If the transmitter operates only in the $3.5-\mathrm{Mc}$. band, only the $1.75-\mathrm{Mc}$. coils for the first bandspread range will be required. If, however. the transmitter is designed to cover the 7 -Mc. band, as well as the lower frequency bandi, from a $1.75-\mathrm{Mc}$. crystal. coils for the second bandspread range also will be necessary to get full bandspread at 7 Mc. An examination of the coil-selection table will show what coils are required, depending upon the crystal frequency normally used to secure out put in the desired band. If full bandspread at $7-\mathrm{Mc}$. and higher frequencies is not deemed necessary. the wide-bandspread coils for these frequencies need not be constructed.

The oscillator coils are wound on Millen one-inch diameter coil forms which are mounted in National PB-10 five-prong shielded plag-in bases. The feed-back coils, L_{2}, are wound over the bottom turns of L_{1}, and in the same direction. Connections to the base pins are given in Fig. 1378-A, B and C.

The buffer coils are wound on Hammarlund $11 / 2$-inch diameter five-prong forms. The padding condensers, C_{6}, are mounted inside the coil forms, fastened in place with a $4-36$ machine screw. Buffer coils for the higher-frequency ranges must be tapped as directed. One satisfactory way of making this tap is to drill a hole near the bottom of the form for a wire which may be brought outside from the pin to which the tap must be connected. The turn which is being tapped, as indicated in the table of coil dimensions, may be seraped and the tap wire soldered to this turn. Pin connections are shown in Fig. 1378-D and E.

Tuning - Before an attempt is made to tune the circuits, the dropping resistor. R_{2}, in the power supply should be adjusted. This is done with any pair of coils plugred in and the key closed. Ntarting with maximum resistance, the slider should be adjusted, bit by bit. until the VR tubes ignite. As much resistance as possible should be left in the circuit consistent with the maintenance of reliable operation of the VR tubes. If the tubes ignite with maximum resistance in the circuit further adjustment will not be required, unless the output voltage of the pack used happens to be unusually high. If this is the case, the value of dropping resistance should first be increased until the VIR tubes no longer ignite, and then brought back to the point where they just ignite.

The first step in adjusting the unit is to cherk the frequency range of the oscillator. It is probable that differences in wiring induetances and caparities will make it necessary to make slight alterations in the oscillator coil dimensions given in the table. Unless the construction differs widely from the original, however, no more than adjostment of the spacing of a few turns at the top of L_{1} should be required.

Fip. 1381 - Typieal dial calibration for the v.f.o. unit. Notations at lower right indicate the calihrated ranges of the coil sets listed under flig. 13:8 aud in the coil-selection table. Details of calibration are given in the text.

Fig. 1380- liph-frequency connections underneath the chassis of the v.f. exciter unit are made with short, straight sections of heavy wire. The two zero-temperature padding condensers are soldered directy to the oscillator-coil socket. All compoments are mented firmly with no opportunity to support mechanical vibralien, Washers kis-ineh thick are placed betwern the pancl and the thassis to provide space for the lower lip of the cabinet opening.

If close calibration is desired, a 100 -ke. frequency standard cheeked against WWV' (see Chapter Nineteen) or equivalent frequeneychecking means should be provided. The approximate range of the oseillator coil under adjustment may be determined by listening to the expiter on a calibrated recojver. The 1.75 Mc. range of the receiver should be used for cherking eoil No. 1. The ranges of other coils may be checked with the receiver tuned to the $3.5-\mathrm{Mc}$, band. Care should be exercised, when a superheterodyne receiver is used, that it is tuned to the signal and not the image.

If no signal is heard at any point in the band with any setting of the v.f.o. dial, run a wire from the receiver antenna post to a point near the oscillator eroil. If it is still impossible to pick up the signal. it is possible that the oscillator may mot befunctioning. This can be verified by absence of rectified d.e. grid voltage between the 6 Ft grid and ground. Gme turn should then be added to the ferd-hack winding. More than the single additional turn should not be reguired. If the winding is larger than is moded for reliable operation with the ker closed, the bF6 may continue to oscillate weakly even with the key open. This eondition is to the avoided, of course, if break-in operaation is contemplated.

When the oscillator is functioning satisfactorily, the spacing of the top, turn or two of L_{1} should be adjusted until the desired band is centered on the dial of the unit. This can be done by spreading a turn or two, as nentioned previously. The shield can should be replaced each time a check is made. When the adjustment is final, the turns should be cemented permauently in place. The v.f.o, unit should be warmed up thoroughly before making a permanent ralibration.

Fig. 1382 - Voltage-regulated power supply for the v.f. exciter unit. L_{2} is mounted underneath the chassis.

The National ACN dial has imprinted sertes for calibrating five ranges. Since the bandsperad ratio is the same for the two lowest-frequency sets of coils, the oscillator coils for each of these ranges may be adjusted so that the $3.5-\mathrm{Mc}$. harmonics of the $1.75-\mathrm{Mc}$. range (1 and 1 A) will coincide with the fundamental frequencies of the $3 . \bar{b}-\mathrm{Mc}$. range (2 and 2 A) and one seale on the dial will serve for both calibrations. It is only necessary to adjust the oscillator coil of the $3 . \bar{b}-\mathrm{Me}$. range so that the low-frequency end of the band falls at the same point as the second harmonie of 1750 of the $1.75-\mathrm{Mc}$. range falls when the $1.75-\mathrm{Mc}$. coils are plugged in. With similar adjustments, the 7-Mc. and 14Mc. ranges of the coils 1 B and $1 \mathrm{AB}, 2 \mathrm{~B}$:und 2 AB and 3 and 3 A may be made to coincile. In the end there will be a single calibration on the dial for each band, and only five calitorations will be reguired for the complete set of coils listed in the coil table. A typical dial calibration is shown in Fig. 1381. Intermediate points may be marked in as desired. While the 14-Mc. band does not cover as murh of the dial as do the other bands, nevertheless the bandspread is entirely adequate to enable accurate setting to zero-beat in this band.

With the oscillator ranges adjusted, the next step is to adjust the tracking of the buffer stage. A 6.3 -volt (150 -ma.) dial lamp with ome or two turns of wire should be coupled to the output tank coil to act as an indicator. With the condenser gang set at minimum capacity, the padder, C_{64} in the coil form should be adjusted for maximum brilliance of the lamp. The gang should now be turned to maximum caparity. If the lamp decreases in brillianse, readjust C_{6}, nuting carefully whether an increase or decrease in capacity of C_{6} is required to bring the lany, up to its original brilliance. (If the padders suggested in the parts table are used, and if they are mounted in the coil forms with their terminals downward, clockwise rotation of the adjueting serew will decrease capasity, while counter-clockwise rotation will increase capacity If mounted with the ter-
minals upward, the action will be reversed.) If an increase in the caparity of C_{6} is required with cuils having no bandspread tap, C_{7} is not tuning fast enough and a turn should be added to L_{3}. If a decrease in the riparity of C_{6} is required, a turn should be removed from L_{3}. On the tapped coils the tap should be moved upward a turn toward the top of I_{3}, if an increase in C_{6} is required, or a turn downward toward the bot tom of the coil, if C_{6} is decreased.

After each adjustment of the coil, tracking should again be checked by adjusting C_{6} for maximmm brilliance with the condenser gang at minimum raparity and then cherking at maximum caparity. These adjustments are simple and no trouble should be experienced in speedily arriving at the correct adjustments. When proper adjustments have been made. there should be no appreciable change in the brilliance of the lamp at any setting of the gang pondenser.

If a check on plate currents is desired, meters may be inserted temporarily by opening up the wiring underneath the ehassis. With correet adjustments of the tickler windings. L_{2}, the oscillator plate eurrent should run between 12 and 15 ma . The buffer plate current should run at about 19 ma, with the key open and increase one milliampere or less with the key closed. Iarge rhanges in this plate current indicate that there are too many turns on L_{2}.

Pouer supply - The v.f.o. unit operates from the power supply shown in Fig. 1382 and whose circuit is shown in Fig. 1383. The two are connected with a length of dive-conductor shielded battery cable fitted with a five-prong female connector at the unit and a sinilar male pling at the power-snpply end. The shield is connected to pin No. 5 at each end. Almost any of the usual type of well-filtered receiver power supplies delivering 325 to 350 volts with a 50 -ma. or better rating may be made to serve the purpose equally well. merely by the addition of the VRlisl-30 regulator thbes and the dropping resistor. R_{2}.

Fig. 1383 - Circuit diagram of the voltage-regulated power supply for the variable-frequency exciter unit. $\mathrm{C}_{1}-8$ - ffd .500 -volt electrolytic (Mallory MD683).
C_{2} - Dual-section 450 -volt electrolytic, $40 \mu \mathrm{fd}$. per section, one section on each side of L_{2} (Mallory FPI 2 :38).
$\mathrm{L}_{1}, \mathrm{~L}_{2}-15$ heurys, 100 ma. (UTC R19).
$\mathrm{R}_{1}-25,000$ ohms, 10 -watt.
$\mathrm{R}_{2}-2500$ ohms, 25 -watt with slider.
T-Conshination power transformer: 375 volts r.m.s. pach side of conter-tap, 100 ma.; 5 volts, 3 amperes; 6.3 volts, 6 amperes (UTC RIV).
Sw - S.p.s.t. toggle switch.

Fig. 1381 - Methode of compling the omput of the v.for to erystal-nseillator stages of varions typers. See text for

 $100 \mu \mu \mathrm{fd}$. for the $1.75-\mathrm{Mc}$. band and $50 \mu \mu \mathrm{fd}$. for the 3.5-and $\mathbf{7}$ - Mc. banda. Dimensions for I_{0} are an follows:
 $1 / 2$-inch diameter.
3.5-Mc. input - 40 turns Do. 21.11 g-ineh diatmeter, $11 / 2$-inches long.

© Feeding Crystal-Oscillator Stages

The output of the v.f.o. unit is sulficient to drive an 807 or similar type of tube. Such a stage may be link coupled to the exciter unit by means of L_{4} or caparity coupled by connecting a small coupling condenser to the plate terminal of the 61.6 . In the latter case, some readjustment of C_{6} will be required to restore resonance, but retracking of the stare should not be necessary.

However, it is expected that the unit will be used more frequently to drive the arystal-osmillator stage of a crystal-controlled tramsmitter already in operation. While other methods of coupling between the rrystal-oscillator stage and the v.f.o. unit may be devised, one satisfactory system which reduces the possibility of instability of the crystal-oscillator tube when coupled to the v.f.o. unit will be described in detail. Most crystal-oseillator stages are not sufficiently well-screened to permit operating the stage as a conventional straight amplifier with input and output cireuits tuned to the same frequency. While the substitution for the erystal of a tuned circuit link-roupled to the output of the v.f.o. unit is the recommended method of coupling when the crrstal stage is to be used as a frequency doubler, the stage will invariathly break into oscillation if the same
inchers long.
limh windinge comxist of 8,6 and 5 tarne repertively for the 1.25-, 3.5- and 7 -itc. bande, clome-wound below 1 .g.
system is used for fundamontal opration. Gat satisfactory method of preventing this is to switch the link line to the cathode circoit for fundamental operation. 'The practical application of this system is shown applied to several tepical varieties of arystal-oscillator circuits in Fig. 1384.

In each case, a tank rimouit. Colo tuned to the frequency of the erystal which it supplants, replaces the crystal when the stage is to be operated as a frequency doubler. The insertion of the condenser C is required to prevent shortcircuit of the grid leak. 'The tank cirenit is coupled to the output of the v.f.o. through a link line connecting at the points marked H-11. The openings indicated in the cathode circuits may be closed by a shorting bar. It is important to keep the shorting-bar leads as short as possible, otherwise there is danger of self oscillation evon though the tuning of the grid and plate tanks may differ widely. In Tri-tet and grid-plate circuits, the cathode tanks must be shorted as indicated.

When the crystal stage is to be operated as at straight amplifier, the grid tank is removed. leaving the erystal position open. The link line from the v.f.o. is shifted to the points marked F-l and the cathode shorts indicated by the doted lines removed. In Tri-tet or grid-plate

Fig. 1385-Circuit arrangements for a plug-in coil system planned for most conveniently making connections in a Tri-tet oscillator circuit for optional erystal or v.f.o. operation. The grid tank for doubler operation is plugged into the same six-prong tube socket used by the crystal. The eircuit at A shows the connections of the plug-ingrid tank for frequency-doubleroperation of the crystal stage with v.f.o. input. Values for L_{σ}, C, and the associated link coils are given under Fig. 1384. B shows connections for the plugin cathode coil, I.c, which is the usual I'ri-tet cathode winding. C shows the adapter circuit complete with all socket connections. (C_{c} is the 'Tri-tet cathode-tank condenser and R_{c} and C_{z} are the usual cathode resistor and by-pass condcuser.

(A)

(B)

Fig. 1386 - T'op vicw of the gangtuned driver and push-pull amplifier deaigned to work with the v.f.o. unit of Fir. 1376 . 'lhe shassis is elevated by 17×8-ineh pantls on each side. The 80% socket, which is mounted an inch below the chassis top on spacers, and the sochet for the cooupling transformer, $L_{1} L_{2}$, at the left-hand end of the chassis, are on either side of the handipread comenser, C_{2}, underneath. 'The 806 padding condenser, (i, is next to the right with an insulating coupling on its shaft which is $51 / 2$ inehes from the left-ham! end of the ehassis. The maft of the final-amplifier padding condemer, $51 / 2$ inches from the right-fand esd of the chatision, is also fitted with an insulat. iny eompling. The condenser is monnted on National molystyrene button insulators to bring its shaft level with that of Ci. The sowkets for the 812 s are at either end of C_{3}, with the neutralizing condensers between (1) make newtralizing leads shoort. The jach bar for the tank coil, I_{3}, is momutad on 2 -inch cone insulators.
oscillators, the cathode inductances and preferably the cathode tuming condensers also must be removed. If a cathode resistor is used, the excitation should be introduced in series between the rathode and the junction of the eathode resistor and its by-pass condenser as shown in Fig. 1385-C.

If the v.f.o. is to be keyed, the kny terminass of the erystal stage must be shorted. A small amount of fixed bias may have to be connected between grid leak and ground to prevent excessive plate current when the key in the v.f.o. circuit is open. If break-in keying is not desired, the v.f.o. may be operated continuously and the crystal stage keyed in the usual manmer.

Values for the substitute grid tank coil are given in Fig. 1384. A fairly-high L / C ratio has been chosen and, in most cases, any one band may be covered without retuming of the grid tank, if it is set to resonance in the middle of the band. The remainder of the transmitter will be tuned as ustal.

The details of a convenient phag-in system which takes rare of all connections in shifting from Tri-tet crystal operation (used in most of the transmitters described in this chapter) to either fundamental or doubler operation when using the v.f.o. unit are shown in Fig. 1385. The grid tank for doubler operation is plugged into the same six-prong tube socket used for the erystal. Link connections to the v.f.o, are made through pin jacks H-H. A short-circuiting wire connects pin jacks F - -F into the cathode circuit. The leads from the eathode-coil socket to these jarks and the shorting wire should be kept as short as possihe. The cathode coil should be romoved from its socket.

For fundamental operation with the v.f.o. unit, the tank is removed from the grid-circuit and the shorting wire removed from $\mathrm{F}-\mathrm{F}$, to which the link line from the v.f.o. is shifted.

For crystal operation, the crystal is plugged into the grid cirenit between prongs 6 and 3 , or between 5 and 2, and the cathode coil is plugged into its socket, automatically connecting in the cathode condenser, C_{c}. The v.f.o. link line must be disoonnected. Similar combinations may be worked out for other oseillator circuits not shown in the diagrams.

(1) A Gang-Tuned 450-Watt Push-Pull Amplifier and Driver

Figs. 1386, 1387 and 1389 show a gangt:med unit which may be added to the v.f.o. unit of Fig. 1376. As shown in Fig. 1388, it consists of a push-pull amplifier and a driver stage. the tuning controls of which are coupled to the taning shaft of the \boldsymbol{r} f. f . unit. Once adjusted for any given band, the four stages of the transmitter can be tuned with the single dial of the v.f.o. unit.

The two stages are coupled inductively with the tuning condensers connected across the grid winding. The use of inductive coupling solves the problem of balanced excitation to the amplifier without the dual tuning controls recquired with link coupling. C_{1} and C_{3} are the tank condensers, used for setting the circuits to the desired band. C_{2} and C_{4} are the bandtuning condensers. The two stages are adjusted for tracking by varying the portion of the coils auross which the bandspread condensers, C_{2} C_{4}, are connected.

The trap circuits, $L_{4} C_{5}, L_{5} C_{6}$ and $L_{6} C_{7}$ are for the purpose of suppression of v.h.f. parasitic oscillations.

The milliammeter may be switched to read 807 cathode or screen current, amplifier grid current, or amplifier cathode current by means of the dual-gang tap switch S.

Coils - While homemade coils of equivalent dimensions may be substituted, it may be found more convenient to alter manufactured

Fig. 1387 - Bottom view of the gang-tuned unit. 'The final amplifier handspread comulenser, Cis. is mountod as far to the left as possible, on National polystyreme button insulators stacked to bring the shaft level with that of the driver banlspread condenser, C_{2}, to the right. The shafts of the two condensers are commected with flexible ceramic insulating conplings and also to the tail shaft of C_{-}in the v.fo. unit through a hole cut in the rear of the v.f.o. cabinet. (i2 is turned around so that its tail shaft comples to the shaft of the v.f.o. unit. The monnting hole of the condenser shomld come $21 / 2$ inches from the lefihand edge of the chassis. 'The shaft stop pin shoukd be removed. The remaining below orhassis wiring is simple and dirert. Heavy tinned wire is used for all r.f. leats, the filament transformer is mounted below th. -hassis at the econter rear. Insulated or protected terminals are used for all external bower sumply connections.

coils. The National coils suggested for L_{1} should be obtained minus the links and mountings. Stripped, it will be found that these coils fit snugly inside the $13 \& W$ coils used for L_{2}, and that the plastic strips on each coil hold them central to prevent short circuits between L_{1} and L_{2}. The link winding should be removed from L. The free base-pins this provided will serve for the comnections to C_{2}. The tubular rivets at each end of the hottom sparing strip of the coil should be drilled or filed out, and 3/4-inch 6-32 machine screws substituted. A Johmson banama plug is fastened at each emb of the base and the ends of L_{1} are connected to these plugs.

In the chassis. on either side of the coil socket and directly below the hanana plugs, a hole should be drilled. The one on the righthand side should be $1 / 4$-inch in diameter. while the one on the left-hand side should be $1 / 2$-ineh in diameter. A jack to fit the banama plag should be placed in a National polystyrene button-type insulator with the shoulder filed off and the hole drilled out to fit the jack. This jack, mounted in the $1 / 4$-inch hole with the insulator as a spacer. then serves to make the ground ronnection for L_{1}. The ${ }^{1}$-inch hole is for a second jack insulated from the chassis by a pair of button-type feed-through insulators. This jack serves as the connection for the other end of L_{1}.

The B \& W type TVII coils are selected not only because they are of the proper size for the power involved, but ako because they are supplied with extra plugs which may be used for the ganging taps for C_{4}.

Hanal		Osc.	Buaffer	Dricer		Final	
3.5	Mc.	No. 2	No. 21	3.5	Me.	3.5	Mr.
7	Mc.	No. 3	No.3A		M1c.	7	Me.

© Combining Units

Fig. 1389 shows how the two units are juined together. The out put of the v.f.o, and the input of the 807 driver stage are coupled rapacitively, a short wire commerting the bimding post in the v.f.o. unit with the coupling condenser, C_{10}, in the ganged unit. Large holes are made in the rear of the v.f.o. cabinet and the end of the chassis to clear a small National rigicd shaft coupling. The height of the chassis should be adjusted so that the shafts of the two units line up porfertly. If the combenser gangs in eath unit have been mounted as described, the shafts will be lined up when the bottom edge of the $10 \times 17 \times 3$-inch chasis is $21 / 4$ inches above the bottom edges of the supporting panels.

The two units are fastenced together with 7-inch triangular brackets, the tops of which have been cut off to fit, on cach side of the chassis. The excitation lead to the grid of the 807 passes through a grommet-lined hole in the back of the v.f.o. cabinet and a similar one in the front edge of the chassis.

Power-supply requirements are covered in the section of the complete gang-tuned transmitter the description of which follows in the next section.

Tuning - If coil dimensions have been followed carefully, there should he little difliculty in lining up the various stages. The shaft couplings must be adjusted so that all condensers of the gang arrive at inaximum or minimum capacity simultaneously. Coils shonid he plugged in the various stages for the desired band, using the coil-selection table as a suide.

With the tuning control set for the highfrequency edge of the band, the voltage-regulated supply and the bias supply should be turned on simultancously. This will apply plate voltage to the v.f.o. unit and screer voltage to the 807 . Using the 807 sereen current as an indicator, the trimmer of the buffer stage in the v.f.o. unit should be lined up. Maximum
sereen eurrent indiates resomanere. The k ey shonld not be held elosed for exressively long periods, to limit screen heating. Puning to the low-frequency end of the hand should show negligible change in sereen eurrent. Should there be evidence of poor tracking, the buffer stage can be brought into line again as disrussed in the section deseribing the tuning of the v.f.o. unit.

Plate voltage may now be applied to the 807 and the stage tuned to resonance with C_{1}. A check should be made for parasitie oseillation. with a lamp of sufficient size to reduce the plate voltage to about half in sories with the primary of the 750 -volt transformer. At several settings of the v.f.o. unit (C_{1} should be varied throughout its range. earefully motine any change in cathode eurrent which wonld indirate oscillation. An additional doeck may be made by tourhing a neon butb to the phate of the 807. Shumble oseilation orecur. the parasitio trap condenser, ('is. should be adjusted until the oscillation is suppresed.

Turning now to the trackingof the driverstage, tuning C_{1} to resomance should result in a showing of amplifier grid curent. Again starting at the bigh-frequency end of the biand, C_{1} should be adjusted for maximum grid current. If there is a serious falling off of grid current :th
the unit is tuned to the low-frequency end of the band, a eheek should he mate to delermine if readjusting C1 will bring the grid corrent back up. If it does not, the size of L_{1} must be increased by one or two turms. If. however, retuning of C_{1} shows the tuning to be off resonance at the low-frequency end of the band, it should be carefully noted whether an increase or a decrease in the caparity of C_{1} is neeessary to restore resonance. If an increase in C_{1} is required, the taps of C_{2} should be spread slightly farther apart: if a decrease is required, they should be brought closer together. After each cherek the tuning of the unit should be returned again to the high-fremueney end and realigned. before agetin wherking the low-frequency end of the band.

However, should the first chere at the lowfrequency end of the band show an increase in grid current over that obtained at the highfrequency and a turn or two should be removed from L_{1}, after which the tracking should agatin be ehereked as previons deseribed.

With substantially constant grid current over the hand, the amplifier may be noutralized in the usual manner. With the amplifier operating at redued plate voltage, a cherk similar to that deseribed for the 807 stage should he made to eliminate any tendency toward para-

Fig. 1388 - Circuit diapram of the 450 -watt gang-tuned dris or and purh-pull amplifior unit.
(i) $\quad 100 \mu \mathrm{fld}$ per sertion (Hammarlund MC:D-140.S).

 $150 \mathrm{ED} 30)$.
 lund 11 FBO-(tin-F).
$\mathrm{C}_{-5}, \mathrm{C}_{6}, \mathrm{C}_{7}-3-30-\mu \mu \mathrm{fd}$. mica trimmer ($\mathrm{National} \mathrm{M}-30$).
($\%$, C_{9} - Nuntraliziny condensers (National N(i-800).
(C 10 - 100)- μ ffl. mica.
$\mathrm{C}_{11}, \mathrm{C}_{12}-0.001-\mu \mathrm{fl}$. mica, 1000 -volt rating.
($\mathrm{Cl3}$ - 0.001 - $\mathrm{\mu f}$. mica, 500 -volt (Aerovox 1023).
$\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}-0.01 . \mu \mathrm{fd}$. mica.
MA - Hilliammeter, 100 -ma. scale.
$\mathrm{R}_{1}-\mathbf{2 5}, 000$ ohms, 1 -watt.
$R_{2}-20,000-h m, 10$-watt variable.
$\mathrm{R}_{3}, \mathrm{R}_{4}-25$ ohms, 1-watt.
R_{5} - Meter-multiplier resistance, 2 times, womed with No. 26 wire.
R_{s} - Meter-multiplier resintance, 5 timen, wound with Vo. 24 wire.
$\mathrm{RFC}_{1}-2.5$-mh. r.f. chohe.
$\mathrm{RFC}_{2}-500$-ma. r.f. chohe (Hammarhund CH 500).

- - 'Two circuit, 4 -contact switch (Mallory 3234 J).
it - 6.3 volts. 10 amperes (Thordarson T-191:99).
1.1 - Monuted inside La:
3.5 M1. - 22 turns No. $22.11 / 4$-inch diameter, $11 / 4$ inehes long (National AR40, unmounted, 6 turns renowed).
- Mc. 14 turns No. 20 . $11 / 4$-inch diameter. $11 / 4$ inches long (Vatimal AR20, unmounted).
$\mathrm{I}, 2-3.5 \mathrm{M}$ e. - 28 turns No. $22,15 / 8$-inch diameter, $13 / 2$ inches long, taps at 3 turns from each rnd (B\& W JCl, -80, no linh, 8 turns removed frim each end).
7 Me. - 18 turns No. $16,15 / 8$-inch diameter, $11 / 2$ inches long, taps at 6 turns from each end ($B^{2} \& W$ J CL-40, no link, 5 turns renoved from each end).
$\mathrm{L}_{3}-3.5 \mathrm{Mc} .-38$ turns No. $14,51 / 4$ inches Ionge, $21 / 2$. inch diameter, $8 / 4$-ineh space at center for linh, taps at $38 / 4$ turns from each end (B \& W T'H-80).
7 Mc. - 24 turne No. 12, $5 \frac{1}{4}$ inches long, $21 / 2$ inch diameter, $3 / 4$-inch space at center for link, taps at $73 / 4$ turns from each end (B \& W TVII. 40).
I. $\mathbf{- 5}$ turne No. 14, 3/8-inch diameter, 1 inch long.
i_{1}. If - 4 turns No. $14,5 / 8$-ineh diameter.

Fig. 1389-'The v.f.o. unit of Fig. 13.6 combined with the gang-tuned driver and push-pull final annplifier. The two units are fastened together with 7 -inch triangular brackets, the tops of which have been cut off to fit, on each side of the chassis. The excitation lead to the grid of the 807 passes through a grommet-lined hole in the back of the v.f.o. cabinet. The milliammeter and the meter switch are placed on the panel to balance each other at opposite ends of the chassis. Holes for these components must be cut in the chassis edge. The control at the left is for setting the final-a mplificr padder or band-setting condenser, C_{3}, while the control to the right is for the driver padder, C_{1}. The $10 \times 17 \times 3$-inch chassis is elevated approximately $21 / 4$ inches by supporting it on panels 8 inches high runming the length of the chaswis. 'lhe clearance and assembly holes through the panel and chassis should be made slifhtly oversize to permit accurate adjustnemt of the chassis height for lining up the tuning-condenser shafts.

sitic oscillation. For several settings of the ganged control, C_{3} should be varied throughout its range. If oscillation occurs, the parasitic trap condensers, C_{6}^{\prime} and C_{7}, should be adjusted in equal steps until it ceases.
Still operating at reduced plate voltage, the amplifier should be loaded with a lanip bulb of 150 to 200 watts connected to the output link. C_{3} should be adjusted for resonance at the ligh-frequency end of the band. Tuning across the band should now show no appreciable change in power input or output. If a check, by retuning C_{3} at the low-frequency end of the band, shows the stage to be off resonance, a note should be made as to whether an increase in the capacity of C_{3} or a decrease is necessary to restore resonance. If an increase is required, the taps of C_{4} should be spread slightly, while a decrease in C_{3} indicates that the taps of C_{4} should be brought slightly closer together. Again, each adjustment of tracking should be followed by realigning at the highfrequency end of the band before making a check on the new adjustment at the low-frequency end.
If coil dimensions have been followed carefully these tracking adjustments should not be required. They are described to take care of cases in which the constructor may have gone astray at some point, or in which the design has been changed to suit other requirements. Naturally, the adjustments for the ligher-frequency bands must be made in smaller steps than those required for the lower-frequency bands.

At the plate voltages recommended, the screen current, when lining up the v.f.o. output stage, should run between 5 and 10 ma . Cathode current to the driver stage when tuned and loaded should be between 70 and 100 ma ., while grid current to the final amplifier should exceed 50 ma . with the amplifier loaded to the rated plate current of 300 ma . at 1500 volts.

Under operating conditions the driver screen voltage should run close to 250 volts. When correctly adjusted, the power output across any of the three bands should remain constant at 300 watts.

For 'phone operation with plate modulation, the input to the final amplifier should be reduced to 250 ma . at 1250 volts.

The tube tables in Chapter 'Twenty should be consulted for the operating conditions of other types of tubes should they be used in the final amplifier.

C. Complete Variable-Frequency Gang-Tuned Transmitter

Fig. 1389 shows the two units of Figs. 1376 and 1386 combined for gang tuning. The volt-age-regulated supply of Fig. 1382 may be used to furnish screen voltage for the 807 by bringing out a tap from the junction of resistors R_{1} and R_{2}. The unit of Fig. 1351 will furnish biasing voltages for both 807 and final amplifier. The voltage-divider resistance of the bias unit should be adjusted with 4000 ohms in the R_{2} portion and 4000 ohms in the R_{3} portion. Plate voltage for the 807 may be obtained from the unit of Fig. 1316, while the unit of Fig. 1349 will furnish plate voltage for the amplifier. A suitable antenna tumer is shown in the photograph of Fig. 1353.

To facilitate rapid setting of the band-set condensers, their dials may be provided with scales upon which the correct setting for each band is marked.

Similarly, to simplify antenna tuning and make it possible to adjust the antenna without putting a signal on the air, the antenna-tuner dial may be provided with a scale which may be calibrated in terms of receiver- or v.f.o.-dial settings. Since antenna tuning should not be critical, the dial need be calibrated for only several scattered points throughout each band.

(1) A Practical Vacuum-Tube Keyer

Fig. 1391 shows a practical vacuum-tube keyer unit. The circuit diagram is shown in Fig. 1390. T_{1}, the rectifier, with C_{1} and R_{1} form the power-supply section for producing the blocking voltage necessary for cutting off the keyer tubes. With only R_{2} in the circuit and $\sin _{2}$ in the open position, there will be nolag. As sure is turned to introduce more capacity in the circuit, the keying characteristic is "softened" at both make and break. Adding resistance by turning swi to the right affeets the "break" only. The use of high resistances and small capacities results in small demand on the power supply and makes the key safe to handle.

As many toss may be added in parallel as desired. The voltage drop through a single tube varies from 90 volts at $\overline{6} 0 \mathrm{ma}$. to 52 volts at 20 ma. Tubes in parallel will reduce the drop in proportion to the number of tubes. If rated voltage is important in the operation of the keyed circuit, the drop through the keyer tubes must be taken into account and the transmitter voltage boosted to compensate for the drop.

If desired, a greater angle of lag can be obtained by using a rotary switch with more points and additional resistors and condensers. Suggested values of capacity, in addition to C_{2} and C_{3}, are 0.001 and $0.002 \mu \mathrm{fd}$. From R_{2}, resistors of 2,3 and 5 megohms may be added.

When connecting the output terminals of the keyer to the circuit to be keyed, care must be used to connect the grounded output terminal to the negative side of the keyod cireuit.

(1. Rack Construction

Most of the units described in the constructional chapters of this Handbook are designed for standard rack mounting. The assembly of a selected group of units to form a complete transmitter is, therefore, a relatively simple matter. While standard metal racks are available on the market, many amateurs prefer to build their own less expensively from wood. With care, an excellent substitute can be made.

The plan of a rack of standard dimensions is shown in Fig. 1392. The rack is constructed entirely of 1×2-inch stock of smooth pine, spruce or redwood, with the exception of the trimming strips, M, N, O and I '. Since the actual size of standard 1×2-inch stock rums apprecially below these dimensions, a much sturdier job will result if pieces are obtained cut to the full dimensions.

Fig. 1391 - A vacuum-tuhe keycr, huilt up on a 7×9 $\times 2$-inch chassis with space for four or more keyer tuber and the bower-supply rectifier. 'The resistors and condensers which prothec the lag are monnted underneath, controlled by the knobs at the right. Ihe jaek is for the key, while terminals at left ase for the keyed circuit.

The main vertical supporting members of the wooden rack each is comprised of two pieres (A and B, and I and J) fastened together at right angles. Each pair of these members is fastened togerher by No. 8 flathead screws, with heads countersunk.

Before fastening these pairs together, pieces A and J should be made exactly the same length and drilled in the proper places for the mounting screws, using a No. 30 drill. The length of pieces A, J, B and I should equal the total height of all panels required for the transmitter plus twice the sum of the thickness and width of the material used. If the dimensions of the stock are exactly 1×2 inches, then 6 inches must be added to the sum of the panel heights. An inspection of the top and bottom of the rack in the drawing will reveal the reason for this. The first mounting hole should come at a distance of $1 / 4$ inch plus the sum of the thickness and width of the material from either end of pieces A and J. This distance will be $31 / 4$ inches for stock exactly 1×2 inches. The second hole will come $1 \frac{1}{4}$ inches from the first, the thirel $1 / 2$ inch from the second, the fourth $11 / 4$ inches from the third and so on, alternating spacings between $1 / 2$ inch and $11 / 4$ inch (see detail drawing D, Fig. 1392). All holes should

Fig. 1390 - Wiring diagram of the praptical vacuum-tube keyer unit and power supply shown in Fig. 1391. $\mathrm{C}_{1}-2 . \mu \mathrm{ff}$. 600-volt paper.
$\mathrm{C}_{2}-0.003-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-0.005$ - $\mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-0.25$ megolini, 1 watt.
$\mathrm{R}_{2}-50,000 \mathrm{ohms}, 10$ watt.
$\mathrm{l}_{3}, \mathrm{l}_{4}-5$ megohms, 1 -watt.
R_{5} - 0.5 mecohm, 1 -watt.
$\mathrm{Sw}_{1}, \mathrm{Sw}_{\mathrm{w} 2}$ - 3-position 1 -rirenit rotary switch. $\mathrm{T}_{1}-325-0-325$ volts, 5 volts and 2.5 -volte (Thordarson T-13 K01).

be placed $3 / 8$ inch from the inside edges of the vertical members.

The two vertical members are fastened together by cross-member K at the top and L at the bottom. These should be of such a length that the inside edges of A and J are exartly $171 / 2$ inches apart at all points. This will bring the lines of mounting holes $181 / 4$ inches center to conter. Extending back from the bottoms of the vertical members are pieces G and D) connected together by cross-members L, Q and E, forming the base. The length of the pieces D and G will depend upon space requirements of the largest power supply unit which will rest upon it. 'lhe vertical members are braced against the base by diagonal members C and $I I$.

Rear support for heavy units placed above the base may be provided by mounting angles on C and $I I$ or by connecting these members with cross-braces as shown at F.

To finish off the front of the rack pieces of $1 / 4$-inch oak $\operatorname{strip}(1 /, N, O, P)$ are fastened around the edges with small-head finishing nails. The heads are set below the surface and the holes plugged with putty or plastic wood.

The top and bottom edges of M and O should be $1 / 4$ inch from the first mounting holes, and the distance between the inside edges of the vertical strips, N and P, 191/ inches. $^{\text {ind }}$
'ro prevent the serew holes from wearing out when pancls are changed frequently. 1 俋 $1 / 16$, or $1 / 32$ inch iron or brass strip may be used to back up the vertical members of the frame.

The outside surfaces *hould be sandpapered thoroughly and given one or two coats of flat black. sandpapering between coats. A finishing surface of two coats of glossy black "Duco" is then applied, again sandpapering between coats. It is very important to allow each coat to dry thoroughly before applying the next. or sundpapering.

Since the combined weights of power supplies, modulator equipment, etc., may total to a surprising figure. the rack should be provided with rollers or wheels so that it may be moved about when necessary after the transmitter has benn assembled. Ball bearing roller-skate wheels are suitable for the purpose.

Standard metal chassis are 17 inches wide. Standard panels are 19 inches wide and multiples of $13 / 4$ inches high. Panel mounting holes start with the first one $1 / 4$ inch from the edge of the panel, the second $11 / 4$ inches from the first. the third $1 / 2$ inch from the seeond, the fourth $11 / 4$ inches from the third, and the distances between holes from there on alternated between $1 / 2$ inch and $11 / 4$ inches. (See detail I). Fig. 1392.) In a panel higher than two or three rack units ($13 / 4$ inch per unit), it is common practice to drill only sufficient holes to provide al serure mounting. All panel holes shoudd te drilled $3 /$ inch in from the edge.

Fig. 1393 - Various mothods of eonnocting milliammeters in grid and plate eurrents, A - lligh-voltage metering. B - Cathode metering. (i - Shant metering.

C. Metering

Various methods of metering are shown in Fig. 1393. A shows the meters placed in the high-voltage plate and bias circuits. M_{1} and M_{2} are for plate current and V_{3} and M_{4} for grid current. When more than one stage operates from the same plate-voltage or bias-voltage supply, each stage may be metered ats shown. If this system of metering is used, the meters should be mounted so that the meter dials are not accessible to accidental contart with the adjusting screw. One method of mounting is shown in Fig. 139.4, where the meters are mounted belind a glass panel.

When phate milliammeters are to be momuted on metal panels, care must be taken tu soe that
the insulation is sufficient to withstand the phate voltage. Metal-case instruments should not be mounted on a grounded metal panel if the difference in potential between the meter and the panel is to be more than 300 volts; bakelite-rase instruments can be used under similar circumstances at voltages up to 1000 . At hipher voltages than these an insulating panel should be used.
'lhe placing of meters at high-voltage points in the eireuit may be overcome by the use of the ronnertions shown in lig. 1393-13 and -C. The disadvantage of the arrangements at B is that the meter reads total eathode current and the grid and plate currents cannot be metered individually. This disadvantage is overcome in (', where the meters are connected across low resistances in the grid and plate return circuits. M_{1} reads grid current and $1 / 2$ plate current. The parallel resistors should have a value of not less than 10 to 20 times the resistance of the meter, and should be of sufficient power rating so that there will be no possibility of resistor burn-out. If desired, the resistance values may be adjusted to form a multiplier scale for the meter (see Chapter Nineteen). The same prinriple is used in the meter-switchung system shown in lig. 1395.

Meters may also be shifted from one stage to another by a phag-and-jack system, but this

Fig. 1.395 - Method of switching a single milliamuneter to varions cireuits with a two-pang switch. Whe control shaft should be well insulated from the switch contacts, and should he grounded. The resistors. R, should have values of resistance ten to twenty times the internal resistance of the meter; 20 ohum will usually be satisfartory.

SIOE view
Fig. 1394 - Safety panel for meters, The meters are monnted in the usual manner on an insulating sub-panel spaced back of a glass-eovered opening in the front panel. The glass is fastened in place with metal elamps or tabs, fastened to the front panel with small sorews or pins. The front panel is of standard rack size, $19 \times 51 / 4$ inches.

 tage, At B is a rircoit for switehing grid meter between two stages and plate moter betworn two stages. At \mathbb{C}. is un alternative circuit, similar to the one at 13 , in which oeparate filament tramformers permit the use of a eommon plate supply. R_{1} and R_{2} are p ridecircuit meter shont resistors. while R_{3} and R_{4} are the plate-circuit shont resistors.
system should not be used unless it is possible to ground the frame of the jack or unless a suitable guard is provided around the meter jacks to make personal contact with high voltages impossible in normal use of the plug.

Another metering system hased upon the use of simple s.p.d.t. toggle swit ches is shown in the diagram of Fig. 1396. In eath case provision is made for metering two cireuits with a single milliammeter. Grid returns should be made to filament center tap or cathode rather than to ground or negative high voltage. If currents included in the meter range are to be measured, the resistors should have a value of about 50 ohms earh, otherwise they should be adjusted to give the desired seale multiplication.

(C) Control Circuits

Proper arrangement of controls is important if maximum convenience in operation is to be attained. If the transmitter is to be of fairly high power, it is desirable to provide a sperial service line leading directly from the public utility meter board to the operating room. This line should be run in conduit or 13 N rable, and
the conductors should be of ample size to earry the maximam load without undue voltage drop. The line should be terminated with an enclosed entrance switeh, properly fused.

Fig. 1397 shows the wiring diagram of a simple control systom. It will be noticed that, because the controlswitches are connerted in series, none of the high-voltage supplies can be turned on until the filament switeh has been closed, and that the high-power plate supply cannot be turned on until the low-power plate supply switch has been closed. Furthermore, the modulator power cannot be applied until the fimal-amplifier plate voltage has been applied. stes places a 100- to 300-watl lamp. L_{p}. in series with the primary windink of the high-voltage plate transformer for use during the process of preliminary tuning and for local c.w. Work. The final amplifier should first be tuned to resonance at low voltage and Strs then closed, short-circuiting the lamp. Experience will determine what the low-voltage plate-current reading should be to have it increase to the full-power value when sur is closed, so that the proper antenna-coupling and tuning adjustments may be made.

Fis. 139° - A station control system. No high-voltage supply ran be turned on until the fil. ament switeh has been closed; the hiph-power plate supply rannot be turned on until the low-power plate supply switeh has heen closed: and modulator power camot be applied until the final amplifier plate voltage has been applied. With all -witches except Swa closed, Suz serves as the main control switch. Sut - Enclosed antrance switeh. Sur - Filament switch. Sira - law plate voltage and main control switeh, preferably of the push-button tyre which remains closed only so long as pressure is applicd. Suq - Migh plate-voltage switch. Sus- low-power and tune-np switch short-circuiting Iop. Sucb - Modulator platevoltage switch. F - Fuse. $L_{\text {- }}$ Warning light. $L_{\text {r }}-100$. to 30\%-watt woltage-reducinglamp.

Preferably, $S w_{3}$ should be of the non-locking push-button type which remains closed only so long as pressure is applied. A switch of this type provides one of the simplest and most effective means of protection against accidents from high voltage. In the form which is usually considered most convenient, it consists of a switch, located underneath the operating table, which may be operated by pressure of the foot. When used in this manner the operator must be in the operating position, well removed from danger, before high voltage can be applied. If desired, $S w_{3 a}$ may be wired in parallel on the front of the transmitter panel. so that it can be used while tuning the transmitter. Swa also should be of the push-butiton type.

In more elaborate installations, and in remote control systems where the transmiter is located some distance from the operating position, similarly arranged switches may be used to control relays whose contacts serve to perform the actual switching at the transmitter.

Two strings of atility outlets, one on each side of the entrance switch, are provided for operation of the receiver and such accessories as the monitor, lights, electric clock, soldering iron, etc. Closing the entrance swith should close those circuits which place the station in readiness for operation. Swe and Sow are normally elosed and siwa is normally open. When $S x_{1}$ is elosed upon entering the operating room, the transmitter filaments are turned on as also is the receiver, which should be plugged into line No. 2. With siu: closed (as well ass $S_{w_{5}}$ and $\left.S_{w_{6}}\right)$, $S_{w_{3}}$ merforms the job of turning all plate supplies on and off during successive periods of transmission and reception.

All contimuously operating aceessories, such as the station clock. should be plugged into line No. 1. This is so that they will not be turned off when $S w_{1}$ is opened. Line No. 1 is of use also for supplying the soldering iron, lights, etc., when it is desired to remove all voltage from the transmitter by opening $S w_{1}$.

(1) Line-Voltage Adjustment

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Tsually these fluctuntions are caused by a

Fig. 1938-'Ino methods of tranaformer primars control. At the left is a tapped $1-10-1$ transformer with the possibilities of considerable variation in the seceondary output. At the right is indicated a variable transformer or antotransformer, often referred to as a "variac," in series with the transformer primaries.

Fip, 1.399 - With this rircuit, a single adjnstment of the tap switeh S_{1} places the correct primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the resular primary winding of a revamped transformer, the heavy winding the voltage-adjusting section.
variation in the load on the line and, sinese most of the varittion comes at certain fixed times of the day or night, such as the times when lights are turned on and off for the night. they may be taken care of by the use of a manually-operated compensating device. A simple arrangement is shown in Fig. 1398. A foy transformer is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 2.0 volts in steps of 2 or 3 volts and its secondary should be capable of carryings the full load current of the entire transmitter.

The secondary is connected in series with the line vollage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toy transformer tap-switch on the right tap. If the phasing of the t wo windings of the toy transformer happens to be reversed, the voltage will be redured instead of increased. This connertion may be used in cases where the line voltage may be above 11.5 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affert the voltage regulation as seriously.

Another scheme by which the primary voltage of each transformer in the transmitter may be adjusted to deliver the desired secondary: voltage with a master control for compensating for changes in line voltage is shown in Fig. 1399.

This arrangement has the following features:

1. Adjustment of S_{1} to make the voltmeter read 105 volts automatically adjusts all primaries to the predetermined correct voltage.
2. The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, ete.
3. Independent control of the plate transformer is afforded by the tap switch S_{2}. This permits power input control and does not reguire an extra auto-transformer.

Modulation Equipment

To provide the modulating power necessary in radiotelephone communication, audio power anuplifiers or modulators are required. The units deseribed in this chapter have been designed to give the reguired power output as simply and economically as possible, while still observing good design principles.
In many respects the arrangement of components is less critical in audio than in r.f. equipment: nevertheless, certain principles must be observed if difficulties are to be avoided. The selection of suitable modulation equipment for any of the transmitters in the preereding chapter is not diffieult, if the fundamental principles of modulation as described in Chapter Five are understood. If the transmitter is to be plate-modulated and the power input to the modulated stage is to be of the order of 100 watts or higher, a Class-B modalator invariably will be selected. A pair of modulator tubes of any type capable of the required power output may be used. The tables in this chapter give the necessary information on the most popular tube types. The drivingpower requirements for the modulator stage also are given, so that from this point on the speech amplifier tube line-up can be selected aceording to the principles outlined in Chapter Five.

The apparatus to be described is representative of current design practice for speech amplification, with units to provide the various output levels required to drive high- and lowpower Class-13 modulators. In some cases the power output of these amplifier units will be sufficient to modulate low-power transmitters directly, without additional power amplification. Also, practically any of the speech amplifiers shown can be used to grid-modulate transmitters up to the highest power input permitted in amateur transmitters.

Speech-amplifier equipment, especially voltage amplifiers, should be constructed on metal chassis, with all wiring kept below the chassis to take advantage of the shielding afforded. Exposed leads. particularly to the grids of lowlevel high-gain tubes, are likoly to pick up hum from the electrostatic field which usually exists in the vicinity of house wiring. Even with the chassis, additional shielding of the input circuit of the first tube in a high-gain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from audio transformers
operating at fairly high power levels, to prevent magnetic coupling to the grid cirruit which might cause hum or audio-frequeney feed-back.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or comector by which it is attached to the speech amplifier, all should be shielded. The mierophone and cable usually are constructed with suitable shielding. The cable shield should be romnerted to the speech amplifier chassis, and it is advisable - as well as frequently necessary - to connect the chassis to a ground such as a water pipe. Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater transformer secondary winding should be connerted to the chassis. In a high-gain amplifier the first tube preferably should be of the type having the grid conmection brought out to a top cap rather than to a base pin, wince in the latter type the grid lead is exposed to the heater leads inside the tube and hence will pick up more ham. With the top-ap tubes, complete shielding of the grid lead and gride cap is a necessity.

C A 10-Watt Class-B Modulator for Low-Power Transmitters

A receiving-tube modulator, with a speech amplifier for either crystal or carbon microphones, is shown in liges. 1401-1403, inclusive. It is suitable for modulating transmitters of 20 watts input or lews, such as the low-power equipment frequently used on the very-high frequencies. Type 6 A 6 tubes are used throughont in the andio circuits, although any equivalent t win triode such as the $6 \mathbb{N} 7$ could be substituted. An inexpensive power supply is inchoded, so that the unit is complete and ready for connection to the transmitter.

Fig. 1403 shows the eircuit diagram of the speech amplifier-modulator. One section of the

Fig. 140I - A 10 -watt andiounit completewith powersupply. Three dual-triode 6A6 tubes provide a four-stage amplifier with Class-I outur. Any of the popular types of microphones may be used.

Fig. 1.102 - The below-chassis wiring is visible in this view of the 10 -watt modulator. The microphone infut leads are hept short to redine hum pich -up.
deliver 350 volte at 90 mat. A switch in the transformer conter-tap lead is used for furning the plate voltage on and off without afferting the filament supply.

The power transformer is submounted at the left-hand end of the chassis. Next to it is the filter choke, L_{1}, followed by the rectifier tube and T_{3}, the modulation olltput transformer. The driver
first 6 A 6 is used as the imput amplifier for a rrystal mierophone, the other half being a seeond speeth-amplifier stage. ('arbon microphones, which need less gain, are transformer-coupled to the serond section of the first $6 . .26$. The type of jark shown at J_{2} in the cirmuit diagram must bo installed if a double-button arbon microphone is to be used. J_{2} maty be the same as J_{1} if a single-button microphone is to be used exelusively.

The gain control is connerted in the grid rircuit of the serond section of the first 6 A 6 tube, whieh is resistancerouphed to the driver. The driver tube, also a 6 Ati , hats its two serefions connected in parallel.

The modulation transformer sperified is designed to work between 6 A 6 plates and a bion-ohm load; the impedance ratio used will. of course. depend on the load into which the modulator will work. A milliammeter can be commected arross the shunt resistor. R_{1}, provided to measure the Class- 13 plate current.

The power supply is of the condenser-input type. Fising the romponents sperified, it will
tube is at the extreme righthand and, with T_{2}, the driver 1 ransformer, behind it. The ('lass-13 tube is w the rear and in line with the speedh-amplifier tube. For convenience in wiring, the audio tube sorkets should be mounted with the filament prongs facing the right-hathd end of the chassis.

The plate-voltage switch is on the front of the chassis toward the left in Fig. 1401. The microphone switch. gain control and microphone jacks aregrouped at the right. Power input and output ferminals are at the rear.

The bottom-view photograph, Fig. 1402. shows the layout for the components mounted below the chassis. T_{1} is mounted at the left end. Wiring to the driver tube socket and the transformer secondary winding should be completed before the transformer is bolted in place, since it is difficult to reach the connerting points with a soldering iron afterwards. Short leads between the gain control, the microphone switch and the tube socket can be obtained by making the gain-control contacts face toward the switch, as shown in the photograph.

Fig. 1403 - Circuit diagram of the complete 10 -watl Class-B andio modnlator system for low-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.1-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{4}-10-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-8 . \mu \mathrm{fd} .450$. volt electrolytic.
$\mathrm{R}_{1}-25$ ohms, $1 / 2$-watt.
$\mathrm{H}_{2}, \mathrm{H}_{3}-900$ ohms, 1 -wate.
$\mathrm{R}_{4}, \mathrm{R}_{5}-50,000$ ohms, $1 / 2$-watt.
$\mathrm{K}_{\mathrm{o}}, \mathrm{K}:-0.25$ megohm, $1 / 2$-wati.
$\mathrm{R}_{\mathrm{s}}-1$ megohm, $1 / 2$ watt.
R_{9} - 5 mepohmes, $1 / 2$-watt.
R_{10} - 500,000 -onim volume control.
$\mathrm{R}_{11}-25,000$ ohms, 10 -watt.
Sw1-S.p.d.t. togqle switeh.
Sn2-S.p.s.t. topgle switch (sere (1.xt).
J_{1} - Closed-circuit jack for erystal microphone.
$\mathrm{J}_{2}-2$ - or 3 -rircuit jack for singlebutton or double-button carbon microphone.
' 1 ' - S.b. or d.b. microphone transformer (Stancor A.4351).
T_{2} - Driver transformer, parallel
6.16 plates to 6A6 Class-B (Stancor A-4216).
T_{3} - Ontput transformer, 6A6 Class-B to 6500 orhm load (Stancor A-3845).
'14-Power transformer, 700-0. 700 volts, 90 ma.; 5 volta at 3 amperes; 6.3 volte at 3.5 amperes.
1, - Filter choke, 5 henrys, 200 ma., 80 ohms (Thordarson T-6 (C.49).

The compart microphone battery (Burgess type 3A2) will be held securely in place without brackets or clips if it is wedged in between the bottom of the power transformer and the lips on the bottom of the chassis. A 3 -volt battery is sufficient for most carbon microphones, and low current frequently will give better speech quality. The 115 -volt a.c. and the meter leads (rubber-covered lamp cord) enter the chassis through rubber grommets. A threecontact terminal strip is located at the right end of the base (left end in the bottom view). One of the contarets on this terminal strip is for an external ground connection and the other two are ronnected to the modulation-transformer output winding.
The actual measured power output of the unit shown in the photographs is 11 watts, as recorded at the point where distortion just begins to be noticeable. This order of audio power output is ample for modulating a low-power transmitter operating with 20 watts or so input to the final stage.

C A 20-Watt Speech Amplifier or Modulator

The amplifier shown in Figs. 1404-1406 will deliver audio power outputs up to 20 watts (from the output transformer secondary) with ample gain for ordinary communications-type crystal microphones. Class-AB blifs are used in the output stage, preceded by a 6.55 and a 637 preamplifier.

The unit is built up on a $5 \times 10 \times 3$-inch chassis, with the parts arranged as shown in the photographs. About the only constructional precaution necessary is to use a short lead from the microphone socket (a jack may be used instead of the serew-on type, if desired), and to shield thoroughly the input circuit to the grid of the 6 J 7 . This shielding is necessary to reduce hum. In this amplifier, the 6.57 grid revistor, R_{1}, is enclosed along with the input jark in a National type J-1 jack shiedd,

Fig. 1404-A low-cost speech-anmplifier or low-power modulator unit with a naximum audio oatput of 20 wates. The $6 . \mathrm{J}^{2}$ is at the left near corner of the chassis. with the 6.15 to its right, just above the volume control.
and a shielded lead is run from the jack shied to the grid or the 6.17. A metal slip-on shield covers the gride cap of the tube.

To realize maxincum power outpu, the "B" supply should be capable of delivering about 145 mat at 360 volts. A condenser-input supply of ordinary des mi (hapter Eight) may be used. since the variation in plate current is relatively small. The current is approximately 120 ma. With no inplut signal and 145 ma. at full output. If an canpint of 12 or 13 watts will be sufficient, R_{g} and h_{10} may be omitted and all tuber fed direrny from :a "B" supply giving 270 volts at approximately 175 ma .
The output tran:former shown is a universal modulation type suitable for conpliag into the plate rircuit of a low-power r.f. amplifier (input 40 watts maximum for 100 per cent modulation) for plate modulation. For cathode modulation, the r.f. infut fower that can be modulated san be determined from the data in

Fig. 1405 - Circuit diagram of the low-cost sperch amplifier or modulator capatile of power outputap to 20 watts.
$\mathrm{C}_{1}, \mathrm{C}_{2}-20-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{C}_{3}-0.1$ - $\mu \mathrm{fd}$. 200 -volt paper.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{8}, \mathrm{C}_{8}-8-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{R}_{1}-5$ megohms, $1 / 2$-watt.
$\mathrm{R}_{2}-1300$ ohms, $1 / 2$-watt.
R_{3} - 1.5 megolums, 次-watt.
$\mathrm{R}_{4}-0.25$ megohm, $1 / 2=$ watt.
$R_{5}-50,000$ ohms, $1 / 2$-watt.
R_{6} - I-megohm volume control.
$\mathrm{K}_{7}-1500$ ohms, 1-watt.
$R_{k}-250$ ohms, 10 -watt.
$\mathrm{Rg}_{9}-2000$ ohms, 10 watt.
R_{10} - 20,000 olma, 25-watt.

T . - Interstage audio transformer, single plate to p.p. gride ratio 3:1 (Thordarson T'-57A41).
T_{2} - Dutput transformer, type depending on requirements. A multi-tap modulation transformer (Tizordaraon T-19M14) is Wown.

Fig. 1406 - Bottom view of the 20 watt specerh amplifier or modulator chasis. The nost important constructional point is complete shielding of the microphome input circuit up to the grid of the $6 J 7$ first amplifier.

Chapter Five. The amplifier may also be :ised for grid-bias modulation with the transformer specified. If the unit is to be used to drive a Class- B modulator, it is reeommended that the Class-B tubes be of the zero-bias type rather than a type requiring fixed bias. A suitable output transformer must be substituted for this purpose; data may be found in transformer manufacturers' catalogs.

The frequency response of the amplifier is ample for the range of frequencies encountered in voice communication. It may he extonded for high-quality reproduction of musie hy usinghigher-priced audio transformers.

(1) A 40-Watt Output Speech Amplifler or Modulator

The 40-watt amplifier shown in Figs 1407-1409 resembles in many resperts the 20 -watt amplifier just described. The first two stages are, in fact, identical in circuit and construc-
tion. To obtain the higher output, however, it is necessary to drive the 6I6s into the gridcurrent region (Class- AB_{2} operation), so that a driver stage capable of furnishing sufficient power is required. A pair of transformer-coupled 6J5s in push-pull is used for this purpose. inserted between the single 6.J5 stage and the push-pull 6LLGs. Deeoupling is provided (R_{9} and C_{5}) to prevent motorboating because of the higher over-all gain of the amplifier.

A $6 \times 14 \times 3$-inch chassis is used for the 40-watt amplifier. The photographs show the arrangement of parts. As in the case of the 20 -watt unit. complete shielding of the mierophone input circuit is essential. The amplitier has ample gain for crystal mierophones.

This unit may he used to plate-modulate 80 watts input to an r.f. amplifier. For cathode modulation, the input that ran be modulated will depend upon the type of operation chosen.

Fig. 1.107 - A 40 -watt speech amplifice or modulator of inexpernsive construction. The 6 J 7 and first 6 J 5 are at the front, near the microphone secket and volume control, respectively. T_{1} is behind them, and the push-pull 6J5s are at the rear of the chassis hehind $T_{1} . T_{2}$, in the center, the push-pull 6 L 6 s , and 73 follow in order to the right.

Fig. 1408 - Circuit diagram of the Class AB_{2} push-pull 6 L 640 -watt output speceh amplifier or modulator.
$\mathrm{C}_{1}-0.1-\mu \mathrm{fd}$. 200 -vole paper.
$\mathrm{C}_{2}-0.01-\mu \mathrm{fd} .400$-volt paper. $\mathrm{C}_{8}-20-\mu \mathrm{fd} .50$-volt electrolytic.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-8-\mu \mathrm{fd}$. 450 -volt elec. trolytic.
$\mathrm{R}_{\mathrm{I}}-5$ megohms, $1 / 2$-watt.
R_{2} - 1300 ohms, $1 / 2$-watt.
$\mathrm{K}_{3}-1.5$ megohm, $1 / 2$-watt.
$\mathrm{K}_{4}-0.25$ megohm, $1 / 2$-watt.
$\mathrm{R}_{5}-50,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{6}-1$-mepohin volume control.
$1 \mathrm{R}_{7}$ - 1500 ohms, 1 -watt.
R_{8} - $\mathbf{7 5 0}$ ohms, 1 -watt.
$\mathrm{R}_{\mathrm{g}}-12,000$ ohms, 1 -watt.
$\mathrm{R}_{10}-20,000$ ohms, 25 -wat .
$\mathrm{K}_{11}-1500$ ohms, 10 -watt.
T_{1} - Interstape audio, single plate to p.p. grids, 3:1 ratio
(Thordarson T-57A41).
$\mathrm{T}_{\mathbf{2}}$ - Driver transformer, p.p. 6 J 5 s to 6L6s Class AB2 (Thordarson' C -84D59).
T3-Output transformer, type depending on requirements. A multi-tap modulation transformer (Thordarson '1-19M15) is shown.
as described in Chapter Five; with 55 per cent plate efficiency in the r.f. stage, for instance, the input may he of the order of 200 watts, making an allowance for the small amount of aludio power taken by the grid circuit.

A high-power Class-13 morlulator can be driven by the unit : data on suitable modulator tubes are given later in this chapter. Zero-bias tubes should be used, because they present a more constant load to the 6L6s than do relatively low amplification-
factor tubes which require fixed bias for ClassI3 operation, A suitable Class-B driver transformer should be substituted for the universal modulation transformer shown.

The power supply should have good voltage regulation, sine the total " B " current varies from approximately 140 ma . with no signal to 265 mal. at full output. A heavy-duty chokeinput plate supply should be used; general design data will be found in Chapter Eight. The heater requirements are 6.3 volts at $3 \mathrm{am}-$ peres. Bias for the filf stage is most conveniently supplied by a 22.5 -volt " B " battery blow; a small-sized unit will be satisfactory, since no current is drawn.

(1) A Push-Pull 2A3 Amplifier with Volume Compression

Ideally, a Class-B modulator should be driven by an amplifier having exceptionally good voltage regulation, to minimize distortion (see Chapter Five). For average amateur work, the $6 \mathrm{~L} f$ a amplifiers just deseribed will give entirely satisfactory results as drivers for Class13 stages when oprated well within their capabilities, especislly with zero-bias Class-13 tubes. However, somewhat better performance can be secured by using triode drivers, especially when the grid power requirements of the Class-13 stage are modest enough to make the use of triodes such as the $2 \Lambda: 3$ practicable.

The amplifier shown in Figs. 1410-1412, inclusive. has an output (from the transformer secondary) of 6 watts with negligible distortion, and thus is suitable for driving Class-13 stages of 100 to 2.50 watts output.

The amplifier also incorporates an automatic volume-compression circuit to maintain a high average percentage of modulation (Chapter Five). This feature is often of considerable value in practical communications work where interference conditions require maximum carrier power level to transmit intelligence sucerssfulty. Volume compression overcomes to some extent the general tendency of even the best operators to accentuate or otherwise vary the syllabic intensity. This is particularly true when talking close to the microphone, under which conditions slight movements of the head will camse a change in the modulation level.

A practical audio volume eompression eircuit functions much like the r.f. automatic gain control familiarly employed in superheterodyne receivers (87-13).

In Fig. 1412, the side amplifier and rectifier,
 of the voice eurrent. The rectified outpout of this circuit is filtered and applied to the Nos. 1 and 3 grids of a pentagrid amplifier tube, thereby varying its gain in inverse proportion to the signal strength. With proper sdjustment, an average increase in modulation level of about 7 db . can be seeured without excerding 100 per cent modulation on peaks.

The amplifier proper consists of a 6.J7 first stage followed by a tiL7 am-plifier-eompressor. The 2.13 grids are driven by a (6 N 7 self-balancing phase inverter. The operation of the 2 A 3 s is purcly Class Λ, without grid current.

The amount of compression is controlled by the potentiometer, R_{20}, in the grid circuit of the 6SQ7. Aswitch, S_{1}, is provided to short-eircuit the rectified output of the compressor when normal amplification is required.

The construction of the amplifier
resembles that of the unit shown in

Fig. 1410- 1 posh-pull 2.43 swech amplifier having an ompot of approximately 6 wats. A volume rompression cirenit is induded.

Fig. 1.111 - Bottom view of the push-pull Claz-A 2 A3 sperch amplilier with antomatic volume compresion. 'lhe circuit diapram is shown in lig. 1412.
as close as poscible to the points in the circuit to which they eommect. 'The filament transformers should be kept well separated from the wiring in the low-level starges, particularly that of the mierophone input and the lowlevel grid circuits.

Adjustment of the compressor cont rol is rather critical. First set R_{20} at zero and adjust the gain control, R_{6}, for full modulation with the particular microphone used. Then advance the compressor control until the ampli-

Fig. 1401, the tubes and output transformer being mounted on the rear edge of a $17 \times 4 \times$ 3 -inch chassis to save panel height in relay-rack mounting. Looking at the amplifier from the front, the $\mathrm{f} . \mathrm{I} 7$ first amplifier is in the upper left comer, with the 6 L 7 to its right. The 8307 is below the 6L7. The 6N7 is followed by the output transformer, the latter being placed in the middle of the chassis in order to ansist in distributing the weight evenly. The $2 \mathrm{~A}: 3$ tubes and the power-supply and andio output terminals are at the right with the 11 b-volt male phag for filament power at the extreme end.

In the underneath view the input cireuit is at the left, the grid risistor, R_{1}, and the micorphone connector socket being shieded to minimize hum pick-up by the National JS-1 jack shied. The lead to the 6.57 grid is shiedded, as are also the top rips of this tube and the 6l.7. The volume compressor control, R_{20}, is mounted beside the 6J7, and is serewdriver adjusted; a midget control should be used, since the space is rather limited. 'The other parts are mounted
fier just "cuts off" (output decreasing to a low value) on peaks; when this point is reached, back off the compressor control until the cutoff effer is gone but an obvious decrease in gain follows each peak.

Because of the necessity for filtering out the audio-frequency component in the rectifier output. there will be a slight delay (amounting to a fraction of a second) before the decrease in gain "catches up" with the peak. 'This is caused by the time constant of the circuit, and so is unavoidable.

When at satisfatory setting is secured, as indic:ated by good speech quality with a defintere reduction in gain on peaks, the gain control, R_{b}, should be advanced to give full butput with normal operation. Too much volume compression, indieated by the cut-off effect following each peak, is definitely undesirable. and the object of adjustment of the compressor eontrol should be to use as much compression as possible without danger of over-compression.

Fig. 1412 - Circuit diagram of the Class-: 2 A 3 volume -tompression speech amplifier.
$\mathrm{C}_{3}, \mathrm{C}_{12}-10-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{13}-$ $0.1-\mu \mathrm{fl} .400-\mathrm{volt}$ paper.
$\mathrm{C}_{3}, \mathrm{C}_{8}-8$ - $\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{7}-0.5-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{R}_{1}-5$ meqohms, $1 / 2$-watt.
$R_{2}, R_{8}-1200$ ohms, $1 / 2$-watt.
$\mathrm{h}_{3}, \mathrm{H}_{7}-2$ megohms, $1 / 2$-watt.
$\mathrm{H}_{4}, \mathrm{H}_{13}, \mathrm{R}_{22}, \mathrm{H}_{24}-0.5$ megohm, $1 / 2$ watt.
$1 \mathrm{~s},-50,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{6}, \mathrm{R}_{20}-0.5$-megohm variable.
$129-0.25$ megohm, 1-watt.
$R_{10}, K_{11}, R_{23}-0.1$ megolim, $1 / 2$ watt.
$\mathrm{R}_{12}-10,000$ ohms, $1 / 2$-wate.
$K_{14}-1500$ ohms, $1 / 2$-watt.
$\mathrm{R}_{1 \mathrm{~s}} \mathrm{~K}_{16}$ - 0.1 unegohm, 1 -watt.
$\mathrm{H}_{17}, \mathrm{R}_{18}, \mathrm{H}_{19}-0.25$ megohm, $1 / 2$ watt.
K_{21} - .5000 ohms, $1 / 2$-wall.
R_{25} - 750 ohms, 10 -watt.
T_{1} - Ontput transformer to matoh pp. 2A3s to Class-B grids. (L TC PA-53AX).
T_{2}-Filament transformer, 6.3 volts, 2 amperes.
T_{3} - Filament transformer, 2.5 volts, 5 amperes.

TABLE 1 －RESISTANCE－COUPLED VOLTAGE AMPLIFIER DATȦ

Date are given for a plate－supply of 300 volts，departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltage gein is measured et 400 cycles，condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided all ere changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

High－frequency cut－off with pentodes is approximately 20,000 cycles with a plate resistor of $0.1 \mathrm{megohm}, 10,000$ cyeles with 0.25 megohm，and 5000 cycles with 0.5 megohm．With triode amplifiers，the high－frequency cut－off is well above the audio range．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{fd}$ ．	Cathode By－pass $\mu \mathrm{fd}$ ．	Blocking Condenser $\mu \mathrm{fd}$ ．	Output Volts （Peak）${ }^{2}$	Voltese Gain
${ }_{53}^{6 A 6,6 N 7}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	\bar{Z}	$\begin{aligned} & 1150 \\ & 1500 \\ & 1750 \end{aligned}$	\square	－	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 60 \\ & 83 \\ & 86 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 29 \\ & 93 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2650 \\ & 3400 \\ & 4000 \end{aligned}$		$=$	$\begin{aligned} & 0.015 \\ & 0.0055 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 75 \\ 87 \\ 100 \end{array}$	$\begin{aligned} & 23 \\ & 24 \\ & 24 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	\square	$\begin{aligned} & 48500^{2} \\ & 6100 \\ & 7150^{1} \end{aligned}$	－	－	$\begin{aligned} & 0.0055 \\ & 0.003 \\ & 0.0015 \end{aligned}$	$\begin{array}{r} 76 \\ 94 \\ 104 \end{array}$	$\begin{aligned} & 23 \\ & 24 \\ & 24 \end{aligned}$
$\begin{gathered} 6 C 5 \\ \text { (also } \\ 67,6 C 6,57, \\ 6 W 7,7 C 7 \\ \text { as triodes) } \end{gathered}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	二	$\begin{aligned} & 2100 \\ & 2600 \\ & 3100 \end{aligned}$	二	$\begin{aligned} & 3.16 \\ & 2.3 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.04 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 57 \\ & 70 \\ & 83 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 18 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	$=$	$\begin{aligned} & 3800 \\ & 5300 \\ & 6000 \end{aligned}$	\square	$\begin{aligned} & 1.7 \\ & 1.3 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.015 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 65 \\ & 84 \\ & 88 \end{aligned}$	$\begin{aligned} & 18 \\ & 13 \\ & 13 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{array}{r} 9600 \\ 12,300 \\ 14,000 \end{array}$	－	$\begin{aligned} & 0.9 \\ & 0.59 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.008 \\ & 0.003 \end{aligned}$	73 85 97	13 14 14
$\begin{gathered} 6 C 6,6 J 7,6 W 7, \\ 7 C 7,57 \\ \text { (pentode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.95	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 350 \\ & 240 \end{aligned}$
$\begin{gathered} \text { 6C8G } \\ \text { (one friode } \\ \text { unit) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 2120 \\ & 2840 \\ & 3250 \end{aligned}$	－	$\begin{aligned} & 3.93 \\ & 9.01 \\ & 1.79 \end{aligned}$	$\begin{aligned} & 0.037 \\ & 0.013 \\ & 0.007 \end{aligned}$	55 73 80	$\begin{aligned} & 92 \\ & 93 \\ & 95 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 4750 \\ & 6100 \\ & 7100 \end{aligned}$	－	$\begin{aligned} & 1.29 \\ & 0.96 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 64 \\ & 80 \\ & 90 \end{aligned}$	25 26 27
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{array}{r} 9000 \\ 11,500 \\ 14,500 \end{array}$	－	$\begin{aligned} & 0.67 \\ & 0.48 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 67 \\ & 83 \\ & 96 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 98 \end{aligned}$
$\begin{gathered} 6 F 5,6 S F 5 \\ 7 \mathrm{~B} 4 \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1300 \\ & 1600 \\ & 1700 \end{aligned}$	三－	5.0 3.7 3.2	$\begin{aligned} & 0.025 \\ & 0.01 \\ & 0.006 \end{aligned}$	33 43 48	49 49 59
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2600 \\ & 3900 \\ & 3500 \end{aligned}$	－	$\begin{aligned} & 2.5 \\ & 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 41 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 56 \\ & 63 \\ & 67 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二	$\begin{aligned} & 4500 \\ & 5400 \\ & 6100 \end{aligned}$	－	1.5 1.9 0.93	$\begin{aligned} & 0.006 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & 70 \end{aligned}$
6F8G（one triode unit）， 6J5，6J5G， 7A4，7N7	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	\square	$\begin{aligned} & 1020 \\ & 1970 \\ & 1500 \end{aligned}$	二	$\begin{aligned} & 3.56 \\ & 2.96 \\ & 2.15 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 41 \\ & 51 \\ & 60 \end{aligned}$	13 14 14
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 2440 \\ & 2700 \end{aligned}$	－	2.31 1.42 1.2	$\begin{aligned} & 0.035 \\ & 0.0125 \\ & 0.0065 \end{aligned}$	43 56 64	14 14 14
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	\square	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	－	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.004 \end{aligned}$	46 57 64	14 14 14
6L5G	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	\square	$\begin{aligned} & 1740 \\ & 2160 \\ & 2600 \end{aligned}$	－	$\begin{aligned} & 2.91 \\ & 2.18 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.032 \\ & 0.015 \end{aligned}$	56 68 79	$11{ }^{5}$ 12^{5} 12^{5}
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\square	$\begin{aligned} & 3070 \\ & 4140 \\ & 4700 \end{aligned}$	二	$\begin{aligned} & 1.64 \\ & 1.1 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.014 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 60 \\ & 79 \\ & 89 \end{aligned}$	12^{5} 13^{5} 13^{5}
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\underline{\square}$	$\begin{array}{r} 6900 \\ 9100 \\ 10,750 \end{array}$	二	$\begin{aligned} & 0.57 \\ & 0.46 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 64 \\ & 80 \\ & 88 \end{aligned}$	$13{ }^{5}$ 13^{5} 13^{5}

[^7]TABLE I－RESISTANCE－COUPLED VOLTAGE AMPLIFIER DATA－Continued

	Plate Resistor Megohms	Next－Stage Grid Resistor Mesohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{fd}$ ．	$\begin{gathered} \text { Cathode } \\ \text { By-pass } \\ \mu \mathrm{fd} \text {. } \end{gathered}$	Blocking Condenser $\mu \mathrm{ld}$ ．	Output Voles （Peak）${ }^{2}$	Voltage Gain 2
$\begin{gathered} \text { 6R7, } \\ \text { TRT } \\ \text { 7E } \end{gathered}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	\square	$\begin{aligned} & 1600 \\ & 2000 \\ & 2400 \end{aligned}$	－	$\begin{aligned} & 2.6 \\ & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.03 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 71 \end{aligned}$	$\begin{array}{r} 9 \\ 9 \\ 10 \end{array}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	二	$\begin{aligned} & 2900 \\ & 3800 \\ & 4400 \end{aligned}$	\square	1.4 1.1 1.0	$\begin{aligned} & \hline 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 52 \\ & 68 \\ & 71 \end{aligned}$	10 10 10
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	\square	$\begin{array}{r} 6300 \\ 8400 \\ 10,600 \end{array}$	－	$\begin{aligned} & 0.7 \\ & 0.5 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 54 \\ & 68 \\ & 74 \end{aligned}$	10 11 11
657	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.67 \\ & 0.71 \end{aligned}$	$\begin{aligned} & 430 \\ & 440 \\ & 440 \end{aligned}$	$\begin{aligned} & 0.077 \\ & 0.071 \\ & 0.071 \end{aligned}$	8.5 8.0 8.0	$\begin{aligned} & 0.0167 \\ & 0.01 \\ & 0.0066 \end{aligned}$	$\begin{aligned} & 57 \\ & 73 \\ & 89 \end{aligned}$	$\begin{aligned} & 57^{5} \\ & 78 \\ & 89 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.95 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 620 \\ & 650 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.058 \\ & 0.057 \\ & 0.055 \end{aligned}$	6.0 5.8 5.2	$\begin{aligned} & 0.0071 \\ & 0.005 \\ & 0.0036 \end{aligned}$	$\begin{aligned} & 54 \\ & 66 \\ & 76 \end{aligned}$	$\begin{array}{r} 985 \\ 1225 \\ 136 \end{array}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	3.6 3.9 4.1	$\begin{aligned} & 1000 \\ & 1080 \\ & 1120 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.041 \\ & 0.043 \end{aligned}$	4.1 3.9 3.8	$\begin{aligned} & 0.0037 \\ & 0.0029 \\ & 0.0023 \end{aligned}$	52 66 73	$\begin{aligned} & 136^{6} \\ & 162^{6} \\ & 174^{5} \end{aligned}$
6SC7	0.1	$\begin{aligned} & 0.1 \\ & 0.95 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 7501 \\ 9301 \\ 1040^{1} \end{array}$	－	\square	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	35 50 54	29 34 36
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	I	$\begin{aligned} & 1400^{1} \\ & 16880^{1} \\ & 1840^{1} \end{aligned}$	三－	二	0.012 0.006 0.003	45 55 64	39 42 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二	$\begin{aligned} & 23301 \\ & 29800^{1} \\ & 3280^{\prime} \end{aligned}$	二	二	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	50 62 72	45 48 49
6517	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	67 98 104
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	79 88 98	139 167 185
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.0 2.2 2.5	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	6.0 5.8 5.8	0.004 0.002 0.0015	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	200 238 263
$\begin{aligned} & \text { 65O7, 6B6G } \\ & 786.2 \mathrm{~A} 6.75 \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\square	$\begin{aligned} & 1900 \\ & 2200 \\ & 2300 \end{aligned}$	－	4.0 3.5 3.0	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 31 \\ & 41 \\ & 45 \end{aligned}$	31 39 42
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	三－	$\begin{array}{r} 3300 \\ 3900 \\ 4200 \end{array}$	－	2.7 2.0 1.8	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	42 51 60	$\begin{aligned} & 48 \\ & 53 \\ & 56 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 5300 \\ & 6100 \\ & 7000 \end{aligned}$	－	$\begin{aligned} & 1.6 \\ & 1.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 47 \\ & 69 \\ & 67 \end{aligned}$	$\begin{aligned} & 58 \\ & 60 \\ & 63 \end{aligned}$
6770	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1950 \\ & 2400 \\ & 2640 \end{aligned}$	－	2.85 2.55 2.25	$\begin{aligned} & 0.0245 \\ & 0.0135 \\ & 0.008 \end{aligned}$	44 58 64	$27{ }^{5}$ 32^{5} 33^{8}
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 3760 \\ & 4580 \\ & 5220 \end{aligned}$	二	$\begin{aligned} & 1.57 \\ & 1.35 \\ & 1.23 \end{aligned}$	0.012 0.0075 0.005	$\begin{aligned} & 57 \\ & 69 \\ & 80 \end{aligned}$	$\begin{aligned} & 37^{5} \\ & 40^{3} \\ & 41^{b} \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	\square	$\begin{aligned} & 6570 \\ & 8200 \\ & 9600 \end{aligned}$	－	$\begin{aligned} & 1.02 \\ & 0.82 \\ & 0.70 \end{aligned}$	0.008 0.0055 0.004	$\begin{aligned} & 62 \\ & 77 \\ & 86 \end{aligned}$	$\begin{array}{r} 49^{5} \\ 43^{5} \\ 44^{5} \end{array}$
56，76	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	\square	$\begin{aligned} & 2400 \\ & 3100 \\ & 3800 \end{aligned}$	二－	2.8 2.8 1.8	$\begin{aligned} & 0.08 \\ & 0.045 \\ & 0.02 \end{aligned}$	65 80 95	8.3 8.9 9.4
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 4500 \\ & 6400 \\ & 7500 \end{aligned}$	－	$\begin{aligned} & 1.6 \\ & 1.2 \\ & 0.98 \end{aligned}$	0.04 0.02 0.009	$\begin{array}{r} 74 \\ 95 \\ 104 \end{array}$	$\begin{array}{r} 9.5 \\ 10.0 \\ 10.0 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 11,100 \\ & 15,200 \\ & 18,300 \end{aligned}$	\bar{Z}	$\begin{aligned} & 0.69 \\ & 0.5 \\ & 0.4 \end{aligned}$	0.02 0.009 0.005	$\begin{array}{r} 82 \\ 96 \\ 108 \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$

[^8]TABLE II-CLASS-B MODULATOR DATA

$\begin{gathered} \text { Class-B } \\ \text { Tubes (2) } \end{gathered}$	Fil, Volts	Plate Volts	Grid Volts App.	Peak A.F. Grid-to-Grid Voltage	Zero-Sig. ${ }^{1}$ Plate Current Ma.	Max.-Sig. 1 Plate Current $\mathrm{Ma}{ }^{2}$	Load Res. Plate-to-Plate Ohms	Max.-Sig. Driving Power Watts ${ }^{3}$	Max.-Sig, Power Output Watts ${ }^{3}$
RK594	6.3	500	-17	64	16	90	15,000	0.9	30
HY60 ${ }^{7}$	6.3	300 400	-29.5 -92.5	63 57	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{array}{r} 120 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 5,000 \\ & 6,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 29 \\ & 30 \end{aligned}$
HY65	6.3	450	-		-	125	-	0.4	34
801-A/801	7.5	600	-75	320	8	130	10,000	3.0	45
HY312's	6.3	300	0	104	20	100	5,000	1.4	18
HY1231Z**	12.6	$\begin{array}{r} 400 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 140 \\ 131 \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 36 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 7,000 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	40 51
815^{7}	6.3	$\begin{aligned} & 400 \\ & 500^{\circ} \end{aligned}$	$\begin{array}{r}-15 \\ -15 \\ \hline\end{array}$	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$	22 20	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 8,000 \\ & 8,800 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	42 54
1624	2.5	400 600	$\begin{aligned} & -16.5 \\ & -25 \\ & \hline \end{aligned}$	$\begin{array}{r} 77 \\ 106 \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 48 \end{aligned}$	150 180	6,000 7,500	0.4 1.8	36 72
HY6L6GX	6.3	400 500	$\begin{array}{r}-25 \\ -25 \\ \hline\end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 230 \\ 230 \\ \hline \end{array}$	3,800 4,550	$\begin{aligned} & 0.35 \\ & 0.6 \\ & \hline \end{aligned}$	60 75
TZ20	7.5	800	0	160	40	136	12,000	1.8	70
HY61/807	6.3	400	-25	80	100	230	3,800	0.35	60
RK807	6.3	$\begin{array}{r} 500 \\ 600 \\ \hline \end{array}$	$\begin{array}{r} -25 \\ -30 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 60 \end{array}$	$\begin{aligned} & 230 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 4,550 \\ 6,600 \end{array}$	$\begin{aligned} & 0.6 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 75 \\ & 80 \end{aligned}$
HY69 :	6.3	300	-25	106	60	150	4,000	0.25	30
HY1 269^{\prime}	12.6	$\begin{aligned} & 400 \\ & 600 \\ & 500 \end{aligned}$	$\begin{array}{r}-25 \\ -35 \\ -25 \\ \hline\end{array}$	$\begin{aligned} & 145 \\ & 183 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 120 \\ & 900 \end{aligned}$	$\begin{aligned} & 4,000 \\ & 4,500 \\ & 5,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \\ & 97 \end{aligned}$
RK1 2	6.3	750	0	129	50	200	9,600	3.4	100
800	7.5	$\begin{array}{r} 750 \\ 1000 \\ 1850 \\ \hline \end{array}$	-40 -55 -70	$\begin{aligned} & 320 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 26 \\ & 28 \\ & 30 \end{aligned}$	$\begin{aligned} & 210 \\ & 160 \\ & 130 \\ & \hline \end{aligned}$	$\begin{array}{r} 6,400 \\ 12,500 \\ 21,000 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 4.4 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 90 \\ 100 \\ 106 \\ \hline \end{array}$
HY302	6.3	$\begin{aligned} & 600 \\ & 750 \\ & 850 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ 0 \\ \hline\end{array}$	171 167 171 78	$\begin{aligned} & 18 \\ & 29 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} 6,000 \\ 8,000 \\ 10,000 \end{array}$	Note 9 1	$\begin{array}{r} 75 \\ 95 \\ 110 \\ \hline \end{array}$
$807{ }^{10}$	6.3	400	-25	78	100	240	3,200	0.2	55
1625 ${ }^{\text {¹ }}$	12.6	$\begin{aligned} & 500 \\ & 600 \\ & 750^{6} \end{aligned}$	$\begin{array}{r}-25 \\ -30 \\ -32 \\ \hline-89\end{array}$	$\begin{aligned} & 78 \\ & 78 \\ & 99 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 60 \\ 60 \end{array}$	$\begin{aligned} & 240 \\ & 200 \\ & 240 \end{aligned}$	$\begin{array}{r} 4,240 \\ 6,400 \\ 6,950 \end{array}$	$\begin{aligned} & 0.9 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 75 \\ 80 \\ 120 \\ \hline \end{array}$
HK24	6.3	1000 1250	$\begin{array}{r}-89 \\ -42 \\ \hline-10\end{array}$	248 256 170	30 24	$\begin{aligned} & 150 \\ & 136 \end{aligned}$	$\begin{aligned} & 15,000 \\ & 21,200 \\ & \hline \end{aligned}$	4.5 4.2	105 120
809	6.3	$\begin{array}{r} 500 \\ 750 \\ 1000^{6} \\ \hline \end{array}$	-10 -25 -40	170 200 230	40 35 30	$\begin{array}{r} 200 \\ 800 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 5,200 \\ 8,400 \\ 12,000 \end{array}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & 4.2 \end{aligned}$	60 100 145
830-8	10	$\begin{array}{r} 800 \\ 1000 \end{array}$	$\begin{array}{r} -97 \\ -35 \end{array}$	$\begin{array}{r} 250 \\ 270 \end{array}$	$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	$\begin{array}{r} 280 \\ 280 \end{array}$	$\begin{array}{r} 6,000 \\ 7,600 \\ \hline \end{array}$	5.0 6.0	135 175
HY40Z	7.5	$\begin{array}{r} 750 \\ 850 \\ 1000 \\ \hline \end{array}$	0 0 0	$\begin{aligned} & 171 \\ & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 925 \\ & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,000 \\ & 7,000 \\ & 9,000 \end{aligned}$	Note 9 "1	110 155 185
RK31	7.5	$\begin{aligned} & 1000 \\ & 1250 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	141 141	25 35	$\begin{aligned} & 230 \\ & 220 \end{aligned}$	$\begin{aligned} & 11,000 \\ & 18,000 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.4 \end{aligned}$	160 190
808	7.5	$\begin{aligned} & 1850 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r}-15 \\ -25 \\ \hline\end{array}$	840 290	40 30	230 190	$\begin{aligned} & 12,700 \\ & 18,300 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 190 \\ & 185 \end{aligned}$
RK37	7.5	1250	-35	282	25	235	18,000	7.2	200
811	$\frac{6.3}{5.0}$	$\begin{aligned} & 1950 \\ & 1500^{\circ} \end{aligned}$	0 $-\quad 9$ -98	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	$\begin{aligned} & 48 \\ & 90 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 15,000 \\ & 18,000 \\ & \hline \end{aligned}$	3.8 4.8	175 825
351	$\begin{aligned} & 5.0 \\ & \text { to } \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	-28 -30 -40	\cdots		-	$\begin{array}{r} 7,800 \\ 9,800 \\ 12,800 \end{array}$	\cdots	150 200 230
TZ40 ${ }^{\circ}$	7.5	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -\quad 4.5 \\ -\quad 9 \\ \hline \end{array}$	$\begin{array}{r} 220 \\ 269 \\ 265 \\ \hline \end{array}$	-	$\begin{aligned} & 280 \\ & 280 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 7,350 \\ 10,000 \\ 18,000 \end{array}$	5.5 6.0 6.0	$\begin{array}{r} 175 \\ 825 \\ 850 \\ \hline \end{array}$
RK59	7.5	1250	0	180	40	300	10,000	7.5	250
203-A	10	$\begin{aligned} & 1000 \\ & 1250 \\ & \hline \end{aligned}$	-35 -45	310 330	26 26	320 320	6,900 9,000	$\begin{aligned} & 10 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 860 \end{aligned}$
211	10	$\begin{array}{r} 1000 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & \hline-77 \\ & -100 \\ & \hline \end{aligned}$	$\begin{aligned} & 380 \\ & 410 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \\ & \hline \end{aligned}$	6,900 9,000	7.5 8.0	$\begin{aligned} & 200 \\ & 260 \end{aligned}$
838	10	$\begin{aligned} & 1000 \\ & 1250 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \\ & \hline \end{aligned}$	$\begin{array}{r} 6,900 \\ 9,000 \\ \hline \end{array}$	$\begin{array}{r} 7.0 \\ 7.5 \\ \hline \end{array}$	200 260
HK158	18.6	$\begin{array}{r} 750 \\ 1250 \\ 2000 \end{array}$	$\begin{array}{r} -95 \\ -50 \\ -90 \end{array}$	$\begin{array}{r} 300 \\ 280 \\ 340 \end{array}$	$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 330 \\ 225 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} 4,500 \\ 12,500 \\ 3,200 \end{array}$	17 10 10	$\begin{aligned} & 200 \\ & 155 \\ & 200 \\ & 965 \end{aligned}$
HK54	5.0	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{aligned} & -45 \\ & -70 \\ & -85 \end{aligned}$	$\begin{aligned} & 300 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 40 \\ & 24 \\ & 80 \end{aligned}$	$\begin{aligned} & 198 \\ & 180 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 16,800 \\ & 36,000 \\ & 40,000 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 6.0 \\ 5.0 \\ \hline \end{array}$	200 960 275
HY51Z	7.5	$\begin{array}{r} 850 \\ 1000 \\ 1850 \\ \hline \end{array}$	0 0 0	$\begin{aligned} & 148 \\ & 170 \\ & 155 \end{aligned}$	$\begin{aligned} & 48 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 350 \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,000 \\ 6,000 \\ 10,000 \end{array}$	Note 9 "	160 260 285
203-Z	10	$\begin{array}{r} 1000 \\ 1850 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ -4.5 \\ \hline \end{array}$	206 915	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 350 \\ 350 \end{array}$	$\begin{aligned} & 8,900 \\ & 8,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.75 \end{aligned}$	230 300
2B1 20	10	1000 1850 1500	$\begin{array}{r} 0 \\ 0 \\ -\quad 9 \end{array}$	190 180 196	$\begin{aligned} & 70 \\ & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 310 \\ & 300 \\ & 296 \end{aligned}$	$\begin{array}{r} 6,900 \\ 9,000 \\ 11,900 \end{array}$	5.0 4.0 5.0	200 945 300

TABLE II - CLASS-B MODULATOR DATA - Continued

$\begin{aligned} & \text { Class-B } \\ & \text { Tubes (2) } \end{aligned}$	$\begin{aligned} & \text { Fil. } \\ & \text { Volts } \end{aligned}$	Plate Volts	Grid Volts App.	Peak A.F. Grid-to-Grid Voltage	Zero-Sig. Plate Current Ma.	Max.-Sig. ${ }^{1}$ Plate Current Ma. ${ }^{\text {² }}$	Load Res. Plate-to-Plate Ohms	Max.-Sig. Driving Power Watts?	Max. Sig. ${ }^{1}$ Power Outpul Watts ${ }^{3}$
8005	10	$\begin{aligned} & 1850 \\ & 1500^{\circ} \end{aligned}$	$\begin{aligned} & -55 \\ & -80 \end{aligned}$	$\begin{aligned} & 290 \\ & 310 \end{aligned}$	40	$\begin{aligned} & 320 \\ & 310 \end{aligned}$	$\begin{array}{r} 8,000 \\ 8,500 \end{array}$	$\begin{array}{r} 4.0 \\ 4.0 \end{array}$	$\begin{array}{r} 950 \\ 300 \end{array}$
HF100	$\begin{aligned} & 10 \\ & \text { to } 11 \end{aligned}$	$\begin{array}{r} 1500 \\ 1750 \end{array}$	$\begin{aligned} & -52 \\ & -68 \end{aligned}$	$\begin{array}{r} 264 \\ 324 \end{array}$	$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 270 \\ 270 \end{array}$	$\begin{aligned} & 12,000 \\ & 16,000 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 9.0 \end{array}$	$\begin{array}{r} 260 \\ 350 \\ \hline \end{array}$
$\begin{aligned} & 805 \\ & \text { RK57 } \end{aligned}$	10	$\begin{aligned} & 1250 \\ & 1500 \end{aligned}$	$\begin{array}{r} 0 \\ -16 \end{array}$	$\begin{array}{r} 235 \\ 280 \end{array}$	$\begin{array}{r} 148 \\ 84 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 400 \end{array}$	$\begin{aligned} & 6,700 \\ & 8,900 \end{aligned}$	6.0 7.0	$\begin{array}{r} 300 \\ 370 \end{array}$
$828{ }^{11}$	10	$\begin{aligned} & 1700 \\ & 2000 \end{aligned}$	$\begin{array}{r} -180 \\ -180 \end{array}$	$\begin{array}{r} 940 \\ 940 \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 948 \\ 970 \end{array}$	$\begin{aligned} & 16,900 \\ & 18,300 \end{aligned}$	0	$\begin{array}{r} 300 \\ 385 \\ \hline \end{array}$
251	5.0	9000	-80	270	16	80	55,500	0.7	110
		1500	-55	230	21	94	33,700	0.8	90
		1000	- 30	210	32	180	15,800	1.8	70
		750	-20	205	43	133	9,200	1.4	50
3 C 24	6.3	Same as 255							
751	5.0	$\begin{aligned} & 1000 \\ & 1500 \\ & 9000 \end{aligned}$	-	-		-	$\begin{array}{r} 6,800 \\ 10,000 \\ 12,500 \end{array}$	二.	$\begin{aligned} & 200 \\ & 300 \\ & 400 \end{aligned}$
8003	10	1350	-100	480	40	490	6,000	10.5	460
100TH	$\begin{aligned} & 5.0 \\ & \text { to } \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	Bias adiusted for maximum rated plate dissipation under no-signal conditions Zero bias up to 1250 v. plate				$\begin{aligned} & 16,000 \\ & 92,000 \\ & 30,000 \end{aligned}$	May be driven by push-pull 6LOs	$\begin{aligned} & 380 \\ & 460 \\ & 500 \end{aligned}$
HD203.A	10	$\begin{aligned} & 1500 \\ & 1750 \end{aligned}$	$\begin{array}{r} -40 \\ -67 \end{array}$	-	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{array}{r} 425 \\ 425 \end{array}$	$\begin{aligned} & 8,000 \\ & 9,000 \end{aligned}$	Note 12	$\begin{aligned} & 400 \\ & 500 \end{aligned}$
HK254	5.0	$\begin{aligned} & 9000 \\ & 9500 \\ & 3000 \end{aligned}$	$\begin{aligned} & -65 \\ & -80 \\ & -100 \end{aligned}$	$\begin{array}{r} 400 \\ 420 \\ 456 \\ \hline \end{array}$	50 50 40	$\begin{aligned} & 260 \\ & 248 \\ & 240 \end{aligned}$	$\begin{aligned} & 16,000 \\ & 29,000 \\ & 30,000 \end{aligned}$	$\begin{array}{r} 7.0 \\ 7.0 \\ 7.0 \end{array}$	$\begin{array}{r} 328 \\ 418 \\ 520 \\ \hline \end{array}$
810	10	1500	-30	345	80	500	6,600	12	510
1627	5.0	2000	-50	345	60	420	11,000	10	590

i Values are for both tubes.
${ }^{3}$ Sinusoidal signal values; speech values are approximately one-half for tubes biased to approximate cut-off and 80 per cent for zero-bias tubas.
${ }^{3}$ Values do not include transformer losses. Somewhat higher power is required of the driver to supply losses and provide good regulation. Input transformer ratios must be chosen to supply required power at specified grid-to-grid voltage with ample reserve for losses and low distortion levels. Driver stage should have good regulation.
'Dual tube. Values are for one tube, both sections.

- Instent-heating filament type.
- Instont-heating fiament type.

Intermittent amate ur and commercial service
Beam tube. Class AB. Screen voltage: 300 .
: Beam tube. Class AB2. Screen voltage: 125 at 32 ma .

- Driver: one or two 45 s at 275 volts, self-biased (-55 volts).
${ }^{20}$ Beam Tube. Class $A B_{2}$. Screen voltage: 300 at 10 ma . Effective grid circuit resistance should not exceed 500 ohms.

${ }_{12}$ Cen be driven by a pair of $2 A 3$ s in push-pull Class $A B$ at 300 volts with fixed bias.

(1) Class-B Modulators

Class-13 modulator eirenits are practioally identical no matter what the power output of the modulator. The diagrams of Fig. $1: 313$ therefore will serve for any modulator of this type that the amatemr may elect to buide The triode cirouit is given at A and the circuit for tetrodes at B . When small tubes with indirectly heated rathocles are used, the cathode should be comnested to ground.

Design considerations for Class-B stages are discussed in Chapter Five, and data on the performance of various tubes suitable for the purpose are given in the acompanying tables. Once the reyuisite audio power output has been determined and a pair of tubes capable of giving that output selecterl, an output transformer should be secured which will permit matching the rated modulator load impedance to the modulating impedance of the r.f. amplifier. Similarly, a driver transformer should be selected which will properly couple the driver stage to the ('lass-l3 grids.

The plate power supply for the modulator should have good voltage regulation and must be well filtered. It is particularly important, in the case of a tetrode Chass-13 stage, that
the sareen-voltage power-supply source have excellent regulation. to prevent distortion. "The sereen voltage should be set as exactly as posisi-

Fig. 1413-Class-13 morlulator cirenit diaprams. Tules and circuit eonsillerations are discussed in the text.

We to the recommended value for the tube.

In estimatiner the output of the modulator, it should be rememberen that the figures given in the tables are for the tabe output only, and do mot include whtput-transformer losses, Tha efficiency of the output transformes will vary with it: construction, and may be assumed to be in the vieinity of 80 per cent for the less expensive mite and somewhat higher for higherpried transformers. 'Tos be adequate for modabating the tramsmiter, therefore the modnatator should have at theoretical power capability abont 2.5 por cent greater than the actual power needed for mohulation.

The input transformer, T_{1}, may rouple directly between the driver tube and the modulator grids or maty

Fig. 1.111-A conventional hassis arranement for low. and medium-power Clisz-IS modulator stayer. The nechanical layont in general follows the typical circuit diagrams qaven in Fig. 1313,

Frip. 111. - Chassis-less comsisurlion for a low-power Class-B modulator. sumall tuhes and transformers capable of an audio output of the worder of 100 watts can be monted direetly on the pand, climinating the chassis.
out high-frequency side-bands (wplatter) caseal by distortion in the modnatter or precediner spererh-amplitien stages. V"alues in the neighbertiond of 0.002 to $0.00 .5 \mu$ fld tue suitable, Its voltagn lating shomld be adequate for the peats valatge amoss the traturformer seroudary. The Mato b-p-pas- comdenser in the motulatom amplifier will serve the same parpuse.

Thu photoeretphs illustrate different types of construction which may be esed for Class-I modulators. The actual place-
be dexigned to work from al low-impedance (200- or solotohm) line. In the latter case, a tube-to-line output tramsformar must be used at the input to the driver stage. 'This type of coupling is recommended only: when the driver must be at a eonsidarable distance from the modulator, since the secomd tramsformer not only intronluees additional loseses hat also further impairs the voltage regulation.
The bias souree for the modulator must have very low resistanee. Batteriox are the most suitable vouree. In cases where the voltage values are correct., regulator tulus such as the VR75-30, VR105-30, etc., may be connected across a tap on an an, bias smpply to hold the bias voltage stealy under grid-eurrent comditions. Generally, however, zeru-bias modulator nubes are preferahle, not only becanse no bias supply is required but also beanse the loding on the driver stage is less vatiable and consequently. distortion in the driver is reduced.

Condenser C_{1} in these diagrams will sive a "tomeromeme" efferet and filter

Fis, 1116 - d chasis arrangemont for a hidher-power Class-B modulator. 'Thie wit has the filament transfirmer for the tulies munticton the chassis, Where the input transforacr is included with the spwh amplitior. less chassis spare will be needed. The tubes are ghaced near the rear, where the ventilation is gond. The plate milliammetor is provided with a strall plate wor the adjusting serew, to prewnt tourhing she serew arcidentally. I'restwod pancl was used for this modulator: with a metal panel, the meter should be thountrd behirel plase on a well-insulated mount (the meter insulation is not intruifed for voltages alover a few hadred) or conneeted in the filament enter-tap rather than in the high-voltage leat.

Chapter Jifteen

V.H.F. Receivers

IN irs essentials most modern receiving equipment for the 28 - and $50-\mathrm{Mc}$. bands differs very little from that used on lower frequencies. The 28 -Mc. band serves as the meeting ground between what are ordinarily termed "communications frequencies" and the veryhighs, and it will be found that most of the receivers described in Chapter Twelve are capable of working on 28 Mc . In this chapter are described receivers and converters capable of good performance on 50 Mc . and higher.

Federal regulations impose identical requirements on all frequencies below 54 Me . respeeting stability of frequency and, when amplitude modulation is used, freedom from frequeney modulation. Thus receivers for $50-$ Me. am. reception may have the same selectivity as those designed for the lower frequencies. This order of selectivity is not only possible but desirable, since it permits a considerable increase in the number of transmitters which can work in the band without undue interference. High selectivity also aids greatly

Fig. 1501 - A compact 111 Mc. receiver built in a $3 \times 4 \times 5$-inch metal box. The detector trimming condenser's slotted shaft is on the top, beside the 6.J5 detector (fromt tube). The tuning hnob, headphone jack and regeneration control are to be seen in the front, with the "on-off" switch and the antenna terminals on the side.
in improving the signal-to-noise ratio, both as concerns noise originating in the receiver itself and in its response to external noise. The effective sensitivity of such a receiver can be made considerably higher than is possible with nou-selective receivers.
Receivers for f.m. signals usually are designed with less selectivity, so that they can aecommodate the full swing of the transmitter. At least for 28 - and $50-\mathrm{Mc}$. f.m. reception. however, the h.f. oscillator must be as stable as in a narrow-band a.m. receiver.
The superheterodyne system of reception is used atmost universally on frequencies below 54 Me. beanse it is the ouly type that fulfills the stability requirements. A.m. superheterodynes and those for f.m. reception differ only in the i.f. amplifier and second detector, so that a single high-frequency converter may be used for cither a.m. or f.m.
Superheterodynes: for 50 Mc . should have fairly high intermediate frequencies to reduce, both image response and oscillator "pulling." For example, a difference between signal and image frequencies of 900 kc . (the difference when the i.f. is 450 kc .) is a very small percentage of the signal frequency; consequently, the response of the r.f. circuits to the image frequency is nearly as great as to the desired signal frequency. To obtain discrimination against the image equal to that obtainable at 3.5 Mc . would reguire an i.f. 16 times as high, or about 7 Mc . However, the Q of tuned circuits is less at 50 Mc . than it is at the lower freguencies, chiefly because the tube loading is considerably greater, and thus still higher i.f.s are desirable. A practical compromise is reached at about 10 Mc .

To obtain high selectivity with a reasonablnumber of i.f. stages, the double superheterodyne principle is often employed. A $10-\mathrm{Mc}$. intermediate frequency, for example, is changed to a second i.f. of perlaps 450 kc . by an additional oseillator-mixer combination.

Few amateurs build complete 50-Me superheterodyne receivers. General practice in this band has been to use a conventional communications receiver to handle the i.f. output of a simple $50-$ Mc. frequency-converter. Even an all-wave broalcast receiver may be used with excellent results on $\overline{0} 0 \mathrm{Mc}$. by the addition of a relatively simple converter.

The simplest type of \mathbf{v}.h.f. receiver is the superregenerator, long favored in amateur work. It affords good sensitivity with few tubes and elementary rircuits. Its disadvan-
tages are lack of selectivity and, if the oseillating detector is coupled to an antemma. a tendeney to radiate a signal which may cause interference to other receivers. To some extent the lack of selectivity is advantareous. since it increases the chances of hearing a call even though transmitter and receiver may have drifted in frequency between conracts. To reduce radiation, the detertor should be operated at the lowest pate voltage that will give satisfactory superregeneration; means for controlling regeneration is essential in any superregenorative receiver.

Although superheterodymes can be built to work successfully on 144 Me., up to now the superregenerative type of receiver has been much more widely used. The superregenerator has the advantages of low eost and good sensitivity, but its selectivity does not compare with that of the superheterodyne.
lirom a practioal aspect, superregenerative receivers may be divided into two general types. In the first the queluthing voltage is developed by the detector tube functioning as a "solf-quenched" oscillator. In the second, a separate oscillator thbe is used to generate the quench voltage Solf-quenched superregenerators have found wide favor in amatour work. The simpler types are particularly suited for portable equipment, which must be kept as simple as pusible. Many amateurs have "pot" cireuits clamed to be superior to all others, hut the probability is that the arramgement of at particular eircuit has led 10 correct operating conditions. Time spent in minor adjustments will result in a smooth-working recenver.

(1. A Simple Superregenerative Receiver

One variety of simple superregencrative receiver is pietured in Figs. 1501 through 1504. A: shown in the wiring diagram, lig. 1504, a 6. In superregenerative detector is followed by resistance-coupled 6.5 and 6 F 6 audio stages. The detector circuit departs from the orthodox in the use of inductive tuning and the resistance coupling to the audio stage.
'The reederer is built in a $3 \times 4 \times 5$-inch metal bex, one 3×4-inch face serving as the "fromt" pancl. The panel eontrols include the tuning knoh and the regeneration control; the headphone jark is also mounted on the panel. The power-cable plug is mounted at the rear of the box. as atre the spatier terminals. The "on-off" switch and the anterna terminals are mounted on the left-hanel side of the box.
"The detector trimmer condenser, C_{1}, is mounted on the upper face of the box, so that it ran be aljusted from the top of the receiver. The quench-frectueney r.f. choke, $R F C_{2}$, is supparted from the under side of the upper face of the box by a long sorew, with a hrass sleeve over the screw furnishang sufficient spacing from the box. This r.f. whoke is essential berature the revistance-eompled amplifiers afford but slight attomation of the quench frequency, and the quench voltage otherwise would overload the output andio tube at relatively low signsl levels. Where transformer eoupling is used betwern the detector and first audio stare. the tramsformer serves to keep much of the guench voltage but of the following stages; consertuently, the quench-frequeney choke may not be necessarv.

Fis. $\quad 1502-$ Inside the small 1/1-31. superregenerative receiver. 'This lefthand view shows how the tuniag-low, assembly, regeneration control and treadphone jarch arr mounted on one of the cond fanels, and also illustrates the placement of some of the parts not visible in the other views. The jowersupply plug and the loud-peaker lionding onit maty fosen at the rear of the ehassis. 'The side patel which carrios the antenna coupling lowp and the sent-receive switely is slown at the lift, partially dismautled.

Fif. 1503 - A right-hant mide vien of the simple dth-Mr. receiner-
comblenser by means of a short length of wire. L_{1} being connected to the center of this wire and to the stator comeretion of the condensers. A longth of $\frac{1}{4}$-inch rod pushed through the shaft hearing will serve as a muide in soldering the coil in place. The axis of the comil should make an angle of 45 degrees with the shaft.

The inductive tuming loop is a small copper washer cementerd to the oud of a 1 亿-ineh shaft of insulating material (Lusite or bakelite). The eopper washor, ateling ats a single shorted turn. decreasis the efferelive inductance of the roil as it becomes more closely couphed. and consequembly tunes the sys10m. The cond of the shaft is cat at an angle of fin degreses to mount the Wasture at the satme angle with rospert to the axis of the shaft. Thas 180-degree rotation of the shaft turns the reppre washer from a position coaxial with the coil to one at right angles to it. The copper
 screw furnishes a comvenient gromed for the pomponents of tlat stage. Alf comblemers ethed resistors are momatod dieerty worket or other terminals. An exemptom in the complic:r condenser, C_{6} one sidfe of which must be rum down to the headphane jack with an exts:a Iengt hof wire. The leads ranning to the theyle switch should be made of extra-longh fexibhe wire so that the side of the box dam be remored without unsoldering the rommertions. All wiring should be esmpleted before L_{1} and L_{2} are put in plare.

The detector coil is constructed by windmg the wire around a x_{2}-iach diameter drill or dowel, used as a former. After the eosil is ere moved the ends are trimmed and bent until 1 ran be soldered in pare in proper aliwnment with the paned bushing dsed to support the meming-loop shaft. The plate lead of the date -arket is combeded to lla rator of the trimmer
washeris made bydrillinga $1 / 8$-inch hole in asmall piece of theo copper and then cutting around the loole 10 form a washer of 7 'l6-inch outside diameter. The washer is fastomed to the angled face of the shaft hy Dueo cement. Berause the copper washer is largor than the shaft, the shaft must be pushed through the pance bearing from the inside of the box. This call be done casily hy loowenimg the bat bearing while sliding the shaft through. A fiber wisher should be placed on the shatit before it is pushed through the pand bearing. and later emented to the shaft to sure as a collar which prevents it from pulling through the hearing.

It is easier to cherk the performane of the reaviver before the tuning loxp is added. With the latre trimmer combenser specified there
 band. The trimmer senting will be at about onetenth capaciny if the woll is right. The detmetor should go into the hiss emedition when the re-
fiak. 1.504 - Cirrnit diagram of the -am-

C. $-2.5-\mu \mu \mathrm{fl}$), air trimmer (Ilammarlimad Al'(.25)
$\mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$. midget minal.

$\mathrm{C}_{8}-8-\mu \mathrm{fl}$. 450 -volt electrolytin.
R_{1} - 5 megohms, $1 / 2$ watt.
$\mathrm{R}_{2}-2.5000$ ohms, $1 / 2$ walt.
R_{3} - 0.25 megohim. $1 / 2$ watt.
$\mathrm{K}_{4}-1.500$ ohme, 12 watt.
$\mathrm{Ik}_{5}-50,000$-ohm wire-wonnd potentionnter.
$\mathrm{H}_{\mathrm{f}}, \mathrm{R}_{7}-50,000$ ohme, 1 watt.
$\mathrm{Ks}-0.1 \mathrm{megohm}, 1 / 2$ watt.
K_{9} - but ohms, 1 natt.
R_{10} - 2000 ohms, 10 -watt wire-wommd
J-Clawilociranit jack.

RFCi - V.h.f.r.f. ehoke (Ohmita \%-I

 t.3- 'luning loxp (see tril).
generation control is advanced not more than two-thirds of its travel. Several values of capacity should be tried at C_{3}, using that which allows the cletertor to oseillate at minimum regeneration control setting without excessive audio by-passing.

With the receiver working and the tuning loop installed, the tuning range can be adjusted by moving the shaft in its panel bearing to bring the loop nearer to or farther from the coil. Moving the loop doser will indrease the tuning range. The tuning rate will be slow with the loop at right. angles to the coil and faster as the loop and roil beome more nearly coaxial. If the setting is atjusted so the receiver tunes from abont 143.5 to 149 Mc ., the band will be spread over the major portion of the dial.

Once the shaft pusition giving the right band spread has been found, the fiber washer is fastened to the shaft with Duco cement. After this is dry, the dial or knob can be attached to the outside end of the shaft. Play of the shaft in the bearing can be cured by slipping two metal washers and a half-slice of rubber grommet on the shaft before the dial is attached. The dial set screw should be tightened with the shaft pushed out from the inside: the rubber grommet then will hold the fiber washer tightly against the inside of the panel bearing.

A paper scale may be glued to the box. with the megacycle and half-megacycle points marked on it for ease in resetting.

The antenna coupling should be adjusted with the antenna counected. It should be as close to L_{1} as will permit sufficient margin in the regeneration-control range to take care of low supply voltages and other variables.

Fig. 1506 - A superregenerative receiver with built-in speaker, construeted on a standard chassis hase as a cabinet. The detector trimuing condenser is mounted on the left end. The audio gain control is at the right of the tuning dial. The regeneration control is between the gain control and the phone jack aud on-off switch.

©. A Superregenerative Receiver with Built-In Loudspeaker

The receiver shown in Figs. 1505, 1506 and 1507 is built on a $10 \times 5 \times 3$-inch metal chassis. The tubes and speaker are mounted on one 5×10-inch face. One side is used for a panel, the opposite side being left clear in the event it is desired to operate with the receiver resting on this sille.

The antenna terminals and the detector padding condenser are mounted on the lefthand end of the chassis, and the four-prong power plug is mounted on the right-hand end. The only care necessary in laying out the chassis is to mount the tuning condenser and the padding condenser so that their respective terminals come close together, to make the

$\mathrm{C}_{1}-25-\mu \mu \mathrm{fd}$. air trimmer (Ilammarlund APC-2.5).
$\mathrm{C}_{2}-5-\mu \mu \mathrm{fd}$. midget variable (Na tional C M. 15 with 2 stator and 2 rotor plates removed).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$, midget mica.
$\mathrm{C}_{4}-0.006-\mu$ fil. mica.
$\mathrm{C}_{5}, \mathrm{C}_{7}-0.01-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{8}, \mathrm{C}_{8}-10-\mu \mathrm{fd}$. 25 -volt eleetrolytic.
$\mathrm{C}_{9}-8$ - -fd .450 -volt electrolytic.
$\mathrm{R}_{1}-5$ megohms, $1 / 2$ watt.
$\mathrm{R}_{2}-25,000$ ohms, 1 watt.
$\mathrm{R}_{3}-0.5$-megohm volume control.
$\mathrm{h}_{4}-50,000$-ohm wire-wound variable.
$R_{5}-1500$ ohms, $1 / 2$ watt.
$R_{6}, R_{7}-50,000$ ohms, 1 watt.
$\mathrm{R}_{8}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{g}}-500$ ohms, 1 watt.
$\mathrm{R}_{10}-200$-ohm, watt. 10 -watt wire. $\quad \mathrm{I}_{2}-\frac{7 / 8}{}$ turn No. 14 cnam., $3 / 8$-ineh wound. Ser text.

J-Closed-circuit jack. R FC_{1} - V.h.f. ehoke (Ohmite 7.1). $\mathrm{RF}^{\prime} \mathrm{C}_{2}-80$-mh. r.f. choke.
S_{1} - S.p.d.t. toggle switch.
T' - Pentode ontput transformer. Speaker-4-inch p.m. type.
L_{1} - $13 / 4$ turns No. 14 enam., $3 / 8$. ineh inside diameter, spaced diameter of wire. inside diameter.

Mis. Bion This mothrin. virn of

 the lonsl-presher montlal at "...l oi the

 i- monuthel \quad "I

 rif .hoher-may bu. -ren in the H. Wt .11 Whe h.ft
 rime the H. lan. "-110以 1.0 In -rom manntal

 Hew hath-penher.

 minals wh the variahte mextor hars

(A 144/220-Mc. Superregenerator

 2-

 throush the chasisis in atherey grommet.

Fig. 1509- Wiring diagram of the superregenerative receiver for 112 and 224 Mc . $\mathrm{C}_{1}-5-\mu \mu \mathrm{fd}$. midget variable (National UM15, 4 plates removed).
C_{2} - 3-30- $\mu \mathrm{ff}$. mica trimmer.
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{4}-0.003-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{7}-10-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{6}-0.01-\mu \mathrm{fl}$. 400 -volt paper.
R_{1} - 10 megohms, $1 / 2$ watt.
$R_{2}-50,0 \% \%$-ohm wire wound varialle.
$\mathrm{R}_{3}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{4}-2500$ ohimes, $1 / 2$ watt.
$\mathrm{R}_{8}-500$ ohms, 1 watt.
J-Closed-circuit jack.
S-S.p.s.t. togele switch.
T_{1} - Plate to grid interstage audio transformer ('Hhordarson 'i'-57A36).
RFC $\mathbf{I}_{1}-25$ turns No. 24 d.c.c., close-wound, 14-inch diameter.

$\mathrm{L}_{1}-1$ turn No. $14 \mathrm{e} ., 8 / 8$-inch inside diameter.
$\mathbf{L}_{2}-112$ Mc.: 3 turns No. 18 c., $1 / 2$-inch diameter, spaced over $1 / 4$ inch. Tapped $1 / 4$ turns from plate end.
$224 \mathrm{Mc}: 2$ turns No. 18 c.. $1 / 4$-inch diameter, spaced over $1 / 2$ inch. Tapped at center of coil.

The coils are mounted on small strips of $1 / 8-$ inch polystyrene (Millen Quartz()) which have three small holes drilled in them corresponding exactly with the coil socket. Earh coil is cemented to the strip with Duco cement at the points where the wire passes through the base. The No. 18 wire used for the coils will fit snugly in the sockets if the contacts are pinched slightly. The coils are trimmed to fit the bands by spreating or squeezing the turns slightly by the procedure previously described. However, in this case the band-set condenser gives some further range of adjusiment. In the receiver as described, it is screwed down fairly tightly for the 112-Mc. band and loosened about four revolutions for 224 Mc . In the absence of good marker stations, an absorption frequency meter or a Lecher wire system (described in Chapter Ninetcen) may be used for spotting the band limits.

Two factors which will be found to influence sensitivity are the value of C_{4} and the degree of antenna coupling. Values of C_{4} from 0.001 to $0.005 \mu \mathrm{fd}$. should be tried. The antenna coupling will vary greatly with the setting of L_{1} and the type of antenna used; it is well worth while to tune the antenna circuit and then vary the coupling with the panel control. Tight coupling usually will give better results than loose coupling. The coupling can be increased almost up to the point where the detector no longer oscillates, with no ill effects except increased radiation and possible QRM for other receivers in the vicinity.

An audio volume control could be installed in place of the fixed grid resistor, R_{7}, if desired. In the original model of this receiver, the value of R_{7} was adjusted until normal loudspeaker output was obtained; this value may be varied to mect any particular requirements.

Fig. 1510 - Left - A close-np view of the tuning assembly, showing how the lrads from the tuning condenser to the tube socket have been kept short and how the coil sochet is monnted on the tuning condenser, Jidden by the grid condenser (the $50-\mu \mu \mathrm{ffl}$. condenser so prominent in the picture), the plate terminal of the tube socket goes to a lug which has been added to the rotor of the tuning condenser. Right - The arrangement of parts under the chassis may be seen in this photograph. The 0 J 5 socket is at the left and the 6F6 socket is at the right, near the speaker terninals. The 8 -mh. r.f. choke, seen just under the regeneration control at the top center, is supported by tie strips.

Fig. 15/I-Front view of the 1/1-Mr. t.r.f. rewiver. The pointer holol athove the vernide dial tunes the r.fstare. 'The small ronand hosho are for amdin solume (lower right) and detertor phate voltare varialions. Ouside dimensions of the hambluade case arr $\overrightarrow{7} \times \overline{5} 1 / 2$ $\times 1$ inches.

(1) T.R.F, Superregenerative Receiver

The recriver shown in Figs. 1511, 1512. 1513,1514 and 1515 uses ministure tubes throughout end is intended for cither home or portable/mobile use. The r.f. amplifier stane furnishes some additonal gain over a straight superregenerative detector, afferds freedom from antemat effects, and - most important of all - prevents radiation from the receiver. Although the r.f. and detector circuils are individually tuned, the broad funing of the r.f. stage makes the reeriver ensemtially a singledial affair - important in mothile work - and the low-pried miniature tubes permit compate assembly and low current consumption. Heater current is (i25 tha. at 6.3 pollo, and the torat plate drain from 135 volts of " 13 " battery is less than 10 ma.
The tuned r.t. amplifier stage uses : 6.1 人5 pentode which is coupled through ('s to the 6 C 4 superrequerative triode detertor. This in turn is trathsformer coupled to a 6 Ct audio stage which drives the GAK6 output stage. A plate coupling choke, L_{44}, and the coupling condenser C_{12} remove d.e. from the output jack J_{2} and eliminate the possibility of short cireniting the plate supply at this point.

The receiver chassis and partitions are built from pieese or o_{10}-inch ahminum held together at the corners with mathine serews and strips of 1 -inch square brass rod. The overall dimensions are 7 by 5 by 4 inches - the chassis that mounts the audio components is 4 by 5 inches with : $13 / 4$-ineh folded lip. To eliminate oscillation in the r.f. stage and radiation from the detetor, completely separate compartments are used for the r.f. and detector stages.

These compartments consist of identical boxes that measure $1 \frac{8}{8}$ inches s guare and 3 inches long. The tube sockets are mounted on the end plates, and all of the connections to the sockets are made before the boxes are completely assembled. The wire bewwen ("5 and L_{3} runs through iwo Millen 32 I. 0 o bushinges in the walls: of the two shied comparments. This interconnection, the only one except for the power circuits, is made by moning separate hads from the condenser and eril through the busiinges and then soldering the two ends tugether afler the two units are momed on the fromt panel.

The detector tuning condenser, C's. is a regulat (ardwell ZM-5-T' modificel by adding a single rircular plate to the regular two-plate romor This additional constant capacity across the eirenit incraxes the hamberatal and, beamse it deremases the L (1) ('ratio. smoothe out the regeneration so that the rewermation comrol. Pro, dones not have to be readjustod within the 14-Mce band.
The two r.f. chokes, RFC, are homenade affairs wound on 1-watt IRC composition resistors - 0.25 megohn or higher - the int sulated ype that is $1 \frac{1}{4}$ inch in diameter and $2 / 32$ inches long. The ends are nothed with a suatl fike or sam, to preven the emeds of the eoil wire from slipping atom they have been soldered to the pigtail leads of the resist or, and a single layer of No. 30 d.s.c. is womm on for a length of 1732 inchos. No laceuter or dope should be used of the winding bercause of the inereased distributed atpareity that will result.

Fig. 1512 - Rear view of the complete meciver. Vote that the r.f. stage and superrewerative detector circuit component- are in separate completelverenchaced eompartments. for rimination of radiation. Nimian are tubes are used throughout, for compactness and low current consumption.

Fig. 1513 - Wiring diagrann of the four-tube t.r.f. superregencrative receiver. Boundaries of shield compartments housing r.f. and detector tares are shown in dotted lines.
$\mathrm{C}_{1}, \mathrm{C}_{8}$ - $\mathrm{S}_{\mathrm{g} \text { plit-utator conden-er (Caril- }}$ well 7, -5-TS). See twa.
C.2. C3, C4- $500-\mu \mu \mathrm{fd}$. midget mica.
(5. Cir - $50-\mu \mu \mathrm{ff}$. midget mica.

 deetrolytic.
C10. C12-0.1-pfil. paper.
R_{1} - 1500 ohms. $1 / 2-$ watt.

$13_{3}-3.3$ mrgoh mis. $1 / 2$-wall.
R_{4} - 10.160 ohms. $1 / 2-w a t \mathrm{t}$. Ser tevt.
$\mathrm{R}_{5}=506,006$-nitin initentiometer.
K_{6} - 20 MO whers- K_{2}-wath.

R_{10} - 50.11010 -thm
$18_{11}-25,000$ olimes. 1 watt.
S. S.p.e. - with on $1 \mathrm{~B}_{10}$.

Ji-Coarial zochet (Jom-s-201). Matching plug for antema is P'-101 or lor-201.
J_{2} - Meadphome or peaher jach.
$1.9-2$ t. $3_{\text {sinch i.d. No. } 18 \text { riam, inserted be- }}$ twent turns of I a. at mode end.

13 - 5 i., center tipped. $/ 2$-inch lome, No. 18 tinned. R.f. compling lap, I t. from griel emal.

14- Midget atadio or filter chohe (luca I)-92).
When the reoviver is completely wired the first mowe should be to check detictor operation. With the 6 AKj in its socker, but with no plate or sereen voltage applied to it, apply the phate voltage to the detector and check for the customary hiss. Try the regeneration contod, P_{10}. to determine whether the detector goes in and out of superegeneration smoothy. Some variation in values of R_{3}. R_{4} and C_{6} maty he necessary to attain this end. and some 6 C ts work better than others in this respect.

Fip. 1514 - Closenp view of the ef. and supercgenesative detector compartments, with bark plates removerd to show details. Top, bach, and right side may be removed from cither assembly, providing accessibility despite compact design.

Next, the tuning range should be checked by motans of Lecher wires or an absorption-type wavemeter. With the values given, 144 Mc. should fall at about 81 on the dial, with 148 Mc . at around 60. The position of the r.f. coupling tap on L_{3} will have cunsiderable effect on the resonant frequency of the combination. Its position is not critical, cxcepe for its effect on the thaning range of the detector eircuit, but the spacing of the turns in the coil will have to be changed if the position of the tap is materially different from that given.

When the deteector is found to be in the band, the ref. stage mav be put into operation. With any of the shields removed, or with no antemat connerted, the 6 AK will probably oscillate, blocking the detector, but this effect will disappear when the two compartments are completoly assembled and an antema at tached by means of the coasia! comector. If the r.f. stage is operating properly there will be slight thathge in the character of the hiss when the stage is tuned through resonance. I sing a signal gemerator (the harmonic of any oscillator which falls in the 14 - Me. band will do) or the signal of a $144-\mathrm{Mc}$. station, there will be a pronounced drop in background noise and a slight change in dial setting of the detertor when the r.f. stage is tmand 'on the nose.' Once the r.f. tuning is adjusted for maximum response, preferably on a weak signal near the midelte of the band, it may be left at that setting for all except the very weakest signals at either end.

Power supply filtering and regulation are important faciors in altaining smooth amd efliciont performance with superregenerative detectors. The power plug mounted on the back of the chassis provides a separate connection (pin 5) for the detector and r.f. Bt, in order that this may be drawn from a regulated source, such as a VR-150. The other pin

Fig. 1515 - lottom view, showing audio component arrangenent.
plexity only by the addition of one or two tubes and relatively simple accompanying circuits.
A superheterodyne of this type is shown in Figs. 1516, 1517, 1518 and 1519. A 6 J 6 miniature twin triode is used as local oscillator and mixer, and its high transconductance (5300 ${ }_{\mu}$ mhos) and small size make for good performance in the 2 -meter band. The superregencrative second detector is a 6.15 working at 25 Mc ., and this is followed by a 6.55 for headphone output and 6F6 for speaker operation. The wiring diagram, Fig. 1518, shows no coupling condenser between oscillator and mixer because stray coupling between grid pins at the socket gives adequate injection. Since the 6J6 has a common cathode connection, it marked " $B+$ " (pin 4) supplies the audio tubes, and the voltage used here noed not be regulated. If " 13 " bateries are ussd - and they are highly recominended for mobile operation - pins 4 and 5 may be connested tiogether in the power socket on the cable. The use of "13" bateries in mobile work will result in better sensitivity and more fuiet operation than will be available with any sort of molvile power supply, vibrator or dynamotor, and the drain from the car battery will be aegligible during receiving periods. A set of mediumsize " B " batheries (135 volts is suff.cient for good speaker volume) will last throug a year or more of normal operation. When batteries are used, the on-off sovitch, $S_{2}-S_{3}$, should be thrown to the "off" pesition when the receiver is not in use, otherwise there will be a small is necessary to return the grid of the oscillator portion to cathode, and the grid of the mixer is returned to ground through R_{1}. The mixer plate is by-passed for signal frequency by C_{4}, which also serves to tune the primary, L_{4}, of the i.f. transformer. The i.f. transformer is adjustable only in the secondary circuit. since with just one stage there is no tuning requirement other than that the primary and secondary be tuned to the same frequency. A switch, S_{1}, removes the plate voltage from the second detector and fotlowing stages during transmission periods, but plate voltage is leit on the oscillator (and mixer) to aroid dritt. This is an unnecessary refinement, however, since the oscillator drift is considerably less than the band width of the i.f. amplifier. continuous drain on the batteries through the $R_{10}-R_{11}$ bleeder.

C A 144-Mc. Superregenerative Superheterodyne Receiver

The ordinary $144-\mathrm{Mc}$. superregenerative receiver is not very selective, and often a more selective type of receiver is desirable to minimize interference. Furthermore, the radiation from a superregenerator can cause an annoying type of interference when stations are fairly close together. Both of these sisadvantuges can be avercome by using a superheterodync. The well-known advantages of the superregenerator - simplicity, sensiitivity and economy of tubes and compments - can in large part be retained by using a superregenerative detector as the i.f. system of the superheterodyne. Since the intermediate frequency will be considerably lower than the signal frequency, the selectivity will be increased in proportion; yet the receiver as a whole is increased in com-

Fig. 1516 - The four-tulie 144-Mc. superheterodyne, dressed up in a modern cabinct. The large dial is oscillator tuning, and the small dial and lock is for mixer tuning. The two knobs control regencration (right) aud volume (left).

Fig. 1517 - A top view of the receiver shows the construction of the induetive-tuning deviers used in the oscillator and miser cireuits. The tuhes along the back, from left to right, are superregenerative second detector, andio and output.
and oscillator coils, and allow the coils to be changed readily for experimental purposes. The antenna and loudspeaker leads are brought out to similar posts at the rear of the chassis.

The $1 / 4$-inch diameter polystyrene rod used for the oscilhator tuning vane shaft is supported at the panel end by the National A dial and at the other by a panel bushing mounted in an aluminum bracket. The vance is made of a piece of thin copper soldered to a brass shaft coupling. After soldering the vane to the coupling, the copper is cut roughly in the form of a straight-line-wave-length condenser rotor plate. It can be trimmed up later to give something resembling straight-line-frequeney tuning, but this is hardly essential. By moving the vane closer to the coil the tuning range can be increased, and vice versa. The tuning vane for the mixer coil is fastened to a piece of 1 s-inch polysty rene by small machine screws and nuts, and the poly is fastemed to a shaft which is filed flat on one side and tapped for two $6-32$ screws. The shaft is part of an ICA No. 12-48 panel bearing assembly, A Millen 10050 dial lock working against the small metal dial prevents any undesired change in the position of the mixer tuming vane.
$R P C_{1}$ and $R P C_{2}$ are wound on $1 / 4$-inch diameter 1 -megohm resistors. A snall noteh is filed at each end of the resistor to keep the wire in place, and the wires for the chokes are soldered to the leads of the resistor. A 1-watt size is used for $R P C_{1}$ and a 2 -watt size for $R P C_{2}$. $R P^{\prime} C_{3}$ is made by mounting a single pie from a $2.5-\mathrm{mh}$. 4 -pie r.f. choke on a 1 -megohm 1-watt resistor similar to that used for $R F C_{1}$. The easiest way to remove the pies from the ceramic form on which they come is to melt the metal from one end of the choke with a hot soldering iron and then force a sharp ice pick or nail down the hole in the center of the ceramic form until the ceramic splits. The pies can then be removed and one mounted on the resistor with Duco cement.

The i.f. transformer is wound on a National PRE-3 polystyrene form. Two additional small holes, 90 degrees apart, are drilled in the form between the two windings, and one lead of C_{5} is suaked through to furnish a support for one end of the condenser as well as at tie point for one end of L_{4} and the isolating resistor R_{4}.

In wiring the receiver, it is convenient to wire the heater circuits first. On the metal tubes, pins Nos. 1 and 2 are grounded to lugs fastened under the serewsholding the sockets to the chassis. On the miniature socket a jumper goes from pin No. 4 to the central shield of the socket and thence to a lug under one of the screws fastening the socket to the chassis, on the pin No. 7 side. Some care should be
taken in wiring the r.f. components on the miniature socket. to insure sloort leads. One connection of $R_{2}, R_{3}, C_{4}, C_{5}$ and ('igoes to pin No. 7. C_{2} (two condensers in pirallel) mounts between pin No. 2 and the binding post supporting the grid side of L_{3}, and $r^{\prime} 3$ is mounterd from this post to pin No. \bar{j}. Ifr. $I^{\prime} 9$ and R_{1} roturn to the ground lag for the 6.16 heater ritcuit mentioned athowe A small tie point is used at the junction of $R P^{\prime} \mathrm{C}_{1}$ and R_{3}.

The two wires from the athtennat binding posts to the posts supperting the antomat roil are No. it emameled. :mad further support is given them by rumning then through hales in at PRE-3 form.

Checking of the receiver is best done by starting at the output and working toward the inpul. Conneet heater voltage and high voltage to check the superregenerative defector operattion. With a speaker or headset, eommerted. advancing the regencration eontrol shoulal result in the familiar suphrregencrative hiss. At this point the 105 volts for the mixer and oseillator can be connected, beratuse the adjustment on ('z should be matde with plate voltage on the mixer. With the regeneration control only slightly beyond the peint where the hiss starts to be heard. adjust ('z for the
point which requires maximum advancing of R_{7} for oscillation. This brings $L_{5} \mathrm{C}_{7}$ into resonance with $L_{4}\left({ }_{4}\right.$. If it is found that the second detector won't oscillate at one very sharp sotting of C_{7}, the eompling between $L_{\text {a }}$ and L_{5} is too tight. In this event the roils should be bateked awty from each othere if possible. or dse ('ze:cn be depumed slightles. The former procedure is preforable. Tluesetting of C'z where the primary direuit pulls the deloetore out of oscillation should be quite shatry - if it isn'? the setting isti right. When the deloetor is
 likely that the hisw will also contain some un-
 frectueney of the i, l. ean be chereked on at cealibrated commmaictutons-feguencer reoiver, if desired, but a froguency cherek is not essmentiah. With the eonsisuth given the i.f. will be aroumd 25 Mr.

Knowing tho i.f. makes it a hit ansor 10 andjust the oscillator portion of the 6.Jti, heramse atm absorption wavemeter or lecher wires ato be usad to put the oseillator on the right froquency. If one kows the i.f. :hat has some means of rheoking the oseillater frequenes the oseillator can be adjustod to give a tuning range fom 143 Me , mimus the i.f. to 1.19 Mr .

Fig. 1518 - Wiring diagram of the 141-11r. -uperhet crodyne.
$\mathrm{C}_{1}-\mathbf{9 5 0} \cdot \mu \mu \mathrm{fl}$. mica.
 parallel).
$\mathrm{C}_{3}, \mathrm{C}_{4}-10-\mu \mu \mathrm{fl}$. mica.
C: $500-\mu \mu \mathrm{fl}$. mica.
$\mathrm{Cis}_{5} \mathrm{C}_{8}-100-\mu \mu \mathrm{ff}$. mira.
$\mathrm{C}_{7}-4-20 \cdot \mu \mu \mathrm{fd}$. adjustable erramic trimmer (Centralalo or lisie).
$\mathrm{C}_{9}-0.002-\mu \mathrm{fll}$ mica.
$\mathrm{C}_{10}-0.01-\mu \mathrm{fd}$. 4 (6). volt paper.

$\mathrm{C}_{12}-0.1-\mu \mathrm{fl}$. 400-volt palmer.
J_{1} - Cloned cirenit telephone jack.
1.1-2 turns No. 12 enam., l-inch diam., npaced wire diameter.
1.2-2 turns No. 12 rnam., 11 ónch diam., spared twice wire diameter.
l.3-2 turns No. 12 enam., $11 / 6$-ineh diam., spiaced to oceupy $7 / 8$ inch.
$1_{4}-16$ turns No. 22 enam., elose-wound on 9/16-inch diam. form.
I.s - 10 turns Xis, 29 anam, close-woum on same format I_{1} and spared $1 / 2$ inell from $/ 4$.

R_{2} Sol ohm $=1 / 2 \cdots a t$.

K_{1} I 100 oh ohm- $1 / 2$-wall
16:- -0 mequhms. $1 / 2-w a t t$.

 wirr-wound.
$\mathrm{R}_{8} \quad 50.0 \mathrm{ch}$ ohme, I -watt.
K_{9} - $0 . \overline{\mathrm{i}}$-mesolom volume control.
$R_{10}-300$ olims. $1 / 2 \cdot w a t 1$.
$R_{11} . R_{12}-0.1$ mesohn. $1 / 2$ watt.
R_{13} - 500 ohmis, 1 -watt.
$\mathrm{RFC}-21$ turns No. 22 enam, chose-wound inn ? ${ }^{1}$-inn-h diam. form. Sectext.
 diam. form. Ser tert.
R FC_{3} - One pie from 4 -pir $2.5 \cdot \mathrm{mh}$, choke. See text
$\mathrm{HPC}_{4}-80$-ml. iron-core r.f. coke (Meissner 19-68:46). S_{1} - S.p.s.t. toggle switch.

 detecter sochet atel the i.t. tran-formor. 'This trimmor condener is adjustable from abome the chassi-. To the left of the ceramic condenser ean besen $R / \cdot C_{3}$, the sintropie r.f. chole.
minus the i.f. The tuning range is adjusted by spacing the turts of L_{3} and by moving the vane on the slatit. Mesing the vane eloser to the eool will inerease the luning range lout increases the minimum frequency at tifle, and vice versa. If a calibrated 144-Mc. superegenerative receiver or transmitter is a a ailable, it cat be used as a signal soure and the osciltator toming range can be adjusted without koowing the i.f.

The mixer coil and antenta conpling can be eloecked by listening to a weak signal (whose workness is under your control, however), or to ignition noises, and it will bo found that best sensitivity will be obtained with guite tight coupling. The mixer ritruit will not thes sharply and it is only necessary to retrim it when grong from one end of the 144-Me. band to the other.

C. An Acorn-Tube Superregenerative Superheterodyne

Another superheterodyete recoiver of medium solectivity and good sensitivity is shown in Figs. 1520 and 1521 . The circuit appears in Fig. 1522. The 955 mixer tunes from 144 to 148 Mc ., while the
h.f. oscillator, using a sccond 955, lunes from 123 to 127 Mc . The $6 \mathrm{AC} 7 / 1852$ i.f. amplifier and the 6.J5 superregemerative detector op)erate on 21 Mc. Transformer coupling is used berwern the detector and the 6.55 first andio stage. The output tube which feeds the speaker is resistance compled to the prereding stage. The power supply is a simple choke-input affair wih \therefore VRR10. -30 regulator lube conwolling the plate voltage of the h.f. oscillator and mixer stages. R_{9} is the derector supervegonerafion control. and R_{11} is the audio volume eontrol.

Most of the constructional details are apparent from Figs. 1520 and 1521 . The chassis measures $3 \times 7 \times 15$ inches. All components for the v.h.f. eireuits, ineluding the tubes, are mounted underneath the Chassis. In lig. 1521 the ganged tuning condenser. (' ${ }_{1}$ ('2. is mounted near the top. By removing one of the two rotor plates originally in (ath sertion and double-spacing the single stator, a tuning rate is ohtained which spreads the 144-1.48-3te band over a good portion of the diak. If less band spread is desired. the stator plates need not be double spaced.
Immediately above the tuming condenser are the two acorn tubes, the oscillator tube being neater to the pathel. The self-supporting mixer and oseillator coils, L_{2} and L_{3}. are mounted at right, angles to each other and soldered to their respective condenser terminals.

The 6. $1 \mathrm{C} 7 / 1 \mathrm{~s} 52$ i.f. tube is mounted on the chassis. The first i.f. transformer is composed of two windings. $L_{4} L_{5}$, on a $3 / 4$-inch polystyrene form placed underneat h the chassis as close as

Fis, 1520 - Top view of the superhetcrodyne receiver. The i.f. amplifier tube and output transformer are in the rear riwht-hand corner. The detector and audio tubes are in line to the right. Power-supply components and loudspeaker are at the left-hand end of the chassis.
possible to the submountedi.f. tube socket and at right angles to L_{2} and L_{3}. No shiolding of these windings, other than that provided by the chassis, isnecessary.

The second i.i. transformer, $L_{6} L_{77}$, is huilt in the shield can mounted on top of the chassis. The i.f. tuning condenser, C_{15}, is mounted inside the shield and is adjusted by a serewdriver insertedin a hole in the top of the can. The plate lead of the $6 \mathrm{AC7} / 185$? is kept as short as possible and shieded to prevent regencration. All ground connections for the i.f. amplifier are brought io a single point on the metal ring holding the socket to the chassis. Pasticular care should be exereised in grounding the can slielding the second i.f. transformer.

The 6.5 superrerenerative detector is at the left of the second i.f. transformer. The regeneration control, R_{9}, is located underneath the

Fig. 1521 - Bottom view of the acorn-tube superheterolyne receiver. The two acorn tubes are visible above the tuming condenser, near the top of the chassis.
chassis since it does not require attention once it has been adjusted for proper operation. The two audio tubes are in line in front of the detector tube. The audio transformer. Ts, was mounted outside the chassis because it picked up hum in any other position. Wioh a shielded transformer this trouble probably would not occur.
The receiver may be lined up with the aid ous oet. of an all-wave receiver or any other source which will serve as a signal generator. Before aligning the i.f. amplifier and adjusting the superregenerative detector, the 955 oscillator tube should be removed from its socket and a two-foot length of wire at tached to the plate leat of the mixer tube where it counects to the

$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{fl}$. midget variable. (See text.)

$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{15}-3 \quad 30-\mu \mu \mathrm{l}$. . 1 rimmer .
$\mathrm{C}_{5}-\mathbf{5 0}-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{8} \mathrm{C}_{10}$. C17-0.001- ff (d. mica.
$\mathrm{C}_{9}-500-\mu \mathrm{ff}$. midert mica.
$\mathrm{C}_{11}-0.002-\mu \mathrm{fd}$. midert mica.
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}-0.01-\mu \mathrm{fid}$. 400 -volt paper.
$\mathrm{C}_{18}, \mathrm{C}_{20}-25-\mu \mathrm{fl}$. 25 -volt dectrol) tie.
$\mathrm{C}_{19}-0.05 \cdot \mu \mathrm{ft}$. 400 .volt paper.
$\mathrm{C}_{21}-0.002$ - ffl . 400-volt paper.
$\mathrm{C}_{22}, \mathrm{C}_{23}-8-\mu \mathrm{fl}$. 450-vole electrolytic.
$R_{1}-20,000$ ohms, $1 / 2$-watt.
$\mathrm{K}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}-10,000$ ohms, $1 / 2$-walt. $\mathrm{I}_{3}-3$ turns No. $12,1 / 2$-inch di-li_{5}-200 ohms. 12-watt.
N_{6} - $60.90(1)$ ohms, $1 / 2$ watt.
18: - 7000 ohms. 10 -watt.
K_{8} - $2 \overline{0} 0.040$ ohims, J-watt.
$\mathrm{H}_{9}-75,0 \mathrm{OH}$-ohm wire-wound poinntiometer.
R_{10} - 2000 ohms, 1 -wat.
$R_{11}-0.5-\mathrm{meq}$ ghm volune control.
$\mathrm{Ki}_{12}-2$ megohms, 2-watt.
$\mathrm{li}_{13}-50.000$ ohme, 1 -watt.
$\mathrm{R}_{14}-0.5 \mathrm{megohm}, 1 / 2$-watt.
$R_{\text {is }}-500$ ohms, 1 -watt.
$\mathrm{L}_{1}-4$ turns No. 20, $1 / 2$-inch diameter.
$\mathrm{I}_{2}-5$ turns No. 12, $1 / 2$-ineh diameter, 1 inch long. ameter, $\frac{1}{2}$ isech long, tapped 1 turn above ground.
1.4-12 turas Nu. $18,3 / 4$-ineh diameter, close-wound.
L_{5} - Same as I_{4}, spaced $3 / 16$ inch from L_{4} on same form.
$\mathrm{L}_{6}-10$ turns No. 18, 3/4-inch diameter, elnee-wound. Lz - 15 turns No. $18,3,4$-indl diameter. closenoend, spaeed $1 / 2$ indh from Lion same form. Iss. If - 20-henry fi er chohe.
T1 - lower transformer. 700 volts, e.t., 60 ma., mith 5 - and 6.3 volt heater windings.
T_{2} - Interstage audio transformer. T_{3} - P'entode output transformer. RFC-2.5-mh. r.f. clioke.
top of L_{4}. The regeneration control, R_{9}, should be advanced until the 6.55 detector goes into superregeneration. If an all-wave receiver is used as the test-signal source, it should be tuned slowly between 20 and 30 Mc . with its antenna attached. At some point bet ween these limits the signal from the oscillator in the allwave receiver should block the detector. The all-wave recciver should then be tuned to approximately 21 Mc and the detector adjusted to this frequency by listening for a "dead spot" as C_{15} is turned through its range. After this initial adjustment, the afl-wave receiver should be moved some distance away, its antenna disconnected and $C_{1.5}$ readjusted on the weaker signal. After tuning the input circuit of the i.f. amplifier by adjusting C_{7}, R_{9} should be readjusted for maximum hiss reduction when the test signal is tuned in.
Next replace the 955 oscillator tube and remove the antenna from L_{4}. Optimum operation will be obtained with a detector plate voltare of about 20 . If direct frequency-measuring apparatus for putting the oscillator on 123 to 127 Me . is not available, the signal from a very low-power 144-Mc. oscillator or a harmonic from the oseillator in the all-wave receiver may be used as a test signal at the operating frequency. If the signal cannot be heard at some point as C_{2} is tuned, adjust the inductance of L_{3} by squeczing or spreading the turns. The coupling condenser, C_{4}, should be set at about three-quarters of maximum capacity and adjusted for maximum mixer response (minimum hiss) when the weak test, signal is tuned in. C_{2} must be readjusted each time C_{4} is changed. When the right amount of injection has been determined, the turns of L_{3} should be spaced so that a $144-\mathrm{Mc}$. signal is heard with C_{2} at half its maximum capacity. Finally C_{7} and R_{9} should be readjusted for maximum signal response consistent with good quality.

Fig. 1523 - This 144- and $50-\mathrm{Mc}$. converter, complete with self-contained power supply, is mounted in an $8 \times 8 \times 10$-inch cabinet. Plug-in coils give bandspread coverage of the 50 - and 144 -Mc. amateur bands.

As a last adjustment, the mixer should be checked for tracking. Squeeze or spread the turns of L_{2} slightly while tuning in signals at 144 and 148 Mc . alternately, to deternine if more or less capacity is required to peak the signal. By bending one end of the rotor plate of C_{1}, the mixer tuning can be adjusted to track over the entire band.

(I) V.H.F. Converters

For the amateur who already possesses a communioations-type high-frequency receiver or even a reasonably good all-wave brodeast receiver capable of tuning to either 5 or 10 Mc . there is litule or no necessity for building an elatorate separate v.h.f. receiver, particularly for operation on the $\mathbf{5} 0-\mathrm{Mc}$. band. It is not only easier but often more satisfactory to build a v.h.f. converter which, in conjunction with the already existing receiver, can be used as a double superheterodyne. This arrangement is particularly successful if the recoiver has controllable or broad-band selectivity to permit reception of the less-stable signals on the higher frequency bands.

The output transformer for such a converter should be designed to tune to an i.f. of either 5 or 10 Mc . (the higher frequency being preferable for operation on bands above 50 Mc .), with a low-impedance secondary. The output from the converter may be coupled through a low-impedance shiclded line to the input circuit of the communications receiver, in much the same manner as link coupling is used between stages in a transmitter. The r.f. and mixer circuits of the receiver must be tuned to the same frequency as the output transformer - 5 or 10 Mc . - which then becomes the first. i.f. Thereafter the receiver dial remains untouched. all tuning being done with the converter. The volume control, however, will be the gain control on the receiver into which the converter works.

© A High-Performance Converter for 50 and 144 Mc .

The converter shown in Figs. 1523, 1524, 1526 and 1527 uses the 9000 -serics "button" tubes. As may be seen from the diagram in Fig. 152.5, the 9001 r.f. stage is transformercoupled to a 9001 mixer. The h.f. oscillator, using a 9002, is capacity-coupled to the mixer grid through C_{15}. The output circuit (C_{14}, C_{16} and L_{i}) tunes to 10.2 Mc ., although the converter could be made to work at another i.f. with suitable changes in the output circuit and oseillator constants.

As indicated in the diagram, the sereen and plate by-pass condensers are returned to one cathode lead (the one to which the suppressor is connected) while the other lead is grounded through a condenser to serve as the grid return. In the inixer plate circuit a low-drift mica condenser, C_{14}, connected directly from plate
to cathode by-passes the signalfrequency component in the plate circuit. This condenser is: part of the i.f. tuned circuit, and its) capacity must be ineluded in calculating the inductance required at L_{7}.

The mixer and r.f. tunced circuits are made as low-(: as is possible under the cireumstances; the use of plug-in coils unavoidably introduces some stray capacity that would not be present if the eircuits were made to operate on one freguency only. The tuning condensers are dut down to two plates each, and have just about enough eapacity range to cover the 50 -Mc. band with a little to spare. The trimmers are mica unitsoperated at nearly minimum caparity, so that the mica is a negligible factor in the opration of the condenser; for all practical purposes, the dielectric is purely air. The $L /$ (C ratio compares favorably with those commonly attained in acorn receivers.

The oscillator cireuit is of the gridetiekler type, with the tuned tank in the phate circuit. The tuned circuit is made higher-e? than the signal-frequency circuits to improve the stability, and as a consequence somewhat more tuning capacity is needed to cover the frequeney range. The tuning eondenser is a $15-\mu \mu \mathrm{fol}$. unit cut down to three plates and the trimmer is a $25-\mu \mu \mathrm{fd}$. air-dielectric unit. The oscillator and mixer circuits are coupled through a small homemade condenser, (i_{15}, tailored to give suitable injection of oscillator voltage into the mixer grid circuit.

The oscillator is tuned to the low side of the signal frequency on both 50 and 14.4 Me ., to give slightly better oscillator stability. A VR105-30 voltage-regulator in the powar supply adds further to the stability of the oseillator.

The "chassis" on which the converter is assembled is a piece of sheet copper, somewhat less than $1 / 16$ inch thick, $51 / 2$ inches long, and bent as shown in the photographs. The width on top is $13 / 4$ inches, the height $21 / 4$ inches, and the bottom lip, for fastening to the main chassis, is $3 / 4$-inch wide. The tubes are mounted on top near the bent edge, allowing just enough room to insort the socket mounting ring. and are $13 / 4$ inches apart, center to center, with the r.f. tube $13 / 8$ inches in from the rear edge. The coil sockets are mounted on the side, $3 / 4$ inch down from the top, so that connections between the socket prongs and the tuning rondenser terminals can be made very short. The lead from the stator comection on the condenser to the grid prong on the tube socket is only about $1 / 4$-inch long.

In building an assembly of this type it is a

Fig. 1524 - A top wiev of the converter, dhowing arrangement of tubess
 is the i.f. tramsformer tuming control. 'The power transformer is sulbmounted so it does not interfere with adjustmont of the r.f. trimmer.

condenser shafts. First line up the shafts to run as true as possible and then fix the stators where they want to come on the chassis, using shims if nocessary.

For eleretrostatic shidding between the r.f. and mixerstarres twobatla plates are used. One smatl plate, not visible in the photograph, is fastened to the side of the chassis direodly opposite the tube socket and is soldered to the shiedd erbimber in the aboter of the sorket. It affectively shaches the grid wiring from the plate circuit. and is about an inch square. Since it rossess the tube sorket and should be phaed as close to it as possible, cate must be tatern to see that the socket prongs are bent away so they cannot touch it. The other shichd is almost all on the outside and is used chiefly to prevernt chectrostatic coupling betwern the r.f. and mixar trimmer condensers, which are monated on the sides of the tuning romdensers. A transverse shidd pate complotely boxing off the two stages would be bether. hat it is an awkward joh morhanically in view of the neressity for assembling the contensor gang.

No shidding is required betwern the mixer and oscillator; in fact, the stray roupling is too small to give good frequoney eonversion. The trimmer condenser is supported from the top of the chassis by a smatl bracket mate from brass strip, bent to surf a size that the rotor eonnection of the trimmer comes right at the rotor spring on the tuning eondenser, where the two are soldered fogenher. A small strip of eopper is soldereol fotweren the two sets of stator plates, using the soldered mounting on top of the trimmer for its eonneetion. The coupling condenser is a smatl piece of ropper bolted to the trimmer end plate and bent to face the other soldered mounting. The soparation is about a sixternth of an inch.

The vertical shield plates between the coils are $23 / 8 \times 13 / 8$ inches, with bent-over edges to fasten to the side of the chassis. To complete the magnetic shielding the end of the mixer

Fig. 1525 - Circuit diagram of the high-performance plug-in coil $50-$ 1/H-Me. convertir using $90(0)$ tubes. $\mathrm{C}_{1}, \mathrm{C}_{2}-5-\mu \mu \mathrm{fl}$, variable (Vational

LM-15 cut down to 2 plates). C. $\mathrm{C}_{4}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fl}$. mica trimmer.

Cs $-8-\mu \mu \mathrm{fd}$. variable (National UM-15 cut down to 3 plates). ($\mathrm{C}, \mathrm{C}, \mathrm{g}-25-\mu \mu \mathrm{ffl}$. air trimmer (11ammarlund $A P(-25)$.

(13 - $100-\mu \mu \mathrm{ff}$, mirat.
(14 - $\quad 510-\mu \mu \mathrm{ft}$. silvered mica.
(1.5 - (See trxi.)
(177 - 0.010 $2-\mu \mathrm{fd}$. mica.
(in - $0.01-\mu$ fid. 400-volt paper.
(:13, C20-8- 8 fll. 4510 -vote electrolytic. K_{1} - 50,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-12(0)$ olmms, 3_{2} watt.
$\mathrm{R}_{3}-\mathrm{I} 10.0100$ ollms $1 / 2$ watt. K_{4} - bofo ohme, 10 watt.

I. z -I.f - See woil table below

$1.3-18$ turns No. 22 c., close-wound on $5 / 8$-ineh form.
I. - 8 turns similar to D_{7}, at yround end of $l_{1,7}$.

1, - Filter clooke, 8 henrys, 5.) ma. ('lhordarson T-1. $\mathrm{HC}\left(0^{2}\right)$.
'l' - Filament transformer, 6.3 volts, 1.2 amperes.
T_{2} - Power transformer, 280-0-280 volts, 30 ma . ('ihordarson T-601 29).
$\mathrm{s}_{1}, \mathrm{~S}_{2}$ - S.p.s.s.t. toggle switeh.
coil must be boxed in, which is done by a piece of coppor in the shape of a shallow U, held in phate simply by making it fit tightly between the vortical shiedds. This piece must be removable for changing the mixer coil.

The bottom view shows the arrangement of the power supply and the i.f. output circait. The transformer for the latter is wound on a National PRE-3 polystyrene form. It is mounted on a bracket to keep it about equally spaced from the top of the chassis and the bottom of the rathinet in which the ehassis fits. The various a.c. and d.e. supply connertions from the romverter are brought to lug strips, as shown; cathode resistors for the r.f. and miver stages are mounted where they are readily accessible for trying different values. The power-supply parts are arranged to fit in the remaining space. The rubber feet at the rear of the chassis give a little space for circulation of air, since a fair amount of heat is doveloped by the transtormers and regulator tube.

Alignment of the convorter will involve some cut-and-try. It is best to line up the set on 50 Mc. first before tackling the $144-$ Me. band. The first step is to make the oscillator cover the proper range, the objeet being to spread the band over about 75 per cont of the dial scale. With the $10.2-\mathrm{Mr}$. i.f. the oscillator range, to cover 50 to $5+\mathrm{Mc}$, will be from 39.8 to 43.8 Me.: this may be checked on another receiver, if available. If nol, probably it will be neeessary to use actual signals in the hand for the purpose. which also will involve having at least the miser hooknd up. With the circuit specifications given, the oscillator padding condenser should be set at about half-sable. The inductance of L_{5} may be adjusted by closing up or opening out the turn spacing, which can be done within limits without moving the ends of

Fig. $15: 6$ - Inside the converter unit, showing arrangement oi the tuning condensers. The layout is quite compact, with leads hept as short as possible.

The r.f. stage is aligned in the same way as the mixer circuit. During the initial alignment there should be nothing connected to the antenna posts. If oscillation occurs, reduce the size of L_{4} until the stage is stable. Some trace of regemeration may remain (indicated by exaggerated peaking of the r.f. stage) but this will disappear when any sort of antenna load is connected.

The procedure for the 144Mc. coils is similar to that for 50 Mc . It is desirable to adjust the oscillator coil so that he trimmer, C_{6}, does not need resetting when changing bands.
the coil. Once the right spacing is secured, the turns should be cemented in place. An alternative method is to make the coil slighty large and then cut down its inductance with a shorted turn of wire, slid along the coil form,

The ossillator tickier, L_{6}, should be adjusted to give siable oscillation without squegging. Squegging is evidenced by a whole series of signals instead of one and can be cured by reducing the feed-back, either by using a smaller number of tickler turns or by moving the tickler further away from the plate coil. Incidentally, the oscillator should deliver a steady d.c. note when heard on another receiver. For this check to mean anything, the receiver used must introduce no modulation on incoming signals.

Once the oscillator range is set, the mixer should be lined up to match. To do this, place the r.f. tube in its socket but connect a resistor of a few hundred ohms from its grid to ground, instead of using L_{1}. The mixer primary, L_{4}, must be in place, since it will have some effect on the tuning range of $L_{3} r_{2}$. Connect the r.f. output leads to the doublet posts on the communications receiver. set the latter to 10.2 Mc. and adjust C_{16} for maximum hiss, with the oscillator tube out of its socket. Then replace the tube and, with the oscillator set for 50 Mc ., adjust the trimmer, C_{4}, for maximum hiss; reset the oscillator to 5. Mc. and readjust C_{4}. If nore capacity is nected at C_{4}. the inductance of L_{3} is too large; if less, L_{3} is too small. Make an appropriate small change in the coil by the means described above and try again, continuing the process until C_{4} peaks at the same setting at bothends of the band.

When this process is finished, C_{4} should be well in the air-lielectric portion of its range. Should the movable plate be close to the mica, L_{3} is considerably too small. However this would be accompanied by reduced tuning range on C_{2}, and it is doubtful if high padding eapacity would permit full band coverage.

COIL DATA					
Barnl	Coil	No. of Turns	Wire size	Langeh Inchacm	Itemarks
14.4 Mc .	$\begin{aligned} & \mathbf{L}_{1} \\ & \mathbf{L}_{2} \\ & \mathbf{L}_{3} \\ & \mathbf{L}_{4} \\ & \mathbf{L}_{6} \end{aligned}$	$\begin{aligned} & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 17 / 8 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \\ & 18 \\ & 24 \\ & 18 \\ & 24 \end{aligned}$	$\begin{gathered} 15 / 16 \\ 15 / 16 \\ 1 / 8 \end{gathered}$	$\begin{array}{ll} 1 / 8^{\prime \prime} & \text { from } \mathrm{I}_{1} \\ 1 / 8^{\prime \prime} & \text { from } L_{2} \\ 1 / 8^{\prime \prime} & \text { from } \mathrm{I}_{5} 5 \end{array}$
50 Me.	\mathbf{L}_{1} \mathbf{L}_{2} \mathbf{L}_{3} \mathbf{L}_{4} \mathbf{L}_{6}	$\begin{aligned} & 4^{5 / 8} \\ & 27 / 8 \\ & 41 / 2 \\ & 27 / 8 \\ & 35 / 8 \\ & 27 / 8 \end{aligned}$	$\begin{aligned} & 18 \\ & 21 \\ & 18 \\ & 24 \\ & 18 \\ & 24 \end{aligned}$	$\begin{gathered} 3 / 8 \\ 1 / 8 \\ 7 / 16 \\ 1 / 8 \\ 3 / 8 \\ 5 / 32 \end{gathered}$	$\begin{aligned} & 1 / 8^{\prime \prime} \text { from } \mathrm{L}_{1} \\ & 1 / 8^{\prime \prime} \text { from } \mathrm{L}_{3} \\ & 1 / 8^{\prime \prime} \text { from } \mathrm{L}_{3} \end{aligned}$
All coils wound on $3 / 4$-inch diameter forms (Amphenol type 24-514, 5-prong).					

Fig. 1527 - The converter power supply orcupics the right-liand section of the chassis in this bottom view. The i.f, output section is in the upper left-hand corner.

© F.M. I.F. Amplifiers

As was pointed out earlier in this chapter, an f.m. superheterodyne receiver differs from an a.m. receiver mainly in that the pass-band of the intermediate-frequency amplifier must be wider, and in that a limiter and discriminator are used instead of a second detector. The front end of an f.m. receiver usually follows the conventional pattern, and any v.h.f. converter can be used for the purpose if its output frequency is that of the i.f. amplifier.

The f.m. i.f. amplifier employed with the converter may be either the i.f. amplifier of a standard f.m. broadeast receiver or one built especially for the purpose by the amateur himself.

If the i.f. system of an f.m. broadeast receiver is used, the intermediate frequency should first be determined so that the output of the converter can be designed to tune to this frequency and coupled to the grid of the mixer tube of the receiver. The i.f. amplifiers of most f.m. broadcast receivers currently in use are designed to operate on a frequency in the vicinity of 5 Mc . although earlier models may be found with i.f.s as low as 3 Mc . In a few instances higher i.f.s of the order of 8 to 10 Mc . may be encountered. If the output transformer in an existing converter does not tune to the required frequency, it is usually feasible to add or remove enough turns from the coil to enable it to be tuned to the receiver i.f. A change in the h.f. oscillator tuning will also be required.

For operation on the 144-Mc. band or higher, a system of the double superheterodyne type
may be desirable if the f.m. receiver's i.f. is lower than 5 Mc . In that case, a simple 6K8 oscillator-mixer might be used as an intermediate converter operating on 10 or 20 Mc .

C. A 5-Mc. F.M. J.F. System

The i.f. amplifier shown in Figs. 1528, 1529 and 1530 is a broad-band combination affair working on 5 Mc . which can be used for either f.m. or a.m. reception merely by switching the connection to the grid lead of the first audio tube from across the discriminator load (for f.m.) to the limiter grid resistor (for a.m.).

With any converter or combination capable of working into a 5 -Me amplifier, this system can be used for the reception of a.m. and f.m. signals in the 88-Me. band, a.m. and f.m. amateur signals in the $56-\mathrm{Mc}$. band, or f.m. and a.m. signals in the $144-\mathrm{Mc}$. band. When operators of $144-\mathrm{Mc}$. stations using modulated oscillators reduce the modulation percentage and thus bring the frequency deviation down to a reasonable range, the system constitutes an excellent receiver for the reception of modu-lated-oscillator transmissions. When operated with reduced modulation peen the smallest transceiver will sound many times better; moreover, audio power will be saved.

As shown in Fig. 1529, the two stages of high-gain amplification using $6 \mathrm{AC} 7 / 1852$ tubes are unconventional only in that resistors are used across the transformer windings to widen the pass band, and no gain control is included. No means of controlling gain is required, because it is always desirable to work the stages

Fig. 1528 - A top view of the f.m./a.m. amplifier. Along the rear, from left to right, are the input transformer, first 1852 tube, inter: stage transformer, second 1852 tube, and second interstage transformer. In the second row of tubes, from right to left, are the 6S.J7 limiter, 6F6 audio output and VR150-30 voltage regulator. At the right front is the discriminator transformer, with the 6H6 detector below it. To the left of the 6H6 is the 6SF5 first audio. Output terminals, power socket, and 115 -volt line cord are on the lower edge. preceding the limiter at their highest level.

The limiter stage uses a 6SJ7, with provision through a variable resistor, R_{18}, to control the plate and screen voltage to set the limiting action to meet operating conditions. The use of ${ }^{2}$ grid leak and condenser, R_{16} and C_{7}, toget her with the low screen and plate voltages allows the tube to saturate quickly, even at low signal levels, and the tube wipes off any amplitude modulation (including noise) and passes only frequency modulation. For a.m. reception, the audiosystem isswitched by $S w_{1}$ to the grid leak, R_{16}, and the grid and cathode of the tube are used as a diode rectifier to feed the audio system. The jack, J, in series with the grid leak, is used for plugging in a low-range milliammeter so that the limiter current can be read. The limitercurrent indication is invaluable in aligning the amplifier, and the meter can be used as a tuning meter during operation.
The discriminator circuit uses a $6 \mathrm{H6}$ double diode in the conventional circuit. Audio from the discriminator (or from the limiter stage, in a.m.

Fig. 1599 - Wiring diagram of the broal-hand S. Me. f.m/a.m i.f. amplifire.

0,01- μ fll. (o(N)-volt pabur.
$\mathrm{C}_{7}, \mathrm{C}_{10}, \mathrm{C}_{11}-100-\mu \mu \mathrm{fd}$, midge•t mic:al. C $9-5(1-\mu \mu \mathrm{fd}$, midget mica.
C. 12 - $0.001-\mu$ fl. midpet mica.
C_{14}, ($\mathrm{C}_{17}-1(1-\mu \mathrm{ff}$. 25-volt elretrolytic.
Ct6, C_{18}, (ii9-16- ff , 450-volt electrolytic.
$\mathrm{R}_{1}, \mathrm{R}_{4}$ - $5 \mathrm{5}, 000$ ohme, $1 / 2$-wat .
$\mathrm{H}_{2}-200$ ohms, $1 / 2$-watt.
$\mathrm{H}_{3}, \mathrm{R}_{6}-50,000$ ohms, $1 / 2$-watt.
$\mathrm{H}_{5}-300$ ohms, $1 / 2$-watt.
$\mathrm{H}_{7}-40,000$ ohme, $1 / 2-\mathrm{watt}$.
$\mathrm{K}_{8}, \mathrm{~K}_{11}, \mathrm{~K}_{22}-75,000$ olmms, $1 / 2-$ watt.
wall.
$R_{12}, R_{14}-60.000$ ohme, ${ }^{2}$-watt.
$\mathrm{K}_{13}, \mathrm{~K}_{15}$ - (1 (1) ohms, ${ }^{1} 2$-watt.
$\mathrm{K}_{17}-25,000$ ohms, 10-watt wirewownd.
$R_{1 s}-3000$-rhm wire-wound potemtiometer.
$\mathrm{R}_{19}-5000$ ohms, 10 -watt wirewound.
Ren - 500 chms, l-watt.

Rel 5000 ohms, 1 iz-watt.
Rea - O. in-megehm velume contral,

' $12, \Gamma_{3}-5-$ Mr. f.m. interstage i.f. transformer (Millen 6:5:303).
$\mathrm{T}_{4}-5-11 \mathrm{c}$. f.m. discriminator transformer (Millen 6.50.4).
$\mathrm{T}_{5}-350.0-350$-wolt 90-ma. power transformer with 6.3- and 5 -volt filament windinqs.
f.1-9-henry 85 -ma. filter choke ('lhordarson 'l'13(:39).
I. $2-10$-henry 65-ma, filter rhoke (Thordarson T-1;3(:28).
Swi-S.p.d.t. switch (Yaxhey 32112-j).
Sw_{2} - S.p.s.t. togqle switeh. J - Closed-cireuit jack.
reception) is fed through the wolume sontrol, R_{25}, into a two-stage audio amplifier using a GSIFs and GFif output, pentode. The resistor, R_{11}, and eondenser, ('in, in the audio input circuit, serve as a combined r.f. filter and compensating network to atformate the higher audio frequentios. This is neressary when lis-
 use "prodistortion" (aceented higher frequencies). A $0.01-\mu \mathrm{fd}$. condenser arruss the output terminals will give further high frequency compensation, if nerssary.

The amplifier is built on a $7 \times 9 \times 2$-inch chassis. Iifference to Figs. 152s and 15:30 will show the location of the parts on the chassis. After atl holes have been drilled the sockets and the transformer should be fastened in place on the chassis, leaving off the variable resistors, switches, binding posts, jack and chokes mutil after most of the wiring has been donc.

If low-impedanes input coopling is to be used, as with a converter removed somu distance from the amplifier, the first, i.f. transformer must be moslified. A link winding is made ly first winding a short, half-inch wide strip of paper over the cardboard tubing used as a former in the i.f. transformer. Eleven turns of No. 30 d.s.e. wire are then closewound flat over the center of the paper ring. Holding the wire in phace with a finger, paint the coil with Dueo coment to secure the turns in place. When the cement has dried, slip the coil
off the form. The plate and "B+" wires may be removed from the trimmer condenser in the transformer, and the wires from the plate coil to the trimmer condenser disconnected. By unwinding and cutting of a turn or two of paper from the inside of the paper ring, the 11 -turn eoil can be slipped casily over the grid coil and fastemed in position so that it covers the ground fond of the grid coil. A piece of paper between the griel wil and the ground lead will avoid any posibitility of this lead shorting against the turns; of the eoil when the paper ring is slipped in pater. The two ends of the link are brought out at the bentom of the shiele can, later to be wired to the input terminals of the amplifier unit.

It is posisible to use the transformer by merely ruming the plate lead to the mixer tule in the ronverter, but this makes it less convenient to use the converter with other i.f. amplifiers since it requires soldering and unsoldering wires each time a change is made. A long lead to the miser tube also would inerease the likelihood of stray pick-up of signals near 5 Mr.

The sereen by-pass condensers, C_{1}^{\prime}, C_{5} and C_{δ}, are placed across the sockets to serve as partial shiclds between the plate and grid terminals of the single-ended tubes. Tir-points are used wherever needed for momenting the resistors and condensers. The $6 \mathrm{AC} 7 / 1852$, 6S.J7 and $6 I I 6$ stages are wired first, so that all leads carrying r.f. can be made as short and direct as possible. The remaining wiring is filled in wherever convenient. The leads from the audio

Fig. 530 - A 5.M. . fin./a.m. amplifier complete with power supply. Controls on the Tront, from left to right, are the andio volume control." $3^{"+}+$ ewiteh, and the limiter contrul. The f.m./a.m, switeh is on the end. 'the juck beside it is for the limiter-curent meter.

The alignment procedure can be carried out with a loudspeaker conneeted to the GFG through an output transformer. If no speaker is used at this point, however, the output terminals should be shorted; otherwise, the 6 F'6 may be injured. The use of a meter for alignment is a practical necessity, and no attempt should be made to line up the amplifier ly ear except possibly for only a very rough initial alignment.
lf there is an f.m. broadcast station within range, adjustment of the discriminator transformer, T_{4}, is a simple matter. Switch the amplifier to a. m., plug in the proper coils in the converter, and tune in the f.m. station. Then switeh the amplifier to f.m. and tune the trimmers on T_{4} until the signal reappears. This is best done with the audio gain almost open and the limiter control at about half-seale. Use an insulated aligmment tool, to reduce body eapacity effects, and adjust the trimmers until the b.c. signal is clearest and loudest. It will be found that the platecircuit trimmer will affect the volume
volume control, $R_{\text {es }}$ a are shixlded by a length of flexible eopmer braid. Wheraver eonvenient, spare terminals on sockets are used to support fixed resistors condensers, ete.

Wirh a 5-Mc. sigual soure, preforahly a signal generator, aligument of the amplifior is an casy matter. If no such source is avatibule a simple e.c.0. can le built using an ordinary receiving pertocole such as a 6k7, with the grid cireuit on 2.5 Mc . and the plate on 5 Mc . Or, if a converter is available, tune the rgular receiver to is Me., rouple in the converter and tune in a strong, steady signal. The converter out pust can then be transferred to the $\mathbf{l} . \mathrm{m} . / \mathrm{a} . \mathrm{m}$. i.f. and the trinsformers aligned. This is done by plugring a $0-1$ ma. moser into the jack, J, and funing the trimmers of the transformers for maximum current. It may te necessary to hunt around a bit before the meter shows any indication, but once it starts to read the rest is easy. With a variable-frequency signal source the signal is swung back and forth until some indication is obtained, and then the amplifier alignment is eompleted. The cract frequency of alignment is mimportant provided every stage can be tuned through resonanee, which means that cach trimmer can be adjusted through a maximum reading of the funing meter. With the resistors aerose the circuite, it will be found that the tramsformers tune somewhat broader than normal: the sorrect setting is in the midpoint of the broad region. Once the inf. transformers, T_{1}, T_{2} and T_{3}, are aligned, it should be possible to switch $S w_{1}$ to a. m , reception and hear signals, or at least noise, provided the converter is on 50 or 88 Mc . There isn ${ }^{\circ}$ much noise to be hreard on 144 Mc. execpt automobile ignition.
most, while the diode trimmer will have a greater effect on the quality. During this adjustment the receiver should be kept tuned exactly to the signal, as indieated by maximum limiter eurrent. An audio output meter may be used to indicate maximum audio output, if available, but it is not essential.

In the event that there is no local f.m. broadcasting station, the amplifier can be aligned on a local amateur f.m. station if it is one with good stability and not too much deviation. A $144-$ Mc. modulated oseillator is not recommended unless it is running well under rating, because usually it is modulated too heavily and also doesn't stay on one frequency long enough to allow the amplifier to be aligned properly.

If a stable amplitude-modulated signal, modulated by a single tone, is avoidable either at i.f. or single frequency, the discriminator can be aligned fairly well by first detuning the secondary of T_{4} and, with the signal peak through the amplifier as indicated by maximum limiter current, then peaking the primary of T_{4} for maximum audio output. The secondary of T_{4} is then brought into tune, and resonance will be indicated by a sharp null in the audio output. If the test signal is then detuned just enough to bring back the signal a bit, the primary of T_{4} can be trimmed for maximum output. Then setting the test oscillator back to the frequency that gives maximum limiter current, the secondary may require slight trimming to give a null. At this second trimming, the diseriminator will be aligned.

The final adjustment of the discriminator tuning can be checked by tuning in an a.m.

THE RADIO AMATEUR'S HANDBOOK

signal. If the discriminator is properly tuned. the audio output (signal and noise) should practically disappear at the point where the signal. as indicated by limiter curvent, is a maximum. This is an indication that the discriminator characteristic crosses the axis at the mid-resonance point of the amplifior. Tuning the signal (by funing the converter), it should he possible to understand the audio output at points either side of this minimum-volume setting. 'These points should appear symmelrieally on either side of the minimum-wolame point and should have about the same volume. Slight readjust ment of the diserimanator-t ransformer setting will aceomplish this result.

In using the amplifier it may he observed that a.m. signalsappear to be louder than these from f.m. stations, comparing atudio volumecontrol settings on stations showing equal limiter current. This does not indicate that the amplifier is not working properly or that more audio is obtamed on a.m. than from an f.m. signal of similar strength. It is, rather, an indication that the discriminator dhamatoristic should have a steeper slope and that the peaks are too far apart.

The performance of the anplifier on a.m. reception could be improved sonewhat by applying a. $\begin{gathered}\text {.c. to the two } 6 \mathrm{AC} / 1852 \text { tubes, tating }\end{gathered}$ the a.v.e. voltage from the limiter grid leak through the usual filter cirenit. However, this is an unneressary refinement if the amplifier is intended to be used primarily on f.m. since the amplifier should always be run "wide open" for l.m. reception.

The use of an f.m. i.f. amplifier of this type, in comjunction with a suitable converter, is highly recommended for reception of modu-lathed-oscillator signals such as are eommon on the 14-1-Mr. and higher-frequency hands. If the recerved station holds down its modnation to the point where the signal just fills the pass Band of the i.f. amplitior. hest quality and signal-to-moise ratio will be obtained. Inder these eonditions weaker simnals can be received more intelligibly than with the simpler thpes of receiving systems, and one's receiving range can be extended considerably. On the jo- and 2sMc. hands, the diserimination apatins automobile ignition noise obtained with f.m. reception is a definte alvathtage if one is troubled by ignition interference.

V.H.F. Transmitters

The very-high frequency region is generally considered to have its lower firquency limit in the vicinity of the $28-\mathrm{Mc}$. band, and it is also in about this region that it becomes desirable to adopt more compate methods of construction and to select tubes with particular care. As the freguency becomes higher the length of comecting leads becomes more important, because a length of a fow inches may reprewent a considerable fration of the operating wavelength. Tube interelectronde capacities, as well as the usual stray capacitios, must be given particular attention. limbuly high shunt caparity in the circuit not only mas reduce the efficiency but also will ultimately set the upper limit of frequency at which the transmitter can be made to work. For best results at very-high frequencics, tubes designed to operate well in that region must be used. All of these considerations indicate the advisability of building separate r.f. equipment for transmission at very-high frequenciss, rather than attempting to addapt for v.h.f. use a transmitter primarily designed for operation at ordinatry frequencies.

Transmitter stability requirements for operation in the $50-\mathrm{Mc}$. band are the same as for the lower-frequency bands. Above 144 Mc . there are no restrictions as to frequeners statbility except that the whole of the emission must be confined within the band limits. Modulated-oscillator type transmitters therefore can be used abowe 144 Mc. and, in fact. constitute a large proportion of the amateur transmitters working in the 144-Mc. and highor-frequeney hands. However, up to the $50-\mathrm{Me}$. band methods similar to those employed in the transmitters deseribed in Chapter Thirtern are gemerally used. By proper choiee of tubes and circuiss, crystal control is applicable to 1.44 Mc . as well; this is also true of the band at 220 Mc ., but the limited use that has been made of this and higher-freguency bands has deferred the necessity for a high degree of transmitter stability - a necessity that always arises once the exploratory period is over and a band begins to have substantial oceupancy.

In the v.h.f. and u.h.f. regions, frequency modulation as well as amplitude modulation is permitted by the amateur regulations. Most of the $50-\mathrm{Mc}$. transmitters shown in this chapter are crystal controlled, for use with amplitude modulation. However, they can be adapted for f.m. by replacing the crystal with excitation from a frequency-modulated oscillator similar to that described later in the chapter.

Abstract

The transmithers shown in llis chaptor are designad ler the new v.h.f. and th.h.f. frefurmey alloseations. As of the date of gering la pross amalemrs are aperaling termperarily on the prewar $\mathbf{z 6}$ - 10 60-Mr. band in lian al the new assignment fromm 50 to $\boldsymbol{i} 1 \mathrm{M} \cdot$.. pending a shift of oller servires lumew frequencies. It is experted that the new $\overline{0} 0$-Mr. band will be opencd for amatiour use early in 19.16.

As of this writing. a faw of the bands Jh-fore pulling atransillitler on the air the status enf the band you want to use. lip-lo-dale information can luc secured from UN'I or by dropping a posteard to A.R.R.L.. Westliarloral 7, Conn.

Above 300 Mc. it is no longer possible to use standard typers of tramsmitting tubes with any degree of sucers. Instead, special tubes designed for the ultra-high frequencies must be usid. Such tubes havo extromely elose spacing betwon eloments to reduce transit-time efforts, and are constructed with leals having virtually no inductane so that the circuit is not, as a mather of meressity, entirely within the tube itself. 'lhe problem of making suitable tubes has been solved in two wass: by adopting the "acorn" type of construction, using miniature tube elemonts with leads brought out through the envelope in as short and direct a manner as possible, and by dexigning tubes of the "lighthouse" variety in which larger elements have disc-tepe leads of extremely low imluctance. Acorn tubes, because of their small size, are limitod to a few watts in powerhandling capacity. The lighthouse or dise-seal types are available in sizes capable of handling up to 100 watts or so with forced-air cooling. Acorn tubes catn be made to oscillate at frequoncies up to the vicinity of 1000 megacyeles, while disc-seal tubes will function to about twice that frequence:

Above about 2000 Mc . the most useful present types of tubes are the klystron and the mannetron. These are resemtially one-band deviers, the frequenc y-determining circuits being an integral part of the tube. Tuning over a small frequency range - such as an amateur band - is possible, but the tubes are by no means independent of frequoney in the sense that tubes of more conventional design are independent. The newly-opened amateur bands in the ultrahigh and superhigh regions, as yet practically

ドi』， 1601户ront view of： 10 ． Mr．a．m．／f．m． trammitter．＇Th， r．f．section of unit werupire the lefti－hand por－ tion of the ehas－ －is．The VR－1．50， いぐ 47 reactance modulatur，and mierophune Iranslormer are at theright．Vote neoutraligitis ra－ parily wires at the left of the 815.
unexplored by amatemes，offer possibilitions of great interest to the ：ryprimentally inelit ced．

（1）A 40－watt A．M．－F．M． 50 －Mc．Transmitter

The transmittor shomon in Firs．1601－160：3， inclasive，has an ontput of approximatmy fo Watts in the 50－Me．hand ambl is so dexigated that either frequenery or amplitude modulation may be used．Aside from power supplis．，to auxihary apparatus is nooded for f．m．tosns－ mission，siace the primary frequency comtrol is a variable－frequency oreiltator and a reace tume modulator is included in the unit．For anopli－ tude modulation，a mosit：lator having an abaio power output of about 30 watds is required．

As an alternative to checterecuupled s．f．o． contrel，provision also is mate for revstal cem－ trol，using a Tri－tet oseilhator．As shomet in the
 lator and ces．oscillator have a common plate： riveuif，the frequency hring dontaled in this circuif in both rases．The oswillatoms are fol－ lowed by a dif doubler，fond this in turn drives the final amplifier，an 815.

The tund circuits are desisned to cover at litfle more than the range required for the 50－Ma．Band so that flae transmitter as shewn can he usid to drive a power frequency multi－ plier trialing into the 154 －Mc．band．The vii．o． grid cireuit tunes from 12 to $133^{-5} \mathrm{Ma}^{2}$ ，the range ©rom 12．5 to 13.5 Me．being used for the $50-\mathrm{Mc}$ ．band，and the range feom 12 to 12.35 Me．beong available for the 144－Mc．band． When erystal control is ins be ked，frequencies within the appropriate ranges should be se－ leeted，since the oscilatise portion of the Tritet rircuit works over the same frequency range as the grid circuit of the v．f．e．The common oseillatar plate rirenit tunes to the serond harmosic of the range，or from 24 to 27 He． while the 6 V g doubler output circuit is tunable from 48 to it Me．Wither oscillator may be selected by means of a switeh，$\stackrel{i}{2}_{2}$ ，which closes

The callode cirentit of the desired ospillatore tuhe．Ton prevent any posibility of acecidental fropuency modulation when amplitmale modu－ lation is bring usad．at threr－position switch is comployed，giving a front－pancl chaice of cither ervatal or v．f．o．contmol for a．m．or c．w．，or vifor，control wil．t f．m．

Stability umder chatres in supply voltate is atlatiod by supplying the v．f．o．serem from at
 W：en the plate voltare is varied from lato to （ion）wolts．The cathode current to the ascil－ lator，masured in J_{2} ，remains practiothy con－ st tht when the plate voltathe is varied over this Whe range，and the totall frequeney shift is only a few humdred eycles．With variations in phate voltare which would result from even the most sever line－voltarge fluctuations，the fre－ forener shift in the oscillator is only a few rycles．

Other sontres of v．f．o．instability are ex－ ressur lube and component heating，variations in rirenit capareity due to non－rigid mechanioal design．：and interaction because of improper plarement of components．In this design，oseil－ latore input is held to less than half the rated plate dissipation of the tube，kerping drift due to tube heating tor minimum．All circuit com－ poments are monnted below the chassis，away from the he：at given of by the motal tubes，and in such position th to prevent interaction so fat：as possible without extemsive shidding．A silvered－mitorixerd condenser is used in parallel will the gride coil，and rigid components aro used throughout．The result of these precatu－ （ions is a v．f．o．whone stability compares favor－ ably with that of the associated crystal oscil－ lator．

The transmitter is built on a $10 \times 17 \times 3-$ inch chassis，with all components exerpt tubes， crestal and the final－stage output circuit mounted below the deck．Viewing the unit from the top front，the microphone transformer and 6 SA 7 reactance modulator are at the right
front, with the VR-150 at the rear, adjacent to the antemna coupling assembly. The crystal, crystal oscillator, and v.f.o. are grouped near the middle of the chassis, with the doubler and final tubes at the left.

The front panel is a staudard $83 / 4 \times 19$-inch crackle-finished masomite unit, The v.f.o. tuning dial is contrally placed, with the ossillator and doubler tuning condensers at the left, and the a.m./f.m. switch and deviation control at the right. The final plate tuming knob is above the v.f.o. dial. at the left, and the swinging-link adjustment is at the right. Jacks, from left tot right, are J_{4}, J_{3}, J_{2} and J_{1}.
R.f. Wiring is of No. 16 and 18 tinned wire, with other circuits being wired with No. 18 "push-bark." R.f. leads should be made as short and direct as possible, though the balance of the wiring may be arranged for neatness.
The t wo wires protruding through the chas-
sis close to the 815 are neutralizing "condensers," labeled $C n_{1}$ and $C^{\prime} n_{2}$ on the schematic diagram. They consist of two pieces of No. 14 enameled wire, soldered to the grid prongs of the 81.5 socket, crossed under the chassis, and brought through the chassis and held in position by two small isolantite feed-through bushings (Millen 32150).

Adjust ment is simple and straightforward. The tuning range of the v.f.e. should be checked first. This may be done with only the two encillator tubes in place, and the a.m./f.m. switch on the v.f.o. position. The uscillator phate condenser should be tuned for maximum r.f. indication in a neon bulb adjarent to L_{2}, and the freguency cherked in a receiver having a fairly accurate calibration for the region around 12, 24, or 48 Mc .

The size of the v.f.o. grid coil, L_{4}, is extremely critical, and if some pruning of this

C. $-0.01-\mu \mathrm{fr}$. 400 -volt paper tubular.

 in parallel.
C. (in - $500-\mu \mu \mathrm{fid}$, mica.
 mía.
$\mathrm{C}_{6}-100-\mu \mu \mathrm{fl}$, midget variable serewdriver adjastmont

$\mathrm{C}_{s}-50-\mu \mu \mathrm{fil}$. varialile. "traight-linc-frequency" is re (l|ammarlamd M(:-iv)- M).
 rap). Soe text.
(in - lon)- μ fid. mica.

 M(:)-35-NX

[h1 - O.i-megohm wolme control, swith type.
12- 7 - 50 -nhm. $\frac{1}{2}$ watt.

$1_{4}, R_{6}-0.25-$ megohm, $\frac{1}{2}$-watt.
$1 \mathrm{~h}_{5}-5000$-thm, $1 / 2$-watt.
$\mathrm{k}_{7}, \mathrm{~K}_{9}-\mathbf{0} .1$-megohm, $1 / 2$-watt.
1hs - 5000 -ohm, 5-watt.
$R_{10}-250-0 h m, 1-w a t t$.
$\mathrm{K}_{11}-15,000$-ohm, l-watt.

 (R-101).
 1K-100-1).
. I_{1} - (1)pen-circuit jach.
I. J. J. J - Cloned-circuit jack.
$\mathrm{S}_{1}, \mathrm{~A}_{2}$, Sis - 3-poition, 3-contart rotary switeli (Mallors).
S.-Switch on deviation rontrol. F_{1}.
' 1 ' - Simsle-futbon nibrophone transformer (Thordar--0n T-83 \78).
F_{2} - (0,3 - volt, 4-amp. filament trans former.
 Irnght on Vational IllV-2 form.
 diameter, air-wommd.
I/3-1 turns. No. 14 c.. ${ }^{1}$ 2-inch diameter, spaced one diameter. atr-womind.
 Adjust spacing for best transfer of energy. See tevt.
I.5-3 turns cach serotion. Vo. 12, timed, 1'sfinch diameter. -paced ane diameter.
$1,6-2$ turns No. Ife. l-inch diameter, swinging link. Sce photos and tevt.
J.:- 3.5 tmrna, No. 21 d.e.c.. plose-wound on $9 / 16$-inch diameter form (National P(2E-3).
coil is to be avoided it would be advisable to make the $50-\mu \mu \mathrm{fd}$. section of C_{10} an adjustable padder condenser, such as a Hammarlund APC-50, which can then be adjusted until 12 Mc. appears at ahout 90 on the v.f.o. vernier dial. The high-frequency limit, 13.5 Mc., should then come at approximately 10 , hiving a spread of about 18 divisions for the $141-\mathrm{Mc}$. band and 54 divisions for the $50-\mathrm{Mc}$. band. Without such a variable condenser, the number of turns on L_{1} must be adjusted by cut-and-try until the proper tuning range issecured. In either case, the final adjustment of band coverage should be made with the fisA7 reactance modulator in its socket so that its plate-to-ground capacity will be across the tuned circuit.

Operation of the crystal oscillator may next be checked. With a 100-ma. meter connected through J_{2}, and the a.m./f.m. switch on the "crystal" position, aljust the crystal-oscillator cathode tuning, C_{f}, until the current, dipss sharply, indicating oscillation. This control should be set at the point which gives the lowest cathode current consistent with easy (rystal starting. Cathode current should be similar for both oscillators - about 20 ma.

The doubler stage maty next be tested by installing the 6 V 6 and 815 tubes, leaving the plate power off the 815 . A neter having a $10-$ ma. range should be used to measure the grid current in the 815 , at J_{3}. The current should come up to about 6 ma. when the spacing between L_{3} and L_{4} is optimum, though this is more than is aetually needed for satisfactory operation of the 815 .

Next the position of the neutralizing wires can be adjusted. The 81.5 plate tuning condenser, C_{20}, should be rotated slowly, meanwhile watching the grid current fo: any varia-

Fig. 1603 - Under chassis view of the 50-Mc. a.m./f.m. transmitter. At the lower center are the v.f.o. grid coil and associated components. Over these are the crystal and eathode circuit for the 6AG7 crystal oscillator. At the upper right are the induc-tively-coupled doubler plate coil and final grid coil. The coil and condenser at the lower right comprise the plate circuit which is common to both oscillators. The doubler. plate tuning condenser is at the far right.
tion. The position of the neutralizing wires should be adjusted until there is no sign of fluctuation in grid current as the tuning condenser is rotated. A length of wire extending about one inch above the metal ring on the 815 , at a position about $1 / 8$ inch from the glass envelope, should be sufficient. If this should be inadequate, small tabs of copper or brass can be soldered to the ends of the wires to make additional capacity to the tube plates. The neutralizing capacity is necessary in order to ensure completely stable operation.

After neutralization, power may be applied to the 815 plates, while noting the cathorle current as indicated on a $200-\mathrm{ma}$. meter plugged into J_{4}. The dip ai, resonance should bring the current to about 50 na. with no load. A $25-$ watt lamp conneded across the swinging link terminals should then give a full-brilliancy indication when the link is adjusted for maximum coupling. This is with 500 volts applied, which should be used only after it has been determined that everything is functioning properly. If trouble is encountered, further tests should be made with reduced voltage to avoid damaging the tube.

When the transmitter is put on the air, the full 500 volts at 150 ma . may be used for f.m. or c.w. operation. For plate modulation, the voltibge should be reduced to about 400 for maximum tube life, even though the tube plates may show no color at the higher voltage.

For frequency modulation, the 6SA7 reactance modulator provides the simplest possible means of obtaining the desired swing in frequency. It may be operated with a singlebutton mierophone plugged into J_{1}, or the morlulator may be driven from a speech amplifier and erystal or dynamic microphonc. The output of the speech amplifier should then be connected across potentiometer R_{1}, and T_{1} may be omitted. In rither case, R_{1} serves as a deviation control, the swing being adjusted to suit the receiver at the station being worked.

In addition to the filament transformer, T_{2}, indicated in the circuit diagram, the transmitter requires two plate power supplies. One, for the 815 , should have an output of 400 to 500 volts at 175 ma .; the other, for the remaining tubes, should deliver 300 volts at approximatcly 100 milliamperes.

Fig. 1604-Front view of the 300- watt itriver-amplifier for 50 and 114 Me. The two larke diala are the plate thang eontrols. The smatl dial at the left adjusts the position of the output eoupling link, the certer dial is the srid tuning control for the final, and the third small dial is the tripler arid tuning control. Aeross the lower eenter are the filament switches and grid eurreut meter jaek.
the far right. All components are mounted as close together as possible without being so crowded that tubes cannot be removed from the sockets.

When the amplifier is to be used on 50 Mc . the switch S_{1} is left open so that the filament of the tripler will not light when S_{2} is elosed. The link from the exciter is plugged into terminals C - C in the jack bar, which is $\frac{1}{}$ Millen Type 40205 coil socket. The output of the exciter is thus connected to the link terminals on the final gridcoil socket, L_{3}, which is a National Type X13-16. The pluy-in link is left out of its socket, $B-B$, which is a Millen Type 33002 crystal socket mounted on a small cone stand-off.

For operation on 144 Mc., switch S_{1} is closed, lighting the filament of the tripler tube. The exciter link is inserted at terminals $A-A$ on the link jack bar, coupling the exciter to the tripler grid coil, L_{1}. The plug-in link which transfers the energy from L_{2} to L_{3} is inserted in its socket, and $144-\mathrm{Mc}$. coils are inserted in the sockets for L_{3} and L_{4}.
In order to eliminate the stray capacity and inductance usually encountered in any plug-in base, the $144-\mathrm{Mc}$. coils for L_{3} and L_{4} are made to plug directly into their respective sockets. The grid coil, being of No. 12 wire, fits the socket contacts; the plate coil is fitted with pias removed from an old tube base or plug-in coil form. For the same reason, the plug-in link terminals on the L_{3} coil socket are not used for 144 Mc .
The final-stage plate tank condenser is made from a Cardwell dual neutralizing condenser,

© 300-watt Driver-Amplifier for 50 and 144 Mc .

A companion high-power driver-amplifier for the $50-\mathrm{Mc}$. transmitter deseribed in the preceding section is shown in Figs. 1604 to 1607, inclusive. The amplifier uses a pair of 35 TG tubes in pusi-pull while the driver, a frequeney tripler used for 144 Mc . only, is a single 35 TG . If operation on 144 Mc . is not desired the driver may be omitted, in which case everything to the left of terminals $B-B$ in the circuit diagram, Fig. 1606, may be ignored.
Looking at the front-panel view, the two large dials are the phate tuning controls for both stages. The small dial at the left controls the swinging link, the center dial is the gried tuning control for the final stage, and the one at the far right is the tripler grid tuning control. All parts are mounted well back from the panel, and lucite rods are used for extension shafts.
The rear view shows the general placement of parts. At the left, attached to the back of the $7 \times 17 \times 3$ inch chassis, is the jack bar containing terminals $A-A$ and $C-C$, into which the link from the exciter is plugged to furnish drive for either the tripler or final. The tripler grid coil, L_{1}, is just above the link socket, with the plate condenser, C_{5}, and coil, L_{2}, for this stage be ween the tube and the front panel. The link between L_{3} and L_{2} is a plug-in alfair. and its socket (which is a mechanical mounting only) is between the tripler plate and final grid condensers. Between the grid tuning condenser and the final tubes are the ganged neutralizing condensers. These are triple-spaced nidget condensers mounted back to back with coupled shafts. The final tank condenser is mounted as closely as possible to the two tubes, at the right. The jack bar for the final plate coil and the homemade swinging link assembly are at

Fig. 1605 - Rear view of the v.h.f. amplifier unit with 144 -Me. enils in place. All components are grouped for minimum lead length. Lucite rods are used for extension shafts on all tuning controls. Note the pluy-in link between the tripler plate coil and the final grid circuit. Flexible links, for the final grid and output coupling eircuits, are low-loss 300 -ohm line (Amphenol 21-056).

$(: 2, C, C, C, C,-1) .(161-\mu f 1)$ mic:a.

Cis - $15-\mu \mu$ fil. per sertion. solit stator (Itammarlund IIF-15-X).
$\mathrm{C}_{10}, \mathrm{C}_{11}$ - Nentralizing condensers (Canducl) l'rimaire, 2-platco. triple spacing).
C_{12} - 4- $\mu \mathrm{ffil}$. wr sertion, split stator (Cardwell FD 1(II). Sere text.
K_{1} - 5 (14) 10 ohtus, 10 -watt.
12_{2} - 3000 ohme, 10 -watt.
R3-2.50 olma*, |11-watt.
RFG, RFC: I.h.f. r.f. whoke (0 himite \%-1).
 womend on ${ }^{3}$ n-inch diatmeter.
RHC_{3} - V.h.f. r.f. cluoke (Ohmite \%-(1).
$\mathrm{M}_{1}-0-1.50 \mathrm{ma}$.
M_{2} - 0 - $-\mathbf{0 1}$ ma.
M_{3} - 0 - $3(\mathrm{KO}$ ma.
J- Chord cirruit jarh.

T'2-- Vilament transformer, 5 volts, 8 amperes.
$\mathrm{Si}_{1} \mathrm{~S}_{2}$-S.pos.t. toggle switch.
hi-6 turns. Vo. $18,1 \frac{1}{4}$-imeh dianeter, $13 / 16$ inches kong, 3-turn end link (antional AR-16, 10. : with two turn remowed from one and).
 limh, la. Lan turns No. it e., eath rat. loup-in devie is for thechanical momenting only.
$\mathrm{I} 3-50-60 \mathrm{Mc}$. - Sime as l, t, but with one turn re-

which origintally hat ath insulated flexihes compling betwern the two rotor sertions. 'This was removed and a section of b_{f}-ind hrass rod, tipped for exse thread, was insortod in its place. A piere of $1 / \mathrm{s}$-inch thick lucite was filterd to the bothom of the controser assemble atad surves as a momoting base. The result is a splitshator combenser which hate sufficiontly wide sparing to climinate the danger of flathover, sat is cextromely empate
'There is really mo urocesity for a phar-in coil at L_{1}, intambeh as it is nover changed. hat it, was emploved to permit the use of as simblad commercial mit. Pwo farls wore removed from one cond, making it essentially an emblinked coil. The sume INpe of eoil (Nitumat Ald-16, 10-C) assombly is und for the jo-Mc. coil for $L_{\text {a }}$. One turn was removed from cath
and in this caser, a conter-linked assembly being morled at this proint.

Nelers should be provided for reading the triplarpate. final grid, and final plate currents. as indiated in the cireuit diagram, although these moters are not included in the unit itwolf. The jack on the from pratel is for atmerer for measuring the tripher grid curmon, and is mormally used only during initial tuning operations.

The final stage shoulal be tumed upon 50 Mc. first. The exemer link should be plugged into traminals Core on the jatek bar, and the so- Ale. coil: insertad at L_{3} and L_{4}. With power on the exater hat mo plate voltage on the amplifier, rotate (': for maximum grid curront. Sitt the hombalizing eombensors at maximum capacity atad rotate Cis. If the final-stage pate gireuit is capabla of being tumed tarmonathe there will be a pronomened dipin the grid eurront, The nedralizing condensers. fin and ('31, should then be adjustad at smal! amount at at time until the dip in grial current disat)pears. Power maty then he appliod ion the plate rirenit. If everevthing is in orter. hae dip in phate current at resonamee should hring the phate current down to les that so mat The amplifier may be loaded up to noarly 300 mat.. at aplate voltage of 1.000 an input 125 watts or more - before the plates of the $35{ }^{\circ}$ (is show more than their normal bright orange color.

Next, tripler operation should be
moved from earh and of the original umit. It Me. - 2 thrn*. Vo. 12 tinned, 3_{4}-inch diametor, spaced ${ }^{2}$-2indi. Voplug-in base is used -coillead-mag directly intarake.
 timed. 2 -inely diametor. Adjuat turne sparing wo that low fredueney end of range womes with thming combenser at maximum capacity. Basw i- a Millen Type foso. Midset plug.
111 Mr . - I turn earh wiele of center, Mo. I2 tinned, spaced to fit lowe in jach bar (Nillon
 may be remosed from an old tube base or plug-in coil form.

Fig, 1607 - Inder-whasis view of the $3 .{ }^{-1 \%}$ (\% driwer-amplifier. Separate filament transormers are used for the two stages. The driver tuhe socket with its two filament r.f. ehokes is at the right.

cheeked. With the exeiter on 48 Me, and the link inserted in the terminals $A-A$, adjust C_{1} for maximum gridedrrent. This should be around 20 ma. when no phate voltage is applied to
 volts is sufficiont - the maximum voltage should not be used until evorvolhing is in or der. Apply fare plate voliago and lume ${ }^{\circ}$: for resobabre, Which should orcur ne:ur minimum (apotcity. As this stage is being driven hard. hammonies will show up all ahong the line. herere the ownpur frequeney should be cherked with lemene wires or a reliable absorptiontype wave meter.

When it haw bern determined that the output is actuatly the thital hatmonic. or 144 Mr .. insert the plum-in link at $B-B$ and the eoils for $1+1 / \mathrm{Mc}$. at L_{0} a and Lat. Repoat the mocess of ehneking the final share as outlined abowe for 50 Ma . Some change in the selting of the neutralizing eondonsers maty be required for complete nedutalization at itt Mc. (the setting for this bathd is much more ariacal than for so Me.). but. the adjustment for $1+t$ will wisully be fommel t.0 be satishatory for the lower frepuchey as well

Trests on I If Me. should be comducted at : lower voltage that is used for 50 Mc . Ip to 2000 wolls maty be used at the lowner ferpury aber corevohing is thmed up, but with the somewhat lower eflicioney at 144 Mc . $1: 300$ volts is the recommended masimum. Tuning operations should be eombleted at not more that 1000 volis. A lowd should be kept couphed to the final stidre when high voltages are used, wherwise the rirenit loseses at this frequencer will cause sufficiont tank cireuit hoating to melt soldered commedions.

Cirenit losses make the dip in plate current high (ahout 100 mat at 1000 volts) at $1+1 \mathrm{Mc}$., but the resonane dip is mot a true indication of performanere. Latmp loads, ten, are ummeliable at this frequency. The best test is the eolar of the tube platers. If the relor does not intirate greater heat than is shown when 150 watt: input is run with no excitation. then there is no canse to worty about harmang the tubes.

(1) A 10-Watł 50-Mc. Transmiłter

The inexpensive transmittar shown in Fign160R, 1609 and 1610 ases datal-triode $6 . d 6-1$ ype tuhes throughout. One section of the first thate is: used ats a erystal ascillathor on 6.25 Me. Whale the secomd hatif doubles 1012.5 Me . The two seretions of the second tube are used as 25- and 50-Mc. doublers, and the third tube is a pushpull fimal amplifier. Capacitive interstage coupling is cmployed throughout except between
the $50-\mathrm{Mc}$. (d.uthlor and the fiatat.

 densor. Cathomb hias allows the tube tur werate at low plate arrent ; it is rat neereary to obtain mudt power fom the ascillator, since the exatation requirements of the first doubler are low.
'Thue 12.i- and $2 \boldsymbol{j}-\mathrm{Me}$. dombler eirents ate
 the first doubior state. The seound fonder has no rathode bits. bex:mase iss much oufput as pessible is dewirable 1.0 drive the ee- M! doubher. Parallel phate feed is used in both stages. The $\overline{0} 0$ - Ma. doubler is serters foul thinugh ath untumed plate coil. 'The coil is made nearly selli-risentant tat transfor maximum ex.0rgy.

Moter switching with shath rexisuers (R_{7} through h_{1}^{\prime}) zorovides for messiaring the plate
 incorporated in the transmatecer itsedf.

The transmither is inailt ont a chasais measuring : $3 \times 4 \times 17$ inchers. Tha osciilatur and douhler tube surkets are monnted with fhe filament promges toward the irom of the elensis and the amplifier socket with its filament prong: facing the right end. The ervital socket and
 in from the emets of the chasis. The seconddoubler tuning combenser. (as. Ss momes. I in the conter of the front wall of the chassis. The other variable condenistr are locate to the loft and rialit, with 2 -ineh spacing botweon shat contars. (', Co and Cis are supported by
 smatl metal pillars from the upper side of the chassis. This momang ar-angement brings the shatios of $\left(\begin{array}{c}\text { and } \\ \text { and } \\ 5\end{array}\right.$ threre.

Wiring to the meterswith is simplificel if the switch is loc:uded is $_{6}$ inches itr from the output and. This poist is also con venisut to tie supply conds of the plate chokes for the firsi three stagres so that the esi ehokes cin be mounted directly on the switeh points. The shant re-

Fig. 1609 - This hottom view shows how the tuning condensers are monted with reaper to the mber sorkets. The self-supporting coils mome directy on the tuning comdensers. Filament transormer is in lower left-hand corner.
sistors should be soldered to the switeh contacts before the switeh is instatled.

The filamont dransomer and crystal lamp are at the left end of the ehassis, in the bottom view. The transformer should be kept as far as possible to the left so that it will not be near the r.f. circuits. The lamp is held firmly in the grommet by stiff leads soldered to its base. The plate-supply terminals are out of the way at the catreme left end of the base. Two positive terminals are provided, so that a modulator transformer secondary may be connected in the plate lead of the final amplifier.

The rest of the parts are mounted so r.f. leads will he short and direct, particulanly in the last two stares. The grid connections in the amplifier should be made directly between the grid prongs of the socket and the stator plate terminals of the grid tank condenser. The plate prongs and the stator sections of C_{5} should be cross-comected, so that the neumalizing condensers, C_{6} and C_{7}, may be supported by the
condenser lugs, as shown in Fig. 1609. This gives leads of negligible length and perfeet symmetry, both of which contribute to grood neutralizing. Trimmer-type condensers can be used for neutralizing since the neutralizing capacity required is small and the effective dielectric is mostly air. The output coupling coil has its ends soldered to lugs which are held in placs: by the feed-h hough terminals. The lugs will bend as the position of the coil is varied to change the coupling.

Eath tank cireuit will be in resonance when adjusted for minimum plate current to the tube with which it is associated. The current values should be $10,18,18$ and 40 ma.. in the order listed, for the first four stages. It is quite possible that the values will vary slightly in different layouts, but they should be approximatcly as given. Tuning of the various tanks should be adjusted to obtain maximum out put from the 50-Mr. cloubler, as indicated by maximum grid current in the fimal-amplifier grid

Fig. 1610 - Wiring diagram of the 10 watt $6: 6$ dual triode erystal-controlled 50 Mr. transmitterexriter unit.
(1 - $50-\mu \mu$ fil variable (Ilammarlund IIF. 0))

($3_{3}-1.5-\mu \mu \mathrm{fl}$. variahle (11 ammarlund $\mid 1 \mathrm{l}^{2}-15$).
C_{4} - $50-\mu \mu \mathrm{fd}$. pro seetion dual variahle (Ilammarland (1) 11)-51).
$\mathrm{C}_{5}-15$ - $\mu \mu \mathrm{f}$ fl. per seetion dual variable (II ammarlund (111)-15-N).
$\mathrm{C}_{6}, \mathrm{C}--3-30-\mu \mu \mathrm{f}$. mica trimmer (Vational M-30).
Co, $\mathrm{Cog}_{\mathrm{C}}^{10}-100-\mu \mu \mathrm{fi}$, midges mica.
$\mathrm{C}_{11}, \mathrm{C}_{12} . \mathrm{C}_{13}, \mathrm{C}_{11}, \mathrm{C}_{15}$ - $500-\mu \mu \mathrm{fd}$. midget miea.
k_{1} - 15,000 ohme, $1 / 2-w a t t$.
$\mathrm{H}_{2}-500$ olme, 1-watt.
$R_{3}, R_{4}, R_{5}-30.060$ olums, $1 / 2-w a t t$.
$\mathbf{R}_{\mathrm{g}}-1000$ ohms, 1 -watt.

$B-60$-ma, dial lixht.
$1,1-23$ turn 10.20 d. .er., close wound. 1 -inch diameter.
$1,2-13$ turns No. 29 s.l.e., 1 inch long, 1 -inch diameter. 1/3- 7 turns No. 1.1. 3_{4}-inch long, I-inch diameter.
14- 11 turns No. $14 .{ }^{5}$ x iech long. 3 - ind diameter.
$L_{5}-2$ turns No. 12 earh side of $L_{1}, 1$-inch dimmeter. center opening $3, \frac{1}{4}$ ineli. 'Iurns spaced dianeter of wire.
Lo - 3 turns No. 12 each side of coupling link, Is-inch diameter, center opening $3 / 4$ inel. Turns spaced diameter of wire.
I.ink - 5 turns No. $12,7 / 8$-ineh diameter, $1 / 2$ inch long.
leak, R_{6}. If no grid current is obtained, it is probably an indication that the coupling between L_{4} and L_{5} is either too tight or too loose; this coupling is quite critical, and therefore deserves careful adjust ment. The amplifier grid current should be 25 rata. or more when the coupling is optimum. Each time the coupling is changed, the grid condenser, ('4, as well as the preceding tuning condensers should be readjusted.

After a qrid-current indication is obtained, the amplifier should be neutralized. Plate voltage must be removed from the final :mplifior but the rest of the circuits should be in normal operating condition. Start with the plates of the noutralizing condensers serewed up tight and then back off a full three turns on each condenser. This places the noutralizing capacities at approximately the correct values. Condenser (C_{j} is then rotated through resomance, which will be indicated by a kick in the grid current. Adjust the neutralizing condensers in small steps, furning botlo serews in the same direction and the same amount each time. unt il the grid current remains stationary when C_{3} is rotated. This indie:ates complete neutralization. Retume the grid circuit after neutralization, so that maximum excitation will be secured; also recheck the coupling between L_{4} and L_{5}, since neutralization will change the load on the driver somewhat.

Plate voltage nity now be applied to the amplifior. When the phate tank is tuned to resonatnce, the plate current should fatl to 20 or 25 mat. A load, such as an atntenna or feoler system or a 10 -watt lamp used as a dummy anternat, should be commerted and the coupling adjusted until the plate current reaches the full-lowd value of 60 ma . The grid current will fall off to 10 ma . or so when the amplifior is loaded.

At the recommended input of 21 watts (60 mat at 350 volts), the output as measured in a dummy antenna is something over 10 watis.

To modulate the tramsmitter 100 per cont, about 11 wats of :udio power is required. The modulator output transformor must mateh an impedane of $\overline{5 R} 33$ ohms (modulated-amplifier plate voltage divided by modulated-amplifier plate eurrent expressed in amperes). A 6000ohm output winding will be close enough to provide a satisfactory mateh. A modulator using a Class-13 6.46 makes an cxcellent companion unit. for the transmitter, because it natintains the uniformity of tube trpes. Such a unit is described in Chapter Fourteen. A power supply eapable of delivering 350 volts at 150 ma. is needed for this transmitter.

The circuit as shown in Fig. 1610 requires the use of crystals having frequencies lying between 6250 and 6750 kc . for operation in the $50-54-\mathrm{Mc}$. band. If preferred, the circuit may be changed so that crystals having frequencies between 12.5 and 13.5 Mc . may be utilized. The crystal and grid leak, R_{1}, may be con-

Fig. 1611 - Almenative cretal nsillator circuit for the transmitter of ligs. lolo whion erysials in the frequetioy range 2.5 to 13.5 Me are to he u*al. Circuit values correspond to those siven in Fig. 1610 exerpt for the sereen by-pasis condenser, $(: 0.01 \mu \mathrm{fi}$., and the sercen dropping resistor, $R, 50,000$ olims, 10 -watt.
nected to the grid of the second seetion of the first 6A6, in which case all the components assoriated with the plate circuit of the first section of the tube may be omitted. The grid and plate of this section may be left idle. This procedure converts the second section of the tube into a crystal oscillator instead of a frequency doubler. Alternatively, a 6 F6 pentode crystal ospillator may be substituted for the first 6A6, using the circuit shown in Fig. 1611. The use of the pentode oscillator is recomnemded because there is less heating of the crystal and consequently less frequency drift during operation.

C. A Low-Power 50-Mc. F.M. Transmitter

The transmitter shown in Figs. 1612, 1613 and 1614 will yidd a freguency-modulated carrier output of approximately 7 watts on 50 Mc., using a plate power supply delivering 300 volts.

A reactance modulator stage, utilizing a 6SA7 reactance tube to modulate a $6 \mathrm{~F}_{6} 6$ oscillator, is incorporated in the unit, along with a microphone input transformer. Λ single-button microphone is sudfirient to drive the 6s.17, no additional spereh amplification being required.

For complete flexibility and wider utility, provision for alternative amplitude modulation may be made as well. If it is desired to use amplitude modulation. the grain control on the ratctance modulator should be set at zero and the neeessary 6 watts of audio connected in series to the plate and sereen lead of the 7Co output amplifier. Used as an f.m. transmitter, the entire unit requires 300 volts at about 90 ma., making it ideal to run from a vibrator pack for portable/mobile work.

A single-button carbon microplone is trans-former-coupled to the 6SA7 reactance modulator, which is connected across the tank circuit of the 6F6 e.c.o. A V1R150-30 stabilizes the voltage across the oscillator and modulator and aids materially in keeping the mean frequency constant. The grid circuit of the e.c.o. tunes from 12.5 to 13.5 Mc . with a slight margin at rither end of the tuning range, and the plate circuit of the e.c.o. is tuned to 25 Mc . by means of a self-resonant coil which is adjusted for

Fig. 1612 - The remplete 50- V1. f.m. transmitur has all r.f. compm-
 grid coil, which is hound in the -hiold ean in the rear epmor of the

 regulator.
maximum output by sepuroxing the thurns together or spreating thom apart. Once adjusted,
 conditions. The 25 - Mr. output of the e.e.r. drives a $7(97 / 12: 32$ dombler to 50 Me., which in turn drives the outpat amplifier.

With a 300 -volt supply, the 7 (\% final-amplifier grid current should be about 0.b mat meler load for lincar amplitude modalatom. If fom. is used exelusively, the grid entreit ran be lower with no harmful affert other than a
shight deerease in output of the anplifier. The 7 C 醇 final amplifier is plate neutralized bey rumning a lemget of stiff wite from the plate side of the doublder tuning eondenser over to a print mar the opern side of the final-amplifier split*tator tuniner comdenser. The cat parity from this wire to bhe stator of the comblonero maty be aljusterl to meutralize 1 ha. final amplifier by eutting the end of the wire : bit at a lime. until the plitle-1ank buning shows bor raticton on the grid current with bobh plate amd serem wollare off).

No diflie alay slomald be encountored in atjusting the tramsmitter wher than seming the e.e.t. coils for the proper frequenctios. The envid coil shmuhd he adjusted to rover the proper range with the reactane modulator tube in the eireuil. Ther ramge ran be variod by pushing the turns tor gether or sproaling them apart, while ehereking the resulting frequeney on a calibrated reodyre The e.e.o. plate coil can best be adjustod hy readinge grid current to the final amplifiot (hy commeting a 0-1 mad. der. milliamoneter betwern lis and ground) and adjusting L_{2} until the 7 (5) grid curront is a maximum with the oscillator set at 13 Mc .
The plate current of the final amplifier will be about tis ma, when the stage is properly loaded. 'Ihe loading is varied by changing the position of the "swinging link" fastened to the

 $0,00.5-\mu \mathrm{fl}$. mica in parailel.
$\mathrm{C}_{3}-0.001-\mu \mathrm{fll}$. mira.
C. $\mathrm{E} 00-\mu \mathrm{fld}$. mica.
($5, \mathrm{C}_{9}, \mathrm{C}_{12}-10(1-\mu \mu \mathrm{fl} 1$. mira.
$\mathrm{C}_{6}-15-\mu \mathrm{fl}$. midget variable (Hammarlund IIF- - آ).

Cat - $35-\mu \mu \mathrm{ffl}$. midget variathe (Itammarhmal IVF-35).
Ci.1-35- -3 ffl. prer section dual variable (Cardwell lill-35. Al).
$\mathrm{C}_{15}-\mathrm{T}$ wo 500 - $\mu \mu \mathrm{fd}$. mica, one at each end of rotor of C_{14}.

N - Xeutralizing rondenser (me (ent).

R_{3} - 0.25 meqohm (not marked in (liakram).
$R_{4}-50,0100$ chtum, $1 / 2-$ watt.
R_{5} - sitite ohms, $1 / 2$-watt.
$\mathrm{R}_{6}-23.000$ chms, $1 / 2$-watt.
$\mathrm{R}_{\text {; }}$ - $\mathbf{0 . 1} 1$ meghim, $1 / 2$-watt.

$\mathrm{R}_{2}-5010$ ohms, 1 -watt.
R19-3000 ohmis, lo-watt.
$\mathrm{RFe} \mathrm{B}_{\mathrm{i}}-2 . \mathrm{i}-\mathrm{mh}$. r.f. choke.
KFtis - V.h.1. choke (0hnite Z-1).
T: - Microphone tranaformer ('Thorlarson T-58A37).

La-12 turns No. 20 e., spaced therous I inch on a l-ind diamuter form: cathonde 1ap $23+$ turns up. Plageed into sorket on chasis.
$1.2-16$ turns रo. 20 (1.. spaced to wrupy 1^{5}, inches. 9 , 16inch diameter: self-supprorting (nee text).
I_{3} - 1 turns No. 20 (\because, $1 / 2$-inch diameter, 1 - -ineh long.
 inside diameter, women to weupy l-inch lagth, with 3_{x}-inch rap in center for swinging link of 2 turns \o. 14 e., same dianeter.

Fig. 1614-A view underneath the chassis of the 50.11 e, f.m. transmitter shows the volume control at the left, the ascillator contral at the eenter, the dombler tuming control at the right, and the final amplifier tuming eontol at the side. The microphome comneetor is on the left side of the chassis, and the four-prome plug and flesible wire commer tw the power suphly and miorophone hattery, resperindy. Johe the shield betwern the timal thang condenser and the oseillator thaning condenser, to reduce reation betwern the two eircuit- and the wire raning from the dombler tuning eomatener to near the final tank condenser which i- uided an-a neutralizang comdenacr (C in Fig. 1613).'Tlie nutput cominert-totmo hinding pests on a Vietron strip.

antemat output binding posts.
When using f.m. the amount of deviation is controlled by the sotting of the gatin control, R_{1}. With the gain control wide open the deviation is over 30 ke. on $5: 3$ Me., which is more than adequate for all purposes. When the receiving station does not have a regular f.m. receiver. the signal can be received on a conventional receiver by reducing the deviatom at the transmitting end and thang the signal off to one side of resonance at the receriving e:ad.

© An F.M. Modulator-Oscillator Unit

Apart from the reguirement for at means of varsing the frequency of the osciluator output in aceordance with the applied modulatiag voltage, the r.f. circuits of a frequencr-modulation transmitter for amateur us differ little from standard v.h.f. practice, with the exeeption of the oscillator circuit. Any of the multi-stage exciter or amplifier units described in this chapter, therefore, may be adapted for use on f.m. as well as a.m.

Where a eristal- or e.e.o.-rontrolled transmitter for the 28-. 50 - or 144-Mc. band is available. it is a relatively casy matter to disconmert the regular plate modulator and malsstitute for the cressal or e.c.o. the f.m. oscillator-modulator shown in Figs. 1615, 1616 and 1617 . The r.f. output of the unit is internded to be fed through a link to a tuned-circuit voil wound on a coil form which sutstitutes for the erystal holder in the erestal oscillator. This tuned cireuit is resonant at the same frequency ats the output tank of the control unit, $L_{2} C_{3}$ in Fig. 1610, and is, in fact, identical in construction.

In transmitters using triode ossillators or pentode erystal oscillators in which the fubes are not well sereened, it is advisable to use the erystal oseillator tube as a doubler rather than as a straight amplifien. If
the transmitter uses a ervatal oscillafor operating in the vieinity of 14 Mc ., for example, the output of the unit may be on 7 Me. and the grid circuit of the ex-crystal tube also tumed to 7 Mc . This will avaid difliculty with self-oscillation in the ex-erystal stage. With a protode oscillator it is possible to work straight thiongh, provided the grid tank substimted for the erystal is tumed well on the tigh-frequency side of resonance, but this procedure is not advisable since it may make the modulation non-linear. lt is rather important that all circuits in ihe transmitter be tumed "on the nose" for best performance. Of course if the erystal tube is a well-sereened tramsuitting type it can be used as a straight amplifier.

With harmonictype erystal oscillators the input frequeney can be the same as that of the

Fis. this - This modulator-useillater unit is used with normally cr:-tal-comtrolled v.h.f. transmithers for frequency-modulated output. It rontains a suecel amplifice bud power suphly. so that no additional equipment is needed. The ombilator coil is in the round shiedd can in the eenter. The coil in the lefi foreqround is the buffer ourput circuit. The speech amplifier and modulator are at the right, with the power supply along the rear. A 7×11-inch chassis is ued.

Fig. 1616 - Cirenit diagram of the f.m. control unit for use with normally crystal-oontrolled v.h.f. tramsmithers.
$\mathrm{C}_{1}-150$ - $\mathrm{\mu}$ fol. silvered miat for $\mathrm{B}_{1}-0.1$ merohm, l-wat
$\mathrm{C}_{2}-100-\mu \mu \mathrm{ffl}$. variathle (Xational SE-100).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{ft}$. variable (Ilammarlund $111-50$).
$\mathrm{C}_{4}-\mathbf{1 0 0}-\mu \mathrm{ffl}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{12}-2.50-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}-0.001-\mu \mathrm{fi}$. mica.
$\mathrm{C}_{7}, \mathrm{C}_{4}, \mathrm{C}_{9} . \mathrm{C}_{10} . \mathrm{C}_{13}, \mathrm{C}_{55}, \mathrm{C}_{19}, \mathrm{C}_{20}-$ $0.01-\mu \mathrm{fll}$. paper.
$\mathrm{C}_{11}-3-30-\mu \mu \mathrm{ft}$. mica trimmer.
$\mathrm{C}_{1.4}, \mathrm{C}_{22}, \mathrm{C}_{23}-8-\mu \mathrm{fd}$, 450-volt clectrolytic.
$\mathrm{C}_{18}, \mathrm{C}_{17}-10-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{18}-0.1 \ldots \mathrm{fi}$. 200 -voll paper.
C_{21} - 1 1 1al 450 -volt 8 - $\mu \mathrm{fil}$. el.ctrolytic.
$1 k_{1}-0.1$ megolm, 1 -wath.
$R_{2}-25.000$ ohms, 1 -watt.
$\mathrm{l}_{3}, \mathrm{~K}_{4}, \mathrm{l}_{5}, \mathrm{l}_{11}-50,000$ ohms, $l_{\text {. }}$ wat.
$\mathrm{R}_{6}, \mathrm{R}_{8}$ - 300 olms. $1 / 2$-watl.
$\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{10}-0.5$ mesulim, $1 / 2$-watt.
$\mathrm{K}_{9}-30.000$ ohms, 1 -watt.
R_{12} - 5 mexohms. $1 / 2$-watt.
$\mathrm{R}_{13}-900$ olms. $1 / 2$-wati.
$\mathrm{R}_{14}-1$ meqohm. $1 / 2-\mathrm{watta}_{\text {. }}$
$\mathrm{k}_{15}, \mathrm{~K}_{19}-0.25$ mexolim, $1 / 2$-watt.
R_{16} - $\mathrm{O} . \mathrm{i}$-mugohm volume control.
$\mathrm{R}_{17}-20100$ ohms, $1 / 2$-watt.
$\mathrm{R}_{1} \mathrm{~s}-50,0100$ ohms. $1 / 2$-watt.
$\mathrm{R}_{2 n}-0.15$ merolm, 1-watt.
RFC - 2.5 -mh. r.f. ehohe.
$\mathrm{L}_{1}-7$ Mc.: 11 turns No. 18 e.,
length "anch, I-ineh diameter, lapped 3rd turn from ground.
$L_{2}-141$ Mc: 10 turns No. 18.
All coils woumd with enameled wire on 13 -2 inch diamoter forms (Hummarlund Sll F_{-} 4). 1.75 - M/c. coil closewound: othere spaced to a Jensth of $1 \frac{1}{2}$ inches.
linh 3 to $\overline{3}$ lurus (not critical).
L_{3} - Jïlur choke, 10 henrys, 10 ma.
$\mathrm{T}_{1}-250-10-950$ volts. 10 ma.: 6.3 volts at 2 ampures; 5 volts at 2 amperes. ("Thordarson T-13R11).
Sw-S.p.s.t. toggle switch.
crystal, since the output frequency of the rrystal tube is already a harmonic. In the Tri-tet oscillator, the cathode tank should be shortcircuited; in the types using a cathode im-

Fig. 1617 - In this hotinm view of the f.m. modulator unit, the r.f. seetion is at the right and the andio at the left. The oscillator socket is to the right of the coil socket in the center.
pedance to provide feed-back, this impedance also should be shorted. Care should be tation to a void short-circuiting the grid bias, whether from a cathode resistior or grid leak. In the latter rase this usually will mean that a blocking condenser ($500 \mu \mu \mathrm{fl}$. or latger) should be ronnected between the "hot" ond of the grid tank and the grid of the ex-erystal tube, with the grid lead (and choke) connected on the grid side of the condenser. Such a bloeking condenser may be incorporated in the plug-in tank. The grid-tank tuning conclonser may be a small air padder mounted in the coil form.

Where a suitable power supply and sproch amplifier are already available, the lower part of Fig. 1616 can beomitted and only the oscillator, buffer and modulator units need be built. With transformer input, the transformer and gain control should be connected between ground and point " Λ " of Fig. 1616, R_{7} being omitted. Any of the conventional meth-
ods may be used to couple the modulator to an available speech amplifier, with one precaution - if a high-impedance connection is used, the "hot" lead should be shielded to prevent hum pick-up.

If the transmitter to be used has a self-excited oscillator, electroncoupled or otherwise a separate oscillator need not be built. The reactance modulator can be connected directly across the tank circuit of the oscillator. If the oscillator has too high a C / L ratio, not enough deviation may be obtained without distortion. It is advisable to use an $L^{\prime} C$ ratio in the oscillator comparable to that given in Fig. 1616.

The circuit constants of the oscillator in the unit pictured are adjusted to cover the frequency range $6000-$ 7425 ke. so that the output can be multiplied into the $28-$, 50 - and $144-$ Mc. bands. For 28-Mc. operation a nultiplication of 4 is required; for 50 Me., a multiplication of 8 ; and for 144 Mc., a multiplication of 24 . The output circuit, $L_{2} C_{3}$, is tumable over the range $12-15 \mathrm{Mc}$, and thus is adapted to feeding into a transmitter using crystals operating in this range. For replacing crystals operating at half this frequency, I_{2} shoukl have 20 turns with all other coil dimensions remaining the sime.

The sensitivity of the modulator is cont rolled by the setting of C_{11}. The higher the caparity of this condenser the smaller the frequency devis:tion for a given audio input voltage to the modulator. At maximum sensitivity, with Cin at minimum caparity, the linear deviation is approximately 1.5 kc . with an a.f. input to the modulator grid of 2 volts peak. The actual deviation at the output frequency of the transmitter depends upon the amount of frequency multiplication following the modulated oscillstor. The maximum linear deviation is athproximately 6 kc . at 28 Mc , 12 kc . at 50 M ., and 36 kc . at 144 Mc .

[1 A 12-Watt 50-Mc. Transmitter for Mobile Work

The transmitter shown in Figs. 1618 to 1621, inclusive, is designed to work from a power supply delivering 125 ma. at 325 volts ard, since there are vibrator packs available which deliver this output, it is quite suitable for installation in a car for mobile work. Since mavimum economy is desired in the exciter and audio stages, high-gain doubler tubes and Class-B audio for modulation are used.

From the diagram in Fig. 1619 it can be seen that a 6:1G7 Tri-tet oscillator using a $12.5-$ Mc. crystal doubles frequency in its plate circuit to drive a 6AG7 doubler to 50 Mc ., and this latter tube drives a 6 V 6 amplifier on 50 Mc . A 6 LL 6 can be substituted for the 6 V 6 but it gives no

Fig. 1618 - A complete 12-watt 50-11e "plome transmitter, realy for instatlation in catr or lome. 'The tubes along the front, from left to ristit, are 6.1C: Tri-tet ozviliatur oidG douhter and 6 V 6 final amplifier. 'The ot:5 driver (left) and the oN7 Clasi-I3 modulator are at the rear between the tran-formos. 'lle hnoh on the right controlg the final tanh condmaser - the obler foning condenmers are adjusterl by scrow driver throurh the rabler arommets. The meter switely is mounted on the front ceater, just under the meter pin jaths.

Wote that the antenna cril is momited on the antenna binding pust sirip - coupling is adjusted hy swinging the coil.
improvement in performance at the input (12 watis) permitted by the vibrator supply. Provision for neutralizi:ng the $61^{\circ} 6$ was included in the design of this unit but it was found unnecossury with this particular parts arrangement, It is not to be assumed, however, that the $6 \backslash 6$ will work well without neutralization in every arrangement. The grid of the 6 V 6 is tapped down on the driver plate coil to lighten the loading and give a better match.

The modulation equipment consists of a (iC5) driver stage and a 6×7 (lass- 3 modulator. Any arrangement except one using a singlebutton microphone would require more audio gain and hence nore possibility of "hash" pick-up.

The transmitter is built on a 7- by 12- by 3 inth chassis. thus providing plenty of room for the parts. Reference to Figs. 1618 and 1620 will show the placument of parts, but some of the minor construetional points should be pointed out. The tuning condensers, C_{1}, C_{2} and C_{3} are mounted on the underside of the chassis on the smatl brackets that are furnished with them, and they are set far enough back from the front so that the ends of the shafts do not quite touch the mewal. They are adjusted by a serew driver that is prevented from shorting to the chassis by rubber grommets in the holes. The final tank con-lenser, C_{4}, is supported on the panel.

All of the inductances are mounted on or near their respectise tuning condensers except the final tank coil, 5_{4}, which is mounted above the chassis on feel-through insulators. This makes it more convenient to adjust the antenná coupling coil, L_{5}, after installing the trans-

(13 - 2.- $\mu \mathrm{fd} .$, 2:-volt electrolytio.
(N-Scetest.
$\mathrm{R}_{1}, \mathrm{~K}_{3}-0.2$ mprohms, 1 watt.
$\mathrm{H}_{2}, \mathrm{R}_{4}-40,000$ ohnas. 1 watt.
R_{5} - 30,000 ohms. 1 watt.
$\mathrm{H}_{\mathrm{g}}-5.0100$ ohmer, 2 watt.
K_{7} - 0.1-mequhm volume control.
Rs - 10100 ohms, $\frac{1}{2}$ watt.
Ra- 6000 ohms, 1 watt.
$\mathrm{H}_{10}-\mathrm{H}_{15}-25$ olmas, $1 / 2$ watt.

RFO C_{1} - 1 .h.f. r.f. chohe (Ohmite Z, 1).
$S_{w 1}-\boldsymbol{2}$-raruit, i-powition rotary switch, non-shorling (Mallory $32=0 \mathrm{~J})$.
T_{1} - Alierophome transformer (Stancor A-4i26).
T_{2} - Driver transfurmer (Stancor A-1:21).

1.1-19 turns: No. 18 cnam., spared slighety to ocrupy 3, in h winding length, on ${ }^{3}$-inels diam. form

 diam., self-mpporting.
$\mathrm{L}_{3}-3 \frac{1}{2}_{2}$ turns No. 14, spacol tw acoupy ix inch,

> 7s-ianh diam.. self-supporting. who grid tap 1 turn from plate emi.
> Ia - 3 turns Vo. I. 1 , earh side center, spaced to ocenpy ${ }^{3}$ infh, To-inch diam.
> Is. - turns, No. 14. T/z-inch diam.
> $P_{1}-4$-prong base-mounting plug (Amphenol k(CP-1).
mitter in the car.
The plate cireuits and the final grid circuit can be motored by plugging in the moter leads to the two pin jacks on the front conter of the chassis and setting the meter switch to the proper position. This is a comveniene when funing up with a different crystal or antemna. Thre power leads are torminated at a four-prong plug mounted on the back of the chassis.

One problem in comnection with mobile units is the drop in the line from the battery to the vibrator or motor-generator unit, and these leads must be kept as short as possible. This transmitter is intended to be mounted in the trunk rack of the car, with the control box mounted on the dashboard of the car and the vibrator pack mounted under the hood on the fire wall. This is, of course, for a car with the battery under the hood - for cars with the battery elsewhere the vibrator pack and control box might have to be mounted differently. The voltage drop in the leads rumning back to the heaters of the tubes from the battery
will be small if heavy wire is used. and the drop in the 325 -volt line from the vibrator paek is nerligible.

The wiring diagram of the control box is shown in lig. 1621. As can be seen, the microphone battery is mounted in this box, and a jack is provided for the microphone. The switch S_{1} turns on the vibrator pack and the heaters of the tubes, while switeh S_{2} is used as an "on-olf" switeh for the transmitter, since it controls the microphone battery and the plate supply lead. The control box is 4 4- by $4-$ by 2 -inch box and takes up very little room.

An alternative system is to mount the vibrator pack and an additional storage battery in the trunk rack and to eontrol both the "onoff" of the heaters and vibrator pack and of the plate power through suitable relays controlled from the dash. However, the storage battery must be removed from the ear for charging. and thus the installation may not be always "ready to go."

The adjustment of the transmitter is conven-
tional in every way, the tuning procedure being thersame as with other crystal-controlled transmitters. With 325 volts from the power supply, the total pate and screen currents of the fi.1(i7 Tri-tet and the 6id(i7 donbler will he 12 athd 16 mat. respertively, and the fintal grid current should rom about 2 mat. If, wher the voltage is removed from the screon and plate of the 6 ifi fimal, there is mo flicker in the gride current as the final tank is tumed through ressunather, there is mon mod to Worrvabout nentralizingethe final amplifier. loweror, if a flickor (of 0.1 mat. or so) doces show up, the amplibier can be neutralized readily by rumbing a stiff wire from the free end of the linal tank over near the grid torminal on the 6 \mathbf{K}^{6} sonelet to form a neutralizing eondenser (shown hy dotted lines in lige. 161!9). The stage is then nontralized in the usual manner, varying the neutralizing capaeity by moving the free ond of the wite. ('onneegting the voltage to the seroen and plate sif the $6 \mathrm{~V}^{6}$ and tuning to resonance. the fotal plate and sereen rurrent should be under 35 mat. unhoded and about $3!9$ or 40 mad. losdeal.
The 6 ("aplate current will be about 8 mat...atud the no-sigual 6.77 phate curvent around 35 mas. kicking up to about 50 mat. on peaks.

The antema can be anything from 0.25 to 0.6 Wavelength long. depending upon what one hats available. Since the transmitter fein be mounted dose to the emd of the antemnas. there is no particular problem in fereling the antombat aside from finding a suitable insulator tor ran through the side of the cate. If something ne:a : quarter wavelength long is used for the antemna, one side of the anterna coil, L_{5}, shonld he grounded to the car and a variable comdenemer connoreded serios with the antenna and the ot here side of L_{5}. When the antema is ne:ar a

Fïg. $162 I$ - Ciircuit diagram of control bex.
J - Small mirrophone jack (Ma allory $\mathbf{~} 02 \mathrm{~B}$).
5 - 11. p-at. high-current togele with seetions in parallel.
\therefore - 11.p-~. togyle.
P_{2} - 4 -prong cable socket (Amphenol PF-1).
P3- ${ }^{(1)}$-prong calle plug (Amphemol RCP-(6).
P1 - (0-prong socket (Amphenul PF-6).
Batery is Burgess 3A2. Microphone lead is shielded thonghout.
half wavelength long, paralle tunitg of L_{5} should ho used. The centior of L_{5} can be wrounded or the whold thing e:arn be left floating. Rexardless of the length of anternata, the antenna coupling is varied by movement of L_{5} with resuect to L_{4} after tuning both umplifier nod tank cireuit to resomances.

C. A 6C4 Oscillator for 144 Mc .

Figs. 1622 to 1625 indhewer, show the details of canstruation of a low-pwer macillator using a fic:4, a miniature trionde power tabe having a pate dissipation rating of 5 watts and designod for use as an uscillator in the v.h.f. range. At the rated plater inpat of 300 volts at 2\% millian meres the osxillator tevelops
 band.

As shown by the dituram, lig. 1023 , the circuit is the ultraucion with an adoustanfe feedback condenser, fas. commeded betwen grid and cathode. Tor reduce frequenay modulation when the oscillator is amplirmbomodulated, the tunerl circuit has a fairly high (' $/ 1$, ratio. using a thang cordencer havinu a fixed as well as at variable seefion. The condenser roter consists of three rimeular plates and two "butterfly" plates. The circular plates rotate butwern two sets of staturs having platers of regulary :hape and thus provide a fixed eapacity. The butterfly plates rotate letwern two sets of mpposed tordogree stather platess each set consist ing of two ple.ters. The assembly (now available as Cawnoll Trene ER-$14-\mathrm{BF} / \mathrm{SL}$) is made froma (ardacel ER double conelenser, with only the front isolantite plate used for a mounting. This method of construction results in a splitstator condenser having a minimuns of
inductance, since the r.f. current flows over the rotor plates without having to travel along the shaft. The plate shapes and details of assembly are shown in Pig. $1(624$.

Lead lengths in the circuit are redured to a minimum by the construction shown in Fig 1625. The entire oseillator assembly is mounted on a piece of 3 - 3 -inch thick aluminum bont in the general shape of a U. The mounting is $17 / 8$ inches wide and the bent-over top portion is $17 / 8$ inches deep. The overall hejght is $21 / 4$ inches. The bottom lip dimension can be anything convenient solong as enough area is provided to make a solid mechanieal momating. The tuning condenser, C_{1}, is contered on the vertical portion and is mounted on the serews and spacers provided with the rondenser. The hole for the shat is made amply large so that the condenser rotor is not grounded. The condenser is mounted so that the two sets of stator plates are at top and loottom.

The tube socket is mounted so that the plate lead can drop in ats straight a line as possible to the terminal at the right on the upper stator plates of Ci. The grid condenser. ('2, is sup) ported at one end by the grid prong on the tube socket and at the other by the left-hand terminal on the lower stator plates. The excitation control, (3_{3}, hats its movable-plate tab bent at a right amgle so it can be bolted to the vertical support, and the stationary-plate tab is soldered direatly to the grid prong on the tube socket. The grid choke, grid leak, and

Fip. 1622 - A low-power 14. Me. oscillator using a 6C4 v.h.f. miniature triode. With the construction shown, connerting leads in the r.f. cirenit are redmed to negligible length. lilament and plate-supply leads are brought through the bottom chassis to a connection strip on the rear lip. 'lhe excitation control is arljusted through a hole in the top of the supporting member.

Fig. 1623-Cironit diagram of the 6C4 oseillator.
Ci - l'uning condenser; see text.
(S_{2} - 50) $-\mu \mathrm{ffl}$. midget mica.
(3 - $3-30$ - $\mu \mu \mathrm{fd}$. ceramic trimmer (National M-30).
(. $-5(0)-\mu \mu \mathrm{fil}$ midget nicia.
$\mathrm{L}_{1}-2$ turns No. 12 hare wire: inside diameter $9 / 16$ inch, length 1 inch: phaterouphy tap at center.
$1,2-2$ turns No. 11 cmamellenl: inside diameter $3 / 8$ ineh, slight spacing betwern turns.
$\mathrm{RFC}_{1}, \mathrm{RF'} .2$ - I -inch wimling of No. 24 d.s.c. or s.c.c on $1 / 4$-inch ditmeter polystyrene rod.
$\mathrm{R}_{1}-20,000$ olims, $1 / 2$ wat .
plate choke are supported as shown in the photograph. The condenser along the rear culare of the assembly is the heater by-pass condeniser. C. ${ }_{4}$.

The weillator assembly is mounted on a $31 / 4$ by $31 / 4$-ineh alumimum chamed $3 / 4$ of an inch deep. A small pancl at the front provides a place for a tuning dial which drives the condensor shaft through an insulated coupling. A dial lock is provided so the condenser can be locked at a given frequenery sotting.

A polystyrene-insulated double binding post assombly mounted vertically from a small bracket provides output terminals and a support for the antenna coupling coil, L_{2}. The coupling can be varied by bending the soldering lugs that support the coil so that L_{2} is moved nearer to or farther away from L_{1}.

The romdenser construction provides just enough (alpacity variation to eover the $144-$ 148-Me. hand adequately. Beqause of slight differences in the construetion of similar units. it may be neressary to vary the inductance of L_{1} slightly to bring the haind on the dial; this can be dome by squeezing the turns together or pulling them apart. The frequeney range can be checked with Lecher wires or a calibrated absorption wavemeter. (Soe chapter on frequence moasurement.) Final adjustment to L_{1} shouht be made after ('3 has been adjusted for optimum output from the oseillator, since the setting of this condenser hass some effect on the frequency of oscillation.

Tor adjust C_{3}, solder two pieees of wire about $3 / 4$ inch long to the terminals of a small flashlight lamp or dial light and connect them to the outpuit terminals. A milliammeter of $0-50$ or 0-100 range should be connexted in the plate-supply lead. Adjust the coupling between the L_{2} and L_{1} for maximum glow in the lamp and then vary the capacity of ('3 until the best output is obtained. (3 need not be touched again after the proper setting is determined.

In using the oscillator for transmitting, the
coupling between L_{1} and L_{2} should be kept as loose as possible, particularly if the antenna or feeders can swing in a breeze, because any change in the antenna circuit will be reflected as a change in the oscillator frequency. In any event, the coupling should not be increased beyond the setting that makes the oscillator plate current 25 milliamperes. At 300 volts the plate current should be about 20 ma . without any r.f. load.

The oscillator can be modulated by any audio power amplifier having an ontput of 3 watts or so - a single Class-A 6F6, for example. The modulator coupling transformer should have the proper ratio to work from the modulator tube chosen into a 12,000 -ohm load. For a Class-A pentode modulator taking a 7000-ohm load this requires a step-up turns ratio of 1.3 to 1 .

© A High-C 144-Mc. Oscillator

The inherent instability of a modulated oscillator - that is, the change in frequency with the change in plate voltage under modulation - can be markedly reduced if the oscillator tank circuit is made to liave as high a C / L ratio as possible. Although this usually entails some sacrifice of power output, the overall effectiveness of the tramsmitter is increased because the radiated energy is more nearly on

BUTTERFLY ROTOR (A)

90-DEGREE STATOR (C)

REGULAR STATOR (D)

Fig. 1624 - Plate shapes and assembly of C_{1}, the tuning condenser used in the 6 C 4 oscillator,

Fig. 1625 - A view showing the assembly of components of the 6 C 414 M Mc . oscillator. The r.f. chohes are mounted by drilling and tapping the ends of the polystyrene rod. The urid choke is held in plaee by one of the sochet mounting serews.
one frequency. This is a particularly important consideration when selective recoivers are used. In addition, the fact that there is less frequency modulation also means that there is less interference to other stations operating in the sume band.

A high-C 144-Me. oseillator is shown in Figs. 1626, 1627, and 1628. It uses an HY75 tube and a tank circuit consisting of a low-inductance v.h.f. condenser and a one-turn tank coil of heavy conductor. The circuit, shown in Fig. 1627, is the ultraudion with a tuned filament circuit to provide control of excitation. The oscillator is mounted on a 3-by-4-by-5-inch box, with the tube socket mounted below the top by means of pillars so that only the glass bulb is protruding. To bring the condenser terminals on the same level as the grid and plate terminals of the tube the condenser is mounted on $5 / 8$-inch high blocks. The tube socket is positioned so that the plate cap of the tube is near one set of the stator plates of C_{1}. This leaves room to mount the grid condenser, C_{2}, between the grid cap and the other stator terminal, thus making the leads between the tank circuit and the tube as short as possible. The output coupling coil, L_{2}, is soldered to lags under the binding posts of a two-post assembly mounted on a $21 / 2$-inch isolantite stand-off insulator. A friction-type vernier dial is used to tune the circuit, because the tuning is rather critical with the high- C circuit and because the type of condenser used requires this or a similar type of dial to hold the setting, since the shaft turns on ball bearings.

The tuned filament circuit consists of L_{3}, L_{4} and $C_{3} . L_{3}$ is wound between the turns of L_{4} so that the coupling is very tight; thus both filament leads can be tuned by one condenser, $C_{3} . C_{3}$ is adjusted for maximum output as

 modnlation than thome u-ing low- direnit-. eronece
 tively received on ablectise receivers.
judged by the brilliance of a lamp eommerted to the output terminals; it has melatively little efferet on the frequency of oscillation.

The indiactance of L_{1} should be adjusted so that the low-irequency and of the $114-\mathrm{Mc}$.

Fig. 1627-Cirenit diagram of the high-f: I $11-11$. oscillator.
(il-Split estator condensire, 31.5 $\mu \mu \mathrm{fd}$. total (Hammarlund V C:30).

($3_{3}-3$ - $30-\mu \mu$ fil. reramie trimmer.
C. $-10(1)-\mu_{\mu} \mathrm{fd}$. midwet micat.
 horsesfore shata': oserall labesh from momating

$L_{2}-1$ turn No. It enamallod; dianeter 3 insh.
 wound with $L 4$, no spacing between turns.
$\mathrm{R}_{1}-5000$ ohms, 1 watt.
 on $1 / 4$-inch diameler polystyrene rod.
'
band is reached with C_{1} set as close as possible to maximum eaparity. It is advisable to stant with the coil a little larger than necessary and cut a little at a time off the ends until the proper inductance is lound. The commections
 by matas of lugs bashemed form tubing just enough larger in diameter than the coil se that the emels of the reisl will fit inside. One end of a arch lag is flatemed and drilled to fit the comdomser terminals, and the eroil is soldered in the unflatthened conds.

With a mate input of 300 volts at about (60 miliamperes the power ont phe of the oseillator is approximately + watts. When remeded on a superhoterolyme-type mooiver with a beat-

Fi\&. $/ 6$, oniollater. I'he dilament transformar and lilament tumed circuit are monamed in-ide the box.
frequency oscillator, the carrior will be guite
 struction is rigid. Under mondalation, the frequeney band oceupiod is only about a fith as much as that taknell uj by a bow-C oscillator operated at the same plate voltage.

c A Stabilized 144-Mc. Transmitter

In grmeral. a mondulated owillator is not a dexirable type of transmittor for use in a band such as $1+1 \mathrm{Mc}$, where there is considerable adetivity. Ewen when stabilized be the use af a high-f tank eirenit this tree of tramsmiftor leaves much to be desired, because there is still a great deal more frequeney modulation than is present in a master osillator-power amplifier transmitter. In addition, an oweillator eoupled to :un antemat is subject to frequency change whenewer the antoman romstantachange slightly, ats they will with changes in weather and with any vibration or swinging of the feeder wires. Besides, an oscillator cannot be modulated 100% without considerable distor-
tion because in most cases oscillation cannot be sustained at plate voltares below 50 to 100 volts. J"ilalls, the *fieioncy of an wsillator is quite luw
 arly-drivenamplifior. suthat comsiderably more power output ram be obtained from the same talse when it is used as ath amplifion than whon it is used as ath osrillator.

An :mplifier driven be all oseillator. although mome stathe thath all weseillator alone. is still subigeret to froptuener-
 in power input to the :mplifior with
 impodinmer of the amplifior. and this in turn reacts on the aseillator to change the frequaners. Ilomer it is desimble to use at least one bumar amplitier stage betwon the asillather alld :mplifier. If this is done it is guite porsible to gre satisfartory performanme with inexpensive low-power thbes in forth ascilator ame butfer stanes. White if the butfor is omitted it is mexoseary to use :
 eompling betworn the oseillator and momalated amplifier must be very lowes if the usedlater freguency is mot to be affored by whatever happens in the amplifier plate eimatit comserpuently the ascill:ater must devolop math greater power than actually is noeded to drive the amplifier simer onl! a small part of tho power can be utilard with the lowse conpling reguired.

A threr-stage tramsmittor in which fre-quencer-modulation affects atre quite smatl is shown in liges, lfiz! to 1 tis. indmoive. It in-
 amplifier. and \$15 final amplifier, as shown in

 tor. 6 (: b bufter amplifior. and $81 . \mathrm{final}$ amplifior. for stabilized
 huilt a- a suit con the felterd alaminum whas-in th the right. The tramsmither devedops a car-ier oatput of ahout 10 wats.
the circuit diagram, Fig. 1030. The oscillator and balior are hailt as a wait on a U -rhaped
 inchos high, and 2^{-}s. inches deep on the top. The stis is anomated on a vertieal almminum pioce measuring $1^{1} \frac{1}{4}$ inchos high and 3 inches wide, mointorend log themling side lips as shown in the photergraphes The two soctions are assothblad on: (i-hy I: be: 3 -inch chassis.
'T'Me weillator rivalt and romponmots are

 amplifier is ruite simila to that ar the oscillator. The bu for tuming comblenser comsists of a rotar having threw huttorfly plates (A in Fig. 1021) anll two tatorn amh having two 90 -

(i) $\quad 3-30$ - $\mu \mu \mathrm{l}$ d. trimonir.
 midert mian.

(:- Namtralizing: - - tevt.
(: - - Bulfer tuming: ver tovt.
Cos, Cio.- Implitiar meatralixing: ser tax.

(.14 - $1001 \mu \mu \mathrm{fl}$., $2 . \mathrm{B} 00$ wilt-.
1.1 - 2 turn - lo. 12 Jame wim: invide diameler ote
 phate-suphly tap at cen-
La-2 turn* No. 14. invide diamener 1关保h: turne spaced wire diandeter.
$\mathrm{L}_{3}-4$ turn \o. It. insidn diameter 3_{4}^{4} indh, length 1 inelt: plater-ruppy tap at conter.
 spard diander of wire; tapmed at emtor.
$L_{5}-2$ turis. No. İ. inside diameter 1 inch, lonsh 1 infle platernpoly tan at center.

$R_{2}-2.0000$ whm- ! watt.

R: - $1.5,0 \%$, thim*, 10 watl*.

of the buffer is self-resonant, the tuning being adjusted by squcezing the turns of the grid coil, L_{2}, together or prying them apart. The huffer neutralizing condenser, C_{7}, mounted direetly between the grid of the 6 C 4 and the lower set of stator plates of C_{8}^{*} is a $3-30-\mu \mu \mathrm{fd}$. trimmer with the movable pate removed and a washer sohdered under the head of the adjusting screw. The wather. by replacing the movable phate, reduces the capacity of the condenser to a value suitable for neut ralizing the 604.

The wrid coil of the final amplifier also is resonant with the imput eapacity of the 815 , just as the buffer grid cireuit is self-resonant. For best operation, the Slorequires neutralization at this frequency. The nebtralizing "eondensers," Cyand Cin in the circuit diagram. are simply pieres of So. 14 wire extending from the grid of one section of the 815 to the vieinity of the plate of the other seetion. The wires are reossed at the bottom of the tube socket and go through Millen 32150 bushings in the metal partition. The sereen and filanent by-pass condensers are mounted so that the leads between the soeket prongs amd the nearest ground point are as short as possible.

The amplifier phate tamk rireuit uses a condenser of the same eonstruction as that used in the buffor tank. It is mounted as closely as possible to the plate caps on the 815 , and to preserve cireuit symmetry the condenser is tumed from the left-hand edge of the chassis. If the transmitter is to be equipped with a regular panel this condonser may be operated by a right-ingle drive from the front.

The output terminals are a standard bind-ing-post assembly on polystyrene, nomited on metal posts 2^{3}, inches high to bring the compling coil in proper relation to the amplifier plate tank coil, L_{5}. Coupling is adjusted by bemding L_{0} toward or away from L_{5}.

The plate by-pass condenser and sereon dropping resistor are mounted underneath the

Fig. 1631 - A rear view of the threr-stage 1/4-Me. transmitter. The oscillator is at the left, with the buffer amplifier to the right.
chassis, as shown in Fig. 1636, together with the filament transformer. Separate powersupply terminals are provided for the oscillator plate, buffer plate, amplitier arid, amplifier sereen, and amplifier plate so that the currents can be measured separately.

In putting the transmitter into operation, the first step is to adjust the frequency range of the oscillator as despribed in connection with the o('4 oscillator disenssed earlier in this chapter. Then. using loose coupling betweon the buffer grid coil, L_{2}, and the usoillator tank coil. L_{1} (the coupling may be adjusted by bending L_{2} away from L_{1} on its mounting lugs) adjust L_{2} by changing the turn spacing until the grid cireuit is resonant. Resonance will be indicated by maximum oscillator plate current; it can also be cheeked hy mosuring the voltage across the buffer arid leak. h_{2}, with a high-resistance voltmeter. The maximum voltmoter reading (about 40 volts) indicates resionatuce. The buffer should next be neutralized by varying the capacity of C_{7} until there is no change in the voltage across l_{2} when the buffer tank eondenser, C^{\prime} s. is tunod through resunance. The point of correct nestralization also can be determined by coupling a sensitive absorption wavemoter such as is described in the chaptor on frecpueney measurement to the buffor plate roil and adjusting C_{7} for minimum reading. With this method. care must be used to avoid coupling between the wavemeter and the osemator: link coupling between L_{3} and the wavemoter, with the latter far enough away so that it cloos not give a reading from the ascillator alone, should be used. Another method of ehecking noutralization is to adjust the turn spacing of the amplifier grid coil, L_{4}. to resonance and measure the 815 grid current (with no plate or seren voltage on the tube) and adjust ('; for zero grid current.

After the buffer is neut matizod, plate voltage may be applied and Cusulusted to resonatuee. as indicated by minimum plate current. If the coupling to the final amplifier is quite loose, the minimum plate current should be approximately 17 mal. The amplifier grid coil may next the rexonated (by :uljustiug the sparing between turns) and the coupling increased until the maximum grid currant is secured. The grid current should be 4 milliamperes or more and the buffer plate rurrent should rise to about 28 ma .

Neutralization of the 815 is the next step. If the grid current changes when the plate condenser, C_{12}, is tuned through resonance, the neutralizing wires should be moved closer to or farther away from the tube plates until tuning C_{12} has no effect on the grid current. When this condition is reached the amplifier is neutralized. Plate and sereen voltage may then be applied. With no load on the amplifier the plate current should dip to approximately 65 mat at resonance. Loading the amplifier to a plate current of 150 ma . should not cause the grid current to drop below about 3.5 ma. A 40 -watt lamp used as a dummy load should light to practically normal brightness at this input, using a plate-supply voltage of 400 .
For greatest stability, the coupling between the oscillator and bulfer should be as loose as possible. It is better to obtain the rated 815 grid current of 3 milliamperes by using tight coupling betwen the buffer and amplifier and loose coupling between the oscillator and buffer than vice versa. With normal operation the osciliator plate current should be approximately 25 ma. and the buffer plate current 28 ma., using a plate voltage of 300 .

A modulator for the transmitter should have an audio output of 3.5 watts, using a coupling transformer designed to work into a 2500 -olm load.

(I) A 144-Mc. Double Beam Tetrode Power Amplifier

An amplifier set-up suitable for use with double beam-tetrode tubes is shown in Figs. 1633, 1634 and 1635 . The tube in the photograplis is an 829. but an 815 or 832 can be used in the same layout. The only change that might be required would be in the inductances of the grid and plate coils, L_{2} and L_{3} : these may have to be made slightly smaller or larger in diameter to compensate for the differences in input and output capacitances in the various types.

The physical arrangement of the components is similar to that used for the 815 amplifier incorporated in the three-stage transmitter described in the preceding section.

The amplifier of Fig. 1633 is built on an aluminum chassis formed by bending the long edges of a 5 by 10 -inch piece of aluminum to form vertical lips ${ }_{3}^{3}$ inch high, so that the top-of-chassis dimensions are $3 \frac{1}{2}$ by 10 inches. The tube socket is mounted on a vertical aluminum partition measuring $31 / 2$ inches high by $3 \frac{1}{4}$ inches wide on the flat face, with the sides bent as shown in the photographs to provide bracing. The partition is mounted to the chassis by right-angle brackets fastened to the sides. The socket is mounted with the cathode connection at the top, the cathode prong being directly grounded to the nearest mounting screw for the socket. The heater by-pass condenser, C_{c}, is mounted directly over the center of the tube socket, extending between the paralleled heater prongs at the bottom and the cathode prong at the top. The screen by-pass is connected with as short leads as possible between the screen prong and the nearest socket mounting serew.

The grid coil, L_{2}, is supported by the grid prongs on the socket. The two turns of the coil are spaced about one-half inch to allow room for the input coupling coil. L_{1}, to be inserted between them. The coupling is adjusted by bending L_{1} into or out of L_{2}. The grid tuning condenser, C_{1}. is mounted between the socket prongs; although the condenser has mica insulation it is used essentially as an air-dielectric condenser since the movable plate does not actually contact the mica at any setting inside the band. The coupling link is soldered to lugs under binding posts on a National FWG strip, the strip being mounted on metal pillars $11 / 2$ inches high to bring the link to the sane height as the grid coil.

Although the shielding between the input and output circuits of the tube is sufficiently

Fig. 1633-1 14. Me. amplifier using a double beam tetronle. This type of construetion is suitable for the 815 and 832 as well as the 829 shown. The vertical partition provides support for the tuhe as well as shielding between the inmut and ontput circuits. Note the nentralizing "eondensers" formed by the wires near, the lube plates.

lig. I6.34- Cirmuit of the 829 amplifiar for 111 Me.
$\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fil}$. ceramic trimmar.
C2, C_{3} - Ventralizing conden-irs; see text.
C 4 - $500-\mu \mu \mathrm{fd}$. micit, 1110 M -volt.

C. $-500-\mu \mu$ fd. mica.
C_{7} - Split-itator, $15 \mu \mu \mathrm{fd}$. per seetion (Carilwell ER -1.5-(1)).
$L_{1}-2$ turns No. 12 , diameter $1 / 2$ inch.
I. $2-2$ turn. No. IV, diametor $1 / 2 \mathrm{inch}$, length $1 / 2 \mathrm{im} \cdot \mathrm{h}$.
$L_{3}-2$ turns Vo. 12 , diametor $1 / 8$ inehes, hength I ineh.
I.4-2 turns No. 12, diancter 1 inch.
R_{1} - डtu0 ohms, 1 watt.
$R_{2}-10,000$ ohms, 10 -watt.
$R P C_{1}-I$-inch winding of No, 21 d.a.e. or s.e.e. on 1/4* inch diameter prolystyrene roid.
good so that the circuit will not self-oscillate, tuning of the plate circuit will react on the grid cireuit to some extent beratise the gridplate caparity, although small, is not zoro. To climinate this reaction it is meressary to neutralize the tubo. The neat ralizing "condensers" are lengths of No. 12 wire soldered to the grid prongs on the socket. The wires are crossed over the sooke't and then go through small ceramic feed-throughs at the top of the vertieal shichd, projecting over the tube plates on the other side ats shown in Fig. 1633.

Conmections between the plate tank condenser, C_{7}, and the tube plate terminals are made by moans of small Fahmestock rlips soldered to short lengths of flexible wire. The tank eoil, L_{3}. is monnted on the same condenser terminals to which the plate clips make com-
nection. The output link, L_{4}, is mounted similarly to the grid link except that the posts are $17 / 8$ inches high. The plate choke, $R F^{\prime} C_{1}$, is mounted vertically on the chassis midway between the plate prongs of the tube, the mounting means being a short machine serew threaded into the end of the polystyrene rod. The "eold" lead of the choke is by-passed by C_{5} underneath the chassis, directly below the point where the lead pasies through.

Supply connections are made through a 5 -post st rip on the rear edge of the elassis. The dotted limes between commertions in Fig. 163.4 indicates that these commections are nommally shortcirruited; separate leads are brought out from the grid and sereen so that the currents can be measired separately.

In adjusting the amplifier, the plate atod sereen voltages should be left off and the d.e. grid cireuit closed through a milliammeter of 025 or $0-50$ range. The driver should be compled to the amplifier input cireuit through a link (Imphenol Twin-Lead is suitable, becanse of its eonstant impedaner and low r.f. losses). Lise loose coupling botween L_{1} and L_{2} at first, and adjust C_{1} to make the grid circuit resonate at the driver frequency, as indicated by maximum grid current. The coupling between L_{1} and L_{2} maty then be increased to make the grid eurrent sidightly higher than the rated load value for the tube used. This is approximately 12 ma. for the 829 . If the driver is an owillator, the compling between L_{1} and L_{2} should be kept at loose as posisible so long as the proper grid current is obtained.

Neutralization ran be cherked by rotating C_{7} through resonance. A flicker in grid current as C_{7} is rotated imbicates that the neutralizing repacity is not corrert. The neut ralizing wires should be bent in rolation to the tube plates until the grid current remains constant when (' ${ }^{\prime}$ is tuned through resomance. Care should be used to keep the wires symmetrical with re-

Fis, 163.5- Inother , iow ol the 14-31e. amplitier. 'The nentralizing wires are erossed ovir the socket lefore going through the fecd-through innulators. 'The inpout circuit is atesigned far link coupling to the Iriver stage.
spert to the two sections of the tube.
After meutraligation, plate and sereen woltagre may be applied. If posiblas. the plato roltage should be low at first trial su theme will be no danger of overdombing the tube. Adjust ('; to resobalmere as indicatod by minimum plato corrent (this should be me:asumed indeperndently of the serexti): with the 82! the minimum plate erarent shand be in the might bobhood of so milliamperes with fon volta on the mato and mo loal on the eiment. A damme lomal such as a lio-watt latmp shombd light to something mear full brilliance when the ront plime betwern hasad Latis aldusted to make the tube draw a plate charent of 200 mas. When the loading is sot. the grid! entrent should be rhecked to make sure it is up to the rating lor the tube. If it has derereased, the eompling betwern L_{1} and L_{2} should be inereased to bring it back to normad.
lowrorsuphly and mondulator rembirements will depmed upen the partioular tube used. Fror
 voltame of 400 to 500 with a mument rapacity of 250) milliamperes. With a 100 (volt supply the
 whtput transonmer dexigned to work into at 1tion-ahm load; with: 500-volt suphly shightly wore 60 witts of athedio power is neded, the load being 2000 whms.

(1. Transceivers

'The tramseriver is a mombination trams-mitter-reediver in which, hes sutahle switching of d.e and andio cirenits. the same tube and r.f. cireuit fumetions rither as a mondalated transmitting oscilator or as a supormenomerative deteretor. The advantages of the transeriver are compartmess, rioult simplicity, and the new of tha same antamat fon looth transmitting allal reoriving without the neressity for switching the r.f. rireuits. 'Iransombers have beron widoly used for portahle and mobila work.
ln welleral. switehing means must bo por vided in the transeriveres that when reereption is desired the amdio-icequolley amplifer is connerted as in at momal reroiver : simultamoonsly the mierophome must be diseromered from the a.f. amplitier. Insolitr as the oscillatom is concodned. the valur of the grid leak mant be changerl when switching from rerove to transmit. since a high value is mumed when the
 and a relatively low value as a trallomitting ascillator. The phate voltage alsis must be rhanger from the low value rounired by the dotector to the high value meded for transmission. A sperial andio tramsionmer ("trams"oiver transformer") having a microphome winding in addition to the normal windings, is reguired.

The disadvantares of the transeriver, from the standpoint of work in an amateral band. are largely the result of the circuit simplieity. As with any modulated oscillator, the signal from a transeriver is broad; in the type of eon-

 ficrpate by -pa-s condenmer, athel -rrandrupping resintor ate momated here.
struction hised there is relatively little opporthatity lor the stabilization that can be obtatned with tha highte useillaturs described cation in the chapter, When reowiving. the suparegenarativo detertor radiates :mal canses interterrace to other stations of arating in the winity; in fact. in many eases the radiation from the recover covers almost as much distance range as the oscillatom domes when intentionally being lused for tramsuitting. 'This is beeanie the degree of athtoma compling used. When adjusted for good transmitting, is such that rathere high plate voltage must be used on the tube to make it superenemerate when recoiving, with the result that the power input to the tube is relatimely high.

The transoriver also has an operating disalvantage in that, since the tuned cirenit is (ommon to both the tramsmiter and reraver, the trasmitting fresurner is nocessarily the sume :as that on which recerving is dome. Howevor, the transmitting and receiving frequenribs are not fermetly the same berame the plate voltages used for transmitting and receiving difior. Conserpently there is a frefurney chamge atoh time there is a changeover from receving to transmitting. The result of this is that when two trallserivor stations are in eommanication their frequencies tend to "w:alk through" tha batul berause either must rotune for best racopion when the other transmits, and this woming in turn changes the transmitting frourncy. In the comuse of a contact it is readily possible for both stations to mover entively outside the band limits.

Is a mattor ol good amateur practice the nas of transedivers should be confimed to bery low-power "prration -- as in "walkie-talkie" or "handie-talkia" "quipment - in the lHe Me. band. and to experimental low-power operation in the higher-frequeney bands. The use of transwixer-type equipment shomble be aroided antirely for regular operation on $14 t$ Me. in arets where there is considerable activity on this frecpurncy.

The transebiers shown in this chapter are intemded primarily for portable or portablemobile operation, using batterios as a source of power supply.

Fig. 76.36 - An infurensive low-power 14.4-Me. Iransceiver and vibratur puwer supply.

CI A Simple 144-Mc. Transceiver

The transceiver shown in Figs. 1630, 16.37 and 1638, constructed from inexpensive parts, ean be used either as a piece of fixed-station equipment or for portable-motite work. The pancl is a 10×10-inch piece of $1 / 4$-inch tempered Presdwood, while the sholf whieh holds the audio circuits is: a 312×10-inch piece of the same material. The shelf is monnted 1 '2 inches above the bottom of the pamel, leaving room for the resistors and condensers underneath. The box in which the transeriver is housed is made of ! 1 -ineh plywood, the inside dimensions being $10 \times 10 \times 3$! 2 inches. At the back a door, hinged at the bottom, gives aceess to the tubes and r.f. section.

The oscillator is all in one unit, built on a 3×4-inch piece of aluminum with ! bent over at one end to form a mounting lip. The metal base projects $31 / 2$ inches behind the

Fig. 16.37-Circuit diagram of the 1.14-Mte, transceiver.
$\mathrm{C}_{1}-\mathrm{Mitget}$ varialile, $10-15 \mu \mu \mathrm{fd}$. masimum lajacity.
$\left.\mathrm{C}_{2}-50\right)_{-\mu \mu \mathrm{ft}}$ mica.
C. 3 - 0.0(1.i- μ fol. mía.
($\mathrm{c}_{\mathrm{t}}-2 \boldsymbol{2 0}$ - $\mu_{\mu} \mathrm{fl}$, mira.
($5-0.1-\mu$ ful. paper, 100 volts.
Ct - 2.5 to $50 \mu \mathrm{ffl}$. eleretrolytie, 50 voltu.
lla - 5 morghms, 1 g-watt.
$R_{2}-\bar{j}(\mu \mathrm{~N})$ olims, l-wat (for 6,55, 6(:5); 10,000 chms, 1 -watt (for (10 , ete.).
$\mathrm{R}_{3}-0.5-m e{ }^{-1}$ -
K_{4} - loot ohms, 1,2 -watt.
$R_{0}-0.1$ merohm, 1 -watt.

k : - 2: 20 olms, l-watt.
K, - 200 ohms, l-watt.
$\mathrm{B}!$ - $-30,000$-shm volume rontrol.

$\mathrm{L}_{1}-3$ turns No. $12,9 / 16$-inch inside diamcter, 1 inch long.
I2-1 turn No. 12 or No. 11.
$\mathrm{RFC}_{1}, \mathrm{RFC} \mathrm{C}_{2}-5.5$ tarns No. 30 d.r.c., closewound, $1 / 4$-inch diameter.
' T_{1} - 'Iranseciver transformer (ree text).
\mathbf{F}_{2} - Output transfurmer, pentude to voice coil.
S.4-4-pole double-throw switch.

J-Open-circuit jark.
Spkr - 3-inch permanent-magnet dynamic speaker.

Fig. 16.38 - Rear vicw of the 144- He. transceiver installed in its case. The oscillator-detector is constructed as a unit.
connection between the oseillator and the audio section. It makes direct contact with the oseillator support, the rotor of R_{5}, and the metal frames of the switch and microphone jack.

In the rear view the transformer at the left is T_{1}, the transeever transformer. The audio gain control, R_{3}, is on the panel between R_{1} and the 6.55 first audio. The modulator tube and speaker transformer are at the right, with the regeneration control, R_{9}, behind them on the panel. All leads from the switch are cabled and pass through a hole in the sheld near the panel. The two grid leaks, R_{1} and R_{2}, are mounted directly on the switeh contacts, but all other resistors are below the shelf. The below-shelf arramement is of no particular consequence, since there are no r.f. circuits underneath, but the grid leads to both tubes should be kept short, so that hum pick-up will he minimized. The dropping resistor, R_{10}, for the regeneration control circuit is mounted on the lug strip at the rear: the other two resistors which connect together at this strip are the two sections of the modulator cathode resistor. Spate terminals on the tube sockets are used as tic points wherever converiont.

It is possible that in a particular Iavout the proper choke specificuions will differ from those given. The grid choke is the more critical. In the case of either choke, the number of turns should be adjusted so that the cold end can be touched with the finger without disturbing the operation of the oscinlator. Effective superregene-
ration depends considerably on the grid choke and on the capacity of the plate by-pass condenser, C_{3}. The circuit may not superregenerate at all with less than $0.002 \mu \mathrm{fd}$, at C_{3}, while values higher than 0.005 tend to cut down the audio output.

The inductance of the tuned-circuit coil, L_{1}, should be adjusted to bring the band on the dial by spreading the turns apart or squeeang them together. The frequency may be checked by means of an absorption wavemeter or Lecher wires as described in Chapter Nineteen. Antenna coupling is adjusted by bending the leads of the antenna coil, L_{2}, to bring the coil nearer to or farther away from L_{1}. The coupling should be adjusted so that with the switch in the "receive" position the oscillator goes into superregeneration smoothly: if the coupling is too tight it may not be possible to obtain superregeneration at all.

The transceiver requires a filament supply of 6.3 volts at 1.05 amp., and a plate supply capable of delivering 30 to 60 milliamperes at 135 to 200 volts. A suitable vibrator-type supply is shown in Chapter Lighteen.

CI A 144-Mc. Handie-Talkie

For short-range work the "handie-talkie" type of equipment, where the transmitter and receiver are built as a unit light and compact enough to be held in one hand and operated in much the same fashion as an ordinary telephone handset, frequently is useful. Figs. 1640, $16-41$ and 1642 show a unit of this type, designed for operation in the $144-\mathrm{Mc}$. band. It uses dry-cell acorn tubes in a simple transceiver circuit.

As shown in the circuit diagram, Fig. 1611, a three-pole two-position switch, S_{1}, accomplishes the changeover from send to receive. One section connects or disconnects the microphone; the second section connects the proper

Fig. 10.39 - Bottom view of the 141 . Me. transeciver.

 using dry -cell type acorn tubes. It is small enongh to be sibped into a procket, hom has a rampe up to a mile or an in reasonably open terrain (${ }^{\text {G }}$ 'TWL).
grid lazk, and the third sertion shifts the oseil lator plate cirenit from the primary of the transeeiver transformer, T_{1}, in the remive position, to the plate of the andio smplifier-modulator, for transmitting. The hewdphome serves as a modulation choke during transmission.

The case for the handie-talkie is $71 / 8$ inches

Fiz. I6, II - Circuit diagram of the l1.1-Xle handie-talkic.
C $-3-30 \mu \mu \mathrm{fd}$. eerantie trimmer (fee text).
C, $2_{2}-50-\mu \mu$ fl. ceramic conternser.

$\mathrm{L}_{1}-5$ turns N_{0}. 16 timed copper, z_{8} inch inside diameter, cesil lengith $3 / 8$ inch.
I. 2 - 1 turn No. 16, 後 inch inside diametror.
$\mathrm{I}, \mathrm{I}, \mathrm{a}-50$ turns No. 36 , d.s.c. on 10 -megolam, $1 / 2$-watt resintor.
$1 \mathrm{k}_{1}-2.5000$ ohnmo. $1 / 4$ watt.
$k_{2}-10 \mathrm{mogohms}, 1 / 4$ watt.
k_{3} - 400 ohms, $1 / 4$ watt.
S_{1} - Triple-pole dorable-throw slide switeh.
S_{2} - Single-pole single-throw slide switeh.
'S' Transceiver transformer (Inca $1-45$).
high. $25 / 8$ inches wide and $11 / 8$ inches deep. It is made from two pieces of aluminum; one, on which the parts are mounted, is in the form of a U-shaped chammel as shown in Fig. 1642, while the other is bent at the ends to complete the enclosure. The fubes are monnted by soldering the F-pins (Nos. 4 and 5) to smatl brass angles which in turn are momitad on oppposite sides af the case, as shown in Fig. 1642. The sorews that hold the angles to the case alse are used ter mount the two switehes, S_{1}

Fig. 16.12 - A view inside the 1.14Ale. handie-talkie. 'The flashlight hattery for lilament supply is at the bottom of the case.
and $S_{2} . S_{1}$ is mounted undermath the tuning knol, while S_{2} is on the opposite side.

The tuning condenser is a $3-30-\mu \mu \mathrm{fl}$. trimmer with the adjusting serew removed and threaded tighty into a $3 / 4$ inch lengeth of 1 -inch diameter round polvisivene rod. 'lhe head of the serew is cal off and the screw rethreaded into the eondenser to make a miniature tuning condenser with the shaft extending outside the case for aljustment. Stops are provided on the dial so that the eondenser knob can be rotated just enough to cover the 144-1/48-Mc. band. The con-
donser and tank roil, L_{1}, are supported by their leats. one end of the tank circuit inding soblered to the plate lead of the tube.

The micerphome is as single-han(on unit (['niversal 'Type W) memated on a circular bork cot at an angle sothat it isproperty tilaed for voice pick-up when the heatphome is had arsumat the eat's '19he heralphone is athe mit of as 2000whm set mondered on the c:mes

The antronat phas into the pin jack at the rup or the tratheniver. simedor brasx rod of ' 1 a-incla diatheter may be used for the allotemat: a lengtis of appoximately is inches is required for a guaterWave antemat. The lenuth mas: he pamed to the oploman figum by having amodher station cherek the signal st mength while the hemgh is changul. or
 ting ofte a bit at at fime until the abtemat shows the maximum tembency to thene the surerregenerative detertor out of oxcillation.

This unit uses a singhe No. 1 size flashlight. roll for ${ }^{-} \mathrm{A}^{\prime \prime}$ power and a minature hovolt hook (Burgow $\mathrm{X} X 30$) for " $\mathrm{B}^{\prime \prime}$ supply 'The fitament drain is 100 milliamperes and the plate drain 3 mas.

($3-0.00$ - $-\mu$ lit, mica.
 aledrolstic.

(in-0.015-pfil.. I (ow - vole paper.
(a)-0.01- $\mu \mathrm{lil}$. paper.
(12--100- 10 fll. mía.
lí- 1 turn No. $14,{ }_{2}^{2}$ inch diameter.
$1.2-2$ turns !'s-inch copper tubing,

(1. A Complete 144-Mc. Mobile Station

Thı : 1t-Mc. mobike erpuipment shen wh Fins: litis w 1619 . inclusive, uliers two aliernalives io the propertive user. It inclates a 1 ratseatorn desimura! for fitiong into the glove comparmorne at actr, and this unit is a complete low-powe. station in itseli: in andition, there is a highor-pwor tramsmitare (25) (0) 30 withts inpul; which tan be instirlled in the car
\therefore inch inside diarmetr. 1 :
in. h_{1} Ingur.
$1.3-8$ hentyr. 1.30 mat.

$K_{2} K_{3}-2.9$ oluns. ${ }^{2}$ wall.
R_{1} - 10,0110 , ilome, 1 watt.
K_{s} - 1000 whase, ${ }^{\text {Log watt. }}$
$R_{6}-$ - -merohn putintiometer.

RFG: 2.5 millihenrys.
RFC. - 0 turns No. lo enameré on l-in*h form.

ameled. Ench invile diamcter. 1 inctilang.
 -oil.
R:s-S.b.d.t. relity, (r-vadt coil.
\therefore. Ans.
F I).p.l.t. Iosule.
\boldsymbol{f} - Single-lutenn miv-rophone transfor:n.r.
'1'- Driver transformer, 6C. to 6.V. aritl=.
 $6 . V$ (o) 5000 -ohm load.
trunk and operated by remote control，in which case the glove－ compartment transceiver is used for receiving only．The dual－t rans－ mitter plan has the advantage that the drain on the car battery is reduced when the low power output available from the trans－ ceiver is sufficient for short－dis－ tance work．

The transmitter，shown in Figs． 1643,1645 and 1646 ，uses the cir－ cuit liagram given in Pig．16！4． In addition，this unit contains both a vibrator power supply for the transeciver and the control re－ lays；installing the recoiver power supply in the car trunk is helpfal in reducing＂hash＂interference

 show ing the placememt of the vibator－supple components．The relay near the top of the photograph is the plate relay．Rys． from the vibrator．The 1 rans－ mititing lube is an II 「75 modulated by a Class－13 6ヘ7 7，the modulator being driven by a 6 C 5 speech amplifier from a single－bution carbon mierophone．Current，for the micro－ phone is taken from a＂C＂battery in one cormer of the main transmitter cabinet．

The 6N゙T and HY゙75 plate currents are sepa－ rated from one another by the output trans－ former，T_{3} ，and each may be measured by the millianmeter shown on the face of the main transmitter．The meter maty be switched into the 6×7 or HY 75 plate circuits at points $A A$ and B / B ，Across each set of points is a 2.5 －ohm resistor，the purpose of which is to maintain a closed plate circuit for each tube whether or not the meter is conneeted．The meter readings are not appreciably alfected，since the 25 －ohm resistors represent relatively a much higher resisfance than that of the meter itself．On the panel just under the instrument is a switeh， S_{4} ，with which this change－over may be male．

The vibrator and $6 \lambda^{5}$ rectifier circuits are thoroughly filtered．The r．f．choke，$R F^{\prime} C_{4}$ ，is

Fig． 1645 －Top view of the 144 －Mc．mobile transmitter unit show－ ing the HY 55 and its tank circuit in the upper center．The relays are mounted on a sub－panel in the lower right－hand corner of the transmitter hox while the aydio equipment occupies tho left－hand side．The vibrator for the transcoiver supply is to the left of the relays．
by－passed by C_{7} at the center－tap of the vi－ brator transformer primary for the purpose of killing a large portion of tite hash immediately after it has been manufacturel．Aeross the secondary is the series combination，C_{8} and R_{7} ， to keep vibrator sparking to a minimum．The output hash is filtered by $R F^{2} C_{3}$ by－passed by C_{9} at the rectifier cathodes．Ordinary filtering of the rectified output voltage is done with the filter composed of L_{3}, C_{10} athil C_{11} ．Hatsh whith might get through to the output via the heater of the 6．．．）is by－passed by（f12．

There are three control switches on the transmitter，all associated with the remot：－ cont rol relays．\dot{s}_{1} opens or closes the winding of the filament relay．$R y_{1} . S_{2}$ does the same with the plate relaty，Ryz．If in is desired to listern on the transeever while the ratin transmitter is on，S_{3} can be thrown on to short the two active contacts of $R y_{3}$ and therober start the vibrator． The contaces of relay liza copen when Rye gocs on and puts the main tramsmiter in operation． In this way plate current for the teceiver is cut off luring operatien of the matin trats－ mitter．Ilowever，when it is desired to listen to the matin transmituer for testing purposes．治 may be thrown on to eatuse the vibator te operate．The signal in the receiver will be browd，but． it is possible to tell whether the man transmitier is radiatimg amd apponi－ mately in what part of the band it is set．
The photographs indicate the relit－ tive positions of the parts of the trams－ mitler on the $17 \times 10 \times 3$ inch chassis． The tuning cabinef to the right of the IWo genemotors measures $10 \times 9 \times$ ： inches．

The controls which require manipu－ lation for a quick test are located on the front edge of the chassis．The main dial is provided with a dial lock for the purpose of preventing the frequency of the transmitter from changing under car vibration．The antenna coil is
mounted on an insulating rod supported in a shaft bushing, so that the antenna coupling may be varied by rotating the rod. The coupling control knob is just above the main tuning dial in Fig. 1643. The antemat comes in conveniontly to the stand-off insulators at the uppor left.

The top-view photograph shows two of the relays, those for the filament and vibator, lowated in one corner of the cabinet on a common base. The relay which controls the genemotors is underneath the chassis. The HY75, with two topeaps, is plared next to the tank coil and condenser. Also, the 6 X 5 rectifier is placed close to the vibrator, shown in the cylindrical can, and the powor transformer to which they conmert is underneath the chassis at the same place. The phate meter and speech amplifier components are at the right-hand side of the eabinet.

In the under-chassis view, Fig. 1646, the volume control at the right has its shaft extended for the width of the chassis, to put the volume control connections near the control grid of the 6 C 5 speech input tube. The under side of the unit contains the assortment of filter and by-pass condensers required in the circuit shown in Fig. 164.

To adjust the transmitter, close the filament, switch, S_{1}, and allow the tubes to come up to temperature. Then close the plate switch and check the oscillator and modulator plate currents, which should be in the vicinity of 60 ma . and 40 ma. . respectively, at a plate voltage of 300 to 350 . With S_{4} connected to read oscillator plate current, tighten the antenna coupling. This should cause an increase in plate current. The antema length (sec Chapters Seventeen
and Fighteen for information on mobile antennas) should now be adjusted to cause the maximum increase in oscillator plate eurrent, indicating that the antenna is taking maximum power. For close adjustment it is advisable to move away from the antemna after each length adjustment to avoid the efferts of body capacity. Alter the antemat has been resonated the antenna coupling should be varied to make the oscillator take the desired value of plate current. The modulation quality can be checked by having another person listen to the signal on the transceiver ($\dot{3}_{3}$ being closed).

In the transmitter shown, plate power is furnished by two 175 -wolt motor-generators with the outputs connected in series to give 350 volts. Alternatively, am:achine delivering 300350 volts could be used. or a vibrator supply capable of furnishing 300 volts at 100 milliamperes or more.

The transcciver circuit, Fig. 1648, uses an HY615 as the oscillator-superregenerative tube. The speech equipment consists of a 6 C 5 ,

Fig. 1648 - Circuit diagram of the 144-Mc. mobile transcriver.

$\mathrm{C}_{5}-0.003-\mu \mathrm{fl}$, paper.
(: $-25-\mu \mathrm{fd}, 2 \overline{5}$ wolt electrolvic.
(is - $0.01-\mu \mathrm{fd}$. paper.
C. $\mathrm{C}_{10}-50-\mu \mathrm{fd}$., 50 -volt electrolytic.
$\mathrm{C}_{11}-8$ - $\mu \mathrm{fl}$., 450 -volt electrolvic.
$1.1-2$ turns No. 18, $1 / 2$ inch inside diameter, $3 / 8$ inch long.
I. 2 - 3 turne same as L_{1}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Open-rircuit jack.
$R_{1}-20,000$ olms, 1 watt.
$h_{2}-10$ megohms, $1 / 2$ watt.
R_{3} - 1-megohm potentiometer.
$R_{4}-2000$ ohms, $\frac{1 / 2}{2}$ watt.
$R_{5,} R_{10}-0.1$ megohm, 1 watt.
h_{i} - $11 . \overline{\mathrm{S}}$ micgohm.
$h_{i}-2.0$ ohms, 1 watt.
his - 500 ohms, 1 watt.
h_{3} - 50,000 -ohm potentiometer. $1 \mathrm{FPC}_{1}, \mathrm{RFC}_{2}$ - Ohmite Z-1.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{4}-20$ turns No. 18, 5/6 inch inside dianueter, 11/5 inches long.
S_{1}-4-pole 2-position switch.
$\mathrm{S}_{2}-$ D.p.d.t. toggle.
S_{3} - S.p.s.s.t. toggle.
T_{1} - Transeciver transformer.
$\mathrm{T}_{2}-$ Speaker output transformer.

Fig. 16.19 - Top vies of the mohile tran*ediver slawing flte horigontal
 r.f. component-ane in the -hathed eompartment to the right, 'The andio equipment is armanged along the rear.
the powrer supply from the paned of the main tramsmitter atre shown in the reate sueved hali-ineh holes drilled in the top of the asise provide ventilation fior the tubes juside. Tubres are momitad horizontally. 'lhis amamentent platers the tominals of the sorkets right at the rommertions to eomponent parts which are mumited withan the front seretion of the mit. Exreprions are the microphome and out put-stame tramsformers. T_{1} :and T2. They are momed at the oppositc colle of the top section and :1s far from one another as space will permit. All of the r.f. equipment is confined to the compartment at the right. Fitirly rlose coupling

Working from a singe-hatton microphome.

 fier for a loud suaker when the unit is usel for reception. 'The transerdier swit h_{1}, s_{1}, is a loursection, two-position potiry switrh. (one seetion transiers the pate of the HIVis from the input winding on the thansediner tramsormer. Th, to the plate of the bivi to switeh some recoive to transmit. Tha serond seetion lensers the II Yobs grid lak resistanoe to a suitable value for transmit ting by comare ting the lower and of R_{1} to ground. 'The third sertion diseonneets the mierpphone from the mierophome input winding on T^{\prime}, for mereiving, and romule ots it to the winding for transmitting, white the fourth section makes the appropmiate comnection betwern the speaker and the vairecoil winding on T's. tha :mdin motput tramsformer. When the mate transmitare is being used S_{1} is left in the recolve position all the time.

The sumbrererive switeh usod for the main

 mierophone fatel from a shieded line which rums to the main transmittor, therehy opening the microphome cirruit during reepotion. The othar sertion of Sy tums on the zmain transmitter throngh relay liyg, Fig. lott. in the semding position and diseonnerts the relay in the receiving position. S S_{3}, a fowgh switah,
 [ifg. 1fil4) which controls the twanmitter filament rirenits.

The front view of the transer.iver, Fig. 1fith, shows a collinet with dimensions of approsimately ! $\times 6 \times 4$ imehes. This allosw ample space on the pand for the fain and resemerat tion coutcols which atre shown with painter knobs, and for the adianemt send-remomeswiteh with its rireular knob. 'The two torembentehes at the left ront rol the filamont and main transmitter phate supplies throurh two mays, h ? y_{1} and R!/2 in Fig. 164.4. A saaker is phaged into one of the jacks at the left and the single-button mierophone goes into the other. Cables to
betweren the antmana and tank coils is provided in the transeriver.

Too test the operation of the tramsenver as a receiver, first throw on the filament switeh.
 the vibrator starts. through the action of relay R!us. The familiar hackground hiss should then be heard and somestat ions minht erome in as the maia dial is rotatad. sometimes, just manipulation of the regreneration control will cather the recojor to "eome :live," if it serems deand at the start. As a simphe test of operation, bourh the :antemna. 'The recoiver noiser should diminish instantly ats an indication that the eirenit is opeating properly. In order to sot the thaing so that the bamdspread condensier eam rover the hand properly, the adjustment serew on Ci may be ratched from the top of the cabinct just to the left of the II Y\$15.

Once the recoiver operation has been
 will function as: a tramsmitting aseillatur, batrring any errors in the transceiver switehing cirenit.

When a mobile tramsmitter and its power suphly are installol in the car trunk - usinally the place where the most room is available,

Fis. 16:5n - A parallel-line pusil-pull il Y 615 aseillator which operate- on cither 14 or 2.20 Mr . les whanging the positions of the primary and secondary shorting bars.

 18 - 5000 ohms. I 10 -watl.
 diametar of tuhian.
 suacol 16 inch.
amd most eonvenient to the best antanat lowa-
 hattory to operato the equipmont rat her than to attompt to run a lome lad from the regular war hattery. Siner the rument drain is rather high. the valtage drop in subh a leand will be vexasive. Hownorr. the sparate hatttery readily may be comeded to the car hattury su that it will "float" across the lather" thus aroiding the meressity for periodie recharging.

CI Parallel-Line Push-Pull 144- and 220-Mc. Oscillators

Fig. 16:0-1652 show : low-powored pushpull oseillator using a limear tank rireuit of the "tuned-plate thasd-eathode" variety, which gives ratanatly gome statility atod allicioney
 unit is capable of about five watts output at 114 Mc , and somewhat less at 220 Me .
'The transmitter is built on : $212 \times+16 \times 15$ inch chassis bent from shed ahmanme. The sockets for the thluse are orimented sat that the plateraps face the left-halld ond of the chatsis. The phate limes are hedel twather rixidly hy a sturdy connere staty at tha shorted rat amd by a polystyrene bar at a high-potential puint near the tutars.

The rathoute limes are momed malerneath the chasis, dt one end they are commerted directly to the rathode terminats on the thine sockets, the other emels luing strapped tomether and supported by a small ceramio pillar. The heater laskls, of rubher-cosereal hook-up wire, go through these lines as shown in Fig. 16 tist.

The cathode line is erpuipped with a sidiner ramp-tyon shomeng bar, while two similar hars are iastallod on the plate lime. Threr are mate of brasis strip, beat around the parallel rods. Machine serews and nuts hold the clamp firmly in place.

In proliminary alginstment for 144 Me . (q)cration, the cathode bar is set near the end of the line most distant from the tube suekets. Both plate bars are first set at the shorted end of the line. To provide protertion for the tubes. a 1000- or 2000-ohm protective resistor should
be connerted in series with the plate supply lead. A $0-100$ or equivallent milliammeter also should be plated in suries with the high voltage leat. With heater power appliod, rheck for oseillation as indicated by a dip in plate current when one of the comduetors is touched with an insulated sorewdriver or a neon bulb, If no oseillation is apparent, the effective length of the eathode line should be extembed by moving the slidiag bar toward the tube end.
The frequency of the oxeillatom may he adjustod tor resomance, usiag Lacher wires or "quivalont measuring means, ly moving the primary sliding bar the one nearest the tulnes) on the plate lime towaral the tulus until the desired operating frefucney is reached.

For 220 Mc: "Ineration the primary har is arlvanced abous six inches toward the tubes. The secomdary bar is also moved, umil medilations
 of the rathode line maty be meenssary. If the resultine frectuency is not the desired operating frequency, odpust the two plate shorting bars simulameously umil the correct points for maximum output at the desired frequeney have bern detromimed.

The function of the primary shorting bar is to costablish a length of line which, with the selfcapabity of the lubes, will be correce for the dexired Irequency. The secondary shoming bar ratablishes an isolating quarter-waby section equisalent to an r.f. eloke. The position of the seotomary har has sombe effect upon the freflumay of oseillation. although the spacing betwern the two bars med not bear an exact fuarter-nave relationship.

Fis. 16,02 - Underneath view of the 144/290-Me. linear oscillator showing placement of the cathode lines.

Fi4. 16:3- A 14. and 220-Mr. oscillator using lincar tank cirenits in the plate and eathode rirenit- 'The cathode line is tumed by a condenser. The setting of the rathode eomdenaer is critiral hoth in sermerag uacilation and maximmm onaput, hat has almost mo effert on the wenerated frequency the latter buing determined ly the length of the plate line. '1lhe ontput ronpling io at justed by bending the link toward or away from the line.

C. Higher-Power Linear Oscillators

The gencral ancthod of construction illustrated in the pushtpull 1 Y 615 oscillator may be followed in building higher-power oseillators for the 144-and 220-Mc. bands. A representative oscillator is shown in Figs. 16.j3, 1654, and 1655. It uses type 219i tubes, but may readily be adaplad to any of the several types of tubes laving similar terminal arrangements; that is, with the plate lead out of the top of the bulb and the grid lead coming from the side.

Fig. 16.54-Cirenit diagran of the 24(: linear oscillator. $C_{1}, C_{2} C_{3}, C_{4}-50()-\mu \mu \mathrm{ft}$. midert misa.
(:5-25 $\mu \mu \mathrm{fel}$. per section ((Gardwell Eila-25-AI)).
I. 1 - Plate line; 3 s-ineh o.d. copper tuhing $15 \frac{1}{4}$ inches loner, with aljustalile extensions of $1 / 4-\mathrm{in} \cdot \mathrm{h}$ w.l.
 loneth for 141 Me.. 193/4 inches; for 220 Mc., $101 / 4$ inches (with extensions removed).
I. 2 - Cathoule line; $3 / x$-inch o.d. conver tahing $1.1^{3} \frac{1}{4}$ inches long. Approximate length from filament end to shorting bar with C_{5} at half capacity: for $114 \mathrm{Mc}, 73 / 4$ inches; for $220 \mathrm{Mc} ., 5$ inches.
$\mathrm{K}_{1}-2000$ ohms, 10 watts (see text).

In this oscillator, which uses tubes having directly-heated filmonts. the filaments are connected to the cathode line through by-pass condensers; there is no direct connection between the filament supply leads and the line. Filament-supply leads from ach lube rum through the pipe nearest that filament. The filament or eathode line is provided with a shorting bar for coarse adjustment to the band in use, but actual tuning of the line is done with ('s. This is romvenient, since the adjustment of the cathode line is critical for best operation.

The plate line, L_{1} in Fig. 160 .t, is equipped with sliding extensions for adjustment to the 144-Mc. hand, since a standard 17 -inch chassis is (wo short to accommodate the whole line even with the shorting har at the end. With

Fig. $16.55-1$ nderneath the chassis of the 2.1 C , linear oscillator. 'llue zhorting bar* are made from two pirees of 1/16-inch thick hrasion wrip $1 / 2$ inch wide. formed to fit the pipes and held logeother by a machine serew, the lower strip being tapped.
the extension pipes all the way in (protruding length $+\frac{1}{2}$ inches) the shorting har may be set so that the oscillator is at 14 s Me. Other frequencies in the band then can be roached by pulling out the extensions until the desired frequency is reached.

Comnections between the tube clements and the lines should be kept as short as possible. Ifowever, flexible leads shoukd be used to the tube plates to avoid danger of breaking the seals during adjustment of line length.

With the 24 (i tubes the plate-supply should furnish about 900 to 1000 volts at 100 milliamperes or so. An input of about 100 watts can be used on 1.4 M . without exereding the plate dissipation ratings of the tubes. If other tubes are used the input should be held to the point at which the phate dissipation rating is not execeded. In general, tubes of this type require relatively high plate voltage and low plate current to work at optimum efliciency. The value of plate current ean be regulated to a considerable extent by choice of grid-leak resistance, higher values giving lower plate current.

(1. A Simple Transmitter for 220 Mc.

At frequencies higher than about 150 Mc ., considerable difficulty is found in getiong good performance with tubes other than those designed expressly for v.h.f. operation. However, there are several inexpensive v.h.f. tubes atvalable to the amatcur that will perform well on 220 Mc . The transmitter in Pigs. 1656-16:58

 A rectanguler elearame bole in the ohavers allowes the tminm cendenser to lee: monnted for -hartont leada. The eondenser is adpusted by an insulated screve driver.
shows how one of these is pes, the IIY 75 , may be put to work in a lusically very simple oscillator cirruit.
 piece of 3 -inch Preselwesd supperted by two strips of 1×2-inch \mathbf{W} oo. A rectangular thole is cut in the center of the Presdwod ta wecommodate the tuning condenser, whech is supported by two metal piliars at one end. The tuned eirent consists of two lenghts of $]$ fach copper tul-ing, © ${ }^{2}$ inches long. with are supported at one end by two feed-through insellators. The encis of the screws in the feedthrough insulators are swated into the ents of the tubins, and the tumping condonse is connected to two lugs rigitat this point. Connections from the tuhing to the grid : ad plate terminats on the twbe are made by tiach lergths of flexible shield braid. The filament chokes, the plate rif. shoke, and the grid leak are mounted under the chaseis.

Fip. 16.57 - Wiring ditaram of the 2g-Mc nembitor. C_{1} - $\mathrm{I}(\mathrm{O})$-mufd midget warisole (National (M.100).
$1 h_{1}-500 \%$ olums. 10-watt wier-wound.
 inch on ementers.
L. 2 - 2 -ind loop of No. 16 bare wire.
$\mathrm{R} \mathrm{FC}_{1}$ - I.h.f. r.f. clooke (Ohmite $/ \mathrm{L} 1$ or $Z .0$).
 inch diameter, self-smporting-

The antenna-coupling circuit consists of a loop of wire parallel to the copper tubing and terminating in the antenna binding posts. Coupling is varied by simply moving the hairpin loop nearer 10 or farther away from the copper-tubing line.

The transmitter should first be tested with a dummy load. A 10 -watt lamp bulb is excellent for the purpose. The load is comnected to the anterma posts and the power supply turned on. If everything is connceted properly the lamp will light, its brilliancy depending upon the tightness of coupling and the setting of C_{1}. It will be found that the output is greater towarels the maximum-capacity end of the range of C_{1}. The frequency coverage of the transmitter should be checked, using Lecher wires or a frequency meter, to make sure that it will cover the desired range. The coverage can be adjusted slightly by changing the separation of the eopper-tube conductors; if this does not effect enough change, the lines will have to be made cither shorter or longer, as required. The tuning condenser is adjusted by means of an insulated serew driver.

Fig. 16.38 - The r.f. chohes and the grid leak are mounted under the chasis of the $2 \underline{2} 0$ - Ne. transmiter. ${ }^{\text {Phe power-supply eable is brought through a hole in the }}$ side picee to a tie strip mounted on the left-hand side.

The transmitter requires a plate power supply delivering 60 mat, at 400 volts, and the modulator unit should be capable of furnishing 12 watts of atudio power. The 6A6 modulator deseribed in Chapter Fourteen will be quite adequate for the purpose.

Because of its small size, a transmitter of this type can be built as a unit into a rotatable antenna for the 220-Mc. band, if desired. It is preferable not to use a long transmission line at this frequency, because of the possibility of radiation from the line.

(I) A Disc-Seal Tube Oscillator for 144, 220 and 420 Mc .

At frequencies above 300 Mc . or so tubes of conventional construction will not operate, for the reasons outlined at the beginning of this chapter. The disc-seal or "lighthouse" tubes
will function niecly, howerer, in ordinary linest eircuits at frequencies up to veroral
 fuit monstuction (xach as cavity reshathors) are requitab. therefore, whern disw-acal mbers are usied in the +20-Mc. bathel.

Fig. 16.59 () (ne of the famils of"limht-
 oped lluring the war fiol , It.f. Hec:. 'I him partienalar tuly. ($26: 11$) i- a triand. ratted al $0_{0}^{0} 0$ wallmavimum i"rut.
 tiont i- at the lons.
 i- the atretal din- int thr erntrr. fla turlal Harl of |la. hator i- ther r.f. cathonderontrorelion, alld the lowatheram d.r. cialhorld robllor-tion- arre throngh the oetal base.

A photograph of the 2C-1t, a low-pmwer lighthonse biocke, is given in lige. ltige. The

 metal hamd immardiat+!

 ode pillat rebernk up to wilhin a

 the flat cmatrothispillar. Thu Whater is mombled imsidu the pillar diperdy under the cathotesurface. The gried dise has a hod punchod in its ember (slighty latery in areat then the (athoule surfare) :antos which is stretehed the lime mosk of the grid. The plate plat acatome duwn 6 within a fox thoustarlthe of an inch of the Ered. and commertion to the plate is mande at ther top.

Details of conseruction of a framsmittor

 plished lyy the home-made variable condenser mounted at the rodrol the lines near the tube.

[^9]using the 2 ("4t. for operation in the $14+\mathrm{t}$, 220)-, and f20-Mc. hamds, are givan in figs. 1660 to 1663 , inthsise. Jising parallel lines, it is only necessary to change the position of the shorting bar to obtain output on any of the threc bands. The shoting bar is moved to : previnasty-calibuated perint on the lines and lowked and then ing frexuency within the antaterur hat is whtamed by proper setting of
 at the print where they comane to the tube Tha antenna compling lones is comnected to the shorting hat sw that the fwo are mosed simultathoons

The cirenit is shown in F"ig. l6ith. It will be

 nont in tha mat is Refen, the grid chake. There is ans optimum value of choke for any ont frogucoles. with whith maximum output will be whatacel at that lresucones. hat the valum shown is a romel emontomise for the threx-that range of this trallashittor. The
 but these imductors am mot witiatal.

 ronts uad in the lime :are suphored by two patmol bushings monated in ath alominum brateket which is fastermed to the hasebuatrat. Thuse two prathel hushings are of the locking type amd make it a simple mattor to pesition the rals moomers. The plate rad is terminatad at the plate athe in a home in the pate cap. The

Pig. Inoz - I dowe-up ion of the tuning combenser of the threr-band weillator ator shems the details of the sorchet mounting anml tube

grid half of the paralled lime is apmosimaterly owe ind shonter thath the phate rod. to prowide rown for the grial combenser. 's. 'The sud end
 post, and the grid secket is made ber forming a narmo hand of coppere around the grial dise of the light homse tube ami tightening it with a 2-6f machinu serew and nat.

The shorting har for the parathellines is mate of two lorking-type pamel bushings sut in at coppor strap. 'Theso hushings are tightemed just enough to insure good contaret and still allow the bar to slithe without tow mand a elfort. It is imperative. therefore that the twormes be smooth alld straight. although they eath lar cither bass rod or hrass tubing. The enasialrable combetor for the antenmas foed line and the antemma low am monnted to a piem of 1, ic inch bakelite bolteri to the shorting bar. The antenna lomp rides under the lines so that it will not hit the tuning comatenser when the shorting bar is near the eomdenser. Tho sign of the low mas vary with diflerent antemase but, in genoral. it should be about 2 inchers long and spaced the same as the limes. The eompling an be increased by bemding the loop elosiy w, the lines.

The tuning combenser is of the plit-statore type with the rotom floating. The stator mates comsist of two strips of eopper, ${ }^{3}$ ig ineh wide by inch long. formed in two ares athe soldered to the tuning rods (son rig. 1663). The rotor uses a piece of ${ }^{3}$-imeh diameter polystyrene rod through whid is drilled a 1 -inch diameter hole for a bakelite of polystyreme shatit, If desired, the solid polystyrene abo be meplated by a ${ }^{3}$-inch diameter coil form by cementing a dise of polystyrene to the open end of the coil form.
'I'he rotor plate. a U-shaped strip of coppor ome inch squate, is formed and then eomented to the polystyrne form. A U-shaped piane is necessary because it was found that at fiso Me. a cylindrical rotor acted as a caparitor plate as it was first brought near the stator plates. but as rotation contimed the rotor beran to act as a shorted turn in the fied of the lines,
thus combtaracting the effert of the : alditional caparity and limiting the tuning rallige to only at smatl frequeney variation. Two metal hatalots with pamel bushings are used to support the rotor shaft. It is a somed ider to mount the panel bushinge in slots rather thats the usual ensarame holles. su that the shat fatl be mown toward the stator plates until the desired cat pacity rallge is whtamol.
'The tuhn sereliet is momonted on aln alumimum bracket whieh is somerd to the beavhorat. No conmetion is made to the r.f. cat hode combertion beratuse the oscillator w:s found to work better over the entire range that way.
loored ventilation must be used on the tube if anything like the rated maximum input of 20 watts is to be used. As much of the plate hata as possible must the conducted awny by the plater rod. amd for this ratason the conmeetion hetworn pate and rod must be as good as pusible from a heat as well as an electrical stampmint. The forend bentilation of the plate c:all bost be obtaimed by the use of a small deretrie fan when hast is dimented at the plate emberetion whenerer the plate power is applied. A small hower tube atil be rigged up from stith cardhoard and attached to the fiall.

Oweillation call be dotermined by using a suall twom halb or a flashlight lamp and loop of wire held chose to the lines. (irid current is aho ant exedlent waillation indicator. If no oscillation is obtained, it probably means an ineoreert gride choke. and its ronst ruetion should be chereked or moditied slightly. To gat the best efleciency, particularly on any one bath, may require some slight revision in the induetance of the grid choke or in the value of the r.f. br-pass e:upacitors, the effeet of such changes being chereked by watehing the output as indicated loy the lamp load and the input as indicated by a plate milliammetor. Tuming up should be done at redued plate voltagere, say around 250 or 300 , at whid value the loated plate corment should run aroumd 15 to 20 ma . after which the maximum input of 40 mat at 500 rolts can be applied if considered necessary.

Fin. I66:3 - Constructional and assombly details of the tuning capacitar for the $144 / 220 / 420-\mathrm{Mc}$. oscillator.

Fias. loor - The inductance in the rirenit depends upon the path taken by the radio-fremben:y current, as explained in the text.
components are such that distributed induetance and capacity becone an inportant factor in circuit operation: for example, a variable condenser of conventional construction is not a pure eapheity but possesses appreciabhe inductance as wall.

However, despite the high Q of resonant lines as such. the ciremit (? at u.h.f. usually is not very great be(anase mucli of the inductane and

A good set of Jacher wires or an aremratelycalibrated absurption wavemeter is cosintial for finding the different amateur bands. Although a wire line is probably the most comsenient for the $14+$ and 220 - Ne , bands, at mone rigid lime for the 420 - Me. bamd eall be made by using $1 / 4$-inch rod or tubing, supporting it in the same manmer that the tuaced circuit is supported for the oscillator. Aiter the oscillator has heen catibrated, a cardboard seale can be added to the baseboard and the pesitions marked for the three amatear bauks. The approximate settings of the shorting bar follow:

Distraner from Centrin of l'hate of $0^{2} 44$ to Shortiny Bur	Frceurna! Ranue
14 inches	138-15: Mr.
s1/4	21.5-2.0) "
21/2	$418-4.03$

Considerable rare must be exercised in moving the shorting har (and in removing the tube from its soeket) beeause of the possibility of breaking the tube seals.

(1. A Tuned-Circuit Oscillator for 144, 200 and 420 Mc .

Oscillators in the $200-$ to $500-\mathrm{Mc}$. range usually are designed to use tank eireuits of either the parallel-line or coaxial trper, these linear circuits being employed because of their high Qs. In addition, there is the fart that at these frequencies the dimensions of ordinary
capacity in the circuits is rontributed by the tube elements and leats. These clements are not paticularly high- Q in themselves, atml in aombination with the loading effect of the tube they reduce the effertive dirruit $(Q$ to a low value eompared with that obtainable with an umbadeal lime. Actaally, the stabhility of atn oscillator beeomes more a function of rigid nuehanical construction than the clestrical propertiess of the circuit.

13y proper design it is possible to use coil-and-romdenser tumed eirenits at these frequemeies. although the physical construction of the cireato may differ considerably from practice at lower frequencies. The alvantages are compact construction, reatily-aljustable funing withont rlaborate mechanical deviees. and a high order of frequency stability. The guding principhe in design is the reduction of imblutanere in all parts of the eircuit except where it is antually wanted.

Induetance can be redued by making the r.f. current flow in paths such that the magmetic fiedd set uf, by the current is as weak as possibla. The renerat principle is illustrated by the dises shown in lige. 16 fit-A and -B. If the current enters the dise at A in Fig. 1664-A and leaves at B, it spreals over the dise about as shown by the arrows and earh current "filament" contributes to the total magnetic field. Howerer. if the eurent enters at the center
 in Fig. 1664-13, the field from curment flowing out ward in one dircetion is partially cancelled by the field from current flowing outward in the opposite direction. Thetutal marnetic field. and therefore the indurtance, is conseduently less thath in liig. lotjA. This principle of reducing iuductance by caucellation of fields also can be applied as shown in Fig. 1664C, where a halfwave line, shorted at both onds, is

Fig. 1665 - Using an LC tank circuit, this oncillator generates about $1 \frac{1}{2}$ watts of r.f. in the frequency range from 1.10 to 4.50 megacycles. Lxceptionally solid construction resulto in excellent frequency stalility. The tube is a 6 F 4 acorn triode.

Fig. I6,6 - Circuit diasram of the 1.40-4.50 \19. naril-
 vontional fashion to show how the tule elements are tied in with cireuit ennstruction.
(: - 30- $\mu \mu \mathrm{fd}$, mica, enstructed as described in the text. (2 - $1000_{\mu \mu}$ fil. midgel mica.

$1 h_{1}-0.12$ memohnis, ${ }^{1} 2$-watt.

 insitle diameter. ! inches lons.
 inside dianseter, $1 / 4$ inches long.
120) Vr.: ${ }^{1.2}$ turn No. 12 silvered wire, ! ínch inside diameter.
Dimonnions of the tuning coudenser are given in Fig. 16.6 .5.
tumed by a condenser connerted to the contor (aleetrically aduivalent to two shorted yuater-wabe lines in parallel tuncd by a condenser at their open cods). Currents flowing into or out of the condenser from the two sections of the line, I_{1} and I_{2}, enter or leave the condenser from opposite directions along the lime, consequently there is patial caneelation of the fields in the rexion of the erenter of the line and the induetance is smaller than would be the ease with cither line alone.

In the oserillator shown in Figs. 1663 to 160 is . imelnsive these prineiphes are emplosed to obtain an extemuded high-irecqueney range with a eril-amdeondenser tank rirenit. The cirenit diagram is shown in lig. lofif. :und the photographe show the details of constration. Basscally, the assembite comsists of two very heary brass phates which do double duty acting as tube monnting supports and as the stator plates of the tuming condenser. The tube is a 6Ft, which in itself has symmetrically arranged grid and plate leads and thas carrios out still further the principle of inductance cancellation. In addition, the method of connereting the tube to the line is such that the lead wires to the tube are shunted by low-inductance brass plates, eausing lead lengtl to have very little losding effect on the line.

On each end of the stator plates is mounted a small coil which represents most of the in-
ductance in the circuit. By making the coils self-supporting and of heavy gauge silverplated wire, losses are kept to a minimum. Three amateur bands are covered by the three sets of coils shown, the one-turn set tuning from 417 to 456 Mc , the 2 -turn set from 215.6 to $230.8 \mathrm{Mc} \cdot$, and the 4 -turn set from 141.2 to 151.9 Mr . The coils are mometed to the stator blocks by means of $6-32$ serews and solhoring lugs so that they maty be readily romoved. On either side of the grid stator plate is a small brass block spacel off from the main asambly by a mica sheet. These ate as low-inductance grid condensers.

In order to permit hand setting for proper bandspread, two small dise-type trimmers are mounted between the stator blows directly underneath the tube. When these are adjusted it is advisable to keep the airgaps approximately equal and thus avoid unbalancing the circuit.

The frequency stability of the oscillator is exerllent because of its rigid construction. A sharp blow on the table causes the frequency to shift only several hundred cycles at 400 menacyeles. The warm-up period is very short and is mostly due to the cfferet of the heater in warming up the ot her tube elements. Once the tubn reaches operating temperature, frequency dritt is negligible.

With a plate voltage of 250 volts the GF4 will deliver :ppoximately 1.5 watts, which is much more power than can be obtained from the usath tramseriver oscillator, and is ample for low power work at these frequencies. The oscillator also may be used as the high-frequency ascillator in a superheterodyne receiver. For maximum stability the 200,000ohm grid leak should be used. By increasing the value of the grid leak the unit may be

Fig. 1067 - A view from underneath the 6 F 4 oseillator, with tue mounting phate taken off. This shows the construction of the tuning condenser rotor and the two grid condensers.

used as a superregememative rewiver. Wigher plate voltanes, up 10 :300 rolts, maty be applial provided the rated plate diosipation ol 2 wast ts and the maximum plate cerrent of 20 mat. Fer the $6 F 4$ are not excerded. In important point
to femember is that the faning comelenser sumblab be bremmad. A coramice compling or *ath is to be peremed to ome made ol bakedite, since bakelite is not a gened insulator at the highor frequencies.

Chapter Seventeen

Antenna Construction

The lise of grow materials in the athtenna syatem in impertant, sine the anterna is expesed to wind and weather. "li, kepp elece trimal losses hew, the wires in the antematand feeder astem must haw groed oonduativity and the insulaters must have hem diederetri- has: and surface leakage partioularly when wet.

For shert antmas. Nor. 14 genge hard-drawn ratamed wemper wire is a satisfartory comburtor. For long antemats and directive armas. No. 1.4 or No. 122 Mameled conper-eliad stred wire should be used. It is hest to matk fueders of ordinary soft-drann No. $1+$ or No. 12 emamadel eopper wire, sine hard-drawn or apmerclad steel wire is diflicult to hamble unless it is under considerable tensinn at all times. The wires should be all in one piewe: where a joint camme be aroided, it shald lo earefully solderal.

In buiding a resomant twowire ferder. the spacer insulation should he of as erom gualityas in the antenna insulators promer. Fin this reason, good ceramic sparers are advisable. Wooden dowels buited in parafin may be used with untuned lines, hut their use is not rewommended for tuned lines. The wooden dowels (an be attached to the feeder wires bey drilling small howes :and himding then tor the feeders with wire.

Fig. 1701 - Dhetails of a simple 40 - foot " A "-frame mat suitable for erection in lecations where space is limited.

The emds of tuned feeders or the ents of the antrmata are peints of maximum voltage. It is at these points that the insulation is most impromat, and Prex glass, Isolatite or steatite insulators with long leakige pathe are rewmmended for the antemat (ilazed porcelain also is satiafathery. Insulators should be chemed one or wiwe a year. erperially if they are subjerton io much smoke and woot.
In most mases poles or masts are desirable to lift the antema rear of survomang bindings, athongh in some lowations the anteman will be sullicionty in the clear when strung from ond chimney to and her or from a chim-
 fartury as points of suspolsion for the antema beremse of their movement in windy wather. If the antomat is strmag from al point near the erenter of the 1 rumk of al:urge tree, this difliculty is mit sumporas. Where the antemma wire must the strung from one of the smaller hramelos. it is best to tio a pulley firmly to the branch ath run a rope through the pulley to the :untema, with the other end of the rope attathed to a "umburweight near the gromed. The romentererght will kerp the temsion on the antman wire reasumably sonstant even when the bramehes sway or the rope tightens and stret hese with warying elimatic wombitions.

The war has brought about the development
 were in metal in hoights up to 100 feed. There promine to have widenpead amateur appliation in postwar instathations.

C. "A"-Frame Mast

The simple and inexpensive mast shown in Fig. 1701 is satisitutory for heights up to 3.) or fo feet. (lear, somil lumber should te selpertel. The completed mast may be proterted by two or three abits of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the thettmo from slipping and it maty then be "walked up" by a pair of helpers. If it is to go on a romp, first stand it up arainst the side of the building and then hoist it from the roof, kepping it wertical. The whole assembly is light ewnesh for two men to perform the complete operation- lifting the mast, carrying it to its permanent berth and fastening the guys with the mast vertical :all the while. It is entirnly pacticable, therefore, to crect this type of mast on any small, flat area of roof.
liv using 2×3 or 2×4, the height may be extemed up to athent so feet. The 2×2 is too flexible to be satisfactory at such heights.

C Simple 40-Foot Mast

The mast shown in Fig. 1702 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the " A " frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 with an overlap of about two feet. The lower section thus has two legs spared the width of the narrow side of a 2×3. At the buttom the two legs are bolted to a length of 2×4 which is set in the ground. A short Iength of 2×3 is placed between the two legs ahout half way up the bottom sertion, to maintain the sparing.
The two back guys at the top pull against the antema, while the three lower puys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bobl. The holes for the belts: should be drilled beforehand. With the lower serction latd on the ground, bolt A sheuld be slipped in phace through the three piepess of wood and tightened just enough so that the section c:an turn frecly on the bolt. Then the top section may he boolted in phace and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job. As the mast grees up, the slack in the guys can be taken up so that the whole structure is in some measure continually supported. When the mast is vertical, bolt \bar{B} should be slipped in place and both A and B tightened. The lower gues can then be given a fimal tightening, leaving these at the top a little slack until the antema is

CENTER GUVS

Fig. FO2 - A simple and sturdy mast for beiphts in the vicinity of 40 feet, pivoted at the base for casy crection. The heipht can be extended to 50 feet or more by using $2 x$ $4 s$ instead of $2 \times 3 \mathrm{~s}$.

pulled up, when they should be adjusted to pull the top seetion into line.

C T-Section Mast

A type of mast suitalik for heights up to about so fect is shown in lig. 170:3. The mast is built up by butting 2×4 or $2 \times$ timbers edgewise against a second 2×4, as shown at A, with alternating juints in the ederewise and flatwise sertions. The construction can the carried out to greater lengthes simply by contimuing the 20 -foen sections. bonger or shorter sections may be used, if more convenient.

The method of naking the joints is shown at C. Quarter-inch or 316 -inch iron, $1 \frac{1}{2}$ to 2 inches wide, is recommended for the straps, with $1, \underline{z}$ inch bolts to huld the pieces tugether. One holt should be run through the pieces midway between joints, to provide additional rigidity.

Although there are many ways in which such a mast can be secured at the base, the "crade" illustrated at D has many adrantages. ITeavy timbers set firmly in the ground, spaced far enough apart so the base of the mast will pass between them, hold a large carriage bolt or steed bar which serves as a bearing. This bolt goms through a hole in the mast so that it is pivoted at the boitom.

Half of the guys can be put in place and tightened up before the mast leaves the ground. Four sets of guys should be used, one in fromt, one directly in the rear, and two on cach side at right angles to the direction in which the mast will face. A set of guys should be mised at earh of the joints in the edgewise sections, the guy wires being wrapped around the pole for added strength.

For heights up to 50 fret, 2×4-inch members may be used throughout. For greater heights, use $2 \times$ is for the edgewise seetions; 2×4-inch pieces will do for the flat sections.

C. Pole and Tower Supports

Poles, which often may be purchased at a reasonable price from the local telephone or power company, have the advantage that they do not refuire guying unless they are ealled upon to carry a very heavy load. The life of such a pole ean be extended many years by proper precautions before erecting, and regular maintenanes.
Before setting the pole, it should be given four or five coats of creosote, applying it liberally so it can soak into and preserve the wood. The bottom of the pole and the part which will be buried in the gromed should hate a gencrous roating of hot piteh, poured on while the pole is warm. This will keep termites out and prevent ronting.

The poles should be sel in the ground four to cight feet depending upon the height. It is a good idea to pour conerete aromed the bottom three feet of the base, packing the rest of the exavation with soril. The concrete will help, hold the pole agrinst strong winds. After filling the hole with dirt a at ream from a howe should be played on the dirt slowly for several hours. This will help to settle the soil quiekly.

If derired, the pule may he exmmed by the aramgement shown in Fig. 1704. Three $2 \times 4 \mathrm{~s}$ are required for the top section, two being 18 fee long and one 10 feet hong. The 10 -foot sertion is phaced between the other wo and bolted in plate. A half-inch hole should be bored through the pole about 2 feet from its top and through both 18 -foot $2 \times 4 \mathrm{~s}$:benit 5 feet from their botom ends. which are spread apart to fit the top of the pole. The bottom end of the extension is then hatuled up to the top of the pole and bolted lensely so that the seetion can be swoung up into place by the levrage of another 2×4 temporarily fastened to the

Fig. 1015 - I'sing a simple lever for twisting heavy guy wiren.
section, as shown ir. Fig. 1704.
Lattice towers built of wood should be asscmbled with brass screws and casein glue, rather thin with nails which work loose in a short time. A tower constructed in this manner will give trouble-free service if treated with a coat of paint every year.

In painting outside structures, use pure white lead, thinned with three parts of pure linsed oil to one part of turpentine, for the first conat on new wood. The use of a drier is not reemmended if the paint will possibly dry without it, since it may cause the paint to peel alter a shont time. lior the second and third roats pure white lead thimed only with pure linsed oil is recommended. Plenty of time for drying should be allowed between coats. White paint will hast fifty per cent longer than any colored paint.

C. Guys and Guy Anchors

For masts, or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. IIeavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is high.
More than three guy wires in any one set usually are unnecessary. If : horizontal antenna is to be supported, two guy wires in the top, set will be suflicient in most rases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antemna. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spared 120 degrees either side. This leaves a clear space muder the antenna. The guy wires should be adjusted to pull the pole slightly back from vertical before theantenna is hoisted so that when the anteman is pulled up tight the mast will be straight.

When raising a mast which is big enough to tax the facilities

THE RADIO AMATEUR'S HANDBOOK

Fig. 1706 - Pipe ghy andhors. (hee pibe is sufficiont fur small masts. but two ill-talled a- slmown will provide ther iddlicional stronuth remuired forthelarearpoles.
available. it is some advamage for kow nearly exatoly the lomght of the whys. Jlome on the side on whish the perle is lying ran then he
 hamb. whirh asemree that when the pole is raised, those hohling opposite ghts: will he able to pull it into nearly wertal position with
 longthe rath he ligured by the righteingede triante rulte that "the sum of the siptares of the fwos sides is equall the the statre of the hypotemase." In other worts. Iherlistathe from the base of the pole to the athelom shomatal be measured and stuated. 'J'o this shombly be adderd the suture of the prole lengh to the
given a single turn by hand, and then held with a phair of pliers at the point shown in the sketh. By pasing the wire throngh the hole itn the iron amb ronaling the iron as shown, the wire masy be quickly and ne:aly twisted.

Guy wires may be anclored to a tree or building when they happen to be in convenient
 pipu driven inter the ground at an angle will sulliere. Additional bracing will he prowided by using two pipes, ats shown in ligg. 170ti.

1. Halyards and Pulleys

Hatrards af ropes amd pullers are important
 liendar allemtion - fomblat be direded lowat the chatece of : pulley and haly:ards for a high mast simereparement, one elaremas in pesition, maty be at major undertaking if not entirely impossible.

Galvamizat-iron pulleys will have a life of only a year or so. Bpeciatly for mantal-arma insallations, marinc-1ype pulleys with hardpuint where the guy is fistemed. 'The sfutare row of this sum will be the lengith of the gry.

Giay wires should be broken up by strain insulators, to amod the possibility of resonamer at the tramsmitting froquener (ommon pratice is to insert an insulator near the top of cach guy, within a lew fert of the prole, and then wat eath seretion of wire betwern the insulators to a lengeth whirh will met he resonant cit here on the fundamental or harmonies. An insulator a ery 2.5 fert with the satisfar tory for frectucorice up to 30 Ne. The insiulators should be of the "rgeg" type with the insulating material under compression. so that the guy will met part if the insulator bratks.
 matro be tedions job if the gry wine are lomer

 from : piere of heary iron or stex he drilliner
 wise aboult : hati inch from the and of the piace. The wire is passed throngh the itmalatom.

 "rethread" when the rape break-.

Fig. Tons - (1) \meluring foreders tahers the strain from feede throush in-ulators or wintow glas. (13) (\%oinir through a full-

wood borks and bronze whels and bearings slamld be ward.

An :mangement which has rertain at-
 *hemon in lige. 1707. In man tha rape breaks, it naty he pessible forembere it he heaving a line wer the brass rom, making it unnecessary to (limb or howe the pole.

Fors shom antembas and temporary installat tions, heary elathestine or withlow satsh cord maty be aseal. Hownere if the job is to be more or les permamont. "-inch or ! 2 -inch waterpow hemp rope phobld he usol. Fiven this -lantal be rephated atmat once a year winsure amatisl brakiage.
 fow rope, is, wemerse ome of the hest materials for halyabds. since it is woatherprood and has extremily lumg life.

It is alvisable ba cary the pulloy rope bark य1 (0) the lop in "emilless" fathion in the manmer of a flag hoist sath if the antema breaks ethes 10 prole. lhere will be a means for pulling the hosisting mone bate down where it is arecessible.

 the tor saing or ander the Joner sath of a wimlow. sealin! the overlajpin\# joint will help mate it weatherprosf.

C Bringing the Antenna or Transmission Line into the Station

The antronat or 1 ramsmission line shomld be anchored to the out ithe wall of the hailding. ats shown in lig. 170s, 10 remene statin from the lowh-in insulators. Holds and through the walls of the buikding aml fithel with foed-thoumh
 bringing the line into the station, The hotes; should have plenty of air cirarame about the combucting rod. experitlly when using tumed limes which derodnp high voltages. Patathy the best plare 10 en through the watls is the trimming boated at the top or bothom of a window fratice which provides flat surfaces for lead-in imsulators. Cement or rubher faskens

Whare such a prenedure is mot permionible, the window itsilf watlly oflers the hest opporthmity. One satisfaclory huethod is to drill holes in the glase uniar the lop of the mpers sash.
 joh will rexult. Ilata glass maty be obtaiturd from anmomobile junk yards and drilled before placing in the frame. Tha ghase itand provides insulation and the fansmission lime maty be fasterned to bolts filtins the holes. Rubthro gaskets cut from inner tube will rember the

Fia. 1710 - Skelrh showing the principles involved in the "universal joint for Zebuf ferders to present slath.
holes waterproof. The lower sash should be provided with stup: at a suitable heiglat to prebent damatre when it is rased. If the window hass a full-hength sereen, the seheme shown in Fig. 170*-ls may be used.

As: a los pormanent method, the window maty la rased from the bot tom or lowered from the tup to permit insertion oi a board which carriow the leod-thomgh insulators. This lead-in artamemont ran be made weatherprool by making an overlapping joint betwern the board and window sasho as shwn in F゙ir. IT()! and cobrong the uneming betwen sathes with a shew of salt rubber from a discarded inner tube.

Unloss a Zaple anlomat is direetly at right anmbera a line rumang fom the feeder and to the mint whore it colane the station, difliculty masy fore expromed in kerping both feeders tigh, sine one will always have a eertain amount al slatk, ats shown in Fig. 1710. This

IZg. 17 ll - Home-made "universal joint" for Zepp freder-
can be orereome by comstructing a "universal joint" as shown in loty. 1711. This promits swinging the forderss at atny angle with the :untomit. while the feoders are kepe tatut at all poitus.

A piope of halli-ind hated maple thoroughly
 While the two stand-ofi insulators support the fienders.

C. Rotary Beam Construction

Many anathours monat the simpler types of dienefive ambunas in sum at way that the antemat can be polated (1) shift the direction of the be:tm :ll will. (otrionaly the use of such rotary antomats is limited to the higher fregurarias. if the strueture is to be of practicable size. Fine this reason the matority of rotarybeath athtemats are construbed for use on 14 Me, and higher freforencies. The problems in rotary-heam eonstration atre those of providing a suitable mochanical support for the antomatements. furnishing a means of rotation, amel attaching the transmisson line so that it does not interiome with the rotation of the system. When the rements are horizontal a supporting spotetur is meressary, made usually of light hut stronge wood.

The antemat elements usuatly are made of metal tuhing so that they will be at least parthally self-suphorting, thus simplifying the sup-

Fig. 1712 - A practical worticale lement rotatable array for 28 Me. The driven antenna is lixed and the reflector and direetor clements, parasitically excited, rutate around it. Close-spared elements may be used if dewed.
porting structure. Thic large diameter of the conductor is bencficial also in reducing resistance, which beromes an important consideration when close-spated elements are used.

Dural tubes often are used for the clements, and thin-walled corrugated steel tubos with copper coating also are available for this purpose. The elements frequently are constructed of sections of telescoping tubing, making length adjustments quite easy. Electricians' thin-walled conduit also is suitable for rotary beam elements.

If steel elements are used, sperial precautions should be taken to prevent rusting. Even cop-per-coated steel does not stand up indefinitely, since the coating usually is too thin. The elements should be coated both inside and out with slow-drying aluminum paint. For coating the inside, the spray gun may be used, or the paint may be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom cod and poured through again until it is certain that the entire inside wall has been covered. The ends should then be plugged up with corks scaled with glyptal varnish.

Various means of rotation and of making contact to the transmission line lave been devised. Fig. 1712 shows a mechanical arrangement suitable for use with vertical elements.

The antenna, which is a verical section of metal tubing, is mounted in a fixed position and is provided with a director and reflector which rotate about it. The advantage of this arrangemont is that no provision need be made for special contacts betwern the antenna and the feedersystem, since the position of the antenna is fixed. A rope-and-pulley arrangement provides rotation from the operating room, so that, when a signal is picked up, the antonna can be rotated rapidly to the position which gives maximum resjonse. It is then also pointing in the proper direction for transmission. The system can be varied in dimensions and details; for instance, close element spacing might be used to sive greater gain.

Jarts from junked antomobiles often provide grar trains and bearings for rotating the antenna. Rear axles, in particular, can readily be adapted to the purpose. Some amateurs use motor-driven rotating mechanisms which, although complicating the construetion, simplify remote control of the antenna. More or less claborate indicating deviees, which show the direction in which the antema is pointed, often are used with motor-driven beams.

One method is shown in liig. 1713. In this case the pold is rotated by a chatin-amolspucket arrangement, with the base resting on a bearing. Feeders are brought down the pote from the antenna toa pair of wire rings, against which sliding contacts press.

Driving motors and gear housings will stand the weather betler if kiven acoat of aluminum paint followed by two coat sof enamel and a coat of glyphal vamish. Even commercial units will last longer if treated with glyptal varnish.

Fic. 1713 - One form of rotating mechan'sm. A hicyrle sprocket and chain turn the pole which supports the bram antenna. Feeder conncetions from the antenna are brought to the metal rings, which slide against spring contacts mounted on the large stand-off insulators.

Fig. Fill-- Jdeas in sliding contate for motatale antenna fromer conmertion to permit comtimona rotation. 'Tho brond haring surfaces take care of any wobble in the rotating mast ar driving shaft.
connected to a tuned pickup circuit whose inductance is coupled to a link. In the drawing, the link coil connects to a 1 wisted-pair transmission line. The circuit would be adjusted in the same way as any linkcoupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course tuncs to the transmitting frequence. The whole thing is equivalent to a link-coupled antenna tuncr mounted on the pold, using a parallel-tuned tank at the end of a quarterwave line to centerfeed the antrma. To maintain constant compling, the two coils should be quite rigid and the pole should rotate without wobble. The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the induetive-coupled system night be worked out. The tuned circuit might, for instance, be plated at the end of a 600-ohm line, and a one-turn link ased to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the $L / /^{\prime}$ ratio in the tuned circuit. For mechanical strength the eoils preferably should be made of copper tubing, well braced with insulating strips to keep them rigid.

Fig. 1715 - One method of transmission line-antenna systrun coupling which climinates sliding contacts. The low-impedance line is link-coupled to a tuned line.

half-wave antemma, the end of the feeder which is not commected to the antemna may either be left oper or eromblad to the car body.
lither a duartor- or half-wave antemat may be neat, depending upon comblitions. The greater length of the latter will latal to better
 voniently. File vihle metal rod is genemally med. so that the athtemat will be solf-supportines.

Shme : flatiter-wave antman mormally is supported at a low-voltage point. hard-rubber insulatoms :uro satisfactory. Howerer, : half-wave antumas will hatially be sulported at a hight voltagepoint and thas reduires grom insulation for best e.ti-

(1. Mobile Antennas

For mobile work on the vory-high frequen-
 monly used. mommted vertically on stamitoff
 bode. Where possihbe the anternat shand be a hatf-wavelength long, sine dhes lemgth will give the best low-angle ratiation. I quarterWave antomas, Working agatust the mutal rat
 used hat it is mol sadedieient a radiatore as the hall-wave antermat.

As in the eatise of antemats for fixed statioms. it is immertatht that lhe rat ambomat be
 effects of the ral and to give naximatn rather. The best levation for montitias the anlomat is in the middla of ther rouf in tha case of : 5 cat with a metal tops. If the antelnal catmon he mounted so that it is contimely above the top of the car, it should still be made to have a met.jor portion of its offertive radiating leughth :lowe the rool. "The lop forms al "eround" of good condurtivity and impores the pertomance.
 spot for monnting the anternas on the dero in back of the rear wintow. 'Phe lead-in can be: brought into aither the lagesme compatimerat or the driber's soata dapentimer upen the locestion of the ration gear. Sedans lend themselves more rataly to mounting the ambermat atome side the hood or on the rear bmmper. Sn an-
 projecting alowe the mutal top will trathatit. best in the direetion across the top of the car.

 simplify the leed sostrm. Fiperial fereder systoms, such : sum-loss coasial limes, are meers sary if the athtennal is lorated at one ond of the (atr and the tramsmitter at theother. A quarter-ware tumed line is a suitable system, using appropriate tuning mothods. When used with an end-led

© V.H.F. Antennas

Although antemas for the very-high frequencies are constructed on the same primeiples as those for lower froquencios, the smaller dimensions permit strmetaral arramements whish would be umwieldy, if not impradicable, on lower fropuencies. The extended donble Zepp, used vertically, is partioulatly rasy to mount, the olements heing made of 1 -inch copper or dumal rod or tubing and fastened to the side of a pole by stand-off insulators.

A simple, pratical application of the endfire principle (10)-12) is the use of two lengths ot copper tabing. bent to form a "pitwhtork" one-half wavelengtlo long (down to the bend) and with a quarter- to atm eighth-wavelemght separation. If the pole eat be mate to rotate lat degrees, full advamtage maty be taken of the directivity of the ses tem. "lomed feedres may" be used if the lengh his not more than one or lwo wate-
 an entmed line and a matchings stubatedeximble.

Combinationcollinear:and broadside arraysasdeseribed in Chapter 'Ten give good gain and are not difficult 10 construct, The clement- ath be mate of wire or tubing. The aswembly ma! comsist simply of wires lamg from a rope stretehod botween two supports.

The photograph of Fig. 1718 shows at four-oloment beam with one refledor athd two directors. The clements are cut from ${ }^{3}$ s-inch diameter :uluminum rod. The antemna is a folded dipole consisting of two lengt hs of
rod bolied together at the ends with $1 / 4$-inch brass spacers.

Ther rements are supported at their centers on bakelite blocks fastened to : frame made of wood. For 420 Mr ., the imenna is 13 inches long, the reflector $13 \frac{1}{2}$ inches long and the directors each $111 / 2$ inches in length. The spacing botweon directors and betwen the firs director and the antenna is 2.6 inches and belwoen the antematal the reflechor 4 inches. The lengths of the elements and the spareing should be adjusted 10 obtain the greatest po-sible forward radiation as indieated on a field-strongth meter

Clowe spacing and balance are important fantors in v.h.f. forelor operation to minimize ratiation from the line. Fror this rason the coaxial line is the hest type of feed lor the sh.f. antenna, but the open-wire lime is quite effective if care is taken in its construction. If a matehing section is used. it should be symmetrical and loaded on both sides. to matintain rurrent balanee in the matching section.

Corner reflector antombu-A type of highly directive antennal s s:smem for the v.h.f. and u.h.f. ratges above 50 Mr . which is compatatively easy to construet is the "comer" reflector, shown in lix. 1719. It comsists of two plane reflecting surfaces set at an angle of 90 degrees, with the allteman set on al line bisecting this angle. The distance of the antema from the vertex should be 0.5 wavelength. The reflector surfices are made of spines spaced about 0.1 warelengila apart

The ammena used may be a conter-fed fullwive affair with a two-wire line. Since the radiation resistance of the alltenna is raised When the reflector is used, an impedancematrhing system will be requited if ordmary

Fil. 1719 - Typical eonstruction of a stuare eorner reflector for u.h.f, work. 'I'lis is a photograph of an experimental sel-upin which the u.h.f. oscillator is mounted directly under the antenna.

Fig. 1720 - I.ow-loss lightningarresters for tramsmitters. types of lines are used. For this reason a tuned line is advisable. Alternatively, a folded dipole (§ 10-14) may be used dirertly with a jot)ohm line (No. 12 wire spared 2 inchers).

The transmission line should be rum out at the rear of the reflector, to keep the system symmetriwal and thus avoid any umbalanee.

The corner refledor antenna will give a gain of approximately 10 db . over a simple halfwave dipole. The front-to-back and firmotoside ratios are of the order of 35 and 2.5 , 16 ., respertively, in a typical case, and the direretional patiern is relatively free from secondary lobes of appreciable amplitude.

© Lighfning Profection

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protertion. Therefore, grounding switches or lightning arresters should be provided. Examples of eonstruction of low-loss arresters are shown in Fig. 1720. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At 13, the electrodes are enclosed in a standard sted outlet hox. The gaps should be made as small as possible without danger of breakdown during operation. Lightning-arrestor systems require the best gromed combertion obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with elips for connection to the freder wires may be used. The ground lead should be short and run, if possible, directly to a driven pipe or water pipe where it enters the groumd outside the building.

(1) Antenna Switching

It is often desirable, particularly in 1 NX work, to use the same antemna for tramsmitting and receiving. This requires switching of antenna from transmitter to receiver. One of two general systems may be employed. In the first. the transmitter and roobiver carlh are provided with an antemna tuncr, and the antemna transmission line is switched from one to the other. In the second system, one antemna tumer is provided for each antema and the switeh is in the low-impedane coupling line se seral typical arrangements are shown in lig. 1721. Frequently relays with low-capacity contacts are substituted for switches.

Fig. 1721 - Antenna-switching arrangements for various types of antennas and coupling systens. A - For tuned lines with separate antenna tuners or low-impedance lines. \mathbf{B} - For a voltage fed antenna, \mathbf{C} - For a tuncd line with a single antemna tuncr. D-For a voltage-fed antenna with a single tuner, E- For two tuned-line antemnas with a tuner for each antenna or for two low-impedance lines. F. For combinations of several two-wire lines.

Chapter Eighteen

Emergency and Portable

Emergency self-powered equipment is no longer a nice toy to play with when regular amateur activities pall; it has become the moral obligation of every amateur to be prepared in case of any communications emergency. Large-scale divasters in the past have demonstrated the tremendous value of amateur emergency stations in relaying relief messages when all other communication channels are closed. Aside from the all-important energency phase, the use of portable equipment has been extended through organized activity in the annaal ARRL, "Field Days," and the problem of providing equipment suitable for use in rural districts, where commercial power is not available, has always been with us.
The most vital need for self-powered equipment occurs in connction with emergeney activity, and the basic dusign of all such equipment should be predicated on emergeney use. Every amateur, no matter where he may be located, can reasonably expect that sometime he may be called upon to perform emergency communications duty, anul it is his responsibility to the public welfare, to himself, and to amateur radio as a whole to see that he is in some measure prepared.

It is not to be expected that every amateur will prepare himself for an emergeney by having available a complete and separate selfpowered station, although a large number of individuals and club groups do so. There is, however, no reason why every amateur cannot prepare his station for an emergency by having an emergency power supply ready and a quick means for utilizing all or part of his regular station equipment as an emergency-powered station. The emergency power supply can be anything from a small vibrator supply and/ or batteries to a large gasoline-driven generator.

IC Battery and Vibrator Data

The use of dry batteries, storage batteries and vibrator-transformer packs or genemotors is discussed in Chapter Eight. Table I shows the service which may be expeeted from stand-ard-brand dry batteries under various load conditions. Various types of manufactured vi-brator-transformer units are listed in Table II, while Table III is a listing of available dynamotors which are suitable for emergency and portable work.

C. Construction of Vibrator Supplies

Vibrator-type power supplies are not diffi-
cult to construct. The transformer usually is a speceial type designed for the purpose, although a heavy-duty recciver or low-power transmilter transformer may be pressed into service if it has suitable fiament windings which may be comnected as the 6 -valt vibrator primary. A supply may be designed to operate from a 6 -volt storage battery only, or a dual-mimary transformer or sepatate transformers may be used so that the supply will operate interchangeatly on cither 115 -v.a.e. or 6 v.l.c.
Typical circuit diagrams are shown in Fig. 1801. The one shown at (A) is the simplest, although it operates from a 6 -volt d.c. source only. si turns the high voltage on and off.
The circuit of (3 a provides for both 6 -volt d.c. and 115 -volt a.c. operation with a dualprimary transformer. So is the a.c. on-off switeh while \overleftarrow{s}_{3} switches the heater of the 6×5 rectifier from the storage battery to the 6.3 -volt winding on the traasformer. Filament supply for the transmitter or receiver is switeled by shifting the power olug to the correct output socket, X when oprating from a 6 -volt d.c. sourre and Y when 115 -volt a.c. input is used.
The circuit of Fig. 1801 (C) may be used when a dual-primaty transformer is not available. The filter is switched from one rectifier output to the other by means of the d.p.d.t. switeh, S_{4}, which slso shifts filament comections from a.e. to di.c. The filter section of the switch eould be climinated if desired by comecting the filtering circuit permanently to the outpat terminals of both rectifiers and removing the muned rectifier tube from its socket. Similarly, the filament section of S_{4} could be dispenseal with by providing two output sockets as in the circuit at (B). If a separate rectifier-filament winding is available on T_{3}, direetly-hrated rectifier types may be substituted for the 6.2 .5 in the a.c. supply. In some cases where the required filament windings are not available, a rectifier of the coldcathode type, sucl as the $0 Z+$, which requires no heater vollage, maty be used to advantage.

If suitable filanent windings are available, a regular a.c. transformer will make an acceptable substitute for a vibrator transformer. If the a.e. transformer has two 6.3 -volt windings, they naty be connected in series, their junction forming the required center tap. A 6.3 -volt and a 5 -volt winding may be used in a similar mamer even though the junction of the two windings does nos provide an accurate center tap. A better cencer tap may be obtained, if a 2.5 -volt winding also is available, since half

of this winding may be connectod in scrios with the 5 -volt winding to give 6.25 volts.
R.f. filters for redueing hash are incorporated in both primary and seeondary circuits. The secomdary filter eonsists of a $0.01-\mu \mathrm{fd}$. maper condenser directly arross the rectifier output, with a 2.5 -mh. r.f. cholke in sories ahead of the smoothing filter. In the primary circuit a low-inductance rhoke and highcapacity rondenser are meoded because of the low impedance of the circuit. A choke of the sperifications given should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, and No. 14 as a minimum. Manufartured chokes such as the Mallory RJ 583 are more compact and give higher imbuctance for a given resistance because they are bank-wound, and may be substituted if obtainable. ('1 should be at least $0.5 \mu \mathrm{fl}$.; even more capacity may help in bad cases of hash.

The power supply should be built on a metal chassis, with all unshielded parts underncath. A bottom plate to complete the shielding is advisable. The transformer case, vibrator case

Fig. 1801 - Typical vibrator-transformer power-supply circuits. The circuit at (A) shows a simple arrangement for 0 -volt d.c. input: the one at (B) illustrates the use of a combination transformer for operation from either ${ }^{6}$ voles d.c. or 115 volts a.c. The circuit of (C) is similar to that of (B) but uses separate transformers.
$\mathrm{C}_{1}-0.5-\mu \mathrm{fd}$. paper, 50 -volt rating or higher.
$\mathrm{Cg}-0.00 .5$ to $0.01 \mu \mathrm{fdl}, 1600$ volts (see text).
C.3-0.01- μ fll. 600 -volt paper.

Ci- 8 - -fd . 450 -volt electrnlytio.
(. $:-32-\mu \mathrm{fd}$. $\mathrm{t}, \mathrm{0}$-volt electrolytic.
$\mathrm{C}_{\mathrm{B}}-100-\mu \mu \mathrm{fl}$. mica.
L_{1} - 10-12. henry 100 ma. filter ehoke, not over 100 ohms (Stancor C.-2303 or equivalent).
$\mathbf{h}_{1}-5000$ ohms, $1 / 2-$ or 1 -watt.
likC - 5 turns No. 12 on 1 -inch form, close-wound.
$\mathrm{EFC}, 2-2.5$-mh. r.f. choke.
F-1.5-ampere fuse.
S_{1}-S.p.s.t. toggle - battory switch.
S_{2}-S.p.s.t. tongle - a.c. power swith.
s_{3} - Sp.p.t. togyle - rectifierheater whanfe-overswiteh.
s,-1).p.d.t. toggle -a.c. d.e swith.
ViB - Vibrator unit (Mallory 5001', 294, ete.)
' F_{1} - Vibrator trams former.
'Tz-Sperial vibrator transformer with 11.5 -volt and 6 wolt primaries, to kive approximately 300 volts at 100 ma. d.e. (Stancor 1'-6106 or equivalent).
' T_{3} - A.c. transformer, 275 to 300 volts earh side of center tap, 100 to 150 ma.: 6.3 -volt filament.
X - Insert a series resistor of suitable value to drop the output voltake to 360 at 100 -man. loal, if necessary. If transformer gives over 300 voles d.e., a second filter choke may be used to give additional voltage drop as well as more smoothing.
Nots - All ground comections should be made to a single point on the chassis.
and metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be cevenly twisted, since these leads are more likely in radiate hash than any other part of a reasonably wellshededed supply. A litalo eare in this resperet usathy is more productive than experimenting with different values in the hash filters. such experimenting shoukd eome after it has bern found that radiation from the leads has beron reduced to an absolute minimum. Shielding the leads is not particularly holpful.

The $100-\mu \mu$ fl. miea condenser, C_{6}, connected from the positive output lead to the "hot" side of the "A" battery may be holpful in reducing hash in certain power supplies. A trial is necessary to see whether or not it is requirccl. It should be mounted right on the output socket.

Testing for mothods of rliminating hash should be earried out with the supply operating a receiver. Since the interference usually is pieked up on the reediver antenna leads by radiation from the supply itself and the battery leads. it is atvisable to keep the supply and battery as far from the recoiver as the connecting cables will permit. Three or four feet shoudd be ample. The mirrophone eord likewise should be kept away from the supply and leads.

The smoothing filter for battery operation (an be a single-section affair, but thore will be some hum (readily distinguishable from hash because of its deeper pitch) unless the filter output capacity is fairly large -16 to $32 \mu \mathrm{fd}$.

TABLE I－BATTERY SERVICE HOURS

Estimated to 34 －volt end－point per nominal 45 －volt section．
Based on intermittent use of 3 to 4 hours daily．
（For batteries manufactured in U．S．A．only．）

Manufacturer＇s Type No．		Weight		Current Drain in Ma．											
Burgess	Eveready	Lb．	Oz．	5	10	15	20	25	30	40	50	60	75	100	150
－	386	14	－	2000	1100	690	510	400	320	200	170	130	100	50	30
	486	13	5	1700	880	550	395	300	240	165	125	100	70	45	20
21308	－	12	8	1600	1100	690	490	－	300	200	－	100	－	50	25
	586	12	2	1400	800	530	380	260	185	130	85	60	40^{-}	30	14
10308	－	11	4	1300	700	520	350	－	－	130	－	90	－	42	18
	585	8	13	900	450	290	210	130	100	60	45	25	20	11	5
2308	－	8	3	1100	500	330	180	－	100	65	－	34	－	－	－
B30	－	2	8	350	170	90	50	－	21	15	－	－	－	－	－
	762	3	3	320	140	81	54	37	27	－	－	－	－	－	－
	482	2	－	320	140	81	54	37	27	－	－	－	－	－	－
A 30	－	2	－	210	80^{-}	44	24	－	14	5	－	－	－	－	－
	738	1	2	160	70	30	20	10	7	－	－	－	－	二	－
Z30N	－	1	4	155	70	30	20	15	7.5	－	－	－	－	－	－
	733	－	10	50	20	11	7	5.2	－	－	－	－	－	－	－
W30FL	二	－	11	45	19	12	7	－	3.5	－	－	－	－	－	－
	4551	－	8.6	70	20	11	7	5.9	－	－	－	二	－	－	－
X $\times 30$	－	－	9	70	20	12	7	－	3.5	－	－	－	－	－	－

${ }^{1}$ Same life fisures apply to $467,671 / 2$－volf， 10.5 oz ．
Estimated to 1 －volt end－point per nominal 1．5－volt unit．Based on intermittent use of 3 to 4 hours per day at room temperature．（For batteries manulactured in U．S．A．only．）

Manu Typ	acturer＇s No．	We	ght	Volt－ age		Current Drain in Ma．										
Burgess	Eveready	Lb．	Or．		30	50	60	120	150	175	180	200	240	250	300	350
－	A．1300	8	4	1.25	－	－	－	－	2000	1715	1500	1333	1250	1200	1000	854
－	740	6	12	1.5	－	－	－	－	1400	1800	－	1050	－	775	625	－
－	$741{ }^{1}$	2	14	1.5	－	－	1100	750	－	－	－	375	300	275	215	175
－	743	2	1	1.5	－	－	750	325	－	－	－	245	－	180	135	110
－	7111	2	2	1.5	－	－	700	320	－	－	200	－	120	－	90	－
－	742	1	6	1.5	－	－	500	325	－	－	155	135	100	95	85	50
$8 \mathrm{~F}^{\prime \prime}$	－	2	10	1.5	－	－	1100	680	450	－	－	400	－	320	230	190
$4 \mathrm{FA}{ }^{3}$	－	1	4	1.5	－	－	600	350	220	－	－	160	－	110	90	60
－	A－2300	15	8	2.5	－	－	－	－	2000	1715	1500	1333	1250	1200	1000	854
－	723	1	－	3.0	－	－	240	100	－	－	70	－	40	－	30	－
20F9	－	13	12	3.0	－	－	－	－	1000	－	－	750	－	700	600	500
9F9H	－	1	6	3.0	600	－	340	130	95	－	－	60	－	42	30	－
2F9BP4	－	1	5	3.0	600	－	340	130	95	－	－	60	－	42	30	－
FRBP	－	二	12	3.0	340	－	130	45	30	－	－	－	－	－	－	－
G3 ${ }^{\text {b }}$	－	1	5	4.5	370	－	150	50	35	－	－	－	－	－	－	－
－	746	1	3	4.5	－	200	－	－	－	－	－	－	－	－	－	－
－	718^{6}	3	二	6.0	－	375	－	－	－	－	－	－	－	－	－	－
F4PI	－1	1	6	6.0	340	－	130		30	－	－	－	－	－	－	－

S Same life figures apply to 745, wt． 3 lbs

${ }^{3}$ Seme life figutes epply to 4F，wt． 1 lb ． 5 oz．
＂Same life figures apply to $2 F 4$ ，volts 6 ，wt． 2 lbs． 11 or．
${ }^{5}$ Same life Agures apply to $\mathrm{G5}$ ，volts $71 / 2$, wt． 2 ibs .2 oz ．
－Same life figures apply to 747，wt． 3 lbs．
If batteries of another make are to be used，locate ones ol similar size and weight on these tables and comparable performance may be expected．

A typical example of vibrator－supply con－ struction is shown in the photographs of Figs． 1802 and 1803.

All components in the supply with the ex－ ception of the four－prong outlet socket are mounted on a piece of quarter－inch tempered Masonite measuring $33 / 4 \times 9$ inches．This fits into a plywood box having inside dimensions （ $33 / 4 \times 9 \times 51 / 2$ inches）just large enough to contain the equipment．The Masonite shelf rests on $3 / 4$－inch square blocks， $1 / 1 / 4$ inches long， glued to the corners of the box at the bottom． The top and bottom of the box are removable．

To provide shielding and thus reduce hash troubles，the box is covered with thin iron salvaged from 5 －quart oil cans．Where the edges bend around the box to make a joint，the lacquer is rubbed off with steel wool so the pieces make cleetrieal contact，and the metal is tacked to the plywood with escutcheon pins．

To make sure that the shielding will be complete，the top and bottom of the box slide into place from the side，with the metal cover－ ing extending out so that it fits tightly under a lip bent over from the metal on the sides． These lips also are cleaned of lacquer to permit

TABLE II-VIBRATOR SUPPLIES

Manufacturet's Type Number				Outpul		Rectifier	Output Filte:
American Television and Radio Co.	Electronic Labs	Mallory	Radiat	Volts	Ma.		
VPM-F-7				90	10	Syn.	Yes
		VP-551 ${ }^{1}$		$\begin{aligned} & 125-150- \\ & 175-200 \end{aligned}$	100 max.	Syn.	No
			$4201 \mathrm{~B}^{2}$	230	50	Syn.	Yes
		VP-540		250	60	Syn.	Yes
			$4204 \mathrm{~F}^{3}$	$\begin{aligned} & 100-150- \\ & 250 \end{aligned}$	$\begin{gathered} 35-40- \\ 60 \end{gathered}$	Syn.	Yes
	605			$\begin{aligned} & 150-200- \\ & 250-275 \\ & \hline \end{aligned}$	$\begin{aligned} & 35-40- \\ & 50-65 \end{aligned}$	Syn.	No
	6044	VP-552 ${ }^{\text {5 }}$		$\begin{aligned} & 225-250- \\ & 275-300 \end{aligned}$	$\begin{aligned} & 50-65- \\ & 80-100 \end{aligned}$	Syn.	No
			$4201{ }^{\text { }}$	$\begin{gathered} 150-200- \\ 250-275- \\ 300 \end{gathered}$	$\begin{aligned} & 35-43- \\ & 50-70- \\ & 100 \end{aligned}$	Syn.	No
	251			300	100	Tube	Yes
		VP-555		300	230	Tube	Yes
VPM-6 ${ }^{\text {a }}$	$311{ }^{\text { }}$			$\begin{aligned} & 250-275- \\ & 300-325 \end{aligned}$	$\begin{array}{r} 50-75- \\ 100-125 \end{array}$	Tube	Yes
		VP-557		400	150	Tube	Inputicond.
			4202D	$\begin{array}{r} 300- \\ 400 \end{array}$	$\begin{array}{r} 200- \\ 150 \end{array}$	Tube	Yes
	606^{10}		-	$\begin{aligned} & 325-350- \\ & 375-400 \\ & \text { and } 110 \text { a.c. } \\ & 60 \text { cycle } \end{aligned}$	$\begin{gathered} 125-150- \\ 175-200 \\ 20 \text { watts } \end{gathered}$	Tube	Input condenser

All inputs 6.3 volts d.e. unless otherwise noted.
${ }^{1}$ VP- 553 same with tube rectifier.
2 In weatherproof case. 4201 B 2 same with tube rectifiel.
${ }^{3} 180$-cycle vibrator, lightweight. 4204 same without filter.
4601 some with tube rectifier; 602 same except 12 v . d.c. input
and tube rectifier; 603 same except 32 v. d.c. input and tube rectifier.
Veciv- 554 same with tube rectifier, VP-G556 same except 12 v .
d.c. input, VP-F 558 some except 32 v. d.c. input.

- 4200D same with tube rectifier; 4200DF same with tube rectifier and output filter
; 551 same with 12, d.c. input.
- Also available without filter.
- 511 same except 12 v . d.c. input.
${ }_{10}$ Input 6 v . d.c. or 110 v .a.c., 607 same except 12 v . d.e. or 110 v.a.c. input; 608 same except 32 v. d.c. or 110 v. a.c. input; 609 same except 110 v. d.c. or 110 v. a.c. input.

TABLE III - DYNAMOTORS

Manufacturer's Type No.			Input		Output		Weight
Carter	Eicor	Pioneer	Volts	Amps.	Volts	Ma.	Lbs.
210 A			6	6.1	200	100	61/2
MA 250	1021	E1W272:	6	4.2	250	50	$61 / 2$
251 A		E1 W 337^{3}	6	7.9	250	100	$61 / 2$
301 A	106	E2W 3514	6	9.7	300	100	$61 / 2$
315 A	158	E2W243	6	13.4	300	150	$77 / 8$
320 A		RAOW ${ }^{587}$	6	18.2	300	250	$91 / 2$
MA301			6	9	300	100	
351 A			6	10.9	350	100	61/2
355 A	108	E2W256	6	14	350	150	77/8
352 A			6	22	350	200	$91 / 9$
401A			6	13	400	100	71/8
		E2W4 8	6	14.2	400	125	$91 / 4$
415A	109:		6	18.2	400	150	71/8
420 A			6	23.4	400	200	$91 / 2$
425 A		RA1 $\bar{W} 201^{\circ}$	6	26.4	400	225	$91 / 2$
$\checkmark 450$			5.5	29	400	250	
A430			6	31	400	300	13
		E3W413	6	15	500	109	11
520 AS		RA1 $\bar{W} 18912$	6	27.4	405	250	-
A650			6	45	600	250	13
AFS630			6	43.4	690	305	13
BS30050			12	25	$\begin{aligned} & 3030 \\ & 1500 \end{aligned}$	50 100	

${ }^{1}$ Input current 4.6 amp .; wh. $45 / \mathrm{I}$ Ibs.
${ }^{2}$ Wt. $71 / 2$ Ibs.
${ }^{3}$ Input current 7.5 amp.; wt. $71 / 2 \mathrm{lbs}$.

- WI. 5 lbs.

Wt. $91 / 4$ lbs.
${ }^{5}$ Indut current 14 amp.; wt. 5,4 lbs
Wt. 16 lbs.; input current 18 amp .
${ }^{8}$ Input current 17 amp.
${ }^{9}$ Wt. $17 \frac{1}{2}$ lbs.; input current 25 amp .
${ }^{10}$ Input current 27.5 amp.; wt. $75 / \mathrm{lbl}$ lbs.
${ }^{11}$ Input current 21.5 amp. ; wt. $75 / \mathrm{B}$ lbs
12 Input current 27 amp .; wt. $171 / 2$ lbs

TABLE IV-GASOLINE-ENGINE-DRIVEN GENERATORS, AIR-COOLED

Manufacturer				Output		Weight	Startor
Eicor	Kato	Onan	Pioneer	Volts	Watts	Lbs.	
3AP61			BD-61	$\begin{aligned} & 110 \text { a.c. } \\ & \text { or } 6 \text { d.c. } \end{aligned}$	$\begin{array}{r} 300 \\ 200 \\ \hline \end{array}$	100	Push-button
	JR-35 ${ }^{2}$			110 a.c.	300	65	Push-button
	JRA.3 ${ }^{\text {\% }}$			110 a.c.	350	65	Rope crank
	19-A			$\begin{aligned} & 110 \text { a.c. } \\ & \text { of } 6 \mathrm{~d} . \mathrm{c} . \end{aligned}$	350 200	95	Push-button
		35813		115 a.c.	350	91	Push-button
	JR-10 ${ }^{2}$			110 a.c.	400	二	Rope crank
		$5 L^{3}$		110 a.c.	500	165	Push-button
	23 A			$\begin{aligned} & 110 \text { a.c. } \\ & \text { or } 6 \text { d.c. } \end{aligned}$	500 200	105	Push-bution
6AP1	14A		BA-61	110 a.c.	600	135	Push-button
		$7 L^{3}$		115 a.c.	750	195	Push-button
10AP1		10L ${ }^{4}$	BA-10 ${ }^{1}$	110 a.c.	1000	170	Push-button
	26A			110 a.c.	1000	265	Manual
		OIC		110 a.c.	1500	135	Manuel
			BA-15	110 a.c.	1500	365	Push-button

1 Also available in remote-control models.
2 Intermittent-duty model.
good electrical contact. The general construction should be quite apparent from the photographs. The bottom is provided with rubber feet, and the top has a small knob at cach end so that it can be pushed out. This is essential, since the fit is good and there is no way to get either the top or bottom off, once on, without having some sort of handle to grip.

© Charging Storage Batteries

If access to a.c.-operated chargers is not possible at times between actuat use, some form of self-powered charging system is essential.
This need is ordinarily best met by a gaso-line- or wind-driven gencrator. Water-power generators have been used, but their dependence on special circumstances is obvious, and they are not available in small sizes.
The windeharger consists of a small generator driven by a suitable impeller, mounted to take advantage of the free energy offered by the wind. The standard type will supply up to 16 amperes to a 6 -volt battery. It will ordinarily keep fully charged a battery used to power a typical receiver and small transmitter operated from vibrator or genemotor supply in intermittent operation.

Gasoline-driven generators are also available for use in charging 6 -volt or larger batteries. These ordinarily are rated at 150 or 200 watts. A $1 / 2$ - or $3 / 4$-h.p.single-cytinder four-cycle engine is used, which will operate for twelve or fifteen hours on a gallon of gasoline.

C. Gasoline-Engine-Driven Generators

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine-driven generator which provides standard 115 -volt, 60 -cycle supply.
${ }^{3}$ Also available in manuali-started type.
1115-volt output; weight 200 lbs.
Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to two kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6 - or 12 -volt battery used in starting. Fitted with self-starters and adequate mufflers and filters, they represent a high order of performance and effieiency. Many of the larger models are liquid cooled, and they will operate continuously at full load. Ratings of typical gas-engine-driven generator units are given in Table IV.
A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea amongst amateurs. Such generators are similar in construction and capacity to the small gas-driven units.
The home construction of generators of all the above types has been successfully attempted by amateurs at times, although the possession of a considerable knowledge of electric motor dexign is essential. One especially useful possibility is the rewinding of old automobile charging generators, several hundred watts capacity being obtainable from the largest sizes. Those originally used on the old 4cylinder Dodge cars have been successfully adapted by anatcurs. Trade schools will often have their students rewind these generators for only the cost of the material, and this possibility is worth investigating.
The output frequency of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard 60 -cyele transformers are to operate efficiently from this source. A 60 -cycle clectric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator

Fig. 1802 - A view inside a typical vilrator-type power-supply. The rectifier tube is at the upper left with the filter elooke just below. The primary fuse sochet and vibrator are at the right. A synchronous-type vibrator may be substituted for the interrupter-type if it is desired to eliminate the rectifier tube.
and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism. If a 50 -cycle clock is used to check a 60-cycle generator, it should be remembered that one revolution of the second hand will be made in 50 seconds and the clock will gain 4.8 hours in each 24 hours.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate. Tests have shown that what appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the check is made in bright sunlight.

4. Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper preeautions.

The most important point is that of grounding the frame of the generator and one side of the output line. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separateground should be provided.

The next step is to loosen the brushholderlocksandslowly shift the position of

Fig. 1803 - Hash and smoothing filter components are mounted in the bottom of the low-voltage vibrator power supply. The 4 -prong outlet socket is mounted on the side.
guard against discharging the car battery to the point where it will no longer start the car. The usefulness of a mobile unit in emergencies is apparent, since it constitutes a self-powered installation which may be placed in a strategic loeation with a minimum loss of time.

Handie-talkies and walkie-talkies, on the other hand have the advantage that they may be brought to points which for one reason or another may be inaceessible to a car. Handietalkies universally operate from self-contained dry batteries, while the heavier walkie-talkie units may be designed to operate from either dry batteries or a small storage battery of the motoreycle type and a vibrator unit. In some eases, it may be dexir:tble to build the power supply as a separate unit so that the weight which must be carried to the scene of an emergency may be distributed between two persons.

Higher-powered transmitters and more elaborate equipment of the type often used as permanent station equipment operating from a.c. are desirable as control-station equipment if a suitable souree of power is available.

© Portable Equipment - Low-Frequency

The weakest unit in a low-frequency portable or emergency communications installation often is the receiver.

An inadequate receiver, with poor selectivity, low sensitivity and insufficient stability, can ruin a QSO even under favorable conditions. When it is remembered that conditions in portable or emergency operation are often more severe than those at home, with poor antenna facilities, high noise levels, severe interference, etc., the fallacy of attempting to use an inferior portable receiver is apparent.

The best procedure of all is to use the homestation receiver for portable work. Headphones should be used and the output tube removed (if it isn't necessary for headphone operation), but this is no hardship. Headphones are far more satisfactory in such applications than the speaker in any event. This procedure not only ensures the availability of the high-performance receiver so vitally necessary, but the practice that has been obtained by using the recoiver at home is invaluable in the specialized operating techniques of portable or emergency work. It takes as much experience to learn to run a receiver properly as it does to drive a car, and the middle of a erisis is no time to gain that experience. Even on lowered plate voltage the home superhet will be better than a makeshift.

If a special portable/emergency receiver is to be huilt, it should be a superheterodyne. With present-day tubes and components, it is possible to build a simple superheterodync as eheaply as a t.r.f. receiver, and there is no comparison between the two in performance. The average communications superheterodyne can be operated with storage-battery heater supply and dry-cell or vibrator-pack "B"
supply. With the audio power tubes removed from the receiver, the power requirements are not too great. Some of the receivers on the amateur market have provision at the rear of the set for plugging in a d.c. supply, and those which do not can be easily modified by drilling a socket hole at the rear of the receiver and wiring it into the set. When regular a.c. operdtion is used, a phig in the socket completes the circuit.

The design of low-frequency transmitters for emergency, portable and rural transmitters, will depend almost entirely upon the power supply available. Considering possible defects in hastily-improvised radiation systems, etc., it seems unwise to use less than 10 watts input to a power amplifier or 15 watts to an oscillator.

Fig. 180.4 - Connections used for eliminating interference from gas-driven generator plants. C should be 1 $\mu \mathrm{fd}$., 300 volts, paper, while C_{2} may be $1 \mu \mathrm{fd}$. with a voltage rating of twice the d.e. output voltage delivered by the generator. " X " indicates an added connection between the slip ring on the grounded side of the line and the generator frame.

However, powers greater than two or three times these values are not usually necessary, so selection of the power supply will depend almost entirely upon the pocketbook and other resources. The 300 -volt, 100 -ma. vibrator supplies and genemotors represent a nice compromise unless it is possible to step into the 200 - or 300 -watt gasoline-driven generator class.
Perhaps the best plan in providing for an emergency and portable transmitter is to utilize the basic exciter unit in the regular station. This not only ensures the availability of a reliable, efficient unit at all times but means a saving in parts and equipment. It represents no hardship to the permanent station to construct the exciter so it is compact, readily removable, and, above all, solidly and dependably assembled. If your present exciter is not adaptable to this use, plan the new one so it will be. Provision for 6 -volt tubes throughout is essential, with the heater circuit so arranged that it can be connected to a storage battery without change. A suitable plate supply using a vibrator or genemotor or similar system should be available separately, arranged for ready connection. The best method is to have a socket and plug connector assembly, with one plug built into the transmitter and another, wired identically, connected permanently to the emergency supply.

THE RADIO AMATEUR'S HANDBOOK

Fig. 1805 - Simple modulator for portable and gen-eral-utility worh.
$\mathrm{C}_{1}-10-\mu \mathrm{ft}$. 25 -volt alectrolytie.
R_{1} - 100 ohame, 1 -watt.
R_{2} - 1.0 O ohms. 1-watt.
T1-1nput transformer (Thordarson T-83 (78).
T_{2} - Output transformer ('Lhordarson T-19 113).

C A Simple Modulator for Portable Work

The cimuit diagram of a simple modulato for portable or mobile work is shown in Fig. 180.). In this arrangement the mirrophone is used direcely to drive a pair of GVGicir modulators without intermediate speech amplifers. Such a modulator worls surprisingly well to modulate Class-C inputs up to 2.j watts. The unit requires 75 to 100 ma. at 200 to 300 volls. Voltage for the simgla-button carbon microphone is taken from the junction of the two cabhode-biasing resistors, R_{1} and R_{2}, thas eliminating the meressity for bulky mierophone bateries. These 1 wo resistors could be replated by a single resistor with a sliding contart. One side of the heater circuit is grounded so that only three power-supply wires are required, The complete mit may be assemble $\begin{aligned} & \text { on a small chassis. }\end{aligned}$

© High-Frequency Antennas

In many cases, particularly at control stations, it will be necessary to use nom-directive antennas because of the necessity for working field stations at random points of the compats. At fiold stations which normally work with only a single eontalol station, howerer, it may be alvantageous to use a simple form of direce tive array. The power gatin will be worth while in betaring the sigmals in both direetions, and in addition will minimize interforence to and from other nelworks. The simpler forms of antennas described in Chapters Ten and seventecen are quite suitiable.

More important, perhaps, than the antemmat itsolf is its location. Levery effort should the made to get the antomat well above its surroundings and 10 provide, whenever possible, a clear path between the control station and the network stations with which it must communbeate. Having a line of sight between anfonmas will ensure succestiul eommmancation even though the power is very low and the antenna itsolf is nothing more than a simple half-wave wire. Where there are intervening obstrucions, it will be helpful to use as mueh height as possible.

Vertical polarization is to he preferred to horizontad. sinee vertical polari\%ation is better
suited to mobile operation. A simple vertical antenna has practically no horizontal directivity, therefore it will work equally well in all directions except for effeets attributable to its surroundings and to the terrain over which the signal must travel. The signal strength will be poor if a horizontally polarized antenna is used to receive a vertically polarized signal.

A half-wave antema, wo hatf waves fed in phase stacked vertically, or an exturded double Zepp, all will be satisfachory, and are very simphe typers lo construet. Inesign details will be found in Chapter Ton. If the station is to be operated on a fixed freguency, the antemat length should be adjusted for that frequency. If the same antenna is to work on several frequencies, the length had best be chosen midway between the wo extremes.

Mobile antemmas - It is pobable that most networks will have one or more stations installed in cars, for dispatehing to points Which may be in urgent need of communication. The equipment previously deseribed is readily adaptable to ear installations; the tanseciver, in particular. can be sot up with litue difficulty, and cath get its power from the car broadeast recoiver, if there is one. This would reguire only the insiallation of a suitable power socked, in the car recolver, together with a switeh to cot the power from the recever when the loanseciver is in use. Antemas suitable for such mobile installations are deseribed in (hapter Seventeen.

For a solid but easily detachable mounting for a mobile antoma, the arrangement shown in Fig. 1806 is suggested. It is held in phace by a panel of wood, cut 10 the shape of the window,

Fig. 1806 - A J.type antema for 141-Mc. inolite oper ation can be mounted casily in the window of a car, allowing the radiator proper to be placed abowe the roof of the vehicle. The dimensions are given in the text.
on which the antenna is mounted. By rumning up the window the paned is held firmly in place. The antenna is of the "J" type. This type of installation places the radiator proper above the roof of the car, and has the advantage that it can be readily remowed from the car when not in use or when neded elsewhere. Fig. 1808 shows a folded doublet.

The unit shown is buill of $1 / 4$-inch plywood, since the usual thickness of the window glass in cars is 1 inch. Run down the window of the car about half way, or enough to leave at least a 6 -inch opening, and make a pattern of cardboard using the top colge of the window ghass for the guide. Trim the eardboard to this shape, and then push it up in the window and use the edge of the glass to mark the botom edge of the pathern. From the pattern. mark the piece of plywood and cut it out with a saw. Additional small pieces to form stopsis in the corners are fastened to the main piece with glue and brads. A piese of plywool about $6 \times 81 / 2$ inches should be fastened to the large piece at the point where the antenna is to the supported, using glue and brads, and the four stand-off insulators which support the antema bolted to this piere. If the insulators are mot long enough for the antema to clear the side of the car, they call be raised by wood strips.

Two small strips should be nailed along the inside of the main piece so that they extend down below the edge a few inches and form, with the ouside pireres, a yoke to keep the assembly in the proper position on the wimbow.

The feeder can be mate of flexible rubbercovered wire (obtained by split ting a length of paralled lamp cord) sicparated bes small phastie or dry wood spacers. The antemata ends of the wires are soldered to the heads of the large bolts in the upper stand-ofl insulators, and the wire is rem sut through hokes in the word.

The antenata athetching-section rods are regular automotile whip antemnas and are supported on the stand-ofl insulators bey small loop-shaped metal damps. The shorting har is made along the same limes, with tars of heavy metal on both sides of the clamp loops.

The length of the hall-wave "J" antema itsisll should be 38 inches for a frepurner of 14f Me. - the center of the twormeter band. sine the length of the matehing see tion should be a quarter wavelength. or 19 inches, the total length of the right-hand element shown in Fig. 1sof should be 57 inchers. while the shorter left-hand clement should be 1 ! inches long. The spacing betwero eloments should be 2 inches. With an open-wire transmission line consisting of two No. 18 wires pated 2 inches, the line should be connected in $_{2}$ inches up from the shorting bar at the bottom of the elements.

The folded-doublet antema shown in Fig. 1808 is another simple type of antenna which may be adapted for mohile use, especially where center feed is more convenient. It has the advantage of rather broad-band characteristic and moderately-high impelance at the
feeding point. It should have an over-all length of 38 inches for 146 Mc .

© A Car-Roof Antenna

Fig. 1807 shows a sketch of a fitting for a vertical v.h.f. car-roof antenna which provides a good mechanical arrangement for folding the antenna parallel to the car roof when the antenna is not in use.

The pieces A and B are made from sections of brass rod $\frac{3}{4}$ inch in diameter. One end of piece A, which hats an over-all length of $3 \frac{1}{2}$ inches, is turned down for a length of 2 inches to the diameter required to fit the inside of the bottom of the tubular antenna, which is soldered fast. At the other end of piece A is cut a tongue, 1 inch long and $1 / 4$ inch wide as shown in sketeh.
liece B has an over-all tength of 6 inches. One end is turned down and threaded with a $3 / 4$-inch die, while a slot, 1 inch deep and $1 / 4$ inch wide to fit the tongue of A, is cut in the opposite end. The slotted end is then drilled and tapped on one side of the slot for a $1 / 4-\mathrm{inch}$ thumb serew, C. A vertical clongated hole is drilled and filed out in the tongue of piece A, so that, with the thumb serew loosened, A can be lifted up slighty to clear the shoulders of l while the antema is being folded down. The solid seating of the two pieces, A and C. against each other when the anterna is erected in a vertical position provides litthe opportunity for the joint to work loose under vibration.

The threadedshank of piece B passes through a hole in the roof of the car. The polystyrene washers. D and E, provide the necessary insulation. Each is 2 indhes in diameter and $1 \times$ inch thiek and has at collar or hub $1, \frac{1}{6}$ inch thick turned on one side to fit the hole in the car 8 roof. The assembly is clamped to the roof of the ear by means of the lorking muts: ©ither side of $F^{\prime} . F^{\prime}$ is a sompering lug for making the connection to the antenna.

If the assembly is placed near the furward part of the roof, a two-meter hall-wave anterna may be folded back at the hinge when not in use without the antenna overhanging the rear of the car.

Fig 1807 - Fecdthrough insulation and fittings for the folding car-roof mobile antenna. The joint hinges at \mathbb{C} so that the antenna may be folded down parallel to the roof of the car.

(1. Low-Frequency Emergency Antennas

$\mathrm{An}_{\mathrm{y}} \mathrm{w}_{\text {of }}$ of the simple low-frequency antennas described in Chapter Ten, or modifications of them, should be suitable for low-frequency portable and energency work. End-fed antennas of the simple voltage-fed or Zepp types probably are the casisst to erect, although a center-fed antenna is more tolerant as to dimensions so long as the entire system including the feeders can be tuned to resonance. With such a center-fed arrangement, the feeders will stay in balance, even though the antema portion of the system is much less than a haif-wavelongth tong.

For portable work at

Fig. $181 \% 8$--.'lhree-wire folded-doulilet antema for matching a 600. ohm line. 'line three eondurtors are connected together at the conds. as indirated. They may be made of wire, rod or tuling, and can be mounted on stand-off insulators on a wooden support. low frequencies a compact antemna which has been used sureessfully at 3.5 Mc . consists of about (60 feet of No. 18 enamcled wire wound in a spiral around a long bamboo fishing pole. The turns are space-wound over the top 14 feet of the pole and then closewound for about three fret. The remaining length of the pole is left free so that it may be lashed to a tree or other convenient upright, or simply stuck in the ground when no support is available. The bottom end of the winding is connected throughanantenma tuner to ground.

The pi-section antenma coupler described in Chapter Ten and the pisection tank circuit shown in Fig. 1302, Chapter Thirteen, are good devices for coupling random lengths of wire to either transmitter or receiver. An antenna of this type may be erected by tying a wright to one cind of the wire and tossing it into a tree or over some other possible -levated support.

Transmission lines - At nearly all fixed locations it will be necessary to use a transmission line between the antenna and the radio equipment, since the lattor will be indoors where it is casily accessible while the former will be placed on the roof of the building to secure adequate height. Low-loss concentric line is ideal for working into the renter of a half-wave antenna, but there is little likelihood it can be obtained except in isolated instances. The alternative is an open-wire line
having an impedance of 500 to 600 ohms. It is advisable to keep the spacing between wires small, to prevent radiation loss; 2 -inch spacing is about right, provided the line can be installed fairly rigidly so that it will not swing in a breeze and cause the transmitter frequency to change. This close separation also requires a fairly large number of spacers - at intervals of perhaps three to four feect.

To make such a line nonresonant it will be necessary to install a matching stub) at the antema. The design and adjustment of such stubs also is covered in Chapter Ten. As an alternative, a multi-wire doublet antenna may be used to couple dircetly to a line having an impedance of the order of 500 to 600 ohms without special matching provisions. Such an antenna is shown schematically in Fig. 1808. It gives a 9 -to- 1 impedance step-up at the line terninals, hence practically automatic matching to a 600 -ohm line, assuming the normal doublet impedance of 70 ohms. In addition, it has a broad resonance characteristic and therefore is well suited to working anywhere in the band.

To avoid the necessity for impedance matching, two-wire lines may be operated as tuned lines if desired. Such operation has bern successful with lines up to at least 100 feet long. Since in most cases the coupling dorice at the transmitter or receiver is a single-turn coil, the simplest method of tuning the line is to aljust the feeder length until the current in the line is maximum when the transmitter is operating on the chosen frequency. A small dial light or flashlight bulb, connected in series with one side of the line right at the transmitier terminals, may be used as a current indicator. The transmission line should be made about four feet longer than ueressary, its length being adjusted by cutting off an inch or two at a time until maximum bulb brilliancy is obtained.

From a constructional standpoint it is desirable to use the same anterna for both transmitting and receiving. The change-over switeh for this purpose should have low capacity, and preferably should have low-loss insulation. The ordinary trpe of wafer switch is satisfactory, partieularly if it is ceramic insulated. A small poreclain-base d.p.d.t. knife switeh also may be used for this parpose. If possible, the antenna switch should be combined mechanically with the power-supply changeover switches for the transmitter and reeeiver so that all the necessary switching from transmission to reception can be done in one simple operation.

Measurements and Measuring Equipment

To comply with FCC regulations it is necessary that the amateur station be eçuipped to make a few relatively simple measurements. For example, the regulations require that means be available for checking the transmitter frequency to make sure that it is inside the band. This means must be independent of the frequency control of the transmitter itself; it is not enough to depend on, say, the calibration of a crystal in the crystalcontrolled oscillator that drives the transmittor. In addition, it is necessary to make sure that the plate power input to the final stage of the transmitter does not exceed one kilowatit. The regulations also impose certain requirements with respect to plate-supply filtering, stability and purity of the transmitted signal, and depth of modulation in the case of phone transmission.

In many cases all these measurements can be made to a satisfactory degree of accuracy with no more auxiliary equipment than the regular station recciver. However, a better job usually can be done by building and calibrating some rclatively simple test gear. Too, the progressive amateur is interrested in instruments as an aid to better performance.

Fundamentally, the process of measurement is that of comparing a quantity with a referrmee standard. Measuring equipment divides into two types: (1) fixed standards giving a reference point of known accuracy, used with associated equipment for making comparisons between the known and unknown quantities, and (2) direct-reading instruments or meters which have previously been calibrated in trems of the quantity being measured.

Mrthods of making the measurements required in the amateur station will be discussed in this chapter, and design and construction of representative types of the instruments used in making these measurements will be deseribed.

C. Frequency Measurement

Frequency-measuring equipment can be divided into two broad classes: oscillators of various types that generate signals of known frequency that can be compared with the signal whose frequency is unknown, and adjustable resonant circuits.

Instruments in the first classification are the more accurate. Two types are commonly used by amateurs, the secondary frequency standard and the heterodyne frequency meter. The secondary frequency standard, nearly always crystalcontrolled, usually generates a frequency of 100 kc . and employs a circuit that is rich in harmonic output. As a result, it supplies a series of frequencies, all multiples of 100 kc ., which provide accurate calibration points throughout the communications spectrum. The more elaborate instruments of this type are provided with frequency dividers (multivibrators) to supply intermediate calibration points; a divisor commonly used is 10 , thus furnishing signals at intervals of 10 kc . when the fundamental frequency is 100 kc .

The heterodyne frequency meter is a varia-ble-frequency oscillator which is calibrated in frequency against a secondary standard or by other means. The oscillator usually is designed to cover the lowest frequency band in which measurements are to be made; measurements then can be made in higher-frequency bands by using the harmonic output of the oscillator. For example, when the oscillator is set to 3560 kc. its second harmonic is 7120 kc ., its fourth harnonic is $14,240 \mathrm{kc}$., and so on. The proper frequency reading is deturmined by knowing the fundamental frequency of the oscillator and the number of the harmonic which falls in the desired frequency range.

Both the secondary standard and the heterodyne meter are ordinarily used in conjunction with a receiver, the signals from the instruments being picked up just as though they were from distant stations. In the case of the secondary standard, the frequency of the unknown signal can be determined by locating it between two known $100-\mathrm{kc}$. or $10-\mathrm{kc}$. multiples. With the heterodyne meter, the frequency is measured by adjusting the frequency meter until its signal is at zero-beat with the signal of unknown frequency, after which the frequency can be read from the frequency-meter calibration.

Since the secondary standard operates on a fixed frequency and can be crystal controlled, its aecuracy can be quite high. However, it simply establishes a series of known frequencies at regular intervals, and thus auxiliary meth-

Fig. 1901-A sceondary frequency standard, incorporating a 100 eke. lowdrift ersstaloweillatur, al $10-k e$. moltivihrator, and a harmonic amplifier-modalator. ©introls along the bottom are, left io right: output tuming, Ci4; on-off switch. . $\dot{S}_{1}:$ "B" switeh, \dot{S}_{2} : multivibrator switch, sa, and mattivibrator control. R. I'ower Iransformer, rectifier athil resulator tubes are along the rear edqe of the 7×12-inch chassim. 'The crostal omeillator is at the right, monfivilirator tule in the renter, and sutput circuit at the befl. The output rircuit is tuned to the hand in u-r, with output taken either through (is or a linh wiotling. Ontput reongling is adju*ted tor gise desired ignal strength in the receiver. 'The crystal fremuency ran lic adjuated to predinels 100 ke . lis the vernier diad controllinir (i. Switching the multivilurator sertion on or off will ramser a frecurncy change of less than 1 part in a million.
ods must be used for determining frequencies between the known peints. The series of fixed frequencies, when they mark the edges of amateur bands (as they do if they are multiples of 100 kc .), is (quite suflicient for amateur work because the information that is required is whether or not the transmitter fregueney is inside the band limits, rather than the exact frequency itself. On the other hatnd the beterodyne frequency moter, while eapable of siving readings at any point in its calibrated range, is inherently less atecurate than the ervitalcontrolled standard because of the lower stability of the variable-frequency ossillator.

In the absence of more chatmate frequencer measuring equipment, a calibrated receiver may he usad to indiate the apporomate frequency of the transmitter. If the recaiver is well made and has good inherent stability a bandspread dial calibration can be relied upon to within perhaps 0.2 per rent. Some manuf:etured receivers having factory calibration may
be used to evon closer limits. For most aceurate measuremont maximum response in the receiver should be detormined by mostis of a carrier-operated tuning indisator (s) meter), the rereiver beat oscillator being turned oft.

When chacekiug the ir:msmiter frequency the recoiving antenna should be disomonected, so that the signal will not overlond on "hore" the rereiver. If the reereder sith bloreks whout an antenna the frequency maty be cheoked by turning off the power amplifier and tuning in the uscillater alone.

Secondary frequency shandard - Amateur requirements for high-aceuracy frequency checking, ats well ats for ratibration of atuxiliary frequency-measiring equiphent, are best met by a erystal-controlled secondary standard. With a 100-ke. erystal, batul edges as well as intermediate 100 -kilocyche intervals can be marked quite aceurately through the use of harmonies. Feurthemore, if the standard is provided with a lo-ke. multivibrator for fre-

Fip. 1902 - Circuit diagram of the precision low-drift erystal-eontrolled 100-ke. spomdary frequeney standard.

T1 - Power transformer, 250 volta, 10 ma .
550-1200 Ke. 130 turns No. 30 enamel. 1200-3300 Kc. $\overline{0}$ turns No. 22 enamel. 3.3-7.5 Mc. 22 turns Nor. 22 enamel, length 1 inch.
I_{1} - T-henry, 10 -ma. filter choke. L_{2} - Specifications below.
C_{1} - Inal $36 . \overline{\mathrm{D}}-\mu \mathrm{ffl}$ variable.
 C. ($: 5-0 .(1) 1-\mu \mathrm{fd}$ midpet mica. Cf. Co- $-10-\mu \mu \mathrm{fd}$. midyet mica. (s - -0 ($)$ - $\mu \mathrm{ff}$, midget mica.
 C:13-0.012- μ fid midget mica. ($14-110-\mu \mu \mathrm{fil}$. variable. C_{15}, Ci6-8-pfis. fin-volt elcetro-$\mathrm{C}_{17}-3-30-\mu \mu \mathrm{fd}$. mica trimener. R_{1} - 1 manhin, ${ }_{2}$-watt. R2. R R_{3} - 0.5 mernhm, 1-watt. $\mathrm{R}_{1,}, \mathrm{R}_{5}$ - 50, (100) ohm:, 1 watt. $\mathrm{R}_{\mathrm{f}}, \mathrm{K}_{7}-20.090$ chms, B - $\mathbf{2}$ watt. R_{s} - 15.010 -ahm puitentiometer. R!, - 0.3 masohm, 友-watt. $\mathrm{K}_{10}-0.1 \mathrm{mrpoh}$, 2 watt. K_{11} - 8010 ohms. $1 / 2-\mathrm{Natt}$. $\mathrm{R}_{12}-25,0060$ ohms, 1 -watt. R_{13} - 50,000 ohms. 1-watt. $R_{14}-1500$ ohms, 10 -watt. $\mathrm{RFC}-2.5 \mathrm{mh}$. r.f. choke. $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}-\mathrm{S}_{\text {f. s.s.t. togple. }}$
$6.8-15 \mathrm{Mc} .11$ turns No. 29 enamel, length 1 inch. 13.5-32 Me. 5 turns No. 22 enamel, length 1 inch. All coils wound, on $1 \frac{1}{2}$ inch diameter forms.
quency division, calibration points can be obtained at 10 -kilocycle intervals throughout the entire high-frequency spectrum up to the limit at which harmonics become too weak to be usable. It is readily possible to use harmonics from a 100 -ke. crystal up to at least 30 megacycles.

Such a standard can be constructed at quite reasonable cost. An instrument of this type is illustrated in Figs. 1901-1903, inclusive. The frequency control is a Bliley SOC-100 unit, consisting of a low-drift $100-\mathrm{kc}$. bar with an oscillator coil in the same mounting. The oscillator tube is a 6S.57, used in the circuit recommended for this crystal unit by the manufacturer. The output of the oscillator is coupled to a 6 K 8 harmonic amplificr through C_{8}, Fig. 1902, and also to the 6SC7 multivibrator (a resistance-capacitance oscillator of the relaxation type) through C_{6}. The multivibrator fundamental frequency is 10 kc . and it is locked at this frequency by the $100-\mathrm{kc}$. output of the crystal oecillator. The output of the multivibrator, consisting of 10 kc . plus a series of harmonics, is used to modulate the 6K8 output by coupling to the injection gric. This gives a serres of $10-k$ c. signals between each pair of 100 -ke. harmonics. The oscillator plate electrode in the (6 K 8 is not used.

The output circuit of the 6 K 8 is tuned to the particular frequency on which checking is to be done. This increases the harmonic oulput at that frequency. Plug-in coils are provided to cover the range from 550 kc . to 32 Mc . The output may be taken either from the small coupling condenser, C_{17}, or from a link winding on cach coil. Sufficient coupling to the receiver usually will be obtained if a wire connecied to C_{17} is simply brought near the receiving antenna lead-in.

A power supply is incorporated in the unit, A power supply is incorporated in means of the VR-150-30 and VR-105-30 tubes. The voltage regulation prevents changes in oscillator frequency with varying line voltage.

The crystal frequency can be adjusted to precisely 100 kc . by beating the output on 5000 kc . against the continuous transmissions on this frequency from WWV. After a warm-up period of 15 minutes or so, the frequency should stay within a few cyeles of WWV over considerable periods of time. The multivibrator can be cut out of the circuit by means of Ω_{3} when only 100 -kc. points are wanted. A " B " switch, S_{2}, is provided so that the unit may be made inoperative without cutting off the heater voltage.

Identification of $100-\mathrm{kc}$. points is sometimes difficult unless the receiver is already provided with a fairly accurate frequency calibration. On the other hand, it is easy to

WWY schedules

All U. S. frequency calibration is buscd on the standard frequency tranemissions from the National Ifirean of Standards standardfrequencystation, WWV. Thisstation is on the air continuously, day and night. its radio frequencies of 5,10 and 15 Mc . (and 2.5 Mc . from 7 P.M. to 9 A.M. EST with 440 -eyele morlulation only) mondalated by standard audio frequeneice of 440 and 4000 cycles per seeond. the formuer corresponding to A alove middle ($:$ In addition, there is a 0.015 -second pulse every second, heard as a fuint tieh, which provides an arcurate time interval for purposes of physical measurements.

The andio frequencies are interrupted on the hour and every five ininutes thereafter for one minute to give Eastern Standard Time in telegraphic conle and to provide an interval for checking r.f. measurements. The station announcement is given by voice on the hour and half hour.

The accuracy of all frequencies is better than a part in $10,000,000$. The 1 -mintite, 4 -minute, ard 5 -minute intervals marked by the leginning ind ending of the announcement periosds are arcurate to a part in 10.100 , (0) (K). The beginninge of the periode when the audio frequencies arce intorrupted mark acenrately the hour und the successive 5 -minute periods.
identify a signal to the nearest megacycle on practically any receiver. It is therefore helpful to make provision for generating a frequency of 1 megacycle (1000 kc .) in the instrument for preliminary checking. For checking $1000-\mathrm{kc}$. points a coil of about 150 microhenrys ($11 / 2-$ inch winding of No. 30 d.c.c. on a $11 / 2$-inch diameter form) may be substituted for the crystal unit, comecting it between points $X-X$ in the diagram. The circuit will tune to 1000 ke. with C_{1} near maximum capacity. The exact frequency may be set by adjusting so that the fifth harmonic coincides with WYV on 5 Mc .,

Fig. 190.3- Bottom view of the frequency standard. Reasonable care should be used to keep the circuits separated and leads short, but there are no critical wiring points. The filter choke is mounted on the rear edge of the chassis.
or so that the fundamental is at zero beat with a broadcast station on 1000 kc .

To adjust the multivibrator, first note the receiver dial readings for two adjacent $100-\mathrm{kc}$. harnonics with the multivibrator off. The receiver beat oscillator should be on, the tuning being adjusted for zero beat to obtain dial - readings. Then turn on the multivibrator, set the frequency control, R_{8}, at about half scale, and count the number of signals (zero-beat points) betwcen the two marked 100-ke. points. If the number is other than nine (nine beats indicate 10 -ke. intervals) readjust R_{8} until nine are observed. In case the number of beats observed is considerably more than nine (possibly 18 or 20 , some weaker than others) careful adjustment of R_{8} should cause the spurious signals to disappear, leaving only the nine desired.

In using the standard for checking frequency, first locate the signal to be measured between two $100-k c$. points with the multivibrator off. For example. it nay be found that the signal lies between 7100 and 7200 kc . Then switch on the multivibrator and count the number of 10 -ke. points between the lower of the two 100-ke. harmonies and the signal. Starting with 7100 kc . as gero, it nay be found that six $10-\mathrm{kc}$. points are counted before the signal is reached. The frequence is therefore betweon 7160 and 7170 kc . A closer estimate of the frequency may be made by observing the number of recoiver dial divisions between the 7160 and 7170 points. For instance, suppose there are six divisions between 7160 and 7170, and that the signal being measured is four divisions from 7160 . The signal is therefore approximately 46×10 kiloryceles. or 7 ke . above 7160 . Thus the frequency is 7167 ke .

100-1000-ke fredueney standard - A sim-

Fig. 1904 - 100-1000.kr. crystal calibrator. Output is taken through the insulated terminal bushing at left rear.

Fig. 190.5- (:̈rcuit diapram of a dual-frofucney j00-lowo-ke. erystad-entrollederystal calibrator.
$\mathrm{C}_{1}-35 \cdot \mu \mathrm{fd}$. midert variable (Hammarlund HF-35).
(\therefore - 100 - $\mu \mathrm{ffl}$. mica trimmer (Ilammarhund CTS-85).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \cdot \mu \mathrm{fd}$. jo0.wolt paper.
$\mathrm{C}_{6}-0.001-\mu \mathrm{fl}$. mideet mica.
$\mathrm{R}_{\mathrm{t}}-5$ mogohms, $1 / 2$-watt.
$\mathrm{R}_{2}-500$ ohms, $1 / 2$ watt.
R_{3} - $\mathbf{D}_{5} \mathbf{5}(\mathbf{m 0}$ ohms, 1 -watt.

I. 1 - 8-mh. r.f. Choke (Meissner 1920-78).
I_{12} - 2.3 -nh. r.f. choke (all but one pie removed).
s_{1} - J.p.d.t. toggle switch.
S_{2}-S.p.s.t. toyple switeh.
Crystal - Bliley SMC-100.
pler type of erystal-controlled frequeney standard, using a spereial erystal capable of oscillating at either 100 or 1000 kc ., is shown in Figs. 190.4-1906, incluwive. This unit, which can be built at quite small eost, provides check points through the spectrum at 100 -ke intervals, sufficient for marking the edges of the nmateur bands and for gencral calibration purposes.

The froquency of oscillation is shifted botween 100 and 1000 ke . by tuning the oserillator tank circuit to the proper frequency. In the unit pietured, a d.p.d.t. toggle wwitch selects the desired frequancy by making eonnection to either of two tank circuits. In the 100 -ke. posi1 ion this switch also connoets a small trimmer condenser in paratlel with the erystal. As the caparity of this condenser is increased the frequency of the crysial is lowered, so that if the crystal frequency is originally slighty high it beromes possible to set it to prerisely 100 ke., as indicated by cheoking the 5 -Me. harmonie against. WWV. In purchasing the erystal it should be specified that any error in frequency be on the high-frequency side of 100 kc .

The arcurasy when the oscillator is operating on 1000 ke. is within 0.05 per cent. However, since this frequency is used only for identifieation of the 100 -ke. harnonies, this amount of error is not important.

The oscillator output is taken through an insulated bushing from which a connecting lead can be run to the recerver input. Sum opens the plate-supply lead when no signal is wanted; the heater is ordinarily left on continuously to keep the tube at operating temperature. Usifful output may be obtained at harmonics up to about 30 Mc .

Helerodyne frequency meters - The basis of the heterodyne trequency meter is a completely shiclded oscillator with a precise frequency calibration covering the lowest fre-
quency band in use. The oscillator must be so designed and constructed that it can be accurately calibrated and will retain its calibration over long periods of time.

The oscillator used in the frequency meter must be very stable. Mechanical considerations are most important in its construction. No matter how good the instrument may be electrically, its accuracy cannot be depended upon if the meehanical construction is flimsy. Inherent frequency stability can be improved by avoiding the use of phenolic compounds and thermoplastics (bakelite, polystyrene, ete.) in the oscillator circuit, and employing only highgrade ceramics for insulation. Plug-in coils or switches ordinarily are not acceptable; instead, a solidly built and firmly mounted tuned cirruit should be permanently installed. The oscillator panel and chassis should be reinforced for rigidity.

To obtain high accuracy, the frequency meter must have a dial which can be read preeisely to at least one part in 500; ordinary dials such as are used for transmitters and inexpensive receivers are not capable of such precision without the addition of vernier scales. Select a dial which las fine lines for division marks and an indicator close to the dial scale, so that the readings will not appear different because of parallax when viewed from different angles.
A stable oscillator circuit suitable for use in a heterodyne frequency meter is the electroncoupled circuit. The oscillation frequency is practically independent of moderate variations in supply voltages, provided the plate and screen voltages are properly proportioned, and it is possible to take output from the plate with but negligible effect on the frequency of the oscillator. A third feature is that strong harmonics are generated in the plate eircuit.
A typical electron-coupled frequency meter is shown in Figs. 1907-1908. For convenience in checking the frequency of the transmitter or other local oscillators which generate suffi-

Fig. 1906 - Interior of $100-1000$-kc. crystal calibrator. The crystal is mounted at top center, above the socket. Trimmer for $1000-\mathrm{kc}$. plate circuit at lower right, 8 mh . choke for 100 kc . at lower left.

F̈̈ц. 1907- Electron-moupled heterodyne frequency meter with harmonie amplifier and voltage requlator. The direct-reading dial is calibrated for every lo-ke. point from 1750 to 1900 kc . Axial lines passing through thes. points are interected by ten semi-circular sub. division lines. Diagonal lines connecting the ends of adjacent $10-\mathrm{ke}$. lines, in conjunction with the sutulivisions, enable reading the scaie accurately to 1 kc . or better.
cienitly strong signals, a detector is incorporatwd in the circuit of Fig. 1908 to combine the signals and deliver the audio beat-note output to headphones.

When the frequency meter is first turned on some littie time is required for the tube to reach its final uperating temperature, and during this period the frequency of oscillation will drift slightly. Although the drift will not amount to more than two or three kilocycles on the 356k-kc. band and proportionate amounts on the other bands, it is desirable to allow the frequency meter to "warm up" for about a half hour before calibrating or before making measurements in which utmost accuracy ia desired. Better still, it may be left on permanently. The power consumption is negligible, and the longtime stability will be vastly improved.
Although some frequency drift is unavoidable, it ean be minimized by the use of voltageregular tubes in the power supply and low-drift silvered-mica or zero temperature-coefficient fixed condensers in the tuned circuit. A small negative temperature-coefficient condenser may be included to compensate for residual drift.

Calibration of the frequency meter is readily accomplished if a secondary standard is available, the required calibration points being supplied by harmonics from the standard. The frequency meter is tuned to zero beat with these harmonics, using either a builu-in detector or the station receiver to combine the two signals to provide an audible beat. When a sufficient number of points have been established they may be marked on graph paper and a calibration curve drawn. For maximum convenience a direct-reading dial scale can be ocenstructed.

Fig. 1908 - Circuit diagram of the electron-coupled heterodyne frequency meter.

If no frequency standtrd is available, calibration points may be obtainod from other sources of known frequency, such the the transmitter erystal oseillator, harmonics of local broadeasting stations, ete. As many such points as possible should be sexured, so that individual inarcuracies will averate ont.

With a stable oscillator, a precision dial and frequent and careful calibration, an over-all accuracy of 0.05 to 0.1 per cent may be expected of the heterodyne frequency meter. The principal limiting factors are the precision with which the calibrated dial can be read and the "reset" stability of the tuned circuit.

Absorption frequency meters - The fre-quener-checking devies described in the preceding sections all use vacum-tube oscillators to generate a signal of known frequency, which then is compared to the signal to be measured in auxiliary apparatus such ats a receiver. Although capable of high aceuracy, heterodyne methods require considerable care in the identification of proper hamonics.

The simphest possible frequency-measuring device is a resonant circuit. lumable ower the desired frequency range and having its tuming dial callibrated in terms of frepurney. Such at frequency meler operates by extrating a small amount of encrgy from the oseilating cireuit, to be measured, the frequency then boing determined by tuning the frequence-meter circuit to resonance and reading the frequeney from the calibrated seale. This mothod is not catpable of as high accuracy as the heterodyne methods for two reasons: First, the resonthe indication is relatively "broad" as compared to the zero beat of a heterodyne; second, the necensarily close compling between the frequency meter and the circuit boing measured causes some detuning in both eirenits, with the result that the calibration of the frequencymeter circuit depends to some degree on the coupling to the citcuit being measured.

It is neressary to have some means for indieating resonance with an absorption frequency meter. When such a meter is used for checking a transmitter, the plate current of the tube
comerted to the circuit being cherked can provide the resonance indication. When the frequency meter is tuned through resonance the plate current will rise, and if the frequency meter is loosely coupled to the tank circuit the plate current will simply give a slight upward flicker as the meter is tuned through resmane. The greatest acouracy is secured when the loosent possible coupling - just enough to give an indication - is used.

A receiver oscillator may be cheoled by tuning in at steady signal and heterodyning it to give a beat note as in ordinary c.w. reception. When the frequency meter is coupled to the oseillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed when the meter is tuned through resonance.

Another method of indicating resonance is shown in Fig. 1909. Whon the meter is tuned to resonance with the owcillating cireuit being measured the flashlight lamp, B, will give the brightest glow. For maximum sensitivity a low-current lamp should be used. The circuit being measisred must, have enough power to light the lamp. naturally, so this type of indieator usually is most suitable for checking tramsmitters. Greater sensitivity can be of tained by ennecting a detector, either vacuumtube or erystal type, to the frequeney meter circuit.

Although the absorption-type frequency

Fif. 1909 - The simple aboorption frequency meter circuit at left is used chiefly in transmitter ehoching, with linh-line compling to the circuit treing cheched. Circuit at right uses a lashlight-bulb indicator lonsely coupled to the tuned circuit, giving a sharper resonance noint.

Fig. 1910 - A sensitive absorption-typr frequency meter
 indicating cirenit. Indiv idual calibration charts monated directly on arh coil form mahe the meter direct eratitine. The toggle switch phares a 10 -nta. shumt across the $0-1$ ma. meter; this ranue is used for proliminary readings, to avoid burning out meter or er stal. The meter pives indications at several feet from a low power oscillator,
meter should not be depended upon for accurate measurement, it is a highly-useful instrument to have in the station even when better frequency-measuring equipment is available. Since it generates no harmonies itself, it will respond only to the frequence to which it is

Fig. 1911 -Indicating frequency-meter cirmit diagram. $\mathrm{C}_{1}-140-\mu \mu \mathrm{fd}$, variable (Itammarlund $11 \mathrm{~F} \mathrm{~A}-140-\mathrm{A}$). $\mathrm{C}_{2}-0.001-\mu \mathrm{fd}$. mica.
D - lixed ersstal detector.
M-0.1 d.c. milliammeter ('Triphotl Model 321).
$\mathrm{R}_{1}-3$-shon shumt: see qeneral datia on meter shants. S-S.p.s.t. topgle switch.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ - Plug-in coils wound on $1 \frac{1}{2}$-inch diancter forms:

Frequency Rance	Trire Size	L_{1}	Length	$L_{2}{ }^{1,2}$
1.1-3.5 Mc.	No. 28 e .	$81^{3} 4$	178	171
2.5-8 0 Mc .	No. 2.4 t.	$37^{3} 4$	$18^{\prime \prime \prime}$	
4.5-14 Mc.	No. 20 t.	17^{3}	$1{ }^{1}{ }^{\prime \prime}$	
7.5-2.5 Мс.	No. 16 t .	83 \%	$1{ }^{\prime \prime \prime}$	
22-70 Mc.	No. 16	$23 / 4$		

${ }^{1}$ Closewound, No. 30 d.s.c., $1 / 4$-inch from primary.
${ }^{2}$ Because the impolanere of indisidual crystal detectors varies considerably, experiment with the number of turns on L_{2} is necessary for mandines current indiation. If meter reads back wards, reverse crystal connections.
tuned. It is therefore indispensable for distinguishing between fumbanental and various harmonics, and for detecting harmonics and parasitic oscillations. When provided with a sensitive resonance indicator it is also useful for detecting r.f. in undesired places such as
power wiring, for making rough measurements of field strength in adjustment of antennas, and can likewise be used as a modulation monitor.

An absorption frequency meter must be calibrated against a more accurate frequencymeasuring device such as those already described. For an approximate calibration usually sufficient for the purposes for which an absorption meter is used-it may be calibrated by comparison with a calibrated recoiver. The usual receiver dial calibration is sufliciently aceurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given frequency, tune the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as deseribed above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency vs. dial settings on the frequency meter.

A sensitive alisorption frequency meter Figs. 1910 to 1912 , inclusive, show an absorption frequency meter or "wavemeter" with a crystal detector-milliammeter resonance indicator which provides a relatively high degree of sensitivity. As shown in the circuit diagram, Fig. 1911, a pick-up coil coupled to the resonant circuit is connected in series with a crystal detector and $0-1$ milliammeter. Plug-in coils are provided so that the unit covers the frequency spectrum from about 1 megacycle to 70 Mc. A switch, S, and shunt, R_{1}, are included so that the inetor scale readings can be increased by a factor of 10 , to reduce danger of overloading the millammeter when making preliminary measurements. Any type of fixed crystal detector may be used, but the v.h.f. types are recommended when obtainable.

Fig. 1912 - In-ide the ahsorption wavemeter. The tuming combenser and coil socket are mounted on the frame of the 3 by 4 by 5 box; remainiug parts are fastened to one of the removable sides.

Fig. 191.3-A combination wavemetor, ferch] -strength indicator and 'phone quality monitor for the 100 2.30-
 portion, and the hairpin loop provide pick-ap for the 1N34 erystal detector. loor fieldestrength work, at wort antenna if connected to the binding post at the left of the hairpin loop.

The unit is construeted in a 3-by 4-by 5inch metal box, the milliammeter being anounted on one of the sirle panels. The coil sorket is on top near one adpe, with the tuning condenser just below it inside the case. This arrangemont keeps the tuned-cireat leads short. A handle is mounted on tine sidn of the box opposite the tuning control for convenience in handling. A metal plate, on which an appropriate calibration sale is pasted, is fastened to carh plug-in coil so that the proper calibration automatica!ly comes under the knob pointer when the coil is plugged in. 'The unit may be calibrated as descrited in the preceding section.

A two- or three-foot rod antenna and headphone jack may be added to the unit. using the connections shown in Fig. 1914. These additions permit the use of the instrument for field strength measurements and ior monitoring 'phone transmissions. The rod antemna is not required for ordinary frequeniy hasurement, and its use maty he undesirable when the frequencies of individual simultanoousty-operating cireuits are to be checked - as in the case of a multistage transmitter with frequency nultipliers - bectuse the antemna increases the sonsitivity to such an extent that it may be difficult to identify the output of a particular circuit.

In addition to the uses mentioned in the preceding section, a meter of this type may be used for final adjustment of neutralization in triode r.f. amplifiers when loosely coupled to the plate tank coil.
V.H.F. watemeter-field strength indica-tor-monitor - For operetion at very high
frequencies a different type of construction must be adopted for wavemeters of the type described in the preceding section. An instrument suitable for the range 100 to 250 Mc . is shown in Figs. 1913 to 1916, inclusive. Provision is made in this unit for attaching an antenna so relative field strength measurements can be made (for cherking v.h.f. antenna patterns, for example) and the circuit includes a headphone jack so 'phone transmissions can be monitored.

The tuning condenser is a split-stator affair of $25 \mu \mu \mathrm{fd}$. each section. It is mounted to give short leads to the coil. and the use of a splitstator condenser results in a low minimum capacity. 'The indication device" includes a pick-up loop loosely coupled to the tuned circuit, a 1 N 34 ervetal and a $0-1$ milliammeter. The by-pass condenser, ('2, furnishes a short r.f. return to the pick-up leop) and avoids any resonances in this circuit within the frequency range of the wavemeter. For field-strength indication, an antenna is connected to one side of the pick-up loop and the wavemeter circuit. $L_{1} t_{1}$, is detuned, resulting in a non-selective indicator.

The wavemeter is built in a 3 - by 4 - by 5 inch metal cabinet, with the tuning condenser, G_{1}, mounted under the top. The condenser shaft comes out threugh at clearance hole in the side. An aluminum plate, 25 多 by 378 inches, is bolted on the side to back up the calibration scale. A polystyronestrip is used to mount the two National FWA binding posts that hold the eoil, L_{1}. The phone jack, J_{1}, is mounted on the side of the case below the tuning knob.

The wavemeter may be calibrated by using lacher wires (see next suction) in conjunction with a v.h.f. oscillator. (The oscillator may be the $1+4-$ or $220-$ Me transmiter.) Attach a twofoot length of stiff wire to the antenna post of the wavemeter. With an oscillator capable of delivering at watts or so, a meter reading should be ohtained several free from the oseillator. The Laeher wires can then be vary loosely coupled to the oscillator, and as the proper shorting points on the Lecher wires are

Fif. 191.4- Wiring diagram of the waverneter and field-strength indicator.
C. $-2.3-\mu \mu \mathrm{fd}$. per section split-stator variable. (Cardwell lik-2.5-AI)).
$C_{2}-100-\mu \mu \mathrm{fl}$. midget mica.
J_{1} - Closed-circuit telephone jack.
$\mathrm{M}-0-1$ milliammeter.
$\mathrm{L}_{1}-90$ - 180 Mo.: 2 turns No, 12 wire, 1 ! s-inch diam.. spaced wire diameter.
$125-250 \mathrm{Mc}:$ hairpin loop of No. 12, 1 a-inch long, $3 / 4$-inch sparing.
1.2 - llairpin loop of No. 12, 21/4-inch long, $3 / 4$-inch spacing.
found, a dip will be obscrved in the wavemeter current. If now the tuning knob of the wavemeter is rotated, a sharp dip in wavemeter current will be found, and this point should be marked in pencil on the scale and the frequency, as calculated from the Lecher wires. should be noted for future calibration. As at double check on the calibration of the wavemeter, remove the antema and tune the wato moter for marimum meter reading. The two points should be identical. If they are not, the piek-up loop is coupled too closely to the tuned eircuit of the wavemeter.

Lecher wires - At very-high and ultrahigh frequencies it is possible to determine frequence by actually measuring the length of the waves generated. The measurement is made by observing standing waves on a twowire parallel transmission line or Lecher wires. Such a line shows pronounced resonance efferes, and it is possible to determine quite accuratoly the current loops (points of maximum current). The distance between two consecutive current loops is equal to one-half wavelength. Thus the wavelength can be read direetly in meters (inches $\times 39.37$ if a yardstick is used), or in centimeters for the very short wavelongths.

The Lecher wire line should be at least a wavelength long - that is, 7 feet or more on 144 Mc. - and should be entirely air-insulated excopt where $i t$ is supported at the ends. It may be made of copper tubing or of wires stetched tightly bet weon any t wo convenient supports. The spacing betwern wires should be approximately one to one and one-half inches. The positions of the current loops are found by

Fig. 1915 - Inside the v.h.f. wavemeter. The leads from the coil binding posts to the tuning capacitor are short and direct.

Fip. 1916 - A view of the back of the w.h.f. meter, showing the stiff supportic:g wire for the crystal and by-pass condenser.
means of a "shorting bar," which is simply a metal strip, or knife edge which can be slid along the line to vary its effective length. The system can be used hore conveniently and with greater accureey if it is built up in permanent fashior and provided with a shorting bar maintained at right angles to the wires (Fig. 1918. The support may eonsist of two pieces of "i by 2 " pinc fastenec together with wood screws to form a T girder this arrangement being used to minimize bending of the wood when the wites are tightemed.

A slider holds the shorting bar and acts as a guide to kerp the wire spacing constant. A piece of wood hedd in the hand san be used; it is an easy matter in regulate the pressure so that free movement is secured. A spring device maty be arranged for the same purpose.

For conveninnce in measuring lengths directly in the motric system wed for wavelongth, the supporing beam nity be marked off in derimeter (10 -rentimeter) umits. A 10 comimeter transpacent scale (obtainable at 5 d 10 cent stores) may be cemented to the slider. extendiug ont from the front, so that readings ean be feken to the nearest millimetor. The difference between any two readings gives the half wavelength directly.

Mating measurements - Resonance indications can be obtained in sevoral different Ways. Let us suppose the frequenco' of a transmitter is to be mosured. A emvenient and fairly sensitive indicator can be made by soldering the ends ef a one-turn loop of wire, of about the same dimmeter as the transmitter tank coil, ts a low-current flashlight bulb, then coupling the loop to the tank coil to give a moderately-bright glow. A similar coupling
loop should be connected to the ends of the Lecher wires and brought near the tank coil, as shown in Fig. 1917. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the shorting har moved out untila second dip is ohtained. Marking the second spot, the distance between the two points can be measured and will be equal to half the wave-length. If the measurement is made in inches, the frequency will be

$$
F_{\text {Mc. }}=\frac{5906}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{A c .}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative recciver, the Lecher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be found where the receiver goes out of oscillation. The distance between two such spots is equal to a hadf wavelength.
In either case, the most accurate readings result only when the loosest possible coupling is used between the line and the tank coil. After taking a preliminary reading to find the regions along the line in which resonance occurs, loosen the coupling until the indications are just discernible and repeat the measurement. Unless this is done the tuning of the line will affect the frequency of the oscillator and inaccurate indications will be obtaincal. As the coupling is loosened the resonance points will become sharper, which is a further aid to accurate determination of the wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of contact

The accuracy with which frequency can be measured by such a system depends principally upon the technique of measurement. The

Fig. 1917 - Coupling a Lecher-wire system to a transmitter tank coil. Typical standing-wave distribution is shown by the dashed line. The distance between the positions of the shorting bar at the current loops equals one-half wavelength.

Fig. 1918 - One end of a typical Lecher-wire system. The feet at each end keep the assembly from tipping over when in use. The wires terminate in airplane-type strain insulators at one end, and at the other in small turnbuckles for maintaining tension. The wire is No. 16 bare solid copper antena wire (hard-drawn). The turnbuckles are held in place hy a 3 ía $\times 2$-inch bolt throunh the anchor block. This end of the line is thus short-eircuited; it does not matter whether it is open or shorted, since the other end is the one connected to the pick-up loop.
necessity for using very loose coupling to the transmitter or receiver has already been mentioned. In addition, careful measurement of the exact distance between two current loops also is essential. Even if all other sources of error are eliminated, measurements within 0.1 per cent require an accuracy within 1 part in 1000 , or 1 millimeter in one meter, in measuring the distance along the wires. This means that an accurate standard of length is necessary - a good steel tape, for instance - and that care must be used in determining the length exactly.

© Signal Moniforing

Every amatcur station should make provision for checking the quality of the transmitter output. This requires that some means be available in the station for reproducing the conditions existing at a distant receiving station; that is, for reducing the strength of the signal from the tramsmitter to such a point that its characteristics can be examined without danger of false indications from overloading the receiving equipment.

The simplest method of checking the quality of c.w. transmissions is to use the regular station receiver. If the receiver is a superheterodyne the process may simply be that of reducing the rif. gain to minimum and tuning to the transmitter frequeney. If distant signals are stable and have "pure d.c." tone in normal reception, then the local transmitter should too, when the receiver gain is reduced to the point where the receiver does not overload. If the signal is too strong with the r.f. gain "off," shorting the antenna input terminals may reduce it to suitable proportions, or the mixer circuit in the receiver may be temporarily detuned to arrive at the same result.

An alternative method is to set the receiver on the next lower-frequency band than the one in use, then tune the receiver so that the second harmonic of its oscillator beats with the transmitter signal to produce the intermediate fre-
quency. Higher-order harmonics also may be used for this purpose. With this harmonic method there is ordinarily no danger that the receiver will overload, because the r.f. and mixer tuned circuits are so far from resonance with the transmitter irequency. The setting of the tuning dial bears no direet relation to the transmitter frequency under these conditions, since the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A 'phone signal may be monitored in the same way, provided a headset is used for reception. Use of a loud-speaker is not usually practicable because the sound output feeds back to the microphone and causes howling. A crystal detector and headset may also be used for the same purpose, as described in precerling sections. In monitoring a 'phone signal the best plan is to have another person speak into the microphone rather than to listen to one's own voice. It is difficult to judge quality when speaking and listening at the same time.

II Measurement of Current, Voltage and Power

The amateur regulations require that when the power input to the final stage is above 900 watts means must be provided for measuring the power input. This may be done by measuring the d.c. voltage applied to the final stage plates and the d.c. current flowing to them. The instruments required are a milliammeter and soltmeter.

Although in lower-power transmitters powerinput measurements are not required, it is nevertheless true that a milliammeter is an almost indispensabloinstrument in the amateur station. It is invaluable in the adjustment of transmitting amplifier stages; tuning a transmitter without measuring grid and plate currents is like working in the dark. A d.c. volt-
meter, although not essential, is useful in conjunction with the milliammeter in determining whether tube ratings are being exceeded or not and thus is helpful in prolonging tube life.

Besides d.c. measurements, it is also well to measure the filament voltages applied to transmitting tubes. Tube performance is dependent upon proper cathode emission, which in turn depends upon the volage applied to the filament or heater. Aso, the life of some transmitting tubes, particularly the thoriated-tungsten filament types, is critically dependent upon maintaining the filament vollage within rather close limits. Since most transmitting tube filaments are operated on a.c., an a.c. voltmeter is a worthwhile addition to amateur transmitting equipment.

Adjustment of a transmitter for maximum power output to the antenna or transmission line is facilitated by the use of instruments which measure radio-frequency current. Such instruments, although not actually essential, round out the measuring equipment used in transmitter adjustment.
D.c. instruments - D.c. ammetersand voltmeters are basically identical instruments, the difference being in the method of connection. An ammeter is connected in series with the circuit, and measures the current flow. A voltmeter is a milliammeter which measures the current through a high resistance connected across the source to be measured; its calibration is in terms of the voltage drop in the resistance or multiplier.

If a single instrument must, be used for measuring widely-different, values of current or voltage, it is advisable to purchase one which will read, at about 75 per cent of full scale, the smallest value of current or voltage to be measured. Small currents cannot be read with any degree of precision on a high-scale instrument; on the other hand, the range of at

Fig. 1919 - A Lecher-wire system set up for frequency measurement, using a erystal-detector absorption frequency meter, loosely coupled to the oscillator tank, as a resonance indicator. Because only very lonse coupling to the oseillator is required, this system will give more accurate results than coupling the wires directly to the transmitter tank, The shorting bar is of brass with a sharp edge for better contact and more precise indication; the wooden slider keeps it at right angles to the wires. Sheet metal pieces screwed to the sides of the sliding blork arc bent under the horizontal member of the T to keep the block in place.

Fig. 1920 How voltmeter multipliers and milliammeter shunts are connerted to rxtrind the range of ad.e. meter.
low-scale insirument can be catended as desired to take care of larger values. The ranges of both voltmetres and ammeters can be extended by the use of external resistors, connected in series with the instrument in the case of a voltmetor or in shumt in the case of an ammeter. ligg. 1920 shows at the left the manner in whieh a shment is comnected to extend the range of an ammetre and at the right the connection of a voltmeter multiplier.

To maleulate the value of a shant or multiplier it is meersiary to know the resistance of the muter. If it is desimed to extend the range of a voltmeter, the value of resistaner which must be added in sorios is given by the formula:

$$
R=R_{m}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scale multiplication factor. For example, if the range of a 10 -woll metor is to be extended to 1000 volts, n is equal to $1000 / 10$ or 100 .

If a milliammetor is to be used as a voltmeter, the value of series resistance can be found by Ohm's law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I the full-seate reading of the instrument in milliamperes.

To increase the current range of a milliammeter, the resistance of the shant is

$$
R=\frac{R_{m}}{n-1}
$$

where the symbols have the same meanings as above.

Homemade milliammeter shunts can be constructed from any of the various speeial kinds of resistance wire or from ordinary enpper magnet wire if ho resistane wire is avalable. The Copper Wire lable in Chapher "worny gives the resistatace pre 1000 foet for varions sizes of eopper wire. After computing the resistance reguired, delormine the smatlest wire size which will rary the full-scate current (at 250 circular mils ine ampere). Netsure off enough wire (pulled light but not stretched) to provide the reguired resistance. deruratey can be cherked by cathsing enongh eurrent to fow through the meter to make it read fallscale without the shunt; connecting the shunt should then give the correct reading on the new full-scale range.

Precision wire-wound resistors used as volt-
meter multipliers cannot readily be made by the amateur because of the much higher rosistance required (as high as several megohms). As an economical substitute, standard fixed resistors may be used. Such resistors are supplied in tolerances of 5,10 or 20 per cent \pm the marked values. By obtaining matched pairs from the dealer is stork, one of which is, for example, 4 per cent low while the other is 4 per rent high, and using the pairs in parallel or series to obtain the required value of resistance, good accuracy can be obtained at small cost. High-voliage multipliers are preferably made up of several resistors in suries; this not only raises the breakdown voltage but tends to average out crrors in the individual resistors due to manufaturing tolerances.

When d.c. voltage and current are known, the power in a d.e. eircuit can be stated by simphe application of Ohm's latw: $I^{\prime}=E /$. Thus the volumeter and ammeter ate also the instruments used in measuring d.e. power.

Muli-range voltmeters andohmmetersA combination voltmeter-millammeter having vatious ranges is extremely useful for experimental purposes and for trouble shooting in reobivers and transmittors. As a volimetersuch an instrument should have high resistance so that very litle current will bedrawn in making voltage mocasurements. A volt meter taking considerable current will give inareurate reading: when comected arross a high-resistance souree -as is often the case in various parts of a recoiver circuit. For such purposes the instrument should have a resistance of at leasi 1000 ohms per volt: a $0-1$ milliammeter or 0-500 microammeter (0-0.j ma.) is the hasis of most multirange meters of this tyer. Mieroammeters having a range of 0 -50 pat, giving a

Fig. 1921 - An incexpensive multi-range volt-ohm-milliammeter housed in a standard $3 \times 4 \times 5$ metal cabinet. Kanges are marked with number dies, the impressions being filled with white ink. High-voltage test leads are available for use or the 5000 -volt range.

Fig. 1922 - Circuit of the low-cost V-O M.
R_{1} - 2000 -0hm wire-wound variable.
$K_{2}-3000$ ohms, $1 / 2$-watt.
$\left.\mathrm{K}_{3}-101\right)_{\text {-ma. shime }} 0.33$ ohms (see text).
R_{4} - 10 -ma. whunt, 3.6 ohms (see text).
R_{5} - 40,000 ohms, ! 2 -watt.
$\mathrm{R}_{6}-4$ merohms, t-watt (four 1 -megohm t-watt resistors in series).
$\mathrm{R}_{7}-0.75$ mepohm, I-watt (0.5 mppohm and 0.25 megohm $1 / 2$-watt in series).
$\mathrm{H}_{8}-0.2$ megohm, ${ }^{2}$-watt.
$\mathrm{R}_{9}-40,000$ ohms, $\frac{1}{2}$-watt.
H_{10} - 10,000 ohuns, 12 -watt.
SW-9-point 2-pole switch (Mallory. laxley 3109).
$13-4.5$ volts (Burgess 5360).

sensitivity of 20,000 ohms per volt, also are used.

The rarious current ranges on a multirange instrument can be obtained by using a number of shants individually switched in parallel with the meter. Care should be used to minimize contart resistance in the switch.

It is often necessary to check the value of a resistor or to find the value of an unknown resistance, particularly in receiver servicing. An "ohmmeter" is used for this purpose. The ohmmetar is simply a low-current d.c. voltmeter provided with a source of voltage (usually dry colls), the moter and battery boing connected in sories with the unknown resistance. If a full-scale deflection is obtained with the connections to the external resistance shorted. insertion of the resistance under measurement will catuse the reading to doerease. The meter soale ran be calibrated in ohms. When the resistance of the voltmeler is known, the following formulat can be applied:

$$
R=\frac{c R_{m}}{E}-R_{n}
$$

where R is the resistance under measurement.
L^{\prime} is the voltage read on the meter:
e is the series voltage applied, R_{m} is the internal resistance of the meter.

A combination multirange volt-ohm-milli-ammeter, reduerd to simple and inexpensive terms, is shown in Figs. 1921 to 1923, inclusive. C"sing a $0-1$ milliammetar, the voltmeter hits five ratuges at 1000 ohms por volt: $0-10,60,250,1000$ and 5000 volts. Current ranges of $0-1,10$ and 100 ma . are provided. There are two resistance measurement ranges (three with exfornal battery), a series range of $0-250,000$ whems, and a shunt range of $0-500$ ohms. The "high-ohms" scale can be multiplied by 10 if the positive terminal of a 45 -volt battery is eonnected to the terminal indicated in Fig. 1922, the unknown resistance being connected between the negative battery terminal and the negative terminal of the ohmmeter.

Fig. 192.3 - Interior of low-cost volt-ohu-milliammeter. All parts exrept the internal ohmmeter battery are moned on the 4×5 incla bakelite pancl. The battery is attarhed to the bottom plate. The voltmeter multiplier is fir:t assembled on an insulated tie strip, then wired into the circuit. The M1-shaped object in the rear is the 5000-volt multiplier - four l-watt resistors covered with varnished cambric tubing.

Fig. 1924 - An oscilloscope circuit for modulation monitoring.
$\mathrm{C}_{1}-0.01-\mu \mathrm{fl}$. 400 -volt paper.
$\mathrm{C}_{2}-0.5-\mu \mathrm{fd}$. 800 -volt paper or oil-filled.
$\mathrm{C}_{3}-0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{4}-0.1-\mu \mathrm{fd}, 600$-volt paper.
R_{1} - 50,000 -oshm varialile.
$\mathrm{R}_{2}, \mathrm{R}_{5}-0.5$-meqohm variable.
$\mathrm{R}_{3}-1$ megohm, 1-watt.
$K_{4}, K_{6}-0.5$ megohm, l-watt.
S_{1} - S.p.s.t. toggle switch.
$\mathrm{S}_{2}-\mathrm{S}$.p.d.t. togyle switch.
T-Replacement-type transformer; 350 volts, 40 mad; 5 volts, 3 amperes; 6.3 volts, 2 amperes.
modulation in phone transmitters and in serving as a continuous monitor of modulation percentage. An oscilloscope for this purpose may be quite simple and inexpensive, consisting only of a small cathode-ray tube and an appropriate power supply. However. by providing amplifiers for the deflection plates and furnishing a linear sweep circuit, the possibilities of the instrument are greatly cxtended. It then beeomes possible, for example, to examine audio-frequency waveforms and to check and locate the cause of distortion in a.f. amplifiers.

Constructional ronsiderations -

 In building an oscilloscope, care shoutd be taken to sce that the tube is shiolded from stray eloetric and magnetic ficlds which might defleet the beam, and means should be provided to protect the oporator from arcidental shock, since the vollages comployed with the larger tubes are quite high. In general. the preferable form of construction is to cnclose the instrument completely in a metal rabinet. It is good practice to provide an interlock switch which antomatically disonnneets the high-voltage supply when the cabinet is opened for servicing or other reasons.In laying out the unit the cathoderay tube must be placed so that the alternating magnetic field from the power transformer has no effect on the electron beam. The transtormershould be mounted direetly behind the hase of the tube, with the axes of the transformer windings and of the tube on a common line.

It is important that provision be included either for switching off the electron beam or reducing the spot intensity, or for swinging the beam to one side of the screen with d.c. bias, when no signal voltage is being ap-
phied. A thin, bright line or a spot of high intensity will "burn" the screen of the cathoderay tube.

If trouble is experienced in obtaining a clean pattern from a high-power transmitter because of r.f. voltage introduced by the 115 -volt line, by-pass condensers (0.01 or $0.1 \mu \mathrm{fd}$.) should be connected in series across the primary of the power transformer, the common connection between the two condensers being grounded to the case.

A simple oscilloscope - The circuit of a simple cathoderay oscilloscope is shown in Fig. 1924. Either a 1 -inch 913 or a 2 -inch 902 tube can be used. The cathode-ray tube may be mounted, togethor with the associated rectifier tube and other components, in a cabinet made of a standard $3 \times 5 \times 10$-inch steel chassis with bottom plate.

This circuit is uscful primarily for modulation checking in radiotelephone transmitters. Horizontal sweep voltage may be obtained cither from an audio-frequency source, such as the modulator stage of the transmitter, or from the 60 -cyele a.c. line, as selected by S_{2}. Using the modulator output for the swerep, the pattern appearing on the sereen will be in the form of a trapezoid, as described in Chapter Five.
R_{5} controls the amplitude of the applied horizontal sweep. R_{1} is the intensity control and R_{2} the foensing control. If needed, a 2.5-mh. 125-ma. r.f. choke may be connerted

Fig. 1925 - A simple oscilloseope using a l-inch tube. 'The controls on the front. from left to right, are "Syne Amplitude," pilot light and "Fine F'requency." Note the small neon tube, used for generating the sweep voltages, to the right of the 6SL7. A hood mounts over the 913 and the terminal pancl at the rear of the chas is. The controls along the side, from back to front, are "Focus," "Vertical Centering," "Sync-Swecp" and "Vertical Gain."

Fig. 1926 -- Wiring diagram of the 1 -inch oscilloscope.

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{8 - \mu \mathrm { fd }} \mathbf{2 5 0 - \mathrm { volt }}$ Mretrolstio.
C_{6}, Ci-, Cin, ($6-0.1-\mu \mathrm{fl}$. 600-volt paper.
$\mathrm{C}_{10}, \mathrm{C}_{11}-2 \overline{-}-\mu \mathrm{fl}$. 2 Z -volt electroIvtie.
C_{12} - 0.0.01- ffl . mica.
C_{13} - $\mathrm{I}_{1(1) 1-\mu \mu \mathrm{fi} \text {. mica. }}$
(14 - $0.10 .5-\mu \mathrm{f}_{1} \mathrm{I}$. 40 O -vole paper.
Cis- $0.010-\mu \mathrm{Cid}$. (100 -volt paper.
C16-0.0106- $\mu \mathrm{fil}$. miea.
$\mathrm{C}_{17}-0.0102-\mu \mathrm{fd}$, mica.
1, - 1.3 -a olt pitent lamp.
$R_{1}-1011010$ atoms.
R2. K_{2} - 0.2 mweohm.
$R_{3} R_{1} \quad 0.1$ m"qum.
 romtrol.
 - H!" comirol.

Ra, Rin. Ren- I. O-megohm variat We. "Iturizomal Centerina." "Certical Centering" and " |ertical (Ban" comotrols.
$\mathrm{R}_{11}, \mathrm{~K}_{12}, \mathrm{~K}_{13}-2.0$ megolims.
$\left.\mathrm{R}_{14}-\boldsymbol{\pi}\right)(\mathrm{KO}(1)$ chine.
R_{15} - 1.11 merohim.
$\mathrm{R}_{16,} \mathrm{R}_{17}-0.2 .2 \overline{3}$ merohm.

18_{21} - 3 -mequhtm variathe. "Horizontal Gain" control.
R22. $R_{21}-3.11$ merohms.
l_{25} - 10.0 murahm variable. "line Vrequans" contral.
R_{26} - 0.1 -mesulan. ariable. "Syne Amplitule" control.
All fivedresimomare $1 / 2$ watt carlom.
s_{1}-s.p.s.t. smap swileh mountorl (1) Ko.
 "s.".-w"ep."

T_{1}, T_{2} - 0.3-1...h. 1.0-ampere heater Iransformer.
in series with the lead to the rotor of R_{5} to eorrect lataning of patherns eatused by r.f. coupling.
. 1 complete owrilloserope - 'lhe usefulams of the oscilloseope is enhathed bey providing a linear swerp eireait or time hase, logerher with amplifiers for the horizontal and vertical de-flertion-plate signats so that sutherient roltage will be available at the deflerefon phates to give a pattern of sutable size. An inexpensive osedloserpe so erpipped is shown in ligs. 192.5 to 192s. inclusive. It uses the 1-ineh ' 5 you 913 tube, but the 2 -ineh Type 902 readily can be substituted in the cireuit.

As shown in F"ig. 1920, the high-voltage d.c. is fumbind by two blltis commeded an hatiwave voltage douhlers. One supplies 300 wolts pesitive for the amplifiers and swerepgeremator, and the other furnishes 300 volts negsalive for the cathode ray tube voltage-divider networt. The curtent drain is 2 mat. from the positive and 0.75 mat from the motato supply. The combination of h_{1} and ${ }^{*}$ "s contributes additional filturing to the positive supply.

The horizontal sweep generator is a 1.25Wat. neon bulb (General liluetrie NE-51) used in a saw-tooth oscillator cireuit. The frequenery is determined by R_{24} plus R_{25} and the shunt capacity sillected by S_{3}, and is variable befween 12 and 700 cyeles. A synchronizing
voltage ram be compled in through (12 and its amplitude adjustod hy Ra6. "The "Sym"-Swerp" switeh, 燳, allows five different comditions of swerp and sonchronization, as follows: (b) extomal syochtonization (2) lane syuchronization (3) internal senchomization (4) line (sinewaye) swerp and (i) external swerp.

The pesibive sawtooth from the generator becomes a megative sawtooth after amplificafion through the horizontal amplifier (one section of a $6 \mathrm{~F} / .7$), and to make the trace swerp from left to right in the comventional fashon the cathode-ray tube must he tumed so that the No. I pin is at the bontom, with pins No. 3 and No. 7 horizontal. Esed in this mamor a watroform will appeat in the correct polarity When passed through the vertical amplifier but it will be inserted when appled directly to the vertical plates.

Thur unit is built on a 7 - be 7 - be 2-inch chassis. The tore controls and the pilot light are monnted along the front and sides, and the two heater tathsformers are monnted on the back. The axternal rommetons are brought to nine tip jackis on a polvisyrume panel which is also mounted on the back of the ehassis. Mounting the jacks for connections at the back of the chassis keeps the leads clear of the controls.

The arrangement of the tubes on the chassis

fig. 1927 - View showing the arrangement of parts underneath the ascilloseope chassis. The controls alonig the left-hand side. from top to botom, are "Intensity," "Ilorizontal Centering," "Coarse Fre. quency" amd "1lorizontal Gain."
ren be seen in: the photographs. The leads in the sweep generator, amplifier grid circuits and all heaterss should the shiedded to minimize a.e. piek-up. Fow much piek-up in the sweop cirenit, will cause it to sumehronize with the line fre quency and produed unstable sworps at others frequercises. "lone out: nuts wh the amplifiers are brought ont i_{a} flexible latad: tormitated in pin tips which ate be plaged into the proper jacks on the torminal panel. thus makime it a simple matter to remove them when working diredty into the seopr deflection plates.

Since one side of the a.e. lime is common to the d.c. vistares and chassis of the seope it is necessary to hater a m:ans of delermining when the classis is embered to the gromuled side of the "ime 'lhe "'lust" trmimal provides a moans for cherkimg this. With si, turmed to the "Off" posilinn and x_{3} set to "Tist," connect the "「est" frminal to an aetual ground or the eommon of the unit to be tesiled with the ssope. If the nern tulx gloss, the a.e. plug should be deveried.

Fig. 1928 - A sketch of the batch of the "scope, showing the arrangement of terminals.

The direet sensitivity of the vertical plates is 125 volts/inch and 175 volts/incla for the horizontal. Working through the amplifiers at maximum gain, the vertical sensitivity is 0.9 vols-/inch and 1.1 volts/inch for the horizomal. The a.c. power eonsumplion of the unit is approximately 20 watts.

(I) Signal Generators

Tesi oscillators - A simple test owcillator for receiver checking and similar uses is shown in Fig. 1929. It uses the electron-eonuled osidlator circuit with provision for suppressorgrid a.f. modulation. The output attenuator is a potentiomeder so connected as to prevent a constant input resistaner to the recoiver.

For suppressor-grid modulation, apply approximately 10 volss of athdio voltage (for so per cent modulation), as shown in the diagram. The suppres-sor-grid is biased 10 volts negative for modulated use; if an ummodulated signal is desired, the upper terminal nay be groumed as indieated. This will increase the output from the oscillator. Conversely. if the output potontiometer does not attenuate the signal sulficiently additional d.c. negative hias may be applied between the modulation terminals.

In aligning a reediver it is important that the test signal be prevented from entering cireuits where it can caluse false indieations, Thais will orrur if the signal canconter the reerivor by any wher means than through the output leads from the test asoillator. To provent direet pick-up because of the relatively strong field about the oscillator, the test oscollator must be thoroughly shiclded. and the output lewd likewise should be a shiolded cable with the eenter wire the "hot" leat. Make all ground returns to a heavy coperer strap commered to the cabinet at the output ground terminal. The pheg-in coil should be separately shichded.

The i.f. ranges of the test oscillator can be calibrated by beating against signals of known frequency in the b.e band. Frecquencies betweon 465 ke . and 275 ke . can be spothed by using the seeond harmonie of the osceillather, the remainder of the range to 175 ke , being cherted by using the thirel harmonio.

The a.f. modulating source for the test aseillator ean be any andio oscillator capable of delivering 10 to 20 volts at the standard recoiver-checking frequeney of 400 eycles.

A usiful audio oscillator cireuit is shown in Fig. 1930. It employs at twoterminal or "transitron" circuit using a pentagrid tube. A frequeney of approximately 400 eyeles is generater with the tuned-circuit values shown. The frequency may be changed by substituting a different value for C_{1}; several values of capacitance may be arranged to be selected by

Fig. 1929 - Electron-coupled i.f. test oseillator circuit diagram.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. variable with $200-\mu \mu \mathrm{fd}$. fixed silvermica zero-drift in parallel.
$\mathrm{C}_{2}-100-\mu \mathrm{ff}$. midget mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}-250-\mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{5}-0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}-0.1-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{7}-500-\mu \mu \mathrm{fd}$. nidget mica.
$\mathrm{h}_{1}-50,000$ ohms, $1 / 2$-watt.
$\mathrm{K}_{2}-2000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{3}-20,000$ ohms, 1 -watt.
$\mathrm{l}_{4}-20.000 \mathrm{ohms}, 2$-watt.
$\mathrm{R}_{5}-500$-ohm carbon potentiometer.
L-440-510 kc.: 140 turns No. 30 enamelled, closewound on $1 / \frac{1}{2}$-inch diameter plug-in foriu. Cathode tap 35 turns from ground end.
1400-1550 kc.: 42 turns No. 20 d.s.c. tapped 10 turns from ground.
$4500-5500 \mathrm{kc}$.: 11 turns No. 18 enamelled, turns spaced diameter of wire, tapped 3 turns from ground.
$\mathrm{RFC}_{1}-2.5$-mh. r.f. choke.
$\mathrm{RFC}_{2}-25-\mathrm{mh}$. r.f. choke.
a switch so that an assortment of frequencies is a vailable.

C. Antenna Measurements

Antenna measurements are made for the purpose (a) of securing maximum transfer of power to the antenna from the transmitter, and (b) of adjusting directional antennas to conform with design conditions. Related to measurements of the antenna system proper is the measurement of transmission-line performance.

Checking the transmission line for standing waves can be done by measuring the current in the wires, using a device of the type pictured in Fig. 1931. The hooks (which should be sharp

Fig. 1930 - Simple negative-resistance audio oscillator. C_{1} - 0.15 - $\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{3}-0.25-\mu \mathrm{fd}$. 200 -volt paper.
$R_{1}, R_{2}-50,000$ ohms, 1-watt.
R_{3} - $50,000-\mathrm{ohm}$ volume control.
L_{1} - 1.2 -henry choke (Thordarson T-14C61 with iron core removed).
T-Output transformer (interstage audio, 1:3 ratio).
enough to cut through the insulation, if any, on the wires) are placed on one of the wires, the spacing between them being adjusted to give a suitable reading on the meter. At any one position along the line the currents in the two wires should be identical. Readings taken at intervals of a quarter wavelength will indicate whether or not standing waves are present.

Field-intensity meters - In acljusting antenna systems for maximum radiation and in determining radiation patterns, use is made of

field-intensity meters. Fundamentally the fieldintensity meter consists of a small pick-up antenna and an indicating device such as a rectifier and microammeter or a vacuum-tube voltmeter provided with a tuned input circuit. It is used to indicate the relative intensity of the radiation field under actual radiating conditions. It is particularly useful on the veryhigh frequencies and in adjusting directional antennas. Field-intensity checks should be made at points several wavelengths distant from the antenna and at heights corresponding with the desired angle of radiation.

The absorption frequency meters shown in Figs. 1910 and 1913 may be used as field

Fig. 19.32 - Simple field-strength meter which may also be ined as a sensitive indicator when making frequency measureruents by connecting Lecher wires at X-X.
strength meters if provided with pick-up antennas. Alternatively, as shown in Fig. 1932, a crystal detector in the center of a half-wave pick-up antenna, coupled through r.f. chokes to a 0-1 ma. meter, will scrve as a field-strength meter of ample sensitivity. When a signal is tuned in rectification occurs, and the rectified current is read on the microammeter. With this type of indicator, good readings may be obtained at distances of four or five wavelengths from a low-power transmitter with only a few watts input. The crystal detector does not have a linear characteristic, and a given increase in rectified current does not,

Fig. 1933 - Sensitive diode-triode feld-intensity meter.

$\mathrm{C}_{1}-50-\mu \mu \mathrm{fl}$. midget variahle.
$\mathrm{C}_{2}-250-\mu \mu \mathrm{fld}$. midget tuica.
$\mathrm{C}_{3}-0.002-\mu \mathrm{fl}$. mid. get mica.
$R_{1}-1$ quequhm, $1 / 2$ walt.
$\mathbf{M}-0-500_{\mu}{ }_{\mu}$ a. d.e.
L - 1.5-3 Ma.: 58 tıms Ňn. 28 d.s.c., close-wound.
3-6 Dr•: 29 turns Vn. 20 י., cleser-wound.
6-12 Mc.: 15 turns No. 20 e., spaeed.
11-22 D1c.: 8 turns Xo. 20 e., spared.
$20-10 \$ 11 \cdot: 4$ turns No. 20 e., spared.
All wound on 1 ! 2 inch coil forms, winding length $1 / 2$ inches; diode tap in center of coil.
therefore indiesto a direetly proportiomal itucroase in field sfrengith.

A more somsitive fielal-intensity metcr of use in cxaminitur the fielel-strenglh patterns of lower-frequency anternin systerms, omplowing a dionde reolifier and d.c. amplifior in the same cnvelope. is shown in Pig. 1933. The initial plate curront rouding is about 1.4 mat.: with sifnal input, the eurrent dips downward. The

linear triode voltmeter followed by a varia-bhe- d.e. amplifier tube. Because of the nearly logarithmic grid-voltage/plate-current charaeteristic of this tube, a $0-1$ mas. milliammeter in its plate circuit can be calibrated arbitrarily with a linear db, scale, as shown. For extreme accurary an individual calibration should be made applying known values of a.c. voltage to the 1 tis grid. The arbitrary scale shown will be found sufficiently accurate to be useful. however.

The scole eovers approximately 25 db . and is linear over a range of about 20 db . At very small signals it departs from linearity, and therefore 0 d . is placed at 90 per cent of the seale. A variable meter shunt compensates for variations in tubes and battery voltages. In use, the balancing resistor is adjusted to give a full-sicale reading of 1 ma. The signal piek-up is then made such as to cause the meter to indicate 0 db . Alternal ively, the initial reading may be set arbirrarily at 10 db .; adjust ments wili then be indietted as losses or gains in relation to that figure.

Fies 193.1 - A logarithmie field-intensity meter with dh. caliloration, employing a variable- μ d.c. amplifier tube.
($: 1-3-30-\mu \mu \mathrm{f} \boldsymbol{l}$. mica trimmer.
(: - $\quad \mathbf{5 0}-\mu \mu \mathrm{fol}$ midget variable.

$1 R_{1}-10$ megohms, $1 / 2$-watt.
$\mathrm{K}_{2}-1000$ - 0 hm wire-womal.
$\mathrm{Si}_{1} \mathrm{~s} 2$ - I'wers.p.s.t. toggle switches or a single d.p.s.t.
L. See the coil data given under Fig. 1933.

M-0-1 ma. d.c. miliammeter.
seale reading is linear with sigmal voltage. Radiated power variations will, of course, be as the square of the field-voltage indication.

Power gain in antoma systems usually is expressed in terms of deribels. A field-intensity meter circuit wheh reads directly in db. is shown in Fig. 1934. It comsists of a self-biased

The range of the instrument may be extended to +45 db . by inserting a 2 -point tap switch in the connecting lead to the 1 T 4 amplifior from the self-biasing resistor h_{1} and tapping that resistor by adding a 1 -nugohm unit to provide a 10 -to-1 multiplicr. Add 20 d b. to all readings when the multiplier is used.

Chapter Jwenty

Vacuum Tube Characteristics and Miscellaneous Data

(1. Inductance and Capacity

Induclance (I) - The formula for computing the inductance of air-core coils is:

$$
L=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c} \mu \mathrm{~h} .
$$

where a is the mean diameter of the coil in inches, b is the length of the winding in inches, c is the radial depth of the winding in inches. and n is the number of turns. The quantity c may be neglected if the coil is a single-layer solenoid.

For exantple, assume a coil having 35 turns of No. 30 d.s.e. wire on a form 1.5 inches in diameter. Consulting the wire table (page 461), 35 turns of No. 30 d.s.c. will ocrupy 0.5 inch. Therefore, $a=1.5, b=0.5, n=35$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1 . \overline{5})+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a reduired value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times 1}
$$

Straight round wires:

To calculate the high frequeney induetance of a straight round wire:

$$
L=0.00508 l\left(2.303 \log _{10} \frac{4 l}{d}-1\right)
$$

$1=$ length in inches
$d=$ diameter in inches
$L=$ inductanme in microhenrys
Comolenser capacit.v (c) - The formula for determining the caparity of a condenser is:

$$
C=0.224 \frac{K .1}{d}(n-1) \mu \mu \mathrm{fd}
$$

where A is the area of one side of one plate in square inches, n is the total number of plates, d is the separation botween plates in inches, and K is the dielectric constant ($=1$ for air; see the table on page 1 f 8 for values for other materials).

The dielectric constant is the ratio of the gapauity of a comdenser with a given dielectric to its capacity with air dielectric.

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS

Alternating current	a.c.
Ampere (amperes)	a.
Amplitude modulation	a.m.
Antenna	ant.
Audio frequency	a.f.
Centimeter	cm.
Continuous waves	c.w.
Cycles per second	c.p.s.
Decibel	db.
Direct current	d.c.
Electromotive force	e.m.f.
Frequeney	f.
Frequeney modulation	f.m.
Ground	gnd.
Henry	h.
High frequency	h.f.
Intermediate frequency	i.f.
Interrupted continuous waves	i.c.w.
Kilocycles (per second)	ke.
Kilovolt	kv.
Kilowatt	kw.
Magnetomotive force	m.m.f.

Medium frequency	m.f.
Megacyeles (per second)	Mc.
Megohm	Mss
Meter	n.
Microfarad	$\mu \mathrm{fd}$.
Microhenry	$\mu \mathrm{h}$.
Micromicrofarad	$\mu \mu \mathrm{fd}$.
Microvolt	$\mu \mathrm{V}$.
Microvolt per meter	$\mu \mathrm{v} / \mathrm{m}$.
Microwatt	$\mu \mathrm{W}$.
Milliampere	ma
Millivolt	mv
Milliwatt	mw
Modulated continuous waves	m.c.w.
Ohm	Ω
Power	P.
Power factor	p.f.
IRadio frequency	r.f.
Ultrahigh frequency	u.h.f.
Ver:-high frequency	v.h.f.
Volt (volts)	v.
Watt (watts)	w.

C RMA Radio Color Codes

Standard color codes have been adopted by the Radio Manufacturers Association for the ready identification of values and connections for standard components.

RESISTOR-CONDENSER COLOR CODE

Color	Significant Figure	Decimal Multiplier	Tolerance (C*)	Voltage Rating*
Black	0	1	-	
Hrown	1	10	1*	100
Red	2	100	2*	2(0)
Orange	3	1000	3*	300
Yellow	4	10,000	4*	4(0)
Green	5	100,000	5*	500
Blue.	6	1,001,010	6*	600
Violet	7	10,000,(060	7*	700
Gray	8	100,000,000	8*	$8(0)$
Whito	9	1,000,000,000	9*	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
* Applies to condensers only.				

Mica Condensers:

If one row of three colored markers appears on the condenser, the voltage rating is 500 volts and the capacity is expressed in $\mu \mu \mathrm{fid}$. to two signifieant figures, in micromierofarads as follows: First dot on left, first significant figure. Second dot, second signifieant figure. Third dot, decimal multiphier.

Example: A condenser has one row of colored markers, as follows: brown, black and brown. Its capacity is $100 \mu \mu \mathrm{fd}$.

When two rows of three colored markers appear on the condenser the top row represents the significant figures, reading from left to right; the bottom row indicates the decimal multiplier, tolerance and voltage rating. reading from right to left. Capacity is in $\mu \mu \mathrm{fd}$.
Example: A comdenser has two rows of colored markers, as follows: Top row: left, brown; eenter, black; right, no color. Buttom row: right, brown; center, green; left, blue. Its ratings are $100 \mu \mu \mathrm{fd} . ; \pm 5 \%, 600$ volts.

Tubular Condensers:

Two groups of colored bands are used on tubular condensers. Viewed with the wide bands on the right, the wide bands indicate significant figures (from left to right); narrow bands indicate the decimal multiplier, tolerance and voltage rating, from right to left, respectively.

Resistors:

Values of resistance and tolerances are indicated by colored dots, bands or stripes on the resistor.
Two types of resistors are commonly used, one having radial and the other axial leads. The following illustration shows the two types of resistors and the system of identification.

Radial leads	Axial leads	Color
Body A	Band A	Indicates first siumificant figure.
End B	Bund B	Indicates second sioniticant fiuture.
Band C (or dot)	Band C	Indicates decimal multiplier.
Band D	Band D	Indicates tolerance in per cent.

I.f. transformers:

Blue - plate lead.
Red - "B" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secomblary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

A.f. transformers:

Blue - plate (finish) lead of primary.
Red - "B" + lead (this applies whether the primary is plain or renter-tapped).
Brown - plate (start) lead on center-tapped primaries. (Hlue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black - grid return (this applies whet her the secondary is plain or center-tapped).
Yellow-grid (start) lead on (enter-tapped secondaries. (Green may be used for this lead if polarity is not important.)
Note: These markings apply also to line-togrid, and tube-to-line transformers.

Loudspeaker roice coils:

Green - finish.
Black - start.

Field coils:

Black and red - start.
Yellow and red - finish.
Slate and Red - tap (if any).

Pouer transformers:

1) Primary Leads Black If tapped:

Common. Black
Tap Black and Vellow Striped
Finish. Blach and led Striped
2) High-Voltage Plate Winding Red

Center-Tap... Red and Yellow Striped
3) Rectifier Filament Winding Vellow

Center-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1............Green

Center-Tap. . Green and Vellow Striped
5) Filament Winding No. 2. brown

Center-Tap. Brown and Vellow Striped
6) Filament Winding No. 3..........Slate

Center-Tap...slate and Yellow Striped

INDUCTANCE, CAPACITY AND FREQUENCY - CHART I, 1.5-40 MC.

This chart may be used to find the values of inductance and capacity required to resonate at any given frequency in the medium- or high-frequency ranges; or, conversetly, to find the frequency to which any given coil-condenser combination will tune. In the example shown by the dashed lines, a condenser has a minimum capacity of 15 mufd. and a maximum capacity of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10-\mu \mathrm{h}$. inductance, what frequency range will be covered?' The straight-edpe is conncted between 10 on the left-hand scale and 15 on the right, giving 13 Me. as the high.frequency limit. Keeping the straipht-edpe at 10 on the left-band scale, the other end is swung to 50 on the ripht hand scale, giving a low-frequency limit of 7.1 Mc . The tuning range would, therefore, be from 7.1 Mc . to 13 $M_{\text {, }}$, or 7100 kc . to $13,000 \mathrm{kc}$. The center scale also serves to convert frequency to wavelength.
The range of the chart can be extended by nultiplying each of the scales by 0.1 or 10 . In the example above, if the capacities are 150 and $500 \mu \mu \mathrm{fd}$. and the inductance $100 \mu \mathrm{~h}$., the range becomes approximately 231 to 422 meters or 0.7 to 1.3 Mc . Alternatively, 1.5 to $5 \mu \mathrm{fd}$. and $1 \mu \mathrm{~h}$. will give a range of approximately 71 to 130 Mc .

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

By use of the chart alwove, the approximate reactaner of any capacity from $1.0 \mu \mu \mathrm{fd}$. $1010 \mu \mathrm{fil}$ at any frequmey from 100 cyctes to 100 megacyeles, or the reactance of any inductane from 0.1 ph . to 1.0 hemry, can be read directly. Intermediate values can be estimated hy interpolation. In making interpolations, remember that the rate of change between tines is lowarithmic. I se the frequency or reactance seales as a guide in estimating intermediate valurs on the capacity or inductance seales.
This chart also ran lie used to find the approximate resonance fremencies of $L C$ combinations, or the frequency to which a given ooil and comberser combination will tune. First lowate the resuretive slanting lines for the capacity and induetanes. The puint where they intersert, i.e., where the reactances are equal, is the resonant frequeney (projected downward and read on the fregueney seale).

Electrical Conductivity of Metals

Aluminum (2s: pure)	59	0.00 .49
Aluminum (allogs:		
soft-annealed.	45-50	
Heat-treated.	$30-45$	
Brass	28	0.002-0.007
Cadmium.	19	
(hronnium.	5.5	
(Himax.	1.83	
Cobait.	16.3	
Conssantin	3.9 ¢	0.0MCH2
(opmer (hard lrawn)	80.5	0.0 mP
Copper (anntaled)	100	
Everder	6	
German Silver (18\%)	5.3	0.00019
Gold.	65	
Iron (pure)	17.7	0.006
Iron (east).	2-12	
Iron (wrought)	11.4	

[^10]R-lative Temp.Corff. ${ }^{2}$ Conductirity ${ }^{1}$ of Resistance

Lead	7	0.0041
Manc:ath	3.7	0.00002
Meremer	1.6f	0.00089
Molyburamm.	33.2	0.0033
Monel.	4	0.0019
Nichrome	1.45	0.00017
Nickel.	12-16	0.005
Phosphar Bronze.	3 i	0.004
Patimum.	15	
silver	106;	0.004
Steed	315	
J'in.	13	0.0042
1'1ngstort	28.9	0.0045
Zinr	2 s .2	0.0035

A pprosimat rolations:
An increase of 1 in A. W. G. or B. \& S. wire size increases resistance 25%.
An increase of 2 increases resistance 60%.
An increase of 3 increases resistance 100%.
An increase of 10 increases resistance 10 tinies.

Table of Dielectric Characteristics

Dielectric material ${ }^{1}$	Dielectric constant (K)	Pourer factor					Dielectric strength (puncture vol(age) ${ }^{2}$	Volume resistivity ${ }^{3}$ (ρ)
		60 cycles	1 kc.	1 Mc .	10 Mc .	100 Mc .		
Air (normal pressure)... AlSiMag A196......	$\begin{gathered} 1.0 \\ 5.7-6.3 \end{gathered}$	2.9		0.21	0.15		$19.8-22.8$ 240	10^{14}
Aniline formaldehyde	5-5	1-6			1.15		400	
Asphalts	2.7-3.1		2.3				$25-30$	
Bakelite - See Phenol. . Beeswax	2.9-3.2							
Cascin plastics ${ }^{4}$	6.1-6.4			5.2-6			165	
Castor oil. . . .	4.3-4.7			7			380	
Celluloid.	4-16			5-10				
Cellulose acetate ${ }^{5}$	6-8	3-6	4-6	4-6	5.5		300-1000	4.5×10^{10}
Cellulose nitrate ${ }^{6}$.	4-7			2.8-5			300-780	$2-30 \times 10^{10}$
Ceresin wax	2.5-2.6			0.12-0.21				
Cresol formaldehyde	6	10					400	
Dilectene. . .	3.57					0.33		
Ethyl cellulose	2-2.7	0.7	1.2	1.5			1500	10^{15} $\times 10^{9}$
Fiber...	5-7.5			4.5-5			150-180	5×10^{9}
Formica MF-66.	4.6-4.9		1.5	1.1			450	
Glass:								
Cobalt.	7.3			0.7				
Common window	7.6-8			1.4			$200-250$	
Crown.	6. 2-7		1	$1{ }^{3}$			500	
Electrical.	4-5			0.5			2000	8×10^{14}
Flint. .	7-10		0.4.5	0.4				
Nonex.	4.2			0.25		0.28		
Photographic.	7.5			0.8-1				
Plate.	6.8-7.6			$0.6-0.8$				
I'srex.	4.2-4.9		0.5	0.7		13.54	335	$5{ }^{10^{14}}$
Giutta percha	2.5-4.9						200-500	$5 \times 10^{14}-10^{15}$
Lucite ${ }^{7}$.	2.5-3	7	5	1.5-3	1.9		480-500	
Melamine formaldehyde	${ }^{8}$	16					300	
Mica.	2.5-8	0.2	0.3	0.2-6	0.02			2×10^{17}
Mica (clear India)	6.4-7.5	2	2	2	2		600-1500	
Mycalex.	7.4			0.18			250	10^{13}
Mycalex (British)	6			0.3			350	
Mykroy	6.5-7			0.1-0.2			630	
Nylon.	3.6			2.2				
Paper..	2.0-2.6						1250 300	
Parafin wax (solid)	1.9-2.6			$\begin{aligned} & 0.1-0.3 \\ & 0.2 \end{aligned}$			300	$10^{15}-10^{19}$
Pemque.	7.21			0.2				
I'henol: ${ }^{\text {Pure. }}$								
Pure.	5			15			$400-475$ $00-150$	1.5×10^{12}
Asbestos base.	7.5			15			10-150	
Black niolded	5-5.5			3.5			400-500	
Fabric base.	5-6.5			3.5-11			150-500	
Mica-filled.	5-6			0.8-1			475-600	
Paper base	3.8-5.5			2.5-4			650-750	$10^{10}-10^{13}$
Yellow. .	5.3-5.4			$0.36-0.7$			500	
Polyethylene	2.3-2.4	0.02	0.02	0.02-0.05			1000	10^{17}
Polyindene.	3	0.04						
Polyisobutylene.	2.4-2.5	$0.04-5$	0.05				500	10^{16} 10^{20}
Polystyrene ${ }^{9}$. .	2.4-2.9(2.6)	0.02	0.018	0.02	0.02	0.02	500-2500	- $\begin{aligned} & 10^{20} \\ & \times 10^{8}\end{aligned}$
Porcelain (dry process)	6.2-7.5			0.7-15			40-100	5×10^{8}
Porcelain (wet process)	6.5-7			0.6			150	
Presshoard (untreated).	2.9-4.5						125-300	
Pressboard (oiled)....	${ }^{5} 5$						750	
Quartz (fused) . 10	3.5-(3.8)	0.01	0.01	$0.015-0.03$	0.01	0.0 .5	200 450	$\begin{aligned} & 10^{14} 10^{18} \\ & 10^{12}-10^{15} \end{aligned}$
Rubler (hard) ${ }^{10}$. Shellac	${ }_{2.5}^{2-4.5(3)}$			$0.5-1$ 0.09			450 900	$10^{12}-10^{15}$ 10^{16}
Steatite: ${ }^{11}$								
"Commercial" grade.	4.9-6.5	0.02	0.2	0.2	0.4	0.5		
"Low-loss" grade. .	4.4	0.02	0.2	0.2	0.18	0.13	150-315	$10^{14}-10^{15}$
Titanium dioxide ${ }^{12}$	90-170		0.1	0.1				
Urea formaldehyde ${ }^{13}$.	5-7	3-5	2-3	2-4	4		300-550	$10^{12}-10^{13}$
Varnished cloth ${ }^{14}$.	2-2.5			2-3			440-550	
Vinyl resins.	4			1.4-1.7			400-500	10^{14}
Vitrolex.	6.4			0.3				
Wood (dry oak).	2.5-6.8(3)		3.8	4.2				
Wood (paraffined maple)	4.1						115	

ood (paraffined maple).

1 Most data taken at $25^{\circ} \mathrm{C}$.
2 Puncture voltage, in volts per mil. Most data applies to relatively thin sections and cannot be multiphied directly to kive breakdown for thicker sections without added safety factor.
${ }_{4}$ In ohm-cm.
4 Includes such products as Aladdinite, Ameroid, Galalith.
Erinoid, Lactoid, etc.
${ }^{5}$ Includes Fibestas, Lumerith, Nixonite, Plastacele, Tenite, etc
Tenite, etc.
8
Includes Amerith, Nitron, Nixonoid, Pyralin, etc.
7 Methylmethacrylate resin.
8 Phenolaldehyde products include Acrolite, Bakelite,

Cutalin, Celeron, Dielecto, Durez, Durite, Formica, Gemstone, Meresite, Indur, Makalot, Marblette, Miearta, Opal on, Prystal, Resinox, Synthane, Textolite, etc. Yellow bakelite is so-called "low-loss" bakelite.
${ }^{9}$ Includes Amphenol 912 A, Distrene, Intelin IN 45, Loalin, Lustron, Quartz Q, Rezoplas, Khodolene M, Ronilla L, Styraflex, Styron, Trolitul, Vietron, etc.

10 Also known as Ebonite.
${ }^{11}$ Soapstone - Alberene, Alsimag, Isolantite, Lava, etc.
12 Rutile. Used in low temperature-coefficient fixed condensers.
${ }_{13}^{13}$ Includes Aldur, Beetle, Plaskon, Pollopas, Prystal, etc.
14 Includes Empire cloth.

COPPER WIRE TABLE

Gauge No. B. \& S.	Diam. in Mils ${ }^{1}$	$\begin{aligned} & \text { Circular } \\ & \text { Mil } \\ & \text { Area } \end{aligned}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current C'arrying C'apacity at 1500 (.. 14. per Amp. ${ }^{3}$	Diam. in mm.	Nearest British s.W. No.
			Enamel	S.C.C.	$\begin{aligned} & \text { D.S.C. } \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C.	S.C.C.	Enamel $S . C . C$	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	-	. 1264	55.7	7.348	1
2	257.6	66370	-	-	-	-	-	-	-	4.977	-	. 12903	44.1	6.544	3
3	299.4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	3.50	5.827	4
4	204.3	41740	-	-	-	-	-	-	-	7.914	-	.2533:	27.7	5.180	5
5	181.9	33100	-	-	-	-	-	-	-	9.980	-	. 3145	22.0	4.621	7
6	162.0	26250	-	-	-	-	-	-	-	12.38	-	. $40 \geq 8$	17.is	4.115	8
7	144.3	20820	7	-	-	-	-	-	-	1.5 .87	-	. 5080	13.8	3.665	9
8	128.5	16510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	. 6405	11.0	3.264	10
9	114.4	13000	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	8.7	2.906	11
10	101.9	10380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	6.9	2.588	12
11	90.74	8234	10.7	-	10.3	9.8	110	105	97.5	40.12	38.8	1.284	5.5	2.305	13
12	80.81	6530	12.0	-	11.5	10.9	136	131	121	50.59	48.9	1.619	4.4	2.053	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	150	63.80	61.5	2.042	3.5	1.828	15
14	64.08	4107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628	16
15	57.07	3257	16.8	-	15.8	14.7	262	250	223	101.4	97.3	3.247	2.2	1.450	17
16	50.82	2583	18.9	18.9	17.9	16.4	$3 \because 1$	306	271	127.9	119	4.09 .4	1.7	1. 291	18
17	45.26	2048	21.2	21.2	19.9	18.1	397	37:	329	161.3	1.50	5.163	1.3	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	45.	399	203.4	188	6.510	1.1	1.02 .4	19
19	35.89	1288	26.4	26.4	2.4	21.8	592	55.3	479	256.5	237	8.210	. 86	. 1.0116	20
20	31.96	$10: 2$	29.4	29.4	27.0	23.8	775	72.5	625	323.4	298	10.35	. 68	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	040	89.5	754	407.8	370	13.05	. 54	. 7230	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	. 43	. 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584	20.76	. 3.4	. 5733	24
24	20.10	404.0	46.3	35.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	. 27	. 5106	25
25	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1.510	1031	903	33.00	. 21	. 4547	26
26	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	17:50	1300	1118	41.62	. 17	. $+10+4$	27
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020	1639	142\%	52.48	. 13	. 3606	29
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17	. 11	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900	2700	2607	2207	83.44	. 084	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	3287	2534	105.2	. 017	. 2546	33
31	8.928	79.70	101	92.0	77.5	39.2	5920	5280	,	4145	2768	132.7	. 053		
32	7.950	63.21	113	101	83.6	62.6	7060	62.50	-	5227	3137	167.3	.053 .042	. 22019	34 36
33	7.080	50.13	127	110	90.3	66.3	8120	7360	-	6591	4697	211.0	.033	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	8310	-	8310	6168	266.0	. 020	. 1601	38
35	5.615	31.52	158	132	104	73.5	10:60	8700	-	$10+80$	6737	335.0	. 021	. 1426	38-39
36	5.000	25.00	175	143	111	77.0	12:200	10700	_	13210	7877	423.0 423.0	. 017	. 1270	39-40
37	4.453	19.83	198	154	118	80.3	-	10700	-	16660	9309	433.0 533.4	. 013	.1270 .1131	$39-40$ 41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10666	672.6	. 010	. 1007	42
39	3.531	12.47	248	181	133		-	-	-	$26: 50$	11907	848.1	. 008	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 006	. 0799	43 4

[^11]
RECEIVING TUBE CLASSIFICATION CHART

Cothode Volns	1.4	2.0	2.510 5.0	0.3	12610
DIODE DEIECTORS \& RECIIFIERS					
Detectors \{ \{ single	1 AJ			(6H6, $6 \mathrm{HC} . \mathrm{GT} . \mathrm{G}$), 7A6	12H6
fhalf.wave				1.*	1223.3523.
					$\begin{gathered} 35 Z 4 . G T \\ 352 . G 1,6 \\ 4523 \\ 45 Z 5 . G T \end{gathered}$
holl-wave, with beam power omplifiet					
Reccifiers \{ holf.wave, with power pentode					$25 A 7 . G^{12 A} G$
mercury			82, 83		
gas	Cold.Cothode Types: 0Z4, OZ4.6.				
Rectifier-Doublers					
DIODE DETECTORS with AMPLIFIERS (with high-mu trode One hiphemy inode.	(1H5.G, 1H5. GI) (1 LH 4				
One w with hightmu triode, rit pentode	3 A8.GT*				
Wiode wh medummuthode, fower pentode	10.91				
with pertode	155				
with ponet Eeriode	1 No. 6				
with medium mu-triode		$\begin{gathered} (185 \\ 1 H 6.6) \end{gathered}$	55	(OSR7, 6R7, 6R7.G, 6R7.GT $6517,6 \vee 7 . \mathrm{G}, 85), 6(7,7 t 6$	12SR7
$\begin{gathered} \text { Two } \\ \text { Diodes } \end{gathered}\{\text { with high-mu mode }$			2 AO	($6507,0507 . \mathrm{GT} 6.607$ $607 . \mathrm{G}_{6} 607 . \mathrm{GI} .680$.G. 6 $17.6,75$), 786, 7C6	$\begin{gathered} 1125071 \\ 12507.67 \\ 1207.6 T) \end{gathered}$
wilh pentode		$\begin{gathered} (1 \mathrm{~F} 7 . \mathrm{G}, \\ \mathrm{FFO}) \end{gathered}$	$2 \mathrm{B7}$	$\begin{aligned} & (688,088 \cdot G, 687,687-S), \\ & 65 F 7,7 E 7 \end{aligned}$	1268, 12557
CONVERTERS \& MIXERS Pentagtid Convetters	$\begin{aligned} & \text { (1A7.G, } \\ & \text { 1A7.GI), iRs. } \\ & \text { 1B7.GI, iLAB } \end{aligned}$	$\begin{aligned} & (1 \mathrm{C} 7 . \mathrm{G}, \\ & 1 \mathrm{Cb}) \\ & (107.6, \\ & 1 \mathrm{~A} 6) \end{aligned}$	2A7	(6SA7 OSA7.GT G 6A8, 6A8.G. 6A8.GT, 608.G, 6A7, 6A75), 7BB, 707	$\begin{aligned} & (12 S A 7, \\ & 12 S A 7 G G^{\prime} G, \\ & 12 A 8 \cdot G T) \end{aligned}$
Triode. Hexode Converters				(6K8, 6K8.G. 0 K $\mathrm{K} . \mathrm{GI}$).	12 K 8
Triode. Heotode Converters				$618 \cdot 6,717$	
Ocrode Converters				7A8	
Penlogrid Mixers				(6L7, 6L7.G)	

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pares show standard socket connections eorresponding to the base designations given in the column headed "Socket Comnections" in the classified tube data tables. Footnotes under each table indicate in which gronp a given base diagram is to be found. Bottom views are shown throughout. Terminal designations are as follows:

Alphabetical subaript : D, P, T and IIX indiate, respertively, diode unit, pentode unit, triode unit or hexode unit in multi-unit typen Subeript M, T or C'I indicates filament or hater tap.

Wherever the No. 1 pin of a metal-type tube in Table I is shown connected to the shell, the No. 1 pin in the glass (G or C'I') equivalent is connected to an internal shich.

RECEIVING TCIBE DIIORIMS
Bottom views are shown Terminal designations on suckets are shown above.

20

4AF

$4 B$

46

45

5A

SAG

58

3G

4AH

4BB

$4 J$

4SA

rAA

5AJ

4AA

4AJ

$4 C$

4 K

$4 V$

5BC

$4 A B$

4AM

40

4 M

4 X

4AD

$4 F$

4 R

4Y

42

5BB

RECEIVING TUBE DIAGRAMS
Bottom views are shown. 'lerminal designations on sockets are given on page 420 .
(2):

6AD

$6 B$

$6 F$

6 H

(3) (4)
6BG
(3) (3) (4)
6 BH
(3) (3)
6BJ

6 C

66

60

$6 J$

6K

$6 L$

$6 S$

7 A
(3) (4)

RECEIVING TLBE: DIAGRAMS
Bottom views are shown. Terminal desipnations on sockets are piven on page $\mathbf{4} 0$.

RECEIVING TUUE IHACIRAMS
Bottom views are shown. 'l'erminal deajphations on suckets are wiven on page 120.
(3) (4) (5 (1)
(4) (5)

8ε

8 F

86

(3) $P_{H X}$
$8 K$

8L

$8 N$

80

$8 P$

80
(3) (4) (5)
8R
(4) (4)

$8 \cup$

11 A

(3) (4) (3) (3) (3)
$8 V$

SUPMLEMENTARY BASE IHAORAMS

SLPPLEMEN'TARY BASE DIAGRAMS
Bot tom views are shown. 'l'erminal designations on sockets are given on page 120.

(2) (2)

2no Ring popring
SIG. 17
K(3) TOP RING GITER(1) (B) KS
FIG. 18
TWO WAY MAGNETIG
DEFLECION

FiG. 30

FIG. 25

FIG. 26

FIG. 27

fIG. 28

NC(3)
FIG 31

F1G 32

FIG 33

Butom viows are shown. Trminal designations on sorkets are given on page 120.

T-1A

T-3AB

T-1AA

T-3AC

$T-1 A B$

T-3B

$T-1 B$

$\mathrm{T}-3 \mathrm{BC}$

T-4C

$T-3 A$
T-3AA

T-4A

T-4AF

T-4AG

T-4B

T-4BF

T-4BG
$F F O^{F}$

NC (2)

TRANSMITTING TUBE DIAGRAMS
Bottom views are shown. Terminal dexignations on sockets are piven on page 420.

T-40B

T-58B

T-5C

T-5CA

T-5CB

T-50

T-7C

T-8AG

T-50A

T-50B

T-50C

T-6B

TUBE RATINGS

The data in the classified tube tables are of two kinds, maximum ratings, and typical operating conditions.

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe oporating voltages and currents for the electrodes, basod on inheront limiting factors such as permissible cathode temporature, emission, and power dissipation in clectrodes. In addition to the maximum ratings for each type, performance data are given in the form of typical operating conditions.

In the transmitting-tube tables. maximum ratings for clectrode voltage, curent and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are eombined. Where only one set of operating comditions appears. the positive eloctrode voltages shown (plate, serean, ete.) are, in general, alse the maximum rated voltages for those clectrodes.

The maximum ratings given for cach transmitting type apply only when the tube is operated at frequencies lower than some sperified value which depends on the design of the type. As the frequency is raised above the specified value, the radio-frequency current.
dieloctric losses, and luating effects increase rapidly. Most types ean be operated above their specified maximum frequency provided the plate voltage and plate input are reduced in accordance with the information given by the footnotes on maximum operating frequencies for full ratings.

For cortain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCs (Cominmous Commercial Servier) ratings, the other ICAS (Intermittent Commercial and Amatcur Service) ratings. Continuous Commoreial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commercial and Amateur Serviee is defined to include the many applications where the transmitter design factors of minimum size, light woight, and maximum power output are more important than long tube life. ICAS ratings are considerably higher than CCS ratings. They permit the handling of yruater power, and although such use involves some sacrifiee in tube life, the period over which tubes will continue to give satisfactory performane in intermittent service can be extremely long. 'Typical operating conditions given in the tables are ICAS ratings when applieable.

TABLE I - METAL RECEIVING TUBES
Characteristics given in this table apply to all tubes having type numbers shown, including metal tubes, glass tubes with " G " suffix, and bantam tubes with " G " suffix. For " G " and " G " tubes not listed (not having metal counterparts), see Tables II, VII, VIII and IX.

Type	Name	Socket Connec. tions	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Curtent Mo.	Plate Current Mo.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Typ*
				Volts	Amps.												
6A8	Pentagrid Converter	8A	Hir.	6.3	0.3	Osc.-Mixer	250	- 3.0	100	3.2	3.3	Anode-grid (No. 2) 950 volts max. thru 20,000-ohms					6A8
$\begin{aligned} & \hline 6 A B 7 \\ & 1853 \\ & \hline \end{aligned}$	Television Amp. Pentode	8 N	Htr .	6.3	0.45	Class-A Amplifier	300	- 3.0	9002	3.2	12.5	700000	5000	3500	-	-	$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$
$\begin{aligned} & \hline 6 A C 7 \\ & 1859 \\ & \hline \end{aligned}$	Television Amp. Pentode	8 N	Htr.	6.3	0.45	Class-A Amplifier	300	-2.04	1502	2.5	10	750000	9000	6750	-	-	$\begin{aligned} & 6 A C 7 \\ & 1859 \end{aligned}$
6AG7	Video Beam Power Amp.	8 Y	Htr.	6.3	0.65	Class-A1 Amplifier ${ }^{5}$	300	- 3.0	150	7/9	30,30.5	130000	11000	-	10000	3.0	6AG7
688	Duplex-Diode Pentode	8 E	Htr.	6.3	0.3	Class-A Amplifier	250	- 3.0	125	2.3	9.0	650000	1125	730	-	-	688
6C5 is	Triode Detector, Amplifer	60	Htr.	6.3	0.3	Class-A Amplifer	250	- 8.0	-	-	8.0	10000	2000	90		-	
						Bias Detector	250	-17.0		-		Plate current	diusted to 0.8	ma. with	no signal		6
6 F5	High- μ Triode	5 M	Htrs.	6.3	0.3	Class-A Amplifier	250	- 1.3	-	-	0.2	66000	1500	100			$6 F 5$
6F6	Pentode Power Amplifier	75	Htr.	6.3	0.7	Class-A Pentode	$\begin{array}{r}250 \\ 315 \\ \hline\end{array}$	$\begin{array}{r} -16.5 \\ -29.0 \end{array}$	$\begin{aligned} & 950 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 34 \\ & 49 \end{aligned}$	$\begin{array}{r} 80000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 2650 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	6F6
						Class-A Triode:	250	-20.0	315	8.	31	9600	2700	7.0	4000	0.85	
						Push-Pull Class-AB Pentode Triode Connection ${ }^{3}$	$\begin{array}{r} 375 \\ 350 \\ \hline \end{array}$	$\begin{array}{r} -26.0 \\ -38.0 \\ \hline \end{array}$	250	9.5	$\begin{aligned} & 17 \\ & 29.5 \\ & \hline \end{aligned}$	Power output for 2 tubes at stated load, plate-to-plate			$\begin{array}{r} 100 c 0 \\ 6000 \end{array}$	$\begin{aligned} & 19.0 \\ & 18.0 \end{aligned}$	
$6 \mathrm{HC}^{13}$	Twin Dioda	70	Her.	6.3	0.3	Rectifer	Max. a.c. voltage per plate $=100$ r.m.s. Max. output current 4.0 me. d.c.										6H6
655	Delector Amplifier Triode	6 Q	Htr.	6.3	0.3	Class-A Amplifier	250	-8.0			9	7700	2600	20	-	-	6.5
$6.7{ }^{15}$	Triple-Grid Detector, Amplifier	7R	Hir.	6.3	0.3	R.F. Amplifier	250	- 3.0	100	0.5	9.0	1.5 meg.	1225	1500		-	6.7
						Biss Detector	250	-4.3	100	Cathode current 0.43 ma .			-	-	0.5 meg.	-	657
$6 \mathrm{K7}$	Triple-Grid Variable- μ Amplifier	7R	Her.	6.3	0.3	R.F. Amplifier	250	- 3.0	125	2.6	10.5	600000	1650	990	-	-	6K7
						Mixer	250	-10.0	100	-	-	Oscillator peak volts $=7.0$					
$6 \mathrm{K8}$	Triode Hexode Converter	8K	Her.	6.3	0.3	Osc.-Mixer	250	- 3.0	100	6	9.5	Triode Plate (No. 2) 100 volts, 3.8 ma .					6 K 8
6L6	Beam Power Amplifier	7AC	Htr.	6.3	0.9	Single-Tube $A_{1}{ }^{8}$ Cathode Bias	$\begin{array}{r} 950 \\ 300 \\ \hline \end{array}$	- 3	$\begin{array}{r} 250 \\ 800 \\ \hline \end{array}$	$\begin{array}{r} 5.4-7.2 \\ 3.0-4.6 \\ \hline \end{array}$	$\begin{aligned} & 75-78 \\ & 51-54.5 \end{aligned}$	-	-	-	$\mathbf{2 5 0 0}$ 4500	6.5 6.5	6L6
						Single-Tube $A_{1}{ }^{6}$ Fixed Bias,	250 350	-14.0 -18.0	$\begin{array}{r} 950 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 5.0-7.3 \\ & 9.5-7.0 \end{aligned}$	$\begin{aligned} & 72-79 \\ & 54-66 \end{aligned}$	$\begin{aligned} & 29500 \\ & 33000 \end{aligned}$	$\begin{aligned} & 6000 \\ & 5800 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2500 \\ & 4800 \end{aligned}$	6.5 10.8	
						Push-Pull $A_{1}{ }^{6}$ Cathode Bias	270	-	270	11-17	134-145		5	-	5000	18.5	
						Push-Pull $A_{1}{ }^{8}$ Fixed Bias	$\begin{array}{r} 950 \\ 270 \end{array}$	$\begin{aligned} & -16.0 \\ & -17.5 \end{aligned}$	$\begin{array}{r} 950 \\ 970 \end{array}$	$\begin{aligned} & 10-16 \\ & 11-17 \end{aligned}$	$\begin{aligned} & 120-140 \\ & 134-155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$	二	5000 5000	18.5 17.5	
						Push-Pull $A B_{0}{ }^{8}$ Cathode Bias	360	$={ }^{10}$	270	5-17	88-100	Power output for 2 tubes. Load plate-to-plate			9000	24.5	
						Push-Pull $A B_{1}{ }^{8}$ Fixed Bias	360	-92.5	270	5-15	88-132				$6600{ }^{11}$	26.5	
						Push-Pull $A B_{2}{ }^{6}$ Fixed Bias	$\begin{array}{r} 360 \\ 360 \\ \hline \end{array}$	$\begin{array}{r} -18.0 \\ -22.5 \\ \hline \end{array}$	$\begin{array}{r} 925 \\ 970 \end{array}$	$\begin{array}{r} 3.5-11 \\ 5-16 \end{array}$	$\begin{aligned} & 78-149 \\ & 88-905 \end{aligned}$				$\begin{aligned} & 6000 \\ & 3800 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
$6 \mathrm{L7}$	Pentagrid Mixer Amplifer	75	Htı.	6.3	0.3	R.F. Amplifier	250	- 3.0	100	5.5	5.3	800000	1100	,	-	,	$6 \mathrm{L7}$
6 L	Pontagrid Mixor Ampliter	7	Ht.	6.3	0.3	Mixer	250	- 6.0	150	8.3	3.3	Over 1 mes.	Oscillator-gri	(No. 3)	voltage $=$	-15.0	6 L 7
6N7	Twin Triode	8 B	Her.	6.3	0.8	Class-B Amplifier	300	0	-	-	35-70	-	-	-	8000	10.0	6N7
607	Duplex-Diode Triode	7 V	Her.	6.3	0.3	Triode Amplifier	250	- 3.0		-	1.1	58000	1900	70	-		607
6R7	Duplex-Diode Triode	7 V	Hitr.	6.3	0.3	Triode Amplifier	250	- 9.0		-	9.5	8500	1900	16	10000	0.98	6R7
$6 \mathrm{Cl}^{10}$	Triple-Grid Variable- μ	7R	Her.	6.3	0.15	Class-A Amplifier	250	- 3.0	100	2.0	8.5	1000000	1750	1750	-	-	657
6 6A7	Pentagrid Converter	88^{12}	Hip.	6.3	0.3	Osc.-Mixer	250	$0{ }^{13}$	100	8.0	3.4	800000	Grid No.	Resisto	20000 ohm		6SA7
6SC7	Twin Triode Amplifier	85	Hir.	6.3	0.3	Class-A Amplifier	250	- 2.0	-	-	2.0	53000	1325	70	-	-	6SC7
6SF5	High- μ Triode	6AB	Her.	6.3	0.3	Class-A A mplifier	250	-2.0	\square		0.9	66000	1500	100	-	-	6SF5
6SF7	Diode Variable- μ Pentode	7AZ	Her.	6.3	0.3	Class-A Amplifier	250	- 1.0	100	3.3	19.4	700000	2050	-	-	-	6SF7
6SG7	Triple-Grid Semi-Variable- μ	8 BK	Hitr.	6.3	0.3	H. F. Amplifier	250	-2.5	150	3.4	9.2	Over 1 meg	4000	-	-	-	6SG7
$6 \mathrm{SH7}$	Triple-Grid Amplifer	8BK	Htr.	6.3	0.3	H. F. Amplifier	250	- 1.0	150	4.1	10.8	900000	4900			-	$6 \mathrm{SH7}$

TABLE I-METAL RECEIVING TUBES - Continued

Type	Name	Socket Connections	Cathode	Fil. o	Hester	Use	Plato Supply Volts	Grid Bias	ScreenVolts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
				Volts	Amps.												
6S.7 7 :	Triple-Grid Amplifier	8 N	Hit.	6.3	0.3	Class-A Amplifer	250	- 3.0	100	0.8	3	1500000	1650	2500	-	\square	6SJ7
6SK7	Triple-Grid Variable- μ	8 N	Her.	6.3	0.3	Class-A Amplifier	250	-3.0	100	2.4	9.2	800000	2000	1600	-	-	6SK7
6SQ7	Duplex-Diode Trioda	80	Hir.	6.3	0.3	Class-A Amplifier	250	- 2.0		-	0.8	91000	1100	100		-	6SQ7
6SR7	Duplex-Diode Triode	80	Htr.	6.3	0.3	Class-A Amplifer	250	-9.0			9.5	8500	1900	16	-	-	6SR7
6SS7	Triple-Grid Variable- μ	8 N	Her.	6.3	0.15	Class-A Amplifier	250	- 3.0	100	2.0	9.0	1000000	1850		-	-	6SS7
6ST7	Duplex-Diode Triode	80	Her.	6.3	0.15	Class-A Amplifer	250	- 9.0		-	9.5	8500	1900	16	-	-	6ST7
6 T 7	Duplex-Diode Triode	7 V	Hit.	6.3	0.15	Class-A Amplifier	250	-3.0	-	- 7.0	1.2	62000	1050	65		$\bar{\square}$	$6 T 7$
	Beam Power Amplifier	7AC	Htr.	6.3	0.45	Class-A A molifier	250	-12.5	250	4.57 .0	45-47	52000	4100	218	5000	4.5	6V6
6V6						Class-AB Amplifier 2 Tubes	250	-15.0	250	513	70-79	60000	3750	-	10000	10.0	
							285	-19.0	285	4/13.5	70-92	65000	3600	-	8000	14.0	
1611	Pantode Power Amplifier	7 S	Htr.	6.3	0.7	Relar Tube	Characteristics same as 6F6										1611
1618	Pentagrid Amplifier	7 T	Hir.	6.3	0.3	Class-A Amplifior	250	- 3.0	100	6.5	5.3	600000	1100	880	-	-	1619
1620	Triple-Grid Det.-Amp.	78	Htr.	6.3	0.3	Class-A Amplifier	Characteristics same as 677										1620
1621	Power Amplifer Pentode	7 S	Her.	6.3	0.7	Class-A, Pentode P. P.	300	$\mid-30.0$	300	6.513	3869			-	4000	5.0 8.0	1621
1699	Beam Power Amplifier	7AC	Htr,	6.3	0.9	Class-A Amplifer	300	-20.0	250	$4 / 10.5$	86195				4000	10.0	1622
1851	Television Amp. Pentode	7 R	Htr.	6.3	0.45	Class-A Amplifier	300	$-2.0{ }^{\circ}$	150^{2}	2.5	10	750000	9000	6750	-	-	1851

I See Receiving Tube Dis
${ }^{2}$ From fixed sereen supply. If series resistor from plate supply is used, value for $6 A B 7 / 1853$ is 30,000 ohms, for $6 A C 7 / 1852$
and 185160,000 ohms. Series resistor gives variable- charenteristic, fixed screen supply gives sharp cut-off.

- Screen tied to plate.
- Cathode bias resistor should be adjusted for plate current of 10 ma.; minimum value 160 ohms.
${ }^{5}$ Typical operation for $4-\mathrm{Mc}$.-bandwidth video voltege ampli-
Ger; 70 volts outpul with 4 volts input.
Subscript 9 indicates no grid-current fow over part of input cycle. 7 Cathode resistor 170 ohms. \quad Cathode resistor 920 ohms.

Cathode Iesistor 125 ohms m load. ${ }_{12}$ Output 18 wotts with 3800 -ohm load.
${ }^{\text {is }}$ Grid bias -2 volts if separate oscillator excitation is used
${ }^{14}$ Cathode resistor 500 ohms.
${ }^{15}$ Types G or GT have internal shield connected to number on
ypes G or GT have internal shield connected to number one pin. ${ }^{\text {Also type "6SJ7Y". }}$

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT" -Type Tubes Not Listed Here, See Equivalent Type in Table 1, Characteristics and Connections Will Be Identical)

Type	Name	Socket Connections	Cathode	Fil. or Heatar		Use	Plate Supply Volts	Grid Bias	Screan Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
				Volts	Amps.												
2C92	Triode Amplifier	4AM	Her.	6.3	0.3	Class-A Amplifier	300	-10.5	-	-	11	6600	3000	20	-	-	2C22
6A5G	Triode Power Amplifer	$6 T$	Htr.	6.3	1.0	Class-A Amplifier	950	-45.0		-	60	800	5250	4.2	2500	3.75	6A5G
						Push-Pull Class AB	325	-68.0	-	-	80^{2}				3000	15.0	
						Push-Pull Class AB	325	850-0 hm cathode rasistor			80^{2}	-		-	5000	10.0	
							250	0		ut	5.0	40000	1800	72	8000	3.5	6AB6G
6AB6G	Direct-Coupled Amplifier	7 AU	Htr.		0.5	Clas	250	0		tput	34	4000					6AC5G
6AC5G	High- μ Power Amplifier Triode	60	Htr.	6.3	0.4	Push-Pull Class-B Dynamic-Coupled Amp.	250 250	0	-	-	$\frac{5.0^{2}}{32}$	36700	3400	125	10000 7000	8.0	
		7 AU	Htr.	6.3	1.1	Class-A Amplifier	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
6AC6G	Direct-Coupled Amplifier						180	0	Output		45						
6AD5G	High- μ Triod	60	Hers.	6.3	0.3	Class-A Amplifier	250	-2.0	- 1 -		0.9		1500	100			$\frac{6 A D 5 G}{6 A D 6 G}$
6AD6G	Electron-Ray Tube	7AG	Her.	6.3	0.15	Indicator Tube	100	0 for 90°, -23 for $135^{\circ}, 45$ for 0°. Target current 1.5 ma .									6AD6G
6AD7G	Triode-Pentode	8AY	Htr.	6.3	0.85	Triode Amplifier Pentode Amplifier	250	-25.0		6.5	4.0	80000	2500	-	7000	3.2	6AD7G
	Triode Amplifier			6.3	0.3	Pentode Amplifier	250 95	-16.5	250	0.5	7.0	83500	1200	4.9	,	3.2	6AE5G
OAESG		7AH	Hts.	6.3	0.15	Indicator Control	250	- 1.5			$6.5{ }^{4}$	25000	1000	25	-	-	6AE6G
6AE6G	Twin-Plate Triode						250	- 1.5			$4.5{ }^{5}$	35000	950	33			

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES - Continued

Type	Name	Socket Connec. lions ${ }^{1}$	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Mieromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps.												
6AE7GT	Twin-Input Triode:	7AX	Her.	6.3	0.5	Driver Amplifier	250	-13.5	-	-	5.0	9300	1500	14			6AE7GI
6AF5G	Triode Amplifier	60	Her.	6.3	0.3	Class-A Amplifier	180	-18.0			7.0		1500	7.4	-		6AF5G
6AF7G	Twin Electron Ray	8AG	Htr .	6.3	0.3	Indicator Tube											6AF7G
6AG6G	Power Amplifier Pentode	75	Htr .	6.3	1.25	Class-A Amplifier	250	- 6.0	250	6.0	32	-	10000	-	8500	3.75	6AG6G
6AH5G	Beam Power Amplifier	6AP	Hir.	6.3	0.9	Class-A Amplifier	350	-18	250	-		33000	5200		4900	10.8	6 $\overline{\text { AH5G }}$
6AH7CT	Twin Triode	8 BE	Her.	6.3	0.3	Converter and Amp.	250	- 9.0			12^{3}	6600	2400	16			6AH7CT
6AL6G	Beam Power Amplifier	6AM	Hir.	6.3	0.9	Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G
684G	Triode Power Amplifier	5 S	Fil.	6.3	1.0	Power Amplifier	Characteristies same as Type 6A3 - Table IV										684G
686G	Duplex-Diode High- μ Triode	$7 V$	Htr.	6.3	0.3	Detector-Amplifier	Characleristics same as Type 75 - Table IV							-	-		6B6G
6C8G	Twin Triode	8G	Her.	6.3	0.3	Amp. 1 Section	250	- 4.5			3.1	26000	1450	38			6C8G
6D8G	Pontagrid Converier	8A	Htr,	6.3	0.15	Converter	250	-3.0	100	Cathod	current 1	3.0 Ma .	Anode grid (No. 2) Volts $=250^{\circ}$				6D8G
6E8G	Triode-Hexode Converter	80	Htr .	6.3	0.3	Osc.-Mixer	250	- 8.0	Triode Plate 150 volts								6E8G
6F8G	Twin Triode	8 G	Her.	6.3	0.6	Amplifier	950	- 8.0	-		93	7700	2600	20			6F8G
6G6G	Pentode Power Amplifier	7S	Htr.	6.3	0.15	Class-A Amplifier	180	-9.0	180	2.5	15	175000	2300	400	10000		
6H4GT	Piode Recticer	5 F	Hr.	6.3	0.15	Class-A Amplifier ${ }^{11}$	180	-12.0	-			4750	2000	9.5	12000	0.25	6G6G
6H4GT	Diode Rectifier	5 AF	Her.	6.3	0.15	Detector	100				4.0		-	$\underline{-}$	-	0.25	6H4GT
$6 \mathrm{H8G}$	Duo-Diode High- μ Pentode	8 E	Her .	6.3	0.3	Class-A Amplifier	$\underline{9} 5$	- 2.0	100		8.5	650000	2400	-	-	-	$6 \mathrm{H8G}$
6J8G	Triode Heplode	8 H	Hits.	6.3	0.3	Converter	250	- 3.0	100	2.8	1.2	Anode-grid (No. 2) 250 volts max. ${ }^{2} 5 \mathrm{ma}$.					6 6J8G
6 K 5 G	High $-\mu$ Triod	5 U	Hir.	6.3	0.3	Class-A Amplifier	250	- 3.0			1.1	50000	1400	70	max. 5 ma.	-	6 K 5 G
6K6G	Pentode Power Amplifier	75	Her.	6.3	0.4	Class-A Amplifier	Characteristies same as Type 41 - Table IV										6K6G
6L5G	Triode Amplifier	60	Hir.	6.3	0.15	Class-A Amplifer	250	-9.0			8.0		1900	17	-	-	6 L 5 G
6M6G	Power Amplifier Pentode	7 S	Htr ,	6.3	1.2	Class-A Amplifier	250	- 6.0	250	4.0	36	-	9500	1	7000	4.4	6M6G
6M7G	Triple-Grid Amplifier	7 R	Htr.	6.3	0.3	R. F. Amplifier	250	- 2.5	125	2.8	10.5	900000	3400	-	-	4.4	6M7G
6M8GT	Diode Triode Pentode	8 AU	Htr.	6.3	0.6	Triode Amplifier	100		100		0.5	91000	1100				
6N6G ${ }^{10}$	Direct-Coupled Amplifier	7 AU	Her.	6.3	0.8	Pentode Amplifier Power Amplifier	100	3.0	100	same as	8.5	200000	1900		-	-	OM8GT
6 P5G	Triode Amplifier	60	Hir ,	6.3	0.3	Class-A Amplifier	250	-13.5			Characteristics same as Type 6B5-Table IV		1450	13.8			6N6G
6 P7G	Triode-Pentode	74	Her .	6.3	0.3	Class-A Amplifier	Characteristies same as 6F7-Table iV										
$6 \mathrm{P88G}$	Triode-Hexad Converter	8 K	Htr .	6.3	0.8	Osc.-Mixer	250	-2.0	75	1.4	1.5	Triode Plate 100 v. 9.2 ma .					$6 \mathrm{P8G}$
606G	Diode-Triode	$6 Y$	Htr .	6.3	0.15	Class-A Amplifer	250	- 3.0	-		1.9	-	1050	65	-		606G
6R6G	Pentodo Amplifier	6AA	Htr .	6.3	0.3	Class-A Amplifier	250	- 3.0	100	1.7	7.0		1450	1160	-		6R6G
6S6GT	Triple-Grid Variable- μ	5AK	Hir.	6.3	0.45	R.F. Amplifier	250	-2.0	100	3.0	13	350000	4000		-	-	6S6GT
6SD7GT	Triple-Grid Semi-Variable- μ	8 N	Hit.	6.3	0.3	R.F. Amplifier	250	- 2.0	100	1.9	6.0	1000000	3600		-	-	6SD7GT
6SETGT	Triple-Grid Amplifer	8 N	Htr .	6.3	0.3	R.F. Amplifier	250	-1.5	100	1.5	4.5	1100000	3400	3750	-	-	6SE7GT
6SL7GT	Twin Triode	8BD	Hir.	6.3	0.3	Amplifier	250	- 2.0	--	-	$2.3{ }^{3}$	44000	1600	70	-	-	6SL7GT
OSN7GT	Twin Triode	88 D	Htr .	6.3	0.6	Amplifier	250	- 8.0	\cdots	\cdots	$9.0{ }^{3}$	7700	2600	20	-	-	6SN7GT
6TGGM	Triple-Grid Amplifier	6 Z	Htr.	6.3	0.45	R.F. Amplifier	250	- 1.0	100	2.0	10	1000000	5500	\cdots	-		6T6GM
6U6GT	Beam Power Amplifier	7 AC	Htr.	6.3	0.75	Class-A Amplifier	200	-14.0	135	3.0	56	20000	6200	-	3000	5.5	6 66GT
6U7G	Triple Grid Variable- μ	7R	Hir.	6.3	0.3	R.F. Amplifier	Characteristics same as Type 6D6-Table III										6 67G
6V7G	Duplex Diode-Triode	7 V	Ht .	6.3	0.3	Detector-Amplifier	Characteristies same as Type 85 - Table III										6V7G
6W6GT	Beam Power Amplifier	7AC	Htr.	6.3	1.25	Class-A Amplifier	135	-9.5	135	12.0	61.0	asto	9000	215	2000	3.3	6W6GT
6W7G	Triple-Grid Del. Amp.	7R	Htr.	6.3	0.15	Class-A Amplifier	250	-3.0	100	2.0	0.5	1500000	1225	1850			6W7G
6×6G	Electron-Roy Tube	7 AL	Htr .	6.3	0.3	Indicator Tube	250	0 v for $300^{\circ}, 2 \mathrm{ma}-8 \mathrm{v}$ for $0^{\circ}, 0 \mathrm{ma}$. Vane grid 135 v .									6X6G
6Y6G	Beam Power Amplifier	7 AC	Her.	6.3	1.25	Class-A Amplifier	135	-13.5	135 I	3.0	60.0 I	9300 !	7000°	-	2000	3.6	6Y6G
6 Y7G	Twin Triode Amplifier	88	Ht .	6.3	0.3	Class-B Amplifier	Characteristics same as Type 79 - Table IV										6Y7G

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES - Continued

Type	Name	Socket Connec. tions ${ }^{1}$	Cothode	Fil. or Heater		Use		Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps.		Supply										
627G	Twin Triode Amplifer	88	Htr.	6.3	0.3	Class-B Amplifier	180	0	-		$8.4{ }^{2}$		-	-	12000	4.2	6Z7G
							135	0	-		$6.0{ }^{2}$	-	-	$\underline{-}$	9000	2.5	
717A	Pentode Amplifier	8BK ${ }^{12}$	Her.	6.3	0.175	Class-A Amplifier	180	-2.0	120	2.5	7.5	390000	4000	-	\square	-	717A
1293	Pentode Amplifier	7R	Her.	6.3	0.3	Class-A Amplifier	Characteristics same as 6C6 - Table IV										1293
1231	Pentode Amolifier	8 V	Htr.	6.3	0.45	Class-A Amplifior	300	$-2.5{ }^{\circ}$	150	2.5	10	700000	5500	3850	-	-	1231
1635	Twin Triode Amplifier	8 B	Her.	6.3	0.6	Class-B Amplifier	400	0		-	102/63	- -		-	14000	17	1635
$\begin{aligned} & 2 C 21 / \\ & 1642 \end{aligned}$	Twin-Triode Amplifier	78H	Htr.	6.3	0.6	Class-A Amplifier	250	-16.5		-	8.3	7600	1375	10.4	-	-	$\begin{aligned} & 9 C 21 / \\ & 1642 \end{aligned}$
7000	Low-Noise Amplifier	7R	Her.	6.3	0.3	Class-A Amplifer	Characteristics same as Type 6.17 - Table I										7000
: Refer to Receiving Tube Diagrams. No connection to Pin No. 1. 2 No-signal value for 2 tubes. ${ }^{4}$ Plate No. 1 , remote cut-off.						-Plate No, 2, shard cut-off. - Through 200-ohm cathode resistor. ${ }^{7}$ Common plate.				- Metal-sprayed glass envelope. - Through 20,000-ohm dropping resistor. Also type MG.				${ }^{11}$ Screen tied to plate. 1: Low-loss phenolic base.			

TABLE III-7-VOLT LOKTAL-BASE TUBES
For other loktal-base types see Tables VIII, IX, X and XIII.

Type	Name	Socket Connections	Cathode	Heater*		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen ${ }^{1}$ Current Mia.	Plate 1 Current Ma.	Plato Resistance, Ohms	Trans. conductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Trpe
				Volts	Amps.												
7 74	Triode Amplifier	5 AC	Hit.	7.0	0.32	Class-A Amplifier	250	-8.0	-		9.0	7700	2600	20		-	7 A 4
$7{ }^{7} 5$	Beam Power Amplifiet	6 AT	Hitr.	7.0	0.75	Class-A1 Amplifier	125	- 9.0	185	3.2/8	37.540	17000	6100		2700	1.9	$7 \mathrm{A5}$
746	Twin Diode	7 AJ	Htr.	7.0	0.16	Rectifier	Max. A.C. volts per plate - 150. Max. Output eurrent - 10 ma .										7A6
7 A 7	Remote Cut-off Pentode	8 V	Htr.	7.0	0.32	R.F. Amplifier	250	- 3.0	100	2.0	8.6	800000	2000	1600	-	-	747
748	Multigrid Converter	8 U	Hir.	7.0	0.16	Osc.-Mixer	250	- 3.0	100	3.1	3.0	50000	Anode-grid 250 volts max. ${ }^{2}$				7 AB
784	High- μ Triode	5 AC	Her.	7.0	0.32	Class-A Amplifier	250	- 8.0			0.9	66000	1500	100	-	-	784
7B5	Pentode Power Amplifier	6 AE	Htr.	7.0	0.43	Class-A, Amplifier	250	- 18.0	250	5.5/10	32.33	68000	2300	-	7600	3.4	785
786	Duo-Diode Triode	8 W	Htr.	7.0	0.32	Class-A Amplifier	250	- 8.0			1.0	91000	1100	100	-	-	786
787	Remote Cut-olf Pentode	8 V	Hit.	7.0	0.16	R.F. Amplifier	250	- 3.0	100	2.0	8.5	700000	1700	1200	-	-	787
788	Pentagrid Converter	$8 \times$	Htr.	7.0	0.32	Osc.-Mixer	250	- 3.0	100	2.7	3.5	360000	Anode-grid 250 volts max. ${ }^{2}$				788
7 C 5	Tetrode Power Amplifier	6 AA	Her.	7.0	0.48	Class-A Amplifier	250	-19.5	250	4.57	4547	52000	4100	-	5000	4.5	7C5
7 C 6	Duo-Diode Triode	8 W	Htr.	7.0	0.16	Class-A Amplifier	250	-1.0	-		1.3	100000	1000	100	-	--	7C6
7C7	Pentode Amplifier	8 V	Her.	7.0	0.16	R.F. Amplifier	250	-3.0	100	0.5	2.0	2 mes.	1300	-	-	-	7C7
7D7	Triode-Hexode Converter	8 AR	Her.	7.0	0.48	Osc.-Mixer	250	- 3.0	Triode Plate (No. 3) 150 v, 3.5 ma .								$7 \mathrm{D7}$
7E6	Duo-Diode Triode	8 W	Htr.	7.0	0.32	Class-A Amplifier	250	- 9.0	-	-	9.5	8500	1900	16		-	7E6
$7 E 7$	Duo-Diode Pentode	8 W	Hir.	7.0	0.32	Class-A Amplifier	250	- 3.0	100	1.6	7.5	700000	1300			-	7E7
7F7	Twin Triode	8AC	Htr.	7.0	0.32	Class-A Amplifier ${ }^{3}$	250	-2.0	-	-	2.3	44000	1600	70	-	-	787
758	Twin Triode	88W	Hir.	6.3	0.30	R.F. Amplifier	250 180	-2.5 $-\quad 1.0$		-	10.0 18.0	10400 8500	5000		-	-	7F8
$\begin{aligned} & 7 \mathrm{G7} / \\ & 1232 \\ & \hline \end{aligned}$	Triple-Grid Amplifier	8 V	Htr.	7.0	0.48	Class-A Amplifior	250	- 2.0	100	2.0	6.0	800000	4500	-	-	-	$\begin{aligned} & \text { 7G7/ } \\ & 1232 \end{aligned}$
$\begin{aligned} & \text { 7G8/ } \\ & 1806 \end{aligned}$	Dual Tetrode	88 V	Hir.	6.3	0.30	R.F. Amplifier ${ }^{3}$	250	- 2.5	100	0.8	4.5	225000	2100	-	-	-	$\begin{aligned} & 768 / \\ & 1206 \end{aligned}$
$7 \mathrm{H7}$	Triple-Grid Semi-Variable- μ	8 V	Hir.	7.0	0.32	R.F. Amolifier	250	- 2.5	150	2.5	9.0	1000000	3500	-	-	-	7H7
757	Triode-Hexode Converter	8 AR	Hitr.	7.0	0.32	Ósc.-Mixer	950	-3.0	100	2.9	1.3		Triode Plat	250 v.	Max. ${ }^{2}$		757
$7 \mathrm{K7}$	Duo-Diode High- μ Triode	8BF	Her.	7.0	0.32	Class-A Amolifor	250	-2.0	-	$\underline{-}$	2.3	44000	1600	70	-	-	7K7
7 7 7	Tripla-Grid Amplifar	8 V	Hir.	7.0	0.32	Class-A Amplifor	250	-1.5	100	1.5	4.5	100000	3100	Cathode	Resistor 25	0 ohms	747

TABLE III-7-VOLT LOKTAL-BASE TUBES - Continued

Trpe	Name	Socket Connections	Cathode	Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Sereen ${ }^{1}$ Curfent Ma.	Plate ${ }^{1}$ Current Ma.	Plate Resistance, Ohms	Transconductance Mieromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps.												
7N7	Twin Triode	8 AC	Hir.	7.0	0.6	Class-A Amplifier ${ }^{3}$	250	- 8.0	-	-	9.0	7700	2600	20	-		7N7
$7 \dot{0} 7$	Pentagrid Converter	8 AL	Htr .	7.0	0.32	Osc.-Mixer	250	0	100	8.0	3.4	800000	Grid N	1 resist	or 20000	hms	707
$7 R 7$	Duo-Diode Pentode	8 AE	Htr .	7.0	0.32	Class-A Amplifier	250	- 1.0	100	1.7	5.7	1000000	3200		-		7R7
757	Triode Hexode Converter	8BL	Her.	7.0	0.32	Osc.-Mixer	250	- 2.0	100	2.2	1.7	2000000	Triod	Plate 2	50 v. Max.		757
717	Triple-Grid Amplifier	8 V	Hir.	7.0	0.32	Class-A A mplifier	250	- 1.0	150	4.1	10.8	900000	4900	-	-	-	717
7 V 7	Triple-Grid Amplifier	$8 \vee$	Htr.	7.0	0.48	A mplifier	300	-	150	3.9	9.6	300000	5800	\square	-	-	7×7
7W7	Triple-Grid Variable- μ	885	Htr.	7.0	0.48	Class-A Amplifier	300	- 2.2	150	3.9	10	300000	5800	-	-	-	7W7
XXL	Triode Oscillator	5AC	Htr.	7.0	0.32	Oscillator	250	- 8.0			8.0		2300	20	-		XXL

* Maximum rating, corresponding to 130 -volt line condition; normal rating is 6.3 v . for $117-\mathrm{v}$. line

- Cathode bias resistor, 160 ohms.

TABLE IV - 6.3-VOLT GLASS RECEIVING TUBES

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES—Continued

Type	Name	Base ${ }^{4}$	Sockel Connections ${ }^{1}$	Cathode	Fil. or Heater		Us*	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
					Volts	Amps.												
39/44	Variable- μ R.F. Amplifier	5-pin S.	5 F	Her.	6.3	0.3	R.F. Amplifier	250	- 3.0	90	1.4	5.8	1000000	1050	1050	-	-	39/44
41	Pentode Power Amplifier	6-pin S.	6B	Her.	6.3	0.4	Class-A Amplifier	250	-18.0	250	5.5	32.0	68000	2200	150	7600	3.4	41
42	Pentode Power Amplifier	6-pin M.	68	Hit.	6.3	0.7	Class-A Amplifier	250	-16.5	250	6.5	34.0	100000	2200	220	7000	3.0	42
52	2-Grid Triode	5-pin M.	Fig. 33	Fil.	6.3	0.3	Class-A Preamp. ${ }^{1:}$	110	0	-	-	43.0	1750	3000	5.2	2000	1.5	52
							Class-B, 2 tubes ${ }^{13}$	180	0	-	-	3.0				10000	5.0	
$56 \mathrm{AS}{ }^{11}$	Triode Amplifier	5-pin S.	5 A	Hir.	6.3	0.4	Class-A Amplifier	Characteristics same as 56										56AS
57 AS 11	Pentode	6-pin S.	$6 F$	Her.	6.3	0.4	R.F. Amplifier	Choracteristies same as 57										57AS
$58 \mathrm{AS}^{11}$	Triple-Grid Variable- μ	6-pin S.	$6 F$	Htr .	6.3	0.4	R.F. Amplifier	Characteristics same as 58										58 AS ${ }^{-}$
75	Duplex-Diode Triode	6-pin S.	6G	Her.	6.3	0.3	Triode Amplifier	250	- 1.35	-	-	0.4	91000	1100	100	-	-	75
76	Triode Detector Amplifier	5-pin S.	5A	Hitr.	6.3	0.3	Class-A Amplifier	250	-13.5	-	-	5.0	9500	1450	13.8	-	-	76
77	Triple-Grid Detector	6-pin S,	6 F	Hir.	6.3	0.3	R.F. Amplifier	250	- 3.0	100	0.5	2.3	1500000	1250	1500	\square	-	77
78	Triple-Grid Variable- μ	6-pin S.	6 F	Her.	6.3	0.3	R.F. Amplifier	250	- 3.0	100	1.7	7.0	800000	1450	1160	-	-	78
79	Twin Triode Amplifier	6-pin S.	6H	Hit.	6.3	0.6	Class-B Amplifier	250	0	-	-	Power output is for one tube				14000	8.0	79
85	Duplex-Diode Triode	6-pin S.	6G	Hir.	6.3	0.3	Class-A Amplifier	250	-20.0	-	-	8.0	7500	1100	8.3	20000	0.35	85
$85{ }^{11}$	Duplex-Diode Triode	6-pln S.	6 G	Hir.	6.3	0.3	Class-A Amplifier	250	- 9.0	-	-	5.5	-	1250	20	-	$\underline{\square}$	85 AS
						0.4	Triode Amplifier ${ }^{6}$	250	-31.0	- 250	5	32.0	2600	1800	4.7	5500	0.9	89
89	Amplifier	6-pin S.	6 F	Htr.	6.3		Pentode Amplifier ${ }^{\text {? }}$	250	-25.0	250	5.5	32.0	70000	1800	125	6750	3.4	
1603^{8}	Triple-Grid Amplifier	6-pin M.	6F	Hitr.	6.3	0.3	Class-A Amplifier	Characteristics same as 6C6										1603
$7700{ }^{9}$	Triple-Grid Amplifier	6-pin S.	6 F	Htr.	6.3	0.3	Class-A Amplifier	Characteristics same as 6C6										7700
RK100	Mercury-vapor Triode	6-pin M.	6A	Htr.	6.3	0.6	Amplifier	100	-2.5		hode (G)	curtent	250 ma .	20000	50	-	-	RK100

${ }^{1}$ Refer to Receiving Tube Diagrams.
1 Refer to Receiving Tube Diagrams.
2 Suprressor grid, connected to cathode inside tube, not shown on base diagram.
: Also known as Type LA.
S. small; M. - medium.
${ }^{5}$ Current 10 input plate (P_{1}).
${ }^{6}$ Grids Nos. 2 and 3 connected to plate.
${ }^{7}$ Grid No. 2, screen, grid No. 3, suppressor.
Gathode resistor, 780 ohms.

- Low noise, non-microphonic, lubes.
${ }^{10}$ Cathode bias resistor-ohms. Fixed bias not recommended.
${ }^{11}$ Types with final lelter '" S '" have external shield connected
to cathode pin.
${ }^{12} \mathrm{G}_{2}$ tied to plate.
${ }_{13} \mathrm{G}_{1}$ tied to \mathbf{G}.

TABLE \vee - 2.5-VOLT RECEIVING TUBES

Type	Name	Base ${ }^{3}$	Socket Connections ${ }^{1}$	Cathode	Fit. or	Heater	Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Mo. } \end{aligned}$	Plate Resistance, Ohms	Transeonductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
					Volts	Amps.												
25/45	Duodiode	$\overline{5-p i n ~ M .}$	5D	Her.	2.5	1.35	Detector	At 50 D.C. Volts per plate, eathode ma, $=80$										2S/4S
2A3	Triode Power Amplifier	4-pin M.	4D	Fil.	2.5	2.5	Class-A Amplifier	Characteristics same as Type 6A3, Table IV										$2{ }^{2} 3$
2A5	Pentode Power Amplifier	6-pin M.	6B	Hit.	2.5	1.75	Class-A Amplifier	Characteristics same as Type 42, Table IV										2A5
2A6	Duplex-Diode Triode	6-pin S.	6G	Hir.	2.5	0.8	Class-A Amplifier	Characteristics same as Type 75, Table IV										2A6
2A78	Pentagrid Converter	7-pin S.	7C	Hetr,	2.5	0.8	Osc.-Mixer	Characteristics same as Type 6A7, Table IV										2A7
286	Direct-Coupled Amplifier	7-pin M.	71	Hir.	2.5	2.25	Amplifier	250	1-24.0		-	40.0	5150	3500	18.0	5000	4.0	2B6
2878	Duplex-Diode Pentode	7 -oin S.	7D	Htr.	2.5	0.8	Pentode Amplifier	Characteristies same as Type 687-Tatele IV										287
2 E 5	Electron-Ray Tube	6-pin S.	6R	Hir.	2.5	0.8	Indicator Tube	Characteristies same as Type 6E5 - Table IV										2 E 5
2G5	Electron-Ray Tube	6-pin S.	6R	Hir.	2.5	0.8	Indicator Tube	Characteristics same as 6U5 6G5 - Table IV										2G5
24-A	Tetrode R.F. Amplifier	5-pin M.	5E	Htr.	2.5	1.75	Sereen-Grid R.F. Amp.	250	- 3.0	90	1.7	4.0	600000	1050	630	signa	-	24-A
							Bias Detector	250	- 5.0	20/45		Plate	current adjus	ted to 0.1 ma	with no	signal		24-A
$27{ }^{8}$	Triode Detector-Amplifier	5-pin M.	5A	Htr.	2.5	1.75	Class-A Amplifier	250	-21.0	-	-	5.2	9250 \|	975	9.0		-	27
							Bias Detector	250	-30.0	-	Plate current adiusted to 0.2 ma , with no signal							
35.51	Variable- μ Amplifier	$\overline{5-p i n ~ M . ~}$	5E	Hir.	2.5	1.75	Screen-Grid R.F. Amp.	250	-3.0	90	2.5	6.5	400000	1050	420	-	-	35/51

TABLE V - 2.5-VOLT RECEIVING TUBES-Continued

Troe	Name	Base ${ }^{\prime}$	Socket Connections	Cathod	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plale Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load ResistanceOhms	Power Output Watts	Type
					Volts	Amps.												
45	Triode Power Amplifier	4-pin M.	4 D	Fil.	2.5	1.5	Class-A Amplifier	275	-56.0	-	-	36.0	1700	2050	3.5	4600	2.00	45
46	Dual-Grid Power Amplifier	5-pin M.	5 C	Fil.	2.5	1.75	Class-A Amplifier ${ }^{4}$	250	-33.0	-	-	29.0	9380	2350	5.6	6400	1.25	46
							Class-B Amplifie! ${ }^{5}$	400	0		-	Power outpul for 2 tubes				5800	20.0	
47	Pentode Powet Amplifier	5-pin M.	5B	Fil.	2.5	1.75	Class-A Amplifier	250	-16.5	250	6.0	31.0	60000	2500	150	7000	2.7	47
53	Iwin Triode Amplifier	7-pin M.	7 B	Htr.	2.5	2.0	Class-B Amplifier	Characteristics same as TVpe 6A6, Table IV										53
55^{8}	Duplex-Diode Triode	6-pin 5 .	6G	Htr.	2.5	1.0	Class-A Amplifiel	Characteristics same as Type 85, Table iV										55
56^{8}	Triode Amplifier, Detector	5-pin S.	5 A	Htr .	2.5	1.0	Class-A Amplifier	Characteristics same as Trpe 76, Table IV										56
573	Triple-Grid A mplifier	6-pin 5 .	6 F	Htr.	2.5	1.0	R.F. Amplifier	250	-3.0	100	0.5	2.0	1500000	1825	1500	-	-	57
58	Triple-Grid Variable- μ	6-pin S.	6F	Htr.	2.5	1.0	Sereen-Grid R.F. Amp.	250	- 3.0	100	2.0	8.2	800000	1600	1280	-	-	58
59	Triple-Grid Power Amplifier	7-pin M.	7 A	Hir.	2.5	2.0	Class-A Triode ${ }^{\text {Class-A Pentode }}{ }^{7}$	250	-28.0	250	9.0	26.0	2300 40000	2600 2500	6.0 100	5000	1.25 3.0	59
RK15	Triode Power Amplifier	4-pin M.	$4 \mathrm{D}^{\text {2 }}$	Fil.	2.5	1.75	Characteristics same as Type 46 with Class-B connections											RK15
RK16	Triode Power Amplifier	5-pin M.	5 A	Hetr.	2.5	8.0	Characteristics same as Trpe 59 with Class-A triode connections											RK16
RK17	Pontode Power Ámplifier	5-pin M.	5 F	Htr .	2.5	9.0	Characteristics same as Type 2A5											RK17

I Refer to Receiving Tube Diagrams.
: Grid connection to cap; no connection to No. 3 pin.
:S. small; M. - medium.
芯
'Grid No. 2, screen; grid No. 3, suppressor.
"Types with final letter "S" indicicte external shield connected to cathode pin.

Type	Name	Base :	Socket Connections	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Mieromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Trpe
					Volts	Amps.												
1A4P	Variable- μ Pentode	4-pin S.	4M	Fil.	9.0	0.06	R.F. Amplifer	180	-3.0	67.5	0.8	2.3	1000000	750	750	\cdots		1A4P
1A4T	Variable- μ Tetrode	4-pin S.	4K	Fil.	2.0	0.06	R.F. Amplifier	180	- 3.0	67.5	0.7	2.3	960000	750	780		-	1 A4T
1 A6	Pentagrid Convarter	6-pin S	6 L	Fil.	9.0	0.06	Convarter	180	- 3.0	67.5	2.4	1.3	500000	Anode grid (No. 2) 180 max. volts				1 A6
$\begin{aligned} & 1 \overline{184 P /} / \\ & 951 \end{aligned}$	Pentode R.F. Amplifier	4-pin S .	4M	Fil.	2.0	0.06	R.F. Amplifer	$\begin{array}{r} 180 \\ 90 \end{array}$	-3.0 -3.0	67.5 67.5	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	1.7 1.6	$\begin{aligned} & 1500000 \\ & 1000000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \end{array}$	--	-	$\begin{aligned} & 1 \mathrm{B4P/} / \\ & 951 \end{aligned}$
185'25S	Duplex-Diode Trlode	6 -pin S.	6 M	Fil.	8.0	0.06	Triode Class-A Amplifier	135	- 3.0			0.8	35000	575	80		-	$1 \mathrm{B5} 25 \mathrm{~S}$
1C6	Pentegrid Converter	6-pin S.	6 L	Fil.	2.0	0.12	Convertor	180	- 3.0	67.5	8.0	1.5	750000	Anode grid (No. 8) 135 max. volts				1C6
1 1F4	Pontode Power Amplifer	5-pin M.	5K	Fil.	8.0	0.12	Class-A Amplifor	135	- 4.5	135	2.6	8.0	200000	1700	340	16000	0.34	$1 F 4$
1 F6	Duplex-Diode Pentode	6-pin S.	6W	Fil.	2.0	0.6	R.F. Amplifier	180	- 1.5	67.5	0.6	2.0	1000000	650	650	-		1 F6
15	R.F. Pentode	5-pin S	5F	Ht .	8.0	0.92	A.F. Amplifier	135	- 1.0	135	Plate, 0.25 megohm; scieen, 1.0 megohm					Amp. $=48$		
	R.F. Penlode	5-bins.				0.22	R.F. Amplifier	135	- 1.5	67.5	0.3	1.85	800000	750	600		-	15
19	Twin-Triode Amplifier	6-pin S.	6 C	Fil.	2.0	0.26	Class-B Amplifier	135	0	-	-	-	Load plate-to-plate			10000	8.1	19
30	Triode Dofector Amplifier	4-pin S.	4D	Fil.	2.0	0.06	Class-A Amplifer	180	-13.5	-	-	3.1	10300	900	9.3	-		30
31	Trlode Power Amplifier	4-pin S.	4D	Fil.	9.0	0.13	Class-A Amplifer	180	-30.0	-	-	12.3	3600	1050	3.8	5700	0.375	31
32	Tetrode R.F. Amplifier	4-Din M.	4K	Fil.	8.0	0.06	R.F. Amplifier	180	- 3.0	67.5	0.4	1.7	1200000	650	780	-	-	39
33	Pentode Powes Amplifier	5-pin M.	5K	Fil.	2.0	0.26	Class-A Amplifer	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Variable- μ Pentode	4-pin M.	4M	Fil.	8.0	0.06	R.F. Amplifier	180	- 3.0	67.5	1.0	2.8	1000000	680	680	-	-	34
49			5 C	Fil.	2.0	0.18	Class-A Amplifier ${ }^{3}$	135	-20.0		-	6.0	4175	1185	4.7	11000	0.17	49
4	Dual-Grid Power Amplifer	S-pin M.	5	Fi.	2.0	0.12	Class-B Amplifier *	180	0		-		Power output for 2 tubes			12000	3.5	

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES - Continued

Type	Name	Base ${ }^{2}$	Socket Connections ${ }^{1}$	Cathode	Fil. or Heater		Use	Plate Supply Volts	Gid Bias	Sereen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Eatts	Type
					Volts	Amps.												
840	R.F. Pentode	5-pin S.	5]	Fil.	2.0	0.13	Class-A Amplifier	180	-3.0	67.5	0.7	1.0	1000000					
950	Pentode Power Amplifier	5-pin M.	5B	Fil.	2.0	0.12	Class-A Amplifier	135	-16.5	135	2.0	1.0	10000000	400 1000	400	13500	0.45	840
RK24	Triode Amplifier	4-pin M.	4D	Fil.	2.0	0.12	Class-A Amplifier	180	-13.5	-	2.0	8.0	5000	1600	8.0	13500	0.45	950

${ }^{1}$ See Receiving Tube Diagrams.
${ }^{2}$ S.- small, M.— medium.
${ }^{2}$ Grid No. 2 tied to plate.

- Grids Nos. 1 and 2 tied together.

TABLE VII - 2.0-VOLT BATTERY TUBES WITH OCTAL BASES

Type	Name	Socket	Cathode							Screen	Plate		Transcon-				
		tions 2	Cathode	Volts	Amps.		Supply Volts	Bias	Volts	Current Ma.	Current Ma.	$\begin{aligned} & \text { Plate Resist- } \\ & \text { ance, Ohms } \end{aligned}$	ductance Mieromhos	Amp. Factor	Resistance Ohms	Output Watts	Type
1C7G	Ponlagrid Converter	7 Z	Fil.	2.0	0.06	Converter											
1D5GP	Variable- μ R.F. Pentodo	5 Y	Fil.	2.0	0.06	R.F. Amplifier				racteristic	same as	Type 1 Co - 1	ble VI				1C7G
1D5GT	Variable- μ R.F. Tetrode	5R	Fil.	2.0	0.06	R.F. Amplifier	180	- 3.0	67.5	0.7	ame as	ype 1A4P	Table VI				1D5GP
1D7G	Pentagrid Converter	7 Z	Fil.	2.0	0.06	Converter				acteristic	$\frac{2.2}{\text { same as T }}$	Ype 1A6 - T	${ }^{650}$				1D5GT
1E5GP	R.F. Amplifier Pentode	5 Y	Fil.	2.0	0.06	R.F. Amplifier				acteristic	same as		Vie VI				$\frac{\text { 1D7G }}{\text { 155GP }}$
1E7G	Double Pentade Power Amp.	8C	Fil.	2.0	0.94	Class-A Amplifier	135	- 7.5	135	$2.0{ }^{2}$	$6.5{ }^{2}$!	220000 -	1600				$\frac{\text { 1E5GP }}{1 \text { E7G }}$
$\frac{1 F 5 \mathrm{G}}{1 \mathrm{~F}^{\text {GV }}{ }^{3}}$	Pentode Power Amplifier	$6 \times$	Fil.	2.0	0.12	Class-A Amplifier				aracteristi	same as	Type 1F4-T	- VI	350	24000	0.65	1E7G
$\frac{1 F 7 \mathrm{GV}}{}{ }^{1 \mathrm{G} 5 \mathrm{G}}$	Duplex-Diode Pentode	7 AD	Fil.	2.0	0.06	Detector-Amplifier				racteristi	same as	Type 1F6-T	be Vi				$\frac{1 F 5 G}{1 F 7 G V}$
$\frac{1 \mathrm{H} 4 \mathrm{G}}{}$	Pentode Power Amplifier	6 X	Fil.	2.0	0.12	Class-A Amplifier	135	-13.5	135	2.5	8.7	1600000	1550	250	9000	0.55	$\frac{1 F 7 G V}{1 G 5 G}$
1H6G	Duplex-Diode Triode	7AA	Fil.	2.0	0.06	Detector-Amplifier				aracteristi	same as	Type 30-Ta	be VI				1G5G
1J5G	Pentode Power Amplifier	6X	Fi\%.	2.0	0.12	Class-A Amolifier	135			racteristic	same as	Type 1B5-T	ble VI				1H6G
156 G	İwin Triode	7AB	Fil.	2.0	0.24	Class-8 Amplifier	135	-16.5	135	2.0	7.0	-	950	100	13500	0.45	1J5G
4A6G	Twin Triode	8 L	Fil. ${ }^{\text {² }}$	2.0	0.12	Class-A, 1 section	90	-1.5	-	aracteristis	same as	Type 19-T	le VI				1J6G
				4.0	0.06	Class-B, 2 sections	90^{-}	-1.5		-	1.14	26800	750	20	8000	1.0	4A6G
	${ }^{1}$ Refer to Receiving Tube Dia	grams.		Total c	urrent for	both sections; no si		so type	or GH.								

TABLE VIII-1.5-VOLT FILAMENT DRY-CELL TUBES
See also Table \times for Special 1.4-volt Tubes

Type	Name	Base	Socket Connections	Filament		Use	Plate	Grid Bias	Screen Volts	Screen Current Mo.	Plate Current Ma.	Plate Resistance, Ohms	Transconductanca Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Milliwatts	Type
				Volts			Supply Volts										
$1 \mathrm{~A}^{1}$	H. F. Diode	7-pin B. ${ }^{10}$	5AP	1.4	0.15	Detector F.M. Diseriminator	Max. a.c. voltage per plate - 117. Max. output current - 0.5 ma .										1 A3
AA5G	Pentode Power Amplifier	$\overline{7-\mathrm{pin} \text { O. }}$	6x	1.4	0.05	Class-A1 Amplifier	90	-4.5^{3}	90	0.8	4.0	300000	850	240			
1A7G	Pentagrid Converter	8-pin $\overline{\text { O. }}$	$7 \bar{Z}$	1.4	0.05	Osc.-Mixer	90	- 0	45^{9}	0.8	4.0 0.55	600000	850	240	25000	115	$\frac{1 A 5 G}{1 A 7 G}$
1 AB5	Pentode R.F. Amplifier	8-pin O .	5BF	1.2	0.05	R.F. Amplifier	90	0	90	0.8	3.5	275000	1100				A/大
187G	Pentagrid Converter	6-pin 0 .	77				150	-1.5	150	2.0	6.8	125000	1350			-	1 AB5
188GT			7	1.4	0.1	Osc.-Mixer	90	0	45	1.3	1.5	350000	Grid No.	1 resist	or 200,000	ohms	187G
188G ${ }_{\text {1C5G }}$	Diode Triode Tetrode	8-pin O .	BAW	1.4	0.1	Triode Amplifier Tetrode Amplifier	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -6.0 \\ \hline \end{array}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	240000	275 1150	-	$\overline{14000}$	21	188GT
1 C5G	Pentade Power Amplifies	7-pin 0.	6X	1.4	0.1	Class-A1 Amplifier	90	-7.5 ${ }^{\text {\% }}$	90	1.6	7.5	115000	1550	165	14000	240	1C5G
1D8GT	Diode Triode Pentode	8-pin O .	8A」	1.4	0.1	Triode Amplifier Pentode Amplifier	90 90	$\begin{array}{r} 0 \\ -9.0 \end{array}$	90	1.0	1.1 5.0	$\begin{array}{r} 43500 \\ 200000 \end{array}$	575 985	25	8000	240	$\xrightarrow[\text { 1D8GI }]{ }$

TABLE VIII-1.5-VOLT FILAMENT DRY-CELL TUBES-Continued

Type	Name	Base ${ }^{2}$	SocketConnec-tions :	Filament		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plato Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Milliwatts	Type
				Volts	Amps.												
1E4G	Triode Amplifier	8-pin 0.	5S ${ }^{12}$	1.4	0.05	Class-A Amplifier	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$		-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	-	--	1E4G
1G4G	Triode Amplifer	7-pin 0 .	5 S	1.4	0.05	Class-A Amplifer	90	-6.0	-	-	2.3	10700	825	8.8		-	1G4G
						Class-A Amolifier	90	0	-	-	1.0	45000	675	30			
1G6G T	Twin Triode	6-pin O.	7AB	1.4	0.1	Class-B Amplifier	90	0	-	-	1/7 ${ }^{5}$	34 volts input per grid			12000	675	1G6G
1H5G	Diode High- μ Triode	7-din \bar{O}	5 Z	1.4	0.05	Class-A Amplifier	90	0	-	-	0.14	240000	275	65	-	-	1H5G
$1 \mathrm{LL}^{15}$	R. F. Pentode Amplifer	7-pin 8. ${ }^{10}$	6AR	1.4	0.05	Class-A Amplifier	90	0	90	2.0	4.5	350000	1025	-	-	-	1 L 4
1LA4	Pentode Power Amplifier	8-pin L.	5AD	1.4	0.05	Class-A Amplifier	Characteristics same as 1A5G										1LA4
1 LAG	Pentagrid Converter	8-pin L.	7AK	1.4	0.05	Osc.-Mixer	90	0	45	0.6	0.55	Anode Grid Volts 90					1LA6
$1 \mathrm{LB4}$	Pentode Power Amplifier	8-pin L.	5AD	1.4	0.05	Class-A Amplifier	90	-9	90	1.0	5.0	200000	925	-	12000	200	1L84
1LB6GL	Heptode Converter	8-pin L.	$8 A X$	1.4	0.05	Osc.-Mixer	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-0 v.					1LB6GL
$1 \mathrm{LC5}$	Triple-Grid Variable- μ	8 -pin L.	7AO	1.4	0.05	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775	-			1LC5
1 LC6	Pentagrid Converter	8 -pin L.	7AK	1.4	0.05	Osc.-Mixer	90	0	35°	0.7	0.75	Anode Grid Volts 45					1LC6
1LD5	Diode Pentode	7-pin L.	6AX	1.4	0.05	Class-A Amplifier	90	0	45	0.1	0.6	950000	600	-		-	TLD5
1LE3	Triode Amplifier	8 -pin L.	4AA	1.4	0.05	Class-A Amplifier	90	0 -3	-		4.5 1.3	11200 19000	1300 760	14.5	-	-	1LE3
12H4	Diode High- μ Triode	8-din L.	5AG	1.4	0.05	Class-A Amplifier	90	0			0.15	240000	275	65	-	-	1LH4
1LN5	Triple-Grid Amplifier	8-pin L.	7AO	1.4	0.05	Class-A Amplifier	90	0	90	0.3	1.2	1500000	750		-		1LN5
1N5G	Pentode R.F. Amplifier	7-din 0 .	5 Y	1.4	0.05	Class-A Amplifier	90	0	90	0.3	1.2	1500000	750	1160		-	1N5G
1N6G	Diode-Power-Pentode	6 -pin 0.	7AM	1.4	0.05	Class-A Amplifier	90	-4.5	90	0.6	3.1	300000	800	-	25000	100	1 N6G
1P5G	Triple-Grid Pentode	5-pin 0.	5Y	1.4	0.05	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640	-	-	1P5G
1Q5G	Tetrode Power Amplifier	5-pin O .	6AF	1.4	0.1	Class-A Amplifier	85 90	-5.0 -4.5	85 90	1.2	7.2	$\begin{aligned} & 70000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \end{array}$	1Q5G
$\begin{aligned} & \text { 1R4/ } \\ & 1294 \end{aligned}$	U.h.f. Diode	8 -pin L.	4AH	1.4	0.15	Recififier	Max. l.m.s. voltage per plate - 30					Max. d.c. output current - $340 \mu \mathrm{a}$.					$\begin{aligned} & \hline \text { R4 } \\ & 1294 \end{aligned}$
1R5	Pentagrid Converter	7-pin B. ${ }^{10}$	7AT	1.4	0.05	Osc.-Mixer	90	0	67.5	3.0	1.7	500000	300	Grid	No. 11000	00 ohms	1 R5
154	Pentagrid Power Amplifier	7-pin B^{10}	$7 A V$	1.4	0.1	Class-A Amplifier	90	-7.0	67.5	1.4	7.4	100000	1575	-	8000	270	154
	Diode Pentode	7-pin B.	6AU	1.4	0.05	Class-A Amplifier	67.5	0	67.5	0.4	1.6	600000	625				1S5
155	Diode Pentode	7-bin 8.	6AU	1.4	0.05	Resistor-Coupled Amp.	90	0	90	Screen resistor 3 meg., grid 10 meg.					1 meg.	50^{13}	
1SA6GT	R.F. Pentode	8-pin 0.	6CA	1.4	0.05	R.F. Amplifier	90	0	67.5	0.68	2.45	800000	970		-	-	1SA6GT
1SB6GT	Diode Pentode	7-pin O.	6CB	1.4	0.05	Class-A Amplifier	90	0	67.5	0.38	1.45	700000	665			- 110	1SB6GT
1SB6G	Diode Pentode	7-pin 0.				Resistance-Coupled Amp.	90	0	90	Screen resistor 5 meg., grid 10 meg.					1 mes.	110^{13}	
$174{ }^{15}$	Triple-Grid Variable- μ	7-pin B. ${ }^{\text {10 }}$	6AR	1.4	0.05	Class-A Amplifier	90	0	45	0.65	2.0	800000	750	-		--	114
1T5GT	Beam Power Amplifier	7-pin O .	6AF	1.4	0.05	Class-A Amplifier	90	-6.0	90	1.4	6.5	-	1150	-	14000	170	1T5GT
$\begin{aligned} & 387 / \\ & 1294 \end{aligned}$	U.h.f. Twin Triode	8-pin L.	78E	1.4	0.22	Class-A Amplifier	90	0	-	-	5.2	11350	1850	21	-	-	$\begin{aligned} & 387 / \\ & 1291 \\ & \hline \end{aligned}$
1293	U.h.f. Triode	8-pin L.	$\overline{\text { Fis. } 2^{18}}$	1.4	0.11	Class-A Amplifier	90	0		-	4.7	10750	1300	14		-	1293
$\begin{aligned} & \hline \text { 3D6/ } \\ & 1299 \end{aligned}$	U.h.f. Tetrode	8-pin L.	68B	1.4	0.22	Class-A Amplifier	135	-6	90	0.7	5.7	-	2200		13000	0.5	$\begin{aligned} & 3 D 66 \\ & 1299 \\ & \hline \end{aligned}$
CK501 ${ }^{18}$	Pentode Voltage Amplifier	None ${ }^{\text {a }}$	- ${ }^{16}$	1.25	0.033	Class-A Amplifieı	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{array}{r} 0 \\ -1.25 \end{array}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 1000030 \\ & 1500000 \end{aligned}$	$\begin{array}{r} 325 \\ 300 \end{array}$		-	-	CK501
CK502 ${ }^{18}$	Pentode Output Amplifier	None ${ }^{6}$	- ${ }^{18}$	1.25	0.033	Class-A Amplifier	30	0	30	0.13	0.55	500000	400	-	60000	3	CK502
CK503 ${ }^{18}$	Pentode Output Amplifier	None ${ }^{\text {a }}$	- 18	1.25	0.033	Class-A Amplifier	30	0	30	0.33	1.5	150000	600	-	20000	$6{ }^{7}$	CK503
CK504 ${ }^{15}$	Pentode Output Amplifier	None ${ }^{8}$	- 16	1.25	0.033	Class-A Amplifier	30	-1.25	30	0.09	0.4	500000	350	-	60000	$3{ }^{7}$	CK504
CK505	Pentode Voltage Amplifier	None ${ }^{6}$	-- ${ }^{16}$	0.625^{11}	0.03	Class-A Amplifier	30 45	$\begin{gathered} 0 \\ -1.25 \end{gathered}$	30 45	$\begin{aligned} & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1100000 \\ & 2000000 \end{aligned}$	$\begin{aligned} & 140 \\ & 150 \end{aligned}$	-	-	-	CK505

TABLE VIII-1.5-VOLT FILAMENT DRY-CELL TUBES - Continued

Type	Name	Base *	Socket Connections	Fila	ment	Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resist Ohms	Power Output Mitliwatts	Trpe
				Volts	Amps.												
CK506 ${ }^{15}$	Pentode Output Amplifier	None ${ }^{6}$	- ${ }^{16}$	1.25	0.05	Class-A, Amplifier	45	-4.5	45	0.4	1.25	120000	500		30000	25	CK506
CK507 ${ }^{18}$	Pentode Output Amplifier	None ${ }^{\text {a }}$	- ${ }^{16}$	1.25	0.05	Class-A Amplifier	45	-2.5	45	0.21	0.6	360000	500		50000	18	CK507
CK509	Triode Voltage Amplifier	None ${ }^{6}$	- ${ }^{16}$	0.625^{11}	0.03	Class-A Amplifier	45	0	-	-	0.15	150000	160	16	1000000	-	CK509
CK510	Dual Space-Charge Tetrode	None ${ }^{\text {a }}$	- ${ }^{16}$	0.6251	0.05	Class-A Preamplifier	45	0	0.9 :	$\underline{900} \mu(x$	$60 \mu \mathrm{ck}$	500000	65	32.5	-	-	CK510
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$	Triode Amplifier	5-pin P. ${ }^{6}$	5K ${ }^{8}$	1.4	0.07	Class-A Amplifier	45	-4.5		-	0.4	25000	250	6.3	40000	6.5	$\begin{aligned} & \mathrm{HY} 113 \\ & \mathrm{HY} 123 \end{aligned}$
$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \end{aligned}$	Pentode Voltage Amplifier	5-pin P. ${ }^{6}$	5K	1.4	0.07	Class-A Amplifier	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 5200000 \\ & 1300000 \end{aligned}$	58 270	$\begin{aligned} & 300 \\ & 370 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{HY} 115 \\ & \mathrm{HY} 145 \end{aligned}$
$\begin{aligned} & \text { HY195 } \\ & H Y 155 \\ & \hline \end{aligned}$	Pentode Power Amplifier	5-din P.*	5K	1.4	0.07	Class-A Amplifier	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} -3.0 \\ -7.5 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{array}{r} 310 \\ 450 \\ \hline \end{array}$	$\begin{array}{r} 255 \\ 190 \\ \hline \end{array}$	$\begin{array}{r} 50000 \\ 88000 \\ \hline \end{array}$	$\begin{aligned} & 11.5 \\ & 90 \end{aligned}$	$\begin{aligned} & H Y 195 \\ & H Y 155 \end{aligned}$
RK42	Triode Amplifier	4-pin S.	4D	1.5	0.6	Class-A Amplifier				Chara	ristics sa	ne as Type 30	-Table VI				RK42
RK43	Twin Triode Amplifier	6-pin S.	6 C	1.5	0.12	Twin Triode Amplifier	135	-3		-	4.5	14500	900	13	-	-	RK43

${ }^{1}$ Refer to Receiving Tube Diagrams.
${ }^{2}$ M. - medium; S. - small; O. - octal; L. - Ioktal.
Series bias is recommended.
Per tube Valus to leff supply through 70,000 -ohm dropping resistor.
right are with signal of diagonal line for no-signal condition; values to
${ }^{5}$ Special miniature peanut base.

With 5 -megohm grid resistor and 0.02 - $\mu \mathrm{fd}$. grid coupling condenser. ${ }^{9}$ No screen connection.
Through series resistor. Screen voltage must be at least 10 volts lower Special 7-pin "button"
Two tubes connected in series for 1.4-volt operation.
Internal shield connected to pin 1 .
${ }^{3}$ Voltage gain
No external shield needed
${ }^{6}$ Tinned wir shield needed. ate labeled on tube.
${ }^{\text {a }}$ Space-charge grid resistance megohms - returned to positive ${ }^{18}$ Hearing aid tubes. AX suffix added.
table IX - High-Voltage heater tubes

Type	Name	Base ${ }^{3}$	SocketConnections	Heater		Use	PlateSupply Volts	Grid	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	ScreenCurrent Ma.	$\begin{aligned} & \text { Plate } \\ & \text { Cuurent } \\ & \text { Ma. } \end{aligned}$	Plate Resistance, Ohms	$\begin{gathered} \text { Trons- } \\ \text { conduct- } \\ \text { ance } \\ \text { Micromhos } \end{gathered}$	$\begin{aligned} & \text { Amp. } \\ & \text { Factor } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Load } \\ \text { Resistance } \end{gathered}\right.$	$\begin{array}{\|l\|} \text { Power } \\ \text { Output } \\ \text { Watts } \end{array}$	Type
				Volts	Amps.												
12A5	Pentode Power Ampllier	7-pin M.	7 F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	Class-A Amplifer	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	-15 -25 -250	100 180	8/14.5	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \end{aligned}$	5000 35000	$\begin{aligned} & 1700 \\ & 2400 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12A5
12 Ab	Beom Power Amplifier	7 7-pin 0.	7AC	12.6	0.15	Class-A Amplifer	250	- 12.5	250	3.5	30	70000	3000		7500	3.4	12A6
12 A 7	Rectifier-A mplifier ${ }^{\text {b }}$	7-pin M.	7K	12.6	0.3	Closs-A Amplifier	135	-13.5	135	2.5	9.0	108000	975	100	13500	0.55	12A7
12A8GT	Pentagrid Converter	8 8-pin O	8A	12.6	0.15	Osc.-Mixer	Characteristics same as 6A8-Table I										12A8GT
12AH7GT	Twin Triode	8 8-pin 0.	8BE	12.6	0.15	Converter and Amplifier	Characteristics same as 6 AH7GT - Table II										12AH7GT
$12 \mathrm{B6M}{ }^{3}$	Diode Triode	6 -pin O	${ }^{\text {OY }}$	18.6	0.15	Class-A Amplifier	250	- 2.0			0.9	91000	1100	100	-		1886M
1287ML	Pentode Amplifer	8 -pin 0 .	8 V	12.6	0.15	Class-A Amplifier	850	-3.0	100	2.6	9.2	800000	2000		-	-	12B7ML
1288GT	Triode-Pentode	8 -pin O .	8 T	12.6	0.3	Class-A Triode	100	- 1	100	2	0.6	73000	1500	110			1288 C
12C8	Duplex-Diode Pentode	8 -pin O .	8E	12.6	0.15	Class-A Pentode											12 CB
19E5GT	Triode Amplifar	6 -pin 0.	60	12.6	0.15	Class-A Amplifer	250	-13.5	-	Cha	50	Same as	-Tablel				$\frac{12 \mathrm{CB}}{12 \mathrm{E} \text { GT }}$
12F5GT	Triode Amplifier	5 -pin O .	5M	18.6	0.15	Class-A Amplifier	Characteristics same as 6F5-Table I										$\frac{12 E 5 G T}{19 F 5 G T}$
12G7G	Duplox-Diode Triode	7-pin 0.	7 V	12.6	0.15	Class-A Amplifier	250	- 3.0			-	58000	1200	70			$\frac{18 F 5 G T}{19 G 7 G}$
$12 \mathrm{H6}$	Twin Diode	7 -pin O.	60	12.6	0.15	Rectifier	Characteristics same as 6-16-Tablel										$\frac{12 \mathrm{G7G}}{12 \mathrm{H6}}$
1215GT	Triode Amplifier	6 -pin O .	60	12.6	0.15	Class-A Amplifer	Characteristics same as 6 J5-Table I										$\frac{12 \mathrm{H6}}{12 \mathrm{JGT}}$
1217GT	Pentode Voltage Amplifior	7-pin O .	7R	12.6	0.15	Class-A Amplifier	Characteristics same as 657-Table 1										125 GGT
12K7GT	Remote Cut-off Pentode	7 -pin O .	7R	12.6	0.15	R.F. Amplifer	Cheracteristics same as 6K7-Table I										12 KFGG
$12 \mathrm{K8}$	Triode Hoxode Converter	8 -pin $\mathrm{O}^{\text {. }}$	8K	12.6	0.15	Osc.-Mixer											${ }^{12} \mathrm{~K} 8 \mathrm{~K}$
12L8GT	Twin Pentode	8 -pin O .	8BU	12.6	0.15	Class-At Amplifier ${ }^{13}$	180 - Characteristics same as 6K8-Tablel										12K88GT
1207GT	Duplex-Diode Triode	7-pin 0.	7 V	12.6	0.15	Class-C Amplifior	Characteristics same as 607-Tablel										12L8GGT
12547	Pontagrid Converter	8 -pin O .	8R	12.6	0.15	Osc.-Mixer	Characteristics same as 6SA7-Tablel										12SA7
$12 \mathrm{SC7}$	Twin Triode	8 -pin O .	85	12.6	0.15	Class-A Amplifior	Characteristics same es OSC7 - Table I										$12 \mathrm{SC7}$

TABLE IX - HIGH:VOLTAGE HEATER TUBES - Continued

Type	Name	Base ${ }^{2}$	Socket Connec tions			Use	Plate Supply Volts	Grid Bias	Sereen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Micromhos	Amp. Factor	Load Resistanc* Ohms	Power Output Watts	Type
				Volts	Amps.												
12SF5	High- μ Triode	6-pin O.	6AB	12.6	0.15	Class-A Amplifier	Characteristics same as 6SF5 - Table I										12SF5
$125 \mathrm{F7}$	Diode Variable μ Pentode	8-pin O.	7AZ	12.6	0.15	Class-A Amplifier	Characteristics same as 6SF7 - Table I										12SF7
$12 \mathrm{SG7}$	Triple-Grid Variable- μ	8-pin 0.	8BC	12.6	0.15	Class-A Amplifier	Characteristics same as 6SG7 - Table I										12 SG7
12SH7	H-F Amplifier Pentode	8-pin 0 .	8BK	12.6	0.15	H-F Amplifier	Characteristics same as 6SH7 - Table I										$125 \mathrm{H7}$
12517	Pentode Voltage Amplifier	8-din O.	8 N	12.6	0.15	Class-A Amplifier	Characteristics same as 6517-Table I										$125 \mathrm{J7}$
$125 \mathrm{K7}$	Remote Cut-of Pentode	8-pin O.	8 N	12.6	0.15	R.F. Amplifier	Characteristics same as 6SK7-Table I										$125 \mathrm{K7}$
12SL7GT	Iwin Triode	8 -pin O.	8 BD	12.6	0.15	Class-A Amplifier	Characteristics same as 6SL7GT-Table II										12SL7GT
12SN7GT	Twin Triode	8-pin O.	8BD	12.6	0.3	Class-A Amplifier	Characteristies same as 6SN7GT-Table II										12SN7GT
12 SQ 7	Duplex-Diode Triode	8-pin 0.	80	12.6	0.15	Class-A Amplifier	Characteristics same as 6SQ7-Table I										12507
$12 \mathrm{SR7}$	Duplex-Diode Triode	$8-\mathrm{pin}$ O.	80	12.6	0.15	Class-A Amplifier	Characteristics same as 6R7-Table I										12 SR7
14A4	Triode Amplifier	8 8-pin L.	$5 A \bar{C}$	14.	0.16	Class-A Amplifier	Characteristics same as 7A4-Table lil										14A4
14A5	Beam Powel Amplifier	8-pin L.	6AA	14	0.16	Class-A Amplifier	250	-12.5	250	3.5 5.5	3032	70000	3000		7500	2.8	14A5
$\begin{aligned} & 14 \mathrm{~A} 7 / \\ & 12 \mathrm{B7} \end{aligned}$	Triple-Grid Variable- μ	8-pin L.	8 V	144	0.16	Class-A Amplifier	250	- 3.0	100	2.6	9.2	800000	2000		-		$\begin{aligned} & 14 A 7 / \\ & 12 B 7 \end{aligned}$
14AF7	Twin Triode	8-pin L.	${ }^{8} \overline{A C}$	14	0.16	Class-A Amplifier	250	-10		-	9	7600	2100	16			14AF7
1486	Duplex-Diode Triode	8 -pin L.	8 W	14^{4}	0.16	Class-A Amplifier	Characteristics same as 7B6-Tabie III										1486
1488	Pentagild Converter	8 -pin L.	8 X	14^{4}	0.16	Osc.-Mixer	Characteristics same as 7B8-Table III										1488
14C5	Beam Power Amplifier	8-pin L.	6AA	14^{4}	0.94	Class-A Amplifier	Characteristics same as 6 V 6 -Table I										14C5
14 C 7	Triple-Grid Amplifier	8-pin L.	8 V	141	0.16	Class-A Amplifier	250	- 3.0	100	0.7	2.2	1000000	15%				14.7
14 EO	Duplex-Diode Tiode	8-pin L.	8 W	14^{4}	0.16	Class-A Amplifier	Characteristics same as 7E6-Table III										14E6
$14 \mathrm{E7}$	Duplex-Diode Pentode	8-pin L.	8AE	$14{ }^{1}$	0.16	Class-A Amplifier	Characteristics same as 7E7-Table ill										$14 \mathrm{E7}$
$14 \mathrm{F7}$	Twin Triode	8-pin L.	8AC	14:	0.16	Class-A Amblifier	Characteristics same as 7F7-Table III										$14 \mathrm{F7}$
14H7	Triple-Grid Semi-Variable- μ	8-pinL.	8 V	14.	0.16	Class-A Amplifier	250	- 8.5	150	3.5	9.5	800000	3800				14H7
$14 \mathrm{J7}$	Trioda-Hexode Converter	8-pin L.	8 AR	$14{ }^{1}$	0.16	Osc.-Mixer	Charasteristics same as 7J7-Table III										1417
14N7	Twin Triode	8 -pin L.	8 AC	146	0.32	Class-A Amplifier	Characteristics same as 7N7-Table III										14N7
14Q7	Heptode Pentagrid Converter	8-pin L.	8 AL	141	0.16	Osc.-Mixer	Characterittics same as 707-Takle III										14Q7
14R7	Duplex-Diode Pentode	8 -pin L.	8AE	14.	0.16	Class-A Amplifier	Characteristics same as 7R7-Table III										$14 \mathrm{R7}$
14 S7	Triode Heptode	8-pin L.	8BL	14^{\prime}	0.16	Osc.-Mixer	250	- 2.0	100	3		1250000				-	1457
14V7	H.f. Pentode	$8-\mathrm{pinL}$ L.	8 V	14	0.24	Class-A Amplifier	300	- 2.0	150	3.9	9.6	300000	5800				14V7
14W7	Pentode	8-pin L.	8 BJ	14	0.24	Class-A Amplifier	300	- 2.2	150	3.9	10	300000	5800				14W7
18	Pentode	O-pin M.	6 B	141	0.30	Class-A Amplifier	Characteristics same as 6F6G										18
$2058 \mathrm{GM}^{3}$	Triode Heptode Converter	$8-\operatorname{pin} 0$.	8H	20	0.15	Osc.-Mixer	250	- 3.0	100	3.4	1.5	Triode Plate (No. 6) 100 v. 1.5 ma .					2018GM
21 A7	Triode Hexode Converter	8-pin L.	8AR	21	0.16	Osc.-Mixer	250 150	$\begin{aligned} & -3.0 \\ & =3.0 \end{aligned}$	$100{ }_{\text {Triode }} 8.8$		$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$		$\begin{array}{r} 875 \\ 1900 \end{array}$	32	-	二	21 A 7
25A6	Pentode Power Amplifier	$7-\mathrm{pin}$ O.	7 S	25	0.3	Class-A Amplifier	135	-20.0	135	8	37	35000	2450	85	4000	2.0	25A6
25A7G	Rectifier-Amplifier ${ }^{3}$	8-pin O.	8 F	25	0.3	Class-A Amplifier	100	-15.0	100	4	20.5	50000	1800	90	4500	0.77	25A7G
				25	0.3	Class-A Amplifier	110	+15.0			45		3800	58	2000	8.0	25AC5G
25AC5G	Triode Power Amplifer	6-pin	60	25	0.3	Class-A Amplifer	165	Used in dynamic-coupled circuit with 6AF5G driver							3500	3.3	25ACs
25B5	Direct-Coupled Triodes	6-pin 5.	60	25	0.3	Class-A Amplifier	110	0	110	7	45	11400	2200	25	8000	9.0	25B5
25B6G	Pentode Power Amplifier	7-pin 0 .	75	25	0.3	Class-A Amplifier	95	-15.0	95	4	45	--	4000		2000	1.75	25B6G
25B8GT	Triode Pentode	8 -pin 0.	81	25	0.15	Class-A Amplifier	Characteristics same as 1288GT										25B8GT
25C6G	Beam Power Amplifier	7-pin O	7AC	25	0.3	Elass-A Amplifier	135	-13.5	135	3.5/11.5	5860	9300	7000		2000	3.6	$25 \mathrm{C6G}$
25D8GT		8 -pin 0.	8AF	25	0.15	Triode Amplifier	100	-1.0 -30	100	9.7	0.5	91000	1100	100	-	-	25D8GT
25D8G	Diode Triode Pentode	8 -pin 0.	8 AF	25		Pentod Amplifier	100	- 3.0	100	2.7	8.5	200000	1900	-			
25 L6	Beam Power Amplifier	7-pin 0.	7AC	95	0.3	Class-A, Amplifier	110	-8.0	110	3.5/10.5	45/48	10000	8000	80	2000	2.2	25L6
25N6G	Direct-Coupled Triodes	7-pin 0.	7W	25	0.3	Class-A Amplifier	110	0	110	7	45	11400	2900	25	2000	2.0	25N6G
	Twin Beam-Power Audio					Class-A Amplifier ${ }^{13}$	86.5		26.5	2/5.5	$\frac{20 / 20.5}{19 / 30}$	2500	5500		1500	0.9	26A7GT
26A7GT	Amplifier	8-pin 0 .	880	86.5	0.6	Class-AB Amplifers ${ }^{\text {a }}$	26.5	-7.0	26.5	2/8.5	19/30				250011	0.5	264761

TABLE IX — HIGH-VOLTAGE HEATER TUBES — Continued

1 Refer to Receiving Tube Diagrams.
2 M. medium; S. small; O. -octal; L. - loktal.
3 Metal-sprayed
${ }^{3}$ Metal-sprayed glass envelope.

- Maximum rating, correspondin
Maximum rating, corresponding to 130 -volt line
condition; normal rating is 12.6 v . for 117 v . line
${ }_{6}^{5}$ For rectifier data, see Table XIII.
See Supplementary Base Diagrams. 6.3-volt pilot lamp must be connected between
pins 6 and 7 .
\$ Per section (except heater) - resistance coupled.
${ }^{9}$ P. P. operation-values for both sections, resistance coupled.

1. Type Y has micanol base. ${ }^{13}$ Each unit plate.

TABLE X-SPECIAL RECEIVING TUBES

Type	Name	Base ${ }^{2}$	Socket Connections 1	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Sereen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Transconductance Mieromhos	Amp. Factor	Load Resistance Ohms	Power Oulput Watts	Type
					Volts	Amps.												
$00 . \mathrm{A}$	Triode Detector	4-pin M.	4D	Fil.	5.0	0.25	Grid Leak Detector	45	-	-	-	1.5						
01-A	Triode Detector Amplifier	4-pin M.	4D	Fil.	5.0	0.25	Class-A Amplifier	135	-9.0	-	-	1.5	10000	860	80	-	-	$\frac{00-A}{01-A}$
3 A 4	Power Amplifier Pentode	7-pin B.	$78 B$	Fil. ${ }^{\text {a }}$	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{gathered} 0.2 \\ 0.1 \end{gathered}$	Class-A Amplifier	$\begin{array}{r} 135 \\ 150 \\ \hline \end{array}$	$\begin{array}{r} -7.5 \\ -8.4 \end{array}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 14.8 \\ & 13.3 \end{aligned}$	$\begin{array}{r} 90000 \\ 100000 \end{array}$	1900	8.0	8000	- 0.6	01-A
3 A 5	H.F. Twin Triode	7-pin 8.	78C	Fil. ${ }^{6}$	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \\ & \hline \end{aligned}$	Class-A Amplifer	90	-2.5	-	2.2	3.7	8300	1800	15	-	0.7	$3{ }^{\text {A } 5}$
3A8GT	Diode Triode Pentode	8-pin O.	8AS	Fil. ${ }^{6}$	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Class-A Triode	90	0	90	0.3	0.15 1.2	240000 600000	275 750	65	-	\cdots	3A8GT
$\frac{3 \mathrm{B5} \text { GT }}{3 \mathrm{C5GT}}$	Beam Power Amplifiers	7-pin 0.	7 AP	Fii. ${ }^{1}$	$\begin{array}{r} 1.4 \\ 8.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Class-A Amplifier	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \\ & \hline \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \\ & \hline \end{aligned}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	3B5GT
3C5GT	Power Output Pentode	7-pin O .	7 AQ	Fil. ${ }^{1}$	1.4 2.8	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Class-A Amplifior	90	-9.0	90	1.4	6.0	-	1550 1450	-	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.96 \end{aligned}$	3C5GT

TABLE X - SPECIAL RECEIVING TUBES - Continued

TABLE X - SPECIAL RECEIVING TUBES - Continued

1 Refer to Receiving Tube Dlagrams.
M.-medium; S. -small; O. - octal; L. - loktal.

Cathode terminal is mid-point of flament; use series connection - Triodes connected in parallel. 'I Iding current, both plates - Filsment mid-point tap permits series or parallel connection. 7 "Acorn" type; ministure unbesed tubes for ultrahigh frequen
special 7-pin "button" base, miniature type.
${ }^{1}$ No basej tinned wire leads. Dimensions $0.36^{\prime \prime} \times 1.10^{\prime \prime}$
10 Intended for series-parallel operation on 1.4 -volt dry cell
${ }_{12}^{12}$ Boeth Sections.
${ }_{15}$ Diode plates (A.C. max. volts per plate).
${ }^{15}$ Max. D.C. output. ${ }^{10}$ Cathode resistor ohms.
${ }^{17}$ Section No. 2 recommended for h.f.o.
${ }_{19}^{19}$ Dry bettery operation.
${ }^{19}$ Section No. 1.
${ }^{20}$ Section No. 2

21 $\left\{\begin{array}{l}\text { Series operation; pin } 8 \text { is negative a pin } 9 \text { positive. }\end{array}\right.$ ${ }_{22}$ Paraliel operation, pins 188 tied together for positive. ${ }^{22}$ Highest frequency osciliator. Use 10,000 to 20,000 ohm ${ }^{25}$ Same as $X 99$. Type V90 is
${ }^{24}$ Type 210 -Thas ceremic bese. ${ }_{26}$ Resonent frequections 700 Mc .
 ${ }^{29}$ "Lighthouse" tubo. Has spacial ring contects.
${ }^{30}$ Usaful up to 500 Mc .

TABLE XI－CONTROL AND REGULATOR TUBES

Type	Name	Base ${ }^{1}$	Socket Connec－ tions？	Cathode	Fil．or	Heater	Use	Peak Anode Voltage	Max． Anode Current		Operating Voltage	Operating Current ${ }^{3}$	Grid Resistor	Tube Voltage Drop	Typo
					Volts	Amps．				Starting Voltage					
OA2	Voltage Regulator	7－pin B．${ }^{21}$	Fig． $25{ }^{\text {²2 }}$	Cold	－		Voltage Regulator	－		185	150	5－30＇		－	OA2
082	Voltage Regulator	7－pin B．${ }^{31}$	Fig． 25 ？	Cold			Voltage Regulator			133	108	5－30		－	OB2
OA4G	Gas Triode Starter－Anode Type	6－pin 0 ．	4 V	Cold			Cold－Cathode Starter－Anode Relay Tube	With 105－1 20－volt a．c．anode supply，peak starter－anode a．c．voltage is 70 ， peak I．f．voltage 55．Peak D．C． $\mathrm{ma}=100$ ．Average D．C． $\mathrm{ma}=25$							0A4G
1C21	Gas Triode Glow－Discharge Type	6－pin O．	4 V	Cold	－	－	Velar Tube	125－145	$\begin{aligned} & 25 \\ & 0.1^{15} \end{aligned}$	-66	－－			$\frac{73}{55^{16}}$	1C21
2A4G	Gas Triode Grid Type	7 －pin 0 ．	5 S	Fil．	2.516	2.5	Control Tube	200	100	－				15	2A4G
$2 \mathrm{B4} 4$	Gas Triode Grid Type	8－pin 0.	60	Her．	6.3	0.6	Sweep Circuit Oscillator	300	300	－	—	1.0	10000플	19	$\begin{aligned} & 284 \\ & 605 \mathrm{G} \end{aligned}$
$6 \mathrm{Q5G}$		5－pin M．	5A	Hir．	2.5	1.4							100000		
2D21	Gas Tetrode Gas and Mercury Vapot Grid Type	7－pin B．${ }^{21}$ 4－pin M．	7 BN	Htr．	6.3	0.6	Grid－Controlled Rectifier Relay Tube	$\begin{array}{r} 650 \\ -\quad 400 \end{array}$	500		650	100	$\begin{gathered} 0.1-10^{-18} \\ 1.0^{2} \end{gathered}$	8	2D21
$3 C 23$			3G	Fil．${ }^{19}$	2.5	7.0	Grid－Controlled Rectifier	1000	6000		500 100	1500	-4.5 -2.5	15	3C23
17	Mercury Vapor Triode	4－pin M．	3G	Fil．	2.5	5.0	Grid－Controlled Rectifier	7500 2500	2000	$\overline{-}$	$\overline{1000}$	$\begin{array}{r} 500 \\ -950 \end{array}$	200－3000	$\frac{-}{10-94}$	17
874	Vollage Regulator Current Regulator	4－pin M．	4S	－	－	－	Voltage Regulator ${ }^{\text {S }}$		－	125	90	10－50			874
876			－	－	－	－	Current Regulator ${ }^{\text {a }}$		－	－	40－60	1.7	－	－	876
884	Gas Triode Grid Type	6－pin O．	60	Hit．	6.3	0.6	Sweep Circuit Oscillator	300 350	300	$1-=$		$\begin{array}{r}-2 \\ \hline 75\end{array}$	$\frac{25000}{25000}$	－	884
885	Gas Triode Grid Type	$5-\mathrm{pin} \mathrm{S}$	5 A	Hitr．	2.5	1.4	Same as Type 884	Characteristics same as Type 884							885
886	Current Regulator	Mogul		Fil．	$\underline{-}$		Current Regulator ${ }^{5}$ Grid－Controlled Rectifier Voltage Regulator	2500	－	二	$40-60$		－		86
967					2.5	50			500	-5	$55-60$	2.0		10－24	967
991	Voltage Regulator	Bayonet ${ }^{\text {a }}$	－	Her． Htr．	－	－			－	87					991
2050		$\begin{aligned} & 8-\text { pin } O \\ & 8-\text { pin } O \end{aligned}$	8BA		6.3	0.6	Voltage Regulator	-650	500			100	$0.1-10^{-1}$	－ 8	550
$\underline{2051}$	Gas Tetrode Gas Tetrode		8BA		6.3	0.6	Grid－Controlled Rectifier		375			75	0．1－10	14	2051
$\begin{aligned} & \overline{2523 N 1 /} \\ & 128 \mathrm{AS} \end{aligned}$	Gas Triode Grid Type	5－pin M．	5A	Her．	2.5	1.75	Relay Tube	400	300	——	－	1.0	300^{19}	13	$\begin{aligned} & 2593 \mathrm{N1//} \\ & 128 \mathrm{AS} \\ & \hline \end{aligned}$
KY21	Gas Triode Grid Type Gas Triode Grid Type	$\frac{4-\mathrm{pin}}{4-\mathrm{pin}} \frac{M .}{S .}$	－	Fil．	2.5		Grid－Controlled Rectifier	－	－	$\bar{\square}$	3000	500	－二	－	KY21－
RK62			4D	$\begin{aligned} & \text { Fil. } \\ & \text { Fil. } \end{aligned}$	1.4	$\frac{10.05}{}$	Relay Tube ${ }^{\circ}$	45	1.5	－	30－45	0．1－1．5		15	
RM208	Permatron	$\frac{4-\text { pin } M}{4-\operatorname{pin} M}$			2.5	5.0	Controlled Rectifier ${ }^{\text {a }}$	$7500^{\text {a }}$	$\begin{aligned} & 1000 \\ & 5000 \end{aligned}$	－	－			15	年 $\frac{\text { RK62－}}{\text { RM208 }}$
RM209			－	Fil．	5.0	10.0	Controlled Rectifier ${ }^{\text {7 }}$	$7500{ }^{\text { }}$		－	－		－	15	RM209
OA3／VR75	Voltage Regulator	6－pin O．	4AJ	Cold	－	，	Voltage Regulator	－	－	105	75	$5-40^{9}$	－		OA3／VR75
$\overline{\mathrm{OB} 3 / \mathrm{YR}} 0$	Voltage Regulator	6－pin O．	4AJ	Cold	－	－	Voltage Regulator			125	90	5－40 ${ }^{\text {8 }}$	－	－	OB3／VR90
$\overline{\text { OC3／VR105 }}$	Voltage Regulator	6－pin 0 ．	4AJ	Cold	－	－	Voltage Regulator	－	－	135	105	5－40 ${ }^{\text {9 }}$	－	－	OC3／VR105
$\overline{\text { OD3／VR150 }}$	Voltage Regulator	6－pin O．				－	Voltage Regulatol				150	$5-40^{3}$	\square		OD3/YR150
KY866	Mercury Vapor Triode	4－pin M．	Fig． $8=$	Fil．	2.5	5.0	Grid－Controlled Rectifer	10000	1000	1500	－		－		KY866
		tal；B．－b 500，000 ohm primary． ive detector in anode circ with externa	ton－base ${ }^{2}$ In ma． max． with high－ magnetic		contro When un cficien curren Refer to At 1000 At 350 At 650	I．RM－2 nder con to max Transmi 0 anode anode snode	08 has characteristics of 866, RM trol peak inverse rating is reduce nce must bo used in series with imum current rating． Iting Tube Diagrams． volts． volts and 0 Grid No． 2 volts． volts and 0 Grid No． 2 volts．	209 of 872 to 2500. ube to lim		${ }^{14}$ Candela ${ }^{15}$ Filamen ${ }^{17}$ Grid tie ${ }^{19}$ Heating ${ }^{n}$ Special ${ }^{22}$ Refer to ${ }^{23}$ Minimu 2t Peak in	bra type，doub t voltage shoun d to plate． time 15 secon 7－pin butto supplement m． verse voltage	ouble conta hould be app conds． n－base mini tary base di －${ }^{4}$ e．	et． plied 2 seco ${ }^{18}$ Megohm ${ }^{2}$ Grid iature． dagrams． Maximum．	${ }^{35}$ Grid． onds belor s． voltage．	using．

TABLE XII-CATHODE-RAY TUBES AND KINESCOPES

TABLE XII-CATHODE-RAY TUBES AND KINESCOPES - Continued

Type	Name	Socket Connections ${ }^{1}$	Heater		Use	Siz*	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Of Grid Voltage:	Gid No. 2 Voltage	SignalSwing Voltage	Max. Input Voltage:	$\begin{aligned} & \text { Screen } \\ & \text { Input } \\ & \text { Power 4 } \end{aligned}$	Deflection Sensitivity ${ }^{6}$		Anode No. 3 Voltage	Pattern Color ${ }^{1}$	Type
			Volts	Ampt.										$\mathrm{D}_{1} \mathrm{D}_{2}$	D3 D.			
7CP1 1811.P1	Electromagnetic Cathode-Ray	6AZ	6.3	0.6	Oscillograph	7"	7000	1470 840	-45 -45	250 250	-	-	-	-	-	-	Green	$\begin{aligned} & \text { 7CP1 } \\ & 1811 . \mathrm{P} 1 \end{aligned}$
$\begin{aligned} & \text { 9AP4/ } \\ & 1804 \text {-P4 } \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	$9{ }^{\prime \prime}$	7000	1425	-40 -38	250	25	-	10	-	-	-	White	$\begin{aligned} & 9 A P 4 / \\ & 1804-P 4 \end{aligned}$
$9{ }_{9} \mathrm{CP}_{4}$	Electromagnetic Piefure Tube	4AF	2.5	2.1	Television	9"1	7000		- 110	-	25		13	-		-	White	9 9P4
$\begin{aligned} & \text { 9JP1/P1 } \\ & \text { 1809-P1 } \end{aligned}$	Electrostatic-Magnetic Cathode-Ray	8BR	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	5000	1570	-90 -45	-	-	3000	-	0.136		-	Green	$\begin{aligned} & 9 \mathrm{JP1} / \mathrm{P} \\ & 1809-\mathrm{P} 1 \end{aligned}$
$\begin{aligned} & 18 \mathrm{AP4} \\ & 1803 . \mathrm{P4} \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	12"	7000 6000	1460 1240	- 75	250	25	-	10	-	-	-	White	$\begin{aligned} & 12 A P 4 / \\ & 1803-P 4 \end{aligned}$
$12 \mathrm{CP4}$	Electromagnetic Picfure Tube	4AF	2.5	2.1	Television	12"	7000		-110	-	25		10		-	-	White	12CP4
12DP4	Electromagnetic Cathode-Ray	5AN	6.3	0.6	Television	12'	7000 4000	250 250	-45 -45	-	-	-				-	White	12DP4
909	Electrostatic Cathode-Ray	Fig. 1^{11}	6.3	0.6	Oscillograph	$9^{\prime \prime}$	600	150	- 60	-	-	350	5	0.19	0.22	-	Green	902
90310	Electromagnetic Cathode-Ray	6AL	2.5	2.1	Oscillograph	$9^{\prime \prime}$	7000	1360	-120	250	-	-	10	-	-		Green	903
904	Elactrostatic-Masnetic Cathode-Ray	Fig. 3^{11}	2.5	2.1	Oscillograph	$5^{\prime \prime}$	4600	970	- 75	250	-	4000	10	0.09			Green	904
905	Electrostotic Cathode-Ray	Fig. 6^{11}	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$	2000	450	- 35			1000	10	0.19	0.23	-	Gieen	905
907	Electrostatic Cathode-Ray	Fig. 611	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$			Characte	istics same	as Type 90						Blue	907
908	Electrostatic Cathodo-Ray	7AN	2.5	2.1	Oscillograph	$3{ }^{\prime \prime}$			haracteristics	some as T	pe 3AP1	90681					Blue	908
$909{ }^{10}$	Electrostatic Cathode-Ray	Fig. 6 - ${ }^{\text {I }}$	2.5	2.1	Oscillograph	$5^{\prime \prime}$			Chatacte	istics same	as Type 90						Blue	909
$910{ }^{\text {iv }}$	Electrostatic Cothode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$			haracteristics	same as T	pe 3AP1	906 P 1				-	Blue	910
$911{ }^{10}$	Electrostatic Cathode-Roy	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$			halacteristics	same as ${ }^{\text {T }}$	pe 3AP1	906P1 ${ }^{1}$					Green	911
912	Electrostatic Cathode-Ray	Fig. 8^{11}	2.5	2.1	Oscillograph	5"	10000	2000	- 66	250	-	7000	10	0.041	0.051		Green	912
913	Electrostatic Cathode-Ray	Fig. 1^{11}	6.3	0.6	Oscillograph	$9^{\prime \prime}$	500	100	- 65			250	5	0.07	0.10	-	Green	913
914	Electrostatic Cathode-Ray	Fig. $12^{\prime \prime}$	2.5	2.1	Oscillostaph	9"'	7000	1450	- 50	250	25	3000	10	0.073	0.093		Green	914
$1800{ }^{10}$	Electromagnetic Kin escope	6AL	2.5	2.1	Television	$9^{\prime \prime}$	6000	1250	- 75	250	25	-	10		-	-	Yellow	1800
1801 lc	Electromagnetic Kinescope	Fig. 131	2.5	2.1	Television	5"1"	3000	450	- 35	-	20	istics essen	10		-		Yellow	$\begin{aligned} & 1801 \\ & 2001 \end{aligned}$
2001	Electrostatic Cathode-Ray	Fig. 2^{11}	6.3	0.6	Oscillograph	$1^{\prime \prime}$					Charact	istics essen	ially same	2913				
2009	Electrostatic Cathode-Ray	Fig. 1^{11}	6.3	0.6	Oscillograph	$9^{\prime \prime}$	600	120						0.16	0.17		Gree	2002
2005	Electrostatic Cothode-Ray	Fig. $1^{11,5}$	2.5	2.1	Television	5"'	2000	1000	- 35	200	-		10	0.5	0.56	-		2005
$24 . \mathrm{XH}$	Electrostatic Cathode-Ray	$\overline{\text { Fig. } 1^{11}}$	6.3	0.6	Oscilloscope	2"	600	120	- 60		-		10	0.14	0.16	-	Blue	24-XH

1 Refer to Receiving Tube Diagrams.
${ }_{2}$ For curreni cut-off. In terms of average center values; should be
adjustable to ± 50 per cent to take care of individual tubes
Contiol grid should never be allowed to so positive.
: Between Anode No. 2 and any defecting plate.

- Phosphoresceni material used in screen determines persistence
as well as color. P1 is phosphor of medium persistence, PQ lons, P3 also medium but especially suited for television, P4 same as P3 but white, and P5 short persistence for os
cillographic use. P11 long, higher photographic and visual cillographic use. Pit long, higher photographic and visual
${ }^{7}$ The 911 is identical to 906 except for the gun material, which is
designed to be especiaily free hrom magnetization effects. ${ }^{8}$ Cathode connected to pin 7.
${ }_{10}$ Obsolete type.
11 See Supplementary Base Diagrams.
${ }^{15}$ Also available in P4, P5 and P11.
15 Also available in P4, P5 and P11.
is Also available in P2, P4, P5 and P11.

TABLE XIII—RECTIFIERS—RECEIVING AND TRANSMITTING
See also Table XI - Control and Regulator Tubes

Type No.	Name	Base ${ }^{2}$	Socket Connections ${ }^{1}$	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C. Output Current Ma.	Max. Inverse Peak Voltage	Peak Plate Current Ma	Type ${ }^{7}$
					Volts	Amps.					
BA	Full-Wave Rectifier	4-pin M.	4J	Cold			350	350	e	80 v .	G
BH	Full-Wave Rectifier	4-pin M.	4J	Cold			350	125	Tube d	90 v .	G
BR	Half-Wave Rectifier	4-pin M.	4J	Cold			300	50	Tube	60 v .	G
CE-290	Half-Wave Rectifier	4-pin-M.	4 P	Fil.	2.5	3.0		20	20000	100	V
OZ4	Full-Wave Rectifier	6-pin O.	4R	Cold			350	30-75	1250	200	G
$1{ }^{5}$	Half-Wave Rectifier	4-pin S.	4G	Htr .	6.3	0.3	350	50	1000	400	M
$1-V^{5}$	Half-Wave Rectifer	4-pin S.	4 G	Htr .	6.3	0.3	350	50			V
$1 \mathrm{B48}$	Half-Wave Rectifier	7-pin 8.		Cold			800	6	2700	50	G
9V3G	Hall-Wave Rectifier	6-pin O .	6BA	Fil.	2.5	5.0		2.0	16500	12	\checkmark
2W3	Hall-Wave Rectifier	5-pin O .	4X	Fil.	2.5	1.5	350	55	-	-	V
2X2/879	Hall-Wave Reclifier	4-pin M.	4AB	Fil.	2.5	1.75	450011	7.5			V
2Y2	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	1.75	4400^{11}	5.0	-	\square	V
2Z2/G84	Half-Wave Rectifiet	4-pin M.	4B	Fil.	2.5	1.5	350	50		-	V
3B24	Half-Wave Rectifier	4-pin M.	T-4A ${ }^{4}$	Fil. ${ }^{3}$	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	-	60 30	$\begin{aligned} & 90000 \\ & \mathbf{9 0 0 0 0} \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	V
3B25	Hall-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	500	4500	2000	G
3826 ${ }^{27}$	Hall-Wave Rectifier	8-pin O.	Fig. 31	Hitr.	2.5	4.75		20	15000	8000	V
DR-3B97	Hall-Wave Rectifier	4-pin M.	48	Fil.	2.5	5.0	3000	250	8500	1000	V
5R4GY	Full-Wave Rectifier	5-pin M.	$5 T$	Fil.	5.0	2.0	$\begin{aligned} & 900^{10} \\ & 950^{18} \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	2800	650	V
$5 T 4{ }^{3}$	Full-Wave Rectifier	5-pin 0	5 T	Fil.	5.0	3.0	450	250	1250	800	V
5U4G	Full-Wave Rectifier	8-pin 0.	$5 \bar{T}$	Fil.	5.0	3.0	S	ame as Ty	pe 573		V
5V4G	Full-Wave Rectifier	8-pin 0 .	5L	Hir.	5.0	2.0		ame as Ty	pee 83V		V
5 W 4	Full-Wave Rectifier	5-pin 0 .	51	Fil.	5.0	1.5	350	110	1000		V
5×3	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	1275	30			V
$5 \times 4 \mathrm{G}$	Full-Wave Rectifier	8-pin 0.	50	Fil.	5.0	3.0		Same as	573		\checkmark
5 Y3G	Full-Wave Rectifier	5-pin O.	5 T	Fil.	5.0	2.0		Same as T	Type 80		V
$5 Y 4 \mathrm{G}$	Full-Wave Rectifier	8-pin 0.	50	Fil.	5.0	2.0		Some as T	Type 80		V
5Z3	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	-	\checkmark
574'	Full-Wave Rectifier	5-pin 0 .	5 L	Her.	5.0	2.0	400	125	1100	-	V
6W5G	Full-Wave Rectifier	6 -pin 0.	65	Htr.	6.3	0.9	350	100	1250	350	V
6X5 ${ }^{\text {3 }}$	Full-Wave Rectifier	6 -pin 0.	65	Htr.	6.3	0.5	350	75			V
6Y5	Full-Wave Rectifier	6-pin S.	6	Hir.	6.3	0.8	350	50		\cdots	V
6Z3	Half-Wave Rectifier	4-pin M.	4G	Fil.	6.3	0.3	350	50			V
6Z5	Full-Wave Rectifier	6-pin S.	6K	Hir.	6.3	0.6	230	60			V
6ZY5G	Full-Wave Rectifier	6-pin O.	6 S	Htr.	6.3	0.3	350	35	1000	150	V
7Y4	Full-Wave Rectifier	8-pin L.	5 AB	Hetr.	7.0^{12}	0.53	350	60	-		V
724	Full-Wave Rectifier	8-pin L.	5 AB	Htr.	$7.0{ }^{12}$	0.96	$\begin{aligned} & 4500^{\circ} \\ & 39510 \end{aligned}$	100	1250	300	V
12 A 7	Rectifier-Pentode ${ }^{14}$	7-pin S.	7K	Her.	. 12.6	0.3	125	30	-		V
12 Z 3	Half-Wave Rectifier	4-pin S.	4G	Htr.	12.6	0.3	250	60	-	-	V
12 Z 5	Voltase Doubler	7-pin M.	7 L	Htr.	12.6	0.3	225	60	-	-	V
14 Y 4	Full-Wave Rectifier	8-pin L.	5AB	Htr.	14^{12}	0.32	$\begin{aligned} & 450^{8} \\ & 3955^{10} \end{aligned}$	70	1250	210	V
$14 \mathrm{Z3}$	Half-Wave Rectifier	4-pin S.	4G	Hir.	14^{12}	0.3	250	60			V
25 A7G	Rectifier-Pentode ${ }^{14}$	8-pin 0 .	8 F	Htr.	25	0.3	125	75			V
25×6 GT	Voltase Doubler	7-pin O.	70	Htr.	95	0.15	125	60			V
25Y4GT	Half-Wave Rectifier	6-pin O.	5AA	Htr.	25	0.15	125	75		\square	V
$25 Y 5$	Voltage Doubler	6-pin S.	6 E	Her.	25	0.3	250	85		-	V
$25 \mathrm{Z3}$	Half-Wave Rectifier	4-pin S.	4G	Htr.	25	0.3	250	50		-	V
25Z4	Half-Wave Rectifior	6-pin O.	5 AA	Htr.	25	0.3	195	125			V
2525	Rectifier-Doubler	6 -pin S.	$6 E$	Htr.	25	0.3	125	100		500	\checkmark
2576	Rectifier-Doubler	7-pin O .	70	Htr.	25	0.3	125	100		500	V
28Z5	Full-Wave Rectifier	8-pin L.	5 AB	Htr.	28	0.94	$\begin{aligned} & 45018 \\ & 3955^{10} \end{aligned}$	100		300	V
32L7GT	Rectifier-Tetrode ${ }^{14}$	8-pin 0.	8 F	Hir.	32.5	0.3	125	60	-		V
35 Y 4	Hall-Wave Rectifier	8-pin O.	5 AL	Htr.	$35{ }^{8}$	0.15	235	$\begin{aligned} & 60 \\ & 100^{19} \end{aligned}$	700	600	V
$3573{ }^{23}$	Hall-Wave Rectifier	8-pin L.	4Z	Htr.	35	0.15	$250{ }^{13}$	100	700	600	V
35Z4GT	Half-Wave Rectifier	6-pin O.	5AA	Htr.	35	0.15	250	100		-	V
35Z5G	Hall-Wave Rectifier	6-pin 0.	6AD	Htr.	35^{8}	0.15	195	$\begin{aligned} & 60 \\ & 100^{11} \end{aligned}$	-	-	V
35Z6G	Voltage Doubler	6-pin O.	70	Htr.	35	0.3	125	110		500	V
40Z5GT	Half-Wave Rectifier	6-pin O.	6AD	Htr.	40^{8}	0.15	195	$\begin{aligned} & 60 \\ & 100^{\prime \prime} \end{aligned}$		-	V
$45 \mathrm{Z3}$	Half-Wave Rectifier	7-pin B.	5 AM	Htr.	45	0.075	117	65	350	390	V
45Z5GT	Half-Wave Rectifier	6-pin O.	6AD	Ht .	45^{8}	0.15	195	$\begin{aligned} & 60 \\ & 100^{19} \end{aligned}$	-		V
50 Y 6 GT	Full-Wave Rectifier	7-pin O.	70	Her.	50	0.15	125	85	-	-	V
50Z6G	Voltage Doubler	7-pin O.	70	Htr.	50	0.3	125	150	-	-	V
50Z7G	Voltage Doubler	8-pin O.	8AN	Htr.	50	0.15	117	65		\square	V

TABLE XIII—RECTIFIERS—RECEIVING AND TRANSMITTING—Continued

See also Table XI - Conerol and Regulator Tubes

Type	Name	Base :	Socket Connections	Cathode	Fil. or Heater		Max.A.C.VoltagePer Plate	D.C.OutputCurrent Ma.	Max. Inverse Peak Voltage	Peak Plale Curren Mo.	Type'
					Volts	Amps.					
70A7GI	Rectifier-Tetrode ${ }^{14}$	8-pin O.	8 AB	Hir.	70	0.15	125	60			V
70L7GI	Rectifier-Tetrode ${ }^{14}$	8-pin O .	8AA	Htr.	70	0.15	117	70		350	V
72	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0	-	30	20000	150	V
73	Hall-Wave Rectifier	8-pin O .	4Y	Fil.	2.5	4.5	-	20	13000	3000	V
80	Full-Wave Rectifier	4-pin M	4 C	Fil.	5.0	2.0	$\begin{aligned} & 35010 \\ & 50018 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	\checkmark
81	Half-Wave Rectifier	4-pin M.	4B	Fil.	7.5	1.25	700	85			\checkmark
82	Full-Wave Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	M
83	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	M
$83 . V$	Full-Wave Rectifier	4-pin M.	4AD	Htr.	5.0	2.0	400	200	1100		V
84/624	Full-Wave Rectifier	5-pin S.	5D	Htr.	6.3	0.5	350	60	1000		V
$\begin{aligned} & 117 \mathrm{~L} 7 \mathrm{GT} / \\ & \text { 117M7GI } \end{aligned}$	Reetifier-Tetrode ${ }^{14}$	8 -pin O .	8 AO	Hir.	117	0.09	117	75		-	\checkmark
117N7GT	Rectifier-Tetrode ${ }^{14}$	8-pin O .	8AV	His.	117	0.09	117	75	350	450	V
117P7GT	Rectifier-Tetrode ${ }^{\text {: }}$	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	v
11724 GT	Half-Wave Rectifier	6 -pin O.	5AA	Htr.	117	0.04	117	90	350		v
$117 \mathrm{Z6GT}$	Voltage Doubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	V
217.A	Hall-Wave Rectifier	4-oin J.	T-3A ${ }^{\text {a }}$	Fil.	10	3.25	-		3500	600	V
217 -C	Half-Wave Rectifier	4-pin J.	T-3A ${ }^{4}$	Fil.	10	3.25	-		7500	600	V
Z295 ${ }^{17}$	Holf-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	--	25010	10000	1000	M
HK253	Hall-Wave Rectifier	4-pin J.	T-3A ${ }^{\text {a }}$	Fil.	5.0	10	-	350	10000	1500	M
$\begin{aligned} & 705 A \\ & \text { RK-705A } \end{aligned}$	Hall-Wave Rectifier	4-pin W	T-3 AA	Fil. ${ }^{* 1}$	$\begin{aligned} & 2.5: 8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	二	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 375 \\ & 750 \end{aligned}$	\checkmark
816	Half-Wave Rectifier	4-pin S.	4P	Fil.	2.5	2.0	1750	195	5000	500	M
836	Hall-Wave Rectifier	4-pin M.	4P	Hit.	2.5	5.0			5000	1000	v
$866 \mathrm{~A} / 866$	Half.Wave Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	-	2501	10000	1000	M
8668	Half-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.0		-	8500	1000	M
866 J.	Half-Wave Rectifier	4-pin M.	48	Fil.	2.5	2.5	1250	250.			M
HY866 Jr.	Half-Wave Rectifier	4-pin M.	4 P	Fil. ${ }^{\text {a }}$	2.5	2.5	1750	250	5000		M
RK866	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	$250{ }^{10}$	10000	1000	M
87126	Half-Wave Rectifier	4-pin M.	$4 \overline{\mathrm{P}}$	Fil.	2.5	2.0	1750	250	5000	500	M
878	Helf-Wave Rectifier	4-Din M.	4P	Fil.	2.5	5.0	7100		20000		V
87911	Hali-Wave Rectifier	4-pin S.	4 P	Fil.	2.5	1.75	2650	7.5	7500	100	V
$8724 / 872$	Half-Wave Rectifier	4 -pin J.	T-3A.	Fil.	5.0	7.5		1250	10000	5000	M
975A	Half-Wave Rectifier	4 -pin J.	T-3A 4	Fil.	5.0	10.0		1500	15000	6000	M
$\begin{aligned} & \hline \text { OZ4A } \\ & 1003 \end{aligned}$	Full-Wove Rectifier	8 -pin O .	4R	Cold ${ }^{\text {s }}$	-	-		110	880	-	G
$\begin{aligned} & 1005 \\ & \text { CK1005 } \end{aligned}$	Full-Wave Rectifier	8-pin O.	T-97	Fil.	6.3	0.1		70	450	-	G
$\begin{aligned} & 1006 \\ & \text { CK1006 } \end{aligned}$	Full-Wave Rectifier	4-pin M.	4 C	Fil.	1.75	9.95	-	200	1600	-	G
CK1007	Full-Wave Rectifier	8-pin O.	T-9G	Fil.	1.0	1.2	-	110	980	-	G -
CK1009	Full-Wave Rectifier	4-pin M.	-	Cold ${ }^{\text {c }}$	-		-	350	1000	-	G
1616	Holl-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	130	6000	800	V
$\begin{aligned} & 1641 \\ & \text { RK60 } \end{aligned}$	Full-Wave Rectifier	4-pin M.	T-4AG	Fil.	5.0	3.0		$\begin{array}{r} 50 \\ 250 \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \end{aligned}$	-	\checkmark
8008	Half-Wave Rectifier	4-pin ${ }^{16}$	Fig. $11{ }^{\text {is }}$	Fil.	5.0	7.5		1250	10000	5000	M
$8013 \mathrm{~A}^{26}$	Hall-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	-	20	40000	150	V
8016	Half-Wave Rectifier	6-pin O .	4 Y	Fil.	1.25	0.2		2.0	10000	7.5	\checkmark
8090	Hall-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.5	10000	100	40000	750	\checkmark
RK19	Full-Wave Rectifier	4-pin M.	T.3A:	Her,	5.8	6.5	$\begin{array}{r}19500 \\ \hline 1250\end{array}$	$100{ }^{10}$	$\frac{40000}{3500}$	750 600	\checkmark
RK21	Hali-Wave Rectifiei	4-pin M.	4P	Htr.	2.5	4.0	1250	20011	3500	600	V
RK22	Full-Wave Rectifier	4-Din M.	T-4AG ${ }^{\text {d }}$	Htr .	2.5	8.0	1950	20010	3500	600	V

${ }^{1}$ Hefer to Reweiviny Thbe Diagrams
2 M . - monlinm: s. - small; O. octai; 1.. - loktat; J. - jumbo; B. - button. W. - wafer.
${ }^{3}$ Metal untre sories.

- Refor to "Transmitting Tube Dia\&raths.
s'lypes 1 and $1-V$ interehangeable.
6 With input choke of at least 20 hemrys.
${ }^{7}$ M. - Mercury-vapor type; V. -high-vacuum type; G. - gaseous type.
B Truped for pilot lamps.
${ }^{9}$ P'er pair with choke input.

10 Comlensur inment.

11 Foor use with cuthuld-ray tubes.
12 Maximum rating, comresponding to 130-wolt lint condition; normal rating is 12.6 v. for $117-\mathrm{v}$. line.
${ }^{13}$ With 164 obams ming. rexistance in serian with fatte, without saries resisior, maximum romos. plate rating is 117 volles.
14 For oblur data, sere Table IX.

 duty imshotype base, Filament connected to pins 2 and 3 , plate to top caj.

17 Same as $872 \mathrm{~A} / 872$ except for small envelope.
19 Choke input
19 Withont pamel lamp.
${ }^{20}$ Ceramic base.
${ }^{21}$ Center tapped.
${ }^{22}$ Formerly tuater type.
${ }^{23}$ l'ormerly type L'í.
${ }^{24}$ Obsolete.
${ }^{25}$ Formerly 8013.
${ }^{26}$ Using only onc-half of filament.
27 In clipper serviec series resistor limiting instatutucous prak ma. required.
${ }^{28}$ Ionic heated eathode.

TABLE XIV - TRIODE TRANSMITTING TUBES

Typ*	Max. Plate Dissipetion Watts	Cathode		Max. Plate Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacities ($\mu \mu \mathrm{id}$.)			Base ${ }^{1}$	Socket Connections ${ }^{2}$	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	D.C. Grid Current Mo.	Approx. Grid Driving Power Watts ${ }^{3}$	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ 10 \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$										
958-A****	0.6	$1 . \overline{25}$	0.1	135	7	1.0	12	0.6	2.6	0.8	Special	5BD	Class-C Amp.-Oscillstor	135	- 20	7	1.0	0.035	0.6	958-A
RK24**	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	4-pin S.	4D	C̄lass-C Amp.-Oscillator	180	- 45	16.5	6.0	0.5	2.0	RK24
6167***	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	7-pin B.	7BF ${ }^{15}$	Class-C Amp. (Telegraphy)	150	- 10	30	16	0.35	3.5	616
9002***	1.6	6.3	0.15	250	8	2	25	1.2	1.4	1.1	7-pin B.	7TM	Class-C Amp.-Oscillator	180	- 35	7	1.5	-	0.5	9002
955***	1.6	6.3	0.15	180	8	2	25	1.0	1.4	0.6	Acorn	5BC	Class-C Amp. Oscillator	180	- 35	7	1.5	-	0.5	955
HY11485***	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	5-pin O.	T-8AC	Class-C Amp.-Oscillator Class-C Amp. Plate-Mod.	180 180	-30 -35	12	2.0	0.2	$1.4{ }^{11} 4^{11}$	HY114B
$3 \mathrm{~A} 5^{7}$	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	135	30	5.0	15	0.9	3.2	1.0	7-pin B.	$7 \mathrm{BC}{ }^{15}$	Class-C Amp.-Oscillator	135	- 20	30	5.0	0.2	$2.0{ }^{21}$	3 A 5
6F4***	2.0	6.3	0.225	150	20	8	17	2.0	1.9	0.6	Acorn	7BR	Class-C Amp.-Oscillator	150	-15 $-\frac{15}{55018}$ 200019	20	7.5	0.2	$1.8{ }^{200}$	6F4
HY24*:	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	4-pin S.	4D	Class-C Amp. (Telegraphy) Class-C Amp. (Telephony)	180 180	-45 $-\quad 45$	20	4.5	0.8	$\frac{2.7}{2.5}$	HY24
RK33* ${ }^{\text {\% }}$	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	8.5	7-pin S.	T-7DA	Class-C Amp.-Oscillator	250	- 60	80	6.0	0.54	3.5	RK33
6N4	3.0	6.3	0.2	180	12	-	32				7-pin B.	-	Class-C Amp. Oscillator	180			-	-	-	6 N 4
$\begin{aligned} & 2 \mathrm{2C92} \\ & 7193 \end{aligned}$	3.5	6.3	0.3	500	-	-	20	$2.2{ }^{1 \prime}$	3.6	0.7	8 -pin O.	4AM ${ }^{16}$	Class-C Amp. (Telegraphy)	-	-	-	-	-	-	2C22/7193
HY615***	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	5-pin O.	T-8AG	Class-C Amp.-Oscillator	300	- 35	20	2.0	0.4	4.01	HY615
HY-E1148	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	5-pin 0.	T-8AG	Class-C Amp. Plate-Mod.	300	- 35	20	3.0	0.8	3.51	HY-E1148
HY6 ISCTX*	3.5	6.3	0.3	250	20	4.0	20	3.8	2.7	3.0	6-pin O.	T-8AD	Class-C Amp. (Telegraphy)	250	- 30	80	2.0	0.2	3	HYg JSGTX
	3.5	6.3	0.3	250	20	4.0	20	3.8	2.7		6-pin O.		Class-C Amp. (Telephony)	250	- 30	20	2.5	0.4	3	
$\begin{aligned} & \overline{\text { GL- }} \\ & 446 \mathrm{~A}^{* * * * 4} \\ & \text { GL- } \\ & 446 \mathrm{~B} * * * * \end{aligned}$	3.75	6.3	0.75	400*3	20	-	45	2.2	1.6	0.02	6-pin O.	Fig. 19	Class-C Amp.-Oscillator	250	$\begin{aligned} & 10000^{19} \\ & 20000^{19} \end{aligned}$	25^{23}			-	$\begin{aligned} & \mathrm{GL}-446 \\ & \mathrm{GL}-446 \mathrm{~B} \end{aligned}$
$\begin{aligned} & \overline{\text { GL- }} \\ & \text { 2C44****4 } \\ & \text { CL- } \\ & 161 A^{* * * * ~} \\ & \hline \end{aligned}$	5.0	6.3	0.75	$500{ }^{27}$	40:3	-	-	2.7	2.0	0.1	6-pin O.	Fig. 17	Class-C Amp.-Oscillator	250	-		-	-	-	$\begin{aligned} & G L-2 C 44 \\ & G L-464 A \end{aligned}$
$6 \mathrm{C4}$	5.0	6.3	0.15	300	25	8.0	17	1.8	1.6	1.3	7-pin B.	6BG ${ }^{15}$	Class-C Amp.-Oscillator	300	- 27	25	7.0	0.35	5.5	6C4
1696	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	8 -pin 0.	T-8AD	Class-C Amp.-Oscillator	250	- 70	25	5.0	0.5	4.0	1626
2C21/RK33	5	6.3	0.6	250	40	18^{7}	-	1.6	1.6	2.0	7 -rin 5	T-7DA	Class-C Amp.-Oscillator	250	- 60	40	12^{7}	$1.0{ }^{7}$	77	2C21/RK33
9С40****	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	6-pin O.	Fig. 19	Class-C Amp.-Oseillator	250	$\begin{array}{r}\text { - } 5 \\ \hline\end{array}$	90	0.3	-	0.075	2C40
2 C 43	-	6.3	0.9	500	40	-	48	2.9	1.7	0.05	6-pin O.	Fig. 19	Class-C Amp.-Oscillator	470	-	38**	$\underline{-}$	-	928	$22^{2} 43$
2C86A ${ }^{\text {+ }}$	10	6.3	1.10	3500:	-	-	16.3	2.6	2.8	1.1	8-pin O.	4BB	Pulse Oscillator	400	-15	16	-	-	-	2C96A
9C45	10	7.0	1.18	250	40	0	3.6	5.0	7.7	3.0	4-pin M.	4D	Class-A Modulator	250	- 40	29	0	0	1.0	2C45
$\begin{aligned} & \text { 8C34 } \\ & \text { RK34***: } \end{aligned}$	10^{7}	6.3	0.8	300	80	20	13	3.4	2.4	0.5	7-pin M.	T-7DC	Class-C Amp.-Oscillator	300	- 36	80	20	1.8	16	$\begin{aligned} & \text { 2C34 } \\ & \text { RK34 } \end{aligned}$
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	4-pin M.	4D	Class-C Amp.-Oscillator	400	-118 -144	45	10	1.5	10	205D
													Class-C Amp. (Plate-Mod.)	350	-144	35	10	1.7	7.1	
2C25	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	4-pin M.	4D	Class-C Amp.-Oscillator	450	-100 -100	65	15	3.2	19	2C25

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Plate Current Ma	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Base ${ }^{1}$	Socket Connections ${ }^{2}$	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Walts ${ }^{3}$	Approx. Corior Oulput Power Watts	Type
		Volts	Amps.					Grid to Fil.	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$										
											4-pin M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	19	10Y
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0			Class-C Amp. Plate-Mod.	350	-100	50	12	2.2	12	
											5-pin M.	5 A	Class-C Amp.-Oscillator Class-C Amp. (Plate-Mod.)	450	-140	30	5.0	1.0	7.5	843
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0				350	-150	30	7.0	1.6	5.0	
RK59 ?	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	4-pin M.	T-4D	Class-C Amp.-Oscillator	500	- 60	90	14	1.3	32	RK59
											5-pin 0 .	T-8AC	Class-C Amp.-Oscillator	450	- 50	80	12	-	21^{11}	HY75
HY75 * 6	15	6.3	2.5	450	80	20	10	1.6	3.8	0.6			Class-C Amp. Plate-Mod.	450	-60	80	12		16^{11}	
											4-pin M.	4D	Class-C Amp. (Telegraphy)	450	-115	55	15	3.3	13	1602
1602	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0			Class-C Amp. (Telephony)	350	-135	45	15	3.5	8.0	
											4-pin M.	4D	Class-C Amp. (Telegraphy)	450	- 34	50	15	1.8	15	841
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0			Class-C Amp. (Tolephony)	350	- 47	50	15	2.0	11	
											4-pin M.	4D	Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	19	$\begin{aligned} & \hline 10 \\ & \text { RK10 } \\ & \hline \end{aligned}$
RK10*4	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0			Class-C Amp. (Tolephony)	350	-100	50	12	2.2	12	
RK100 ${ }^{4}$	15	6.3	0.9	150	250	100	40	23	19	3.0	6-pin M.	T-6B	Class-C Oscillator ${ }^{10}$	110	-	80	8.0 40	2.1	$\frac{3.5}{12}$	RK100
											4-pin M.	4D	Class-C Amp. (Telegraphy)	425	- 90	95	20	3.0	27	1608
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0			Class-C Amp. (Telephony)	350	-80	85	20	3.0	18	
											4-pin M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	25	310
310	20	7.5	1.95	600	70	15	8.0	4.0	7.0	2.9			Class-C Amp. (Telephony)	500	-190	55	15	4.5	18	
											4-pin M.	4D	Class-C Amp. (Telesraphy)	600	-150	65	15	4.0	25	801-A/801
801-A/801 *	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5			Class-C Amp. (Telephony)	500	-190	55	15	4.5	18	
											4-pin M.	4D	Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	30	HY801-A
HY801-A*	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5			Class-C Amp. (Telephony)	500	-200	60	15	4.5	29	
			1.75	750	85	25	20	4.9	5.1	0.7	4-pin M.	3G	Class-C Amp. (Telegraphy)	750 750	-85	85	18	3.6	44	T20
T20 *6	20	7.5	1.75	750	85	25	20	4.9	5.1		d-pin M.		Class-C Amp. Plate-Mod.	750	-140 -40 -100	85 :	15	3.6 3.75	44	TZ20
TZ90*	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	4-pin M.	3G	Class-C Amp. Plate-Mod.	750	-100	70	23	4.8	38	
15E	20	5.5	4.2	10000*:	-	-	25	1.4	1.15	0.3	None	T-4AF	Oscillator at $400 \mathrm{Mc} .^{17}$	10000	$4500{ }^{19}$	3	1	-	10000 100	15E
15E											4-pin M.	3G		9000	-130	63	18	4.0	100	$25 T$
251	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3			Class-C Amp.-Oscillator	1500	- 95	67	13	2.2	75	
														1000	- 70	72	9	1.3	47	
											4-pin S.	2D	Class-C Amp.-Oseillator	2000	-170 -110	63	17	4.5	100 75	$\begin{aligned} & 3 \mathrm{C} 24 \\ & \mathrm{Q} 4 \mathrm{G} \end{aligned}$
$24 G$	25	6.3	3.0	2000	75	25	23	1.7	1.5	0.3				1000	-80-	72	15	2.6	47	
											4-pin M.	3G	Class-C Amp. (Telegraphy)	750	-120	105	21	3.2	55	RK11
RK11*4	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9			Class-C Amp. Plate-Mod.	600	-120	85	24	3.7	38	
											4-pin M.	3G	Class-C Amp. (Telegraphy)	750	$\frac{-100}{-100}$	105	35	5.2 3.8	55	RK12
RK12 *	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9			Class-C Amp. Plate-Mod. Class-C Amp. (Telegraphy)	600	-100 -140	85	18	3.8	38	
HK24*	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	4-pin S.	3G	Class-C Amp. Plate-Mod.	1500	-145	50	25	5.5	60	HK24
											4-pin M.	3G	$\begin{aligned} & \text { Class-C Amp. (Telegraphy) } \\ & \text { Class-C Amp. Plate-Mod. } \end{aligned}$	750	- 45	75	15	2.0	42	HY 25
HY25 *	25	7.5	2.95	800	75	25	55	4.2	4.6	1.0				700	- 45	75	17	5.0	39	

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Base ${ }^{\text {I }}$	Socket Connections?	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts ${ }^{3}$	Approx. Cartier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & 10 \\ & \text { fil. } \end{aligned}$										
8025	30	6.3	1.92	1000	65	\cdots	18	2.7	2.8	0.35	4-pin M.	4AO	Class-C Amp. (Gid. Mod.)	1000	-135	50	$4{ }^{17}$	3.517	20	8025
	20				65	20							Class-C Amp. (Plate Mod.)	800	-105	40	$10.5{ }^{17}$	$1.4{ }^{17}$	22	
	30				80	20							Class-C Amp. (Telegraphy)	1000	-90	50	14^{17}	$1.6{ }^{17}$	35	
Twin 30*si	30	6.0	4.0	1500	85	25	32	1.9	2.0	0.3	4-pin M.	T-4DB	Class-C Amp. (Telesraphy)	1500	-100	$150{ }^{\text {\% }}$	40^{8}	15	225	win 30
													Class-C Amp. Plate-Mod.	1250	-100	$135{ }^{\text {a }}$	40^{8}	15	125	
HY30Z*	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	4-pin M.	T-4BE	Class-C Amp.-Oscillator	850	- 75	90	25	2.5	58	HY30Z
	3												Class-C Amp. Plate-Mod.	700	-75	90	95	3.5	47	
$\begin{aligned} & \text { HY31Z*7 } \\ & \mathrm{HY} 1231 Z^{*} *: \end{aligned}$	30	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$		500	150	30	45	5.0	5.5	1.9	4-pin M.	T-4D	Class-C Amp. (Telegraphy)	500	-45-100	150	25	2.5	56	HY31Z HY1231Z
													Class-C Amp. (Telephony)	400		150	30	3.5	45	
316A ****	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	None ${ }^{2}$	-	Class-C Amp. (Telegraphy)	450	-	80	12	-	7.5	316A
													Class-C Amp. Plate-Mod.	400	-	80	12	-	6.5	
809 *	30	6.3	2.5	1000	125	-	50	5.7	6.7	0.9	4-pin M.	3G ${ }^{\text {is }}$	Class-C Amp. (Telesraphy)	1000	-75	100	25	3.8	75	809
809	3	6.3				-							Class-C Amp. Plate-Mod.	750	-60	100	32	4.3	55	
1623**	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	4-din M.	3G ${ }^{15}$	Class-C Amp.-Oscillator	1000	- 90	100	20	3.1	75	1623
													Class-C Amp. Plate-Mod.Oscillator at 300 Mc.	750	-125	100	20	4.0	55	
53A	35	5.0	12.5	15000	-	-	35	3.6	1.9	0.4	None	T-4B		Approximately 50 watts output						53 A
RK30**	35	7.5	3.25	1250	80	25		2.75	2.5	2.75	4-pin M.	T-4BC	Class-C Amp. (Telegraphy)	1250	-180	90	18	5.2	85	RK30
													Class-C Amp. Plate-Mod.	1000	-200	80	15	4.5	60	
800 *	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	4-pin M.	T-4BC	Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0	65	800
											4-pin M.		Class-C Amp. Plate-Mod.	1000	-200	70	15	4.0	50	
1628****	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	None ${ }^{\prime}$		Class-C Amp.-Oseillator	1000	-65	50	15	1.7	35	
												T-4BB	Class-C Amp. Plate-Mod.	800	-100	40	11	1.6	22	1628
													Grid-Modulated Amp.	1000	-180	50	3.5	5.0	20	
8012 GL. 8012-A****		6.3	2.0	1000	80	20	18	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & -\quad 0.4 \end{aligned}$			Class-C Amp.- Oscillator	1000	- 90	50	14	1.6	35	
	4014										Nones	T-4BB	Class-C Amp. Plate-Mod.	800	-105	40	10.5	1.4	22	$\begin{aligned} & 8012 \\ & \text { GL-8012-A } \end{aligned}$
													Grid-Modulated Amp.	1000	-135	50	4.0	3.5	20	
RK18 *	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	4-pin M.	3G ${ }^{\text {is }}$	Class-C Amp. (Telegraphy)	1250	-160	100	12	2.8	95	RK1 8
													Class-C Amp. Plate-Mod.	1000	-160	80	13	3.1	64	RK18
RK31	40	7.5	3.0	1250	100	35	170	7.0	1.0	2.0		3G ${ }^{15}$	Class-C Amp. (Telegraphy)	1250	-80	100	30	3.0	90	
	40								1.0	2.0	4-pin M.	3G	Class-C Amp. Plate-Mod.	1000	- 80	100	28	3.5	70	RK31
													Class-C Amp. (Telegraphy)	1000	- 90	125	20	5.0	94	
HY40*	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	4-pin M.	3G15	Class-C Amp. Plote-Mod.	850	- 90	125	15	3.5	82	HY40
													Grid-Modulated Amp.	1000	-	125	-	-	20^{11}	
													Class-C Amp. (Telegraphy)	1000	- 27	125	25	5.0	94	
HY40Z ${ }^{*}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	4-pin M.	3G ${ }^{\text {², }}$	Class-C Amp. Plate-Mod.	850	- 30	100	30	7.0	82	HY40Z
													Grid-Modulated Amp.	1000	-	60	-	-	20^{12}	
T40**	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8		3G ${ }^{13}$	Class-C Amp.-Oscillator	1500	-140	150	28	9.0	158	T40
140	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	4-pin M.	3G	Class-C Amp. Plate-Mod.	1250	-115	115	20	5.25	104	140
TZ40**	40	7.5	2.5	1500	150	45	62	4.8	5.0				Class-C Amp.-Oscillotor	1500	- 90	150	38	10	165	
$1240 *$	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	4-pin M.	3 G	Class-C Amp. Plate-Mod.	1250	-100	125	30	7.5	116	I240

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Base ${ }^{1}$	Socket Connections	Typleal Operation	Plate Voltage		Plate Current Ma .	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts ${ }^{3}$	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					Grid to Fil.	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$										
							20	5.0	3.9	1.2	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	170	T55
155 **	55	7.5	3.0	1500	1:0	40	20	5.0	3.9	1.2			Class-C Amp. Plate-Mod.	1500	-195	125	15	5.0	145	
			4.0					5.5	5.5	0.6	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	170	811
811 *	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6			Class-C Amp. Plate-Mod.	1250	-125	125	50	11	120	
										0.8	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5	170	812
812*6	55	6.3	4.5	1500	150	35	29	5.3	5.3	0.8			Class-C Amp. Plate-Mod.	1250	-125	125	95	6.0	120	
	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5		3G	Class-C Amp. (Telegraphy)	1500	-250	150	31	10	170	RK51
RK51*											4-pin M.		Class-C Amp. Plate-Mod.	1250	-200	105	17	4.5	96	
													Grid-Modulated Amp.	1500	-130	60	0.4	2.3	128	
		7.5	3.75			50	170	6.6	12	2.2	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	135	RK52
RK52*	60			1500	130								Class-C Amp. Plate-Mod.	1250	-180	115	47	8.5	102	
$\begin{aligned} & \bar{T}-60 \\ & \text { HF60 } \end{aligned}$	60	10	2.5	1600	150	——	20	-	5.2	-	4-pin M.	2D	Class-C Amp.-Oseillator	1600	-150	\square	-	-	100	$\begin{aligned} & \begin{array}{l} \mathrm{T}-60 \\ \mathrm{HF} 60 \end{array} \end{aligned}$
826***	60	7.5	4.0	1000	125	40	31	3.7	2.9	1.4	Special	T-9A	Class-C Amp.-Osclilator	1000	- 70	125	35	5.8	86	826
													Class-C Amp. Plate-Mod.	800	- 98	94	35	6.2	53	
													Class-B Amp. (Telephony)	1000	- 50	65	8.5	3.7	22	
													Grid-Modulated Amp.	1000	-125	65	9.5	8.2	25	
		10	2.0	1000	150	30	25	5.0	11	1.8	4-pin M.	3G	Class-C Amp.-Oscillator	1000	- 110	140	30	7.0	90	$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$
$830 \mathrm{~B}$	60												Class-C Amp. Plate-Mod.	800	-150	95	20	5.0	50	
													Class-B Amp. (Telephony)	1000	-35	85	6.0	6.0	26	
HY51A HY51B*		$10^{7.5}$	$\begin{aligned} & 3.5 \\ & 2.95 \end{aligned}$	1000	175	25	25	6.5	7.0	1.1	4-pin M.	3G	Class-C Amp. (Telegraphy)	1000	- 75	175	20	7.5	131	$\begin{aligned} & \text { HY51A } \\ & \text { HY51B } \end{aligned}$
	65												Class-C Amp. Plate-Mod.	1000	-67.5	130	15	7.5	104	
													Grid-Modulated Amp.	1000	-	100	-	-	33^{12}	
		7.5	3.5	1000	175	35	85	7.9	7.2	0.9	4-pin M.	T-4BE	Class-C Amp. (Telegraphy)	1000	-22.5	175	35	10	131	HY512
HY51Z*	65												Class-C Amp. Plate-Mod.	1000	- 30	150	35	10	104	
													Grid-Modulated Amp.	1000	$\underline{-}$	100	-	-	33^{12}	
		5.0	4.0		150	35	30	1.4	1.6	0.2	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	170	UH35
UH35*	70	5.0	4.0	1500	150								Class-C Amp. Plate-Mod.	1500	-120	100	30	5.0	180	
								5.0	9.0	2.3	4-pin J.	$\begin{aligned} & \mathrm{T}-3 \mathrm{AB} \\ & 3 \mathrm{G} \end{aligned}$	Class-C Amp. (Telegraphy)	1500	-215	130	6.0	3.0	140	$\begin{aligned} & \hline \vee 70 \\ & \vee 708 \end{aligned}$
V708	70	10	2.5	1500	140	25	14						Class-C Amp. Plate-Mod.	1250	-250	130	6.0	3.0	120	
V70A	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	$\begin{aligned} & \text { 4-pin J. } \\ & 4 \text {-pin } . \end{aligned}$	$\begin{aligned} & \mathrm{T}-3 \mathrm{AB} \\ & 3 \mathrm{G} \end{aligned}$	Class-C Amp. (Telegraphy)	1000	-110	140	30	7.0	90	$\begin{aligned} & V 70 A \\ & V 70 C \end{aligned}$
V70¢	70												Class-C Amp. Plate-Mod.	800	-150	95	20	5.0	50	
V70D	70	10	3.0	1500	165	40	20	4.5	4.5	1.75	4-pin M.	3G	Class-C Amp. (Telegraphy)	1500	-200	130	20	6.0	140	V70D
V700	70				165								Class-C Amp. Plate-Mod.	1000	-140	165	30	7.0	180	
501	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	4-pin M.	20	Class-C Amplifier	3000	- 600	100	25	-	250	501
75TH	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	4-pin M.	2D	Class-C Amp. (Telegraphy)	2000	-200	150	32	10	225	751H
75 TL	75					35	12	2.6	2.4	0.4			Class-C Amp. (Telegraphv)	2000	-300	150	21	8	295	5 TL
HF75*	75	10	3.25	2000	120	-	12.5	二-	2.0	--	4-pin M.	2D	Class-C Osc.-Amp.	2000	-	120	-	-	150	HF75
TW75 *	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7		2D	Class-C Amp.-Oseillator	2000	$\frac{-175}{-860}$	150	37	12.7	225	TW75
W\%			4.15				20	3.35			4-pin M.		Class-C Amp. Plate-Mod.	2000	- 260	125	32	13.2	198	
		10	2.0	1500	150	30							Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	170	
$\begin{aligned} & \text { T-100 } \\ & \text { HF100 } \end{aligned}$	75						23	3.5	4.5	1.4	4-pin M.	9D	Class-C Amp. Plate-Mod.	1250	-250	110	21	8.0	105	HF100
													Grid-Modulated Amp.	1500	-280	72	1.5	6.0	42	

TABLE XIV — TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Vollage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{Fd}$.)			Base ${ }^{\text {1 }}$	Socket Connections	Typical Operation	Plate Voltage	Grid Voliage	Plate Current Ma .		Approx. Grid Driving Power Watts ${ }^{3}$	Approx. Carrier Output Power Watts	Type
		Volts	Amps,					Grid Fil.	Grid to Plate	Plate 10 Fil.										
111H	75	10	2.25	1500	160	-	23		4.6	-	4-pin M.	2D	Class-C Osc.-Amp.	1500	-	160	-	-	175	111H
													Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	145	
ZB120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	4-pin J.	4E	Class-C Amp. Plate-Mod.	1000	-150	120	21	5.0	95	ZB1 20
													Grid-Modulated Amp.	1250	-	95	8.0	1.5	45	
327 B	75	10.5	10.6	15000	-	-	30	3.4	2.45	0.3	None	T-4D			-	-	--			327B
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	4-pin J.	4 E	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	130	
											4-pin J.		Class-C Amp. Plate-Mod.	1000	-160	150	50	-	100	242A
284D	85	10	3.95	1250	150	100	4.8	6.0	8.3	5.6	4-pin J.	4E	Class-C Amp. (Telegraphy)	1250	-500	150	- -	-	125	284D
											4-pin J.	4.	Class-C Amp. Plate-Mod.	1000	-450	150	50	-	100	284 D
													Class-C Amp.-Oseillator	1500	-130	200	32	7.5	220	
$8005 *$	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	4-pin M.	T-4BB	Class-C Amp. Plate-Mod.	1250	-195	190	88	9.0	170	8005
													Class-B Amp. (Telephony)	1500	- 80	83	1.0	5.0	45	
													Class-C Amp. (Telegraphy)	2000	-360	150	30	15	200	
RK36 * 4	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0		2D	Class-C Amp. (Telephony)	2000	-360	150	30	15	200	
											4-pin M.	2 D	Grid-Modulated Amp.	2000	- 270	72	1.0	3.5	42	RK36
													Class-B Amp. (Telephony)	2000	-180	75	3.0	10	50	
													Class-C Amp. (Telegiaphy)	2000	- 200	160	30	10	225	
RK38 * 4	100	5.0	8.0	3000	165	40	-	4.6	4.3	0.9		2D	Class-C Amp. (Telephony)	2000	- 200	160	30	10	285	
											4-pin M.	2 D	Grid-Modulated Amp.	2000	-150	80	2.0	5.5	60	RK38
													Class-B Amp. (Telephony)	2000	- 100	75	2.0	7.0	55	
													Class-C Amp. (Telegraphy)	3000	- 200	165	51	18	400	
100TH	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	4-pin M.	2D	Class-C Amp. Plate-Mod.	3000	- 210	167	45	18	400	100TH
											4 - in M.		Class-B Amp. (Telephonr)	3000	- 70	50	2.0	5.0	50	100 H
													Grid-Modulated Amp.	3000	-400	70	3.0	7.0	100	
													Class-C Amp. (Telegraphy)	3000	-400	165	30	20	400	
100TL	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	4-рin M.	2D	Class-C Amp. Plate-Mod,	3000	- 600	167	35	18	400	100TL
								2.3		0.4	4-pin M.	2 D	Class-B Amp. (Telephony)	3000	- 280	50	1.0	5.0	50	1007
													Grid-Modulated Amp.	3002	-560	60	2.0	7.0	90	
VT127A	100	5.0	10.4	16000	-	-	15.5	2.7	2.3	0.35	None	T-4B	Oscillator at 200 Mc	16000	5000	9.4	2.3	-	$1000 \overline{0.3}$	VT127A
297A	100	10.5	10.7	15000	-	-	31	3.0	2.2	0.30	None	T.4B	Oscillator at $200 \mathrm{Mc} .{ }^{27}$	15000	1200	10	3	-	50000	$227 A$
327A	100	10.5	10.7	15000	-	-	31	3.4	2.3	0.35	None	T-4D	Oscillator at 200 Mc , ${ }^{\text {, }}$	15000	$1200{ }^{\text {- }}$	10	3	-	50000	327 A
													Class-C Amp. (Telegraphy)	4000	-380	120	35	20	475	
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1		T.3AC	Class-C Amp. Plate-Mod.	3000	- 290	135	40	23	320	
											4-pin J.	T.3AC	Class-B Amp. (Telephony)	3000	-125	51	2.0	3.0	54	HK254
													Grid-Modulated Amp.	3000	-	51	3.0	4.0	58	
													Class-C Amp. (Telegraphy)	1250	-90	150	30	6.0	- 130	
RK58 ${ }^{\text {6 }}$	100	10	3.25	1250	175	70	-				- pin J.	T-3AB	Class-C Amp. Plate-Mod.	1000	-135	150	50	16	100	RK58
								XIV	- TR				Class-B Amp. (Telephony)	1250	-	106	15	6.0	42.5	
HF120	100	10	3.25	1250	175	-	12				jin J.	-	Class-C Amp.-Oscillator	1250	-	175	-	-	$\overline{150}$	HF120
HF125	100	10	3.25	1500	175	-	25				pin J .	--	Class-C Amp.-Oscillator	1500	\square	175	-	-	200	HF125

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

TABLE XIV－IRIODE TRANSMITTING TUBES－Continued

Type	Max． Plate Dissipa． tion Watts	Cathode		Max．PlateVoltage	Max． Plate Current Ma．	Max． D．C． Grid Current Ma．	Amp． Factor	Interelectrode Capacitances（ $\mu \mu \mathrm{Fd}$ ．）			Base ：	Socket Connec－ lions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma．		Approx． Grid Driving Power Watts ${ }^{3}$	Approx． Carrier Outpul Power Watts	Type
		Volts	Amps．					Grid to Fil．	Grid to Plate	Plate to Fil．										
RK57／ ／805	125	10	3.25	1500	210	70		6.5	8.0	5.0	4－pinJ．	T－3AB	Class－C Amp．（Telegraphy）	1250	$\begin{aligned} & -105 \\ & -150^{-} \end{aligned}$	$\begin{array}{r} 200 \\ 160 \end{array}$	40	8.5	215	
							－						Class－C Amp．（Telephony）					16.5		
													Class－B Amp．（Telephony）	1500	－ 10	115	15	7.5	$140 \quad \text { RK5 } 7 / 805$	
T125＊	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	4－pin J．	I－3AC	Class－C Amp．（Telegraphy）	2500	－200	240	$\underline{31}$	$\begin{array}{r}11 \\ \hline 10 \\ \hline\end{array}$	475	T125
HF130	125	10	3.25	1250	210		12.5		9.0				Class－C Amp．Plate－Mod．	2000	二215	200			1320	
HF150	125	10	3.25	1500	210		12.5		7.2		4－sin J．		Class－C Amp．－Oscillator	1250	－210	910	－	－	170	HF130
HF175	$1 \overline{25}$	10	4.0	9000	$\overline{250}$		18	－	6.3	－	4－pin J ．	－	Class－C Amp．－Oscillator	1500 2000		210		－	200	HF150
GL1 46	125	10	3.95	1500	900	60	75	7.2	9.2	3.9	4－pin GL	T－4BG	Class－C Amp．－Oscillator	$1250-1$	－150	180	30	－	150	75
													Class－C Amp Plate－Mod．	$10 \overline{0} 0^{-}$	－200	160	40	－	100	GL1 46
													Class－B Amp．（Telephony）	1250	0	132		－	55	
GL159	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	4－pin GL	T－4BG	Class－C Amp．－Oscillator	1250	-150	180	30	－	150	GL159
													Class－C Amp．Plate－Mod．	1000	－200	160	30	－	100	
													Class－B Amp．（Telephony）	1250	－ 40	132		－	55	
805	125	10	3.25	1500	210	70	4060	8.5	6.5	10.5	$\begin{aligned} & 4-\text { pin } J . \\ & 4-\text { pin } 5 \end{aligned}$	T－3AB	Class－C Amp．（Telegraphy）	1500	－105	200	40	8.5	215	805
													Class－C Amp．Plate－Mod．	1250	－160	160	60	16	140	
150 T ＋													Class－B Amp．（Telephony）	1500	－ 10	115	15	7.5	57.5	
	150	5.0	10	3000	200	50	13	3.0	3.5	0.5		T－3AC	Class－C Amp．（Telegiaphy）	3000	－600	200	35		450	1507
$\begin{aligned} & 152 \mathrm{TH} \\ & 152 \mathrm{TL} \end{aligned}$	150	510^{13}	$\begin{array}{r} 12.51 \\ -6.25 \end{array}$	3000	450	8575	$\begin{array}{r} 20 \\ \hline 12 \\ \hline \end{array}$	$\begin{array}{r} 5.7 \\ 4.5 \end{array}$	4.5	0.8	Special	4BC	Class－C Amp．（Teleglaphy）	3000	二 300	250	70	97	600	$\begin{aligned} & 152 \mathrm{TH} \\ & 159 \mathrm{TL} \end{aligned}$
									4.4	0.7			Class－CAmp．（Telestaphy）	3000	－ 400	250	40	23	600	
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	4－pin J．	T－3AC	Class－C Amp－Oscillator	3000	－ 170	200	45	17	470	TW150
													Class－C Amp．Plate－Mod．	3000	－260	165	40	17	400	
HK252－L ${ }^{\text {＊}}$＊${ }^{\text {a }}$	150	$5 / 10^{3}$	136.5	3000	500	75	10	7.0	5.0	0.4	Special	T－4BF	Class－C Amp．－Oscillator	3000	－400	250	30	15	610	
													Class－C Amp．Plate－Mod．	2500	-350	250	35	16	500	HK252－L
$\begin{aligned} & \text { HF200 } \\ & \text { HV18 } \end{aligned}$	150	10－11	3.4	2500	200	50	18	5.2	5.8	1.2	4－pin J	T－3AC	Class－C Amp．（Tele graphy）	2500	－300	200	18	8.0	380	
													Class－C Amp．Plate－Mod．	2000	－350	160	20	9.0	250	$\begin{aligned} & \mathrm{HF} 200 \\ & \mathrm{HV} 18 \end{aligned}$
HD203 A	150	10	4.0	2000	250	60	25						Class－B Amp．（Telephony）	2500	－ 140	90		4.0	80	
HF250	150	10.5	4.0	2500	200	$\underline{-}$	18	二－	5.8		－din	T－3AB	Class－C Amplifier				－		375	HD203A
		5.0	10	4000	300						4 －piñ．	T－3AC	Class－C Amp．－Oscillator	2500	－690	200	50		375	HF250
HK354													Class－C Amp．（Telegraphy）	4000	-690 -550	245 -210	50	48 35	830	HK354
HK354C	150					50	14	4.5	3.8	1.1	4－pin J．	T－3AC	Class－B Amp．（Telephony）	3000	－ 205	210 $-\quad 78$	${ }^{50} 2.0$	35 10	825 82	
													Grid－Modulated AMp．	3000	－-400	78	3.0	12	85	KK354C
HK354D	150	5.0	10	4000	300	55	28	4.5	3.8	1.1	4－pin J．	T－3AC	Class－C Amp．（Telography）	－3500	－ 490°	240	50	38	690	
											4－pin	T－3AC	Class－C Amp．Plate－Mod．	3500	－-425	210	55	36	525	HK354D
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	4－pin J．	T－3AC	Class－C Amp．（Telegraphy）	3500	－448	240	60	45	690	
											4－bin J．	T－3AC	Class－C Amp．Plate－Mod．	$3000{ }^{-}$	－437	210	60	45	525	HK354E
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	4－pin J．	T－3AC	Class－C Amp．（Telegraphy）	3500	－368	250	75	50	720	
													Class－C Amp．Plate－Mod．	3000	－312－	210	75	45	525	HK354F
													Class－C Amp．（Telegraphy）	2250	－ 160 －	275	40	12	475	
8106	150	10		2250	275	70	36	8.7	4.8	12	4－pin J．	T－3AC	Class－C Amp．Plate－Mod．	1800	－200	250	50	17	335	
1627 ＇		5.0	9.0										Class－B Amp．（Telephony）	8250	－ 70	100	2.0	4.0	75	$\begin{aligned} & 810 \\ & 1627 \end{aligned}$
													Grid－Modulated Amp．	2250	-140	100	2.0	4.0	75	

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate	Cathode		Max. Plata Voltage	Max. Plate CurrentMa.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{Fl}$.)			Base ${ }^{1}$	Socket Connections	Typical Operation	Plate Voltage	Gid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts ${ }^{3}$	Approx. Carrier Output Power Watts	Typ
	Dissipation Watts	Volts	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$										
$8000{ }^{\circ}$	150	10	4.5	2250	275	40	16.5	5.0	6.4	3.3	4-pin J.	T.3AC	Class-C Amp.-Oscillator	2250	-210	275	25	9.0	475	8000
													Class-C Amp. Plate-Mod.	1800	-320	250	20	8.8	335	
													Class-B Amp. (Telephony)	2250	-145	100	0	5.4	75	
													Grid-Modulated Amp.	2250	-265	100	0	2.5	75	
$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	1014	3000	250	60	37	2.7	3.3	1.1	4-pin J.	I-3AC	Class-C Amp. (Telegraphy)	3000	-800	233	45	17	525	$\begin{array}{\|l\|} \text { RK63 } \\ \text { RK63A } \end{array}$
													Class-C Amp. Plate-Mod.	2500	-200	205	50	19	405	
													Class-B Amp. (Telephony)	3000	-150	100	1.0	12		
													Grid-Modulated Amp.	3000	-250	100	7.0	12.5	$\frac{100}{100}$	
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	4-pin J.	T-3AC	Class-C Amp. (Telegraphy)	2500	-280	350	54	25	685	T200
													Class-C Amp. Plate-Mod.	2000	-260	300	54	23	460	
F-127-A	200	10	9.0	3000	325	70	38	13	4	13	4-pin J.	Fig. 26	Class-C Amp. (Telegraphy)	3000	-250	250	47	18	600	F-127-A
													Class-C Amp. Plate-Mod.	2500	-300	200	58	25.2	420	
889	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	$\begin{aligned} & \text { 4-pin } \mathrm{J} . \\ & 4 \text {-pin } \mathrm{J} . \end{aligned}$	$\begin{aligned} & \mathrm{T}-3 \mathrm{AB} \\ & \mathrm{~T}-3 \mathrm{AC} \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17	600	$\begin{aligned} & 829 \\ & 8925 \end{aligned}$
	200	10	4.0	2500	300	60	30	8.5					Class-C Amp. Plate-Mod.	2000	-75	250	43	13.7	405	
									6.5	1.4	4-pin J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-400	250	28	16	600	HF300
HF300	200	11-12	4.0	3000	275	60	23	6.0					Class-C Amp. Plate-Mod.	2000	-300	250	36	17	385	
													Class-B Amp. (Telephony)	2500	-100	120	0.5	6.0	105	
T814	200	10	4.0	2500	200	60	12	8.5	12.8	1.7	4-pin J.	T-3AB	Class-C Amp. (Telegraphy)	2500	-240	300	30	10	575	
HV12	200	10	4.0	2500	200	60		8.5	12.8	1.7			Class-C Amp. Plate-Mod.	2000	-370	300	40	20	485	HV1 2
$\begin{aligned} & \mathrm{T} 822 \\ & \mathrm{HV} 27 \end{aligned}$	200	10	4.0	2500	300	60	27	8.5	13.5	2.1	4-pin J.	T.3AB	Class-C Amp. (Telegraphy)	2500	-175	300	50	15	585	$\begin{aligned} & \text { T822 } \\ & \text { HV27 } \end{aligned}$
													Class-C Amp. Plate-Mod.	2000	-195	250	45	15	400	
													Class-B Amp. (Telephony)	2500	-. 95	125	5.0	8.0	110	
$806{ }^{1}$	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	4-pin J.	T-3AC	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	780	806
													Class-C Amp. Plate-Mod.	3000	-670	195	27	24	460	
													Class-B Amp. (Telephony)	3300	-280	102	-	10.3	115	
250TH	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	4-pin J.	T-3AC	Class-C Amp. (Telegraphy)	2000	-180	350	100	34	750	2501H
													Class-C Amp. Plate-Mod.	3000	-210	330	75	48	750	
													Class-B Amp. (Telephony)	3000	- 80	125	4.0	15	125	
													Grid-Modulated Amp.	3000	-160	125	4.0	20	125	
250TL	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7	4-pin J.	T.3AC	Class-C Amp. (Telegraphy)	3000	-350	335	45	29	750	250TL
													Class-C Amp. Plate-Mod.	3000	-350	335	45	29	750	
													Class-B Amp. (Telephony)	3000	-225	125	2.0	15	125	
													Grid-Modulated Amp.	3000	-450	125	2.0	15	125	
GL159		10	9.6	2000	400	100	20	11	17.6	5.0	4-pin GL	T-4BG	Class-C Amp.-Oscillator	9000	-900	400	17	6.0	620	GL159
	250												Class-C Amp. Plate-Mod.	1500	-240	400	23	9.0	450	
													Class-B Amp. (Telephony)	9000	-90	190		2.5	130	
GL169		10	9.6	2000	400	100	85	11.5	19	4.7	4-pin GL	T-4BG	Class-C Amp.-Oscillator	2000	-100	400	42	10	620	GL169
	250												Class-C Amp. Plate-Mod.	1500	-100	400	45	10	450	
													Class-B Amp. (Telephony)	2000	-10	190		3.5	130	
$\begin{aligned} & \text { 204A } \\ & \text { 304A } \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	Special	T-1 A	Class-C Amp. (Telegraphy)	2500	-200	250	30	15	450	
													Class-C Amp. Plate-Mod.	2000	-250	250	35	20	350	$\begin{aligned} & \text { 204A } \\ & 304 A \end{aligned}$
													Class-B Amp. (Telephony)	2500	- 70	160		15	100	

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

S. - small; M. - medium; J. - jumbo; O. - octal. ${ }^{2}$ Refer to Transmitting Tube Diagrams.
${ }^{3}$ See Chapter Five for discussion of grid driving power
SObsolete type.
${ }^{5}$ Instant-heating filament for mobile use.

- Intermittent commercial and amateur service ratings.
win triode. Values, except interelement capacities, are for both sections, in push-pull.
- All wire leads. Ratings at 500 Mc
${ }_{10}{ }^{10}$ Gaseous discharge tube lor use on 110 -volt d.c. ${ }^{11}$ Output at $\$ 12 \mathrm{Mc}$.

Calculated at 33 per cert efficiency for 100 per cent modula-
tion.
is Multiple-unit tube with dual filaments which can be connected in series or parallel.
${ }^{14}$ Forced-air cooling is recommended at ratings above 75 per ${ }^{15}$ See Receiving Tube Base Diagrams.
in Inpul resonant frequency approximately 335 Mc .
${ }^{1 i}$ Subject to wide variation. \quad Iathode resistor in ohms. ${ }^{19}$ Grid-leak resistor in ohms.
${ }^{20}$ Approximately 45 milliwatts output at 1800 Mc . (With 100 volts and $2000-0 \mathrm{hm}$ grid resistor).

At 40 Mc . At 150 Mc .
: Max. peak volts, plate pulsed. Pulse power output. Buty cycle $=0.5$. \quad Duty cycle $=0.1$.
"S Values are for two tubes.

Frequency limits:

* May be used at full ralings on $56-60 \mathrm{Mc}$. band and lower. : May be used at full ratings on 112-Mc. band and lower. *.: May be used at full ratings on 224. Mc. band and lower. *.: May be used at full rating above 300 Me
table xV - TETRODE AND PENTODE TRANSMITTING TUBES

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Screen Voltage	Max. Screen Dissipation Watts	Interelectrode Capacitances ($\mu \mu \mathrm{fl}$.)			Base ${ }^{1}$	Socket Connections ${ }^{2}$	Typical Operation	Plate Voltage	Screen Voltage	$\begin{gathered} \text { Sup- } \\ \text { pressor } \\ \text { Voltage } \end{gathered}$	Grid Voltage	Plate Current Ma.	Screen Current Ma .	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts ${ }^{4}$	Approx. Carrier Output Power Watis	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$														
3 A 4	2.0	$\begin{aligned} & 1.4 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	7-pin B.	78B ${ }^{11}$	Class-C Amp.-Oscillator	150	135	0	- 26	18.3	6.5	0.13	2300	-	1.2	3A4
		2.5	0.1125							7-pin O.	T-8DB	Class-C Amp.-Osc.	200	100		-22.5	20	4.0	2.0		0.1	3.0	HY63
HY63*	3.0	1.25	0.925	200	100	0.6	8.0	0.	. 0			Class-C Amp. Plate-Mod.	180	100		- 35	15	3.0	2.0		0.2	2.0	
										5-pin M.	T-5BB	Class-C Amp. (Telegraphy)	400	100	30	- 30	35	10	3.0		0.18	10	RK64
RK64*5	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0			Class-C Amp. Plate-Mod, -	300		30	- 30	26	8.0	4.0	30000	0.2	6.0	RK64
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	5-pin M.	T-5CA	Class-C Amp.-Oseillater	400	150		- 50	22.5	7.0	1.5		0.1	5.0	1610
PK56*										5-pin M.	T-5B8	Class-C Amp. (Telesraphy) Class-C Amp. Plate-Mod.	400	300	-	- 40	62	12	1.6		0.1	12.5	RK56
RK56*	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0				250	200		- 40	50	10	1.6	2800	0.28	8.5	
$\begin{aligned} & \text { RK23 } \\ & \text { RK25 } \\ & \text { RK258 } \\ & \hline \end{aligned}$	10			500	250	8	10	0.2	10	7-pin M.	T-7C	Class-C Amp. (Telegraphy)Class-C Amp. (Telephony)	500	200	45	- 90	55	38	4.0		0.5	22	$\begin{aligned} & \text { RK23 } \\ & \text { RK25 } \\ & \text { RK25B } \end{aligned}$
													400	150	0	- 90	43	30	6.0	8300	0.8	13.5	
		6.3	0.9									Suppressor-Modulated Amp.	500	200	-45	- 90	31	39	4.0	-	0.5	6.0	
										7 -pin O .	75^{14}	Class-C Amp. (Telegraphy)	350	200		- 35	50	10	3.5	20000	0.22	9	1613
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.			Class-C Amp. Plate-Mod.	275	200		- 35	42	10	2.8	1000 C	0.16	6.0	
	11	6.3	0.7	375	285	3.75	6.5	0.2	$\frac{13}{6.5}$	7-pin 0.	7AC ${ }^{14}$		350	200		- 35	50	10	3.5		$\begin{aligned} & 0.22 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	6F6 6F3G
6F6G												Class-C Amp. Plate-Mod.	275	200		- 35	42	10	2.8				
	12	12.6	0.7	500	300	8	16	$0.2^{\prime \prime}$	10	7-pin M.	T-7C	Class-C Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	20000	0.4	28	
												Suppressor-Modulated Amp. Class-C Amp. (Teleqraphy)	400	140	40	- 40	45	20	5.0	13000	0.3	11	837 ${ }_{\text {RK44 }}$
RK44 ${ }^{5}$													500		-65	- 20	30	23	3.5	14000	0.1	5.0	
					250								600	250	40	-120	55	16	2.4	22000	0.30	23	
8027	13	6.3	0.9	600		6.0	12	0.1511	8.5	7-pin M.	T-7C	Class-C Amp. Plate-Mod.	500	245	40	- 40	40	15	1.5	16300	0.10	12	802
	13											Suppressor-Mod. Amp.	600	250	-45	-100	30	24	5.0	14500	0.6	6.3	
		6.3	0.5	350	225	2.5	9.5	0.7	9.5	7-pin 0.	7AC ${ }^{\text {a }}$	Class-C Amp. Plate-Mod. Class-C Amp. (Telegraphy)	300	200	-	- 45	60	7.5	2.5	一	0.3	12	HY6V6-GTX
$\begin{aligned} & \text { HY676- } \\ & \text { GTX } \end{aligned}$	13												250	200	-	-45	60	6.0	2.0	15000	0.4	10	
		6.3	0.5	425	225	2.5	10	0.2	8.5	5-pin M.			425	200	——	-62.5	60	8.5	3.0		0.3	18	Y 60
HY60*	-15										T-5	Class-C Amp. Plate-Mod.	325	200		- 45	60	7.0	2.5		0.2	14	
		6.3	0.85	450	250	4.0	9.1		7.2	7-pin 0.	T-8DB	Class-C Amp.-Osc.	450	250		-45	75	15	3.0		0.5	24	HY65
HY65	15							0.18				Class-C Amp. Plate-Mod.	350	200	\square	- 45	63	12	3.0		0.5	16	
		$6.0{ }^{6}$	0.8	450	250	4.0	8.5	0.18	6.0	8-pin		Class-C Amp.-Oscillator	450	250		- 70	75	15	3.5	-	0.4	20	2E25
2E25	15										Fig. 24	Class-C Amp. Plate-Mod.	400	200	-	- 45	60	12	3.0 3.0	$-$	0.4		
306A	15	2.75	2.0	300	300	6.0	13	0.35	13	5-pin M	T-5CB	Class-C Amp. (Telephony)	300	180	-	- 50	36	15	3.0	8000		7.0	306A
				500	250	6.0	15	0.55	12	5-pin M.	T-5C	Class-C Amp. (Telegraphy)	500	250	0	- 35	60	13	1.4	20000	\cdots	20	$307 A$ RK-75
RK-75	15	5.5	1.0									Suppressor-Modulated Amp.	500	200	- 50	- 35	40	20	1.5	14000		6.0	RK-75
											78 P	Class-C Amp. (Telegraphy)	500	200		-65	72	14	2.6	$\frac{21000}{14000}$	0.18	26	832
832** 10	15	19.6	0.8	500	250	5.0	7.5	0.05	3.8	Speci		Class-C Amp. (Telephony)	425	200		- 60	59	16	9.4	14000	0.15	16	
832A**10	15	$\begin{array}{r} 6.3 \\ 19.6 \end{array}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	750	250	5.0	7.5	0.0511	3.8	Special	78P	Class-C Amp. (Telegraphy)	750	200		-65 -65 -625	48	15	2.8	36500 25000	0.19	86	832A
												Class-C Amp. (Telegraphy)	500	175		-125	25		5.0		-	9.0	844
8445	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	5-pin M.	T-5BB	Class-C Amp. (Telephony)	500	150	-	-100	20.				\%	4.0	844
												Class-C Amp. (Telegraphy)	750	125		-80	40		5.5	-	1.0	16	865
865	15	7.5	2.0	750	175	3.0	8.5	0.1^{11}	8.0	4-pin M.	T-4C	Class-C Amp. (Telephony)	500	125	-	-120	40	-	9.0	-	2.5	10	

TABLE XV - TETRODE AND PENTODE TRANSMITTING TUBES - Continued

Tyde	Max. Plate Dissipa. tion Walts	Cathode		Max. Plate Voltage	Max. Screen Voltage		Interelectrode Capacitances ($\mu \mu \mathrm{fl}$.)			Base ${ }^{1}$	Socket Connections ${ }^{2}$	Typical Operation	Plate Voltage	Screen Voltage	$\begin{aligned} & \text { Sup- } \\ & \text { pressor } \\ & \text { Voltase } \end{aligned}$	Grid Voltage	$\begin{gathered} \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	$\begin{gathered} \text { Screen } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Walts ${ }^{4}$	Approx. Carrier Oulput Power Watts	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.														
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	7-pin O.	$7 \mathrm{AC}^{14}$	Class-C Amp. (Telegraphy)	400	300		- 55	75	10.5	5.0	9500	0.36	19.5	
954A												Class-C Amp. Plate-Mod.	325	285		- 50	62	7.5	2.8	5000	0.18	13	1619
6L6 6L6G	20	5.0		-750	175	5.	4.6	$\frac{0.1}{0.4}$	9.4	4-din M.	T-4C	Class-C Amplifier	750	175		- 90	60					25	254A
	21	6.3	0.9	375	300	- 3.5	$\frac{10}{11.5}$	$\frac{0.4}{0.9}$	12.	7-pin 0.	$7 \mathrm{AC}^{14}$	Class-C Amp.-Oscillator	375	200	-	-35 -70 -50	88	9.0	3.5	-	0.18	17	6L6
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	7-pin 0.	7AC	Class-C Amp. (Telegraphy) Class-C Amp. Plate-Mod.	500	250	-	$\begin{array}{r}-70 \\ -\quad 50 \\ \hline\end{array}$	65	9.0	9.0	$\underline{\square}$	0.8 0.25	11	
													325	225	-	- 45	90	9.0	3.0	-	0.25	90	6L6GX
HY6L6GTX*	21	6.3	0.9	500	300	3.5	11	0.5	7.0	7-pin 0.	7AC	Class-C Amp.-Osc. Class-C Amp. Plate-Mod.	500	250	-	- 50	90	9.0	9.0	-	0.25	30	$\begin{aligned} & \text { HY6L6- } \\ & \text { GTX } \end{aligned}$
													400	225		- 45	90	9.0	3.0	16000	0.8	20	
T21*	21	6.3	0.9	400	300	3.5	13	0.7	12	6-pin M.	T-6B	Class-C Amp. (Telegraphy)	400	250		- 50	95	8.0	3.0	-	0.2	25	T21
												Class-C Amp. Plate-Mod.	350	200	-	- 45	65	17	5.0	-	0.35	14	
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6	6-pin M.	T-68	Class-C Amp. (Telegraphy)	400	250	-	- 50	95	8.0	3.0		0.2	25	
												Class-C Amp. (Telephony)	300	200	-	-45	60	15	5.0	6700	0.34	12	RK49
1614*	21	6.3	0.9	375	300	3.5	10	0.4	12.5	7-pin 0.	7AC	Class-C Amp. (Telegraphy)	375	250	-	- 40	80	10	2.0	12500	0.1	21	
	25	2.56.3	$\begin{aligned} & 2.4 \\ & 0.9 \end{aligned}$	600								Class-C Amp. Plate-Mod.	325	-	-	- 40	70	8.0	2.0	10000	0.1	15	61
RK39*					300	3.5	13	0.2	10	5-pin M.	T-58B	Class-C Amp. (Telegraphy)	600	300	\square	90	93	10	3.0	-	0.38	36	K41
$\begin{aligned} & \hline \text { HY61/ } \\ & 807^{*} \end{aligned}$	25	6.3	0.9	600	300	3.5	11	0.2	7.0	5-pin M.	T-58B	Class-C Amp. (Telegraphy)	475	250	二	-50 $-\quad 50$ -50	85	9.0	2.5	25000	0.2	26	
												Class-C Amp. (Telephony)	475	250	-	$\begin{array}{r}-50 \\ -50 \\ \hline\end{array}$	100 83	9.0	3.0	$\underline{25000}$	0.22	40	$\text { HY } 61 /$ 807
815** 710	25	6.3	1.6	500	200	4.0	13.3	0.211	8.5	8-pin 0.	T-8FA12	Class-C Amp.-Oseillator	500	200	-	- 45	150	17	2.5		0.13	56	815
2548	25	7.5	3.25	750	150	5.0	11.2	0.085			T-4C	Class-C Amp. Plate-Mod.	400	175	-	- 45	150	15	3.0		0.16	45	
1624*	25			600	300	3.5	11	0.25	7.5	5-pin M.	T-5DC	Class-C Amp. (Telegraphy)	750	150	-	-135 -60	75			$\bar{\square}$	-	30	2548
													600	300	-	- 60 -50	90	10	5.0	30000	0.43	35	1624
RK66*	30	6.3	1.5	600	300	3.5	12	0.25	10.5	5-pin M.		Class-C Amp.-Oscillator	600	300	-	- 60	90	${ }^{9} 9$	3.3	25000	0.85 0.5	24	
										5-pin M.	T-SC	Class-C Amp. Plate-Mod.	500	-		- 50	75	8.0	3.8	25000	0.5	25	RK66
$\begin{aligned} & 807 * 7 \\ & 1625 * 7 \end{aligned}$	30	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.9 \\ & 0.45 \end{aligned}$	750	300	3.5	11	$0.2{ }^{11}$	7.0	5-pin M. 7-pin M.	T-5B8 Fig. 29	Class-C Amp. (Telegraphy)	750	250	-	- 50	100	8.0	3.0	-	0.29	50	
												Class-C Amp. Plate-Mod.	600	275	- 0	- 90	100	6.5	4.0	-	0.4	42.5	1625
2 E22	30	6.3	1.5	750	250	10	13	0.2	8.0	5-pin M.	$5{ }^{14}$	Class- C Amp.-Oscillator	750	250	-60	- 60	100	16		-		48	
												Suppressor Med. Amp.	$\begin{array}{r}750 \\ \hline 1250 \\ \hline 1000\end{array}$	250	-90	$\begin{array}{r}-90 \\ \hline-100\end{array}$	55	$\frac{29}{36}$		-		16.5	$2 E 22$
$\begin{aligned} & \text { RK20 } \\ & \text { RK20A } \end{aligned}$	40	7.5	3.0 3.25	1250	300	15	14	0.01	12		T-5C	Class-C Amp. (Telegraphy) Class-C Amp. (Telephony)	1250 1000	300	45	-100 -100	92	36	$\frac{11.5}{10}$	2300	1.6	84	
RK46 ${ }^{\circ}$						15	14		12	5-pin M.	T-5C	Suppressor-Modulated Amp.	1250	300	-45	-100	48	44	11.5	2300	1.3	21	RK20A
												Grid-Modulated Amp.	1250	300	45	-142	40	7.0	1.8	-	1.5	80	
	40											Class-C Amp.-Oscillator	600	250	-	- 60	100	12.5	4.0	30000	0.25	42	
HY69*	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	5-pin M.	T-5D	Class-C Amp. Plate-Mod.	600	250	-	- 60	100	12.5	5.0	30000	0.35	42	HY69
												Modulated Doubler	600	200	-	-300	90	11.5	6.0	35000	2.8	27	
8293** 10	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.18 \end{aligned}$	500	225	40	14.5	$0.1{ }^{11}$	7.0	Special	78P 14	Class-C Amp. (Telegraphy)	500 485	800	-	-45 -60	240	$\begin{array}{r}32 \\ -35 \\ \hline\end{array}$	$\frac{12}{11}$	9300	0.7	83	
										Special		Grid-Modulated Amp.	485	200			212	35	11	6400	0.8	63	829
												Gid-Modulated Amp.	500	200		- 38	120	10	2.0		0.5	23	

TABLE XV - TETRODE AND PENTODE TRANSMITTING TUBES - Continued

table XV - TETRODE AND PENTODE TRANSMITtiNG TUBES - Continued

${ }^{1}$ S. - small; M. - medium; O. - octal; J. - jumbo.
See Transmitting Tube Base Diagrams.
plate-and-screen modulated Class-C amplifiers, connect screen-dropping resistor direct to r.f. B+ 10 mod, and bypass for r.f. only. This does not apply to the 828.

- Obsolete type. 6 Instant-heating filament for mobile operation.

7 Intermiltent =ommercial and amateur service ratings.

- Calculated on basis of 33% efliciency at 100% modulation.
${ }^{10}$ Dual tube. Values for both sections, in push-pull.
${ }^{1}$ With external shielding.
12 Terminals 3 and 6 must be connected to gether.
${ }^{13}$ Early tubes of this type do not have center-tapped filament.

See Receiving Cube Base Diagrams. 120 Mc .
Frequency limits:

* May be used at full ratings on $56-60 \mathrm{Mc}$. band and lower. * May be used at full ratings on $112-\mathrm{Mc}$. band and lower. *** May be used at full ratings on $224-\mathrm{Mc}$. band and lower.
o*** May be used at full ratings above 300 Mc .

TABLE XVI-MAGNETRON AND VELOCITY-MODULATED TUBES

Type	Max. Plate or Collector Dissipa. iion Watts	Volts	Amps.	Base	Socket Connections	Typieal Operation		Grid No. 4 Voltage	Grid No. 3 Voltage	Grid No. 2 Voltage	Grid No. 1 Voltage	Grid No. 4 Current Ma.			$\begin{gathered} \text { Plate } \\ \text { or } \\ \text { Collector } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Stabi- lizing Electrode Voltage	Stabi- lizing Elec. trode Current Ma.	Magnetic Field Gausse	Cartier Output Watts	Tуpe
2Јこ51.	4.0	1.3	2.0	4 -pin M.	$4 \wedge P$	Magnetron Oscillator ${ }^{\text {c }}$	1000								4	650	10	1300	1.0	$2 J 35$
C25 20.	50	6.3	0.75	Special	T-9C	Class-C Amp. (Grid-Mod.) Class-C Amp. (Telephony)	1500	800	3600 3600	3600 3600	-33 -40	1.0 2.0	0.3 0.5	0.5 1.0	25		-		9.0 35	825
410-R ${ }^{3}$		6.3		8-pin 0.	T-2D	Oscillator-Amplifier or Frequency Multiplier	2500 :	-	-	-:	-	-	-	-	-	-	-	-	20	410-R

Transit-time split-plate type magnetron with internal cireuit (ap
proximate wavelength 10 cm .).
Inductive-outiput amplifier (recommended for frequencies above 300 Mc .)

Klystron with integral resonators (recommended for frequencies above 1000 Mc .).

- Collector anode voltage should be applied before applying grid voltage.
${ }^{5}$ Grid no. 2 (smoother grid) is electrically connected to collector anode.
Focusing electromagnet (double lens) should be operated at approximately 1000 ampere turns.
table XVII - TELEVISION TRANSMITIING TUBES

Chapter Jwenty-One

Radio Operating

The efficient and successful operation of a radio station is, in itself, an exacting accomplishment. It is a task that requires skill and specialized training. For this reason, by federal regulation as well as by international treaty it is rigidly stipulated that no radio station, amateur or otherwise, may transmit except under the supervision of a licensed operator having qualifications appropriate to the class of station. To acquire such qualifications requires training in the various specialized practices employed.

The basic object of most radio communication is the transmission of intelligence from one point to another, accurately and in as short a time as possible. For efficiency in communication, each class of radio service has set up operating methods and procedure which provide the most expeditious handling of radio traffic. Skilled operators should not only be expert in transmitting and receiving code or voice signals, but also should be thoroughly familiar with the uniform practices observed in the particular class of service concerned. The material following, although generally that of the amateur service, is typical of the basic operating procedure employed in nearly all services with necessary modifications.

C. Memorizing the Code

Apart from the technical and regulatory phases of the examination, the most important requirement for obtaining an amateur operator's license is ability to send and receive the Continental (International Morse) code at the rate of 13 words per minute. Aside from this consideration, a knowledge of the code is especially desirable during wartime; it is not putting it too strongly to say that everyone should know the code and be able to use it.

The serious student of code - sending, receiving, operating practices, copying on the typewriter, etc. - would be best advised to purchase a copy of the ARIRL booklet, Learning the Radiotelegraph Code (price, 25 cents, postpaid), and, in fact, anyone desirous of learning the code is advised to do so via the modern and effective method outlined in this booklet. However, the following suggestions will suffice to enable one to acquire the rudiments of code ability.

The first step is to memorize the code. This is no task at all if you simply make up your mind to apply yourself to the job and get it over as quickly as possible. The complete Continental alphabet, including the most-used punctuation
marks and numerals, is shown in the table of Fig. 2201. All of the characters shown should be learned, starting with the basic alphabet and then going on to the numerals and punctuation marks. Take a few at a time. As progress is made it is helpful to review at intervals all the letters learned up to that time.

One suggestion: Learn to think of the letters in terms of sound rather than their appearance as printed dot-and-dash combinations. This is an important point; in fact, surcessful mastery of the code can be acquired only if one thinks always in terms of the sound of a letter, right from the start. Think of A as the sound "didah" - not as a printed "dot-dash." The sound "dit" is pronounced as "it" with a " d " before it. The sound "dah" is pronounced with "ah" as in "father." The sound "dah" is always stressed or accented - not in a different tone of voice, but slightly drawn out and the least bit louder. The sound "dit" is pronounced as rapidly and sharply as possible; for purposes of easy combination, as a prefix, it is often shortened to "di." When combinations of the sounds appear as one letter, say them smoothly but rapidiy, remembering to make the sound "di" staceato, and allowing equal stress to fall on every dah. There should never be a spate or hesitation between dits aud dalss of the same letter.

If someone can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, the best way is to enlist his cooperation and learn the colle by listening to it. It is best to have someone do this who is familiar with the code and who can be depended on to send the characters correctly.

Learning the code is like learning a new language, and the sooner you learn to understand the language without the necessity for mental "translation" the casier it will be for you to attain speed and proficiency. You don't think of the spoken letter U , for example, as being composed of two separate and distinct sounds - yet actually it is made up of the pure sounds "ee" and " $\overline{o s}$," spoken in rapid succession. You learned the letter U as a sound unit itself. Similarly, you should learn code letters as individual sounds themselves, and not as combinations of other sounds.

Don't think about speed at first; the first requirement is to learn every character to the point where you can recognize each of them without hesitation. Concentrate on any difficult letters until they become as familiar as the rest.

A	didah
B－－	dahdididit
$\mathrm{C}-\bullet$－	dahrlidahdit
$\mathrm{D}=\bullet$－	dahdidit
E－	dit
F	dididahdit
G mee	dahedahdit
H	didididit
I	didit
J	didahdahdah
K	dahdidah
L	didahdidit
M	dahndah
$N=$－	dahdit
O	dahdahdah
P	didahdahdit
Q	dahdahdidah
R－	didahdit
S－－	dididit
T	dah
U	dididah
V •－．	didididah
W	didahdah
X	dahdididah
Y	dahdidahdah
$Z \bullet \bullet \bullet$－	dah dahdidit

1 －－－＝	didahdahrlahdah
2	dididahdahdah
3	didididahdah
4	dididididah
5	dididididit
6 －－－－	dahdidididit
7 －	dahdahdididit
8 －ッモ・	dahdahdahdidit
9 －ローセー・	dabdahdahdahelit
$0-\square<$	dahdahdahdaldah

Period
Comma
Question mark
Error
$\begin{array}{ll}\text { Double dash } & \text { Wait } \\ \text { End of message } & \\ \text { Invitation to transmit } & \\ \text { End of work } & \end{array}$
Fig．2201－The Continental（International Morse）Code．

© Acquiring Speed by Buzzer Practice

When the code is thoronghly memorized， you can start to develop speed in receiving code transmission．Perhaps the best way to do this is to have two people learn the eode together and send to each other by means of a buzzer－ and－key outfit．An advantage of this system is that it develops sending ability，too，for the person doing the recoiving will be quick to rritiage uneven or indistinct sending．If pos－ sible it is a good idea to olftain the assistance of an experiened operator for the first few sessions，so that wou will learn how well－sent characters should sound．
liither the buzzer sot．shown in Figs． 2202 and 2203 or one of the audio oseillators de－ seribed will give satisfactory results as a prac－ tice set．The oscillator more closely simulates actual radio signals．

Fig．2202－Wiring diagram of a hazzer code－practice set． The headphones are connered across the eoils of the buzaer，with a condenser in series，The size of this comdenser determines the strength of the signal in the ＇phones．If the value shown pives an excessively lond signal，it may be reduced to $500 \mu \mu \mathrm{fd}$ ．or even $250 \mu \mu \mathrm{fd}$ ．

The battery－operated audio oscillator in Figs． 2204 and 2205 is easy to construct and gives effective performance．If nothing is heard in the headphones when the key is depressed， reverse the leads going to either transformer winding（do not reverse both windings）．

Fig． 2203 －The cover of the buzzer unit has been removed in this view of the buzzer code－practice set．

Fig, 2201 - Wirin: diatram of a simple vacmum-tube audio-frequancy orillator for use as a code-practice set.

Fig. 2205 - Layout of the andio-ns-illator mode-praction set. All parts may be mounted on a wooden haseboard, approximately 5×7 inches in size.

The a.r.-rt.e. osiblator in Fig. 2206 utilizes a eombination diondepentorde tubs, the prontode sertion being used as a varimm-tube oncillator. This set operates directly from the 115 -volt a.c. or d.e. power line and most be installed and handled so that clectrical shook will be impossible. Theset should be andesed in a protertive rabinet or box. If a metal ehasis is meed, the eomponents mast be insulated from the ahassis.

The healphone rirenit is insulated from the power line ats stown in Fig. 22ofi, but rare is recpuiterl to provent contact with ground or power line while touching the key.

Fig. 2206 - A.c.al.e vacumm-tub, andio oscillator. (,) - low $\mu \mu$ fid. mideet mira.
(2- $50-\mu \mu \mathrm{h}$. midyet miea.

$\mathbf{h}_{1}-0.5$ mpohm. ' watt. (Alower value, or a variable resistur, mas le used to reduce volume.)
R_{2} - 1 narohm,, watt.
$\mathrm{R}_{3}-.50$ ohms, 1 -watt.
' 1 - - 3:1-ratio midet push-pull audio transformer.
Line cord resistor - 310 ohms. (A 3010 -ohm. 50 -watt wire-wound fixd resistor may he used instead.)

After the practice set has been built, and another operator's help secured, practice sending turn and turn about to each other. Send single letters at first, the listener learning to recognize each character quickly, without hesitation. Following this, start slow sending of complete words and sentenees, always trying to have the material sent at just a little faster rate than you can copy easily; this speeds up your mind. Write down cach letter you recognize. Do not try towrite down the dots and dashes; write down the letters. Don't stop to eompare the sounds of different letters, or think too long about a letter or word that has been missed. Go right on to the next ome, or each "miss" will cause vout to lose several chararters you might otherwise have gotten. If gou exercise a litthe patience vou will worn be getting every charater, and in a surprisingly short time will be receiving at a good rate of speed. When you can receive 13 words a minute (65 letters a minute), have the sender transmit cole groups rather than linglish text. 'I'his will prevent you from recognizing a word 'on the way" and filling it in hefore you've really listened to the letters themselves.

After you have acquired a reasomable degree of proficiency, eoncentrate on the less eommon charaters, as well as the mumerals and punctuation marks. These prove the downfall of many applieants taking the code examination under the handicap of nervous stress.

C. Using a Key

The correct way to grasp the key is important. 'The knob of the key should be about eighteen inthes from the erfge of the operating table and about on a line with the operator's right shoulder, allowing room for the elbow to rest on the table. A table about thirty inches in height is best. 'lhe spring tonsion of the key varies with different operators. A lairly heavy spring at the start is desirable. The back adjust mont of the key should be changed until there is a vortieal movement of about onesixterenth inch at the knob. After an operator has masterm the use of the hand key the tension should be changed and con be redured to the minimom spring tension that will ramse the key to open immendiately when the presiure is refatised. Nore spring tomsion than neressary causes the expenditure of moneressary enorgy. The contacts should be spaced by the rear screw on the key only and not by allowing play in the side serews, which are provided morely for alimning the contact points. These side sorews should be serewed up to a sotting which prevents appreciable side play but not adjusted so tightly that binding is caused. 'Whe gap Intwen the contacts should always be at least a thirty-second of an inch, since a toofinely spaced contart will eultivate a nervous style of sending which is highly undesirable. On the other hand two-wide spacing (much over one-sixteenth ineh) may result in unduly heavy or "muddy" sending.

Do not hold the key tightly．Met the hand rest lightly on the key．The thumb should be against the left side of the kes．The first and serond fingers should be bent a little．They should hold the middle and right sides of the knob，respectively．Tle fingers are partly on top and partly over the side of the knob．The wher two fingers should be free of the key．Fig． 2207 Nhows the correet way to hold a key．

Fig． 2207 －＇Hhis sketeh illu－tratwe the currert position of the hand and fingers for eoodsending withatedeqraphikey．

A wrist motion should be used in sending． The whole arm should not be used．One should not send＂nervously＂but with asteady flexing of the wrist．The grasp on the koy should be firm，but not tight，or jerky sending will result． None of the museles should be tense but the should all be under control．The arm should rest lightly on the operating table with the wrist held above the table．An up－and－down motion without any sideways action is best． The fingers should never leave the key knob．
（inod sending may wem easier than recciv－ ing，but don＇t be dereived．A begimer shomld not attempt to send fast．Kicep your transmit－ ting speed down to the receiving speed，and bend your efforts to semding well．Do not try to speed liongs up too soon．A slow，even rate of sending is the mark of a good operator．Speed will come with time alone．Leave sureial types of kess alone until you have mastered the knack of handling the standard key．Broause radio transmissions are seldom free from interference， a＂heavier＂st sle of sending is bert to develon for radio work．A rugged，heavy key will help in developing this characteristic．

（1．Radiotelegraph Operation

The radiotelegraph rode is used for record communication．Aside from his ahility toron at high speeds，a good operator is moted for his neatness and aceuracy of copry．It is evident that a radio operator should cons examely what is sent，and if there is any doubt about a letter or word he should query the transmitting op－ erator abrut it．

General procedure－（1）Calls should be made by transmitting not more than three times the call signal of the station called．and DE，followed by one＇s own call signal sent not more than three times，thus：VEARBE VE2Bli VE2BE IDE W1AW W1AW W1AW．In ama－ teur practice this form is repeated completely once or twice．The call signal of the calling station must be inserted at frequent intervals for identification purposes．Repeating the call signal of the called station five times and sign－
ing not more than twice has proved excellent practice in conneetion with break－in operation （the reaciver being kept tuned to the frequency of the called station）．The wee of a break－in system is highly recommended to save time and reduce unnecessary interference．

2）Answering a coll：（all three times（or less）；send DIt：sign three times（or less）；and after contart is astablished derrease the use of the rall signals of both stations to onee or twice．Example：

WlGNF DE W1AW（ile OM GA K（meaning，＂Good evening，old man．go ahtual＇）．

3）Finding signals and sign off：The proper use of $A R$ ，K and $\overline{V A}$ ending signals is ans fol－ lows：AR（end of trammission）shall be used at the cond of messatese during communication； and also at the end of a call，indicating when so used that communication is not yet establishod． In the case of（＇ Q ablls，the international regu－ lations recommend that K shall follow．K（in－ vitation to transmit）shall ako be used at the end of each transmission when answering or working another station，carving the signifi－ cance of＂go ahead．＂$\overline{V A}$（or $\overline{\operatorname{Si}}$ ）shall be used by each station only when signing off，this fol－ lowed by the call of the station being worked and your own call sent once for identifieation purposes．Examples：
$(\overline{A R})$－WINQQ DE WICII AR（showing that WiCTI has not yot gotton in tonch wjh Wlliey that has calloul and is now listening for his reply）．（＂sed aftur the signature bo
 may be a slight matuse lefore starting theserond of the sorises of messames．＇The courtoons and thoughtinl operator allows time for the receiving onerator to enter the time on the message and pint another hank in realiness for the tratlic to come．If k is adhent，it means that the opmerator wishes his first message acknowlendged before geing on with the second message．If no ki is luard，preparations shonld be mate to continue coplying．
（F）－W1JH：Q DF：WGAJM R K．（This arrangement is ver：ofton used for the achmowledmanot of a transmiswion． When ：nyone overhears his he knows at once that the two
 W1JEO＊aransmission was all understenni by WoadM，and that Wiid．JM is tellime WIJFQ to go slowerl with mome of what he hats lovay．）WoたJY DE WZNH NR23 K K゙．（Fvi－
 is qoml．The messare was all reerived correctly，W7N゙H teds W9KJ！to＂go ahead＂with more．）
 W7WY．（W7WY says，＂f い you latur，wry hest regarals．I am through with son for now and will lishof for whomever wishes to call．WTWV＇signing off wit Wult．＂）

（1）Radiotelephone Operation

Procedure to bo wed in radiotelephone operation follows the foregroing general prin－ ciples closely．The oproator makes little use of the special abbreviations available for code work，of course，sinee he maty directly speak out their full meaning．Radiotelophony is used principally for command and control purposes， such as communication between ground sta－ tions and aircraft，where recorded message traffic is at a minimum．Transmissions eonsist mostly of short bursts with little variety in
form or content，and each operator must be－ come familiar with procedure methods adopted by the particular service．

FOHE EABIUTRLEIPIONE

A list ean be oltained from the local Western l＇nion ofliere and postod heside the telephone to use when telephoning messages contaning initials and dillicult words．Such code words prevent errors due to phometicesimilarity．Also all woice operated stations should use a stambord list as meeded to identity call sigmals or unfamiliar expressions．A．R．R．I．，Ollicial Phonestations have alopted the follow－ ing word list：

A－ADMMs	N－NEW YORK
13－30ston	O－ochas
	P －PETMK
口－bmivima	
F －EISWARI）	R－Robbirla
F－Fl？NK	
（i－CidoliciE	T－THOMIS
II－IENRY	V－1010）
$\mathrm{I}-\mathrm{I}$ ） A	
J－Jolin	W－－WIIIIAM
にーK゙N゙い	－X－RNY
L，LIN（OLN	Y－リーが，
M－MAlR ${ }^{\text {P }}$	Z－ZEIRO

Example：W1EII ．．W 1 EI）－ WARI HENRY゙

Names of states and countries hame been used for identilying letters in amst－ teur radiotelephome work．It is recom－ mended by A．R．R．S．that use of a conte and spereitl aboreviations be minimized in voice work insoliar asp pessible．and the full expression（with conciseness）be sub－ stituted．

Unusual words should be avoided in the in－ terest of arcuracy if possible when drafting messages．When they unavoidably turn up difficult words may be repeated，or repeated and spelled．The operator says＂I will repeat＂ when thus retransmitting a difficult word or expression．

The spead of radiotelephone transmission （with perfect acourary）depends almost en－ tirely upon the skill of the two operators in－ volved．One must learn tospeak at a rate allow－ ing perfect understanding as well as permitting the receiving operator to copy down the mes－ sage text，if that is necessary．Because of the similarity of many English sperch sounds，the use of alphabetical word lists has been found necessary．All voice－operated stations should use a stundurel list as needed to identify call signals or unfamiliar expressions．

Message homiling－lach serviee－com－ mercial，military，amateur－prescribes its own message form，but all are generally simi－ lar to the example here given．A message is broadly divided into four parts：（1）the pre－
amble：（2）the address；（3）the text：（4）the signature．The preamble contains the follow－ ing：
a）Number（of this message）．
b）Station of origin．
r）（「herk（number of words in text）．
（d）Pare of origin．
c）＇lime filed．
f）Date．
Therefore，it might look like this：
xie $3 \cdot 4$ whek Jil $1 ; 3$
CHICAGO Lhad 450 （PM may 121942
CAPT WM MONTGOMERY
mititions blug
Wasilingorn de BT
sixtil Coht＇s alcea has 68
MEN AVALIABIEF FOH ACTIVE DUTY FIXED SEHVICE HEGALDSAT $\overline{\mathrm{B}}$

HUNTER WLTK

The R－N－I ststem is an abhreviated methend of imdicating the main daratereristics of a re－

READABILITTY

1 －Unreadahle
2 －Barely readallle，oceasional words distinguishable
3 －Readalbe with considerable diffi－ culty
4－Radalbe with practiaally no diffi－ culy
5－l＇erfectly readalile
SICNAL STRENOTII
1－Fiaint－signals harely precepti－ ble
2 －Vary weak signals
3－Wrak signals
4．Fair signals
5－Fairly good signals
6－Cinod signals
7 －Moderately strong signals
8－Sirong siznals
9 －Exiremely strong signals
TONE
I－Exircmely rough hissing note
2 －Very rough ace．note，wo trace of musicality
3－Rough，low－pilched a．e．note， slighty musical
4 －Rather rousht ace．note，moder－ aldy musieal
5－Wusie：ally modulated note
6－Modulated note，slight trace of whistle
7 －Near d．e．note，smooth ripple
8－Good d．e．note，just a trace of ripple
9 －Purest d．c．note
（If the note appears to lie crystal controlled simply add an X after the appropriate number．）
reived signal，the Readability，Signal Strength， and Tone．The letters R－S－T determine the order of sending the report．In asking for this form of report，one transmits RS＇T？or simply QRK？

Such a signal report as＂RST 387X＂（：ab－ breviated to $387 \mathrm{~N}^{-}$）will be interpreted as ＂Your signals are readable with considerable difficulty；good signals（strength）；near die． mote，smooth ripple；crystal eharacteristic moticed．＂Unless it is desired to comment in regard to a crystal characteristic of the signal， a single three－numerical group will constitute a complete report on an amateur signal．The R－S－T system is the standard ARRL method of reporting．Various report eombinations are based on the table．

This is obviously the 34th message（of that day or that month，as the poliey of the station preseribes）from station WLTK．The＂JH 13＂ is the＂sine＂of the operator plus the number of words in the message text．All operators des－ ignate themselves with a personal sine to be used on message traffic and on the air：in most rases it consists of the operator＇s initials．＂The signal $\left.\overline{B^{\prime}}\right|^{\bar{\prime}}$（double－dash）is used to separate the text from address and signature．

Several radiograms may be transmitted in series（ $(2 S \mathrm{SG} . .2$.$) with the consent of the$ station whieh is to receive them，As a general rule long radiograms should be transmitted in sections of approximately fifty words，wach ending with $\cdots--\cdots$（？），meaning．＂Hare， you received the message correctly thus far？＂

If the first part of a message is received but substantially all of the latter portions lost，the request for the missing parts is simply RPT TAT AND SIG，meaning，＂Repeat text and signature．＂PBL and ADR may be used sim－ ilarly for the preamble and address of a mes－ saige．RI＇T ALL or RPT MiNG should not be sent unless nearly all of the message is lost． When a few word－groups in conversation or message handling have been missed．a selection of one or more of the following abbreviations are used to ask for a repeat on the parts in doubt．

Ablrcriation	Mrraning
AA	Repeat allatter．
？ AB	Rupeat all hefore．
？ AL	Repeat all that has be
？ BCO ．．．Aパ	Repeat ：lll betwern．．．a
？WA	Repeat the word after．
	Repeat the word

The good operator will ask ouly for what fills are needed，separating different request：for repetition by using the break sign or double dash（－．．－）between these parts．There is seldom any excuse for repeating a whole mes－ sage just to get a few lost words．

Another interrogation method is sometimes used，the question signal（．－－．．）being sent between the last word received correctly and the first word（or first few words）received after the interruption．

As an example of what procedure would be followed in the transmission of a commercial message，let us assume that a passenger aboard the Sis．Coasturise wishes to notify a friend of his arrival．Station WK（＇Z aboard the ship would call a shore station（WSC）and the following would ensue：

WSC wSC WSC DE WKCZ WKCZ WKCZ P AR K

WKCZ WKCZ WKC＂DE WsC ANS 700 K

WS：WSC：WSC：DE WKCZ P 1 CK12 SS COAST－ WISE ON27 MAY 10 BT MISN JANET NHANNON 18 LAMIBHR＇T NTRHET BOATON B＇T ARIRIVE PIER 18 TONIGIII＇1．OVE B＇I JOHN AR K

WKC\％DE W゙SC：R1ぶ
WS：DE WKCZ QRU sTK
WKCZ DE WSC \＆
If the receiving operator missed the number of the pier of arrival，he wouk send：
pIELE ？？TONIGHT or ？WA PIER．
wherempon the transmitting operator would siy：

PIEIR 18 ToN゙IGHT

and then would stand by for an acknowledg－ ment of receipt（ R ）．

The service messuge－When one station has a message to transmit to another concern－ ing the hamding of ：l provious message，the message is titled ：u＂serviee＂and is indicated by＂sv（＂）in the preamble when sent．Such a messatge may refor to non－delivery，delayed trinnmission，errors．or to any phase of message handling activity．Words may be abbreviated in the text of the service message to conserve time．Do not abbreviate to the point where misumderstanding may arise．

Provisions in the（＇ommonications Aet of 1934 make it a misilomosnor to give out in－ formation of any sort to any person except the addressee of a mossage or his authorized agent． When for some reason a message cannot be delivered，a sorvire mossige should bo sent to the station of origin containing information to that effect．

Land－line cheek－The land－line or＂text＂ count，consisting of＂ount ouly of the words in the body or text of the message，is probably now most widely used．（The＂eable＂count rovers all words in the address and signature， as well，probably accounting for its unpopular－ it y ．）When in the case of a few exceptions to the basie rule in land－line checking，certain words in the address，signature or preamble are counted，they are known as extra words and all such are so designated in the check right after the total number of words．

The check includes：
1）All words，figures and letters in the body，and
2）the following extrat words：
（a）Signature exerpt the first，when there

THE RADIO AMATEUR'S HANDBOOK

are more than one (a title with signature does not count extra, but an address following a signature does).
(b) Words "report delivery," or "rush" in the check.
(c) Alternate names and/or street addresses. and such extras as "personal" or "attention."
Dictionary words in most languages count as one word irrespective of length of the word. In counting figures, a group of five digits: or less counts as ohe word. Bats of division and decimal pmints may ronstitute one or more of the digits in surh a group. It is recommended that, where feasible, words be substituted for figures to redure the pessibility of arror in transmission. Betailed examples of word comenting are alonit as diflicult in one system of count as :mother.

C Net Operation

In field work many military conmmuirations units opreate in "not" fashion, wherein one station (at the headquarters of the wint) is designated as net-ontrol station (NCS) to direet the business of the net. The operation of fill stations in the sitme net is on one single frequency, so that any one operatur may lacar any other station(s) without rotuning his receiver. "Braak-in" is advantagenusly rmployed here - the recoiver is kept rumning during transmissions, so that nearly simultaneous twow:y commanication is pessible.

Briefly, the promedure in net operation is as follows: The NCS alls the met together at at pre-announced time and using a predetermined call. Inmediately, station menebers of the net reply in alphabetical (or some other predetermined) ordor, reporting on the NCS's signal strength and stating what traffic is on hand and for whom. The NCi acknowlodges, meanwhile keeping an aroount of all trafle oulamd, by stations. He then direets the transfar of messages from one station to another, giving preference to any urgent traffic so indiatied at roll call. When all traffe has been distributed and it is apparent thore is no further business, the NCs will close the net, in most cases maintaining watch on the net frequency for any special traflic which might appear.

II Keeping a Log

FCC regulations require nearly every radioconmmuication station to keep a complate "perating record or "log," including such dat:a ats times and dates of transmissions, stations
contacted, message traffic landled, input power to the transmittor. frequenery wied. and signature or "sine" of the opurator in "harge.

Log-kerping proredure differs with card dass of communications service. A typhal phage from an ansteur radiostation loge, prepareat on the standard ARRI form, is shown befow and is. illustrative of the form and data required.

C Time Systems

While most rontinental-commereial telegraph amd radio direnits use lowal stamdard for War) time in log-kerping and message-hambling, international radionommmiacation stat ions and
 of time-korphing. Gne is Groonwid, (ivil 'Time. a 21-hour rlock system usal in international radincommanication work. All figuresare hased on the time in Greonwirh, Engemat, the eity of 0° muridian fame. (0)OO represents miduight in
 is noon; 1800 is 6 1.m. : 2100 is agsim midught amb the same as 0000 of the following day. The figures must be correated to card individmal time zome. 'lhe ('entral W'ar 'lime zone is five hours behind (irnenwidh, so that 06:30) (: "「 ($6: 30$ a m. in Creanwich) would represent $1:: 0$ A.s. ("Ib'l', for example. As an example of reverse trandation, 9:3) A.s. ('W"l' would be
 four hours behiml Ge"I' MW'l', six hours; PW', seven.

At present the military serviess use simply a 2 -hour clorek, hased on lowal time, without arrecting to (bremwichor ang onther lomgitale. "Ihen 6 a.m. CWT beromes bion; 6 a.m. Ell T is 0 060), and so on. The primetipal advantage of thise sestem is an climination of the necossity for the use of ram. or A.M. abbretiations.

＂Q CODE＂

In the rfogChations ancompanying the existing luternational hadiotelemraph Con－ vention．there is a very usoful internationally agreed code designed to moet the major needs in international malio communicat ion．This code
is given in the following table．The abbrevia－ tions themselves have the meanings shown in the＂answer＂columm．When an abbreviation is followed by an interrogation mark（？），itassumes the meaning shown in the＂question＂column．

Abtros－ viation	（quextion	Ansur
QRA （ll）	What is the natue of yentr－：ation＂？ How far appoxaluately ate som from my－tationt？	The matere of my stationt is in ．．．．．．．tatutiral milus（or ．．．．．．．kilometars）．
Q14C	What company（or（incernmont Ahnini－tratinn） sethen the actomats for some station：	The acrounts for my station are selted by the compans（or by the（iovernment Ad－ minialration of ．．．．．．．．
Q1\％	Whare are son houmb amd where are som frome	I tan lubam for ．．．．．frum
（9120：	Will son tell me mex exat frequene（wavelutheth） in ke／s（or ma）＂	（11r ．．．．．．．in）．
QRII	Dost my frolumme（wacelagth）atry＊	
Q131	Is my mote sombl＇，	I
OHS	Do yout roreve me hadls？Are mes xighans weth	＇Ilue logelilitity of your signalo is ．．．．（1 to is）．
QIRK GItL．	What is the hogibility of mes smatis（I to ．f） Areson buss：	
QRM	Are som luing int．rererd with＇s	not juterfere． I ant bing intorforel with．
OHV	Aro yom trunded beg atmospheries？	
9120		InCras4，
（12）	－hath I dewtume inwer？	words mer mimute．
ORO	Shatl I roul faster．	\＆omd more shwly（ ．．．．．．Words per minute）．
ghis		Stole s－mbline．
QRT	Have sum amiling for me？	1 hatwe mothing for som．
QRV	Are son ready？	I ：am reads．
QIS	Thatlit wall ．．．．．．that som are ralling him on kc / s（ur ．．．．．．．．min）：	 kir s（or ．．．．．． 111 ）．
QRX	Shatl I wat？When will you call me aman＇．	Wait（or wat matil fabe finishod wombumating with ．．．．．．．．）｜will call som at ．．．．．．．o＇cluck （or inmmediat川品）．
Oll ${ }^{\text {Y }}$	What is my lurn？	```Your turn is \n. . . (or according to any other method of arranusinerit).```
QRZ	Whar is malling	Yom are hoing eallond hy
gSt	What is thor aremeth of	Che sirenorl
0以゙は	Dene the－trenoth of my－－matals vary	
QSII		
OSG；		tilll－ francs
QSJ	What is the charge fur worl for ．．．．．．．ind laditur 	The rhatere par womblar
OSK	Shall I romtimu with the tramsmionion of all wey 	will isturront son if now．e－ars．
OSL		I gix．
OSM		
OSO	F：an som rommanatald watl ．．．．．．．Atmon thromgh the merlimen of ．．．．．）？	the thodiums of ．．．．．．）． I will ruttomsmit 10．．．．．free of ehsirat．
Qsir	Wifl yon rextansuit 10 frody	The distruse rethl received from ．．．．．．has been
QSIK	Has the distress eall requical from ．．．．．．twan Manced＂	rlatared by
OSU	or on wato of IVM A1，A2，A3，or 13 ＂	Fionl（or reals）on atnlor on watro of llybe $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3$ ，or B ．
OWV		Soms a serins of JW
osw	Will you seme on and／or on waves of＇lyn $A 1, A 2, A 3$ ，or 13 ＂	```(or) amb/or on waves of I'ype A1, A2, AB. or H.```
OSX	Will you listen for ．．．．．．．．（mall sign）on kc / s（or ．．．．．．．m）？	I ：am listeniny for ．．．．．．．．（call sign）on kr / s（ or ．． m ）．
QSY	Shall I change to transumsion on ．．．．．．．．． $\mathrm{kr}_{\mathrm{c}}^{\mathrm{s}}$（or m）without chambing（de tyo of wate or Shall I change to tramsuission on another wawe：	Chahas to 1 rathsurssion on ．ke／s（or ．．．．．．．． （in）without wamging the typ of wave or Chather batransuission on anoller wave．
	Shall I send cach word or group twice？	Somil cach warl orymonptwice．
OTA	shall I cancel trlegram No．．．．．．．．．as if it had not been sent？	Camed thlegram No．．．．．．．．．．as if it had not been sent．
UTH	Do you agree with my number of words？	I do not arree with your number of worts：I will re－ peat the first letter of earh word and the first figure of cach number．
O＇RC	How many telegrams have you to send？	I have ．．．．．．．telcgrams for you（or for ．．．．．．．．）．

Abbreviation	Question	Answer
QTE	What is my true bearing in relation to you? What is my true learing in relation \qquad sign)? What is the true bearing of (call sign) in relation to (call sign)?	Your true bearing in relation to me is degrecs or Your true bearing in relation to \qquad (call sign) is \qquad degrees at \qquad (time) The true bearing of (call simn) in relation to (call sign) is \qquad deprees at (time).
QTF	Will you give me the prition of my station aceording to the beariags taken by the direction-finding stations which yon control?	The position of your station arcording to the luarings taken by the direction-finding stations which I control is latiture longitude.
QTG	Will you send weur call sion for fifty scoonds followed by a dash of torn serothls on kc / s (or min) in order that I may take your bearing?	I will send my call sikn for fifty seconds followed by a dash of ten surounds on kr / s (or m) in order that you may take my bearing.
QTII	What is your position in latitude and lougitude (or by any other waty of showing it)?	My position is latitud, longitude (or hy any other way of showing it).
QTI	What is your truc course?	My true course is deprines.
QTJ	What is your speed?	Ms sperd is knots (or kilonmeters) per hour.
QTM	Send radioelectric signals and submarine sound signals to enable me to fix my bearing and my distance.	I will send radioelectrie signals and submarine sound signals to enable you to fix your learing and your distance.
QTO	Ilave you left clock (or port)?	I have just left dock (or port).
QTP	Are you moing to enter dork (or port)?	I am going to enter dork (or port).
QTQ	Can you conmmanate with my station by moans of the Intermational Code of Signals?	I am going to rommunicate with your station by means of the International Code of sipnals.
QTR	What is the exard time?	'Ihe exart time is
QTU	What are the hours during which your station is open?	My station is open from to
QUA	Have you news of (call sign of the motrile station)?	IIere is news of (call sign of the mobile station).
QUB	Can you give me in this order, information conrerning: visibility, height of clouds, groumd wind for (place of olservation):	Here is the information requested
QUC	What is the last meswape remened by you from (ratl sign of the mohile station)?	The last inessage reccived by me from (call sign of the molite station) is
QUD	llave you reroived the urpathey simat sent by (call sign of the motile station)?	I have received the urgeney signal sent hy (call sign of the mobile station) at(time).
QUF	Have soun reweived the distross sigmal sent by (eall sign of the mohile station)?	I have riveived the distress simnal sent by (call sign of the mohild station) at (time).
QUS: OUII	Aro voulwing forwed to alight in the seat (or to lamd)?	1 an foreal to alight (or land) at (place).
QUII	Will son inulicate the present barometric pressure at seal level?	The present barometric pressure at sea level is (units).
QUJ	Will yon indicate the tran comes for me to follow, with no wind. to make for yon?	The true course for you to follow, with no wind, to make for me is \qquad degrees at (time).
QUK	Can yout tell me the romlition of the sea observed at (place or courdinates)?	The sea at (place or coürdinates) is
QUL	Can you tell me the swell observed at (place or coürdinates)?	The swell at (place or coürdinates) is
QUM	Is the distress trafic endel?	The distress traffic is ended.

Specialabireviations adopted by the Alfili:

QSI' General call preceding at messig" :udressed to all amatenrs and ARRT, Members. This is in effect "CQ ARRL." QRR Official ARRL "land SOs." I distress call for use by stations in emergeney zones only.

Scales Used in EXpressing Signal Strength and Readability
(See QRIN and QS. 1 in the Q Code)

Strenoth			Readnbility	
QSA1		Barely perceptible.	QRK1.	Cnreadable.
OSA2		Weak.	ORK2	. . Readable now and then.
QSA3		Fairly good.	QRK3.	Readable with difficulty.
OS.4		(iond.	QRK. Readable.
QS. 5		Vers good.	QRK5. Perfectly readable.

Index

Feed Sistems: Page	
Balance to (iround	198
Characteristic Imperdance	50. 199
Coaxial lines.	108,200
Concentrie limes.	1!5, 206
Current Feed	197-198
Delta Matchime Tramsformer	$206-20{ }^{2}$
Direct Fxeitation	197
Fereder Commertions	381
Harmonic leesotinn	
Impedatuce	51
1 mpedance T tansfor	51-52
1.0ngth . $199.203-20.4 .210$	
linear 'l'ransforna	$215-209$
losses.	198-199
	- $11.4-209$
	198.202
"Q"Section	207
Reartaner.	51
Resistance	51
Resonant Lints. Single-Wire Ferd	$202-204$
	118,205
Standins-Wave Ratio	.50-.51
Stuh Matwhiug. ...	-01i-208
'Thned 'lratmmission Jimes.	201-204
Twisted-l'ine line. Thtaned Transmissinn lines.	198. 200
	20) -209
Thanamed Transmission lians. Voltage Feed.	198
Folderl-Dipold Antemnas	225
Frolded Dindlet.......	225
	19.5
Gromnd Connection	222
Ground Eflect. . . .	5-199
	224
Grommded Anternats	222-223
Ginss Half-IV:ave	378
H: iff-liam	194-19.5
H:Ily:ards	378
Hortz Anterma	104
	226
Imp部haner.	190,210
Indertanme-1	223
Installation.	75-384
", J" Antermat. Lazy-H Anternat	23:3, 393
	218
Larneth	20. 222
Lerperth.	384
J.onlood Antonnas	223
J.ong-Wjire Intunatis	21-2-216
L.anp Antunnats.	22:3-2124
Marconi (6ronnled) Antmmas	220-223
Mists.	37-377
Mrisimpenents.	+11-412
Monile. . .	382, 393
Multi-Batul Antennas	211-214
P^{2} aratiolic Reflerotors.	2.3-2.26
Parasitic Vilemuents.	220-222
P:attorns. Rauliallinn	197, 211
Phased Arrats	16i-219
Phane Reflector Antentios	295-2:29
Plane Elued. Redlertors. .	225
Polarization	194, 196
Power Gatin.	194, 210
Pullers.	. 378
Rataliation ('l Radiation R	195
Radiation Resisian Rewiving	226
Reflection, Gromnd	
Refleetor.	220
Resonatht-Loop Amtunas.	223
Restrictavlsimure.	213-214
Rhumbie or Diamomil intennas	1.)-216
Romary-13emm Antonnas . .	23: 379
Sheves. Jine Matchimb	224
Standiny W'aves. .	
	384
	215
Tilt Angle. T'un-I oaded Antentias	223
Tron-I.oaded Antennas. Transmission Lines.	(19, 379
'Tuners. Const ruction of: ${ }^{\text {a }}$	
1.nw-Power Ramk-Mernied A	264
Medium-Powar Antenta T'uner	271
1 'i-Section Antennat (ounpler	274
Wide-Range Antennt: Coupler	280
Turnstile Antenas	224

Radio-Frequency Power-Amplifier Circuits PAGE ters")
Ratlo-Frequency Power Generation.
R:adio-Frequency shielding.
Radio Reception.

Radiotelephony:

Class

Constructional
with Volune Conech-Amplificr and Driver 0-Watt Cliss-B 6A6 Modulitor信
Itgh-Power Modulators.
Microphones $2 s-127$
$34-136$
onita.404
460
rinciplis168
Surereln Amplifiers $27-129$
Rindio Wavis 188
保 193
Ratio, Impedunce 39
37
Reactance. 188
Reantance, Caplacitive 34
Rabtatice, Leakage 38
Recoivers:226Constructionial:234-238

- Tube Superheterolyno (6K8-6C8C)
$241-044$
7-'Tuhe RegenerativeS.S. Superheterodyne.Panorunie$252-255$Measitenents395
Principles athe Desigt395
Reretificalion 60
Rectifiers.
39
Reflection of Radio Wivers. 48-49
Reflector Electrorde91
190
Regrenuration 146
Regenerative Detectors.162
Regenerative Recaivers5, 181
Requlations, Anateur11
180
Rorivor. Voltrige15
Oscillator138
Reluctance${ }^{23}$
Repulsion-Type A.C. Meters 36
33Resistance-Caparity Filtrr47
42
82
Resistance-Capacity Tine Constan 308
Resistance-Coupled Audio Ars.128
Resistanee Measurement 405
81Resistanee, Radiation49
41
Resistances in Series and Parallel.27-28

Wavelingtlas, Amateur
PAGE
 11

Whasalstone lirisleg. $.88-89$

Whle-13atist Anternats .2.24-2.20.

Wirium dipuratus .2:3-23:3
Wiriner Disuritme sumbuls for Frontispicce
Wurd lishs fior . hecont:ate 'l'ransmission 46 .

Wiorloshots Iratitice. 227-233

※........................... .33-34
X-Cu1 (irs'stalls. 58
Y゙イ int ('rysiails. 58
7. $.34-3.7$

Notes

The

Catalog Section

In the following pages is a catalog-
file of products of the principal manu-
facturers who serve the short-wave
field. Appearance in these pages is
by invitation-space has been sold
only to those dependable firms whose
established integrity and whose prod-
ucts have met with the approval of
the American Radio Relay League.

INDEX OF MANUFACTURERS * CATALOG SECTION *

Jhe Radio Amateur's Handbook

PageAerovox Corporation 145
\Longrightarrow Allied Radio Corporation 144
Altec-Lansing Corporation 78
American Lava Corporation 137
American Phenolic Corporation 27
American Radio Relay League, Inc.
$1,2,125-136,138$
American Television \& Radio Co. 176
American Transformer Company 94
Amperex Electronic Products 56, 57
Andrew Company 33
Astatic Corporation, The 65
Barker \& Williamson 47
Birnbach Radio Company, Inc. 119
Bliley Electric Company 43-46
Brach Mfg. Corp., L. S. 75
Browning Laboratories, Inc. 48
Burgess Battery Company 74
Cambridge Thermionic Corporation. 114
Cameradio Co. 104
Candler System 82
Cardwell Mfg. Corp., Allen D. 70
Centralab 86,87
Cinaudagraph-Aireon Mfg. Corp 166-167
Clarostat Mfg. Company, Inc. 115
Collins Radio Company, The 49-51
Concord Radio Corporation 96
Cornell-Dubilier Electric Corp 28-29
Crystal Products Inc. 124
Crystal Research Laboratories, Inc 62-163
Deutschmann, Corp., Tobe 52
DuMont Laboratories Inc., Allen B 171
DX Radio Products Co. 153
Echophone Radio Company 60-61
Eitel-McCullough, Inc. 30-31
Electric Soldering Iron Co. 84
Electro-Voice Corporation 39
Electronic Laboratories, Inc. 81
Freed Transformer Company 164
General Electric Company 113
Gothard Manufacturing Co. 165
Gould-Moody Co., The 88
Hall, R. C. \& L. F 172
Hallicrafters Company, The 177-208
Hammarlund Manufacturing
121
Harrison Radio Corporation
Harvey Radio Company 89
Harvey-Wells Electronics, Inc 159
109
Heintz \& Kaufman, Ltd 109
Henry Mfg. 141
Henry Radio Shops 83
Hewlett-Packard Co 55
Howard Radio Company 123
Hytron Radio \& Electronics Corporation. 72-73PageIndustrial Transformer Co173
instructograph Company, The 68
International Resistance Co 108
Jensen Radio Mfg. Co. 63
Johnson Co., E, F 142-143
Jones Co., Howard B. 152
James Knights Company, The 95
Lewis Electronics. 90
Mallory \& Co., Inc., P. R. 58
Marion Electrical Instrument Co. 62
Maryland Engineering Co 174
McElroy Mfg. Co. 21-26
McElroy, Ted 110-111
Measurements Corporation 76
Micro-Switch Corporation. 54
Millen Mfg. Co., Inc., James 102-103
National Company, Inc. 3-20
Newark Electric Company 150-151
Ohmite Mfg. Co. 66-67
Par-Metal Products Corp 64
Plymold Corporation, The 146
Premax Products 55
Radio Corporation of America 116-117
Radio Manufacturing Engineers, Inc. -9-100
Radio Shack Corporation, The 77
Raytheon Manufacturing Co. 147
Sangamo Electric Co. 59
Shure Brothers. 53
Sigma Instruments 168
Silver, McMurdo Co. 168
Sola Electric Company 112
Solar Mfg. Co. 32
Sprague Electric Co 42.91
Standard Electrical Products Co. 120
Standard Transformer Corp. 101
Stupakoff Ceramic \& Mfg. Co. 149
Sun Radio \& Electronics Co. 161
Superior Electric Co. 140
Sylvania Electric 92-93
Taylor Tubes 122
Telegraph Apparatus Co. 118
Terminal Radio Co. 157
Thordarson Electric Mfg. Co. 85
Trimm, Inc.. 80
Turner Company, The 97
Ungar Electric Tools, Inc. 160
United Transformer Corp 69
Valpey Crystal Co. 71
Vibroplex Company, The 79
Weller Nifg. Co 156
Wholesale Radio Laboratories 148
Wiley \& Sons, John 175
 NATIONAL COMPANY, INC.

NATIONAL PRECISION CONDENSERS

The Micrometer dial reads direct to one part in 500 . Division lines are approximately $1 / 4^{\prime \prime}$ apart. The dial revolves ten times in covering the tuning ranse, and the numbers visible through the small windows change every revolution to give consecutive numbering by tens from 0 to 500. The condenser is of extremely rigid construction, with four bearings on the rotor shoft. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to 1 ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is Steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$.

PW Condensers are availaíle in 2,3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied.
A single-section PW condenser with grounded rotor is supplied in capacities of 150 , 200,350 and 500 mmF , single spaced, and capacities up to 125 mmF , double spaced.
PW condensers are all with rotor shaft parallel to the panel.

$\begin{aligned} & \text { PW-1R } \\ & \text { PW-1L } \end{aligned}$	Single section right Single section left	List $\$$ List $\$$	PW-3R	Double section right; single left	List \$
PW-2R	Double section right	List \$	PW-3L	Double section left; single	
PW-2L	Double section left	List \$		right	List \$
PW-2S	Single section each side	List 5	PW-4	Double section each side	List s

NPW MODELS with micrometer dial

NPW-3. Three sections, each 225 mm . List \$
NPW-X. Three sections, each 25 mm .

List \$

Both condensers are similar to PW models, except that rotor shaft is perpendicular to panel.
GEAR DRIVE UNITS with micrometer dial

NPW-O

List \$
Uses parts similar to the NPW condenser. Drive shaft perpendicular to panel. One TX-9 coupling supplied.
PW-O

List \$

Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

MICROMETER DIAL

PW-D

List $\$$
Identical with the dials used on the condensers and drives above. It revolves ten times in covering the complete range and as there is no gear reduction unit furnished, the driven shaft will revolve ten times, also. The PW-D dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

NATIONAL RECEIVING CONDENSERS

NOTE - Type SS Condensers,
having straight-line-capacity plates but otherwise similar to the Type ST, are available. Capacities and Prices same as Type ST.

Capacity	Minimum Capocity	No. of Plates	Air Gap	Length	Catalog Symbol	List
SINGLE BEARING MODELS						
$\begin{aligned} & 15 \mathrm{Mmf} . \\ & 95 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{MmF} . \\ & 3.25 \\ & 3.5 \end{aligned}$	3 4 7	$\begin{aligned} & .018^{\prime \prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 131 / 16^{\prime \prime \prime} \\ & 13 / 6_{10 \prime} \\ & 13 / 16^{\prime \prime} \end{aligned}$	STHS 15 STHS. 95 STHS 50	\$
DOUBLE BEARING MODELS						
35 MmF. 50 75 100 140 150 200 950 300 335	6 Mmf. 7 8 9 10 10.5 12.0 13.5 15.0 17.0	8 17 15 90 27 29 97 39 39 43	$.096^{\prime \prime}$ $.096^{\prime \prime}$ $.096^{\prime \prime}$ $.026^{\prime \prime}$ $.096^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$			\$
SPLIT STATOR DOUBLE BEARING MODELS						
$\begin{gathered} 50-50 \\ 100-100 \end{gathered}$	$\begin{gathered} 5-5 \\ 5.5-5.5 \end{gathered}$	$\begin{aligned} & \hline 11-11 \\ & 14-14 \end{aligned}$	$\begin{aligned} & .026^{\prime \prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 93 / 4^{\prime \prime \prime} \\ & 93 / 4^{\prime \prime} \end{aligned}$	$\begin{array}{r} \text { STD. } 50 \\ \text { STHD-100 } \end{array}$	5

The ST Type condenser has Straight-Line Wavelength plates. All double-bearing models have the front bearing insulated to prevent noise. On special order a shaft extension at each end is available, for ganging. On double-bearing single shaft models, the rotor contact is through a constant impedance pigtail. Isolantite insulation.

TYPE SE arvo SEU MImetoted) STRAIGHT-LINE FREQUENCY 270° Rotation

Cosocitr	${ }_{\text {cosem }}^{\text {Copinily }}$	No. of	Air Goo	Length	${ }_{\text {Stablog }}$	Liat
$\begin{aligned} & 15 \mathrm{Mmf} \\ & 25 \\ & 25 \end{aligned}$	$\underset{8}{7 . \mathrm{Mmf}^{7}}$	8	$\begin{aligned} & .055 " \\ & \hline 055 \\ & \hline 55 \end{aligned}$		SEU: 15 SEU: 85 seut 85	5
$\begin{gathered} 50 \\ 15 \\ 150 \\ 150 \end{gathered}$	$\begin{gathered} 9 \\ 10.5 \\ 11_{1}^{2} \\ 1.5 \end{gathered}$	$\begin{aligned} & 11 \\ & 11 \\ & 20 \\ & 29 \end{aligned}$				
$\begin{aligned} & 200 \\ & \text { cen } \\ & 350 \\ & 335 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 18 \\ 14 \\ 16 \\ 17 \end{array}$	$\begin{aligned} & 27 \\ & 38 \\ & 39 \\ & 39 \\ & 43 \end{aligned}$	$\begin{aligned} & .0181^{\prime \prime}, ", \\ & .0088^{\prime \prime} \\ & .01 \end{aligned}$			

TYPE SE - All models have two rotor bearings, the front bearing being insulated to prevent noise. A shaft extension at each end, for ganging, is available on special order. On models with single shaft extension, the rotor contact is through a constant impedance pigtail. The SEU models (illustrated) are suitable for high voltages as their plates are thick polished aluminum with rounded edges. Other SE condensers do not have polished edges on the plates. Isolantite insulation.

Capacity	Minimum Capacity	No, of Plates	Length	Catalog Symbol	List
$\begin{aligned} & 350 \mathrm{Mmf} . \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 12 \mathrm{Mmf} . \\ & 16 \\ & 29 \end{aligned}$	$\begin{aligned} & 90 \\ & 29 \\ & 56 \end{aligned}$		$\begin{aligned} & E M-350 \\ & E M-500 \\ & E M-1000 \end{aligned}$	\$

TYPE EM - A general purpose condenser available in large sizes and having Straight-Line capacity plates. They are similar in construction to the TMC Trans. mitting condenser, and have high efficiency and rusged Frames. Insulation is Isolantite, and Peak Voltage Rating is 1000 volts.

NATIONAL MINIATURE CONDENSERS

PSR - See table
Type PSR condensers are small, compact, lowloss units with silver plating on conducting parts. Their soldered construction makes them particularly suitable for applications where vibration is present. Adjustment is made with a screw driver. Steatite base.

PSE - See table

Type PSE condensers are similar to Type PSR, but are provided with a $1 / 4^{\prime \prime}$ diameter shaft extension at each end.
PSL - See table -
Type PSL condensers are similar to Type PSR, but are provided with a rotor shaft lock, so that the rotor can be clamped at any setting
MSR, MSE, MSL See table - Condens. ers of the MS series are similar in appearance to the PS series described above, but they differ in making use of plates which are like those of the UM condenser. This and other small changes result in a more robust and rigid assembly Other details of the MSR, MSE, and MSL are the same as the PSR, PSE, and PSL respec. tively.

M-30
List $\$$
Type M-30 is a small adjustable mica condenser with a maximum capacity of 30 mmf . Dimensions ${ }^{13 / 16^{\prime \prime} \times 9 / 16^{\prime \prime} x}$ $1 / 2^{\prime \prime}$. Isolantite base. W-75, 75 mmf . List \$ W-100, 100 mmF . List \$
Small padding condensers having very low temperature coefficient. Mounted in an aluminum shield $11 / 4^{\prime \prime}$ in diameter. The UM CONDENSER is designed for ultro high frequency use and is small enough for convenient mounting in PB-10 and RO shield cans. They are particularly useful for tuning receivers, transmitters, and exciters. Shaft extensions at each end of the rotor permit easy ganging when used with one of our flexible couplings. The UMB-25 Condenser is a balanced stator model, two stators act on a single rotor. The UM can be mounted by the angle foot supplied or by bolts and spacers. See table for sizes.

Dimensions: Base $1^{\prime \prime} x$ 21/4", Mounting hole: $5 / 8^{\prime \prime} \times 123 / 32^{\prime \prime}$, Axiai length $21 / 8^{\prime \prime}$ overall.

Plates: Straight line capacity, 180° rotation.

NATIONAL NEUTRALIZING CONDENSERS

NC.600U

STN

NC-600U
List $\$$
Wth standoff insulato

NC. 600
 List $\$$

Without insulator
For neutralizing low power beam tubes requiring from . 5 to 4 mmf ., and 1500 max. total volts such as the 6L6. The NC-600L is supplied with a GS-10 standoff insulator screwed on one end, which may be removed for pigtail mounting.

STN

List 5

The Type STN has a maximum capacity of 18 mmf . (3000 V), mak'ng it suitable for such tubes as the 10 and 45 . It is supplied with two standoff insulators.

NC. 800

List $\$$

The NC-800 disk-type neutralizing condenser is suitable for the RCA-800, 35T, HK-54 and similar tubes. It is equipped with a micrometer thimble and clamp. The chart below gives capacity and air gap for different settings.

NC-75

List $\$$
For 75T, 808, 311, 812 \& similar tubes.

NC-150
 List $\$$

For HK354, RK3́b, 300T, 852, etc.

NC-500

List $\$$
For WE-251, $450 \mathrm{TH}, 450 \mathrm{~T}$, 750 TL , etc.
These larger dist type neutralizing condensers are for the higher powered tubes. Disks are aluminum, imsulation stedtite.

NATIONAL TRANSMITTING CONDENSERS

TYPE TMS

is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has been made for mountins either on the panel, on the chassis, or on two stand-off insulators. Insulation is Isolantite. Voltage ratings listed are conservative.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List Price
SINGLE STATOR MODELS							
100 Mmf.	9.5	3'	026"	1000 v .	9	TMS-100	
150	11	$3^{\prime \prime}$. 026 "	1000 v .	14	TMS-150	
250	13.5	3'	. $026^{\prime \prime}$	1000v.	22	TMS-250	
300	15	$3^{\prime \prime}$. $026^{\prime \prime}$	1000 v .	27	TMS-300	
35	8	$3^{\prime \prime}$.065"	2000 v .	7	TMSA-35	
50	11	$3^{\prime \prime}$. $065^{\prime \prime}$	2000 v .	11	TMSA-50	
DOUBLE STATOR MODELS							
	6-6	$3^{\prime \prime}$.026"	1000v.	5-5		
$100-100$	7-7	$3^{\prime \prime}$.026"	1000v.	$9-9$	TMS-100D	
50-50	10.5-10.5	3'	. 065 "	2000v.	11-11	TMSA-50D	

TYPE TMH

features very compact construction, excellent power factor, and aluminum plates $.040^{\prime \prime}$ thick with polished edges. It mounts on the panel or on removable stand-off insulators. Isolantite insulators have long leakage path. Stand-offs included in listed price.

Capacily	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List
SINGLE STATOR MODELS							
50 MmF .	9	$33 / 4^{\prime \prime}$.085"	3500 v .	15	TMH-50	
75	11	33/4"	.085"	3500 v .	19	TMH-75	
100	12.5	51/8"	.085"	3500 v .	25	TMH-100	
150	18	61/2",	.085"	3500 v .	37	TMH-150	
35	11	51/8"	.180"	6500 v .	17	TMH-35A	
DOUBLE STATOR MODELS							
	6-6	33/4"	.085"		9-9	TMH-35D	
50-50	8-8	$51 / 8^{\prime \prime}$.085"	3500 v .	13-13	TMH-50D	
75-75	11-11	61/2"	.085"	3500 v .	19.19	TMH.75D	

NATIONAL TRANSMITTING CONDENSERS

TYPE TMK

is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-16 coils in a swivel plug-in mount on either the top or rear of the condenser, (see page 10). For panel or stand-off mounting. Isolantite insulation.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
35 MmF .	7.5	$2^{7} 33^{\prime \prime}$.047"	1500v	7	TMK-35	
50	8	23/8"	.047"	1500 v .	9	TMK-50	
75	9	$211 / 16^{\prime \prime}$.047"	1500 v .	13	TMK-75	
100	10	3"'	.047"	1500 v .	17	TMK-100	
150	10.5	$35 /{ }^{\prime \prime}$ "	.047"	1500v.	25	TMK-150	
200	11	$414^{\prime \prime}$ ",	.047"	1500 v .	33	TMK-200	
250	11.5	$47 / 8^{\prime \prime}$.047"	1500v.	41	TMK-250	
DOUBLE STATOR MODELS							
35-35 Mmf.	7.5-7.5	$3^{\prime \prime}$.047"	1500v.	7-7	TMK-35D	
50-50	8-8	$35 / /^{\prime \prime}$.047"'	1500 v .	9-9	TMK-50D	
100-100	10-10	$41 / 4^{\prime \prime}$.047"	1500v.	17-17	TMK-100D	
Swivel Mounting Hardware for AR 16 Coils						SMH	

TYPE TMC

is designed for use in the power stages of transmitters where peak voltages do not exceed 3000 . The frame is extremely rigid and arrangea for mounting on panel, chassis or standoff insulators. The plates are aluminum with buffed edses. Insulation is Isolantite. The stator in the split stator models is supported at both ends.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List Price
SINGLE STATOR MODELS							
50 Mmf .	10	$3^{\prime \prime}$ '	.077"',	3000 v .	7	TMC-50	
100	13	$31 / 2 "$.077"	3000 v .	13	TMC-100	
150	17	$45 / 8^{\prime \prime}$.077"	3000 v .	21	TMC-150	
250	23	6"	.077"	3000 v .	32	TMC-250	
300	25	63/4"	.077"	3000 v .	39	TMC-300	
DOUBLE STATOR MODELS							
50-50 Mmf.	9-9	45/8"	.077"	3000 v .	7-7	TMC-50D	
100-100	11-11	63/4"	.077"	3000 v .	13-13	TMC-100D	
200-200	18.5-18.5	$91 / 4^{\prime \prime}$.077"	3000 v .	25-25	TMC-200D	

NATIONAL TRANSMITTING CONDENSERS

TYPE TMA

is a larger model of the popular TMC. The frame is extremely rigid and arranged for mounting on paned, chassis or stand-off insulators. The plates are of heavy aluminum with rounded and buffed edses. Insulation is Isolantite, located outside of the concentrated field.

Copacity	Minimum Capacity	Lensth	Air Gap	Poak Voltage	No. of Plates	Catalos Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
$\begin{aligned} & 300 \mathrm{Mmil} . \\ & 50 \\ & 100 \\ & 150 \\ & 930 \\ & 100 \\ & 150 \\ & 50 \\ & 100 \end{aligned}$	19.5 15 19.5 99.5 33 30 40.5 21 37.5		$\begin{aligned} & .077^{\prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .265^{\prime \prime} \\ & .965^{\prime \prime} \\ & .359^{\prime \prime} \\ & .359^{\prime \prime} \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} . \\ 9000 \mathrm{v} . \\ 9000 \mathrm{v} . \\ 12000 \mathrm{v} . \\ 12000 \mathrm{v} . \end{gathered}$	$\begin{aligned} & 23 \\ & 7 \\ & 75 \\ & 91 \\ & 33 \\ & 93 \\ & 33 \\ & 13 \\ & 95 \end{aligned}$	TMA-300 TMA-50A TMA-100A TMA-150A TMA-230A TMA-100B TMA-150B TMA-50C TMA-100C	
DOUBLE STATOR MODELS							
$\begin{gathered} 900-200 \mathrm{Mmf} . \\ 50-50 \\ 100-100 \\ 60-60 \\ 40-40 \end{gathered}$	$\begin{gathered} 15-15 \\ 12.5-19.5 \\ 17-17 \\ 19.5-19.5 \\ 18-18 \end{gathered}$	$\begin{array}{r} 678^{\prime \prime \prime} \\ 6 / 8^{\prime \prime} \\ 911^{\prime \prime} \\ 1912^{\prime \prime \prime} \\ 1978^{\prime \prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .077^{\prime \prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .965^{\prime \prime} \\ & .359^{\prime \prime} \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} \\ 6000 \mathrm{v} \\ 6000 \mathrm{v} \\ 9000 \mathrm{v} \\ 12000 \mathrm{v} \end{gathered}$	$\begin{gathered} 16-16 \\ 8-8 \\ 14-14 \\ 15-15 \\ 11-17 \end{gathered}$	$\begin{aligned} & \text { TMA-200D } \\ & \text { TMA-50DA } \\ & \text { TMA-100DA } \\ & \text { TMA-60DB } \\ & \text { TMA-40DC } \end{aligned}$	

TYPE TML

condenser is a 1 KW job throughout. Isolantite insulators, specially treated against moisture absorption, prevent flashovers. A large self-cleaning rotor contact provides high current capacity. Thick capacitor plates, with accurately rounded and polished edges, provide high voltage ratings. Sturdy cast aluminum end frames and dural tie bars permit an unusually rigid structure. Precision end bearings insure smooth turning and permanent alignment of the rotor. End frames are arranged for panel, chassis or stand-off mountings.

Copseclty	Minimum Capecity	Length	Air Ged	$\begin{aligned} & \text { Poak } \\ & \text { Voltoge } \end{aligned}$	No. of Plates	Cotalos Symbol	List Price
SINGLE STATOR MODELS							
75 Mmf. 150 100 50 245 150 100 75 500 350 250	95 60 45 99 54 45 39 93.5 95 45 35		$.719^{\prime \prime}$ $.469^{\prime \prime}$ $.469^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.319^{\prime \prime}$ $.219^{\prime \prime}$ $.219^{\prime \prime}$	$20,000 \mathrm{v}$. $15,000 \mathrm{v}$. $15,00 \mathrm{v}$ 15,000v. 10,000v. $10,000 \mathrm{v}$. $7,500 \mathrm{v}$. 7,500v.	$\begin{aligned} & 17 \\ & 27 \\ & 19 \\ & 9 \\ & 35 \\ & 21 \\ & 15 \\ & 11 \\ & 49 \\ & 33 \\ & 95 \end{aligned}$	TML-75E TML-150D TML-100D TML-50D TML-245B+ TML-1508+ TML-75B+ TML-500A + TML-350A + TML-950A +	
DOUBLE STATOR MODELS							
$\begin{aligned} & 30-30 \mathrm{Mmf} \\ & 60-60 \\ & 100-100 \\ & 60-60 \\ & 200-200 \\ & 100-100 \end{aligned}$	$\begin{aligned} & 19-12 \\ & 26-96 \\ & 27-27 \\ & 20-20 \\ & 30-30 \\ & 17-17 \end{aligned}$		$\begin{aligned} & .719^{\prime \prime \prime} \\ & .469^{\prime \prime} \\ & .344^{\prime \prime} \\ & .3419^{\prime \prime} \\ & .219^{\prime \prime} \end{aligned}$	$\begin{aligned} & 20,000 \mathrm{v} \\ & 15,000 \mathrm{v} \\ & 10,000 \mathrm{v} \\ & 10,000 \mathrm{v} \\ & 7,500 \mathrm{v} \\ & 7,500 \mathrm{v} . \end{aligned}$	$\begin{gathered} 7-7 \\ 11-11 \\ 15-15 \\ 9-9 \\ 21-91 \\ 11-11 \end{gathered}$	TML-30DE TML-60DD TML-100D8 + TML-60DB+ TML-900DA+ TML-100DA +	

10

NATIONAL RF CHOKES

R-100
Without stondoft ins
List
With standoff insulator
R.F. chokes R-100 and R-100U are identical electrically, but the latter is provided with a removable standoff insulator screwed on one end. Both have Isolantite insulation and both have a continuous universol winding in four sections. Inductance $21 / 2 \mathrm{~m} . \mathrm{h}$.; distributed capacity 1 mmf ; $D C$ resistance 50 ohms; current rating 125 mo .

R-300
 Witho
 List 5

R-300U
List $\$$

With insulator

R.F. chokes R-300 and R-300U are similar in size to R-100U but have higher current capacity. The R-300U is provided with a removable standoff insulator screwed on one end. Inductance $1 \mathrm{~m} . \mathrm{h}$.; distributed capacity 1 mf .; DC resistance 10 ohms; current rating 300 mo .
R.F. chokes are available in a variety of inductance values, ranging from 6 microhenries to 10 millihenries, in addition to those shown above. Various mounting arrangements ore also available. Full information will be furnished on request.

R-152
For the 80 and 160 meter bands. Inductance 4 m.h., DC resistance 10 ohms, $D C$ cur. rent 600 md . Coils honeycomb wound on Isolantite core.

R-154
 List $\$$
 R-154U List $\$$

For the 20, 40 and 80 meter bands. Inductance $1 \mathrm{~m} . \mathrm{h}$., DC resistance 6 ohms. DC current 600 ma . Coils honeycomb wound on Isolantite core. The R-154U does not have the third mounting foot and the small insulator, but is otherwise the same as R-154. See illustration.

R-175

List $\$$

The R-175 Choke is suitable for parallel-feed as well as series-feed in tronsmitters with plate supply up to 3000 volts modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high throughout the 10 and 20 meter bands as well as the 40,80 and 100 meter bands. Inductance $225 \mu \mathrm{~h}$, distributed capacity 0.6 mmf . DC resistance 6 ohms, DC current 800 ma., voltage breakdoven to base 12,500 volts.

National has manufactured a great many sizes and styles of chokes not shown above, during the war. A complete line of chokes will be available in the near future but full technical data had not been prepared at the time this edition of the A.R.R.L. Handbook went to press. Complete information will be found in later catalogs or can be obtained by writing us direct.

NATIONAL SHAFT COUPLINGS

TX-1, Leakage path $1^{\prime \prime}$.
List \$
$21 / 2^{\prime \prime}$ List $\$$
Flexible couplings with glazed Isolantite insulation which fit $1 / 4^{\prime \prime}$ shofts.

IX-8 List $\$$

A non-flexible rigid coupling with Isolantite insulation. $1^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX. 9
 List $\$$

This small insulated flexible coupling provides high electrical efficiency when used to isolate circuits. Insulation is Steatite. $15 / 8^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-20

List $\$$

A small insulated flexible coupling of the Hooke's joint type
which will accommodote engular misalignment up to five degrees as well as "64" tronsverse misalignment between the shafts.

TX-10

List $\$$

A very compact insulated coupling free from backlash. Insulation is canvas Bakelite. $1^{1} \mathrm{if}^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-11

List $\$$
The flexible shaft of this coupling connects shofts at angles up to 90 degrees, and eliminates misdignment problems. Fits $1 / /^{\prime \prime}$ shafts. Length $41 / 4^{\prime \prime}$

TX-12, Length $45 / 8^{\prime \prime}$ List $\$$ TX-13, Length $71 / 8^{\prime \prime}$ List $\$$

These couplings use flexible shafting like the TX- 11 above, but are also provided with Isolantite insulators at each end.

TRANSMITTER COIL FORMS

The Transmitter Coil Forms and Mounting are designed as a group, and mourit conveniently on the bars of a TMA condenser. The larger coil form, Type XR-14A, has a winding diameter of $5^{\prime \prime}$ a winding length of $33 / 4^{\prime \prime}$ (30 turns total) and is intended for the 80 meter band. The smaller form, Type XR-10A, has a winding length of $33 / 4^{\prime \prime}$ and a winding diameter of $21 / 2^{\prime \prime}$ (26 turns total). It is intended for the 20 and 40 meter bands.

Either coil form fits the PB-15 plug. For higher frequencies, the plug may be used with a self-supporting coil of copper tubing. The XB-15 Socket may be mounted on breadboards or chassis, as well as on the TMA Condenser.

SINGLE UNITS
XR-10A, Coil Form only XR-14A, Coil Form only PB-15, Plug only
XB-15, Socke only

List $\$$
List $\$$
List $\$$
List $\$$

ASSEMBLIES
UR-10A, Assembly (including small Coil Form, Plug and Socket) List \$
UR-14A, Assembly (including large Coil Form, Plug and Socket)

List $\$$

EXCITER COILS AND FORMS - TYPE AR-16 (Air Spaced)

These air-spaced coils are suitable for use in stages where the plate input does not exceed 50 watts and are available in the sizes tabulated below. Capacities listed will resonate the coils at the low freauency end of the band and include all stray circuit capacities. All have separate link coupling coils and all fit the PB-16 Plug and XB-16 Socket.
The XR-16 Coil Form also fits the PB-16 Plug and XB-16 Socket. It has a winding diameter of $11 / 4^{\prime \prime}$ and a winding length of $13 / 4^{\prime \prime}$.

Band	End Link	Cap Mmf	Center Link	Cap Mmf	Swinging Link	Cap Mmf
meler	AR16-5E	20	AR16-5C	20		
10 meter	AR16-10E	20	AR16-10C	20	AR16-10S	25
40 meler	AR16-20E	26	AR16-20C	26	AR16-20S	40
40 meter	AR16-40E	33	AR16-40C	33	AR16-40S	55
80 meter	AR16-80E	37	AR16-80C	37	AR16-80S	60
160 meter	AR16-160E	65	AR16-160C	65		

[^12]the exciter coils will be redesigned to provide coverage.
12

XR-16, Coil form only Lists PB-16, Plug-in Base only List $\$$ XB-16, Plug-in Socker only List $\$$ AR-16, Coils-Ary type (see table). Anclude PB. 10 Plug as illustrated

Each, List $\$$

FIXED-TUNED EXCITER TANK

FIXED TUNED EXCITER TANK

Similar in general construction to National I.F. transformers, this unit has two 25 mmf ., 2000 volt air condensers and an unwound XR-2 coil form.

FXT, without plug-in base
FXTB-5, with 5 prong base
FXTB-6, with 6 prong base

List $\$$
List \$
List \$

PLUG-IN BASE AND SHIELD

The low-loss R-39 trase is ideal for mounting condensers and coils when it is desirable to have them strielded and easily removable. Shield can is $2^{\prime \prime} \times 2 z^{\prime \prime} \times 41 / 8^{\prime \prime}$

PB-10-5, (5 Prong Base \& Shield)
PB-10.6, (6 Prong Base \& Shield)
PB-10A-5, (5 Prong Eidse oniy)
PB-10A-6, (6 Prong Base only)

List $\$$
List $\$$
List \$
List \$

SAFETY GRID AND PLATE CAPS

National Safety Grid and Plate Caps have a ceramic body which offers protection against accidental contact with high voltage caps on tubes.

SPP-9

List \$

Ceramic insulation. Fits $9^{\prime} 16^{\prime \prime}$ diameter
SPP. 3
List $\$$
Ceramic insulation. Fits $3 / 8^{\prime \prime}$ diameter

GRID AND PLATE GRIPS

National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure on the ear.
Type 12, for 9/16" Caps
List $\$$
Type 24, for $3 / 8^{\prime \prime}$ Cap:
List \$
Type 8, for $1 / 4^{\prime \prime}$ Caps
List $\$$

NATIONAL PARTS

S. 101

OSR

DLYsTraENE COLL FORMS
PRC
PRD
PRE PRF

COIL FORMS
XR-1, Four prong, List S XR-2, without prongs List $\$$
Molded of R-39, permitting them to be grooved and drilled. Coil form diameter $1^{\prime \prime}$, length $1 \frac{1}{2 \prime \prime}$.

XR-3 List 5

Molded of R-39. Diameter $9 / \mathrm{I}^{\prime \prime}$ ", length $3 / 4^{\prime \prime}$. Without prongs. \qquad -

XR-4, Four prong, List $\$$

XR-5, Five prong, List $\$$ XR-6, Sixprong, List $\$$
Molded of R-39, permitting them to be grooved and drilled. Coil form diameter $11 / 2^{\prime \prime}$, length $21 / 4^{\prime \prime}$. A special socket is required for the sixprong form.
XC6C, Special six-prons socket for XR-6 Coil Form, List $\$$
IMPEDANCE COUPLER S-101 List $\$$
A plate choke, coupling condenser and grid leak sealed in one case, for coupling the output of a regenerative detector to an audio stage. Used in SW-3U.

OSCILLATOR COIL

OSR
List 5
A shielded oscillator coil which tunes to 100 KC with .00041 Mid. Two separate inductances, closely coupled. Excellent for interruptionPrequency oscillator in superregenerative receivers.

H. F. COIL FORMS

JACK SHIELD

JS-1, Jack shield List \$ For shielding small standard jacks mounted behind o panel, or on the ends of extension cords.

NATIONAL CABINETS

The National Cabinets listed below are the same as those used in Notional Receivers, except that they are supplied in blank form. They are made of heavy gauge steel, and the paint is unusually well bonded to the metal. Sub-bases and bottom covers are included in the price.

	widh'	Hemm	Desin	List Pricel
Type C.SW3	93/4"	$7 \prime$	$9{ }^{\prime \prime}$	
Type C-NC100	171/4"	83/4"	$1114^{\prime \prime}$	
Type C-HRO	163/4"	83/4"	10"	
Type C-One-Ten	11"	$7{ }^{\prime \prime}$	71/4'	
Type C-SRR	$71 / 2^{\prime \prime}$	$7{ }^{\prime \prime}$	71/2"	

NATIONAL PARTS

CHART FRAME

CHART FRAME

COIL DOPE

TOUCH.UP PAINT

The National Chart Frame is blanked from one piece of metal, and includes a celluloid sheet to cover the chart. Size $21 / 4^{\prime \prime} \times 31 / 4^{\prime \prime}$, with sides $1 / 4^{\prime \prime}$ wide.
Type CFA

COIL DOPE

CD-1, $1 / 4$ pint can List 5
Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

TOUCH-UP PAINT

A high quality ulr-drying paint that may be applied with a brush. It is especially suited to touching up places on radio equipment where the point may have become marred through abrasion.

$$
\begin{array}{ll}
\text { CP-1, gray } & \text { List } \mathbf{\$} \\
\text { CP-2, black } & \text { List } \$
\end{array}
$$

SPEAKER CABINETS
 NDC-8 for 8 " speaker
 List $\$$

NDC-10 for 10" speaker
NDC-2 for $10^{\prime \prime}$ speaker
These metal speaker cabinets are acoustically correct. They are lined with acoustic felt, and are of welded construction to eliminate rattles. Finish is black wrinkle on NDC-8 and NDC-10. NDC-2 is finished in two-tone gray to match the NC-200 IG receiver.

> List \$

List $\$$ List $\$$

National Oscilloscopes have power supply and iaput controls built in. A panel switch permits use of the built-in 60-cycle sweep or external audio sweep for securing the familiar trapezoid pattern for modulation measurements.

CRM, less tubes

List \$
$1^{1 "}$ ss.jeen, using, RCA 913 and 6×5 rectifier. Table model, $41 / 8^{\prime \prime} \times 61 / 8^{\prime \prime} \times 8^{\prime \prime}$
CRR, less tubes
Lists
$9^{\prime \prime}$ creen, using RCA-902 and 6XS rectifier. Relay rack mounting.

I. F. TRANSFORMERS

IFC, Tronstormer, dir core List s IFCO. Oscillator, air core

List s
Air dielectric condensers isolated from each other by an aluminum shield. Litz wound coils on a moisture proofed ceramic base. Shield can $41 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}$ $\times 2^{\prime \prime}$. Available for either 175 KC or 450-550 KC. Specily frequency

IFD. Diode Transformer, dir core List $\$$
Tuned orimary and untuned, closelycoupled secondary for full-wove diode rectifiers. For noise silencing circuits, etc. 450550 KC air core only.
IFE, Tronsformer
List $\$$
Same as IFC but iran core, $450-550$ KC only.

1FG, IF Transformer
List $\$$
IFH, Discrimindtor
List $\$$
High frequency IF transformers, similar in construction to the IFC above. Ther are intended for FM receivers and others requiring o high If frequency. Frequency is 3 MC. When definite assignment of the bands has been made these transformers will be available in ofrequency which gives the minimum images in the FM and television bands.

IFJ, with variable couoling List \$ IFK, with fixed coupling List $\$$
15 MC IF eransformers suitable for ultrohigh freauency superheterodynes. They are made in two models, with ond without variable coupling

Narional TRF units are designed as a single channel high fidelity TRF receiver for reception in the broadcast band. Each RF transformer is similar in construction to the IFC eransformer above and is tuned both primary and secondory. The coupling is odiustoble to include 10 KC with less than 1 db variation in the audio range. Sensitivity is odiustable from 5 microvalts to 1 volt. Three models cover ronges of $540-875,740-1230$, and 1100-1700 KC.
DLT, RF Tronsformer, set of four required. List, each $\$$

ATIONAL LOW-LOSS SOCKETS AND INSULATORS

FWG
List $\$$
A Victron terminal strip for high frequency use. The binding posts take banana plugs at the top, and grip wires through hole at the bottom, simultaneously, it desired.

FWH

List $\$$
The insulators of this terminal assembly are molded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have ample shoulders. Binding posts same as FWG above.

FWJ

List $\$$

This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plug (below), there is no exposed metal when the plug is in place.

FWF

List 5

This molded R-39 plug has two banana plugs on $3 / 4^{\prime \prime}$ centers and fits FWH or FWJ above. Leads may be brought out through the top or side.

FW A, Post List, each \$ Brass Nickel Plated
FWE, Jack List, each \$ Brass Nickel Plated

FWC, Insulator

$$
\text { List, per pair } \$
$$

R-39 Insulation
FWB, Insulator List, each \$ Polystyrene insulation

CIR Series Sockets

Any Type List \$

 Type CIR Sockets leature low-loss isolantite or steatite insulation, a contaet that grips the tube prong for its ertire length, and a metal ring for six position mounting.

NATIONAL NC-2-40C NATIONAL NC-2-40CS

The NC-2-40C is a twelve-tube superheterodyme covering a continuous frequency range of 490 to $30,000 \mathrm{KC}$. The NC-2-40CS is identical but covers from 200 to 400 KC and from 1000 to 30,000 KC.

The circuit employed on all bands consists of one stage of radio frequency amplification, a separate first detector and stabilized high frequency oscillator, two intermediate frequency stages, an infinite impedance second detector, a self-balancing phase inverter and audio amplifier, and an 8-watt pushpull dudio output stage.

Auxiliary circuits include a crystal filter with exceptionally wide selectivity range for use on both CW and phone, a series valve noise limiter, AVC, beat ascillator, tone control, and signal strength meter. The power supply is built in.
These receivers have a number of new features of recent design. A new high frequency oscillator design of extreme stability eliminotes detuning effects of RF gain control and motorbating or futtering which occurs in some receivers when tuning in strong signals. A line voltage shift from 100 to 180 volts produces less than 1000 cycles at ten meters.
Sensitivity is particularly high, an indut signal of 1 microvole providing 1 watt of sudio output, and full sensitivity is maintained up to the highest freauencies. Signal-to-image ratio is better than 30 db at ten meters. The $A V C$ is fat within 2 db for signais from 10 to 100,000 microvalts. Moulded polystyrene
cail forms are used in bath RF and IF circuits and padding and tuning condensers are of the air-dielectric (yoe
There are six calibrated coil ranges, controlled by a knob on the front panel which moves the desired coils into position below the tuning condenser and plugs them into the circuit. No coil switch is used The tuning control has a ratio of 60 to 1 approximately, and is designed to hove enough Ay-wheel effec: to facilitate spinning the knob for quick changes in frequency.
All models of the NC-2-40 are suitable for either AC or battery operation, having both a built-in AC power suppiy and a special detachable cable and plug for battery connection Removat of the speaker plug disconnects both plate and screen circuits of the audio power stoge thus providing maximum battern economy. The B supolv filter and the standby switch are wired to the battery terminals, so that the filter is available for vibrator or dynamotor B supolies.
The ten-inch speaker is housed in a separate cabinet specially designed to harmonize with the trim lines of the receiver. The designed to harmonize with
NC-9-40C, Table model, receiver onily
List $\$$
NC-9-40CS, Table madel, recerver onily List 8
NCQ-TS, Table model $10^{\prime \prime}$ PM speaker to match receiver List s

NATIONAL NC-46

The NC-46 receiver is a ten tube superheterodyne combining capable performance with low price. Features include a series valve noise limiter with dutomatic threshold control, CW oscillator, separate RF and AF gain controls, and amplified and delayed AVC. Power supplies are self contained and operate on 105 to 130 volts AC or DC. An dudio output of 3 watts is provided by push-pull 25L6's.

A straight-line-frequency condenser is used in conjunction with a separate band spread condenser. This combination plus the full vision dial calibrated in frequency for each range covered and a separate linear scale for the band spread condenser, makes accurate tuning easy. Both condensers have inertid type drive. A coil switch with silver plated contacts selects the four ranges from 550 KC to 30 MC . Provision is made for either headphone or speaker.

Like all receivers which have no preselector stage, the NC-46 is not entirely free from images. However, where price is an important considerd-

tion, the NC- 46 will be found a very satisfactory receiver.
NC. 46 - Receiver only, complete with tubes, coils coverıng from 550 KC to 30 MC for 105-130 volts $A C$ or $D C$ operation - gray finish.

List \$

NC.46TS - Loud Speaker in table mounting cabinet to match above receiver.

List $\$$
RRA - Relay Rack Adapters designed for mounting these receivers in a standard relay rack.

List \$

18

HRO-5TA table model, receiver only, complere with four sets of coils having bandspread on amateur bands as well as general coverage ($1.7-4.0,3.5-7.3$. 7.0-14.4, 14.0-30.0 MC).

List 5
HRO-5RA rack model, other details same as for HRO-5IA above.

List 5

coils

HRO Typ	E, Range 900-9050 kc List
HRO Type	F, Range 480960 kc List s
HRO Type	G, Range 180-430 kc List s
HRO Type	H, Range 100-200 kc List s
HRO Tyde	1, Range 50-100 kc List \$
HRO Type	A, Range 14.0-30.0 me List s
HRO Type	B, Range 7.0-14.4 mc List S
HRO Type	C, Range 3.5-7.3 mc List s
HRO Type	D, Range 1.74 .0 mc List s

MCS Table model cabinet, $8^{\prime *}$ PM dynamic speaker and matchingtransformer.

List $\$$
691 Table power unit; 115 volt 60 cvcle input, 6.3 volt heater and 230 volt, 75 ms . output, with tube. List 5

See General Cololague for relay rack mounting cail containers and accessories

NATIONAL HRO

The HRO Receiver is a high-gain superheterodyne designed for communication service. Two preselector stages give remarkable image suppression, weak signal response and high signal-to-noise ratio. Air-dielectric tuning capacitors account. in part, for the high degree of operating stability. A crystal filter with both variable selectivity and phasing controls makes possible adjustment of selectivity over a wide range. Heterodynes and interfering c.w. signals may be "phased out" (attenuated) by correct setting of the phasing control. A signal strength meter, connected in a vacuum tube bridge circuit, is calibrated in S units from 1 to 9 and in db above S 9 from 0 to 40 . Also included are automatic and manual volume control, a beat oscillator, a headphone jack and a $B+$ stand-by switch. Power supply is a separate unit. The standard models, HRO-5TA and HRO-5RA are supplied with four sets of coils covering all frequencies from 1.7 to 30 MC and have bandspread on the 10, 20, 40 and 80 meter amateur bands.
All models of the HRO are supplied with 6.3 volt heater type metal tubes Table models and accessories are finished in black wrinkle enamel.
A technical bulletin covering completelv ati details will be supplied upon request.

NATIONAL SCR-4

List $\$$

The SCR-4 is an extremely compact crystal controlled receiver for single channel reception. It is mounted on a $51 / 4^{\prime \prime}$ panel and uses 13 tubes. Two stages of tuned RF amplification are followed by a separately excited converter with crystal controlled oscillator, three stages of IF amplification, a detector and two dudio stages. The power supply is self-contained. Auxiliary circuits include amplified and delayed AVC, CW oscillator, noise limiter, CONS and signal strength meter. Signal-to-noise ratio dverages 6 db for 1 microvolt. The AVC is

NATIONAL $\left\{\begin{array}{l}\text { SCR-4 }\end{array}\right.$ SCR-4A

Aat within 6 db for inputs from 1 microvols to 1 volt. Being crystal controlled, frequency stability is excellent. The IF channel has a wide-band characteristic to allow foslight transmitter drift.
As the SCR-4 receiver is intended for communication work, the audio channel ha; been made flat only from 100-3000 cycles with increasing attenuation of higher frequencies, thus providing good intelligbility with maximum reduction of unwanted signals and noise.

NATIONAL SCR-4A List $\$$

The SCR-4A receiver is similar to the SCR-4 but has no beat oscillator and no signal strength meter. Both receivers are available for use at fixed frequencies be. tween 100 KC and 40 MC .

1-10 Receiver and 6 sets of coils rwithout tubes, sneaker or Dower sumply. List \$

5886 Po wer Supuly fir dbove receiver, with tuble. List \$

NATIONAL ONE-TEN

The One-Ten Receiver fulfills the need for an adequate receiver to cover the field between one and ten meters. A four-tube circuit is used, composed of one tuned R.F. stage, a self-quenching super-regenerative detector, transformer coupled to a first stage of audio which is resistance coupled to the power output stage. Tubes required: 954-R.F.; 955-Detector; 6C5-1st Audio, 6 F6-2nd Audio.

NATIONAL SW-3

The SW-3U Receiver employs a circuit consisting of one R.F. stage transformer coupled to a regenerative detector and one stase of impedance coupled audio. This circuit provides maximum sensitivity and flexibility with the smallest number of tubes and the least auxiliary equipment. The single turing dial operates a precisely adjusted two gang concenser; the regeneration control is smooth and noiseless, with no backlash or fringe howl; the volume control is calibrated From one to nıne in steps corresponding to the R scale.
ONE UNIVERSAL MODEL - The circuit of the SW-3U is arranged for either battery or AC operation without coil substitution or circuit change. Bottery operation utilizes two 1N5-G and one 1A5-G tubes. AC operation utilizes two 6J7-G and one 6C5-G tubes. Type 5886 AB power supply is recommended.

SW.3U, Universol model, withou: coils, nhones tubes or power supply. Lisi $\$$
5886-AB, Power Supply, 115 V., 60 cycle, with 80 Rectifier

List $\$$

General Coverage Coils

Cot.			
No.	Range	- Meters	Per Poir
30		to 15..	.
31	13.5	to 25	
32	23	to 41	
33	40	to 70	
34	65	to 115	
35	115	- 200	
36	200	to 360	
37	350	to 550.	
38	500	to 850.	
39	850	to 1200	
40	1200	to 1500	
41	1500	to 2000.	
42	2000	to 3000 .	
Band Spread Coils			
30 A	- 10	meter	\$
31 A	20	meter	
33 A	- 40	meter	
34 A	- 80	meter	
35A	- 160	matar	

POWER SUPPLIES

NATIONAL POWER SUPPLIES

National Power Supplies are specially designed for high frequency receivers, and include efficient filters for RF disturbances as well as for hum frequencies. The various types for operation from an AC line are listed under the receivers with which they are used.
High voltase power supplies can be supplied for National Receivers for operation from batteries. These units are of the vibrator type.
686, Table model (165 V ., 50 MA .), for operation from 6.3 volts DC, with vibrator.

List \$

COMPANY

McELROY 400 "SERIES

COMPLETE AUTOMATIC

RADIO AND TELEGRAPH

TRANSMITTING AND RECEIVING

ASSEMBLIES AND ASSOCIATED EQUIPMENT

While this new McElroy equipment is basically designed for speeds up to 400 words per minute, the high speed transmitters and recorders have been given long tests in our plant at speeds of 700 words per minute. In each piece of equipment will be found features which incorporate the experience of Mr. McElroy as an operator together with suggestions from commercial operators with RCAC, Press Wireless, Mackay, and the communications men of the Armed Forces and Merchant Marine.

Inasmuch as all equipment is regular stock production, it is possible to make prompt shipment on all orders in any quantity. Illustrated catalog and technical manuals are available in all the commonly used languages.

McELROY Complete Transmitting Assembly

At the litft - the Keying Head, complete wish Polarized Relay, and together with the Universal Drive combine to form the transmitter unit . . XTR-400 at \$435.00. At the right - the Wheatstone Code Tape Perforator, PFR-400, at the new low price of $\$ 95.00$. Stain-proof Operator's Table, $2^{\prime} 2^{\prime} \times 5$, at $\$ 165.00$. Operator's Chair, \$15.00.

McELROY Complete Receiving Assembly

In the center - the Tape Pulling Head and the Vniversal Drive combine w form the Receiver Unit . . ATP-400 at $\$ 240.00$ (Universal Drive $\$ 195.00$ plus Tape Pulling Head. $\$ 45.00$). In traffic operation, the tape is drawn through the Ink Recorder (extreme right) by one Receiver Unit running at high specd to the right of the typewriter, and then across the Reversible Tape Bridge tyy another Tape Pulter running at one-man speed to the left.

Clean Contacts! High Speeds!

McELROY KEYING HEAD MODEL HED-400

Complete with Built-in
Polarized Relay

An ingenious McFlroy design places the studs that pull the transmitting tape on the feed drum, not on the Star wheel, used in other types of auto heads in the contact case. With the old style heads, the contact case functioned as a dust bin . . . the tape swept the floor, carried the dirt up, dropped it into the Star Wheel opening, and fouled the contacts. The McFilroy design, which has no Star Wheel in the contact case, assures clean contacts, and less headaches for you. The speed of this new Keying Heach, when used with the Unirersal Drive, ranges from 10 to $\mathbf{3 0 0}$ words per minute. Priced for immediate delivery at $\$ \mathbf{2 4 0 . 0 0}$.

McELROY Universal Drive - Model MSD-400

Permits Rapid Interchangeability of Keying Head and Tape Pulling Head
Before the new Universal Drive was designed, there had to be two different motor assemblies on traffic positions; one to drive the keying head, and the other to pull the receiving slip. Now, with the Universal Drive, the Keying Head and the TapePulling Head are interchangeable. You'll save money on mainrenance and on spares, too. Using an oldfashioned installation with two tape pullers, two transmitting bases, and one spare for each, you had a total of six units. With the new Universal Drive, you get 100% more protection with six units, an equal amount with five. Priced for immediate delivery at $\$ 195.00$. Universal Drive D'TP-400, at the same price, uses AC or DC .

Note that in the illustration, the Keying Head is mounted in position on the Unitersal Drive . . this is the same position required by the interchangeable Tape-Pulling Head TPII-4*O.

Sensationally Lam Priced!

Designed to modernize small stations - at sea, ashore and on the air - where, previously the difficulty in keeping the old keyboard perforators in adjustment did not allow automatic oberation. Anyone can easily master this instrument, as long as he can read code by sight from a chart. The PFR-foo requires no specially skilled staff for its mantenance . . . adjustments can be made with a screwdriver and a pair of pliers. For 110-120 volts AC or 1)C. Very low priced for immediate delivery at $\$ 95.00$.

McELROY TAPE-PULLING HEAD TPH-400

Has an original arrangement that stops the tape rewind when the tape pressure wheel is raised. If youve seen tape run wild when you tried to stop it for examination, you'll appreciate the value of this Mclilroy feature. Another novel adjustment admits the tape at any angle from the right, which makes for smoother flow, prevents breakage, and permits the tape to come from any level on the receiving table - straight from the recorder at high speed, through the bridge at one-man speed, or even from the floor. Priced for immediate delivery at $\$ 45.00$.

Anather McElray Improvement!

New...
 INK RECORDER REC-400

Although smaller and lighter :han previous models, it is capable of speeds up to 700 words per minute, and will aperate at high efficiency over longer periods of time. The tape holder, which is part of this equipment, may be attached to either the right or back of the case, whichever is best suited to your receiving table bayout. Opatates frome either At, ar DC by smaping a toggle. Priced for immediate delivery at $\$ 195.00$.

McELROY Recorder Amplifier MRD-400

Designed to drive the lak Recorder at speeds up to 300 words per minute (special prices quoted for speeds up to 700 words per minute). No special arrangements are required in any recorder when changing over to this new Recorder Amplifier. Supplied in either a cabinet or rack mounting. It moves the signal coil by pushpull instad of the old-style "push flip" method by which the pen arm was slapped down to the zero line mech:anieally by springs. Immediate delivery $\$ 195.00$.

McELROY Phototube Keyer PTK-400

Nou Priced $\mathrm{H}^{\text {Fithin }}$ Reach of All

The Phototube Kcyer, invented by Ted McElroy more than ten years ago. and widely imitated, has been simplited and made more rugged. Like the Wheatstone Code Tape Perforator, this unit is priced so drastically low that it is now available for schools and clubs throughout the world, as well as for individual amateur and professional operators. The operator may build his own tape pulling arrangement with a phonograph motor, or use the ATP- 400 unit. The PTK-400 scans $3 / 8^{\prime \prime}$ recorded tape photoelectrically and delivers a tone code signal to from 1 to 50 headphones for operator training, and runs at either low or extremely high speeds. Each practice roll, complete with a 16 mm . metal movie reel, costs $\$ 2.00$; at 20 w.p.m., it provides an hour's unattended transmission. . . A special set of ten rolls, recorded by Mctiroy, comprises a complete course of instraction for $\mathbf{\$ 2 0 . 0 0}$. The PTK-400 is priced for immediate delivery at $\$ 45.00$.

Special Note on the McELROY "400" SERIES

Except where otherwise noted. all equipment is made for 110-120 volt, 60 -cycle operation. For 220-230 volt, 50 cycle operation, add $\$ 15.00$.

SHIPPING DATA

Prices quoted are FOB Boston. All equipment is packed to reach destination in operating condition, whether domestic shipment or export. No extra charge on this packing. Equipment meets specifications as to fungus proof, salt spray, rustproof.

McElrov engineers neter copy, neter imitute. Wre crate, design, build. . . we are never satisfied with mediocrity. 82 brookline avenue

PREFOCUSED LAMP RECEPTACLES

To know thes popula: Ampheno: p:oducts bette: wirte loday fo:
the new

Condenied Calalog No. 72.

- Among other radio experts, "hams" now welcome the return of the Amphencl line from honorable service on far-flung battlefronts around the world. Amphenol components greatly improved by wartime experience and augmented in number, style and type-are currently available fo: civilian applications. Simplifying buying, this wider selection of highquality, tested items can be procured from one manufacturer.

AMERICAN PHENOLIC CORPORATION In Cansds - Amphenol Limited - To:onto CONNECTORS (A-N, U. H.F.. BRITISH) - RADIO PARTS • PLASTICS FOR INDUSTRY

Welcome back to the air waves, friends! Hams, it's like old times to hear your calls again. Remember when you first began to make "wireless" history? That's when C-D built the first capacitors. You were an inspiration then . . . as you are today.

While your CQ's have been silent, many of you have made radio history in war . . . have ceased to be "amateurs" in the old sense. You have acquired a professional concept of how radio parts must perform. That's as it should be.

We anticipated your demands for more in capacitors, too . . and we are prepared to continue to uphold your faith in C-D's. We value the confidence you have shown in them for thirty-six years. Cornell-Dubilier Electric Corporation, New Bedford, Mass. Other Plants: So. Plainfield, New Jersey; Worcester, Brookline, Mass. and Providence, R. I.

SIX MODERN PIANTS

The C.D Capacitors you buy today are products of one of our six great plants, centrally located to speed deliveries to your dealer. He can supply you quickly with any C.D type you require.

MANUFACTURING SKILL
C.D quality has kept up despite our tremendous growth and quantity production. Oar skilled craftsmen, many of whom have been with us five to twenty ycars, are outstanding technicians. They make C-D Capacitors to precision standards.

CORNELL-DUBILIER

CORNELL-DUBILIER CAPACITORS for every radio need

Moulded mica capacitot for r.f. by-pass, grid and plate blocking in low power transmitters and amplifiers. Strong, well-insulated, moisture-resistant, with short, heavy terminals, minimum r.f. and contact resistance. Stable in capaciry and high insulation resistance.

Dykanol transmitting filter capacitory compact, lightweight, safety-rated, furnished with universal mownting clamp, well-insulated terminals, fireproof, and auractively priced. Hermetically sealed ageinst any climatic conditions, in sturdy steel container, aluminum-painted, non-corrosive, can be mounted in any position. Extra high dielectric strength. Conservative D.C. rating - triple tested. Wide range of voltage ratings.

Medium power mica transmitter capacitor for r.f. applications where size and weight must be minimized Patented series stack mica construction. Permanent non-magnetic clamps. Vacuum-impreg. nated-results in low loss, high insulation - no air voids. Low loss filter reduces stray losses. Suited to grid, plate, coupling, tank and by-pass uses.

Mica transmitting capacitor - improved design extreanely adariable, dependable under the most severe operaxing coaditions. In low-loss, white glazed ceramis cases, with low-resisiance, wide parb rerminals. Can be mounted individually or in groups in series or parallel combinations. For grid, plate blocking, coupling, tank and by-pass applications in high power transmitters.

SEND FOR CATALOG 195 also "The C.D Cepacitor," a monthly digest of developments in radio, articles, enginaering dota, helptul sacts . . . yours fiee for the asking.

EIMAG TRANSMITTING TUBES

the Only Criterion

On merit and on merit alone. Fimac tubes have achieved a position of leadership throughout the world. Their ourstanding performance characteristics have set and maintained an extremely high standard for more than a decade.

Standing behind Eimac tubes are a prewar performance record second to none and a wartime achievement record of the highest order both in production and development. Today Eimac stands at the threshold of the great new era of electronics with a family of electron vacuum tubes embodying all the original Eimac concepts in addition to highly advanced techniques and developments gained by the concentrated efforts of the past five years.

In the final analysis, performance is the only criterion. It's what the tubes do in your application that really counts. Below is a brief listing of the basic data on many Eimac zubes. Eimac stands ready to provide additional information or assistance without cost or obligation. Please let us hear from you.

EIMAC RECTIFIERS

	mV rectifiers		high vacuum rectifiers			
	R×21A (RX-21	$\begin{gathered} \text { KY2 } \\ \text { (KY-21) } \\ \text { Grid Control) } \end{gathered}$	$\begin{gathered} 2-100 A \\ 100-R \end{gathered}$	$\begin{gathered} 2-150 A \\ (152-R) \\ \hline \end{gathered}$	$\begin{aligned} & 2-150 D \\ & (152-R A) \end{aligned}$	$2-250 \mathrm{~A}$ $(250-\mathrm{B})$
1. Filament Voltage.	2.5	2.5	5.0	5.0	5.0	5.0
2. Filament Current.	10 amperes	10 amperes	55	13.0	13.0	10.5
3. Peak Inverse Voltage.	11,000	11.000	40.000	30.000	30,000	60,000
4. Pbak Plate Current.	3 amperes	3 amperes				
5. Average Plate Current.....	. 75 amperes.	. 75 amperes	. 100 amperes	. 150 amperes	. 150 amperes	. 250 amperes
Prict	\$750	\$10.00	\$13.50	\$15.00	\$15.00	\$20.00

EIMAC VACUUM CAPACITORS

Type. Capacity \qquad Rating RFPeak	VC6 20 $6-\mathrm{mmfd}$ 20 KV	$\begin{gathered} \text { VC12-\&0 } \\ 12-\mathrm{mmld} \\ 20-\mathrm{KV} \end{gathered}$	$\begin{gathered} V C 25-20 \\ 25-\mathrm{mmidd} \\ 20-K V \end{gathered}$	$\begin{gathered} V C 50-20 \\ 50-\mathrm{mmfd} \\ 20-\mathrm{KV} \end{gathered}$	VC6-32 6 mmtd 32 KV	VC12-32 12 -mmid 32-KV	VC25-32 25 mamd 32-KV	VC50-32 50 mmid 32-KV
Price...	\$10.00	\$11.30	\$14.00	\$16.70	\$12.00	\$13.30	\$16.00	\$18.70

EIMAC VACUUM SWITCHES

TYPE	GENERAL DATA	PRICE
VS-1.	Single pole double throw switch within high vacuum making it adaplable for high voltage switching. The contact spacing is $.015^{\prime \prime}$. In spite of the close spacing this switch will handie R. F. potentials as high as 20-KV. In D. C. switching circuits the contacts will handle approximately 1.5 amperes at 5 KV .	S
VS-2.	Same as above exeept for slightly longer glass tubulation.	\$

EIMAC DIFFUSION PUMP

POLIOW THE LEADERS TO

HV-1	
DIFFUSION	PRICES
PUMP	ON
EIMAC	APPLICATION
PUMP OIL	

TYPE II

SMALL, LOW-COST, SOLA CONSTANT VOLTAGE

 TRANSFORMERS FOR CHASSIS MOUNTINGReliable communications equipment must have stabilized voltage-and the right place to provide for it is in the equipment itself. These three types of Sola Constant Voltage Transformers have been specifically designed for "built-in" applications. They are low in cost and their use will often permit the elimination of other components. For complete information consult Bulletin $34 \mathrm{CV}-102$, available on request.

FOR COMMUNICATIONS EQUIPMENT NOW IN SERVICE

Where provision for constant voltage protection has not been made within the equipment itself, these standard sora Constant Voltage Transformers can be easily installed. They require no supervision or maintenance, are instantaneous in operation and they protect both themselves and the equipment against short-circuit. Other capacities ranging from 10VA to 15KVA fully described in Bulletin $34 \mathrm{CV}-102$, available on request.

TYPE 2

Cotolog Number	Output Copocity in VA	Input Volts	Output Volls	Dimensions in Inches					Approx Shipping Weight	Lis! Price Eoch
				A	B	C	E	F		
:30804	30	45-125	115.0	8_{816}	40	$4{ }^{3}$	$7{ }^{1} \ldots$	$2^{3} \times$	12	\$17.0\%
3080.5	60	95-125,	115.0	$8{ }^{13} 16$	4.16	4^{33}	$8^{1 / 6}$	$2^{3} \times$	13	24.00
308069	120	9.5-125	115.0	97116	4 is	$4^{3 / 8}$	$8{ }^{1 / 2}$	$23 *$	17	32.00
30807	250	95, 125	115.0	115/8	$6^{13} 16$	55	31	(1)	30	52.00
30 Mraz	250	190-250	115.0	11^{3}	61.10	55^{3}	314	61:	30	52.06
30808	500	95.125	115.0	14\%	$6{ }^{1 / 2}$	55	5	6^{1},	40	75.010
$30 \mathrm{M808}$	500	190-250	11.5 .0	1.4\%	$6^{615} \mathrm{in}$	558	5	$6!$ n	40	75.010

TYPE 3
$\underset{\substack{\text { HIGH } \\ \text { GAIN }}}{ }$ DIRECTIVE

ANTENNAS
for Amateur We
munications all over the world, the
name ANDEW means sound engi-
neering plus skill and ingenvity in
meeting specific
\qquad
\qquad
\qquad
\qquad
5)

AMATEUR COMMERCIAL• MLIITARY

$\underbrace{\text { comurusinear }}$ communications receivers into your

 postwar program. This new line of receiving equipment will include highly specialized single band VHF and UHF models for commercial and amateur use, several models of the well known "Super-Pro", and a new "HQ-129-X" amateur receiver, selling at $\$ 129.00$, net to the amateur. The "HQ-129-X" is basically the same as the original "HQ-120-X", but has several improvements and modifications.

An entire new group of VHF and UHF receivers for point to point, relay, facsimile, and other services in those ranges.

THE HAMMARLUND MFG. CO., INC., 460 W. 34TH ST., NEW YORK 1, N.Y. 35 MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT
 FOR EVERY SERVIC
 transmitters with Phone-CW-FM.AM. Write today for latest data in transmitter design.

THE HAMMARLUND MFG. CO., INC., 460 W. 34Th ST., NEW YORK 1, N.Y. MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT 37

38 THE HAMMARLUND MFG. CO., INC., 460 W. 34TH ST., NEW YORK 1, N. Y. MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT

precision

NEW "HQ-129-X' AMATEUR RECEIVER

This is an Improvement Over the "HQ-120-X" and Will Meet Every Amateur Requirement at a Much Lower Cost

The new "HQ-129X" meets the most critical demands of amateur and professional operators. This modern amateur receiver is an adaptation of the original "HQ-120-X" and has all the basic performance characteristics of the original model with a number of improvements and modifications. It covers a continuous range of from 31 to $.54 \mathrm{MC}(9.7$ to 555 meters) in six bands, taking in all of the important amateur, communications and broadeast channels. The "HQ-129-X" should not be confused with ordinary low-cost beginner type amateur receivers. Every wave range is individual. Each has its own individ-
 ual coil and tuning condenser of proper value for maximum efficiency. These are a few of its features: variable band-width crystal filter for phone and CW -antenna compensator for matching antennas-improved noise limiter-beat oscillator-calibrated S-meter-AVC-310 degrees of band spread. Amateur net price, complete less speaker- $\$ 129.00$. Speaker in metal cabinet- $\$ 10.50$, net.

Through a long war record of outstanding service, the "Super-Pro" has become the standard of measurement of all types of cammercial communications receivers. The "Super-Pra" has variable selectivity crystal filter and variable If band width, providing an over-all selectivity range of from less than 100 cycles to approximately 16 KC , an improved naise limiter, two stages of tuned RF far maximum image suppressian, high-gain, high-quality audia amplifier with output af appraxi. mately 8 Watts, new and impraved S-meter far accu. rate measurement af relative signal strength, full band spread an all bands, beat ascillatar, "Send-Receive" switch, relay cannectians, cannections for phona-pickup, better than 1 Micravolt sensifivity. Amateur net price, complete with speaker but without speaker cabinet:

SP-210-X
15-560 meters 7.5-240 meters

Amateur net

$\$ 279.00$
SP-210-SX SPC-10" Speaker Cabinet
to match receiver

THE COMMUNICATIONS LINE OF EXTRA VALUE

Keep up to date. Get your name on our technical mailing list — Write today!

Be sure to send your name and address to receive technical bulletins and information on postwar products, induding commercial and amateur transmitters, receivers, and components, covering all frequencies from 555 KC to over 500 MC . Write today, stating your preference as to "amateur" or "comimercial," so that we can place your name on our mailing list for new and interesting technical data.

HAMTABLDDOTHE HAMMARLUND MFG. CO., INC., 460 W. 34TM ST., NEW YORK 1, N.Y. MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT

Here all similarity ends...

from this point on, it's craftsmanship!

For over 15 years the Bliley organization has devoted its talent exclusively to the production of quartz crystals. From this long experience have come many of the "firsts" that have contributed substantially to the rapid growth and development of world-wide communications.

On the following pages are listed the standard Bliley acid etched* crystal units that have proved their worth under the most exacting conditions. With these units it is possible to cover the entire frequency spectrum in which frequency control with quartz crystals is practicable.

The best crystal unit for your particular application can easily be determined by consideration of the operating conditions. All details, such as oscillator circuit, grid drive to following stage, frequency tolerance, ambient temperature range, vibration and humidity must be analyzed to obtain completely satisfactory performance. Faster service is assured when this information accompanies your inquiry.

Make it a habit to consult Bliley engineers on all frequency control problems. Your product will benefit from this background of creative experience.

Be sure your name is on Bliley's list to receive announcements of new developments

TYPE BCIO
350-5000ke.
TYPE BC46R
70-200ke.

Constant temperature oven com-
bined with spereial crystal assembly. Provides exceptional frequency stability. Heater current 1 amp. at 10 V -a.c. or d.c. Recommended for frequency standards
 mended for frequency stand.
and precision teat equipmeat.

Precision holder employs micrometer sorew control of upser crystal electrode for frequency adjustment after installation. For use in fixed equipment such as broadcast monitors and frequency standards.

TYPE BC46T
 200-5000kc.

Combined be'ro crystal assembly and constant temperature oven. Heater current 1 amp, at $10 \mathrm{~V}^{\circ}$. a.c. or d.c. Rxceptional frequency stability. Frully approved bv FCC for automatie frequeney control in U.S.A. broudcast stations.

TYPE CF6
 455 kc .

Single signal filter crystal unit. lixcentionally low heder capateity permits sharp signal diserimimation in filter net work of general communications receivers. Frequency 45% ke. free from spurious responses within \pm ikc.

TYPE CF3
 455 ke .

Single signal filter crystal unit. Frequinncy $455 \mathrm{kc}, \pm 5 \mathrm{kc}$. - free from spurious responses within $\pm 7 \mathrm{kc}$. of fundiamental. Designed for intermediate frequency tiller in general communications receivers.

TYPE FM6
70-400ke.
Plated crystal rigidly clamped betwent resonant pins provides exceptional electrical andi mechanical stability. Captive gasket seals case effectively for any sorvice. For all applications requiring an accurate source of low frequency in this range.

Wilizes fixed air-gap assembly with unclamped crystal. Glass spacers maimain relative fosition of electrodes. Holder accommodates quartz plate $1^{\prime \prime} \times 1^{\prime \prime}$ for maxdates quarlz pall x for max-
innum acfovity with mediun power tubes and circuits.

Gasket sealed holder with prossure airgap crysial assembly. Ideal for multichannel applications. Aceommodates quatri\% plate up to $.^{\prime \prime} \times 9^{* \prime}$ for adequate activity in medimm powe circolits. Ised widely in marine radio-telephone equipwisely

Bether

TYPE BHS 4500-9500kc.

Midget holder with aluminum plated crysial mounted between spring contacts on wire supports Hermetically sealed metal case protects assembly. Recommended for use only with low power oscillator tubes and circuits where space is at a premium.

TYPE SR6 1700-11,000ke.

Pressure air-gap crystal assembly in gasket scaled phenolic case. Accommodates. $750^{\prime \prime} \times .750^{\prime \prime}$ quartz plate for adequate aclivity with medium nower tubes and circuits. particularly low frequency range. Suggested for all mobile applica. tions.

TYPE SR7
1700-11,000ke.
Heavy duty holder equipped with banana plug comections. Dressure air-gap crystal assembly provides excellent mechanical stability. Fully protected by fasket seals at all case openings. Recommended for marine use and similar appli. cations.

TYPE AR5W
 400-11,000kc.

Compact unit supplied with 2 crystals for transceiver equipment where both transmitter and receiver are crvatal controlled. Excellent mechanical and electrical stability over wide range of service conditions. Single crystal, specify type Alt4W.

Durable, light-weight Air-Wound Inductors - all shapes, types, and sizes-for every radio amateur and industrial requirement.

No matter what the Frequency BE SURE YOU'RE ON IT!

The postwar Browning Frequency Meter, like prewar and wartime models, will assinre you of meeting FCC requirements.

Like its popular predecessors, it will be a boon to amateur, police, aircraft and other mobile services.

Continued, whole-hearted devotion of all Browning resources and facilities to war service demands prevents any "unveiling" of the new Browning Freguency Meter at this time.

When it does come, it will reflect the expressed desires of many who have written us about it. It will be exactly what yon want.

You'll be glad you waited for it!

1

$A M$ and $F M$ communications equipment.

2

AM and FM broadcast transmitters, remote amplifiers, and studio accessories.

Amateur Radio Equipment.

THE COLLINS RADIO COMPANY

Cedar Rapids, lowa
11 West 42ind St., New York 18, N. Y.
Collins equipment is sold in Canada by Collins-Fisher, Ltd., Montreal.

The Collins 21A
 5 KW AIR COOLED BROADCAST TRANSMITTER

Broadcast Transmitters and Accessories

feafuring high fidelity, and increased safety factors through use of oversize components

1. $21 \mathrm{~A}, 5 \mathrm{kw}$, automatic reduction to 1 kw .
2. $20 \mathrm{~T}, 1 \mathrm{kw}$, automatic reduction to 500 w .
3. $300 \mathrm{G}, 250 \mathrm{w}$, automatic reduction to 100 w .
4. 12 Y remote amplifier, 1 channel, a.c. or d.c.
5. $12 Z$ remote amplifier, 4 channe!, a.c./d.c.
6. Three types of studio consoles.
7. Program, limiting, and line amplifiers and monitors.

FM COMMUNICATION AND BROADCAST TRANSMITTERS

1. 250 watt and 25 watt fixed and mobile communication transmitters, $30-162 \mathrm{Mc}$. range.
2. FM communication receivers for specific applications.
3. Complete line of $F M$ broadcast equipment, including both transmitting and studio equipment.

AMATEUR RADIO EQUIPMENT
In prewar years, Collins came to be known as headquarters for highest quality amateur equipment. Continuing that tradition, our new contributionsto ham radio will have the aded by suplyence and knowledge gor war time usage. ing radio equipment for war time trans-
Look to Collins for a versatile mook to Com is complete in every respect, and for a receiver of higher performance under the exacting conditions of ham radio.

The Collins 231D
3-5 KW
AUTOTUNE COMMUNICATION EQUIPMENT

Collins Communication Equipment

1. $231 \mathrm{D}, 10$ channel, $3-5 \mathrm{kw}, 2-18.1 \mathrm{Mc}$ Autotune Transmitter.
2. $16 \mathrm{~F}, 10$ channel, $300-500$ watts, $2 \cdot 20 \mathrm{Mc}$ Autotune Transmitter.
3. 32RA, 4 channel, band switching, 50-75 watts, $1.5-15 \mathrm{Mc}$ Transmitter.
4. 51 J , Communication Receiver, 1.5-36.5 Mc.

The Collins Autotune

The Collins Autotune is an elertrically controlled means of mechanically repositionin!s adjustable rotary element 5. Any combination of such components can be returned to any one of a number of preselected positions. By means of the Collins Autotune system, radio transmitters and receivers can be completely retuned in a matter of a very sew seconds.

Whether you're building new gear for your ham shack -or whether you're rebuilding the old_you'll find TOBE capacitors fit in wherever you need convenience and dependability
From the smallest mica or oil-paper by-pass unit to the largest Omitting filter block, TOBE gives you convenience in diversified styles, mountings, and terminal arrangements_plus the ability to stand up under every operating condition.
Ask your jobber for TOBE capacitors and write directly to our capacitor division for recommendations on capacitor uses.

- Your Microphone is here

As outstanding marrufacturers of Microphones for war-Shure offers a complete Microphone line. You will find the proper Microphone for every reed above. A complete description of any model will be furnished upon request.
A. Super-Cardioid Broadcast Dynamic
G. Lapel Microphone
H. Military Carbon
I3. Unidyne Cardioid I ynamic
I. Throat Microphone
C. Uniplex Cardiosid Crysta:
1). Stratoliner Dynami
J. Carbon Land Microphone
E. Laboratory Non-Directional
ド. Mash Microphone
F. "Economy" Crystal
1.. Stethophone

Crystal . Wicrophomes licensed amber poitents of the Brash Derelopment Company

SHURE BROTHERS

Designers and Manufacturers of Microphones and Acoustic Devices

MICRO MS SWITCH

Division of First Industrial Corporation Home Office and Plant: Freeport, Illinois

43 East Ohic Street
Chicogo I, lllinois

101 Pork Avenue New York 17, New York

The Precise, Small, Lightweight, Sensitive Switch for Radio Applications

Micro Switch precision snap-action switches have proven invaluable for applications that call for switching substantial amounts of power by a unit operating in a small space. Micro Switch products are important electrical switching units for electrical mechanisms that make change, package products, control temperatures, heat water, bottle fluids, limit machine tools, record airplane flights, control electronic tubes and perform thousands of other diversified electrical control functions.

MICRO SWITCH Products
 Meet These Requirements

Small Size . . . No larger than your thumb, the basic, plastic enclosed switch measures 11/16" x $27 / 2^{\prime \prime} \times 1510^{\prime \prime}$, (shown in hand, below).
Light Weight . . . With pin-type plunger, the plasticenclosed switch weighslessthanoneounce. Long Life . . . Patented three-bladed beryllium copper spring gives millions of accurate repeat operations.
Small Operating Force . . . Force required to operate the switch may be as little as one ounce or as much as $C 0$ ounces.
Small Operating Movement . . . Movement of the operating plunger may be as little as $.0004^{\prime \prime}$. . . or as much as $1 / 4^{\prime \prime}$
Good Electrical Capacity . . Switch is Underwriters* listed and rated at 1200 V . A. at 125 to 460 volts a.c.
REEP ON BUYING BONDS!

BRANCH OFFICES:

4900 Euclid Avenue
Cleveland 3, Ohic

1709 West 8 th Street Los Angeles 14, Colifornio

126 Newbury Street
Boston 16, Mossachusetts

MICRO-SWITCH Actuators To Meet Every Requirement

Here are a few typical Micro Switch Actuators which makes these switches useable under a wide variety of special mounting these switches useable under a wide variety of special mounting and operating conditions.

 tic enclosed awitches.

Type "A" Adiustoble Actuator

SEND FOR THIS CATALOG For full information on Micro Switch products. . .
switches, housings and actuators . . you are invited switches, housings and actuators ... you are invited
to send for MicroSwitch Handbook. Catalog No, to send for Micro Switch Handbook-Catalog No. 60.

Ponel Mount Actuator (Shart Plunger)

MicroSwitch Type "MC7711" Auxiliary Actuator with long plunger overtravel for use with mechanisms whose motion cannot be controlled aceurately.

Raller Lever Actuator

Microswitch Type "J R" Roller lever Actuator for use with long overtravel and livht of rrating force charactoriveles and protection against wear from side thrust and slide op eration.
Micro Switch Type "A" Anxiliary Acthatwr for use where the onveration frequency is hashand where the methe anlsm operating the actuator infoarts side thrust. Allows for adjustment of pretravel and operating poitt.

[^13]
54

Ready For Peace

After performing exceptional service in the Armed Services of the Allied Nations throughout World War II, Premax Antennas have turned to peacetime manufacture.

Preman Anteninas and Monntings

Premax Tubular Metal Antemes are now available for commercial and mobile installations as well as for amateurs who realize the necessity of having the best equipment available.

There are standard designs in steel, monel, almminum and stainless steel... all on accepted types that have been proven in wartime service under the most trying conditions.

For mobile mits, the Premax Police Antemas and Mountings have a wide acceptance.

When planning your post-war equipment, it will pay you well to investigate Premax Antemnas and Mountings.

Division of Chisholm-Ruder Co, Inc. 4622 Highland Ave. Niagara Falls, N. Y.

56

A Scientific Laboratory Geared for Large-Scale Production of Water and Air Cooled

TRANSMITTING and

RECTIFYING TUBES

AMPEREX TRANSMITTING TUBES

WATER-COOLED TYPES

$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	FILAMENT		Mu	Gm	Capacitance Grid to Plote	* PLate			*Nominal Output Watts	Max. Freq. MC.	
	Volts	Amps.				Mox. Volts	Max. Amps.	Max. Dissipation Watts		At Max. Plote Input	At 50% Max. Plate Input
207	22.0	52.0	20.0	6500	27.0	15000	2.00	10000	C20000	1.6	20
220 C	21.5	41.0	35.0	5000	22.0	15000	1.00	10000	BR2500	3.0	30
2284	21.5	41.0	17.0	6500	23.4	6000	. 75	3000	8R1000	1.5	20
232 C	20.0	72.0	40.0	8000	22.0	20000	2.00	20000	BR8500	1.5	20
233	24.0	70.0	52.0	16500	25.0	15000	4.00	25000	C35000	7.5	30
342 A	20.0	67.0	40.0	6820	27.0	18000	1.40	25000	BR8500	4.0	16
343 A	21.5	57.5	40.0	6750	23.5	15000	. 70	10000	BR3500	4.0	8
5208	22.0	34.0	17.0	5000	27.0	10000	1.20	5000	C5000	2	
846	11.0	51.0	40.0	2800	9.0	7500	1.00	1600	C2500	50	150
858	22.0	52.0	42.0	4500	18.0	20000	2.00	20000	C20000	1.6	40
859	$11.0{ }_{+}^{+}$	71.0	36.0	8000	15.0	20000	3.50	20000	C35000	1.5	40
889	11.0	195.0	21.0	8000	17.5	7500	2.00	5000	C10000	50	150
$891^{* *}$	$11.0 \pm$	60.0	8.0	4200	27.0	15000	2.00	5000	B22000	1.6	20
892**	$11.0{ }_{+}^{+}$	60.0	50.0	7000	32.0	10000	1.00	6600	CP6000	1.6	20

ISingle or two-phase filoment (two units); valtage is oer unit. **Single or fwo-phase filament excitation.
FORCED-AIR COOLED TYPES

$\begin{aligned} & \text { TYPE } \\ & \text { MO. } \end{aligned}$	Filament		Mu	Gm	Capacitance Grid to Plate	-plate			-Nominal Output Watts	Max. Frea. MC.	
	Volts	Amps.				$\begin{aligned} & \text { Max, } \\ & \text { Volts } \end{aligned}$	Max. Amps.	Max. Dissipation Watts		At Max. Plate Input	$\begin{aligned} & \text { At } 50 \% \\ & \text { Max. Plate } \end{aligned}$ Input
220R \dagger	21.5	41.0	35.0	5000	22.0	12500	1.00	6000	BR2500	4.0	30
232R \dagger	20.0	72.0	40.0	8000	22.0	12500	2.00	7500	CP10000	3.0	20
$233 \mathrm{R} \dagger$	24.0	70.0	52.0	16500	26.5	12000	4.00	10000	C15000	7.5	30
235 R	14.5	39.0	14.0	16500	9.0	4000	1.25	1500	C2000	90	200
$343 \mathrm{R} \dagger$	21.5	57.5	40.0	6750	23.5	7500	1.50	5000	CP5000	4.0	30
889R	11.0	125.0	21.0	8000	19.0	6000	1.00	3000	CP4000	25	100
$891 \mathrm{R} \dagger$	$11.0 \pm$	60.0	8.0	4200	28.0	10000	2.00	4500	B10000	1.6	20
$892 \mathrm{R} \dagger$	$11.0 \ddagger$	60.0	50.0	7000	32.0	8500	1.00	4000	CP5000	1.6	20
HF3000 ${ }^{\circ}$	21.5	40.5	16.0	6500	10.0	10000	1.35	3000	C7500	20	50
$283200{ }^{\circ}$	21.5	40.5	85.0	5000	10.0	10000	1.50	2000	B8000	20	50

$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	FILAMENT		Mu	Gm	Capacitonce Grid to Plate	* PLATE			*Nominal Output Watts	Mox. Freq. MC.	
	Volts	Amps.				Max. Volts	Max. Ma.	Max. Dissipation Wotts		At Max. Plate Input	$\left\lvert\, \begin{gathered} \text { At } 50 \% \% \\ \text { Max. Plote } \\ \text { Input } \end{gathered}\right.$
AB-150	10.0	3.25	5.3	3400	9.5	1500	100	AB150	\cdots
HF- 60	10.0	2.50	20.0	5000	5.2	1600	150	60	C100	30	100
HF- 75	10.0	3.25	12.5	4000	2.0	2000	120	75	C150	75	200
HF-100	10.0	2.50	23.0	4200	4.5	1500	150	75	C150	30	150
HF- 120	10.0	3.25	12.0	4500	10.5	1250	175	100	C150	20	80
HF-125	10.0	3.25	25.0	4500	11.5	1500	175	100	C200	30	90
HF-130	10.0	3.25	12.5	4300	9.0	1250	210	125	C170	20	90
HF-140	10.0	3.25	12.0	4500	12.5	1250	175	100	C150	15	60
HF-150	10.0	3.25	12.5	4300	7.2	1500	210	125	C200	30	100
HF-175	10.0	4.00	18.0	5000	6.3	2000	250	125	C300	25	100
HF-200	10.5	4.00	18.0	5000	5.8	2500	200	150	C350	20	100
HF-250	10.5	4.00	18.0	5000	5.8	3000	200	150	C375	20	100
HF. 300	11.0	4.00	23.0	5600	6.5	3000	275	200	C600	20	100
ZB-120	10.0	2.50	30.0	5000	5.2	1500	160	75	B300	30	90
111 H	10.0	2.50	23.0	4200	4.6	1500	160	75	C175	25	50
203A	10.0	3.25	25.0	4500	13.5	1250	175	100	C150	15	80
203 H	10.0	3.25	25.0	4500	11.5	1500	175	100	C200	30	90
204 A	11.0	3.85	23.0	4000	15.0	2500	275	250	C500	3	30
211	10.0	3.25	12.0	4500	12.5	1250	175	100	C150	15	80
211 C	10.0	3.25	12.5	4300	9.0	1250	210	125	C175	20	90
211 H	10.0	3.25	12.5	4300	7.2	1500	210	125	C200	30	100
212 F	14.0	6.00	16.0	8000	19.0	2000	350	275	BR75	1.5	3.0
2418	14.0	6.00	16.0	8500	18.8	2000	350	275	C400	7.5	20
242 A	10.0	3.25	12.5	3600	13.0	1250	150	85	A20	6	25
242 B	10.0	3.25	12.5	3600	13.0	1250	150	100	A20	6	25
242 C	10.0	3.25	12.5	3600	13.0	1250	150	100	A20	6	25
251 A	10.0	16.00	10.5	3800	8.0	3000	600	1000	C1200	30	60
261 A	10.0	3.25	12.0	4000	9.0	1250	210	125	C175	30	50
270 A	10.0	9.75	16.0	5700	21.0	3000	375	350	C700	7.5	20
276 A	10.0	3.25	12.0	4000	9.0	1250	210	125	C175	30	50
279 A	10.0	21.00	10.0	5000	18.0	3000	800	1200	BR500	20	40
304 B	7.5	3.25	11.0	2000	2.5	1250	100	50	C85	100	350
308 B	14.0	6.00	8.0	7500	17.4	2250	325	250	A 50	1.5	3
801	7.5	1.25	8.0	1600	6.0	600	70	42	C25	60	120
805	10.0	3.25	50.0	4800	6.0	1500	210	125	B400	30	80
810	10.0	4.50	35.0	5000	4.8	2000	250	125	C375	30	100
813	10.0	5.00	. . .		0.2	2000	180	100	C250	30	60
830	10.0	2.50	8.0	2000	9.9	750	130	40	C60	6	50
830 B	10.0	2.50	25.0	3080	11.0	1000	150	60	B175	15	65
833 A	10.0	10.00	35.0	8000	6.3	3000	500	300	C1000	30	100
834	7.5	3.25	11.0	2000	2.5	1250	100	50	C75	100	350
838	10.0	3.25	50.0	4800	8.0	1250	175	100	B275	30	120
841	7.5	1.25	30.0	750	7.0	425	60	15	B25	6	50
842	7.5	1.50	3.0	1250	7.0	425	12	A3	
845	10.0	3.25	5.3	3400	11.5	1250	\cdots	75	A25		
849	11.0	5.00	19.0	6000	33.0	3000	350	300	B1225	3	30
8494	11.0	7.70	19.0	7600	11.5	4000	500	500	B1900	3	30
849 H	11.0	7.70	19.0	7600	11.5	3500	500	500	C1180	20	40
851	11.0	15.50	20.5	15000	47.0	2500	1000	750	Cl 700	3	15
852	10.0	3.25	12.0	1200	2.6	3000	150	100	C165	30	120

Ratings given ore typical of the class of service in which the tube is most AB-power output per pair of tubes as Class AB pawer omplifier and modulator
mmonly used. llows

- power output per tube as Class A power amplifier and modulator

B - power output per tube as Class B power amplifier and modulator
BR—power output per pair of fubes as Class B Radio Frequency power amplifier
C -power output per tube as Class C power amplifier or ascillator
CP—pawer output per tube as Class C plate modulated power amplifier

AMPEREX RECTIFYING TUBES

MERCURYYAbNR RECTIFIER5					
PE	FILAMENT		Peak Inverse Volts	Approx. - Ave. Plate Amps.	Peok Plate Amps
	Volts	Amps.			
249B	2.5	7.50	7500	0.50	1.5
288	2.5	7.50	7500	0.50	1.5
266 B	5.0	42.00	22000	7.00	20.0
267	5.0	6.75	10000	1.25	5.0
15A	5.0	10.00	15000	1.50	6.0
75A	5.0	10.00	15000	1.50	6.0
578	5.0	40.00	22000	10.00	40.0
66	2.5	5.00	7500	0.25	1.0
36A	2.5	5.00	10000	0.25	1.0
698	5.0	20.00	20000	2.50	10.0
372	5.0	6.75	10000	1.25	5.0

- Actual value will depend on wove-form resulting om lood and filter circuit.

RADIATION COOLED HIGH VACUUM RECTIFIERS

ELECTRONIC PRODUCTS

Approved Precision Products

Vibrapacks ${ }^{*}$ romide
 Dependable IPlate Power for Portable Equipment

Mallory Vibrapacks provide economical, efficient and dependable plate power for operating radio receivers, transmitters, PA systems, direction finders and other electronic equipment on velicles, farms, portable equipment, or wherever commercial AC power is unavailable.
Write for Form E-555 for detail information

Mallory Transmitting Capacitors

Built with adequate safety factor for long life. Round and squarecanstyles. Available in 20 stowh siens, working voltares from 600 to 6,000 .

Vitreous Enamel Resistors

Mallory fixed and adjustable power resistors provide maximum efliciency in opration with excellent temperature and humidity chararleristics. Available in rated caparities from 10 to 200 watts, resistances from 1 to 100,000 ohms.

Ham Band Switches

Ceramic insulation provides low losses at high frequencies. The Mallory Ham Band Switch is rated for use in transmitterplate cirroits using up to 1,000 volts DC with power up to 100 watts, inclustve.

OTHER MALIORY PRODDCTS INCLLDE:

Attenualors
Battery Chargers
Capacitors, Dry Electrolytie
Capacitors, Paper

Ilan Band Switches Jacks
Jack Switches
Knols:
"1," Pad Altenuators
Noise Filters

Plugs
Potentionmerars
Push Rutton Switehes Rectifiers, Dry Disc Resistors
Rheostats

"T", Pad Attemmators Variohn* liesistors
Vibrators
Vitreous Resistors
Volume Controls
*Reg. U.S. Pat. Off.

All Mallory standard parts available from Mallory Distributors II'rite for Catalog
FOR IMPROVED PERFORMANCE LSE MALLORY APPROVED PRECISION PRODUCTS

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

 effective quality control is maintained every step
 of the way. Skilled operators have the most modern mechanical equipment with which to work. This, together with competent supervision, has enabled S.ANGAMO to play an important part in meeting the heavy and exacting requirements of wartime America.
\star The complete line of SAN. GAMO MICA CAPACITORS merits every confidence of the most exacting user of Capacitors.

SANGAMO HLBCTRIC COMPANY spmincritip

ECHOPHONE COMMERCIAL

A real communications receiver at a sensationally low price

The 1946 Echophone, Model EC-IA is a 6-tube AC/DC communications receiver of outstanding value. With electrical bandspread throughout its frequency range of .55 to 30 megacycles, BFO for CW reception, and a new automatic noise limiter to sup-
press interference from automobile ignition, etc., the EC-1A provides genuine communications receiver performance in the lowest price range. Standard 115 -volt AC or DC operation; also available for 220 to 250 -volt operation.

FEATURES

1. Frequency coverage, .55 to 30 mc , complete in three bands.
2. Electrical bandspread on all bands with dial indicator.
3. Dial calibrated in megacycles with all important service bands identified.
4. Beat frequency oscillator for CW reception.
5. Automatic noise limiter.
6. Self-contained PM dynamic speaker.
7. Headphones or speaker selected by panel switch, headphones completely isolated by means of phone circuit transformer.
8. AC/DC operation 115 volts or 220 to 250 volts available with external line cord.
9. Good selectivity combined with exceptional sensitivity.
10. Modern 6-tube superheterodyne circuit.

SPECIFICATIONS

Tube Lineup:

1-12SA7 Mixer; 1-12SK7 I.F. Amplifier; 1-12SQ7 Second Detector, First Audio Amplifier and AVC; 1-35L6GT Second Audio Amplifier; 1-12SQ7 Beat Frequericy Oscillator and Automatic Noise Limi:er; 1-35Z5GT Rectifier.

Controls:

TUNING, BAND SPREAD, VOLUME, BAND SELECTOR, CW/AM, NOISE LIMITER, PHONES/SPEAKER, STAND BY. (BFO pitch adjustment conveniently located on rear of chassis.)

External Connections:
(On rear of chassis.) Power line cord,
phone tip jacks, antenna (doublet or single wire and groundl.

Physical Characteristics:

The EG-1A is housed ir a metal cabinet attractively finished in machine tool gray wrinkle lacquer. The cadmium plated steel chass,s is substantially constructec. The PM dynamic speaker is mounted in the top of the cabinet and is protected by special sound projecting louvers instead of the ordinary grill.

Dimensions:

8 " high, $113 / 4$ " wide, $8 \frac{1}{8} 8^{\prime \prime}$ deep; overall. Act. wt., 11 lbs. Ship wt., 22 lbs. Model EC-IA Amateur Net Price, \$29.50.

ECHOPHONE DIVISION • THE HALLICRAFTERS CO. . 2611 INDIANA AVE., CHICAGO 16, U.S.A.

Marion Glass-to-Metal Truly Hermetically Sealed $21 / 2^{\prime \prime}$ and $312^{\prime \prime}$ Electrical Indicating Instruments

By building the mechanism into a one-piece, drawn steel cup, and then sealing the glass cover to the metal rim, perfect hermetic sealing has been achieved with a minimum number of seals. Marion "hermetics" are posifively interchangeable, and cost no more than standard unsealed instruments. Not only do we offer these instruments in standard ranges, but we also specialize in supplying them with special and unusual characteristics for new and unusual applications.

- There are no rubber gaskets, no cement seals.
- Can be immersed in bailing brine solution for weoks without deferioration of seals.
- Windows are of double thictness tempered gloss pracessed for solder sealing, and ore highly resistont to shack.
- Instruments are completely dehydrated and are filled with dry air at seo level pressure.
- A newly designed crowned crystol permits greater scale length, raduces shadows, and motes for better visibility.
- Mognetic shielding parmits interchongeability on any type of pond without affecting coli-
bration: can bo supplied silver plated far extra R.F. shielding.
- Silver clad beryllium capper hair springs reduce zero shift at all temperatures.
- Standard Kovar glass bead type terminals with salder lugs.
- Special phosphate finish on cases meets two-hundred-hour solt sproy test.
- Windaw sealing process developed and perfected in cooperation with engineers of the Corning Glass Co.
- Instruments manufoctured in occordonce with AWS Spec. C-39.2 1944 plus hermetic sealing.

TYPE HM 2 DIRECTIY INTERCHANGEABLE WITH AWS TYPE MR 24 AND 25 TYPE HM 3 DIRECTIY INTERGHANGEABLE WITH AWS TYPE MR 34 AND 35

Available in all DC ranges. Writy for booklet.

MARION ELECTRICAL INSTRUMENT CO. mANCHESTER, NEW HAMPSHIRE

What effect do horn tormula, flare and length have on low frequency "cut off?" in the most commonly used frequencies which horn is mast directional-ore with large or one with small mouth? What are the advantages of the reflex type horn? How is a 500 -watt "bull horn " constructed? What are the advantages of the new Hypex. originated by JENSEN, over the exponential type horm?
"HORN TYPE LOUD SPEAKERS" - JENSEN Monograph No. 5, - the latest number in the jensen Monograph seires and now available, discusses simply and cleariy tie:s and many other questions pertirent to the study of electroacoustics. By means of photograplis, diagrams and g:aphs it reviews the principles, performance characteristics and applications of horn type loud speakers and illustrates modern reproducers employing horns.

Get your copy of this or any others of the series today from your JENSEN jobber or dealer or from the Jensen Technical Service Department. Price each 25s.

FREE to men in the Armed Services, and to Technieal Schools, Colleges and Libraries.

Jensen radio manufacturing company bí35 South Laramie Avenue, Cnicaga 38, III.
 Send me the Monogrophs checked:
I :") "Loull Speaker Frequency-Response Meosurements" (12) "Impedonce Motching ond Power Distr'tution" (3) "Frequency Ronge in Music Reproductior" (5) "The Effective Reppocuction of Speech" Send 25c book ordered.
\qquad Neme
Address

PAR=METAL

32-62-49th STREET. . LONG ISLAND CITY, N. Y.
Expert Dept. 100 Varick St., N. Y. C.

EMUIPMENI

 ruaclable-through hallicrafters, agent for RFChead phones - test equipment - ccmponent parts - marine transmiffers and receivers - code pracfice equipment - sound defecting equipment vehicular operation police and conmand eefs radio beacons and airborne landing equisment

Write or wire for lists of available equipment Specify types of equipment in which you are interested hallicrafters rado
Agent for RFC under contrast SiA-3-24. Anddress: Hailierafters, RFC Dept. 010,5025 West 65th Street, CPicago 38, I finois MANUFACTURERS OF RADIO AMD ELECTRONIC EOJIPMENT

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "'Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions'" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card will bring full particulars

THE INSTRUCTOGRAPH CO.

mandell watlity pame

* He say almost every application hecause no one can anticipate every conceivable need of the postwar capacitor consumer. Cardwell is, however, prepared as never before to put war tempered facilities and engineers to work on what may be paramount, yet unfilled, needs in the amateur and electronic fields.

THE ALLEN D. CARDWELL

Main Office: 81 PROSPECT ST. BROOKIYN I, N. Y.

That is why we urge you to scnd for the new Cardwell Catalor No. 46, and tell us what you would like to see added. With your help, we shall try to turn out a complete line of instruments, emloodying the fine design and craftsmanship that has always heen associated with the Cardwell name. Your copy sent free upon reauest.

RELIABLE PERFORMANCE
 7s Only One of the Many Reasons Why...

Tilpey Crystals

Met the Exact Specifications of Our Armed Farces

With peace there comes again those products of industry such as radio, television, airplanes, refrigerators, washing machines, etc., which never really were luxuries so much as necessities. We are now prepared again

QUARTZ CRYSTALS for All Frequency Control Applications
QUARTZ CRYSTAL MOUNTINGS TEMPERATURE CONTROL OVENS QUARTZ PRISMS, LENSES and Special Optical Pieces
to help build precision parts and accessories for such products required by the electronics industry, as well as help design and produce many complex, new ones that have emerged from war. Plan NOW with-VALPEY.

WRITE FOR "CRYSTONICS" INFORMATION

VALPEY CRYSTAL CORP.

"Croftsmanship in Crystals since 19:1" Holliston, Mass.

HYTRON TUBES

Whether you are interested in the low or high frequencies - c.w. or 'phone - high or medium mu triodes - the popular beam tetrodes - pentodes - rectifiers - acorns - miniatures - or gascous voltage regulators - there are Hytron tubes just right for your new rig.
TRIODES You find a wide range of plate dissipations, filament and plate potentials, and ampliftcation factors. Standard replacements, such as the 801 A 801, are included, as well as carefully engineered triodes with graphite anodes, dual grid stem leads, filament heat radiators, low-loss lava insulation, and low-loss bases. The twin triodes, 3A5, HY 312 , and HY 1231%. offer special application economies.
V-H-F TRIODES The HY75, HY114B, and HY615 with their familiar grid and plate top caps are automatically associated with Hytron. Suitable for transmitting or receiving, they are extremely popular for efficient v-h-f portable and mobile equipment. The 955 acorn and 9002 miniature are also widely known.
PENTODE The 837 is a popular transmitting pentode with 12.6 -volt filament and 12 -watt plate dissipation. It is particularly suited for suppressor grid modulation.
R.F. BEAM TETRODES Instant-heating or cathode types for 6 or 12 volt AC or DC, filament supplies are offered in a generous variety of plate voltages and plate dissipations. Ideal for mobile use where battery power must be conserved during standby, are the instant-heating 2E25, HY69, and HY 1269 . Low driving power requirements, freedom from neutralization and ease of band switching on frequencies up to 60 megacycles $(100 \mathrm{mc}$. for the 2E25)-are attractive features of all these beam tetrodes.

ACORN AND MINIATURE PENTODES The 954, 9001 , and 64 K 5 assure top receiver perform. ance on those higher frequencies.
RECTIFIERS Mercury vapor types are supplemented by the 1616 for applications where filament and plate potentials must be applied simultaneously. The v-h-f GAL 5 has many interesting possibilities: rectifier, detector and avc, clipper, limiter, and fm frequency discrimi. nator.
VOLTAGE REGULATORS Literally millions of the Hytron OC3 VR 105 and OD3 VR 150 have been sold. They are economical, simple to use, and sure-fire in maintaining steady porentials. The OC3 and OD3 may be used in series for regulating a 250 -volt supply. New Hytron miniatures, OA 2 and OB 2 , are compact and closely approximate in performance the standard regulators.
And that's nor all! Hytron's wartime experience is bringing you many new tubes - particularly in the u-h-f field-tubes engineered for your exacting needs. Watch for them.

YOUR NEW RIG
PIRON TRANSMITTING AND SPECIAL PURPOSE TUBES
cription
ow
:DIUM
MU
IODES

SH-mu
IODES

H-H.F
IODES
rrodes
ND
Ntodes

CORNS
AINIA-
rures

CTIFIERS
aseous
oltage
egula
TORS

Type No.	Filament Ratings			Max. Plate Volts	Max. Plate Mo.	Max. Plate Dis.
	Valts	Amps.	Type			
345	1.4	0.22	Oxide	150	30^{*}	2^{*}
	2.8	0.11	Oxide	150	30	2
6J5GTX	6.3	0.3	Cath.	330	20	3.5
loy	7.5	1.25	Thor.	450	65	15
HY24	2	0.13	Oxide	180	20	2
HY40	7.5	2.25	Thor.	1000	125	40
HYS IA	7.5	3.55	Thor.	1000	175	65
HY5 1B	10	2.25	Thor.	1000	175	65
8014.801	7.5	1.25	Thor.	600	70	20
841	7.5	1.25	Thor.	450	60	15
864	1.1	0.25	Oxide	135	5	
1626	12.6	0.25	Cath.	250	25	5
HY30Z	6.3	2.25	Thor.	850	90	30
HY3 12	6	2.55	Thor.	500	150*	30*
HY40Z	7.5	2.6	Thor.	1000	125	40
HY5 12	7.5	3.55	Thor.	1000	175	65
HY 12312	$\begin{array}{r} 6 \\ 12 \end{array}$	$\begin{aligned} & 3.2 \\ & 1.6 \end{aligned}$	Thor.	500	150*	30*
2C26A	6.3	1.15	Cath,	3500	NOTE	10
HY75	6.3	2.6	Thor.	450	80	15
HY1148	1.4	0.155	Oxide	180	12	1.8
HY615	6.3	0.175	Cath.	300	20	3.5
955	6.3	0.15	Cath.	200	8	1.8
E1148	6.3	0.175	Cath.	300	20	3.5
9002	6.3	0.15	Cath.	200	8	1.8
2E25	6	0.8	Thor.	450	75	15
6AR6	6.3	1.2	Cath.	630	60	10
6L6GX	6.3	0.9	Cath.	500	115	21
6V6GTX	6.3	0.45	Cath.	350	60	13
HY60	6.3	0.5	Cath.	425	60	15
HY6 1'807	6.3	0.9	Cath.	600	120	25
HY65 fin	6	0.8	Thor.	450	75	15
HY67	6	4.5	Thor.	1250	175	65
HY69	6	1.6	Thor.	600	100	30
HY1269	$\begin{array}{r} 6 \\ 12 \end{array}$	3.2	Thor.	750	120	30
1625	12.6	0.45	Cath.	600	120	25
837	12.6	0.7	Cath.	500	80	12
6 6K5	6.3	0.175	Cath.	Sharp	off pen	tode
954	6.3	0.15	Cath.	Sharp cu	off pen	tode
9001	6.3	0.15	Coth.	Sharp cu	off per	ntode

Type Fin No.	Filament Volts	Ratings Amps.	Type Rect.	Peak Plate Ma.	Max. D.C. Ma. \dagger	Inv. Peak Pot.
HY866 Jr.	2.5	2.5	Mer.	500	250	5000
866A/866	2.5	5.0	Mer.	1000	500	10000
1616	2.5	5.0	Voc.	800	260	6000
6 Al 5	6.3	0.3	Vac.	60	20	460
Type No.	Average Operating Voltage		Operating Ma.		Av. Volts Reg.	Min. Starting Voltage
			Min.	Max.		
OA2		50	5	30	2	185
O82		08	5	30	1	133
OC3, 'VR 105		08	5	40	2	133
OD3, 'VR150		50	5	40	3.5	185

-Both sections of iwin triode. fDiscontimued; 2E25 supersedes and replaces. tCurrent for full wave
NOTE: Not recommended for C.W. Consult Hytron Commercial Engineering Dept. for data.

DNICS CORP., SALEM,

BURGESS BATTERIES for every purpose

RECOGNIZED BY THEIR STRIPES • REMEMBERED FOR THEIR SERVICE

Me. 4FA

Ne. 5308

No. F4BP

No. 4FA LITTLE SIX-1 $1 \frac{1}{2}$ volts-replaces one round No. 6 cell. Radio " A " type; is recommended for the filament lighting of vacuum tubes. Size, $4 \frac{1}{4^{\prime \prime}} \times 2916^{\prime \prime} \times 29$ ín". Weight, 1 lb .5 oz .

No. 5308-45 volt " B '' battery equipped with insulated junior knobs. Taps at -, $+22 \frac{1}{2},+45$ volts. Size, $57 / 8^{\prime \prime} \times 43 / 1^{\prime \prime} \times 2^{9} / 6^{\prime \prime}$. Weight, each-2 lbs. 15 oz .

No. F4BP-A 6 volt, heavy-duty portable battery, designed for Burgess X109 headlight. Contains four F cells connected in series. Screw terminals and brass knurled nuts. Size, $2^{21 / 32^{\prime \prime}} \times 2^{21 / 32^{\prime \prime}} \times 4^{7 / 32^{\prime \prime}}$. Weight, 1 lb. 6 oz .

No. 2308 -A 45 volt super-service, standard size radio "B". Designed for receivers with plate current drain of 10 to 15 milliamperes. Size, $71 / 8^{\prime \prime} \times 8^{\prime \prime} \times 27 / 8^{\prime \prime}$. Weight, 7 lbs .6 oz .

No. Z30N-45 volt " B " battery. Improved small size. Adapted to radio, portable receivers and transmitters. Screw terminals. Size, $3^{\prime \prime} \times 17 / 8^{\prime \prime} \times 431 / 32^{\prime \prime}$. Weight, 1 lb .4 oz .

No. 2F2H-A 3 volt radio "A" battery used with portable radios, amplifiers, and special instruments. Size, $25 / 8^{\prime \prime} \times 25 / 8^{\prime \prime} \times 43 / 8^{\prime \prime}$. Weight, 1 lb .6 oz.

No. W30BPX-45 volts. Extremely small and light in weight. Very suitable for personal transceivers used by amateur clubs and radio stations. Equipped with insulated junior knobs. Size, $1^{7}{ }^{7} 2^{\prime \prime} \times{ }^{21} / 32^{\prime \prime} \times 4^{1 / 16 "}$. Weight, 10 oz .

VOTED FIRST CHOICE

IN NATIONAL POLL OF ELECTRONIC ENGINEERS
 neers voted for Burgess Batteries in a recent survey. Use the brand the experts choose...BUY BURGESS!

Fresh Stocks at Your Local Burgess Distributor

ORLD'S LARGEST and OLDEST MANUFACTURERS OF Chetemera Syatoms.

Binct ESTABLISHED

ANTENNAS and MOUNTINGS FOR
AUTOMOBILE, F.M., TELEVISION, POLICE, and MARINE

DNEECTION FINDING
madar COLLAPSIBLE . . . SECTIONAI AND CO-AXIAL TYPE. ALB SIZES, LENGTHS and AATERIALS other arach mooucts include LIGHTNING PROTECTIVE DEVICES - JUNCTION boxes - pot heads - gas relays - arrester housings - protective PANELS - TERMINAIS \& HOUSINGS • HIGH TENSION DETECTORS • SOLDERALL \& FLUX - SOLDERLESS BEE TERMINAL BLOCKS "LOCK A WIRE TO A WIRE"

TEST-O-LITE, quickly locates trouble in Circuits 100-550 A.C. or D.C.

L. S. BRACH MFG. CORP.

MOOEL 78-B STANOARD SIGNAL GENERATOR
Two Frequency Boncs betweer 15 and 250 megocycies

model 71 souare wave generator
5 to 100,000 cycles
Rise Rate 100 volts per microsecond

MODEL 65-B
STANDAEO SIGNAL GENERATOR
75 to 30,000 kilocyctes M.O.P.A., 100\% modulation

MODEL 84
U.M.F. STANDARD SIGNAL GENERATOR

300 to 1000 megocycles, AM and Pulse Modulation

MODEL 80
STANOARO SIGNAL GENERATOR
2 to 400 megccycles AM and Pulse Madulation

Standards are only as reliable as the reputation of their maker.

$O_{\text {rate }} \mathrm{Y}_{\text {low }}$

 communication receiver from the Rifmidilio sillinicilin

Now is the time to choose that new 'Super-duper'" receiver for your postwar hem sheck . . . and here's the place to get it, for the Radio Shack has available modern communications receivers, made by leading manufacturers and embodying the latest de. sign features for efficiency and smooth handling.

And you can use your recsiver while you are paying for it . . . the Radio Shack time-payment plon requires only s small down payment. Get back in the game with new gear . . . write today for price and timepayment schedule of your post-war receiver.

ALTEC LANSING

Manufacturers of the Speaker
which Revolutionizes the
Methods of Sound Reproduction

- The new Altec Lansing multi-cellular Duplex speaker provides broadcasters, manufacturers and audiences with high quality sound in a frequency range of from 40 to 15,000 cycles plus. Altec Lansing's complete line of audio frequency components provide the primary standards of comparison for laboratory and design engineering...in addition to high quality sound for commercial reproduction.

ALTEC LANSING COMPONENTS The Duplex Speaker - Two Way Theatre Sound Systems - Public Address Systems High Frequency Horns - Low Frequency Horns • General Purpose Speakers • Power Supply Units - Amplifiers - Transformers Power Chokes • Dividing Networks Inter Modulation Equipment

A Complefe Sound Engineering Service

SEND FOR BULLETINS

1210 TAFT BLDG., HOLIYWOOD 28, CALIF. 250 WEST 57 STREET, NEW YORK 19, N. Y. IN CANADA: NORTHERN EIECTRIC CO.

WORLD FAMOUS RADIO TELEGRAPH KEYS

GENUINE EASY-WORKING
The Choice of
Good Operators
Everywhere

Reg. Trode Marks: Vibreplox, Lightning Bug, Bug

Vibroplex Semi-automatic Radio Telegraph keys are famous the world over for clear, fast, easy sending. Under the most exacting operating conditions on land, sea and air Vibroplex keys have measured up to the highest standards of sending proficiency and operating dependability and are the choice of tens of thousands of the world's finest operators. Every Vibroplex key is scientifically designed . . . precision machined . . . improved in every possible detail. You'll be proud to own and delighted to use a Vibroplex key.

THE "CHAMPION"

A smart, efficient, fullsize semi-automatic key for radio use only. Easy to learn and operate. Ideal for beginners. Black crackle base. Chrome-plated parts. 3/16th contacts. $\$ 9.95$

One of the latest and most topuand most thopularys. Easykeys Easymooth action , , uniformly accurate and dependable. Re8 ponds to the touch of the as well as the as well as the expert. Many advanced and exclusive features. Standard black crackle hase. Bright machiped parts. DIE CUT contacts and main spring. $3 / 16$ th contacts. Circuit closer, cord and wedge, \$13.95. DeLuxe finish with PATENTED JEWEL MOVEMENT. $\$ 17.5 *$

CARRYING CASE

Keeps out dust, dirt and moisture. Prolongs life of key. Heavily reinforced. Flexible leather handle, $\$ 3.50$

THE VIBROPLEX CO., Inc.
833 Broadway, New York 3, N. Y.

J. E. Albrigh, President

TRIIIII IREDSEWS

fIRST ID UAR...

fIRST In PEACE...

fIRST In QUALITY ADD SERVICE GLL OVER THE WORLD!

M inc.

1770BERTEAUAE.
CHICAGO, ILL., U.S.A.
YOUR JOBBER HAS BEEN SUPPLYING TRIMM QUALITY HEADSETS FOR 23 YEARS HE CAN SUPPLY YOU TODAY

E.L Power Supplies Maximum Efficiency! Low Battery Drain! Low Noise Level! Long Life!

If you're planning a portable or mobile set-up-or any other layout for which standard 110 v $A C$ is unavailable $-\varepsilon . \mathcal{L}$ Power Supplies will provide the necessary voltages most efficiently and economically. In addition, they are excellent for mobile public address systems.

A complete line of $\varepsilon \subset C$ Converters (DC-DC) and Inverters (DC-AC) is available for radio amateurs. $\varepsilon \cdot L$ Converters and Inverters are of the vibrator type, offering the highest efficiencies, longest service life, and very low battery drain. They are especially filtered to meet amateurs circuit requirements, resulting in an exceptionally low noise level.
$\varepsilon \cdot \mathcal{L}$ Converters and Inverters have been proven completely dependable during the war where they came through the toughest battle conditions with flying colors.

Contact your local distributor for these efficient, reliable units.
$\varepsilon \in \mathcal{C}$ Converters. $\varepsilon \subset$ Converters are offered in a full line of models to provide high DC voltages from 6, 12 and 24 volts DC, in output wattages ranging from 19 to 200 watts. They are compact in design and ruggedly built to withstand the toughest service. Typical of the $\varepsilon \cdot \mathcal{C}$ Converter line are the three models illustrated here.

Model 601

Input Voltage: 6 Volts DC Output Voltages: 225 Voles DC at 50 ma . 250 Volts DC al 65 ma. 2^{-5} Volts DC at 80 ma. 300 Volis DC at 100 ma . Size: $4 \% "^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$ Weight: 6 lbs .

Model 605

Input Voltage: 6 Vols DC Output Voltages:
150 Volts DC at 35 ma. 200 Vols, DC at 40 ma. 250 Volts DC at 50 ma. 275 volts DC at 65 ma . Size: $51 / 2^{\prime \prime} \times 31 / /^{\prime \prime} \times 6^{\prime \prime}$ W'eight: $51 / 2 \mathrm{lbs}$.

Model 619

Size: $93 / 4 " \times 53 / 4 " \times 6^{\prime \prime \prime}$ Weight: $1 \frac{11 / 2 \mathrm{lbs} \text {. }}{}$

(Inpur Voltages: 6 Volts DC and 115 Volts $A C$. Output Voltages: 300 Volts DC at 100 ma.; 6.3 Volts AC at 4.75 amps.
E. LInverters. A complete line of E-L Inverters is also available to permit operation of 115 VAC equipment from 6, 12, 32, 110 and 220 vols DC. Output wattages range from 5 to 1000 watts. The Inverters also are engineered and manufactured for long, dependable service under all conditions. The two models shown here are typical of these efficient $\mathcal{E} \cdot \mathcal{L}$ units.

Model 303

Input: 6 Volts IDC
 Outut: 115 Volis AC Size: $-1 \frac{1}{x^{\prime \prime}} \times 41 / 4^{\prime \prime} \times 51 / 4^{\prime \prime}$ W'right: 6 lbs.

Model 307

Input: 6 Volts DC Output: 115 Volts AC Size: $103 / 4^{\prime \prime} \times 71 / 2^{\prime \prime} \times 81 / 4^{\prime \prime}$ Weight: $231 / 2$ lbs.

Contact your local distributor COPYRIGHT 19.45 ELECIRONI LABGRATORIES, INC.

RADIO and CODE OPPRATORS GET CODE SENDING and RECEIVING Speed the WAY CHAMPIONS D0

You can now improve your present speed and proficiency in code sending and receiving with the famous Candler System, which trains you to meet all speed requirements of amateur and commercial licensed operators. You can learn code right from the beginning as you will be using it as an operator with the Candler System Training, and you will master it in half the usual time required.

WALTER H. CANDIER
Originotar of the famous Condler System and faunder of the Condler Code Speed Troining.

WALTER H. CANDIER -

World Champion T. R. McELROY

Official Chompion Rodio Operator. Speed 75.2 w.p.m., wan at Asheville Cade Tournoment July 2, 1939, says: "My skill and speed ore the result of the exclusive, scientific troining Wolter Condler gove me. Practice is necessary, but without proper troining to develap Concentration, Coardination and a keen Perceptive Sense, practice is of little value. One likely will practice the wrang way."

NDEESD IID WMTMIOITT

You can take Candler Training wherever you may be. It qualifies you for higher rating and a better paying job. If you are seeking a license you will be able to qualify quickly. You will learn how to free yourself of all fear, tension or jifteriness and thereby apply your talents to speed and accuracy. Candler System Training has provided a background for some of the highest paid operators in the field. It is so surprisingly easy and inexpensive. It takes more than memorizing the code and merely sending and receiving to become a skilled radio operator. Ask any good operator. He will tell you CANDLER teaches you quickly, thoroughly, the technique of fast, accurate telegraphing, and trains you to meet all requirements. Why not let the internationally famous Candler System give you the speed, accuracy and technique to eliminate all worry and code problems.

\star COURSES FOR BEGINNERS and OPERATORS
THE SCIENTIFIC CODE COURSE is o complete rodia-code course for beginners. It teaches all the necessary fundomentals scientificolly.
the high speed telegraphing course is for operators who wont to in. crease their w.p.m. and improve their proficiency.
THE TELEGRAPH TOUCH TYPEWRITING COURSE is specially prepared for thase who want to became expert in the use of the typewriter for capying cade.

NO EXPENSIVE PRACTICE EQUIPMENT NEEDED

Learning Ciode or Improving Speed and Accuracy are Mental p'rocesses that require Special Training. which vast experience In developing hish-speed operators enables CANDLER to give you simply, thoroughly, interestingly. Practice without understanding these laws and fundamentals koverning speed and skill is always hard. BETIER WAY to SPEED, SKIIL and COIDE PROFICENCY, quickIy.

CANDLER SYSTEM

8OX 928 - DEPT. 10-A.6, DENVER 1, COLORADO

CANDLER SYSTEM COMPANY, 121 KINGSWAY, LONDON, W. C. 2, ENGLAND
82

THE HENRY RADIO CREED:

 best extiliplenent for youll tise. To Sel hal you are 100% sia

SOLDERING IRONS

are widely used in industrial plants throughout the country. They are designed to withstand the strain of continuous service required of factory tools.

SPOT SOLDERING MACHINE

designed for treadle operation for advancement of iron and solder leaving operator's hands free for handling of product.

SOLDERING IRON TEMPERATURE CONTROLS

prevent overheating of soldering irons between soldering operations. Irons do not deteriorate when being used. The idle period causes oxidation and shortens life.

SOLDER POTS

ruggedly constructed pots of various sizes designed for continuous operation and so constructed that they are easily and quickly serviced, should elements have to be replaced.

Write for Catalog

ELECTRIC SOLDERING IRON CO., INC.

2546 West Elm Street
DEEP RIVER, CONNECTICUT

thordarson

Transformer Specialists since 1895
 Originators of Tru-Fidelity Amplifiers

Every Thordarson product is precision engineered and built entirely of quality materials to insure the utmost in overall performance.

Extensive metallurgical research has produced the superior coil and core materials used throughout Thordarson transformers. In addition, we have transformers that are Tropex impregnated for protection against moisture, salt air and humidity.

Thordarson Tru-Fidelity amplifiers feature: advanced tone compensation, conservative ratings, ventilation for continuous operation, low hum level, multiple input channels and maximum flexibility of controls.

Leading manufacturers in the electronics industry use large quantities of Thordarson products for most exacting requirements. Soon many new applications and developments, rising out of Thordarson wartime production, will be available for your requirements.

Remember Thordarson . . . over 50 years of precision manufacturing experience . . . for quality products.

ORIGINATORS OF TRUE.FIDELITY AMPLIFIERS

Ceramics

The experience earned in producing millions of Ceramic parts for the industry is at your disposal.

Centralab is equipped to furnish coil forms up to 5 inches in diameter and pressed pieces to approximately 6 inches squaré. Write for bulletin 720.

THE GOULD-MOODY COMPANY
 arconoing diank division

Veteran Hams and Industrial Purchasing

 Agents recognize and respect the name
HA

 because, since the infancy of radio, we have supplied them with the latest in
RADIO AND ELEETRONIC COMPONENTS

hot off the production lines of America's leading manufacturers.

HARYEY invites your continued patronage and welcomes the friendship of those of you who are setting up new ham rigs.

If you cannot visit our conveniently located headquarters at 103 West 43rd St., New York City (one block east of Times Square), to see long-promised postwar products...
WRITE . . . WIRE . . . OR PHONE . . .

HARVEY

Orders filled promptly!

Sound fechnical advice, upon request!
Prompt deliveries anywhere in the U. S. A.!

SoME OF THE MANUFACTURERS

WHOSE PRODUCTS

WE DISTRIBUTE

ABBOTT INSTRUMENT, INC
 AEROVOX CORPORATION

ALLIANCE MANUFACTURING CO
ALTEC EANSING
AMERICAN PHENOLIC CORP AMERICAN RADIO HARDWARE CO. american teievision \& radio co AMPERITE COMPANY
AMPEREX ELECTRONIC CORPORATION ASTATIC MICROPHONE I.ABORATORY
ATLAS SOUND CORP.
AUDAK COMPANY
AUDIO DEVICES CO.
BARKER \& WHLIAMSON BIRNBACH RADIO BLILEY EIECTRIC CO BOGEN COMPANY DIVID BRUSH DEVELOPMENT CO BUD RADIO COMPANY

CARDWFLL MFG. CO.
CENTRALAB
CLAROSTAT
CORNELI-DUBHLIER
CORNING GLASS WORKS
COTO COI
COTO COIL
DAVEN ATTENUATORS
DRAKE ELECTRIC WORKS
DUMONT LABORATORIES, INC, AILENB,
EASTERN MIKE-STAND CO.
EBY CO. HUGH H
EITEL MkCULLOUGH (EAMAC) ELECTRONIC LABORATORIES

GENERAL. INDUSTRIES CO. GORDON SPECIALTIES CO.
HALIICRAFTERS, INC.
HAMMARLUND MFG. CO,
HEINZ.KAUFMAN (GAMMATRON)
HYTRON CORPORATION
INSULINE CORP. (ICA
INTERNATIONAL RESISTANCE CO, (IRC
JANETTE MFG. CO.
JENSEN RADIO MFG. CO.
JOHNSON CO. F. F,
JONES, HOWARD E.
KENYON TRANSFORMER CO. KRAEUTER \& CO., INC.
LENX ELECTRIC MFG. CO. LITTELFUSE LABORATORIES

MEISSNER MFG. CO
MILEN MFG. CO.
MUELIER ELECTRIC CO
NATIONAL COMPANY
NATIONAL UNION RADIO CORPORATION
OHMITE MFG. CO.
PAR-METAL PRODUCTS CORP.
PIONE
PIONEER GENEMOTOR CORP. PRESTO RECORDINC CORP

RADIO MFC. ENGINEERS (RME) RAYTHEON PRODUCTION CORP. RCA MANUFACTURING CO

SANGAMO ELECTRIC CO.
SHURE BROTHERS
SIGNAL EI ECTRIC MFG. CO. SIMPSON EIECTRIC MFG. ('O. STANDARD ELECTRIC PRODUCTS CO. (STACO)
STANDARD-TRANSFORMER CORP. (STANCOR)
STMTMERS
THITHERS DUNN INC. (DUNCO) SUPREME INSTRUMENTS CORP.

TAYLOR TUBES, INC.
TAYLOR TUBES INC. TRIMM HEADPHONES
TRIPIETT ELECTR. INSTRUMENT CO. TURNER COMPANY

UNITED TRANSFORMER CO. (UTC) UNIVERSITY LABORATORIES
UTAH RADIO PRODUCTS CO.

WARD-LEONARD ELECTRIC CO. WESTON ELECTR. INSTRUMENT CO. WORNER PRODUCTS CO.

Government Surplus

TUBES and RECTITHES Immediately Available!

Trade discounts to dealers on case lots

We have been appointed a sales agent by the Reconstruction Finance Corporation of government surplus tubes. Many types of transmitting, cathode ray and rectifier tubes immediately available. All tubes tested to government specifications and rigidly inspected. Highest quality - not rejects!

VT127A, above, with dual plate and grid leads. Filament V-5, 10-A. Capable of operating in many of the HF post-war amateur bands. Formerly used by Gov't. in radar -average cost over $\$ 20$, now offered at . . . 7.50

Write for complete list of tubes and prices!

All immediately available, including: 826 (HF triode) - VT127A (HF triode) 304TL • 872A (MV rectifier)

Cathode Ray Tubes:
5AP1 - 5BP4 • 3AP1
\star
USED TUBES - a limited supply of used tubes in the larger sizes, at 40% discount. All tested and in good operating condition. Follow. ing types available:
250TH-250TL-750TL-803-805
$807-813-815-100 \mathrm{TH}-450 \mathrm{TH}-829$
$830 \mathrm{~B}-832 \cdot 851-860-845-849$

ELECTRODICS
LOS GATOS. CALIFORNIA

UNEXC:LLED FOR HIGH TEMPERATURE

CAN TYPES 25P
Two stondard fypes, one for $105^{\circ} \mathrm{C}$, and one for 95° C. centinuous operation. Othe rotings ovailable.

HERMETICALIY SEALED IN GLASS TUBES
Fomeus Sprogue sloss-fo-metol end seofs. Extended construction gives moximum fashover distorce between terriinats.

ideal for higher ratings in smaller sizes af lower temperatures

Sprague Capacitors impregnated with the exclusive VITAMIN Q impregnant make possible the use of much smaller units - with a substantial safety margin-on numerous highvoltage, high temperature applications ranging from transmitting to television. Where high temperature is not a factor, their unique characteristics assure materially higher capacity ratings for a given size.
Type 25 P VITAMIN Q Capacitors operate satisfactorily at thousands of volts at ambient
temperature as high as $115^{\circ} \mathrm{C}$. Insulation resistance at room temperature is more than 20,000 megolms per microfarad. Throughout the temperature range of $+115^{\circ} \mathrm{C}$. to- $40^{\circ} \mathrm{C}$. they retain all virsues of conventional oil-impregnated capacitors

WRITE FOR NEW CATALOG

Sprague Cataiog $20-$ just of pressbrings you details on YITAMiN Q Capacitors in both can and slass tube types as well as downs of other paper dielectric types for tuday's exictims uses.

SPRAGUE ELECTRIC COMPANY•North Adams, Mass.

SPRPGUE
 VTAMIN "Q" CAPACITORS

92

93

Old time hams have fond memories of AmerTran and many radio and radar operators found the AmerTran name on their most dependable components during the recent war. Now, AmerTran, associated for more than forty years with quality transformers, returns to amateur radio.
Many improvements will be found in the new, complete, line of audio and power transformers now being offered.

94

The JAMES KNIGHTS Co. SANDWICH, ILLINOIS

TO BUILD
 TO REPAIR
 Order your TO TEST Equipment
 FROM CONCORD

(LAFAYETTE RADIO CORPORATION)

Used by Amateurs for 25 years as Headquarters for RADIO PARTS and ELECTRONIC EQUIPMENT

Once again CONCORD invites the radio amateur to avail himself of the exceptional service which has made us the dependable source of radio parts and electronic equipment for almost 25 years. Look to CONCORD
to supply you quickly with the items you want, Our business is to carry them in stock for you on your call. Our quality is dependable. Our stocks are huge and complete. Our service is fast.

Order Today for Shipment Tomorrow from CHICAGO or ATLANTA

ALL STANDARD LINES

As Few or as Many as You Need
CONCORD is famous for carrying in stock for immediate shipment hundreds of nationally known lines of amateur radio parts and equipment. Below is a partial list:
Aerovox, Amphenol, Amperex, Amperise,
Astatic, B \& W, Bliley, Brush, Burgess,
Cardwell, Centralab, Clarostat,
Cornell-Dubilier, Dumont, Échophone, Eimac, General Electric, Hallicrafters, hammat lund, Heintz \& Kaufman, Hiekok, IRC, Janefte, Jensen, Johnsart, Mallory,
McElroy, Meissmer, Millen, National.
Ohmite, Pioneer, Presto, Racon, RCA,
Roadrito, Shure, Simpson, Solar, Sprague,
Stancor, Supreme, Thardarson, Irimm, Triplett, Turner, UTC, Universal, Utah, Vibroplex, Weston, Worner

RADIO CORPORATION
 (Lafayeffo Radio Corporation)

CHICAGO 7, III. - ATLANTA 3, GA. 901 W. Jackson Boulevard 265 Peachtree Street

Two convenient shipping-warehouses serve you with utmost speed. Send your order to the one nearest you.

Complete Catalog FREE

In addition to all standard brands of quality items, this Catalog and Buying Guide contains items not available at any price during the war, it offers many new post-war developments, it shows the last word in modern radio parts and electronic equipment. Many of the recent advances in the science of radio communication are included. You'll find this Catalog a priceless reference guide and a valuable addition to your library. Mail the coupon below for a copy. It's absolutely FREE.

[^14]
TURNEIR Microphones Faithfully Reproduce Your Complete Messages

These famous microphones, priced within the range of every amateur, amplify all vibrations received by the diaphragm without adding any of the harmonics to assure clear, sharp communications without distortion. You can rely on Turner under all climatic and acoustic conditions.

22X

22D

22X Crystal is tops in performance. Reproduces clean and sharp. Smart engineering cuts feedback to minimum. Tilting head and removable 7 -foot cable set. Built-in wind-gag permits outdoor operation. Crystal impregnated against moisture. Automatic barometric compensator. Chrome type finish. Level -52 DB. Range 30-7,000 cycles.

220 Dynamic is identical in appearance with 22X but has high level dynamic cartridge. Dependable indoors or out. Output -54 DB. Range 30-8,000 cycles. 200 or 500 ohms or high impedance.

Han-D

NEW TURNER CHALLENGERS

 Plus Performance of Low Cost

Model CX

Crystol, in rich brushed chrome inish, with 7 foot removoble coble set using Amphenol connectors. Level -52 DB. Ronge 50-7,000 cycles.

Model BX

Crystol mike for recard ing, P.A. and ham wark. Bronze enomel finish. Level-52 DB. Ronge 500,000 cycles. An excel lent unit. With 7 foot coble.

Model CD

Dynomic, some style and finish os $C X$, with removoble 7 foot coble set. Ir 200-250 hms, 500 ohms or himpedonce. Level -52 DB. Ronge 50-7,000 yeles.

Model BD

Dynomic, some finish os BX. Works indoors or out. Level -52 DB. Range $50-6.000$ eveles 300 250 ohms 500 ohms or high impedonce with 7 foot coble.

- E Turner Microphone Catalog with complefe information and prices on Turner Microphones. Write for your free copy.

Hong it, hold it, use it on desk or floor stonds. Hon-D does the job of severol mikes. Avoiloble os 9 X Crystal, in brushed chrome finish, Level -48DB, or 9D Dynomic in brushed chrome or gunmetol. Level $-500 B, 200$ or 500 ohms or hiimpedonce

Crystals Licensed Under Patents of The Brush Development Co.
THE TURNER CO.

PERFORMAMCEBACKED BYPREGISION

the XC. 2 plug.in unit

A unit for fixed frequency operation of RME communications receivers. A crystal ground to a frequency either 455KC higher or lower than the frequency of the signal to be received, is an integral part of the XC-2. The $X C-2$ is inexpensive, easily adapted and very effective in locations where fixed trequenty operation of a general coverage reteiver is desired.

INDIVIOUAL EQUIPMENT BULLETINS WITH PRICES AYAILABLE ON ALL RME UNITS.

Every coritrol is conveniently located, all scales are illuminated ard distinctive, the chassis is mounted on a relay rack panel, and the cabinet is attractively designed in a two-tane finish.

The RME $\mathbf{4 5}$ is the type of receiver by which radio amateurs the worid over judge dependability and performance; PRIDE OF OWNERSHIP MUST BE BUILT INTO EYERY SET-that has been our creed in the past twelve years.

The RME - 45 is truly your post war receiverdream come true! It has been so engineered that it delivers peak performance on all frequencies 550 to 33,000 KC. Loctal tubes, short leads, temperature compensating padders, triple spaced condensers and advances made while producing for the armed forces all these details have collaborated to give you the "finest" and most stable reception you have ever listened to.

There is bandspread aplenty for the most exacting ham or
commercial operator. The 20 meter band, 14,000 to 14,400 KC., for instance, covers 20 divisions on the translacent dial equivalent to 72 degrees on a five-inch diameter disc.

The appearance of the RME-45 is consistent with its performance. The receiver is housed in a new streamlined two-toned cabinet and supplied with a matched acoustically designed speaker housing.

These and a multitude of additional features make the new RME•45 the receiver you have long bee waiting for!

Streamline Two.Tone Cabinet Acoustically Designed Speaker Housing Relay Rack Mounting Panel Six Bands, 550 to 33,000 KC Automatic Nuise Limiter Relay Control and Breal-In Terminals Signal Level Meter Variable Crystal filter Bandspread Equivalent To 75 Linear Inches For Every 180° Sweep OI Main Pointer

R. M. H. S IPEAKEIR

A mew housilig to match the new receiver. buitt in a sturdy design, open in the rear, the eight-jech electrodynamic speaker in every way gives true and balanced performance, wo matter whether used for CW, voict or music!

The me YMF-152, with the aditiban of a pod usesmextes realum, will pin you the yedt is all

VHF-152 COMVERTER

During mee-war days, thousands of hams were introdsceed to the five meter band through the use of the DM 35, High Fraquiency Converter.
This instrument gave eaceptional performanat, ait low cost, on the 5 and 10 meler bands when used with i foot commanications recaives.

To make VHF quetition really practical and werthuthile for the new FCC allocations, an entirdy new version of the DIE Sh is now introdused covering 28 to 30 MC , 50 to 54 MC and the new 144 to 148 IMC band. At modest cost, the VHF 152 ar exueds any preserit day method offered for working thest frequenies. Your RME 15 is in exaedlent receivet is sse with the VHF-152. RME Mas always poseered with the fieest first!

THE LIT (1) FREQUENCY CONVEHTEE (90 T0 600 KC)

In combination with a good communications rewiver, the LF-90 permits reception of such Irequencies as aircraft beacons, air navigation, ship, coastad stations, and others operating in this low range.
Small in size, the LF-90 has its individual power supply, standard 115 V , 60 cyde.

A new radio controiled unit, serving as a standly operatior for your radio station, and known
 as the AUTOMATIC ANNOUNCER was recenty introduced by RME. As a "radio operated switch," contacts control the dighting of a signal light or the ringing of a bell, or both. The anil gives a visual as vell as an audible indeation of inteming ratio signals. In no way are the normal functions of a communieations receiver affected when the SPD- 33 is connected to it. The ynit is designed for standard relay rath mounting, panel teigbt being $3, \frac{3}{2}$ inches and depth 12 insthes.

ATT®MATIC ANNOTNERE

Y Oit P P

HECEIVEB - TENANSMITTME

Here is the realiy practics recaiver transmitter endit for which private pilots have been wating. Light in weight, carefully designed for proper light ship installation, and buith to rigid RME spucilieations and quality, and aomined in cost, this new unit is already mating thil with its performane.

Reselver suecifications:
180 to 420KC -For hange Stations.
550 to 1590KC-For Standard Broadenst Stations.
278 KC -For Towes Frequency Position. Tratismititer has normal ten mile range.
Iloth units obtain their power from small dry cells.

Thousands of DB20's were used by our Navy during the war to give treme adeers incerease in hoth gain and selectivity when used with a good cemmunicatlotes reteiver. Over-all gain of from 20 to 25 db is achieved throughout the tuning range of 550 to $33,080 \mathrm{KC}$, covered in six bands. The unit gives tret mrowitationoptimum gain wilh hest possible signal to noise ratio.
Other teatures insuude antenna change-over switch, stability and uasilant - reverse attenuation charecteristics.

MILLEN MODERN PARTS

 attractively parhayed, moderathy priced, and fully waratued. They have been ded

 ance. Fior instance the terminals are lowated so at lo prowide shortest prosible leads nomming feet are designed for dasy insertion of serews and serhel contacto. so that the solder wernt rum down inside them and mate impusithe the insertion of the tuber. ete
 ashing either from vour favorite parts supply homse or direct from the factory

Conle	'rumatlo pres dade		Itr Giap	1'miluce hitlini	prife
11103:	36	1.6	.10--"	31000	Stisin
110.510	.1	6.1	10,	3000	7.11
11070	T1	9.			
13313:3	3.11	+	113%	31010	+
13050	110	$6: 3$	0\%	30100	520
1:30710	-1	${ }^{7} 1$		301010	
15.2010	-04	111		6006	7. 81
110.11	810		. 171		$\begin{array}{r}12.011 \\ \hdashline 1.2019\end{array}$
1 +1160	60		- 6	$\begin{aligned} & \text { hole, } \\ & 9040,19 \end{aligned}$	1200
t wile	- 'apmiltu per section		11% cinp	F-lmtshon frates	lef
	1/7\%	$1 / 1, r$			
12936		37	$1 \overline{17}$	Poultheat	5132
12936	3	37	176	Matin	3.10
${ }_{10}^{2036}$	$\frac{6}{7}$	43	. 1178	Prabr	\cdots
12.\%f	9	78	107	Plain	3.00
12311	12	101		PlablnPlabla	3.80
12.1\%	is	1.51	(1)\%		
Coute	Coture fily biec vectorn		12 l (in)	Fimixh on P'lutes	bel
	1/7.	His			
1:113.7	i	13	.15:"	Poblisheal	54.30
1-438	6	43	.01\%	PrabraPralished	3.40)
120.51	\cdots	5.8			
12075	,	96	.0\%	1: atit pollthed	4.33
12067	,	76	$.07 \%$	${ }^{2}$ oulkhed队淒	$\begin{aligned} & 5.61 \\ & 5.410 \end{aligned}$

coude	bexchtumm	wetrere
119\%\%	Wiorth Iorive i mit	\$ 1.311
10001	Pruth 3 ceter Diat-6-160)	1.55
${ }^{10} 10317$	31\%, Vehed silver mist. Mat-11-100	,10
101015	Dial luch	1.
	Shaft Latik ior ', "shatts	3
lot,ri!	Shast latick	$3{ }^{6}$
	Vernler Irrive l'nit	3\%
10007	Shaft kearime	$\cdots 1$
150101		11
10102		1.4.\%
1.01013		910
150 ma	X̌utral (ondenser 3.1 11,6	2010
150106		3.010
2010: $\%$		1.10
2015101		$1 \cdot \cdots 11$
90100		1..i)
2092]		1211
201935		1. 10
210.01	steatite 1tra Mldge \%ommta	1.8
$\because 11011$	Steatte I ltra Mlduet 100 mmfd ss	1.911
21190		1.111
200\%		1.3:
2100		1:3\%
-2140		1.6\%
2291.	Steatite Nidige lis mbild isk	$1: 11$
223935		1.311
329.00	Steatite Midget in mmitd ISS	1.0
23075		$2.61)$
± 3100		$2.51)$
2392\%		2.25
235930	tholl IS:	2011
$\because 1100$		
2103 \%		2.\%
2.13:1]		1.911
2603		. 14
2008	-3 - it Pralder	1.08
${ }^{2} 61410$	- -9\%'sir Pidder	1.32
26030	4.5-2.3ir Pioduer	1.419
2693.3	5.)36 Air Paduler	1.519
$2 \times 03: 311$	30 mmfd Mie: l'adder	1\%
300011	Stanchenf, $1_{2} \times 1$ - Muartzed	1.1
300002 300013 30012		$\cdots 1$
300003 3000104		9\% 6.5

mavorice
MALDEN, MASSACHUSETTS, U.S.A.

DESIGNED for APPLICATION

（＇ule	resecripfion	Notrirr	Corte	lie：trituthy	Sel l＇rice
61061		$5 \div 11$	1431． 1		\＄． 414
31002		\because	4：3161	center llinh．Vo． 2 elut linh．	． 1111
\＄1003		．311	［4004		． 71
310104		4：3	4 1101！	（2Uartac）batak Pormb and ming	1．$\because 10$
31011		． 111	4 1141．		1． 11
\＄111\％	Cone $1 \times 1.80{ }^{\text {cotite }}$	$\therefore 1$	＋11111		1.810
31013		－	411020		1.311
：31114	Gone ${ }^{\text {g x }}$ I rimatite	4%	11010	－1141 watt coils	1.50
31013	Coree $\%$ x I d，steratte	4.1	$+118011$	for eath thath．Whommed ont	$1!10$
3： 104		．314	［1164	So．H：30．8plus	$\underline{10}$
3－101	Stertit＂hushing for 以＂，hole	．3．＂	4－400	Suluging link atad soct ert	1．7．3
32102		－211	$45^{\text {a }}$（1）		
32193	Steatile Hushios fur ${ }^{\text {che }}$＂hole	． 1.			21
3上1．01		．10．	45010		
320301	steatle bushligs and liardware	－		Hitse 13lerollt	．30）
	ateatite liushigg athat Haramare	\＄3．109	4.5105		
320）	（rs－til surket	－3：	45.510		． 30
331 Ht 4	\pm Pronk sucher	\because	4i100）		4.5
3 3．309	5［ronk sorkel	$\therefore 1$	171011		． 111
3：31114；	6 bronk suchet	$\therefore 1$	－Tハ）		1.5
33140%	7 Pronky 1 itrke＞ombet	$\therefore 1$	$1-1103$		35
3：3119	\＆Pronky wetat，muchet	$\because 1$	17004		4.5
$3.30 \sim 7$	Hine flamp for wht ete．	．311	$\therefore .8101$		4.1
331132	（rystarsintket	．111	ご000		． 311
3：310．	Acorn ：iochet．（2uartze？	．1111	5ご13	\cdots－3＊Ifamh Filter wisnl	$1 .(10)$
33202	C＇rystal Sm－ket	－11）	ETS0\％		1.2 .7 pr．
3354	Aluminum shteld far 3－30mex	15	75in		1.4111 r ．
330191		1．	5012011		． 9010
31410	Shtehter 1t 1111 rectiving	\therefore	$5(4)+0)$		（1）
$3+1010$	Inlver at $2 . .5011$	：3i；	？ 1011		（1）
31161		\cdots	（51tio）		． $1 / 1$
$3+1112$	（ommercial tiae z．．N11	$\therefore 36$			
311 $3+1151$ 3		1010% 1.311		．It Trimmed	
3： 1211		（i）	60．454		1．01
3122．		7	60） 4.5	lint finterstata（1）dir（0：0	1． 11
31240		78	61045发		4，31）
3122．		1．25	60）：311		1．50
31510		1：211	60．50		1． 2111
36011		$\because 1$	60.143		1．51）
361002	（eramive［late（＇ap）＂for vir ebe．	21	611．104		1 － 51
3 B 011		．41）	62161		4.510
37104		H10	6こ16ッ		1． 511
3502	statite Itates．Pro．	311	63 154		4.513
$3-111$	Mrachtt	1.1	$6 \leq 450$	tibitmersiage IToht（ute	4． 511
32	＂＇ermiral 190－1s 13「	111	6.316 .3		＋． 50
373012	＂Twn＂＇erminat，＂toutle	． 810	6．3150	1．indilis dirciore	4． 510
03.3113	Threvelermarmal steatite	711	6：3．0． 0		1．81）
32：301	Fiour I ermbash，Steathe	81			
3730.7	小＇ive＇lermina steatle	． 319			
$3-311 \%$	Sis Terminal，steatle	1.90		licu \％rimmod	
37.001	1．avy lass Micalsahelitesufety aerminat	\％is	6374.34	4．jiblude Irimiore	1．2．
： 3×0011		． 311	6\％1．5t		1．-7
36.010		． 611	675013		1.31
396151 3 ± 001	Truy Fiextble Jsolantto	16 36	67．314		1．81）
3 301103		\cdots			
：39100．5		Sil		I＇ermenhlltry 7＇tueg	
： 591110	sllile tetlom	：3ti	611.17	456 ［）い我（2）	1． 511
1030．8	Whtsed Pum	$\because!$	611.0	1 ifin Interstase（2）	1．．11
＋1130．5	luterniditatexize phat	A	6.51 .76	$156 \mathrm{FF゙}$	1． I 11
1120.5	Whllurer suckot	．361	（1）fitel	Tomplete ctot of four thathmeters in carse	12.100
＋1361，		4．1）	9010．1		3.1111
＋303）		． 1111	966016		3.1010
$4: 3011$ $4: 30201$	Mhlater（onls lor enth	． 919			3.1511 3 3
4：31111		． 111	4） 1 －	lletroll	4．010）

JAMES MILLEN 等紷 MFG．CO．，INC． MAIN OFFICE

HEADQUARTERS

For the Biggest Names in Amateur Radio

SINCE

1919

PIONEERS IN RADIO AND ELECTRONICS

The news that "Hams" may again take the airways finds us ready as always to serve every need for parts and supplies made by the biggest names in Radio.

Ours is an organization that grew up with radio-that kept pace with its progress from Crystal Sets to Television. Our stocks are large and complete. We have the technical "know-how" and the trade-knowledge of what is available and when!

And we've always had "Ham" operators in our organization to help you with your technical problems. Men who do understand your language.

If you are considering new design, improvement or addition to your old "Rig"-try CAMERADIO first!

QUALITY MERCHANDISE - PROMPT SERVICE

CAMERADIO CO., 963 LIBERTY AVE., PITTSBURGH 22, PA.

104

This new cathode-ray oscilloscope is ideal for accurate and rapid service wort. It is enirely portable and is dosigned for Preyucac) Modetation, Amplitude Modulation and Televivion wersice werh. At can be used for the studs of wase shanes and transiems, measurement of modulation adjutenent of radio receisers and mansmiturn, the determination of peak coltages, and the tracing of clectronic tube characteristich. All comrols arc contententrlocated on the from panel. Wededed steel case.

TEST EQUIPMENT

Signal Generator SG-3A Intended primarily for the accurate adiusmemt of rectivers and the measurement of recciver sensitivity, his signal gencrator will atoo find application in radio cquipment manutacuring for production and design testing. The sGi-3A may alwo be used for the standardization of receiver pertormance
In is a quality intrument which permiss directly calihrated readings of Radio Frectuency Output. The clearly marked dial and consenient arrangement of controls assures easy, accurate operation.

Unimeter UM-3 A portahe, all-around, anility instrument for service work. A large-faced clearly calibrated dial permits guick a accurate reading. All functions are separated io mizimire ams possibility of applying high woltage wher preparng for current or resithance meatsurements. Easy identification is prosided for in reading by printing sales in red and blach, with values most used on the upper part of the dial. '1'he case is of welded see minish, in Federal wrinkle gray. W'eight-approximataly 10 lls.

For complete information, write to Electronics Department, Specialty Division, General Electric Company, Syracuse, N. Y.

INSIST UPON COMPONENTS

Safety door interlock switch

Aninexpensiseand dependabie safety switch uned to interrup the control circuitswheredoors. windows or coners are opened when power is on.

Indicator Iamps

A "ready-to-mount" ascembly for use on clectricequipment panch. Vibration proof. opaque. "loch-on" call, with or without "dimmer" feature. Choice of fase coler caps: also clear neon bulb ivpe.

Electronic tube sockets

Rugeed and dependable these sockets have spring like contacts at the hotton and sides which insure con sant electrical connections? A complete line for receiser transmitter and industrial tubes incloding a line of split type water jackets.

P. M. speakers

Introducing the new line of G-E Speakers using the now alnico No. 5 magnet mat terial throughout. Unsurpassed in fidelity, dependability and durability. The speakers range in size from finches w 1? inches. Thay have been completels redesigned for posswaraplicalions.

Snap-slide fastener

A reliable and scoure fatener that will not release its erip when subiected to vibration.

Thermocell crystals

The General Electric G-30 and G-31 Thermocell (rystals are designed for the ultimate in useful crostal stahility-compact. dependable and quick heating. Many other types of cuariz orystals and holders are atailable including high frequency rectifier types.
106

Phgeneed for Poghanane FIIR TWM DECAIDES

Since the inception of modern broadcasting IRC resistors have been the overwhelming choice of discriminating amateurs. Scientifically designed and engineered to highest quality standards, IRC units "belong" in the finest rigs and can be depended upon to function with complete satisfaction.

While continuous laboratory research to constantly improve both design and characteristics of IRC products is no new venture with us, war requirements greatly accelerated the pace and today many new types of resistances are available which might not have reached marketing stage for months to come. Among these are the Type BTS (2 watt) and Type BTA (1 watt) resistors. Both are smaller than their older counterparts and have other definite advantages.

Most of the resistor items you'll need frequently will be found pictured and described in detail in IRC's new Service Catalog No. 50. All units listed are "in stock" on your favorite IRC jobber's shelves or can be obtained for you by him almost overnight. If you do not have your copy of the IRC Service Catalog No. 50, stop in at your IRC Distributor's today or drop a line to Dept. RL-G.

INTERNITHONAL IBESISTANCE CD.

401 N. Broad Street, Philadelphia 8, Pa.
In Canada: International Resistance Co., LTO., Toronto IRC m.dkes more types of resistance units, in more shapes, for more applications, than any other manufacturer in the world.
$\star \quad \star
108

CAMMATRON TUBES

TYPE NO.	24	246	54	254	2518	3041	304H	$354 C$	3545	4541	454H	654	8541	854 4	10541	1554	2054A	3054
MAX. POWER OUTPUT: Closs 'C' R.F.	90	90	250	500	230	1220	1220	615	615	900	900	1400	1800	1820	3000	3600	2000	5300
PLATE DISSIPATION: Watts	25	25	50	100	75	300	300	150	150	250	250	300	450	450	750	1000	1200	150
average amplification FACTOR	25	25	27	25		10	19	14	35	14	30	22	14	30	13.5	14.5	10	20
max. ratings: Plate Valts Plote M.A. Grid M.A	$\begin{gathered} 2000 \\ 75 \\ 25 \end{gathered}$	$\begin{gathered} 2000 \\ 75 \\ 25 \end{gathered}$	$\begin{gathered} 3000 \\ 650 \\ 30 \end{gathered}$	$\begin{gathered} 4000 \\ 225 \\ 40 \end{gathered}$	$\begin{gathered} 4000 \\ 150 \\ 25 \end{gathered}$	$\begin{aligned} & 3000 \\ & 1000 \\ & 150 \end{aligned}$	$\begin{gathered} 3000 \\ 1000 \\ 150 \end{gathered}$	$\begin{gathered} 4000 \\ 300 \\ 60 \end{gathered}$	$\left\|\begin{array}{c} 4000 \\ 300 \\ 70 \end{array}\right\|$	$\begin{gathered} 5000 \\ 375 \\ 60 \end{gathered}$	$\begin{gathered} 5000 \\ 375 \\ 85 \end{gathered}$	$\begin{array}{r} 4000 \\ 600 \\ 100 \end{array}$	$\begin{gathered} 6000 \\ 640 \\ 80 \end{gathered}$	$\begin{gathered} 6000 \\ 600 \\ 110 \end{gathered}$	$\begin{array}{\|l\|l} 6000 \\ 1000 \\ 125 \end{array}$	$\begin{gathered} 5000 \\ 1000 \\ 250 \end{gathered}$	$\begin{gathered} 3000 \\ 800 \\ 200 \end{gathered}$	$\left\lvert\, \begin{array}{c\|c} 5000 \\ 2000 \\ 500 \end{array}\right.$
max. frequency, mc. Power Amplifier	200	300	200	175	150	175	175	50	50	150	150	50	1:5	125	100	30	20	30
interelectrode cap: Cg gop u.u.f. C g f u.u.f. Cpーf u.u.f.	$\begin{aligned} & 1.7 \\ & 2.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 2.11 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.3 \\ & 1.0 \end{aligned}$	$\left\|\begin{array}{c} 0.08 \\ 10.51 \mathrm{n} \\ 10.60 u \end{array}\right\|$	$\begin{aligned} & 9 \\ & 12 \\ & 0.8 \end{aligned}$	$\begin{gathered} 10.5 \\ 1.4 \\ 1.0 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 4.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.2 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 5 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{array}{r} 4 \\ 8 \\ 0.5 \end{array}$	$\begin{gathered} 5 \\ 8 \\ 0.8 \end{gathered}$	$\begin{gathered} 11 \\ 15.5 \\ 1.2 \end{gathered}$	$\begin{gathered} 18 \\ 15 \\ 7 \end{gathered}$	15 25 2.5
FILAMENT: Valts Amperes	6.3 3	${ }_{3}^{6.3}$	5.0	7.5	7.0	$\begin{gathered} 5.10 \\ 26.13 \\ \hline \end{gathered}$	$\begin{gathered} 5.10 \\ 26.13 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 11 \\ \hline \end{gathered}$	7.5	7.5 12	7.5 12	7.5 21	17.5	10	14 4
Physical: length, Inches Diometer, Inches Woight, Oz. Base - Beam Pentade.	$\begin{gathered} 41 / 4 \\ 118 \\ 11 / 2 \\ S_{\text {mal }} \\ \hline x \end{gathered}$		$\begin{gathered} 51 / 11 \\ 2 \\ 2 \vdots \\ 5 t d . \\ U X \end{gathered}$	$\begin{gathered} 7 \\ 256 \\ 61 / 8 \\ \text { Syd. } \\ 50 \\ \text { Wott } \end{gathered}$	$\begin{gathered} 513 / 16 \\ 2 / 16 \\ 6 \\ 6 \text { Giant } \\ 7 \\ \text { Pin } \end{gathered}$	$\begin{gathered} 71 / 4 \\ 3 / 3 \\ 9 \\ \text { John- } \\ 3.80 \\ \# 213 \end{gathered}$	$\begin{gathered} 7 \frac{1}{4} \\ 31 / 2 \\ 9 \\ \text { John- } \\ \operatorname{son} \\ \# 213 \end{gathered}$	$\begin{gathered} 9 \\ 315 \\ 61 / 2 \\ 51 d . \\ 50 \\ \text { Sort } \end{gathered}$	$\begin{gathered} 9 \\ 318 \\ 615 \\ 5+d . \\ 50 \\ \text { Watt } \end{gathered}$	$\begin{gathered} 10 \\ 31 / 4 \\ 7 \\ \text { std. } \\ 50 \\ \text { Wor } \end{gathered}$	$\begin{gathered} 10 \\ 344 \\ 7 \\ \text { str. } \\ 50 \\ \text { Watt } \end{gathered}$	$\left\|\begin{array}{c} 1015 \\ 31 / 4 \\ 14 \\ \text { Std. } \\ 50 \\ \text { Watt } \end{array}\right\|$	$\begin{gathered} 121 / 1 \\ 5 \\ 54 \\ \text { sid. } \\ 50 \\ w o t \end{gathered}$	$\left\|\begin{array}{c} 121 / 2 \\ 5 \\ 11 \\ \text { Stc. } \\ 50 \\ \text { Wotr } \end{array}\right\|$	$\left\|\begin{array}{c} 161 / 2 \\ 7 \\ 42 \\ \text { John } \\ 30 . \\ \# 214 \end{array}\right\|$	18 6 56 $4 K$ 255	211/4 ¢ 6. W.E. Co.	$301 / 4$ 9 200 HK 255

THE WORID'S MOST ENTHUSIASTIC DISTRIBUTOR OF HALLICRAFTERS EQUIPMENT

Wherever we Yanks travel throughout the world, we get kidded about myself the
 known the sets ever since Bill Haling the past few years
I know Hallicrafters. I've known I learned lots more about them dind I'm awfully happy to hem about ten years ago. And learned jor our Armed Forces. Anater receivers and trans. when they did such a remaraivege of supplying these tell you that
mitters to operators everywhere.

Now l've got to tell you something. All through this lousy war, Wrine, I got itchier joined the Army and Navy and Marine Corps and Navy, I finally was lucky enough girls joined the Army (so "they" said) for the Army and Nayle I was away, Frank Bascomb
 ack into harne did a good job. So high speed transmitters and be in closer., but ran the factory, and anue the design on high speed that enable me to be in closer touch Naturally. I'll continue devote myself to
actually I'm going to

I'm planning to run the show 100% by
So strongly do I feel about this job that I'm planning to But I ain't selling radios So strongly do fite advertising like a regulas like myself - radio operators.
one, whether an operator or one of those short
Radio is my life. When I tell anyone, wed - when I tell you Im inquiry or orderRadiss, or fellows out of the Armed Seral attention to eve where you live - here in the The finest equipment with the best personal get it. No matter where in the world - Ill see then you can be sure that youre and South America-AND FAST.
U.S., or Canada, Mexico, Cenou in perfect operation Champion, or the to it that your set reaches you

Supposing you want a swell little set let me know, and to payments and tradeSuper Defiant. All you have to do it. Yes, and I'm provid what you want when you wan that getting in lots and lots on with me, will you? I'm ins, etc. like you also to know that l'm getting , keep in touch watues, and the best kind hings all you fellows need and can use. So, the best kind of values, and promising you the best kind of merchandise, the of service.

Ted McElray looks over the SX28 witá Panoramic Adapter es Bill Halligan, President of Hallicrafters, describes the anits.

Joe Thompson, Hallicrafters sales, congratulates Ted McElroy on the signing of the franchise to become "she world's most enthusiastic dis. eributor of Hall crafters".

Auailable for Immediate Delivery! No Priarity Needed!

Extremely loweost Hallicrafter sponsored time payment plan. Send me your order now, and I'll ship your set she same day.

Scutive capacitors

EXCEL IN
QUALITY!

THE size varies but the qualiry of Solar Capacitors is constant. From the famous tiny "Minicap" dry elecrrolytic capacitor to the big Solar Type X $]$ high voltage filter capacitor shown, all Solar Capacitors are guaranteed "Reliable in Every Climate."
That they live up to that guarantee is evident in the acceptance Solar enjoys throughout the work.
Type XJ Capacitors range in D.C. voltage ratings from 6.000 ro 25,000 . Solar Capacitor Sales Carparation, 285 Madison Avenue, New York 17, N. Y.

\section*{transmitting tuhe

transmitting tuhe
 TYPE GL-807
 Beam Power Amplifier
 High-vacuum, 4 -electrode, beam-power-amplifier rube, with heater-type filament. Filament voltage and current, 6.3 v and 0.90 amp . Max plate ratings (CCS) are: voltage 600 v , current 0.10 amp , input 60 w , dissipation 25 w . Max plate ratings (ICAS) are: voltage 750 v , current 0.10 amp ; input 75 w , dissipation 30 w . Frequency at max ratings 60 megacycles; at reduced ratings 125 megacycles. Gm. 6,000.

WELL-KNOWN to amateurs, this versatile Type GL-807 G-E tube is used also in commercial broadcasting, communications, and police radio work. The tube is em-

When you get back on the air, General Electric will have a complete line of tubes for you.
ployed as a power amplifier in smaller sets; large transmittess use it for service in their low power stages.

Continuous improvement has enabled Type GL- 807 to meet the ever more rigid re. quirements of the armed forces. Especially is this true of the screen current limits, which now are lower than before. As a result, the tube's usefulness and application-range are fur-
ther broadened in its field.
Ratings above give evidence of Type GL-80 ${ }^{7}$'s adaptability. Here is a leading member of the improved G.E family of tubes for amateur use on which post-war "ham" broadcasting will be solidly based! See your nearest G-E distributor for complete performance data, or writeto Electronics Department, General Electric Company, Schenectady 5, New York.

COMPONENTS THAT

I.
c.t.c. turret terminal lugs. Heavily silver plated brass lugt. A short cut to speedy assembly. Firmly anchored to terminal boards by simple swaging operation. Lugs heat quickly, assuring neat, positive wiring. Two soldering spaces. Stocked to fit $1 / 32^{\prime \prime}, 1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ terminal board thicknesses. Also available with single soldering space.
c.t.c. SPLIT TERMINAL LUGS are being enthusi-- astically received by manufacturers of transformers and other potted units that require soldering after potting. A. $050^{\prime \prime}$ hole through the lugs makes them idell for this type of application. Perfect for terminal boards, too, because wiring can be done from top or botton of the board without drilling. Made of brass, heavily silver plated, to fit $3 / 32^{\prime \prime}$ termifal boards.
3. c.t.c. double end terminal lugs. Twin ter3. minal posts in a single swaging operation. Perfege electrical contact because both posts are part of the same lug. Neat, positive wiring from either top of bottom. These heavily silver plated brass lugs re stocked to fit $3 / 32^{\prime \prime}$ terminal boards.
4. c.t.c. AlL-SET TERMINAL bOARDS are proving a T. time-saver in the laboratory and on the assembly line. Just select proper width board and go to work.

All-Set Terminal Boards are made in $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ linen bakelite in 4 widths - $1 / 2^{\prime \prime} ; 2^{\prime \prime}$ (lug row spacing $11 / 2^{\prime \prime}$); $21 / 2^{\prime \prime}$ (lug row spacing $2^{\prime \prime}$) and $3^{\prime \prime}$ (lug row spacing $21 / 2^{\prime \prime}$). Fit all standard resistors and condensers. Boards may be broken in fifths by bending on scribed line or used full length. Available in sets of any of the 4 widths or in any single width in lots of 6 or multiples of 6 .
5. C.t.c. HAND PRESSURE SWAGER for quick, firm, uniform swaging of terminal lugs to terminal boards. Adjustable to fit all thicknesses of boards. Lugs are put in board right side up and may be swaged as far as 1 7/8" from edge. Adjustable pressure assures uniform swage. Unit pictured swages all C.T.C. standard Turret Lugs. Can be furnished with additional anvils and punches to fit C.T.C. Double End and Split Lugs.
6. c.t.c. mathematically dimensioned crys-- tals. A new C.T.C. development, mathematical dimensioning achieves greater accuracy. It assures consistent performance-guarantees frequency stability, high activity and long life in every C.T.C. Crystal.

WRITE FOR C.T.C. CATALOG NO. 100
It contains complete information on these and other C.T.C. radio and electronic components you should know about. It's yours for the asking.

GET THIS AUTHORITATIV.

Gar

EXGINERS

 EXPERIMENTERSIncludes
SPECIAL CHART FOR TRANSMITTING TUBES (Air- and Waler-Cooled), PHOTOTUBES, CATHODE. RAY AND SPECIAL TUBES

Price 35 Cents

MAIL THIS COUPON TODAY

Section 62-79Q, Commercial Engineering Department Radio Corporation of America
Harrison, N.J.
Please send me a copy of the RCA GUIDE FOR TRANSMITTING TUBES. 1 am enclosing 35%.

[^15]
GUIDE TO TRANSMITTINGTUBE SELECTION AND APPLICATION

Contains helpful information on ratings, circuits, basing, and applications of RCA transmitting tubes

To Ham library is complete without the RCA GUIDE FOR TRANSMITTING TUBES. You need this convenient, practical book because it contains just the information you require on up-to-the-minute tubes and circuits.

Originally published in 1939 as the "RCA Ham Guide," this book has gone through several edltions and has been eagerly purchased by thousands of hams.

Only a few thousand copies of the present revised edition have been printed. The supply is limited-get your copy early!

Here is a summary of the contents of this invaluable book:

- Photographs, basing diagrams, circuits, complete technical data, and prices of all RCA transmitting tubes of interest to amateurs
- Tested, economical transmitter circuits designed by radio's foremost engineers
- Complete instructions for building a u-h-f transmitter and other types of equipment
- Condensed tables giving essential characteristics of RCA transmitting tubes, cathode-ray tubes, phototubes, thyratrons, voltage-regulator tubes, rectifier tubes, and special amplifiers
Here, in 72 pages crammed with vital information, you have one of the most popular books ever published on transmitting tubes-backed by all the years of engineering and appication know-how of the RCA organization.

CONTENTS

Technical data, prices, application information on transmitting tubes, filter design curves.

Tables giving data, prices, and ratings of transmitting tubes, rectifiers, cathoderay tubes, phototubes, voltage regulators, special amplifiers, and relay tubes.

General tube and transmitter data-including choice of tube types, grid-bias considerations, inductance and capacitance for tuned circuits, neutralizing. tuning Class C r-f amplifiers, how tube ratings are determined, interpretation of tube ratings, circuits, mathematical calculations, and other vital information.

How To Bulld-

- A variable-frequency oscillator with an r-f power output of 10 to 25 watts over a frequency range from 1.75 to 30 mc .
- The RCA "economy" transmitter with 70-watt c-w output over frequency range from 3.7 to 7.5 mc .
- The RCA-815 u-h-f transmitter with 30 to 45 watts phone output over frequency range from 15 to 120 mc .
- The RCA single-control 360-watt transmitter (360 watts input on $\mathrm{c}-\mathrm{w}$ and 240 watts input on phone) over frequency range from 1.9 to 7.5 mc .
- The RCA 5-band plate-modulated transmitter with 450 watts input on $\mathrm{c}-\mathrm{w}$ and 310 watts input on phone over frequency range from 1.7 to 30 mc .

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

DO YOU HAVE THESE OTHER RCA PUBLICATIONS?

Designed to Keep You Up To The Minute in Technical Information.

Abstract

RCA HB3 TUBE HANDBOOK - An invaluable. loose-leaf, engineering reference book on all RCA tubestransmitting, receiving, cathode-ray, and spectal types. Kept up to date with periodic revisions. Sold on subscription basis-write for descriptive folder and order form.

RCA RC-14 RECEIVING-TUBE MANUAL - Data on 340 different RCA receiving-tube types, 256 pages condifferent $R C A$ receiving-tube types. 256 pages con- taining application data. circuits, charts, and simplified tube thedry, Net price $\$ 0.25$. RCA PHOTOTUBES BOOKLET - A clear exposition of phototube theory, including data on 15 types, curves, and circuits for light-operated relays, light measurement, and sound reproduction. Free upon request.

RCA RADIOTRON DESIGNER'S HANDBOOK-Fundamental principles of practical circuit design, prepared especially for the radio-set designer. Valuable to amateurs interested in the subject. Illustrated. and contains reference charts, tables, and miscellaneous data. Stiff cover. 356 pages. Net price $\$ 1.00$. RCA POWER AND SPECIAL-TUBES BOOKLET (TT-100) -An illustrated catalog of air- and water-cooled transmitting tubes, rectifiers, television tubes, phototubes, oscillograph tubes, thyratrons, voltage regulators, and special amplifier tubes. Free upon request. RCA RECEIVING TUBES AND ALLIEO SPECIAL-PURPOSE RCA RECEIVING TUBES AND ALLECteristics and socket connections of 327 receiving types and 38 allied types. Free upon request.

All of these publications are available from RCA tube distributors, or direct from Radio Corporation of America. Write Commercial Engineering Department, Section 62-79Q, Harrison, N. J.

MS 710 has all features deseribed but tess resonatnr and less builf.in key. Amateur price

G fior with resonator but less built-in key. Amateur net arice
mS 7lop with built.in key but less resnnator. Amateur net orice

MS 7IOPR DrLuxe Master Oscillatone with all traturos ineluding resnnator and buift. in key. Amateur net arirn.

100

10.50
11.50
13.00
Here is the last word in code practice Oscillatones. New Adjustable Resonator (optional) increases volume five times. Tone frequency variable from 600 to 1500 cycles. Volume controllable from 0 to FULL ON. 'PM' DYNAMIC speaker may be disconnected during headphone operation if desired. Up to 300 head phones may be used. Has phone jack for headphones. Optional built-in key. Absolutely safe. No shocks. Clean cut, chirpless keying. Operates on $110 \mathrm{~V} . \mathrm{AC}$ or $D C$. Uses IIIN7GT tube. Gray crackle finish metal case.

LEG CLAMP HAND KEY

Made to Sienal Corps specifications. Soring metal band fits thigh of lea comforlably Folds for compact parking. With 5 ft rubber covered cond and olug. Mndel J.45; Amateur 510
PROFESSIONAL SPEED KEY
DELUXE SPEED KEY

Nime Doints of adjustmen
DELUXE HAND KEY

Cirenit rinsing switch. Made
Amatrur Nel Price

Finished t polishen ehrom and nickel. $3^{\prime} 16^{\prime}$ diameter contarts adjustable for ten sion. spacing and hearing position. con silver contacts. Silver plated Irver. Hakrlite base. Very smooth nderation. 180
Model J. 37 : Amatcur Net Price.

Built to propes. sional standaards. Coin silver enn. tacts. Accurately machined bear. ing screws. Black crackle finish metal base with crrcuit elosing switeh. Amatcur Net Price
2^{25}

TELI H

 nition by specializing exclusively in the engineering, design and manutacture of

CERAMIC-PORCELAIN

\& STEATHTE INSULATORS
also in the manufacture of RADIO HARDWARE and ANTENNAS

We also carry a complete line of WIRES,

CABLES \& HOOK-UP

 WIRESBirnbach products continue to win top honors for uniformly dependabde performance.

Send for your copy of our Catalog $\mathrm{H}-46$

QUALITY
 STACO
 RELAYS

No. MR-11 - Minioture reloy, $3 / 16^{\prime \prime}$ fine silver SPDT contocts, 110 -yolt AC coil, $\$ 1.59$ net. MR-7 is 6 -volt AC model ot some price.

No. MRD-2 - Minioture re loy 2500 -ohm coil operotes on 12 mo., $3 / 16^{\prime \prime}$ fine silver DPDT contocts, \$2.70 net MRD-5 for 7.5 -mo. operotion and MRD-6 for 6 -volt DC ore $\$ 3.60$ and $\$ 2.70$ respectively. MRD- 11 for 110 -volt AC ond MRD-7 for 6 -voll AC ore eoch \$3.00.

No. OA-2 - Overlood reloy. adjustoble for $250-500 \mathrm{mo}$., operating ond reset coils ore 110 -yolt $\mathrm{AC}, 3 / 16^{\prime \prime}$ fine silver SPDT contocts $\$ 4.50$ net OA-5 is 110 -volt AC model for $500-1000 \mathrm{mo}$. range. Other models for 6 -volt DC ond 6 -vol $A C$ ond for either ronge ore oll priced of $\mathbf{\$ 4 . 5 0}$ net.

No. ABA - Antenno chongeover reloy, $3 / 16^{\prime \prime}$ fine silver DPDT contocts, 110 -valt AC coil, $\$ 3.00$ net. Type ABD for 6 -volt DC operotion, $\$ 3.00$. Types AMA (110 -volt AC) and AMD (6 -valt DC) Mycolex insulated ore $\$ 4.00$ net. Other R.F. Reloys, SPST and DPST ore availoble at from \$2.10 to $\$ 3.00$.

No. TD-11 - Time deloy relay, room temperature compensotor, adiustoble delay from 5 seconds to 1 minute 110 -volt AC operation, $\$ 6.45$ net. Model TD. 4 for 15 sec onds to 45 seconds delay and less compensator, $\$ 4.50$ net

No. CMA-IOG - Sensitive power relay, will contral 1 HP on 115 -valt $A C$ or $11 / 2 \mathrm{HP}$ on 230 -volt AC, 10,000 -ohm coil, will operote on 6 mo. DC, SPDT Snap oction contacts. $\$ 5.25$ net. Otner SPDT model from $\$ 3.73$ to $\$ 5.25$. DPDT models from $\$ 6.00$ to $\$ 7.50$

No. MSA - Mercury switch relay, wiil handle $1 / 4$ HP motor or its equivolent, in oddition to the its equivolent, in oddition to the
SPST mercury contocts there is a SPST (double break) $3 / 16^{\prime \prime}$ fine silver contact set, 110 -va: AC coil, \$3.75 net. Models M5A-6 (6 -volt AC) and MSD-6 (6 -volf DC) ore olso available of $\$ 3.75$

No. MR-2 - Minioture reloy, 2500 -ohm coil, operotes on 6 mo., SPDT contocts ore $3 / 16^{\circ}$ fine silver, $\$ 1.50$ net, MR-5 (5000 -ohm) and MR-6 (6 -volt $D C$) ore $\$ 2.10$ ond $\$ 1.50$ respectively.

No. LEA - Lotching reloy electrical reset, 110 -volt AC coils, $3 / 16^{\prime \prime}$ fine silver SPDT contocts, $\$ 3.75$ net. LEEA-6 for 6 -volt AC ond LED for 6 -volt DC ore olso $\$ 3.75$ eoch.

No. KBA - Keying reloy, high speed operoting, $3 / 16^{\prime \prime}$ SPST (double break) fine silver conocts, 110 -volt AC coil, $\$ 2.10$ net. Models KBD for 6 -volt $D C$ ond KBA-6 for 6 -volt $A C$ ore ovoiloble of the some price.

No. BBA Breok-in reloy four-pole (DPDT, SPST (normolly open) ond SPST (normally closed), $3 / 16^{\prime \prime}$ fine silver contocts, 110 -volt $A C$ coil $\$ 4.20$ net. Type BBD for 6 -volt DC operotion is $\$ 4.20$. Types BMA (110 -volt $A C$) and BMD (6-valt DC) Myeolex insulated ore $\$ 6.00$ net.

No. T63F - Communication relay, one break and one make contoct sets, $3 / 16^{\prime \prime}$ fine silver contacts, 8300 -ohm cail operates on $1 / 10$ watts \$3.30 net 10 e 1000 . IIOG-10,000.ohm coil$\$ 3.30,140 \mathrm{~F}-4000-\mathrm{hm}$
coil $-\$ 3.15$, T10F-1000. coil - $\$ 3.15, \mathrm{~T} 1$ OF- $1000-$
ohm coit- $\$ 2 . \mathrm{B} 5$, T2 $5 \mathrm{E}-$ 250 -ohm coil- $\$ 2.55$.

No. PMA-1 - Power relay, will contral 1 HP motor on 115 volt AC or $11 / 2 \mathrm{HP}$ on 230 -val $A C, 110$-valt $A C$ coil, SPDT smop oction contocts, \$4.05 net. Models PMC-1 (6 -volt $A C)$ and PMD-1 (6 -volt $D C$) ore ovailoble of $\$ 4.05$ DPDT models of obove, PMA-2 1110 volt $A C)$, PMC -2 (6 -volt $A C$) ond PMD-2 (6-valt DC) are eoch \$6.00.

No. SR-50C - Sensitive electronic reloy, 12-milliwatt oper otion, will contral 150-wott non-inductive load, SPDT fine silver contocts, 5000 -ohm coil pickup of 1.55 mo . $\$ 5.00$ net, Reloys with coil resistances of 50, 100, 250, 500, 1000 and 2000 ohms are avoiloble and priced of $\$ 4.50$.

See Your Jobber or Write for New Catalog

STANDARD ELECTRICAL PRODUCTS CO.

YY ARRISON RADIO CORPORATION

12 WEST BROADWAY
BARCLAY 7-9854
JAMAICA BRANCH - 172-31 Hillside Ave. - REpublic 9-4102

Frank J. Hajek, Pres. W9ECA

For Amateurs - by Amateurs - that expresses Taylor 'Tubes basic policy in a nutshell. Since our beginning, our main efforts have been to develop tubes that would give "More Watts Per Dollar" to Amateur Radio Operators. Of course, we do have countless tubes in Broadcast and Police Radio Transmitters and in many industrial and medical units, but our main efforts have been, and always will be, "good old ham radio." Taylor Tubes pioneered new standards of tube values with such tubes as the 866 Jr., 866 A, 'Г-20-'ТZ-20, Т-40-T/ -40, T-55, Т-200 and others. Taylor 'Tubes inaugurated a generous replacement policy and was first to give Hams a complete transmitter manual. You can count on continued leadership by Taylor Tubes.

fREE FOR THE ASKING!

New Taylor Tube Manual gives full information on al! Taylor Tubes and has 32 pages of valuable technica! data. Get one at your Radio Parts Distributor or write to us.
"MORE WATTS PER DOLLAR"

Rex L. Munger, Soles Mgr. W9LIP

TAYLOR TUBES INC., 2312-18 WABANSIA AVE., CHICAGO 47, ILL.

... a Symbol of Dependability with Amateurs Everywhere!

Superlative quality, advanced engineering and efficient performance - that rare combination of all that is best in radio, reaches the summit of satisfaction in communication products bearing the Howard Radio name.

You can be sure that Howard products for the future will in every way reflect the same skills and craftsmanship that have for years made them favorites with Amateurs throughout the entire world.

HOWRRDRRDIOCOIIPRIY
1731-35 BELMONT AVE • CHICAGO 13, ILL.

© Americas Oldest Radio OMlannfacturee

Handy for Hams! QUARTZ CRYSTAL AMATEUR KIT*

3 CRYSTAL BLANKS (TC - made to Army Air Corps Specifications) approximately 2 parts Drift, Operative 7,000, 14,000 , and $28,000 \mathrm{kc}$.

1 BAG ABRASIVE for grinding crystals to desired frequency together with folder of instructions for most efficient method of grinding crystals.

2 HOLDERS complete with both regular electrodes and springs and two additional sets of electrodes.

Additional crystals, bolders and electrodes may be secured

Complete ONLY \$1 100

* Quality guaranceed by a Company that has made more than 2,000,000 crystals for the Armed Forces. We are able to make this offer only because this is surplus material.

USETHIS ORDER BLANK BEFORESUPPLY IS EXHAUSTED

$$
\begin{aligned}
& \text { CRYSTAL PRODUCTS. INC. } \\
& \text { is } 19 \text { McGee, Kansas City, Mo. } \\
& \text { Send me Quartz Crystal Amateur Kits as advertised, Postpaid. } \square \text { Cash En- } \\
& \text { closed. } \square \text { C.O.D. }
\end{aligned}
$$

name
ADDRESS
CITY

प5T BINDERS

Those who take pride in the appearance of their lay-out and wish to keep their reference file of QST's in a presentable manner, appreciate the QST binder.It is stiff-covered, finished in beautiful and practical fabrikoid. Cleverly designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST. Opens flat at any page of any issue.

With each Binder is furnished a sheet of gold and black gummed labels for years 1927 through 1947. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder. The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references.
Back copies are generally available-list will be sent upon request.

The standard elementary guide for the prospective amateur. Features equipment which, although simple in construction, conforms in every detail to present practices. The apparatus is of a thoroughly practical type capable of giving long and satisfactory service-while at the same time it can be built at a minimum of expense. The design is such that a high degree of flexibility is secured. making the various units fit into the more elaborate station layouts which inevitably result as the amateur progresses. Complete operating instructions and references to sources of detailed information on licensing procedure are given.

$25 c$

Pastpaid Anywhere

This booklet is designed to train sfudents to handle code skillfully and with precision, both in sending and in receiving. Employing o novel system of code-learning based on the accepted method of sound conception, it is particularly excellent for the student who does not have the continuous help of an experienced operator or access to a code machine. It is similarly helpful home-study material for members of code classes. Adequcte practice material is included for classwork as well as for home-study. There are also helpful dato on high-speed operation, typewriter copy, general operating information-and an entire chapter on tone sources for code practice, including the description of a complete code instruction table with proctice oscillator.

$25 c$

To obtain an amateur operator's license you must pass a government examination. The license Manual tells how to do that-tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

THE

OFFICIAL MAGAZINE
OF THE
AMERICAN RADIO RELAY LEAGUE
QST faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QST treats of equipment and practices and construction and design, and the romance which is part of Amateur Radio, in a direct and analytical style which has made QST famous all over the world. It is essential to the well-being of any radio amateur. QST goes to every member of The American Radio Relay League and membership costs $\$ 2.50$ per year in the United States and Possessions. All other countries $\$ 3.00$ per year. Elsewhere in this book will be found an application blank for A.R.R.L. membership.

For thirtyone years (and thereby the oldest American radio magazine) QST hos beenthe "bible" of Amateur Radio.

Amateurs are noted for their ingenuity in overcoming by clever means the minor and major obstacles they meet in their pursuit of their chosen hobby. An amateur must be resourceful and a good tinkerer. He must be able to make a small amount of money do a great deal for him. He must frequently be able to utilize the contents of the junk box rather than buy new equipment. Hints and Kinks is a compilation of hundreds of good ideas which amateurs have found helpful. It will return its cost many times in money savings - and it will save hours of time.

A com.
prehensive manual of antenna design and construction, by the headquarters staff of the American Radio Relay League. Eighteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur, from simple doublets to molti-element rotaries, including long wires, rhomboids, vees, phased systems, v.h.f. systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating mechanisms. The most comprehensive and reliable information ever published on the subject.

The Story of Amateur Radio, by Clinton B. DeSoto-a detailed, accurate presentation in full book length of all the elements that have served to develop the most unique institution of its kind in the history of the world. A book of history but not a historybook, TWO HUNDRED METERS AND DOWN: The Story of Amateur Radio tells in spirited, dramatic fashion the entire chain of significant events in the development of the art.

Approximately 200 pages, 90,000 words, with durable imitation leother red paper cover
\$1. 00
Postpaid
Deluxe edition bound in blue cloth
$\$ 2.00$
Postpaid

The latest edition of THE
RADIO AMATEUR'S HANDBOOK is postwar in content, containing 688 pages of the kind of information which has made the HANDBOOK world-famous. To maintain the high standard of practical usefulness set by previous editions, a new treatment of the constructional sections of the HANDBOOK has been accomplished. The theory and design sections cover every subject encountered in practical radio communication. Completely sectionalized by topics with abundant cross-referencing, and fully indexed. The HANDBOOK continues to be the world's most valuable and widely-used radio book.

50c

Postpaid Anywhere

The objective in preparing this course was to accent those principles nost frequently applied in actual radio communication. "A Course In Radio Fundamentals" is a study guide, examination book and laboratory manual. Its text is based on the "Radio Amateur's Handbook." Either the special edition prepared during the war for training purposes or the Standard Edition may be used. References contained in the "Course" ore in both editions. As a text, this book greatly smooths the way for the student of the technicalities of radio. It contains interesting study assignments, experiments and examination questions for either class or individual instruction. It describes in detail 40 experiments with simple apparatus giving a complete practical knowledge of radio theory and design.
 W. P. Koechel, has made available these calculators to obviate the tedious and sometimes difficult mathematical work involved in the design and construction of radio equipment. The lightning calculators are ingenious devices for rapid, certain and simple solution of the various mathematical problems which arise in radio and allied work. They make it possible to read direct answers without struggling with formulas and computations. They are tremendous time-savers for amateurs, engineers, servicemen and experimenters. Their accuracy is more than adequate for the solution of practical problems, and is well within the limit, of measurement by ordinary means. Each calculator has on its reverse side detailed instructions for its use; the greatest mathematical ability required is that of diding or multiplying simple numbers. They are printed in several colors. You will find lightning calculators the most useful gadgets you ever owned.

RADIO CALCULATOR

TYPE A

This zalculator is useful for the prablems that confront the amateur every time he builds a nuw rig or rebuilds an old one or winds a coil or designs a circuit. It has fwo scales for physical dimensions of coits fram one-half inch to five and onehalf inches in diameter and fram one-quarter to ten inches in length; a frequency scale from 400 kilocycles through 150 megacycles; a wavelengte scale from two to 600 me ters; o capacity scale from 3 ta 1,000 micro-microfarads; two inductance scales with a range of from one microhenry through 1,500; a turns-per-inch scale to cover enameled or single silk cavered wire from 12 ta 35 nauge double silk or cotten covered from 0.936 and gauge, double silk or cotten covered from 0 ta 36 and double cotton covered from 2 to 36 . Using these
scales in the simple manner outlined in the instrucscaless on the back of the calculator, it is possible to solve problems involing frequency in kilocycles, wavelength in meters, inductance in microhenrys ond capacity in microfarads, for practically all problems that the amateur will have in de-
signing-from high-powered transmitters down to simple receivers. Gives the direct reading answers for these problems with occuracy well within the toleronces of practical construction.

OHM'S LAW CALCULATOR

TYPE B

This calculator has four scalles:
A power scale from 10 microwatts through 10 kilawatts.
A resistance scale fram 01 ohm thraugh 100 megohms.
A current scale from 1 microampere through 100 amperes.
A voltage scale from 10 microvolts through 10 kilovolts.

With this concentrated collection of scale, calculations may be made involving voltage, current, and resistance, and can be made with a single setting of a dial. The power or voltage ar currert or resistance in any circuit can be found easily if any two are known. This is anewly-designed Type 8 Calculator which is more accurate and simpler touse than the iustly-famous original model. It will be found useful for many
calculations which must be mode frequently but which are often confusing if done by ordinary methods. All answers witl be accurare within the folerances of commerciol equipmeni.

$\$ 1.00$

Postpaid

STATION OPERATING

As can be seen in the illustration, the log page provides space for all facts pertaining to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The log pages with an equal number of blank pages for notes, six pages of general log information (prefixes, etc.) and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any page, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet, with A.R.R.L. Numbered Texts printed on back, for traffic handlers, is included with each book. : isep per book or 3 books for

OFFICIAL RADIOGRAM FORMS

The radiogram blank is designed to comply with the proper order of transmission. All blocks tor fill-in are properly spaced for use in typewriter. It has a heading that you will like. Radiogram blanks, $81 / 2 \times 71 / 4$, lithographed in green ink, and padded 100 blanks to the pad, 25 c per pad, postpaid.

MESSAGE DELIVERY CARDS

The operating supplies shown on this page have been designed by the A.R.R.L. Communications Department.

Radiogran delivery cards embody the same design as the radiogram blank and are available in two styles - on stamped government postcard, $2 c$ each; unstamped, 1c each.

STATIONERY
Members' stationery is standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence. Lithographed on $8 \frac{1 / 2}{} \times$ 11 paper.

100 Sheets, 5(1) 250 Sheets, 81.(1) 500 Sheets, 81.75 POSTPAID

In the January, 1920 issue of OST there appeared an editorial requesting suggestions for the design of an A.R.R.L. emblem - a device whereby every amateur could know his brother amateur when they met, an insignia he could wear proudly wherever he went. There was need for such a device. The post-war boom of amateur radio brought thousands of new amateurs on the air, many of whom were neighbors but did not know each other. In the July, 1920 issue the design was announced - the familiar diamond that greets you everywhere in Ham Radio - adopted by the Board of Directors at its annual meeting. It met with universal acceptance and use. For years it has been the unchallenged emblem of amateur radio, found wherever amateurs gathered, a symbol of the traditional greatness of that which we call Amateur Spirit - treasured, revered, idealized.

THE LEAGUE EMBLEM, with both gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back button type.

In addition, there are special colors for Communications Department appointees.

- Red enameled background for the SCM.
- Blue enameled background for the ORS or OPS.

THE EMBLEM CUT: A mounted printing electrotype, $5 / 8^{\prime \prime}$ high, for use by members on amateur printed matter, letterheads, cards, etc.

The American Radio Relay Seague

THE American Radio Relay League, Inc., is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standardbearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite.

Membership Application Blank \rightarrow

Application for Membership

Aneifican Radio Relay League

American Radio Reiay League, West Hartford, Conn., U. S. A.

Being genuinely interested in Amatcur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 2.50$ ($\$ 3.00$ in foreign countries) in payment of one year's dues, ${ }^{*} \$ 1.25$ of which is for a subscription 10 QST for the same period. Please begin my subscription with the issue.

The call of my station is
The class of my operator's license is
I belong to the following radio societies

Send my Certificate of Membershipor Membership

- Card \square (indicate which) to the address below:

Name

A benat fide inderest in annatenr radid is the only essemdial requirem ment but full voling membership is granted only to liceensed radios

[^16]
To Manuficeturers of Products Used in Short-Wave Ihadio Communication

The Radio Amateve's Handbook is the world's standard reference on the technique of high-frequency radio communication. Now in its twenty-hird annual edition, it is used universally by radio engineers as well as the thousands of amateurs and experimenters for whom it is published. Year after year, each succeeding edition has sold more widely than its predecessor, until the Handtook now has a worldwide annual distribution in excess of two hundred thousand copies of its English and Spanish editions. To manufacturers whose integrity is established and whose products meet the approval of the American Radio Relay League technical staff, we offer use of space in the Handhook's Catalog-Advertising Section. Testimony to its effectiveness is the large volume of advertising which the Handhook carries each year. It is truly the standard guide for anateur, commercial and govermment buyers of short-wave radio equipment. Particularly valuable as a medium through which complete data on products can be made easily available to the whole radio engineering and experimenting field, it offers a surprisingly inexpensise method of producing and distributing a creditable. catalog, accomplishes its production in the easiest possible mamer, and provides adequate distribution and permanent availability impossible to attain bo any other means. We solicit inquiries from qualified manufacturers who wish full data for their examination when catalog and advertising plans are under consideration.

ADVEIETINING DEIPNETMENT . .

Side by side with the brilliant achievements in radio communications has been the development of AlSiMAG Steatite bodies of extremely low dielectric loss, together with high mechanical strength and rigidity-assuring constancy under any operation condition.

AMERICAN LAVA CORPORATION
 CHATTANOOGA 5, TENNESSEE

43RDYEAROFCERAMICLEADERSHIP

The Amateurs Bookshelf

A balanced selection of good technical books, additional to the ARRL publications, should be on every amateur's bookshelf. We have arranged, for the convenience of our readers, to handle through the ARRL Book Department those works which we believe to be most useful. Make your selection from the following, add to it from time to time, and acquire the habit of study for improvement. Prices quoted include postage. Please remit with order.

Theory and Principles

BASIC RADIOPRINCIPLES, by M. G. Suffern. Elementary radia principles, circuits and components described in simple practical languoge, without mathematics. 271 pages, illustrated. $1943 . .$. $\$ 3.00$

BASIC ELECTRICITY FOR COMMUNICATIONS, by W. H. Timbie. A proctical treatment of the electrical principles which underlie communications, circuits and practice. 603 poges, illustroted. $1943 \ldots$.

PRINCIPLES OF RADIO, by Keith Henney, A medium-level text covering bath electrical and rodia fundomentals, particularly written for home study. 549 pages, illustrated. 4 th edition, $1942 . .$. $\$ 3.50$
Basic radio, by J. Barfon Hoag. A complete treotment of the circuits used in radia, television and electranics opparatus, including up-ta-date applisations. 380 pages, illustrated. 1942......................... $\$ 3.25$

FUNDAMENTALS OF RADIO COMMUNI. CATIONS, by A. R. Fiey. A more odvanced treatment requiring previous background. Autharitative, clearly written, well crgonized. 393 pages, illustrated. $1944 \$ 4.00$

INTRODUCTION TO MICROWAVES, by Simon Rama. A non-mothematical descripticn of cancepts necessary to an understanding of microw ave phenameno. 138 pages, illustroted. 1845. $\$ 1.75$

Engineering and Reference

RADIO ENGINEERS' HANDBOOK, by F. E. Terman. Braad scope and detailed treatment moke this baok serve bath as text and reference handbook. 1019 pages, illusstoted. 1943. $\$ 6.00$

RADIO ENGINEERING HANDBOOK, Keith Henney, Editar. An authcritative hondboak far \&ngineers, with technical dato on all fields and aspects of radic, contributed by 23 specialists. 945 pages, illustrated. 1941 $\$ 5.00$

ULIRA-HIGH-FREGUENCY RADIO ENGINEERING, by W. L. Emery. Written for engineering students, this baok provides an excellent transition treatment for amateurs. 275 pages, illustrated. 1944. $\$ 3.25$

COMMUNICATION CIRCUITS, by Wore ond Reed. Fram low-frequency transmission line and netwark theory, this valume leads the student into wave guides and advanced u.h.f. techniques. 330 pages, illustrated. 2nd edition, 1944................................. $\$ 3.50$

PRINCIPLES OF ELECTRON TUBES, by H. J. Reich. A candensed but camplete treatment of the theary, characteristics and applications of electron tubes. 398 pages. 1941. . . $\$ 3.50$

COMMUNICATION ENGINEERING, by W. 1. Everitf. Complete treatment of netwark theary, including mathematical analysis of radio circuits and tube operation. 727 pages, 411 illustrations. $1937 . .$. $\$ 5.00$

HYPER AND ULTRA-HIGH FREQUENCY ENGINEERING, by Sarbacher and Edson. A digest of published literature covering all phoses of technique from 30 Mc . to 10,000 Mc. 644 pages, illustrated. 1943. . . $\$ \mathbf{5 . 5 0}$

FIELDS AND WAVES IN MODERN RADIO, by Ramo and Whinnery. An extensive thearetical treatment of field and wave theary, requiring o knowledge of engineering mathemotics. Revealing and important. 502 pages, illustrated. 1944. $\$ 5.00$

RADIO ENGINEERING, by F. E. Terman. A comprehensive treatment ccvering oll phoses of radia cammunication. An all-around back for students and engineers. 813 pages, illus. trated, 2nd edition, 1937...........\$5.50

FREQUENCY MODULATION, by August Hund. An advanced engineering text an f.m., presenting bath theary and practice. 375 pages, illustrated, $1942 . .$. $\$ 4.00$

PRINCIPLES OF TELEVISION ENGINEERING, by D. G. Fink. Information on the fundamental pracesses of television technique, with design dato and descriptions of modern equipment. 541 pages, illustrated.

MICROWAVE TRANSMISSION, by \&. C. Slater. A comprehensive treatment cf principles and techniques emplcyed in the region between 300 and 3000 Mc . For the advanced student or engineer. 309 pages, illustrated. 1942. $\$ 3.50$

Experiments and Measurements

MEASUREMENTS IN RADIO ENGINEERING. by F. E. Termon. A comprehensive engineering treatment of the measurement problems encountered in engineering practice, with emphosis an bosic principles. 400 pages, willustroted. 1935..................... $\$ 4.00$

RADIO FREQUENCY ELECTRICAL MEASUREMENTS, by H. A. Brawn. A labaratary course in r.f. measurements for communications students. Contains practical information an methods. 384 pages, illustrated. Second

EXPERIMENTS IN ELECTRONICS AND COMMUNICATION ENGINEERING, by Schulz and Anderson. A labaratery lext describing 108 experiments covering all aspects of radio and electronic fields. 380 pages.

Commercial Equipment and Operating

HOW 10 PASS RADIO LICENSE EXAMINATIONS, by C. E. Drew. Gives onswers and explanations for the paraphrased ques. fions in the FCC study guide, covering oll six elements of the cammercial examination. 320 pages, illustrated. 2nd edition, 1944. . $\$ 3.00$

PRACTICAL RADIO COMMUNICATION, by Nilson and Hornung. Covers basic principles and technical requirements in the commercial fields-brocdcosting, palice, aviation and marine cammunication. 927 pages, illustrated. 2nd edition, 1943. \$6.00

THE RADIO MANUAL, by G. E. Sterling. An excellent practical handbock, invaluable ic the cammercial and braadcast cperotar and engineer. Covers principles, methods and apporatus of all phoses af radic. 666 pages, illustrated. 2nd edition, $193856 .00$

Miscellaneous

MATHEMATICS ESSENTIAL TO ELEC. TRICITY AND RADIO, by Coake and Orleans. Provides the essentials of algebro, qeametry and irigonemetry needed to solve everyday
problems, with proctical examples. 418 pages, illustroted. $1943 \ldots . . .$.
PRINCIPLES AND PRACTICE OF RADIO SERVICING, by H. J. Hicks. Receiver circuit
fundamentals and their application to general service practice. Covers mederntesting eqüipment and business principles in servicing. 391 pages, illustrated. 1943. $\$ 3.50$

Microphones Engineered by

 Electionics Answer Everyday Sound Problems

Poly-Directional wixh Adiustable Polar Paffern
The versatile high fidelity Cardak is readily adjustable to reduce any conbination of refected sound. Cuts reverbertion or sandom noise pick-up ... minjmizes acoustic feedback. For broadcasting, recording, public address communications Model 725-Cardak I. List... \$35 Madel 730-Cordak M. Rist.
$\$ 55$
$\$ 75$
$\$ 75$

Maximum Infelligibility
Under Extreme Noise
Hand-Held, close-talking single bution carbon *DIFFEREN TIAL microphone for all speech transmission in any noisy, windy, wet or exiremely hot or cold lowet or exiremely hot or cold lo cations. Cancels out background noise. Articulation is at least $97{ }_{6}{ }_{0}$ under quiet conditions, and 88% under a 115 db noise field. Madel 205-S. List Price PPutent No. 2.3 30,010

Higher Articulation with Less Fatigue
Moving coil, hand-held Dynamic microphone fur high fidelity soeech transmission. Uniform resconse, free from peaks, in the useful frequenties gives higher articulation, poovides more usable nower level, and is less faliguing to the listener. For outdoor or indoor use.
Madel 600-D. Dynamic. List . \$27.50 Madel 210-S. Curban. List. . $\$ 17.50$

General-Purpose Dynamic

 for Voice and MusicWidely used because of its dependable all-around performance. Excellent frequency response for both indoot and outdoor sreech and music pick-up, Rugged, small size, light weight. High outpur. Suitable for public address, dispatching, paging, recording and remote broadcast. Model 630-C. List Price $\$ 30$

Corner of E-V "lab"
One of aur Quelity-Cantral units used in testing claso-talking mieraphanes. Harmanic distartian, frequency respanse, positianal response (for, carbans) level, etc., are carefully analyzed. Colibration is effected by Bell Labaratary standards and our own recip. rocity checks.

Velocity High Fidelity

Bi-Directional Sound Pick-Up
Wide, flat frequency response, bi-directional polar pattern, high fidelity chardeteristics, wide angle front pick-up, and pick-up range make ideal for solo, orchestra, or chorus, for single speaker or grouns. For indoor P.A., broadcasting, recording. Model V.1-C. Lis! Price. \$30 Model V-2, List Prise $\$ 37.50$

SEND FOR COMPLETE CATALOG Gives valuable data on Etectra-Vaice Micraphones for communications, public oddress, broadcasting and recarding. Includes helpful Reference Level Conversion Chort.
Authorized Distribuiors Everywitere

E1ECTRO-VOIEE, INC. 1239 South Bend Ave, South Bend 24, Indione * Export Division: 13 Eost 40ih 5\%., New York 16, N. Y., U. S. A. - Cobles: Ailob
 to...Tune up the rig at low powers eliminating danger of tank condenser arc overs, tube overloads and meter burnouts... QSO at any power level up to maximum...Smoothly adjust bias voltage for maximum efficiency without shutting down... Set filament voltage to rated value protecting emission characteristics with resulting increase in tube life... Boost your line volt. age if low or reduce it if too high.
POWERSTAT Variable Transformer type 20 (for panel mounting) rated
Input: 115 volts, 50/60 cycles
Output: 0.135 volts, 3.0 amperes max.
POWERSTAT Variable Transformer type 116 U (for panel mounting) rated:
Input: lles volts. 50/60 cycles
Output: 0. 135 volts, 7.5 amperes max.
POWERSTAT Variable Transformer type 116 This unit is clectrically the same as type 116 U but equipped with cord and plug, on-off switch, output receptacle and enclosure. ldeal for experimental use in the shack.

Send for Bulletin LA

TYPE 116U

140

The
 WESTLINE C'RYSTAL

- Perfected through four years of war production, the Westline crystal is as fine as modern technology can produce.

Every blank is precisely orientated by X-ray and polaroid, assuring a low drift crystal. Drift is less than 1 cycle $/ \mathrm{mc} /{ }^{\circ} \mathrm{F}$. Each is dimensioned to produce highest activity. Each is finished to exact frequency and specially treated to prevent its changing frequency or activity with use.

actual size

Amateur crystals are available in the 40,80 , and 160 meter bands or to multiply into any higher frequency amateur band. The price is $\$ 3.50$ complete with holder,* supplied within 1 kc of frequency you specify with frequency stamped to nearest 100 cycles. Holder plugs into either 8 prong or 5 prong socket. Holder dimensions are $1 \frac{1 / 8^{\prime \prime}}{} \mathrm{x} 13 / 16^{\prime \prime} \mathrm{x}$ $7 / 16^{\prime \prime}$. Each crystal carries an unconditional money back guarantee. Send your orders for whatever crystals you want, specifying frequency. Shipment will be made the day order is received - shipment C.O.D. if you wish.

We can promptly supply commercial and special crystals of any type in any quantities. Tell us what you want - ask us to quote prices.

Bob Henry offers his record of seventeen years service to amateur radio as your guarantee of 100% satisfaction.

Send your orders and inquiries to Henry Radio, Butler, Missouri, or to Henry Radio, Los Angeles 25, California.

HENRY RADIO

BUTLER, MO., and LOS ANGELES 25, CALIF.

JOHNSON variable condensers are rigidly constructed and engineered to meet exacting requirements of amateur, commercial broadcast and industrial applications. They are the choice of amateurs who demand the highest quality and latest in condenser design.
In JOHNSON condensers there are many superior features, which help assure top performance of equipment in which they are employed.
There is a JOHNSON condenser for every stage of the amateur transmitter from oscillator through the final amplifier.

JOHNSON tube sockets have been known for more than twenty years as a top line. New sockets are being added continually to the JOHNSON line, keeping it always up to date.
JOHNSON's superior mechanical and electrical design never fails to meet the rigid requirements of present day radio-electronic circuits and equipment.
The complete line of JOHNSON sockets meet every amateur tube socket requirement. JOHNSON standard and "special" sockets are also supplied for a wide variety of commercial broadcast and industrial applications.

Johnson insulators are designed to obtain great mechanical strength and high breakdown voltages.
Materials used in the manufacture of Johnson insulators are selected after laboratory tests prove conclusively that they meet all of JOHNSON'S rigid specifications.
The Johnson line includes stand-off cone, thru-panel, antennas, feeder and strain insulators. There's a JOHNSON insulator for every amateur need and you will he more than satisfied with the performance of JOHNSON insulators.

JOHNSON inductors and chokes are available in popular standard types for amateur radio requirements and special types are available to meet any broadcast or industrial application.
The famous Johnson rotating coil and tube socket, "HI Q", inductors are designed for optimum LC ratios on all bands. A special highly glazed low-loss electrical porcelain is used for the coil forms, which are ribbed to assure minimum contact between the wire and insulating form.
JOHNSON RF chokes are uniformly flat in response and are equally effective over the entire range for which they are designed.

Johnson Hardware Items are manufactured from high grade materials and quality workmanship.
The JOHNSON line includes the following items: couplings, tube caps, plugs and jacks. inductor clips, soldering terminals, tube locking clamps, panel bearing, flexible shafts, fuse clips, handle indicators, cable connectors, pilot and dial lights.
JOhNSON parts can be obtained from radio-electronic parts Johbers, or write directly for further information about JOHNSON components and assemblies.
Send for the
latest Jounson
Catalog-
Dept. P
E. F. Johnson Co. Waseca, Minn.
JONTSOMT

ORDER YOUR NEW Communications Receiver NOW from ALLIED For Earliest Delivery

Available on Time-Payments

Trade-ins Accepted BE ONE OF THE FIRST to own and enjoy one of these celebrated receivers. All models cover amateur, short-wave, and broadcast bands. War-provelopments. Allied is latest engineer the distribution of Allied is a leader ineceivers. Orders are flled in turn. Place your order nou.

NATIONAL NC-2-40C

490 kc . to 30 Mc . range in 6 bands. Accurate single dial control. Temperature compensation. Automatic voltage stabilization. Adjustable series-valve-noise fimiter. Flexibie crystal filter. Phonograph or high level microphone pick-up jack. Net $\$ 225$ Speaker in matching cabinet, net

HAMMARLUND HO-129X

Full range . 54 to 31 Mc . accurately calibrated. 4 calibrated Ham bands and 1 arbitrary scale. Variable selectivity crystal filter. Low drift beat oscillator for code and locating stations. Antenna compensator. Voltage tegulation. Compensated oscillator to reduce drift during warm-up. Automatic noise limiter.

ALLIED RADIO CORP., L. M. Dezettel W95FW 833 W. Jackson Blvd., Dept. $10-46$ Chicogo 7. Illinois.

Date
Model
Enclosed \$ \square Full Payment \square Part Payment (Balance C.O.D.)
\square-Send literature on Receivers and Time Payment Plan. \square Send Allied Catalog of Radio Parts and Equipmeat.

Name
Address
City

Pal case faper capacitors in dest range of contamers, fer finals, molntings. capaci ies Hisqes, combinations. These pactors g ve your "rig that ofessional touch. while pro ding the super duper jer rmance arm life you wan

u build en a solid touncatior hen you select Aerovox Type W. rectargular can oil copacı Althcugh mass-produced 2 lowest cost, these quality 5: are buill for tough zoing \#. longeat service. Chouce of tuntings. Voliage ratings Om 600 to 7500 D.C.W. High oltage leak proot terminals.

Dopendable aigh-ireauency ches can best be hancied witt these heayy-duty Rerovox mreas. Availaole in stkelite metal and ceramic crass, in c uding the stack moantinc vmits. Currentrating data at various frequoncies cen provo invaluable in tour engareering.

They're avai able again those reavy duly metal cara terovox electrolytics. Widest selection at cans, mowntings, erminals apacilies, Vollages, combina trons. Positively the outstand ing choice roday. Aad wherd compacinecs and lowest cos are prime requisites, there to The midqei.can "Dandoes" and Type PBS cardboard-case unifs.

For uhra-hight-trequency work, the-e are $\mathrm{A}=$ rovox 10 N -loss capactors rueit as Type 1360 here show. Ahminus can. Mica Bisc-inswated terminal. Rat ngs up to lat000 test volts elleet ve. 010000 to .000125 mid. There"s also Type 18es with cerimicins.alarec terminal and cas clumirum ease. helined sulshur dialectric.

Dc you wan omake your own cajazitor banks or combina tiens? Type UC uncased paper scetrons ase the answar. These ccmpact paper sections are thorsughly moregna'ed and senled in araished-paper iack As. And have long piginil leade. Mount then-and case them as you wish Here's the most pa. por sapaciance for the money.

Merovor molded in bakelite ITica capasitors arc avai able in vo tage qaings up to 10.600 tost. Also in widest paree of mountiays. ferminals. Telermount. inj brackels. wi h ceraric mountieg washers. ofc- Acrovex selgction ceatainly is at its test in these melded-in-bake lite mica enpacitore.

The war made terovox more space-sonsc cus man erer. Type ns miriatura or-alled transmit ing capacitor b tupicsl. Singlo Fillar e-miral. Cmounded case. Fing mounting scoo v. There's atso type 2 with two pillar armirals and lijbed cover 2000 - 7500 v I.C.W. Mare's tigh veltage irswance in mini mum bulk asd ti pepular prices.

- The Aerovox line offers you a greate: selection of capacitor types than ever betore. Yes, capacitors that were special before-those extra-heavy-duly types you envied in commercial X-milting "rigs"- and definitely too high-priced for your pockethook - are now available to you and at within-reach prices.
The latest Aerovox catalog contains many new
as well as earlier types. And for your extra-special requirements, your Aerovox jobber can tell you what's available beyond the listings in the General catalog.

Consult your Aerovox jobber. He can tell you what iypes to use for that "rig." Ask for our latest catalog. Also ask for a free subscription to the Aerovox Researci Worker. Or write us direct.

Buy branded merct-andisz! And look far the yellow label! INDUSTRIAL APPLICATIONS

Nowitcan be SOLD... The Plytube 50 ft ."HAM-MAST"

The Plytube HAM-MAST is the answer to the need of amateurs and experjmenters for a strong, light-weight compact mast that can be used for portable or permanent installations. It is designed for U.H.F. or V.H.F. antennas and with slight modification can be adapted for F.M. and Television reception.

This is the same type high quality mast that was used during the war, by the thousands, in Army, Navy and Coast Guard installations. Complete with erection kit for only $\$ 98.50$.

The mast is made up of four sections which telescope into a bundle $14^{\prime} 3^{\prime \prime}$ long. Each most is supplied with two sets of guy wires, with four anchors, a base plate with four spikes, and an erection kit consisting of a boom, boom shoe, top collar, rope vangs, block and tackle and boom anchor.

SPEEDY ERECTION - Two men con erect the Plytube "Hom-Mast" in 15 minutes.
WEATHER PROOF - Withstands wind velocities of 100 m. p.h., extreme temperatures and weothel conditions.
PORTABLE - Demountoble, compoc' and light weight (mast 29 lbs. - fittings 41 lbs. -erection kit 15 lbs)

Top:
Mast in place - easily and securely erected.

Boffom:

Assembly of Nested Mast and
fittings ready for erection

LOW MAINTENANCE COST - No painting required.
NON-METALLIC - Made of exterior grade plywood - no interference.

PLYMOLD CORP.

 Manufacturers of Ptytube Lawrence - Mass.146

Stay on the air with

Are YOU ready to

go on the air
 WRL TRANSMITTER KITS

Leo hos the transmitter kityou wont ot the price you wont to poy...
$15,35,70,150 \mathrm{matts}$. Also units custom built to your specificotions.

QUALITY RECEIVERS

The best in receivers from all manufacturers, at OPA prices... ready for quick delivery to you. Use your present receiver for trade-in or as a down payment on a new set.
Liberal trade-in ollowance. Convenient terms - alwoys the lowest in the country.

Exclusive ot Leo's! . . .

Our latest Flyer... packed with the latest in radio parts... the kind you've been looking for . FREE
Handy Tube-Base Calculator that tells you in a iiffy tube characteristics which enable you to substitute available tubes for those you can't get . 25 c

Giant Radio Reference Map with time and amateur zones, standard and short wave stations, and other valuable information. Printed in colors. Size $31 / 2 \times 41 / 2$ feet...... Only $15 c$

For Quick Service On Everything In Radio

Everything FOR THE HAM

Today, as always, our stock of parts, re ceivers, transmitters, and general electroniequipment is the most complete you'll find Amateurs and radiomen the nation over ap preciate our quick, personalized service Write Leo, W9GFQ, today and be the FIRST with the LATEST. We invite inquiries for special equipment of all kinds.

We specialize in Hallicrafters equipment Available now for immediate shipment.

Address Leo, W9GFQ, Dept. H-46

WHOLESALE RADIO LABORATORIES

744 West Broadway. Council Bluffs, lowa
148

Stupakotf Hermetic Seals

KOVAR* The idea alloy for sealing to glass.
GLASS TO METAL
HERMETIC SEALS

Two big NEW ARK stores well stocked
to serve your needs and staffed by people who know and can help solve your problems.

LATEST MODELS WELL-KNOWN RECEIVERS

latest model RECEIVERS now available HAMMARLUND HALLICRAFTERS

HQ-I 29X (with tubes).... \$129.00
ASPC-210X
318.00

ASP-210SX 318.00
Available for rock mounting at same prices

NATIONAL

NC-2-4OC and speaker

SX: 28A Super Skyrider with crymal.iens

S. 20 R	spuaker	\$223.00
	Sky Chumpion with huilt.in	
	sperker.................	60.00
S.22R	Skyrider Marine with huilt-in	
	speaker.	74.50
SX-2	Super Defiant with crystal. less speaker.	94.50
S. 39	Sky Kanger portable, AC IDC	
SN-36	FM AM receiber	110.00 415.00
5-3-	V.H.F.FM AM ruceiver	591.75
PM. 23	$10^{\prime \prime}$ PM speaker in eabinet for use with SN. 25 . SX.28A...	15.00

RME

RME- fy and speaker
$\$ 166.00$

GET YOUR NAME ON OUR MAILING LIST
8e first to get announcements of merchandise available, special bargains, etc., etc. Send name and address on post cord. Stote whether amateur, engineer school, industrial or service. mon. Address orders and inquiries to Depi. H at NEWARK store neorest you.

Neurark $\operatorname{EILCTALC}$ Company 115.117 W. 45th St. "Delendabie Service 323 W. Madison St. CHICAGO 6

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE NEW YORX 19 Is the Foundation of Ou r business

HAMS...here are all the things you've been waiting for in NEWARK'S two big stores. Order from the store nearest you for fast service.

SHOP NEWARK FOR BIG BARGAINS

THORDARSON TRANSFORMERS

(Power Transformers and Chakes)
T-f5556 or T-92R21 leads out of side. $7 \rightarrow$ v. C.T. at 200 MA. 115 . 60 Cycle 6.3 v. C.T. at 5 A. 5 v. at 30 amp. 9 lbs

T-13C30 8H. 150 MA. 200 ohm 1600 ч. Insulation $21 / 4$ ths.

T-4557 or T-74C29 leads out of side. 15 H .150 MA .200 ohm 2000 v. Insulation 5!, اЬs..............

Western Electric Micro Ammeters

Bakelite case fits 3^{3}," hole. Radium dial 150-0)-150. Can be used with $\mathbf{0} \mathbf{- 2 0 0}$ micro and amp scale listed below. IExcellent as a 5,000 ohm-pervolt meter or null. sound lesel and galvanometer indicator. Instructions included.
No priority required... $\$ 7.50$

0-200 paper scale for abuve....... \$. 15

GENERAL ELECTRIC METERS

0-500 1).C. MA. 2 ' mound Bakelite
\qquad 0-8 RE ammeter, 2 round Bake-
lite case.
4.00

GET YOUR NAME ON OUR MAILING LIST
Be first io get announcements of merchandise available, special bargains, etc., etc. Send name and address on post card. State whether amateur, engineer, schoal, industrial or serviceman. Address orders and inaviries to Depl. H at NEWARK store nearest yau.

ALL PRIGES SUBJECT TO CHANGE WITHOUT NOTICE

Jones
 ELECTRICAL CONnECTING DEVICES

300 SERIES PLUGS ADD SOCKETS

P-2406.FHT

2400 SERIES PLUGS ADD SOCKETS
Fulfill practically every requirement in Public Address. Radio and kindred fields. Designed for highest electrical and mechanical efficiency. Made in 2, 4, 6, 8,10 and 12 contacts. Designed for 110 volts at 10 amperes. All Plugs and Sockets are Polarized. Knife switch socket contacts are of Phosphor Bronze, cadmium plated. Bar type plug contacts are Hard Brass, cadmium plated. Body of molded Bakelite. Steel Caps have baked black crackel enamel finish.
500 SERIES PLUGS AND SOCKETS (NOT ILLUSTRATED)
Heavy Duty Series designed for 5,000 volts at 25 amperes. Made in 2 to 12 contacts. Polarized. Molded Bakelite body. Parkerized Steel Brackets and Caps. Send for No. 500 catalog now.

SHIELDED PLUGS AND SOCHETS

Barrier Terminal Stiip

Low loss plugs and sockets suitable for high frequency circuits. Ideal for antenna connections, pho-to-cell work, microphone connections, etc. Can be furnished with $1 / 4^{\prime \prime}, .290^{\prime \prime}, \frac{5}{16}{ }^{\prime \prime}, 3 / 8^{\prime \prime}$ or $1 / 2^{\prime \prime}$ ferrule for cable entrance. Knurled nut securely fastens units together. All metal parts are of brass, suitably plated to meet Navy specifications. No. 101 Series.

TERMINAL STRIPS

Barrier type Terminal Strips as illustrated are most popular and not only improve electrical connections, but add to the appearance. Made in 6 series to cover every requirement. Hundreds of standard types of Terminal Strips available. Also fuse mounts.
Carried in stock by all leading jobbers. Send today for catalog No. 14 showing complete line of products. adaptable to a thousand uses. Made in 2 to 33 contacts and designed for 45 volts at 5 amperes. All Plugs and Sockets are Polarized. Knife switch socket contacts are of Phosphor Bronze, cadmium plated. Bar type plug contacts are of Brass, cadmium plated. Body of molded Bakelite.

DX RADIO PRODUCTSCO.

GENERAL OFFICES 1200 N. CLAREMONT AVE,yGHIGAGO 22, ILL., U.S.A.

SPLIT-HAIR ACCURACY IS IN DEMAND TODAY

What little "rule-of thumb" thinking there was in the electronic and radio fields five years ago has been swept away by war's scientific demands.

Accurate test and measurement equipment is a vitally necessary part of the future, not only of commercial and industrial electronic applications, but in every "ham" radio as well.

Brief, technical specifications of most $-h / p-$ instruments are shown on these pages.

Write for your copy of the -hp-catalog which gives much valuable information about electronic AF measurements and the instruments with which to make them. No obligation.

(T) HEWLETT-PACKARD COMPANY

INSTRU. MENT	FUNCTION	FREQUENCY	calibration	
200-A	Roaldanes. Tuned Audio Oceillator	$\begin{aligned} & 35 \mathrm{cps} \\ & 10 \\ & 35 \mathrm{ke} \end{aligned}$	Dtal Seale- $35-350 \mathrm{cps}$Calibration PointsAanges- $\mathbf{3}$ (1.10. 100 times dial calitration	
$200-8$	RewistaneeTuned Audio Occillator	$\begin{aligned} & 20 \mathrm{cps} \\ & \text { to } \\ & 20 \mathrm{ke} \end{aligned}$	Oial Scale 20-200 cps Calibration points 41 Ranges- $\mathbf{3}$ (1.10. 100 timet dial calibration	
200-C	RexietanceTuned Oscillator	$\begin{gathered} 20 \mathrm{cps} \\ 10 \\ 200 \mathrm{kc} \end{gathered}$	Dial Seals-20-200 cps Calitration Pointa-41 Ranges -4 t1. 10. 100. 1000 times dial cality	
200-0	RexistanceTuned Oecillator	$\begin{aligned} & 7 \mathrm{cps} \\ & \text { to } \\ & 70 \mathrm{ke} \end{aligned}$		
202-D	PesistanceTuned Oscillaror	$\begin{gathered} 2 \cos \\ 100 \\ 70 \mathrm{kc} \end{gathered}$	Dial Seaie 7-70 cpa Calibration Points Ranges \& $1,10.100,100 n$ times dial calitra Dial Scalo A- 2.50 cps Calibration Polnts	
200-1	AesistanceTuned Sprand Stale Audio Osciliator	$\begin{aligned} & 6 \mathrm{cps} \\ & \text { to } \\ & 6 \mathrm{kc} \end{aligned}$	Oual Scale $\mathrm{A}-6.20 \mathrm{cps}$ Calibration Points Ranges $3,1,10.100$ times dial calificatid Dial Scale B $-20-60$ cpa Callbration Pounts Fanger $3(1.10 .100$ immes dial calitratio	
206-A	Resislance Tuned Audio Signal Cener ator	$\begin{gathered} 20 \mathrm{cps} \\ 10 \\ 20 \mathrm{ke} \end{gathered}$	Oial Seale $20-200 \mathrm{cps}$Calibration Poinls 80Ranges- 31.10 .100 times dial calibratio	
206-AG	Realatença Tuned Audio Signal Gent erator with 49 do Voltmeter	$\begin{gathered} 20 \mathrm{cps} \\ 10 \mathrm{lag} \\ 20 \mathrm{kc} \end{gathered}$	Dial Scale $20-200 \mathrm{cos}$Cs libstation points 80Ranges $-3(\mathrm{~T} .10 .100$ times dial calibration	
$208 . \mathrm{AH}$	Rasitante- Tuned Signal Generefor	$\begin{gathered} 1 \mathrm{kc} \\ \mathrm{to} \\ 100 \mathrm{kc} \end{gathered}$	Dial Scale-1-10 kc Calibration Pointa-130 Aanges-2 19. 10 limes dial salibration)	
INSTRU. MENT	FUNCTION	FREquENCY		accumacr
100-A	Low Frequency \$tanderd	Output $100 \mathrm{ke} .10 \mathrm{kc}, 1 \mathrm{he}, 100 \mathrm{eps}$		*0.01\% over room temp variation of 33
100. ${ }^{\text {B }}$	Low Frequency Standard	Output $100 \mathrm{kc} .10 \mathrm{ke} .1 \mathrm{kc}, 100 \mathrm{eps}$		10.001% from $\pm 10^{\circ} \mathrm{C}$ to $\pm 50 \mathrm{C}$
210 A	Squaro Wave Generator	$\begin{aligned} & \text { Inpul- } \\ & 20 \mathrm{cps} 10 \\ & 100 \mathrm{kc} \end{aligned}$		square within 4 1员 foo 20 cps to 10 hc
300-A	Harmonic Wave Analya	Measurement Range30 cps to 16 kc		frequency- 430 a Voltage overall-t5
320-A	Distortion Analyzer	Manares st400 cps and 5 ke		Lest than 55% (at distortiont of 30% o
320-8	Distertion Analyzes	Measures at50 con .100 cosi .400 eps .1 ke.		Lom than 45% [at distortions of 30%
325-B	Noise and Distortion Andyer	Meatures at30 cos .50 cDs .100 cDs .400 epo: 1 ke .5 kc .7 .5 kc .15 ke		Voltmeter Overall -Dinortion-Lens than ${ }^{2}$ [at distartion of 30\%f or
350-A	Artenuastor	Max, input -100 ke		Esen Resutor- 00.5 Response Accumulat Error st 100 kc sppro 1 db in 50 db
400-4	Varutum Tube Voltmeter	Meazurement Rango10 cps to 1 mc		$\begin{aligned} & 10 \mathrm{cps} \text { to } 100 \mathrm{kc}- \pm 3 \\ & 100 \mathrm{ke} \text { to } 1 \mathrm{me}-\mathrm{tas} \end{aligned}$
500-A	Electronie Frequoney Moler	Mreaurement Range5 cos to 50 ke in 10 ranges		$\pm 2 \%$ of full mesis
606-A	Electronic Tachometer	An Elecironic Frequency Meter and a Tachomeler Aseent calibraled to measure apseds ap to 3.000 .000 RPM .		

$F O R$
S P E E D
A N D
$A \subset C U R A C Y$

Requency response	stability	$\begin{aligned} & \text { ACCURACY } \\ & \text { OF CALI. } \\ & \text { BRATION } \end{aligned}$	POWER OUTPUT INTO RATED LOAD	LOAD Impedance
deetioel 20 cps to 15 kc	12\%	$\pm 2 \%$	1 ment	800 ohms
decibel, 20 cpas to 15 kc	22\%	12\%	1 mmt	500 ohme
decitem. 20 cps to 150 kc	$\pm 2 \%$	+2\%	100 mullimatis	1000 ahmm
1 decitiol. 7 cda to 70 kc	+2\%	$\pm 3 \%$	100 millimants	1000 ahma
1 decibef, 7 cpa to 70 kc 2 decibels. 2 eps to 7 cps	12\%	$\pm 2 \%$	100 millimath	1000 ohms
E1 decibes, 6 cpa to 6 kc	$\begin{aligned} & \pm 2 \% \text { or } \pm 1 \% \\ & \text { Standardization } \end{aligned}$	$\pm 2 \%$	100 millimamts	1000 ohmm
own 2.0 decibles at 20 cos Jown 1.0 decible at 20 kc 1 full oufput	$\begin{gathered} \pm 2 \xi_{\text {or }}^{\text {or } \pm 1 \%} \\ \text { Standardization } \end{gathered}$	+2\%	5 nam	50, 200. 500. 5000 ohmz (al 1 ct)
ator down 2.0 db at 20 cps 1.0 db at 20 kc at fuli output. rex within ± 02 dh of 400 cos rel. trom 20 cpa to 20 kc	$\begin{aligned} & \pm 2 \% \text { or } \pm 1 \% \\ & \text { Stumdardizetion } \end{aligned}$	22\%	5 whts	Generthor 50.200. 500. 5000 ohme (ell ct) Valtmeter 5000 ohms input impedance
from 10 ke pel .1 kc to 100 kc at full output	$\pm 1 \%$ atter $\frac{1 / 2}{}$ hour	12\%	5 wht	$50,200 \cdot 500.5000$ ahm (1 ll e)

DISTORTION AT RATED OUTPUT	HUM LEVEL BELOW RATEO OUTPUT
less then 1%	

205AG - Audio Signol Generator
100A-Secondory Frequency Stondord

NEW SOLDERING GUN

SPEED IRON ${ }^{\text {READY FOR USE IN } 5 \text { SECONDS }}$

needed by amateurs, experimenters, service men

W ITH the new Speed Iron you will solder faster and better than you ever have before. You can make a soldered electrical connection or change it easier than you ever imaginced possible.
Heat is provided by a heavy current at low voltage from the compact built-in transformer. Current flows through the copper loop soldering-gencrates heat in the tip. Loop and tip come up to temperature because current flows through them. The trigger switch gives soldering heat in 5 seconds-when
you need it. The pistol grip handle and good distribution of weight makes it easy to hold. The compact dimensions enable you to get in close to the job. The loop soldering tip gees in the tough spots and still lets you see what you are soldering.
This new up-to-date soldering tool-the Speed Iron-is needed by every radio amateur, experimenter, and service man if he wants to have the best and latest equipment. See your radio parts distributor or order direct.

WELLER MFG. CO. DEPT. R.A.H.
 EASTON, PA.

156

THE HARVEY-WELLS

 with a distinguished record for war

1 ready to serve for peace

With the SEA and AIR FORCES of PEACE!

The cartoonist's facile pen has vividly pietured the fields which Harvey-Wells hopes to serve when production hits its full peacetime stride.

The same skillful manufacturing techniques and highly specialized engineering which operated so successfully in war will produce HarveyWells communications equipment of distinctive merit for tomorrow's needs.

These specialized facilities, together with the Harvey-Wells design engineering organization, are available to you today. If you have a communications problem requiring the most competent handling, we urge you to get in touch with us at once.

you CAN GET IT AT

AN ESTABLISHED fact

since 1922

We started serving the "ham" over 23 years ago, when radio was just a novelty. As the years rolled by, we grew with radio's natural development. Many times we literally "pushed the walls back" to make room for the thousands upon thousands of parts, as fast as they were introduced. Today we occupy 6,000 square feet of space and carry over 10,000 different items. We maintain expert technical and sales staffs. A huge stock of standard, nationally advertised products and a thoroughly trained shipping staff that means... FAST-PROMPT-SERVICE. Small wonder we are called-America's Most Complete Source of Supply.

SUN RADIO \& ELECTRONICS CD., wnc.
 122 DUANE ST., NEW YORK CITY 7 • Tel. BArclay 7-1840

The same rop-notch engineering and processing skill which won for Crystalab a preeminent place as a prime contractor of military crystals. . . is now being made available vo amateur crystal user. Crystal Research Laboratories, engineers of Selectronic crystals, continues and increases its research in order to produce better crystals. When you buy a Crystalab crystal. whether it's finished to cycle accuracy or a blank that you bring to frequency yourself, you ave assured that you have bought the finest crystal thor engineering skill com devise - at the lowest cost for quality.

Coming soon!

(Hivecel

amateur

Soon, Crystalab

CRystal

 crystal kit you want. This at your radio dealers the you Amateurs have asked for, consisting of just what contest, is being engineered for, in the recent Crystalab for Amateurs, and priced for Amateurs, manufactured height of engineering skill, at the Amateurs. It represents the Ask to see the Crystalab A the lowest cost for quality. dealers today. Amateur Crystal Kit at your

1720

 - PAGE CatalogueWhite Dept, alT. K comprehensive ca alogue "Selection Crystals" and foe filler bookish "Crystalab solver Problem".

Freed Transformer
Co.
72 H SPRING STREET, NEW YORK 12, N.Y.

SPECIAL PILOT LIGHT OFFER

REASON FOR THIS OFFER

This offer is being made to acquaint you "ith the high standard, precision manufacture of Gorhard Pilot Lights and to actually place in your hands proof of Gorhards "fixed position terminals" which cannot twist or short, and other evclusive features found only in Gothard Lights.

THIS COUPON AND 25 e presented to your job. ber or dealer gives you a 50\& No. 403 Gothard Pilot Light as illustrated below, and catalog showing complete line.

GOTHARD MANUFACTURING COMPANY

2124 Clear Lake Ave.
Springfield, Illinois
Name
Street
City

HAVE YOU THIS NEW GOTHARD CATALOG?

It's different!
 It's an engineering handbook! Here's what it tells you - and it's free for the asking

Pilor Lights of every conceivable type are illustrated, together with blueprints giving essential dimensions. The correct lamp bulb to use with each type is illustrated and Mazda numbers listed. Pilot Light list prices range from 10 c to $\$ 3.00$ per unit; a type for every purpose. Gothard engineers have made many improvements in construction details. Hot tin dipped, fixed position terminals are used on all miniature socket assemblies. Brackets have reinforcing ribs. All parts heavily plated.

No. 403 -Faceted Jewel. List $\$ 0.50$
No. 404 - Plain Jewel.
. List $\$ 0.50$

The Speaker of Tomorrow TODAY!

Famous Cinaudagraph Speakers, known the world over for tone, stamina, engineering perfection and design are once more in peacetime production. P.M. models of all sizes now utilize Alnico 5, the miracle metal that gives you 4 times the performance without size or weight increase. Constant research for improvements, highest standards of production and inspection plus use of only the finest materials-these are the extra features you get when you select a Cinaudagraph Speaker to do a job in a better way.

Cinaudagraph Speakers
 a sussiotary of Aireon

W6EX

W6LFD
W6JW

It takes "Hams" to Know

what tubes are best for "Hams"

for Your future in radio

50-WATT RADIO STATION

The Aireon Type RS-1 radio station is a complete, self-contained, simple-to-operate unit specifically designed to meet the requirements of airports, airlines, and similar types of communication systems. It includes two transmitter channels, two receiver channels, and remote control equipment, all ready for installation-it's ready to plug into the socket. The transmitter is rated at 50 watts output; channels available in 200 to 400 kilocycles, 2.00 to 8.00 megacycle, and 118 to 132 megacycle bands.

- Experienced Operafors Unnecessary
- Designed for Any Climate

FIXED TUNED RECEIVER

AIREON Type 578-A Receiver

Type RS-1 50. Wat Padio Station

The Type 578-A Receiver i- a siegle channel fxed tunec crystal contralled receiver of exceptional senvitivity and selectivity. This receiver covers frequency range from 2.5 to 16 mc ; it. sensitivity is better than 1 microvolt. The 578-A Receiver is well suited fol remote locations where ungttended operation is neciessary.

* FM EMERGENCY EQUIPMENT

FM Emergency Equipment by AIREON covers 30 to 42 megacycle and 156 to 162 megacycie range. It is produced in both portable and stationary units. Designed and engineered specifically for Police Depts., Fire Depts., Taxis, Bus and Truck lines, and many other types of mobile and stationary installations.

RAILROAD RADIO

Far in advance of the electronic field, AIREON is completely prepored to supply ANY RADIO COMMUNICATION EQUIPMENT A RAILROAD MAY DESIRE. Numerous AIREON products are engineered specifically for railrcad use.

The Type AAS.E Crystal is made from selected Brazilian quartz, aperates over a trequency range of 1,500 to $10,000 \mathrm{kc}$, and is designed tc mees the mast severe C.A.A. Tests.

Type 604-A is designea fo compast commercial aircraft transmitters. It hras commercial airciaft ransmitters.
a frequency range from 2,000 tc $10,000 \mathrm{kc}$ and will w thstand any con ditions prevalent in oir-borne equ p ment.

SILER

1. Btand new past-war design . pasitively not a "wormedover" pre-war model.
2. More than an "electronic" voltmeter. VOMAX is a true vacuum tube voltmeter in every voltageire. sisicnceidb. function.
3. Complete signal tracing from 20 cycles through over 100 megacycles by witrdrawable r.f. diode probe
4. 3 whough 1200 volis d.c. full scale in 6 ranges at ' 50 . and in 6 added ranges to 3000 volts al 125 megohms input res starce.
5. 3 through 1200 volts a.c. full scale in 6 ranges ot hanest effertive circuit loading of 6.6 megohms and 8 mmfl .
6. 02 through 2000 meoohms in six easily reod ranges
7. -10 through +50 db . ($0 \mathrm{db}=1 \mathrm{mw}$. in 600 oinms) in 3 ranges.
8. 1.2 ma through 12 amperes full scale in 6 d.c. ranges.
9. Absolutely stable-one zero adjustment sets all ronges. No probe storting to set a meoningless zero which shifts as sam os protes are separated. Grid zurrent errors completely eliminated.
10. Honest, lactual accuracy: $\pm 3 \%$ on d.e.; $\pm 5 \%$ on a.c. 200 though 100 regacycles; $\pm 2 \%$ of full scale, $\pm 1 \%$ of indicated resistance value.
11. Only five color-differentiated seales on $45 / h^{"}$ D'Arsonval mete for 51 ranges (including d.e. volis polority reversol) eliminate confusion
12. Merer 100% protected against overload burnout on voles'orms db.
13. Substantial leather carrying handle. Size only $12 \frac{7 / 3 " x}{}$. $73 / 4^{11} \times 5 / 2^{\prime \prime}$

SEND FOR FREE CATALOG SEE YOUR JOBBER

OVER 34 YEARS OF RADIO ENGINEERING ACHIEVEMENT

"VDMAX"

Measures EVERY Voltage

The secret of the overwhelming demand for "VOMAX" is just that simple. With it you can measure every voltage in radio receiver design and servicing.
"VOMAX" handles a wide range of d.c. and a.c. voltages at meter resistance so astronomically high that you can measure direcily and accurately every such voltage. It goes far beyond conventional volt-ohm-ma-meters. For "VOMAX" will measure every a.f., i.f. and r.f. voltage from 20 cycles right up to beyond 100 megacycles.

This remarkable post-war instrument gives you vitally important visual dynamic signal tracing. Read the briefed specifications at left practically a complete service station by itself . . . see how "VOMAX" makes you the master, no longer the victim, of tough service jobs. Imagine the time you'll save, the increased efficiency, the multiplication of your profits when you put "VOMAX" to work and can af last measure every volrage.

Requiring no priority and despite heavy demand, your favorite jobber can arrange quick delivery . . . if you act fast.

NET PRICE \$5985

AMATEUR PARTS \& KITS

Born out of the war are many more money-saving new SILVER developments. As an up-to-the-minute amateur you'll want to know all about the new 904 resistance-capacitance bridge . . . new 1.6 thru 30 mcs . "all. band" 5 to 500 watt transmitting in. ductors . . . u.h.f. tuners "harnessing 112 thru 470 mes. . . . the new SILVER am/fm receiver/kir covering 1.6 thru 150 mcs. . . . new "progressive" 5 to 500 watt x mitter/kit 1.6 thru 500 mas. absorption frequency meter.

SIGMA RELAYS give precise operation on low levels of input power (down to .0005 watts) while maintaining exceptional resistance to vibration and other conditions of physical environment, These relays are particularly suited for applications such as:

Accurate 5 witching High Speed Keying

TYPE 4F
$13 \%^{\prime \prime} \times 158^{\prime \prime} \times 1^{3} \times 1{ }^{\prime \prime}$

$11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 25 / 9^{\prime \prime}$
5 Pin Plug-in Base

Operotion from Vacuum Tube Oufpui
Operotion on Close Differentiol

The 4 Series is recommended for: High Speed (down to 1 millisecond)-Keying (up to 200 operations per second)-Sensitivity (aircraft performance on $\mathbf{3 0 - 5 0}$ milliwatts input, 10 milliwatts in less severe environment)-Economy-Compactness-Moderately Severe Environment (temperature, humidity and vibration).

TYPE 5R
$11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$
5 Pin Plug-in Bose

TYPE RJLB2
Hermetically Sealed Enclosure, ovailable for both the 4 and 5 series

The 5 Series is best suited for: Extreme Sensitivity (input power as little as $1 / 2$ milliwatt, aircraft performance on 5 milliwatts)-Severe Environment (withstands temperatures -40° so $+90^{\circ} \mathrm{C}$., vibration of 11 g 's or more, shock of 500 g 's $)$.

- Sigma Relays are not ordinarily sold as stock items, but upon definite recommendotions as to the solution of porticular problems. However, small quantities are available as quickly as stock items, because all components are in stock and production is on the "short order" line.
- SIGMA shares the responsibility for the proper operation of all Sigma relays . . . in other words, Sigma instruments establishes the proper relay specifications in accordance with your problem requirements, then guarantees that the relays will perform with complete satisfaction. Sigma Relays are available with coil resistances up to 18,000 Ohms.
- For A.C.-Both the Series 4 and 5 are ovailable with o built-in full-wove rectifier giving D.C. sensitivity on A.C. input. The Series 5

19 UCOLI

OSQILLOGRAPN
 Hundreds of thousands of DuMont cathode-ray fubes of many types served in oscillographs, radar and other wartime equipment. Of the many available types, the three types herewith have been chosen as the most popular for ham and experimental purposes.

Designed tor oscillographic and other ap-
plications where simplicity of equipment
is paramount. Small bright spot oblained at
low accelerating voltage and without anced deflection.

MECHANICAL CHARACTERISTICS:

Overall length
Maximum diameter
Base
Basing
TYPICAL OPERATION:
Heater Voltage
Anode No. 2 Voltage ($E_{l_{2}}$)
Anode No. 1 Voltage ($E_{1,1}$) for tocus when $E_{[}$is 75% of cusoff value
Grid Voliage ($E_{\text {cl }}$) for beam culoff
Deflection Factor:

D Di

73
$111 / 3^{\prime \prime} \div \frac{1}{\prime \prime}$
Medium 7-p
RMA Basing Designation 7AN

2.5	2.5 volts
1000	1500 volts
286	430 volts $\pm 20 \%$
-33	-50 volts $\pm 50 \%$

114 d.c. volis/inch \pm 109 d.c. volts/inch \pm

Designed for oscillographic and other applications where small spot size, brilliant

MECHANICAL CHARACTERISTICS:

Overall Length
 Maximum diameter
 Base
 Basing

TYPICAL OPERATION:

Heater Voltage
Anode No. 2 Vollage (El, $)$
Anode No. 1 Voltage ($E_{i, 1}$) for focus when E_{r-1} is 75% of cutoff value
Grid Voliage ($E_{r 1}$) for beam cutoff
trace and minimum of defocusing with flection are required.
$\begin{array}{ll}111 / 2^{\prime \prime} & \pm 3 日^{\prime \prime} \\ 3^{\prime \prime} & \pm 16^{\prime \prime}\end{array}$
Medium Magnal
RMA Basing Designation 11A

6.3	6.3 volts
1000	1500 volis
234	350 volls $\pm 20 \%$
33	-50 volts $\pm 50 \%$

-50 volts $\pm 50 \%$

120 d.c. volts/inch ± 2 105 d.c. volts $/$ inch \mp

Deflection Factor:
$\mathrm{D}_{1} \mathrm{D}:$
D.D.

Designed for oscil!ographic and television applications. Intensifier principle used to provide maximum deflection sensitivity tor given tinal accelerating voltage. A standard

Army-Navy diheptal base provides a quate insulation belween electrodes. television applications, a P4 screen is av able.

MECHANICAL CHARACTERISTICS:

Overall Lengih
 Maximum Diameter
 Base
 Basing
 TYPICAL OPERATION:

sGANS Botry.

Tens of thousands of DuMont oscillographs helped win the war. An even greater number will help win the peace. And now. in keeping with the specific needs and the pocketbooks of hams and experimenters, DuMont engineers recommend these two popular instruments in addition to the Type 208B which is too well known to require description or praise here:

In the radio field a DuMont oscillograph is "must" for seeing performance al any point in the circuit. See the output voltage: see resonance and frequency response curves; see measurements of hum; see
oscillation and regeneration in I.F. Stages ${ }_{i}$ see distortion and trace it to its origin: see proper neutralization in your bransmitter; see modulation.

OPERATING LIMITS...

Deflection sensitivity (with maximum amplification):

Vertical

0.80 r.m.s. volts $/$ inch 0.65 r.m.s. volts/inch

Horizontal

Deflection sensitivity direct connection to cathoderay tube plates....... 30 r.m.s. volts/inch
Input Characteristics:
Vertical amplifier 1 megohm. Horizontal amplifier 0.8 megohm.
Voltage gain, vertical amplifier 43 times; horizontal amplifier 55 times.
Frequency range of amplifiers.
5 to 100,000 "sinusosidal" c.p.s. Frequency range of timing axis 15 to 30,000 "sawtooth" c.D.s.
Maximum allowable a.c. voltage input to amplifiers.. 250 ₹.
Maximum allowable d.c. voltage input to amplifiers... 400 v .
Type 164 E operates on either 115 or 230 measuring $11^{5 / g^{\prime \prime}} \mathrm{h} . \times 73^{\prime \prime} 8^{\prime \prime} \mathrm{w}^{*} \times 14^{\prime \prime} \mathrm{d}$. volts a.c., 40.60 cycles. Furnished in melal cabinet equipped with carrying handle,

Weight: 20 lbs.

Utilizes a Type 3GP1 tube operating with accelerating potential of 1,000 volts. Bright, well-defined trace. Four free deflection plates permit push-pull deflection and minimize distortion. Wide-band amplitiers
make this instrument highly desirable for experimentation and service work in FM and television. Z-axns terminal on front panel for intensity modulation ot beam.

AMPLIFIER FREQUENCY RESPONSE:

Y-axis sine wave frequency response uniform within 3 db . from 20 cycles to 2 megacycles. X -axis
uniform within 3 db . from 10 cycles to 100 KC .

DEFLECTION FACTOR WITH AMPLIFIER:

Y-axis terminals
0.1 volt r.m.s. ineh deflection

X-axis terminals
0.7 volt r.m.s./inch deflection

25 volis r.m.s./inch deflection
28 volts r.m.s. inch deflection
Intensity modulation 15 volts peak is sufficient to bring beam
from just-extinguished condition 10 normal brilliance.

LINEAR TIME-BASE:

Frequency range
15 to 30,000 c.p.s.
Left to right
Direction of sweep
Synchronizing signal sources
Synchronizing Polarity
Type 224 A operates on 115 volts a.c., $50-60$
cycles. Metal cabinet with removable pro-

Internal (Y-signal): Line Frequency, external.

Either polarity of synchronizing signal. tective cover. Carry.ng handle $14!\mathrm{s}^{\prime \prime} \mathrm{h} . \mathrm{x}^{\prime}$ $83 / 8^{\circ}$ W. x $151 / 8^{\prime \prime}$ d. Weight: 49 lbs .

R. C. (Dick) Holl
W 5EIB

R. C. \& L. F. HALL
 "THE HAM SHACK"

"The Ham Shack" is a busy place these days. Ham gear from hundreds of manufacturers is pouring into our Receiving Department and

L. F. (Lillion) Hall W5EUG

A FEW OF THE MANUFACTURERS WHOSE PRODUCTS WE DISTRIBUTE Aerovox Corporation
American Phenolic Corp
American Radio Hardware Co.
American Radio Relay League, Inc.
Alliance Manufacturing Co.
The Aftatic Corporation
Atlan Sound Corp.
Barker \& Williamson
Belden Mf
Belden M/g. Co.
Bliley Electric Co.
Browning Laborator
Bruah Development Co, Ine.
Bud Radio Company
The Allen D. Cardwell Mfr. Co.
Centralab
Cinaudagraph Speakers, Inc.
Drake Electric Worka
Dumont Laboratoriea, Inc., Allen B.
Eastern Mike-Stand Co.
Echophone Radio Co.
Echophone Radio Co.
Eifel-McCullough, Inc. (Eimac)
Electronic Laboraforie
Electronic Laboratories
General Cement Mig Co
General Cement Mig. Co
General Induatries.
Gordon Specialties Co.
Gothard Mff. Co.
The Hallicrafter: C
The Hammarlund Mirg. Co., Inc
Hytron Radio \& Electronics Corporation
Heints and Kaufman (Gammatron)
The inatructorraph Co.
nauline Corp.
Jonnen Radio MIX. Co.
Johnaon Co., E. ${ }^{\text {J }}$
Jones, Howard B.
Kaar Engineering Co
Leach Relay Co
Lifrelluze Laboratorier
Me: Logan Co.
McGraw-Hill Book Co., Inc
John Meck Induatries, Inc.
Meizsner Mfg. Co.
James Millen Mfg. Co. Inc.
Mueller Electric Co.
National Company
Ohmite Mfz. Co.
Peerlez: Electrical Producta Co.
Preneer Genemotor Corp.
Precinion Apparatu: Co.
Premax Product.
Radio MIg. Engineers, Inc. (RME)
Radio Corporation of America
Sangamo Ehectric Co.
McMurdo Silver Co.
Standard Traniform
Taylor Tuben former Corp.
Thordarson Electri.
Trimm, Inc.
Triplett Electrical Inatrument Co.
The Turner Company
Harry A. Unkar, Inc.
Unifed Electronics Co.
University Laboraforie
University Laboratories
Ufah Radio Products Co.
Vibraloc Mfg. Co.
John Wiley \& Sons, Inc.
onto our shelves (when it gets by the Shipping Department) . . . We have continued to serve our many friends through the War Years and the fact that the Harris County War Emergency Radio Service stations generally had modern tubes and components is an indication of our success.

"Across the Operating Table"

was the name of our Amateur Bulletin, as many of you will recall. There will soon be a new "Across the Operating Table" and you can sit across the table from us for our informal little "ragchews" by dropping us your name and address-a postal will do.

Equipment with Our Name on It Is Worth More

but costs just the same as anywhere else. For example, if you buy a communications receiver from us, you not only get the same receiver you would get anywhere else but you also have the benefit of our service, which includes:
(1) We take care of the factory guarantee.
(2) We give you a "Guaranteed Trade-In Allowance" on equipment purchased from us.
(3) Easy terms are available if desired.
(4) Liberal trade-in allowance on used equipment.
(5) Technical advice to assist you in your selection.
(6) A large stock for your personal inspection if you can drop in to see us.

OUR PARTS SERVICE includes:

(1) Technical advice on the selection of components, which gives you the most for your money. We are constantly experimenting with new products for your benefit.
(2) Easy payment plan on large purchases of parts.

GET ON OUR MAILING LIST . . . whether you live just around the corner or two thousand miles away and try our service. You will see why we are called "Specialists in Amateur Equipment \& Supplies."

"THE HAM. SHACK" (R. C. \& L. F. Hall) P. O. Box 2434, Zone 1, Dept. A - 1015-17 Caroline Street, Houston 2, Texas Telephone - Capitol 9731

Power, voltstats, voltage regutating, step-up, step-down, plate, audio, input, interstoge, output, modulation driver, Microphone, tise, mixing transformers, audio, reactors. . . .

Our expert Engineering staff and years of experience ir
developing and manufacturing transformers have establistred an unexcelled reputation for Dependability and Quating.
Insist on an "ITC TRAN'SFORMER"
Insist on an "ITC TRAN'SFORMER"

Out of the War Comes the MECO $=\cdots$ maSt

AN amazing development, used for radid antenna masts and for aircraft landing and launching gear.

Now available for commercial and amateur radio use-light, eas. ily handled, amazing strength, low in cost. Will withstand horizontal and vertical loads at the head as great as 10,000 pounds. In sizes from $3^{\prime \prime}$ to $8^{\prime \prime}$ diameter, heights from 12 to 125 feet, in 12 ft . sections.

Stays every 25 ft . of height are corkscrew anchored. Hinged base and erecting boom are part of installation, meking it easy to raise or lower at any time.

1. Non-metallic - does not interfere with radiation pattern of U.H.F. antennas.
2. Strong, light, weatherproof.
3. Easy to erect.
4. Readily removed to new site.
5. Short sections, easy to transport.
6. Good looking, clean, modern.
7. Low-cost.
8. Minimum maintenance.

Secret lies in the sectional tubular construction, of alternate layers of wood veneer and fabric, conyolutely wound and bonded with waterproof phenol-resin. Weatherproof, strong, light, resistant to corrosion, mold, rot or insects.

12 ft . sections easy to handle, positive coupling.
SEND FOR DATA
write
MARYLAND ENGINEERING CO.
PIKESVILIE

174

For Amateur Radio Operators, Radiotelephone and Telegraph Operators

COVERS

Broadcasting, Marine, Aeronautical, or any field of Radio Transmission ond Receplion

If you aie an amateur and want to win your "ticket" this is the book for you. It will help you pass your radio license examinations.
For you who want to win your mark in the radio profession, this edition covers every type of rodio activity whether it is marine, aeronautical, police ar amateur broudcasting. Pre. sented in easy-to-follow question-andanswer lorm.

Second Edition, 1944
320 Pages
$\$ 3.00$

CONTENTS

I. Basic Radio Laws
II. Basic Theory and Practice
III. Radiotelephone
IV. Advanced Radiotelephone
V. Radiotelegraph
VI. Advanced Radiotelegraphy

DREW'S HOW TO PASS RADIO LICENSE EXAMINATIONS

has helped thousands prepare to get their "ficket"!

Read whot these important publications say about

 the revised Second Edition of this "bible" for radio operotors, rodiotelephone ond telegraph men.RADIO NEWS: "In this new and revised second ealition, Mr. Drew hat presented much valuable information for the beotelt of those preparing tos take the
 traneons and nonessential information and has presented a chear-cus phetare of the Iype of duestion which is asked of exathineres.
ELECTRONICS: *"The new erlition, like its prenteressor, prowides a valuable amal eflicient means of refreshing theoretical knowledge in preparation for the xaminations."
PROCEEDINGS OF THE I. R. E.t "As a whole, this work apmears to be suproior (o) grevious publications of this type. Votathy, one fimbs greater accuracy in the chonce and expression of formmas. and more care in surcifving the case to which the formula is apglicable and the umiss in wheh the tactors are expressed where
 momeliater following the diswers with view to enthlinp the reater to under stand the manner in which fundiancontal principles were applied in arriving at the aforestambanswer. This will aill the reader in hatulling suecesslillve examinaform questions based on the same penerial principles font worded in a seme-what differerth mamerer.
RADIO CRAFT: "The new edition of this standard book has been awaited by commumications stertents for sume seasons. It fulfills all thair expectations. Thuresuhly revisedtomeet the new (since the first edition) type al government rammations, it retains the same clear and to-the-point style that distinguished the okder isanes.
BULLETIN OP THE WESTERN SOCIETY OF ENGINEERS: * Anyome ćaltemplating laking a radio license examination will lind material in ihis book ins aluable for suludy or for resiew.
PROPESSIONAL ENGINEER: "\|ust the luok Ior those secking rition opremtor licente . . . contains extracts from radio laws and a mumber of very useful talbles, and it can be recommended not only to thase whos wish ter aeduire a commorcial radion aperater" license. lut to those interested in radion commame catioms as well.

10-DAY FREE TRIAL

JOHN WILEY \& SONS, Inc., 440 Fourth Avenue, New York 16, N. Y.

ON APPROVAL COUPON

JOHN WILEY \& SONS, Inc.

440 Fourth Ave., New York 16, N. Y.

 deside to keep the book. 1 will remit $\$ 3.00$ plus postage: otherwise I will roturn the berok postpaid

S. $\%$

lideler .e

City n mid Sinte
1-mplosed or

ATR Built to Military Standards

Illusirating ATR Vibroior Pack complele without oudio filter, Style A

- ATR $\begin{gathered}\text { MEAYY } \\ \text { DUTY }\end{gathered}$ VIBRATOR PACKS

For Inverting Low Voltage D. C. to High Voltage D. C.

For Operation of Portable Receivers and Transmitters, Aircraft Apparatus, Battle Announce Systems, Amplifiers, and Scientific Apparatus.

- ATR Stanaliar ano

INVERTERS

For Inverting D. C. to A. C.

Specially Designed for Operating Electrical Equipment including A. C. Radios, Battle Announce Systems, Television Sets, Amplifiers, Intercall Systems, and Radio Test Equipment from D. C. Voltages in Vehicles, Ships, Trains, Planes, and in D. C. Districts.

Write for Catalog No. 244 illustrating the ATR Complete Line of Vibrators, Vibrator-Operated and Rectifier Power Supplies

AMERICAN TELEVISION \& RADIO CO. Manufacturers of Quality Products Since 1931 ST. PAUL, MINNESOTA, U. S. A.

A MESSAG

hallicrafters

FOR AMATEURS

FIRST, LAST AND ALWAYS

hallicrafters radio

ROM BILL HALLIGAN

With this edition of the American Relay League Handbook, amateur radio :inds itself on the threshold of an entire new era. At this time Hallicrafters wants to reaffirm its original position of being pramarily devoted to the development of radio equipment specifically designsi for amateus use. "Amateurs, first, last and always...." is a brie? but powerful summary of postwar production plans at Hallicrafters.

The amateurs have always been far out in front in the swift technological progress that has marked the growth of radio science in the 20th century. In the exciting years ahead very high and ultra high frequency communications, frequency modulation, facsimile reproduction and television will be among the many new phases of the art to be explored and utilized by amateur operators. Hallicrafters engineers backed by years of pioneering experience in high frequency work are now turning their attention to these new fields.

Throughout all of this forward development the company will keep pace with the character and spirit of amteur growth. Dyed in the wool amateurs high up in the management of the company, amateurs on the engineering staff and thousands of amateur friends of the company reporting back to us about how Hallicrafters equipment served in the war all combine to give us a "board of directors" that keeps us close to the amateur ideal.

In the following section are details of a long and distinguished !ine of Hallicrafters receivers and transmitters. High spots include the famous Super Skyrider - the $S X-28 A$, considered by many amateurs the greatest communications receiver ever designed; the Super Defiant and the Sky Champion, highly versetile, high frequency receivers representing top values in the medium and lower priced brackets. Here are sets like the S-36A, five years ahead of time in anticipation of the extension of FM up into the higher frequencies. Here is the renowned HT-4E transmitter, the heart of the famous SCR-299, back from the wars ready to resume its position in your ideal ham shack. And here are many more models, designed by engineers who know and can answer the insistent demands of the amateurs for better and better radia.

550 kc. to 42 Mc. Continuous in Six Bands

FEATURES

1. Frequency range 550 kc . to 42 Mc . contiruous in 6 bands.
2. Main tuning dial accurately calibrated in megacycles.
3. Separate calibrated bandspread dial.
4. Two stages of radio frequency amplification.
5. Beat frequency oscillator, pitch variable from front panel.
6. Combination a.v.c.-b.f.o. switch.
7. Send-receive switch.
8. Lamb lype 3 -stage adjustable noise silencer.
9. Separate r.f. and a.f. gain controls.
10. Provision for batlery or external power supply operation.
11. Push-pull 8-watt output stage.

12 Variable tone control, band-pass audio filter and bass boost switch.
13. Provision for break-in operation
14. 500 or 5000 ohm output.
15. Six position i.f. and crystal filter selectivity switch.
16. Crystal phasing control.
17. " S " meter caiibrated in S units and $d b$. above S 9 .
18. Oscillator compensated for frequency driff.
19. Antenna compensotor mounted on panel.
20. Separate a.v.c. amplifier.
21. "Unit-style' r.f. sections for easy servicing.
22. 'Micro-set"' type coils in r.f. section perme• ability tuned.
23. Dial lock on main iuning dial.
24. Inertia flywheel luning and pre-loaded gear drive on main and bandspread dials.
25. Phonograph inpul jack.

THE INSIDE STORY OF THE FAMOUS

The frequency range of the SX-28A extends from 550 kc . to 42 Mc . and is covered in six bands with suitable overlap at the band ends. In addition to the main tuning dial which is accurately calibrated in megacycles, there is a calibrated bandspread dial covering the frequency ranges of 3.5 to $4 \mathrm{Mc} ., 7$ to 7.3 Mc ., 14 to 14.4 Mc. and 28 to 30 Mc . Both dials are provided with flywheel inertia tuning.

One stage of r.f. amplification is used on frequencies below 3 Mc . and two stages on the higher frequency bands. These preselector stages using the new high-Q "micro-set" inductances assure a good signal-to-noise ratio and a high degree of selectivity. The Model SX-28A has an image ratio of 40 to 1 at $30 \mathrm{Mc} .-350$ to 1 at 14 Mc ., and a proportionately increasing ratio as the frequency is decreased.

The two stage i.f. amplifier is designed to retain its adjustment under conditions of extreme change in temperature and humidity. The i.f. transformers are permeability tuned and are provided with small extra windings which can be connected to increase the coupling between circuits. These windings are used in conjunction with the crystal filter to furnish six different degrees of selectivity. Control is by means of a sixposition panel switch. Any desired i.f. selectivity from wide-band high fidelity to razor-sharp c.w. reception is instantly
available. In the medium and broad crystal positions the i.f. circuits function as a bandpass filter rather than as the more common broadly peaked resonant circuit and provide fully intelligible reception of radio telephone signals while holding interference and atmospherics to a minimum.

The SX-28A incorporates a double a.v.c. system. A.v.c. voltage for the r.f. and mixer tubes is taken from the broadly tuned carrier after it has passed through only three tuned i.f. circuits. A.v.c. for the i.f. stages, however, is taken from the carrier after it has passed through six tuned i.f. circuits. This arrangement provides a reduction in between-station noise and a more sharply defined aural tuning action. The " S " or signal intensity meter operates in conjunction with the a.v.c. and is calibrated in S units of approximately six db . each and in decibels above S9. A three position panel switch is provided for the control of a.v.c., " S " meter, and b.f.o. circuits.

Other features which contribute to the fine performance of the SX-28A are a Lamb three-stage noise silencer with panel adiustment; push-pull 6V6GT output stage with band-pass filter, bass boost, and tone control; antenna compensator; separate a.f. and r.f. volume controls; and panel stand-by switch. All controls and switches are conveniently arranged on the panel.

MODEL PM-23 SPEAKER

This Hallieraffers-Jensen speaker is designed for use with the lorger Hollterafters recoivers. Of the permanont magnet typo the Model PM-23 has a teninch cono and is mounted with its coupling tronsformer in o steel cabinot finished in gray wrinkle facquor to match the receiver. Speaker opening is concealed by attractive metal grill. Transformer matches 5000 ohm output of receiver. WEAGHT: posked for shlpment, 22 pounds.

CONTROLS:
TONE and AC. ON/OFF; B.F.O. (pitch control); BASS IN/OUT; A.F. GAIN; MAIN TUNING; R.F. GAIN; BAND SWITCH; ANT. TRIMMER; BANDSPREAD TUN ING; A.V.C. ond B.F.O. ON/OFF; SELECTIVITY; SEND/RECEIVE; CRYSTAI PHASING; A.N.L.; "S" meter adiustment on rear of chassis.

EXTERNAL CONNECTIONS:
Antenna-ground terminals arranged for single wire or doublet; speaker terminals for either 500 or 5000 ohm output; line cord ana plug; line fuse; special socket, normolly shorted Gy octal plug, proviaes for battery or external power supply operation and stand-by connection to transmitter; phanograph in.
put jack. All connections are mounted on rear of chassis except headphone jack on panel.

PHYSICAE CHARACTERISTICS:
All components of the Super-Skyrider, Model SX-28A are mounted on a rugged steel chassis. Copper plated steel panel has etched black leatherette finish. Panel and chassis are joined by heavy side members. Cabinet is finished in gray wrinkle lacquer with chromium trim. Openings provided for cooling and ventilation.

DIMENSIONS:
Cabinet is $20 \frac{1}{2}$ " long by $10^{\prime \prime}$ high by $143 / 4$ " deep. Panel is $19^{\prime \prime}$ long by $83 / 4^{\prime \prime}$ high. Clearance needed for relay rack mounting, $173 / 8$ "long by $\varepsilon 3 / 4{ }^{\prime \prime}$ high by $143 / 4^{\prime \prime}$ deep.

WEIGHT:
Model SX-28A-75 pounds.
Packed for shipment-87 pounds.
fiften tubes:
1-6AB7 1st r.f. Amplifier
1-6SK7 2nd r.f. Amplifier
1-6SA7 Mixer
1-6SA7 H.f. Oscillator
1-6L7 1st i.f. Amplifier Noise Limiter
1-6SK7 2nd i.f. Amplifier
1-6B8 A.v.c. Amplifier
1-688 2nd Detector ond S Meter Tube
1-6AB7 Noise Amplifier
1-6H6 Noise Rectifier
1-615 Beat Oscillator
1-6SC7 Ist Audio Amplifier
2-oV6GT Push-Pull Output Amplifiers
1-5Z3 Rectifier

Every worthwhile feature at a moderate price...

The SUPER DEFIANT has long been one of Hallicrafters most popular mociels. Incorporating every important feature for superb communications receiver performance, the Model SX- 25 has achieved true economy without compromising quality.

The outbreak of war with its sudden demand for military communications receivers found Hallicrafters already in mass production of the Model SX-25 for amateur use. Production was immediately stepped up ard tremendous quantities of these receivers were put into military communications work. Many miror modifications and improvements in quality of components to reet rigid military requirements were made but the basic design remains unchanged. The rugged constructon, fine workmanship, and superb performance which proved so valuable in military service will continue to feature the Hallicrafters Model SX-25.

FEATURES

1. Frequency range 545 kc . ta 42 Mc ., cantinuous in 4 bands.
2. Main tuning dial accurately calibrated in megacycles.
3. Separate calibrated bandspread dial.
4. Two stages of radio frequency amplificatian.
S. Beat frequency oscillator, pitch variable from front panel.
5. A.v.c. switch.
6. B.f.o. switch.
7. Send-receive switch.
8. Automatic noise limiter.
9. Separate r.f. and a.f. gain controls.
10. Provision for battery or external power supply operation.
11. Push-pull 8 -watt output stage.
12. High-low tone switch.
13. Provision for break-in operation.
14. 500 ar 5000 ohm output.
15. Six positian i.f. and crystal selectivity switch.
16. Crystal phasing control.
17. "S" meter calibrated in S units and db. abave 59.
18. Oscillator compensated far frequency drift.
19. Inertia flywheel tuning on bandspread dial.

CONTROLS:

R.F. GAIN; BAND SWITCH; SELECTIVITY; MAIN TUNING; TONE HIGH-LOW; X'TAL PHASING; BAND. SPREAD; A.N.L. ON/OFF; A.F. GAIN; PITCH CONTROL; B.F.O. ON/OFF; SEND-REC.; "S" meter adjustment on rear of chassis.

EXTERNAL CONNECTIONS:

Antenna terminals arranged far daublet or single wire antenna. Speaker output for either 500 or 5000 ahms. Standby terminals far external control af receiver in canjunctian with transmitter. Line card and plug. Special socket, narmally shorted by octal plug, for use of external pawer supply or batteries. All connections are mounted on rear af chassis except headphone jack on panel.

PHYSICAL CHARACTERISTICS:

The SUPER-DEFIANT, Model 5×-25 is maunted in a steel cabinet finished in gray wrinkle lacquer. Ornamental metal grills in either end provide ventilation. Chassis is cadmium plated steel.

DIMENSIONS:

Receiver cabinet only-191/2" long by $91 / 2^{\prime \prime}$ high by $111 /{ }^{\prime \prime}$ deep.

WEIGHT:

Madel $5 \times-25-38$ pounds.
Packed for shipment-46 paunds.

TWELVE TUBES:

1-6SK7	1st r.f. Amplifier
1-6SK7	2nd r.f. Amplifier
1-6K8	1st Detectar-Mixer. h.f. Oscillator
1-6SK7	1st i.f. Amplifier
1-6SK7	2nd i.f. Amplifier
1-6SQ7	2nd Detector, a.v.c. 1st Audio Amplifier
1-6SQ7	Phase Inverter
2-6F6	Push-pull Audia Output Stage
1-6H6	Autamatic Naise Limiter
$1-6 J 5 G T$	Beat Frequency Oscillator
$1-80$	Rectifier

Compact - Reliable

TOP PERFORMANCE IN
 THE LOW PRICE FIELD

The Hallicrafters SKY CHAMPION, Model S-20R is probably the greatest value ever offered in communications receivers. Its simplicity of design, excellent workmanship, and sturdy construction insure long, satisfactory service and make traditional Hallicrafters performance available to the purchaser of an economical receiver.

In common with its larger brothers, the Model S-20R has a distinguished war record, and like them, it has been strengthened and improved to cope with military requirements. Large quantities have been produced for the armed forces and have been used for training and communications purposes where performance was important; but the use of a complicated receiver was not justified. It is a compact, reliable receiver offering top performance in the low price field.

FEATURES

1. Frequency range 550 kc . to 43 Mc ., continuous in four bands.
2. Main luning dial accurately calibrated in megacycles.
3. Separate electrical bandspread dial.
4. Beat frequency oscillator, pitch variable from fron's panel.
5. A.v.e. switch.
6. B.f.o. switch.
7. Send-receive switch.
8. Automatic noise limiter.
9. Separate r.f. and a.f. gain controls.
10. Provision for battery or external power supply operotion.
11. $21 / 2$-walt output stage.
12. Three-position tone control.
13. Provision for break-in operation.
14. Provision for external S meter.
15. Inertia flywheel tuning on bandspread dial.
16. Internal rubber shock mounted $5^{\prime \prime}$ dynamic speaker.

CONTROLS:

R.F. GAIN; BAND SWITCH; AUDIO GAIN; MAIN TUNING; A.V.C. ON/OFF; B.F.O. ON/OFF; BANDSPREAD TUNING; A.N.L. ON/OFF; TONE A.C. OFF/ HIGH/MED./LOW; PITCH CONTROL; SEND-REC.

EXTERNAL CONNECTIONS:

Antenna terminals for doublet or single wire antenna. Line cord and plug. Special socket for operation from external power supply. All connections except headphone jack ore mounted on rear of chassis.

PHYSICAL CHARACTERISTICS:

Components of the Model S-20R are mounted on a strong cadmium-plated steel chassis. Cabinet is of steel finished in machine lool gray enamel with chrome trim. Internal five-inch dynamic speaker is held in rubber stock mounts.

DIMENSIONS:

Cabinet only- $1812^{\prime \prime}$ long by $81 / 2^{\prime \prime}$ high by $93 /^{\prime \prime}$ deep.

WEIGHT:

Packed for shipment-32 pounds.
NINE TUBES:
1-6SK7 R.f. Amplifier
1-6K8 Ist Defector-Mixer, h.f. Oscillator
1-6SK7 ist i.f. Amplifier
1-6SK7 2nd i.f. Amplifier
1-6SQ7 2 nd Defector, a.v.c. and Ist Audio Amplifier
1-6F6G 2nd Audio Amplifier
1-6H6 Automatic Noise Limiter
1-615GT Beat Frequency Oscillator
1-80 Rectifier

AN EFFICIENT MARINE RECEIVER AT A MODERATE PRICE

The Hallicrafters Model S-22R is specifically designed for marine service covering frequencies from 110 kc . to 18 Mc . Maximum convenience is assured through the use of a directly calibrated main tuning dial and the division of bands so that calling and working frequencies lie in the same band. An efficienr mechanical bandspread with separate dial provides for easy logging. Excellent image rejection on the higher frequencies is achieved by the use of a 1600 kc . i.f. amplifier.

Special precautions have been taken to protect the Model S-22R against the hazards of salt sea atmosphere. Micar trimmer condensers are treated to maintain their adjustment, transformers are impregnated, and the chassis is nickel plated.

Many boats are provided with 110 volts d.c. and the SkyRider Marine is designed for a.c./d.c. operation. This feature makes the Model S-22R valuable for use ashore where a high performance receiver to operate from ad.c. line is desired.

FEATURES
i. Frequency range 110 kc . to 18 Mc . in faur bands.
2. Main tuning dial occurately calibrated in megocycles.
3. Mechanical bandspread with separate dial.
4. Beat frequency ascillator, pitch variable from frant panel.
5. A.v.c. switch.
6. B.f.a. switch.
7. Send-receive switch.
8. Separate r.f. and j.f. gain cantrals.
9. Variable tane cantral.
10. Inertio flywheel thning.
11. A.c./d.c. operation.
12. 1600 kc . iron care i.f. for maximum image rejection.
13. Internal rubber shack mounted 5" PM speaker.

CONTROLS:
R.F. GAIN; BAND SWITCH; AUDIO GAIN; A.V.C. ON/OFF; MAIN TUINING; B.F.O. ON/OFF; TONE CONTROL; PITCH CIONTROI; SEND-REC.

EXTERNAL CONNECTIONS:
Antenno terminals arranged far doublet or single wire. Line card and plug. Phone jock on ponel.

PHYSICAL CHARACTERISTICS:
The Madel $S-22 R$ is mounted in o steel cabinet finished in black wriakle lacquer with chrome trim. Steel chassis is nickel-plated. Five-inch PM dynamic speaker is built in.

DIMENSIONS:
Cabinet anly-181/2" lang by $81 / 2^{\prime \prime}$ high by $93 / 8^{\prime \prime}$ deep.

WEIGHT:
Pocked for shipmenr-31 pounds.
EIGHT TUBES:
1-6SK7 R.f. Amplifier
1-6K8 Ist Detecior-Mixer, h.f. Oscillatar
$1-6 S K 7$ ist i.f. Amplifier
1-6SK7 2nd i.f. Amplifier
1-6SQ7 2nd Detector, o.v.c., 1st o.f. Amplifier
1-2516 2nd o.f. Amplifier
1-6J5 Beat Frequency Oscillator
1-25Z5 Rectifier

The new Hallicrafters a.m./f.m. receiver, Model S-36A, is designed for maximum performance on the very high frequences. Using acorn tubes in the r.f. amplifier, first detector and high frequency oscillator circuits, the S-36A provides continuous frequency coverage from 27.8 to 143 megacycles. Ether a limiter and discrimirator for f.m. or a thirrd i.f. amplifier, diode aetector and noise limiter for a.m. may be switched in:o the circuit from the front
panel. \& beat frequency oscillator is provided for the reception of c.w. telegraph signals. The S-36A incorporates a new 3 -wall audio system with a response surve which is essentially flat from 40 to 15,000 cycles. All components are of the highesf quality and the entire receiver is designed for servise in any cimate. Combining f.m., a.m., and c.w. telegraph reception in one superb unit, the S-3.6A provides the utmost in very-high-frequency reception.

VHF VERSATILITY

Outstanding for Sensitivity - Stability - High Fidelity

FEATURES

1. Frequency range 27.8 Mc . to 143 Mc. continuous in three bands.
2. Main tuning dial accurately calibrated in megacycles.
3. Mechanical bandspread dial.
4. R.f. stage with acorn tube.
5. Beat frequency oscillator, pitch variable from panel.
6. A.v.c. switch.
7. B.f.o. switch.
B. Send-receive switch.
8. Automatic noise limiter.
9. Seporate r.f. and a.f. gain controls.
10. Push-pull high fideiity output stage.
11. 4-position tone control with bass boost.
12. Provision for break-in operation.
13. 500 or 5000 ohm output plus speciol balanced 600 ohm line.
14. Shorp-broad selectivity switch.
15. Dual purpose S and tuning meter.
16. Oscillotor compensoted for frequency drift.
17. An'enna compensator mounted on panel.
18. R.f. assembly eosily removed for servicing.
19. Inertio flywheel tuning.
20. Hermefically seoled transformers and reactors.
21. All poper condensers oil impregnated and her. metically seqled.
22. Mcisture proofed wiring.
23. F.m./o.m. switch.
24. Switch on chossis permils operation on 115 or 230 volts a.c.
25. Line fuse on ponel.
26. Improved gear drive in dust proof housing.
27. " 5 " meter odjustable from front panel.

CONTROLS:

R.F. GAIN; A.V.C. ON/OFF; BAND SWITCH; AN. TENNA; SEND.RECEIVE; SELECTIVITY; TONE; A.N.L. ON OFF; TUNING; PITCH CONTROL; METER AD. JUSTMENT; B.F.O. ON/OFF; A.M./F.M.; A.F. GAIN.

EXTERNAL CONNECTIONS:

Input ierminols for single wire and doublet ontennos. 500 ohm , balanced 600 ohm , and 5000 ohm terminols for speaker. Line cord and plug. Octal socket on reor of chossis permits operation from external powe, source such os botteries ond makes provision for remote stand-by switch. This socket is normally shorted by octol plug. Line fuse is mounted on front panel.

PHYSICAL CHARACTERISTICS:

All components of the S-36A are mounted on a heavy steel chassis which is provided with special end plates for ease af maintenance. High frequency r.f. section is built in a separate chassis which may easily be removed for servicing. Cabinet is of steel finished in black wrinkle lacquer. Military type shock mounting is available if desired.

DIMENSIONS:

Model S-36A-191/4" wide by $91 / 2^{\prime \prime}$ high by $15 \frac{1}{4}$ " deep.
Model S.36A with military type shock mounting$21 \frac{1}{2}$ " wide by $11 \frac{1}{4}$ " high by $153 / 4$ " deep.

WEIGHT:

Packed for shipment-95 pounds.

FIFTEEN TUBES:

1-956
(Acorn) Rodio Frequency Amplifier
1-954 (Acorn) Converter-Mixer
$1-6 A C 7$ or 1852 First i.f. Amplifier
1-6AB7 or 1853 Second i.f. Amplifier
1-6SK7 Third i.f. Amplifier
1-6H6 A.m. Detector ond Automatic Noise Limiter
I-6AC7 or 1852 F.m. Limiter
1-6H6 F.m. Discriminotor
1-6SL7GT Audio Amplifier
I-VRI50 Voltoge Regulotor
2-6V6GT Power Audio Amplifier
1-5U4G Rectifier
1-6J5 Beat Frequency Oscillator
1-955 (Acorn) High Frequency Oscillotor

The Highest Frequency Range of Any General Coverage Commercial Type Receiver

The new Model S-37 has been designed to fill the need for very-high-frequency receiving equipment with the performance characteristics of Hallicrafters' top communications receivers and a frequency range extending above 200 Mc . Basically similar to the Model S-36A this new receiver incorporates the !atest developments in

v.h.f. circuit design and provides sensitivity and selectivity in the range from 130 to 210 Mc . that is in every way comparable to the performance of fine communications receivers on the standard irequencies.

A new pre-loaded gear drive with separate bandspread dial provides ease of tuning ard the entire range of the receiver is covered without band switching. Two r.f. stages are used and, in conjunction with an intermediate frequency of 18 Mc ., assure an amazingly high ratio of image rejection. Hermetically sealed transformers and capacitors make the Model S-37 suitable ior use in any climate.

This new veceiver again emphasizes Hallicrafters' pie-eminence in the commercial production of v.h.f. equipment.

FEATURES

1. Frequency range continuous from 130 Mc . to 210 Mc.
2. Moin tuning dial occurately calibrated in megasycles.
3. Mechanicol bondspread diol.
4. Two r.f. stages with ocorn fubes.
5. A.v.c. switch.
6. Send-receive switch.
7. Automotic noise limiter.
8. Separote r.f. and a.f. gain controls.
9. Varioble tone control.
10. Provision for breok-in operation.
11. 500 or 5000 ohm eutput.
12. Dual purpose S and funing meter.
13. Oscillator compensated for Irequency drift.
14. Antenna compensator mounted on panel.
15. R.f. assembly easily removed for servicing.
16. Inertia flywheel tuning.
17. Hermetically sealed transformers and reactors.
18. All paper condensors oil impregnated and hermetically seoled.
19. Moisture-proof wiring.
20. F.m./a.m. switch.
21. Provision for operation on 115 or 230 volts a.c.
22. line fuse an reor of chossis.
23. Improved gear drive in dust proof housing.
24. "S" meter odjustoble from front of panel.
25. 18 Mc. i.f. for maximum image rejection.

CONTROLS:

R.F. GAIN; POWER ON/OFF; ANTENNA; A.V.C. ON/OFF; A.F. GAIN; A.N.L. ON/OFF; TUNING; SMETER ADJ; AM/FM; SEND/REC; TONE.

EXTERNAL CONNECTIONS:

Input terminals for sinqle wire and doublet antennas. 500 ohm , and 5000 ohm terminals for speaker. Line cord and plug. Octal socket on rear of chassis permits operotion from external power source such as batferies and mokes arovision for remote stond-by switch. This socket is rarmally thorted by octol plug. line fuse is mounted on rear of chossis.

PHYSICAL CHARACIERISTICS:

All components of the $\mathrm{S}-37$ are mounted on a heavy steel chossis which is provided with speciol end plates for ease of meintenonce. High frequency r.f. section is built in a seporate chossis which may easily be removed for servic ng. Cobinet is of steel finished in block wrinkle lacquer. Militory type shock mounting is available if desired.

DIMENSIONS:

Model S-37-191/4" wide by $91 / 2^{" h}$ high by $14-13 / 16^{"}$ deep.
WEIGHT: Packed for shipment- 95 pounds.

FOURTEEN TUBES:

2-954 (Acorn) Radio Frequency Amplifiers
1-954 (Acorn) Converter-Mixer
1-6AC7 or 1852 First i.f. Amplifier
1-6AB7 or 1853 Second i.f. Amplifier
1-6SK7 Third i.f. Amplifier
1-6H6 A.M. Detertor and Automotic Noise Limiter
1-6AC7 or 1852 F.M. Limiter
1-6H6 F.M. Discr:minator
1-6SC7 Audio Amplifier
1-YR150 Voltage Regulotor
1-6V6GT Power Aucio Amplifier
1-5U4G Rectifier
1-955 (Acorn) High Frequency Oscillator

cont

PORTABLE cOMMUNHCATIONS

RECEIVER
 MADE

FEATURES

1. Operates fram its awn self contained batteries or 115 volts a.c. ar d.c.
2. Frequency range 540 kc . to 30.5 Mc . continuaus in four bands.
3. Main tuning dial accurately salibrated in mega. sycles.
4. Separate bandspread dial.
5. R.f. stage used an all bands.
6. Beat frequency ascillatar.
7. A.v.c. switch.
8. B.f.o. switch.
9. Send-receive switch.
10. Automatic noise limiter.
11. Separate r.f. and a.f. gain cantrals.
12. Collapsible built-in antenna.
13. Moisture-proof wiring
14. Components impregnated for use in tropical climates.
15. Neon an/off indicator to prevent waste of batteries.
16. Permeability funed r.f. and i.f. stages.
17. Plug-in type filter capacitors.
18. Completely rainproofed for outdoor use.

CONTROLS:

MAIN TUNING; BANDSPREAD TUNING; A.F. GAIN; R.F. GAIN; BAND SWITCH; POWER SWITCH; A.N.L. ON/OFF; A.V.C. ON/OFF; STANDBY ON/OFF: B.FO. ON/OFF.

EXTERNAL CONNECTIONS:

Socket and plug are provided to connect doublet ar single wire antenna. A.c./d.c. power cord is carried in a clased compartment at rear of set. Phone jack permits use of headphones and shuts off laud speak. er automatically.

PHYSICAL CHARACTERISTICS:

The 5.39 is housed in a strong steel cabinet finished in olive drab wrinkle lacquer. All components are mounted on a pressed steel chassis and the entire receiver is designed for hard service. Particular care
has been taken to make all components easily accessible for servicing.

DIMENSIONS:
Cabinet alone-7 $1 / 4^{\prime \prime}$ high by $83 / 4^{\prime \prime}$ wide by $131 / 2^{\prime \prime}$ deep.
Over all: $8 \frac{1}{2}$ " high by $83 / 4{ }^{\prime \prime}$ wide by $15 \frac{1}{4}$ " deep.

WEIGHT:

Model S 39-28 pounds, with batteries.

NINE TUBES:

1-1T4 R.f. Amplifier
1-IR5 Mixer
1-IP5GT First i.f. Amplifier
1-IPSGT Second i.f. Amplifier
1-1H5GT Second Detector, First Audia Amplifier and a.v.c.
1-1H5GT Beat Frequency Oscillator, Automatic
Noise Limiter
1-305GT Second Audio Amplifier
1-3525GT Rectifier

FM CONVERTERS

Hallicrafters single tube converter Model $\mathrm{CN}-1$ is housed in a small case suitable for mounting inside console type FM receiver as shown in inset at right. It is provided with universal mounting bracket, power take off plug and cable which is inserted under one of the final amplifier tubes of the receiver. Requires single hole in receiver panel to accommodate the four-position control switch. This switch selects any one of the three operating ranges or disconnects the converter, thus permitting normal operation of the receiver. All tuning is done with the regular receiver dial.

This model is recommended for use in areas having normally high signal strength. Uses a single type 7N7 dual triode as mixer-h.f. oscillator. Compact, inexpensive and easy to install.

hallicrofters rado

to make present FM sets work at 88-108 Mc.

Hallicrafters FM converters will prevent obsolescence of present FM receivers covering the 42.50 Mc . band when all FM broadcasting is transferred to the new band of 88.108 Mc . Operating on the principle of the double super heterodyne they are designed to feed into the antenna input circuit of any FM receiver.

To meet the requirements of widely different operating conditions three models are offered - a one-tube unit which can be installed inside the cabinet of practically any FM receiver, and three- and five-tube models, housed in attractive wood cabinets. These larger models incorporate their own power supplies and provide greater sensitivity and selectivity.

The three-fube and five-tube converters, Models CN-3 and CN-5, shown at right, are intended for use where maximum senslifilty and selectivity are required. In these models the receiver is set at 42 Mc . and tuning is done with the converter dial. Separate oscillator and mixer tubes are used. In addition the five-tube model has two tuned r.f. stages. Power supply for use on 115 volt 60 cycle current is incorporated.

MODEL CN-5

The Hallicrafters PANORAMIC RECEIVER, Model S-35 is one of the newest and most interesting applications of the cathode-ray fube. This equipment, a special adapter mounted complete with an SX-28A receiver, makes possible the visual monitoring of whole sections of the frequency spectrum up to 100 kc . in width. All stations on the air in the portion of the spectrum being monitored are visible on the screen of the $\mathrm{S}-35$. The station which is audible in the speaker or headphones always appears in the center of the oscilloscope screen. As the receiver is tuned the entire picture shifts across the screen.

The panoramic adapter unit consists of a chassis and panet of approximateiy the same dimensions as the SX-28A. Only one electrical connection is made between the adapter and the SX-28A and it does not interfere in any way with the normal operation of the receiver

NOTE: All of the following are in addition to the normal equipment of the standard Model SX-28A receiver.

CONTROLS:

R.F. GAIN: SWEEP WIDTH; A.V.C.; VERTKCAL (gair); HORIZONTAL (gain); POWER ON/OFF.

EXTERNAL CONNECTIONS:

Line cord and plug. Input lead from mixer stage of SX-28A.

PHYSICAL CHARACTERISTICS:

Panoramic adapter components are mounted on a steel chassis. Panel is of same dimensions as the SX-28A. Panel has etched black leatherette finish. Panel and chassis are joined by rugged end braces, and adapter unit and SX-28A are mounted together in sturdy metal cabinet finished in gray wrinkle lacquer.

DIMENSIONS:

Cabinet only, $201 / 2^{\prime \prime}$ wide by $18 \frac{5}{\prime^{\prime \prime}}$ high by $18^{\prime \prime}$ deep.

WEIGHT:

Model S.35-105 pounds.
Packed for shipment- 166 pounds.

FOURTEEN TUBES:

1-6SG7	455 kc. Input Amplifier
1-6SA7	lst Detector
$1-6 S K 7$	100 kc. i.f. Amplifier
1-6SQ7	2nd Detector and Yertical Amplifier
$1-6 S N 7 G T$	Sawtooth Oscillator
$1-6 S J 7$	Return Trace Blanking Tube
$1-6 A C 7$	Reactance Modulator
$1-6 J 5$	R.f. Oscillator
$1-6 S C 7$	Horizontal Amplifier
$1-2 \times 2 / 879$	High Voltage Rectifier
$1-80$	Low Voltage Rectifier
$1-V R 105$	Voltage Regulator
$1-V R 150$	Voltage Regulator
$1-5 A P 1$	Cathode-ray Tube

Home from the wars

 ready for peace
hallicrafters radio

Telephone and Telegraph Transmitter

Hallicrafters' Model HT-4E transmitter has the most distinguished war record of any piece of radio communications equipment. First produced several years before Pearl Harbor and designed to meet the requirements of the most exacting amateur oper. ators, the Model HT-4 was selected as the transmitter for the SCR-299 mobile radio station. This famous Signal Corps unit, built by Hallicrafters, has been acclaimed by high military authorities as "the best piece of radio equipment in any army."

The performance of this superb transmitter on every battle front and under the most adverse conditions has become one of the great legends of the war. Originally inrended for use as a mobile unit over ranges of a few hundred miles, the SCR-299 so far surpassed expectations that it was soon operating in long distance service over thousands of miles. Commanding officers in the field diverted many of them to use as fixed headquarters stations. SCR-299's were set up as permanent broadcast transmitters in the far corners of the earth, and, dismounted from their trucks, they have been flown into the most remote outposts,
there to establish vital communications. All of these outstanding accomplishments were made possible by the sterling performance and rugged construction of the HT-4 and its successors.

Radio operators who were acquainted with the pre-war Model HT-4 are not surprised at its wartime achievements but they will be more than pleased with the many refinements and conveniences now available in the new Model HT-4E. Like other Hallicrafters products, this transmitter has undergone a continuous series of modifications and improvements to cope with the hazards of war and most of these refinements will prove as valuable to the amateur operator as they have to the Signal Corps. Amang these wartime changes are: adoption of vacuum padding capacitors for low frequency operation, redesign of exciter tuning units to permit v.f.o. as well as crystal-controlled operation, addition of guide channels to make the insertion of tuning units easy and positive, addition of a remote control relay to switch from phone to c.w. and vice-versa, use of a side-tone oscillator in the speech amplifier to permit
monitoring of c.w. transmissions, addition of locking rings to hold tubes firmly in position, slight redesign of cabinet for greater rigidity, and many others.

Refined and strengthened, battle tested under every conceivable hardship, and built by the thousands for service on every continent, the Hallicrafters $\mathrm{HT}-4 \mathrm{E}$ is ready for the reopening of amateur radio.

With the return of peace, this highpower transmitter again takes its place in the leading amateur stations and will once more be heard around the world. The proud owner of a new Hallicrafters HT-4E can rest secure in the knowledge that he has "the best piece of radio equipment" in any amateur station.

FEATURES

1. Coils available for frequency range 1.5 Mc . to 18 Mc
2. Power output 450 watts c.w., 325 watts phone (continuous operation).
3. Oscillotor and buffer stages may be pretuned for any three operating frequencies and selected by a panel switch
4. High level class B modulation
5. Plug-in pre-tuned r.f. exciter units.
6. Transmitter may be remotely controlled and keyed from speech amplifier.
7. Crystal or v.f.o. operation.
8. All operating controls on front panel.
9. Phone-c.w. operation controlled by single switch.
10. Break-in operation provided for.
11. Metering of all exciter stages and power amplifier grid current through meter switching.
12. All components plainly identified.
13. Voltage regulated oscillator power supply.
14. Optimum LC ratio on all bands due to plug•in vacuum padding condenser.
15. Heavy duty components used throughout.
16. Compact, unit style construction for maximum ef. ficiency.
17. Filament voltage adjustment.
18. Modulator bias adjustment.
19. Filament power switch.
20. Exciter power switch.
21. Plate power switch.
22. High voltage protect switch.
23. Overload resel button.
24. Phone-c.w. switch.
25. Four power supplies.
26. Dual overload relays in high voltage supply.
27. Phone-c.w. relay.
28. Plate power relay.
29. Filament voltmeter on power amplifier.
30. Power amplifier plate current meter.
31. All fuses on front panel.
32. Dial lock on power amplifier tuning.
33. Guides for easy insertion of r.f. exciter units.
34. Tuning chart pocket on panel.
35. Overmodulation limiter on speech amplifier.
36. Modulator plate meter in speech unit for monitoring.
37. Sidetone oscillator (keying monitor).

hallicrafters rado

200

CONTROLS:

PLATE TUNING; EXCITATION METER SWITCH; BAND SWITCH; CW/PHONE; OVERLOAD RESET; FILAMENT POWER; EXCITER PLATE POWER; HIGH VOLTAGE PROTECT; PLATE POWER; FILAMENT VOLTAGE MODULATOR BIAS. On speech amplifier; GAIN; MOD. LIMITER; SIDETONE ON/OFF; TRANS. ON TRANS. OFF.

Note: Three tuning units may be plugged into exciter unit at one time. Each unit has controls for OSCILLATOR, DOUB., ond INT. AMP. These are pretuned and the desired channel is selected by the BANDSWITCH.

METERS:

P.A. PLATE; EXCITATION METER; FIL. VOLTAGE; MODULATOR PLATE METER (on speech amplifier.)

EXTERNAL CONNECTIONS:

A.c. plug and cord, antenna terminals, socket for speech amplifier input and power; key and micro. phone inputs on speech amplifier panel.

PHYSICAL CHARACTERISTICS:

All components of the HT-4E are mounted on heavy steel chossis, finished in gray lacquer. Cabinet is of
heavy gauge steel, finished in black wrinkle. Speech amplifier is in its own table model cabinet, finished in black wrinkle.

DIMENSIONS:
Model HT-4E overall: $32 \frac{5}{8}$ " wide by $39 \% 8^{\prime \prime}$ high by $213 / 3^{\prime \prime}$ deep.

WEIGHTS:

Model HT-4E: 412 pounds.
Packed for shipment. 500 pounds.

TWENTY-THREE TUBES:

1-6V6GT	Crystal or v.f.o. Oscillator
1-6L6	Intermediate Amplifier
2-807	Buffer Amplifiers
1-250TH	R.f. Power Amplifier
3-VR150	Voltage Regulators
2-5Z3	Rectifiers
$2-100 T H$	Class B Modulators
$2-2 A 3$	Class B Drivers
$2-866$	High Voltage Rectifiers
1-6SQ7	Microphone Amplifier
$1-6 J 5$	Speech Amplifier
1-6SN7GT	Phase Inverter
1-6SN7GT	Push-pull Output
1-6SR7	Modulation Limiter
1-6SN7GT	Sidetone Generator
$1-80$	Speech Amplifier Power Supply Rectifier

SPEECH AMPLIFIER MODEL HT-5E

"With the return of peace, this high-power transmifter again takes its place in the leading amateur stations and will once more be heard around the world. The proud owner of a new Hollicraflers HT-4E can rest secure in the knowledge that he has 'the best piece of radio equipment' in any amateur station."

ANTENNA TUNING UNITS

The antenna funing units shown on this page were designed for use with the Model HT-4E transmitter. With these two units the transmifter can be matched to any type or size of antenna with the maximum possible transfer of energy.

MODEL AT-2
 ANTENNA TUNING UNIT

Designed for use with a two wire transmission line, this unit employs the well known pi-section network. Has heavy duty capacitors and ceramic insulated plug-in inductances and is equipped with an antenna changeover relay to permit the use of one antenna for transmitting and receiving.

DIMENSIONS:

Model AT. 2 overall: $223 / 8^{\prime \prime}$ wide by 9 " high by $191 / 4^{\prime \prime}$ deep

WEIGHT:

Model AT-2: 33 pounds.
Packed for shipment: 39 pounds.

MODEL AT-3
 ANTENNA TUNING UNIT

This unit which was used in recent versions of the SCR-299 represents an outstanding achievement in high-frequency design. Covering all frequencies between 1.5 and 18 Mc . without the use of plug-in inductances, the Model AT- 3 will tune any single wire antenna from a fifteen foot whip to a long wire. This unit is ceramic insulated to withstand the high r.f. voltages which are generated when antennas are operated far below their fundamental frequencies and will prove invaluable to the operator who is compelled to use an antenna of inadequate size.

DIMENSIONS:

Model AT-3 overall: $101 / 4^{\prime \prime}$ wide by $14 \frac{1}{4}$ " high by $24^{\prime \prime}$ deep.

WEIGHT:

Model AT-3: 48 pounds.
Packed for shipment: 56 pounds.

TELEPHONE AND TELEGRAPH TRANSMITTER

Hallicrafters' Model HT-9 is an ideal medium power trans nitter. Designed for max mum flexibility and convenience, it is corrpletely self-contained, requiring only a microphone or key, antenna, and source of 115 -volt a.c. power to go on the air.

Five irdividual plug-in tuning units and crystals may be accommodated in the exciter section simultaneously. Band switching is easily accomplished by changing one coil in the final amplifier and selecting the desired exciter frequency by means of a panel switch. Exciter units are pre-tuned and the only additional operation needed is a slight adiustrent of the final tank tuning capacitor.

Separate meters are provided for the power amplifier plate and grid circuits and a third meter may be switched into either the exciter or mcdulator cathode circult. All contrals are conveniently arranged or the panell and a safety interlock switch is
provided for protection against accidental shock when the sabinet is open.

FEATURES

1. Frecuency range 1500 he. is 18 Mc. and amoz teur 28 Ms. Bord.
2. Power output 100 watis on c.w., 75 walls om phone.
3. Five operating frequensies moy be pre-set in the ascillotor oad buffer doubler stoges and selected ef will by meons of the bandswitch.
4. 100 percent modulotion with low distartion.
5. All operat rg contrals on front por el.
6. Mefering of sathode cor'ent of exciter or modulotor, powe' arrplifier grid, end power armplifier plote.
7. Inpul for ary medium level, high impedonce microphone.
8. Corrier hum more than 40 db . below 100% modulotion.
9 . Frequency response flot within 3 db , from 100 to 5000 cycles.
9. Antennai coil will match any resistive lood from 10 to 600 of ms.
10. Line fuses mounled on rear of chossis.
11. Convenient table mounting.
12. Rugged construstion and orersize components ossure dependoble operation.

CONTROLS:

AUDIO GAIN, (speech amplifier) OFF; CATHODE CURRENT EXC.MOD.; PLATE PWR. ON OFF; FIL. PWR. ON/OFF; C.W.PHONE: BAND SWITCH; TRANSMIT-STANDBY; PLATE TUNING.

METERS:

CATHODE CURRENT; P.A. GRID; P.A. PLATE.

EXTERNAL CONNECTIONS:

Antenna terminals. Terminal strip for key, antenna relay, and remote control of receiver. Line cord and plug. Two line fuses. Microphone input connector (on leff end of cabinet). All connections except micro. phone are located on rear of chassis.

PHYSICAL CHARACTERISTICS:

The Model HT-9 is constructed on a heavy cadmium plated steel chassis. Cabinet is of steel finished in black wrinkle lacquer and is provided with heavy rubber mounting feet. Ventilating openings in top and sides assure adequate cooling. Interlock switch under lid cuts high voltage supply when cabinet is opened.

DIMENSIONS:

Model HT.9, overall clearance: $291 / 8^{\prime \prime}$ wide by $121 / 2^{\prime \prime}$ high by $201 / 2^{\prime \prime}$ deep.

WEIGHT:

Model HT- 9 transmitter: 120 pounds.
Packed for shipment. 160 pounds.

TUNING UNITS:

Final amplifier coils and exciter luning units are available for the $3.5,7,14$ and 28 Mc . amateur
bands. General coverage coils and units for all fre* quencies belween 1.5 and 18 Mc . may be oblained on special order.

FOURTEEN TUBES:

1-616 Crystal Oscillator (used above 8 Mc . only)
1-6L6 Ciystal Oscillator or Doubler
1-814 Final r.f. Amplifier
1-6SJ7 Ist Speech Amplifier
1-6J5 2nd Speech Amplifier
4-6L6 Push-pull Parallel Modulator Stage
2-5Z3 Rectifiers
1-80 Rectifier
2-866 Rectifiers

haillicrafiters 8:000

MODEL

Telephone and Telegraph Transmitter

Filling a long felt need for a low cost high performance transmitter，the HT． 6 offers most of the desirable features found in Hallicrafters＇larger units．Complete sets of coils and crystals for any three bands may be plugged in，pre－tuned，and selected at will by means of a panel switch．All operat－ ing controls are conveniently arranged on the front panel．Metering of all circuits is provided by a switch which places the meter in the proper circuit．E．c．o．operation is available at any point in the amateur bands if desired．

A high quality audio system assures com－ plete modulation，and is designed for use with any medium：level microphone．Sockets on rear of chassis permit emergency opera－ tion from external power supplies．

FEATURES

1．Frequency range amateur bands from 3．5 Mc．to 60 Mc ．General coverage，J． 5 to 54 Mc ．on spe－ cial order．
2．Normal power oufcut 25 walis，phone or c．w．
3．Three operating frequencies moy be are－set in the transmitter ona selected by means of the bandswitch．
4． 100 percent modulatian with low distartion．
5．All operating controls on frorit panel．
6．Metering of all circuits through use of multi－ range meter and switch．
7．Input for any medium level，high impedonce microphone．

8．Carrier hum more than 40 db ．below 100% modulation．
9．Frequency response flat within 3 db ．between 125 and 5000 cycles．
10．Antenna coil to ma！ch all common resistive loads． 11．Line ferse mounted on rear of chassis．
12．Convenient table mounting．

CONTROLS：

AUDIO GAIN；METER SWITCH；CW／PLATE OFF；PHONE SWITCH；BAND SWITCH；PLATE CIR． CUIT TUNING；ON／OFF；TRANSMIT／STANDBY．

EXTERNAL CONNECTIONS：

Antenna terminals Line cord and plug．Mierophone input socket．Remote control socket．Two external power supply sockets．

PHYSICAL CHARACTERISTICS：

All components of the H^{-}－ 6 are mounted on a rugged gray lacquered steel chassis，and housed in an at－ tractive steel cabinet finished in machine tool gray．

DIMENSIONS：

Mode＇トT－9—20＂wide by $9^{\prime \prime}$ high by $15^{\prime \prime}$ deep． SHIPPING WEIGHT：
67 pounds．

TUNING UNITS：

Final amplifier coils and exciter tuning urits are available for the $3.5,7,14,28$ and 50 Mc ．omateur bands．
NINE TUBES：
1－615 Oscillator（50 Mc．band only）
1－616 Crystal ar e．c．a．Oscillator
1－807 Power Amplifier
1－6SQ7 Speech Amplifier
1－6SC7 Panse Inverter
2－6L6G Modulotors
2－5Z3 Rectifiers

hallicrafters Rado

 \title{MARINE RADIOTELEPHONE
}
 \title{
MARINE RADIOTELEPHONE
}

Safety - Convenience - Economy

The Hallicrafters ENSIGN, Model HT-11 marine radiotelephone provides the safety and convenience of radio communication at a price within the reach of all boat owners. Comprising a 12 -watt crystal-controlled transmitter and a five-tube superheterodyne receiver mounted in a single small cabinet, the ENSIGN provides instantaneous ship-to-shore and ship-to-ship radiofelephone communication and excellent broadcast reception. Small enough to find room in boats of any size, the Model HT- 11 is designed for complete reliability combined with utmost simplicity of operation.

TRANSMITTER FEATURES

1. Instant selection of any 3 transmitter frequen. cies, srystal-controlled.
2. Twelve watts output.
3. Transmitter may be used in the range 2000 kc . to 3000 kc .
4. Car be used with any length antenna.
5. Canvenient "push to talk" operation.
6. Separate economical low drain pawer supply.
7. Rust and corrosion protected throughout.
8. Small size for ease of installation.
9. Can be supplied for use with any power source.
10. Panel mounted chart for recording of operating frequencies.

RECEIVER FEATURES

1. Two bands; broadcast 550 kc . to 1700 kc . and micrine 2000 kc . to 3000 kc .
2. Receiver output may be switched to speaker os handset.
3. Built in moisture resistant PM speaker.
4. Hluminated, easily read funing dial.

CONTROLS:

SPEAKER-PHONES; TRANSMITTER FEEQUENCY; RECEIVE: TUNING; BAND-SWITCH; VOLUME; TRANS. FILS. ON/OFF. Push-to-talk button on hand-set.

EXTERNAL CONNECTIONS:

Antenna terminal on top cabinet. Power cable plugs into receptacle at left end of cabinet.

PHYSICAL CHARACTERISTICS:

Both transmitter and receiver components are mounted on a single nickle-plated chassis. Cabinet is fin. ished in gray wrinkle lacquer. Speaker grill and controls are on front of cabinet and handset is permanently connected and carried in cradle af leff end of cabinet.

POWER SUPPLY:

Power supplies are available for the following volt. ages: 6 volts d.c.; 12 volts d.c.; 32 volts d.c.; 115 volts d.c.; 115 volts a.c.

Power supplies are mounted separately and are connected to the Model HT-11 by a cable.

DIMENSIONS:

Cabinet only, $141 / 8^{\prime \prime}$ wide by $91 / 8^{\prime \prime}$ high by $91 / 4$ " deep. Overall including handset on cradle $16 \frac{1}{2 \prime \prime}$ wide by $10 \frac{1}{8}$ " high by $10^{\prime \prime}$ deep.
D.c. Pawer Supply with Cover, $13^{\prime \prime}$ wide by $91 / 2^{\prime \prime}$ high by $83 / 8$ " deep.
A.c. Power Supply with Cover, $91 / 4$ "wide by $73 / 8^{\prime \prime}$ high by $73 / 4$ " deep.

WEIGHT:

Model HT-11-31 pounds.
D.c. power supply- 21 pounds.
A.c. power supply- 21 pounds.

Add 3 pounds to any of above for shipping weight.

NINE TUBES:

Receiver:
1-6SK7 R.f. Amplifier
1-6K8 Ist Detector, Mixer, h.f. Oscillator
1-6SK7 I.f. Amplifier
1-6SQ7 2nd Detector, a.v.c., 1st a.f. Amplifier
1-6K6G 2nd a.f. Amplifier
Transmitter
1-6V6 Crystal-controlled Oscillator
1-807 R.f. Amplifier Output Stage
2-6V6 Push-pull Modulator Stage

THE COMMODORE

N Marine Radiotelephone

Dependable communications on the high seas

The new Hallicrafters COMMODORE, Model HT- 14 Marine Radiotelephone incorporates every feature experience has shown desirable for ship-to-shore and ship-to-ship telephone service. A commercial adaptation of the famous Hallicrafters-built SCR-543, the HT- 14 basic design has been literally "battle tested." With 6 crystalcontrolled channels selected simultaneous. ly in both transmitter and receiver and an output of 45 watts capable of 100 percent amplitude modulation, the $\mathrm{HT}-14$ is an ideal medium power marine radiotelephone.

TRANSMITTER FEATURES

1. Instant selection of any 6 operating frequencies, crystal.controlled in both transmitter and receiver.
2. 45 watts output.
3. Frequency range, 1880 to 4450 kc .
4. Any antenna from 15 feet io a long wire may be used.
5. "Push-to-talk" switch on handset.
6. All components rust and corrosion resistant.
7. Metering of antenna current, final amplifier grid and plate, and modulator plate provided.
8. Entire unit casily removable for servicing.
9. May be operated from 115 volts a.c., 12,32 or 115 volts d.c.
10. Chart mounted en panel for recording of operafing frequencies.
11. All operating adjustments may be made at front of unit.

RECEIVER FEATURES

1. Two ranges; 1680 kc . 102750 ks . and 2750 to 4450 kc ., either crystal controlled or manually tuned.
2. Crystol receiver f́requencies switched simultoreously with those of the transmitter.
3. Iron core, high-Q inductances used in the r.f., detector, and ascilletor circuits provide maximum gain.
4. Exceptionally flat automatic volure control.
5. Newly developed diode noise limiter and audio filter circui*.
6. Receiver output may be used on handset or speaker.
7. $5^{\prime \prime} \mathrm{PM}$ speaker with moisture sesisiant cone.

CONTROLS:

OPERATING CHANNEL SWITCH (6 pOsifions); TRANS. mitter antenna tlning; receiver tuning; RECEIVER BAND SWITCH; A.F. GAIN; NOISE CON. TROI: STATIC Fllter on/OFF; SPEAKER ON OFF; METER SWITCH; RECEIVER POWER ON/OFF; transmitter power on/Off; SENd-receive SWITCH (located on hand sel, thumb aperated).

METERS:

Antenno current ammeter is of the thermo-couple type and is flush mounted on the upper panel. Range, 0 to $2 \frac{1}{2}$ amperes. A dual range d.c. milliammeter $0-15-300 \mathrm{~m} . \mathrm{a}$. is mounted on the lower panel and con be connected to read final amplifier plate current, final amplifier grid curernt, and modulator plate current.

CONNECTIONS:

The anlenna connector is mounted on a stand-of insulator on top of cabinet. Handset plugs into a receptacle of lower left corner of cabinet. The cable to the power supply unit plugs into a socket at lower right corner of cabinet. The power supply has a line cord for connection to the 115 -volt a.c. supply line. The steel cabinet should be connected to a good ground.

ANTENNA REQUIREMENTS:

The Model HT-14 Radiotelephone is designed to oper. ate with any antenna from a 15 -foot whip to a long wire. For maximum transmitting range, the antenna should be large and as high above water as possible. With single-masted boats, an insulated forestay makes a satisfactory antenna. On boats having two masts, the antenna should be supported between the mast-heads and may consist of one or more wires.

INSTALLATION:

A universal type of shock mounting is furnished with the HT-l4 permitting installation either on a bulkhead or table. Special screw type fasteners hold the HT-14 to the shock mounting and permit its easy removal for servicing.

PHYSICAL CHARACTERISTICS:

The HT-14 Radiotelephone is mounted in a steel cabinet. The cobinet is divided into 2 sections which are held together by heavy clamps. The upper secdion contains the radio frequency components of both transmitter and receiver. The lower section holds the speech amplifier and modulatar. The loud speaker is mounted in the center of the lower panel and the handset is hung in a bracket at the left. All operating controls and switches are conveniently placed. The power supply unit is mounted in a separate cabinet.

POWER SUPPLY:

Power supply combinations for use on four different voltages are available. The 115 -volt a.c. power sup. ply unit is mounted in a separate cabinet. The 32 -volt (or 110 -volt) d.c. models include a 32 -volt for 110 . volt) d.c. rotary converter which supplies power to the 115 -volt a.c. power supply unit. The 12 -volt d.c. model includes a 12 -valt dynamotor type power supply unit. instead of the 115 -voll a.c. power supply unit, in a cabinet of the same dimensions.

DIMENSIONS (overall):

Main cabinet. $23^{\prime \prime}$ high by $21^{\prime \prime}$ wide by $16 \frac{1}{4}$ " deep. Power supply cabinet. $93 / 8^{\prime \prime}$ high by $16^{\prime \prime}$ wide by $15^{\prime \prime}$ deep.
These measurements include protruding parts.
Note: Shock mounts add $23 / 4^{\prime \prime}$ to height or depth according to type of installation.

WEIGHTS:

Main cabinel-110 lbs.
115 -volt a.c. Power Supply- 67 lbs .
Combined shipping weight- 275 lbs.
For d.c. operated models, add 55 lbs. to shipping weight.

TWENTY TUBES:

Tronsmitter

$1-6 L 6 G$	Crystal Oscillator
$2-807$	R.f. Amplifier
$1-12 J 5 G T$	Speech Amplifier
$4-6 L 6 G$	Modulator

Receiver

1-6SK7-GT G R.f. Amplifier
1-6SA7-GT G First Delector
1-6SK7-GT G I.f. Amplifier
1-6H6-GT G 2nd Detector, a.v.c. and Noise limiter 1-6SK7GT G First Audio Amplifier
1-6K6-GT G Second Audio Amplifier
1-6J5-GTG High Frequency Oscillator

Power Supply

1-80 Restifier (for receiver)
4-5Z3 Rectifiers (for transmitter)

hallicrafters radio

Ned Hockensmith

[^0]: GENERAL $\left\{\begin{array}{l}\text { Chapter NX. . . TuleCharacteristicsand MiscellancousData } 413 \\ \text { Chapter VXI . . Radio Oprating } 460 \\ \text { Intlex . } 469\end{array}\right.$

[^1]: Very-low freguencies Low freguctuciow
 Mindum freguenmiss High frequencies
 Vors-high froghemedes
 loltrithigh frecturneies

[^2]: ${ }^{3}$ Spaced to cover $1 / 4 \mathrm{inch}$.

[^3]: * See $F^{\prime \prime}$. 1217 and text for details. C_{4} is monnted inside oscillator coil form; see $\mathrm{F}^{\prime \prime i g}$. 1217. Bandspread taps on L_{3} measured from bottom (" $B^{\prime \prime}+$ end) of coil. $L_{-3}-A$ and $L_{1}-B$ coils close-wound with No. 22 enameled wire; $L_{3}-B$ close-wound with No. 20 enameled; all other L_{1} and L_{3} coils wound with No. 18 enameled, spaced to give a length of $1 / 1 / 2$ inches on a $11 / 2$-inch dianeter form (Hammarlund SWF) except the G coils. which are spaced to a length of 1 inch on 1 -inch diameter forms (Millen 45004 and 4.5005). Antenna and tickier coils, L_{2} and $L 4$, are close-wound with No. 24 enameled, spaced about $1 / 8$-inch from bottoms of grid coils, except for $L_{4}-G$, which is interwound with La.

[^4]: * All wound on Itammarlund $11 / 2$-inch diameter 4-prong forme.
 ** All $1 \frac{1}{2}$ inches in diameter.

[^5]: *** All $1 \frac{1}{8}$-inch diameter, $21 / 4$ inches Iong. Dimensions are approximate for parallel uning for the band indicated. For series tuning, the coil for the next-hipher frequency band is approximately correct.

[^6]: * Hound on Millen 1 -inch diameter forms, I_{2} wonnd turn-for-turn over bottom end of L_{1} in same direction. ** Wound on Ilammarlund $11 / 2$-inch diametor forms, I_{4} dose-wound livelow Is.

[^7]: iValue for both triode sections，assuming both are working under same conditions．In phase inverter service，the cathode resistor should not be by－pessed．
 ${ }^{2}$ Voltege across next－stage grid resistor at grid－current point．
 ${ }^{1}$ At 5 volis r．m．s．output．
 Screen and suppressor tied to plate
 t At 4 volts r．m．s．output．

[^8]: 1 Value for both triode sections，assuming both are working under same conditions．In phase inverter service，the cathode resistor should not be by－passed．
 2 Voltage across nexl－stage grid resistor at grid－current point．
 ${ }^{3}$ At 5 volts r．m．s．output．
 －Screen and suppressor tied to plate．
 At 4 volts t．m．s．output．

[^9]:

[^10]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on ropper as $100 .{ }^{2}$ Per ${ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^11]: ${ }^{1}$ A mil is $1 / 1000$ (one thousandth) of an inch.
 The figures given are approximate only, since the thickness of the insulation varies with different manufacturers.
 ${ }^{3}$ The current-carrying capacity at 1000 C.M. per ampere is equal to the circular-mil area (Column 3) divided by 1000

[^12]: When final allocation of the amateur bands has been made

[^13]: Freepört, Illinois, U.S. A., Sales Offices in Principal Cities

[^14]: CONCORD RADIO CORP., Dept. RAH 901 W. Jackson Blyd., Chicago 7, Ill.
 Gentlemen: Send me at once a FRER copy of your latest Catalog and Buying Guide, listing standard limes of Radio Parts and Electromic Equipmear.
 \qquad
 \qquad
 \qquad

[^15]: Name

 Address

 City
 Zone
 S*cte

[^16]: [The dues are $\$ 2.50$ per year in the United States and Possessions. All other countries $\$ 3.00$ per year.

